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SUMMARY

Due to its simplicity and efficiency, the derivative-free global-search

DIRECT (DIviding RECTangles) algorithm has received much consideration

from the optimization community, and various novel ideas and extensions

have been proposed. However, the efficiency of many DIRECT-type

algorithms solving multimodal problems and also in cases when a solution

with high accuracy is required has decreased. This thesis presents the new

scheme for selecting potentially optimal hyper-rectangles in the DIRECT

framework, which addresses two of its weaknesses. An extensive

experimental investigation revealed the potential and competitiveness of the

added enhancements in our recent proposals, especially for more challenging

multi-modal optimization problems.

Unfortunately, the original DIRECT algorithm addresses optimization

problems only with bounds on the variables, and due to it, the application of

the algorithm is limited, as various applied optimization problems often hold

other types of constraints. The initial DIRECT extensions for problems with

general constraints were not competitive, compared with other derivative-free

global optimization methods. Only in recent years, a few promising

DIRECT-type modifications were proposed. In this thesis, two different

constraint handling techniques are presented, and one of these strategies can

even be applied to solve problems with hidden constraints. The proposed

algorithms effectively explore hyper-rectangles with infeasible midpoints

close to the boundaries of feasibility and may cover feasible regions. An

extensive experimental investigation revealed the potential of the proposed

approaches compared with other existing DIRECT-type algorithms for

constrained global optimization problems, including important engineering

issues.

Contemporary problems often can not be solved with algorithms

reasonably fast using a single core on the fastest computers. However, most

DIRECT-type algorithms present challenges for efficient parallel

implementation, and only a few parallel versions of DIRECT are known. To

the best of our knowledge, all the existing parallel DIRECT-type versions are

focused on box-constrained global optimization problems. Since the newly
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proposed selection scheme per iteration selects a larger number of

subdividing regions, the algorithms developed in this thesis look more

promising for parallelization than DIRECT. Therefore, the first parallel

DIRECT-type algorithms for constrained global optimization problems are

also introduced in this thesis.
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SANTRAUKA

Dėl paprastumo ir efektyvumo, išvestinių informacijos nereikalaujantis

globalios paieškos DIRECT (DIviding RECTangles) algoritmas sulaukė daug

optimizavimo bendruomenės dėmesio, buvo pasiūlytos įvairios naujos

algoritmo idėjos ir modifikacijos. Tačiau daugelio DIRECT tipo algoritmų

efektyvumas blogėja sprendžiant daugybę lokalių minimumų turinčias

problemas arba kai norima rasti kur kas tikslesnę sprendinio reikšmę.

Siekiant sumažinti algoritmo trūkumus šis darbas pateikia naują potencialiai

optimalių hiper-stačiakampių atrankos schemą DIRECT tipo algoritmuose.

Išsamus eksperimentinis tyrimas atskleidė sukurto algoritmo potencialą, ypač

sprendžiant sudėtingesnius optimizavimo uždavinius.

Tačiau originalus DIRECT algoritmas sprendžia problemas tik su

intervaliniais ribojimais ir dėl šios priežasties algoritmo pritaikomumas yra

labai ribotas, kai praktinės optimizavimo problemos dažnai yra apribotos

įvairaus tipo ribojimų funkcijomis. Pirmųjų algoritmo modifikacijų rezultatai

nebuvo konkurencingi, palyginus su kitais išvestinių nereikalaujančiais

optimizavimo metodais. Tik pastaraisiais metais buvo pasiūlyta keletas

perspektyvių DIRECT tipo versijų uždaviniams su ribojimais spręsti. Šiame

darbe pateikiami du skirtingi metodai uždaviniams su ribojimais spręsti, o

vieną iš jų galima pritaikyti sprendžiant problemas su paslėptais apribojimais.

Išsamūs eksperimentiniai tyrimai atskleidė siūlomų algoritmų potencialumą

ir efektyvumų, palyginus su kitais egzistuojančiais DIRECT tipo algoritmais

sprendžiant globaliojo optimizavimo problemas su įvairaus tipo ribojimais,

įskaitant svarbias praktines problemas.

Šiuolaikinės problemos dažnai negali būti efektyviai išspręstos naudojant

ir pačius greičiausius nuoseklius kompiuterius. Todėl lygiagretinimo

technologijos galėtų̨ išspręsti kylančią problemą. Tačiau iteracinė DIRECT

tipų metodų prigimtis riboja algoritmo galimybes efektyviam

lygiagretinimui, ir yra žinomos tik kelios lygiagrečios DIRECT versijos. Mūsų

žiniomis, visos esamos lygiagrečios DIRECT tipo versijos yra skirtos

globaliojo optimizavimo problemoms su intervaliniais ribojimais spręsti.

Kadangi sukurta potencialiai optimali hiper-stačiakampių schema, atlieka

atranką du kartus per iteraciją ir pasirenkamas didesnis skaičius dalinamų
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sričių, algoritmai sukurti šiame darbe atrodo perspektyvesni lygiagretinti,

palyginus su pirmine DIRECT algoritmo versija. Šiame darbe pristatomi

pirmieji lygiagretūs DIRECT tipo algoritmai, skirti globaliojo optimizavimo

problemoms su įvairaus tipo apribojimais spręsti.
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NOTATIONANDABBREVIATIONS

f objective function;

g vector of inequality constraint functions;

h vector of equality constraint functions;

ϕ sum of constraint violations;

u number of inequality constraint functions g;

v number of equality constraint functions h;

m number of linear constraint functions;

n number of variables in objective function;

Rn n-dimensional Euclidean space;

Ω n-dimensional region that satisfy all the constraint functions Ω ⊂ Rn;

D hyper-rectangular optimization domain D ⊂ Rn;

a lower bound of domain D (vector);

b upper bound of domain D (vector);

δ measure(size) of the hyper-rectangle;

x variable(vector);

f∗ global optimum;

x∗ variable(vector) of global optimum f∗;

fmin smallest curent value of the objective function f ;

xmin point of the fmin;

fmax largest curent value of the objective function f ;

f feasmin smallest curent feasible value of the objective function f ;

xfeasmin point of the f feasmin ;

ξ, φ auxiliary functions;

r penalty parameter;

·̄ normalized value;

card(·) cardinality of set;

c center point of normalized hyper-rectangle D̄ (vector);

d Euclidean distance;

In identity matrix;

H set of all hyper-rectangles(partition);

I index set of hyper-rectangles;
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L̃ Lipschitz constant;

ε small error value (0 ≤ ε);

‖x‖i The i-norm of n-dimensional vector x;

T time;

F parallel efficiency;

S speed-up ratio;

W worker(slave lab);

$ number of workers(slave labs);

P problem;

K, k algorithmic iteration counters;

FE, fe algorithmic function evaluation counters;

pe percent error;

λ performance ratio;

L linear constraints;

NL nonlinear constraints;

EQ equality constraints;

feval number of function evaluations;

POH Potential optimal hyper-rectangle;

s seconds;
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Chapter 1

INTRODUCTION

1.1 Research Context And Motivation

The DIRECT algorithm [46] is well-known and broadly used for

derivative-free global optimization problems. This algorithm is an extension

to classical Lipschitz optimization [69, 70, 84, 85, 95, 106], where the

Lipschitz constant is not assumed to be known. This feature made

DIRECT-type approaches attractive for various real-world optimization

problems [1, 2, 8, 12, 14, 26, 56, 73, 77]. Furthermore, the recent extensive

study [91] on the large collection of optimization test problems showed that,

on average, the performance of DIRECT-type algorithms is one of the best

amongst all the tested state-of-the-art derivative-free global optimization

approaches. The DIRECT-type algorithms outperformed algorithms belonging

to other well-known optimization such classes, as Genetic [44], Simulated

annealing [50], and Particle swarm optimization [48].

Nevertheless, earlier research has revealed that the DIRECT algorithm has

two weaknesses [45, 72, 73, 123]. The first is delaying the discovery of the

global minimum and the second is the slow fine-tuning of the solution with

high accuracy, mainly in optimization problems with many local minima.

Another disadvantage is that the originally published algorithm solves only

box-constrained global optimization problems, and it does not naturally

address other types of constraints. A less studied field in DIRECT is applying

the algorithm for problems with general or even more complex hidden
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constraints. Therefore, the main research objectives of this thesis are to

develop algorithms that can address its weaknesses and solve problems with

various types of constraints within the DIRECT framework.

Lipschitz-type global optimization methods are computationally intensive

[41, 42, 67, 70, 77, 98, 102] and therefore a natural way to speed it up is to

parallelize them [32, 75, 80, 92, 93, 99, 113, 112, 114]. However, the iterative

nature of partitioning-based DIRECT-type algorithms limit possibilities for

effective parallelism [25, 34, 35, 36, 37, 81, 122]. Only a few parallel

versions of DIRECT-type algorithms, mainly by the same group of researchers

have been developed. Most of them focused on improving parallel efficiency

by creating more computations in each iteration using an “aggressive”

version of DIRECT, which relaxes the selection criteria by picking and

subdividing a hyper-rectangle of every diameter in every iteration [1]. From

the optimization point of view, this approach is not appealing because it

examines many “unnecessary” (non-potentially optimal)

hyper-rectangles [18, 25]. Moreover, all the existing parallel DIRECT-type

versions are focused on box-constrained global optimization problems to the

best of our knowledge. Therefore, another important issue investigated in this

thesis is the development of efficient parallel DIRECT-type algorithms for

generally constrained global optimization problems.

1.2 Object of the Thesis

The object of the thesis is sequential and parallel DIRECT-type algorithms for

global optimization problems with general constraints and their applicability

for practical optimization problems.

1.3 Aims and Tasks of the Research

The aims of the thesis are:

1. To increase efficiency of state-of-the-art DIRECT-type global

optimization algorithms on optimization problems with many local

minima, and where the solution with high accuracy is needed;

16



2. To extend DIRECT-type algorithms on global optimization problemswith

general and hidden constraints;

3. To develop efficient open-source derivative-free algorithms by taking

into account algorithmic improvements, efficient data structures, and

parallelization techniques.

In order to achieve these aims, the following research tasks must be

accomplished:

1. To evaluate the performance of the existing state-of-the-art DIRECT-type

global optimization algorithms and determine their weaknesses;

2. To improve existing and develop new algorithms considering identified

drawbacks;

3. To develop a general constraint-handling strategy in the DIRECT

algorithmic framework;

4. To develop an auxiliary functions-based DIRECT-type algorithm for

optimization problems with hidden constraints;

5. To implement efficient sequential and parallel versions of the proposed

algorithms, and compare their performance to other related approaches;

6. To efficiently solve challenging practical (potentially black-box)

optimization problems using implemented and openly accessible tools.

1.4 Research Methodology

To analyse the received scientific results in global optimization and

parallelization fields, algorithmic theory, convergence analysis, parallel

computing theory, information retrieval, organization, analysis, comparative

analysis, and generalization methods have been used. For the interpretation

of the experimental investigation, statistical analysis and performance

profiles [15] were applied to evaluate the algorithms’ efficiency.

1.5 Scientific Novelty of the Work

The main novelties of this dissertation are the following:

1. Based on theoretical and experimental research, it was revealed that the

efficiency of the original DIRECT algorithm deteriorates on

17



optimization problems with many local minima and in cases where the

solution with high accuracy is needed. To overcome these

shortcomings, a new strategy for selecting potentially optimal

hyper-rectangles was developed, and the proposed scheme does not

require any extra parameters or use of local search subroutines

(DIRECT-GL, DIRECT-G and DIRECT-L). This modification

significantly outperforms the original DIRECT version, solving much

more complicated multi-modal and high dimension optimization

problems, and can increase the accuracy of the final solution using

fewer function evaluations.

2. The original DIRECT algorithm addresses optimization problems only

with bounds on the variables. In this thesis the following algorithmic

extensions for problems with other types of constraints were developed:

2.1. New approaches (DIRECT-GLc, DIRECT-GLce and

DIRECT-GLce-min) for general-constrained global optimization

problems were proposed. The algorithm works in two phases.

During the first phase, the algorithm handles infeasible initial

points using constraint function information. The second phase

uses an auxiliary function approach that combines information on

the objective and constraint functions and seeks to find a feasible

global solution.

2.2. An approach (DIRECT-GLh) for problems with hidden constraints

(can also be used for problems with general constraints) were

proposed. The algorithm works in two phases. During the first

phase, the algorithm handles infeasible initial points uniformly

dividing the hyper-rectangle. The second phase uses an auxiliary

function approach that estimates the necessary penalty values for

the infeasible points and seeks to find a feasible global solution.

3. Instead of traditionally used static data structures, the developed

algorithms were implemented using more effective dynamic data

structures. Moreover, for the first time, parallel DIRECT-type

implementations (pD-GLce-parfor, pD-GLce-spmd and

pD-ACe-spmd) for problems with general constraints were introduced.

4. DIRECTlib - a library of box and generally constrained test and

18



practical engineering global optimization problems for benchmarking

of various DIRECT-type algorithms was created:

Stripinis, L. and Paulavičius, R. DIRECTLib – a library of global

optimization problems for DIRECT-type methods, v1.2 (2020).

10.5281/zenodo.3948890;

URL: https://zenodo.org/record/3948890#.XyVOk5dR2Uk

The developed algorithms were implemented in the MatLab software:

• For box-constrained global optimization problems, two

implementations of sequential and parallel DIRECT-GL versions, also

four intermediate DIRECT-G and DIRECT-L versions;

URL: https://github.com/LinasStripinis/DIRECT-GL

• For general-constrained global optimization problems, two

implementations of the sequential and parallel DIRECT-GLce versions,

also two intermediate DIRECT-GLc and DIRECT-GLce-min versions;

URL 1: https://github.com/LinasStripinis/DIRECT-GL

URL 2: https://github.com/blockchain-group/pDIRECT-GLce

• For global optimization problems with hidden constraints,

implementation of sequential DIRECT-GLh version;

URL: https://github.com/LinasStripinis/DIRECT-GL

1.6 Participation in Scientific Programs

The author participated in the research project “Development and

Applications of Bilevel Optimization Algorithms” funded by the Lithuanian

Research Council (2017 - 2020). (No. P-MIP-17-60)

1.7 Defended Statements

1. A new two-step selection strategy-based algorithm (DIRECT-GL)

performs the best among DIRECT-type algorithms for the most

challenging non-convex problems from DIRECTlib, and has the fastest

fine-tuning solution to a high accuracy.

2. A new auxiliary function-based algorithm (DIRECT-GLce) for

problems with general constraints is on average the most efficient
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DIRECT-type method solving the most complex classes of optimization

problems from DIRECTlib: high dimensional; non-linear constrained;

and equality constrained.

3. A new auxiliary function-based algorithm for practically oriented

(potentially black-box) problems with hidden constrains (DIRECT-GLh)

is the most efficient DIRECT-type solver with respect to the number of

function evaluations and the execution time solving optimization

problems from DIRECTlib.

4. Created dynamic data structures in the developed algorithms reduce the

number of necessary calculations and simplify the selection of potential

optimal hyper-rectangles; this way it increases the speed of implemented

algorithms more than twice.

5. Created the master-slave paradigm based SPMD-type parallel

algorithm for problems with general constraints enables preserving the

determinism, and a good parallel efficiency on multi-core computing

systems was achieved.

1.8 Approbation of the Research

The results of this researchwere presented at the following conferences plenary

sessions:

1. Paulavičius, R., Stripinis, L. and Žilinskas, J. “DIRECT-type algorithms

for constrained global optimization”, EUROPT 2017: 15th EUROPT

Workshop on Advances in Continuous Optimization, July 12-14, 2017.

Montreal, Canada.

2. Stripinis, L., Žilinskas, J. and Paulavičius, R. “Improved DIRECT-type

algorithm for constrained global optimization problems”, EUROPT

2018: 16th EUROPT Workshop on Advances in Continuous

Optimization, July 12-13, 2018. Almeria, Spain.

3. Stripinis, L. Paulavičius, R., and Žilinskas, J. “Importance of

optimization techniques for the social sciences”, The International

EURO mini Conference Modelling and Simulation of

Social-Behavioural Phenomena in Creative Societies, September

18–20, 2019. Vilnius, Lithuania.
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The results of this research were presented at the following conferences poster

sessions:

4. Stripinis, L. and Paulavičius, R. “Improved DIRECT-type algorithms for

generally constrained global optimization problems”, 9th International

workshop on Data Analysis Methods for Software Systems (DAMSS),

November 30 - December 2, 2017. Druskininkai, Lithuania.

5. Stripinis, L. and Paulavičius, R. “Improved DIRECT-type algorithms for

generally constrained global optimization problems”, 10th International

workshop on Data Analysis Methods for Software Systems (DAMSS),

November 29 – December 1, 2018. Druskininkai, Lithuania.

1.9 Structure of the Dissertation

The dissertation consists of an introduction, five chapters, bibliography and

the publications list. The total scope of the dissertation is 154 pages, including

27 figures and 17 tables. The dissertation was based on 125 literature sources.

Chapter 1 describes the research context, presents the problem statement,

discusses the motivation, aims, objectives of the research states, research

questions, describes the research methods, and approbation of the research.

Chapter 2 gives theoretical backgrounds of the DIRECT-type algorithms.

Chapter 3 develops an extension of the DIRECT algorithm for box-constrained

global optimization. Chapter 4 proposes an extension of the DIRECT-GL

algorithm for general-constrained global optimization. Chapter 5 develops an

extension of the DIRECT-GL algorithm for problems with hidden constraints.

Chapter 6 discusses ways to speed up the DIRECT-type algorithms and

develop the first parallel DIRECT-type algorithm for general-constrained

problems. And finally, at the end of the dissertation, the main results of this

thesis are summarized.
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Chapter 2

Analytical part

The simplicity and efficiency of the original DIRECT algorithm by Jones et

al. [45, 46] attracted considerable research interest, and many modifications

and extensions have been proposed [1, 6, 20, 26, 30, 46, 53, 55, 58, 59, 64,

65, 71, 72, 73, 76, 77, 78, 97, 107, 108, 109]. DIRECT is a popular

partitioning-based Lipschitz optimization algorithm [41, 70, 74, 77, 79, 112]

extending the ideas of Piyavskii algorithm [85] (independently rediscovered

also by Shubert [106]) to multidimensional derivative-free optimization.

The DIRECT algorithm seeks a global optimum by partitioning potentially

optimal (the most promising) hyper-rectangles and evaluating the objective

function at these hyper-rectangles centers. The DIRECT algorithm converges

to the globally optimal function value if the objective function is continuous

or at least continuous in the neighborhood of a global optimum. When the

number of iterations goes to infinity, the set of points sampled by an algorithm

form a dense subset of the hyper-rectangle.

As a direct search method, DIRECT produces deterministic results without

derivative information or the Lipschitz constant of the objective function.

Consequently, DIRECT-type methods have been successfully used in solving

various multidisciplinary optimization problems [1, 2, 8, 66, 109, 125].
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2.1 Global optimization

Traditionally, global optimization is a branch of applied mathematics and

numerical analysis that attempts to find the functions of n continuous

variables called the objective function f : Rn → R minimum (or maximum):

f∗ =min
x∈Ω

f(x), or f∗ =max
x∈Ω

f(x) (2.1)

where Ω is an n-dimensional feasible region Ω ⊂ Rn. Most of the time, the

global optimization problem is defined only as a minimization problem

because the maximization of the real-valued function f̂(x) is equivalent to

the minimization of the function:

f(x) ≡ (−1)× f̂(x).

Besides global minimum f∗ one or all global minimizers x∗f(x∗) = f∗

suppose to be founded.

2.1.1 Classification of optimization problems

The classification of optimization problems is not a formal matter, and several

different classifications can be found in the literature. In [16], the authors

classified optimization problems by the following criteria:

Classification by the objective function f :

• Objective function f is linear;

• Objective function f is non-linear:

– f is differentiable, or non-differentiable;

– f is convex, or non-convex;

– f is uni-modal, or multi-modal;

– f is quadratic.

• Objective function f is noisy;

• Multiple objective functions involved f = (f1, f2, ..., fk).

Classification by the argument x:

• One-dimensional problem {x ∈ Ω,Ω ⊂ R};
• Multi-dimensional problem {x ∈ Ω,Ω ⊂ Rn};
• Some or all variables are discrete {x ∈ Ω,Ω ⊂ Zn}.

23



Classification by the type of constraints:

• Only bounds on variables: a ≤ x ≤ b;

• Linear inequality g(x) ≤ 0 and/or equality h(x) = 0 constraints;

• Non-linear inequality g(x) ≤ 0 and/or equality h(x) = 0 constraints;

• Includes hidden constraints.

In most cases, it is not possible to predict a function’s behavior in the

optimization domain Ω, where it may be more than one local optimum in f .

Many optimization methods that have found local optimum cannot guarantee

that it is also global. Methods that guarantee the globality of optimum must

be based on additional assumptions of the objective function f .

2.1.2 Classification of global optimization methods

Many different methods have been proposed for solving global optimization

problems. In [118], the authors have summarized and classified global

optimization methods into the following groups:

• Direct search methods:

– random search methods;

– clustering methods;

– generalized descent methods.

• Indirect search methods:

– methods approximating the level sets;

– methods approximating the objective function.

• Methods with guaranteed accuracy:

– covering methods.

In this thesis, the covering methods for global optimization are considered.

These methods use different partition techniques of the feasible region. The

partitioning is not terminated until some stopping criteria have been met.

Theoretically, the covering methods can solve some class global

optimization problems with guaranteed accuracy. Detected subregions that

do not contain the global minimum are discarded from further search.

Covering methods can ensure that a point x̂ is found such that f(x̂) differs

from f∗ by no more than a specified accuracy ε.
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2.2 Overview of the original DIRECT algorithm

The original DIRECT algorithm addresses optimization problems only with

bounds on the variables:

min
x∈D

f(x) (2.2)

where f : Rn → R denotes the objective function and the feasible region is an

n-dimensional hyper-rectangle

D = [a,b] = {x ∈ Rn : aj ≤ xj ≤ bj , j = 1, . . . , n}.

We also assume, that the objective function f(x) is Lipschitz-continuous, but

can be non-linear, non-differentiable, non-convex, and multi-modal.
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Figure 2.1: The initial evaluation at the midpoint of hyper-rectangle D̄ solving

Rosenbrock test function with n = 2, 3

In the first iteration, DIRECT has only one hyper-rectangle, which size is

equal to all design space D. Algorithms normalize the domain D to be the

unit hyper-rectangle D̄ and refer to original space D only when evaluating

the objective function. Regardless of the dimension, n, all calculations in the

initially published DIRECT algorithm starts from the single midpoint of the

hyper-rectangle D̄. Visual representation of DIRECT algorithm initialization

solving two and three-dimensional problems are given in Fig. 2.1. The first

evaluation at objective function will be made at the midpoint

c1 = (12 ,
1
2 , ...,

1
2) of unit hyper-rectangle D̄. The authors in [46] proposed

using hyper-rectangular partitions based on N-dimensional trisection, which
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can decrease the computational cost by evaluating objective function only in

the midpoints of new hyper-rectangles. The first hyper-rectangle D̄ is

trisected along all its longest dimensions as shown in Fig. 2.2, and new points

are calculated | 1/3In ± c1 |, where In is identity matrix and objective

function is evaluated at all new cj points, where j = 2...2n. Further, D̄

partitioned into 2n + 1 smaller non-intersecting different measure

hyper-rectangles, and the strategy which is proposed in [46] suggest to place

the lowest function values in the largest measure hyper-rectangles.
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Figure 2.2: The division technique of hyper-rectangles in the DIRECT

algorithm solving Rosenbrock test function with n = 2, 3

The essential step in DIRECT algorithms is the identification of potential

optimal hyper-rectangles of the current partition, which at the iteration k

defined as

Hk = {D̄k
i : i ∈ Ik},

where

D̄k
i = [ai,bi] = {c ∈ Rn : 0 ≤ aji ≤ cj ≤ bji ≤ 1, j = 1, . . . , n, ∀i ∈ Ik} and

Ik is the index set identifying the current partition Hk. The next partition

Hk+1 obtained after the subdivision of the selected potentially optimal

hyper-rectangles from the current partitionHk.

The selection procedure at the initial step is trivial; there exist only one

candidate D̄1. To make the selection of potentially optimal hyper-rectangles

in the future iterations, DIRECT assesses the goodness based on the lower bound

estimates for the objective function f(ci) over each hyper-rectangle D̄
k
i . The

26



requirement of potential optimality is stated formally in Definition 1.

Definition 1 (Potentially optimal hyper-rectangle) Let ci denote the center

sampling point and δi be a measure (distance, size) of the hyper-rectangle D̄
k
i .

Let εpoh > 0 be a positive constant and fmin be the best currently known value

of the objective function. A hyper-rectangle D̄k
j , j ∈ Ik is said to be potentially

optimal if there exists some rate-of-change (Lipschitz) constant L̃ > 0 such

that

f(cj)− L̃δj ≤ f(ci)− L̃δi, ∀i ∈ Ik, (2.3)

f(cj)− L̃δj ≤ fmin − εpoh|fmin|, (2.4)

where the measure of the hyper-rectangle is

δi =
1

2
‖b− a‖2. (2.5)

The hyper-rectangle D̄k
j is potentially optimal if the lower Lipschitz

bound for the objective function computed by the left-hand side of (2.3) is the

smallest one with some positive constant L̃ among the hyper-rectangles of the

current partition Hk. In (2.4) the parameter εpoh is used to protect from an

excessive refinement of the local minima [46, 72]. Good results for εpoh

values ranging from 10−3 to 10−7 were obtained in [46]. A geometrical

interpretation of selection procedure is shown in Fig. 2.3.

In each iteration DIRECT-type algorithms perform selection of such

potentially optimal hyper-rectangles, which in subsequent steps are evaluated

and divided. A brief description of the main steps of the DIRECT algorithm is

given in Algorithm 1.

2.2.1 DIRECT algorithm for box-constrained global

optimization

Two most broadly used public MatLab implementations of the original

DIRECT are DIRECT Version 4.0 [18] and glbSolve [6]. To store

information, both implementations employing a vector-based static data

memory management, contrary to a tree-structure in the original paper [46],

are used. The biggest difference between both algorithms is how the selection
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Figure 2.3: Visualization of the selected potentially optimal rectangles in the

fourth iteration of the DIRECT algorithm solving Rosenbrock test function with

n = 2

of potentially optimal hyper-rectangles (the lower convex hull, shown on the

right side of Fig. 2.3) is implemented. The modified Graham’s scan

algorithm [87] is used for this in glbSolve, but Definition 1 is used in

DIRECT Version 4.0. Also, the numerical tolerances used in the

implementations play an important role [6]. The efficiency of the two

different original DIRECT algorithm implementations (DIRECT by Jones [46]

and glbSolve) is evaluated on nine standard test problems for

box-constrained global optimization in [6], and the glbSolve

implementation using MatLab software, outperforms the primer version by

Jones in most cases.

Many different DIRECT algorithm extensions have been suggested, and

most of them focused on improving the selection of potential optimal

hyper-rectangles, while other attempts modified partitioning and sampling

strategies. Most of the DIRECT-type algorithms are based on the trisection of

n-dimensional potential optimal hyper-rectangles and just BIRECT, and both

DISIMPL versions use different partitioning strategies.

The BIRECT (BIsecting RECTangles) [71] algorithm is motivated by the

diagonal partitioning strategy [94, 97, 102]. The bisection is more

appropriate to the trisection because of hyper-rectangles shapes, but usual

sampling strategies at the center or the diagonal’s endpoints are not efficient
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Algorithm 1: The main steps of the DIRECT algorithms

1 Initialization. Normalize the search space D to be the unit

hyper-rectangle D̄, but refer to the original space D when making

function calls. Evaluate the objective f at the center point c1. Set

fmin = f(c1), xmin = c1, and initialize algorithmic performance

measures and stopping criteria.

2 while stopping criteria are not satisfied do

3 Selection. Identify the set S of potentially optimal
hyper-rectangles (subregions of D̄) using Definition 1.

4 Sampling. For each hyper-rectangle D̄j ∈ S sample and evaluate

the objective function at new domain points. Update fmin, xmin,

and algorithmic performance measures.

5 Subdivision. For each hyper-rectangle D̄j ∈ S subdivide (trisect)
and update partitioned search space information.

6 end

7 return fmin, xmin, and the algorithmic performance measures.

for bisection. In BIRECT, the objective function is evaluated at two points on

the diagonal equidistant between themselves and a diagonal’s vertices. Such

a sampling strategy entitles the reuse of the sampling points in descendant

hyper-rectangles. Additionally, more comprehensive information about the

objective function is considered compared to the central sampling strategy

used in most DIRECT-type algorithms.

In the DISIMPL [76] algorithm simplicial partitions are used. At the initial

DISIMPL step, combinatorial vertex triangulation [117, 124] of D̄ into n!

simplices is used. After this, all simplices share the diagonal of the feasible

region and have equal hyper-volume. In [76], two different sampling

strategies were proposed, both are included in the toolbox: i) DISIMPL-C

evaluates the objective function at the geometric center of the simplex; ii)

DISIMPL-V evaluates the objective function on all unique vertices of the

simplex. For box-constrained problems, the number of initial simplices

increases speedily; therefore, DISIMPL effectively can be used only for small

dimensional box-constrained global optimization problems.
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In [1], the authors relaxed the criteria for selecting potential optimal

hyper-rectangles and proposed an “aggressive” version of the algorithm. The

main idea of Aggressive DIRECT is to select and divide at least one

hyper-rectangle from each group of different diameters (δi) having the lowest

function value. In every iteration, the “aggressive” version of an algorithm

produces new hyper-rectangle measurements (δi), and the number of

function evaluations grows drastically with each iteration. From the

optimization point of view, such an approach seems less favorable since it

“wastes” function evaluations by exploring unnecessary (non-potentially

optimal) hyper-rectangles. A massive supercomputer may be required to

overcome the high cost of later iterations for larger-dimension problems, and

such a strategy is much more appealing in a parallel environment, as was

shown in [35, 36, 37, 122].

In [26] the algorithm named DIRECT-l was proposed. In most DIRECT-

type algorithms, the hyper-rectangle size is measured by a half-length of a

diagonal (2.5). In the DIRECT-l, the measure of a hyper-rectangle is evaluated

by the length of its longest side. Such a measure corresponds to the infinity

norm and allows the DIRECT-l algorithm to group more hyper-rectangles with

the same measure. Thus, there are fewer distinct measures, and therefore, less

potentially optimal hyper-rectangles are selected. Moreover, in the DIRECT-l

at most one hyper-rectangle is selected from each group, even if there is more

than one potentially optimal hyper-rectangle in the same group. It allows a

reduction in the number of divisions within a group.

In the PLOR algorithm, all Lipschitz constants (here with the set of

potentially optimal hyper-rectangles) are reduced to just two: the maximal

and the minimal ones. In this way, the PLOR approach is independent of any

user-defined parameters and balances equally local and global searches

during the optimization process.

2.2.2 DIRECT algorithm for linear-constrained global

optimization

Simplices may cover a feasible region defined by linear constraints.

Therefore simplicial partitioning may tackle linear constraints in a very subtle
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way [78]. All vertices of the feasible region are unique intersection points of

all linear constraints. In this way, L-DISIMPL performs search only in the

feasible region, and the algorithms have a tremendous advantage over all

other DIRECT-type extensions for linear constrained global optimization

problems. Two different sampling strategies are proposed: i) the

Lc-DISIMPL evaluates the objective function at the geometric center of the

simplex; ii) the Lv-DISIMPL evaluates the objective function on all unique

vertices of the simplex. Nevertheless, the authors in [78] showed that the

calculation of feasible region requires to solve 2n + m linear n-dimensional

systems, and such operation is exponential in complexity. Therefore, the

proposed algorithm can be effectively used for relatively small n andm.

2.2.3 DIRECT algorithm for general-constrained global

optimization

The first scheme for problems with general constraints, which can be used in

DIRECT-type algorithms, was developed by one of the original DIRECT

authors [45], and several years later, the investigation of three different

constraint handling strategies within the DIRECT framework was carried out

in [19]. However, the comparison revealed many disadvantages of handling

infeasible hyper-rectangles, and only in recent years, various promising

extensions of the DIRECT algorithm were introduced [3, 11, 52, 83, 82] for

general global optimization problems.

In this subsection generally constrained global optimization problem is

considered of the form:

min
x∈Dfeas

f(x)

s.t. g(x) ≤ 0,

h(x) = 0,

(2.6)

where f : Rn → R, g : Rn → Ru, h : Rn → Rv are (possibly non-linear)

continuous functions. The feasible region consisting of points that satisfy all

the constraints is denoted by Dfeas = D ∩ Ω, where Ω = {x ∈ Rn : g(x) ≤
0 and h(x) = 0}. As for the box-constrained problems, it is also assumed

that the objective and all constraint functions are Lipschitz-continuous (with
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unknown Lipschitz constants) but can be non-linear, non-differentiable, and

non-convex, and multi-modal.

Exact L1 penalty approach

One of the first DIRECT-type approaches for problems with general constraints

was presented in [19]. The author extended the original DIRECT algorithm to

handle constraints by using an auxiliary function that combines information of

the objective and constraint functions in a special manner. An exact L1 penalty

approach [21] is a transformation of the original constrained problem Eq. (2.6)

to the form:

min
x∈D

f(x) +

u∑
i=1

max{rigi(x), 0}+
v∑

i=1

ri+u|hi(x)|, (2.7)

where ri are penalty parameters. The experiments in [19] showed promising

results, but unfortunately, the strategy was compared only with DIRECT-type

versions, which does not use all available constraint function information. It

was found that the biggest drawback is the requirement for the users to set

penalty parameters for each constraint function. In practice, choosing penalty

parameters is a very important task and can have a huge impact on the

algorithm [19, 52, 77, 78].

Two new approaches based on penalty function were recently proposed –

EPGO [83] and DF-EPGO [82]. The main algorithms feature an automatic update

rule for the penalty parameters, and under the weak assumptions, the penalty

parameters are updated only a finite number of times.

Filter methodology

Another recently proposed DIRECT-type approach, Filter DIRECT [11],

aims to simultaneously minimize the constraint violations and the objective

function value. While other strategies work only with one general set of all

hyper-rectangles, the Filter DIRECT algorithm adapts the filter

methodology from [22] and splits the main set into three separate sets. The

filtering strategy prioritizes selecting potentially optimal candidates: first,

hyper-rectangles with feasible center points are selected, followed by those

with infeasible but non-dominated center points, and finally by those that
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have infeasible and dominated center points. The reported results show that

the filter-based DIRECT method can compete with the existing DIRECT-type

methods very well.

Ametamodel-based constraint handling strategy

A metamodel-based [24, 103, 104] constrained DIRECT-type global

optimization algorithm (eDIRECTc) was proposed in [52]. One of the

algorithm’s main differences and features is the employed Voronoi diagrams

for partitioning the design space in Voronoi cells. Voronoi cells have irregular

boundaries, and the eDIRECTc algorithm generates a set of random points to

describe the cells. Thus, the algorithm is no longer deterministic and will

always produce different performance results on separate algorithm runs. To

speed up the convergence, the algorithm employs a pure greedy search on the

objective metamodel f.̂ Also, the eDIRECTc algorithm separately handles

feasible and infeasible cells.

2.2.4 DIRECT algorithm for problems with hidden

constraints

In this section, the existing DIRECT-type methods for Eq. (2.2) optimization

problems with hidden constraints are reviewed and summarized.

Unfortunately, most of the time, descriptive information about objective

functions does not exist, and no assumptions of smoothness, continuity, and

where the function is defined can be made. The main challenge is

convergence errors in physically infeasible regions, and then algorithms give

error messages in evaluations. It can be caused when function contains noise

or even may be discontinuous, and the objective function can be undefined

everywhere within the given bounds, and the feasible region is unknown.

Formally, the global optimization problem is defined in the following form:

min
x∈Dfeas

f(x), (2.8)

where Dfeas = D ∩ Dhidden, and Dhidden is not given analytically, i.e., the

problem has unknown hidden constraints. While solving the problem (2.2),
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algorithms can use information about the feasibility only after evaluating the

function at a certain point.

Barrier approach

One of the first proposed modifications for such problems was the barrier

method [25]. The approach is very straightforward and places a tremendously

high value on infeasible hyper-rectangles. The main issue is that edges of

feasibility can be explored very slow, using such a strategy. The barrier

method’s significant penalties ensure that no infeasible hyper-rectangle can

be potentially optimal as long as there is the same measure hyper-rectangle

with the feasible midpoint. The DIRECT-Barrier algorithm preference will

be the exploration of the regions where feasible points are founded

previously. Another critical issue discovered by the author in [19] is that

hyper-rectangle even with the sizeable feasible region, but the

DIRECT-Barrier algorithm will not explore an infeasible center point in a

reasonable number of function evaluations. The barrier approach is not the

best fit to be used with the DIRECT framework [19, 25].

Neighbourhood Assignment Strategy

The second DIRECT-type approach can tackle problems of hidden constraints

based on the Neighbourhood Assignment Strategy (NAS) [25]. This method

aims to assign the value at infeasible point x /∈ Dfeas relative to the objective

value attained in the feasible point from the neighborhood of x. Every

iteration the DIRECT-NAS algorithm iterates over all infeasible midpoints by

creating surrounding hyper-rectangles around them by keeping the same

center points. Hyper-rectangle increased by doubling the length of each

dimension. If inside an enlarged region more than one feasible center point

exists, the neighbourhood assignment strategy assigns the smallest function

value to infeasible midpoint with small epsilon f(x) + εnasf(x), in [25]

proposed to use the value ε = 10−6. If inside the enlarged region no feasible

points exist the neighbourhood assignment strategy sets the largest objective

function value founded so far fmax + 1. Such a strategy does not allow the

DIRECT-NAS algorithm to move beyond the feasible region by punishing the
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infeasible midpoints with larger values than fmin. However, the DIRECT-NAS

principal concern is slow convergence caused by many additional

calculations.

Incorporating sub-dividing step in the DIRECT algorithm

The most recent suggested idea to handle hidden constraints with the DIRECT

algorithm framework is to use a sub-dividing step for infeasible

hyper-rectangles [65] as the constraints handling method. Also, the proposed

DIRECT-sub includes techniques taken from the barrier approach, and if the

center points are identified as infeasible, then the function assigns an

enormous penalty value to it. The sub-dividing step is performed only in

specific iterations where all infeasible hyper-rectangles are identified as

potential optimal and divided together with potential optimal

hyper-rectangles obtained after the selection step. The sub-dividing step can

decompose the boundaries of the hidden constraints and reveal the feasible

region. If sub-dividing steps are performed at the proper iteration,

performance can be increased effectively, but it has many limitations. The

authors did not determine in which iterations this step should be used and

how much it should be repeated during simulation, and experiments were

performed only on the second-dimension test problem. However,

hyper-rectangles with the vast infeasible region can result in many infeasible

midpoints, and divisions per each sub-division step will grow drastically.

Moreover, the main drawback here is dimensionality, where the number of

partitions increases together with dimension, therefore the proposed

sub-dividing step should be used only on low dimension optimization

problems.

2.3 Implementations of DIRECT-type algorithms

The performance of DIRECT-type algorithms highly depends on the

implementation. Most of the publicly available implementations use static

data memory management, which is more straightforward but usually less

effective due to a problematical prediction of memory requirements. The
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Figure 2.4: Information storage using static data structure (left) and dynamic

data structure (right)

typical data structures store a collection of objective (and constraint) function

values, index numbers, center point coordinates, side lengths of

hyper-rectangles, and other similar data. One of the most broadly used

publicly available implementation [18] of the DIRECT Version 4.0

algorithm uses static data structures whose size is predetermined depending

on stopping conditions. All information received after partitioning is stored

in the contiguous blocks of memory, as shown on the left side of Fig. 2.4.

Using such data structures the algorithm can quickly and easily access the

elements for further Selection (see Algorithm 1, Line 3), Sampling (see

Algorithm 1, Line 4), and Subdivision (see Algorithm 1, Line 5) steps.

Moreover, the content of the data structure can be modified without changing

the memory space allocated to it. Otherwise, the algorithm should spend

extra time re-allocating a more massive contiguous memory block and then

copying/moving existing information into this new block. The DIRECT

Version 4.0 implementation allocates a large array to store information

received after Sampling and Subdivision steps. The allocated vector size

corresponds to one of the stopping conditions: the maximal number of

function evaluations. However, in practice, choosing the maximum size of

function evaluations is not know in advance. The main disadvantage of using

static data structures is the requirement to initially reserve a large amount of

memory, which slows down the algorithm and comes with an overhead

proportional to the allocated vector’s size.

Another disadvantage of typical static data structures used in DIRECT-type
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algorithms is that they perform unnecessary recalculations in each iteration.

One of the most critical tasks in DIRECT-type algorithms is the Selection

step, where the algorithm decides which hyper-rectangles are potentially

optimal (the most promising) for further investigation. Fig. 2.5 illustrates the

selection of potentially optional hyper-rectangles using one of the DIRECT-GL

schemes. Typically, all hyper-rectangles can be displayed graphically, as

shown on the left side in Fig. 2.3, where data is arranged in columns and

sorted according to the function value(s) obtained at each hyper-rectangle.

Vertical sequences of columns are classified in the order of hyper-rectangle

diameters. Usually, this procedure requires to sort all existing

hyper-rectangles by the same size of diameters. Such sorting becomes

inefficient when the amount of data gets larger during optimization,

especially for higher dimension problems. Therefore, implementations using

static data structures are often are slow, and this limits their applicability in

practice.
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Figure 2.5: Selection of potential optimal hyper-rectangles using static data

structures (left) and dynamic data structures (right) implementations in the

DIRECT-GL

In [38], the authors proposed the idea to use dynamic data structures.

Information received after the partitioning is sorted out by hyper-rectangle

diameters and stored in columns, as shown on the right side of Fig. 2.4. All

rectangles of the same diameter are stored in the column at any order. In [38],

the authors have mentioned the idea to sort columns by function values in
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descending order or insert all new data in sorted sequences separately, but

these ideas have not been investigated further.

Using implementation based on dynamic data structures, the selection of

potentially optimal hyper-rectangles in DIRECT (the Selection step) is

simplified. Selection can be performed only in the set consisting of the best

function values from each column, as shown on the right side of Fig. 2.5,

which can save a lot of time compared to the previous selection strategy.

Another considerable advantage comes from the fact that the Selection step

is hardly parallelized. Therefore, the selection of potential optimal

hyper-rectangles using dynamic data structures simplifies and significantly

reduces the time needed for this step.

One of the obvious drawbacks of the dynamic data structures is allocating

the columns, which is unpredictable. Two operations change the column size:

fully processed potentially optimal hyper-rectangle needs to be removed from

the previous column and new ones added to a new/existing column. Depending

on the problem’s dimension, the initial array is allocated a fairly large size in

the usual way. If the array provides insufficient size, new blocks of columns

will be reallocated as needed. In practice, only a few of these columns become

large at any given time. In [38], the authors examined and determined that the

dynamic data structure is more memory expensive, compared with static, and

the way code is implemented has enormous impacts on running time.

2.4 Parallel DIRECT-type algorithms and design

challenges

Parallel programming is often used to implement many deterministic

Lipschitz global optimization methods [32, 75, 80, 92, 93, 99, 112, 113, 114].

Among them, the branch-and-bound framework is especially well suited for

global optimization [13, 27, 40, 112], and different node selection

strategies [79], branching rules, and bound calculations were proposed and

investigated. However, the iterative nature of the partitioning-based

DIRECT-type algorithms limit possibilities for effective

parallelism [31, 34, 35, 36, 37, 81, 122]. Usually, the DIRECT-type algorithms
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belong to the class of “Divide the best” methods [100]. Therefore, the

partitioning procedure is not uniform, and more potential partitions

(hyper-rectangles) are preferred. thus, the DIRECT-type methods, in some

sense, can be viewed as a class of branch without bounding type methods.

In the development of the parallel DIRECT-type algorithms, the main

challenge is a strong data dependency between different iterations and quite a

small number of selected potentially optimal hyper-rectangles (even solving

higher dimensionality problems) to process further, which does not allow

efficient use of many computational cores. In Fig. 2.6, the growth of the

number of different diameters and the number of selected potentially optimal

hyper-rectangles, obtained by the DIRECT Version 4.0 algorithm is

illustrated. It is clear that even solving higher dimensionality problems, the

number of different diameters is limited, and therefore, the number of

selected potential optimal hyper-rectangles is quite small.
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Figure 2.6: The growth of the number of different diameters (left) and the

number of selected potential optimal hyper-rectangles (right), obtained by

the DIRECT Version 4.0 algorithm on the Rosenbrock test problem with

different dimensionality n.

The first design challenge comes in the very first Initialization step

(see Algorithm 1, Line 1), where the algorithm starts from a single center

point and, therefore, produces only one evaluation task for all the acquired

workers. The situation improves when the algorithm progresses longer by
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subdividing more hyper-rectangles. Load balancing is always a problem in

the initial iterations, as there are not enough hyper-rectangles to process.

Moreover, for low dimensional problems the load balancing issue is more

critical, as the number of different partitions grows slower (see Fig. 2.6),

compared to the problems of higher dimensionality.

Another important design challenge comes in the Sampling step

(see Algorithm 1, Line 4), which cannot be started until the Selection step is

finished (see Algorithm 1, Line 3) and vice versa. Only the Sampling and

Subdivision steps (see Algorithm 1, Lines 4 and 5) can be parallelized

efficiently. The Selection step is very difficult to parallelize efficiently,

especially preserving the determinism of the algorithm. Usually, in the

Selection step, a load imbalance occurs with the most workers being idle.

Moreover, the cost of the Selection increases when the algorithm processes

longer (see Fig. 6.3), thus reducing the total percentage of works which can

be performed in parallel. Also, the number of selected potentially optimal

hyper-rectangles in the Selection step cannot be predicted accurately in

advance (see Fig. 2.6). When the number of selected potential optimal

hyper-rectangles is small, an insufficient work will be sent to workers and

processors will not be used efficiently, some of them possibly being idle.

2.4.1 Previous ideas to overcome the main challenges

of parallel DIRECT-type algorithms

The authors in [34] proposed the decomposition of the initial n-dimensional

hyper-rectangle D into smaller parts D̂i, i = 1, . . . , γ. Two different

hierarchical parallel schemes were proposed. The first parallel scheme

operates on three different levels. At the initial level, the entire search space

D is decomposed into multiple subdomains γ, and then optimization on each

of them is performed independently. On each subdomain D̂i master performs

the Selection step and sends the identified potential optimal hyper-rectangles

to the level two. Between levels two and three, a master-slave paradigm is

used for distributing function evaluation tasks. The second introduced

parallel scheme is an extension of the first one, which combines the first two

levels to maintain data structures and independently performs the Selection
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and Subdivision steps on their subdomain. While in the first proposed

scheme, each master has a defined number of workers, in the second scheme,

all masters globally share the workers’ pool. The performance analysis

in [34, 36, 37] revealed that the decomposition of domain D improves the

load balancing, and the proposed DIRECT-type algorithm scales better on

large parallel systems. However, splitting the entire search space into smaller

subdomains destroys the original DIRECT-type algorithm’s determinism, and

using the different sizes of subdomains γ can result in an uneven algorithm

performance.

Most of the previous parallel DIRECT-type versions [34, 35, 36, 37, 122]

are focused on improving parallel efficiency by creating more computations

in every iteration. Therefore, they use a different scheme to select potentially

optimal hyper-rectangles. The authors in [1] introduced a particular scheme

for the selection of potentially optimal hyper-rectangles, which is called

“aggressive” DIRECT. The main idea of “aggressive” DIRECT is to select and

subdivide a hyper-rectangle of every diameter in each iteration.
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Figure 2.7: The growth of the number of different diameters (left) and the total

number of objective function evaluations per iteration (right), obtained by the

Aggressive DIRECT algorithm on the Rosenbrock test function with different

dimensionality n.

The aggressive version relaxed for the criteria of selection of potentially

optimal hyper-rectangles, thus assuring a much higher number of selected
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potential optimal hyper-rectangles per iteration (which coincides with the

number of different diameters, see Fig. 2.7), and therefore, requires a much

higher number of function evaluations per iteration, compared to DIRECT.

This approach does not appear to be favorable from the optimization point of

view, since it is wasting function evaluations, by exploring “unnecessary”

(non-potentially optimal) hyper-rectangles. For more difficult (higher

dimensionality) optimization problems, iteration cost of the aggressive

DIRECT version grows much faster compared to other DIRECT-type versions

(see Figs. 2.6, 2.7 and 3.2). To overcome the high cost of later iterations for

larger dimension problems, a massive supercomputer may be required. To

reduce memory requirements and balance the cost of iteration, the authors

proposed to limit the refinement of the search-space when the measure of

hyper-rectangles reached some prescribed size. According to the authors, the

latter technique reduces the memory usage from 10% to 70%, and thus, the

algorithm can run longer without memory allocation failure. Such an

approach improves parallel efficiency by creating a massive size of work for

processors in every iteration, but it diminishes the optimization efficiency of

the DIRECT algorithm [20, 25].

The parallel hybrid methods, combining generating set search (GSS) [51]

and DIRECT, achieve better load balancing [31]. Such an approach is faster in

parallel than original DIRECT, even when it requires more function evaluations.

2.5 Conclusions

This chapter described the deterministic derivative-free DIRECT-type global

optimization algorithms and identified the main problems that will be

considered in further chapters. First, all the originally developed DIRECT

algorithm steps are reviewed in detail, followed by algorithm extensions for

problems with box, general and hidden constraints. Next, the influence of

data structures on the performance of the DIRECT-type algorithms is

discussed. And finally, the known design challenges of the parallel

DIRECT-type algorithm are investigated, and existing attempts of DIRECT

algorithms parallelization are reviewed.
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Chapter 3

New scheme for the selection of

potential optimal

hyper-rectangles

In this chapter, the newly developed potential optimal hyper-rectangles

selection strategy is investigated, which addresses both weaknesses of the

original DIRECT algorithm described in the first chapter. First, the proposed

schemes for identifying potential optimal hyper-rectangles are described,

following the algorithms convergence analysis. Next, step by step, a new

algorithm for box-constrained global optimization is introduced. The results

of numerical experiments are given, and a detailed comparison of these

technique’s efficiency is presented.

3.1 Introduction

As was mentioned before, the DIRECT algorithm has some well-known

algorithmic weaknesses, e.g., delaying the discovery of the global minimum

and the slow fine-tuning of the solution to high accuracy. These weaknesses

are especially evident in optimization problems with many local minima and

in cases where the solution with high precision is sought [45, 72, 73, 123].

Various proposals have been introduced in the literature to overcome these

inefficiencies (see [57, 59, 72, 97] and references therein). In the first section
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of this chapter, a new way to identify the extended set of potentially optimal

hyper-rectangles is presented. In the new two-step based strategy, the set of

the best hyper-rectangles is expanded by adding more medium-measured

hyper-rectangles with the smallest function value at their centers and

additionally, closest to the current minimum point. The first extension makes

the algorithm work more globally (compared to the selection procedure used

in DIRECT), while the second part assures faster and broader examination

around the current minimum point. In this way, both original DIRECT

weaknesses are addressed, staying in the same algorithmic framework.

3.2 Extended set of potentially optimal

hyper-rectangles

Let Lk be the set of all different indices at the current partition Hk,

corresponding to the hyper-rectangles groups having the same measure (δk).

The minimum value lkmin ∈ Lk corresponds to the hyper-rectangles groups

having the smallest measure δkmin. The maximum value lkmax of Lk

corresponds to the hyper-rectangles groups having the largest measures δkmax,

i. e., lkmax = max{Lk} < ∞. Finally, let lki ∈ Lk be the group’s index were

the hyper-rectangle D̄k
i belongs. In Definitions 2 and 3, new strategies for

identifying an extended set of potentially optimal hyper-rectangles from the

current partition Hk are formalized and in such a way addressing both

weaknesses of DIRECT-type algorithms staying in the DIRECT algorithmic

framework.

Definition 2 (Enhancing the global search)

• Step 1 Find an index j ∈ Ik and a corresponding hyper-rectangle D̄k
j ,

such that

D̄k
j = argmax

j
{lkj : j = argmin

i∈Ik: lkmin≤lki ≤lkmax

{f(ci)}}. (3.1)

• Step 2 Set lkmin = lkj + 1. If lkj ≤ lkmax repeat from Step 1; otherwise

terminate.

At Step 1, the hyper-rectangle containing the minimum point (xmin) is

selected. If there are several hyper-rectangles with the same lowest objective
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value f(ci), the preference is given to hyper-rectangles with the largest lkj

value, i.e., a more significant size measure. After this, in Step 2, the minimum

value lkmin = lkj + 1 is increased; thus, all hyper-rectangles from the groups

with indices lower than the updated lkmin (measures of these hyper-rectangles

belonging to these groups are smaller than the measure of the lkmin group) are

not considered in the recurrent Step 1. A geometrical interpretation of the

globally enhanced (DIRECT-G) version is shown in the left-hand side graphs

in Figure 3.1. By this strategy, the number of medium-measured, potentially

optimal hyper-rectangles are extended and force the DIRECT-G algorithm to

work more globally. It can be stressed, that instead of the Aggressive

DIRECT version, the Definition 2 (DIRECT-G) will not consider

hyper-rectangles from the groups where the minimum function value is more

significant than the minimum value from the larger groups.

Definition 3 (Enhancing the local search)

• Step 1 At each iteration k, evaluate the Euclidean distance from the

current minimum point (xmin) to other sampled points:

d(xmin, ci) =

√√√√ n∑
j=1

(xjmin − cji )
2 (3.2)

• Step 2 Apply the procedure described in Definition 2 in (3.1) using

distances d(xmin, ci) instead of objective function values.

A geometrical interpretation of the selection of potentially optimal

hyper-rectangles using the locally enhanced strategy is shown on the

right-hand side of Figure 3.1. This strategy extends the number of potentially

optimal hyper-rectangles locating close to the current minimum point (xmin).

Moreover, by this strategy, the closest hyper-rectangles from various

measures are selected. Note that DIRECT-L identifies potential optimal

hyper-rectangles not using function values at all, and the algorithm can

stagnate if the global solution is too far from the current best function value.

Therefore the effectiveness of DIRECT-L is considered only to show the

method’s efficiency on the particular group of optimization problems.

Comparing Figs. 2.6 and 3.2, the DIRECT-GL algorithm often selects a

larger number of potential optimal hyper-rectangles than DIRECT Version
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Figure 3.1: Selection of the potentially optimal hyper-rectangles using the

DIRECT-G (on the left-hand side) and DIRECT-L algorithms (on the right-hand

side) solving the Shekel 5 test problem in the fifth iteration

4.0, solving various dimension Rosenbrock test functions. The Eq. (3.1) in

Definition 2 limits selection to only one hyper-rectangle D̄k
j from the group

lkj with any ∀j, even if there are many equal objective function f values. The

combined set Sk3 = Sk1
⋃
Sk2 of potential optimal hyper-rectangles using both

selection procedures Definition 2 and Definition 3, does not exceed the

number of different diameters generated at any iteration (see, Fig. 3.2).

DIRECT Version 4.0 behaves entirely differently when there are many

equal values of the objective function f in any group lkj . DIRECT Version

4.0 selects all hyper-rectangles from the group lkj if they have identical

values and satisfies Definition 1; thus, the algorithm can select a larger

number of hyper-rectangles when different diameters exist (see, Fig. 2.6).

3.3 Algorithmic steps

The key feature of the DIRECT-GL algorithm is that it performs the

identification of potentially-optimal hyper-rectangles twice in every iteration.

First, using Definition 2, the globally enhanced set of potentially optimal

candidates is determined and fully processed (sampled and partitioned).

Second, by using Definition 3, the locally enhanced set is identified and fully
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Algorithm 2: Pseudo code of the DIRECT-GL algorithm
input : P , εpe, FEmax, Kmax;

output: fmin, x
k
min, pe, k, fe;

1 Initialize k = 1, fe = 1, Ik = {1}, fmin = f(c1), x
k
min = c1;

2 while pe > εpe and fe < FEmax and k < Kmax do // pe defined

in Eq. (3.7)

3 Identify the “global” (index) set Sk1 ⊆ Ik of potentially optimal
hyper-rectangles using Definition 2 ;

4 Identify the “local” (index) set Sk2 ⊆ Ik of potentially optimal
hyper-rectangles using Definition 3 ;

5 Find unique union of potential optimal hyper-rectangles sets

Sk3 = Sk1
⋃
Sk2 ;

6 foreach i ∈ Sk3 do
7 Subdivide (trisect) hyper-rectangle D̄k

i and update Ik;
8 Evaluate f at the centers of the new hyper-rectangles;

9 Update fmin, x
k
min, pe and fe;

10 end

11 if d(xkmin, x
k−1
min ) ≥ 10−6 then

12 Calculate distances d(xkmin, ci), i ∈ Ik for all i = 1, ..., fe ;

// using Eq. (3.2)

13 else

14 Calculate distances d(xkmin, ci) for all i = feold, ..., fenew ;

// using Eq. (3.2)

15 end

16 Increase k = k + 1;

17 end

18 return fmin, x
k
min, pe, k, fe;
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Figure 3.2: The growth of the number of different diameters (left) and the

number of selected potential optimal hyper-rectangles (right), obtained by the

DIRECT-GL on the Rosenbrock test problem with different dimensionality n.

processed (sampled and partitioned) again. Thus, the developed new

approach is based on the “Divide the best” strategy [101], and it has the

everywhere-dense type of convergence (like other DIRECT-type

algorithms [20, 46, 71, 72, 97]).

The complete description of the DIRECT-GL algorithm is shown in

Algorithm 2. The inputs for the algorithm are the problem (P) and one (or a
few) stopping criteria: required tolerance (εpe), the maximal number of

function evaluations (FEmax) and the maximal number of DIRECT-GL

iterations (Kmax). After termination, the DIRECT-GL algorithm returns the

found objective value fmin and the solution point xmin together with

algorithmic performance measures: final tolerance – percent error (pe), the

number of function evaluations (fe), and the number of iterations (k).

3.4 Convergence properties of the DIRECT-GL

algorithm

The convergence properties of the DIRECT-type algorithms are broadly

reviewed and investigated [20, 46, 71, 72, 97]). The introduced DIRECT-GL

as well as structural versions DIRECT-G and DIRECT-L algorithms
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convergence properties are similar to the original DIRECT and based on

“Divide the best” strategy [101] and it has the everywhere-dense type of

convergence. The division strategy used by the developed algorithms is the

same as in the original DIRECT and ensures that sampling occurs in every

dimension of hyper-rectangles. Furthermore, in DIRECT, each point examined

by the developed methods is an accumulation point, and the algorithms

eventually sample arbitrarily close to global minima. This follows

from Definition 2 and Definition 3, where the set of potentially optimal

hyper-rectangles always includes at least one hyper-rectangle from the group

of hyper-rectangles with the biggest diameter from the group (lkmax) with the

largest measure δkmax. Since each group contains only a finite number of

hyper-rectangles, any hyper-rectangles will be partitioned after a sufficient

number of iterations.

The developed algorithms are guaranteed to converge to the global

minimum if the objective function is continuous at least in the neighborhood

of the global optimum x∗. In Theorem 1, we state the convergence of

developed algorithms to a global minimizer x∗ within any positive tolerance

ε > 0.

Theorem 1 For any global minima x∗ ∈ D of the objective function f and any

ε > 0 there exists an iteration number k and a hyper-rectangle index i ∈ Ik

such that:

max {‖bi − x∗‖2, ‖ai − x∗‖2} ≤ ε. (3.3)

Proof. From Definitions 2 and 3 it follows that there exists at least one

potentially optimal hyper-rectangle Dk
i in every k iteration D

k
i ∈ Sk, and this

hyper-rectangle belong to group of hyper-rectangles lkmax having the largest

measures δkmax:

δkmax = max{δki , i ∈ Ik} = max{δki , i ∈ Sk}. (3.4)

Since each group in Lk contains only a finite number of hyper-rectangles,

after a sufficient number of iterations, all hyper-rectangles of the group lkmax

with the maximal measure δkmax will be partitioned. The division strategy

used in DIRECT-GL ensures that sampling occurs in every dimension, and

each potentially optimal hyper-rectangles are fully subdivided and reduced in
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size. From this follows, that such a procedure will subdivide any new group

lkmax−1 of the largest hyper-rectangles that will appear after subdividing lkmax.

As the results after finite number of iterations in the partition Hk the size

measure of any hyper-rectangle Dk
j ∈ lkmax will be δ

k
j ≤ ε:

1

2
‖bj − aj‖2 ≤ ε. (3.5)

Then, from Eq. (3.5) follows that the measure δki of the hyper-rectangle

containing the global minimum x∗ ∈ Dk
i is also not exceeding ε:

max {‖bi − x∗‖2, ‖ai − x∗‖2} ≤ δkj . (3.6)

Thus, from Eq. (3.5) and Eq. (3.6) follows Eq. (3.3).

3.5 Numerical investigation

Tested algorithms

The introduced algorithms and other DIRECT-type methods used in further

experiments were implemented in the MatLab programming language. It

should be noted that for the DIRECT algorithm, potentially optimal

hyper-rectangles can be identified in at least two different ways: using the

modified Graham’s scan algorithm [6] (BIRECT, DISIMPL-V and DISIMPL-C)

or the rule described in Definition 1 (DIRECT-l, PLOR and DIRECT Version

4.0). Usually, this does not impose significant differences, but occasionally

it can have some differences, e.g., when higher precision is required using

Definition 1 can be more useful. The selection procedure of potentially

optimal hyper-rectangles in DIRECT-GL differs significantly, however, this

does not have a notable difference in overall performance, compared with the

procedure used in DIRECT. This means that to identify the same quantity of

potentially optimal hyper-rectangles DIRECT Version 4.0 and DIRECT-GL

spent a similar amount of time. A total of nine algorithms were tested.

Benchmark problems

The algorithm’s efficiency on the DIRECTlib test set [110] is compared,

consisting of 31 global optimization test functions. Note that all tested
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problems from the DIRECTlib test set are multimodal, therefore suitable to

investigate how introduced modifications help overcome the first weakness.

In Table 3.1 the main features of these test problems are reported: name of

the problem, source, dimensionality (n), feasible region (D), the number of

local minima (if known), and the known minimum (f∗). Some of the test

problems have several variants, e.g., Bohachevsky, Shekel, and some of them

like Alpine, Csendes, Griewank and etc. can be tested for different

dimensionality. In total, the algorithms were examined on 59 multimodal

box-constrained global optimization test problems.

Stopping criteria

Since all the global minima f∗ are known for all tested problems in advance,

investigated algorithms were stopped either when the point x was generated

such that the percent error

pe = 100%×


f(x)−f∗

|f∗| , f∗ 6= 0,

f(x), f∗ = 0,
(3.7)

is smaller than the tolerance value εpe, or when the number of function

evaluations exceeds the prescribed limit of 106. In flow investigation, four

different values for εpe were considered: 10
−2 and 10−8. By doing this, the

algorithm’s ability to avoid the second weakness is investigated.

Evaluation of the performance of the algorithms

First, the comparison is based on the number of function evaluations, and the

best (smallest) number for each problem is shown in bold font in the tables.

Second, to evaluate the different solver’s performance when running on a

broad set of test problems, performance profiles [15] were applied. In this

section, the algorithm’s performance applying the performance profiles tool

with the convergence test Eq. (3.7) is analyzed. Benchmark results generated

by running a specific algorithm υ (from a set of algorithms V under

consideration) for each problem ρ from a benchmark set P and recording the

performance measure of interest, which could be, for example, the number of

function evaluations, the computation time, the number of iterations or the
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Table 3.1: Key characteristics of the DIRECTlib [110] test problems for box-

constrained global optimization

Label Source n D No. of minima f∗

Ackley [39, 116] 2, 5, 10 [−15, 30]i, i = 1...n multimodal 0.00000000

Alpine [10] 5, 10, 15 [0, 10]i, i = 1...n multimodal −2.80813118n

Beale [39, 116] 2 [−4.5, 4.5]i, i = 1...n multimodal 0.00000000

Bohachevsky 1 [39, 116] 2 [−100, 110]i, i = 1...n multimodal 0.00000000

Bohachevsky 2 [39, 116] 2 [−100, 110]i, i = 1...n multimodal 0.00000000

Bohachevsky 3 [39, 116] 2 [−100, 110]i, i = 1...n multimodal 0.00000000

Branin [39, 116] 2 [−5, 10]1, [10, 15]2 3 0.39788735

Bukin [116] 2 [−15, 5]1, [−3, 3]2 multimodal 0.00000000

Csendes [10] 5, 10, 15 [−10, 20]i, i = 1...n multimodal 0.00000000

Colville [39, 116] 4 [−10, 10]i, i = 1...n multimodal 0.00000000

Cross-in-Tray [116] 2 [−10, 10]i, i = 1...n multimodal −2.06261187

Drop-Wave [116] 2 [−5.12,−6.12]i, i = 1...n multimodal −1.00000000

Easom [39, 116] 2 [−100, 100]i, i = 1...n multimodal −1.00000000

Eggholder [116] 2 [−512, 512]i, i = 1...n multimodal −959.64066272

Goldstein & Price [39, 116] 2 [−2, 2]i, i = 1...n 4 3.00000000

Griewank [39, 116] 5, 10, 15 [−600, 700]i, i = 1...n multimodal 0.00000000

Hartman [39, 116] 3 [0, 1]i, i = 1...n 4 −3.86278214

Holder Table [116] 2 [−10, 10]i, i = 1...n 4 −19.20850000

Hump [39, 116] 2 [−5, 5]i, i = 1...n 6 −1.03162845

Langermann [116] 2 [0, 10]i, i = 1...n 6 −4.15580929

Levy [39, 116] 5, 10, 15 [−5, 5]i, i = 1...n multimodal 0.00000000

McCormick [116] 2 [−1.5, 4]1, [−3, 4]2 multimodal −1.91322295

Michalewicz [39, 116] 2, 5, 10 [0, π]i, i = 1...n 2! −1.80130341

Michalewicz [39, 116] 2, 5, 10 [0, π]i, i = 1...n 5! −4.68765817

Michalewicz [39, 116] 2, 5, 10 [0, π]i, i = 1...n 10! −9.66015171

Perm(β = 0.5) [39, 116] 5 [−n, n]i, i = 1...n multimodal 0.00000000

Perm(β = 10) [39, 116] 8 [−n, n]i, i = 1...n multimodal 0.00000000

Power Sum [39, 116] 4 [0, 4]i, i = 1...n multimodal 0.00000000

Qing [10] 5, 10, 15 [−500, 500]i, i = 1...n multimodal 0.00000000

Rastrigin [39, 116] 2, 5, 10 [−6.12, 5.12]i, i = 1...n multimodal 0.00000000

Schwefel [39, 116] 2, 5, 10 [−500, 500]i, i = 1...n multimodal 0.00000000

Shekel(m = 5) [39, 116] 4 [0, 10]i, i = 1...n 5 −10.15319967

Shekel(m = 7) [39, 116] 4 [0, 10]i, i = 1...n 7 −10.40294056

Shekel(m = 10) [39, 116] 4 [0, 10]i, i = 1...n 10 −10.53640981

Shubert [39, 116] 2 [−10, 10]i, i = 1...n 760 −186.73090883

Styblinski-Tang [10] 5, 10, 15 [−5, 5]i, i = 1...n multimodal −39.16616570n

Trid [39, 116] 6 [−36, 36]i, i = 1...n multimodal −50.00000000

Trid [39, 116] 10 [−100, 100]i, i = 1...n multimodal −210.00000000

Zakharov [39, 116] 2, 5, 10 [−5, 11]i, i = 1...n multimodal 0.00000000
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memory used. In the following experiments, the number of function

evaluations and the computation time criteria were used.

Performance profiles asses the overall performance of solvers using a

performance ratio (λp,υ)

λρ,υ =
tυ,ρ

min{tυ,ρ : ρ ∈ P}
, (3.8)

where tυ,ρ > 0 is the number of function evaluations required to solve problem

ρ by the algorithm υ and min{tυ,ρ : υ ∈ V} is the smallest number of function
evaluations by any algorithm on this problem. Then, the performance profile

(χυ(β)) of an algorithm υ ∈ V is given by the cumulative distribution function

for the performance ratio

χυ(β) =
1

card(P)
size{ρ ∈ P : λρ,υ ≤ β}, β ≥ 1, (3.9)

where card(P) is the cardinality of P . Thus, χυ(β) is the probability for an

algorithm υ ∈ V that a performance ratio λp,υ for each ρ ∈ P is within a factor

β of the best possible ratio.

The performance profiles seek to capture how well the certain algorithm υ

performs compared to other algorithms in V on the set of problems from P .
In particular, χυ(1) gives the fraction of the problems in P for which

algorithm υ is the winner, i.e., the best according to the λρ,υ criterion. In

general, algorithms with high values for χυ(β) are preferable.

3.5.1 Group 1: low-dimensional cases

First, the algorithm’s efficiency was evaluated, solving 27 low-dimensional

(n ≤ 4) multimodal box-constrained global optimization test problems. The

results of the experiments are given in Table 3.2. Here, the comma symbol “,”

is used to separate thousands.

First, DIRECT-GL performance, on the average, much better (see Overall

row in Table 3.2) compared to all the other algorithms. Especially this is

evident when a lower percentage error (pe) (higher accuracy) is sought.

When εpe = 10−2 was used, the second best algorithm DISIMPL-V requires

on average 3.7 times more function evaluations compared to DIRECT-GL and

when εpe = 10−8 was used, the second best algorithm DISIMPL-C requires

53



on average 5.2 times more function evaluations compared to the same

DIRECT-GL.

For small dimensional test problems n ≤ 4, all DIRECT-type algorithms

perform quite well when the εpe = 10−2 is used as stopping condition.

However, DIRECT-type algorithms significantly suffer, when a solution with

higher accuracy (εpe = 10−8) is needed. All developed algorithms have only

one loss of unsolved problem, comparing with the results, when the lower

percentage error was used as the stooping condition εpe = 10−2. The most

significant recorded losses belong to BIRECT (13) and DISIMPL-V (11) of

unsolved problems. DIRECT-GL failed (see Failed row in Table 3.2) to solve

only one of the test problems 1.9%(1/54) in total, while the second-best

observed result was achieved by DISIMPL-C, where the algorithm fails to

solve 18.5%(10/54) cases accordingly. Furthermore, by the same criteria,

the DIRECT-G and DIRECT-L algorithms showed better results than all other

tested algorithms, by failing to solve only 5.5%(3/54) cases accordingly. The

developed algorithms are especially useful when the solution with high

accuracy εpe = 10−8 is needed.

Another observation is that solving simpler test problems the introduced

algorithms use more function evaluations compared to other DIRECT-type

methods. That is mainly because the set of potentially optimal

hyper-rectangles in DIRECT-G is larger per iteration. Consequently, a greater

number of function evaluations are needed.

3.5.2 Group 2: high-dimensional cases

Next, the efficiency of the algorithms was evaluated, solving 32

high-dimensional (n ≥ 4) multimodal box-constrained global optimization

test problems. The results of the experiments are given in Table 3.3.

Once again, the developed DIRECT-GL is the most efficient optimizer and

has only one loss of unsolved problem comparing with the results, when the

lower percentage error was used as the stooping condition εpe = 10−2.

Meanwhile other DIRECT-type algorithms significantly suffer when a solution

with higher accuracy (εpe = 10−8) is needed. The most significant recorded

losses belong to BIRECT (16) and DIRECT (9) of unsolved problems.
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DIRECT-GL failed (see Failed row in Table 3.2) to solve only one of the test

problems 10.9% (7/64) in total, while the second-best result was achieved by

DIRECT, where the algorithm fails to solve more than a half test problems –

51.6% (33/64). Furthermore, by the same criteria, the DIRECT-G and

DIRECT-L algorithms showed better results than all other tested algorithms,

by failing to solve only 34.7% (22/64) and 39%(25/64) cases accordingly.

The developed algorithms are especially useful, where the solution with high

accuracy εpe = 10−8 is needed.
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Figure 3.3: Performance profiles of DIRECT-type algorithms on the whole 59

box-constrained optimization test problems from DIRECTlib

The worst result was obtained using the simplicial partition-based

DISIMPL-C algorithm, the main reason for this is the high-dimension used in

the tested problems. The algorithm fails to solve approximately 93.8%

(60/64) of test problems. Approximately 56.3% (18/32) of the test problems

were larger than n ≥ 10. In such situations the DISIMPL-C algorithm exceeds

the maximal number of function evaluation budget in the initialization step

without proceeding at least one iteration.

DIRECT-GL performance on the average is better (see Overall row in

Table 3.2) compared to all other algorithms. When εpe = 10−2 was used, the
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second best algorithm BIRECT requires on average 1.6 times more function

evaluations compared to DIRECT-GL and where εpe = 10−8 was used, the

second best algorithm PLOR requires on average 2.2 times more function

evaluations compared to the same DIRECT-GL.
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Table 3.2: CComparison between different DIRECT-type algorithm solving low-dimensional (n ≤ 4) box-constrained global

optimization problems from DIRECTlib

Label n εpe DIRECT-GL DIRECT-G DIRECT-L DIRECT V. 4.0 BIRECT DIRECT-l PLOR DISIMPL-V DISIMPL-C

Ackley 2
10−2 1, 069 851 753 255 202 135 143 311 578

10−8 4, 525 3, 489 3, 379 909 21, 976 473 315 266, 004 1, 126

Beale 2
10−2 533 283 357 655 436 245 22, 875 427 522

10−8 3, 361 1, 347 1, 615 2, 835 2, 226 1, 143 > 106 2, 027 1, 744

Bohachecsky 1 2
10−2 689 435 435 327 476 205 99 358 456

10−8 1, 955 1, 129 1, 133 845 4, 274 511 151 1, 323 850

Bohachecsky 2 2
10−2 679 441 855 345 478 233 2, 719 364 460

10−8 1, 925 1, 139 1, 545 897 4, 406 551 2, 791 1, 398 878

Bohachecsky 3 2
10−2 719 623 459 693 480 573 119, 217 892 462

10−8 2, 609 1, 795 1, 595 2, 099 3, 672 1, 429 706, 621 2, 784 2, 680

Branin 2
10−2 555 255 333 195 242 159 319 372 202

10−8 2, 043 841 1, 079 > 106 > 106 > 106 > 106 > 106 63, 910

Bukin 2
10−2 167, 721 76, 507 > 106 > 106 > 106 > 106 > 106 > 106 > 106

10−8 458, 433 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106

Continued on next page
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Table 3.2 Continued from previous page

Label n εpe DIRECT-GL DIRECT-G DIRECT-L DIRECT V. 4.0 BIRECT DIRECT-l PLOR DISIMPL-V DISIMPL-C

Colville 4
10−2 2, 509 84, 557 10, 209 6, 585 794 3, 379 > 106 2, 815 1, 318

10−8 8, 571 265, 565 38, 945 65, 243 2, 334 11, 543 > 106 172, 034 2, 736

Cross-in-Tray 2
10−2 299 307 187 569 120 251 199 413 98

10−8 833 541 573 46, 401 > 106 21, 835 24, 553 > 106 58, 722

Drop-Wave 2
10−2 4, 377 1, 369 6, 585 2, 927 190 2, 555 58, 411 10, 053 11, 030

10−8 5, 143 1, 873 7, 085 187, 537 727, 760 120, 925 271, 899 > 106 72, 098

Easom 2
10−2 467 325, 955 377 32, 859 16, 420 6, 903 7, 015 8, 429 40, 462

10−8 1, 491 326, 529 1, 097 > 106 > 106 > 106 > 106 > 106 > 106

Eggholder 2
10−2 1, 481 38, 517 12, 891 7, 449 3, 276 8, 655 > 106 1, 062 7, 612

10−8 5, 425 40, 641 14, 949 > 106 > 106 > 106 > 106 174, 285 > 106

Gold. and Pr. 2
10−2 325 209 269 191 274 115 85 17 180

10−8 1, 341 789 839 828, 825 > 106 791, 489 288, 917 17 119, 656

Hartman 3 3
10−2 685 361 313 199 352 111 111 261 334

10−8 3, 097 1, 997 2, 011 > 106 > 106 > 106 > 106 > 106 538, 892

Holder Table 2
10−2 209 115 131 209 222 59 63 461 176

10−8 761 379 431 20, 465 472 21, 111 11, 515 3, 705 16, 496

Hump 2 10−2 367 211 215 293 334 137 231 375 228

Continued on next page
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Table 3.2 Continued from previous page

Label n εpe DIRECT-GL DIRECT-G DIRECT-L DIRECT V. 4.0 BIRECT DIRECT-l PLOR DISIMPL-V DISIMPL-C

Hump 2 10−8 1, 629 1, 089 929 > 106 > 106 > 106 > 106 > 106 103, 332

Langermannley 2
10−2 281 167 197 123 686 173 393 1, 536 912

10−8 1, 431 751 827 653, 093 > 106 774, 223 440, 885 > 106 3, 026

McCormick 2
10−2 179 129 131 113 130 75 61 170 128

10−8 1, 015 629 761 479, 409 > 106 > 106 216, 465 > 106 3, 010

Michalewics 2
10−2 157 97 97 67 126 45 55 179 508

10−8 279 179 179 109 462 83 79 179 658

Power Sum 4
10−2 93, 201 > 106 12, 561 > 106 10, 902 > 106 > 106 243 313, 036

10−8 > 106 > 106 > 106 > 106 48, 052 > 106 > 106 243 > 106

Rastrigin 2
10−2 733 1, 441 15, 841 987 180 1, 727 1, 503 965 1, 390

10−8 1, 815 2, 153 16, 469 1, 833 758 2, 021 1, 585 2, 364 2, 138

Schwefel 2
10−2 591 349 807 255 236 341 169 472 542

10−8 1, 605 1, 113 1, 555 1, 195 1, 332 679 257 3, 188 1, 226

Shekel 5 4
10−2 1, 311 761 725 155 1, 200 7, 185 7, 133 2, 485 88, 064

10−8 5, 715 3, 721 3, 635 > 106 > 106 > 106 > 106 > 106 > 106

Shekel 7 4
10−2 1, 311 753 697 145 1, 180 141 133 719 > 106

10−8 7, 871 5, 341 5, 265 > 106 > 106 > 106 > 106 > 106 > 106

Continued on next page
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Table 3.2 Continued from previous page

Label n εpe DIRECT-GL DIRECT-G DIRECT-L DIRECT V. 4.0 BIRECT DIRECT-l PLOR DISIMPL-V DISIMPL-C

Shekel 10 4
10−2 1, 291 729 703 145 1, 140 139 133 754 > 106

10−8 7, 835 5, 059 5, 031 > 106 > 106 > 106 > 106 > 106 > 106

Shubert 2
10−2 585 3, 547 375 2, 967 1, 780 2, 043 1, 509 4, 509 518

10−8 1, 731 4, 321 1, 083 > 106 > 106 > 106 > 106 723, 387 32, 926

Zakharov 2
10−2 419 7, 493 249 237 502 209 223 42 430

10−8 1, 563 16, 085 779 827 5, 354 619 178, 689 42 1, 160

Average
10−2 10, 472 57, 276 39, 509 76, 257 38, 606 75, 400 156, 400 38, 470 128, 505

10−8 56, 815 99, 574 78, 251 492, 316 553, 215 509, 209 560, 916 494, 555 297, 306

Median
10−2 679 623 435 293 476 233 319 461 522

10−8 1, 955 1, 873 1, 555 479, 409 > 106 774, 223 706, 621 266, 004 32, 926

# of failed
10−2 0/27 1/27 1/27 2/27 1/27 2/27 4/27 1/27 3/27

10−8 1/27 2/27 2/27 11/27 14/27 12/27 13/27 12/27 7/27

Concluded
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Table 3.3: Comparison between different DIRECT-type algorithm solving higher-dimensional (n ≥ 5) box-constrained global

optimization problems from DIRECTlib

Label n εpe DIRECT-GL DIRECT-G DIRECT-L DIRECT V. 4.0 BIRECT DIRECT-l PLOR DISIMPL-V DISIMPL-C

Ackley

5
10−2 15, 655 11, 103 97, 401 8, 845 1, 268 > 106 671 22, 881 > 106

10−8 67, 647 45, 013 131, 161 17, 757 > 106 > 106 1, 663 > 106 > 106

10
10−2 130, 949 90, 487 > 106 80, 927 47, 792 > 106 8, 979 > 106 > 106

10−8 502, 577 339, 943 > 106 > 106 > 106 > 106 11, 163 > 106 > 106

Alpine

5
10−2 2, 483 6, 825 861 3, 565 230 8, 589 843 17, 482 > 106

10−8 8, 645 11, 009 5, 051 > 106 > 106 > 106 > 106 > 106 > 106

10
10−2 62, 565 > 106 233, 863 > 106 5, 938 > 106 > 106 > 106 > 106

10−8 98, 351 > 106 258, 277 > 106 > 106 > 106 > 106 > 106 > 106

15
10−2 824, 457 > 106 > 106 > 106 137, 578 > 106 > 106 > 106 > 106

10−8 926, 677 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106

Csendes

5
10−2 1, 509 1, 517 1, 477 1, 743 2, 370 727 257 14, 671 12, 452

10−8 2, 511 3, 107 3, 009 3, 953 7, 082 1, 295 337 32, 481 16, 708

10
10−2 13, 443 11, 947 11, 311 58, 143 90, 536 42, 285 1, 187 > 106 > 106

10−8 21, 329 24, 083 23, 069 167, 937 849, 492 75, 903 1, 647 > 106 > 106

15
10−2 49, 413 40, 753 39, 083 374, 085 > 106 > 106 2, 867 > 106 > 106

10−8 76, 383 81, 413 78, 293 > 106 > 106 > 106 3, 953 > 106 > 106

Continued on next page
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Table 3.3 Continued from previous page

Label n εpe DIRECT-GL DIRECT-G DIRECT-L DIRECT V. 4.0 BIRECT DIRECT-l PLOR DISIMPL-V DISIMPL-C

Griewank

5
10−2 234, 615 205, 343 > 106 > 106 > 106 > 106 > 106 > 106 > 106

10−8 243, 063 209, 731 > 106 > 106 > 106 > 106 > 106 > 106 > 106

10
10−2 > 106 269, 279 > 106 > 106 > 106 > 106 > 106 > 106 > 106

10−8 > 106 298, 339 > 106 > 106 > 106 > 106 > 106 > 106 > 106

15
10−2 232, 363 129, 745 > 106 > 106 3, 688 > 106 > 106 > 106 > 106

10−8 388, 247 219, 181 > 106 > 106 > 106 > 106 > 106 > 106 > 106

Levy

5
10−2 1, 845 1, 095 1, 035 517 872 327 195 6, 670 178, 284

10−8 10, 239 5, 451 5, 373 3, 383 18, 504 1, 207 379 > 106 199, 068

10
10−2 14, 097 7, 969 7, 647 5, 555 11, 572 31, 951 817 > 106 > 106

10−8 68, 127 37, 393 36, 489 50, 595 > 106 86, 601 1, 619 > 106 > 106

15
10−2 46, 197 26, 503 24, 623 48, 519 248, 526 > 106 1, 867 > 106 > 106

10−8 211, 055 116, 979 110, 751 526, 655 > 106 > 106 3, 731 > 106 > 106

Michalewics

5
10−2 5, 225 5, 459 > 106 14, 077 73, 866 26, 405 > 106 > 106 > 106

10−8 9, 755 7, 787 > 106 > 106 > 106 > 106 > 106 > 106 > 106

10
10−2 44, 127 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106

10−8 57, 475 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106

Qing
5

10−2 10, 501 5, 655 6, 447 9, 529 > 106 3, 747 > 106 > 106 > 106

10−8 28, 337 13, 817 16, 263 17, 479 > 106 4, 865 > 106 > 106 > 106

10 10−2 104, 299 > 106 56, 689 837, 387 > 106 > 106 > 106 > 106 > 106

Continued on next page
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Table 3.3 Continued from previous page

Label n εpe DIRECT-GL DIRECT-G DIRECT-L DIRECT V. 4.0 BIRECT DIRECT-l PLOR DISIMPL-V DISIMPL-C

Qing

10 10−8 241, 195 > 106 132, 333 938, 403 > 106 > 106 > 106 > 106 > 106

15
10−2 372, 683 > 106 374, 419 > 106 > 106 > 106 > 106 > 106 > 106

10−8 838, 803 > 106 613, 559 > 106 > 106 > 106 > 106 > 106 > 106

Perm(β = 0.5) 5
10−2 13, 505 42, 735 > 106 25, 115 56, 954 67, 479 > 106 44, 147 > 106

10−8 > 106 > 106 > 106 > 106 > 106 > 106 > 106 240, 715 > 106

Perm(β = 10) 8
10−2 249, 999 123, 209 123, 185 13, 285 > 106 5, 919 2, 431 256 > 106

10−8 417, 783 206, 489 206, 465 26, 853 > 106 9, 741 3, 045 256 > 106

Rastrigin

5
10−2 255, 385 > 106 > 106 > 106 1, 394 > 106 > 106 > 106 > 106

10−8 268, 773 > 106 > 106 > 106 4, 394 > 106 > 106 > 106 > 106

10
10−2 > 106 > 106 > 106 > 106 40, 254 > 106 > 106 > 106 > 106

10−8 > 106 > 106 > 106 > 106 97, 238 > 106 > 106 > 106 > 106

Schwefel

5
10−2 401, 757 594, 077 > 106 27, 543 4, 954 323, 683 > 106 > 106 > 106

10−8 413, 069 601, 795 > 106 39, 487 95, 674 326, 653 > 106 > 106 > 106

10
10−2 > 106 > 106 > 106 > 106 304, 914 > 106 > 106 > 106 > 106

10−8 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106

Styblinski-Tang

5
10−2 1, 905 1, 099 1, 167 3, 673 248 2, 083 271 18, 616 > 106

10−8 3, 813 2, 317 2, 455 126, 947 > 106 14, 253 2, 849 > 106 > 106

10
10−2 12, 081 7, 059 7, 921 130, 669 3, 800 > 106 3, 311 > 106 > 106

10−8 26, 103 15, 473 17, 253 > 106 > 106 > 106 > 106 > 106 > 106

Continued on next page
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Table 3.3 Continued from previous page

Label n εpe DIRECT-GL DIRECT-G DIRECT-L DIRECT V. 4.0 BIRECT DIRECT-l PLOR DISIMPL-V DISIMPL-C

Styblinski-Tang 15
10−2 37, 571 22, 919 25, 309 > 106 25, 444 > 106 60, 295 > 106 > 106

10−8 79, 805 48, 917 53, 967 > 106 > 106 > 106 > 106 > 106 > 106

Trid

6
10−2 8, 629 4, 927 11, 037 4, 897 753 9, 147 > 106 26, 627 > 106

10−8 42, 347 22, 833 56, 685 > 106 > 106 > 106 > 106 > 106 > 106

10
10−2 37, 849 22, 263 230, 393 66, 615 30, 100 731, 693 > 106 > 106 > 106

10−8 319, 897 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106

Zakharov

5
10−2 7, 737 > 106 5, 373 377, 737 21, 028 > 106 > 106 686 > 106

10−8 28, 211 > 106 21, 857 > 106 398, 062 > 106 > 106 686 > 106

10
10−2 126, 749 > 106 95, 345 > 106 > 106 > 106 > 106 > 106 > 106

10−8 396, 083 > 106 288, 311 > 106 > 106 > 106 > 106 > 106 > 106

Average
10−2 197, 487 363, 499 417, 331 440, 388 316, 065 632, 939 596, 375 693, 600 943, 461

10−8 306, 134 447, 221 470, 644 716, 233 827, 201 766, 266 688, 450 883, 567 944, 243

Median
10−2 45, 162 66, 611 110, 293 105, 798 44, 023 > 106 > 106 > 106 > 106

10−8 154, 703 214, 456 232, 371 > 106 > 106 > 106 > 106 > 106 > 106

# of failed
10−2 3/32 10/32 12/32 12/32 9/32 19/32 19/32 22/32 30/32

10−8 4/32 12/32 13/32 21/32 25/32 24/32 22/32 29/32 30/32

Concluded
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The overall achievements solving test problems of all algorithms are shown

in Fig. 3.3 performance profiles in the intervals [1, 1000](with εpe = 10−2

and εpe = 10−8). Even when DIRECT-GL delivers the best overall averages

of function evaluations, the performance profiles in Fig. 3.3 revealed that the

solution with εpe = 10−2 is needed, BIRECT has more wins and can solve about

60% of the problems with the smaller number of function evaluations. That

is mainly because the set of potentially optimal hyper-rectangles in DIRECT-

GL is larger per iteration, and furthermore BIRECT divides hyper-rectangles

only by one longest dimension, which results in a smaller number of sampling

points. Consequently, for DIRECT-GL, a higher number of function evaluations

is needed. However, when a more accurate solution εpe = 10−8 is needed,

DIRECT-GL, and structural versions of an algorithm (DIRECT-G, DIRECT-L)

are most effective and outperform all other DIRECT-type methods.

3.6 Conclusions

In this chapter, a new strategy for selecting the extended set of potentially

optimal hyper-rectangles in the DIRECT-type algorithmic framework is

introduced. In the proposed approach, two well-known weaknesses of

DIRECT-type algorithms were addressed. Extensive experimental results

confirmed the well-known fact that while for simpler problems, other

DIRECT-type algorithms perform well, for more challenging (higher

dimensional) problems, the proposed modified DIRECT-GL performs

significantly faster. Moreover, since the set of potentially optimal

hyper-rectangles is larger (compared to most DIRECT-type methods), the

DIRECT-GL scheme looks promising for more efficient parallelization.
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Chapter 4

Auxiliary function-based

DIRECT-type algorithm for

constrained global optimization

Many constrained optimization problems are formed from an engineering

design process, where systems are often modeled with non-linear and

multi-modal behavior, being low or high dimensional, computationally

cheap, or expensive. Another difficulty of real-world engineering problems is

constraints, which often allow feasible solutions only in a small subset of the

design space or split the feasible region into many non-intersecting subsets.

In most cases, practical engineering problems are complex and difficult to

solve by traditional optimization methods. Issues of engineering and applied

sciences can be formulated as non-linear programming global optimization

problems [4, 23, 84, 104]. In this chapter, a global solution of the general

non-linear programming problem Eq. (2.6) is sought.

4.1 Introduction

The original DIRECT algorithm performs well solving box-constrained global

optimization problems, but it does not naturally address constraints. Several

different constraint handling strategies are offered to be used within the

DIRECT framework. The meta-model-based method has proved to be
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effective, but the algorithm uses random point generation techniques, so it is

no longer deterministic. In this chapter, a new DIRECT-type approach to

problems with general constraints is presented. The introduced DIRECT-GLce

algorithm incorporates a two-step selection procedure and auxiliary function

approach in the previously described DIRECT-GL method. The proposed

algorithm effectively explores hyper-rectangles with infeasible centers close

to the boundaries of feasibility and may cover feasible regions. An extensive

experimental investigation revealed the potential of the developed approach

compared with other existing DIRECT-type algorithms for constrained global

optimization problems, including important engineering problems.

4.2 DIRECT-GLce algorithm for generally constrained

global optimization problems

In this section, the modification for general engineering optimization

problems Eq. (2.6) to the earlier introduced DIRECT-GL algorithm is

presented. The developed DIRECT-GLce algorithm uses an auxiliary function

strategy that combines information of the objective and constraint functions

and does not require any penalty parameters. The DIRECT-GLce algorithm

operates in two phases, where during the first phase the algorithm handles

infeasible initial sampling points while in the second phase seeks to find a

feasible global solution. A separate phase for handling infeasible initial

sampling points is especially useful when the feasible region is small

compared to the design space D. When feasible solutions are located, the

efforts may be switched to finding better feasible solutions. The developed

algorithm is evaluated on the large set of test problems by comparing it with

the existing approaches. In the following two subsections, main extensions to

the DIRECT-GL algorithm are described.

4.2.1 Handling cases with infeasible initial regions

In this subsection, a newway to handle hyper-rectangles with infeasible centers

is presented. In the first extension of the DIRECT-GL algorithm, we consider

a situation when initial sampling points are infeasible and finding at least one

67



feasible point can be costly. In such a situation, the DIRECT-L1 algorithm

is likely to fail to find a feasible point in a reasonable number of function

evolutions. For such a situation, an additional procedure in the DIRECT-GL

algorithm is employed, which samples the search space and minimizes not the

original objective function, but the sum of constraint violations, i.e.:

min
x∈D

ϕ(x), (4.1)

where

ϕ(x) =

u∑
i=1

max{gi(x), 0}+
v∑

i=1

|hi(x)|, (4.2)

until a feasible point x ∈ Dfeas
εϕ is found, where

Dfeas
εϕ = {x : 0 ≤ ϕ(x) ≤ εϕ, x ∈ D}, (4.3)

where εϕ is user predefined small acceptable constraint violation. The

authors of the eDIRECTc algorithm use a very similar idea, but for treating

the constraints equally, they suggest to normalize every constraint function.

And in the same step, they sample the search space and minimize the sum of

normalized constraint violations ϕ̄(x), i.e.,

min
x∈D

ϕ̄(x). (4.4)

In Table 4.1 the impact of this procedure on the selected subset of test

problems from DIRECTlib [110] having a small feasible region is presented.

For problems G03, G05, G10 the L1 penalty based approaches can fail to

produce a feasible solution within 106 function evaluations. However, when

DIRECT employs the extra phase by minimizing Eq. (4.1) or Eq. (4.4), we

avoid such situations.

4.2.2 Improving a feasible solution

By the second extension to the DIRECT-GL algorithm, the problem Eq. (2.6) is

transformed to Eq. (4.5):

min
x∈D

f(x) + ξ(x, f feasmin ),

ξ(x, f feasmin ) =

0, x ∈ Dfeas
εϕ

ϕ(x) + ∆, otherwise.

(4.5)
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Table 4.1: The number of function evaluations needed by algorithms to find a

feasible point

Label n u+ v α
DIRECT-GL DIRECT-L1

ϕ(x) ϕ̄(x) r = 10 r = 102 r = 103

G01 13 9 0.0111% 4, 050 4, 270 4, 626 4, 244 4, 776

G03 10 1 0.0000% 1, 381 1, 381 > 106 > 106 > 106

G05 4 5 0.0000% 6, 329 5, 658 > 106 > 106 > 106

G06 2 2 0.0066% 102 102 1, 521 547 112

G07 10 8 0.0003% 927 1, 628 449 531 813

G10 8 6 0.0010% 3, 394 1, 813 > 106 > 106 > 106

a is the estimated ratio between the feasible region and the search space.

Presented the auxiliary function ξ(x, f feasmin ) depends on the sum of constraint

functions ϕ(x) and only one parameter ∆ = |f(x) − f feasmin |, which is equal to
absolute value of the difference between the best feasible function value found

so far f feasmin and the objective value at an infeasible center point x.

The main purpose of this ∆ parameter is to forbid the convergence of the

algorithm to infeasible regions by penalizing the objective value obtained at the

infeasible points. In this way, the formulation Eq. (4.5) does not require any

penalty parameters, and convergence of the algorithm to a feasible solution is

guaranteed. The value of ξ(x, f feasmin ) is updated when a smaller value of the f
feas
min

is found. The new algorithm with these two extensions is called DIRECT-GLc.

Note that this comes with a slight performance overhead compared with the

existing DIRECT algorithm based on the penalty function approach DIRECT-L1,

which uses the fixed penalty values during the entire minimization process.

4.2.3 Incorporating constraint tolerance in the DIRECT-

GLce algorithm

At the beginning of the search, the difference between f feasmin and the global

solution f∗ can be huge. Therefore the value of ξ(x, f feasmin ) can be increased

too much, which can slow down the division of the required rectangles.

Therefore, ξ(x, f feasmin ) values can be increased too much, which can slow

down the selection of the necessary hyper-rectangles. By taking this into
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Figure 4.1: Geometric interpretation of the DIRECT-GLce algorithm on the T1

(n = 2) test problem in the seventh iteration (left side), and the eighth iteration

(right side).

account, Eq. (4.5) is modifying to Eq. (4.6):

min
x∈D

f(x) + ξ̃(x, f feasmin ),

ξ̃(x, f feasmin ) =


0, x ∈ Dfeas

εϕ

0, x ∈ Dinf
εcons

ϕ(x) + ∆, otherwise,

(4.6)

where Dinf
εcons = {x : f(x) ≤ f feasmin , εϕ < ϕ(x) ≤ εcons, x ∈ D} and εcons is a

small tolerance for constraint function sum, which automatically varies

during the optimization process. More detailed behavior of εcons is described

in Algorithm 3, lines 20–28. With the introduction of this modification, the

new DIRECT-GLce algorithm divides more hyper-rectangles with the center

points lying close to the boundaries of the feasible region, i.e. potential

solution. A geometrical illustration of εcons parameter is shown in Fig. 4.1.

4.2.4 Hybridized DIRECT-GLce-min algorithm

Many hybridized versions have been proposed for box-constrained global

optimization [45, 56, 73], and for problems with general constraints [52].
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Such strategies are especially useful in solving high dimensional expensive

multimodal problems. In this section, the DIRECT-GLce algorithm is

enriched with a local minimization procedure (let us call the algorithm –

DIRECT-GLce-min). If there is some improvement in the current best

feasible minima value f feasmin , pure greedy search is performed from the current

best feasible minima point xfeasmin . The more specific behavior of pure greedy

search execution in the iteration is shown in Algorithm 3, Lines 29 and 31.

4.3 Algorithmic steps

Initialization. Normalize the search

space D to an n-dimensional hyper-

rectangle D̄ and evaluate objective

function at the center point f(c1)

Is c1 feasible

point?

Phase 1:

Find a feasible point

Phase 2:

Improve the feasible point

a) Identify globally enhanced set of potentially optimal

candidates S1 using Definition 2
b) Identify locally enhanced set of potentially optimal

candidates S2 using Definition 3
c) Find unique union of sets S3 = S1

⋃
S2

b) Subdivide (trisect) potentially optimal hyper-rectangles

e) Evaluate f at the centers of the new hyper-rectangles and

update f feasmin , x
feas
min , pe if needed

f) Run checks on constraint tolerance parameter εcons

Is stopping

criteria met?
Termination

NO

YES

YES

NO

Figure 4.2: Flowchart of the DIRECT-GLce algorithm

The complete description of the DIRECT-GLce algorithm is given
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in Algorithm 3 and additionally in Fig. 4.2. The input for the algorithm are

the problem (P) and one (or a few) stopping criteria: required tolerance (εpe),
the maximal number of function evaluations (FEmax) and the maximal number

of DIRECT-GLce iterations (Kmax). After termination, the DIRECT-GLce

algorithm returns the found objective value f feasmin and the solution point xfeasmin

together with algorithmic performance measures: the final tolerance –

percent error (pe), the total number of function evaluations (fe), and the total

number of iterations (k).

The algorithm operates in two phases, which depends on whether a feasible

point in Dfeas is already found or not, see lines 6–10. If it is not yet found,

the algorithm minimizes only the sum of constraint violation Eq. (4.2) and

attempts to find a feasible point. After such a point is found, the algorithm

switches to the second phase and minimizes Problem Eq. (4.6). Lines 20–28

are controlled by constraint tolerance parameter εcons determining infeasible

points which will not be penalized at all. In the proposed strategy, the number

of such points (the cardinality of the setDinf
εcons), cannot exceed 10× n3, if this

happens εcons should be reduced. In the opposite case when the cardinality of

the set Dinf
εcons is zero, εcons should be increased. The boundaries for the rate of

change is set to 10−4 ≤ εcons ≤ 10.

4.4 Numerical investigation

Tested algorithms

In this section, an exhaustive comparison of the introduced DIRECT-GLce

algorithm with the other existing DIRECT-type algorithms devoted to

Eq. (2.6) problems is presented. First, algorithms with the DIRECT-L1 based

on the L1 penalty function approach and the simplicial partitioning-based

DISIMPL methods are compared. In the DIRECT-L1 algorithm, for each

constraint, the penalty parameters for L1 functions are kept fixed during the

optimization process. Three different penalty parameters were used (r = 10,

r = 102, and r = 103) for all constraint functions. Next, in this thesis, the

introduced algorithms are compared with the Filter DIRECT, EPGO and

DF-EPGO. Finally, the algorithms are compared with the eDIRECTc version,
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Algorithm 3: Pseudo code of the DIRECT-GLce algorithm
input : P , εpe, εϕ, FEmax, Kmax;

output: f feas
min , x

feas
min , pe, k, fe;

1 Initialize k = 1, fe = 1, xkmin = c1, εcons = 1, cardlimit = 10× n3, ς = 0, Ik = {1};
2 if ∃x1 ∈ Dfeas

εϕ then

3 Update f feas
min , x

feas
min and pe;

4 end

5 while pe > εpe and fe < FEmax and k < Kmax do // pe (3.7)

6 if ∃ci ∈ Dfeas
εϕ then // Phase II (Improve the best feasible point)

7 F = {f(ci) + ξ̃(ci, f
feas
min ), ci ∈ D̄, i = 1, . . . , fe};

8 else // Phase I (Find feasible point)
9 F = {ϕ(c), ci ∈ D, i = 1, . . . , fe};

10 end

11 Identify the “global” (index) set Sk
1 ⊆ Ik of POH on F using Definition 2 ;

12 Identify the “local” (index) set Sk
2 ⊆ Ik of POH on d (3.2) using Definition 3 ;

13 Find unique union of potential optimal hyper-rectangles sets Sk
3 = Sk

1

⋃
Sk
2 ;

14 foreach j ∈ Sk
3 do

15 Subdivide (trisect) hyper-rectangleDk
j and update Ik;

16 Evaluate f at the centers of the new hyper-rectangles and update fe;

17 end

18 if ∃ci ∈ Dfeas
εϕ then // Phase II

19 Update f feas
min , x

feas
min , x

k
min, pe and increase k = k + 1;

20 if εcons == εϕ and ς ≥ 10 then // Control model of εcons

21 εcons = 1 and extend limit of card(Dinf
εcons): cardlimit = cardlimit × 10;

22 else ifDinf
εcons == and εcons × 3 ≤ 10 then

23 Increase tolerance of constraints: εcons = εcons × 3;

24 else if card(Dinf
εcons) ≥ cardlimit and εcons/3 ≥ εϕ then

25 Reduce tolerance of constraints: εcons = εcons/3;

26 else if card(Dinf
εcons) ≥ cardlimit and εcons/3 ≤ εϕ then

27 Set tolerance of constraints: εcons = εϕ;

28 end

29 if | fk
min − fk−1

min |≥ 10−2 then // Only in DIRECT-GLce-min
30 Perform the local search from xfeasmin and update f

feas
min , x

feas
min , fe and pe;

31 end

32 else // Phase I
33 Update xkmin and increase k = k + 1;

34 end

35 if d(xkmin, x
k−1
min ) ≥ 10−6 then

36 Set ς = 0 and calculate distances d (3.2), ci ∈ D, i = 1, . . . , fe ;

37 else

38 Set ς = ς + 1 and calculate distances d (3.2), ci ∈ D, i = feold, . . . , fenew ;

39 end

40 end

41 return f feas
min , x

feas
min , pe, k, fe;
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and experimental investigation is concluded by applying the algorithms to

five important real-world engineering problems.

DIRECTLib: collection of test and practical benchmark problems

Throughout this thesis, we aimed to compare the developed algorithms with

state-of-the-art DIRECT-type algorithms under equal conditions, i.e., using the

same stopping criteria and benchmark problems. Therefore, we collected a

new library, DIRECTlib [110], consisting of test and practical real-world

optimization problems considered by the other authors. In total, we have

combined 84 test and five challenging engineering problems:

tension/compression spring, three-bar truss, NASA speed reducer, pressure

vessel, and welded beam.

Table 4.2: Key characteristics of the optimization test problems with general

constraints from DIRECTlib[110]

Label Sourcen
Cons. type

D f∗
L NL EQ

Bunnag 1 [121]4 1 0 0 [0, 3]i, i = 1...n 0.1117

Bunnag 2 [121]4 2 0 0 [0, 4]i, i = 1...n −6.4049

Bunnag 3 [121]5 3 0 0 [0, 3]1, [0, 2]2,5, [0, 4]3,4 −16.3657

Bunnag 4 [121]6 2 0 0 [0, 1]1,2,3,4,5, [0, 20]6 −213.0470

Bunnag 5 [121]6 5 0 0 [0, 2]1,3,6, [0, 8]2, [0, 1]4,5 −11.0000

Bunnag 6 [121]10 11 0 0 [0, 1]i, i = 1...n −268.0146

Bunnag 7 [121]10 5 0 0 [0, 1]i, i = 1...n −39.0000

circle [121]3 0 10 0 [0, 10]i, i = 1...n 4.5742

G01 [52] 13 9 0 0 [0, 10]i, [0, 100]10, i = 1...9, 11 −15.0000

G02 [52] 20 1 1 0 [0, 10]i, i = 1...n −0.8036

G03 [52] 10 0 0 1 [0, 10]i, i = 1...n −1.0005

G04 [52] 5 0 6 0 [78, 102]1, [33, 45]2, [27, 45]3,4,5 −30665.5386

G05 [52] 4 2 0 3 [10, 1, 200]1,2, [−0.55, 0.55]3,4 5126.4967

G06 [52] 2 0 2 0 [13, 100]1, [0, 100]2 −6961.8138

G07 [52] 10 2 5 0 [−10, 10]i, i = 1...n 24.3062

G08 [52] 2 0 2 0 [0, 10]i, i = 1...n −0.0958

G09 [52] 7 0 4 0 [−10, 10]i, i = 1...n 680.6300

G10 [52] 8 3 3 0 [100, 10, 000]1, [1, 000, 10, 000]2,3,

[10, 1, 000]i, i = 4...8

7049.2480

G11 [52] 2 0 0 1 [−1, 1]i, i = 1...n 0.7499

G12 [52] 3 0 1 0 [0.2, 10]i, i = 1...n −1.0000

G13 [52] 5 0 0 3 [−2.3, 2.3]1,2, [−3.2, 3.2]3,4,5 0.0539

G16 [115]5 4 34 0 [704.4148, 906.3855]1, [68.6, 288.88]2,

[0, 134.75]3, [193, 287.0966]4, [25, 84.1988]5

−1.9051

Continued on next page
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Table 4.2 Continued from previous page

Label Sourcen
Cons. type

D f∗
L NL EQ

G18 [115]9 0 13 0 [0, 10]i, i = 1...n −0.8660

G19 [115]15 0 5 0 [0, 10]i, i = 1...n 32.6555

G24 [115]2 0 2 0 [0, 3]1, [0, 4]2 −5.5080

Genocop 9 [121]3 5 0 0 [0, 10]i, i = 1...n −2.4714

Genocop 10 [121]4 5 0 0 [0, 3]1, [0, 10]2,3, [0, 1]4 −4.5280

Genocop 11 [121]6 5 0 0 [0, 5]1,3, [0, 8]2, [0, 1]4,5, [0, 2]6 −11.0000

Gold. & Pr. [65] 2 0 2 0 [−2, 2]i, i = 1...n 3.5389

Gomez [5] 2 0 1 0 [−1, 1]i, i = 1...n −0.9711

Himmelblau [7] 5 0 5 0 [78, 102]1, [33, 45]2, [27, 45]3,4,5 −31025.5602

Horst 1 [41] 2 3 0 0 [0, 3]1, [0, 2]2 −1.0625

Horst 2 [41] 2 3 0 0 [0, 2.5]1, [0, 2]2 −6.8995

Horst 3 [41] 2 3 0 0 [0, 1]1, [0, 1.5]2 −0.4444

Horst 4 [41] 3 4 0 0 [0.5, 2]1, [0, 3]2, [0, 2.8]3 −6.0858

Horst 5 [41] 3 4 0 0 [0, 1.2]1,2, [0, 1.7]3 −3.7220

Horst 6 [41] 3 7 0 0 [0, 6]1, [0, 5.0279]2, [0, 2.6]3 −32.5784

Horst 7 [41] 3 4 0 0 [0, 6]1, [0, 3]2,3 −52.8769

hs021 [121]2 1 0 0 [2, 50]1, [−50, 10]2 −99.9599

hs021mod [121]7 3 0 0 [2, 50]1, [−50, 50]2, [0, 50]3, [2, 10]4,

[−10, 10]5, [−10, 0]8, [0, 10]7

4.0400

hs024 [121]2 3 0 0 [0, 5]i, i = 1...n −1.0000

hs035 [121]3 1 0 0 [0, 3]i, i = 1...n 0.1111

hs036 [121]3 1 0 0 [0, 20]1, [0, 11]2, [0, 15]3 −3300.0000

hs037 [121]3 2 0 0 [0, 42]i, i = 1...n −3456.0000

hs038 [121]4 2 0 0 [−10, 10]i, i = 1...n 0.0000

hs044 [121]4 6 6 0 [0, 5]i, i = 1...n −15.0000

hs076 [121]4 3 0 0 [0, 1]1,3,4, [0, 3]2 −4.6818

P01 [5] 5 0 0 3 [−5, 5]i, i = 1...n 0.0293

P02a [5] 9 4 6 0 [0, 100]1, [0, 500]i, 2 = 1...n −400.0000

P02b [5] 9 4 6 0 [0, 600]1, [0, 500]i, 2 = 1...n −600.0000

P02c [5] 9 4 6 0 [0, 100]1, [0, 500]i, 2 = 1...n −750.0000

P02d [5] 10 6 6 0 [0, 300]1,2,6, [0, 100]3,5,7, [0, 200]4,8,

[0, 3]9

−600.0000

P03a [5] 6 0 1 4 [0, 1]1,2,3,4, [10−5, 16]5,6 0.3888

P03b [5] 2 0 1 0 [10−5, 16]i, i = 1...n 0.3888

P04 [5] 2 0 1 0 [0, 6]1, [0, 4]2 −6.6666

P05 [5] 3 0 2 2 [0, 9.422]1, [0, 5.903]2, [0, 267.42]3 201.1600

P06 [5] 2 0 1 0 [0, 115.8]1, [10−5, 30]2 376.2900

P07 [5] 2 2 2 0 [−2, 2]i, i = 1...n −2.8284

P08 [5] 2 1 1 0 [−8, 10]1, [0, 10]2 −118.7000

P09 [5] 6 9 0 0 [10−5, 3]1, [10−5, 4]2,3, [0, 2]4,5, [0, 6]6 −13.4020

P10 [5] 2 0 2 0 [0, 1]i, i = 1...n 0.7417

P11 [5] 2 0 1 0 [0, 1]i, i = 1...n −0.5000

P12 [5] 2 0 2 0 [0, 2]1, [0, 3]2 −16.7390

P13 [5] 3 2 1 2 [10−5, 34]1, [10−5, 17]2, [100, 300]3 189.3500

P14 [5] 4 4 0 0 [10−5, 3]1, [10−5, 4]2, [0, 2]3, [0, 1]4 −4.51420

P15 [5] 3 0 0 3 [10−5, 12.5]1, [10−5, 37.5]2, [0, 50]3 0.0000

P16 [5] 5 2 4 0 [0, 1.5834]1, [0, 3.625]2, [0, 1]3,

[0, 3]4, [0, 4]5

0.7049

Continued on next page
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Table 4.2 Continued from previous page

Label Sourcen
Cons. type

D f∗
L NL EQ

s224 [121]2 4 0 0 [0, 6]1, [0, 11]2 −304.0000

s231 [121]2 2 0 0 [−10, 10]i, i = 1...n 0.0000

s232 [121]2 3 0 0 [0, 100]i, i = 1...n −1.0000

s250 [121]3 2 0 0 [0, 20]1, [0, 11]2, [0, 42]3 −3300.0000

s251 [121]3 1 0 0 [0, 42]i, i = 1...n −3456.0000

s365mod [121]7 0 1 0 [0, 19]i, i = 1...n 52.1399

T1 (n = 2) [19] 2 0 1 0 [−4, 4]i, i = 1...n −3.4641

T1 (n = 3) [19] 3 0 1 0 [−4, 4]i, i = 1...n −4.2426

T1 (n = 4) [19] 4 0 1 0 [−4, 4]i, i = 1...n −4.8989

T1 (n = 5) [19] 5 0 1 0 [−4, 4]i, i = 1...n −5.4772

T1 (n = 6) [19] 6 0 1 0 [−4, 4]i, i = 1...n −6.0000

T1 (n = 7) [19] 7 0 1 0 [−4, 4]i, i = 1...n −6.4807

T1 (n = 8) [19] 8 0 1 0 [−4, 4]i, i = 1...n −6.9282

zecevic2 [121]3 3 0 0 [0, 10]i, i = 1...n −4.1249

zecevic3 [121]2 3 0 0 [0, 10]i, i = 1...n 97.3094

zecevic4 [121]4 3 0 0 [0, 10]i, i = 1...n 7.5575

zy2 [121]2 2 1 0 [0, 10]i, i = 1...n 2.0000

Concluded

In Appendix A, we provide a short description and mathematical

formulations. The key characteristics and descriptions of all the test problems

used in this section are given in Table 4.2, and a MatLab format is given in

the same DIRECTlib [110] online resource. One of the test problems, T1, can

be tested on any dimensionality. All the computations were carried out on a

six-core computer with the 8th Generation Intel R CoreTM i7-8750H @

2.20GHz Processor, 16 GB of RAM and MatLab R2020a. Performance

analysis was carried out using physical cores only with disabled

hyper-threading.

Stopping criteria

Two different stopping conditions were used for the algorithms, one of them is

the same as was used in the previous chapter (pe) Eq. (3.7). In [11] the authors

consider a slightly different way to calculate the percent error (p̃e):

p̃e =
|f(x)− f∗|
max{1, |f∗|}

. (4.7)
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4.4.1 Group 1: comparison with DIRECT-L1 and

DISIMPL algorithms

Experimental results using the introduced methods are presented in Table 4.3,

and additionally, Fig. 4.3 shows performance profiles on the overall

achievements of the algorithm. Here, in the first column (Label), the name of

the problem is reported, while in the second it is the dimensionality (n) of the

problem. In the third column (Cons. type), the type of constraints is

specified: linear (L) or non-linear (NL). Next, in the consecutive columns,

the total number of function evaluations are reported using six different

algorithms: DIRECT-GLc, DIRECT-GLce, DIRECT-GLce-min, DIRECT-L1,

Lc-DISIMPL and Lv-DISIMPL accordingly. No constraint violation was

allowed in this experiment and the parameter εϕ was set to 0. The

investigated algorithms were stopped either when the point x was generated

such that the percent error (pe) Eq. (3.7) is smaller than the tolerance value

εpe = 10−2, or when the number of function evaluations exceeds the

prescribed limit of 106.

First, it is easy to notice that in almost all tested instances the hybridized

DIRECT-GLce-min algorithm gives the best performance and, on average, uses

24, 304 function evaluations, i.e., more than six times less compared to the

original second-best DIRECT-GLce algorithm. Moreover, the DIRECT-GLce-

min algorithm failed to solve only one high dimensional 20 optimization test

problem G02.

Next, comparing the penalty and auxiliary function-based methods, for the

low-dimensional test problems (n ≤ 3) the number of function evaluations is

most often smaller for the DIRECT-GLc algorithm 62% (18/29). The εcons

parameter in the DIRECT-GLce algorithm forces to subdivide more

hyper-rectangles for easier test problems (low dimension and with linear

constrains) comparing with other algorithms, but solving more complicated

test problems the DIRECT-GLce algorithm is more promising. The main

advantage of the εcons parameter can be seen in solving higher-dimensional

and non-linear (NL) test problems, where the DIRECT-GLce algorithm

outperforms other methods in average function evaluations and solved

problems. Also, looking in a general context, the DIRECT-GLce algorithm
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Figure 4.3: Performance profiles of DIRECT-type algorithms on the whole set

of constrained optimization test problems from DIRECTlib

requires fewer function evaluations and fails to solve only five test problems.

None of the tested, fixed penalty parameters for the L1 penalty function can

guarantee the convergence to the feasible solution for all tested problems. the

DIRECT-L1 algorithmworks better using smaller penalty parameters (r = 10).

Larger penalty parameter values (r = 103) reduce the chance of obtaining a

solution from the infeasible region. On the other hand, larger penalty values

can bias the algorithm away from the feasible region’s boundary where the

solution is often located.

The main advantage of the L-DISIMPL algorithms is that simplices cover

a feasible region bounded by linear constraints, and infeasible regions are not

involved in the search. Unfortunately, an algorithm can be used to solve

problems only with linear constraints. Furthermore, solving such problems

are often the solutions are located on the intersection of the linear constraints,

where the Lv-DISIMPL algorithm can find the solution point in the

initialization step by sampling only vertices of the simplices. Performance

profiles Fig. 4.3 show the Lv-DISIMPL algorithm’s effectiveness, amongst all

other DIRECT-type methods solving linear constrained global optimization
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problems. However, the efficiency of the L-DISIMPL suffers from

dimensionality. Three of the test problems were unsolved by the Lv-DISIMPL

algorithm, where the dimension is greater than 10, while the second-best

algorithm DIRECT-GLce fails to solve only one test problem with linear

constraints.

The performance profiles in Fig. 4.3 reveal that the DIRECT-GLc

algorithm has the most wins, and it can solve about 80% of the problems with

the highest efficiency. However, solving more challenging problems (with

non-linear constraints and n ≥ 4), the DIRECT-GLce algorithm outperforms

the other versions, and the performance difference increases as the

performance ratio increases.
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Table 4.3: Number of function evaluations and time (in sec.) solving problems from DIRECTlib

Label n
Cons. type DIRECT- DIRECT- DIRECT- DIRECT- DIRECT- DIRECT- Lc- Lv-

L NL GLc GLce GLce-min L1 (r = 10) L1 (r = 102) L1 (r = 103) DISIMPL DISIMPL

Bunnag 1 4 1 0 2, 211 6, 531 31 411, 369 97, 431 97, 431 1, 350 3, 114

Bunnag 2 4 2 0 6, 051 13, 191 35 6, 399 > 106 > 106 442 16

Bunnag 3 5 3 0 10, 821 34, 305 34, 305 3, 747 3, 427 3, 293 17, 025 34

Bunnag 4 6 2 0 8, 435 39, 649 147 1, 607 14, 919 15, 877 1, 726 72

Bunnag 5 6 5 0 24, 133 68, 393 503 > 106 > 106 > 106 4, 272 97

Bunnag 6 10 11 0 > 106 719, 701 2, 763 > 106 > 106 > 106 > 106 > 106

Bunnag 7 10 5 0 98, 793 98, 853 14, 285 18, 375 28, 307 28, 419 > 106 > 106

circle 3 0 10 3, 591 9, 717 1, 161 > 106 > 106 > 106 − −
G01 13 9 0 369, 163 721, 509 8, 361 7α 7α 7α > 106 > 106

G02 20 0 2 > 106 > 106 > 106 > 106 > 106 > 106 − −
G04 6 0 6 7, 649 20, 067 49 33α 33α 759 − −
G06 2 0 2 3, 773 6, 833 241 51α 97α 297α − −
G07 10 3 5 > 106 > 106 2, 771 > 106 > 106 > 106 − −
G08 2 0 2 443 1, 007 463 327α 453 453 − −
G09 7 0 4 38, 491 74, 011 583 > 106 > 106 > 106 − −
G10 8 3 3 > 106 > 106 57, 205 57α 57α 205α − −
G12 3 0 1 143 179 179 111 111 123 − −

Continued on next page
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Table 4.3 Continued from previous page

Label n
Cons. type DIRECT- DIRECT- DIRECT- DIRECT- DIRECT- DIRECT- Lc- Lv-

L NL GLc GLce GLce-min L1 (r = 10) L1 (r = 102) L1 (r = 103) DISIMPL DISIMPL

G16 5 4 34 102, 811 90, 385 537 > 106 > 106 > 106 − −
G18 9 0 13 56, 185 336, 149 673 > 106 > 106 > 106 − −
G19 15 0 5 > 106 > 106 4, 835 > 106 > 106 > 106 − −
G24 2 0 2 877 2, 677 11 7, 783 292, 259 > 106 − −
Genocop 9 4 5 0 3, 745 10, 649 169 13α 13α 13α 213 6

Genocop 10 4 5 0 5, 545 21, 727 155 14, 849 > 106 > 106 106, 550 6

Genocop 11 4 5 0 230, 839 > 106 155 > 106 > 106 > 106 4, 489 84

Gold. and Pr. 2 0 2 551 3, 013 65 119α 617 1, 165 − −
Gomez 2 0 1 795 1, 323 113 6, 093 168, 001 471, 967 − −
Himmelblau’s 5 0 5 5, 577 20, 973 33 67α 67α 3, 243α − −
Horst 1 2 3 0 1, 403 4, 411 23 287α 32, 583 > 106 253 7

Horst 2 2 3 0 705 2, 507 39 265α 585 29, 063 173 5

Horst 3 2 3 0 721 721 177 283 283 283 249 5

Horst 4 3 4 0 2, 171 6, 251 143 23, 931 > 106 > 106 284 8

Horst 5 3 4 0 2, 425 6, 617 71 4, 503α 243, 471 > 106 259 8

Horst 6 3 7 0 4, 119 9, 733 19 333α 9, 351α > 106 71 12

Horst 7 3 4 0 2, 051 6, 511 29 543 679 679 231 10

hs021 2 1 0 123 123 5 153 817 1, 273 72 6

hs021mod 7 3 0 > 106 288, 659 145 > 106 > 106 > 106 > 106 18

Continued on next page
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Table 4.3 Continued from previous page

Label n
Cons. type DIRECT- DIRECT- DIRECT- DIRECT- DIRECT- DIRECT- Lc- Lv-

L NL GLc GLce GLce-min L1 (r = 10) L1 (r = 102) L1 (r = 103) DISIMPL DISIMPL

hs024 2 3 0 801 2, 647 5 10, 689 334, 439 > 106 136 4

hs035 3 1 0 2, 369 6, 491 25 5, 297 2, 301 2, 263 717 630

hs036 3 1 0 1, 803 1, 895 389 727 727 727 1, 492 8

hs037 3 2 0 3, 739 7, 127 17 7α 7α 64, 423 9, 127 186

hs038 4 2 0 10, 869 9, 803 159 7, 189 5, 889 5, 317 > 106 2, 518

hs044 4 6 0 7, 463 25, 097 149 156, 733 > 106 > 106 386 20

hs076 4 3 0 3, 583 12, 485 31 32, 771 137, 413 142, 857 443 941

s224 2 4 0 413 1, 395 5 7α 329 1, 225 463 6

s231 2 2 0 413 413 113 999 983 885 3, 017 2, 613

s232 2 3 0 1, 387 5, 579 145 19α 57α > 106 141 3

s250 3 2 0 4, 663 7, 369 19 25α 49α 11, 135 373 8

s251 3 1 0 1, 185 7, 655 11 7α 7α 61, 401 9, 127 186

s365mod 7 0 1 > 106 325, 325 325, 325 > 106 > 106 > 106 − −
T1 2 0 1 1, 637 3, 103 33 429 567 567 − −
T1 3 0 1 6, 573 11, 187 63 5, 315 14, 777 10, 251 − −
T1 4 0 1 19, 435 20, 579 127 48, 745 199, 727 217, 879 − −
T1 5 0 1 > 106 89, 391 245 196, 587 473, 677 647, 155 − −
T1 6 0 1 117, 815 169, 347 371 > 106 > 106 > 106 − −
T1 7 0 1 621, 511 121, 353 303 > 106 > 106 > 106 − −

Continued on next page
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Table 4.3 Continued from previous page

Label n
Cons. type DIRECT- DIRECT- DIRECT- DIRECT- DIRECT- DIRECT- Lc- Lv-

L NL GLc GLce GLce-min L1 (r = 10) L1 (r = 102) L1 (r = 103) DISIMPL DISIMPL

T1 8 0 1 > 106 363, 857 119 > 106 > 106 > 106 − −
zecevic2 3 3 0 783 3, 363 57 1, 607 593 593 336 34

zecevic3 2 3 1 907 2, 227 13 > 106 271 307 − −
zecevic4 4 3 1 1, 799 2, 231 13 1, 431 20, 065 449, 787 − −
zy2 2 2 1 4, 993 12, 129 53 27, 607 > 106 > 106 − −

Average(overall) 180, 141 147, 307 24, 304 566, 523 551, 262 554, 459 − −
Average(Non-Linear constraints) 296, 132 210, 632 51, 688 677, 559 635, 945 659, 275 − −
Average(Linear constraints) 85, 240 95, 496 1, 900 475, 675 481, 975 468, 701 156, 467 91, 237

Average (n ≥ 4) 358, 245 289, 442 48, 485 629, 993 732, 695 720, 292 − −
Average (n ≤ 3) 1, 916 4, 628 127 485, 916 348, 098 367, 544 − −
Median 4, 391 10, 226 144 > 106 > 106 > 106 − −
# of failed 9/60 5/60 1/60 33/60 31/60 31/60 5/33 3/33

α - result is outside the feasible region

Concluded

8
3



4.4.2 Group 2: comparisonwith Filter DIRECT, EPGO

and DF-EPGO algorithms

The proposed algorithms compared the Filter DIRECT, EPGO, and DF-EPGO

algorithms in the second part. The same 20 global optimization test problems

(P01–P16) used in [11] and collected from [5] were considered, which are

also is included in DIRECTlib. The obtained experimental results are

presented in Section 4.4.2. Here, in the first column (Label), the name of the

problem is reported, while in the second it is the dimensionality (n) of the

problem. In the third column (Cons. type), the type of constraints are

specified: linear (L), non-linear (NL) or (EQ) equality. Next, in the

consecutive columns, the total number of function evaluations feval required

by an algorithm to reach the solution within a specified accuracy and the

minimal objective function value fmin founded by the corresponding

algorithm are reported using six different algorithms: DIRECT-GLc,

DIRECT-GLce, DIRECT-GLce-min, Filter DIRECT, EPGO and DF-EPGO

accordingly. The results available in [11, 82, 83], an exact penalties approach

that relies on DIRECT to solve these test problems, together with filter-based

DIRECT, are also included in the comparison. Note that for the DF-EPGO

algorithm no number of function evaluations is given in the cited paper.

To provide comparison as fair as a possible, in the same vein as in [11],

algebraic manipulation aiming to reduce the number of variables and equality

constraints has been performed:

• Test problems P02a, P02b and P02c after reformulation contain 5

variables and 10 inequality constraints. In the original problem

formulation, there were 9 variables, 4 equality, and 2 inequality

constraints.

• Test problem P02d after reformulation contains 5 variables and 12

inequality constraints. In the original problem formulation, there were

10 variables, 5 equality, and 2 inequality constraints.

• Test problem P05 after reformulation contains 2 variables, 2 equality,

and 2 inequality constraints. In the original problem formulation, there

were 3 variables and 3 equality constraints.

• Test problem P09 after reformulation contains 3 variables and 9

84
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inequality constraints. In the original problem formulation, there were

6 variables, 3 equality, and 3 inequality constraints.

• Test problem P12 after reformulation contains 1 variable and 2

inequality constraints. In the original problem formulation, there were

2 variables and 1 equality constraints.

• Test problem P14 after reformulation contains 3 variables and 4

inequality constraints. In the original problem formulation, there were

4 variables, 1 equality, and 2 inequality constraints.

• Test problem P16 after reformulation contains 2 variables and 6

inequality constraints. In the original problem formulation, there were

5 variables and 3 equality constraints.

In [11] the authors stopped the considered algorithms when the point x was

generated such that the percent error (p̃e) Eq. (4.7) is smaller than the

tolerance value εpe = 10−4, or when the number of iterations exceeds the

prescribed limit of 200. Note that although all considered algorithms belong

to the DIRECT-type class, the cost of one iteration can vary significantly.

Therefore, tested algorithms were stopped either when p̃e ≤ εpe was satisfied

or when the maximal number of function evaluations equal to 200, 000 was

reached.

In this thesis the introduced algorithms (DIRECT-GLc and DIRECT-GLce)

given on average (Aver.(overall)) significantly better results compared to

Filter DIRECT and failed to locate solution point with required

tolerance Eq. (4.7) only for 3/20 of the test problems (highlighted in red

color in the colored version), and none of those three problems was solved by

the Filter DIRECT algorithm among with three others. However, for

simpler test problems, i.e., lower-dimensionality cases (n ≤ 3) Filter

DIRECT is a very promising option. A completely different behavior solving

harder test problems, i.e., higher-dimensionality cases (n ≥ 4) introduced

approaches, gives much better results. Other penalty based approaches EPGO

and DF-EPGO fail to produce a solution with the required accuracy for eleven

and ten test problems accordingly. Finally, the version with an enriched local

minimization procedure (DIRECT-GLce-min) failed only on the P02b test

problem, where the algorithm converged to a local minimum point and gave

the best results based on all used comparison criteria.
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4.4.3 Group 3: comparison with the eDIRECTc

algorithm

Next, a comparison against the recently proposed eDIRECTc algorithm is

performed. The authors compared the eDIRECTc algorithm with the CORBA

[90], ConstrLMSRBF [89], CiMPS [47], and DIRECT-L1 algorithms. The

numerical experiments revealed the potential of the eDIRECTc algorithm for

expensive constrained problems in terms of the convergence speed, the

quality of final solutions, and the success rate.

To perform as fair as possible a comparison, the same 13 test problems

from [52] were used, which also included in the DIRECTlib. Note that

several of these test problems: G03, G05, G11, G13 contain equality

constraints and, in the same manner as in [52], allowed constraint violation

for equality constraints only εϕ = 10−4 was used.

The stopping criterion is the same relative error Eq. (3.7), as was used in

the previous analysis. The algorithms were stopped either when the generated

point x was such that the percent error (pe) Eq. (3.7) was smaller than the

tolerance value εpe = 10−2. In [52], the maximal allowed the number of

function evaluations was allowed to 1, 000. According to the authors, the

eDIRECTc algorithm was developed primarily for expensive constrained

global optimization problems, in which a simulation of the problem may

require several hours or even days. Thus, the eDIRECTc algorithm requires

much more running time than the other compared methods, especially this is

the case for higher dimensional problems. Thus, the same maximum limit

equal to 106 function evaluations is used for the algorithms introduced in this

chapter. The obtained results are given in Section 4.4.3. Note that the

eDIRECTc algorithm is not a deterministic method, and can produce different

results in multiple runs. The recorded values of the eDIRECTc algorithm is an

average number of ten different runs. For the algorithms introduced in this

thesis, there is no such requirement to run the algorithm several times.

First, the DIRECT-GLce algorithm solves 10/13 of test problems while the

eDIRECTc algorithm solves only 8/13. When the DIRECT-GLce algorithm is

combined with the local search procedure in the DIRECT-GLce-min

algorithm, the hybridized algorithm outperforms the eDIRECTc version by
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both criteria: the number solved problems 12/13 and the quality of the final

solution. Moreover, the incorporated local minimization procedure into the

DIRECT-GLce-min algorithm significantly reduces the total number of

function evaluations compared to the DIRECT-GLce, but the eDIRECTc

version required the smallest number of function evaluations on the average.

On the other hand, the authors in [52] stated that the eDIRECTc algorithm

requires much more running time compared to other algorithms used in the

comparison, therefore the number of function evaluations criterion alone

does not represent the real performance of the algorithms very well.

4.4.4 Group 4: applying the developed algorithms on

the engineering problems

In this section, the introduced algorithms were tested on five engineering

design problems: tension/compression spring, three-bar truss, NASA speed

reducer, pressure vessel, and welded beam. As the global minimums are

known for all tested problems, the same stopping rules were used in the

previous experiments. No constraint violation was allowed in this

experiment, and the parameter εϕ was set to 0. Note that some of the

Table 4.6: Comparison of results for tension/compression spring design

problem

xi, gi
DIRECT- DIRECT- DIRECT- DIRECT- DIRECT- DIRECT-

eDIRECTc
GLc GLce GLce-min -L1(r = 10) -L1(r = 102) -L1(r = 103)

x1 0.0519 0.0516 0.0516 0.0543 0.0543 0.0543 0.0517

x2 0.3630 0.3553 0.3553 0.4228 0.4228 0.4228 0.3567

x3 10.9421 11.3829 11.3829 8.3127 8.3127 8.3127 11.2882

g1(x) −1.02× 10−5 −1.25× 10−5 −1.25× 10−5 −0.0042 −0.0042 −0.0042 0.0012†

g2(x) −1.32× 10−5 −6.13× 10−5 −6.13× 10−5 −0.0011 −0.0011 −0.0011 −2.61× 10−6

g3(x) −4.0627 −4.0477 −4.0477 −4.1365 −4.1365 −4.1365 −4.0568

g4(x) −0.7233 −0.7287 −0.7287 −0.6818 −0.6818 −0.6818 −0.7277

fmin 0.012680 0.012680 0.012680 0.012867α 0.012867α 0.012867α 0.012666α

feval 423, 209 178, 115 178, 221 106 106 106 292

a – result is outside the feasible region

† – constraint is violated

problems contain integer variables, thus by the same analogy to [52], integers

are regarded as continuous ones. A detailed description of these engineering
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x3

x2

x1

Figure 4.4: Scheme of the Tension/Compression Spring problem.

problems and mathematical formulations is given in Appendix A. As we tried

to maintain the same number of decimals across the thesis, we acknowledge

that some given rounded solution points can slightly violate constraints.

First, the tension-compression string design problem is considered. The

problem is to minimize the string weight under constraints on deflection,

shear stress, surge frequency, limits on the outside diameter. There are three

variables as shown in Fig. 4.4. A detailed description of the practical problem

can be found in [17, 47], while in Appendix A is given with a short

description and mathematical formulation. A comparison of best solutions

obtained by the algorithms is shown in Table 4.6. Only three of the

algorithms solved the engineering problem, and the DIRECT-GLce and

DIRECT-GLce-min were the most efficient optimizers. Both algorithms

solved the problem with the required precision error using the least number

of function evaluations. We note that using the eDIRECTc algorithm the

obtained solution is better compared to ours, but the reported solution point

violated constraints of the problem. The reported optimal solution point for

the eDIRECTc algorithm violates the constrain g1(x) : 1 − x3
2x3

71875x4
1
≤ 0. At

the solution point the feasible value of the first constraint should be

non-positive, but the reported value is g1(x) = 0.0012 > 0.

Next, the three-bar truss design problem is considered. The problem is to

minimize the volume subject to stress constraints. There are two variables as

shown in Fig. 4.5. Adetailed description of the practical problem can be found
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Table 4.7: Comparison of results for three-bar truss design problem

xi, gi
DIRECT- DIRECT- DIRECT- DIRECT- DIRECT- DIRECT-

eDIRECTc
GLc GLce GLce-min L1(r = 10) L1(r = 102) L1(r = 103)

x1 0.7921 0.7839 0.7886 0.5000 0.6111 0.7839 0.7887

x2 0.3984 0.4218 0.4082 0.5000 0.5000 0.4218 0.4083

g1(x) −5.37× 10−5 −2.42× 10−5 −1.50× 10−12 0.8284† 0.3949† −2.42× 10−5 −1.52× 10−12

g2(x) −1.4752 −1.4487 −1.4641 −0.8284 −1.1222 −1.4487 −1.4641

g3(x) −0.5247 −0.5512 −0.5358 −0.3431 −0.4828 −0.5512 −0.5359

fmin 263.9117 263.9157 263.8958 0.012867α 262.3446α 263.9157 263.8958

feval 727 1, 055 124 5 11 179 26

a – result is outside the feasible region

† – constraint is violated

L L

L

P

x1x2x1

Figure 4.5: Scheme of the three-bar truss design problem.

in [88], while inAppendix A a short description and mathematical formulation

is given. The comparison of the best solutions obtained by algorithms shown

in Table 4.7. The DIRECT-GLce-min and eDIRECTc were the most efficient

optimizers. However, none of the tested algorithms had any difficulty solving

the latter problem, and the solution was achieved with all the algorithms.

Next, the NASA speed reducer design problem is considered. The problem

is to minimize the overall weight subject to constraints on bending stress of the

gear teeth, surface stress, transverse deflections of the shafts, and stresses in the

shafts. There are seven variables as shown in Fig. 4.6. A detailed description
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Table 4.8: Comparison of results for NASA speed reducer design problem

xi, gi
DIRECT- DIRECT- DIRECT- DIRECT- DIRECT- DIRECT-

eDIRECTc
GLc GLce GLce-min L1(r = 10) L1(r = 102) L1(r = 103)

x1 0.7921 3.5000 3.5000 2.7666 2.7666 3.1534 3.5000

x2 0.3984 0.7000 0.7000 0.7166 0.7166 0.7002 0.7000

x3 0.7921 17.0002 17.0000 18.8333 18.8333 17.0075 17.0000

x4 0.7921 7.3000 7.3000 7.8000 7.8000 7.3020 7.3000

x5 0.7921 7.8000 7.8000 8.0500 8.0500 7.8010 7.7153β

x6 0.7921 3.3503 3.3502 3.4000 3.4000 3.3506 3.3502

x7 0.7921 5.2868 5.2866 5.0833 5.0833 5.1800 5.2867

g1(x) −0.0739 −0.0739 −0.0739 0.0088† 0.0088† 0.0267† −0.0739

g2(x) −0.1979 −0.1980 −0.1979 −0.2113 −0.2113 −0.1111 −0.1980

g3(x) −0.4409 −0.4992 −0.4991 −0.4922 −0.4922 −0.4993 −0.4992

g4(x) −0.8967 −0.9014 −0.9014 −0.8882 −0.8882 −0.8931 −0.9046

g5(x) −0.0053 −8.77× 10−5 −1.89× 10−8 −0.0439 −0.0439 −0.0003 −4.78× 10−6

g6(x) −3.93× 10−10 −7.10× 10−5 −4.86× 10−9 0.1247† 0.1247† 0.0630† 2.53× 10−6†

g7(x) −0.7024 −0.7024 −0.7024 −0.6625 −0.6625 −0.7022 −0.7025

g8(x) −8.4810× 10−10 −1.52× 10−5 −3.5514× 10−9 0.2951† 0.2951† 0.1102† 0.0000

g9(x) −0.5833 −0.5833 −0.5833 −0.6782 −0.6782 −0.6246 −0.5833

g10(x) −0.0865 −0.0513 −0.0513 −0.1025 −0.1025 −0.0515 −0.0513

g11(x) −0.0262 −0.0108 −0.0108 −0.0693 −0.0693 −0.0260 −6.48× 10−7

fmin 3, 003.3445 2, 996.5728 2, 996.3482 2, 943.8699α 2, 982.4621α 2, 995.3825α 2994.4711α

feval 106 123, 175 10, 293 67 67 26, 667 118

α – result is outside the feasible region

β – variable bound constraint violation

† – constraint is violated

x5

x7

x2

x4

x6

x3

x1

Figure 4.6: Scheme of the NASA speed reducer design problem.

of the practical problem can be found in [88], while in Appendix A, a short

description and mathematical formulation is given. The comparison of the

best solutions obtained by the algorithms shown in Table 4.8. Only two of the

algorithms were able to solve the problem: DIRECT-GLce and DIRECT-GLce-

min. The local search procedure reduces the number of function evaluations
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Figure 4.7: Scheme of the pressure vessel design problem.

approximately twelve times. DIRECT-L1 and eDIRECTc were able to return

a better solution value than the best know value fmin, but the solution point

violated the constraint functions. The variable bounds for x5 are 7.8 ≤ x5 ≤
8.3, however the value of x5 from the reported optimal solution point for the

eDIRECTc algorithm is equal to x5 = 7.71532.

Table 4.9: Comparison of results for pressure vessel design problem

xi, gi
DIRECT- DIRECT- DIRECT- DIRECT- DIRECT- DIRECT-

eDIRECTc
GLc GLce GLce-min L1(r = 10) L1(r = 102) L1(r = 103)

x1 1.1457 1.1001 1.1000 1.0625 1.0625 1.0625 1.0000

x2 0.6250 0.6250 0.6250 0.6458 0.6458 0.6458 0.6250

x3 59.3638 56.9977 56.9948 59.7222 59.7222 59.7222 51.8135

x4 37.9086 50.9915 51.0012 36.9444 36.9444 36.9444 84.5786

g1(x) −3.4162× 10−11 −5.12× 10−5 −1.93× 10−10 0.0901† 0.0901† 0.0901† −2.89× 10−14

g2(x) −0.0586 −0.0812 −0.0812 −0.0760 −0.0760 −0.0760 −0.1307

g3(x) −1.3428× 10−5 −76.9748 −0.0001 −10, 242.3668 −10, 242.3668 −10, 242.3668 −0.1046

g4(x) −202.0913 −189.0084 −188.9987 −203.0555 −203.0555 −203.0555 −155.4215

g5(x) −0.0457 −0.0001 −5.1253× 10−10 0.0375† 0.0375† 0.0375† 0.1000†

g6(x) −0.0250 −0.0250 −0.0250 −0.0458 −0.0458 −0.0458 −0.0250

fmin 7, 224.7042 7, 164.4373 7, 163.7396 7, 025.9405α 7, 037.4280α 7, 152.3030α 7, 006.7816α

feval 106 88, 585 91 2, 117 2, 099 2, 295 412

α – result is outside the feasible region

† – constraint is violated

Next, the pressure vessel design problem is considered. The problem is to

minimize the total cost of material, forming, and welding a cylindrical vessel.

There are four variables as shown in Fig. 4.7. A detailed description of the

practical problem can be found in [47], while in Appendix A, a short

description and mathematical formulation is given. The comparison of the

best solutions obtained by algorithms shown in Table 4.9. Like in the

previous case, only two of the algorithms could solve the problem:
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DIRECT-GLce and DIRECT-GLce-min. DIRECT-L1 and eDIRECTc were able

to return the better solution value than the best know value fmin, but the

solution point violated the constraint functions. The variable x1 is bounded

within 1 ≤ x1 ≤ 1.375, but the fifth constraint function g5(x) : 1.1− x1 ≤ 0

reduces the feasible interval to 1.1 ≤ x1 ≤ 1.375. However, the value of x1

for the reported optimal solution point using the eDIRECTc algorithm is

x1 = 1.

Table 4.10: Comparison of results for welded beam design problem

xi, gi
DIRECT- DIRECT- DIRECT- DIRECT- DIRECT- DIRECT-

GLc GLce GLce-min L1(r = 10) L1(r = 102) L1(r = 103)

x1 0.2057 0.2057 0.2057 0.2055 0.2055 0.2055

x2 3.4701 3.4701 3.4706 3.4592 3.4592 3.4592

x3 9.0365 9.0365 9.0366 9.0765 9.0765 9.0765

x4 0.2057 0.2057 0.2057 0.2055 0.2055 0.2055

g1(x) −0.1830 −0.1830 −0.1838 −0.0615 −0.0615 −0.0615

g2(x) −2.3221 −2.3221 −0.5293 −236.1105 −236.1105 −236.1105

g3(x) 0.0000 0.0000 −5.9033× 10−6 0.0000 0.0000 0.0000

g4(x) −3.4328 −3.4328 −3.4329 −3.4285 −3.4285 −3.4285

g5(x) −0.2355 −0.2355 −0.2355 −0.2357 −0.2357 −0.2357

g6(x) −1.6311 −1.6311 −0.1733 −0.8747 −0.8747 −0.8747

g7(x) −0.0807 −0.0807 −0.0807 −0.0805 −0.0805 −0.0805

fmin 1.7249 1.7249 1.7248 1.7284 1.7284 1.7284

feval 108, 683 104, 191 163 106 106 106

Next, the welded beam design problem is considered. The problem is to

minimize a welded beam for minimum cost, subject to seven constraint

functions. There are four variables as shown in Fig. 4.8. A detailed

description of the practical problem can be found in [62, 63], while in

Appendix A, a short description and mathematical formulation is given. The

comparison of the best solutions obtained by the algorithms shown in

Table 4.10. Three of the algorithms were able to solve the problem, and once

again, the DIRECT-GLce-min algorithm was the most efficient optimizer.
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Figure 4.8: Scheme of the welded beam design problem.

4.5 Conclusions

This chapter introduces a new strategy for constrained global optimization

problems in the DIRECT-type algorithmic framework. Two well-known

weaknesses of the DIRECT-L1 algorithms were addressed in the proposed

approaches. Instead of the exact L1 penalty approach, an auxiliary

function-based approach in the DIRECT-GLc and DIRECT-GLce algorithms is

introduced, which does not require any penalty parameters. The proposed

DIRECT-GLc and DIRECT-GLce algorithms significantly outperform all the

previously tested penalty function-based approaches, and the performance

differences increases when the computational budget is more significant.

To improve the solution accuracy and the efficiency of solving

high-dimensional problems, DIRECT-GLce has been enriched with a local

minimization procedure and called the new algorithm DIRECT-GLce-min.

The further experimental investigation revealed the advantage of the

DIRECT-GLce and DIRECT-GLce-min algorithms over most test problems

and five engineering problems compared with the recent relevant approaches.

One of the most significant challenges of the partition-based DIRECT-type

approaches is deals with optimization problems with equality constraints.

The proposed DIRECT-GLce showed promising results in solving such

problems, but effectiveness strongly depends on the allowed equality

constraints violation.
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Chapter 5

Modified DIRECT-GL algorithm

for global optimization with

hidden constraints

The less studied field in DIRECT-type methods is the applicability of an

algorithm for problems with hidden constraints, therefore in the fifth chapter

of the dissertation, an extension of DIRECT-GL for problems with hidden

constraints Eq. (2.8) was investigated. Many decision-making problems

arising in diverse areas can be solved as global optimization problems (see,

e.g., [4, 23, 28, 29, 32, 68]). Objective and constraints functions describing

real-life applications are often non-linear, multi-extremal, non-differentiable,

expensive to evaluate, and computed using the black-box type computer

software only [91, 96]. Derivative-free optimization [91] is the key technique

for finding solutions to such problems for which derivative information is

unavailable, unreliable, or impractical to obtain. Such problems often occur

in practical black-box optimization [21, 25, 65], therefore more efficient

strategies are needed.

5.1 Introduction

To the best of our knowledge, only three DIRECT-type strategies are proposed

in the literature [25, 65]. The primary purpose was to design an effective
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auxiliary function-based approach for hyper-rectangles, where objective and

constraint function information are not available. Two main challenges that

arise are; i) detecting at least one feasible point quickly, ii) the convergence

of an algorithm to a feasible solution point, especially when it lies on a

boundary of the unknown feasible region. The investigated DIRECT-GLh

algorithm combines two new techniques for faster discovery of feasible

points, and efficient convergence, especially for problems having solutions

on the edge of the unknown (hidden) feasible region. The performance of the

DIRECT-GLh algorithm has been examined in a detailed numerical study

using a broad set of global optimization test problems. The new DIRECT-GLh

showed promising performance compared with the other existing

DIRECT-type extensions for problems with hidden constraints.

5.2 New auxiliary function-based approach for

problems with hidden constraints

In this section, an extension of the previously introduced DIRECT-GL

algorithm for global optimization problems with hidden constraints is

presented. In the developed DIRECT-GLh, each point of the search domain

includes a sequential checking of the feasibility. If the objective function

cannot be evaluated at a certain point, the algorithm assigns a new estimated

value based on the current best feasible solution. The value is constantly

changing when better minima are founded, and the algorithm rapidly adjusts

to the optimization problem. The developed strategy is evaluated on the

comprehensive test set by comparing it with all existing approaches, subject

to function evaluations effectiveness, and algorithmic time. In the following

two subsections, main extensions of the DIRECT-GL algorithm are described.

5.2.1 Finding a feasible point

In [11, 52] and the previous chapter it was shown that finding at least one

feasible point while solving general optimization problems often can be very

costly. For problems with hidden constraints finding a feasible midpoint can

be even more challenging, as analytic information about the constraints is
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unavailable. To deal with this situation, the uniform partitioning of D̄ is

performed, as stated in Definition 1.

Definition 1 Consider D̄, set Ik = {1}, where k = 1, and perform the

following steps:

• Step 1 Find an index j ∈ Ik and a corresponding hyper-rectangle D̄j ,

such that

D̄j = argmax
j

{
j = argmax

i∈Ik
{δi}

}
. (5.1)

• Step 2 Subdivide (trisect) a hyper-rectangle D̄j and check the feasibility

at midpoints of all new hyper-rectangles. Also, set k = k + 1, update

Ik, and all measures δji of new hyper-rectangles.

• Step 3 If Dfeas = ∅ repeat from Step 1; otherwise terminate.

At Step 1, a hyper-rectangle with the largest size is chosen. If there are several

hyper-rectangles with the equal maximal size, the preference is given to the

hyper-rectangle with the largest index value. At Step 2, the selected hyper-

rectangle is subdivided using the trisection technique, and the feasibility at

the all new center points is checked. The process is continued until at least

one feasible midpoint is found, i.e., Dfeas 6= ∅. After this, all the effort is put
focused on the improvement of the feasible solution.

5.2.2 Improving a feasible solution

By the second extension to DIRECT-GL, problem (2.8) is transformed to (5.2)

as follows:

min
x∈D

φ(x, xmin, fmin),

φ(x, xmin, fmin) =

f(x), if x ∈ Dfeas

fmin + d(xmin, x), otherwise,

(5.2)

where fmin is the best feasible objective function value found so far, and

d(xmin, x) is Euclidean distance Eq. (3.2) from the current best minimum

point (xmin) to the point (x). When x ∈ Dfeas, the objective function is

evaluated at f(x), otherwise a value fmin + d(xmin, x) is assigned to an

infeasible midpoint of the hyper-rectangle. A geometrical illustration of this
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procedure is shown in Fig. 5.1. Using this strategy, the assigned values for

hyper-rectangles with infeasible midpoints depends on the currently found

minimum value of fmin, and the (Euclidean) distance from the current

minimum point. This way, the convergence of DIRECT-GLh to a feasible

solution point is assured, even when complicated shape constraints are faced.

Note that this comes with a slight performance overhead. Each time when a

better value of fmin is found, for all hyper-rectangles with infeasible

midpoints the value fmin + d(xmin, x) is updated. On the other hand, the

distances d(xmin, x) are used in the selection procedure of potential optimal

hyper-rectangles in the original DIRECT-GL algorithm, therefore the

performance overhead is minimal.

In most of the DIRECT-type algorithms domain D is normalized D̄ in

interval [0, 1] and DIRECT-GL uses normalized coordinates x in Eq. (2.5).

While in proposed DIRECT-GL potential optimal hyper-rectangles selection

scheme, dimensionality does not attach any importance but in (5.2)

formulation Euclidean distance has dependence on dimensionality n, and it is

unclear how it is going to scale with objective function. The biggest issue

with the formulation (5.2) is that values of objective function and distances

can differ significantly. In order to treat them equally, the values are

normalize as:

f̄(x) =


1, if fmax == fmin
f(x)− fmin
fmax − fmin

, otherwise.

d̄(xmin, x) =
d(xmin, x)− dmin

dmax − dmin
,

(5.3)

where dmax is the length of the diagonal of D̄ and dmin is equal to 0. Again,

this adds some performance overhead, as normalized objective function and

distance values, should be updated each time when the hyper-rectangle with

the new largest/lowest objective value at the center point is found. By taking

into account (5.3) and (5.2), a new problem is derived:

min
x∈D

φ̄(x, xmin, f̄min),

φ̄(x, xmin, f̄min) =

f̄(x), if x ∈ Dfeas,

f̄min + d̄(xmin, x), otherwise.

(5.4)
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Note, that f̄min is always equal to 0, and could be omitted from (5.4).
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Figure 5.1: Geometric illustration of the DIRECT-GLh algorithm solving two-

dimensional T1 test problem in the third (left side), and in the fourth (right

side) iterations.

5.3 Algorithmic steps

The detailed description of the DIRECT-GLh algorithm is given in

Algorithm 4. The inputs are the problem (P) and stopping conditions:

required tolerance (εpe), the maximal number of function evaluations (FEmax),

and the maximal number of DIRECT-GLh iterations (Kmax). After termination,

DIRECT-GLh returns the best value of the objective function fmin and the

solution point xmin together with algorithmic performance measures: final

tolerance – percent error (pe), the number of function evaluations (fe), and

the number of iterations (k).

The DIRECT-GLh algorithm starts from the single center point. If it is

infeasible, the algorithm performs uniform sampling of hyper-rectangles

using Definition 1 until a feasible point is found (see Lines 2–7 in

Algorithm 4). DIRECT-GLh uses the two-step based strategy for the selection

of potential optimal hyper-rectangles (sets Sk1 and Sk2), as was introduced in
second chapter Chapter 3. During steps described in Lines 13–17,

DIRECT-GLh subdivides all hyper-rectangles from the set Sk3 , calculates
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Algorithm 4: Pseudo code of the DIRECT-GLh algorithm
input : P, εpe, FEmax, Kmax;

output: fmin, x
k
min, pe, k, fe;

1 Initialize k = 1, fe = 1, Ik = {1};
2 if x1 6= Dfeas then

3 Find a feasible center point; // using Definition 1
4 Update fmin, x

k
min, pe, fe, Ik;

5 else

6 Set fmin = f(x1), x
k
min = c1 and update pe;

7 end

8 Calculate d(xkmin, ci), φ(c, x
k
min, fmin) and φ̄(c, x

k
min, f̄min), xi ∈ D̄k

i for all

i = 1, ..., fe ; // d, φ and φ̃ defined in Eqs. (3.2), (5.2) and (5.4)
9 while pe > εpe and fe < FEmax and k < Kmax do // pe (3.7)

10 Identify the “global” (index) set Sk
1 ⊆ Ik of POH on φ̄(c, xmin, f̄min)

using Definition 2 ;

11 Identify the “local” (index) set Sk
2 ⊆ Ik of POH on d (3.2) using Definition 3 ;

12 Find unique union of potential optimal hyper-rectangles sets Sk
3 = Sk

1

⋃
Sk
2 ;

13 foreach i ∈ Sk
3 do

14 Subdivide (trisect) hyper-rectangle D̄k
i and update Ik ;

15 Calculate φ(c, xkmin, fmin) at new center points ;

16 Update fmin, x
k
min, pe, and fe ;

17 end

18 if d(xkmin, x
k−1
min ) ≥ 10−6 then

19 Calculate d(xkmin, ci), φ(c, x
k
min, fmin) and φ̄(c, x

k
min, f̄min), ci ∈ D̄k

i for all

i = 1, ..., fe;

20 else

21 Calculate φ̄(c, xkmin, f̄min), ci ∈ D̄k
i for all i = feold, ..., fenew;

22 end

23 Increase k = k + 1 ;

24 end

25 return fmin, x
k
min, pe, k, fe;
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Euclidean distances d(xkmin, x) (using (3.2)), and φ(x, x
k
min, fmin) (using (5.2)).

Then, if the new best objective value is found, the algorithm performs steps

described in Line 19, otherwise steps in Line 21. DIRECT-GLh repeats all

these steps until any stopping condition is unsatisfied.

5.4 Numerical investigation

Tested algorithms

In this section, the efficiency of the developed DIRECT-GLh algorithm is

investigated and compared with the three existing DIRECT-type extensions

for global optimization problems with hidden constraints (DIRECT-Barrier,

DIRECT-NAS and DIRECT-sub).

Benchmark problems

Test problems from the most recent version of the library DIRECTlib [110]

(67 in total) are used to evaluate the performance of selected algorithms.

Description of all test problems used in this section in a MatLab format is

given in the online resource [110] and Table 4.2. It is assumed that any

information about the constraint functions is unavailable. In the experimental

setup, the hidden searching area (Dhidden) is implemented as

Dhidden = {x ∈ D : g(x) ≤ 0,h(x) = 0}, (5.5)

but this information is used only to determine whether a certain point is feasible

or not.

Stopping criteria

Investigated algorithms were stopped either when the generated point x was

such that the percent error (pe) Eq. (3.7) is smaller than the tolerance value

εpe = 10−2, or when the number of function evaluations exceeds the

prescribed limit of 106. Additionally, the maximal time for solving one test

problem was restricted to six hours. When an algorithm exceeded this time

limit, the final result was set to 106. All the computations were carried out on
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a six-core computer with the 8th Generation Intel R CoreTM i7-8750H @

2.20GHz Processor, 16 GB of RAM and MatLab R2020a software

environment.

Experimental investigation of DIRECT-GLh

The authors of [65] did not provide public access to their algorithm

implementation. Moreover, detailed information on how often an extra

sub-dividing step should be performed during execution is omitted.

Therefore, in our own implementation of DIRECT-sub, the frequency on how

often the sub-dividing step should be performed is controlled by the two

parameters γ and N . In the experimental analysis, two different strategies

were used, when an extra subdividing step was executed on iterations

k = γN , where γ is equal either to 2 or 5, and N = 1, 2, . . . . In practice, this

means, that every two (or five) iterations and additional sub-dividing step

was performed.

Table 5.1: The total number of function evaluations needed by the algorithms

to find the first feasible point (x ∈ Dfeas) on a selected subset of test problems

from the DIRECTlib

Label n
Constr. DIRECT- DIRECT- DIRECT- DIRECT-sub DIRECT-sub

type GLh NAS Barrier (γ = 2) (γ = 5)

Bunnag 6 10 L 136, 549 363, 929 1, 240, 029 5, 614, 449 1, 951, 629

G06 2 NL 33, 211 39, 063 59, 049 202, 589 136, 125

G16 5 NL 803 2, 513 2, 673 39, 253 25, 203

Genocop 9 4 L 8, 939 7, 543 10, 935 42, 261 53, 695

Genocop 11 4 L 2, 889 7, 917 9, 477 73, 881 36, 549

hs021mod 7 L 33, 051 33, 309 85, 293 127, 569 54, 435

P2d 5 NL 139 137 243 81 231

P9 3 L 81 51 189 225 99

s232 2 L 817 2, 817 3, 645 10, 449 3, 681

Average (overall) 24, 053 50, 809 156, 837 678, 973 251, 294

The obtained experimental results are summarized in Tables 5.1 and 5.2.

Here, the best results are given in bold. In both tables, in the first

column (Label), the name of the problem is listed, while in the second –

dimensionality of the problem (n). In the third column (Constr. type), the
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type of hidden constraints is specified: linear (L), or non-linear (NL). Next,

in the consecutive columns, the total number of function evaluations (feval)

and also the total execution time (in seconds) in Table 5.2 are given.

First, the situations when finding at least one feasible point is costly are

considered (see Section 5.2.1 for more information on this). For this, a subset

of test problems (from DIRECTlib [110]) having a tiny feasible region

(Dfeas) were selected. Using the proposed uniform sampling phase in the

DIRECT-GLh, the algorithm can locate the feasible point in six out of the nine

tested problems faster (see Table 5.1). Also, the average number of function

evaluations using the DIRECT-GLh algorithm is more than two times smaller

compared with the second-best algorithm DIRECT-NAS.

Next, solving the complete set of 67 test instances, DIRECT-GLh fails to

solve only (5/67) test problems, while the second-best DIRECT-NAS fails to

solve (15/67) accordingly. Naturally, the low-dimensional test problems are

the simplest for all tested approaches, but still, DIRECT-GLh requires

approximately 1.3 times fewer function evaluations compared to

DIRECT-NAS. However, the efficiency of the DIRECT-NAS approach

decreases significantly when solving more complicated problems, i.e., larger

dimensionality, and when Dhidden is of non-linear nature. Then, DIRECT-GLh

algorithm requires approximately 2.4 times less function evaluations

compared to the second-best DIRECT-NAS. The greatest advantage of the

DIRECT-GLh algorithm is speed; the overall average time of solving all tested

problems, DIRECT-GLh operates approximately 97.7 times faster, compared

with the second best algorithm DIRECT-NAS. Moreover, 62/67 of the test

problems were solved faster using the developed DIRECT-GLh algorithm.

Looking at other three tested algorithms, inconsiderable difference

between the DIRECT-sub algorithm, which combines a barrier strategy with

an extra sub-dividing step, and the original DIRECT-Barrier is noticed .

Among them, the best performance is achieved with DIRECT-sub and

sub-dividing steps are activated at iterations k = 5N , N = 1, 2, . . . . The

sub-dividing step decomposes the edge of hidden constraints more efficiently

and increases the searching region. Still, solving the higher-dimension

problems, this step becomes less efficient. In later iterations, the execution of

one sub-dividing step can take a considerable amount of the entire available
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budget of function evaluations.

5.5 Conclusions

In recent years DIRECT has become a useful optimization tool for solving

problems with bound constraints, but algorithms can now successfully handle

even more complicated general constraints. This section, introduced an

extended DIRECT algorithm version for problems with hidden constraints,

where any information of constraints is not given, and only the evaluation of

objective function can determine if the point is feasible. The numerical

investigation of introduced DIRECT-GLh shows better performance results

than all the existing DIRECT-type algorithms for such optimization problems.
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Table 5.2: Number of function evaluations and time (in sec.) solving problems from DIRECTlib

Label n
Constr. DIRECT-GLh DIRECT-NAS | DIRECT-Barrier DIRECT-sub (γ = 2) DIRECT-sub (γ = 5)

type Time (s) feval Time (s) feval Time (s) feval Time (s) feval Time (s) feval

Bunnag 1 4 L 2.86 33, 709 5, 653.63 288, 823 23.74 49, 261 23.74 199, 851 174.88 177, 009

Bunnag 2 4 L 0.37 5, 215 11.28 4, 651 159.48 > 106 10.55 85, 999 152.02 > 106

Bunnag 3 5 L 0.55 7, 933 350.42 25, 105 0.86 3, 325 85.97 > 106 1.33 5, 835

Bunnag 4 6 L 1.26 21, 039 21, 600.00 > 106 3.02 16, 089 114.67 > 106 3.92 19, 657

Bunnag 5 6 L 1.57 24, 659 21, 600.00 > 106 68.94 > 106 190.37 > 106 63.20 > 106

Bunnag 6 10 L 278.02 > 106 21, 600.00 > 106 56.93 > 106 205.56 > 106 106.77 > 106

Bunnag 7 10 L 204.88 288, 021 21, 600.00 > 106 53.43 > 106 255.66 > 106 102.28 > 106

circle 3 NL 0.19 2, 043 14.26 12, 771 21, 600.00 > 106 21, 600.00 > 106 21, 600.00 > 106

G02 20 NL 113.02 > 106 21, 600.00 > 106 111.15 > 106 134.21 > 106 104.59 > 106

G04 5 NL 0.99 11, 915 2, 710.45 97, 109 439.11 > 106 48.83 > 106 427.15 > 106

G06 2 NL 20.68 35, 953 2, 813.75 61, 049 506.05 > 106 182.39 > 106 354.84 > 106

G08 2 NL 9.75 20, 117 23.05 13, 203 416.18 > 106 180.16 > 106 313.61 > 106

G09 7 NL 6.87 95, 463 23.05 13, 203 91.91 > 106 36.12 > 106 286.21 > 106

G12 3 NL 0.06 175 0.37 483 0.12 91 868.14 > 106 1.22 223

G16 5 NL 21.97 203, 545 21, 600.00 > 106 138.62 > 106 110.98 > 106 189.54 > 106

G19 15 NL 83.04 > 106 21, 600.00 > 106 112.05 > 106 106.73 > 106 125.48 > 106

G24 2 NL 0.09 665 0.61 1, 097 76.82 > 106 136.00 > 106 93.98 > 106

Genocop 9 4 L 2.49 10, 953 9.69 9, 659 120.70 > 106 54.26 > 106 398.81 > 106

Genocop 10 4 L 0.42 6, 151 26.49 8, 589 616.43 > 106 196.61 > 106 22.02 91, 377

Continued on next page
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Table 5.2 Continued from previous page

Label n
Constr. DIRECT-GLh DIRECT-NAS DIRECT-Barrier DIRECT-sub (γ = 2) DIRECT-sub (γ = 5)

type Time (s) feval Time (s) feval Time (s) feval Time (s) feval Time (s) feval

Genocop 11 4 L 2.47 32, 401 21, 600.00 > 106 413.29 > 106 195.33 > 106 66.42 > 106

Gold. and Pr. 2 NL 0.14 959 0.61 1, 491 8.41 25, 713 1.08 6, 581 7.45 24, 659

Gomez 2 NL 0.08 567 0.38 825 8.41 25, 713 1.07 10, 525 75.15 205, 763

Himmelblau’s 5 NL 1.72 24, 087 3, 782.69 119, 167 704.02 > 106 91.43 > 106 202.58 > 106

Horst 1 2 L 0.17 1, 751 1.07 1, 295 238.50 > 106 523.14 > 106 1, 524.13 > 106

Horst 2 2 L 0.07 547 0.65 663 1, 600.48 > 106 1.39 9, 113 783.74 > 106

Horst 3 2 L 0.10 721 0.20 237 0.16 283 86.81 > 106 0.23 283

Horst 4 3 L 0.21 2, 293 2.71 3, 083 1, 071.67 > 106 66.38 > 106 390.83 > 106

Horst 5 3 L 0.22 2, 043 1.84 2, 241 95.65 > 106 93.88 > 106 322.98 > 106

Horst 6 3 L 0.57 6, 251 14.14 6, 591 363.11 > 106 123.90 > 106 508.47 > 106

Horst 7 3 L 0.18 2, 225 0.77 1, 443 0.27 679 0.53 3, 229 0.48 1, 543

hs021 2 L 0.02 127 0.07 107 0.45 1, 277 0.08 361 0.26 831

hs021mod 7 L 81.66 > 106 21, 600.00 > 106 562.06 > 106 38.68 > 106 47.07 > 106

hs024 2 L 0.10 667 0.59 647 167.62 > 106 63.08 > 106 649.30 > 106

hs035 3 L 0.21 2, 579 6.05 5, 435 0.62 1, 791 16.17 200, 707 0.74 3, 145

hs036 3 L 0.18 1, 873 0.34 727 0.25 727 0.23 727 0.22 727

hs037 3 L 0.31 3, 567 12.25 7485 9.39 36, 567 151.62 > 106 8.29 36, 429

hs038 4 L 0.81 10, 967 1, 081.22 44, 663 1.62 6, 433 206.66 > 106 5.39 23, 805

hs044 4 L 86.57 > 106 49.85 12, 223 1, 041.87 > 106 145.86 > 106 621.12 > 106

hs076 4 L 0.07 7, 885 1, 073.36 40, 557 166.56 511, 919 46.56 > 106 106.78 400, 141

P2d 5 NL 3.21 41, 807 8, 023.76 118, 151 137.45 > 106 89.89 > 106 83.94 > 106

Continued on next page
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Table 5.2 Continued from previous page

Label n
Constr. DIRECT-GLh DIRECT-NAS DIRECT-Barrier DIRECT-sub (γ = 2) DIRECT-sub (γ = 5)

type Time (s) feval Time (s) feval Time (s) feval Time (s) feval Time (s) feval

P3b 2 NL 0.06 499 0.49 595 0.15 461 0.32 2, 151 0.36 995

P4 2 NL 0.05 391 0.14 227 0.12 233 0.24 1, 759 0.11 245

P6 2 NL 0.12 1, 015 1.21 1, 381 122.31 223, 859 6.82 66, 721 103.12 226, 457

P7 2 NL 0.11 907 0.88 2, 147 0.19 427 0.22 1339 0.24 783

P8 2 NL 0.13 1, 001 1.11 1, 555 3.97 11, 059 0.94 8, 085 0.47 1, 115

P9 3 L 0.21 1, 867 1.47 1, 807 229.65 > 106 54.59 > 106 550.38 > 106

P10 2 NL 0.07 539 0.52 1, 151 0.22 573 73.12 > 106 0.08 573

P11 2 NL 0.09 769 1.48 2, 143 0.41 5, 959 3.57 34, 751 1.00 3, 631

P12 1 NL 0.10 27 0.09 23 0.16 23 0.06 23 0.08 29

P14 3 L 0.24 1, 573 1.18 1, 519 2.16 9, 125 3.61 35, 589 1.40 5, 065

P16 2 NL 0.03 89 0.06 67 0.08 63 0.06 205 0.07 71

s224 2 L 0.07 387 0.35 479 0.97 2, 131 0.31 1, 559 0.87 2, 063

s231 2 L 0.11 551 0.72 1, 279 0.46 1, 139 244.64 > 106 0.33 1, 021

s232 2 L 0.34 1, 749 53.54 7, 045 766.84 > 106 132.66 > 106 295.12 > 106

s250 3 L 0.44 3, 425 4.21 4, 077 542.93 > 106 53.50 > 106 237.80 > 106

s251 3 L 0.32 3, 567 10.82 7, 485 7.51 36, 567 37.66 > 106 9.11 36, 429

T1 2 NL 0.07 509 0.97 2, 419 0.28 859 0.06 801 81.83 > 106

T1 3 NL 0.39 4, 043 0.68 3, 597 30.76 19, 343 2.44 56, 723 2.03 12, 551

T1 4 NL 1.82 23, 721 21, 600.00 > 106 58.95 140, 257 244.69 > 106 2, 834.21 > 106

T1 5 NL 7.63 101, 733 21, 600.00 > 106 474.17 > 106 132.66 > 106 691.04 > 106

T1 6 NL 6.05 85, 929 21, 600.00 > 106 140.53 > 106 53.51 > 106 831.48 > 106

Continued on next page
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Table 5.2 Continued from previous page

Label n
Constr. DIRECT-GLh DIRECT-NAS DIRECT-Barrier DIRECT-sub (γ = 2) DIRECT-sub (γ = 5)

type Time (s) feval Time (s) feval Time (s) feval Time (s) feval Time (s) feval

T1 7 NL 18.81 245, 141 21, 600.00 > 106 147.26 > 106 37.66 > 106 197.94 > 106

T1 8 NL 19.54 254, 227 21, 600.00 > 106 998.99 > 106 70.41 > 106 122.17 > 106

zecevic2 2 L 0.16 1, 247 2.66 2, 283 0.61 1, 403 0.14 2, 637 0.52 1, 127

zecevic3 2 NL 0.13 1, 067 0.59 799 0.14 323 0.12 2, 427 0.18 281

zecevic4 2 NL 0.14 1, 371 0.55 883 502.36 > 106 1.81 34, 399 2, 963.76 > 106

zy2 3 NL 1.43 16, 381 1.89 5, 099 119.13 > 106 53.18 > 106 234.57 > 106

# of failed 5 15 35 43 36

Average (overall) 14.74 99, 472 5, 220.33 237, 875 602.64 550, 537 413.34 653, 228 581.86 562, 997

Average (NL cons.) 9.66 96, 262 6, 417.90 286, 286 969.32 551, 735 735.42 582, 621 967.62 590, 223

Average (L cons.) 19.68 102, 587 4, 057.97 190, 888 246.74 549, 374 100.73 721, 758 207.45 523, 720

Average (n ≥ 4) 31.67 218, 047 11, 559.16 525, 766 252.57 757, 882 99.59 845, 201 379.33 757, 432

Average (n ≤ 3) 1.02 3, 330 81.73 4, 450 886.48 382, 419 667.73 497, 573 746.07 393, 538

Median 0.32 3, 425 9.69 5, 099 91.98 > 106 54.27 > 106 83.95 > 106

Concluded

1
0
9



Chapter 6

Accelerating the DIRECT-GLce
algorithm through dynamic

data structures and

parallelization

First, it should be stressed that the iterative nature and a small number of

selected potential optimal hype-rectangles to feed the computational units,

even for large dimensional problems, do not allow efficient parallelism of the

DIRECT-type algorithms using hundreds of processors. Due to these

limitations, this chapter focuses on the acceleration of DIRECT-type

algorithms through dynamic data structures and parallelization. The choice of

the MatLab software is based mainly on the fact, that most widely used

implementations of the original DIRECT [18, 25] algorithm, as well as various

later introduced DIRECT-type extensions, were developed within MatLab.

This allowed us to carry out the most detailed and fair comparison under the

same conditions, i.e., by running competing algorithms (also implemented in

MatLab) under the same environment. Moreover, the MatLab software is one

of the most widely used mathematical computing environments in scientific

and technical computing [9]. Also, we want to stress, that while developed

parallel algorithms were tested within the MatLab, all proposed acceleration

techniques could be implemented in any programming language. Let us note,
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that the developed parallel algorithms (presented in this chapter) showed very

promising parallel performance even within MatLab environment.

Nevertheless, using more appropriate programming languages for the

parallelization, like C++ or Fortran, even better parallel efficiency could be

obtained. But due to the limitations of DIRECT-type for an efficient

parallelization on numerous processors, and seeking a broader applicability

of the developed algorithms, we believe, that the MatLab software is also a

good trade-off in this situation.

Most of the existing DIRECT-type implementations use a static data

structure to store the search space partitioning’s information. This can result

in failure of the code if the array is insufficient to hold the necessary

information. Some implementations reallocate the array to be significantly

larger than needed, but it can cost a considerable amount of overhead in

execution time and computer memory usage [38]. New versions with

dynamic data structures have been proposed to overcome this problem.

Lipschitz-type global optimization methods are computationally intensive

[41, 42, 70, 77, 98, 102] and therefore a natural way to speed up is to parallelize

them [32, 75, 80, 92, 93, 99, 111, 112, 113, 114]. Nevertheless, just a few

parallel implementations of DIRECT-type algorithms are known, and they are

developed mainly by the same group of researchers [25, 34, 35, 36, 37, 81,

122]. The previous schemes improve workload distribution, but they have

some drawbacks:

• The total number of function evaluations significantly increases in

comparison with the sequential algorithm, and a large amount of these

evaluations are performed at “redundant points” [32, 93, 114];

• The authors used their serial version for comparison, instead of

identifying the best existing sequential DIRECT-type algorithm to

evaluate the parallel efficiency;

• To the best of our knowledge, all the existing parallel DIRECT-type

versions are focused on box-constrained global optimization problems.
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6.1 Introduction

In this chapter, two different speedup techniques for a deterministic

DIRECT-type global optimization algorithm DIRECT-GLce are considered.

The dynamic data structures [38] are included in the sequential MatLab

DIRECT-GLce algorithm, resulting in one of the most effective DIRECT-type

methods. This chapter studies the shared and distributed parallel

implementations of the DIRECT-GLce algorithm and a distributed parallel

version for the Aggressive DIRECT counterpart. The first three parallel

DIRECT-type algorithms pD-GLce-parfor, pD-GLce-spmd, and

pD-ACe-spmd for generally constrained global optimization problems are

introduced, which are non-redundant [32, 93, 114], i.e., the number of

sampled points is the same in the sequential and the parallel version. The

load balancing used in the developed MatLab master-worker parallel schemes

can be easily adapted to be used by other sequential MatLab DIRECT-type

algorithms like [6, 20, 25, 52, 53, 54, 77].

The efficiency of DIRECT-type parallel versions is evaluated solving box

and generally constrained global optimizations problems with varying

complexity. Furthermore, to evaluate the parallel efficiencies, the best found

sequential DIRECT-type approaches implemented in MatLab were used.

Numerical results showed a great efficiency, especially for the distributed

parallel version of the DIRECT-GLce on a multi-core PC.

6.2 Implementation of parallel DIRECT-GLce

approaches

To overcome the difficulties described in the previous sections

(see Section 2.4 for more information on this), three parallel implementations

of the DIRECT-GLce algorithm in the MatLab software environment [61] are

presented. As various applications can benefit from parallel computing, many

parallel MatLab extensions have been created [9]. Until the presence of

official MathWorks extensions to the MatLab language, according to [105],

the most notable extensions were pMATLAB [119], MatlabMPI [49],
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MultiMATLAB [120], and bcMPI [43]. This chapter presents the functionality

available from the MathWorks official extension to the MatLab language –

the focus is on the Parallel Computing Toolbox [61]. The Parallel Computing

Toolbox addresses the main challenge of making code to work efficiently in

multi-core systems by providing several parallel programming

paradigms [60], like threads, parallel for-loops, and SPMD (Single Program

Multiple Data) constructs, and so on.

To avoid ambiguity, the same terminology as in the official MatLab

documentation [61], and in [105] is used. The term workers will be used as a

generic term for the MatLab computational engine processes that function

completely independently of each other and execute assigned tasks in

parallel. A MatLab client is responsible for the distribution of these tasks

through the functions in the Parallel Computing Toolbox. However, when the

communication infrastructure is required for using the message-passing

functions, these connected workers will be called “labs” [105]. Like threads,

labs are executed on processor cores, but unlike threads, they do not share a

memory, therefore they can run also on separate computers connected via a

network.

In the following sections, two parallel versions of the sequential

DIRECT-GLce algorithm are presented implemented using parallel for-loops

and the message-passing paradigm, and the parallel implementation of the

pD-ACe-spmd variation, implemented using only the message-passing

paradigm. Note that similar parallel schemes may be easily adapted for other

existing sequential DIRECT-type implementations.

6.2.1 Parallel pD-GLce-parfor algorithm

The first parallel version of DIRECT-GLce (pD-GLce-parfor) is implemented

using a parfor (parallel for)-loops. Two main types of applications that can

benefit from parfor-loops will normally involve repetitive segments of code

and include many iterations that do not take long to execute or will include a

few iterations, which take long to execute [86]. In this sense, it is quite similar

to the shared memory parallel programming standard OpenMP, but has some

critical differences and limitations [105]:
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• parfor loops do not provide any communication between multiple

workers. Without coordination between workers, it is not possible to

get exclusive access to a shared variable for the duration of the

construct;

• parfor loop requires iterations to be completely independent of each

other, i.e., the result should not depend on the order in which iterations

are executed;

The pseudocode of the pD-GLce-parfor algorithm using parfor-loops is

illustrated in Algorithm 5. By default, parallel language functions

automatically create a parallel pool of MatLab workers. The default number

of workers is one per physical CPU core using a single computational

thread [61]. In the pD-GLce-parfor implementation, the number of workers

can be adjusted by specifying the input parameter $.

Algorithm 5: Pseudo code of the pD-GLce-parfor algorithm

input : P , εpe, εϕ, FEmax, Kmax,$ // $ is the total number of workers
output: fmin, xmin, pe, k, fe;

1 Initialization step // only one worker - MatLab client is active
2 while pe > εpe and fe < FEmax and k < Kmax do // pe defined in Eq. (3.7)
3 Selection step: Identify the index set Sk

3 of potential optimal hyper-rectangles

using Definition 2 and Definition 3

4 for i = 1 : length of Sk
3 // slice information for further

calculations
5 Make sliced input variables of potential optimal hyper-rectangles with index

i
6 end

7 parfor {i = 1 : length of Sk
3 , $} // run parallel loop on $ workers

8 Sampling step: Evaluate objective and constraint functions at the centers of

new hyper-rectangles

9 Subdivision step: Trisect hyper-rectangle with index i

10 end

11 for i = 1 : length of Sk
3 // update MatLab client's global variables

12 Applying dynamic data structures, update partitioned search space

information using sliced output variable with index i

13 end

14 Update fmin, xmin, pe, k, fe

15 end

16 return fmin, x
k
min, pe, k, fe

At the beginning (Initialization step), only one worker – a MatLab client,
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is active. Here, the initialization of the variables, the normalization of the

domain D, and the first evaluation of the objective function is accomplished.

The stopping condition is also controlled by the MatLab client, based on the

required tolerance εpe, the maximal number of function evaluations FEmax

and the maximal number of iterations Kmax. The next Selection step cannot

be parallelized using parfor-loops since the final result (selection of

potentially optimal hyper-rectangles using DIRECT-GL strategy) depends on

the order in which iterations are executed during this step. Therefore this part

is also performed only by the MatLab client. On the left side of Fig. 6.1,

different algorithmic parts cost is illustrated by running a sequential

DIRECT-GLce algorithm. In a particular case, about 30% of the total work per

iteration (yellow color) is performed only by the Matlab client.
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Figure 6.1: Cost of algorithmic steps per iteration on the left side and the

amount of data transferred to and from aworkers (labs) on the right side solving

Sphere test problem, with n = 50

To reduce the communication time between the MatLab client and

workers, the MatLab client must prepare sliced variables for each worker (see

Algorithm 5, Line 5). Sliced variables are arrays whose segments are handled

by different workers on separate loop iterations. The returned data from

workers is also sliced and must be stored on the MatLab client using an

information storing approach (see Algorithm 5, Line 12). Let us stress that

static data structures are more suitable for parfor-loops, where sliced input

and output variables could be handled more efficiently. However,

significantly effective dynamic data structures here are adapted for
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information storage (see the right side of Fig. 2.4 and Fig. 6.3), but this is not

possible using parfor-loops. Therefore, synchronizing the partitioned

information to global variables is done outside parfor-loop (see

Algorithm 5, Line 12). All these replications are involved in the Subdivision

step, and in a particular case, about 21% more of the total work per iteration

(red color) is performed only by the Matlab client, see the left side of Fig. 6.1.

As pointed out in Section 2.4, the main design challenge of the parallel

DIRECT-type algorithms is a strong data dependency. Therefore, without

proper mechanisms to coordinate multiple workers using the parfor

paradigm, the total percentage of work performed in parallel is limited. Using

parfor-loops, only the Sampling step can be executed in parallel

(see Algorithm 5, Lines 8 and 9). Note that even after 150 iterations(see left

side of the Fig. 6.1), only about 49% of the total work per iteration (blue

color) can be performed in parallel. Taking into account that operating a loop

in parallel adds additional runtime costs, the MatLab client has to start the

workers, calculations must be divided among them and later collected from

the workers, there is an obvious overhead. The low cost of computations and

a large amount of moving data between workers (see the right side

of Fig. 6.1), can result in a noticeable overhead, especially at initial iterations

(see Section 6.3 for a detailed performance analysis). Next, the MatLab client

issues the parfor command and coordinates with the existing workers to

execute the loop iterations in parallel. At the final termination, the best

objective function value (fmin), the point (xmin), and performance metrics (pe,

k, fe) are returned by the MatLab client.

The low cost of computations and a large amount of moving data between

workers (see the right side of Fig. 6.1), can result in a noticeable overhead,

especially at initial iterations (see Section 6.3 for the detailed performance

analysis).

6.2.2 Parallel pD-GLce-spmd algorithm

Better functionality and flexibility to parallel programming in MatLab is

offered by Message Passing Interface (MPI). The MatLab message-passing

paradigm uses the smpd keyword and additional functions described in the
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point-to-point communications standard (MPI-2) [33]. Therefore, the second

parallel version of pD-GLce-parfor is implemented using MPI functionality

within MatLab, which is used to allocate the work across multiple labs in the

MatLab software environment. Each lab stores information on their main

memory block and data is exchanged through message passing over the

interconnection network. The master-slave paradigm is used to implement

dynamic load balancing in pD-GLce-parfor. The flowchart of the parallel

algorithm is illustrated in Fig. 6.2. One lab is a master (denoted by M ). The
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Figure 6.2: Flowchart diagram for the pD-GLce-spmd algorithm.

master lab decides which hyper-rectangles will be sampled and subdivided,

and how these tasks will be distributed among all available slave labs.

Additionally, the master lab is responsible for stopping the algorithm. The

master lab also performs load balancing by distributing the selected

hyper-rectangles to the rest of the slave labs. When the slave labs
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Wi, i = 1, . . . , $ − 1 receive tasks from the master lab, each of them

performs the Sampling and Subdivision steps sequentially, and then finds a

local set of potential optimal hyper-rectangles and sends a local data for the

further global Selection step back to the master lab and becomes idle until

further instructions will be received. If any of the termination conditions are

satisfied, all slave labs receive the notification that the master lab has become

inactive, and the slave labs will terminate themselves without further

messaging.

In order to preserve determinism, each iteration must be done in a

sequence. Moreover, many calculations per iteration must be done

sequentially and some of them only by one lab. This situation causes parallel

overhead by keeping other computational resources to stand idle. Sequential

and parallel parts of pD-GLce-parfor are separated into blocks (see

flowchart diagram for the pD-GLce-parfor algorithm in Fig. 6.2). The

sequential section is performed only by the master lab, which organizes every

iteration by making decisions and initial calculations such as the

normalization of the domain D, and the first evaluation of the objective

function. The master lab runs the identification of potentially optimal

hyper-rectangles and creates tasks for all the labs. The new tasks are

distributed to all labs, and every lab evaluates the tasks in their own set. This

approach problem is that differences in evaluation times can cause some labs

to finish their tasks early and become idle, while other labs continue to work

on their assignments. For better load balancing, the master lab gives

instructions to the slave labs who have an excess of tasks to share them with

those who have the deficit. Shared data includes all relevant information

regarding certain hyper-rectangles, which must be subdivided into the current

iteration. The total amount of data transferred to and from all labs is shown in

Fig. 6.1 right side. After the Sampling and Subdivision steps, shared data

with all new data received after trisection is stored inside the new lab’s

memory blocks. Each lab finds its own local set of the potential optimal

hyper-rectangles. The master lab gathers all of the local sets from the other

slave labs and finds the global set (which is used in the global Selection

step), updates the information, and checks the stopping conditions.

The pseudocode inAlgorithm 6, shows the control mechanism between the
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Algorithm 6: Pseudo code of the pD-GLce-spmd algorithm

input : P , εpe, εϕ, FEmax, Kmax,$ ; // $ is the total number of labs
output: fmin, xmin, pe, k, fe;

1 spmd {$} // creates parallel pool and uses all $ labs
2 ifM then // if labindex = 1
3 M receives parameters (Problem P ,D, and stopping conditions εpe, FEmax, Kmax);

4 Perform Initialization step ; // set tag = 1 if stop, otherwise 0

5 labSend ({P,D},Wi, tag) ; // sends P, D, and tag to Wi, ∀i
6 else // if labindex 6= 1
7 [{P, D},M , tag] = labReceive ; // receives P, D, ang tag from M

8 if tag == 0 then // if stopping condition is not met
9 labSend (∅,M ) ; // sends a handshaking message to M

10 end

11 end

12 while pe > εpe and fe < FEmax and k < Kmax do // pe defined in Eq. (3.7)
13 ifM then // if labindex = 1
14 [Ŝi,Wi] = labReceive ; // receives information from Wi, ∀i
15 if any of stopping condition is met then

16 tag = 1;

17 labSend (∅,Wi, tag) ; // terminate slave labs
output: fmin, xmin, pe, k, fe;

18 exit;

19 else

20 Perform global Selection step and find POH set S ;
21 Split S among all labs equally Sequal ; // finds # of POH, ∀i
22 Find index sets Spoh = S ∩ Ŝ ; // locate S elements, ∀i
23 labSend (Wi, {Sequal, Spoh}, tag) ; // tell Wi, ∀i, which POH to

process
24 G.shared = Distributor (Sequal, Spoh, Ŝ) ; // distribute

workload, Algorithm 7
25 labBarrier ; // block execution until all labs reach this

point
26 Perform Sampling and Division steps and store information locally;

27 Perform the local Selection step and find the local POH set Ŝ1 ;
28 end

29 else // if labindex 6= 1
30 [{Sequal, Spoh},M , tag] = labReceive ; // receive instructions from

M

31 if tag == 0 then

32 S.shared = Distributor (Sequal, Spoh, Ŝi) ; // distribute
workload,Algorithm 7

33 labBarrier ; // wait tilll all labs reach this point
34 Perform Sampling and Division steps, store information locally;

35 Perform the local Selection step and find POH set Ŝi on theWi memory ;

36 labSend (Si,M ) ; // send local POH set data to M

37 else

38 exit;

39 end

40 end

41 end

42 end

43 return fmin, x
k
min

, pe, k, fe;
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Algorithm 7:Workload distribution among the labs in the pD-GLce-

spmd algorithm

1 function Distributor (Sequal, Spoh, Ŝi)
2 S.shared = ∅ ; // receive information from other labs

3 if Sequali < card{Spohi } then // if lab has an excess of potential optimal
hyper-rectangles

4 ξ = card{Spohi } − Sequali ; // find an excessive number ξ of potential
optimal hyper-rectangles

5 S.excess = {sj : sj ∈ Ŝi, j ∈ Spohi , j = 1, . . . , η} ; // slice excessive
potential optimal hyper-rectangles from local memory

6 Using Sequal and Spoh find lab index exc, which has the largest deficit of potential

optimal hyper-rectangles;

7 labSend (S.excess,Wexc) ; // share excessive potential optimal
hyper-rectangles

8 else if Sequali > card{Spohi } then // if the lab has an deficit of potential
optimal hyper-rectangles

9 Using Sequal and Spoh find sets of lab indexes def and exc, which has excess and

deficit of potential optimal hyper-rectangles ;

10 Sort exc in descending order ;

11 if exc(i) == max(exc) then // if the lab has largest deficit of
potential optimal hyper-rectangles

12 [S.excess,Wdef ] = labReceive ; // wait untill other lab(s) share
potential optimal hyper-rectangles

13 Take the needed amount of information form S.shared = S.excess ∩ exc(i) ;

14 if card{exc} ∼ 1 then // is there any more labs with the
deficit?

15 S.excess = S.excess− exc(i) ;

16 labSend (S.excess,Wexc(2)) ; // share excessive potential
optimal hyper-rectangles

17 end

18 else

19 for j = 1 : card{exc} − 1

20 [S.excess,Wexc(j)] = labReceive ; // wait untill other lab(s)
share potential optimal hyper-rectangles

21 Take the needed amount of information form

S.shared = S.excess ∩ exc(i) ;

22 if card{exc} − 1 < j then

23 S.excess = S.excess− exc(i) ;

24 labSend (S.excess,Wexc(j+1)) ; // share excessive
potential optimal hyper-rectangles

25 end

26 end

27 end

28 end

29 end

30 Return S.shared
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master labM and the slave labsWi, i = 1, . . . , $−1, whileAlgorithm 7 shows

how the workload is dynamically distributed among all the labs. In order to

preserve the determinism, each iteration must be done in a sequence. The pD-

GLce-spmd is a single start algorithm, and only the master lab M performs

the Initialization step. Only optimization problems and the domain D are

shared with the slave labs Wi. The stopping condition is also controlled only

by the master labM , which is based on the required tolerance εpe, the maximal

number of function evaluations FEmax and the maximal number of iterations

Kmax. Whenever the master lab detects that any of stopping conditions are met,

it terminates allWi by sending a message to them and returns the best objective

function value (fmin), the point (xmin), and performance metrics (pe, k, fe).

Before each iteration, M collects local sets of the potential optimal

hyper-rectangles from every slave lab Wi, i = 1, . . . , $ − 1 including itself.

M combines the results from all local sets, and finds the global set and

performs the global Selection step. The master lab splits the whole set of

potential optimal hyper-rectangles equally among all $ − 1 slave labs and

itself, with the priority that potential optimal hyper-rectangles stored inside

any Wi or M remain there and will be subdivided first. All labs

Wexc, exc ∈ {1, . . . , $ − 1}, which have an excess of potential optimal

hyper-rectangles, share them with those that have the deficit

Wdef , def ∈ {1, . . . , $ − 1}. When allWi collect necessary instructions and

data, they perform the Sampling and Subdivision steps simultaneously. All

information obtained during the last two steps is stored by the labs. Finally,

allWi find their own local potential optimal hyper-rectangles sets and send it

toM .

6.2.3 Parallel pD-ACe-spmd algorithm

An aggressive selection strategy [1] is oriented to generating more

hyper-rectangles, while significantly sacrificing the performance of the

sequential DIRECT-type algorithm (see Section 6.3). To achieve this, the

approach selects and divides at least one hyper-rectangle from every existing

different measure. The incorporation of such a selection strategy within a

parallel algorithm may help to balance the workload. The pD-ACe-spmd
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algorithm uses the same parallel scheme presented in Fig. 6.2, but with the

aggressive selection, instead of two-step selection procedure used in

pD-GLce-spmd. The pD-ACe-spmd algorithm selects potential optimal

hyper-rectangles using only values of the objective and auxiliary function for

each size of hyper-rectangles, i.e., the best hyper-rectangle for each size is

selected. This way, the pD-ACe-spmd algorithm performs the same amount

of work as in the version proposed in [35]. By the same analogy, instead of

starting from a single hyper-rectangle (as in pD-GLce-parfor), the

pD-ACe-spmd algorithm performs the initial partitioning of the search

domain D without evaluating the objective function and selecting potential

optimal hyper-rectangles until a number of hyper-rectangles becomes large

enough to distribute to all slave labs. Furthermore, identically to [34], to

reduce the memory requirement, a technique for restricting the number of

columns is used, and the maximal number of diameters was allowed to be

one thousand (as it was suggested in [18]).

6.3 Numerical investigation

Because of the DIRECT-type algorithms’ iterative nature, the parallelization

has not been widely investigated previously, and a comparison with the

existing versions is limited. A parallel DIRECT-type algorithm proposed and

extended in [34, 35, 36, 37, 38], looks promising for expensive global

optimization problems with large dimensionality (n = 150). However, due to

the usage of an aggressive selection scheme and additional step, which

generates extra function evaluation tasks for just keeping labs busy as much

as possible, such a strategy has obvious drawbacks from the sequential

optimization perspective. A massively parallel DIRECT-type algorithm

divides more sub-optimal regions, therefore increases the number of function

evaluations, but significantly reduces the optimization efficiency of the

algorithm (see Table 6.1). Therefore such an approach requires a massively

parallel supercomputer when solving higher-dimensional

problems [18, 25, 34].
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Tested algorithms

First, two different implementations based on static and dynamic data

structures of DIRECT-GLce algorithms are investigated. Three different

parallel algorithms were investigated. Two of them are shared

(pD-GLce-parfor) and distributed (pD-GLce-spmd) parallel

implementations of the original DIRECT-GLce algorithm, and one is a

distributed parallel version for the Aggressive DIRECT counterpart

(pD-ACe-spmd).

Benchmark problems

The performance evaluation of the parallel DIRECT-type algorithms were

made using test problems from the DIRECTlib. First, the performance test

using box-constrained global optimization test problems is considered. Five

test problems(Ackley, Griewank, Michalewicz, Rosenbrock, Sphere) were

used with different dimensionality n = 10, 20, 30, 40, 50. Next, five

problems with general constraints (G02, G07, G16, G19), including one

practical problem (NASA speed reducer problem) are considered. The

experimental results were carried out on a multi-core computer with 8th

Generation Intel R CoreTM i7-8750H @ 2.20GHz Processor, which has 6

cores and 16 GB of RAM and hyperthreading disabled. Performance analysis

was carried out using physical cores and enabled hyper-threading.

Stopping criteria

Since all the global minima f∗ of the all test problems are known, the parallel

algorithms stopped when a percent error pe Eq. (3.7) smaller than the tolerance

value εpe = 1 or the execution time exceeds 104 seconds.

Evaluation of the performance of the parallel algorithms

To evaluate parallel algorithms’ efficiency, the speed-up ratio is used, which

shows how much faster the algorithm runs in parallel. If T1 is the time of the

best sequential algorithm and the parallel algorithm on$ processors takes T$
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time, then the speed-up ratio is given by the formula:

S($) =
T1

T$
. (6.1)

Another metric to measure the performance of a parallel algorithm is the

efficiency of parallelization. The efficiency is defined as the ratio of speed-up

and the number of processors. The efficiency ratio measures how much

available processing power is being used and it is defined as

F ($) =
S

$
. (6.2)

6.3.1 Group 1: DIRECT-GLce performance with static

and dynamic data structures

The DIRECT-GLce algorithm was implemented using both static and dynamic

data structures. Static Data Structures are employed in S-DIRECT-GLce,

whereas dynamic Data Structures are used in D-DIRECT-GLce.

S-DIRECT-GLce is based on the improved Finkel’s implementation [18].

Both implementations are stopped when the number of function evaluations

exceeds 106. The test problem G19 with n = 15 and 5 non-linear inequality

constraint functions from DIRECTlib is used in the experimental comparison.

In Fig. 6.3 the comparison of time cost of different versions is illustrated. As

it was expected, the implementation based on dynamic data structures

(D-DIRECT-GLce) outperforms implementation (S-DIRECT-GLce) with static

data structures. After the termination, D-DIRECT-GLce version requires 37%

less total execution time compared to S-DIRECT-GLce version, and the

difference grows with the increase of the number of function evaluations.

The main advantage of D-DIRECT-GLce is that the algorithm working only

with the least values from each column as shown in Fig. 2.3, while

S-DIRECT-GLce implementation makes unnecessary recalculations, and

always works with all data received at previous Sampling and Division

steps. The evaluation of objective (and auxiliary) functions depend on the

complexity of test problems. For the current G19 problem using

D-DIRECT-GLce selection of potentially optimal hyper-rectangles (Selection

step) costs 26% of the total time in D-DIRECT-GLce, which is about 36
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Figure 6.3: Geometric interpretation of running time (s) of the two different

DIRECT-GLce algorithm implementations: with static data structures (left)

[18] and with dynamic data structures (right) solving the G19 test problem

seconds, while it takes around 7 times more – around 265 seconds using

S-DIRECT-GLce. Sampling step takes about 85 seconds (which corresponds

to 54% of the total execution time) in D-DIRECT-GLce and about 87 seconds

(which corresponds to only 21% of the total time) using S-DIRECT-GLce.

The Subdivision step, in S-DIRECT-GLce version works requires

approximately 15% (∼ 62 seconds) of the total execution time, while

D-DIRECT-GLce handles the step ∼ 2 times more efficiently and requires

only 20%(∼ 31 seconds) of time.

6.3.2 Group 2: performance test on box-constrained

optimization problems

Next, the performance test using box-constrained global optimization test

problems is considered. First, the best sequential algorithm among DIRECT,

DIRECT-GL, and Aggressive DIRECT is determined. Table 6.1 shows in

bold the best sequential algorithm time T1, which will be used to measure the

parallel performance. The introduced DIRECT-GL algorithm significantly

outperforms DIRECT and Aggressive DIRECT in most of the cases.

Therefore, for further experiments, the best sequential algorithm time T1
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(given in bold) is used.

Table 6.1: Results of the DIRECT, DIRECT-GL and Aggressive DIRECT

algorithms solving four box-constrained global optimization test problems

from the DIRECTlib

Label n
DIRECT DIRECT-GL Aggressive DIRECT

T1(s) feval k T1(s) feval k T1(s) feval k

A
ck
le
y

10 104 N/A N/A 2.09 43, 061 77 10.04 317, 905 76

20 104 N/A N/A 13.85 331, 347 153 83.93 2, 700, 473 152

30 104 N/A N/A 65.59 1, 091, 065 228 296.35 6, 604, 939 227

40 104 N/A N/A 301.68 2, 518, 409 304 856.85 12, 288, 961 303

50 104 N/A N/A 895.96 4, 817, 507 380 3, 357.73 19, 599, 909 379

G
ri
ew

a
n
k

10 0.79 3, 107 36 1.25 24, 719 36 0.86 29, 575 23

20 3.07 14, 591 60 5.42 152, 279 60 11.64 393, 415 43

30 9.39 35, 363 84 9.38 260, 761 64 44.77 1, 460, 359 63

40 17.94 47, 573 87 25.73 604, 797 87 111.86 3, 113, 503 86

50 104 N/A N/A 44.67 836, 027 107 238.96 5, 107, 193 106

R
o
se
n
b
ro
ck

10 7.75 23, 547 119 1.19 37, 593 55 2.09 67, 867 35

20 104 N/A N/A 7.03 199, 141 88 26.36 913, 793 68

30 104 N/A N/A 28.07 617, 991 128 90.89 2, 904, 299 109

40 104 N/A N/A 96.14 1, 417, 105 169 256.32 5, 780, 293 149

50 104 N/A N/A 298.99 2, 648, 993 208 604.18 9, 516, 989 189

S
p
h
er
e

10 7.75 16, 481 29 0.35 10, 495 29 1.08 34, 857 25

20 104 N/A N/A 2.45 83, 301 60 17.83 637, 283 55

30 104 N/A N/A 10.44 268, 189 90 70.18 2, 182, 329 86

40 104 N/A N/A 31.14 616, 831 120 166.21 4, 383, 403 116

50 104 N/A N/A 95.33 1, 170, 819 150 376.79 7, 286, 753 147

N/A – Solution point was not reached.

The amount of work is mainly determined by the number of potential

optimal hyper-rectangles in each iteration. In order to have a good parallel

efficiency, this number has to be large enough to feed the process units.

Figs. 2.7 and 3.2 show the number of potential optimal hyper-rectangles for

aggressive DIRECT and DIRECT-GL algorithms for the Rosenbrock test

problem. All test problems used in comparison Table 6.1 are cheap, and the

average cost of function evaluation is approximately equal to 10−6 seconds.

The number of hyper-rectangle diameters increases equally in each iteration

of pD-ACe-spmd. However, the number of potential optimal hyper-rectangles
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selected by DIRECT-GL per iteration has significant variance, and massive

amounts of evaluations are not assured, even in the last iterations.
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Figure 6.4: Parallel speed-up (left) and efficiency (right) on the Sphere

problem and dimensions n

Figure 6.4 plots the parallel speed-up and efficiency of pD-GLce-parfor,

pD-GLce-spmd, and pD-ACe-spmd on the Sphere test problem with different

dimensions n = 10, 20, 30, 40, 50. pD-GLce-spmd achieved ideal efficiency

for small dimension instances (n = 10, 20) using up to two labs. These

instances of the problem do not exhibit enough work, causing a low increase

in the speed-up when more labs are used. The parallel performance of

pD-GLce-spmd improves as n increases, which is close to linear speed-up

with five labs for n = 50, even though function evaluations are cheap. It is

worth noting that the operating system and other system tasks are running in

one out of the PC’s six cores.

The pD-GLce-parfor algorithm achieved an almost flat speed-up, just

above 1, due to the data exchange cost, no matter how many cores are used.

Meanwhile, the efficiency of pD-ACe-spmd is even worse because it always

lasts more time than the best sequential algorithm.

Fig. 6.5, shows the performance results of all three parallel implementations

solving problems from DIRECTlib with dimension n = 50. Again, pD-GLce-

parfor suffers from data movement and pD-ACe-spmd from oversampling,
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Figure 6.5: Parallel speed-up (left) and efficiency (right) on four box-

constrained optimization test problems. n = 50

but results improve for pD-ACe-spmd. The pD-GLce-spmd shows an excellent

parallel efficiency using two, three, and four labs, but it starts to decline using

more labs. The pD-GLce-spmd is a single start, and the different number of

hyper-rectangles’ size increases slowly, which results in a small number of

evaluations per iteration.

Fig. 6.6 shows how the efficiency of pD-GLce-spmd increases with the

first 100 iterations on Michalewicz test problem with n = 25 and Tdelay = 0.

In the initial 10 iterations, there is not enough work for all available workers

(labs), and the parallel overhead dominates in the early stages of

pD-GLce-spmd. However, the results are improving when the number of

iterations is increasing, as the algorithm produces more different box

diameters, and as a result, more function evaluation tasks. Moreover, when a

larger number of labs is used a slower start of the algorithm is seen. The

parallel efficiency has a significant variance as the number of iterations

grows, which can be explained as the result of different sizes of the potential

optimal hyper-rectangles set using DIRECT-GL selection scheme. Even in the

late iterations, such a scheme can leave many labs to stand idle by producing

only a few potential optimal hyper-rectangles per iteration. Nevertheless, in

long iterative progress, the total efficiency ratio of the algorithm grows, and
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Figure 6.6: Efficiency of the pD-GLce-spmd algorithm on the Michalewicz

test problem in the first 50 iterations. n=25

approaches close to the ideal parallelization.

One of the critical parameters to get a good parallel performance is the cost

of the objective function. In [34, 35, 36, 37, 38] the authors add a Tdelay =

10−1 (in seconds) to increase the evaluation cost. Fig. 6.7 shows that when the

evaluation cost of the Sphere test problem with n = 10 is increased (Tdelay =

10−4, 10−3, 10−2, 10−1), the parallel efficiency increases as well, for both

pD-GLce-parfor and pD-GLce-spmd algorithms. The parallel performance

is almost ideal for Tdelay = 10−1. The efficiency of pD-ACe-spmd is entirely

different, and such a cost of evaluations does not give tangible benefits.

6.3.3 Group 3: performance test on

generally-constrained optimization problems

Unlike the massively parallel DIRECT-type algorithm from [35],

DIRECT-GLce presented in this thesis can handle general constraints natively.

The constraint handling technique raises the cost of the algorithm with an

extra calculations and constraint functions evaluations. These additional

computations may increase the efficiency of parallel DIRECT-type algorithms.
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Figure 6.7: Parallel efficiency on the Sphere test problem with n = 10 and

different values of Tdelay

Next, five problems with general constraints, including one practical

problem are considered. The sequential DIRECT-GLce algorithm requires less

than a second to solve low dimensional test problems (n ≤ 10). Therefore,

the efficiency of its parallel versions on such problems cannot be expected to

be good. Thus, the four most challenging test problems from [109], and the

practical NASA speed reducer design problem from [88] are selected. The

cost of their objective function evaluation is similar to previously used test

problems, which is approximately equal to 10−6s., while the constraint

functions are from 10 to 100 times more expensive.

Table 6.2 shows the results of the sequential DIRECT-L1 [18],

DIRECT-GLce and Aggressive DIRECT-Ce algorithms, while Fig. 6.8

shows the performance of all three parallel versions solving the selected five

problems. Although the number of function evaluations per iteration is

significantly bigger in pD-ACe-spmd (see the results of sequential

Aggressive DIRECT-Ce in Table 6.2), its oversampling results in the worst

parallel performance. Again, pD-GLce-parfor suffer from data movement

when the number of labs is greater than two and pD-GLce-spmd shows a

good efficiency, which decreases as the number of labs increases.
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Table 6.2: Results of the DIRECT-L1, DIRECT-GLce and Aggressive

DIRECT-Ce algorithms on test problems with constraints

Label n
DIRECT-L1 DIRECT-GLce Aggressive DIRECT-Ce

T1(s) feval k T1(s) feval k T1(s) feval k

G02 20 104 N/A N/A 486.36 1, 898, 413 817 104 N/A N/A

G07 10 104 N/A N/A 6.69 37, 661 79 56.26 289, 687 59

G16 5 104 N/A N/A 8.22 13, 915 77 49.17 86, 603 58

G19 15 104 N/A N/A 1725.23 4, 581, 613 1509 104 N/A N/A

NASA 7 104 N/A N/A 4.37 25, 879 103 9.46 61, 185 35

N/A – Solution point was not reached.

Finally, let us note that speed-up is not always monotonically increasing

using more workers/labs (see Figs. 6.7 and 6.8). The reason is that the

number of selected potentially optimal hyper-rectangles in each iteration is

unpredictable. For example, in solving complex multi-modal optimization

problems, it may happen that in a late iteration, the best value of the objective

function will be found in the largest hyper-rectangle, which will result in a

minimal number of selected hyper-rectangles, and a large parallel overhead in

at least a few subsequent iterations will be experienced. Furthermore, such

processes can repeat many times when dealing with strongly multi-modal

problems.

6.4 Conclusions

In this chapter, the first three parallel DIRECT-type algorithms were

introduced for generally constrained global optimization problems. The

experiments reveal that the aggressive selection of potential optimal

hyper-rectangles results in a weak parallel performance on the set of test

problems used here. This is mainly because pD-ACe-spmd wastes function

evaluations on suboptimal regions, and optimization efficiency (based on the

number of function evaluations) is significantly worse than the one achieved

with the selection used in pD-GLce-parfor and pD-GLce-spmd.

The version pD-GLce-spmd, based on MatLab spmd, is the most efficient

and significantly outperforms pD-GLce-parfor, based on parfor-loops, due
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Figure 6.8: Parallel speed-up (left) and efficiency (right) on the NASA speed

reducer design problem (see Appendix A), and test problems

to the dynamic load balancing of the former and a larger cost of the data

movement in the latter. In a general context, the MatLab parfor-loops

approach only looks reasonable when expensive global optimization

problems are solved.

Finally, all introduced parallel versions preserve the determinism, while

previous attempts to parallelize DIRECT-type algorithms lose it.
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parallelization, Applied Mathematics and Computation. ISSN:

0096-3003. 2021, vol. 390, p. 1-17. DOI: 10.1016/j.amc.2020.125596

4. Stripinis, L. and Paulavičius, R. A modified DIRECT-GL algorithm for

global optimization with hidden constraints, Optimization letters.

(2020) 1–15 submitted.

GENERAL CONCLUSIONS

1. First, a new selection scheme for the selection of potentially optimal

hyper-rectangles based algorithm DIRECT-GL has been developed.

Using the proposed approach two well-known weaknesses of

DIRECT-type algorithms were effectively addressed. Extensive

experimental studies have shown the potential of the developed

DIRECT-GL algorithm compared to other existing DIRECT-type

algorithms:

1.1 Overall, DIRECT-GL requires around 59% less function evaluations

to reach εpe = 10−2 precision from the global solution compared
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with the second best BIRECT algorithm.

1.2 Where a more accurate solution is needed (εpe = 10−8), the

developed algorithm in the overall required ∼ 72% less function

evaluations compared with the second best PLOR algorithm.

1.3 Overall, DIRECT-GL solved ∼ 32% more box-constrained test

problems compared with the second-best algorithm, DIRECT

Version 4.0, in this class.

2. Next, a new auxiliary function-based algorithm DIRECT-GLce has been

developed to address global optimization problems with general

constraints in the DIRECT-framework. For the considered test and

practical engineering problems, DIRECT-GLce performance is for all

problems among the best ones, and on average, is the best one among

all state-of-the-art DIRECT-type algorithms:

2.1 Developed DIRECT-GLc algorithm has the most wins, and solved

∼ 55% of the problems with the highest efficiency.

2.2 Overall, DIRECT-GLce solved ∼ 43% more test problems

compared with the second-best algorithm DIRECT-L1.

2.3 Hybridized DIRECT-GLce-min is the most effective algorithm

among all pure and hybridized DIRECT-type methods, and

overall, solved the largest number of tested problems (85/88),

out of them (62/88) with the highest efficiency.

3. A new auxiliary function-based algorithm DIRECT-GLh has been

developed to address global optimization problems with hidden

constraints. Experimental studies revealed the potential of developed

algorithm compared with all existing DIRECT-type algorithms in this

class:

3.1 Developed DIRECT-GLh algorithm has the most wins, and solved

∼ 52% of the test problems with the lowest number of function

evaluations, among all other DIRECT-type approaches.

3.2 Overall, DIRECT-GLh required ∼ 42% less function evaluations

compared with the second best DIRECT-NAS algorithm.

4. Created dynamic data structures for a better data storage and

organization, increased the developed algorithms’ speed by

approximately ∼ 62%.
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5. The proposed pD-GLce-spmd is the first deterministic parallel DIRECT-

type algorithm for general global optimization problems, and achieves a

good parallel efficiency on a multi-core infrastructure.
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Appendix A

Amathematical formulations of

engineering problems

Tension/compression spring design problem

The design variables are the number of the wire diameter x1, the winding

diameter x2, and active coils of the spring x3. The objective function and the

mechanical constraints are given by:

min f(x) = x21x2(x3 + 2)

s.t. g1(x) = 1− x32x3
71875x41

≤ 0,

g2(x) =
x2(4x2 − x1)

12566x31(x2 − x1)
+

2.46

12566x21
− 1 ≤ 0,

g3(x) = 1− 140.54x1
x3x22

≤ 0,

g4(x) =
x1 + x2
1.5

− 1 ≤ 0

where 0.05 ≤ x1 ≤ 0.2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15. The best known

solution x∗ = (0.05170517, 0.35710042, 11.28120672), where

f(x∗) = 0.01267931. Two of the constraint functions are active (g1 and g2).

150



Three-bar truss design problem

This problem has two design variables and three constraints. The optimization

problem formulated as follows:

min f(x) = L× (2
√
2x1 + x2)

s.t. g1(x) =

√
2x1 + x2√

2x21 + 2x1x2
P − 2 ≤ 0,

g2(x) =
x2√

2x21 + 2x1x2
P − 2 ≤ 0,

g3(x) =
1

x1 +
√
2x2

P − 2 ≤ 0

where 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, L = 100, P = 2KN/cm2. The best known

solution x∗ = (0.78867512, 0.40824832), where f(x∗) = 263.89584535. One

of the constraint function is active (g1).

NASA speed reducer design problem

The design variables are the face width x1, the module of teeth x2, the number

of teeth on the pinion x3, the length of the first shaft between the bearings x4,

the distance of the second shaft between the bearings x5, the diameter of the

first shaft x6, and, finally, the width of the second shaft x7. The optimization

problem is formulated as follows:
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min f(x) = 0.7854x1x
2
2(3.3333x

2
3 + 14.9334x3 − 43.0934)

− 1.508x1(x
2
6 + x27) + 7.4777(x36 + x37)

+ 0.7854(x4x
2
6 + x5x

2
7)

s.t. g1(x) =
27

x1x22x3
− 1 ≤ 0, g2(x) =

397.5

x1x22x
2
3

− 1 ≤ 0,

g3(x) =
1.93x34
x2x3x46

− 1 ≤ 0, g4(x) =
1.93x35
x2x3x47

− 1 ≤ 0,

g5(x) =
((745x4

x2x3
)2 + 16.9× 106)0.5

110x36
− 1 ≤ 0,

g6(x) =
((745x5

x2x3
)2 + 157.5× 106)0.5

85x37
− 1 ≤ 0,

g7(x) =
x2x3
40

− 1 ≤ 0, g8(x) =
5x2
x1

− 1 ≤ 0,

g9(x) =
x1
12x2

− 1 ≤ 0, g10(x) =
1.5x6 + 1.9

x4
− 1 ≤ 0,

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0

where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤
8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5 ≤ x7 ≤ 5.5. The best known

solution x∗ = (3.5, 0.7, 17, 7.3, 7.8, 3.35021468, 5.28668323), where f(x∗) =

2996.34817613. Three constraints are active (g5, g6 and g8).

Pressure vessel design problem

There are four design variables (in inches): the thickness of the pressure vessel

x1, the thickness of the head x2, the inner radius of the vessel x3, and the

length of the cylindrical component x4. The optimization problem formulated
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as follows:

min f(x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x21x4

+ 19.84x21x3

s.t. g1(x) = −x1 + 0.0193x3 ≤ 0,

g2(x) = −x2 + 0.00954x3 ≤ 0,

g3(x) = −πx23x4 −
4

3
πx33 + 1296000 ≤ 0,

g4(x) = x4 − 240 ≤ 0, g5(x) = 1.1− x1 ≤ 0,

g6(x) = 0.6− x2 ≤ 0

where 1 ≤ x1 ≤ 1.375, 0.625 ≤ x2 ≤ 1, 25 ≤ x3 ≤ 150, 25 ≤ x4 ≤ 240.

The best known solution x∗ = (1.1, 0.625, 56.99481866, 51.00125165), where

f(x∗) = 7163.73957163. Three constraints are active (g1, g3 and g5).

Welded beam design problem

The problem is to design a welded beam for minimum cost, subject to some

constraints [62, 63]. The objective is to find the minimum fabrication cost.

Considerating four design variables and constraints of shear stress τ , bending

stress in the beam σ, buckling load on the bar Pc, and end deflection on the

beam δ. The optimization model is summarized in the next equation:

min f(x) = 1.10471x21x2 + 0.04811x3x4(14 + x2)

s.t. g1(x) = τ(x)− 13600 ≤ 0,

g2(x) = σ(x)− 3× 104 ≤ 0,

g3(x) = x1 − x4 ≤ 0,

g4(x) = 0.10471x21 + 0.04811x3x4(14 + x2)− 5 ≤ 0,

g5(x) = δ(x)− 0.25 ≤ 0,

g6(x) = P − Pc(x) ≤ 0,

g7(x) = 0.125− x1 ≤ 0,
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with:

τ(x) =
√

(τ1)2 + (τ1)(τ2)x2/R+ (τ2)2,

τ1 =
P√
2x1x"

, τ2 =
MR

J
,M = PL+

x2
2
,

R =

√
x22)

4
+ (

x1 + x3
2

)2, σ(x) =
6PL

x4x23
,

J = 2(
√
2x1x2(

x22
12

+
1

4
(x1x3)

2)), δ(x) =
4PL3

Ex4x33
,

Pc =
4.013E

√
x23x4"6/36

L2
(1− x3

2L

√
E

4G
),

P = 6000, L = 14, E = 3× 107, G = 12× 106,

where 0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x3 ≤ 2. The best

known solution x∗ = (0.20572551, 3.47062057, 9.03666456, 0.20573141),

where f(x∗) = 1.72488430. One of the constraint function is active (g3).
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