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Abstract

The development of cloud-native applications focuses on scalability and loose cou-
pling of containerized microservices to ensure smooth deployment on cloud or
container orchestration platforms. An autoscaler is a crucial component respon-
sible for dynamically provisioning compute resources. When dynamically provi-
sioning resources, addressing issues such as timelines and the amount of resources
to be provisioned is important. Therefore, most autoscaling algorithms aim to find
a balance between avoiding Service Level Agreement (SLA) violations and effec-
tively managing costs or energy. Various rules-based autoscaling approaches were
created to address quality of service concerns and minimise the risk of SLA viola-
tions. When resources are allocated and adjusted as needed, an autoscaler typically
evaluates current service performance by comparing it to a predefined service level
indicator (SLI) value. However, this alone may be insufficient to address changes
in SLA conformance. To respond appropriately, the autoscaler must also consider
the system’s overall SLA fulfillment status.

This research presents two innovative self-adaptive autoscaling solutions for
SLA-sensitive applications. The first solution focuses on maintaining the defined
Service Level Objective (SLO) to recover from service degradation and achieve the
desired service level. The second solution features a novel SLA-aware dynamic
CPU threshold adjustment algorithm. The algorithm aims to ensure that the ap-
plication has sufficient resources to operate at a level that keeps the number of
response time violations compliant with the SLO. Additionally, it aims to ensure
that the system operates as closely as possible to the defined Service Level Ob-
jectives, thus minimising resource wastage. The solution employs exploratory data
analysis techniques in conjunction with moving average smoothing to determine
the target utilisation threshold.

The Kubernetes Horizontal Pod Autoscaler (HPA) remains the most widely
used threshold-based autoscaling due to its simple setup, operation, and seamless
integration with other Kubernetes functionalities. For that reason, this research
compares the autoscaling solutions proposed here with the Kubernetes Horizontal
Pod Autoscaler and evaluates their effectiveness and performance across various
real-world workload scenarios. The evaluation methods for algorithms focus on
their ability to operate near-defined SLOs and the effectiveness of resource provi-
sioning. The analysis of the experimental results demonstrates that these solutions
are successful in SLA fulfillment and SLO restoration goals while providing an
adequate amount of resources to achieve these objectives.

The results of the dissertation were published in six scientific publications,
two of which were in reviewed scientific journals indexed in Web of Science and
presented at five international conferences.
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Reziumė

Kuriant debesų kompiuterijos taikomąsias programas, daug dėmesio skiriama tam,
kad konteinerizuoti mikroservisai būtų lengvai masteliuojami bei turėtų silpną
sankibą, kas užtikrina sklandų taikomųjų sistemų diegimą debesų kompiuterijos
ar konteinerių orkestravimo platformose. Automatinio masteliavimo komponentas
(angl. autoscaler) yra esminis elementas, kai kalbama apie skaičiavimo resursų
dinaminį paskirstymą, reaguojant į resursų poreikį. Kai automatinis masteliavi-
mo komponentas paskirsto resursus, jis turi spręsti terminų bei tinkamo resursų
kiekio nustatymo uždavinius, kurie daro įtaką paslaugos kokybei. Todėl dauguma
automatinio masteliavimo algoritmų siekia rasti pusiausvyrą tarp susitarimo dėl
paslaugų teikimo lygio (angl. Service Level Agreement, SLA) sąlygų pažeidimų
išvengimo ir efektyvaus išlaidų ar energijos valdymo. Siekiant išspręsti paslaugų
kokybės užtikrinimo problemas ir sumažinti SLA pažeidimų riziką, buvo sukurti
įvairūs taisyklėmis pagrįsti automatinio mastelio keitimo metodai.

Šiame tyrime pristatomi du novatoriški, savaime prisitaikantis automatinio
masteliavimo sprendimai. Pirmas sprendimas skirtas palaikyti paslaugų teikimo
lygio tiksluose (angl. Service Level Obectives, SLOs) nurodytą lygį tais atvejais,
kai jis pablogėja dėl netinkamo ar uždelsto resursų teikimo. Sprendimu siekiama
palaikyti nustatytą paslaugų lygį bei atstatyti jį degradavus. Taip pat šiame tyri-
me pristatomas naujas, žiniomis apie SLA pagrįstas dinaminio slenksčio (angl.
threshold) koregavimo algoritmas, skirtas CPU apkrovos slenksčiams nustatyti.
Algoritmas siekia užtikrinti tokį resursų kiekį, kad taikomosios programos atsa-
ko į užklausas laikas neviršytų nustatyto paslaugos lygio tiksluose daugiau kartų
nei leidžiama pagal paslaugos susitarimą. Be to, algoritmas siekia užtikrinti, kad
teikiamos paslaugos kokybė kuo labiau atitiktų nustatytą paslaugos teikimo lygio
tikslą, taip mažindamas resursų švaistymą. Slenksčiui nustatyti naudojami tiria-
mieji duomenų analizės metodai ir slankiojo vidurkio glodinimas.

HPA yra plačiausiai naudojamas automatinio masteliavimo komponentas. Jis
išlieka populiarus dėl pakankamai paprasto valdymo ir integravimo su kitais Ku-

bernetes komponentais. Dėl šios priežasties tyrime siūlomi automatinio mastelia-
vimo sprendimai yra palyginti su HPA. Tyrimo tikslas yra įvertinti siūlomų spren-
dimų gebėjimą veikti pagal nustatytus SLO, kartu įvertinant jų efektyvumą pa-
skirstyti resursus, esant įvairių tipų apkrovoms. Rezultatų analizė rodo, kad siūlo-
mi sprendimai sėkmingai paskirsto resursus, užtikrindami SLO palaikymą ar SLO
atkūrimą.

Disertacijos rezultatai buvo paskelbti 6 moksliniuose leidiniuose, iš kurių 2 –
recenzuojamuose mokslo žurnaluose, indeksuotuose Web of Science, ir pristatyti 5
tarptautinėse konferencijose.
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Notations

Symbols

Rmax, Rmin – the highest (max) and lowest (min) number of replicas that can
be provisioned by autoscaler (liet. Didžiausias (maks) ir mažiausias (min)

replikų skaičius, kurį gali aprūpinti automatinio masteliavimo valdiklis).

RD
d – the number of pod replicas calculated based on the resource utilization

metrics. Throughout the document, D ∈ [up, down] represents the direc-
tion of the autoscaling action (liet. RD

d yra „pod“ replikų skaičius, ap-

skaičiuotas remiantis resursų apkrovos matavimo metrika. Visame dokumente

D ∈ [Up,Down] nurodo automatinio masteliavimo veiksmo kryptį).

RD
tgt – the target number of replicas refers to the number of pods determined based

on various factors, including the velocity of load, SLO compliance state, or
traffic volatility (liet. Tikslinis replikų skaičius nurodo „pod“ skaičių, nus-

tatytą pagal įvairius veiksnius, įskaitant apkrovos greitį, SLO suderinamumo

būseną arba srauto kintamumą).

RBP – the number of replicas provisioned when the current SLO value SLOn is
way below target (liet. Pateiktų replikų skaičius, kai dabartinė SLO reikšmė

SLOn yra žemiau tikslinės reikšmės).

∆RV – the downscale step represents the number of replicas that will be removed
from operations when traffic is volatile (liet. Mažinimo žingsnis nurodo rep-

likų, kurios bus pašalintos iš aplinkos, esant kintamai apkrovai, skaičių).
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SLOtgt – the current value of SLO measurement (liet. Dabartinė SLO matavimo

vertė).

SLOBP – the SLO restoration breaking point threshold (liet. SLO atstatymo lūžio

taško slenkstis).

SLOnoDownScale – the no downscale action SLO threshold is used to control
the risk of SLA violation after SLO recovery action. Autoscaling actions
are prohibited until the specified SLO threshold is reached (liet. Slenkstis,

naudojamas SLO neįvykdymo rizikos mažinimui po degraduotos paslaugos

kokybės atstatymo. Automatinio masteliavimo veiksmai yra uždrausti tol, kol

pasiekiama nurodyta SLO riba).

Lmax – the highest load (request per second, connections per second, packets
per second) that a single replica can handle without violating the target ser-
vice level (liet. Didžiausia apkrova (užklausa per sekundę, sujungimai per

sekundę, paketai per sekundę), kurią gali apdoroti viena replika, nepažei-

džiant nustatyto paslaugos lygio).

TD
cooldown – the cooldown period is when no autoscaling action happens (liet.

Laikotarpis, per kurį nevyksta jokie veiksmai).

∆TD
cooldown – the cooldown period adjustment steps. Used to shorten upscale
action cooldown period if load increase is high and prolong it in cases when
the load is low (liet. Laikotarpio, per kurį nevyksta jokie veiksmai, koregav-

imo žingsniai, naudojami norint sumažinti šį laikotarpį, kai apkrova stipriai

padidėja, ir pratęsti laikotarpį, kai apkrova maža).

Tn – a length of synchronization period between the SAA solution and the Ku-
bernetes cluster on the number of running replicas (liet. Nurodo periodo, per

kurį SAA ir Kubernetes sprendimai sinchronizuoja informaciją apie replikų

kiekį, ilgį).

Tm – the length of the monitoring samples collection period (liet. Metrikų rinkimo

laikotarpio ilgis).

tDdelay – replica provisioning or deprovisioning time (liet. Replikos teikimo arba

teikimo atšaukimo laikas).

tDtotalDelay – resource provisioning delay is the time it takes to adjust resource
provision or deprovision based on demand shifts (liet. Resursų suteikimo delsa

– tai laikas, reikalingas resursų suteikimui arba panaikinimui, priklausantis

nuo resursų poreikio pokyčių).

vbaseline – baseline velocity defines what the maximum load (Lmax) increase per
second can be handled by a single replica during a period equal to tDtotalDelay

(liet. Bazinis greitis apibrėžia, kokia maksimali apkrova (Lmax) gali būti ap-

dorojama vienos replikos per laikotarpį, lygų tDtotalDelay).
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αD – velocity factor gives a raw estimate of how many times the current load
change velocity vn is different from the baseline velocity (liet. Greičio fak-

torius nurodo, kiek kartų dabartinis apkrovos kitimo greitis vn skiriasi nuo

bazinio greičio).

Ak – raw velocity is a ratio between vbaseline and velocity vk, where k is the array
element index (liet. Nemodifikuotas greitis nurodo santykį tarp vbaseline ir

greičio vk, kur k yra masyvo elemento indeksas).

Vk(Ak) – velocities vector is used by the volatility detector module to analyze
the last K monitoring samples of velocity and determine if the load is volatile
(liet. Kintamo srauto detektoriaus modulis naudoja greičio vektorių pasku-

tinių K greičio matavimo stebėjimų analizei ir kintamos apkrovos aptikimui).

Cn – current average CPU utilization of all replicas that are running and available
to handle the workload (liet. Visų replikų, paruoštų ir naudojamų apkrovos

apdorojimui, dabartinė vidutinė CPU apkrova).

CTD – the indicator of CPU threshold selected (CT ∈ [upper,mid, lower]) for
upscaling or downscaling action (D ∈ [Up,Down]) (liet. Rodiklis, rodantis,

koks CPU slenkstis pasirinktas (CT ∈ [upper,mid, lower]) replikų kiekio

padidinimo arba sumažinimo veiksmui (D ∈ [Up,Down])).

CCTD

c – the dynamic CPU Thresholds are dynamically adjusted thresholds used
to trigger autoscaling action and calculate the desired replica number (liet. Di-

naminiai CPU slenksčiai yra dinamiškai koreguojami slenksčiai, naudojami

masteliavimo veiksmui iššaukti ir replikų kiekiui skaičiuoti).

∆CD – CPU threshold adjustment steps used to adjust CPU or another thresh-
old (e.g. RAM) used for autoscaling action (liet. CPU slenksčio reguliavimo

žingsnio dydis naudojamas koreguoti CPU arba kito tipo apkrovos slenkstį

(pvz., operatyvios atminties panaudojimo), taikomą automatiniam masteliav-

imui).

Tc – CPU adjustment period (s) is the period during which the CPU Adjuster
module validates the state of SLO (above, on target, or below) and adjusts
CPU utilization threshold values (liet. CPU koregavimo laikotarpis (sek.) tai

laikotarpis, per kurį CPU koregavimo modulis patikrina SLO būseną (viršija,

pagal arba žemiau tikslo) ir koreguoja CPU apkrovos slenksčio reikšmes).

Abbreviations

AKS – Azure Kubernetes Service (liet. Azure Kubernetes paslauga);

API – application programming interface (liet. programinė sąsaja);

AWS – Amazon Web Services (liet. Amazon Web Services);
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CA – Cluster Autoscaler (liet. klasterio automatinio masteliavimo valdiklis);

CAP – consistency, availability, and partitioning (liet. neprieštaringumas, pasieki-

amumas ir skaidymas);

CMA – centered moving average (liet. centruotas slankusis vidurkis);

CNCF – Cloud Native Computing Foundation (liet. debesų kompiuterijos kilmės

pagrindas);

CNI – container network interface (liet. konteinerio tinklo sąsaja);

CPA – Custom Pod Autoscaler (liet. tinkintas „pod“ automatinio masteliavimo

valdiklis);

DCTA – dynamic CPU threshold adjuster (liet. dinaminis CPU slenksčio regu-

liatorius);

EDGAR – electronic data gathering, analysis, and retrieval (liet. elektroninių

duomenų rinkimas, analizė ir gavimas);

DMAR – Dynamic Multi-level Autoscaling Rules (liet. Dinaminės kelių lygių

automatinio masteliavimo taisyklės);

EC2 – Elastic Compute (liet. elastinis skaičiavimo resursas);

HPA – horizontal pod autoscaler (liet. horizontalaus „pod“ masteliavimo valdik-

lis);

GCP – Google Cloud Platform (liet. Google debesų kompiuterijos platforma);

IAAS – Institute of Architecture of Application Systems (liet. Taikomųjų sistemų

architektūros institutas);

IQR – interquartile range (liet. tarpkvartilinis diapazonas);

ML – machine learning (liet. mašininis mokymas);

MSA – microservice architecture (liet. mikroservisų architektūra);

OCI – Open Container Initiative (liet. Atvirosios kompiuterijos iniciatyva);

QoS – Quality of Service (liet. paslaugos kokybė);

RAM – Random Access Memory (liet. operatyvioji atmintis);

RT – response time (liet. atsako laikas);

RU – resource utilization (liet. resursų panaudojimas);

SAA – SLA-aware autoscaler (liet. susitarimu dėl paslaugos teikimo lygio pa-

grįstas automatinis masteliavimo valdiklis);

SaaS – Software-as-a-Service (liet. programinė įranga kaip paslauga);

SLA – service level agreement (liet. susitarimas dėl paslaugos teikimo lygio);

SLI – service level indicator (liet. paslaugos veikimo lygio indikatorius);

SLO – service level objective (liet. paslaugos teikimo lygio tikslas);
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SATA – SLA-Aware Threshold Adjustment (liet. susitarimu dėl paslaugos teiki-

mo lygio slenksčio pagrįstas reguliatorius);

SMA – simple moving average (liet. paprastasis slankusis vidurkis);

VPA – Vertical Pod Autoscaler (liet. vertikalaus „pod“ masteliavimo valdiklis).
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Introduction

Problem Formulation

The rise in popularity of application containerization and microservice architecture
in recent years has led to the emergence of a new paradigm known as cloud-native
applications (CNA). CNA often consists of multiple scalable and loosely coupled
services that run as containerized application instances. However, it is crucial to
provision these application instances on time and in the amount required to meet
the performance objectives defined in the Service Level Agreement (SLA). Con-
tainer orchestration platforms are specifically designed to streamline the operation
of larger-scale containerized applications, where the autoscaler component plays a
critical role in addressing the application demand for compute resources.

Autoscalers must address such issues as timelines and the amount of resources
to be provisioned. Premature or excessive resource provisioning can lead to in-
creased costs, while delays could result in service degradation and SLA violations.
Therefore, most autoscaling algorithms aim to find a balance between avoiding
SLA violations and effectively managing resources. The importance of consider-
ing infrastructure costs in business cannot be underestimated. However, the quality
of service delivered to end users can directly impact the overall success of a busi-
ness (Arapakis, Park, & Pielot, 2021; Sekhi, 2023). Failure to meet SLAs can
result in business loss or penalties. Therefore, autoscalers aimed at fulfilling SLAs
must ensure the desired quality of service while effectively managing resource
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demand (Al-Dhuraibi, Paraiso, Djarallah, & Merle, 2018; Amiri & Mohammad-
Khanli, 2017). This requires the implementation of SLA awareness mechanisms
to react appropriately to deviations from the defined service level indicators and
objectives.

Relevance of the Dissertation

Cloud adoption and application containerization are increasing, with more applica-
tions moving to the cloud and microservice architecture (Kazanavičius, Mažeika,
& Kalibatienė, 2022), leading to a new cloud-native paradigm. The popularity of
cloud-native solutions has led to the establishment of the Cloud Native Computing
Foundation (CNCF) (CNCF, 2024b). The foundation aims to promote the adop-
tion of technologies that enable organizations to develop and operate scalable ap-
plications in modern, dynamic environments, including public, private, and hybrid
clouds. The cloud-native landscape of CNCF encompasses over 40 open-source
projects and proprietary products categorized under Orchestration and Schedul-
ing (CNCF, 2024a), most of which are dedicated to containerized application or-
chestration. The number of new members and solutions continues to increase an-
nually. Furthermore, Kubernetes is an emerging container orchestration platform
that is adopted in growing numbers each year (CNCF, 2024c; Datadog, 2024).
Companies like NetApp, Google, and Datadog are developing autoscaler products,
and academia is actively researching autoscaling solutions for cloud-native appli-
cations. Thousands of articles and research papers dedicated to cloud-native and
autoscaling can be found in databases, such as Semantic Scholar, Web of Science,
and Scopus. Despite more than a decade of research in this area, trends continue
to grow, and the problem of efficient autoscaling remains relevant.

The initial autoscaling solutions mostly focused on cost efficiency. However,
there is a growing emphasis on the SLA aspect of autoscaling, as consumers and
customers prioritize performance and quality of service (Arapakis et al., 2021;
Pusztai et al., 2021; Sekhi, 2023). In the last five years, vendors like VMWare
(VMware, 2024), Google (Rzadca et al., 2020), and Splunk (Splunk, 2024) and
academia (Poojitha & Ravindranath, 2025; Pusztai et al., 2021; Qian et al., 2022;
Ruiz, Pueyo, Mateo-Fornes, Mayoral, & Tehas, 2022; Tonini et al., 2023; Wen
et al., 2023) are paying more attention to SLA awareness in cloud-native solutions.

Research Object

The object of the present dissertation is the SLA-aware autoscaling algorithms for
cloud-native applications.



INTRODUCTION 3

Aim of the Dissertation

The dissertation aims to enhance the fulfillment of performance-based Service
Level Objectives for containerized cloud-native applications by utilizing rules-
based autoscaling algorithms.

Tasks of the Dissertation

The following tasks must be solved to achieve the aim of the dissertation:

1. To perform a scientific literature review on the current state of autoscal-
ing algorithms and methods that aim to ensure cloud-native applications’
performance compliance with service-level objectives.

2. To develop the SLA-aware autoscaling approaches for autoscalers design-
ed for containerized cloud-native applications, addressing the SLA fulfill-
ment aspect.

3. To propose the SLA fulfillment efficacy evaluation methods for autoscal-
ing approaches.

4. To assess the efficacy and efficiency of the proposed autoscaling methods
under various workload conditions.

5. To perform a comparative analysis of the proposed autoscaling approaches
and to compare them with widely adopted autoscaling solutions.

Research Methodology

The following research methods were chosen to investigate the object:

1. An analytical literature review has been conducted on cloud-native trends
and existing autoscaling algorithms to ensure the SLA compliance of cloud-
native applications. Strengths and weaknesses were evaluated, and the
main SLA performance-impacting factors were assessed. Existing gaps in
autoscaling solutions were identified.

2. The comparative analysis was used to evaluate the advantages and disad-
vantages of the analyzed and evaluated approaches.

3. The statistical exploratory analysis method was applied to understand how
CPU threshold selection impacts performance-based SLAs’ achievement.

4. The experimental research method was applied. The experiments were
conducted to evaluate the effectiveness of the proposed rules-based au-
toscaling approaches in fulfilling the performance SLA requirements un-
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der various load conditions. The Gatling and Jmeter load generation tools
were utilized to create multiple types of workloads. An experimental envi-
ronment was established on the Azure public cloud platform using Azure
Kubernetes Service (AKS). All prototypes for autoscaling algorithms were
implemented in the Java programming language. The data collected dur-
ing the experiments was analyzed to assess the solutions against predefined
evaluation criteria.

The Scientific Novelty of the Dissertation

The scientific novelty of this dissertation is specified as follows:

• The proposed algorithms enhance the SLA fulfillment for rules-based au-
toscalers. They are designed to mitigate the complexity introduced by the
use of machine learning algorithms while improving compliance with per-
formance-based service level agreements.

• In scenarios where allocating additional resources can significantly im-
prove service performance and minimize the likelihood of violating SLO,
the addition of resources enables SLO compliance recovery after it is de-
graded. This approach can be used in addition to the traditionally used
SLA violation avoidance mechanisms in rules-based cloud-native applica-
tion autoscalers.

• The introduced SLA restoration approach improves compliance with the
defined performance-based service level objectives.

The Practical Value of the Research Findings

The proposed approaches are significant from theoretical and practical perspec-
tives in ensuring that cloud-native applications meet SLA performance require-
ments. The approaches also aim to optimize the performance of existing auto-
scaler solutions with respect to performance-based SLA fulfillment. As cloud-
native practices become more popular, there is a growing need for more robust,
reliable, and SLA-efficient autoscaling solutions.

Determining the threshold to meet performance-based Service Level Objec-
tives (SLOs) in many widely used autoscaling solutions is currently a manual and
error-prone process. This is due to its reliance on static threshold principles, re-
quiring manual configuration. The proposed dynamic threshold determination ap-
proach saves time when tuning HPA performance and lays the groundwork for
further research into efficiency optimization.
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Defended Statements

The following statements, based on the results of the present dissertation, may
serve as the official hypotheses to be defended:

1. In scenarios where the allocation of additional resources can significantly
improve service performance and minimize the likelihood of violating
SLO, the addition of resources allows for recovery of SLO compliance
after it is degraded, and this approach can be used as a mechanism to im-
prove performance-based SLO compliance, along with the traditionally
used SLA violation avoidance mechanisms in rules-based cloud-native ap-
plication autoscalers.

2. The dynamic manipulation of the utilization threshold can be used to im-
prove SLA fulfillment in rules-based autoscaling solutions when the uti-
lization threshold is the most influential SLA factor.

3. Extending the tracking timeframe for SLA compliance enhances the ability
of cloud-native autoscalers to meet established performance-based SLOs,
in contrast to autoscalers that rely solely on current service level indicator
values for their scaling decisions.

Approval of the Research Findings

The results of the dissertation were published in two scientific publications in re-
viewed scientific journals indexed in Web of Science Citation Index, three were
published in conference proceedings, and one in a conference presentation ab-
stract in an international DB. The author gave five presentations at international
scientific conferences:

• The 8th Data Analysis Methods for Software Systems (DAMSS), 1–3 De-
cember 2016, Druskininkai, Lithuania.

• 2017 Open Conference of Electrical, Electronic and Information Sciences
(eStream), 27 April 2023, Vilnius, Lithuania.

• The 24th International Conference on Information and Software Technolo-
gies (ICIST2018), 4–6 October 2018, Vilnius, Lithuania.

• The 14th Data Analysis Methods for Software Systems (DAMSS), 30 No-
vember – 2 December 2023, Druskininkai, Lithuania.

• The 1st International Symposium on Parallel Computing and Distributed
Systems (PCDS2024), 21–22 September 2024, Singapore.
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The Structure of the Dissertation

The dissertation consists of an introduction, three main chapters, general conclu-
sions, references, a list of the author’s publications on the topic of the dissertation,
and a summary in Lithuanian. Its total scope is 167 pages, 44 equations, 29 figures,
and 24 tables.



1
Literature Review of Autoscaling

Methods for the Assurance of
Service Level Agreement Fulfillment

in Cloud-Native Applications

This chapter provides an overview of cloud-native trends and explores the primary
definition of cloud-native applications. It also discusses autoscaling solutions and
methods used for cloud-native applications, including a comprehensive analysis
of autoscaling approaches and types, focusing on autoscaling solutions oriented
toward Service Level Agreement (SLA) fulfillment. It also provides an overview
of autoscaler efficiency evaluation methods from viewpoints of resource waste and
quality of service. The chapter concludes by summarizing the literature review
findings and clarifying the main objectives and tasks of the dissertation.

Regarding the topic discussed in this chapter, four publications were pub-
lished by the author: Pozdniakova and Mažeika (2017b), Pozdniakova, Mažeika,
and Cholomskis (2018a), Pozdniakova, Cholomskis, and Mažeika (2023), Pozd-
niakova, Mažeika, and Cholomskis (2024).

1.1. Cloud-Native Applications

Before going deeper into the autoscaling of containerized cloud-native applica-
tions, it is crucial to understand what cloud-native applications are and their main
characteristics. This sub-chapter will provide an overview of cloud-native applica-
tions based on articles presented in Table 1.1 starting from early history.

Amazon Web Services (AWS) was the first public cloud provider in the world
and is considered the pioneer of public cloud technology. It introduced its first
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service, Elastic Compute, in August 2006, preceding other popular providers such
as Microsoft Azure, which appeared in 2008, Alibaba in 2009, and Google in
2011. Cloud-native is still a growing trend with a high level of adoption across
industry (CNCF, 2024c) and high interest in academia. The earliest mention of
a cloud-native (or cloud-ready or cloud-aware) solution in bibliometric databases
such as IEEE Xplore, Scopus, and Web of Science dates back to 2008, two years
after AWS was released. This might be considered a representation of the early
interest in the cloud-native paradigm.

Table 1.1. Studies by the cloud-native research area question mapping made by the author

Research area Paper

What is the cloud-native ap-
plication?

Andrikopoulos, Strauch, Fehling, and Leymann (2012);
Brown and Capern (2014); Deng et al. (2024); Fehling,
Leymann, Retter, Schupeck, and Arbitter (2014); Gan-
non, Barga, and Sundaresan (2017); Inzinger et al.
(2014); Kavis (2014); Kratzke and Peinl (2016); Kratzke
and Quint (2017); Leymann, Fehling, Wagner, and Wet-
tinger (2016); Pivotal (2017); Retter and Fehling (2013);
Toffetti, Brunner, Blöchlinger, Spillner, and Bohnert
(2016); VMware (2016)

What main characteristics
do cloud-native applica-
tions have?

Brunner, Blochlinger, Toffetti, Spillner, and Bohn-
ert (2016); Casper, Bette, and Louie (2014); CNCF
(2024b); Deng et al. (2024); Fehling, Leymann, Miet-
zner, and Schupeck (2011); Fehling et al. (2014); Hole
(2016); Kavis (2014); Kosińska, Brotoń, and Tobiasz
(2024); Kourtesis, Bratanis, Bibikas, and Paraskakis
(2012); Kratzke and Peinl (2016); Kratzke and Quint
(2017); Leymann et al. (2016); Lichtenthäler and Wirtz
(2024); Peinl, Holzschuher, and Pfitzer (2016); Ret-
ter and Fehling (2013); Roussev, Ahmed, Barreto, Mc-
Culley, and Shanmughan (2016); Sodhi and Prabhakar
(2011); Stine (2015); Toffetti et al. (2016); Weinman
(2016); Wilder (2012); Zimmermann (2017)

The adoption of public cloud solutions was initially slow due to security con-
cerns. The same trend was in the interest of researchers in this area. As can be
seen from Figure 1.1, the interest in cloud solutions began to grow between 2012
and 2017. During this period, Docker and Kubernetes were released in 2011 and
2014, respectively. Several articles were published aimed at defining cloud-native
applications and their non-functional characteristics as per the cloud-native appli-
cations vision of that period. Multiple terms are used in the analyzed literature
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to define applications that are designed and developed specifically to run on the
cloud, with the earliest mention dating back to 2012. Here are just a few examples
of the findings. Andrikopoulos et al. (2012), Toffetti et al. (2016), Wilder (2012),
Kratzke and Peinl (2016), and Kratzke and Quint (2017) use the “cloud-native”
term in their work, each providing a definition for it. “Cloud-ready” is mentioned
by Brown and Capern (2014) from IBM, Kavis (2014), and Weinman (2016). The
“Cloud-aware” term is met in the Open Datacenter Alliance report (Casper et al.,
2014) and Sodhi and Prabhakar (2011).
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Fig. 1.1. Number of research articles returned for “cloud-native OR cloud-ready OR
cloud-aware” query by year in Scopus (Scopus, 2024), Web Of Science (Clarivate, 2024)

and IEEE Xplore (IEEEXplore, 2024) bibliometric databases

The early attempts to define the “cloud-native application” term were made
by Andrikopoulos et al. (2012) and Wilder (2012). Andrikopoulos et al. (2012) de-
fine cloud-native applications as “…applications that are specifically designed and
developed on top of a constellation of Cloud services, and which can fully exploit
the characteristics of Cloud computing.” He also defines cloud-enabled software
as software that was specifically adopted to be suitable for the cloud (Andrikopou-
los, Binz, Leymann, & Strauch, 2013). This is similar to the definition provided by
Wilder (2012): “A cloud-native application is architected to take full advantage of
cloud platforms.” Later, Toffetti et al. (2016) made this definition even more uni-
versal: “Cloud-native application …is an application that has been specifically de-
signed to run in a cloud environment.” Once containerization technology, such as
OCI and Docker (defined in sub-chapter 1.1.1), became popular, the cloud-native
definition became less technology-agnostic. The definitions incorporated guide-
lines on how cloud-native applications should be developed. In 2017, the term
“cloud-native application” was popularized by VMware and Pivotal to describe
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containerized applications or applications developed using microservice architec-
ture. At approximately the same time, in 2015, the Cloud Native Computing Foun-
dation (CNCF) was established by the Linux Foundation. CNCF aims to serve as
a vendor-neutral center for cloud-native computing. CNCF defines cloud-native
as the collection of technologies that “…breakdown applications into microser-
vices and packages them in lightweight containers to be deployed and orchestrated
across a variety of servers” (Deng et al., 2024). Notably, the “cloud-native appli-
cation” term was used by Andrikopoulos et al. (2013) long before the emergence of
microservices, Docker, or similar solutions. The ambiguity surrounding this term
has also been acknowledged by Kratzke and Peinl (2016), Leymann et al. (2016)
and Gannon et al. (2017).

Due to lacking common definition in academic literature, Kratzke and Peinl
(2016) aimed to define cloud-native application more explicitly: “A cloud-native
application is a distributed, elastic and horizontal scalable system composed of
(micro)services which isolate state in a minimum of stateful components. The
application and each self-contained deployment unit of that application are de-
signed according to cloud-focused design patterns and operated on a self-service
elastic platform.” In later published work, Kratzke and Quint (2017) provided
a more detailed definition and explanation of the terms, clarifying that the term
“self-contained deployment unit” used in this definition refers to containers. The
latest definition of cloud-native application found is provided by Mitchell (2023):
“Cloud native applications are well-architected systems that are “container” pack-
aged, and dynamically managed.”

The above definitions emphasize the importance of using specific architecture
patterns, containerization, and an elastic platform or orchestration. The system-
atic mapping study of cloud-native application design and engineering provided
by Odun-Ayo, Goddy-Worlu, Ajayi, Edosomwan, and Okezie (2019) showed that
the tools used in cloud-native applications and cloud-native applications architec-
ture evaluation are the most popular topics in the cloud-native area. The cloud-
native applications must comply with specific functional and non-functional re-
quirements. What are those? The team from the Institute of Architecture of Appli-
cation Systems (IAAS) of the University of Stuttgart did a lot of work on the rise
of cloud-native applications, aiming to define approaches and patterns for cloud-
native application development. Andrikopoulos et al. (2012) evaluated the effect
of design decisions on the consistency, availability, and partitioning (CAP) proper-
ties of cloud-native applications. Andrikopoulos et al. (2013) discussed challenges
in the adoption of applications for the cloud, which include complexity related to
applications migration to the cloud, its operations, including cost and SLA, and
portability across clouds. Fehling et al. (2011, 2014) discussed various cloud com-
puting services and their application patterns, the challenges of deploying these
patterns in the cloud, and proposed possible solutions to overcome these chal-
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lenges. In their work, they define IDEAL properties for a cloud-native application,
which should address the challenges of running applications on an elastic platform
such as the cloud. IDEAL is an acronym where “I” stands for an isolated state,
“D” is for distributed, “E” is elastic, “A” is automated, and “L” is loosely coupled.
Wilder (2012) defines eleven properties of cloud-native applications, such as loose
coupling, horizontal and automatic scale, fault tolerance, and resiliency (upgrades,
migration, and faults should happen without downtime). The work presents 13
patterns that enable these properties in cloud-ready applications.

Other academic efforts also aimed to define the requirements for cloud-native
applications. Kratzke and Peinl (2016), in their cloud-native application reference
model for enterprise architects, called ClouNS, raised the importance of vendor
lock-in avoidance in cloud-ready application design. A systematic mapping study
prepared by Kratzke and Quint (2017) provides cloud-native application principles,
such as the need for automation platforms, software-defined infrastructure, migra-
tion, and interoperability between the clouds. Aiming to evaluate the quality of
the cloud-native application architecture, Lichtenthäler and Wirtz (2024) used 69
cloud-native application characteristics.

Deng et al. (2024) stated that in addition to the microservices architecture, a
cloud-native application is also characterized by containerization and orchestration
technologies.

O’Reilly’s report, written by Stine (2015), provides a set of characteristics that
cloud-native applications should have, such as fault tolerance, state and fault isola-
tions, horizontal scalability, automatic recovery, and statelessness. As per CNCF,
the main goal of being cloud-native is to enhance the speed of application deliv-
ery, scalability, and resilience while reducing the technical risks associated with
deployment. To achieve this, the cloud-native approach involves loosely connected
systems that operate together securely, resiliently, and in a manageable, sustain-
able, and observable manner (CNCF, 2024b; Kosińska et al., 2024). Cloud-native
also involves ensuring that applications can be easily moved across different cloud
platforms, regardless of whether they are public, private, or hybrid cloud or they
are using AWS, Azure, or GCP. This approach decreases vendor lock-in, as devel-
opers treat all resources as cloud-hosted or designed for the cloud (CNCF, 2024b).

Even though the literature contains many definitions of cloud-native applica-
tions and authors do not agree on some implementation details (e.g., statefulness
of components and mandatory use of (micro)services), there are several common
traits. First, a cloud-native application runs on the cloud, which is a distributed
system. As a result, architects designing applications that run on cloud comput-
ing will face similar problems that are common for all distributed systems (even
those that are not cloud-native, conventional ones). Second, cloud-native applica-
tions must be elastic. Herbst, Kounev, and Reussner (2013) defined what elasticity
in cloud computing means: “Elasticity is the degree to which a system is able to
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adapt to workload changes by provisioning and deprovisioning resources in an au-
tomatic manner, such that at each point in time the available resources match the
current demand as closely as possible.” Most conventional applications were not
designed to run in an environment that automatically scales as the number of trans-
actions increases; not all conventional applications were designed to run on elastic
platforms and be elastic.

The cloud-native application characteristics mentioned above aim to address
the challenges of running applications on a dynamically changing (elastic) plat-
form. The cloud resource payment model operates on a pay-as-you-go system,
allowing users to pay only for the resources they use to complete specific tasks
and to turn them off when they are no longer needed. Consequently, it is essential
to maintain the system state if cloud instances are turned on or off, or to design
instances to be stateless. Therefore, the application instance should be as small
as possible, and the system should be portable across different cloud platforms to
avoid vendor lock-in.

Based on the overview above, it could be concluded that a cloud-native ap-
plication is designed as a distributed system with loosely coupled components in-
tended for scalability and capable of running on an automated and elastic plat-
form, such as the cloud. Ideally, these applications should be easily transferable
between different cloud platforms without causing service interruptions (Alonso
et al., 2023; CNCF, 2024b; Fehling et al., 2011; Kratzke & Quint, 2017). When all
the aforementioned characteristics are met, a cloud-native application achieves the
highest level of maturity (Kratzke, 2018). As a result, to be elastic, the cloud-native
applications must be architected and designed using specific architecture patterns
and tooling that enable elasticity.

Elasticity and automation are crucial features that distinguish cloud-ready ap-
plications from traditional ones. To fully leverage the cloud’s potential, the thought-
fully chosen technologies and software architecture should help mitigate potential
challenges related to the operations of applications on the cloud and enable the re-
alization of the benefits offered by the cloud. A microservices-based architecture
(MSA) supports the elasticity feature. Adopting containerization technology by
cloud-native applications helps address the challenges of portability and elastic-
ity (Deng et al., 2024; Kratzke & Quint, 2017). Cloud and container orchestration
platforms and autoscalers enable elasticity (Kosinska, Balis, Konieczny, Malawski,
& Zielinski, 2023). The following sub-chapters will provide more details about
these technologies.

1.1.1. Application Containerization

The widespread adoption of containerization technology has brought numerous
benefits, including enhanced agility in application development, optimized re-



1. LITERATURE REVIEW OF AUTOSCALING METHODS FOR… 13

source utilization, and faster resource provisioning. Containers can start as fast
as a new process and more quickly than it takes to boot a new virtual machine.
Furthermore, the implementation of containers creates an extra layer of abstrac-
tion, allowing multiple application instances to share a single virtual machine.
Linux Operating System (OS) level virtualization creates isolated user-space en-
vironments, commonly referred to as containers (Pozdniakova & Mažeika, 2017a).
These containers share the host OS resources, including CPU, network, storage,
and memory. They share a single operating system kernel, which reduces per-
formance overhead caused by context switching between processes. This allows
multiple instances of the same application to run on the same compute host instead
of spinning up multiple hosts per application instance. Containers also separate
applications from the underlying host infrastructure, making deployment easier in
different cloud or OS environments Figure 1.2.

Fig. 1.2. Architectural differences between virtual machines and containers

The most adopted containerization technology is Docker. It was specifically
designed to streamline application development and deployment, driving its wide-
spread adoption in cloud environments. In 2015, Docker established the Open Con-
tainer Initiative, which is an open governance structure that expresses the purpose
of creating open industry standards around container formats and runtimes. The
OCI currently contains three specifications: the Runtime Specification (runtime-
spec), the Image Specification (image-spec), and the Distribution Specification
(distribution-spec). Image specification defines the structure of the image and how
to read the image file and content. To create a container image, developers define
what should be included in the image (code, dependencies) and how this image
should be built using a Dockerfile.
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The Runtime Specification outlines how to run container images on machines.
Distribution Specification defines an API protocol that facilitates and standardizes
the distribution of content. The typical architecture of the container technology
designed using Open Container Initiative (OCI) is presented in Figure 1.3.

Fig. 1.3. Conceptual architecture diagram of a container

The solution standardization made containerization popular and brought plat-
form and cross-cloud portability, making it ideal for cloud applications. This tech-
nology is crucial for maximizing the efficiency of computing resource usage and
portability across different cloud platforms and services. However, it may not be
the best fit for large monolithic applications that were not initially developed for
the cloud.

The microservice architecture aims to build solutions using small services;
such an approach enables more granular application elasticity. The operating sys-
tem virtualization, together with application containerization technologies enforced
by automated container management and orchestration solutions, serve as facilita-
tors of the microservices architectural style (Peinl et al., 2016). The next sub-
chapter briefly introduces this architectural style.

1.1.2. Microservice Architecture

The microservice architectural style was introduced in 2014. The concept of mi-
croservice architecture was popularized by Lewis and Fowler. They provided the
following definition of this style: “The microservice architectural style is an ap-
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proach to developing a single application as a suite of small services, each running
in its process and communicating with lightweight mechanisms, often an HTTP
resource API. These services are built around business capabilities and are inde-
pendently deployable by fully automated deployment machinery. There is minimal
centralized management of these services, which may be written in different pro-
gramming languages and use different data storage technologies.”

The conceptual diagram of the example application built as a monolith and
later decomposed into microservices is presented in Figure 1.4.

Fig. 1.4. Monolithic and microservice architectures

Commonly, microservice-based architecture is proposed as an alternative to
monolithic application architecture (Pozdniakova & Mažeika, 2017b). MSA solves
a set of problems like fault tolerance, speed of development, and horizontal scala-
bility but also brings operational and organizational complexity compared to mono-
lithic applications. Still, numerous articles highlight microservice architecture as
a suitable approach for the development of a cloud-native application (Deng et al.,
2024; Kazanavicius & Mazeika, 2019; Kosińska et al., 2024; Kratzke, 2018). The
development and operational complexity of the microservice architecture makes it
more suitable for large-scale application deployments or for delivery of Software as
a Service (Leymann et al., 2016). From the viewpoint of service availability, when
properly designed, MSA brings infrastructure cost savings via improved elasticity
of the SaaS solution (Villamizar et al., 2017), minimizes the impact of a single
service failure for the whole application availability, and provides faster service
instance startup times compared to monolithic applications. Microservices can be
scaled if and only if their associated load requires it (Stine, 2015).

When combined with application containerization, this architectural style be-
comes ideal for larger-scale applications, such as Software-as-a-Service (SaaS). As
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applications become larger and more intricate, it becomes crucial to dynamically
spin up additional instances on time, matching the corresponding demand to pro-
vide the desired quality of service. This is where autoscalers come into play to
address these issues. For the autoscaler to comply with quality of service require-
ments, it should be aware of the system and SLA states. The monitoring system
provides information that is utilized by the autoscaler during the decision-making
process.

The next sub-chapter provides an overview of SLA terminology used in this
work. It also discusses monitoring used to measure compliance with SLA and to
support autoscalers in autoscaling decision-making.

1.2. Service Level Measurement and Monitoring for
the Cloud-Native Applications

The application and infrastructure monitoring tools allow measurement of ser-
vice performance through the collection of application and infrastructure met-
rics (Pozdniakova, Mažeika, & Cholomskis, 2018b). These metrics can serve two
purposes. First, metrics can be used as parameters for the qualitative measurement
of the quality of service. These negotiated parameters are used as input to the Ser-
vice Level Agreement (SLA) (Kosińska et al., 2024). Second, metrics collected by
the monitoring system are used as input for autoscaling decision-making.

The following sub-chapters provide an overview of service level agreements,
the use of metrics for service level measurement, and making autoscaling decisions
in autoscaling solutions for cloud-native applications.

1.2.1. Service Level Agreements, Objectives, Indicators, and
Scaling Indicators

The Service Level Agreement or SLA is an agreement between a customer and a
provider to receive a service at a specific level. SLAs might include penalty clauses
for service providers who fail to meet the pre-agreed Service Level Objectives.

Service Level Objective (SLO) represents a commitment to maintaining a ser-
vice at a particular state in a given period (Keller & Ludwig, 2003). In other words,
it defines what service performance target or goal the service must meet during the
period defined in the contract, e.g., in a month. SLO defines the minimally accept-
able level of service for each user (Beyer, Jones, Petoff, & Murphy, 2016; Sahal,
Khafagy, & Omara, 2016). SLOs are divided into types by the SLA criteria they
address, such as availability, performance, security, disaster recovery, resolution or
response time, and others (Sahal et al., 2016).
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SLOs are measured using Service Level Indicators (SLIs), which is a service
performance metric that indicates what measure of performance a customer is re-
ceiving at a given time (Beyer et al., 2016). In simpler terms, SLIs determine what
aspects are being monitored to measure the service level or its quality, such as re-
sponse time and error rate, as well as how these values evolve over time. The type
of SLI heavily depends on the type of application, what task it performs (Amiri &
Mohammad-Khanli, 2017) and what type of SLO it aims to achieve. For example,
response time and requests per second are used to measure performance-oriented
SLO, while Recovery Time Objectives are used to measure disaster recovery SLO.
Response time and tail latency are the most commonly met SLI for microservices-
based containerized cloud-native applications in analyzed literature, which is pre-
sented in Table 1.2.

As mentioned before, monitoring metrics are not only used to measure com-
pliance with SLA but also used by autoscalers to make scaling decisions. These
metrics are called scaling indicators (SI), that is, metrics used to make scaling de-
cisions (Qu, Calheiros, & Buyya, 2018). To make scaling decisions, autoscalers
utilize metrics collected from applications, infrastructure components, or both to
understand the state of the system. These metrics can be split into two categories
(Koperek & Funika, 2012; Taherizadeh, Jones, Taylor, Zhao, & Stankovski, 2018):

• Low-level metrics (also known as host or system) are collected from ma-
chines operating systems or containers. CPU, RAM, storage I/O utiliza-
tion, and network throughput are examples of host metrics. These metrics
are commonly used for making decisions about auto-scaling, as they are
easy to collect and are independent of the applications running on a host.

• High-level metrics or application are application-specific metrics, such as
response time, number of requests, and number of errors. These are typ-
ically used to monitor SLAs but can also be used to make auto-scaling
decisions.

Selecting appropriate metrics is a complex task, as they must support the mea-
surement of SLOs and provide sufficient information to detect and address any
service level violations. Various monitoring approaches are discussed in the liter-
ature in this regard. As presented in Table 1.2, the solutions suggested by Casal-
icchio and Perciballi (2017); Hu and Wang (2021); Ruiz et al. (2022); Toka, Do-
breff, Fodor, and Sonkoly (2021); Ye, Guangtao, Shiyou, and Minglu (2017) rely
solely on low-level metrics. Contraversely, Amiri and Mohammad-Khanli (2017);
Koperek and Funika (2012); Lorido-Botran, Miguel-Alonso, and Lozano (2014);
Nikravesh, Ajila, and Lung (2017); Taherizadeh et al. (2018) suggested using only
application metrics for SI (Table 1.2). Relining purely on low-level metrics could
lead the SLA to be unfulfilled due to a risk of lack of performance degradation
detection (e.g., increased response time) due to container migration to a host with
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a lower-performance CPU. On the other hand, relying purely on a high-level met-
rics approach provides awareness about service performance and compliance with
performance-based SLO. However, it brings the potential risk of resource waste
as there is no information about resource utilization, and as a result, it is hard to
detect overprovisioning. To eliminate such blind spots, using high and low-level
metrics is prevalent when autoscalers aim to fulfill SLA requirements and avoid
resource waste (Casalicchio, 2019; Casalicchio & Perciballi, 2017).

When selecting appropriate SLA awareness metrics for autoscalers, it is im-
portant to consider the limitations of tracking average response time as a means to
improve application performance. While this is a common approach discussed in
literature (Khaleq & Ra, 2021; Pozdniakova et al., 2023; Taherizadeh et al., 2018;
Wu, Yu, Lu, Qian, & Xue, 2019; Xu, Qiao, Wang, & Zhu, 2022), it may not provide
sufficient information about non-compliant events with SLOs due to the averaging
of values. The nth percentile of response time, or tail latency, is a more informa-
tive metric, as it provides information about the percentage of events in which the
response time value violated the SLO targets during the monitoring period. This
information can also be used as an indicator of potentially upcoming SLO viola-
tions. In the case of the average response metric, the information relevant to SLO
is lost due to the value-averaging process.

It is important to note that, except for the approaches suggested by Kumar and
Gondhi (2018) and Pozdniakova et al. (2023), none of the previously mentioned
solutions utilize SLO state tracking for autoscaling decisions. Monitoring the SLO
state (whether it is within, below, or above the target) can help detect periods where
the quality of service declines. This information is essential for identifying situ-
ations that require actions to recover the SLO or make improvements to meet the
SLO. For example, to recover SLO, the system can add additional resources or
adopt a less risky autoscaling strategy. Response time is a popular SLI. Typically,
the autoscaling algorithms verify whether the current measurement of response
time complies with the target defined in the SLA. If it does not, the scaling algo-
rithms reactively adjust the number or placement of resources to restore the perfor-
mance to the desired state and avoid further service degradation; that is, it enables
“SLA fulfillment failure avoidance” mechanism.

Validating compliance with the target response time value ensures that the
system allocates sufficient resources to meet the resource demand at this moment.
However, relying solely on tracking current response time is insufficient to deter-
mine if the long-term SLO meets its target during the defined contract timeframe.
In these situations, autoscaling algorithms must take into account the current sta-
tus of the SLO (long-term) and respond effectively to restore it (SLO recovery).
This concept can be illustrated with the following example. Imagine a system was
functioning within an SLO target of 98%, but then its SLO dropped to 97% for an
hour. To fix the situation, the system must operate at a minimum SLO of 99% for
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at least one hour, provided that the load and other factors affecting the SLO remain
consistent with the previous hour.

Carefully selected SLI and SI are crucial in helping autoscalers achieve spe-
cific SLOs, such as performance, cost, and energy consumption. However, while
metrics are important, an effective autoscaling solution also requires a well-designed
autoscaling decision-making component to make the most of the metrics received
from the monitoring system.

The following sub-chapter provides an overview of autoscalers, covering their
objectives, techniques employed, resource management aspects addressed, and the
types widely adopted in the cloud. It is important to note that this overview focuses
on a subset of autoscaling techniques found to be most relevant to this work. More
comprehensive descriptions are provided by Al-Dhuraibi et al. (2018); Amiri and
Mohammad-Khanli (2017); Lorido-Botran et al. (2014).

1.3. Autoscaling of Containerized Cloud-Native
Applications

Large-scale cloud-native applications consist of multiple small containerized in-
stances, making manual provisioning of additional resources a complex task. The
containers need to be optimally distributed across virtual machines or other con-
tainer execution environments, and the required number of containers must be pro-
visioned and deprovisioned based on resource demand. Container orchestrators
are designed to simplify resource management tasks for containerized applica-
tions. They help users build, scale, and manage complex applications and oversee
the lifecycle of a cloud-native application at runtime (Kosińska et al., 2024).

The container scheduler and the autoscaler are two key components that play
crucial roles in container orchestration. The scheduler is responsible for placing
containers across available nodes in the cluster and managing the life cycle of con-
tainers. Autoscaler is responsible for provisioning and deprovisioning compute
resources based on defined metrics, policies, or rules (Ahmad, AlFailakawi, Al-
Mutawa, & Alsalman, 2022). This dissertation primarily focuses on application
autoscalers, which practically are container autoscalers (Deng et al., 2024). How-
ever, to provide a comprehensive overview of autoscaling techniques, some of the
scaling techniques applied to virtual machines are included as they seem relevant
to containerized applications’ autoscaling.

Autoscaling solutions are designed to ease the task of adjusting resources
to meet SLA requirements at any given time. To fulfill the SLA requirements,
autoscalers aim to meet the following goals (Al-Dhuraibi et al., 2018; Amiri &
Mohammad-Khanli, 2017; Lorido-Botran et al., 2014):
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• solve resource planning problem – automated resource provisioning and
application scaling must be done on time to avoid SLA violations;

• solve resources utilization optimization problem – the difference between
provisioned and consumed resources should be as low as possible.

To achieve these goals, autoscalers use different approaches or modes (Al-
Dhuraibi et al., 2018). Based on the autoscaling approach used by autoscalers,
autoscalers can be divided into the following categories (Al-Dhuraibi et al., 2018;
Amiri & Mohammad-Khanli, 2017; Lorido-Botran et al., 2014; Vazquez, Krishnan,
& John, 2015):

• The horizontal, vertical, and hybrid. Horizontal autoscalers increase
or decrease the number of compute resource replicas (containers, jobs,
virtual machines) that run concurrently based on specific autoscaling rules
or policies. Vertical autoscalers adjust the number of resources assigned
to a single compute instance by increasing or reducing the allocated CPU
power or memory. Hybrid (also known as bi-directional) autoscalers are a
combination of both vertical and horizontal autoscalers.

• Proactive or reactive. Proactive or predictive autoscalers attempt to
foresee future changes in the system by performing the necessary scaling
actions before such changes occur. Reactive autoscalers scale resources
when predefined rules are met or thresholds are exceeded. The scaling ac-
tion is a reaction to a change in the system, and therefore, such autoscalers
do not anticipate such a change Lorido-Botran et al. (2014). A combination
of both is possible. However, no widely adopted specific term is available
for such autoscalers.

Horizontal autoscaling is widely adopted by both infrastructure and applica-
tion autoscalers. Vertical autoscaling is less adopted as it is more complex to imple-
ment, even though it interests academia (Baresi, Hu, Quattrocchi, & Terracciano,
2021; Ding & Huang, 2021; Nguyen, Yeom, Kim, Park, & Kim, 2020; Verreydt,
Beni, Truyen, Lagaisse, & Joosen, 2019).

Reactive and proactive autoscalers are implemented using various techniques.
Reactive autoscalers often use rules or policies (set of rules) to make an autoscaling
decision (Lorido-Botran et al., 2014). Proactive autoscalers commonly use more
advanced techniques, such as machine learning, queuing and network theory, or
statistical analysis. As a result, autoscalers are also classified based on techniques
used for autoscaling (Al-Dhuraibi et al., 2018; Lorido-Botran et al., 2014; Qu et al.,
2018):

• Rules or policy-based – the autoscaling actions are performed when a spe-
cific trigger happens. Based on the trigger, the autoscalers are classified
as:
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– Schedule-based autoscalers consider the cyclical pattern of the daily
workload. The scaling actions are configured manually, based on the
time of the day, so the system cannot adapt to the unexpected changes
in the load.

– Threshold-based autoscalers perform autoscaling action when a cer-
tain threshold or set of thresholds (policies) are met. The system mon-
itors one or a set of metrics, such as CPU and memory utilization,
requests per second, response time, and so forth, to perform an au-
toscaling action.

∗ Static threshold-based rules or policies use fixed value thresholds
or sets of thresholds (policies) to trigger autoscaling action.

∗ Dynamic thresholds, or adaptive thresholds, are adjusted dynami-
cally according to the state of the monitored system.

• Time-series analysis is utilized by autoscaling to estimate future workload
or resource usage. A time series is a sequence of measurements taken
at fixed or uniform intervals. Autoscalers use past measurements, a list
of the last w (history window) observations of the time series, to predict
future values and make decisions accordingly. Then, a suitable scaling
action is taken based on the predicted value. The techniques can be further
classified based on the methods applied to time series:

– Averaging methods are used to smooth a time series to remove noise
or to make predictions. The forecast of the desired resource or SLA
metric value yt+1 is calculated as the weighted or unweighted average
of the last w consecutive values.

– Machine learning (ML) is an umbrella term that refers to a broad range
of algorithms that perform intelligent predictions based on a data set
(Nichols, Chan, & Baker, 2019). ML-based autoscalers commonly
model the application behavior as a time series (create a mathematical
model). According to the constructed model and the previous behavior
of the application, the desired metric is predicted. There are multiple
model-based algorithms used to support autoscaling decisions; their
comprehensive overview is provided in Amiri and Mohammad-Khanli
(2017); Lorido-Botran et al. (2014).

• Reinforcement learning-based (RL) autoscaler is a model-less machine
learning-based autoscaler version. An autoscaler acts as a decision-making
agent that gains knowledge (learns) through interactions between itself and
the system or environment to get a maximal reward for a decision taken.
For example, it will decide whether to add or remove resources to the appli-
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cation (actions) depending on the current input workload, performance, or
another set of variables (state) and always try to minimize the application
response time or cost or maximize throughput (or another scalar reward).

• Control theory-based autoscalers use controllers as their decision-making
mechanisms. Open-loop controllers, feedback controllers, feedback-for-
ward, or a combination of feedback and feedback-forward can be used
to make autoscaling decisions. Open-loop, also known as non-feedback,
controllers make their decisions based on the input from the target sys-
tem using the current state and its model. Feedback controllers monitor
the action results to decide whether the system is working well or not and
correct any deviation from the desired goal, while feedback-forward con-
trollers predict system errors and react before they occur. The prediction
may fail, and for this reason, feedback and feedback-forward controllers
are usually combined.

• Queuing theory based. Autoscalers that adopt the classic queuing theory
model each application as a queue of requests, using established meth-
ods to estimate required performance metrics or resources, considering
the waiting time, arrival rate, service time, etc.

In addition to the previously mentioned classification, autoscalers are classi-
fied by the purpose or concern they aim to address. Autoscalers have different
purposes, such as improving performance and ensuring availability, increasing
resource capacity, saving energy, and reducing cost (Lorido-Botran et al., 2014).
Amiri and Mohammad-Khanli (2017) categorized cloud resource management into
two main aspects: resource-wasting avoidance and SLA fulfillment. As per Amiri
and Mohammad-Khanli (2017), efficient resource management aims to address
two main aspects:

• Resource-wasting avoidance. Its primary objective is to reduce costs or en-
ergy consumption. Decreasing energy usage results in lower carbon emis-
sions, which can promote environmentally friendly cloud computing. A
decrease in the amount of resources used leads to increased profit. Under
these circumstances, a certain degree of SLA violations may be deemed
acceptable if the cost or energy savings justify potential SLA penalties or
align with other business objectives.

• SLA-fulfillment or Quality of Experience-oriented (Al-Dhuraibi et al.,
2018) autoscaling solutions are designed to minimize SLA violations and
ensure adequate resources to maintain system performance according to
the defined SLO targets. The resources allocated to each application should
be close to the application demand in a way that SLA is satisfied and
resource wasting is minimized. However, in this case, justifying higher
resource provisioning over the acceptable resource amount is reasonable.
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Prioritizing customer satisfaction and availability takes precedence over
cost or energy savings(Amiri & Mohammad-Khanli, 2017; Arapakis et al.,
2021; Ilyushkin et al., 2018).

Autoscaling solutions cannot fulfill both aspects at the same time; each solu-
tion normally handles one aspect better than the other. However, solutions try to
find an optimal way to balance some of the contradicted objectives (Lorido-Botran
et al., 2014). Moreover, autoscalers can be classified based on their scope, which
refers to the target at which autoscaler actions can be applied: either at the infras-
tructure or application/platform level (Al-Dhuraibi et al., 2018). This dissertation
primarily focuses on application autoscalers, which practically are container au-
toscalers (Deng et al., 2024); however, it also includes infrastructure autoscalers
where applicable to provide a comprehensive overview.

Table 1.2 provides an overview of autoscaling approaches that prioritize the
efficient management of cloud resources while ensuring SLA fulfillment — Qual-
ity of Service (QoS) oriented autoscaling solutions. Additionally, these approaches
are categorized based on their ability to prevent (avoid) or recover from SLO fail-
ures. Furthermore, this table includes solutions that focus on resource waste avoid-
ance or simultaneously address both SLA fulfillment and resource waste avoidance
aspects, offering a more comprehensive overview of the current state-of-the-art.

Such a wide variety of autoscaling solutions and approaches implies the dif-
ficulty in developing general-purpose autoscalers for cloud applications. Several
factors, including diverse application resource and performance requirements, the
non-homogeneity of cloud resources, dynamic workload characteristics, the time-
liness of scaling decisions, and oscillation mitigation, must be considered when de-
signing an atorscaler for cloud-native applications (Amiri & Mohammad-Khanli,
2017; Qu et al., 2018).

Different applications have different resource demands to perform as per SLA.
To address this challenge, Sun et al. (2019), Mirhosseini et al. (2021), Ding and
Huang (2021), Toka et al. (2021) employ application profiling in their solutions,
which establishes a correlation between application performance and resource de-
mand (Qu et al., 2018). Since cloud resources are dynamic, fluctuations in their
performance may occur. For instance, when virtual machines with lower perfor-
mance are provisioned to a pool of higher-performance machines or when “noisy
neighbors" are placed on the same physical machine(Makroo & Dahiya, 2016; Sun
et al., 2019). As a result, a new profile should be dynamically created once per-
formance degradation is detected to avoid degradation of service quality; however,
none of the above-mentioned works propose such an approach. To tackle the in-
consistency of cloud resources performance and application profile change issues,
dynamic thresholds-based solutions (Keller & Ludwig, 2003; Mirhosseini et al.,
2021; Pozdniakova et al., 2023, 2024; Taherizadeh & Stankovski, 2019; Ye et al.,
2017) or fuzzy Kalman filters (Sun et al., 2019) can be employed.



24 1. LITERATURE REVIEW OF AUTOSCALING METHODS FOR…

Table 1.2. Overview of QoS oriented autoscaling solutions (made by the author)
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Aspect: SLA fulfillment (avoidance) (Amiri & Mohammad-Khanli, 2017)

Hu & Wang,
2021

Time-series
analysis (TSA)

x x x x

Abdullah,
Iqbal, Berral,
Polo, & Car-
rera, 2022

TSA, machine
learning

x x x

Ye et al.,
2017

TSA, dynamic
and static
thresholds

x x

Khaleq & Ra,
2021

Dynamic
thresholds,
reinforcement
learning

x x x

Horovitz &
Arian, 2018

Dynamic
threshold,
reinforcement
learning

x x

Kang &
Lama, 2020

Dynamic
threshold, ma-
chine learning

x x

Taherizadeh
&
Stankovski,
2019

Dynamic
thresholds,
threshold-
based policies

x x x x x

Sun, Meng,
& Song, 2019

Threshold-
based policies,
machine learn-
ing

x x x
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Continued Table 1.2

Scaling indicators Service level indicators
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Aspect: SLA fulfillment (avoidance) (Amiri & Mohammad-Khanli, 2017)

Casalicchio,
2019

Threshold-
based policies

x x

Kumar &
Gondhi,
2018

Threshold-
based policies

x xa

Ruiz et al.,
2022

Threshold-
based policies

x x x

Aspect: SLA fulfillment (recovery and avoidance)

Pozdniakova
et al., 2023

Dynamic
thresholds,
threshold-based
policies

x x x x x x

Aspect: Resource waste avoidance

Mirhosseini,
Elnikety, &
Wenisch,
2021

Queuing theory,
dynamic thresh-
olds

x x x x x

Ding &
Huang,
2021

Queuing theory,
threshold-based
policies

x x x x x x

Beloglazov
& Buyya,
2010

Dynamic
threshold

x xb

aNumber of RT violations
bDifference between requested and allocated millions of instructions per second for all virtual

machines in scope
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End of Table 1.2

Scaling indicators Service level indicators
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Aspect: SLA fulfillment failure and resource waste avoidance

Toka et al.,
2021

Machine learn-
ing

x x x xa

aNumber of lost requests

Cooldown is another widely employed mechanism used by autoscalers to coupe
with load and performance oscilations (kubernetes.io, 2022; Lorido-Botran et al.,
2014; Qu et al., 2018; Taherizadeh et al., 2018). The length of the cooldown pe-
riod directly affects the timeliness of autoscaling decision-making (Nguyen et al.,
2020). Zhang, Tang, Li, Khan, and Li (2019), in their work, has emphasized
that the cooldown period should be long enough. Users must pay attention to
the cooldown period; if it is shorter than the scaling period, it will lead to un-
predictable scaling behavior, causing users to lose control of the autoscaler and
rendering the set strategies ineffective.

Bursty and unpredictable load patterns may adversely affect the effectiveness
of threshold-based solutions, as threshold-based solutions are commonly reactive
in nature. Machine learning-based algorithms are effective in predicting loads
that follow repeating patterns; however, they are less performant in case of unpre-
dictable load patterns (Lorido-Botran et al., 2014). Abdullah et al. (2022) propose
a method for predicting bursts using Decision Tree Regression.

The solution proposed in the second chapter and published in Pozdniakova
et al. (2023) aims to tackle all the above-mentioned problems to fulfill SLA re-
quirements. It addresses the issues by implementing different modules. It incorpo-
rates application profiling. However, it also utilizes several dynamically adjusted
CPU thresholds to minimize the impact of load and infrastructure performance
fluctuations and provide the required system performance. The dynamic thresholds
are adjusted based on the speed of load changes. It introduces the velocity impact
factor, a linear model used to determine how fast the load changes compared to the
predefined performance baseline of the system. The solution also utilizes a traffic
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volatility detector to detect fluctuations and adjust autoscaling logic accordingly.
By incorporating velocity impact factor and traffic volatility detector mechanisms,
the solution aims to enhance the efficiency of handling bursty loads and main-
taining SLA compliance. Furthermore, the solution implements SLA awareness
mechanisms. It tracks the SLO status over the entire SLA monitoring timeframe
and executes various actions based on whether the SLO needs to be restored or
if the system is already compliant with the SLO. Notably, all this is done using
policy- and rules-based autoscaling methods.

To summarise, the overview indicates that current rules-based autoscaling so-
lutions and relevant scientific research have not yet provided a targeted approach
to reduce SLA violations through adherence to SLO by employing the SLO re-
covery concept. The evaluated concept is applicable to embarrassingly parallel
computing scenarios. It is important to emphasize that the notion of recovery, as
discussed here, is distinct from the cost compensation strategies proposed by Khan,
Chan, and Chua (2016); Qian et al. (2022), where autoscaling algorithms may opt
to accept SLA violations if incurring penalties is deemed more financially viable
than the costs associated with deploying additional resources.

This section provided an overview of types of autoscalers and the issues they
aim to address using various methods. The next sub-chapter will give an overview
of Kubernetes, which is the most widely used autoscaler in the industry (CNCF,
2024c; Datadog, 2024). It is also commonly encountered in work related to appli-
cation autoscalers, and interest in autoscaling policies in Kubernetes has grown in
recent years, specifically in Microservices, serverless, and edge computing appli-
cation areas (Joyce & Sebastian, 2023).

1.4. Kubernetes

Since 2015, CNCF has offered support, oversight, and guidance for rapidly grow-
ing cloud-native projects. To support cloud-native application development, the
CNCF landscape provides a list of cloud-native projects categorized by the prob-
lems the project aims to address. Container orchestration platforms are specif-
ically created to handle containerized application deployment in large-scale clus-
ters. Cloud providers have developed a variety of containerized application orches-
trators, both cloud-dependent solutions, such as Azure Service Fabric and Amazon
Web Services Elastic Container Service, and cloud-independent ones. The most
widely adopted cloud-independent orchestrator is Kubernetes. Other less widely
adopted cloud-independent orchestrators include Docker Swarm, Nomad, Red Hat
OpenShift and Mesos, as well as the emerging projects Crossplane and Volcano
orchestrator. However, altogether, these orchestrators did not become as popular as
Kubernetes (CNCF, 2024b).
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Originally developed at Google and released as open-source in 2014, Kuber-
netes is the most widely adopted container orchestration platform (85% of market
penetration), and its adoption continues to grow (CNCF, 2024c; Raj, Vanga, &
Chaudhary, 2022). The platform has become the de facto standard for container
orchestration (Carrión, 2022). It is available for self-deployment on private and
public clouds, and it is also managed by public cloud providers as a Platform-
as-a-Service (PaaS). Examples of such managed services include Amazon Web
Services (AWS), Elastic Kubernetes Service (EKS), Azure Kubernetes Service
(AKS), and Google Cloud Platform Google Kubernetes Engine (GKE).

1.4.1. Kubernetes Architecture

A Kubernetes cluster consists of a control plane and worker nodes, which are re-
sponsible for running containerized applications (Fig. 1.5).

Each cluster must have at least one worker node. Every node in a Kubernetes
cluster runs containers that make up the pods assigned to that node. Pods are the
smallest computing units that can be created and managed in Kubernetes. A pod is
a group of one or more containers with shared storage and network resources, along
with a specification for running the containers. Containers in a pod are co-located
and co-scheduled to run on the same node (virtual or physical machine).

Each worker node runs multiple components that maintain running pods and
provide the Kubernetes runtime environment. The key components hosted by
worker nodes are:

• Kubelet – an agent that runs on each node in the cluster and is responsi-
ble for node registration within the cluster. It ensures that containers are
running in a pod.

• Kube-Proxy maintains network rules on nodes, allowing network commu-
nication to pods from network sessions inside or outside of your cluster.

• Container Runtime – the software responsible for running containers, such
as Docker and containerd.

• CNI – the container network interface (CNI) is a software component re-
sponsible for allocating IP addresses to pods and enabling them to com-
municate with each other within the cluster.

The control plane is responsible for managing the worker nodes and pods in the
cluster. Its components make global decisions about the cluster, such as schedul-
ing, and also respond to cluster events, like starting up a new pod. Control plane
components may run on worker nodes or have dedicated nodes that host only con-
trol plane components. The key components of the control plane:

• API Server serves as the front end for the Kubernetes control plane. It
exposes the Kubernetes API, allowing users, management tools, and other
components to communicate with the cluster.
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Fig. 1.5. Kubernetes architecture diagram (made by the author)

• etcd – a lightweight, distributed key-value store used to store all cluster
data, providing a single source of truth for the state of the cluster.

• Scheduler watches for newly created pods with no assigned node and se-
lects a node for them to run on based on resource availability, constraints,
and affinity specifications.

• Controller Manager is responsible for ensuring that the cluster operates in
a desired state. This is done through a set of different controllers, each of
them performing specific functions.

• Cloud Controller Manager links the cluster to your cloud provider’s API,
allowing the cluster to interact directly with the cloud provider’s infras-
tructure.

Different autoscalers can be implemented into Kubernetes. These solutions
are presented in the next sub-chapter.

1.4.2. Autoscaling in Kubernetes

Kuberntes build-in (Kubernetes-native) container autoscaling solutions are pro-
vided within the Controller Manager. Nevertheless, Kubernetes’ architecture al-
lows for the implementation of custom-built autoscalers. Both Kubernetes-native
and custom-built autoscaler approaches are subjects of dedicated academic re-
search areas (Joyce & Sebastian, 2023; Mondal et al., 2023; Nguyen et al., 2020).
This subchapter starts with Kubernetes-native solutions.
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Kubernetes solution provides three different types of built-in autoscalers:
• Cluster Autoscaler (CA) is responsible for automated node provisioning

and de-provisioning, reacting to pod demand for resources;
• Vertical Pod Autoscaler (VPA) is used for resource autoscaling within a

pod, that is, setting the CPU and RAM resources used by individual pods;
• Horizontal Pod Autoscaler is the responsible adjustment of a number of

pod replicas reacting to load or resource utilization changes.
This research is dedicated to the application of autoscalers. As a result, the

CA autoscaler will not be discussed in more detail as it is an infrastructure auto-
scaler. VPA is not widely adopted as its current, implementation requires the
restart of container instances to increase resources, which negatively impacts ser-
vice availability and SLA (Dixit, Gupta, Dubey, & Misra, 2022; Nguyen et al.,
2020). On the other hand, HPA is more popular due to its easy-to-understand
configuration (Likosar, 2023), and it is the most adopted autoscaling solution pro-
vided by Kuberntes (Datadog, 2024). For this reason, the remainder of this work
will primarily focus on HPA.

HPA utilizes threshold-based policies as an autoscaling method to optimize
resource utilization and minimize infrastructure costs. The HPA method is based
on determining the ratio between the desired metric value and the current metric
value, as represented by Equation (1.1):

Rd =

⌈

Rn ∗
Mn

Md

⌉

, (1.1)

here, Rd is the desired or target number of pod replicas, Rn is the number of
current pod replicas ready to provide services, Mn – currently collected metric
value, Md – target utilization value or a threshold that operates as a trigger for
autoscaling action.

HPA adjusts the number of resources allocated based on metrics such as CPU
usage, RAM, or network throughput. When the current resource usage surpasses a
defined threshold (referred to as the target utilization threshold), the HPA will in-
crease the number of pod replicas. In contrast, if the resource usage falls below this
target, the HPA will reduce the number of pod replicas. The configuration of the
target threshold utilization is the key element that influences the application’s per-
formance, as it determines the resource allocation during each autoscaling event.

Even though the HPA is considered simple, it is not trivial to configure it (Huo,
Li, Xie, & Li, 2022). For instance, in addition to the policy presented in Equation
(1.1), HPA performance can be optimized through multiple parameters, such as
stabilization window, autoscaling policies, and utilization threshold tolerance. The
stabilization window is used to reduce frequent variations in the number of replicas
caused by the dynamic nature of workloads. Additionally, Kubernetes autoscaling
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policies play a crucial role by governing the rate at which replicas can be added
or removed and establishing the maximum and minimum thresholds for the num-
ber of replicas during the specified provisioning window. The threshold tolerance
setting ensures that minor fluctuations in resource usage, whether above or be-
low the defined limits, do not lead to unnecessary autoscaling actions, which can
create oscillations. In essence, the stabilization window and tolerance settings are
designed to maintain the stability of the HPA, while the scaling policies aim to pre-
vent high overprovisioning or underprovisioning in the face of significant changes
in resource demand between autoscaling events.

The desired utilization threshold setting is the most impactful factor in con-
trolling the application’s performance per the defined SLO. As presented in Equa-
tion (1.1), this setting controls the amount of resources to be provisioned or depro-
visioned during each autoscaling action, thus ensuring that the application meets
its performance-based SLO. However, determining the threshold that would allow
satisfying performance-based SLOs is a long, error-prone manual process.

In addition to multiple parameters to be adjusted, the solution has its limita-
tions. By default, the Kubernetes-provided resource metrics are limited to the CPU
and memory usage of pods and host machines (low-level metrics). Therefore, Ku-
bernetes is not able to detect degradation in quality of service related to application
performance, such as response time, without integration with a non-Kubernetes-
native monitoring system, such as Prometheus.

As can be seen, many configuration parameters exist in HPA, so academia has
made several attempts to support users in the HPA adoption. Nguyen et al. (2020)
aims to support researchers and practitioners by providing recommendations on
operating HPA. Casalicchio (2019) analyzed the impact of using absolute and rela-
tive metrics in Kubernetes autoscaling. Huo, Li, Li, Xie, and Li (2023) proposed a
strategy that sets a higher tolerance value for utilization thresholds than the Kuber-
netes default one. The approach minimizes the number of timeout requests in high
concurrency load scenarios compared to the default HPA settings. All of these
recommendations and adjustments must be implemented manually, and there are
no guidelines on how to select the optimal values for each of the parameters.

The solution suggested by Huo et al. (2022) is more specific in providing rec-
ommendations. The suggestion is to minimize the stabilization window to 0s when
performing upscale actions and extend stabilization windows for downscale ac-
tions to up to 9 minutes to minimize resource waste. This work shows the impact
of stabilization window length on the ability to react faster to load spikes compared
to default stabilization window settings. However, it is unclear how efficient the
strategy is for the risk minimization of SLO violations and how it would behave
under various load conditions.

One of the latest works that aim to dynamically optimize the performance
of HPA and address resource waste avoidance is Augustyn, Wyci´slik, and Sojka
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(2024). Augustyn et al. (2024) suggested the approach for identifying the maxi-
mum number of pods to be provisioned by HPA. The approach allows customers to
continue using HPA while improving resource utilization. The work does not aim
to ensure that system performance conforms with the SLO.

Khaleq and Ra (2021) recognized the challenge of identifying the right val-
ues for the different autoscaling parameters that will guarantee QoS in a chang-
ing dynamic environment. As a result, they propose the multi-component system
for intelligent autoscaling, which aims to adjust thresholds for the HPA reactively
to maintain the application performance as per the defined SLI, such as average
response time. The system uses application profiling and reinforcement learn-
ing components. The experiment results showed up to 20% improvement in re-
sponse time compared to default HPA. It also showed that training and validating
RL agents to identify threshold values for autoscaling can potentially satisfy the
QoS of response time. However, the authors use application performance traces to
simulate the performance of the proposed algorithm using MATLAB. So, the ef-
ficiency of the solution has not been evaluated in a real infrastructure environment
and is left as an open area for future development and research.

Table 1.3 summarizes the differences between the works mentioned above. It
lists the solutions that aim to improve HPA performance by addressing different
resource management aspects and highlights whether the improvements should be
applied to HPA manually or automatically. The table displays whether the sug-
gested approaches were tested in real infrastructure or simulated environments. As
indicated in the table, the dynamic threshold adjustment for HPA is a vaguely in-
vestigated area, even though it is the most influential parameter when talking about
resource provisioning to satisfy the performance-based SLA (Qu et al., 2018).

Before suggesting any improvements in dynamic threshold adjustment, it is
worth analyzing the current state of the art of custom-built autoscalers for Kuber-
netes that use dynamic threshold policies.

Dynamic Thresholds Adjustment in Custom Autoscalers

The static threshold determination process requires an understanding of the appli-
cation characteristics and expert knowledge to determine the thresholds for proper
actions (Qu et al., 2018). If thresholds are set too low, overprovisioning of resources
can occur; however, this would allow for a quicker response to load changes and,
as a result, improve application performance. Conversely, choosing a threshold
that is too high may lead to fewer replicas being provisioned and leaving no buffer
for detection and reaction to load increase (Developers, n.d.). These two factors
may cause a decline in performance and an increased risk of failing to meet the
application performance SLOs (Sahal et al., 2016).

Huo et al. (2022) and Lorido-Botran et al. (2014) find that static threshold-
based autoscalers are slow to react. The utilization threshold must be set lower
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Table 1.3. Overview created by the author, summarizing various efforts that propose en-
hancements for configuring Kubernetes Horizontal Pod Autoscaler

Authors Enhancement/ Strat-
egy

Adjustment Resource man-
agement aspect

Test environ-
ment

Huo et al.,
2022

Stabilization windows
length setup

Manual Resource waste
avoidance

Real infras-
tructure

Huo et al.,
2023

Setting up tolerance
threshold

Manual SLA-fulfillment Real infras-
tructure

Augustyn
et al., 2024

Maximum number of
pod replicas determi-
nation

Automated Resource waste
avoidance

Real infras-
tructure

Khaleq & Ra,
2021

Dynamic utilization
thresholds adjustment

Automated SLA-fulfillment Simulation in
MAtlab

Pozdniakova
et al., 2024

Dynamic utilization
thresholds adjustment

Automated SLA-fulfillment Real infras-
tructure

to allow time for a reaction to an increase in load and wait for new replicas to
be provisioned. This buffer is essential for ensuring that the system can cope
with sudden changes in demand (Developers, n.d.); however, it is unclear how to
estimate the size of such a buffer.

The threshold determination becomes even more challenging as the cloud en-
vironment is not homogeneous. The non-homogeneity causes inconsistency in
resource provisioning (Al-Haidari, Sqalli, & Salah, 2013; Khaleq & Ra, 2021;
Rzadca et al., 2020). “Noisy neighbors” are another problem that causes incon-
sistent performance of provisioned resources (Balla, Simon, & Maliosz, 2020;
Makroo & Dahiya, 2016)). Additionally, cloud-native applications are constantly
updated and redeployed, requiring dynamic updates to autoscaling thresholds. As
a result, finding a suitable threshold is a challenging process.

Table 1.4 summarizes the research results on custom-built rules-based au-
toscaling solutions for Kubernetes. The solutions are categorized based on the
timing of the decisions made (reactive and proactive autoscaling), the indicators
(utilization, response time, etc.), and the methods used for autoscaling. Most stud-
ies use machine learning to predict the required thresholds proactively.

The dynamic threshold adjustment problem has been investigated by academia
for a long time. As presented in Table 1.4, the oldest work analyzed in this regard
is Beloglazov and Buyya (2010). The authors have introduced a set of heuristics
designed to dynamically adjust thresholds through the statistical analysis of histor-
ical data collected throughout the lifespan of virtual machines (VMs). Rather than
service quality, this algorithm’s primary focus is on reducing power consumption
during the live migration of VMs.
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Table 1.4. Overview of the characteristics of autoscalers employing dynamic threshold
adjustment algorithms (made by the author)

Authors strategy Scale indi-
cators

Methods Service level
indicator

Resource
management
aspect

Beloglazov
& Buyya,
2010

Proactive Node CPU
utilization

Rules-based Requested
versus al-
located
resources

Resource
waste avoid-
ance

Kang &
Lama, 2020

Proactive Resource
utilization

Gaussian pro-
cess regression

Tail latency SLA fulfill-
ment

Horovitz &
Arian, 2018

Proactive Number of
resources

Rules-based,
reinforcement
learning

Tail latency SLA fulfill-
ment

Pozdniakova
et al., 2023

Reactive Resource
utilization

Rule-based Number of
violations

SLA fulfill-
ment

Pozdniakova
et al., 2024

Reactive Resource
utilization

Rules-based Number of
violations

SLA fulfill-
ment

Khaleq & Ra,
2021

Reactive Resource
utilization

Rules-based,
reinforcement
learning

QoS: re-
sponse time

SLA fulfill-
ment

Mondal
et al., 2023

Proactive CPU utiliza-
tion

Machine
learning

Number of
pods

Resource
waste avoid-
ance

Taherizadeh
&
Stankovski,
2019

Reactive Resource
utilization

Rules-based Response
time

Resource
waste avoid-
ance

Horovitz and Arian (2018) adapt the Q-learning algorithm of reinforcement
learning to identify the utilization threshold. The authors acknowledge that the
adoption of Q-Learning is limited due to various challenges. They propose an
approach to streamline the application of Q-Learning for threshold adjustments
by choosing a state space that represents the current resource allocation and an
action space that encompasses an action for each utilization threshold value. The
solution is a custom build threshold-based autoscaler, which triggers autoscaling
actions within the Kubernetes environment. The HPA serves only as a benchmark
for performance assessment in the study, with the authors manually adjusting the
thresholds for the HPA in each experiment. While the results indicate that their
solution outperforms the HPA in resource utilization by 52%, it remains unclear
whether the utilization thresholds set for the HPA ensured the SLO achievement.
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Kang and Lama (2020) proposes an autoscaler that predicts the end-to-end tail
latency of microservice workflows using the Gaussian Process Regression (GP)
model. The model determines the threshold by leveraging predicted tail latency
alongside historical resource utilization data corresponding to a specific tail la-
tency value. The evaluation results of RScale have shown that the proposed system
can meet the defined SLOs (e.g., tail latency) even in case of varying interference
and evolving system dynamics. However, there is no clarity regarding the solu-
tion’s efficiency in terms of resource consumption. RScale is a standalone custom
autoscaler that adjusts its thresholds, and it is not part of the HPA.

The developers of the adaptive scaling solution for Kubernetes pods, referred
to as Libra (Balla et al., 2020), have created a custom autoscaler that links the num-
ber of requests a pod can handle in compliance with SLO to actual CPU utilization.
This approach enables the system to dynamically detect the CPU resource limits of
the pod and horizontally scale the application when the request count reaches 90%
of the maximum requests in relation to the actual CPU utilization value. The au-
thors claim that this method provides better performance than the HPA. However,
it is important to note that Libra does not monitor the number of SLO violations,
leaving it unclear whether it effectively meets SLO requirements throughout the
SLA monitoring timeframe.

Taherizadeh and Stankovski (2019) presented a solution called Dynamic Multi-
level Autoscaling Rules (DMAR). However, the solution utilizes low-level and
high-level monitoring data for threshold adjustment. The solution employs average
response time and CPU or memory utilization as key metrics for modifying CPU
thresholds. The authors of DMAR evaluated their approach against seven widely
used rules-based autoscaling methods. The findings revealed that DMAR was the
most efficient solution regarding resource usage while ensuring an acceptable level
of QoS across all of the evaluated solutions.

The Self-adaptive Autoscaling Algorithm (SAA) for SLA-sensitive applica-
tions described in the second chapter and published in Pozdniakova et al. (2023) fo-
cuses on ensuring SLA fulfillment through the use of dynamically adjusted thresh-
olds. Although it does not explicitly address the threshold adjustment problem as
the primary goal, it employs dynamic thresholds to achieve the SLA-fulfillment
goal. The solution uses multiple thresholds, which are adjusted by SAA based on
the state of SLO fulfillment, making it unique compared to the solutions assessed
in this sub-chapter.

1.5. Autoscaler Performance Evaluation Methods

Before proceeding with the analysis of performance evaluation methods for au-
toscalers, it is important to note that the studies examined in this research were
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assessed from two perspectives: efficacy and efficiency. Efficacy refers to the
ability of the proposed solution to produce the desired outcome, such as meeting
SLAs. On the other hand, efficiency measures how effectively the solution can
achieve its goals while using the least amount of resources possible.

The authors of the solutions examined in this study have employed diverse cri-
teria to evaluate the effectiveness of their proposals. Notably, some of the solutions
that do not rely on high-level metrics as scaling indicators utilize response time as
a measure of efficacy (Horovitz & Arian, 2018; Kang & Lama, 2020; Ye et al.,
2017). Solutions that use predictive techniques commonly use the ML models
evaluation metrics to evaluate the prediction effectiveness of the algorithm (Amiri
& Mohammad-Khanli, 2017). Other criteria met in these works for evaluating ef-
ficacy include cost optimization (Ding & Huang, 2021), throughput improvement
(Taherizadeh & Stankovski, 2019), total pod uptime (Taherizadeh & Stankovski,
2019; Toka et al., 2021), requests loss reduction (Toka et al., 2021), or the number
of running pods (Hu & Wang, 2021). Most of these metrics are used to measure
compliance with SLA or SLI. While the level of service delivered by the appli-
cation is measured using SLI, which represents the performance characteristics
of the application, such SLI is not representative in identifying how efficient the
autoscaling solution is (Herbst et al., 2013).

Herbst et al. (2016) provided the definition of elasticity and outlined a method
for elasticity measurement. They suggest specific metrics for benchmarking and
recommend using demand, accuracy, timeshare, and jitter metrics for this purpose.
Demand refers to the minimum resources needed to meet a specific performance-
related service level objective, while accuracy is determined by the average dif-
ference between the demanded and provisioned resources. The timeshare metric
indicates the amount of time that provisioned resources spend in overprovisioned
or underprovisioned states, and the jitter metric measures the variance between the
actual and required resource adaptations performed by the autoscaler. The graphi-
cal illustration of demand is presented in Figure 1.6.

The authors also propose an approach for evaluating autoscaling methods us-
ing a composite metric called elastic speedup. This method allows for comparing
platforms without assessing each elasticity metric separately. Users can assign
different weights to each elasticity metric when calculating the elastic speedup
metric. Finally, this metric can be used to compare the elasticity levels of different
autoscalers against each other.

Zhang et al. (2019) evaluates the Mesos autoscaler elasticity (E) by measuring
the deployment speed of containers. The deployment speed of containerization is
measured as a ratio between the average number of containers (S) and the average
time spent to provision and deprovision containers during scaling action (T ). The
elasticity is calculated as the total number of containers (S) divided by the time
spent (T ) during the whole experiment (E = S ÷ T ).
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Fig. 1.6. Illustration for the definition of demand and supply in elasticity evaluation
(made by the author)

Both approaches enable users to evaluate the efficacy of autoscaling solutions
based on resource utilization and timelines for resource provisioning; however,
both solutions consider how the difference in the number of provisioned resources
and delay impact service levels.

To evaluate autoscaler efficacy for SLA compliance, Podolskiy, Jindal, and
Gerndt (2019) proposed a multi-layer autoscaling evaluation involving containers
and VMs. They also proposed a performance evaluation for single-layered au-
toscaling using the following metrics:

• Autoscaling latency – the time between the decision to autoscale and when
the desired number of replicas is ready to handle the load. This metric
characterizes how effectively the autoscaler reacts.

• Required response time (RRT) – the user-side metric for measuring re-
sponse time violations.

• Required maximal failure rate (RMFR) – a user-side metric for measuring
maximal failure rate violations.

These metrics evaluate the relationship between the time taken to initiate and
complete an autoscaling action and the increase in response time or failure rate
higher than a predefined threshold caused by resource provisioning delay, which
causes resource starvation. This relationship is expressed as tstarvation/tautoscaling.
In general, it demonstrates the proportion between the time taken to autoscale and
the time when the violation of response time or other quality of service metrics
was occurring. The authors state that this approach provides more comprehensive
metrics for evaluating autoscaler performance. While this method offers valuable
insights into how resource provisioning delay affects application performance, it
doesn’t provide as much information about autoscaler efficiency, such as over- and
under-provisioning of resources. It also doesn’t quantify the impact of resource
starvation on the achievement of the overall SLO. For instance, losing 1% of re-
quests in one minute has a much smaller impact than losing 90% of requests.

It is worth noting that the various methods for measuring autoscaler efficiency
mentioned above do not consider that different applications may have distinct con-
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tainer startup times due to the specifics of the frameworks or languages used to
write them. Therefore, the duration of upscaling actions is not always within the
control of the autoscaler, as it is influenced by the design of the application (Herbst
et al., 2013). Consequently, these approaches are more suitable for comparing dif-
ferent autoscalers when testing is conducted using the same application and infras-
tructure with similar parameters. It is also worth noting that none of the analyzed
work provides a method for quantitatively measuring the efficacy of autoscaling
solutions in meeting SLA compliance requirements.

An additional observation from the literature review on autoscaler efficiency
evaluation is that the HPA is frequently employed as a baseline for compara-
tive analysis. However, various studies utilize different methods for determining
HPA target thresholds, and they often lack clear explanations for selecting specific
thresholds. This absence of a consistent method for establishing HPA baseline
thresholds complicates the assessment of evaluation results and their validity.

1.6. Conclusions of the First Chapter and
Formulation of the Tasks of the Dissertation

The first chapter of the dissertation provides an overview of cloud-native applica-
tions, autoscaling solutions, and evaluation methods for the efficiency of autoscal-
ing solutions. The following conclusions have been drawn:

1. Cloud-native applications are specifically designed to utilize the character-
istics of the cloud, such as elasticity and automation. These applications
prioritize scalability and loose coupling, and they make use of container-
ization technology. The microservice architecture is frequently associated
with cloud-native application designs, as it enables greater scalability of
the application. Microservice applications are commonly deployed in the
form of multiple instances of containers. Container orchestration solutions
simplify operations of large-scale deployments of containerized applica-
tions. Autoscaling is responsible for automatically adjusting resources to
meet application performance needs. While there are several proposed ap-
proaches and solutions for autoscaling, starting from simple rule-based so-
lutions and ending with multi-model machine-learning-based approaches,
none fully address issues such as timely resource provisioning and accu-
rately determining the required resources to meet performance needs.

2. Autoscaling solutions are usually developed to address specific business
challenges, such as reducing costs, conserving energy resources (resource
waste avoidance), or enhancing customer satisfaction by meeting SLAs
(SLA fulfillment). While resource waste avoidance-oriented autoscalers
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prioritize efficiency in resource management, SLA-fulfillment-driven au-
toscalers prioritize effective resource provisioning to ensure high-quality
service, even if it requires additional resources.

3. The effectiveness of an autoscaling solution in efficiently managing re-
sources and fulfilling SLAs strongly depends on how the SLA is measured.
Most approaches consider high-level metrics, with response time being the
most popular. Some strive to ensure SLA compliance by relying solely on
low-level metrics. However, it is important to consider both types of met-
rics to avoid overlooking important factors in autoscaling decisions. An-
other common oversight is relying solely on SLI thresholds, like response
time, to determine compliance with SLOs. Simply restoring the current
SLI measurement to the defined level and initiating performance recovery
does not guarantee that SLOs will achieve the agreed-upon level for the
entire service level measurement period. Therefore, solutions should in-
corporate SLO awareness to facilitate mechanisms for recovering the SLO
state, where possible, to attain the desired level of application performance
during SLO measurement over a specific duration. Analyzed autoscaling
solutions lack such capability.

4. Two main problems were identified for autoscaling solutions that directly
impact the SLA: the timelines of resource provisioning and resource plan-
ning, which ensures that the resource supply meets the demand in a timely
manner. To overcome these two problems, autoscalers must address the
adaptivity to the platform and application resource changes, dynamic work-
load characteristics and timeliness of scaling decisions, and oscillations
mitigation concerns. Academia has developed and proposed multiple cus–
tom-built autoscaling solutions to address these challenges. The solu-
tions range from simple rules-based policies to advanced machine-learning
models. Proactive autoscalers are effective in addressing timelines of re-
source provisioning, as commonly, those use advanced techniques such as
statistical analysis and autoscaling. However, due to complexity, most ML-
based solutions are proprietary and commercialised; as a result, there is no
widely adopted solution that would use these techniques for application
autoscaling. Easier-to-understand rule-based solutions are more prevalent
for non-com-mercial use, with HPA being the most adopted autoscaler and
widely discussed in academia.

5. The most commonly used autoscaling solution is a rules-based reactive
autoscaler called Kubernetes Horizontal Autoscaler. Its widespread adop-
tion is due to its ease of understanding compared to ML-based solutions,
straightforward implementation, and seamless integration with the Kuber-
netes orchestrator. However, it lacks SLA awareness and has limited per-
formance SLA fulfillment mechanisms. The HPA involves multiple pa-
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rameters for manual adjustment, which can be error-prone. Thus, a new re-
search area focused on enhancing existing autoscaling solutions like HPA
rather than creating entirely new autoscalers. Despite not being originally
designed as an SLA-aware autoscaler, there is potential for improvement
in this area.

6. While various assessment methods have been suggested to evaluate auto-
scaler behavior, none of them explains how to measure the solution’s effi-
cacy from the perspective of a performance-based SLA.

Based on the conclusions, the following tasks are formulated to achieve the
goal:

1. Propose and evaluate an SLO-aware autoscaling solution for containerized
cloud-native applications.

2. Introduce SLA awareness and adoption mechanisms to Kubernetes native
autoscaler and evaluate its performance.

3. Propose or improve existing evaluation methods for SLA-aware autoscal-
ing solutions for containerized cloud-native applications.



2
Design of Service Level

Agreement-Aware Autoscaling
Algorithms

The chapter discusses two rule-based autoscaling solutions that use autoscaling al-
gorithms designed to be aware of Service Level Agreements (SLAs) and to adapt
dynamically to the SLA requirements. The first is a custom autoscaler implemen-
tation to overcome multiple challenges of traditional rule-based systems in ensur-
ing compliance with Service Level Agreements (SLAs). The second solution is
an add-on that improves static rule-based autoscalers using SLA-aware threshold
policies for scaling decisions. The chapter provides a comprehensive overview of
the proposed SLA-aware autoscaling solutions, detailing the algorithms and func-
tions used and the evaluation criteria used to assess the solutions. Additionally, it
explains the rationale for favoring threshold-based autoscalers over those that rely
on machine learning.

On the topic of this chapter, 2 publications were published by the author in
international journals (Pozdniakova et al., 2023, 2024).

2.1. Development of a Service Level
Agreement-Adaptive Autoscaling Algorithm

This sub-chapter provides an overview of the proposed SLA-Adaptive Autoscaling
Algorithm (SAA), which aims to ensure compliance with the service level objec-
tives. The solution employs policy- and threshold-based autoscaling methods and
aims to address multiple challenges that must be resolved to ensure SLA fulfill-

41
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ment (Pozdniakova et al., 2023). The next sub-chapter details the rationale for
selecting a rules-based autoscaler over machine learning alternatives, despite the
reactive nature of rules-based decision-making.

2.1.1. Motivation for Developing a Rules-Based Autoscaler
Solution

Hu and Wang (2021), Hu and Wang (2021), Abdullah et al. (2022), Ye et al. (2017),
Khaleq and Ra (2021), Sun et al. (2019), Mirhosseini et al. (2021), Ding and Huang
(2021), Toka et al. (2021), Ju, Singh, and Toor (2021) proposed advanced predic-
tion techniques, such as machine learning (ML) or statistical analysis, to ensure
SLA fulfillment. However, the implementation and maintenance of machine learn-
ing models can be complex, and there is no guarantee that the solution will suc-
cessfully meet the defined SLOs. As a result, the use of simpler, threshold-based
policies is prevalent despite their drawbacks, such as the difficulty in determin-
ing suitable threshold values and their reactive nature (Al-Dhuraibi et al., 2018),
which carries the risk of increased SLO violations. As an illustrative example, the
most widely adopted autoscaling solutions are rules-based reactive autoscalers,
such as a Kubernetes Horizontal Pod Autoscaler, or autoscalers employed by cloud
providers for their compute solutions, such as Amazon Web Services (AWS) Elas-
tic Compute (EC2) or Azure Virtual Machines scale sets. Its wide adoption can be
explained by the fact it is easier to understand and adopt than ML-based solutions.
Custom autoscalers are low in adoption, so bringing improvements related to SLA
compliance to the existing widely adopted solution increases the possibility of the
solution being adopted. The next sub-chapter presents the proposed SLA-aware
autoscaling algorithm design.

2.1.2. Service Level Agreement-Aware Algorithm Design

The SAA algorithm aims to address issues related to diverse application resource
and performance requirements, non-uniformity of cloud resources, dynamic work-
load characteristics, timeliness of scaling decisions, and oscillation mitigation high-
lighted in the first chapter to fulfill autoscaling SLA requirements. To address these
issues, SAA comprises several modules, and their design follows the single respon-
sibility principle (Martin, 2017). Figure 2.1 provides an overview of the modules,
the functions each module performs, and their relationships. Each component is
responsible for a specific function:

• The Autoscaler module is the main decision-making component of the sys-
tem, as it executes the autoscaling algorithm.

• The Dynamic CPU Thresholds Adjuster (DCTA) dynamically adjusts CPU
thresholds in response to the current SLO state to reduce the effects of un-
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Fig. 2.1. Modules of the SLA Adaptive Autoscaler solution and their relations diagram

derlying infrastructure performance variations and ensure the required sys-
tem performance for meeting SLA fulfillment and compliance restoration
objectives.

• The Velocity Factor Calculator utilizes velocity as a means to characterize
the load processed by the workload.

• The Volatile Traffic Detector prevents autoscaling decisions from repeating
load fluctuation patterns that could harm the quality of service. It monitors
sudden shifts in velocity to detect volatility.

• The Cooldown Period Calculator adjusts the duration of the cooldown pe-
riod depending on the load velocity. A higher velocity results in a more
extended cooldown period for downscale and a shorter one for upscale
actions.. This ensures autoscaling actions are triggered sooner in case a
sudden load increases and avoids sudden removal of resources in case of
an instant load drop.

• The value processing and storage gathers, pre-processes, and stores the
application and infrastructure metrics needed for the SAA solution. It is
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used for the collection and initial processing of metrics to ensure they are
prepared for further analysis and decision-making by the SAA solution.
Additionally, the module enables the exchange and storage of metric values
between different modules within the system.

To improve the readability of this chapter, Table 2.1 introduces parameters
used later in this work – their notation and description. The SLO presented in
Table 2.1 is calculated in alignment with the SLO description provided by (Quach,
2020; Sahal et al., 2016).

SLO =
good_events
valid_events

∗ 100%, (2.1)

here,
• good_events refers to the count of monitored events where the SLI values,

such as response time, meet a specified target, e.g., response time value
must be less than 3 seconds;

• valid_events represents the total count of all monitored events of the re-
spective SLI.

Subsequent sub-chapters explain the modules responsible for preparing the
data required by the Autoscaler module to make autoscaling decisions starting from
the Velocity Factor Calculator module.

Velocity Factor Calculator

To make timely scaling decisions and ensure SLA fulfillment, an autoscaling so-
lution must be capable of responding to changes in load patterns by providing ad-
equate resources required to comply with SLO. The SAA solution utilizes velocity
vn(L)

1 (Equation (2.2)) to characterize the load sent to the workload (L).

vn(L) =
|Ln−1 − Ln|

Tm
, (2.2)

here, Ln represents the most recent value of the total throughput or another load
metric, such as the number of concurrent users or requests per second.

The autoscaling algorithm must detect moments when the workload’s velocity
is increasing faster than expected. The Velocity Factor Calculator module classifies
velocity into high, moderate, or stable levels using the below-describe approach.
The velocity impact factor2 (αD) is calculated to measure the velocity, that is, how
rapidly the velocity changes. The velocity factor is determined by comparing the
current velocity value with the baseline velocity (vbaseline). By evaluating the ratio

1Here and throughout the document, the index n represents the sequence number of the monitor-
ing sample.

2Also referred to as the velocity factor.
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Table 2.1. Description of SLA Adaptive Autoscaler algorithm parameters

Parameter Description

Rmax, Rmin The highest (max) and lowest (min) number of replicas that can be
provisioned by autoscaler.

RD
d

a The desired number of replicas is the number of pod replicas cal-
culated based on the resource utilization metrics.

RD
tgt The target number of replicas refers to the number of pods de-

termined based on various factors, including the velocity of load,
SLO compliance state, or traffic volatility.

RBP The number of replicas provisioned when the current SLO value
SLOn is way below target.

∆RV Downscale step when the load is volatile is the number of replicas
that will be removed from operations when traffic is volatile.

SLOtgt Current value of SLO measurement.

SLOBP The SLO restoration breaking point threshold.

SLOnoDownScale No downscale action SLO threshold is used to control the risk of
SLA violation after SLO recovery action. Autoscaling actions are
prohibited until the specified SLO threshold is reached.

Lmax The highest load (request per second, connections per second,
packets per second) that a single replica can handle without vio-
lation of the target service level.

TD
cooldown The cooldown period is when no autoscaling action is happening.

∆TD
cooldown Cooldown period adjustment steps. Used to shorten upscale action

cooldown period if load increase is high and prolong in cases when
the load is low.

Tn A length of synchronization period between the SAA solution and

the Kubernetes cluster on the number of running replicas.

Tm Monitoring samples collection period.

tDdelay Replica provisioning or deprovisioning time.

tDtotalDelay Resource provisioning delay is the time it takes to adjust resource
provision or deprovision based on demand shifts.

vbaseline Baseline velocity defines what the maximum load (Lmax) increase
per second can be handled by a single replica during a period equal
to tDtotalDelay .

Vk(Ak) Velocities vector is used by the volatility detector module to ana-
lyze the last K monitoring samples of velocity and determine if the
load is volatile.

aHere and throughout the document, D ∈ [up, down] represents the direction of the autoscaling
action
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End of the Table 2.1

Parameter Description

αD Velocity factor gives a raw estimate of how many times the current
velocity vn is different from the baseline velocity.

Ak Raw velocity is a ratio between vbaseline and velocity vk, where k
is the array element index.

Cn Current average CPU utilization of all replicas that are running
and available to handle the workload.

CTD The indicator of what CPU threshold is selected (CT ∈
[upper,mid, lower]) for upscaling or downscaling action (D ∈
[Up,Down]).

CCTD

c The dynamic CPU Thresholds are dynamically adjusted thresholds
that trigger autoscaling action and calculate desired replicas num-
ber.

∆CD CPU threshold adjustment steps are used to adjust the CPU or an-
other threshold (e.g., RAM) used for autoscaling action.

Tc (s) CPU adjustment period is the period during which the CPU Ad-
juster module validates the state of SLO (above, on target, or be-
low) and adjusts CPU utilization threshold values.

between vn and vbaseline, the algorithm can categorize the load change as high,
moderate, or stable, enabling appropriate decision-making in response to varying
workload dynamics.

To measure the change, first, the baseline must be calculated as per Equa-
tion (2.3) representing the linear model. This model illustrates the average load
that can be managed after adding or removing a single replica from the existing
running replicas. It takes into account the time required to provision or deprovision
that replica tDtotalDelay. The value of vDbaseline is limited by a maximum number of
replicas (Rmax) or a minimum number of replicas (Rmin). This method estimates
the baseline necessary for the system to function within the limits of SLO:

vDbaseline =
Lmax ∗Rmax

tDtotalDelay ∗ (Rmax −Rmin)
, (2.3)

here Lmax represents the maximum throughput that a single replica can handle
without resource starvation.

The tDtotalDelay present in the equation is a sum of times required to:

• provision (D = up) or deprovision (D = down) a single replica, that is,
get replica to ready state (tDdelay);

• collect metrics (metric collection interval Tm);
• system to cooldown (cooldown period TD

cooldown (Equation (2.4))) .
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tDtotalDelay = tDdelay + TD
cooldown + Tm. (2.4)

The tDdelay value is empirically estimated through monitoring of pods startup
behavior.

The resulting baseline velocity is used for the calculation of two types of ve-
locity factors: the increase factor (αup (Equation (2.5))) is calculated when load
increases, and the decrease factor (αdown (Equation (2.6))) when the velocity is
decreasing.

αup(vn, Rn) =

⌈

vn
(Rmax −Rn − 1) ∗ vbaseline

⌉

; (2.5)

αdown(vn, Rn) =

⌈

vn
(Rn + 1) ∗ vbaseline

⌉

. (2.6)

As presented in the equations above, the number of running replicas (Rn)
influences the velocity factors. The increase factor has a lower impact as more
replicas are active, while it increases as the number of replicas decreases. For ex-
ample, with just a single replica active, introducing an additional one can boost the
increase by as much as 0In contrast, the decrease factor works differently. It al-
lows for faster downscaling when more replicas are active and slower downscaling
when fewer replicas are in use.

The computed velocity factors are crucial in classifying the velocity into sta-
ble, moderate, and high levels. When the average load is equal to or lower than
the defined baseline (|αD|∈ {0, 1}), the velocity is categorized as stable. On the
other hand, the moderate velocity corresponds to a state where the load exceeds
the baseline up to (αhigh) times compared to the baseline.

The high-velocity level (|αD|≥ αhigh) denotes a state where the load change,
in relation to the baseline, exceeds the αhigh threshold. αhigh represents the up-
per bound value of the velocity factor, beyond which an increase in the velocity
factor introduces a high risk of excessive resource over or underprovisioning. It
is important to note that |αD| represents the absolute value of the velocity factors,
disregarding the velocity direction (v < 0 when the load is decreasing and v > 0
when the load is increasing). By establishing a threshold at αhigh, the system can
prevent excessive resource allocation and support more optimal scaling decisions,
even when velocity is high.

These velocity impact factors offer several benefits:
• They contribute to timely decision-making for autoscaling by acting as

input for adjusting the cooldown period and CPU threshold selection.
• They help detect frequent traffic fluctuations that may cause the autoscaler

to follow the pattern, increasing the risk of SLO violations.
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• They act as multipliers for determining the desired number of replicas,
ensuring adequate resource allocation when the load increase per replica
is too high for a single replica to handle.

The following paragraph provides a detailed description of the next module,
which is named the Cooldown Period Calculator.

Cooldown Period Calculator

To prevent SLO violations, it is crucial for the algorithm to respond to unexpected
loads promptly (Nguyen et al., 2020; Taherizadeh & Grobelnik, 2020). A faster
reaction can be achieved by minimizing the cooldown period, even if it causes the
potential risk of overprovisioning resources. However, in the case of resource de-
provisioning, it is preferable to have an extended cooldown period to avoid the risk
of the autoscaler removing replicas too soon.

The length of the cooldown period is calculated by the Cooldown Period Cal-
culator, which takes into account the load velocity, as shown in Equation (2.7). An
increased velocity factor value results in an extended cooldown period (TD

cooldown)
for downscale actions, while it shortens the cooldown period for upscale actions.

TD
cooldown(αD) = TD

cooldown0
−∆TD

cooldown ∗ αD, (2.7)

here, TD
cooldown0

represents the default period during which the autoscaling algo-
rithm should refrain from executing any autoscaling action. ∆TD

cooldown is the
increment step for adjusting the cooldown period, allowing for the extension or
reduction of the time needed for system stabilization following the addition or re-
moval of replicas.

A detailed description of another autoscaler module, Volatile Traffic Detector,
is presented next.

Volatile Traffic Detector

The Volatile Traffic Detector module is critical in ensuring that autoscaling deci-
sions do not repeat load fluctuation patterns that could negatively impact the QoS.
This module detects volatility by identifying sudden changes in velocity, whether
shifting from an increase to a decrease or vice versa.

To identify sudden changes in velocity, the Volatile Traffic Detector module
collects the latest K velocity values (vk) and calculates their ratio to the baseline
velocity. The results are stored in an array A[A1, . . . , Ak]. The value of Ak, as
defined in Equation (2.8), represents a raw velocity level. Differently from the
velocity factor αD it does not consider the current number of replicas.

Ak(vk, vbaseline) =

⌈

vk
vbaseline

⌉

(2.8)
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As a next step, the Volatile Traffic Detector module detects shifts in velocity
levels from a high or moderate increase to a high or moderate decrease. It ac-
complishes this by identifying instances where velocity values exceeds a specific
threshold, αhigh, and determining when the traffic transitions from a high increase
(Ak ≥ αhigh) to a high decrease (Ak ≤ −αhigh), or vice versa. This detection
process is outlined in Equation (2.9).

As the final step, the Volatile Traffic Detector module classifies the load as
volatile as presented in Equation (2.10). In this equation, the load is considered
volatile if the number of shifts in velocity directions exceeds a predefined thresh-
old, denoted here as Lvolatile.

Vk(Ak) =



















1, if (Ak ≥ αhigh) ∧ (Ak−1 ≤ −αhigh)

1, if (Ak ≤ −αhigh) ∧ (Ak−1 ≥ αhigh)

0, otherwise

; (2.9)

isV olatile(Vk) =



























true,
k

∑

i=0

Vk ≥ Lvolatile

false, otherwise.

(2.10)

The following text in this sub-chapter further explains the Autoscaler module,
the core of the SAA solution.

Autoscaler

The Autoscaler module serves as the primary decision-making component as it ex-
ecutes the core autoscaling algorithms. This module carries out several key func-
tions, including:

• Selection of Dynamic CPU Threshold. TThe Autoscaler module deter-
mines the CPU threshold for scaling and computes the replica count.

• Scaling Decision-Making. The Autoscaler module analyzes the gathered
monitoring data and determines when to trigger scaling actions.

• Calculation of Target Replicas. Based on the current load and scaling deci-
sions, the Autoscaler module calculates the appropriate number of replicas
that should be provisioned to handle the workload efficiently.

• Cooldown Period Reset. The Autoscaler module manages the cooldown
period, which is the duration during which autoscaling actions are tem-
porarily suspended after a scaling event. It resets the cooldown period
when necessary, ensuring timely and responsive scaling actions.
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The remaining text of this sub-chapter describes the components responsible
for these functions in more detail, starting from the CPU threshold selection func-
tion, which serves as an important input for scaling action decision-making.

Compute Processing Unit Threshold Selection

To enhance the efficiency and stability of autoscaling decision-making, the SAA
algorithm uses two sets of CPU thresholds: upscale and downscale thresholds.
These thresholds are further divided into ranges, namely upper, mid, and lower.

The upper threshold represents the highest CPU utilization level and is the de-
fault threshold. It determines when scaling-up actions should be triggered. On the
other hand, the lower threshold denotes the lowest CPU utilization value, indicat-
ing the threshold at which scaling-down actions should be considered. The mid
threshold represents the intermediate range of CPU utilization, providing addi-
tional flexibility in determining scaling actions based on workload characteristics.

To facilitate a better understanding, the notation used in the equations is intro-
duced below:

• Cn denotes the average CPU value of all currently running and ready-
to-serve replicas. The CPU thresholds are defined using the following
notation:

• CTD represents the identifier of the selected CPU threshold, where CT ∈
[upper,mid, lower]. Additionally, D ∈ [up, down] denotes the autoscal-
ing action directions, specifically upscale or downscale;

• SLOn stands for the current SLO value.
Furthermore, the index c represents the CPU threshold adjustment iteration, which
occurs every Tc seconds. This iteration allows for periodic updates and adjust-
ments to the CPU thresholds based on the changing workload conditions.

Equation (2.11) outlines the threshold selection logic for upscaling actions,
while (2.12) demonstrates the selection of downscale thresholds. These threshold
selection functions consider the velocity of the data. When the velocity is high,
a lower threshold (C lowerD

c ) is chosen. For moderate velocity, a mid threshold

(CmidD
c ) is selected, and for a stable load, an upper threshold (CupperD

c ) is utilized
by solution. These approaches share similarities, albeit with a few exceptions.
Both functions consider the current CPU load but for different reasons. The up-
scale action function checks if the current CPU utilization has already reached its
“peak” value. If this condition is true, the function selects the upper threshold to
minimize the risk of resource overprovisioning. For example, if two replicas are
running with an average CPU utilization of 94%, the desired number of replicas
will be three if the CPU threshold is set to 90% and four if it is set to 60% (as
per logic presented in Equation (1.1)). On the other hand, the downscale function
assesses the current CPU value to prevent fluctuations in autoscaling decisions.
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By considering the current CPU utilization, the downscale function aims to avoid
premature scaling-down actions triggered by temporary drops in CPU load. This
helps to stabilize the autoscaling process and prevent unnecessary scaling actions
based on transient changes in CPU utilization.

CT up(Cn, SLOn, SLOn−1, αup,C
upperup

c ) =














































































upper, if Cn > Cupperup
c

lower, if SLOn − SLOn−1 < 0

upper, if αup ≤ 1

mid, if 1 < αup ≤ αhigh

lower, if αup ≥ αhigh

upper, otherwise

; (2.11)

CT down(Cn, αdown, C
lowerup

c ) =







































































upper, if Cn > C lowerup
c

upper, if |αdown| ≤ 1

mid, if 1 < |αdown| ≤ αhigh

lower, if |αdown| ≥ αhigh

upper, otherwise

. (2.12)

Additionally, the upscale threshold selection function considers changes in the
SLO value since the last scaling request. If the SLO value decreases, indicating
a need for faster response and increased resource provisioning, the lower thresh-
old is selected. Also, when the velocity is high, the lower threshold is chosen.
This enables a quicker reaction to sudden load changes, as the lower threshold is
reached faster, triggering the provisioning of additional replicas. By selecting a
lower threshold during high-velocity periods, the autoscaling algorithm ensures
a more responsive and efficient scaling process, effectively adapting to dynamic
workload fluctuations. The autoscaling decision-making is described next.
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Autoscaling Decision Making

The SAA solution utilizes two algorithms, namely Algorithm 1 for upscale deci-
sions and Algorithm 2 for downscale decisions. These algorithms operate in three
distinct, sequentially ordered steps, employing dynamic CPU thresholds calculated
in advance by the Dynamic CPU Thresholds Adjuster module.

In the first step, both algorithms use the dynamic CPU thresholds pre-calcu-
lated by the Dynamic CPU Thresholds Adjuster module.

Algorithm 1 Upscale action decision-making algorithm

Require: SLOn, SLOn−1, SLOtgt, Cn, C
upperup
c ,

Cn, C
upperup
c

Ensure: Trigger the target replicas calculation
function when doUpscaling = true

1: if (SLOn < SLOtgt) ∧ (SLOn − SLOn−1 < 0) ∧

(

Cn > Cupperup

c

2

)

then

2: doUpscaling ← true
3: else if ((Cn ̸= 0) ∧ (Cn > CCTup

c )) then

4: doUpscaling ← true
5: else

6: doUpscaling ← false
7: end if

In the second step, the upscale algorithm checks if the current SLO decreases
below the target SLO, denoted as SLOtgt. If this condition is met, indicating
a potential SLO violation, the upscale algorithm accelerates its decision-making
process. It achieves this by utilizing a CPU threshold that is half of the highest
CPU threshold, denoted as Cupperup

c .
The utilization of a lower threshold in the upscale algorithm offers two ben-

efits. First and foremost, it enables autoscaling to be triggered at an earlier stage
when the lower threshold is reached, allowing for a timelier response to increasing
workload demands. At the same time, it also ensures that a greater number of repli-
cas are provisioned by autoscaler, effectively allocating more resources to handle
the workload and, once again, minimizing the risk of failing the SLO compliance.

In the third step, the downscale action decision-making algorithm aims to mit-
igate the degradation of QoS. It achieves this by avoiding downscaling actions
in two scenarios: when the SLO value is decreasing, indicating a decline in per-
formance, and when the ratio of the current SLO value to the target SLO falls
below a predefined threshold denoted as “no downscaling” (SLOnoDownScale).
SLOnoDownScale plays a crucial role in controlling the risk of the SLO falling
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Algorithm 2 Downscale action decision-making algorithm

Require: SLOnoDownScale, SLOn, SLOn−1,

SLOtgt, vn, Cn, C
CT down

c , CnoLoad

Ensure: Trigger the target replicas calculation
function when doDownscaling = true

1: if (SLOn − SLOn−1 < 0) then

2: doDownscaling ← false
3: else if

SLOtgt

SLOn
< SLOnoDownScale then

4: if ((vn = 0) ∧ (Cn < CnoLoad)) then

5: doDownscaling ← true
6: else

7: doDownscaling ← false
8: end if

9: else if ((Cn ̸= 0) ∧ (Cn < CCT down

c )) then

10: doDownscaling ← true
11: else

12: doDownscaling ← false
13: end if

below the target, as it ensures that the system works above the target SLO. This
threshold is determined empirically, and if SLOnoDownScale <

SLOtgt

SLOn
, downscale

actions are re-enabled. Users have the flexibility to choose a lower SLOnoDownScale

value to minimize resource overprovisioning, but this decision comes with an in-
creased risk of SLO violations. Conversely, a higher SLOnoDownScale value is
suitable for scenarios with fluctuating or unpredictable traffic patterns, while a
lower value is more appropriate for constant and intensive loads. During experi-
mentation with different values of SLOnoDownScale, it was observed that settings
in the range of 1.00125–1.01 were sufficient to achieve the SLA compliance goal
under all experimented workload conditions. When there is no load on the sys-
tem, the expression represented by CnoLoad in line 4 of Algorithm 2 is used for
downscaling.

The following text will delve into the logic behind replica calculation imple-
mented in the Autoscaler module.

Replica Calculation

The Autoscaler module utilizes the Replica calculation algorithm (see Algorithm 3)
to determine the target number of replicas. The primary objective of this algorithm
is to prevent any violations of the SLO. The algorithm calculates the target number
of replicas, RD

tgt, based on several factors, including the current number of running
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replicas, load characteristics (such as velocity and volatility), current average CPU
utilization, and service compliance with the SLO. The algorithm employs a state
control loop to ensure synchronization between the Autoscaler module and the Ku-
bernetes cluster. Every Tn seconds, it checks if the number of currently running
replicas equals the previously calculated number of target replicas. Once these
two values are equal, indicating that the system is in a stable state, the algorithm
initiates the replica calculation process.

As the first step of re-estimating the target number of replicas, the algorithm
confirms if the cooldown period is over, and when confirmed, the Autoscaler mod-
ule proceeds with the re-estimation of the target number of replicas. In the case
of upscaling actions, the algorithm performs additional checks. It verifies whether
the SLO is increasing, even if it is currently violated (line 5), allowing for SLO
recovery without the need for provisioning additional resources. Furthermore, the
algorithm validates that the velocity has not changed its direction and remains at a
moderate or high level, that is, αD > 1. If these conditions are unmet, the system
re-evaluates the target number of replicas.

The estimation of RD
tgt can vary depending on the SLO compliance state of

the system undergoing re-scaling. When there are no SLO violations, the system
is not overloaded, and the load remains stable and non-volatile, the desired number
of replicas, denoted as RD

d in Equation (2.13), is returned as RD
tgt.

RD
d (Cn, Rn, C

CTD

c ) =

⌈

Cn

CCTD

c

∗Rn

⌉

(2.13)

RD
d is used when the velocity of the load is close to the baseline. When the

velocity of the load increases beyond the baseline, additional resources must be al-
located to mitigate the risk of SLO violations. To address this, the velocity impact
is factored into the estimation of the number of target replicas. This adjusted num-
ber of replicas is denoted as RαD

, and its calculated using the following equation:

RαD
(RD

d , αD) = ⌈R
D
d ∗ αD⌉. (2.14)

When the system is not compliant with the SLO and service quality decreases,
it might be necessary to overprovision resources to improve performance. The
target replica count calculation considers the ratio of current to target SLO, specif-
ically SLOn/SLOtgt. As the drop in SLO increases, more replicas are provisioned
to mitigate performance degradation. However, in cases where SLOn/SLOtgt →
1, the proportional difference has a minimal impact, resulting in slower SLO re-
covery. To accelerate recovery, the equation considers the difference between the
target and current service levels (SLOtgt−SLOn). This adjustment accelerates the
recovery of SLO when the SLO value is close to the target. Further, a velocity fac-
tor is applied to the provisioned replica count (RBP ) when SLOn/SLOtgt → 1.
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Algorithm 3 Target replica RD
tgt calculation

Require: Rn, Rmax, Rmin, vn, SLOn, SLOn−1, SLOtgt, αD, T
D
cooldown,

Cn, Ln, Ln−1, doUpscaling, doDownscaling
Tn – a synchronization period between the autoscaling solution and the Ku-
bernetes cluster on the number of running replicas.

Ensure: Provide RD
tgt for the next autoscaling iteration and update time of the next

cooldown period tDcooldown end
1: Every Tn seconds check
2: if doUpscaling = true then

3: if Rn = Rmax then

4: return Rn

5: else if tnow − tupcooldown > 0 ∧ SLOn < SLOtgt ∧ SLOn − SLOn−1 ≥ 0
then

6: return Rn

7: else if vn < 0 ∧ αdown ≥ 1 then

8: return Rn

9: else

10: return Rup
tgt, t

Up
cooldown ← tnow + TUp

cooldown

11: end if

12: else if doDownscaling = true then

13: if Rn = Rmin then

14: return Rn

15: else if (tnow − tdown
cooldown ≤ 0) then

16: return Rn

17: else if vn > 0 ∧ αup ≥ 1 then

18: return Rn

19: else

20: return Rdown
tgt , tdown

cooldown ← tnow + T down
cooldown

21: end if

22: else

23: return Rn

24: end if.

If the SLO value reaches the SLO breaking point threshold (SLOBP ), the QoS
recovery slows down significantly. This typically happens when the SLO value is
2–5% below the target. At this point, RBP ≈ Rup

d , this may not be enough to
recover the SLO. To speed up the process, the target replica count is adjusted by
the velocity impact factor (RBP ∗ αup).
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RBP (R
up
d , SLOn, SLOtgt) = Rup

d +

⌈

SLOn

SLOtgt
∗Rup

d

⌉

+ ⌈(SLOtgt − SLOn) ∗R
up
d ⌉)

(2.15)

When determining the number of target replicas, the Autoscaler module se-
lects the appropriate equation based on the scaling action and direction. For up-
scaling, Equation (2.16) is used, while for downscaling, Equation (2.17) is em-
ployed.

RUp
tgt(αup, Cn,SLOn, SLOn−1, C

upperup

c ) =














































Rup
d , if Cn > Cupperup

c ∧ SLOn ≥ SLOtgt

∧ SLOn − SLOn−1 ≥ 0

RBP , if SLOn < SLOtgt∧
SLOn

SLOtgt
≤ SLOBP

RBP ∗ αup, if SLOn < SLOtgt

Rαup , otherwise

(2.16)

The traffic volatility is considered during the downscaling process as presented
in Equation (2.17). When there is significant fluctuation in the workload, the down-
scaling occurs gradually in small increments. At each step, the number of replicas
is reduced by 10%, considering the velocity decrease factor. This incremental ap-
proach ensures that the number of replicas is not drastically decreased, particularly
when fewer than ten replicas remain.

Rdown
tgt (Rn, αdown) =







⌊Rn ∗ (1− 0.1 ∗ αdown)⌋, if (isV olatile = true ∧Rn > 3)

Rdown
d , otherwise

(2.17)

To ensure adequate resource capacity and reduce the risk of SLO violations,
downscale actions are not taken when there are three or more replicas present.
Removing a single replica in these situations would lead to a significant capacity
loss of at least 33%. By adopting this approach, the Autoscaler module enhances
reliability in managing volatile traffic patterns. This improvement reduces the risk
of SLO violations and ensures smoother overall performance. However, it slightly
increases resource consumption. There are predefined maximum and minimum
limits for the number of replicas to maintain control over resource allocation. If
RD

tgt ≥ Rmax, the value of RD
tgt is set to Rmax to ensure it does not exceed the
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maximum capacity. Likewise, if RD
tgt ≤ Rmin, it is adjusted to Rmin to guarantee

a minimum level of resources.
The following paragraph will delve into the details of the Dynamic CPU Thresh-

olds Adjuster (DCTA) module and the process involved in calculating the desired
CPU thresholds. It will provide a comprehensive understanding of how these
thresholds are dynamically adjusted based on the system’s performance and SLO
requirements.

Dynamic Compute Processing Unit Thresholds Adjuster

The process of selecting CPU thresholds is known to be complex and prone to er-
rors (Lorido-Botrán, 2012). Inadequately chosen CPU thresholds can lead to vari-
ous issues, including resource delays in autoscaling decisions, under-provisioning,
or over-provisioning. There is also a possibility of thresholds becoming obsolete
if there are changes in the characteristics of applications or underlying infrastruc-
ture, which is especially relevant for containerized microservice architecture-based
applications running in shared environments like cloud computing.

To address the aforementioned issues and mitigate the risk of SLO violations,
the Dynamic CPU Threshold Adjuster (DCTA) module is introduced. The DCTA
dynamically adjusts the CPU thresholds based on the current state of SLO compli-
ance (met or not met). The adjustment algorithm, represented by Equation (2.18),
determines how the CPU thresholds must be adjusted.

The DCTA module performs periodic adjustments to the CPU thresholds at
regular intervals, denoted as Tc. These adjustments are based on the current state
of the SLO. When the SLO is being met, the DCTA increases the CPU thresholds
by a predefined adjustment step, denoted as ∆Cup. This means that the scaling-
up process is delayed until the CPU utilization reaches a higher threshold, thereby
minimizing resource waste while ensuring SLA compliance.

Contrariwise, when the SLO is not met, the DCTA module decreases the up-
scale CPU thresholds by ∆Cdown step. This granular adjustment enables faster
scaling up, allowing the system to respond promptly to increasing loads. Addition-
ally, it delays the scaling-down process as the load decreases, ensuring stability
and preventing premature resource deallocation.

CCTD

c (CCTD

c−1 , SLOc) =











































CCTD

c , if tnow − (tc−1 + Tc) =

= 0

CCTD

c−1 +∆CD, if SLOc > SLOtgt

CCTD

c−1 −∆CD, if SLOc < SLOtgt

CCTD

c , otherwise

(2.18)
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Here, tc represents the time when the latest adjustment was made, while c repre-
sents the index of the data point associated with that adjustment. tnow denotes the
current time at which the CPU thresholds are being validated.

The initial values of the CPU thresholds CCTD

0 , used at the initialization of
the algorithm, are calculated using Equation (2.19).

CCTD

0 =
CCTD

max + CCTD

min

2
(2.19)

Subsequent values CCTD

c+1 are calculated as presented in the following equa-
tion:

CCTD

c+1 = CCTD

c +∆CD. (2.20)

To ensure that the CPU thresholds remain within appropriate ranges, upper
and lower limits are set for both the upscale and downscale thresholds. These
limits are denoted as CCTD

∈ [CCTD

min , CCTD

max ]. The limits for each application
and infrastructure environment are individually determined based on their unique
characteristics and may vary accordingly.

Notably, the number of CPU thresholds and velocity levels may vary. Manip-
ulating the number of levels provides more fine-tuned adjustments.

The following sub-chapter presents the evaluation criteria used to assess the
effectiveness and efficiency of the autoscaling solutions in the scope for this sub-
chapter.

2.1.3. Evaluation Criteria for the Efficacy of Autoscals in
Service Level Agreement Compliance Assurance

The autoscaling solutions to be analyzed in this sub-chapter are evaluated using
two criteria.

The primary evaluation criterion was the solutions’ efficacy in supporting or
exceeding the SLO value compared to the target SLO value (Equation (2.21)). If
a solution can consistently maintain SLOn ≥ SLOtgt or successfully recover and
reach the target SLO value, it is considered to have passed this criterion. The target
SLO (SLOtgt) was calculated using Equation (2.21).

SLOtgt =

∑n
0 l

SLItgt
n

∑n
0 l

all
n

(2.21)

Here, index n represents the data point index value of the latest event included
in SLO measurement period. The term l

SLItgt
n refers to the number of requests
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that were delivered with a response time equal to or less than the target response
time value (SLItgt), while lalln represents the total number of requests served by
the system during the specified service window. The measurement of the SLO
value began from the moment the system served the first request till the end of the
experiment.

To measure the performance of the system, the response time of the requests
was used as the service level indicator. It is worth noting that the choice of service
level indicators is flexible if the indicator is based on performance measurements
such as response time, error rate, percentage of lost packets, availability, N-th per-
centile latency, etc.

The efficiency in resource provisioning was a secondary criterion. Resource
utilization efficiency was evaluated using the method described in (Pozdniakova
et al., 2023) and referred to as the “touchstone” autoscaler. The essence of the
method is that the theoretical number of replicas required to process the load within
the defined SLO (Rηn) is calculated using Equation (2.22). Rηn is determined by
dividing the number of requests processed at a given moment (Ln) by the max-
imum number of requests that a single replica can handle (Lmax) without SLO
violation. This calculation represents an ideal “touchstone” autoscaler that provi-
sions the required number of replicas without any delay, ensuring optimal resource
utilization. By comparing the actual number of replicas provisioned by the evalu-
ated solutions with Rηn , their resource utilization efficiency can be assessed.

Rηn =

⌈

Ln

Lmax

⌉

(2.22)

In cases where the SLO target is not being met, the value of Rηn is adjusted by
the value of SLOn/SLOtgt. This adjustment allows for determining the required
number of replicas, denoted as Rtgt

ηn (as described in Equation (2.23)), needed to
attain the SLO target.

Rtgt
ηn ≈

⌈

Rηn ∗
SLOtgt

SLOn

⌉

(2.23)

The difference between the replica count provided by the solution and that of
the “touchstone” autoscaler is calculated to determine if the solution provisions the
minimum required replicas. If the difference is positive (R+

n in Eqaution (2.24)),
it indicates over-provisioning, meaning that there are more replicas than necessary.
On the other hand, if the difference is negative (R−

n ) in Equation (2.25)), it in-
dicates under-provisioning, meaning that there are fewer replicas than required to
handle the current demand in resources. This comparison provides insights into
the degree of over-provisioning or under-provisioning of replicas in relation to the
number of replicas provisioned by the “touchstone" autoscaler.
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Before concluding this sub-chapter, it’s important to note that addressing the
challenges of meeting performance-based SLA requirements led to a multi-module
solution. While this enhances algorithm robustness and consistency in achieving
SLA fulfillment, it also introduces configuration complexity. Furthermore, this
solution involves a custom autoscaler, which can require significant effort for prac-
tical implementation. Consequently, this research aims to simplify the implemen-
tation process and increase the likelihood of adopting the proposed autoscaling
solution for SLA fulfillment.

n
∑

0

R+
n =











R+
n = Rn −Rtgt

ηn , if (Rn −Rtgt
ηn ) > 0

R+
n = 0, if (Rn −Rtgt

ηn ) < 0

; (2.24)

n
∑

0

R−
n =











R−
n = Rn −Rtgt

ηn , if (Rn −Rtgt
ηn ) < 0

R−
n = 0, if (Rn −Rtgt

ηn ) > 0

. (2.25)

Experiment results presented in sub-chapter 3 demonstrate that selecting uti-
lization thresholds affects performance-based SLA fulfillment outcomes. The fol-
lowing sub-chapter introduces a solution designed to assist in determining resource
utilization thresholds for rule-based autoscaling solutions, mainly focusing on the
widely adopted Kubernetes Horizontal Pod Autoscaler.

2.2. Service Level Agreement-Adaptive Dynamic
Threshold-Adjustment Algorithm Design for
Rules-based Autoscalers

The threshold-based autoscalers, despite their simplicity, suffer from challenging
threshold management, impacting SLO compliance. This sub-chapter provides an
overview of the proposed dynamic threshold adjustment approach, the SLA-Aware
Threshold Adjustment (SATA) algorithm, which aims to ensure compliance with
the service level objectives (Pozdniakova et al., 2024).

2.2.1. Motivation For Developing a Solution to Adjust the
Thresholds in the Context of Horizontal Pod Autoscaler

The rise of containerized applications has led to the development of container or-
chestration platforms such as Kubernetes (kubernetes.io, 2024). Kubernetes em-
ploys the Horizontal Pod Autoscaler (HPA) (kubernetes.io, 2022), which calculates
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the required resources based on metrics like CPU, RAM, and network throughput.
HPA is one of the most adopted solutions that use static thresholds to estimate
the right amount of resources to be provisioned to ensure desired performance
for applications where selected utilization thresholds are the most influential fac-
tor ensuring the desired QoS. The HPA scales up the number of pod replicas if
the current resource usage exceeds a specific threshold (target utilization). Con-
versely, if the current resource usage falls below the target, the HPA scales down
the number of pod replicas.

The target utilization threshold is crucial in managing the performance of the
application as it dictates the resource allocation during each autoscaling action.
However, the Kubernetes creators do not provide specific guidance on setting the
threshold, particularly when aiming to align the performance of the application
with the Service Level Objectives (SLOs) outlined in the SLA. As a result, deter-
mining the threshold becomes a long and challenging process (Shafi, Abdullah,
Iqbal, Erradi, & Bukhari, 2024). If the thresholds are set too low, resources can be
overprovisioned. However, this will allow for a quicker response to load changes
and, as a result, lead to improved application performance. Conversely, choosing a
threshold that is too high may lead to fewer provisioned replicas and leave no buffer
for the detection of and reaction to the load increase (Developers, n.d.). These two
factors may cause a decline in performance and an increased risk of failing to meet
the application performance regarding the SLOs (Sahal et al., 2016).

Another problem is that HPA has a slow reaction (Huo et al., 2022), so as
it will be presented in the third chapter, it is not enough to benchmark the ap-
plication performance and establish a relationship between the response time and
resource utilization to find thresholds that ensure compliance with the SLOs. The
utilization threshold must be set lower to allow time for reaction and replica provi-
sioning. This buffer is essential for ensuring that the system can cope with sudden
changes in demand (Developers, n.d.); however, it is unclear how to estimate the
size of such a buffer. The threshold determination becomes even more challenging,
as the cloud environment is not homogeneous, which causes inconsistency in re-
source provisioning (Al-Haidari et al., 2013; Khaleq & Ra, 2021). Noisy neighbors
are another problem that causes inconsistency in the performance of provisioned
resources (Makroo & Dahiya, 2016). Cloud-native applications are frequently up-
dated and redeployed, requiring dynamic adjustments to autoscaling thresholds.
Manually finding and updating a suitable threshold to ensure the desired level of
system performance becomes a challenging process (Al-Haidari et al., 2013; Kang
& Lama, 2020; Khaleq & Ra, 2021).

To solve the abovementioned issues, practitioners and academia propose many
alternatives to the HPA in the form of custom autoscalers. Nevertheless, HPA con-
tinues to be one of the most widely used horizontal autoscaling solutions (CNCF,
2024b; Datadog, 2024). Therefore, this study proposes an approach for determin-
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ing HPA thresholds that can be incorporated into automation processes or serve as
a starting point for adjusting thresholds with minimal implementation complexity
and ease its practical adoption.

The following sub-chapter presents the method for SLA-aware dynamic thresh-
old determination.

2.2.2. Target Threshold Determination Algorithm

This sub-chapter introduces an approach to identifying the target utilization thresh-
old that ensures the system performs at the level defined in the SLA. A series of
steps constitutes the implementation of this approach. As the first step, a sufficient
number of metrics is collected to provide suggestions. In the second step, the col-
lected metrics are cleaned up, and outliers are removed to improve the accuracy
of the algorithm. As a third step, the collected metrics are aggregated into CPU
ranges, and the ratio between the number of compliant events and violations is cal-
culated per each range. In the fourth step, the smoothing technique is applied to
remove noise in values. As the last step, the suitable threshold is determined by
finding the highest CPU value where the desired SLO is met. The steps described
above are elaborated in more detail in the text below.

Step 1. Collection of a sufficient number of monitoring data points.
As the first step, the system should collect enough metrics Msuff to identify

the number of violations per threshold. The following metrics are collected at each
moment n to achieve the goal:

• CPUn – average CPU utilization;
• SLIn– performance-based service level indicator value, such as average

response time, tail latency, throughput (e.g., requests per second (rps));
• RPSn– the average number of requests per second;
• Podn–number of pods in “Ready” state.

Let the set of the metrics provided above be denoted as tuple m. Then,
Msuff = ⟨m0,m1, . . .mn⟩, where mn = ⟨CPUn, SLIn, RPSn, Podn⟩.

The size of Msuff depends on two factors: the length of the period during
which the data for threshold evaluation are collected (threshold evaluation period
Teval) and how frequently the metrics are collected (length of metric-collection pe-
riod Tm). In other words, |Msuff | = Teval/Tm. The experiment results indicated
that detecting the threshold is feasible with 150 samples per evaluation period;
however, a sample size of 300 enhances accuracy.

The use of RPSn and Podn metrics is optional, as those are used to remove
outliers in the CPU performance values, which appear when the number of pods
is very small. These outliers can significantly skew threshold calculations, leading
to inaccurate autoscaling decisions. The process of eliminating outliers and other
invalid data is explained in the following step.
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Step 2. Data cleaning.
This step is applied to improve the accuracy of the algorithm. It involves iden-

tifying and removing invalid values and outliers that might have been introduced
due to system-specific monitoring issues. For instance, when the monitoring sys-
tem is overloaded, it may generate empty values of requests per second or response
time. To clean up the data, as the first step, empty metrics are removed from
Msuff . For instance, data points (Mnosli) where the m(SLI) metric is not avail-
able are removed as presented in Equation (2.26).

Msli = Msuff \Mnosli (2.26)

Here, Mnosli = {m : m ∈Msuff ∧m(SLI) does not exist}.
Next, to ensure that the algorithm does not propose very low CPU utilization,

the metrics collected when there was no load are removed, denoted as Mnoload in
Equation (2.27).

Mnozeros = Msli \Mnoload (2.27)

Here, Mnoload = {m : m ∈ Msli ∧ ((m(RPS) = 0) ∧ (m(SLI) = 0) ∧
(m(RPS) = 0) ∧ (m(Pod) = 0))}.

Outliers can be introduced during the upscale and downscale actions where the
number of pod replicas is low. For instance, during an upscale action, the system
may report many violations while CPU utilization drops. This occurs because the
load has not yet been distributed among all replicas. Older replicas, which may
deliver a significant amount of system capacity, still report high response times
despite low CPU utilization. Removing such anomalous data is recommended to
improve the accuracy of the algorithm. This work follows the recommendation
and uses the interquartile range (IQR) method (Dash, Behera, Dehuri, & Ghosh,
2023; Han, Kamber, & Pei, 2012) for outlier detection, which is presented below
in more detail.

The interquartile range is a statistical technique used to identify outliers within
a dataset. The dataset is first sorted in ascending order and then divided into four
equal parts. The points dividing the dataset into four equal parts are known as
quartiles. The first quartile (Q1) represents the initial 25% of the data or the 25th
percentile, the second quartile (Q2) represents the middle point or median, while
the third quartile (Q3) represents the final 25% or the 75th percentile. The in-
terquartile range represents the middle half of the data, which includes all the data
between the third quartile (Q3) and the first quartile (Q1). All values falling at
least 1.5× IQR above the third quartile or below the first quartile are considered
anomalous. The values of Q1 and Q3 used for determining the IQR, and the IQR
itself, are computed using the following equation:

IQR = Q3−Q1, where Q1 = X⌈(z+1)/4⌉, Q3 = X⌈3×(z+1)/4⌉. (2.28)
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Here, X denotes an element of an ordered dataset, z represents the number of
elements in the dataset (size of the dataset), and the subscript of X represents
the equation used to identify the index of the element belonging to the respective
quartile (Q1, Q3).

As described at the beginning of the step description, there might be occasions
when the system may report anomalous metrics. Analyzing the data number of re-
quests per second (rps) that a single CPU can handle (RPCz) and the number of
rps that a single pod can handle (RPPz) helps identify instances of anomalous con-
tainer performance in pods and removing the data from evaluation. This removal
improves the quality of threshold detection. For each metric mz ∈ Mnozeros, the
RPC and RPP values are calculated as presented in Equation (2.29) and Equa-
tion (2.30), respectively.

RPCz =
RPSz

CPUz
; (2.29)

RPPz =
RPSz

Podz
. (2.30)

Once the RPC and RPP are calculated, the metrics Mnozeroes are sorted
by the RPC value in ascending order, and the IQR method is applied to remove
anomalies. The value of the first quartile (Q1RPC

) and third quartile (Q3RPC
)

of the RPC is identified using Equation (2.28). Finally, all the metrics, where
RPCz /∈ (Q1RPC

− 1.5× IQR;Q3RPC
+ 1.5× IQR), are considered as outliers

and are removed from Mnozeroes. The same procedure is repeated using the RPP ,
to obtain a set of a better quality metrics to proceed with CPU threshold estimation,
denoted as Meval.

Step 3. Data grouping by CPU range and the calculation of the number of
violations per CPU range.

In this step, the collected and cleaned metrics are grouped into ranges by the
CPU using the following actions, denoted as A:

• A1. The cleaned metrics Meval are first ordered by the CPU from the low
to high CPU value. Let the new sequence be denoted as MC = {mc :
mc ∈Meval,mc(CPU) ≤ mc+1(CPU))}}.

• A2. The elements of MC are grouped into smaller subsequences, or
ranges, based on their CPU values. Metrics with CPU values that fall
into the same 1% CPU range are placed into the same group (MCRi).
This procedure is applied to all available metrics while maintaining their
original sorting by the CPU value. In such a way, the sequence of se-
quences is created MCR = {MCRi : i is an integer, i ∈ [0; 100]}, where
MCRi = {mcr(i) : mcr(i) ∈ MCRi, i − 1 < mcr(i)(CPU) < i + 1}
is the sequence of metrics that belongs to the same 1% CPU. Here, i is an
index of the CPU range.
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• A3. It is assumed that the 1% CPU range should contain at least 1% of
all collected metrics during the threshold evaluation period (Teval). How-
ever, MCRi might contain a smaller number of elements. As a result, up
to three following MCRi subsequences might be united into a bigger or
the same size range MCRr to ensure they contain at least 1% of all met-
rics collected during Teval, but not less than five elements (minSize =

max(5, |Meval|
100 )). If |MCRr| < minSize, then MCRr = ∅. Here, r

denotes an index equal to the index of the last CPU range included in the
combined range. For instance, if MCRr unites the MCR2 and MCR3

ranges, then r = 3; if MCRr unites only one range, then r = i. Com-
bining metrics into larger ranges may reduce the algorithm’s precision in
detecting thresholds, so going beyond a 3% range is not recommended.

After grouping the metrics, the SLO (SLOr) for each CPU range MCRr is
calculated as presented in Equation (2.31).

SLOr =































100− 1
b

p=b
∑

p=0
Vp, if |MCRr| ≥ minSize

100, if r = 0

0, if r >= 99

SLOr−1, otherwise

(2.31)

Here, [
∑p=b

p=0 Vp] represents the total number of events Vp where the SLI value
(mcp(SLI) ∈ MCRr) exceeded the SLI target value (SLItgt), indicating a vio-
lation of the SLO, as shown in Equation (2.32). The index p corresponds to the
elements in the set MCRr, and b indicates the index of the last element in the
range.

Vp =

{

1, if mcp(SLI) > SLItgt

0, if mcp(SLI) ≤ SLItgt
(2.32)

As can be seen in the first line of Equation (2.31), SLOr is the percentage of
events that conform with the target SLI value within a CPU range. An SLO of
100% is assigned to the CPU range of 0%, as there are no violations when there is
no or minimal load. Conversely, SLO compliance is equal to 0% when the CPU
range index is 99 or higher because the SLO cannot be met when CPU utilization
is near 100%. This allows the imputation (Sidekerskiene & Damasevicius, 2016)
of missing values by replacing missing initial and last values for the SLO.

To finalize this step, the mapping is created between the SLO of CPU range
(SLOr) and the corresponding ID of MCRr(CPU) range, denoted as CTR in
Equation (2.33).
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f : CTR =⇒ SLOr (2.33)

Here, CTR = ⌈maxMCRr(CPU)⌉ is the ID of a range that is equal to the value
of the CPU metric with the highest value in the range.

Before proceeding to the next step, it is important to note that the metrics are
grouped into ranges larger than 1% to ensure that each range has enough met-
rics to calculate the SLO metric accurately. This minimizes fluctuations between
neighboring values. Let us say we have two metrics collected at a very low CPU
utilization, where the CPU value is around 3%. In this scenario, each metric will
be given a weight of 50% when calculating the SLO of the range. For instance, if
the next range has a CPU value of 4% and contains 10 compliant values, then the
SLO for the range will be 100%. However, if there is only one non-compliant event
in the range of 3%, the SLO for the range may fluctuate up to 50%. While it is
possible to unite more than three 1% CPU ranges (MCRi), it is not recommended
to estimate the SLO for ranges larger than 3% as this would negatively impact the
algorithm’s accuracy.

The next step aims to improve the accuracy of threshold prediction and remove
noise caused by fluctuations between neighboring values.

Step 4. Smoothing of the SLO values per the CPU range.
The algorithm may be effective even with a relatively low number of events;

however, the limited number of events per MCRr can lead to fluctuations in the re-
lationship between CTR and SLOr. This phenomenon is illustrated in Figure 2.2a
and discussed in the previous step. To mitigate this issue, a smoothing technique
known as the Simple Moving Average (SMA) is applied. The SMA helps eliminate
fluctuations and highlights underlying trends (Raudys, Lenčiauskas, & Malčius,
2013). This technique calculates the average value of a set of numbers over a spec-
ified number of previous periods, known as to as a window or lag. The formula
for calculating the SMA is provided in the following equation:

SLOrw =
1

w

w
∑

i=1

SLOr−i. (2.34)

Here, SLOrw is the SLO value of a range r smoothed over a window of size w;
SLOr−i are the SLO values of the CPU ranges with indexes varying within the
window size w (from r − i to r).

The recommendation provided by Hyndman and Athanasopoulos (2019) and
discussed in Hyndman (2014) is used to determine the appropriate window size
(w), or lag, to be applied for SMA smoothing. to be applied for SMA smoothing.
The approach is represented in Equation 2.35. According to this equation, the
maximum allowable size for the window is 10.

w = min(|MCR|/5, 10) (2.35)
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Step 5. Suggestion for the desired CPU threshold value.

After smoothing out the CPU values, the next step is to choose the highest
CPU range with a number of violations (SLOrw ) that is lower than or equal to
the SLO-defined number of violations (SLOtgt). This chosen threshold is then
considered the target utilization threshold CTRslo and is determined using the
following equation:

CTRslo = max
SLOr≥SLOtgt

{f−1(SLOrw) : SLOrw ≥ SLOtgt exists}. (2.36)

Here, f−1(SLOrw) = {CTRslo ∈ R : f(CTRslo = SLOrw)}.

Before concluding this sub-chapter, it is worth mentioning that, in this work,
the use of the Centered Moving Average (CMA) (Hyndman & Athanasopoulos,
2019) was also evaluated to smooth out the fluctuations and identify the target
utilization threshold. It was assumed that this method would provide more conser-
vative suggestions for thresholds than the SMA. Three experiments using the HPA
were executed, and the utilization thresholds were set to values of 44%, 48%, and
50% to evaluate these approaches.

The results are presented in Figure 2.2b and c, where the lines present the re-
lationship between the CPU range ID and SLO, and the SLOs achieved by the end
of each experiment are presented as dots. The figures illustrate that the SMA iden-
tifies the relationship between the threshold and SLO values more accurately than
the CMA. Therefore, the SMA is employed as the primary smoothing technique in
this study. It is important to ensure that the algorithm can access data points that
closely align with the desired SLO performance. The prototype outlined in the
upcoming sub-chapter includes mechanisms designed to facilitate the collection of
appropriate data points, enabling more accurate estimations.

The algorithm presented in this sub-chapter is designed to identify a threshold
value that static threshold-based autoscaling algorithms can use to maintain the de-
sired quality of service (QoS). The static threshold-based method is most effective
in scenarios with no significant changes in performance or load during the time-
frame used for estimating the threshold. It also works best when the load patterns
in the future period do not significantly differ from those used for the estimate.
However, in real-world production settings, load fluctuations are common. The
performance of cloud resources can vary, and the provisioned resources may not
be consistent. Consequently, the target utilization threshold that ensures the system
operates at the required performance level to meet the SLO during nighttime could
fall short during daytime operations. Furthermore, the algorithm may recommend
a lower CPU threshold when analyzing performance over extended periods, which
can lead to excessive resource allocation. Therefore, an autoscaler must dynami-
cally adjust the proposed threshold value to adhere to the SLA requirements.
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Fig. 2.2. Target threshold graphical determination. (a) Line graph of the range of
achieved SLO values at specific CPU ranges without smoothing. (b) Line graph of the
range of achieved SLO values at specific CPU ranges calculated using Simple Moving

Average smoothing. (c) Line graph of the range of achieved SLO values at specific CPU
ranges calculated using Centered Moving Average smoothing. Dots represent the SLO

achieved in the experiments when the Horizontal Pod Autoscaler (HPA) was configured
with a static CPU utilization threshold

In the following sub-chapter, the dynamic threshold-adjustment algorithm will
be outlined to address the above-mentioned issues. The algorithm is then imple-
mented as a SATA prototype solution to assess the effectiveness of CTRslo thresh-
old detection and dynamic adjustment.

2.2.3. Dynamic Threshold-Adjustment Algorithm

This sub-chapter presents a prototype solution designed to assess the proposed
threshold determination method’s effectiveness. Specifically, it evaluates how well
the proposed algorithm determines the threshold value that enables the system
to operate as closely as possible to the defined SLO. Additionally, it examines
the applicability of the proposed threshold determination method across various
workload conditions.
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The proposed SATA prototype is designed to support HPA, as HPA employs
threshold-based policies to govern autoscaling. The SATA solution uses a set of
rules and algorithms to dynamically adjust the target utilization threshold for HPA
(see Equation (1.1)). The CPU utilization threshold will be used for the prototype
evaluation. For better readability, the CPU threshold will be referred to as the
desired CPU threshold and denoted as (CTd) instead of the original metric notation
(Md) used by HPA. The selection of the algorithm and rules to be used by the
SATA prototype depends on operational conditions, which are as follows:

• The system is in the initialization phase, meaning that the minimum of
required metrics has not been collected yet to estimate the target utilization
threshold (|M | < |Msuff |);

• The system is in a resource underprovisioning state, meaning it is im-
possible to identify CTRslo since all the SLOrw values are below SLOtgt,
indicating that not enough resources are provisioned;

• The normal operational conditions cover all other cases not mentioned
above.

A different CTd adjustment logic is then used based on the operational state
of the identified system.

The following text explains how resource underprovisioning is detected and
how detected underprovisioning impacts the duration of the threshold-adjustment
period (Tadjust). Then, sub-chapter 2.2.3 explains how the CTd value is adjusted
based on the system’s operational condition.

Resource Underprovisioning Detection

Detecting resource starvation in a system is critical, as it can negatively affect the
state of SLOs. As a result, such conditions should be detected as soon as possible.
Algorithm 4 describes a logic that determines if the system is experiencing re-
source underprovisioning. The algorithm counts the number of underprovisioning
events that occur between autoscaling actions.

The calculated algorithm values are used as the input parameters by the expe-
dite function, which is defined in Equation (2.37). This function checks if the num-
ber of consequent Tscale periods that contain underprovisioning events (underpov)
exceeds the threshold of maximum allowed underprovisioning events bndryunder
or if the number of periods between which the SLO value decreases (SLOdrop)
exceeds a boundary (bndryslo) of maximum allowed number of the periods.

If none of the bndryslo, bndryunder thresholds are exceeded, the time taken
to initiate an update of the target threshold (timeToUpdate()) is equal to Tadjust.
However, if any of the thresholds are exceeded, timeToUpdate() is reduced to
three scale periods. This action is described in Equation (2.38). The reduction
of time accelerates the process of adjusting thresholds as outlined in Algorithm 5,
allowing for a quicker response to resource underprovisioning and reducing the
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Algorithm 4 Resource underprovisioning detection algorithm

Require:

SLOtgt;
SLOnow– current SLO value;
SLOlastScale– the SLO value before the last autoscaling action taken;
Tscale– time between autoscaling actions (autoscaling period);
MTscale

is a collection of metrics collected during the autoscaling period
(Tscale);
|Munder| is the number of metrics collected when the system was in a high under-
provisioning state during the autoscaling period, where Munder = {mu : mu ∈
MTscale

,mu(CPU) ≠ 0 ∧(mu(RPS) = 0 ∨mu(SLI) = 0)}.
Ensure: Compute and return:

underpov– the number of consequent periods during which underprovision-
ing events occur, that is |Munder| > 0, or when fewer metrics were collected
than expected to collect during Tscale;
SLOdrop– the number of consequent periods during which the SLO decreased
between the two latest autoscaling actions.

1: if (SLOnow − SLOlastScale < 0) ∧(SLOnow < SLOtgt) then

2: SLOdrop ← SLOdrop + 1
3: else

4: SLOdrop ← 0
5: end if

6: if (|MTscale
| < |MTscale

| × Tscale

Tm
) ∨ (|Munder| > 0) then

7: underpov ← underpov + 1
8: else

9: underpov ← 0
10: end if

11: return SLOdrop, underpov

risk of SLA violations. The length of three upscale events is recommended to
ensure that the previously collected metrics have an impact on future scaling action
and minimize fluctuations caused by occasional sudden spikes in load.

expedite(SLOdrop,underpov, bndryslo, bndryunder) =














true, if SLOdrop > bndryslo

true, if underpov > bndryunder

false, otherwise.

(2.37)
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Here, bndryslo and bndryunder identify the maximum number of SLOdrop and
underpov events that trigger the CTd’s recalculation earlier than by default.

timeToUpdate(SLOdrop, underpov, tupdated, tnow, Tadjust, Tscale) =






















true, if |tupdated − tnow| > Tadjust

true, if |tupdated − tnow| > 3× Tscale ∧ expedite(SLOdrop

underpov) = true

false, otherwise

(2.38)

Here, tupdated is the time when the CPU threshold was last updated, and tnow is
the current time.

As seen from Algorithm 5, the boundary counters are dropped after the scaling
action if SLOdrop and underpov exceed their boundaries.

Algorithm 5 The dynamic threshold-adjustment algorithm.

Require: Tadjust, Tscale, tupdated, tnow, SLOdrop, underpov, bndryslo,
bndryunder

Ensure: Reset the SLOdrop and underpov counters to zero and return CTd if
autoscaling action was triggered due to resource underprovisioning.

1: if timeToUpdate(Tadjust, Tscale, tupdated, tnow, SLOdrop, underpov) =
true then

2: if SLOdrop > bndryslo then

3: SLOdrop ← 0
4: end if

5: if underpov > bndryunder then

6: underpov ← 0
7: end if

8: return CTd

9: end if

After determining if the system is underprovisioning or not, the target utiliza-
tion threshold can be calculated and adjusted as described below.

Target Utilization Threshold Selection

As mentioned at the beginning of this sub-chapter, the prototype selects different
target utilization thresholds depending on the operational state of the system.

This behavior is presented in Equation (2.39). When the algorithm initializes,
Msuff is not collected yet. Therefore, the current CPU threshold (CTnow) is se-
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lected. However, if underprovisioning or an increase in SLA violations is detected
(SLOdiff < SLOdropTupdate

), the current threshold is adjusted to a lower value
using the approach outlined in Equation (2.40).

CTd(SLOnow, SLOlastUpdate, CTnow) =






















































































CTRslo, if SLOnow ≥ SLOtgt ∧ ∃CTRslo

CTRSLOexpedite
, if expedite = true ∧ ∃CTRslo

CTexpedite, if ̸ ∃CTRslo ∧expedite = true

CTexpedite, if |Meval| < |Msuff |

∧SLOdiff < SLOdropTupdate

∧SLOnow < 80%

CTnow ×
SLOtgt

SLOnow
, if |Meval| < |Msuff |

∧SLOdiff < SLOdropTupdate

∧SLOnow > 80%

CTnow, otherwise

(2.39)

Here, SLOdiff = SLOnow − SLOlastUpdate is the difference between the SLO
values collected during the last threshold-adjustment action (SLOlastUpdate) and
the currently collected SLO value (SLOnow); SLOdropTupdate

is acceptable SLO
decrease per evaluation period.

The CTexpedite results in the provisioning of more replicas if the current thresh-
old setting leads to a decrease in SLA performance. For instance, if a target thresh-
old of 50% is set and utilization is 100%, then the number of replicas will in-
crease at a maximum of twice during each scale iteration as per Equation (1.1)
(⌈(Mm/Md)×Rn⌉ = ⌈100/50×Rn⌉ = 2×Rn).

CTexpedite = 100÷

⌈

100

CTnow
+ 1

⌉

(2.40)

To expedite the recovery of the service level as per the SLA, the Md will be
replaced with threshold CTexpedite set at 33%, resulting in the provision of three
times the number of replicas (CTexpedite = 100÷⌈1+100/50⌉ = 100÷3 ≈ 33).
In case the SLA value does not start increasing, the following threshold will be set
at 25% (100÷⌈1+100/33⌉ = 25), leading to an increase of four times the number
of pod replicas provisioned. This process will be repeated until the measured SLO
value stops declining.

CTexpedite is selected when the service’s SLO has dropped below 80%. This
helps to prevent an infinite increase in replicas. Setting a higher threshold would
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not have any impact due to the Kubernetes tolerance threshold setting. The toler-
ance threshold ensures that, the HPA algorithm will perform the scaling only if the
ratio between Md and Mn is less than 0.9 or larger than 1.1 (kubernetes.io, 2022).

It is worth noting that the calculation of the CTexpedite threshold was intro-
duced because the HPA could not break free from the failure loop when the thresh-
old was set above 50%. This was due to an inadequate increase in the number of
replicas. This limitation occurred because each autoscaling interaction could only
double the number of replicas. Setting the threshold below 33% allowed the HPA
to successfully escape the failure loop, with the number of replicas increasing by
up to three times in each scaling action.

When enough metrics (Msuff ) are gathered, the algorithm estimates the thresh-
old CTRslo using the method described in sub-chapter 2.2.2. If the algorithm de-
tects resource underprovisioning, it will select a threshold lower than the current
threshold (CTRSLOexpedite

) from the SLOr values (Equation (2.41)).If there are
no suitable CTRslo or CTRSLOexpedite

, then CTnow or CTexpedite is selected, re-
spectively.

CTRSLOexpedite
= max

CTRslo<CTnow

{f(SLOr) : SLOr ≥ SLOtgt exists} (2.41)

It is important to mention that period, Tadjust, should span a minimum of 3 to
5 upscale periods. This ensures that the system can more accurately evaluate the
impact of changes in the previous threshold. If the update period is too short, the
algorithm will become overly sensitive to load fluctuations. If the update period
is too long, the system will operate at lower thresholds for an extended period,
leading to increased overprovisioning of the resources. However, it will be less
sensitive to accidental load spikes. A similar logic should be applied to threshold
evaluation intervals. The threshold evaluation intervals should also be set to last a
minimum of 3 to 5 threshold evaluation periods (Teval).

2.2.4. Threshold-Adjustment Algorithm Evaluation Criteria

The main goal of the adaptive threshold algorithm is to ensure that the autoscaler
provides sufficient resources to ensure compliance with the defined service level
objectives. Three criteria were used to assess the algorithm’s ability to achieve this
goal.

First, the total number of containers used in each monitoring period is calcu-
lated to measure the efficiency of resource provisioning (Equation (2.42). Fewer
containers are considered to be a better result, but only when the defined SLO is
met. The over- and under-provisioning are calculated by comparing the number
of resources used by the HPA. The threshold for HPA is set as closely as possible
to the value that allows the system to provision a sufficient number of replicas to
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operate at a performance level where the number of violations does not exceed the
maximum allowed.

Ptotal =
n
∑

t=1

M(Pt) (2.42)

Here, Ptotal is the total number of pods reported at each monitoring data point, n
is the number of data points, and M(Pt) is the number of ready pods reported at
time t.

Additionally, the tables presenting the experiment results in sub-chapter 3.3
include the percentage difference from the best result for total pods. This data
helps to reduce the cognitive load on the reader by eliminating the need to calcu-
late and estimate the number of pods that were overprovisioned compared to the
experiment that achieved the lowest number of pods necessary to fully meet SLO
compliance across the entire experiment. Let’s denote the percentage difference
from the best result for total pods as Pbestdiff . Then, the value Pbestdiff is calcu-
lated as presented in the following equation :

Pbestdiff =

⌈

PN
total − Pmin

total

Pmin
total

× 100%

⌉

. (2.43)

Here, Pmin
total is a minimal number of total pods across all experiments where SLO

compliance was fully met, while PN
total represents any other experiment in the rel-

evant experiment set.
The second evaluation criterion is the accuracy of the algorithm, that is, the

ability to operate as close as possible to the defined SLO (SLOtgt), which is
measured using the symmetric Mean Absolute Percentage Error (sMAPE) (Chen,
Twycross, & Garibaldi, 2017) (Equation (2.44)). This helps understand if overpro-
visioning of the resources is justified (Dang-Quang, Yoo, De, & Santana, 2021).

sMAPE =
100%

n

n
∑

t=1

2× (|M(SLA)t − SLOtgt|)

|M(SLA)t|+ |SLOtgt|
(2.44)

Here, n is the number of data points, and M(SLA)t denotes the SLA value at the
time t.

The algorithm’s ability to meet the defined SLO is the third and most impor-
tant criterion of the evaluation. It is important to mention that each experiment
evaluating the algorithm includes a period (Msuff ) required to collect sufficient
events for threshold estimation and the time needed for the system to change its
behavior (4–5 upscale actions). Metrics collected during this period are excluded
from the evaluation criteria to assess the ability of the algorithm to meet the de-
fined SLOs.
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The upcoming chapter outlines the experimental environments and experi-
ments conducted to assess the proposed threshold-detection approach against eval-
uation criteria. The following sub-chapter concludes the results presented in this
chapter.

2.3. Conclusions of the Second Chapter

The chapter presented two SLA-aware autoscaling approaches for containerized
cloud-native applications that aim to fulfill performance-based SLA requirements.
The following conclusions have been drawn:

1. The SAA solution is designed to tackle various challenges that autoscaling
systems must address to ensure compliance with SLAs. To achieve this,
multiple modules have been developed to handle issues, such as adapting to
changes in load, accommodating diverse application resource and perfor-
mance requirements, adjusting to the non-uniformity of cloud resources,
ensuring timely scaling decisions, and mitigating oscillations. Addition-
ally, SAA includes logic that aims to restore SLA values to their target lev-
els after they have been breached. In comparison to other solutions, as per
the conducted literature review, only SAA is designed to ensure desirable
service levels by actively working to restore service quality and achieve the
defined SLO. This capability represents a key strength of the SAA solu-
tion and highlights its potential to recover SLOs in scenarios where adding
resources can significantly enhance performance.

2. This chapter presented a threshold-detection approach and SATA proto-
type for dynamic threshold adjustment to enhance SLA fulfillment in au-
toscalers for cloud native applications. The approach is based on data ex-
planatory analysis and moving average smoothing, which helps to under-
stand and implement the solution without extensive knowledge of machine
learning.

3. The evaluation criteria are proposed for each approach. These criteria en-
able the assessment of solutions from two perspectives: the efficacy of
SLA fulfillment and resource management efficiency.





3
Experimental Investigation and

Evaluation of Service Level
Agreement-Adaptive Rules-Based

Autoscaling Algorithms

The chapter presents the experimental investigation of two proposed SLA-adaptive
rules-based autoscaling solutions discussed in the previous chapter: SLA-Adaptive
Autoscaler (SAA) and SLA-adaptive threshold adjuster (SATA). It also covers the
experimental evaluation of the proposed methods and compares those with state-
of-the-art autoscaling solutions. The chapter includes details on the practical im-
plementation of each solution and experimental environment. Finally, it concludes
by evaluating the tested autoscaling approaches and the results achieved.

The primary research findings of this chapter were published in two publica-
tions (Pozdniakova et al., 2023, 2024) prepared by the author of this dissertation.

3.1. Common Experimental Setup

This sub-chapter outlines the common components utilized in all of the exper-
iments. Although different configuration parameters were established based on
each scenario, the corresponding prototypes and supporting components remained
consistent throughout all the experiments. Detailed information about the settings
can be found in the relevant sub-chapters.

Azure Kubernetes Service (AKS) (Microsoft, 2024a) served as the test bed
for the experimental evaluation. The master node utilized a “Standard DS2 v2” in-
stance, which includes two vCPUs and seven GiB of RAM for all experiments. The
number of worker nodes varied in each experiment, with more detailed informa-

77
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tion on exact configuration and setting provided in the corresponding sub-chapters
of this chapter.

A virtual machine instance of “Standard B4ms” size, which provided four
vCPUs and 16 GiB of RAM, was used to host load-generating tools. The virtual
machine ran the Ubuntu 20.04 operating system.

The open-source Prometheus solution (Prometheus, 2025) was used to collect
application performance data in the implemented solution.

The following metrics were scraped from the target application: the transac-
tions count and the duration of requests, measured using a histogram. Metrics
were collected every 5 seconds, and their evaluation was done every 30 seconds
(Tm = 30). The average CPU utilization of a pod and the number of running pods
were collected from Kubernetes exposed endpoints at a frequency of every 10 sec-
onds. Such a short scraping interval enables a prompt response to load changes.

The Azure load balancer (Microsoft, 2024c) was utilized to provide access
from the machine hosting the load-generating tools to the applications hosted on
the Kubernetes cluster.

It is important to note that in all scenarios presented in this dissertation, the
load was measured by the number of requests per second (rps). However, another
type of workload, such as the number of connections or throughput, can be used
instead of rps as long as it strongly correlates with the utilization metric (Toka
et al., 2021) and SLO.

To evaluate the performance of the autoscaling solution according to the eval-
uation criteria described in Chapter 2, the assessment was conducted considering
the methodological principles for reproducible performance evaluation in cloud
computing proposed by (Papadopoulos et al., 2021).

The graphical analysis method was utilized to evaluate the scattering between
results together with confidence interval calculation for experiments that ran more
than once. For example, the SATA algorithm was assessed using the WorldCup’98
and Electronic Data Gathering, Analysis, and Retrieval (EDGAR) (SEC.gov, 2025)
workload described in sub-chater 3.3.2. In the evaluation of the SATA algorithm,
the achieved SLA results for the WorldCup’98 load using SMA 4×101 varied in
range from 1̃% to 2̃% with a confidence interval ranging in the same diapason,
while for EDGAR workload, the results were even more precise and ranged from
0% to less than 0.5% with a confidence interval ranging between 0.1% and 0.7%
(Figs. 3.1a and d, 3.3, 3.4).

The achieved pod replicas utilization results for the WorldCup’98 load using
the SMA 4×10 varied in the range from 0 to 10 pods (3̃0%) with a confidence

1The SMA 4×10 notation is used later in this document. It is described in more detail in sub-
chapter 3.3. Here, SMA refers to the Simple Moving Average smoothing technique; 4×10 in this
context represents the threshold adjustment period set to 4 autoscaling periods, while the threshold
evaluation period is defined as 10 autoscaling periods in length.
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Fig. 3.1. Line plots presenting the scattering of results across four experiments assessing
the performance of the SLA-Adaptive Threshold Adjustment (SATA) solution with

Simple Moving Average (SMA) in the WorldCup’98 workload scenario. (a) SLO value
after collecting a sufficient number of events (after the dotted line). (b) Average CPU
utilization. (c) Applied target utilization threshold in each period. (d) Number of pods

provisioned in each period. (e) Generated workload requests per second
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Fig. 3.2. Line plots presenting the scattering of results across four experiments assessing
the performance of the SLA-Adaptive Threshold Adjustment (SATA) solution with

Simple Moving Average (SMA) in the EDGAR workload scenario. (a) SLO value after
collecting a sufficient number of events (after the dotted line). (b) Average CPU

utilization. (c) Applied target utilization threshold in each period. (d) Number of pods
provisioned in each period. (e) Generated workload requests per second
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Fig. 3.3. Line plots presenting the mean and confidence intervals of Service Level
Objective values across four experiments assessing the performance of the SLA-Adaptive

Threshold Adjustment (SATA) solution with Simple Moving Average (SMA) in the
WorldCup’98 workload scenario

interval ranging from zero to 6 pods (2̃3%) and at an average of 2 pods. For
EDGAR, the results ranged from 0 to 5 (20%) pods with a confidence interval
ranging between 0 and 6 (2̃3%) at an average of around 1.8 pods (Figs. 3.2a and
d, 3.5, 3.6).

3.2. Experimental Evaluation of the Service Level
Agreement-Adaptive Autoscaling Algorithm

This sub-chapter describes the experimental evaluation of the SLA-Aware Au-
toscaling Algorithm (SAA) (Pozdniakova et al., 2023). The sub-chapter includes
the prototype implementation and the experimental environment details, including
workloads and the experiments’ results. The experimental investigation also com-
pares the proposed method with state-of-the-art rules-based autoscaling solutions.

The SAA prototype was developed in Java programming language to evaluate
the proposed SAA solution and its algorithms, which were described in detail in
the previous sub-chapter. Figure 3.7 shows the component diagram of the SAA so-
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Fig. 3.4. Line plots presenting the mean and confidence intervals of a number of pods
used across four experiments assessing the performance of the SLA-Adaptive Threshold
Adjustment (SATA) solution with Simple Moving Average (SMA) in the WorldCup’98

workload scenario

lution implementation, illustrating the different components and their interactions.
The modules were implemented in the respective Java classes. The source code of
the solution can be accessed in the GitHub repository (Pozdniakova, 2023).

In addition to the modules discussed in sub-chapter 2.1.2, the experimental
environment incorporated two extra modules: the metrics processor and the values
storage module. These modules collect, pre-process, and store the application and
infrastructure metrics the SAA solution needs. The metrics processor gathers and
prepares the metrics for analysis and decision-making. The values storage module
enables the exchange and storage of these metric values among system modules.

The SAA used Custom Pod Autoscaler (CPA) middleware to integrate the Ku-
bernetes API server. The CPA periodically retrieves information about the replicas
running in the Kubernetes cluster at intervals (Tm) and shares it with the SAA so-
lution. If the number of replicas reported by the CPA and Prometheus components
is equal, the SAA autoscaling algorithm initiates the autoscaling process according
to the established rules and thresholds. The synchronization activities among these
components added a 20-second delay to the autoscaling logic execution.

Two types of workloads were utilized to assess algorithm performance: man-
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Fig. 3.5. Line plots presenting the mean and confidence intervals of Service Level
Objective values across four experiments assessing the performance of the SLA-Adaptive

Threshold Adjustment (SATA) solution with Simple Moving Average (SMA) in the
EDGAR workload scenario

ually created synthetic patterns and real-world web traffic traces. The synthetic
workload tested the capability of each solution under specific conditions, while
the real-world web traffic traces provided an evaluation of algorithm performance
under conditions closely resembling real-world scenarios.

The next sub-chapter presents experimental environments in more detail, start-
ing with experiments utilizing synthetic workloads.

3.2.1. Experimental Setup for Autoscaler Performance
Evaluation with Synthetic Workloads

This sub-chapter outlines the synthetic workloads and infrastructure components
employed in the experimental environment used for the empirical evaluation of the
proposed autoscaler solution.

The solution ran on the version 1.19 AKS cluster. The deployment consisted
of four virtual machines: one master node and three worker nodes. The operat-
ing system used across all machines was Ubuntu 18.04. The worker nodes were
configured as “Standard D8 v5” instances, providing eight vCPUs and 32 GiB of
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RAM to serve the application load. Two CPUs in this cluster were allocated to
run the monitoring and autoscaling solutions, such as Prometheus, CPA, and other
related components. This allocation ensured that the monitoring and autoscaling
components had dedicated resources to perform their tasks without impacting the
resources available for the application.

The Apache JMeter tool (JMeter, 2025) was used as a load generator to sim-
ulate different workload patterns. Additionally, the JMeter Constant Throughput
Timer add-on was employed to maintain a consistent and predictable workload.
The Jmeter was configured to generate a maximum load of 9000 requests per
minute or 150 requests per second on average (maxLn = 150). This request rate
was selected to ensure that the system can scale to at least three times the number
of replicas needed to maintain the service level defined in the SLA.

Five synthetic workload patterns were generated using different levels of ve-
locity and volatility. These patterns included slowly changing load (|α| ≤ 1)2,
moderately changing load (1 < |α| ≤ 3), fast-changing load (|α| > 3), peaks with

2Here, |α| represents the load velocity factor discussed in the second chapter.

Fig. 3.6. Line plots presenting the mean and confidence intervals of a number of pods
used across four experiments assessing the performance of the SLA-Adaptive Threshold

Adjustment (SATA) solution with Simple Moving Average (SMA) in the EDGAR
workload scenario.
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Fig. 3.7. Component diagram of the Service Level Agreement-Adaptive Autoscaling
Solution (made by the author)

pauses, and a mix of various traffic patterns. These workload patterns, represent-
ing diverse application loads with different volatility levels, allowed for evaluating
autoscaling solutions’ performance and provided insights into these solutions’ be-
havior under varying workload conditions.

To evaluate the behavior of the solutions discussed in this study under varying
load conditions, a CPU-intensive application was developed using the Java pro-
gramming language. For each incoming request, it calculates the factorial of 8000,
generating significant CPU usage. When receiving an HTTP request, a random
delay is introduced to the response time to mimic interactions with external sys-
tems, such as databases. This approach creates operational conditions close to a
real-world environment where communication processes involve integrating with
external systems.

The application was deployed as a Docker container with 1 GiB of memory
allocated to it, along with specified limits of 1 CPU. Additionally, readiness probes
were configured to ensure that data was not sent to replicas that were not in a “Not
ready” state. The average time required for the application to prepare to serve a
load after startup was 20 seconds.
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A load test was conducted to create the application’s performance profile.
JMeter generated a load that increased linearly. A one-and-a-half-second response
time set was the SLO target (SLItgt). Response time remained below the target
value when CPU utilization reached 65% at a rate of 23 rps. The benchmarking re-
sults indicated that the application’s performance declined exponentially once the
load was higher than 23 rps and requests either exceeded 1.5 seconds in process-
ing time or failed to be processed. The duration of requests was reported using a
histogram with the following four buckets: 1 s, 1.5 s, 2 s, and > 2 s.

3.2.2. Experimental Setup for the Autoscalers Performance
Evaluation under Real-World Workload Conditions

This sub-chapter presents the setup used to evaluate systems performance as closely
as possible to the real-world workload conditions, referred to in this work as a
real-world workload scenario. The sub-chapter presents only differences from the
environment described in sub-chapter 3.2.1.

A larger AKS cluster, version 1.25, was deployed to evaluate autoscaling so-
lution performance in real-world workload scenarios. The deployment comprised
six virtual machines, including one master node and five worker nodes. All ma-
chines used Ubuntu 22.04 operating system. The worker nodes were configured as
“Standard D8s v5” instances, providing eight vCPUs and 32 GiB of RAM.

The system was set up to handle a maximum of 55 pod replicas on a four-
node, 8-CPU cluster. One CPU per worker node was reserved for running the
control plane components. Additionally, a separate worker node was designated
for monitoring tools and autoscaling solutions like Prometheus, CPA, and other re-
lated components. This allocation guaranteed that the monitoring and autoscaling
mechanisms had dedicated resources to carry out their tasks effectively without
affecting the resources available for the application replicas.

JMeter, which is a closed system load generator, was replaced with Gatling.
Gatling was set up to function as an open model workload generation tool to ensure
the load follows real-world trace patterns. In an open system model, new requests
can arrive independently of completions, and the system has no negative feedback.
In contrast, in a closed model system, such as JMeter, a new request is only initiated
once the previous request has been completed (Schroeder, Wierman, & Harchol-
Balter, 2006).

The two real-world workload scenarios were evaluated, presenting two types
of workload patterns:

• mixed load pattern is based on 1998 World Cup website access logs (re-
ferred to as WorldCup’98 in this work) (Arlitt & Jin, 2000);

• shaky load pattern is based on the access logs of the Electronic Data Gath-
ering, Analysis, and Retrieval (EDGAR) system’s website.
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The WorldCup’98 dataset used in this work contains all the requests made
to the 1998 World Cup Website between 30 April 1998 and 26 July 1998 and is
commonly referenced in research articles (Bogachev, Kuzmenko, Markelov, Pyko,
& Pyko, 2023; Dang-Quang et al., 2021; Imdoukh, Ahmad, & Alfailakawi, 2020;
Taherizadeh & Stankovski, 2019; Ye et al., 2017). The load generated by the World-
Cup 98 watchers on the 78th day from 19:00 to 22:00 was selected for the experi-
ment. This pattern contains sudden high-load spikes followed by a stable load with
minimal variation.

The EDGAR dataset consists of logs from the Electronic Data Gathering,
Analysis, and Retrieval system. It is a public database that allows users to re-
search, for example, a public company’s financial information and operations by
reviewing the filings made by the company with the U.S. Securities and Exchange
Commission. The dataset used in this study includes all search requests for filings
stored in EDGAR and made through the SEC.gov site on June 30, 2023, between
2:00 AM and 5:00 AM. The load can be described as a lightly shaking load with
consistent small fluctuations of 10 to 15% in magnitude and occasional large fluc-
tuations of 100 to 200% in magnitude.

Another CPU-intensive application was developed in the Rust programming
language to assess the solutions evaluated in this work (Pozdniakova, 2024). When
the application receives a request, it calculates the hash function of an arbitrary
number, resulting in a high CPU workload. This imitates document encryption
services. The arbitrary number is selected to ensure that the system simulates a
real-world environment where requests to the API might require different process-
ing times and resources. An arbitrary delay is added to the response time for the
same reasons as in the Java Application case.

The application was deployed as a Docker container. The Rust programming
language allowed for more efficient CPU thread usage, which resulted in more
containers being deployed on clusters of similar size. The container was assigned
the limits of 250 ms and 512 MiB of memory. The average time required for the
application to prepare to serve a load after startup was one second, which is twenty
times faster than the Java application.

An application performance profile was generated during a load test using
Gatling, following the same approach as in the Java Application case. The appli-
cation resource congestion point was found to be around 85% of CPU utilization.
The target of 400 millisecond response time was set as SLI. It was observed that
the target SLO was on track value until CPU utilization reached approximately
92% at a rate of 24 rps on average. The duration of requests was measured and re-
ported using a histogram with the eight buckets: 100 ms, 150 ms, 200 ms, 400 ms,
500 ms, 1 s, 2 s, and > 2 s.

Table 3.1 presents a summary of the differences between Java and Rust appli-
cations and their settings used throughout experiments.
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Table 3.1. Experimental applications characteristics

Application Java Rust

Target SLI (SLItgt),ms 1500 400
Target SLO (SLOtgt),% 98 97
Startup Time (tdelay), s 55 1
CPU saturation point, % 65 85
Maximum rps
( max
SLOn≥SLOtgt

RPS), rps
23 24

Reported histogram buckets
values, ms

1000, 1500, 2000, and
> 2000

100, 150, 200, 400, 500,
1000, 2000, and > 2000

Container resource limits CPU: 1000 ms, Memory:
1000 MiB

CPU: 256 ms, Memory:
512 MiB

Before concluding this sub-chapter, it is important to note that a lower SLO
target of 97% was set to create a buffer, allowing for better assessment of overpro-
visioning’s impact on service quality. A 100% target would not reveal whether the
system operated at the SLO threshold or provided significantly higher quality than
was expected.

The following sub-chapter presents the rules-based state-of-the-art autoscaling
solution used for performance comparison of the proposed algorithm.

3.2.3. Autoscaler Solutions Used for the Comparative Analysis

A comparative assessment against two existing rule-based autoscaling solutions
was conducted to evaluate the effectiveness of the proposed solution in achieving
SLO recovery and maintenance: Dynamic Multi-level Autoscaling Rules for Con-
tainerized Applications (DMAR) and the Horizontal Pod Autoscaler (HPA), which
were discussed in the first chapter.

Even though several differences exist between DMAR and SAA, the evalua-
tion included DMAR because it utilizes scaling methods and indicators similar to
those in the SAA approach. DMAR was also compared to seven state-of-the-art
rules-based autoscaling approaches and demonstrated the best results in efficiency
and its ability to maintain quality of service (QoS). As a result, it is considered rel-
evant for comparison in this research. There are key differences between DMAR
and SAA. DMAR uses average response time to adjust CPU thresholds, whereas
SAA relies on the SLO value for this adjustment. Additionally, DMAR does not
consider load patterns and fluctuations, while SAA does.

Other researchers, including DMAR authors, commonly use HPA as a solution
in their comparative analyses (Ding & Huang, 2021; Hu & Wang, 2021; Ju et al.,
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2021; Mirhosseini et al., 2021; Toka et al., 2021; Verreydt et al., 2019). This work
includes HPA as a baseline for assessing SAA’s performance in relation to DMAR
and other solutions. The comparison intends to emphasize the advantages and
enhancements offered by the SAA method concerning SLO management, with
primary consideration given to SLA fulfillment.

The motivation for choosing two solutions was driven by the intention to test
as many prospective solutions as possible. The next sub-chapter provides configu-
ration details of each of the evaluated solutions.

The following text presents the settings used for each of the solutions in dif-
ferent workload evaluation scenarios, along with the rationale for specific settings
selections.

Configuration Parameters of Evaluated Autoscaler Solutions Used in
Synthetic Workload Scenario

This part outlines the configuration parameters employed for the evaluated solu-
tions during the synthetic workload experiment.

Table 3.2 presents the parameters configured for each of the evaluated au-
toscaling solutions.

All solutions were configured with the same minimum and maximum number
of replicas and the same default CPU value. The maximum number of replicas
was limited by cluster size. The target application’s benchmark results were used to
identify the default CPU threshold. The benchmark showed that the system met the
target SLO as long as the average CPU usage of each pod remained below 65%. As
a result, a 60% CPU threshold was set for all the autoscaling solutions tested. This
configuration provided a 5% buffer, allowing room for the autoscaling solution to
react and provision additional resources before breaching the SLO target.

The DMAR solution used a response time threshold of 500 ms as the autoscal-
ing threshold. The threshold is used to trigger autoscaling actions before resource
congestion occurs. This threshold is two times lower than the response time de-
fined as the target SLO. Since the target application is CPU-bound, no memory
utilization-based autoscaling threshold was implemented, as it is irrelevant for au-
toscaling decisions. The remaining settings were kept at the default values rec-
ommended by the authors of the DMAR approach in their work (Taherizadeh &
Stankovski, 2019).

The HPA stabilization windows were set to ten for upscaling and 20 for down-
scaling, which enables faster provisioning of replicas and slower deprovisioning.
These settings were chosen based on insights provided by (Nguyen et al., 2020;
Taherizadeh & Grobelnik, 2020) to minimize the risk of SLO violations.

The SAA employed a 10-second adjustment step for the calculation of the dy-
namic cool-down period, which resulted in a length ranging from 10 to 30 seconds.
These values were minimized, as the synchronization of replica numbers between
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Table 3.2. Settings of the evaluated autoscaling solutions

Autoscaler SLA Adaptive Autoscaler DMAR HPA

Parameter Values

Service Level Objective
(SLOtgt), ms

98%

Service Level Indicator Tar-
get (SLItgt), ms

1000

Max replica number (Rmax) 22

Min replica number (Rmin) 1

Default CPU threshold, % 60

Autoscaling decision adap-
tation period (Tn), s

10 10 60a

Response time (Scaling In-
dicator), ms

– 500 –

Conservative Constant – 5 –

Cool-down/stabilization pe-
riod, s

– 30 Upscale:10,
Downscale: 20

Tolerable throughput
(Lmax), rps

23 – –

CPU adjustment period
(Tc), s

600 – –

Velocities vector (Vk(Ak))
size (K)

60 – –

Velocity factor (α) to veloc-
ity level mapping

Stable: |α| ≤ 1,
Moderate: 1 < |α| ≤ 2,
High: |α| > 2

– –

Scaling directionb Upscale Downscale –

TD
cooldown0

, ∆TD
cooldown, s 40, 10 0, 10 – –

tDtotalDelay (tDdelay
+max(TD

cooldown) +Tm), s

75
(20 + 50 + 5)

55
(0 + 50 + 5)

– –

CPU adjustment step below
SLO (−∆CD), %

5 3 – –

CPU adjustment step above
SLO (+∆CD), %

3 2 – –

aBy default, the highest autoscaling action frequency of the HPA on Azure Kubernetes Service
is one autoscaling action once per 60 seconds. The minimal stabilization window length is set to
allow a faster reaction to changes.

bD ∈ [up, down] denotes the autoscaling action directions, specifically upscale or downscale.
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End of the Table 3.2

Autoscaler SLA Adaptive Autoscaler DMAR HPA

Parameter Values

CPU Thresholds
ranges [min,max]
([CCTD

min , CCTD

max ]a), %

Upper:
[70,85],
Mid:
[65,80],
Lower:
[60,75]

Upper:
[30,40],
Mid:
[25,35],
Lower:
[20,30]

– –

Downscale step when load is
volatile ∆RV

– 0.1 – –

SLO threshold without im-
pact factor (SLOBP )

95% – – –

No down scale ac-
tion SLO threshold
(SLOnoDownScale)

– 1.0025 – –

aCTD represents the identifier of the selected CPU threshold, where CT ∈
[upper,mid, lower].

Prometheus and Kubernetes created a delay of at least 20 seconds for any autoscal-
ing action. As a result, the total stabilization period was set to 30–50 seconds.

The value of tDtotalDelay was calculated based on monitoring and benchmark
parameters presented in sub-chapter 3.2.1. The CPU adjustment interval Tc used
by the DCTA module was set to ten minutes. This relatively short interval was
chosen in the experimental environment. The selected CPU adjustment interval
of ten minutes in the experimental environment was intentionally chosen to facili-
tate frequent threshold changes and to observe their effects on the stability of the
autoscaler.

In real-world applications, the CPU adjustment interval can often be much
longer, typically ranging from six to 12 hours or more, especially when the SLA
compliance is measured over a longer time frame, such as a month. A more ex-
tended observation period is more effective in identifying trends in SLO decreases
rather than just temporary drops in performance. The lower CPU threshold of 60%
was specifically chosen to be used only during periods of significant load increase.
In most other scenarios, higher CPU thresholds triggered upscaling actions. This
approach ensured that the system performed upscaling actions when CPU utiliza-
tion reached or exceeded 70%, thereby maintaining SLA compliance.

The decrease step was established as 10% of the replicas to enable effective
downscaling in a volatile load environment. When the system is scaled to a rela-
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tively small number of replicas (fewer than ten), the solution will reduce the num-
ber of replicas by at most one. This strategy minimizes the risk of violating SLOs
while ensuring sufficient resource allocation.

Configuration Parameters of Evaluated Autoscaler Solutions in the
Real-World Workloads Scenario

This part highlights the parameter changes made to the evaluated autoscaling so-
lutions during real-world workload scenario assessment. Evaluating solutions in
these scenarios facilitates a more comprehensive evaluation of their performance
across diverse environments and with various target applications.

The default CPU threshold of 75% was intentionally selected for use across all
solutions because it is below the congestion point of 85%. This allows for a 10%
buffer for making autoscaling decisions. However, below the 92% CPU threshold
at which SLO was below the target.

The DMAR solution used a response time threshold of 130 ms for autoscaling.
The threshold triggers autoscaling when resource congestion occurs, but the SLO
target is not violated yet (giving a 270 ms buffer for autoscaling decision-making).

The SAA utilized a lower CPU threshold of 75% only when the load increase
was high. In other situations, it used higher CPU values to trigger upscaling ac-
tions. As a result, most of the time, SAA operated at an upper threshold, ap-
proaching levels where resource congestion could occur. Upscaling actions hap-
pened when the CPU utilization was at or above 85%. Despite these challenging
conditions, SAA successfully maintained compliance with the SLA. The value of
(tDtotalDelay) was adjusted based on the benchmarking results of the Rust applica-
tion presented in the sub-chapter 3.2.2. The remaining settings were unchanged as
presented in Table 3.3 (normal text).

The next sub-chapter presents and discusses the results of evaluating the au-
toscaling solutions discussed here under various synthetic and near real-world
workload conditions.

3.2.4. Results of Experimental Evaluation

The quantitative evaluation results of the HPA, DMAR, and SAA solutions are pro-
vided in this sub-chapter. The evaluation approach, outlined in sub-chapter 2.1.3,
was used to assess the performance of the solutions. Further details, including the
implementation of DMAR, the HPA configuration manifest, JMeter and Gatling
test plans, and the collected experimental data, are available on the GitHub repos-
itory (Pozdniakova, 2023).

The experimental results were divided into three datasets representing the QoS
recovery and the QoS support phases (Table 3.4) and whole experiment results
(Table 3.5).
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Table 3.3. Evaluated autoscaling solutions settings used in the real-world workload pat-
tern evaluation scenario

Autoscaler SLA Adaptive Autoscaler DMAR HPA

Parameter Values

Service Level Objective
(SLOtgt), ms

97%

Service Level Indicator Tar-
get (SLItgt), ms

400

Max replica number (Rmax) 55

Min replica number (Rmin) 1

Default CPU threshold
(CTUp, CTDown), %

75

Autoscaling decision adap-
tation period (Tn), s

10 10 60a

Response time (Scaling In-
dicator), ms

– 130 –

Conservative Constant – 5 –

Cool-down/stabilization pe-
riod, s

– 30 Upscale:10,
Downscale: 20

Tolerable throughput
(Lmax), rps

24 – –

CPU adjustment period (Tc),
s

600 – –

Velocities vector’s (Vk(Ak))
size (K)

60 – –

Velocity factor (α) to veloc-
ity level mapping

Stable: |α| ≤ 1,
Moderate: 1 < |α| ≤ 2,
High: |α| > 2

– –

Scaling directionb Upscale Downscale –

TD
cooldown0

, ∆TD
cooldown, s 40, 10 0, 10 – –

tDtotalDelay (tDdelay
+max(TD

cooldown) +Tm), s

56

(1 + 50 + 5)
55

(0 + 50 + 5)
– –

CPU adjustment step below
SLO (−∆CD), %

5 3 – –

aBy default, the highest autoscaling action frequency of the HPA on Azure Kubernetes Service
is one autoscaling action once per 60 seconds. The minimal stabilization window length is set to
allow a faster reaction to changes.

bD ∈ [up, down] denotes the autoscaling action directions, specifically upscale or downscale.
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End of the Table 3.3

Autoscaler SLA Adaptive Autoscaler DMAR HPA

Parameter Values

Scaling direction Upscale Downscale –

CPU adjustment step above SLO
(+∆CD), %

3 2 – –

CPU Thresholds ranges
[min,max] ([CCTD

min , CCTD

max ]a), %
Upper:

[55,95],

Mid:

[45,75],

Lower:

[35,55]

Upper:

[30,49],

Mid:

[20,40],

Lower:

[15,30]

– –

Downscale step when load is
volatile (∆RV )

– 0.1 – –

SLO threshold without impact
factor (SLOBP )

95% – – –

No down scale action SLO
threshold (SLOnoDownScale)

– 1.0025 – –

aCTD represents the identifier of the selected CPU threshold, where CT ∈
[upper,mid, lower].

During the QoS recovery phase (n ∈ [0; 199]), the effectiveness of the solu-
tions was assessed at times when there was a high decrease in the SLO value. This
phase represents a system failure scenario and evaluates how quickly the solutions
can recover from such high-impact disruptions. The findings from this phase offer
insights into how quickly the solutions can restore the desired level of service.

During the QoS support phase (n ∈ [200;N ]) the performance of the solu-
tions was evaluated during periods, where there was no significant decline in QoS
(less than 5% per minute). This phase represents typical operational scenarios
without any unusual incidents. The duration of each experiment in this phase was
limited to the length of the shortest experiment within the dataset, consisting of
N intervals of six seconds each. Assessing the solutions during this phase pro-
vides insights into their ability to maintain the desired service level under normal
operating conditions.

The autoscaling solutions were primarily evaluated in each experiment based
on their ability to meet or exceed the desired SLO throughout the evaluation period.
This capability was assessed by determining the percentage of time the system
adhered to SLO target (ttgtSLO). This parameter evaluates the performance of the
solutions during the QoS support phase. It is expected that the SLO value should
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Table 3.6. HPA, DMAR, and SAA performance evaluation in real-world workload sce-
narios

Load type WorldCup’98 EDGAR

Parameter HPA DMAR SAA HPA DMAR SAA

Evaluation during QoS support time (i=200,j=1500)

Time ttgtSLO , % 68.2 83.4 100.0 0.0 0.0 93.5
∑j

n=i
Rn

∑j

n=i
R

tgt
ηn

1.25 1.17 1.58 0.84 0.94 2.15
∑j

n=i Rn 15859 14691 19538 1512 12378 22023
∑j

n=i R
tgt
ηn

12698 12560 12339 1799 13222 10227
∑j

n=i R
+
n + |R−

n | 3201 2163 7199 957 1350 11796
∑j

n=i R
−
n –20 –16 0 –622 –1097 0

∑j

n=i R
+
n 3181 2147 7199 335 253 11796

Evaluation during QoS recovery time (i=0,j=199)
∑j

n=i
Rn

∑j

n=i
R

tgt
ηn

0.94 1.04 1.46 1.04 1.01 1.76
∑j

n=i Rn 694 715 1026 334 1587 2418
∑j

n=i R
tgt
ηn

741 689 703 320 1568 1370
∑j

n=i R
+
n + |R−

n | 59 30 333 116 215 1064
∑j

n=i R
−
n –53 –2 –5 –51 –98 –8

∑j

n=i R
+
n 6 28 328 65 117 1056

Evaluation during whole time of the experiment (i=0,j=1500)
∑j

n=i
Rn

∑j

n=i
R

tgt
ηn

1.23 1.16 1.58 0.87 0.94 2.11
∑j

n=i Rn 16560 15413 20574 1847 13977 24460
∑j

n=i R
tgt
ηn

13446 13256 13049 2120 14802 11606
∑j

n=i R
+
n + |R−

n | 3260 2193 7535 1073 1565 12870
∑j

n=i R
−
n –73 –18 –5 –673 –1195 –8

∑j

n=i R
+
n 3187 2175 7530 400 370 12862
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generally remain below the SLO target during the recovery phase. The evaluation
results are presented in Table 3.5.

Secondary assessment criteria included the total number of provisioned con-
tainers (

∑j
n=iR

+
n ), the total number of overprovisioned (

∑j
n=iR

+
n ) and under-

provisioned (
∑j

n=iR
+
n ) containers compared to the “touchstone” autoscaler’s pro-

visioned containers (
∑j

n=iR
tgt
ηn ), and the ratio of provisioned containers to the

“touchstone” autoscaler’s provisioned containers (
∑j

n=iRn/
∑j

n=iR
tgt
ηn ).

The outcomes of experiments performed with a synthetic workload are de-
scribed and illustrated in the remainder of this sub-chapter. The figures are pre-
sented in pairs to demonstrate the correlation between CPU utilization and QoS,
as CPU utilization has the most significant impact on SLO (Agarwal, 2020). In
the figures representing QoS, a dashed line indicates the target SLO value. Fig-
ures displaying average CPU utilization present the threshold value (dashed line) at
and above which resource congestion occurs, as well as changes in the upper CPU
threshold for upscale action value defined in SAA throughout the experiment. Fol-
lowing the CPU and SLO figures, there are figures showing the number of replicas
and the number of processed transactions. These figures are presented together to
illustrate the relationship between replica provisioning and the number of requests.
The “slowly changing load” pattern experiment is presented first.

Slowly Changing Load

The load generated during “the slowly changing load” pattern experiment is de-
picted in Figure 3.8d. This pattern follows a specific sequence: it begins with zero
sessions and increases by 20 sessions every 210 seconds, reaching a peak load of
150 rps. This peak load is maintained for 210 seconds. After the peak phase, the
number of sessions decreases at the same rate as it increases. Following the de-
crease, there is a period of no load for 180 seconds. The entire cycle lasts 2260
seconds and repeats until the end of the experiment.

This load pattern is particularly effective for assessing the capabilities of HPA.
The load either increases or decreases linearly, with a rate of approximately Lmax

every 230 seconds. It is important to note that the default configuration of HPA
on AKS allows for one autoscaling action to be performed every 60 seconds. This
interval provides sufficient time for HPA to respond to the increasing load and
make the necessary scaling decisions.

According to the data presented in Table 3.4 (“Slow” column) and Figure 3.8a,
all the evaluated solutions performed at or above the defined SLO level. In the case
of the SAA-operated system, it consistently delivered services at a level higher than
the SLO. This resulted in the upscaling CPU threshold gradually increasing from
its initial value of 75% of average CPU utilization to 78% after approximately ten
minutes of operation, as shown in Figure 3.8b.
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Fig. 3.8. Evaluation of SAA, DMAR, and HPA solutions in the slowly changing load
scenario. (a) Achieved SLO value. (b) Average CPU utilization. (c) Number of pods

provisioned at each period. (d) Processed workload requests per second
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Over the next 40 minutes, the threshold value gradually rose to a maximum
of 85%. This resulted in the highest and longest period of increased CPU utiliza-
tion, which occurred approximately between 6200 and 6500 seconds (as shown
in Fig. 3.8b). Consequently, the SLO value dropped to its lowest point during
the entire evaluation period. This increase in the CPU threshold also resulted in
a longer delay in provisioning pods, as indicated in Figure 3.8c. Consequently,
some of the requests were not processed within the desired timeframe, as depicted
in Figure 3.8d. Evidently, SAA is capable of adjusting its CPU thresholds to align
with the existing resource demand.

Figure 3.8c illustrates that no significant difference exists in the number of
provisioned replicas among the evaluated solutions. The number of replicas closely
aligns with the theoretically provisioned number of replicas by the “touchstone
autoscaler”. Both the SAA and HPA solutions show a similar number of under-
provisioned replicas. However, during the QoS recovery phase, both the DMAR
and HPA solutions faced under-provisioning, which resulted in a decline in the
SLO value, dropping it below the desired level. Despite these variations, all the
evaluated solutions processed a comparable number of requests.

In summary, the results indicate that all evaluated solutions are capable of
delivering services in compliance with the SLO with only minor deviations. Fur-
thermore, these solutions demonstrate efficient resource utilization with minimal
overprovisioning, typically below 10%. It is worth noting that the solutions could
potentially achieve even better results if the more extended autoscaling periods
were set. In summary, the results show that the assessed solutions successfully
meet SLO requirements and efficiently utilize resources when the load changes
slowly.

Moderately Changing Load

The load pattern in the “moderately changing load” experiment, as depicted in
Figure 3.9d, follows a specific pattern. The load gradually increases the number of
sessions by 20 every 50 seconds, starting from zero and reaching a peak of 150 rps
for a duration of ten seconds. After reaching this peak, the number of sessions
will decrease at the same rate as it increased. This cycle repeats throughout the
experiment, with each cycle lasting a total of 510 seconds.

Figure 3.9a demonstrates that the SAA solution performs close to require-
ments, achieving the desired SLO with minor fluctuations slightly below the tar-
get. The SAA solution maintained compliance with the SLO for 82.4% of the
experiment duration. It may be beneficial to adjust the SLOnoDownScale thresh-
old to a slightly higher value, such as 1.005. This adjustment would allow further
mitigation of the risk of SLO violations without changing the initial dynamic CPU
threshold values. Figure 3.9b illustrates that both the HPA and DMAR solutions
could not meet the target SLO using the 60% CPU utilization threshold.
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Fig. 3.9. Evaluation of SAA, DMAR, and HPA solutions in the moderately changing load
scenario. (a) Achieved SLO value. (b) Average CPU utilization. (c) Number of pods

provisioned at each period. (d) Processed workload requests per second



102 3. EXPERIMENTAL INVESTIGATION AND EVALUATION OF SERVICE…

The benchmark results and the comparison with the “touchstone” autoscaler
experiment indicate that the 60% CPU threshold could be considered adequate for
delivering services within the defined SLO.

In the case of SAA, it operated with the upper upscale CPU threshold set to
75% for approximately 75% of the experiment time. After that, it dynamically ad-
justed the CPU threshold value to the minimum allowed value of 70% to achieve
the desired SLO. These results suggest that SAA is able to adapt its replica provi-
sioning logic and accomplish the SLO maintenance goal, even when the dynamic
CPU threshold limits are initially set too high.

Figure 3.9c and the “Moderate” column of Table 3.5 demonstrate that SAA
tends to overprovision resources in advance due to the velocity impact factor. This
proactive provisioning strategy proves beneficial as it minimizes the risk of pro-
visioning delays and, in turn, yields better results in terms of QoS support and
restoration, as demonstrated by Figure 3.9a. Additionally, as depicted in Fig-
ure 3.9d, this strategy helps mitigate the risk of request processing delays caused
by resource shortages. It also reduces the likelihood of unprocessed requests (Toka
et al., 2021).

Even though DMAR consistently provisioned a maximum number of contain-
ers close to Rη, CPU utilization was kept below the resource congestion threshold
most of the time. However, the delayed autoscaling reaction resulted in a drop in
the QoS level and the number of processed transactions.

On the other hand, HPA demonstrated the slowest adaptation to fluctuations in
load, frequently resulting in under-provisioning and a failure to manage the peak
load of 150 rps. This delay was linked to the technical constraints of Kubernetes
operating on Azure, where the fixed autoscaling action interval of 60 seconds is
not adjustable (Microsoft, 2024b).

Fast-Changing Load

The load pattern shown in Figure 3.10d represents a “fast-changing load” scenario.
It involves a rapid increase in the number of sessions from 0 to 100 at a rate of
20 sessions every ten seconds, followed by a peak load of 150 rps for ten seconds.
Subsequently, the number of sessions decreases at the same rate as it increases.
This cycle repeats until the end of the experiment, with each cycle lasting a total
of 110 seconds.

Figure 3.10a illustrates that both DMAR and SAA successfully provide service
at the target SLO level. In contrast, the system managed by HPA exhibited average
CPU utilization consistently above the 60% threshold (Fig. 3.10b), resulting in the
lowest QoS performance among the evaluated solutions. The results presented in
Figure 3.10b suggest that the initially set upper threshold for CPU upscaling caused
issues for SAA in achieving the target SLO. As a result, SAA adjusted the threshold
to the minimum defined level of 70% during the first round of CPU adjustments.
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Fig. 3.10. Evaluation of SAA, DMAR, and HPA solutions in the moderately changing
load scenario. (a) Achieved SLO value. (b) Average CPU utilization. (c) Number of pods

provisioned at each period. (d) Processed workload requests per second
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This flexible approach allowed SAA to improve its performance in fulfilling the
SLO criteria.

DMAR shows improved performance regarding SLO support but requires more
resources (Fig. 3.10c). Table 3.5 suggests that DMAR overprovisions by more than
twice the number of replicas compared to the “touchstone” autoscaler. Addition-
ally, it requires three times the number of replicas to recover from a decrease in
QoS. This overprovisioning can be linked to the calculation performed by DMAR,
which uses the ratio between application throughput per container in the current
interval and the application throughput in two previous monitoring periods to cal-
culate the number of the required replicas. In scenarios with rapidly changing
loads, the significant variations in throughput between monitoring samples can
cause spikes in replica provisioning.

Figure 3.10d shows that DMAR and SAA processed a similar number of trans-
actions, whereas HPA managed to handle only about one-third of that load. Al-
though both SAA and DMAR met their SLO, they incurred higher resource over-
provisioning compared to the baseline. However, SAA demonstrated better re-
source provisioning during the QoS support periods, utilizing 1.5 times less re-
sources. This can be attributed to the mechanism limiting overprovisioning of
replicas in SAA. SAA limits a maximal number of replicas by αhigh and does not
exceed αhigh ∗ R

D
n . On the other hand, DMAR is only limited by the maximum

replica number setting, as indicated in Table 3.2. The data in Table 3.4 clearly
demonstrates the trend of HPA towards under-provisioning resources, leading to
less reliable support for QoS compared to SAA and DMAR.

Load with Peaks and Pauses

In this load pattern, the number of sessions gradually increases from 0 to peak val-
ues ranging from 20 to 210 rps. Most peaks reach approximately 150 rps. Variable-
length pauses, lasting between tens and 70 seconds, are introduced between these
peaks. The total duration of one cycle in this load pattern is 679 seconds, and this
pattern is repeated throughout the entire experiment, as shown in Figure 3.11d.

The results suggest that the load pattern characterized by variable-length pauses
and peak values of 150 rps presented a great challenge in achieving the defined
SLO. Both SAA and DMAR utilized a similar number of replicas, and only the
SAA solution supported the SLO for about half of the experiment duration. How-
ever, it should be noted that DMAR exhibited a tendency to overprovision replicas
when faced with fast load changes and frequent metrics evaluation (periods of less
than 30 seconds), as indicated by Figure 3.11c, and Tables 3.4 and 3.5.

The results reveal an interesting observation: despite DMAR operating below
the SLO level, it processed nearly the same number of requests as SAA (Fig. 3.11a
and (d)). Figure 3.11b shows that the average CPU load for both DMAR and SAA
was either at or slightly above the resource congestion threshold. As a result, the
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Fig. 3.11. Evaluation of SAA, DMAR, and HPA solutions in the load with peaks and
pauses scenario. (a) Achieved SLO value. (b) Average CPU utilization. (c) Number of

pods provisioned at each period. (d) Processed workload requests per second



106 3. EXPERIMENTAL INVESTIGATION AND EVALUATION OF SERVICE…

number of processed requests for both systems was similar, with the exception of
a brief period of roughly 1200 seconds. During this time, DMAR experienced the
most significant drop in QoS and the number of requests processed. In contrast,
SAA lowered its upper CPU threshold to address the situation.

As illustrated in Figure 3.11b, the HPA-operated system reached 100% CPU
utilization multiple times and, as a result, exhibited the worst QoS results among
the evaluated solutions. HPA continued to demonstrate a tendency for a low level
of request processing and resource under-provisioning. As preseneted in Fig-
ure 3.11c, HPA served only one-third of the requests compared to SAA and DMAR.
This highlights the limitations of HPA in delivering the desired service level and
efficiently utilizing resources.

Mixed Pattern Load

The mixed load was created by randomly combining all the load patterns described
in the previous sub-chapters, including the very slowly changing load. This combi-
nation aimed to produce a less predictable load pattern presented in Figure 3.12d.

As seen in Figure 3.12a and Tables 3.4 and 3.5 (column “Mixed”), both DMAR
and SAA operated at levels close to the SLO, with SAA demonstrating slightly bet-
ter results. However, SAA experienced longer periods of no downscaling due to
SLO fluctuations during volatile load conditions (Fig. 3.12c). On the other hand,
HPA-provisioned replicas reached 100% CPU utilization due to their slow reaction
time (Fig. 3.12b). Interestingly, both DMAR and SAA-provisioned replicas con-
sistently operated below the CPU resource congestion point of 65% (Fig. 3.12b).

It is worth noting the “spiky” pattern in pods provisioning for DMAR, demon-
strated in Figure 3.12c, indicates its sensitivity to sudden load changes, even at a
lower request rate of approximately 45 requests per second. In contrast, HPA on
AKS consistently under-provision pods and provided a lower level of QoS.

1998 World Cup Website Access Logs-Based Load

In this experiment, the number of requests per second varied between approxi-
mately 80 and 335. Synthetic workload experiments demonstrated that HPA strug-
gled to manage sudden increases in load, often becoming stuck in a failure loop.
To address this, the experiment began with a gradual increase in the number of
requests per second, rising from 0 to 140 requests per second over 700 seconds.
After that, a workload based on website access logs from the WorldCup’98 event
was generated. This approach allowed HPA to respond effectively and provision
one replica per minute during each autoscaling iteration. The total duration of the
experiment was 9000 seconds. Figure 3.13d displays the resulting load pattern.

The results presented in Table 3.6 and Figure 3.13 show that although all so-
lutions achieved close to the desired system performance, only SAA could consis-
tently maintain the desired service level throughout the entire experiment, albeit
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Fig. 3.12. Evaluation of SAA, DMAR, and HPA solutions in the load with peaks and
pauses scenario. (a) Achieved SLO value. (b) Average CPU utilization. (c) Number of

pods provisioned at each period. (d) Processed workload requests per second
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Fig. 3.13. Evaluation of SAA, DMAR, and HPA solutions in the WorldCup’98 web
traces-based load scenario. (a) Achieved SLO value. (b) Average CPU utilization. (c)

Number of pods provisioned at each period. (d) Processed workload requests per second.
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with the highest overprovisioning cost. While DMAR demonstrated superior pre-
cision in resource provisioning during the QoS recovery period, it could not restore
the SLO value to the desired level and maintain the desired quality of service for
the entire experiment, as it could not recover SLO from the delayed autoscaling
actions.

As shown in Figure 3.13b, the SAA consistently operated with a 75% CPU
threshold throughout the entire experimental period, except for a brief period when
the SLO value dropped. During that time, the SAA adjusted its threshold to a lower
value to recover more quickly and meet the SLO. Both DMAR and HPA operated
as close as possible to the desired threshold value and, as a result, showed higher
resource efficiency compared to SAA. SAA tended to operate at a level lower than
the threshold at which SLO started to degrade.

As can be seen from the results, all solutions showed similar efficiency re-
sults compared to moderate load scenarios; however, they had a lower tendency
to underprovision. One reason for this could be that the Rust application used in
this experiment was provisioned faster than the Java application. Based on these
results, it can be assumed that the consistent behavior of algorithms is independent
of the application or environment.

EDGAR Website Access Logs-Based Load

In this pattern, the number of requests per second ranged from approximately 140
to 265. At the start of the experiment, the number of requests per second increases
gradually from 0 to 200 rps in 200 seconds, followed by the EDGAR website
access logs-based workload. This required HPA to provision at least two pods
per minute. The total length of this experiment was 9000 seconds. Figure 3.14d
displays the resulting load pattern.

The results shown in Table 3.6 and Figure 3.14 indicate that only SAA could
provide the desired performance. However, this was achieved for only 93% of
the QoS support time and at the cost of twice the resources compared to the ac-
tual demand, as measured in the form of “touchstone” provisioned replicas. Both
DMAR and HPA DMAR constantly underprovisioned the resources, which re-
sulted in the desired QoS not being delivered. Nevertheless, DMAR demonstrated
superior precision in resource provisioning during the QoS recovery period, which
was insufficient to restore SLO.

As presented in Figure 3.13b, The SAA initially operated with a 75% CPU
threshold, but after the SLO decreased, it adjusted its threshold to 60%. This new
threshold allowed it to achieve the desired quality of service for most of the ex-
periment. It is worth noting that the SAA tended to operate at a level nearly half
of the threshold at which the SLO began to degrade, resulting in almost double
the amount of resource overprovisioning. DMAR and HPA consistently exceeded
the 75% CPU utilization threshold despite DMAR’s use of a threshold adjustment
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Fig. 3.14. Evaluation of SAA, DMAR, and HPA solutions in the EDGAR web
traces-based load scenario. (a) Achieved SLO value. (b) Average CPU utilization. (c)

Number of pods provisioned at each period. (d) Processed workload requests per second
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mechanism. DMAR’s reliance on average response time left it vulnerable to fre-
quent load fluctuations. HPA, which made autoscaling decisions based solely on
low-level metrics, became stuck in a provisioning loop of 1–4 replicas (Fig. 3.13c)
due to the specific implementation of the HPA algorithm. This meant that the
number of replicas provided in the next iteration depended entirely on the set CPU
threshold value. The 75% threshold only allowed for a maximum increase of 25%
in replicas (100÷ 75), which was often insufficient when there were a small num-
ber of pods and the load experienced high fluctuations.

Interestingly, DMAR showed high under-provisioning in the resources, even
though the scaling indicator was set to a lower level than the service level indicator.
This behavior was not demonstrated in any of the synthetic workloads. On the other
hand, the SAA algorithm did not demonstrate under-provisioning, except during
the recovery phase. This behavior was not demonstrated with any of the synthetic
workloads either.

The results show that the SAA can adapt to different real-world workloads,
helping to restore the system to fulfill the SLA requirements and maintain the QoS
at the desired level. A more detailed conclusion and discussion of the experiments
will be presented in the next sub-chapter.

The experiments indicate that the HPA struggles to consistently meet SLAs
due to varying workload patterns, even with the same threshold value. Dynamic
adjustments of thresholds, in response to changes in workload or the environment,
are essential for improving SLA fulfillment in rules-based autoscaling solutions,
such as HPA. Sub-chapter 2.2 introduced an algorithm designed to facilitate these
adjustments, helping similar algorithms achieve their SLA targets. The next sub-
chapter will present the results from the experimental evaluation of this algorithm.

3.2.5. Discussion

The sub-chapter aims to discuss and summarize the findings and results of experi-
ments presented in this sub-chapter.

1. The comparative analysis was used to evaluate the Service Level Agreement-
Adaptive (SAA) autoscaling solution, comparing it to two rules-based so-
lutions: the Kubernetes Horizontal Pod Autoscaler (HPA) and Dynamic
Multi-level Autoscaling Rules for Containerized Applications (DMAR).
The SAA solution was additionally evaluated in terms of recovering the
performance-based SLO. The key findings discovered during the SAA in-
vestigation are provided below:

1.1. The SAA demonstrated its ability to maintain system operations at QoS
levels that are close to the desired targets, even when CPU threshold
values are set at the point of resource saturation – where CPU utiliza-
tion is high enough that response times start to exceed the target.
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1.2. The inclusion of service-level objective (SLO) tracking supported the
SAA algorithm in achieving its goals for restoring and maintaining
SLOs. The application scaled by the SAA offers QoS support for
longer periods than the HPA and DMAR solutions while utilizing a
similar or twice greater amount of resources.

1.3. The solution has demonstrated its effectiveness in SLO restoration,
particularly with load patterns characterized by a high density of re-
quests per second, such as the moderately changing and fast-changing
load patterns presented in this document. This can be attributed to the
fact that the SAA can recover from a decrease in QoS more quickly
when there is a greater capacity to process a higher volume of requests
within shorter time intervals.

1.4. The results from both SAA and DMAR highlighted the effectiveness
of utilizing both low-level and high-level metrics to ensure more pre-
dictable QoS, in contrast to HPA, which relies solely on low-level met-
rics for autoscaling decisions.

1.5. Implementing the SLOnoDownScale threshold helped effectively post-
pone downscale actions, resulting in the successful restoration of QoS
to its original level.

1.6. Dynamic adjustment of the cool-down period supported SAA in timely
decision-making, leading to lower underprovisioning levels.

1.7. The inclusion of velocity impact factors in SAA contributes to effec-
tive resource provisioning during sudden load increases, providing re-
sources in advance once a sudden load increase is detected. This dy-
namic nature of SAA enables it to operate closely to the defined SLO
without requiring additional manual or ML-based adjustments in re-
sponse to changes in traffic patterns. However, at the same time, this
leads to increased overprovisioning of resources.

1.8. The results presented in this work are based on the SLA using the
response time metric as SLI. However, the experiments could be ex-
tended to include experimentation with other performance-based SLA
metrics. Moving forward, future work should focus on automating the
adjustment of parameters such as cool-down, CPU threshold ranges,
and baseline velocity. By automating these aspects, the solution’s ini-
tialization process can be streamlined, reducing manual effort. Further-
more, there is a considerable opportunity for improvement in optimiz-
ing resource provisioning. Additionally, SAA requires a large num-
ber of parameters to be estimated empirically or theoretically, mak-
ing it harder to adopt in real life. Automating the parameters, such
as the length of the cool-down period and the threshold range val-
ues detection, could be a further area for research and improvement.
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Cross-platform applicability could be another area of research to vali-
date whether the proposed algorithms can be applied to platforms be-
yond Kubernetes or Azure Cloud. These future directions can enhance
the scalability and applicability of the proposed SAA solution in real-
world scenarios.

1.9. Experiments with HPA revealed the importance of proper threshold
determination for HPA to be able to deliver a sufficient amount of re-
sources as per demand and, as a result, ensure the desired quality of
service.

3.3. Experimental Evaluation of the Proposed
Service Level Agreement-Adaptive Dynamic
Threshold-Adjustment Algorithm

This sub-chapter introduces the experiments conducted to assess the efficacy of the
proposed dynamic threshold-adjustment algorithm discussed in sub-chapter 2.2. It
also describes the experimental environment and metrics used to assess the effi-
cacy of the proposed threshold-determination approach.

The efficacy and efficiency of the proposed algorithm were evaluated through
two sets of experiments using the SLA-adaptive threshold adjuster (SATA) proto-
type developed explicitly for this purpose (Pozdniakova et al., 2024).

The first set of experiments was conducted to assess the influence of various
settings on algorithm performance. The assessments include evaluations of the
impact of threshold evaluation period length, the frequency of threshold updates,
the implementation of different types of moving-average-smoothing techniques,
and the usage of average response time instead of the Nth percentile for threshold
determination on the efficacy and efficiency of the solution.

The second set of experiments assesses how the algorithm performs under
changing real-world workload conditions. The aim was to evaluate the effective-
ness of the suggested approach in adjusting the HPA target utilization threshold
value dynamically. Through the dynamic adjustment of the threshold value, the
system would operate as close as possible to the defined SLO. The experiments
used the WorldCup’98 and EDGAR datasets and Java and Rust applications de-
scribed in the previous sub-chapter.

All experiments were executed using AKS cluster, load-generating, and mon-
itoring tools settings described in sub-chapter 3.2.2. The size of the AKS cluster
varied across experiments depending on the workload and applications used; as
a result, details about the AKS cluster size are provided in relevant sub-chapters.
SLOdropTupdate

parameter was set to 0.5%.
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The autoscaling solution’s performance evaluation was conducted while con-
sidering the methodological principles for reproducible performance evaluation in
cloud computing proposed by Papadopoulos et al. (2021). The experiments and
evaluation results are described in detail in the following sub-chapters.

3.3.1. Evaluation of the Impact of Different Settings on the
Algorithm Performance

The selected settings can have a significant impact on the performance and effec-
tiveness of the solution. This sub-chapter will focus on evaluating the influence
of settings before assessing the solution’s performance under different workload
conditions.

All experiments described in this sub-chapter utilized the following settings:
• Application: calculation of the factorial of a number between 8000 and

12,000.
• Pod replicas: Min: 1, Max: 35.
• Amount of Worker Nodes: 5
• Smoothing technique: SMA.

The proposed algorithm can employ various smoothing techniques and SLIs,
while also allowing for the adjustment of threshold evaluation period lengths to
estimate thresholds. The evaluation of the impact of these settings is presented in
the following text of this sub-chapter.

Impact of Threshold Adjustment and Evaluation Periods
Length

Four experiments were conducted to evaluate the influence of threshold adjustment
frequency (length of threshold adjustment period Tadjust) and the impact of the du-
ration of the period used to collect metrics for the threshold value estimation Teval

on autoscaling efficiency and the ability to dynamically determine the threshold
that allows operating as close as possible to the SLO-defined performance target
(CTRslo). The workload was generated using traces collected from the World-
Cup’98 site on the 78th day from 19:37 to 21:37.

For clarity, in the tables and figures presented in remaining sub-chapters, each
experiment will be referred to as n×m, where n and m are multipliers of the scale
periods used in Tadjust = n× Tscale and Teval = m× Tscale. For example, 4× 10
means that the threshold is adjusted every 4th scale period, and data collected from
the last 10 scale periods provide information for the target threshold estimation.
The evaluation periods, Teval, of lengths 10 and 20, were used in the evaluation.
This covers cases when the Tadjust length is close to Teval (8 × 10 case), when
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Tadjust is 2.5- or 5-times longer than Teval (4 × 10, 8 × 20 and 4 × 20 cases,
accordingly).

Table 3.7 shows the values of Tadjust and Teval used in each experiment. These
values are presented as multiples of the upscale period (Tscale). The value of
Tadjust was set to 4, as it is the minimum number of periods required for the sys-
tem to detect the impact of the latest threshold adjustment action. The setting of
Tadjust to 8 should be sufficient to observe the effect of a longer update period
without requiring a drastic extension of the experiment’s length.

The results of these experiments are presented in Figure 3.15 and Table 3.7.
The data presented in Figure 3.15 and Table 3.7 suggests that the SATA solu-

tion is the most accurate in meeting the defined SLOs (the system performs clos-
est to the desired SLO value) when Tadjust is equal to 4 (red and dark red lines).
Longer Teval periods tended to suggest a lower threshold. However, the system was
able to make more granular suggestions as more events were collected (dark red
and dark blue lines). Extending Teval also increased the overprovisioning period,
as the algorithm adapted to the lowest threshold that satisfied the target SLO over
the period, leading to persistent overprovisioning. On the other hand, longer update
periods proved advantageous when the load was fluctuating, as a lower threshold
ensured that the autoscaling operations were more stable and did not repeat the
fluctuation pattern. As a result, this minimized the risk of violations. Experiment
8 × 10 showed the worst performance and was the least adaptive to the detected
workload changes (light blue line). However, SATA solution configured with this
setting was still able to support the SLO.

Table 3.7. Impact of threshold adjustment periods on algorithm effectiveness evaluation
results1

Settings 4× 10 4× 20 8× 10 8× 20

SLO supported Fully Fully Fully Fully
sMAPE 2, % 1.6 1.8 1.9 1.8
Total pods used (Ptotal) 12992 12783 14502 13107
Difference from the best
result for total pods in %

1.6 0 13.4 2.5

1 Description of the evaluation criteria (sMAPE, Total Pods, and SLO supported) is provided in
sub-chapter 2.2.4.
2 Symmetric Mean Absolute Percentage Error (sMAPE).

Results from the experiments suggest that the threshold evaluation period
(Teval) should be a minimum of two to three times the threshold adjustment time
(Tadjust). The algorithm performed well with Msuff set to 150, but when Msuff

was increased to 300, the approach demonstrated improved efficiency and preci-
sion in threshold determination.
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Fig. 3.15. Evaluation of the impact of threshold adjustment and evaluation period length
on the effectiveness of the SLA-adaptive threshold adjustment (SATA) solution using
Simple Moving Average (SMA). (a) SLO value after collecting a sufficient number of

events (after the dotted line). (b) Average CPU utilization. (c) Applied target utilization
threshold in each period. (d) Number of pods provisioned in each period. (e) Generated

workload requests per second
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The experiment described in the following sub-chapter assesses the impact of
service level indicator selection on the algorithm efficacy and efficiency.

Impact of the Service Level Indicator

The prototype solution proposed in this work tracks the number of events where
the nth percentile of the response time values resulted in SLO violations during the
specified monitoring period. This approach helps identify potentially upcoming
violations and considers the violations that happened while the system operated at
a particular CPU utilization level. However, it is not clear what impact the adoption
of tail latency has on the efficiency and efficacy of the solution in comparison to
the response time metric, which is more commonly observed in the literature.

The goal of the experiment described in this sub-chapter is to evaluate the
impact of the SLI indicator used for SLO measurement on the algorithm’s ability
to adjust CPU thresholds to maintain the defined SLO as close as possible to the
SLO target. The average response time and tail latency were used as SLI in this
experiment. The acceptable threshold of 1500 ms was defined as SLO. The as-
sessment was conducted using the SATA with a threshold adjustment period equal
to four autoscaling periods, which showed better results compared to the previous
experiment that used a threshold adjustment period equal to eight autoscaling pe-
riods. The workload was generated using traces collected from the WorldCup’98
site on the 78th day from 19:00 to 21:00 and its inverse version. The results of this
assessment are presented in Table 3.8 and Figure 3.16.

Table 3.8. Evaluation of the impact of service level indicator (SLI) selection on the ef-
fectiveness of an algorithm that uses the Simple Moving Average (SMA) smoothing
technique1

Settings SMA 4× 10 SMA 4× 20

SLI 98 percentile Average re-
sponse time

98 percentile Average re-
sponse time

SLO supported Fully Partialy Fully Partialy
sMAPE 2 , % 1 1.3 2.5 0.9
Total pods used (Ptotal) 43460 34524 43809 39726
Difference from the best
result for total pods in %

0 –20 1 –9

1 Description of the evaluation criteria (sMAPE, Total Pods, and SLO supported) is provided in
sub-chapter 2.2.4.
2 Symmetric Mean Absolute Percentage Error (sMAPE).

Based on Figure 3.16 and Table 3.8, the algorithm equipped with average re-
sponse time as SLI had the best efficiency and precision. However, it was not able
to support the required level of service. Furthermore, regardless of the length of
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the threshold evaluation period, the provisioned service level tended to decline. In
this case, the algorithm’s efficiency was challenging to evaluate, as it failed to meet
its main goal of SLO assurance throughout the experiment period in all evaluation
cases. On the other hand, the experiment confirmed the use of tail latency as SLI
as a more effective option for ensuring that SLO is maintained at the desired level.

In this sub-chapter, the experiments were conducted to gain a deeper insight
into the behavior of the threshold adjustment algorithm in various scenarios. The
findings suggest that the algorithm performs more effectively when tail latency is
used as an SLI and that a shorter adjustment period yields more accurate results
in achieving the desired performance. The next sub-chapter presents experiments
designed to evaluate the performance of SATA under varying load conditions and
compare its performance with the state-of-the-art technology, the HPA. The ex-
periments also utilize different smoothing techniques, providing an overview of
selected smoothing techniques in algorithm performance.

3.3.2. Evaluation of Performance under Different Workload
Scenarios

In this sub-chapter, the experiments were executed to evaluate the algorithms’ per-
formance under varying load conditions and their ability to support the SLO for
the whole period while the experiment was conducted. Two real-world workload
scenarios were evaluated: WorldCup’98 and EDGAR.

The efficacy of the SATA approach was evaluated by comparing it to the HPA
to understand the improvements brought to the HPA by SATA. Before assessing the
impact of SATA on the HPA, it is important to configure the HPA with a threshold
that enables the system to meet the SLO, as this is the primary objective of SATA.
The target thresholds for the HPA were determined using the methodology outlined
in sub-chapter 2.2.2 and refined through experiments to ensure that the system can
closely achieve the desired SLO level.

For Java and Rust applications, the appropriate thresholds were identified us-
ing the EDGAR and WorldCup’98 workloads. For the Java application, the system
met the performance requirements when the HPA CPU utilization threshold was
set to 47% for the WorldCup’98 workload (Fig. 2.2) and 35% for EDGAR. As for
the Rust application, the system met the performance requirements when the HPA
threshold was set to 69% for the WorldCup’98 workload and 42% for the EDGAR
workload. The data required to identify these thresholds was collected through the
experiments, which employed the thresholds of 75% for the WorldCup’98 work-
load and 48% for EDGAR. Additional value adjustment and validation were per-
formed through several value fine-tuning experiments.

The settings for each experiment described in this sub-chapter varied because
different applications required different resources and infrastructure setups. De-
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Fig. 3.16. Evaluation of the impact of the service level indicator on the effectiveness of
the SLA-adaptive threshold adjustment solution using Simple Moving Average. (a) SLO

value after collecting a sufficient number of events (after the dotted line). (b) Average
CPU utilization. (c) Applied target utilization threshold in each period. (d) Number of

pods provisioned in each period. (e) Generated workload requests per second
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Table 3.9. Details of the experimental environment used to evaluate the performance of
algorithms using various workloads and applications

Experiment
reference

Workload HPA
threshold,
%

Maximum
number of
pod replicas

Amount
of Worker
Nodes

Java application

Java &World-
Cup’98

WorldCup’98 (78th day from
19:00 to 22:00 and its inverse ver-
sion)

47 34 5

Java
&EDGAR

EDGAR (30 July 2023, from
02:00 to 05:00)

35 27 4

Rust Application

Rust &World-
Cup’98

WorldCup’98 (78th day from
19:37 to 21:37)

69 55 2

Rust
&EDGAR

EDGAR (30 July 2023, from
02:00 to 05:00)

42 55 2

tails of the settings used for each combination of application and workload are
provided in Table 3.9. For improved readability, each combination will be referred
to as “application name & workload name” in this work.

It is important to note that due to the limitations of the load generation tool,
the traffic log data sets were divided into three parts during the load generation
activities. As a result, load generation sessions were executed sequentially with
small time gaps of 15 to 20 seconds, during which no load was generated. This
can be observed in the load patterns presented in the remaining figures of this
work, where sudden dips or spikes appear in the CPU and requests per second
performance metrics.

The next sub-chapters will provide a detailed evaluation of the algorithm’s
performance using various workloads and applications and the results achieved.

Java&WorldCup’98 Experiment Description and Results

In this experiment, the algorithm was evaluated for its ability to adjust the threshold
value in the World Cup 98 scenario, which represents a mixed pattern load. As the
WorldCup’98 load in the selected time window tended to increase constantly, its
inverse version was appended to see how algorithms perform when the load tends
to decrease continually. The newly generated workload pattern is presented in
Figure 3.17e.

The experiment results presented in Figure 3.17 and Table 3.10 show that all of
the evaluated approaches were compliant with the SLO throughout the experiment.
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Fig. 3.17. Evaluation of the SLA-adaptive threshold adjustment (SATA) solution using
two different smoothing techniques – Simple Moving Average (SMA) and Centered
Moving Average (CMA)—with two different settings: Tadjust = 4 and Teval = 10
autoscaling periods (4 × 10) and Tadjust = 4 and Teval = 20 autoscaling periods

(4 × 20) for the WorldCup’98 workload scenario when Java application is deployed.
(a) Achieved SLO value after collecting a sufficient number of events. (b) Average CPU

utilization. (c) The number of pods provisioned in each period. (d) The applied target
utilization threshold in each period. (e) Generated workload requests per second
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Table 3.10. Results of evaluation of the SLA-adaptive threshold adjustment (SATA) so-
lution using two different smoothing techniques – Simple Moving Average (SMA) and
Centered Moving Average (CMA) – and Horizontal Pod Autoscaler (HPA) in the Java
application and WorldCup’98 workload scenario1

Settings CMA 4 × 10 CMA 4 × 20 SMA 4 × 10 SMA 4 × 20 HPA 47%

SLO sup-
ported

Fully Fully Fully Fully Fully

sMAPE 2, % 1.3 1.4 0.9 1.8 1.4
Total pods
used (Ptotal)

43769 44652 43745 46161 42178

Difference
from the best
result for total
pods in %

4 6 4 9 0

1 Description of the evaluation criteria (sMAPE, Total Pods, and SLO supported) is provided in
sub-chapter 2.2.4.
2 Symmetric Mean Absolute Percentage Error (sMAPE).

Based on Figures 3.17a, b, a noticeable decrease occurs in the SLO value when
the CPU threshold surpasses the target utilization threshold of 47% (dark blue
dashed line in Figure 3.17b).

As seen in Figure 3.17c, in the event of sudden load increases, the algorithms
decrease the threshold, and vice versa. At the same time, the algorithms tend to
approach the target utilization value, aiming to increase efficiency by adjusting the
provisioned resource number to actual resource demand. When the load decreases,
SMA sets higher thresholds than the CMA, improving efficiency in downscale
scenarios. However, higher threshold selection caused by SMA might become
less effective in upscale scenarios, as it increases SLO violation risk, especially
when load is volatile. This can be observed in the last half of the experiment
(Fig. 3.17d) for downscale scenarios and in the first half of the experiment for
upscale scenarios.

Based on Table 3.10, SATA required slightly more resources in all scenarios
than the HPA. The sMAPE values suggest that SATA was more precise in the
4 × 10 scenarios, with sMAPE of 0.9% for SMA and 1.3% for CMA. However, in
the 4 × 20 scenarios, SATA was less precise, with an sMAPE of 1.4% for CMA
and 1.8% for SMA. Furthermore, the precision results were lower in comparison
to HPA, which exhibited an sMAPE similar to CMA’s (1.4%) When using the
CMA as the smoothing method, the duration of the threshold evaluation period
did not significantly impact the efficiency and accuracy of SATA. However, the
adoption of a more extended period with the SMA positively impacted the preci-
sion of SATA under this workload scenario, consequently leading to stable service
quality delivery.
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The experiment with the SMA in a 4 × 10 scenario demonstrated the highest
accuracy across SATA algorithms while supporting the defined SLO. The CMA
slightly overprovisioned resources compared to the HPA in a 4 4 × 10 scenario
scenario. However, the SMA in a 4 × 10 scenario was more accurate in meeting
the desired SLO. This is because SATA with SMA smoothing has greater accuracy
in detecting threshold values, but it becomes more susceptible to unexpected load
growth when a shorter threshold evaluation period is applied. This can be seen
in Figure 3.17a at around the 600th and 1200th metrics’ collection periods (light
green line).

The HPA using a static threshold was the most efficient, demonstrating preci-
sion and accuracy comparable to SATA with the CMAin a 4 × 10 scenario. It is
important to note that achieving such precision in practice is challenging without
prior knowledge of the workload. The resource overprovisioning of 4% produced
by SATA could be considered as negligible as it is within the HPA tolerance range
of 10% (kubernetes.io, 2022) and is expected from SLA-fulfillment-oriented solu-
tions (Kim, Kim, Lee, & Yu, 2025; Taherizadeh & Stankovski, 2019; Tonini et al.,
2023). For example, Pramesti and Kistijantoro (2022) conducted experiments
demonstrating that autoscalers that use a performance-based SLI, such as response
time, to ensure compliance with the SLA, require more resources than the HPA,
which uses CPU-utilization-based thresholds.

Interestingly, the HPA enabled by the SATA solution accomplished the SLO
support objective solely by adjusting the threshold values. As demonstrated by the
experiment, the SATA solution is responsive to load fluctuations and automatically
detects the threshold values to achieve the expected SLO. When downscaling oc-
curs, the SATA increases the threshold value, facilitating quicker downscaling and
resulting in cost savings. Conversely, when there is an increase in load, it lowers
the threshold, enabling faster resource provisioning and reducing the likelihood of
SLO violations.

The following text describes the experiments with a slightly shaky workload
scenario.

Java&EDGAR Experiment Description and Results

In this experiment, the EDGAR workload was used to assess algorithms’ ability to
adjust thresholds under the real-world shaky load pattern. The load is presented
in Figure 3.18e. The load contains a number of periods where the load changes
unexpectedly with high magnitude, that is, the number of requests that change
more than twice in a short period of time, e.g., see the number of events at around
600th the 900th monitoring periods. The load is highly volatile but has much lower
fluctuations in magnitude for the rest of the experiment.

The experiment results are presented in Figure 3.18 and Table 3.11. As seen
in Figure 3.18a, all of the evaluated approaches were compliant with the SLO
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throughout the experiment, except for the SATA CMA 4 × 10 use case. At the be-
gining of the experiment, the SATA CMA 4 × 10 set higher than required thresh-
old. However, the threshold was adjusted in the next two upscale periods, and
hence, the operation was restored to the desired level.

As seen in Figure 3.18a and b, any increase in CPU utilization above 35%
caused a decrease in the SLO value. As presented in Figure 3.18c, SATA sets lower
threshold values in all cases. This suggests that the solution is sensitive to frequent
load fluctuations. However, longer threshold evaluation periods resulted in better
stability and adjustment of the threshold to a value close to 35%. All scenarios,
except for CMA 4× 10, showed similar accuracy, with SMA 4× 20 demonstrating
slightly better accuracy in identifying the target utilization threshold. Thus, HPA
with SMA 4 × 20 operated closer to the desired utilization threshold of 35%, and
was more efficient than other SATA setups, as seen in Figure 3.18d and Table 3.11.

The experiment demonstrated that in the HPA without the SMA scenario, the
SLO values began to decrease towards the end of the experiment, as depicted in
Figure 3.18a. This suggests that the current baseline threshold may not be ade-
quate for future workload changes and could fail to restore the SLO. In contrast,
the SATA approaches have demonstrated effectiveness in maintaining compliance
with the SLO, as shown by the results.

As presented in Table 3.11, the HPA showed the best resource-management
efficiency and accuracy across algorithms that met the SLO during all evaluation
periods. The CMA 4 × 10 was the most accurate but was not able to support the
SLO in all periods, even though it was the second most overprovisioning solution
in this experiment. As presented in sub-chapter 2.2.2, while CMA’s tendency to
underestimate the target utilization threshold improves efficiency in volatile load
scenarios, it causes a decrease in efficiency when the load is stable, as evidenced by
the data presented in Table 3.11. The results indicate that SMA 4× 20 achieved the
highest levels of accuracy and efficiency across all SATA settings, with only 10%
overprovisioning compared to the HPA using a static threshold setup. As discussed
in sub-chapter 3.3.2, some overprovisioning is expected, and a 10% overprovision-
ing rate can be regarded as a decent result when the algorithm aims to ensure SLA
fulfillment.

The assessment of the algorithm’s performance reproducibility in a different
environment is presented below.

Rust&WorldCup’98 Experiment Description and Results

To validate that the above-mentioned results are not biased to specific applications
and environments, another set of experiments was executed, but using different
application and infrastructure setups. The infrastructure and application were pre-
sented in sub-chapters 3.2.2 and 3.3.1.
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Fig. 3.18. Evaluation of the SATA solution using SMA and CMA with two different
settings: 4 × 10 and 4 × 20 for the EDGAR workload scenario when Java application is

deployed. (a) Achieved SLO value after collecting a sufficient number of events.
(b) Average CPU utilization. (c) Number of pods provisioned in each period. (d) Applied

target utilization threshold in each period. (e) Generated workload requests per second
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Table 3.12 presents the combined results that are used as the basis for conclud-
ing the performance evaluation of the algorithm under WorldCup’98 and EDGAR
loads conditions while SMA 4 × 10 settings are applied. According to the re-
sults, the algorithm showed similar levels of overprovisioning and slightly lower
precision compared to experiments with Java applications.

The evaluation of the algorithm in the WorldCup’98 workload scenario using
Rust application experiment results is presented in Figure 3.19 and Table 3.12.
The results show that all of the evaluated approaches were compliant with SLO
throughout the experiment.

The load pattern and amount of the requests processed per second are pre-
sented in Figure 3.19e.

The SLO value presented in Figure 3.19 decreases at the times when the HPA
target utilization threshold of 69% (represented by the bold dark blue line in Fig-
ure 3.19b) is violated.

Graph c of Figure 3.19 shows that the algorithm exhibited the self-adjustment
behavior required to meet the SLO targets. The algorithm lowered the threshold
settings when the SLO dropped and then consistently increased them while the
SLO was above the target. As depicted in Figure 3.19d, this adjustment led to more
efficient resource usage than HPA when the SLO was above the target or during pe-
riods without high-load spikes. However, during periods of high load increase, the
algorithm lowered the thresholds to enable faster provisioning of resources, which
resulted in overprovisioning compared to HPA. Notably, this adjustment was based
solely on the suggested thresholds from the method described in Sub-chapter 2.2.3,

Table 3.11. Results of evaluation of the SLA-adaptive threshold adjustment (SATA) so-
lution using two different smoothing techniques – Simple Moving Average (SMA) and
Centered Moving Average (CMA) – and Horizontal Pod Autoscaler (HPA) in the Java
application and EDGAR workload scenario1

Settings CMA 4 × 10 CMA 4 × 20 SMA 4 × 10 SMA 4 × 20 HPA 35%

SLO sup-
ported

Partially Fully Fully Fully Fully

sMAPE 2, % 0.7 1.6 1.6 1.5 0.9

Total pods
used (Ptotal)

25899 24606 26523 22517 20501

Difference
from the best
result for total
pods in %

27 20 29 10 0

1 Description of the evaluation criteria (sMAPE, Total Pods, and SLO supported) is provided in
sub-chapter 2.2.4.
2 Symmetric Mean Absolute Percentage Error (sMAPE).
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Fig. 3.19. Evaluation of SATA using Simple Moving Average (SMA) smoothing
technique with Tadjust = 4 and Teval = 10 autoscaling periods (4 × 10) setting for the
WorldCup’98 workload scenario when Rust application is deployed. (a) Achieved SLO

value after collecting a sufficient number of events. (b) Average CPU utilization.
(c) Number of pods provisioned in each period. (d) Applied target utilization threshold in

each period. (e) Generated workload requests per second
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Table 3.12. Results of evaluation of the SLA-adaptive threshold adjustment (SATA) solu-
tion using Simple Moving Average smoothing technique and Horizontal Pod Autoscaler
(HPA) in the Rust application and WorldCup’98 and EDGAR workload scenarios1

Workload WorldCup’98 EDGAR

Solution HPA 69% SATA 4 × 10 HPA 42% SATA 4 × 10

SLO supported Fully Fully Fully Fully

sMAPE 2 , % 2.7 2.5 1.3 2.8

Total pods used (Ptotal) 45199 46046 23379 29015

Difference from the
best result for Total
Pods in %

0 1.8 0 25

1

Description of the evaluation criteria (sMAPE, Total Pods, and SLO supported) is provided in Sub-
chapter 2.2.4.
2 Symmetric Mean Absolute Percentage Error (sMAPE).

without the use of explicit rules for SLO recovery. This behavior was consistently
observed across different experimental environments. This experiment provided a
better understanding of the suggested algorithm’s behavior, showing how thresh-
old adaptation to high load spikes contributed to overprovisioning while improving
application performance.

The subsequent experiment, involving the Rust application within a slightly
fluctuating workload scenario, is presented below.

Rust&EDGAR Experiment Description and Results

The goal of this experiment was to evaluate the algorithms’ capacity to adjust
thresholds in response to a real-world shaky load pattern utilizing the Rust ap-
plication. The results are presented in Figure 3.20 and Table 3.12.

As presented in Figure 3.18a, both solutions were able to meet their SLO.
However, SMA continued to exhibit sensitivity to volatile loads and, as expected,
showed higher overprovisioning, similar to the experiment with the Java applica-
tion. Recovery from the initial threshold value drop (Fig. 3.20c) took considerable
time. This drop prevented HPA from entering a low pod number provisioning loop,
as described in Sub-chapter 2.2.2 Step 3.

The following sub-chapter aims to discuss the achieved results.

3.3.3. Discussion

SATA was compared with HPA to assess SLA awareness and performance im-
provements brought to HPA once SATA was incorporated into HPA. Additionally,
the impact of various settings applied to the SATA on both efficiency and effec-
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Fig. 3.20. Evaluation of SATA using Simple Moving Average (SMA) smoothing
technique with Tadjust = 4 and Teval = 10 autoscaling periods (4 × 10) setting for the
EDGAR workload scenario when Rust application is deployed. (a) Achieved SLO value

after collecting a sufficient number of events. (b) Average CPU utilization. (c) Number of
pods provisioned in each period. (d) The applied target utilization threshold in each

period. (e) Generated workload requests per second
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tiveness was analyzed. The key findings discovered during the investigation are
provided below:

1. The experiments conducted with the different workloads demonstrated that
the solution could identify thresholds that allow the system to operate close
to the defined SLO, however, with slight overprovisioning.

2. The experiments demonstrated that the solution efficiency and effective-
ness depend on multiple factors: type of moving average utilized, length of
threshold evaluation and frequency of threshold adjustment, load pattern
and service level indicator used to measure violation numbers. Specifi-
cally, the algorithm is more sensitive to volatile load when shorter thresh-
old evaluation periods are used. It also demonstrates better efficiency in
cases of non-volatile load. The type of moving average can also be se-
lected to control efficiency based on the load pattern, whether it is highly
volatile or not. The use of the average response time metric as SLI, showed
lower efficiency and effectiveness results compared to the use of the 98th
percentile. Centred moving average with a threshold adjustment period of
length of 3 to 2.5 evaluation periods showed better or similar effectiveness
and efficiency results compared to other settings evaluated.

3. The amount of resource overprovisioning compared with HPA configured
with the most optimal static threshold can vary from negligible to deviat-
ing from 10% to 30% in volatile load scenarios. It is important to note that
the desired HPA threshold value is never known upfront due to constantly
varying conditions, so, in practice, it is challenging to achieve such pre-
cision threshold settings. As a result, such a level of overprovisioning is
expected and can be considered as an acceptable efficiency result.

4. The tracking of the SLO state supported the prototype in more suitable
threshold selection, which enabled it to achieve a system operation state as
close as possible to the desired SLO target in case of the SLO decrease,
showing similar to the previously presented SAA algorithm, but with less
setting and parameters to adjust.

5. The algorithm consistently displayed similar behavior across different ap-
plications, even under similar workload conditions. This suggests that the
algorithm’s behavior is reproducible in diverse environments.

6. The experiments revealed that, although the same application and pods
were used with identical resource settings, different target utilization val-
ues must be applied based on the load pattern to ensure compliance with
the SLO. This observation leads to the conclusion that methods relying on
load testing a single pod instance to determine the maximum CPU utiliza-
tion that allows the application’s performance to meet SLO requirements
may not be adequate for establishing the target utilization threshold for the
HPA.
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7. While the intention was to develop a solution, which is as simple as possi-
ble for CPU threshold determination, it still requires further development
and improvements as it is yet in the early stages. For instance, the thresh-
old determination algorithm relies on data points that align closely with
the desired SLO. The SATA prototype facilitates the collection of these
data points. Future efforts should focus on further maturing the thresh-
old determination and adjustment algorithms by enhancing existing rules
and experimenting with other statistical techniques. Also, additional de-
velopment is needed to automatically determine the threshold length and
improve algorithm efficiency based on recommendations provided in this
work. These enhancements should improve the algorithm’s stability and
efficiency, especially in volatile workload cases. Future research and im-
provements could also include further prototype stability and efficiency
improvement, an adaptation of the approach to other threshold-based au-
toscaling solutions, and the use of different service level indicators and
utilization metrics. It would be beneficial to experiment with various sta-
tistical methods in a broader range of cloud-native scenarios. The improve-
ments and recommendations mentioned above will support the real-world
implementation of the solution, especially in tasks suitable for paralleliza-
tion, such as image processing, format conversion, transcoding, edge com-
puting, and serverless services like functions as a service.

3.4. Conclusions of the Third Chapter

The chapter details an experimental investigation of two proposed SLA-aware,
rules-based autoscaling solutions: the SLA-Adaptive Autoscaler (SAA) and the
SLA-Adaptive Threshold Adjuster (SATA). The experiments presented in this chap-
ter were executed on the Azure Kubernetes Service platform using different CPU-
intensive applications and workloads. These experiments assess the efficacy of
achieving SLA fulfillment objectives and resource provisioning efficiency. In con-
clusion, the conducted experiments indicated that:

1. Both of the proposed solutions were demonstrated to be effective in ensur-
ing performance-based SLA compliance.

2. The inclusion of service-level objective tracking supported both of the so-
lutions in achieving their goals of SLA compliance assurance.

3. Dynamic threshold manipulation has proven effective for ensuring perfor-
mance-based SLA fulfillment in applications where the threshold metric
is the most influential SLA parameter.

Known limitations and threats to the validity of the conducted research are
provided below:
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1. The average response time metric was utilized as a service level indica-
tor. Using different service level indicators to measure SLO might reveal
variances in the efficacy of the assessed algorithms.

2. The experiment was conducted using Azure Kubernetes Service, which
is a cloud environment. Measured benchmark and efficiency results can
be different when using another cloud provider or service, as can the
size of resources or event time for experiment execution due to the non-
homogeneity of the cloud environment.

3. It is important to note that the efficiency results may vary depending on
the execution environment, load patterns, or type of applications.



General Conclusions

The present study contributes to a better understanding of the SLA-aware autoscal-
ing algorithms and approaches used to address the performance-based SLA fulfill-
ment aspect for cloud-native containerized applications. The performed research
can be concluded as follows:

1. The literature review revealed that the cloud-native paradigm is a topic of
significant investigation within academia and industry. Interest in SLA
fulfillment in cloud-native applications autoscaling has been rising in the
last few years. The research showed that many autoscaling strategies for
cloud-native applications have been developed, ranging from straightfor-
ward rule-based policies to sophisticated machine-learning models. Ma-
chine learning-based algorithms commonly make decisions in a more time-
ly manner compared to rules-based solutions; however, rule-based au-
toscaling solutions are prevalent in the industry due to their simplicity, with
the Horizontal Pod Autoscaler emerging as the most widely adopted ap-
proach. Given the difficulties in achieving timely decision-making, mech-
anisms for recovering from SLA violations may be employed as a reme-
diation strategy in rules-based autoscalers. The literature review identifies
that no such recovery mechanisms have been proposed in the academic
literature. Additionally, the literature review revealed that most of the
analyzed solutions made decisions based solely on immediate changes in
service-level indicator values. These solutions did not implement longer
SLA status tracking timeframes in SLA fulfillment-oriented autoscalers,
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resulting in a lack of overall SLA compliance awareness. Furthermore, the
review revealed the lack of consistent evaluation methodologies that effec-
tively measure the efficiency and efficacy of autoscaling solutions in the
context of SLA fulfillment.

2. The proposed SAA solution implements the mechanism to recover the SLO
in situations where adding resources can significantly enhance service per-
formance. In cases of service-level degradation, the solution either adds
additional resources or pauses downscaling actions until the defined ser-
vice levels are achieved. During experiments, the SLO recovery capability
and performance efficiency were compared with DMAR and HPA solu-
tions. The ability to recover SLO as fast as possible and maintain SLO
as long as possible during the experiment was proposed as a method for
evaluating the efficacy of the solution in fulfilling SLA requirements. The
“touchstone” autoscaler was also suggested as a benchmark for assessing
overall resource provisioning efficiency. SAA demonstrated better results
than HPA and DMAR in its ability to recover and maintain defined SLA
targets in six out of seven conducted experiments. The resource over-
provisioning was observed to be 1.5 to 3.5 times higher than that of the
“touchstone autoscaler,” depending on the type of workload. This level
of overprovisioning was comparable to that of the DMAR, which solely
relied on tracking current SLI value violations for SLA awareness. The
achieved results support the first defended statement that recovering SLO
compliance by adding additional resources can be used to improve the
fulfillment of the defined SLO. This approach is particularly relevant for
embarrassingly parallel workloads, where adding resources can positively
impact SLO fulfillment. The need for manual parameter estimation com-
plicates the real-world adoption of SAA. To streamline solution adoption
and improve efficiency, future work should focus on automating the ad-
justment or determination of parameter values (such as cooldown periods,
CPU threshold ranges, and baseline velocity) using statistical techniques
or machine learning.

3. The proposed SATA solution is a dynamic threshold adjustment add-on
for threshold-based autoscalers, enabling them to meet performance-based
SLO requirements when the utilization threshold is the most influential
SLA factor. By using the number of SLA violations collected during a
defined timeframe and resource utilization as inputs for threshold deter-
mination, SATA calculates the number of violations that appeared at par-
ticular utilization levels to identify target thresholds. SATA was adopted
by HPA to assess the effectiveness of the proposed approach in improv-
ing SLA fulfillment. During experiments executed as part of this research,
the HPA, enabled by the SATA solution, demonstrated self-adaptation to
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environmental performance changes, achieving performance levels that
maintained the target SLO with a precision of 1–2.7%. It successfully
maintained the SLO in 15 out of 16 evaluated cases, even without prior
knowledge of the required target utilization threshold. Resource overpro-
visioning ranged from 10% to 30% compared to the resources utilized by
the HPA with a static target threshold set to the highest value that allowed
meeting the SLO. The overprovisioning level directly depended on work-
load volatility. The experiments suggest that the dynamic manipulation of
the utilization threshold can be used to improve the fulfillment of SLAs
in rules-based autoscaling solutions when the utilization threshold is the
most influential SLA factor. Future research should focus on improving
threshold algorithms for better stability and efficiency in volatile work-
loads through the improvement of existing rules and exploration of other
statistical techniques. Additionally, experimenting with the solution in
broader cloud-native scenarios and adopting other service-level indicators
should aid in the real-world adoption of the solution.

4. SAA and SATA solutions used the number of SLA violations collected
over a longer timeframe in autoscaling decision-making together with mo-
mentary resource utilization values used as scaling indicators. Both so-
lutions have demonstrated better SLA-fulfillment results compared to the
other evaluated solutions as presented earlier. The findings suggest that
monitoring SLO status over an extended period, alongside traditional SLA
violation avoidance methods in rules-based cloud-native application au-
toscalers, enhances compliance with performance-based SLOs.
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Shafi, N., Abdullah, M., Iqbal, W., Erradi, A., & Bukhari, F. (2024, 1). Cdascaler:
a cost-effective dynamic autoscaling approach for containerized microservices. Cluster

Computing, 1–21. https://link.springer.com/article/10.1007/s10586-023-04228-y

Sidekerskiene, T., & Damasevicius, R. (2016). Reconstruction of missing data in
synthetic time series using emd. In Proceedings of the international conference for

young researchers in informatics, mathematics and engineering (Vol. Vol-1712, pp. 7–17).
https://ceur-ws.org/Vol-1712/p02.pdf

Sodhi, B., & Prabhakar, T. V. (2011, 1). Application architecture considerations for cloud
platforms. In 2011 third international conference on communication systems and networks

(comsnets 2011) (pp. 1–4). IEEE. http://ieeexplore.ieee.org/document/5716417/

Splunk. (2024). Observability | new in splunk observability cloud ... - splunk com-

munity. https://community.splunk.com/t5/Product-News-Announcements/Observability
-New-In-Splunk-Observability-Cloud-Native-SLO/ba-p/676339

Stine, M. (2015). Migrating to cloud-native application architectures. O’Reilly Me-
dia, Inc. http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=
00004045-201405001-00009

Sun, Y., Meng, L., & Song, Y. (2019, 6). Autoscale: Adaptive qos-aware container-based
cloud applications scheduling framework. KSII Transactions on Internet and Information

Systems, 13, 2824–2837.

Taherizadeh, S., & Grobelnik, M. (2020, 2). Key influencing factors of the kubernetes
auto-scaler for computing-intensive microservice-native cloud-based applications. Ad-

vances in Engineering Software, 140.

Taherizadeh, S., Jones, A. C., Taylor, I., Zhao, Z., & Stankovski, V. (2018, 2). Monitoring
self-adaptive applications within edge computing frameworks: A state-of-the-art review.
Journal of Systems and Software, 136, 19–38. https://www.sciencedirect.com/science/
article/pii/S016412121730256X

http://dx.doi.org/10.14257/ijdta.2016.9.4.10
http://dx.doi.org/10.14257/ijdta.2016.9.4.10
/articles/journal_contribution/Open_Versus_Closed_A_Cautionary_Tale/6608078/1
/articles/journal_contribution/Open_Versus_Closed_A_Cautionary_Tale/6608078/1
https://www.scopus.com/
https://www.sec.gov/about/data/edgar-log-file-data-sets
https://www.sec.gov/about/data/edgar-log-file-data-sets
https://link.springer.com/article/10.1007/s10586-023-04228-y
https://ceur-ws.org/Vol-1712/p02.pdf
http://ieeexplore.ieee.org/document/5716417/
https://community.splunk.com/t5/Product-News-Announcements/Observability-New-In-Splunk-Observability-Cloud-Native-SLO/ba-p/676339
https://community.splunk.com/t5/Product-News-Announcements/Observability-New-In-Splunk-Observability-Cloud-Native-SLO/ba-p/676339
http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00004045-201405001-00009
http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00004045-201405001-00009
https://www.sciencedirect.com/science/article/pii/S016412121730256X
https://www.sciencedirect.com/science/article/pii/S016412121730256X


REFERENCES 147

Taherizadeh, S., & Stankovski, V. (2019, 2). Dynamic multi-level auto-scaling rules for
containerized applications. The Computer Journal, 62, 174–197. https://academic.oup
.com/comjnl/article/62/2/174/4993728

Toffetti, G., Brunner, S., Blöchlinger, M., Spillner, J., & Bohnert, T. M. (2016, 9).
Self-managing cloud-native applications: Design, implementation, and experience. Fu-

ture Generation Computer Systems. http://www.sciencedirect.com/science/article/pii/
S0167739X16302977http://linkinghub.elsevier.com/retrieve/pii/S0167739X16302977

Toka, L., Dobreff, G., Fodor, B., & Sonkoly, B. (2021, 3). Machine learning-based scaling
management for kubernetes edge clusters. IEEE Transactions on Network and Service

Management, 18, 958–972.

Tonini, F., Natalino, C., Temesgene, D. A., Ghebretensaé, Z., Wosinska, L., & Monti, P.
(2023). A service-aware autoscaling strategy for container orchestration platforms with
soft resource isolation. 2023 Joint European Conference on Networks and Communica-

tions and 6G Summit, EuCNC/6G Summit 2023, 454–459.

Vazquez, C., Krishnan, R., & John, E. (2015). Time series forecasting of cloud data
center workloads for dynamic resource provisioning. Journal of Wireless Mobile Networks,

Ubiquitous Computing, and Dependable Applications (JoWUA), 6, 36–53. http://isyou
.info/jowua/papers/jowua-v6n3-5.pdf

Verreydt, S., Beni, E. H., Truyen, E., Lagaisse, B., & Joosen, W. (2019, 12). Leveraging
kubernetes for adaptive and cost-efficient resource management. In P. Heidari (Ed.), (pp.
37–42). ACM Press. http://dl.acm.org/citation.cfm?doid=3366615.3368357

Villamizar, M., Garcés, O., Ochoa, L., Castro, H., Salamanca, L., Verano, M., … Lang, M.
(2017, 6). Cost comparison of running web applications in the cloud using monolithic, mi-
croservice, and aws lambda architectures. Service Oriented Computing and Applications,
11, 233–247. http://link.springer.com/10.1007/s11761-017-0208-y

VMware. (2016). Cloud-native applications: Vmware. https://www.vmware.com/
solutions/cloudnative.html

VMware. (2024). Use case 3: Use actionable slos to influence autoscal-

ing. https://docs.vmware.com/en/VMware-Tanzu-Service-Mesh/services/slos-with-tsm/
GUID-1B9A2D61-D264-44FB-8A06-40277AD42A8E.html

Weinman, J. (2016). Migrating to - or away from - the public cloud. IEEE Cloud Comput-

ing, 3, 6–10.

Wen, L., Xu, M., Gill, S. S., Hilman, M. H., Srirama, S. N., Ye, K., & Xu, C. (2023,
5). Statuscale: Status-aware and elastic scaling strategy for microservice applications.
ACM Transactions on Autonomous and Adaptive Systems. https://dl.acm.org/doi/10.1145/
3686253

Wilder, B. (2012). Cloud architeture patterns (First Edit ed.; R. Roumeliotis, Ed.).
O’Reilly Media, Inc.

Wu, Q., Yu, J., Lu, L., Qian, S., & Xue, G. (2019, 12). Dynamically adjusting scale of a
kubernetes cluster under qos guarantee. Proceedings of the International Conference on

Parallel and Distributed Systems - ICPADS, 2019-December, 193–200.

https://academic.oup.com/comjnl/article/62/2/174/4993728
https://academic.oup.com/comjnl/article/62/2/174/4993728
http://www.sciencedirect.com/science/article/pii/S0167739X16302977http://linkinghub.elsevier.com/retrieve/pii/S0167739X16302977
http://www.sciencedirect.com/science/article/pii/S0167739X16302977http://linkinghub.elsevier.com/retrieve/pii/S0167739X16302977
http://isyou.info/jowua/papers/jowua-v6n3-5.pdf
http://isyou.info/jowua/papers/jowua-v6n3-5.pdf
http://dl.acm.org/citation.cfm?doid=3366615.3368357
http://link.springer.com/10.1007/s11761-017-0208-y
https://www.vmware.com/solutions/cloudnative.html
https://www.vmware.com/solutions/cloudnative.html
https://docs.vmware.com/en/VMware-Tanzu-Service-Mesh/services/slos-with-tsm/GUID-1B9A2D61-D264-44FB-8A06-40277AD42A8E.html
https://docs.vmware.com/en/VMware-Tanzu-Service-Mesh/services/slos-with-tsm/GUID-1B9A2D61-D264-44FB-8A06-40277AD42A8E.html
https://dl.acm.org/doi/10.1145/3686253
https://dl.acm.org/doi/10.1145/3686253


148

Xu, Y., Qiao, K., Wang, C., & Zhu, L. (2022, 10). Lp-hpa:load predict-horizontal pod
autoscaler for container elastic scaling. ACM International Conference Proceeding Series,
591–595. https://dl.acm.org/doi/10.1145/3569966.3570115

Ye, T., Guangtao, X., Shiyou, Q., & Minglu, L. (2017, 11). An auto-scaling framework
for containerized elastic applications. Proceedings - 2017 3rd International Conference

on Big Data Computing and Communications, BigCom 2017, 422–430.

Zhang, F., Tang, X., Li, X., Khan, S. U., & Li, Z. (2019, 9). Quantifying cloud elasticity
with container-based autoscaling. Future Generation Computer Systems, 98, 672–681.
(Measurement)

Zimmermann, O. (2017, 2). Architectural refactoring for the cloud: a decision-centric view
on cloud migration. Computing, 99, 129–145. http://link.springer.com/10.1007/s00607
-016-0520-y (IDAL meantions)

https://dl.acm.org/doi/10.1145/3569966.3570115
http://link.springer.com/10.1007/s00607-016-0520-y
http://link.springer.com/10.1007/s00607-016-0520-y


List of Scientific Publications by the
Author on the Topic of the

Dissertation

Papers in the Reviewed Scientific Journals

Pozdniakova, O., Mažeika, D., & Cholomskis, A. (2024). SLA-Adaptive Threshold Ad-
justment for a Kubernetes Horizontal Pod Autoscaler. Electronics, 13(7), 1–28.
https://doi.org/10.3390/electronics13071242

Pozdniakova, O., Cholomskis, A., & Mažeika, D. (2023). Self-Adaptive Autoscaling Al-
gorithm for SLA-Sensitive Applications Running on the Kubernetes Clusters. Cluster
computing, 27(3), 2399–2426. https://doi.org/10.1007/s10586-023-04082-y

Pozdniakova, O., & Mažeika, D. (2017). Systematic Literature Review of the Cloud-
Ready Software Architecture, Baltic Journal of Modern Computing, 5(1), 124–135.
https://doi.org/10.22364/bjmc.2017.5.1.08

Papers in Other Editions

Pozdniakova, O., & Mažeika, D. (2017). A Cloud Software Isolation and Cross -
Platform Portability Methods . In Proceedings of the 2017 Open Conference of
Electrical, Electronic and Information Sciences – eStream(pp. 1–6) Vilnius, Lithua-
nia. https://doi.org/10.1109/eStream.2017.7950315

Pozdniakova, O., Mažeika, D., & Cholomskis, A. (2018). Adaptive Resource Provi-
sioning and Auto-Scaling for Cloud Native Software . In Proceedings of Com-
munications in computer and information science. Information and Software
Technologies (ICIST 2018) 24th International Conference (pp. 113–129), Vilnius,
Lithuania. https://doi.org/10.1007/978-3-319-99972-2_9

149



150 LIST OF SCIENTIFIC PUBLICATIONS BY THE AUTHOR. . .

Cholomskis, A., Pozdniakova, O., & Mažeika, D. (2018). Cloud Software Performance
Metrics Collection and Aggregation for Auto-scaling Module. In Proceedings of
Communications in Computer and Information Science. Information and Soft-
ware Technologies (ICIST 2018) 24th International Conference (pp. 130–138),
Vilnius, Lithuania. https://doi.org/10.1007/978-3-319-99972-2_10

Pozdniakova, O., & Mažeika, D. (2023). Performance-Based SLO Recovery for Con-
tainerized Applications. In Presentation abstract of DAMSS 2023: 14th Con-
ference on data analysis methods for software systems (pp. 72–73), Druskininkai,
Lithuania. https://doi.org/10.15388/DAMSS.14.2023
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Įvadas

Problemos formulavimas

Pastaraisiais metais išaugęs programų konteinerizavimo ir mikroservisų architektūros po-
puliarumas paskatino naujos paradigmos, žinomos kaip debesų kompiuterijos kilmės prog-
ramos (angl. Cloud Native Applications, toliau CNA), atsiradimą. CNA dažnai susideda iš
kelių keičiamo dydžio ir laisvai susietų paslaugų, kurios veikia kaip konteinerizuotų prog-
ramų egzemplioriai. Labai svarbu šiuos egzempliorius paleisti tinkamu laiku ir tinkamu
kiekiu, kad būtų įvykdyti susitarime dėl paslaugų teikimo lygio (angl. Service Level Ag-

reement, toliau SLA) nustatyti našumo reikalavimai. Konteinerių orkestravimo platformos
yra specialiai sukurtos tam, kad supaprastintų didesnio masto konteinerizuotų programų
veikimą, kuriose automatinio masteliavimo komponentas (angl. autoscaler) atlieka svarbų
vaidmenį užtikrindamas taikomosioms programoms reikiamų išteklių gavimą.

Automatinio masteliavimo priemonės turi spręsti terminų ir tinkamo resursų kiekio
užtikrinimo uždavinius. Per anksti arba per daug suteiktų resursų didina išlaidas, o delsi-
mas gali pabloginti paslaugos kokybę ir sudaro sąlygas pažeisti susitarimą dėl paslaugos
teikimo lygio. Todėl dauguma automatinio masteliavimo algoritmų siekia rasti balansą
tarp paslaugos kokybės užtikrinimo ir efektyvaus išteklių valdymo. Negalima nuvertinti
infrastruktūros sąnaudų mažinimo svarbos versle. Tačiau teikiamų paslaugų kokybė galu-
tiniams vartotojams gali daryti tiesioginę įtaką visai verslo sėkmei (Arapakis et al., 2021;
Sekhi, 2023). Nesilaikant susitarimo dėl paslaugų teikimo lygio, gali būti prarastas verslas
arba skirtos baudos. Todėl automatinio masteliavimo sprendimai, kurie yra orientuoti į tei-
kiamos paslaugos kokybės užtikrinimą, turi efektyviai valdyti išteklius, kartu išlaikydami
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pageidaujamą paslaugų kokybę (Al-Dhuraibi et al., 2018; Amiri & Mohammad-Khanli,
2017). Tam reikalingi nuolatinio paslaugų kokybės, sistemos našumo, žinių apie SLA vyk-
dymo stebėjimo mechanizmai, kurių įgyvendinimas leistų tinkamai reaguoti į nukrypimus
nuo apibrėžtų paslaugų teikimo lygio rodiklių ir tikslų.

Darbo aktualumas

Debesų kilmės kompiuterijos bei konteinerizuotų taikomųjų programų naudojimas auga,
vis daugiau esamų programų yra perkeliama į debesų kompiuterijos platformas bei mikro-
servisų architektūrą (Kazanavičius et al., 2022), taip sukuriant naują debesųkompiuterijos
kilmės paradigmą. Debesų kompiuterijos kilmės sprendimų populiarumas nulėmė Cloud

Native Computing Foundation (toliau CNCF) projekto atsiradimą. Šio projekto tikslas –
skatinti diegimą technologijų, suteikiančių organizacijoms galimybę kurti ir naudoti mas-
teliuojamas taikomąsias programas šiuolaikinėje dinamiškoje aplinkoje, įskaitant viešus,
privačius ir hibridinius debesis. CNCF sukurtas debesų kompiuterijos kilmės technolo-
gijų landšaftas apima daugiau nei 40 atvirojo kodo projektų ir patentuotų produktų, pri-
skirtų planavimo ir orkestravimo (angl. scheduling and orchestration) kategorijai (CNCF,
2024a). Kasmet joje vis daugėja naujų narių ir sprendimų.

Kubernetes taip pat tampa kasmet vis labiau įsitvirtinančia konteinerių orkestravi-
mo platforma (CNCF, 2024c; Datadog, 2024). Tokios kompanijos kaip NetApp, Google ir
Datadog kuria automatinio masteliavimo produktus, o akademinė bendruomenė aktyviai
ieško automatinio masteliavimo sprendimų, skirtų debesų kompiuterijos kilmės progra-
moms. Semantic Scholar, Web Of Science ir Scopus duomenų bazėse galima rasti tūks-
tančius straipsnių, skirtų debesų kompiuterijai ir automatinio masteliavimo sprendimams.
Nepaisant daugiau nei dešimtmetį trukusių šios srities mokslinių tyrimų, susidomėjimas ir
toliau auga, o veiksmingo automatinio masteliavimo problema vis dar aktuali.

Pirmuosiuose automatinio masteliavimo sprendimuose daugiausia dėmesio buvo skir-
ta efektyviam kaštų panaudojimui. Tačiau vis dažniau susitelkiama į susitarimų dėl paslau-
gos kokybės įvykdymo aspektą, nes vartotojai ir klientai pirmenybę teikia paslaugų našu-
mui ir kokybei (Arapakis et al., 2021; Pusztai et al., 2021; Sekhi, 2023). Per pastaruosius
penkerius metus tokie gamintojai kaip VMware (VMware, 2024), Google (Rzadca et al.,
2020) ir Splunk (Splunk, 2024), taip pat akademinė bendruomenė (Poojitha & Ravindra-
nath, 2025; Pusztai et al., 2021; Qian et al., 2022; Ruiz et al., 2022; Tonini et al., 2023;
Wen et al., 2023) daugiau dėmesio skiria debesų kompiuterijos stebėjimo spendimams,
orientuotiems į žinių apie SLA surinkimą (angl. SLA-awarness).

Tyrimų objektas

Darbo tyrimų objektas – žiniomis apie SLA pagrįsti automatinio masteliavimo algoritmai,
skirti debesų kompiuterijos kilmės taikomosioms programoms.

Darbo tikslas

Patobulinti paslaugos lygio tikslų įvykdymą, naudojant taisyklėmis pagrįstus automatinio
masteliavimo algoritmus, kai tikslai turi užtikrinti debesų kompiuterijos kilmės taikomųjų
programų našumo reikalavimų įvykdymą.
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Darbo uždaviniai

Darbo tikslui pasiekti sprendžiami šie uždaviniai:

1. Atlikti mokslinės literatūros apžvalgą apie dabartinę automatinio masteliavimo
algoritmų ir metodų, kuriais siekiama užtikrinti debesų kompiuterijos kilmės tai-
komosios programos veikimo atitikimą paslaugos teikimo lygio tikslams, būklę.

2. Sukurti SLA žiniomis pagrįstus automatinio masteliavimo metodus, skirtus de-
besų kilmės taikomųjų programų automatinio masteliavimo sprendimams, orien-
tuotiems į SLA įvykdymo aspektą.

3. Pasiūlyti metodus, kurie vertina automatinio masteliavimo metodų veiksmingumą
užtikrinant SLA įvykdymą.

4. Įvertinti siūlomų automatinio masteliavimo metodų veiksmingumą ir efektyvumą
įvairiomis darbo krūvio sąlygomis.

5. Atlikti palyginamąją siūlomų automatinio masteliavimo metodų analizę ir paly-
ginti juos su plačiai naudojamais automatinio masteliavimo sprendimais.

Tyrimų metodika

1. Atlikta analitinė literatūros apžvalga apie debesų kompiuterijos kilmės tendenci-
jas ir esamus automatinio masteliavimo algoritmus, kurie užtikrina SLA debesų
kompiuterijos kilmės atitiktį taikomosioms programoms. Buvo įvertintos stiprio-
sios ir silpnosios pusės, pagrindiniai SLA įvykdymui įtaką darantys veiksniai,
nustatytos esamos automatinio masteliavimo sprendimų spragos.

2. Atlikta lyginamoji analizė, norint įvertinti analizuotų metodų pranašumus ir trū-
kumus.

3. Taikytas statistinės tiriamosios analizės metodas, siekiant suprasti, kaip centri-
nio procesoriaus (angl. Central processing unit, toliau CPU) apkrovos slenksčio
reikšmės pasirinkimas daro įtaką našumu pagrįsto SLA vykdymui.

4. Taikytas kiekybinis tyrimo metodas – atlikti eksperimentai su skirtingomis apkro-
vomis. Eksperimentai atlikti siekiant įvertinti išanalizuotų taisyklėmis pagrįstų
automatinio masteliavimo sprendimų efektyvumą, tenkinant SLA našumo reika-
lavimus. Kuriant kelių tipų darbo krūvius buvo naudojami Gatling ir JMeter krū-
vio generavimo įrankiai. Eksperimentai atlikti Azure viešoje debesų kompiuterijos
platformoje, naudojant Azure Kubernetes Service (AKS). Automatinio mastelia-
vimo algoritmų prototipai parašyti Java programavimo kalba. Surinkti eksperi-
mentų duomenys buvo išanalizuoti, siekiant įvertinti sprendimus pagal iš anksto
apibrėžtus vertinimo kriterijus.

Darbo mokslinis naujumas

• Pasiūlytas metodas, skirtas dinamiškai koreguoti slenksčius automatinio mastelia-
vimo sprendimuose, pritaikytuose konteinerizuotoms debesų kompiuterijos prog-
ramoms, pagerina našumo atitiktį nustatytiems SLA reikalavimams. Naudojant šį
metodą, slenksčiais pagrįsti automatinio masteliavimo sprendimai savarankiškai
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prisitaiko prie platformos ir programų našumo pokyčių, palaiko ir atkuria paslau-
gos kokybę iki nustatyto SLA lygio, aptikus degradacijos tendencijas. Sprendi-
mui įgyvendinti taikomi tiriamieji duomenų analizės metodai ir slankusis vidur-
kio glodinimas, siekiant nustatyti CPU panaudojimo slenkstį.

• Pasiūlyti algoritmai pagerina SLA įvykdymą taisyklėmis pagrįstuose automatinio
masteliavimo sprendimuose. Jie sukurti siekiant sumažinti mašininio mokymosi
algoritmo įvestą sudėtingumą, kartu pagerinant nustatytų paslaugų lygio našumo
susitarimų įvykdymą.

• Pasiūlyta SLA atkūrimo metodika pagerina nustatytų našumo paslaugų lygio tiks-
lų laikymąsi.

Darbo rezultatų praktinė reikšmė

Siūlomi naujieji metodai svarbūs tiek teoriniu, tiek praktiniu požiūriu, siekiant užtikrinti,
kad taikomųjų programų našumas atitiktų SLA reikalavimus. Šiais sprendimais taip pat
siekiama optimizuoti esamų automatinio mastelio keitimo sprendimų našumą. Kadangi
debesų kompiuterijos kilmės sprendimai tampa vis populiaresni, didėja poreikis naudoti
sudėtingesnius, patikimesnius ir SLA efektyvius automatinio masteliavimo sprendimus.

Daugelyje plačiai naudojamų automatinio masteliavimo sprendimų resursų kiekio ir
masteliavymo veiksmų savalaikiškumo nustatymui yra naudojami resursų apkrovos slenks-
čiai. Tačiau slenksčių, leidžiančių pasiekti našumu pagrįstus paslaugos teikimo lygio tiks-
lus (angl. Service Level Objectives, toliau SLO), nustatymas šiuo metu yra sudėtingas ir
nuo klaidų neapsaugotas procesas. Taip yra dėl to, kad statinės slenksčio reikšmės pa-
prastai yra nustatomos rankiniu būdu. Siūlomas dinaminis slenksčio nustatymo metodas
ne tik sutaupo laiko derinant automatinio masteliavimo sprendimo našumą, bet ir padeda
pamatus tolesniems efektyvumo optimizavimo tyrimams.

Ginamieji teiginiai

1. Scenarijuose, kai papildomų išteklių paskirstymas gali žymiai pagerinti paslau-
gų veikimą ir sumažinti SLO pažeidimo tikimybę, papildomų išteklių pridėjimas
leidžia atkurti neįvykdyto paslaugos teikimo lygio tikslo būseną į įvykdyto tiks-
lo būseną. Toks paslaugos lygio sutarties įvykdymo būsenos atkūrimo būdas gali
būti taikomas, siekiant pagerinti į našumą orientuotų paslaugos reikalavimų vyk-
dymą, kartu su tradiciškai naudojamais SLA pažeidimų vengimo mechanizmais
taisyklėmis pagrįstuose debesų kompiuterijos programų automatinio masteliavi-
mo valdikliuose.

2. Dinamiškai keičiant taisyklėmis pagrįstų automatinio masteliavimo sprendimų
panaudojimo slenksčio vertes galima pagerinti SLA įvykdymą, kai panaudojimo
slenkstis yra labiausiai SLA įvykdymui įtaką darantis veiksnys.

3. Pratęsus SLA įvykdymo būsenos stebėjimo laikotarpį, pagerėja debesų kompiu-
terijos automatinio masteliavimo sprendimų gebėjimas užtikrinti nustatytus pa-
slaugos lygio našumo reikalavimus, palyginti su automatinio masteliavimo spren-
dimais, kurie remiasi tik momentiniais paslaugų lygio matavimais priimant mas-
teliavimo sprendimus.
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Darbo rezultatų aprobavimas

Disertacijos tema paskelbta 2 žurnaluose, įtrauktuose į Web of Science duomenų bazę ir
turinčiuose citavimo rodiklį, 3 mokslinių konferencijų pranešimų rinkiniuose, o 1 – kon-
ferencijos pristatymo santraukoje. Disertacijoje atliktų tyrimų rezultatai buvo pristatyti 5
mokslinėse konferencijose Lietuvoje ir užsienyje:

• DAMSS 2016: 8th Data Analysis Methods for Software Systems, 2016 gruodžio
1–3 d., Druskininkuose, Lietuvoje.

• eStream 2017: Open International Conference of Electrical, Electronic and Infor-
mation Sciences, 2017 Balandžio 27 d., Vilniuje, Lietuvoje.

• ICIST 2018: 24th International Conference on Information and Software Techno-
logies, 2018 Spalio 4–6 d., Vilniuje, Lietuvoje.

• DAMSS 2023: 14th Data Analysis Methods for Software Systems, 2023 lapkri-
čio 30 d. –Gruodžio 2 d., Druskininkuose, Lietuvoje.

• PCDS 2024: 1st International Symposium on Parallel Computing and Distributed
Systems, 2024 Rugsėjo 21–22 d., Singapūre, Azijoje.

Disertacijos struktūra

Disertaciją sudaro įvadas, trys pagrindiniai skyriai, bendros išvados, literatūros sąrašas,
autoriaus publikacijų disertacijos tema sąrašas ir santrauka lietuvių kalba. Disertacijos ap-
imtis (be priedų) – 167 puslapiai, 44 lygtys, 29 iliustracijos ir 24 lentelės.

1. Automatinio masteliavimo sprendimų, skirtų susitarimo dėl
paslaugos teikimo lygio užtikrinimui debesų kompiuterijos
kilmės programų sistemose, literatūros apžvalga

Šiame skyriuje pateikiama debesų kompiuterijos kilmės tendencijų apžvalga bei debesų
kompiuterijos kilmės taikomųjų programų apibrėžtis. Remiantis atlikta literatūros analize,
galima daryti išvadą, kad debesų kompiuterijos kilmės taikomoji programa turi tokias sa-
vybes: ji kuriama kaip paskirstytoji sistema su mažą sankibą turinčiais komponentais, skir-
tais išplečiamumui ir galinčiais veikti automatizuotoje bei elastingoje platformoje. Šiomis
savybėmis siekiama spręsti problemas, kylančias naudojant programas dinamiškai besi-
keičiančioje platformoje.

Konteineriai dažnai naudojami kompiuterijos kilmės taikomojų programų paleidimui
(Deng et al., 2024; Kosińska et al., 2024; Kratzke, 2018; Kratzke & Quint, 2017; Villamizar
et al., 2017). Automatizuotas konteinerių gyvavimo ciklo priežiūros įrankis – konteinerių
orkestratorius – palengvina konteinerizuotų programų sistemų priežiūrą. Orchestratoriaus
automatinio masteliavimo komponentas sprendžia resursų teikimo terminų ir kiekio nu-
statymo uždavinius, kad paslaugos kokybė atitiktų reikalavimus. Tam, kad automatinio
masteliavimo sprendimas teiktų resursus pagal SLA nustatytus reikalavimus, svarbu tin-
kamai parinkti sistemos bei paslaugos stebėjimo parametrus ir automatinio masteliavimo
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būdą. Paslaugos kokybei stebėti naudojami paslaugos veikimo lygio indikatoriai (angl. Ser-

vice Level Indicators, toliau SLI), kurie naudojami paslaugos teikimo lygio tikslų (SLO)
matavimui. SLO aprašomi susitarime dėl paslaugos teikimo lygio (SLA). Informacijos
apie paslaugos sutarties įvykdymo statusą įtraukymas į masteliavimo sprendimo priėmimo
procesą turėtų pagerinti automatinio masteliavimo sprendimų veiksmingumą, užtikrinant
sistemos našumą pagal SLA, tačiau šis metodas retai sutinkamas literatūroje. Informacija
apie SLA leidžia automatinio masteliavo sprendimui imtis atitinkamų veiksmų. Literatūros
apžvalgos ir analizės metu tokių sprendimų nebuvo aptikta.

Kubernetes Horizontal Pod Autoscaler (HPA) yra dažniausiai literatūroje bei prakti-
koje sutinkamas automatinio masteliavimo sprendimas, kuris taikomas debesų kompiute-
rijos kilmės taikomųjų programų resursų valdymui. Reikiamo resursų kiekio skaičiavimui
šis sprendimas naudoja statinius resursų panaudojimo slenksčius. Statiniais slenksčiais pa-
grįsti masteliavimo sprendimai yra inertiški ir jiems sunku parinkti tinkamą slenkstį (Qu
et al., 2018) ir yra didelė tikimybė, kad SLA bus pažeistas arba bus panaudotas didesnis nei
pakankamas resursų kiekis. Norint palengvinti HPA taikymą praktikoje, akademikai siūlo
skirtingus HPA parametrų automatinio nustatymo sprendimus (Augustyn et al., 2024; Huo
et al., 2023, 2022; Khaleq & Ra, 2021). Literatūros analizės metu nebuvo identifikuota
automatinio slenksčių vertės nustatymų sprendimų, kurie būtų ištestuoti debesų kompiute-
rijos platformoje bei netaikytų mašininio apmokymo algoritmų.

Literatūros apžvalga atskleidė, kad šiame darbe išanalizuotų tyrimų autoriai naudo-
jo įvairius kriterijus automatinio masteliavo sprendimų efektyvumui bei veiksmingumui
įvertinti. Tačiau nė vienas iš sprendimų nevertina efektyvumo užtikrinant SLA įvykdymą.

Apibendrinant literatūros apžvalgą galima teigti, kad nėra vieno automatinio malste-
liavimo metodo, kuris veiksmingai išspręstų visas SLA įvykdymo užtikrinimo problemas
vienu metu. Taisyklėmis pagrįsti automatinio masteliavimo sprendimai yra dažniausiai pa-
sitaikantys praktikoje, nors, palyginti su mašinino apmokymo sprendimais, jie turi silpnų
vietų, ypač paslaugos teikimo lygio užtikrinimo srityje. HPA yra dažniausiai praktikoje
bei akademiniame pasaulyje taikomas automatinio masteliavimo sprendimas. Jo populia-
rumas lėmė atskiros HPA tyrimo šakos, skirtos konfigūracijos parametrų automatizavimui,
atsiradimą.

2. Prie susitarimo dėl paslaugų kokybės prisitaikančio
automatinio masteliavimo algoritmo kūrimas

Skyriuje aptariami du taisyklėmis pagrįsti automatinio masteliavimo sprendimai, ku-
riuose naudojami automatinio masteliavimo algoritmai. Sukurti algoritmai siekia užtik-
rinti paslaugos teikimo lygio sutarties (SLA) vykdymą. Pirmas siūlomas sprendimas yra
automatinis masteliavimas, prisitaikantis prie SLA reikalavimų (angl. SLA Adaptive Auto-

scaling Algorithm, toliau SAA), skirtas tradicinių taisyklėmis pagrįstų sistemų iššūkiams
įveikti. Antras sprendimas – su SLA suderinamas dinaminis slenksčio koregavimo algo-
ritmas (angl. SLA Adaptive Threshold Ajustment, toliau SATA). Šis sprendimas patobuli-
na jau egzistuojančius, taisyklėmis pagrįstus automatinio masteliavimo sprendimus, kurie
naudoja resursų apkrovos slenksčius (angl. utilization thresholds, toliau slenksčiai) mas-
teliavimo sprendimams priimti. Skyriuje pateikiama išsami siūlomų sprendimų apžvalga,
detalizuojami naudojami algoritmai ir funkcijos bei algoritmų vertinimo kriterijai.
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Siūlomi metodai publikuoti “Cluster Computing” (Pozdniakova et al., 2023) ir “Ele-
ctronics” (Pozdniakova et al., 2024) tarptautiniuose žurnaluose.

Pirmasis skyriuje pristatytas SAA algoritmas sprendžia problemas, susijusias su skir-
tingais taikomosios programos išteklių ir našumo reikalavimais, debesų kompiuterijos tei-
kiamų resursų našumo svyravimais, dinamiškomis darbo krūvio charakteristikomis, laiku
priimamais masteliavimo sprendimais ir resursų valdymo svyravimo (angl. oscilation) ma-
žinimu. Šios problemos turi būti sprendžiamos tam, kad būtų užtikrinti programų našumo
SLA reikalavimai. SAA sudaro keli moduliai, kurių kiekvienas sprendžia konkrečią prob-
lemą. Automatinio masteliavimo modulis yra pagrindinis sistemos sprendimų priėmimo
komponentas, atsakingas už automatinio masteliavimo algoritmo vykdymą. SAA naudoja
dinaminį slenksčių masteliavimo metodą. Dinaminis CPU slenksčių koregavimo modu-
lis reguliuoja CPU slenksčius, atsižvelgdamas į dabartinę paslaugos lygio tikslo (SLO)
būseną. Jis padeda sumažinti infrastruktūros veikimo svyravimų poveikį ir užtikrina SLA
vykdymui būtiną sistemos našumą. Apkrovos kitimo greičiui nustatyti naudojamas pagrei-
čio poveikio veiksnio modulis. Kintančio srauto detektoriaus modulis identifikuoja dažnai
kintančio srauto požymius, o tai leidžia automatinio masteliavimo moduliui priimti kon-
servatyvesnius sprendimus, siekiant išvengti SLA nevykdymo. Priklausomai nuo srauto
pagreičio, sprendimas naudoja skirtingos trukmės laikotarpius, per kuriuos nevykdoma
jokia masteliavimo veikla, taip, esant reikalui, pagreitinant arba sustabdant resursų pridė-
jimą arba pašalinimą.

SAA efektyvumui bei našumui įvertinti buvo naudojami du kriterijai. Tyrimuose au-
tomatinio masteliavimo sprendimai pirmiausia buvo įvertinti pagal jų gebėjimą teikti pa-
slaugas pageidaujamu arba aukštesniu SLO lygiu per visą vertinimo laikotarpį. Antrinio
vertinimo kriterijus apima bendrą sprendimo suteiktų, nesuteiktų, perteklinį ir ne laiku
suteiktų konteinerių skaičių, teorinį konteinerių poreikį (skyriuje žymimi kaip touchsto-

ne automatinio masteliavimo sprendimo konteineriai) bei santykį tarp suteiktų ir teorinių
konteinerių kiekių.

Toliau skyriuje pristatomas SATA algoritmas, kuris susideda iš dviejų dalių. Pirma
dalis – tai CPU apkrovos slenksčio nustatymo pagal SLA reikalavimus metodas, o antra –
algoritmo, atsakingo už slenksčio dinaminį parinkimą, prototipas.

Skyriuje detaliai aprašomas CPU apkrovos slenksčio nustatymo metodas, kuriuo už-
tikrinama, kad sistemos našumas atitiktų apibrėžtą našumo SLA. Siūlomas metodas su-
darytas iš kelių žingsnių. Pirmuoju žingsniu surenkamas toks metrikų kiekis, kad būtų
galima teikti patikimus slenksčio vertės siūlymus. Šiame žingsnyje renkama CPU apkro-
vos metrika (toliau CPU) bei paslaugų veikimo lygio indikatoriaus (SLI) metrika. Antrame
žingsnyje tam, kad algoritmo teikiami rezultatai būtų kuo tikslesni, iš surinktos metrikos
verčių pašalinamos išskirtys (angl. outliers) bei blogos reikšmės. Trečias žingsnis – metri-
kų duomenys surūšiuojami pagal CPU ir sugrupuojami pagal CPU rėžius. Toliau, kiekvie-
nam CPU rėžiui apskaičiuojamas pasiektas rėžio SLO – procentinis santykis tarp įvykių,
kuriuose SLI reikšmė atitinka SLA nustatytą reikšmę, ir visų į šį rėžį patenkančių mata-
vimo įvykių skaičių. Šis santykis naudojamas sukurti santykio kreivę tarp CPU rėžio ir
rėžio SLA (pav S2.1a). Ketvirtas žingsnis – taikant glodinimo metodą, iš sukurtos kreivės
siekiama pašalinti triukšmą (pav S2.1a ir c). Paskutinis žingsnis – tinkamas slenkstis nu-
statomas pasirenkant didžiausią CPU reikšmę, kur rėžio SLO atitinka pageidaujamą SLO.
Siūlomas metodas gali būti naudojamas kaip pagalbinė priemonė pirminiams apkrovos
slenksčiams nustatyti.
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Toliau pateikiamas prototipo, sukurto įvertinti siūlomo metodo veiksmingumą apra-
šymas. Prototipas sukurtas veikimui su HPA. Prototipas naudoja skirtingas taisykles ir
algoritmus tam, kad koreguotų CPU apkrovos slenkstį pagal veikimo būsenas. Sprendimo
veiksmingumui bei efektyvumui įvertinti buvo taikomi trys kriterijai – vienas pagrindi-
nis ir du antriniai. Pagrindinis vertinimo kriterijus buvo gebėjimas vykdyti SLO per visą
vertinimo laikotarpį (kiek algoritmas veiksmingas). Gebėjimas operuoti lygyje, artimame
nustatytam SLO, ir per stebėjimo laikotarpį panaudotų konteinerių suma buvo antriniai
kriterijai . Tikslumas buvo vertinamas apskaičiuojant simetrinę procentinę absoliutinę pa-
klaidą.

S2.1 pav. Grafinis slenksčio nustatymo algoritmo atvaizdavimas. (a) SLO rėžio ryšio su
konkrečiais CPU rėžiais linijinė diagrama (be glodinimo); (b) Atitikmens tarp SLO ir CPU rėžių
linijinė diagrama, naudojant paprastojo slankiojo vidurkio glodinimą; (c) Atitikmens tarp SLO ir
CPU rėžių linijinė diagrama, naudojant centruoto slankiojo vidurkio glodinimą. Taškai nurodo

SLO, gautą atliekant eksperimentus, kai Horizontal Pod Autoscaler (HPA) buvo sukonfigūruotas
naudojant konkretų statinį CPU apkrovos slenkstį

Skyrius baigiamas šiomis išvadomis:

1. SAA sprendimas skirtas paslaugų teikimo lygio susitarimo užtikrinimo uždavi-
niams spręsti. Šiam tikslui pasiekti buvo sukurti keli moduliai, kurie atsakingi už
tokias funkcijas kaip prisitaikymas prie apkrovos pokyčių, įvairių taikomųjų iš-
teklių ir našumo reikalavimų tenkinimas, prisitaikymas prie debesų kompiuterijos
išteklių skirtumų, sprendimų dėl mastelio keitimo terminų laikymasis ir apkrovos
svyravimų pasekmių mažinimas. Be to, SAA siekia atstatyti SLA įvykdymo būse-
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ną iš neįvykdytos į įvykdytą. Remiantis atlikta literatūros apžvalga, galima teigti,
kad tik SAA turi SLA įvykdymo atkūrimo mechanizmus. Šie mechanizmai yra
išskirtinė sprendimo savybė, galinti užtikrinti paslaugų lygio tikslų (SLO) įvyk-
dymą scenarijuose, kuriuose papildomų išteklių suteikimas gerokai pagerina na-
šumo bei paslaugos kokybės rezultatus.

2. Šiame skyriuje pristatytas automatinis apkrovos slenksčio nustatymo metodas,
pagrįstas duomenų aiškinamąja analize ir slankiojo vidurkio glodinimu, kurie lei-
džia įgyvendinti sprendimą be išsamių žinių apie mašininio mokymo metodus.

3. Kiekvienam metodui siūlomi naujoviški vertinimo kriterijai. Šie kriterijai leidžia
įvertinti sprendimus dvejomis perspektyvomis – SLA vykdymo veiksmingumo ir
išteklių valdymo efektyvumo.

3. Su paslaugų teikimo lygio sutarties reikalavimais
suderinamo dinaminio slenksčio koregavimo algoritmo,
skirto taisyklėmis pagrįstiems automatinio masteliavimo
sprendimams, kūrimas ir vertinimas

Apžvelgiami trečiame skyriuje pristatytų taisyklėmis pagrįstų automatinio masteliavimo
sprendimų eksperimentiniai tyrimai ir jų rezultatai. Be to, aprašoma eksperimentinė ap-
linka ir sprendimų konfigūraciniai nustatymai. Galiausiai, skyrius užbaigiamas išbandytų
automatinio masteliavimo sprendimų rezultatų apibendrinimu.

Pateikiami tyrimai, o dalis rezultatų paskelbti “Cluster Computing” (Pozdniakova
et al., 2023) ir “Electronics” (Pozdniakova et al., 2024) tarptautiniuose žurnaluose.

Pirmiausia, skyriuje pateikiami SAA sprendimo eksperimentinės aplinkos ir eksperi-
mentų aprašymai. SAA sprendimas buvo palygintas su Kubernetes Horizontal Pod Auto-

scaler (toliau HPA) ir kitu, taisyklėmis grindžiamu metodu, naudojanču dinamiškai kore-
guojamus slenksčius – Dynamic Multi-level Auto-scaling Rules (toliau DMAR). Tyrimams
buvo naudojami įvairaus dydžio Azure Kubernetes Sevice klasteriai, taikomosios progra-
mos, parašytos Rust ir Java programavimo kalbomis, 5 tipų sintetinės apkrovos bei dvi
apkrovos, sugeneruotos naudojant internetinių portalų vartotojų prieigos žurnalus (World-
Cup’98, EDGAR). Apkrova buvo generuojama naudojant Gatling bei JMeter apkrovos
generavimo įrankius.

SAA tyrimo rezultatai buvo padalinti į tris duomenų rinkinius. Pirmas rinkinys – tai
duomenys surinkti, per etapą, kai paslaugos kokybės (angl. Quality of Service, toliau QoS)
lygis buvo atstatomas iki lygio, nustatyto SLA. Antras – QoS išlaikymo etapas, o tre-
čias – viso eksperimento rezultatų apibendrinimas (lentelė S3.1). QoS atkūrimo etape,
n ∈ [0; 199], sprendimų SLO vertės atstatymo efektyvumas buvo įvertintas stipraus SLO
vertės sumažėjimo metu. QoS palaikymo etape, n ∈ [200;N ], sprendimų efektyvumas bu-
vo įvertintas įprasto veikimo laikotarpiu, t. y., kai QoS teikiama pagal SLO reikalavimus
su galimai nedideliais paslaugos kokybės svyravimais (mažesniais nei 5% per vertinimo
laikotarpį). Eksperimentų rezultatai parodė, kad SAA sprendimas yra veiksmingas atku-
riant ir palaikant nustatytus paslaugos lygio tikslus esant skirtingoms apkrovoms. Toliau
pateikiami SATA eksperimentinio tyrimo rezultatai bei detalus jų aprašymas.

SATA prototipas buvo įvertintas Azure Kuberntes Services platformoje, naudojant
konteinerizuotas taikomąsias programas, reikalaujančias daug CPU resursų. Programos
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buvo parašytos Java ir Rust programavimo kalbomis bei pasižymėjo skirtingomis našumo
charakteristikomis. Apkrovai generuoti buvo naudojami internetinių portalų WorldCup’98

ir EDGAR prieigos žurnalai bei Gatling apkrovos generavimo įrankis.

Skyriuje aprašyti eksperimentai, skirti sprendimo konfigūracijos parametrų įtakai jo
veiksmingumui bei našumui įvertinti. Buvo atlikti eksperimentai su skirtingomis slenksčio

S3.2 lentelė. HPA, DMAR ir SAA veiksmingumo įvertinimas realiojo pasaulio prieigos žurnalais
pagrįstuose srauto apkrovos scenarijuose

Apkrovos tipas WorldCup’98 EDGAR

Parametrasa HPA DMAR SAA HPA DMAR SAA

Įvertinimas QoS palaikymo metu (i = 200, j = 1500)

SLA vykdymo laikas, % 68,2 83,4 100,0 0,0 0,0 93,5

Santykis tarp suteiktų ir teorinio
konteinerių poreikio

1,25 1,17 1,58 0,84 0,94 2,15

Suteikti konteineriai 15859 14691 19538 1512 12378 22023

Teorinis konteinerių poreikis 12698 12560 12339 1799 13222 10227

Ne laiku suteikti konteineriai 3201 2163 7199 957 1350 11796

Laiku nesuteikti konteineriai –20 –16 0 –622 –1097 0

Perteklinis konteinerių kiekis 3181 2147 7199 335 253 11796

Įvertinimas QoS atkūrimo laikotarpiu (i = 0, j = 199)

Santykis tarp suteiktų ir teorinio
konteinerių poreikio

0,94 1,04 1,46 1,04 1,01 1,76

Suteikti konteineriai 694 715 1026 334 1587 2418

Teorinis konteinerių poreikis 741 689 703 320 1568 1370

Ne laiku suteikti konteineriai 59 30 333 116 215 1064

Laiku nesuteikti konteineriai –53 –2 –5 –51 –98 –8

Perteklinis konteinerių kiekis 6 28 328 65 117 1056

Įvertinimas viso eksperimento metu (i = 0, j = 1500)

Santykis tarp suteiktų konteinerių
ir teorinio poreikio

1,23 1,16 1,58 0,87 0,94 2,11

Suteikti konteineriai 16560 15413 20574 1847 13977 24460

Teorinis konteinerių poreikis 13446 13256 13049 2120 14802 11606

Ne laiku suteikti konteineriai 3260 2193 7535 1073 1565 12870

Laiku nesuteikti konteineriai –73 –18 –5 –673 –1195 –8

Perteklinis konteinerių kiekis 3187 2175 7530 400 370 12862

aJei nenurodyta kitaip, matavimo vienetas — vnt per periodą



SUMMARY IN LITHUANIAN 163

koregavimo ir įvertinimo trukmėmis, paslaugų lygio indikatoriais (vidutiniu atsako laiku ir
laiko procentiliu) bei glodinimo metodais (paprastoju (angl. Simple Moving Average, toliau
SMA) ir centruotu (angl. Centered Moving Average, toliau CMA) slankiaisiais vidurkiais).

Sprendimo konfigūracijos parametrų įtakos vertinimo eksperimentams buvo naudo-
jama taikomoji programa, parašyta Java programavimo kalba, ir WorldCup’98 skirtingo
ilgio fragmentai. Atitinkamų eksperimentų rezultatai pateikti lentelėse S3.3, S3.4, S3.5,
S3.6. Šiose bei sekančiose lentelėse parinktų laikotarpių ilgiai pateikti naudojant maste-
liavimo laikotarpio trukmę kaip matavimo vienetą, pavyzdžiui, SMA 4× 10, reiškia SMA
su 4 masteliavimo periodų ilgio slenksčio koregavimo periodu ir 10 masteliavimo periodų
ilgio slenksčio įvertinimo periodu. Aprašytų eksperimentų atveju masteliavimo periodo
ilgis buvo lygus 90 s.

S3.3 lentelė. Slenksčio vertės koregavimo laikotarpių poveikio algoritmo efektyvumui įvertinimo
rezultatai

Parametrai 4× 10 4× 20 8× 10 8× 20

SLO įvykdymas Pilnas Pilnas Pilnas Pilnas

Simetrinė procentinė abso-
liutinė paklaida, %

1,6 1,8 1,9 1,8

Bendras konteinerių kiekis,
vnt per periodą

12992 12783 14502 13107

Skirtumas nuo geriausio
bendro konteinerių kiekio
rezultato, %

1,6 0 13,4 2,5

S3.4 lentelė. Paslaugos lygio indikatoriaus pasirinkimo poveikio algoritmo efektyvumui įvertinimo
rezultatai

Parametrai SMA 4× 10 SMA 4× 10

SLI 98 procentilis Vidutinis atsa-
ko laikas

98 procentilis Vidutinis atsa-
ko laikas

SLO įvykdymas Pilnas Iš dalies Pilnas Iš dalies

Simetrinė procentinė abso-
liutinė paklaida, %

1 1,3 2,5 0,9

Bendras konteinerių kiekis,
vnt per periodą

43460 34524 43809 39726

Skirtumas nuo geriausio
bendro konteinerių kiekio
rezultato, %

0 –20 1 –9

Toliau buvo atlikti eksperimentai, skirti SATA veikimui vertinti esant skirtingiems
apkrovos tipams bei aplinkoms. HPA sprendimas buvo naudojimas kaip etalonas sprendi-
mo efektyvumui palyginti. HPA CPU apkrovos slenksčio reikšmė buvo nustatyta taip, kad
butų užtikrintas SLO įvykdymas esant didžiausiai slenksčio vertei, siekiant maksimaliai
padidinti resursų teikimo efektyvumą.

Atliktų eksperimentų rezultatai atskleidė (žr. lentelės S3.5, S3.6, S3.7), kad algorit-
mas parodė didesnį efektyvumą, bet mažesnį tikslumą, kai slenksčio įvertinimo periodas
buvo ilgesnis. Algoritmas buvo efektyvesnis dažniau koreguojant slenksčio vertę ir nau-
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S3.5 lentelė. SATA įvertinimo rezultatai, naudojant Java taikomąją programą ir WorldCup’98 ap-
krovą

Parametrai CMA 4 × 10 CMA 4 × 20 SMA 4 × 10 SMA 4 × 20 HPA 47%

SLO įvykdymas Visiškas Visiškas Visiškas Visiškas Visiškas

Simetrinė procentinė
absoliutinė paklaida,
%

1,3 1,4 0,9 1,8 1,4

Bendras konteinerių
kiekis, vnt

43769 44652 43745 46161 42178

Skirtumas nuo geriau-
sio bendro konteinerių
kiekio rezultato, %

4 6 4 9 0

S3.6 lentelė. SATA įvertinimo rezultatai, naudojant Java taikomąją programą ir EDGAR apkrovą

Parametrai CMA 4 × 10 CMA 4 × 20 SMA 4 × 10 SMA 4 × 20 HPA 35%

SLO įvykdymas Iš dalies Visiškas Visiškas Visiškas Visiškas

Simetrinė procentinė
absoliutinė paklaida,
%

0,7 1,6 1,6 1,5 0,9

Bendras konteinerių
kiekis, vnt

25899 24606 26523 22517 20501

Skirtumas nuo geriau-
sio bendro konteinerių
kiekio rezultato, %

27 20 29 10 0

S3.7 lentelė. SATA įvertinimo rezultatai, naudojant Rust taikomąją programą ir WorldCup’98 bei
EDGAR apkrovas

Apkrova WorldCup’98 EDGAR

Sprendimas HPA 69% SATA 4 × 10 HPA 42% SATA 4 × 10

SLO įvykdymas Visiškas Visiškas Visiškas Visiškas

Simetrinė procentinė abso-
liutinė paklaida, %

2,7 2,5 1,3 2,8

Bendras konteinerių kiekis,
vnt

45199 46046 23379 29015

Skirtumas nuo geriausio
bendro konteinerių kiekio
rezultato, %

0 1,8 0 25

dojant 98-ąjį SLI procentilį. Variantas, kuriame CMA buvo naudojamas kaip glodinimo
būdas, parodė didesnį efektyvumą esant apkrovos šuoliams. Variantas su SMA buvo jaut-
resnis staigiems apkrovos padidėjimams. Abiejų algoritmų tikslumas buvo panašus, tačiau
verta paminėti, kad CMA 4 × 10 nepavyko užtikrinti norimo našumo lygio naudojant
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EDGAR scenarijų. Todėl tolesniuose vertimuose buvo naudojamas SMA 4× 10 konfigū-
racijos rinkinys.

Remiantis eksperimentais, buvo suformuluotos tokios išvados:

1. Abu siūlomi sprendimai veiksmingi užtikrinant SLA našumo reikalavimų įvyk-
dymą.

2. Buvo pristatytas pirminis SLO atkūrimo metodo modelis ir eksperimentiniais re-
zultatais įrodytas jo veiksmingumas. Paslaugų lygio teikimo tikslų (SLO) sekimo
įtraukimas padėjo abiems sprendimams pasiekti SLA įvykdymo tikslą.

3. Eksperimentai parodė, kad dinaminis slenksčio vertės atnaujinimas yra efektyvus
užtikrinant SLA įvykdymą programose, kuriose našumo slenksčio vertės nusta-
tymas turi didžiausią įtaką SLA vykdymui.

Bendrosios išvados

Atliktų tyrimų tikslas – pagerinti žinias apie prie SLA prisitaikančius automatinio mas-
teliavimo algoritmus ir metodus, naudojamus debesų kompiuterijos kilmės konteinerizuo-
toms taikomosioms programoms. Suformuluotos tokios atlikto tyrimo bendrosios išvados:

1. Literatūros apžvalga rodo, kad debesų kompiuterijos kilmės paradigmos tyrimas
yra aktualus ir akademinėje aplinkoje, ir pramonėje. Apžvalga atskleidė, kad su-
kurti įvairūs automatinio masteliavimo sprendimai, taikantys tiek paprastas tai-
syklėmis pagrįstas politikas, tiek sudėtingus mašininio mokymo modelius. Maši-
niniu mokymusi pagrįsti algoritmai yra efektyvesni, užtikrinant resursų teikimo
terminų laikymasi, palyginti su taisyklėmis pagrįstais sprendimais. Tačiau dėl sa-
vo paprastumo taisyklėmis pagrįsti automatinio masteliavimo sprendimai dažniau
sutinkami praktikoje. Vienas iš tokių pavyzdžių yra labiausiai paplitęs automati-
nio masteliavimo sprendimas, vadinamas Kubernetes Horizontal Pod Autoscaler

(HPA). Dėl savo populiarumo, HPA akademinėje aplinkoje yra tiriamas kaip at-
skiras reiškinys. Taisyklėmis pagrįsti sprendimai yra reaktyvūs, o tai dažnai lemia
uždelstą sprendimų priėmimą ir, kaip pasekmę, SLA pažeidimus. Vienas iš būdų
atstatyti SLA į pageidaujamą lygį gali būti mechanizmas, padedantis teikti pa-
slaugas aukštesniame nei numatyta SLA lygyje. Atlikus literatūros apžvalgą, aka-
deminėje literatūroje panašūs mechanizmai nebuvo aptikti. Be to, literatūros ap-
žvalga atskleidė, kad dauguma išanalizuotų sprendimų masteliavimo sprendimus
priimdavo remdamiesi tik informacija apie momentinius paslaugų teikimo lygio
rodiklių pokyčius. Šie sprendimai neatsižvelgdavo į SLA būsenos pasikeitimus
per ilgesnį laikotarpį, o tai lėmė neišsamų tikrosios SLA įvykdymo būsenos vaiz-
dą. Taip pat apžvalga atskleidė vienodos vertinimo metodikos, kurį leistų efekty-
viai įvertinant automatinio masteliavimo sprendimų efektyvumą užtikrinant SLA,
trūkumą.

2. Pasiūlytas SAA sprendimas įgyvendina SLO įvykdymo būsenos atkūrimo mecha-
nizmą, kai resursų pridėjimas gali žymiai pagerinti paslaugos kokybę. Paslaugos
lygio degradacijos atvejais sprendimas arba prideda papildomų resursų, arba su-
stabdo resursų mažinimo veiksmus, kol vėl pasiekiami nustatyti paslaugos teiki-
mo lygio tikslai, taip pagerinant nustatytų SLA tikslų įvykdymą. SLO įvykdymo
būsenos atkūrimo veiksmingumas ir resursų valdymo našumas buvo palyginti su
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DMAR ir HPA sprendimais. Gebėjimas kuo greičiau atkurti bei kuo ilgiau iš-
laikyti numatytą paslaugos lygį buvo pasiūlytas kaip metodas sprendimo SLA
reikalavimų įvykdymo veiksmingumui vertinti. Touchstone automatinio mastelia-
vimo sprendimas taip pat buvo pasiūlytas kaip etalonas bendram resursų kiekio
nustatymo efektyvumui vertinti. Šešiuose iš septynių atliktų eksperimentų SAA
parodė geresnius SLA tikslų palaikymo ir atkūrimo rezultatus, palyginti su HPA
ir DMAR. Resursų panaudojimo perviršis buvo 1,5–3,5 karto didesnis, palyginti
su touchstone automatinio masteliavimo sprendimu, ir priklausė nuo darbo krūvio
tipo. Šis perviršio lygis buvo panašus į DMAR. Pasiekti rezultatai palaiko pirmą
ginamąjį teiginį, kad SLO įvykdymo būsenos atkūrimas, pridedant papildomus
resursus, gali būti naudojamas siekiant pagerinti nustatyto SLO įvykdymą. Šis
metodas ypač aktualus lygiagrečių skaičiavimų atvejais.Tolesni darbai turėtų būti
orientuoti į parametrų reikšmių nustatymo automatizavimą, naudojant statistinius
metodus ar mašininį mokymąsi.

3. Pasiūlytas SATA sprendimas yra dinaminis slenksčio reguliavimas, skirtas auto-
matinio masteliavimo valdikliams, pagrįstas slenksčiais. Tai leidžia valdikliams
pasiekti nustatytus SLO našumo reikalavimus, kai resursų panaudojimo slenkstis
yra labiausiai SLA įvykdymui įtaką darantis veiksnys. Naudojant per nustatytą
laikotarpį surinktų SLA pažeidimų skaičių kartu su resursų panaudojimu kaip
įvestis slenksčio nustatymui, SATA suskaičiuoja pažeidimų skaičių, atsiradusį
tam tikruose panaudojimo rėžiuose, ir taip nustato slenksčio vertę. SATA bu-
vo pritaikytas veikimui su HPA, kad įvertintų siūlomo metodo veiksmingumą,
siekiant pagerinti SLA įvykdymą. Šio tyrimo eksperimentų metu HPA, naudo-
jant SATA sprendimą, sugebėjo savarankiškai prisitaikyti prie aplinkos našumo
pokyčių, pasiekdamas našumo lygius, kurie užtikrino sistemos veikimą arti nu-
statyto SLO su 1–2,7 % tikslumu. Sprendimas sėkmingai išlaikė SLO 15 iš 16
vertintų atvejų, net ir neturint išankstinės informacijos apie SLA įvykdymą už-
tikrinantį resursų panaudojimo slenkstį. Resursų perviršis svyravo nuo 10% iki
30%, palyginus su resursais, naudojamais HPA, kai HPA slenksčiui buvo nustaty-
ta aukščiausia leidžiama vertė, leidžianti pasiekti SLO. Perviršio lygis tiesiogiai
priklausė nuo generuojamos apkrovos kintamumo. Eksperimentų rezultatai lei-
džia teigti, kad dinamiškai keičiant slenksčio vertę galima pagerinti SLA įvykdy-
mą taisyklėmis pagrįstuose automatinio masteliavimo sprendimuose, kai panau-
dojimo slenkstis yra svarbiausias SLA įvykdymui įtaką darantis veiksnys. Tolesni
tyrimai turėtų orientuotis į algoritmų stabilumo ir efektyvumo tobulinimą dina-
miškose apkrovose, tobulinant esamas taisykles ir taikomus statistinius metodus.

4. SAA ir SATA sprendimai naudojo per ilgesnį laikotarpį surinktų SLA pažeidi-
mų skaičių masteliavimo sprendimų priėmimui. Abu sprendimai parodė geresnius
SLA įvykdymo rezultatus, palyginti su HPA ir DMAR. Šie rezultatai rodo, kad
SLO būsenos stebėjimas per ilgesnį laikotarpį, kartu su tradiciniais SLA pažei-
dimų vengimo metodais, pagrįstais taisyklėmis, gali pagerinti nustatytų našumo
SLO laikymąsi debesų kompiuterijos automatinio masteliavimo sprendimuose.
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