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www.vu.lt/lt/naujienos/ivykiu-kalendorius.

www.vu.lt/lt/naujienos/ivykiu-kalendorius


"Careful. We don’t want to learn from this."
Bill Waterson



To the memory of Irena Toliušienė
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Notations

◦ The composition operator for maps.

≃ The isomorphy relation.

⊕ The direct sum operator.

⊗ The tensor product operator.

× The direct product operator.

𝐴𝑆 The scalar extension 𝑆-algebra 𝐴 ⊗𝑅 𝑆 for 𝑅 a commutative ring, 𝑆 a
commutative 𝑅-algebra and 𝐴 an 𝑅-algebra.

𝐴≥0 The set of nonnegative elements of 𝐴, where 𝐴 is a subset of the real
numbers.

C The field of complex numbers.

D (𝑘) The divisor group of a global field 𝑘 .

𝐷op The opposite algebra of 𝐷. The product of 𝑎𝑏 in 𝐷op is the product 𝑏𝑎
of 𝐷.

deg The degree valuation, extended from the ring of polynomials to the field
of rational functions. May also denote the degree of a central simple
algebra, vector bundle, O𝑋-lattice, O𝑅-lattice, or of a lattice pair.

𝐸∨ The dual of 𝐸 , where 𝐸 is a module (resp. vector bundle, sheaf of
modules, lattice, lattice pair).

End(𝐸) The algebra of endomorphisms of a module, vector bundle,O𝑋-lattice,
O𝑅-lattice, or lattice pair 𝐸 .
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End(𝐸) The vector bundle (resp. O𝑋-lattice, O𝑅-lattice, lattice pair) of endo-
morphisms of the vector bundle (resp. O𝑋-lattice, O𝑅-lattice, lattice
pair) 𝐸 .

𝑓∗ The pullback of 𝑓 on coherent sheaves, where 𝑓 is a morphism of
schemes

𝑓∗ The pushforward of 𝑓 on coherent sheaves, where 𝑓 is a morphism of
schemes

F𝑞 The finite field with 𝑞 elements, where 𝑞 is a power of a prime integer.

𝐹 The Galois closure of a field 𝐹

𝐹 ((𝑋)) The field of formal power series
∑
𝑛≥𝜈 𝑎𝑛𝑋

𝑛 with 𝜈 ∈ Z and the
coefficients 𝑎𝑛 lying in the field 𝐹.

𝐹 (𝑋) The field of rational functions in one variable, with coefficients in the
field 𝐹.

𝐹 (𝑋)∞ The valuation ring of the degree valuation in a field of rational functions
𝐹 (𝑋).

Gal(𝐾/𝑘) The Galois group of a Galois field extension 𝐾/𝑘 .

𝐺𝐿𝑑 (𝑅) The group of invertible square matrices of size 𝑑 with coefficients in
𝑅.

GRH The generalised Riemann hypothesis.

Hom(𝐸, 𝐸 ′) The algebra of homomorphisms between two vector bundles,
O𝑋-lattices, O𝑅-lattices, or lattice pairs 𝐸 and 𝐸 ′.

Hom(𝐸, 𝐸 ′) The vector bundle (resp. O𝑋-lattice, O𝑅-lattice, lattice pair) of
homomorphisms between the vector bundles (resp. O𝑋-lattices, O𝑅-
lattices, lattice pairs) 𝐸 and 𝐸 ′.

𝜅𝑘 The residue field of a local field 𝑘 .

𝐾⊗𝑛 The iterated 𝑛-fold tensor product 𝐾 ⊗𝑘 𝐾 ⊗𝑘 . . . ⊗𝑘 𝐾 , when 𝐾 is a
𝑘-algebra.

𝑀𝑘 The set of places of a global field. Superscrits 𝑛𝑎, 𝑎, 𝑓 𝑖,∞ may indi-
cate, respectively, the subset of non-archimedean places, archimedean
places, finite places and infinite places.
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𝑀𝑑 (𝑅) The 𝑅-algebra of square matrices of size 𝑑 with coefficients in 𝑅.

𝑀𝑚,𝑛 (𝑅) The 𝑅-algebra of matrices of size 𝑚 × 𝑛 with coefficients in 𝑅.

[𝑛] The set of integers {1, 2, . . . , 𝑛}.

[𝑛]0 The set of integers {0, 1, . . . , 𝑛}.

N The set of natural numbers {1, 2, . . .}.

𝑁𝐾/𝑘 The norm map of the field extension 𝐾/𝑘 .

O 𝑓 𝑖 When 𝑘 is an extension of a field of rational functions 𝐹 (𝑋), O 𝑓 𝑖 is the
integral closure of 𝐹 [𝑋] in 𝑘 .

O∞ When 𝑘 is an extension of a field of rational functions 𝐹 (𝑋), O 𝑓 𝑖 is the
integral closure of 𝐹 (𝑋)∞ in 𝑘 .

O𝑅𝑘 The ring of integral répartitions of a function field 𝑘 . The subscript 𝑘
may be omitted when the field is clear from context.

ord𝑃 The normalized valuation associated to a non-archimedean place 𝑃 of
a global field.

O𝑋 The structural sheaf of a scheme 𝑋 .

Q The field of rational numbers.

Q𝑝 The field of 𝑝-adic numbers.

𝑅× The group of units of the ring 𝑅.

R The field of real numbers.

𝑅𝑘 The ring of répartitions of a function field 𝑘 . The subscript 𝑘 may be
omitted when the fiels is clear from context.

𝑅[𝑋] The ring of polynomials with coefficients in the ring 𝑅.

Tr𝐵/𝐴 The trace map of 𝐴-Algebra 𝐵, when 𝐵 is free as an 𝐴-module.

𝑈𝑆 The group of 𝑆-units of a global field.

[𝑉 : 𝑘] The dimension of the 𝑘-vector space 𝑉 .

Z The ring of integers.
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Chapter 1

Introduction

1.1 Research topic

This work focuses on the explicit isomorphism problem and related algorithmic
problems.

Problem 1.1.1 (The explicit isomorphism problem). Given a field 𝑘 and a
𝑘-algebra 𝐴 isomorphic to the matrix algebra 𝑀𝑑 (𝑘) for some 𝑑 ∈ N, compute
an explicit isomorphism 𝜑 : 𝐴→ 𝑀𝑑 (𝑘).

The explicit isomorphism problem is usually studied over a specific field
or class of fields. In our case, we focus on solving the explicit isomorphism
problem for global fields. That is, for number fields and global function fields,
finite extensions of the rational function field 𝐹 (𝑋), where 𝐹 is a finite field.

As we find that vector bundles over normal projective curves are relevant
in studying the explicit isomorphism problem over function fields, we also
consider the algorithmic theory of such vector bundles.

1.2 Actuality

The explicit isomorphism problem emerges as a natural problem in computa-
tional representation theory. Given a 𝑘-algebra 𝐴, one may wish to describe
its structure explicitly. That is, compute the Jacobson radical of 𝐴, and the
decomposition of the semi-simple part of 𝐴 as a sum of simple 𝑘-algebras,
themselves isomorphic to some 𝑀𝑛 (𝐷), for 𝐷 a division 𝑘-algebra. In general,
the hard part of this task is to find an isomorphism 𝐴 → 𝑀𝑛 (𝐷) when 𝐴 is
simple. A general recipe for solving this problem is to identify the Brauer
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class of 𝐷 over its centre 𝐾/𝑘 , find structure constants for 𝑀𝑑 (𝐷op) and then
compute an explicit isomorphism 𝐴 ⊗ 𝑀𝑑 (𝐷op) ≃ 𝑀𝑛2 (𝐾) [23, 37, 49].

Applications of the explicit isomorphism problem go beyond the mere
computational theory of associative algebras. In arithmetic geometry, the
problem is relevant for trivialising obstruction algebras in explicit descent over
elliptic curves [19,20,22,30] and computation of Cassel-Tate pairings [32,96].
The problem also applies to the parametrisation of Severi-Brauer surfaces
[24]. Recent work in algebraic complexity theory reduced the determinant
equivalence test to the explicit isomorphism problem [35]. Finally, the explicit
isomorphism problem over a rational function field 𝐹 (𝑋) (𝐹 finite) is also
relevant to error correcting codes [37].

In the case of a finite base field, Ronyái introduced a polynomial-time
algorithm for the explicit isomorphism problem in [70].

Instances of the explicit isomorphism problem for Q-algebras were first
treated separately for small values of 𝑑. When 𝑑 = 2, the problem reduces
to finding a rational point on a projective conic [91, Theorem 5.5.4], which is
solved for instance in [21]. Then, [24] presented a subexponential algorithm
when 𝑑 = 3 by finding a cyclic presentation and solving a cubic norm equation.
The case 𝑑 = 4 is tackled in [66] by reducing the problem to the case of
quaternion algebras over Q and quadratic number fields and then solving a
quadratic norm equation.

In [22], an algorithm was given and studied mostly for the cases 𝑑 = 3 and
𝑑 = 5. It was then generalised in [47,49] to a 𝐾-algebra isomorphic to 𝑀𝑑 (𝐾),
where 𝑑 is a natural number and 𝐾 is a number field. The complexity of this
last algorithm is polynomial in the size of the structure constants of the input
algebra. However, it depends exponentially on 𝑑, the degree of 𝐾 and the size
of the discriminant of 𝐾 .

In 2018, [46] exhibited a polynomial-time algorithm for the explicit iso-
morphism problem over 𝐹 (𝑋), where 𝐹 is a finite field.

For the case of fixed 𝑑 and varying base field, [31, 54] independently gave
an algorithm for an algebra isomorphic to 𝑀2(𝐾), where 𝐾 is a quadratic
number field. The complexity of this algorithm is polynomial in the size of the
discriminant of 𝐾 .

While the methods of [46] are entirely algebraic, we argue in Section 5.3.1
that the main theoretical result supporting the algorithm admits a natural in-
terpretation as a famous theorem of Grothendieck on the structure of vector
bundles over the projective line. As Grothendieck’s theorem does not hold for
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function fields of higher genus, the method of [46] does not generalise directly
to such fields. However, our geometric interpretation of this method suggests
that progress may follow from existing results on the structure of vector bundles
over normal projective curves of higher genus. This observation suggests the
relevance of developing an algorithmic theory for representing vector bundles
over normal projective curves using pairs of lattices.

1.3 Aims

This thesis presents new methods for solving the explicit isomorphism problem
over global fields. Over number fields, we aim to provide a novel cohomological
description of central simple algebras that is fit for practical computations and
to study the impact of such a tool in solving the explicit isomorphism problem
over number fields. Over function fields, we aim to develop an algorithmic
theory of vector bundles, relying on the theory of lattices over maximal orders.

1.4 Main Results

For a field 𝑘 and an étale 𝑘-algebra 𝐾 , we define a group 𝑍2
𝐴𝑚

(𝑘, 𝐾) ⊂
(𝐾⊗3)×, a subgroup 𝐵2

𝐴𝑚
(𝑘, 𝐾) and we consider the factor group 𝐻2

𝐴𝑚
(𝑘, 𝐾) =

𝑍2
𝐴𝑚

(𝑘, 𝐾)/𝐵2
𝐴𝑚

(𝑘, 𝐾). We then define the Amitsur algebra 𝐴(𝐾, 𝑐) for
𝑐 ∈ 𝑍2

𝐴𝑚
(𝑘, 𝐾) whose underlying 𝑘-vector space is 𝐾⊗2, and prove the fol-

lowing classification result:

Theorem 1.4.1. Let 𝑘 be a field and let 𝐾 be an étale 𝑘-algebra of dimension
𝑑. Let 𝑐 ∈ 𝐾⊗3. Then, 𝐴(𝐾, 𝑐) is a central simple 𝑘-algebra if and only
if 𝑐 ∈ 𝑍2

𝐴𝑚
(𝑘, 𝐾). In this case, 𝐴(𝐾, 𝑐) has degree 𝑑 and contains 𝐾 as

a maximal commutative subalgebra. Conversely, if 𝐴 is a central simple
𝑘-algebra containing 𝐾 as a maximal commutative subalgebra, there exists
𝑐 ∈ 𝑍2

𝐴𝑚
(𝑘, 𝐾) such that the algebra 𝐴(𝐾, 𝑐) is isomorphic to 𝐴.

This yields an isomorphism𝐻2
𝐴𝑚

(𝑘, 𝐾) ≃ Br(𝐾/𝑘) with the relative Brauer
group of 𝐾 over 𝑘 .

Fix a polynomial 𝜒 ∈ 𝑘 [𝑋] such that there is an isomorphism 𝐾 ≃
𝑘 [𝑋]/(𝜒(𝑋)). We consider the algebras 𝐾1 = 𝑘 [𝑋,𝑌 ]/(𝜒(𝑋), 𝜒(𝑌 )) and
𝐾2 = 𝑘 [𝑋,𝑌, 𝑍]/(𝜒(𝑋), 𝜒(𝑌 ), 𝜒(𝑍)). Observe that for 𝑛 ∈ [2], the algebra
𝐾𝑛 is naturally isomorphic to 𝐾⊗𝑛+1 and that its elements may be represented
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computationally as residue classes of polynomials. We prove algorithmic re-
sults on Amitsur algebras:

Theorem 1.4.2. Identifying elements of 𝑍2
𝐴𝑚

(𝑘, 𝐾) with their images in 𝐾2 and
identifying 𝐴(𝐾, 𝑐) with 𝐾1 as a 𝑘-vector space, we have the following results:

1. There is a polynomial algorithm which, given 𝜒, 𝑐 ∈ 𝑍2
𝐴𝑚

(𝑘, 𝐾), and 𝛼
and 𝛽 in 𝐴(𝐾, 𝑐), computes 𝛼𝛽;

2. There is a probabilistic polynomial algorithm which, given a central
simple 𝑘-algebra 𝐴, computes a maximal commutative subalgebra 𝐾 ⊂
𝐴, a polynomial 𝜒 such that 𝐾 ≃ 𝑘 [𝑋]/(𝜒(𝑋)), 𝑐 ∈ 𝑍2

𝐴𝑚
(𝑘, 𝐾) and an

isomorphism of 𝑘-algebras from 𝐴 to 𝐴(𝐾, 𝑐).

As an application of our construction of Amitsur algebras, we prove the
following result:

Theorem 1.4.3. Under GRH, Algorithm 2 is a polynomial quantum algorithm
that solves the explicit isomorphism problem over number fields.

Let 𝑋 be a normal projective curve over a finite field 𝐹, and let 𝑘 be its
function field. Let O 𝑓 𝑖 and O∞ be the integral closures in 𝑘 respectively of
𝐹 [𝑋] and of 𝐹 (𝑋)∞ = {𝑅 ∈ 𝑘 (𝑋) : deg 𝑅 ≤ 0}. A lattice pair of rank 𝑛 on 𝑘
is the data of a projective O 𝑓 𝑖-submodule 𝐿 𝑓 𝑖 of 𝑘𝑛 and a free O∞-submodule
𝐿∞ of 𝑘𝑛 such that 𝑘𝐿 𝑓 𝑖 = 𝑘𝐿∞ = 𝑘𝑛. We prove the following:

Theorem 1.4.4. The category of vector bundles over 𝑋 is equivalent to the
category of lattice pairs of 𝑘 .

We provide a computational representation of lattice pairs over a function
field 𝑘 . We let LP be the functor from the category of vector bundles to that of
lattice pairs discussed above. We then get several algorithmic results. Unless
specified otherwise, in the theorem stated below, 𝐸 and 𝐸 ′ are vector bundles
over 𝑋 .

Theorem 1.4.5. 1. There is a polynomial algorithm which, given LP(𝐸),
computes LP(det(𝐸)).

2. There is a polynomial algorithm which, given LP(𝐸), computes deg(𝐸).

3. There is a polynomial algorithm which, given LP(𝐸) and LP(𝐸 ′), com-
putes LP(𝐸 ⊗ 𝐸 ′).
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4. There is a polynomial algorithm which, given LP(𝐸) and LP(𝐸 ′), com-
putes LP(𝐸 ⊕ 𝐸 ′).

5. There is a polynomial algorithm which, given LP(𝐸), computes LP(𝐸∨).

6. There is a polynomial algorithm which, given LP(𝐸) and LP(𝐸 ′), com-
putes LP(Hom(𝐸, 𝐸 ′)).

7. Let 𝑓 : 𝑌 → 𝑋 be a morphism of normal projective curves. There is a
polynomial algorithm which, given LP(𝐸) for 𝐸 a vector bundle over 𝑌 ,
computes LP( 𝑓∗(𝐸)).

8. Let 𝑓 and 𝑌 be as above. There is a polynomial algorithm which, give
LP(𝐸) for 𝐸 a vector bundle over 𝑋 , computes the lattice pair LP( 𝑓 ∗(𝐸))
over the function field of 𝑌 .

9. There is a polynomial algorithm which, given LP(𝐸), computes a basis
of 𝐻0(𝑋, 𝐸).

10. There is a polynomial algorithm which, given LP(𝐸), computes a basis
of 𝐻1(𝑋, 𝐸).

11. There is a polynomial algorithm which, given LP(𝐸), LP(𝐸 ′) and 𝜉 ∈
𝐻1(Hom(𝐸, 𝐸 ′)), computes LP(𝐸 ′′), where 𝐸 ′′ is the extension of 𝐸 by
𝐸 ′ corresponding to 𝜉.

12. There is a polynomial algorithm which, given an oracle for computing
Hermite normal form of pseudo matrices over O 𝑓 𝑖 , lattice pairs LP(𝐸)
and LP(𝐸 ′), and a matrix representing LP( 𝑓 ), for a homomorphism
𝑓 : 𝐸 → 𝐸 ′, computes LP(Ker( 𝑓 )).

13. There is a polynomial algorithm which, given an oracle for computing
Hermite normal form of pseudo matrices over O 𝑓 𝑖 , lattice pairs LP(𝐸)
and LP(𝐸 ′), and a matrix representing LP( 𝑓 ), for a homomorphism
𝑓 : 𝐸 → 𝐸 ′, computes LP(Im( 𝑓 )).

14. There is a polynomial algorithm which, given an oracle for comput-
ing Hermite normal forms of pseudo-matrices over O 𝑓 𝑖 and a lattice
pair LP(𝐸), computes LP(𝐸1), . . . ,LP(𝐸𝑟 ) such that the vector bundles
𝐸1, . . . , 𝐸𝑟 are indecomposables, and an isomorphism LP( 𝑓 ) between
LP(𝐸) and LP(𝐸1 ⊕ . . . ⊕ 𝐸𝑟 ).
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15. There is a polynomial algorithm which, given an oracle for computing
Hermite normal forms of pseudo-matrices overO 𝑓 𝑖 , and two lattice pairs
LP(𝐸) and LP(𝐸 ′), decides whether 𝐸 and 𝐸 ′ are isomorphic and, if
they are, computes an isomorphism LP( 𝑓 ).

The algorithms for lattice pairs discussed above were all implemented as a
package1 for Sagemath. [89]

1.5 Methods

In [55], Theorem 1.4.1 is proved by showing that our construction of Amitsur
algebras is equivalent to the construction of Brauer algebras, and then leveraging
existing results on Brauer algebras, which appear in [51, Chapter 2]. In this
work, we give a direct proof instead, as suggested in [55, Remark 3.8].

Let 𝑘 be a global field, let 𝑅 be an étale 𝑘-algebra and let 𝑆 be an 𝑅-algebra
which is étale over 𝑘 and free as an 𝑅-module. Letting 𝑆⊗𝑛 be the 𝑛-fold tensor
product 𝑆 ⊗𝑅 . . . ⊗𝑅 𝑆, we recall the definition of the Amitsur complex. For
𝑛 ∈ Z≥0 and 𝑖 ∈ [𝑛 + 1]0, we define the 𝑅-algebra homomorphisms

𝜀𝑛
𝑖

: 𝑆⊗𝑛+1 → 𝑆⊗𝑛+2

𝑎0 ⊗ . . . ⊗ 𝑎𝑛 ↦→ 𝑎0 . . . 𝑎𝑖−1 ⊗ 1 ⊗ 𝑎𝑖 ⊗ . . . ⊗ 𝑎𝑛

and the group homomorphisms

𝜕𝑛
𝐴𝑚

: (𝑆⊗𝑛+1)× → (𝑆⊗𝑛+2)×

𝑥 ↦→ ∏
𝑖∈[𝑛+1]0 𝜀

𝑛
𝑖
(𝑥)−1𝑖 .

The Amitsur complex of 𝑆 over 𝑅 is the following sequence of group
homomorphisms:

𝑆×
𝜕0
𝐴𝑚−−−→ (𝑆⊗2)×

𝜕1
𝐴𝑚−−−→ (𝑆⊗3)×

𝜕2
𝐴𝑚−−−→ . . .

For 𝑛 ∈ Z≥0, we may then set 𝑍𝑛
𝐴𝑚

(𝑅, 𝑆) = Ker 𝜕𝑛
𝐴𝑚

and, if 𝑛 ≥ 1, 𝐵𝑛
𝐴𝑚

(𝑅, 𝑆) =
Im 𝜕𝑛−1

𝐴𝑚
. If 𝑐 ∈ 𝑆⊗3, the Amitsur algebra 𝐴(𝑆, 𝑐) is defined as the 𝑅-module

𝑆⊗2 with multiplication

𝑥𝑦 = Tr1
1(𝜀

1
2 (𝑥)𝑐𝜀

1
0 (𝑦)), (1.1)

where Tr1
1 is the trace map 𝑆⊗3 → 𝑆⊗2, where 𝑆⊗3 is seen as a 𝑆⊗2-algebra via

the map 𝜀1
1 : 𝑆⊗2 → 𝑆⊗3.

1https://git.disroot.org/montessiel/vector-bundles-sagemath
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The various statements of Theorem 1.4.1 are proved by detailed algebraic
computations, but a pivotal argument relies on the sequence of isomorphisms
coming from extending scalars to 𝑆. That is, for any 𝑅-algebra 𝐴, we let 𝐴𝑆 be
the 𝑆-algebra 𝐴 ⊗𝑅 𝑆. Then, we show that

𝐴(𝑆, 𝑐)𝑆 ≃ 𝐴(𝑆𝑆 , 𝑐 ⊗ 1) ≃ End𝑆 (𝑆𝑆).

Many results about 𝐴(𝑆, 𝑐) are then inherited from End𝑆 (𝑆𝑆).
Theorem 1.4.2 is proved in two parts. The existence of an algorithm for

computing products in Amitsur algebras follows directly from the straightfor-
ward statement of Equation (1.1) and the fact that

Tr1
1(𝑎0 ⊗ 𝑎1 ⊗ 𝑎2) = Tr𝑆/𝑅 (𝑎1)𝑎0 ⊗ 𝑎2.

In order to construct a representation of a given central simple algebra as an
Amitsur algebra, we rely on two facts:

1. If 𝐴 is a central simple 𝑘-algebra, elements 𝑢 ∈ 𝐴 such that 𝐾 = 𝑘 [𝑢] is
a maximal commutative subalgebra of 𝐴 and 𝑣 ∈ 𝐴 such that 𝐴 = 𝐾𝑣𝐾

may be computed efficiently.

2. Once 𝑢, 𝐾 , and 𝑣 are given as above, we get an isomorphism 𝐾⊗2 ≃ 𝐴

sending 𝑎0 ⊗ 𝑎1 to 𝑎0𝑣𝑎1. Finding 𝑐 ∈ 𝐾⊗3 such that multiplication in
𝐴 matches Equation (1.1) is then a matter of solving a system of linear
equations.

The method to prove Theorem 1.4.3 relies on the existence of a polynomial
quantum algorithm for computing groups of 𝑆-units in number fields [9]. We
prove a theorem that generalises [29, Theorem 7] to our setting of Amitsur
cohomology. That is, we prove that if 𝑐 ∈ 𝐵2

𝐴𝑚
(𝑘, 𝐾), then there are certain

sets 𝑆 (1) , 𝑆 (2) of places respectively of 𝐾⊗2 and 𝐾⊗3 such that 𝑐 lies in the
group of 𝑆 (2) -units of 𝐾⊗3 and a preimage 𝑎 of 𝑐 by 𝜕1

𝐴𝑚
lies in the group of

𝑆 (1) -units of 𝐾⊗2. Since such groups of units are finitely generated abelian
groups, the map 𝜕1

𝐴𝑚
, once restricted, may be seen as a linear map between

Z-modules, and one may compute a preimage using existing algorithms for
linear algebra over Z. We note that the dependence on GRH stems from the
necessity for the 𝑆 (𝑛) to contain all the places lying above a set of places of 𝐾
that generate its class group. GRH provides a polynomial upper bound on the
minimal size of a set of generators of the class group of a number field and,
therefore, of an étale algebra over a number field.
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Our proof of a generalisation of [29, Theorem 7] follows the structure of
Fieker’s proof, but we face new difficulties owing to our more general setting.
The fundamental lemma in the original proof, [29, Lemma 9], is a vanishing
theorem of the 𝐻1 group over the group of divisors of a number field. This
generalises Hilbert’s Theorem 90 on the triviality of the 𝐻1 group of the
multiplicative group of a field. In our case, we must handle both number fields
and étale algebras over number fields. Therefore, we must introduce definitions
of places and divisors for étale algebra and prove some primary results we could
not locate in the literature.

Theorem 1.4.4 is straightforward to prove from definitions. Lattice pairs are
convenient to represent computationally because O 𝑓 𝑖-lattices and O∞-lattices
are so. Indeed, O 𝑓 𝑖 is a Dedekind domain, so an O 𝑓 𝑖-lattice is of the form
𝔞1𝑥1 ⊕ . . . ⊕ 𝔞𝑛𝑥𝑛, where the 𝔞𝑖 are fractional O 𝑓 𝑖-ideals in 𝑘 and the 𝑥𝑖 form
a basis of 𝑘𝑛. Such a lattice may be represented by the data of a matrix in
𝐺𝐿𝑛 (𝑘) and a tuple (𝔞1, . . . , 𝔞𝑛) of fractional O 𝑓 𝑖-ideals. Since the ring O∞
is a PID, an O∞-lattice admits a basis and may be represented by a matrix in
𝐺𝐿𝑛 (𝑘).

Several algorithms presented in Theorem 1.4.5 follow directly from defi-
nitions. Some others require more sophisticated methods, which we discuss
below. In what follows, for a lattice pair 𝐿, we denote by 𝐿 𝑓 𝑖 the corresponding
O 𝑓 𝑖-lattice and by 𝐿∞ the corresponding O∞-lattice.

• In Item 9, we compute the 𝐻0 group of a lattice pair 𝐿. This algorithm
is a generalisation of the Riemann-Roch problem for divisors of function
fields. The method we use relies on the computation of the Popov reduced
form of a matrix over 𝐹 (𝑋) and is a generalisation of the method of [45].
We note that this method also serves in [46] for a pair of maximal orders
in a 𝐹 (𝑋)-algebra, which is a particular case of lattice pair. As we prove
that 𝐻0(𝐿) = 𝐿 𝑓 𝑖 ∩ 𝐿∞, we compute the intersection of lattices using
a Popov reduced basis of 𝐿 𝑓 𝑖 with respect to a basis of 𝐿∞. A Popov
reduced basis is analogous to an orthogonal basis of a Z-module and
allows for a straightforward computation of 𝐿 𝑓 𝑖 ∩ 𝐿∞ as a set of small
elements of 𝐿 𝑓 𝑖 .

• In Item 10, computing the 1st cohomology group 𝐻1(𝐿) of a lattice pair
𝐿 of rank 𝑛 presents more difficulties. Adapting the approach from [94],
the 𝐻1 group of a lattice pair is defined as the quotient 𝐹-vector space
𝑅𝑛
𝑘
/(𝐿′+ 𝑘𝑛), where 𝑅𝑘 is the ring of répartitions of 𝑘 , and 𝐿′ is a certain

20



lattice contained in 𝑅𝑛
𝑘

and determined by 𝐿. This computation presents
several difficulties: elements of 𝑅𝑘 are infinite tuples of elements of 𝑘 and
are therefore not generally computationally representable. There is also
no obvious way to check that representable elements of 𝑅𝑛

𝑘
lie in the same

equivalence class or to produce a complete system of representatives. The
most obvious way to circumnavigate these difficulties is to rely on Serre
duality, which gives an isomorphism between the group 𝐻1(𝐿) and the
dual 𝐹-vector space of 𝐻0(𝐿′′), where 𝐿′′ is a lattice pair determined by
𝐿. While this is sufficient for computing the 𝐹-dimension of 𝐻1(𝐿), we
need the representation of elements of𝐻1(𝐿) as residue classes of vectors
of répartitions for computing extensions of lattice pairs (see Item 11). To
achieve this, we linearise an explicit Serre duality formula by restricting
it to a subset of 𝑅𝑛

𝑘
, which is a finite-dimensional 𝐹-vector space. We

may then efficiently compute preimages of elements lying in the dual of
an 𝐻0 space and obtain computational representations of elements lying
in each equivalence class of 𝐻1(𝐿).

• Let 𝜉 be an extension of vector bundles over 𝑋 given by the exact sequence

0 → 𝐺 → 𝐸 → 𝐹 → 0.

A straightforward application of the snake lemma to a commutative
diagram built using flasque resolutions of the vector bundlesHom(𝐹, 𝐺),
Hom(𝐹, 𝐸) and Hom(𝐹, 𝐹), we may associate to the extension 𝜉 an
element of 𝐻1(Hom(𝐹, 𝐺)), whose description as a residue class of
vectors of répartitions itself yields an explicit description of LP(𝐸).

• Computing kernels and images of homomorphisms is a straightforward
application of known results on the Hermite Normal Form.

• The category of vector bundles, and therefore that of lattice pairs, is a
Krull-Schmidt category [4]. It follows that the structure of a lattice pair’s
endomorphism algebra entirely determines how it splits as a direct sum
of indecomposables. More specifically, let 𝐴 be the semi-simple quotient
of the 𝐹-algebra of endomorphisms of 𝐿. We have an isomorphism

𝐴 ≃ 𝑀𝑛1 (𝐷1) ⊕ . . . ⊕ 𝑀𝑛𝑠 (𝐷𝑠),

where the 𝐷𝑖 are division 𝐹-algebras. Then, 𝐿 has the following splitting
pattern:

𝐿 ≃ 𝐿
𝑛1
1 ⊕ . . . ⊕ 𝐿𝑛𝑠𝑠 ,
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where the 𝐿𝑖 are indecomposable and 𝐷𝑖 is the semi-simple quotient of
the endomorphism algebra of 𝐿𝑖 . Therefore, computing the splitting of a
lattice pair reduces to the tasks of computing its endomorphism algebra,
computing the central idempotents of its semi-simple quotient and then
computing the images of these idempotent endomorphisms. The endo-
morphism algebra is the 𝐻0 space of the lattice pairs of homomorphisms
and is therefore computed by combining Items 6 and 9. Computing the
structure of an algebra over a finite field is the object of [70]. Finally, we
may compute images of endomorphisms by Item 13.

• When the base field 𝐹 is large enough (larger than the rank of 𝐿, that
is), finding an isomorphism between lattice pairs may be done by taking
random homomorphisms. With enough trials, either an isomorphism
is found, or the two lattice pairs are not isomorphic with overwhelm-
ing probability. When the base field is small, computing the splitting
pattern of both input lattice pairs reduces the problem to computing iso-
morphisms between indecomposable objects. This task, in turn, is done
by computing the structure of the endomorphism algebra of their direct
sum. Indeed, if both lattice pairs are isomorphic, the semi-simple part of
the endomorphism algebra will have the form 𝑀2(𝐷), with 𝐷 a division

𝐹-algebra. Furthermore, the morphism corresponding to

(
0 0
1 0

)
yields

an isomorphism. On the other hand, if the lattice pairs are not isomor-
phic, the semi-simple quotient of the endomorphism algebra will be of
the form 𝐷1 ⊕ 𝐷2, where the 𝐷𝑖 are division 𝐹-algebras.

1.6 Novelty

The Amitsur algebras we introduce are novel, although presentations of central
simple algebras and Azumaya algebras using Amitsur (or étale) cohomology
are already known [2, 14, 18, 73]. Our construction stands out as we sacri-
fice generality for practicality: multiplication in an Amitsur algebra follows a
straightforward formula involving its defining Amitsur cocycle. This Amitsur
algebra presentation generalises existing cyclic and crossed-product presenta-
tions and is, in fact, equivalent to the Brauer algebra presentation [55]. Our
presentation, however, hits a sweet spot given by Theorem 1.4.2. Indeed, cyclic
and crossed-product presentations only satisfy the first item of the theorem, but
computing a cyclic (resp. crossed-product) presentation of a given central
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simple algebra requires the knowledge of a maximal commutative subalgebra
that is a cyclic extension (resp. a Galois extension) of the base field. To our
knowledge, there is no efficient algorithm to compute such a subalgebra.

On the other hand, while constructing a Brauer presentation theoretically
only requires the knowledge of any maximal commutative subalgebra, the
representation of Brauer algebras and Brauer factor sets involves elements
of a normal splitting field of this subalgebra. Results in arithmetic statistics
suggest that, with overwhelming probability, a random commutative maximal
subalgebra of a matrix algebra of degree 𝑑 is an extension of the base field
with Galois group 𝔖𝑑 [28]. Computation in a normal splitting field for such
an extension is therefore not tractable, as the degree of such a field is 𝑑!.
Therefore, the fact that both items of Theorem 1.4.2 hold is a novel property of
our Amitsur algebra construction.

Theorem 1.4.3 is essentially a generalisation to Amitsur cohomology of
results from [29, 82]. While our proof strategy is analogous to that of [29,
Theorem 7], our setting presents additional difficulties. Indeed, it requires
a theory of divisors of étale algebras over global fields and their splitting
behaviour. While the results we prove and use are certainly very accessible to
experts, we could not locate a reference to them in the literature, and they may
be of independent interest.

To our knowledge, no conditional polynomial quantum algorithm is known
for the explicit isomorphism problem on number fields. Known classical
algorithms either focus on restricted versions of the problem (restricting either
the base field or the degree of the algebra) or have exponential complexity in
some parameters. Therefore, our algorithm is the first polynomial quantum
algorithm and the first subexponential classical algorithm to solve the explicit
isomorphism problem for number fields under GRH.

Computations on vector bundles on projective curves are a particular case
of computation on coherent sheaves over projective schemes, where algorithms
using Gröbner bases follow from Serre’s description of coherent sheaves as
graded modules [78]. This is the representation that, for instance, Sagemath
and Magma [10,89] use. Increasingly efficient methods have been developed to
compute the cohomology groups of such sheaves, for instance, in [27, 61, 83].

Our approach is smaller in scope but allows for more specialised algorithms
and representations. To our knowledge, this approach of computationally
representing vector bundles as pairs of lattices is novel. Our representation of
vector bundles as lattices over a ring of integral répartitions is similar to Weng’s
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unpublished work on so-called adelic vector bundles [93]. The computation of
0th cohomology groups is a generalisation of known methods for computing
Riemann-Roch spaces [45] and intersections of orders [46]. Our method for
explicitly computing Serre duality isomorphisms is also novel to our knowledge.
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1.9 Structure of the thesis

We recall the basic theory of global fields and then present existing algorithms
used in the sequel in Chapter 2. Section 2.1 presents theoretical results. In
particular, Section 2.1.5 present several results that are likely well-known by
experts but which we could not locate in the literature and may be of independent
interest. Section 2.2 then presents known algorithms for the computational
treatment of global fields.

We recall well-known results on finite-dimensional algebras, central simple
algebras and the Brauer group in Chapter 3. Section 3.1 presents known results
on the structure and algorithmic treatment of finite-dimensional associative
algebras, Section 3.2 introduces the theory of central simple algebras, with
a focus on cohomological presentations, Section 3.3 discussed the computa-
tional treatment of these cohomological presentations, and Section 3.4 presents
variants of the explicit isomorphism problem and discusses some of the main
known algorithms solving it.

We present our cohomological presentation of central simple algebra and
our polynomial quantum algorithm for solving the explicit isomorphism prob-
lem under GRH in Chapter 4. Section 4.1 recalls the definitions of Amitsur
cohomology, Section 4.2 introduces our version of Amitsur algebras and proofs
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that they classify central simple algebras, while Section 4.3 gives our algorith-
mic treatment of Amitsur algebras.

We discuss our algorithmic treatment of vector bundles in Chapter 5. Sec-
tion 5.1 presents the theoretical results, representing vector bundles as lattices
over a ring of integral répartitions, Section 5.2 presents the algorithmic treat-
ment of lattice pairs, our computational representation of vector bundles, and
Section 5.3 presents some examples of practical computations made using our
algorithms.
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Chapter 2

Computing in global fields

This this chapter briefly recalls some results in the algorithmic theory of global
fields.

2.1 Background on algebraic number theory

We recall the basic definitions and results of algebraic number theory.

2.1.1 Local Field

A local field is a topological field that is non-discrete and locally compact.
By [92, Section I.3], such a field is always isomorphic to one of the following
variants:

1. The field of real numbers R.

2. The field of complex numbers C.

3. A finite extension of the field Q𝑝 of 𝑝-adic numbers, for 𝑝 a prime
number.

4. A field F((𝑋)) of formal power series over a finite field F.

The fields of real and complex numbers are called Archimedean local fields
while the others are non-Archimedean local fields. The topology of any local
field is metric and comes from an absolute value (among a class of equivalent
absolute values).

Definition 2.1.1 ( [63, Definition II.3.1]). Let 𝑘 be a field. An absolute value
over 𝑘 is a map | · | : 𝑘 → R≥0 such that
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1. for 𝑎 ∈ 𝑘 , |𝑎 | = 0 if and only if 𝑎 = 0;

2. for 𝑎, 𝑏 ∈ 𝑘 , |𝑎𝑏 | = |𝑎 | |𝑏 |;

3. for 𝑎, 𝑏 ∈ 𝑘 , |𝑎 + 𝑏 | ≤ |𝑎 | + |𝑏 |.

If, furthermore, for 𝑎, 𝑏 ∈ 𝑘 , |𝑎 + 𝑏 | ≤ max( |𝑎 |, |𝑏 |), then the absolute
value | · | is said to be non-Archimedean. Two absolute values | · |1 and | · |2 over
a field 𝑘 are said to be equivalent if there exists 𝛼 ∈ R>0 such that | · |1 = | · |𝛼2 .

If 𝑘 is a local field with absolute value | · |𝑘 , and 𝐾 is a finite extension of 𝑘 ,
then by [13, Section II.11], 𝐾 is a local field when given the topology induced
by the absolute value | · |𝐾 defined by

|𝑎 |𝐾 =
��𝑁𝐾/𝑘 (𝑎)

��
𝑘
.

Observe that if 𝑎 ∈ 𝑘 ,
|𝑎 |𝐾 = |𝑎 | [𝐾 :𝑘 ]

𝑘
.

Let 𝑘 be a non-Archimedean local field with absolute value | · |𝑘 . As
in [13, Section II.7], the valuation ring of 𝑘 is the discrete valuation ring

O𝑘 = {𝑎 ∈ 𝑘 : |𝑎 |𝑘 ≤ 1}.

The unique maximal ideal of O is

𝔪𝑘 = {𝑎 ∈ 𝑘 : |𝑎 |𝑘 < 1},

and the residue field of 𝑘 is
𝜅𝑘 = O/𝔪.

Note that 𝜅 is always a finite field, and its characteristic is 𝑝, where 𝑘 is either
an extension of Q𝑝 or of the form F𝑞 ((𝑡)), where 𝑞 is a power of 𝑝.

For a local field 𝑘 , we define its normalised absolute value as in [13, Section
II.11]:

1. If 𝑘 ≃ R, the normalised absolute value of 𝑘 is the usual real absolute
value.

2. If 𝑘 ≃ C, the normalised absolute value of 𝑘 is the square of the usual
complex absolute value.

3. If 𝑘 is non-Archimedean, set 𝑞 = |𝜅𝑘 |. Then, the normalised absolute
value of 𝑘 is the unique absolute value of 𝑘 , whose values are precisely
the integral powers of 𝑞.
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We now consider a finite extension 𝐾/𝑘 of non-archimedean local fields
and follow [13, Section I.5]. Then, we have O𝑘 ⊂ O𝐾 and 𝔪𝑘 ⊂ 𝔪𝐾 , so 𝜅𝐾
is a field extension of 𝜅𝑘 . It is finite, and its degree, which we denote by 𝑓𝐾/𝑘 ,
is called the inertia degree of the extension 𝐾/𝑘 . Furthermore, if the field 𝑘 is
non-Archimedean, 𝔪𝑘O𝐾 is an ideal of 𝔪𝐾 , and we have 𝔪𝑘O𝐾 = 𝔪

𝑒𝐾/𝑘
𝐾

for
some 𝑒𝐾/𝑘 ∈ N. Then 𝑒𝐾/𝑘 , is called the ramification degree of the extension
𝐾/𝑘 , and we have [13, Proposition I.5.3]:

𝑒𝐾/𝑘 𝑓𝐾/𝑘 = [𝐾 : 𝑘] .

If 𝐿 is a finite extension of 𝐾 , we have [13, Proposition I.5.1]:

𝑓𝐾/𝑘 = 𝑓𝐿/𝐾 𝑓𝐾/𝑘 ,

and
𝑒𝐿/𝑘 = 𝑒𝐿/𝐾𝑒𝐾/𝑘

if 𝑘 is non-Archimedean.
We next prove a lemma on the tensor product of unramified extensions of

local fields.

Lemma 2.1.2. Let 𝑘 be a non-Archimedean local field, and let 𝐾 and 𝐿 be
finite non-ramified separable extensions of 𝑘 . Then, the direct factors of 𝐾 ⊗𝑘 𝐿
are unramified extensions of 𝑘 .

Proof. By [13, Proposition I.7.1], there exist an irreducible monic polynomial
𝜒 ∈ O𝑘 [𝑋] such that 𝐿 ≃ 𝑘 [𝑋]/(𝜒(𝑋)) and the respective residue polynomial
�̄� of 𝜒 in 𝜅𝑘 [𝑋] is irreducible and separable. Then, we have

𝐾 ⊗𝑘 𝐿 ≃ 𝐾 [𝑋]/(𝜒(𝑋)).

Consider the factorisation 𝜒(𝑋) = 𝜒1(𝑋) . . . 𝜒𝑟 (𝑋) in O𝐾 [𝑋], and set 𝐾𝑖 =
𝐾 [𝑋]/(𝜒𝑖 (𝑋)). The factors 𝜒𝑖 are pairwise coprime since 𝜒 is a separable
polynomial, so

𝐾 ⊗𝑘 𝐿 ≃ 𝐾1 × . . . × 𝐾𝑟 .

Now, fix 𝑖 ∈ [𝑟]. The residue polynomial �̄�𝑖 is a factor of �̄� in 𝜅𝐾 [𝑋],
and is therefore separable. Then, by Hensel’s lemma (see e.g [63, Lemma
II.4.6]), �̄�𝑖 is irreducible in 𝜅𝐾 [𝑋] because 𝜒𝑖 is so in O𝐾 [𝑋]. It follows
by [13, Proposition I.7.1 (ii)] that 𝐾𝑖 is a non ramified extension of 𝐾 , and
therefore of 𝑘 . □
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2.1.2 Global Fields

As in [92, Section III.1], a global field (𝐴-field in the terminology of Weil’s
book) is a field of one of the two forms below:

1. A number field. That is a finite extension of the rational field Q.

2. A global function field. That is, a finitely generated extension of a finite
field F, with transcendence degree 1 over F.

Places of a global field

We follow here the exposition from [92, Section III.1]. Let 𝑘 be a global field.
Two embeddings 𝜆 : 𝑘 → 𝐾 and 𝜇 : 𝑘 → 𝐿 into field extensions are called
equivalent if there exists an isomorphism 𝜑 : 𝐾 → 𝐿 such that 𝜇 = 𝜑 ◦ 𝜆. A
fundamental concept in the theory of global fields is that of a place:

Definition 2.1.3 ( [92, Definition III.1.2]). A place of 𝑘 is an equivalence class
of embeddings 𝜆 : 𝑘 → 𝐾 , where 𝑘 is a local field and 𝜆(𝑘) is dense in 𝐾 .
The class of 𝜆 is called an Archimedean (resp. non-Archimedean) place if 𝐾
is itself Archimedean (resp. non-Archimedean).

We denote the set of places of 𝑘 by 𝑀𝑘 . We also write 𝑀𝑎
𝑘

for the set of
Archimedean places of 𝑘 and 𝑀𝑛𝑎

𝑘
for the set of non-Archimedean places of 𝑘 .

Let 𝑃 ∈ 𝑀𝑘 . We let 𝑘𝑃 be a local field that is the codomain of an embedding
contained in the class 𝑃. Then 𝑘𝑃 and a subfield isomorphic to 𝑘 are defined
up to isomorphism. We let | · |𝑃 be the absolute value on 𝑘 defined as the
restriction to 𝑘 of the normalised absolute value of 𝑘𝑃. This absolute value is
independent of the choice of 𝑘𝑃. If 𝑃 is a non-Archimedean place, we also set

O𝑃 = {𝑎 ∈ 𝑘 : |𝑎 |𝑃 ≤ 1} = O𝑘𝑃 ∩ 𝑘,

𝔪𝑃 = {𝑎 ∈ 𝑘 : |𝑎 |𝑃 < 1} = 𝔪𝑘𝑃 ∩ 𝑘,

and
𝜅𝑃 = O𝑃/𝔪𝑃 ≃ 𝜅𝑘𝑃 .

For any 𝑎 ∈ 𝑘×, we have |𝑎 |𝑃 = |𝜅𝑃 |𝑛 for some 𝑛 ∈ Z. We set ord𝑃 (𝑎) = −𝑛.
We then have ord𝑃 (𝑎𝑏) = ord𝑃 (𝑎)+ord𝑃 (𝑏) and ord𝑃 (𝑎+𝑏) ≥ min(ord𝑃 (𝑎)+
ord𝑃 (𝑏). We call ord𝑃 the valuation of 𝑘 at 𝑃.

We observe that for any non-trivial absolute value |.| of 𝑘 , there is a place
𝑃 of 𝑘 such that |.| is equivalent to |.|𝑃. Indeed, the completion of 𝑘 for the
topology induced by |.| is a local field, and the natural embedding of 𝑘 into its
completion belongs to a place 𝑃 of 𝑘 .
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Extensions of global fields

Let 𝑘 be a global field and let 𝐾 be a finite separable extension of 𝑘 . Let
𝑄 ∈ 𝑀𝐾 , and fix a corresponding embedding 𝜆 : 𝐾 → 𝐾𝑄. Let 𝐿 be the
closure of 𝜆(𝑘) in 𝐾𝑄. Then, 𝐿 is a local field and the embedding 𝜆 : 𝑘 → 𝐿

defines a place 𝑃 of 𝑘 [92, Proposition III.1.1]. The place 𝑃 does not depend
on the choice of 𝜆, and we call it the place of 𝑘 lying below 𝑄 [92, Definition
III.1.4]. We also write 𝑄 | 𝑃 and say that 𝑄 lies above 𝑃. We also set
𝑓𝑄/𝑃 = 𝑓𝐾𝑄/𝐿 and, if 𝑃 is a non-Archimedean place, 𝑒𝑄/𝑃 = 𝑒𝐾𝑄/𝐿 , and call
these numbers respectively the inertia degree of 𝑄 over 𝑃 and the ramification
degree of 𝑄 over 𝑃.

We now consider the converse situation. Let 𝑃 ∈ 𝑀𝑘 . Then, only finitely
many places of 𝐾 lie above 𝑃. In fact, the extension of scalars algebra 𝐾𝑘𝑃
splits as a direct product of finite extensions of 𝑘𝑃 (see [92, Theorem III.4.4])):

𝐾𝑘𝑃 = 𝐾1 × . . . × 𝐾𝑟 .

Let 𝑝𝑖 be the projection map from 𝐾𝑘𝑃 to 𝐾𝑖 , and let 𝜄 be the embedding
𝐾 → 𝐾𝑘𝑃 . Then each map 𝑝𝑖 ◦ 𝜄 defines a distinct place 𝑄𝑖 of 𝐾 above
𝑃, and the 𝑄𝑖 are the only places of 𝐾 above 𝑃. Furthermore, if 𝑃 is a
non-Archimedean place, we have [63, Theorem II.8.5]:

𝑟∑︁
𝑖=1

𝑒𝑄𝑖/𝑃 𝑓𝑄𝑖/𝑃 = [𝐾 : 𝑘] .

We say that the non-Archimedean place 𝑃 ramifies in K if any of the 𝑒𝑄𝑖/𝑃
is greater than 1, and we say that a place 𝑄𝑖 is ramified over 𝑘 if 𝑒𝑄𝑖/𝑃 > 1. In
the other case, we say that the relevant place is unramified.

Following the similar result for extension of local fields, if 𝐿 is a finite
extension of 𝐾 , and we have places 𝑃 ∈ 𝑀𝑘 , 𝑄 ∈ 𝑀𝐾 and 𝑅 ∈ 𝑀𝐿 such that
𝑃 | 𝑄 | 𝑅, we have

𝑓𝑅/𝑃 = 𝑓𝑅/𝑄 𝑓𝑄/𝑃,

and
𝑒𝑅/𝑃 = 𝑒𝑅/𝑄𝑒𝑄/𝑃

if the place 𝑃 is non-Archimedean.

𝑆-Integral elements and 𝑆-units

In this paragraph, we fix a global field 𝑘 and a nonempty set 𝑆 ⊂ 𝑀𝑘 , which
contains all the Archimedean places of 𝑘 . We may then define the ring of
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𝑆-integral elements of 𝑘 as follows:

O𝑆 = {𝑎 ∈ 𝑘 : ∀𝑃 ∈ 𝑀𝑘 \ 𝑆, |𝑎 |𝑃 ≤ 1} =
⋂

𝑃∈𝑀𝑘\𝑆
O𝑃 .

The ring O𝑆 is known to be a Dedekind domain.
We also define the group of 𝑆-units [13, Section II.18]:

𝑈𝑆 = {𝑎 ∈ 𝑘 : ∀𝑃 ∈ 𝑀𝑘 \ 𝑆, |𝑎 |𝑃 = 1} = O×
𝑆 .

If the set 𝑆 is finite, the structure of 𝑈𝑆 is well known. The group 𝑈𝑆 is a
finitely generated abelian group of rank |𝑆 | − 1, and its torsion subgroup is the
group of roots of unity of 𝑘 . We may abuse notations and write O𝑆 and 𝑈𝑆
for O𝑆′ and 𝑈𝑆′ respectively for 𝑆′ = 𝑆 ∪ 𝑀𝑎

𝑘
even if 𝑆 does not contain the

Archimedean places of 𝑘 .

Divisors

Let 𝑘 be a global field. The divisor group of 𝑘 , denoted by D (𝑘), is the free
abelian group on 𝑀𝑛𝑎

𝑘
. In this section, we follow the exposition from [13,

Section II.17], except we use the term divisor group for both number fields and
function fields. A divisor of 𝑘 is a formal sum

𝐷 =
∑︁

𝑃∈𝑀𝑛𝑎
𝑘

𝑛𝑃𝑃,

where the 𝑛𝑃 are integers, and all but finitely many of them are zero. The
support of the divisor 𝐷 is the finite set

Supp(𝐷) = {𝑃 ∈ 𝑀𝑛𝑎
𝑘 : 𝑛𝑃 ≠ 0},

and we say that 𝐷 is supported by 𝑆 ⊂ 𝑀𝑘 if Supp(𝐷) ⊂ 𝑆.
If 𝑎 ∈ 𝑘×, it is known that ord𝑃 (𝑎) ≠ 0 for only finitely many places

𝑃 ∈ 𝑀𝑘 . It follows that we have a group homomorphism

𝑘× → D (𝑘)
𝑎 ↦→ D (𝑎) = ∑

𝑃∈𝑀𝑛𝑎
𝑘

ord𝑃 (𝑎)𝑃.

A divisor thus obtained from an element of 𝑘× is called a principal divisor, and
the principal divisors of 𝑘 form a subgroup of D (𝑘) denoted by P(𝑘). Then,
the class group of 𝑘 is defined by

Cl(𝑘) = D (𝑘)/P(𝑘).
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An important theorem of algebraic number theory states that the class group
Cl(𝑘) of a global field is finite.

We now let 𝐾/𝑘 be a finite separable field extension. Then, we have a map
𝜄𝐾/𝑘 from 𝑀𝑛𝑎

𝑘
to D (𝐾) which sends a place 𝑃 of 𝑘 to the divisor∑︁

𝑄∈𝑀𝑛𝑎
𝐾

𝑃 |𝑄

𝑒𝑄/𝑃𝑄.

Proposition 2.1.4. The map 𝜄𝐾/𝑘 , extended to the divisor group of 𝑘 , is an in-
jective group homomorphism. Furthermore, if 𝐿 is a finite separable extension
of 𝐿, we have

𝜄𝐿/𝑘 = 𝜄𝐿/𝐾 ◦ 𝜄𝐾/𝑘 .

Proof. By the universal property of the free abelian group, any map from the
set 𝑀𝑛𝑎

𝑘
to an abelian group such as D (𝐾) extends to a group homomorphism

D (𝑘) → D (𝐾). By uniqueness of the place of 𝑘 below a place of 𝐾 , it follows
that the supports of the images of distinct elements of𝑀𝑛𝑎

𝑘
inD (𝐾) are disjoint.

The injectivity of the map 𝜄𝑘/𝐾 : D (𝑘) → D (𝐾) follows readily.
The functoriality statement is a straightforward consequence of the facto

that for 𝑃 ∈ 𝑀𝑛𝑎
𝑘

, 𝑄 ∈ 𝑀𝑛𝑎
𝐾

and 𝑅 ∈ 𝑀𝑛𝑎
𝐿

, we have 𝑒𝑅/𝑃 = 𝑒𝑅/𝑄𝑒𝑄/𝑃. □

Divisors and fractional ideals

Let 𝑘 be a global field and let 𝑆 ⊂ 𝑀𝑘 be a nonempty set of places which
contains all the Archimedean places. Then the prime ideals of O𝑆 are exactly
the 𝔪𝑃 where 𝑃 is an element of 𝑀𝑘 \ 𝑆 [13, Section II.17].

We let D (𝑘)𝑆 be the subgroup of divisors with support in 𝑆. As O𝑆 is a
Dedekind domain, any fractional O𝑆-ideal (i.e. a sub O𝑆-module of 𝑘) factors
uniquely as a product of prime ideals. It follows that there is a bĳection between
the group of fractional ideals of O𝑆 and the quotient group D (𝑘)/D (𝑘)𝑆 . As
the group of principal ideals of O𝑆 is in bĳection with (P(𝑘)/(P(𝑘) ∩D (𝑘)𝑆),
the class group of O𝑆 may be expressed as the quotient

Cl(𝑘)𝑆 ≔ Cl(O𝑆) =
D (𝑘)

P(𝑘) +D (𝑘)𝑆
.

We also call this group the 𝑆-class group of 𝑘 . In particular, if 𝑆 is such that for
every nontrivial class of Cl(𝑘) has an element with support in 𝑆, then Cl(𝑘)𝑆
is the trivial group, and O𝑆 is a PID.
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2.1.3 The ring of integers of a number field

Let 𝑘 be a number field. Since 𝑘 is a finite extension of Q, 𝑘 has Archimedean
places, which are all the places above the unique Archimedean place of Q.
As a result, the set 𝑆 = 𝑀𝑎

𝑘
⊂ 𝑀𝑘 is the minimal nonempty subset of 𝑀𝑘

which contains all the Archimedean places. We then write O𝑘 for the ring of
𝑆-integers of 𝑘 , and we call this ring the ring of integers of 𝑘 . It is a Z-lattice
of full rank in 𝑘 [92, Theorem V.2.1].

For any prime ideal 𝔭 of O𝑘 , we may define the 𝔭-adic absolute value on 𝑘 ,
and the 𝔭-adic completion 𝑘𝔭 of 𝑘 . Thus, every prime ideal of O𝑘 is associated
with a non-Archimedean place of 𝑘 .

There is a bĳective correspondence between the non-Archimedean places
of a global field and the prime ideals of its ring of integers.

2.1.4 Global function fields

The situation for a function field 𝑘 is different from that of a number field in
that there does not exist a ring whose prime ideals are in bĳection with the non-
Archimedean places of 𝑘 . Instead, one must consider a regular projective curve,
a generalisation of a Dedekind domain in the language of schemes. Since our
treatment focuses on the algebraic language of function fields, we do not recall
the theory of algebraic curves. Instead, we direct the reader to [81, Chapter 1
and 2] for an elementary introduction to algebraic curves and to [38, 42] for a
presentation of the language of schemes. References for the theory of function
fields are [72, 84].

For the remainder of this section, the field 𝑘 is an algebraic function field
with constant field 𝐹. Some results are valid even when 𝐹 is not a finite field.
Without loss of generality, we may assume that 𝐹 is algebraically closed in 𝑘 .

Places of function fields

We first recall the definition of a projective space. Let 𝑛 ∈ N. Let 𝐹 be
an algebraic closure of 𝐹. Then we define the projective space P𝑛

𝐹
as the

quotient set (𝐹𝑛+1 \ {0})/∼ where 𝑥 = (𝑥0, . . . , 𝑥𝑛) ∼ 𝑦 = (𝑦0, . . . , 𝑦𝑛) if
there exist 𝜆 ∈ 𝐹×

and 𝜎 ∈ Gal(𝐹/𝐹) such that 𝑥𝑖 = 𝜆𝜎(𝑦𝑖) for 𝑖 ∈ [𝑛]0. If
𝑥 = (𝑥0, . . . , 𝑥𝑛) ∈ 𝐹𝑛+1 \ {0}, we write (𝑥0 : . . . : 𝑥𝑛) for the class of 𝑥 in P𝑛

𝐹
.

If 𝑘 = 𝐹 (𝑋), we set 𝐶𝑘 = P1
𝐹

. Otherwise, as discussed in the begin-
ning of [72, Chapter 5], the field 𝑘 is isomorphic to a field of the form
𝑘 ≃ 𝐹 [𝑋,𝑌 ]/(𝜒(𝑋,𝑌 )), where 𝜒 ∈ 𝐹 [𝑋,𝑌 ] is irreducible as an element
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of 𝐹 (𝑋) [𝑌 ]. In this case, we set 𝜒 =
∑
𝑖, 𝑗∈N 𝑐𝑖 𝑗𝑋

𝑖𝑌 𝑗 , and we let 𝑑 = deg 𝜒 be
the maximal value of 𝑖 + 𝑗 such that 𝑐𝑖 𝑗 ≠ 0. Then, the homogeneisation of 𝜒
is the polynomial

�̃�(𝑋,𝑌, 𝑍) =
∑︁
𝑖, 𝑗∈N

𝑐𝑖 𝑗𝑋
𝑖𝑌 𝑗𝑍𝑑−𝑖− 𝑗 .

The projective curve corresponding to the polynomial 𝜒 is the set

𝐶𝜒 = {(𝑥 : 𝑦 : 𝑧) ∈ P2
𝐹
| �̃�(𝑥, 𝑦, 𝑧) = 0}.

We note that, in the language of schemes, 𝐶𝑃 is the set of closed points of
a regular projective curve 𝑋𝑃 over 𝐹 with function field 𝑘 .

By [38, Theorem 15.21], the regular projective curve 𝑋𝑃 is unique up to
isomorphism. We, therefore, usually refer to this curve as 𝑋𝑘 and to its set of
closed points as 𝐶𝑃, understanding that it is fixed up to isomorphism.

We then have a bĳection between the set 𝑀𝑘 of places of 𝑘 and the set
𝐶𝑘 defined above [38, Remark 15.23]. Let 𝑃 = 𝑀𝑘 correspond to a point
(𝑥 : 𝑦 : 𝑧), we have 𝜅𝑃 ≃ ⋂

(𝑥,𝑦,𝑧) ∈ [𝑥:𝑦:𝑧 ] 𝐹 (𝑥, 𝑦, 𝑧) [38, Exercise 15.10], and
we set deg 𝑃 = [𝜅𝑃 : 𝐹].

If we identify 𝑘 with the field 𝐹 [𝑋,𝑌 ]/𝑃(𝑋,𝑌 ), 𝑘 naturally presents as a
finite extension of the rational function field 𝐹 (𝑋). The places of the rational
function field are the finite places corresponding to the Galois orbits of elements
𝛼 ∈ 𝑘 via the points (𝛼 : 1) and one infinite place ∞ corresponding to the point
(1 : 0) of the curve 𝐶𝐹 (𝑋) = P1

𝐹
. We note that if 𝑆 = {∞}, then the integer

ring O𝑆 is in fact the polynomial ring 𝐹 [𝑋]. The valuation ring 𝐹 (𝑋)∞ of the
infinite place is the PID {𝑅 ∈ 𝐹 (𝑋) | deg 𝑅 ≤ 0}. We set 𝑀∞

𝐹 (𝑋) = {∞} and
𝑀
𝑓 𝑖

𝐹 (𝑋) = 𝑀𝐹 (𝑋) \𝑀∞
𝐹 (𝑋) . Then we write 𝑀 𝑓 𝑖

𝑘
for the set of places lying above

the finite places of 𝐹 (𝑋), and we likewise set 𝑀∞
𝑘

to be the set of places of 𝑘
lying above the infinite place of 𝐹 (𝑋). We call the places of 𝑘 finite or infinite
depending on whether they belong to 𝑀 𝑓 𝑖

𝑘
or 𝑀∞

𝑘
. When the field 𝑘 is clear

from context, we will write O 𝑓 𝑖 = O𝑀∞
𝑘

and O∞ = O
𝑀
𝑓 𝑖

𝑘

. We note that O 𝑓 𝑖 is
the integral closure of 𝐹 [𝑋] in 𝑘 and O∞ is the integral closure of 𝐹 (𝑋)∞ in
𝑘 . Observe that the Dedekind domain O∞ has finitely many prime ideals and
is, therefore, a PID.

Répartitions

The words répartition and adèles are sometimes used interchangeably in the
literature. When working over a global field, they always mean to take a
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restricted product over the set of places of the field. Usually, this is the product
of the completions of the field, but one may also work with mere copies of the
field. Since our work is computational, we avoid taking completions to preserve
exact computational representations. In this work, we use the term répartition
to emphasise this. In this work we shall only use répartitions over function
fields. References for répartitions in algebraic function fields are [79, 84].

Definition 2.1.5. The ring 𝑅𝑘 of répartitions of 𝑘 (simply written 𝑅 when there
is no ambiguity on the choice of field 𝑘) is the restricted product

𝑅 =
∏̃
𝑃∈𝑀𝑘

𝑘,

where the restriction means that for an element (𝑟𝑃) ∈ 𝑅, all but finitely many
of the 𝑟𝑃 lie in O𝑃.

The subring of 𝑅 of integral répartitions is the product

O𝑅 =
∏
𝑃∈𝑀𝑘

O𝑃 .

We may now define the degree of an invertible répartition

Definition 2.1.6. Let 𝑟 ∈ 𝑅×. If 𝑃 ∈ 𝑀𝑘 , we set ord𝑃 (𝑟) = ord𝑃 (𝑟𝑃). Then,
we set

deg(𝑟) =
∑︁
𝑃∈𝑀𝑘

ord𝑃 (𝑟) deg(𝑃).

The degree is well defined since, for all but finitely many 𝑃 ∈ 𝑀𝑘 , an
invertible répartition 𝑟 ∈ 𝑅× lies in O×

𝑃
and therefore has valuation zero at 𝑃.

In our statement of Serre duality, we will use residues of répartitions, which
we define as follows:

Definition 2.1.7. Let 𝑟 ∈ 𝑅. The residue of 𝑟 is defined as the sum

res(𝑟) =
∑︁
𝑃∈𝑀𝑘

Tr𝜅𝑃/𝐹 (res𝑃 (𝑟𝑃)),

where res𝑃 (𝑟𝑃) is the coefficient of degree −1 in the formal series in 𝜋𝑃

representing 𝑟𝑃.

In Section 5.2.3, we must compute répartitions with prescribed residues.
Our strategy will focus on an infinite place of 𝑘 . We introduce the following
useful notation:
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Definition 2.1.8. An infinite répartition is a répartition 𝑟 ∈ 𝑅 such that 𝑟𝑃 = 0
for all 𝑃 ∈ 𝑀 𝑓 𝑖

𝑘
and there exists 𝑎 ∈ 𝑘 such that 𝑟𝑃 = 𝑎 for all 𝑃 ∈ 𝑀∞

𝑘
. We

denote such a répartition 𝑟 by 𝑎∞. We also extend this notation to vectors with
coefficients in 𝑅.

In order to use répartitions to describe vector bundles of rank larger than
1, we will use matrices taking coefficients in 𝑅. Such techniques were already
discussed in [86,93–95] for matrices with coefficients in the ring of adèles. The
properties we need to establish are often analogous to some results from the
references above, but we give our own proofs for completeness and to account
for the change from adèles to répartitions.

A matrix 𝑀 ∈ 𝑀𝑟1,𝑟2 (𝑅) is the same thing as a family (𝑀𝑃)𝑃∈𝑀𝑘 of
matrices in 𝑀𝑟1,𝑟2 (𝑘) with the extra condition that at most finitely many of the
𝑀𝑃 do not lie in 𝑀𝑟1,𝑟2 (O𝑃).

We take note of an easy lemma.

Lemma 2.1.9. A matrix 𝑀 ∈ 𝑀𝑛 (𝑅) is invertible if and only if it lies in∏
𝑃∈𝑀𝑘 𝐺𝐿𝑛 (𝑘) and all but finitely many of the 𝑀𝑃 lie in 𝐺𝐿𝑛 (O𝑃).

Proof. The determinant 𝑑 = det𝑀 is invertible in 𝑅 if and only in it lies in∏
𝑃∈𝑀𝑘 𝑘

× and for all but finitely many 𝑃, 𝑑𝑃 ∈ O×
𝑃

. The result follows
readily. □

Differentials

Here we recall definitions and basic facts about the differentials of function
fields. Details and omitted proofs may be found in [84, Chapter 4].

Let Ω̃𝑘 to be the free 𝑘-vector space with basis the set of symbols {𝑑𝑎 : 𝑎 ∈
𝑘}, and then we setΩ1

𝑘/𝐹 to be the quotient space Ω̃𝑘/𝑉 , where𝑉 is the subspace
of Ω̃𝑘 generated by the 𝑑 (𝑎 + 𝑏) − 𝑑𝑎 − 𝑑𝑏, the 𝑑 (𝑎𝑏) − 𝑎𝑑𝑏 − 𝑏𝑑𝑎 and the
𝑑𝛼, for 𝑎, 𝑏 ∈ 𝑘 and 𝛼 ∈ 𝐹. We call Ω1

𝑘/𝐹 the space of differentials of 𝐾 . It is
canonically isomorphic to the space Δ𝑘 as introduced in [84, Definition 4.1.7]
(both spaces satisfy the universal property stated in [84, Proposition 4.1.8.(d)]).

The space Ω1
𝑘/𝐹 is 1-dimensional as a 𝑘-vector space, and 𝑑𝑎 is a basis for

any separable element 𝑎 ∈ 𝑘 . That is for any 𝑎 ∈ 𝑘 such that 𝑘/𝐹 (𝑎) is a finite
separable field extension.

If 𝜔 ∈ Ω1
𝑘/𝐹 and 𝑃 ∈ 𝑀𝑘 , we let 𝜋𝑃 be a local uniformiser at 𝑃, and

write 𝜔 = 𝑓𝑃𝑑𝜋𝑃. Then, we may embed 𝑓𝑃 into the local field 𝑘𝑃, which
is the field of formal series 𝜅𝑃 ((𝜋𝑃)). We let 𝑓𝑃 =

∑
𝑛∈Z 𝑎𝑛𝜋

𝑛
𝑃

and we set
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res𝑃 (𝜔) = 𝑎−1 ∈ 𝜅𝑃. It is well known that the value of res𝑃 (𝜔) does not depend
on the choice of uniformiser 𝜋𝑃. We may then state the Residue Theorem: for
any 𝜔 ∈ Ω1

𝑘/𝐹 , ∑︁
𝑃∈𝑀𝑘

Tr𝜅𝑃/𝐹 (res𝑃 (𝜔)) = 0. (2.1)

In the literature, this theorem is usually stated in the case that 𝐹 is alge-
braically closed. In this case, 𝜅𝑃 = 𝐹 and it is useless to take the trace of
the residues. The more general Equation (2.1) is well known to experts and
is, for instance, used as an example for testing the computation of residues of
a differential in the documentation of Sagemath [89]. The Residue Theorem
for a general ground field is proved in [87], in a slightly different form equiv-
alent to Equation (2.1). Indeed, [87] gives a definition of the residue res𝑃 (𝜔)
as a trace over 𝐹 of a related 𝑘-linear endomorphism of 𝐾𝑃 (restricted to a
finite-dimensional 𝐹-subspace of 𝐾𝑃). In the proof of [87, Theorem 2], the
author argues that if deg 𝑃 = 1, i.e. 𝜅𝑃 = 𝐹, then the residue takes the same
form as our definition. When deg 𝑃 > 1, the argument shows that the trace
mentioned above, this time taken over 𝜅𝑃, takes the value that we defined as
res𝑃 (𝜔). Since that is the case, the residue according to Tate’s definition, as a
trace, decomposes as Tr𝜅𝑃/𝐹 (res𝑃 (𝜔)). Equation (2.1) then follows from the
corollary to [87, Theorem 3].

Fix a local uniformiser 𝜋𝑃 for every place 𝑃 ∈ 𝑀𝑘 . We define an injective 𝑘-
linear map 𝜄 : Ω1

𝑘/𝐹 → 𝑅𝑘 . Let𝜔 ∈ Ω1
𝑘/𝐹 , and let 𝑓𝑃 ∈ 𝐾 such that𝜔 = 𝑓𝑃𝑑𝜋𝑃

for all 𝑃 ∈ 𝑀𝑘 . We then set 𝜄(𝜔) = ( 𝑓𝑃)𝑃∈𝑀𝑘 .While the répartition 𝜄(𝜔)
depends on the choice of uniformisers 𝜋𝑃, we always have

res(𝜄(𝜔)) =
∑︁
𝑃∈𝑀𝑘

Tr𝜅𝑃/𝐹 (res𝑃 (𝜔)) = 0.

2.1.5 Étale algebras

In this section, we fix a field 𝑘 . We will recall some usual definitions and
properties of étale 𝑘-algebras and prove some less common results which will
be needed later.

Definition 2.1.10. Let 𝑅 be a 𝑘-algebra. We say that 𝑅 is diagonalisable if
there exists 𝑑 ∈ N such that 𝑅 is isomorphic to 𝑘𝑑 , the direct product of 𝑑
copies of 𝑘 . An extension 𝐾/𝑘 diagonalises the 𝑘-algebra 𝑅 if the 𝐾-algebra
𝑅𝐾 is diagonalisable. The algebra 𝑅 is said to be étale if there exists a finite
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separable field extension 𝐾/𝑘 such that 𝐾 diagonalises 𝑅. Such an extension
is called a splitting field for 𝑅.

Lemma 2.1.11. Let 𝑅 be an étale 𝑘-algebra of dimension 𝑑, and let 𝐾 be a
Galois splitting field of 𝑅, with splitting isomorphism 𝜑 : 𝑅 ⊗ 𝐾 → 𝐾𝑑 . Let
𝑥 ∈ 𝑅 such that for any two nonzero maps 𝜑, 𝜑′ from 𝑅 to 𝐾 ,

𝜑(𝑥) = 𝜑′(𝑥).

Then 𝑥 ∈ 𝑘 .

Proof. Consider the sequence of maps

𝑅
·⊗1−−→ 𝑅 ⊗𝑘 𝐾 ≃ 𝐾𝑑

𝑝𝑖−−→ 𝐾,

where 𝑝𝑖 is the projection of 𝐾𝑑 to its 𝑖-th factor. We let 𝑓𝑖 be the composition
of these maps. Then 𝑓𝑖 is non-zero since 𝑓𝑖 (𝑡) = 𝑡 for 𝑡 ∈ 𝑘 .

Now, for 𝑖, 𝑗 ∈ [𝑑], we have 𝑓𝑖 (𝑥) = 𝑓 𝑗 (𝑥), and it follows that 𝜑(𝑥 ⊗ 1) lies
in the diagonal of 𝐾𝑑 . Furthermore, if 𝑖 ∈ [𝑑] and 𝜓 is a 𝑘-automorphism of
𝐾 , we have 𝜓( 𝑓𝑖 (𝑥)) = 𝑓𝑖 (𝑥), and it follows that the 𝑓𝑖 (𝑥) lie in 𝑘 . Put together,
we get 𝜑(𝑥 ⊗ 1) = (𝑡, 𝑡, . . . , 𝑡) with 𝑡 ∈ 𝑘 . However, since the composite map
𝑅 → 𝐾𝑛 is injective, we get 𝑥 = 𝑡 ∈ 𝑘 . □

Proposition 2.1.12 ( [11, Corollary V.6.5.1]). Let 𝑅, 𝑆 be two commutative
finite-dimensional 𝑘-algebras. Let 𝐶 = 𝑅 ⊗𝑘 𝑆. Then 𝐶 is étale if and only if
𝑅 and 𝑆 are étale.

Proposition 2.1.13 ( [11, Theorem V.6.7.4]). Let 𝑅 be a 𝑘-algebra. The algebra
𝑅 is étale if and only if there exist finite separable extensions 𝐾1, . . . , 𝐾𝑟 of 𝑘
such that 𝑅 ≃ 𝐾1 × . . . × 𝐾𝑟 .

Observe that the 𝐾1, . . . , 𝐾𝑟 are the minimal ideals of 𝑅 and are therefore
entirely determined by 𝑅 up to reindexing.

Proposition 2.1.13 suggests that if 𝑅 is an étale 𝑘-algebra, the category of
𝑅-modules is almost as well behaved as that of vector spaces over a field. We
will need the following result:

Corollary 2.1.14. Let 𝑅 be an étale 𝑘-algebra, and let𝑀 be a faithful 𝑅-module
such that [𝑀 : 𝑘] = [𝑅 : 𝑘]. Then, 𝑀 is isomorphic to 𝑅 as an 𝑅-module.

Proof. Let 𝐾1, . . . , 𝐾𝑟 be the minimal ideals of 𝑅 as in Proposition 2.1.13. We
let 𝑑 = [𝑅 : 𝑘], 𝑑𝑖 = [𝐾𝑖 : 𝑘]. We also set 𝑟𝑖 = [𝐾𝑖𝑀 : 𝐾𝑖]. The faithfulness
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of 𝑀 implies that every 𝑟𝑖 is nonzero and that 𝑀 =
⊕𝑟

𝑖=1 𝐾𝑖𝑀 . Then, we have
[𝑀 : 𝑘] = ∑𝑟

𝑖=1 𝑟𝑖𝑛𝑖 . Since [𝑀 : 𝑘] = [𝑅 : 𝑘] = ∑𝑛
𝑖=1 𝑛𝑖 , it follows that 𝑟𝑖 = 1

for all 1 ≤ 𝑖 ≤ 𝑟 . Then, 𝐾𝑖𝑀 is isomorphic to 𝐾𝑖 as a 𝐾𝑖-module, and therefore
𝑀 is isomorphic to 𝑅 as an 𝑅-module. □

Proposition 2.1.13 also permits a description of homomorphisms of étale
algebras.

Corollary 2.1.15. Let 𝐾 = 𝐾1 × . . . × 𝐾𝑟 and 𝐿 = 𝐿1 × . . . × 𝐿𝑠 be étale
𝑘-algebras, and let 𝑓 : 𝐾 → 𝐿 be a homomorphism of 𝑘-algebras. Then
𝑓 =

∑
𝑖∈[𝑟 ] 𝑓𝑖 , where 𝑓𝑖 : 𝐾𝑖 → 𝐿 is either zero or a multiplicative 𝑘-linear

map from 𝐾𝑖 to 𝐿. Furthermore, the sets

𝐽𝑖 = { 𝑗 ∈ [𝑠] : 𝑝 𝑗 ◦ 𝑓𝑖 ≠ 0},

where 𝑝 𝑗 is the projection map from 𝐿 to 𝐿 𝑗 , are pairwise disjoint.

Proof. Since 𝐾 = 𝐾1 × . . . × 𝐾𝑟 , the map 𝑓 decomposes uniquely as a sum
𝑓 =

∑
𝑖∈[𝑟 ] 𝑓𝑖 , where 𝑓𝑖 is a 𝑘-linear map from 𝐾𝑖 to 𝐿, and it is clear that 𝑓𝑖 is

multiplicative since 𝑓𝑖 is the restriction of 𝑓 to 𝐾𝑖 .
Now, fix 𝑗 ∈ [𝑠]. Let 𝑖, 𝑖′ ∈ [𝑟], and set 𝑒𝑖 (resp. 𝑒𝑖′) be the identity of 𝐾𝑖

(resp. 𝐾𝑖′) in 𝐾 . We then have 𝑒𝑖𝑒𝑖′ = 0, so

𝑝 𝑗 ( 𝑓 (𝑒𝑖))𝑝 𝑗 ( 𝑓 (𝑒𝑖′)) = 0.

Since the codomain of 𝑝 𝑗 is 𝐿 𝑗 , a field, it follows that either 𝑝 𝑗 ( 𝑓 (𝑒𝑖)) or
𝑝 𝑗 ( 𝑓 (𝑒𝑖′)) is 0. Assuming that 𝑝 𝑗 ( 𝑓 (𝑒𝑖)) = 0, it is easy to see that 𝑝 𝑗 ◦ 𝑓𝑖 = 0,
and therefore 𝑗 ∉ 𝐽𝑖 . □

Corollary 2.1.16. Let𝐾 = 𝐾1×. . .×𝐾𝑟 be an étale 𝑘-algebra. A field extension
𝐸/𝑘 is a splitting field for 𝐾 if and only if 𝐸 contains subfields isomorphic to
each of the 𝐾𝑖 .

Proof. We have

𝐾 ⊗𝑘 𝐸 =

𝑟⊕
𝑖=1

𝐾𝑖 ⊗𝑘 𝐸.

Therefore, 𝐸 is a splitting field for 𝐾 if and only if it is a splitting field for all of
the 𝐾𝑖 . Now, fix 𝑖 ∈ [𝑟]. Let 𝜒 ∈ 𝑘 [𝑋] be irreducible (necessarily separable)
polynomials such that 𝐾𝑖 ≃ 𝑘 [𝑋]/(𝜒). Then, consider the factorisation 𝜒 =

𝜉1 . . . 𝜉𝑠 of 𝜒 in 𝐸 [𝑋]. We get 𝐾𝑖 ⊗𝑘 𝐸 ≃
⊕𝑠

𝑗=1 𝐸 [𝑋]/(𝜉 𝑗). Since 𝐸 must be
a splitting field for 𝐾𝑖 , it follows that deg 𝜉 𝑗 = 1 for all 𝑗 ∈ [𝑠]. That is, the
polynomial 𝜒 splits in 𝐸 , and therefore 𝐸 contains a copy of 𝐾𝑖 . □
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Corollary 2.1.17. Let 𝐾 = 𝐾1 × . . . × 𝐾𝑟 be an étale 𝑘-algebra of dimension
𝑑, and let 𝐸 be a Galois splitting field for 𝐾 . Then, there are exactly 𝑑 distinct
nonzero maps from 𝐾 to 𝐸 .

Proof. By Corollary 2.1.15, a nonzero map 𝜑 : 𝐾 → 𝐸 is zero on all but one
of the factors 𝐾𝑖 . Furthermore, by Corollary 2.1.16, 𝐸 contains all of the 𝐾𝑖 .
Now, if we set 𝑑𝑖 = [𝐾𝑖 : 𝑘], we have 𝑑 =

∑𝑟
𝑖=1 𝑑𝑖 , and there are exactly 𝑑𝑖

nonzero 𝑘-algebra homomorphisms from 𝐾𝑖 to 𝐸 . The result follows. □

Example 2.1.18. Let 𝑘 be a field, and let 𝜒 ∈ 𝑘 [𝑋] be a separable polynomial.
Then 𝐾 = 𝑘 [𝑋]/(𝜒) is an étale algebra. We say that such an étale algebra is
monogeneous.

Proposition 2.1.19. If the field 𝑘 is infinite, every étale 𝑘-algebra is isomorphic
to a monogeneous étale 𝑘-algebra.

Proof. Let 𝐾 be an étale 𝑘-algebra, isomorphic to the product 𝐾1 × . . . × 𝐾𝑟
of separable extensions of 𝑘 . And let 𝜒𝑖 ∈ 𝑘 [𝑋] for 𝑖 ∈ [𝑟] be irreducible
polynomials such that 𝐾𝑖 ≃ 𝑘 [𝑋]/(𝜒𝑖 (𝑋)). Then, for 𝑖, 𝑖′ ∈ [𝑟], either 𝜒𝑖 and
𝜒𝑖′ are distinct and therefore coprime, or they are equal. In that case, there
exist only finitely many pairs 𝛼, 𝛽 ∈ 𝑘 such that 𝜒𝑖 (𝑋 + 𝛼) and 𝜒𝑖′ (𝑋 + 𝛽) are
not coprime. Since the field 𝑘 is infinite, one may therefore pick the 𝜒𝑖 to be
pairwise coprime, and then 𝐾 ≃ 𝑘 [𝑋]/(∏𝑖∈[𝑠] 𝜒𝑖). □

In Chapter 4, we will need to consider étale algebras over étale algebras.

Definition 2.1.20. Let 𝑅 be an étale 𝑘-algebra. An 𝑅-algebra 𝑆 is said to be
étale if it is étale as a 𝑘-algebra. We further say that 𝑆 is a free étale 𝑅-algebra
if 𝑆 is étale and free as an 𝑅-module.

Remark 2.1.21. A definition of étale 𝑅-algebras exists for a general commu-
tative ring 𝑅. In the case that 𝑅 is an étale 𝑘-algebra, the general definition
coincides with our own (See [33, Definition 9.2.3, Proposition 9.2.5 and Corol-
lary 9.2.6]).

Moreover, we will need the following result:

Lemma 2.1.22. Let 𝑅 be an étale 𝑘-algebra, and let 𝑆 be an étale 𝑅-algebra.
Then, there is a trace map 𝑆 → 𝑅. Let 𝑆∨ be the dual of 𝑆 as an 𝑅-module.
Then, the map

𝑆 → 𝑆∨

𝑎 ↦→ (𝑏 ↦→ Tr(𝑎𝑏))
is an isomorphism of 𝑅-modules.
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Proof. By Remark 2.1.21, 𝑆 is an étale 𝑅-algebra in the sense of [33, Definition
9.2.3]. It is, therefore, separable as an 𝑅-algebra, and then the result is a
particular case of [33, Corollary 4.6.8]. □

Proposition 2.1.23. Let 𝑅 be an étale 𝑘-algebra and let 𝑆 be a free étale
𝑅-algebra. Let 𝑆1, 𝑆2 be 𝑘-subalgebras of End𝑅 (𝑆) that are isomorphic to 𝑆.
Then, there exists an 𝑅-algebra automorphism of End𝑅 (𝑆) which sends 𝑆1 to
𝑆2.

Proof. Let 𝜑𝑖 be an isomorphism from 𝑆 to 𝑆𝑖 for 𝑖 ∈ [2]. For 𝑖 ∈ [2], we
let 𝑆𝜑𝑖 be the 𝑆-module isomorphic to 𝑆 as a 𝑘-vector space and such that
𝑎 · 𝑥 = 𝜑𝑖 (𝑎) (𝑥) for 𝑎, 𝑥 ∈ 𝑆. Then, the faithful 𝑆-modules 𝑆𝜑1 and 𝑆𝜑2 are
isomorphic by Corollary 2.1.14. Let 𝜓 be an isomorphism of 𝑆-modules from
𝑆𝜑1 to 𝑆𝜑2 . Since both 𝑆𝜑1 and 𝑆𝜑2 are identified with 𝑆 as 𝑘-vector spaces, we
may see 𝜓 as a 𝑘-linear endomorphism of 𝑆. Then, for any 𝑎, 𝑥 ∈ 𝑆, we have

(𝜓 ◦ 𝜑1(𝑎)) (𝑥) = (𝜑2(𝑎) ◦ 𝜓) (𝑥).

It follows that conjugation by 𝜓 is an 𝑅-algebra automorphism of End𝑅 (𝑆)
which sends 𝑆1 to 𝑆2. □

Divisors of étale algebras over global fields

For what follows, we assume that 𝑘 is a global field.

Definition 2.1.24. Let 𝐾 = 𝐾1 × . . . × 𝐾𝑟 be an étale 𝑘-algebra. We define the
set of places of 𝐾 as the disjoint union

𝑀𝐾 =

𝑟⊔
𝑖=1

𝑀𝐾𝑖 .

We likewise define the sets of Archimedean, non-Archimedean, finite and
infinite places of 𝐾 .

By analogy with Section 2.1.2, we define the divisor group of 𝐾 , denoted by
D (𝐾), as the free abelian group over 𝑀𝑛𝑎

𝐾
. We define the support of a divisor,

the subgroup of principal divisors P(𝐾) and the class group Cl(𝐾) likewise.

Observe that P(𝐾) = P(𝐾1) × . . . ×P(𝐾𝑟 ). It follows that

Cl(𝐾) = Cl(𝐾1) × . . . × Cl(𝐾𝑟 ).

In particular, we get the following result:
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Proposition 2.1.25. Let 𝐾 be an étale 𝑘-algebra. Then, the class group of 𝐾
is finite.

In what follows, we adapt results from Section 2.1.2 to the setting of étale
algebra.

We will prove that D is a functor from the category of étale 𝑘-algebras to
the category of abelian groups. Let 𝐾 = 𝐾1 × . . . × 𝐾𝑟 and 𝐿 = 𝐿1 × . . . × 𝐿𝑠
be étale 𝑘-algebras, and let 𝑓 : 𝐾 → 𝐿 be a homomorphism of 𝑘-algebras. We
also let 𝑝 𝑗 be the projection from 𝐿 to 𝐿 𝑗 for any 𝑗 ∈ [𝑠] and let 𝐽𝑖 ⊂ [𝑠] be
defined as in Corollary 2.1.15. For 𝑖 ∈ [𝑟], 𝑗 ∈ [𝑠], we have a map 𝑓𝑖 𝑗 = 𝑝 𝑗 ◦ 𝑓𝑖
from 𝐾𝑖 to 𝐿 𝑗 , which is either the zero map if 𝑗 ∉ 𝐽𝑖 or a 𝑘-homomorphism
of field extensions if 𝑗 ∈ 𝐽𝑖 . If 𝑗 ∈ 𝐽𝑖 , we then have a group homomorphism
D ( 𝑓𝑖 𝑗) : D (𝐾𝑖) → D (𝐿 𝑗) ⊂ D (𝐿). We extend this mapping toD (𝐾) linearly
by setting D ( 𝑓𝑖 𝑗)) (𝑃) = 0 if 𝑃 ∈ 𝑀𝑛𝑎

𝐾𝑖′
and 𝑖′ ≠ 𝑖. Then, we set

D ( 𝑓 ) =
∑︁
𝑖∈[𝑟 ]
𝑗∈𝐽𝑖

D ( 𝑓𝑖 𝑗).

Now, let 𝑁 = 𝑁1 × . . . × 𝑁𝑡 be another étale algebra, and let 𝑔 : 𝐿 → 𝑁 be a
homomorphism of 𝑘-algebras. The fact that D (𝑔 ◦ 𝑓 ) = D (𝑔) ◦D ( 𝑓 ) follows
from the similar fact for divisor groups of global fields.

If 𝑓 is an automorphism of 𝐾 as a 𝑘-algebra and 𝑃 ∈ 𝑀𝑛𝑎
𝐾

, the divisor
D ( 𝑓 ) (𝑃) is also primitive, in the sense that if D ( 𝑓 ) (𝑃) =

∑
𝑄∈𝑀𝑛𝑎

𝐾
𝑛𝑄𝑄,

𝑛𝑄 = 0 for all but one 𝑄 ∈ 𝑀𝑛𝑎
𝐾

, and then 𝑛𝑄 = 1. We denote by 𝑃 𝑓 the place
𝑄 as above.

We record one result for later purposes:

Lemma 2.1.26. Let𝐾, 𝐿 be étale 𝑘-algebras, and let 𝑓 : 𝐾 → 𝐿 be a homomor-
phism of 𝑘-algebras such that, with [𝑟], [𝑠] and the 𝐽𝑖 as in Corollary 2.1.15,⋃
𝑖∈[𝑟 ] 𝐽𝑖 = [𝑠]. Let 𝑄 ∈ 𝑀𝑛𝑎

𝐿
. Then there exists a unique 𝑃 ∈ 𝑀𝑛𝑎

𝐾
such that

𝑄 ∈ Supp(D ( 𝑓 ) (𝑃)).

Proof. We set 𝐾 = 𝐾1 × . . . × 𝐾𝑟 and 𝐿 = 𝐿1 × . . . × 𝐿𝑠 as usual. Then, we
may assume that 𝑄 ∈ 𝑀𝐾1 , and we let 𝑝1 be the projection map 𝐿 → 𝐿1. By
Corollary 2.1.15, there is a unique 𝑖 ∈ [𝑟], such that 𝑝1 ◦ 𝑓 |𝐾𝑖 ≠ 0. It follows
from definition of D ( 𝑓 ) that if 𝑃 ∈ 𝑀𝐾 is such that𝑄 ∈ Supp(D ( 𝑓 ) (𝑃)), then
𝑃 ∈ 𝑀𝐾𝑖 . As 𝑝1 ◦ 𝑓 |𝐾𝑖 corresponds to a 𝑘-homomorphism of field extensions,
the result follows from the uniqueness of the place below 𝑄 in a subfield of
𝐾1. □
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When 𝑓 , 𝑄 and 𝑃 are as in the statement of Lemma 2.1.26, we write
𝑄 𝑓 ≔ 𝑃.

Definition 2.1.27. With notations as in the proof of Lemma 2.1.26, if 𝑄 ∈
𝑀𝑛𝑎
𝐿 𝑗

⊂ 𝑀𝑛𝑎
𝐿

, let 𝑖 ∈ [𝑟] such that 𝑄 𝑓 ∈ 𝑀𝐿𝑖 . Then, the ramification index of
𝑄 by 𝑓 , denoted by 𝑒𝑄, 𝑓 is the index 𝑒𝑄/𝑄 𝑓 where 𝐿 𝑗 is seen as an extension
of 𝐾𝑖 via the map 𝑝 𝑗 ◦ 𝑓 |𝐾𝑖 .

A place 𝑄 ∈ 𝑀𝑛𝑎
𝐿

is called unramified with respect of 𝑓 if 𝑒𝑄, 𝑓 = 1. A
place 𝑃 ∈ 𝑀𝑛𝑎

𝐾
is called unramified with respect to 𝑓 if 𝑒𝑄, 𝑓 = 1 for all

𝑄 ∈ Supp(D ( 𝑓 ) (𝑃)).

Local completions of étale algebras over global fields

We assume that 𝑘 is a global field. Using completions, we may give a Galois
theoretical description of the splitting behaviour of the places of an étale 𝑘-
algebras.

Definition 2.1.28. Let𝐾 = 𝐾1×. . .×𝐾𝑟 be an étale 𝑘-algebra, and let 𝑃 ∈ 𝑀𝐾 .
Let 𝑖 ∈ [𝑟] be such that 𝑃 ∈ 𝑀𝐾𝑖 . Then, the local completion of 𝐾 at 𝑃 is the
completion of the field 𝐾𝑖 at the place 𝑃. It is a 𝐾-algebra via the composite
map

𝐾 → 𝐾𝑖 → 𝐾𝑃,

where the left map is the projection map and the second is the natural injection
of 𝐾𝑖 into its completion.

Proposition 2.1.29. Let 𝐾, 𝐿 be étale 𝑘-algebras, let 𝑓 : 𝐾 → 𝐿 be a homo-
morphism of 𝑘-algebras, and let 𝑃 ∈ 𝑀𝑛𝑎

𝐾
. Then, the scalar extension algebra

𝐿𝐾𝑃 is a direct product of finite extensions of 𝐾𝑃, and there is a bĳection
between its direct factors and the support of D ( 𝑓 ) (𝑃).

Proof. Set 𝐾 = 𝐾1× . . .×𝐾𝑟 and 𝐿 = 𝐿1× . . .×𝐿𝑠. Without loss of generality,
we assume that 𝑃 ∈ 𝑀𝐾1 . Then, the 𝐾-algebra 𝐾𝑃 is killed by the maximal
ideal 0 × 𝐾2 × . . . × 𝐾𝑟 . It follows that

𝐿𝐾𝑃 = 𝐾𝑃 ⊗𝐾 𝐿 ≃ 𝐾𝑃 ⊗𝐾1 (𝐾1 ⊗𝐹 𝐿) ≃
∏
𝑗∈𝐽1

𝐾𝑃 ⊗𝐾1 𝐿 𝑗 .

However, by the discussion in Section 2.1.2, if 𝑗 ∈ 𝐽𝑖 , 𝐾𝑃 ⊗𝐾 𝐿 𝑗 is a direct
product of local field, whose factors are in bĳection with the support of D (𝑝 𝑗 ◦
𝑓1) (𝑃) in D (𝐿 𝑗). The result follows since D ( 𝑓 ) (𝑃) is the sum of the D (𝑝 𝑗 ◦
𝑓1) (𝑃), and the supports of these maps are pairwise disjoint. □
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2.1.6 Lattices and orders

Let 𝑘 be a global field, and let 𝑆 ⊂ 𝑀𝑘 be a nonempty subset which contains all
the Archimedean places of 𝑘 . Let𝑉 be a finite-dimensional 𝑘-vector space. An
O𝑆-lattice in 𝑉 is a finitely generated O𝑆-submodule 𝐿 of 𝑉 such that 𝑘𝐿 = 𝑉 .
Such a lattice is torsion-free. As O𝑆 is a Dedekind domain, it follows that 𝐿 is
a projective O𝑆-module.

Such a projective module is not necessarily free. However, it admits a
pseudo-basis [91, Theorem 9.3.6]. If 𝑛 = [𝑉 : 𝑘], a pseudo-basis of an
O𝑆-lattice 𝐿 in 𝑉 is a pair

𝑃𝐵 = ((𝔞1, . . . , 𝔞𝑛), (𝑥1, . . . , 𝑥𝑛))

such that the 𝔞𝑖 are fractional O𝑆-ideals, the 𝑥𝑖 are elements of 𝑉 , and

𝐿 = 𝔞1𝑥1 ⊕ . . . ⊕ 𝔞𝑛𝑥𝑛.

A well-known result on Dedekind domains states that for any lattice admits a
pseudo-basis of the form ((O𝑆 , . . . ,O𝑆 , 𝔞), (𝑥1, . . . , 𝑥𝑛)). Furthermore, if 𝔞
and 𝔞′ are two fractional O𝑆-ideals such that there exists a pseudo-basis of 𝐿
of this form, then 𝔞 and 𝔞′ have the same class in Cl(𝑘)𝑆 . The class of 𝔞 is
called the Steinitz class of 𝐿. Two lattices are isomorphic if and only if they
have the same Steinitz class. In particular, if O𝑆 is a PID, then all O𝑆-lattices
are free [91, Theorem 9.3.9].

If we assume that 𝑉 is in fact the underlying vector space of a 𝑘-algebra 𝐴,
the lattice 𝐿 is said to be anO𝑆-order of 𝐴 if it also a subring of 𝐴 [91, Definition
10.2.1]. An O𝑆-order is then naturally an O𝑆-algebra. An order is called
maximal if not contained in a strictly larger order.

We now present two examples of orders.

1. The ring 𝑀𝑑 (O𝑆) is a maximal O𝑆-order in 𝑀𝑑 (𝑘).

2. If 𝐾/𝑘 is a finite extension and 𝑇 is the set of places of 𝐾 lying above
the elements of 𝑆, then the ring O𝑇 of 𝑇-integral elements of 𝐾 is an
O𝑆-order in 𝐾 . It is the integral closure of O𝑆 in 𝐾 . It is also the only
maximal O𝑆-order in 𝐾 .

2.2 Algorithms

We present various algorithmic problems for algebraic number theory and the
complexity of existing algorithms that solve them. For brevity, we do not give
the details of the algorithms but instead give references.
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Many of these algorithms (or others solving the same problems) are im-
plemented in computer algebra software such as PARI/gp [88], Sage [89] and
Magma [10].

2.2.1 Computational Model

When we state the complexity of an algorithm, we mean the number of bit
operations necessary for the computation, expressed as a function of the size
of the input. By polynomial algorithm, we mean a deterministic algorithm
whose complexity is dominated by a polynomial in the size of the input. A
subexponential algorithm is an algorithm whose complexity is asymptotically
larger than any polynomial but smaller than any exponential function of the
input. We also consider probabilistic algorithms, which require the generation
of random numbers and whose behaviour and success may be random. We
distinguish algorithms of the Monte Carlo type, whose complexity is fixed but
success is uncertain, and algorithms of the Las Vegas type, whose success is
guaranteed but complexity is random. We say that a Las Vegas algorithm is
polynomial if the expectation of its complexity is polynomial.

A polynomial Monte Carlo algorithm may turn into a polynomial Las Vegas
algorithm under two conditions: that the probability of success is larger than
1/𝑝(𝑛) for some polynomial 𝑝 and 𝑛 the size of the input; and that the validity
of its output may be checked in polynomial time. Indeed, if these conditions are
satisfied, a polynomial Las Vegas algorithm is obtained by repeatedly executing
the Monte Carlo algorithm and checking for the validity of its output. In the
sequel, we will use this transformation freely.

When describing an algorithm, we may refer to an oracle for a specific
algorithmic task. An oracle here is a subroutine which solves the algorithmic
task in question, and its complexity is considered polynomial in the size of its
input.

Many algorithms we will discuss are deterministic and run in polynomial
time, except for one or several factorisation steps. An f-algorithm is a determin-
istic polynomial algorithm with access to an oracle for factoring polynomials
over finite fields. An ff-algorithm is a deterministic polynomial algorithm with
access to an oracle for factoring integers and polynomials over finite fields. [71].
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2.2.2 Lattice reduction

Many of our algorithms involve lattices and orders. In order to handle such
objects, it is often necessary to compute a reduced basis or pseudo-basis with
desirable properties. Below, we define such reductions and present algorithms
to compute them.

Popov reduction

In order to relate lattices over the rings 𝐹 [𝑋] and 𝐹 (𝑋)∞, we need to compute
bases that are orthogonal in some sense. While LLL reduction would be used
over Z, the function field equivalent we use here is the Popov form of matrices.
We follow the exposition given in [75] up to transposition since our convention
will be to have the columns of matrices represent basis elements. Note that
since the rings 𝐹 [𝑋] and 𝐹 (𝑋)∞ are PIDs, any lattice over these rings is a free
module. In particular, it admits a basis in 𝐹 (𝑋)𝑛, and may be represented by
an element of 𝐺𝐿𝑛 (𝐹 (𝑋)).

Definition 2.2.1. Let 𝑣 = (𝑣𝑖) ∈ 𝑀𝑛,1(𝐹 [𝑥]) be a column vector. We define
the following:

• The norm of 𝑣 as |𝑣 | = max𝑛
𝑖=1 deg(𝑣𝑖).

• The vector lc(𝑣) ∈ 𝑀𝑛,1(𝐹) is the vector whose 𝑖-th entry is the coefficient
of degree |𝑣 | of the polynomial 𝑣𝑖 .

• The pivot index of vector 𝑣, denoted by piv(𝑣) is the largest 𝑖 such that
deg 𝑣𝑖 = |𝑣 |.

Definition 2.2.2 ( [75, Definition 2]). Let 𝑀 ∈ 𝑀𝑛 (𝐹 [𝑥]), and let 𝑣1, . . . , 𝑣𝑛

be the columns of 𝑀 . We say that the matrix 𝑀 is reduced if the matrix

lc(𝑀) =
(
lc(𝑣1) . . . lc(𝑣𝑛)

)
is invertible. We say that the matrix 𝑀 is in Popov form if it is reduced and the
following conditions are satisfied:

1. The pivot indices piv(𝑣1), . . . , piv(𝑣𝑛) are distinct.

2. The pivot entries 𝑣𝑖,piv(𝑣𝑖 ) are monic.

3. For 𝑖 ∈ [𝑛], |𝑣𝑖 | ≤ |𝑣𝑖+1 |, and if |𝑣𝑖 | = |𝑣𝑖+1 |, then piv(𝑣𝑖) < piv(𝑣𝑖+1).
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4. The entries of 𝑣 that are not the pivot of their column have degree lesser
than the entry of the same row which is the pivot of its column.

The reason reduced matrices are relevant to us is the following statement,
which is a form of orthogonality:

Proposition 2.2.3 ( [52, Theorem 6.3-13]). Let 𝑣1, . . . , 𝑣𝑛 be the columns of a
reduced matrix. Let 𝑎1, . . . , 𝑎𝑛 ∈ 𝐹 [𝑥]. Then����� 𝑛∑︁

𝑖=1
𝑎𝑖𝑣𝑖

����� = max
𝑖∈[𝑛]

(deg(𝑎𝑖) + |𝑣𝑖 |) .

Computing reduced matrices would be sufficient for most applications, but
a matrix may be right-equivalent to several different reduced matrices. Instead,
computing the Popov form of a matrix ensures uniqueness and may be desirable
in a computational context.

Proposition 2.2.4. Let 𝑀 ∈ 𝑀𝑛 (𝑘 [𝑥]) be nonsingular. Then there exist unique
matrices𝑈 ∈ 𝐺𝐿𝑛 (𝑘 [𝑥]) and 𝑃 ∈ 𝑀𝑛 (𝑘 [𝑥]) such that 𝑃 = 𝑀𝑈 and the matrix
𝑃 is in Popov form.

Reduced and Popov forms of matrices may be computed efficiently. In the
following, the notation �̃� means we omit logarithmic factors, 𝜔 is the exponent
of the cost of matrix multiplication in 𝑘 , 𝑀 (𝑑) is the cost of multiplication of
two polynomials of degree at most 𝑑 and 𝐵(𝑑) is the cost of an extended gcd
computation for two polynomials of degree at most 𝑑.

Proposition 2.2.5. Let 𝑀 ∈ 𝑀𝑛 (𝑘 [𝑥]) with entries of degree no larger than
𝑑 ∈ N.

• A reduced matrix right-equivalent to 𝑀 may be computed at a cost of
�̃� (𝑛𝜔 (𝑀 (𝑑) + 𝐵(𝑑))) operations in 𝑘 . [41]

• If 𝑀 is reduced, the Popov form of 𝑀 maybe computed at a cost of
�̃� (𝑛𝜔𝑑) operations in 𝑘 . [75]

Hermite form

Many basic algorithms for algebraic number theory require computing the
Hermite normal form of matrices with coefficients in rings of 𝑆-integers of
global fields. We first recall the definitions. If 𝑅 is a PID, elements 𝑎 and 𝑏 of
𝑅 \ {0} are said to be associated if there exists a unit 𝑢 ∈ 𝑅× such that 𝑎 = 𝑢𝑏.

Our definition of the Hermite normal form over a PID is a mix of the
definition given in [64, Section II.6] and [15, Definition 2.4.2].
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Definition 2.2.6. Let 𝑅 be a PID. Fix a maximal set 𝐴 of nonassociated elements
of 𝑅, and for each 𝑎 ∈ 𝐴, fix a complete set 𝐵𝑎 of residues modulo 𝑎. Then,
a matrix 𝑀 = (𝑚𝑖 𝑗)𝑖∈[𝑚]

𝑗∈[𝑛]
∈ 𝑀𝑚,𝑛 (𝑅) is in Hermite normal form if there exist

𝑟 ∈ [𝑛] and a strictly increasing map 𝑓 from {𝑟 + 1, 𝑟 + 2, . . . , 𝑛} to [𝑚] such
that the following conditions are satisfied:

1. For 𝑟 + 1 ≤ 𝑗 ≤ 𝑛, 𝑚 𝑓 ( 𝑗 ) , 𝑗 ∈ 𝐴, 𝑚𝑖, 𝑗 = 0 if 𝑖 > 𝑓 ( 𝑗) and 𝑚 𝑓 (𝑖) , 𝑗 ∈
𝐵𝑚 𝑓 (𝑘) ,𝑘 if 𝑖 < 𝑗 .

2. The first 𝑟 columns of 𝑀 are equal to 0.

It is well-known that a matrix admits a Hermite normal form.
The problem of computing the Hermite normal form of a matrix with integer

or polynomial coefficients is well studied and may be solved in polynomial
time [41,85]. The ring 𝑘 (𝑥)∞ is a 𝐷𝑉𝑅, so the Hermite normal form may also
easily be computed over this ring.

The algorithms given in Section 5.2.5 will rely on the computation of
Hermite normal forms of matrices and pseudo-matrices over rings O 𝑓 𝑖 and O∞
lying in a global function field. We briefly recall the relevant definitions and
results and refer the reader to [17, Sections 1.4 and 1.5] for details. Note that
we include the case of matrices that are not of full rank.

For the rest of this section, 𝑅 is a Dedekind domain with fraction field 𝐾 .
We first give a definition of pseudo-matrices:

Definition 2.2.7 ( [17, Definition 1.4.5]). 1. A pseudo-matrix of size 𝑚 × 𝑛
over 𝐴 is a pair 𝑃𝑀 = (𝔞, 𝑀), where 𝔞 = (𝔞 𝑗) 𝑗∈[𝑛] are fractional ideals
of 𝑅 and 𝑀 ∈ 𝑀𝑚,𝑛 (𝐾).

2. The map associated with such a pseudo-matrix is the map 𝑓 : 𝔞1 ⊕ . . . ⊕
𝔞𝑛 → 𝐾𝑚 defined by 𝑓 (𝑎1, . . . , 𝑎𝑛) =

∑𝑛
𝑗=1 𝑎 𝑗𝑀 𝑗 , where the 𝑀 𝑗 are the

columns of 𝑀 .

3. The module associated with this pseudo-matrix is the module

𝐿 =

𝑛∑︁
𝑗=1

𝔞 𝑗𝑀 𝑗 .

It is the image of the map 𝑓 in 𝐾𝑛, and is denoted by 𝑃𝑀 (𝑅𝑛).

4. The kernel of the pseudo-matrix (𝔞, 𝑀) is the kernel of the map 𝑓 .
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Remark 2.2.8. If 𝐴 is a PID, we may always turn a pseudo-matrix into a matrix
by computing generators of its coefficient ideals.

For the following definition, we assume that for each fractional ideal 𝔞 of
𝑅, there is a fixed set 𝐵𝔞 of representatives of the residue classes of 𝐾/𝔞.

Definition 2.2.9 ( [8,17]). Let 𝑃𝑀 = (𝔞, 𝑀) be a pseudo-matrix of size 𝑚 × 𝑛,
with coefficients in 𝑅, let 𝑟 = rank𝑀 . A Hermite normal form of (𝔞, 𝑀) is the
data of a matrix 𝑈 = (𝑢𝑖 𝑗)𝑖, 𝑗∈[𝑛] ∈ 𝐺𝐿𝑛 (𝐾) and a pseudo-matrix (𝔟, 𝑁) with
𝔟 = (𝔟1, . . . , 𝔟𝑛) and 𝑁 ∈ 𝑀𝑚,𝑛 (𝐾) such that

1. 𝑢𝑖 𝑗 ∈ 𝔞𝑖 𝔟
−1
𝑗 for all 𝑖, 𝑗 ∈ [𝑛];

2. we have
∏
𝑖∈[𝑛] 𝔞𝑖 = det(𝑈)∏𝑖∈[𝑛] 𝔟𝑖;

3. the matrix 𝑁 is of the form
(
0 𝐻

)
, with 0 the zero matrix in 𝑀𝑚,𝑛−𝑟 (𝐾)

and 𝐻 = (ℎ𝑖 𝑗)𝑖∈[𝑚]
𝑗∈[𝑟 ]

∈ 𝑀𝑚,𝑟 (𝐾) such that there exists an increasing

function 𝑓 : [𝑟] → [𝑚] such that for 𝑗 ∈ [𝑟] and 𝑓 (𝑖) < 𝑗 ≤ 𝑚, ℎ𝑖 𝑗 = 0
and for 𝑗 ∈ [𝑟], ℎ 𝑓 ( 𝑗 ) 𝑗 = 1.

4. with 𝐻𝑖 the 𝑖-th column of 𝐻 for 𝑖 ∈ [𝑟],

𝑃𝑀 (𝑅𝑛) = 𝔟𝑛−𝑟+1 𝐻1 ⊕ . . . ⊕ 𝔟𝑛 𝐻𝑟 ;

5. with 𝑈𝑖 the 𝑖-th column of 𝑈, ((𝔟1, . . . , 𝔟𝑛−𝑟 ), (𝑈1, . . . ,𝑈𝑛−𝑟 )) is a
pseudo-basis of the kernel of 𝑃𝑀;

6. if 𝑗 ∈ [𝑟] and 𝑖 ∈ [ 𝑓 ( 𝑗) − 1], ℎ𝑖 𝑗 ∈ 𝐵𝔟𝑛−𝑟+𝑖 𝔟−1
𝑛−𝑟+ 𝑗

.

More than the exact definition, what matters to us is the useful algorithmic
properties of the Hermite Normal Form:

Proposition 2.2.10. 1. Let (𝔞, 𝑀), (𝔞′, 𝑀 ′) be two pseudo-matrices over
a Dedekind domain 𝑅. Then, the modules generated by these pseudo-
matrices are equal if and only if their Hermite normal forms are equal
as well [17, 1.5.2 (2)].

2. The image and kernel of a pseudo-matrix may be computed in polynomial
time from its Hermite normal form [17, 1.5.2 (5)].

We now discuss the problem of computing Hermite normal forms for
pseudo-matrices over the rings O 𝑓 𝑖 and O∞ of a global function field. The
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analogue problem for rings of integers of number fields was conjectured in [16]
to be feasible in polynomial time, and it was proved in [8] for pseudo-matrices of
full rank. Since the ring O∞ has only finitely many prime ideals, a polynomial
algorithm for computing Hermite normal forms may easily be found. In the
case of rings O 𝑓 𝑖 in function field and matrices of lower rank, no such result
exists in the literature to the best of our knowledge. It seems plausible that the
methods of [8] may be adapted to the function field setting, replacing the use of
LLL-reduction with Popov reduction. However, Remark 36 of the work cited
argue that the modular methods used there do not adapt to pseudo-matrices that
are not of full rank. We, therefore, define the following problem:

Problem 2.2.11. Given a global function field 𝐾 and a pseudo-matrix 𝑃𝑀 over
O 𝑓 𝑖 , compute a Hermite normal form of 𝑃𝑀 .

We state the following conjecture, hoping that further research may fully
tackle the problem.

Conjecture 2.2.12. There exists a polynomial-time algorithm that solves Prob-
lem 2.2.11.

2.2.3 Main algorithms for global fields

This section discusses algorithms for representing and manipulating elements
of global fields. The standard references for most of these results are the
books [15, 17]. These books focus on number fields, but some algorithms are
also valid for function fields. A more recent and different approach to several
algorithmic problems is [40].

Representing elements and computing algebraic operations

We assume efficient algorithms for representing elements of the rational field
Q and any rational function field F(𝑋), when F is a finite field. A rational
number 𝑟 = 𝑎/𝑏 ∈ Q, with 𝑎 and 𝑏 coprime integers, has a representation
of size ⌈log2(𝑎)⌉ + ⌈log2(𝑏)⌉. Likewise, an element 𝑟 = 𝑎/𝑏 ∈ F(𝑋), where
𝑎 and 𝑏 are coprime polynomials, has a representation size proportional to
deg 𝑎 +deg 𝑏. We also assume that algebraic operations between elements may
be computed in polynomial time.

In what follows, 𝑘 is a global field for which we assume we may represent
elements and compute algebraic operations. With the paragraph above, this is
already the case if 𝑘 is the field of rational numbers or a rational function field.
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Let 𝐾 be a finite monogeneous extension of 𝑘 . That is, we assume that an
irreducible polynomial 𝜒[𝑋] of degree 𝑑 is given such that 𝐾 may be identified
with 𝑘 [𝑋]/(𝜒(𝑋)). Then, denoting by 𝜃 the image of 𝑋 in 𝐾 , any element of
𝐾 may be uniquely written as

𝑥 =

𝑑−1∑︁
𝑖=0

𝑥𝑖𝜃
𝑖 ,

and this element may be represented computationally as the tuple 𝑥0, . . . , 𝑥𝑑−1.
Additions and substractions may then be computed componentwise. Mul-
tiplication of elements may be computed using polynomial multiplication
and reduction modulo 𝜒. Finally, computing inverses of elements, and thus
divisions, requires a slightly more involved computation: The polynomial
𝜉 (𝑋) = 𝑐0+ . . .+𝑐𝑑−1𝑋

𝑑−1 representing an element 𝑥 of 𝐾 (i.e 𝑥 = 𝜉 (𝜃)) is co-
prime to 𝜒, since 𝜒 is irreducible. Then, one may compute Bezout coefficients
𝑈,𝑉 ∈ 𝑘 [𝑋] such that

𝜉𝑈 + 𝜒𝑉 = 1,

and𝑈 mod 𝜒 is the inverse of 𝑥 in 𝐾 . These algorithms allow us to represent
any global field presented as a separable extension of one of the rational global
fields. As inseparable extensions of function fields are unnecessary for our
purposes, we do not consider them here. We note that several optimisations
are done in practice when these algorithms are implemented.

The references given at the beginning of the section present a variety of
possible representations for number field elements, some of them generalising
directly to global function fields. Different representations present various
advantages depending on the situation. Discussing them is, however, out of the
scope of this work, and we refer the reader to the sources for more details.

Heights in function fields

Let 𝑘 be a global function field with field of constants 𝐹. Let 𝑎 ∈ 𝑘×. We
define the height of 𝑎 as

ht𝑘 (𝑎) =
∑︁
𝑃∈𝑀𝑘

max(ord𝑃 (𝑎), 0) =
∑︁
𝑃∈𝑀𝑘

−min(ord𝑃 (𝑎), 0).

We simply write ht(𝑎) if the field 𝑘 is clear from context. Observe that for a
finite separable extension 𝐾/𝑘 , if 𝑎 ∈ 𝑘×, ht𝐾 (𝑎) = [𝐾 : 𝑘] ht𝑘 (𝑎).

While analogous to heights in number fields, this is more usually called
degree in the literature on function fields. In this work, we consider degrees of
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vector bundles in various forms and connect them to degrees of divisors and
répartitions. We use the word height for this notion to avoid overloading the
term.

We observe readily that for 𝑎, 𝑏 ∈ 𝑘×, ht(𝑎 + 𝑏) ≤ ht(𝑎) + ht(𝑏) and
ht(𝑎𝑏) ≤ ht(𝑎) + ht(𝑏).

In the case 𝑘 = 𝐹 (𝑥), let 𝑟 = 𝑎
𝑏
∈ 𝐹 (𝑥) with 𝑎 and 𝑏 coprime non-zero

polynomials in 𝑘 [𝑥]. Then ht(𝑟) = deg(𝑎) + deg(𝑏). This equation suggests
a connection between the height of an element 𝑎 ∈ 𝐾× and the size of its
computational representation:

Proposition 2.2.13. Let 𝑎 ∈ 𝐾×. Then ht(𝑎) is polynomial in the size of the
representation of the field 𝐾 and of the function 𝑎.

Proof. Let 𝑑 = [𝐾 : 𝑘]. First, we compute ht(𝑦). Let 𝜒𝑦 =
∑𝑑
𝑖=0 𝑐𝑖𝑇

𝑖 be the
minimal polynomial of 𝑦 over 𝑘 (𝑥). Observe that [𝐾 : 𝑘 (𝑦)] ≤ max𝑖 ht(𝑐𝑖).
Thus, by [84, Theorem 1.4.11], ht𝐾 (𝑦) ≤ max𝑖 ht(𝑐𝑖). The size of the repre-
sentation of the field 𝐾 is bounded by

∑𝑛
𝑖=0 ht(𝑐𝑖), so ht(𝑦) is bounded by the

size of the representation of 𝐾 . Let 𝑎 =
∑𝑑−1
𝑖=0 𝑎𝑖𝑦

𝑖 . Then we compute

ht(𝑎) ≤
𝑑−1∑︁
𝑖=0

ht𝐾 (𝑎𝑖) + 𝑖 ht(𝑦)

≤
𝑑−1∑︁
𝑖=0

(ht(𝑎𝑖)) +
𝑑 (𝑑 − 1)

2
ht(𝑦).

□

We will need the following easy lemma:

Lemma 2.2.14. Let 𝑔 ∈ 𝐺𝐿𝑛 (𝐾). Then ht(det(𝑔)) is polynomial in the size of
the representation of 𝑔.

Proof. A representation of the determinant of 𝑔 in the basis 1, 𝑦, . . . , 𝑦𝑑−1 may
be computed in polynomial time and therefore has polynomial size. The result
then follows from Proposition 2.2.13. □

Places and ideals

Following [40], we may represent places of a global field 𝑘 and fractional
ideals over any ring of integers of 𝑘 . Given places 𝑃1, . . . , 𝑃𝑟 ∈ 𝑀𝑘 , integers
𝜈1, . . . , 𝜈𝑟 ∈ Z and 𝑎1, . . . , 𝑎𝑟 ∈ 𝑘×, we may also solve the Chinese Remainder
Problem and compute 𝑎 ∈ 𝑘 such that ord𝑃𝑖 (𝑎 − 𝑎𝑖) ≥ 𝜈𝑖 for 𝑖 ∈ [𝑟].

54



Completions

A computational task for global fields is to compute embeddings into their
completions. In this work, we only need to compute the embedding of a global
function field 𝑘 at a given place 𝑃 ∈ 𝑀𝑘 . Such an embedding may be computed
in polynomial time using, for instance, [44, Lemma 9 and Algorithm 27].

Factorisation problems

The task of factoring integers into a product of primes is known to be feasible
in subexponential time. The task of factoring polynomials over finite fields is
known to be feasible in probabilistic polynomial time.

The Montes algorithm [39] allows to factor a prime number 𝑝 in a ring of
integers of a number field, and generalises to factoring a place 𝑃 of F(𝑋) into
a divisor of a function field. We note that this algorithm is polynomial.

As discussed in [40], it follows that there is an f-algorithm for computing
the divisor of an element of a global function field, and an ff-algorithm for
computing the divisor of an element of a number field. This work also yields
a polynomial algorithm for computing the image of a divisor 𝐷 ∈ D (𝑘) in
the group D (𝐾), where 𝐾 is a finite extension of 𝑘 . Finally, if 𝑘 is a global
field, a polynomial in 𝑘 [𝑋] may be factored in polynomial time as a product of
irreducible polynomials [59].

Computing rings of integers

Zassenhaus’ Round 2 Algorithm is a well-known ff-algorithm for computing
the ring of integers of a number field and may also adapt into an f-algorithm
for computing the rings O 𝑓 𝑖 and O∞ of a global function field [15, Section
6.1]. As discussed in [40, Section 8.2], the Montes algorithm also provides
a ff-algorithm for computing the ring of integers of a number field, and an
f-algorithm for computing the finite and infinite rings of integers of a function
field.

Once such rings are computed, any ideal may be represented using a basis
over, respectively, Z, 𝐹 [𝑋], and 𝐹 (𝑋)∞.

Class group and unit group

Computing class groups and unit groups is a well-studied problem of algorith-
mic number theory. In this section, we restrict ourselves to the case that 𝑘 is a
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number field. We first observe that under the generalised Riemann hypothesis
(henceforth GRH), there exists a polynomial-sized set of prime ideals which
generate the class group of 𝑘 [9, Fact 4.1]. More precisely, the class group Cl𝑘
is generated by the set

B = {𝔭 ∈ 𝑀𝑛𝑎
𝑘 : 𝑁 (𝔭) ≤ 12 log( |Δ𝑘 |)2},

where Δ𝑘 is the discriminant of 𝑘 and 𝑁 (𝔭) is the cardinality of the (finite)
field O𝑘/𝔭.

The problem of computing the class group of 𝑘 is then to compute relations
for the elements of B (or of another generating set) in the class group.

The problem of computing units or 𝑆-units in a number field is usually
solved as a byproduct of the class group computation. One key question is
the choice of representation for the units computed, as there is no guarantee
that generators with a polynomial-sized representation in the usual form exist.
Instead, the work [7] introduces a compact representation of algebraic integers:

Definition 2.2.15 ( [9, Definition 3.1]). Let 𝑙 > 0 be a constant, a compact
representation of 𝛼 ∈ O𝑘 with respect to the integral basis (𝜔 𝑗) 𝑗≤𝑑 of O𝑘 is
a positive integer 𝑛 of polynomial size, and algebraic numbers 𝛾0, . . . , 𝛾𝑛 of
polynomial size (in the integral basis (𝜔 𝑗)) such that

𝛼 = 𝛾0𝛾
𝑙
1 . . . 𝛾

𝑙𝑛

𝑛 .

Then, [7] provides a subexponential algorithm for computing compact
representations of generators of the group of units of a number field. While an
algorithm exists for computing generators of the group of 𝑆-units of a number
field, it relies on solving the so-called principal ideal problem. [82, Section
6.1]. We introduce the following problem:

Problem 2.2.16 (𝑆-units computation). Given a number field 𝑘 and a finite set
𝑆 containing the Archimedean places of 𝑘 , compute compact representations
for 𝛼1, . . . , 𝛼 |𝑆 |−1 which generate the torsion-free part of 𝑈𝑆 , and the usual
representations of a generator of the torsion part of𝑈𝑆 .

Given generators 𝛼1, . . . , 𝛼 |𝑆 |−1 of the group of 𝑆-units in compact repre-
sentation, [57, Theorem 1.11] provides a polynomial algorithm for computing
a representation of a given 𝑆-unit as a product of powers of the 𝛼𝑖 . We may
efficiently compute the isomorphism𝑈𝑆 ≃ Z |𝑆 |−1 × Z/𝑛Z.
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Quantum algorithms

In [80], Shor proposed a polynomial quantum algorithm for factoring integers.
While the theory of quantum algorithms is out of the scope of this work, we
shall take note of several algorithmic tasks for which a polynomial quantum
algorithm is known.

As discussed above, an ff-algorithm is known for computing the ring of
integers of a number field. Using Shor’s algorithm, we get a polynomial
quantum algorithm for computing the ring of integers of a number field.

Also of interest to us, [9] provides a polynomial quantum algorithm for
solving Problem 2.2.16.
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Chapter 3

The explicit isomorphism
problem

This chapter introduces notions related to the explicit isomorphism and presents
some existing results on the topic and the methods that they use. A general
reference for central simple algebras is [36].

For the remainder of this chapter, 𝑘 is a field. The 𝑘-algebras consid-
ered here are assumed to be unital, associative, and finite-dimensional unless
specified otherwise.

3.1 Algebras and algorithms

Here, we recall some results on algebras over a field particularly a global field.
Let 𝑘 be a field.

3.1.1 Structure constants

In order to give an algorithmic treatment of 𝑘-algebra, we must be able to
represent their elements and compute the usual algebraic operations: addition,
scalar multiplication and multiplication. Let 𝐴 be a 𝑘-algebra with underlying
vector space 𝑉 of dimension 𝑛. Then, any basis of 𝑉 provides an isomorphism
𝑉 ≃ 𝑘𝑛. We fix such a basis 𝐵 = (𝑒1, . . . , 𝑒𝑛) and identify 𝑉 with 𝑘𝑛. The
bilinear map 𝑉 × 𝑉 → 𝑉 , which describes the multiplication operation of 𝐴,
corresponds to a tensor in 𝑉∨ ⊗ 𝑉∨ ⊗ 𝑉 . If we let (𝑒∨1 , . . . , 𝑒

∨
𝑛) be the basis

of 𝑉∨ dual to 𝐵, then (𝑒∨
𝑖
⊗ 𝑒∨

𝑗
⊗ 𝑒ℓ)1≤𝑖, 𝑗 ,ℓ≤𝑛 is a basis of 𝑉∨ ⊗ 𝑉∨ ⊗ 𝑉 . The

structure constants of 𝐴 with respect to the basis 𝐵 are then the coordinates
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of the multiplication operation of 𝐴 in this basis. We give a more elementary
version of this definition:

Definition 3.1.1. Let 𝐴 be a 𝑘-algebra of dimension 𝑛, and let (𝑒𝑖)1≤𝑖≤𝑛 be a
basis of 𝐴. The structure constants of 𝐴 with respect to the basis (𝑒𝑖) are the
(𝑐𝑖 𝑗ℓ) ∈ 𝑘𝑛

3 such that for all 𝑖, 𝑗 ∈ [𝑛],

𝑒𝑖𝑒 𝑗 =

𝑛∑︁
ℓ=1

𝑐𝑖 𝑗ℓ𝑒ℓ .

For such a 𝑘-algebra 𝐴 with structure constants 𝑐𝑖 𝑗ℓ , we may represent an
element 𝑎 =

∑𝑛
𝑖=1 𝑎𝑖𝑒𝑖 ∈ 𝐴 as the vector (𝑎𝑖)1≤𝑖≤𝑛. In this setting, computing

additions and scalar multiplications is straightforward. The product of two
elements is computed using the natural formula(

𝑛∑︁
𝑖=1

𝑎𝑖𝑒𝑖

) ©­«
𝑛∑︁
𝑗=1
𝑎′𝑗𝑒 𝑗

ª®¬ =

𝑛∑︁
ℓ=1

©­­­«
∑︁

1≤𝑖, 𝑗≤𝑛
𝑖+ 𝑗=ℓ

𝑎𝑖𝑎
′
𝑗𝑐𝑖 𝑗ℓ

ª®®®¬ 𝑒ℓ .
Remark 3.1.2. While more efficient representations may exist for specific
classes of algebras, we note that structure constants are universal in the fol-
lowing sense: every method of representation which allows one to efficiently
compute the usual algebraic operations in 𝐴 and find a basis of 𝐴 allows one
to compute structure constants in polynomial time.

3.1.2 The structure of algebras

We briefly recall some well-known results on the structure of 𝑘-algebras. For
instance, these results may be found in [12].

Definition 3.1.3. Let 𝐴 be a 𝑘-algebra. The left regular module 𝐴𝐴 of 𝐴 is the
left 𝐴-module 𝐴, where scalar multiplication is taken on the left. That is, the
module action of 𝐴 on itself gives, for 𝑡 ∈ 𝐴 and 𝑎 ∈ 𝐴𝐴, 𝑡 · 𝑎 = 𝑡𝑎.

Definition 3.1.4. Let 𝐴 be a 𝑘-algebra.

• An 𝐴-module is simple if it contains no non-trivial submodule

• An 𝐴-module is semisimple if it is isomorphic to a direct sum of simple
modules.

• The algebra 𝐴 is semisimple if the left regular module 𝐴𝐴 is a semisimple
𝐴-module.
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• The algebra 𝐴 is simple if its only two-sided ideals are {0} and 𝐴 itself.

• The algebra 𝐴 is separable if it is semisimple and its centre is an étale
𝑘-algebra.

• The Jacobson radical of 𝐴, denoted by 𝐽 (𝐴) is the two-sided ideal

{𝑥 ∈ 𝐴 : ∃𝑛 ∈ N | (𝑥𝐴)𝑛 = 0}.

• The center of 𝐴 is the subalgebra 𝐶 (𝐴) = {𝑥 ∈ 𝐴 : ∀𝑦 ∈ 𝐴, 𝑥𝑦 = 𝑦𝑥}.

• The 𝑘-algebra 𝐴 is said to be central if 𝐶 (𝐴) = 𝑘 .

We then have the following results:

Proposition 3.1.5. Let 𝐴 be a 𝑘-algebra.

1. The algebra 𝐴/𝐽 (𝐴) is semisimple. In particular, if 𝐽 (𝐴) = 0, then 𝐴 is
semisimple.

2. If 𝐴/𝐽 (𝐴) is a separable 𝑘-algebra, there is a semisimple subalgebra
𝑊 of 𝐴 such that 𝐴 = 𝑊 ⊕ 𝐽 (𝐴). The subalgebra 𝑊 is unique up to
conjugation by an element of 1 + 𝑗 (𝐴).

3. If 𝐴 is semisimple, then 𝐴 = 𝐴1 ⊕ . . .⊕ 𝐴𝑟 , where the 𝐴𝑟 are the minimal
two-sided ideals of 𝐴.

4. If 𝐴 is simple, it is isomorphic to an algebra of the form 𝑀𝑛 (𝐷), where
𝑛 ∈ N and 𝐷 is a division 𝑘-algebra.

5. The algebra 𝐴 is simple if and only if for any 𝑘-algebra 𝐵 and homomor-
phism of 𝑘-algebra 𝑓 : 𝐴→ 𝐵, 𝑓 is either zero or injective.

6. If 𝐴 is semisimple, it is in fact simple if and only if the center of 𝐴 is a
field. [70, Section 3]

In summary, the algebra 𝐴 has the following structure:

𝐴 ≃ 𝐽 (𝐴) ⊕
𝑠⊕
𝑖=1

𝑀𝑛𝑖 (𝐷𝑖), (3.1)

where the 𝐷𝑖 are division 𝑘-algebras. Such a decomposition is unique up to
conjugation and reindexing.
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Definition 3.1.6. A semisimple subalgebra𝑊 as in Item 2 of Proposition 3.1.5
is called a Wedderburn-Malcev complement of 𝐴. We denote by 𝐷 (𝐴) an
arbitrarily chosen Wedderburn-Malcev complement of 𝐴.

The algorithmic task of computing the isomorphism in Equation (3.1)
decomposes in several subtasks. We discuss them in the special case that the
field 𝑘 is finite.

Proposition 3.1.7. Let 𝐴 be a 𝑘-algebra, given by structure constants.

1. A basis of 𝐽 (𝐴) can be computed in polynomial time. [70, Theorem 2.7]

2. A basis of a Wedderburn-Malcev complement of 𝐴 can be computed in
polynomial time. [26, Theorem 3.1].

3. If 𝐴 is semisimple, there is an f-algorithm for computing bases for the
minimal ideals of 𝐴. [70, Theorem 3.1]

4. The explicit isomorphism problem over a finite field can be solved by an
f-algorithm. [70, Theorem 5.2]

3.1.3 Computing maximal orders

Let 𝑘 be a global field, 𝑀𝑎
𝑘
⊂ 𝑆 ⊂ 𝑀𝑘 be non-empty and 𝐴 be a separable 𝑘-

algebra. We focus here on computing an O𝑆-maximal order in 𝐴. As opposed
to the commutative case, where 𝐴 is an étale algebra, a maximal O𝑆-order in
𝐴 needs not be unique.

Known algorithms for computing maximal orders in separable algebras are
generalisations of Zassenhaus’ algorithm for computing the ring of integers of
a number field. The case 𝑘 = Q was first treated in [48]. A general statement
for the general case of a Dedekind domain 𝑅 and a separable algebra over the
quotient field of 𝑅 is given in [34, Section 3.5]. A similar algorithm for the case
𝑘 = F(𝑋) is also described in [46], although it is only stated in the case that
𝐴 is a matrix algebra. We note that the algorithm starts with the factorisation
of a discriminant. It follows that this algorithm is an ff-algorithm when 𝑘 is a
number field and an f-algorithm when 𝑘 is a function field.

While the algorithms described above already cover all global fields, the
computation for 𝑘 a number field or a separable extension of 𝐹 (𝑋) (𝐹 a finite
field) may directly reduce to the cases 𝑘 = Q and 𝑘 = 𝐹 (𝑋). Indeed, we have
the following result:
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Proposition 3.1.8. Let 𝐾 be a finite separable extension of 𝑘 . Let 𝑇 be the set
of places of 𝐾 lying above the elements of 𝑆. Let 𝐴 be a separable 𝐾-algebra.
A maximal O𝑆-order of 𝐴 contains the image of O𝑇 in 𝐴. Furthermore, it is a
maximal O𝑇 -order.

Proof. Let O be a maximal O𝑆-order in 𝐴. Then, O ∩ 𝐾 is an O𝑆-submodule
and a subring of 𝐾 . Furthermore, if 𝑥 ∈ 𝐴 \𝐾 and 𝜆 ∈ 𝑘×, then 𝜆𝑥 ∉ 𝐾 . Since
𝑘O = 𝐴, it follows that 𝑘 (O ∩ 𝐾) = 𝐾 . That is, O ∩ 𝐾 is an O𝑆-order in 𝐾 .
This order is in equal to O𝑇 . Indeed, O𝑇O is also an O𝑆-order in 𝐴 which
contains O. Since O is maximal, we have O = O𝑇O, and therefore O𝑇 ⊂ O.

Then, O is an O𝑇 -submodule of 𝐴, and we have 𝐴 = 𝑘O ⊂ 𝐾O, so O is an
O𝑇 -lattice in 𝐴, and since it is also a subring, it is an O𝑇 -order. Furthermore,
it is also a maximal O𝑇 -order, since any O𝑇 -order is also naturally an O𝑆-
order. □

Applying this result, we may compute a maximal O𝑆-order and obtain
a maximal O𝑇 -order. This method is the approach used, for instance, in
Magma. [10]

3.2 Central simple algebra

3.2.1 General properties

We present fundamental properties of central simple algebra. We loosely
follow the presentation of [36] for this section. Fundamental examples of
central simple algebra are matrix algebras 𝐴 = 𝑀𝑑 (𝑘) and central division
algebra.

Example 3.2.1 ( [36, Example 2.1.2]). Let 𝐷 be a central division algebra over
𝑘 . Then the 𝑘-algebra 𝑀𝑛 (𝐷) is central simple.

As discussed briefly in Proposition 3.1.5, a famous theorem by Wedderburn
states the converse: all central simple algebras are of this form.

Theorem 3.2.2 ( [36, Theorem 2.1.3]). A 𝑘-algebra 𝐴 is central simple if and
only if there exist 𝑛 ∈ N and a central division 𝑘-algebra 𝐷 such that 𝐴 ≃
𝑀𝑛 (𝐷). Furthermore, the number 𝑛 and algebra 𝐷 are uniquely determined
(up to isomorphism) by the property.

Central simple algebras are characterised as so-called forms of matrix
algebras. By this, we mean the following:
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Theorem 3.2.3. Let 𝐴 be a 𝑘-algebra. Then the following are equivalent

1. 𝐴 is central simple.

2. There exists a finite field extension 𝐾/𝑘 such that 𝐴 ⊗𝑘 𝐾 ≃ 𝑀𝑑 (𝐾).

3. There exists a commutative 𝑘-algebra 𝑅 such that 𝐴 ⊗𝑘 𝑅 ≃ 𝑀𝑑 (𝑅).

Proof. The equivalence Item 1 ⇐⇒ Item 2 is the content of [36, Theo-
rem2.2.1].

Item 2 clearly implies Item 3.
Now, let 𝑅 be a commutative 𝑘-algebra such that 𝐴 ⊗ 𝑅 ≃ 𝑀𝑑 (𝑅). It

follows by [33, Proposition 7.1.10] that 𝐴 ⊗𝑘 𝑅 is a so-called central separable
𝑅-algebra. By [33, Corollary 4.3.5], it follows that 𝐴 is a central separable
𝑘-algebra. Since 𝑘 is a field, a central separable 𝑘-algebra is the same thing as
a central simple 𝑘-algebra by [33, Corollary 4.5.4]. □

For this reason, matrix algebras play a pivotal role in the theory of central
simple algebras.

Definition 3.2.4. Let 𝐴 be a central simple 𝑘-algebra. A field extension 𝐾/𝑘
is called a splitting field of 𝐴 if 𝐴 ⊗ 𝐾 ≃ 𝑀𝑑 (𝐾) for some 𝑛 ∈ N. Then,
𝑑 =

√︁
[𝐴 : 𝑘] is called the degree of 𝐴 and denoted by deg 𝐴. Furthermore,

a splitting of 𝐴 over 𝐾 is an isomorphism 𝜑 : 𝐴 ⊗𝑘 𝐾 → 𝑀𝑑 (𝐾). If 𝑘 is a
splitting field for 𝐴, we say that 𝐴 is split.

We give a valuable characterisation of split central simple algebras based
on the existence of a rank one element.

Definition 3.2.5. Let 𝐴 be a central simple 𝑘-algebra, and let 𝑧 ∈ 𝐴. The rank
of 𝑧, denoted by rank 𝑧, is the number

rank 𝑧 =
[𝐴𝑧 : 𝑘]
deg 𝐴

Proposition 3.2.6. Let 𝐴 be a central simple 𝑘-algebra. Then 𝐴 is split if and
only it contains an element of rank 1.

Proof. When 𝐴 ≃ 𝑀𝑑 (𝑘), the rank defined above coincides with the usual
rank of a matrix (which is invariant up to isomorphism), and then 𝐴 contains
elements of rank one. Conversely, let 𝑧 ∈ 𝐴 have rank one. Then we set
𝑉 = 𝐴𝑧, and 𝑉 is a 𝑑-dimensional 𝑘-vector space, where 𝑑 = deg 𝐴. Since
𝑉 is a left-ideal of 𝐴, we get a 𝑘-algebra homomorphism 𝐴 → End𝑘 (𝑉) by

63



sending 𝑎 ∈ 𝐴 to the multiplication-by-𝑎-on-the-left linear map 𝐿𝑎. Since 𝐴 is
a simple algebra, the map 𝑎 ↦→ 𝐿𝑎 is injective. By equality of dimensions, it is
an isomorphism. □

A well-known fact is that the tensor product of central simple algebras
remains central simple.

Lemma 3.2.7 ( [36, Lemma 2.2.5]). Let 𝐴 and 𝐵 be central simple 𝑘-algebras.
Then 𝐴 ⊗𝑘 𝐵 is also a central simple 𝑘-algebra.

Central simple algebras form a group under this operation when considered
up to a specific equivalence relationship. This group, called the Brauer group,
is an algebraic invariant of the field 𝑘 . We summarize the results that lead to
the construction of the Brauer group:

Definition 3.2.8. Let 𝐴 be a 𝑘-algebra. The opposite algebra of 𝐴 is the
𝑘-algebra 𝐴op defined as follows: As a 𝑘-vector space, 𝐴op is isomorphic to
𝐴. If 𝑎 ∈ 𝐴, we write 𝑎op for the corresponding element in 𝐴op. Then, the
multiplication in 𝐴op is defined as follows: for 𝑎, 𝑏 ∈ 𝐴op, 𝑎op𝑏op = (𝑏𝑎)op.

Definition 3.2.9. Two central simple 𝑘-algebras 𝐴 and 𝐵 are said to be Brauer-
equivalent, denoted by 𝐴 ∼Br 𝐵, if there exist 𝑑, 𝑑′ ∈ N such that

𝐴 ⊗𝑘 𝑀𝑑 (𝑘) ≃ 𝐵 ⊗𝑘 𝑀𝑑′ (𝑘).

We denote the equivalence class of an algebra 𝐴 for this relation by [𝐴]Br.

We state a lemma which gives a criterion for proving Brauer equivalence:

Lemma 3.2.10 ( [74, Lemma 3.4]). Let 𝐴 be a central simple 𝑘-algebra, and
let 𝑒 ∈ 𝐴 be idempotent. Then 𝑒𝐴𝑒 is a central simple 𝑘-algebra which is
Brauer-equivalent to 𝐴.

We now present the construction of the Brauer group:

Proposition 3.2.11 ( [36, Proposition 2.4.7]). If 𝐴, 𝐴′, 𝐵, 𝐵′ are central simple
𝑘-algebras, such that 𝐴 ∼Br 𝐴

′ and 𝐵 ∼Br 𝐵
′, then 𝐴 ⊗𝑘 𝐵 ∼Br 𝐴

′ ⊗𝑘 𝐵′.
The set of Brauer-equivalence classes of central simple 𝑘-algebras forms an
abelian group. Its neutral element is the class of split algebras, and the inverse
of the class of 𝐴 is the class of 𝐴op.
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Definition 3.2.12. The group formed by Brauer equivalence classes of central
simple 𝑘-algebras with the tensor product is called the Brauer group of 𝑘 . It is
denoted by Br(𝑘). If 𝐾/𝑘 is a field extension, there is a map Res𝐾/𝑘 : Br(𝑘) →
Br(𝐾) sending the class of some 𝑘-algebra 𝐴 to the class of 𝐴𝐾 . The kernel of
this map is called the relative Brauer group of 𝑘 with respect to 𝐾 , denoted by
Br(𝐾/𝑘).

More generally, if 𝐾 is a commutative 𝑘-algebra, we may define the group
Br(𝐾/𝑘) as the subgroup of Br(𝑘) of classes of algebras 𝐴 such that 𝐴𝐾 ≃
End𝐾 (𝑃), for some projective 𝐾-module 𝑃.

Remark 3.2.13. The Brauer group is also defined for a general commutative
ring and even for a scheme in the literature, but we shall not need such generality
in this work (see [18, 33] for details). We note that our definition of Br(𝐾/𝑘)
then coincides with the kernel of the map sending a 𝑘-algebra 𝐴 to 𝐴𝐾 for any
commutative 𝑘-algebra 𝐾 .

Next, we record two fundamental theorems on central simple algebras. First
is the Skolem-Noether theorem:

Theorem 3.2.14 ( [69, Theorem 7.21]). Let 𝐴 be a central simple 𝑘-algebra
and let 𝐵 be a simple 𝑘-subalgebra of 𝐴 (e.g a field extension). Then, if �̃� is a
𝑘-subalgebra of 𝐴 and 𝜑 : 𝐵 → �̃� is an isomorphism, there exists 𝑎 ∈ 𝐴× such
that the restriction of the inner automorphism 𝑥 ↦→ 𝑎𝑥𝑎−1 to 𝐵 coincides with
𝜑.

The second is the double centraliser theorem. We first define the centraliser
and then state the theorem.

Definition 3.2.15. Let 𝐴 be a 𝑘-algebra and let 𝐵 ⊂ 𝐴. Then, the centralizer
of 𝐵 in 𝐴 is the subalgebra

𝐶𝐴(𝐵) ≔ {𝑥 ∈ 𝐴 : ∀𝑏 ∈ 𝐵, 𝑥𝑏 = 𝑏𝑥}.

Theorem 3.2.16. Let 𝐴 be a central simple 𝑘-algebra, and let 𝐵 ⊂ 𝐴 be a
simple subalgebra. Then,

1. 𝐶𝐴(𝐵) is simple.

2. [𝐵 : 𝑘] [𝐶𝐴(𝐵) : 𝑘] = [𝐴 : 𝑘].

3. 𝐶𝐴(𝐶𝐴(𝐵)) = 𝐵.

4. If 𝐵 is central simple, then𝐶𝐴(𝐵) is central simple, and 𝐴 = 𝐵⊗𝐶𝐴(𝐵).
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A useful corollary is the following:

Corollary 3.2.17. Let 𝐴 be a central simple 𝑘-algebra of degree 𝑑, and let
𝐾 ⊂ 𝐴 be a subalgebra such that 𝐾/𝑘 is a degree 𝑑 field extension. Then

𝐶𝐴(𝐾) = 𝐾.

Proof. This is Item 2 of Theorem 3.2.16, coupled with the fact that [𝐾 : 𝑘]2 =

[𝐴 : 𝑘]). □

Finally, we give a useful characterisation of Br(𝐾/𝑘) when 𝐾 is an étale
𝑘-algebra:

Proposition 3.2.18. If𝐾 is an étale 𝑘-algebra of dimension 𝑑 and 𝐴 is a central
simple 𝑘-algebra of degree 𝑑, then the class of 𝐴 is in Br(𝐾/𝑘) if and only if 𝐴
contains a subalgebra isomorphic to 𝐾 .

Proof. If 𝐾 is a field, then this is [36, Proposition 2.2.9]. Otherwise, this is a
consequence of [33, Theorem 7.4.2]. □

3.2.2 Algebraic presentations of central simple algebras

Early XXth century investigations on division algebras led to several construc-
tions of central simple algebras, relying on simpler algebraic objects. Such
constructions would yield a presentation for the algebra, and the question of
finding an isomorphism between thus presented algebras would translate into
a multiplicative equation expressed over the centre. This section recalls three
such constructions introduced by Dickson, Noether and Brauer. In modern ref-
erences, the constructions of Dickson and Noether (respectively of cyclic and
crossed-product algebras) are discussed with the language of Galois cohomol-
ogy (see e.g. [36,74]). The construction of Brauer also admits a cohomological
interpretation once the definitions of Galois cohomology are extended to non-
Galois field extensions. [1].

While the cohomological formulation allows for a powerful theory, the
computational nature of our concerns leads us to prefer elementary and explicit
presentations. As we will not need the powerful machinery of Galois coho-
mology, we present the constructions mentioned above in elementary language.
Historically minded accounts of these constructions in modern language are
given in [58] for Dickson’s cyclic algebras and in [50] for Noether’s crossed
products and Brauer’s factor sets.
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The three constructions we discuss below are related in the following way:
cyclic algebras are a particular case of crossed-product algebras, which are
themselves a particular case of algebras defined by a Brauer factor set. For
each construction, we get similar structural results. While these results may be
proved in a self-contained manner for each construction, we chose for simplicity
to prove the results for the particular cases as consequences of the results for
the more general construction.

Brauer factor sets

For this paragraph, 𝐾 is an étale 𝑘-algebra of degree 𝑑. We let 𝐸 be a splitting
field of 𝐾 over 𝑘 and 𝐺 = Gal(𝐸/𝑘). We also let Φ be the set of nonzero
homomorphisms of 𝑘-algebra from 𝐾 to 𝐸 . We note that the cardinal of Φ
is 𝑑 by Corollary 2.1.17. We define Brauer factor sets as algebraic objects
which classify central simple algebras of degree 𝑛 that contain a copy of 𝐾
as a subalgebra. We also explicitly describe Br(𝐾/𝑘). The exposition, again,
follows loosely that of [51, Chapter 2].

Definition 3.2.19. A Brauer factor set for the 𝑘-algebra 𝐾 is a map

𝑐 : Φ ×Φ ×Φ → 𝐸×

(𝜌, 𝜎, 𝜏) ↦→ 𝑐𝜌,𝜎,𝜏

which satisfies the following conditions: for 𝛼, 𝛽, 𝛾 ∈ Φ and 𝜋 ∈ 𝐺,

𝑐𝜋𝛼,𝜋𝛽, 𝜋𝛾 = 𝜋(𝑐𝛼,𝛽,𝛾), (3.2)

and for 𝛼, 𝛽, 𝛾, 𝛿 ∈ Φ,

𝑐𝛼,𝛽,𝛾𝑐𝛼,𝛾, 𝛿 = 𝑐𝛼,𝛽, 𝛿𝑐𝛽,𝛾, 𝛿 . (3.3)

The Brauer factor sets form a group, which we denote by 𝑍2
Br(𝐾/𝑘, 𝐸

×).

The condition defined by Equation (3.2) is called homogeneity. It extends
in an obvious manner to maps from Φ𝑛 to 𝐴, for any 𝑛 ∈ N and 𝐴 ⊂ 𝐸 stable
by the action of Galois.

Definition 3.2.20. Let 𝑐 ∈ 𝑍2
Br(𝐾/𝑘, 𝐸

×) be a Brauer factor set. We let 𝑉 be
the 𝑘-vector space of homogeneous maps ℓ : Φ × Φ → 𝐸 . For ℓ, ℓ′ ∈ 𝑉 , we
define the product as follows:

(ℓℓ′)𝛼,𝛽 =
∑︁
𝛾∈Φ

ℓ𝛼,𝛾𝑐𝛼,𝛾,𝛽ℓ
′
𝛾,𝛽 . (3.4)
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This yields a 𝑘-algebra of dimension 𝑛2 called the Brauer algebra determined
by 𝑐, and denoted by 𝐵(𝐾, 𝑐).

Proposition 3.2.21 ( [51, Theorem 2.5.6]). If 𝑐 ∈ 𝑍2
Br(𝐾/𝑘, 𝐾

×), the algebra
𝐵(𝐾, 𝑐) is a central simple 𝑘 algebra of degree 𝑛 containing 𝐾 as a subalgebra.
Conversely, if 𝐴 is such an algebra, then there exists 𝑐 ∈ 𝑍2

Br(𝐾/𝑘, 𝐾
×) such

that 𝐴 ≃ 𝐵(𝐾, 𝑐).

Definition 3.2.22. A Brauer factor set 𝑐 ∈ 𝑍2
Br(𝐾/𝑘, 𝐸

×) is called associated
if there exists a homogeneous map 𝑎 : Φ ×Φ → 𝐸× such that for 𝛼, 𝛽, 𝛾 ∈ Φ,

𝑐𝛼,𝛽,𝛾 = 𝜕Br(𝑎) ≔ 𝑎𝛼,𝛽𝑎𝛽,𝛾𝑎
−1
𝛼,𝛾 .

Such a map 𝑎 is called a trivialisation of 𝑐. The group of associated Brauer
factor sets is denoted by 𝐵2

Br(𝐾/𝑘, 𝐸
×), and we define the factor group

𝐻2
Br(𝐾/𝑘, 𝐸

×) = 𝑍2
Br(𝐾/𝑘, 𝐸

×)/𝐵2
Br(𝐾/𝑘, 𝐸

×).

Proposition 3.2.23 ( [51, Theorem 2.3.21]). Let 𝑐, 𝑐′ ∈ 𝑍2
Br(𝐾/𝑘, 𝐸

×). Then
the algebras 𝐵(𝐾, 𝑐) and 𝐵(𝐾, 𝑐′) are isomorphic if and only if 𝑐(𝑐′)−1 =

𝜕Br(𝑎) for some homogeneous maps 𝑎 : Φ ×Φ → 𝐸×. In that case, the map

𝐵(𝐾, 𝑐) → 𝐵(𝐾, 𝑐′)
ℓ ↦→ (𝑎𝛼,𝛽ℓ𝛼,𝛽)𝛼,𝛽∈𝐺

is an isomorphism.

Remark 3.2.24. In [51], the author introduces the notion of a reduced factor
set. A factor set 𝑐 is reduced if 𝑐𝛼,𝛼,𝛼 = 1 for all 𝛼 ∈ Φ. Propositions 3.2.21
and 3.2.23 are stated with the additional hypothesis that the factor sets involved
be reduced. This hypothesis is, in fact, not necessary for our relaxed statement
of Proposition 3.2.23, where we do not impose that the isomorphism between
𝐵(𝐾, 𝑐) and 𝐵(𝐾, 𝑐′) fixes the image of 𝐾 in these algebras.

The multiplication of factor sets is compatible with the multiplication op-
eration in the Brauer group of 𝑘:

Proposition 3.2.25 ( [51, Theorem 2.4.6]). Let 𝑐, 𝑐′ ∈ 𝑍2
Br(𝐾/𝑘, 𝐸

×). Then
we have the Brauer equivalence

𝐵(𝐾, 𝑐𝑐′) ∼Br 𝐵(𝐾, 𝑐) ⊗ 𝐵(𝐾, 𝑐′).
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We will see that the map 𝑐 ↦→ 𝐵(𝐾, 𝑐) yields a group homomorphism from
𝐻2

Br(𝐾/𝑘, 𝐸
×) to Br(𝐾/𝑘). In order to prove that, it remains to see that the

algebra 𝐵𝑟 (𝐾, 1) is split.

Example 3.2.26 (The trivial factor set). The trivial Brauer factor set is the
factor set 1 defined by 1𝛼,𝛽,𝛾 = 1 for all 𝛼, 𝛽, 𝛾 ∈ Φ. Set Φ = {𝜑1, . . . , 𝜑𝑑},
so that a map Φ ×Φ → 𝐸 identifies with a matrix in 𝑀𝑑 (𝐸). Then, the vector
space 𝐵(𝐾, 𝑐) of homogeneous maps is identified with a subspace of 𝑀𝑑 (𝐸).
Applying Equation (3.4) to the trivial factor set, we find that multiplication
in 𝐵(𝐾, 𝑐) coincides with multiplication in 𝑀𝑑 (𝐸). Now, 𝐵(𝐾, 𝑐) contains
the rank one matrix 𝑧 = (1)𝑖, 𝑗∈[𝑛] . Since [𝑀𝑛 (𝐸)𝑧 : 𝐸] = 𝑑, we have
[𝐵(𝐾, 𝑐)𝑧 : 𝑘] = 𝑑. Then, 𝑧 has rank one as an element of 𝐵(𝐾, 𝑐) and
therefore, the algebra 𝐵(𝐾, 𝑐) is split by Proposition 3.2.6.

We may gather the results of this section in the following theorem:

Theorem 3.2.27. If 𝑐 ∈ 𝑍2
Br(𝐾/𝑘, 𝐸

×), the algebra 𝐵(𝐾, 𝑐) is central simple
of degree 𝑑. Then the map 𝑐 ↦→ [𝐵(𝐾, 𝑐)]Br factors through 𝐻2

Br(𝐾/𝑘, 𝐸
×)

and yields an isomorphism between 𝐻2
Br(𝐾/𝑘, 𝐸

×) and Br(𝐾/𝑘).

Crossed-product algebras

Here, we let 𝐾/𝑘 be a Galois field extension of degree 𝑑. We also let 𝐺 be
the Galois group Gal(𝐾/𝑘). We will define the so-called Noether factor sets
for the extension 𝐾/𝑘 and the crossed-product algebra associated with such a
factor set. Then, we will show that Noether factor sets coincide with Brauer
factor sets for the extension 𝐾/𝑘 , and we will recover Theorem 3.2.27 in terms
of Noether factor sets, as well as the explicit expression for isomorphisms given
in Proposition 3.2.23. We loosely follow the exposition from [51, Section 2.6].

Definition 3.2.28. A Noether factor set for the extension 𝐾/𝑘 is a map

𝑐 : 𝐺 × 𝐺 → 𝐾×

(𝜎, 𝜏) ↦→ 𝑐𝜎,𝜏

which satisfies the following condition: for 𝜎, 𝜏, 𝜌 ∈ 𝐺,

𝑐𝜎,𝜏𝑐𝜎𝜏,𝜌 = 𝑐𝜎,𝜏𝜌𝜎(𝑐𝜏,𝜌) (3.5)

The Noether factor sets form a group, denoted by 𝑍2(𝐾/𝑘, 𝐾×).

Definition 3.2.29. Let 𝑐 ∈ 𝑍2(𝐾/𝑘, 𝐾×) be a Noether factor set. We let 𝑉
be the 𝐾-vector space 𝐾𝑑 and denote the elements of it canonical basis by
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(𝑢𝜎)𝜎∈𝐺 . Then, 𝑉 admits a natural structure of 𝑘-vector space of dimension
𝑛2. We define a product on 𝑉 as follows: For 𝛼, 𝛽 ∈ 𝐾𝐺 ,( ∑︁

𝜎∈𝐺
𝛼𝜎𝑢𝜎

) (∑︁
𝜏∈𝐺

𝛽𝜏𝑢𝜏

)
=

∑︁
𝜎,𝜏∈𝐺

𝑐𝜎,𝜏𝛼𝜎𝜎(𝛽𝜏)𝑢𝜎𝜏 . (3.6)

This yields a 𝑘-algebra of dimension 𝑛2 which we call the crossed-product of
𝐾 with 𝑐. It is denoted by Δ(𝐾/𝑘, 𝑐).

Definition 3.2.30. A Noether factor set 𝑐 ∈ 𝑍2(𝐾/𝑘, 𝐾×) is called associated
if there exists a map 𝑎 : 𝐺 → 𝐾× such that for 𝜎, 𝜏 ∈ 𝐺,

𝑐𝜎,𝜏 = 𝜕 (𝑎) ≔ 𝑎𝜎𝜎(𝑎𝜏)𝑎−1
𝜎𝜏 .

The subgroup of associated Noether factor sets is denoted by 𝐵2(𝐾/𝑘, 𝐾×),
and we define the factor group

𝐻2(𝐾/𝑘, 𝐾×) = 𝑍2(𝐾/𝑘, 𝐾×)/𝐵2(𝐾/𝑘, 𝐾×).

Now, we wish to recover the results from the previous section. For this,
we will give a map 𝜄 : 𝑍2(𝐾/𝑘, 𝐾×) → 𝑍2

Br(𝐾/𝑘, 𝐾
×) (here we have 𝐸 =

𝐾 and Φ = 𝐺 since 𝐾/𝑘 is a Galois extension) and prove that it induces
an isomorphism 𝐻2(𝐾/𝑘, 𝐾×) ≃ 𝐻2

Br(𝐾/𝑘, 𝐾
×). We will also show that

Δ(𝐾/𝑘, 𝑐) ≃ 𝐵(𝐾/𝑘, 𝜄(𝑐)), and get an explicit expression for an isomorphism
from Δ(𝐾/𝑘, 𝑐) to Δ(𝐾/𝑘, 𝑐′) when 𝑐(𝑐′)−1 ∈ 𝐵2(𝐾/𝑘, 𝐾×).

We define the following maps:

𝜄 : 𝑍2(𝐾/𝑘, 𝐾×) → 𝑍2
Br(𝐾/𝑘, 𝐾

×)
(𝑐𝜎,𝜏)𝜎,𝜏∈𝐺 ↦→ (𝜄(𝑐)𝜌,𝜎,𝜏)𝜌,𝜎,𝜏∈𝐺 ≔ (𝜌(𝑐𝜌−1𝜎,𝜎−1𝜏))𝜌,𝜎,𝜏∈𝐺

𝜅 : 𝑍2
Br(𝐾/𝑘, 𝐾

×) → 𝑍2(𝐾/𝑘, 𝐾×)
(𝑐𝜌,𝜎,𝜏)𝜌,𝜎,𝜏∈𝐺 ↦→ (𝜅(𝑐))𝜎,𝜏∈𝐺 ≔ (𝑐1,𝜎,𝜎𝜏)𝜎,𝜏∈𝐺

One can easily check that the maps 𝜄 and 𝜅 are mutually inverse group iso-
morphisms. Furthermore, assume that 𝑐 = 𝜕 (𝑎) ∈ 𝐵2(𝐾/𝑘, 𝐾×) and consider
the homogeneous map

𝑏 : 𝐺 × 𝐺 → 𝐾×

(𝜎, 𝜏) ↦→ 𝑏𝜎,𝜏 ≔ 𝜎(𝑎𝜎−1𝜏)
.
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The map 𝑏 is homogeneous, and we get

𝜄(𝑐) = 𝜄
(
(𝑎𝜎𝜎(𝑎𝜏)𝑎−1

𝜎𝜏)𝜎,𝜏∈𝐺
)

=

(
𝜌(𝑎𝜌−1𝜎)𝜎(𝑎𝜎−1𝜏)𝜌(𝑎𝜌−1𝜏)−1

)
𝜌,𝜎,𝜏∈𝐺

= (𝜕Br(𝑏)𝜌,𝜎,𝜏)𝜌,𝜎,𝜏∈𝐺 .

That is, 𝜄(𝐵2(𝐾/𝑘, 𝐾×)) ⊂ 𝐵2
Br(𝐾/𝑘, 𝐾

×). Conversely, we prove that

𝜅(𝐵2
Br(𝐾/𝑘, 𝐾

×)) ⊂ 𝐵2(𝐾/𝑘, 𝐾×).

Let 𝑐 = 𝜕Br(𝑎) ∈ 𝐵2
Br(𝐾/𝑘, 𝐾

×). We set

𝑏 : 𝐺 → 𝐾×

𝜎 ↦→ 𝑏𝜎 ≔ 𝑎1,𝜎 .

We compute:

𝜅(𝑐) = 𝜅
(
(𝑎𝜌,𝜎𝑎𝜎,𝜏𝑎−1

𝜌,𝜏)𝜌,𝜎,𝜏∈𝐺
)

=

(
𝑎1,𝜎𝑎𝜎,𝜎𝜏𝑎

−1
1,𝜎𝜏

)
𝜎,𝜏∈𝐺

=

(
𝑎1,𝜎𝜎(𝑎1,𝜏)𝑎−1

1,𝜎𝜏

)
𝜎,𝜏∈𝐺

=

(
𝑏𝜎𝜎(𝑏𝜏)𝑏−1

𝜎𝜏

)
𝜎,𝜏∈𝐺

= 𝜕 (𝑏)

and we get
𝜅

(
𝐵2

Br(𝐾/𝑘, 𝐾
×)

)
⊂ 𝐵2(𝐾/𝑘, 𝐾×).

It follows that the maps 𝜄 and 𝜅 yield mutually inverse group isomorphisms of
𝐻2(𝐾/𝑘, 𝐾×) and 𝐻2

Br(𝐾/𝑘, 𝐾
×).

Next, we prove that for 𝑐 ∈ 𝑍2(𝐾/𝑘, 𝐾×), Δ(𝐾/𝑘, 𝑐) ≃ 𝐵(𝐾, 𝜄(𝑐)). Con-
sider the map

𝜂 : 𝐵(𝐾, 𝑐) → Δ(𝐾/𝑘, 𝜅(𝑐))
ℓ ↦→ ∑

𝜎∈𝐺 ℓ1,𝜎𝑢𝜎 .

The map 𝜂 is clearly 𝑘-linear. We check that it is a homomorphism of
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𝑘-algebras. Let ℓ, ℓ′ ∈ 𝐵(𝐾, 𝑐), and we compute:

𝜂(ℓℓ′) =
∑︁
𝜎∈𝐺

(ℓℓ′)1,𝜎𝑢𝜎

=
∑︁
𝜎∈𝐺

∑︁
𝜏∈𝐺

ℓ1,𝜏ℓ
′
𝜏,𝜎𝑐1,𝜏,𝜎𝑢𝜎

=
∑︁
𝜎,𝜏∈𝐺

ℓ1,𝜏𝜏(ℓ′1,𝜏−1𝜎
)𝜅(𝑐)𝜏,𝜏−1𝜎𝑢𝜎

=
∑︁
𝜎,𝜏∈𝐺

ℓ1,𝜏𝑢𝜏ℓ
′
1,𝜏−1𝜎

𝑢𝜏−1𝜎

=
∑︁
𝜌,𝜏∈𝐺

(
ℓ1,𝜏𝑢𝜏

) (
ℓ′1,𝜌𝑢𝜌

)
=

(∑︁
𝜏∈𝐺

ℓ1,𝜏𝑢𝜏

) ©­«
∑︁
𝜌∈𝐺

ℓ′1,𝜌𝑢𝜌
ª®¬

= 𝜂(ℓ)𝜂(ℓ′).

Now, since [𝐵(𝐾, 𝑐) : 𝑘] = [Δ(𝐾/𝑘, 𝜅(𝑐)) : 𝑘] and 𝐵(𝐾, 𝑐) is a simple
algebra, the map 𝜂 is in fact an isomorphism. One may check easily that its
inverse is

𝜉 : Δ(𝐾/𝑘, 𝑐) → 𝐵(𝐾, 𝜄(𝑐))
𝑎 =

∑
𝜎∈𝐺 𝑎𝜎𝑢𝜎 ↦→ 𝜉 (𝑎) : (𝜎, 𝜏) ↦→ 𝜎(𝑎𝜎−1𝜏).

This entire discussion proved the following as a consequence of Theo-
rem 3.2.27:

Theorem 3.2.31. If 𝑐 ∈ 𝑍2(𝐾/𝑘, 𝐾×), the algebra Δ(𝐾/𝑘, 𝑐) is central simple
of degree 𝑛. The map 𝑐 ↦→ [Δ(𝐾/𝑘, 𝑐)]Br factors through 𝐻2(𝐾/𝑘, 𝐾×) yields
an isomorphism between 𝐻2(𝐾/𝑘, 𝐾×) and Br(𝐾/𝑘).

As with the Brauer factor set, we have an explicit expression for an isomor-
phism between crossed-products with associated Noether factor sets.

Proposition 3.2.32. Let 𝑐, 𝑐′ ∈ 𝑍2(𝐾/𝑘, 𝐾×), and let 𝑏 : 𝐺 → 𝐾× such that
𝑐𝑐′−1 = 𝜕 (𝑏). Then an isomorphism Δ(𝐾/𝑘, 𝑐) → Δ(𝐾/𝑘, 𝑐′) is given by the
map that is the map ∑︁

𝜎∈𝐺
𝑎𝜎𝑢𝜎 ↦→

∑︁
𝜎∈𝐺

𝑎𝜎𝑏𝜎𝑢𝜎

Proof. This isomorphism is 𝜂−1 ◦ 𝜑 ◦ 𝜉, where 𝜑 is the isomorphism from
𝐵(𝐾, 𝜅(𝑐)) to 𝐵(𝐾/, 𝜅(𝑐′)) given by Proposition 3.2.23 and the fact that 𝑏′ is
a trivialisation of 𝜅(𝑐𝑐′−1), where 𝑏′𝜎,𝜏 = 𝜎(𝑏𝜎−1𝜏). □
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It is implied by Example 3.2.26 and the discussion above that the algebra
Δ(𝐾, 1) is isomorphic to 𝑀𝑑 (𝑘). In the example below, we give an independent
proof of this fact and give an explicit isomorphism.

Example 3.2.33 (The trivial crossed-product algebra). Fix a basis (𝑒1, . . . , 𝑒𝑑)
of 𝐾 . Then, any 𝑘-linear endomorphism of 𝐾 may be identified with a matrix
in 𝑀𝑑 (𝑘). If 𝛼 ∈ 𝐾 , write 𝐿𝛼 for the matrix corresponding to multiplication
on the left by 𝛼. For 𝜎 ∈ 𝐺, we also write 𝑇𝜎 for the matrix corresponding
to the automorphism 𝜎 of 𝐾 . Then, by a well-known theorem of Artin (see,
e.g. [11, Theorem V.66.3]), the family (𝐿𝑒𝑖𝑇𝜎)1≤𝑖≤𝑑

𝜎∈𝐺
gives a basis of 𝑀𝑑 (𝑘).

Now, observe that if 𝛼, 𝛽 ∈ 𝐾 and 𝜎, 𝜏 ∈ 𝐺,

𝐿𝛼𝑇𝜎𝐿𝛽𝑇𝜏 = 𝐿𝛼𝐿𝜎 (𝛽)𝑇𝜎𝜏 .

It follows directly that the map

Δ(𝐾, 1) → 𝑀𝑛 (𝑘)∑
𝜎∈𝐺 𝑎𝜎𝑢𝜎 ↦→ ∑

𝜎∈𝐺 𝐿𝑎𝜎𝑇𝜎

is an isomorphism of 𝑘-algebras.

Cyclic algebras

Let 𝑘 be a field and let 𝐾/𝑘 be a cyclic extension of 𝑘 of degree 𝑑. That is,
𝐾/𝑘 is a finite Galois field extension and the Galois group 𝐺 ≔ Gal(𝐾/𝑘) is
cyclic. We fix a generator 𝜃 of 𝐺.

Definition 3.2.34. Let 𝑎 ∈ 𝑘×. We let 𝑉 be the left 𝐾-vector space 𝐾𝑛, and we
name the elements of its canonical basis 1, 𝑦, . . . , 𝑦𝑑−1. Then 𝑉 naturally has
a structure of 𝑑2-dimensional 𝑘-vector space. We define a multiplication on 𝑉
by linearly extending the rule

(𝛼𝑦𝑖) (𝛽𝑦 𝑗) = 𝑎⌊ (𝑖+ 𝑗 )/𝑑⌋𝛼𝜃𝑖 (𝛽)𝑦𝑖+ 𝑗 mod 𝑑

for 0 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1 and 𝛼, 𝛽 ∈ 𝐾 .
To put it more simply, the multiplication on 𝑉 is given by the following

rules: for 𝑖, 𝑗 ∈ [𝑑],
𝑦𝑖𝑦 𝑗 = 𝑦𝑖+ 𝑗 ,

𝑦𝑛 = 𝑎,

and for 𝛼 ∈ 𝐾 ,
𝑦𝛼 = 𝜃 (𝛼)𝑦.
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The algebra formed by the 𝑘-vector space𝑉 with the product defined above
is called a cyclic algebra. We denote it by the symbol ⟨𝐾/𝑘, 𝜃, 𝑎⟩.

We will prove that every class in Br(𝐾/𝑘) contains an algebra of this
form and that this yields an isomorphism 𝑘×/𝑁𝐾/𝑘 (𝐾×) ≃ Br(𝐾/𝑘). We
will obtain this result as a consequence of Theorem 3.2.31 once we give a
compatible isomorphism 𝑘×/𝑁𝐾/𝑘 (𝐾×) ≃ 𝐻2(𝐾/𝑘, 𝐾×).

Consider the map

𝜒 : 𝑘× → 𝑍2(𝐾/𝑘, 𝐾×)
𝑏 ↦→ 𝜒(𝑏),

where

𝜒(𝑏)𝜃 𝑖 , 𝜃 𝑗 =


1 if 𝑖 + 𝑗 < 𝑑
𝑏 otherwise.

First, we prove that 𝜒(𝑏) ∈ 𝐵2(𝐾/𝑘, 𝐾×) if and only if 𝑏 ∈ 𝑁𝐾/𝑘 (𝐾×).
Let 𝑎 ∈ 𝐾×, and let 𝛼 : 𝐺 → 𝐾× defined by 𝛼𝜃 𝑖 =

∏𝑖−1
𝑗=0 𝜃

𝑖 (𝑎) for 𝑖 ∈ [𝑑 − 1]0.
We show that 𝜒(𝑁𝐾/𝑘 (𝑎)) = 𝜕 (𝛼). Indeed, we let 𝑖, 𝑗 ∈ [𝑛−1]0. We note that

𝛼𝜃 𝑖𝜃
𝑖 (𝛼𝜃 𝑗 ) =

𝑖−1∏
ℓ=0

𝜃𝑖 (𝑎)
𝑗−1∏
ℓ=0

𝜃𝑖+ℓ (𝑎) =
𝑖+ 𝑗−1∏
ℓ=0

𝜃ℓ (𝑎),

and

𝛼𝜃 𝑖 𝜃 𝑗 =


∏𝑖+ 𝑗−1
ℓ=0 𝜃ℓ (𝑎) = 𝛼𝜃 𝑖𝜃𝑖 (𝛼𝜃 𝑗 ) if 𝑖 + 𝑗 < 𝑑∏𝑖+ 𝑗−𝑛−1
ℓ=0 𝜃ℓ (𝑎) = 𝑎𝜃 𝑖𝜃𝑖 (𝛼𝜃 𝑗 )𝑁𝐾/𝑘 (𝑎)−1 otherwise.

It follows that 𝜒(𝑁𝐾/𝑘 (𝑎)) = 𝜕 (𝛼) ∈ 𝐵2(𝐾/𝑘, 𝐾×).
Conversely, let 𝑐 ∈ 𝑘× such that 𝜒(𝑐) ∈ 𝐵2(𝐾/𝑘, 𝐾×). Let 𝛼 : 𝐺 → 𝐾×

such that 𝜒(𝑐) = 𝜕 (𝛼). Then, we know that if 𝑖 + 𝑗 < 𝑑, for 𝑖, 𝑗 ∈ [𝑑 − 1]0,
𝜕 (𝛼)𝜃 𝑖 , 𝜃 𝑗 = 1. That is,

𝛼𝜃 𝑖𝜃
𝑖 (𝛼𝜃 𝑗 ) = 𝛼𝜃 𝑖+ 𝑗 .

Setting 𝑖 = 0, we get 𝑎1 = 1. Setting 𝑖 = 1 and 𝑗 < 𝑑 − 1, we show that

𝑎𝜃 𝑗+1 = 𝑎𝜃𝜃 (𝑎𝜃 𝑗 ),

and by a straightforward induction, it follows that for 𝑖 ∈ [𝑑 − 1]0,

𝑎𝜃 𝑖 =

𝑖−1∏
ℓ=0

𝜃ℓ (𝑎𝜃 ).
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It is then easy to check that 𝑐 = 𝑁𝐾/𝑘 (𝑎𝜃 ).
Putting things together, we have proved that the map 𝜒 yields an injective

group homomorphism from 𝑘×/𝑁𝐾/𝑘 (𝐾×) to 𝐻2(𝐾/𝑘, 𝐾×). Unfortunately,
the map 𝜒, seen as a map from 𝑘× to 𝑍2(𝐾/𝑘, 𝐾×) is not surjective. In order
to prove that its factor from 𝑘×/𝑁𝐾/𝑘 (𝐾×) to 𝐻2(𝐾/𝑘, 𝐾×) is, we must prove
that for any 𝑐 ∈ 𝑍2(𝐾/𝑘, 𝐾×), there exist 𝑏 ∈ 𝑘× and 𝛼 : 𝐺 → 𝐾 such that
𝜒(𝑏)𝜕 (𝑎) = 𝑐.

Let 𝑐 ∈ 𝑍2(𝐾/𝑘, 𝐾×), and we let 𝛼 : 𝐺 → 𝐾× be defined by 𝛼1 = 1 and
𝛼𝜃 𝑖 =

∏𝑖−1
ℓ=1 𝑐𝜃ℓ , 𝜃 for 𝑖 ∈ [𝑛− 1]. We may quickly observe that if 𝑖 or 𝑗 is zero,

𝜕 (𝛼)𝜃 𝑖 , 𝜃 𝑗 = 1. Otherwise, we let 𝑖, 𝑗 ∈ [𝑑 − 1] and we first compute

𝛼𝜃 𝑖𝜃
𝑖 (𝛼𝜃 𝑗 ) =

𝑖−1∏
ℓ=1

𝑐𝜃ℓ , 𝜃

𝑗−1∏
ℓ=1

𝜃𝑖 (𝑐𝜃ℓ , 𝜃 )

=

𝑖−1∏
ℓ=1

𝑐𝜃ℓ , 𝜃

𝑗−1∏
ℓ=1

𝑐−1
𝜃 𝑖 , 𝜃ℓ+1𝑐𝜃 𝑖 , 𝜃ℓ 𝑐𝜃 𝑖+ℓ , 𝜃 (by Equation (3.5))

= 𝑐−1
𝜃 𝑖 , 𝜃 𝑗

𝑖+ 𝑗∏
ℓ=1

𝑐𝜃ℓ ,1

Now, observe that

𝛼𝜃 𝑖+ 𝑗 =


∏𝑖+ 𝑗−1
ℓ=1 𝑐𝜃ℓ , 𝜃 if 𝑖 + 𝑗 < 𝑛

1 if 𝑖 + 𝑗 = 𝑑∏𝑖+ 𝑗−𝑑−1
ℓ=1 𝑐𝜃ℓ , 𝜃 otherwise.

It follows that

𝑐𝜃 𝑖 , 𝜃 𝑗𝜕 (𝑎)𝜃 𝑖 , 𝜃 𝑗 =


1 if 𝑖 + 𝑗 < 𝑑
𝑏 otherwise,

where 𝑏 =
∏
𝜎∈𝐺 𝑐𝜎,𝜃 . Now, using Equation (3.5) again, one may check that

for 𝜏 ∈ 𝐺, 𝜏(𝑏) = 𝑏, and therefore 𝑏 ∈ 𝑘×, and

𝑐 = 𝜒(𝑏)𝜕 (𝑎−1).

We showed that the map 𝜒 factors into an isomorphism from 𝑘×/𝑁𝐾/𝑘 (𝐾×)
to 𝐻2(𝐾/𝑘, 𝐾×). Now, it remains for us to show that if 𝑐 ∈ 𝑘×, ⟨𝐾/𝑘, 𝜃, 𝑐⟩ ≃
Δ(𝐾, 𝜒(𝑐)). Let 𝑐 ∈ 𝑘× and consider the map

𝜓 : Δ(𝐾, 𝜒(𝑐)) → ⟨𝐾/𝑘, 𝜃, 𝑐⟩∑𝑑−1
𝑖=0 𝑎𝑖𝑢𝜃 𝑖 ↦→ ∑𝑑−1

𝑖=0 𝑎𝑖𝑦
𝑖
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One may check directly that this map is a homomorphism of 𝑘-algebras, and
since the algebra Δ(𝐾, 𝜒(𝑐)) is simple and [Δ(𝐾, 𝜒(𝑐)) : 𝑘] = [⟨𝐾/𝑘, 𝜃, 𝑐⟩ :
𝑘], it is an isomorphism. From the discussion above and Theorem 3.2.31, we
get the following:

Theorem 3.2.35. If 𝑐 ∈ 𝑘×, the algebra ⟨𝐾/𝑘, 𝜃, 𝑐⟩ is central simple of degree
𝑛. The map 𝑐 ↦→ [⟨𝐾/𝑘, 𝜃, 𝑐⟩]Br yields an isomorphism from 𝑘×/𝑁𝐾/𝑘 (𝐾×)
to Br(𝐾/𝑘).

Applying the isomorphisms defined above to Proposition 3.2.32, we get the
following:

Proposition 3.2.36. Let 𝑐, 𝑐′ ∈ 𝑘×, and let 𝑏 ∈ 𝐾× such that 𝑐𝑐′−1 = 𝑁𝐾/𝑘 (𝑏).
Then, an isomorphism from ⟨𝐾/𝑘, 𝜃, 𝑐⟩ to ⟨𝐾/𝑘, 𝜃, 𝑐′⟩ is given by the map
defined by

𝑑−1∑︁
𝑖=0

𝑎𝑖𝑦
𝑖 ↦→

𝑑−1∑︁
𝑖=0

𝑎𝑖
©­«
𝑖−1∏
𝑗=0

𝜃 𝑗 (𝑏)ª®¬ 𝑦𝑖 .
3.3 Computational representations of central simple

algebras

In order to fully define the explicit isomorphism problem, we need to state how
algebras are represented computationally. In this section, we present several
possible representations, and in the next section, we discuss how these affect
the explicit isomorphism problem.

3.3.1 Computational representations

If 𝐾/𝑘 is a cyclic extension of degree 𝑑 with fixed generator 𝜃 of its Galois
group, any central simple 𝑘-algebra of degree 𝑑 (and thus dimension 𝑑2) which
contains a subalgebra isomorphic to 𝐾 admits a presentation as a cyclic algebra
⟨𝐾/𝑘, 𝜃, 𝑐⟩ for some 𝑐 ∈ 𝑘×. An element

∑𝑑−1
𝑖=0 𝑎𝑖𝑦

𝑖 of ⟨𝐾/𝑘, 𝜃, 𝑐⟩ may then be
represented by the coordinate vector (𝑎𝑖)0≤𝑖≤𝑑−1 ∈ 𝐾𝑑 . The sum of elements
of this algebra is then represented by the sum of their coordinate vectors, and
the representation of the product may be computed via the formula(

𝑑−1∑︁
𝑖=0

𝑎𝑖𝑦
𝑖

) ©­«
𝑑−1∑︁
𝑗=0

𝑎′𝑗 𝑦
𝑗ª®¬ =

𝑑−1∑︁
ℓ=0

©­­­«
∑︁

0≤𝑖, 𝑗≤𝑑−1
𝑖+ 𝑗=ℓ mod 𝑑

𝑎𝑖𝑎
′
𝑗𝛿𝑖+ 𝑗

ª®®®¬ 𝑦
ℓ ,
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where

𝛿𝑖+ 𝑗 =


1 if 𝑖 + 𝑗 < 𝑑
𝑐 otherwise.

If 𝐾/𝑘 is a Galois extension of degree 𝑑, whose Galois group is 𝐺 =

{𝜎0, . . . , 𝜎𝑑−1}, any central simple 𝑘-algebra which contains a subalgebra
isomorphic to 𝐾 admits a presentation as a crossed-product algebra Δ(𝐾, 𝑐) for
some 𝑍2(𝐾/𝑘, 𝐾×). An element

∑𝑑−1
𝑖=0 𝑎𝑖𝑢𝜎𝑖 of Δ(𝐾, 𝑐) may then represented

by the vector (𝑎𝑖)0≤𝑖≤𝑑−1 ∈ 𝐾𝑑 . The sum of elements of this algebra is then
represented by the sum of their coordinate vectors, and the representation of
the product may be computed via Equation (3.6).

In the general case that 𝐾/𝑘 is an étale algebra of degree 𝑑, and 𝐵(𝐾, 𝑐)
is a Brauer algebra, the degree of the smallest splitting field 𝐸 may be as large
as 𝑑!, preventing us from representing the algebra 𝐵(𝐾, 𝑐) in a straightforward
manner as in the case of cyclic and crossed-product algebras. In Chapter 4, we
find a different algebraic presentation isomorphic to 𝐵(𝐾, 𝑐), which admits an
efficient computational representation.

3.3.2 Finding an algebraic representation of an algebra

There are obvious polynomial-time algorithms which, taking respectively as
input a cyclic presentation and a crossed-product presentation of an algebra,
output structure constants for this algebra. Indeed, multiplications may be
computed in polynomial time, so one may pick a convenient basis and compute
the coordinates of every product of pairs of basis elements. We also note
that one may efficiently compute a crossed-product presentation of a cyclic
algebra by the discussion given in Section 3.2.2. In this section, we consider
the reduction problems stated below. We specialise to the case that 𝑘 is a global
field. Then, by the Albert-Brauer-Hasse-Noether theorem, every central simple
𝑘-algebra admits a cyclic presentation and, therefore, also a crossed-product
presentation. Hence, the following problems always have a solution:

Problem 3.3.1. Let 𝑘 be a global field, 𝑑 ∈ N and (𝑐𝑖 𝑗ℓ) ∈ 𝑘 (𝑑
2 )3 be structure

constants for a central simple 𝑘-algebra 𝐴 of degree 𝑑. Find a cyclic extension
𝐾/𝑘 of degree 𝑑, a generator 𝜃 of Gal(𝐾/𝑘), 𝑐 ∈ 𝑘× and an isomorphism from
𝐴 to ⟨𝐾/𝑘, 𝜃, 𝑐⟩.

Problem 3.3.2. Let 𝑘 be a global field, 𝑑 ∈ N and (𝑐𝑖 𝑗ℓ) ∈ 𝑘 (𝑑
2 )3 be structure

constants for a central simple 𝑘-algebra 𝐴 of degree 𝑑. Find a Galois field
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extension 𝐾/𝑘 of degree 𝑑, a Noether factor set 𝑐 ∈ 𝑍2(𝐾/𝑘, 𝐾×) and an
isomorphism from 𝐴 to Δ(𝐾, 𝑐).

While to the best of our knowledge, there is no efficient solution to either
problem, they each reduce to the following respective weakenings:

Problem 3.3.3. Let 𝑘 be a global field, 𝑑 ∈ N and (𝑐𝑖𝑘ℓ) ∈ 𝑘 (𝑑
2 )3 be structure

constants for a central simple 𝑘-algebra 𝐴 of degree 𝑑. Find a subalgebra
𝐾 ⊂ 𝐴 such that 𝐾/𝑘 is a cyclic field extension of degree 𝑑, and compute the
Galois group of 𝐾/𝑘 .

Problem 3.3.4. Let 𝑘 be a global field, 𝑑 ∈ N and (𝑐𝑖𝑘ℓ) ∈ 𝑘 (𝑑
2 )3 be structure

constants for a central simple 𝑘-algebra 𝐴 of degree 𝑑. Find a subalgebra
𝐾 ⊂ 𝐴 such that 𝐾/𝑘 is a Galois field extension, and compute the Galois group
of 𝐾/𝑘 .

We have the following reductions:

Theorem 3.3.5. Problem 3.3.1 reduces to Problem 3.3.3.

Theorem 3.3.6. Problem 3.3.2 reduces to Problem 3.3.4.

Before we prove the theorems, we need an effective version of the Skolem-
Noether Theorem, Theorem 3.2.14:

Lemma 3.3.7. Let 𝑘 be a field, 𝑑 ∈ N and (𝑐𝑖 𝑗ℓ) ∈ 𝑘 (𝑑
2 )3 be structure constants

for a central simple 𝑘-algebra 𝐴. Let (𝑏1, . . . , 𝑏𝑟 ) and (𝑏′1, . . . , 𝑏
′
𝑟 ) be bases

for simple 𝑘-subalgebras 𝐵 and 𝐵′ of 𝐴, and let 𝑀 ∈ 𝐺𝐿𝑟 (𝑘) be the matrix
of an isomorphism from 𝐵 to 𝐵′ with respect to these bases. Then, an element
𝑎 ∈ 𝐴 such that, for any 𝑋 =

(
𝑥1 . . . 𝑥𝑟

) 𝑡
∈ 𝑘𝑟 and

(
𝑦1 . . . 𝑦𝑟

) 𝑡
= 𝑀𝑋 ,

𝑎

(
𝑟∑︁
𝑖=1

𝑥𝑖𝑏𝑖

)
𝑎−1 =

𝑟∑︁
𝑖=1

𝑦𝑖𝑏
′
𝑖 ,

may be computed in polynomial time.

Proof. Such an 𝑎 is a solution of the following linear system of equations:

𝑎𝑏 𝑗 −
𝑟∑︁
𝑖=1

𝑀𝑖 𝑗𝑏
′
𝑖𝑎 = 0 for all 𝑗 ∈ [𝑟] .

Such a system may be solved in polynomial time. □
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The way we prove Theorems 3.3.5 and 3.3.6 is to leverage Lemma 3.3.7 to
turn usual constructions of cyclic and crossed-product algebras into algorithms.

Proof of Theorem 3.3.5. Here, we adapt the proof of [36, Proposition 2.5.3].
Let 𝑘, 𝑑, (𝑐𝑖 𝑗ℓ), 𝐴 be as in the statement of Problem 3.3.1, and assume that we
know a subalgebra 𝐾 ⊂ 𝐴 such that 𝐾/𝑘 is a cyclic extension of degree 𝑑. We
also assume that we know a generator 𝜃 of the Galois group of 𝐾 and that we
know how to efficiently compute a representation of 𝜃 (𝑥) for 𝑥 ∈ 𝐾 .

Then, by Lemma 3.3.7, we may compute 𝑎 ∈ 𝐴 such that 𝑎𝑥𝑎−1 = 𝜃 (𝑥) for
all 𝑥 ∈ 𝐾 . Then, for 𝑥 ∈ 𝐾 , 𝑎𝑥 = 𝜃 (𝑥)𝑎. Furthermore, by induction we have
𝑎ℓ𝑥𝑎−ℓ = 𝜃ℓ (𝑥) for all 𝑥 ∈ 𝐾 .

In particular, 𝑎𝑑𝑥𝑎−𝑑 = 𝑥 for 𝑥 ∈ 𝐾 . That is, 𝑎𝑑 ∈ 𝐶𝐴(𝐾). By Corol-
lary 3.2.17, it follows that 𝑎𝑑 ∈ 𝐾×. Since 𝑎𝑑 commutes with 𝑎, we also get
𝜃 (𝑎𝑑) = 𝑎𝑑 , so in fact, 𝑎𝑑 ∈ 𝑘×. We let 𝑐 = 𝑎𝑑 .

The discussion above proves that the map

⟨𝐾/𝑘, 𝜃, 𝑐⟩ → 𝐴∑𝑑−1
𝑖=0 𝑥𝑖𝑦

𝑖 ↦→ ∑𝑑−1
𝑖=0 𝑥𝑖𝑎

𝑖

is a 𝑘-algebra homomorphism. Since ⟨𝐾/𝑘, 𝜃, 𝑐⟩ is simple and the dimensions
of ⟨𝐾/𝑘, 𝜃, 𝑐⟩ and 𝐴 are equal, the map above is an isomorphism. □

Proof of Theorem 3.3.6. Here, we adapt the construction discussed in [51, Sec-
tion 2.6]. Let 𝑘, 𝑑, (𝑐𝑖 𝑗ℓ), 𝐴 be as in the statement of Problem 3.3.2, and assume
that we know a subalgebra 𝐾 ⊂ 𝐴 such that 𝐾/𝑘 is a Galois field extension of
degree 𝑛. We also assume that we know the Galois group𝐺 of 𝐾/𝑘 in the sense
that we may represent its elements, compute their multiplication and compute
their action on 𝐾 . Then, for 𝜎 ∈ 𝐺, we may apply Lemma 3.3.7 to find 𝑎𝜎 ∈ 𝐴
such that for all 𝑥 ∈ 𝐾 , 𝑎𝜎𝑥𝑎𝜎−1 = 𝜎(𝑥). For 𝑥 ∈ 𝐾 , we have:

𝑎−1
𝜎𝜏𝑎𝜎𝑎𝜏𝑥(𝑎−1

𝜎𝜏𝑎𝜎𝑎𝜏)−1 = 𝑥.

As in the proof of Theorem 3.3.5, this shows that 𝑐𝜎,𝜏 ≔ 𝑎−1
𝜎𝜏𝑎𝜎𝑎𝜏 ∈ 𝐾×.

A straightforward computation shows that (𝑐𝜎,𝜏) ∈ 𝑍2(𝐾/𝑘, 𝐾×). Then, the
map

Δ(𝐾, 𝑐) → 𝐴∑
𝜎∈𝐺 𝑥𝜎𝑢𝜎 ↦→ ∑

𝜎∈𝐺 𝑥𝜎𝑎𝜎

is a homomorphism of 𝑘-algebra. This map is an isomorphism by simplicity
of Δ(𝐾, 𝑐) and equality of dimensions. □
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3.4 The explicit isomorphism problem and its variants

In this section, we discuss the explicit isomorphism problem in different forms.

3.4.1 Problem statements and reductions

Various versions of the explicit isomorphism problem

We introduce the following variants:

Problem 3.4.1 (The explicit isomorphism problem). Let 𝑘 be a field, 𝑑 ∈ N

and (𝑐𝑖 𝑗ℓ) ∈ 𝑘 (𝑑
2 )3 be structure constants for an algebra 𝐴 isomorphic to

𝑀𝑑 (𝑘), with respect to some basis (𝑒𝑖)1≤𝑖≤𝑑2 of 𝐴. Find an isomorphism from
𝐴 to 𝑀𝑑 (𝑘). That is, output 𝑑2 matrices 𝑀𝑖 ∈ 𝑀𝑑 (𝑘), such that the linear map
sending 𝑒𝑖 to 𝑀𝑖 gives a 𝑘-algebra isomorphism.

Problem 3.4.2 (The explicit isomorphism problem (cyclic version)). Let 𝑘 be a
field, and 𝐾/𝑘 be a cyclic extension of degree 𝑑 ∈ N. Let 𝜃 be a generator of the
Galois group Gal(𝐾/𝑘) and let 𝑐 ∈ 𝑁𝐾/𝑘 (𝐾×). Find an explicit isomorphism
from ⟨𝐾/𝑘, 𝜃, 𝑐⟩ to 𝑀𝑛 (𝑘). That is, find an embedding 𝜄 : 𝐾 → 𝑀𝑑 (𝑘) and
a matrix 𝑌 ∈ 𝑀𝑑 (𝐾) such that 𝜄(𝐾) and 𝑌 generate 𝑀𝑑 (𝑘) as an algebra,
𝑌 𝑑 = 𝑐𝐼𝑑 and for any 𝛼 ∈ 𝐾 ,

𝑌 𝜄(𝛼) = 𝜄(𝜃 (𝛼))𝑌 .

Problem 3.4.3 (The explicit isomorphism problem (crossed-product version)).
Let 𝑘 be a field, and 𝐾/𝑘 be a Galois extension of degree 𝑑 ∈ N. Let
𝑐 ∈ 𝐵2(𝐾/𝑘, 𝐾×). Find an explicit isomorphism from Δ(𝐾, 𝑐) to 𝑀𝑑 (𝑘). That
is, find an embedding 𝜄 : 𝐾 → 𝑀𝑑 (𝐾) and matrices𝑈𝜎 for 𝜎 ∈ 𝐺 = Gal(𝐾/𝑘)
such that 𝜄(𝐾) and the 𝑈𝜎 generate 𝑀𝑑 (𝑘) as an algebra, and for 𝛼, 𝛽 ∈ 𝐾
and 𝜎, 𝜏 ∈ 𝐺,

𝜄(𝛼)𝑈𝜎 𝜄(𝛽)𝑈𝜏 = 𝜄(𝛼)𝜄(𝛽)𝑐𝜎,𝜏𝑈𝜎𝜏 .

Remark 3.4.4. Generally, we speak of the explicit isomorphism problem for
a specific class of fields. In this case, we assume algorithms for representing
such fields, and thus, the size of the representation of the base field 𝑘 is part of
the size of the input to the problem.

In general, one version of the explicit isomorphism problem reduces to
another if one may deduce one computational representation of an algebra 𝐴
from another. By the results of Section 3.3.2, we have the following:
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Theorem 3.4.5. 1. Problem 3.4.1 reduces to Problems 3.3.4 and 3.4.3.

2. Problem 3.4.1 reduces to Problems 3.3.3 and 3.4.2.

3. Problem 3.4.3 reduces to Problem 3.4.1.

4. Problem 3.4.3 reduces to Problems 3.3.3 and 3.4.2.

5. Problem 3.4.2 reduces to Problem 3.4.3.

6. Problem 3.4.2 reduces to Problem 3.4.1.

It follows that the cyclic version of the explicit isomorphism problem is
weaker than the crossed-product version, which is weaker than the main version.
In practice, we will show in the next section that subexponential algorithms
exist that solve both the cyclic and the crossed-product versions. However, to
the best of our knowledge, there is no known subexponential algorithm which
solves Problem 3.3.3, Problem 3.3.4, or Problem 3.4.1. In Chapter 4, we define
a new variant of the explicit isomorphism problem, which may be solved in
subexponential time and is equivalent to the explicit isomorphism problem.

Zero divisors

If 𝐴 is an algebra isomorphic to 𝑀𝑑 (𝑘), knowing a zero divisor 𝑧 ∈ 𝐴 may
help reduce the problem of finding an explicit isomorphism. If a rank one zero
divisor is known, it leads directly to a solution to the problem.

We give a generic definition of the rank one element problem, understanding
that different versions exist for any possible way to represent the algebra 𝐴:

Problem 3.4.6 (The rank one element problem). Let 𝐴 ≃ 𝑀𝑑 (𝑘) be a 𝑘 algebra,
find a rank one element in 𝐴.

Then, we always have the reduction

Proposition 3.4.7. Any version of the explicit isomorphism problem reduces
to the corresponding version of the rank one element problem.

Proof. This is a direct consequence of Proposition 3.2.6 and its proof. Indeed,
if a rank one element 𝑧 is known in an algebra 𝐴, one may compute a basis of
the left ideal 𝐴𝑧 and then compute the matrix of the multiplication on the left by
any 𝑎 ∈ 𝐴. This algorithm only involves a polynomial amount of computations
in 𝐴 and linear algebraic operations. □
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If only that a higher rank zero divisor is known, the problem may not
instantly be solved, but it reduces to a version of lower degree. This fact is a
consequence of the following lemmas:

Lemma 3.4.8. Given an algebra 𝐴 ≃ 𝑀𝑑 (𝑘) and an element 𝑧 ∈ 𝐴, which is a
zero-divisor of rank 𝑟, one may compute in polynomial time an idempotent in
𝐴 of rank min(𝑟, 𝑑 − 𝑟).

Proof. If 𝑧 ∈ 𝑀𝑛 (𝑘) is a zero divisor of rank 𝑟 , then the left ideal 𝑀𝑑 (𝑘)𝑧
admits a right unit 𝑒. We claim that 𝑒 is idempotent and has rank 𝑟 . Then, 1− 𝑒
is an idempotent of rank 𝑛 − 𝑟 .

We prove the claim: If 𝑧 ∈ 𝑀𝑑 (𝑘), the left ideal 𝑀𝑑 (𝑘)𝑧 is the set of
matrices 𝑀 whose image is contained in Im(𝑧). Then, let 𝑒 be the matrix of the
projection onto Im(𝑧). It follows that 𝑒 is an idempotent matrix of rank 𝑟 . □

The following is a specific version of Lemma 3.2.10.

Lemma 3.4.9. Let 𝐴 ≃ 𝑀𝑑 (𝑘) be a 𝑘-algebra, and let 𝑒 ∈ 𝐴 be an idempotent
of rank 𝑟 . Then 𝑒𝐴𝑒 is an algebra isomorphic to 𝑀𝑟 (𝑘).

Proof. It is enough to prove the result for 𝐴 = 𝑀𝑑 (𝑘). However, then, 𝑒 is
a projection matrix onto a subspace 𝑉 ⊂ 𝑘𝑛, and 𝑒𝐴𝑒 bĳectively maps onto
End𝑘 (𝑉) in a way that preserves multiplication. □

We may then express the following weaker variant of Problem 3.4.6:

Problem 3.4.10 (The zero divisor problem). Let 𝐴 ≃ 𝑀𝑑 (𝑘) be a 𝑘 algebra,
find a zero divisor in 𝐴.

It may seem that the explicit isomorphism problem should reduce to the
zero divisor problem. One may repeatedly find a zero divisor 𝑧 ∈ 𝐴, produce
an idempotent 𝑒 of rank 𝑟 ≤ (deg 𝐴)/2 and repeat the process with the algebra
𝑒𝐴𝑒 of degree lesser or equal to (deg 𝐴)/2. However, this reduction is only
polynomial if one may ensure that the size of the representation of 𝑒𝐴𝑒 only
grows at most sublinearly. To work around this caveat, we may define the
problem of reducing the representation size of an algebra 𝐴 ≃ 𝑀𝑑 (𝑘). This
problem makes sense since 𝐴 admits representations of fixed size by virtue of
being isomorphic to a matrix algebra,.
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3.4.2 Algorithms for the explicit isomorphism problem

Here, we discuss known algorithms for solving Problem 3.4.1 over a global field.
One algorithm pertains to number fields. While its complexity is polynomial in
the size of the structure constants, it is not in terms of the degree of the algebra
𝐴. We also present a polynomial algorithm for rational function fields.

Both algorithms rely on Proposition 3.4.7 and, in fact, solve the rank one
element problem (Problem 3.4.6).

For an algebra 𝐴 ≃ 𝑀𝑑 (𝑘), where 𝑘 is a number field and 𝐴 is given
by structure constants, an algorithm was first proposed in [22], and later gen-
eralised in [49] and further improved in [47]. While the complexity of this
algorithm is not polynomial in 𝑑 or the discriminant of 𝑘 , it is subexponential
if these two quantities are bounded. More precisely, it provides an ff-algorithm
for the explicit isomorphism problem over a fixed number field with bounded
degree. The method is to compute a maximal O𝑘-order 𝑅 in 𝐴, and to split
𝐴 ⊗𝑘 𝑘𝑃, where 𝑃 ranges over 𝑀𝑎

𝑘
. These splitting allow one to compute

Frobenius norms over 𝐴, and one may search for a rank-one element among the
small elements of 𝑅. The exponential complexity comes from the large search
space size in the last step of the algorithm.

For an algebra 𝐴 ≃ 𝑀𝑑 (𝑘), where 𝑘 = F𝑞 (𝑥) is a rational function field, a
polynomial algorithm was given in [46]. The method is similar to the method
for number fields but also allows for a geometric interpretation. One computes
a maximal O 𝑓 𝑖-order 𝑅 𝑓 𝑖 and a maximal O∞-order 𝑅∞ in 𝐴. Then, a rank-one
element is found in 𝑅 𝑓 𝑖∩𝑅∞. The order 𝑅 𝑓 𝑖 plays the role of the maximal order
𝑅 in the number field case, and elements of 𝑅 𝑓 𝑖 ∩ 𝑅∞ are analogous to small
elements of 𝑅 𝑓 𝑖 . While this result is proved in purely algebraic terms in [46],
it admits a simple geometric interpretation. After introducing the necessary
definitions, we discuss it in Section 5.3.1.

3.4.3 Solving algebraic versions of the explicit isomorphism prob-
lem

Here, we discuss known techniques for solving Problems 3.4.2 and 3.4.3 in
subexponential time in the case that 𝑘 is a number field. Both algorithms
rely on similar strategies: solving a multiplicative equation and applying either
Proposition 3.2.36 or Proposition 3.2.32 to get an isomorphism to 𝑀𝑑 (𝑘).
More precisely, we have the following problems:
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Problem 3.4.11 (Cyclic norm equation). Let 𝐾 be a cyclic extension of a global
field 𝑘 . Let 𝑏 ∈ 𝑁𝐾/𝑘 (𝐾×). Compute 𝑎 ∈ 𝐾× such that

𝑏 = 𝑁𝐾/𝑘 (𝑎).

Problem 3.4.12 (Noether factor set trivialisation). Let 𝐾 be a Galois extension
of a global field 𝑘 . Let 𝑏 ∈ 𝐵2(𝐾/𝑘, 𝐾×). Compute 𝑎 : 𝐺 → 𝐾× such that

𝑏 = 𝜕 (𝑎).

Then, we have the following reductions:

Theorem 3.4.13. 1. Problem 3.4.2 reduces to Problem 3.4.11

2. Problem 3.4.3 reduces to Problem 3.4.12

Proof. We only state the proof of the first point, as the proof for the second
one is similar. Let 𝑘, 𝐾, 𝑑, 𝑐 be as in the statement of Problem 3.4.3. Then if
𝑎 : 𝐺 → 𝐾× is given such that 𝑐 = 𝜕 (𝑎), an isomorphism from 𝐴 = Δ(𝐾, 𝑐)
to Δ(𝐾, 1) may be computed by Proposition 3.2.32. Then, by Example 3.2.33,
this yields an isomorphism from 𝐴 to 𝑀𝑑 (𝑘). □

Then, subexponential algorithms solving Problems 3.4.2 and 3.4.3 over a
number field follow from the following results:

Theorem 3.4.14. If 𝑘 is a number field, Problem 3.4.11 over 𝑘 may be solved
in subexponential time under GRH.

Theorem 3.4.15. If 𝑘 is a number field, Problem 3.4.12 may be solved over 𝑘
in subexponential time under GRH.

The first theorem is a particular case of the results of [82]. The second
theorem either reduces to factoring and 𝑆-unit group computation by [29] or to
solving norm equations in relative extensions of number fields by [67]. Note
that the problem of solving norm equations reduces to the problems of factoring
and computing 𝑆-units by [82].
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Chapter 4

Computational Amitsur
cohomology and the explicit
isomorphism problem

This chapter presents results published in [55]. We introduce an algebraic
presentation of a central simple algebra using Amitsur cohomology. This
representation is as a rephrasing of Brauer algebras. As discussed in Sec-
tion 3.3, the usual definition of a Brauer algebra does not suggest a reasonable
computational representation when the splitting field of 𝐾 has a large degree.
Our equivalent representation relies only on computations in 𝐾⊗2 and 𝐾⊗3,
and therefore has polynomial size. Using this representation, we provide a
polynomial reduction of the explicit isomorphism problem (Problem 3.4.1)
to factorisation and Problem 2.2.16 under GRH, which yields a polynomial
quantum algorithm (still under GRH). We prove that we may compute a repre-
sentation of an algebra from its structure constants in polynomial time (whereas
this is not known for cyclic and crossed-product presentations). Then, we prove
results analogous to Theorems 3.4.13 and 3.4.15.

4.1 Amitsur cohomology

Definition 4.1.1. Let 𝑅 be a ring and 𝑆 be an 𝑅-algebra. We let 𝐶𝑛
𝐴𝑚

(𝑅, 𝑆)
be the group (𝑆⊗(𝑛+1) )× of units in 𝑆⊗(𝑛+1) . Elements of 𝐶𝑛

𝐴𝑚
(𝑅, 𝑆) are called

Amitsur 𝑛-cochains of 𝑆, or simply 𝑛-cochains of 𝑆 if there is no ambiguity on
the type of cohomology.
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We will define a complex

. . . → 𝐶𝑛𝐴𝑚(𝑅, 𝑆)
𝜕𝑛−−→ 𝐶𝑛+1

𝐴𝑚 (𝑅, 𝑆) → . . .

as follows: let 𝑛 ∈ Z≥0 and let 𝑖 ∈ [𝑛 + 1]0. We define the 𝑅-algebra
homomorphism

𝜀𝑛
𝑖

: 𝑆⊗(𝑛+1) → 𝑆⊗(𝑛+2)

𝑎0 ⊗ 𝑎1 ⊗ . . . ⊗ 𝑎𝑛 ↦→ 𝑎0 ⊗ 𝑎1 ⊗ . . . ⊗ 𝑎𝑖−1 ⊗ 1 ⊗ 𝑎𝑖 ⊗ . . . ⊗ 𝑎𝑛.

We may then define the group homomorphism

𝜕𝑛 : 𝐶𝑛
𝐴𝑚

(𝑅, 𝑆) → 𝐶𝑛+1
𝐴𝑚

(𝑅, 𝑆)
𝑎 ↦→ ∏𝑛+1

𝑖=0 𝜀
𝑛
𝑖
(𝑎) (−1)𝑖 .

We observe that for 𝑛 ∈ N, 0 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛 + 1, we have

𝜀𝑛+1
𝑗 ◦ 𝜀𝑛𝑖 = 𝜀𝑛+1

𝑖+1 𝜀
𝑛
𝑗 . (4.1)

We may then prove

Proposition 4.1.2. Let 𝑅 be a ring and 𝑆 an 𝑅-algebra, and let 𝑛 ∈ Z≥0. Then
the map 𝜕𝑛+1 ◦ 𝜕𝑛 : 𝐶𝑛

𝐴𝑚
(𝑅, 𝑆) → 𝐶𝑛+2

𝐴𝑚
(𝑅, 𝑆) is the trivial map 𝑎 ↦→ 1. That

is, 𝜕∗ is a complex of abelian groups.

Proof. Applying Equation (4.1), we compute:

𝜕𝑛+1 ◦ 𝜕𝑛 = ©­«
𝑛+2∏
𝑗=0

(𝜀𝑛+1
𝑗 ) (−1) 𝑗ª®¬ ◦

(
𝑛+1∏
𝑖=0

(𝜀𝑛𝑖 ) (−1)𝑖
)

=
©­«

∏
0≤ 𝑗≤𝑖≤𝑛+1

(𝜀𝑛+1
𝑗 ◦ 𝜀𝑛𝑖 ) (−1)𝑖+ 𝑗ª®¬ ©­«

∏
0≤𝑖< 𝑗≤𝑛+2

(𝜀𝑛+1
𝑗 ◦ 𝜀𝑛𝑖 ) (−1)𝑖+ 𝑗ª®¬

=
©­«

∏
0≤ 𝑗≤𝑖≤𝑛+1

(𝜀𝑛+1
𝑖+1 ◦ 𝜀𝑛𝑗−1)

(−1)𝑖+ 𝑗ª®¬ ©­«
∏

0≤𝑖< 𝑗≤𝑛+2
(𝜀𝑛+1
𝑗 ◦ 𝜀𝑛𝑖 ) (−1)𝑖+ 𝑗ª®¬

=
©­«

∏
0≤𝑖< 𝑗≤𝑛+2

(𝜀𝑛+1
𝑗 ◦ 𝜀𝑛𝑖 ) (−1)𝑖+ 𝑗−1ª®¬ ©­«

∏
0≤𝑖< 𝑗≤𝑛+2

(𝜀𝑛+1
𝑗 ◦ 𝜀𝑛𝑖 ) (−1)𝑖+ 𝑗ª®¬

= 1

□

Using Proposition 4.1.2, we may define the groups of Amitsur cohomology
of an 𝑅-algebra:
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Definition 4.1.3. Let 𝑛 ∈ Z≥0. Let 𝑅 be a ring and 𝑆 an 𝑅-algebra, and let
𝑛 ∈ Z≥0. We define the following groups:

• 𝑍𝑛
𝐴𝑚

(𝑅, 𝑆) = Ker 𝜕𝑛 is the group of Amitsur 𝑛-cocycles of 𝑆.

• If 𝑛 ≥ 1, we set 𝐵𝑛
𝐴𝑚

(𝑅, 𝑆) = Im 𝜕𝑛−1 is the group of Amitsur 𝑛-
coboundaries of 𝑆 if 𝑛 ∈ N. We let 𝐵0(𝑅, 𝑆) be the trivial group.

• 𝐻𝑛
𝐴𝑚

(𝑅, 𝑆) = 𝑍𝑛
𝐴𝑚

(𝑅, 𝑆)/𝐵𝑛
𝐴𝑚

(𝑅, 𝑆) is the 𝑛-th Amitsur cohomology
group of 𝑆.

Applying [33, Theorem 5.5], we get the following base-change result:

Proposition 4.1.4. Let 𝑅 be a ring and let 𝑆, 𝑆′ be 𝑅-algebras. Let 𝑐 =∑
𝑖∈𝐼 𝑎0𝑖 ⊗ . . . ⊗ 𝑎𝑛𝑖 ∈ 𝑆⊗(𝑛+1) . We set

𝑐𝑆′ =
∑︁
𝑖∈𝐼

(𝑎0𝑖 ⊗𝑅 1) ⊗𝑆′ . . . ⊗𝑆′ (𝑎𝑛𝑖 ⊗𝑅 1).

Then, 𝑐 ∈ 𝐶𝑛
𝐴𝑚

(𝑅, 𝑆) if and only if 𝑐𝑆′ ∈ 𝐶𝑛𝐴𝑚(𝑆
′, 𝑆𝑆′) and we get a map of

complexes:

. . . 𝐶𝑛
𝐴𝑚

(𝑅, 𝑆) 𝐶𝑛+1
𝐴𝑚

(𝑅, 𝑆) . . .

. . . 𝐶𝑛
𝐴𝑚

(𝑆′, 𝑆𝑆′) 𝐶𝑛+1
𝐴𝑚

(𝑆′, 𝑆𝑆′) . . .

( ·)𝑆′

𝜕𝑛

( ·)𝑆′
𝜕𝑛
𝑆′

(4.2)

where 𝜕𝑛
𝑆′ = 𝜕𝑛 ⊗ 𝐼𝑑𝑆′ . It follows that if 𝑐 ∈ 𝑍2

𝐴𝑚
(𝑅, 𝑆), then 𝑐𝑆′ ∈

𝑍2
𝐴𝑚

(𝑆′, 𝑆𝑆′), and likewise if 𝑐 ∈ 𝐵2
𝐴𝑚

(𝑅, 𝑆), then 𝑐𝑆′ ∈ 𝐵2
𝐴𝑚

(𝑆′, 𝑆𝑆′). This
also defines a map from 𝐻𝑛 (𝑅, 𝑆) to 𝐻𝑛 (𝑆′, 𝑆𝑆′) sending the class of 𝑐 to that
of 𝑐𝑆′ .

Proof. The only part that does not follow from [33, Theorem 5.5] is that 𝑐 is a
unit if and only if 𝑐𝑆′ is. However, if 𝑐 admits an inverse 𝑐−1 ∈ 𝑆⊗(𝑛+1) , then
(𝑐−1)𝑆′ is an inverse of 𝑐𝑆′ . □

In the case that 𝑆 = 𝑆′, the base-change sends 𝐻𝑛
𝐴𝑚

(𝑅, 𝑆) to the trivial
class:

Proposition 4.1.5. Let 𝑛 ∈ N. Let 𝑅 be a ring and let 𝑆 be an 𝑅-algebra. Let
𝑐 ∈ 𝑍𝑛

𝐴𝑚
(𝑅, 𝑆) be a cocycle. Then, 𝑐𝑆 ∈ 𝐵𝑛

𝐴𝑚
(𝑆, 𝑆𝑆).
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Proof. Observe that in this case, 𝑆𝑆 = 𝑆⊗2, seen as an 𝑆-algebra via the map
𝜀0

0 : 𝑆 → 𝑆⊗2. In general, we have (𝑆𝑆)⊗𝑆𝑛 ≃ 𝑆⊗𝑅𝑛+1 as 𝑅 algebras. We
may therefore identify 𝐶𝑛

𝐴𝑚
(𝑆, 𝑆𝑆) and 𝐶𝑛+1

𝐴𝑚
(𝑅, 𝑆) as abelian groups. Then, if

𝑐 ∈ 𝐶𝑛
𝐴𝑚

(𝑅, 𝑆), we get
𝑐𝑆 = 𝜀𝑛𝑛+1(𝑐).

Furthermore, if 𝑐 ∈ 𝐶𝑛+1
𝐴𝑚

(𝑅, 𝑆), then

𝜕𝑛𝑆 (𝑐) =
𝑛+1∏
𝑖=0

(𝜀𝑛+1
𝑖 (𝑐)) (−1)𝑖 ,

Observe that if 𝑐 ∈ 𝐶𝑛
𝐴𝑚

(𝑅, 𝑆) = 𝐶𝑛−1
𝐴𝑚

(𝑆, 𝑆𝑆), we get

𝜕𝑛 (𝑐) = 𝜕𝑛−1
𝑆 (𝑐) (𝜀𝑛𝑛+1(𝑐))

(−1)𝑛+1
.

It follows that if 𝑐 ∈ 𝑍𝑛
𝐴𝑚

(𝑅, 𝑆), so that 𝜕𝑛 (𝑐) = 1, we get

𝑐𝑆 = 𝜀𝑛𝑛+1(𝑐) = 𝜕
𝑛−1
𝑆 (𝑐 (−1)𝑛) ∈ 𝐵2

𝐴𝑚(𝑆, 𝑆𝑆)

□

4.2 Amitsur algebras

In this section, we fix a field 𝑘 . We will prove Theorem 4.2.4, which gives an iso-
morphism between the cohomology group 𝐻2

𝐴𝑚
(𝑘, 𝐾) and the relative Brauer

group Br(𝐾/𝑘). This theorem is comparable to the results of Section 3.2.2.
In [55], the authors prove this result as a consequence of Proposition 3.2.21,
and an equivalence between Brauer algebras and the Amitsur algebras defined
below. Here, as suggested in [55, Remark 3.8], we give a direct proof, which,
while inspired by the techniques used in [51, Chapter 2], is independent of the
theory of Brauer factor sets.

In this section, we will consider two settings. The first is the case where
𝑅 = 𝑘 and 𝑆 is an étale 𝑘-algebra𝐾 , as in the discussion of Brauer factor sets. In
this first setting, we state and prove Theorem 4.2.4. Some intermediate results
require us to consider Amitsur algebras in the more general setting where 𝑅 is
an étale 𝑘-algebra and 𝑆 is a free étale 𝑅-algebra.

In either case, since 𝑆 is free as a 𝑅-module, we may see 𝑆⊗(𝑛+1) as an
𝑆⊗𝑛-algebra via any map 𝜀𝑛−1

𝑖
for 𝑖 ∈ [𝑛 + 1]0. This algebra is always free as

a 𝑆⊗𝑛-module. In this case, we write Tr𝑛−1
𝑖 for the corresponding trace map.

This section will focus on the trace map Tr1
1, as it plays a central role in defining

Amitsur algebras.
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Definition 4.2.1. Let 𝑐 ∈ 𝑆⊗3. Then, we define a bilinear map

𝜋𝑐 : 𝑆⊗2 × 𝑆⊗2 → 𝑆⊗2

as follows: for 𝑎, 𝑎′ ∈ 𝑆⊗2,

𝜋𝑐 (𝑎, 𝑎′) = Tr1
1(𝜀

1
2 (𝑎)𝑐𝜀

1
0 (𝑎

′)).

The 𝑅-algebra with underlying vector space 𝑆⊗2 and product 𝜋𝑐 is called the
Amitsur algebra associated to 𝑆 and 𝑐, and is denoted by 𝐴(𝑆, 𝑐).

Remark 4.2.2. The algebra 𝐴(𝑆, 𝑐) needs not be unital or associative.

We stress that for the remainder of this section, unless specified otherwise,
the notation 𝑎𝑎′, when 𝑎, 𝑎′ ∈ 𝑆⊗2 means the usual product in the tensor
product algebra 𝑆⊗2. We use the maps 𝜋𝑐 when we mean multiplication in the
algebra 𝐴(𝑆, 𝑐).

Observe that in general, for 𝑎 =
∑
𝑖∈𝐼 𝑎𝑖0 ⊗ 𝑎𝑖1 ⊗ 𝑎𝑖2 ∈ 𝑆⊗3, we have

Tr1
1(𝑎) =

∑︁
𝑖∈𝐼

Tr𝑆/𝑅 (𝑎𝑖1)𝑎𝑖0 ⊗ 𝑎𝑖2. (4.3)

It follows that if 𝑐 ∈ 𝑆⊗3, 𝑎, 𝑎′ ∈ 𝑆⊗2 and 𝑏 ∈ 𝑆, we have the following:

𝜋𝑐 (𝜀0
1 (𝑏)𝑎, 𝑎

′) = 𝜀0
1 (𝑏)𝜋𝑐 (𝑎, 𝑎

′) (4.4)

𝜋𝑐 (𝑎, 𝜀0
0 (𝑏)𝑎

′) = 𝜀0
0 (𝑏)𝜋𝑐 (𝑎, 𝑎

′) (4.5)

Example 4.2.3 (The trivial Amitsur algebra). Let 𝑑 be the rank of 𝑆 as a free
𝑅-module. The algebra 𝐴 = 𝐴(𝑆, 1) is isomorphic to 𝑀𝑑 (𝑅). Indeed, there is
an isomorphism End𝑅 (𝑆) ≃ 𝑀𝑛 (𝑅). Since 𝑆 is free as an 𝑅 module, we have
End𝑅 (𝑆) ≃ 𝑆 ⊗ 𝑆∨, given by 𝑎 ⊗ 𝜑 ↦→ (𝑏 ↦→ 𝑎𝜑(𝑏). By Lemma 2.1.22, we get
an isomorphism ≃ 𝑆⊗2 ≃ End𝑅 (𝑆), where the multiplication on 𝑆⊗2 is not the
usual, but is rather defined by the following: for 𝑎, 𝑎′, 𝑏, 𝑏′ ∈ 𝑆,

(𝑎 ⊗ 𝑎′) · (𝑏 ⊗ 𝑏′) = Tr𝑆/𝑅 (𝑎′𝑏)𝑎 ⊗ 𝑏′.

Now, we need to check that this coincides with the bilinear map 𝜋1, and it is
enough to check on simple tensor elements. Let 𝑎, 𝑎′, 𝑏, 𝑏′ ∈ 𝑆. We compute:

𝜋1(𝑎 ⊗ 𝑎′, 𝑏 ⊗ 𝑏′) = Tr1
1(𝜀

1
2 (𝑎 ⊗ 𝑎

′)𝜀1
0 (𝑏 ⊗ 𝑏

′))
= Tr1

1(𝑎 ⊗ 𝑎
′𝑏 ⊗ 𝑏′)

= Tr𝑆/𝑅 (𝑎′𝑏)𝑎 ⊗ 𝑏′ (by Equation (4.3)).
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The main result of this section is the following, stated as Theorem 1.4.1:

Theorem 4.2.4. Let 𝑘 be a field and let 𝐾 be an étale 𝑘-algebra of degree
𝑑. Let 𝑐 ∈ 𝐾⊗3. Then, 𝐴(𝐾, 𝑐) is a central simple 𝑘-algebra if and only
if 𝑐 ∈ 𝑍2

𝐴𝑚
(𝑘, 𝐾). In this case, 𝐴(𝐾, 𝑐) has degree 𝑑 and contains 𝐾 as

a maximal commutative subalgebra. Conversely, if 𝐴 is a central simple 𝑘-
algebra of degree 𝑑 containing 𝐾 as a maximal commutative subalgebra, there
exists 𝑐 ∈ 𝑍2

𝐴𝑚
(𝑘, 𝐾) such that the Amitsur algebra 𝐴(𝐾, 𝑐) is isomorphic to

𝐴.
This factors into an isomorphism between 𝐻2

𝐴𝑚
(𝑘, 𝐾) and the relative

Brauer group of 𝑘 with respect to 𝐾 .

Proof. Theorem 4.2.4 is the combination of the following results proved in this
section: Example 4.2.3 and Propositions 4.2.5, 4.2.7 and 4.2.10 to 4.2.14 □

4.2.1 Embedding 𝑆 into 𝐴(𝑆, 𝑐)

Proposition 4.2.5. Let 𝑐 ∈ 𝑆⊗3. Assume that the algebra 𝐴(𝑆, 𝑐) is unital and
let 1𝑐 be its unit. Then 𝑆 embeds into 𝐴(𝑆, 𝑐) as an 𝑅-algebra via the mapping

𝜄𝑐 (𝑎) = 𝜀0
1 (𝑎)1𝑐 .

Proof. First, we prove that if 𝜄𝑐 (𝑎) = 0, then 𝑎 = 0. Indeed, applying Equa-
tion (4.4), we get

𝜀0
1 (𝑎) = 𝜀

0
1 (𝑎) (1 ⊗ 1) = 𝜋𝑐 (𝜄𝑐 (𝑎), 1 ⊗ 1),

and it follows that if 𝜄𝑐 (𝑎) = 0, then 𝜀0
1 (𝑎) = 0 and therefore 𝑎 = 0.

Now, it remains for us to prove that if 𝑎, 𝑎′ ∈ 𝑆, then

𝜄𝑐 (𝑎𝑎′) = 𝜋𝑐 (𝜄𝑐 (𝑎), 𝜄𝑐 (𝑎′)).

We compute:

𝜋𝑐 (𝜄𝑐 (𝑎), 𝜄𝑐 (𝑎′)) = 𝜀0
1 (𝑎)𝜋𝑐 (1𝑐, 𝜄𝑐 (𝑎

′))
= 𝜀0

1 (𝑎)𝜋𝑐 (𝜄𝑐 (𝑎
′), 1𝑐)

= 𝜀0
1 (𝑎𝑎

′)𝜋𝑐 (1𝑐, 1𝑐)
= 𝜄𝑐 (𝑎𝑎′).

□
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Lemma 4.2.6. Let 𝑐 ∈ 𝑆⊗3, and let 𝛼 ∈ 𝑆. Then

𝜄𝑐 (𝛼) = 𝜀0
0 (𝛼)1𝑐 .

Proof. We set
𝑐 =

∑︁
ℓ∈𝐿

𝑐ℓ0 ⊗ 𝑐ℓ1 ⊗ 𝑐ℓ2

and
1𝑐 =

∑︁
𝑖∈𝐼

𝑎𝑖 ⊗ 𝑏𝑖 .

We first prove that for a general 𝛼 ∈ 𝑆,

𝜀0
1 (𝛼) =

∑︁
𝑖∈𝐼
ℓ∈𝐿

Tr𝑆/𝑅 (𝑏𝑖𝑐ℓ1𝛼) (𝑐ℓ0𝑎𝑖) ⊗ 𝑐ℓ2.

Indeed, we compute

𝜀0
1 (𝛼) = 𝜋𝑐 (1𝑐, 𝜀

0
1 (𝛼))

=
∑︁
𝑖∈𝐼
ℓ∈𝐿

Tr𝑆/𝑅 (𝑏𝑖𝑐ℓ1𝛼) (𝑐ℓ0𝑎𝑖) ⊗ 𝑐ℓ2.

Now,

𝜀0
0 (𝛼)1𝑐 = 𝜋𝑐 (1𝑐, 𝜀

0
0 (𝛼)1𝑐)

=
∑︁
𝑖, 𝑗∈𝐼
ℓ∈𝐿

Tr𝑆/𝑅 (𝑏𝑖𝑐ℓ1𝑎 𝑗𝛼) (𝑐ℓ0𝑎𝑖) ⊗ (𝑐ℓ2𝑏 𝑗)

=
∑︁
𝑗∈𝐽

(1 ⊗ 𝑏 𝑗)
∑︁
𝑖∈𝐼
ℓ∈𝐿

Tr𝑆/𝑅 (𝑏𝑖𝑐ℓ0(𝛼𝑎 𝑗)) (𝑐ℓ0𝑎𝑖) ⊗ 𝑐ℓ2

=
∑︁
𝑗∈𝐽

(1 ⊗ 𝑏 𝑗)𝜀0
1 (𝛼𝑎 𝑗)

=
∑︁
𝑗∈𝐽

𝜀0
1 (𝛼) (𝑎 𝑗 ⊗ 𝑏 𝑗)

= 𝜄𝑐 (𝛼).

□

Combining Proposition 4.2.5 and Lemma 4.2.6, we observe that for any
𝑎 ∈ 𝐴(𝑆, 𝑐) and 𝛼 ∈ 𝑆, we have

𝜋𝑐 (𝜄𝑐 (𝛼), 𝑎) = 𝜀0
1 (𝛼)𝑎, (4.6)

and
𝜋𝑐 (𝑎, 𝜄𝑐 (𝛼)) = 𝜀0

0 (𝛼)𝑎. (4.7)
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4.2.2 Amitsur cocycles give central simple algebras

Proposition 4.2.7. Let 𝑅 be an étale 𝑘-algebra, and let 𝑆 be a free étale 𝑅-
algebra. Let 𝑐, 𝑐′ ∈ 𝑆⊗3. Assume that there exists 𝑏 ∈ 𝐵2

𝐴𝑚
(𝑅, 𝑆) such that

𝑐 = 𝑏𝑐′, and let 𝑎 ∈ 𝐶1
𝐴𝑚

(𝑅, 𝑆) such that 𝑏 = 𝜕1(𝑎). Then, the map 𝑥 ↦→ 𝑎𝑥

gives an 𝑅-algebra isomorphism from 𝐴(𝑆, 𝑐) to 𝐴(𝑆, 𝑐′).

Proof. It is clear that multiplication-by-𝑎 is an 𝑅-linear automorphism of 𝑆⊗2.
Let 𝛼, 𝛽 ∈ 𝑆⊗2, we compute:

𝑎𝜋𝑐 (𝛼, 𝛽) = 𝑎 Tr1
1(𝜀

1
2 (𝛼)𝑐

′𝜀1
0 (𝛽)

= 𝑎 Tr1
1(𝜀

1
2 (𝛼)𝑐𝜀

1
0 (𝑎)𝜀

1
2 (𝑎)𝜀

1
1 (𝑎

−1)𝜀1
0 (𝛽))

= 𝑎 Tr1
1(𝜀

1
1 (𝑎

−1)𝜀1
2 (𝑎𝛼)𝑐𝜀

1
0 (𝑎𝛽))

= 𝑎𝑎−1 Tr1
1(𝜀

1
2 (𝑎𝛼)𝑐𝜀

1
0 (𝑎𝛽)) (by linearity of Tr1

1)

= Tr1
1(𝜀

1
2 (𝑎𝛼)𝑐𝜀

1
0 (𝑎𝛽)

= 𝜋𝑐′ (𝑎𝛼, 𝑎𝛽).

□

Lemma 4.2.8. Let 𝐴 be a (non necessarily unital or associative) 𝑘-algebra,
and let 𝐾 be an étale 𝑘-algebra. If 𝐴𝐾 is a unital associative 𝐾-algebra, then
𝐴 is itself associative and unital.

Proof. As there is an injective mapping from 𝐴 to 𝐴𝐾 , 𝐴 is associative. It
remains to prove that 𝐴 is unital.

Let 𝑛 = [𝐴 : 𝑘]. We fix a 𝑘-basis (𝑒1, . . . , 𝑒𝑛) of 𝐴, and (𝑒𝑖 ⊗ 1)𝑖∈[𝑛] is a
𝐾-basis of 𝐴𝐾 . We let 1 be the unit of 𝐴𝐾 and we set

1 =
∑︁
𝑖∈[𝑛]

𝑒𝑖 ⊗ 𝑎𝑖 .

Then, we fix an algebraic closure 𝑘 of 𝑘 . If 𝜑 is an embedding of 𝐾 into 𝑘 ,
then the map

�̃� :
∑︁
𝑖∈[𝑛]

𝑒𝑖 ⊗ 𝑥𝑖 ↦→
∑︁
𝑖∈[𝑛]

𝑒𝑖 ⊗ 𝜑(𝑥𝑖)

is an embedding of 𝐴𝐾 into 𝐴
𝑘
.

Now, let 𝜑1 and 𝜑2 be two embeddings of𝐾 into 𝑘 . We have 𝜑1(1) = 𝜑2(1),
and it follows that for 𝑖 ∈ [𝑛], 𝜑1(𝑎𝑖) = 𝜑2(𝑎𝑖). Then, by Lemma 2.1.11, 𝑎𝑖 ∈ 𝑘
for all 𝑖 ∈ [𝑛], and it follows that 1 ∈ 𝐴, and that the algebra 𝐴 is unital. □

92



Lemma 4.2.9. Let 𝑅 be an étale algebra and let 𝑆 be a free étale 𝑅-algebra.
Let 𝑐 ∈ 𝑅⊗3. Then

𝐴(𝑅, 𝑐)𝑆 ≃ 𝐴(𝑆, 𝑐𝑆).

Proof. We have an isomorphism of 𝑆-modules

(𝑅⊗2)𝑆 ≃ (𝑅𝑆)⊗2∑
𝑖∈𝐼 (𝑢𝑖 ⊗ 𝑣𝑖) ⊗ 𝑡𝑖 ↦→ ∑

𝑖∈𝐼 (𝑢𝑖 ⊗ 1) ⊗ (𝑣𝑖 ⊗ 𝑡𝑖).

Now, we prove that if 𝛼, 𝛽 ∈ 𝑅⊗2,

𝜋𝑐 (𝛼, 𝛽) ⊗ 1 = 𝜋𝑐𝑆 (𝛼 ⊗ 1, 𝛽 ⊗ 1).

Indeed,

𝜋𝑐𝑆 (𝛼 ⊗ 1, 𝛽 ⊗ 1) = Tr1
1((𝜀

1
2 (𝛼) ⊗ 1) (𝑐 ⊗ 1) (𝜀1

0 (𝛽) ⊗ 1))
= Tr1

1((𝜀
1
2 (𝛼)𝑐𝜀

1
0 (𝛽)) ⊗ 1)

= Tr1
1(𝜀

1
2 (𝛼)𝑐𝜀

1
0 (𝛽)) ⊗ 1

= 𝜋𝑐 (𝛼, 𝛽) ⊗ 1.

□

Proposition 4.2.10. Let 𝐾 be an étale 𝑘-algebra of dimension 𝑑, and let
𝑐 ∈ 𝑍2

𝐴𝑚
(𝑘, 𝐾). Then 𝐴(𝐾, 𝑐) is a central simple 𝐾-algebra.

Proof. By Proposition 4.1.5, 𝑐𝐾 lies in 𝐵2
𝐴𝑚

(𝐾, 𝐾𝐾 ). Then, by Proposi-
tion 4.2.7, Example 4.2.3, and Lemma 4.2.9, 𝐴(𝐾, 𝑐)𝐾 ≃ 𝐴(𝐾𝐾 , 𝑐𝐾 ) ≃
End𝐾 (𝐾𝐾 ) ≃ 𝑀𝑑 (𝐾). Now, it will follow from Theorem 3.2.3 that 𝐴(𝐾, 𝑐) is
a central simple algebra if it is associative and unital, which itself follows from
Lemma 4.2.8. □

4.2.3 Central simple algebras come from Amitsur cocycles

Proposition 4.2.11. If 𝐾 is an étale 𝑘-algebra, 𝑐 ∈ 𝐾⊗3 and 𝐴(𝐾, 𝑐) ≃
End𝑘 (𝐾), then 𝑐 ∈ 𝐵2

𝐴𝑚
(𝑘, 𝐾).

Proof. By Example 4.2.3, there is an isomorphism 𝜑 : 𝐴(𝐾, 𝑐) → 𝐴(𝐾, 1).
Since the algebras 𝐴(𝐾, 1) and 𝐴(𝐾, 𝑐) are unital, we have subalgebras 𝐾1 =

𝜄𝑐 (𝐾) and 𝐾2 = 𝜑−1(𝜄1(𝐾)) of 𝐴(𝐾, 𝑐), and both are isomorphic to 𝐾 . By
Proposition 2.1.23, there is a 𝑘-algebra automorphism 𝜓 of 𝐴(𝐾, 𝑐) which
sends 𝐾1 to 𝐾2. Replacing 𝜑 with 𝜑 ◦ 𝜓, we get 𝜑 ◦ 𝜄𝑐 = 𝜄1.
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Then, it follows from Equations (4.6) and (4.7) that 𝜑 is also an isomorphism
of 𝐾⊗2-module, where 𝐴(𝐾, 𝑐) and 𝐴(𝐾, 1) are both seen as free 𝐾⊗2 of rank
1 generated by 1 ⊗ 1. It follows that there exists 𝑎 ∈ 𝐶1

𝐴𝑚
(𝐾) such that for all

𝛼 ∈ 𝐴(𝐾, 𝑐),
𝜑(𝛼) = 𝛼𝑎.

Then, for any 𝛼, 𝛽 ∈ 𝐴(𝐾, 𝑐), we have

Tr1
1(𝜀

1
2 (𝛼)𝑐𝜀

1
0 (𝛽)) = 𝜋𝑐 (𝛼, 𝛽)

= 𝑎−1𝜋1(𝑎𝛼, 𝑎𝛽)
= 𝑎−1 Tr1

1(𝜀
1
2 (𝑎𝛼)𝜀

1
0 (𝑎𝛽))

= Tr1
1(𝜀

1
2 (𝛼) (𝜀

1
2 (𝑎)𝜀

1
0 (𝑎)𝜀

1
1 (𝑎)

−1)𝜀1
0 (𝛽)

= Tr1
1(𝜀

1
2 (𝛼)𝜕

1(𝑎)𝜀1
0 (𝛽)).

Since the images of 𝜀1
0 and 𝜀1

2 span 𝐾⊗3 as a 𝐾⊗2-module, it follows from
Lemma 2.1.22 that 𝑐 = 𝜕1(𝑎) ∈ 𝐵2

𝐴𝑚
(𝑘, 𝐾). □

Proposition 4.2.12. If𝐾 is an étale 𝑘-algebra and 𝑐 ∈ 𝐾⊗3 is such that 𝐴(𝐾, 𝑐)
is a central simple 𝑘-algebra, then 𝑐 ∈ 𝑍2

𝐴𝑚
(𝑘, 𝐾).

Proof. Let 𝐿 be a splitting field for 𝐴(𝐾, 𝑐). Then, by Lemma 4.2.9 and Propo-
sition 4.2.11, 𝑐𝐿 ∈ 𝐵2

𝐴𝑚
(𝐿, 𝐾𝐿). Now, this means that 𝑐𝐿 is a unit in 𝐾⊗3

𝐿
.

Since 𝐾⊗3 is an étale 𝑘-algebra, it follows from Proposition 2.1.13 that 𝑐 is a
unit if and only if it is not a zero divisor. However, if it were, 𝑐𝐿 would also
be one. Therefore, 𝑐 ∈ 𝐶2

𝐴𝑚
(𝑘, 𝐾). Furthermore, 1 = 𝜕2

𝐿
(𝑐𝐿) = 𝜕2(𝑐) ⊗ 1, so

𝜕2(𝑐) = 1, and 𝑐 ∈ 𝑍2
𝐴𝑚

(𝑘, 𝐾). □

Proposition 4.2.13. Let 𝐾 be an étale algebra of degree 𝑑, and let 𝐴 be a
central simple algebra of degree 𝑑 which contains a subalgebra isomorphic to
𝐾 . Then there exists 𝑐 ∈ 𝑍2

𝐴𝑚
(𝑘, 𝐾) such that 𝐴 ≃ 𝐴(𝐾, 𝑐).

Proof. By Proposition 4.2.12, it is enough to prove that there exists 𝑐 ∈ 𝐾⊗3

such that 𝐴 ≃ 𝐴(𝐾, 𝑐).
Let 𝐴𝑒 = 𝐴 ⊗𝑘 𝐴𝑜𝑝 be the envelopping algebra of 𝐴. Then 𝐴 is an

𝐴𝑒-module via the multiplication (𝛼 ⊗ 𝛽)𝑥 = 𝛼𝑥𝛽. The 𝑘-algebra 𝐴𝑒 is
central simple by Lemma 3.2.7, and therefore 𝐴 is a faithful 𝐴𝑒-module by [33,
Theorem 3.2.5]. Since 𝐾⊗2 is a subalgebra of 𝐴𝑒, 𝐴 is also a faithful 𝐾⊗2-
module.
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By Corollary 2.1.14, there exists 𝑣 ∈ 𝐴 such that 𝐴 = 𝐾𝑣𝐾 (this is also
the content of [51, Theorem 2.2.2]). We let 𝜑 : 𝐾⊗2 → 𝐴 be the 𝐾⊗2-module
isomorphism defined by

𝜑(𝑎 ⊗ 𝑏) = 𝑎𝑣𝑏,

and we consider the bilinear map

Γ : (𝐾⊗2)2 → 𝐾⊗3

(𝛼0 ⊗ 𝛼1, 𝛽0 ⊗ 𝛽1) ↦→ 𝛼0 ⊗ 𝛼1𝛽0 ⊗ 𝑏1
.

We see 𝐾⊗3 as a 𝐾⊗2-algebra via the map 𝜀1
1, and we define the 𝐾⊗2-module

homomorphism

𝜓 : 𝐾⊗3 → 𝐴

𝑎0 ⊗ 𝑎1 ⊗ 𝑎2 ↦→ 𝑎0𝑣𝑎1𝑣𝑎2
.

It may easily be seen that for 𝛼, 𝛽 ∈ 𝐾⊗2, we have

𝜑(𝛼)𝜑(𝛽) = 𝜓(Γ(𝛼, 𝛽)).

The map 𝜑−1 ◦ 𝜓 is a 𝐾⊗2-module homomorphism from 𝐾⊗3 to 𝐾⊗2. By
Lemma 2.1.22, there exists 𝑐 ∈ 𝐾⊗3 such that for all 𝛼 ∈ 𝐾⊗3,

𝜑−1(𝜓(𝛼)) = Tr1
1(𝑐𝛼).

Therefore, there is an isomorphism 𝐴(𝐾, 𝑐) ≃ 𝐴. □

4.2.4 Tensor product and product of cocycles

Proposition 4.2.14. Let 𝐾 be an étale 𝑘-algebra. Let 𝑐, 𝑐′ ∈ 𝑍2
𝐴𝑚

(𝑘, 𝐾). Then
the algebra 𝐴(𝐾, 𝑐𝑐′) is Brauer equivalent to 𝐴(𝐾, 𝑐) ⊗ 𝐴(𝐾, 𝑐′).

Fix an étale 𝑘-algebra 𝐾 . Let 𝑐, 𝑐′ ∈ 𝑍2
𝐴𝑚

(𝑘, 𝐾), which we denote by

𝑐 =
∑︁
ℓ∈𝐿

𝑐ℓ0 ⊗ 𝑐ℓ1 ⊗ 𝑐ℓ2

and
𝑐′ =

∑︁
ℓ′∈𝐿′

𝑐′ℓ′0 ⊗ 𝑐
′
ℓ′1 ⊗ 𝑐

′
ℓ′2.

Now, we set

𝑐 ⊗ 𝑐′ ≔
∑︁
ℓ∈𝐿
ℓ′∈𝐿′

𝑐ℓ0 ⊗ 𝑐′ℓ′0 ⊗ 𝑐ℓ1 ⊗ 𝑐′ℓ′1 ⊗ 𝑐ℓ2 ⊗ 𝑐′ℓ′2.

Proposition 4.2.14 follows immediately from Lemmas 4.2.15 and 4.2.17
below.
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Lemma 4.2.15. The tensor product 𝐴(𝐾, 𝑐) ⊗ 𝐴(𝐾, 𝑐′) is isomorphic to 𝐴(𝐾 ⊗
𝐾, 𝑐 ⊗ 𝑐′).

Proof. Both algebras are isomorphic to 𝐾⊗4 as 𝑘-vector spaces. We consider
the linear isomorphism 𝜑 : 𝐴(𝐾, 𝑐) ⊗ 𝐴(𝐾, 𝑐′) → 𝐴(𝐾 ⊗ 𝐾, 𝑐 ⊗ 𝑐′) defined on
simple tensor elements by

𝜑(𝑎 ⊗ 𝑏 ⊗ 𝑐 ⊗ 𝑑) = 𝑎 ⊗ 𝑐 ⊗ 𝑏 ⊗ 𝑑.

All that remains to prove is that for 𝛼, 𝛽 ∈ 𝐴(𝐾, 𝑐), 𝛼′, 𝛽′ ∈ 𝐴(𝐾, 𝑐′),

𝜑(𝜋𝑐 (𝛼, 𝛽) ⊗ 𝜋𝑐′ (𝛼′, 𝛽′)) = 𝜋𝑐⊗𝑐′ (𝜑(𝛼 ⊗ 𝛼′, 𝛽 ⊗ 𝛽′)).

We prove the equation above for simple tensor elements, and the general result
follows. We let 𝛼 = 𝑎0 ⊗ 𝑎1 and 𝛽 = 𝑏0 ⊗ 𝑏1 be in 𝐴(𝐾, 𝑐) and 𝛼′ = 𝑎′0 ⊗ 𝑎′1
and 𝛽′ = 𝑏′0 ⊗ 𝑏

′
1 be in 𝐴(𝐾, 𝑐′). Applying Equation (4.3), we get

𝜋𝑐⊗𝑐′ (𝜑(𝛼 ⊗ 𝛼′), 𝜑(𝛽 ⊗ 𝛽′))

=
∑︁
ℓ∈𝐿
ℓ′∈𝐿′

Tr𝐾⊗𝐾/𝑘 (𝑎1𝑏0𝑐ℓ1) ⊗ (𝑎′1𝑏
′
0𝑐

′
ℓ′1) (𝑎0𝑐ℓ0 ⊗ 𝑎′0𝑐

′
ℓ′0 ⊗ 𝑏1𝑐ℓ2 ⊗ 𝑏′1𝑐

′
ℓ′2)

=
∑︁
ℓ∈𝐿
ℓ′∈𝐿′

Tr𝐾/𝑘 (𝑎1𝑏0𝑐ℓ1) Tr𝐾/𝑘
(
𝑎′1𝑏

′
0𝑐

′
ℓ′1

)
𝜑(𝑎0𝑐ℓ0 ⊗ 𝑐ℓ2𝑏1 ⊗ 𝑎′0𝑐

′
ℓ′0 ⊗ 𝑐

′
ℓ′2𝑏

′
1)

= 𝜑

((∑︁
ℓ∈𝐿

Tr𝐾/𝑘 (𝑎1𝑐ℓ1𝑏0)𝑎0𝑐ℓ0 ⊗ 𝑏1𝑐ℓ2

)
⊗

( ∑︁
ℓ′∈𝐿′

Tr𝐾/𝑘 (𝑎′1𝑐
′
ℓ′1𝑏

′
0)𝑎

′
0𝑐

′
ℓ′0 ⊗ 𝑏

′
1𝑐

′
ℓ′2

))
= 𝜑(𝜋𝑐 (𝛼, 𝛽) ⊗ 𝜋𝑐′ (𝛼′, 𝛽′)).

□

For 𝑛 ∈ N, we consider the multiplication map

𝜇𝑛 : 𝐾⊗2𝑛 → 𝐾⊗𝑛

𝑎0 ⊗ 𝑎1 ⊗ . . . ⊗ 𝑎2𝑛−1 ↦→ 𝑎0𝑎1 ⊗ . . . ⊗ 𝑎2𝑛−2𝑎2𝑛−1

Now, by [33, Proposition 4.1.2 and Exercise 4.1.8], there exists a separability
idempotent 𝑒𝑛 ∈ 𝐾⊗2𝑛 such that 𝜇𝑛 (𝑒𝑛) = 1 and ker 𝜇𝑛 is generated by (1−𝑒). It
follows directly that𝐾⊗2𝑛 = 𝑒𝐾⊗2𝑛⊕(1−𝑒)𝐾⊗2𝑛 and that 𝜇𝑛 is an isomorphism
from 𝑒𝐾⊗2𝑛 to 𝐾⊗𝑛. Furthermore, it is clear that 𝑒𝑛+1 = 𝑒𝑛 ⊗ 𝑒.
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As usual, we see 𝐾⊗3 as a 𝐾⊗2-algebra via the map 𝜀1
1 and write Tr1

1 for the
associated trace map. Likewise, we see 𝐾⊗6 as a 𝐾⊗4-algebra via the map

𝜀
′1
1 : 𝐾⊗4 → 𝐾⊗6

𝑎0 ⊗ 𝑎1 ⊗ 𝑎2 ⊗ 𝑎3 ↦→ 𝑎0 ⊗ 𝑎1 ⊗ 1 ⊗ 1 ⊗ 𝑎2 ⊗ 𝑎3

and we write Tr′11 for the corresponding trace map. We also define maps 𝜀′𝑛
𝑖

for 0 ≤ 𝑖 ≤ 𝑛 + 1 in a similar manner, by analogy with the maps 𝜀𝑛
𝑖
. If

𝑐, 𝑐′ ∈ 𝑍2
𝐴𝑚

(𝑘, 𝐾), and 𝑐 ⊗ 𝑐′ is defined as above, we have

𝜇3(𝑐 ⊗ 𝑐′) = 𝑐𝑐′. (4.8)

It may also be easily observed that for 0 ≤ 𝑖 ≤ 2, if 𝛼 ∈ 𝐾⊗4,

𝜇3(𝜀
′1
𝑖 (𝛼)) = 𝜀1

𝑖 (𝜇2(𝛼)). (4.9)

Lemma 4.2.16. With notations as above, if 𝛼 ∈ 𝑒3𝐾
⊗6, then

𝜇2(Tr
′1
1 (𝛼)) = Tr1

1(𝜇3(𝛼)).

Proof. Observe that

𝐾⊗4 = 𝑒2𝐾
⊗4 ⊕ (1 − 𝑒2)𝐾⊕4

and
𝐾⊗6 = 𝑒3𝐾

⊗6 ⊕ (1 − 𝑒3)𝐾⊗6.

Under these identifications, we have

𝜀
′1
1 = 𝑒(𝜀′1

1 ) |𝑒2𝐾⊗4 + (1 − 𝑒3) (𝜀
′1
1 ) |𝑒2𝐾⊗4 .

It follows that for 𝛼 ∈ 𝐾⊗6,

Tr
′1
1 (𝛼) = Tr𝑒3𝐾⊗6/𝑒2𝐾⊗4 (𝑒3𝛼) + Tr(1−𝑒3 )𝐾⊗6/(1−𝑒2 )𝐾⊗4 ((1 − 𝑒3)𝛼)

In particular, if 𝛼 ∈ 𝑒3𝐾
⊗6,

Tr
′1
1 (𝛼) = Tr𝑒3𝐾⊗6/𝑒2𝐾⊗4 (𝛼).

The result follows from the fact that the diagram below commutes and its
horizontal arrows are isomorphisms.

𝑒3𝐾
⊗6 𝐾⊗3

𝑒2𝐾
⊗4 𝐾⊗2

𝜇3

𝑒3𝜀
′1
1

𝜇2

𝜀1
1

This diagram commutes by a combination of Equation (4.9) and the fact that
𝜇3(𝑒3) = 1. □
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Lemma 4.2.17. The algebra 𝐴(𝐾, 𝑐𝑐′) is Brauer equivalent to 𝐴(𝐾⊗𝐾, 𝑐⊗𝑐′).

Proof. We let 𝑓 = 𝜄𝑐⊗𝑐′ (𝑒1) and we will show that 𝐴(𝐾, 𝑐𝑐′) ≃ 𝜋𝑐⊗𝑐′ ( 𝑓 , 𝐴(𝐾⊗
𝐾, 𝑐 ⊗ 𝑐′), 𝑓 ) (abusing notation by associativity of 𝜋𝑐⊗𝑐′). Since 𝑓 is idempo-
tent, the result will follow by Lemma 3.2.10. By Equations (4.6) and (4.7),

𝜋𝑐⊗𝑐′ ( 𝑓 , 𝐴(𝐾 ⊗ 𝐾, 𝑐 ⊗ 𝑐′), 𝑓 ) = 𝑒2𝐴(𝐾 ⊗ 𝐾, 𝑐 ⊗ 𝑐′),

and it follows that the map 𝜇2 restricts to an isomorphism from this subspace
(of 𝐴(𝐾 ⊗ 𝐾, 𝑐 ⊗ 𝑐′) identified with 𝐾⊗4 as a 𝐾⊗2-module) to 𝐾⊗2. It remains
for us to show that for 𝛼, 𝛽 ∈ 𝑒2𝐴(𝐾 ⊗ 𝐾, 𝑐 ⊗ 𝑐′),

𝜇2(𝜋𝑐⊗𝑐′ (𝛼, 𝛽)) = 𝜋𝑐𝑐′ (𝜇2(𝛼), 𝜇2(𝛽)).

We let 𝛼, 𝛽 ∈ 𝑒2𝐴(𝐾 ⊗ 𝐾 ′, 𝑐 ⊗ 𝑐′) and we compute:

𝜇2(𝜋𝑐⊗𝑐′ (𝛼, 𝛽) = 𝜇2

(
Tr

′1
1 (𝜀′1

0 (𝛼𝑐 ⊗ 𝑐′𝜀′1
2 (𝛽)

)
= Tr1

1(𝜇3(𝜀
′1
0 (𝛼) (𝑐 ⊗ 𝑐′)𝜀′1

2 (𝛽))) (Lemma 4.2.16)

= Tr1
1(𝜀

1
0 (𝜇2(𝛼))𝑐𝑐′𝜀1

2 (𝜇2(𝛽))) (Equations (4.8) and (4.9))

= 𝜋𝑐𝑐′ (𝜇2(𝛼), 𝜇2(𝛽))

□

4.3 Computational results

This section presents a computational representation of central simple algebras
as Amitsur algebras. We also give an algorithm for computing such a represen-
tation in polynomial time for any central simple algebra. Finally, under GRH,
we give a polynomial quantum algorithm for solving the explicit isomorphism
problem for an Amitsur algebra (Problem 4.3.1 below). We then obtain, still
under GRH, a polynomial quantum algorithm for solving the explicit isomor-
phism problem (Problem 3.4.1).

Problem 4.3.1 (The explicit isomorphism problem (Amitsur version)). Let 𝑘
be a field, and let 𝐾 be an étale 𝑘-algebra of degree 𝑑 ∈ N. Let 𝑐 ∈ 𝐵2

𝐴𝑚
(𝑘, 𝐾).

Find an explicit isomorphism from 𝐴(𝐾, 𝑐) to 𝑀𝑑 (𝑘).

98



4.3.1 Algorithmic representation of Amitsur algebras

Once a field 𝑘 and a monogeneous étale 𝑘-algebra 𝐾 = 𝑘 [𝑋]/(𝜒(𝑋)) are fixed,
we have isomorphisms

𝐾𝑛 := 𝑘 [𝑋0, . . . , 𝑋𝑛]/(𝜒(𝑋0), . . . , 𝜒(𝑋𝑛)) ≃ 𝐾⊗(𝑛+1) ,

for all 𝑛 ∈ N. Therefore, an element of𝐾⊗(𝑛+1) , and in particular of𝐶𝑛
𝐴𝑚

(𝑘, 𝐾),
may be represented uniquely as a polynomial 𝜉 (𝑋0, . . . , 𝑋𝑛) in 𝑘 [𝑋0, . . . , 𝑋𝑛]
whose individual degrees in the indeterminates 𝑋𝑖 for 𝑖 ∈ [𝑑]0 are all bounded
by 𝑑 − 1.

In this setting, the map 𝜀𝑛
𝑖

becomes the map sending 𝜉 (𝑋0, . . . , 𝑋𝑛) to
𝜉 (𝑋0, . . . , 𝑋𝑖−1, 𝑋𝑖+1, . . . , 𝑋𝑛). That is,

𝜀𝑛𝑖 (𝑋 𝑗) =

𝑋 𝑗 if 𝑗 < 𝑖

𝑋 𝑗+1 otherwise.

The trace map Tr𝐾2/𝐾1 corresponding to Tr1
1 may easily be computed in the

𝐾1-basis (𝑋 𝑖1)0≤𝑖<𝑑 of 𝐾2 using the fact that

Tr𝐾2/𝐾1 (𝑋 𝑖0𝑋
𝑗

1 𝑋
ℓ
2 ) = 𝑋

𝑖
0𝑋

ℓ
2 Tr𝐾/𝑘 (𝑋 𝑗).

It follows that if 𝜉1, 𝜉2 ∈ 𝑅1 represent elements 𝑎1, 𝑎2 of 𝐴(𝐹, 𝑐), where
we see 𝑐 as an element of 𝑅2, then the element 𝜉 ∈ 𝑅2 representing the product
𝑎1𝑎2 may be computed practically as:

𝜉 (𝑋0, 𝑋1) = Tr𝐾2/𝐾1 (𝜉1(𝑋0, 𝑋1)𝑐(𝑋0, 𝑋1, 𝑋2)𝜉2(𝑋1, 𝑋2)) .

We record the discussion above in the following:

Theorem 4.3.2. There exist polynomial algorithms for computing additions
and multiplications in 𝐴(𝐾, 𝑐) when its elements are represented as elements
of 𝐾𝑛.

For the remainder of this section, if 𝐾 is an étale 𝑘-algebra, an element
of 𝐾⊗(𝑛+1) is represented as an element of 𝐾𝑛 using the algorithms described
above.

4.3.2 Computing a cocycle representing a given algebra

Here we present an Algorithm 1, which, given a central simple algebra 𝐴, com-
putes a representation of an isomorphism Amitsur algebra 𝐴(𝐾, 𝑐), together
with an isomorphism between 𝐴 and 𝐴(𝐾, 𝑐).
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Input: A field 𝑘
Input: Structure constants for a central simple 𝑘-algebra 𝐴 such that

|𝑘 | > [𝐴 : 𝑘] = 𝑛
Output: 𝑢 ∈ 𝐴 such that 𝐾 = 𝑘 [𝑢] is a maximal separable

commutative subalgebra of 𝐴
Output: The minimal polynomial 𝜒 of 𝑢
Output: 𝑐 ∈ 𝑍2

𝐴𝑚
(𝐾, 𝑘)

Output: An isomorphism 𝑒 from 𝐴(𝐾, 𝑐) to 𝐴
1 Find 𝑢 ∈ 𝐴 such that 𝐾 := 𝑘 [𝑢] is a maximal separable commutative

subalgebra of 𝐴;
2 Compute 𝜒, the minimal polynomial of 𝑢;
3 Find 𝑣 ∈ 𝐴 such that 𝐴 = 𝐾𝑣𝐾;
4 Compute the matrix of the isomorphism 𝑒 : 𝐾⊗2 → 𝐴 sending 𝑓1 ⊗ 𝑓2

to 𝑓1𝑣 𝑓2;
5 Compute 𝑐 ∈ 𝐾⊗3 such that for all 𝑎, 𝑏 ∈ 𝐾⊗2,

𝑒(𝑎)𝑒(𝑏) = Tr1
1(𝜀1

2 (𝑎)𝑐𝜀
1
0 (𝑏)) ;

6 return (𝑢, 𝜒, 𝑐, 𝑒)
Algorithm 1: Computing a 2-cocycle representing a given central sim-
ple algebra

100



Before we prove the correctness and efficiency of Algorithm 1, we need a
lemma:

Lemma 4.3.3. Let 𝑘 be a field and let 𝐴 be a central simple 𝑘-algebra. Assume
that |𝑘 | > [𝐴 : 𝑘]. Let 𝑢 ∈ 𝐴 be such that 𝐾 := 𝑘 [𝑢] is a maximal commutative
subalgebra of 𝐴. Then an element 𝑣 ∈ 𝐴 such that 𝐴 = 𝐾𝑣𝐾 may be found in
probabilistic polynomial time.

Proof. For 𝑣 in 𝐴, by an argument of dimensions over 𝑘 , we observe that
𝐴 = 𝐾𝑣𝐾 if and only if the map

𝑒 :
𝐾 ⊗ 𝐾 → 𝐴

𝑎1 ⊗ 𝑎2 ↦→ 𝑎1𝑣𝑎2

is injective.
We fix the bases (𝑢𝑖 ⊗ 𝑢 𝑗)0≤𝑖, 𝑗≤deg 𝐴−1 of 𝐾⊗2 and 𝐵 = (𝑏1, . . . , 𝑏 [𝐴:𝑘 ]) the

input basis of 𝐴 (that is, the basis with respect to which the structure constants
of 𝐴 are defined). The determinant of 𝑒 is a homogeneous polynomial on the
coordinates of 𝑣 in the basis 𝐵, and 𝐴 = 𝐾𝑣𝐾 if and only if 𝑣 is not a zero of
this polynomial.

Letting 𝑆 be a finite subset of 𝑘 , the Schwartz-Zippel lemma ensures that a
random 𝑣 in 𝑆𝑏1 ⊕ . . . ⊕ 𝑆𝑏 [𝐴:𝑘 ] satisfies this condition with probability larger
than 1 − [𝐴:𝑘 ]

|𝑆 | .
Therefore, if |𝑘 | > [𝐴 : 𝑘], we may pick 𝑆 large enough that 𝑣 has the

desired property with positive probability and small enough that we may sample
a random element in 𝑆𝑏1 ⊕ . . . ⊕ 𝑆𝑏 [𝐴:𝑘 ] . For instance, take |𝑆 | = [𝐴 : 𝑘] + 1
and 𝑣 has the desired property with probability larger than 1

[𝐴:𝑘 ]+1 . □

Theorem 4.3.4. If 𝑘 is a field over which linear algebra may be performed
efficiently, and 𝐴 is a central simple 𝑘-algebra such that |𝑘 | > [𝐴 : 𝑘], then
Algorithm 1 returns 𝑢 ∈ 𝐴, a cocycle 𝑐 ∈ 𝑍2

𝐴𝑚
(𝑘, 𝑘 (𝑢)) and an isomorphism

𝑒 : 𝐴(𝐹, 𝑐) → 𝐴 in probabilistic polynomial time.

Proof. The correctness of the algorithm follows directly for the proof of Propo-
sition 4.2.13. The element 𝑢 ∈ 𝐴 in Line 1 may be found using the polynomial
algorithm given in [25]. The element 𝑣 ∈ 𝐴 of Line 3 may be found in prob-
abilistic polynomial time using Lemma 4.3.3. The remaining lines involve
arithmetic in 𝐴 and bounded tensor powers of 𝐾 , as well as the computation of
the solution of a system of linear equations. All in all, this makes Algorithm 1
a polynomial probabilistic algorithm. □
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Corollary 4.3.5. There is a probabilistic polynomial reduction from the explicit
isomorphism problem (Problem 3.4.1) to its Amitsur version (Problem 4.3.1).

4.3.3 Trivialisation of Amitsur cocycles

In this section, we present an algorithm for computing the trivialisation of a
coboundary using 𝑆-units group computation. This result is reminiscent of
results such as Simon’s algorithm for solving norm equations in cyclic exten-
sions [82] and Fieker’s result on finding trivialisation of Galois coboundaries
in groups of 𝑆-units [29, Theorem 7].

Our strategy is similar to that of [29]: We prove Lemma 4.3.8, a vanishing
lemma for the first Amitsur cohomology group with coefficients in the divisor
group. Such a result is analogous to [29, Lemma 9] and allows us to adapt the
proof strategy of [29, Theorem 7] to our setting.

Let 𝑘 be a global field, and let 𝐾 be an étale 𝑘-algebra. For 𝑛 ∈ N, we set

𝜕𝑛D =

𝑛+1∑︁
𝑖=0

(−1)𝑖D (𝜀𝑛𝑖 ).

For a place 𝑄 ∈ 𝑀𝑛𝑎

𝐾⊗(𝑛+2) and 𝑖 ∈ [𝑛 + 1]0, we set 𝑄𝑖 = 𝑄𝜀𝑛
𝑖

and 𝑒𝑄,𝑖 = 𝑒𝑄,𝜀𝑛
𝑖
.

Then, for a divisor 𝐷 =
∑
𝑃∈𝑀𝑛𝑎

𝐾⊗(𝑛+1)
𝑛𝑃𝑃, we get

𝜕𝑛D (𝐷) =
∑︁

𝑄∈𝑀𝑛𝑎

𝐾⊗(𝑛+2)

𝑛+1∑︁
𝑖=0

(−1)𝑖𝑛𝑄𝑖𝑒𝑄,𝑖𝑄.

We first need a few lemmas:

Lemma 4.3.6. Let𝑄,𝑄′ be finite places of 𝐾⊗2 such that𝑄0 = 𝑄′
0. Then there

exists a place 𝑅 ∈ 𝑀 𝑓 𝑖

𝐾⊗3 such that 𝑅1 = 𝑄 and 𝑅0 = 𝑄′.

Proof. We must prove that

D (𝜀1
1) (𝑄) ∩D (𝜀1

2 (𝑄
′)) ≠ ∅.

Let 𝜒 ∈ 𝑘 [𝑋] be a defining polynomial for 𝐾 , and we identify 𝐾 with
𝑘 [𝑋]/(𝜒(𝑋)). Now, we may identify the algebra 𝐾⊗2 with 𝐾 [𝑋]/(𝜒(𝑋)),
where the identification of 𝐾 with the rings of scalars in 𝐾 [𝑋] is 𝜀0

0. We
also identify the algebra 𝐾⊗3 with 𝐾 [𝑋,𝑌 ]/(𝜒(𝑋), 𝜒(𝑌 )), where the identifi-
cation of 𝐾 with the ring of scalars in 𝐾 [𝑋,𝑌 ] is the map 𝜀1

1 ◦ 𝜀
0
0 = 𝜀1

0 ◦ 𝜀
0
0.
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Furthermore, under this identification, the 𝜀 maps become:

𝜀1
1 : 𝐾 [𝑋]/(𝜒(𝑋)) → 𝐾 [𝑋,𝑌 ]/(𝜒(𝑋), 𝜒(𝑌 ))

𝑋 ↦→ 𝑋

𝜀1
0 : 𝐾 [𝑋]/(𝜒(𝑋)) → 𝐾 [𝑋,𝑌 ]/(𝜒(𝑋), 𝜒(𝑌 ))

𝑋 ↦→ 𝑌

With this in place, we have (𝐾⊗2)𝐾𝑃 ≃ 𝐾𝑃 [𝑋]/(𝜒(𝑋)). Let 𝜒 =
∏
𝑖∈[𝑟 ] 𝜉𝑖 be

the factorisation of the polynomial 𝜒 in 𝐾𝑃 [𝑋], and the 𝜉𝑖 are distinct since 𝜒
is separable. By Proposition 2.1.29, the 𝜉𝑖 are in bĳection with the support of
D (𝜀0

0) (𝑃), so that if 𝑄 ∈ Supp(D (𝜀0
0) ((𝑃))), the place 𝑄 is identified 𝜉𝑖 such

that 𝐾⊗2
𝑄

≃ 𝐾𝑃 (𝑋)/(𝜒𝑖 (𝑋)).
Likewise, we have (𝐾⊗3)𝐾𝑃 ≃ 𝐾𝑃 [𝑋,𝑌 ]/(𝜒(𝑋), 𝜒(𝑌 )). Since 𝐾⊗3

𝐾𝑃
is

a product of finitely many field extensions of 𝐾𝑃, the ideal (𝜒(𝑋), 𝜒(𝑌 )) of
𝐾𝑃 [𝑋,𝑌 ] is contained in finitely many distinct maximal ideals 𝔪1, . . . ,𝔪𝑠

and we have in fact (𝜒(𝑋), 𝜒(𝑌 )) = ∩ℓ∈[𝑠]𝔪ℓ . Then, the 𝔪ℓ are in bĳection
with Supp(D (𝜀1

1 ◦ 𝜀
0
0) (𝑃)) = Supp(D (𝜀1

2 ◦ 𝜀
0
0) (𝑃)) (since 𝜀1

1 ◦ 𝜀
0
0 = 𝜀1

0 ◦ 𝜀
0
0).

Furthermore, if 𝑄 ∈ Supp(D (𝜀0
0) (𝑃)) corresponds to a factor 𝜉 of 𝜒, and

𝑅 ∈ Supp(D (𝜀1
1 ◦ 𝜀

0
0) (𝑃)) corresponds to a maximal ideal 𝔪 ⊃ (𝜒(𝑋), 𝜒(𝑌 ))

of 𝐾𝑃 ⊗𝐾⊗3, then 𝑅1 = 𝑄 if and only if the map 𝜀1
1 extended to 𝐾𝑃 ⊗𝐾⊗2 maps

𝐾𝑃 [𝑋]/(𝜉 (𝑋)) into 𝐾𝑃 [𝑋,𝑌 ]/𝔪. That is the case if and only if 𝜉 (𝑋) ⊂ 𝔪.
Likewise, 𝑅0 = 𝑄 if and only if 𝜉 (𝑌 ) ⊂ 𝔪. Then, let 𝜉, 𝜉′ be the factors of
𝜒 corresponding respectively to 𝑄 and 𝑄′. Any maximal ideal containing the
ideal (𝜉 (𝑋), 𝜉′(𝑌 )) corresponds to a place 𝑅 ∈ 𝑀𝐾⊗3 such that 𝑅1 = 𝑄 and
𝑅0 = 𝑄′. □

If 𝑆 is a set of places of 𝑘 and 𝑛 ≥ 0, we write 𝑆 (𝑛) for the set of places
of 𝐾⊗(𝑛+1) lying above the elements of 𝑆. We also let 𝑆𝑟 be the set of non-
archimedean places of 𝑘 that ramify in 𝐾 .

Lemma 4.3.7. Let 𝑛 ∈ N be an integer and let 𝑃 ∈ 𝑀⊗𝑛
𝐾

\ 𝑆 (𝑛−1)
𝑟 . Then, we

have the following:

1. The place 𝑃 is non ramified over 𝑘 .

2. Assume that 𝑛 ≥ 2. For 𝑖 ∈ [𝑛 − 1]0, 𝑒𝑃,𝑖 = 1.

Proof. The second point follows directly from the first since the map 𝑘 → 𝐾⊗𝑛

factors as 𝑘 → 𝐾⊗𝑛−1 𝜀𝑛−2
𝑖−−−−→ 𝐾⊗𝑛.
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Now, the first point is a straightforward induction. It is valid for 𝑛 = 1 by
hypothesis, and then, if it is true when 𝑛 = 𝑘 , for some 𝑘 ∈ N, it is valid for
𝑛 = 𝑘 + 1 by Lemma 2.1.2. □

We may now prove a generalised version of Hilbert’s theorem 90 in our
setting.

Lemma 4.3.8. Let 𝐷 =
∑
𝑄∈𝑀𝑛𝑎

𝐾⊗2
𝑛𝑄𝑄 ∈ Ker 𝜕1

D
be supported by places

outside of 𝑆 (1)𝑟 . Then, there exists 𝐸 ∈ D (𝐾) such that 𝐷 = 𝜕0
D
(𝐸).

Proof. We set

𝐸 =
∑︁

𝑃∈𝑀𝑛𝑎
𝐾

(
min

𝑄∈Supp(D (𝜀0
0 ) (𝑃) )

𝑛𝑄

)
𝑃.

Then, by Lemma 4.3.7, we get

D (𝜖0
0 ) (𝐸) =

∑︁
𝑄∈𝑀𝑛𝑎

𝐾⊗2

(
min

𝑄′∈Supp(D (𝜀0
0 ) (𝑄0 )

𝑛𝑄′

)
𝑄

and

D (𝜖0
1 ) (𝐸) =

∑︁
𝑄∈𝑀𝑛𝑎

𝐾⊗2

(
min

𝑄′∈Supp(D (𝜀0
0 ) (𝑄1 )

𝑛𝑄′

)
𝑄.

It follows that

𝐷 +D (𝜖0
1 ) (𝐸) =

∑︁
𝑄∈𝑀𝑛𝑎

𝐾⊗2

(
min

𝑄′∈Supp(D (𝜀0
0 ) (𝑄1 )

𝑛𝑄 + 𝑛𝑄′

)
𝑄.

We introduce the following automorphisms:

𝜎 : 𝐾⊗2 → 𝐾⊗2

𝑎 ⊗ 𝑏 ↦→ 𝑏 ⊗ 𝑎
𝜏 : 𝐾⊗3 → 𝐾⊗3

𝑎 ⊗ 𝑏 ⊗ 𝑐 ↦→ 𝑎 ⊗ 𝑐 ⊗ 𝑏.

We have:

𝜏 ◦ 𝜀1
0 = 𝜀1

0 ◦ 𝜎 (4.10)

𝜏 ◦ 𝜀1
2 = 𝜀1

1 (4.11)

𝜀0
1 = 𝜎 ◦ 𝜀0

0 (4.12)

Let 𝑄,𝑄′ ∈ 𝑀
𝑓 𝑖

𝐹⊗2 be such that 𝑄′ ∈ Supp(D (𝜀0
0) (𝑄1). That is, we have

𝑄′
0 = 𝑄1, and therefore, by Equation (4.12),𝑄′

0 = 𝑄𝜎0 . We apply Lemma 4.3.6
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to 𝑄𝜎 and 𝑄′ and we get 𝑅 ∈ 𝑀
𝑓 𝑖

𝐹⊗3 such that 𝑅1 = 𝑄′ and 𝑅0 = 𝑄𝜎 . By
Equation (4.11), 𝑅𝜏2 = (𝑅1) = 𝑄′ and by Equation (4.10), 𝑅𝜏0 = (𝑅0)𝜎 = 𝑄.
We may then set 𝑄′′ = 𝑅𝜏1 . Consider the coefficient of 𝑅𝜏 in D (𝜕1

𝐴𝑚
) (𝐷) = 0

and get (𝑛𝑄 + 𝑛𝑄′ = 𝑛𝑄′′ since 𝑅 ∉ 𝑆
(2)
𝑟 . Now, 𝜀1

0 ◦ 𝜀
0
0 = 𝜀1

1 ◦ 𝜀
0
0, so we get

D (𝜀1
1 ◦ 𝜀

0
0) (𝑄0) = D (𝜀1

0) (D (𝜀0
0) (𝑄0))

= D (𝜀1
0) (𝑄)

= 𝑅

Furthermore,

D (𝜀1
1 ◦ 𝜀

0
0) (𝑄

′′
0 ) = D (𝜀1

1) (D (𝜀0
0) (𝑄

′′
0 ))

= D (𝜀1
1) (𝑄

′′)
= 𝑅

Since D (𝜀1
1 ◦𝜀

0
0) (𝑄0) = D (𝜀1

1 ◦𝜀
0
0) (𝑄

′′
0 ), we have𝑄0 = 𝑄′′

0 by Lemma 2.1.26.
Conversely, if we fix 𝑄,𝑄′′ ∈ 𝑀

𝑓 𝑖

𝐾⊗2 such that 𝑄0 = 𝑄′′
0 , then there exists

𝑅 ∈ 𝑀 𝑓 𝑖

𝐾⊗3 such that 𝑅0 = 𝑄 and 𝑅1 = 𝑄′′. We set 𝑄′ = 𝑅2 and, again, we get
that 𝑛𝑄 + 𝑛𝑄′ = 𝑛𝑄′′ . As above, we use the fact that 𝜀1

0 ◦ 𝜀
0
1 = 𝜀1

2 ◦ 𝜀
0
0 to prove

that 𝑄1 = 𝑄′
0.

This shows that for 𝑄 ∈ 𝑀𝑛𝑎

𝐾⊗2 ,

min
𝑄′∈Supp(D (𝜀1

1 ) (𝑄1 ) )
𝑛𝑄 + 𝑛𝑄′ = min

𝑄′∈Supp(D (𝜀0
0 ) (𝑄0 ) )

𝑛𝑄′ .

Therefore, 𝐷 + 𝜖0
1 (𝐸) = 𝜖

0
0 (𝐸). That is, 𝐷 = D (𝜕0

𝐴𝑚
) (𝐸). □

We now get our main theorem for this section:

Theorem 4.3.9. Let 𝑏 ∈ 𝐵2
𝐴𝑚

(𝑘, 𝐾) be a coboundary. Let 𝑆 be a finite set of
places of 𝑘 such that:

• 𝑆 contains the archimedean places of 𝐾 .

• 𝑆 is non-empty.

• 𝑆 contains 𝑆𝑟

• The non-archimedean places of 𝑆 (0) generate the class group Cl(𝐾).

• Supp(D (𝑏)) ⊂ 𝑆 (2) .
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Then there exists a cochain 𝜎 in the group of 𝑆 (1) -units of 𝐾⊗2 such that
𝑏 = 𝜕1

𝐴𝑚
(𝜎)

Proof. Let 𝛼 ∈ 𝐶1
𝐴𝑚

(𝑘, 𝐾) be such that 𝜕1
𝐴𝑚

(𝛼) = 𝑏. We consider the divisor
𝐷 = D (𝛼) =

∑
𝑄∈𝑀 𝑓 𝑖

𝐾⊗2
𝑛𝑄𝑄 of 𝛼. We set 𝐷𝑆 =

∑
𝑄∈𝑆 (1) 𝑛𝑄𝑄 and 𝐷′

𝑆
=∑

𝑄∉𝑆 (1) 𝑛𝑄𝑄. Now, 𝜕1
D
(𝐷) = D (𝑏), and therefore is supported by 𝑆 (2) .

Observe that by Lemma 2.1.26, if 𝑄 ∈ 𝑀𝑛𝑎

𝐾⊗2 \ 𝑆 (1) , then D (𝜕1
𝐴𝑚

) (𝑄) has
support disjoint from 𝑆 (2) . It follows that 𝜕1

D
(𝐷 �̄�) = 0.

The support of 𝐷′
𝑆

is disjoint from 𝑆
(1)
𝑟 . We apply Lemma 4.3.8 and get

a divisor 𝐸 ∈ D (𝐾) such that 𝐷′
𝑆
= 𝜕0

D
(𝐸). Now, as 𝑆 (0) generates the class

group of 𝐾 , there exists 𝐸 ′ ∈ D (𝐾) with support in 𝑆 (0) and 𝛾 ∈ 𝐾× such that
𝐸 = D (𝛾) + 𝐸 ′. Then, we get that

𝜕0
D (D (𝛾)) + 𝜕0

D (𝐸 ′) = 𝐷′
𝑆 = 𝐷 − 𝐷𝑆

and therefore
𝜕0
D (𝐸 ′) + 𝐷′

𝑆 = D (𝛼𝜕0
𝐴𝑚(𝛾

−1)).

This shows that Supp(D (𝛼𝜕0(𝛾−1))) ⊂ 𝑆 (1) . That is, 𝛼𝜕0
𝐴𝑚

(𝛾−1) is a 𝑆 (1) -
unit. Furthermore,

𝜕1
𝐴𝑚(𝛼𝜕

0
𝐴𝑚(𝛾

−1)) = 𝜕1
𝐴𝑚(𝛼) = 𝑏,

and 𝛼𝜕0
𝐴𝑚

(𝛾−1) is a cochain with the required properties. □

From Theorem 4.3.9, we directly get an algorithm for computing a trivial-
isation of a 2-coboundary:

Theorem 4.3.10. Under GRH, Algorithm 2 is correct and runs in polynomial
time with access to an oracle for Problem 2.2.16 and for factoring integers.

Proof. Using a polynomial-time algorithm for factoring polynomials over num-
ber fields, one may compute splitting isomorphisms

𝐾 ≃
⊕
𝛼

𝐾
(0)
𝛼 ,

𝐾⊗2 ≃
⊕
𝛽

𝐾
(1)
𝛽
,

and
𝐾⊗3 ≃

⊕
𝛾

𝐾
(2)
𝛾 .
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Input: A number field 𝑘
Input: A separable polynomial 𝑃 ∈ 𝑘 [𝑋] defining an étale algebra

𝐾 = 𝑘 [𝑋]/(𝑃)
Input: 𝑏 ∈ 𝐵2

𝐴𝑚
(𝑘, 𝐾)

1 Compute 𝑆1, the set of places of 𝑘 that ramify in 𝐾;
2 Compute 𝑆2, a set of places of 𝑘 such that the elements of 𝑆 (0)

generate the class group Cl(𝐾);
3 Compute 𝑆3, the set of places of 𝑘 lying below the elements of

Supp(D (𝑏));
4 Set 𝑆 = 𝑆1 ∪ 𝑆2 ∪ 𝑆3;
5 Compute the sets 𝑆 (2) and 𝑆 (3) ;
6 Compute an isomorphism 𝜙 from the group of 𝑆 (2) -units of 𝐹⊗2 to

Z𝑟 ⊕ Z/𝑚Z;
7 Compute an isomorphism 𝜓 from the group of 𝑆 (3) -units of 𝐹⊗3 to

Z𝑟
′ ⊕ Z/𝑚′Z;

8 Solve the linear equation (𝜓 ◦ 𝜕1
𝐴𝑚

◦ 𝜙−1) (𝛼) = 𝜓(𝑏);
9 return 𝛼

Algorithm 2: Computing a trivialisation of a 2-coboundary

Then, 𝑆1 may be computed by computing and factoring the discriminants
of the number fields 𝐾 (0)

𝛼 . This may be done in polynomial time using an oracle
for factoring integers. Under GRH, one may set 𝑆2 = {𝔭 ∈ 𝑀𝑛𝑎

𝑘
: 𝑁 (𝔭) ≤

max𝛼 12 log( |Δ
𝐾

(0)
𝛼
|)2. The divisorD (𝑏) may be computed using an algorithm

for factoring ideals in the fields 𝐾 (2)
𝛾 . This may be done in polynomial time

using an oracle for factoring integers. Then, 𝑆-units are computed using an
oracle for Problem 2.2.16, and we get isomorphisms 𝜙 and 𝜓. Finally, the last
step is simple linear algebra over Z.

The correctness of the algorithm relies on the fact that a cochain 𝛼 such
that 𝑏 = 𝜕1

𝐴𝑚
(𝛼) exists and may be found in the group of 𝑆 (2) -units, which is

the content of Theorem 4.3.9. □

Corollary 4.3.11. Under GRH, Algorithm 2 is correct and is a polynomial
quantum algorithm.

Corollary 4.3.12. Under GRH, there is a polynomial quantum algorithm for
Problem 4.3.1.

Proof. This result is a combination of Algorithm 2 with the explicit formulas

107



for isomorphisms given in Proposition 4.2.7 and Example 4.2.3. □

Theorem 4.3.13. Under GRH, there exists a polynomial quantum algorithm
which solves the explicit isomorphism problem (Problem 3.4.1) for number
fields.

Proof. By Corollary 4.3.5, Problem 3.4.1 reduces to Problem 4.3.1 in prob-
abilistic polynomial time and by Corollary 4.3.12, there exists a polynomial
quantum algorithm for Problem 4.3.1. □
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Chapter 5

Lattices pairs in global function
fields

5.1 Vector bundles and lattices

This section we presents results from [60]. As a motivation and for some proofs,
use the language of schemes and locally free coherent sheaves, including results
on their cohomology. We direct the reader to [42] for an exposition of the
necessary material on the topic. For the remainder of the section, we let 𝑋
be an integral smooth projective curve over a finite field 𝐹 (we note that most
results are valid over a more general field). Unless specified otherwise, 𝑘 is the
field of rational functions of 𝑋 .

We begin with a definition of four equivalent categories:

Definition 5.1.1. 1. A vector bundle over 𝑋 is a coherent locally free O𝑋-
module. A map of vector bundles is simply a homomorphism of O𝑋-
modules.

2. Let 𝑘𝑋 be the constant sheaf equal to 𝑘 over 𝑋 , and let 𝑛 ∈ N. An O𝑋-
lattice of rank 𝑛 is a subsheaf of 𝑘𝑛

𝑋
that is a locally free O𝑋-module of

rank 𝑛. A map between O𝑋-lattices L and L′ of respective ranks 𝑛 and
𝑛′ is an O𝑋-module homomorphism 𝑓 : 𝑘𝑛

𝑋
→ 𝑘𝑛

′
𝑋

such that 𝑓 (L) ⊂ L′.

3. Let 𝑛 ∈ N. An O𝑅-lattice of rank 𝑛 is a free O𝑅-submodule (𝐿𝑃)𝑃∈𝑀𝑘
of 𝑅𝑛

𝑘
. A map between O𝑅-lattices 𝐿 and 𝐿′ of ranks 𝑛 and 𝑛′ is a map

𝑓 : 𝑘𝑛 → 𝑘𝑛
′ such that 𝑓 (𝐿) ⊂ 𝐿′ when 𝑓 is extended to 𝑅𝑛 by pointwise

application.
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4. A lattice pair 𝐿 of 𝑘 is the data of an O 𝑓 𝑖-lattice 𝐿 𝑓 𝑖 and an O∞-lattice
𝐿∞ of equal ranks. A map between lattice pairs 𝐿 of rank 𝑟 and 𝐿′ of
rank 𝑟 ′ is a linear map 𝑓 : 𝑘𝑟 → 𝑘𝑟

′ such that 𝑓 (𝐿 𝑓 𝑖) ⊂ 𝑓 (𝐿′
𝑓 𝑖
) and

𝑓 (𝐿∞) ⊂ 𝐿′∞.

Theorem 5.1.2. The four categories introduced in the definition above are
equivalent.

Proof. We describe fully faithful, essentially surjective functors between the
categories:

• 2 → 1: The forgetful functor from the category of O𝑋-lattices to that of
vector bundles is faithful. It is essentially surjective because any vector
bundle 𝐸 is isomorphic to a lattice once one fixes a basis of its generic
stalk 𝐸𝜂: this yields an isomorphism 𝐸𝜂 ≃ 𝑘𝑛, and we get injective maps
Γ(𝑈, 𝐸) → 𝑘𝑛 compatible with restriction maps. These maps yield an
injective homomorphism 𝐸 → 𝑘𝑛

𝑋
. Since a map between vector bundles

induces a map between generic stalks, it is clear that this functor is full.

• 2 → 3: The functor sending an O𝑋-lattice L to
∏
𝑃∈𝑀 L𝑃 is fully

faithful from the definitions of homomorphisms and the fact that a global
homomorphism from 𝑘𝑛

𝑋
to 𝑘𝑛′

𝑋
is the same thing as a linear map from

𝑘𝑛 to 𝑘𝑛′ . By the local-global principle for O𝑋-lattices [91, Exercise
9.16], all but finitely many of the L𝑃 are equal to O𝑃. Furthermore, all
products of O𝑃-lattices with this property are reached. Such a product of
lattices is the same thing as an O𝑅-lattice by Lemma 2.1.9 and (essential)
surjectivity follows.

• 3 → 4: By the local-global principle for lattices on a Dedekind do-
main [91, Theorem 9.4.9], if 𝐿 = (𝐿𝑃) is an O𝑅-lattice, the restriction
(𝐿𝑃)𝑃∈𝑀 𝑓 𝑖

𝑘

determines a unique O 𝑓 𝑖-lattice which we denote by 𝐿 𝑓 𝑖 ,
furthermore every O 𝑓 𝑖-lattice can bet obtained this way. We likewise
define 𝐿∞ as the unique O∞-lattice defined by (𝐿𝑃)𝑃∈𝑀∞

𝑘
. It is straight-

forward to deduce that sending an 𝑅-lattice 𝐿 to the pair (𝐿 𝑓 𝑖 , 𝐿∞) yields
an equivalence of categories.

□

Remark 5.1.3. By our definitions, the categories 2,3 and 4 are small (their
objects form a set), and the equivalence of categories we described are not
merely surjective, but they induce a bĳection between the sets of objects. As
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a result, we may unambiguously fix an object in one of these categories and
talk about the associated objects in the other two categories. If 𝐿 is any type of
lattice, we write 𝐿𝑋 for the corresponding O𝑋-lattice, 𝐿𝑅 for the corresponding
O𝑅-lattice and 𝐿LP for the corresponding lattice pair.

Remark 5.1.4. If 𝐿 is an O𝑋-lattice and 𝑈 is an open subset of 𝑋 , we observe
that Γ(𝑈, 𝐿) is the subset

⋂
𝑃∈𝑈 𝐿𝑃 of Γ(𝑈, 𝑘𝑋) = 𝑘 . Indeed, a section

𝑠 ∈ Γ(𝑈, 𝐿) has its stalk in 𝐿𝑃 for all 𝑃 ∈ 𝑈 and is therefore sent there by
the restriction maps of the sheaf 𝑘𝑋. However, these maps are the identity.
Converserly, an element 𝑠 ∈ ⋂

𝑃∈𝑈 𝐿𝑃 directly glue back into an element of
Γ(𝑈, 𝐿).

5.1.1 O𝑋-lattices and O𝑅-lattices

Proposition 5.1.5. There is a bĳection between the set of isomorphism classes
of rank 𝑛 vector bundles and the double quotient

𝐺𝐿𝑛 (𝑘)\𝐺𝐿𝑛 (𝑅)/𝐺𝐿𝑛 (O𝑅).

Proof. This proposition is an easier version of [94, Proposition 22]. We prove
the result for isomorphism classes of rank 𝑛. For any 𝑔 ∈ 𝐺𝐿𝑛 (𝑅), there is an
O𝑅-lattice 𝑅(𝑛) ≔ 𝑔(O𝑛

𝑅
). This lattice is determined by 𝑔 up to an automor-

phism ofO𝑛
𝑅

. So, the set ofO𝑅-lattices is in bĳection with𝐺𝐿𝑛 (𝑅)/𝐺𝐿𝑛 (O𝑅).
Furthermore, two lattices in this set are isomorphic if one is the image of the
other by an automorphism of 𝑘𝑟 applied pointwise. That is, the set of iso-
morphism classes of O𝑅-lattices, and therefore of vector bundles over 𝑋 , is in
bĳection with the double quotient 𝐺𝐿𝑛 (𝑘)\𝐺𝐿𝑛 (𝑅)/𝐺𝐿𝑛 (O𝑅). □

As we represent an O𝑅-lattice 𝐿 by a matrix 𝑔 such that 𝐿 = 𝑅(𝑔), we
establish how properties of 𝐿 may be described algebraically using 𝑔.

Definition 5.1.6. Let 𝑔 ∈ 𝐺𝐿𝑛 (𝑅), let 𝐿 = 𝑅(𝑔). We define det(𝐿) =

𝑅(det(𝑔)) and deg(𝐿) = − deg(det(𝑔)).

In order to express the tensor product of O𝑅-lattices as a lattice, we identify
the tensor product 𝑅𝑟 ⊗𝑅 𝑅𝑟

′ with 𝑅𝑟𝑟 ′ via the tensor product of the canonical
bases. That is, if (𝑒1, . . . , 𝑒𝑛) is the canonical basis of 𝑅𝑛 and (𝑒′1, . . . , 𝑒

′
𝑛′)

is that of 𝑅𝑛′ , we identify 𝑅𝑛 ⊗ 𝑅𝑛
′ with 𝑅𝑛𝑛

′ via the basis (𝑒1 ⊗ 𝑒′1, 𝑒1 ⊗
𝑒′2, . . . , 𝑒1 ⊗ 𝑒′𝑛′ , 𝑒2 ⊗ 𝑒′1, . . . , 𝑒𝑛 ⊗ 𝑒

′
𝑛′).

Proposition 5.1.7. Let 𝑔 ∈ 𝐺𝐿𝑛 (𝑅) and 𝑔′ ∈ 𝐺𝐿𝑛′ (𝑅). Let 𝐿 = 𝑅(𝑔).

111



1. The rank one lattice det(𝐿) is independent of the choice of 𝑔 such that
𝐿 = 𝑅(𝑔). Furthermore, det(𝐿)𝑋 = det(𝐿𝑋).

2. The number deg(𝐿) is independent of the choice of 𝑔 such that 𝐿 = 𝑅(𝑔).
Furthermore, deg(𝐿𝑋) = deg(𝐿).

3. 𝑅(𝑔) ⊗O𝑅 𝑅(𝑔′) = 𝑅(𝑔 ⊗ 𝑔′).

4. 𝑅(𝑔) ⊕ 𝑅(𝑔′) = 𝑅(𝑔 ⊕ 𝑔′).

5. Let 𝑀 ∈ 𝑀𝑛′ ,𝑛 (𝑘). Then 𝑀 describes a map from 𝑅(𝑔) to 𝑅(𝑔′)
if and only if 𝑔′−1𝑀𝑔 ∈ 𝑀𝑟 ′ ,𝑟 (O𝑅). That is, Hom(𝑅(𝑔), 𝑅(𝑔′)) =

𝑀𝑛′ ,𝑛 (𝑘) ∩ 𝑔′𝑀𝑛′ ,𝑛 (O𝑅)𝑔−1.

Proof. The matrix 𝑔 such that 𝐿 = 𝑅(𝑔) is defined up to a factor in 𝐺𝐿𝑛 (O𝑅).
Such a factor has a determinant in O×

𝑅
. Multyplying a répartition by an element

of O×
𝑅

does not change the O𝑅-lattice of rank 1 it generates. Thus, det(𝐿) is
independent of the choice of 𝑔, and so is deg(𝐿).

Then, each item is proved by observing that the result holds locally at each
𝑃 ∈ 𝑀 . We note that the degree of a rank 1 O𝑅-lattice is the opposite of the
degree of its generator: if 𝑟 ∈ 𝑅 is invertible and 𝐷 =

∑
𝑃∈𝑋 𝑣𝑃 (𝑟𝑃)𝑃 is the

associated divisor of 𝑟 , the line bundle associated to 𝑅(𝑟) is in fact L(−𝐷),
and by the definition of the degree of a répartition, deg 𝑟 = deg𝐷. □

Definition 5.1.8. If 𝐿 is an O𝑅-lattice of rank 𝑛, the set

𝐿∨ =

{
𝑎 ∈ 𝑅𝑛 | ∀𝑏 ∈ 𝐿,

𝑛∑︁
𝑖=1

𝑎𝑖𝑏𝑖 ∈ O𝑅

}
is called the dual lattice of 𝐿.

Proposition 5.1.9. Let 𝐿 be an O𝑅-lattice. The dual 𝐿∨ is an O𝑅-lattice. This
duality is the same as that of vector bundles:

(𝐿∨)𝑋 ≃ (𝐿𝑋)∨.

Proof. If 𝑔 ∈ 𝐺𝐿𝑛 (𝑅) is such that 𝐿 = 𝑅(𝑔), then 𝐿∨ = 𝑅(𝑡𝑔−1) and therefore
𝐿∨ is an O𝑅-lattice.

Let 𝑈 ⊂ 𝑋 be an open subset, and let 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ Γ(𝑈, (𝐿∨)𝑋) ⊂
Γ(𝑈, 𝑘𝑛

𝑋
) = 𝑘𝑛. For any 𝑠 = (𝑠1, . . . , 𝑠𝑛) ∈ Γ(𝑈, 𝐿𝑋), define 𝑎(𝑠) =∑𝑟

𝑖=1 𝑎𝑖𝑠𝑖 ∈ Γ(𝑈, 𝑘𝑋). Then, for all 𝑃 ∈ 𝑈, 𝑎(𝑠) ∈ O𝑃 since 𝑎 ∈ (𝐿∨)𝑃
and 𝑠 ∈ 𝐿𝑃. Thus, 𝑎(𝑠) ∈ Γ(𝑈,O𝑋) seen as a subset of Γ(𝑈, 𝑘𝑋), and 𝑎 does
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define a homomorphism Γ(𝑈, 𝐿) → Γ(𝑈,O𝑋). It is clear from the definition
of this homomorphism that it is compatible with restriction maps.

This yields a homomorphism Γ(𝑈, (𝐿∨)𝑋) → Γ(𝑈, (𝐿𝑋)∨). The fact that
it is an isomorphism may be checked locally. □

Remark 5.1.10. We record from the proof of Proposition 5.1.9 that if 𝑔 ∈
𝐺𝐿𝑛 (𝑅), 𝑅(𝑔)∨ = 𝑅(𝑡𝑔−1). For convenience, when 𝑔 ∈ 𝐺𝐿𝑛 (𝑅), we set
𝑔∨ = 𝑡𝑔−1.

Remark 5.1.11. Item 5 of Proposition 5.1.7 suggests that if 𝑔 ∈ 𝐺𝐿𝑛 (𝑅) and
𝑔′ ∈ 𝐺𝐿𝑛′ (𝑅), then Hom(𝑅(𝑔), 𝑅(𝑔′)) is the set of global sections of the O𝑋-
lattice corresponding to the free O𝑅-submodule 𝑔′𝑀𝑛′ ,𝑛 (O𝑅)𝑔−1 of 𝑀𝑛′ ,𝑛 (𝑅).
For any commutative ring 𝐵, the dual of the regular 𝐵-module 𝐵 is identified
with 𝐵 itself, via the isomorphism 𝑏 ↦→ (𝑎 ↦→ 𝑎𝑏). Then, there is a natural
identification 𝑀𝑛′ ,𝑛 (𝐵) = 𝐵𝑛 ⊗ 𝐵𝑛

′ . The basis 𝑒1 ⊗ 𝑒′1, 𝑒1 ⊗ 𝑒′2, . . . , 𝑒2 ⊗
𝑒′1, . . . , 𝑒𝑛 ⊗ 𝑒

′
𝑛′ we use in general for 𝐵𝑛 ⊗𝐵 𝐵𝑛

′ then identifies with the basis
of elementary matrices (𝐸11, 𝐸12, . . . , 𝐸𝑟1, 𝐸21, . . . , 𝐸𝑛𝑛′). One checks easily
that upon identifying 𝑀𝑛′ ,𝑛 (𝑅) with 𝑅𝑛′𝑛, 𝑔′𝑀𝑛′ ,𝑛 (O𝑅)𝑔−1 is sent to 𝐿∨ ⊗ 𝐿′.
For this reason, we set Hom(𝑅(𝑔), 𝑅(𝑔′)) = 𝑔′𝑀𝑛′ ,𝑛 (O𝑅)𝑔−1 which we also
identify with 𝑅(𝑔)∨ ⊗O𝑅 𝑅(𝑔′).

5.1.2 Cohomology of O𝑅-lattices

We may explicitly describe the cohomology of vector bundles in terms of
répartitions. We first introduce some notation and then quote a result of [86,94],
which generalises [79, Proposition II.5.3].

Definition 5.1.12. If 𝐿 is an O𝑅-lattice of rank 𝑛, we define the cohomology
groups

𝐻0(𝐿) = 𝐿 ∩ 𝑘𝑛

and
𝐻1(𝐿) = 𝑅𝑛/(𝐿 + 𝑘𝑛).

As usual, this definition is compatible with the analogous definition on
𝑋-lattices:

Proposition 5.1.13. Let 𝐿 be an O𝑅-lattice of rank 𝑛. Then 𝐻0(𝑋, 𝐿𝑋) =

Γ(𝑋, 𝐿𝑋) injects in 𝑘𝑛 and we get:

𝐻0(𝐿) = 𝐻0(𝑋, 𝐿𝑋).
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Furthermore, there is an isomorphism

𝐻1(𝐿) ≃ 𝐻1(𝑋, 𝐿𝑋).

We first need a lemma:

Lemma 5.1.14. Let 𝐿 be an O𝑋-lattice of rank 𝑛. Then for any open subset
𝑈 ⊂ 𝑋 , Γ(𝑈, 𝑘𝑛

𝑋
/𝐿) =

⊕
𝑃∈𝑈 𝑘

𝑛/𝐿𝑃. In particular, the sheaf 𝑘𝑋/𝐿 is flasque.

Proof. It is enough to prove the result on an open cover of 𝑋 , so we may assume
without loss of generality that 𝑈 = Spec(𝐴) is an affine open subset of 𝑋 over
which 𝐿 is free. Then, 𝐿𝐴 may be seen as an 𝐴-lattice isomorphic to 𝐴𝑛, and
we must prove that 𝑘𝑛/𝐿𝐴 ≃

⊕
𝔭∈Spec(𝐴) 𝑘

𝑛/𝐿𝑃. Fix (𝑎1, . . . , 𝑎𝑛) a basis
of 𝐿𝐴 and then 𝑘𝑛/𝐿𝐴 =

⊕𝑟

𝑖=1 𝑘𝑎𝑖/𝐴𝑎𝑖 . It is enough to prove the result for
𝐿𝐴 = 𝐴. However, if 𝐴 is a Dedekind domain and 𝑘 is its fraction field, then
𝑘/𝐴 ≃

⊕
𝔭∈Spec(𝐴) 𝑘/𝐴𝔭 by the Chinese Remainder Theorem. □

Proof of Proposition 5.1.13. We rephrase Serre’s argument and adapt it to our
broader context. By Lemma 5.1.14, the middle and right terms of the exact
sequence

0 → 𝐿𝑋 → 𝑘𝑛𝑋 → 𝑘𝑛/𝐿𝑋 → 0

are flasque sheaves, so 𝐻1(𝑋, 𝑘𝑛
𝑋
) = 𝐻1(𝑋, 𝑘𝑛

𝑋
/𝐿𝑋) = 0 [42, Proposition

III.2.5]. Therefore, the cohomology of 𝐿𝑋 may be computed as the kernel and
cokernel of the map Γ(𝑋, 𝑘𝑛

𝑋
) → Γ(𝑋, 𝑘𝑛

𝑋
/𝐿𝑋). Now, Γ(𝑘, 𝑘𝑛

𝑋
) = 𝑘𝑛 and by

Lemma 5.1.14, Γ(𝑋, 𝑘𝑛
𝑋
/𝐿𝑋) ≃

⊕
𝑃∈𝑋 𝑘

𝑛/𝐿𝑃 = 𝑅/𝐿.
This gives isomorphisms 𝐻∗(𝐿) ≃ 𝐻∗(𝑋, 𝐿𝑋). The fact that the isomor-

phism of 𝐻0 groups is an equality under the identification of 𝐻0(𝑋, 𝐿𝑋) with
its image in 𝑘𝑟 is a consequence of Remark 5.1.4. □

We conclude this subsection by explicitly describing Serre duality in our
setting. This is a rephrased version of a theorem for adèles proved in [86]. It
would be possible to adapt Serre’s proof given in [79, Section II.8] and prove
the theorem using only the theory of répartitions and differentials. However,
for efficiency purposes, we will assume that the statement of Serre duality for
coherent sheaves on projective curves is already known and content ourselves
with giving concrete formulas for computation.

Theorem 5.1.15 (Serre Duality). Let 𝜔 be a differential of 𝑘 . For any O𝑅-
lattice 𝐿 of rank 𝑛, there is a perfect pairing

𝜃𝜔 : 𝐻0(𝜄(𝜔)−1𝐿∨) × 𝐻1(𝐿) → 𝐹

(𝑎, 𝑏) ↦→ res
(∑𝑛

𝑖=1 𝑎𝑖𝑏𝑖 𝜄(𝜔)
)
.
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Proof. We first prove that 𝜃 is a well-defined pairing. For 𝑎 ∈ 𝐻0(𝜄(𝜔)−1𝐿∨),
consider the map

𝜃′𝜔 (𝑎, ·) : 𝑅𝑛 → 𝐹

𝑏 ↦→ res
(∑𝑛

𝑖=1 𝑎𝑖𝑏𝑖 𝜄(𝜔)
)
.

We prove that 𝐿 + 𝑘𝑛 ⊂ Ker(𝜃′𝜔 (𝑎, ·)). Observe that

𝐻0(𝜄(𝜔)−1𝐿∨) =
{
𝑓 ∈ 𝑘𝑛 | ∀𝑏 ∈ 𝐿,

𝑛∑︁
𝑖=1

𝜄(𝜔)𝑎𝑖𝑏𝑖 ∈ O𝑅

}
.

If 𝑏 ∈ 𝐿, 𝑎𝑏𝜄(𝜔) ∈ O𝑛
𝑅

, so 𝜃′𝜔 (𝑎, 𝑏) = res
(∑𝑛

𝑖=1 𝑎𝑖𝑏𝑖 𝜄(𝜔)
)
= 0 since res(𝑥) = 0

for any 𝑥 ∈ O𝑅. If 𝑏 ∈ 𝑘𝑛, then
∑𝑛
𝑖=1 𝑎𝑖𝑏𝑖 𝜄(𝜔) = 𝜄(

∑𝑛
𝑖=1 𝑎𝑖𝑏𝑖𝜔) since the set of

differentials of 𝑘 is a 𝑘-vector space. Therefore, 𝜃′𝜔 (𝑎, 𝑏) = 0 by the Residue
Theorem. It follows that 𝜃′𝜔 (𝑎, ·) factors into a unique map 𝜃𝜔 (𝑎, ·) from
𝐻1(𝐿) to 𝑘 . The pairing 𝜃𝜔 is well defined.

We prove that the map 𝑎 ↦→ 𝜃𝜔 (𝑎, ·) is injective. Let 𝑎 ∈ 𝐻0(𝜄(𝜔)−1𝐿∨)
Assume that 𝑎𝑖,𝑃 ≠ 0 for some 𝑖 ∈ [𝑟], 𝑃 ∈ 𝑋 and set 𝜈 = ord𝑃 (𝑎𝜄(𝜔)) + 1,
𝑏 𝑗 = 0 for 𝑗 ≠ 𝑖, 𝑏𝑖,𝑄 = 0 for 𝑄 ≠ 𝑃 and 𝑏𝑖,𝑃 = 1/𝜋𝜈

𝑃
. Then 𝜃𝑎 (𝑏) =

res𝑃 (𝜄(𝜔)𝑎𝑖𝑏𝑖) ≠ 0. Therefore, the map 𝜃𝑎 is non-zero over 𝑅𝑛 and therefore
over 𝐻1(𝐿) = 𝑅𝑛/(𝐿 + 𝑘𝑛).

Since 𝐻0(𝜔−1𝐿∨) and 𝐻1(𝐿) are finite-dimensional 𝐹-vector spaces of
equal dimensions (for instance by Serre duality for coherent sheaves), it follows
that the map 𝑎 ↦→ 𝜃𝑎 is an isomorphism. That is, 𝜃 is a perfect pairing. □

Remark 5.1.16. The pairing 𝜃𝜔 behaves naturally with the change of differen-
tial. More precisely, if 𝜔′ = 𝑓 𝜔 is a different differential of the field 𝑘 , then
multiplication by 𝑓 gives an isomorphism 𝐻0(𝜄(𝜔′)−1𝐿∨) ≃ 𝐻0(𝜄(𝜔)𝐿∨). We
easily check that for any 𝑎 ∈ 𝐻0(𝜄(𝜔′)−1𝐿∨), 𝜃𝜔′ (𝑎) = 𝜃𝜔 ( 𝑓 𝑎).

5.1.3 Extensions of O𝑅-lattices

We briefly recall the general theory of extension of vector bundles. We then
give an explicit construction of an extension of O𝑅-lattices. A reference for
extensions of vector bundles is [56, Section 7.3].

Definition 5.1.17. Let 𝐹, 𝐺 be vector bundles over 𝑋 . Then an extension of 𝐹
by 𝐺 is an exact sequence

0 → 𝐺 → 𝐸 → 𝐹 → 0.
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A map of extensions is a map of exact sequences. We note that two
extensions of 𝐹 by 𝐺 may not be isomorphic as extensions, even though the
vector bundles in the middle of the sequences are. It is well known that module
extensions are generally classified by the cohomology group Ext1(𝐹, 𝐺). In the
case of vector bundles, this group is naturally isomorphic to 𝐻1(𝑋, 𝐹∨ ⊗ 𝐺),
with the isomorphism given as follows:

Proposition 5.1.18. Let 𝐹 and 𝐺 be vector bundles over 𝑋 . Then, there is a
bĳection 𝛿 between the set of isomorphy classes of extensions of 𝐹 by 𝐺 and
𝐻1(𝑋, 𝐹∨ ⊗ 𝐺). The map 𝛿 is defined as follows: let 𝜉 be an extension given
by the exact sequence

0 → 𝐺 → 𝐸 → 𝐹 → 0.

Then, the following sequence is also exact.

0 → 𝐹∨ ⊗ 𝐺 → 𝐹∨ ⊗ 𝐸 → 𝐹∨ ⊗ 𝐹 → 0.

This sequence yields a map 𝜕 : Hom(𝐹, 𝐹) = 𝐻0(𝐹∨ ⊗ 𝐹) → 𝐻1(𝐹∨ ⊗ 𝐺).
Then, 𝛿(𝜉) = 𝜕 (𝐼𝑑𝐹).

This result is usually proved using injective resolutions of sheaves, which
yields a construction of the map 𝛿−1. However, this is impractical in a compu-
tational setting. Instead, we adapt the methods from [93, Section 2] and redo
the computation using the exact sequence from the proof of Proposition 5.1.13.

Theorem 5.1.19. Let 𝑔′ ∈ 𝐺𝐿𝑛′ (𝑅) and 𝑔′′ ∈ 𝐺𝐿𝑛′′ (𝑅). Let 𝜅 ∈ 𝑀𝑛′ ,𝑛′′ (𝑅).
Then 𝜅 represents an element of 𝐻1(Hom(𝑅(𝑔′′), 𝑅(𝑔′))) and therefore an
extension of 𝑅(𝑔′′) by 𝑅(𝑔′). The following exact sequence represents this
extension.

0 → 𝑅(𝑔′) 𝜄−→ 𝑅(𝑔) 𝜋−→ 𝑅(𝑔′′) → 0,

where

𝑔 =

(
𝑔′ −𝜅𝑔′′

0 𝑔′′

)
∈ 𝐺𝐿𝑛 (𝑅)

and 𝜄 and 𝜋 are respectively given by the injection of 𝑘𝑛′ into the 𝑛′ first
summands of 𝑘𝑛 and by the projection of 𝑘𝑛 onto its last 𝑛′′ summands.

Proof. Recall from the proof of Proposition 5.1.13 that for any O𝑋-lattice 𝐿,
we have the exact sequence

0 → 𝐿𝑋 → 𝐾𝑟𝑋 → 𝐾𝑟𝑋/𝐿𝑋 → 0,
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which gives rise to the following long exact sequence:

𝐻0(𝐿) → 𝐾𝑟 → 𝑅𝑟/𝐿 → 𝐻1(𝐿). (5.1)

Indeed, 𝑅𝑟/𝐿 is none other than
⊕

𝑃∈𝑋 𝐾
𝑟/𝐿𝑃, which is the group𝐻0(𝑋, 𝐾𝑋/𝐿𝑋)

by Lemma 5.1.14.
Let 𝐿 = 𝑅(𝑔), 𝐿′ = 𝑅(𝑔′) and 𝐿′′ = 𝑅(𝑔′′). Writing (5.1) vertically for

each term of the short exact sequence

0 → Hom(𝐿′′𝑋, 𝐿′𝑋) → Hom(𝐿′′𝑋, 𝐿𝑋) → End(𝐿′′𝑋) → 0,

we get the diagram
0 Hom(𝐿′′, 𝐿′) Hom(𝐿′′, 𝐿) End(𝐿′′) . . .

0 𝑀𝑛′ ,𝑛′′ (𝑘) 𝑀𝑛,𝑛′′ (𝑘) 𝑀𝑛′′ (𝑘) 0

0 𝑀𝑛′ ,𝑛′′ (𝑅)/Hom(𝐿′′, 𝐿′) 𝑀𝑛,𝑛′′ (𝑅)/Hom(𝐿′′, 𝐿) 𝑀𝑛′′ (𝑅)/End(𝐿′′)

. . . 𝐻1(Hom(𝐿′′, 𝐿′)) 𝐻1(Hom(𝐿′′, 𝐿)) 𝐻1(End(𝐿′′)) 0.

𝜕

𝜕

At each line, the maps are between rings of matrices with coefficients either in
𝑘 or in 𝑅. Either way, the first map always sends a matrix 𝑀 ′ of size 𝑛′ × 𝑛′′

to the matrix

(
𝑀

0

)
of size 𝑛′ + 𝑛′′ × 𝑛′′ and the second map sends a matrix

𝑀 =

(
𝑀1

𝑀2

)
of size 𝑛′ + 𝑛′′, 𝑛′′ to the matrix 𝑀2 of size 𝑛′′ × 𝑛′′. Regardless of

the coefficient ring, we denote this injection and projection by 𝜄′ and 𝜋′. We
wish to compute 𝛿(𝜉) = 𝜕 (𝐼𝑑′′

𝐿
). By the usual proof of the snake lemma,

𝜕 (𝐼𝑑′′
𝐿
) ∈ 𝐻1((𝐿′′)∨

𝑅
) is represented by a matrix 𝑐 ∈ 𝑀𝑛′ ,𝑛′′ (𝑅) such that

there exist𝑈 ∈ 𝑀𝑛′ ,𝑛′′ (𝑘) and 𝑉 ∈ Hom(𝐿′′, 𝐿) = 𝑔𝑀𝑛,𝑛′′ (O𝑅)𝑔′′−1 such

that 𝜄′(𝑐 +𝑈) =
(

0
𝐼𝑛′′

)
+𝑉 . Now, if 𝑀 =

(
𝑀1

𝑀2

)
∈ 𝑀𝑛,𝑛′′ (O𝑅) (with 𝑀1 having

𝑛′ lines and 𝑀2 having 𝑛′′), we get

𝑔𝑀𝑔′′−1 =

(
𝑔′ −𝜅𝑔′′

0 𝑔′′

) (
𝑀1𝑔

′′−1

𝑀2𝑔
′′−1

)
=

(
𝑔′𝑀1𝑔

′′−1 + −𝜅𝑔′′𝑀2𝑔
′′−1

𝑔′′𝑀2𝑔
′′−1

)
.

Therefore, setting 𝑀2 = −𝐼𝑛′′ and 𝑀1 = 0, we construct

𝑉 =

(
𝜅

−𝐼𝑛′′

)
∈ Hom(𝐿′′, 𝐿), and observe that 𝜄′(𝜅) =

(
0
𝐼𝑛′′

)
+𝑉 . It follows
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directly that the class 𝛿(𝜉) = 𝜕 (𝐼𝑑𝐿′′) in 𝐻1(Hom(𝐿′′, 𝐿′)) is represented by
the matrix 𝜅. □

5.1.4 Restriction and conorm of an O𝑅-lattice

This section considers a finite separable function field extension 𝐾/𝑘 . We
also set 𝑑 = [𝐾 : 𝑘]. As this separable extension corresponds to a separable
morphism of algebraic curves, we define the restriction and conorm of an O𝑅-
lattice as the counterpart of respectively the direct and inverse image of a vector
bundle.

The first convention we adopt for the rest of this section is that we assume a
fixed 𝑘-basis of 𝐾 denoted by 𝑐1, . . . , 𝑐𝑑 . Using this, we identify 𝐾 with 𝑘𝑑 and
more generally (𝐾)𝑛 with 𝑘𝑛𝑑 as 𝑘-vector spaces. That is, if 𝑒1, . . . , 𝑒𝑛 is a basis
of𝐾𝑛, the corresponding basis of 𝑘𝑛𝑑 is (𝑒1𝑐1, 𝑒1𝑐2, . . . , 𝑒1𝑐𝑑 , 𝑒2𝑐1, . . . , 𝑒𝑛𝑐𝑑).
If 𝑄 ∈ 𝑀𝐾 , we let 𝑄𝑘 be the place in 𝑀𝑘 lying below 𝑄.

Definition 5.1.20. Let 𝐿 be an O𝑅𝑘 -lattice of rank 𝑛 and let 𝐿′ be an O𝑅𝐾 -
lattice of rank 𝑛′.

• The restriction of 𝐿′ to 𝑘 is the O𝑅𝑘 -lattice of rank 𝑑𝑛′ defined locally at
𝑃 ∈ 𝑀𝑘 by

(Rest(𝐿′))𝑃 :=
⋂

𝑄∈𝑀𝐾
𝑄 |𝑃

𝐿′𝑄 .

• The conorm of 𝐿 over 𝐾 is the O𝑅𝐾 -lattice of rank 𝑛 defined locally at
𝑄 ∈ 𝑀𝐾 by

(CoN(𝐿))𝑄 := O𝑄𝐿𝑄𝐾 .

Proposition 5.1.21. Let 𝑓 : 𝑋 → 𝑋 ′ be a morphism of curves corresponding
to the function field extension 𝐾/𝑘 . Let 𝐿 be an O𝑅𝑘 -lattice and 𝐿′ be an
O𝑅𝐾 -lattice. Then,

Rest(𝐿′)𝑋′ = 𝑓∗(𝐿′𝑋′)

and
CoN(𝐿)𝑋 = 𝑓 ∗(𝐿𝑋).

Proof. This result is directly checked on stalks. □

It is well known that for quasi-coherent sheave, and therefore for vector
bundles, there exist natural isomorphisms 𝐻∗(𝑋 ′, 𝐿′

𝑋′) ≃ 𝐻∗(𝑋, 𝑓∗(𝐿′𝑋′)).
This isomorphism becomes equality for 𝐻0 in our setting.
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Regarding 𝐻1, we will identify the space 𝑅𝑛𝑑
𝑘

with its image in 𝑅𝑛
𝐾

by
the injective map 𝜑 defined as follows: First identify 𝑅𝑛𝑑

𝑘
with the restricted

product
(∏̃

𝑃∈𝑀𝑘𝐾
)𝑛

, and then send a vector (𝑣𝑃)𝑃∈𝑀𝑘 to (𝑣𝑄𝑘 )𝑄∈𝑀𝐾 . We
then get the following identification.

Proposition 5.1.22. Let 𝐿′ be an O𝑅𝐾 -lattice. Then under the usual identifi-
cation (𝐾)𝑟 = 𝑘𝑟𝑛,

𝐻0(𝐿′) = 𝐻0(Rest(𝐿′)).

Furthermore, the map 𝜑 described above factors into an isomorphism

�̃� : 𝐻1(Rest(𝐿′)) ≃ 𝐻1(𝐿′).

Proof. A direct computation proves the first result:

𝐻0(𝐿′) =
⋂

𝑄∈𝑀𝐾
𝐿′𝑄

=
⋂
𝑃∈𝑀𝑘

⋂
𝑄∈𝑀𝐾
𝑄 |𝑃

𝐿′𝑄

=
⋂
𝑃∈𝑀𝑘

Rest(𝐿′)𝑃

=
⋂
𝑃∈𝑀𝑘

𝐻0(𝑋,Rest(𝐿′)𝑋)

= 𝐻0(Rest(𝐿′)).

For the second result, we prove that 𝜑−1(𝐿′ + 𝑘𝑛𝑑) = Rest(𝐿′) + 𝑘𝑛. First,
observe that 𝜑(𝑅𝑛𝑑) is the space of répartition vectors 𝑣 such that 𝑣𝑄 = 𝑣𝑄′ if
𝑄 and 𝑄′ lie above the same place of 𝑘 . It is also clear that 𝜑(𝑘𝑛𝑑) = 𝐾𝑛.

Next, we observe that 𝜑(Rest(𝐿′)) = 𝐿′ ∩ 𝜑(𝑅𝑛𝑑
𝑘
). Indeed, let 𝑣 ∈ 𝐿′ ∩

𝜑(𝑅𝑛𝑑
𝑘
), and fix 𝑃 ∈ 𝑀𝑘 . Then, for all 𝑖 ∈ [𝑛], the 𝑣𝑖,𝑄 are equal for all 𝑄 | 𝑃,

and we denote their common value by 𝑣𝑖,𝑃. It follows that

(𝑣1,𝑃, . . . , 𝑣𝑛,𝑃) ∈ ∩𝑄 |𝑃𝐿
′
𝑄 = (Rest(𝐿′))𝑃 .

Therefore, 𝑣 ∈ 𝜑(Rest(𝐿′)) and 𝐿′ ∩ 𝜑(𝑅𝑛𝑑
𝑘
) ⊂ Rest(𝐿′). The converse

inclusion is clear enough.
As 𝜑(𝑘𝑛𝑑) = (𝐾)𝑛 and 𝜑(Rest(𝐿′)) = 𝐿′ ∩ 𝜑(𝑅𝑛𝑑

𝑘
), we have

Rest(𝐿′) + 𝑘𝑛𝑑 = 𝜑−1(𝐿′ + 𝐾𝑛).
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Indeed, let 𝑟 ∈ 𝑅𝑛𝑑
𝑘

such that 𝜑(𝑟) = 𝑠 + 𝑡, with 𝑠 ∈ 𝐿′ and 𝑡 ∈ 𝐾𝑛. Set
𝑢 ∈ 𝑘𝑛𝑑 such that 𝜑(𝑢) = 𝑡 and observe that 𝜑(𝑟 − 𝑢) ∈ 𝐿′ ∩ 𝜑(𝑅𝑛𝑑

𝑘
). So,

𝑟 − 𝑢 ∈ Rest(𝐿′) and 𝑟 ∈ Rest(𝐿′) + 𝑘𝑛𝑑 .
This shows that 𝜑 factors into an injective map from 𝐻1(Rest(𝐿′)) to

𝐻1(𝐿′). Surjectivity follows from equality of dimensions, as it is known
that these two finite-dimensional 𝐹-vector spaces are isomorphic from general
results on quasi-coherent sheaves. □

5.1.5 Indecomposable O𝑅-lattices

Since the Krull-Schmidt theorem applies to the category of vector bundles over
𝑋 [4], and as the direct sum of two O𝑅-lattices is easily constructed, we are
primarily concerned with constructing vector bundles that do not split into a
direct sum of vector bundles. We recall here results from [3] and interpret them
in terms of O𝑅-lattices. Results stated without proof in this section are simple
restatements of results from the sources above.

Definition 5.1.23. An O𝑅-lattice 𝐿 is indecomposable if for any O𝑅-lattices
𝐿′ and 𝐿′′ such that 𝐿 ≃ 𝐿′ ⊕ 𝐿′′, either 𝐿′ or 𝐿′′ is the zero module.

An O𝑅-lattice 𝐿 is absolutely indecomposable if its conorm over 𝐹𝑘 is an
indecomposable O𝑅

𝐹𝑘
-lattice.

Remark 5.1.24. Since the objects of the category of O𝑅-lattices are free O𝑅-
modules this notion may seem trivial. However, since we restrict the maps
to homomorphisms that are globally defined (that is, defined by a matrix with
coefficients in 𝑘), our notion of direct sum is also restricted, and there may exist
indecomposable O𝑅-lattices of rank larger that 1.

Proposition 5.1.25 (Krull-Schmidt-Atiyah). Any O𝑅-lattice 𝐿 admits a de-
composition into a direct sum of indecomposable O𝑅-lattices

𝐿 ≃
𝑠⊕
𝑖=1

𝐿
𝑛𝑖
𝑖
.

Furthermore, such a decomposition is unique up to reindexing the summands.

Let 𝐿 be an O𝑅-lattice 𝐿. Then, End(𝐿) is an 𝐹-algebra. We denote by
𝐷 (𝐿) the Wedderburn-Malcev complement 𝐷 (End(𝐿)). We get the following
description of the structure of 𝐿:
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Proposition 5.1.26. Let 𝐿 be an O𝑅-lattice, and let

𝐷 (𝐿) =
𝑠⊕
𝑖=1

𝑀𝑛𝑖 (𝐷𝑖)

be the splitting of 𝐷 (𝐿) into a direct sum of simple 𝐹-algebras. Then it is well
known that

𝐿 ≃
𝑠⊕
𝑖=1

𝐿
𝑛𝑖
𝑖
,

where 𝐿𝑖 is an indecomposable O𝑅-lattice and 𝐷 (𝐿𝑖) ≃ 𝐷𝑖 . Furthermore, the
action of 𝐷 (𝐿) on 𝐿 is compatible with this isomorphism. In particular, 𝐿 is
indecomposable if and only if 𝐷 (𝐿) is a division algebra.

Following [3], and since the field 𝐹 is perfect, we also have

Proposition 5.1.27. An O𝑅 lattice is absolutely indecomposable if and only if
𝐷 (𝐿) ≃ 𝐹.

In order to represent indecomposable vector bundles in terms of absolutely
indecomposable vector bundles, the authors introduce the notion of trace of a
vector bundle:

Definition 5.1.28. Let 𝐹′ be a finite extension of 𝐹, let 𝑋𝐹′ = 𝑋 ×𝐹 Spec(𝐹′)
and let 𝑝 : 𝑋𝐹′ → 𝑋 be the projection map. Let 𝐸 be a vector bundle over 𝑋𝐹′ ,
then the trace of 𝐸 is set to be Tr𝐹′/𝐹 (𝐸) = 𝑝∗(𝐸).

They then prove the following result:

Proposition 5.1.29. Let 𝐹 be an indecomposable vector bundle on 𝑋 and
let 𝐹′ be a maximal field contained in 𝐷 (𝐹). Then, there is an absolutely
indecomposable vector bundle 𝐸 on 𝑋𝐹′ such that 𝐹 = Tr𝐹′/𝐹 (𝐸).

In order to translate Proposition 5.1.29 in terms of O𝑅-lattice, we only need
to give an interpretation of the trace defined above, which is a restriction:

Definition 5.1.30. Let 𝐹′/𝐹 be a separable extension of 𝐹, and let 𝐹′𝑘 be the
corresponding constant field extension of 𝑘 . Then if 𝐿′ is an O𝑅𝐹′𝑘 -lattice, we
set

Tr𝐹′/𝐹 (𝐿′) = Rest(𝐿′).
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5.2 Explicit computations with lattice pairs

5.2.1 Algorithmic representation of lattice pairs

Definition 5.2.1. A matrix pair of rank 𝑛 is a tuple 𝑔 = (𝔞, 𝑔 𝑓 𝑖 , 𝑔∞), where
𝑃𝑀 = (𝔞, 𝑔 𝑓 𝑖) is an invertible square pseudo-matrix of size 𝑛 over O 𝑓 𝑖 and
𝑔∞ ∈ 𝐺𝐿𝑛 (𝑘). Given such a matrix pair 𝑔, we define the lattice pair LP(𝑔) as
the pair of lattices (𝑃𝑀 (O𝑛

𝑓 𝑖
), 𝑔∞(O𝑛

∞)), and say that 𝑔 is a matrix pair for 𝐿
if 𝐿 = LP(𝑔).

Theorem 5.2.2. Let 𝐿 = (𝐿 𝑓 𝑖 , 𝐿∞) be a lattice pair over 𝑘 . Then, there exists
a matrix pair 𝑔 such that 𝐿 = LP(𝑔).

Proof. Since the ring O 𝑓 𝑖 is a Dedekind domain and the ring O∞ is a PID, the
lattice 𝐿 𝑓 𝑖 admits a pseudo-basis and the lattice 𝐿∞ admits a basis. Represent-
ing the pseudo-basis of 𝐿 𝑓 𝑖 as a pseudo-matrix (𝔞, 𝑔 𝑓 𝑖) and the basis of 𝐿∞ as
a matrix 𝑔∞, we obtain a matrix pair 𝑔 = (𝔞, 𝑔 𝑓 𝑖 , 𝑔∞) such that 𝐿 = LP(𝑔). □

This section aims to translate the results from Section 5.1 in terms of matrix
representations of lattice pairs. While there is no one-to-one translation from
répartition matrices to matrix pairs, a matrix pair may be represented as a
répartition matrix in the following manner:

Definition 5.2.3. Let 𝑔 = (𝔞, 𝑔 𝑓 𝑖 , 𝑔∞) be a matrix pair. We call 𝑥1, . . . , 𝑥𝑛 the
columns of 𝑔 𝑓 𝑖 For any 𝑃 ∈ 𝑀 , we set:

𝑔𝑃 =


𝑔∞ if 𝑃 ∈ 𝑀∞(
𝜋

ord𝑃 (𝔞1 )
𝑃

𝑥1 . . . 𝜋
ord𝑃 (𝔞𝑛 )
𝑃

𝑥𝑛

)
otherwise

and we let rép(𝑔) = (𝑔𝑃)𝑃∈𝑋 be the répartition matrix associated to 𝑔.

Remark 5.2.4. It is clear that theO𝑅-lattice 𝑅(rép(𝑔)) corresponds to the lattice
pair LP(𝑔). Therefore, in order to give an algorithm to realise any construction
discussed in Section 5.1, it is enough to give an algorithmic construction of a
matrix pair 𝑔 such that rép(𝑔) corresponds to the same construction in terms of
répartition matrices. In particular, any construction directly compatible with
localisations is compatible with this correspondence.

We get a first batch of straightforward constructions:

Definition 5.2.5. Let 𝑔 = (𝔞, 𝑔 𝑓 𝑖 , 𝑔∞) and 𝑔′ = (𝔞′, 𝑔′
𝑓 𝑖
, 𝑔′∞) be matrix pairs

of respective ranks 𝑛 and 𝑛′.
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1. We define det(𝑔) =
(∏𝑛

𝑖=1 𝔞𝑖 , det(𝑔 𝑓 𝑖), det(𝑔∞)
)
.

2. If 𝐼 is a fractional ideal of O 𝑓 𝑖 , we set deg(𝐼) =
∑
𝑃∈𝑋 𝑓 𝑖 ord𝑃 (𝐼). If

𝑎 ∈ 𝑘×, we set deg 𝑓 𝑖 (𝑎) = deg(𝑎O 𝑓 𝑖) and deg∞(𝑎) = − deg 𝑓 𝑖 (𝑎) =∑
𝑃∈𝑋∞ 𝑣𝑃 (𝑎).

3. If 𝑛 = 1, we set deg(𝑔) = deg(𝔞) + deg 𝑓 𝑖 (𝑔 𝑓 𝑖 + deg∞(𝑔∞). If 𝑟 > 1, we
set deg(𝑔) = deg(det(𝑔)). Then, we define deg(LP(𝑔)) = − deg(𝑔).

4. We define

𝑔⊗𝑔′ =
(
(𝔞1𝔞

′
1, 𝔞1𝔞

′
2 . . . , 𝔞1𝔞

′
𝑛′ , 𝔞2𝔞

′
1, . . . , 𝔞𝑛𝔞

′
𝑛′), 𝑔 𝑓 𝑖 ⊗ 𝑔′𝑓 𝑖 , 𝑔∞ ⊗ 𝑔′∞

)
.

5. We define 𝑔 ⊕ 𝑔′ =
(
(𝔞1, . . . , 𝔞𝑛, 𝔞

′
1, . . . , 𝔞

′
𝑛′), 𝑔 𝑓 𝑖 ⊕ 𝑔′𝑓 𝑖 , 𝑔∞ ⊕ 𝑔′∞

)
.

6. We define 𝑔∨ =

(
(𝔞−1

1 , . . . , 𝔞−1
𝑟 ), (𝑔𝑡

𝑓 𝑖
)−1, (𝑔𝑡∞)−1

)
.

Theorem 5.2.6. Let 𝑔 and 𝑔′ be matrix pairs. We have

1. rép(det(𝑔)) = det(rép(𝑔)).

2. deg(𝑔) = deg(rép(𝑔)).

3. rép(𝑔 ⊗ 𝑔′) = rép(𝑔) ⊗ rép(𝑔′).

4. rép(𝑔 ⊕ 𝑔′) = rép(𝑔) ⊕ rép(𝑔′).

5. rép(𝑔∨) = rép(𝑔)∨.

Proof. All of these constructions may be checked locally. One must check
that the operation done on the tuple of ideals matches the movements of the
columns of 𝑔 𝑓 𝑖 . □

Remark 5.2.7. It is more tedious to translate our statement on homomorphisms
of lattices directly. Instead, we may simply define Hom(𝐿, 𝐿′) = 𝐿∨ ⊗ 𝐿′

and recall the isomorphism 𝑀𝑛′ ,𝑛 (𝑘) ≃ 𝑘𝑛𝑛
′ given by the basis of elementary

matrices. Then, an algorithm for computing the lattice pair of homomorphisms
follows from Theorem 5.2.6.

Example 5.2.8. We let 𝐹 = F7 and consider the genus 1 function field 𝑘 =

𝐹 (𝑥, 𝑦)/(𝑦2 − 𝑥3 − 𝑥). We let 𝜋 =
𝑦

𝑥2 be a local uniformiser at infinity. Observe
that 𝔭 = ⟨𝑥, 𝑦⟩ is a prime ideal of O 𝑓 𝑖 . We consider the lattice pair

𝐿 = LP

((
O 𝑓 𝑖 , 𝔭

−1
)
,

(
𝑥2

𝑥2+4 0
0 1

)
,

(
1 −𝜋−1

0 1

))
.
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We compute

det(𝐿) = LP
(
𝔭−1,

𝑥2

𝑥2 + 4
, 1

)
,

and therefore
deg(𝐿) = − deg(𝔭−1) = 1.

5.2.2 Restriction and conorm of a lattice pair

We adopt the same notations and setting as in Section 5.1.4. We also write O′
𝑓 𝑖

and O′
∞ for the respective integral closures of O 𝑓 𝑖 and O∞ in 𝐾 .

Definition 5.2.9. Let 𝐿′ = (𝐿′
𝑓 𝑖
, 𝐿′∞) be a lattice pair of rank 𝑛 over 𝐾 . We

define Rest(𝐿′) as the pair (Rest(𝐿′
𝑓 𝑖
),Rest(𝐿′∞)), where Rest(𝐿′∗) is the lattice

𝐿′∗ seen as an O∗-lattice under the identification 𝐾𝑛 = 𝑘𝑛𝑑 (where ∗ is either
𝑓 𝑖 or ∞).

Let 𝐿 = (𝐿 𝑓 𝑖 , 𝐿∞) be a lattice pair of rank 𝑟 over 𝑘 . We define CoN(𝐿)
as the pair (CoN(𝐿 𝑓 𝑖),CoN(𝐿∞)), where CoN(𝐿∗) = O′

∗𝐿∗ ⊂ 𝐾𝑟 is an O′
∗-

lattice.

One checks readily that these definitions are compatible with the equivalent
definitions on O𝑅-lattices.

Matrix pairs for Rest(𝐿) and CoN(𝐿) may easily be computed.

Definition 5.2.10. Let 𝑔 = (𝔞, 𝑔 𝑓 𝑖 , 𝑔∞) be a matrix pair of rank 𝑛 defined over
𝑘 . We set

CoN(𝑔) =
(
(𝔞1O

′
𝑓 𝑖 , . . . , 𝔞𝑛O

′
𝑓 𝑖), 𝑔 𝑓 𝑖 , 𝑔∞

)
.

The definition of the restriction of a matrix-pair is more tedious to write
down. First, we define the restriction of a pseudo-matrix. The definition is
given over any Dedekind domain with fraction field 𝐾 , as it applies to both O 𝑓 𝑖

and O∞, with the specificity that we only consider pseudo matrices with trivial
coefficient ideals over O∞, since it is a PID.

Definition 5.2.11. Let O′
∗ be a Dedekind domain with fraction field 𝐾 , and set

O∗ = O′
∗ ∩ 𝑘 . Let 𝑃𝑀 = (𝔞, 𝑔) be a pseudo-matrix of rank 𝑛 over O′

∗. The
ideals 𝔞𝑖 each admit a pseudo-basis (𝔟𝑖1, . . . , 𝔟𝑖𝑑), (𝑎𝑖1, . . . , 𝑎𝑖𝑑) over O∗.

Then, we define the pseudo-matrix Rest(𝑃𝑀) of rank 𝑛𝑑 over O∗ with
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coefficient ideals (𝔟11, 𝔟12, . . . , 𝔟1𝑑 , 𝔟21, . . . , 𝔟𝑛𝑑) and matrix

©­­­­­«
𝑎11𝑔11 𝑎12𝑔11 . . . 𝑎1𝑛𝑔11 𝑎21𝑔12 . . . 𝑎𝑛𝑑𝑔1𝑛

𝑎11𝑔21 𝑎12𝑔21 . . . 𝑎1𝑛𝑔21 𝑎21𝑔22 . . . 𝑎𝑛𝑑𝑔2𝑛
...

...
. . .

...
...

. . .
...

𝑎11𝑔𝑛1 𝑎12𝑔𝑛1 . . . 𝑎1𝑛𝑔𝑛1 𝑎21𝑔𝑛2 . . . 𝑎𝑛𝑑𝑔𝑛𝑛

ª®®®®®¬
,

where each 𝑎𝑖 𝑗𝑔ℓ𝑚 is understood as a column vector in 𝑘𝑑 representing an
element of 𝐾 in the usual fixed basis.

Now, if 𝑔′ = (𝔞′, 𝑔′
𝑓 𝑖
, 𝑔′∞) is a matrix pair over 𝐾 , we may define

Rest(𝑔′) = (𝔞, 𝑔 𝑓 𝑖 , 𝑔∞),

where (𝔞, 𝑔 𝑓 𝑖) = Rest((𝔞′, 𝑔′
𝑓 𝑖
)), and likewise 𝑔∞ = Rest(𝑔′∞), where it is

understood that all coefficient ideals of 𝑔′∞ are equal to 𝐴′
∞, which admits a

basis over O∞.

Theorem 5.2.12. Let 𝑔 be a matrix pair over 𝑘 . Then,

CoN(LP(𝑔)) = LP(CoN(𝑔)).

Let 𝑔′ be a matrix pair over 𝐾 . Then,

Rest(LP(𝑔′)) = LP(Rest(𝑔′)).

Proof. The first claim is straightforward. For the second one, the definition of
the matrix pair Rest(𝑔′) is simply an explicit writing of pseudo-bases of lattices
𝐿′
𝑓 𝑖

and 𝐿′∞ in 𝐾𝑛 identified with 𝑘𝑑𝑛. □

This last theorem allows us to construct traces of vector bundles as defined
in Section 5.1.5, but also to express the restriction to 𝐹 (𝑥) of a lattice pair,
which will be a vital tool in the computation of global sections.

Example 5.2.13. We compute the restriction Rest(𝐿) over 𝐹 (𝑥) of the lattice
pair 𝐿 from Example 5.2.8. A basis of O 𝑓 𝑖 over 𝐹 [𝑥] is (1, 𝑦), a 𝐹 [𝑥]-basis
of 𝔭−1 is (1, 𝑦

𝑥
) and a basis of O∞ over the valuation ring at infinity of 𝐹 (𝑥) is

(1, 𝜋) = (1, 𝑦
𝑥2 ). It follows that Rest(𝐿) =

(
𝔞, 𝑔 𝑓 𝑖 , 𝑔∞

)
, with

𝔞 = (𝐹 [𝑥], 𝐹 [𝑥], 𝐹 [𝑥], 𝐹 [𝑥]),

𝑔 𝑓 𝑖 =

©­­­­­«
𝑥2

𝑥2+4 0 0 0
0 𝑥2

𝑥2+4 0 0
0 0 1 0
0 0 0 1

𝑥

ª®®®®®¬
,
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and

𝑔∞ =

©­­­­«
1 0 0 −1
0 1

𝑥2
−𝑥
𝑥2−1 0

0 0 1 0
0 0 0 1

𝑥2

ª®®®®¬
.

5.2.3 Computing cohomology groups and extensions

If 𝐿 is a lattice pair, we define 𝐻𝑖 (𝐿) as 𝐻𝑖 (𝐿𝑅) for 𝑖 ∈ {0, 1}. Given a matrix
pair 𝑔, we aim to compute 𝐹-bases for the spaces 𝐻0(LP(𝑔)) and 𝐻1(LP(𝑔)).

Computing global sections of a lattice pair

The computation of 𝐻0(𝐿) relies on the following simple observation:

Lemma 5.2.14. Let 𝐿 = (𝐿 𝑓 𝑖 , 𝐿∞) be a lattice pair. Then 𝐻0(𝐿) = 𝐿 𝑓 𝑖 ∩ 𝐿∞.

Proof. This lemma is clear using Remark 5.1.4. □

We first assume that 𝑘 = 𝐹 (𝑥). In this case, note that O 𝑓 𝑖 = 𝐹 [𝑥] is a
PID and every projective O 𝑓 𝑖-module is free. Therefore, we omit the tuple of
ideals 𝔞 in every matrix pair and assume that all ideals involved are equal to
O 𝑓 𝑖 . Then, the computation of the intersection 𝐿 𝑓 𝑖 ∩ 𝐿∞ reduces to matrix
reduction as discussed in Section 2.2.2. The method discussed here is adapted
from [46, Lemma 25] and [45].

Let (𝑔 𝑓 𝑖 , 𝑔∞) be a matrix pair of 𝑘 of rank 𝑛. Then, the matrix pair
𝑔′ = (𝑔−1

∞ 𝑔 𝑓 𝑖 , 𝐼𝑟 ) represents an isomorphic lattice pair, and 𝐻0(LP(𝑔)) =

𝑔∞
(
𝐻0(LP(𝑔′))

)
. Upon applying the global isomorphism 𝑔−1

∞ , we may assume
without loss of generality that 𝑔∞ is the identity matrix.

Then, a vector 𝑣 ∈ 𝑘𝑛 lies in 𝐿∞ if and only it |𝑣 | ≤ 0 (see Definition 2.2.1).
Assume that 𝑒1, . . . , 𝑒𝑟 is a reduced basis of 𝐿 𝑓 𝑖 , in the sense that the matrix(
𝑒1 . . . 𝑒𝑟

)
is reduced. Then, by Proposition 2.2.3,

∑𝑟
𝑖=1 𝑎𝑖𝑒𝑖 ∈ 𝐿∞ if and

only if deg(𝑎𝑖) ≤ −|𝑒𝑖 | for all 1 ≤ 𝑖 ≤ 𝑟 . Since
∑𝑟
𝑖=1 𝑎𝑖𝑒𝑖 ∈ 𝐿 𝑓 𝑖 if and only if

𝑎𝑖 ∈ 𝐹 [𝑥] for all 1 ≤ 𝑖 ≤ 𝑟 , a basis of 𝐻0(LP(𝑔)) is

(𝑥 𝑗𝑒𝑖) 1≤𝑖≤𝑟
0≤ 𝑗≤−|𝑒𝑖 |

.

We write this algorithm as Algorithm 3 for the reader’s convenience.

Theorem 5.2.15. If 𝑘 = 𝐹 (𝑥), Algorithm 3 outputs a 𝐹-basis of 𝐻0(LP(𝑔)).
If 𝐹 is a finite field, then Algorithm 3 runs in polynomial time.
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Input: a matrix pair 𝑔 = (𝑔 𝑓 𝑖 , 𝑔∞) over F(X)
Output: A 𝐹-basis of 𝐻0(LP(𝑔))

1 Set 𝑀 = (𝑔∞)−1𝑔 𝑓 𝑖;
2 Compute 𝑑 ∈ 𝐹 [𝑥] such that 𝑑𝑀 ∈ 𝑀𝑛 (𝐹 [𝑥]);
3 Compute a reduced basis B = (𝑏1, . . . , 𝑏𝑛) of the 𝐹 [𝑥]-lattice

generated by the columns of 𝑑𝑀;

4 return
{
𝑥 𝑗

𝑑
𝑔∞(𝑏𝑖) : 1 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑗 ≤ deg(𝑑) − |𝑏𝑖 |

}
;

Algorithm 3: Computing the global sections of a lattice pair over P1
𝐹

.

Proof. The correctness of Algorithm 3 has already been discussed above.
Since there exist efficient algorithms for computing a reduced basis (see Sec-
tion 2.2.2), and since the size of the output is at most 𝑛(deg(𝑑) + 1), the
algorithm runs in polynomial time. □

Corollary 5.2.16. For a general separable extension 𝑘/𝐹 (𝑥) of degree 𝑑 and
a matrix pair 𝑔, a basis of 𝐻0(LP(𝑔)) may be computed in polynomial time.

Proof. First, compute 𝐻0(Rest(LP(𝑔))) using Algorithm 3. Then, applying
Proposition 5.1.22, a basis of 𝐻0(Rest(LP(𝑔))) is a basis of 𝐻0(LP(𝑔)) upon
the identification 𝑘𝑛 = 𝐹 (𝑥)𝑛𝑑 . A representation of the vectors of the basis in
𝑘𝑛 may be computed using the basis 1, 𝑦, . . . , 𝑦𝑑−1. □

Remark 5.2.17. In Algorithm 3, we may compute the Popov normalised form
of the matrix 𝑀 instead of a mere reduced equivalent matrix if we want the
algorithm to output a more predictable basis of 𝐻0(LP(𝑔)).

Example 5.2.18. We gather again notations from Examples 5.2.8 and 5.2.13.
Compute

𝑀 ≔ 𝑔−1
∞ 𝑔 𝑓 𝑖 =

©­­­­­«
𝑥2

𝑥2+4 0 0 0
0 𝑥4

𝑥2+4 0 0
0 𝑥3

𝑥2−1 1 0
𝑥 0 0 𝑥

ª®®®®®¬
.

We compute the Popov form of its numerator and obtain the reduced form

𝑀 ′ =

©­­­­­«
𝑥2

𝑥2+4 0 0 4𝑥
𝑥2+4

0 𝑥3

𝑥2−1
2𝑥4

𝑥4+3𝑥2+3 0
0 1 −𝑥 0
0 0 0 𝑥

ª®®®®®¬
.
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It follows that a basis of 𝐻0(Rest(𝐿)) is

𝑔∞

©­­­­­«
𝑥2

𝑥2+4
0
0
0

ª®®®®®¬
=

©­­­­­«
𝑥2

𝑥2+4
0
0
0

ª®®®®®¬
.

Therefore, a basis of 𝐻0(𝐿) is (
𝑥2

𝑥2+4
0

)
.

We also observe that given an element 𝑓 ∈ 𝐻0(𝐿) for some lattice pair 𝐿,
we may compute the coordinates of 𝑓 in terms of a given basis of 𝐻0(𝐿) (for
instance the one computed by the algorithm of Corollary 5.2.16).

Lemma 5.2.19. Let 𝐿 be a lattice pair of rank 𝑛 and let 𝑓 ∈ 𝐻0(𝐿) ⊂ 𝑘𝑛.
Let 𝑚1, . . . , 𝑚𝑠 be a 𝐹-basis of 𝐻0(𝐿). We may compute in polynomial time a
vector 𝑎 ∈ 𝐹𝑠 such that 𝑓 =

∑
𝑖=1𝑠 𝑎𝑖𝑚𝑖 .

Proof. Fix a place 𝑃 of 𝑘 and a local uniformiser 𝜋𝑃 at 𝑃. For any element
𝛼 ∈ 𝑘 and 𝑖 ∈ Z, we write 𝛼 (𝑖) for the coefficient of degree 𝑖 of 𝛼 written as a
formal series in the variable 𝜋𝑃. For each 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑠, let 𝑚𝑖 𝑗 be the
𝑖th component of 𝑚 𝑗 . We write 𝑣𝑖 = min1≤ 𝑗≤𝑠 ord𝑃 (𝑚𝑖 𝑗) (if all the 𝑚𝑖 𝑗 are
zero, simply set 𝑣𝑖 = 0). Then, for any ℓ ∈ N we define the map

𝜑𝑃,ℓ : 𝑘𝑛 → 𝐹𝑛ℓ

𝑓 ↦→ ( 𝑓 (𝑣𝑖+ 𝑗 )
𝑖

) 1≤𝑖≤𝑟
0≤ 𝑗≤ℓ−1

.

Now, consider the matrix 𝑁𝑃,ℓ of size 𝑛ℓ× 𝑠 whose columns are the 𝜑𝑃,ℓ (𝑚 𝑗).
The matrix 𝑁𝑃,ℓ has rank 𝑠 if and only if the restriction of 𝜑𝑃,ℓ to 𝐻0(𝐿)
is injective and in this case, the coordinates of an element 𝑓 ∈ 𝐻0(𝐿) with
respect to basis 𝑚1, . . . , 𝑚𝑠 may be computed as a vector 𝑎 ∈ 𝐹𝑠 such that
𝑁𝑃,ℓ𝑎 = 𝜑𝑃,ℓ ( 𝑓 ).

All that is left is to prove that the restriction of 𝜑𝑃,ℓ to 𝐻0(𝐿) is in-
jective for some ℓ bounded by a polynomial in the size of the input. Let
𝑓 =

∑𝑠
𝑖= 𝑗 𝑎 𝑗𝑚 𝑗 ∈ 𝐻0(𝐿). Then, for 𝑖 ∈ [𝑟], if 𝑓𝑖 ≠ 0 then ht( 𝑓𝑖) ≤∑𝑠

𝑗=1 ht(𝑚𝑖 𝑗), and thus ord𝑃 ( 𝑓𝑖) ≤ ∑𝑠
𝑗=1 ht(𝑚𝑖 𝑗). It follows that if ℓ >

max1≤𝑖≤𝑛 𝑣𝑖 +
∑𝑠
𝑗=1 ht(𝑚𝑖 𝑗), the map 𝜑𝑃,ℓ is injective over 𝐻0(𝐿). Since 𝑣𝑖

is itself bounded by max1≤ 𝑗≤𝑠 ht(𝑚𝑖 𝑗), ℓ may indeed be chosen of polynomial
size in the input. □
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Computing the group 𝐻1

By Serre duality, computing the group 𝐻1(𝐿) for a lattice pair 𝐿 can be done by
computing the 𝐹-vector space𝐻0(𝜄(𝜔)−1𝐿∨) for some differential𝜔. However,
for applications such as computing extensions of vector bundles, it is desirable
to be able to find an element of 𝑅𝑛 representing a given element of 𝐻1(𝐿).

Our strategy will be to adapt the linearisation technique introduced in
Lemma 5.2.19 to turn the inversion of the Serre duality map into a linear
equation.

Fix 𝑄0 ∈ 𝑀∞, and a local uniformiser 𝜋𝑄0 such that ord𝑄 (𝜋𝑄0) = 0 for
𝑄 ∈ 𝑀∞ \ {𝑄0} (it may be computed by solving an instance of the Chinese
Remainder Problem). Let 𝜅0 be the residue field of 𝑄0 and let 𝜔 = 𝑑 (𝜋𝑄0).
For any integer ℓ, we write ⌈ℓ⌉0 for the smallest power of |𝜅0 | larger or equal to
ℓ. That is, ⌈ℓ⌉0 = |𝜅0 | ⌈log(ℓ )/log( |𝜅0 | ) ⌉ .

We present Algorithm 4 which, given a basis of𝐻0(𝜄(𝜔)−1𝐿∨) of size 𝑠 and
a linear form represented in this basis by a row vector 𝜑 ∈ 𝐹𝑠, outputs a vector
𝑣 ∈ 𝑘𝑛 such that the infinite répartition vector 𝑣∞ satisfies 𝜃𝜔 (·, 𝑣∞) = 𝜑.

Input: A matrix pair 𝑔 = (𝔞, 𝑔 𝑓 𝑖 , 𝑔∞) over 𝑋
Input: A matrix 𝑀 = (𝑚𝑖, 𝑗) ∈ 𝑀𝑛,𝑠 (𝑘) whose columns are a 𝐹-basis

of 𝐻0(𝜄(𝜔)−1𝐿∨)
Input: A row vector 𝜑 ∈ 𝑀1,𝑠 (𝐹) representing a linear form on

𝐻0(𝜄(𝜔)−1𝐿∨) written in the basis given by 𝑀
Output: 𝑎 ∈ 𝑘𝑛 such that the linear form represented by 𝑓 is

𝜃𝜔 (·, 𝑎∞)
1 For 𝑖 ∈ [𝑟] and 𝑄 ∈ 𝑋∞, set 𝑣𝑄

𝑖
= min 𝑗∈[𝑠]

(
ord𝑄 (𝑚𝑖, 𝑗)

)
;

2 Compute the matrix 𝑁𝑄0,ℓ (see Lemma 5.2.19) for increasing values
of ℓ until it has rank 𝑠;

3 Let 𝑥 =
(
𝑥1 . . . 𝑥𝑛ℓ

)
∈ 𝑀1,𝑛ℓ (𝜅0) such that Tr𝜅0/𝐹 (𝑥𝑁𝑄0,ℓ) = 𝜑;

4 Let �̃� =
(
�̃�1 . . . �̃�𝑟ℓ

)
∈ 𝑀1,𝑛ℓ (O𝑄0) be a lift of 𝑥 in 𝑀1,𝑛ℓ (O𝑄0)

such that ord𝑄 (�̃�𝑖) ≥ 1 for all 𝑖 ∈ [𝑟ℓ] and 𝑄 ∈ 𝑀∞ \ {𝑄0};
5 Let 𝜋 ∈ 𝑘 such that ⌈ℓ⌉0 ord𝑄 (𝜋) ≥ max𝑖∈[𝑟 ] −𝜈𝑄𝑖 for all

𝑄 ∈ 𝑋∞ \ {𝑄0} and ord𝑄0 (𝜋 − 1) ≥ 1;

6 return
(
𝜋⌈ℓ ⌉0𝜋

−𝑣𝑄0
𝑖

−1
𝑄0

∑ℓ−1
𝑗=0 𝜋

− 𝑗
𝑄0
�̃�
⌈ℓ ⌉0
(𝑖−1)ℓ+ 𝑗+1

)
1≤𝑖≤𝑟

Algorithm 4: Representing elements of 𝐻1(𝐿)
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Theorem 5.2.20. Algorithm 4 is correct and terminates after a polynomial
amount of arithmetic operations in 𝐹.

Proof. First, observe that Algorithm 4 terminates in polynomial time: each
line of the algorithm corresponds either to linear algebra over 𝐹 or to a task
discussed in Section 2.2.

We prove that the output of the algorithm is correct. Set 𝑐 = (𝑐1, . . . , 𝑐𝑛)
as the coordinates of the output and

(
𝜑1 . . . 𝜑𝑠

)
= 𝜑. If 𝑀 𝑗 is the vector

given as the 𝑗-th column of 𝑀 , we claim that 𝜃𝜔 (𝑀 𝑗 , 𝑐∞) = 𝜑 𝑗 .
Now, 𝜃𝜔 (𝑀 𝑗 , 𝑐∞) =

∑𝑛
𝑖=1

∑
𝑄∈𝑋∞ res𝜋𝑄 (𝑚𝑖, 𝑗𝑐𝑖𝜔). And the result will

follow from the identity 𝑥𝑁𝑄0,ℓ = 𝜑 if we prove that for 𝑖 ∈ [𝑟] and 𝑗
𝑖𝑛𝑠, setting

𝜇𝑖 𝑗 =

(
𝜋⌈ℓ ⌉0𝜋

−𝑣𝑄0
𝑖

−1
𝑄0

(
ℓ−1∑︁
𝛼=0

𝜋−𝛼𝑄0
�̃�
⌈ℓ ⌉0
(𝑖−1)ℓ+𝛼+1

)
𝑚𝑖, 𝑗𝜔

)
,

we have

𝜇
(−1)
𝑖 𝑗

=

ℓ−1∑︁
𝛼=0

𝑥 (𝑖−1)ℓ+𝛼+1𝑚
(−𝑣𝑄0

𝑖
+𝛼)

𝑖, 𝑗

and ord𝑄 (𝜇𝑖 𝑗) ≥ 0 for 𝑄 ∈ 𝑀∞ \ {𝑄0} where, for any 𝑎 ∈ 𝑘 and integer 𝑛,
𝑎 (𝑛) is the coefficient of degree 𝑛 in the expansion of 𝑎 as a formal series in
variable 𝜋𝑄0 . We fix 𝑖 ∈ [𝑟] and 𝑗 ∈ [𝑠].

Let 𝑄 ∈ 𝑀∞ \ {𝑄0}. By construction, ord𝑄 (𝜋⌈ℓ ⌉0) ≥ max(−𝑣𝑄
𝑖
) and it

follows readily that ord𝑄 (𝜇𝑖 𝑗) ≥ 0 since ord𝑄 (𝜋𝑄0) = 0 and �̃�𝑚 ∈ O𝑄 for all
𝑚 ∈ [𝑟𝑛].

Now, we have the following:

𝜋⌈ℓ ⌉0 = 1 +𝑂 (𝜋ℓ𝑄0
)

and
�̃�
⌈ℓ ⌉0
𝑖

= 𝑥𝑖 +𝑂 (𝜋ℓ𝑄0
).

Then, we get

𝜇𝑖, 𝑗 =

(
ℓ−1∑︁
𝛼=0

𝑥 (𝑖−1)ℓ+𝛼+1𝑚
(−𝑣𝑄0

𝑖
+𝛼)

𝑖, 𝑗

)
𝜋−1
𝑄0

+𝑂 (1).

□

Corollary 5.2.21. There exists a polynomial algorithm which, given matrix
pairs 𝑔′ and 𝑔′′, as well as a row vector 𝜑 representing a 𝐹-linear form over

𝐻0
(
𝜄(𝜔)−1 Hom(𝑔′, 𝑔′′)

)
,
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returns the corresponding extension of LP(𝑔′′) by LP(𝑔′).

Proof. Let 𝑛′, 𝑛′′ be the respective ranks of 𝑔′ and 𝑔′′. Using Algorithm 4, one
may compute 𝜅 ∈ 𝑘𝑛′×𝑛′′ such that the infinite répartition matrix 𝜅 represents the
element of 𝐻1 (Hom(𝑅(𝑔′′), 𝑅(𝑔′))) = Ext1 (𝑅(𝑔′′), 𝑅(𝑔′)) corresponding to
𝜑.

Then, adapting Theorem 5.1.19, the corresponding extension is given by
the matrix pair (𝔞, 𝑔 𝑓 𝑖 , 𝑔∞) with

𝔟 = (𝔞′1, . . . , 𝔞
′
𝑛, 𝔞

′′
1 , . . . , 𝔞

′′
𝑛′),

𝑔 𝑓 𝑖 =

(
𝑔′
𝑓 𝑖

(0)
(0) 𝑔′′

𝑓 𝑖

)
,

and

𝑔∞ =

(
𝑔′∞ −𝜅𝑔′′∞
(0) 𝑔′′∞

)
.

□

Example 5.2.22. Let 𝐿 be again as in Examples 5.2.8, 5.2.13 and 5.2.18 Since
deg(𝐿) = 1, we get 𝐻1(𝐿) = 0. Instead, we compute 𝐻1(𝐿∨). We let 𝜔 = 𝑑𝜋.
Since the field 𝑘 has genus 1, the differential 𝜔 has a principal divisor. It is the
divisor of 𝑥2+3

𝑥2 , and we may represent 𝜄(𝜔)−1 by the following matrix pair of
size 1: (

O 𝑓 𝑖 ,
𝑥2

𝑥2 + 3
, 1

)
.

Now, 𝐻1(𝐿∨) = 𝐻0(𝜄(𝜔)−1𝐿). Applying Algorithm 3, we compute a basis
for the 𝐹-vector space 𝐻0(𝜄(𝜔)−1𝐿). We find that it has dimension 1 and is
generated by

𝑣 ≔

(
𝑥4

𝑥4+5
0

)
.

Since 𝑘 has only one place at infinity and [𝐻0(𝜄(𝜔)−1𝐿)) : 𝐹] = 1, applying
Algorithm 4 is straightorward: as 𝑥4

𝑥4+5 = 1 +𝑂 (𝜋8),

res∞

(
𝑣,

(
𝜋−1

0

))
= 1.

Then, the element of 𝐻1(𝐿∨) dual to 𝑣 is represented by the infinite répartition

vector

(
𝜋−1
∞
0

)
.
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5.2.4 Computing isomorphisms between lattice pairs

We want to decide whether two lattice pairs are isomorphic and, if they are, find
an isomorphism. We first give a probabilistic algorithm of the Monte-Carlo type
for this task when the field 𝐹 is large enough and a deterministic algorithm for a
weakening of the problem (the lattice pairs are assumed indecomposable) when
𝐹 is any finite field. Then, a general solution will be given in Section 5.2.5.

Theorem 5.2.23. Let 𝐿, 𝐿′ be lattice pairs such that

[End(𝐿) : 𝐹] = [Hom(𝐿, 𝐿′) : 𝐹] = [Hom(𝐿′, 𝐿) : 𝐹] .

Let 𝑠 be the dimension of these spaces and we assume that |𝐹 | > 𝑠. There is a
polynomial Monte-Carlo algorithm which outputs an isomorphism 𝜑 : 𝐿 → 𝐿′

if it exists, with probability at least 1 − 𝑠/|𝑆 |, where 𝑆 is a subset of 𝐹 in which
we can sample random elements.

Proof. First, observe that we may compute End(𝐿),End(𝐿′) and Hom(𝐿, 𝐿′)
by applying Corollary 5.2.16 to the lattice pairs 𝐿∨ ⊗ 𝐿, 𝐿∨ ⊗ 𝐿′ and (𝐿′)∨ ⊗ 𝐿.
Their elements are represented as matrices in 𝑀𝑛 (𝑘) (𝑛 the rank of 𝐿 and 𝐿′),
and the matrix product gives a bilinear map from Hom(𝐿, 𝐿′) ×Hom(𝐿′, 𝐿) to
End(𝐿). This, together with a fixed choice of bases of Hom(𝐿′, 𝐿) and End(𝐿)
gives a map 𝛼 : Hom(𝐿, 𝐿′) → 𝑀𝑠 (𝐹). Observe that 𝑓 ∈ Hom(𝐿, 𝐿′) is an
isomorphism if and only if 𝛼( 𝑓 ) is an invertible matrix. That is, if and only if
det(𝛼( 𝑓 )) = 0.

Now, setting 𝑓 =
∑𝑠
𝑖=1 𝑎𝑖𝑚𝑖 , where (𝑚𝑖) is a basis of Hom(𝐿, 𝐿′), we

see that det(𝛼( 𝑓 )) is a homogeneous polynomial of degree 𝑠 in the 𝑎𝑖 . By
the Schwartz-Zippel lemma, if 𝑆 ⊂ 𝐹 is a subset of size at least 𝑠 + 1, the
probability that a uniform random element of

⊕𝑠

𝑗=1 𝑆𝑚 𝑗 is an isomorphism is
at least 1 − 𝑠/|𝑆 |. Therefore, sampling a random element of Hom(𝐿, 𝐿′) is a
valid algorithm. □

When 𝐹 is a finite field, the approach of Theorem 5.2.23 does not work if
𝑠 is too large, as the Schwartz-Zippel lemma fails. For now, we only give an
algorithm for the case that 𝐿 is an indecomposable lattice pair. This algorithm
will be used as a subroutine in Algorithm 6, which will then be used to compute
isomorphisms in the general case (see Corollary 5.2.30).

Lemma 5.2.24. Assume that 𝐹 is a finite field. Then Algorithm 5 is correct
and runs in polynomial time.
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Input: Matrix pairs 𝑔 and 𝑔′ of rank 𝑛 such that LP(𝑔) is
indecomposable

Output: A matrix 𝑇 ∈ 𝑀𝑛 (𝑘) giving an isomorphism from LP(𝑔) to
LP(𝑔′) if LP(𝑔) ≃ LP(𝑔′), and ⊥ otherwise

1 Compute structure constants for the 𝐹-algebra 𝐴 = End(LP(𝑔 ⊕ 𝑔′));
2 Compute sub-algebras 𝑆 and 𝑅 such that 𝐴 = 𝑆 ⊕ 𝑅, 𝑆 is semi-simple,

and 𝑅 is the Jacobson radical of 𝐴;
3 if 𝑆 is not simple then
4 return ⊥
5 end
6 Compute 𝑠 ∈ N, a finite extension 𝐹′/𝐹, and an isomorphism

𝜑 : 𝑆 ≃ 𝑀𝑠 (𝐹′);
7 if 𝑠 ≠ 2 then
8 return ⊥;
9 end

10 Compute 𝑃 ∈ 𝐺𝐿2𝑠 (𝐹′) such that 𝑃𝜑(IdLP(𝑔) )𝑃−1 =

(
1 0
0 0

)
and

𝑃𝜑(𝐼𝑑LP(𝑔′ ) )𝑃−1 =

(
0 0
0 1

)
;

11 return 𝜑−1

(
𝑃−1

(
0 0
1 0

)
𝑃

)
Algorithm 5: Computing isomorphisms between quasi-
indecomposable lattice pairs over finite fields
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Proof. We first discuss the algorithm line by line, proving that the task may be
executed in polynomial time.

Line 1: A basis of End(LP(𝑔 ⊕ 𝑔′)) may be computed using Corollary 5.2.16.
Then, the structure constants may be computed using Lemma 5.2.19.

Line 2: The Jacobson radical of 𝐴 may be computed using Item 1 of Proposi-
tion 3.1.7 and a basis of 𝑆 may be computed using Item 2.

Line 3: Checking that 𝑆 is simple can be done by checking if the centre of 𝑆
is a field. See Item 6 of Proposition 3.1.5

Line 6: This may be done using Item 4 of Proposition 3.1.7. Note that since
a finite field has a trivial Brauer group, a simple 𝐹-algebra is always of
the form 𝑀𝑛𝑖 (𝐹′), where 𝐹′ is a finite extension of 𝐹, and 𝐹′ is then the
centre of this algebra.

Line 10: Observe that the matrices 𝜑(𝐼𝑑LP(𝑔) ) and 𝜑(𝐼𝑑LP(𝑔′ ) ) are two orthog-
onal idempotents of rank 1 which sum to 𝐼2. They can be simultaneously
diagonalised as demanded by computing generators of their respective
images.

We now prove that the algorithm is correct. First, since LP(𝑔) is inde-
composable, by Proposition 5.1.26 we have 𝐷 (LP(𝑔) ⊕ LP(𝑔′)) ≃ 𝑀2(𝐹′) for
some finite extension 𝐹′/𝐹 if and only if LP(𝑔′) ≃ LP(𝑔). Hence, our two
tests do detect correctly whether LP(𝑔) ≃ LP(𝑔′).

Assume that LP(𝑔) ≃ LP(𝑔′). Then, after conjugating by matrix 𝑃 as in
Line 10, 𝜑 gives an isomorphism from 𝑆 to the straightforward representation of
𝐷 (LP(𝑔)⊕LP(𝑔′)). Then, the matrix we return corresponds to an isomorphism
from LP(𝑔) to LP(𝑔′). □

5.2.5 Algorithms for homomorphisms of lattice pairs

This section presents algorithms related to homomorphisms of lattice pairs.
All the algorithms we present rely on the computation of a pseudo-Hermite
normal form of matrices with coefficients in O 𝑓 𝑖 and O∞. They are, therefore,
only polynomial-time if Conjecture 2.2.12 is assumed.

We first give algorithms to compute kernels and images of homomorphisms
of lattice pairs. Since a lattice pair is normally composed of O 𝑓 𝑖 and O∞-
submodules of 𝑘𝑛 of full rank, we are not able to give a set-theoretical definition
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of subobjects, such as kernels and images. Instead, we turn to a more categorical
approach:

Definition 5.2.25. Let 𝐿, 𝐿′ be lattice pairs of respective ranks 𝑛 and 𝑛′, and
consider a homomorphism 𝑓 : 𝑘𝑛 → 𝑘𝑛

′ from 𝐿 to 𝐿′ (that is, 𝑓 (𝐿 𝑓 𝑖) ⊂ 𝐿′
𝑓 𝑖

and 𝑓 (𝐿∞) ⊂ 𝐿′∞).

1. An image of 𝑓 is a pair (𝐼, 𝜄), where 𝐼 is a lattice pair of rank 𝑛𝑖 = rank( 𝑓 )
and 𝜄 : 𝑘𝑛𝑖 → 𝑘𝑛

′ is an injective linear map such that 𝜄(𝐼 𝑓 𝑖) = 𝑓 (𝐿 𝑓 𝑖)
and 𝜄(𝐼∞) = 𝑓 (𝐿∞).

2. A kernel of 𝑓 is a pair (𝜅, 𝜄) such that 𝜅 is a lattice pair of rank 𝑛𝜅 =

𝑛−rank( 𝑓 ) and 𝜄 : 𝑘𝑛𝜅 → 𝑛𝑟 is an injective linear map such that 𝜄(𝜅 𝑓 𝑖) =
Ker 𝑓 ∩ 𝐿 𝑓 𝑖 and 𝜄(𝜅∞) = Ker 𝑓 ∩ 𝐿∞.

We observe that our definitions match the definitions of kernels and images
in the Abelian category of lattice pairs and that kernels and images are unique up
to isomorphism. To compute such images and kernels, we adopt a similar strat-
egy: compute the set-theoretical kernel and image and then use Theorem 5.2.26
below to compute a kernel and image as defined in Definition 5.2.25.

Theorem 5.2.26. Let 𝐿 be a lattice pair of rank 𝑛, let 𝑆 𝑓 𝑖 be a submodule
of 𝐿 𝑓 𝑖 of rank 𝑚 ≤ 𝑛 and let 𝑆∞ be a submodule of 𝐿∞ also of rank 𝑚. We
further assume that 𝑘𝑆 𝑓 𝑖 = 𝑘𝑆∞. Then we may compute in polynomial time a
lattice pair 𝐿′ of rank 𝑚 and a map 𝑓 : 𝐿′ → 𝐿 such that 𝑓 (𝐿′

𝑓 𝑖
) = 𝑆 𝑓 𝑖 and

𝑓 (𝐿′∞) = 𝑆∞.

Proof. Assume that the modules 𝑆 𝑓 𝑖 and 𝑆∞ are respectively given as the
images of a pseudo-matrix (𝔞, 𝐶 𝑓 𝑖) of size 𝑛 × 𝑚 and of a matrix 𝐶∞ of the
same size. Then, a matrix pair (𝔟, 𝑔 𝑓 𝑖 , 𝑔∞) of size𝑚 and a matrix𝐶 ∈ 𝑀𝑛,𝑚(𝑘)
will be a solution to the problem if

𝔟 = 𝔞,

𝐶 𝑓 𝑖 = 𝐶𝑔 𝑓 𝑖 ,

and
𝐶∞ = 𝐶𝑔∞.

We set 𝑔∞ = 𝐼𝑛, so the problem becomes

𝐶 𝑓 𝑖 = 𝐶∞𝑔 𝑓 𝑖 .
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However, since the matrices 𝐶 𝑓 𝑖 and 𝐶∞ both have rank 𝑚 and have equal
images (as 𝑘-linear maps), there exists a matrix 𝑔 𝑓 𝑖 ∈ 𝐺𝐿𝑚(𝑘) such that
𝐶 𝑓 𝑖 = 𝐶∞𝑔 𝑓 𝑖 and it may be computed in polynomial time by solving a system
of linear equations. □

Corollary 5.2.27. Given an oracle for Problem 2.2.11, there is an algorithm
which computes the image of a homomorphism of lattice pairs in polynomial
time.

Proof. Let 𝐿, 𝐿′ be lattice pairs of respective ranks 𝑛 and 𝑛′ and let 𝑔 =

(𝔞, 𝑔 𝑓 𝑖 , 𝑔∞) be a matrix pair representing 𝐿. Let 𝑓 : 𝐿 → 𝐿′ be a homomor-
phism represented by a matrix 𝐶 ∈ 𝑀𝑛′ ,𝑛 (𝑘). Now, 𝑓 (𝐿 𝑓 𝑖) is the image of the
pseudo-matrix (𝔞, 𝐶𝑔 𝑓 𝑖) and 𝑓 (𝐿∞) is 𝐶𝑔∞O𝑛

∞. By Proposition 2.2.10 (2), a
pseudo-matrix of full rank spanning 𝑓 (𝐿 𝑓 𝑖) and a matrix of full rank spanning
𝑓 (𝐿∞) may be computed in polynomial time from the Hermite normal forms of
pseudo-matrix (𝔞, 𝐶𝑔 𝑓 𝑖) over O 𝑓 𝑖 and matrix 𝐶𝑔∞ over O∞. Then, an image
of 𝑓 may be computed using Theorem 5.2.26. □

Corollary 5.2.28. Given an oracle for Problem 2.2.11, there is an algorithm
which computes the kernel of a homomorphism of lattice pairs in polynomial
time.

Proof. The proof is similar to that of Corollary 5.2.27. □

Finally, we may compute a splitting of a lattice pair.

Theorem 5.2.29. Given an oracle for Problem 2.2.11, Algorithm 6 gives a
correct output in polynomial time.

Proof. First, we prove that every step of the algorithm makes sense and may
be done in polynomial time.

Lines 1 to 4 and 6: This was already discussed in the proof of Lemma 5.2.24.

Line 8: can be done using Corollary 5.2.27.

Line 9: may be done using Algorithm 5.

Finally, the number 𝑡 of loop iterations is bounded by 𝑟 , the rank of 𝑔.
Now, we prove that the output of Algorithm 6 is correct. First, we prove

that 𝐿 ≔ LP(𝑔) is indeed isomorphic to
⊕

LP(𝑔𝑖1)𝑛𝑖 . By Proposition 5.1.26,

End(𝐿) =
⊕

𝑀𝑛𝑖 (𝐷 (End(𝐿𝑖))) ⊕ 𝐽 (End(𝐿)),
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Input: A matrix pair 𝑔 of rank 𝑛
Output: Matrix pairs 𝑔1, . . . , 𝑔𝑠, integers 𝑛1, . . . , 𝑛𝑠 and a matrix

𝐶 ∈ 𝑀𝑛 (𝑘) such that the LP(𝑔𝑖) are indecomposable lattice
pairs and 𝐶 gives an isomorphism

⊕𝑠

𝑖=1 LP(𝑔𝑖)𝑛𝑖 ≃ LP(𝑔)
1 Compute structure constants for the 𝐹-algebra 𝐴 = End(LP(𝑔));
2 Compute a Wedderburn-Malcev complement 𝐷 (𝐴);
3 Compute simple algebras (𝑆𝑖)𝑖∈[𝑡 ] such that 𝐷 (𝐴) ≃

⊕
𝑖∈[𝑡 ] 𝑆𝑖;

4 Compute the projection maps 𝑝𝑖 : 𝐷 (𝐴) → 𝑆𝑖;
5 for 𝑖 ∈ [𝑡] do
6 Compute 𝑛𝑖 ∈ N, a finite extension 𝐹𝑖 of 𝐹 and an isomorphism

𝜑𝑖 : 𝑆𝑖 → 𝑀𝑛𝑖 (𝐹𝑖);
7 Set 𝑒𝑖 𝑗 = (𝜑𝑖 ◦ 𝑝𝑖)−1 (Diag(0, . . . , 1, 0, . . . , 0)), with the nonzero

coefficient in 𝑗-th position, for 𝑗 ∈ [𝑛𝑖];
8 Compute images (𝑔𝑖 𝑗 , 𝐴𝑖 𝑗) of the endomorphisms 𝑒𝑖 𝑗 of LP(𝑔);
9 Compute isomorphisms 𝐵𝑖 𝑗 : LP(𝑔𝑖1) → LP(𝑔𝑖 𝑗);

10 end
11 Compute the matrix 𝐶 defined as the horizontal joint of the matrices

𝐴𝑖 𝑗𝐵𝑖 𝑗 as 𝑖 ∈ [𝑡] and 𝑗 ∈ [𝑛𝑖] are enumerated in lexicographic order;
12 return ((𝑔1, . . . , 𝑔𝑠), (𝑛1, . . . , 𝑛𝑠), 𝐶)

Algorithm 6: Splitting a lattice pair
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the 𝑆𝑖 are the 𝑀𝑛𝑖 (𝐷 (End(𝐿𝑖))) ≃ 𝑀𝑛𝑖 (𝐹𝑖) (up to reordering) and up to an
automorphism of 𝐿, the elements 𝑒𝑖 𝑗 are the projections on a factor 𝐿𝑖 of 𝐿.
An image of 𝑒𝑖 𝑗 is a vector bundle �̃�𝑖 𝑗 isomorphic with 𝐿𝑖 . It follows that
𝐿 ≃

⊕
LP(𝑔𝑖0)𝑛𝑖 .

Then, it is easy to see that by construction, 𝑇 gives an isomorphism as
desired. □

Corollary 5.2.30. If 𝐹 is finite and given an oracle for Problem 2.2.11, there
is an algorithm for deciding whether lattice pairs are isomorphic and, if so,
computing an isomorphism.

Proof. We may compute splittings for 𝐿 and 𝐿′ using Algorithm 6. Then, it is
only a matter of checking that their indecomposable components are isomorphic
(up to reordering) and appear with equal power. This condition may be checked
by repeated use of Algorithm 5. □

5.3 Applications

5.3.1 Maximal orders and the explicit isomorphism problem

As discussed in Section 1.2, the methods of [46] admit a geometric interpre-
tation. For 𝐹 a finite field, let 𝑘 = 𝐹 (𝑋) and let 𝑋 = P1

𝐹
. Maximal orders

in a 𝐾-algebra 𝐴 isomorphic to 𝑀𝑑 (𝐾) for some 𝑑 ∈ N represent sheaves of
endomorphisms of a vector bundle over 𝑋 . Since every vector bundle over 𝑋
splits into a direct sum of line bundles, one may easily find an endomorphism
of rank one. Here, we discuss this interpretation in detail and provide some
explicit examples.

In general, let 𝑘 be a global function field and let 𝐵 be a 𝐾-algebra of
dimension 𝑛 ∈ N. We fix a basis (𝑒1, . . . , 𝑒𝑛) of 𝐵, so that 𝐵 is identified
with 𝐾𝑛 as a vector space. We let 𝜋𝐵 : 𝐾𝑛 × 𝐾𝑛 → 𝐾𝑛 be the bilinear map
corresponding to the multiplication on 𝐵 via its identification with 𝐾𝑛. This
bilinear map extends naturally to 𝑅𝑛 by computing products pointwise.

We now give several equivalent definitions of orders, which rely on the
equivalent categories from Definition 5.1.1.

Definition 5.3.1. • An O𝑋-order of 𝐵 is a coherent O𝑋-algebra 𝑂 such
that its generic stalk 𝑂𝜂 is isomorphic to 𝐵 as a 𝐾-algebra.

• AnO𝑅-order of 𝐵 is anO𝑅-lattice of rank 𝑛which is stable by application
of 𝜋𝐵.
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• An order pair of 𝐵 is a lattice pair 𝑂 of rank 𝑛, where both 𝑂 𝑓 𝑖 and 𝑂∞
are stable by 𝜋𝐵.

In all cases, an order is said to be maximal if it is not contained in a strictly
larger order.

Proposition 5.3.2. Let 𝐵 = 𝑀𝑑 (𝐾) for some 𝑑 ∈ N, and let 𝑂 be a maximal
order pair in 𝐵. Then there exists a lattice pair 𝐿 of rank 𝑑 such that 𝑂 =

End(𝐿).

Proof. By [33, Theorem 11.3.17], as O 𝑓 𝑖 and O∞ are both noetherian and
integrally closed integral domains, there exist an O 𝑓 𝑖-lattice 𝐿 𝑓 𝑖 and an O∞-
lattice 𝐿∞, both of rank 𝑑, such that𝑂 𝑓 𝑖 = EndO 𝑓 𝑖 (𝐿 𝑓 𝑖) and𝑂∞ = EndO∞ (𝐿∞).
The lattice pair 𝐿 = (𝐿 𝑓 𝑖 , 𝐿∞) is as required. □

Now, the pivotal argument in [46] is the point (ii) of its Theorem 21, which
states that if 𝑘 is a rational function field and 𝑂 is as in Proposition 5.3.2, then
𝑂 𝑓 𝑖 ∩ 𝑂∞ contains a rank one idempotent of 𝐵. As we shall argue, this is a
direct consequence of the following result, often attributed to Grothendieck in
the case that the base field is the field of complex numbers, and proved in [43]
for a general base field.

Lemma 5.3.3. Let 𝐹 be a field, and let 𝑋 = P1
𝐹

. Let 𝐸 be a vector bundle over
𝑋 of rank 𝑛 ∈ N. Then there is an isomorphism

𝐸 ≃
𝑟⊕
𝑖=1

𝐿
𝑛𝑖
𝑖
,

where the 𝐿𝑖 are pairwise non-isomorphic line bundles over 𝑋 , and the 𝑛𝑖 are
positive integers such that 𝑛1 + . . . + 𝑛𝑟 = 𝑛.

we may then prove the following restatement of [46, Theorem 21]

Proposition 5.3.4. Assume that 𝑘 = 𝐹 (𝑋). If 𝑂 and 𝐵 are as in Proposi-
tion 5.3.2, then 𝐻0(𝑂) is a 𝐹-algebra which contains some 𝑒 ∈ 𝐵 (under the
identificaton of 𝐵 and 𝐾𝑑2 discussed above) which is idempotent of rank one.

Proof. By Proposition 5.3.2, there exists a lattice pair 𝐿 of rank 𝑑 such that𝑂 =

End(𝐿), and in particular, 𝐻0(𝑂) = End(𝐿) is a 𝑘-algebra. By a combination
of Lemma 5.3.3 and Theorem 5.1.2, we have

𝐿 ≃
𝑟⊕
𝑖=1

𝐿
𝑛𝑖
𝑖
,
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where the 𝐿𝑖 are pairwise non-isomorphic lattice pairs of rank 1, and the 𝑛𝑖 are
positive integers which sum up to 𝑑. By Proposition 5.1.26, it follows that we
have the following splitting of 𝑘-algebras

𝐻0(𝑂) = End(𝐿) ≃ 𝐽 ⊕
⊕

𝑀𝑛𝑖 (𝑘),

where 𝐽 is the Jacobson radical of 𝐻0(𝑂). Then, 𝑒 = Diag(1, 0, . . . , 0) ∈
𝑀𝑛1 (𝑘) ⊂ 𝐻0(𝐿) is the projection of 𝐿 onto a sublattice pair of rank 1, and
therefore corresponds to an idempotent of rank 1 in 𝐵. □

Remark 5.3.5. In this subsection, we recover the result from [46] on 𝐹 [𝑋]
lattices by applying a structural theorem on vector bundles over P1

𝐹
. A converse

argument was published in [77], where a lattice-based proof of the splitting
theorem for vector bundles is given.

5.3.2 Vector bundles on an elliptic curve

In [5], Atiyah systematically described the category of vector bundles on an
elliptic curve over an algebraically closed field 𝐹. Let 𝑋 be such an elliptic
curve with function field 𝑘 , and let 𝐸 (𝑟, 𝑑) be the set of isomorphism classes
of indecomposable O𝑅-lattices of rank 𝑟 and degree 𝑑 over 𝑘 . In what follows,
we give a succinct summary of his construction, rephrased in our setting of
O𝑅-lattices, and then we give an explicit construction using lattice pairs.

Definition 5.3.6. Let 𝐿 be an 𝐴𝑅-lattice, let 𝑠 = [𝐻0(𝐿) : 𝐹] and let 𝜔 be a
differential of 𝐾 . Observe that, by Proposition 5.1.18 and Serre duality,

Ext1(𝐿, 𝑅(𝜄(𝜔)−1)𝑠) = 𝐻1(𝐿∨ ⊗ 𝑅(𝜄(𝜔)−1)𝑠) ≃ 𝐻0(𝐴𝑠𝑅 ⊗ 𝐿)∨ = 𝐻0(𝐿𝑠)∨.

Upon fixing a basis of𝐻0(𝐿), this extension group identifies with End𝐹 (𝐻0(𝐿)).
We define the Atiyah extension of 𝐿 as the extension

0 → 𝑅(𝜄(𝜔−𝑠)) → 𝐿′ → 𝐿 → 0

given by the identity automorphism of 𝐻0(𝐿).

Proposition 5.3.7. Let 𝑟 ∈ N. Then there exists a unique 𝐹𝑟 ∈ 𝐸 (𝑟, 0) such
that [𝐻0(𝑋, 𝐹𝑟 ) : 𝐹] = 1. For 𝐿 ∈ 𝐸 (𝑟, 0) \ {𝐹𝑟 }, [𝐻0(𝐿) : 𝐹] = 0.

We let Pic0(𝑘) be the group of isomorphism class of O𝑅-lattices of rank 1.
We note that if 𝑘 has a unique infinite places𝑂 of degree 1 with uniformiser 𝜋,
the elements of Pic0(𝑘) are uniquely represented by O𝑅 and the LP(𝔭, 1, 𝜋−1),
where 𝔭 varies over the prime ideals of O 𝑓 𝑖 .
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Proposition 5.3.8. Let 𝑟 ∈ N and 𝑑 ∈ Z. Fix a rank one O𝑅-lattice 𝐿1 of
degree 1.

• 𝐹1 is represented by O𝑅.

• 𝐹𝑟 is the Atiyah extension of 𝐹𝑟−1.

• The map 𝐿 ↦→ 𝐹𝑟 ⊗ 𝐿 gives a bĳection Pic0(𝑘) → 𝐸 (𝑟, 0).

• Assume that 𝑑 > 0, the Atiyah extension gives a bĳection 𝐸 (𝑟, 𝑑) →
𝐸 (𝑟 + 𝑑, 𝑑).

• The map 𝐸 ↦→ 𝐸 ⊗ 𝐿 gives a bĳection 𝐸 (𝑟, 𝑑) → 𝐸 (𝑟, 𝑑 + 𝑟).

• The map 𝐸 ↦→ 𝐸∨ gives a bĳection 𝐸 (𝑟, 𝑑) → 𝐸 (𝑟,−𝑑).

Put together, these facts give explicit bĳections Pic0(𝑋) → 𝐸 (𝑟, 𝑑) for all
𝑟 ∈ N, 𝑑 ∈ Z. Furthermore, the works [3, 90] showed that these construc-
tions are also valid on an arbitrary perfect field 𝑘 if 𝐸 (𝑟, 𝑑) now means the set
of isomorphism classes of absolutely indecomposable vector bundles. Since
an indecomposable vector bundle is always the trace of an absolutely inde-
composable vector bundle defined over some finite extension of 𝑘 , this yields
an algorithm for constructing any indecomposable lattice pair over an elliptic
curve over a perfect field.

We also note that a generalisation to curves of genus 1 with no rational
points was given in [68].

Example 5.3.9. In this example we consider the fields 𝐹 = F7 and 𝑘 =

𝐹 (𝑥, 𝑦)/(𝑦2 − 𝑥3 − 𝑥). We construct the image of the line bundle L(𝔭 − ∞)
in 𝐸 (3, 2), where 𝔭 is the divisor of the prime ideal ⟨𝑥, 𝑦⟩ of O 𝑓 𝑖 and ∞ is the
divisor of the unique prime ideal of O∞. First, we set

𝐿0 = LP(𝔭−1, 1, 𝜋).

Following the construction of the map Pic0(𝑋) → 𝐸 (3, 2), we must first tensor
the lattice pair 𝐿0 twice by a fixed lattice pair of degree 1. The result is a lattice
pair lying in 𝐸 (1, 2). We shall then take its Atiyah extension to get an element
of 𝐸 (3, 2).

We compute the tensor product 𝐿1 = 𝐿0 ⊗ 𝐿⊗2
∞ , where 𝐿∞ represents the

line bundle of degree 1 L(∞). We get

𝐿1 = LP(𝔭−1, 1, 𝜋−1).
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Since deg(𝐿1) = 2 and 𝑘 has genus 1, it follows by the Riemann-Roch theorem
that [𝐻0(𝐿1) : 𝑘] = 2. Applying Algorithm 3, we find that a basis for 𝐻0(𝐿1)
is (1, 𝑥𝜋).

Now, we let𝜔 = 𝑑𝜋, and recall that this differential’s divisor is the principal
divisor corresponding to ℎ ≔ 𝑥2+3

𝑥2 , and so the corresponding lattice pair is

𝐿𝜔 = LP ((ℎ), 1, 1) .

We must now compute a répartition vector representing the element of𝐻1(𝐿∨1 ⊗
𝐿𝑠𝜔) corresponding to the identity automorphism of 𝐻0(𝐿1) as discussed in
Definition 5.3.6. This 𝐻1 group is the dual of the vector space 𝐻0(𝐿1 ⊗ 𝐿𝑠𝑡 ) by
Serre duality, where 𝐿𝑡 is the trivial lattice pair:

𝐿𝑡 = LP(𝐴 𝑓 𝑖 , 1, 1).

Now, it is quite clear that a basis of𝐻0(𝐿1⊗𝐿𝑠𝑡 ) is ((1, 0), (𝑥𝜋, 0), (0, 1), (0, 𝑥𝜋)).
The space 𝐻0(𝐿1 ⊗ 𝐿𝑠𝑡 ) is identified with End𝐹 (𝐻0(𝐿1)) by mapping a vector
(𝑎, 𝑏) to the 𝑘-linear map sending 1 to 𝑎 and 𝑥𝜋 to 𝑏. Thus, we shall find a
vector (𝛼, 𝛽) ∈ 𝐾2 such that

res∞(𝛼∞) = res∞(𝑥𝜋𝛽∞) = 1

res∞(𝑥𝜋𝛼∞) = res∞(𝛽∞) = 0.
(5.2)

Observe that 𝑥𝜋 = 𝜋−1 + 𝑂 (𝜋3), so we may set 𝛼 = 𝜋−1 and 𝛽 = 1. We have
shown that the Atiyah extension of 𝐿1 is represented in 𝐻1(𝐿∨1 ⊗ 𝐿𝑠𝜔) by the
répartition vector 𝜅 = (𝜋−1

∞ , 1∞). By Theorem 5.1.19, it follows that the Atiyah
extension of 𝐿1 is the lattice pair

𝐿 = LP
©­­«((ℎ), (ℎ), 𝔭−1), 𝐼3,

©­­«
1 0 −𝜋−2

0 1 −𝜋−1

0 0 𝜋−1

ª®®¬
ª®®¬ .

The determinant of 𝐿 is

det(𝐿) = LP
(
ℎ2𝔭−1, 1, 𝜋−1

)
.

Now, the divisor of p has degree 1 and the finite part of the divisor of ℎ has
degree 0, so we find that deg(𝐿) = 2 as expected. By [5, Theorem 6], we
should have

det(𝐿) ≃ 𝐿1,

and indeed one observes readily that division by ℎ2 is such an isomorphism.
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We will now check that the lattice pair 𝐿 is indeed absolutely indecompos-
able. By Proposition 5.1.27, we need to check that 𝐷 (𝐿) = F7. In fact, since
the rank and degree of 𝐿 are coprime, we expect End(𝐿) = F7 by [65, Corol-
lary 2.5]. We first compute End(𝐿, 𝐿) = 𝐿∨ ⊗ 𝐿. Using the formulas from
Definition 5.2.5, we find:

End(𝐿) = LP(𝔞, 𝐼3, 𝑔∞),

with
𝔞 = (𝐴 𝑓 𝑖 , 𝐴 𝑓 𝑖 , (ℎ𝔭)−1, 𝐴 𝑓 𝑖 , 𝐴 𝑓 𝑖 , (ℎ𝔭−1), ℎ𝔭, ℎ𝔭, 𝐴 𝑓 𝑖)

and

𝑔∞ =
©­­«
©­­«
1 0 −𝜋−2

0 1 −𝜋−1

0 0 𝜋−1

ª®®¬
𝑡ª®®¬

−1

⊗
©­­«
1 0 −𝜋−2

0 1 −𝜋−1

0 0 𝜋−1

ª®®¬

=

©­­­­­­­­­­­­­­­­­«

1 0 −𝑥3

𝑥2+1 0 0 0 0 0 0
0 1 −𝑥𝑦

𝑥2+1 0 0 0 0 0 0
0 0 𝑥𝑦

𝑥2+1 0 0 0 0 0 0
0 0 0 1 0 −𝑥3

𝑥2+1 0 0 0
0 0 0 0 1 −𝑥𝑦

𝑥2+1 0 0 0
0 0 0 0 0 𝑥𝑦

𝑥2+1 0 0 0
𝑥𝑦

𝑥2+1 0 −𝑥4𝑦

(𝑥2+1)2 1 0 −𝑥3

𝑥2+1
𝑦

𝑥2 0 −𝑥𝑦
𝑥2+1

0 𝑥𝑦

𝑥2+1
−𝑥3

𝑥2+1 0 1 −𝑥𝑦
𝑥2+1 0 𝑦

𝑥2 −1
0 0 𝑥3

𝑥2+1 0 0 𝑥𝑦

𝑥2+1 0 0 1

ª®®®®®®®®®®®®®®®®®¬
Using the algorithm from Corollary 5.2.16, we may compute End(𝐿) =

𝐻0(End(𝐿)) and find a 1 dimensional F7-vector space, whose basis element
identifies with the identity matrix under our usual identification 𝐾9 ≃ 𝑀3(𝐾).
So, we indeed have End(𝐿) = F7.

5.3.3 Algebraic geometry codes

In [76], Savin introduced a generalisation of algebraic geometry codes to vector
bundles of arbitrary rank. His construction is optimal when performed over so-
called weakly-stable vector bundle, and this motivated a line of work construct-
ing weakly-stable vector bundles on projective curves over finite fields [6, 62].
Independently, Weng gave a similar construction [94] based on his adelic set-
ting for vector bundles and introduced the notion of 𝐷-balanced vector bundle,

143



where 𝐷 is an effective divisor. As in Section 5.3.2, we rephrase known def-
initions and results in terms of O𝑅-lattices and give an explicit example as a
lattice pair.

For what follows, we assume that 𝑘 is a global function field with constant
field 𝐹.

Definition 5.3.10. Let 𝐿 be an O𝑅-lattice. The slope of 𝐿 is defined as

𝜇(𝐿) ≔ deg(𝐿)
rank(𝐿) .

Definition 5.3.11. An O𝑅-lattice 𝐿 is said to be weakly-stable if for all rank 1
O𝑅-sublattices 𝐿′ of 𝐿,

𝜇(𝐿′) ≤ 𝜇(𝐿).

Definition 5.3.12. Let 𝐷 be an effective divisor of 𝑘 , and let 𝐿 be anO𝑅-lattice.
Then 𝐿 is 𝐷-balanced if 𝐿𝑃 = O𝑃 for 𝑃 in Supp(𝐷).

Proposition 5.3.13 ( [76]). Let 𝑛, 𝑑 ∈ N. Let 𝛼, 𝛽 be the quotient and the
remainder of the Euclidean division of 𝑑 by 𝑛. Let 𝐿′1, 𝐿

′
2 be rank 1 O𝑅-lattices

of degree 𝛼 and let 𝐿′ be a rank 1 O𝑅-lattice of degree 𝛼 + 1. Consider the
following construction:

1. 𝐿1 ≔ 𝐿′1.

2. for 2 ≤ 𝑖 ≤ 𝑛 − 𝛽 + 1, 𝐿𝑖 is a non-trivial extension of 𝐿′2 by 𝐿𝑖−1.

3. for 𝑛 − 𝛽 + 2 ≤ 𝑖 ≤ 𝑛, 𝐿𝑖 is a non-trivial extension of 𝐿′ by 𝐿𝑖−1.

Then, 𝐿𝑛 is a weakly-stable O𝑅-lattice of rank 𝑛 and degree 𝑑. If 𝐷 is an
effective divisor with support in 𝑀 𝑓 𝑖 such that 𝐿′, 𝐿′1 and 𝐿′2 are 𝐷-balanced.
Then, if the successive extensions are constructed using the algorithm from
Corollary 5.2.21, the lattice 𝐿𝑛 is 𝐷-balanced.

Example 5.3.14. We let 𝐹 = F101, 𝑘 = 𝐹 (𝑥, 𝑦)/(𝑦2 − 𝑥5 − 1) and construct
a weakly-stable vector bundle of rank 3 and degree 10 over 𝑘 . We also set
𝜔 = 𝑑𝜋.

First, we set 𝜋 =
𝑦

𝑥3 , a local uniformiser of ∞, the unique infinite place of
𝑘 . We also define 𝔭1 = ⟨𝑥, 𝑦 + 1⟩ and 𝔭2 = ⟨𝑥, 𝑦 − 1⟩, two prime ideals of O 𝑓 𝑖 .
We will build our vector bundle from the following line bundles:

𝐿 = LP(O 𝑓 𝑖 , 1, 𝜋−4),
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𝐿1 = LP(𝔭−3
1 , 1, 1),

and
𝐿2 = LP(𝔭𝟟−3, 1, 1).

We first set 𝐸1 = 𝐿1 and compute a non-trivial extension 𝐸2 of 𝐿2 by 𝐸1.
We compute a basis of 𝐻0(𝜄(𝜔)−1𝐸∨

1 ⊗ 𝐿2). This space has dimension 1 and
is generated by

𝑎 =
−2𝑥2

𝑥5 + 6
(𝑦 + 1).

Computing the formal series expansion of 𝑎 with respect to 𝜋, we find

𝑎 = −2𝜋 +𝑂 (𝜋6).

Therefore, the non-trivial linear form on 𝐻0(𝜄(𝜔)−1𝐸∨
1 ⊗ 𝐿2) sending 𝑎 to 1 is

represented by the infinite répartition 𝑏∞, where

𝑏 =
−1
2𝜋2 .

We may, therefore, set

𝐸2 = LP

(
(𝔭−3

1 , 𝔭−3
2 ), 𝐼2,

(
1 1

2𝜋2

0 1

))
.

Our vector bundle 𝐸3 will then be constructed as a nontrivial extension of
𝐿 by 𝐸2. Again, we compute a basis of 𝐻0(𝜄(𝜔)−1𝐸∨

2 ⊗ 𝐿) and find:((
0
𝑥7

𝑥5+6

)
,

(
0

𝑥4

𝑥5+6 𝑦 −
𝑥4

𝑥5+6

)
,

(
𝑥7

𝑥5+6
−𝑥8

2(𝑥5+6

) (
𝑥4

𝑥5+6 𝑦 +
𝑥4

𝑥5+6
−𝑥5

2(𝑥5+6) 𝑦 +
𝑥5

2(𝑥5+6)

))
.

We let 𝑓1, 𝑓2, 𝑓3 and 𝑓4 be these columns.
We shall find a vector 𝑣 ∈ 𝑘2 such that 𝜃𝜔 (·, 𝑣∞) corresponds to the linear

form
(
1 0 0 0

)
with respect to the dual of the basis given above. That is,

we must find 𝑣1 and 𝑣2 in 𝑘 such that for all 1 ≤ 𝑖 ≤ 4,

res∞
©­«

2∑︁
𝑗=1

𝑓𝑖 𝑗𝑣 𝑗
ª®¬ =


1 if 𝑖 = 1,

0 otherwise.
(5.3)

Following Algorithm 4, we compute 𝑣1 = −4 and 𝑣2 = −6. We compute the
power series expansion of the coefficients of the 𝑓𝑖 , starting at degree −4 on the
first row and degree −6 on the second row. We get:

𝑓1 =

(
0

𝜋−4 +𝑂 (𝜋−2)

)
,
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𝑓2 =

(
0

𝜋−3 +𝑂 (𝜋−2)

)
,

𝑓3 =

(
𝜋−4 +𝑂 (1)

−1
2 𝜋

−6 +𝑂 (𝜋−2)

)
,

and

𝑓4 =

(
𝜋−3 +𝑂 (1)

−1
2 𝜋

−5 +𝑂 (𝜋−2)

)
.

Therefore, we must solve the linear system

𝑅

©­­­­­­­­­­­­­­«

0 0 1 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 −1

2 0
0 0 0 −1

2
1 0 0 0
0 1 0 0

ª®®®®®®®®®®®®®®¬
=

(
1 0 0 0

)
.

An obvious solution is 𝑅 =

(
0 0 0 0 0 0 1 0

)
. Bringing things

together, we set 𝑣1 = 0 and 𝑣2 = 𝜋3 and Equation (5.3) is satisfied. Finally, we
may set

𝐸3 = LP
©­­«(𝔭−3

1 , 𝔭−3
2 ,O 𝑓 𝑖), 𝐼3,

©­­«
1 1

2𝜋2 0
0 1 −1

𝜋

0 0 1
𝜋4

ª®®¬
ª®®¬ .
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Conclusions

In this thesis, we have constructed a presentation for central simple algebras
based on Amitsur cohomology that allows for efficient computation. We have
used this presentation to exhibit a polynomial quantum algorithm under GRH,
which solves the explicit isomorphism problem. We have also constructed
a representation for vector bundles over normal projective curves as well as
algorithms for several natural tasks.

This latter construction relates to the explicit isomorphism problem by the
method outlined in Section 5.3.1. With this tool now available, we intend in
further research to leverage known results on the structure of vector bundles
over curves of positive genus to provide algorithms for the explicit isomorphism
problem for global function fields of positive genus. Another perspective
for further work is the development of polynomial algorithms for computing
Hermite normal forms of pseudo-matrices over the ringO 𝑓 𝑖 of a global function
field.

Also in perspective are the possibilities offered by the computational practi-
cality of our presentation of central simple algebras as Amitsur algebras. There
is a polynomial reduction from the Amitsur version of the explicit isomorphism
problem to the general explicit isomorphism problem, and there is no known
efficient classical algorithm for this latter problem over global fields other than
𝐹 (𝑋). These facts suggest that the explicit isomorphism problem may be used
as a hard problem in cryptography (see [53] for an identification scheme based
on a similar problem). The problem of finding a preimage of a coboundary
through the group homomorphism 𝜕1 : 𝐶1

𝐴𝑚
(𝑘, 𝐾) → 𝐵2

𝐴𝑚
(𝑘, 𝐾) reduces di-

rectly to the explicit isomorphism problem, with elements of the codomain
encoding an instance of the problem and elements of the domain encoding
witnesses to a solution. This setting may prove fruitful for the construction of
cryptographic primitives and protocols.
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Santrauka (Summary in
Lithuanian)

Tyrimo objektas

Disertacĳoje yra nagrinėjama išreikštinio izomorfizmo problema ir susĳusios
algoritminės problemos.

Problema A (išreikštinio izomorfizmo problema). Duotam kūnui 𝑘 ir 𝑘-
algebrai 𝐴, izomorfiškai matricinei algebrai 𝑀𝑑 (𝑘) su tam tikru 𝑑 ∈ N,
apskaičiuoti izomorfizmą 𝜑 : 𝐴→ 𝑀𝑑 (𝑘).

Išreikštinio izomorfizmo problema paprastai nagrinėjama tam tikrame kūne
arba kūnų klasėje. Mūsų atveju daugiausia dėmesio skiriame aiškaus izomor-
fizmo problemos sprendimui globaliuose kūnuose, t. y., skaičių kūnams ir
globaliesiems funkcĳų kūnams, kurie yra racionaliųjų funkcĳų kūno 𝐹 (𝑋),
kur 𝐹 yra baigtinis kūnas, baigtiniai plėtiniai.

Kadangi nustatėme, kad vektorių grižtės apimančios normaliąsias projek-
cines kreives yra svarbūs objektai tiriant išreikštinio izomorfizmo problemą
funkcĳų kūnams, taip pat nagrinėjame tokių vektorių grižčių algoritminę teo-
rĳą.

Aktualumas

Išreikštinio izomorfizmo problemą galima laikyti natūralia problema algo-
ritminėje įvaizdžių teorĳoje. Turint 𝑘-algebrą 𝐴, galima norėti aprašyti jos
struktūrą: apskaičiuoti Jakobsono radikalą 𝐽 (𝐴) ir algebros 𝐴 puspaprastę dalį
bei išskaidymą kaip paprastųjų 𝑘-algebrų sumą, kurios pačios yra izomorfiškos
tam tikrai 𝑀𝑛 (𝐷), kur 𝐷 yra 𝑘-algebra su dalyba. Apskritai sunkiausia šiame
uždavinyje yra rasti izomorfizmą 𝐴 → 𝑀𝑛 (𝐷), kai algebra 𝐴 yra paprastoji.
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Bendrasis šios problemos sprendimo receptas yra toks: nustatyti 𝐷 Brauerio
klasę virš jos centro 𝐾/𝑘 , rasti struktūros konstantas algebrai 𝑀𝑑 (𝐷op) ir tada
apskaičiuoti aiškų izomorfizmą 𝐴 ⊗ 𝑀𝑑 (𝐷op) ≃ 𝑀𝑑2 (𝐾) [23, 37, 49].

Išreikštinio izomorfizmo problemos taikymai neapsiriboja vien tik asociatyviųjų
algebrų algoritmine teorĳa. Aritmetinėje geometrĳoje problema yra svarbi
trivializuojant obstrukcines algebras apskaičiuojant nusileidimą virš elipsinių
kreivių [22] ir skaičiuojant Cassels-Tate porynius [32, 96]. Problema taip pat
susĳusi su Severi-Brauer paviršių parametrizavimu [24]. Naujausi darbai al-
gebrino sudėtingumo teorĳoje redukavo determinanto lygiavertiškumo testą iki
išreikštinio izomorfizmo problemos [35]. Galiausiai, išreikštinio izomorfizmo
problema virš racionalių funkcĳų kūno 𝐹 (𝑋) (čia 𝐹 baigtinis) taip pat yra
aktuali ir klaidas taisantiems kodams [37].

Baigtinio bazinio kūno atveju, išreikštinio izomorfizmo uždavinio polino-
minio laiko algoritmą pasiūlė Ronyai [70].

Išreikštinio izomorfizmo problemos atvejai Q-algebroms pirmiausiai buvo
nagrinėjami mažoms 𝑑 reikšmėms. Kai 𝑑 = 2, problema susiveda į racio-
nalaus taško radimą projekciniame kūgyje [91, 5.5.4 teorema], kuri išspręsta,
pavyzdžiui, straipsnyje [21]. Atvejis 𝑑 = 3 yra nagrinėjamas straipsnyje [24],
kuriame buvo pasiūlytas subeksponentinis algoritmas, duodant ciklinę išraišką
ir sprendžiant kubinę normos lygtį. Atvejis 𝑑 = 4 nagrinėjamas [66], suvedant
problemą į kvaternionų algebrų virš Q ir kvadratinių skaičių kūnų atvejį ir
sprendžiant kvadratinę normos lygtį.

Straipsnyje [22] buvo pateiktas ir ištirtas algoritmas, skirtas daugiausia
atvejams 𝑑 = 3 ir 𝑑 = 5. Vėliau jis buvo apibendrintas [47,49] iki 𝐾-algebros,
izomorfiškos algebrai 𝑀𝑑 (𝐾), kur 𝑑 yra natūralusis skaičius, o 𝐾 yra skaičių
kūnas. Pastarojo algoritmo sudėtingumas yra polinominis įvesties algebros
struktūrinių konstantų dydžiui, bet eksponentiškai priklauso nuo 𝑑, kūno 𝐾
laipsnio ir diskriminanto dydžio.

2018 m. G. Ivanyos ir kt. [46] pristatė polinominio laiko algoritmą išreikš-
tinio izomorfizmo problemai kūnui 𝐹 (𝑋), kur 𝐹 yra baigtinis kūnas.

Fiksuoto 𝑑 ir varĳuojamojo bazinio kūno atveju darbuose [31, 54] nepri-
klausomai pateiktas algoritmas algebrai, izomorfinei 𝑀2(𝐾), kur 𝐾 yra kvad-
ratinis skaičių kūnas. Šio algoritmo sudėtingumas polinomiškai auga kūno 𝐾
diskriminanto atžvilgiu.

Nors straipsnio [46] metodai yra grynai algebriniai, 5.3.1 sekcĳoje tei-
giame, kad pagrindinis teorinis rezultatas, kuriuo paremtas algoritmas, gali
būti natūraliai interpretuojamas kaip garsioji Grotendiko teorema apie vektorių
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grižčių strukturą virš projekcinės tiesės. Kadangi Grotendiko teorema negalio-
ja aukštesnio rūšio funkcĳų kūnams, metodas, išvystytas straipsnyje [46], nėra
tiesiogiai apibendrinamas tokiems kūnams. Tačiau mūsų šio metodo geomet-
rinė interpretacĳa rodo, kad pažangą galima pasiekti pasinaudojus ankstesniais
rezultatais apie vektorių grižčių strukturą, apimančią normaliąsias projekcines
kreives, turinčias aukštesnį rūšį. Tai leidžia manyti, kad tikslinga sukurti algo-
ritminę teorĳą vektorių grižtiems virš normaliųjų projekcinų kreivių išreikšti,
naudojant gardelių poras.

Tikslai

Disertacĳos tikslas - pristatyti naujus metodus, skirtus išreikštnio izomorfiz-
mo problemai globaliuose kūnuose spręsti. Skaičių kūnuose siekiame pateikti
naują kohomologinį centrinių paprastųjų algebrų aprašą, tinkamą praktiniams
skaičiavimams, ir ištirti tokio įrankio poveikį, sprendžiant išreikštinio izomor-
fizmo problemą skaičių kūnuose. Funkcĳų kūnuose siekiame sukurti algorit-
minę vektorių grižčių teorĳą, paremtą gardelių virš maksimalių eilių teorĳa.

Pagrindiniai rezultatai

Kūnui 𝑘 ir etalinei 𝑘-algebrai 𝐾 apibrėžiame grupę 𝑍2
𝐴𝑚

(𝑘, 𝐾) ⊂ (𝐾⊗3)×,
pogrupį 𝐵2

𝐴𝑚
(𝑘, 𝐾) ir nagrinėjame faktorgrupę

𝐻2
𝐴𝑚(𝑘, 𝐾) = 𝑍

2
𝐴𝑚(𝑘, 𝐾)/𝐵

2
𝐴𝑚(𝑘, 𝐾).

Tada apibrėžiame Amitsuro algebrą 𝐴(𝐾, 𝑐), skirtą 𝑐 ∈ 𝑍2
𝐴𝑚

(𝑘, 𝐾), kurios
pagrindinė 𝑘-vektorinė erdvė yra 𝐾⊗2, ir įrodome sekantį klasifikacĳos rezul-
tatą:

Teorema B. Tegu 𝑘 yra kūnas, o 𝐾 - etalinė 𝑘-algebra, kurios dimensĳa 𝑑.
Tegul 𝑐 ∈ 𝐾⊗3. Tada 𝐴(𝐾, 𝑐) yra centrinė paprastoji k-algebra tada ir tik tada,
kai 𝑐 ∈ 𝑍2

𝐴𝑚
(𝑘, 𝐾). Šiuo atveju 𝐴(𝐾, 𝑐) yra laipsnio 𝑘 ir joje 𝐾 yra viena

maksimalių iš jos komutativiųjų poalgebrų ir, atvirkščiai, jei 𝐴 yra centrinė
paprastoji 𝑘-algebra, kurioje 𝐾 yra maksimalus komutatyvusis poalgebris, tai
egzistuoja 𝑐 ∈ 𝑍2

𝐴𝑚
(𝑘, 𝐾) toks, kad algebra 𝐴(𝐾, 𝑐) yra izomorfiška algebrai

𝐴.
Taip gaunamas izomorfizmas 𝐻2

𝐴𝑚
(𝑘, 𝐾) ≃ Br(𝐾/𝑘) su algebros 𝐾 santy-

kine Brauerio grupe virš 𝑘 .
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Parinkime polinomą tokį 𝜒 ∈ 𝑘 [𝑋], kad egzistuotu izomorfizmas 𝐾 ≃
𝑘 [𝑋]/(𝜒(𝑋)). Nagrinėjame algebras 𝐾1 = 𝑘 [𝑋,𝑌 ]/(𝜒(𝑋), 𝜒(𝑌 )) ir 𝐾2 =

𝑘 [𝑋,𝑌, 𝑍]/(𝜒(𝑋), 𝜒(𝑌 ), 𝜒(𝑍)). Pastebėkime, kad algebra 𝐾𝑛 (čia 𝑛 = 1 arba
𝑛 = 2) yra natūraliai izomorfiška algebrai 𝐾⊗(𝑛+1) , o jos elementai gali būti
pateikti apskaičiavimo būdu kaip polinomų liekanų klasės. Įrodome Amitsuro
algebrų algoritminius rezultatus:

Teorema C. Sutapatindami grupės 𝑍2
𝐴𝑚

(𝑘, 𝐾) elementus su jų vaizdais algeb-
roje 𝐾2 ir sutapatindami algebrą 𝐴(𝐾, 𝑐) su algebra 𝐾1 kaip 𝑘-vektorinę erdvę,
gauname šiuos rezultatus:

1. Egzistuoja polinominis algoritmas, kuris, su 𝜒, 𝑐 ∈ 𝑍2
𝐴𝑚

(𝑘, 𝐾) ir 𝛼 bei
𝛽 algebroje 𝐴(𝐾, 𝑐), apskaičiuoja sandaugą 𝛼𝛽;

2. Egzistuoja tikimybinis polinominis algoritmas, kuris, duotai centrinei pa-
prastąjai 𝑘-algebrai 𝐴, apskaičiuoja maksimalų komutatyvųjų poalgebrį
𝐾 ⊂ 𝐴, polinomą 𝜒 tokį, kad 𝐾 ≃ 𝑘 [𝑋]/(𝜒(𝑋)), 𝑐 ∈ 𝑍2

𝐴𝑚
(𝑘, 𝐾) ir

𝑘-algebros izomorfizmą iš 𝑘-algebros 𝐴 į 𝑘-algebrą 𝐴(𝐾, 𝑐).

Taikydami Amitsuro algebrų konstrukcĳą, įrodome sekantį rezultatą:

Teorema D. Jei yra teisinga apibendrintoji Rymano hipotezė, tai Algoritmas
2 yra polinominis kvantinis algoritmas, sprendžiantis išreikštino izomofrizmo
problemą skaičių kūnuose.

Tegul 𝑋 yra normalioji projekcinė kreivė virš baigtinio kūno 𝐹 ir tegul 𝑘
yra jos funkcĳų kūnas. Tegul O 𝑓 𝑖 ir O∞ yra atitinkamai 𝐹 [𝑋] ir 𝐹 (𝑋)∞ =

{𝑅 ∈ 𝑘 (𝑋) : deg 𝑅 ≤ 0} sveikieji uždariniai kūne 𝑘 . Gardelės pora, kurios
rangas ant kūno 𝑘 yra 𝑛, yra duomenys projektinioO 𝑓 𝑖-pomodulio 𝐿 𝑓 𝑖 iš erdvės
𝑘𝑛 ir laisvojo O∞ pomodulio 𝐿∞ iš erdvės 𝑘𝑛, tokie, kad 𝑘𝐿 𝑓 𝑖 = 𝑘𝐿∞ = 𝑘𝑛.
Įrodysime tokią teoremą:

Teorema E. Vektorių grižčių apimančių kreivę 𝑋 kategorĳa yra ekvivalenti
kūno 𝑘 gardelių porų kategorĳai.

Pateikiame funkcĳų kūno 𝑘 gardelių porų skaičiavimo reiškimą. Tegul LP
yra funktorius iš vektorių grižčių apimančių kreivės 𝑋 kategorĳos į aukščiau
aptartą gardelių porų kategorĳą. Tada gauname keletą algoritminių rezultatų.
Jei nenurodyta kitaip, sekančioje teoremoje 𝐸 ir 𝐸 ′ yra vektorių grižtės apima-
nčios kreivę 𝑋 .
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Teorema F. 1. Egzistuoja polinominis algoritmas, kuris, duotai gardelių
porai LP(𝐸), apskaičiuoja LP(det(𝐸)).

2. Egzistuoja polinominis algoritmas, kuris, duotai gardelių porai LP(𝐸),
apskaičiuoja deg(𝐸).

3. Egzistuoja polinominis algoritmas, kuris, duotoms gardelių poroms LP(𝐸)
ir LP(𝐸 ′), apskaičiuoja LP(𝐸 ⊗ 𝐸 ′).

4. Egzistuoja polinominis algoritmas, kuris, duotoms gardelių poroms LP(𝐸)
ir LP(𝐸 ′), apskaičiuoja LP(𝐸 ⊕ 𝐸 ′).

5. Egzistuoja polinominis algoritmas, kuris, duotai gardelių porai LP(𝐸),
apskaičiuoja LP(𝐸∨).

6. Egzistuoja polinominis algoritmas, kuris, duotoms gardelių poroms LP(𝐸)
ir LP(𝐸 ′), apskaičiuoja LP(Hom(𝐸, 𝐸 ′)).

7. Jei 𝑓 : 𝑌 → 𝑋 yra normaliųjų projekcinių kreivių morfizmas, tai eg-
zistuoja polinominis algoritmas, kuris, esant duotam LP(𝐸), kai 𝐸 yra
vektorių grižtė apimančia kreivę 𝑌 , apskaičiuoja LP( 𝑓∗(𝐸)).

8. Jei 𝑓 ir𝑌 yra kaip aukščiau, tai egzistuoja polinominis algoritmas, kuris,
duotai garedlių porai LP(𝐸), kai 𝐸 yra vektorių grižtė apimančia kreivę
𝑋 , apskaičiuoja gardelių porą LP( 𝑓 ∗(𝐸)) kreivės 𝑌 funkcĳų kūnui.

9. Egzistuoja polinominis algoritmas, kuris, duotai gardelių porai LP(𝐸),
apskaičiuoja erdvės 𝐻0(𝑋, 𝐸) bazę.

10. Egzistuoja polinominis algoritmas, kuris, duotai gardelių porai LP(𝐸),
apskaičiuoja erdvės 𝐻1(𝑋, 𝐸) bazę.

11. Egzistuoja polinominis algoritmas, kuris, duotoms gardelių poroms LP(𝐸)
ir LP(𝐸 ′), ir 𝜉 ∈ 𝐻1(𝑋,Hom(𝐸, 𝐸 ′)), apskaičiuoja LP(𝐸 ′′), kur 𝐸 ′′

yra 𝐸 plėtinys pagal 𝐸 ′, atitinkantis 𝜉.

12. Egzistuoja polinominis algoritmas, kuris, su duotu orakulu1, apskaičiuo-
jančiu Hermito normaliąsias formas pseudomatricoms viršO 𝑓 𝑖 , gardelių
poras LP(𝐸) ir LP(𝐸 ′) bei matricą, vaizduojančią LP( 𝑓 ), homomorfiz-
mui 𝑓 : 𝐸 → 𝐸 ′, apskaičiuoja LP(Ker( 𝑓 )).

1idealus algoritmas, greitai išsprendžiantis specifinį uždavinį
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13. Egzistuoja polinominis algoritmas, kuris, su duotu orakulu, apskaičiuojančių
Hermito normaliąsias formas pseudomatricoms virš O 𝑓 𝑖 , ir duotoms
gardelių poroms LP(𝐸) ir LP(𝐸 ′) bei matricai, vaizduojančiai LP( 𝑓 ),
homomorfizmui 𝑓 : 𝐸 → 𝐸 ′, apskaičiuoja LP(Im( 𝑓 )).

14. Egzistuoja polinominis algoritmas, kuris, su duotu orakulu, apskaičiuo-
jančiu Hermito normaliąsias formas pseudomatricoms viršO 𝑓 𝑖 , ir duotai
gardelių porai LP(𝐸), apskaičiuoja gardelių poras LP(𝐸1), . . . ,LP(𝐸𝑟 ),
kad vektorių grižtės 𝐸1, . . . , 𝐸𝑟 yra neskaidžios, bei izomorfismą iš
gardelių poros LP(𝐸) į gardelių porą LP(𝐸1 ⊕ . . . ⊕ (𝐸𝑟 )).

15. Egzistuoja polinominis algoritmas, kuris, su duotu orakulu, apskaičiuo-
jančiu Hermito normaliąsias formas pseudomarticoms virš O 𝑓 𝑖 , ir duo-
toms dvi gardelių poroms LP(𝐸) ir LP(𝐸 ′), nustato, ar 𝐸 ir 𝐸 ′ yra
izomorfiniai, ir, jei taip, apskaičiuoja izomorfizmą LP( 𝑓 ).

Visi aptarti algoritmai gardelių poroms buvo realizuoti kaip Sagemath [89]
paketas2.

Metodai

Straipsnyje [55] Teorema B įrodoma parodant, kad mūsų Amitsur algebrų
konstrukcĳa yra ekvivalenti Brauerio algebrų konstrukcĳai, ir toliau pasinau-
dojant ankstesniais rezultatais Brauerio algebroms [51, 2 sk]. Šiame darbe
vietoj to pateikiame tiesioginį įrodymą, kaip siūloma straipsnio [55] pastaboje
3.8.

Tegu 𝑘 yra globalus kūnas, 𝑅 yra etalinė 𝑘-algebra ir 𝑆 yra 𝑅-algebra,
kuri yra etalinė kaip 𝑘-algebra ir laisva kaip 𝑅-modulis. Tegu 𝑆⊗𝑛 yra 𝑛-lypė
tenzorių sandauga 𝑆⊗𝑅 . . .⊗𝑅 𝑆. Priminsime Amitsuro komplekso apibrėžimą.
Kai 𝑛 ∈ Z≥0 ir 𝑖 ∈ [𝑛 + 1]0, apibrėžiame 𝑅-algebros homomorfizmą

𝜀𝑛
𝑖

: 𝑆⊗𝑛+1 → 𝑆⊗𝑛+2

𝑎0 ⊗ . . . ⊗ 𝑎𝑛 ↦→ 𝑎0 . . . 𝑎𝑖−1 ⊗ 1 ⊗ 𝑎𝑖 ⊗ . . . ⊗ 𝑎𝑛

ir grupės homomorfizmą

𝜕𝑛
𝐴𝑚

: (𝑆⊗𝑛+1)× → (𝑆⊗𝑛+2)×

𝑥 ↦→ ∏
𝑖∈[𝑛+1]0 𝜀

𝑛
𝑖
(𝑥)−1𝑖 .

2https://git.disroot.org/montessiel/vector-bundles-sagemath
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𝑅-algebros 𝑆 Amitsuro kompleksas yra tokia grupių homomorfizmų seka:

𝑆×
𝜕0
𝐴𝑚−−−→ (𝑆⊗2)×

𝜕1
𝐴𝑚−−−→ (𝑆⊗3)×

𝜕2
𝐴𝑚−−−→ . . .

Su 𝑛 ∈ Z≥0 galime nustatyti 𝑍𝑛
𝐴𝑚

(𝑅, 𝑆) = Ker 𝜕𝑛
𝐴𝑚

, o jei 𝑛 ≥ 1, 𝐵𝑛
𝐴𝑚

(𝑅, 𝑆) =
Im 𝜕𝑛−1

𝐴𝑚
. Jei 𝑐 ∈ 𝑆⊗3, Amitsuro algebra 𝐴(𝑆, 𝑐) apibrėžiama kaip 𝑅-modulis

𝑆⊗2 su sandauga
𝑥𝑦 = Tr1

1(𝜀
1
2 (𝑥)𝑐𝜀

1
0 (𝑦)), (i)

kur Tr1
1 yra pėdsako atvaizdis 𝑆⊗3 → 𝑆⊗2, kur 𝑆⊗3 laikomas 𝑆⊗2-algebra per

homomorfizmą 𝜀1
1 : 𝑆⊗2 → 𝑆⊗3.

Įvairūs Teoremos B teiginiai įrodomi išsamiais algebriniais skaičiavimais,
tačiau pagrindinis argumentas grindžiamas izomorfizmų seka, atsirandančia
išplečiant skaliarus į 𝑆. Tai yra, bet kuriai 𝑅-algebrai 𝐴 leidžiame, kad 𝐴𝑆 būtų
𝑆-algebra 𝐴 ⊗𝑅 𝑆. Tuomet parodome, kad

𝐴(𝑆, 𝑐)𝑆 ≃ 𝐴(𝑆𝑆 , 𝑐 ⊗ 1) ≃ End𝑆 (𝑆𝑆).

Daugelis rezultatų apie 𝑅-algebrą 𝐴(𝑆, 𝑐) išplaukia iš 𝑆-algebros End𝑆 (𝑆𝑆).
Teorema C įrodymas susideda iš dviejų dalių. Algoritmo, skirto Amitsur

algebrų sandaugoms apskaičiuoti, egzistavimas tiesiogiai išplaukia iš formulės
(i) ir iš to, kad

Tr1
1(𝑎0 ⊗ 𝑎1 ⊗ 𝑎2) = Tr𝑆/𝑅 (𝑎1)𝑎0 ⊗ 𝑎2.

Norint gauti tam tikros centrinės paprastosios algebros išraiškią per Amitsuro
algebrą, remiamės dviem faktais:

1. Jei 𝐴 yra centrinė paprastoji 𝑘-algebra, elementai 𝑢 ∈ 𝐴, tokie, kad
𝐾 = 𝑘 [𝑢] yra maksimalus algebros 𝐴 komutatyvusis poalgebris, ir 𝑣 ∈ 𝐴,
tokie, kad 𝐴 = 𝐾𝑣𝐾 , gali būti efektyviai apskaičiuoti.

2. Kai 𝑢, 𝐾 ir 𝑣 apibrėžti kaip aukščiau, gauname izomorfizmą 𝐾⊗2 ≃ 𝐴,
atvaizduojantį 𝑎0 ⊗ 𝑎1 į 𝑎0𝑣𝑎1. Norint rasti 𝑐 ∈ 𝐾⊗3, kad algebros 𝐴
sandauga atitiktų formulę (i), užtenka išspręsti tiesinių lygčių sistemą.

Teoremos D įrodymas remiasi polinominio kvantinio algoritmo, skirto
skaičiuoti 𝑆-vienetų grupes skaičių kūne, egzistavimu [9]. Įrodome teore-
mą, apibendrinančią straipsnio [29] 7 teoremą mūsų Amitsuro kohomologĳos
nustatymui. Tai yra, įrodome, kad jei 𝑐 ∈ 𝐵2

𝐴𝑚
(𝑘, 𝐾), tai egzistuoja tam

tikros aibės 𝑆 (1) , 𝑆 (2) atitinkamų vietų iš 𝐾⊗2 ir 𝐾⊗3 tokių, kad 𝑐 yra algeb-
ros 𝐾⊗3 𝑆 (2) -vienetų grupėje, o pirmavaizdis 𝑎 pagal 𝜕1

𝐴𝑚
yra algebros 𝐾⊗2
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𝑆 (1) -vienetų grupėje. Kadangi tokios vienetų grupės yra baigtai generuoja-
mos abelinės grupės, atvaizdį 𝜕1

𝐴𝑚
, kai jis yra ribotas, galima laikyti tiesiniu

atvaizdžiu tarp Z-modulių, o pirmavaizdį galima apskaičiuoti naudojant esa-
mus tiesinės algebros virš Z algoritmus. Pažymime, kad priklausomybė nuo
apidenbrintosios Rymano hipotezės atsiranda dėl to, kad 𝑆 (𝑛) turi apimti visas
vietas, esančias virš 𝐾 vietų aibės, kuri generuoja jo klasės grupę. Apibent-
rintoji Rymano hipotezė duoda polinominį viršutinį rėžį skaičių kūno, taigi ir
etalinės algebros virš skaičių kūno, klasės grupės generatorių aibės minimalaus
dydžio apribojimą.

Mūsų pateiktas [29, 7 teorema] apibendrinimo įrodymas atitinka Fiekerio
įrodymo struktūrą, tačiau dėl bendresnių sąlygų susiduriame su naujais sunku-
mais. Pagrindinė pirminio įrodymo lema, [29, 9 lema], yra išnykimo teorema
apie kūnų daliklių grupių 𝐻1 grupes. Tai yra Hilberto 90 teoremos apie 𝐻1

grupės trivialumą kūno daugiamačiai grupei apibendrinimas. Mūsų atveju tu-
rime dirbti ne tik su skaičių kūnais, bet ir su etalinėmis algebromis virš skaičių
kūnų. Todėl turime įvesti etalinės algebros vietų ir daliklių apibrėžimus ir
įrodyti kai kuriuos pagrindinius rezultatus, kurių nepavyko rasti literatūroje.

Teoremą E nesunku gauti iš apibrėžimų. Gardelių poras patogu vaizduoti
skaičiavimo būdu, nes tokios yra O 𝑓 𝑖 ir O∞-gardelės. Iš tiesų, O 𝑓 𝑖 yra De-
dekindo sritis, todėl O 𝑓 𝑖-gardelė yra formos 𝔞1𝑥1 ⊕ . . . ⊕ 𝔞𝑛𝑥𝑛, kur 𝔞𝑖 yra
trupmeniniai O 𝑓 𝑖-idealai kūne 𝑘 , o 𝑥𝑖 sudaro erdvės 𝑘𝑛 bazę. Tokią gardelę
galima pavaizduoti matricos 𝐺𝐿𝑛 (𝑘) ir dalinių frakcinių O 𝑓 𝑖-idealų rinkinio
(𝔞1, . . . , 𝔞𝑛) duomenimis. Kadangi žiedas O∞ yra pagrindinių idealų sritis,
O∞-gardelė turi bazę ir gali būti pavaizduota matrica 𝐺𝐿𝑛 (𝑘).

Keletas algoritmų, pateiktų teoremoje F, tiesiogiai išplaukia iš apibrėžimų.
Kai kuriems kitiems reikia sudėtingesnių metodų, kurie aptariami toliau. Toliau
gardelės poros 𝐿 atveju atitinkama O 𝑓 𝑖-gardelė žymima 𝐿 𝑓 𝑖 , o atitinkama O∞-
gardelė žymima 𝐿∞.

• Teiginyje 9 apskaičiuojame gardelės poros 𝐿 𝐻0 grupę. Tai Rymano-
Rocho problemos funkcĳų kūnų dalikliams apibendrinimas. Mūsų me-
todas remiasi Popovo redukuotos matricos formos skaičiavimu virš 𝐹 (𝑋)
ir yra straipsnio [45] metodo apibendrinimas. Pažymime, kad šis meto-
das taip pat naudojamas straipsnyje [46] maksimalių eilių porai 𝐹 (𝑋)-
algebroje, kuri yra atskiras gardelės poros atvejis. Įrodome, kad𝐻0(𝐿) =
𝐿 𝑓 𝑖∩𝐿∞, tinklelių sankirtą apskaičiuojame naudodami Popovo redukuo-
tą pagrindą 𝐿 𝑓 𝑖 pagrindo 𝐿∞ atžvilgiu. Popovo redukuotasis pagrindas
yra analogiškas ortogonaliojo Z-modulio pagrindui ir leidžia paprastai
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apskaičiuoti 𝐿 𝑓 𝑖 ∩ 𝐿∞ kaip mažų gardelės 𝐿 𝑓 𝑖 elementų aibę.

• Teiginyje 10 pirmos kohomologinės grupės 𝐻1(𝐿), priklausančiai rango
𝑛 gardelių porai 𝐿, skaičiavimas sukelia daugiau sunkumų. Pritaikius
straipsnio [94] metodą, gardelės poros 𝐻1 grupė apibrėžiama kaip 𝐹-
vektorinė erdvė 𝑅𝑛

𝑘
/(𝐿′ + 𝑘𝑛), kur 𝑅𝑘 yra kūno 𝑘 reparticĳų žiedas, o

𝐿′ yra tam tikra gardelė, esanti erdvėje 𝑅𝑛
𝑘

ir apibrėžta gardelių pora 𝐿.
Dėl to kyla keletas sunkumų: žiedo 𝑅𝑘 elementai yra begaliniai kūno
𝑘 elementų rinkiniai, todėl paprastai jų negalima pateikti apskaičiavimo
būdu. Taip pat nėra akivaizdaus būdo patikrinti, ar išreiškiami erdvės
𝑅𝑛
𝑘

elementai yra toje pačioje ekvivalentumo klasėje, arba sukurti pilną
likinių sistemą. Akivaizdžiausias būdas apeiti šiuos sunkumus yra rem-
tis Sero dualumu, kuris duoda izomorfizmą tarp grupės 𝐻1(𝐿) ir dualios
𝐹-vektorinės erdvės, priklausančios erdvei 𝐻0(𝐿′′), kur 𝐿′′ yra gardelių
pora, apibrėžta 𝐿. Nors to pakanka, kad apskaičiuotume erdvės 𝐻1(𝐿)
𝐹-dimensĳą, mums reikia, kad erdvės 𝐻1(𝐿) elementai būtų išreikšti
kaip reparticĳų vektorių liekanų klasės, tam kad galėtume apskaičiuoti
gardelių porų plėtinius (žr. teiginį 11). Tam pasiekti, mes linearizuojame
išreikštinę Sero dualumo formulę, apribodami ją erdvės 𝑅𝑛

𝑘
poaibiu, ku-

ris yra baigtinės dimensĳos 𝐹-vektorinė erdvė. Tuomet galime efektyvai
apskaičiuoti elementų, priklausančių 𝐻 erdvės dualiai erdvei, pirmvaiz-
džius ir gauti elementų, priklausančių kiekvienai 𝐻1(𝐿) ekvivalentumo
klasei, skaičiavimo reiškimą.

• Tegul 𝜉 yra vektorių grižčių plėtinys apimantis kreivę 𝑋 , kurį pateikia
tikslioji seka

0 → 𝐺 → 𝐸 → 𝐹 → 0.

Tiesoginį gyvatės lemos taikymą komutatyviai diagramai, sudarytai nau-
dojant vektorių grižčių Hom(𝐹, 𝐺), Hom(𝐹, 𝐸) ir Hom(𝐹, 𝐹) gle-
biąsias rezoliucĳas, galime susieti su plėtiniu 𝜉 grupės 𝐻1(Hom(𝐹, 𝐺))
elementu, kurio aprašas kaip adelinių vektorių liekanų klasės pats savai-
me duoda išreikštinį LP(𝐸) aprašą.

• Homomorfizmų branduolių ir atvaizdžių skaičiavimas yra tiesoginis
rezultatų apie Hermito normaliąją formą taikymas.

• Vektorių grižčių, taigi ir gardelių porų kategorĳa, yra Krulo-Šmito
kategorĳa [4]. Iš čia išplaukia, kad tai, kaip gardelių pora suskyla
kaip neskaidžiųjų objektų tiesoginė suma, visiškai priklauso nuo jos
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endomorfizmų algebros struktūros. Iš tikrųjų, tegu 𝐴 yra𝐹-endomorfizmų
algebros gardelių poros 𝐿 puspaprastė faktor-algebra. Turime izomorfiz-
mą

𝐴 ≃ 𝑀𝑛1 (𝐷1) ⊕ . . . ⊕ 𝑀𝑛𝑠 (𝐷𝑠),

kur 𝐷𝑖 yra 𝐹-algebros su dalyba. Tada 𝐿 turi tokį skaldymo modelį:

𝐿 ≃ 𝐿
𝑛1
1 ⊕ . . . ⊕ 𝐿𝑛𝑠𝑠 ,

kur 𝐿𝑖 yra neskaidi, o 𝐷𝑖 yra gardelių poros 𝐿𝑖 endomorfizmo algeb-
ros puspaprastas santykis. Todėl gardelių poros skaldymo apskaičiavi-
mas susiveda į jo endomorfizmo algebros skaičiavimo uždavinį, jo pu-
spaprastės faktor-algebros centrinių idempotentų skaičiavimo uždavinį,
ir po to šių idenpotentinių endomorfizmų vaizdų skaičiavimą. Endo-
morfizmo algebra yra gardelių porų homomorfizmų erdvė 𝐻0, todėl ji
yra apskaičiuojama pritaikant Teiginius 6 ir 9 iš Teoremos F. Algebros
struktūros virš baigtinio kūno skaičiavimas yra nagrinėjamas straipsny-
je [70]. Galiausiai, galime apskaičiuoti endomorfizmų vaizdus, remiantis
Teiginiu 13 iš Teoremos F.

• Kai bazinis kūnas 𝐹 yra pakankamai didelis (t. y. didesnis nei 𝐿 rangas),
izomorfizmą tarp gardelių porų galima rasti imant atsitiktinius homomor-
fizmus. Atlikus pakankamai bandymų, izomorfizmas yra randamas, arba
yra labai didelė tikimybė, kad dvi gardelių poros nėra izomorfinės. Kai
bazinis kūnas yra mažas, apskaičiuojant abiejų įvesties gardelės porų
skaidymo schemą, problema susiveda į izomorfizmų tarp neskaidžių
objektų skaičiavimą. Tai savo ruožtu atliekama apskaičiuojant jų tiesio-
ginės sumos endomorfizmų algebros struktūrą. Iš tiesų, jei abi gardelės
poros yra izomorfinės, tai endomorfizmo algebros puspaprastas santykis
turės formą 𝑀2(𝐷), kur 𝐷 yra 𝐹-algebra su dalyba, o morfizmas, ati-

tinkantis

(
0 0
1 0

)
, yra izomorfizmas. Kita vertus, jei gardelių poros nėra

izomorfinės, endomorfizmo algebros puspaprastas santykis bus formos
𝐷1 ⊕ 𝐷2, o 𝐷𝑖 𝐹-algebros su dalyba.

Naujumas

Mūsų pristatomos Amitsuro algebros yra naujos, nors centrinių paprastųjų
algebrų ir Azumajos algebrų išraiškos naudojant Amitsuro (arba etalinę) koho-
mologĳą jau yra žinomi [2, 14, 18, 73]. Mūsų konstrukcĳa išsiskiria tuo, kad
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bendrumą aukojame dėl praktiškumo: daugyba Amitsuro algebroje yra tieso-
ginės formulės su apibrėžiančiu Amitsuro kociklu rezultatas. Šia Amitsuro
algebros išraiška apibendrina esamus ciklinių ir kryžminių sandaugų išraiškus
ir iš tikrųjų yra ekvivalentus Brauerio algebros išraiškai [55]. Mūsų išraiškas
tenkina Teoremą C, tačiau cikliniai ir kryžminių sandaugų išraiškai tenkina
tik pirmąjį teoremos teiginį. Tam tikros centrinės paprastosios algebros cikli-
nei (arba kryžminio sandaugų) išraiškai apskaičiuoti reikia žinoti maksimalų
komutatyvųjį poalgebrį, kuris yra bazinio kūno ciklinis plėtinys (arba Galua
plėtinys). Kiek mums žinoma, nėra efektyvaus algoritmo tokiam poalgebriui
apskaičiuoti.

Kita vertus, nors teoriškai Brauerio išraiškos konstravimui reikia žinoti tik
bet kurį maksimalų komutatyvųjį poalgebrį, Brauerio algebros ir Brauerio fak-
toraibės yra išreiškiamos šio poalgebrio normalaus skiliojo kūno elementais.
Aritmetinės statistikos rezultatai rodo, kad su didele tikimybe laipsnio 𝑑 mat-
ricinės algebros atsitiktinis maksimalus komutatyvusis poalgebris yra bazinio
kūno plėtinys su Galois grupe 𝔖𝑑 [28]. Toks plėtinys normaliame skiliame
kūne yra meskaičiuotinas, nes tokio kūno laipsnis yra 𝑑!. Taigi, tai kad abu
Teoremos C teiginiai galioja, yra nauja mūsų Amitsuro algebros konstrukcĳos
savybė.

Teorema D iš esmės yra straipsnių [29, 82] rezultatų apibendrinimas iki
Amitsuro kohomologĳos. Nors mūsų naudojamas įrodymo metodas yra ana-
logiškas [29, 7 teoremos] įrodymui, mūsų prielaidos sukelia papildomus sun-
kumus. Iš tiesų, tai reikalauja etalinių algebrų divizorių virš globalių laukų
teorĳos ir jų skaidymo elgsenos. Nors mūsų įrodomi ir naudojami rezultatai,
be abejo, labai prieinami specialistams, literatūroje nepavyko aptikti nuorodos
į juos, taigi jie gali būti įdomūs patys savaime.

Kiek mums žinoma, literatūroje nėra sąlyginio polinominio kvantinio algo-
ritmo, skirto išreikštinio izomorfizmo problemai skaičių laukuose spręsti. Ži-
nomi klasikiniai algoritmai arba yra orientuoti į ribotas problemos versĳas (ap-
ribojant bazinį lauką arba algebros laipsnį), arba turi eksponentinį sudėtingumą
pagal kai kuriuos parametrus. Todėl mūsų algoritmas yra pirmasis polinominis
kvantinis algoritmas, sprendžiantis išrekštinio izomorfizmo problemą skaičių
laukuose esant teisingai apibendrintai Rymano hipotezei.

Vektorių grižčių virš projekcinių kreivių skaičiavimai yra nagrinėjami kaip
atskiri skaičiavimų su koherentinais pluoštais virš projekcinių schemų atvejai,
kai algoritmai, naudojantys Gröbnerio bazes, išplaukia iš koherentinų pluoštų
kaip graduotų modulių Sero aprašymo [78]. Tai, pavyzdžiui, yra Sagemath
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ir Magma [10, 89] atvejis. Buvo sukurta ir daugiau efektyvių metodų tokių
pluoštų kohomologinių grupių skaičiavimui, žr., pavyzdžiui, [27, 61, 83].

Mūsų metodas yra siauresnis, tačiau leidžia taikyti labiau specializuotus
algoritmus ir reiškimus . Mūsų žiniomis, metodas, išreiškiantis skaičiavimo
būdu vektorių grižtes kaip gardelių poras, yra naujas. Mūsų vektorių grižčių
reiškimas kaip gardelės virš integralinių pertvarų žiedo yra artimas nepublikuo-
to Vengo darbo apie taip vadinamąsias adeliškas vektorių grižtes idėjoms [93].
0-nės kohomologĳos grupių skaičiavimas yra žinomų metodų, skirtų Rymano-
Rocho erdvėms [45] ir eilių sankirtoms [46] skaičiuoti, apibendrinimas. Mūsų
metodas, skirtas išreikštiniam Sero dualumo izomorfizmų skaičiavimui, taip
pat yra naujas.

Išvada

Šioje disertacĳoje mes pristatome centrinių paprastųjų algebrų išraišką, pagrįstą
Amitsuro kohomologĳa, kurios vienas iš rezultatų yra efektyvus skaičiavimas.
Jei yra teisinga apibendrintoji Rymano hipotezė, šią išraišką panaudojome po-
linominiam kvantiniam algoritmui, kuris išsprendžia išreikštinio izomorfizmo
problemą. Taip pat pristatome vektorių grįžčių virš normaliųjų projekcinių
kreivių skaičavimo išraišką ir algoritmus, kurie sprendžia daugelį natūralių
uždavinių.

Pastaroji konstrukcĳa susĳusi su išreikštinio izomorfizmo problema pagal
metodą, aprašytą 5.3.1 sekcĳoje. Turėdami šią priemonę, tolimesniuose tyri-
muose ketiname pasinaudoti žinomais rezultatais apie vektorių grįžčių struktūrą
virš kreivių, turinčių teigamą rūšį, tam kad pateiktume išreikštinio izomorfiz-
mo uždavinio algoritmus globaliųjų funkcĳų laukams. Kita tolimesnio darbo
perspektyva - polinominių algoritmų, skirtų Hermito normaliosioms formoms
pseudomatricoms virš globalaus funkcĳų lauko žiedo O 𝑓 𝑖 skaičiuoti, paieškos.

Amitsuro algebros turi potencialo tolimesniems tyrimams. Amitsuro išrei-
kštinio izomorfizmo uždavinio versĳą galima polinomiškai suvesti į bendrąjį
aiškaus izomorfizmo uždavinį, o pastarajam uždaviniui spręsti nėra žinomo
efektyvaus klasikinio algoritmo globaliuose laukuose, išskyrus 𝐹 (𝑋). Šie fak-
tai rodo, kad išreikštinio izomorfizmo uždavinys gali būti naudojamas kaip
sunkus kriptografijos uždavinys (žr. [53], kuriame pateikta panašiu uždaviniu
pagrįsta identifikavimo schema). Problema, kaip surasti kokraščio pirmavaizdį
per grupės homomorfizmą 𝜕1 : 𝐶1

𝐴𝑚
(𝑘, 𝐾) → 𝐵2

𝐴𝑚
(𝑘, 𝐾), tiesiogiai redukuo-

jama į išreikštinio izomorfizmo problemą, kai grupės 𝐵2
𝐴𝑚

(𝑘, 𝐾) elementai
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koduoja problemos atvejį, o grupės 𝐶1
𝐴𝑚

(𝑘, 𝐾) elementai koduoja sprendimo
liudininkus. Ši idėja gali būti naudinga kuriant kriptografinius protokolus.
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klasė.
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