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Notation

N set of positive integers

Z ring of integers

Q field of rational numbers

R field of real numbers

C field of complex numbers

Q>0 set of positive rational numbers

dega degree of an algebraic number a (over Q)
L/K field extension (L D K)

[L: K] degree of a field extension L/K
Gal(L/K) Galois group of a field extension L/K
char K characteristic of a field K
K[xi,x9,...,2,] polynomial ring in n variables over a field K
w(n) Euler’s totient function

Cn primitive nth root of unity e s

S(X) symmetric group on a set X

Sh symmetric group of degree n

A, alternating group of degree n

(o) subgroup generated by an element o

Ha G H is a normal subgroup of G

= indicates that two structures are isomorphic
ime image of a homomorphism ¢

ker kernel of a homomorphism ¢
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Chapter 1

Introduction

1.1 Research topic

The research presented in this thesis is centered around algebraic num-
bers and the main framework is constituted by number fields. Recall
that a complex number « is called algebraic if there exists a nonzero

polynomial
f(x) = apa" +ap_12" "+ + a1z +ag

with rational coefficients a;, having «a as a root. If there is no such a
polynomial of degree less than n, then we say that « is an algebraic
number of degree n. Meanwhile, by a number field of degree n we refer
to an extension field K of the field of rational numbers Q such that K,
regarded as a vector space over Q, has finite dimension n.

It is well known that the set of algebraic numbers itself forms a
field, i.e., for any algebraic numbers « and 3, the sum «+ § and the
product «- 3, as well as the additive and multiplicative inverses —a and
a~! (provided a # 0 for the second case), are also algebraic. Therefore,
given two algebraic numbers o and 8 of certain degrees, one can ask,
for instance, what are the possible degrees of a+ 3 (or - 3). In 2012
Drungilas, Dubickas and Smyth [§] introduced a problem to this end:

Find all possible positive integer triplets (a,b,c) € N3 for which there
exist two algebraic numbers o and B, with degrees a and b, respectively,
such that the degree of a+ 8 equals c.

When such « and S exist, it is said that the triplet (a,b,c) is sum-feasible.
In fact, Dubickas asked this question in 2007; independently, it is one of
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the questions at MathOverﬂowE posed in 2010.

In [§], there are also proposed similar problems for the product of
algebraic numbers and the compositum of numbers fields by saying that
a triplet (a,b,c) € N? is

o product-feasible if there exist algebraic numbers « and 5 of degrees
a and b, respectively, such that the degree of -3 is ¢,

o compositum-feasible if there exist number fields K and L of degrees
a and b, respectively, such that the degree of their compositum K L

is c.
This doctoral thesis extends the investigation of product-feasible and

compositum-feasible triplets started in the study by Drungilas et al. [g].

1.2 Aims and problems

In the thesis we aim to
o extend the previous classification of compositum-feasible triplets;

¢ introduce the notion of an irreducible compositum-feasible triplet

and obtain nontrivial examples of such triplets;

e initiate the classification of product-feasible triplets.

1.3 Methods

Most of the methods used in the thesis falls within the scope of abstract
algebra. We mainly elaborate the techniques of finite group theory,
field theory and Galois theory. Besides various classical theorems, some
specific results on the relations between polynomial roots are also used.
All these auxiliary results as well as some prerequisites from abstract

algebra are overviewd in Chapter 2]

1.4 Actuality and novelty

Most of the results presented in this thesis ar new. A minor exception
is Theorem [4.2 The first (quite cumbersome) proof of this theorem

1ht'cp ://mathoverflow.net/questions/30151/
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appeared in [38]. We proved it independently and published in [26]
almost at the same time. Nevertheless, our proof is considerably simpler.

Although algebraic numbers and number fields are very classical
objects, their study is still a significant trend in modern mathemat-
ics. Apart from general algebraic number theory, these objects are also
widely used in computational number theory, Diophantine equations,
Diophantine approximations, etc. We hope that our results will be of
interest to other researches. Also, study of arithmetical properties of
algebraic numbers and number fields is one of directions of Lithuanian
school of number theoryE], and our work continues this tradition.

1.5 History of the problem and the main results

Some prehistory As it is noted by Stillwell in [34], one of the first
appearances when algebraic numbers took place in its own rigths was
in the works of Euler [14]. Namely, Euler performed some far-reaching
(though incomplete) manipulations with algebraic numbers to prove that
the only positive integer solution of the equation y? = 2242 is (z,y) =
(5,3) (see also [34] for a sketch of the Euler’s argument).

The more systematic investigation of algebraic numbers was started
by Gauss [I5]. He studied a particular instance of algebraic numbers,

the so-called Gaussian integers
a+bi, where a,b € Z,

as a tool for developing the theory of biquadratic residues. Correspond-
ingly, in studying the cubic residues, Jacobi [19] and Eisenstein [13]
developed the arithmetic of the algebraic numbers

27
a-+be s |, where a,b € Z,

which are nowadays known as the Fisenteins integers.

This path was followed by Kummer [22, 21]. Speaking in modern
terms, Kummer studied the algebraic integersfﬂ of the pth cyclotomic
field for a prime number p (the Gaussian and the Eisenteins integers are

2See surveys on the number theory in Lithuania [24} 25).
3Recall that an algebraic number is called algebraic integer if all the coefficients
of its minimal polynomial are in Z.
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special cases of these when p =2 and p =3, respectively). He noticed that
these numbers in general do not possess the unique factorization into
‘primes’ (i.e., the analogue of the fundamental theorem of arithmetic).
In order to overcome this defect, Kummer introduced the notion of an
ideal number. Using this concept, he was able to prove the famous
Fermat’s last theorem for certain prime exponents, called reqular primes
(for the definitions of an ideal number and a regular prime, see [28], [16]).

Dedekind [4] refined the concept of an ideal number by introducing
the more clever notion of an ideal which today is basic in ring theory.
Also, Dedekind was the first who defined the notion of a number field.
He recognized the significant analogy between the arithmetic of number
fields and the arithmetic of algebraic function fields (that is, algebraic
extensions of the field of rational functions C(x) in one variable x over
C). The ideas of Dedekind was further developed by Hilbert, Noether,
Artin et al. creating the foundations of modern algebra and algebraic

number theory.

The three problems Although our three feasibilty problems seem
quite natural, only a few directly related results we can find in the
literature until 2012. For instance, [17, 2, 9, 10] provide some sufficient
conditions under which the degree of a+ 3 is ‘maximal possible’, i.e.,
deg(a+ ) = dega-deg . In particular,

Proposition 1.1 ([I7]). Let o and  be algebraic numbers. Suppose
dega =a, degf =b and ged(a,b) =1. Then deg(a+ ) = ab.

That is to say, if the triplet (a,b,c) is sum-feasible and ged(a,b) =1,
then ¢ = ab. Anyway, the systematic treatment of the question on the
degree of two algebraic numbers was started in the study of Drungilas
et al. [§], and then it was continued in [7} [6].

The three feasibilty problems are related in the following way:

Proposition 1.2 ([8, Proposition 1]). Each compositum-feasible triplet

s also sum-feasible.

Proposition 1.3 ([6l, Theorem 1.1]). Fach sum-feasible triplet is also
product-feasible.

In other words, if C, S and P denote sets of all possible compositum-
feasible, sum-feasible and product-feasible triplets, respectively, then the

14



following inclusions hold:
CCSCP. (1.1)

Consequently, if a triplet is not product-feasible, then it is neither com-
positum-feasible nor sum-feasible. Moreover, both inclusions in are
proper. Indeed, as for the first inclusion note that the triplet (n,n,1) is
sum-feasible for any positive integer n (e.g., take a = ¥/2 and 8 = —a/).
However, it is clear that the triplet (n,n,1) is not compositum-feasible
for any integer n > 1. As for the second inclusion, note that the triplet
(2,3,3) is product-feasible (e.g., take a = e and B = /2; then af is
conjugate to B and also has degree 3). However, (2,3,3) is not sum-
feasible since the sum of any quadratic number and any cubic number
must be of degree 6 due to Proposition [I.1

Clearly, if the triplet (a,b,c) is sum-feasible (resp. product-feasible),
then so are all the six possible permutations of (a,b,c). In the case of
compositum-feasible triplets, only the degrees a and b (but not ¢) can be
permuted. However, if the triplet (a,b,c) is compositum-feasible, then
obviously a < ¢ and b < ¢. Thus, when finding sum-feasible, product-
feasible or compositum-feasible triplets we may without loss of generality
restrict ourselves to the triplets (a,b,c) satisfying a < b < c.

Note that for any algebraic numbers « and 3,

[Q(e, 8) : Q] = [Q(a, 5) : Q(B)] - [Q(B) : Q] < [Q(a) : Q- [Q(B) : Q.

This, together with the primitive element theorem, implies that if a
triplet (a,b,c) is sum-feasible, product-feasible or compositum-feasible,
then we must have

c < ab. (1.2)

Moreover, if (a,b,c) is compositum-feasible, then, by the tower law for
field extensions,

alc and blc. (1.3)

The following proposition gives one more necessary condition for a triplet
to be of some feasibility type:

15



Proposition 1.4 (|8, Lemma 14]). Suppose that a triplet (a,b,c) is sum-
feasible, product-feasible or compositum-feasible. Then c |lcm(a,b)-t for

some positive integer t < ged(a,b).

However, these are not sufficient conditions, and sometimes it may be
difficult to decide whether a triplet is of some feasibility type. In [§], all
compositum-feasible and also all sum-feasible triplets (a,b,c) satisfying
a < b< ¢, with b <6, have been described except for one special case
(6,6,8). In [7], the missing case (6,6,8) from that classification has
been treated by showing that the triplet (6,6,8) is not sum-feasible, and
therefore not compositum-feasible. Thus, the classification has been
extended to b < 7.

Chapter [3] of the thesis is devoted to the compositum problem. We
extend the previous classification of compositum-feasible triplets to the
case b < 9 by proving the following

Theorem Let a and c be positive integers.

1. The triplet (a,8,¢), a < 8, is compositum-feasible if and only if
¢ < 8a, alc and 8|c, with a single exceptional triplet (8,8,40), which

s not compositum-feasible.

2. The triplet (a,9,¢), a <9, is compositum-feasible if and only if
¢ < 9a, alc and 9|c, with only two exceptional triplets (9,9,45) and
(9,9,63), which are not compositum-feasible.

Apart from the partial classification, [, [7] also provide more general

results on certain special forms of triplets.

Proposition 1.5 ([8, Proposition 19]). For any positive integers a and
b the triplet (a,b,ab) is compositum-feasible.

Proposition 1.6 ([8, Proposition 29]). Let n > 2 be an integer.
1. The triplets (n,n,n) and (n,n,n(n—1)) are compositum-feasible.

2. The triplet (n,n,n(n—1)/2) is sum-feasible and product-feasible,
but if n is even then it is not compositum-feasible.

3. The triplet (n,n,2n) is compositum-feasible.

In Chapter [3] we obtain some new results related to triplets of the

form (n,n, k):
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Theorem Let n >4 be an integer. The triplet (n,n,n(n—2)) is

compositum-feasible for even n and is not product-feasible for odd n.

Theorem Let n > 8 be an integer. Then, for any prime number p
satisfying § < p <n—2, the triplet (n,n,np) is not product-feasible.

Also, in [§], some interesting results related to so called exponential
triangle inequality were obtained. Let p be a prime number and n €
N. Denote by ord,(n) the exponent to which p appears in the prime
factorization of n (for p{n we set ordy(n) =0). We say that a triplet
(a,b,c) € N3 satisfies the exponent triangle inequality with respect to a

prime number p if

ordy(a) <ord,(b) +ord,(c), ordy(b) <ordy(a)+ordy(c), and

(1.4)
ordy(c) < ordy(a) +ordy(b).

Proposition 1.7 ([8, Theorem 6]). If a triplet (a,b,c) € N® satisfies the
exponent triangle inequality with respect to every prime number, then

(a,b,c) is sum-feasible and product-feasible.

Note that the analogous statement for compositum-feasible triplets
does not hold. For instance, the triplet (a,b,c) = (6,10,15) satisfies
with respect to every prime p. However, it is not compositum-feasible,
because the necessary conditions are not satisfied. Nevertheless,
Proposition can be fixed for the compositum case by replacing
with a slightly stronger condition:

Proposition 1.8 ([8, Theorem 7). If a triplet (a,b,c) € N satisfies
max{ord,(a),ord,(b)} < ordy(c) < ordy(a) + ord,(b) (1.5)

for every prime number p, then (a,b,c) is compositum-feasible.
Proposition [I.8] follows from a more general result:

Proposition 1.9 ([8, Corollary 27]). Suppose p is a prime and u, v,
w are nonnegative integers such that max{u,v} < q<u-+wv. Then, for
any compositum-feasible triplet (a,b,c), the triplet (ap™,bp,cp™) is also

compositum-feasible.

In order to prove Proposition take any triplet (a,b,c) satisfying
(1.5), and then, starting with the compositum-feasible triplet (1,1,1),

17



apply Proposition [1.9| repeatedly for each prime p that divides at least
one of the numbers a, b and c¢. In particular, it follows

Corollary 1.10. Suppose p is a prime and w, v, w are nonnegative
integers such that max{u,v} < g <wu+wv. Then the triplet (p*,p*,p") is
compositum-feasible.

By the way, Proposition [1.9]is a partial case of the following conjec-
ture which was proposed in [§]:

Conjecture 1.11 ([8, Conjecture 6]). If the triplets (a,b,c) and (a’,V/,c)
are compositum-feasible (resp. sum-feasible, product-feasible), then the
triplet (aa’,bb’,cc’) is also compositum-feasible (resp. sum-feasible, pro-
duct-feasible).

In general, it is not known whether this conjecture is true or false
even for compositum-feasible triplets. (Note that if the conjecture were
true for sum-feasible either product-feasible triplets, then it would also
hold for compositum-feasible triplets due to Propositions and )
One more specific example for the conjecture is the following

Proposition 1.12 (Special case of [6, Proposition 3.2.]). Suppose that
the compositum-feasible triplets (a,b,c) and (a',b',c) are attained with

number fields K, L, and K', L', respectively, i.e.,

[K:Q]=a, [L:Q]=0b, [KL:Q]=c¢,
[K':Q]=d,[L:Q =V, [K'L:Q=C.

Let M be the Galois closure of K'L'. If the Galois group Gal(M/Q) is
solvable, then the triplet (aa’,bb',cc’) is compositum-feasible.

For the both cases of sum-feasible and product-feasible triplets the
following partial result takes place:

Proposition 1.13 ([8, Proposition 28]). Suppose that the triplet (a,b,c) €
N3 satisfies the exponent triangle inequality with respect to any prime
number. Then for any sum-feasible (resp. product-feasible) triplet (a’,V',c)
the triplet (aa’,bt,cc’) is also sum-feasible (resp. product-feasible).

Again, for the compositum case the analogous statement is not true
(for a counterexample, take a compositum-feasible triplet (a,b,c) = (1,1,1)
and (a/,V/,) = (6,10,15)).

18



The last section of Chapter [3| contains some more remarks on Con-
jecture for the compositum case. In particular, we introduce a new
notion of an irreducible compositum-feasible tripet, i.e., a triplet that can-
not be obtained in the form (ad’,bb’,cc’) for some compositum-feasible
triplets (a,b,c) and (a’,b',c’). Moreover, we give a nontrivial example of
an infinite family of such triplets:

Theorem (3.16L For any integer n > 2 the compositum-feasible triplet
(n,n,n(n—1)) is irreducible.

We note that in [8,[7], there are no particular consideration of product-
feasible triplets, only some simple cases being handled, e.g.,

Proposition 1.14 ([8, Theorem 8]). The triplet (2,t,t) € N3 is product-
feasible if and only if 2|t or 3|t.

The special case (p,b,c), where p is a prime number and p{ b, has
been studied by Virbalas [38]. In particular, he proved the following

Proposition 1.15 (|38, Theorem 3]). Let o and 5 be algebraic numbers.
Suppose dega = p, deg S = b, where p > 2 is a prime number, p{b and
p—11b. Then deg(ap) = pb.

That is to say, if the triplet (p,b,c) is product-feasible, where p > 2
is prime, ptb and p—11b, then ¢ = pb.

Chapter [] is devoted to the product question. We describe all
product-feasible triplets (a,b,c), satisfying a < b < ¢, with b < 7:

Theorem All the triplets (a,b,c) € N3 with a <b<ec, b< 7 that
are product-feasible are given in Table[.]]

By the way, in Chapter [4] we study triplets of some particular forms,
among which the most interesting case is (n,(n—1)k,nk), where k > 1
and n > 2. We prove the following

Theorem[4.5] Let k> 1 be an integer. Then the triplet (n,(n—1)k,nk),
n = 2, is product-feasible if and only if n is a prime number.

1.6 Approbation

The results of the thesis were presented at the 32th International Confer-
ence Journées Arithmétiques (JA 2023, July 3 - 7, 2023, Nancy, France),
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at the International Scientific Conference Dedidacted to the 160th an-
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Theory Seminar of Vilnius University.
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Chapter 2

Literature review

2.1 Prerequisites from abstract algebra

In this section, we recall some prerequisite knowledge of algebra. Al-
though our research is concerned only with the number fields, for the
sake of completness we present the basics in a more general set up (over
arbitrary fields).

Throughout, let L/K denotes a field extension, i.e., K is a subfield
of L.

Algebraic elements An element « € L is said to be algebraic over K
if there exists a non-zero polynomial f(z) € K[z] such that f(a)=0. Let
p(z) € K[x] be a monic polynomial of least degree such that p(a) = 0.
For any o € L that is algebraic over K there exists exactly one such a
polynomial p(z). It is called the minimal polynomial of o over K and its
degree is called the degree of o over K. Recall the simplest properties

of minimal polynomials.

Proposition 2.1 (J40, Chapter I1,§2]). Let p(z) be the minimal polyno-
mial of o € L over K. Then p(x) is irreducible over K. If f(x) € K|[z]
is any other polynomial such that f(a) =0, then p(x) divides f(x) over
K.

If elements a, 8 € L are algebraic over K and have the same minimal
polynomial over K, then we say that a and § are conjugate over K.

A field {2 is called algebraically closed if every polynomial in 2[z] of
degree > 1 has a root in (2. Recall that any field K can be embedded
in some algebraically closed field 2 (see [40, Chapter I11,§14]), e.g., if
K =Q, then (2 can be taken to be C.
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Finite field extensions Note that given any field extension L/K we
can regard L as a vector space over K. The dimension of this vector
space is called the degree of the field extension L/K and it is denoted
by [L: K]. If [L: K] is finite, then L/K is said to be a finite extension.
Note that finiteness of L/K implies that any « € L is algebraic over K.

The degree of an extension possesses the following multiplicative
property which is called the tower law:

Proposition 2.2 ([36, Theorem 9.110]). Let M be an intermediate field
between K and L, i.e., K C M C L. If the extensions M /K and L/M
both are finite, then L/K is also finite and

[L:K]=[L:M]-[M:K].

Now take any elements ay,aq,...,a, € L. Evidently, the set

{f(al,ag,...,an)

s frg € Kz, xa,.. . x0], g(ar,a0,...,ap) 750}
g(Oél,QQ,...,an)

is an intermediate field between K and L. It is denoted by K (aq,as,...,ay)
and is referred to as the field generated by aq,a9,...,a, over K. If, in
particular, n =1 and a; =: « € L is algebraic over K, then K («) is called
a simple algebraic extension of K. The structure of such extensions can

be described as follows:

Proposition 2.3 ([40, Chapter I1,§2]). Let o € L be algebraic element
over K of degree n. Then the elements 1,a,02,...,a" "1 form a basis of

K(«), regarded as a vector space over K, i.e., [K(a): K] =mn and
K(a) = {Cn—lan_l +"'+C2042+C104+Co ¢ € K}

In fact, any finite extension of a field of zero characteristic is a simple
algebraic extension. This is known as the primitive elemenet theorem:

Proposition 2.4 ([36, Theorem 11.122]). Let char K =0, and let L/ K
be a finite extension. Then there exists a € L such that L = K(«).

Galois group of a field extension With any field extension L/K we
can associate the group Aut(L/K) consisting of all the K -automorphisms
of L, i.e., field automorphisms o : L — L such that o (k) =k for any k € K.
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This is a group under the composition of functions. If L/K is a finite ex-
tension, then |Aut(L/K)|< [L: K] (see [36, Proposition 10.68]). A finite
extension L/K is said to be a Galois extension if |[Aut(L/K)|=[L : K].
In that case, Aut(K/L) is called the Galois group of the extension L/K
and is denoted by Gal(L/K).

At least when char K =0, any finite extension L/K can be improved
to be Galois by making the extension possibly larger. Indeed, consider
the extension L/K as contained in some algebraically closed field (2.
Write L = K(a) for some a € L (this is possible by Proposition [2.4)),
and let p € K[z] be the minimal polynomial of « over K. Take M to
be the splitting field of f over K, ie., M = K(aq,as,...,ay), where
a1 :=Q,Q9,...,a, € (2 are all the roots of f. Then the extension M /K
is Galois (see [36, Theorem 10.76]) and M D L. We refer to the field M
obtained in such a way as the Galois closure of L over K.

The proposition below gives a characterization of conjugate elements
in terms of field automorphisms.

Proposition 2.5 ([35, Chapter VII, Section 50]). Let L/K be a Galois
extension, and let o, € L. The elements a and 3 are conjugate over
K if and only if there exists an automorphism o € Gal(L/K) such that

ola) = 6.

Group actions Let G be a group and let X be a nonempty set. Recall
that a group action of G on X is a map G x X — X, the image of (g, )
being denoted by gox, such that

1. eox =z for all x € X, here e is the identity element of G,
2. go(hoxz)=(gh)ox for all z € X and all g,h € G.

Having a group action, to each element g € G we can associate a map
ay: X — X, defined by a rule ag(x) = gox for all z € X. Then oy € S(X)
and the map a: G — S(X), g+ ag, is a group homomorphism from G
to S(X). The kernel of a consists of those elements g € G which do not
move any element of X, i.e.,

kera={geG:ay=id} ={geG:gox=x for all z € X}.

A group action is called effective, if keraw = {e}. By the First Isomor-
phism Theorem, G//kera = ima C S(X). Therefore, in the case of effec-
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tive action, the group G is isomorphic to a subgroup of S(X).

Transitive actions Assume |X|> k, here k € N. It is said that an
action of G on X is k-transitive (or G acts k-transitively on X) if given
any two sets {x1,x9,...,2r} and {y1,y2,...,yx} of distinct elements of
X (not necessarily disjoint), there exists an element g € G such that
gox; =y; for any ¢ € {1,2,...,k}. In the case when k =1 we simply say
that an action is transitive. For instance, setting X :={1,2,...,n}, the
symmetric group S, acts n-transitively on X, whereas the alternating
group A, acts (n— 2)-transitively on X for n > 2. Note that any k-
transitive action is also m-transitive for each m € {1,2,...,k}. Moreover,
when G and X both are finite, we have the following

Proposition 2.6 ([I8, Chapter 8, 8A]). Suppose a finite group G acts
k-transitively on a set X of cardinality n. Then |G| is divisible by n(n —
1)--(n—k+1).

Primitive actions Let a group G acts transitively on a finite set X
of cardinality n. Suppose that X can be partitioned into m (1 <m <mn)
pairwise disjoint subsets

A, Ao, A (2.1)

of equal size n/m, so that any g € G maps each A; to some A; (1<4,j <
m). In such a case we say that the action of G on X is imprimitive and
the collection is called a system of blocks. Otherwise, if no such
a partitioning is possible, then the action is said to be primitive. For
instance, the action of the Klein four-group

V= {id7(1>2)7 (3>4)> (172)(3a4)}

on X ={1,2,3,4} is imprimitive with a system of blocks Ay ={1,2} and
Ay ={3,4}. On the other hand, for any n € N the symmetric group S,
and the alternating group A,, both acts primitively on X ={1,2,...,n}.

Remark. Here and in the following, given a subgroup G of S,, we
implicitly understand that G acts on X = {1,2,...,n} via

cgoi=0(i),c €G,i€X.
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In particular, instead of saying G acts transitively (resp. primitively)
on {1,2,...,n}, we will simply say G is a transitive (resp. primitive)

subgroup of Sy.
From the definition of primitivity, it follows immediately that

Proposition 2.7 ([18, Corollary 8.12]). A transitive group action on a

set of prime cardinality is always primitive.
The following classical result is due to Jordan:

Proposition 2.8 ([I8, Theorem 8.23]). Let G be a primitive subgroup
of Sp, and assume that G contains a cycle of length p, where p is prime.

Then either G contains A, as a subgroup, or n < p+2.

Galois group of a polynomial Consider K as a subfield of some
algebraically closed field £2. Let f(x) € K|[x]| be a separableﬂ polynomial
of degree n > 1. Set M = K(aq,as,...,ay), where a1 :=a,ag,...,ap, € 2
are all the roots of f(z) (i.e., M is the Galois closure of K(«) over K).
Since the extension M /K is Galois, we may consider the Galois group
Gal(M/K). It is called the Galois group of a polynomial f(x) over K.
Note that any automorphism o € Gal(M/K) preserves the set X :=
{a1,09,...,a,} of the roots of f(z), and, in fact, Gal(M/K) acts on
X via oo :=0(w;), i € {1,2,...,n}. Moreover, this action is effective,
since an automorphism o € Gal(M/K) preserving each root o; € X must
be the identity automorphism of M = K(aq,9,...,ay). Therefore, the
Galois group of a separable polynomial f(z) € K|z] of degree n can
be considered as a subgroup of S, acting on {1,2,...,n}. Moreover,
Proposition [2.5] implies that for irreducible polynomials this action is

transitive:

Proposition 2.9 (|33 Proposition 22.3]). Let f(x) € K|x] be irreducible
over K. Then the Galois group of f(x) over K acts transitively on the
set of all the roots of f(x).

2.2 Relations between the polynomial roots

Throughout, let f(z) € K[z]| be a separable polynomial of degree n > 2.
Again, consider K as a subfield of a fixed algebraically closed field {2,

'Recall that a polynomial f(z) € K[x] is said to be separable, if it does not have
multiple roots in any extension of K (particularly, in £2).
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and let ag,a9,...,a, € 2 be all the roots of f(z). By a polynomial

relation over K we mean a relation of the kind
P(Oél,OéQ,...,Oén) = O,

where P(x1,29,...,2,) € K[x1,29,...,24).

Roughly speaking, the Galois group of f(x) over K can be under-
stood as a subgroup of S, consisting exactly of those permutations
o which preserves any polynomial relation over K between the roots

Qly...,0p, i€,
if P(a,aa,...,a,) =0, then also P(o(a1),0(a2),...,0(ay)) =0.

Such an approach leads to the general problem of describing the pos-
sible polynomial relations between the roots of f(z) depending on the
structure of the Galois group of f(x). Various subproblems and related
questions has been considered, for instance, by Smyth [32], Baron, Dr-
mota and Skalba [5], [I]. We will use some former results related to so

called additive and multiplicative relations.
e An additive relation between aq,o,..., o, is a relation of the kind

aroy +aqa+ -+ apoy, € K

n
where all the a; € K (i.e., P(z1,22,...,2,) = Zaimi—kao, ap € K).

i=1
o A multiplicative relation between aq,ao,...,q, is a relation of the
kind
afrakz.. ok e K

where all the k; € Z (ie., P(x1,22,...,2,) = $]f1:n’2€2xfl" + ag,

agp € K)
We call these relations trivial if a; = ag = --- = a,, and, respectively,
ki=ko=...=ky.

For instance, take a polynomial of the form f(x) = 2™ —r, where
r € K and n > 2, and suppose it is separable (this is the case at least
when char K =0, see [37, Proposition 10.72.]). Then there is an obvious
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nontrivial multiplicative relation between the roots of f(x), namely,

atad---al =rckK.
In particular, if » =1 and n > 2, take any two roots # 1 of f(z), say, o
and ag. Then the product ajag is another root of f(z), say, ag. Thus,
we obtain a nontrivial multiplicative relation o&a%agl =leK.
Schinzel provided the following interesting example of a polynomial
# 2™ — 1 whose one root is a product of two other rootsﬂ Let K =Q.
Take the polynomial

flz) =25 —22* — 623 — 222 +1
= (23 +V22% + V22 — 1) (2® — V222 — V22 - 1).
=:f1(x) =:fa(x)

By Eisentein’s criterion, f(x) is irreducible over Q, and hence it is sep-
arable (see [36, Corollary 10.73]). Let a; and as be two distinct roots
of fi(z). Then, by Vieta’s theorem, the third root of fi(z) is (a1az)~!.
Note that the polynomial f(z) is self-reciprocal, i.e., f(x) = f(z71).
Hence, ajas =: a3 is also a root of f(x) and asz & {a1, a9, (a1az) 1}
Again, this yields a nontrivial multiplicative relation a%a%ag leQ.
However, for the polynomials of prime degree > 2 we have the fol-

lowing

Proposition 2.10 ([5, Theorem 1]). Let p > 2 be a prime number
and f(x) € Q[x] an irreducible polynomial # xP —r of degree p over Q.
Then there are no nontrivial multiplicative relations between the roots

a1, 2,...,0p Off(x)

The following fact concerning multiplicative relations will be useful
in the proof of Theorem

Proposition 2.11 (Part of [32, Lemma 1]). Let (1, B2, B3 be distinct
algebraic numbers conjugate over Q. If 32 = Bof33, then B = B for
some positive integer m.

As concerned with nontrivial additive relations, it turns out that
2-transitivity of the Galois group of f(x) eliminates the possibility for
such relations:

2The example is mentioned in [} [5].
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Proposition 2.12 ([I, Part of Theorem 3|). Suppose that the Galois
group of a separable polynomial f(x) € Q[z] is 2-transitive. Then there

are no nontivial additive relations between the roots of f.

In Section we give a useful criteria to decide whether the Galois
group of a polynomial is 2-transitive.

For the general analogues of Propositions 2.10, 2.11] and [2.12] over
arbitrary fields see the corresponding references.
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Chapter 3

Compositum-feasible triplets

3.1 Statement of the results

In this Chapter our principal aim is to extend the classification of compo-
situm-feasible triplets given in the study by Drungilas et al. [8,[7]. Recall
that in [8, [7] there are described all the compositum-feasible triplets
(a,b,c) satisfying a < b < ¢, with b < 7. Now we can take two steps
forward to the case b < 9.

Theorem 3.1. Let a and ¢ be positive integers.

1. The triplet (a,8,c), a <8< ¢, is compositum-feasible if and only
if ¢ <8a, alc and 8|c, with a single exceptional triplet (8,8,40),
which is not compositum-feasible.

2. The triplet (a,9,c), a <9 < ¢, is compositum-feasible if and only if
c¢<9a, alc and 9|c, with only two exceptional triplets (9,9,45) and
(9,9,63), which are not compositum-feasible.

Combining the results of [8, [7] with Theorem 3.1} we obtain the table
that describes all possible compositum-feasible triplets (a,b, ¢) satisfying
a < b< e, with b<9 (Table .

Corollary 3.2. Let a, b and c be positive integers satisfying a < b < c,
b<9. The triplet (a,b,c) is compositum-feasible if and only if ¢ < ab,

alc and ble, with five exceptional triplets
(5,5,15), (7,7,35), (8,8,40), (9,9,45), (9,9,63), (3.1)

which are not compositum-feasible

Investigation of the exceptional triplets (3.1)) led us to more general
results.
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Theorem 3.3. Let n >4 be an integer. The triplet (n,n,n(n—2)) is

compositum-feasible for even n and is not product-feasible for odd n.

Hence, for n odd, (n,n,n(n—2)) is neither compositum-feasible nor
sum-feasible. In particular, it follows that (5,5,15), (7,7,35) and (9,9,63)
are not compositum-feasible. Meanwhile, the cases (8,8,40) and (9,9,45)
are specific manifestations of the following general result:

Theorem 3.4. Let n > 8 be an integer. Then for any prime number p
satisfying § < p <n—2 the triplet (n,n,np) is not product-feasible, and

hence it is neither compositum-feasible nor sum-feasible.

This chapter is organized as follows. In Sections 3.2 B3] [3-4] we
prove the stated theorems. Then, in Section [3.5] we give a supplemen-
tary result which provides some ideas for the further classification of
compositum-feasible triplets. Finally, Section [3.6] contains several re-
marks on Conjecture for the compositum case.

3.2 Proof of Theorem [3.4]

First of all, we prove two auxiliary propositions.

Proposition 3.5. Let n >4 be an integer. Suppose p > 2 is a prime
number that satisfies the following conditions:

(i) p does not divide n—1,

(i) p does not divide the order of any transitive subgroup of the sym-
metric group Sy, except possibly for A, and S,.

Then for any integer k divisible by p, the triplet (n,n,k) is not product-
feasible.

We will need the following

Lemma 3.6 ([23, Theorem 1.12]). If K and L are number fields and
K/Q is Galois, then

[K:Ql[L:Q)

KL:Ql = =770
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Proof of Proposition[3.5 Let n, p and k satisfy the conditions of the
proposition. Suppose to the contrary that the triplet (n,n,k) is product-
feasible. Then there exist algebraic numbers a and 5 such that

[Q(a) : Q] = [Q(B) : Q] =7 and [Q(aB): Q] = k.

Denote by K and L the Galois closures of Q(«) and Q(f) over Q, re-
spectively. Since Q(«f) is a subfield of KL, we find that [KL : Q] is
divisible by [Q(af) : Q] = k. Moreover, by Lemma

[ :Q)-[L: Q]

KL:Q == 7 g

Hence at least one of the numbers [K : Q] or [L: Q] is divisible by p.
Without loss of generality, we can assume that [K : Q] is divisible by p.
On the other hand, Gal(K/Q) is isomorphic to a transitive subgroup of
Sy, (see Section[2.1)). Therefore, in view of the assumption (ii), Gal(K/Q)
(up to isomorphism) is either A4, or S,,.

Denote by [ the degree of a over Q(/3). We claim that 2 <1< n—2.
Indeed, suppose [ € {1,n—1,n}. We have that

[Q(e, 8) : Q] = [Q(a, 8) : Q(B)] - [Q(B) : Q] =1 n.

Therefore,

S
Il
e
2
=
e
Il
e
2
=
Qe
Q
=
e
L
=
e

Since plk, we obtain that p divides the product [-n. By the assump-
tion (ii), p{ n, since S, contains a transitive subgroup of order n, e.g., the
cyclic subgroup generated by (1,2,...,n). Hence, p|l, which contradicts
both the assumptions (i) and (ii). This proves that 2 << n—2.

Let o := a,a9,...,a; be the algebraic conjugates of a over Q(f).
Then, by Vieta’s theorem, aj +ag+ -+ a; € Q(5). Thus, there exists
a polynomial f(z) € Q[x] such that

a1 +ag+-+ar = f(B). (3.2)

Recall that Gal(K/Q) is either isomorphic to A, or S,. Both these
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groups are [-transitive. Hence, for any collection of distinct indices
i1,12,...,0; € {1,2,...,n}, there exists an automorphism o € Gal(K/Q)
such that

o(ar) =iy, o(a2) = a4y, ..., 0() = ;.
Applying o to (3.2)), we get
iy + iy + ...y, = f(o(B)). (3.3)

In this way, we obtain (7) relations of type with distinct collections
of indices {i1,72,...,%;}. On the other hand, § has exactly n distinct
algebraic conjugates over Q. Since 2 <1< n—2, we have () > n. This
implies that at least two relations of type have identical right-hand
sides but different collections of indices {i1,12,...,7;}. Equating two such
relations, we find that there exists a nontrivial additive relation between
the conjugates of «, which contradicts Proposition[2.12] This completes
the proof of Proposition [3.5 O

Proposition 3.7. Let G be a transitive subgroup of Sy, such that G # A,
and G # Sy,. Then none of the prime numbers p satisfying n/2 < p <
n—2 divides the order of G.

Proof. Assume that the order of G is divisible by a prime p satisfying
n/2 < p<mn—2. Then, by Cauchy’s theorem, there exists o € G of order
p. Evidently, p > n/2 yields o is a cycle of length p. On the other hand,
p<n—2and G does not contain A,, as a subgroup. Hence, Proposition
implies that the action of G on {1,2,...,n} is imprimitive. Let

Y= {Al,AQ,...,Am}, Az g {1,2,...,77,},

be a system of blocks, here 2 < m < n (see Section . The subgroup
(o) acts on ¥ in a natural way. We claim that this action is effective.
Indeed, assume to the contrary that there exists 7 € (o), 7 # id, such that
T(A;) = A; for all i =1,2,...,m. Clearly, 7 is also a cycle of length p.
Let 7 = (i1,i2,...,ip). Assume, without loss of generality, that i1 € A;.
Note that ix € Ay, 1 <k < p—1, implies g1 = 7(ix) € T(A1) = Ay
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Thus, {il,ig,...,ip} - Al and

n o _n
p< A= —< 5 <p,
m 2
a contradiction. Therefore, the action of (o) on ¥ is effective. Since
|X|=m, it follows that (o) is isomorphic to a subgroup of S,,. Thus, by
Lagrange’s theorem, m! must be divisible by a prime p, a contradiction,

since p >mn/2 > n/|A1|>m. This completes the proof of Lemma O

Now we can prove Theorem [3.4] Take an integer n > 8 and let p be
a prime number such that

%<p<n—2. (3.4)
Then p satisfies both conditions of Proposition Indeed, for the
condition (i) note that implies (n—1)/2 <p <n—1 and there are
no divisors of n— 1 in the interval ((n—1)/2,n —1), whereas condition
(ii) is satisfied by Proposition Therefore, Propositionwith k=np
implies that (n,n,np) is not product-feasible. This completes the proof
of Theorem [3.41

3.3 Proof of Theorem [3.3|

We shall need the following auxiliary

Proposition 3.8. Suppose that the triplet (a,b,c) € N® satisfying a <
b < ¢ is not compositum-feasible. If ab < 2¢, then (a,b,c) is neither sum-
feasible nor product-feasible.

Proof. Assume to the contrary that the triplet (a,b,c) € N*, with a <
b < c and ab < 2¢, is sum-feasible (resp., product-feasible), but not
compositum-feasible. Then there exist algebraic numbers « and § such
that dega = a, deg 8 =b, and degy = ¢, where v := a+ 3 (resp., v := af).
Denote 7 :=[Q(«, 3) : Q(7)]. Then r > 1, since otherwise Q(«, 8) = Q(7),
and this would imply that the triplet (a,b,c) is compositum-fesaible, con-

tradicting our assumption. Hence,
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again a contradiction. Therefore, the triplet (a,b,c) € N3 is neither sum-
feasible nor product-feasible. O

We will also use the following

Lemma 3.9 ([30]). Suppose that « is an algebraic number with the
minimal polynomial f(x) € Q[x]. Let r be the number of linear factors
of f(x) over Q(a). Then r divides the degree of f(x).

We may now proceed with the proof of Theorem [3.3] Suppose n > 4
is an even integer, i.e., n = 2k for some k € N. By Proposition the
triplet (k,k,k(k—1)) is compositum-feasible. Hence, the triplet

(n,n,n(n—2)) = (2k,2k,4k(k—1))

is compositum-feasible by Proposition [I.9

Let n >4 be an odd integer. We will show that the triplet (n,n,n(n—
2)) is not compositum-feasible. Then Lemma will imply that this
triplet is not product-feasible as well.

Suppose to the contrary that (n,n,n(n—2)) is compositum-feasible.
Then, by the primitive element theorem, there exist algebraic numbers
a and [ such that

This yields

[Q(ev, ) : Q)] =

Q@.5):Q_
] ,

[Q() : Q

i.e., B is of degree n —2 over Q(«). Therefore, the minimal polynomial
P(z) € Q[z] of 8 factorizes over Q(«) as follows:

P(z) = (2* + a1z +ag)(a" >+ b1z P+ 4 by 32 +b,2),  (3.5)

here both polynomials on the right-hand side have coefficients in Q(«),
and the polynomial 2" 2 +b1z" 3+ 4b,_3x+b,_s is irreducible over

Q(a).

We claim that the polynomial x? +ajx +as is also irreducible over
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Q(«@). Indeed, it is clear that
22 faiz+ay=(z—F1)(x—Po) (3.6)

for some conjugates (1 and (B2 of § over Q. Assume to the contrary
that 81 € Q(a). Then Q(81) C Q(a). Since [Q(a) : Q] = [Q(B1) : Q) we
get Q(B1) = Q(«). Hence, the minimal polynomial P(z) € Q[z] of 5
has exactly two linear factors over Q(/31), which contradicts Lemma
Thus, 81 and 52 both are quadratic over Q(«).

Let K be the Galois closure of Q(«) over Q. Denote

A:={a1,a0,...;an}, B:={f1,082,...,6n}

For o € Gal(K/Q) and for any polynomial p(z) € K|[z], set p?(z) to be
the polynomial obtained by applying o to all the coefficients of p(x).
Note that p(z) = p1(z) - p2(z) if and only if p?(z) = p{(z) - p§ (), here
pi(x),p2(x) € K[x]. Consequently, if L is a subfield of K and p(z) €
L[z] is irreducible over L, then p?(x) is irreducible over o(L). Now,
for any «; € A take an automorphism o; € Gal(K/Q) that sends a to
;. Applying o; to the both sides of (3.5), we find that P%i(z) = P(x)
factorizes over Q(«;) into two irreducible factors, one of which has degree
2. Hence, for any «; € A exactly two algebraic conjugates of 3, say, Sk
and f; (k #1), are quadratic over Q(«;). This naturally gives rise to a
map

p: A— <B>7 a; = { Bk, i},

2

here (g) denotes the family of all subsets of B of size 2. In other words,
©(a;) consists of those conjugates of  (over Q) which are quadratic over

Q).
Claim 1. For any B; € B there exists a; € A such that B; € o(cy).

Proof. Let L be the Galois closure of Q(a,3) over Q. Take an auto-
morphism 7 € Gal(L/Q) that sends 1 to 3;. Then 7(a) = «; for some
a; € A. Applying 7 to the both sides of , we find that j3; is quadratic
over Q(ay). O
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Claim 2. If B; is quadratic over Q(cy), then oy is quadratic over
Q(B;)-

Proof. Assume that [Q(o,3;) : Q(ay)] = 2. Then,

. Qs 8): Q] _ [Qai,85): Q)
(0o ) : 0(8)] = e = a0
:[@(amﬁj) Q( )]
i.e., a; is quadratic over Q(/3;). O

Claim [3.3}3. For any distinct og,a; € A either o(o;) Np(aj) =0 or
plai) = p(aj).
Proof. Take two distinct conjugates a;, o € A. If p(a;) Np(a;) =0, then
there is nothing to prove. Suppose ¢(c;) = {8, 0} and let B € p(oy).
We will show that /3 is quadratic over Q(cy;). Then 5 € p(a;) and the
equality ¢(a;) = () follows.

Claim implies that «; and «a; are quadratic conjugates over
Q(Bk). Therefore, by Vieta’s theorem, o; +a; € Q(8)). Hence, Q(ay, B) =
Q(av, Bx) and

Q(ay, Br, A1) = Q(ay, Br, Br). (3.7)

On the other hand, f; and (; are quadratic conjugates over Q(«;).
Therefore, B+ 5; € Q(a;). Hence, 5; € Q(ay, fx). Combining this with

we find that
Q(aj, B, Bi) = Qv Br)- (3.8)

Recall that our aim is to show [Q(cy, ;) : Q(a;)] = 2. Consider the
extension Q(coy, B, 01)/Q(e;). In view of (3.8), we have that

(Qla, B, 1) Q)] = (@i, Bi) : Q)] = W

[Q(a;) : Q
_ Q0080 Q] g s O] =
= 4[@(0%) Q] = [Q( zaﬁk) . Q( 2)] 2,

and thus there are no non-trival intermediate fields between Q(«;, 5, 51)
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and Q(«;). Since

Q(ay) € Q(oy, 81) € Q(ay, Br, B1), (3.9)

we obtain Q(ay, ;) = Q(« , Bk, b1). (As it is noted above, the minimal
polynomial P(z) of / factorizes over Q(c;) into two irreducible fac-
tors both having degree greater than 1, analogously as in . Hence,
B ¢ Q(cj) and the first inclusion in is indeed proper.) Therefore,
[Qa, 1) : Qag)] =2 .

Now we can finish the proof of Theorem [3.3] Claim [3.3[1] and Claim
[B-3[3 imply that the distinct sets of a family

‘p(al)aw(oa)’ R 790(0471)

form a partition of B = {1, 02,...,0n}, i€,
B = p(ay, ) Up(a, ) U+ Up(a,) (3.10)

for some i1,d9,...,i; € {1,2,...,n}, here L denotes that the sets in the
union are pairwise disjoint. Taking the cardinality of both sides in ,
we find that n = 2k, a contradiction since n is odd. This completes the
proof of Theorem [3.3]

3.4 Proof of Theorem [3.1]

Using necessary conditions ([1.2) and (1.3)), we determine all possible
candidates to compositum-feasible triplets (a,b,c) with a < b < ¢ and
be {8,9}. They are all listed in Table

Ba 1 2 3 4 5 6 7 3 9
, 16, 24,
8 8 8 16 24 ,16,24,32 40 24,48 56 , (a0), 48,
56, 64
18, 27,
9 9 18 018,27 36 45 18,36,54 63 7 36, (15), 54,

(63), 72, 81

Table 3.2: Candidates to compositum-feasible triplets
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The triplets with ¢ being circled are not compositum-feasible. In-
deed, (8,8,40) and (9,9,45) are not compositum-feasible by Theorem
applied to (n,p) = (8,5) and (n,p) = (9,5), respectively, whereas
(9,9,63) - by Theorem

All the remaining triplets are compositum-feasible. Indeed, the blue-
marked triplets are compositum-feasible by Proposition[I.5] whereas the
green-marked triplets - by Corollary The triplets (8,8,56) and
(9,9,72) are of the form (n,n,n(n—1)), hence, they are also compositum-
feasible by Proposition For the red-marked triplets note that (3,4,12)
and (2,3,6) are compositum-feasible by Proposition[L.5] whereas (4,4,12)
and (3,3,6) are compositum-feasible by Proposition[1.6 Applying Propo-
sition to these four triplets and suitable powers of p =2, we obtain
that all the red-marked triplets are also compositum-feasible. (Alter-
natively, the triplet (8,8,48) is compositum-feasible by Theorem [3.3])
Finally, we will prove that the triplet (9,9,36) is compositum-feasible.
Recall a well-known fact about the Galois group of a cubic polynomial:

Proposition 3.10 (|36, Example 10.80]). Let f(z) = 2 +px +q be an
irreducible polynomial over Q, and let G be its Galois group over Q.
Then

O {Ag if D(f) is a perfect square in Q,

S3 otherwise,

here D(f) = —4p® —27q¢? is the discriminant of f.

Now, take the polynomial f(z) = 2®+3z+1. It is irreducible over
Q as a cubic polynomial without rational roots. Let o and 8 be two
distinct roots of f(z), and let K := Q(«), L := Q(5). Evidently, KL =
Q(a, B) is the splitting field of f(z) over Q, and hence K L/Q is a Galois
extension. Since D(f) = —135 is not a perfect square in Q, Proposition
[3.10implies that Gal(KL/Q) = Ss, and hence [K L : Q] =|S3|= 6. Thus,
(3,3,6) is a compositum-feasible triplet which is attained with fields
K and L. Moreover, the group S5 is solvable. Therefore, the triplet
(9,9,36) = (3-3,3-3,6-6) is compositum-feasible by Proposition m
This completes the proof of Theorem [3.1]
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3.5 Supplementary result

As wee see in Corollary among all the candidates (a,b,c), with a <
b< c<ab, ale, blc and b < 9, the only triplets that are not compositum-
feasible are of the form (n,n,nk), where k =n—2 or k is a prime strictly
between n/2 and n— 2. In particular, for n € {1,2,...,9}, all the triplets
(n,n,nk), with 1 <k < n/2, are compositum-feasible. It is natural to
ask, is it true for any n € N. Theorem [3.11] below shows that the answer

is 'no’:

Theorem 3.11. Suppose p, q and w are prime numbers such that 2 <
w<qg<p, p=2¢+w and wt(q—1). Then the triplet (p,p,pq) is not
product-feasible, and hence it is neither compositum-feasible nor sum-
feasible.

For instance, none of the triplets
(13,13,13-5), (19,19,19-7), (29,29,29-11), (31,31,31-13)

is product-feasible. We need some preparation for the proof of this
theorem.

Let G be a group. Consider the action of G on G itself by conjuga-
tion, i.e., gox =g-x-¢g~ ' for any g, € G. Take any subgroup H of G.
In order to restrict this action on H, collect all those g € G such that
g-h-g~' € H for any h € H. All such g¢’s form a subgroup of G which is
called the normalizer of H in G and is denoted by Ng(H). Equivalently,

Ne(H)={g€G:g-H-g~' = H}.

Now, we may consider the conjugation action of Ng(H) on H. Let
a:Ng(H)— S(H), g— ag4, be the corresponding action homomorphism.
Its kernel is denoted by Cg(H), i.e.,

Co(H)={9eG: g-h-go' =hVhe H},

and it is called the centralizer of H in G. Evidently, for any g € Ng(H)
the map ay(h) =g-h-g~', h € H, is an automorphism of H, so that
the image of « is a subgroup of Aut(H). Thus, the First Isomorphism
Theorem yields the following corollary which is known as N/C Theorem:
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Lemma 3.12 ([I8, Corollary X.19]). Let H be a subgroup of a group G.
Then, Cq(H) <A Ng(H) and the qoutient Ng(H)/Cq(H) is isomorphic
to some subgroup of Aut H.

In general, having an action of G on a set X, we denote
fixG:={a € X:goa=aVgeG}.

Lemma 3.13 ([18, Problem 8A.6]E[). Suppose that G acts transitively
on X. Let Q be a Sylow subgroup of G. Then Ng(Q) acts transitively
on fix Q.

Proof of the Theorem [3.11. Let G be a transitive subgroup of the sym-
metric group S, such that G # A, and G # S,. We will show that ¢
cannot divide the order of G. Then Proposition will imply that
the triplet (p,p,pq) is not product-feasible. (Note that p = 2¢+w and
2<w<g<pyields ¢t (p—1).)

Suppose to the contrary that the order of G is divisible by ¢. Let Q
be a Sylow g-subgroup of G. The order of Q equals g or ¢?, since Q is
a subgroup of Sy, as well, and ordy|S,|= ord,(p!) = ¢*. We claim that
|Q|= q. Indeed, assume that |Q|= ¢®>. Then Q is a Sylow g-subgroup
of S, too. Take any cycle 7 € S, of length ¢q. Then a cyclic subgroup
(1) is contained in some Sylow g-subgroup of S,. Since any two Sylow
g-subgroups are conjugated and conjugate elements in .S, is of the same
cyclic structure, we find that the subgroup @ also contains a cycle of
length g. However, Proposition implies that G is primitive, therefore
we get a contradiction by Proposition Hence, |Q|= ¢ which means
Q@ is a cyclic subgroup generated by an element o € GG of order ¢q. If o
were a cycle of length ¢, we would get a contradiction by Proposition
2.8l Since p=2¢+w < 3gq, it follows that o must be a product of two
disjoint cycles of length ¢, say, m and p. Therefore, |fix Q|=p—2¢ = w.

Lemma [3:13] and Proposition 2.6 imply that the order of the normal-
izer N(Q) is divisible by |fix Q|= w which is prime. Hence, by Cauchy’s
theorem, there exists an element 7 € Ng(Q) of order w. We claim that
7€ C(Q). Indeed, if 7 ¢ Cz(Q), then the order of 7C(Q) in the qou-
tient group Ng(Q)/Ca(Q) equals w. Therefore, Lemma implies

!Special case of [I8, Problem 8A.6] taking any Sylow subgroup P of G and any
aefixP.
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that w divides the order of Aut@. However, |[AutQ|= ¢(q) =¢q—1 and
w1 (qg—1) by our assumption, a contradiction.

As we have proved, = (7-p), where 7,p € S, are two disjoint ¢-
cycles. Set m=: (i1,42,...,4q) and p =: (j1,J2,...,Jq). Since

T€CaQ)={0€CG: om0 =nV¥neQ},

1

we have 7-(m-p)-7" ' =m-p, ie.,

(7(in) - 7(i)) (T ()7 () = (ins - ig) (G155 Jg)-

By the uniqueness of the cycle decomposition, there are only two possible
cases: either

(t(1),...,7(iq)) = (i1,...,iq) and (7(j1),...,7(4q)) = (G1,---,Jq),

or

(7(i1)se s 7(ig)) = (it osdig) a0d (1)1 7 () = (i),

In both cases, we get that

(72(i1), .., 72(iq)) = (i1,---,3¢) and (T2(j1)s---,72(Gg)) = (J1,---»dq)-

Denote 7 := 72. We will show that 7 fixes every element of the set

{ilaiQa cee 7iqaj17j27' .. 7jq}'

Firstly, note that (i) =14;. Indeed, suppose to the contrary that n(i;) =
i1+k for some k€ {1,...,¢q—1}. Then

n'(i1) = i14u (mod ¢) =11 < 1+1k=1 (mod ¢) & =0 (mod q),

which implies that n has a cycle of length ¢ in its cycle decomposition,
but this is impossible, since the order of 1 equals w and ¢t w. Hence,
n(i1) =1, and therefore n(iy) = iy for every k =1,...,q. Analogously,
n(jx) = Jji for every k=1,...,q.

Hence, there are at most p —2q = w elements in the set {1,2,...,p}
which are not fixed under 7. Since the order of 1 equals w, it follows that
1 is a cycle of length w, which leads to a contradiction by Proposition
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This completes the proof of Theorem [3.11 O

3.6 Irreducible compositum-feasible triplets

Recall Conjecture [L.I1] for the compositum case:

Conjecture 3.14 (Partial case of Conjecture|l.11)). If (a,b,c),(a’,b',c) €

N® are compositum-feasible triplets, then so is (aa’,bb,cc’).

Through this section, as before, we denote the set of all possible
compositum-feasible triplets by C. Moreover, for (a,b,c),(a’,b',c') € C
define a multiplication of triplets by

(a,b,c)-(a' V) := (ad, bV ,cc). (3.11)

So, in other words, Conjecture [3.14] asks whether the set C forms a semi-
group with respect to the multiplication . As we already said, it
is not known in general whether the conjecture is true or false. How-
ever, Drungilas and Dubickas [6] provided some hope for the affirmative
answer. Namely, they proved Conjecture [3.14] assuming the affirmative
answer to the inverse Galois problem. Recall that the inverse Galois
problem asks whether every finite group occurs as a Galois group of
some Galois extension K over Q (see [20} 27, 39]). It is believed that

the answer is positive.

Proposition 3.15 ([0, Theorem 1.3]). If every finite group occurs as
a Galois group of some Galois extension K/Q, then Conjecture is
true.

If C indeed forms a semigroup (even if not), then it is natural to ask
which elements of C are irreducible. More precisely, we say that a triplet
(A,B,C) €C is irreducible if it cannot be written as

(A,B,C) = (a,b,c)-(a',V,c),

where (a,b,c),(a',V/,c/) € C\{(1,1,1)}. Otherwise, the triplet (4, B,C) €
C is said to be reducible. For instance, every triplet (p,p,pd) € C, where
p is a prime number and 1 < d < p, is irreducible, whereas for any posi-
tive integer n the triplet (n,n,n?) = (n,1,n)-(1,n,n) is reducibleﬂ The
following theorem gives one more family of irreducible triplets in C.

It is known (see [, Lemmas 2.7, 2.8, Theorem 1.1]) that for any prime p
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Theorem 3.16. For any integer n > 2, the compositum-feasible triplet
(n,n,n(n—1)) is irreducibleﬂ

Proof. Suppose to the contrary that
(n,n,n(n—1)) = (a1,b1,c1) - (az, b2, c2), (3.12)

where (ay1,b1,¢1) and (ag,bs,c2) are compositum-feasible triplets both

different from (1,1,1). For ¢ = 1,2, we can factor ¢; = dl(n)dz(n*l), where

dMd” =n and " Val"V =n—1.

Since the triplet (aj,b1,c1) is compositum-feasible, we find that a; di-
vides ¢; = dgn)dgnfl). Then gcd(al,dgnfl)) =1 implies a1|d§n). Analo-
(n)

gously, agldén). If a1 <d;”, then

dﬁ")dg"’ =n=araz < dgn)@,
ie., d;n) < az and azt dgn), a contradiction. Therefore, ay = dgn) and

ag = dén). Analogously, by = dgn) irby= dén). Thus, omitting superscripts

(n) and instead of (n—1) using /, we can rewrite (3.12)) as
(n,n,n(n—1)) = (di,d1,d1d)) - (da,do, dods).

Recall that for any compositum-feasible triplet (a,b,c) the inequality
¢ < ab holds. Hence, for i = 1,2, we must have d;d} < d?, i.e., d, < d;.
Moreover, ged(d},d;) =1 and the numbers d},d; cannot be both equal to
1, thus d # d; for i =1,2. On the other hand, since d; < n, we deduce

n n—1>n n—1><n>2_d2
2Tdy dy Tdy di—17\dy) ¥
i.e., dj > dg, a contradiction. Hence, the triplet (n,n,n(n—1)) is irre-
ducible. n

Evidently, any (a,b,c) € C can be factored into a product of irre-

and for d € {1,2,p— 1} the triplet (p,p,pd) is compositum-feasible, whereas, for
p— Livip=3 VSLZFB <d<p-—2, it is not product-feasible, hence not compositum-feasible.
Meanwhile, the triplet (n,n,n2) is compositum-feasible for any n € N by Proposition

3
9

In fact, the triplet (n,n,n(n—1)), n > 2, is compositum-feasible by Proposition
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ducible compositum-feasible triplets. However, it should be noted that
this factorization is not necessarily unique. For instance, the triplet
(15,15,30), which is compositum-feasible by Proposition can be fac-
tored into irreducible triplets in two different ways:

(15,15,30) = (3,3,3) - (5,5,10) = (5,5,5) - (3,3,6).

One can check by a routine calculation that among the compositum-
feasible triplets (a,b,c), satisfying a < b < cand b <9, the only irreducible
triplets are exactly of the forms (1,p,p), (p,p,pd) and (n,n,n(n—1)),
where p is prime, 1 < d < p and n > 2. We finish the present chapter by
proposing the following

Problem. Determine all irreducible compositum-feasible triplets.
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Chapter 4

Product-feasible triplets

4.1 Statement of the results

In the preceding chapter, combining the results of [8, [7] with Theo-
rem [3.I] we obtained a complete description of all compositum-feasible
triplets (a,b,c) satisfying a < b < ¢, with b < 9. According to Proposi-
tions and all these triplets that are given in Table are also
sum-feasible and product-feasible. But, in fact, they do not exhaust all
possible sum-feasible triplets neither all product-feasible triplets (a,b,c)
under the corresponding restrictions. Again, we can observe this by the
results of [8, [7], where all sum-feasible triplets (a,b,c), with a < b < ¢,
b < 7, were classified. There comes a natural motivation to investigate
the product problem more closely.

The present chapter provides a full description of all the product-
feasible triplets (a,b,c) satisfying a < b < ¢, with b < 7:

Theorem 4.1. All the triplets (a,b,c) € N*> with a <b<e¢, b< 7 that
are product-feasible are given in Table[].]]

Table contains nine triplets (with ¢ being bold), which are not
sum-feasible by [8] [7], namely,

(2,3,3),(3,4,6),(3,6,9),(6,6,8),

(4.1)
(4,5,5),(4,5,10),(6,7,7),(6,7,14), (6,7,21).

Note that the triplet (2,3,3) is product-feasible by Proposition m
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Ma 1 2 3 1 5 6 7
1 1
2 2 2,4
3 3 3,6 3609
4 4 4,8 6, 12 4, 6, 8,
12, 16
5 5 10 15 5,10, 20 5, 10, 20, 25
6, 8, 9,
6 6 6,12 6,9,12,18 6,12,24 30 12, 15, 18,
24, 30, 36
77 14 21 28 35 7,14, 21,42 7> 14, 21,
28, 42, 49

Table 4.1: Triplets (a,b,c), a <b< ¢, with b <7, that are product-feasible

Consequently, the triplets

(3,4,6) = (3,2,3)-(1,2,2),
(3,6,9) = (3,2,3)-(1,3,3),
(6,6,8) =(3,3,2)-(2,2,4)

are also product-feasible by Proposition The remaining triplets of
(4.1) are special cases of the following more general result.

Theorem 4.2. For any prime number p and for each divisor d of p—1

the triplet (p—1,p,pd) is product-feasible.
Moreover, we prove a certain extension of Proposition [I.14}

Theorem 4.3. Suppose a prime number p and a positive integert satisfy
t > p> 2. Then the triplet (p,t,t) is product-feasible if and only if p|t.

In [8], there is proved separately that the triplet (6,6,10) is not sum-
feasible (see [8, Theorem 38]). Generalizing the ideas of this proof, we
show that

Theorem 4.4. For any prime number p > 3, the triplet (p+1,p+1,2p)

s not product-feasible.
Finally, we have the following result:

Theorem 4.5. Let k > 1 be an integer. Then the triplet (n,(n—1)k,nk),
n > 2, is product-feasible if and only if n is a prime number.
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In particular, choosing (n,k) = (4,2), we find that the triplet (4,6,8)
is not product-feasible. Actually, this is the triplet that took a consid-
erable amount of effort for us to decide whether it is product-feasible or
not.

This chapter is organized as follows. In the next section we give
several auxiliary lemmas that are repeatedly used in the proofs of the
stated theorems. Then, in Section [4:3] we prove Theorems (1.2 and [£.3]
The proof of Theorems [I.4]and [4.5| are given in separate Sections[d.4 and
[45] respectively. In Section[d.6]we complete the classification of product-
feasible triplets (a,b,c), with a < b < ¢, b <7, by proving Theorem
Finally, Section contains an alternative proof that the triplet (4,6,8)
is not product-feasible.

4.2 Auxiliary lemmas

While searching for product-feasible (or sum-feasible) triplets with boun-
ded values of b, we can find all possible candidates using Proposition
For instance, all the triplets (a,b,c¢) with a < b < ¢, b <7, satisfying the
condition of Proposition [[4] are listed in Table [£.2] Having all the
candidates (a,b,c), we need to decide for which of them it is possible to

find algebraic numbers « and (3, such that

[Q(a) : Q] = a, [Q(B) : Q] = b, and [Q(af) : Q] = ¢,

and for which candidates it is not. In this Chapter all our impossibility
proofs start with the following observation:

Lemma 4.6. Let o and B be algebraic numbers, such that

[Q() : Q] =a, [Q(B): Q] =b, and [Q(af): Q] =c.
If ab < 2-lem(a,b,c), then [Q(«, ) : Q] =lem(a, b, ).

Proof. Since Q(«), Q(5) and Q(af) are subfields of Q(«,f), we find
that [Q(«,f) : Q] is divisible by both a and b, as well as by ¢. Thus,
[Q(a, B8) : Q] is divisible by lem(a,b,c), i.e., [Q(a,5) : Q] = k-lecm(a,b,c)
for some k € N. On the other hand,

[Q(a, 8) : Q] < [Q(e) : Q] - [Q(B) : Q] = ab.
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Therefore, ab < 2-lem(a,b,c) yields
k-lem(a,b,c) < 2-lem(a,b,c).

Hence, k=1 and [Q(«, ) : Q] =lem(a, b, c). O
A simple lemma below also takes part is some of the proofs.

Lemma 4.7 ([8, Proposition 21]). Suppose that o and 8 are algebraic
numbers of degrees m andn (over Q), respectively. Let oy =, g, ...,
be the distinct conjugates of o over Q, and let 51 = 3,0P2,...,0, be the
distinct conjugates of 5 over Q. If B is of degree n over Q(«), then all
the numbers a;Bj, 1 <i<m, 1< j<n, are conjugate over Q (although

not necessarily distinct).

Evidently, Proposition implies that the numbers «;3;, where 1 <
i<n and 1 <j<m, cover all possible conjugates of a. Lemma [4.7]
describes the situation when they are all conjugate over Q.

Recall that the Galois group of an irreducible polynomial acts tran-
sitively on the set of its roots (see Proposition . Lemma below
is a useful tool to decide whether this action is 2-transitive. The lemma
follows from a more general group theoretical fact [I8, Lemma 8.2]. For
completeness and convenience, we give a proof adapted concretely for
Galois groups.

Lemma 4.8. Suppose that o is an algebraic number of degree n > 3.
Let A:={a1 :=a,ay,...,a,} be the set of all the distinct conjugates of
a over Q, and let M be the Galois closure of Q(«) over Q. Then the
following conditions are equivalent:

(i) the Galois group Gal(M/Q) acts 2-transitively on A;
(it) for some pair o # j, the degree of o; over Q(a;) is equal to n—1;
(tit) for any pair o # o, the degree of a; over Q(a;) is equal to n—1.

Proof. (i) = (iit). Assume that the degree of o; over Q(¢j) equals n—1
for some pair o; # aj. Take any pair oy # oy and write oy = 7(a;),
where 7 € Gal(M/Q). Note that ay; # o implies 771 (o) # 771 (ayr) =
a;. Therefore, by the assumption, for any oy # o there exists w €
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Gal(M/Q(e;)) such that w(r~(ay)) =77 ). Set o:=T1owor L.
Then o(ay) = oy and

o(ajr) = (Tow)(ay) = 7() = ayr,

ie., 0 € Gal(M/Q(ay)). Hence, any oy # ajr is conjugate to oy over
Q(avy), so that the degree of a; over Q(a;7) equals n—1.

(tit) = (7). Assume that the degree of a; over Q(¢;) equals n—1 for
any pair «; # ;. Take any two pairs of conjugates «; # o; and oy # ajr.
Suppose that a; # a;. By the assumption, o is conjugate to a; over
Q(cyj). Hence, there exists 7 € Gal(M/Q(c;)) such that 7(a;) = ayr.
Analogously, «aj is conjugate to a; over Q(ay ). Hence, there exists
w € Gal(M/Q(cvy)) such that w(a;) = ajr. Set 0 :=wo7. Then

Now consider the case when o = j. Take any t € {1,2,...,n}\ {i,j}
(there is such t, since n > 3). By the same argument, there exist auto-
morphisms 7 € Gal(M/Q(«;)), p € Gal(M/Q(a)), and w € Gal(M/Q(ay )
such that

T(CY]) = Oy, P(az) = Q and, CU(Oét) = Q.
Set 0 :=wopor. Then

o(as) = (wop)(as) = wlaw) = oy,

o(a;) = (wop) () = wlar) = ay.

In both cases we find o € Gal(A/Q) which maps a; to ay and o to ar.
Thus, Gal(M/Q) acts 2-transitively.

(i) = (ii). Assume that the action of Gal(M/Q) on A is 2-transitive.
Take any pair «; # a;. Then, for each t € {1,2,...,n}\ {j}, there exists
o € Gal(M/Q(c;)) such that o(a;) = oy, so that o is conjugate to o
over Q(ay;). Hence, the degree of o; over Q(a;) equals n—1. (In fact,
we proved the stronger statement that (i) implies (iii).) This completes
the proof of Lemma [£.8] O

50



4.3 Proofs of Theorems 4.2l and [4.3]

Proof of Theorem[].3. Necessity. Assume that the triplet (p,t,t) is product-
feasible. Then there exist algebraic numbers o and 5 such that

[Q() : Q] = p and [Q(B) : Q] = [Q(af) : Q] =

Lemma implies [Q(a, 8) : Q] = lem(p,t) = pt. Hence, we have the
diagram as in Figure[d.1} Let 31 := (3, B2, ..., B¢ be the distinct conjugates

/\
\/

Figure 4.1: Diagram for the triplet (p,t,t)
of B over Q. All the numbers

O[/Bl,Oé,BQ,. . ‘7alBt

are pairwise distinct and, by Lemma [4.7] they are all the conjugates of
af over Q. Consequently, the product

(apr)---(afy) =o' BiB2-- By

is a nonzero rational number. Moreover, ($132--- 3 € Q\ {0}, so af =
a € Q\ {0}. Therefore, « is a root of the polynomial z* —a. On the other
hand, o' € Q is a nontrivial multiplicative relation between conjugates
of a (with exponent ¢ for o and zero exponents for other conjugates; see
Section . Since dega = p > 2 is a prime number, Proposition m
implies that the minimal polynomial of « over Q is of the form zP — b,
beQ\{0}.

We have that x! — a is divisible by P —b. Hence, any root of 2P —b
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1
is also a root of 2! — a, in particular, x = br ¢p- Thus,

b;C;:aERiC;ERésin<2;t> :O:>2;rt:ﬂ'k:, k € 7 = 2t = pk.
Therefore, p divides 2t. Clearly, p12, since p > 2. Hence, we must have
p|t. This completes the proof of the necessity.

Sufficiency. Let t > p > 2 and t = pk for some positive integer k. The
triplet (1,k,k) obviously is product-feasible, whereas the triplet (p,p,p)
satisfies the exponent triangle inequality with respect to any prime

number (see Section [I.5). By Proposition the triplet (p,t,t) =
(p-1,p-k,p-k) is product-feasible. This completes ther proof of Theo-

rem (4.3 O

Now we turn to Theorem [£.2] Given any prime number p > 2 and
any divisor d of p— 1, we shall construct algebraic numbers a and 3 of
degrees p—1 and p over QQ, respectively, whose product a5 has degree
pd. For the construction we will use so-called Gaussian periods. Let us
briefly recall this classical notion.

Let n be a positive integer, and let K, := Q((,) be the nth cyclotomic
field. Recall a well-known fact.

Theorem 4.9 ([29, Theorem 4.27]). The extension K,/Q is Galois
of degree p(n), and its Galois group Gal(K,/Q) is isomorphic to the
multiplicative group (Z/nZ)* of residues modulo n.

In particular, if n =:p is prime, then Gal(K,/Q) is a cyclic groupﬂ of
order ¢(p) =p—1. Each generator o of Gal(K,/Q) is given by o : () —
5, where g is any primitive root modulo p.

Now take any divisor d of p—1 and set m := (p—1)/d. Consider the

element
04 = Gp+0™(G) + 07" (G) +-+I™(G), (4.2)

where o is any generator of Gal(K},/Q). Note that §; does not depend on
the choice of 0. We refer to 0, as the Gaussian d-period corresponding to
a prime number p. One can show easily that there are exactly d distinct

'Recall a well-known fact that the group (Z/nZ)*, n > 1, is cyclic if and only if
n=2, 4, p* or 2pF, where p > 2 is prime and k € N (see, e.g., [37]).
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images of 6; under all the automorphisms of Gal(K,/Q). Therefore,
degfy; =d.
We shall also use the following

Lemma 4.10 ([3, Problem 6523]). Suppose a and 8 are algebraic con-

jugate numbers of degree d such that % s a primitive nth root of unity.

Then @(n) =d.

Proof of Theorem[{.3. If p=2, the assertion is obvious. If d =p—1, our
triplet is product-feasible by Proposition Suppose that d < p—1.
Set

a = Wv /8 = 6d<p7 PY = (Xﬁ = cheda

here 64 as in (4.2]). Obviously, dega = p. We claim that degf =p— 1.
Indeed, take any generator o of Gal(K,/Q). It suffices to show that all

the numbers

o*(048), k=1,2,....p—1,

are distinct. Assume to the contrary that o (Hde) =0 (Hde) for some k
and [ satisfying 1 <k <I<p—1. Then o (Hd)Cg =0 (Gd)Cg and hence

gk(ﬁd) 2(g' —gP)mi

9

here ¢ is a primitive root modulo p. Clearly, ¢! —g* #0 (mod p). There-
fore, o*(04)/0'(4) is a primitive pth root of unity, which contradicts
Lemma [£.10] since d < p—1. Hence, deg3 =p—1.

We now show that the degree of v = ¥/2(,0; (over Q) equals pd.
Let 04 = 9&1),01(12), . ,ng) be all the conjugates of 84. Since the numbers
deg( {/icp) =p and degfy = d are coprime, Lemma implies that all
the numbers

= 2¢500 k=0,1,....p—1,1=1,2,....d, (4.3)

are conjugate to v over Q. It suffices to show that all these numbers
are distinct. Assume that 7,5}1) = 7,22), where ki,ks € {0,1,...,p—1},
l1,lo €{1,2,...,d}, and either ki # kg or 1 # la. Note that if kj = ko,
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then Iy = l3. Therefore, ky # ko and the equality 7,(511) = 7,(522) implies

2mi(ky —kg) 9((il2)
—_— _

e = .
o)

Since e?™k1=k2)/P is g primitive pth root of unity, Lemma yields
p—1=¢(p) < degh = d, a contradiction. Hence, all the numbers in
are distinct, and therefore deg~y = pd. This completes the proof of
Theorem O

4.4 Proof of Theorem [4.4]

Suppose to the contrary that the triplet (p+ 1,p+ 1,2p) is product-
feasible. Then there exist algebraic numbers a and (3, such that

[Q() : Q] =[Q(B) : Q] =p+1 and [Q(aB) : Q] = 2p.

Note, that lem(p+1,p+1,2p) = p(p+1) and (p+1)? < 2p(p+1). There-
fore, Lemmal[4.6]implies [Q(v, 3) : Q] = p(p+1) and we have the following
diagram:
Q(a)
p

p+l
2

N
/
0 Qaf) —— QaB)
X /

Q(5)

Figure 4.2: Degree diagram for o and

Let M be the Galois closure of Q(«) over Q.

Claim [4.4/1. The Galois group Gal(M/Q) acts 2-transitively on the

conjugates of a over Q.

Proof. Let 31,32 :=f3,B3,...,Bp+1 be all the distinct conjugates of 3 over
Q. By Figure B is of degree p over Q(«r). Consequently, 5 has exactly
one conjugate, say, 51 in Q(a) (note that § ¢ Q(«), since otherwise
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Q(a,8) = Q(a) and [Q(c,B) : Q)] =p+1#p(p+1), a contradiction).
Thus, for some f(x) € Q[z]

B1=f(a). (4.4)

Analogously, for any conjugate (; of 3, there exists a conjugate
of a, say, a;, such that 8; = f(c;). Indeed, let N be the Galois clo-
sure of Q(«,3) over Q. Then for each j € {1,2,...,p+ 1} there exists
o € Gal(N/Q) such that o;(81) = f;. Applying it to and setting
oj(a) =: o, we get B = f(aj). Here aq := a,aa,...,0p41 are the dis-
tinct cojugates of o over Q (note that if o; = o; for some i # j, then
would imply 3; = f3;, a contradiction). In particular, 5 = f(a2),
and hence Q(8) = Q(f(a2)) € Q(a2). Since [Q(5) : Q] = [Q(a2) : Q], we
get Q(B) = Q(az). Therefore, Figure can be rewritten as follows

(Figure [4.3)):

2

0417042

\

Figure 4.3: Degree diagram for a; and ao

By Figure ag is of degree p over Q(ay). Consequently, the
Galois group Gal(M/Q) acts 2-transitively on {aq,@2,...,a,} by Lemma
) O

Set A:={1,2,...,p}. Claim implies that for any indices 7,5 € A,
i # j, there exists an automorphism of Gal(M/Q) which maps «; f(az)
to o f(cj). Hence, all the numbers

aif(aj)a Za.] € Av Z#]a (45)

are conjugates of ajf(az) over Q. Evidently, the numbers «;f(a;),
i,j € A, cover all possible conjugates of «; f(ag). Note that, for i = j,
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we have «; f(a;) € Q(y;), and hence
deg(aif(a;)) < dega; =p+1 < 2p=deg(ag f(az)).

This means that none of the numbers «; f(q;), i € A, is conjugate to
a1 f(ag) over Q. Therefore, (4.5) exhaust all the conjugates of ay f(aw).

So, among p(p+ 1) numbers in , there are exactly 2p distinct. Hence,
there is a number, which occurs at least p(p+1)/2p = (p+1)/2 =1k
times. In other words, there exist distinct indices 41,19,...,7; and distinct
indices j1,J9,...,j% in A, with 4; 2 j;, such that

ai1f(aj1) = aizf(ajz) == aikf(ajk)'

Since k > 3, we can assume that i1 # jo, so that

i1 € {J1,%2,J2}- (4.6)

Consider the Galois group Gal(M/Q) =: G as a subgroup of Spi1
acting on the set A= {1,2,...,p+1}, i.e., if 0 € G, then o(ay) = a, ),
k € A. The order of this group |G| equals [M : Q]. Since M has a subfield
Q(aq,a2) of degree p(p+1) over Q, we find that |G| is divisible by p.
Therefore, by Cauchy’s Theorem, there exists a permutation 7 € G of
order p. Clearly, 7 must be a cycle of length p. Thus, 7 has exactly one
fixed point, say, k € A i.e., 7(ax) = ag.

Claim 2. The number afrl is rational.

Proof. Consider the equality

Qjy f(a]d) = aizf(ajz)' (4.7)

Take o € G, which maps «;;, to aj. Applying it to (4.7) and setting
o(j1) =:a, o(iz) =: b, 0(j2) =: ¢, we obtain

agf(al) = apf(ac). (4.8)

Note that (4.6) implies k ¢ {a,b,c}. Now, applying 7 to (4.8)) repeatedly,
we obtain (p— 1) additional equalities

Oékf(OéTl(a)) = OéTl(b)f(OéTl(c)), = 1,2, B 1. (49)
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The orbits

{a, 7(a), 2(a), ..., Tp_l(a)},
{b, 7(b), T2(b), ..., TP71(b)},
{e, 7(c), T%(c), ..., "7 ()}

coincide with the set A\ {k}, since none of a, b and ¢ equals k. Thus,
mutiplying (4.8), and all (p— 1) equalities of (4.9)) we find that

p+1 p+1 p+1 p+1
al - Hf(ai) = Hai- H flai), ie., of = Hai.
i=1 =1 i=1 i=1
i2k itk itk i2k
1 1
Consequently, o2 =27 o; € Q. O

We now can finish the proof of Theorem[4.4] Claim [£.4[2]implies that
the minimal polynomial of a (over Q) is of the form zP™ —7ry, r; € Q.
All the preceding part of the proof is symmetric with respect to « and 5.
Therefore, interchanging « and (3, we find that the minimal polynomial
of A is also of the form zPT! —ry, ro € Q. This yealds af3 is a root of
xPt —riry. Hence, deg(aB) < p+1 < 2p, a contradiction.

4.5 Proof of Theorem [4.5]

Sufficiency. Assume n is a prime number. Then the numbers
a:= /2, ﬁ:z{n:e%, and aff = V2¢,

are of degrees n, p(n) =n—1, and n (over Q), respectively. On the other
hand, for any k > 1, the triplet (1,k,k) satisfies the exponent triangle
inequality with respect to any prime number. Consequently, the triplet
(n,(n—1)k,nk) is product-feasible by Proposition [L.13]

Necessity. Let n > 2 be a composite number. Then n > 4. Suppose to
the contrary that the triplet (a,b,c) = (n,(n—1)k,nk), k > 1, is product-
feasible. Then there exist algebraic numbers « and 3, satisfying

[Q(a): Q] =a, [Q(B): Q] =b, and [Q(af): Q] =c.
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Note that

b —1Dk-nk
lem(a,b,c) =lem(b,c) = gcd(i), ) = (n ]z " _ b

Hence, by Lemma [Q(cr, B) : Q] = ab and

[Q(a, ) : Q(aB)] = %b e 1—a-1.

Thus, we have the diagram as in Figure [4.4]

Figure 4.4: Degree diagram for «, 8 and af

Let a1 := a, ao, ..., a4 be the distinct conjugates of a over QQ, and
let By := 8, Ba, ..., Bp be the distinct conjugates of 8 over Q. Denote

A:={1,2,...,a} and B:={1,2,...,b}.
Moreover, for s =1,...,a, we set
FS = {asﬂl,asﬁg,. --aast}-

Figure [£.4] and Lemma [4.7) imply that the set U_;Ty exhausts all the
conjugates of af over Q, and hence it must have exactly ¢ distinct

elements. Therefore, for any distinct 4,5 € A, we have
c= |Ug:1FS|> |Fi Ul“j|: |I‘i|+|1“j|—|1“2- ﬂl“j|: b+b— |Fi ﬂFj|,
which implies

|IiNT|>20—c=2(n—1)k—nk =nk—2k > L:,_
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Thus, we obtain more than b/2 equalities of the form
iy = Q Bus

where v and v run through some subsets U C B and V C B, respec-
tively. Clearly, |U|= |V|> b/2 implies UNV # (). Take any t € UNV.
Then o;f; = oy, and o83, = a;f; for some u € U and v € V. From
@iBt/(ify) = ajBu/(a;Bt), we deduce B = B,B,. If u# v, then, by
Lemma for some m € N we get 3" = (,'. If u=wv, then the same

equality with m =2 follows directly. Therefore, from o;"5" = o',

we deduce
' =al, (4.10)

here m € N and m > 1 in view of i # j.
Set A:={aj,as,...,a,}. Let M be the Galois closure of Q(«) over
Q.

Claim [4.5/1. The Galois group Gal(M/Q) acts 2-transitively on A.

Proof. We will find a conjugate of o over Q which is of degree a — 1 over
Q(«). Then the claim will follow in view of Lemma
Since 3 is of degree b over Q(«), all the numbers

Yei=af, t=1,2,...,b,

are conjugate to 71 = a8 over Q by Lemma [£.7] Let the remaining
conjugates of v over Q be

Vo+15Vb4+25+ -+ Ve

In particular, v, # af; for t € B. Hence, 7. = a;3; for some i € A\ {1}
and some j € B.
Take the polynomials

gl@) = (2 =)z =)+ (=) =Py 2 ).
P.(

5 (@)
g(z)’

h(z) = (2= W41) (@ —Wp2) - (T =) =
where Pg(x) and P,(x) are the minimal polynomials of 3 and vy over
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Q, respectively. Set K := Q(«). Clearly, g(z) € K[z], and hence h(x) €
K|z]. This means that for ¢ satisfying b+ 1 <t < ¢, we have

[K(v):K|<degh=c—b=nk—(n—1)k=k.

Evidently, [K(a;): K] <a—1. Also, [K(B): K] =[Q(5): Q] =b
implies that 8 and j; are conjugate also over K, and hence [K(f;) :
K] =b. Therefore,

b=[K(8;): K] =[K(ve-a; ') : K] < [K(7e) : K][K(a; ') : K] <

(2

k-[K(a): K| <k(a—1)=(n—-1)k=0.

N

This implies [K(7.) : K] =k and [K(«;) : K] =a—1. Thus, «; is of degree
a—1 over K. Therefore, Gal(M/Q) is 2-transitive on A by Lemma
4.8 O

Claim [4.5/2. Under the previous notations, assume that there exists
m € N such that o] € Q(«;) for some two distinct conjugates o, o of
o over Q. Then there exists a rational number r such that of* = o' =

— m o __
=t =1

Proof. Write oj* = G(«;), where G € Q[z]. Take any t € A\ {j}. By
Claim there is an automorphism of the Galois group Gal(M/Q)
which maps «a; to oy and «a; to ;. Applying it to of" = G(ay), we
get af* = G(«;). Therefore, of® are equal for t € A\ {j}. Choosing
t ¢ A\{i,j} we can apply the same argument to the equality o = o}
by mapping «; to a; and a; to az. This yields o' = o}, and hence

o' =ay =---=a)'. Adding all these n equal elements, we obtain
> i o', which is a rational number as a power sum of the roots of a
polynomial over Q. Thus, of*, t=1,2,...,n, are all equal to this rational

number divided by n. O

Now we can finish the proof of Theorem [4.5 In view of Claim [£.5[2]
equality implies that the conjugates of o over QQ all have the same
moduli. Consider two cases depending on whether the composite number
a=n is even or odd. If n is even and « has no real conjugates, then
the product w of all conjugates can be written in the form w = (a@)™/2.
If « has a real conjugate, say o/, then —«/ is also its conjugate (as the

number of nonreal conjugates is even), so w = —(a;a;)"™/? for any nonreal
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«;. Therefore, in both cases, there are two distinct indices 7,5 € A such
that a?/2 € Q(a;). By Claim we conclude that a?/2 =rcQ for
every t € A. So « is of degree at most n/2 over QQ, which is not the case,
since « is of degree n >n/2 over Q.

Likewise, if a =n is odd, then « has a real conjugate «;, and so the
product w of all the conjugates of a can be written as o (in both cases
a; >0 and o; <0). Hence, o' =w € Q\ {0}. Since «; is of degree n over
Q, we find that the minimal polynomial of «; as well as of a over Q is
2™ —w. Consequently, the conjugates of « are

w/m¢t, t=0,1,...,n—1,

here ¢, = e By Claim and Lemma the number w'/"¢,
has degree n—1 over the field Q(w'/™), because w'/"¢, # w'/™ are the
w;/l’;gn over the field

Q(wl/ ™) equals n— 1. Consequently, the degree of (,, over its subfield Q

conjugates of a. This implies that the degree of (,, =

must be at least n— 1. However, the degree of (, over Q equals ¢(n),
and for each composite n we have ¢(n) <n—1, a contradiction. This
completes the proof of Theorem [1.5]

4.6 Proof of Theorem [4.1]

Using Proposition [I.4] we determine all possible candidates to product-
feasible triplets (a,b,c) with a <b< ¢ and b < 7. They are all listed in
Table

Na 1 2 3 4 5 6 7
1 1
2 2 2.4
3 3 3,6 3,6,9
4 4 4,8 ,6,12 4068
@ 12, 16
5 5 ®10 ®15 510,20 51015
20, 25
67 87 97 b
6 6 612 6091218 6® ®, (0, 12 15
12, 24 30 » 9
24, 30, 36

77 @14 @2 @028 @35 7,142,42 1H2L3S8

(35), 42, 49

Table 4.2: Candidates to product-feasible triplets
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The triplets with ¢ being circled are not product-feasible. Indeed,
(2,5,5) and (2,7,7) are not product-feasible by Proposition (3,4,4),
(3,5,5), (3,7,7), (5,6,6) and (5,7,7) - by Theorem E (6,6,10) - by
Theorem (5,5,15) and (7,7,35) - by Theorem whereas (4,6,8)
are not product-feasible by Theorem [4.5| with (n,k) = (4,2). Finally, by
Proposition [I.15] the product of a quartic number and a septic number
must be of degree 28, whereas the product of a quintic number and a
sextic number must be of degree 30. Hence, the triplets (4,7,7), (4,7,14),
(5,6,10) and (5,6,15) are also not product-feasible.

The blue-marked triplets are product-feasible. Indeed, as we have
noted at the beginning of the chapter, (2,3,3), (3,4,6), (3,6,9) and
(6,6,8) are product-feasible by Propositions and whereas the
triplets (4,5,5), (4,5,10), (6,7,7), (6,7,14) and (6,7,21) are product-
feasible by Theorem

All the remaining triplets are sum-feasible by the results in [8] [7],
and hence they are also product-feasible by Proposition [I.3] Hence, the
proof of Theorem [4.1]is completed.

4.7 The triplet (4,6,8)
Recall that Theorem |4.5| with (n,k) = (4,2) implies the following
Proposition 4.11. The triplet (4,6,8) is not product-feasible.

In the present section we give another proof of Proposition[d.11] This
alternative proof contains some new ideas that may be useful in treating
similar problems for algebraic numbers of small degrees.

In the proof, assuming that there exist o and g of degree 4 and 6 over
Q, respectively, whose product «f is of degree 8, we will first show that
the conjugates of a must all be of the same modulus. In 1969, Robinson
[31] described algebraic integers o whose conjugates (including « itself)
are all of the same modulus; see also [12] for the description of algebraic
numbers with conjugates of two distinct moduli. Here, we need a more
specific result for quartic algebraic numbers o whose all four conjugates

have equal moduli.

Proposition 4.12. Assume that p(x) is a monic quartic polynomial in
Q[x] which is irreducible over Q and whose all 4 roots have equal moduli.

Then p(z) must be of one of the following forms:
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(i) x* —r, where r € Qs;
(ii) x* +sx? 47, where s,r € Q and s* < 4r;

(ii) (22 +uz +7r) (2 +u'z+7), where r € Q and u # u' are conjugate
real quadratic algebraic numbers satisfying max(uz,u’Q) < A4r.

Proof of Proposition[{.12 Write

p(x) = zt +asz® + asr® + arz + ag
(4.11)
=(x—a1)(x—a2)(z—a3)(z—ay).

Case 1. Assume first that p(x) has a real root. By the assumptions
of the proposition, not all four roots of p(z) can be real. Thus, p(x)
must have a pair of complex conjugate roots, and another real root. So,
after re-indexing the roots of p(z), if necessary, we can write {a1,as} =
{a,—a} and {a3,a4} = {@e’, ae~ ¥} for some o >0 and ¢ € (0,7). It

4 is a negative rational number, say,

follows that ag = ajasazay = —a
—r, where r € Qso. Note that the polynomial p(—z) also has « as a
root. Therefore, p(—z) is divisible by the minimal polynomial of « over
Q which is p(z). Since both polynomials p(z) and p(—=x) are monic and
of the same degree, we must have p(—z) = p(z). Hence, a1 = a3 =0 and

SO

p(x) = 2t +asr® +ag =2t +asx? —r.

Now, by Vieta’s theorem and a; 4+ ap = 0, we deduce

ag = ajag+ (a1 +a2)(as +ayq) + asoy

= tasayy=a-(—a)+ae¥-ae ¥ = —a?+a?=0,

which implies that p(x) is as in (i).

Case 2. Next, consider the case when p(z) has no real roots. Then,
after re-indexing the roots of p(x), if necessary, we can write {ay,an} =
{0e™, 0e7} and {as3,a4} = {0e, 0e7%} for some ¢ >0 and 0 < ¢ <
& <. This time, by , we obtain ag = ajasagay = 0* € Qs¢. Fur-
thermore, by Vieta’s theorem,

a3 =—(a1 +ag+as+ag) = —2p(cosp+cosf) (4.12)
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and

—+—t+—+—) ==

< 1 1 1 1 ) 2(cosp +cosé)
a; = —ap ap————=

Q1 Q2 a3 04 0
2
= —Q4W = —2@3(cosg0+cos§) = o%as.

Likewise, by Vieta’s theorem, we deduce
ag = ajag +asag+ (g + o) (s +ay) = 20% 4+ 40? cos p cosé. (4.13)

Subcase 2.1. If a3 =0, then a; = p?a3 =0 and cos¢ = —cosé by

[E12). Thus, (L13) yields
ag = 20%(1—2cos? &) = —2¢% cos(2¢) € Q.

Set r:=ag = ¢* and s:=as = —2y/rcos(2¢). Then r € Qs and s € Q.
Note that cos?(2¢) # 1, since otherwise p(x) has a real root. There-
fore, we obtain the polynomial p(x) = 2* 4+ s2? +r € Q[z] with s =
4rcos?(2€) < 4r as described in case (ii).

Subcase 2.2. Now, if ag # 0, then a1 = 0?a3 # 0 and 0? = a1 /a3 € Q.
Set r:= ¢%. Since ajas = agay =, setting

u:=—(oq + ) = —2v/rcos(p),
u' = —(az+aq) = —2y/rcos(§),

by (4.11)), we obtain

(4.14)

p(z) = (z—o1)(z—ag)(z—a3)(z—ay) = (2% +uz+7)(2® + 'z +7).

Here the numbers u and v’ are both real by (4.14) and both irrational,
because otherwise p(x) were reducible over Q. On the other hand, u+
v = a3 € Q and wu’ = as —2r € Q. Consequently, u and v’ are roots of

the quadratic polynomial
2% — (u4u )z +uu' € Qlx),

which is irreducible over Q due to w,u’ ¢ Q, i.e., u and u are real
quadratic conjugates over Q. Moreover, since the roots of 2% +ux 47 and
22+ 'z +r are all nonreal, we must have u2 —4r < 0 and w'* —4r < 0.
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Therefore, p(z) is a polynomial of the form as described in (iii). This
completes the proof of Proposition [£.12] O

Proof of Proposition[{.11l Suppose there exist algebraic numbers « and
B satisfying

[Q(a): Q] =4, [Q(B) : Q] =6, and [Q(af): Q] =8

The beginning of the argument is the same as that in the proof of The-
orem (4.5l Setting (n,k) = (4,2) we obtain the diagram as in Figure
MOI‘GOVGI‘, for any 4,7 € {1,2,3,4} with i # j, we deduce the equality

(4.10). In particular,

o't = a5, of"? = a5, and o) =

for some m1,ma, m3 € N. This yields that the conjugates of o over Q all
have the same moduli.
Again, as in the proof of Theorem [4.5] for s =1,2,3,4 we set

I's:= {asﬁlvasﬂ% e 7a8186}'

By Lemma with (a,b) = (4,6), the full list of conjugates of af is,

Figure 4.5: Diagram for the product-feasible triplet (4,6,8)

for instance,

afi, afa,...,abs, aif, ajf (4.15)
Iy

for some i,j € {2,3,4} and some ¢,l € {1,2,3,4,5,6}. In (4.15) we can
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choose any distinct products «;5; and «;3; which do not belong to I'y,

i.e., for indices 7 and j, we must have
I #T7 and I'; # Ty (4.16)
Adding and multiplying all eight conjugates in we obtain
ari+aife+ajf =112 €Q and a’ry(a;B)(a;B) =114 € Q\ {0},

where r1 ;= 01+ 082+ -+ 06 € Q and r3 := 3182+ Fs € Q\ {0}. This
yields

+aif
ar] + q; =r
P obra (i) T
and hence
Bt —— A (4.17)
Q; =719 —ar]. .
1Mt Oéﬁrg(aiﬁt) 2 1

Squaring (4.17) and multiplying it by o232, we find that

2ry 3

iy + ( —(ra - ar1)2> ol B7 + =0. (4.18)

obrs al?r3

Thus, f3; is a root of degree 4 polynomial over the field Q(a, a?).

Since all the conjugates of o have equal moduli, there are three pos-
sible cases for the minimal polynomial of « that are listed in Proposition
[4.12] Consider each case separately.

In case (i), we have a; = ae for some € € {—1,4i}. Then a? =a? or

a? = —a?, which implies Q(a,@?) = Q(c). Therefore, the degree of 3
over Q(«) is at most 4. On the other hand, by Figure the degree of
B over Q(a) equals 6, thus 8 and f; are also conjugate over Q(«). So
the degree of 5, over Q(«) equals 6, a contradiction.

In case (ii), since both a? and a? are the roots of the polynomial
2% + sz +r, we must have either a? = a? or a = —s—a?. In both cases
Q(a,a?) = Q(a), and we get the same contradiction.

It remains to consider case (7i7). Then « is non-real. Assume without
loss of generality that ag is the complex conjugate of oy = . Note that
in case (7i1) both a; and ag = @7 are the roots of the same quadratic

factor 22 +ux +1 or $2+u’x+r, since u,u’,’r € R. Hence, asa =r.
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If 'y #T'y, then we can take in (4.15) i =2, and so a; = ay. From
a; = as =r/a we get Q(a,a?) =Q(a), so that (4.18) leads to the same
contradiction again.

In the alternative case, when I'y =I'y, we obtain
aﬁg:agﬁT(@ for {=1,2,...,6, (4.19)

where {7(1),7(2),...,7(6)} = {1,2,...,6}. This time, in view of (4.16),
we cannot take ¢ = 2, so that ¢ € {3,4}. Multiplying all equalities

in ([4.19) we obtain a® = a§. Since ay =@ and asa = r, this yields

70 = aba§ = a'2. Consequently, af is a rational number 75 € {—73,73}.
Adding all equalities in (4.19) we derive that 1 = 51+ B2+ ...+ B =0,

since o # ag. Thus, by (4.17)), we must have

T4
;B +

—— =T2.
57300 By

This means that § := «;; is a rational number or a quadratic number.
Evidently, § cannot be rational, since «; and [; are of distinct degrees
4 and 6, respectively. On the other hand, if § were quadratic, then the
product of 4 and the quartic number 1/c; would be the sextic number
Bi. However, the triplet (2,4,6) is not product-feasible by [26, Theorem
1]. This completes the proof of Theorem m O
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Chapter 5

Conclusions

We briefly oveview the research presented in the thesis.

o The complete description of compositum-feasible triplets (a,b,c)
satisfying a < b < ¢, with b <9, is obtained.

e The notion of an irreducible compositum-feasible triplet is intro-
duced and a problem of finding all such triplets is proposed.

o The complete description of product-feasible triplets (a,b,c) satis-
fying a < b < ¢, with b < 7, is obtained.
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Santrauka (Summary in Lithuanian)

Tyrimo objektas

Sioje disertacijoje nagrinéjami uzdaviniai, susije su algebriniy skaiciy bei
skaic¢iy kuny laipsniais. Prisiminkime Sias savokas.

Kompleksinis skai¢ius « vadinamas algebriniu, jeigu jis yra kokio
nors nenulinio polinomo su racionaliaisiais koeficientais saknis. Tarp
visy nenuliniy polinomy su racionaliaisiais koeficientais ir turinciy saknj
«, egzistuoja vienintelis maziausio laipsnio normuotas polinomas (t.y.
su vyriausiuoju koeficientu 1). Toks polinomas vadinamas algebrinio
skaiciaus a minimalivoju polinomu, o jo laipsnis vadinamas algebrinio
skai¢iaus a laipsniu (Zymima dega). Pavyzdziui, v/2, V3ir vV2+43
yra, atitinkamai, 2-ojo, vélgi 2-ojo ir 4-ojo laipsnio algebriniai skaiciai su
minimaliaisiais polinomais, atitinkamai, 2 —2, 22 — 3 ir z* — 1022 + 1.

Gerai zinoma, jog visy algebriniy skaiciy aibé jprasty aritmetiniy
operacijy atzvilgiu sudaro kiinag, t.y. dviejuy algebriniy skai¢iy suma,
skirtumas, sandauga bei dalmuo (aisku, jei dalijama i$ nenulinio skai-
¢iaus) taip pat yra algebriniai skai¢iai. Kyla naturalus klausimas: jei
sudésim (arba sudauginsim) du algebrinius skaicius « ir [, kuriy laips-
niai i§ anksto zinomi, koks gali buti sumos o+ 3 (arba, atitinkamai,
sandaugos « - 3) laipsnis? Nagrinéjant §j klausima jvedamos specialios
savokos. Naturaliyjy skai¢iy trejetas (a,b, c) vadinamas S-trejetu (atitin-
kamai, P-trejetu), jei egzistuoja tokie algebriniai skai¢iai « ir g, kuriy
laipsniai, atitinkamai, a ir b, o sumos a4+ ( (atitinkamai, sandaugos
a- B) laipsnis lygus c. Pavyzdziui, (2,2,4) yra ir S-trejetas (galime imti
a=+2ir f= \/?;), ir P-trejetas (galime imti o = V2ir B=1+ \/g)
2012 metais Drungilas, Dubickas ir Smitas (Smyth) [§] pasiulé uzdavinj
rasti visus jmanomus S-trejetus ir P-trejetus.

Sie autoriai taip pat suformulavo analogiska savoka bei uzdavinj skai-

¢iy kinams. Prisiminkim, jog
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o kiekvienas kompleksiniy skaiciy kuno pokunis K kartu yra tiesiné
erdveé virs racionaliyjy skai¢iy kiino Q. Sios tiesinés erdveés dimen-
sija vadinama kuno K laipsniu (zymima [K : Q]). Jei [K : Q] < oo,
tai K vadinamas skaiciy kunu.

o jeigu K ir L yra tam tikro vieno kuno M pokuniai (pvz., C po-
kuniai), tuomet K ir L kompozitu (zymima K L) vadinamas pats
maziausias kunas, kuriam priklauso ir K, ir L (t.y. KL lygu visu
kuno M pokuniy, savyje turinciy ir K, ir L, sankirtai).

Atitinkamai, naturaliyjy skaiciy trejetas (a,b,c) vadinamas C-trejetu, jei
egzistuoja tokie skaiciy kunai K ir L, kuriy laipsniai atitinkamai lygus
a ir b, o kompozito K L laipsnis lygus c.

2012 - 2013 metais Drungilas, Dubickas, Luka (Luca) ir Smitas [8}, [7]
nustaté visus C-trejetus (a,b,c), kuriuose a < b < ¢ ir b < 7, bei nustaté
visus jmanomus S-trejetus su tais paciais apribojimais. Disertacijoje
toliau tesiame C, S ir P-trejety tyrinéjimus.

Tikslai ir uzdaviniai

Disertacijos tikslai ir uzdaviniai yra Sie:
« pratesti ankstesne C-trejety klasifikacija;
 jvesti nauja neredukuojamo C-trejeto savoks ir pateikti pavyzdziy;
o suklasifikuoti P-trejetus (a,b,c), a < b < ¢, su nedidelémis skaiciy

a, b ir ¢ reikSmémis.

Metodai

Disertacijoje naudojami metodai priklauso abstrakciosios algebros sri-
¢iai. Daugiausia taikome baigtiniy grupiy teorijos, kuny teorijos bei
Galua teorijos technikas. Salia jvairiy klasikiniy teoremy, dar naudo-
jame tam tikrus specifinius, maziau zinomus rezultatus apie adityvius
bei multiplikatyvius sarysius tarp polinomo Sakny. Siuos pagalbinius
rezultatus, taip pat kai kuriuos bazinius abstrakciosios algebros faktus
apzvelgiame disertacijos [2 skyriuje.
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Aktualumas ir naujumas

IS esmés visi disertacijoje pristatyti rezultatai yra nauji. ISimtis tik dél
teoremos. Pirma karta teorema jrodyta straipsnyje [38]. Mes ja
irodéme nepriklausomai ir publikavome straipsnyje [26] beveik tuo pat
metu. Manome padare pazanga, nes musy jrodymas zymiai paprastes-
nis.

Nors algebriniai skaiciai ir skaiciy kuinai yra klasikiniai objektai, ta-
¢iau jie toliau aktyviai tyrinéjami ir Siuolaikinéje matematikoje. Jau
nekalbant apie algebrine skaiciy teorija, algebriniai skaiciai bei skaiciy
kunai daznai sutinkami ir kitose srityse, pvz., spendziant Diofanto lyg-
tis, Diofanto aproksimacijy teorijoje, algoritminéje skaiCiy teorijoje ir
t.t. Tikimés, kad musy rezultatai bus naudingi dirbantiems Siose sri-
tyse. Be to, algebriniy skai¢iy tyrinéjimai yra viena i$ Lietuvos skaiciy
teorijos mokyklos krypéitﬂ taigi Si disertacija pratesia Lietuvos mate-
matiky tradicijas.

Tyrimy istorija ir rezultatai

Literaturoje iki 2012 mety galime rasti tik keleta rezultaty, tiesiogiai su-
sijusiy su C, S ir P-trejety klasifikacijos uzdaviniais. Pavyzdziui, straips-
niuvose [I7, 2, 9, 10] nagrinéjama, kokioms salygos galiojant algebriniai
skaiciai «v ir B tenkins lygybe deg(a+ ) = dega-deg . Viena paprasta
salyga Stai tokia:

1 teiginys ([I7]). Tarkime « ir B yra algebriniai skaiciai, kuriy laips-
niai, atitinkamai, a ir b. Jeigu dbd(a,b) =1, tuomet deg(a+ ) = ab.

Kitaip tariant, jeigu (a,b,c) yra S-trejetas ir dbd(a,b) =1, tuomet
bitinai ¢ = ab.

Sistemingai nagrinéti C, S ir P-trejety klasifikacijos uzdavinius pra-
déjo Drungilas, Dubickas ir Smitas [8] 2012 metais. Sie trys uzdaviniai
susije Stai tokiu budu:

2 teiginys ([8, Proposition 1], [6l Theorem 1.1]). Kiekvienas C-trejetas
kartu yra ir S-trejetas, o kiekvienas S-trejetas - kartu ir P-trejetas.

17r. apvalgas [24], 25] apie skaidiy teorija Lietuvoje.

76



Kitaip tariant, jeigu visy jmanomy C, S ir P-trejety aibes pazymeésim,
atitinkamai, C, § ir P, tuomet

ccScp. (5.1)

Is ¢ia iSplaukia: jeigu (a,b,c) néra P-trejetas, tuomet tai negali buti nei
C-trejetas, nei S-trejetas. Be to, abu (5.1)) idéjimai griezti (t.y. €). IS
tikro, pastebékim, jog

e (n,n,1) yra S-trejetas su bet kokiu n € N (pvz., galime imti o = {/2
ir f = —a), taciau tai néra C-trejetas, jei n > 1. Taigi C C S.

e (2,2,3) yra P-trejetas (pvz., galime imti « = e ir B=+/2), taciau
tal néra S-trejetas pagal [1] teiginj. Taigi S C P.

Aigku, jeigu (a,b,c) yra S-trejetas (arba P-trejetas), tuomet, perstate
skaiCius a, b ir ¢ bet kokiu budu, vél gausim S-trejeta (atitinkamai, P-
trejeta). Kita vertus, jeigu (a,b,c) yra C-trejetas, tuomet butinai a < ¢
ir b < ¢, be to, perstate skaic¢ius a ir b, vél gausim C-trejeta. Taigi,
ieskant C, S arba P-trejety, nemazindami bendrumo galime apsiriboti
tik tokiais trejetais (a,b,c), kuriuose a < b < c.

Nesunku jsitikinti: jeigu (a,b,c) yra C, S arba P-trejetas, tuomet
c < ab. (5.2)

Negana to, jeigu (a,b,c) yra C-trejetas, tai, pagal boksty taz’sykl@ﬂkﬁnq
plétiniams,

alc ir blc. (5.3)

Visgi, ir salygos bendru atveju néra pakankamos, kad (a,b,c)
buty C, S arba P-trejetas (zr., pavyzdziui, teorema). Nustatyti,
ar duotas trejetas yra kurio nors is Siy tipy - tai gali buti sudétingas
uzdavinys.

Straipsniuose [8] [7] nustatyti visi S-trejetai (a,b,c), tenkinantys sa-
lygas a < b < cir b <7, bei nustatyti visi C-trejetai su tokiais pat ap-
ribojimais. Disertacijos [3] skyriuje pratesiame C-trejety klasifikacija iki
atvejo, kai b <9, t.y., jirodome stai tokj tvirtinima:

27r. disertacijos poskyrj.
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teorema. Tarkime a,c € N.

1. Trejetas (a,8,¢), a <8< ¢, yra C-trejetas tada ir tik tada, kai ¢ <
8a, alc ir blc, iSskyrus vieng atveji (8,8,40) (tai néra P-trejetas).

2. Trejetas (a,9,c¢), a <9< ¢, yra C-trejetas tada ir tik tada, kai
¢ < 9a, alc ir blc, isskyrus du atvejus (9,9,45) ir (9,9,63) (tai néra
P-trejetai).

Salia dalinés trejety klasifikacijos, straipsniuose [8) [7] taip pat gauta
rezultaty apie tam tikry specialiy pavidaly trejetus, pavyzdziui,

3 teiginys ([8, Proposition 29]). Tarkime n €N irn > 2.
1. Trejetai (n,n,n) ir (n,n,n(n—1)) yra C-trejetai.

2. Trejetas (n,n,n(n—1)/2) yra S-trejetas. Jei skaicius n lyginis,
tuomet tai néra C-trejetas.

3. Trejetas (n,n,2n) yra C-trejetas.

Disertacijos [3] skyriuje jrodome naujy rezultaty apie trejetus, kuriy
pavidalas (n,n,nk).

teorema. Tarkime n € N irn>4. Tuomet (n,n,n(n—2)) yra C-

trejetas, jeigu n - lyginis, ir néra P-trejetas, jeigu n - nelyginis.

I§ ¢ia butent ir iSplaukia, jog iSskirtinis[3.1] teoremos trejetas (9,9,63)
néra P-trejetas, todél nei C, nei S-trejetas. Tuo tarpu (8,8,40) bei
(9,9,45) yra stai tokio musy rezultato atskiri atvejai:

teorema. Tarkime n € N irn =8, o p - pirminis skaicius, tenki-
nantis selygg n/2 < p <n—2. Tuomet (n,n,np) néra P-trejetas.

Taigi, naudodamiesiirteoremomis, tarp trejetu (n,n,nk), kur
n>5irn/2 <k <n-—2, galime parinkti tokiy, kurie néra C-trejetai. Tuo
tarpu kitas musy rezultatas rodo, jog tarp trejetu (n,n,nk), kur n > 5
ir 2 <k <n/2,irgi tikrai ne visi yra C-trejetai.

teorema. Tarkime p, q ir w yra pirminias skaiciai, tenkinantys
salygas 2 <w < q<p, p=2q+w ir wfq—1. Tuomet (p,p,pq) néra
P-trejetas.
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Pavyzdziui, (13,13,13-5), (19,19,19-7), (29,29,29-11), (31,31,31-
13) néra P-trejetai, todél kartu néra ir C-trejetai.

Straipsnyje [8] gauta keletas jdomiy rezultaty, susijusiy su taip va-
dinama rodikline trikampio nelygybe. Tarkime n € N ir p yra bet koks
pirminis skaicius. Simboliu ord,(n) pazymékim, su kokiu laipsnio rodik-
liu p jeina j skai¢iaus n kanoninj iSskaidyma (jei ptn, tuomet susitarkim,
jog ord,(n) =0). Sakysim, jog trejetas (a,b,c) € N tenkina rodikling tri-

kampio nelygybe pirminio skaiciaus p atZvilgiu, jeigu

ord,(a) < ord,(b) +ordy(c), ord,(b) < ordy(a)+ordy(c) ir

(5.4)
ordy(c) < ord,(a)+ord,(b).

4 teiginys ([8, Theorem 6)). Jeigu trejetas (a,b,c) € N® tenkina rodikline
trikampio nelygybe kiekvieno pirminio skaiciaus atzvilgiu, tuomet (a,b,c)
yra S-trejetas (todél kartu ir P-trejetas).

Pastebékim, jog analogiskas teiginys C-trejetams negalioja. Pavyz-
dziui, trejetas (a,b,c) = (6,10,15) tenkina (5.4) salygas su kiekvienu pir-
miniu skai¢iumi p, tac¢iau tai néra C-trejetas, nes neispildyta butina

salyga (5.3). Taciau, (5.4)) pakeitus kiek stipresne salyga, gaunamas
idomus tvirtinimas ir C-trejetams:

5 teiginys ([8, Theorem 7]). Jei su kiekvienu pirminiu skaic¢iumi p
trejetas (a,b,c) € N tenkina sqlygq

max{ord,(a),ord,(b)} < ord,(c) < ord,(a)+ord,(b),

tuomet (a,b,c) yra C-trejetas.
Pastarasis teiginys iSplaukia i$ Stai tokio bendresnio tvirtinimo:

6 teiginys ([8, Corollary 27]). Tarkime p - pirminis skaicius, o u, v ir
w - naturalieji skaiciai, tenkinantys sqlyge max{u,v} < ¢ <u-+v. Jeigu
(a,b,c) yra C-trejetas, tuomet (ap™,bp?,cp™) taip pat bus C-trejetas.

Savo ruoztu [6] teiginys yra Stai tokios hipotezés, kuri iSkelta straips-

nyje [8], dalinis atvejis:

7 hipotezé ([8, Conjecture 6]). Jeigu (a,b,c) ir (a’,0',c") yra C-trejetai
(atitinkamai, S-trejetai, P-trejetai), tuomet (aa’,bV',cc’) taip pat yra C-
trejetas (atitinkamai, S-trejetas, P-trejetas).
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Kol kas netgi néra zinoma, ar hipotezé C-trejetams bendru atveju
yra teisinga. (Jeigu buty teisinga hipotezé S-trejetams arba P-trejetams,
tuomet, remiantis [2] teiginiu, buty teisinga ir C-trejetams.) Drungilas
ir Dubickas [6] parodé, kad hipotezé C-trejetams teisinga, jei atsaky-
mas j taip vadinama atvirksting Galua teorijos uzdaving yra teigiamas.
Primename, jog Sis uzdavinys klausia, ar kiekvienai baigtinei grupei G
egzistuoja toks Galua plétinys K/Q, kurio Galua grupé buty kaip tik
G. Atsakymas iki Siol nezinomas.

8 teiginys ([6, Theorem 1.3)). Jei kiekviena baigtiné grupé yra kokio
nors Galua plétinio K/Q Galua grupé, tuomet @ hipotezé C-trejetams
teisinga.

Kitaip tariant, jeigu atsakymas j atvirkstinj Galua teorijos uzdavinj
teigiamas, tai visy C-trejety aibé C sudaro pusgrupe daugybos, apibréz-
tos lygybe

(a,b,c)-(a' V) := (ad, bV ,cc),

atzvilgiu. Aisku, C-trejetas (1,1,1) butu neutralus Sios pusgrupés ele-
mentas. Bet kokiu atveju - sudaro pusgrupe ar nesudaro - naturalu
klausti, kuriy aibés C elementy nejmanoma isskaidyti j kity dviejy jos
elementy, nelygiy (1,1,1), sandaugg. Siam klausimui nagrinéti jvedame
nauja savoka:

Apibrézimas. C-trejeta (A, B,C) vadinsime neredukuojamu, jeigu jo

nejmanoma uzrasyti pavidalu
(A,B,C) = (a,b,c)-(d',V,c),

kur (a,b,c),(a’,b/,) € C\{(1,1,1)}.

Paprasciausi neredukuojamy trejety pavyzdziai - tai C-trejetai, kuriy
pavidalas (1,p,p) arba (p,p,pd), kur p - pirminis ir 1 < d < p. Disertacijos
B] skyriaus pabaigoje pateikiame viena sudétingesnj pavyzdj:

.16 teorema. Tarkimen €N, n>2. Tuomet C-trejetas (n,n,n(n—1))
yra neredukuojamasﬂ

3Primename, jog, pagal |3| teiginj, tai i$ tiesy yra C-trejetas su bet kokiu natiira-
liuoju n > 2.
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Galiausiai [3] skyriuje suformuluojam uzdavinj nustatyti visus nere-
dukuojamus C-trejetus.
Darbuose [8, [7] beveik neskiriama atskiro démesio P-trejetams; is-

nagrinéti tik keli nesudétingi atvejai, pavyzdziui,

9 teiginys ([8, Theorem 8)). Tarkime t € N. Trejetas (2,t,t) yra P-
trejetas tada ir tik tada, kai 2|t arba 3|t.

Kyla motyvacija panagrinéti P-trejety klasifikacijos uzdavinj nuo-
dugniau. Tam skiriame [] disertacijos skyriy. Jame nustatome visus

P-trejetus (a,b,c), tenkinanéius salygas a < b<cir b< T:

teorema. Visi P-trejetai (a,b,c), tenkinantys sglygas a < b < c ir
b <7, pateikti[5.1] lenteléje.

Na 1 2 3 4 5 6 7
I 1
2 2 2.4
3 3 3,6 3,609
4 4 4,8 6,12 4,6,8,
12, 16
5 5 10 15 5,10, 20 5, 10, 20, 25
6, 8,9,
6 6 6,12 6,912, 18 6,12, 24 30 12, 15, 18
24, 30, 36
77 14 21 28 35 7,14, 21,42 75 14,21,
28, 42, 49

5.1 lentelé Visi P-trejetai (a,b,c), tenkinantys salygas a <b<cirb<7

Lenteléje yra devyni P-trejetai su paryskintomis skaiciaus c reikSmeé-
mis:
(2,3,3),(3,4,6),(3,6,9),(6,6,8),

(5.5)
(4,5,5),(4,5,10),(6,7,7),(6,7,14),(6,7,21).

Remiantis rezultatais i$ 8, [7], tai néra S-trejetai. Atkreipkim démesi,
jog (2,3,3) yra P-trejetas pagal [J] teiginj, vadinasi

(3,4,6) = (3,2,3)-(1,2,2),
(3,6,9) = (3,2,3)-(1,3,3),
(6,6,8) =(3,3,2)-(2,2,4)
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yra P-trejetai pagal teiginj. Tuo tarpu likusieji (5.5)) trejetai yra
Stai tokio bendresnio tvirtinimo, kurj taip pat jrodome [ skyriuje, atskiri

atvejai:

teorema. Tarkime p - pirminis skaicius ir d|p—1. Tuomet (p—
1,p,pd) yra P-trejetas.

Taip pat jrodome tam tikra [9] teiginio pratesima:

teorema. Tarkimet €N, p> 2 - pirminis skaicius irt > p. Tuomet
(p,t,t) yra P-trejetas tada ir tik tada, kai plt.

Straipsnyje [8] atskirai jrodoma, jog (6,6,10) néra S-trejetas (zr. [8]
Theorem 38]). Apibendrindami Sio jrodymo idéjas, gauname Stai tokj
rezultata:

teorema. Tarkime p > 3 yra pirminis skaicius. Tuomet (p+1,p+
1,2p) néra P-trejetas.

Galiausiai disertacijos [ skyriuje jrodome tokj tvirtinima:

teorema. Tarkime k € N. Trejetas (n,(n—1)k,nk), kur n > 2, yra
P-trejetas tada ir tik tada, kai skaicius n - pirminis.

Atskiru atveju, imdami (n,k) = (4,2), gauname, jog (4,6,8) néra
P-trejetas. Paskutiniajame [ skyriaus poskyryje pateikiame dar viena
irodyma, jog tai iS tiesy néra P-trejetas.

Aprobacija

Disertacijos rezultatai buvo pristatyti 32 tarptautinéje konferencijoje
Journées Arithmétiques (JA 2023, liepos 3 - 7, 2023, Nansi, Prancuzija),
tarptautinéje mokslinéje konferencijoje skirtoje prof. dr. Hermano Min-
kovskio (Hermann Minkowski) 160-ies metuy jubiliejui (birzelio 20 - 22,
2024, Kaunas), 64 Lietuvos matematiku draugijos konferencijoje (LMD
2023, birzelio 21 - 22, 2023, Vilnius), taip pat Vilniaus universiteto skai-
¢iy teorijos seminaruose.

Konferencijy tezés:

1. Maciulevi¢ius L. Some degree problems in number fields. Abst-
racts of JA 2023, July 3 - 7, 2023, Nancy, France, pp. 44.
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2. Maciulevic¢ius L. Apie skaic¢iy kuny kompozito bei algebriniy skai-
¢iy sandaugos laipsnius. Lietuvos matematiky draugijos LXIV
konferencijos santraukos. Vilniaus universiteto leidykla, 2023, pp.
11.

Publikacijos
Disertacijos rezultatai paskelbti Siuose straipsniuose:

1. Drungilas P., and Maciulevic¢ius L. A degree problem for the com-
positum of two number fields. Lith. Math. J. 59, 1 (2019), 39 -
47.

2. Maciulevic¢ius L. On the degree of product of two algebraic num-
bers. Mathematics 11, 2131 (2023).

3. Dubickas A., and Maciulevi¢ius L. The product of a quartic and
a sextic number cannot be octic. Open Math. 22, 1 (2024), Paper
No. 20230184, 10.

Isvados
Pagrindiniai disertacijos rezultatai yra Sie:
o nustatyti visi C-trejetai (a,b,c), kuriuose a <b< cir b€ {8,9};

« jvesta neredukuojamo C-trejeto savoka, pateikta netrivialiy pavyz-
dziy ir iSkeltas uzdavinys rasti visus tokius trejetus;

o nustatyti visi P-trejetai (a,b,c), kuriuose a <b<cirb<7.
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