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Notations

1

E\/

The composition operator for maps.
The isomorphy relation.

The direct sum operator.

The tensor product operator.

The direct product operator.

The scalar extension S-algebra A ®g S for R a commutative ring, S a
commutative R-algebra and A an R-algebra.

The set of nonnegative elements of A, where A is a subset of the real
numbers.

The field of complex numbers.
The divisor group of a global field k.

The opposite algebra of D. The product of ab in DP is the product ba
of D.

The degree valuation, extended from the ring of polynomials to the field
of rational functions. May also denote the degree of a central simple
algebra, vector bundle, Ox-lattice, Og-lattice, or of a lattice pair.

The dual of E, where E is a module (resp. vector bundle, sheaf of
modules, lattice, lattice pair).

End(E) The algebra of endomorphisms of a module, vector bundle, ©x-lattice,

Og-lattice, or lattice pair E.
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&nd(E) The vector bundle (resp. Ox-lattice, Og-lattice, lattice pair) of endo-
morphisms of the vector bundle (resp. ©Ox-lattice, Og-lattice, lattice

pair) E.

fe The pullback of f on coherent sheaves, where f is a morphism of
schemes

Se The pushforward of f on coherent sheaves, where f is a morphism of
schemes

F, The finite field with g elements, where ¢ is a power of a prime integer.

F The Galois closure of a field F

F((X)) The field of formal power series )., a,X" with v € Z and the
coeflicients a,, lying in the field F.

F(X) The field of rational functions in one variable, with coefficients in the
field F.

F(X)s The valuation ring of the degree valuation in a field of rational functions
F(X).

Gal(K/k) The Galois group of a Galois field extension K /k.

GL4(R) The group of invertible square matrices of size d with coefficients in
R.

GRH The generalised Riemann hypothesis.

Hom(E,E’) The algebra of homomorphisms between two vector bundles,
Ox-lattices, Og-lattices, or lattice pairs E and E’.

dom(E,E’) The vector bundle (resp. Ox-lattice, Og-lattice, lattice pair) of
homomorphisms between the vector bundles (resp. ©Ox-lattices, O-
lattices, lattice pairs) E and E’.

Kk The residue field of a local field k.

K®"  The iterated n-fold tensor product K ®; K ®; ... ®; K, when K is a
k-algebra.

My The set of places of a global field. Superscrits na, a, fi, 0 may indi-
cate, respectively, the subset of non-archimedean places, archimedean
places, finite places and infinite places.

11



M4(R) The R-algebra of square matrices of size d with coefficients in R.

M, ,(R) The R-algebra of matrices of size m X n with coefficients in R.

Or,

ordp

Ox

Qp

RX

The set of integers {1,2,...,n}.

The set of integers {0, 1, ..., n}.

The set of natural numbers {1,2,...}.
The norm map of the field extension K /k.

When £ is an extension of a field of rational functions F(X), O, is the

integral closure of F[X] in k.

When £ is an extension of a field of rational functions F(X), Oy, is the
integral closure of F(X) in k.

The ring of integral répartitions of a function field k. The subscript &
may be omitted when the field is clear from context.

The normalized valuation associated to a non-archimedean place P of
a global field.

The structural sheaf of a scheme X.
The field of rational numbers.

The field of p-adic numbers.

The group of units of the ring R.
The field of real numbers.

The ring of répartitions of a function field k. The subscript £ may be
omitted when the fiels is clear from context.

The ring of polynomials with coefficients in the ring R.
The trace map of A-Algebra B, when B is free as an A-module.

The group of S-units of a global field.

[V : k] The dimension of the k-vector space V.

Z

The ring of integers.
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Chapter 1

Introduction

1.1 Research topic

This work focuses on the explicit isomorphism problem and related algorithmic

problems.

Problem 1.1.1 (The explicit isomorphism problem). Given a field k and a
k-algebra A isomorphic to the matrix algebra M (k) for some d € N, compute
an explicit isomorphism ¢: A — My(k).

The explicit isomorphism problem is usually studied over a specific field
or class of fields. In our case, we focus on solving the explicit isomorphism
problem for global fields. That is, for number fields and global function fields,
finite extensions of the rational function field F'(X), where F is a finite field.

As we find that vector bundles over normal projective curves are relevant
in studying the explicit isomorphism problem over function fields, we also
consider the algorithmic theory of such vector bundles.

1.2 Actuality

The explicit isomorphism problem emerges as a natural problem in computa-
tional representation theory. Given a k-algebra A, one may wish to describe
its structure explicitly. That is, compute the Jacobson radical of A, and the
decomposition of the semi-simple part of A as a sum of simple k-algebras,
themselves isomorphic to some M,, (D), for D a division k-algebra. In general,
the hard part of this task is to find an isomorphism A — M,,(D) when A is
simple. A general recipe for solving this problem is to identify the Brauer
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class of D over its centre K/k, find structure constants for M;(D°P) and then
compute an explicit isomorphism A ® M;(DP) ~ M,»(K) [23,37,49].

Applications of the explicit isomorphism problem go beyond the mere
computational theory of associative algebras. In arithmetic geometry, the
problem is relevant for trivialising obstruction algebras in explicit descent over
elliptic curves [19,/20,22,30] and computation of Cassel-Tate pairings [32,96].
The problem also applies to the parametrisation of Severi-Brauer surfaces
[24]]. Recent work in algebraic complexity theory reduced the determinant
equivalence test to the explicit isomorphism problem [35]. Finally, the explicit
isomorphism problem over a rational function field F(X) (F finite) is also
relevant to error correcting codes [37].

In the case of a finite base field, Ronydi introduced a polynomial-time
algorithm for the explicit isomorphism problem in [[70].

Instances of the explicit isomorphism problem for Q-algebras were first
treated separately for small values of d. When d = 2, the problem reduces
to finding a rational point on a projective conic [91, Theorem 5.5.4], which is
solved for instance in [21f]. Then, [24] presented a subexponential algorithm
when d = 3 by finding a cyclic presentation and solving a cubic norm equation.
The case d = 4 is tackled in [66] by reducing the problem to the case of
quaternion algebras over Q and quadratic number fields and then solving a
quadratic norm equation.

In [22]], an algorithm was given and studied mostly for the cases d = 3 and
d = 5. It was then generalised in [47,/49] to a K-algebra isomorphic to M;(K),
where d is a natural number and K is a number field. The complexity of this
last algorithm is polynomial in the size of the structure constants of the input
algebra. However, it depends exponentially on d, the degree of K and the size
of the discriminant of K.

In 2018, [46] exhibited a polynomial-time algorithm for the explicit iso-
morphism problem over F(X), where F is a finite field.

For the case of fixed d and varying base field, [31,/54]] independently gave
an algorithm for an algebra isomorphic to M;(K), where K is a quadratic
number field. The complexity of this algorithm is polynomial in the size of the
discriminant of K.

While the methods of [46] are entirely algebraic, we argue in Section[5.3.1]
that the main theoretical result supporting the algorithm admits a natural in-
terpretation as a famous theorem of Grothendieck on the structure of vector
bundles over the projective line. As Grothendieck’s theorem does not hold for
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function fields of higher genus, the method of [46] does not generalise directly
to such fields. However, our geometric interpretation of this method suggests
that progress may follow from existing results on the structure of vector bundles
over normal projective curves of higher genus. This observation suggests the
relevance of developing an algorithmic theory for representing vector bundles
over normal projective curves using pairs of lattices.

1.3 Aims

This thesis presents new methods for solving the explicit isomorphism problem
over global fields. Over number fields, we aim to provide a novel cohomological
description of central simple algebras that is fit for practical computations and
to study the impact of such a tool in solving the explicit isomorphism problem
over number fields. Over function fields, we aim to develop an algorithmic
theory of vector bundles, relying on the theory of lattices over maximal orders.

1.4 Main Results

For a field k and an étale k-algebra K, we define a group Z% (k,K) C
(K®3)%, a subgroup Bim(k, K) and we consider the factor group Hf‘m(k, K) =
Zim(k,K)/Bim(k,K). We then define the Amitsur algebra A(K,c) for
c € Zim(k,K) whose underlying k-vector space is K®2, and prove the fol-
lowing classification result:

Theorem 1.4.1. Let k be a field and let K be an étale k-algebra of dimension
d. Let c € K®. Then, A(K,c) is a central simple k-algebra if and only
if c € Zim(k,K). In this case, A(K,c) has degree d and contains K as
a maximal commutative subalgebra. Conversely, if A is a central simple
k-algebra containing K as a maximal commutative subalgebra, there exists
ce Z:f;m(k, K) such that the algebra A(K, ¢) is isomorphic to A.

This yields an isomorphism Hf‘m(k, K) =~ Br(K/k) with the relative Brauer
group of K over k.

Fix a polynomial y € k[X] such that there is an isomorphism K =
k[X]/(x(X)). We consider the algebras K| = k[X,Y]/(x(X), ¥(Y)) and
K> = k[X,Y,Z]/(x(X), x(Y), x(Z)). Observe that for n € [2], the algebra
K, is naturally isomorphic to K®"*! and that its elements may be represented

15



computationally as residue classes of polynomials. We prove algorithmic re-
sults on Amitsur algebras:

Theorem 1.4.2. Identifying elements of Zf‘m (k, K) with their images in K, and
identifying A(K, c) with K| as a k-vector space, we have the following results:

1. There is a polynomial algorithm which, given y,c € Zim(k, K), and a
and Bin A(K, ¢), computes a;

2. There is a probabilistic polynomial algorithm which, given a central
simple k-algebra A, computes a maximal commutative subalgebra K C
A, a polynomial y such that K ~ k[X]/(x(X)), ¢ € Zf\m(k, K) and an
isomorphism of k-algebras from A to A(K, ¢).

As an application of our construction of Amitsur algebras, we prove the
following result:

Theorem 1.4.3. Under GRH, Algorithm[2]is a polynomial quantum algorithm

that solves the explicit isomorphism problem over number fields.

Let X be a normal projective curve over a finite field F, and let k be its
function field. Let Of; and O be the integral closures in k respectively of
F[X] and of F(X)e = {R € k(X) : deg R < 0}. A lattice pair of rank n on k
is the data of a projective O ¢;-submodule L ¢; of k" and a free O -submodule
Lo of k" such that kL ¢; = kL, = k™. We prove the following:

Theorem 1.4.4. The category of vector bundles over X is equivalent to the
category of lattice pairs of k.

We provide a computational representation of lattice pairs over a function
field k. We let LP be the functor from the category of vector bundles to that of
lattice pairs discussed above. We then get several algorithmic results. Unless
specified otherwise, in the theorem stated below, E and E’ are vector bundles
over X.

Theorem 1.4.5.  [. There is a polynomial algorithm which, given LP(E),
computes LP(det(E)).

2. There is a polynomial algorithm which, given LP(E), computes deg(E).

3. There is a polynomial algorithm which, given LP(E) and LP(E’), com-
putes LP(E ® E’).

16



10.

11.

12.

13.

14.

There is a polynomial algorithm which, given LP(E) and LP(E’), com-
putes LP(E @ E’).

There is a polynomial algorithm which, given LP(E), computes LP(E").

There is a polynomial algorithm which, given LP(E) and LP(E’), com-
putes LP(Hom(E,E")).

Let f:Y — X be a morphism of normal projective curves. There is a
polynomial algorithm which, given LP(E) for E a vector bundle overY,
computes LP( f.(E)).

Let f and Y be as above. There is a polynomial algorithm which, give
LP(E) for E a vector bundle over X, computes the lattice pair LP(f*(E))
over the function field of Y.

There is a polynomial algorithm which, given LP(E), computes a basis
of H (X, E).

There is a polynomial algorithm which, given LP(E), computes a basis
of H'(X,E).

There is a polynomial algorithm which, given LP(E), LP(E") and ¢ €
H'(#om(E,E")), computes LP(E"), where E" is the extension of E by
E’ corresponding to €.

There is a polynomial algorithm which, given an oracle for computing
Hermite normal form of pseudo matrices over Oy;, lattice pairs LP(E)
and LP(E’), and a matrix representing LP(f), for a homomorphism
f: E — E’, computes LP(Ker(f)).

There is a polynomial algorithm which, given an oracle for computing
Hermite normal form of pseudo matrices over Oy;, lattice pairs LP(E)
and LP(E’), and a matrix representing LP(f), for a homomorphism
f: E — E’, computes LP(Im( f)).

There is a polynomial algorithm which, given an oracle for comput-
ing Hermite normal forms of pseudo-matrices over Oy; and a lattice
pair LP(E), computes LP(E), ...,LP(E,) such that the vector bundles
E\,...,E, are indecomposables, and an isomorphism LP(f) between
LP(E) and LP(E1 @ ... ® E,).

17



15. There is a polynomial algorithm which, given an oracle for computing
Hermite normal forms of pseudo-matrices over Oy;, and two lattice pairs
LP(E) and LP(E’), decides whether E and E’ are isomorphic and, if

they are, computes an isomorphism LP( f).

The algorithms for lattice pairs discussed above were all implemented as a
packag for Sagemath. [89]

1.5 Methods

In [55]], Theorem [1.4.T]is proved by showing that our construction of Amitsur
algebras is equivalent to the construction of Brauer algebras, and then leveraging
existing results on Brauer algebras, which appear in [51, Chapter 2]. In this
work, we give a direct proof instead, as suggested in [55, Remark 3.8].

Let k be a global field, let R be an étale k-algebra and let S be an R-algebra
which is étale over k and free as an R-module. Letting S®" be the n-fold tensor
product S ®g ... ®g S, we recall the definition of the Amitsur complex. For

n € Zsoandi € [n+ 1]o, we define the R-algebra homomorphisms
81’.1 . S®n+l N S®n+2

a®...®a, — ap...q4i-1910a;®...0a,
and the group homomorphisms
agnﬁ (S®n+1)x N (S®n+2)x
x o Tl el @

The Amitsur complex of S over R is the following sequence of group
homomorphisms:
0 1 2

S>< {)A_m) (S®2)>< aA_m> (S®3)>< aA_”"> .

Forn € Zso, we may thenset Z%} (R, S) = Kerd; and,ifn>1,B’ (R,S)=
Imoy- 1 If ¢ € S°, the Amitsur algebra A(S, c) is defined as the R-module
$%2 with multiplication

xy = Try (3 (x)ceg (), (1.1)

where Trj is the trace map S®* — S®2, where S®° is seen as a S®2-algebra via
the map &} : $%2 — §%3.

Thttps://git.disroot.org/montessiel/vector-bundles-sagemath
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The various statements of Theorem [I.4.1] are proved by detailed algebraic
computations, but a pivotal argument relies on the sequence of isomorphisms
coming from extending scalars to S. That is, for any R-algebra A, we let Ag be
the S-algebra A ®g S. Then, we show that

A(S,c)s =~ A(Ss,c® 1) ~ Endg(Ss).

Many results about A(S, ¢) are then inherited from Endg(Ss).

Theorem |1.4.2]is proved in two parts. The existence of an algorithm for
computing products in Amitsur algebras follows directly from the straightfor-
ward statement of Equation (I.1)) and the fact that

Tr}(ao ®a) ® az) = Trg/r(ar)ag ® as.

In order to construct a representation of a given central simple algebra as an
Amitsur algebra, we rely on two facts:

1. If A is a central simple k-algebra, elements u € A such that K = k[u] is
a maximal commutative subalgebra of A and v € A such that A = KvK
may be computed efficiently.

2. Once u, K, and v are given as above, we get an isomorphism K®> ~ A
sending ag ® a; to agva;. Finding c € K @3 guch that multiplication in
A matches Equation (I.1) is then a matter of solving a system of linear
equations.

The method to prove Theorem|[I.4.3relies on the existence of a polynomial
quantum algorithm for computing groups of S-units in number fields [9]. We
prove a theorem that generalises [29, Theorem 7] to our setting of Amitsur
cohomology. That is, we prove that if ¢ € Bim(k, K), then there are certain
sets S(1), §) of places respectively of K€ and K®3 such that c lies in the
group of S -units of K®3 and a preimage a of ¢ by (ﬂm lies in the group of
S _units of K®2. Since such groups of units are finitely generated abelian
groups, the map (’31m, once restricted, may be seen as a linear map between
Z-modules, and one may compute a preimage using existing algorithms for
linear algebra over Z. We note that the dependence on GRH stems from the
necessity for the S to contain all the places lying above a set of places of K
that generate its class group. GRH provides a polynomial upper bound on the
minimal size of a set of generators of the class group of a number field and,
therefore, of an étale algebra over a number field.
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Our proof of a generalisation of [29, Theorem 7] follows the structure of
Fieker’s proof, but we face new difficulties owing to our more general setting.
The fundamental lemma in the original proof, [29, Lemma 9], is a vanishing
theorem of the H' group over the group of divisors of a number field. This
generalises Hilbert’s Theorem 90 on the triviality of the H' group of the
multiplicative group of a field. In our case, we must handle both number fields
and étale algebras over number fields. Therefore, we must introduce definitions
of places and divisors for étale algebra and prove some primary results we could
not locate in the literature.

Theorem|[I.4.4]is straightforward to prove from definitions. Lattice pairs are
convenient to represent computationally because © g;-lattices and O -lattices
are so. Indeed, Oy; is a Dedekind domain, so an Og;-lattice is of the form
ajx; @ ... ® a,x,, where the q; are fractional O;-ideals in k and the x; form
a basis of k. Such a lattice may be represented by the data of a matrix in
GL, (k) and a tuple (ay,...,a,) of fractional Oy;-ideals. Since the ring O
is a PID, an O-lattice admits a basis and may be represented by a matrix in
GL, (k).

Several algorithms presented in Theorem [T.4.5] follow directly from defi-
nitions. Some others require more sophisticated methods, which we discuss
below. In what follows, for a lattice pair L, we denote by L ¢; the corresponding
Op;-lattice and by L, the corresponding O-lattice.

* In Item El, we compute the H° group of a lattice pair L. This algorithm
is a generalisation of the Riemann-Roch problem for divisors of function
fields. The method we use relies on the computation of the Popov reduced
form of a matrix over F(X) and is a generalisation of the method of [45]].
We note that this method also serves in [46] for a pair of maximal orders
in a F(X)-algebra, which is a particular case of lattice pair. As we prove
that HO(L) = L fi N Lo, we compute the intersection of lattices using
a Popov reduced basis of Lz; with respect to a basis of L. A Popov
reduced basis is analogous to an orthogonal basis of a Z-module and
allows for a straightforward computation of Ly; N L as a set of small
elements of L ;.

* InItem |10, computing the 1st cohomology group H'(L) of a lattice pair
L of rank n presents more difficulties. Adapting the approach from [94]],
the H' group of a lattice pair is defined as the quotient F-vector space
R} /(L"+k™), where Ry is the ring of répartitions of k, and L’ is a certain
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lattice contained in R}’ and determined by L. This computation presents
several difficulties: elements of Ry, are infinite tuples of elements of k and
are therefore not generally computationally representable. There is also
no obvious way to check that representable elements of R}! lie in the same
equivalence class or to produce a complete system of representatives. The
most obvious way to circumnavigate these difficulties is to rely on Serre
duality, which gives an isomorphism between the group H!(L) and the
dual F-vector space of H*(L""), where L” is a lattice pair determined by
L. While this is sufficient for computing the F-dimension of H!(L), we
need the representation of elements of H' (L) as residue classes of vectors
of répartitions for computing extensions of lattice pairs (see Item|[I ). To
achieve this, we linearise an explicit Serre duality formula by restricting
it to a subset of R}, which is a finite-dimensional F-vector space. We
may then efficiently compute preimages of elements lying in the dual of
an H° space and obtain computational representations of elements lying

in each equivalence class of H'(L).
Let & be an extension of vector bundles over X given by the exact sequence
0-G—-E—>F—O.

A straightforward application of the snake lemma to a commutative
diagram built using flasque resolutions of the vector bundles #om(F, G),
Hom(F,E) and #om(F,F), we may associate to the extension & an
element of H'(#om(F,G)), whose description as a residue class of
vectors of répartitions itself yields an explicit description of LP(E).

Computing kernels and images of homomorphisms is a straightforward
application of known results on the Hermite Normal Form.

The category of vector bundles, and therefore that of lattice pairs, is a
Krull-Schmidt category [4]. It follows that the structure of a lattice pair’s
endomorphism algebra entirely determines how it splits as a direct sum
of indecomposables. More specifically, let A be the semi-simple quotient
of the F-algebra of endomorphisms of L. We have an isomorphism

A=~ Mnl(Dl) ©...0 Mns(Ds),

where the D; are division F-algebras. Then, L has the following splitting
pattern:
L=L"®.. 0L},
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where the L; are indecomposable and D; is the semi-simple quotient of
the endomorphism algebra of L;. Therefore, computing the splitting of a
lattice pair reduces to the tasks of computing its endomorphism algebra,
computing the central idempotents of its semi-simple quotient and then
computing the images of these idempotent endomorphisms. The endo-
morphism algebra is the H? space of the lattice pairs of homomorphisms
and is therefore computed by combining Items [|and [0] Computing the
structure of an algebra over a finite field is the object of [[70]]. Finally, we
may compute images of endomorphisms by Item [I3]

* When the base field F' is large enough (larger than the rank of L, that
is), finding an isomorphism between lattice pairs may be done by taking
random homomorphisms. With enough trials, either an isomorphism
is found, or the two lattice pairs are not isomorphic with overwhelm-
ing probability. When the base field is small, computing the splitting
pattern of both input lattice pairs reduces the problem to computing iso-
morphisms between indecomposable objects. This task, in turn, is done
by computing the structure of the endomorphism algebra of their direct
sum. Indeed, if both lattice pairs are isomorphic, the semi-simple part of
the endomorphism algebra will have the form M, (D), with D a division

0 0
F-algebra. Furthermore, the morphism corresponding to (1 0) yields

an isomorphism. On the other hand, if the lattice pairs are not isomor-
phic, the semi-simple quotient of the endomorphism algebra will be of
the form D & D,, where the D; are division F-algebras.

1.6 Novelty

The Amitsur algebras we introduce are novel, although presentations of central
simple algebras and Azumaya algebras using Amitsur (or étale) cohomology
are already known [2,/14}|18,/73]. Our construction stands out as we sacri-
fice generality for practicality: multiplication in an Amitsur algebra follows a
straightforward formula involving its defining Amitsur cocycle. This Amitsur
algebra presentation generalises existing cyclic and crossed-product presenta-
tions and is, in fact, equivalent to the Brauer algebra presentation [55]. Our
presentation, however, hits a sweet spot given by Theorem[I.4.2] Indeed, cyclic
and crossed-product presentations only satisfy the first item of the theorem, but
computing a cyclic (resp. crossed-product) presentation of a given central
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simple algebra requires the knowledge of a maximal commutative subalgebra
that is a cyclic extension (resp. a Galois extension) of the base field. To our
knowledge, there is no efficient algorithm to compute such a subalgebra.

On the other hand, while constructing a Brauer presentation theoretically
only requires the knowledge of any maximal commutative subalgebra, the
representation of Brauer algebras and Brauer factor sets involves elements
of a normal splitting field of this subalgebra. Results in arithmetic statistics
suggest that, with overwhelming probability, a random commutative maximal
subalgebra of a matrix algebra of degree d is an extension of the base field
with Galois group S, [28]]. Computation in a normal splitting field for such
an extension is therefore not tractable, as the degree of such a field is d!.
Therefore, the fact that both items of Theorem|I.4.2]hold is a novel property of
our Amitsur algebra construction.

Theorem [[.4.3] is essentially a generalisation to Amitsur cohomology of
results from [29,[82]]. While our proof strategy is analogous to that of [29,
Theorem 7], our setting presents additional difficulties. Indeed, it requires
a theory of divisors of étale algebras over global fields and their splitting
behaviour. While the results we prove and use are certainly very accessible to
experts, we could not locate a reference to them in the literature, and they may
be of independent interest.

To our knowledge, no conditional polynomial quantum algorithm is known
for the explicit isomorphism problem on number fields. Known classical
algorithms either focus on restricted versions of the problem (restricting either
the base field or the degree of the algebra) or have exponential complexity in
some parameters. Therefore, our algorithm is the first polynomial quantum
algorithm and the first subexponential classical algorithm to solve the explicit
isomorphism problem for number fields under GRH.

Computations on vector bundles on projective curves are a particular case
of computation on coherent sheaves over projective schemes, where algorithms
using Grobner bases follow from Serre’s description of coherent sheaves as
graded modules [78]]. This is the representation that, for instance, Sagemath
and Magma [10,89] use. Increasingly efficient methods have been developed to
compute the cohomology groups of such sheaves, for instance, in [27/61},83].

Our approach is smaller in scope but allows for more specialised algorithms
and representations. To our knowledge, this approach of computationally
representing vector bundles as pairs of lattices is novel. Our representation of
vector bundles as lattices over a ring of integral répartitions is similar to Weng’s
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unpublished work on so-called adelic vector bundles [93|]. The computation of
Oth cohomology groups is a generalisation of known methods for computing
Riemann-Roch spaces [45] and intersections of orders [46]. Our method for

explicitly computing Serre duality isomorphisms is also novel to our knowledge.

1.7 Dissemination

Talks given by the author

1. Finding Nontrivial Zeros of Quadratic Forms over Rational Function
Fields of Characteristic 2. International Symposium on Symbolic and
Algebraic Computation, Université de Lille, France. July 2022.

2. The Explicit Isomorphism Problem. Arithmetic Geometry Seminar,
Bayreuth University, Germany. January 2023.

3. The Splitting Problem in Central Simple Algebras. 19th Atelier PARI/GP
2024, ENS Lyon, France. January 2024.

Talks given by a coauthor

1. Explicit Isomorphisms of Quaternion Algebras over Quadratic Global
Fields. Algorithmic Number Theory Symposium XV. University of
Bristol, United Kingdom. July 2022. Presentation given by Péter Kutas.

Other international events attended by the author

1. Isogeny-based Cryptography School. Online. July 2021.

2. Isogeny-based Cryptography Workshop. University of Birmingham,
United Kingdom. March 2022.

3. Park City Mathematics Institute Graduate Summer School: Number
Theory Informed by Computation. Park City, Utah, USA. July 2022

1.8 Publications

1. Timea Csahok, Péter Kutas, Mickaél Montessinos and Gergely Zabradi.
Finding Nontrivial Zeros of Quadratic Forms over Rational Function

24



Fields of Characteristic 2. ISSAC *22—Proceedings of the 2022 Inter-
national Symposium on Symbolic and Algebraic Computation, 235-244.
https://doi.org/10.1145/3476446.3535485

2. Timea Csahok, Péter Kutas, Mickaél Montessinos and Gergely Zabradi.
Explicit isomorphisms of quaternion algebras over quadratic global fields.
Research in Number Theory 8, 4 (2022), 77, 24 p. https://doi.org/
10.1007/s40993-022-00380-3

3. Péter Kutas, Micka€l Montessinos. Efficient computations in central
simple algebras using Amitsur cohomology. Journal of Algebra 665
(2025), 255-281. https://doi.org/10.1016/j.jalgebra.2024.
10.045

4. Micka€l Montessinos. Algebraic algorithms for vector bundles over
curves. Journal of Algebra and its Applications, 2024. https://doi.
org/10.1142/50219498826500210

1.9 Structure of the thesis

We recall the basic theory of global fields and then present existing algorithms
used in the sequel in Chapter 2] Section [2.1] presents theoretical results. In
particular, Section [2.1.5] present several results that are likely well-known by
experts but which we could not locate in the literature and may be of independent
interest. Section [2.2] then presents known algorithms for the computational
treatment of global fields.

We recall well-known results on finite-dimensional algebras, central simple
algebras and the Brauer group in Chapter[3] Section[3.1|presents known results
on the structure and algorithmic treatment of finite-dimensional associative
algebras, Section introduces the theory of central simple algebras, with
a focus on cohomological presentations, Section [3.3] discussed the computa-
tional treatment of these cohomological presentations, and Section[3.4]presents
variants of the explicit isomorphism problem and discusses some of the main
known algorithms solving it.

We present our cohomological presentation of central simple algebra and
our polynomial quantum algorithm for solving the explicit isomorphism prob-
lem under GRH in Chapter [ Section [.T| recalls the definitions of Amitsur
cohomology, Sectiond.2]introduces our version of Amitsur algebras and proofs
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that they classify central simple algebras, while Section 4.3 gives our algorith-
mic treatment of Amitsur algebras.

We discuss our algorithmic treatment of vector bundles in Chapter[5] Sec-
tion [5.1] presents the theoretical results, representing vector bundles as lattices
over a ring of integral répartitions, Section [5.2] presents the algorithmic treat-
ment of lattice pairs, our computational representation of vector bundles, and
Section[5.3] presents some examples of practical computations made using our
algorithms.
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Chapter 2

Computing in global fields

This this chapter briefly recalls some results in the algorithmic theory of global
fields.

2.1 Background on algebraic number theory

We recall the basic definitions and results of algebraic number theory.

2.1.1 Local Field

A local field is a topological field that is non-discrete and locally compact.
By [92| Section 1.3], such a field is always isomorphic to one of the following

variants:
1. The field of real numbers R.
2. The field of complex numbers C.

3. A finite extension of the field Q, of p-adic numbers, for p a prime
number.

4. A field F((X)) of formal power series over a finite field F.

The fields of real and complex numbers are called Archimedean local fields
while the others are non-Archimedean local fields. The topology of any local
field is metric and comes from an absolute value (among a class of equivalent

absolute values).

Definition 2.1.1 ( [[63} Definition I1.3.1]). Let k be a field. An absolute value
over k isamap | - |: k — Rsq such that
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1. fora €k, |a| =0ifand only if a = 0;
2. fora,b €k, |ab| = |al|b|;
3. fora,b €k, |la+b| <|al+|b|.

If, furthermore, for a,b € k, |a + b| < max(|al, |b|), then the absolute
value | - | is said to be non-Archimedean. Two absolute values |- || and |- |, over
a field k are said to be equivalent if there exists @ € R>q such that | - |1 = |- .

If k is a local field with absolute value |- |, and K is a finite extension of k,
then by [13} Section II.11], K is a local field when given the topology induced
by the absolute value | - | defined by

lalg = fNK/k(a)|k .
Observe that if a € k,
— 1] K:k]
jalk = la]tFH),

Let k be a non-Archimedean local field with absolute value | - [;. As
in [[13} Section IL.7], the valuation ring of k is the discrete valuation ring

Or={ack:|alp <1}.
The unique maximal ideal of © is
my={ack:|alx <1},

and the residue field of k is
Ki = @/m.

Note that « is always a finite field, and its characteristic is p, where k is either
an extension of Q,, or of the form FF, ((¢)), where g is a power of p.

For alocal field k, we define its normalised absolute value as in [|13| Section
IL11Y:

1. If k = R, the normalised absolute value of k is the usual real absolute
value.

2. If k ~ C, the normalised absolute value of k is the square of the usual
complex absolute value.

3. If k is non-Archimedean, set ¢ = |«g|. Then, the normalised absolute
value of k is the unique absolute value of k, whose values are precisely
the integral powers of g.
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We now consider a finite extension K/k of non-archimedean local fields
and follow [13l Section 1.5]. Then, we have Oy C Ok and my; C mg, SO Kk
is a field extension of «. It is finite, and its degree, which we denote by fk /«,
is called the inertia degree of the extension K /k. Furthermore, if the field & is
non-Archimedean, m; Ok is an ideal of mg, and we have m;Og = m;K/ * for
some ek /x € N. Then ek, is called the ramification degree of the extension
K /k, and we have [13} Proposition 1.5.3]:

ex/kfr/k = [K : k].

If L is a finite extension of K, we have [|13] Proposition [.5.1]:

fx/k = fo/x fx )k

and

€L/k = €L/KCK/k

if k is non-Archimedean.
We next prove a lemma on the tensor product of unramified extensions of
local fields.

Lemma 2.1.2. Let k be a non-Archimedean local field, and let K and L be
finite non-ramified separable extensions of k. Then, the direct factors of K ®y L

are unramified extensions of k.

Proof. By [[13} Proposition 1.7.1], there exist an irreducible monic polynomial
X € Or[X] suchthat L ~ k[X]/(x (X)) and the respective residue polynomial
X of x in ki [X] is irreducible and separable. Then, we have

K@ L = K[X]/(x(X)).

Consider the factorisation y(X) = y1(X) ... x,(X) in Og[X], and set K; =
K[X]/(xi(X)). The factors y; are pairwise coprime since y is a separable
polynomial, so

K®rL=K; X...XK,.

Now, fix i € [r]. The residue polynomial y; is a factor of y in kg [X],
and is therefore separable. Then, by Hensel’s lemma (see e.g [63, Lemma
I1.4.6]), x; is irreducible in kg [X] because y; is so in O [X]. It follows
by [13, Proposition 1.7.1 (ii)] that K; is a non ramified extension of K, and
therefore of k. o
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2.1.2 Global Fields

As in [92] Section III.1], a global field (A-field in the terminology of Weil’s
book) is a field of one of the two forms below:

1. A number field. That is a finite extension of the rational field Q.

2. A global function field. That is, a finitely generated extension of a finite
field F, with transcendence degree 1 over F.

Places of a global field

We follow here the exposition from [92, Section III.1]. Let £ be a global field.
Two embeddings A: k — K and u: k — L into field extensions are called
equivalent if there exists an isomorphism ¢: K — L suchthat u = pod. A
fundamental concept in the theory of global fields is that of a place:

Definition 2.1.3 ( [92| Definition III.1.2]). A place of k is an equivalence class
of embeddings A: k — K, where k is a local field and A(k) is dense in K.
The class of A is called an Archimedean (resp. non-Archimedean) place if K

is itself Archimedean (resp. non-Archimedean).

We denote the set of places of k by M. We also write M}’ for the set of
Archimedean places of k and M} for the set of non-Archimedean places of k.

Let P € M. Welet k p be alocal field that is the codomain of an embedding
contained in the class P. Then kp and a subfield isomorphic to k are defined
up to isomorphism. We let | - |p be the absolute value on k defined as the
restriction to k of the normalised absolute value of kp. This absolute value is
independent of the choice of kp. If P is a non-Archimedean place, we also set

Op={ack:|alp < 1}=@kpﬂk,

mp={ack:lalp<l}=my, Nk,
and

Kp = @p/mp = Kkp -
For any a € k*, we have |a|p = |kp|" for some n € Z. We set ordp(a) = —n.
We then have ordp (ab) = ordp(a)+ordp(b) and ordp (a+b) > min(ordp (a)+
ordp(b). We call ordp the valuation of k at P.
We observe that for any non-trivial absolute value |.| of &, there is a place

P of k such that |.| is equivalent to |.|p. Indeed, the completion of k for the

topology induced by |.| is a local field, and the natural embedding of k into its
completion belongs to a place P of k.
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Extensions of global fields

Let k£ be a global field and let K be a finite separable extension of k. Let
Q € Mk, and fix a corresponding embedding 4: K — Kp. Let L be the
closure of A(k) in Kp. Then, L is a local field and the embedding A: k — L
defines a place P of k [92, Proposition III.1.1]. The place P does not depend
on the choice of A, and we call it the place of k lying below Q [92, Definition
II.1.4]. We also write Q | P and say that Q lies above P. We also set
fo/p = fKQ/L and, if P is a non-Archimedean place, eg,p = €Ko/L> and call
these numbers respectively the inertia degree of Q over P and the ramification
degree of Q over P.

We now consider the converse situation. Let P € M. Then, only finitely
many places of K lie above P. In fact, the extension of scalars algebra Ky,
splits as a direct product of finite extensions of k p (see [92, Theorem I11.4.4])):

Kip =Ki X ... XK,.

Let p; be the projection map from Kj, to K;, and let ¢ be the embedding
K — Kj,. Then each map p; o« defines a distinct place Q; of K above
P, and the Q; are the only places of K above P. Furthermore, if P is a
non-Archimedean place, we have [63, Theorem II.8.5]:

r

ZeQi/PfQi/P = [K - k].

i=1

We say that the non-Archimedean place P ramifies in K if any of the eg,/p
is greater than 1, and we say that a place Q; is ramified over k if eg,/p > 1. In
the other case, we say that the relevant place is unramified.

Following the similar result for extension of local fields, if L is a finite
extension of K, and we have places P € My, Q € Mg and R € M, such that
P | Q| R, we have

frip = frR/0f0/P>
and
€R/P = €R/Q€Q/P

if the place P is non-Archimedean.

S-Integral elements and S-units

In this paragraph, we fix a global field £ and a nonempty set S € My, which
contains all the Archimedean places of k. We may then define the ring of
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S-integral elements of k as follows:

Os={ack:YPeM\S, |a|lp <1} = ﬂ Op.
PGMk\S
The ring Oy is known to be a Dedekind domain.
We also define the group of S-units [[13| Section II.18]:

US:{CZGkZVPEMk\S, |a|p=1}=@§.

If the set S is finite, the structure of Ug is well known. The group Ug is a
finitely generated abelian group of rank |S| — 1, and its torsion subgroup is the
group of roots of unity of k. We may abuse notations and write Og and Uy
for Os: and Uy’ respectively for §” = § U M}! even if § does not contain the
Archimedean places of k.

Divisors

Let &k be a global field. The divisor group of k, denoted by @ (k), is the free
abelian group on M. In this section, we follow the exposition from [13,
Section II.17], except we use the term divisor group for both number fields and
function fields. A divisor of k is a formal sum

D = Z npP,
PeM}@

where the np are integers, and all but finitely many of them are zero. The
support of the divisor D is the finite set

Supp(D) ={P € M}“ : np # 0},

and we say that D is supported by S ¢ My, if Supp(D) c S.
If a € k%, it is known that ordp(a) # O for only finitely many places
P € My . It follows that we have a group homomorphism

k¢ — D (k)
a B @(a)=2P€M£aordp(a)P.

A divisor thus obtained from an element of k* is called a principal divisor, and
the principal divisors of k form a subgroup of (k) denoted by # (k). Then,
the class group of k is defined by

Cl(k) = D (k) /P (k).
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An important theorem of algebraic number theory states that the class group
Cl(k) of a global field is finite.

We now let K /k be a finite separable field extension. Then, we have a map
tk/x from M} to ?(K) which sends a place P of k to the divisor

D, ol

QeMps
P1Q
Proposition 2.1.4. The map 1k, extended to the divisor group of k, is an in-
Jective group homomorphism. Furthermore, if L is a finite separable extension
of L, we have

lL/k = LlL/K ClK/k-

Proof. By the universal property of the free abelian group, any map from the
set M} to an abelian group such as @ (K) extends to a group homomorphism
(k) — D(K). By uniqueness of the place of k below a place of K, it follows
that the supports of the images of distinct elements of M}'“ in X (K) are disjoint.
The injectivity of the map x/x : D (k) — D(K) follows readily.

The functoriality statement is a straightforward consequence of the facto
that for P € M,'Cl“, Q € Mg and R € M}“, we have egr/p = egrjp€g/P- O

Divisors and fractional ideals

Let k be a global field and let S ¢ My be a nonempty set of places which
contains all the Archimedean places. Then the prime ideals of Og are exactly
the mp where P is an element of My \ S [13} Section I1.17].

We let @D (k)s be the subgroup of divisors with support in S. As Og is a
Dedekind domain, any fractional ©Og-ideal (i.e. a sub Os-module of k) factors
uniquely as a product of prime ideals. It follows that there is a bijection between
the group of fractional ideals of ©g and the quotient group @ (k)/D(k)s. As
the group of principal ideals of Qg is in bijection with (£ (k) /(P (k)ND (k)s),
the class group of ©g may be expressed as the quotient

D (k)

Cl(k)s = Cl(@s) = m

We also call this group the S-class group of k. In particular, if S is such that for

every nontrivial class of Cl(k) has an element with support in S, then Cl(k)g
is the trivial group, and Oy is a PID.
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2.1.3 The ring of integers of a number field

Let k be a number field. Since £ is a finite extension of Q, k has Archimedean
places, which are all the places above the unique Archimedean place of Q.
As a result, the set § = M}’ C M is the minimal nonempty subset of My
which contains all the Archimedean places. We then write Oy for the ring of
S-integers of k, and we call this ring the ring of integers of k. It is a Z-lattice
of full rank in k [92, Theorem V.2.1].

For any prime ideal p of O, we may define the p-adic absolute value on &,
and the p-adic completion &y, of k. Thus, every prime ideal of © is associated
with a non-Archimedean place of k.

There is a bijective correspondence between the non-Archimedean places
of a global field and the prime ideals of its ring of integers.

2.1.4 Global function fields

The situation for a function field k is different from that of a number field in
that there does not exist a ring whose prime ideals are in bijection with the non-
Archimedean places of k. Instead, one must consider a regular projective curve,
a generalisation of a Dedekind domain in the language of schemes. Since our
treatment focuses on the algebraic language of function fields, we do not recall
the theory of algebraic curves. Instead, we direct the reader to [81], Chapter 1
and 2] for an elementary introduction to algebraic curves and to [38,/42] for a
presentation of the language of schemes. References for the theory of function
fields are [[72,/84].

For the remainder of this section, the field k is an algebraic function field
with constant field . Some results are valid even when F is not a finite field.
Without loss of generality, we may assume that F is algebraically closed in k.

Places of function fields

We first recall the definition of a projective space. Let n € N. Let F be
an algebraic closure of F. Then we define the projective space P7. as the
quotient set (fnJrl \ {0})/~ where x = (x0,...,x,) ~y = (yo,...,yn) if
there exist 1 € F . and o € Gal(F/F) such that x; = Ao (y;) fori € [n]o. If
x = (x0,...,%,) € F"™1\ {0}, we write (xo : ... : x,,) for the class of x in P7.

If k = F(X), we set C = P}F. Otherwise, as discussed in the begin-
ning of [[72, Chapter 5], the field k is isomorphic to a field of the form
k =~ F[X,Y]/(x(X,Y)), where y € F[X,Y] is irreducible as an element
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of F(X)[Y]. In this case, we set ¥ = X; jen cinin, and we let d = deg y be
the maximal value of i + j such that ¢;; # 0. Then, the homogeneisation of x
is the polynomial

Y(X,Y,Z) = Z cijX'y/z4=11,
i,jeN

The projective curve corresponding to the polynomial y is the set

Cy={(x:y:2) €PL| x¥(x,y,2) =0},

We note that, in the language of schemes, Cp is the set of closed points of
a regular projective curve Xp over F' with function field k.

By [38, Theorem 15.21], the regular projective curve Xp is unique up to
isomorphism. We, therefore, usually refer to this curve as Xj and to its set of
closed points as Cp, understanding that it is fixed up to isomorphism.

We then have a bijection between the set My of places of k£ and the set
Cy defined above [38, Remark 15.23]. Let P = M) correspond to a point
(x : y:2z),wehave kp = MN(x,y.2)e[x:yz] F(x,y,z) [38, Exercise 15.10], and
we setdeg P = [«p : F].

If we identify k with the field F[X,Y]/P(X,Y), k naturally presents as a
finite extension of the rational function field F(X). The places of the rational
function field are the finite places corresponding to the Galois orbits of elements
a € k via the points (a : 1) and one infinite place oo corresponding to the point
(1 : 0) of the curve Cr(x) = P;. We note that if S = {co}, then the integer
ring Og is in fact the polynomial ring F[X]. The valuation ring F(X) of the
infinite place is the PID {R € F(X) | degR < 0}. We set M;"(X) = {oo} and
Mﬁx) =Mpix) \ M;’;’(X). Then we write M,{i for the set of places lying above
the finite places of F(X), and we likewise set M,” to be the set of places of k
lying above the infinite place of F(X). We call the places of k finite or infinite
depending on whether they belong to M,{ " or M,;?. When the field k is clear
from context, we will write O; = @M? and O, = © i We note that Oy; is
the integral closure of F[X] in k and O is the integral closure of F(X)s in
k. Observe that the Dedekind domain O, has finitely many prime ideals and
is, therefore, a PID.

Répartitions

The words répartition and ade¢les are sometimes used interchangeably in the
literature. When working over a global field, they always mean to take a
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restricted product over the set of places of the field. Usually, this is the product
of the completions of the field, but one may also work with mere copies of the
field. Since our work is computational, we avoid taking completions to preserve
exact computational representations. In this work, we use the term répartition
to emphasise this. In this work we shall only use répartitions over function
fields. References for répartitions in algebraic function fields are [[79}/84].

Definition 2.1.5. The ring Ry of répartitions of k (simply written R when there
is no ambiguity on the choice of field k) is the restricted product

R:l_[k,

where the restriction means that for an element (rp) € R, all but finitely many
of the rp lie in Op.
The subring of R of integral répartitions is the product

Og = ]—[ Op.

PeM;

We may now define the degree of an invertible répartition

Definition 2.1.6. Let r € R*. If P € My, we set ordp(r) = ordp(rp). Then,
we set

deg(r) = ). ordp(r) deg(P).
PeM;
The degree is well defined since, for all but finitely many P € My, an
invertible répartition € R* lies in O and therefore has valuation zero at P.
In our statement of Serre duality, we will use residues of répartitions, which
we define as follows:

Definition 2.1.7. Let r € R. The residue of r is defined as the sum

res(r) = Z Tryp r (resp(rp)),

PeM;

where resp(rp) is the coefficient of degree —1 in the formal series in np

representing r p.

In Section [5.2.3] we must compute répartitions with prescribed residues.
Our strategy will focus on an infinite place of k. We introduce the following
useful notation:
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Definition 2.1.8. An infinite répartition is a répartition r € R such thatrp =0
forall P € M,{l and there exists a € k such that rp = a for all P € M;°. We
denote such a répartition r by a.. We also extend this notation to vectors with

coefficients in R.

In order to use répartitions to describe vector bundles of rank larger than
1, we will use matrices taking coefficients in R. Such techniques were already
discussed in [[86},93195] for matrices with coefficients in the ring of ad¢les. The
properties we need to establish are often analogous to some results from the
references above, but we give our own proofs for completeness and to account
for the change from ad¢les to répartitions.

A matrix M € M, ,,(R) is the same thing as a family (Mp)pep, of
matrices in M, ,, (k) with the extra condition that at most finitely many of the
Mp do not lie in M, ,,(Op).

We take note of an easy lemma.

Lemma 2.1.9. A matrix M € M,(R) is invertible if and only if it lies in
[1pem, GLn(k) and all but finitely many of the Mp lie in GL,(Op).

Proof. The determinant d = det M is invertible in R if and only in it lies in
[1pem, k* and for all but finitely many P, dp € Op. The result follows
readily. |

Differentials

Here we recall definitions and basic facts about the differentials of function
fields. Details and omitted proofs may be found in [84, Chapter 4].
Let Q; to be the free k-vector space with basis the set of symbols {da: a €

k}, and then we set Q}{ A be the quotient space Qi /V, where V is the subspace

of QO generated by the d(a + b) — da — db, the d(ab) — adb — bda and the

da,fora,b € k and @ € F. We call Q}(/F the space of differentials of K. It is

canonically isomorphic to the space Ay as introduced in [[84, Definition 4.1.7]

(both spaces satisfy the universal property stated in |84} Proposition 4.1.8.(d)]).

1
k/F

any separable element a € k. That is for any a € k such that k/F(a) is a finite

The space Q_ .. is 1-dimensional as a k-vector space, and da is a basis for
separable field extension.

If w e Q}(/F and P € M, we let 7p be a local uniformiser at P, and
write w = fpdnp. Then, we may embed fp into the local field kp, which

is the field of formal series kp((7p)). We let fp = },c7 a,n’p and we set
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resp(w) = a—y € kp. Itis well known that the value of res p (w) does not depend

on the choice of uniformiser 7 p. We may then state the Residue Theorem: for

1

any w € Qk/F,

Z Trep/r (resp(w)) = 0. 2.1)

PeM;

In the literature, this theorem is usually stated in the case that F is alge-
braically closed. In this case, kp = F and it is useless to take the trace of
the residues. The more general Equation (2.1)) is well known to experts and
is, for instance, used as an example for testing the computation of residues of
a differential in the documentation of Sagemath [89]]. The Residue Theorem
for a general ground field is proved in [87], in a slightly different form equiv-
alent to Equation (2.1). Indeed, [87] gives a definition of the residue resp(w)
as a trace over F of a related k-linear endomorphism of Kp (restricted to a
finite-dimensional F-subspace of Kp). In the proof of [87, Theorem 2], the
author argues that if deg P = 1, i.e. xp = F, then the residue takes the same
form as our definition. When deg P > 1, the argument shows that the trace
mentioned above, this time taken over xp, takes the value that we defined as
resp(w). Since that is the case, the residue according to Tate’s definition, as a
trace, decomposes as Tr,,/r(resp(w)). Equation (2.1) then follows from the
corollary to [87, Theorem 3].

Fix alocal uniformiser n p for every place P € M. We define an injective k-
linear map ¢: Q}{/F — Ri. Letw € Q}(/F, andlet fp € K suchthatw = fpdnp
for all P € M. We then set «(w) = (fp)pem, -While the répartition ¢(w)
depends on the choice of uniformisers 7 p, we always have

res(u(w)) = Z Trep/r (resp(w)) = 0.

PeM;,

2.1.5 Ktale algebras

In this section, we fix a field k. We will recall some usual definitions and
properties of étale k-algebras and prove some less common results which will
be needed later.

Definition 2.1.10. Let R be a k-algebra. We say that R is diagonalisable if
there exists d € N such that R is isomorphic to k¢, the direct product of d
copies of k. An extension K |k diagonalises the k-algebra R if the K-algebra
Rk is diagonalisable. The algebra R is said to be étale if there exists a finite
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separable field extension K [k such that K diagonalises R. Such an extension
is called a splitting field for R.

Lemma 2.1.11. Let R be an étale k-algebra of dimension d, and let K be a
Galois splitting field of R, with splitting isomorphism ¢: R ® K — K<¢. Let
X € R such that for any two nonzero maps ¢, ¢’ from R to K,

@(x) = ¢’ (x).
Then x € k.

Proof. Consider the sequence of maps
‘®1 i
R Rek =~k 5k,

where p; is the projection of K to its i-th factor. We let f; be the composition
of these maps. Then f; is non-zero since f;(¢) =t fort € k.

Now, for i, j € [d], we have f;(x) = f;(x), and it follows that ¢(x ® 1) lies
in the diagonal of K¢. Furthermore, if i € [d] and ¥ is a k-automorphism of
K, we have ¢ (f;(x)) = fi(x), and it follows that the f;(x) liec in k. Put together,
we get p(x ® 1) = (¢,1,...,t) with r € k. However, since the composite map
R — K" isinjective, we getx =t € k. O

Proposition 2.1.12 ( [11, Corollary V.6.5.1]). Let R, S be two commutative
finite-dimensional k-algebras. Let C = R ®; S. Then C is étale if and only if

R and S are étale.

Proposition 2.1.13 ([11, Theorem V.6.7.4]). Let R be a k-algebra. The algebra
R is étale if and only if there exist finite separable extensions Ky, ..., K, of k
suchthat R ~ Ky X ... X K,.

Observe that the K, . . ., K, are the minimal ideals of R and are therefore
entirely determined by R up to reindexing.

Proposition [2.1.13] suggests that if R is an étale k-algebra, the category of
R-modules is almost as well behaved as that of vector spaces over a field. We
will need the following result:

Corollary 2.1.14. Let R be an étale k-algebra, and let M be a faithful R-module
such that [M : k] = [R : k]. Then, M is isomorphic to R as an R-module.

Proof. LetKj, ..., K, be the minimal ideals of R as in Proposition[2.1.13] We
letd =[R: k], d; = [K; : k]. Wealso setr; = [K;M : K;]. The faithfulness
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of M implies that every r; is nonzero and that M = @?:1 K;M. Then, we have
[M : k] =3 rin;. Since [M : k] = [R : k] = 27, n;, it follows that r; = 1
forall 1 <i < r. Then, K; M is isomorphic to K; as a K;-module, and therefore

M is isomorphic to R as an R-module. m|

Proposition [2.1.13] also permits a description of homomorphisms of étale

algebras.

Corollary 2.1.15. Let K = Ky X ... X K, and L = L) X ... X Ly be étale
k-algebras, and let f: K — L be a homomorphism of k-algebras. Then
f = 2iepr) fi» where fi: Ki — L is either zero or a multiplicative k-linear
map from K; to L. Furthermore, the sets

Ji={jelsl:pjofi #0},
where p; is the projection map from L to L;, are pairwise disjoint.

Proof. Since K = K| X ... X K,, the map f decomposes uniquely as a sum
f = 2ieqr) [i» where f; is a k-linear map from K; to L, and it is clear that f; is
multiplicative since f; is the restriction of f to K.

Now, fix j € [s]. Leti,i’ € [r], and set ¢; (resp. e;+) be the identity of K;
(resp. K;v) in K. We then have e;e; =0, so

pj(f(e))p;(f(er)) =0.

Since the codomain of p; is L, a field, it follows that either p;(f(e;)) or
pj(f(eir))is 0. Assuming that p;(f(e;)) = 0, itis easy to see that p; o f; =0,
and therefore j ¢ J;. O

Corollary 2.1.16. Let K = K| X. ..XK, be an étale k-algebra. A field extension
E/k is a splitting field for K if and only if E contains subfields isomorphic to
each of the K.
Proof. We have

,

KewE=K e E.

i=1
Therefore, E is a splitting field for K if and only if it is a splitting field for all of
the K;. Now, fixi € [r]. Let y € k[X] be irreducible (necessarily separable)
polynomials such that K; ~ k[X]/(x). Then, consider the factorisation y =
& ... & of yin E[X]. We get K; @ E =~ @j‘:l E[X]/(&)). Since E must be
a splitting field for K;, it follows that degé&; = 1 for all j € [s]. That is, the
polynomial y splits in £, and therefore E contains a copy of K;. O
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Corollary 2.1.17. Let K = K| X ... X K, be an étale k-algebra of dimension
d, and let E be a Galois splitting field for K. Then, there are exactly d distinct

nonzero maps from K to E.

Proof. By Corollary 2.1.15] a nonzero map ¢: K — E is zero on all but one
of the factors K;. Furthermore, by Corollary [2.1.16] E contains all of the K;.
Now, if we set d; = [K; : k], we have d = }!_, d;, and there are exactly d;
nonzero k-algebra homomorphisms from K; to E. The result follows. m|

Example 2.1.18. Let k be a field, and let y € k[X] be a separable polynomial.
Then K = k[X]/(x) is an étale algebra. We say that such an étale algebra is

monogeneous.

Proposition 2.1.19. Ifthe field k is infinite, every étale k-algebra is isomorphic

to a monogeneous étale k-algebra.

Proof. Let K be an étale k-algebra, isomorphic to the product K| X ... X K,
of separable extensions of k. And let y; € k[X] for i € [r] be irreducible
polynomials such that K; ~ k[X]/(x;(X)). Then, fori,i" € [r], either y; and
i are distinct and therefore coprime, or they are equal. In that case, there
exist only finitely many pairs «, 8 € k such that y; (X + @) and y; (X + B) are
not coprime. Since the field & is infinite, one may therefore pick the y; to be
pairwise coprime, and then K = k[X]/([T;c[s) Xi)- O

In Chapter @] we will need to consider étale algebras over étale algebras.

Definition 2.1.20. Let R be an étale k-algebra. An R-algebra S is said to be
étale if it is étale as a k-algebra. We further say that S is a free étale R-algebra

if S is étale and free as an R-module.

Remark 2.1.21. A definition of étale R-algebras exists for a general commu-
tative ring R. In the case that R is an étale k-algebra, the general definition
coincides with our own (See [33| Definition 9.2.3, Proposition 9.2.5 and Corol-
lary 9.2.6]).

Moreover, we will need the following result:
Lemma 2.1.22. Let R be an étale k-algebra, and let S be an étale R-algebra.

Then, there is a trace map S — R. Let SV be the dual of S as an R-module.

Then, the map
S - SV

a +— (b Tr(ab))

is an isomorphism of R-modules.
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Proof. By Remark([2.1.21}, S is an étale R-algebra in the sense of [33] Definition
9.2.3]. It is, therefore, separable as an R-algebra, and then the result is a
particular case of [33] Corollary 4.6.8]. m|

Proposition 2.1.23. Let R be an étale k-algebra and let S be a free étale
R-algebra. Let Sy, Sy be k-subalgebras of Endg (S) that are isomorphic to S.
Then, there exists an R-algebra automorphism of Endg (S) which sends S; to
Ss.

Proof. Let ¢; be an isomorphism from S to S; for i € [2]. Fori € [2], we
let Sy, be the S-module isomorphic to S as a k-vector space and such that
a-x = ¢;(a)(x) for a,x € S. Then, the faithful S-modules S,, and S, are
isomorphic by Corollary [2.1.14] Let ¢ be an isomorphism of S-modules from
Sy, 10 Sy,. Since both S, and S, are identified with S as k-vector spaces, we
may see i as a k-linear endomorphism of S. Then, for any a,x € S, we have

(Y 0 @1(a))(x) = (p2(a) o ¥)(x).

It follows that conjugation by ¢ is an R-algebra automorphism of Endg(S)
which sends S} to S». m]

Divisors of étale algebras over global fields

For what follows, we assume that k is a global field.

Definition 2.1.24. Let K = K| X ... X K, be an étale k-algebra. We define the
set of places of K as the disjoint union

r

My =| | Mx,.
i=1

We likewise define the sets of Archimedean, non-Archimedean, finite and
infinite places of K.

By analogy with Section[2.1.2] we define the divisor group of K, denoted by
D(K), as the free abelian group over Mg*. We define the support of a divisor,
the subgroup of principal divisors P (K) and the class group C1(K) likewise.

Observe that P(K) = P(K;y) X ... X P(K,). It follows that
CI(K) = CI(Ky) X ... x CI(K}).

In particular, we get the following result:
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Proposition 2.1.25. Let K be an étale k-algebra. Then, the class group of K

is finite.

In what follows, we adapt results from Section [2.1.2]to the setting of étale
algebra.

We will prove that @ is a functor from the category of étale k-algebras to
the category of abelian groups. Let K = K; X ... XK, and L = L; X ... X Lg
be étale k-algebras, and let f: K — L be a homomorphism of k-algebras. We
also let p; be the projection from L to L; for any j € [s] and let J; C [s] be
defined as in Corollary[2.1.15} Fori € [r], j € [s], we haveamap f;; = p;o f;
from K; to L;, which is either the zero map if j ¢ J; or a k-homomorphism
of field extensions if j € J;. If j € J;, we then have a group homomorphism
D(fij): D(K;) — D(Lj) < D(L). We extend this mapping to D (K) linearly
by setting D (f;;))(P) =0if P € Ml’g‘ and i’ # i. Then, we set

D)=, D(fiy)-
ie[r]
JeJdi
Now, let N = Nj X ... X N; be another étale algebra, and let g: L — N be a
homomorphism of k-algebras. The fact that D (g o f) = D(g) o D(f) follows
from the similar fact for divisor groups of global fields.

If f is an automorphism of K as a k-algebra and P € Mg“, the divisor
D(f)(P) is also primitive, in the sense that if D(f)(P) = ZQeMﬁa noQ,
ng = 0 for all but one Q € M}4, and then ng = 1. We denote by P/ the place
Q as above.

We record one result for later purposes:

Lemma 2.1.26. Let K, L be étale k-algebras, and let f: K — L be a homomor-
phism of k-algebras such that, with [r], [s] and the J; as in Corollary|(2.1.15]
Uierr) Ji = [s]. Let Q € M}?. Then there exists a unique P € Mg® such that

Q € Supp(D(f)(P)).

Proof. Weset K =Ky X... XK, and L = L; X...X Lg as usual. Then, we
may assume that Q € Mk,, and we let p; be the projection map L — L;. By
Corollary 2.1.15] there is a unique i € [r], such that p; o fix, # 0. It follows
from definition of @ ( f) that if P € Mk is such that Q € Supp(@D(f)(P)), then
P € Mg,. As pj o fik, corresponds to a k-homomorphism of field extensions,
the result follows from the uniqueness of the place below Q in a subfield of
K;. O
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When f,Q and P are as in the statement of Lemma [2.1.26] we write
Qf =P.

Definition 2.1.27. With notations as in the proof of Lemma ifQ €
M Z}a C M}9, leti € [r] such that Qy € My,. Then, the ramification index of
Q by f, denoted by eq y is the index eg g, where L is seen as an extension
of K; via the map pj o fk,.

A place Q € M} is called unramified with respect of f if eg y = 1. A
place P € Mg“ is called unramified with respect to f if eg . r = 1 for all

Q € Supp(D(f)(P)).

Local completions of étale algebras over global fields

We assume that k is a global field. Using completions, we may give a Galois
theoretical description of the splitting behaviour of the places of an étale k-
algebras.

Definition 2.1.28. Let K = K| X...XK, be an étale k-algebra, and let P € M.
Let i € [r] be such that P € Mk,. Then, the local completion of K at P is the
completion of the field K; at the place P. It is a K-algebra via the composite
map

K — K; — Kp,

where the left map is the projection map and the second is the natural injection
of K; into its completion.

Proposition 2.1.29. Let K, L be étale k-algebras, let f: K — L be a homo-
morphism of k-algebras, and let P € Mg®. Then, the scalar extension algebra
Lk, is a direct product of finite extensions of Kp, and there is a bijection
between its direct factors and the support of D (f)(P).

Proof. SetK =K X...xK,and L = L{X...XLs. Without loss of generality,
we assume that P € Mg,. Then, the K-algebra Kp is killed by the maximal
ideal 0 X K> X ... X K,.. It follows that

Lk, =Kp &k L=Kpek, (KiopL)= | | Kpek, L;.
Jehi
However, by the discussion in Section if j € J;, Kp ®k L; is a direct
product of local field, whose factors are in bijection with the support of D (p; o
f1)(P) in D(L;). The result follows since D ( f)(P) is the sum of the D (p; o
f1)(P), and the supports of these maps are pairwise disjoint. O
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2.1.6 Lattices and orders

Let k be a global field, and let S ¢ M; be a nonempty subset which contains all
the Archimedean places of k. Let V be a finite-dimensional k-vector space. An
Og-lattice in V is a finitely generated Og-submodule L of V such that kL = V.
Such a lattice is torsion-free. As Og is a Dedekind domain, it follows that L is
a projective Og-module.

Such a projective module is not necessarily free. However, it admits a
pseudo-basis [91, Theorem 9.3.6]. If n = [V : k], a pseudo-basis of an
Og-lattice L in V is a pair

PB=((ai,...,a,), (x1,...,%,))
such that the a; are fractional Og-ideals, the x; are elements of V, and
L=ax1®...®a,x,.

A well-known result on Dedekind domains states that for any lattice admits a
pseudo-basis of the form ((Os,...,Os,a), (x1,...,x,)). Furthermore, if a
and a’ are two fractional Og-ideals such that there exists a pseudo-basis of L
of this form, then a and a’ have the same class in Cl(k)s. The class of a is
called the Steinitz class of L. Two lattices are isomorphic if and only if they
have the same Steinitz class. In particular, if Og is a PID, then all Og-lattices
are free [91), Theorem 9.3.9].

If we assume that V is in fact the underlying vector space of a k-algebra A,
the lattice L is said to be an Og-order of A if italso a subring of A [91} Definition
10.2.1]. An Og-order is then naturally an Og-algebra. An order is called
maximal if not contained in a strictly larger order.

We now present two examples of orders.

1. The ring M;(Os) is a maximal Og-order in M4 (k).
2. If K/k is a finite extension and T is the set of places of K lying above
the elements of S, then the ring O of T-integral elements of K is an

Og-order in K. It is the integral closure of Og in K. It is also the only
maximal Og-order in K.

2.2 Algorithms

We present various algorithmic problems for algebraic number theory and the
complexity of existing algorithms that solve them. For brevity, we do not give
the details of the algorithms but instead give references.
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Many of these algorithms (or others solving the same problems) are im-
plemented in computer algebra software such as PARI/gp [88]], Sage [89] and
Magma [10].

2.2.1 Computational Model

When we state the complexity of an algorithm, we mean the number of bit
operations necessary for the computation, expressed as a function of the size
of the input. By polynomial algorithm, we mean a deterministic algorithm
whose complexity is dominated by a polynomial in the size of the input. A
subexponential algorithm is an algorithm whose complexity is asymptotically
larger than any polynomial but smaller than any exponential function of the
input. We also consider probabilistic algorithms, which require the generation
of random numbers and whose behaviour and success may be random. We
distinguish algorithms of the Monte Carlo type, whose complexity is fixed but
success is uncertain, and algorithms of the Las Vegas type, whose success is
guaranteed but complexity is random. We say that a Las Vegas algorithm is
polynomial if the expectation of its complexity is polynomial.

A polynomial Monte Carlo algorithm may turn into a polynomial Las Vegas
algorithm under two conditions: that the probability of success is larger than
1/p(n) for some polynomial p and n the size of the input; and that the validity
of its output may be checked in polynomial time. Indeed, if these conditions are
satisfied, a polynomial Las Vegas algorithm is obtained by repeatedly executing
the Monte Carlo algorithm and checking for the validity of its output. In the
sequel, we will use this transformation freely.

When describing an algorithm, we may refer to an oracle for a specific
algorithmic task. An oracle here is a subroutine which solves the algorithmic
task in question, and its complexity is considered polynomial in the size of its
input.

Many algorithms we will discuss are deterministic and run in polynomial
time, except for one or several factorisation steps. An f-algorithm is a determin-
istic polynomial algorithm with access to an oracle for factoring polynomials
over finite fields. An ff-algorithm is a deterministic polynomial algorithm with
access to an oracle for factoring integers and polynomials over finite fields. [[71]].
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2.2.2 Lattice reduction

Many of our algorithms involve lattices and orders. In order to handle such
objects, it is often necessary to compute a reduced basis or pseudo-basis with
desirable properties. Below, we define such reductions and present algorithms
to compute them.

Popov reduction

In order to relate lattices over the rings F[X] and F(X), we need to compute
bases that are orthogonal in some sense. While LLL reduction would be used
over Z, the function field equivalent we use here is the Popov form of matrices.
We follow the exposition given in [75]] up to transposition since our convention
will be to have the columns of matrices represent basis elements. Note that
since the rings F[X] and F(X) are PIDs, any lattice over these rings is a free
module. In particular, it admits a basis in F(X)", and may be represented by
an element of GL,,(F(X)).

Definition 2.2.1. Let v = (v;) € M, 1(F[x]) be a column vector. We define
the following:

* The norm of v as |v| = max!_ deg(v;).

» Thevectorlc(v) € M, 1(F) is the vector whose i-th entry is the coefficient
of degree |v| of the polynomial v;.

* The pivot index of vector v, denoted by piv(v) is the largest i such that
degv; = |v|.

Definition 2.2.2 ( [75, Definition 2]). Let M € M,,(F[x]), and let vy, ...,v,
be the columns of M. We say that the matrix M is reduced if the matrix

le(M) = (lc(vl) o lc(vn))

is invertible. We say that the matrix M is in Popov form if it is reduced and the

following conditions are satisfied:
1. The pivot indices piv(vy), . .., piv(v,) are distinct.
2. The pivot entries V; piy(v;) are monic.

3. Fori € [n], |vi| < |vis1l, and if |vi| = |vis1], then piv(v;) < piv(vier).
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4. The entries of v that are not the pivot of their column have degree lesser

than the entry of the same row which is the pivot of its column.

The reason reduced matrices are relevant to us is the following statement,
which is a form of orthogonality:

Proposition 2.2.3 ( [52, Theorem 6.3-13]). Let vy, ..., v, be the columns of a
reduced matrix. Let ay, . ..,a, € F[x]. Then

n

2,

i=1

= max (deg(a;) + |vi]) .
i€[n]

Computing reduced matrices would be sufficient for most applications, but
a matrix may be right-equivalent to several different reduced matrices. Instead,
computing the Popov form of a matrix ensures uniqueness and may be desirable
in a computational context.

Proposition 2.2.4. Let M € M,,(k[x]) be nonsingular. Then there exist unique
matricesU € GL, (k[x]) and P € M, (k[x]) such that P = MU and the matrix
P is in Popov form.

Reduced and Popov forms of matrices may be computed efficiently. In the
following, the notation O means we omit logarithmic factors, w is the exponent
of the cost of matrix multiplication in k, M (d) is the cost of multiplication of
two polynomials of degree at most d and B(d) is the cost of an extended gcd
computation for two polynomials of degree at most d.

Proposition 2.2.5. Let M € M, (k[x]) with entries of degree no larger than
deN.

* A reduced matrix right-equivalent to M may be computed at a cost of
O(n®(M(d) + B(d))) operations in k. [41]

e If M is reduced, the Popov form of M maybe computed at a cost of
O (n®d) operations in k. [|75]

Hermite form

Many basic algorithms for algebraic number theory require computing the
Hermite normal form of matrices with coefficients in rings of S-integers of
global fields. We first recall the definitions. If R is a PID, elements a and b of
R\ {0} are said to be associated if there exists a unit u € R* such that a = ub.

Our definition of the Hermite normal form over a PID is a mix of the
definition given in [64, Section I1.6] and [15], Definition 2.4.2].

49



Definition 2.2.6. Let R be a PID. Fix a maximal set A of nonassociated elements
of R, and for each a € A, fix a complete set B, of residues modulo a. Then,

a matrix M = (m;j)icim) € My n(R) is in Hermite normal form if there exist
Jjeln]
r € [n] and a strictly increasing map f from {r + 1l,r +2,...,n} to [m] such

that the following conditions are satisfied:

1. Forr+1 < j<nmygy,; €A mij=0ifi> f(j)and myq); €

By i< J.
2. The first r columns of M are equal to 0.

It is well-known that a matrix admits a Hermite normal form.

The problem of computing the Hermite normal form of a matrix with integer
or polynomial coefficients is well studied and may be solved in polynomial
time [41,/85]]. The ring k(x) is a DV R, so the Hermite normal form may also
easily be computed over this ring.

The algorithms given in Section [5.2.5] will rely on the computation of
Hermite normal forms of matrices and pseudo-matrices over rings O¢; and O,
lying in a global function field. We briefly recall the relevant definitions and
results and refer the reader to [17), Sections 1.4 and 1.5] for details. Note that
we include the case of matrices that are not of full rank.

For the rest of this section, R is a Dedekind domain with fraction field K.

We first give a definition of pseudo-matrices:

Definition 2.2.7 ( |17, Definition 1.4.5]). 1. A pseudo-matrix of size m X n
over A is a pair PM = (a, M), where a = (a;) je[n] are fractional ideals
of Rand M € My, ,,(K).

2. The map associated with such a pseudo-matrix is the map f: a; ® ... &
a, — K™ defined by f(ai,...,a,) = Z;’zl ajM;, where the M are the
columns of M.

3. The module associated with this pseudo-matrix is the module

n
L= Z (lej.
j=1
It is the image of the map f in K", and is denoted by PM (R").

4. The kernel of the pseudo-matrix (a, M) is the kernel of the map f.
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Remark 2.2.8. If A is a PID, we may always turn a pseudo-matrix into a matrix

by computing generators of its coefficient ideals.

For the following definition, we assume that for each fractional ideal a of

R, there is a fixed set B, of representatives of the residue classes of K/a.

Definition 2.2.9 ( [8l(17]). Let PM = (a, M) be a pseudo-matrix of size m X n,
with coefficients in R, let r = rank M. A Hermite normal form of (a, M) is the
data of a matrix U = (u;;); je[n] € GLn(K) and a pseudo-matrix (b, N) with
b= (by,...,b,) and N € M, ,(K) such that

1.

2.

3.

6.

Ujj € a; bj_.lfor alli, j € [n];
we have [1;e(n) ai = det(U) [1iefn) bis

the matrix N is of the form (0 H), with 0 the zero matrix in My, —r (K)

and H = (hij)icim) € M r(K) such that there exists an increasing
jelr]

function f: [r] — [m] such that for j € [r] and f(i) < j <m, h;; =0
and for j € [r], hy(jyj =1
with H; the i-th column of H fori € [r],

PM(RY)Y =Y, ,,q 1 H1®...®b,H,;

with U; the i-th column of U, ((by,...,0n-), (U,...,Un—y)) is a
pseudo-basis of the kernel of PM;

ifj€lrlandie [f(j)—1], hi; € By el -

n-r+j

More than the exact definition, what matters to us is the useful algorithmic

properties of the Hermite Normal Form:

Proposition 2.2.10. /. Let (a, M), (a’,M’) be two pseudo-matrices over

a Dedekind domain R. Then, the modules generated by these pseudo-
matrices are equal if and only if their Hermite normal forms are equal

as well [[17, 1.5.2 (2)].

The image and kernel of a pseudo-matrix may be computed in polynomial
time from its Hermite normal form [|17, 1.5.2 (5)].

We now discuss the problem of computing Hermite normal forms for

pseudo-matrices over the rings Of; and O of a global function field. The
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analogue problem for rings of integers of number fields was conjectured in [[16]]
to be feasible in polynomial time, and it was proved in [8]] for pseudo-matrices of
full rank. Since the ring O, has only finitely many prime ideals, a polynomial
algorithm for computing Hermite normal forms may easily be found. In the
case of rings Oy; in function field and matrices of lower rank, no such result
exists in the literature to the best of our knowledge. It seems plausible that the
methods of [8] may be adapted to the function field setting, replacing the use of
LLL-reduction with Popov reduction. However, Remark 36 of the work cited
argue that the modular methods used there do not adapt to pseudo-matrices that
are not of full rank. We, therefore, define the following problem:

Problem 2.2.11. Given a global function field K and a pseudo-matrix PM over
Oy, compute a Hermite normal form of PM.

We state the following conjecture, hoping that further research may fully
tackle the problem.

Conjecture 2.2.12. There exists a polynomial-time algorithm that solves Prob-
lem

2.2.3 Main algorithms for global fields

This section discusses algorithms for representing and manipulating elements
of global fields. The standard references for most of these results are the
books [15/17]. These books focus on number fields, but some algorithms are
also valid for function fields. A more recent and different approach to several
algorithmic problems is [40]].

Representing elements and computing algebraic operations

We assume efficient algorithms for representing elements of the rational field
Q and any rational function field F(X), when F is a finite field. A rational
number r = a/b € Q, with a and b coprime integers, has a representation
of size [log,(a)] + [log,(b)]. Likewise, an element r = a/b € F(X), where
a and b are coprime polynomials, has a representation size proportional to
deg a+deg b. We also assume that algebraic operations between elements may
be computed in polynomial time.

In what follows, k is a global field for which we assume we may represent
elements and compute algebraic operations. With the paragraph above, this is
already the case if & is the field of rational numbers or a rational function field.
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Let K be a finite monogeneous extension of k. That is, we assume that an
irreducible polynomial y [ X] of degree d is given such that K may be identified
with k[ X]/(x(X)). Then, denoting by 6 the image of X in K, any element of
K may be uniquely written as

d-1
x= Z x;0",
i=0

and this element may be represented computationally as the tuple xq, . .., x4-1.
Additions and substractions may then be computed componentwise. Mul-
tiplication of elements may be computed using polynomial multiplication
and reduction modulo y. Finally, computing inverses of elements, and thus
divisions, requires a slightly more involved computation: The polynomial
E(X) =co+...+cq_1 X9 representing an element x of K (i.e x = £(6)) is co-
prime to y, since y is irreducible. Then, one may compute Bezout coefficients
U,V € k[X] such that
EU+xV =1,

and U mod y is the inverse of x in K. These algorithms allow us to represent
any global field presented as a separable extension of one of the rational global
fields. As inseparable extensions of function fields are unnecessary for our
purposes, we do not consider them here. We note that several optimisations
are done in practice when these algorithms are implemented.

The references given at the beginning of the section present a variety of
possible representations for number field elements, some of them generalising
directly to global function fields. Different representations present various
advantages depending on the situation. Discussing them is, however, out of the
scope of this work, and we refer the reader to the sources for more details.

Heights in function fields

Let k be a global function field with field of constants F. Let a € k*. We
define the height of a as

ht (a) = Z max (ordp(a),0) = Z —min(ordp(a),0).
PeM;. PeM;.
We simply write ht(a) if the field & is clear from context. Observe that for a
finite separable extension K /k, if a € k™, htx (a) = [K : k] htx(a).
While analogous to heights in number fields, this is more usually called
degree in the literature on function fields. In this work, we consider degrees of
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vector bundles in various forms and connect them to degrees of divisors and
répartitions. We use the word height for this notion to avoid overloading the
term.

We observe readily that for a,b € k*, ht(a + b) < ht(a) + ht(b) and
ht(ab) < ht(a) + ht(b).

In the case k = F(x), let r = § € F(x) with a and b coprime non-zero
polynomials in k[x]. Then ht(r) = deg(a) + deg(b). This equation suggests
a connection between the height of an element a € K* and the size of its
computational representation:

Proposition 2.2.13. Let a € K*. Then ht(a) is polynomial in the size of the
representation of the field K and of the function a.

Proof. Letd = [K : k]. First, we compute ht(y). Let yy = %% ¢;T" be the
minimal polynomial of y over k(x). Observe that [K : k(y)] < max; ht(c;).
Thus, by [84, Theorem 1.4.11], htx (y) < max; ht(c;). The size of the repre-
sentation of the field K is bounded by >, ht(c;), so ht(y) is bounded by the
size of the representation of K. Leta = 2?261 a;y'. Then we compute

d-1

ht(a) < Z htg (a;) + i ht(y)
i=0
did-1)

d-1
< D (htai)) + =——=ht(y).
i=0

We will need the following easy lemma:

Lemma 2.2.14. Let g € GL,(K). Then ht(det(g)) is polynomial in the size of

the representation of g.

Proof. A representation of the determinant of g in the basis 1, y, ..., y?~! may
be computed in polynomial time and therefore has polynomial size. The result
then follows from Proposition[2.2.13] m]

Places and ideals

Following [40], we may represent places of a global field k and fractional
ideals over any ring of integers of k. Given places Py, ..., P, € M, integers
Vi,...,Vy, €Zand ay,...,a, € k™, we may also solve the Chinese Remainder
Problem and compute a € k such that ordp, (a — a;) > v; fori € [r].
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Completions

A computational task for global fields is to compute embeddings into their
completions. In this work, we only need to compute the embedding of a global
function field k at a given place P € M}. Such an embedding may be computed
in polynomial time using, for instance, [44, Lemma 9 and Algorithm 27].

Factorisation problems

The task of factoring integers into a product of primes is known to be feasible
in subexponential time. The task of factoring polynomials over finite fields is
known to be feasible in probabilistic polynomial time.

The Montes algorithm [39] allows to factor a prime number p in a ring of
integers of a number field, and generalises to factoring a place P of F(X) into
a divisor of a function field. We note that this algorithm is polynomial.

As discussed in [40], it follows that there is an f-algorithm for computing
the divisor of an element of a global function field, and an ff-algorithm for
computing the divisor of an element of a number field. This work also yields
a polynomial algorithm for computing the image of a divisor D € D (k) in
the group @ (K), where K is a finite extension of k. Finally, if k is a global
field, a polynomial in k[ X] may be factored in polynomial time as a product of
irreducible polynomials [59].

Computing rings of integers

Zassenhaus’ Round 2 Algorithm is a well-known ff-algorithm for computing
the ring of integers of a number field and may also adapt into an f-algorithm
for computing the rings Of; and O of a global function field [15, Section
6.1]. As discussed in [40, Section 8.2], the Montes algorithm also provides
a ff-algorithm for computing the ring of integers of a number field, and an
f-algorithm for computing the finite and infinite rings of integers of a function
field.

Once such rings are computed, any ideal may be represented using a basis
over, respectively, Z, F[ X], and F(X)c.

Class group and unit group

Computing class groups and unit groups is a well-studied problem of algorith-
mic number theory. In this section, we restrict ourselves to the case that & is a
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number field. We first observe that under the generalised Riemann hypothesis
(henceforth GRH), there exists a polynomial-sized set of prime ideals which
generate the class group of k [9} Fact 4.1]. More precisely, the class group Clg
is generated by the set

B ={peM: N(p) < 12log(|Ac])*},

where Ay is the discriminant of k and N(p) is the cardinality of the (finite)
field O /p.

The problem of computing the class group of k is then to compute relations
for the elements of @B (or of another generating set) in the class group.

The problem of computing units or S-units in a number field is usually
solved as a byproduct of the class group computation. One key question is
the choice of representation for the units computed, as there is no guarantee
that generators with a polynomial-sized representation in the usual form exist.
Instead, the work [7]] introduces a compact representation of algebraic integers:

Definition 2.2.15 ( [9] Definition 3.1]). Let [ > 0 be a constant, a compact
representation of @ € Oy with respect to the integral basis (w;);j<a of Oy is
a positive integer n of polynomial size, and algebraic numbers vy, . ..,yn of
polynomial size (in the integral basis (w;)) such that

@=yyh... 7.

Then, [7] provides a subexponential algorithm for computing compact
representations of generators of the group of units of a number field. While an
algorithm exists for computing generators of the group of S-units of a number
field, it relies on solving the so-called principal ideal problem. [82, Section
6.1]. We introduce the following problem:

Problem 2.2.16 (S-units computation). Given a number field k and a finite set
S containing the Archimedean places of k, compute compact representations
for ay,...,as|—1 which generate the torsion-free part of Us, and the usual
representations of a generator of the torsion part of Us.

Given generators a1, . .., |s|-1 of the group of S-units in compact repre-
sentation, [|57, Theorem 1.11] provides a polynomial algorithm for computing
a representation of a given S-unit as a product of powers of the a;. We may
efficiently compute the isomorphism Us =~ Z!SI=! x Z/nZ.
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Quantum algorithms

In [80]], Shor proposed a polynomial quantum algorithm for factoring integers.
While the theory of quantum algorithms is out of the scope of this work, we
shall take note of several algorithmic tasks for which a polynomial quantum
algorithm is known.

As discussed above, an ff-algorithm is known for computing the ring of
integers of a number field. Using Shor’s algorithm, we get a polynomial
quantum algorithm for computing the ring of integers of a number field.

Also of interest to us, [9]] provides a polynomial quantum algorithm for

solving Problem [2.2.16]
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Chapter 3

The explicit isomorphism
problem

This chapter introduces notions related to the explicit isomorphism and presents
some existing results on the topic and the methods that they use. A general
reference for central simple algebras is [36].

For the remainder of this chapter, k is a field. The k-algebras consid-
ered here are assumed to be unital, associative, and finite-dimensional unless

specified otherwise.

3.1 Algebras and algorithms

Here, we recall some results on algebras over a field particularly a global field.
Let k be a field.

3.1.1 Structure constants

In order to give an algorithmic treatment of k-algebra, we must be able to
represent their elements and compute the usual algebraic operations: addition,
scalar multiplication and multiplication. Let A be a k-algebra with underlying
vector space V of dimension n. Then, any basis of V provides an isomorphism
V =~ k™. We fix such a basis B = (e, ...,e,) and identify V with k". The
bilinear map V X V — V, which describes the multiplication operation of A,
corresponds to a tensor in V¥V @ V¥ ® V. If we let (e\l’, ...,e,) be the basis
of V¥ dual to B, then (e; ® e]V. ® er)i<i,je<n is abasisof V¥ @ VY @ V. The
structure constants of A with respect to the basis B are then the coordinates
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of the multiplication operation of A in this basis. We give a more elementary
version of this definition:

Definition 3.1.1. Ler A be a k-algebra of dimension n, and let (e;)1<i<n be a
basis of A. The structure constants of A with respect to the basis (e;) are the
(cije) € k" such that for all i, j € [n],

n
eiej = Z Cl‘j56‘5.
=1

For such a k-algebra A with structure constants c;;¢, we may represent an
element a = 3}, a;e; € A as the vector (a;)1<i<n. In this setting, computing
additions and scalar multiplications is straightforward. The product of two
elements is computed using the natural formula

n n n
’ ’
Zaie,- Zajej :Z Z aia;cije (ec.

i=1 j=1 =1 \1<i,j<n
i+j=C

Remark 3.1.2. While more efficient representations may exist for specific
classes of algebras, we note that structure constants are universal in the fol-
lowing sense: every method of representation which allows one to efficiently

compute the usual algebraic operations in A and find a basis of A allows one
to compute structure constants in polynomial time.

3.1.2 The structure of algebras

We briefly recall some well-known results on the structure of k-algebras. For
instance, these results may be found in [[12].

Definition 3.1.3. Let A be a k-algebra. The left regular module oA of A is the
left A-module A, where scalar multiplication is taken on the left. That is, the
module action of A on itself gives, fort € Aand a € AA, t - a = ta.

Definition 3.1.4. Let A be a k-algebra.
* An A-module is simple if it contains no non-trivial submodule

* An A-module is semisimple if it is isomorphic to a direct sum of simple
modules.

* The algebra A is semisimple if the left regular module s A is a semisimple
A-module.
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The algebra A is simple if its only two-sided ideals are {0} and A itself.

The algebra A is separable if it is semisimple and its centre is an étale

k-algebra.

The Jacobson radical of A, denoted by J(A) is the two-sided ideal

{xeA:TIneN| (xA)" =0}.

The center of A is the subalgebra C(A) ={x € A: Vy € A, xy = yx}.

The k-algebra A is said to be central if C(A) = k.

We then have the following results:

Proposition 3.1.5. Let A be a k-algebra.

1.

6.

The algebra A]J(A) is semisimple. In particular, if J(A) = 0, then A is

semisimple.

If A/J(A) is a separable k-algebra, there is a semisimple subalgebra
W of A such that A = W & J(A). The subalgebra W is unique up to
conjugation by an element of 1 + j(A).

. If Ais semisimple, then A = A1 ®...® A,, where the A, are the minimal

two-sided ideals of A.

If A is simple, it is isomorphic to an algebra of the form M,,(D), where

n € N and D is a division k-algebra.

The algebra A is simple if and only if for any k-algebra B and homomor-
phism of k-algebra f: A — B, f is either zero or injective.

If A is semisimple, it is in fact simple if and only if the center of A is a
field. [70} Section 3]

In summary, the algebra A has the following structure:

A=J(A) e @ M, (D), 3.1)

i=1

where the D; are division k-algebras. Such a decomposition is unique up to

conjugation and reindexing.
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Definition 3.1.6. A semisimple subalgebra W as in Item[2|of Proposition[3.1.5]
is called a Wedderburn-Malcev complement of A. We denote by D(A) an

arbitrarily chosen Wedderburn-Malcev complement of A.

The algorithmic task of computing the isomorphism in Equation (3.1)
decomposes in several subtasks. We discuss them in the special case that the
field k is finite.

Proposition 3.1.7. Let A be a k-algebra, given by structure constants.
1. A basis of J(A) can be computed in polynomial time. [70, Theorem 2.7]

2. A basis of a Wedderburn-Malcev complement of A can be computed in
polynomial time. [26| Theorem 3.1].

3. If A is semisimple, there is an f-algorithm for computing bases for the
minimal ideals of A. [70, Theorem 3.1]

4. The explicit isomorphism problem over a finite field can be solved by an
f-algorithm. [70, Theorem 5.2]

3.1.3 Computing maximal orders

Let k be a global field, M}’ € § € My be non-empty and A be a separable k-
algebra. We focus here on computing an ©g-maximal order in A. As opposed
to the commutative case, where A is an étale algebra, a maximal Og-order in
A needs not be unique.

Known algorithms for computing maximal orders in separable algebras are
generalisations of Zassenhaus’ algorithm for computing the ring of integers of
a number field. The case k = Q was first treated in [48]]. A general statement
for the general case of a Dedekind domain R and a separable algebra over the
quotient field of R is given in [34, Section 3.5]. A similar algorithm for the case
k = F(X) is also described in [46], although it is only stated in the case that
A is a matrix algebra. We note that the algorithm starts with the factorisation
of a discriminant. It follows that this algorithm is an ff-algorithm when £ is a
number field and an f-algorithm when k is a function field.

While the algorithms described above already cover all global fields, the
computation for k a number field or a separable extension of F(X) (F a finite
field) may directly reduce to the cases k = Q and k = F(X). Indeed, we have
the following result:
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Proposition 3.1.8. Let K be a finite separable extension of k. Let T be the set
of places of K lying above the elements of S. Let A be a separable K-algebra.
A maximal Og-order of A contains the image of Or in A. Furthermore, it is a

maximal Or-order.

Proof. Let O be a maximal Og-order in A. Then, © N K is an Og-submodule
and a subring of K. Furthermore, if x € A\ K and A € k*, then Ax ¢ K. Since
kO = A, it follows that k(O N K) = K. That is, © N K is an Og-order in K.
This order is in equal to Or. Indeed, Or© is also an Og-order in A which
contains ©. Since © is maximal, we have © = Oy ©, and therefore Oy c O.
Then, © is an Or-submodule of A, and we have A = k© c K©O, so O is an
Or-lattice in A, and since it is also a subring, it is an Or-order. Furthermore,
it is also a maximal Or-order, since any Or-order is also naturally an Og-
order. |

Applying this result, we may compute a maximal Og-order and obtain
a maximal Or-order. This method is the approach used, for instance, in
Magma. [[10]

3.2 Central simple algebra

3.2.1 General properties

We present fundamental properties of central simple algebra. We loosely
follow the presentation of [36] for this section. Fundamental examples of
central simple algebra are matrix algebras A = M;(k) and central division
algebra.

Example 3.2.1 ([36, Example 2.1.2]). Let D be a central division algebra over
k. Then the k-algebra M,, (D) is central simple.

As discussed briefly in Proposition[3.1.5] a famous theorem by Wedderburn
states the converse: all central simple algebras are of this form.

Theorem 3.2.2 ( [36, Theorem 2.1.3]). A k-algebra A is central simple if and
only if there exist n € N and a central division k-algebra D such that A ~
M, (D). Furthermore, the number n and algebra D are uniquely determined
(up to isomorphism) by the property.

Central simple algebras are characterised as so-called forms of matrix
algebras. By this, we mean the following:
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Theorem 3.2.3. Let A be a k-algebra. Then the following are equivalent
1. A is central simple.
2. There exists a finite field extension K [k such that A @, K ~ M,(K).
3. There exists a commutative k-algebra R such that A ®; R =~ M;(R).

Proof. The equivalence Item [I] <= Item [2]is the content of [36, Theo-
rem2.2.1].

Item [2] clearly implies Item [3]

Now, let R be a commutative k-algebra such that A ® R ~ My(R). It
follows by [[33| Proposition 7.1.10] that A ® R is a so-called central separable
R-algebra. By [33, Corollary 4.3.5], it follows that A is a central separable
k-algebra. Since k is a field, a central separable k-algebra is the same thing as
a central simple k-algebra by [33, Corollary 4.5.4]. m|

For this reason, matrix algebras play a pivotal role in the theory of central
simple algebras.

Definition 3.2.4. Let A be a central simple k-algebra. A field extension K |k
is called a splitting field of A if A ® K =~ My(K) for some n € N. Then,
d = +\J[A : k] is called the degree of A and denoted by deg A. Furthermore,
a splitting of A over K is an isomorphism ¢: A @, K — My(K). If k is a
splitting field for A, we say that A is split.

We give a valuable characterisation of split central simple algebras based
on the existence of a rank one element.

Definition 3.2.5. Let A be a central simple k-algebra, and let 7 € A. The rank
of z, denoted by rank z, is the number

[Az : k]
deg A

rank z =

Proposition 3.2.6. Let A be a central simple k-algebra. Then A is split if and

only it contains an element of rank 1.

Proof. When A ~ M,(k), the rank defined above coincides with the usual
rank of a matrix (which is invariant up to isomorphism), and then A contains
elements of rank one. Conversely, let z € A have rank one. Then we set
V = Az, and V is a d-dimensional k-vector space, where d = deg A. Since
V is a left-ideal of A, we get a k-algebra homomorphism A — Endg (V) by
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sending a € A to the multiplication-by-a-on-the-left linear map L,. Since A is
a simple algebra, the map a — L, is injective. By equality of dimensions, it is

an isomorphism. m|

A well-known fact is that the tensor product of central simple algebras

remains central simple.

Lemma 3.2.7 (36, Lemma 2.2.5]). Let A and B be central simple k-algebras.
Then A ®y B is also a central simple k-algebra.

Central simple algebras form a group under this operation when considered
up to a specific equivalence relationship. This group, called the Brauer group,
is an algebraic invariant of the field k. We summarize the results that lead to
the construction of the Brauer group:

Definition 3.2.8. Ler A be a k-algebra. The opposite algebra of A is the
k-algebra A°P defined as follows: As a k-vector space, AP is isomorphic to
A. Ifa € A, we write a®® for the corresponding element in A°P. Then, the
multiplication in A°P is defined as follows: for a,b € AP, a°’b°? = (ba)°P.

Definition 3.2.9. Two central simple k-algebras A and B are said to be Brauer-
equivalent, denoted by A ~p; B, if there exist d,d’ € N such that

A®r My(k) ~ By My (k).
We denote the equivalence class of an algebra A for this relation by [ A]g;.
We state a lemma which gives a criterion for proving Brauer equivalence:

Lemma 3.2.10 ( [74, Lemma 3.4]). Let A be a central simple k-algebra, and
let e € A be idempotent. Then eAe is a central simple k-algebra which is

Brauer-equivalent to A.
We now present the construction of the Brauer group:

Proposition 3.2.11 ( [36] Proposition 2.4.7]). If A, A’, B, B’ are central simple
k-algebras, such that A ~g; A’ and B ~g; B’, then A ® B ~g; A’ ®; B’.
The set of Brauer-equivalence classes of central simple k-algebras forms an

abelian group. Its neutral element is the class of split algebras, and the inverse
of the class of A is the class of A°P.
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Definition 3.2.12. The group formed by Brauer equivalence classes of central
simple k-algebras with the tensor product is called the Brauer group of k. It is
denoted by Br(k). If K /k is a field extension, there is a map Resk i : Br(k) —
Br(K) sending the class of some k-algebra A to the class of Ag. The kernel of
this map is called the relative Brauer group of k with respect to K, denoted by
Br(K/k).

More generally, if K is a commutative k-algebra, we may define the group
Br(K/k) as the subgroup of Br(k) of classes of algebras A such that Ax =
Endg (P), for some projective K -module P.

Remark 3.2.13. The Brauer group is also defined for a general commutative
ring and even for a scheme in the literature, but we shall not need such generality
in this work (see [[18}/33]] for details). We note that our definition of Br(K/k)
then coincides with the kernel of the map sending a k-algebra A to Ak for any
commutative k-algebra K.

Next, we record two fundamental theorems on central simple algebras. First
is the Skolem-Noether theorem:

Theorem 3.2.14 ( [69, Theorem 7.21]). Let A be a central simple k-algebra
and let B be a simple k-subalgebra of A (e.g a field extension). Then, if B is a
k-subalgebra of A and ¢: B — B is an isomorphism, there exists a € A* such
that the restriction of the inner automorphism x — axa™" to B coincides with

@.

The second is the double centraliser theorem. We first define the centraliser
and then state the theorem.

Definition 3.2.15. Let A be a k-algebra and let B C A. Then, the centralizer
of B in A is the subalgebra

Ca(B) ={x € A: Vb eB, xb=bx}.

Theorem 3.2.16. Let A be a central simple k-algebra, and let B C A be a
simple subalgebra. Then,

1. CA(B) is simple.
2. [B:k][Ca(B): k] =[A:k].
3. C4(Ca(B)) =B.

4. If B is central simple, then C 4(B) is central simple, and A = BQ C4(B).
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A useful corollary is the following:

Corollary 3.2.17. Let A be a central simple k-algebra of degree d, and let
K C A be a subalgebra such that K [k is a degree d field extension. Then

Ca(K) = K.

Proof. This is Item of Theorem 3.2.16] coupled with the fact that [K : k]? =
[A < k]). o

Finally, we give a useful characterisation of Br(K/k) when K is an étale
k-algebra:

Proposition 3.2.18. If K is an étale k-algebra of dimension d and A is a central
simple k-algebra of degree d, then the class of A is in Br(K /k) if and only if A
contains a subalgebra isomorphic to K.

Proof. If K is a field, then this is [36, Proposition 2.2.9]. Otherwise, this is a
consequence of [33, Theorem 7.4.2]. O

3.2.2 Algebraic presentations of central simple algebras

Early XXth century investigations on division algebras led to several construc-
tions of central simple algebras, relying on simpler algebraic objects. Such
constructions would yield a presentation for the algebra, and the question of
finding an isomorphism between thus presented algebras would translate into
a multiplicative equation expressed over the centre. This section recalls three
such constructions introduced by Dickson, Noether and Brauer. In modern ref-
erences, the constructions of Dickson and Noether (respectively of cyclic and
crossed-product algebras) are discussed with the language of Galois cohomol-
ogy (see e.g. [36}[74]]). The construction of Brauer also admits a cohomological
interpretation once the definitions of Galois cohomology are extended to non-
Galois field extensions. [1]].

While the cohomological formulation allows for a powerful theory, the
computational nature of our concerns leads us to prefer elementary and explicit
presentations. As we will not need the powerful machinery of Galois coho-
mology, we present the constructions mentioned above in elementary language.
Historically minded accounts of these constructions in modern language are
given in [58] for Dickson’s cyclic algebras and in [[50|] for Noether’s crossed
products and Brauer’s factor sets.
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The three constructions we discuss below are related in the following way:
cyclic algebras are a particular case of crossed-product algebras, which are
themselves a particular case of algebras defined by a Brauer factor set. For
each construction, we get similar structural results. While these results may be
proved in a self-contained manner for each construction, we chose for simplicity
to prove the results for the particular cases as consequences of the results for
the more general construction.

Brauer factor sets

For this paragraph, K is an étale k-algebra of degree d. We let E be a splitting
field of K over k and G = Gal(E/k). We also let ® be the set of nonzero
homomorphisms of k-algebra from K to E. We note that the cardinal of ®
is d by Corollary We define Brauer factor sets as algebraic objects
which classify central simple algebras of degree n that contain a copy of K
as a subalgebra. We also explicitly describe Br(K/k). The exposition, again,
follows loosely that of [51, Chapter 2].

Definition 3.2.19. A Brauer factor set for the k-algebra K is a map

c: OPxdOxd — EX

(P, 0'77') = Cp,o,7
which satisfies the following conditions: for a,B,y € ® and n € G,
Cra,nB,ny = ﬂ(c(l,ﬁ,’}/)v (3.2)

and for a, B,y,0 € @,

ch,ﬁ,yca,y,é = CQ,IB,&CB’%(;. (33)
The Brauer factor sets form a group, which we denote by Z}%r(K [k, E®).

The condition defined by Equation (3.2)) is called homogeneity. It extends
in an obvious manner to maps from ®” to A, for any n € N and A C E stable
by the action of Galois.

Definition 3.2.20. Let ¢ € Zér(K [k, E*) be a Brauer factor set. We let'V be
the k-vector space of homogeneous maps {: ® X ® — E. For £,{' € V, we
define the product as follows:

(fﬁ,)a,ﬁ = Z ga,'yca,y,ﬁf;ﬁ- (3.4)
yed
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This vyields a k-algebra of dimension n’ called the Brauer algebra determined
by ¢, and denoted by B(K, c).

Proposition 3.2.21 ( [51, Theorem 2.5.6]). If ¢ € Zér(K/k, K*), the algebra
B(K, c) is a central simple k algebra of degree n containing K as a subalgebra.
Conversely, if A is such an algebra, then there exists ¢ € Zér(K [k, K*) such
that A ~ B(K, ¢).

Definition 3.2.22. A Brauer factor set ¢ € Zér(K [k, E*) is called associated
if there exists a homogeneous map a: ® X ® — E* such that for «, B,y € @,

. -1
Capy = Opi(a) = Aa,BAB,yA g,y -

Such a map a is called a trivialisation of c. The group of associated Brauer
factor sets is denoted by Blzgr(K [k, E*), and we define the factor group

H (K [k, EX) = Zg (K [k, E*) | By (K [k, EX).

Proposition 3.2.23 ( [51, Theorem 2.3.21]). Let ¢,c’ € Zﬁr(K/k, E*). Then
the algebras B(K,c) and B(K,c') are isomorphic if and only if ¢(c’)™' =
O (a) for some homogeneous maps a: ® X ® — E*. In that case, the map

B(K,c) — B(K,c')
t = (aa,ﬁfa,ﬁ)a,BEG

is an isomorphism.

Remark 3.2.24. In [51]], the author introduces the notion of a reduced factor
set. A factor set ¢ is reduced if c4,q,o = 1 for all @ € ®. Propositions [3.2.21]
and[3.2.23]are stated with the additional hypothesis that the factor sets involved
be reduced. This hypothesis is, in fact, not necessary for our relaxed statement
of Proposition [3.2.23] where we do not impose that the isomorphism between
B(K,c) and B(K, ¢’) fixes the image of K in these algebras.

The multiplication of factor sets is compatible with the multiplication op-
eration in the Brauer group of k:

Proposition 3.2.25 ( [51, Theorem 2.4.6]). Let c,c¢’ € Zér(K/k, E*). Then
we have the Brauer equivalence

B(K,cc’') ~g: B(K,c) ® B(K, ).
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We will see that the map ¢ — B(K, c) yields a group homomorphism from

H%r(K/k, E*) to Br(K/k). In order to prove that, it remains to see that the
algebra Br(K, 1) is split.
Example 3.2.26 (The trivial factor set). The trivial Brauer factor set is the
factor set 1 defined by 1,3, = 1forall @, 8,y € ®. Set ® = {¢1,...,¢@q},
so that a map ® X ® — FE identifies with a matrix in M4 (E). Then, the vector
space B(K, ¢) of homogeneous maps is identified with a subspace of M;(E).
Applying Equation (3.4) to the trivial factor set, we find that multiplication
in B(K, ¢) coincides with multiplication in M;(E). Now, B(K,c) contains
the rank one matrix z = (1); je[n). Since [M,(E)z : E] = d, we have
[B(K,c)z : k] = d. Then, z has rank one as an element of B(K,c) and
therefore, the algebra B(K, c) is split by Proposition

We may gather the results of this section in the following theorem:

Theorem 3.2.27. Ifc € Z%r(K/k, E*), the algebra B(K, c) is central simple
of degree d. Then the map ¢ — [B(K, c)]g, factors through Hér(K/k, EX)
and yields an isomorphism between Hér(K/k, E*) and Br(K / k).

Crossed-product algebras

Here, we let K/k be a Galois field extension of degree d. We also let G be
the Galois group Gal(K/k). We will define the so-called Noether factor sets
for the extension K/k and the crossed-product algebra associated with such a
factor set. Then, we will show that Noether factor sets coincide with Brauer
factor sets for the extension K /k, and we will recover Theorem[3.2.27]in terms
of Noether factor sets, as well as the explicit expression for isomorphisms given
in Proposition[3.2.23] We loosely follow the exposition from [51], Section 2.6].

Definition 3.2.28. A Noether factor set for the extension K [k is a map

c: GxG — K*

(o,7) > cCor
which satisfies the following condition: for o,7,p € G,
CotCorp = Corpo(Cr,p) (3.5)
The Noether factor sets form a group, denoted by Z*>(K [k, K*).

Definition 3.2.29. Let ¢ € Z*(K/k,K*) be a Noether factor set. We let V
be the K-vector space K¢ and denote the elements of it canonical basis by
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(to)oeg. Then, V admits a natural structure of k-vector space of dimension
n®. We define a product on'V as follows: For a, 8 € K©,

(Z a’o-”a') (Z ,B‘ru‘r) = Z CO’,TQ,O'O-(BT)MO'T' (36)

oeG 7€G o, 7eG

This yields a k-algebra of dimension n> which we call the crossed-product of
K with c. It is denoted by A(K [k, c).

Definition 3.2.30. A Noether factor set ¢ € Z*>(K |k, K*) is called associated
if there exists a map a: G — K> such that for o, 7 € G,

Cor=0(a) = a(TO'(aT)a;.]T.

The subgroup of associated Noether factor sets is denoted by B*>(K [k, K*),
and we define the factor group

H*(K/k,K*) = Z*(K /k,K*)/B*(K [k, K™).

Now, we wish to recover the results from the previous section. For this,
we will give a map ¢: Z*(K/k,K*) — Zér(K/k,KX) (here we have E =
K and ® = G since K/k is a Galois extension) and prove that it induces
an isomorphism H*(K/k,K*) =~ Hj (K/k,K*). We will also show that
A(K /k,c) =~ B(K/k,t(c)), and get an explicit expression for an isomorphism
from A(K /k, ¢) to A(K/k,c¢’) when ¢(¢’)~! € B>(K [k, K*).

We define the following maps:

¢ Z*K/k,K¥) — Zz3 (K/k,K*)

(CO',T)O',TEG = (L(C)p,O',T)p,(T,T€G = (p(cp—'a-,o-‘lr))p,O',TEG

ki Za(K[k,K*) — Z>(K/k,K*)
(Cp,o',-r)p,o',-reG d (K(C))O',TEG = (CI,O',U'T)O',TEG
One can easily check that the maps ¢ and k are mutually inverse group iso-

morphisms. Furthermore, assume that ¢ = d(a) € B>(K/k, K*) and consider

the homogeneous map

b: GxXxG — K*

(O-’ T) = bo’,‘r = O—(QO"IT) .
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The map b is homogeneous, and we get
(0) = ¢ ((arer(anagh)o rec)
= (plap1 )@ p(a,07)

= (aBr(b)p,(r,T)p,(r,TeG-

,o,TeEG

That is, «(B*(K /k, K*)) C B%I(K/k,KX). Conversely, we prove that
k(B (K/k,K*)) c B*(K/k,K*).
Let ¢ = dgc(a) € B (K/k,K*). We set

b: G — K~

o = by=ai,.

We compute:
-1
K(C) =K ((ap,aao',rap,-r)p,o-,reG)
— -1 )
=|aj oa a
( Lofe.ot@lior), rec
- -1 )
=\ai oco(ai,r)a
( 1,00 ( l,T) l,ot e
-1
= (boo(b2)b3))
o,7eG
=09(b)
and we get

K (B%r(K/k,KX)) c BX(K/k,K*).
It follows that the maps ¢ and « yield mutually inverse group isomorphisms of
H*(K/k,K*) and H} (K/k,K*).
Next, we prove that for ¢ € Z>(K/k,K*), A(K/k,c) =~ B(K,(c)). Con-
sider the map
n: B(K,c) — A(K/k,k(c))
¢ = Yoegllolio.

The map 7 is clearly k-linear. We check that it is a homomorphism of
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k-algebras. Let £,{ € B(K, c), and we compute:
()= 3 () oty

oeG
’
= Z Z gl,TgT’o'Cl,T,O'uO'
oceG 1eG
/
= D Tl KO il
o,7eG

Il
AN
)

<
~

]
L
9

<

~
L
S

I
—
=
A
S
~
S—
—_—
~
i)
S
B
SN —

p,TeG
= (Z 51,7”7) Z f{’pup
7€eG peG
=n(On(l’).

Now, since [B(K,c) : k] = [A(K/k,k(c)) : k] and B(K,c) is a simple
algebra, the map 7 is in fact an isomorphism. One may check easily that its
inverse is

&: A(K [k, c) — B(K,(c))
a4=Yoegdols = &(a): (0,7) = o(ags-1,).

This entire discussion proved the following as a consequence of Theo-

rem[3.2.27¢

Theorem 3.2.31. Ifc € Z>(K/k,K*), the algebra A(K | k, ¢) is central simple
of degree n. The map ¢ — [A(K [k, c¢)]g: factors through H*(K [k, K*) yields
an isomorphism between H*(K |k, K*) and Br(K /k).

As with the Brauer factor set, we have an explicit expression for an isomor-
phism between crossed-products with associated Noether factor sets.

Proposition 3.2.32. Let c,c’ € Z>(K/k,K*), and let b: G — K* such that
cc’~V = 3(b). Then an isomorphism A(K/k,c) — A(K/k,c’) is given by the

map that is the map
Z Adgg > Z adgbous

oeG oeG

Proof. This isomorphism is 77! o ¢ o &, where ¢ is the isomorphism from
B(K,k(c)) to B(K/,k(c")) given by Proposition [3.2.23| and the fact that &’ is
a trivialisation of k(cc’™"), where b/, . = o (b s-1,). o
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It is implied by Example [3.2.26] and the discussion above that the algebra
A(K, 1) is isomorphic to M (k). In the example below, we give an independent
proof of this fact and give an explicit isomorphism.

Example 3.2.33 (The trivial crossed-product algebra). Fix a basis (e, ..., eq)
of K. Then, any k-linear endomorphism of K may be identified with a matrix
in My(k). If @ € K, write L, for the matrix corresponding to multiplication
on the left by . For o € G, we also write T, for the matrix corresponding
to the automorphism o of K. Then, by a well-known theorem of Artin (see,
e.g. [11, Theorem V.66.3]), the family (L, 7T )1<i<a gives a basis of M4(k).

[ouS
Now, observe thatif o, € K and o, 7 € G,

LoToLgTy = LoLyg)Tor-
It follows directly that the map
A(K, 1) - My (k)
2ioeG e P 2oeG La,To

is an isomorphism of k-algebras.

Cyclic algebras

Let k be a field and let K/k be a cyclic extension of k of degree d. That is,
K/k is a finite Galois field extension and the Galois group G := Gal(K/k) is
cyclic. We fix a generator 6 of G.

Definition 3.2.34. Let a € k*. We let V be the left K-vector space K", and we
name the elements of its canonical basis 1,7y, ...,y%~'. Then V naturally has
a structure of d*>-dimensional k-vector space. We define a multiplication on V
by linearly extending the rule

(@y))(By!) = alD gt (g)y™I modd

Jor0<i,j<n—-landa,B €K.
To put it more simply, the multiplication on V is given by the following
rules: fori,j € [d],

Yyl =y,
y'=a,
and for a € K,
ya =60(a)y.



The algebra formed by the k-vector space V with the product defined above
is called a cyclic algebra. We denote it by the symbol (K [k, 0, a).

We will prove that every class in Br(K/k) contains an algebra of this
form and that this yields an isomorphism k*/Ng/(K*) =~ Br(K/k). We
will obtain this result as a consequence of Theorem |3.2.31| once we give a
compatible isomorphism k* /N, (K*) ~ H*(K [k, K*).

Consider the map

y: kX — Z*(K/k,K*)
b x (D),

where
1 ifi+j<d
X(b)ei,e.i = .
b otherwise.
First, we prove that y(b) € B*(K/k,K*) if and only if b € Ng/x(K>).
Leta € K*,andleta: G — K* defined by ayi = H;;g) 0'(a) fori € [d—1]o.
We show that y (Nk«x(a)) = 0(a). Indeed, we leti, j € [n—1]o. We note that

i-1 j-1 i+j—1
agb () = [ [ @] [0 (@ =[] 0@,
=0 €=0 =0

and

1571600 (a) = @i (ags) ifi+j<d

H;;](')_n_l 0% (a) = agif'(ag)Ngx(a)™! otherwise.

Qgigi =

It follows that x (Ng/x(a)) = d(a) € B*(K/k,K*).

Conversely, let ¢ € k* such that y(c) € B2(K/k,K*). Leta: G — K*
such that y(c) = d(a). Then, we know that if i + j < d, for i, j € [d — 1],
a((l)gi’g_i = 1. That is,

(l’gigi(a’gj) = Ugi+j.
Setting i = 0, we get a; = 1. Settingi = 1 and j < d — 1, we show that
Clgj+1 = a90(a9j),

and by a straightforward induction, it follows that fori € [d — 1],

—_

agi = 0% (ap).

~

T
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It is then easy to check that ¢ = Nk /i (ag).

Putting things together, we have proved that the map y yields an injective
group homomorphism from k* /N (K*) to H*(K/k,K*). Unfortunately,
the map y, seen as a map from k* to Z>(K/k, K*) is not surjective. In order
to prove that its factor from k*/Ng x (K*) to H*(K /k, K*) is, we must prove
that for any ¢ € Z*(K/k, K*), there exist b € k* and @: G — K such that
x(b)d(a) =c.

Let c € Z>(K/k,K*), and we let a: G — K* be defined by ; = 1 and
Qgi = H;;ll cqt g fori € [n—1]. We may quickly observe that if i or j is zero,
0(a)gi g; = 1. Otherwise, we leti, j € [d — 1] and we first compute

—_

i—1

@gif (@gs) = l_lcef 6 Qi(cef,e)
=1 =1
-1 j-1

~.

=| |coc.o cg,.l gt+1Coi gt Coire g (by Equation (3.5))
=1 =1
i+

-1
= C0i,0j HCHK’I

¢=1
Now, observe that
Hl+l ICHJ,H 1fl+_]<n
agivj =31 ifi+j=d
H”J - cgcg Otherwise.
It follows that
1 ifi+j<d

Cai,efa(a)ei,m‘ = .
b otherwise,

where b =[], co.0. Now, using Equation (3.5)) again, one may check that
for r € G, 7(b) = b, and therefore b € k*, and

c=x(b)da™h).

We showed that the map y factors into an isomorphism from k*/Ng /i (K*)
to H>(K /k, K*). Now, it remains for us to show that if ¢ € k*, (K/k, 0, c) =~
A(K, x(c)). Let ¢ € k* and consider the map

U A(K x() — (K/k,0,c)

d- d
S5 amg > X ay
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One may check directly that this map is a homomorphism of k-algebras, and
since the algebra A(K, y(c)) is simple and [A(K, x(c)) : k] = [{(K/k,0,c) :
k], it is an isomorphism. From the discussion above and Theorem we
get the following:

Theorem 3.2.35. If ¢ € k*, the algebra (K [k, 0, c) is central simple of degree
n. The map ¢ — [(K/k,0,c)]s; yields an isomorphism from k™ [Nk /i (K*)
to Br(K/k).

Applying the isomorphisms defined above to Proposition[3.2.32] we get the
following:

Proposition 3.2.36. Let c,c’ € k*, and let b € K* such that cc’~! = Ng i (b).
Then, an isomorphism from (K /k,0,c) to (K/k,0,c’) is given by the map

defined by
d—

1 d-1  [i-1
Zaiyi — Zai n@j(b) v
=0 \j=0

i=0

3.3 Computational representations of central simple
algebras

In order to fully define the explicit isomorphism problem, we need to state how
algebras are represented computationally. In this section, we present several
possible representations, and in the next section, we discuss how these affect
the explicit isomorphism problem.

3.3.1 Computational representations

If K/k is a cyclic extension of degree d with fixed generator 6 of its Galois
group, any central simple k-algebra of degree d (and thus dimension d%) which
contains a subalgebra isomorphic to K admits a presentation as a cyclic algebra
(K/k,8,c) for some ¢ € k*. An element 2;1:‘01 a;y' of (K/k, 0, c) may then be
represented by the coordinate vector (a;)o<i<qa—-1 € K 4 The sum of elements
of this algebra is then represented by the sum of their coordinate vectors, and
the representation of the product may be computed via the formula

d-1 d-1 d-1

] roJ ’ 4

Z a;y' Z ajy’|= Z Z aia;6ivj |y,

=0 =0 =0 | o0<i.j<d-1
i+j=¢C mod d
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where
1 ifi+j<d
Oivj = .
¢ otherwise.

If K/k is a Galois extension of degree d, whose Galois group is G =
{00,...,04-1}, any central simple k-algebra which contains a subalgebra
isomorphic to K admits a presentation as a crossed-product algebra A(K, ¢) for
some Z2(K /k,K*). An element Zfl:_ol aius; of A(K, c) may then represented
by the vector (a;)o<i<a—1 € K¢. The sum of elements of this algebra is then
represented by the sum of their coordinate vectors, and the representation of
the product may be computed via Equation (3.6).

In the general case that K/k is an étale algebra of degree d, and B(K, c¢)
is a Brauer algebra, the degree of the smallest splitting field £ may be as large
as d!, preventing us from representing the algebra B(K, c¢) in a straightforward
manner as in the case of cyclic and crossed-product algebras. In Chapter ] we
find a different algebraic presentation isomorphic to B(K, ¢), which admits an

efficient computational representation.

3.3.2 Finding an algebraic representation of an algebra

There are obvious polynomial-time algorithms which, taking respectively as
input a cyclic presentation and a crossed-product presentation of an algebra,
output structure constants for this algebra. Indeed, multiplications may be
computed in polynomial time, so one may pick a convenient basis and compute
the coordinates of every product of pairs of basis elements. We also note
that one may efficiently compute a crossed-product presentation of a cyclic
algebra by the discussion given in Section [3.2.2] In this section, we consider
the reduction problems stated below. We specialise to the case that & is a global
field. Then, by the Albert-Brauer-Hasse-Noether theorem, every central simple
k-algebra admits a cyclic presentation and, therefore, also a crossed-product
presentation. Hence, the following problems always have a solution:

Problem 3.3.1. Let k be a global field, d € N and (c;j¢) € k@) be structure
constants for a central simple k-algebra A of degree d. Find a cyclic extension
K/k of degree d, a generator 0 of Gal(K [ k), ¢ € k™ and an isomorphism from
Ato(K/[k,0,c).

Problem 3.3.2. Let k be a global field, d € N and (c;j¢) € k@) be structure
constants for a central simple k-algebra A of degree d. Find a Galois field
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extension K /k of degree d, a Noether factor set ¢ € Z*(K/k,K*) and an
isomorphism from A to A(K, ¢).

While to the best of our knowledge, there is no efficient solution to either
problem, they each reduce to the following respective weakenings:

Problem 3.3.3. Let k be a global field, d € N and (cire) € k(@) be structure
constants for a central simple k-algebra A of degree d. Find a subalgebra
K C A such that K [k is a cyclic field extension of degree d, and compute the
Galois group of K [ k.

Problem 3.3.4. Let k be a global field, d € N and (cire) € k@) be structure
constants for a central simple k-algebra A of degree d. Find a subalgebra

K C A such that K [k is a Galois field extension, and compute the Galois group
of K /k.

We have the following reductions:
Theorem 3.3.5. Problem reduces to Problem|[3.3.3]
Theorem 3.3.6. Problem reduces to Problem

Before we prove the theorems, we need an effective version of the Skolem-
Noether Theorem, Theorem [3.2.14}

Lemma 3.3.7. Let k be afield, d € Nand (c;j¢) € k(94? be structure constants
for a central simple k-algebra A. Let (by,...,b,) and (b},...,b}) be bases
for simple k-subalgebras B and B’ of A, and let M € GL, (k) be the matrix
of an isomorphism from B to B’ with respect to these bases. Then, an element

t t
a € A such that, for any X = (x1 xr) € k" and (y1 yr) =MX,
a (Z xibi) al= Zyib;,
i=1 i=1
may be computed in polynomial time.

Proof. Such an a is a solution of the following linear system of equations:
ab; — ZMijbga =0 forallje [r].
i=1

Such a system may be solved in polynomial time. O
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The way we prove Theorems [3.3.5|and[3.3.6]is to leverage Lemma[3.3.7]to
turn usual constructions of cyclic and crossed-product algebras into algorithms.

Proof of Theorem[3.3.5] Here, we adapt the proof of [36, Proposition 2.5.3].
Let k,d, (cije), A be as in the statement of Problem and assume that we
know a subalgebra K C A such that K/k is a cyclic extension of degree d. We
also assume that we know a generator 6 of the Galois group of K and that we
know how to efficiently compute a representation of 6(x) for x € K.

Then, by Lemma we may compute a € A such that axa™! = 6(x) for
all x € K. Then, for x € K, ax = 8(x)a. Furthermore, by induction we have
a‘xa=f = 0% (x) forall x € K.

In particular, a?xa=? = x for x € K. That is, a? € Co(K). By Corol-
lary it follows that a4 € K*. Since a¢ commutes with a, we also get
6(a?) = a?, so in fact, a? € k*. We let ¢ = a.

The discussion above proves that the map

(K/k,0,c) — A

Zia iy o Ei '
is a k-algebra homomorphism. Since (K/k, 8, ¢) is simple and the dimensions
of (K/k, 0, c) and A are equal, the map above is an isomorphism. O

Proof of Theorem Here, we adapt the construction discussed in [51}, Sec-
tion 2.6]. Letk, d, (cij¢), A be as in the statement of Problem and assume
that we know a subalgebra K C A such that K/k is a Galois field extension of
degree n. We also assume that we know the Galois group G of K/k in the sense
that we may represent its elements, compute their multiplication and compute
their action on K. Then, for o € G, we may apply Lemma[3.3.7|to find a, € A
such that for all x € K, ayxac~' = o (x). For x € K, we have:

-1 -1 -1
Ay 050:X(Aya507)" = X.

As in the proof of Theorem this shows that ¢, = a;lTagaT € K*.
A straightforward computation shows that (c..) € Z2(K/k, K*). Then, the
map
A(K,c) — A
YoeGrolle P YgegXolo
is a homomorphism of k-algebra. This map is an isomorphism by simplicity
of A(K, c¢) and equality of dimensions. O
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3.4 The explicit isomorphism problem and its variants

In this section, we discuss the explicit isomorphism problem in different forms.

3.4.1 Problem statements and reductions
Various versions of the explicit isomorphism problem

We introduce the following variants:

Problem 3.4.1 (The explicit isomorphism problem). Let k be a field, d € N
and (cije) € k@) be structure constants for an algebra A isomorphic to
M (k), with respect to some basis (e;);<;<s2 of A. Find an isomorphism from
A to My (k). That is, output d*> matrices M; € My(k), such that the linear map
sending e; to M; gives a k-algebra isomorphism.

Problem 3.4.2 (The explicit isomorphism problem (cyclic version)). Let k be a
field, and K [ k be a cyclic extension of degree d € N. Let 0 be a generator of the
Galois group Gal(K /k) and let ¢ € Nk x(K*). Find an explicit isomorphism
from (K/k,0,c) to M,(k). That is, find an embedding .: K — My(k) and
a matrix Y € My(K) such that «(K) and Y generate My(k) as an algebra,
Y4 = cl; and for any a € K,

Yi(a) = (6(a))Y.

Problem 3.4.3 (The explicit isomorphism problem (crossed-product version)).
Let k be a field, and K|k be a Galois extension of degree d € N. Let
c € B2(K/k,K*). Find an explicit isomorphism from A(K, ¢) to My(k). That
is, find an embedding 1: K — M4(K) and matrices U for o € G = Gal(K /k)
such that ((K) and the U, generate My(k) as an algebra, and for a,8 € K
and o, T € G,

Ua) U (B)Ur = L(Q)L(IB)CU,TUUT-

Remark 3.4.4. Generally, we speak of the explicit isomorphism problem for
a specific class of fields. In this case, we assume algorithms for representing
such fields, and thus, the size of the representation of the base field & is part of
the size of the input to the problem.

In general, one version of the explicit isomorphism problem reduces to
another if one may deduce one computational representation of an algebra A
from another. By the results of Section [3.3.2] we have the following:
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Theorem 3.4.5. 1. Problem reduces to Problems and
2. Problem reduces to Problems and
3. Problem reduces to Problem
4. Problem reduces to Problems and
5. Problem reduces to Problem
6. Problem reduces to Problem

It follows that the cyclic version of the explicit isomorphism problem is
weaker than the crossed-product version, which is weaker than the main version.
In practice, we will show in the next section that subexponential algorithms
exist that solve both the cyclic and the crossed-product versions. However, to
the best of our knowledge, there is no known subexponential algorithm which
solves Problem [3.3.3] Problem[3.3.4] or Problem[3.4.1] In Chapter[d] we define
a new variant of the explicit isomorphism problem, which may be solved in
subexponential time and is equivalent to the explicit isomorphism problem.

Zero divisors

If A is an algebra isomorphic to M;(k), knowing a zero divisor z € A may
help reduce the problem of finding an explicit isomorphism. If a rank one zero
divisor is known, it leads directly to a solution to the problem.

We give a generic definition of the rank one element problem, understanding
that different versions exist for any possible way to represent the algebra A:

Problem 3.4.6 (The rank one element problem). Let A ~ M4(k) be a k algebra,

find a rank one element in A.
Then, we always have the reduction

Proposition 3.4.7. Any version of the explicit isomorphism problem reduces
to the corresponding version of the rank one element problem.

Proof. This is a direct consequence of Proposition [3.2.6|and its proof. Indeed,
if a rank one element z is known in an algebra A, one may compute a basis of
the left ideal Az and then compute the matrix of the multiplication on the left by
any a € A. This algorithm only involves a polynomial amount of computations
in A and linear algebraic operations. O

81



If only that a higher rank zero divisor is known, the problem may not
instantly be solved, but it reduces to a version of lower degree. This fact is a

consequence of the following lemmas:

Lemma 3.4.8. Given an algebra A ~ My(k) and an element 7 € A, which is a

zero-divisor of rank r, one may compute in polynomial time an idempotent in
A of rank min(r,d —r).

Proof. 1If z € M, (k) is a zero divisor of rank r, then the left ideal M;(k)z
admits a right unit e. We claim that e is idempotent and has rank r. Then, 1 —e
is an idempotent of rank n — r.

We prove the claim: If z € My(k), the left ideal M4(k)z is the set of
matrices M whose image is contained in Im(z). Then, let e be the matrix of the
projection onto Im(z). It follows that e is an idempotent matrix of rank . O

The following is a specific version of Lemma [3.2.10

Lemma 3.4.9. Let A ~ M;(k) be a k-algebra, and let e € A be an idempotent
of rank r. Then eAe is an algebra isomorphic to M, (k).

Proof. It is enough to prove the result for A = M;(k). However, then, e is
a projection matrix onto a subspace V C k", and eAe bijectively maps onto
End (V) in a way that preserves multiplication. O

We may then express the following weaker variant of Problem [3.4.6}

Problem 3.4.10 (The zero divisor problem). Let A ~ My(k) be a k algebra,

find a zero divisor in A.

It may seem that the explicit isomorphism problem should reduce to the
zero divisor problem. One may repeatedly find a zero divisor z € A, produce
an idempotent e of rank r < (deg A)/2 and repeat the process with the algebra
eAe of degree lesser or equal to (deg A)/2. However, this reduction is only
polynomial if one may ensure that the size of the representation of eAe only
grows at most sublinearly. To work around this caveat, we may define the
problem of reducing the representation size of an algebra A ~ M;(k). This
problem makes sense since A admits representations of fixed size by virtue of

being isomorphic to a matrix algebra,.
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3.4.2 Algorithms for the explicit isomorphism problem

Here, we discuss known algorithms for solving Problem[3.4.T|over a global field.
One algorithm pertains to number fields. While its complexity is polynomial in
the size of the structure constants, it is not in terms of the degree of the algebra
A. We also present a polynomial algorithm for rational function fields.

Both algorithms rely on Proposition and, in fact, solve the rank one
element problem (Problem 3.4.6)).

For an algebra A ~ M (k), where k is a number field and A is given
by structure constants, an algorithm was first proposed in [22], and later gen-
eralised in [49] and further improved in [47]. While the complexity of this
algorithm is not polynomial in d or the discriminant of k, it is subexponential
if these two quantities are bounded. More precisely, it provides an ff-algorithm
for the explicit isomorphism problem over a fixed number field with bounded
degree. The method is to compute a maximal Oy-order R in A, and to split
A ® kp, where P ranges over M;'. These splitting allow one to compute
Frobenius norms over A, and one may search for a rank-one element among the
small elements of R. The exponential complexity comes from the large search
space size in the last step of the algorithm.

For an algebra A ~ M;(k), where k = F,(x) is a rational function field, a
polynomial algorithm was given in [46]]. The method is similar to the method
for number fields but also allows for a geometric interpretation. One computes
a maximal © ri-order Ry; and a maximal O-order Re in A. Then, a rank-one
element is found in R r; N Rw. The order R ; plays the role of the maximal order
R in the number field case, and elements of Rs; N R, are analogous to small
elements of Ry;. While this result is proved in purely algebraic terms in [46],
it admits a simple geometric interpretation. After introducing the necessary
definitions, we discuss it in Section [5.3.1]

3.4.3 Solving algebraic versions of the explicit isomorphism prob-
lem

Here, we discuss known techniques for solving Problems [3.4.2] and [3.4.3] in
subexponential time in the case that k is a number field. Both algorithms
rely on similar strategies: solving a multiplicative equation and applying either

Proposition |3.2.36| or Proposition [3.2.32] to get an isomorphism to M (k).
More precisely, we have the following problems:

&3



Problem 3.4.11 (Cyclic norm equation). Let K be a cyclic extension of a global
field k. Let b € Nk (K*). Compute a € K* such that

b = Nk (a).

Problem 3.4.12 (Noether factor set trivialisation). Let K be a Galois extension
of a global field k. Let b € B>(K/k,K*). Compute a: G — K* such that

b=0(a).
Then, we have the following reductions:
Theorem 3.4.13.  [. Problem reduces to Problem

2. Problem reduces to Problem

Proof. We only state the proof of the first point, as the proof for the second
one is similar. Let k, K, d, ¢ be as in the statement of Problem Then if
a: G — K* is given such that ¢ = d(a), an isomorphism from A = A(K, ¢)

to A(K, 1) may be computed by Proposition [3.2.32] Then, by Example (3.2.33]
this yields an isomorphism from A to M (k). O

Then, subexponential algorithms solving Problems [3.4.2] and [3.4.3] over a
number field follow from the following results:

Theorem 3.4.14. If k is a number field, Problem|3.4.11|over k may be solved

in subexponential time under GRH.

Theorem 3.4.15. If k is a number field, Problem|3.4.12\ may be solved over k
in subexponential time under GRH.

The first theorem is a particular case of the results of [82]. The second
theorem either reduces to factoring and S-unit group computation by [29]] or to
solving norm equations in relative extensions of number fields by [67]. Note
that the problem of solving norm equations reduces to the problems of factoring
and computing S-units by [82].
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Chapter 4

Computational Amitsur
cohomology and the explicit
isomorphism problem

This chapter presents results published in [55]. We introduce an algebraic
presentation of a central simple algebra using Amitsur cohomology. This
representation is as a rephrasing of Brauer algebras. As discussed in Sec-
tion [3.3] the usual definition of a Brauer algebra does not suggest a reasonable
computational representation when the splitting field of K has a large degree.
Our equivalent representation relies only on computations in K®> and K®3,
and therefore has polynomial size. Using this representation, we provide a
polynomial reduction of the explicit isomorphism problem (Problem [3.4.1)
to factorisation and Problem under GRH, which yields a polynomial
quantum algorithm (still under GRH). We prove that we may compute a repre-
sentation of an algebra from its structure constants in polynomial time (whereas
this is not known for cyclic and crossed-product presentations). Then, we prove

results analogous to Theorems[3.4.13|and [3.4.T5]

4.1 Amitsur cohomology

Definition 4.1.1. Let R be a ring and S be an R-algebra. We let C); (R, S)
be the group (S % of units in S®"*V) . Elements of C% (R, S) are called
Amitsur n-cochains of S, or simply n-cochains of S if there is no ambiguity on

the type of cohomology.
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We will define a complex
.—>Ch (R, s) % c;;;}(R S) —

as follows: let n € Zsp and let i € [n+ 1]p. We define the R-algebra
homomorphism

P §® (n+1) — S®(n+2)

1

ap®a1®...0a, — aqy®a;®...8a;.191Qa;®...®a,.
We may then define the group homomorphism

o Ch (RS) — C*I(R,S)
a — "+1 ”(a)( N,

We observe thatforn e N, 0 < j <i <n+ 1, we have
1 1
e ogl =gl &l (4.1)
We may then prove

Proposition 4.1.2. Let R be a ring and S an R-algebra, and let n € Zsq. Then
the map 8™*' o 9" : Ch, (R, S) — CZ’;%(R, S) is the trivial map a — 1. That

is, 0" is a complex of abelian groups.

Proof. Applying Equation (4.1)), we compute:

2 1
an+1 Y L ﬁ(grﬁl)(—l)j o (ﬁ(sn)(_l)i)
J i
=0 i=0

=l [T @™ ] tospt™

0<j<i<n+l 0<i<j<n+2
_ n+1 n (=1) n+l ny (=1)
=l ] Eleery (] o ef)
0<j<i<n+l 0<i<j<n+2
_ n+l ny (=1)i+i-1 n+l ny (=1)it7
=| [[ @teent [ ftoent
0<i<j<n+2 0<i<j<n+2
=1

O

Using Propositiond.1.2] we may define the groups of Amitsur cohomology
of an R-algebra:
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Definition 4.1.3. Let n € Zs¢. Let R be a ring and S an R-algebra, and let
n € Zxq. We define the following groups:

e 7% (R, S) = Ker 0" is the group of Amitsur n-cocycles of S.

s Ifn > 1, weset B, (R,S) =Im 0" ! is the group of Amitsur n-
coboundaries of S if n € N. We let B’(R, S) be the trivial group.

* H} (R,S) = Z} (R,S)/B (R,S) is the n-th Amitsur cohomology
group of S.
Applying 33, Theorem 5.5], we get the following base-change result:

Proposition 4.1.4. Let R be a ring and let S,S’ be R-algebras. Let ¢ =
Dic]A0i @ ... ® dn; € S+ | We set

csr = Z(aOi ®r 1) ®s’ ... ®s (ani ®r 1).
iel
Then, ¢ € C!} (R,S) if and only if cs» € C} (S, Ss’) and we get a map of

complexes:

n an n
... —— C% (R,S) —— C*I(R,S) —— ...

l(')s’ ] l(-)y 4.2)

g,
. —— C1 (S, Ss) ——> CI(S, Sg) — ...

where dg, = 0" ® Ids.. It follows that if ¢ € Zim(R,S), then cg €
Z3,,(8'.Ss), and likewise if c € B, (R,S), then cs € B3, (S, Ss). This
also defines a map from H" (R, S) to H"(S’, Ss’) sending the class of ¢ to that

of csr.

Proof. The only part that does not follow from [33, Theorem 5.5] is that c is a
unit if and only if cg is. However, if ¢ admits an inverse ¢~ e §2+D) then
(¢ 1) is an inverse of cs. O

In the case that § = §’, the base-change sends H'; (R, S) to the trivial
class:

Proposition 4.1.5. Let n € N. Let R be a ring and let S be an R-algebra. Let
c€Zy (R,S) beacocycle. Then, cs € B (S, Ss).
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Proof. Observe that in this case, Sg = S®2, seen as an S-algebra via the map
g): § — S§°2. In general, we have (Ss)®" =~ S®rR™! a5 R algebras. We
may therefore identify C’; (S, Ss) and C 2211 (R, S) as abelian groups. Then, if
c€ Cgm(R,S), we get

cs =¢&,.,(c).

Furthermore, if ¢ € C f\;l (R, S), then

n+l

AGOEN  [Cat)
i=0

Observe thatif ¢ € C; (R, S) = Cf\;nl(S, Ss), we get
9" (c) = 05~ () (gt () V"
It follows that if ¢ € Z'} (R, S), so that 8" (c) = 1, we get

cs =", (c) =05 (V") € B4, (S, Ss)

4.2 Amitsur algebras

In this section, we fix a field k. We will prove Theorem[d.2.4] which gives an iso-
morphism between the cohomology group Him(k, K) and the relative Brauer
group Br(K/k). This theorem is comparable to the results of Section [3.2.2]
In [55], the authors prove this result as a consequence of Proposition [3.2.21]
and an equivalence between Brauer algebras and the Amitsur algebras defined
below. Here, as suggested in [55, Remark 3.8], we give a direct proof, which,
while inspired by the techniques used in [51, Chapter 2], is independent of the
theory of Brauer factor sets.

In this section, we will consider two settings. The first is the case where
R = k and S is an étale k-algebra K, as in the discussion of Brauer factor sets. In
this first setting, we state and prove Theorem[4.2.4] Some intermediate results
require us to consider Amitsur algebras in the more general setting where R is
an étale k-algebra and S is a free étale R-algebra.

In either case, since S is free as a R-module, we may see §®(n+1) a5 an
S®"-algebra via any map sf"l fori € [n+ 1]o. This algebra is always free as
a S®"-module. In this case, we write Tr;‘_1 for the corresponding trace map.
This section will focus on the trace map Tr}, as it plays a central role in defining
Amitsur algebras.
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Definition 4.2.1. Let ¢ € S®3. Then, we define a bilinear map
me: S x 882 — 592
as follows: for a,a’ € S®,
me(a,a’) = Tr% (8; (a)cs(l)(a’)).

The R-algebra with underlying vector space S®* and product rt. is called the
Amitsur algebra associated to S and ¢, and is denoted by A(S, c).

Remark 4.2.2. The algebra A(S, ¢) needs not be unital or associative.

We stress that for the remainder of this section, unless specified otherwise,
the notation aa’, when a,a’ € S®2 means the usual product in the tensor
product algebra S®2. We use the maps 7. when we mean multiplication in the
algebra A(S, ¢).

Observe that in general, fora = };c;aio ® a;1 ® ap € %3 we have

Tri(a) = Z Trs/r(ai1)aio ® ap. (4.3)
iel

It follows that if ¢ € $%3,a,a’ € S®% and b € S, we have the following:

ﬂc(s(l)(b)a, a') = s?(b)ﬂc(a, a’) (4.4)
ne(a, sg(b)a') = 88(b)ﬂc(a, a’) 4.5)

Example 4.2.3 (The trivial Amitsur algebra). Let d be the rank of S as a free
R-module. The algebra A = A(S, 1) is isomorphic to M4 (R). Indeed, there is
an isomorphism Endg (S) =~ M,,(R). Since S is free as an R module, we have
Endg(S) ~ S®SY, givenby a ® ¢ — (b — ap(b). By Lemma[2.1.22} we get
an isomorphism =~ §®2 ~ Endg(S), where the multiplication on S®2 is not the
usual, but is rather defined by the following: for a,a’, b, b’ € S,

(a®a’)- (b®b") =Trg/r(a’b)a® b’

Now, we need to check that this coincides with the bilinear map n;, and it is
enough to check on simple tensor elements. Let a,a’, b, b’ € S. We compute:

m(a®a,b®b')=Tr|(ey(a®a')ey(b® D))
= Tr}(a ®a’'bb’)
=Trg/r(a’b)a® b’ (by Equation (4.3)).
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The main result of this section is the following, stated as Theorem [T.4.T}

Theorem 4.2.4. Let k be a field and let K be an étale k-algebra of degree
d. Let c € K®. Then, A(K,c) is a central simple k-algebra if and only
if c € Zim(k,K). In this case, A(K,c) has degree d and contains K as
a maximal commutative subalgebra. Conversely, if A is a central simple k-
algebra of degree d containing K as a maximal commutative subalgebra, there
exists ¢ € Zim(k, K) such that the Amitsur algebra A(K, c) is isomorphic to
A.

This factors into an isomorphism between Him(k,K) and the relative
Brauer group of k with respect to K.

Proof. Theorem[.2.4]is the combination of the following results proved in this
section: Example and Propositions[4.2.5| 4.2.7]and #.2.10[to £.2.14] O

4.2.1 Embedding S into A(S, ¢)

Proposition 4.2.5. Let ¢ € S®3. Assume that the algebra A(S, ¢) is unital and
let 1. be its unit. Then S embeds into A(S, ¢) as an R-algebra via the mapping

te(a) = 8(1)(61)1C.

Proof. First, we prove that if ¢.(a) = 0, then a = 0. Indeed, applying Equa-

tion (4.4), we get
(a) = X@) (18 1) = . (1(a), 1@ 1),

and it follows that if ¢ (a) = 0, then 8(1)(61) = 0 and therefore a = 0.
Now, it remains for us to prove that if @, a’ € S, then

te(aa’) = me(te(a), e (a’)).
We compute:

me(te(a), Lc(a,)) = 8(1)(61)7["(1"’ te (a,))
= e)(a)me(te(a’), 1c)
= g(l)(aa/)ﬂ'c(lc, lc)

=t.(aa’).
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Lemma 4.2.6. Let ¢ € S®3, and let « € S. Then
Lc(a') = 83(0',)16'

Proof. We set

c= ZC£O®C£1 ®ce
el

and

1C:Za,~®b,~.

iel
We first prove that for a general @ € S,
el(a) = Z Trs/r(bicera)(ceoa;) ® cea.
B

Indeed, we compute

&(@) = me(1e, 8)(a))
= Z Trs/r(bice1a)(ceoai) ® cea.

iel
tel

Now,
0 _ 0
80(0’)15' = (1, 80(01)1c)

= Z Trs/r(bicera;a)(ceoai) ® (ce2bj)

ijel
tel
= Z(l ®bj) Z Trs/r(biceo(aaj))(ceoai) ® cer
jeJ iel
tel
= Z(l ® bj)s(l)(ozaj)
jeJ
= @) a;®b))
jeJ
=t.(a).

Combining Proposition #.2.5| and Lemma [4.2.6] we observe that for any

a € A(S,c) and a € S, we have
7 (te(@),a) = £} (a)a,

and

mela, (@) = sg(a/)a.
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4.2.2 Amitsur cocycles give central simple algebras

Proposition 4.2.7. Let R be an étale k-algebra, and let S be a free étale R-
algebra. Let ¢,c’ € S®3. Assume that there exists b € Bim(R, S) such that
c=bc,andlet a € C}\m(R,S) such that b = 0'(a). Then, the map x +— ax
gives an R-algebra isomorphism from A(S, c¢) to A(S, c).

Proof. Ttis clear that multiplication-by-a is an R-linear automorphism of S€2,
Let o, 8 € S®2, we compute:

ane(a, B) = aTrj (g, (@) s(B)
= aTr) (s} (a)cep(a)sh(@e] (a)eh(B))
= aTri (8%(a_l)sé(aa)cs(l)(aﬂ))
=aa”! Tr} (sé(acx)cs(l)(aﬁ)) (by linearity of Tr})
= Tr{ (8£(aa)cs(1)(a,8)

=no(aa,af).

O

Lemma 4.2.8. Let A be a (non necessarily unital or associative) k-algebra,
and let K be an étale k-algebra. If Ak is a unital associative K-algebra, then

A is itself associative and unital.

Proof. As there is an injective mapping from A to Ak, A is associative. It
remains to prove that A is unital.

Letn = [A : k]. We fix a k-basis (eq,...,e,) of A, and (e; ® 1);c[n] is a
K-basis of Ag. We let 1 be the unit of Agx and we set

1= ZE] e; ®a;.

i€[n]

Then, we fix an algebraic closure k of k. If ¢ is an embedding of K into k,

@: Z e Qx> Z e ® p(x;)

ie[n] i€[n]

then the map

is an embedding of Ak into Az.

Now, let ¢ and > be two embeddings of K into k. We have ¢ (1) = (1),
and it follows that fori € [n], ¢1(a;) = ¢2(a;). Then, by Lemma2.1.11} a; € k
for all i € [n], and it follows that 1 € A, and that the algebra A is unital. m]
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Lemma 4.2.9. Let R be an étale algebra and let S be a free étale R-algebra.
Let ¢ € R®3. Then
A(R,c)s = A(S, cs).

Proof. We have an isomorphism of S-modules

(R®?)s ~ (Rs)®?
Yiectwui®v)®t; = Y (u®1)® (v ®t;).

Now, we prove that if o, 8 € R®?,
ne(a,B)@1l=n(a®1,11).
Indeed,

Tes(@® 1L, B® 1) = Tr((e3(@) ® 1)(c ® 1)(g4(B) ® 1))
= Tr| ((e5(@)cgg(B) @ 1)
= Tri (sé(a)cs(l)(ﬁ)) ®1
=n.(a,B) @ 1.

O

Proposition 4.2.10. Let K be an étale k-algebra of dimension d, and let
cE Zim(k, K). Then A(K, c) is a central simple K-algebra.

Proof. By Proposition ck lies in Bim(K ,Kx). Then, by Proposi-
tion Example §.2.3] and Lemma A(K,c)k =~ A(Kk,ck) =
Endk (Kk) =~ My(K). Now, it will follow from Theorem [3.2.3|that A(K, ¢) is
a central simple algebra if it is associative and unital, which itself follows from

Lemma[4.2.8 O

4.2.3 Central simple algebras come from Amitsur cocycles

Proposition 4.2.11. If K is an étale k-algebra, ¢ € K® and A(K,c) =~
End(K), then ¢ € B}, (k, K).

Proof. By Example there is an isomorphism ¢: A(K,c) — A(K,1).
Since the algebras A(K, 1) and A(K, ¢) are unital, we have subalgebras K| =
1(K) and K, = ¢~ '(11(K)) of A(K,c), and both are isomorphic to K. By
Proposition there is a k-algebra automorphism ¢ of A(K,c) which
sends K to K». Replacing ¢ with ¢ o i, we get ¢ o ¢ = t;.
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Then, it follows from Equations ({.6)) and (4.7) that ¢ is also an isomorphism
of K®2-module, where A(K, ¢) and A(K, 1) are both seen as free K®> of rank
1 generated by 1 ® 1. It follows that there exists a € C[l‘m(K ) such that for all
a € A(K,¢),

o(a) = aa.

Then, for any «, 8 € A(K, c¢), we have

Tr} (s, (@)ce(B)) = me (@, B)
=a 'ni(aa,ap)
=a! Tr} (8é(aa)sé(aﬂ))
= Trl (s} (@) (s} (@)e ) (@)e) (@) Ve (B)
= Tri(&3(a)8" (a)£}(B)).

Since the images of 8(1) and sé span K® as a K®2-module, it follows from
Lemma |2.1.22|that ¢ = 8'(a) € B}, (k,K). o

Proposition 4.2.12. If K is an étale k-algebra and c € K®3 is such that A(K, ¢)
is a central simple k-algebra, then ¢ € Zim(k, K).

Proof. Let L be asplitting field for A(K, ¢). Then, by Lemma4.2.9]and Propo-
sition cL € Bf‘m(L,KL). Now, this means that ¢, is a unit in Kf3.
Since K®3 is an étale k-algebra, it follows from Proposition that c is a
unit if and only if it is not a zero divisor. However, if it were, c¢; would also
be one. Therefore, ¢ € Cim(k, K). Furthermore, 1 = 6%(CL) =0%(c)® 1, s0
9*(c)=1,andc € Zim(k,K). O

Proposition 4.2.13. Let K be an étale algebra of degree d, and let A be a
central simple algebra of degree d which contains a subalgebra isomorphic to
K. Then there exists ¢ € Zf\m(k, K) such that A ~ A(K, c).

Proof. By Proposition it is enough to prove that there exists ¢ € K®3
such that A ~ A(K, ¢).

Let A° = A ®; A°P be the envelopping algebra of A. Then A is an
A¢-module via the multiplication (& ® B)x = axB. The k-algebra A¢ is
central simple by Lemma[3.2.7] and therefore A is a faithful A¢-module by [33]
Theorem 3.2.5]. Since K®2 is a subalgebra of A, A is also a faithful K 82

module.
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By Corollary [2.1.14] there exists v € A such that A = KvK (this is also
the content of [51, Theorem 2.2.2]). We let ¢: K 82 5 A be the K®2-module
isomorphism defined by

p(a®b) =avb,

and we consider the bilinear map

I: (K®%)? o K®
(@ ®a,fo®P1) — ap®a1fo®br

We see K®3 as a K®2-algebra via the map &|, and we define the K®2-module

homomorphism

/8 K®3 — A

apy®a; ®ar, +— agvaivap '
It may easily be seen that for o, 8 € K2, we have
e(a)e(B) =y(I'(a, ).

The map ¢! o ¢ is a K®2-module homomorphism from K®3 to K®2. By
Lemmal2.1.22| there exists ¢ € K®3 such that for all @ € K®3,

¢~ (Y (@) = Tr(ca).

Therefore, there is an isomorphism A(K, c¢) ~ A. O

4.2.4 Tensor product and product of cocycles

Proposition 4.2.14. Let K be an étale k-algebra. Let c,c’ € Zim(k, K). Then
the algebra A(K, cc’) is Brauer equivalent to A(K,c) ® A(K, ¢’).

Fix an étale k-algebra K. Let ¢, ¢’ € Zf‘m(k, K), which we denote by

c = Zcm ® cp1 ® cen

tel
and
’ _ ’ ’ ’
"= Y g ®Chy ®
el
Now, we set

c®c = Z o0 ® Cpig ® Ce1 ® Cpy ® o2 ® Cry.
felL
t’'el’
Proposition {.2.14] follows immediately from Lemmas [4.2.15 and §.2.17
below.
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Lemma 4.2.15. The tensor product A(K, c)®A(K, ¢’) is isomorphic to A(K®
K,c®c).

Proof. Both algebras are isomorphic to K®* as k-vector spaces. We consider
the linear isomorphism ¢: A(K,c) ® A(K,c’) —» A(K® K, c ® ¢’) defined on
simple tensor elements by

pa®b®c®d) =a®c®bed.

All that remains to prove is that for @, 8 € A(K,c),a’,8 € A(K, '),

o(re(@,f) @ (a’,B)) = meacr (p(a ® ', & f)).

We prove the equation above for simple tensor elements, and the general result
follows. Welet @ = ap® a; and 8 = by ® by be in A(K,c) and o’ = a{) ® a)
and 8’ = b( ® b’ be in A(K, ¢’). Applying Equation (4.3), we get

Teoe (p(a ® ), (B ® B))

= Z Trrek/k(aibocer) ® (a)bycyy)(aoceo ® apcy.g ® bicer ® bich,)
%

= Z Trx i (a1bocer) Trg i (a7 bycy) e(aoceo ® ceabi ® apcly ® cpiybh)

el
el

=g ((Z Trg/k(aicerbo)aoceo ® blcfz)

tel

® ( Z Tri i (ajcpby)agcyo ® b’lcé,z))
teL

= @(ne(a,B) @ ner (e, B)).

For n € N, we consider the multiplication map

K®2n N Kén

ap®a;®...0axy-1 — apa1 ... ar,—2ax3$,-1

Hn:

Now, by [33] Proposition 4.1.2 and Exercise 4.1.8], there exists a separability
idempotent e,, € K®%" such that y, (e,) = 1 andker y,, is generated by (1—e). It
follows directly that K®2" = ¢ K®2" @ (1—¢) K®>" and that y,, is an isomorphism
from eK®?" to K®". Furthermore, it is clear that e, = ¢, ® e.
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As usual, we see K®* as a K®2-algebra via the map s} and write Tri for the

associated trace map. Likewise, we see K®% as a K®*-algebra via the map
gl K® — K®°
ap®a; ®ar®a; — ay®a;®101®a®a;j

and we write Trll1 for the corresponding trace map. We also define maps 8;-"
for 0 < i < n+1 in a similar manner, by analogy with the maps &!'. If
c,c’ € Z/Z_‘m(k, K), and ¢ ® ¢’ is defined as above, we have

u(c®c’) =cc. (4.8)
It may also be easily observed that for 0 < i < 2, if @ € K®4,
p3(e! (@) = &) (u2(e)). (4.9)
Lemma 4.2.16. With notations as above, if @ € e3K 86 then
pa(Tr) (@) = Tr} (3 (@)
Proof. Observe that
K® = e)K® @ (1 — e7)K®*

and
K®® = e3K® @ (1 — e3)K®S.

Under these identifications, we have
&' = e(8]) e xes + (1 = €3) (€] )}, x0s.
It follows that for & € K®9,
Tr’ll(a/) =Tro, ko6 e, k04 (€3) + Tr (1) ko6 (1-ey) ko4 ((1 — €3))
In particular, if @ € e3K®°,
Tr} (@) = Try, ko6 je, ko4 (@).

The result follows from the fact that the diagram below commutes and its
horizontal arrows are isomorphisms.

€3K®6 H3 ; K®3

o
62K®4 H2 ; K®2
This diagram commutes by a combination of Equation (4.9) and the fact that

uz(e3) = 1. m
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Lemma 4.2.17. The algebra A(K, cc’) is Brauer equivalent to A(K®K, c®c’).

Proof. Welet f = 1.g.(e1) and we will show that A(K, c¢’) = noger (f, A(K®
K,c®c’), f) (abusing notation by associativity of 7 g.). Since f is idempo-
tent, the result will follow by Lemma[3.2.10] By Equations (4.6) and (4.7),

ﬂc@c’(f’A(K ® K’C ® C/)a f) = eZA(K ® K,C ® C/),

and it follows that the map u, restricts to an isomorphism from this subspace
(of A(K ® K, ¢ ® ¢’) identified with K®* as a K®2-module) to K2, It remains
for us to show that for @, 8 € e2A(K ® K,c ® ¢’),

/12(7Tc®c’ (a', ﬁ)) =Tee! (ﬂZ(a)’ ﬂZ(ﬁ))

Weleta, B € e2A(K ® K’, ¢ ® ¢’) and we compute:

0 (teser (@, B) = i (Tr}! (e} (ac © ¢'&5 (B)
= Tr} (13 (9 (@) (c ® )& (B)))  (Lemmaf-2.16)
= Tr} (go(u2(@))ec’ey(p2(B))) - (Equations (@8) and @.9))
= fteer (12(@), p12(B))

4.3 Computational results

This section presents a computational representation of central simple algebras
as Amitsur algebras. We also give an algorithm for computing such a represen-
tation in polynomial time for any central simple algebra. Finally, under GRH,
we give a polynomial quantum algorithm for solving the explicit isomorphism
problem for an Amitsur algebra (Problem below). We then obtain, still
under GRH, a polynomial quantum algorithm for solving the explicit isomor-
phism problem (Problem [3.4.1).

Problem 4.3.1 (The explicit isomorphism problem (Amitsur version)). Let k
be afield, and let K be an étale k-algebra of degree d € N. Let ¢ € Bim(k, K).
Find an explicit isomorphism from A(K, ¢) to M4(k).
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4.3.1 Algorithmic representation of Amitsur algebras

Once a field k and a monogeneous étale k-algebra K = k[ X]/(y (X)) are fixed,
we have isomorphisms

Ky = k[Xo, .., Xl /(X (X0), - - . x (X)) = KO,

forall n € N. Therefore, an element of K®"*1)  and in particular of C f‘m(k, K),
may be represented uniquely as a polynomial £(X, ..., X,) in k[Xp, ..., X,]
whose individual degrees in the indeterminates X; for i € [d] are all bounded
by d — 1.

In this setting, the map &' becomes the map sending &(Xo, ..., X,) to
f(Xo, oy Xi 1, Xis1, ..., X)), Thatis,
61X, = X;if j<i |

X1 otherwise.

The trace map Trg,/k, corresponding to Tr% may easily be computed in the
K -basis (X]i)OSi<d of K; using the fact that

Tri,/k, (XS X] X5) = X{X5 Trg (X)),

It follows that if &1, &> € R; represent elements aj, ay of A(F,c), where
we see ¢ as an element of R;, then the element & € R, representing the product
ajap may be computed practically as:

&(Xo, X1) = Trg, jk, (€1(Xo, X1)c(Xo, X1, X2)é2(X1, X2)) .
We record the discussion above in the following:

Theorem 4.3.2. There exist polynomial algorithms for computing additions
and multiplications in A(K, c) when its elements are represented as elements
of K.

For the remainder of this section, if K is an étale k-algebra, an element
of K®"*1) is represented as an element of K,, using the algorithms described
above.

4.3.2 Computing a cocycle representing a given algebra

Here we present an Algorithm[I] which, given a central simple algebra A, com-
putes a representation of an isomorphism Amitsur algebra A(K, c), together
with an isomorphism between A and A(K, ¢).
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Input: A field £
Input: Structure constants for a central simple k-algebra A such that
k| > [A:k]=n
Qutput: u € A such that K = k[u] is a maximal separable
commutative subalgebra of A
Output: The minimal polynomial y of u
Output: ¢ € Z3 (K, k)
Output: An isomorphism e from A(K,c) to A
1 Find u € A such that K = k[u] is a maximal separable commutative
subalgebra of A;
2 Compute y, the minimal polynomial of u;
3 Find v € A such that A = KvK;
4 Compute the matrix of the isomorphism e : K®? — A sending f; ® f>
to fiv
5 Compute ¢ € K®3 such that for all a, b € K®?,
e(a)e(b) = Tr% (aé(a)cs(l)(b)) ;
6 return (u, y,c,e)

Algorithm 1: Computing a 2-cocycle representing a given central sim-
ple algebra
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Before we prove the correctness and efficiency of Algorithm|[I] we need a
lemma:

Lemma 4.3.3. Let k be a field and let A be a central simple k-algebra. Assume
that |k| > [A : k]. Letu € A be such that K := k[u] is a maximal commutative
subalgebra of A. Then an element v € A such that A = KvK may be found in

probabilistic polynomial time.

Proof. For v in A, by an argument of dimensions over k, we observe that
A = KvK if and only if the map

K®eK — A

ar®a, +— aipvar

e:

is injective.

We fix the bases (u' ® u/)o<;, j<deg A-1 of K®*?2 and B = (b1, ..., biak)) the
input basis of A (that is, the basis with respect to which the structure constants
of A are defined). The determinant of e is a homogeneous polynomial on the
coordinates of v in the basis B, and A = KvK if and only if v is not a zero of
this polynomial.

Letting S be a finite subset of k, the Schwartz-Zippel lemma ensures that a
random v in Sb @ ... @ Sby 4. satisfies this condition with probability larger
than 1 — %

Therefore, if |k| > [A : k], we may pick S large enough that v has the
desired property with positive probability and small enough that we may sample
arandom element in Sb; @ ... ® Sby ). For instance, take [S| = [A : k] + 1

1

and v has the desired property with probability larger than Akl |

Theorem 4.3.4. If k is a field over which linear algebra may be performed
efficiently, and A is a central simple k-algebra such that |k| > [A : k], then
Algorithm|l|returns u € A, a cocycle ¢ € Zf\m(k, k(u)) and an isomorphism
e: A(F,c) — A in probabilistic polynomial time.

Proof. The correctness of the algorithm follows directly for the proof of Propo-
sition[4.2.13] The element u € A in Line[Tjmay be found using the polynomial
algorithm given in [25]. The element v € A of Line [3| may be found in prob-
abilistic polynomial time using Lemma [4.3.3] The remaining lines involve
arithmetic in A and bounded tensor powers of K, as well as the computation of
the solution of a system of linear equations. All in all, this makes Algorithm I]
a polynomial probabilistic algorithm. |
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Corollary 4.3.5. There is a probabilistic polynomial reduction from the explicit
isomorphism problem (Problem to its Amitsur version (ProblemH.3.1)).

4.3.3 Trivialisation of Amitsur cocycles

In this section, we present an algorithm for computing the trivialisation of a
coboundary using S-units group computation. This result is reminiscent of
results such as Simon’s algorithm for solving norm equations in cyclic exten-
sions [82] and Fieker’s result on finding trivialisation of Galois coboundaries
in groups of S-units |29, Theorem 7].

Our strategy is similar to that of [29]: We prove Lemma[4.3.8] a vanishing
lemma for the first Amitsur cohomology group with coefficients in the divisor
group. Such a result is analogous to [29, Lemma 9] and allows us to adapt the
proof strategy of [29, Theorem 7] to our setting.

Let k be a global field, and let K be an étale k-algebra. For n € N, we set

n+l

o= (=D D(e}).
i=0

Foraplace Q € M., andi € [n+1]o, weset Q; = Qg and e = €g s

Then, for a divisor D = ), pcpyna npP, we get

K®(n+l)
n+l
amDy= Y > (-DingegQ.
QEM;?;Q(n+2) =0

We first need a few lemmas:

Lemma 4.3.6. Let Q, Q' be finite places of K®? such that Qg = Qf. Then there
exists a place R e M 1’;’@3 such that R = Q and Ry = Q’.

Proof. We must prove that

D(£1)(Q) ND(£5(Q") # 0.

Let y € k[X] be a defining polynomial for K, and we identify K with
k[X]/(x(X)). Now, we may identify the algebra K®? with K[X]/(y(X)),
where the identification of K with the rings of scalars in K[X] is . We

0
also identify the algebra K®3 with K[X,Y]/(x(X), x(Y)), where the identifi-
cation of K with the ring of scalars in K[X,Y] is the map 8} o 88 = 8(1) o 88.
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Furthermore, under this identification, the € maps become:

g: K[X1/(x(X)) — K[X.Y]/(x(X),x(Y))
X - X

go: K[X1/(x(X)) — K[X.Y]/(x(X),x(Y))
X — Y

With this in place, we have (K®?)k, =~ Kp[X]/(x(X)). Let y = [liepr) &i be
the factorisation of the polynomial y in Kp[X], and the &; are distinct since y
is separable. By Proposition the &; are in bijection with the support of
@(88)(P), so that if Q € Supp(@(sg)((P))), the place Q is identified &; such
that K& = Kp(X)/(xi(X)).

Likewise, we have (K®)k, =~ Kp[X,Y]/(x(X), x(Y)). Since K}‘?i is
a product of finitely many field extensions of Kp, the ideal (y(X), y(Y)) of
Kp[X,Y] is contained in finitely many distinct maximal ideals my, ..., mg
and we have in fact (x (X), x(Y)) = Ngesyme. Then, the m, are in bijection
with Supp(D (¢} o £3)(P)) = Supp(D (&} o £))(P)) (since &} o &) = £} 0 &)).
Furthermore, if O € Supp(CD(sg)(P)) corresponds to a factor & of y, and
R e Supp(CD(s% o 88)(P)) corresponds to a maximal ideal m O (y(X), x(Y))
of Kp® K®?, then R| = Q if and only if the map &| extended to K p ® K®* maps
Kp[X]/(£(X)) into Kp[X,Y]/m. That is the case if and only if £(X) C m.
Likewise, Rp = Q if and only if £(Y) c m. Then, let &, &’ be the factors of
x corresponding respectively to Q and Q. Any maximal ideal containing the
ideal (£(X), &’ (Y)) corresponds to a place R € Mges such that Ry = Q and
Ro = Q’. O

If S is a set of places of k and n > 0, we write S for the set of places
of K®"*1) lying above the elements of S. We also let S, be the set of non-
archimedean places of k that ramify in K.

Lemma 4.3.7. Let n € N be an integer and let P € M;?" \'S ﬁn_l) . Then, we
have the following:

1. The place P is non ramified over k.
2. Assume thatn > 2. Fori € [n—1]o, ep,; = 1.

Proof. The second point follows directly from the first since the map k — K"
n-2

factors as k — K®~1 —— gen
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Now, the first point is a straightforward induction. It is valid for n = 1 by
hypothesis, and then, if it is true when n = k, for some k € N, it is valid for

n=k+1byLemmal2.1.2 O

We may now prove a generalised version of Hilbert’s theorem 90 in our
setting.

Lemma 4.38. Let D = ). mna noQ € Ker GCID be supported by places
K
outside ofSﬁl). Then, there exists E € D (K) such that D = c')% (E).

Proof. We set

E = min nQ) P.

pErte (Q€SUPP(CD(88)(P))

Then, by Lemma[d.3.7] we get

D () (E) = Z ( min nQ,) 0

QGMIZ%Z QIESUPP(CD(S(())) (Qo)
and

D(NE) = ( min nQ,) 0

0T, \Q SSup(D () (@)

It follows that

D+@(e?)(E)= Z ( min nQ+nQ/)Q.

0T, \Q <Supp(D(£f)(21)

We introduce the following automorphisms:

o K®?2 SN K®?
a®b — b®a
T K®3 N K®3

a®b®c — a®c®b.

We have:
Tos(l)zg(l)oa (4.10)
Tog) =g 4.11)
gl=0coep 4.12)

Let 0,0 € M£;2 be such that Q' € Supp(@(sg)(Ql). That is, we have
Q= Q1, and therefore, by Equation (4.12), 0() = Q. We apply Lemma[4.3.6|
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to Q¢ and Q' and we get R € Mlj;;s such that Ry = Q' and Ry = QY. By
Equation (4.11), R} = (R;) = Q' and by Equation (4.10), Rj = (Ro)” = Q.
We may then set Q" = R[. Consider the coefficient of R in @(aj‘m)(D) =0

1,0 _ o140

and get (ng + no’ = ng~ since R ¢ S£2). Now, gjog;=¢ 0¢

| © &y» SO We get

D (&1 0 £0)(Qo) = D(£0)(D(£0)(Qo))
= D(£0)(Q)
=R

Furthermore,

D (&) 0 £0)(Qf) = D (&) (D (£)(2F))
=D (s1)(Q")
=R

Since @(s} o 88)(Q0) = @(8{ o 88)(Q6’), we have Q¢ = O by Lemma|2.1.26
Conversely, if we fix Q,Q” € MIJ:@Z such that Qo = Q, then there exists
R € M7’ such that Ro=Q and R} = Q”. We set Q' = R, and, again, we get

K®3
that ng + ng: = ng~. As above, we use the fact that 8(1) ° 5(1) = 8; o 88 to prove
that 0y = Q.
This shows that for O € M%,,
min ng +ng = min no.
Q' €Supp(D(£])(Q1)) Q' eSupp(D(£]) (o))
Therefore, D + E?(E) = eg(E). Thatis, D = @(6gm)(E). O

We now get our main theorem for this section:

Theorem 4.3.9. Let b € Bim(k, K) be a coboundary. Let S be a finite set of
places of k such that:

* S contains the archimedean places of K.
* S is non-empty.
e S contains S,

e The non-archimedean places of S0 generate the class group C1(K).

Supp(D (b)) c SP.
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Then there exists a cochain o in the group of SV -units of K®* such that
b= 8j‘m(0')
Proof. Leta € Ci\m(k, K) be such that ﬁim(a) = b. We consider the divisor
D = D(a) = ZQeM_:@Z ngQ of @. We set Dg = Y pe50) ngQ and D =
2ogs ngQ. Now, 6510 (D) = D(b), and therefore is supported by S,
Observe that by Lemma [2.1.26] if Q € M4, \ S, then D(d},,)(Q) has
support disjoint from S It follows that 65) (Dg) =0.

The support of DY is disjoint from § El). We apply Lemma and get
a divisor E € D (K) such that D = 8% (E). Now, as S'©) generates the class
group of K, there exists £/ € @ (K) with support in (% and y € K* such that
E =D (y) + E’. Then, we get that

09 (D(y)) + 0% (E') =D =D - Dg

and therefore
05 (E') + D = D(ady,,(y ™).

This shows that Supp(D(ad®(y~1))) c SV, That is, aagm()f‘l) isa S
unit. Furthermore,

Opm (@8}, (y™)) =8}, (a) = b,
and aagm(y‘l) is a cochain with the required properties. O

From Theorem[§.3.9] we directly get an algorithm for computing a trivial-
isation of a 2-coboundary:

Theorem 4.3.10. Under GRH, Algorithm[2]is correct and runs in polynomial

time with access to an oracle for Problem[2.2.16|and for factoring integers.

Proof. Using a polynomial-time algorithm for factoring polynomials over num-

ber fields, one may compute splitting isomorphisms

K=K
a

and



Input: A number field &
Input: A separable polynomial P € k[X] defining an étale algebra
K = k[X]/(P)
Input: b € B (k,K)
1 Compute S, the set of places of k that ramify in K;
2 Compute S5, a set of places of k such that the elements of §(9)
generate the class group C1(K);
3 Compute S3, the set of places of k lying below the elements of
Supp(D(b));
4 SetS=S5;USUS;3;
s Compute the sets S and §©);
6 Compute an isomorphism ¢ from the group of $® -units of F®2 to

7" ®Z/mZ;

7 Compute an isomorphism v from the group of S -units of F®3 to
7" ®Z/m'Z;

8 Solve the linear equation (¥ o 8f1xm op~ () =y (b);

9 return «

Algorithm 2: Computing a trivialisation of a 2-coboundary

Then, S1 may be computed by computing and factoring the discriminants
of the number fields K ((YO) . This may be done in polynomial time using an oracle
for factoring integers. Under GRH, one may set S» = {p € M“ : N(p) <
max, 12log(|A KO |)2. The divisor @ (b) may be computed using an algorithm

for factoring ideals in the fields Kf). This may be done in polynomial time
using an oracle for factoring integers. Then, S-units are computed using an
oracle for Problem [2.2.16] and we get isomorphisms ¢ and . Finally, the last
step is simple linear algebra over Z.

The correctness of the algorithm relies on the fact that a cochain @ such
that b = 6}1,"(0/) exists and may be found in the group of §® -units, which is
the content of Theorem [4.3.91 m]

Corollary 4.3.11. Under GRH, Algorithm |2| is correct and is a polynomial
quantum algorithm.

Corollary 4.3.12. Under GRH, there is a polynomial quantum algorithm for
Problemd.3.1]

Proof. This result is a combination of Algorithm [2] with the explicit formulas
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for isomorphisms given in Propositiond.2.7]and Example {.2.3] m]

Theorem 4.3.13. Under GRH, there exists a polynomial quantum algorithm
which solves the explicit isomorphism problem (Problem for number
fields.

Proof. By Corollary f.3.5] Problem [3.4.T] reduces to Problem [#.3.1] in prob-
abilistic polynomial time and by Corollary #.3.12] there exists a polynomial
quantum algorithm for Problem [#.3.1] m]
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Chapter 5

Lattices pairs in global function
fields

5.1 Vector bundles and lattices

This section we presents results from [[60]. As a motivation and for some proofs,
use the language of schemes and locally free coherent sheaves, including results
on their cohomology. We direct the reader to [42] for an exposition of the
necessary material on the topic. For the remainder of the section, we let X
be an integral smooth projective curve over a finite field F (we note that most
results are valid over a more general field). Unless specified otherwise, k is the
field of rational functions of X.

We begin with a definition of four equivalent categories:

Definition 5.1.1. . A vector bundle over X is a coherent locally free Ox-
module. A map of vector bundles is simply a homomorphism of Ox-

modules.

2. Let kx be the constant sheaf equal to k over X, and let n € N. An Ox-
lattice of rank n is a subsheaf of k' that is a locally free Ox-module of
rank n. A map between Ox-lattices L and L’ of respective ranks n and
n' is an Ox-module homomorphism f: k% — k’;(, such that f(L) c L.

3. Let n € N. An Og-lattice of rank n is a free Og-submodule (Lp)pem,
of R}.. A map between Og-lattices L and L of ranks n and n’ is a map
f1 k™ — k" suchthat f(L) C L' when f is extended to R by pointwise
application.
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4. A lattice pair L of k is the data of an Oy;-lattice L y; and an Ox-lattice
Lo of equal ranks. A map between lattice pairs L of rank r and L’ of
rank v’ is a linear map f: k" — k" such that f(Lysi) C f(L}i) and
f(Ls) C LL..

Theorem 5.1.2. The four categories introduced in the definition above are

equivalent.

Proof. We describe fully faithful, essentially surjective functors between the
categories:

* 2] = [1} The forgetful functor from the category of Ox-lattices to that of
vector bundles is faithful. It is essentially surjective because any vector
bundle E is isomorphic to a lattice once one fixes a basis of its generic
stalk E,;: this yields an isomorphism E,, ~ k", and we get injective maps
['(U,E) — k" compatible with restriction maps. These maps yield an
injective homomorphism £ — k%. Since a map between vector bundles
induces a map between generic stalks, it is clear that this functor is full.

2 — The functor sending an Ox-lattice L' to [[peps Lp is fully
faithful from the definitions of homomorphisms and the fact that a global
homomorphism from k% to kg(" is the same thing as a linear map from
k™ to k™. By the local-global principle for Ox-lattices [91, Exercise
9.16], all but finitely many of the .Lp are equal to Op. Furthermore, all
products of ©p-lattices with this property are reached. Such a product of
lattices is the same thing as an Og-lattice by Lemmal[2.1.9]and (essential)
surjectivity follows.

* 3] = @ By the local-global principle for lattices on a Dedekind do-
main [91, Theorem 9.4.9], if L = (Lp) is an Og-lattice, the restriction
(Lp) pemt determines a unique ©y;-lattice which we denote by L;,
furthermore every ©y;-lattice can bet obtained this way. We likewise
define L, as the unique O -lattice defined by (Lp)pe M- It is straight-
forward to deduce that sending an g-lattice L to the pair (L f;, L) yields
an equivalence of categories.

O

Remark 5.1.3. By our definitions, the categories [2]3] and [] are small (their
objects form a set), and the equivalence of categories we described are not
merely surjective, but they induce a bijection between the sets of objects. As
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a result, we may unambiguously fix an object in one of these categories and
talk about the associated objects in the other two categories. If L is any type of
lattice, we write Ly for the corresponding Ox-lattice, Lg for the corresponding
Og-lattice and Ly p for the corresponding lattice pair.

Remark 5.1.4. If L is an Ox-lattice and U is an open subset of X, we observe
that I'(U, L) is the subset (\pey Lp of T'(U,kx) = k. Indeed, a section
s € I'(U, L) has its stalk in Lp for all P € U and is therefore sent there by
the restriction maps of the sheaf kx. However, these maps are the identity.
Converserly, an element s € (\pery Lp directly glue back into an element of
I'(u,L).

5.1.1 Ogx-lattices and Og-lattices

Proposition 5.1.5. There is a bijection between the set of isomorphism classes

of rank n vector bundles and the double quotient
GLy(k)\GLn(R)/GLp(OR).

Proof. This proposition is an easier version of [94, Proposition 22]. We prove
the result for isomorphism classes of rank n. For any g € GL, (R), there is an
Og-lattice R(n) := g(OF). This lattice is determined by g up to an automor-
phism of O%. So, the set of Og-lattices is in bijection with GL,,(R) /G L, (OR).
Furthermore, two lattices in this set are isomorphic if one is the image of the
other by an automorphism of k" applied pointwise. That is, the set of iso-
morphism classes of Og-lattices, and therefore of vector bundles over X, is in
bijection with the double quotient GL,,(k)\GL,,(R)/GL,,(OR). |

As we represent an Og-lattice L by a matrix g such that L = R(g), we
establish how properties of L may be described algebraically using g.

Definition 5.1.6. Ler ¢ € GL,(R), let L = R(g). We define det(L) =
R(det(g)) and deg(L) = — deg(det(g)).

In order to express the tensor product of Og-lattices as a lattice, we identify
the tensor product R” ®g R” with R""" via the tensor product of the canonical
bases. That is, if (ey,...,e,) is the canonical basis of R" and (e’l, cosen)
is that of R, we identify R" ® R™ with R™ via the basis (e1 ®el,e1 ®

eé,...,el®e:1,,eg®e’1,...,en®e;l,).

Proposition 5.1.7. Let g € GL,(R) and g’ € GL,/(R). Let L = R(g).
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1. The rank one lattice det(L) is independent of the choice of g such that
L = R(g). Furthermore, det(L)x = det(Ly).

2. The number deg(L) is independent of the choice of g such that L = R(g).
Furthermore, deg(Lx) = deg(L).

3. R(g) ®ox R(g') =R(g®g’).
4. R(g)®R(g)=R(g®g).

5. Let M € M,y (k). Then M describes a map from R(g) to R(g’)
if and only if g 'Mg € M, ,(Or). That is, Hom(R(g),R(g")) =
Mn’,n(k) N g,Mn’,n(@R)g_1~

Proof. The matrix g such that L = R(g) is defined up to a factor in GL, (Og).
Such a factor has a determinant in ©. Multyplying a répartition by an element
of O does not change the Og-lattice of rank 1 it generates. Thus, det(L) is
independent of the choice of g, and so is deg(L).

Then, each item is proved by observing that the result holds locally at each
P € M. We note that the degree of a rank 1 Og-lattice is the opposite of the
degree of its generator: if r € R is invertible and D = ) p.x vp(rp)P is the
associated divisor of r, the line bundle associated to R(r) is in fact L (—D),

and by the definition of the degree of a répartition, degr = deg D. |

Definition 5.1.8. If L is an Og-lattice of rank n, the set

LV:{aERn |Vb€L,Zaibi€(9R}

i=1

is called the dual lattice of L.

Proposition 5.1.9. Let L be an Og-lattice. The dual L" is an Og-lattice. This

duality is the same as that of vector bundles:
(LY)x = (Lx)".

Proof. If g € GL,(R) is such that L = R(g), then LY = R(*g~") and therefore
LY is an Og-lattice.

Let U C X be an open subset, and let a = (ay,...,a,) € T'(U,(LY)x) C
(U, k%) = k™. For any s = (s1,...,s,) € I'(U,Lx), define a(s) =
Yi_yaisi € T'(U,kx). Then, for all P € U, a(s) € Op since a € (LY)p
and s € Lp. Thus, a(s) € I'(U, Ox) seen as a subset of I'(U, kx), and a does
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define a homomorphism I'(U, L) — I'(U, Ox). It is clear from the definition
of this homomorphism that it is compatible with restriction maps.

This yields a homomorphism I'(U, (LY)x) — I'(U, (Lx)"). The fact that
it is an isomorphism may be checked locally. m|

Remark 5.1.10. We record from the proof of Proposition that if g €
GL,(R), R(g)" = R(*g"). For convenience, when g € GL,(R), we set
gv — tg_l.

Remark 5.1.11. Item [5| of Proposition suggests that if g € GL,(R) and
g’ € GL,(R), then Hom(R(g), R(g’)) is the set of global sections of the Ox-
lattice corresponding to the free Og-submodule g’ M, ,(Og) g ! of M, ,(R).
For any commutative ring B, the dual of the regular B-module B is identified
with B itself, via the isomorphism b +— (a + ab). Then, there is a natural
identification M, ,(B) = B" ® B"™. The basis ¢; ® e.e1®¢e),...,e00®
el,...,ey ® e, we use in general for B" ®p B" then identifies with the basis
of elementary matrices (E;1, E12,...,Er1, E21, ..., Eqnn). One checks easily
that upon identifying M, ,(R) with R"", g’ M, ,(Og)g~ " issentto LV ® L’.
For this reason, we set #om(R(g),R(g")) = g’ M, ,(Or)g~" which we also
identify with R(g)" ®o, R(g’).

5.1.2 Cohomology of Og-lattices

We may explicitly describe the cohomology of vector bundles in terms of
répartitions. We first introduce some notation and then quote a result of [|861,94],
which generalises [79, Proposition 11.5.3].

Definition 5.1.12. If L is an Og-lattice of rank n, we define the cohomology
groups
HY(L)=Lnk"

and
H'(L) = R"/(L +k").

As usual, this definition is compatible with the analogous definition on
X-lattices:

Proposition 5.1.13. Let L be an Og-lattice of rank n. Then H°(X,Lx) =
I'(X, Lx) injects in k™ and we get:

H°(L) = H*(X, Ly).
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Furthermore, there is an isomorphism
H'(L) ~ H'(X, Lx).
We first need a lemma:

Lemma 5.1.14. Let L be an Ox-lattice of rank n. Then for any open subset
UcX,T(U,k%/L) = @ pcy k" /Lp. Inparticular, the sheaf kx [ L is flasque.

Proof. Itis enough to prove the result on an open cover of X, so we may assume
without loss of generality that U = Spec(A) is an affine open subset of X over
which L is free. Then, L4 may be seen as an A-lattice isomorphic to A", and
we must prove that k" /L =~ @pespec(A) k"/Lp. Fix (ai,...,a,) a basis
of L4 and then k" /L4 = @;:1 ka;/Aa;. It is enough to prove the result for
L4 = A. However, if A is a Dedekind domain and £ is its fraction field, then
k/A =D, espec(a) k/Ap by the Chinese Remainder Theorem. i

Proof of Proposition We rephrase Serre’s argument and adapt it to our
broader context. By Lemma the middle and right terms of the exact
sequence

0—-Lx = ky—k'/Lx =0

are flasque sheaves, so H'(X, k%) = H'(X, k' /Lx) = 0 [42, Proposition
II1.2.5]. Therefore, the cohomology of Lx may be computed as the kernel and
cokernel of the map I'(X, k%) — I'(X, k% /Lx). Now, I'(k, k%) = k" and by
Lemma[5.1.14 I'(X, k% /Lx) ~ P pex kK" /Lp = R/L.

This gives isomorphisms H*(L) ~ H*(X, Lx). The fact that the isomor-
phism of H" groups is an equality under the identification of H(X, Lx) with
its image in k" is a consequence of Remark [5.1.4] O

We conclude this subsection by explicitly describing Serre duality in our
setting. This is a rephrased version of a theorem for adeles proved in [|86f]. It
would be possible to adapt Serre’s proof given in [79, Section 11.8] and prove
the theorem using only the theory of répartitions and differentials. However,
for efficiency purposes, we will assume that the statement of Serre duality for
coherent sheaves on projective curves is already known and content ourselves
with giving concrete formulas for computation.

Theorem 5.1.15 (Serre Duality). Let w be a differential of k. For any Og-

lattice L of rank n, there is a perfect pairing

0,: H((w) 'LY)xHY(L) — F
(a, b) — res (X, aibil(w)) .
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Proof. We first prove that 6 is a well-defined pairing. For a € H°(«(w)™'LY),

consider the map

0, (a,"): R' — F
b+ res (X, aibj(w)).

We prove that L + k" c Ker(6,(a,-)). Observe that

n
H((w)"'LY) = {f ek™|Vbe L,Zt(w)aibi € @R} .

i=1
Ifb € L,aby(w) € OF,s00,,(a,b) =res (X, a;bjt(w)) = Osinceres(x) =0
forany x € Og. If b € k", then 37" | a;b;i(w) = (¥, a;b;w) since the set of
differentials of k is a k-vector space. Therefore, 6/,(a, b) = 0 by the Residue
Theorem. It follows that 8’ (a,-) factors into a unique map 6, (a,-) from
H'(L) to k. The pairing 6, is well defined.

We prove that the map a — 6, (a, ) is injective. Let a € HO(«(w)~'LY)
Assume that a; p # 0 for some i € [r], P € X and set v = ordp(at(w)) + 1,
bj =0forj # i, bjpo =0for Q # P and b; p = 1/n},. Then 6,(b) =
resp(t(w)a;b;) # 0. Therefore, the map 8, is non-zero over R" and therefore
over H'(L) = R"/(L + k™).

Since H'(w™'L") and H!(L) are finite-dimensional F-vector spaces of
equal dimensions (for instance by Serre duality for coherent sheaves), it follows
that the map a — 6, is an isomorphism. That is, 8 is a perfect pairing. |

Remark 5.1.16. The pairing 6, behaves naturally with the change of differen-
tial. More precisely, if w’ = fw is a different differential of the field &, then
multiplication by f gives an isomorphism H(1(w’)"'LY) =~ H(«(w)L"). We
easily check that for any a € HO(«(w’)"'LY), 0. (a) = 0, (fa).

5.1.3 Extensions of Og-lattices

We briefly recall the general theory of extension of vector bundles. We then
give an explicit construction of an extension of ©Og-lattices. A reference for
extensions of vector bundles is [[56, Section 7.3].

Definition 5.1.17. Let F, G be vector bundles over X. Then an extension of F

by G is an exact sequence

0->G—>E—>F—>O0.
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A map of extensions is a map of exact sequences. We note that two
extensions of F' by G may not be isomorphic as extensions, even though the
vector bundles in the middle of the sequences are. It is well known that module
extensions are generally classified by the cohomology group Ext! (F, G). In the
case of vector bundles, this group is naturally isomorphic to H' (X, F¥ ® G),
with the isomorphism given as follows:

Proposition 5.1.18. Let F and G be vector bundles over X. Then, there is a
bijection 6 between the set of isomorphy classes of extensions of F by G and
H'(X,FY ® G). The map § is defined as follows: let & be an extension given
by the exact sequence

0—-G—-E—-F—QO.

Then, the following sequence is also exact.
0->F'®G—>F'®@E—->F' ®F — 0.

This sequence yields a map 8: Hom(F,F) = H*(FY ® F) —» H'(F' ® G).
Then, 6(¢) = d(1dF).

This result is usually proved using injective resolutions of sheaves, which
yields a construction of the map 6. However, this is impractical in a compu-
tational setting. Instead, we adapt the methods from [93, Section 2] and redo
the computation using the exact sequence from the proof of Proposition[5.1.13]

Theorem 5.1.19. Let g’ € GL,/(R) and g"" € GL,»(R). Let k € My v (R).
Then k represents an element of H' (#om(R(g"),R(g’))) and therefore an
extension of R(g"”’) by R(g’). The following exact sequence represents this

extension.
0— R(g") = R(g) 5 R(g") =0,
where
g= (g T e GLL(R)
0 g

and « and © are respectively given by the injection of k' into the n’ first
summands of k" and by the projection of k" onto its last n’’ summands.

Proof. Recall from the proof of Proposition [5.1.13| that for any Ox-lattice L,
we have the exact sequence

0—Lx - Ky > Ky/Lx — 0,
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which gives rise to the following long exact sequence:
H°(L) - K" - R"/L — H'(L). (5.1

Indeed, R" /L isnone other than (P p K" /L p, whichiis the group H(X, Kx /Lx)

by Lemma [5.1.14]

Let L = R(g), L’ = R(g’) and L”” = R(g""). Writing (5.1) vertically for
each term of the short exact sequence

0 — Hom(Ly,Ly) — Hom(Ly, Lx) — End(L"X) — 0,

we get the diagram
a

0 ——— % Hom(L”,L')) ———— Hom(L", L) End(L")
00— My (k) ——————— My (k) M, (k) 0

| | |

0 — M,y (R)/Hom(L", L") —— My n»(R)/Hom(L",L) —— M, (R)/End(L")

l l l

[ N H'(#om(L",L")) ———— H'(#Hom(L",L)) ——— H'(&nd(L")) —— 0.
At each line, the maps are between rings of matrices with coefficients either in
k orin R. Either way, the first map always sends a matrix M’ of size n’ X n”’

.M . .
to the matrix ( 0 ) of size n’ + n’” X n” and the second map sends a matrix

M
M=

M,
the coefficient ring, we denote this injection and projection by ¢ and n’. We

) of size n’ + n”’,n”’ to the matrix M, of size n” x n’’. Regardless of

wish to compute §(&£) = d(Id}). By the usual proof of the snake lemma,
o(1dy)) € H! ((L")}) is represented by a matrix ¢ € M, ,»(R) such that
there exist U € M ,»(k) and V € #om(L",L) = gMy, ,»(Or)g"” " such

M
that /(¢ +U) = +V. Now, if M = Ml € M, ,,»(Og) (with M| having
2

n’’

n’ lines and M, having n’’), we get
o g/ _Kg// Mlg//—l
gMg ! = 7 -1
0 g M>g
_ g/MlgN—l + _KguMng—l
g//Mzg//—l
Therefore, setting M, = —1I,,» and M| = 0, we construct

Vv

n’’

0
( K ) € #om(L", L), and observe that ¢’ (k) = (I ) + V. It follows
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directly that the class §(¢) = d(Idy~) in H' (#om(L"”, L)) is represented by
the matrix «. m|

5.1.4 Restriction and conorm of an Og-lattice

This section considers a finite separable function field extension K/k. We
also set d = [K : k]. As this separable extension corresponds to a separable
morphism of algebraic curves, we define the restriction and conorm of an Og-
lattice as the counterpart of respectively the direct and inverse image of a vector
bundle.

The first convention we adopt for the rest of this section is that we assume a
fixed k-basis of K denoted by c1, . . ., c4. Using this, we identify K with k¢ and
more generally (K)" with k"¢ as k-vector spaces. Thatis, if e, .. ., e, is abasis
of K™, the corresponding basis of k"¢ is (e ¢, e1ca, . .., €1Cq, €2C1, . . ., €nCa).
If O € Mk, we let QO be the place in My lying below Q.

Definition 5.1.20. Let L be an Og, -lattice of rank n and let L' be an O, -
lattice of rank n’.

e The restriction of L’ to k is the O, -lattice of rank dn’ defined locally at
P € My by
(Rest(L))p = (| Lp.
QeMk
olpP
* The conorm of L over K is the Og-lattice of rank n defined locally at
0 e Mg by
(CON(L))Q = (QQLQK‘

Proposition 5.1.21. Let f: X — X’ be a morphism of curves corresponding
to the function field extension K/k. Let L be an Og, -lattice and L' be an
Ogry -lattice. Then,

Rest(L')x = f.(LY,)

and
CoN(L)x = f*(Lx).

Proof. This result is directly checked on stalks. m|

It is well known that for quasi-coherent sheave, and therefore for vector
bundles, there exist natural isomorphisms H*(X’,Ly,) =~ H*(X, f.(L%,)).
This isomorphism becomes equality for H° in our setting.
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Regarding H!, we will identify the space de with its image in Ry by

the injective map ¢ defined as follows: First identify de with the restricted
n

product (ﬁpeMkK) , and then send a vector (vp)pen, t0 (vo,)oemy. We
then get the following identification.

Proposition 5.1.22. Let L’ be an Og-lattice. Then under the usual identifi-
cation (K)" = k™,
H(L") = H(Rest(L")).

Furthermore, the map ¢ described above factors into an isomorphism
@: H'(Rest(L")) ~ H'(L').
Proof. A direct computation proves the first result:

H(L) = () Ly
QeMk
=1 () Lo
PeM; QeMk
o|rP

= ﬂ Rest(L')p

PeM;

= ﬂ H°(X,Rest(L)x)
PeM;

= H(Rest(L")).

For the second result, we prove that ¢~ ' (L’ + k) = Rest(L’) + k™. First,
observe that ¢(R"?) is the space of répartition vectors v such that vo =vo if
Q and Q’ lie above the same place of k. It is also clear that ¢(k"¢) = K™,

Next, we observe that ¢(Rest(L’)) = L' N go(RZd). Indeed, letv € L' N
go(RZd), and fix P € My. Then, for all i € [n], the v; o are equal forall Q | P,
and we denote their common value by v; p. It follows that

(Vl,P, ce ,Vn,P) € ﬂQ|pL/Q = (RCSt(Ll))p.

Therefore, v € ¢(Rest(L’)) and L' N w(de) C Rest(L’). The converse
inclusion is clear enough.
As ¢(k"?) = (K)" and ¢(Rest(L’)) = L' N @(de), we have

Rest(L') + k"¢ = o™ (L" + K™).
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Indeed, let r € de such that ¢(r) = s+¢, with s € L” and r € K". Set
u € k"¢ such that ¢(u) = t and observe that ¢(r —u) € L' N go(RZd). So,
r —u € Rest(L’) and r € Rest(L’) + k"¢,

This shows that ¢ factors into an injective map from H'(Rest(L’)) to
H'(L’). Surjectivity follows from equality of dimensions, as it is known
that these two finite-dimensional F-vector spaces are isomorphic from general
results on quasi-coherent sheaves. O

5.1.5 Indecomposable Og-lattices

Since the Krull-Schmidt theorem applies to the category of vector bundles over
X [4], and as the direct sum of two Og-lattices is easily constructed, we are
primarily concerned with constructing vector bundles that do not split into a
direct sum of vector bundles. We recall here results from [3|] and interpret them
in terms of Og-lattices. Results stated without proof in this section are simple
restatements of results from the sources above.

Definition 5.1.23. An Og-lattice L is indecomposable if for any Og-lattices
L’ and L” such that L ~ L' @ L”, either L’ or L" is the zero module.
An Og-lattice L is absolutely indecomposable if its conorm over Fk is an

indecomposable Og_, -lattice.

Remark 5.1.24. Since the objects of the category of Og-lattices are free Og-
modules this notion may seem trivial. However, since we restrict the maps
to homomorphisms that are globally defined (that is, defined by a matrix with
coeflicients in k), our notion of direct sum is also restricted, and there may exist

indecomposable Og-lattices of rank larger that 1.

Proposition 5.1.25 (Krull-Schmidt-Atiyah). Any Og-lattice L admits a de-

composition into a direct sum of indecomposable Og-lattices

L= QS}L;".
i=1

Furthermore, such a decomposition is unique up to reindexing the summands.

Let L be an Og-lattice L. Then, End(L) is an F-algebra. We denote by
D (L) the Wedderburn-Malcev complement D (End(L)). We get the following
description of the structure of L:
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Proposition 5.1.26. Let L be an Og-lattice, and let
S
D(L) = P My, (D;)
i=1

be the splitting of D(L) into a direct sum of simple F-algebras. Then it is well

L=~ @ LY,
i=1

where L; is an indecomposable Og-lattice and D(L;) = D;. Furthermore, the

known that

action of D(L) on L is compatible with this isomorphism. In particular, L is

indecomposable if and only if D(L) is a division algebra.
Following [3]], and since the field F is perfect, we also have

Proposition 5.1.27. An Og lattice is absolutely indecomposable if and only if
D(L) ~F.

In order to represent indecomposable vector bundles in terms of absolutely
indecomposable vector bundles, the authors introduce the notion of trace of a
vector bundle:

Definition 5.1.28. Let F’ be a finite extension of F, let Xp» = X X Spec(F’)
and let p: Xp» — X be the projection map. Let E be a vector bundle over X,
then the trace of E is set to be Trg/ /g (E) = p.(E).

They then prove the following result:

Proposition 5.1.29. Let F' be an indecomposable vector bundle on X and
let F' be a maximal field contained in D(F). Then, there is an absolutely
indecomposable vector bundle E on Xg» such that F = Trp g (E).

In order to translate Proposition|5.1.29|in terms of ©Og-lattice, we only need
to give an interpretation of the trace defined above, which is a restriction:

Definition 5.1.30. Let F’'/F be a separable extension of F, and let F'k be the
corresponding constant field extension of k. Then if L' is an Og,,, -lattice, we
set

Trp p (L") = Rest(L’).

121



5.2 Explicit computations with lattice pairs

5.2.1 Algorithmic representation of lattice pairs

Definition 5.2.1. A matrix pair of rank n is a tuple g = (a, gfi, &), Where
PM = (a,gy;) is an invertible square pseudo-matrix of size n over Oy; and
ge € GL, (k). Given such a matrix pair g, we define the lattice pair LP(g) as
the pair of lattices (PM(O'.), 8 (OL,)), and say that g is a matrix pair for L
if L =LP(g).

Theorem 5.2.2. Let L = (Ly;, L) be a lattice pair over k. Then, there exists
a matrix pair g such that L = LP(g).

Proof. Since the ring Oy; is a Dedekind domain and the ring O, is a PID, the
lattice L z; admits a pseudo-basis and the lattice Lo, admits a basis. Represent-
ing the pseudo-basis of L f; as a pseudo-matrix (a, g ;) and the basis of L, as
amatrix g, we obtain a matrix pair g = (a, g i, §eo) such that L = LP(g). O

This section aims to translate the results from Section[3.Ilin terms of matrix
representations of lattice pairs. While there is no one-to-one translation from
répartition matrices to matrix pairs, a matrix pair may be represented as a
répartition matrix in the following manner:

Definition 5.2.3. Let g = (a, g7i, §o) be a matrix pair. We call x1, . .. ,x, the
columns of g r; For any P € M, we set:

8o if P € M™

§p = (ﬂordm]) L. o)

P X1 Xn) otherwise

and we let vép(g) = (gp)pex be the répartition matrix associated to g.

Remark 5.2.4. Itis clear that the Og-lattice R(rép(g)) corresponds to the lattice
pair LP(g). Therefore, in order to give an algorithm to realise any construction
discussed in Section [5.1] it is enough to give an algorithmic construction of a
matrix pair g such that rép(g) corresponds to the same construction in terms of
répartition matrices. In particular, any construction directly compatible with
localisations is compatible with this correspondence.

We get a first batch of straightforward constructions:

Definition 5.2.5. Let g = (a,8i,8~) and g’ = (a’,g}i, gr,) be matrix pairs
of respective ranks n and n’.
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1. We define det(g) = (IT%, i, det(gs:), det(gw)).-

2. If 1 is a fractional ideal of Oy;, we set deg(l) = Zpexﬁ ordp(I). If
a € kX, we set degg;(a) = deg(aOy;) and deg,(a) = —degs;(a) =

2pex., vVr(a).

3. Ifn=1, we set deg(g) = deg(a) +deg;(gri +degy(80). Ifr > 1, we
set deg(g) = deg(det(g)). Then, we define deg(LLP(g)) = —deg(g).

4. We define

¢®g = ((ala], aray...,a1a,, 020}, ..., a,0,), 87 ® &7, goo ®g;,) )

5. Wedefineg @ g’ = ((al,...,an,a’l, ces @), 81 EBg}l.,go0 €Bgf,o).

6. We define g¥ = ((al_l, o anh, (g}i)_l, (gfx,)_l).
Theorem 5.2.6. Let g and g’ be matrix pairs. We have

1. rép(det(g)) = det(rép(g)).

2. deg(g) = deg(rép(g)).

3. rép(g ® g’) =rép(g) ® rép(g").

4. 1ép(g @ g’) =rép(g) @ rép(g’).

5. 1ép(g”) =rép(g)”.

Proof. All of these constructions may be checked locally. One must check
that the operation done on the tuple of ideals matches the movements of the
columns of g ;. |

Remark 5.2.7. It is more tedious to translate our statement on homomorphisms
of lattices directly. Instead, we may simply define #om(L,L’) = LY ® L’
and recall the isomorphism M, ,,(k) ~ k™ given by the basis of elementary
matrices. Then, an algorithm for computing the lattice pair of homomorphisms
follows from Theorem

Example 5.2.8. We let F = F; and consider the genus 1 function field £ =
F(x,v)/(y?>=x>-x). Weletn = % be a local uniformiser at infinity. Observe
that p = (x, y) is a prime ideal of Of;. We consider the lattice pair

2
=X o) (1 -x!
— . pl x2+4

123



We compute
1 X’
det(L) =LP(p ", —, 1],
et(L) (p x2+4 )
and therefore
deg(L) = —deg(p™') = 1.

5.2.2 Restriction and conorm of a lattice pair

We adopt the same notations and setting as in Section We also write (9}1.
and O, for the respective integral closures of Of; and O, in K.

Definition 5.2.9. Let L' = (L', L¢,) be a lattice pair of rank n over K. We
define Rest(L’) as the pair (Rest(L}l.), Rest(L.,)), where Rest(L’,) is the lattice
L’ seen as an O,-lattice under the identification K™ = k" (where  is either
fioro).

Let L = (Lyi, Lo) be a lattice pair of rank r over k. We define CoN(L)
as the pair (CoN(Lz;), CoN(Lw)), where CoN(L,) = O/L, C K" is an O;-
lattice.

One checks readily that these definitions are compatible with the equivalent
definitions on Og-lattices.
Matrix pairs for Rest(L) and CoN(L) may easily be computed.

Definition 5.2.10. Let g = (a, gfi, 8) be a matrix pair of rank n defined over
k. We set

CoN(g) = ((al@},-, e an@},-),gfi,goo) .

The definition of the restriction of a matrix-pair is more tedious to write
down. First, we define the restriction of a pseudo-matrix. The definition is
given over any Dedekind domain with fraction field K, as it applies to both O ;
and O, with the specificity that we only consider pseudo matrices with trivial
coefficient ideals over O, since it is a PID.

Definition 5.2.11. Let ©. be a Dedekind domain with fraction field K, and set

O, = O, Nk. Let PM = (a,g) be a pseudo-matrix of rank n over ©,. The

ideals a; each admit a pseudo-basis (b;1,...,0;q), (a;1,...,aiq) over O,.
Then, we define the pseudo-matrix Rest(PM) of rank nd over ©, with
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coefficient ideals (011,012, ...,014,021,...,b,4) and matrix

argi angil ... Aipgil 421812 ... And8in
arg2r aizg21 ... Aipg21 421822 ... Qnd&2n

b
airit8nl a128nl  --- Ain8nl a218n2 --- And8nn

where each a;jgem is understood as a column vector in k4 representing an
element of K in the usual fixed basis.
Now, if g’ = (a’, g}i, gl.) is a matrix pair over K, we may define

Rest(g") = (a, gfi, 8o),

where (a,gr;) = Rest((a',g'ﬁ)), and likewise g., = Rest(gl,), where it is
understood that all coefficient ideals of g’ are equal to A.,, which admits a

basis over Q.

Theorem 5.2.12. Let g be a matrix pair over k. Then,
CoN(LP(g)) = LP(CoN(g)).
Let g’ be a matrix pair over K. Then,
Rest(LP(g’)) = LP(Rest(g")).

Proof. The first claim is straightforward. For the second one, the definition of
the matrix pair Rest(g’) is simply an explicit writing of pseudo-bases of lattices
L’; and L{, in K" identified with k. o

This last theorem allows us to construct traces of vector bundles as defined

in Section but also to express the restriction to F(x) of a lattice pair,
which will be a vital tool in the computation of global sections.
Example 5.2.13. We compute the restriction Rest(L) over F(x) of the lattice
pair L from Example A basis of Oy; over F[x] is (1,y), a F[x]-basis
of p~lis (1, )y—c) and a basis of O, over the valuation ring at infinity of F'(x) is
(1,7) = (1, %). It follows that Rest(L) = (a, g fi, &), With

2a 0 00
|0 2z 00
%10 o 1 of

1

o o ol



and

1 0 0 -1
1 —

goo:O x2 fol 0

00 1 0

0 0 0 ﬁ

5.2.3 Computing cohomology groups and extensions

If L is a lattice pair, we define H' (L) as H'(Lg) fori € {0, 1}. Given a matrix
pair g, we aim to compute F-bases for the spaces H(LP(g)) and H'(LP(g)).

Computing global sections of a lattice pair

The computation of H°(L) relies on the following simple observation:
Lemma 5.2.14. Let L = (Ly;, L) be a lattice pair. Then H(L) = LN Le.
Proof. This lemma is clear using Remark [5.1.4] m]

We first assume that &k = F(x). In this case, note that Op; = F[x] is a
PID and every projective O ;-module is free. Therefore, we omit the tuple of
ideals a in every matrix pair and assume that all ideals involved are equal to
Op;. Then, the computation of the intersection Ly; N Lo reduces to matrix
reduction as discussed in Section[2.2.2] The method discussed here is adapted
from [46, Lemma 25] and [45]].

Let (gfi,8~) be a matrix pair of k of rank n. Then, the matrix pair
g’ = (gx'gsi 1) represents an isomorphic lattice pair, and HO(LP(g)) =
g (H°(LP(g’))). Upon applying the global isomorphism gz!, we may assume
without loss of generality that g, is the identity matrix.

Then, a vector v € k" lies in Lo if and only it |[v| < 0 (see Definition[2.2.1).
Assume that ey, ..., e, is a reduced basis of Ly;, in the sense that the matrix

(61 ... er) is reduced. Then, by Proposition[2.2.3) 3", a;e; € L if and

only if deg(a;) < —|e;| forall 1 <i < r. Since }}'_, a;e; € Ly; if and only if
a; € F[x] forall 1 <i < r,abasis of H*(LP(g)) is

(Xjei) I<i<r
0<j<—|e;|

We write this algorithm as Algorithm 3] for the reader’s convenience.

Theorem 5.2.15. If k = F(x), Algorithm |3| outputs a F-basis of H*(LP(g)).
If F is a finite field, then Algorithm[3|runs in polynomial time.
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Input: a matrix pair g = (g i, gw) over F(X)
Output: A F-basis of H'(LP(g))
1.Set M = (g0) ™' g1is
2 Compute d € F|[x] such that dM € M, (F[x]);
3 Compute a reduced basis B = (by, ..., b,) of the F[x]-lattice
generated by the columns of dM;

4 return {%gm(bi) 1<i<nand0 < j < deg(d) - |b,~|};

Algorithm 3: Computing the global sections of a lattice pair over P}V.

Proof. The correctness of Algorithm [3] has already been discussed above.
Since there exist efficient algorithms for computing a reduced basis (see Sec-
tion 2.2.2), and since the size of the output is at most n(deg(d) + 1), the
algorithm runs in polynomial time. m|

Corollary 5.2.16. For a general separable extension k/F (x) of degree d and
a matrix pair g, a basis of H*(LP(g)) may be computed in polynomial time.

Proof. First, compute H°(Rest(LP(g))) using Algorithm [3| Then, applying
Proposition a basis of H%(Rest(LP(g))) is a basis of H°(LP(g)) upon
the identification k" = F(x)"¢. A representation of the vectors of the basis in
k™ may be computed using the basis 1, y, ..., y?!. m|

Remark 5.2.17. In Algorithm [3] we may compute the Popov normalised form
of the matrix M instead of a mere reduced equivalent matrix if we want the
algorithm to output a more predictable basis of H*(LP(g)).

Example 5.2.18. We gather again notations from Examples [5.2.8| and [5.2.13]
Compute

2

£ 0 00

0 22— 00

M:=glgs= X244 .

8 8fi 0 x L 0
x—1

X 0 0 «x

We compute the Popov form of its numerator and obtain the reduced form

x2 4x
w0 0
X X
w=| 0 77 Faes O
o 1 —x 0
0 0 0 x
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It follows that a basis of H’(Rest(L)) is

x2 .x2
prrerl M v
0| |o
g1 0 17| o
0 0

Therefore, a basis of H(L) is

X2
x2+4 |
0

We also observe that given an element f € HY(L) for some lattice pair L,
we may compute the coordinates of f in terms of a given basis of H(L) (for
instance the one computed by the algorithm of Corollary [5.2.16).

Lemma 5.2.19. Let L be a lattice pair of rank n and let f € H°(L) c k™.
Letmy, ..., mg be a F-basis of H*(L). We may compute in polynomial time a
vector a € F* such that f = Y,;_s a;m;.

Proof. Fix a place P of k and a local uniformiser mp at P. For any element
@ € kand i € Z, we write !) for the coefficient of degree i of @ written as a
formal series in the variable mp. Foreach 1 <i < n,1 < j < s, let m;; be the
ith component of m;. We write v; = minj<;<;ordp(m;;) (if all the m;; are
zero, simply set v; = 0). Then, for any £ € N we define the map

ppe: k' — Fne
A (fi(viﬂ)) I<i<r -
0<j<t-1

Now, consider the matrix Np ¢ of size n{ X s whose columns are the ¢p ¢(m).
The matrix Np ¢ has rank s if and only if the restriction of ¢p , to H(L)
is injective and in this case, the coordinates of an element f € H°(L) with
respect to basis my,...,mg may be computed as a vector a € F* such that
Np.a=op(f).

All that is left is to prove that the restriction of ¢p, to H'(L) is in-
jective for some ¢ bounded by a polynomial in the size of the input. Let
f = 3}jajm; € H'(L). Then, for i € [r], if f; # 0 then ht(f;) <

j‘:l ht(m;;), and thus ordp(f;) < j‘:l ht(m;;). It follows that if £ >
maxXi<j<n Vi + Zj’:l ht(m;;), the map ¢p ¢ is injective over H(L). Since v;
is itself bounded by maxi << ht(m;;), £ may indeed be chosen of polynomial
size in the input. i
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Computing the group H'

By Serre duality, computing the group H' (L) for a lattice pair L can be done by
computing the F-vector space H’(1(w) ' L") for some differential w. However,
for applications such as computing extensions of vector bundles, it is desirable
to be able to find an element of R” representing a given element of H'(L).

Our strategy will be to adapt the linearisation technique introduced in
Lemma [5.2.19 to turn the inversion of the Serre duality map into a linear
equation.

Fix Qo € M*, and a local uniformiser 7o, such that ordg(7o,) = 0 for
0 € M* \ {Qo} (it may be computed by solving an instance of the Chinese
Remainder Problem). Let kg be the residue field of Q¢ and let w = d(ng,).
For any integer £, we write [£]( for the smallest power of || larger or equal to
¢. Thatis, [€]o = |K0|f10g(t’)/10g(\l<o|)1‘

We present Algorithm@which, given a basis of HV(¢(w)~'LV) of size s and
a linear form represented in this basis by a row vector ¢ € F*, outputs a vector
v € k" such that the infinite répartition vector v, satisfies 6,,(+, Vo) = ¢.

Input: A matrix pair g = (a, g7, goo) OVer X
Input: A matrix M = (m; ;) € M, (k) whose columns are a F-basis
of HO(«(w)™'LY)
Input: A row vector ¢ € M| (F) representing a linear form on
H°(«(w)~'L") written in the basis given by M
Qutput: a € k" such that the linear form represented by f is
00 (-, ac)
1 Fori € [r] and Q € X.., set viQ =min e[y (ordp(m; ;));
2 Compute the matrix Ng, ¢ (see Lemma b for increasing values
of ¢ until it has rank s;

3 Letx = (xl - xn,g) € M ne (ko) such that Tr, /r(XNg,,¢) = ¢;
s Let¥= (T ... )€ Miu(Og,) bealiftof x in My (Og,)

such that ordp (x;) > 1 foralli € [rf] and Q € M* \ {Qo};
5 Let € k such that [£]gp ordp () > max;e[, —vl.Q for all
0 € X \ {Qo} and ordg, (7 — 1) > 1;

¢ (070, 0= -1 =il
6 return (7/‘lorr 20 T onX (i~ 1yee el

<i<r

Algorithm 4: Representing elements of H!(L)
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Theorem 5.2.20. Algorithm H| is correct and terminates after a polynomial

amount of arithmetic operations in F.

Proof. First, observe that Algorithm [4] terminates in polynomial time: each
line of the algorithm corresponds either to linear algebra over F or to a task
discussed in Section

We prove that the output of the algorithm is correct. Set ¢ = (¢y,...,c¢n)
as the coordinates of the output and (901 . gos) = ¢. If M; is the vector
given as the j-th column of M, we claim that 6,,(M;, cx) = ¢;.

Now, 0, (Mj,ce) = XL Xoex., T€8x, (M, jciw). And the result will
follow from the identity xNg, ¢ = ¢ if we prove that for i € [r] and j
ins, setting

- [l Vi ! —a=€1o o
Hij = (” T (Z "Qox(i—1)£+a+1) mw“’) ’

a=0

we have
-1

Qo
-1 (=v; " +a)
ng = E X(i-1)t+a+1M; ;

a=0
and ordp (u;;) > 0 for Q € M* \ {Qo} where, for any a € k and integer n,
a™ is the coefficient of degree n in the expansion of a as a formal series in
variable mp,. We fixi € [r] and j € [s].
Let Q € M* \ {Qo}. By construction, ordg (xl€lo) > max(—vl.Q) and it
follows readily that ordgp (1;;) > 0 since ordp(7g,) = 0 and X,,, € O for all
m € [rn].

Now, we have the following:
[l — ¢

mt0=1+0(ng,)
and

56{“0 =x; + 0(7rgo).
Then, we get

-1 o
(_ i 0+ ) —
Hij = (Z'x(i—l)€+a/+lmi,jv “ )ﬂQé‘FO(l)

a=0

O

Corollary 5.2.21. There exists a polynomial algorithm which, given matrix

pairs g’ and g", as well as a row vector ¢ representing a F-linear form over

H° (L(a))_1 <7€0m(g’,g")) ,
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returns the corresponding extension of LP(g"’) by LP(g’).

Proof. Letn’,n” be the respective ranks of g” and g”. Using Algorithm[4] one
may compute k € k""" such that the infinite répartition matrix  represents the
element of H' (#om(R(g"), R(g"))) = Ext' (R(g”), R(g")) corresponding to
®.

Then, adapting Theorem [5.1.19] the corresponding extension is given by
the matrix pair (a, g fi, go0o) With

b:(allv--~9a;l’a’l,""’a;’l,')’
o= g (0)
[ 78
0) 8¢i

and
g = 8o TKE
0) g%

Example 5.2.22. Let L be again as in Examples[5.2.8] [5.2.13]and [5.2.18] Since
deg(L) = 1, we get H' (L) = 0. Instead, we compute H'(L). We let w = dn.

Since the field £ has genus 1, the differential w has a principal divisor. It is the
x243
EZ

O

, and we may represent ¢(w)~! by the following matrix pair of

2
O, ——,1].
( AT )

Now, H'(LY) = H°(«(w)~'L). Applying Algorithm [3| we compute a basis

for the F-vector space H(t(w)~'L). We find that it has dimension 1 and is

generated by
x4
yi= x5 ]
0

Since k has only one place at infinity and [H°(«(w)~'L)) : F] = 1, applying
Algorithmis straightorward: as =1+ o (%),

.
x4+5

b fi)

Then, the element of H' (L") dual to v is represented by the infinite répartition

71;,1
vector .
0

divisor of
size 1:
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5.2.4 Computing isomorphisms between lattice pairs

We want to decide whether two lattice pairs are isomorphic and, if they are, find
anisomorphism. We first give a probabilistic algorithm of the Monte-Carlo type
for this task when the field F is large enough and a deterministic algorithm for a
weakening of the problem (the lattice pairs are assumed indecomposable) when
F is any finite field. Then, a general solution will be given in Section[5.2.5]

Theorem 5.2.23. Let L, L’ be lattice pairs such that
[End(L) : F] = [Hom(L,L') : F] = [Hom(L’,L) : F].

Let s be the dimension of these spaces and we assume that |F| > s. There is a
polynomial Monte-Carlo algorithm which outputs an isomorphism ¢: L — L’
if it exists, with probability at least 1 — s/|S|, where S is a subset of F in which
we can sample random elements.

Proof. First, observe that we may compute End(L), End(L’) and Hom(L, L")
by applying Corollary[5.2.16]to the lattice pairs LY ® L, LY ® L’ and (L')¥ ® L.
Their elements are represented as matrices in M, (k) (n the rank of L and L’),
and the matrix product gives a bilinear map from Hom(L, L’) x Hom(L’, L) to
End(L). This, together with a fixed choice of bases of Hom(L’, L) and End(L)
gives a map a: Hom(L,L") — Mg (F). Observe that f € Hom(L, L’) is an
isomorphism if and only if @ ( f) is an invertible matrix. That is, if and only if
det(a(f)) =0.

Now, setting f = }.7_, a;m;, where (m;) is a basis of Hom(L, L"), we
see that det(a(f)) is a homogeneous polynomial of degree s in the a;. By
the Schwartz-Zippel lemma, if S C F is a subset of size at least s + 1, the
probability that a uniform random element of @;:1 Sm is an isomorphism is
at least 1 — s5/|S|. Therefore, sampling a random element of Hom(L, L’) is a
valid algorithm. m|

When F is a finite field, the approach of Theorem [5.2.23] does not work if
s is too large, as the Schwartz-Zippel lemma fails. For now, we only give an
algorithm for the case that L is an indecomposable lattice pair. This algorithm
will be used as a subroutine in Algorithm[6] which will then be used to compute
isomorphisms in the general case (see Corollary [5.2.30).

Lemma 5.2.24. Assume that F is a finite field. Then Algorithm [5|is correct

and runs in polynomial time.
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Input: Matrix pairs g and g’ of rank » such that LP(g) is
indecomposable
Qutput: A matrix T € M, (k) giving an isomorphism from LP(g) to
LP(g’) if LP(g) = LP(g’), and L otherwise
1 Compute structure constants for the F-algebra A = End(LP(g & g’));
2 Compute sub-algebras S and R such that A = S @ R, S is semi-simple,
and R is the Jacobson radical of A;

3 if S is not simple then
4 return L
5 end
6 Compute s € N, a finite extension F’/F, and an isomorphism
@: S =M (F');
7 if 5 # 2 then
8 return L;
9 end
, 1 1 0
10 Compute P € GLyg(F’) such that Po(Idp(4)) P~ = 0 0 and
00
Po(Idipe)P! = ;
e(ldipg)) 0 1
1lp1(0 O
11 return ¢~ | P P
1 0

Algorithm 5: Computing isomorphisms between quasi-

indecomposable lattice pairs over finite fields
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Proof. We first discuss the algorithm line by line, proving that the task may be
executed in polynomial time.

Line[I: A basis of End(LP(g @ g’)) may be computed using Corollary[5.2.16
Then, the structure constants may be computed using Lemma/[5.2.19]

Line 2k The Jacobson radical of A may be computed using Item [I]of Proposi-
tion[3.1.7)and a basis of S may be computed using Item [2]

Line[3t Checking that S is simple can be done by checking if the centre of S
is a field. See Item [6] of Proposition[3.1.5]

Line[6: This may be done using Item [ of Proposition Note that since
a finite field has a trivial Brauer group, a simple F-algebra is always of
the form M, (F"), where F’ is a finite extension of F, and F” is then the

centre of this algebra.

Line Observe that the matrices ¢ (/dyp(g)) and ¢(Idyp(g)) are two orthog-
onal idempotents of rank 1 which sum to /,. They can be simultaneously
diagonalised as demanded by computing generators of their respective

images.

We now prove that the algorithm is correct. First, since LP(g) is inde-
composable, by Proposition[5.1.26|we have D(LP(g) ® LP(g’)) ~ M,(F’) for
some finite extension F’/F if and only if LP(g’) ~ LP(g). Hence, our two
tests do detect correctly whether LP(g) =~ LP(g’).

Assume that LP(g) ~ LP(g’). Then, after conjugating by matrix P as in
Line[I0] ¢ gives an isomorphism from S to the straightforward representation of
D(LP(g)®LP(g’)). Then, the matrix we return corresponds to an isomorphism
from LP(g) to LP(g’). O

5.2.5 Algorithms for homomorphisms of lattice pairs

This section presents algorithms related to homomorphisms of lattice pairs.
All the algorithms we present rely on the computation of a pseudo-Hermite
normal form of matrices with coefficients in Of; and O. They are, therefore,
only polynomial-time if Conjecture [2.2.12]is assumed.

We first give algorithms to compute kernels and images of homomorphisms
of lattice pairs. Since a lattice pair is normally composed of Of; and O-
submodules of k" of full rank, we are not able to give a set-theoretical definition
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of subobjects, such as kernels and images. Instead, we turn to a more categorical
approach:

Definition 5.2.25. Let L, L’ be lattice pairs of respective ranks n and n’, and
consider a homomorphism f: k" — k" from L to L’ (that is, f(L fi) C L}.l.
and f(Le) C L.,).

1. Animage of f is a pair (1, 1), where I is a lattice pair of rank n; = rank( f)
and t: k™ — k™ is an injective linear map such that t(If;) = f(Lyi)
and (1) = f(Le).

2. A kernel of f is a pair (k,t) such that « is a lattice pair of rank n, =
n—rank(f) and¢: k"< — n" is an injective linear map such that 1(k r;) =
Ker f N Ly; and 1(ks) = Ker f N L.

We observe that our definitions match the definitions of kernels and images
in the Abelian category of lattice pairs and that kernels and images are unique up
to isomorphism. To compute such images and kernels, we adopt a similar strat-
egy: compute the set-theoretical kernel and image and then use Theorem([5.2.26]
below to compute a kernel and image as defined in Definition [5.2.25]

Theorem 5.2.26. Let L be a lattice pair of rank n, let S¢; be a submodule
of Ly; of rank m < n and let So, be a submodule of L« also of rank m. We
further assume that kSy; = kSe. Then we may compute in polynomial time a
lattice pair L' of rank m and a map f: L' — L such that f(L}l.) = Sy and
(L) = Seo

Proof. Assume that the modules S¢; and S, are respectively given as the
images of a pseudo-matrix (a, Cy;) of size n X m and of a matrix C,, of the
same size. Then, a matrix pair (b, g #;, geo) Of size m and a matrix C € M,, ,,, (k)
will be a solution to the problem if

b=aq,
Cyi = Cgyi,
and
Coo = Cgo.

We set g = I, so the problem becomes

Cri = Cogri-
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However, since the matrices Cy; and C both have rank m and have equal
images (as k-linear maps), there exists a matrix gs; € GL,,(k) such that
Cri = Cogyri and it may be computed in polynomial time by solving a system
of linear equations. m|

Corollary 5.2.27. Given an oracle for Problem|2.2.11| there is an algorithm
which computes the image of a homomorphism of lattice pairs in polynomial

time.

Proof. Let L,L’ be lattice pairs of respective ranks n and n’ and let g =
(a, gfi»g&) be a matrix pair representing L. Let f: L — L’ be a homomor-
phism represented by a matrix C € M, ,,(k). Now, f(Ly;) is the image of the
pseudo-matrix (a, Cgys;) and f(Le) is Cgw©L. By Proposition[2.2.10/(2), a
pseudo-matrix of full rank spanning f (L s;) and a matrix of full rank spanning
f (L) may be computed in polynomial time from the Hermite normal forms of
pseudo-matrix (a, Cgy;) over Of; and matrix Cg over O. Then, an image
of f may be computed using Theorem [5.2.26] O

Corollary 5.2.28. Given an oracle for Problem|2.2.11| there is an algorithm
which computes the kernel of a homomorphism of lattice pairs in polynomial

time.
Proof. The proof is similar to that of Corollary O
Finally, we may compute a splitting of a lattice pair.

Theorem 5.2.29. Given an oracle for Problem [2.2.11] Algorithm [6] gives a
correct output in polynomial time.

Proof. First, we prove that every step of the algorithm makes sense and may
be done in polynomial time.

Lines[Itodland[6: This was already discussed in the proof of Lemma
Line[8t can be done using Corollary
Line[®: may be done using Algorithm 3]

Finally, the number ¢ of loop iterations is bounded by r, the rank of g.
Now, we prove that the output of Algorithm [6]is correct. First, we prove
that L := LP(g) is indeed isomorphic to €5 LP(g;1)". By Proposition |5.1.26]

End(L) = P M., (D(End(L;))) @ J (End(L)),
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10
11

12

Input: A matrix pair g of rank n
Qutput: Matrix pairs g1, . . ., gs, integers ny, . . ., ng and a matrix
C € M, (k) such that the LP(g;) are indecomposable lattice
pairs and C gives an isomorphism €P;_, LP(g;)!" =~ LP(g)
Compute structure constants for the F-algebra A = End(LP(g));
Compute a Wedderburn-Malcev complement D (A);

Compute simple algebras (S;);c[,] such that D(A) =~ Si;

i€[t]

Compute the projection maps p;: D(A) — S;;

fori € [t] do

Compute n; € N, a finite extension F; of F and an isomorphism
¢i: Si = M, (F);

Sete;; = (p; 0 pi)~ ! (Diag(0,...,1,0,...,0)), with the nonzero
coefficient in j-th position, for j € [n;];

Compute images (g;;, A;;) of the endomorphisms e;; of LP(g);

Compute isomorphisms B;;: LP(g;1) — LP(g;;);

end

Compute the matrix C defined as the horizontal joint of the matrices
A;jB;jasi € [t] and j € [n;] are enumerated in lexicographic order;

return ((g1,...,8s), (n1,...,n5),C)

Algorithm 6: Splitting a lattice pair
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the S; are the M,,,(D(End(L;))) ~ My, (F;) (up to reordering) and up to an
automorphism of L, the elements ¢;; are the projections on a factor L; of L.
An image of e;; is a vector bundle L;; isomorphic with L;. Tt follows that
L~ LP(gio)".

Then, it is easy to see that by construction, 7 gives an isomorphism as
desired. O

Corollary 5.2.30. If F is finite and given an oracle for Problem|2.2.11| there
is an algorithm for deciding whether lattice pairs are isomorphic and, if so,

computing an isomorphism.

Proof. We may compute splittings for L and L’ using Algorithm[6] Then, it is
only a matter of checking that their indecomposable components are isomorphic
(up to reordering) and appear with equal power. This condition may be checked
by repeated use of Algorithm 5 O

5.3 Applications

5.3.1 Maximal orders and the explicit isomorphism problem

As discussed in Section [I.2] the methods of [46] admit a geometric interpre-
tation. For F a finite field, let kK = F(X) and let X = P},. Maximal orders
in a K-algebra A isomorphic to M;(K) for some d € N represent sheaves of
endomorphisms of a vector bundle over X. Since every vector bundle over X
splits into a direct sum of line bundles, one may easily find an endomorphism
of rank one. Here, we discuss this interpretation in detail and provide some
explicit examples.

In general, let k be a global function field and let B be a K-algebra of
dimension n € N. We fix a basis (eq,...,e,) of B, so that B is identified
with K" as a vector space. We let mp: K" X K" — K" be the bilinear map
corresponding to the multiplication on B via its identification with K". This
bilinear map extends naturally to R" by computing products pointwise.

We now give several equivalent definitions of orders, which rely on the
equivalent categories from Definition[5.1.1]

Definition 5.3.1. * An Ox-order of B is a coherent Ox-algebra O such

that its generic stalk O, is isomorphic to B as a K-algebra.

* An Og-order of B is an Og-lattice of rank n which is stable by application

of mp.
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* An order pair of B is a lattice pair O of rank n, where both O y; and O
are stable by mp.
In all cases, an order is said to be maximal if it is not contained in a strictly

larger order.

Proposition 5.3.2. Let B = M;(K) for some d € N, and let O be a maximal
order pair in B. Then there exists a lattice pair L of rank d such that O =
End(L).

Proof. By [33, Theorem 11.3.17], as Oy; and O are both noetherian and
integrally closed integral domains, there exist an O;-lattice Ly; and an Og,-
lattice Loo, both of rank d, such that O ¢; = Endo,, (L f;) and O = Endo,, (L)-
The lattice pair L = (L ;, L) is as required. O

Now, the pivotal argument in [[46] is the point (ii) of its Theorem 21, which
states that if k is a rational function field and O is as in Proposition[5.3.2] then
O fi N O contains a rank one idempotent of B. As we shall argue, this is a
direct consequence of the following result, often attributed to Grothendieck in
the case that the base field is the field of complex numbers, and proved in [43]]
for a general base field.

Lemma 5.3.3. Let F be a field, and let X = P},. Let E be a vector bundle over

X of rank n € N. Then there is an isomorphism

,
r= Dy
i=1
where the L; are pairwise non-isomorphic line bundles over X, and the n; are
positive integers such thatny + ...+ n, = n.

we may then prove the following restatement of [46, Theorem 21]

Proposition 5.3.4. Assume that k = F(X). If O and B are as in Proposi-
tion then H°(O) is a F-algebra which contains some e € B (under the
identificaton of B and K @ discussed above ) which is idempotent of rank one.

Proof. By Proposition[5.3.2] there exists a lattice pair L of rank d such that O =
&nd(L), and in particular, H(O) = End(L) is a k-algebra. By a combination
of Lemma/[5.3.3]and Theorem [5.1.2] we have

L~ é} L:’i,
i=1
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where the L; are pairwise non-isomorphic lattice pairs of rank 1, and the n; are
positive integers which sum up to d. By Proposition it follows that we
have the following splitting of k-algebras

H"(0) = End(L) = J & (P M, (k).

where J is the Jacobson radical of H%(0). Then, e = Diag(1,0,...,0) €
M, (k) ¢ H°(L) is the projection of L onto a sublattice pair of rank 1, and
therefore corresponds to an idempotent of rank 1 in B. O

Remark 5.3.5. In this subsection, we recover the result from [46]] on F[X]
lattices by applying a structural theorem on vector bundles over P},. A converse
argument was published in [77], where a lattice-based proof of the splitting
theorem for vector bundles is given.

5.3.2 Vector bundles on an elliptic curve

In [5]], Atiyah systematically described the category of vector bundles on an
elliptic curve over an algebraically closed field F. Let X be such an elliptic
curve with function field k, and let E(r, d) be the set of isomorphism classes
of indecomposable Og-lattices of rank r and degree d over k. In what follows,
we give a succinct summary of his construction, rephrased in our setting of
Og-lattices, and then we give an explicit construction using lattice pairs.

Definition 5.3.6. Let L be an Ag-lattice, let s = [H°(L) : F] and let w be a
differential of K. Observe that, by Proposition and Serre duality,

Ext' (L, R(t(w)™")*) = HY(LY ® R(«(w)™")*) ~ H° (A% ® L)Y = H'(L*)".

Upon fixing a basis of H'(L), this extension group identifies with Endp (H°(L)).
We define the Atiyah extension of L as the extension

0> Rt(w™®)»L -L—>0
given by the identity automorphism of H°(L).

Proposition 5.3.7. Let r € N. Then there exists a unique F, € E(r,0) such
that [H*(X,F,) : F] = 1. For L € E(r,0) \ {F,}, [H°(L) : F] = 0.

We let Pic’ (k) be the group of isomorphism class of ©Og-lattices of rank 1.
We note that if k£ has a unique infinite places O of degree 1 with uniformiser 7,
the elements of Pic’(k) are uniquely represented by ©Og and the LP(p, 1, 77 1),
where p varies over the prime ideals of Oy;.
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Proposition 5.3.8. Let r € N and d € Z. Fix a rank one Og-lattice L of
degree 1.

* F| is represented by Og.
» F, is the Atiyah extension of F,_,.
 The map L — F, ® L gives a bijection Pic’ (k) — E(r,0).

» Assume that d > 0, the Atiyah extension gives a bijection E(r,d) —
E(r+d,d).

e The map E — E ® L gives a bijection E(r,d) — E(r,d +r).
e The map E — EV gives a bijection E(r,d) — E(r,—d).

Put together, these facts give explicit bijections Pic’(X) — E(r, d) for all
r € N, d € Z. Furthermore, the works [3,90] showed that these construc-
tions are also valid on an arbitrary perfect field k if E(r, d) now means the set
of isomorphism classes of absolutely indecomposable vector bundles. Since
an indecomposable vector bundle is always the trace of an absolutely inde-
composable vector bundle defined over some finite extension of k, this yields
an algorithm for constructing any indecomposable lattice pair over an elliptic
curve over a perfect field.

We also note that a generalisation to curves of genus 1 with no rational
points was given in [|68].

Example 5.3.9. In this example we consider the fields F = F; and k =
F(x,v)/(y*> = x> = x). We construct the image of the line bundle L (p — o)
in E£(3,2), where p is the divisor of the prime ideal (x, y) of O; and oo is the
divisor of the unique prime ideal of ©,. First, we set

LO = LP(p_l’ laﬂ-)

Following the construction of the map Pic’(X) — E (3, 2), we must first tensor
the lattice pair L twice by a fixed lattice pair of degree 1. The result is a lattice
pair lying in E(1,2). We shall then take its Atiyah extension to get an element
of E(3,2).

We compute the tensor product L; = Ly ® L8, where L., represents the
line bundle of degree 1 JL'(c0). We get

Ly=LP(p !, 1,27 h).
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Since deg(L;) = 2 and k has genus 1, it follows by the Riemann-Roch theorem
that [H°(L;) : k] = 2. Applying Algorithm we find that a basis for H°(L;)
is (1, xm).

Now, we let w = dn, and recall that this differential’s divisor is the principal

divisor corresponding to & := ¥%3_and so the corresponding lattice pair is
X

Lo =LP((h),1,1).

We must now compute a répartition vector representing the element of H' (L}’ ®
L$)) corresponding to the identity automorphism of H°(L;) as discussed in
Definition This H' group is the dual of the vector space H*(L; ® L?) by
Serre duality, where L, is the trivial lattice pair:

L, =LP(Ag, 1,1).

Now, it is quite clear that a basis ofHO(L1®Lf) is ((1,0), (xm,0), (0,1), (0, x7)).
The space H(L; ® L7) is identified with Endr (H 9(Ly)) by mapping a vector
(a, b) to the k-linear map sending 1 to a and xx to b. Thus, we shall find a
vector (a, 8) € K? such that

reSeo (o) = 1€800 (X7Beo) = 1 (5.2)

reSeo (XMTXoo) = €S0 (Boo) = 0.

Observe that x7 = 77" + O(7?), so we may set @ = 7' and 8 = 1. We have
shown that the Atiyah extension of L; is represented in H' (L\l/ ® L?)) by the
répartition vector k = (72, 1). By Theorem it follows that the Atiyah
extension of L is the lattice pair

1 0 —n2
L=LP|((h),(h),p "), 5,[0 1 -zt
00 nxn!

The determinant of L is
det(L) = LP (th—l, 1,71_1) .

Now, the divisor of | has degree 1 and the finite part of the divisor of % has
degree 0, so we find that deg(L) = 2 as expected. By [5, Theorem 6], we
should have

det(L) ~ [,

and indeed one observes readily that division by 42 is such an isomorphism.
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We will now check that the lattice pair L is indeed absolutely indecompos-
able. By Proposition we need to check that D(L) = F;. In fact, since
the rank and degree of L are coprime, we expect End(L) = FF; by [65, Corol-
lary 2.5]. We first compute End(L,L) = LY ® L. Using the formulas from
Definition [5.2.3] we find:

End(L) = LP(a, I5, go)»

with
a= (A, Ap, (hp)~' Api, Agpiy (hp~ 1), hp, hp, Agy)
and

o\

1 0 T 1 0 —-nx
go=|[0 1 —x! [0 1 -]
0 0 n! 00 n!
1 0 == 00 0 0 0 0
x+1
0 1 20 0 0 0O 0 0
x*+1
0 0 abd 0O 0 O 0O 0 0
x*+1 5
0 0 0 1 0% 0 0 0
x“+1
=1 0 0 0 01 32 0 0 0
x“+1
0 0 0 0 0 )2(11 0 O 0
xy -xty PRCI -xy
x2+1 0 ()62+%)2 10 X2+l X2 0 X2+l
Xy - —-xy y
0 x2+1 xz)-;] 0 1 X241 0 X2 -1
0 o) 00 3 0 0 1

x2+1

Using the algorithm from Corollary we may compute End(L) =
H°(&End(L)) and find a 1 dimensional F;-vector space, whose basis element
identifies with the identity matrix under our usual identification K° ~ M3(K).
So, we indeed have End(L) = F.

5.3.3 Algebraic geometry codes

In [[76]], Savin introduced a generalisation of algebraic geometry codes to vector
bundles of arbitrary rank. His construction is optimal when performed over so-
called weakly-stable vector bundle, and this motivated a line of work construct-
ing weakly-stable vector bundles on projective curves over finite fields [6,/62].
Independently, Weng gave a similar construction [94]] based on his adelic set-
ting for vector bundles and introduced the notion of D-balanced vector bundle,
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where D is an effective divisor. As in Section[5.3.2] we rephrase known def-
initions and results in terms of Og-lattices and give an explicit example as a
lattice pair.

For what follows, we assume that k is a global function field with constant
field F.

Definition 5.3.10. Let L be an Og-lattice. The slope of L is defined as

._ deg(L)
" rank(L)’

u(L)

Definition 5.3.11. An Og-lattice L is said to be weakly-stable if for all rank 1
Og-sublattices L” of L,

(L) < p(L).

Definition 5.3.12. Let D be an effective divisor of k, and let L be an Og-lattice.
Then L is D-balanced if Lp = Op for P in Supp(D).

Proposition 5.3.13 ( [76]). Let n,d € N. Let a,f be the quotient and the
remainder of the Euclidean division of d by n. Let L', L), be rank 1 Og-lattices
of degree a and let L' be a rank 1 Og-lattice of degree a + 1. Consider the

following construction:
1. Ly=L,.
2. for2 <i<n-p+1,L;is anon-trivial extension of L, by L;,.
3. forn—B+2 <i<n,L;isanon-trivial extension of L' by L;_,.

Then, L, is a weakly-stable Og-lattice of rank n and degree d. If D is an
effective divisor with support in M'" such that L', L' and L’, are D-balanced.

Then, if the successive extensions are constructed using the algorithm from

Corollary|5.2.21| the lattice L,, is D-balanced.

Example 5.3.14. We let F = Fyg1, k = F(x,y)/(y*> — x> — 1) and construct
a weakly-stable vector bundle of rank 3 and degree 10 over k. We also set
w =dm.

First, we set 7 = %, a local uniformiser of oo, the unique infinite place of
k. We also define p; = (x,y + 1) and p, = (x,y — 1), two prime ideals of O;.
We will build our vector bundle from the following line bundles:

L=LP(Os;, 1,77,
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Ly =LP(p;% 1, 1),

and

We first set £y = L and compute a non-trivial extension E, of L, by Ej.
We compute a basis of H((w) 'E IV ® Ly). This space has dimension 1 and

is generated by
—2x?
a= +1).
X3 +6 v+

Computing the formal series expansion of a with respect to 7, we find

a=-2n+0(x".
Therefore, the non-trivial linear form on H°(¢(w)™'E I’ ® L) sending a to 1 is
represented by the infinite répartition b.,, where
-1
22

We may, therefore, set

1 L
E=LP ((p;3, P Lo, (0 2,1,2)) .

Our vector bundle E3 will then be constructed as a nontrivial extension of
L by E;. Again, we compute a basis of HO(L((,U)_IEE/ ® L) and find:

X7 x4 x4
0 0 X+6 w60 1 516
X7 ’ X4 x4 B _x8 _x5 " X5 .
16 \»46Y " 46/ \2x+6) \2(x46)Y T 2(x3+6)

We let fi, f>, f3 and f4 be these columns.
We shall find a vector v € k2 such that 6, (-, v) corresponds to the linear

form ( 1 00 0) with respect to the dual of the basis given above. That is,
we must find v; and v, in k such that forall 1 <i < 4,

2 o

lifi =1,

IeSco fiivil= (5.3)
JZ:; v 0 otherwise.

Following Algorithm 4} we compute vi = —4 and v, = —6. We compute the
power series expansion of the coefficients of the f;, starting at degree —4 on the

first row and degree —6 on the second row. We get:

0
fi= (71_4 + 0(71_2)) ’
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0
f= (7'[_3 + O(n_z)) ’

3 a4+ 0(1)
fs = _7171_6+0(7r_2) ’

P ( ln—3 +0(1) )

%H_S +0(n7?)

and

Therefore, we must solve the linear system

00 1 0
00 1 0
00 0 0
00 0 0
R 5o |=(1 00 0.
00 3 0

-1
00 0 3t
10 0 0
01 0 0

An obvious solution is R = (O 000 O0O0 1 0). Bringing things

together, we set v; = 0 and v, = 7 and Equation (5.3) is satisfied. Finally, we

may set
1
L I 55 0
E3=LP|(p{", 9% Q). 15,0 1 =
0 0 4%
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Conclusions

In this thesis, we have constructed a presentation for central simple algebras
based on Amitsur cohomology that allows for efficient computation. We have
used this presentation to exhibit a polynomial quantum algorithm under GRH,
which solves the explicit isomorphism problem. We have also constructed
a representation for vector bundles over normal projective curves as well as
algorithms for several natural tasks.

This latter construction relates to the explicit isomorphism problem by the
method outlined in Section [5.3.1] With this tool now available, we intend in
further research to leverage known results on the structure of vector bundles
over curves of positive genus to provide algorithms for the explicit isomorphism
problem for global function fields of positive genus. Another perspective
for further work is the development of polynomial algorithms for computing
Hermite normal forms of pseudo-matrices over the ring O; of a global function
field.

Also in perspective are the possibilities offered by the computational practi-
cality of our presentation of central simple algebras as Amitsur algebras. There
is a polynomial reduction from the Amitsur version of the explicit isomorphism
problem to the general explicit isomorphism problem, and there is no known
efficient classical algorithm for this latter problem over global fields other than
F(X). These facts suggest that the explicit isomorphism problem may be used
as a hard problem in cryptography (see [|53|] for an identification scheme based
on a similar problem). The problem of finding a preimage of a coboundary
through the group homomorphism o' : C}Am(k, K) — Bim(k, K) reduces di-
rectly to the explicit isomorphism problem, with elements of the codomain
encoding an instance of the problem and elements of the domain encoding
witnesses to a solution. This setting may prove fruitful for the construction of
cryptographic primitives and protocols.

147



Bibliography

[1]

(2]

[4]

[6]

[7]

ApamsoN, 1. T. Cohomology theory for non-normal subgroups and non-
normal fields. Proc. Glasgow Math. Assoc. 2 (1954), 66-76. https:
//doi.org/10.1017/S2040618500033050.

AMITSUR, S. A. Simple algebras and cohomology groups of arbitrary
fields. Trans. Amer. Math. Soc. 90 (1959), 73-112. https://doi.org/
10.2307/1993268.

Arason, J. K., ELMAN, R., anD Jacos, B. On indecomposable vector
bundles. Comm. Algebra 20, 5 (1992), 1323-1351. https://doi.org/
10.1080/00927879208824407.

AtryaH, M. On the Krull-Schmidt theorem with application to sheaves.
Bull. Soc. Math. France 84 (1956), 307-317. http://www.numdam.
org/item?id=BSMF_1956__84__307_0.

ATtryaH, M. F. Vector bundles over an elliptic curve. Proc. London Math.
Soc. (3) 7 (1957),414-452. https://doi.org/10.1112/plms/s3-7.
1.414.

BaLLico, E. Vector bundles on curves over F, and algebraic codes. Finite
Fields Appl. 14,4 (2008), 1101-1107. https://doi.org/10.1016/j.
££a.2008.07.003.

Biassk, J.-F., aND FIEKER, C. Subexponential class group and unit group
computation in large degree number fields. LMS J. Comput. Math. 17
(2014), 385-403. https://doi.org/10.1112/S1461157014000345.

Biasskg, J.-F., Fiexer, C., aND HormaNnN, T. On the computation of
the HNF of a module over the ring of integers of a number field. J.
Symbolic Comput. 80 (2017), 581-615. https://doi.org/10.1016/
j.jsc.2016.07.027.

148


https://doi.org/10.1017/S2040618500033050
https://doi.org/10.1017/S2040618500033050
https://doi.org/10.2307/1993268
https://doi.org/10.2307/1993268
https://doi.org/10.1080/00927879208824407
https://doi.org/10.1080/00927879208824407
http://www.numdam.org/item?id=BSMF_1956__84__307_0
http://www.numdam.org/item?id=BSMF_1956__84__307_0
https://doi.org/10.1112/plms/s3-7.1.414
https://doi.org/10.1112/plms/s3-7.1.414
https://doi.org/10.1016/j.ffa.2008.07.003
https://doi.org/10.1016/j.ffa.2008.07.003
https://doi.org/10.1112/S1461157014000345
https://doi.org/10.1016/j.jsc.2016.07.027
https://doi.org/10.1016/j.jsc.2016.07.027

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Biasseg, J.-F., AND Song, F. Efficient quantum algorithms for computing
class groups and solving the principal ideal problem in arbitrary degree
number fields. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms (2016), ACM, New York, pp. 893—
902. https://doi.org/10.1137/1.9781611974331.ch64.

Bosma, W., CannNoN, J., FIEKER, C., AND STELL, A., Eds. Handbook of
Magma functions (Version 2.13). 2023.

Boursaki, N. Algebra Il. Chapters 4—7, english ed. Elements of Mathe-
matics (Berlin). Springer-Verlag, Berlin, 2003. https://doi.org/10.
1007/978-3-642-61698-3.

BremMNER, M. R. How to compute the Wedderburn decomposition of a
finite-dimensional associative algebra. Groups Complex. Cryptol. 3, 1
(2011), 47-66. https://doi.org/10.1515/GCC.2011.003!

CasseLs, J. W. S., anp FrOHLICH, A., Eds. Algebraic number theory
(1967), Academic Press, London; Thompson Book Co., Inc., Washington,
DC.

CHASE, S. U., AND ROSENBERG, A. Amitsur cohomology and the brauer
group. In Galois theory and cohomology of commutative rings, vol. 1 of
Memoirs of the Americam Mathematical Society. American Mathematical
Society, 1965, pp. 20-65.

CoHEN, H. A course in computational algebraic number theory, vol. 138
of Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1993. https:
//doi.org/10.1007/978-3-662-02945-9.

ConeNn, H. Hermite and Smith normal form algorithms over Dedekind
domains. Math. Comp. 65,216 (1996), 1681-1699. https://doi.org/
10.1090/S0025-5718-96-00766-1.

CoHeN, H. Advanced topics in computational number theory, vol. 193
of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000.
https://doi.org/10.1007/978-1-4419-8489-0.

CoLLIOT-THELENE, J.-L., AND SkoroBocaTov, A. N. The Brauer-
Grothendieck Group. Springer Cham, 2021. https://doi.org/10.
1007/978-3-030-74248-5,

149


https://doi.org/10.1137/1.9781611974331.ch64
https://doi.org/10.1007/978-3-642-61698-3
https://doi.org/10.1007/978-3-642-61698-3
https://doi.org/10.1515/GCC.2011.003
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1090/S0025-5718-96-00766-1
https://doi.org/10.1090/S0025-5718-96-00766-1
https://doi.org/10.1007/978-1-4419-8489-0
https://doi.org/10.1007/978-3-030-74248-5
https://doi.org/10.1007/978-3-030-74248-5

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

CREMONA, J., FIsHER, T., O’NEIL, C., SimoN, D., aND StoLL, M. Explicit
n-descent on elliptic curves, i. algebra. J. Reine Angew. Math. 2008, 615
(2008), 121-155. https://doi.org/10.1515/CRELLE. 2008.012.

CREMONA, J., FisHER, T., O’NEIL, C., SimoN, D., aAND StoLL, M. Explicit
n-descent on elliptic curves, ii. geometry. J. Reine Angew. Math. 2009,
632 (2009), 63-84. https://doi.org/10.1515/CRELLE. 2009.050.

CreEMONA, J., AnD Rusin, D. Efficient solution of rational conics.
Math. Comp. 72,243 (2003), 1417-1441.https://doi.org/10.1090/
S0025-5718-02-01480-1.

CreEMONA, J. E., Fisaer, T. A., O’New, C., SimonN, D., aAND StOLL,
M. Explicit n-descent on elliptic curves III. Algorithms. Math.
Comp. 84, 292 (2015), 895-922. https://doi.org/10.1090/
S0025-5718-2014-02858-5.

CsaHOK, T., Kutas, P., MonTESsINOS, M., AND ZABRADI, G. Explicit
isomorphisms of quaternion algebras over quadratic global fields. Re-
search in Number Theory 8,4 (2022),77. https://doi.org/10.1007/
s40993-022-00380-3.

DE Graar, W. A., HArrIsON, M., PiLNIKOVA, J., AND ScHicHO, J. A Lie
algebra method for rational parametrization of severi—brauer surfaces.
J. Algebra 303, 2 (2006), 514-529. https://doi.org/10.1016/j.
jalgebra.2005.06.022,

DE GrAAF, W. A., AnD Ivanvos, G. Finding splitting elements and
maximal tori in matrix algebras. In Interactions between ring theory
and representations of algebras (Murcia), vol. 210 of Lecture Notes in
Pure and Appl. Math. Dekker, New York, 2000, pp. 95-105. https:
//dspace.library.uu.nl/handle/1874/1616.

DE GrAAF, W. A., Ivanyos, G., KUroNya, A., AND RONYAL L. Com-
puting Levi decompositions in Lie algebras. Appl. Algebra Engrg.
Comm. Comput. 8, 4 (1997), 291-303. https://doi.org/10.1007/
s002000050066.

Decker, W., anp EisenBup, D. Sheaf algorithms using the exterior

algebra. In Computations in algebraic geometry with Macaulay 2, vol. 8 of

150


https://doi.org/10.1515/CRELLE.2008.012
https://doi.org/10.1515/CRELLE.2009.050
https://doi.org/10.1090/S0025-5718-02-01480-1
https://doi.org/10.1090/S0025-5718-02-01480-1
https://doi.org/10.1090/S0025-5718-2014-02858-5
https://doi.org/10.1090/S0025-5718-2014-02858-5
https://doi.org/10.1007/s40993-022-00380-3
https://doi.org/10.1007/s40993-022-00380-3
https://doi.org/10.1016/j.jalgebra.2005.06.022
https://doi.org/10.1016/j.jalgebra.2005.06.022
https://dspace.library.uu.nl/handle/1874/1616
https://dspace.library.uu.nl/handle/1874/1616
https://doi.org/10.1007/s002000050066
https://doi.org/10.1007/s002000050066

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

Algorithms Comput. Math. Springer, Berlin, 2002, pp. 215-249. https:
//doi.org/10.1007/978-3-662-04851-1_9.

EBerHARD, S. The characteristic polynomial of a random matrix.
Combinatorica 42, 4 (2022), 491-527. https://doi.org/10.1007/
s00493-020-4657-0.

Fiexker, C. Minimizing representations over number fields. II. Com-
putations in the Brauer group. J. Algebra 322, 3 (2009), 752-765.
https://doi.org/10.1016/j.jalgebra.2009.05.009.

Fisuer, T. Explicit 5-descent on elliptic curves. Open Book Ser. 1, 1
(2013), 395-411. https://doi.org/10.2140/0bs.2013.1.395.

Fisuer, T. Higher descents on an elliptic curve with a rational 2-torsion
point. Math. Comp. 86, 307 (2017), 2493-2518. https://doi.org/
10.1090/mcom/3163.

FisHER, T., aAND NEwTON, R. Computing the cassels-tate pairing on the
3-selmer group of an elliptic curve. Int. J. Number Theory 10, 07 (2014),
1881-1907. https://doi.org/10.1142/S1793042114500602.

Forp, T. J. Separable algebras, vol. 183 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, 2017.
https://doi.org/10.1090/gsm/183.

Friepricus, C. Berechnung von Maximalordnungen iiber
Dedekindringen. PhD thesis, Technische Universitat Berlin,
2000. http://www.math.tu-berlin.de/~kant/publications/
diss/diss_fried.pdf.gz.

GARG, A., Guprta, N., KayaL, N, aND SaHA, C. Determinant Equivalence
Test over Finite Fields and over Q. In 46th International Colloquium on
Automata, Languages, and Programming (ICALP 2019) (Dagstuhl, Ger-
many, 2019), C. Baier, I. Chatzigiannakis, P. Flocchini, and S. Leonardi,
Eds., vol. 132 of Leibniz International Proceedings in Informatics
(LIPIcs), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, pp. 62:1—
62:15. https://doi.org/10.4230/LIPIcs.ICALP.2019.62.

GiLLE, P, AND SzamueLy, T. Central simple algebras and Galois
cohomology, second ed., vol. 165 of Cambridge Studies in Advanced

151


https://doi.org/10.1007/978-3-662-04851-1_9
https://doi.org/10.1007/978-3-662-04851-1_9
https://doi.org/10.1007/s00493-020-4657-0
https://doi.org/10.1007/s00493-020-4657-0
https://doi.org/10.1016/j.jalgebra.2009.05.009
https://doi.org/10.2140/obs.2013.1.395
https://doi.org/10.1090/mcom/3163
https://doi.org/10.1090/mcom/3163
https://doi.org/10.1142/S1793042114500602
https://doi.org/10.1090/gsm/183
http://www.math.tu-berlin.de/~kant/publications/diss/diss_fried.pdf.gz
http://www.math.tu-berlin.de/~kant/publications/diss/diss_fried.pdf.gz
https://doi.org/10.4230/LIPIcs.ICALP.2019.62

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Mathematics. Cambridge University Press, Cambridge, 2017. https:
//doi.org/10.1017/CB09780511607219.

Gomez-TorreciLLAS, J., Kutas, P, LosiLLo, F. J., AND Navarro, G.
Primitive idempotents in central simple algebras over fq (t) with an
application to coding theory. Finite Fields Appl. 77 (2022), 101935.
https://doi.org/10.1016/j.ffa.2021.101935.

GOrTz, U., AND WEDHORN, T. Algebraic geometry I. Schemes—with
examples and exercises, second ed. Springer Studium Mathematik—
Master. Springer Spektrum, Wiesbaden, [2020] ©2020. https://doi.
org/10.1007/978-3-658-30733-2.

GUARDIA, J., MONTES, J., AND NaART, E. Higher Newton polygons in the
computation of discriminants and prime ideal decomposition in number
fields. J. Théor. Nombres Bordeaux 23, 3 (2011), 667-696. https:
//doi.org/10.5802/jtnb.782.

GUARDIA, J., MONTES, J., AND NART, E. A new computational approach
to ideal theory in number fields. Found. Comput. Math. 13, 5 (2013),
729-762. https://doi.org/10.1007/s10208-012-9137-5.

GUPTA, S., SARKAR, S., STORJOHANN, A., AND VALERIOTE, J. Triangular
x-basis decompositions and derandomization of linear algebra algorithms
over K [x]. J. Symbolic Comput. 47, 4 (2012), 422-453. https://doi.
org/10.1016/j.jsc.2011.09.006.

HARTSHORNE, R. Algebraic geometry, vol. No. 52 of Graduate Texts
in Mathematics. Springer-Verlag, New York-Heidelberg, 1977. https:
//doi.org/10.1007/978-1-4757-3849-0.

HazewiNKEL, M., AND MARTIN, C. F. A short elementary proof of
Grothendieck’s theorem on algebraic vectorbundles over the projective
line. J. Pure Appl. Algebra 25, 2 (1982), 207-211. https://doi.org/
10.1016/0022-4049(82)90037-8.

Hess, F. An algorithm for computing Weierstrass points. In Algorithmic
number theory (Sydney, 2002), vol. 2369 of Lecture Notes in Comput.
Sci. Springer, Berlin, 2002, pp. 357-371. https://doi.org/10.1007/
3-540-45455-1_29.

152


https://doi.org/10.1017/CBO9780511607219
https://doi.org/10.1017/CBO9780511607219
https://doi.org/10.1016/j.ffa.2021.101935
https://doi.org/10.1007/978-3-658-30733-2
https://doi.org/10.1007/978-3-658-30733-2
https://doi.org/10.5802/jtnb.782
https://doi.org/10.5802/jtnb.782
https://doi.org/10.1007/s10208-012-9137-5
https://doi.org/10.1016/j.jsc.2011.09.006
https://doi.org/10.1016/j.jsc.2011.09.006
https://doi.org/10.1007/978-1-4757-3849-0
https://doi.org/10.1007/978-1-4757-3849-0
https://doi.org/10.1016/0022-4049(82)90037-8
https://doi.org/10.1016/0022-4049(82)90037-8
https://doi.org/10.1007/3-540-45455-1_29
https://doi.org/10.1007/3-540-45455-1_29

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

Hess, F. Computing Riemann-Roch spaces in algebraic function fields
and related topics. J. Symbolic Comput. 33,4 (2002), 425-445. https:
//doi.org/10.1006/jsco.2001.0513.

Ivanyos, G., Kutas, P., aND RONyal, L. Computing explicit isomor-
phisms with full matrix algebras over F, (x). Found. Comput. Math. 18, 2
(2018), 381-397. https://doi.org/10.1007/s10208-017-9343-2.

Ivanvyos, G., LELKES, A. D., AND RénvyAlL L. Improved algorithms for
splitting full matrix algebras. JP J. Algebra Number Theory Appl. 28, 2
(2013), 141-156. http://www.pphmj.com/abstract/7461.htm.

Ivanyos, G., aND RONyar, L. Finding maximal orders in semisimple
algebras over Q. Comput. Complexity 3, 3 (1993), 245-261. https:
//doi.org/10.1007/BF01271370.

Ivanyos, G., RoNYarL L., AND ScHicHo, J. Splitting full matrix algebras
over algebraic number fields. J. Algebra 354 (2012), 211-223. https:
//doi.org/10.1016/j.jalgebra.2012.01.008.

JacoBsoN, N. Brauer factor sets, Noether factor sets, and crossed
products. In Emmy Noether in Bryn Mawr (Bryn Mawr, Pa., 1982).
Springer, New York-Berlin, 1983, pp. 1-20. https://doi.org/10.
1007/978-1-4612-5547-5_1.

JacoBson, N. Finite-dimensional division algebras over fields.
Springer-Verlag, Berlin, 1996. https://doi.org/10.1007/
978-3-642-02429-0.

KaiLatH, T. Linear systems. Prentice-Hall Information and System
Sciences Series. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1980.

Kiss, S. Z., anp Kuras, P. An identification system based on
the explicit isomorphism problem. Appl. Algebra Engrg. Comm.
Comput. 34, 6 (2023), 913-930. https://doi.org/10.1007/
s00200-021-00529-0.

Kuras, P. Splitting quaternion algebras over quadratic number fields. J.
Symbolic Comput. 94 (2019), 173-182. https://doi.org/10.1016/
j.jsc.2018.08.002.

153


https://doi.org/10.1006/jsco.2001.0513
https://doi.org/10.1006/jsco.2001.0513
https://doi.org/10.1007/s10208-017-9343-2
http://www.pphmj.com/abstract/7461.htm
https://doi.org/10.1007/BF01271370
https://doi.org/10.1007/BF01271370
https://doi.org/10.1016/j.jalgebra.2012.01.008
https://doi.org/10.1016/j.jalgebra.2012.01.008
https://doi.org/10.1007/978-1-4612-5547-5_1
https://doi.org/10.1007/978-1-4612-5547-5_1
https://doi.org/10.1007/978-3-642-02429-0
https://doi.org/10.1007/978-3-642-02429-0
https://doi.org/10.1007/s00200-021-00529-0
https://doi.org/10.1007/s00200-021-00529-0
https://doi.org/10.1016/j.jsc.2018.08.002
https://doi.org/10.1016/j.jsc.2018.08.002

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Kuras, P., anD MontEssinos, M. Efficient computations in central
simple algebras using amitsur cohomology. J. Algebra 665 (2025), 255—
281. https://doi.org/10.1016/j.jalgebra.2024.10.045.

LE POTIER, J. Lectures on vector bundles, vol. 54 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 1997.
Translated by A. Maciocia.

LENSTRA, JR., H. W., AND SILVERBERG, A. Algorithms for commutative
algebras over the rational numbers. Found. Comput. Math. 18, 1 (2018),
159-180. https://doi.org/10.1007/s10208-016-9336-6.

McConnELL, J. C. Division algebras—beyond the quaternions. Amer.
Math. Monthly 105, 2 (1998), 154-162. https://doi.org/10.2307/
2589646.

MEnDEZ OMaNA, J., AND Ponust, M. E. Factoring polynomials over
global fields. II. J. Symbolic Comput. 40, 6 (2005), 1325-1339. https:
//doi.org/10.1016/j.jsc.2005.03.003.

MonTEssiNos, M. Algebraic algorithms for vector bundles over curves.
Journal of Algebra and Its Applications (to appear), 2024. http://doi.
org/10.1142/S0219498826500210.

Motsak, O. Graded commutative algebra and related structures
in Singular with applications. PhD thesis, Technische Universitit
Kaiserslautern, 2011. https://nbn-resolving.de/urn:nbn:de:
hbz:386-kluedo-26479.

NakasumMA, T. AG codes from vector bundles. Des. Codes
Cryptogr. 57, 1 (2010), 107-115. https://doi.org/10.1007/
s10623-009-9354-3.

NEUKIRCH, J. Algebraic number theory, vol. 322 of Grundlehren der
mathematischen Wissenschaften [Fundamental Principles of Mathemat-
ical Sciences]. Springer-Verlag, Berlin, 1999. https://doi.org/10.
1007/978-3-662-03983-0.

NewMAN, M. Integral matrices, vol. Vol. 45 of Pure and Applied Math-
ematics. Academic Press, New York-London, 1972.

154


https://doi.org/10.1016/j.jalgebra.2024.10.045
https://doi.org/10.1007/s10208-016-9336-6
https://doi.org/10.2307/2589646
https://doi.org/10.2307/2589646
https://doi.org/10.1016/j.jsc.2005.03.003
https://doi.org/10.1016/j.jsc.2005.03.003
http://doi.org/10.1142/S0219498826500210
http://doi.org/10.1142/S0219498826500210
https://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-26479
https://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-26479
https://doi.org/10.1007/s10623-009-9354-3
https://doi.org/10.1007/s10623-009-9354-3
https://doi.org/10.1007/978-3-662-03983-0
https://doi.org/10.1007/978-3-662-03983-0

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Oba, T. Vector bundles on an elliptic curve. Nagoya Math. J. 43 (1971),
41-72. http://projecteuclid.org/euclid.nmj/1118798365.

PiLNIkKOVA, J. Trivializing a central simple algebra of degree 4 over the
rational numbers. J. Symbolic Comput. 42, 6 (2007), 579-586. https:
//doi.org/10.1016/j.jsc.2007.01.001.

Preu, T. Effective lifting of 2-cocycles for Galois cohomology. Cent.
Eur. J. Math. 11,12 (2013),2138-2149. https://doi.org/10.2478/
s11533-013-0319-4!

PumpLiN, S. Vector bundles and symmetric bilinear forms over curves
of genus one and arbitrary index. Math. Z. 246, 3 (2004), 563-602.
https://doi.org/10.1007/s00209-003-0589-9.

REINER, 1. Maximal orders, vol. 28 of London Mathematical Society
Monographs. New Series. The Clarendon Press, Oxford University Press,
Oxford, 2003. Corrected reprint of the 1975 original, With a foreword by
M. J. Taylor.

Rényar, L. Computing the structure of finite algebras. J. Sym-
bolic Comput. 9, 3 (1990), 355-373. https://doi.org/10.1016/
S0747-7171(08)80017-X.

Roényal, L. Algorithmic properties of maximal orders in simple algebras
over Q. Comput. Complexity 2, 3 (1992), 225-243. https://doi.org/
10.1007/BF01272075.

Rosen, M. Number theory in function fields, vol. 210 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 2002. https://doi.org/
10.1007/978-1-4757-6046-0.

ROSENBERG, A., AND ZELINSKY, D. On Amitsur’s complex. Trans.
Amer. Math. Soc. 97 (1960), 327-356. https://doi.org/10.2307/
1993305

SaLtMmaN, D. J. Lectures on division algebras, vol. 94 of CBMS Re-
gional Conference Series in Mathematics. American Mathematical Soci-
ety, Providence, RI; on behalf of Conference Board of the Mathematical
Sciences, Washington, DC, 1999. https://doi.org/10.1090/cbms/
094!

155


http://projecteuclid.org/euclid.nmj/1118798365
https://doi.org/10.1016/j.jsc.2007.01.001
https://doi.org/10.1016/j.jsc.2007.01.001
https://doi.org/10.2478/s11533-013-0319-4
https://doi.org/10.2478/s11533-013-0319-4
https://doi.org/10.1007/s00209-003-0589-9
https://doi.org/10.1016/S0747-7171(08)80017-X
https://doi.org/10.1016/S0747-7171(08)80017-X
https://doi.org/10.1007/BF01272075
https://doi.org/10.1007/BF01272075
https://doi.org/10.1007/978-1-4757-6046-0
https://doi.org/10.1007/978-1-4757-6046-0
https://doi.org/10.2307/1993305
https://doi.org/10.2307/1993305
https://doi.org/10.1090/cbms/094
https://doi.org/10.1090/cbms/094

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

SARKAR, S., AND STORJOHANN, A. Normalization of row reduced matri-
ces. In ISSAC 201 1—Proceedings of the 36th International Symposium on
Symbolic and Algebraic Computation (2011), ACM, New York, pp. 297-
303. https://doi.org/10.1145/1993886.1993931.

Savin, V. Algebraic-geometric codes from vector bundles and their de-
coding. https://arxiv.org/abs/0803.1096v1, 2008. Preprint, 5

pages.

ScHoOEMANN, C., AND WIEDMANN, S. Another proof of Grothendieck’s
theorem on the splitting of vector bundles on the projective line. Arch.
Math. (Basel) 110, 6 (2018), 573-580. https://doi.org/10.1007/
s00013-018-1158-0.

SERRE, J.-P. Faisceaux algébriques cohérents. Ann. of Math. (2) 61 (1955),
197-278. https://doi.org/10.2307/1969915.

SERRE, J.-P. Algebraic groups and class fields, vol. 117 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1988. Translated from the
French.

SHoRr, P. W. Algorithms for quantum computation: discrete logarithms
and factoring. In 35th Annual Symposium on Foundations of Computer
Science (Santa Fe, NM, 1994). IEEE Comput. Soc. Press, Los Alami-
tos, CA, 1994, pp. 124-134. https://doi.org/10.1109/SFCS.1994.
365700.

SILVERMAN, J. H. The arithmetic of elliptic curves, second ed., vol. 106
of Graduate Texts in Mathematics. Springer, Dordrecht, 2009. https:
//doi.org/10.1007/978-0-387-09494-6.

Smmon, D. Solving norm equations in relative number fields using S-
units. Math. Comp. 71, 239 (2002), 1287-1305. https://doi.org/
10.1090/S0025-5718-02-01309-1.

SMmitH, G. G. Computing global extension modules. Journal of Symbolic
Computation 29, 4 (2000), 729-746. https://doi.org/10.1006/
jsco.1999.0399.

SticHTENOTH, H. Algebraic function fields and codes, second ed., vol. 254
of Graduate Texts in Mathematics. Springer-Verlag, Berlin, 2009. https:
//doi.org/10.1007/978-3-540-76878-4.

156


https://doi.org/10.1145/1993886.1993931
https://arxiv.org/abs/0803.1096v1
https://doi.org/10.1007/s00013-018-1158-0
https://doi.org/10.1007/s00013-018-1158-0
https://doi.org/10.2307/1969915
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1090/S0025-5718-02-01309-1
https://doi.org/10.1090/S0025-5718-02-01309-1
https://doi.org/10.1006/jsco.1999.0399
https://doi.org/10.1006/jsco.1999.0399
https://doi.org/10.1007/978-3-540-76878-4
https://doi.org/10.1007/978-3-540-76878-4

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

STORIOHANN, A., AND LaBAHN, G. Asymptotically fast computation of
hermite normal forms of integer matrices. In Proceedings of the 1996
International Symposium on Symbolic and Algebraic Computation (New
York, NY, USA, 1996), ISSAC *96, Association for Computing Machin-
ery, p. 259-266. https://doi.org/10.1145/236869.237083.

SucaHARA, K. Adelic riemann-roch theorem on curve. Master’s thesis,
Kyushu University, 2012.

TaTE, J. Residues of differentials on curves. Ann. Sci. Ecole Norm. Sup.
(4) 1 (1968), 149-159. http://www.numdam.org/item?id=ASENS_
1968_4_1_1_149_0.

Tue PARI Group. PARI/GP version 2.15.4. Univ. Bordeaux, 2023.
available from http://pari.math.u-bordeaux. fr/.

THE SAGE DEVELOPERS. SageMath, the Sage Mathematics Software Sys-
tem (Version 10.3),2024. https://www.sagemath.org.

TiLLMANN, A. Unzerlegbare Vektorbiindel iiber algebraischen Kurven.
PhD thesis, FernUniversitit, Hagen, 1983.

VoicHt, J.  Quaternion algebras, vol. 288 of Graduate Texts in
Mathematics. Springer, Cham, 2021. https://doi.org/10.1007/
978-3-030-56694-4.

WEIL, A. Basic number theory. Classics in Mathematics. Springer-Verlag,
Berlin, 1995. Reprint of the second (1973) edition.

WENG, L. Adelic extension classes, atiyah bundles and non-commutative
codes. https://arxiv.org/abs/1809.00791v1, 2018. Preprint, 25

pages.

WenNG, L. Codes and stability. https://arxiv.org/abs/1806.
04319v1, 2018. Preprint, 24 pages.

WENG, L. Zeta functions of reductive groups and their zeros. World
Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018. https://
doi.org/10.1142/10723.

YaN, J. Computing the Cassels-Tate Pairing for Jacobian Varieties of
Genus Two Curves. PhD thesis, Apollo - University of Cambridge Repos-
itory, 2021. https://doi.org/10.17863/CAM.72729.

157


https://doi.org/10.1145/236869.237083
http://www.numdam.org/item?id=ASENS_1968_4_1_1_149_0
http://www.numdam.org/item?id=ASENS_1968_4_1_1_149_0
http://pari.math.u-bordeaux.fr/
https://www.sagemath.org
https://doi.org/10.1007/978-3-030-56694-4
https://doi.org/10.1007/978-3-030-56694-4
https://arxiv.org/abs/1809.00791v1
https://arxiv.org/abs/1806.04319v1
https://arxiv.org/abs/1806.04319v1
https://doi.org/10.1142/10723
https://doi.org/10.1142/10723
https://doi.org/10.17863/CAM.72729

Santrauka (Summary in
Lithuanian)

Tyrimo objektas

Disertacijoje yra nagrinéjama iSreikStinio izomorfizmo problema ir susijusios
algoritminés problemos.

Problema A (iSreikStinio izomorfizmo problema). Duotam kinui k ir k-
algebrai A, izomorfiskai matricinei algebrai My(k) su tam tikru d € N,
apskaiciuoti izomorfizmg ¢ : A — My(k).

ISreikstinio izomorfizmo problema paprastai nagrinéjama tam tikrame kiine
arba kiiny klaséje. Musy atveju daugiausia démesio skiriame aiSkaus izomor-
fizmo problemos sprendimui globaliuose kiinuose, t. y., skai¢iy kiinams ir
globaliesiems funkcijy kiinams, kurie yra racionaliyjy funkcijy kiino F(X),
kur F yra baigtinis kiinas, baigtiniai plétiniai.

Kadangi nustatéme, kad vektoriy griZtés apimancios normaligsias projek-
cines kreives yra svarbis objektai tiriant iSreikStinio izomorfizmo problema
funkcijy kuinams, taip pat nagrinéjame tokiy vektoriy griZ¢iy algoritmine teo-
rija.

Aktualumas

ISreikstinio izomorfizmo problema galima laikyti naturalia problema algo-
ritminéje jvaizdZiy teorijoje. Turint k-algebra A, galima noréti apraSyti jos
struktiirg: apskaiciuoti Jakobsono radikalg J(A) ir algebros A puspapraste dalj
bei iSskaidyma kaip paprastyjy k-algebry suma, kurios pacios yra izomorfiskos
tam tikrai M,,(D), kur D yra k-algebra su dalyba. Apskritai sunkiausia Siame
uzdavinyje yra rasti izomorfizma A — M, (D), kai algebra A yra paprastoji.
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Bendrasis Sios problemos sprendimo receptas yra toks: nustatyti D Brauerio
klase¢ vir§ jos centro K/k, rasti strukttros konstantas algebrai M;(D°P) ir tada
apskaiciuoti aisky izomorfizmag A ® M4(DP) ~ M (K) [23,37,49].

ISreikstinio izomorfizmo problemos taikymai neapsiriboja vien tik asociatyviyjy
algebry algoritmine teorija. Aritmetingje geometrijoje problema yra svarbi
trivializuojant obstrukcines algebras apskaiciuojant nusileidimg virs elipsiniy
kreiviy [22] ir skai¢iuojant Cassels-Tate porynius [32}|96]]. Problema taip pat
susijusi su Severi-Brauer pavir§iy parametrizavimu [[24]]. Naujausi darbai al-
gebrino sudétingumo teorijoje redukavo determinanto lygiavertiSkumo testg iki
iSreikstinio izomorfizmo problemos [35]. Galiausiai, iSreikstinio izomorfizmo
problema vir§ racionaliy funkcijy kiino F(X) (Cia F baigtinis) taip pat yra
aktuali ir klaidas taisantiems kodams [37]].

Baigtinio bazinio kuino atveju, iSreikStinio izomorfizmo uZdavinio polino-
minio laiko algoritma pasiulé Ronyai [[70].

I8reikstinio izomorfizmo problemos atvejai Q-algebroms pirmiausiai buvo
nagrinéjami mazoms d reikSméms. Kai d = 2, problema susiveda | racio-
nalaus taSko radimg projekciniame kugyje [91} 5.5.4 teorema], kuri iSspresta,
pavyzdZziui, straipsnyje [21]]. Atvejis d = 3 yra nagrinéjamas straipsnyje [24],
kuriame buvo pasiilytas subeksponentinis algoritmas, duodant cikling iSraiSka
ir sprendZiant kubine normos lygtj. Atvejis d = 4 nagrinéjamas [66], suvedant
problemg | kvaterniony algebry vir§ Q ir kvadratiniy skaiciy kiiny atvejj ir
sprendZiant kvadrating normos lygt;.

Straipsnyje [22]] buvo pateiktas ir iStirtas algoritmas, skirtas daugiausia
atvejams d = 3 ir d = 5. Véliau jis buvo apibendrintas [47,/49] iki K-algebros,
izomorfiskos algebrai M4(K), kur d yra naturalusis skaicius, o K yra skaiciy
kiinas. Pastarojo algoritmo sudétingumas yra polinominis jvesties algebros
struktiiriniy konstanty dydZiui, bet eksponentiskai priklauso nuo d, kino K
laipsnio ir diskriminanto dydZio.

2018 m. G. Ivanyos ir kt. [46] pristaté polinominio laiko algoritmg iSreiks-
tinio izomorfizmo problemai kiinui F(X), kur F yra baigtinis kiinas.

Fiksuoto d ir varijuojamojo bazinio kiino atveju darbuose [31}/54] nepri-
klausomai pateiktas algoritmas algebrai, izomorfinei M;(K), kur K yra kvad-
ratinis skai¢iy kiinas. Sio algoritmo sudétingumas polinomiskai auga kiino K
diskriminanto atzvilgiu.

Nors straipsnio [46] metodai yra grynai algebriniai, [5.3.1] sekcijoje tei-
giame, kad pagrindinis teorinis rezultatas, kuriuo paremtas algoritmas, gali
biiti natuiraliai interpretuojamas kaip garsioji Grotendiko teorema apie vektoriy
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griz¢iy strukturg vir§ projekcinés tiesés. Kadangi Grotendiko teorema negalio-
ja aukStesnio rusio funkcijy kiinams, metodas, iSvystytas straipsnyje [46], néra
tiesiogiai apibendrinamas tokiems kiinams. Taciau musy Sio metodo geomet-
riné interpretacija rodo, kad pazanga galima pasiekti pasinaudojus ankstesniais
rezultatais apie vektoriy griz¢iy struktura, apimancig normaligsias projekcines
kreives, turincias aukStesn;j rai§j. Tai leidZia manyti, kad tikslinga sukurti algo-
ritmine teorijg vektoriy griZtiems vir§ normaliyjy projekciny kreiviy iSreiksti,
naudojant gardeliy poras.

Tikslai

Disertacijos tikslas - pristatyti naujus metodus, skirtus iSreikStnio izomorfiz-
mo problemai globaliuose kiinuose spresti. Skaiciy kinuose siekiame pateikti
nauja kohomologinj centriniy paprastyjy algebry aprasa, tinkama praktiniams
skai¢iavimams, ir iStirti tokio jrankio poveikj, sprendZiant iSreikStinio izomor-
fizmo problemg skaiciy kiinuose. Funkcijy kunuose siekiame sukurti algorit-
min¢ vektoriy grizéiy teorija, paremty gardeliy vir§ maksimaliy eiliy teorija.

Pagrindiniai rezultatai

Kinui k ir etalinei k-algebrai K apibréZiame grupe Z/Z{m(k,K ) € (K®3)X,
pogrupj Bi‘m(k, K) ir nagrinéjame faktorgrupe

H, (k,K) =73 (k,K)/B%,, (k. K).

Tada apibréZiame Amitsuro algebrg A(K,c), skirtg ¢ € Zim(k, K), kurios
pagrindiné k-vektoriné erdvé yra K®2, ir jrodome sekantj klasifikacijos rezul-
tata:

Teorema B. Tegu k yra kunas, o K - etaliné k-algebra, kurios dimensija d.
Tegul c € K®3. Tada A(K, ¢) yra centriné paprastoji k-algebra tada ir tik tada,
kai c € Zim(k,K). Siuo atveju A(K,c) yra laipsnio k ir joje K yra viena
maksimaliy is jos komutativiyjy poalgebry ir, atvirksciai, jei A yra centriné
paprastoji k-algebra, kurioje K yra maksimalus komutatyvusis poalgebris, tai
egzistuoja ¢ € Zim(k, K) toks, kad algebra A(K, ¢) yra izomorfiska algebrai
A.

Taip gaunamas izomorfizmas Him(k, K) = Br(K/k) su algebros K santy-

kine Brauerio grupe virs k.
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Parinkime polinomg tokj y € k[X], kad egzistuotu izomorfizmas K
k[X]/(x(X)). Nagringjame algebras K; = k[X,Y]/(x(X), x(Y)) ir K,
k[X,Y,Z]/(x(X), x(Y), x(Z)). Pastebékime, kad algebra K,, (¢ian = 1 arba
n = 2) yra natiraliai izomorfiska algebrai K®("*1) o jos elementai gali biiti

pateikti apskai¢iavimo biidu kaip polinomy liekany klasés. J[rodome Amitsuro
algebry algoritminius rezultatus:

Teorema C. Sutapatindami grupés Zf‘m(k, K) elementus su jy vaizdais algeb-
roje K ir sutapatindami algebrqg A(K, ¢) su algebra K| kaip k-vektorineg erdve,

gauname Siuos rezultatus:

1. Egzistuoja polinominis algoritmas, kuris, su y,c € Zf‘m(k,K) ir a bei
B algebroje A(K, c), apskaiciuoja sandaugq aB;

2. Egzistuoja tikimybinis polinominis algoritmas, kuris, duotai centrinei pa-
prastgjai k-algebrai A, apskaiciuoja maksimaly komutatyvyjy poalgebrj
K c A, polinomg y tokj, kad K ~ k[X]/(x(X)), ¢ € Zim(k, K) ir
k-algebros izomorfizmgq is k-algebros A | k-algebrq A(K, c).

Taikydami Amitsuro algebry konstrukcijg, jrodome sekantj rezultata:

Teorema D. Jei yra teisinga apibendrintoji Rymano hipotezé, tai Algoritmas
2 yra polinominis kvantinis algoritmas, sprendZiantis isreikstino izomofrizmo
problemgq skaiciy kiinuose.

Tegul X yra normalioji projekciné kreivé vir$ baigtinio kiino F ir tegul k
yra jos funkcijy kiinas. Tegul Oy; ir O yra atitinkamai F[X] ir F(X)e =
{R € k(X) : deg R < 0} sveikieji uzdariniai kiine k. Gardelés pora, kurios
rangas antkuno k yra n, yra duomenys projektinio O ¢;-pomodulio L ¢; i§ erdveés
k™ ir laisvojo O pomodulio L i8 erdvés k", tokie, kad kL y; = kLo = k".
Jrodysime tokia teorema:

Teorema E. Vektoriy griZciy apimanciy kreive X kategorija yra ekvivalenti
kuno k gardeliy pory kategorijai.

Pateikiame funkcijy kiino k gardeliy pory skaic¢iavimo reiSkima. Tegul LP
yra funktorius i§ vektoriy griz¢iy apimanciy kreivés X kategorijos j aukSciau
aptartg gardeliy pory kategorija. Tada gauname keleta algoritminiy rezultaty.
Jei nenurodyta kitaip, sekancioje teoremoje E ir E’ yra vektoriy griZtés apima-
ncios kreive X.
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Teorema F. 1. Egzistuoja polinominis algoritmas, kuris, duotai gardeliy

10.

11.

12.

porai LP(E), apskaiciuoja LP(det(E)).

. Egzistuoja polinominis algoritmas, kuris, duotai gardeliy porai LP(E),

apskaiciuoja deg(E).

. Egzistuoja polinominis algoritmas, kuris, duotoms gardeliy poroms LP(E)

ir LP(E"), apskaiciuoja LP(E ® E").

. Egzistuoja polinominis algoritmas, kuris, duotoms gardeliy poroms LP(E)

ir LP(E"), apskaiciuoja LP(E @ E").

. Egzistuoja polinominis algoritmas, kuris, duotai gardeliy porai LP(E),

apskaiciuoja LP(EV).

. Egzistuoja polinominis algoritmas, kuris, duotoms gardeliy poroms LP(E)

ir LP(E’), apskaiciuoja LP(#om(E, E")).

. Jei f:Y — X yra normaliyjy projekciniy kreiviy morfizmas, tai eg-

zistuoja polinominis algoritmas, kuris, esant duotam LP(E), kai E yra
vektoriy grizté apimancia kreive Y, apskaiciuoja LP( f.(E)).

. Jei f irY yra kaip auksciau, tai egzistuoja polinominis algoritmas, kuris,

duotai garedliy porai LP(E), kai E yra vektoriy griZté apimancia kreivg
X, apskaiciuoja gardeliy porg LP(f*(E)) kreivés Y funkcijy kunui.

. Egzistuoja polinominis algoritmas, kuris, duotai gardeliy porai LP(E),

apskaiciuoja erdvés H°(X, E) baze.

Egzistuoja polinominis algoritmas, kuris, duotai gardeliy porai LP(E),
apskaiciuoja erdvés H' (X, E) baze.

Egzistuoja polinominis algoritmas, kuris, duotoms gardeliy poroms LP(E)
ir LP(E"), ir ¢ € H\(X,#om(E,E")), apskaiciuoja LP(E"), kur E”
yra E plétinys pagal E’, atitinkantis &.

Egzistuoja polinominis algoritmas, kuris, su duotu orakul apskaiciuo-
Janciu Hermito normaligsias formas pseudomatricoms virs O;, gardeliy
poras LP(E) ir LP(E’) bei matricq, vaizduojanciq LP( f), homomorfiz-
mui f: E — E’, apskaiciuoja LP(Ker( f)).

lidealus algoritmas, greitai i§sprendZiantis specifinj uzdavinj
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13. Egzistuoja polinominis algoritmas, kuris, su duotu orakulu, apskaiciuojanciy
Hermito normaligsias formas pseudomatricoms virs QOy;, ir duotoms
gardeliy poroms LP(E) ir LP(E") bei matricai, vaizduojanciai LP(f),
homomorfizmui f: E — E’, apskaiciuoja LP(Im( f)).

14. Egzistuoja polinominis algoritmas, kuris, su duotu orakulu, apskaiciuo-
Janciu Hermito normaligsias formas pseudomatricoms virs O z;, ir duotai
gardeliy porai LP(E), apskaiciuoja gardeliy poras LP(E)), ... ,LP(E,),
kad vektoriy griztés E\,...,E, yra neskaidZios, bei izomorfismq is
gardeliy poros LP(E) j gardeliy porq LP(E1 & ... ® (E,)).

15. Egzistuoja polinominis algoritmas, kuris, su duotu orakulu, apskaiciuo-
Janciu Hermito normaligsias formas pseudomarticoms virs Oy;, ir duo-
toms dvi gardeliy poroms LP(E) ir LP(E"), nustato, ar E ir E’ yra
izomorfiniai, ir, jei taip, apskaiciuoja izomorfizmg LP( f).

Visi aptarti algoritmai gardeliy poroms buvo realizuoti kaip Sagemath [89]
paketaﬂ

Metodai

Straipsnyje [55] Teorema [B] jrodoma parodant, kad miisy Amitsur algebry
konstrukcija yra ekvivalenti Brauerio algebry konstrukcijai, ir toliau pasinau-
dojant ankstesniais rezultatais Brauerio algebroms [S51, 2 sk]. Siame darbe
vietoj to pateikiame tiesioginj jrodyma, kaip sitlloma straipsnio [55]] pastaboje
3.8.

Tegu k yra globalus kiinas, R yra etaliné k-algebra ir S yra R-algebra,
kuri yra etaliné kaip k-algebra ir laisva kaip R-modulis. Tegu S®" yra n-lypé
tenzoriy sandauga S®g . . . ®g S. Priminsime Amitsuro komplekso apibréZima.
Kain € Zsgiri € [n+ 1]o, apibréZiame R-algebros homomorfizma
8? : S®n+1 N S®n+2

ap®...®a, — ap...a4i-191®a;®...0ay,
ir grupés homomorfizma

a;l\m: (S®n+l)>< N (S®n+2)><

X i | PETPT 3?()5)_”-

2https ://git.disroot.org/montessiel/vector-bundles-sagemath
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R-algebros S Amitsuro kompleksas yra tokia grupiy homomorfizmy seka:

SX agm (S®2)>< 6114’” (S®3)>< 6‘24’" .
Sun € Zs( galime nustatyti ng(R, S) = Ker 9, ,ojein > l,BZm(R,S) =
Im 82;}. Jei ¢ € §®3, Amitsuro algebra A(S, ¢) apibréZiama kaip R-modulis

$®2 su sandauga

xy = Trj (e3(x)cn (1), @

kur Tr} yra pédsako atvaizdis S®* — $®2, kur $®* laikomas S®2-algebra per
homomorfizmg ] : §% — 3,

Ivairiis Teoremos [B| teiginiai jrodomi i§samiais algebriniais skai¢iavimais,
tadiau pagrindinis argumentas grindZiamas izomorfizmy seka, atsirandancia
iSpleciant skaliarus j S. Tai yra, bet kuriai R-algebrai A leidZiame, kad Ag biity
S-algebra A ®g S. Tuomet parodome, kad

A(S,c)s = A(Ss,c ® 1) ~ Endg(Ss).

Daugelis rezultaty apie R-algebra A(S, ¢) iSplaukia i§ S-algebros Endg(Ss).

Teorema [C| jrodymas susideda i§ dviejy daliy. Algoritmo, skirto Amitsur
algebry sandaugoms apskaiciuoti, egzistavimas tiesiogiai i§plaukia i§ formulés
ir i8 to, kad

Tr%(ao ® a1 ® az) = Trg/r(ar)ag ® as.

Norint gauti tam tikros centrinés paprastosios algebros iSraiskig per Amitsuro
algebra, remiamés dviem faktais:

1. Jei A yra centriné paprastoji k-algebra, elementai u € A, tokie, kad
K = k[u] yramaksimalus algebros A komutatyvusis poalgebris,irv € A,
tokie, kad A = KvK, gali buti efektyviai apskaiciuoti.

2. Kai u, K ir v apibréZti kaip auk§¢iau, gauname izomorfizmg K®? ~ A,
atvaizduojantj ap ® aj j apva;. Norint rasti ¢ € K ®3 kad algebros A
sandauga atitikty formule (i), uZtenka iSspresti tiesiniy lyg¢iy sistema.

Teoremos [D] jrodymas remiasi polinominio kvantinio algoritmo, skirto
skaiCiuoti S-vienety grupes skaiciy kune, egzistavimu [9]. Jrodome teore-
ma, apibendrinancia straipsnio [29]] 7 teorema musy Amitsuro kohomologijos
nustatymui. Tai yra, jrodome, kad jei ¢ € Bi‘m(k,K), tai egzistuoja tam
tikros aibés SV, §(?) atitinkamy viety i§ K®? ir K®3 tokiy, kad ¢ yra algeb-
ros K® S?)_vienety grupéje, o pirmavaizdis a pagal d},, yra algebros K®?
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S _vienety grupéje. Kadangi tokios vienety grupés yra baigtai generuoja-
mos abelinés grupés, atvaizdj 6l‘m,
atvaizdZiu tarp Z-moduliy, o pirmavaizdj galima apskai¢iuoti naudojant esa-

kai jis yra ribotas, galima laikyti tiesiniu

mus tiesinés algebros vir§ Z algoritmus. PaZymime, kad priklausomybé nuo
apidenbrintosios Rymano hipotezés atsiranda dél to, kad S turi apimti visas
vietas, esancias vir§ K viety aibés, kuri generuoja jo klasés grupe. Apibent-
rintoji Rymano hipotezé duoda polinomin;] virSutinj rézj skaiciy kiino, taigi ir
etalinés algebros virs$ skai¢iy kiino, klasés grupés generatoriy aibés minimalaus
dydZio apribojima.

Musy pateiktas [29, 7 teorema] apibendrinimo jrodymas atitinka Fiekerio
jrodymo struktiira, taciau dél bendresniy saglygy susiduriame su naujais sunku-
mais. Pagrindiné pirminio jrodymo lema, [29] 9 lema], yra iSnykimo teorema
apie kiiny dalikliy grupiy H' grupes. Tai yra Hilberto 90 teoremos apie H'
grupés trivialuma kiino daugiamaciai grupei apibendrinimas. Musy atveju tu-
rime dirbti ne tik su skaiciy kunais, bet ir su etalinémis algebromis vir§ skaiciy
kiny. Todél turime jvesti etalinés algebros viety ir dalikliy apibréZimus ir
jrodyti kai kuriuos pagrindinius rezultatus, kuriy nepavyko rasti literaturoje.

Teorema [E] nesunku gauti i§ apibréZimy. Gardeliy poras patogu vaizduoti
skai¢iavimo budu, nes tokios yra Of; ir O-gardelés. IS tiesy, Oy; yra De-
dekindo sritis, todél Oy;-gardelé yra formos ajx; @ ... @ a,x,, kur a; yra
trupmeniniai ©;-idealai kiine k, o x; sudaro erdvés k" bazg. Tokiag gardele
galima pavaizduoti matricos G L, (k) ir daliniy frakciniy ©;-idealy rinkinio
(ag,...,a,) duomenimis. Kadangi Ziedas O, yra pagrindiniy idealy sritis,
Oc-gardelé turi baze ir gali biiti pavaizduota matrica GL, (k).

Keletas algoritmy, pateikty teoremoje[F tiesiogiai iSplaukia i§ apibrézimy.
Kai kuriems kitiems reikia sudétingesniy metody, kurie aptariami toliau. Toliau
gardelés poros L atveju atitinkama O y;-gardelé Zymima L 7;, o atitinkama O,-
gardelé Zymima L.

* Teiginyje |§] apskai¢iuojame gardelés poros L H° grupe. Tai Rymano-
Rocho problemos funkcijy kiiny dalikliams apibendrinimas. Musy me-
todas remiasi Popovo redukuotos matricos formos skaiciavimu vir$ F'(X)
ir yra straipsnio [45] metodo apibendrinimas. PaZymime, kad Sis meto-
das taip pat naudojamas straipsnyje [46] maksimaliy eiliy porai F(X)-
algebroje, kuri yra atskiras gardelés poros atvejis. Jrodome, kad H’(L) =
L ¢; N L, tinkleliy sankirtg apskai¢iuojame naudodami Popovo redukuo-
ta pagrinda L y; pagrindo L., atZvilgiu. Popovo redukuotasis pagrindas
yra analogiSkas ortogonaliojo Z-modulio pagrindui ir leidZia paprastai
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apskaiCiuoti L s; N Lo kaip mazy gardelés L 7; elementy aibe.

Teiginyjepirmos kohomologinés grupés H' (L), priklausanciai rango
n gardeliy porai L, skaiCiavimas sukelia daugiau sunkumy. Pritaikius
straipsnio [94] metods, gardelés poros H' grupé apibréZiama kaip F-
vektoriné erdve R} /(L" + k™), kur Ry yra kino k reparticijy Ziedas, o
L’ yra tam tikra gardelé, esanti erdveje R) ir apibréZta gardeliy pora L.
Dél to kyla keletas sunkumy: Ziedo Rj elementai yra begaliniai kiino
k elementy rinkiniai, todél paprastai jy negalima pateikti apskaic¢iavimo
budu. Taip pat néra akivaizdaus biido patikrinti, ar iSreiSkiami erdvés
R} elementai yra toje pacioje ekvivalentumo klaséje, arba sukurti pilng
likiniy sistemg. AkivaizdZiausias buidas apeiti §iuos sunkumus yra rem-
tis Sero dualumu, kuris duoda izomorfizma tarp grupés H' (L) ir dualios
F-vektorinés erdvés, priklausancios erdvei H(L"’), kur L” yra gardeliy
pora, apibréZta L. Nors to pakanka, kad apskai¢iuotume erdvés H'(L)
F-dimensijg, mums reikia, kad erdvés H'!(L) elementai biity isreiksti
kaip reparticijy vektoriy liekany klasés, tam kad galétume apskaiciuoti
gardeliy pory plétinius (Zr. teiginj[TT)). Tam pasiekti, mes linearizuojame
iSreiksting Sero dualumo formulg, apribodami jg erdves R} poaibiu, ku-
ris yra baigtinés dimensijos F-vektorineé erdvé. Tuomet galime efektyvai
apskaiciuoti elementy, priklausanciy H erdvés dualiai erdvei, pirmvaiz-
dZius ir gauti elementy, priklausan¢iy kiekvienai H'!(L) ekvivalentumo
klasei, skai¢iavimo reiSkima.

Tegul ¢ yra vektoriy griZciy plétinys apimantis kreive X, kurj pateikia
tikslioji seka
0-G—-E—-F—O.

Tiesoginj gyvatés lemos taikymg komutatyviai diagramai, sudarytai nau-
dojant vektoriy grizéiy #om(F,G), Hom(F,E) ir Hom(F,F) gle-
bigsias rezoliucijas, galime susieti su plétiniu & grupés H' (#om(F, G))
elementu, kurio aprasas kaip adeliniy vektoriy liekany klasés pats savai-
me duoda iSreikstinj LP(E) aprasa.

Homomorfizmy branduoliy ir atvaizdZiy skai¢iavimas yra tiesoginis
rezultaty apie Hermito normaliaja forma taikymas.

Vektoriy grizéiy, taigi ir gardeliy pory kategorija, yra Krulo-Smito
kategorija [4]. IS ¢ia iSplaukia, kad tai, kaip gardeliy pora suskyla
kaip neskaidZiyjy objekty tiesoginé suma, visiSkai priklauso nuo jos
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endomorfizmy algebros strukturos. IS tikryjy, tegu A yra F-endomorfizmy
algebros gardeliy poros L puspaprasté faktor-algebra. Turime izomorfiz-
mg

Ax=M, (D)) &...& M, (Dy),

kur D; yra F-algebros su dalyba. Tada L turi tokj skaldymo modelj:
L=L"®.. ®LJ,

kur L; yra neskaidi, o D; yra gardeliy poros L; endomorfizmo algeb-
ros puspaprastas santykis. Tode¢l gardeliy poros skaldymo apskaiciavi-
mas susiveda j jo endomorfizmo algebros skai¢iavimo uZdavinj, jo pu-
spaprastés faktor-algebros centriniy idempotenty skai¢iavimo uzdavinj,
ir po to iy idenpotentiniy endomorfizmy vaizdy skai¢iavimg. Endo-
morfizmo algebra yra gardeliy pory homomorfizmy erdvé H°, todél ji
yra apskaiciuojama pritaikant Teiginius [6]ir [J] i§ Teoremos [F| Algebros
struktiiros vir§ baigtinio kiino skai¢iavimas yra nagrin¢jamas straipsny-
je [[70]]. Galiausiai, galime apskai¢iuoti endomorfizmy vaizdus, remiantis
Teiginiu [13]i§ Teoremos [F}

Kai bazinis kiinas F yra pakankamai didelis (t. y. didesnis nei L rangas),
izomorfizma tarp gardeliy pory galima rasti imant atsitiktinius homomor-
fizmus. Atlikus pakankamai bandymy, izomorfizmas yra randamas, arba
yra labai didelé tikimybé, kad dvi gardeliy poros néra izomorfinés. Kai
bazinis kunas yra maZas, apskai¢iuojant abiejy jvesties gardelés pory
skaidymo schema, problema susiveda j izomorfizmy tarp neskaidziy
objekty skai¢iavima. Tai savo ruoZtu atliekama apskaiciuojant jy tiesio-
ginés sumos endomorfizmy algebros struktiirg. IS tiesy, jei abi gardelés
poros yra izomorfinés, tai endomorfizmo algebros puspaprastas santykis
turés formg M>(D), kur D yra F-algebra su dalyba, o morfizmas, ati-

. . [0 0 . . . . .
tinkantis L ol yra izomorfizmas. Kita vertus, jei gardeliy poros néra

izomorfinés, endomorfizmo algebros puspaprastas santykis bus formos
D @ D», 0 D; F-algebros su dalyba.

Naujumas

Musy pristatomos Amitsuro algebros yra naujos, nors centriniy paprastyjy

algebry ir Azumajos algebry iSraiSkos naudojant Amitsuro (arba etaling) koho-

mologija jau yra Zinomi [[2}14}18},73]]. Musy konstrukcija i$siskiria tuo, kad
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bendrumag aukojame dél praktiSkumo: daugyba Amitsuro algebroje yra tieso-
ginés formulés su apibréZian¢iu Amitsuro kociklu rezultatas. Sia Amitsuro
algebros iSraiSka apibendrina esamus cikliniy ir kryZminiy sandaugy iSraiSkus
ir 1§ tikryjy yra ekvivalentus Brauerio algebros iSraiSkai [55]]. Musy iSraiSkas
tenkina Teoremg [C] taCiau cikliniai ir kryZminiy sandaugy iSraiskai tenkina
tik pirmajj teoremos teiginj. Tam tikros centrinés paprastosios algebros cikli-
nei (arba kryZminio sandaugy) iSraiSkai apskaiciuoti reikia Zinoti maksimaly
komutatyvyjj poalgebrj, kuris yra bazinio kiino ciklinis plétinys (arba Galua
plétinys). Kiek mums Zinoma, néra efektyvaus algoritmo tokiam poalgebriui
apskaiciuoti.

Kita vertus, nors teoriSkai Brauerio iSraiSkos konstravimui reikia zinoti tik
bet kurj maksimaly komutatyvyjj poalgebrj, Brauerio algebros ir Brauerio fak-
toraibés yra iSreiSkiamos $io poalgebrio normalaus skiliojo kiino elementais.
Aritmetinés statistikos rezultatai rodo, kad su didele tikimybe laipsnio d mat-
ricinés algebros atsitiktinis maksimalus komutatyvusis poalgebris yra bazinio
kino plétinys su Galois grupe S, [28]. Toks plétinys normaliame skiliame
kune yra meskaiciuotinas, nes tokio kiuino laipsnis yra d!. Taigi, tai kad abu
Teoremos [C|teiginiai galioja, yra nauja miisy Amitsuro algebros konstrukcijos
savybe.

Teorema [D] i§ esmés yra straipsniy [29,[82] rezultaty apibendrinimas iki
Amitsuro kohomologijos. Nors miisy naudojamas jrodymo metodas yra ana-
logiskas [29], 7 teoremos] jrodymui, miisy prielaidos sukelia papildomus sun-
kumus. IS tiesy, tai reikalauja etaliniy algebry divizoriy vir§ globaliy lauky
teorijos ir jy skaidymo elgsenos. Nors musy jrodomi ir naudojami rezultatai,
be abejo, labai prieinami specialistams, literatiiroje nepavyko aptikti nuorodos
} juos, taigi jie gali buiti jdomils patys savaime.

Kiek mums Zinoma, literattiroje néra salyginio polinominio kvantinio algo-
ritmo, skirto isreikstinio izomorfizmo problemai skai¢iy laukuose spresti. Zi-
nomi klasikiniai algoritmai arba yra orientuoti j ribotas problemos versijas (ap-
ribojant bazinj laukg arba algebros laipsnj), arba turi eksponentinj sudétinguma
pagal kai kuriuos parametrus. Todél miisy algoritmas yra pirmasis polinominis
kvantinis algoritmas, sprendZiantis iSrekStinio izomorfizmo problema skaiciy
laukuose esant teisingai apibendrintai Rymano hipotezei.

Vektoriy griz¢iy vir§ projekciniy kreiviy skaic¢iavimai yra nagrin¢jami kaip
atskiri skai¢iavimy su koherentinais pluostais vir§ projekciniy schemy atvejai,
kai algoritmai, naudojantys Grobnerio bazes, iSplaukia i§ koherentiny pluosty
kaip graduoty moduliy Sero apraSymo [78|]. Tai, pavyzdZiui, yra Sagemath

168



ir Magma [10,[89] atvejis. Buvo sukurta ir daugiau efektyviy metody tokiy
pluoSty kohomologiniy grupiy skai¢iavimui, Zr., pavyzdZiui, [27,[611[83].
Musy metodas yra siauresnis, taciau leidZia taikyti labiau specializuotus
algoritmus ir reiSkimus . Musy Ziniomis, metodas, iSreiSkiantis skaiiavimo
budu vektoriy griztes kaip gardeliy poras, yra naujas. Miisy vektoriy griz¢iy
reiskimas kaip gardelés virs§ integraliniy pertvary Ziedo yra artimas nepublikuo-
to Vengo darbo apie taip vadinamasias adeliSkas vektoriy griztes idé¢joms [93]].
0-nés kohomologijos grupiy skai¢iavimas yra Zinomy metody, skirty Rymano-
Rocho erdvéms [45] ir eiliy sankirtoms [46]] skai¢iuoti, apibendrinimas. Milsy
metodas, skirtas iSreikStiniam Sero dualumo izomorfizmy skaiciavimui, taip

pat yra naujas.

ISvada

Sioje disertacijoje mes pristatome centriniy paprastyjy algebry israiska, pagrjsta
Amitsuro kohomologija, kurios vienas i§ rezultaty yra efektyvus skai¢iavimas.
Jei yra teisinga apibendrintoji Rymano hipoteze, §ig iSraiSka panaudojome po-
linominiam kvantiniam algoritmui, kuris iSsprendZia iSreikstinio izomorfizmo
problema. Taip pat pristatome vektoriy grjZ¢iy virS normaliyjy projekciniy
kreiviy skai¢avimo iSraiSkg ir algoritmus, kurie sprendZia daugelj nattraliy
uzdaviniy.

Pastaroji konstrukcija susijusi su iSreikstinio izomorfizmo problema pagal
metoda, apraSyta [5.3.1] sekcijoje. Turédami Sig priemong, tolimesniuose tyri-
muose ketiname pasinaudoti Zinomais rezultatais apie vektoriy grjZ¢iy struktiirg
vir§ kreiviy, turiniy teigama rusj, tam kad pateiktume iSreikStinio izomorfiz-
mo uZdavinio algoritmus globaliyjy funkcijy laukams. Kita tolimesnio darbo
perspektyva - polinominiy algoritmy, skirty Hermito normaliosioms formoms
pseudomatricoms vir$ globalaus funkcijy lauko Ziedo O; skaiCiuoti, paieSkos.

Amitsuro algebros turi potencialo tolimesniems tyrimams. Amitsuro iSrei-
kStinio izomorfizmo uZdavinio versija galima polinomiSkai suvesti j bendrajj
aiSkaus izomorfizmo uZdavinj, o pastarajam uzdaviniui spresti néra Zinomo
efektyvaus klasikinio algoritmo globaliuose laukuose, i§skyrus F(X). Sie fak-
tai rodo, kad iSreik$tinio izomorfizmo uzdavinys gali biiti naudojamas kaip
sunkus kriptografijos uzdavinys (Zr. [53]], kuriame pateikta panasiu uZdaviniu
pagrjsta identifikavimo schema). Problema, kaip surasti kokras¢io pirmavaizdj
per grupés homomorfizmg ' : Cl‘m(k, K) — Bim(k, K), tiesiogiai redukuo-
jama | iSreikStinio izomorfizmo problema, kai grupés Bim(k,K) elementai
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koduoja problemos atvejj, o grupés Cl‘m(k, K) elementai koduoja sprendimo
liudininkus. Si idéja gali biiti naudinga kuriant kriptografinius protokolus.
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