
VILNIUS UNIVERSITY

FACULTY OF MATHEMATICS AND INFORMATICS

SOFTWARE ENGINEERING PROGRAMME

Anomaly Detection in Industrial Manufacturing

Using Deep Neural Networks

Anomalijų atpažinimas industrijos gamybos procese

naudojant giliuosius neuroninius tinklus

Bachelor thesis

Author: Dominykas Dulevičius

Supervisor: J. asist. Boleslovas Dapkūnas

Reviewer: Dr. Tadas Žvirblis

Vilnius – 2024

Acknowledgement

The author is thankful for the high­performance computing resources provided by the

Information Technology Research Center of Vilnius University.

2

Santrauka

Anomalijų atpažinimas industrijos gamybos procese per pastarąjį laikmetį patobulėjo, nuo

žmonių įsitraukimo stebint gaminius su defektais produkcijos linijoje iki giliojo mokymosi metodų

pritaikymo anomalijų atpažinimo procese. Šio darbo tikslas yra sukurti naują giliojo mokymosi

modelį defektų atpažinimui integruojant asimetrinį studento­mokytojo neuroninį tinklą į Effi­

cientAD modelio architektūrą. Sukurtas modelis yra ištestuojamas su įmonės „MvTec“ sukurtais

duomenų rinkiniais, kuriuos sudaro nuotraukos su industrinės gamybos defektais. Gauti rezulta­

tai yra palyginimi su jau egzistuojančių giliųjų neuroninių tinklų, skirtų anomalijų atpažinimui

industrijos gamybos procese, rezultatais siekiant palyginti, kokiose rezultatų kategorijose naujai

sukurtas modelis parodė geresnius ar blogesnius rezultatus. Sukurtas modelis parodo geresnius

rezultatus tam tikrose nuotraukų kategorijose palyginus su kitas modeliais bei pagerina originalaus

EfficientAD modelio rezultatus kai kurioms klasėms nuotraukų klasifikavimo bei segmentavimo

uždaviniuose.

Raktiniai žodžiai: anomalijų atpažinimas, industrijos gamybos procesas, gilieji neuroni­

niai tinklai, MvTec duomenų rinkiniai

3

Summary

Anomaly detection in industrial manufacturing has evolved from initial human inspection

to advanced deep­learning methods. Initially, workers monitored assembly lines to spot defects.

Nowadays, various deep­learning models can efficiently detect anomalies in product images,

enhancing the ability to identify and prevent faulty products during production. This study

aims to create a new deep­learning model for industrial anomaly detection by integrating the

Asymmetric Student­Teacher model into the architecture of the EfficientADmodel. The developed

network is evaluated on ”MvTec” sostware’s datasets, which consist of images with industrial

manufacturing defects. The collected metrics are compared with existing deep neural networks

for industrial anomaly detection to evaluate categories upon which the modified model showed

better or worse results. The developed model shows better results than several state­of­the­art

models in some categories and improves the original EfficientAD model on certain statistics for

image classification and segmentation tasks.

Keywords: anomaly detection, industrial manufacturing, deep neural networks, MvTec

datasets

4

Contents

INTRODUCTION .. 6

PROCESS OF CONDUCTING THE RESEARCH .. 9

1. ANOMALY DETECTION . 10

1.1. Supervised, unsupervised and semi­supervised training . 10

1.2. Patch Distribution Modeling Framework PaDiM . 10

1.3. Semantic Pyramid Anomaly Detection . 11

1.4. PatchCore . 12

1.5. Student­Teacher Anomaly Detection . 13

1.6. Asymmetric Student­Teacher . 14

1.6.1. Normalizing flow . 15

1.6.2. Teacher . 15

1.6.3. Student . 16

1.7. EfficientAD . 16

1.7.1. Autoencoder . 17

1.8. Conclusions of literature review . 18

2. EXPERIMENT . 19

2.1. MvTec AD dataset . 19

2.2. MvTec LOCO AD dataset . 20

2.3. Metrics . 21

2.4. Implementation of EfficientAD model . 23

2.5. Implementation of Asymmetric Student­Teacher model . 25

2.6. Process of integrating AST into EfficientAD . 26

2.6.1. Integration of teacher, student and autoencoder . 26

2.6.2. Wrapper class for all components. 26

2.6.3. Teacher configuration . 27

2.6.4. Student configuration . 27

2.6.5. Autoencoder configuration . 27

2.6.6. Dataset . 28

2.6.7. Early stopping . 28

2.6.8. Teacher training loop . 28

2.6.9. Student­autoencoder training loop . 29

2.6.10.Training penalty . 29

2.6.11.Percentile of output differences . 29

2.6.12.Evaluation of modified model . 29

2.7. Results of Experiment . 30

2.7.1. Results on MvTec AD dataset . 30

2.7.2. Results on MvTec LOCO AD dataset . 38

2.7.3. Comparison with other models . 44

RESULTS AND CONCLUSIONS . 49

REFERENCES . 52

APPENDIXES . 55

Appendix 1. 55

5

Introduction

As our society relies on industrial manufacturing more every day, it is osten a case that the

manufacturing machines make mistakes, and it is important to spot those mistakes as soon in the

production process as possible to reduce the cost of fixing and preventing them from happening

again [LXW+24]. One of the fundamental principles of Lean manufacturing is called ”Jidoka”,

which enables machines and operators to detect an abnormal condition and immediately stop

the work [Sol20]. This is one of the main principles that helped the Toyota company achieve

great success and customer satisfaction by delivering the best quality goods and reducing defects

in the manufacturing process. According to the article [SSW+21], deep learning nowadays has

become more relevant, and one must understand its capabilities and utilize them in a way that

could benefit society. Anomaly detection is one of those technologies that could help detect errors

in various imagery representations. In this case, the ability to automatically spot faulty products in

the manufacturing process could improve the quality of the products and lead to a fully automated

manufacturing process.

When training and testing deep neural networks for anomaly detection tasks, one of the

primary goals is to address the class imbalance problem [JK19]. This is a problem when training

data does not consist of the same amount of different classes. In the anomaly detection context, it

is usually a case that faulty products consist of only a minor part of the whole batch. To solve

this problem, unsupervised, supervised, and semi­supervised methods [Lab20] of training the

models need to be reviewed to understand which of these approaches would be best suited for the

anomaly detection task in industrial manufacturing.

There is a significant amount of deep neural networks that have already been implemented

to perform the anomaly detection task in industrial manufacturing [BFS+19]. These models can

be separated into two categories: regular deep learning models and networks that utilize other

neural networks as backbones. The regular anomaly detection models, such as autoencoders

[Fad20] or Generative Adversarial Networks (GANs) [DYW21], work by trying to recreate the

input data and spotting differences from the usual data patterns they have learned. These models

are built to understand standard data and consider significant differences as anomalies. On the

other hand, models that use neural networks to pull out important features from images start by

using Convolutional Neural Networks (CNNs). The important information they find is used to

make anomaly detection more effective. In this study, multiple models that use other deep learning

models will be analyzed, and one model will be picked and improved to deliver better results in

the chosen metrics: training time, testing latency, AUROC, F1, precision, and recall scores. The

following models will be analyzed during the research: Patch Distribution Modeling Framework

(PaDim) [DSL+21], Student­Teacher [BFS+20], Semantic Pyramid Anomaly Detection (SPADE)

[CH20], EfficientAD [BHK24], and PatchCore [RPZ+22].

The modified model will be trained and tested with the MvTec AD [BFS+19] and MvTec

LOCO AD [BBF+22] datasets. Images in the MvTec AD dataset are divided into ten categories of

objects and five categories of textures. Defects can be of various types: deformed components,

organic variations, scratches or dents on the surface, and others. The wide range of anomalies in the

6

MvTec AD datasets allows us to simulate different defects that can occur in industrial manufacturing.

The model can be trained to detect structural anomalies in real­world manufacturing products and

components using these datasets. The MvTec LOCO AD dataset is different from the MvTec AD

dataset in a way that it contains logical anomalies: preferred placement of foods, needed number

of parts in a screw bag, placement and count of pushpins in a box, and others. Together with the

logical anomalies, the dataset also contains structural anomalies, similar to the MvTec AD dataset.

The MvTec LOCO AD dataset can be used to perform structural and logical anomaly detection

tasks in industrial manufacturing. In both datasets, the training set consists of defect­free images,

while the testing set consists of defect­free and anomalous images.

The network chosen to be modified for this research is the EfficientAD model. The reason

is that the architecture of this model consists of both the autoencoder, which does not use other

networks, and the Student­Teacher network, which uses another deep learning model for feature

extraction. An autoencoder is used in this framework for logical anomaly detection, such as

misplaced or missing objects. This type of architecture allows one to incorporate multiple models

into a single framework. Modifications can be achieved using different implementations or

variations of those models to improve the framework’s performance. The primary goal of this

improvement is to use a different implementation of a Student­Teacher framework ­ Asymmetric

Student­Teacher Network (AST) [RWR+23]. This new implementation of the Student­Teacher

model addresses the problem that original implementations are limited by how similar the student

and teacher architecture are, leading to an undesirably small distance between predictions. Using

a different implementation of a Student­Teacher model in the architecture of the EfficientAD

model can lead to a better result in anomaly detection in industrial manufacturing tasks. The

S­sized EfficientAD model reached the image­level anomaly detection AUROC score of 98.92%,

pixel­level AUROC score of 97.85% on the MvTec AD dataset, and 89.25% image­level AUROC

score on the MvTec LOCO AD dataset. This research aims to improve these AUROC scores by

integrating the Asymmetric Student­Teacher model.

This work aims to improve the performance of the EfficientAD network by integrating the

Asymmetric Student­Teacher Network into the framework’s architecture.

These are the objectives that have to be achieved during the research:

1. Integrate Asymmetric Student­Teacher Network into the architecture of the Efficien­

tAD network to achieve better performance results in anomaly detection in industrial

manufacturing tasks.

2. Analyze other already implemented models for the anomaly detection task to identify

whether the underlying architecture can be adapted to improve the EfficientAD model

further.

3. Evaluate the metrics of the chosen models and compare them with the new results of the

modified EfficientAD model.

By achieving these objectives, the following hypothesis will either be validated or proven

false: combining architectures from multiple deep neural networks can improve the performance

of already implemented models.

7

The expected results of the EfficientAD model modification are that it achieves a score

of more than 98.92% on image­level anomaly detection and a score of more than 97.85% on

pixel­level anomaly detection for the MvTec AD dataset. Additionally, the modified model is

expected to achieve a better than 89.25% AUROC result on image­level anomaly detection with

MvTec LOCO AD dataset.

The following methodology will be used to achieve the set goals:

1. Analyze the relevant literature to understand the principles of deep neural networks that

use other deep learning models as backbones for image feature extraction and the possible

ways to train the models.

2. Modify an already existing EfficientAD model to integrate the student and teacher

components of the Asymmetric Student­Teacher model.

8

Process of conducting the research

Firstly, the relevant literature about already implemented models that use other deep learning

models for feature extraction in anomaly detection will be analyzed to understand the core principles

of such frameworks. The distilled knowledge will then be used for EfficientAD model modification.

An already existing implementation of the EfficientAD model will be taken, and the student and

teacher components of the model will be integrated with the student and teacher components of

the Asymmetric Student­Teacher model. The integrated parts will be adjusted to work with the

existing autoencoder module to generate the anomaly maps for the MvTec AD and MvTec LOCO

AD datasets. What is more, the performance metrics: training time, testing latency, AUROC

score, recall, precision, and F1 score will be collected, and some of them will be compared with

the existing results of the Patch Distribution Modeling Framework, Student­Teacher, Semantic

Pyramid Anomaly Detection, PatchCore, and the original EfficientAD model implementation to

observe whether the modified EfficientAD model can compete with the existing state­of­the­art

models.

9

1. Anomaly Detection

1.1. Supervised, unsupervised and semi­supervised training

There are three ways to train a model when solving the anomaly detection task: supervised,

semi­supervised, and unsupervised [Lab20]. For a supervised approach, the training data usually

consists of images that are normal to the specific use case and those that are labeled as anomalies.

Training the model this way allows it to separate normal samples from those with anomalies.

However, when manufacturing industrial products, most of the produced parts have no defects,

and only a small part of the whole batch is faulty. Hence, finding a dataset where normal and

abnormal pictures would be partitioned into equal parts is challenging. As a result, when training

the model this way, anomalous pictures could not be enough to outweigh the normal images, and

the training process could become unbalanced.

When a deep learning model is trained with labeled data, it performs proficiently in that

specific area and only with data similar to the training dataset. Whereas industrial manufacturing

consists of various input data, a more versatile deep learning model would bring more value.

Regarding unsupervised deep model training, the dataset is not separated into labeled anomalous

and standard picture pairs. Instead, the model learns the behavior of the input data, which consists

of only normal pictures. In that way, the model learns the structure of the normal images, and

when the anomaly is passed to the trained model, it can segment those deviations from what

was supposed to be a normal picture. Semi­supervised learning is an approach to leveraging

the fundamental parts of both supervised and unsupervised learning. When training a model

semi­supervised, one usually trains the model with unlabeled normal and anomalous pictures

and then computes the model’s effectiveness with labeled normal and defect­free images. This

approach solves the issue when there is only a small part of anomalous data in the dataset, which

is usually the case when training a model for anomaly detection.

1.2. Patch Distribution Modeling Framework PaDiM

Anomaly localization is a way to detect anomalies in images by applying binary classification

to the pixels or patches of pixels in the pictures rather than classifying the whole image as

anomalous. Patch Distribution Modeling Framework works by using a pre­trained convolutional

neural network to describe each patch position by a Gaussian distribution and extracting patch

embedding vectors from the model by analyzing the relationships between various levels of the

pre­trained convolutional neural network [DSL+21]. In more detail, this framework has three main

components: embedding extraction, normality learning, and inference. Embedding extraction

works by using a pre­trained convolutional neural network to understand and describe specific

characteristics of an image and generate patch embedding vectors from the features. The framework

randomly selects a few dimensions of the vectors because the generated patch might carry redundant

information. This way, it is possible to simplify the model without compromising its performance.

Normality learning is a way to understand what is expected in an image by computing a set of

patch­embedding vectors from a collection of normal training images. There is an assumption

10

that these vectors follow a Gaussian distribution, which is described by two parameters: mean and

covariance matrix. The mean represents the average of the vectors, while the covariance matrix

captures how these vectors relate to each other. Each patch position in the image is associated with

the Gaussian distribution that captures the information from different levels of the pre­trained

convolutional neural network. Inference is a part of computing the anomaly map. For this task,

Mahalanobis distance [Mcl99] is used, which measures how far a given patch embedding vector is

from the normal distribution learned earlier. If the measured distance is high, the patch differs

from a normal distribution and could be considered an anomaly. Finally, these distances generate

an anomaly map where high scores indicate anomalous areas in the picture. In the end, the

maximum score of the whole anomaly map is taken, which is considered the anomaly score of the

entire image.

Figure 1. Architecture of PaDiM framework [DSL+21]

From Figure 1, it can be seen how the PaDiM framework works in more detail. The

framework takes in the patch of N images, and each of these patches is sent into a pre­trained

convolutional neural network. This network takes each patch and extracts the features as vectors.

These vectors are called embeddings, and they capture the content of each patch. For each specific

position in an image, the system looks at the embeddings of that position from many different

images. By studying these embeddings, the system learns what a normal patch at that position

should look like. These embeddings are assumed to be scattered in Gaussian distribution. For each

patch position, the system calculates the average and deviation of these embeddings. Ultimately,

the entire image is represented as a matrix of the Gaussian parameters.

1.3. Semantic Pyramid Anomaly Detection

The Semantic Pyramid Anomaly Detection (SPADE) [CH20] framework consists of three

main parts: feature extraction, K nearest neighbor normal image retrieval, and pixel alignment

with deep feature pyramid correspondences. Feature extraction works by extracting features at

an image level and using those features for pixel­level arrangement. Feature extraction is usually

achieved using unsupervised learning, which learns the features from normal input images. This

Semantic Pyramid Anomaly Detection framework uses pre­trained ResNet convolutional neural

network features, which are analyzed and stored in a pyramid of characteristics. The way it works

is by using primary layers to produce characteristics of higher resolution by encoding less context,

11

when, on the other hand, layers at the end encode lower resolution features with more context.

The SPADE framework finds correlations between the normal and target images by describing

each location using different levels of the characteristics pyramid.

The K nearest neighbor normal image retrieval part is responsible for retrieving K nearest

normal images from the training dataset. The Euclidian distance is measured between the feature

representations at the image level. During this stage, images are labeled as either anomalous or

normal. To determine a positive classification, the kNN distance has to be larger than the picked

threshold.

The goal of the pixel alignment with deep feature pyramid correspondences method is to

take the image labeled as anomalous at the image level and segment the pixels for the predicted

anomalies. To achieve this goal, the framework extracts the features for every pixel by employing

a multi­image correspondence approach. As a result, a feature gallery is created from the pixel

locations of the image’s K nearest normal counterparts. Aster calculating the average distance for

each pixel to its nearest features in the gallery, the anomaly score is assigned to every one of the

pixels. In the end, the anomaly scores of the pixels are evaluated by the threshold, and if they

surpass the threshold, the pixel is labeled anomalous. Figure 2 shows a more detailed architecture

of the SPADE model.

Figure 2. Architecture of SPADE network [Zha21]

1.4. PatchCore

PatchCore framework [RPZ+22] improves on previously mentioned methods by taking most

of the information from normal, defect­free images during its training phase. Other deep­learning

models are not very flexible and do not always use this kind of normal image data effectively.

PatchCore, on the other hand, uses this data to understand better what a normal image should

look like, which helps it more accurately identify when something is wrong or out of place in

new images it analyzes. Instead of relying on high­level abstract features, PatchCore leverages

locally aggregated, mid­level feature patches of the ImageNet model. This strategy is based on

the principle that an image can be classified as anomalous if even a single patch is anomalous. In

more detail, the PatchCore framework consists of three main parts: locally aware patch features, a

coreset­reduction method for increasing efficiency, and an algorithm used at the localization and

detection phases. Figure 3 shows an in­depth overview of this framework’s flow.

12

Figure 3. Architecture of PatchCore framework [RPZ+22]

Firstly, aggregated local patch feature extraction focuses on smaller, more specific parts of

an image, called mid­level features. These features of defect­free photos are then collected and

stored in a memory bank, which is later used as a reference for normal image representations. The

process ensures that each stored feature has enough detail to be meaningful and includes enough

context to understand the bigger picture. The part of aggregating features accounts for robustness

by looking into individual features of patches and aggregating features from the nearby areas in

the image. This helps the framework better understand each feature’s context and makes it more

robust in anomaly detection tasks.

The coreset­reduction method utilizes the data needed for processing without losing the

quality. Sometimes, the memory bank can get too large, resulting in worse performance while

evaluating new test data. To solve this, PatchCore uses a method called coreset subsampling. This

technique involves selecting a smaller, representative subset of features from the larger memory

bank. The idea is to keep the most important features while eliminating redundancies, which helps

reduce the memory bank size without losing significant information. By reducing the size of the

memory bank, PatchCore can work faster and require less storage space while ensuring that the

memory bank still effectively represents the normal image features.

Regarding anomaly detection and localization, PatchCore calculates an anomaly score for

each patch of an image by determining how different the patch’s features are from the closest

features in the memory bank. The more a patch’s features differ from the normal features in the

memory bank, the higher is anomaly score. PatchCore aggregates these patch­level anomaly scores

to determine if an entire image is anomalous. The PatchCore framework can accurately identify

subtle and apparent anomalies, making it suitable for practical quality control and inspection

applications.

1.5. Student­Teacher Anomaly Detection

The Student­Teacher [BFS+20] framework uses features of deep neural networks to address

the approach, known as a feature regression problem. The teacher component is trained on a

dataset of image patches. The output of this network is being used by the student networks, which

are trained to regress the output of the teacher network. When the student network’s outputs vary

from the teacher network’s outputs, an anomaly is detected in that area.

13

Figure 4. Flow of the Student­Teacher framework [BFS+20]

In more detail, as seen in Figure 4, the teacher framework is constructed using knowledge

of a pre­trained neural network. This is achieved by matching the pre­trained neural network’s

descriptors with the decoded latent vectors. Later on, these embeddings are used for the anomaly

detection task. On the other hand, the collection of the student networks is trained to foresee

the teacher’s network output on training data, which has to be free of anomalies. Each student

network produces a forecast distribution across the range of potential regression targets for every

local image area. Ultimately, the student network produces feature maps of descriptors for each

image pixel, representing a local image region centered around a particular pixel. The teacher

network, which shares the same design as the student networks, pulls out detailed embedding

vectors from every pixel in the input image. These vectors act as fixed regression targets when

training the students. Anomalies are identified by examining the students’ regression mistakes

and predictive variability. The underlying idea is that students might not generalize well beyond

data without anomalies, causing differences in their predictions relative to the teacher’s results.

1.6. Asymmetric Student­Teacher

The Asymmetric Student Teacher model for anomaly detection [RWR+23] is a variation

of the original Student­Teacher model implementation (section 1.5). Both networks are of the

same architecture in the standard implementation of the Student­Teacher model. Because of this

similarity, differences between the student and the teacher outputs can be similar. To address

this problem, an Asymmetric Student­Teacher was implemented so that the model’s teacher

and student components would be of different architectures. The teacher part of the model is

implemented as a normalizing flow, while the student component remains a conventional feed­

forward network. Having these two components with different architectures increases the contrast

of the outputs on anomalous images, leading to a more apparent distinction between normal and

abnormal regions, as seen in Figure 5.

14

Figure 5. Difference between the teacher and student models’ predictions on anomalous regions

of a picture [RWR+23]

1.6.1. Normalizing flow

When there is a lot of data, for example, images in an anomaly detection context, there is

a need to understand patterns hidden in them to have the possibility of detecting anomalies in

those pictures. The data is complicated and difficult to analyze in a machine learning context. The

existing mathematical models capable of analyzing image patterns are complex and challenging to

work with directly. Variational Inference is a method that is used to address this challenge [RM15].

Instead of working directly with the complicated mathematical model, Variational Inference

tries to find a more straightforward mathematical model close enough to the original. Posterior

Distribution is a mathematical way of predicting that some event may happen by analyzing already

collected data. Normalizing flow is a technique that helps to make the simple mathematical model

closer to the reality of complex data. It does so by applying a series of steps that gradually transform

the simple model to resemble the complex patterns in image data. Traditional Variational Inference

might simplify data too much, causing a loss of important details. Normalizing flow allows us

to keep those details, making the simplified mathematical model more accurate and helpful in

making predictions and decisions.

1.6.2. Teacher

The primary goal of the teacher model is to transform the training data distribution into a

standard normal distribution using a normalizing flow framework. The process involves breaking

the data into parts and then modifying these parts in a specific way. The modifications depend on

each other and on an added element called positional encoding, which describes where a piece

of information is located. To make these modifications, the teacher uses affine coupling blocks.

These blocks mix and transform the data parts so that the overall structure remains revertible to

its original form. Earlier approaches might directly use the teacher’s output to find anomalies.

The Asymmetric Student­Teacher model, instead, uses the teacher’s output as a learning goal for

the student component.

15

1.6.3. Student

The student’s task is to learn from the teacher about what is normal. It learns to predict the

teacher’s output based on examples of normal images it has been shown. The student component

is built using the fully convolutional network, the same as in previous works. However, the

implementation of the Asymmetric Student­Teacher model also leverages additional structure in

the network ­ residual blocks. These blocks help the network understand and process the data

more effectively by adding complexity and depth to the analysis. The student looks at the same

data as the teacher, possibly including 3D data if available, and considers positional encoding,

just like the teacher component. Its goal is to produce outputs that match as closely as possible

to what the teacher produces when given images of normal images. By comparing its outputs to

the teacher’s, it can identify when something does not fit the pattern of a normal image. The

simplified architecture of the Asymmetric Student­Teacher model can be seen in Figure 6.

Figure 6. Pipeline of the Asymmetric Student­Teacher network for 2D and 3D image processing

[RWR+23]

1.7. EfficientAD

When it comes to detecting anomalies in industrial manufacturing, it is essential to have the

possibility to detect anomalies as fast as possible with as few computational resources as possible.

EfficientAD is a framework that tries to solve this problem. This framework’s architecture is based

on student­teacher anomaly detection (mentioned in section 1.5) [BHK24]. In addition, this

framework incorporates an autoencoder into the student­teacher architecture, which studies the

logical restrictions of images during training and finds discrepancies during testing. It calibrates the

autoencoder and student­teacher framework results to improve anomaly detection performance.

The EfficientAD framework uses loss­induced asymmetry to compute training loss. This

kind of approach maintains the architectural design of the framework and has no impact on the

computational power needed during test time. In more detail, there are four main components

in the EfficientAD framework: efficient patch descriptors, lightweight student­teacher, logical

anomaly detection, and anomaly map normalization. An efficient patch descriptor is the first

part of the framework, and it utilizes pre­trained convolutional neural network features. In this

case, the network being used is a patch description network comprising four fully convolutional

16

layers. Choosing a network with such a simple structure reduces the depth for feature extraction

and gains performance. Using only a single forward pass, all feature vectors of an image can be

extracted. Another benefit of this pre­trained neural network is that it only focuses on the pixels

in the given patch, and, as a result, anomalies found in one particular place in an image do not

trigger anomalous feature vectors in other parts of an image.

The patch description network architecture is applied to a network’s student and teacher

parts, which are used to detect anomalous feature vectors. To further enhance the performance of

the student­teacher framework, hard feature loss is being used, which allows the student to copy

the teacher on regular images while at the same time abstaining from generalization on anomalous

photos. The loss of the student is focused only on the patches where the student fails to copy

the teacher the most. This kind of loss calculation reduces false­positive results and keeps the

consistency of anomaly scores on normal images. This framework introduces a loss penalty during

training time that stops the student from copying the teacher’s behavior on images not included in

the standard training set. An autoencoder is used in this framework for logical anomaly detection.

Logical anomalies can be understood as anomalies, such as placing the parts in the wrong order or

the table’s width being incorrect. Integration of autoencoder into the student­teacher framework

can be seen in Figure 7.

Figure 7. Architecture of EfficientAD network [BHK24]

During training, the autoencoder tries to predict the output of the teacher component while

the student picks up consistent mistakes the autoencoder makes when processing regular images,

like producing blurry outputs. Yet, it does not recognize the errors made for anomalous pictures

because they are not included in the training data. During evaluation, the difference between

teacher output and student output generates a local anomaly map, while the difference between

autoencoder output and student output produces a global anomaly map. The unified anomaly

map is derived by taking the average of the two individual anomaly maps. This merged map

encapsulates the student­teacher and the autoencoder­student detection outputs.

1.7.1. Autoencoder

Autoencoder is a deep learning model that compresses and encodes the provided image

and reconstructs the compressed data from the encoded form. The autoencoder neural network

usually consists of three main parts: encoder, decoder, and bottleneck in the middle, which holds

the underlying representation of the input data [Fad20]. The encoder is a layer in the neural

17

network that consumes high­dimensional input and compresses it to low­dimensional data called

the bottleneck. The decoder receives that translated data as input and tries to reconstruct it in a

way that is similar to the original input with as few errors as possible. Figure 8 shows an example

of the possible autoencoder architecture.

Figure 8. Auto­encoder network architecture [GLZ+17]

1.8. Conclusions of literature review

Even though the semi­supervised way of training a deep learning model for anomaly detection

provides the possibility to address the class imbalance problem for faulty images, all of the models

chosen for this research use only defect­free training data. Hence, unsupervised training will be

adapted to train the modified EfficientAD model. The tendency can be observed that most models

use custom datasets of defect­free images, such as ImageNet, to extract features of regular images

that are later used to train the models for the anomaly detection task. The feature extraction

is performed using different variations or layers of the ResNet neural network. Some of the

models, PatchCore and SPADE, for instance, construct an intermediate architecture that stores

the representation of extracted features. The SPADE model uses the pyramid of characteristics,

which stores the extracted features using different levels of encoded context. The PatchCore model

uses a memory bank to store patches and the context of features. During testing, the distance of

patches is calculated to detect anomalies in images. To modify the EfficientAD model, the teacher

component as a normalizing flow and the student component as a convolutional neural network

will have to be integrated with the autoencoder responsible for detecting logical anomalies. A

convolutional neural network, such as ResNet or other different variations, will extract the features

of defect­free images. The ImageNet dataset will be used to adjust the training process during the

processing of defect­free pictures.

18

2. Experiment

2.1. MvTec AD dataset

MvTec Anomaly Detection dataset is a dataset for anomaly detection in industrial manu­

facturing [BFS+19]. This dataset consists of 3629 images for validation and training, along with

1725 images for testing. The dataset’s training part consists of pictures without any defects, while

the testing set consists of normal photos and those with defects. This implies that models will be

trained unsupervised using this specific dataset. Images are divided into ten categories of random

objects and five categories of various textures, as seen from Table 1.

Table 1. Structure of the MvTec AD dataset [BFS+19]

Category Train
Test

(good)

Test

(defective)

Defect

groups

Defect

regions

Image

side length

T
e
x
tu
re
s

Carpet 280 28 89 5 97 1024

Grid 264 21 57 5 170 1024

Leather 245 32 92 5 99 1024

Tile 230 33 84 5 86 840

Wood 247 19 60 5 168 1024

O
b
je
c
ts

Bottle 209 20 63 3 68 900

Cable 224 58 92 8 151 1024

Capsule 219 23 109 5 114 1000

Hazelnut 391 40 70 4 136 1024

Metal Nut 220 22 93 4 132 700

Pill 267 26 141 7 245 800

Screw 320 41 119 5 135 1024

Toothbrush 60 12 30 1 66 1024

Transistor 213 60 40 4 44 1024

Zipper 240 32 119 7 177 1024

Total 3629 467 1258 73 1888 ­

Textures are classified as either regular (carpet, grid) or random (wood, leather). As for the

objects, there are various types of them: deformable (cable) as well as with fixed appearance

(bottle, screw) or those that consist of organic variations (hazelnut). There are a total number of

73 different defect types on the images. Some of them are defects on the surface of an object

(scratches, dents) or various structural defects like deformed components of an object. The defects

were generated manually to simulate real­world industrial anomalies.

19

Figure 9. Pictures with highlighted anomalous regions [BFS+19]

Another aspect of this dataset that makes it accurate is that it provides the total number of

1888 pixel­accurate ground truth regions to detect the anomaly as precisely as possible (Figure 9).

Image resolutions for all objects fall within the spectrum of 700 × 700 to 1024 × 1024 pixels. As

grayscale images are frequently used in industrial inspection, three object categories (grid, screw,

and zipper) are exclusively provided as single­channel images.

2.2. MvTec LOCO AD dataset

MvTec LOCO Anomaly Detection dataset is another dataset of MvTec Sostware with

images of structural and logical defects, such as misplaced or missing objects [BBF+22]. As

the autoencoder’s purpose in the EfficientAD architecture is to enhance the detection of logical

anomalies, this dataset provides a possibility to train and test the models on such defects. Similarly

to the MvTec AD dataset, the MvTec LOCO AD dataset consists of defect­free photos in the

training set and pictures with anomalies in the testing set, providing a way to train deep learning

models unsupervised. The dataset has 1772 training images and 1568 testing images. The dataset

offers five different categories of objects for the anomaly detection task, Table 2.

20

Table 2. Structure of the MvTec LOCO AD dataset [BBF+22]

Category Train
Test

(good)

Test

(structural)

Test

(logical)

Defect

types

Image

width

Image

height

Breakfast Box 351 102 90 83 22 1600 1280

Scew Bag 360 122 82 137 20 1600 1100

Pushpins 372 138 81 91 8 1700 1000

Splicing Connectors 354 119 85 108 21 1700 850

Juice Bottle 335 94 94 142 18 800 1600

Total 1772 575 432 561 89 ­ ­

The images in breakfast box consist of one nectarine and two tangerines on the lest side of the

box, while on the right side is a mix of almonds, cereals, and banana chips. Pictures from screw bag

category consist of one short screw, one long screw, two washers, and two nuts. Each image in the

pushpins category includes compartments with one pushpin in each box. The splicing_connectors

category visualizes two splicing connectors and two cable clamps connected with a single cable.

Images from juice_bottle contain three bottles filled with different color liquids. Each bottle has

two labels on it, which are attached to the center and lower parts of the bottle. Image width for

images varies from 800 pixels to 1600 pixels, while height can differentiate from 850 pixels to

1600 pixels. Examples of dataset images can be seen in Figure 10

Figure 10. Picture examples from the MvTec LOCO AD dataset [BBF+22]

2.3. Metrics

For the analysis of the modified model, the following metrics were chosen to be collected:

• Training time

21

• Testing time latency

• ROC curve and area under the curve (AUC)

• Recall

• Precision

• F1 score

Training time is the duration that it takes for the model to train on the provided dataset. Testing

time latency is a metric that shows the time it took for the model to perform a single forward pass

of a picture. The AUROC is a metric that measures the performance of the binary classification

model. In anomaly detection tasks, it is either the classification at an image level (image is either

anomalous or not) or at the pixel level (pixel is either anomalous or not).

The ROC curve is a function that plots the effectiveness of the model at different TPR vs

FPR classification thresholds. Calculation formulas for TPR and FPR can be seen respectively in

Formulas 1 and 2. TPR stands for true positive rate and is represented on the y­axis. FPR stands

for false positive rate and is represented on the x­axis. When calculating TPR and FPR, TP stands

for True Positive, FP stands for False Positive, FN stands for False Negative, and TN stands for

True Negative.

TPR =
TP

TP + FN
(1)

FPR =
FP

FP + TN
(2)

The AUC metric represents the area under the ROC curve and portrays the overall efficiency of

the model across all classification thresholds. The higher AUC score describes the better ability to

predict anomaly­free classes as anomaly­free and anomalous classes as anomalous. AUC score is

the integral of the ROC curve. It can be calculated using the Trapezoidal Rule integration method

[SM03]. An example of the Trapezoidal Rule for calculating the AUC score using FPR and TPR

can be seen in the Formula 3. The FPR values need to be sorted before calculating the formula.

AUC =
N−1∑
i=1

(FPRi+1 − FPRi)× (TPRi + TPRi+1)

2
(3)

The F1 score evaluates a model’s predictive capability by focusing on its performance across

individual classes instead of the general performance measurement provided by accuracy. This

metric calculates the ratio of accurately identified positive instances out of all occurrences labeled

as positive by a deep learning model, utilizing precision in its computation. The F1 score uses

recall to determine the proportion of true positive cases compared to the overall number of positive

cases. The F1 score formula can be seen in the Equation 4.

F1 =
TP

TP + 1
2
(FP + FN)

(4)

The precision metric is the ratio between true positive predictions and the sum of total positive

predictions made by the model. A high precision score shows that many of the model’s positive

22

predictions are accurate. This metric is beneficial when the cost of false positives is high, which, in

an anomaly detection context, is preferable so that a defect­free part is not marked as anomalous

in industrial manufacturing. The formula of precision score is described in Formula 5

Precision =
TP

TP + FP
(5)

The recall, also known as sensitivity, provides insights into the model’s ability to identify positive

(or anomalous, in this case) samples in the dataset. A high recall score implies that the model

accurately identifies positive samples. This metric provides statistics on whether the model does

not predict many false negative scores. For example, when there is an anomaly in the picture, the

model identifies it as a defect­free image. The equation for recall is described in the Formula 6

Recall =
TP

TP + FN
(6)

In practice, there is osten a trade­off between precision and recall [Pow08]. When one metric

increases, the other may decrease. The precision­recall curve will be constructed to analyze this

trade­off between recall and precision to visualize the relationship between these two metrics

throughout different thresholds. These metrics will be collected for pixel­level and image­level

anomaly detection tasks.

2.4. Implementation of EfficientAD model

The existing implementation of the EfficientAD model was taken from the GitHub reposi­

tory1. It supports industrial anomaly detection on MvTec AD and MvTec LOCO AD datasets.

The model itself is constructed using the PyTorch machine learning framework.

Firstly, the teacher component must be trained and saved to be later used for training the

student and autoencoder components of the network. Depending on the size of the teacher, either

a small or medium Patch Distribution Network (PDN) is initialized to extract features from images.

The small PDN has fewer layers and uses a more straightforward configuration. It starts with 128

channels in the first convolutional layer and progresses to 256 channels in the following layers

before reaching the output layer with the specified number of output channels. The medium PDN

contains additional convolutional layers and activation functions. It begins with a larger number

of channels, starting at 256 and increasing to 512 in the middle layers. The small PDN is more

suitable when faster processing is needed and anomalies are minor. Medium PDN offers greater

depth and might be more effective when complex features need to be extracted. However, the

more extensive PDN network requires more computational resources.

ImageNet dataset is used to train the teacher component. This dataset consists of more than

14 million images that can be used to train deep learning models for object detection. Before

passing images to the network, they are resized, converted to tensors, and normalized. Firstly, a

feature extractor is used to compute the target for the teacher output. The feature extractor uses a

1https://github.com/nelson1425/EfficientAD/tree/main

23

Wide ResNet­101 [HZR+16] network as a backbone to extract features from the images. However,

only a few layers are used from the Wide ResNet­101 network for the feature extraction. PyTorch

hooks are being used to collect the outputs from the specified layers so that not only the final

output can be used to gather the features.

The features’ standard deviation and mean are extracted to normalize the target output.

These features are then used as targets to train the teacher component, preparing it to recognize

patterns in images and train to reconstruct them. Mean squared error (MSE) is used between the

output of the teacher and the normalized features to compute the loss. Adam optimizer is then

used to adjust the weights of the teacher network.

Aster the teacher component is trained, student and autoencoder components are initialized

for training. The student component is created as a PDN with the same architecture as the teacher.

Autoencoder is constructed by using encoder and decoder components. The encoder consists of

convolutional layers that capture various patterns of images. Stride and padding determine how

far the filter moves across the images in each step. The activation function is then applied aster

each convolution. The decoder component gradually uses upsampling to increase the size of the

compressed feature maps. Convolutional layers in the decoder are used to recover the details of

the compressed image. Dropout layers are used to prevent the model from overfitting. Finally, the

last convolutional layer maps the features to the desired output channels.

The MvTec dataset is used to train the student and autoencoder components, while images

from the ImageNet dataset are used for training penalties. Only images without anomalies are

used because the model is being trained unsupervised. Before entering the training loop, the

standard deviation and mean of features produced by the teacher model are calculated and used

later to adjust the outputs during training. The student network tries to predict the output of the

teacher network on the same input images. The mean squared error calculates the loss between

the student and teacher outputs.

Only the outputs in the 99.9th percentile are collected to focus on the most challenging

differences between the student and teacher components. In this way, the similarity of teacher

and student architectures is compensated. Pictures from ImageNet prevent the student network

from overfitting by penalizing it for high confidence in unfamiliar data. Images from the MvTec

dataset are passed to an autoencoder, which trains to reconstruct the input images aster encoding

them in a compressed form. Mean squared error is then calculated between the autoencoder’s

output and the teacher’s output to compute the difference between original and reconstructed

images. Finally, loss between student­teacher, autoencoder­teacher, and penalty are combined

to update models’ weights using backpropagation. The training loop is configured to iterate for

70000 steps by default, with a dataloader batch size of 1. A learning rate scheduler is used aster

95% of steps are completed to adjust the learning rate during training gradually. Every 10000

steps, an intermediate evaluation is done to test the training progress.

Before performing the network’s final inference, map normalization is done. Firstly, the

maps for student­teacher and autoencoder­student pairs are computed. Scores in the 90th and

99.5th percentiles for student and autoencoder maps are calculated. Scores in the 90th percentile

24

are considered high, while those in the 99.5th percentile are considered extremely high. The

results of this analysis are then used to compute the thresholds, which are later used to adjust the

understanding of what is regarded as an anomaly when testing the models.

Finally, the trained models are tested. Each image is resized and normalized before the

models’ predictions are collected. The prediction maps of the student and autoencoder are

concatenated into a single map with weights of 0.5. The produced anomaly map is resized to

the original image size and saved as a TIFF file. Lists of ground truth and predictions on image

classification task are used to calculate the Area Under the Receiver Operating Characteristic

Curve score.

2.5. Implementation of Asymmetric Student­Teacher model

The implementation of the Asymmetric Student­Teacher model was taken from the GitHub

repository of the paper2. The network was built using a PyTorch machine learning framework. By

default, it is compatible with performing the anomaly detection task on MvTec AD and MvTec

3D­AD datasets. However, this paper focuses on analyzing only the datasets with 2D images.

Teacher and student components are trained separately for the anomaly detection task. The

teacher component is constructed using the normalizing flow architecture. Permutation layers are

used to rearrange the features in the input data randomly. Coupling layers adjust some parts of

the data based on other parts that have not yet been changed. These adjustments aim to make the

pattern look more like the normal distribution. Affine transformations in the teacher architecture

are used to adjust the size or shist the parts of the data. These transformations facilitate the

construction of simple patterns into complex patterns of normal data. A custom loss function is

implemented to calculate the score between the transformed and actual patterns of normal data. It

uses the Jacobian determinant [LH21] to understand how the transformations of normalizing flow

affected the data’s distribution. In more detail, Jacobian measures the change in volume and space

as the data goes through the normalizing flow model. Mask is used in the loss function to weigh

each part of the data. Areas covered by masks contribute more to the overall loss calculation.

The student network consists of convolutional layers and residual blocks to process the input

data. The positional encodings are concatenated with the input data and passed to the model. The

first convolution layer takes input features with positional encodings and applies a convolution

operation to produce initial feature maps. The output of the first convolutional layer is then passed

to the residual blocks. Each residual block consists of two convolutional layers, followed by batch

normalization and a LeakyReLU activation function. The purpose of residual blocks is to refine

the feature maps without altering their spatial dimensions, gradually improving the data as it

passes through each block. The last convolutional layer of the network applies a convolution to

the output of the last residual block to produce the final output of the model.

Training is performed unsupervised, using only defect­free images from the MvTec dataset.

During the training of teacher and student networks, additional functions, such as foreground mask

downsampling, positional encoding, and feature extraction, are used to enhance the performance

2https://github.com/marco­rudolph/AST

25

of the models. Foreground masks, which highlight more relevant regions of the input data, are

reduced using downsampling to match the expected form when calculating the loss of models.

Positional encoding integrates information about the features’ position into the models’ input.

Instead of passing raw images to the models, the feature extractor converts the photos into features

of those images. These features are easier for the model to process and contain more relevant

information than raw pixel values. Feature extractor uses a pre­trained EfficientNet [TL19] model

to process the input images up to a specific layer and outputs features from that specified layer.

These features encapsulate important visual characteristics of the input images, such as edges,

textures, or patterns. In the end, these features are passed to the models for processing. Outputs

of the models are then used to calculate the loss and adjust the weights through backpropagation.

The training of teacher and student models is configured by default to iterate through 240 epochs

for 2D image processing.

During training, aster each 24 epochs, an intermediate evaluation is performed to check the

progress of the models. The testing set is constructed from the MvTec dataset, and images with

anomalies are used. Aster testing, per­sample and per­pixel losses are calculated. The per­sample

loss is calculated for each image in the batch. This gives a measure of how well the model predicts

each image. The per­pixel loss is calculated for each image pixel, providing insight into the

model’s prediction accuracy at a more detailed level. The mean of the sample losses and max of

the pixel losses are then collected and used to calculate the Area Under the Receiver Operating

Characteristic Curve scores.

2.6. Process of integrating AST into EfficientAD

2.6.1. Integration of teacher, student and autoencoder

The strategy was first to integrate the AST model’s student and teacher components into

the EfficientAD network’s architecture. Firstly, the convolutional neural network of the AST

student was used in the EfficientAD model with the existing teacher’s convolutional neural network

to analyze whether the AST student’s unchanged structure works with the EfficientAD model’s

components. The integration was successful as the replaced architecture of the EfficientAD student

network was similar. The teacher component, implemented as a normalizing flow, was defined to

work together with the integrated student network. Parameters of networks’ configuration were

taken from the original implementation of the AST model.

2.6.2. Wrapper class for all components

To initialize the student, teacher, or autoencoder networks of the modified EfficientAD

network, the wrapper class was defined to perform feature extraction, positional encoding, and

forward pass through the models. The feature extractor was taken from AST. It accepts an index of

the EfficientNet­B5 layer from which the features should be returned. Once the image processing

reaches the specified layer, the feature extractor stops further processing and outputs features

from that layer. The layer was set in the same way as in the AST implementation. The positional

26

encoding implementation was taken from the CFLOW­AD model [GIK21]3. The positional

encoding function takes the dimension of a model, the height, and the width of the positions as

the input and returns the dimension × height × width position matrix. Parameters were 32, 24,

and 24 for dimension, height, and width. Before performing forward pass through the models, the

extracted features and positional encodings are concatenated into a single tensor. For the teacher

model, the Jacobian determinant is calculated and returned together with the output of the forward

pass.

2.6.3. Teacher configuration

The teacher network input dimension was set to 304, the number of features returned from

the feature extractor. Together with the extracted features, the teacher model was configured to

handle the positional encoding input parameter of 32 dimensions. The hidden channel count

was set to 1024, as in the implementation of the teacher inside the AST network for 2D image

processing. With the configuration used in the AST model, the model outputs 304 features of size

24 × 24.

2.6.4. Student configuration

The student network architecture was used similarly to the one in the AST model. As

in the teacher component of AST, the hidden channel count was set to 1024. Four residual

blocks were configured to perform additional convolutions inside the student component. The

input feature count was set to 336, which consists of 304 extracted features and 32 dimensions

of positional encodings. The output of the final convolution layer needed adjustments to work

with the EfficientAD architecture. During training, in the implementation of the EfficientAD

model, the first half of the student’s output is compared with the outputs of the teacher, while the

second half is compared with the outputs of the autoencoder. Hence, the output size was set to

608, two times more than the output of the teacher model. This way, the output of the student

network could be split up in half and compared with the outputs of the teacher and autoencoder

components.

2.6.5. Autoencoder configuration

To build the autoencoder network compatible with student and teacher components of

the AST model, the existing implementation of autoencoder from EfficientAD architecture was

adjusted. The core principle of autoencoder was lest unchanged, with encoder and decoder

components to compress and restore images, convolution layers to capture and organize different

levels of detail in images, ReLU activation function to introduce non­linearity into the model, and

dropout to prevent overfitting of the model. As for the differences, stride and padding parameters

needed adjustment as the input parameter of the autoencoder had to be adapted for extracted

features and positional encodings. The decoder’s upsampling technique was changed from bilinear

3https://github.com/gudovskiy/cflow­ad

27

interpolation and specific output sizes to the nearest neighbor method and a scale factor whose

purpose is to double the size of the feature maps at each upsampling step. As the final step, an

adaptive average pooling layer with a preferred output size of 24 × 24 was added for the modified

autoencoder. The purpose of this layer is to return the features of the exact dimensions as student

and teacher networks. Ultimately, the autoencoder was configured to output 304 features of size

24 × 24.

2.6.6. Dataset

As different dataset configurations were used in AST and EfficientAD networks, it was

decided that the custom dataset from AST implementation would be used as it is compatible

with the student convolutional neural network and normalizing flow teacher. It processes MvTec

datasets and returns the needed components for further loss calculation and model adjustments.

The original dataset implementation was adapted to handle both 2D and 3D images of MvTec.

However, the 3D image handling logic was removed as it was irrelevant to this research. In the

final version of the dataset, two parts were lest: image collection and processing, together with the

item retrieval logic. As the training processes of teacher and student­autoencoder components

require separate parameters, two different dataset image retrieval logics were defined. For the

teacher model, the dataset can return foreground masks, labels, images, and features of the images.

The dataset for the student­autoencoder was implemented to return images, ground truth masks,

and labels.

2.6.7. Early stopping

An early stopping mechanism was implemented for the student­autoencoder training loop.

The maximum number of epochs for the student­autoencoder training loop was set to 100 with

an adjusted dataloader batch size of 8 for training. Patience for early stopping was chosen to be

10% of the maximum epoch count. The purpose of the patience counter is to determine how

many epochs without any improvement models are allowed to train before being stopped. Aster

every epoch, an intermediate evaluation is done to test whether the model has improved. The

patience count was reset for the student­autoencoder pair if the AUROC score improved for either

the image or pixel­level anomaly detection task. Every time the model showed any improvement,

the checkpoint was saved so that the best model could be loaded during the testing.

2.6.8. Teacher training loop

The teacher’s training loop was lest the same as in the original implementation from the AST

repository. Adam optimizer with a learning rate of 2×10−4, epsilon of 1×10−8, and weight decay

of 1×10−5 was lest for the teacher optimization. During the training loop, the features of an image

are passed to the model, and the predictions, together with the returned Jacobian determinant, are

later used to calculate the loss and perform backpropagation. The loss is calculated using a custom

function with a downsampled foreground mask and the Jacobian determinant, as described in

section 2.5.

28

2.6.9. Student­autoencoder training loop

The student and autoencoder training loop was taken from the EfficientAD implementation

and modified to be compatible with the new architecture of teacher and student components.

The training data loader with defect­free images and testing set with normal and abnormal

pictures from the MvTec dataset was constructed using the modified dataloader of the AST model

implementation. The learning rate scheduler was removed as early­stopping was implemented for

the training loop. For adjusting the gradients of the model, Adam optimizer was lest from the

EfficientAD implementation with a learning rate of 2×10−4, epsilon of 1×10−8, and weight_decay

of 1× 10−5. During a training epoch, aster an image is passed to the student and teacher models,

MSE loss is calculated between the teacher outputs and the first half of student outputs. Further

into the training loop, the same image is passed to the autoencoder. The losses between the

autoencoder and the second half of student outputs and the autoencoder­teacher pair are calculated

using the MSE loss function. These losses are then accumulated and used for backpropagation.

2.6.10. Training penalty

One of the features of the EfficientAD model is to apply a penalty for the student component

during training if the model is too sure about the prediction of an anomaly in an unfamiliar picture.

ImageNet [DDS+09] dataset was used in the original implementation of the EfficientAD model,

so it was decided to use the same set of images in the modified architecture of the network. As

this dataset consists of 14 million images in total, a subset of 1000 random images from every

category was extracted to be used for the penalty calculation of student. During the initialization

of datasets before the training loop, a random subsample from the extracted ImageNet dataset is

taken with the same size as the dataset of the MvTec category. During a prediction on a MvTec

image, a picture from the ImageNet dataset is also passed to the student model, and the uncertainty

accumulates to the total loss of the model.

2.6.11. Percentile of output differences

Another feature of the EfficientAD network is to calculate the loss only of the 99.9th percentile

for the distance of outputs from student and teacher models. The reason is to compensate for

the similar architecture of student and teacher networks and only calculate the most significant

defects, as most predictions are similar because of the same architecture. When AST teacher and

student of different architectures were integrated into the EfficientAD network, it was decided to

calculate the loss for the whole output set as the difference in architecture brought more different

predictions between the student and teacher networks, Figure 5.

2.6.12. Evaluation of modified model

Aster the training loop of the student­autoencoder was complete, evaluation was performed

using the best saved model. The testing set was constructed from the MvTec data with defect­free

and anomalous images. Map normalization was removed from the implementation of EfficientAD

29

as the purpose was to evaluate only the most significant differences between the teacher and

student­autoencoder networks. With the teacher and student components being asymmetric, it

was decided to evaluate the whole output set. When an image was passed through the model for

testing, the latency metric of how long it takes to process a single image was collected. When

the predictions were outputted from the model, the student­teacher and autoencoder­student

differences were combined into a single anomaly map with weights of 0.5 for each map. The

predicted anomaly map was then saved as a heatmap that visualizes the areas in the image most

likely to contain a defect. The scikit­learn package was used to calculate and collect AUROC,

precision, recall, and F1 scores together with the ROC and precision­recall curves. The threshold

upon which the precision­recall curve showed the best result for pixel­level precision and recall

scores was chosen for predictions’ conversion to binary scores. With the converted binary scores, a

prediction mask was saved where the white color indicates an anomalous region in the image, and

the black color represents normal areas in the picture. The best threshold for the precision­recall

score was calculated and used to convert the predictions into binary scores. These predictions in

binary format were then used for F1 score, recall, and precision calculation. All collected scores,

graphs, and predicted anomaly maps were saved into folders.

2.7. Results of Experiment

2.7.1. Results on MvTec AD dataset

The modified model was adjusted several times before being tested with the datasets. As the

original implementation only calculated the image AUROC score, the aim was to improve this

score for the MvTec AD dataset’s bottle category before testing the model on other categories.

Aster integrating the student and teacher components with the autoencoder, the AUROC image

score of 90.95% was reached for the bottle category with two training epochs. A feature extractor

was integrated to adjust the input for the autoencoder. Aster this modification, the AUROC image

score improved to 91.90%. The increase in training steps count from 2 to 10 improved the image

AUROC score to 96.90%, and a rise to 15 steps resulted in the image AUROC score of 96.27%.

At this point, the AUROC calculation for pixel predictions was implemented. Aster 15 steps of

training, the model reached a score of 58.04% for pixel AUROC on the bottle category.

Aster removing the teacher normalization step, which calculates the standard deviation

and mean of outputs, the pixel AUROC score improved to 73.52%, and the image AUROC

score improved to 96.98% with five training steps. The custom loss function was adapted from

the implementation of AST instead of the MSE loss function of EfficientAD. This adjustment

worsened the image AUROC score to 89.92% and the pixel AUROC score to 71.86%, so it was

decided to leave the loss function of MSE from the EfficientAD network. The output difference

percentile was lowered from 99.9th to 90th to analyze whether it affected the predictions. It was

noticed that this modification improved the pixel AUROC score to 79.21% with five training

epochs. Aster raising the training epoch count to 100, without teacher normalization and percentile

value of 90, the model reached an image AUROC score of 99.84% and pixel AUROC score of

88.17% for the bottle category. Aster removing the map normalization step before testing the

30

model, with 100 training epochs, the model reached an image AUROC score of 99.44% and pixel

AUROC score of 91.96%. With this improvement in pixel AUROC score, it was decided to remove

the map normalization step before testing the model.

Aster implementing early stopping for the student­autoencoder training loop, with 100

training epochs, the model reached an image AUROC score of 99.60% and pixel AUROC score

of 91.60%. With the addition of image penalty from the ImageNet dataset, aster 100 epochs,

the model improved on the pixel AUROC with a score of 92.04%. Training augmentations of

random cropping, horizontal flips, and color adjustments were applied to the training process of

the student­autoencoder models. Aster 100 training epochs, the model reached a 91.13% pixel

AUROC score and a 99.14% image AUROC score. As no improvement was spotted in the results, it

was decided to leave the training loop without training augmentations. Aster completely removing

the filtering of outputs from the specified percentile, the model’s score of pixel AUROC improved

to 92.49%, so it was decided to remove the output filtering and compare the complete set of

outputs between the student and teacher models. Aster visually inspecting the saved predicted

masks and heat maps, it was noticed that padding was added to the outputted anomaly map.

With further investigation, it was observed that in the original implementation of the EfficientAD

model, before the interpolation step, padding of size four was added to the output map. Aster

removing the padding step, the model’s pixel AUROC score improved to 97.24%. Aster the final

modification of padding removal, with the results close to the average scores of the EfficientAD­S

model, it was decided to train and test the model on other MvTec AD dataset categories.

Aster training and evaluating the model on all the MvTec AD dataset categories, it was

noticed that the teacher training and testing metrics were lower than those of the original AST

implementation. The training loop of the teacher model should have produced similar results

as the implementation remained unchanged. It was noticed that the only part missing from the

original AST teacher training loop was feature extraction before entering the training loop. In the

implementation code of AST, it was mentioned that it is recommended to extract the features

before training the model. However, when the teacher training loop was extracted for the modified

EfficientAD model, the feature extraction was performed for each image before the forward pass

rather than extracting all the features before training the model. Aster using the pre­processing

script of AST implementation and the features for training the teacher model, the average training

time of a single category dropped from 72 minutes 9 seconds to 63 minutes 3 seconds. The

average teacher AUC mean improved from 83.77% to 95.32%. The AUC max average score of

the teacher model enhanced from 84.04% to 97.36%. Aster using the improved teacher to train

student and autoencoder networks on all MvTec AD dataset categories, the average pixel­level

AUROC score improved from 92.84% to 94.00%, and the average image­level AUROC score

improved from 88.31% to 96.98%. The same pre­extracted features were integrated into the

student­autoencoder training loop to evaluate the performance on the pill category. Aster one

epoch of training, when using pre­extracted features at once, the pixel­wise AUROC score dropped

from 92.45% to 75.67%, and the image­level AUROC score decreased from 93.04% to 89.89%.

As the performance dropped, it was decided not to use the pre­extracted features at once for the

31

student­autoencoder training loop but to extract the features of an image just before performing

the forward pass through the models.

The AUROC, F1, recall, and precision results for all MvTec AD dataset categories on pixel­

level can be seen in Table 3, image­level scores in Table 4, latency, training time and final training

epoch aster early stopping in Table 5. Teacher training metrics are visualized in Table 6.

Table 3. Pixel­level results on MvTec AD dataset

AUROC F1 Recall Precision

bottle 87.46 33.62 66.70 22.47

cable 95.41 47.77 55.23 42.09

capsule 98.27 38.14 62.16 27.51

carpet 95.30 26.12 48.28 17.90

grid 95.65 15.05 50.48 8.84

hazelnut 96.57 39.10 74.41 26.52

leather 94.53 17.36 17.92 16.85

metal_nut 93.66 63.29 86.73 49.82

pill 92.96 39.60 53.48 31.44

screw 97.90 21.50 29.92 16.78

tile 92.20 49.86 77.18 36.83

toothbrush 95.87 41.14 59.18 31.53

transistor 94.46 52.63 63.38 45.00

wood 83.39 24.15 38.38 17.61

zipper 96.46 39.64 71.06 27.48

AVERAGE: 94.00 36.60 56.97 27.91

Table 3 shows that the model achieved an average pixel AUROC score of 94.00%, which

suggests that the model is effective at distinguishing between normal and anomalous regions within

images. It showed the best AUROC score of 98.27% on the capsule category and the worst result of

83.39% on the wood category, indicating that natural variability in wood textures may complicate

defect detection. For the pixel­level F1 score, the model reached an average score of 36.60% with

the best result of 63.29% in the metal_nut category and the worst result of 15.05% in the grid

category. An average F1 score lower than 50 can indicate that while the model might identify

defective areas in the images, it could be missing some or incorrectly labeling normal pixels as

defective. The average pixel recall score of 56.97% was reached, suggesting the model might be

missing several anomalous regions in the image. The model accomplished the best recall score of

86.73% on the metal_nut category and the worst score of 17.92% on the leather subdataset. An

average score of 27.91% was reached for pixel precision, indicating that 72.09% of pixels identified

by the model as defects are normal when the calculation is performed with converted binary values.

The model showed the best precision result of 49.82% on the metal_nut category and the worst

result on the grid category with a score of 8.84%.

32

Table 4. Image­level results on MvTec AD dataset

AUROC F1 Recall Precision

bottle 98.25 98.41 98.41 98.41

cable 94.75 90.63 94.57 87.00

capsule 95.89 96.77 96.33 97.22

carpet 99.20 98.31 97.75 98.86

grid 100.00 99.12 98.25 100.00

hazelnut 96.93 94.52 98.57 90.79

leather 100.00 99.45 98.91 100.00

metal_nut 99.71 98.40 98.92 97.87

pill 93.26 95.83 97.87 93.88

screw 95.94 95.32 94.12 96.55

tile 98.38 95.35 97.62 93.18

toothbrush 86.67 92.06 96.67 87.88

transistor 98.38 93.98 97.50 90.70

wood 98.25 95.73 93.33 98.25

zipper 99.05 98.31 97.48 99.15

AVERAGE: 96.98 96.14 97.09 95.32

Table 4 illustrates that the model achieved an average image AUROC score of 96.98%,

suggesting that the model can distinguish normal and anomalous images with high confidence.

The best AUROC score of 100 was recorded for the grid and leather categories, while the worst

result of 86.67% was accomplished with the screw category. An average F1 score of 96.14% was

reached for the MvTec AD dataset, demonstrating that the model is robust in detecting defective

images while maintaining a low rate of false positives and false negatives. The leather category

with the F1 score of 99.45% showed the best result, while the cable subdataset showed the worst

F1 score of 90.63%. Image recall for the MvTec AD dataset reached an average score of 97.09%,

meaning that the model effectively identifies most of the defective images in the dataset. The best

recall of 98.92% was recorded for the metal_nut category, while the worst recall result of 93.33%

was recorded for the wood subdataset. An average precision score of 95.32% was accomplished,

suggesting that when the model predicts an image as defective, it is correct approximately 95.32%

of the time. The best result of 100 was reached on the grid and leather categories, while the worst

precision score of 87.00% was recorded for the cable category.

The categories of the MvTec AD dataset can also be divided into textures and objects, as

presented in Figure 1. The average pixel AUROC for textures (carpet, grid, leather, tile, wood)

is 92.21% compared to 94.90 for objects (bottle, cable, capsule, hazelnut, metal nut, pill, screw,

toothbrush, transistor, zipper). On the other hand, the image AUROC is higher for textures

(99.16%) than objects (95.88%), suggesting that textures, while easier to process at an image level,

are similarly challenging at a pixel level.

33

Table 5. Latency, training time, and early stopping epoch metrics on MvTec AD dataset

Latency Training time Final epoch

bottle 97.04 1147.20 2

cable 103.62 1793.28 2

capsule 107.86 1637.51 2

carpet 99.11 4067.16 21

grid 114.21 1196.02 2

hazelnut 108.77 2482.53 6

leather 119.90 2704.70 11

metal_nut 122.03 1754.45 6

pill 93.93 2136.00 6

screw 117.60 4487.39 20

tile 109.14 4012.26 26

toothbrush 117.52 414.16 1

transistor 113.24 2320.85 12

wood 113.64 3111.07 22

zipper 108.67 1631.11 2

AVERAGE: 109.75 2326.38 9.40

Table 5 visualizes the student­autoencoder training loop and testing metrics. The table shows

that a single image is processed through the model with an average latency of 109.75 milliseconds.

On average, it takes around 38 minutes and 46 seconds to train the student­autoencoder pair

on a single category with early stopping implemented. The average final training epoch for the

best­performed student­autoencoder pair is the 10th. For some models, only one or two epochs

are enough to reach the best performance, while some models must train for over 20 epochs to

achieve the best AUROC score.

34

Table 6. Teacher training results on MvTec AD dataset

AUC mean AUC max Training time

bottle 99.13 99.92 2949.95

cable 96.35 96.44 4245.11

capsule 96.25 97.25 4088.73

carpet 97.99 98.92 5348.05

grid 94.57 100.00 3149.90

hazelnut 93.36 98.32 6775.28

leather 100.00 100.00 3946.46

metal_nut 92.77 99.71 2738.06

pill 94.84 94.74 5266.74

screw 79.67 97.03 3796.01

tile 99.46 96.14 3160.38

toothbrush 93.33 87.22 1055.58

transistor 94.88 97.58 3631.00

wood 97.98 98.16 4008.01

zipper 99.19 98.98 2590.97

AVERAGE: 95.32 97.36 3783.35

Table 6 shows that for the teacher model, the average mean per­sample AUROC score of

95.32% was achieved for the MvTec AD dataset. An average maximum per­pixel AUROC score

of 97.36% was achieved throughout all the trained teacher models. On average, it takes 1 hour, 3

minutes, and 3 seconds to train a teacher model on a single category of the MvTec AD dataset.

Figures 11, 12, and 13 illustrate examples of the diagrams that were collected during training

and testing the models. The average loss of 6.62 was recorded aster the first training epoch of

the student­autoencoder pair. The final loss of the early­stopping epoch decreased to an average

score of 2.90. The most significant difference between the losses of the first and last epochs, 6.58

and 1.65, respectively, was achieved with the transistor category. The loss curve for it can be

seen in Figure 11. Figure 12 illustrates three pixel­level ROC curves for the best (capsule), worst

(wood), and close to an average (metal_nut) AUROC results on the categories of MvTec AD dataset.

Figure 13 visualizes image­level precision­recall curves for the categories with the best (grid),

worst (cable), and close to an average (screw) precision scores for the MvTec AD dataset.

35

Figure 11. Loss curve for the training loop of modified EfficientAD model on the transistor

category of MvTec AD dataset

Figure 12. Pixel­level ROC curves for the capsule, metal_nut and wood models on the MvTec AD

dataset

36

Figure 13. Image­level precision­recall curves for the grid, cable and screw models on the MvTec

AD dataset

For visual inspection of anomaly detection results, the model was configured to output the

predicted mask and a heatmap for each input image, Figure 14. The bright places in the heatmap

represent areas in the image where the defect is most likely to be present. The heatmap was

constructed using the raw values of model predictions. The outputted anomaly map had to be

converted to binary values to generate the predicted mask. Values from the pixel­recall curve

were used to select the best threshold for prediction value conversion to binary. For the outputted

arrays of precision and recall through different thresholds, an F1 score was calculated for each

precision­recall pair. Aster computing the F1 scores for all the thresholds, the index of the highest

F1 score was extracted and used to select the corresponding threshold upon which the maximum

F1 score was achieved. The threshold was then used to convert the anomaly map into binary

values ­ predicted mask.

Figure 14. Anomaly detection result on the leather category of MvTec AD dataset, defect type

glue, image 005.png

37

2.7.2. Results on MvTec LOCO AD dataset

Aster collecting all the results from the MvTec AD dataset, the same architecture model was

used to evaluate anomaly detection performance on the MvTec LOCO AD dataset. Tables 7, 8, 9

show the results for the training and testing of the complete model while Table 14 illustrates the

training metrics for the teacher model.

Table 7. Pixel­level results on MvTec LOCO AD dataset

AUROC F1 Recall Precision

breakfast_box 74.97 35.99 32.28 40.68

juice_bottle 81.10 46.17 47.40 45.01

pushpins 78.02 8.05 15.43 5.45

screw_bag 46.31 7.76 99.89 4.03

splicing_connectors 86.94 48.69 54.72 43.85

AVERAGE: 73.47 29.33 49.95 27.80

Table 7 shows that the modified EfficientAD model reached an average pixel­level AUROC

score of 73.47% on the MvTec LOCO AD dataset. The model of category splicing_connectors

reached the highest pixel AUROC and F1 scores of 86.94% and 48.69%, respectively. The

screw_bag model showed the best recall result of 99.89%, and the juice_bottle reached the highest

precision score of 45.01%. The lowest pixel AUROC score of 46.31% was recorded for the

screw_bag category. The category pushpins of the MvTec LOCO AD dataset showed the worst

results in pixel F1 and recall calculations with scores of 8.05% and 15.43%, respectively. The

lowest precision score of 4.03% was recorded for the screw_bag category. Average scores of 29.33%

for F1, 49.95% for recall, and 27.80% for precision were achieved with the modified EfficientAD

model on the MvTec LOCO AD dataset.

Table 8. Image­level results on MvTec LOCO AD dataset

AUROC F1 Recall Precision

breakfast_box 49.37 76.96 99.42 62.77

juice_bottle 76.03 83.33 99.58 71.65

pushpins 76.01 72.73 76.74 69.11

screw_bag 77.19 81.33 89.50 74.52

splicing_connectors 88.04 83.33 90.67 77.09

AVERAGE: 73.33 79.54 91.18 71.03

Table 8 illustrates that the average image AUROC score of 73.33% was achieved, close to

the average pixel­level AUROC score of 73.47%. The highest image AUROC score of 88.04%

was recorded for the splicing_connectors category, and the lowest image AUROC score of 49.37%

was achieved for the breakfast_box category. In contrast with the similarity to pixel AUROC

score, F1, recall, and precision calculations at the image level were recorded higher than at the

38

pixel level. An average F1 score of 79.54% was achieved, with the highest result of 83.33% for

the splicing_connectors and juice_bottle subdatasets. The lowest F1 and recall metrics results were

recorded for the pushpins category. The breakfast_box model showed the worst precision score

of 62.77%. An image­level recall with an average score of 91.18% was recorded for the MvTec

LOCO AD category. The model of juice_bottle showed the best recall result of 99.58%. An average

result of 71.03% was achieved for the image precision, with the highest score of 77.09% for the

splicing_connectors category.

Table 9. Latency, training time, and early stopping epoch metrics on MvTec LOCO AD dataset

Latency Training time Final epoch

breakfast_box 104.88 5223.45 9

juice_bottle 96.55 7442.54 17

pushpins 104.01 4859.89 7

screw_bag 98.37 6597.35 12

splicing_connectors 99.50 3623.22 3

AVERAGE: 100.66 5549.29 9.60

Table 9 shows that the average latency of 100.66 ms/image for the MvTec LOCO AD dataset

is similar to the MvTec AD dataset, Table 6. However, the training time is more than double that

of the MvTec AD dataset. The reason behind this increase in training time is that even though

both datasets contain a similar amount of pictures, there are fewer categories in the MvTec LOCO

AD dataset. Hence, each category contains more images for the model to process during training.

The average final early­stopping epoch for the MvTec LOCO AD dataset is the 10th, upon which

the model performs best.

Anomalies in the MvTec LOCO AD dataset are divided into structural and logical, Figure

10. Metrics for the modified EfficientAD model on logical and structural anomalies are illustrated

in Tables 10, 11, 12, 13.

On the pixel level, the model reached an average AUROC score of 73.42% with logical

anomalies, suggesting that the model can distinguish anomalous pixels moderately. The F1 score of

32.94% was recorded, indicating that the balance between recall and precision is not optimal. The

low F1 scores in categories pushpins and screw_bag, 9.72% and 7.48%, respectively, indicate that

the model struggles to identify logical anomalies for these industrial objects. The pixel AUROC

of 89.86% is significantly higher in structural than logical detection, illustrating that the model

performs better on structural defect detection tasks.

The image­wise logical anomaly detection performs better than pixel­wise in F1, recall, and

precision scores, with values of 69.07%, 85.97%, and 59.35%, respectively. Thus, the model is

more effective at classifying defects at an image level. High recall rates, especially on juice_bottle

and breakfast_box categories, indicate that the model rarely misses anomalies when classifying

pictures with or without defects. A better image­wise performance is observed in structural

defect detection, with an improvement in AUROC, F1, and precision average scores. Despite the

39

improvements, the overall performance remains moderate, with some categories like breakfast_box

showing lower precision but high recall scores.

Table 10. Logical anomaly detection on MvTec LOCO AD dataset pixel­wise

AUROC F1 Recall Precision

breakfast_box 74.09 43.21 40.97 45.71

juice_bottle 81.92 50.28 51.25 49.34

pushpins 77.55 7.48 22.70 4.48

screw_bag 46.04 9.72 99.88 5.11

splicing_connectors 87.51 54.03 56.37 51.88

AVERAGE: 73.42 32.94 54.24 31.30

Table 11. Logical anomaly detection on MvTec LOCO AD dataset image­wise

AUROC F1 Recall Precision

breakfast_box 49.83 61.42 98.80 44.57

juice_bottle 70.05 75.00 99.30 60.26

pushpins 74.61 64.44 63.74 65.17

screw_bag 69.33 72.50 84.67 63.39

splicing_connectors 80.79 72.00 83.33 63.38

AVERAGE: 68.92 69.07 85.97 59.35

Table 12. Structural anomaly detection on MvTec LOCO AD dataset pixel­wise

AUROC F1 Recall Precision

breakfast_box 80.74 14.53 44.94 8.66

juice_bottle 77.79 25.14 22.90 27.88

pushpins 95.38 20.04 30.88 14.84

screw_bag 96.29 29.61 41.47 23.03

splicing_connectors 99.11 47.76 63.57 38.25

AVERAGE: 89.86 27.42 40.75 22.53

Table 13. Structural anomaly detection on MvTec LOCO AD dataset image­wise

AUROC F1 Recall Precision

breakfast_box 48.94 63.35 98.89 46.60

juice_bottle 85.06 78.07 77.66 78.49

pushpins 77.58 67.69 54.32 89.80

screw_bag 90.32 80.25 79.27 81.25

splicing_connectors 97.25 90.29 92.94 87.78

AVERAGE: 79.83 75.93 80.62 76.78

40

Table 14. Teacher training results on MvTec LOCO AD dataset

AUC mean AUC max Training time

breakfast_box 76.44 53.38 10291.34

juice_bottle 89.43 78.38 6636.22

pushpins 67.17 78.45 9025.39

screw_bag 74.42 71.17 9069.94

splicing_connectors 78.82 88.14 8301.36

AVERAGE: 77.26 73.90 8664.85

For the teacher component, the average AUROC score of 77.26% was achieved for the

per­sample mean predictions on the MvTec LOCO AD dataset, Table 14. An average score

of 73.90% was recorded for the per­pixel maximum AUROC. The teacher model of category

juice_bottle showed the best results in the AUC mean score with the value of 89.43%. The lowest

AUC mean score of 67.17% was recorded for the pushpins category. The breakfast_box category

teacher model showed the worst result of 53.38% on the AUC max metric, which could explain the

worst image­level AUROC result on the model evaluation. The highest AUC max score of 88.14%

was recorded for the splicing_connectors category, which explains the best image­level AUROC

results during the evaluation of splicing_connectorsmodel. As a result, the conclusion can be drawn

that if the teacher model shows bad results on per­pixel AUROC score, the student­autoencoder

pair will fail to produce good results on image classification while training and testing on the same

data.

As a similar number of pictures are divided into fewer categories, the teacher model training

time on the MvTec LOCO AD dataset increased more than two times compared to the training

time of the MvTec AD teacher model, Table 6. On average, it took around two hours, 24 minutes,

and 24 seconds to train a teacher model on a single MvTec LOCO AD category.

Figures 15, 16, 17 illustrate the examples of graphs that were collected during training

and testing the modified EfficientAD model. Figure 15 shows the loss curve for the training

loop of juice_bottle category as it showed the biggest difference of 3.68 between the first and last

epochs. Figure 16 visualizes three pixel­level ROC curves for the best (splicing_connectors), worst

(screw_bag) and close to average (breakfast_box) AUROC scores. Figure 17 similarly illustrates the

three image­level precision­recall curves for the best (splicing_connectors), worst (breakfast_box)

and close to the average (juice_bottle) precision scores.

41

Figure 15. Loss curve for the training loop of modified EfficientAD model on the juice_bottle

category of MvTec LOCO AD dataset

Figure 16. Pixel­level ROC curves for the breakfast_box, splicing_connectors and screw_bag models

on the MvTec LOCO AD dataset

42

Figure 17. Image­level precision­recall curves for the breakfast_box, juice_bottle and splicing_con­

nectors models on the MvTec LOCO AD dataset

The anomaly detection results were configured in the same way as for the MvTec AD dataset.

The only difference that can be seen in Figure 18 is that the model also performed a logical

anomaly detection task. For the provided example of the breakfast box, the anomalous picture

lacks fruits on the lower lest­hand side of the box.

Figure 18. Structural anomaly detection result on the splicing_connectors category and logical

anomaly detection result on the breakfast_box category of MvTec LOCO AD dataset

Overall, the model is more reliable and accurate at detecting anomalies at the image level

compared to the pixel level. This suggests that it is well­suited for applications requiring the

43

identification of defective items as a whole rather than pinpointing the exact location of the

anomaly. A high pixel AUROC score indicates that regardless of the specific threshold chosen

for classifying pixels as defective, the model maintains a good level of performance. However,

the moderate F1, precision, and recall scores at the pixel level suggest difficulties in accurately

detecting the exact defective regions within an image. This is important for applications where

defects’ precise location and origin are critical, such as in detailed inspection tasks or where

defects of varying sizes and shapes need specific attention. The average testing latency of just over

100 milliseconds suggests good suitability for inline industrial inspection systems where quick

decision­making is essential.

The code for the implemented modified EfficientAD model, together with launching instruc­

tions, can be found in GitHub repository4. The files of metrics, graphs, and produced prediction

maps and heatmaps on both MvTec AD and MvTec LOCO AD datasets can be found in the

Appendix 1. The NVIDIA DGX­1 server with Tesla V100 GPUs was used to train and evaluate

the implemented model.

2.7.3. Comparison with other models

The metrics for the EfficientAD model on the MvTec AD dataset were collected using the

original implementation used for AST integration. A small network size for teacher and student

models was used with 70000 training steps without early stopping. The average image­level

AUROC score of 98.92% and pixel­level AUROC score of 97.85% were achieved. The collected

results of the EfficientAD model on the MvTec AD dataset can be seen in Table 15.

4https://github.com/Dominic­dul/anomalib_old

44

Table 15. Anomaly detection results of EfficientAD model on the MvTec AD dataset

Pixel AUROC Image AUROC Latency

bottle 98.83 100.00 2.81

cable 98.21 92.58 2.82

capsule 99.20 98.13 2.75

carpet 96.32 99.68 2.64

grid 97.27 99.83 2.69

hazelnut 98.43 98.89 2.72

leather 97.93 100.00 2.79

metal_nut 98.42 99.56 2.84

pill 98.83 98.69 2.81

screw 99.23 97.62 2.89

tile 96.80 100.00 2.77

toothbrush 98.48 100.00 2.63

transistor 95.86 99.75 2.88

wood 95.63 99.56 2.78

zipper 98.36 99.58 2.96

AVERAGE: 97.85 98.92 2.79

Textures average: 96.79 99.81 2.74

Objects average: 98.39 98.48 2.81

Compared to the results of the modified EfficientAD network, Tables 3, 4, the modified model

surpassed the original EfficientAD model with cable, grid, metal_nut categories on image­level

AUROC scores.

Table 16 illustrates how the modified EfficientAD model performed compared to other

anomaly detection models on the MvTec AD dataset. The pixel­level AUROC score of the modified

model managed to outperform only the Student­Teacher model. As for the image­level AUROC

score, the modified model showed better results than the SPADE, PaDim, and Student­Teacher

models. The modified EfficientAD model fell behind the AST model by 1% and the EfficientAD

model by 3.85% on the pixel­level AUROC score. The image­level AUROC score of the modified

model was reached lower by 2.22% compared to the AST model and lower by 1.94% compared to

the EfficientAD model. The insignificant difference illustrates that the modified model is close to

reaching the performance of the established models, indicating potential for further improvements.

Regarding model throughput in frames per second, the modified EfficientAD model showed

better results than the PaDim, SPADE, and PatchCore models. However, the modified model’s

9.11 frames per second throughput falls behind the original EfficientAD model more than 39

times, indicating that the modification of integrating the AST model into the EfficientAD model

worsened the throughput of images. The pixel­level AUROC scores of texture and object categories

did not exceed the metrics of other models. The image­level anomaly detection AUROC score for

texture categories showed better results than the PaDim, SPADE, and PatchCore models. The

45

modified EfficientAD model performed better than PaDim and SPADE models on image­level

anomaly detection for object categories. In the end, even though the modified EfficientAD model

surpassed the performance of PaDim, SPADE, PatchCore, and Student­Teacher models on some

metrics, it failed to improve the overall performance of the original EfficientAD model on the

MvTec AD dataset.

Table 16. Metrics of anomaly detection models on the MvTec AD dataset

PaDim SPADE PatchCore ST AST EfficientAD EfficientAD­AST

Pixel AUROC 97.90 96.40 98.10 88.40 95.00 97.85 94.00

Image AUROC 95.00 85.40 99.10 93.20 99.20 98.92 96.98

FPS 4.40 1.50 5.88 N/A N/A 358.42 9.11

Texture pixel AUROC 97.32 96.92 97.52 N/A N/A 96.79 92.21

Object pixel AUROC 98.17 96.14 98.35 N/A N/A 98.39 94.90

Texture image AUROC 98.08 85.56 98.96 N/A 99.30 99.81 99.16

Object image AUROC 93.41 85.34 99.17 N/A 99.10 98.48 95.42

In the same way, as with the MvTec AD dataset, the original implementation of the Ef­

ficientAD model was used to collect the results for the MvTec LOCO AD dataset. The model

reached an average pixel­level AUROC score of 66.74% and an average image­level AUROC score

of 89.25%. The collected metrics are visualized in Table 17

Table 17. Anomaly detection results of EfficientAD model on the MvTec LOCO AD dataset

Pixel AUROC Image AUROC

breakfast_box 81.96 84.34

juice_bottle 77.11 97.99

pushpins 63.99 98.07

screw_bag 43.59 70.53

splicing_connectors 67.05 95.35

AVERAGE: 66.74 89.25

As can be seen from the table, the modified EFficientAD model exceeded the original

implementation on pixel­level AUROC score by 6.73%. Integrating the AST model into the

EfficientAD model increased the pixel­wise AUROC score of the EFficientAD model for the

MvTec LOCO AD dataset. However, the image­level AUROC score of the original EFficientAD

model is higher by 15.92%, which shows that integration worsened anomaly detection at the image

level.

46

Table 18. Anomaly detection results of EfficientAD model on the MvTec LOCO AD dataset’s

structural defects

Pixel AUROC Image AUROC

breakfast_box 82.65 85.40

juice_bottle 98.42 99.88

pushpins 94.53 97.58

screw_bag 89.67 97.59

splicing_connectors 99.52 98.43

AVERAGE: 92.96 95.78

Table 19. Anomaly detection results of EfficientAD model on the MvTec LOCO AD dataset’s

logical defects

Pixel AUROC Image AUROC

breakfast_box 81.90 83.18

juice_bottle 73.74 96.73

pushpins 63.96 98.50

screw_bag 42.51 59.07

splicing_connectors 65.40 92.93

AVERAGE: 65.50 86.08

Tables 18 and 19 visualize the results of the EfficientAD model on structural and logical

defects of the MvTec LOCO AD dataset. Integration of AST worsened the image­level AUROC

results on logical and structural anomalies. However, the pixel­level AUROC score on logical

anomalies increased from 65.50% to 73.42%.

Table 20 illustrates the performance metrics of anomaly detection models on the MvTec

LOCO AD dataset. The modified model’s average image­level anomaly detection score outper­

formed only the SPADE model. For logical anomaly detection, the EfficientAD model with the

integrated AST model showed a better image­level AUROC score than the standard implementation

of the Student­Teacher model. The modified model performed better than the SPADE model for

structural anomalies of the MvTec LOCO AD dataset. However, as the average image­level results

of the EfficientAD model were not surpassed, incorporating the AST model into the EfficientAD

model failed to improve the original EfficientAD model on image­level anomaly detection.

47

Table 20. Image­level results of different anomaly detection models with the MvTec LOCO AD

dataset

Average AUROC Logical AUROC Structural AUROC

SPADE 68.9 70.9 66.8

PatchCore 80.3 75.8 84.8

ST 77.3 66.4 88.3

AST 83.4 79.7 87.1

EfficientAD 89.3 86.1 95.8

EfficientAD­AST 73.3 68.9 79.8

48

Results and Conclusions

Results

1. The teacher and student components of the Asymmetric Student­Teacher model were

successfully integrated into the architecture of the EfficientAD model, showing diverse

performance across two different datasets for industrial anomaly detection:

(a) MvTec AD: The model achieved an image­level AUROC score of 96.98%, indicating

high efficiency in classifying anomalous images across the dataset. The model

also achieved a pixel­level AUROC score of 94.00%, demonstrating a capability to

accurately detect anomalies at a more granular level.

(b) MvTec LOCO AD: The model showed a lower, yet still solid image­level AUROC

score of 73.33% and a pixel­level AUROC score of 73.47%, suggesting challenges in

detecting anomalies with the images of MvTec LOCO AD dataset.

2. The modified EfficientAD model demonstrated an average image throughput of 9.51

frames per second, suggesting that it can effectively detect anomalies in real time on

industrial manufacturing lines.

3. The average training times of 1 hour, 41 minutes, and 49 seconds for the MvTec AD and

3 hours, 56 minutes, and 54 seconds for the MvTec LOCO AD datasets highlight the

computational resources needed to train the model before using it to detect anomalies in

industrial manufacturing effectively.

4. For the MvTec AD dataset, the modified model surpassed several existing state­of­the­

art models like PaDim, SPADE, PatchCore, and Student­Teacher on various metrics,

including FPS and AUROC scores on texture and object categories.

5. The modified model surpassed the original EfficientAD implementation on image­level

AUROC scores for MvTec AD dataset categories cable, grid, and metal_nut.

6. For the MvTec LOCO AD dataset, the modified EfficientAD model outperformed the

SPADE model on average image­level AUROC score, surpassed the Student­Teacher

model on average image­level AUROC score for logical anomaly detection, and exceeded

the original EfficientAD model on pixel­level AUROC score.

7. Even though the modified model outperformed some of the existing models on the

MvTec LOCO dataset, it failed to surpass other baseline models on the image­level

structural and logical anomaly detection tasks.

Conclusions

1. The high image­level AUROC, F1, precision, and recall scores on the MvTec AD dataset

demonstrate that the modified EfficientAD model is highly effective in standard settings,

accurately distinguishing anomalous from defect­free images.

2. The relatively lower AUROC, F1, precision, and recall scores on the MvTec LOCO AD

dataset indicate that the model struggles more with the anomalies of the dataset. From

the image­level AUROC score difference in logical (68.92%) and structural (79.83%)

49

anomalies, a conclusion can be drawn that the model has difficulties in classifying

anomalous images that contain logical defects.

3. The integration of the Asymmetric Student­Teacher components into the EfficientAD

architecture improved some performance metrics. Still, it did not enhance the overall

model performance across all evaluated metrics on the MvTec and MvTec LOCO AD

datasets.

4. The model shows a discrepancy between high recall and lower precision across datasets,

particularly on the MvTec LOCO AD dataset. This suggests the model generates a lot of

false positives, which could lead to unnecessary extra checks or stopping production for

no reason in industrial manufacturing lines.

Possibilities for future research

1. The Asymmetric Student­Teacher network was designed to work with 3D images. It

could be possible to adjust the components of the modified EfficientAD model further to

perform anomaly detection tasks on 3D images, as it already has the teacher and student

components of the Asymmetric Student­Teacher.

2. The Visual Anomaly Detection (VisA) dataset could be used to evaluate the modified

model as this dataset’s images are from different provider domains. Using different

structure images may further provide insights into the performance of the modified

model.

3. In the original implementation of the Student­Teacher network, multiple students are

used to replicate the output of the teacher model. Similarly, multiple students of differ­

ent architectures may be integrated with the modified EfficientAD model to improve

performance.

4. The original implementation of the EfficientAD model uses a single teacher trained on the

ImageNet dataset to extract and predict the features of normal images. The normalizing

flow teacher of the Asymmetric Student­Teacher model could be adjusted to train in the

same way rather than training a separate teacher model for every category.

5. Semi­supervised and supervised training could be tried to inspect whether the change in

training method would improve the model’s performance.

6. The Asymmetric Student­Teacher and the modified EfficientAD model use the Efficient­

Net convolutional neural network for image feature extraction. Different neural networks,

such as ResNet, Wide­ResNet50, or Wide­ResNet101, are used in PaDim, SPADE, and

PatchCore models. The different backbones for feature extraction may further improve

the performance and throughput of the modified model.

7. The SPADE and PatchCore models form an intermediate structure from the extracted

image features and use it to represent a normal image. Similar architecture to a memory

bank of PatchCore or a pyramid of characteristics of the SPADE model could be used to

train the modified EfficientAD model instead of the raw features.

8. To reduce the amount of generated false positive predictions on the pixel level, indicated

50

by low precision scores, hard loss function variations could be reintroduced as in the

original implementation of the EfficientAD model.

9. As the throughput of the modified model dropped by 39 times, an analysis could be made

to compare the architectural differences between the student and autoencoder models to

see whether it would be possible to simplify the architecture and improve the throughput

to be closer to the original implementation of the EfficientAD model.

10. As the average AUROC score on the image level was achieved higher than on a pixel level,

a strategy from the SPADE model could be used to only look for anomalous regions in

the image if the whole picture is classified as anomalous.

51

References

[BBF+22] P. Bergmann, K. Batzner, M. Fauser, D. Sattlegger, C. Steger. Beyond Dents and

Scratches: Logical Constraints in Unsupervised Anomaly Detection and Localization.

International Journal of Computer Vision. 2022, volume 130, number 4, pp. 947–969.

ISSN 1573­1405. Available from: https://doi.org/10.1007/s11263-022-
01578-9.

[BFS+19] P. Bergmann, M. Fauser, D. Sattlegger, C. Steger. MVTec AD — A Comprehensive

Real­World Dataset for Unsupervised Anomaly Detection. In: 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). 2019, pp. 9584–9592.

Available from: https://doi.org/10.1109/CVPR.2019.00982.

[BFS+20] P. Bergmann, M. Fauser, D. Sattlegger, C. Steger. Uninformed Students: Student­

Teacher Anomaly Detection With Discriminative Latent Embeddings. In: 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,

2020. Available from: https://doi.org/10.1109/cvpr42600.2020.00424.

[BHK24] K. Batzner, L. Heckler, R. Konig. EfficientAD: Accurate Visual Anomaly Detection at

Millisecond­Level Latencies. In: 2024 IEEE/CVF Winter Conference on Applications

of Computer Vision (WACV). Los Alamitos, CA, USA: IEEE Computer Society, 2024,

pp. 127–137. Available from: https://doi.org/10.1109/WACV57701.2024.
00020.

[CH20] N. Cohen, Y. Hoshen. Sub­Image Anomaly Detection with Deep Pyramid Cor­

respondences. ArXiv. 2020, volume abs/2005.02357. Available also from: https:
//api.semanticscholar.org/CorpusID:218502727.

[DDS+09] J. Deng, W. Dong, R. Socher, L.­J. Li, K. Li, L. Fei­Fei. ImageNet: A large­scale

hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern

Recognition. 2009, pp. 248–255. Available from: https://doi.org/10.1109/CVPR.
2009.5206848.

[DSL+21] T. Defard, A. Setkov, A. Loesch, R. Audigier. PaDiM: A Patch Distribution Modeling

Framework for Anomaly Detection and Localization. In: A. Del Bimbo, R. Cucchiara,

S. Sclaroff, G. M. Farinella, T. Mei, M. Bertini, H. J. Escalante, R. Vezzani (editors).

Pattern Recognition. ICPR International Workshops and Challenges. Cham: Springer

International Publishing, 2021, pp. 475–489. ISBN 978­3­030­68799­1.

[DYW21] A. Dash, J. Ye, G. Wang. A Review of Generative Adversarial Networks (GANs)

and Its Applications in a Wide Variety of Disciplines: From Medical to Remote

Sensing. IEEE Access. 2021, volume 12, pp. 18330–18357. Available also from:

https://api.semanticscholar.org/CorpusID:238259175.

[Fad20] A. Fadaeinejad. Anomaly Detection in Images using Deep Encoder­Decoder Models

[https : / / aminfadaei116 . github . io / assets / pdf / Projects - Reports /
Anomaly-Report.pdf]. 2020.

52

https://doi.org/10.1007/s11263-022-01578-9
https://doi.org/10.1007/s11263-022-01578-9
https://doi.org/10.1109/CVPR.2019.00982
https://doi.org/10.1109/cvpr42600.2020.00424
https://doi.org/10.1109/WACV57701.2024.00020
https://doi.org/10.1109/WACV57701.2024.00020
https://api.semanticscholar.org/CorpusID:218502727
https://api.semanticscholar.org/CorpusID:218502727
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://api.semanticscholar.org/CorpusID:238259175
https://aminfadaei116.github.io/assets/pdf/Projects-Reports/Anomaly-Report.pdf
https://aminfadaei116.github.io/assets/pdf/Projects-Reports/Anomaly-Report.pdf

[GIK21] D. A. Gudovskiy, S. Ishizaka, K. Kozuka. CFLOW­AD: Real­Time Unsupervised

Anomaly Detection with Localization via Conditional Normalizing Flows. 2022

IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). 2021,

pp. 1819–1828. Available also from: https : / / api . semanticscholar . org /
CorpusID:236447794.

[GLZ+17] X. Guo, X. Liu, E. Zhu, J. Yin. Deep Clustering with Convolutional Autoencoders.

In: 2017, pp. 373–382. ISBN 978­3­319­70095­3. Available from: https://doi.
org/10.1007/978-3-319-70096-0_39.

[HZR+16] K. He, X. Zhang, S. Ren, J. Sun. Deep Residual Learning for Image Recognition.

In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016,

pp. 770–778. Available from: https://doi.org/10.1109/CVPR.2016.90.

[JK19] J. Johnson, T. Khoshgostaar. Survey on deep learning with class imbalance. Journal

of Big Data. 2019, volume 6, p. 27. Available from: https://doi.org/10.1186/
s40537-019-0192-5.

[Lab20] C. F. F. Labs. Deep Learning for Anomaly Detection [https : / / ff12 .
fastforwardlabs.com/ff12-deep-learning-for-anomaly-detection.pdf].
2020.

[LH21] H. Liao, J. He. Jacobian Determinant of Normalizing Flows. ArXiv. 2021, vol­

ume abs/2102.06539. Available also from: https://api.semanticscholar.org/
CorpusID:231918781.

[LXW+24] J. Liu, G. Xie, J. Wang, S. Li, C. Wang, F. Zheng, Y. Jin. Deep Industrial Image

Anomaly Detection: A Survey. Machine Intelligence Research. 2024, volume 21,

number 1, pp. 104–135. ISSN 2731­5398. Available from: https://doi.org/10.
1007/s11633-023-1459-z.

[Mcl99] G. Mclachlan. Mahalanobis Distance. Resonance. 1999, volume 4, pp. 20–26. Avail­

able from: https://doi.org/10.1007/BF02834632.

[Pow08] D. Powers. Evaluation: From Precision, Recall and F­Factor to ROC, Informedness,

Markedness Correlation. Mach. Learn. Technol. 2008, volume 2.

[RM15] D. Rezende, S. Mohamed. Variational Inference with Normalizing Flows. In: F. Bach,

D. Blei (editors). Proceedings of the 32nd International Conference on Machine Learning.

Lille, France: PMLR, 2015, volume 37, pp. 1530–1538. Proceedings of Machine

Learning Research. Available also from: https://proceedings.mlr.press/v37/
rezende15.html.

[RPZ+22] K. Roth, L. Pemula, J. Zepeda, B. Schölkopf, T. Brox, P. Gehler. Towards Total

Recall in Industrial Anomaly Detection. In: 2022 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2022, pp. 14298–14308. Available from:

https://doi.org/10.1109/CVPR52688.2022.01392.

53

https://api.semanticscholar.org/CorpusID:236447794
https://api.semanticscholar.org/CorpusID:236447794
https://doi.org/10.1007/978-3-319-70096-0_39
https://doi.org/10.1007/978-3-319-70096-0_39
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5
https://ff12.fastforwardlabs.com/ff12-deep-learning-for-anomaly-detection.pdf
https://ff12.fastforwardlabs.com/ff12-deep-learning-for-anomaly-detection.pdf
https://api.semanticscholar.org/CorpusID:231918781
https://api.semanticscholar.org/CorpusID:231918781
https://doi.org/10.1007/s11633-023-1459-z
https://doi.org/10.1007/s11633-023-1459-z
https://doi.org/10.1007/BF02834632
https://proceedings.mlr.press/v37/rezende15.html
https://proceedings.mlr.press/v37/rezende15.html
https://doi.org/10.1109/CVPR52688.2022.01392

[RWR+23] M. Rudolph, T. Wehrbein, B. Rosenhahn, B. Wandt. Asymmetric Student­Teacher

Networks for Industrial Anomaly Detection. In: 2023 IEEE/CVFWinter Conference on

Applications of Computer Vision (WACV). Los Alamitos, CA, USA: IEEE Computer

Society, 2023, pp. 2591–2601. Available from: https://doi.org/10.1109/
WACV56688.2023.00262.

[SM03] E. Süli, D. F. Mayers. Numerical integration – I. In: An Introduction to Numerical

Analysis. Cambridge University Press, 2003, pp. 200–223.

[Sol20] M. H. A. Soliman. Jidoka: The Toyota Principle of Building Quality into the Process.

2020. ISBN 979­8697749449. Available from: https:/ /doi. org/10 .5281/
zenodo.4267111.

[SSW+21] T. Schlegl, S. Schlegl, N. West, J. Deuse. Scalable anomaly detection in manufac­

turing systems using an interpretable deep learning approach. Procedia CIRP. 2021,

volume 104, pp. 1547–1552. Available from: https://doi.org/10.1016/j.
procir.2021.11.261.

[TL19] M. Tan, Q. Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural

Networks. In: K. Chaudhuri, R. Salakhutdinov (editors). Proceedings of the 36th

International Conference on Machine Learning. PMLR, 2019, volume 97, pp. 6105–

6114. Proceedings of Machine Learning Research. Available also from: https :
//proceedings.mlr.press/v97/tan19a.html.

[Zha21] T. Zhang. Sub­Image Anomaly Detection with Deep Pyramid Correspondences. 2021.

Available also from: https://zhuanlan.zhihu.com/p/421120712.

54

https://doi.org/10.1109/WACV56688.2023.00262
https://doi.org/10.1109/WACV56688.2023.00262
https://doi.org/10.5281/zenodo.4267111
https://doi.org/10.5281/zenodo.4267111
https://doi.org/10.1016/j.procir.2021.11.261
https://doi.org/10.1016/j.procir.2021.11.261
https://proceedings.mlr.press/v97/tan19a.html
https://proceedings.mlr.press/v97/tan19a.html
https://zhuanlan.zhihu.com/p/421120712

Appendixes

Appendix 1

Results links, containing the collected metrics, trained models, training loss, ROC, Precision­Recall curves,

predicted heatmaps, and masks.

• For the MvTec AD dataset: https://drive.google.com/file/d/10XSigcHSKv9yMzWQqZXodjSkBq2xZnrU/view

• For the MvTec LOCO AD dataset: https://drive.google.com/file/d/1NtfWNsTGLux06Aek14UGJoly3pFeob­

NW/view

• Metrics tables: https://docs.google.com/spreadsheets/d/177Fyq8bYxG9mdKJVnF5rCnWZDH8E5V34/view

GitHub repository containing the code and instructions on how to launch the code: https://github.com/Dominic­

dul/anomalib_old

55

https://drive.google.com/file/d/10XSigcHSKv9yMzWQqZXodjSkBq2xZnrU/view
https://drive.google.com/file/d/1NtfWNsTGLux06Aek14UGJoly3pFeobNW/view
https://drive.google.com/file/d/1NtfWNsTGLux06Aek14UGJoly3pFeobNW/view
https://docs.google.com/spreadsheets/d/177Fyq8bYxG9mdKJVnF5rCnWZDH8E5V34/view
https://github.com/Dominic-dul/anomalib_old
https://github.com/Dominic-dul/anomalib_old

	Acknowledgement
	Santrauka
	Summary
	Contents
	Introduction
	Process of conducting the research
	1. Anomaly Detection
	1.1. Supervised, unsupervised and semi-supervised training
	1.2. Patch Distribution Modeling Framework PaDiM
	1.3. Semantic Pyramid Anomaly Detection
	1.4. PatchCore
	1.5. Student-Teacher Anomaly Detection
	1.6. Asymmetric Student-Teacher
	1.6.1. Normalizing flow
	1.6.2. Teacher
	1.6.3. Student

	1.7. EfficientAD
	1.7.1. Autoencoder

	1.8. Conclusions of literature review

	2. Experiment
	2.1. MvTec AD dataset
	2.2. MvTec LOCO AD dataset
	2.3. Metrics
	2.4. Implementation of EfficientAD model
	2.5. Implementation of Asymmetric Student-Teacher model
	2.6. Process of integrating AST into EfficientAD
	2.6.1. Integration of teacher, student and autoencoder
	2.6.2. Wrapper class for all components
	2.6.3. Teacher configuration
	2.6.4. Student configuration
	2.6.5. Autoencoder configuration
	2.6.6. Dataset
	2.6.7. Early stopping
	2.6.8. Teacher training loop
	2.6.9. Student-autoencoder training loop
	2.6.10. Training penalty
	2.6.11. Percentile of output differences
	2.6.12. Evaluation of modified model

	2.7. Results of Experiment
	2.7.1. Results on MvTec AD dataset
	2.7.2. Results on MvTec LOCO AD dataset
	2.7.3. Comparison with other models

	Results and Conclusions
	References
	Appendixes
	Appendix 1.

