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SUTRUMPINIMAI

I grupé — pacientai, kuriems diagnozuota gerybiné vaiky epilepsija,
pvz., Rolando epilepsija.

IT grupé — pacientai, kuriems diagnozuota jvairiy struktiriniy smegeny
pazeidimu: strukturiné zidininé epilepsija, cerebrinis paralyzius, smegenuy
zieves displazija, gliozé ir kt.

ANN - (angl. Artificial neural network) dirbtinis neuroninis tinklas.
CNN - (angl. Convolutional neural network) konvoliucinis neuroninis
tinklas.

CNS — (angl. Central nervous system) centriné nervy sistema.

EEG - elektroencefalograma.

FNR - (angl. Fualse negative rate) neteisingai klasifikatoriaus priskirty
IT grupei pavyzdziu dalis (II tipo klaidos).

FPR — (angl. False positive rate) neteisingai klasifikatoriaus priskirty
I grupei pavyzdziu dalis (I tipo klaidos).

Jautrumas — (angl. Sensitivity) algoritmu nustatyty teigiamuy pavyzdziy
santykis su visais teigiamais pavyzdziais.

LDA - (angl. Linear discriminant analysis) tiesiné diskriminantiné
analizé.

MLP - (angl. Multilayer perceptron) dirbtinis neuroninis tinklas,
pagristas daugiasluoksniu perceptronu.

Skaiciavimy efektyvumas (k.rs) — skaiciavimy dalis, iSreiksSta pro-
centais, vykdoma lygiagreciai, atlickant daugiagijus skaiciavimus.
Spartinimas (T) — (angl. Speedup) reliatyvus skaic¢iavimu pagreitéjimas,
kartais — tarp keliy tos pacios sistemos konfiguraciju (Siame darbe —
atliekant skaic¢iavimus su didesniu giju skaic¢iumi).

SpecifiSkumas — (angl. Specificity) algoritmu nustatytu teisingai
teigiamuy pavyzdziyu dalis i$ algoritmo rezultaty visumos.

SVM - (angl. Support vector machine) atraminiy vektoriy masina.
TNR - (angl. True negative rate) teisingai klasifikatoriaus priskirtu
IT grupei pavyzdziy dalis.



Klasifikuojamo duomens charakteristika — (angl. feature) skaitiné
ar kita reikSmeé, sudaranti dali klasifikuojamo duomens, pvz.: EEG piko
pakilimo kampas, EEG piko nusileidimo kampas.

MPI - (angl. Message passing interface) zinuc¢iy perdavimo protokolas,
naudojamas dalytis informacija tarp procesu paskirstytos atminties
platformose.

Persimokymas — (angl. Owerfitting) masiny mokymosi algoritmo
busena, kai algoritmas geba nustatyti mokymosi imties duomenuy triu-
ksma (ar kitas charakteristikas, mazai reikSmingas klasifikuojant), o ne
apibendrinti mokymosi imties duomenuy savybes.

TPR — (angl. True positive rate) teisingai klasifikatoriaus priskirtu
I grupei pavyzdziu dalis.

U — (angl. Voltage) elektriné jtampa, siame darbe matuojama mikro-
voltais (uV).



JVADAS

Signalai ir jvairtus ju apdorojimo bei analizés algoritmai yra kasdienio
gyvenimo dalis. Musy ziurimos nuotraukos (JPEG formatas), vaizdo
irasai (MPEG ir kiti formatai), girdima muzika ir garsai (MP3 ir kiti for-
matai) veikia greitosios Furjé transformacijos (angl. FFT) ir kitu signaly
apdorojimo algoritmuy pagrindu [54]. Ivairiais signaly analizés metodais
analizuojami finansiniy rinky poky¢iai [62]. Ne isimtis ir medicina: ¢ia
irasomi ir nagrinéjami tokie signalai, kaip elektrokardiogramos (ECG)
[21, 65, 74] ir Siame darbe nagringjamos elektroencefalogramos (EEG)
[20, 59, 63].

1875 m. Ricardas Katonas aprasé triusiy smegenu elektrini aktyvuma.
Pirmoji zmogaus EEG buvo jrasyta 1924 m. vokieciu psichiatro Hanso
Bergerio. Praéjus desimciai metuy atrasti epileptoforminiai EEG pikai
[17]. EEG tyrimai placiai taikomi ir Siandien, tiek Lietuvoje [55], tiek
uzsienyje [64].

EEG, kaip ir kiekvienas medicininis instrumentinis tyrimas, turi savy
privalumy ir trukumuy [64]. Pagrindinis EEG privalumas — didelé skyra
laiko atzvilgiu. Smegenu elektrinis aktyvumas dazniausiai fiksuojamas
256 Hz disk-retizacijos dazniu, nors atskirais atvejais Sis daznis gali skirtis.
Be to, EEG tyrimas yra neinvazinis, pacientas nepatiria jonizuojancio-
sios spinduliuotés, stipriu elektriniy ar magnetiniy lauky, kaip kity
medicininiy tyrimy atveju. EEG tyrimas yra tylus, nekelia tiriamajam
pasaliniy stimuly. Minétina ir tai, kad EEG tyrimo kaina yra mazesneé,
palyginti su dauguma kitu instrumentiniy galvos smegenuy tyrimo metodu
[10].

Pagrindinis EEG trukumas — maza erdviné skyra. Disertacijoje naudo-

jama tarptautiné 10-20 EEG sistema, kuria taikant irasomas smegenuy



1 pav. EEG tyrimo elektrodai ant paciento galvos [12] (autoriy teisiy
nesaugoma iliustracija i§ Wikimedia Commons [11])

elektrinis aktyvumas 21 kanale. Taigi turime 21 tasko erdvine skyra.
Be to, EEG tyrimas prastai atspindi smegenu veiklg gilesnése smegeny
dalyse, signalo ir triukSmo santykis yra mazesnis, palyginti su kitais

galimais tyrimais.

Atsizvelgiant i minétus privalumus ir trukumus, EEG tyrimas medicinoje
gali buti taikomas jvairiais tikslais [64]: strukturiniams smegeny pazei-
dimams, smegenu augliams, miego sutrikimams, epilepsijai ir kitiems
sutrikimams diagnozuoti ir ligos eigai sekti. Tam sukurta jvairiy EEG
analizés algoritmu: EEG piky paieskos [19, 24, 46, 72, 73], sveiky ir
serganciy zmoniy EEG klasifikavimo [8, 28], serganéiyju ir neserganciyju
alkoholizmu klasifikavimo [3, 44], epilepsijos priepuoliy aptikimo ir klasi-
fikavimo [66, 67] ir daugybeé kituy.

Siame darbe tiriamos vaiku (3-17 m. am#iaus), serganéiu gerybine
(rolandine) epilepsija (I grupé) ir turinéiy strukturiniy smegeny pazeidimu

(IT grupe), EEG. Nors abieju grupiu EEG pikai daznai skiriasi (skirtumai



matyti net ne medikui), esama atvejy, kai minétasias EEG sunku atskirti
(ar neimanoma ju atskirti) net patyrusiems neurologams. Sie sunkiai

atskiriami atvejai ir nagrinéjami disertacijoje.

TYRIMO OBJEKTAS

Disertacijos tyrimo objektas — vaiky (3—-17 m. amziaus), kuriems nusta-

tyta I arba II grupés diagnoze, EEG.

TIKSLAS IR UZDAVINIAI

Disertacijos tikslas — sukurti algoritmus, kurie automatiskai klasifikuoty
I ir IT grupiu EEG pagal diagnoze, gydytojams (neurologams) tiriant
sunkiai atpazistamus atvejus ir klasifikavimui naudojant tik EEG signalo
duomenis, ir verifikuoti Siuos algoritmus kompiuterinio modeliavimo

eksperimentais.

Tikslui pasiekti iskelti sie uzdaviniai:

e Pasirinkti ir optimizuoti EEG piky paieskos algoritma.

e Nustatyti EEG piko geometrines (ir kitas) charakteristikas, tinka-

mas klasifikuoti pagal diagnoze.

e Pasirinkti masiny mokymusi pagristus klasifikavimo metodus ir
pritaikyti juos EEG klasifikuoti pagal diagnoze, atlikti pasirinkima

pagrindziancius eksperimentus.

e Sujungti pasirinktus algoritmus i EEG klasifikavimo pagal diagno-
ze algoritma, eksperimentiskai palyginti jivairiy algoritmo versiju

veikima.
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e Jgyvendinti (suprogramuoti) pasiulytus algoritmus.

o Atlikti eksperimentus, reikalingus pasitlytiems algoritmams ir ki-

tiems gautiems rezultatams patvirtinti.

TYRIMO METODAI IR PRIEMONES

Darbe aprasyti EEG klasifikavimo ir pagalbiniai metodai bei algoritmai
isSbandyti ir igyvendinti Python programavimo kalba (rengiant disertacija,
pradzioje naudota 2.7.10 versija, véliau pereita prie Python 3.5 ir 3.6
versijy, véliausia naudota 3.6.8 versija). Naudotasi Siomis programavi-
mo kalbos bibliotekomis: NumPy (kai kuriy skai¢iavimy paspartinimas)
[47], SciPy (matematinés morfologijos ir kiti metodai) [69], MatPlot-
Lib (grafiky braizymas) [22], Scikit-learn (masiny mokymosi metoduy
igyvendinimas) [48], Tensorflow (konvoliucinio neuroninio tinklo (CNN)
igyvendinimas) [1], Tensorflow-GPU (CNN skai¢iavimy paspartinimas
naudojant kompiuterio vaizdo plokste (GPU)), EegTools ir PyFEdfLib
(EDF ir EDF+ faily nuskaitymas), mpi/py (MPI protokolo palaikymas
Python), GeneticAlgorithmPython (genetinio algoritmo jgyvendinimas)
ir kt.

Dauguma skaic¢iavimuy atlikti doktoranto asmeniniu kompiuteriu. Techni-
niai kompiuterio duomenys: Intel i7-6700K centrinis procesorius (4,0 GHz,
4 branduoliai, 8 skai¢iavimo gijos), Asus Z170 Deluze pagrindiné plo-
kste, 32 GB DDR4 RAM (4 vnt. 8 GB talpos Corsair Vengence LPX
2400 MHz, 13-15-15-28), Asus Striz GeForce GTX 980 Ti OC vaizdo
ploksteé (2 816 CUDA branduoliy, 6 GB GDDR5 atminties), Noctua NH-
D15 CPU ausintuvas, 5 vnt. Noctua NF-A1/-PWM korpuso auSintuvuy.
Kompiuteryje naudotos Windows 10 ir Linuz Ubuntu 14.04 LTS (véliau
— Linuzx Ubuntu 18.04 LTS) operacinés sistemos (visos — 64-bit).
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Dalis skai¢iavimy atlikta VU MIF Paskirstyty skai¢iavimuy tinkle (PST)*
(1 920 procesoriy branduoliai, 3,6 TB operatyviosios atminties, 620 TB
duomenuy saugykla, skai¢iavimy sparta apie 25 TFLOP/s).

MOKSLINIS REZULTATU NAUJUMAS

e Sukurtas triju zingsniy algoritmas, skirtas klasifikuoti I ir IT grupiu
pacientuy EEG pagal diagnoze. Tai pirmas mokslinéje literaturoje

aprasytas §i uzdavini sprendziantis algoritmas.

e Genetiniu algoritmu optimizuoti EEG piky paieskos algoritmo,
pagristo matematinés morfologijos filtru, parametrai. Tai pirmas
mokslinéje literaturoje aprasytas minéto algoritmo parametry opti-

mizavimas genetiniu algoritmu.

o [stirti keli masiny mokymosi algoritmy EEG piky duomeny cha-
rakteringu parametry isskyrimo budai antrame EEG klasifikavimo

pagal diagnoze algoritmo zZingsnyje.

o Istirta keliu klasifikatoriy, pagristu masiny mokymusi, veikla trecia-
me EEG klasifikavimo pagal diagnoze algoritmo zingsnyje, maksi-

maliai padidinanti klasifikavimo tikslumg ir kitas svarbias metrikas.

PRAKTINE REZULTATU REIKSME

Sukurtas automatinis algoritmas, leidziantis klasifikuoti vaiky, kuriems
diagnozuota gerybiné epilepsija arba strukturiniai smegenu pazeidimai,
EEG. Algoritmo jgyvendinimas praktikoje leisty sumazinti neteisingy
diagnoziu skaiciy, gydytojai neurologai galétu greié¢iau jvertinti pacienty
EEG.

!Prieiga internete: <https://mif.vu.lt/cluster/>
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EEG pikuy aptikimo algoritmas jau yra praktiskai igyvendintas NKSPS
(Nacionaliné klinikiniy sprendimuy palaikymo sistema, Nr. VP2-3.1-
IVPK-10-V-01) projektu ir yra naudojamas gydytoju. Klasifikavimo
pagal diagnoze algoritmu praktinis jgyvendinimas palengvintu gydytoju
darba.

GINAMIEJI TEIGINIAI

e Naudojant disertacijoje pristatomus masiny mokymosi pagrindu
veikiancius klasifikavimo algoritmus, I ir II grupiu EEG gali buti

klasifikuojamos 75-82 proc. tikslumu.

e Naudojant EEG piky geometrinius parametrus, geriausia klasifika-

vimo kokybé pasiekiama taikant daugiasluoksni perceptrona.

e Naudojant EEG piky signaly atkarpu (kanale, kuriame aptiktas
EEG pikas) masyva, geriausia klasifikavimo kokybé pasiekiama

taikant labai atsitiktinio medzio klasifikatoriy.

e Konvoliucinio neuroninio tinklo ir daugumos balsavimo pagrindu
veikiantis klasifikavimo algoritmas pasizymi geriausiomis klasifi-
kavimo ir panaudojamumo savybémis, todél rekomenduojamas

tolesniems tyrimams ir taikytinas praktiskai.

REZULTATU PATVIRTINIMAS

Rengiant disertacija, paskelbtas straipsnis, kuriame nagrinéjamas EEG
klasifikavimas pagal diagnoze, naudojant MLP ir geometrinius EEG
piky parametrus. Straipsnis iSspausdintas Biomedical Signal Proces-
sing and Control zurnale, kuris Clarivate Analytics Web of Knowledge

duomenuy bazéje pagal citavimo indeksa yra pirmajame savo kategorijos

13



zurnaly saraso ketvirtyje (Q1). Autoriaus indélis — modeliy sudarymas ir

programavimas, eksperimentu atlikimas, svariai prisidéta rasant teksta.

Kitas straipsnis, kuriame nagrinéjamas EEG klasifikavimas pagal dia-
gnoze, naudojant CNN ir daugumos balsavimo klasifikatoriy, priimtas
spausdinti zurnale Nonlinear Analysis: Modelling and Control, indeksuo-
jamame Clarivate Analytics Web of Knowledge duomeny bazéje. Auto-
rius kuiré modelius ir programavo, atliko eksperimentus, svariai prisidéjo

rasant teksta.

Masiny mokymosi metodo pasirinkimas klasifikavimo pagal geometrinius
pikus algoritmui pristatytas tarptautinéje mokslinéje konferencijoje Ninth
International Conference on Numerical Methods and Applications. Re-
zultatai pateikti straipsnyje, publikuotame testiniame recenzuojamame

zurnale Springer Lecture Notes On Computer Science.

Klasifikavimo algoritmas, naudojantis EEG pikuy atkarpas, pristatytas
tarptautinéje mokslinéje konferencijoje 11th Conference of the Furo-
American Consortium for Promoting the Application of Mathematics in
Technical and Natural Sciences. Rezultatai pateikti straipsnyje, publikuo-
tame testiniame recenzuojamame zurnale American Institute of Physics

Conference Proceedings.
IS viso rezultatai pristatyti keturiose Lietuvos ir dviejose tarptautinése

konferencijose:

e DAMSS 2014 (Druskininkai, Lietuva): Data analysis methods for
software systems: 6th International Workshop. 2014 m. gruodzio
4-6 d.

e LMD 56 (Kaunas, Lietuva): 56-0ji Lietuvos matematiky draugijos
konferencija. 2015 m. birzelio 16-17 d.

e LMD 57 (Vilnius, Lietuva): 57-0ji Lietuvos matematiky draugijos
konferencija. 2016 m. birzelio 2021 d.
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e NM&A’18 (Borovecas, Bulgarija): Ninth International Conference
on Numerical Methods and Applications. 2018 m. rugpjucio 20—
24 d.

e DAMSS 2018 (Druskininkai, Lietuva): 10th international workshop
on data analysis methods for software systems. 2018 m. lapkri¢io
29 d. — gruodzio 1 d.

e AMiTaNS’19 (Albena, Bulgarija): Eleventh Conference of the Euro-
American Consortium for Promoting the Application of Mathema-
tics in Technical and Natural Sciences. 2019 m. birzelio 20-25 d.

Visus konferenciju pranesimus pristaté disertantas. Jis buvo ir pagrindinis
pranesimy autorius.

Uz sékmingg rezultaty pristatyma autoriui AMiTaNS’19 konferencijoje
iteiktas Jaunojo mokslininko apdovanojimas (Young Scientist Award
Certificate).
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1. ELEKTROENCEFALOGRAMOS (EEG)

1.1 EEG IR JU TAIKYMAS DIAGNOSTIKOJE

Siame skyriuje aprasomi EEG signalai ir ju savybés. EEG atsispindi
tiek normali, tiek ir sutrikusi smegenu veikla, todél EEG placiai taikoma

dvairiy CNS ligy diagnostikai.

1.1.1 Tarptautiné 10-20 EEG sistema

Registruojant EEG, pasaulyje placiausiai naudojama tarptautiné 10-20
elektrody isdéstymo sistema. Taikant Sig sistema, iprastai naudojamas
21 EEG matavimo kanalas [57], standartiskai nustatoma kiekvieno elekt-
rodo vieta. Sistema reglamentuoja elektrodu tvirtinimo prie paciento
galvos taskus ir matavimo elektrodu santykius, todél elektrodai kiek-
vienam pacientui iSdéstomi apytiksliai virs tos pacios smegenu dalies.
Aptartos savybés leidzia minéta sistema taikyti medicininei diagnosti-
kai bei pasitelkti ja Siame darbe: aptiktas pikas turi atsikartoti bent
dviejuose gretimuose elektroduose. Kurie elektrodai yra gretimi, zinoma
i§ standartinio 10-20 EEG sistemos isdéstymo. 1.1 pav. pateikiama
standartiné EEG elektrody isdéstymo schema, laikantis tarptautinés
10-20 EEG sistemos.

Disertacijoje nagrinéjamos epilepsija serganciu vaiky EEG, taciau aptar-
tas tyrimas gali buti naudojamas ir jvairiy kitu ligy diagnostikai. EEG

matavimai atlieckami tiek budrumo, tiek miego metu (zr. 1.1 lentele).
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1.1 pav. Standartinis elektroduy iSdéstymas, laikantis tarptautinés 10—
20 EEG sistemos [57] (autoriy teisiy nesaugoma iliustracija is Wikimedia
Commons [11])

1.1 lentelé. EEG naudojimas medicinoje

EEG tipas Diagnozé, kuriai nustatyti naudojama EEG
Autizmas, miego sutrikimai; miego EEG taikytina
priesinantis budrumo busenos tyrimui dél mazo amziaus
Migrena, neaiskios etiologijos priepuoliai,

Budrumo busenos EEG encefalopatija, ivairiy etiologiju koma, lokalus

smegeny pazeidimai

Epilepsija, Rolando epilepsija, raidos regresas,
neurodegeneracinés ligos

Miego EEG

Budrumo busenos arba miego EEG

1.1.2 Normali CNS veikla

Normaliai smegeny veiklai budingi smegeny ritmai (zr. 1.2 lentele).
Priklausomai nuo paciento busenos, dazniausiai vyrauja vienas i$ smegenu
aktyvumo ritmy. Ritmo dazni gali lemti daugelis veiksniy (budrumo

lygis, amzius), taciau sis daznis gali keistis ir dél kai kuriy CNS sutrikimy,

17



pavyzdziui, sutrikus raidai ar esant demencijai [57].

1.2 lentelé. Smegeny aktyvumo ritmai

Pavadinimas | Daznis Aprasymas

o 816 Hz Dvominuoja a.tsipalaidavus, esant budrumo busenos, bet
uzmerkus akis.

3 13-30 Hy Domin}loja .e.svant. l?udrum(? busenos, atmerkus akis ir
reaguojant i iSorinj pasaulj.

¥ 30-100 Hz | Tiksliy duomeny néra.

5 0.5-4 Hz Dominuoja giliai miegant ar pacientui esant nesamonin-
gam.

0 4-8 Hz Dominuoja miegant ar gilios meditacijos metu.

Kaip matyti is 1.2 lentelés, miegant dominuoja ¢ ir § smegeny ritmai.

Jau minéta, kad EEG matavimus galima atlikti tiek miego, tiek budrumo
metu. Budrumo busenos EEG atliekamos pacientui ramiai gulint uzsi-
merkus, Siose EEG dominuoja « ritmas. Minétina, kad EEG atliekama
pacientui miegant arba esant ramybés busenos, nes pacientui judant su-
kuriama EEG artefakty, kurie neleidzia atlikti matavimu Siais artefaktais

uzterstose signalo vietose.

Suaugusiems pacientams ir vyresniems vaikams EEG matavimai dazniau-
siai atliekami esant budrumo busenos. Miego EEG pasitelkiama maziems
vaikams, kurie negali ilgai iSbuti ramus ar priesinasi tyrimui. Epilepsijos
diagnostikai vienodai vertinga tiek miego, tiek budrumo busenos EEG,
taciau skiriasi kai kuriu EEG smegeny galiu ritmy santykiy normos. Sios
normos disertacijoje néra nagrinéjamos, reikiama diagnostiné informacija

gaunama iS EEG piky.

1.1.3 EEG artefaktai

Normaliai smegenu veiklai budingi jvairios kilmés artefaktai, kurie vi-

zualiai gali atrodyti panasus i EEG pikus. Vieni i$ tokiy artefakty —
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judesio artefaktai, todél EEG matavimai atliekami pacientui esant ra-
mybés busenos arba, kai pacientas negali ilgesni laika isbuti ramus, jam

miegant.

Esant galimybei, neurologai epilepsijai diagnozuoti iprastai naudoja
budrumo busenos EEG, nes miego EEG budingi tokie artefaktai, kaip
greiti akiy judesiai ar K-kompleksai, kuriuos pacientas atlieka nevalingai.

EEG siuos artefaktus gali buti sunku atpazinti.

Minétini artefaktai, kuriy atsiranda dél paciento sirdies veiklos. Kaip
zinome, kraujotaka uztikrina periodiskai susitraukiantis sirdies raumuo,
jo veikla taip pat gali buti matoma EEG. Vis délto §i artefakta nesunku
atskirti deél jo periodiskumo. Be to, dauguma EEG tyrimo aparaty

matuoja ir EKG, kuri, kaip zinoma, fiksuoja Sirdies aktyvuma.

Ketvirtas artefaktas, pastebimas visose EEG, yra neperiodinis smegenuy
aktyvumas. Smegenuy veikla néra grieztai periodiné, smegenyse vyksta
daugybeé sudétingy neperiodiniy procesy, kurie Siandien neturi jokios
medicininés vertés ir kartu su prietaiso matavimo paklaidomis yra supran-
tami kaip triuk$mas. Zinomi keli budai, kaip pasalinti nepageidaujamas
neperiodines signalo dedamasias. Minétinos [52] bangeliy transforma-
cijos triuksmui Salinti (angl. Wavelet Denoising), esama ir kity budy,
pavyzdziui, autokoreliacijos algoritmas [25]. Disertacijoje nagrinéjamoms
Tir IT grupiy EEG budingi gerai apibréztos formos EEG pikai, todél, atlie-
kant tyrima, naudota EEG piky parametry validacija pagal mediciniskai

galimas ju reiksmiu ribas.

1.1.4 EEG pikai

Siuo metu Zinoma daugybé ligy, pasizyminc¢iy EEG pikais [64], tac¢iau
disertacijoje nagrinéjamos tik dvieju diagnoziy grupés (I ir II grupeés,
zr. apibréztis skyriuje ,,Sutrumpinimai®). Tipisku nagrinétu epilepsijos

sukeltu EEG piku pavyzdys pateikiamas 1.2 paveiksle.
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Paveiksle matyti trys pikai, atitinkantys EEG pikams keliamus reikala-
vimus. Kad EEG pikas butuy iskaitytas, jis turi atsikartoti maziausiai
dviejuose gretimuose kanaluose. Kaip matyti 1.2 paveiksle, pikai atsi-
kartoja daugelyje kanalu tuo pac¢iu metu. Antras reikalavimas, keliamas
EEG pikui, — 8is pikas nors du kartus turi iskilti virs foninio smegeny
aktyvumo. Minétina, kad pikas gali turéti tiek teigiama, tiek neigia-
mg amplitude. EEG piko morfologiniai pozymiai aptariami tolesniame

skyriuje.

1.1.5 Morfologiniai EEG piko pozymiai

EEG pikui taikomi tam tikri morfologiniai reikalavimai [55] (schematinj
EEG piko vaizda zr. 1.3 pav.). Viso piko trukmeé (S1+ S2+ SD) turéty
buti ne mazesné negu 40 ms ir ne ilgesné negu 200 ms. Piko amplitude
Al visada turi buti didesné uz iskrovos amplitude A2. Be to, to paties

paciento iy amplitudziu santykis jprastai islieka panasus [55]:

1
—— ~ const. (1.1)

A2

Minétina, kad EEG piko pakilimo kampas visada turi buti didesnis uz
piko nusileidimo kampa (Za > £b).

1.2 ANALIZEI NAUDOTI EEG DUOMENYS

Disertacijos tyrimai atlikti naudojant duomenis, gautus is VsI Vilniaus
universiteto ligoninés Santaros kliniky Vaiku ligoninés Vaiky neurologi-
jos skyriaus. Duomenys rinkti 2010-2019 m. EDF [27] ir EDF+ [26]

formatais.

Nagrineti 168 pacienty 263 EEG duomenys. Minétina, kad duomeny

skaicius ilgainiui didéjo, nes atsirasdavo vis daugiau naujuy EEG duomeny
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[40, 41]. Duomenu pasiskirstymas pateikiamas 1.3 lenteléje.

Disertacijoje naudojami duomenys skirstytini i sias grupes:

e I grupé: gerybiné (rolandiné) vaiky epilepsija su centrotempora-
liniais pikais (i$ viso — 215 EEG (apie 80 proc. visuy EEG), 135
pacientai (apie 80 proc. visu pacienty)). Sioje grupéje nustatyta

85 proc. visy disertacijoje nagrinégjamy EEG pikuy.

e II grupé: strukturiné zidininé epilepsija, cerebrinis paralyzius,
smegenu zieves displazija, gliozé ir kt. (i$ viso — 48 EEG (apie 20
proc. visu EEG), 33 pacientai (apie 20 proc. visu pacienty)). Sioje
grupéje nustatyta 15 proc. visu disertacijoje nagrinéjamy EEG

piku.

1.3 lentelé. EEG pasiskirstymas tarp mokymosi ir testavimo imciy
(skliausteliuose nurodoma: 1) mokymosi imties EEG dalis* nuo visy
atitinkamos grupés EEG, 2) mokymosi imties pacientu dalis** nuo viso
atitinkamos grupés pacientu skaiciaus)

Grupé ir duomeny skaicius I grupé IT grupeé IS viso
EEG skaicius (i$ viso) 215 48 263
Pacienty skaicius (i$ viso) 135 33 168
EEG skai¢ius (mokymosi imtis) 43 (20,0 %*) | 35 (72,9 %*) | 78
Pacienty skaiéius (mokymosi imtis) | 37 (27,4 %**) | 21 (63,6 %**) | 58

Duomeny pasiskirstyma tarp mokymosi ir testavimo iméiy (zr. 1.3
lentele) lémé duomeny, mediky iSvalyty rankiniu budu, pasiekiamumas.
Isvalytais darbe laikomi duomenys, i$ kuriy gydytojai rankiniu budu
iskirpo artefakty turinéias EEG atkarpas (zr. 1.1.3 poskyri). EEG piku
aptikimo algoritmas néra tobulas (zr. 2.1 skyreli) tiek jautrumui, tiek
specifiskumui nagrinéti, todél EEG piku paieskos algoritmo rezultaty

kokybé yra geresné, naudojant isvalytus EEG duomenis.

Atlikus eksperimentus, paaiskéjo, kad geriausiy klasifikavimo pagal dia-

gnoze rezultaty gaunama naudojant algoritma, apdorojanti iSvalytus
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duomenis. Taigi klasifikavimo algoritmai buvo mokomi dirbti su iSvaly-
tais duomenimis. Minétina, kad iSvalytu duomenu kieki ribojo medikuy
galimybé skirti Siai veiklai laiko. Aptartos priezastys lémé mokymo ir

testavimo iméiy pasiskirstyma (zr. 1.3 lentele).

Dél turimos programinés jrangos techniniy apribojimu disertacijoje nag-
rinéti EEG pikai teikiami dviem budais. Pirmieji duomenys buvo pateikti
iki 2018 m. Neurologai pikus skai¢iavo visoje EEG (nagrinéta 30 EEG,
suskai¢iuoti 5 557 pikai) ar jos laiko atkarpose (zr. 1.4 lentele). EEG
piku paieskos algoritmas buvo optimizuojamas pagal neurologu nustatyta
EEG piku skaiciy.

Minétas duomenuy teikimo budas turi akivaizdy trukuma: nors algoritmo
nustatytas EEG pikuy skaic¢ius yra panasus, neimanoma tiksliai suzinoti
algoritmo jautrumo ir specifiskumo, nes lyginamas tik aptikty EEG piky
skai¢ius (60s arba 10s EEG atkarpoje), bet licka neaisku, ar algoritmas
aptinka EEG pikus tose paciose vietose, kaip ir neurologai. Dél Sios
priezasties 2018 m. pradéta fiksuoti tiksli EEG piky padétis, Siems
duomenims rinkti [15] sukurtas atskiras jrankis. Visa tai leido tiksliai
ivertinti algoritmo jautruma ir specifiSkuma, véliau — optimizuoti piku
paieskos algoritmo parametrus. Neurology surinkti duomenys apie EEG

pikuy vietas pateikiami 1.5 lenteléje.
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1.4 lentelé. Neurologu suskai¢iuoti EEG pikai (skai¢ius zymi visus EEG
uzfiksuotus pikus, toliau nurodyta, kuriuose kanaluose Sie pikai nustatyti,
skyra zymi, kokiu intervalu EEG pikai buvo perskaic¢iuojami; kai kuriy
EEG pikai skai¢iuoti mazesniu intervalu (laiko skyra didesné), siekiant
isitikinti, kad algoritmas nespélioja piku skaiciaus)

EEG Skaicius (i$ viso) | Kanalai Skyra
1 981 T4, C4 60s
2 207 T3, C3 60s
3 22 T6 60s
4 370 T3, T5 60s
) 211 C4, P4 10s
6 52 T4, T6, C4 10
7 2 T3 60s
8 857 C3, T5, Fp2, F4, 8 | 60s
9 0 - 60s
10 398 T6, T4 60s
11 0 - 60s
12 43 T6 60s
13 99 T6, T4, I4 60s
14 152 T3, T5 60s
15 132 T3, T5 605
16 26 C3, T3 60
17 64 T4, T6 60s
18 166 C3, T5, T6, P4 60s
19 99 Cz, P4, C4, P3, Pz | 10s
20 163 T3, C3 60s
21 263 T3, T5, T4 60s
IS viso: | 4 267 - -
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1.5 lentelé. Disertacijoje naudoti EEG piky duomenys, neurologyu su-
skai¢iuoti sukurtu jrankiu [15]

EEG EEG pikuy skaicius | Kanalas
1 177 T4
2 144 T3
3 150 P4
4 244 T3
5 16 T3
6 115 T3
7 54 T4
8 12 P3
9 69 P4
10 98 T3
11 101 T5
12 127 Pz
IS viso: | 1 307 —
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1.2 pav. I grupés EEG piky pavyzdziai (grafike — 19 kanaly EEG 5
sekundziy atkarpa; Sioje atkarpoje matyti trys pikai (ties 1,7, 2,6 ir 3,0
sekundémis))
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1.3 pav. EEG piko morfologija (piko dalis tarp S1 ir S2 yra pagrindinis
EEG pikas, SD dalis — iskrova, kuri eina po kiekvieno EEG piko; Al
Zymi piko, o A2 — iskrovos amplitude
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2. EEG ANALIZES METODAI IR
ALGORITMAI

2.1 MORFOLOGINIS EEG PIKUY APTIKIMO
ALGORITMAS

Siame skyriuje aprasomas morfologinis algoritmas, naudotas EEG pikams
aptikti. Algoritma, paremta kitu tyréju darbais [24, 46, 72, 73], yra

patobulings disertacijos autorius [39, 40].

2.1.1 Pirminis EEG apdorojimas

Pries aptinkant EEG pikus, greitaja Furjé transformacija (FFT) pagristu
filtru nufiltruotas elektros tinklo daznis (50 Hz). Filtruotos visos dazniy
dedamosios nuo 49 Hz iki 51 Hz. Taip sumazintas EEG signalo foninis

triukSmas ir padidinta EEG piku detekcijos kokybeé.

2.1.2  Morfologinés operacijos

Disertacijoje naudojamas mokslinéje literaturoje [24, 46, 72, 73] gana
placiai aprasytas algoritmas. Jis paremtas morfologinémis operacijomis
ir serija filtru. Elementariausios morfologinés operacijos, naudojamos

disertacijoje, yra morfologinis susiaurinimas ir morfologinis iSplétimas.

Tiriamas signalas yra aprasomas kaip laiko eiluté f(t). Strukturinis
elementas apibréziamas kaip g(t), o jo atspindys ¢°(t) = g(—t). D yra

f(t) signalo apibrézties sritis. Siuo atveju morfologinis susiaurinimas gali
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buti aprasytas kaip:

(f ©¢°)(8) = min{ (1) — g(=(t — 7))} (2.1)

Morfologinis iSplétimas gali buti aprasomas analogiskai kaip:
(f ©9°)(t) = min{ f(7) + g(=(t = 7))} (2.2)

Naudojant pateiktus apibrézimus (zr. (2.1) ir (2.2) formules), galima
apibrézti morfologinio atidarymo ir uzdarymo operacijas. Morfologinis

atidarymas apibréziamas kaip:

(feg)t) =I[(feg®) @ glt). (2.3)

Morfologinis uzdarymas apibréziamas analogiskai:

(feg)t) =[(f@g°) ©gl(t). (2.4)

Kaip jau minéta, EEG pikai gali turéti tiek teigiama, tiek neigiama
amplitude, todél reikia apibrézti papildomas morfologines operacijas,
kurios isryskintu bet kurio zenklo amplitudés EEG pikus. Naudojantis
(2.3) ir (2.4) formulémis, uzdarymo ir atidarymo operacija apibréziama
kaip:

OC(f(t)) = f(t) 0 g1(t) ® ga(t)- (2.5)

Atidarymo ir uzdarymo operacija apibréziama analogiskai:

CO(f(t)) = f(t) @ g1(t) 0 ga(?). (2.6)

Atidarymo ir uzdarymo operacija vidutine signalo reiksme padidina, o
uzda-rymo ir atidarymo operacija vidutine signalo reikSme sumazina vie-
nodu (pagal modulio reiksme) dydziu, esant vienodiems strukturiniams
elementams. Pritaikant (2.5) ir (2.6) formules, sukuriama kombinuo-

ta morfologiné operacija, kuri nufiltruoja foninj smegeny aktyvuma ir
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2.1 pav. Morfologiniy filtry veikimas (EEG pikas matyti ties 136,57 s;
A dalyje vaizduojamas originalus EEG signalas ir jo filtravimas OC, CO
ir kombinuotu OCCO filtrais, B dalyje parodytas pradinio ir OCCO
filtru nufiltruoto signalo skirtumas)

iSryskina pikus:

0C(ft)) + CO(f(t)

OCCO(f(t)) = 5

(2.7)

2.1 paveiksle vaizduojamas aprasytu filtru veikimas. Kaip matyti is A da-
lies, EEG pikus geriausiai isskiria OC filtras, taciau Sis filtras prasciausiai
apgaubia signalo artefaktus. CO signalas artefaktus sumazina labiausiai,
taciau prasciau isskiria EEG pikus. Dél Sios priezasties kai kurie tyréjai
[24] renkasi filtravima OCCO filtru.

Strukturinis elementas parenkamas taip, kad nufiltruojami net didelés
amplitudés iskilimai virs signalo. Priezastis — morfologinio filtravimo

metu isryskinami tik trumpi pikai, budingi epilepsijai. Kaip morfologiniai
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filtrai veikia, aiskinama tolesniuose skyriuose.

2.1.3 Strukturiniai elementai

Morfologiniam filtrui pritaikyti butini strukturiniai elementai. Diserta-
cijoje strukturiniai elementai parinkti taip, kad nuo EEG pikuy atskirty
fonini smegeny aktyvuma. Fonini smegeny aktyvuma geriausiai aproksi-

muoja parabolé:
gi(t) =a; ki > +b;,  i=1,2. (2.8)

Kad algoritma butu galima optimizuoti genetiniu algoritmu (placiau zr.
2.2 poskyri), ivedamas k; koeficientas. Pradiné §io koeficiento reikSme

yra 1.

Smegenu ritmai gali buti bet kokio daznio tarp 0,5 Hz ir 100 Hz. Kiek-
vienos EEG atkarpos paraboliy amplitudés dazniausiai skiriasi. Taip pat
skiriasi ir kiekvienos EEG signalo atkarpos a ir b parametrai. Todél svar-
bu apibrézti masyva W, kuris yra signalo arky ilgiy masyvas. Parametrai
a ir b gali buti apibrézti kaip:

_ 2Median(| f|) _ 2 Median(| f|)

= = b1 = by = Medi .
“ Median(W) ’ 2 3Median(W)’ '~ 2 edian(|f])

(2.9)

Sie parametrai periodiskai turi buiti vertinami i§ naujo tokiu periodu:
t, =5s. (2.10)
Nufiltruotas signalas gali buti apibréziamas kaip:

rierea(t) = |f(t) = OCCO(f(1))]- (2.11)

(2.5), (2.6), (2.7) ir (2.11) formulémis aprasytuy filtry veikimas iliustruo-

jamas 2.1 pav.
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2.1.4 EEG piky aptikimo algoritmas

Disertacijos 2 skyriuje aprasomas EEG piky aptikimo algoritmas yra
patobulinta algoritmo, aprasSyto mokslingje literaturoje [24], versija.
lgyvendinus algoritma, eksperimentais nustatyta, kad analizei, kuriai
tinka ir anksciau aprasyti a; ir b; parametrai, tinkamiausia mazdaug 5s
trukmeés EEG signalo atkarpa. EEG atkarpa, nagrinéjama iteracijoje,
turi buti pakankamai ilga, kad joje butu galima aptikti EEG pika ir
nustatyti vyraujancius smegenu ritmus, taciau kartu ji turéty buti ir gana
trumpa, kad vyraujantys ritmai labai nepasikeisty. Pasikeitus vyrau-
jantiems smegenu ritmams, a; ir b; parametrus privalu vertinti i$ naujo,
siekiant atpazinti fonini smegeny aktyvuma. Jei parametrai parinkti
netiksliai, smegenu foninis aktyvumas nufiltruojamas netinkamai, todél
EEG pikai pradedami detektuoti ten, kur ju néra (mazéja algoritmo
specifiSkumas), arba praleidziami maziau virs fono iskile pikai (mazéja

algoritmo jautrumas).

Minétas iteracinis signalo ilgis pasirinktas dél Sios priezasties: atliekant
tyrima, ilgainiui dél prakaito ir kitu veiksniy keic¢iasi pacientu galvos
odos laidumas, todél keic¢iasi ir strukturiniy elementu parametrai (ypac
amplitudé). Taigi Siuos parametrus butina perskaic¢iuoti. Minétina, kad
ivardytus artefaktus lengviausia nufiltruoti, kai EEG signalo atkarpa yra

4-6 s trukmes.

Nurodyto iteracijos periodo pasirinkimg lémé faktas, kad algoritmas yra
sudétingas ne tik viso signalo ilgio, bet ir analizuojamos signalo atkarpos
ilgio atzvilgiu. Mazesnése signalo atkarpose algoritmas veikia greiciau.
Analizuojamos signalo atkarpos negali buti smarkiai mazinamos dél jau
minéty priezaséiy: signalo atkarpa privalo buti pakankamai ilga, kad
joje buty galima nustatyti vyraujancius smegenu ritmus ir is ju isskirti
EEG pikus.

Kiekvienam pacientui budingi skirtingos morfologijos pikai, todél tiksli
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detekcijos riba kiekvienu atveju skiriasi. Disertacijoje skaic¢iavimai at-
lieckami taikant kelias detekcijos ribas. Kuris i$ apskaiciuotu piku yra
tiksliausias, paliekama nuspresti gydytojui. Ribos, kuriose aptinkami

pikai, apibréziamos kaip:
L=2 k‘L Medz'an(ffmered). (2.12)

Pradiné kr, koeficiento reiksmé yra 1 (placiau apie Sio koeficiento taikyma

zr. 2.2 poskyryje).

Nuo pasirinktos EEG ribos (ir kity parametry) priklauso EEG piku
aptikimo algoritmo jautrumas, specifiSkumas ir kitos charakteristikos.
Minéty parametry optimizacija tyrimo pradzioje buvo atliekama rankiniu
budu, taciau véliau, patikslinus EEG piky duomenis, atsirado galimybé

optimizacija automatizuoti.

2.1.5  Morfologiniy filtry tobulinimo svarba

Kaip jau minéta, EEG piky aptikimo algoritmas yra itin jautrus kai
kuriems morfologinio filtro parametrams. 2.2 paveiksle vaizduojamas
originalus signalas, nufiltruotas morfologiniais filtrais, kuriems budingi
ivairaus ilgio strukturiniai elementai. Paveikslu akcentuojama tinkamo

ilgio strukturinio elemento pasirinkimo svarba.
Paveikslo A dalyje vaizduojamas originalus EEG signalas.

B dalyje vaizduojamas signalas, nufiltruotas morfologiniu filtru, turinc¢iu
per trumpa struktturini elementa. Kaip matyti, minétu atveju labai
efektyviai nufiltruojamas signalo triukSmas ir artefaktai, tac¢iau labai
menkai isrySkinami EEG pikai. Per daug sumazinus detekcijos riba,
tikétina, mazéty algoritmo jautrumas, per daug Sia ribg padidinus —

specifiSkumas.

32



300

200 | — Originalus signalas
N A .
—~ 100F. S\ e | [T A A\
™~ VA SV A N \ I\ P S S
2 oof IR | AN A ~ I
\
> 100} I N ‘ [ V7 ]
200} | “‘ ]
|
-300 A) ! U\ ]
400 L L L L
0 1 2 3 4 5
500 ts)
[ Aptikimo riba
400 B) — Filtruotas signalas
< s00f —
=3
5/ 200 1
100 9
,\ 1\ J\ﬂ fn
1] v v S SAETY A | ST R PV | L A S S Y
-100 . . . .
0 1
500 T
400 - C) Aplikimo ril?a
. — Filtruotas signalas
< B0t
=3
~ 200 F
o]
100
opF
-100 .
0 1
500 T
400 - D) Aptikimo riba
— Filtruotas signalas
< 300t E
=
~ 200 9
> |
L A ]
-100 . . . .
0 1 2 3 4 5
t(s)

2.2 pav. Detekcijos kokybés priklausymas nuo struktirinio elemento
ilgio (A dalyje vaizduojamas originalus signalas, B dalyje — signalas,
nufiltruotas morfologiniu filtru, turinc¢iu per trumpg strukturini elementa,
C dalyje — signalas, nufiltruotas morfologiniu filtru, turinciu per ilga
strukturini elementa, D dalyje — signalas, nufiltruotas filtru, turinc¢iu
tinkamo ilgio strukturini elementa)
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C dalyje vaizduojamas tas pats signalas, tik nufiltruotas morfologiniu
filtru, turin¢iu per ilga strukturini elementg. Siuo atveju licka daug
ivairiy signalo artefakty, iSauga tikimybé, kad jie virsys detekcijos riba.
Vienas artefaktas, virsijes detekcijos riba, algoritmo specifiSkumui ne-
kenkia, nes, kaip jau minéta, EEG pikas fiksuojamas tik tada, kai jis
tuo pat metu randamas bent dviejuose gretimuose kanaluose. Vis délto,
nereikalingas signalo dalis filtruojant netinkamai, iSauga tikimybe, kad
piku gali buti palaikyti dviejuose gretimuose kanaluose esantys artefaktai
ir jie klaidingai gali buti traktuojami kaip pikas. Dél siu priezasciu ypac

svarbu tinkamai parinkti morfologinio filtro strukturinio elemento ilgj.

D dalyje vaizduojamas originalus EEG signalas (zr. A dali), nufiltruotas
morfologiniu filtru, turinéiu tinkamo ilgio strukturini elementy. Kaip ma-
tyti, triukSmas ir jvairus artefaktai nufiltruojami pakankamai efektyviai,
o EEG pikai labai isrySkinami. Galima pastebéti, kad isrySkinamas ne
tik pikas, bet ir po jo susiformuojanti léta banga, taciau tai algoritmui
netrukdo, nes léta banga yra laikoma EEG piko dalimi (skai¢iuojamas
vienas EEG pikas).

Gautas tinkamiausias strukturinio elemento ilgis:
te = 4 ke Median(W). (2.13)
Dél nurodytuy priezasciu tikslinga optimizuoti ir EEG piko strukturinio

elemento t, ilgi — ji padauginti is atitinkamo daugiklio k., kurio pradiné

reiksme lygi 1.

2.1.6  Artefakty filtravimas

Morfologiniai filtrai sukurti taip, kad atmestyu daugeli EEG artefakty. 2.3
paveiksle vaizduojamas EEG signalas, kuriam budingi tiek EEG pikai,

tiek artefaktai. Kaip matyti, ilgalaikiSkesni signalo pakilimai efektyviai
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2.3 pav. Originalus signalas, turintis artefakty ir piky (A dalyje vaiz-
duojamas originalus signalas, turintis artefakty, B dalyje — originalus
signalas, nufiltruotas morfologiniu filtru)

nufiltruojami, o dauguma trumpalaikiy triuksmu detekcijos ribos ne-
siekia ir toliau néra nagrinéjami. Kai kuriais atvejais artefaktai virsija
EEG piko detekcijos riba, bet minétais atvejais atsizvelgiama i piko mor-
fologinius pozymius, aprasytus ankstesniuose skyriuose. Tais atvejais,
kai morfologinis filtras negeba nufiltruoti piky, pasitelkiami kiti piko

validavimo kriterijai.
EEG pikai validuojami pagal kriterijus, nustatytus remiantis medicinos
literaturoje aprasytomis piku savybémis [55, 57, 64]:
e EEG piko astrios bangos pakilimo kampas k, negali buti mazesnis
uz piko nusileidimo kampa kg (Zr. 3.4.1 poskyri).

e EEG piko astrios bangos trukmeé negali buti mazesné negu 20 ms ir
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didesné negu 60 ms.

e EEG piko trukme (astri ir léta bangos) negali virSyti 200 ms.

EEG piko iskilimas virs foninio signalo nebuvo tikrinamas, nes manoma,
kad §i patikrinima atlicka morfologinio filtro ir detekcijos ribos ((2.12)

formulé) kombinacija.

Tinkamai nustatyty ir gerai aproksimuoty piku pavyzdziyu pateikiama

2.4 pav., nekorektiskai nustatytu piky pavyzdziu pateikta 2.5 pav.

2.1.7 Algoritmo jautrumo ir specifiskumo vertinimas

EEG piky aptikimo algoritmo jautrumas ir specifiSkumas negali buti
ivertinti visiskai tiksliai. Pagrindiné priezastis — gydytojai nesutaria, kas
laikytina EEG piku, o ko EEG piku laikyti nereikéty. Minétina, kad tas
pats gydytojas, kelis kartus skaiciuodamas pikus toje pacioje EEG, gali
gauti siek tiek skirtingus rezultatus. Vien dél Sios priezasties EEG piky

aptikimo algoritmo jautrumas ir specifiSskumas niekada nesieks 100 proc.

Vis délto disertacijoje naudojami neurology pateikti EEG piku skaiciai
ir duomenys apie tikslias siy piku vietas traktuoti kaip atspirties taskas,

vertinant algoritma.

2.6 paveiksle pateikiamas sudétingai aptinkamo EEG piko pavyzdys.
Tokius pikus neurologai vertina kaip tikrus, taciau sie pikai ne visada
atitinka formaliai keliamus reikalavimus. Esame apskaiciave, kad, ver-
tinant EEG piky aptikimo algoritmo specifiskumg ir jautruma, dél jau
minéty priezasciy tikétina mazdaug 5 proc. paklaida. Detalios minéty

parametry reikSmés bus aptartos tolesniuose skyriuose.
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2.4 pav. Tinkamai nustatytu piku pavyzdziai (algoritmas [24, 39]; piku
parametrus sekmingai aptiko EEG piku metrikos algoritmas [40])

2.2 MORFOLOGINIO FILTRO OPTIMIZAVIMAS
GENETINIU ALGORITMU

Turint tinkamus EEG piku duomenis (tikslias EEG piku vietas signale),
atsirado techniné galimybé optimizuoti EEG piky paieskos algoritma.
Minétina, kad algoritmas turi tam tikry konstanty, kuriy kilmé néra iki
galo pagrista, todél, optimizuojant kokiu nors algoritmu, siekiama rasti

tinkamiausias parametry reikSmes.
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2.5 pav. Originalaus algoritmo neteisingai nustatytu piky pavyzdziai
(algoritmas [24, 39]; pikai atmesti, nes ju parametry reikSmeés neatitiko
mediciniskai imanomuy piky reiksmiu [40])

Svarstyti jvairts galimi algoritmuy pasirinkimai. Algoritmuy pasirinkimo

galimybes itin ribojo Sie veiksniai:

e Esant kai kurioms parametry kombinacijoms, dél dalybos i$ nulio
ar kity matematiniy klaidy neimanoma nustatyti tikslo funkcijos
reiksmeés. Pavyzdziui, k. (Zr. (2.13) formule) parametro reikSmé
gali buti tik didesné uz nuli, todél darytina isvada, kad tikslo

funkcija yra truki.
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2.6 pav. EEG signalo gretimuose elektroduose dalys ir nufiltruotos ju
versijos su detekcijos ribomis (P1 ir P2 zymi pikuy vietas, kurios buty
detektuojamos mediky, taciau néra detektuojamos algoritmo; A ir C
dalyse vaizduojami originalus signalai, B ir D dalyse — nufiltruoti signalai
[itterea su detekcijos ribomis)

e Néra zinoma jokiu kitu tikslo funkcijos matematiniu savybiy, is-

skyrus netolyduma.

Kiekvienas tikslo funkcijos jvertis reikalauja atskiro eksperimento

(jautrumo ir specifiSkumo jvertinimo duotais parametrais).

Neéra tiksliai zinoma, kokiame verc¢iu intervale reikSmé turéty buti

optimizuota.

Optimizuojama funkcija neturi matematinés israiskos ir gali buti

ivertinta tik eksperimentu.
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Tokie algoritmai, kaip nusileidimas pakoordinaciui ar gradientinis nu-
sileidimas, reikalauja tam tikru tikslo funkcijos savybiu (netrukumo,
diferencijuojamumo), kuriy, kaip minéta, neimanoma uztikrinti. Moks-
linéje literaturoje nurodoma, kad sioms problemoms spresti ypa¢ daznai

naudojamas genetinis algoritmas [30, 36, 51].

Kita priezastis, paskatinusi rinktis genetini algoritma, yra tai, kad §i
algoritma palyginti lengvai galima islygiagretinti. Ilgiausiai trunkanti
iteracijos dalis — genetiniy individy jvertinimas. Taikant minéta algorit-
ma, individai gali buti vertinami lygiagreciai, ju tikslo funkcijos jverciai

surenkami valdanc¢iajame procese.

Minétos priezastys lémé genetinio algoritmo pasirinkima morfologinio

algoritmo parametrams optimizuoti.

2.2.1 Tikslo funkcijos parinkimas

Optimizacijai atlikti reikalinga tikslo funkcija, todél ieskoma Sios funk-
cijos globaliojo ar lokaliojo ekstremumo (minimumo arba maksimumo).
EEG piky paieskos algoritma galima optimizuoti pagal kelias metrikas
(pavyzdziui, pagal tiksluma, jautruma, specifiskuma) ar ju kombinacijas.
Metrikos pasirinkimas is esmés priklauso nuo sprendziamo uzdavinio:
vieniems uzdaviniams gali reikéti kuo daugiau aptikty EEG piky, kitiems

gali buti svarbus EEG piku aptikimo jautrumas, o kiekis maziau svarbus.

Disertacijoje i$ esmeés sprendziami du uzdaviniai: 1) EEG piku paieska,
2) EEG klasifikavimas pagal diagnoze. Atsizvelgiant i tai, kad vieninteliai
moksliniai darbai, klasifikuojantys I ir II grupiu EEG pagal diagnoze,

yra disertacijos autoriaus, nuspresta vienu metu tirti kelias metrikas:

e jautruma (siekiama nustatyti kuo daugiau piky, atsizvelgiant i
rizika, kad didelé siy piky dalis bus neteisingai teigiamai aptikti

pavyzdziai);
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e specifiskumg (kuo daugiau nustatyty piky turéty buti teisingai tei-
giamai aptikti pavyzdziai, isliekant didelei rizikai neaptikti daugelio
EEG piky);

e jautrumo ir specifiSkumo ver¢iy minimuma (i tikslo funkcija turétu
buti kompromisas tarp specifiSkumo ir jautrumo, nes, sumazéjus
bent vienai i§ minety charakteristiky, kartu sumazéty ir tikslo

funkcijos reiksme).

2.2.2  Optimizavimo rezultatai

Kaip buvo matyti 2.1 poskyryje, morfologinio algoritmo formulése jvesti
specialus kintamieji, per kuriuos labai lengva apibrézti genetini individa.
Tai [k1, ko, ki, ke], kuriy pradinés reikSmes [1,1,1,1]. Koeficientai k; ir
ko turi poveiki strukturinio elemento formai ir yra ivedami (2.8) formuléje,
k1, koeficientas veikia piku aptikimo riba ir yra jvedamas (2.12) formuléje,
k. koeficientas veikia strukturinio elemento ilgi ir yra ivedamas (2.13)
formuléje. Minétina, kad (2.8) formuléje prie b; néra optimizavimui
skirto koeficiento, nes, atliekant iSankstini tyrima, nustatyta, jog minétas
parametras neturéjo itakos galutiniam rezultatui, todél buvo pasalintas

i$ tolesniy tyrimuy kaip nereiksmingas.

Atsizvelgiant i praktinius skaiCiavimo pajégumus, pasirinktas 100 geneti-
niy individu populiacijos dydis. Siekiant, kad pradinis sprendinys
[1,1,1,1] buty gana arti tikrojo sprendinio, nuspresta taikyti vadinamaji
genetinio algoritmo elitizma, 10 proc. geriausiy populiacijos individy
perkeliant i kita populiacija. Sis sprendimas padéjo uztikrinti, kad spren-

dinys nenutolo nuo optimizuojamos reikSmeés.

Genetiniai individai generuoti taikant Gauso (normalyji) skirstini (vidur-
kis = 1, sklaida 02 = 1). Tai uztikrino genetiniy individy i$sibarstyma
apie pradini sprendinj. Taip pat taikyta 2 proc. mutacijos tikimybé. In-

dividui mutuojant, atsitiktiné jo savybé buvo kei¢iama naudojant Gauso
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2.1 lentelé. Pradiné reiksmé ir optimizavimo rezultatai, gauti taikant
genetini algoritma (GA) (rezultatai gauti atliekant eksperimentus su
EEG, turin¢iomis artefakty)

Optimizavimo budas Jautrumas | SpecifiSkumas | k; ko kr, ke

Pradiné reiksmeé 0,70 0,71 1,00 | 1,00 | 1,00 | 1,00
Jautrumas (GA) 0,92 0,38 0,56 | 0,61 | 0,26 | 0,53
Specifiskumas (GA) 0,11 0,88 1,61 ] 1,63 | 6,82 | 1,03
Min (jautrumas, specifiSkumas) (GA) | 0,73 0,72 1,06 | 1,08 | 1,25 | 1,01

skirstini, kurio vidurkis lygus esamai reik§mei, o sklaida o2 = 1. Kryzmi-
nimas jgyvendintas du individus perskiriant ties atsitiktiniu ju savybiy

indeksu, galines dalis sukeic¢iant vietomis ir vél jas sujungiant.

Algoritmas buvo stabdomas, kai 10 populiacijyu i eilés nepavykdavo
pagerinti geriausio rasto sprendinio. Kiekvienos tikslo funkcijos algo-
ritmas pakeistas po 5 kartus, siekiant jsitikinti, kad gaunamas panasus
(paklaidos ribose) sprendinys. Gauti optimizavimo rezultatai pateikiami

2.1 lenteléje.

Minétina, kad 2.1 lenteléje pateikiami rezultatai yra prastesni negu nuro-
dyti kity autoriy [19]. Tai lemia keletas priezas¢iy: 1) dauguma autoriy
tiria itin siaurg diagnoziy rata, dazniausiai apsiribojanti viena konk-
recia diagnoze, 2) nagrinéjami rankiniu budu apdoroti (pvz., iSkarpant
artefakty paveiktas vietas ar kt.) arba sintetiskai generuoti duomenys, 3)
tiriamos mazos, todél statistiskai nereiksmingos EEG ir piky duomeny
imtys. Atsizvelgiant i anksCiau minétas priezastis, galima teigti, kad
gautasis EEG piky aptikimo algoritmo jautrumas ir specifiSkumas yra
panasus i nurodytus kitose, neturinc¢iose trukumu studijose, tirianc¢iose

statistiskai reikSmingas duomeny imtis.

Tolesniuose poskyriuose aprasytiems EEG klasifikavimo algoritmams
svarbus tiek didelis pikuy skaicius, tiek kuo didesnis specifiskumas, todél
naudojami EEG pikai, nustatyti Min (jautrumas, specifiskumas) metrikos

gautais morfologinio filtro parametrais.
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2.3 PIKUY APTIKIMO ALGORITMO
LYGIAGRETINIMAS

Disertacijoje igyvendintas EEG piky aptikimo algoritmas yra gana im-
lus skai¢iavimams?, todél kilo poreikis algoritma islygiagretinti. Siuo
tikslu galima naudoti jvairias technologijas. Technologijos yra ribojamos

veikimo aplinkos, jos turi savy privalumu ir trukumuy.

2.3.1 MPI ir gijos

Programavime siuo metu naudojamos dvi programu lygiagretinimo stra-
tegijos: lygiagretinimas gijomis (angl. multithreading) ir lygiagretinimas
procesais, perduodant zinutes (MPI). Abu metodai leidzia pagreitinti
programos veikima, dali skai¢iavimu lygiagreciai atliekant skirtinguo-
se procesoriuose ar ju branduoliuose. Esminis skirtumas — gijos skirtos
skaiCiavimy sistemoms, turin¢ioms bendrg RAM, MPI — sistemoms, kuriy
RAM paskirstyta (gali veikti ir sistemose, turin¢iose bendra RAM) [70].

Atliekant disertacijoje pristatomus tyrimus, kaip jau minéta, skai¢iavimai
vykdyti dviejose sistemose: VU MIF PST ir doktoranto asmeniniame
kompiuteryje (zr. skyriu , Tyrimo metodai ir priemoneés®). Atsizvel-
giant j tai, kad PST yra paskirstytyju skaic¢iavimy tinklas, programai
lygiagretinti nuspresta naudoti MPI protokolg, nors eksperimentai buvo

atliekami ir doktoranto kompiuteriu.

2.3.2 EEG pikuy paieskos algoritmo islygiagretinimas

Svarstytos dvi pagrindinés islygiagretinimo schemos, taikytinos piku pa-

ieskos algoritmui. Pirmoji schema pagrista tuo, kad EEG turi fiksuota

2EEG piky paieskos algoritmas uztrunka apie 1 min., analizuojant 1 min. trukmeés
atkarpa asmeniniu kompiuteriu, naudojant nuosekliai vykdomos programos versija.
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2.7 pav. Lygiagretinimo pagal EEG kanalus schema

kanaly skaiciy, todél kiekvienam procesui analizuoti galima skirti po
vieng kanala. Issamiau apsvarscius, Sios schemos atsisakyta kaip menkai
efektyvios. Programa veiktu tik su tiek giju, koks ju skaic¢ius atkartoty
EEG kanaly skaic¢iy. Be to, norint patvirtinti, kad signale rastas iesko-
mas objektas, Sis objektas turi buti stebimas bent dviejuose gretimuose
kanaluose — taip didétu komunikacijos tarp giju apimtis, nes procesas,
aptikes darinj, panasuy i ieskoma signalo vieta, turéty komunikuoti su
kitais procesais, tikrindamas, ar darinys buvo aptiktas gretimuose EEG
kanaluose. Kitas variantas — palikti tikrinimg baigiamajam procesui, bet

tokiu atveju si programos dalis nebutuy lygiagreti (zr. 2.7 pav.).

Darbe pasirinktos lygiagretinimo schemos esmé — kiekvienas procesas
gauna vienodo ilgio visy kanaly EEG atkarpa. Procesy skaicius gali
buti bet koks, o ankséiau minétas tikrinimo procesas gali veikti kiek-
vieno proceso ribose ir taip buti iSlygiagretintas (2.8 pav.). Vis délto,
atlikus toki iSlygiagretinima, suprastéjo EEG piky aptikimo jautrumas.
Jis atkurtas uzdéjus 1s trukmés persidengimus tarp giju nagrinéjamuy
fragmenty. Minétina, kad versijoje, kurioje persidengimai nenaudoti, kai
kurie ieskomi EEG dariniai buvo ,,perpjaunami® giju paskirstymo vietose
ir nedetektuojami né vienoje gijoje. Tikrinant galutinius rezultatus, turi
buti iSmetami skirtingu giju du kartus detektuoti dariniai. Dél Sios
priezasties siek tiek sulétéjo programos vykdymas, tac¢iau gauti rezultatai

buvo identiski vieno proceso programos versijai.
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2.8 pav. Lygiagretinimo pagal EEG laikg schema

2.3.3 Pagreitéjimo testavimas

Norint gauti kuo tikslesnius rezultatus, pasirinkta ilgesné (23 min. truk-
més) EEG. Laikytasi poziurio, kad jei apdorojimo laikas bus pakankamai
ilgas, su programos vykdymu nesusije, taciau sistemos resursus naudo-
jantys procesai statistiskai turés kuo maziau jtakos rezultatams. Testas
100 karty atliktas doktoranto asmeniniame kompiuteryje, 10 karty —
superkompiuteryje, apskai¢iuota medianiné verté. Atsizvelgus i turimos
sistemos technine charakteristika, doktoranto asmeniniame kompiutery-
je testai buvo atliekami naudojant 1, 2, 3 ir 4 procesoriy branduolius
(sistema turi 4 fizinius branduolius). Superkompiuteryje tyrimas buvo

atliekamas iki 32 procesuy.

Siekiant palyginti sistemos pagreitéjima, atliekant MPI ir giju techno-
logijos pagrindu paremtus skaic¢iavimus, sukurtos dvi islygiagretintos
sistemos versijos: viena i$ ju remiasi MPI technologija ir MPI/Py biblio-
teka, kita premta standartine Python programavimo kalbos biblioteka

Threading.
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2.3.3.1 Tyrimas asmeniniame kompiuteryje

IS gauty rezultatu galima daryti iSvada, kad giju pagrindu islygiagretinta
programa veikia Siek tiek greiciau, taciau $i programa negali veikti
paskirstytyju skaic¢iavimu platformose, t. y. ten, kur atskiri procesoriaus
branduoliai negali prieiti prie tyu paciy RAM adresy. MPI pagrindu
islygiagretintos programos yra universalesnés, jos gali veikti bet kokiose

sistemose, kuriu mazgai gali susisiekti tinklu ar kitais budais.

Mokslinéje literaturoje yra paskelbta, kad MPI ir giju programavimas
net taikytinas kartu (mazgo ribose programa veikia giju pagrindu, o
mazgai tarpusavyje bendrauja MPI pagrindu) [70]. Kai kuriais atvejais
tai gali paspartinti programos veikima, nors vis délto, manytina, kad Sis
sprendimas néra tikslingas — skirtumas tarp MPI ir giju veikimo greicio

néra didelis, o jgyvendinimas, tikétina, sudétingas.

Atkreiptinas démesys, kad tarp programos veikimo grei¢iy egzistuoja triu-
ksmas, ypa¢ MPI aplinkoje. Tai gali lemti kelios priezastys. Visyu pirma,
minétinos kompiuteryje veikiancios skaic¢iavimams nebuitinos programos,
kurios vis tiek naudoja tam tikra kompiuterio resursy dali. Antra, testas
buvo atliekamas Oracle VM VirtualBox pagrindu veikiancioje Ubuntu

Linuz virtualioje masinoje, kuri taip pat naudoja resursus.

2.3.3.2 Tyrimas superkompiuteryje

Kaip jau minéta, programos veikimas taip pat buvo tirtas VU MIF
superkompiuteryje. Siekiant sumazinti aparaturos jtaka rezultatams,
tyrimas buvo atliekamas tik Gamma telkinio mazguose, nes sie maz-
gai tarpusavyje susisiekia greic¢iausiai (40 GB/s Infiniband). Minétina,
kad sis greitis teoriskai netgi virsija asmeninio kompiuterio sisteminés
magistralés veikimo greiti (34,1 GB/s). Vis délto yra kity techniniy

niuansy: procesoriaus branduolio skai¢iavimy nasumas, RAM atminties
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greitis ir vélinimas, todél pirminiai rezultatai tiesiogiai nebuvo lyginti, o
superkompiuteryje, naudojant vieng procesoriy, atliktas naujas bazinis

skaic¢iavimas.

Superkompiuteris — sistema, i$ esmés skirtinga nuo asmeninio kompiute-
rio: jos mazgai tarpusavyje gali susisiekti tik tinklu, vienas mazgas negali
tiesiogiai prieiti prie kito mazgo RAM turinio, visiems mazgams pasiekia-
mas tik tas pats kietojo disko turinys. Dél iy priezasciy superkompiuteriu
buvo atliekamas tik MPI versijos tyrimas. Gijomis islygiagretinta prog-
ramos versija teoriSkai galima buty tirti vieno superkompiuterio mazgo
ribose. To atsisakyta dél dvieju priezasc¢iy: MPI ir giju efektyvumo lygi-
nimas jau buvo atliktas asmeniniu kompiuteriu, be to, nebuvo pagrindo

tikétis kitu rezultaty.

Superkompiuteryje pastebimas (zr. 2.10 pav.) mazesnis rezultaty iSsi-
barstymas. Tai, tikétina, skiriasi nuo rezultaty, gauty asmeniniu kom-
piuteriu, nes superkompiuteryje néra skai¢iavimams nebiitiny programuy,
galin¢iy panaudoti reikalingus resursus. Be to, superkompiuteris neveikia

virtualiy masiny pagrindu, todél skai¢iavimams lieka papildomy resursy.

Tiriamosios sistemos mazguose yra po 4 procesorius, turincius po 4
branduolius, todél tyrimas buvo atliekamas pradedant nuo 4 procesy,
ju skaiciu keliant po 4 iki 32 procesy. Taip pat, kaip jau minéta, buvo

atliktas bazinis skaiciavimas, naudojant viena procesoriy.

Lygiagretinimas superkompiuteryje rodo tas pacias tendencijas, kaip
ir skai¢iavimai asmeniniu kompiuteriu, tik, esant didesniam procesoriy
skaiciui, geriau matyti, kaip greitai krinta skaiciavimo efektyvumas.
Jei apie 96 proc. kodo veikia lygiagreciai, esant 32 procesoriams, pa-
greitéjimas siekia mazdaug 14 karty, o tai reiskia, kad islygiagretinimo
efektyvumas, esant aptartoms salygoms, yra apie 45 proc. (zr. 2.12

pav.).
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3. EEG KLASIFIKAVIMAS PAGAL
DIAGNOZE

Siame skyriuje aprasomas sitilomas EEG klasifikavimo pagal diagnoze
algoritmas, jo tyrimo eksperimenty rezultatai. Aptariami naudoti klasi-
fikatoriai, pateikiamos siy klasifikatoriu kokybés metrikos, apzvelgiami

kiti klasifikavimui svarbus aspektai.

3.1 EEG KLASIFIKAVIMO PAGAL DIAGNOZE
ALGORITMAS

Disertacijoje siulomi trys EEG klasifikavimo pagal diagnoze algoritmo

variantai. Visiems jiems budingi tie patys esminiai zingsniai:

pirminis EEG apdorojimas (zr. 2.1.1 poskyri),

EEG piky aptikimas (zr. 2 skyriu),

aptikty EEG piky paruosimas klasifikavimo algoritmams (pvz.,

nustatomi geometriniai parametrai),

maginy mokymusi pagristu klasifikatoriu taikymas.

EEG apdorojimo ir EEG piky aptikimo zingsniai yra bendri visiems siame
darbe sitlomiems EEG klasifikavimo pagal diagnoze algoritmo varian-
tams. Pagrindiniai algoritmo varianty skirtumai atsispindi paskutiniuose

dviejuose klasifikavimo zingsniuose (zr. 3.1 pav.).
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3.1 pav. Algoritmo eigos diagrama (storos juodos linijos zZymi galimus
algoritmo iSsisakojimus; darbe naudojami keli masiny mokymosi metodai,
aprasyti disertacijos 3.2 poskyryje)

3.2 MASINU MOKYMOSI KLASIFIKAVIMO
METODAI

Siame skyriuje aprasomi darbe naudoti klasifikavimo metodai. Pasirinkti
klasikiniai ir nauji algoritmai, naudojami medicininiams duomenims

klasifikuoti. Algoritmu igyvendinimai pasiekiami Python bibliotekose.

3.2.1 LDA

Tiesiné diskriminantiné analizé (angl. Linear discriminant analysis,
LDA) yra vienas i$ klasikiniu daugelio klasiy klasifikavimo metoduy. Tai
apibendrintas Fisherio tiesinio diskriminanto atvejis. LDA veikia panasiai
kaip ir pagrindiniy dedamuyjuy analizé, tac¢iau ne tik randa asis, kuriose
yra didziausia sklaida, bet ir papildomai iSplecia asi, per kurig iSsiskiria

klasifikuojamos grupés.

LDA rezultatai priklauso nuo stebimuy charakteristiky nepriklausomumo.

Atsizvelgiant i darbe nagrinéjamus duomenis, $ig duomenuy savybe uztik-
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rinti sudétinga. Vis délto aptariamas klasifikatorius jtrauktas i analize

kaip vienas i$ klasikiniy klasifikatoriy, galimy palyginti.

3.2.2 Logistiné regresija

Logistiné regresija (angl. Logistic regression) yra vienas is klasikiniu
regresiniy modeliy, padedanciy nustatyti tikimybe (tarp 0 ir 1), kad
objektas priklauso vienai i§ dvieju klasiu. Siuo tikslu naudojama logistiné
lygtis:

Lmaflf
y(z) = [ (3.1)

Cia Lyqe yra didziausia funkcijos verté, kj, — koeficientas, aprasantis
logistinés kreivés augimo sparta, x¢ — funkcijos vidutinés reiksmes (0,5)

vieta.

Pagrindinis logistinés regresijos privalumas — galima apskaic¢iuoti tiki-
mybe, ar klasifikuojamas objektas priklauso tam tikrai klasei. Minétina,
kad logistinés regresijos matematiniame aparate daroma prielaida, jog
duomenys, pagal kuriuos atliekamas klasifikavimas, yra matematiskai
nepriklausomi. Musuy atlikto tyrimo atveju tokios prielaidos uztikrin-
ti negalima dél medicininés duomeny kilmés ir itin sudétingos CNS
strukturos. Nepaisant to, atliekant eksperimentus, buvo istirtas ir sio

metodo veikimas.

3.2.3 MLP

Dirbtiniai neuroniniai tinklai (angl. Artificial neural networks, ANN)
yra vienas i$ klasikiniy masiny mokymosi metody, pradétyu plétoti 1950
1960 m. [45]. Viena i§ ANN formuy, naudotuy disertacijoje, yra daugias-
luoksnis perceptronas (angl. Multilayer perceptron, MLP)3. Sukurti MLP

3 Atsizvelgiant i tai, kad Sis klasifikatorius néra vienintelé darbe vartojama ANN
forma, daugiasluoksnis perceptronas toliau bus zymimas MLP santrumpa.
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10. AKSONAS
AXoN

9. RANVJE SASMAUKA

Nobus 8. PLOKSTELE

LAMINA

3.2 pav. Neurono modelis biologijoje [13] (autoriy teisiy nesaugoma
iliustracija)

leido gamtoje egzistuojancios nervu sistemos lastelés — neuronai. Nors
tiksli 1astelés struktira gali priklausyti nuo gyviino rusies ar nervy siste-
mos dalies, kurioje ji randama, MLP modeliui svarbios fundamentalios

neurono dalys ir funkcijos: dendritai, lastelés kunas ir aksonai (zr. 3.2

pav.).

Neurono dalys, priimancios signalus is kity neurony aksonuy, yra dendritai
(zr. 3.2 pav.). Ju atitikmuo neurono matematiniame modelyje yra ivestis
x; (7r. 3.3 pav.), ¢ia ¢ yra neurono jvesties numeris. Realios neurologinés
sistemos iSmoksta i vienus signalus reaguoti jautriau, i kitus maziau, i
kai kuriuos signalus visai nereaguoti. Tai budinga ir MLP — reagavimo
jautruma lemia svorio daugiklis w;; (zr. 3.3 pav.) (¢ia j yra neurono

numeris).

Ivestys, padaugintos i$ daugikliy, siun¢iamos j lastelés kuno atitikmeni,
sudetuvy ) x;w;; , o veliau — i aktyvacijos funkcijg, kurios paskirtis —
nuspresti, ar siysti zadinimo signala z (aksono atitikmuo) kitiems ne-
uronams, ar ne. Klasikiniame neurono modelyje galimos dvi iSvesties

reiksmeés (0 arba 1), priklausomai nuo to, ar jvestis virsijo aktyvacijos
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Aktyvacijos

funkcija

\_L &

.

. — : )
:

,

3.3 pav. MLP neurono modelis

funkcijos ribg r, ar ne.

MLP — tai tarpusavyje saveikaujanc¢iy neuronuy rinkinys. Taigi MLP

iSvestis gali buti apibrézta kaip:
= f(@@,7). (3.2)

Pageidaujama MLP iSvestis gali buti apibrézta kaip:

MLP mokymas reiskia radima tokiu w ir 7 reikSmiy, su kuriomis MLP
duodamas atsakymas 2z’ yra panasiausias ] d. Todeél reikia pasirinkti
tikslo funkcija P, kuri bus optimizuojama, t. y. bus ieskoma lokalaus
minimumo (vienu i§ gradientinio nuolydzio metody). Dél matematinio ir

programavimo patogumo dazniausiai naudojama funkcija:
oo 2
P=ld-4P. (3.4)

Tam, kad suveikimo riba r netrukdyty minétos israiskos optimizuoti,

ivedamas wy svoris, kuris visada dauginamas i§ —1 (dél matematinio
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patogumo) ir parenkamas taip, kad suveikimo riba buty r = 0.

Siame darbe MLP klasifikatoriams naudota Softmaz aktyvacijos funkcija,

kuri gali buti apibréziama kaip [45]:

2L
e”J
aJL = = (3.5)
Do e
j-tajam neuronui L-ajame sluoksnyje. Cia:
Z wfk aﬁ L w, (3.6)

x; yra MLP ivestis.

3.2.4 Atraminiy vektoriy masina

Atraminiy vektoriy masina (angl. Support vector machine, SVM) (apie
jos naudojima zr. 3.4 ir 3.5 skyriuose) yra masiny mokymusi pagristas

metodas, taikomas klasifikuojant ir kitais tikslais [2, 56].

Ivairus klasifikatoriai pasizymi skirtingomis klasiy atskyrimo strategijo-
mis. SVM yra pagrista ,placiausios gatvés“ principu, kai klasifikuojamas
imtis bandoma atskirti hiperpavirsiumi, labiausiai nutolusiu nuo abieju

imciy tasky (zr. 3.4 pav.).
Klasifikavimo taisyklé pirmajai klasei:
G-U >c

Antrajai klasei:
: ﬁ <c.

&L

Cia & yra atraminis vektorius (statmenas klasifikavimo plokstumai), o
U — vektorius, rodantis i klasifikuojama taska.
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3.4 pav. SVM ,placiausios gatves® principo pavyzdys (klasifikuojamas
grupes atskiriantis pavirsius bréziamas taip, kad buty kuo labiau nutoles
nuo abieju klasifikuojamu grupiu (iStisiné linija); ¢ yra atraminis vek-
torius (statmenas ,placiausiai gatvei®), U - vektorius, rodantis i nauja
klasifikuojama nezinomos grupeés taska (pazymeéta pilka spalva).

Pateikta klasifikavimo taisyklé nenurodo, kokio ilgio ir kaip turéty buti

bréziamas atraminis vektorius, todél jam taikomi tokie apribojimai:

Q‘f+_c>1, (37)

G-F —c< 1. (3.8)

Cia Z, yra vektorius i§ atraminio i Zinomg pirmosios klasés taska, o
Z_ — vektorius i$ atraminio i zinoma antrosios klasés taska. Apribojimai
reiskia, kad ,placiausia gatve“ (zr. 3.4 pav.) yra (—1;1) intervale (kai
atraminis vektorius skaliariskai dauginamas su Zinomu pirmos ar antros

grupés pavyzdziu).

Toliau apibréziame kintamaji y; (y; = 1 pirmosios klasés pavyzdziams,

y; = —1 antrosios klasés taskams). (3.7) ir (3.8) formules padauginame
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3.5 pav. SVM ,placiausios gatvés“ plocio apskaiciavimas (Cia x4 ir z_ —
pirmosios ir antrosios klasés taskai, esantys ,,gatvés pakrastyje“ pagal
(3.10) salyga)

i$ y; kintamojo. Atsizvelgiant i tai, kad y; = —1 antrosios klasés pavyz-
dziams, (3.8) formulés nelygybés zenklas pasikeiia i priesinga ir (3.7) ir

(3.8) nelygybés tampa vienodos:
yi (T;-d—¢) > 1, (3.9)

¢ia x; — vektorius i bet kurios klasés taska.

Atlikta operacija leidzia supaprastinti klasifikavimo taisykle iki vienos
nelygybés. Taip pat taikomas papildomas apribojimas taskams, esantiems

laciausios gatvés® pakrasciuose:
b))

yi (T;-d—¢)—1=0. (3.10)

Remiantis 3.5 pav. ir faktu, kad atraminis vektorius & yra statmenas
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»placiausiai gatvei“, galime apibrézti ,,placiausios gatves® ploti:

‘El

P= (g} —a2)- (3.11)

&l

I$ (3.11) ir (3.10) formuliy gauname, kad ,placiausios gatvés pakrastyje*:

r=1-¢ (3.12)
¥ =1+c. (3.13)
IS to iseina, kad: 5
P=_"_. (3.14)
<]

SVM ,placiausios gatvés“ radimas reiskia (3.14) israiSkos maksimizavi-
ma. Minétos israiskos maksimizavimas yra ekvivalentus tokios israiskos
minimizavimui:

P = %HQHQ. (3.15)

Keic¢iama todél, kad (3.15) israiSka minimizuoti yra matematiskai pa-
prasciau. Taip gaunamas optimizavimo su tam tikrais apribojimais

uzdavinys, kuri isspresti padeda Lagranzo daugikliai a;:

1
%

Minimizavimas reikalauja rasti taska, kur iSvestiné lygi nuliui:

a P//
o]

=W — Z Y Tq = 0. (3.17)
A

IS to iSeina, kad:

= ;. (3.18)
i



Kitas kintamasis, esantis (3.16) lygtyje, yra ¢, todél:

aP// .
90 = > dhy = 0.

(3.16) formule jkeélus i (3.16) ir suprastinus gaunama:

1 — —
P'=3 o - ) > > iy - . (3.19)
i i g

(3.19) formule galima minimizuoti skaitiniais metodais, taciau atkreipti-
nas démesys, kad minéta israiska iS esmés priklauso nuo z; ir x; skaliarineés

sandaugos.

(3.8) klasifikavimo taisykle taip pat galima perrasyti naudojantis atrami-

nio vektoriaus apibrézimu, remiantis (3.18) formule:

S iy U > 0. (3.20)

Minétina, kad visos klasifikuojamos aibés gali buti atskiriamos hiperplo-
kstuma, todél SVM naudojamos erdvinés transformacijos, klasifikuojama
erdve keic¢iancios kita erdve, kurioje galima atskirti klases. 3.6 pav.
vaizduojama erdvé efektyviai paverciama i 3.4 pav. vaizduojama erdve,

pasinaudojant branduoliu.

Branduolys gali buti apibréziamas kaip:
K (73, 75) = ¢(73) - o(75); (3.21)

¢ia ¢ yra transformacijos funkcija.
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3.6 pav. SVM su branduoliu taikymas klaséms, neatskiriamoms plokstu-
ma

Klasifikavimo taisyklé SVM su K branduoliu gali buti uzrasyta kaip:

n
S iy (@, 45) - U > 0. (3.22)
=1

Vietoje K (3.22) klasifikavimo taisykléje gali buti naudojamas bet koks
branduolys. Siame darbe (Zr. 3.4 ir 3.5 skyrius) buvo pritaikyti maginy
mokymosi srityje populiariausi naudojami branduoliai: tiesinis, kubinis

(Np = 3), sigmoidinis ir radialinés bazinés funkcijos (RBF).

Polinominiai branduoliai (Siame darbe — tiesinis ir kubinis) gali buti
uzrasomi:
K (a,45) = (@ - @ + 1), (3.23)

¢ia d — branduolio laipsnis.

RBF branduolys:
K (&,45) = exp (=]l - 5]°). (3.24)

¢ia v > 0.
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Sigmoidinis branduolys:

K (23, 4) = tanh (a:E'Z-T:B_} + c). (3.25)

3.2.5 Sprendimuy medis

Sprendimuy medziai yra vienas seniausiy ir populiariausiy masiny mo-
kymosi metodu [56]. Kiekvieno duomenuy imties elemento klasifikavi-
mas pradedamas nuo aukscéiausio medzio iSsiSakojimo. Duomeny imties
elemento charakteristikos tikrinamos pagal nustatytas taisykles, tada
duomuo perduodamas zemesnei Sakai. Procesas tesiamas tol, kol pasie-
kiamas paskutinis medzio issisakojimas, kuriame yra lapas (pvz., i ir j
klasés (zr. 3.7 pav.)).

Esama jvairiy sprendimy medzio klasifikatoriaus mokymo algoritmuy.
Dazniausiai naudojama sprendimy medzio indukcija is virsaus i apacia
(angl. top-down induction of decision trees, TDIDT) ir rekursyvus daliji-
mas (vadinamasis ,skaldyk ir valdyk* mokymas, angl. divide-and-conquer

learning) [56].

3.2.6 Atsitiktinis miskas

Atsitiktinis miskas yra kolektyvinis masiny mokymosi metodas [56].
Sprendi-muy medis ¢ia naudojamas kaip pamatinis klasifikatorius kartu su
Bagging (angl. Bootstrap AGGregatING) ir sprendimu medzio algoritmais.
Kiekvienas medis yra sukurtas pagal daline egzistuojanc¢iy mokymosi
duomenuy imti. Sukurti medziai néra genimi (angl. prunning), todél
gaunami medziai yra permokomi pagal savo mokymosi imties duomeny
dali. Siekiant gaunamuy medziy jvairovés, kiekvienas medis yra mokomas
ne su visomis klasifikuojamy duomenuy charakteristikomis. Atsitiktinis

charakteristiku rinkinys yra sudaromas kiekvienam issiSakojimui.
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1 sprendimo taisyklé
(pagal 1 pozymj)

N sprendimo taisyklé
(pagal N pozymj)

3.7 pav. Sprendimy medzio diagrama (kiekviename medzio iSsiSakojime
mokymosi imties elementai klasifikuojami pagal tam tikra pozymi i dvi
klases)

3.2.7 Labai atsitiktiniai medziai

Labai atsitiktiniai medziai yra kita sprendimy medzio kolektyviné varia-
cija. Cia, palyginti su atsitiktinio misko klasifikatoriumi [18], atsitiktines
variacijos esama daugiau. Aptariamas algoritmas placiai taikomas inter-
pretuojant dévimu jutikliy duomenis [68] ir medicinoje (smegenu augliams

nustatyti [61]). Tai paskatino rinktis §i metoda tirti disertacijoje.
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3.2.8 CNN

Konvoliucinis neuroninis tinklas (angl. Convolutional Neural Networtk,
CNN) yra vienas i§ masiny gilaus mokymosi metody, pagristu ANN,
ypac placiai taikomas klasifikuojant vaizdus ir kompiuteriy regoje. CNN
gali buti iSmokytas pastebeéti laikines ir erdvines priklausomybes, todél

taikomas ir signaly analizés uzdaviniuose.

3.2.8.1 Atgalinis klaidos sklidimas CNN

Dazniausiai naudojama kvadratiné netekties funkcija (angl. Loss Func-

tion):
(&

B =SS (3.26)
n=1m=1

N

Cia ¢ — Kklasifikuojamu klasiy skai¢ius (m — klasés numeris), N — moky-
mosi imties dydis (n — mokymosi imties elemento numeris), ¢ — n-tojo
imties elemento klasé, y* — neurono iSvestis m-tajam isvesties sluoksniui

atsakant i n-taja ivesti.

Atsizvelgiant i tai, kad visa netektis yra atskiru netek¢iy suma, atgaliniam
sklidimui naudojama netekties funkcija vienai klaidai (n—tajai ivesciai):
n 1< n n\2 1 7 112
E" = 5 Z (tm _ym) = §Ht -y ||2 (327)

m=1

Kaip matyti, gauta raiska primena (3.4) formule, nes CNN yra viena i$
patobulinty ANN formu: jterpiama konvoliuciniy ir sutelkimo sluoksniy,

ivedama kity Siame disertacijos poskyryje aprasytu pakeitimu.

Turint iprastus visiskai sujungtus sluoksnius (zr. 3.2.8.4 poskyri), galima

apskai¢iuoti EV dalines iSvestines svoriu atzvilgiu. Dabartini sluoksni
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pazymékime S. Sio sluoksnio iSvestis:

7 = f(a). (3.28)

@ =Wz + %, (3.29)
kur f yra aktyvacijos funkcija.

Viena is aktyvacijos funkciju, naudojamy CNN, yra sigmoidiné aktyva-
cijos funkcija (kartais dar vadinama logistine; siame darbe naudojama
CNN Kklasifikatoriuose) (kai z € [—o0, +00], f € [0,1]):

fla)=(1+ e—ﬁl’)_l . (3.30)

Minétina ir hiperbolinio tangento aktyvacijos funkcija (kai x € [—o0, +00],
f € [_a7 + a]):
f(x) = atanh (bz). (3.31)

3.2.8.2 Konvoliuciniai sluoksniai

Konvoliucinio sluoksnio pagrindiné funkcija yra pereito sluoksnio charakte-
ristiky zemélapio konvoliucija (arba sastika) su apmokomais branduoliais,
kuri perleidziama per aktyvacijos funkcija ji iSvesties charakteristiky

zemélapi. Gauname:

Fh=f( Y @K+ b)), (3.32)
i€M;

Cia * reigkia konvoliucijos operacija, M ; —dvesties Zemelapi, K — branduoli

(filtra), su kuriuo atliekama konvoliucija.
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3.2.8.3 Sutelkimo sluoksniai

Sutelkimo (angl. Subsampling Layer) sluoksnio funkcija — sumazin-
ti charakte-ristiky zZemeélapio dydi. Iprastai CNN, esant N jvesties
zemélapiams, turima ir N iSvesties zemélapiu. Sutelkimo sluoksnis pade-
da sumazinti ju dydi. Formaliai tai galima uzrasyti taip:

75 = f(8) down (51 +55). (3.33)

Cia down(-) reiskia sutelkimo (angl. Subsampling) funkcija. Tipiskai ji
susumuoja keliy charakteristiky reikSmes zemélapyje, taip sumazindama
iSvesties zemélapi. Iprastai kiekvienas sluoksnis turi savo daugikli g ir

poslinkio reiksme b, kurie randami mokant CNN.

3.2.8.4 Visiskai sujungti sluoksniai

Dazniausia visiskai sujungto sluoksnio paskirtis yra surinkti Zemiau
esanciy sluoksniy jvesti ir atlikti klasifikavimg. Daugiaklasiai CNN

klasifikatoriai gali turéti daug visiskai sujungtu sluoksniy.

Visiskai sujungtu sluoksniy tikslas — islyginti jvesties zemélapj i vektoriy,
kuris nurodytuy tikimybes, kad klasifikuojamas objektas priklauso gali-

moms klaséms.

3.2.8.5 Tipinés CNN architekturos

Siame poskyryje aptaréme esmines CNN matematinio aparato dalis ir
sluoksnius. Galimybiu sukonstruoti CNN i$ minétu sluoksniy yra be galo

daug.

Mokslinéje literaturoje nurodoma desimtys CNN architektiriniu modeliy,

kurie geriau negu kiti susidoroja su jiems skirtomis uzduotimis. Viena is
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pirmyju paplitusiy CNN architektury siandien yra zinoma kaip LeNet-
5 [34]. Siai architektiirai biidingi du konvoliucijos ir trys sutelkimo
sluoksniai. AlexNet architektura [31] prie LeNet-5 architekturos pridéjo
kelis papildomus sluoksnius; jai budingi 5 konvoliucijos ir 3 sutelkimo
sluoksniai. VGG-16 architektura [60] — tai patobulinta AlexNet. VGG-16
sudaro 13 konvoliucijos sluoksniu ir 3 sutelkimo sluoksniai. ResNet-50

[35] architekturai budingi net 152 sluoksniai.

Kaip jau minéta, CNN architektury yra labai daug. Ne visos jos aprasytos
mokslinéje literaturoje (ypa¢ recenzuojamoje), todél gana sudétinga
issiaiskinti visus ju privalumus ir trukumus. Minétina, kad tokiy CNN
architektury, kaip ResNet-50 ar Inception v1 (ir vélesniu modifikacijy),
nors ir naudojamyu moksliniuose tyrimuose, istakas galima atsekti tik
GitHub kodo pakeitimy sekimo ir dalijimosi platformoje ir iS menkos

dokumentacijos.

3.2.9 AdaBoost

Skirtingai nuo kitu aprasyty klasifikatoriy, AdaBoost (angl. Adaptive
Boosting) yra klasifikavimo metaalgoritmas. Jis tinka tik dvinarei klasifi-
kacijai. Metaalgoritmo esmé — pasitelkti grupe praséiau (bet ne mazesniu
negu 50 proc. tikslumu) klasifikuojané¢iy algoritmu (silpnu klasifikatoriy)
ir sudaryti klasifikatoriy, pasizyminti geresnémis klasifikavimo savybémis

(stipru klasifikatoriy).

Klasikiniame AdaBoost klasifikatoriuje im¢iai sudaryti naudojami LDA

klasifikatoriai, ta¢iau galima naudoti ir kitus.

Vykdant algoritma nauji silpnieji klasifikatoriai yra mokomi skirtingose
algoritmo iteracijose atpazinti ankstesnése iteracijose neteisingai sukla-
sifikuotus duomenis. Siems klasifikatoriams suteikiamas didesnis svoris
kitoje iteracijoje, mokant naujus modelius. Pagrindiné mintis — vélesni

modeliai gali kompensuoti ankstesniy modeliy padarytas klaidas.
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3.2.10 Daugumos balsavimo klasifikatorius

Daugumos balsavimo klasifikatorius gali veikti tik kartu su vienu ar

daugiau kity klasifikavimo metoduy.

Surenkami kity klasifikatoriu rezultatai. Kiekvienas klasifikavimo re-
zultatas laikomas vienu balsu uz atitinkamg klasifikavimo rezultata.
Suskaiciavus balsus, klasifikuojamas objektas priskiriamas kategorijai,

kuri surenka daugiausia balsy.

3.3 KLASIFIKATORIU TESTAVIMO METODIKA

3.3.1 Klasifikatoriu kokybés metrikos

Klasifikavimo kokybés jvertinimas atrodo gana paprastas — jvertinti
tiksluma (kiek EEG diagnozé klasifikuota tinkamai), taciau is tiesu tai
gana sudétinga. Disertacijos atveju jvertinti klasifikavimo kokybe dar
sunkiau, nes turimi duomenys yra nesubalansuoti, t. y. I grupés duomenu

yra gerokai daugiau negu II grupeés.

3.3.1.1 TPR ir TNR

Minétina, kad kai kurie klasifikatoriai pasiekia 75 proc. tiksluma, kla-
sifikuodami visus testinés imties duomenis (pavyzdziui, I grupés EEG)
[42]. Tokiu klasifikatoriu tikslumas gana aukstas, tac¢iau dél tam tikry
priezasciy jie néra tinkami naudoti praktiskai (pavyzdziui, Siame darbe).

Disertacijoje pagrindinémis laikytos dvi metrikos:

e TPR (angl. True positive rate) — teigiamai klasifikuoty teigiamu

pavyzdziu dalis, absoliutusis Siy pavyzdziyu skaiCius zymimas TP;
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e TNR (angl. True negative rate) — neigiamai klasifikuoty neigiamy

pavyzdziu dalis, absoliutusis Siy pavyzdziu skaic¢ius zymimas TN.
Taip pat galima apibrézti dvi metrikas, priesingas minétosioms:

e FPR: (angl. Fulse Positive Rate) — teigiamai klasifikuoty neigiamuy

pavyzdziu dalis, absoliutusis siy pavyzdziy skaic¢ius zymimas FP;

e FNR: (angl. False Negative Rate) — neigiamai klasifikuotu teigiamy

pavyzdziu dalis, absoliutusis siy pavyzdziyu skaic¢ius zymimas FN.

Geras klasifikatorius turéty pasizymeéti kuo aukstesniais tiek TPR, tiek
TNR. Tai reiksty, kad klasifikatorius gali tiksliai klasifikuoti tiek I, tiek
ir IT grupés EEG. Anksc¢iau minétas klasifikatorius, klasifikuojantis viska
kaip vieng grupe, pasizymétu labai auksta viena is metriky, taciau kitos

metrikos reikSmé buty lygi nuliui.

Kalbamosios metrikos leidzia gana tiksliai atskirti tikslius ir ,sukc¢iauja-
néius* klasifikatorius. Sios savybés ir 1émé metriky pasirinkimg disertaci-

joje.

3.3.1.2 Matthewso koreliacijos koeficientas

Matthewso koreliacijos koeficientas yra dvinario (dvi klases klasifikuo-
jancio) klasifikatoriaus kokybés metrika, 1975 m. iSvesta Briano W.
Matthewso [38]. Si metrika gerai tinka nesubalansuotoms duomeny

imtims [9]. Metrika apibréziama taip:

(TP-TN — FP-FN)

MOC = P PP\ TP+ FN) (TN £ FP) (TN < FN)’

(3.34)
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3.3.1.3 Tikslumas ir svorinis tikslumas

Tikslumas yra lengviausiai suprantama klasifikatoriaus kokybés metrika:
tai teisingai klasifikuotu pavyzdziy santykis su visais pavyzdziais. Kaip
jau minéta, auksta Sios metrikos verté nereiskia geros klasifikavimo
kokybés. Vis délto zema Sios metrikos reikSmeé (artima 0,5 arba mazesné)
reiskia prasta klasifikavimo kokybe. Tai padeda atpazinti zemos kokybés

klasifikatorius.

Svorinis tikslumas apibréziamas kaip visu klasifikuojamu klasiy teisin-
gai klasifikuotu pavyzdziu daliu vidurkis. Disertacijoje skiriamos dvi
klasés (I ir IT grupés), tad svorinis tikslumas yra TPR ir TNR vidur-
kis. Kalbamoji metrika labiau tinka klasifikatoriu kokybei vertinti esant

nevienodam turimy klasiy duomeny kiekiui.

3.3.1.4 Recall ir F} metrikos

Recall metrika yra teisingai teigiamai klasifikuoty pavyzdziy dalis, pada-
lyta iS teisingai teigiamai ir neteisingai neigiamai klasifikuoty pavyzdziy
dalies sumos. Si metrika gana daznai naudojama klasifikacijoms moks-
linéje literaturoje, taciau, atliekant pristatomsa tyrima, ji nebuvo itin
informatyvi, nes neatsizvelgia i pavyzdziu kiekio skirtumus klasifikuoja-

mose grupese.

F1 metrika apibréziama kaip tikslumo ir recall metriky harmoninis vi-

durkis:
2 - Tikslumas - Recall

Tikslumas + Recall ~

F = (3.35)

3.3.1.5 ROC AUC

ROC kreive (angl. Receiver Operating Characteristic Curve) yra klasifi-

katoriaus diagnostiniu galimybiy iliustracija, vaizduojanti TPR priklau-
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somybe nuo FPR. ROC AUC (angl. Area Under Curve) yra plotas po
ROC kreive, sunormuotas j visa grafiko plota.

3.3.1.6 Cohen &

Cohen k yra dar viena klasifikatoriy vertinimo metrika, atsizvelgianti tiek
i duomenu kiekio skirtumus klasése, tiek i tikimybe klasifikatoriui atspéti
klasifikuojamo duomens klase. Si metrika kritikuojama deél rezultaty
inter-pretavimo sudétingumo [23]. Vis délto ji gali buti naudinga Siame

darbe, ja nagrinéjant kitu metriky kontekste.

3.3.2  k-fold kryzminé patikra

k-fold kryzminé patikra disertacijoje yra ypac¢ svarbus masiny mokymosi
algoritmu klasifikavimo kokybés analizés jrankis. Dirbant su masiny
mokymosi algoritmais, gana daznai susiduriama su problema, kai, ne-
daug pakeitus mokymosi imtj, reiksmingai pasikei¢ia algoritmo klasifi-
kavimo kokybé, todél tampa sudétinga rezultatus apibendrinti. Vienas

efektyviausiy budu Siems pokycCiams nustatyti yra k-fold analizé.

Siame darbe k-fold analizé buvo atlickama atsizvelgiant i turimus paci-
entus. Pirmoje algoritmo iteracijoje isrinkti visi turimi pirmojo paciento
EEG duomenys, jie naudoti klasifikatoriui testuoti. Kitu pacienty duo-
menys naudoti kaip mokymosi ir validavimo? imtis. Antroje iteracijoje
isskiriamas antrasis pacientas ir atliekama ta pati operacija. Kartojama

tiek karty, kiek turima pacienty EEG duomeny imtyje.

Metodikos privalumas — klasifikatoriaus kokybé jvertinama daug karty,

todél galima vertinti klasifikatoriu stabilumg. Tai ypa¢ svarbu, norint

4Validavimo imtis yra mokymosi imties dalis. Ji naudojama mokomam modeliui
vertinti. Kadangi j validavimo imtyje esancius duomenis i$ dalies atsizvelgiama
mokymo metu, jie nenaudojami testavimo imtyje.
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atpazinti ,,spéliojancius® klasifikatorius, kurie, susiklosc¢ius tinkamoms
aplinkybéms, gali atspéti testavimo imties diagnozes. k-fold analizés
metu gaunamas gana stabilus rezultatas, o tai rodo, kad Sis rezultatas,

veikiausiai, yra tikras.

3.4 EEG KLASIFIKAVIMO ALGORITMAS,
NAUDOJANTIS GEOMETRINIUS PIKU
PARAMETRUS

Siame poskyryje aptarsime rekomenduoting EEG klasifikavimo pagal
diagnoze algoritmo versija, naudojancia EEG piky geometrines charakte-

ristikas.

3.4.1 EEG piko geometriniy charakteristiky nustatymas

Siekiant jvertinti pagrindines EEG piko metrikas, skai¢iuojami keli tarpi-
niai parametrai. Disertacijoje nagrinéjami tokie parametrai, kaip piko
pakilimo ir nusileidimo greiciai ir plotis pusaukstyje (apibrésime juos
veliau). Norint apibrézti piko pakilimo ir nusileidimo greicius, reikia
signalo atraminés linijos, kuri naudojama piko maksimumui ir pusei Sio
maksimumo apskaic¢iuoti. Atraminé linija apskaiciuojama vidurkinant
signalo vertes pries pika ir po jo, imant trukme, kuri lygi apie 50 proc.
viso EEG piko trukmeés, tiek esant 5 proc. laiko pries pika, tiek 20 proc.
laiko po piko, pries pika ir po jo paliekant tarpus, siekiant, kad pikas
neturéty itakos signalo pamatinei vertei nustatyti. Signalo atraminé
linija néra algoritmo iSvesties parametras, bet figuruoja apskaiciuojant
kitas metrikas. Minéti laiko tarpai, kaip duodantys geriausiy rezultaty,
parenkami eksperimentiskai. Atkreiptinas démesys, kad per trumpi pe-

riodai lemia dideli triukSma rezultatuose, o per ilgi periodai turi didele
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------ Signalo atraminé linija
=== Piko pakilimo ir nusileidimo kampai
“ 7 Piko plotis pusaukstyje

Atraminé linija po piko

Signalo fonas

3.8 pav. EEG piko ir jo parametry schematinis vaizdavimas (k, — piko
pakilimo koeficientas, k4 — piko nusileidimo koeficientas)

rizika buti paveikti kitu greta esanciyu piky, artefaktu ar naturaliai sme-
genyse pasitaikanciy léty bangu. EEG pikas turi buti aptinkamas ir bent
viename gretimame kanale. Dazniausiai jis stebimas iS karto keliuose

gretimuose kanaluose.

Disertacijoje nagrinéjamas tik tas kanalas, kuriame pikai yra stipriausi.
Algoritmas automatiskai parenka analizei kanalg, kuriame randama
daugiausia piky, nes kanaluose, kuriuose pikai silpnesni, algoritmas dalies
siu piku nepastebi. Piko maksimumas yra didziausia arba maziausia verté
(-0,05/4-0,05) sekundés intervale nuo detektuoto piko (pikai gali buti tiek
teigiami, tiek neigiami). Pasirinkta intervala lemia tai, kad piko greita
banga gali buti iki 0,1s trukmés. Minéti parametrai naudojami piko
plociui pusaukstyje apskaic¢iuoti. Piky charakteristikos vaizduojamos 3.8

pav.

Plotis pusaukstyje pasirenkamas dél keliy priezasc¢iy. Pirmiausia, piko
plo¢io matavimas ties atramine linija yra netikslus: neimanoma tiksliai
nustatyti, kur prasideda ir baigiasi pikas, nes piko pradzia yra susiliejusi

su matavimo aparaturos triukSmu ir normalia fonine smegeny veikla.
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Antra, tai standartiné kity sri¢iy praktika, kur dirbama su triukSmingais
signalais, pavyzdziui, spektroskopijoje [50, 53]. Plotis pusaukstyje teikia
tg pacia informacijg kaip ir piko plotis, bet yra maziau paveiktas ivairaus

triuksmo.

Véliau apskaiciuojami piko pakilimo ir nusileidimo koeficientai k,, ir
kq. Jie skai¢iuojami atitinkamas piko dalis aproksimuojant tiesémis
maziausiy kvadraty metodu, atitinkamai pries didziausia piko reiksSme ir
po jos. Tiesé aproksimuojama neimant 20 proc. iki didziausios vertés ir

tiek pat paliekant iki zemiausio piko tasko.

Toliau atliekama EEG piky wvalidacija pagal piky parametrus
(zr. 2.1.6 poskyri).

3.4.2 Masiny mokymusi pagristu klasifikatoriy taikymas
klasifikuojant EEG pagal EEG piky geometrinius

parametrus
Aptikus EEG pikus ir nustacius ju geometrinius parametrus, kitas algo-
ritmo zZingsnis — nustatyti diagnoze. Norint rasti tinkamiausia algoritma,

reikia issiaiskinti:

e kurie EEG piko geometriniai parametrai yra reikSmingiausi,
e kiek EEG piky reikia diagnozei nustatyti,
e kuris klasifikatorius tiksliausiai geba atpazinti diagnoze.

3.4.2.1 EEG piky geometriniy parametry perdavimo budo pasirinkimas

EEG piky geometriniy parametry perdavimo strategija pasirenkama

atsizvelgiant j kelis esminius veiksnius. Visy pirma, ji turéty tikti kuo
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3.1 lentelée. EEG piky geometriniy parametry perdavimo strategija (p
indeksas zymi piko eilés numeri, f indeksas — parametro eilés numeri,
Npikai — piku skai¢iy, perduodama klasifikatoriui)

Ivesties o
parametras 1 2 | M M+1| .. | MNpjta
Duomuo pifi | pife | - | p1fm | p2fi oo | PNpipai S M

didesniam masiny mokymusi pagristu metodologiju skaiciui. Antra,
EEG pikas gali turéti ne vieng reikSmini parametra, pagal kuri gali
buti klasifikuojamas. Trecia, tikétina diagnozé greic¢iausiai negali buti

nustatyta i$ vieno EEG piko.

Atsizvelgiant i tai, kad beveik visos masiny mokymusi pagristos klasifi-
kavimo metodologijos reikalauja vienodo ilgio jvesties, pasiulyta piku ir
ju parametry sudéjimo paeiliui strategija (zr. 3.1. lentele). Strategijos
pasirinkima lémé tai, kad, nustacius tinkamiausia EEG piky skaiciy ir
tinkamiausius ju parametrus, ivesties ilgis masiny mokymusi pagristiems

klasifikatoriams visada bus fiksuotas.

Tolesni eksperimentai su geometriniais EEG piky parametrais buvo

atliekami taikant minéta strategija.

3.4.2.2 Netinkamu klasifikatoriy pasalinimas i$ tolesnés analizés

Atlikus eksperimentus su 3.2 skyriuje aprasSytais klasifikavimo metodais,
paaiskéjo, kad kai kurie i$ ju akivaizdziai netinka EEG klasifikuoti.
LDA buvo atmesta dél mazo klasifikavimo tikslumo (53 %). SVM,
turincdios tiesinj ir kvadratini branduolius, rezultatai buvo visapusiskai
blogesni, palyginti su SVM, turinc¢ios kubini branduoli, rezultatais (dél
Sios priezasties toliau analizei taikyta tik SVM su kubiniu branduoliu).
SVM su RBF branduoliu visas jvestis klasifikavo kaip I grupe, todél sio
klasifikatoriaus taip pat atsisakyta.
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3.2 lentelé. EEG klasifikavimo tikslumas, naudojant EEG piky geometri-
nius parametrus (N, = 3 reiskia kubini SVM branduolj)

. Lt . Labai Idealus
Verté / Atsitiktinis | Sprendimu | 4 cootinis | AdaBoost | MLP | SVM | Kiasifi-
Algoritmas | miskas medis . N, =3 .

medis katorius

Tikslumas 0,78 0,76 0,80 0,81 0,75 0,69 1,00
TPR 0,79 0,76 0,83 0,90 0,79 0,79 1,00
TNR 0,74 0,77 0,71 0,52 0,74 0,48 1,00
Fy 0,76 0,76 0,75 0,64 0,78 0,57 1,00
ROC AUC | 0,53 0,49 0,56 0,69 0,64 0,49 1,00
Cohen « 0,06 -0,01 0,12 0,38 0,28 0,26 1,00
Matthewso

koreliacijos | 0,07 -0,01 0,15 0,42 0,38 0,28 1,00
koeficientas

Recall 0,78 0,76 0,81 0,84 0,78 0,69 1,00

3.4.2.3 Klasifikavimo pagal EEG piky geometrinius parametrus

rezultatai

Klasifikatoriy, kurie nebuvo atmesti (zr. 3.4.2.2 poskyri), rezultatai

pateikiami 3.2 lenteléje.

Geriausiai veikiantis algoritmas pagal tiksluma yra AdaBoost, taciau jo
TPR (II grupei aptikti) yra zemas. Dél Sios priezasties AdaBoost negali
buti naudojamas EEG pikams klasifikuoti pagal diagnoze, remiantis
EEG piky geometriniy parametry duomenimis. Dél minétos priezasties

netinka ir SVM su kubiniu branduoliu.

Atlikus tyrima, nustatyti klasifikavimo algoritmai, potencialiai tinkami
EEG pagal diagnoze klasifikuoti: MLP, atsitiktinis miskas, sprendimuy
medis ir labai atsitiktinis medis. Tolesnei analizei pasirinktas MLP (gerai
geba atpazinti II grupés pacientus, budingos aukstesnés Cohen x koefi-
ciento reiksmeés). Cohen k koeficiento reikSmé parodé, kad atsitiktinio
misko, sprendimy medzio ir labai atsitiktinio medzio rezultatai yra pa-
nasus j spéliojima. Kaip jau buvo minéta, I ir II grupiy EEG ir pacienty

skaic¢ius nevienodas, todél algoritmas gali priimti spéliojimo strategija.

Dél nurodyty priezasciy tolesni eksperimentai klasifikuojant EEG pagal
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3.3 lentelé. Tinkamiausia klasifikatoriams EEG piky parametry perdavi-
mo strategija (k, ir kg — EEG piko pakilimo ir nusileidimo koeficientai
(zr. 3.8 pav.), Npjkq; — pateikiamy EEG piku skai¢ius)

Ivesties

1 2 4 v | 2Npikai — 1 | 2Npikai
parametras 3 Pikai Pikai
Duomuo kut | kqr | ku2 | ka2 | ... kUNPikai dePikai

piku parametrus atliekami taikant MLP klasifikatoriy.

3.4.2.4 Tinkamiausio EEG piku skaiciaus ir parametru parinkimas

EEG piky skaicius ir svarbiausiy EEG piku geometriniy parametry
nustatymas yra du atskiri uzdaviniai, taciau jie negali buti visiskai atskirti
vienas nuo kito. Turint netinkama EEG piky skai¢iy ar netinkamus ju
parametrus, masiny mokymosi metodais diagnozé negali buti tinkamai

nustatyta.

Pirminiai eksperimentai buvo atliekami naudojant visus turimus EEG
piku parametrus (zr. 3.4.1 poskyri). Eksperimentais nustatyta, kad
tinkamiausias EEG piku skaicius yra apie 100 EEG piku (zinant, kad
kiekvienas pikas turi du parametrus (k,, ir kq), klasifikatoriui perduodama
200 parametry): imant maziau veréiy, tikslumas mazéja, imant daugiau

verciy, klasifikavimo tikslumas neauga.

Atsizvelgiant i gauta informacija, atliktas eksperimentas, skirtas nustatyti
klasifikavimui tinkamiausius EEG piky parametrus. EEG pagal ju piku
duomenis klasifikuoti eksperimentiskai, kaskart iSmetant po vieng EEG
piko parametra. Eksperimenty metu nustatyta, kad didziausia testiniy
klasifikatoriy tiksluma lemia EEG piko pakilimo ir nusileidimo koeficientai

ir naudojama strategija (zr. 3.3 lentele).

Radus tinkamiausius klasifikuoti EEG piky parametrus, pereita prie

optimalaus EEG pikuy skaic¢iaus nustatymo. 3.9 pav. vaizduojama klasifi-
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3.9 pav. EEG klasifikavimo tikslumo priklausomybé nuo EEG piky

skaic¢iaus, naudojant MLP pagrista klasifikatoriu

kavimo tikslumo priklausomybé nuo EEG piku skaic¢iaus ir pasirinkty

parametry. Minétina, kad, naudojant k, ir kg4, klasifikavimo tikslumas

auga greiciausiai.

Tikslumas (angl. accuracy) apibréziamas kaip teisingai teigiamai klasifi-

kuotu pavyzdziy santykis su visais pavyzdziais.

Tolesni eksperimentai buvo atliekami naudojant 100 EEG piku k,, ir kg
parametrus.
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3.4.2.5 Klasifikavimo tikslumo ribos nustatymas

Isnagrinéjus 3.9 pav., galima daryti iSvada, kad kuo daugiau EEG pikuy
turima, tuo tiksliau gali buti automatiskai nustatoma EEG diagnozé.
Teoris-kai buty idealu turéti begalini pacienty ir piky skaic¢iy, taciau
realybéje sie skaiciai yra riboti. Tikslumo priklausomybé nuo EEG piky

skaic¢iaus aproksimuota tokia analitine funkcija:

1
A(Npikai) = , (3.36)

C
1 __icC
Npikai + C2 s

¢ia A — klasifikavimo tikslumas, Np;rq; — EEG piku skaicius.

(3.36) formulé parinkta pagal §i kriteriju: atliekant eksperimentus, buvo
stebimas tikslumo jsisotinimas didéjant piku skaiéiui, todél rinktasi is
funkciju, artéjanciy prie asimptotinés vertés (naudotasi Origin 2018
programy paketu). Pasirinkta funkcija, kuria duomenis aproksima-
vus maziausiy kvadraty metodu, buvo gaunama maziausia nuokrypiy

kvadraty suma.

Radus (3.36) lygties parametrus maziausiy kvadraty metodu pagal tiks-
lumo priklausomybe nuo EEG pikuy skaiciaus, gautos tokios reikSmeés:
C1 =~ 0,065, (5 =~ 16,51 ir C5 =~ 0,012726. Taigi vidutinis tikslumas,
turint 100 EEG piku (Npike; = 100) sarasa, yra:

A(100) =~ 75,3 %. (3.37)
Kai turimy EEG piky skaicius artéja i begalybe Npirqe; — oo (darant
prielaida, kad EEG piku parametry sarasu ilgis auga), aproksimuotoji

A(Npikai) funkcija artéja prie asimptotinés reikSmes:

1
A(Npirai) = & ~ 186 %. (3.38)
3
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3.4 lentelé. Isbandytos MLP architekturos (atsizvelgiant i tai, kad ivesties
ir iSvesties sluoksniu dydis apribotas turimy duomeny, buvo kei¢iamas
paslépto sluoksnio dydis)

Paslépto sluoksnio dydis | 5 10 15 20 25 ... | 100
TPR 0,61 | 0,76 | 0,79 | 0,79 | 0,74 | ... | 0,59
TNR 0,59 | 0,71 | 0,72 | 0,74 | 0,70 | ... | 0,54

3.4.2.6 MLP architekturos optimizavimas

Atsizvelgiant i tai, kad MLP klasifikatorius gali turéti skirtingg neuronu
ir ju sluoksniy skaic¢iy, MLP architektura optimizuota kuo aukstesniam

tikslumui (ir kitoms charakteristikoms) pasiekti.

Isbandyta ivairiy MLP architekturu (zr. 3.4 lentelg). Eksperimentais
nusta-tyta, kad geriausia MLP architektura (kuria gauti aprasSyti rezulta-
tai) yra 1 pasléptas sluoksnis su 20 neuronu. Ivesties sluoksnio neuronuy
skaic¢iy diktuoja ivesties duomenu skai¢ius ($iuo atveju — 200), iSvesties —

iSvesties klasiy skaicius (Siuo atveju — 1 neuronas).

3.4.3 EEG pikyu geometriniy charakteristiky analizé

Zinant EEG klasifikavimo pagal diagnoze, naudojant EEG piky geo-
metrinius parametrus, rezultatus, kyla klausimas, kokios siy parametry
savybes lemia galimybe klasifikuoti EEG pagal diagnoze. Minétos savybés
atskleidziamos 3.10 ir 3.11 pav.

Kaip matyti 3.11 pav., k, ir k; parametry erdvés persidengia, taciau
IT grupés parametrai pasklide placiau negu I grupés. Tikétina, kad masiny
mokymusi pagristi EEG klasifikatoriai atsiremia butent j §i klasifikuojamuy
EEG skirtuma.
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3.10 pav. k, ir kg ver¢iy pasiskirstymo histograma (A — I grupés k,, B —
IT grupés ky, C — I grupés kg, D — II grupés kq)
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3.11 pav. Konturiné I ir II grupiu k,, ir k4 pasiskirstymo diagrama (A
— I grupés, B — II grupés; kaip matyti, rezultaty intervalai persidengia,
taciau II grupés vertés pasklidusios placiau (kaip ir 3.10 pav.))
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3.5 EEG KLASIFIKAVIMAS, NAUDOJANT
SIGNALU ATKARPAS

Siame skyriuje pristatomas antras rekomenduotinas klasifikavimo algo-

ritmo variantas — EEG klasifikavimas pagal signaly atkarpas.

3.5.1 Duomenuy perdavimo strategijos pasirinkimas

Isnagrinéjus klasifikavimo galimybes, pasinaudojant EG piky geometri-
niais parametrais, pradétos nagrinéti kitos EEG piku duomeny perdavimo
galimybés [43]. Pagrindiné geometriniu EEG piky parametry gavimo
problema — esama atvejy, kai Sie parametrai nustatomi neteisingai. Be to,
néra zinoma, ar néra kity, klasifikuoti tinkamesniy EEG piku parametry.
Minétas galimas problemas i$ esmés iSsprendzia EEG signalo fragmento
naudojimas piko aplinkose. Nebelieka ir problemu dél galimai klaidingu
ar neinformatyviy EEG piky parametry nustatymo, nes Sis zingsnis

praleidziamas.

Kitas svarbus klausimas, kokios trukmés EEG signalo atkarpa reikalinga
tinkamai klasifikuoti EEG pagal diagnoze. I ir II grupiy EEG pasizymi
gerybinémis epileptoforminémis iskrovomis [14, 55, 64], kuriy trukmeé
yra ne didesné negu 200 ms. Néra zinoma, pagal kuria EEG piko
vieta iSmoks klasifikuoti masiny mokymosi algoritmai, todél pasirinktas
300 ms intervalas (po 150 ms i abi puses nuo detektuotos EEG piko
vietos). Atsizvelgiant i tai, kad visos turimos EEG buvo jrasytos 256 Hz

diskretizacijos dazniu,
Nelementai = 256 Hz - 0,35 = 76,8 ~ 77. (3.39)

Taigi nesudétingas skaic¢iavimas atskleidzia, jog, naudojant 77 EEG piko

signalo elementus, imamas visas EEG signalo ruozas, kuriame yra EEG
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3.12 pav. EEG klasifikavimas pagal diagnoze, naudojant EEG signalo,
kuriame aptiktas EEG pikas, duomenis

pikas. Turédami vienoda EEG pikuy ilgi ir skaiciy, turésime ir visada
vienodo ilgio ivesti masiny mokymusi pagristiems klasifikatoriams. Jvestis
klasifikatoriams gaunama paeiliui sudedant EEG signaly iSkarpas kanale,

kuriame aptiktas EEG pikas (zr. 3.12 pav.).

3.5.2  EEG Kklasifikatoriy tyrimas, naudojant EEG signalo atkarpas

Tie patys klasifikatoriai, kuriuos jau aptaréme vertindami ju tinkamuma
EEG pikams klasifikuoti pagal geometrinius parametrus, tirti ir naudojant

k-fold kryzmineg patikra (zr. 3.5 lentele).

Rezultatai skiriasi nuo anksé¢iau gautyju. MLP rezultatai (net ir atlikus
architekturos optimizacija) EEG pikams klasifikuoti minétu budu yra
prasti. SVM rezultatai panasus i gautuosius atlikus eksperimenta su

EEG piky geometriniais parametrais.

Kaip potencialiai geriausi klasifikatoriai isryskéjo sprendimy medzio, at-
sitiktinio misko ir labai atsitiktinio medzio klasifikatoriai. Tinkamiausias
klasifikatorius — labai atsitiktinis medis (tiek dél auksto TPR, tiek deél
TNR). Atlikus eksperimenta su jiprasta duomeny imtimi, labai atsitiktinio

medzio klasifikatoriaus tikslumas — 82 proc.
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3.5 lentelé. EEG klasifikavimo tikslumas, naudojant EEG signaly atkar-
pas kanale, kuriame aptiktas EEG pikas, tiriant k-fold kryzmine patikra
(Np = 3 reiskia kubini SVM branduoli, SD — standartini nuokrypi (angl.
standard deviation) tarp k-fold testu)

Algoritmas \ Metrika TPR | SD | TNR | SD

Logistiné regresija 0,636 | 0,001 | 0,599 | 0,008
Atsitiktinis miskas 0,851 | 0,05 | 0,768 | 0,016
Sprendimy medis 0,906 | 0,008 | 0,683 | 0,011
Labai atsitiktinis medis 0,915 | 0,003 | 0,805 | 0,017
AdaBoost 0,765 | 0,031 | 0,781 | 0,053
LDA 0,949 | 0,001 | 0,467 | 0,002
MLP 0,601 | 0,029 | 0,58 0,04

SVM N, =3 0,879 | 0,02 | 0,124 | 0,019
SVM su RBF branduoliu 0,783 | 0,058 | 0,264 | 0,041
SVM su sigmoidiniu branduoliu | 0,579 | 0,063 | 0,511 | 0,042

3.6 EEG KLASIFIKAVIMAS, NAUDOJANT VISU
EEG KANALU DUOMENIS

Dar vienas rekomenduotinas EEG klasifikavimo pagal diagnoze algorit-
mo variantas naudoja visy 21 EEG kanalo (tarptautinéje 10-20 EEG
sistemoje) duomenis EEG piko aplinkoje. Konvoliuciniai neuroniniai
tinklai (CNN) mokslinéje literaturoje yra pripazinti vienais geriausiu
vaizdy klasifikatoriy [16, 31, 37, 71]. CNN pradedami placiai taikyti ir
signalams klasifikuoti [29, 49]. Daug sékmingu CNN taikymo pavyzdziu
yra ir medicinoje [7, 33], iskaitant medicininiy signaly analize [4, 5].
Atsizvelgus j mokslinés literaturos Saltiniy, patvirtinanc¢iy puikius CNN
rezultatus, gausa, EEG klasifikavimo pagal diagnoze algoritmo varianta,

pagrista CNN, nuspresta istirti ir disertacijoje.
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3.6 lentele. CNN standartiniy architektury veikimo palyginimas

Imtis Mokymosi Testavimo
Architektura \ Metrika | TPR | TNR | TPR | TNR
LeNet-5 0,88 0,87 0,51 0,52
AlexNet 0,90 0,88 0,53 0,50
VGG-16 0,91 0,89 0,55 0,54
ResNet-50 0,99 0,99 0,51 0,50

3.6.1 EEG duomeny perdavimo CNN klasifikatoriui strategija

Geriausiai iStirtas CNN taikymas vaizdams klasifikuoti [6, 58]. Be to, nau-
dojant jvairius metodus (pavyzdziui, verc¢iant i spektrogramas), signalai
konvertuojami i vaizdus ar kitas matricas [29]. Gydytojai, nagrinédami
pacienty EEG pikus, taip pat atsizvelgia i keliy EEG kanaly informacija
[55, 57]. Atsizvelgus i minétas aplinkybes, buvo nuspresta naudoti ne tik
kanalo, kuriame aptiktas EEG pikas (plg. 3.4 skyriu), bet visu 21 EEG

kanalo duomenis.

Kaip nustatyta 3.5.1 poskyryje, tinkamiausias EEG atkarpos ilgis yra
apie 300 ms arba 77 elementai aptikto EEG piko aplinkoje. Dél sios
priezasties kiekvienam klasifikuojamam EEG pikui sukonstruota ir CNN
klasifikatoriui perduota 21x77 dydzio matrica (21 EEG kanalas po 77

elementus) (zr. 3.13 pav.).

3.6.2 CNN architekturos pasirinkimas

Tiek mokslinéje literaturoje, tiek kituose saltiniuose skelbiama daug infor-
macijos apie jvairias CNN architekturas. Daugelis $iu architektury skirtos
ivairiems vaizdams klasifikuoti [31, 34, 60]. Disertacijoje nagrinéjama
problema — EEG klasifikavimas pagal diagnozes — gana unikali, CNN

architektiira siai problemai optimizuoti néra tirta.
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Darbe isbandyta keletas zinomy CNN architektury, sekmingai naudoty ki-
toms klasifikavimo uzduotims atlikti. Pirmiausia parengta keliu standarti-
niy CNN architektury veikimo lyginamoji analizé (zr. 3.6 lentele). Lygi-
nant CNN architekturas, pastebéta, kad paprastos CNN architekturos
(LeNet-5 ir AlexNet) yra linkusios nesimokyti (tiek mokymosi, tiek testa-
vimo tikslumas gana zemas), o sudétingos architekturos (kaip ResNet-50)
yra linkusios persimokyti (didelis mokymosi, ta¢iau Zemas testavimo
tikslumas) (Zr. 3.6 lentele). Atsizvelgus i Siuos duomenis, nustatyta, kad
geriausiomis pradinémis savybémis (TPR ir TNR) pasizymi VGG-16

architektura.

Nustacius tinkamiausia pradine architektira, iSbandytos jvairios jos
modifikacijos. Modifikacija atlikta rankiniu budu maksimizuojant testa-
vimo TPR, TNR ir tiksluma. Pasirinktos CNN architekturos duomenys

pateikiami 3.7 lenteléje.

3.7 lentele. CNN architektura

Sluoksnis Aprasymas ISvesties forma
Ivestis - 21, 77

2D konvoliucija 16 7x7 branduoliy 15, 71, 16

2D maks. sutelkimas | 2x2 santalkos dydis 14, 70, 16
2D konvoliucija 32 5x5 branduoliai 10, 66, 32

2D konvoliucija 64 3x3 branduoliai 7, 63, 64
Islyginimas - 5 952
Visiskai sujungta 1 024 neuronai, tanh akt. f-ja 1024
ISvestis 1 neuronas, sigmoidiné akt. f-ja 1

3.6.3 Vieno piko klasifikavimas, naudojant CNN

Kiekvienas pikas suklasifikuotas pagal EEG diagnoze. Pirminiai rezul-
tatai parodé mazdaug 58 proc. tiksluma (daugiau rezultaty zr. 3.8 ir
3.9 lentelése). Kaip matyti i$ gauty rezultaty, CNN klasifikatorius pagal
viena EEG pika néra pakankamas. Rezultatas nestebina, nes gydytojai
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3.13 pav. CNN Kklasifikatoriui perduodamos matricos pavyzdys (raudona
linija zymi apytiksli EEG piko centra)

3.8 lentelé. Vieno piko EEG klasifikatoriaus, pagristo CNN, klasifikavimo
matrica (angl. Confusion Matriz) k-fold analizei

I grupé II grupe
I grupe | 20 872 (TPR = 0,59) | 14 806 (FPR = 0,41)
IT grupe | 6 871 (FNR = 0,43) | 9 123 (TNR = 0,57)

neurologai, nustatydami diagnoze, iprastai remiasi daugiau negu vienu
EEG piku [55, 57]. CNN mokymosi metu parinkti svoriai vizualizuoti

disertacijos prieduose.

3.6.4 Daugumos balsavimo klasifikatorius su CNN

Kaip matyti i$ 3.6.3 poskyrio, vieno EEG piko nepakanka tiksliai diag-

nozei nustatyti. Problemg butu galima spresti analogiskai, kaip siulyta
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3.9 lentelée. CNN metrikos vieno piko ir balsavimo EEG klasifikatoriui

Parametras CNN Kklasifikatorius | Balsavimo klasifikatorius
Tikslumas 0,580 0,802
Svorinis tikslumas 0,572 0,795
F 0,256 0,856
ROC AUC 0,579 0,916
Matthewso koreliacijos koeficientas | 0,144 0,550

3.10 lentelé. Klasifikavimo matrica balsavimo klasifikatoriui

I grupé
IT grupé

I grupé

IT grupé

128 (TPR = 0,31)

30 (FPR = 0,19)

13 (FNR = 0,22)

46 (TNR = 0,78)

3.4 ir 3.5 skyriuose. Vis délto sio sprendimo budo atsisakyta dél keliy

priezasciy:

1. Mazinant EEG piku detekcijos algoritmo specifiSkuma (itraukiant

daugiau neteisingai teigiamai aptiktu piku), klasifikavimo tikslumas

mazéja. Tai leidzia daryti prielaida, kad atsisakyti EEG pikuy

aptikimo proceso, veikiausiai, nepavyks.

2. EEG Kklasifikavimo tikslumas siekia 58 proc. (zr. 3.6.3 poskyri);

tai yra geriau negu atsitiktinis spéjimas.

3. Rekomenduoti algoritmo variantai (zr. 3.4 ir 3.5 skyrius) yra pritai-

kyti fiksuotam EEG piky skai¢iui (Sis skaic¢ius gali buti pakeistas,

taciau tai reikalautuy visisko klasifikatoriaus mokymo is naujo; be

to, visos EEG privalo turéti vienoda piku skaiciu).

Dél nurodyty priezasciy rekomenduotinas daugumos balsavimo klasifika-

torius (zr. 3.2.10 poskyri). Jo privalumai:

1. Gali buti klasifikuojamos neapibrézta EEG piky kieki turincios
EEG; CNN Kklasifikatoriaus nereikia mokyti iS naujo.
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3.14 pav. I grupés balsavimo rezultatai

2. Didéjant EEG piku skaiciui, klasifikavimo tikslumas taip pat didéja
(atmetus EEG, turincias iki 100 piky, klasifikavimo tikslumas pa-
didéja 2 proc.).

Tir IT grupiu pacienty EEG balsavimo rezultatai pavaizduoti 3.14 ir 3.15 pav.
Visi turimi EEG pikai klasifikuoti CNN klasifikatoriumi, véliau skaic¢iuo-

tas vidutinis balsas.

Taikant daugumos balsavimo klasifikatoriy, CNN klasifikatoriaus tiks-
lumas, testavimo imtyje naudojant neisvalytus duomenis, sieké iki 80
proc. (rezultatas panasus i pateiktaji 3.5 skyriuje). Vis délto Sis rekomen-
duotinas algoritmo variantas laikytinas geriausiu dél ankséiau minéty
jo privalumy, konkreciau — dél galimybeés klasifikuoti EEG, turincia ne-
apibrézta piku kieki, CNN klasifikatoriaus nemokant i$ naujo. Atmetus
EEG, turinc¢ias maziau negu 100 piku (taip buvo daroma tiriant kitus
klasifikavimo algoritmo variantus), tikslumas padidéja iki 82 proc., o
tai sutampa su labai atsitiktinio medzio rezultatu, klasifikuojant EEG

signalo atkarpas. Atsizvelgiant i tai, kad Sie rezultatai buvo patvirtinti
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naudojant k-fold kryzmine patikra, panasaus tikslumo galima tikétis ir

naudojant kalbamaji algoritma praktikoje.

Dél nurodyty priezasc¢iy aptartasis algoritmo variantas — daugumos bal-
savimo klasifikatorius su CNN — yra rekomenduojamas naudoti kaip

geriausias.

3.6.5 Gauty algoritmuy pritaikomumas praktikoje

Atsizvelgiant i tai, kad pasiektas klasifikavimo pagal diagnoze tikslu-
mas néra Simtaprocentinis (siekia 82 proc.), ekspertingje diagnostinéje
sistemoje galétu buti naudojami tiek taikomo algoritmo, tiek gydytojo
gauti rezultatai [32]. EEG gali buti klasifikuojama atskirai gydytojo
ir klasifikavimo algoritmo, o klasifikatoriaus ir gydytojo klasifikacijoms

nesutapus, galéty buti prasoma antro gydytojo nuomonés.

Disertacijoje pateikiami rezultatai patikrinti taikant k-fold kryzmine

patikra, naudojant visus turimus (iSvalytus ir neisvalytus) EEG duomenis.
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Tai leidzia daryti prielaida, kad analogisko tikslumo (ir kity kokybiniy
metriky) bus pasiekta ir taikant algoritma praktikoje. Butina salyga —
turi buti naudojamos bent 100 piky turinc¢ios EEG.
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ISVADOS

1. EEG gali buti klasifikuojamos taikant klasifikavimo pagal diagnoze
(Iir IT grupiu) algoritma, naudojanti geometrinius piky parametrus
75 proc. tikslumu (su EEG, turiné¢iomis 100 piku). Siam tikslui

pasiekti tinkamiausias MLP klasifikatorius.

2. EEG gali buti klasifikuojamos pagal diagnoze (I ir II grupiy) su
labai atsitiktinio medzio metodu pagristu EEG klasifikatoriumi,
klasifikuojanciu pagal EEG signaly atkarpas, naudojanciu kanalo,
kuriame aptiktas pikas, duomenis 82 proc. tikslumu (su EEG,

turin¢iomis 100 piku).

3. EEG gali buti klasifikuojamos pagal diagnoze (I ir II grupiu) su
CNN ir daugumos balsavimo klasifikatoriumi, naudojanciu visy
EEG kanaly duomenis 80 proc. tikslumu arba 82 proc. tikslumu,
jeigu klasifikuojamos EEG, turin¢ios bent 100 piky. Sis algoritmas
laikytinas geriausiu iS pasiulyty dél turimy pranasumuy: 1) gali
klasifikuoti EEG, turincias neapibrézta piky kieki (skirtingai nuo
kity algoritmuy, kurie buvo testuojami su EEG, turin¢iomis po 100
piku), nereikia i$ naujo mokyti klasifikatoriy, 2) nagrin¢jant EEG,
turinéias 100 ar daugiau piky, pasiekia ne blogesni tiksluma negu

kiti pasiulyti algoritmai.

4. Visi rekomenduotini EEG klasifikavimo pagal diagnoze algoritmo
variantai yra jautrus EEG piky skaiciui, todél, siekiant kuo tiksles-
nio EEG klasifikavimo pagal diagnoze rezultato, esant galimybei,

reikéty naudoti EEG, turincias kuo daugiau piky.

Darbe pristatyti algoritmai gali buti tobulinami. EEG piku detekcijos
jautrumo ir specifiSkumo gerinimas, tikétina, didinty EEG klasifikavimo

pagal diagnoze tiksluma.
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Pasiulytus klasifikavimo pagal diagnoze algoritmus galima butu taikyti
ir kitoms epilepsijos rtisims klasifikuoti. Siame darbe nagrinéeti dviejy
epilepsijos rusiy atvejai, kuriuos gydytojams neurologams sunku atskirti.
Rekomenduotinas algoritmas taikytinas kitoms epilepsijos rusims kla-
sifikuoti, tikétina, galéty veikti taip pat, nes kai kuriy kitu epilepsijos
rusiy EEG skirtumai yra labiau isreiksti. Vis délto reikéty gana didelio
duomenu kiekio (daug EEG duomeny, suzymétu piku pavyzdziu), kad
buty galima prieiti prie pagristu iSvaduy.
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PRIEDAI

Toliau pateikiamos CNN klasifikatoriaus pagal vieng EEG pika svoriy
vizualizacijos, iS kuriy matyti, kurioms sluoksniy dalims buvo priskirti
didesni ar mazesni svoriai. Grafikuose Sviesesné spalva (didesnis skai¢ius
pagal legenda) reiskia didesni svori, tamsesné spalva (mazesnis skaicius

pagal legenda) — mazesnj svorj.
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SUMMARY

Automatic algorithm for electroencephalogram (EEG) classification by
diagnosis: benign childhood epilepsy with centrotemporal spikes (rolandic
epilepsy) (Group I) and structural focal epilepsy (Group II) are presented
in this thesis. Manual classification of these groups is sometimes difficult,
especially when no clinical record is available, thus presenting the need for
an algorithm for automatic classification. A few possible classification by
diagnosis algorithm versions are proposed in this thesis: 1) geometric EEG
spike parameter and feed-forward multilayer perceptron (MLP) based
classifier achieving 75% classification accuracy; 2) extremely randomized
tree based algorithm using signal in channel where EEG spikes are
classifying 82% accuracy; and 3) convolutional neural network (CNN)
and majority rule classifier based algorithm achieving 80% accuracy, or
82% if only EEGs with 100 or more spikes are classified.
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