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1 Introduction

For the better part of last century it was thought that neutrinos are massless. The resolve of
solar neutrino problem proved that neutrinos must have mass. Further experiments showed
that that mass must be very small compared to other particles. The theory in Standard
Model doesn't explain these masses. It is still a mystery to this day.

Grimus and Neufeld [1] introduced a model how neutrinos could get masses. Later Grimus
and Lavoura [2] improved theoretical understanding and gave mathematical expression for
mass calculations. In the model one neutrino gains mass through seesaw mechanism and
second one from one loop correction.

The main goals in this bachelors thesis were to familiarize with Grimus Neufeld model,
rederive and program the analytical expression for neutrino masses in the model and �nd
expressions for Yukawa couplings in the same model. I continued from my bachelor practice
work [3] about Standard Model and seesaw mechanism.

In �rst four chapters I explain the fundamentals of Standard Model relevant for the
work. In �fth and sixth chapters I introduce Grimus Neufeld model. Finally I explain what
calculations took place in seventh chapter. Lastly I show my results and discuss them in
conclusion and summary.
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2 Group Theory

Group theory is the most important theoretical mechanism in particle physics. Only because
of it, it is possible to account for di�erent forces: electromagnetism, weak and strong forces
in our model. It dictates how they are depicted in the Lagrangian - the main theoretical
structure that is used in creation and prediction of any model.

2.1 Groups

Group is abstract set of some elements: discrete or continuous and some operation de�ned
on then. For example all real numbers(except 0) and multiplication form a group. Formal
de�nition of a group is:

If we have set of objects G and some interaction between those objects *, the group
candidate (G, *) is a Group only, and only if it has these 4 following properties:

1. Closure: g1 ∈ G ∧ g2 ∈ G : g1 ∗ g2 ∈ G

2. Associativity: g1 ∈ G ∧ g2 ∈ ∧g3 ∈ G : (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3)

3. Identity: g ∈ G ∧ ∃e ∈ G : e ∗ g = g ∗ e = g

4. Inverse: ∀g ∈ G : ∃g−1 ∈ G : g ∗ g−1 = g−1 ∗ g = e

Mentioned example of all real numbers minus 0 and multiplication have all of these prop-
erties. Simply groups are just some elements that through an operation interact with each
other.

Generally groups don't have Commutative property. If they do they are called Abellian
groups, if don't non Abellian.

2.1.1 Representations

Groups don't have unique way to writing them. There are in�nite ways to write elements of
any group. And if group's elements are expressed in matrices they can have any dimension.
Certain logical system or a rule of writing elements in a group is called representation. If g
are elements of the group (G,*): g ∈ G then representation of that group D(G) must obey
the relation:

D(g1) ∗D(g2) = D(g1 ∗ g2) (1)

Groups have in�nite amount of representations. But their general, underlying structure
always stays the same. For example group can be initially de�ned to have certain logic to
it how it acts on modulus space. And changing its representation wont change that. The
structure is what, ultimately, de�nes the group.

In particle physics representations are square matrices of some dimension and numbers.
Representations can have di�erent dimensions, though for every group there exists represen-
tation that cannot be reduced to smaller dimension - Irreducible representation. It is the
simplest and neatest way to express the group.

2.2 Lie Groups

Groups with continuous elements are called Lie Groups. Each element is parameterized by
one or multiple continuous variables ϕn: g(ϕ1, .., ϕn) and thus have in�nite elements.

Lie groups in particle physics are mainly of four categories(with their notation in
parentheses): orthogonal (O(N)), special orthogonal(SO(N)), unitary(U(N)) and special
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unitary(SU(N)). These are N dimensional matrices that either are real or complex, multi-
plied with self transpose or hermitian conjugate reduce to unit matrix and either are spe-
cial(symbol S) or not. Special means that matrix's determinant(or modulus) is equal 1:
|U(N)| = 1.

It is worth noting that these matrices govern the structure of the group. But representa-
tions of them can have any dimension. The representation in which the elements have same
dimension and the matrix that group represents is called Fundamental.

The representation of the group is governed by group's generators. Generator of a group
is what spawns the representation and is de�ned as Ta

Ta = −i ∂Dn

∂ϕa

∣∣∣∣
ϕa=0

(2)

where Dn is representation with dimension n. For any group there are in�nite amount of
generators, just as representations. Representation of a group with m generators and m
parametrization variables ϕ is generated as follows

Dn(ϕa) = eiϕaTa (3)

where in the exponent summation over a is assumed. It is written in Einstein's summation
notation.

Generators of the group follow very important commutation relation:

[Ta, Tb] = ifabcTc (4)

where fabc is called structure constant of the group. If structure constant known then every-
thing about the group is known and it can be written in any representation.

2.2.1 SU(2)

This group is one if not the most important group in Standard Model. SU(2) is group of
transformation:

A =

(
a b
c d

)
(5)

where a, b, c and d are complex numbers. Now using unitary and special matrix properties:

A−1 =

(
d −b
−c a

)
= A† =

(
a∗ c∗

b∗ d∗

)
(6)

so we get

A =

(
a b
−b∗ a∗

)
(7)

where determinant must be equal 1. In this there are two free complex or 4 free real numbers,
since to describe complex number you need two real. From determinant requirement one
can drop one of those 4 and there are left 3 free numbers. So SU(2) group has 3 parameters.

Out of three generators it is chosen that the third one is always diagonal, by convention.
The representation of this group is described by the highest eigenvalue j the third generator
can get. So they range from 0 to in�nity with 1

2
increments: 0, 1

2
, 1, 11

2
, 2, ... . The

dimension itself of the representation is (2j + 1)× (2j + 1).
The j = 1

2
representation is especially important. The generators in this representations

are:

T1 =
1

2

(
0 1
1 0

)
, T2 =

1

2

(
0 −i
i 0

)
, T3 =

1

2

(
1 0
0 −1

)
(8)

which you can recognize as Pauli matrices multiplied by one half. The structure constant
tensor for SU(2) is Levi-Civita tensor εabc.
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2.3 Lorentz Group

Lorentz group is one of the most important groups in Standard Model. It governs how math-
ematical objects we use to describe particles transform when we move from one observational
frame to the next. It is the basis for the Standard Model.

2.3.1 Lorentz Transformations

In special relativity time and space are treated equally. This means that two observers
moving relative to each other view the same event in di�erent positions and times. The
Galilean transformations no longer work.

Spacetime four vector is de�ned as vector of four components:

xµ =


ct
x
y
z

 µ ∈ {0, 1, 2, 3} (9)

where t is time, x, y and z are coordinates in observers inertial frame. c is speed of light which
is chosen to be equal 1, along with plank constant h = 1 in so called God units. If there are
two observers, the original one and another one moving with speed v in direction of x axis.
Then if there is an event in spacetime the original observer will register at spacetime vector
x in his frame, while moving observer at spacetime vector x' in his reference frame. Turns
out the product x2 + y2 + z2 − t2 is always independent of reference frame. Mathematically
it can be written as:

t2 − x2 − y2 − z2 = xµx
µ = xµxµ (10)

Where xµ = ηµνx
ν is covariant spacetime four vector and ηµν is Minkowski metric with

signature +−−−.

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (11)

Minkowski metric is unique to space we live in - Minkowski space: with 3 spatial dimensions
and one time dimension.

The four momenta pµ is a momenta vector in Minkowski space:

pµ =


E
c

px
py
pz

 µ ∈ {0, 1, 2, 3} (12)

With very important relation:

p2 = pµp
µ =

E2

c2
−−→p 2 = m2c2 (13)

It is called on mass shell relation.
There are two types of Lorentz transformations rotations of coordinates with each other

and rotations of coordinate with time, former being called Euler transformations and latter
Boosts. Six in total.
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If there are 2 observer frames, one stationary s and one moving in x direction with speed
vxcompared the stationary one. Then one boost B and Euler transformation E that rotates
coordinates around y axis would be:

Bx =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 , Ry =


1 0 0 0
0 cos θ 0 sin θ
0 0 1 0
0 − sin θ 0 cos θ

 (14)

Where γ = 1√
1−β2

and β = v
c
. These transformations act on spacetime four vectors: x′µ =

(Bx)
µ
νx

ν , x′′µ = (Ry)
µ
νx

ν . They are elements of Lorentz group that are parameterized by
four elements of spacetime four vector.

2.3.2 Structure and Representations

When one calculates the generators for Lorentz group using Lorentz transformations one can
�nd (with using change of basis) that 6 Lorentz generators form two separate groups with
3 generators each that are closed under relation (4). With the structure constant of εabc for
both which means that those two subgroups are copies of SU(2)!

The representations of Lorentz group are given by two values of j: (j, j′) for each SU(2)
copy. Copies are totally separate the total dimension of transformations is going to be
[(2j+1)(2j′+1)]× [(2j+1)(2j′+1)]. Most important representations have to be with values(
1
2
, 0
)
,
(
0, 1

2

)
and

(
1
2
, 1
2

)
.

Representation of (0,0) is a scalar, and scalars don't transform anything.
The

(
1
2
, 0
)
and
(
0, 1

2

)
representations are both in 2 × 2 dimensions and act on 2 dimen-

sional modulus space vectors ω which are called spinors. The
(
1
2
, 0
)
representation is called

Left-Handed spinor representation and
(
0, 1

2

)
Right-Handed spinor representation. Because

they describe transformations of spinors that are part of Left-Handed and Right-Handed
coordinate systems respectively. Spinors that transform to them are called Left-Handed and
Right-Handed accordingly. Them both together are called Weyl spinors. Weyl spinors are
basically spinors with only one handedness or chirality.

Representation that uses both parts of Lorentz group
(
1
2
, 1
2

)
is called vector representation.

Because it has dimension of 4 and transforms spacetime vectors (9).

2.3.3 Left and Right handed spinors

Weyl spinors can be interchanged with itself if they represent the same particle. For that is
used quantity iσ2, where σ2is the second Pauli matrix and generaly it has the expression of

iσ2 =

(
0 1
1 0

)
(15)

Using this we can change between handedness of Weyl spinors(which are of two components):

ωL = iσ2ω∗R (16)

Similarly:
ωR = iσ2ω∗L = iσ2

(
iσ2ω∗R

)∗
= iσ2(−iσ2)ωR = ωR (17)

where the identity iσ2(−iσ2) = 1 is used.
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3 Fermions

Neutrinos are ferminions and thus it is needed to understand what governs fermion dynamics
and what mathematical structure Standard Model employs for 1

2
spin particles. Also it is

important to understand di�erence between di�erent kinds of fermion �elds, mainly Dirac
and Majorana fermions. Since seesaw mechanism employs use of only the latter one.

3.1 Cli�ord Algebra

Cli�ord algebra in n dimensions is set of n matrices γµ where µ ∈ {0, 1, ..., n− 1}such that
anti commutation relation

{γµ, γν} = −ηµνI4×4 (18)

is satis�ed. Where η Minkowski metric (11). In context of this work the dimension n is
chosen to be equal 4. Turns out there are many solutions to Cli�ord Algebra and they all
are connected with similarity transformation. The most straightforward one being so called
Weyl or Chiral representation:

γµ =

(
0 σµ

σµ 0

)
(19)

where σµ ∈ {1, σ1, σ2, σ3} , σµ ∈ {1,−σ1,−σ2,−σ3} and σ are Pauli matrices. Solutions
to Cli�ord algebra, so called gamma matrices are connected to Lorentz group in the way that
they can be used to create Lorentz generators in any representation. Also the representation
of gamma matrices de�ne the exact form of Dirac and Majorana spinors in 4 dimensions.

3.2 Dirac equation

All fermion �elds must obey Dirac equation:

(iγµ∂µ −m)ψ = 0 (20)

This, again, is expressed in God units where c = h = 1. The term ∂µ ∈
(
∂
∂t
, ~∇
)
is four

gradient(gradient in the 4dimensional spacetime). Since gamma matrices are in dimension
of 4, they also must act on 4 component spinor ψ. This spinor is called Dirac spinor and
generally in itself has both Left-Handed and Right-Handed parts or two Weyl spinors with
di�erent chiralities. In Chiral representation of gamma matrices Dirac spinor has the form:

ψ =

(
ωL
ωR

)
=


ωL1
ωL2
ωR1

ωR2

 (21)

Where ω is corresponding chirality(handednes) Weyl spinor with 2 elements. Or more �tting
to Standard Model:

ψ =

(
ωL

iσ2ω′∗L

)
(22)

Where ωL and ω′L are not necessarily the same �eld.
The expresion ψ is called Dirac adjoint and is de�ned as:

ψ = ψ†γ0 (23)
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3.2.1 Chirality

While in Chiral representations of gamma matrices it is always easy to get right and left
handed parts, they are just second and �rst 2 component Weyl spinors in the dirac spinor.
How ever there is useful tool to get them in any representation. Gamma 5 matrix is de�ned
as:

γ5 = iγ0γ1γ2γ3 (24)

With it it is possible to make chirality operators:

L =
1

2

(
1− γ5

)
(25)

R =
1

2
(1 + γ5) (26)

Typical Dirac spinor will have both left and right chiral parts ψ = ψL + ψR
Then using (25) and (26) it is possible to get those parts individually:

ψL = Lψ, ψR = Rψ (27)

3.3 Majorana Fermions

While Dirac �elds can be complex Majorana can only be real. General condition for reality
of spinor �eld is:

ψ = Cψ
T

(28)

Where C is called charge conjugation matrix and has form in chiral representation:

C =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 =

(
−iσ2 0

0 iσ2

)
(29)

Majorana �elds, de�ned with this gain some interesting properties. First of all they
become real(always). Second, since C is charge conjugation operator it means that Majorana
particles are anti particles of themselves. Lastly the Lorentz covariant conjugate ψ(c) = Cψ

T

switches the chirality of the spinor:(
−iσ2 0

0 iσ2

)((
ωL
0

)†(
0 1
1 0

))T

=

(
−iσ2 0

0 iσ2

)(
0 1
1 0

)(
ω∗L
0

)
=

(
0

iσ2ω∗L

)
(30)

It makes the left �eld right. Majorana particle is made from two di�erent chiral �elds that
are, at the core, the same:

ψM =

(
ωL

iσ2ω∗L

)
(31)

It also interesting that charge conjugation operator C seems to be 4 dimensional equivalent
of (15) for Dirac spinors.
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3.4 Lagrangian for Fermions

Lagrangian expression for fermions is given by Dirac Lagrangian:

LD = ψ (iγµ∂µ −m)ψ (32)

Using Euler-Lagrange equation:

∂µ

(
∂LD

∂ (∂µψ)

)
=
∂LD

∂ψ
(33)

It is possible to get out the Dirac equation (20). First term in the parenthesis is kinetic
term for the �eld, which represents how �eld dynamics will occur. Second term is mass term,
and for seesaw mechanism it is very important. Using both Dirac and Majorana formulation
one can extract Dirac and Majorana mass terms from this Lagrangian.

3.4.1 Majorana Mass Term

Majorana particles have mass terms similar to the one in the Dirac Lagrangian. If we have
Right-Handed real Weyl �eld ωR the Majorana spinor of it is going to be:

ψ =

(
iσ2ω∗R
ωR

)
(34)

Then in the Lagrangian the mass term is going to be:

mψψ = m
(
ω†R(−iσ2) ωTR

)( 0 1
1 0

)(
iσ2ω∗R
ωR

)
= m

[
ω†R(−iσ2)ωR + ωTRiσ

2ωR

]
(35)

Now if choose to represent each Weyl �eld ωR with a 4 dimensional Dirac spinor instead
of 2 dimensional and see that charge conjugation matrix is real (29) and using identities:
CC† = 1 and CT = −C we can rewrite above equation neatly as:

mψψ = m
[
ωTRC

−1ωR +H.c.
]

(36)

H.c. means Hermitian conjugate. This is the Majorana mass term. It will be useful while
pursuing the seesaw mechanism.



13

4 The Standard Model

The theory of Standard Model is the best physical system we, as a species, have to try
to explain laws and origin of nature. It is extensive collection of mathematical structures,
methods and physical uni�cation attempts that best describe our universe. It is needed to
understand how it works, and how it is established in order to understand how to extend it
with methods like the seesaw.

4.1 Gauging the Symmetry

In order to introduce main forces to the Standard Model one needs to do something called
gauging the symmetry. First of all it is good to note that Dirac Lagrangian (31) isn't changed
under multiplication by any complex number or just eiα - a phase. It is said that Lagrangian
is invariant under global U(1) symmetry. It is invariant because if we transform our �eld:

ψ → eiαψ (37)

the Lagrangian wont change since the extra phase factors of U(1) will just cancel out. And it
is global because the phase angle α is constant in the dependence on spacetime coordinates,
so it is the same in every point in spacetime.How ever if αwould depend on spacetime
coordinates it would become local and change Lagrangian (19) since it would introduce
extra derivative in the �rst term before cancellation of phase factor:

LD = ψ (iγµ∂µ −m− γµ∂µα (xµ))ψ (38)

The Gauging of Symmetry is a method to introduce well known fundamental forces to our
theory. At �rst we break the symmetries manifesting in Lagrangian, in (37) case it was
U(1). Now in order to get some theory of fundamental force out of it we need to �x it,
so Lagrangian becomes invariant again, even under that certain symmetry(our case U(1)).
That is done with introduction of two things: �rst there is a �eld Aµ, called Gauge �eld. In
this case it is de�ned to transform under mentioned U(1) as:

Aµ → Aµ −
1

q
∂µα (x) (39)

Then we change our derivative to covariant derivative Dµ that introduces the new �eld to
the theory and Lagrangian:

Dµ = ∂µ + iqAµ (40)

By de�nition particles charge associated with a force is de�ned as a multiplier in corre-
sponding forces gauge �eld's term. So in this case it is q. Introducing this to the Lagrangian
gets rid of the unwanted terms, thus giving Lagrangian its invariance back. In this case the
fundamental force is electromagnetism and charge q is electric charge. The introduced gauge
�eld is electromagnetic 4 potential vector de�ned as Aµ = (ρ, ~A). The kinetic term for newly
added �eld is de�ned as:

LKin.A = −1

4
FµνF

µν (41)

where Fµν is electromagnetic �eld strength tensor: F µν = ∂µAν − ∂νAµ. Other fundamental
forces(except gravity) are added with other certain groups: weak force with SU(2), strong
with SU(3) and as discussed above electromagnetism with U(1).
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4.2 Representations of Standard Model

The Standard Model has de�ned certain representations for particles that it contains. The
main group of standard model, which gauge all the forces, as mentioned above is SU(3)C ×
SU(2)L × U(1)Y . The subscript C stands for color, as SU(3) creates (with gauging) color
force or strong nuclear force. L stands for left. It means that it acts on left handed Weyl
spinors that underlying entire Standard Model. And lastly Y stands for hypercharge, and
interacts with regular charge in electro-weak force theory - the uni�cation of weak and
electromagnetic forces.

Particles in Standard Model can transform under only certain set of representations of
groups mentioned above. Those representations are described by triplet of numbers in which
�rst number is dimension of SU(3) representation, second dimension of SU(2) and last is
hypercharge of U(1).

For leptons there are only two important representations and they are
(
1, 2− 1

2

)
and

(1, 1,+1). Both describe particles that don't interact with strong nuclear force, since they
�transform� under dimension 1 representation of SU(3) so they don't transform at all. In
former representation 2 means that it transforms as a doublet with Left-Handed SU(2), while
latter doesnt transform with it and represents Right-Handed particle. In standard model
the only Higgs �eld has representations

(
1, 2,−1

2

)
. This means it has two symmetries: left

handed SU(2) and U(1).

4.3 Particles of Standard Model

Particles in SM are introduced as left handed doublets and right handed singlets. Leptons
and quarks are introduced in generations - doublets that transform under SU(2)L and contain
two particles whom are Left-Handed Weyl spinors. There are 3 generations in total for
leptons and quarks.

The lepton generations are: (
νe
e

)
,

(
νµ
µ

)
,

(
ντ
τ

)
(42)

Which contain charged particles: electron, muon and tau coupled to their respecting neutri-
nos: electron neutrino, muon neutrino and tau neutrino.

These doublets correspond to
(
1, 2− 1

2

)
representation. Anti particles can be added as

right handed singlets under (1, 1, 1) transformations.
Standard Model has only 1 Higgs doublet φ:

φ =

(
φ+

φo

)
(43)

where φ+is charged Higgs �eld and φo is neutral one.

4.4 The Higgs Mechanism

Higgs mechanism is probably the main theory in standard model. Due to it's e�ects all the
massive gauge �elds gain mass and in turn our reality works the way it does: weak nuclear
force gauge bosons get mass and become short range and photon doesn't so electromagnetic
force remains theoretically in�nite in range.

Lagrangian for scalar particles is Klein-Gordon Lagrangian[4]:

LKG = ∂µφ†∂µφ−m2φ†φ = −∂µφ†∂µφ− V (φ†, φ) (44)
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Second term on the right can be thought as a potential term V. The scalar �eld φ has mass
because of it. When there is no particle i.e. |φ| = 0 the lagrangian vanishes and we have
perfect vacuum. However in nature it is not always the case. At small energies the Higgs
gains non-zero vacuum value and its potential term becomes:

V = γ

(
φ†φ− 1

2
v2
)2

(45)

where γ and Φ are real constants. In turn Higgs gets something called mexican hat potential,
and non zero vacuum value. Now it has in�nite vacuum states where |φ| = v which is
nonphysical. However Higgs still has it's two symmetries: SU(2)L and U(1). In Higgs
mechanism they are both used to �rotate� Higgs to only have only one vacuum state.

It's done by rede�ning Higgs to have real vacuum expectation value. Vacuum expectation
value(VEV) of Higgs is denoted 〈0 |φ| 0〉. We use SU(2) symmetry to accumulate all of the
VEV to neutral component of doublet and U(1) to making it real:

〈0 |φ+| 0〉 = 0
〈0 |φo| 0〉 = v

(46)

Then rede�ning the Higgs doublet to be:

φ =

(
G+

1√
2

(v + h(x) + iGo)

)
(47)

Where G+and Goare charged and neutral Goldstone bosons. This use of simmetry is
called gauge �xing because when we de�ne Higgs this way it doesnt have SU(2) and U(1)
symmetry anymore.

This new Higgs doublet combined with local symmetry breaking gives masses to all
massive gauge bosons - they get new quadratic terms with v and other parameters.

4.5 Yukawa coupling

Interaction between scalar and spinor �elds in the Lagrangian is described by Yukawa cou-
pling term:

LY uk = yφψψ (48)

Where φ is scalar �eld and ψ is our fermion �eld and y is coupling constant between
those two. Higgs mechanism is introduced through scalar �eld φ and it gives mass to coupled
fermion �eld.

The coupling to a doublet and right handed particle p looks like this:

LY uk = −ycεijφipcLj − ynφ̃†ipnLi +H.c. (49)

Where yc and ynare coupling constants to charged and neutral parts of lepton doublet,
L is lepton double itself and H.c. means hermitian conjugate of previous terms. It is needed
for completion of the theory.

Continuing with the breaking of the symmetry the scalar �eld is chosen to be (46) - the
unitary gauge. This means that in second term only second element of doublet survives, and
in second term only �rst, and choosing the doublet to be electron one it is then:

LY uk = − yc√
2

(v + h)pce−
yn√

2
(v + h)pnνe +H.c. (50)

From this now we can get the mass, continuing with second term only:
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LY uk = − yn√
2

(v + h)pνe −
yn√

2
(v + h)ν†ep

† = − yn√
2

(v + h)
[
pνe + ν†ep

†] (51)

Then if Dirac spinor ζ is introduced: ζ =

(
νe
p†

)
the expression above can be rewritten

as:

LY uk = −ynv√
2
ζζ (52)

The �rst term gives mass to the ζ and in turn to the introduced particle p. This is Dirac
mass term, which term it is presented is exactly the same in Dirac Lagrangian (31)
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5 Feynman diagrams

Feynman diagrams are method to quantize physical processes that include elementary par-
ticles. They are very important in calculating physical quantities needed for experiment
evaluation. This section is taken mainly from [5]. The propagator section is from [6, 7].

5.1 Vertex of interaction

One main element of any Feynman diagram is a vertex of interaction. It is a vertex that
connects 3 lines to a single point - interaction. The vertex, or any Feynman diagram for that
matter has implied time evolution:

Markers e symbolize electron, γ photon. The arrows symbolize passage of time. This
vertex means that there was an electron, he interacted with a photon and then there was
electron again. Interaction with a photon can mean anything - that electron absorbed it,
emitted it, scattered it or was scattered by it. This is basic vertex for electromagnetic force.

The arrow of time can be inverted, thus marking the anti particle.

5.2 Complex diagrams

Individual vertexes can be combined to form more complex ones that that represent more
real processes. For example two of the electromagnetic vertexes can be combined to form
Feynman diagrams:

First one symbolizes electron - positron pair annihilation and pair creation. Second one
is Compton scattering. In these diagrams, the lines in between - photon in �rst one and
electron in second one are called virtual particles. Because it is impossible to detect them
in these particle interactions thus they are theorized to be there.

5.3 Weak nuclear force

The Standard Model describes only three out of four elementary forces: strong and weak
and electromagnetic forces. Neutrinos can only interact with weak because they don't have
charge and are fermions they don't interact with the strong force. While electromagnetic
force has only one boson - photon, weak force has 3: Z and W± who are neutral, positive
and negative respectively. Corresponding vertices for Z and W−are:
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Where f is any fermion, l is lepton and νl is neutrino corresponding to that lepton family.
In the second diagram W−boson takes charge from lepton and transforms it to corresponding
neutrino. As conservation of charge demands.

5.4 Loops

Every Feynman diagram is characterized by what particles goes into it and what goes out.
That means what happens inside, the virtual interactions don't uniquely de�ne the process.
This opens door to having multiple diagrams for the same process. The permutations on
how to put di�erent vertices inside the diagram increase number of possible diagrams.

One permutation is called loop. It is combination of two vertices that connect with the
same input and output parts to each other[8]:

Here momenta of all particles are labeled: k of real particles and q of virtual ones. This
picture represents a vacuum polarization - when photon spontaneously creates electron and
positron pair that annihilates with each other shortly afterwards recreating a photon. In
principle any traveling particle can have any number of these loop parts. This means that
there exists in�nite amount of possible diagrams for any process. For example electron
positron anhilation/recreation process can have one, two or more loops:

A Feynman diagram without loops is called tree level diagram.

5.5 Loop corrections

Feynman diagrams are not just a method to visualize particle processes but also a tool
to convert theory to measurable values. Each diagram can be used to calculate process's
scattering cross section or decay rate for comparison to the experiment. To do this one
uses Feynman rules that speci�cally describe what needs to be done to extract those values.
They involve writing coupling constant for every vertex in the diagram, writing propagator
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for every internal and outgoing line and then integrating over all virtual particle momenta
space to get amplitude for a process de�ned with the diagram.

Since there are in�nite number of diagrams what is the correct way to calculate anything?
Answer is that amplitudes from all the diagrams should be added together. The key is that
each new diagram with more loops contribute more coupling multipliers which are in most
cases less than 1: g < 1. This means that bigger and more complex diagrams with more
loops add less of a di�erence - the series converge.

Then it is up to the user to calculate everything to precision of his/hers liking.
Loops symbolize particles self energy - energy particle has due to interaction with it self.

For example traveling neutrino could spontaneously release Z boson and shortly after that
reabsorb it thus interacting with itself.

5.5.1 The propagator

The propagator R of a line in Feynman diagram is a statistical weight to go from one vertex
to another. Its de�ned as:

R =
i

p2 −m2
(53)

Where p andm is momentum and mass of that particle line. In a line there can be any amount
of loops. Loop self energy Σ(p2) is de�ned such that quantity −iΣ(p2) is a correctional
multiplier for a propagator for each loop present in the line.

The mass of a particle is de�ned as the position of the pole of the propagator R. Since
(13) is on mass shell: m2 = p2. But since self energies a�ects the propagator it also a�ects
the mass of the particle! It is one of the main tools that Grimus Neufeld Lavoura use in
their model.
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6 The Grimus-Neufeld Model

The Grimus-Neufeld model (GN) is the main subject of interest in this thesis. Original
model was suggested by Grimus and Neufeld in [1] and later developed for more practical
calculations by Grimus and Lavoura in [2]. This chapter is mainly based on those two papers.

In GN model they add nR amount of left handed neutrinos and nh amount of Higgs
doublets to the Standard Model. They then explore a possible way that currently known 3
neutrinos of the Standard Model gain mass through seesaw mechanism, through the inter-
action with di�erent Higgses in loop corrections.

For purposes of this thesis and calculations I assume that nR = 1 and nh = 2 also. One
additional right handed neutrino and one additional Higgs doublet. The explored model is
that seesaw gives mass to heaviest neutrino while �rst order loop corrections - loop correction
of just one loop gives little bit of mass to second neutrino while �rst one always stays mass-
less.

6.1 Seesaw mechanism

The seesaw mechanism concerns the mass matrix and it's eigen values. For example if we
have mass matrix M populated by two elements A and B where B � A:

M =

(
0 A
A B

)
(54)

The eigen values :

λ1 =
B+B

√
1+4A2

B2

2
' B

λ2 =
B−B

√
1+4A2

B2

2
' −A2

B

(55)

where in Taylor series around A = 0 were used to expand second mass term were used. Now
one eigenvalue stays the big value B but other one becomes A2

B
. Which means that when B

becomes bigger second value goes smaller. This technique is called seesaw mechanism.
GN use it to introduce one small mass to one left handed neutrino. That is achieved

by adding heavy right handed neutrino to Standard Model. The big mass of right handed
neutrino corresponds to big value B in this example.

6.2 Two Higgs doublets

The GN model variant that I research uses two Higgs doublets: φ1and φ2. Currently only
one Higgs is known and been experimentally veri�ed. But to harness both Higgses one needs
to deal with Higgs mechanism and breaking of Higgs's vacuum. This subchapter is largely
based on [9].

The two Higgses should both have portion of VEV that is currently known to be v =
246GeV. The initial distribution should be parametrized by vector v̂ ∈ R2, |v̂| = 1 such that

〈0 |φk| 0〉 = 〈φk〉 =
v√
2

(
0
v̂k

)
k ∈ {1, 2} (56)

Where a is component index. Then one can choose vector ŵ ∈ R2, |ŵ| = 1 which is orthogonal
to v̂:v̂ŵ = 0 . Then using these vectors one can de�ne new Higgses H1and H2 as follows:

H1 = v̂kφk, H2 = ŵkφk (57)
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The new Higgses then will have VEVs:

〈H1〉 = 1√
2

(
0
v

)
〈H2〉 =

(
0
0

) (58)

When vacuum gains non zero VEV then only �rst Higgs doublet will break. Furthermore
these Higgses can be parametrized as follows:

H1 =

(
G+

1√
2

(v + h+ iG0)

)
(59)

H2 =

(
H+

1√
2

(H + iA)

)
(60)

Where all new variables are real, but only h, H and A gain masses when symmetry breaks.
This gives us four massive Higgs �elds: h, H, A and H+. G+ and Go are goldstone bosons
which never gain mass when higgs breaks.

Generally the 3 �elds can mix together while interacting with other SM particles. How
ever for purposes of this thesis only h and H can mix: h′

H ′

A′

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 h
H
A

 (61)

Where θ is a mixing angle and h′ is real higgs that has been discovered and veri�ed in SM.

6.3 GN Lagrangian and terms

GN write up general form of multi Higgds doublet model:

LGN = −
nh∑
k=1

(
H†k

¯̀
RΓk + H̃†kν̄R∆k

)
DL −

1

2
ν̄RCMRν̄

T
R +H.c. (62)

Where H.c means hermitian conjugate of everything that came before, ¯̀
R is right handed

lepton, ν̄R right handed heavy neutrino mentioned before. DL is vector of SM lepton doublets
- its a 3 component vector where each element is one doublet from generations de�ned in
(40). Γk and ∆k are dimensional vectors of Yukawa couplings to right handed lepton ¯̀

R and
right handed heavy neutrino ν̄R. C is charge conjugation matrix and MR is Majorana mass
term discussed in section 3.4.

First term in (58) is obviously Yukawa interaction term and second one is Majorana mass
term. Masses gained from Yukawa part can be expressed in so called Dirac mass term MD:

MD =
1√
2

∑
k

vk∆k =
v√
2

∆1 (63)

Where vk is VEV for k'th Higgs, but since we put all of the VEV to �rst Higgs in previous
subchapter: v1 = v, v2 = 0.

The Majorana mass term de�nes mass that only right handed neutrino ν̄R gains by
interacting with itself. Dirac mass describes mass that neutrinos get when SM left handed
neutrinos interact with right handed one.
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Now these mass terms can be written together in general neutrino mass matrix:

MD+R =

(
0 MT

D

MD MR

)
(64)

This is seesaw matrix has dimension (3 + 1) × (3 + 1) because it was chosen to add only 1
right handed neutrino.

The seesaw mechanism gives a mass to one SM's neutrino at tree level, and GM explicitly
wrote it:

M tree
v = −MT

DM
−1
R MD (65)

The two Higgses in GM model mixes with eachother, so Yukawa couplings ∆k must mix
too:

∆b = Bbk∆k, b ∈ {h′, H ′, A′} (66)

Where B is mixing matrix from (61). The way it is written the �rst column of B corresponds
to ∆1 and next two columns ∆2. Little b stands for mixed state h′, H ′ or A′.

6.4 GN one loop correction

Loop correction in GN model gives mass to second out of three neutrinos, leaving only one
mass-less. Grimus and Lavoura explicitly write the correction:

δML =
∑
b

m2
b

32π2
∆T
b

(
1

MR

ln
M2

R

m2
b

)
∆b +

3m2
z

32π2
MT

D

(
1

MR

ln
M2

R

m2
z

)
MD (67)

where mb is mass of b �eld, mz is mass of neutral Z boson of weak interaction. It is worth
noting that relation (67) can be written like this only when one heavy right handed neutrino
is added and Majorana mass term MR is just a number.

The complete left handed, SM, neutrino mass matrix then is:

Mν = M tree
ν + δML (68)

It incorporates both: seesaw and loop correction contributions to the neutrino masses.
The matrix represents the masses of three left handed Standard Model neutrinos. Sin-

gular are the true masses of them.
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7 Calculations

In this chapter I describe how I carried out the calculations needed to �nd the Yukawa
couplings. Then I show results obtained. The calculations were done using Mathematica
software package. Speci�cally version 9.

7.1 The approach

The approach was to calculate neutrino mass matrix (68), to �nd the eigenvalues and compare
them to known squared mass di�erences ∆m2

31 and ∆m2
21.

At �rst the set and free parameters were identi�ed. Set parameters are known values to
our model that reduce the variable number by initializing them to numerical values. Those
were [10]:

1. Bigger mass di�erence between neutrinos ∆m2
31 = (2.55± 0.04) ∗ 10−12GeV

2. Smaller mass di�erence between neutrinos ∆m2
21 = (7.56± 0.19) ∗ 10−14GeV

3. Neutral Z boson mass mz = 91.19GeV

4. Standard Model Higgs mass mh′ = 125.09GeV

5. Standard Model Higgs Vacuum expectation value(VEV) v = 246GeV

These parameters are put into calculations at �nal step.
Free parameters were those that were input arguments into geting a and |b|. They were:

1. Higgs mixing angle θ

2. Majorana mass of one right handed neutrino mr

3. The modulus of Dirac mass vector c

4. The mass of second neutral Higgs mH′

5. The mass of third neutral Higgs mA′

The �rst step was to implement calculation of neutrino mass (68) matrix in which Yukawa
couplings ∆k are free parameters. The eigenvalues are then equated to known neutrino
masses. The relation connects all of the parameters together. How ever solving it for
Yukawaw couplings was proven to be very hard to nearly impossible due to the size and
complexity of equation itself. It involves 3×3 matrix witch is the biggest hurdle to overcome
with �nite computer resources.

In order to reduce the relation to more manageable form I reduced 3×3 matrix expression
from (68) to 2× 2 subblock. I achieved that by parametrizing Yukawa couplings ∆k.

7.2 Mass matrix reduction

To reduce mass matrix (68) I parametrize Yukawa couplings ∆k in three dimensional complex
space with base Vi. The base is row vectors of a PMNS matrix.

The PMNS chapter is mainly from [11, 5]
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7.2.1 PMNS matrix

Neutrinos that are detected in neutrino detectors aren't the ones we are interested in. This is
because we can only detect neutrinos that interact with their corresponding charged leptons
i.e. electron neutrino only interacts with electron and so on. This is how �avour is de�ned.

However �avourful neutrinos don't have de�ned mass. Only eigenstates of Hamiltonian
or mass eiganstates have it. Thus mass neutrinos mix to form �avour ones: νe

νµ
ντ

 =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 ν1
ν2
ν3

 (69)

where numbered neutrinos are mass eigenstates and the mixing matrix is PMNS matrix,
named after Bruno Pontekorvo, Ziro Maki, Masami Nakagawa and Shoichi Sakata.

It is unitary matrix that is parametrized by 4 angles: θ12, θ13, θ23 and δ. Where �rst three
are mixing angles of neutrinos and fourth one is CP(Charge-Parity) violating phase. The
matrix itself is described as:

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 (70)

Where sijand cij are sin and cos of angle θij correspondingly.
One can calculate the matrix since all the angles are known [10] to some degree(±1σ):

θ13 = 8.44◦ ± 0.18◦, θ12 = 34.5◦ ± 1.1◦, θ23 = 41.0◦ ± 1.1◦ and δ = 252 ± 56. But it is
unnecessary since, for my purposes, the explicit form is not needed.

PMNS matrix is Unitary. One can divide it in to orthonormal, complex, row vectors
Vi, i ∈ {1, 2, 3}:

UPMNS =

 V1
V2
V3

 (71)

And V ∗i V
†
j = δij.

7.2.2 Yukawa coupling parametrization

The neutrino mass matrix of 68 is explicitly de�ned by Yukawa coupling vectors ∆. Dirac
mass term is just ∆1 and ∆b is just superposition of normal deltas. Thus it is convenient
to express them through vectors V 71. Then we parametrize Yukawa couplings ∆1 and ∆2

accordingly:
∆1 = cV ∗3

∆2 = aV ∗2 + bV ∗3
(72)

where a and c are real constants and b is complex one. Constant c is de�ned as:

c =

√
2

v
|MD| (73)

It is just the modulus of the Dirac mass vector.
As mentioned above the orthonormal vectors Vi are known. And one needs only to �nd

parameters c, a and b to completely know Yukawa couplings. In work described in this thesis
the parameter c is set to be free, a and b are the ones to be determined.
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7.2.3 Parametrized terms

The terms of interest in 68 are MD,∆h′ ,∆H′ ,∆A′ . Following the parametrization in (68),
and (59) with (62) we have:

MD =
vmd√

2
V ∗3 (74)

∆h′ = a sin θV ∗2 + (md cos θ + b sin θ)V ∗3 (75)
∆H′ = a cos θV ∗2 + (−md sin θ + b cos θ)V ∗3 (76)
∆A′ = aV ∗2 + bV ∗3 (77)

Now it is clear that every term in 68 will have in the form of one of the following matrices:
V †2 V

∗
2 , V

†
2 V
∗
3 , V

T
3 V2 and V

T
3 V 3(since couplings are row vectors).

Rede�ning PMNS matrix:

UPMNS =

 V1
V2
V3

 = V

Partially diagonalizing the mass matrix we are going to put it between V and V̂ :

M̃ν = V ∗MνV
† (78)

Where M̃ν is reduced neutrino mass matrix. Finally since V ∗i V
†
j = δij only elements of

(68) that will survive will be (2, 2) , (2, 3) , (3, 2)and (3, 3). And they wont have any leftover
factors of any Vi vector.

After the reduction:

M̃ν =
1

32π2mr

 0 0 0
0 a2 (LA + c2θLH + Lhs

2
θ) A

0 A B

 (79)

Where abbreviations are:

A =a
(
|b| eiphLA + |b| eiphc2θLH + |b| eiphLhs2θ + ccθsθ (Lh − LH)

)
(80)

B = |b|2 e2iphLA + c2θ
(
c2Lh + |b|2 e2iphLH

)
+ |b|2 e2iphLhs2θ + 2 |b| ceiphcθsθ (Lh − LH)

+ c2LHs
2
θ + 3c2Lz − 32π2c2

(81)

Lh =m2
h′ ln

m2
r

m2
h′
, LH = m2

H′ ln
m2
r

m2
H′
, LA = m2

A′ ln
m2
r

m2
A′
, Lz = m2

z ln
m2
r

m2
z

(82)

cθ = cos θ, sθ = sin θ (83)

The mass matrix is seen to only have non zero values in 2 × 2 block. As expected. It
shows that the approach is correct.

The remaining non zero 2× 2 block in M̃ν hereafter is going to be noted by Mνblock.

7.3 The results

The reduced 2 × 2 block allows to continue the calculations. The eigenvalues of the block
were equated to known neutrino masses ∆m2

21and ∆m2
31. And then solved for parameter a2:
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a2 =− 1024π4m2
r

√
∆m2

21∆m
2
31

(
LA
(
−Lh cos2(θ)− sin2(θ)LH − 3Lz + 32π2

)
− Lh

(
LH + sin2(θ)

(
3Lz − 32π2

))
+ cos2(θ)LH

(
32π2 − 3Lz

))−1 (84)

With the �rst answer computed parameter b is next. To simplify calculations further b
was substituted to exponential form:b = |b| eiphwhere ph is phase of complex parameter.

Generally block doesn't have real eigenvalues because it is not hermitian. To make it
hermitian I multiplied it with hermitian conjugate of itself:

M2
νblock = M †

νblockMνblock (85)

This trick also makes eigenvalues to be squared. The trace of a matrix is always equal
to sum of eigenvalues λi of it:

Tr(M) =
∑
i

Mii =
∑
i

λi (86)

The trace of Mνblock was equated to the sum of neutrino mass squared. The relation was
rearranged for|b|and result is fourth order polynomial:

u4 |b|4 + u3 |b|3 + u2 |b|2 + u1 |b|+ u0 = 0 (87)

The coe�cients ul depend on all parameters including phase of b. They are quite massive
in volume and complexity. Their full and simpli�ed expressions can be found in Appendix
A.

The polynomial only has real roots when it crosses below 0 in b space. Minimal testing
has been done with test values of free parameters. Two test sets for parameter values have
been chosen:

Table 1: Free parameter values for test
set one

Name Value
mr 106GeV

c 0.8
√
mr

√
∆m2

31

mH′ 978.672GeV
mA′ 962.67GeV
sin θ 0.9998

Table 2: Free parameter values for test
set two

Name Value
mr 106GeV

c 0.8
√
mr

√
∆m2

31

mH′ 699.503GeV
mA′ 450.389GeV
sin θ −0.76415

The resulting polynomial and corresponding graphs are below. For physical purposes
such that model would be consistent with Standard Model the relevant range for |b| is (0, 1).

None of the explored test values give polynomial that moves below zero. This means
only points with complex solutions were found.
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Figure 1: 3D plot of polynomial (87) in b space of parameters: modulus of b : |b|and phase of b
ph. With free parameter values are from Table 1. The complete expression of polynomial p is
p = 0.00339928|b|4 +

(
−0.00476065|b|3 − 0.00234845|b|

)
cos(ph)+0.00335376|b|2 cos(2ph)+

0.00166681|b|2 + 0.00082148 Its shown that polynomial doesn't have real roots

Figure 2: 3D plot of polynomial (87) in b space of parameters: modulus of b : |b|and
phase of b ph. With free parameter values are from the Table 2 . The complete expres-
sion of polynomial p is p = 0.00054485|b|4 +

(
0.00100705|b|3 + 0.000560953|b|

)
cos(ph) +

0.000606994|b|2 cos(2ph)+0.000465331|b|2 +0.000163325 Its shown that polynomial doesn't
have real roots
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8 Conclusions

The main result of GN (68) was implemented in Mathematica software. The �rst attempt
wasn't operationally useful since it overloaded computer resources available in order to an-
alytically solve relations involving 3× 3 matrix. Solution was to reduce the matrix to 2× 2
block. New relations involving the block now could be solved for.

The program is capable of analytically �nding expressions for Yukawa coupling parame-
ters a and |b|. The Mathematica software package allows for further analytical or numerical
manipulation and visualization of results.

The solution for parameter a is exact. But full solution for parameter |b|requires one to
solve fourth order polynomial (87). Since there are many free parameters in the model we
were capable to only investigate a few points. Two complex solutions were found. In order
to �nd real solutions one needs to research parameter space further.
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Paulius Juodsnukis

JUKAVA KOEFICIENTAI GRIMUS NEUFELD MODELYJE

Santrauka

Didesn
eje pra
ejusio amºiaus dalyje buvo manoma, kad neutrinai neturi masiu�. Tyrin
ejant
saul
es vidaus veikimo principus uº�ksuota tik tre£dalis teorijoje numatytu� neutrinu�. Atlikus
kitokiu principu pagri�stus matavimus buvo nustatyta, kad neutrinai osciliuoja - periodi²kai
kei£ia savo tip¡. Teoriniame lygmenyje tai yra i�manoma, tik tada, kai jie neturi vienodu�
masiu�. Vadinasi kai kurie neutrinai privalo tur
eti mases.

Eksperimenti²kai matuojant, buvo nustatyta, kad jos yra labai maºos [12]: 10−3−10−5eV
eil
es. Tuo tarpu gerai ºinomos barionin
es dalel
es, tokios kaip protonai ir neutronai, turi
mases 109eV eil
es. Toks didºiulis - 12-14 eiliu� skirtumas yra labai i�domus ²iuolaikin
eje
daleliu� �zikoje.

Viena i² teoriju�, galin£iu� paai²kinti neutrinu� mases yra, Grimus - Neufeld(GN) modelis
[1]. GN teorijoje SM yra papildomas antruoju Higgs'o dubletu ir vienu masyviu neutrinu.
Didel¦ mas¦ turintis prid
etinis neutrinas pakei£ia mas
es matric¡ ir savo ruoºtu �atsveria�
vieno i² SM neutrino mas¦ i� maºesn¦ pus¦. Tai vadinamas sverto principas. Tokios teori-
jos r
emuose vienas Standartinio Modelio neutrinas i�gaun¡ mas¦ per sverto mechanizm¡, ir
antrasis per vienos kilpos pataisas. Vienas i² neutrinu� lieka be mas
es.

Tyrin
ejamame GN modelyje svarbu� vaidmeni� atlieka Jukava koe�cientai. Jukava koe�-
cientai sieja skaliariniu� lauku�, tokiu� kaip Higgs'o laukas, ir spinoriu lauku�, tokiu� kaip leptonai,
s¡veikas. Jukava s¡veikos kartu su Higgs'o mechanizmu duoda leptonams ju� mases.

�is bakalauro baigiamasis darbas yra mano kursinio darbo [3], kuriame tyrin
ejau
Standartini� Modeli� ir sverto mechanizm¡, t¦sinys. Pirmuose keturiuose skyriuose supaºind-
inu su Standartinio Modelio pagrindais. Penktajame ir ²e²tajame skyriuose, paai²kinu GN
modeli�, ir septintajame savo atliktus skai£iavimus. Rezultatus apibendrinu i²vadose - a²tun-
tame skyriuje.

Pagrindiniai ²io darbo tikslai buvo: (1) susipaºinti su GN modelio teorija, (2)
suprogramuoti teorin¦ GN modelio mas
es i²rai²k¡ [2] ir (3) naudojantis ja i²reik²ti Jukava
koe�cientu� sprendinius.

Darbo tikslai buvo pasiekti. Uºprogramavus GN modelio mas
es i²rai²k¡ (68) ir suly-
ginus su ºinomais duomenimis gauta lygtis. Panaudojus ²i¡ lygti�,buvo prad
etas skai£iavi-
mas i²spr¦sti Jukava nariu� reik²m
ems, kurio Mathematica programinis paketas nesugeb
ejo
uºbaigti per priimtin¡ laik¡. Siekiant sumaºinti skai£iavimu kieki, GN modelio mas
es i²rai²ka
buvo dalinai diagonalizuota i� antros eil
es kvadratin
es matricos blok¡, su kuriuo papras£iau
dirbti. Tas buvo pasiekta parametrizuojant Jukava koe�cientus tiesin
eje trimat erdv
eje.

Jukava koe�cientu i²rai²kos gautos analitiniu pavidalu. Jos toliau gali b	uti tyrin
ejamos
analiti²kai arba skaitmeni²kai, vizualizuojamos ar kitaip apdorojamos daugyb
es i�vairiu�
programiniu� paketu� pagalba.

Parametrizavimo koe�cientas a i²reik²tas tiksliai. Ta£iau koe�cientas |b| randamas tiktai
kaip ketvirtos eil
es polinomo (87) ²aknys, kurios neb	utinai yra realios. Buvo patikrinti du
parametru� rinkiai ir rasta, kad jie negali atitikti ie²komo realaus parametro |b| nes jie atitinka
kompleksines ²aknis. Norint i�siai²kinti ar sprendinys turi realiu� ²aknu�, reikalingas tolimesnis
parametru� erdv
es tyrin
ejimas.
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Appendix A

Exact expressions of the coe�cients ui in polynomial (87). Most of them a very large in size
therefore the abbreviations ei are used in de�ning them. Additional abbreviations (82) and
(83) are used.
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