https://doi.org/10.15388 /vu.thesis.662
https://orcid.org/0000-0002-7156-5995

VILNIUS UNIVERSITY

Bernardas Ciapas

Barcodeless Food Products Recognition
for Retail Self-checkout Service

DOCTORAL DISSERTATION

Natural Sciences
Informatics (N 009)
Vilnius 2024



This dissertation was prepared between 2019 and 2023 at Vilnius
University.

Academic Supervisor:
Prof. Dr. Povilas Treigys (Vilnius University, Natural Sciences,
Informatics — N 009).

Defence Panel:
Chair — Prof. Dr. Olga Kurasova (Vilnius University, Natural
Sciences, Informatics — N 009).

Members:

Dr. Ernestas Filatovas (Vilnius University, Natural Sciences,
Informatics — N 009).

Prof. Dr. Dalius Mazeika (Vilnius Gediminas Technical University,
Technology Sciences, Informatics Engineering — T 007).

Assoc. Prof. Dr. Viktor Medvedev (Vilnius University, Natural
Sciences, Informatics — N 009).

Prof. Dr. Audris Mockus (The University of Tennessee, USA,
Natural Sciences, Informatics — N 009).

The dissertation shall be defended at a public meeting of the Dissertation
Defence Panel at 12:00 p.m. on the 30th of September, 2024 in Room
203 of the Institute of Data Science and Digital Technologies of Vilnius
University. Address: Akademijos str. 4, LT-08412, Vilnius, Lithuania.

The text of this dissertation can be accessed at the Library of Vilnius
University and on the website of Vilnius University:
https://www.vu.lt/lt/naujienos/ivykiu-kalendorius.


https://www.vu.lt/lt/naujienos/ivykiu-kalendorius

https://doi.org/10.15388 /vu.thesis.662
https://orcid.org/0000-0002-7156-5995

VILNIAUS UNIVERSITETAS

Bernardas Ciapas

Maisto produkty be bruksninio kodo
atpazinimas savitarnos kasose

DAKTARO DISERTACIJA

Gamtos mokslai
Informatika (N 009)
Vilnius 2024



Disertacija rengta 2019-2023 metais Vilniaus universitete.

Mokslinis vadovas:
prof. dr. Povilas Treigys (Vilniaus universitetas, gamtos mokslai,
informatika — N 009).

Gynimo taryba:
Pirmininké — prof. dr. Olga Kurasova (Vilniaus universitetas,
gamtos mokslai, informatika — N 009).

Nariai:

dr. Ernestas Filatovas (Vilniaus universitetas, gamtos mokslai,
informatika — N 009).

prof. dr. Dalius Mazeika (Vilniaus Gedimino technikos universitetas,
technologijos mokslai, informatikos inzinerija — T 007).

doc. dr. Viktor Medvedev (Vilniaus universitetas, gamtos mokslai,
informatika — N 009).

prof. dr. Awudris Mockus (Tenesio universitetas, JAV, gamtos
mokslai, informatika — N 009).

Disertacija ginama vieSsame Gynimo tarybos posédyje 2024 m. rugséjo
30 d. 12 val. Vilniaus universiteto Duomeny mokslo ir skaitmeniniy
technologijuy institute Vilniuje, Akademijos g. 4, 203 auditorijoje.

Disertacija galima perziuréti Vilniaus universiteto bibliotekoje ir
Vilniaus universiteto interneto svetainéje adresu:
https://www.vu.lt/1t/naujienos/ivykiu-kalendorius.


https://www.vu.lt/lt/naujienos/ivykiu-kalendorius

Acknowledgements

I want to express my appreciation to my advisor Prof. Dr. Povilas
Treigys for guiding me through my PhD journey, for the support and
encouragement during challenging moments, and for generously sharing
his vast experience and expertise in the field.

I am thankful to the dissertation reviewers Prof. Dr. Olga Kurasova
and Prof. Dr. Dalius Mazeika for constructive criticism and insightful
suggestions that helped to improve my work.

I am grateful to the Information Technologies Open Access Center
of the Mathematics and Informatics department of Vilnius University
for providing high-performance computing (HPC) resources used in this
research.

The research was funded under the Programme "University
Excellence Initiatives" of the Ministry of Education, Science and Sports
of the Republic of Lithuania (Measure No. 12-001-01-01-01 "Improving
the Research and Study Environment").

Last but not least, I am very thankful to my wife Eglé, who
has graciously supported my aspirations throughout my PhD studies,
especially considering the responsibilities of raising our three children.



Contents

Glossary

List of Symbols

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Problem Statement . . . . . . ... .. ... ... ... ..
Research Object . . . .. ... .. ... ... .. .....
Research Goal and Objectives . . . . . . .. ... ... ..
Contributions to Science and Practical Value . . . . . ..
Defended Claims . . . . . . . . ... ... ... ......
Approbation of the Research . . . . . . ... ... ... ..
Outline of the Thesis . . . . . . . .. ... .. ... ....

2 Related Works

2.1
2.2
2.3
2.4
2.5

Computer Vision Tasks in Retail . . . . .. .. ... ...
Data Collection and Preparation . . . ... ... ... ..
Model Architecture and Training . . . . .. ... ... ..
Verification Approaches . . . . .. ... ... .. .....
Product Similarity Approaches . . . . . .. ... ... ..

3 Data Collection and Preparation
3.1 Self-checkout Flow and Choice of Camera Location . . . .
3.2 Properties of Raw Data . . . . . . ... ... .......
3.3 Image Labelling . . . . . . ... ... ... .. .......
3.4 Product Taxonomy and Frequency of Sales. . . . . . . ..
3.5 Existing Retail Products Datasets . . . . ... ... ...
3.6 Dataset Cleaning . . . . . . . ... ... ... ... ..
3.7 Image Pre-processing and Augmentation . . . . . . .. ..
3.8 Dataset Structuring for ML Tasks . . . . . . .. ... ...
3.9 Conclusions of the Section . . . . . .. .. ... ... ...
4 Methods
4.1 Image Fitness for Product Recognizability . . . . . . . ..
4.1.1 Deriving Minimum Viable Architecture . . .. ..
4.1.2 Visibility Thresholding Strategies . . . . . . . . ..
4.2 Product Classification . . . . . ... ... ... .. ....

4.2.1 Fully Automated Self-checkout Pipeline . . . . . .
4.2.2 Filtering Empty Images . . . . ... ... .....
4.2.3 Filtering Products of Low Visibility . . . . . . . ..
4.2.4 Ablation Studies in the Fully Automated Pipeline .
4.2.5 Architecture Alternatives . . . . .. .. ... ...
4.2.6 Classifier Training and Evaluation . . . .. .. ..

11

12

13
15
17
17
18
19
20
22

25
25
26
29
32
34

37
37
38
40
41
43
46
46
53
o4



4.3 Product Verification . . . ... .. ... ... .......
4.3.1 Concept of a Class Verification Task . . . . .. ..
4.3.2 Class Verification Approaches . . . . . . ... ...
4.3.3 Product Verification Using Distance from Class

Centres . . . . . . .. ..
4.3.4 Increasing Inter-class Distance . . .. ... .. ..
4.3.5 Product Verifier Training and Evaluation Details .

4.4 Product Grouping by Similarity . . . . . . . ... ... ..
4.4.1 Motivation for Product Grouping by Similarity . .
4.4.2 Approaches for Deciding Product Similarity . . . .
4.4.3 Training Product Group Classifiers . . . . . . . ..

4.5 Conclusions of the Section . . . . . . ... ... ... ...

4.6 Hardware and Software Frameworks . . . . .. .. .. ..

4.7 Code repositories . . . . . ... oL

Results

5.1 Results of Determining Product Recognizability . . . . . .

5.2  Results of Product Classification . . . ... ... ... ..
5.2.1 Ablation Studies . . . . ... ... ... ... ...
5.2.2  Architecture Alternatives . . . . . . ... .. ...
5.2.3 Other Datasets . . . . ... ... ... .. .....
5.2.4 Filtering, Pre-processing and Training . . . . . ..

5.3 Results of Verifying Product Selection . . . .. .. .. ..

5.4 Product Classification into Groups of Similarity . . . . .

5.5 Conclusions of the Section . . . . . . .. ... ... ....

General Conclusions
References
Santrauka lietuviskai

Izanga
Problemos apraSymas . . . . ... ... ... ... ..
Tyrimo tikslas ir uzdaviniai . . . . .. ... ... ... ..
Moksliné svarba . . . . . ... .00

Duomeny paruosimas
Vaizdy Zyméjimas . . . . . . . . .. ...
Prekiy taksonomija ir pardavimy daznis . . . . . . . . ..
Egzistuojancios maisto prekiy vaizdy aibés . . . . . . . ..
Duomeny aibés sudarymas masininiam mokymui . . . . .

124

126

139

139
140
141
142



Metodai

Vaizdo tinkamumas prekei atpazinti. . . . . .

Prekiy klasifikavimo etapai, architekturos parinkimas . . .

Pirkéjo pasirinkimo verifikavimas . . . . . . .
Prekiy grupavimas pagal panasuma . . . . . .

Rezultatai

Matomy ir nematomy prekiy atskyrimas . . .
Prekiy klasifikavimas . . . . . .. ... .. ..
Pirkéjo prekeés pasirinkimo patikrinimas . . .

Vaizdy klasifikavimas j panasiy prekiy grupes

Bendrosios iSvados

147
147
148
149
150

151
151
152
153
155

156



Glossary

AHE Adaptive Histogram Equalization. An extension of HE that
divides an image into smaller tiles and performs HE independently
on each tile. 49, 51, 55

AUC Area Under Curve of ROC. A single scalar value that summarizes
the performance of a binary classifier system across all possible
threshold values. 153

CLAHE Contrast Limited Adaptive Histogram Equalization. An
extension of AHE that limits the amplification of contrast in each
local region. 19, 49, 51, 55, 124, 156

Class prototype A representative example that characterizes a
particular class. It may refer to that example’s embeddings learnt
by training a neural network. Verification based on class prototype
means comparing an input image to the claimed class prototype.
Opposite: sample-to-sample based verification. 17, 19, 30-34, 71,
73, 75, 76, 104, 121, 124

Clean images Images that contain a single, well visible product, not
covered by customer body parts or any other object. 15

ECR Efficient Consumer Response. A community of companies,
organizations, and stakeholders within the consumer goods
industry who collaborate to implement ECR principles and
practices.  This community includes manufacturers, retailers,
distributors, suppliers, service providers, industry associations, and
other entities involved in the supply chain. 13, 140

EER Equal Error Rate. A metric used to evaluate the performance
of binary classification systems at the point at which the false
acceptance rate (FAR) and false rejection rate (FRR) are equal.
153

Embeddings Image activations of a trained classification neural
network’s certain layer. In this dissertation, image embeddings
are assumed to contain sufficient information about that image
class, because the embeddings are the sole input to the network’s
succeeding layer. 19, 30-33, 35, 36, 71, 74-77, 80, 83, 88, 91, 94,
119

Empty images Images that contain only background of self-checkout
scales, absent of a product or any other object. 16, 19, 26, 39, 45,
46, 65—68, 93, 98-101, 120, 124



GMM Gaussian Mixture Models. 16, 27, 46

HE Histogram Equalization. A technique used to enhance the contrast
of an image. It adjusts the intensity values of the pixels in an image
so that the histogram of the resulting image is spread out evenly
across the entire intensity range. 49, 50, 55

In-distribution Products (or classes) that the classifier has been
exposed to during training. Opposite: out-of-distribution. 17, 33,
34, 72

OCC One-Class Classification. 27, 124, 156

Out-of-distribution Products (or classes) that the classifier hasn’t
been exposed to during training. These samples don’t belong to
any class familiar to the classifier. Since softmax-based classifiers
generate probabilities solely among the known classes, they cannot
identify such objects. See also: in-distribution. 33, 34, 71, 72, 83

Product group A product group refers to a collection of various
products typically seen as similar due to their common origin.
In food retail, examples of product groups include vegetables,
fruits, candies, nuts, etc. Each of these groups comprises multiple
individual products; for instance, within the vegetables group, you
may find cucumbers, tomatoes, etc. 43

RFID tags Radio Frequency Identification tag. A small electronic
device that consists of a microchip attached to an antenna. These
tags are used for identification and tracking purposes. 15, 140

ROC Receiver Operating Characteristic. A graphical plot used to
evaluate the performance of a binary classifier system. The plot
illustrates the diagnostic ability of a binary classifier system as its
discrimination threshold is varied. 153, 154

Sample-to-sample A technique to determine if two inputs belong to
the same class. Verification if an input belongs to a claimed class
typically compares two images: one from a training set of that class
and the input image. Opposite: class prototype based verification.
19, 30, 31, 33, 36, 71, 73, 75-77, 104, 121, 124

SCO See: self-checkout. 20, 45

10



Self-checkout A point of sale in a food retail store that allows
customers to check out the contents of a shopping basket without
a cashier. 13, 17, 18, 26, 33, 57

Self-checkout images Images of food products captured within self-
checkout area of retail stores as customers individually identify
and weigh each item. The moment of product identification by a
customer represents the specific timeframe when a product is solely
present within a particular camera’s view. 18, 19, 26, 28, 38, 39,
46, 47, 58, 65, 67, 124

Self-checkout instance A single self-checkout device. The lighting
and camera angles vary between images captured at different self-
checkout instances. 13, 14, 47, 48

SOM Self Organizing Maps [1|. A clustering technique that preserves
inter-cluster proximity. 19, 20, 35, 86, 87, 89-91, 94, 115, 116, 119,
123, 125, 143

SVM Support Vector Machines. 27, 33
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List of Symbols

C number of channels of an input to a convolutional layer or its output

c; a centre of the i-th class: a single datapoint that best resembles the samples of
a single class. Centres are data points in the same space as image activations
of a certain neural network’s layer

distCosine() cosine distance function between two vectors range -1 to 1
FN false negative
FP false positive

H,W  spatial dimensions height, width of an input to a convolutional layer or its
output

Lek cross-entropy loss
Leontr contrastive loss in siamese networks

Lc centre-loss: a loss function component used in a verification task that
measures sample distance to its class centre. Conceptually defined for
Euclidean distance in the paper [2]. Variants LE°%"¢ and LXimoswski
generalize the loss function for different distance types

Linter inter-centre loss: a loss function component used in a verification task that
measures distance between class centres

Lprozy—Nca aloss function in the verification task as defined in the paper [3]
Lyripier triplet loss
Lverification total loss in the verification task

M number of samples in a minibatch or in the dataset. M; denotes number of
samples in the i-th class

N number on classes (products) in the dataset

ReLU() a rectified linear unit function.

s() cosine similarity function between two vectors range -1 to 1
TN true negative

TP true positive

W,b weights and biases of a convolutional or a dense layer. In the case of a
convolutional layer w; ; denotes the W’s element in the i-th row and j-th
column

X input to either a convolutional or a dense layer. It is either an input image or

activations of a preceeding layer. In case of convolutional input, z; ; denotes
X’s element in the i-th row and j-th column

Z output matrix of either a convolutional or a dense layer. In case of
convolutional output, z;; denotes output Z’s element in the i-th row and
j-th column

[|...]lp  p-th Norm (Minowski distance)

12



1 Introduction

Retail self-checkout machines help customers transact faster and save
retailer costs. The estimated number of self-checkout machines
worldwide was 325K [4] in 2019 and is growing by 13.3% [5]. An average
of 7 products in a shopping basket and an average of 1,400 weekly
transactions per self-checkout result in almost 10,000 images registered
per week per self-checkout instance. Typically big retail stores can carry
an assortment of up to 30,000 products. The assortment is constantly
changing due to seasonality and supplier changes.

However, self-checkouts raised new problems for retailers: theft
and long checkout duration of barcodeless products. According to the
ECR self-checkout report [6] of 13 retailers, retail stores with 50% of
transactions being processed through self-checkouts can expect their
shrinkage losses to be 75% higher than the average rate found in grocery
retailing. The same study revealed that 43.4% of all shopping baskets
contain incorrectly chosen products. Malignant customers abuse self-
checkouts in a variety of ways: they replace barcodes of expensive
products with barcodes of cheaper ones, and intentionally pick cheaper
products from the pick list menu. Shoplifting occurs through selecting
the wrong item, barcode switching, failing to scan items, or leaving
without paying. Benign customers suffer longer checkout times due
to having to pick each barcodeless product from a picklist menu that
contains many similar products and has a hierarchical structure of 3-5

Shopping basket, Scanner /scales area, Bagging area,
multiple products E:) single product C:) multiple
(area of research) products

Figure 1: Checkout flow
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levels. A complex picklist menu often results in an unintentional selection
of wrong products and the need for staff assistance. The prolonged
checkout duration adds up to over 1,400 weekly transactions on average
per self-checkout instance.

Figure 1 shows the flow of product movement during self-checkout
process. A customer brings a shopping basket (left in the picture) or a
trolley full of products to be purchased to the checkout area. Then he
takes one product at a time from a basket /trolley and registers it in one
of two ways: scans (products with barcode stickers - e.g. milk packs)
or picks from a menu (barcodeless products - e.g. fruits). A scanner is
usually located under the glass (green rectangle in the picture) and/or
behind a glass in front of the customer (above the green rectangle in
the picture). A picklist menu to select barcodeless products is displayed
on a touch screen in front of a customer (above the green rectangle in
the picture - not shown). Upon picking a barcodeless product from a
menu, it is weighed by scales (green rectangle in the picture). Finally,
after a product is registered, a customer moves it to the bagging area.

Figure 2 shows a timeline of two sample product selection moments
and a few subsequent moments every 0.2 seconds (visual inspection of
videos led to the conclusion that significant changes in the semantic
structure of the camera image can be expected after not less than 0.2
seconds due to customer actions). A barcodeless product is registered
after being placed on scales by selecting from a menu. At the selection
moment and sometime after it, a customer’s arm is extended towards the
self-checkout screen, thus creating a likely interference of body parts in
product images. Although some cases (Figure 2(a) at +0.6, +0.8 seconds

-

Selection +0.2 sec. +0.4 sec. +0.6 sec. +0.8 sec.
moment

Figure 2: Checkout timeline depicts the change in image contents after
two product selection events (a) and (b)
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after selection) show clean images, generally a customer’s arm is always
a subject of interference.

Although retail stores carry up to 30,000 products, most of them
contain barcodes that are easily identified. The number of individual
barcodeless products is 200—300 (194 classes used in this research) in
self-checkouts by food retailers in stores of 800—1,200 square meters
floor size. Often taxonomy of products is unknown, or product visual
similarity has little correlation with class proximity in the taxonomic
hierarchy. For example, among retail self-checkout products, red apples
are more similar to tomatoes than red apples are to green apples, even
though red apples and green apples might be in the same product
category. Various candy sorts differ among themselves as much as they
do from other product categories: candies’ similarity to other products
is mostly determined by the wrapping paper.

Retailers try to tackle theft with security scales at self-checkout,
which work for consistent-weight products but not variable-weight ones
like fresh produce. Some attach RFID tags on high-value items, but this
is costly and impractical for many products, especially unpacked fruits
and vegetables. Security cameras, although usually monitor the self-
checkout area, contain too much footage for real-time review and theft
identification by security personnel. Retailers’ goal is to automatically
identify mismatch events between a product placed on scales and a
customer’s selection, and notify store personnel.

The hierarchical structure of a picklist menu to choose barcodeless
products contains 3-5 levels. Retailers’ goal is to automatically suggest a
product placed on scales for customer confirmation with high confidence.
When a prediction is made with lesser confidence, it is acceptable to
present a customer with a reduced list of products for selection.

1.1 Problem Statement

There is a need for a fully automated product recognition pipeline at self-
checkouts. The pipeline should be capable of collecting product images,
adding new products, labelling images with single-product labels, and
rejecting images where a product is not present or is poorly visible.
Any human interaction in either stage (e.g. dataset cleaning, manual
labelling, etc.) is not sustainable due to frequent changes in assortment
(due to seasonality and supplier change), and a high number of products
and images per product.

The dataset can be automatically collected and labelled by
integrating a software agent in self-checkout machines and receiving
events of customer choice of products, although it would include some
incorrect selections. Unlike an automatically collected image set at
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self-checkout, most benchmark datasets (ImageNet, CIFAR|-10|-100],
MNIST) only include images where the visibility of objects of interest is
good. Synthetic retail product datasets, such as Fruits-360 |7], are not
representative of images to be recognized at self-checkouts; recognition
performance on such datasets is hardly transferrable to retail stores.

In the self-checkout environment, three areas of product residence
may be identified: a shopping basket, a scanner/scales area, and a
bagging area. Only the second area contains a single product at a time
moment, whereas the basket and bagging area generally contain more.
It is a much more complex task to recognize individual products in a
shopping basket or bagging area, where multiple products are placed. In
terms of computer vision, this would be an object detection task that
requires labels with product location bounding boxes. This research
refrains from detection tasks in basket and bagging areas, although
solving it has a variety of applications.

The stage of rejecting images where a product cannot be recognized
is the next step in the pipeline; the rejected images must not participate
in any further stages, such as classifying the product for easier selection
or customer selection verification. The recent advances in background
removal using GMM and neural networks are promising techniques for
empty images elimination. A sizable portion of images contain body
parts (hands, heads) that interfere with product visibility. This complex
task is possibly solvable using neural networks trained on a dataset
labelled with product visibility properties.

Images categorized as having satisfactory product visibility must be
classified to help solve business tasks, such as picklist menu assistance.
The classification task must adhere to a relatively smaller number of
samples of rarely sold products. For some business tasks not only Top-1,
but also Top-2 to Top-5 accuracy is important (e.g. picklist menu can
present a shortened list of 1-5 products). The trained neural network
preferably should be light enough to run inference on low-powered, GPU-
less self-checkout machines.

Visually similar classes present a challenge and an opportunity in
computer vision tasks. The classes being similar usually results in
more errors between these classes in a confusion matrix of a multi-
class classifier that negatively affects the model accuracy. In some
domains, where class similarity is high and /or data for training is limited,
predicting a Top-1 class is impractical due to the lower boundary on
accuracy drawn by applications. Some applications do not always require
the exact class to be recognized as a Top-1, but often narrowing down the
list of possible classes to a few similar ones is good enough. For example,
in retail self-checkouts, a picklist assistant can narrow down a list of
products to choose from to a few similar ones. This is even desirable
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by retailers, should the accuracy of several presented products to choose
from exceed the accuracy of showing the Top-1 product significantly.

Upon the customer selection of a product, a computer vision solution
is necessary to verify if the product in the image matches the customer
selection. Verification can only be performed when a chosen product is
one of the in-distribution classes. Since customers’ choices are limited
to items in a picklist menu (which includes barcodeless items but
excludes barcode-containing items), it is sufficient to train recognition of
barcodeless products. If there’s a high likelihood of a product mismatch,
an attendant is alerted for visual confirmation. Such a solution would
prevent placing a bottle of expensive liquor and choosing any barcodeless
product from a menu. However, the solution would not detect replaced
barcodes. Data collection of barcode-containing products is a more
complex task (due to the absence of a stationary moment at the time
of scanning) and is left out of this research. Promissing techniques for
product (class) verification are Siamese networks and class prototype
learning networks (such as Centre-Loss, and Proxy-NCA).

The retail industry badly needs to solve these problems. Successful
solutions would simplify product selection from the picklist menu and
raise alerts upon scanning/selecting incorrect products.

Several tech companies have developed cashier-less stores: Amazon
Go, Zippin, Standard Cognition, and Grabango. They implement a
seamless checkout process by tracking customer movement, registering
events of item removal from shelves, and assigning items to customers.
The cashier-less stores rely on weight and depth sensors embedded
in shelves to identify barcode-less products. This requires multiple
hardware devices, and precise product placement, which leads to high
initial implementation and maintenance costs. This dissertation offers
automated product identification at a self-checkout device using a single
camera. Although not implementing a seamless checkout as in the
cashier-less stores, the proposed solution is by far more cost-effective.

1.2 Research Object

Food retail self-checkout product images

1.3 Research Goal and Objectives

The goal of the research is to propose and investigate an approach for a
self-learning barcodeless product recognition pipeline in food retail store
self-checkout service. To achieve the goal, the following objectives are
identified:

e To explore the collected images of self-checkout products, both
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quantitatively and qualitatively. To offer a schema needed to
prepare a dataset ready for training neural networks. The schema
needs to account for a sizable portion of images being empty
or including customer body parts that interfere with product
visibility, some products being in plastic bags, and high disbalance
in product sales.

e To propose methods for evaluating image fitness for product
recognizability and image emptiness, followed by testing their
effectiveness through ablation studies. To develop a neural network
architecture for product classification in self-checkout images, with
comparisons against state-of-the-art architectures using authentic
self-checkout data and assessments of generalizability on similar
public datasets. The proposed architecture must suit generally low-
powered, GPU-less self-checkout machines for running inference.
To propose a deterministic and computationally effective method
for verifying if a customer’s menu choice matches a product on the
scales, and test its accuracy.

e To suggest such a method of grouping products by similarity so
that the accuracy of predicting a group (of similar products) is
maximized. To evaluate the lift of prediction accuracy against
Top-1 accuracy.

1.4 Contributions to Science and Practical Value

The dissertation contributes to an area of visual product recognition
research in a food retail self-checkout environment. The outline of main
contributions and their practical value is as follows:

e An automated pipeline for self-checkout product recognition was
introduced. It streamlines image collection, labelling, filtering,
pre-processing, and classifier training, validated through ablation
studies. Its key value lies in enabling frequent model retraining
without manual effort, crucial for dynamic retail environments.

e A method for convolutional neural network architecture design
tailored to self-checkout product recognition was presented.
Comparative tests revealed its comparable or superior accuracy
to established networks like EfficientNet and ResNet, validated on
real self-checkout data and a public dataset Fruits-360. Notably, it
enables efficient classification using smaller neural networks, ideal
for low-powered self-checkout machines without GPUs.

18



1.5

e A class verification method employing the Centre-loss function

was investigated, with accuracy comparable to sample-to-sample
methods. Notably, it outperforms them in computational
efficiency, by avoiding multiple forward passes and random sample
selection. Its generalizability was confirmed through testing on the
public dataset Fruits-360. In practical terms, it enables accurate
verification of product selection through a deterministic algorithm,
enhancing security for customer transactions.

Three algorithms were investigated to measure product similarity
and group products accordingly. They assess error contribution,
the mean distance between embeddings, and SOM purity
improvement. These methods streamline product selection
by presenting similar product groups to customers, enhancing
decision-making efficiency compared to navigating full product
trees.

Defended Claims

. To filter off empty images from an image set collected at self-

checkout using an integrated agent that saves a camera view
at the time of customer product selection, a two-balanced-class
emptiness classifier should be trained. To filter off images having
subpar product visibility, a two-class visibility classifier needs to be
trained, where the threshold of product visibility is experimentally
determined.

. To pre-process self-checkout images for training, illumination

differences in regions are reduced best by using CLAHE. Removing
background has a mnegative effect on classification metrics.
Augmenting oversampled images using both affine and perspective
transformations improves classification accuracy over either one.
Augmenting using three perspectives outperforms one perspective.

Highly accurate classification of self-checkout images doesn’t
necessitate well-known large neural network architectures. The
proposed architecture tuned to self-checkout images is made by
adding blocks of convolutional and dense layers until saturation is
reached. The architecture generalizes to other similar datasets.

In the class verification task, a class prototype-based approach
Centre-Loss tantamounts to sample-to-sample approaches in terms
of accuracy. Euclidean distance in loss functions performs equally
or better than other distance types (Manhattan, Minkowski,
Cosine), although nearby Minkowski p values (p=1 Manhattan,
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1.6

p=3) and Cosine perform similarly. In a Centre-Loss architecture
that has a dual loss function, the penultimate layer must be
connected to the Centre-Loss layer. The optimum size of the
penultimate layer positively correlates with the Minkowski p value.

. A dual loss function neural network trained with Centre-Loss

for class verification achieves classification accuracy similar to a
conventional softmax-only network. This unexpected outcome
prompts a single neural network’s deployment to SCO machines
that solve two tasks: verification and classification.

Classification-into-similarity-groups accuracy is generally best,
when products are assigned to similarity groups using the SOM-
Purity method; f-score is generally best when products are assigned
using the Error-Contribution method. Classifiers trained on
individual-class-labelled images, that predict a similar product
group, generally outperform classifiers trained on similarity-group-
labelled images.

Approbation of the Research

The results of this thesis were published in 2 scientific journals having
an impact factor in Clarivate Analytics Web of Science, 1 peer-reviewed
other scientific journal, and 2 peer-reviewed conference proceedings.
Presentations of the results were made at 2 international and 2 national
scientific conferences.

Papers in scientific periodic journals having an impact factor
in Clarivate Analytics Web of Science

Ciapas B., Treigys P. "Centre-loss - a preferred class
verification approach over sample-to-sample in self-checkout
products datasets". IET Computer Vision (2024). Wiley. ISSN
1751-9632 | eISSN 1751-9640. DOI: https://doi.org/10.1049/
cvi2.12302.

Ciapas, B., Treigys P. "Automated barcodeless product classifier
for food retail self-checkout images". The Visual Computer (2023):
1-15. Springer. ISSN 0178-2789 | eISSN 1432-2315. DOI: https:
//doi.org/10.1007/s00371-023-03163-8.

Papers in other peer-reviewed scientific periodic journals

Ciapas B., Treigys P. "High F-score Model for Recognizing Object
Visibility in Images with Occluded Objects of Interest". Baltic
J. Modern Computing, Vol. 9 (2021), No. 1, pp. 35-48. DOI:
https://doi.org/10.22364/bjmc.2021.9.1.3.
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Papers in peer-reviewed conference proceedings

Ciapas B., Treigys P. (2023). "Self-Checkout Product Class
Verification using Center Loss approach". Computer Science
Research Notes. Union Agency, Science Press. ISSN 2464-4617
| eISSN 2464-4625. DOI: https://doi.org/10.24132/CSRN.3301
.4.

Ciapas B., Treigys P. (2022).  Retail Self-checkout Image
Classification Performance: Similar Class Grouping or Individual
Class Classification Approach. In: Ivanovic, M., Kirikova, M.,
Niedrite, L. (eds) Digital Business and Intelligent Systems. Baltic
DB&IS 2022. Communications in Computer and Information
Science, vol 1598. Springer, Cham. ISBN 978-3-031-09849-9 |
eISBN 978-3-031-09850-5. DOI: https://doi.org/10.1007/97
8-3-031-09850-5_12.

Presentations at scientific conferences

Ciapas B., Treigys P. "Self-Checkout Product Class Verification
using Center Loss approach".  International Conference on

Computer Graphics, Visualization and Computer Vision 2023,
Plzen (Czech Republic), 2023 May 15-19d.

Ciapas B., Treigys P. "Retail Self-Checkout Image Classification
Performance:  Similar Class Grouping or Individual Class
Classification". 15th International Baltic Conference on Digital
Business and Intelligent Systems (DB&IS), Riga (Latvia), 2022
July 4-6d.

Ciapas B., Treigys P. "Prekiy atpazinimo tyrimas naudojant
giliuosius neuroninius tinklus savitarnos kasy vaizduose". XX
moksliné kompiuterininky konferencija. Klaipéda, 2021 September
23-24 d.

éiapas B., Treigys P. "Expanding Convolutional Networks with
SIFT Features to Classify Images Better". 11th international
workshop on data analysis methods for software systems (DAMSS
2019), Druskininkai, Lithuania, 2019 November 28-30d. /
Lithuanian Computer Society, Vilnius University Institute of Data
Science and Digital Technologies, Lithuanian Academy of Sciences.
Vilnius : Vilnius University Press, 2019. ISBN 978-609-07-0324-3
| eISBN 978-609-07-0325-0. p. 18. DOI: https://doi.org/10.1
5388/Proceedings.2019.8

Presentations at national scientific institutions
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° éiapas B. "Prekiy atpazinimo tyrimas naudojant giliuosius
neuroninius tinklus savitarnos kasy vaizduose". Systems analysis
seminar. Vilnius University. Institute of Data Science and Digital
Technologies. 2022 October 10d.

° Ciapas B. "Prekiy atpazinimo tyrimas naudojant giliuosius
neuroninius tinklus savitarnos kasy vaizduose". Lietuvos moksly
akademijos (LMA) ir Lietuvos Dirbtinio Intelekto Asociacijos
(LDIA) simpoziumas "Dirbtinio intelekto technologijuy taikymai
vaizdy analizéje". 2022 October 5d.

e Ciapas B. "Prekiy atpazinimo tyrimas naudojant giliuosius
neuroninius tinklus savitarnos kasy vaizduose". Systems analysis
seminar. Vilnius University. Institute of Data Science and Digital
Technologies. 2021 December 6d.

° éiapas B. "Vaizdy ypatybiy tyrimas sprendziant atpaZzinimo
uzdavinius savitarnos kasose". Konferencija "Lietuvos magistranty
informatikos ir I'T tyrimai". Vilnius University. 2021 May 14d.

e "Prekiy atpazinimas savitarnos kasose". Jaunyjy tyréjy
tarptautiné moksliné konferencija "Jaunasis tyréjas iSmaniajai
visuomenei". Vilnius University, Siauliai Academy. 2021 May 13d.
Certificate no. MVG-VUSA-2021-335.

e Ciapas B. "Prekés atpazinimas savitarnos kasy vaizduose".
Systems analysis seminar. Vilnius University. Institute of Data
Science and Digital Technologies. 2021 March 15d.

o Ciapas B. "Prekés atpazinimas savitarnos kasy vaizduose".
Systems analysis seminar. Vilnius University. Institute of Data
Science and Digital Technologies. 2020 May 11d.

1.7 Outline of the Thesis

The research schema is shown in Figure 3. The thesis is organized as
follows:

e Introduction describes the context of the research area (retail
self-checkout environment) and defines the tasks that could have
practical value if solved. The section defines the aims and
objectives of the research and states the scientific contributions
and claims defended in the thesis. Publications and presentations
by the author are listed.
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¢ Related Works provide an overview of the latest research in areas
related to this study. The main topics reviewed are computer vision
tasks in retail, neural network architecture, discriminative feature
learning, clustering and outlier detection, and others.

e Data Preparation introduces the flow at self-checkout (Step 1)
and presents options for automated data collection and labelling
(Step 2). The section presents the collected data’s quantitative
and qualitative properties (Step 3). Existing image sets are
compared to the collected authentic dataset.  Dataset pre-
processing techniques adopted for this research are presented (Step
4).

e Methods present theoretical investigation results and the
design of the experiments. In Image fitness for product
recognizability, a systematic way of iterative architecture design
using building blocks is presented (Step 5) and thresholding
strategies for recognizability filters are suggested.  Product
classification presents a fully automated product classification
pipeline, which includes Emptiness (Step 7) and Recognizability
filters, as proved by Ablation studies (Step 9). The subsection
investigates selections of the proper architectural backbone (Step
10). Product verification investigates Discriminative Feature
Learning (Step 13) and choice of distance type (Step 12) for
verification of product selection by a customer. Product grouping
by similarity suggests options for determining the most similar
classes (Step 15).

e Results start with comparing recognizability classifiers (Step
6), the best of which are used to rid the dataset of poorly
visible products. The product classification results (Step 11)
conclude the most fit architecture and prove the need for filtering.
Verification results (Step 14) conclude the proper loss function and
distance type. Classification into groups of products (Step 16)
quantitatively compares options for determining class similarity.

e Conclusions summarize the findings of the thesis.
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2 Related Works

2.1 Computer Vision Tasks in Retail

Taxonomy for computer vision tasks in the retail industry by application
offered in the paper [8] suggests the following categories: shopping
assistance, out-of-stock detection, and planogram compliance; this
dissertation relates to shopping assistance applications.

Product recognition tasks in retail using computer vision can be
grouped by the number of products in images: single product vs. zero
or more products. The latter task is more ubiquitous in store shelves,
shopping carts, self-checkout security scales, and checkout conveyor belt
image analysis. The papers [9], [10], [11] solve the latter task of object
detection (localization and classification of multiple products within
images). The metrics of detection tasks are different from classification
tasks: detection tasks aim to predict a bounding box of every object of
interest within an image and to classify the objects inside the bounding
boxes, whereas classification tasks assume the presence of a single
object of interest inside images and do not aim to localize them. Due
to the difference in metrics of classification vs. detection tasks, the
results are not compared against the cited papers. The former task -
recognition in single-product images - is also frequently encountered in
retail environments: self-checkout and regular checkout scanning areas,
self-service, and assisted-service scales. The research [12] solves a product
classification task of 8 products in DIY stores by combining images from
the internet and regular stores into a training set. Although near-perfect
accuracy is achieved, the number of products in the paper is a far reach
from the number of products in retail stores. The research [13] classifies
~200 products in retail store shelves by using product brand and category
proximity within shelves as an input feature. Such product proximity is
irrelevant in the order products are weighed/scanned in self-checkout
transactions. The research [14]| solves a planogram compliance task
using unsupervised methods by finding product patterns in a provided
planogram and shelf images. The method does not require any reference
images of the products. However, their method assumes that divergence
from a planogram is minor, whereas in product recognition tasks at self-
checkouts probabilities of products are more evenly distributed.

The image sets that resemble retail food products sold at self-
checkouts, are discussed in detail in section 3.5. The results of this
research were compared against the papers [15], [16], [17] on the Fruits-
360 dataset. The paper [15] focuses not only on accuracy but also on
the speed of training by introducing parallel convolutional layers that
help with backpropagation and vanishing gradients problems. Since the
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main focus of this dissertation is on accuracy, the not-so-popular parallel
convolutional networks were left out. The paper [16] (also publishes the
Fruits-360 dataset) uses a really basic network of 4 convolutional and 2
dense layers. Since this research focus is on accuracy, bigger networks
with more parameters were considered. The paper [17] uses the best
architecture on ImageNet: EfficientNet [18]. However, its accuracy is a
notch lower than that of other methods.

Specifics in retail self-checkout images include unevenly distributed
classes, many images containing poorly visible products due to semi-
transparent bags, etc. It is discussed in detail in section 3.2.

2.2 Data Collection and Preparation

To collect images of products in the self-checkout environment, a camera
had to be chosen, which ideally should see through objects other than
the retail products. Advances in covered object recognition use a see-
through terahertz beam such as the paper [19] and analyze reflection
signal amplitude and phase differences in materials. Such terahertz
cameras are far from ubiquitous and will hardly ever be, therefore data
for this research was collected using more widespread Red-Green-Blue
(RGB) image features.

Given the variety of computer vision tasks in the self-checkout
environment, proper label types needed to be chosen. Some publicly
known datasets such as ImageNet [20], Pascal Visual Object Classes
(VOC - [21]) use rectangular bounding boxes as ground truth to mark
object location and size. Others use even more precise object shape
markings: Caltech 101 [22| and LabelMe [23] use closed boundaries
and Microsoft Research (MSRC - [24]) uses pixel-level segmentation.
Each of the above object marking ways such as rectangular bounding
boxes, closed boundary shapes, and pixel-level segments are costly to
label in new datasets. However, due to the nature of some domains,
object location is bounded by a small area (such as products at the time
of weighing at self-checkouts), and it is only relevant to predict object
class. Tasks of this research only require class labels for images, thus
making it less costly to label a new domain-specific dataset. Performance
comparison with methods using location-specific labels cannot be made
due to different label nature.

Given the significant occurrence of empty images within the self-
checkout image dataset, entropy measurement was considered as a
separating technique: non-empty images typically exhibit greater
entropy compared to background-only. Entropy is widely used in signal
pre-processing for automatic label generation: the paper [25] measures
entropy between audio frames in order to extract time sequences
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Class members

Figure 4: One-class classification

belonging to the same syllable; the paper [26] uses entropy to segment
images. However, the background of the self-checkout scales is non-
uniform, therefore it is expected to have high entropy. Instead, it
was settled for manual image labelling, thus making it possible to
formulate the task at hand - deciding if an image contains a visible
enough object of interest - as a classification task. To filter out empty
images, morphological operations were considered, such as background
removal using GMM [27]. However, their proposed method trains a
model on multiple empty images of the same static background, whereas
different self-checkouts usually have slightly variant camera angles and
illumination. Treating empty images as a positive class allows training
a Siamese network that separates empty images from the rest. The
paper [28] proposes a Siamese architecture and shows its effectiveness
on human face verification where a single human’s face photos are few.
The algorithm trains a "distinction" function by feeding positive (i.e.
the same person’s photo) and negative (i.e. different person’s photo) to
the network. Another way to treat the task of separating empty images
is OCC [29] - a task of finding a separating boundary between positive
class samples and the rest, as shown in Figure 4. The survey of OCC
methods [30] proposes using mostly positive examples, whereas negative
examples are none, some poorly distributed, or unlabelled. Due to a
huge, constantly changing variety of products in self-checkouts, OCC
was considered to be a viable way to separate empty images by treating
empty as a positive class. Other methods for separating a positive class
from the rest include Gaussian processes [31] and SVM [32[; they still
have to prove their validity on high dimensional data, such as images.
Other computer vision tasks are solved by researchers to which
this dissertation results cannot be directly compared due to different
metrics. Yet, they present ideas for solving issues specific to the retail
environment. The paper [33| recognizes the lack of labelled data in the
retail industry and offers modified weakly supervised learning to solve
segmentation tasks using inaccurate and imprecise labels; depending
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on the dataset, they present mean average precision in a detection
task: ~42% (MVTec Densely Segmented Supermarket Dataset - [34]),
~98% (RPC: A Large-Scale Retail Product Dataset - [35]). The papers
[36] and [37] aim to segment salient objects (SO) in remote sensing
images. Although SO mask could be used to remove background,
but self-checkout images background is static, which is easier removed
using morphological operations. The paper [38] proposes to solve the
detection of empty shelves by extracting high-level features (texture,
colour, geometry) and supervised training methods; it presents ~85%
accuracy in empty shelves detection. Both of the above do not take
advantage of retail store setup where only a single product exists at a
specific location at a time (such as checkout scanner/scales area).

Filtering out images with low product visibility is a complex task
that requires interpreting images for plastic bag transparency, and
separating intruding customer body parts from products. This task is
specific to the retail domain that has not been widely researched. The
paper [39] proposed a 6-class classifier that separates images by product
visibility: the method suggests 4 ordinal categories by product’s visible
area percentage and 2 classes for products in bags, but does not conclude
which could be reliably classified into individual products. To use this
approach as a pre-processing step to rid the dataset of images having
poor product visibility, one must determine the best threshold separating
visibility categories into Visible/Invisible categories. The dataset was
filtered using this method by experimentally choosing the best threshold.
A more detailed discussion is in section 3.6.

The automatically collected self-checkout dataset was unbalanced;
neural network classifiers trained on unbalanced sets are more likely
to predict more common classes. Fighting this bias usually includes
balancing the number of samples or introducing higher loss coefficients
for underrepresented classes. The paper [40] concludes that over-
sampling the less represented and under-sampling the more represented
classes performs better than only under-sampling. They also show the
benefit of over-sampling over introducing loss ratios for different classes.
These findings were applied when training classifiers in this research.

The number of images per class in the self-checkout dataset was
dwarfed by those found in ImageNet; neural networks require large
image quantities to generalize to unseen data. Strategies for image
augmentation to increase data variability, and reduce model overfitting to
training data, are numerous. The paper [41]| uses Generative Adversarial
Networks (GAN) to generate more medical images and present results
improvement in binary classification tasks for medical images over the no-
augmentation approach. However, results for the multiclass classification
task (object of this research) using this augmentation approach are not
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presented. On the other hand, using GANs implies heavy hardware
usage; augmentation in other domains than medicine, where labelled
images are not so scarce, may be achieved using simpler techniques.
The paper [42] uses a perspective transformation to augment images
when annotated data is scarce or datasets are unbalanced and shows
the effectiveness of such an approach on a detection task. The proposed
perspective transformation was used to augment over-sampled images.
Oversampling and augmenting are discussed in more detail in section
3.7.

2.3 Model Architecture and Training

Deep neural network architectures for image classification tasks abound.
The pioneering paper in deep convolutional neural networks [43] suggests
using a set of Convolutional layers followed by a set of Dense layers.
Although its achieved accuracy (62.5%) on the ImageNet dataset of
1,000 classes was later improved by many researchers, most use his
proposed sequence of layer types. The effectiveness of his approach
on a self-checkout dataset remains to be investigated. Convolutional
neural networks still appear in many leading papers of the ImageNet
classification task, such as the papers [18], [44]. The paper [45]
suggests a convolutional auto-encoder-based classifier, where an auto-
encoder is first trained to learn features, then fixed encoder layers
are appended with two Dense layers to train a classifier. They show
the effectiveness of the technique on a 3-class painter classification
task with >96% accuracy. The results of their proposed technique
on a much greater number of classes are not presented. A different
approach from convolutional networks to extract image features is Vision
Transformers (ViT) introduced in the paper [46]. ViTs rely on the
attention mechanism originating from language models, they lose spatial
information of image patches in proximity. Yet, ViTs achieve impressive
results in the ImageNet classification task in the paper [47]. Capsule
Nets (CapsNets) introduced in the paper [48] is another competitor to
convolutional nets for feature extraction. CapsNets show equivariance
in object pose and location extraction, whereas convolutional nets lose
location information in deeper stacked convolutional layers. However,
CapsNets does not show competitive progress in classifying images of
big datasets, such as ImageNet. Alternative architectures applied in this
research are discussed in detail in section 4.2.5.

To optimize the neural network parameters, Cross-Entropy has
been widely applied as a loss function in classification tasks since the
pioneering artificial neural network papers [49], [43]. As opposed to
Cross-Entropy, many researchers use entropy to create unsupervised
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models: the paper [50] attempts to maximize entropy among different
image background/foreground pixels; the papers [51] and [52] try to
reduce entropy when selecting the next features in forming decision tree
nodes; the paper [53] uses the entropy of output by competing translation
systems in order evaluate translation quality.

A class verification task needs a different loss function because its
objective is to ascertain whether an input image fits the class it is claimed
to belong to. In class verification research, face identity verification
takes the spotlight. The common approach involves comparing image
features through sample-to-sample methods. A Siamese network [28]
effectively learns a distinction function - whether two images belong to
the same class (person) or not. It consists of two identical networks
with shared weights and a distinction layer that measures the Euclidean
distance between embeddings of a fully connected layer. A similar
concept is employed in Triplet Loss [54], except that it uses three images
to calculate a loss function: an anchor, a positive (same class/persons’)
and a negative (another person’s). The Anchor+ Positive pair is trained
to output an opposite value than the Anchor+Negative pair. Circle Loss
[55] introduced a variant of a Triplet Loss function by using not linear,
but circular separating boundaries between positive and negative pairs
similarities, and showed improved verification results on several major
face datasets. Both distinction function-based methods - Siamese and
Triplet - require reference images (or their embeddings) during inference.
Although that is usually satisfiable when the number of images per
class is small, using big training datasets faces several challenges: first,
different reference images lead to different verification results; second,
inference against several reference images requires aggregation, an area
where research is lacking; third, inferring against a multitude of reference
images is rarely feasible due to performance and storage reasons.
Considering the proven accuracy of Siamese and Triplet networks,
experiments in this research contrast them with class prototype-based
methods. The loss function of class prototype-based methods measures
the distance between the embeddings of a class prototype and a sample.
SphereFace [56] and ArcFace [57] measure the angular distance between
the embeddings of a class prototype and a sample, then modify the
Cross-Entropy loss function to use angular distances. They show
better discrimination of inter-class features than regular Cross-Entropy.
Their unifold loss function does not allow adjusting classification vs.
verification relative importance. Since the verification task’s primary
focus is verification (as opposed to classification), the Cross-Entropy loss
is only included to preserve class separability (i.e. not to regress all class
centres to the same point), thus it is important to adjust this relative
importance. Another way to verify class is to derive a class prototype
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during training and then compare an input sample against the prototype
during inference. A class prototype is a generalized representation of a
class used in class verification tasks. The research [58| creates prototypes
based on activations and uses Earth Mover’s Distance (EMD). However,
these prototypes often have high intra-class variation. In Discriminative
Feature Learning [2], class centres are learned by averaging class samples
in the same embedding space, pushing embeddings towards them with a
two-fold loss function: in addition to Cross-Entropy, the other summand
Centre-Loss pushes samples towards their respective class centre. The
first member of such a loss function - Cross-Entropy - ensures that
different class centres are separable, i.e. do not regress to the same
point. Class centres are updated in every iteration, thus "learned".
This method was adopted in experiments of this research, extending
it to various distance types. Proxy-NCA [3] learns class centres using a
loss function that pushes samples not only towards their own but also
away from other class centres. It measures cosine distance, which, by
definition, loses the scale component. Proxy-NCA’s spin-offs SoftTriple
[59] uses several single class centres and Proxy-Anchor [60] trains more
efficiently by minimizing both sample-to-centre and sample-to-sample
distances. Artificial Immune Networks [61] form high-density clusters
for each class but don’t explicitly minimize cluster size, resulting in
expected high intra-class variance. Some researchers use text data to
build class prototypes, as in the paper [62]. However, obtaining such
data for self-checkout products is challenging.

Verification loss functions (such as Contrastive Loss) typically
measure Euclidean distance but the use of non-Euclidean distance types
remains relatively underexplored in research. Some language-focused
researchers opt for metrics like Manhattan, as evident in the papers
[63], [64], and [65], or Chebyshev distance, as in the paper [66]. In
the realm of computer vision, the paper [67] conducts a comparison
involving Manhattan, Euclidean, and Chebyshev distances using an
emotion-labelled dataset. Its work is expanded upon by including
Minkowski distances with varying p values (3 and 4) as well as Cosine
distance, conducting experiments on the focus-of-interest self-checkout
products dataset. While the paper [68] examines architectures using
Manhattan and Chebyshev distances, it is important to note that their
two architectures differ in other aspects, making direct distance type
comparison inconclusive. On the other hand, the paper [69] undertakes
a comprehensive comparison of various distance types (Manhattan,
Euclidean, Minkowski, Chebyshev, Cosine) in an image retrieval task.
The aim of this research is to conduct a similar comparison, albeit in a
different context - a verification task.

Transfer learning is a technique of partial pre-trained network
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transfer from one domain to another. The technique is popular when
neural networks need to be trained in domains where training data is
insufficient, classes are unbalanced, or both (the case in this research).
The paper [70] concludes that earlier layers are more generic - therefore
more transferrable - than later layers that are more domain-specific. The
paper [71] cuts off the last layer from the pioneering Krizhevsky [43]
architecture prior to adding 2 additional dense layers, and shows the
effectiveness of this approach over random weight initialization. Cutting
off more than the last layer is not discussed. In this research, strategies
of initializing and fixing weights from well-known pre-trained models are
applied.

In the task of separating images with insufficient product visibility,
a proper evaluation metric had to be chosen. Most methods using
datasets where object location is defined, such as the papers [72] and [73],
use intersection-over-union (IoU) to measure the correctness of object
localization and segmentation. Since in this research no datasets with
annotations of object location have been used, class labels (Is/Isn’t an
object) were used in measuring correctness. F-score is widely used in
information retrieval, such as search, document classification, or query
performance evaluation. The paper [74] got 0.65 f-score measuring class
match between searched vs. retrieved images in content-based image
retrieval. The paper [75] used f-score to classify search query difficulty
and received values up to 0.665. The research |76] classified textual
documents into pre-defined classes and received f-score values up to 0.92.
To evaluate models of product recognizability, the f-score was used.

2.4 Verification Approaches

A class prototype is a generalization of the data samples of a single
class, which a new sample is compared against at inference time.
Multiple research attempts have been made to derive a class prototype
given a set of data samples. The paper [62] uses the term "class
prototype in a semantic space", which is category vectors (one per
category). They construct the category vectors by using auxiliary
textual information about the classes of interest. In this research,
textual or other information about the classes is not used to train
category vectors - mostly because discriminative textual information is
not easily obtainable for the country-, chain-, or store-specific classes of
self-checkout products. To derive a class prototype, some authors use
the space of embeddings of a certain trained neural network layer. To
extract features from images, many authors train convolutional filters
that are class-agnostic, but sensitive to an object’s existence. A very
similar concept - class-agnostic convolutional filters on object-containing
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patches - was used in the paper [72]. The research |58 first extracts
features using a fully convolutional network and then compares patches
on an unlabelled dataset. In this dissertation, training is done on full
images rather than object-containing crops (due to self-checkout dataset
annotation nature). These methods generate region proposals, and then
extract features from them: the research [77| extracts visual words from
pixel level segments, then compares them to those of known object
bounding boxes; the paper [78| finds closed boundary shapes. Both of
the above methods imply having learnt features from a dataset annotated
with object locations, which didn’t exist in the dataset used in this
research.

In a class verification task, one approach is to view it as outlier
detection, identifying outliers as incorrect [image;claimed-class| pairs.
Outlier detectors create a boundary to separate in-distribution from out-
of-distribution samples, experimenting with various boundary shapes like
hyperplanes in SVM [79], ellipsoids in robust covariance models [80],
and any shape in isolation forests [81]. In this research, the choice of
boundary shape depends on the distance type used: Manhattan leads to
a hypercube boundary, Fuclidean results in a hypersphere, and Cosine
forms a cone. However, loss functions of this research verification task
push latent space variables of any class to the same point ("class centre"),
thus any centre-enclosing boundary suffices. Some outlier detection
methods don’t explicitly minimize intra-class distances, but enhance
separability using techniques like Gaussian Radial Basis Function (RBF)
kernels [82]. In this study, the aim is to minimize intra-class distances for
all latent layer embeddings, a distinction from typical outlier detection
methods.

The output of class verification must gauge the probability of an
image belonging to a claimed class. Conversely, computer vision
classifiers in the papers [83], [84], and [85] assign probabilities to
known classes. However, many real-world applications, like self-checkout
product verification, require identifying out-of-distribution samples, a
task that classifiers aren’t designed for. Verification, in contrast,
distinguishes between in-distribution and out-of-distribution samples.
Efforts to address this issue include the paper [86], which sets a lower
threshold for the Top-1 classifier’s prediction to consider a sample as out-
of-distribution, and the paper [87], which modifies classifier architecture
by adding a confidence branch. However, both approaches may struggle
with datasets containing similar classes, like self-checkout products with
multiple similar-looking tomato types, leading to complex probability
distribution issues.

While numerous research papers delve into class prototype-based
class verification and sample-to-sample-based verification separately,
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there is a research gap when it comes to comparing these two approaches.
Surprisingly, the investigation did not uncover any articles focused
on a verification task that directly compares these two approaches
while maintaining identical hyperparameters, including neural network
architecture and dataset.

Researchers addressing verification tasks employ various methods
to model distributions of class samples. For instance, Open Set Deep
Networks [88]| create a Weibull distribution for each class, enabling
varying variance levels among different classes. Similarly, the paper
[89] learns per-class distributions and establishes a fixed Mahalanobis
distance from the class centres to determine a sample’s class membership.
Both of these approaches are more flexible than the one used in
this research, as they accommodate different variance levels per class.
However, none of these studies train models to reduce intra-class
variance. By training models that minimize intra-class variance, the
necessity to model distinct per-class distributions can be reduced.
Strategies of class verification based on distance from centres are
discussed in section 4.3.3.

Class verification research is distinguished by the type of negative
samples. In face verification, negative samples in the papers [56], [2], [90],
[54], [91], [28], [57] typically consist of images associated with a different
person’s identity. In the context of AI safety, like in the paper [92],
negative samples are generated by GANs, while positive samples are real
images. However, in self-checkout product verification, negative samples
should be either images from a different out-of-distribution class or any
out-of-distribution product not in the training data. Unfortunately,
there’s a shortage of datasets for retail barcodeless products, so this
research used only in-distribution data. Research in artificial intelligence
safety attempts to verify if the input is consistent with known (out-
of-distribution) samples. Deep Verifier Networks (DVN) [92| use an
auto-encoder’s latent layer’s activations to estimate the density of known
samples. Samples with latent activations inconsistent with the density
model are rejected as adversarial. DVN does not attempt to model
latent space where intra-class samples are clustered together. Thus
DVN does not derive class prototypes. Since in the self-checkout
domain "adversarial" samples are images of other than the declared class,
deriving a class prototype is suggested.

2.5 Product Similarity Approaches

Image similarity is drawn from an image description in the paper [93].
Such a description is not available in self-checkout image sets.
The concept of similarity descriptor is presented in the paper [94]. It
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uses pre-trained famous classifiers to draw feature maps of deep layers.
The authors first train a neural network to choose the most proper deep
layer to use as a feature set for image similarity. Then feature map
histograms are used to measure image similarity by calculating Earth
Mover’s distance. In this dissertation, a pre-trained classifier was used to
draw feature maps for further comparison. Instead of building a complex
network to choose the deep layer, the pre-last dense layer was used: the
paper [94] shows little difference in performance by using different layers
of classifiers.

The ranking technique in the paper [95] learns image similarity by
training a network on triplets that consist of 3 images: query, positive
(similar) and negative (dissimilar). It relies on a self-created dataset,
where similar candidates are Google image search results. It then
calculates image pairwise similarity using an extensive list of features
among images of the same search query results, whereas the similarity
of images between different query results is set to 0. Using their method
for this research presents an issue: since the task is to learn inter-class
similarity, it does not make sense to label the pairwise similarity of images
of different classes to be 0.

The image clustering techniques in the papers [96], [97], and [9§]
group images by exploiting some deep layer’s embeddings. The resulting
image clusters, however, do not map into groups of classes ("class
clusters"): clusters usually contain images from a multitude of classes
and images of a class are dispersed over a multitude of clusters. This
means that image clustering cannot be used directly to measure class
proximity, but may be used as the first step followed by some post-
processing to determine class similarity.

The clustering of categorical datasets usually uses purity metric
to determine the quality of clusters; subsequently cluster purity
improvement by merging classes can be measured to determine class
proximity. SOM [1] is a clustering technique that preserves inter-cluster
proximity: data points that are close in high dimensional spaces are
assigned to cluster centroids that are close in 2D space. Since this
thesis investigates inter-class proximity, SOM is chosen to be one of the
alternatives to group classes into clusters.

Determining class similarity requires some generalization based on
the similarity of image samples. The average of all samples of a given
class is used to calculate a "class vector" in the paper [99]. Cosine
similarity between class vectors is used as a measure of class similarity.
They use linear discriminant analysis (LDA) to come up with a feature
space for calculating class vectors. In self-checkout products domain,
samples within the same class may be quite different (e.g. a Snickers
candy has 2 views depending on whether it is put front side up or
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down), therefore calculating a class average may not be representative
of a class. Instead, a sample-to-sample comparison is used. Like the
authors of the paper [99], cosine similarity is used between embeddings.
To come up with a lower-dimensional space of image embeddings, pre-last
fully connected layer activations are used instead of LDA: this is not a
significant difference as long as class-specific information is preserved
within embeddings. A technique proposed in the paper [100] is for
class-to-image comparison by training a Siamese-like network that takes
extracted class and image features. Although a promising technique to
identify if an image belongs to a specific class, it doesn’t provide a way
to compare how similar two classes are.

Hierarchical classification tasks present the challenge of picking the
right classification strategy. Two ubiquitous strategies are local classifiers
and multilabel classifiers. Local classifiers in the paper [101] can be
split into classifiers-per-level (LCL), classifiers-per-parent-node (LCPN)
and binary classifiers-per-node (LCN). Each local classifier strategy
requires multiple classifiers to be trained and used during inference -
a potential obstacle for not-so-powerful devices, such as self-checkout
computers. A task of grouping in this research can be thought of
as a hierarchical classification task of 2 levels, where leaf nodes are
groups of products; therefore, the task converges to a classic multi-class
classification problem. Multilabel classification tasks in the papers [102],
[103], and [104]| use multiple labels for every data point - one label per
hierarchy level. The loss function of multilabel classifiers requires setting
weights between levels. The grouping task of this research can be thought
of as a multilabel classification task of 3 levels - root level, class group
level and individual product level - where the weight of leaf (individual
products) level is 0, and the weight of class group level is 1. Approaches
for deciding class similarity are discussed in section 4.4.2.
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3 Data Collection and Preparation

3.1 Self-checkout Flow and Choice of Camera Location

The choice of camera location was based on the following characteristics:
products should be fully present, contain minimum interference
with customers’ body parts, include minimum background, and the
background should be mostly static. The camera mounted on top of
a self-checkout screen in Figure 5(a) results in many images having
products covered in large part by customers’ arms and heads. The
camera located below a self-checkout screen in Figure 5(c) faces
horizontally, thus contains mostly store’s background that is dynamic
(customer movement) and, therefore, hard to remove. The camera placed
on the side of a self-checkout screen in Figure 5(b) produces fewer images
containing body parts than the camera on the top and has mostly static
background of the scales area unlike the camera below the screen. After
intial tests, the camera’s location for data collection was chosen to be on
the side of the screen as in Figure 5(b).

The crop of choice was based on the following characteristics: it
must contain products, must lend itself to automatic labelling, and

(b) On the side  (c) Below the screen

Camera
location

Sample
view

Figure 5: Camera location variants and sample views
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products should be clearly visible and not be stacked on each other.
The scanner/scales area usually contains a single product, whereas
other areas (shopping basket/trolley, bagging) generally contain multiple
products, covered fully or partially by other products. This suggests the
scanner /scales area (green frame in Figure 1) to be the top choice for
image set collection and further analysis. The red-circumvented area
(Figure 6, left) represents the area of interest that was cropped and
perspective-transformed to a rectangle (Figure 6, right). The camera
position being static with respect to the self-checkout scales area, the
position of the crop (the four corners of the scales) was set once upon
installation of the camera, then used for the entire duration of image
collection. The cropped area was used for all the experiments. The
original image size was 480x640. The crop being of irregular shape,
needed to be perspective-transformed into a square shape in order to fit
as an input into most convolutional neural networks, that take square
input shapes. The target square size was set to 256x256, so that the
majority of information came from the camera (as opposed to "invented"
by upsampling if a bigger target size was used).

Figure 6: Original (a) and transformed (b) images. Cameras placed on
the side of a self-checkout screen produce fewer images containing body
parts but contain much undesirable background and skewed products

Images were collected from cameras placed over 4 distinct self-
checkout machines in one food retail store of 800—1,200 square meters in
Vilnius, Lithuania. The camera model was a Logitech C930w Business
Webcam, having a 90°diagonal field of view, 4x digital zoom, available
Full HD/301fps resolution.

3.2 Properties of Raw Data

Self-checkout images demonstrate such specifics:
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e Very often products are covered by hand or other body part, i.e.
product visibility is limited;

e Products are packed in plastic bags which limits product visibility
as well;

e Products vary in size;

e Every self-checkout camera has different illumination properties,
illumination varies during work hours and typically is non-uniform.

Real-life images, which need to be classified, often contain objects
that are occluded to some degree. For example, most self-checkout
images contain products partially covered by a customer’s hand or
another body part; about 10% of barcodeless products are sold in plastic
bags that are semi-transparent and may have a high glare; specific
locations within the scales area reflect light in a way that reduces
recognizability, illumination differs during the day time, products differ
in size, etc. In addition, self-checkout images collected at the moment
of choosing a product from a picklist menu contain many empty images.
Reasons for empty images are multiple: network latency, software bugs,
no item present at the selection moment, etc.

Due to all these aspects, which are specific to self-checkouts, some
images are likely to contain less information about the object of interest.
Simply applying classification techniques on images with occluded
objects is likely to result in low classification results, if they are not
eliminated from the neural network training set. Prediction of products
in empty images is meaningless.

Cameras, although stationary, do not always contain the same static
background: they get shifted by customers; cameras installed in new
locations contain new backgrounds. As a result, empty images cannot
be eliminated by simple morphological operations. Deciding on whether
images contain products visible enough for classification is an even more
difficult task.

To obtain satisfactory classification results, images with occluded
objects must be first categorized to see whether objects of interest
are visible enough for classification, and only images containing well-
visible objects need to be classified. Empty images must be discarded.
Separating images containing visible enough products from the rest is
a necessary step not only in preparing datasets for training but also in
the inference pipeline in order to apply individual product recognition
techniques only for images where products can be recognized.
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3.3 Image Labelling

Two types of labels were used:
e Product ID was used to train product classifiers;

e Product visibility categories were used to train the product
visibility classifier, which was subsequently utilized to remove
images from the raw dataset where products were poorly visible.

Images were automatically labelled with customers’ selected product
IDs. To collect and label images, a software agent was installed on self-
checkout machines. The software agent received events from the self-
checkout software of a customer who haschosen a product from a picklist
menu, took camera snapshot images and labelled them with customer
selection (at the moment of customer selection, a product was usually
present on the scales). Although some mistakes in customer product
selection were spotted, no manual re-labelling was done: manual re-
labelling would be unpractical in a rapidly changing store assortment.

The images were labelled with visibility-level labels manually. Due
to the uncertainty of what portion of the product needs to be visible,
it was decided to use multiple ordinal labels. Labelling images into a
bigger number of product visibility categories would have given more
flexibility when splitting data into Visible/Invisible categories. However,
considering that a human labeller would make more mistakes if more
categories were used, it was decided to limit the number of visibility
labels to four: Q1, Q2, Q3, and Q4. The labels were assigned based on
what percentage of the product area is within the image and not covered
by other objects, such as the customers’ hands. The Q1 category had up
to 25% product’s area visible, Q2 - from 25% to 50%, Q3 - from 50% to
75%, and Q4 - more than 75%. Images with products packed in plastic
bags showed very different features from images with unpacked products
in early analysis: plastic bags are easily recognizable, but products inside
the bags are not necessarily recognizable. Therefore, it was decided to
label images in plastic bags with different labels. Due to some images
within plastic bags having intense light reflection that makes products
unrecognizable, it was decided to split images with plastic bags into
classes Bag (recognizable products in plastic bags) and BagR ("R" means
reflection that makes a product not recognizable to humans). Finally,
the images have been labelled into 6 exclusive visibility categories by
applying these rules:

e By product visibility percentage (classes Q1-Q4) for products not
in bags
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e Products in bags (class Bag) when the product can be recognized
by a human

e Products in bags with a reflection (class BagR) which makes a
product unrecognizable

Samples of each data class are displayed in Table 1.

Table 1: Each visibility class samples and class ratios

!

Q2 Q4 Bag BagR
32% 22% 15% 21% 7.3% 2.6%

Due to the uncertainty of how many images need to be labelled in
order to create models that generalize, it was chosen to label a similar
number of samples per class as the ImageNet dataset (~1,000), where
the classification task was solved with high accuracy. The entire labelled
dataset consists of ~6,000 images. Images were randomly selected for
labelling from the entire set with no pre-selection criteria. All the
selected images were labelled by a single human labeller.

3.4 Product Taxonomy and Frequency of Sales

Food retail stores typically carry an assortment that consists of
thousands of products and is highly dynamic: new products are
introduced to test the market frequently; products appear and disappear
due to changes in seasons. Most of the products contain barcodes, but
several hundred are barcodeless (unpacked) - usually fruits, vegetables,
nuts, and some sorts of candies. The specific number of products
depends on a retail store size. A typical retail store of 800—1,200 square
meters carries about 200—300 barcodeless products - such a floor size
is approximate footage of Tesco Metro, all Aldi, a bit smaller than all
Lidl, and half the size of Walmart Neighborhood Market stores. Some
food retailers (such as Tesco, Walmart) manage several store sizes, with
smaller stores usually carrying a subset of products. Same retailer and
size stores usually share assortment except in geographically dispersed
regions.

Filtering products that should be included in the recognition pipeline
depends on several criteria: ease of selection for the customer, and image
count available per class. Business problems for both types of products
differ, e.g. products with barcodes are identified by scanning a barcode,
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whereas barcodeless products are identified by customer selection from
a picklist menu in self-checkouts, which is both time-consuming and
error-prone. In this research, it is intended to help solve the problem
of choosing the right barcodeless product. Only barcodeless (weighed)
products were included in the selection for further experiments.

Frequent introduction of new products requires a boundary on
a minimum number of images for a product to be included in the
recognition pipeline. Products, that had less than 3 images, were filtered
out (considering at least one image would need to be included in a train,
a validation, and a test set). The total number of individual products
came out to be 194.

The full set consists of 26,637 images that belong to 194 different
product IDs. The image set classes are highly unbalanced as shown
in Figure 7: the most frequently purchased products exceed the least
frequent in the order of thousands. Seasonal products, products
introduced for a short term to test the market, and supplier change
contribute to high sales disbalance. Distribution of images among classes
is extremely uneven: the biggest classes contain 3282 (bananas), 2760
(carrots), and 2181 (lemons) samples, whereas the smallest classes (rarely
purchased candies) contain only 3 samples.
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Figure 7: Image counts in classes - overall (a) and classes having less than
100 samples (b). Image count frequencies for different products in the
authentic self-checkout dataset represent the real-world distribution of
sales of different barcodeless products in retail stores. The dominant
classes contain 3441 (bananas), 2857 (carrots), and 2357 (lemons)
samples, whereas about half of the classes contain less than 50 samples
per class

Self-checkout dataset distribution by category is shown in Figure 8.

"Fresh Fruits and Vegetables" is the dominant category by sales (thus,
by image count) - it makes up almost 87% of the images. However, the
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Figure 8: Image count by product group (a) and product count by
product group (b). Self-checkout dataset’s dominant product group by
sales is "Fresh Fruits and Vegetables" (a). However, this group is not
the biggest by product count (b): "Candies" product group contains a
similar number of products, whereas "Dried Fruits and Nuts" and "Buns,
Doughnuts, Biscuits" are smaller, but significant

number of products in each of the high-level categories is more evenly
distributed: "Candies" make up 46%, "Fresh Fruits and Vegetables" -
37%, and other categories are significant, too.

3.5 Existing Retail Products Datasets

There is a scarcity of representative datasets for real-world self-checkout
products. A dataset representative of a self-checkout environment needs
to possess the following properties:

e Contain barcodeless products sold in self-checkouts;

e Images either labelled with product ID (single-product images) or
bounding boxes/masks in addition to product IDs (multi-product
images);

e Background and illumination properties should be similar to ones
encountered in self-checkouts at the times products need to be
recognized;

e Some or all product images should be in transparent plastic bags,
similar to how products are packaged for the duration of checkout.

In contrast to authentic self-checkout datasets, synthetic
counterparts do not comprise items enclosed in plastic bags, objects
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partially occluded by anatomical features, and variable lighting
conditions. It is imperative to underscore that only computer vision
solutions validated against authentic self-checkout datasets apply to
real-world self-checkout environments. Many datasets of retail products
consist mostly of barcode-containing products that are not in the scope
of this research.

Fruits-360 [7] stands out as a deep (~65,000 images) and wide
(95 categories) dataset that contains products usually not identified by
barcodes, but by customer’s selection at self-checkouts. Images within
a category appear to be of the same sample (or a few samples) rotated
in various ways, which implies a lower variability of images than it is
encountered in the real world. Although the dataset contains the most
popular fruits, mapping categories between Fruits-360 and the authentic
self-checkout dataset remains a challenge due to differences in product
names, and different categorization hierarchies between the datasets.
In addition, Fruits-360 [7] only covers a small portion of barcodeless
products processed through self-checkouts: it is a subset of the "Fruits
and Vegetables" category that does not contain vegetables, candies, dried
fruits, biscuits, etc. Therefore, Fruits-360 is not representative of the
self-checkout products dataset and has limited use for the study of self-
checkout product recognition.

A few publicly available image sets contain packaged products, which
usually contain barcodes. Since barcode-carrying products are easily
identifiable by scanning a barcode, the next three datasets are less
applicable to the research of computer vision-based product selection
assistance at self-checkouts.

RPC: A Large-Scale Retail Product Dataset [35] contains
~83,000 images and is by far the largest retail dataset open to the
public. It was synthetically assembled in a sterile environment using
cameras from the top, 45- and 30-degree angles, and horizontal views.
The background is uniform and, therefore easily removable. This dataset
which contains 200 categories is comparable to the dataset of our
research. Images usually contain more than a single product and are
labelled by bounding boxes, making this dataset more usable for tasks
other than classification.

MVTec Densely Segmented Supermarket Dataset (MVTec
D2S) [34] is a supermarket products dataset of ~21,000 images and 60
categories, which is a fraction of categories that supermarkets carry. The
dataset has instance labels at the pixel level that allow extensive data
augmentation techniques to be applied.

GroZi-120 [9] image set contains ~12,000 images of 120 products,
a combination of product images from the web and actual grocery store
shelves. Several smaller retail product image sets are made available to
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Figure 9: Image samples in the authentic SCO and Fruits-360 datasets

the public in the papers [105], [106]. These contain up to 10,000 images.

Of the described existing retail product image sets, Fruits 360 [7]
is the closest match to the authentic self-checkout products database
in terms of fitness to develop product recognition solutions for self-
checkouts. Figure 9 illustrates sample images from the self-checkout
dataset collected for this research in comparison to Fruits 360 [7].
SCO dataset, which is collected and filtered using only fully automated
techniques still contains some products in bags (b, e), products covered
by hands (f), and empty images (d); Fruits 360 excludes any of that
and contains only well-visible products. The SCO dataset contains
the background of checkout scales, but Fruits 360 has the background
removed.

Table 2 compares the SCO dataset’s statistics against the most
similar public dataset Fruits 360 |7]. The comparison is made after the
elimination of empty images and images with poor product visibility
from the former set. The SCO dataset (the automatically collected set)
has a lot higher variance of image counts among different classes. The
SCO dataset contains 5 times fewer images per class (137 on average)
than Fruits 360 (690 on average) - a fact suggesting that performance
metrics on the SCO dataset might be improved by collecting a larger set.

Table 2: SCO vs. Fruits 360 dataset

SCO Fruits 360
Classes 194 131
Total images ~26,600 ~90,000

(pre-balancing)
Images per class:
Min/Avg/Max | 3 / 137 / 3111 | 396 / 690 / 1312
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3.6 Dataset Cleaning

Manual removal of empty images is not a viable solution due to constant
change in assortment, resulting in the need to periodically refresh the
dataset and retrain models.

It was considered to apply background removal techniques for
automatic image labelling with object visibility labels (big foreground
mask meaning high visibility), but such techniques would have treated
customer body parts as foreground objects. Due to the high variety of
products, image segmentation for automatic labelling was disqualified.

The raw dataset was cleaned by removing images that had poor
product visibility. The visibility predictions were obtained from the
classifier trained on visibility labels as described in section 3.3.

3.7 Image Pre-processing and Augmentation

The bigger part of self-checkout images area usually contains a
background that is irrelevant in recognizing products. In order to focus
neural network training on the foreground features, experiments were
performed removing static background using GMM [27] before training.
Figure 10 depicts a sample with a background (left), a mask obtained
using GMM (middle), and an image with the background removed
(right). In order to eliminate small foreground patches and fill small
foreground mask gaps within products, morphological opening/closing
was applied on background masks. FExperiments of removing static
background by applying GMM [27| and further applying morphological
opening/closing on a mask before training negatively impacted validation
accuracy in early experiments and were excluded from the final pipeline.

|

Original Mask Removed background

Figure 10: Background removal using GMM
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RGB Mean Original Minus RGB mean

Figure 11: Subtracting RGB mean from the images. Since the mean
image contains a darker spot in the scanner area in the middle, the
resulting images tend to be lighter in that area. This distorts the
resulting images unnaturally, making products lighter when placed inside
the scanner area, and darker when placed outside of it

Almost all self-checkout images show a non-uniform illumination
effect. The non-uniform illumination becomes a problem if
not eliminated when training images are collected under different
illumination than inference images. To reduce variance in image
illumination intensity, the following pre-processing techniques (one at
a time, in no particular sequence) were applied on the train, validation
and test sets; then trained and evaluated classification models of each:

e Subtracted RGB mean' of the self-checkout instance; sample
images in Figure 11. The darker scanner area (lighter in resulting
images) tends to distort the resulting images unnaturally. The
technique was omitted from further data preprocessing;

LA self-checkout instance mean image is generated with the same dimensions as
the individual self-checkout images. Here, the pixel values at each (x, y) location
are computed by averaging the corresponding pixels collected from that particular
self-checkout instance within the dataset.
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Original HSV minus V mean  HLS minus L. mean

Figure 12: Subtracting the mean intensity. The original image on the
top shows a high-intensity region on the bottom right, and the image
on the bottom has a highly lit area on the right. By subtracting mean
intensity (Value channel’s mean in HSV or Luminance channel’s mean in
HLS colour spaces), the goal of eliminating highly lit areas is achieved.
A natural look is preserved in HSV-mean(V), whereas unnatural patches
of blue/yellow are observed in HLS-mean(L)

e Subtracted mean! V channel in Hue-Saturation-Value (HSV)
colour space of the self-checkout instance; sample images depicted
in Figure 12 column HSV minus V mean; the resulting images
seem natural and non-uniform illumination issue is reduced. The
technique was used in the final data preparation;

e Subtracted mean! L channel in Hue-Lightness-Saturation (HLS)
colour space of the self-checkout instance; sample images depicted
in Figure 12 column HLS minus L mean; the resulting images
obtained unnatural colour patches. The technique was omitted
from further research;

e Equalized image’s intensity (channel V of HSV colour space)
histogram as shown in Figure 13. Although the method equalizes
intensity across different images, intensity across different regions
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within the image remains uneven;

e Equalized image intensity histograms in smaller image patches
using AHE. The sample in Figure 14 shows the effect of AHE using
different size tiles: the bigger number of tiles (8x8 and more) results
in overamplified contrast;

e Applied CLAHE [107] on HSV V channel. In addition to splitting
an image into smaller regions (tiling), the method puts an upper
limit on the contrast between the neighbouring pixels. Sample
CLAHE-adjusted images are depicted in Figure 15.

Original Cumul. histogram  Equalized intensity
of intensity histogram

100%

50%

100%

50%

Figure 13: HE. Originally different-intensity images (left, top vs.
bottom) gain similar intensity after intensity HE (right). Intensity
differences in regions of images remain seen, such as two light reflections
in the bottom image area at the top

The final dataset pipeline includes cropping the scanner/scales area

and applying CLAHE [107] on the HSV channel V. Training on images
without applying CLAHE showed a negative impact.
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Tile grid
(1,1) 7 (2,2) (4,4)

Figure 14: Adaptive Histogram Equalization. The tile grid size (1x1)
corresponds to HE, whereas using a bigger grid size (smaller patches)
equalizes smaller regions. Except for the flat-white patch in the right
bottom, the intensity across regions is reduced with smaller patches (8x8
and more). The contrast is overamplified, and the image looks unnatural
using smaller patches (8x8 and more)
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Clip limit

(2x2)

Tile grid
(4x4)

(8x8)

Figure 15: CLAHE [107]. Using a big clip limit corresponds to AHE,
whereas a smaller clip limit de-amplifies contrast in overamplified-by-
AHE regions. The method results in more natural-looking images than
AHE, and reduces intensity differences across regions and differently-lit-
images
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Image corner distortion was applied as shown in Figure 16. Ranges
of up to +/-10, +/-20, and +/-30 pixels were used to choose a random
distorted corner location. Eventually, two balanced datasets were made
by concatenating: 1) affine transformed + 20-pixel corner distorted
datasets and 2) affine transformed + 10, 20, and 30-pixel corner distorted
datasets. The concatenated datasets contained ~1 million and ~2 million
images respectively. Individual product classification results are reported
using each dataset.

Random 0-{10,20,30 px}

Original Distorted + /-30px

Figure 16: Corner distortion

The images were augmented in various ways in order to experiment
with the augmentation technique’s impact on accuracy. The following
basic affine transformations were applied: rotation (random up
to 10 degrees), horizontal and vertical shift (random up to 32
pixels), zoom (random up to 10%), and horizontal flip (random 50%
probability). Small enough augmentation parameters were chosen so
that augmented images still mimic real photos taken by the checkout
camera. Experiments of eliminating any one augmentation parameter or
reducing the augmentation range by half led to a decline in validation
accuracy.

Despite balancing the dataset through oversampling and augmenting
the oversampled images, initial experiments revealed a significant
accuracy gap between the training and validation data, indicating
overfitting. To mitigate this issue, additional diverse training data was
required. This was addressed by implementing dynamic augmentation:
altering the underlying training minibatch randomly within specified
ranges in every training iteration. This effectively used a different dataset
in every epoch. The dynamic augmentation parameters were: rotation
(random up to 10 degrees), shifting (random up to 32 pixels), zoom
(random up to 10%), and horizontal flip (random 50% probability). In
order to pick the optimal values, experiments were run with different
dynamic augmentation parameters: they were doubled, tripled, halved,
one was left out, augmentation was left out for validation set. Using
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dynamic augmentation showed increased validation accuracy in early
experments.

3.8 Dataset Structuring for ML Tasks

Table 3 lists the datasets used in the self-checkout pipeline; Figure 17
shows how each was created. Dataset #1 is a raw image set of images

Table 3: Datasets used in the self-checkout pipeline

Image count

No | How obtained Labels Source of
Original | Balanced
#1 | Auto-collected | Product ID - 26.6K -
at SCO
#2 Manually Visibility Visibility 6K 11.5K
labelled (Q1-Q4, classifier

part of #1 Bag, BagR)
#3 Filtered #1 Product ID | Product 18.1K 500K

using classifier,
visibility verifier,
classifier grouper

1) Auto-collection

@SCO event of Visibility
weight having settled filter Dataset #3
Dataset #1 (Raw) (Slzzsed)
Labels: product ID Labels: product ID
H ) Visibility
Manual labelling part of #1 with predictions

visibility labels [Q1-Q4, Bag, BagR]

Training a
Daﬁset #2 isibility >
Irzsy classifier

Labels: visibility

Visibility classifer

Figure 17: Flow for automatically preparing cleaned dataset #3, from
the raw dataset #1 with a sizable portion of images containing invisible
products, involves a proxy dataset #2 with manually set product
visibility labels. A visibility classifier, trained on dataset #2, is used
to filter the entire dataset #1 of poorly-visible-products containing
images. Dataset #3 does not contain the worst visible category Q1, and
experiments were run on whether the inclusion of the BagR visibility
label is needed
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collected at self-checkouts and labelled by customer-chosen product ID.
Dataset #2 is a small subset of dataset #1 obtained by manually
labelling images with product-visibility labels (described in section 3.3).
A classifier trained on dataset #2 was then used to filter out poorly
visible product images from dataset #1. Dataset #3 was used in all
the further tasks of the research: product classification, verification, and
grouping.

Datasets #2 and #3 were stratified and split into train, validation,
and test subsets. First, 20% of the datasets were allocated for testing.
Then, 20% of the remaining data was allocated for validation and 80%
for training (effectively allocating 16% and 64% of the entire data for
validation and training respectively). The train subsets were used to
train classification models (dataset #2 to train the visibility classifier
and dataset #3 to train the product classifier). The validation subsets
were used to tune model hyperparameters and stop model training early.
The test subsets were used to evaluate the trained models.

Both datasets #2 and #3 turned out unbalanced as shown in Table 1
for dataset #2 and Figure 7 for dataset #3. The train and validation
subsets were balanced by oversampling [108] up to the count of images
of the biggest class (as shown in Figure 18). The oversampled images
were augmented. The test subsets were left intact since they contain
a real-world representation of image distribution, therefore real-world
classification metrics can be measured against it.

Minority class
samples multiplied

Original Set Balanced Set

Figure 18: Oversampling

3.9 Conclusions of the Section

In this section, analysis of the most proper data collection strategy was
done in order to create an authentic dataset of products at self-checkout.
Images reviewed were taken from three different locations attached to
the self-checkout device: above a self-checkout screen, below the screen,
and on a side of the screen. The most proper location for camera
mounting turned out to be on the side of a screen, whereas other locations
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contained interfering body parts (when mounted above the screen) or a
non-static store background (below the screen). The timeline of how a
camera image changes after a customer has chosen a product has been
investigated every 0.2 seconds, up to 1.0 seconds following the selection.
The most proper moment for recognition turned out to be immediately
following the selection moment. Although some images taken after a
delay of 0.2—1.0 seconds have interfering body parts removed, often the
salient object (sales item) is also removed. The task at hand being the
recognition of a product, analysis was done for the most proper crop
within a camera image. The resulting crop was chosen to fully contain
the self-checkout scales area, which is where the product is usually placed
at the time of customer selection.

Analysis of the collected authentic dataset showed the following
characteristics. About 32% of the images contain body parts so that
only up to 1/4 of a product is visible, the rest is covered. Approximately
10% of the products are in plastic bags. The bags, although transparent,
sometimes reflect the light in such a way that a product is unrecognizable.
[lumination of images is non-uniform; although similar between images
of the same self-checkout, but differs greatly between self-checkouts. The
technique that reduced differences in illumination, but preserved the
natural look was CLAHE. Other techniques tried (HE, AHE, removing
average intensity in various colour spaces) had a worse impact. Adopting
CLAHE improved classification accuracy in the preliminary experiments.

The collected dataset had the following properties: a total of 26,637
images within 194 products. "Fruits and vegetables" was by far the
biggest higher-level category by image count (86.9%), whereas split
by the number of products within higher-level categories was more
evenly distributed: candies contained 46.3% of the products; fruits and
vegetables contained 37%; dried fruits and nuts, bakery contained less
distinct products. The most frequent products in the dataset were
bananas (12% of all the images), carrots (10%), and lemons (8%),
whereas most categories contained less than 100 images. To balance
the dataset, all except the biggest class images were oversampled and
augmented using perspective and affine transformations. Augmenting
oversampled images improved preliminary classification accuracy.

Augmenting images using both affine and perspective
transformations showed the best preliminary recognition results.
Using three perspectives outperformed a single perspective. Higher
image variability using both affine and perspective transformation
outperformed affine-only transformations and perspective-only
transformations.

To prepare for training a recognizability classifier, a small part of
the automatically collected dataset was labelled with recognizability
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labels. After careful review of images, the labels were assigned by
product visibility percentage (Q1-Q4), plus two labels for products in
plastic bags (Bag - for easily recognizable products to the human eye;
BagR - bags with light reflection that makes products unlikely to be
recognized). This subset with recognizability labels was used to train
a recognizability classifier, which in turn serves for a) filtering the full
dataset off of unrecognizable product images and b) in the production
pipeline to decide if a product can be recognized.

Existing datasets of retail food products that could potentially be
a replacement for an authentic self-checkout products dataset, were
reviewed. The review distinguished Fruits-360 (65,000 images within
95 products) as the closest match, although still too different to serve as
a replacement.
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4 Methods

The operational pipeline for product recognition, as illustrated in
Figure 19, comprises several stages. The fully automated segment
(highlighted with a green background) includes image collection,
labelling based on customer selection of products, filtering out images
with poor product visibility, training, and distributing trained models
to self-checkout devices. This process is regularly run to accommodate
changes in product list and appearance resulting from seasonal
variations. Located at the bottom of the schema, the visibility classifier
is trained using manually provided labels, which cannot be obtained
automatically. Its primary functions are to filter the automatically
collected dataset before training and to assess product visibility before
classification or verification at self-checkout. Unlike other components,
the visibility classifier is less dependent on updates to product lists
or appearances and therefore does not require periodic retraining.
The self-checkout system is responsible for classification, suggesting
the most similar product or group of products to customers, and
verification, alerting store staff when a selected product does not match
its corresponding image, by utilizing machine learning artifacts from
previous stages.

Product selection
e -
- i Classify Product verifier

Similarity groups

Customer : h 4 Periodic, Fully Automated

Choose Collection, Labelling, Filtering, Training

Product in
SCO menu ) )

Visibility

filter Images w/ Images w/

All images visible products .~ 4 Visible products
ML tasks
AN AN N (Artifacts:
Raw dataset Cleaned dataset Product classifier
Lbls: Product ID Lbls: Product ID Product verifier
Similarity groups

Product Visibility Predictions

Manual
labelling
visibility

AN
Lbls: Visibility

Figure 19: Proposed working pipeline in production
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4.1 Image Fitness for Product Recognizability

To determine product recognizability in self-checkout images, the
following questions were sought to be answered: 1) The minimum
viable size of neural network architecture fit for recognition in the self-
checkout images. 2) In what way the labels grouped into Visible/Invisible
categories separate the images with the lowest error rate?

4.1.1 Deriving Minimum Viable Architecture

Image high-level feature extraction is a necessary step in any recognition
task - classification, detection, and localization. A pixel is an image’s
feature of the lowest level. Object recognition in images based on
individual pixel values is nearly impossible due to high dimensionality
and high variance in pixels within images that contain the same objects.
Therefore, extraction of higher-level features than pixels is needed to
perform quality recognition. One of the leading ways to extract features
from images is using convolutional filters, as in the papers [43] and [109].
A convolutional operation is visualized in Figure 20, and detailed in
Eq. 1.

col.m
col. m

row k o |1 ]o e 2 row k

X W Z

Figure 20: Convolution operation. X is the input matrix - either the
input image or activations of previous layers; W is the convolutional
filter of a size 3x3 in this research; Z is the output matrix of the same
shape as X (given the same padding and stride=1 is used)

Calculating convolutional output (when stride=1, filter size is odd)
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S S
Zig = Z Z ($i+k—i21,j+mf% X Whm), (1)

k=1m=1
where
s is a convolutional filter (kernel) height and width,
x;; is an input X element in the ¢-th row, j-th column,

Wk, m is a convolutional filter W element in the k-th row, m-th column.

Convolutional kernel size is the key feature of any neural network
architecture. Generally, large kernels, such as 7x7 or 9x9, capture
more global information and larger patterns in the input, whereas small
kernels, such as 3x3 or b5xb, capture local features in the input data.
Large kernels have more parameters, and thus are more computationally
expensive to train. The kernels of size 1x1 do not capture interrelation
of nearby pixels. Odd-size kernels have a "central" pixel that can be
mapped from a deeper layer activations map into a previous layer; even
size kernels do not have such a "central" pixel. Using even size kernels
was shown to result in heavier distortions in deeper layers due to the
latter property. Therefore, the smallest convolutional kernel size, that
captures inter-relations of nearby pixels and has a "central" pixel is 3x3.
The pioneering convolutional neural networks paper [43] used arbitrary
filter sizes 3x3, 5x5, and 11x11 to classify ImageNet images. However,
the authors of the VGG network [110] later showed on ImageNet that the
smallest kernel size of 3x3 is sufficient, only if a neural network stacks
enough convolutional layers. Due to these facts, kernel size 3x3 was
chosen and other sizes were not experimented with; instead of using big
convolutional filters, additional convolutional layers were stacked until
training accuracy saturated.

Another hyperparameter of a convolutional kernel is stride - a step
size that defines the movement of a kernel on an input layer, in order to
compute a neighbouring pixel’s value in the output layer. A minimum
stride is 1 in either direction, which results in the same size output
as input. Any bigger strides result in smaller feature maps and are
computationally more efficient, but may discard critical fine-grained
spatial information. On the other hand, the reduction of feature maps
without losing the most important information can be achieved with
pooling. Due to these facts, stride 1x1 was used in all the convolutional
layers.

Images are very high dimensional data points (colour image
dimensionality = height x width x 3). Training effective neural networks
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on high dimensional data requires either training data available in
quantities correlated to dimensionality or lowering the dimensionality of
the data. Since obtaining new data is often costly, the latter technique is
commonly employed. Max pooling is a down-sampling operation used in
convolutional neural networks for image data. It is primarily employed
to reduce the spatial dimensions (width and height) of the input volume,
thereby decreasing the computational complexity of the network and
controlling overfitting. Max pooling operates independently on each
channel of the input, and its main purpose is to retain the most important
information while discarding less relevant details. It is worth noting that
there are other pooling methods, such as average pooling, which takes
the average value within each window instead of the maximum. Average
pooling tends to "smooth out" the fine details, making it useful in tasks
like style transfer. Max pooling, on the other hand, retains the most
prominent feature or activation in each local region, making it a perfect
fit for object recognition tasks. In this research, max pooling was used
after each convolutional layer.

Fully connected (FC) layers are a type of artificial neural network
layer where each neuron is connected to every neuron in the preceding
layer. They enable the network to learn complex relationships and
capture intricate patterns in the data. One or several FC layers typically
follow convolutional layers in the paper [43]. The same approach was
used in this research.

A non-linear activation function must generally follow every
convolutional or dense layer in a neural network. Without activation
functions (or with a linear activation function), a neural network, no
matter how deep, would essentially behave like a linear regression model,
and the model’s capacity to learn and represent complex patterns would
be severely limited. A commonly used activation function after both
convolutional and dense layers (except the last output layers) is Rectified
Linear Unit (ReLU) in Eq. 2, as in the papers [110], [111], [46]. The
ReLU activation function is sometimes prone to so-called "dying ReLLU"
- a problem of some neurons stopping to learn due to negative input
values. The problem occurs due to large learning rates, improper weight
initialization, or badly conditioned inputs that contain mostly negative
values. To solve the "dying ReLLU" issue, variants of ReLU have been
introduced that have a small non-zero slope when input is negative: leaky
ReLU, Parametric ReLU (PReLU), and Exponential Linear Unit (ELU).
In this research, ReLU was used after every convolutional and every dense
layer (except the last), because it served the purpose of introducing non-
linearity and the issue of "dying ReLLU" did not occur during training.
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ReLU(z) = max(0, z), (2)
where

z is a convolution or dense layer output.

Activation functions that follow the last layer of a neural network
differ in purpose from activation functions between convolutional or
dense layers: they must "normalize" the input in order to prepare it for
calculating the loss function. The generally accepted activation function
for the N-class classification task is Softmax as in Eq. 3. Both the input
Z and the output o(Z) are vectors of length N (number of classes). The
output vector o(Z) is interpretable as probabilities for each of the N
classes, and its sum equals 1. Softmax was used in all the classification
tasks (visibility classification and product classification), as well as in a
product verification task as explained later.

o(z); = 67% , 3
(2 (zﬁ) Q)

where
z; is an element of the preceeding layer output vector Z that
corresponds with the i-th class,

N is the number of classes.

Training deep neural networks is prone to a vanishing/exploding
gradient problem unless some normalization between a preceding layer’s
output and a succeeding layer’s input is introduced. @A common
normalization technique is called Batch Normalization (BatchNorm)
as in Eq. 4. It norms values across the spatial dimensions and
samples of a minibatch, but not across the channels. In addition, it
has two trainable parameters scale v and shift 5, which help adjust
the output values to different architectures and mitigate dependence
on weight initialization. The Batch Normalization helping to solve
the vanishing/exploding gradient issue was shown in the papers [112],
[113]. A competing normalization technique to BatchNorm is Layer
Normalization (LayerNorm). As opposed to BatchNorm, LayerNorm
normalizes across spatial dimensions and channels. Because LayerNorm
does not normalize across samples, it is useful when the data distribution
varies across instances (such as NLP), whereas BatchNorm suits
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scenarios where the training data has consistent statistics across batches.
BatchNorm was used after most of the convolutional and dense layers.

BN(x) =~ (x_ﬂ(x)> + 8, (4)

o(z)
where
 is input € RIXWXCXM (after convolutional layers),
(z) and o(z) are mean and standard deviation € R,

~ and 3 are learnable parameters of the Batch Norm. layer € R®,
H and W are spatial dimensions height and width,
C' is the number of channels,

M 1is the minibatch size.

Trained neural networks tend to perform better on data that was used
during training than on unseen data, a phenomenon called overfitting.
To reduce the gap in performance between training data and unseen
data, various regularization techniques are used. The already discussed
Batch Normalization often acts as a regularization technique that helps
to prevent overfitting to training data as shown in the papers [112], [113].
Another technique, called L2 normalization, tends to reduce absolute
values of trainable neural network parameters by adding a Euclidean
norm of the weights to the loss function. Yet another technique called
Dropout "cancels" neurons in each training iteration with probability
p. The Dropout technique reduces the relative impact of any individual
neuron, forcing each neuron to be more robust and less dependent on
the presence of specific other neurons. The positive impact of Dropout
was shown in the papers [114], [115]. In this research, dropout was used
after every dense layer (except the last).

Training a neural network entails minimizing its loss function. The
generally accepted loss function for an N-class classification task is called
Cross-Entropy loss as in Eq. 5. Minimizing the Cross-Entropy loss
encourages the model to make more accurate predictions by penalizing
deviations from the true labels. Cross-Entropy was used in both visibility
classification and product classification tasks, as well as in a class
verification task as explained later.
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N
Lop ==Yy xlog(o(2)), (5)
i=1
where

() is softmax vector € R (probabilities of classes) as in Eq. 3,

y are class labels (one-hot vector), € RY,

N is the number of classes.

The experiments were run to investigate different neural network
setups. The classical convolutional neural network architecture [43]
was used by varying numbers of convolutional and fully connected
layers. At first, the focus was on reducing bias while leaving reducing
variance for later: starting with one layer of each type, layers were
added until training accuracy was saturated (validation accuracy not
considered). The last dense layer contained a Softmax activation
function, all others contained ReLu. A convolutional filter size was
3x3; experiments of filter size 5x5, and 7x7 were also performed.
Network input was chosen to be 256x256, which is the nearest power
of 2 smaller than the original image size. Every next convolutional
layer was twice reduced in height and width using max-pooling and
had about 2 times the number of convolutional filters (therefore, carried
about 1/2 of the features of the previous layer). Next, the focus was
on reducing variance and improving validation accuracy. Experiments
were performed using Batch Normalization [112], Dropout [115], and L2
regularizations. Batch Normalization was initially applied after layers
that showed sparse outputs, but then applied after all the other layers
- both convolutional and dense. In addition to Batch Normalization,
experiments were performed by adding dropout after dense (except last)
layers. In addition to Batch Normalization and dropout layers, L2
regularization was applied and tested after various dense layers. The
loss function was binary Cross-Entropy. The binary Cross-Entropy loss
function was optimized using Adam [116] during training. At the end of
each epoch of training, the model was evaluated using the validation set.
Training the models was early-stopped after validation accuracy did not
improve for the last 20 epochs, then parameters were reverted to those
of the best epoch. Trained models were additionally trained by halving
the learning rate. The final model was chosen by the best classification
accuracy obtained on the validation set.
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4.1.2 Visibility Thresholding Strategies

Given the dataset labelled with 6 visibility labels (#2 in Table 3), and a
goal to filter out images having salient objects of subpar recognizability,
the experiments were run to find the best-separating threshold between
visible vs. invisible salient objects in images. Data labels were assigned in
all possible ways into [Visible; Invisible| categories as shown in Figure 21
with the following restrictions:

e Q1 always Invisible;
e Q4 always Visible;

e Intermediate ordinal labels Q2, Q3 must adhere to their ordinal
sequence: Q2 can’t be Visible unless Q3 is, and vice versa;

e Similarly, BagR can’t be Visible unless Bag is, and vice versa.

Data
labels
Model

categories

/

Invisible
Experimental e
assignment of|
— each data
B label with
a8 restrictions™ [~
Visible

|

Figure 21: Visibility labels grouping strategy

In all experiments the same number of samples was used: data was
undersampled when the model category [Visible; Invisible| contained
more the a single label [Q1-Q4, Bag, BagR].

F-score was used as the main metric to evaluate the models. The
f-score is a harmonic mean of precision and recall. F-score measures
classifier quality more appropriately when classes are unbalanced (such
as data in the research [117]| or data in this research) than the most
popular classification metrics: accuracy, precision, recall (sensitivity),
and specificity. On the other hand, the f-score measure is comparable
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to accuracy, etc. when classes are balanced. Variation of f-score -
Fg that gives different weights to precision vs. recall - is useful when
the cost of different error types (false positive vs. false negative) differ
(not in the scope of this research). Cross-Entropy, although relevant to
measuring classifier quality for unbalanced classes, gives higher weights
to high-confidence mispredictions, but in this research, both high and
low-confidence mispredictions are treated the same.

4.2 Product Classification

To classify products in self-checkout images with optimum accuracy,
the following questions were sought to be answered: 1) By applying
the trained classifiers of product recognizability for filtering out images,
to discover their impact on the full product classification pipeline;
determine the optimum recognizability classifier 2) Given that empty
self-checkout images lend themselves to being filtered out not only by
using recognizability classifiers, but other techniques (e.g. Siamese) as
well, to discover how using different techniques for filtering impact the
full classification pipeline; determine the optimum technique for filtering
out empty images 3) Both steps above being optional in the product
classification pipeline, to determine their usefulness by performing an
ablation study 4) To compare well-known neural network architectures
vs. self-made architecture optimized on the self-checkout image set for
product classification performance; determine the optimum architecture.

4.2.1 Fully Automated Self-checkout Pipeline

The experiment pipeline is shown in Figure 22. The stage "Auto labelled
images" is a software agent integrated with self-checkout software,
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Figure 22: Experiment pipeline
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capable of receiving events when a barcodeless product was chosen. The
agent collected the dataset of image files labelled with product ID. Some
of the images turned out empty (a customer had not placed a product
on the scales). "Remove empty images" filtered out empty ones from the
further steps of the pipeline (both during training and inference). The
investigated techniques of classification (Balanced, Siamese, Overfit) are
described in this section. A sizable portion of the remaining non-empty
images contained products that were not visible enough for classification:
interfering customer body parts and semi-transparent plastic bags with
high glare were the primary reasons. Stage "Remove poorly visible
products" in Figure 22 filtered out images unfit for product classification.
The visibility thresholds were investigated using the resulting classifiers
of recognizability subsection 4.1 as described in this section. The "Split"
stage used stratified image assignment into the train, the validation,
and the test sets. "Balance classes" stage oversampled and augmented
under-represented classes of train, validation subsets to make the total
number of samples per class approximately equal. "Model architecture"
was chosen between off-the-shelf networks (Resnet-50, EfficientNet) and
minimum viable architecture from the recognizability subsection 4.1
network tuned on the self-checkout dataset. "Train", "Validate", and
"Test" are the next standard steps in the machine learning pipeline.
The need for two stages that are not standard in the machine learning
pipeline - "Remove" empty" and "Remove poorly visible" - was justified
by ablation studies (later in this section).

4.2.2 Filtering Empty Images

Three different techniques were involved to eliminate empty images
when preparing the dataset for a further individual product classification
task. First, a convolutional 2-class classifier (classes: empty; not
empty) was constructed. The architecture of the model was taken from
recognizability subsection 4.1, except the Softmax layer was set to 2
classes (Empty /Not Empty). Second, the Siamese architecture [28] was
applied to create a "distinction" function between not empty and empty
images. The Siamese architecture is detailed in Figure 23. It consists of
two identical blocks (upper and lower in the diagram) that share weights.
Although the inside of the twin blocks could be any neural network, a
well-known Resnet-50 was chosen as it is relatively fast and accurate
on well-known datasets. The first image of the Siamese network was
always empty. The second image was alternated during training between
semantically the same (empty) and semantically different (not empty).
The difference between the twin blocks, followed by a Sigmoid, was
labelled "1" when the second image was empty and "0" otherwise. Such a
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Figure 23: Siamese architecture for image emptiness

network learned a distinction function that could separate empty images
from not empty ones. A small number of empty images was labelled,
and it was assumed that the rest of the dataset was not empty images.
Once the Siamese network was trained, it was used to separate empty
images from the rest: each image in the dataset was compared to all of
the labelled empty images. Third, the problem was framed as anomaly
detection (not empty images labelled as anomalies) and it was solved by
overfitting a neural network to empty images in the training set (such a
technique resulted in a Sigmoid value of almost 1.0 for empty and lower
than 1.0 for any other images). Each of the three techniques described
above was used to remove empty images that resulted in 3 different
datasets: Balanced, Siamese, and Overfit. Each dataset was used to
train individual product classifiers and individual product classification
results are reported on these 3 datasets in Results section 5.2.4.

4.2.3 Filtering Products of Low Visibility

Table 1 shows that ~32% self-checkout images have less than a quarter of
a product visible, which implies that images must be filtered by product
visibility before classifying in order to be useful. The resulting classifier
of recognizability subsection 4.1 was integrated into the pipeline as a pre-
processing step to filter out images having poor product visibility from
further pipeline steps. Since 4.1 classified the dataset into 6 visibility
categories (4 ordinal categories by product’s visible part and 2 classes
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for products in plastic bags), a hyper-parameter was introduced for which
of the 6 visibility classes had to be included/excluded from individual
product classification. Except for the obvious categories (worst visible
Q1, best visible Q4), other categories (Q2, Q3, products in bags Bag,
BagR) had to be experimentally checked for fitness to classify reliably
into individual product classes. The recognizability study suggested two
boundary options to decide if product visibility is sufficient: a) having
less than a quarter of a product visible; b) having less than a quarter
of a product visible and plastic bags with high glare. This resulted in
2 different datasets, one with all the images but the lowest visibility
category Q1, and the other excluding plastic bags with high glare from
the former set. Individual product classifiers were trained using each
dataset; individual product classification results using these datasets are
reported in the Results section 5.2.4.

4.2.4 Ablation Studies in the Fully Automated Pipeline

Two stages in the pipeline of this study are not standard in machine
learning: filtering out empty images and filtering out images where
product visibility is unsatisfactory. To discover the usefulness of these
stages, ablation studies we performed by removing each of them. The
two stages - filtering out empty images and filtering images with poor
product visibility - could possibly be built using a single classifier. The
latter stage - filtering out poor product visibility - was trained using some
empty images in the lowest visibility category Q1, thus could potentially
separate out empty images. However, empty image properties lend
themselves to techniques simpler than the multi-class classification that
were investigated; using resulting classifiers of product recognizability
subsection 4.1 allowed this research to focus on individual product
classification. Discoveries are presented in the Results section 5.2.1.

4.2.5 Architecture Alternatives

The architecture was investigated by using the final dataset (best
accuracy showing dataset obtained by having eliminated images with
unsatisfactory product visibility and having balanced under-represented
classes using techniques described above). Four groups of architectures
were investigated: ResNet-50 [111], EfficientNet [18], auto-encoder
based, and own "Visibility" architecture resulting from recognizability
subsection 4.1. ResNet-50 was chosen for its proven ability to fine-tune
using pre-trained models on specific tasks with smaller datasets, such as
in the papers [118], [119]. EfficientNet’s recent success on ImageNet,
yet its relatively small size (5.3M parameters) is a viable option on
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low-powered self-checkout machines. Auto-encoder based architectures
benefit from self-supervised training when labelled data is not sufficient,
such as in this research. Using the simplest EfficientNet version B0
took much longer training time (~3 times longer per epoch) and showed
initial results of comparable accuracy to the recognizability study’s best
architecture. As a result, training duration also being a factor in real-
world retail environments, even more complex EfficientNet versions B1-
B7, or other architectures such as VGG [110] (133M parameters) were
not investigated.

Training an auto-encoder and using it to pre-train a classifier is
a strategy known as pretraining or transfer learning. This approach
can be beneficial in scenarios where the amount of labelled data for
the target classification task is limited - the case in this research.
Pretraining an auto-encoder allows the model to learn useful features
and representations that can then be transferred to the classification
task. The trained encoder is used to extract features from the input
data. The encoder’s output in the latent space serves as a compressed
representation of the input. A new classification layer on top of the
extracted features is attached. This layer is responsible for making
predictions based on the encoded features. The entire model (auto-
encoder + classification layer) is trained on labelled data.

e The resulting architecture of recognizability subsection 4.1 was
applied by changing the last Softmax layer size to 194 (the number
of classes used for this research). Unlike in the other architectures
where pre-trained weights were used all the weights were randomly
initialized.  All the other architecture hyper-parameters such
as layer depth, convolutional filter size and count, activation
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Figure 24: Product classification architecture contains the same
backbone as recognizability architecture (Figure 34), but Softmax size is
set to the number of classes
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functions, max-pooling layer size and stride were left unchanged
from the original architecture. The architecture is detailed in
Figure 24.

e EfficientNet B0 with Softmax layer changed to 194 neurons
(number of classes) was trained using pre-trained weights on
ImageNet, but no layer weights were fixed.

e ResNet-50 with pre-trained convolutional layer weights on the
ImageNet dataset. 1-—2 dense layers were added (excl. Softmax)
ranging in size from 128 to 1,024 neurons. A dropout layer
was optionally added after each dense layer. Convolutional layer
weights were left fixed.

e Auto-encoder-based architectures were created by first training
a convolutional auto-encoder (U-Net). Each convolutional layer
was followed by a max-pooling layer of size 2x2, stride 2; each
next convolutional layer had about 2 times more filters (effectively,
information size was cut in half after each convolutional block).
Starting with the original image size of 256x256, experiments were
performed with bottleneck layer sizes of 16x16 (32 filters) 8x8 (64),
and 4x4 (128). Once auto-encoders were trained, the encoder part
with fixed weights was appended with a few dense layers at the
end: 1—2 dense layers of size 128—1,024 neurons plus Softmax
layer was experimented on. A dropout layer was optionally added
after each dense layer.

4.2.6 Classifier Training and Evaluation

All of the experiments were carried out 10 times using all of the pipeline
stages (reverse-arrow in Figure 22). Data was randomly re-sampled into
train, validation, and test sets in every experiment (effectively similar to
10-fold cross-validation).

Models were trained using Adam [116| optimizer, default learning
rate le-3. The training was performed for up to 100 epochs with early
stopping if validation accuracy did not improve for the last 10 epochs.
After training, the model’s weights were restored to those of the best
epoch.

Training took 75-81 minutes per epoch, with early stopping due to
saturated model metrics after no more than 30 epochs. Inference in
a typical self-checkout computer with an Intel Core i3 CPU took 0.75
seconds.

Top-1 classification accuracy was measured on the unbalanced Test
set. The results are reported in section 5.2.
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4.3 Product Verification

To verify product selection in the self-checkout menu with optimum
accuracy, the following questions were sought to be answered: 1) Given
the concept of Centre-Loss layer in the paper [2], evaluate its effectiveness
on the self-checkout image set for verifying product selection 2) Compare
the effectiveness of class prototype-based verification technique using
Centre-Loss against widely-used sample-to-sample techniques Siamese
[28] and Triplet [54]. 3) Explore whether alternative distance metrics,
beyond Euclidean, could enhance similarity measurement between image
embeddings.

4.3.1 Concept of a Class Verification Task

Real-world computer vision tasks include a need to verify claims that
an image contains a claimed type of object. A popular research area of
class verification is face verification (the papers [90], [91], [28], [54], [2],
[57], and [56]), where a class represents a person. In face verification,
the computer vision task is to verify if a person in an image is the same
person he/she claims to be. The negative samples are usually the ID of
another person than in the image. Another popular research area in class
verification is predicting image authenticity, given an image and a class
in that image (the papers [120] and [121]). The negative examples are
usually images generated by conditional generative adversarial networks
(GAN). In food retail self-checkouts, a computer vision task attempts to
check if a product in an image is the same product as a customer’s chosen
one. Negative samples are images of products other than the customer’s
choice.

The class verification task is a binary classification task that takes
two inputs: an image and a class ID (a class is a product in this research
and a person in the paper [2]). An image contains one of the following:
a) an object of the same class as the input b) an object mismatched with
the input class ID or ¢) out-of-distribution input (OOD - any object of
the unknown class or no object at all). The goal of the class verification
task is to separate a) ("Correct") from the rest ("Incorrect") - whether an
object in an image belongs to the claimed class or not. Class verification
does not need to distinguish between b) and c¢) whether an object in an
image is of any other known class, an unknown class, or does not contain
an object at all.

The class verification task differs from other classic computer vision
tasks - classification and detection. Multi-class classification algorithms
predict the distribution of probabilities only among a list of known
classes. An image containing an object of an unknown class passed
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to a classification neural network leads to unpredictable results, whereas
the class verification task requires it to be rejected as "Incorrect" no
matter what label is passed as input. Passing an image containing a
known class’ object to a classifier is likely to yield a higher probability for
the correct class. Still, the probability boundary that separates correct
class from incorrect is unknown. Thus, classification networks cannot be
used for verifying class identities directly. Detection networks usually
consist of two steps: 1) predicting object locations with the highest
objectness probabilities (whether an object of a known class exists) and
2) predicting probability distributions of the patches between the known
classes (classifying). Thus, detection algorithm errors in predicting
objectness are penalized differently from errors classifying known objects.
Nevertheless, class verification tasks are indifferent to the existence of
objects other than the claimed class. Training detection networks require
labels with bounding boxes around the objects, but class verification
tasks are indifferent to object location within images - both during
training and inference. Detection networks usually classify image crops
having the highest objectness scores similarly to classification networks:
they distribute class probabilities among the list of known classes.
Therefore, a similar lack of boundary between correct and incorrect
classes in detection networks makes them directly unusable for verifying
classes.

Despite the lack of proper loss function for verifying classes in image
classification and detection neural networks, their ability to extract
image features has been widely demonstrated in the papers [122], [123],
and [124]. Knowledge transfer is widely used between different tasks.
Therefore, the backbones of neural classification or detection neural
networks are likely useful in class verification if the loss function is
changed.

The class verification task relates to conditional outlier detection task
(as in the papers [125] and [80]). Outlier detection algorithms draw a
boundary between in-distribution and out-of-distribution samples and
judge new samples based on their relation to that boundary. However,
outlier detection tasks do not make an explicit attempt to transform
space in such a way that all samples (of a single class) are placed nearby.

The class verification task has a wide variety of applications. In the
context of face verification, the suggested class comes from a presented
ID, which must be confirmed by class verification. In the context of
self-checkouts, the suggested class is a customer’s chosen product from
a picklist menu, which must be confirmed by class verification. The
proposed computer vision solution aims to reduce theft through class
verification. This task involves two inputs: an image and a claimed
class, which must be among the known classes. The image can contain
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an object of the claimed class, another known class, an unknown class, or
no object at all. The verification task’s goal is to distinguish the claimed
class object from the rest (excluding differentiation between other
known classes, unknown classes, and no objects). Unlike verification,
classification only uses the image as input, producing a probability vector
across known classes. While verification tasks are well-studied in security
with human-face datasets, research using other datasets is limited.
Different research domains use various strategies to select negative
[image; claimed class| pairs. In computer vision safety, the goal is to
differentiate real images from those generated by Generative Adversarial
Networks (GAN), as in the papers [120] and [121]. Negative samples for
this task consist of GAN-generated images. In face verification, classes
represent different individuals, with research often using faces from
the same dataset paired with other individuals’ identities as negative
samples (as in the papers [54], [2], [57], [90], [91], [28], and [56]). In
the self-checkout domain, negative samples should include two types of
images likely to be incorrectly chosen in a self-checkout picklist menu:
1) barcodeless images in the self-checkout dataset and 2) images of
expensive barcode-containing products sold in the same stores. Self-
checkout datasets often contain hundreds of images per class, whereas
face datasets typically have fewer images per identity (Digi-Face 1M
[126] has 11, CelebA [127] has 20, and Wider Face [128] has 9 images-
to-identities ratio), sometimes even less in security applications. This
research explores verification methods using a self-checkout dataset.

4.3.2 Class Verification Approaches

Research in the realm of class verification tasks spans multiple directions.
One approach involves employing sample-to-sample comparison using
neural networks, like Siamese. Another pathway explores the learning of
class prototypes during training. During inference, sample-to-sample
methods assess the image being verified by comparing it to one (or
possibly several) images of the same class from the training dataset.
In contrast, class prototype-based methods evaluate the image being
verified by comparing it to the prototypes that were learned.

Siamese networks get their name from two identical branches that
share weights. A sample Siamese network is depicted in Figure 23.
Siamese network is a comparison technique predicting if two data points
belong to the same class. Siamese network’s input is a pair of images,
whereas a verification task’s input is an image and a proposed class. To
apply a Siamese network in solving a verification task, one may supply
to the network: a) a verification task’s input image and b) an image
from the training set of the verification task’s proposed class. Siamese
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networks predict based on the distance between embeddings of the last
layer of the two input images. The Siamese network loss function is
called a Contrastive loss as in Eq. 6. The function aims to minimize
the distance between two datapoints when they belong to the same class
(Y=0); it aims for the distance to be high (at least margin «) when the
two datapoints belong to different classes (Y=1).

Leontr(X1, X2) =
(1= V) x [[F(X1) = F(X2)[|p+
Y x maz(0,a — [|f(X1) — f(X2)[],), (6)
where
X1 and X2 are input images,
Y is 1 when X1 and X2 belong to the same class; 0 otherwise,
f(...) are the image activations of the last network layer,
||...||p is the p-th Norm (distance),

« is the margin.

The triplet network is a variation of Siamese networks. Unlike classic
Siamese, Triplet contains three identical branches with shared weights
and takes three images as input. Two input images (Anchor and Positive)
belong to the same class, whereas the third (Negative) belongs to a
different class. Accordingly, the Triplet loss function in Eq. 7 takes three
images as input. Similarly to Contrastive loss, it uses distances between
the Anchor image and either Positive or Negative images. Unlike the
Contrastive loss, it does not aim for absolute values in distances, but
aims for the difference between distances to be high (at least o). Whereas
the Contrastive loss either reduces the distance between the same class
images or increases the distance between different class images in a single
optimization step, the Triplet loss does both.

Lipipiet (A, P, N) = max([[f(A) = f(P)|lp = [lF(A) = F(N)l, + «, 0),
(7)
where
A, P, and N are Anchor, Positive, and Negative images,
f(...) are image activations (embeddings) of the last network layer,
||...]|p is the p-th Norm (distance),

« is the margin.
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Sample-to-sample methods yield pairwise distances but lack
aggregation capability. In verification tasks, they require selecting
representative training samples to compare during inference and
aggregating results across multiple samples. To address this, the
paper [88] models intra-class distance distributions and measures class
probability based on distribution parameters. The papers [129] and [130]
use the Earth Mover’s Distance (EMD) to quantify the dissimilarity
between the training set’s intra-class distance distribution and the
distance distribution of the test sample compared to same-class training
samples.

In certain class verification applications, there’s a need to run
inference on hardware with limited storage and processing power, and
without GPUs, like retail self-checkout computers. Previous research
found that on machines with an Intel iCore3 CPU, inference for
a single image takes about 0.75 seconds. However, attempting to
select random subsets of training samples and varying the number of
samples during inference can lead to unpredictable results. Moreover,
when using sample-to-sample methods to compare against multiple
training images during inference, the demands on storage space and
computation time increase proportionally with the number of training
images. Consequently, conducting inference for multiple images on
low-powered self-checkout machines makes sample-to-sample methods
impractical.

Unlike sample-to-sample methods, class prototype-based approaches
compare the image being verified only against the class prototype.
This results in significantly faster computation times (1 x 0.75 seconds
compared to M x 0.75 seconds with sample-to-sample methods, where M
is the number of images). However, there’s a research gap in comparing
the verification accuracy between these two approaches. This study aims
to fill that gap by evaluating their accuracy. Only if the class prototype-
based approach demonstrates comparable or superior accuracy will it
become the preferred choice for low-powered inference machines.

Many researchers typically follow a two-step process when
quantifying image differences: first, higher-level features are extracted,
and then the Euclidean distance is calculated. However, the choice
of distance metric can impact verification results. In the case of
measuring the distance between neural network embeddings (i.e., higher-
level image features), alternatives like Cosine and various Minkowski
distances (including Manhattan, Euclidean, and Chebyshev) are valid
options. In contrast, distance types like Hamming, Jaccard, and Dice
are more suitable for comparing binary data. It is worth noting that
Minkowski distances are scale-variant, while Cosine distance is not. The
p parameter in Minkowski distances allows for flexibility, with special
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cases like Manhattan (p=1), Euclidean (p=2), and Chebyshev (p=-+00).
Despite the prevalence of Euclidean distance in research, there’s a dearth
of studies comparing it to other distance metrics in class verification
tasks. In this research, the aim is to investigate how the choice of distance
metric between embeddings affects verification accuracy.

4.3.3 Product Verification Using Distance from Class Centres

Class prototype-based class verification approaches learn class proxies
(or centres) - usually points in the space of neural networks latent space,
that can be compared against image activations. The class prototype
state-of-the-art approaches were analyzed: Proxy-NCA [3] and Centre-
Loss [2].

Proxy-NCA is an approximation of Neighborhood Component
Analysis as in Eq. 8. The numerator of the loss attempts to increase
the cosine similarity between a data point’s embeddings and its class
centre; the denominator attempts to decrease the similarity between a
data point’s embeddings and all the other class centres. Proxy-NCA
measures cosine distance, which, by definition, loses the scale component.

s @).p")
S ep U@

(8)

LPra;By—NCA (.%') = —log

where
f(X) are image activations (embeddings) of the last network layer,
pT and p~ are class proxies of the same(+) class as X or different(-),
P~ is a subset of all class proxies other than X’s class centre,

s(...) is Cosine similarity.

Centre-Loss, a departure from traditional sample-to-sample
verification methods, focuses on learning virtual class centres (Figure 25).
These class centres represent the mean point of all the images of a given
class, within the same space as image embeddings of a given neural
network layer. The Centre-Loss network’s loss function incorporates a
distance measurement between an image’s embeddings and its respective
class centre. Optimizing this loss function encourages embeddings to
move closer to their corresponding class centres (L¢ in Figure 25a). Class
centres are continually updated to reflect changes in embeddings due to
weight updates, effectively bringing image embeddings closer to their
respective centres, i.e. learning class prototypes.

The referenced methods, including Siamese, Triplet, and Centre-Loss,
commonly employ Euclidean distance to calculate differences between
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Figure 25: Centre-Loss, training and evaluation. The "targets" represent
class centres (one per class). The "X"s represent data points (activations
of a selected neural network layer). Different classes are represented by
different colours. The arrows in (a) represent data point movement upon
optimizing a loss function summand L¢ in Eq. 9 and centre movement -
upon optimizing Ly, in Eq. 12. The dashed circles around class centres
in (b) represent thresholds of verifying data points belonging to a class.
Values in subscript at data points mark their verification predictions and
correnctness, e.g. the left-most red point X (7p rpy is correctly verified
as a member of the red class (TP) and as a non-member of the blue class
(TN)

sample-to-sample embeddings or sample-to-class embeddings. However,
as one of the research goals was to compare various distance types,
experiments were conducted, and the results are presented using not
just Euclidean but also other distance metrics: Manhattan, Minkowski,
and Cosine. Minkowski distance, which encompasses both Euclidean
(p=2) and Manhattan (p=1) distances, offers numerous versions based on
different integer values of p. For practical reasons, this research focused
on p values within the range [1,4], taking into account resource and
time constraints. The Results section illustrates how varying the p value
impacts performance. In contrast, Cosine distance is scale-invariant,
making its values restricted when measuring differences between data
points with unknown scales. Consequently, Cosine distance was included
in the research. However, other distance types like Hamming, Jaccard,
and Dice were excluded due to their inability to quantify distances for
non-binary values.

The Centre-Loss architecture experiments were started by reusing
the classifier’s backbone that is explained in detail in recognizability
subsection 4.1. Presumably, the backbone’s demonstrated performance
on the same dataset for other tasks (recognizability and classification),
implies that the architecture is fit to carry enough information through
the network layers about the classness of sample images. In addition,
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the architecture contains little parameters (3.2mln) compared to leading
architectures on big sets like ImageNet - CoCa [84] (2100mln), ViT-
G/14 [47] (1843mln), EfficientNet [18] (11mln and up). At the end of
the backbone, two layers were added: a Softmax layer and a Centre-
Loss layer, similar to the paper [2]. The Centre-Loss (CL) layer in
Figure 26 takes two inputs: activations € RMXE™ (M - number of
minibatch samples; Cnt - count of neurons in the extra dense layer)
and image labels (M one-hot vectors). It has an internal parameter of
class centres € RVXEnt (N - number of classes). The output of the CL
layer is the difference vector € RM*C™ hetween samples’ corresponding
class centres and samples’ activations of the extra dense layer. After
initial experiments in order to keep satisfactory metrics, an Extra Dense
layer was added to the head of the model backbone: training without the
Extra Dense layer did not saturate the loss function and did not achieve
satisfiable separation in distances between "Correct" and "Incorrect"
classes. The final model architecture is shown in Figure 26. Experiments

. : Softmax
[ | I_’
: Extra " Layer
Classifier ' F
> —>; Dense !
Backbone ' laver |
1 y 1 Center Loss
y 1
' 1 Layer
[ S |

Figure 26: Centre-Loss model architecture. The backbone was reused
from recognizability subsection 4.1 and classification subsection 4.2
shown in Figure 34. Besides the Softmax layer, the Centre-Loss layer
outputs the sample embeddings distances from their respective class
centres

were performed, and results were reported using different sizes of the
Extra Dense layers.

The Centre-Loss approach defines the loss function but does not
define a neural network architecture (such as pre-Centre-Loss layer
selection, neuron count in pre-Centre-Loss layer) and requires tuning
hyperparameters specific to Centre-Loss (such as Centre-Loss weight).
Tuning the architecture and hyperparameters is described in this section
below.

In the reference paper [2], The Centre-Loss architecture has two
outputs: Softmax and Centre-Loss that are used to calculate Log and
Lo in Eq. 9 respectively. The Centre-Loss layer is connected to the
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last layer before Softmax (solid line in Figure 27), experiments were
conducted to assess if better results could be achieved by connecting the
Centre-Loss layer to different shallower layers. Ten experiments were
performed, connecting the Centre-Loss layer to various layers beyond
the Convolutional backbone (dashed lines in Figure 27).

Ly erification = Ler + M1 X Le, 9)
where

Lcg is Cross-Entropy loss as in Eq. 5,

A1 is Centre-Loss weight,

Lc is Centre-Loss (L&o5™e or LM inkowskiy,

Dense 1
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Flatten
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Batch Norm (-8)
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Softmax

...........................................

Center-Loss

Figure 27: Architecture experiments of connecting Centre-Loss to various
layers. Negative numbers in parenthesis signify layer indexes (referred to
in the pre-Centre-Loss layer experiments). Lines connecting the Centre-
Loss layer to its predecessor are marked in one solid line (best result)
and nine alternative dashed lines (experiments performed on). The full
structure of the backbone is shown in Figure 34

Optimizing the Centre-Loss architecture involved selecting the
appropriate pre-Centre-Loss layer size, represented by the Dense 3
block’s FC layer in Figure 27. The experiments began with a small
2-neuron layer, then incrementally doubled its size. This process was
continued until either metrics reached saturation or hardware limitations
were encountered, with the maximum size being 2048 neurons.

In the Centre-Loss part of this research, the overall loss function
(Eq. 9) comprises the weighted sum of two components. The first
component, denoted as Lop, utilizes the well-known Cross-Entropy loss
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of the Softmax function (Eq. 5). Its role is to prevent all class centres
from collapsing into a single point. The second component, Lo (Centre-
Loss), imposes penalties on data samples based on their distances from
class centres. Cross-Entropy loss (Eq. 5) preserves differences between
classes. Without Cross-Entropy loss, the centres of all classes are likely
to regress to one point. Cross-Entropy loss does not minimize differences
between various samples of the same class. The absence of Centre-
Loss leads to a classifier that provides class separability, but not sample
concentration in the embeddings space.

The Centre-Loss component of the loss function, denoted as L¢ in
Eq. 9, aims to minimize the distance between various intra-class samples.
A concept of the class centre is introduced: it is an average vector of all
samples in that class of the extra dense layer’s activations. The sample’s
distance from the respective class centre is calculated. The Centre-Loss
component varies based on the chosen distance type. Minkowski distance
types, including Manhattan (p=1) and Euclidean (p=2), are detailed in
Eq. 10. In contrast, Cosine distance is specified in Eq. 11. Optimizing
the Centre-Loss involves two main steps: 1) moving sample embeddings
closer to their respective class centres, and 2) shifting class centres toward
sample embeddings within a minibatch. The Minkowski-distance-based
Centre-Loss (Eq. 10) generalizes the approach used in the paper [2] to
accommodate any value of the parameter p for Minkowski distance,
whereas the research [2| is limited to p=2 (Euclidean). The Cosine-
distance-based Centre-Loss (Eq. 11) computes negative cosine similarity
within a range of 0—2.

M

Lkt = S s — ey, (10)
i=1

where

M is the number of samples,

x; is the i-th sample’s activations of the extra dense layer,

y; is the i-th sample’s label,

cy, is the centre of the y;-th class,

||...|lp is the p-th Norm (distance).
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where
M is the number of samples,
x; is the i-th sample’s activations of the extra dense layer,
1y; is the i-th sample’s label,

¢y, is the centre of the y;-th class.

4.3.4 Increasing Inter-class Distance

While Centre-Loss aims to minimize distances between samples and their
centres, it doesn’t attempt to increase the distance between centres of
different classes. A possible enhancement was investigated to the Centre-
Loss loss function to push class centres apart during training (Ljppge, in
Figure 25a), denoted in Eq. 12. The third component, referred to as
Linter (Inter-Centre-Loss), applies penalties to class centres according
to their cosine similarity within the range of 0—2, and is outlined in
Eq. 13. The optimization of this particular loss component drives class
centres away from each other.

The Inter-Centre-Loss component necessitates a relative weight
hyperparameter, denoted as As in Eq. 9. To determine its optimal value,
initially the range of A2 values akin to that of A\; (as both pertain to
distance in the same dimensional space) was explored. Notably, improved
metrics were observed with smaller Ao values. Ao was sequentially
reduced by a factor of 3.0 until results showed negligible differences from
the case of Ay being set to 0.

LVem'ficzztion = LCE + )\1 X LC + )\2 X Llnterv (12)
where
L¢g is Cross-Entropy loss as in Eq. 5,

A1 is Centre-Loss weight,

L¢ is Centre-Loss (Lgosine or L]gmkow‘(”ki),

A2 is Inter-Centre-Loss weight,

Lipter is Inter-Centre-Loss.
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Linter = %i M) (13)
) & - ey % llell”

#yz
where
M is the number of samples,
N is the number of classes,
y; is the i-th sample’s label,

cy, and ¢; are the centres of the y;-th and j-th class

4.3.5 Product Verifier Training and Evaluation Details

The dataset of self-checkout products filtered out of invisible products
(#3 in Table 3) was used in the verification study. The Centre-Loss
models require data generators that produce two inputs [image;product
ID| and an output [product ID]. The input product ID is used by the
Centre-Loss layer to calculate distances from the respective class centres.
The output product ID is used to calculate the Cross-Entropy error of
the Softmax.

The Centre-Loss layer does not have any trainable parameters
updatable by gradient descent. Yet, the internal parameter of class
centres was updated in each iteration: only centres of the classes
represented by the samples in a minibatch were updated, whereas
unrepresented class centres were left untouched. Class centres were
updated as shown in Eq. 14.

Centre = Centre + a x (Activations — Centre), (14)
where

Centre is the centre of a sample’s class € R,

Activations are the extra dense layer’s activations € R,

« is the centres’ learning rate (hyperparameter),

cnt is the number of neurons in the extra dense layer (hyperparameter).

Models were trained for up to ten epochs with a patience criteria
of five epochs (i.e. training was stopped and best weights restored
if the five last epochs of training did not improve the validation loss
function value). Training on a relatively big training set of two million
images (about 10,000 per class) usually saturated the training accuracy
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in the first 1—2 epochs. Therefore a maximum of 10 epochs was never
reached. The criteria for the best weights selection and early stopping
was total validation loss, which is a weighted sum of Softmax layer,
the Centre-Loss, and Inter-Centre-Loss. Adam [116] optimizer with a
default learning rate of 0.001 was used. The training duration of 1 epoch
on about two million images varied between 45 and 55 minutes.

The Centre-Loss function relies on a hyperparameter \; in Eq. 9
- relative weight of Centre-Loss component in the loss function. A
low A; value prioritizes the softmax’s Cross-Entropy loss, undermining
the goal of bringing class embeddings closer to their respective centres.
Conversely, a high A; value risks collapsing all class centres into a single
point, rendering class differentiation impossible. In the original Centre-
Loss paper [2], A1 was empirically determined to be 3e-3, with similar
results achieved in the range of le-4 to be-2. In this research, training
was started within this range and systematically expanded by a factor
of 3.0 in both directions until metric saturation was observed.

The training complexity of the suggested Centre-Loss approach is
O(MN) (where M - the overall number of samples, and N - the number
of classes): every sample’s distance is calculated to every class’ centre.
The Siamese training complexity is O(M?/B) (where B - number of
batches), as every pair of samples is compared, but pairs are limited
to the samples within a batch. The Triplet’s complexity is O(M?3/B?),
as every sample/anchor is compared to every positive sample and every
negative sample. Still, triplets are limited to sample combinations within
a batch, and every pass through data places every sample as an anchor
once. The actual training ranged between 48—53 minutes/epoch for
Centre-Loss, 68—83 for Siamese, 125—138 for Triplet networks.

The weights in the neural network backbones were initiated from
the pre-trained classifier on the same dataset. At first, training was
performed with no fixed weights. However, a decline in performance
was observed during the initial epochs, prompting us to consider weight
fixation. To make this choice, it was drawn from common practices in
transfer learning tasks, where researchers often fix weights in shallower
layers while training deeper ones (such as the papers [131] and [132]).

The test set (#3 in Table 3) did not include out-of-distribution
samples due to difficulties in collecting them. It is recognized
that including out-of-distribution samples might be helpful in further
research.

For every test image, the distance was measured from every class
centre. That gave M x N measurements (M - dataset size; N - number
of classes), of which M samples were positive ("Correct" selections) and
M x (N — 1) were negative ("Incorrect” selections). The results were
calculated by giving weight (N —1) to the positive measurements so that
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the "Correct" and the "Incorrect" classes were balanced.

During evaluation, the distance between each data point and every
class centre was computed. A concept of maximum-distance-from-centre
threshold (dashed line in Figure 25b) was established. Data points
were classified as positive (inside the circles) or negative (outside the
circles). Correct predictions involve data points inside the same-class
circle and outside the circle of another class. By incrementally adjusting
the threshold, Receiver Operating Characteristics (ROC) were derived.

Throughout the experiments, the primary performance metric
employed was the Area Under Curve (AUC) of the Receiver Operating
Characteristic (ROC). Furthermore, the verification Equal Error Rate
(EER) is provided, which corresponds to the point on the ROC curve
where the False Positive Rate (FPR) matches the False Negative Rate
(FNR).

4.4 Product Grouping by Similarity

In order to assign products to groups, so that groups become separable
with the optimum accuracy, the following questions were sought to be
answered: 1) Given the non-trivial nature of image class similarity, to
discover in what similarity-way image classes need to be grouped so
that the maximum group separability accuracy is achieved 2) To identify
which technique yields optimum group separability. Classification into
known groups (by similarity) of classes can be done by (a) training group-
classifiers or (b) training individual-product-classifiers and assigning
Top-1 product’s group.

4.4.1 Motivation for Product Grouping by Similarity

When the classification of individual classes is unpractical, one must find
a way to find "class clusters" - groups of classes such that classes within
clusters are more similar than classes in different clusters. Resulting
class clusters become labels for classifying images into these clusters.
The class assignment to clusters must be done in a way to maximize the
accuracy of image classification into these "class clusters".

The goal of this research is to investigate the "class clustering"
mechanism such that metrics of classification into these "class clusters"
are maximized. This research investigates two aspects of classifying into
"class clusters": first, determining class similarity; second, whether it is
beneficial to train "cluster" classifiers.

Determining class similarity drives the order of class assignment into
clusters. As opposed to classic clustering tasks that produce "data
clusters", grouping classes into clusters cannot be achieved by using such
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clustering techniques as K-means or similar. Once classes are grouped
into clusters, the quality of data classification into these "class clusters"
is measured.

The second aspect of this research is to investigate the usefulness of
training cluster classifiers - classifiers that predict class clusters instead
of individual classes. Cluster classifiers are trained on data labelled with
cluster IDs rather than individual class IDs. The performance of cluster
classifiers is compared with the performance of individual class classifiers.

Drawing an upper boundary on the number of classes, merged into a
cluster, depends on the application. For example, a self-checkout picklist
assistant may display 3—10 items for a customer to choose from. This
research refrains from optimizing the number of clusters.

The findings of this research apply to domains where 1) Top-1 image
classification accuracy does not meet minimum requirements and 2)
predicting a few similar classes is useful. One example is a retail self-
checkout picklist assistant for barcodeless products. Another example
is species classification of entire animal or plant kingdoms in random
environments, such as Google Lens.

The following terms are used throughout the section:

e Class cluster - a group of individual classes (1 or more) that
are deemed similar by one of the similarity techniques; a target
category in a cluster classifier; each individual class is assigned to
one and only one class cluster.

e Group of classes - used as a synonym for "class cluster".

e Individual Class - a target category in a classifier, representing a
single product offered by a retailer. Examples: plum tomatoes, big
oranges, persimmons, bananas. Used interchangeably with terms
"Class", and "Product".

e Metrics hypothetically merged - given an individual class classifier
and similar class clusters, evaluate the accuracy and f-score as if
classification errors between classes in the same cluster were correct
predictions.

e Metrics actually merged - given class clusters, and dataset labelled
with individual class ID, change labels to cluster ID and train a
classifier. Evaluate the accuracy and f-score of the classifier-into-
clusters.

e Taxonomic hierarchy - a picklist menu tree in retailers’ self-
checkout menu for the selection of barcodeless products. A
menu tree usually represents a biological hierarchy. E.g. the
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Figure 28: Comparing Actual vs. Hypothetical metrics of merged similar
classes

individual product category "plum tomatoes" is a leaf of the
category "all tomatoes", which is a branch of a higher-level
category "Vegetables".

e Taxonomic Proximity - number of steps required to traverse
between 2 products in the Taxonomic hierarchy graph.

The step Classifier - Individual Products in Figure 28 is based
on the classifier of individual products resulting from classification
subsection 4.2.

The inter-class similarity is determined using three different methods
(details below in this chapter): FError-Contribution, Embeddings-
Distance, and SOM-Purity. Based on class similarity using each of the 3
methods, an agglomerative clustering scheme is produced - i.e. the order
of how classes are merged into clusters by similarity (Figure 28, Product
Merge Order).

Using datasets labelled with cluster IDs, classifiers are trained
(Figure 28, Classifiers - Merged Products) that predict the cluster of
classes that the image belongs to. The architecture of all the classifiers
is identical except for the last Softmax layer (which differs in the number
of neurons only). The cluster classifier architecture is also identical to
the individual product classifier.

Metrics - hypothetically merged. The individual product classifier’s
Top-1 predictions are the basis for the individual classifier’s confusion
matrix (Figure 29, Left). Given class clusters (In Figure 29, classes
I and J belong to cluster X), confusion matrix of classification into
clusters (Figure 29, Right), row/column X is produced by summing
rows/columns that represent classes [I, J|. Essentially, this treats the
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Figure 29: Calculating confusion matrix based on hypothetical class
merge

Top-1 predictions of either class [I, J] of the individual classifier as correct
if the true class is either of classes [I, J|, and incorrect otherwise. The
confusion matrix of classification into clusters (Figure 29, Right) is the
basis for other metrics of hypothetically merged classes: accuracy, f-
score.

Metrics - actually merged. Given class clusters, images of classes
that belong to the same cluster, are merged into the same folder before
training (essentially labelling the dataset with cluster IDs instead of
individual class IDs). The cluster classifier is trained on the dataset
labelled with cluster ID. Confusion matrix of a cluster classifier in the
basis for other metrics of actually merged classes: accuracy, f-score.

4.4.2 Approaches for Deciding Product Similarity

Class merge order is determined by class similarity: more similar classes
are merged earlier. However, similarity between classes is subjective:
measuring class similarity using different techniques yields different
results. Similarity between classes was measured in three distinct ways,
later used to determine class merge order:

e Biggest error contributors;
¢ Embeddings distance;
e SOM purity improvement.

Biggest error contributors. A higher number of errors between two
classes in a classifier’s confusion matrix implies these classes are more
similar. The validation set’s confusion matrix was used to determine
inter-class similarity. Figure 30 shows representative samples of the Top-
3 most similar class pairs using the "biggest error contributors" method.
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Persimmons

Figure 30: Representative samples of the biggest error-contributing class
pairs in a confusion matrix

These class pairs indeed seem similar to the human eye: different-sized
tangerines, oranges and persimmons, and different sorts of tomatoes.
Embeddings distance. Measuring image similarity by direct pixel
comparison is impractical due to the high dimensionality of image
data. In addition, even slight variation in an object’s position yields
a high difference between pixels in two images. Instead of direct pixel
comparison, any higher-level, lower-dimensional features are preferable
for comparing images. For this research, the higher-level features
were Individual Product Classifier’s activations of the pre-last layer
(embeddings) as shown in Fig 31. The high accuracy of the classifier
implies that enough information about classes is carried in all the
layers of the classifier network. The pre-last dense layer was chosen
for comparing image similarity for several reasons. First, deeper
layers in sequential networks carry higher-level feature information.
Second, deeper dense layers usually have lower dimensionality, which is
preferred for performance reasons. Third, the last layer (Softmax) carries
individual class probabilities, which implies that using the last layer
embeddings of an ideal classifier would yield equal similarity between
any pair of classes that contradicts the goal of measuring inter-class
similarity. Single image embeddings vector took shape: embeddings €
R!28 Figure 31 depicts how image embeddings were extracted from
the classifier for inter-class similarity measurement. Cosine distance
was used to measure the similarity between image embeddings. Using
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Figure 31: Embeddings for inter-class distance measurement are pre-
softmax layer activations of the product classifier (Figure 24)

other distance types (Euclidean, Manhattan) showed very similar results,
therefore research was limited to a single distance type (cosine) in all
experiments.

Finally, mean distances between all class pairs were calculated by
averaging the distance between all images in class A and all images in
class B (where A#B), as shown in Eq. 15. This resulted in a half-matrix
of mean distances among all classes. Figure 32 shows the Top-3 class
pairs that have the lowest inter-class distance when the "Embeddings-
distance" technique is used for class similarity.

M; M;
1
Mat_Emb_D’Lstl,] = m E E diStCOSine(Ek,El),
¢ T k=11=1

(15)
where
N is the number of classes in the dataset,
M; is the number of samples in the class i,
Mat_Emb_ Dist; j is the mean distance between all the samples

in class 7 and class j.

SOM purity improvement. SOM [1] is a type of artificial neural
network used for unsupervised learning and dimensionality reduction.
SOMs are known for preserving the topological structure of the input
space in the reduced-dimensional map. Neurons or nodes in the SOM
are arranged in a grid, often in a 2D configuration. During training,
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Figure 32: Representative samples of the smallest mean distance between
image embeddings having class pairs

input vectors are presented to the SOM, and neurons compete to be the
"winning" neuron that best represents the input. SOM spans various
applications, such as visualization (in the research [133]) and clustering
(in the research [134]). As opposed to other clustering techniques, SOM
preserves an inter-cluster grid, where nearby cluster centroids imply
more similar data points attached to them - an important factor in
the investigation of class similarity. Ideal SOM trained on an image
set of various classes should result in a) images of the same classes
falling under the same cluster; b) images of different classes falling under
different clusters, provided there are at least as many clusters as there
are classes. Although training SOM on real data rarely results in such
clusters, images of similar classes tend to fall under the same clusters
more frequently than images of dissimilar classes. Therefore, merging
two similar classes should result in bigger cluster purity (Eq. 16 [135])
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improvement than merging two classes that are not similar.

k
1
Purity = Y Z maz;|c; Nt (16)
i=1

where
M is the number of samples in the dataset,
k is the number of SOM clusters,
¢; is the i-th cluster,

tj is a classification which has the max count for cluster ¢;.

Training SOM on an image set requires a few hyper-parameters.
First, input data should be decided on: like for most clustering
techniques, direct clustering of image pixels of high dimensionality
(d = 256 x 256 ~ 64K) is irrelevant performance-wise and data-quantity-
wise. Instead of image pixel clustering, the classifier embeddings from
Figure 31 were chosen as input to train SOM. Second, SOM grid size
should be selected. For images of each class to fall under a different
cluster, at least as many clusters as there are classes must exist. The
grid size was set to 15 x 15, making ~225 clusters (a little less if hexagon
grid cells are used), which exceeded the number of classes (194). Top-3
pairs’ representative samples using the SOM-Purity similarity measure
are shown in Figure 33.

All three similarity techniques - biggest error contributors
(Figure 30), smallest mean distance between embeddings (Figure 32),
most SOM purity improvement (Figure 33) - suggested that the most
similar pairs appear similar to the human eye, although all three
techniques suggested different class pairs in the top of the similarity
list.

4.4.3 Training Product Group Classifiers

Drawing the upper bound on the number of classes within a cluster
usually depends on applications and is not part of this research. However,
investigating the performance of classifiers trained on "class clusters"
requires choosing the number of clusters. Although it is possible to train
cluster classifiers on each number of merged classes in the range [2; N — 1]
(N - number of classes), such a task requires an enormous amount of
resources. Since the goal was to investigate in what order merged classes
yield the best classification results, it makes sense to choose the number
of clusters to be at the intersection points of important metrics using
hypothetical classification results. The metrics measured were accuracy
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Figure 33: Representative samples of the class-pairs that most improve
SOM purity if merged

and f-score. It also makes sense to choose local maxima points of f-score
- meaning that a smaller number of classes from local maxima yields a
lower f-score, making the classifier of the next-smaller number of classes
inferior in terms of both f-score and number of classes.

The item Individual Products Dataset in Figure 28 is the self-checkout
image dataset labelled with product ID and cleaned off of empty frames
and invisible products (#3 in Table 3).

All the models were trained for 100 epochs unless validation accuracy
did not improve for the last 10 epochs. Adam optimizer [116] was used
with learning rate le-3.

Metrics are compared for classification-into-clusters of:

e A) individual products classifier (Figure 28, Metrics - hypothetically
merged);

e B) cluster classifiers (Figure 28, Metrics - actually merged).

All the class grouping experiments were followed by training cluster
classifiers. Both accuracy and f-score were measured (accuracy represents
the real-world class disbalance in the self-checkout domain).

4.5 Conclusions of the Section

The image fitness for the recognizability section outlines the creation of
a minimum viable neural network architecture for classifying product
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recognizability on a self-checkout dataset. The architecture includes
convolutional layers with 3x3 kernels, Batch Normalization, ReLU
activation, and max-pooling. = The number of convolutional and
dense layers is determined through iterative training until performance
saturates. Regularization techniques like dropout are employed to reduce
validation error. A thresholding strategy is proposed for categorizing
product recognizability labels, with special consideration for transparent
plastic bags. The resulting classifier is versatile, serving purposes in
recognizability experiments, dataset filtering, and as a backbone for other
neural network tasks.

The product classification section outlines a fully automated pipeline
for training a product classifier in retail environments, starting from
data collection and labelling based on customer-chosen product IDs
without manual review. The pipeline includes phases for rejecting images
where product visibility is insufficient for recognition, such as removing
empty or poorly visible products. To implement the removal of empty
images, three strategies were proposed: an emptiness classifier trained
on balanced data, an anomaly detector trained on empty data with non-
empty treated as anomalies, and a Siamese network comparing target
images to empty self-checkout scales area images. For removing poorly
visible products, a recognizability classifier from a previous section
was suggested, applying thresholds to separate visible from invisible
labelled images. An ablation study was proposed to demonstrate the
necessity of these rejection phases. Four different backbones for product
classifiers were proposed: initializing with pre-trained weights from a
recognizability classifier, using EfficientNet-B0, ResNet-50, and training
an auto-encoder on the self-checkout dataset and using its encoder part
with pre-trained weights for classification. The resulting trained product
classifier was utilized for classification experiments on authentic self-
checkout and Fruits-360 datasets, and to initialize weights for neural
networks in verification and grouping tasks.

The product verification section delves into comparing two main
approaches for tackling a class verification task. The first approach
involves training a network to compare multiple samples during inference,
utilizing contrastive or triplet loss functions. The second approach
entails learning a class prototype during training, which is then compared
against during inference. This method utilizes Centre-Loss or Proxy-
NCA loss functions, aiming to minimize the distance between batch
image activations and class centres while moving these centres closer
to the data points of their respective classes. Proxy-NCA loss also
works to maximize distances from other class centres. To prevent
class centres from collapsing into a single point, networks employing
Centre-Loss require additional components in the loss function. This
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separation is achieved through Cross-Entropy loss or Inter-Centre-Loss
summands. Different alternatives for measuring distances between
samples or sample-to-centre are presented, ensuring a fair comparison
by utilizing the same neural network backbone across all approaches.
The product grouping by similarity section proposes a method to
classify products into similar product groups rather than individual
products, aiming to maximize accuracy. Three approaches to discovering
product similarity pairs are presented. The first approach is based on
the number of errors in the confusion matrix between two products.
The second approach relies on the average embeddings distance of a
latent neural network layer. The third approach involves training a
SOM network and offering pairs that increase SOM node purity the
most if classes are merged. Both the second and third approaches utilize
a trained product classifier’s latent layer embeddings. Once the order of
similar pairs is determined, the section suggests training classifiers into
product groups. Experiments are outlined to compare the accuracy of
classifiers-into-groups against the accuracy of individual classifiers.

4.6 Hardware and Software Frameworks

This section reports relevant hardware parameters and software
frameworks used for training in all the experiments. As the hardware
granted was different by experiment, it is reported accordingly.

Product recognizability experiments were carried out using Keras
2.2.4-tf and Tensorflow 1.15.0. All the experiments were performed on a
PC with a single GPU Nvidia GeForce GTX 1070.

For product classification experiments Keras 2.4.0-tf, Tensorflow
2.4.1, CUDA 11.2 were used. Training experiments were performed on a
PC with two Nvidia GeForce GTX 1080 GPUs, and 64GB RAM.

Product verification neural network training was executed on a GPU
Nvidia Tesla V100-SXM2-32GB. The training duration of 1 epoch on
about two million images varied between 45 and 55 minutes.

Nvidia GeForce GTX 1080 GPU and 64GB RAM were used for all
the experiments of product grouping by similarity. The deep learning
frameworks were Keras 2.4.1-tf, CUDA 11.2.

4.7 Code repositories

Code is available at:

e Recognizability study: https://github.com/bernardas78/Visib
le;

e Classification study: https://github.com/bernardas78/IsKno
wn_Code;
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e Verification study: https://github.com/bernardas78/Product
Verify;

e Grouping study: https://github.com/bernardas78/IsKnown_C
ode.
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5 Results

5.1 Results of Determining Product Recognizability

The final model resulted in a deep neural network architecture shown in
Flgure 34.
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Figure 34: Final model architecture for product recognizability

Experiments with less convolutional and dense layers showed
significant bias (training error); more layers of either kind did not further
decrease bias. Larger convolutional filters (5x5, 7x7) were experimented
with and a decline in validation accuracy of -3.0% was observed. Finally,
convolutional filters were all chosen to be of size 3x3. Upon adding
batch normalization after various layers, generally increased validation
accuracy of -0.6% - +2.2% was observed. The final model includes
batch normalization layers after each convolutional and dense layer.
Experiments of adding dropout regularization after dense layers (except
the last) showed significant improvement in validation accuracy of +2.2%
- +2.5%. The final model contains a dropout layer after each dense layer

N

INWISIBLE

VISIBLE

Figure 35: Product visibility directed graph. Red lines show potential
thresholds separating images fit for product recognition from the rest.
Product visibility increases in the direction of arrows
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Table 4: Highest f-score models for each grouping

Labels in category
o > =)
%) S | =
8| & | 8| W
Visible Invisible S = i3 g
g 3| &M
< A
Q2, Q3, Q4, Bag, BagR Q1 0.906|0.874(0.931|0.883
Q2, Q3, Q4, Bag Q1, BagR 0.895]0.86 |0.897]0.892
Q2, Q3, Q4 Q1, Bag, BagR 0.85410.826|0.839]0.869
Q3, Q4, Bag, BagR Q1, Q2 0.79310.78 |0.707]0.903
Q3, Q4, Bag Q1, Q2, BagR 0.78110.794|0.732|0.837
Q3, Q4 Q1, Q2, Bag, BagR [0.7230.752(0.606|0.895
Q4, Bag, BagR Q1, Q2, Q3 0.66710.762|0.581]0.784
Q4, Bag Q1, Q2, Q3, BagR  |0.661 |0.782(0.581|0.766
Q4 Q1, Q2, Q3, Bag, BagR|0.565|0.757|0.437| 0.8

(except the last). In addition to dropout, trying L2 regularization did
not help, and L2 was excluded from the final model.

The quality of models was evaluated in terms of how well they
separate images into [Visible; Invisible]. The product recognizability
classifier outputs a vector of six recognizability categories (visibility
ordinal categories Q1-Q4 and two categories for products in bags),
but which recognizability categories are fit for product recognition,
remains unknown. The potential thresholds separating six categories into
Visible/Invisible are shown in Figure 35. Table 4 presents the f-score for
the best threshold, as well as all the other thresholds. Next to the f-score,
less relevant metrics - accuracy, precision, recall, and Cross-Entropy are
presented.

Figure 36 presents the confusion matrix of the best f-score achieving
model (Q1 vs. the rest). Although false negatives (8.1%) exceed false
positives (4.5%), unbalanced (real world) test set classes (32% Invisible)
make predicting Invisible less likely.

263% 45%

ACTUAL
Invisible

8.1% NI

Visible

Invisible Visible
PREDICTED

Figure 36: Best model’s (Q1 vs. the rest) confusion matrix
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5.2 Results of Product Classification

The main result of the research in Table 5 shows test accuracy on the self-
checkout dataset using the best-performing pipeline as well as alternative
neural network architectures and alternative pipelines having certain
phases removed.

Table 5: Accuracy of the best pipeline compared against alternative
architectures and ablated phase pipeline

Alternative architecture | Ablation study

Q o]
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Mean 80.5% | 80.2% | 72.9% 58.1% 79.1% 78.8%
St.dev. 1.2% 2.4% 1.9% 2.5% 0.8% 2.0%

Results on other similar datasets are summarized later in this section,
which is divided into the following parts:

e Ablation Studies. This part discusses the results of the pipeline
having one of the phases removed;

e Architecture Alternatives shows the results using alternative
state-of-the-art architectures;

e Other Datasets compares results of the proposed method on the
most similar public dataset;

e Pre-processing and Training details the results of experiments
preparing the dataset for classification and training.

5.2.1 Ablation Studies

Ablation studies on the stages of the pipeline "Remove empty images"
and "Remove poorly visible images" were performed. One of the
mentioned stages was removed in each study, thus leaving either empty
or images having unsatisfactory product visibility in the dataset. Each
ablation study consisted of 10 experiments. The results are summarized
in Figure 37. The average test accuracy of 80.5% using all the pipeline
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Figure 37: Ablation study showed the usefulness of the two stages in the
pipeline that remove empty images and images having unsatisfactory
product visibility

phases dropped down to 79.1% with the "Remove empty images"
phase eliminated, and down to 78.8% with the "Remove poorly visible
products" phase eliminated. Ablation studies have shown that both
phases are necessary for the pipeline.

5.2.2 Architecture Alternatives

Individual product classifier results showed dependence on model
architecture by a high margin. The results of 10 experiments of each
architecture on the final dataset are summarized in Figure 38. All
auto-encoder-based models performed below average. The self-made
architecture in recognizing product visibility (Figure 34) consistently
outperformed not only auto-encoder-based, but also ResNet-50-based
models by a margin, and showed very little variance. EfficientNet B0
showed very similar performance as the self-made architecture but took

Test accuracy by model architecture
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Figure 38: Model architecture’s impact on the accuracy of individual
product classifier
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~3 times longer to train (230 min vs. 70 min per epoch). The self-made
architecture yielded 80.5%+ /-1.2% accuracy over 10 experiments. The
full confusion matrix is available. !

5.2.3 Other Datasets

Classification results on the most similar public dataset the Fruits 360 [7]
are compared against other authors in Table 6. The proposed pipeline by
this research showed better or the same test accuracy as other authors.
This suggests the generalization of the method of this research on other
comparable datasets.

Table 6: Comparing results on Fruits 360 dataset

Method Test accuracy, %
[17] 95.7
[16] 98.7
[15] 99.6
Proposed method 99.6

The classification results using the method of this research on
authentic self-checkout vs. Fruits 360 datasets are compared in Table 7.
The notable difference in test accuracy between the datasets suggests the
future direction of work is further improving the authentic self-checkout
dataset.

Table 7: Accuracy: authentic self-checkout vs. Fruits 360 dataset. *10
experiments were performed on the authentic self-checkout dataset

Dataset name

Test accuracy, %

Authentic self-checkout

80.0 - 83.4*

Fruits 360

99.6

5.2.4 Filtering, Pre-processing and Training

This paragraph reports the results of the filtering empty images task.
Experiments on the three Emptiness classifiers described in the Methods
section showed that Balanced classifier (98.8% accuracy separating
empty from the rest) outperformed Siamese and Overfit by a high
margin. Results in Figure 39 show individual product classifier accuracy
on datasets prepared by filtering out empty images using 3 emptiness
classifiers described above (Balanced, Siamese, Overfit). The Balanced

"https://github.com/bernardas78/IsKnown_Code/blob/main/Dataset_descr/
conf_mat_div10_80dpi.png
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Figure 39: Empty images elimination technique’s impact on individual
product classification accuracy

technique produced the best dataset, whereas Siamese showed only a
slightly better result than Overfit. A total of 60 experiments (20 per
technique) were performed. The final pipeline used the Balanced dataset.

The results of the task of selecting images with visible products in
Figure 40 show the effect on the accuracy of removing images containing
plastic bags with high glare. Both datasets have Q1 (having <1/4
product area visible) images removed. A total of 10 experiments per
dataset were performed. Removing bags with high glare only marginally
improved accuracy on the test set from a mean of 70.0% to a mean of
70.2%.

Test accuracy by visibility
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0.68
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Q1: <1/4 product area visibility
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Figure 40: Effect on accuracy by eliminating various groups of images
with poor product visibility

The impact of augmentation options on product classification
accuracy is reported in this paragraph. All datasets contained balanced
by oversampling classes using a) Basic affine transformations and b)
Images with corners distorted in the range of 4 /-20px. Figure 41 shows
the improvement in accuracy by additionally distorting image corners in
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Test accuracy by augmentation parameters
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Figure 41: Additional augmentation impact on accuracy. Experiments
were performed using only the Balanced emptiness classifier

the ranges of + /-10px, and 30px.

Experiments using only basic affine transformations (no corner
distortion) showed worse accuracy by 1.3—2.8%. Experiments using
only corner distortion (no basic affine transformations) showed worse
accuracy by 1.3—3.9%. A total of 20 experiments using (+/-20px) and
10 experiments using (+/-10px, 20px, 30px) datasets were performed:
an average improvement of 1.1% in test accuracy was observed by
additionally distorting corners. The best-performing dataset was chosen
for the final pipeline: concatenated affine transformations + corner
distortions in ranges (+/-10px, 20px, 30px).

Figure 42 shows learning curves for training models on the authentic
self-checkout and Fruits 360 datasets. Both loss and accuracy saturated
in the first 2—3 epochs on both datasets. The model trained on Fruits
360 generalized well on the validation set (over 99% accuracy), and
the model trained on the authentic self-checkout dataset reached ~50%
validation accuracy. The notable difference in the authentic self-checkout
dataset between the validation set and the test set is that the validation
set is balanced and the test set preserves the real-world class distribution.
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5.3 Results of Verifying Product Selection

The primary outcome of the selected product verification study revolves
around the performance evaluation of two distinct class verification
approaches: sample-to-sample and class prototype-based methods. To
conduct this assessment, three different neural network models were
employed in the context of barcodeless product verification using a self-
checkout dataset: Centre-Loss, Proxy-NCA (both representing the class
prototype-based approach), Siamese, and Triplet (both representing the
sample-to-sample methods). Figure 43 and Table 8 showcase the
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Figure 43: Verification ROC by type of neural network

Receiver Operating Characteristics (ROC) curve and provide detailed
information regarding the verification Equal Error Rate (EER) and the
ROC Area Under Curve (AUC) for each neural network type. The
reported results utilize the optimal hyperparameter values for each
network type, including distance type (for all network types), the number
of trainable layers (Siamese and Triplet), pre-Centre-Loss layer index,
neuron count in the pre-Centre-Loss layer, A1, and Ay values (all four
for Centre-Loss). Remarkably, the differences in performance among
all the network types are marginal. This suggests that sample-to-
sample comparing networks (Siamese and Triplet) do not exhibit superior
performance compared to a class prototype-based network (Centre-Loss).

Table 8: Verification ROC AUC and EER by type of neural network

Neural Network ROC AUC EER

Proxy-NCA 0.985 0.054
Siamese 0.981 0.063
Triplet 0.980 0.060
Centre-Loss 0.979 0.073
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The study investigated the impact of various distance types on
accuracy metrics, which measure the dissimilarity between samples
(Siamese, Triplet) or between a sample and class centre (Centre-Loss).
Experiments encompassed Manhattan, Euclidean, Minkowski (p=3, 4),
and Cosine distance types. Tables 9 and 10 summarize ROC AUC and
equal error rate (EER) by distance type, respectively. Detailed ROC
curves for each distance type are in Figure 44a (Proxy-NCA), Figure 44b
(Centre-Loss), Figure 44c¢ (Siamese), and Figure 44d (Triplet). For
Siamese and Triplet networks, all distance types exhibited similar
performance, except for a slight degradation observed with the Cosine
distance type in the Triplet network. In Centre-Loss, most distance types
(Cosine, Manhattan, Euclidean, and Minkowski) performed similarly,
although degradation was noted for higher Minkowski p values (p=3, 4).
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Figure 44: Verification ROC by distance-between-embeddings type
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Table 9: Verification ROC AUC by distance-between-embeddings type

Network Type

Distance Type Proxy-NCA Centre-Loss Siam. Triplet

Manhattan 0.985 0.962 0.981  0.971
Euclidean 0.984 0.979 0.930  0.980
Minkowski (p=3) 0.984 0.948 0.981  0.980
Minkowski (p—4) 0.983 0.839 0.980  0.979
Cosine 0.942 0.961 0.981 0913

Table 10: Verification Equal Error Rate by distance-between-embeddings
type

Network Type

Distance Type Proxy-NCA Centre-Loss Siam. Triplet

Manhattan 0.054 0.099 0.063 0.078
Euclidean 0.047 0.073 0.065 0.060
Minkowski (p=3) 0.050 0.121 0.063 0.061
Minkowski (p=4) 0.051 0.241 0.064 0.064
Cosine 0.104 0.095 0.062 0.116
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Training all layers in Siamese and Triplet architectures led to
declining metrics after the first epoch. To address this, experiments were
conducted by fixing the weights of the last one and the last two Dense
blocks (see Figure 27) that were initialized from the original classifier. As
depicted in Figures 45a (Siamese) and 45b (Triplet), the best ROC AUC
was achieved when the last two Dense blocks were fixed in both Siamese
and Triplet networks. Conversely, performance deteriorated when no
weights were fixed or when only the last Dense block was fixed. Table 11
summarizes the verification EER and ROC AUC by the number of fixed
blocks. In contrast, training all layers in the Centre-Loss architecture
did not exhibit declining metrics; thus, all layers were trainable.

Siamese verification ROC AUC by trainable layers Triplet verification ROC AUC by trainable layers
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Figure 45: Verification ROC by number of trainable layers

Table 11: Verification ROC AUC and EER by number of trainable layers

ROC AUC EER
Trainable Siamese Triplet Siamese Triplet
Layers
Last 2 Dense blocks 0.981 0.979 0.063 0.065
Last 1 Dense block 0.952 0.972 0.116 0.079
All 0.903 0.946 0.175 0.115
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To optimize the Centre-Loss architecture, a series of experiments
was conducted. Initially, Centre-Loss architectures with the Centre-Loss
layer attached to various layers of the original classifier were compared.
Figure 46 and Table 12 provide a summary of ROC AUC and EER for
ten different architectures, with the Centre-Loss layer attached from the
last (-1st) to the 10th from the end (-10th) layer in the original classifier.
The results highlight that the pre-last (-1st) layer is the optimal choice
for Centre-Loss measurement.
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Figure 46: Centre-Loss Verification ROC by pre-Centre-Loss Layer

Table 12: Centre-Loss Verification ROC AUC and EER by pre-Centre-
Loss Layer

Pre-Centre-Loss Layer ROC AUC EER

-1 0.969 0.090
-2 0.545 0.465
-3 0.573 0.449
-4 0.596 0.431
- 0.502 0.499
-6 0.535 0.470
-7 0.648 0.393
-8 0.667 0.380
-9 0.545 0.467
-10 0.507 0.495

108



Secondly, the optimal number of neurons in the pre-Centre-Loss
layer was empirically determined. Figure 47 illustrates the growth and
saturation of verification ROC AUC with respect to the neuron count
in the pre-Centre-Loss layer. The detailed class verification Equal Error
Rates are shown in Table 13 and Receiver Operating Characteristic’s
Area Under Curve (ROC AUC) is shown in Table 14. ROC AUC
demonstrates a positive correlation with neuron count for all distance
types until it reaches saturation. The saturation point for ROC AUC
occurs with a smaller number of neurons when the Minkowski coefficient
p is low: Manhattan (p=1) saturates at 256 neurons, Euclidean (p=2)
at 512-768 neurons, while higher p values (p=3 and 4) do not saturate
even at 2048 neurons.

Centre-Loss verification ROC AUC by neuron count
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Figure 47: Centre-Loss Verification ROC AUC by Neuron Count in the
Centre-Loss layer
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Table 13: Accuracy at Equal Error Rate for various neuron counts in the
Extra Dense layer

Equal Error Rate

Neuron | Manhattan | Euclidean | Minkowski | Minkowski
Count (p=3) (p=4)
2048 0.110 0.073 0.121 0.241
1536 0.105 0.073 0.161 0.256
1024 0.100 0.076 0.176 0.284
768 0.099 0.073 0.204 0.298
512 0.115 0.076 0.252 0.322
256 0.102 0.110 0.324 0.367
128 0.134 0.207 0.364 0.405
64 0.201 0.330 0.427 0.378
32 0.262 0.365 0.453 0.469
16 0.271 0.404 0.438 0.467
8 0.356 0.445 0.455 0.456
4 0.439 0.480 0.477 0.479
2 0.470 0.489 0.464 0.478

Table 14: ROC Area Under Curve (AUC) for various neuron counts in
the Extra Dense layer

ROC AUC

Neuron | Manhattan | Euclidean | Minkowski | Minkowski
Count (p=3) (p=4)
2048 0.955 0.978 0.948 0.839
1536 0.956 0.978 0.917 0.825
1024 0.962 0.976 0.902 0.785
768 0.962 0.979 0.875 0.768
512 0.954 0.974 0.823 0.741
256 0.957 0.956 0.739 0.683
128 0.940 0.875 0.685 0.632
64 0.877 0.730 0.603 0.670
32 0.813 0.689 0.568 0.551
16 0.817 0.638 0.587 0.545
8 0.703 0.576 0.564 0.562
4 0.578 0.528 0.542 0.538
2 0.549 0.519 0.539 0.535
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Several experiments were conducted to determine the optimal
hyperparameter values for Centre-Loss: the Centre-Loss relative weight
(A1 in Eq.9) and the Inter-Centre-Loss relative weight (A2 in Eq.9).
Figure 48a displays the verification ROC, while Table 15 provides
detailed ROC AUC and EER figures for various A; values. The
results indicate that A; values between 0.1 and 3.0 produce similar
metrics, while values outside this range lead to degraded performance.
This underscores the importance of both summands in the Centre-Loss
function: the Cross-Entropy summand for class separation and the
Centre-Loss summand for reducing intra-class distances. The robust
performance across a wide range of \; values suggests that the Centre-
Loss function is not highly sensitive to variations within this range.
However, the inclusion of the Inter-Centre summand in the loss function
did not yield positive effects. Table 16 and Figure 48b show that the
optimal value for Ao is 0; increasing As led to lower ROC AUC and
higher EER values.

Centre-Loss verification ROC AUC by Centre-Loss weight A1 Centre-Loss verification ROC AUC by Inter-Center weight A2
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Figure 48: Centre-Loss  Verification ROC by Centre-Loss
hyperparameters A1 and A2

Table 15: Centre-Loss
Verification by  weight A1 Table  16: Centre-Loss
Verification by  weight A2

Centre-Loss ROC EER

Weight \1 AUC Inter-Centre ROC EER
1.000 0.977 0.075 Weight A2 AUC

0.300 0.972  0.086 0.000 0.961 0.100
0.100 0.965  0.098 0.003 0.960 0.105
3.000 0.948 0.117 0.001 0.957  0.110
9.900 0.903 0.195 0.010 0.883  0.201
0.030 0.772  0.298 0.030 0.681  0.381
0.010 0.579  0.444 0.100 0.536  0.467
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In addition to the authentic self-checkout dataset, the method’s
performance was assessed using the Fruits 360 dataset [7]: models of
each network type in question (Centre-Loss, Proxy-NCA, Siamese, and
Triplet) were trained on Fruits 360 training subset and evaluated on its
test subset. The verification ROC curves for Fruits 360 are illustrated in
Figure 49a, and a comparison of ROC AUC between Fruits 360 and our
self-checkout dataset is presented in Figure 49b. Except Siamese, most
methods exhibited improved performance on Fruits 360, primarily due
to the dataset’s clean and synthetic images.
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Figure 49: Comparing verification results on Fruits 360 [7] vs. authentic
self-checkout dataset
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Figure 50 illustrates a set of sample images alongside their
corresponding distances from selected class centres. Correct selections
are denoted by green dashes, while incorrect ones are indicated by
red dashes. The blue dashed line represents the equal error rate
(EER) threshold, delineating the boundary between correct (below the
threshold) and incorrect (above the threshold) selections.

0.40 Watermelon =838 ke

fange
0.36 Orange

[l Thr.@EER

lw- 0.337 Apple

= 0.318 Cucumber

0.11 Watermelon

- 0.351 Banana

- 0.260 Cucumber
Thr.@EER

- 0.143 Apple

Figure 50: Sample images and their distances from selected class centres

Figure 51 depicts sample distance distributions for the selected
number of neurons in the Extra Dense layer. The separation between
distances from samples’ own class centres ("Correct" classes) versus from
other class centres ("Incorrect" classes) increases with the increase of
neurons in the Extra Dense Layer until saturation is reached. The mean
distance of both - Correct and Incorrect - increases with the number of
neurons.

Distance from Center ~ Correctness, 32 neurons in CL layer Distance from Center ~ Correctness, 128 neurons in CL layer Distance from Center ~ Correctness, 512 neurons in CL layer

Correct; 0.099+/0.027 Correct: 0.151+/0.025 Correct: 0.625+/0.033
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Figure 51: Distance distribution of CL layer activations from the same
(Correct) vs other (Incorrect) class centres

The verification architecture (Figure 26) with Centre-Loss contains a
Softmax layer, which is usable for product classification. It is interesting
to evaluate the degradation of the product classifier accuracy by having
the Centre-Loss function included: an additional component of Centre-
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Loss in the loss function was expected to decrease the accuracy of
individual class classification. The classifier-only (without Centre-
Loss) performed at 73.2% accuracy on the validation set (blue line
in Figure 52). However, the graph shows approximately the same
individual classification accuracy when the Extra Dense layer contains
at least 8 neurons: 73.2%+0.8%.

Classifier accuracy ~ Neuron Count in CL layer
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Figure 52: Classification accuracy dependency on the number of neurons
in the extra dense layer

Figure 53 shows the relative importance of the Loss function
summands: Lcg (Softmax’ Cross-Entropy loss) and Lo (CL layer
loss). The Softmax’s Cross-Entropy loss gains minimum value at
approximately 8—16 neurons in the Extra Dense layer, then stays at
about the same rate upon adding more neurons. This relates to the
fact that classification accuracy also saturates at about the same 8 to
16 neurons. Centre-Loss obtains its minimum values between 8 and 128
neurons, then rises steeply outside this range, mainly due to the rising
dimensionality of space where distances are calculated.
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Figure 53: Loss (Cross-Entropy and Centre) relative values and
dependency on the number of neurons in the extra dense layer
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5.4 Product Classification into Groups of Similarity

The main result of this research is comparing the following:

e Different techniques to determine visual class similarity. Based on
similarity, classes are merged into "class groups" and classification
metrics are measured;

e Classifiers trained on individual classes vs. classifiers trained on
class groups, where classes are merged into groups by similarity.

Table 17: Top-5 class pairs having most errors in a confusion matrix

Class A Class B Errors %
Tangerines | Big tangerines 6.5%
Oranges Persimmons 5.1%
Tomatoes | Plum tomatoes 3.0%
Bananas | Apples Golden 2.6%
Bananas Lemons 2.5%

The class pairs contributing the most errors are depicted in Table 17.
The column "Errors %" represents false predictions both ways (class A
instead of class B and vice versa) as a percentage of total errors in a
confusion matrix. Almost 20% of all errors are caused by 5 class pairs
- a significant percentage in a confusion matrix of size 194x194 (194 -
class count in self-checkout dataset).

Table 18: Top-5 class pairs having the lowest inter-class mean distance
between image embeddings

Class A Class B Normalized Similarity
Candies Minky | Candies Crazy Bee 8.3
Bean sprouts Green grapes 6.8
Candies Vkusia Candies Lokys 6.7
Candies Murkiny Candies Verze 5.9
Candies Murkiny | Candies Kregzduté 5.7

Embeddings-Distance similarity technique is summarized in Table 18:
it shows the Top-5 class-pairs that have the lowest mean inter-sample
distance (i.e. highest inter-class similarity, where similarity = m)

The SOM-Purity improvement technique suggested the class pairs
that improve cluster purity the most when merged. The original (before
merging) SOM cluster structure is shown in Figure 54. Circle sizes are
proportional to the number of samples in those clusters. The biggest
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Figure 54: SOM cluster structure. The circle size represents a number
of samples. Colours indicate different classes within clusters, blue being
the most frequent class

class of every cluster is shown in blue, whereas every colour within a
cluster represents a different class. Colour angle is proportional to the
class number of samples in a cluster. Although most clusters contain
mostly images of a single class, the biggest clusters appear to consist of
a multitude of classes.

The number of group classifiers was limited as described in the
Methods section. Figure 55 depicts the choice for the number of groups
using accuracy intersection point (top-left), f-score intersection points
(top-right) and f-score local maxima (bottom).

Table 19 compares the accuracy of classification into class groups.
The best accuracy is achieved using the SOM-Purity merging technique
for a smaller number of "class groups", but the Embeddings-Distance
merging technique outperforms the rest when the number of classes
is high (>160). In all cases except one, individual class classifiers
outperformed "class group" classifiers.

Table 20 compares the f-score of the "class group" classification.
In all cases except one, the Error-Contribution merging technique
outperformed the rest. Individual classifiers always performed better
than "class group" classifiers.
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Table 19: Accuracy using various methods for merging classes into groups

Hypothetical merge Actual merge
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0.982 | 0.987 | 0.992 | 0.965 | 0.983 | 0.981
0.965 | 0.976 | 0.990 | 0.929 | 0.954 | 0.977
0.952 | 0.964 | 0.985 | 0.900 | 0.953 | 0.957
0.952 | 0.962 | 0.984 | 0.937 | 0.908 | 0.974
132 | 0.860 | 0.858 | 0.890 | 0.844 | 0.850 | 0.863
156 | 0.854 | 0.853 | 0.855 | 0.862 | 0.839 | 0.847
162 | 0.854 | 0.848 | 0.854 | 0.843 | 0.806 | 0.825
170 | 0.852 | 0.845 | 0.843 | 0.850 | 0.822 | 0.828
187 | 0.842 | 0.831 | 0.831 | 0.837 | 0.831 | 0.814
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Table 20: F-score using various methods for merging classes into groups
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0.557 | 0.702 | 0.731 | 0.373 | 0.491 | 0.383
0.584 | 0.748 | 0.562 | 0.421 | 0.597 | 0.318
0.618 | 0.749 | 0.534 | 0.435 | 0.633 | 0.335
0.610 | 0.744 | 0.528 | 0.516 | 0.534 | 0.371
132 | 0.635 | 0.681 | 0.552 | 0.597 | 0.659 | 0.450
156 | 0.607 | 0.649 | 0.573 | 0.606 | 0.630 | 0.528
162 | 0.606 | 0.634 | 0.575 | 0.578 | 0.595 | 0.545
170 | 0.601 | 0.610 | 0.575 | 0.566 | 0.587 | 0.516
187 | 0.563 | 0.569 | 0.562 | 0.525 | 0.553 | 0.528
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Figure 56 shows the margin between various methods of merging
classes into groups (different colours); between individual classifiers
(lines) and "class group" classifiers (dots); accuracy (left) and f-score
(right). Merging classes using the SOM-Purity technique generally
outperforms other methods when accuracy optimization is key (e.g.
in retail self-checkouts, where class distribution is uneven). Merging
classes using the "Error contribution" technique generally outperforms
other methods when f-score optimization is key. Individual classifiers
outperform "class group" classifiers with few exceptions (lines above
same-coloured dots).

In addition to the three techniques of merging classes described
above (Error-Contribution, Embeddings-Distance, SOM-Purity), results
are presented of the individual classifier using "barcode structure" class
merging (red line in Figure 56). This merging technique underperforms
all other proposed merging techniques. This suggests that higher-level
category predictors in retail stores would not work as well as predictors
of similarity-based class groups.

Accuracy by merging classes F-score by merging classes

1.000 —— Embeddings distance 1.0+ '1 —— Embeddings distance

Error contribution Error contribution

0.975

—— SOM purity 0.9 4 —— SOM purity
—— Barcode hierarchy

—— Barcode hierarchy

0.950 {

0.925 {

0.900

Accuracy

0.875 1

0.850 4

0.825 -

08001 T T u T T T T T 031, T T T T T T T T
0 25 50 75 100 125 150 175 200 o 25 50 75 100 125 150 175 200
Number of classes Number of classes

Figure 56: Actual vs. Hypothetical metrics by merging similar classes
(dots represent metrics of actually merged datasets)

The inference of trained classifiers was tested on a self-checkout-like
computer with 2GB RAM, no GPU, and a 2GHz CPU. Inference of
an image took up to 100 milliseconds, having the classifier model pre-
loaded into RAM. A single classifier model takes less than 50MB of
disk space and requires to be placed on an inference computer. These
requirements are acceptable for most self-checkout computers. Class
similarity analysis and choosing the upper limit for the number of classes,
followed by creating groups of similar classes, should be done outside of
store computers, similar to our described infrastructure.
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5.5 Conclusions of the Section

The experimental investigation was carried out on two datasets that
resemble the self-checkout environment the most: an authentic self-
checkout products dataset that was collected and labelled automatically
in the self-checkout environment and Fruits-360. The task of determining
product recognizability only applied to the former dataset, whereas the
latter dataset only contained the well-visible, recognizable products.

Image fitness for recognizability. The recognizability study
measured how well images with well-visible products can be separated
from insufficiently visible products, where thresholds of visibility
sufficiency are several. The best separation f-score of 0.906 was achieved
between the least visible salient objects (Q1: less than 25% visibility)
and the rest. Considering the authentic self-checkout dataset contains
only 1/3 of Q1 images, it is important to note the model’s accuracy
of 0.874, FPR of 0.146, and FNR of 0.117. The second-best f-score of
0.895 separates [Q1; BagR (products in bags with high light Reflection)
| from the rest, the value of the f-score still being in the 4th quartile.
Both thresholds are worth exploring in filtering images for the product
classification study. The other thresholds separate images with an f-score
of 0.854 or less - significantly below the best two thresholds.

The architecture of choice consists of seven convolutional blocks
followed by three fully connected blocks. Notably, adding more blocks of
either type did not improve accuracy, whereas removing blocks of either
type significantly degraded accuracy.

Automated classification pipeline. This stage investigated image
filtering of empty images and images with subpar product visibility, and
classification model architecture alternatives.

The optimal proposed pipeline contains stages for empty image
removal and removal of images with insufficient product visibility and
uses architecture tuned to the authentic self-checkout dataset. It
achieved 80.5% + 1.2% classification accuracy over 10 experiments.

The ablation study showed the usefulness of the two stages in the
pipeline that remove empty images and images having unsatisfactory
product visibility. FExcluding the stage that removes empty images
decreases accuracy by 1.4%, whereas not filtering out images using a
recognizability classifier reduces the accuracy by 1.7%.

The necessary step of empty image filtering in dataset preparation
was best achieved by using a two balanced class classifier: empty images
were eliminated with a commanding 98.8% confidence. Filtering empty
images using other emptiness classifiers (Overit and Siamese) resulted in
worse product classification accuracy.

Comparable classification results were shown by eliminating images
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with low product visibility using different visibility thresholds:
eliminating images that contained bags with high glare marginally
improved accuracy by 0.2%.

Neural network architecture tuned to self-checkout images worked
better (80.5%+/-1.2% accuracy) than well-known models (EfficientNet-
B0: 80.2% and Resnet-50: 72.9%) with pre-trained weights. Auto-
encoder-based classifiers underperformed in comparison with all.

The proposed architecture was evaluated on another retail image set
of barcodeless products Fruits-360, and then performance was compared
against other authors’. The proposed architecture yields a comparable
(better or similar) test accuracy of 99.6% to other authors’. This implies
a good choice of architecture and a future research direction in how
images are collected, filtered, and prepared within a fully automated
pipeline.

Verification of product selection. Two distinct approaches to
solving a class verification task on self-checkout product datasets were
compared: class prototype-based and sample-to-sample. The optimal
approach (Centre-Loss) learns class centres during training and then
compares a sample to the declared class centre during inference. This
is in contrast with the sample-to-sample approaches that compare an
incoming sample to arbitrary samples during inference and require
aggregation. The optimal approach uses a dual loss function that consists
of cross-entropy loss and Centre-Loss functions. The Centre-Loss
function uses Euclidean distance. The Centre-Loss layer is connected
to the penultimate layer, its size of 256 neurons suffices. The relative
weight of Centre-Loss within the total loss is 1.0.

The verification metrics between class prototype-based (Proxy-
NCA, Cente-Loss) and sample-to-sample (Siamese, Triplet) approaches
were almost identical on the authentic retail self-checkout barcodeless
products dataset: the Proxy-NCA ROC AUC was 0.985, Centre-Loss:
0.979, Siamese: 0.981, Triplet: 0.980.

It has been demonstrated experimentally that using Euclidean
distance in loss functions to measure sample-to-sample or class-centre-
to-sample distances always results in equal or better accuracy over other
distance types (Manhattan, Minkowski, Cosine). Although, using nearby
Minkowski p values (p=1 Manhattan, p=3) performs similarly. However,
higher Minkowski p values require more neurons in the penultimate layer
to achieve saturation. In the Centre-Loss approach, using Euclidean
distance achieved 0.979 ROC AUC, whereas nearby Minkowski p values
resulted in similar ROC AUC of 0.962 (p=1 Manhattan) and 0.948
(p=3), and Cosine ROC AUC was very close at 0.961. The Siamese
network showed almost identical ROC AUC values of 0.980-0.981 using
all distance types (Minkowski p between 1 and 4, Cosine), whereas
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in the Triplet network, Cosine (ROC AUC: 0.913) underperformed all
Minkowski values (0.971-0.980).

Experiments with Centre-Loss architecture revealed the penultimate
layer as the layer of choice to minimize intra-class distances upon training
(ROC AUC 0.969), while connecting the Centre-Loss layer to any other
layer past the convolutional backbone resulted in low ROC AUC values of
0.507-0.667. The EER also increases using any other layer (0.380-0.499)
in comparison to the penultimate layer (0.090). A minimum number of
neurons is necessary for both classification accuracy and class verification
accuracy to saturate. The optimum size of the penultimate layer
depends on Minkowski p value: p=1 (Manhattan) requires 128 neurons,
p=2 (Euclidean): 256, p>=3 did not saturate even at 2,048 neurons.
Once saturated, adding more neurons does not improve classification or
verification accuracy. The relative weight A1 of the Centre-Loss function
within the total loss was 1.0 (ROC AUC: 0.977), although similar metrics
were observed for A; in the range 0.1—3.0 (ROC AUC: >=9.65). This
shows the robustness of the loss function to variations of Aj.

The suggested update in the Centre-Loss function Ly, to increase
Inter-Class distance did not give a positive result: higher Ao values
generally resulted in decreased ROC AUC, the optimal value of Ay being
0.0. This concludes that having Cross-Entropy loss as part of the total
loss function provides sufficient class centre separability.

Although all three types of networks (Centre-Loss, Siamese, Triplet)
had their weights initialized from a pre-trained classifier, only Centre-
Loss showed error reduction during the first epochs of training, when
all the layers were trainable. Siamese and Triplet required fixing all
the convolutional layer weights for training to achieve optimal validation
error. The Siamese ROC AUC improved from 0.903 to 0.981, Triplet
improved from 0.946 to 0.979 by leaving only the last two dense blocks
trainable.

The Centre-Loss approach, having included Cross-Entropy as part
of the loss function, can be used as a classifier, not just a verifier. The
unexpected result of the research was the maintained strong accuracy of
the classifier, by having included a Centre-Loss summand in the total loss
function: with or without the Centre-Loss, the accuracy of the classifier
was 73%+0.8%.

The three approaches (Centre-Loss, Siamese, Triplet) were evaluated
on another retail image set of barcodeless products Fruits-360. The
Centre-Loss demonstrated outstanding verification ROC AUC of 1.000,
whereas Siamese and Triplet underperformed (ROC AUC: 0.976 and
0.977, respectively). ROC AUC metric on Fruits-360 generally was better
than on the authentic self-checkout dataset, likely due to well-cleaned,
synthetic data.
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Product grouping by similarity. Three distinct approaches were
investigated to determine class similarity. Based on determined class
similarity, group classifiers were trained, and their performance was
compared against the performance of the individual class classifier.

All three similarity approaches proposed different class pairs in the
Top-5 similar pairs list, but image pairs from each proposed approach
seem very similar to the human eye. Using all three approaches, the
Top-5 pairs stand out in terms of similarity: in Error-Contribution,
Top-5 pairs contribute to over 20% classification errors; in Embeddings-
Distance, the Top-5 normalized similarity ranges between 5.7 and 8.3.

The experiments showed inconclusive results for the class similarity
method to be used when merging classes into clusters. The best
similarity approach depends on the count of "class groups" and the
performance metric used (accuracy vs. f-score). Using the Error-
Contribution similarity method improved the f-score by 9.9%+9.1%
over SOM-Purity and 7.8%+6.4% over Embeddings-Distance. Although
the SOM-Purity similarity method generally improved accuracy by
1.2+1.5%, its significance waned having a higher number of groups.

Classifiers trained on individual classes that predict "class group"
usually outperform classifiers trained on "class groups". The accuracy
of individual classifiers was 1.8%+1.5%, f-score was 10.3%=%9.0% higher
than that of group-classifiers.
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6 General Conclusions

1. In the dataset preparation step of filtering empty images, a two-
class emptiness classifier eliminated them with a commanding
98.8% confidence. Other techniques for emptiness (Siamese, OCC)
performed worse. The separation of images having good vs. bad
product visibility was achieved using an experimentally determined
separating threshold with an f-score 0.906.

2. Experiments revealed CLAHE as the most effective method
among those that were employed to reduce illumination
differences.  Higher image variability by augmenting images
using both affine and perspective transformation outperformed
affine-only transformations by 1.3%—2.8% and perspective-only
transformations by 1.3%—3.9%. Using three perspectives
outperformed a single perspective on average by 1.1%.

3. Product classification experiments showed that the proposed
neural network architecture of 7 convolutional and 3 dense
layers (accuracy 80.5% =+1.2%) tuned to self-checkout images
outperformed well-known models: EfficientNet B0 (80.2%+1.2%),
ResNet-50 (58% +2.5%). Notably, the performance of the self-
made architecture degrades by removing any convolutional or
dense layer and no longer improves by adding layers. The
proposed architecture’s accuracy on a synthetic Fruits-360 yields a
comparable test accuracy of 99.6% to other authors.

4. Verification metrics of class prototype-based (Proxy-NCA, Centre-
Loss) vs.  sample-to-sample (Siamese, Triplet) were similar:
ROC AUC of Proxy-NCA 0.985, Centre-Loss 0.979 vs. Siamese
0.981, Triplet 0.980; EER of Proxy-NCA 0.047, Centre-Loss 0.073
vs. Siamese 0.063 and Triplet 0.060. Euclidean distance in
loss functions did not cede to other distance types (Manhattan,
Minkowski, Cosine) in accuracy, although nearby Minkowski p
values (p=1 Manhattan, p=3) followed closely. In the Centre-
Loss approach, using Fuclidean distance achieved 0.979 ROC
AUC, whereas nearby Minkowski p values resulted in 0.962 (p=1
Manhattan) and 0.948 (p=3). Experiments with Centre-Loss
architecture revealed the penultimate layer as the layer of choice.
The size of the penultimate layer saturates depending on the
Minkowski p value: higher Minkowski p values require more
neurons to achieve saturation. A suggested update in the Centre-
Loss function to increase Inter-Class distance did not give a positive
result.
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5. The same Centre-Loss neural network is applicable for two distinct
tasks: classification and verification. This is due to the unexpected
finding that employing a dual loss function did not impair
classification accuracy: 73.2%=+0.8% (vs 73.2% without Centre-
Loss).

6. Experiments of grouping products by similarity, so that the
accuracy of classifying into groups is maximized, showed that
SOM-Purity generally improved accuracy by 1.24+1.5%, although
its significance waned having a higher number of groups. The
Error-Contribution similarity method improved the f-score by
8.9%+7.7%. The best similarity measure depends on the number
of groups and performance metric used (accuracy vs. f-score).
Classifiers trained on individual-class labels that predict a similar
product group outperform classifiers trained on similarity-group
labels. The accuracy of individual classifiers was 1.8%=+1.5%,
f-score was 10.3%+9.0% higher than the accuracy of group-
classifiers.

125



References

(1]
2|

3]

4]

[5]

[6]

17l

8]

19]

[10]

[11]

Teuvo Kohonen. “The self-organizing map”. In: Proceedings of the
IEEFE 78.9 (1990), pp. 1464-1480.

Yandong Wen et al. “A discriminative feature learning approach
for deep face recognition”. In: Furopean conference on computer
vision. Springer. 2016, pp. 499-515.

Yair Movshovitz-Attias et al. “No fuss distance metric learning
using proxies”. In: Proceedings of the IEEE international
conference on computer vision. 2017, pp. 360-368.

NCR. Self-Checkout: a Global Consumer Perspective. 2019. URL:
https://www.ncr.co. jp/wp-content/uploads/files/solutio
ns/self/f1/f1_wpa/RET_SCO_wp.pdf.

Grand View Research. Self-checkout Systems Market Size, Share
and Trends Analysis Report By Components (Systems, Services),
By Type (Cash Based, Cashless), By Application, By Region, And
Segment Forecasts, 2020 - 2027. 2020. URL: https://www.gr
andviewresearch. com/industry-analysis/self - checkout -
systems-market.

Adrian Beck. Self-Checkout in Retail: Measuring the Loss. 2018.
URL: https://www.researchgate.net/publication/33021415
7.

Mihai Oltean. Fruits 360 dataset: new research directions. 2021.
URL: https://www.researchgate.net/publication/35453575
2_Fruits_360_dataset_new_research_directions.

Bikash Santra and Dipti Prasad Mukherjee. “A comprehensive
survey on computer vision based approaches for automatic
identification of products in retail store”. In: Image and Vision
Computing 86 (2019), pp. 45-63.

Michele Merler, Carolina Galleguillos, and Serge Belongie.
“Recognizing groceries in situ using in vitro training data’.
In: 2007 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE. 2007, pp. 1-8.

Kyota Higa, Kota Iwamoto, and Toshiyuki Nomura. “Multiple
object identification using grid voting of object center estimated
from keypoint matches”. In: 2018 IEEE International Conference
on Image Processing. IEEE. 2013, pp. 2973-2977.

Marian George et al. “Fine-grained product class recognition for
assisted shopping”. In: Proceedings of the IFEEE International
Conference on Computer Vision Workshops. 2015, pp. 154-162.

126


https://www.ncr.co.jp/wp-content/uploads/files/solutions/self/fl/fl_wpa/RET_SCO_wp.pdf
https://www.ncr.co.jp/wp-content/uploads/files/solutions/self/fl/fl_wpa/RET_SCO_wp.pdf
https://www.grandviewresearch.com/industry-analysis/self-checkout-systems-market
https://www.grandviewresearch.com/industry-analysis/self-checkout-systems-market
https://www.grandviewresearch.com/industry-analysis/self-checkout-systems-market
https://www.researchgate.net/publication/330214157
https://www.researchgate.net/publication/330214157
https://www.researchgate.net/publication/354535752_Fruits_360_dataset_new_research_directions
https://www.researchgate.net/publication/354535752_Fruits_360_dataset_new_research_directions

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

Timothy Chong, Idawati Bustan, and Mervyn Wee. “Deep
learning approach to planogram compliance in retail stores”. In:
Semantic Scholar (2016), pp. 1-6.

Ipek Baz, FErdem Yoruk, and Mujdat Cetin. “Context-
aware hybrid classification system for fine-grained retail
product recognition”. In: 2016 IEEE 12th Image, Video, and
Multidimensional Signal Processing Workshop (IVMSP). IEEE.
2016, pp. 1-5.

Song Liu et al. “Planogram compliance checking based on
detection of recurring patterns”. In: IEEE MultiMedia 23.2 (2016),
pp. 54-63.

Laith Alzubaidi et al. “A deep convolutional neural network model
for multi-class fruits classification”. In: International Conference
on Intelligent Systems Design and Applications. Springer. 2019,
pp- 90-99.

Horea Murecsan and Mihai Oltean. “Fruit recognition from
images using deep learning”. In: arXiv preprint arXiv:1712.00580
(2017).

Dang Thi Phuong Chung and Dinh Van Tai. “A fruits recognition
system based on a modern deep learning technique”. In: Journal
of physics: conference series. Vol. 1327. IOP Publishing. 2019,
p- 12050.

Mingxing Tan and Quoc Le. “Efficientnet: Rethinking model
scaling for convolutional neural networks”. In: International
conference on machine learning. PMLR. 2019, pp. 6105-6114.

Dayong Wang et al. “Expanding the field-of-view and profile
measurement of covered objects in continuous-wave terahertz
reflective digital holography”. In: Optical Engineering 58.2 (2019),
pp. 1-7. DOL: 10.1117/1.0E.58.2.023111. URL: https://doi.
org/10.1117/1.0E.58.2.023111.

J Deng et al. “Imagenet: A large-scale hierarchical image
database”. In: 2009 IEEE conference on computer vision and
pattern recognition. 2009, pp. 248-255.

Mark Everingham et al. “The pascal visual object classes (voc)
challenge”. In: International journal of computer wvision 88.2
(2010), pp. 303-338.

Li Fei-Fei, R Fergus, and P Perona. “One-shot learning of object
categories”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 28.4 (Apr. 2006), pp. 594-611. 1sSN: 1939-
3539.

127


https://doi.org/10.1117/1.OE.58.2.023111
https://doi.org/10.1117/1.OE.58.2.023111
https://doi.org/10.1117/1.OE.58.2.023111

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

Bryan C Russell et al. “LabelMe: a database and web-based
tool for image annotation”. In: International journal of computer
vision 77.1-3 (2008), pp. 157-173.

Nouman Ali and Bushra Zafar. MSRC-v2 image dataset. Aug.
2018. pOI: 10.6084/m9 . figshare . 6075788 .v2. URL: https:
//figshare.com/articles/dataset/MSRC-v2_image_dataset/
6075788/2.

Jelena Liutvinaviciené and Olga Kurasova. “Multi-level Massive
Data Visualization: Methodology and Use Cases”. In: Baltic
Journal of Modern Computing 6.4 (2018), pp. 321-334. ISSN:
2255-8942.

V Nezerka and J Trejbal. “Assessment of aggregate-bitumen
coverage using entropy-based image segmentation”. In: Road
Materials and Pavement Design 21.8 (2019), pp. 1-12. 1SSN: 1468-
0629.

Zoran Zivkovic and Ferdinand Van Der Heijden. “Efficient
adaptive density estimation per image pixel for the task of
background subtraction”. In: Pattern Recognition Letters 27.7
(2006), pp. 773-780. 1SSN: 01678655.

Yaniv Taigman et al. “DeepFace: Closing the gap to human-level
performance in face verification”. In: Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition. June 2014, pp. 1701-1708. ISBN: 9781479951178. DOI:
10.1109/CVPR.2014.220.

Bartosz Krawczyk and Michal Wozniak. “Experiments on
distance measures for combining one-class classifiers”. In: 2012
Federated Conference on Computer Science and Information
Systems (FedCSIS). IEEE. 2012, pp. 89-92.

Shehroz S Khan and Michael G Madden. “A survey of recent
trends in one class classification”. In: Irish conference on artificial
intelligence and cognitive science. Springer. 2009, pp. 188-197.

Michael Kemmler et al. “One-class classification with Gaussian
processes”. In: Pattern recognition 46.12 (2013), pp. 3507-3518.

Yungiang Chen, Xiang Sean Zhou, and Thomas S Huang. “One-
class SVM for learning in image retrieval”. In: Proceedings
2001 International Conference on Image Processing (Cat. No.
01CH37205). Vol. 1. IEEE. 2001, pp. 34-37.

Xichun Bi and Lifang Wang. “Performing Weakly Supervised
Retail Instance Segmentation via Region Normalization”. In:
IEEE Access 9 (2021), pp. 67761-67775.

128


https://doi.org/10.6084/m9.figshare.6075788.v2
https://figshare.com/articles/dataset/MSRC-v2_image_dataset/6075788/2
https://figshare.com/articles/dataset/MSRC-v2_image_dataset/6075788/2
https://figshare.com/articles/dataset/MSRC-v2_image_dataset/6075788/2
https://doi.org/10.1109/CVPR.2014.220

[34]

[35]

[36]

[37]

3]

[39]

[40]

[41]

[42]

[43]

Patrick Follmann et al. “MVTec D2S: Densely Segmented
Supermarket Dataset”. In: Computer Vision — ECCV 2018. Ed. by

Vittorio Ferrari et al. Cham: Springer International Publishing,
2018, pp. 581-597. 1SBN: 978-3-030-01249-6.

Xiu-Shen Wei et al. “RPC: A large-scale retail product checkout
dataset”. In: arXiv preprint arXiv:1901.07249 (2019).

Qi Wang et al. “Hybrid feature aligned network for salient
object detection in optical remote sensing imagery”. In: IEEE
Transactions on Geoscience and Remote Sensing 60 (2022),
pp. 1-15.

Yanfeng Liu et al. “Distilling Knowledge from Super Resolution
for Efficient Remote Sensing Salient Object Detection”. In: IEEE
Transactions on Geoscience and Remote Sensing (2023).

Luis Rosado et al. “Supervised learning for Out-of-Stock detection
in panoramas of retail shelves”. In: IST 2016 - 2016 IEEE
International Conference on Imaging Systems and Techniques,
Proceedings. IEEE. 2016, pp. 406-411. 1sBN: 9781509018178. DOTI:
10.1109/1IST.2016.7738260.

Bernardas Ciapas and Povilas Treigys. “High F-score Model for
Recognizing Object Visibility in Images with Occluded Objects
of Interest”. In: Baltic Journal of Modern Computing 9.1 (2021),
pp. 35-48.

Nitesh V Chawla et al. “SMOTE: synthetic minority over-
sampling technique”. In: Journal of artificial intelligence research
16 (2002), pp. 321-357.

Maayan Frid-Adar et al. “GAN-based synthetic medical image
augmentation for increased CNN performance in liver lesion
classification”. In: Neurocomputing 321 (2018), pp. 321-331. ISSN:
0925-2312. DOI: https://doi.org/10.1016/j .neucom.2018.09.
013. URL: https://www.sciencedirect.com/science/article/
pii/S0925231218310749.

Ke Wang et al. “Perspective Transformation Data Augmentation
for Object Detection”. In: IEEE Access 8 (2020), pp. 4935-4943.
DOI: 10.1109/ACCESS.2019.2962572.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
“ImageNet Classification with Deep Convolutional Neural
Networks”. In: Advances in Neural Information Processing
Systems 25. Ed. by F Pereira et al. Curran Associates, Inc.,
2012, pp. 1097-1105. 1SBN: 9781420010749. URL: http://papers.

129


https://doi.org/10.1109/IST.2016.7738260
https://doi.org/https://doi.org/10.1016/j.neucom.2018.09.013
https://doi.org/https://doi.org/10.1016/j.neucom.2018.09.013
https://www.sciencedirect.com/science/article/pii/S0925231218310749
https://www.sciencedirect.com/science/article/pii/S0925231218310749
https://doi.org/10.1109/ACCESS.2019.2962572
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

nips.cc/paper/4824-imagenet-classification-with-deep-
convolutional-neural-networks.pdf.

Siddharth Srivastava and Gaurav Sharma. “OmniVec: Learning
robust representations with cross modal sharing”. In: arXiv
preprint arXiv:2311.05709 (2023).

Omid E. David and Nathan S. Netanyahu. “DeepPainter:
Painter classification using deep convolutional autoencoders”. In:
Proceedings of the International conference on artificial neural
networks. Springer. 2016, pp. 20-28. 1SBN: 9783319447803. DOTI:
10.1007/978-3-319-44781-0_3. arXiv: 1711.08763.

Alexey Dosovitskiy et al. “An image is worth 16x16 words:
Transformers for image recognition at scale”. In: International
Conference on Learning Representations (ICLR) (2021).

Xiaohua Zhai et al. “Scaling vision transformers”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022, pp. 12104-12113.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. “Dynamic
routing between capsules”. In: Advances in neural information
processing systems 30 (2017).

Mingsheng Long et al. “Unsupervised domain adaptation with
residual transfer networks”. In: Advances in Neural Information
Processing Systems. 2016, pp. 136—-144. arXiv: 1602.04433.

Shibai Yin, Yiming Qian, and Minglun Gong. “Unsupervised
hierarchical image segmentation through fuzzy entropy
maximization”. In: Pattern Recognition 68 (2017), pp. 245-259.
1SSN: 0031-3203. URL: http : / / www . sciencedirect . com /
science/article/pii/S0031320317301115.

Sergejs Kodors. “Detection of Man-Made Constructions using
LiDAR Data and Decision Trees”. In: Baltic Journal of Modern
Computing 7.2 (2019), pp. 255-270.

J R Quinlan. “Induction of decision trees”. In: Machine Learning
1.1 (1986), pp. 81-106. 1SSN: 1573-0565. DOI: 10.1007/BF001162
51. URL: https://doi.org/10.1007/BF00116251.

Matiss Rikters. “Hybrid Machine Translation by Combining
Output from Multiple Machine Translation Systems”. In: Baltic
Journal of Modern Computing 7.3 (2019), pp. 301-341. ISSN:
2255-8942.

130


http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1007/978-3-319-44781-0_3
https://arxiv.org/abs/1711.08763
https://arxiv.org/abs/1602.04433
http://www.sciencedirect.com/science/article/pii/S0031320317301115
http://www.sciencedirect.com/science/article/pii/S0031320317301115
https://doi.org/10.1007/BF00116251
https://doi.org/10.1007/BF00116251
https://doi.org/10.1007/BF00116251

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Florian Schroff, Dmitry Kalenichenko, and James Philbin.
“Facenet: A unified embedding for face recognition and
clustering”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2015, pp. 815-823.

Yifan Sun et al. “Circle loss: A unified perspective of pair
similarity optimization”. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2020,
pp. 6398-6407.

Weiyang Liu et al. “Sphereface: Deep hypersphere embedding
for face recognition”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017, pp. 212-220.

Jiankang Deng et al. “Arcface: Additive angular margin loss
for deep face recognition”. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2019,
pp. 4690-4699.

Chi Zhang et al. “Deepemd: Few-shot image classification with
differentiable earth mover’s distance and structured classifiers”.
In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 2020, pp. 12203-12213.

Qi Qian et al. “Softtriple loss: Deep metric learning without
triplet sampling”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2019, pp. 6450-6458.

Sungyeon Kim et al. “Proxy anchor loss for deep metric learning”.
In: Proceedings of the IEEE/CVFE conference on computer vision
and pattern recognition. 2020, pp. 3238-3247.

Mehdi Sadeghi, Keivan Maghooli, and Mohammad Shahram
Moein. “Using artificial immunity network for face verification.”
In: Int. Arab J. Inf. Technol. 11.4 (2014), pp. 354-361.

Huajie Jiang et al. “Learning Class Prototypes via Structure
Alignment for Zero-Shot Recognition”. In: Proceedings of the
European Conference on Computer Vision (ECCYV). Sept. 2018.

Nouha Othman, Rim Faiz, and Kamel Smaili. “Manhattan
siamese LSTM for question retrieval in community question
answering”. In: On the Move to Meaningful Internet Systems:
OTM 2019 Conferences: Confederated International Conferences:
CooplS, ODBASE, C&TC 2019, Rhodes, Greece, October 21-25,
2019, Proceedings. Springer. 2019, pp. 661-677.

131



[64]

[65]

[66]

67]

[68]

[69]

[70]

[71]

[72]

[73]

Kareem Amin et al. “Advanced similarity measures using word
embeddings and siamese networks in CBR”. In: Intelligent
Systems and Applications: Proceedings of the 2019 Intelligent
Systems Conference (IntelliSys) Volume 2. Springer. 2020,
pp. 449-462.

Zainab Imtiaz et al. “Duplicate questions pair detection using
siamese malstm”. In: JEEE Access 8 (2020), pp. 21932-21942.

Zhongguo Wang and Bao Zhang. “Chinese Text Similarity
Calculation Model Based on Multi-Attention Siamese Bi-LSTM”.
In: Proceedings of the 4th International Conference on Computer
Science and Software Engineering. 2021, pp. 93-98.

Hong Zeng et al. “Siam-GCAN: A Siamese Graph Convolutional
Attention Network for EEG Emotion Recognition”. In: IFEE
Transactions on Instrumentation and Measurement 71 (2022),
pp. 1-9.

Andreas Biihler et al. “Deep Unsupervised Common
Representation Learning for LiDAR and Camera Data using
Double Siamese Networks”. In: arXiv preprint arXiv:2001.00762
(2020).

S Oztiirk. “Comparison of Pairwise Similarity Distance Methods
for Effective Hashing”. In: IOP Conference Series: Materials
Science and Engineering. Vol. 1099. 1. IOP Publishing. 2021,
p- 012072. por: 10.1088/1757-899x/1099/1/012072.

Jason Yosinski et al. “How transferable are features in deep neural
networks?” In: arXiv preprint arXiv:1411.1792 (2014).

Maxime Oquab et al. “Learning and transferring mid-level
image representations using convolutional neural networks”. In:
Proceedings of the IEEE conference on computer vision and
pattern recognition. 2014, pp. 1717-1724.

Bharat Singh et al. “R-FCN-3000 at 30fps: Decoupling Detection
and Classification”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. Ed. by Jyoti Aneja,
Aditya Deshpande, and Alexander G. Schwing. IEEE, June 2018,
pp. 1082-1090.

Ming-Ming Cheng et al. “BING: Binarized normed gradients for
objectness estimation at 300fps”. In: Computational Visual Media
5.1 (2019), pp. 3-20. 1SSN: 2096-0662. URL: https://doi.org/
10.1007/s41095-018-0120-1.

132


https://doi.org/10.1088/1757-899x/1099/1/012072
https://doi.org/10.1007/s41095-018-0120-1
https://doi.org/10.1007/s41095-018-0120-1

[74]

[75]

[76]

7]

78]

[79]

[80]

[81]

[82]

[83]

[84]

D Jeyabharathi and A Suruliandi. “Performance analysis of
feature extraction and classification techniques in CBIR”. In:
2013 International Conference on Circuits, Power and Computing
Technologies. IEEE, 2013, pp. 1211-1214.

Zhongmin Zhang, Jiawei Chen, and Shengli Wu. “Query
performance prediction and classification for information
search systems”. In: Asia-Pacific Web (APWeb) and Web-
Age Information Management (WAIM) Joint International
Conference on Web and Big Data. Ed. by Xu J. Cai Y., Ishikawa
Y. Springer, 2018, pp. 277-285.

M Mowafy, A Rezk, and H El-Bakry. “An efficient classification
model for unstructured text document”. In: American Journal of
Computer Science and Information Technology 6.1 (2018), p. 16.

B C Russell et al. “Using Multiple Segmentations to Discover
Objects and their Extent in Image Collections”. In: 2006 IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition. Vol. 2. June 2006, pp. 1605-1614.

Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari.
“Measuring the objectness of image windows”. In: I[IEEE
Transactions on Pattern Analysis and Machine Intelligence 34.11
(Nov. 2012), pp. 2189-2202. 1ssN: 01628828.

Sarah M Erfani et al. “High-dimensional and large-scale anomaly
detection using a linear one-class SVM with deep learning”. In:
Pattern Recognition 58 (2016), pp. 121-134.

Xin Sun et al. “Conditional Gaussian Distribution Learning
for Open Set Recognition”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition

(CVPR). June 2020.

Zhiguo Ding and Minrui Fei. “An anomaly detection approach
based on isolation forest algorithm for streaming data using
sliding window”. In: IFAC Proceedings Volumes 46.20 (2013),
pp. 12-17.

Meng Joo Er et al. “Face recognition with radial basis function
(RBF) neural networks”. In: IEEE transactions on mneural
networks 13.3 (2002), pp. 697-710.

Xiangning Chen et al. “Symbolic discovery of optimization
algorithms”. In: arXiv preprint arXiv:2302.06675 (2023).

Jiahui Yu et al. “Coca: Contrastive captioners are image-text
foundation models, 2022”. In: arXiw preprint arXiv:2205.01917
(2022). arXiv: 2205.01917.

133


https://arxiv.org/abs/2205.01917

[85]

[36]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Mitchell Wortsman et al. “Model soups: averaging weights of
multiple fine-tuned models improves accuracy without increasing
inference time”. In: International Conference on Machine
Learning. PMLR. 2022, pp. 23965-23998.

Ziwei Liu et al. “Large-scale long-tailed recognition in an open
world”. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2019, pp. 2537-2546.

Terrance DeVries and Graham W Taylor. “Learning confidence
for out-of-distribution detection in neural networks”. In: arXiv
preprint arXiv:1802.04865 (2018).

Abhijit Bendale and Terrance E Boult. “Towards open set deep
networks”. In: Proceedings of the IEEE conference on computer
viston and pattern recognition. 2016, pp. 1563-1572.

Zhengxiang Wang, Yiqun Hu, and Liang-Tien Chia. “Image-
to-class distance metric learning for image classification”. In:
FEuropean  Conference on Computer Vision. Springer. 2010,
pp. 706-719.

Ghaliya Alfarsi et al. “Techniques for face verification: Literature
review”. In: 2019 International Arab Conference on Information
Technology (ACIT). IEEE. 2019, pp. 107-112.

Azzam Sleit, R Abu-Hurra, and Wesam Almobaideen. “Lower-
quarter-based face verification using correlation filter”. In: The
Imaging Science Journal 59.1 (2011), pp. 41-48.

Tong Che et al. “Deep verifier networks: Verification of
deep discriminative models with deep generative models”. In:
Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 35. 8. 2021, pp. 7002-7010.

Yiming Shen et al. “DSRPH: Deep semantic-aware ranking
preserving hashing for efficient multi-label image retrieval”. In:
Information Sciences 539 (2020), pp. 145-156.

Liangliang Wang and Deepu Rajan. “An image similarity
descriptor for classification tasks”. In: Journal of Visual
Communication and Image Representation 71 (2020), p. 102847.
Jiang Wang et al. “Learning fine-grained image similarity with
deep ranking”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2014, pp. 1386—1393.

Yazhou Ren et al. “Deep density-based image clustering”. In:
Knowledge-Based Systems 197 (2020), p. 105841.

134



197]

98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

107]

Tsung Wei Tsai, Chongxuan Li, and Jun Zhu. “Mice: Mixture
of contrastive experts for unsupervised image clustering”. In:
International Conference on Learning Representations. 2020.

Xu Ji, Joao F Henriques, and Andrea Vedaldi. “Invariant
information clustering for unsupervised image classification and
segmentation”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2019, pp. 9865-9874.

Pooran Singh Negi, Mohammad Mahoor, et al. “Leveraging Class
Similarity to Improve Deep Neural Network Robustness”. In:
arXiv preprint arXiv:1812.09744 (2018).

Keunyoung Park and Doo-Hyun Kim. “Accelerating image
classification using feature map similarity in convolutional neural
networks”. In: Applied Sciences 9.1 (2019), p. 108.

Rodolfo M Pereira, Yandre M G Costa, and Carlos N Silla.
“Handling imbalance in hierarchical classification problems using
local classifiers approaches”. In: Data Mining and Knowledge
Discovery 35.4 (2021), pp. 1564-1621.

Jonatas Wehrmann, Ricardo Cerri, and Rodrigo Barros.
“Hierarchical = multi-label  classification = networks”. In:
International Conference on Machine Learning. PMLR. 2018,
pp. 5075-5084.

Haomin Chen et al. “Deep hierarchical multi-label classification
of chest X-ray images”. In: International conference on medical
imaging with deep learning. PMLR. 2019, pp. 109-120.

Brendan Kolisnik, Isaac Hogan, and Farhana Zulkernine.
“Condition-CNN: A hierarchical multi-label fashion image
classification model”. In: Fxpert Systems with Applications 182
(2021), p. 115195.

Marian George and Christian Floerkemeier. “Recognizing
products: A per-exemplar multi-label image classification
approach”. 1In: FEuropean Conference on Computer Vision.
Springer. 2014, pp. 440-455.

Philipp Jund et al. “The freiburg groceries dataset”. In: arXiv
preprint arXiv:1611.05799 (2016).

Karel Zuiderveld. “Contrast Limited Adaptive Histogram
Equalization”. In: Graphics Gems. Ed. by Paul S Heckbert.
Academic Press, 1994, pp. 474-485. 1SBN: 978-0-12-336156-1. URL:
http : //www . sciencedirect . com/ science /article/pii/
B9780123361561500616.

135


http://www.sciencedirect.com/science/article/pii/B9780123361561500616
http://www.sciencedirect.com/science/article/pii/B9780123361561500616

[108]

[109]

[110]

111

[112]

[113]

114]

[115]

[116]

Roweida Mohammed, Jumanah Rawashdeh, and Malak Abdullah.
“Machine learning with oversampling and undersampling
techniques: overview study and experimental results’”. In:

2020 11th International Conference on Information and
Communication Systems (ICICS). IEEE. 2020, pp. 243-248.

Matthew D. Zeiler and Rob Fergus. “Visualizing and
understanding convolutional networks”. In: European conference
on computer wvision. Ed. by D. Fleet et al. Springer, 2014,
pp- 818-833. 1SBN: 9783319105895. arXiv: 1311.2901.

Karen Simonyan and Andrew Zisserman. “Very Deep
Convolutional Networks for Large-Scale Image Recognition”.
In: 8rd International Conference on Learning Representations.
Ed. by Yoshua Bengio and Yann LeCun. Morgan Kaufmann
Publishers Inc., 2015, pp. 1-14. arXiv: arXiv:1409.1556v6. URL:
http://arxiv.org/abs/1409.1556.

Kaiming He et al. “Deep Residual Learning for Image
Recognition”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. IEEE. 2016, pp. 770-778. ISBN:
9781467388504. arXiv: 1612.03385. URL: https://doi.org/10.
1109/CVPR.2016.90.

Sergey Ioffe and Christian Szegedy. “Batch Normalization:
Accelerating Deep Network Training by Reducing Internal
Covariate Shift”. In: Proceedings of the 32nd International
Conference on Machine Learning. Ed. by Francis R Bach
and David M Blei. JMLR.org, 2015, pp. 448-456. ISBN:
9781510810587. arXiv: 1502.03167. URL: http://proceedings.
mlr.press/v37/ioffel5.html.

Shibani Santurkar et al. “How does batch normalization help
optimization?”’ In: Advances in neural information processing
systems 31 (2018).

Geoffrey E Hinton et al. “Improving neural networks by
preventing co-adaptation of feature detectors”. In: arXiv preprint
arXiv:1207.0580 (2012).

Nitish Srivastava et al. “Dropout: A simple way to prevent neural
networks from overfitting”. In: Journal of Machine Learning
Research 15.56 (2014), pp. 1929-1958. 1sSN: 15337928. URL: http:
//jmlr.org/papers/vi5/srivastavalda.html.

Diederik P Kingma and Jimmy Ba. “Adam: A method for
stochastic optimization”. In: arXiv preprint arXiv:1412.6980
(2014). URL: https://arxiv.org/abs/1412.6980.

136


https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/arXiv:1409.1556v6
http://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.03385
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1502.03167
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1412.6980

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

Andrea Dal Pozzolo et al. “Calibrating probability with
undersampling for unbalanced classification”. In: 2015 IEEE
Symposium  Series on  Computational Intelligence. 2015,
pp. 159-166.

Kaiming He et al. “Mask r-cnn”. In: Proceedings of the IEFEE
international conference on computer vision. 2017, pp. 2961-2969.

Barret Zoph et al. “Learning transferable architectures for
scalable image recognition”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2018,
pp. 8697-8710.

Xiaowei Huang et al. “Safety verification of deep neural networks”.
In: International conference on computer aided wverification.
Springer. 2017, pp. 3—29.

Sydney M Katz et al. “Verification of image-based neural network
controllers using generative models”. In: Journal of Aerospace
Information Systems 19.9 (2022), pp. 574-584.

Fuzhen Zhuang et al. “A comprehensive survey on transfer
learning”. In: Proceedings of the IEEE 109.1 (2020), pp. 43-76.

Srikanth Tammina. “Transfer learning using vgg-16 with
deep convolutional neural network for classifying images”. In:
International Journal of Scientific and Research Publications

(IJSRP) 9.10 (2019), pp. 143-150.

G Jignesh Chowdary et al. “Face mask detection using transfer
learning of inceptionv3”. In: International Conference on Big Data
Analytics. Springer. 2020, pp. 81-90.

Xiuyao Song et al. “Conditional anomaly detection”. In: IEEE
Transactions on knowledge and Data Engineering 19.5 (2007),
pp. 631-645.

Gwangbin Bae et al. “DigiFace-1M: 1 Million Digital Face Images
for Face Recognition”. In: 2028 IEEE Winter Conference on
Applications of Computer Vision (WACV). IEEE. 2023.

Ziwei Liu et al. “Deep learning face attributes in the wild”. In:
Proceedings of the IEEE International Conference on Computer
Vision. Vol. 2015 Inter. Dec. 2015, pp. 3730-3738. ISBN:
9781467383912. DOI: 10.1109/ICCV.2015.425. arXiv: 1411.
T7766.

Shuo Yang et al. “Wider Face: A Face Detection Benchmark”.
In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 5525-5533.

137


https://doi.org/10.1109/ICCV.2015.425
https://arxiv.org/abs/1411.7766
https://arxiv.org/abs/1411.7766

[129]

[130]

[131]

[132]

[133]

[134]

[135]

Mateusz Pabian, Dominik Rzepka, and Mirostaw Pawlak.
“Supervised Training of Siamese Spiking Neural Networks
with Earth Mover’s Distance”. In: ICASSP 2022 - 2022
IEEFE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2022, pp. 4233-4237. por: 10 . 1109 /
ICASSP43922.2022.9746630.

Sachin Kumar, Soumen Chakrabarti, and Shourya Roy. “Earth
Mover’s Distance Pooling over Siamese LSTMs for Automatic
Short Answer Grading.” In: IJCAI 2017, pp. 2046-2052.

Hasan Tercan, Alexandro Guajardo, and Tobias Meisen.
“Industrial transfer learning: Boosting machine learning in
production”. In: 2019 IEEE 17th international conference on
industrial informatics (INDIN). Vol. 1. IEEE. 2019, pp. 274-279.

Minyoung Huh, Pulkit Agrawal, and Alexei A Efros. “What
makes ImageNet good for transfer learning?” In: arXiv preprint
arXiv:1608.08614 (2016).

Olga Kurasova and Alma Molyté. “Quality of quantization and
visualization of vectors obtained by neural gas and self-organizing
map”. In: Informatica 22.1 (2011), pp. 115-134.

Julius Venskus. “Semi-supervised and Unsupervised Machine
Learning Methods for Sea Traffic Anomaly Detection”. PhD
thesis. Vilniaus universitetas, 2021.

C Manning and P Nayak. Introduction to Information Retrieval-
Evaluation. 2013.

138


https://doi.org/10.1109/ICASSP43922.2022.9746630
https://doi.org/10.1109/ICASSP43922.2022.9746630

IZanga

Mazmeninés prekybos savitarnos kasos padeda klientams greic¢iau
apsipirkti, o mazmenininkams — sumazinti kastus. Savitarnos kasy
skaiius pasaulyje 2019 m. sudaré apie 325 000 [4] ir auga 13,3 % [5]
kasmet. Vidutiniskai 7 prekes pirkiniy krepselyje ir vidutiniskai 1 400
operacijy kiekvienoje savitarnos kasoje per savaite sudaro apie 10 000
prekiy pardavimy. Jprastai didelés mazmeninés prekybos parduotuvés
gali turéti iki 30 000 prekiy asortimenta. Dauguma prekiy turi lengvai
atpazjstamus bruksninius kodus. Vis tik tipinéje 800-1200 kvadratiniy
metry ploto parduotuvéje yra 200-300 prekiy be bruksninio kodo
(siame tyrime naudotos 194 klasés). Asortimentas nuolat kei¢iasi dél
sezoniskumo ir tiekéjy pasikeitimy. DaZnai prekiy vizualinis panaSumas
mazai koreliuoja su priklausymu tam tikrai prekiy grupei. Pavyzdziui,
raudoni obuoliai yra panaSesni j pomidorus nei j Zalius obuolius, nors
raudoni ir zali obuoliai gali buti toje pacioje prekiy kategorijoje. Ivairiy
saldainiy rusiy panaSuma j kitus gaminius lemia vyniojamasis popierius.

57 pav. vaizduojamas prekés judéjimas atsiskaitant. Pirmiausia
klientas padeda pirkiniy krepselj (kairéje). Tada paima po vieng preke
is krepselio ir registruoja vienu i§ dviejy budy: nuskaito (prekes su
bruksninio kodo lipdukais, pvz., pieno pakuotes) arba pasirenka (be
bruksninio kodo, pvz., vaisius) i§ meniu, kurio struktura yra 3-5
lygiy hierarchinis medis. Dél sudétingo meniu ir daugelio panagiy
prekiy daznai pasirenkamos neteisingos prekeés, o klientai atsiskaitydami

Pirkiniy krepselis Svarstykliy zona Pakavimo zona
(kelios prekés) > (viena prekeé, > (kelios prekés)
tyrimo sritis)

57 paveikslas: Atsiskaitymo eiga.

139



uztrunka ilgiau. IS meniu iSsirinkus preke be bruksninio kodo, ji
pasveriama svarstyklémis (57 pav. Zalias staciakampis). Galiausiai,
uzregistraves preke, klientas perkelia ja j pakavimo zona (deSinéje).

Remiantis ECR savitarnos kasy ataskaita [6], kuri apémé 13
mazmenininky, maZmeninés prekybos parduotuvése, kuriose 50 %
operaciju atliekama savitarnos kasose, nuostoliai dél vagysCiy yra
75 % didesni. Tas pats tyrimas atskleide, kad 43,4 % visy pirkiniy
krepSeliy yra mneteisingai pasirinkty prekiy. Piktavaliski klientai
savitarnos kasomis piktnaudziauja jvairiais budais: brangiy prekiy
bruksninius kodus pakei¢ia pigesniy, o pigesnes prekes tycia renkasi is
meniu pasirinkimo saraso. Vagystés i§ parduotuvés jvyksta pasirinkus
netinkama preke, pakeitus bruksninj koda, nenuskenavus dalies prekiy
arba i8éjus nesumokeéjus. Mazmenininkai bando apsisaugoti nuo vagysciy
naudodami apsaugines svarstykles, kurios tinka fiksuoto svorio prekéms,
bet ne kintamo svorio, pvz., §vieZiems vaisiams ir darzovéms. Kai kurie
pritvirtina RFID tags Zymas ant didelés vertés prekiy, tadiau daznai
tai brangu ir nepraktiska, pvz., nesupakuoty vaisiy ir darzoviy atveju.
Apsaugos kameros, nors paprastai stebi savitarnos zong, generuoja per
daug filmuotos medziagos, kad apsaugos darbuotojai galéty jas stebéti
realiuoju laiku ir nustatyti vagystes.

Problemos aprasymas

Mazmeninés prekybos jmonés siekia iSspresti savitarnos kasose aktualias
problemas — vagystes ir ilgai trunkantj prekiy be bruksninio kodo
identifikavima. Sékmingi sprendimai supaprastinty prekiy pasirinkima
ir jspéty apie neteisingus prekiy pasirinkimus.  Nebutina visiskai
automatizuoti atsiskaitymo proceso, kaip parduotuvése be kasy ir
kasininky, tadiau siulomas sprendimas privalo buti ekonomiskas,
pageidautina pasikliauti tik viena kamera ir apsieiti be kitos papildomos
aparaturinés jrangos, pvz., galingos vaizdo plokstés. Prekiy atpazinimo
sprendimas turi buti visiSkai automatizuotas: bet kokia zmoniy saveika
bet kuriame etape (pvz., rankinis duomeny rinkinio valymas, Zyméjimas
ir t. t.) yra nepraktiSka dél daZno asortimento keitimosi (deél
sezoniskumo ir tiekéjy kaitos) ir didelio prekiy bei vaizdy skaiciaus.
Sprendimas turéty apimti prekiy vaizdy rinkima, naujy prekiy jtraukima,
vaizdy Zymeéjima vienos prekés zyma ir vaizdy, kuriuose prekés néra arba
ji blogai matoma, Salinima.

Duomeny aibé prekiy atpazinimo sprendimui turi atitikti savitarnos
kasy vaizdy ypatybes: netolygy prekiy pasiskirstyma, skirtinga kasy
apSvietima, dalis vaizdy turi buti uZdengti pirkéjy kuno dalimis.
Dauguma lyginamyjy duomeny aibiy (,ImageNet*, CIFAR[-10|-100],
MNIST) apima tik tuos vaizdus, kuriuose dominanciy objekty
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matomumas yra geras. Sintetinés mazmenineés prekybos prekiy duomeny
aibés, pvz., ,Fruits 360 |7], neatspindi vaizdy, kuriuos reikia atpazinti
savitarnos kasose; vargu ar galima pasiekti tiksly tokiy duomeny aibiy
atpazinimg mazmeninése parduotuveése.

Dideléje vaizdy dalyje yra kuno daliy (ranky, galvy), kurios i§
dalies ar visiskai uzdengia preke. Atpazinimo sekos pradZioje turi
buti vaizdy, kuriuose preké negali buti atpazjstama, atmetimo etapas.
Atmesti vaizdai neturi dalyvauti jokiuose tolesniuose etapuose, pvz.,
klasifikuojant prekes, kad buty lengviau pasirinkti, ar patikrinant kliento
pasirinkima.

Prekés pasirinkimui palengvinti sprendimas turi atrinkti viena
ar keleta panasiausiy prekiy i§ viso parduodamuy prekiy, neturinciy
bruksninio kodo, sarago. Reikia atsizvelgti j santykinai mazesnj retai
parduodamuy prekiy pardavimy skaiciy. Svarbus ne tik panaSiausios,
bet ir keliy (2-5) panaSiausiy prekiy klasifikavimo tikslumas (pvz.,
pasirinkimo saraSo meniu gali buti pateiktas sutrumpintas 1-5 prekiy
saraSas). Butina galimybé sprendima jdiegti j mazos galios, neturin¢ius
grafikos procesoriaus savitarnos kasy jrenginius.

Klientui pasirinkus preke i§ meniu, reikia patikrinti, ar vaizde
esanti prekeé atitinka kliento pasirinkima. Kadangi klienty pasirinkimas
apsiriboja meniu elementais (t. y. prekémis be bruksninio kodo),
pakanka atpazinti, ar vaizdas atitinka pasirinkta preke be bruksninio
kodo. Jei yra didelé neatitikimo tikimybé, apsaugos darbuotojas turi buti
ispéjamas vizualiai patvirtinti pasirinkimg. Toks sprendimas neleisty j
krepselj jsidéti brangaus gérimo butelio ir i§ meniu pasirinkti bet kokia
preke be bruksninio kodo. Taciau toks sprendimas neaptikty pakeisty
bruksniniy kody.

Tyrimo tikslas ir uzdaviniai

Tyrimo tikslas — pasiulyti ir iStirti automatizuota prekiy be bruksninio
kodo atpazinimo eiga mazmeninés prekybos maisto parduotuviy
savitarnos kasose. Tyrimo uzdaviniai:

e istirti surinktus savitarnos prekiy vaizdus tiek kiekybiskai, tiek
kokybiskai; pasiulyti schema duomeny aibei, kuri buty tinkama
neuroniniams tinklams mokyti, parengti. Schemoje turi buti
atsizvelgta ] tai, kad didelé vaizdy dalis yra tus¢ia arba apima
kliento kuno dalis, kurios uzdengia dalj prekes, kai kurios prekés
yra plastikiniuose maiSeliuose, o prekiy nuotrauky skai¢ius yra
i8kreiptas;

e pasiulyti metodus jvertinti vaizdo tinkamumg produkto
atpazjstamumui, patikrinti jy efektyvuma atliekant abliacijos
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tyrimus. Sukurti neuroninio tinklo architektura prekéms
klasifikuoti  savitarnos  kasy  vaizduose, palyginti  su
moderniausiomis architekturomis naudojant autentiskus
savitarnos kasy wvaizdus, jvertinti bendrinamuma panaSioms
vieSosioms duomeny aibéms. Siuloma architektura turi tikti mazos
galios, grafinés plokstés neturintiems savitarnos kasy jrenginiams.
Taip pat pasiulyti deterministinj ir skai¢iavimo poziuriu nasy
metoda patikrinti, ar kliento meniu pasirinkimas atitinka preke
ant svarstykliy, iSmatuoti jo tiksluma;

e pasiulyti prekiy grupavimo pagal panasuma metoda, kad buty
maksimaliai padidintas (pana8iy prekiy) grupés prognozavimo
tikslumas; jvertinti prognozavimo tikslumo padidéjimg lyginant su
panasiausios prekés prognozavimo tikslumu.

Moksliné svarba

Disertacija prisideda prie kompiuterine rega paremty prekiy atpazinimo
tyrimy mazmeninés prekybos maistu savitarnos kasy aplinkoje. Toliau
pateikiami pagrindiniai indéliai ir jy praktiné verte:

e pristatytas automatiskai atnaujinamas prekiy atpazinimo procesas.
Jis apima vaizdy rinkima, Zyméjima, filtravima, iSankstinj
apdorojimg ir klasifikatoriaus mokyma. Proceso etapai patvirtinti
abliacijos tyrimais. Pagrindiné nauda — galimybé daznai atnaujinti
modelj be Zmogaus jsikigimo, o tai svarbu dinamiskoje mazmeninés
prekybos aplinkoje;

e pristatytas  konvoliucinio neuroninio tinklo architekturos
projektavimo metodas, pritaikytas prekéms savitarnos kasy
vaizduose atpazinti. Lyginamieji bandymai atskleidé, kad metodas
yra toks pat tikslus arba tikslesnis uz gerai Zinomus tinklus, pvz.,
HEfficientNet” ir ,ResNet”, naudojant autentiska savitarnos kasy
vaizdy rinkinj ir vieSajj duomeny rinkinj ,Fruits 360“. Tai leidzia
efektyviai klasifikuoti naudojant mazesnius neuroninius tinklus,
tinkamus mazos galios savitarnos kasy jrenginiams;

e istirtas klasés patikros metodas naudojant atstumo nuo centro
tikslo funkcija, kurio tikslumas panaSus | vaizdy palyginimo
metody. PaZymeétina, kad atstumo nuo centro patikros metodo
skai¢iavimo efektyvumas pranoksta vaizdy lyginimo (,,Siamo®)
metodo, nes iSvengiama keliy vaizdy lyginimo ir atsitiktinio
vaizdy parinkimo. Bendrinamumas patvirtintas naudojant vieSajj
duomeny rinkinj ,Fruits 360“. Tai leidzia tiksliai patikrinti kliento
prekeés pasirinkimg taikant deterministinj algoritma;
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e iStirti trys algoritmai, siekiant jvertinti prekiy panaSuma ir

atitinkamai sugrupuoti prekes. Jie paremti klaidy indéliu
klasifikavimo matricoje, vidutiniu atstumu tarp aktyvacijy
ir SOM grynumo pageréjimu. Sie metodai supaprastina

prekeés pasirinkima, parodant panaSiausios grupés prekes klientui
pasirinkti vietoje viso pasirinkimo medZzio.

Duomenu paruoéimas
Vaizdy Zymeéjimas
Buvo naudojamos dviejy tipy Zymos:
e prekeés ID; Zymos naudojamos prekiy klasifikatoriui mokyti;

e prekés matomumo kategorijos; Zymos naudojamos prekés
matomumo Kklasifikatoriui, kuris véliau naudotas vaizdams su
prastai matomomis prekémis pasSalinti, mokyti.

Visi vaizdai automatiskai suzyméti prekiy Zymomis pagal
apsiperkanciy klienty pasirinkima,.

Dalis vaizdy rankiniu budu suzyméti matomumo lygio Zymomis.
Buvo naudojamos keturios ordinalinés zZymos (Q1, Q2, Q3, Q4) pagal
matoma prekeés dalj vaizde: Q1 turéjo iki 25 % matomuma, Q2 nuo
25 % iki 50 % ir t. t. Vaizdai su prekémis plastikiniuose maigeliuose
suzymeti atskiromis Zymomis deél neaiskumo, ar juose esancias prekes
pavyks atpazinti, suskirstant juos j ,.Bag"* (zmogui atpazjstami) ir ,BagR*
(neatpazjstami dél Sviesos atspindzio). Kiekvienos klasés pavyzdziai
pateikiami 21 lenteléje.

21 lentelé: Prekés matomumo klasés, pavyzdziai ir procentiné dalis.

|

32 % 22 % 15 % 21 % 7.3 % 2.6 %
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Prekiy taksonomija ir pardavimy daznis

Maisto parduotuviy asortimentg daugiausia sudaro prekés su bruksniniu
kodu, taciau keli Simtai prekiy rusiy jo neturi (nesupakuoti vaisiai,
darzovés, rieSutai, sveriami saldainiai ir pan.). Siame tyrime
nagrinéjamas prekiy be bruksninio kodo atpazinimas siekiant pagreitinti
prekeés pasirinkimg ir sumazinti neteisingy pirkéjy pasirinkimy skaiciy.
Surinkta duomeny aibe sudaro 26 637 vaizdai, priklausantys 194
prekéms. Duomeny aibé yra isbalansuota kaip parodyta 58 pav.: aibéje
yra 3 282 banany, 2 760 morky, 2 181 citriny vaizdai, o reciausiy prekiy
vaizdy yra tik po 3.

100

©

80

o

60

IS

40

Klasiy skaicius
Klasiy skaicius

N

20

o

0 1000 2000 3000 _6 20 40 60 80
Vaizdy kiekis visose klasése Vaizdy kiekis klasése (<100 vaizdy klaséje)

(a) (b)

58 paveikslas: Vaizdy kiekis pagal preke - bendras (a) ir prekiy, turin¢iy
iki 100 vaizdy (b).

Duomeny aibés pasiskirstymas pagal prekiy grupe pavaizduotas 59
pav. Pagal pardavima dominuoja ,Sviezi vaisiai ir darzoves‘ (87 %).
Pasiskirstymas pagal prekiy kiekj grupése tolygesnis.

Vaizdy skaicius pagal prekiy grupe Prekiy skaicius pagal prekiy grupe

Sviezi vaisiai ir darzovés
Saldainiai

DzZiovinti vaisiai ir rieSutai
Bandelés, spurgos, sausainiai

(a) (b)

59 paveikslas: Vaizdy kiekis pagal prekiy grupe (a) ir prekiy skaicius
pagal prekiy grupe (b).
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Egzistuojancios maisto prekiy vaizdy aibés

Vaizdy aibés, kurios atspindi realiai matomus vaizdus savitarnos kasose,
vieSai néra prieinamos arba jy néra. Kai kuriose aibése, kuriy
vaizdai panaSus ] savitarnos kasy vaizdus, didele dalj sudaro prekés
su bruksniniais kodais. Kitose vaizdai surinkti sterilioje aplinkoje, kur
prekés gerai matomos, neuzdengtos kuno dalimis, nejdétos j plastikinius
maiSelius.

Fruits 360 |7] i$ vieSai prieinamy aibiy panaSiausia j savitarnos kasy
vaizdus; prekés aibéje parduodamos be bruksninio kodo. Aibe sudaro 65
000 vaizdy ir 95 prekeés. Vis tik , Fruits 360“ [7] apima tik maZza dalj prekiy
be bruksniniy kody - tik tam tikras kategorijos , Vaisiai ir darzovés” prekes
be darzoviy. Aibéje néra saldainiy, dziovinty vaisiy, sausainiy ir pan. 60
pav. palyginti §io tyrimo metu surinktos aibés ir , Fruits 360“ [7] vaizdai.
22 lenteléje statistiskai palygintos Sio tyrimo metu surinktos ir isvalytos
bei ,Fruits 360¢ [7] aibés.

Sio

tyrimo

Fruits
360

60 paveikslas: Vaizdy palyginimas Sio tyrimo metu surinktos aibeés
(virguje) ir ,Fruits 360“ (apacioje).
22 lentelé: Sio tyrimo metu surinkta aibé ir ,Fruits 360"
Sis tyrimas ,Fruits 360
Klasés 194 131
I8 viso vaizdy ~26 600 ~90 000
(pries balansavima)
Vaizdy klaséje:
Min./Vid./Maks. 3 /137 /3111 | 396 / 690 / 1312

RPC: A Large-Scale Retail Product Dataset [35] aibe¢ sudaro
83 000 vaizdy ir 200 prekiy. Vaizdai surinkti sterilioje aplinkoje.
MVTec Densely Segmented Supermarket Dataset (MVTec D2S)
[34] aibe sudaro 21 000 vaizdy ir 60 prekiy, t. y. maza dalis savitarnos
kasose parduodamy prekiy be bruksninio kodo. GroZi-120 [9] aibe
sudaro 12 000 vaizdy ir 120 prekiy, surinkty dalinai i interneto. Keleta
maZesniy aibiy straipsniuose [105], [106] sudaro iki 10 000 vaizdy.
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Duomeny aibés sudarymas masininiam mokymui

23 lenteléje suraSytos vaizdy aibeés, naudotos Siame tyrime. 61 pav.
paaiskinta aibiy sukurimo eiga.

23 lentelé: Duomeny aibés naudotos atpazinimo eigoje.

. = Vaizdy skaicius
Nr. | Kaip gauta Zymos Kam naud. 4
Original. Balans.
#1 | Automatiskai | Prekés 1D - 26,6 tukst. -
kasoje
#2| Rankomis | Matomumo | Matomumui | 6 tukst. | 11,5 tukst.
suzymeéta kategorija | klasifikuoti
dalis #1
#3 | Filtruota #1 | Prekés ID Prekéms | 18,1 tukst. | 500 tukst.
naudojant klasifikuoti,
matomumo verifikuoti,
klasifikatoriy grupuoti
1) Auto-rinkimas
savitarnos kasoje
nusistovéjus svoriui Mat.omumo
Aibé #1 {iltras Aibé #3
(Nevalyta) (I8valyta)
Zymos: prekés ID Zymos: prekés ID
Rankinis #1 zyméjimas prekés matomumo Matomumo
Fymomis [Q1-Q4, Bag, BagR] prognonzavimas
Aibé #2 (Nevalyta) | Maomimo
Zymos: prekes - mokymas >

matomumas

Matomumo klasifikatorius

61 paveikslas: Tinkamai mokyti duomeny aibei paruosti (#3) i§
automatiskai surinktos aibés (#1), kurioje didelé dalis vaizdy yra prastos
kokybeés, reikalinga pagalbiné aibé (#2), kurioje vaizdai suzymeéti prekiy
matomumo zZymomis.
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Metodai

Periodiskai vykdoma prekiy atpaZinimo proceso automatizuota dalis
(pazymeéta zalsvai 62 pav.) apima vaizdy rinkima, Zyméjima pagal
klienty pasirinktas prekes, prastai matomy prekiy vaizdy Salinima,
modeliy mokyma. Schemos apacioje matomumo klasifikatorius mokomas
naudojant matomumo Zzymas. Jo pagrindinés funkcijos yra filtruoti
automatiskai surinktag duomeny rinkinj pries mokyma ir jvertinti prekés
matomuma prie§ klasifikavima.  Matomumo klasifikatorius maziau
priklauso nuo prekiy saraso ar iSvaizdos pokyciy, todél nereikalauja

periodinio mokymo. Savitarmos
Pasirinkta preké personalas
R -

Labiausiai tikétina preké, prekiy panasumo grupé Prekiy klasifikatorius ~
PR L L L L e L e e e e e PP e LT EE EE T LT ) - Prekiy verifikatorius 8
H [Panasumo grupés ®
@as : 1‘ Periodinis, visi§kai automatinis vaizdy rinkimas,
Prekés zyméjimas, filtravimas, modeliy mokymas
pasirinkima
i meniu )
l Matomumo o .
; fitras __ Vaizdai su gorai
«] Visi vaizdai Tl ‘o] Masininio
&N, ———————————> —_—> SN, > mokymo
-3 Sy uzduotys
AN AN Artefaktai:
Vaizdy aibé Vaizdy aibé Prekiy klasifikatorius
(nevalyta) T (8valyta) Prekiy verifikatorius
Zymos: prekiy ID Zymos: prekiy ID Panasumo grupés
Prekés matomumo prognozé
Rankinis '
matomumo 7, -
Zyméjimas L\
Prekeés

matomumo
Zymos

62 paveikslas: AtpaZinimo proceso jgyvendinimas gamyboje.
Vaizdo tinkamumas prekei atpazinti

Turint duomeny rinkinj, suzyméta 6 matomumo Zymomis (#2 23
lenteléje), ir siekiant rasti geriausia atskyrimo slenkstj tarp matomy ir
nematomy prekiy vaizduose, duomeny zZymos priskirtos visais jmanomais
budais [Matoma; Nematoma| kategorijoms, kaip parodyta 63 pav.

NEMATOMA
MATOMA

63 paveikslas: Galimi prekés matomumo Zymuy grupavimo budai
(raudonos linijos).
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Prekiy klasifikavimo etapai, architekturos parinkimas

Siekiant klasifikuoti prekes savitarnos kasy nuotraukose, buvo
nagrinéjami $ie klausimai: 1) kaip prekés matomumo klasifikatoriai
veikia prekiy klasifikavimo tiksluma? 2) kokia technika geriausia
tus¢ioms nuotraukoms filtruoti?  3) kaip nustatyti abiejy Zingsniy
reikalinguma atliekant abliacijos tyrima? 4) kaip nustatyti optimalia
architektura palyginant gerai Zinomas neuroniniy tinkly architekturas
su Siame tyrime sukurta ir savitarnos kasy nuotraukoms optimizuota
architektura?

EfficientNet
Modelio ResNet-50, )
arch. Autoenkoderis,
Autoriaus pasidlyta

— Prastai -
Automat. Tudciy Padalini- Klasiy
ey ) matomy . Aot .
suzymeti vaizdy s mas j mok., balan- Mokymas Validavimas Testavimas
vaizdai %alinimas st valid. test, savimas
Salinimas,
194 klasés Balansuota, Matomumo Afininé trnsfrm.,
Siamo, slenksciai kampy istampymas

Vienos klasés

\
Hiperparametry keitimas
< ir eksperimento kartojimas

64 paveikslas: Klasifikavimo eksperimento eiga.

Eksperimentas (64 pav.) apima du nestandartinius etapus: tus¢iy
vaizdy ir prasto prekiy matomumo vaizdy pasalinima. Norint nustatyti
§iy etapy naudinguma, atlikti abliacijos tyrimai, pasalinant kiekviena
i§ etapy. Sie du etapai galéty buti igyvendinti vienu klasifikatoriumi,
nes prekiy matomumo klasifikatoriai buvo mokomi naudojant kai kurias
tuscias nuotraukas (Q1 kategorija). Vis tik tuS¢ioms nuotraukoms
atskirti tinka ir paprastesnés, galimai didesnio tikslumo technikos.

Modelio architektura atrinkta tiriant keturias architekturas:
sResNet-50¢ [111], ,EfficientNet* [18|, autoenkoderiais pagrista ir
Siame tyrime pasiulyta architektura. ,ResNet-50“ pasirinkta dél
gebéjimo puikiai prisitaikyti prie maZesniy duomeny aibiy naudojant
is anksto apmokytus modelius [118|, [119]. ,EfficientNet* pasirinkta
dél sékmés klasifikuojant ,ImageNet“ ir palyginus mazo dydzio
(5,3 M parametry), tinkamo naudoti maZzo galingumo savitarnos
kasose, vaizdus. Autoenkoderiais pagrjstos architekturos labai tinka
save priziurintiems mokymams, kai truksta suzymeéty duomeny.
Sudétingesnés ,EfficientNet* versijos B1-B7 ir kitos architekturos, kaip
VGG (133 M parametry), nebuvo nagrinéjamos dél ilgos mokymo
trukmeés ir netinkamumo mazo galingumo savitarnos jrenginiams.
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Pirkéjo pasirinkimo verifikavimas

Norint patikrinti, ar pirkéjo pasirinkimas atitinka preke ant svarstykliy,
buvo siekiama: 1) palyginti klasés prototipu pagristy patikros techniky
(,Centre-Loss“ [2], ,Proxy-NCA® [3]|) tiksluma su placiai verifikavimui
naudojamomis kontrastinio vaizdy palyginimo technikomis (,Siamo*
[28], ,Triplet* [54]) naudojant savitarnos kasy vaizdy aibe ir panaSias
vaizdy aibes; 2) istirti, ar euklidiniam atstumui alternatyvus tipai galéty
pagerinti vaizdy panasumo matavima.

,Centre-Loss*  architektura turi dvilype tikslo funkcija ir dvi
isvestis (65 pav.): ,Softmax®* ir ,Centre-Loss* sluoksnj, kaip nurodyta
straipsnyje [2]. Nors verifikuoti naudojamas atstumas nuo klasés centro
gaunamas i§ ,Centre-Loss* sluoksnio, ,Softmax“ sluoksnis reikalingas
mokymo metu klasiy atskiriamumui uztikrinti.

l'T ' H ' ; Softmax
L : | luoksni
=4~ Klasifika- ' Papild. ! sluoksnis
1
;
1
—
1

» toriaus —», tankus
pagrindas 1 sluoksnis

Centre-Loss
sluoksnis

65 paveikslas: ,Centre-Loss modelio architektura.

Siekiant iSaiskinti tinkamg atstumo tipg, tyrimo metu buvo
eksperimentuojama ne tik su euklidiniu, bet ir su kitais atstumo
tipais: manhatano, minkovskio ir kosinuso. Minkovskio atstumo p
reikdmeés buvo ribojamos diapazone [1,4]. Kiti atstumo tipai, tokie
kaip Hammingo, Jaccardo ir Dice, netirti dél savo netinkamumo vertinti
nebinarinius atstumus.

Mokymo metu ,Centre-Loss” sluoksnyje klasiy centrai atnaujinami,
kaip parodyta 17 lygtyje.

Centras = Centras + a x (Aktyvacijos — Centras), (17)
kur:

Centras yra tam tikros klasés centras € R,

Activations yra tam tikros klasés duomeny aktyvacijos € R,

« yra mokymosi koeficientas,

cnt yra neurony skaicius pries ,Centre-Loss“ esan¢iame sluoksnyje.
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Prekiy grupavimas pagal panasuma

Siekiant sugrupuoti prekes taip, kad klasifikuoti i grupes buty galima
kuo tiksliau, buvo bandoma: 1) nustatyti, kaip reikia lyginti vaizdy
klases, siekiant maksimalaus grupiy klasifikavimo tikslumo, 2) klasifiuoti
i grupes (pagal panasuma) naudojant duomenis, suZzymeétus (a) grupiy
zymomis ar (b) atskiry prekiy zZymomis, priskiriant labiausiai tikétinos
prekés grupe. Sio tyrimo iSvados taikomos sritims, kur 1) vaizdy
klasifikavimo tikslumas neatitinka minimaliy reikalavimy ir 2) yra
naudinga spéti panasiy klasiy grupe. Vienas i8 pavyzdZiy — mazmeninés
prekybos savitarnos kasy prekiy pasirinkimo meniu.

Individualiy Klasifikatorius -
prekiy Modelio mokymas individualiy
vaizdy aibé prekiy
» Metrikos -
hipotetiSkai

Y

Pana$umo matai: ) suliety

A Prekiy
Klaidy jnasas o

" suliejimo
Atstumas tarp aktyvacijy tvarka
SOM grynumas
Grupavimas pagal prekiy panasuma:

\ 4 l

. . . . Metrikos -
Prel.(lq 9ruPlu___ Modelio mokymas KIaSIfI-katorll.Js i tikrai
vaizdy aibé prekiy grupiy suliety

66 paveikslas: Klasifikatoriy palyginimas apmokius naudojant grupiy
Zymas ir individualiy prekiy Zymas.

Grupavimo tyrimo eiga pavaizduota 66 pav. Zingsnis Klasifikatorius
—individualios prekés yra prekiy klasifikatorius. Tarpklasinis panaSumas

nustatomas naudojant tris skirtingus metodus: ,Klaidos indélis
klasifikavimo matricoje”, ,Vidutinis atstumas tarp aktyvacijy“ ir ,SOM
grynumas". Remiantis 8iais metodais, sukuriama aglomeracinio

klasterizavimo schema, nurodanti klasiy susiliejimo tvarka pagal
panaSuma (Produkty susiliejimo tvarka). Klasifikatoriai - prekiy
grupés prognozuoja vaizdo priklausyma tam tikrai prekiy grupei. Visi
klasifikatoriai yra vienodos architekturos, iSskyrus paskutinj ,Softmax®
sluoksnj (skiriasi tik neurony skai¢iumi). Grupiy klasifikatoriai yra
identiski atskiry prekiy klasifikatoriams.  Rodikliai - individualios
prekés pagal prognozuojama preke nustato prekiy grupe ir iSmatuoja
klasifikavimo } grupes rodiklius (tikslumas, F-rodiklis). Rodikliai -
sulietos prekés iSmatuoja klasifikavimo j prekiy grupes rodiklius.
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Rezultatai

Matomuy ir nematomy prekiy atskyrimas

Galutiné tinklo architektura pavaizduota 67 pav. Eksperimentai su
maziau konvoliuciniy ir tankiy sluoksniy lémé didesnj mokymo aibés
klaidy skai¢iy; daugiau bet kurios rusies sluoksniy nepadéjo sumazinti
mokymo aibés klaidy.

(18sk.BI.6):

lokstinimas

= )

Konv. blokas 1 Konv. blokai 2-7 Tankus 1 Tankus 2 Tankus 3

Maks. telkimas
15pl
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Aktyvacija: Relu
(dydis: 2, Suolis: 2)
VisiSkai sujungti
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v
o
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v
=
x
N
w
()
&
w
Konvol. filtrai (3x3)

Pagrindas

67 paveikslas: Galutiné modelio architektura.

Modeliy kokybé buvo vertinama pagal tai, kaip gerai jie atskiria
vaizdus su geriau matomomis prekémis nuo vaizdy su blogiau
matomomis. 24 lenteléje pateikiamos metrikos visiems leistiniems
slenks¢iams.

24 lentelé: Gerai ir blogai matomy prekiy atskyrimo F-rodiklis ir kitos
metrikos, leistinais budais grupuojant matomumo Zymas.

Matomumo Zymos
g
2 8 £ o
= | 5| 3| E
Matoma Nematoma 'g .(—i .’E é‘
0 = b3 -
| & | | <
ol
Q2, Q3, Q4, Bag, BagR Q1 0,906 | 0,874 (0,931 | 0,883
Q2, Q3, Q4, Bag Q1, BagR 0,895 | 0,86 |0,897|0,892
Q2, Q3, Q4 Q1, Bag, BagR 0,854 {0,826 (0,839 0,869
Q3, Q4, Bag, BagR Q1, Q2 0,793 | 0,78 [0,707|0,903
Q3, Q4, Bag Q1, Q2, BagR 0,781 10,794 (0,732 0,837
Q3, Q4 Q1, Q2, Bag, BagR | 0,723 | 0,752 0,606 | 0,895
Q4, Bag, BagR Q1, Q2, Q3 0,667 {0,762 |0,581|0,784
Q4, Bag Q1, Q2, Q3, BagR 0,661 {0,782(0,581|0,766
Q4 Q1, Q2, Q3, Bag, BagR | 0,565 |0,757|0,437| 0,8
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Prekiy klasifikavimas

Klasifikavimo tyrimo rezultatai pateikti 25 lenteléje. Pasiulytos eigos
prekiy klasifikavimo tikslumas 80,5 % + 1,2 % palygintas su tikslumu
naudojant kitas architekturas ir nenaudojant vieno i§ filtravimo etapy:
tusciy vaizdy ar vaizdy su prastal matomomis prekémis.

25 lentelé: Pasiulytos atpazinimo eigos ir alternatyviy architektury bei
abliacijos tyrimy tikslumo lyginimas.

Alternatyvios Abliacijos
architekturos tyrimai

1

Tikslumas
Pasiulyta eiga
EffiecientNet BO
Resnet-50
Auto-enkoderis

§ti pasSalinti
Nematomi pasalint

Vidurkis | 80,5 % | 80,2 % | 72,9 % | 581 % | 79,1 % | 78,8 %
Dispersija | 1,2 % 24% | 1.9% | 25% | 08% | 2,0%

Panasiausio vieSso duomeny rinkinio ,Fruits 360 [7] klasifikavimo
rezultatai naudojant autoriaus architektura palyginti su kity autoriy
darbais 26 lenteléje. Sio tyrimo pasiulyta eiga parodé geresnj arba
tokj patj tiksluma, kaip ir kity autoriy. Tai rodo Sio tyrimo metodo
bendrinamumg kitiems palyginamiems duomeny rinkiniams.

26 lentelé: Lyginimas su kity autoriy darbais naudojant ,Fruits 360“
aibe.

Metodas Tikslumas, %
[17] 95,7
[16] 98,7
[15] 99,6
Pasiulyta eiga 99,6

Klasifikavimo rezultatai naudojant §io tyrimo metu surinkta
duomeny aibe ir ,Fruits 360 palyginti 27 lenteléje.

27 lentelé: Tikslumas: Sio tyrimo metu surinkta duomeny aibé ir , Fruits
360“. *atlikta 10 eksperimenty.

Duomeny aibé | Tikslumas, %
Autoriaus surinkta 80,0-83,4*
HEruits 360 99.6

152



Pirkéjo prekeés pasirinkimo patikrinimas

Pagrindinis rezultatas yra dviejy skirtingy klasés tikrinimo metody -
vaizdy palyginimu (,,Siamo“, , Triplet®) ir klasés prototipu (,,Centre-Loss®,
,Proxy-NCA“) pagristy - tikslumo palyginimas. 28 lenteléje pateikta
ROC AUC ir EER visiems tirtiems tinkly tipams. PaZzymétina, kad visy
tipy tinkly tikslumo skirtumai yra nezymus. Tyrime iSnagrinéty jvairiy

28 lentelé: Verifikavimo ROC AUC ir EER pagal tinklo tipa.

Tinklo tipas ROC AUC EER

Proxy-NCA 0,985 0,054
Siamo 0,981 0,063
Triplet 0,980 0,060
Centre-Loss 0,979 0,073

atstumy tipy poveikis tikslumui pateiktas 29 ir 30 lentelése. ,Siamo* ir
, Iriplet” tinkluose visi atstumuy tipai rodé panasy rezultata, iSskyrus Siek
tiek blogesnj kosinuso atstuma ,, Triplet” tinkle. ,Centre-Loss* modelyje
dauguma atstumy tipy (kosinuso, manhatano, euklido ir minkovskio)
rodé panasius rezultatus, nors su aukstesnémis minkovskio p reikSmeémis
(p=3, 4) rezultatas prastesnis.

29 lentelé: Verifikavimo ROC AUC pagal atstumo tipa.

Tinklo tipas

Atstumo tipas Proxy-NCA Centre-Loss Siam. Triplet

Manhatano 0,985 0,962 0,981 0,971
Euklido 0,984 0,979 0,980 0,980
Minkovskio (p=3) 0,984 0,948 0,981 0,980
Minkovskio (p=4) 0,983 0,839 0,980 0,979
Kosinuso 0,942 0,961 0,981 0913

30 lentelé: Verifikavimo EER pagal atstumo tipa.

Tinklo tipas

Atstumo tipas Proxy-NCA Centre-Loss Siam. Triplet

Manhatano 0,054 0,099 0,063 0,078
Euklido 0,047 0,073 0,065 0,060
Minkovskio (p=3) 0,050 0,121 0,063 0,061
Minkovskio (p=4) 0,051 0,241 0,064 0,064
Kosinuso 0,104 0,095 0,062 0,116
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Verifikavimo ,Centre-Loss* architektura (65 pav.) turi ,Softmax®
sluoksnj, kuris gali buti naudojamas produktams Kklasifikuoti.
Klasifikatorius (be ,Centre-Loss“) pasieké 73,2 % tiksluma validavimo
aibéje (mélyna linija 68 pav.), taciau su ,Centre-Loss* (oranziné linija)
prekiy klasifikavimo tikslumas islieka mazdaug toks pat. Tai rodo, kad
tas pats tinklas gali atlikti dvi uzduotis neprarandant tikslumo: prekiy
klasifikavima ir pirkéjo pasirinktos prekés verifikavimg.

Klasifikatoriaus tikslumas pagal neurony skaiciy CL sluoksnyje

Klasifikatorius be Centre-Loss

Validavimo tikslumas, %

N T @ e o ¥ @ @
2 8 & & &

512
768
1024
1536
2048

68 paveikslas: Klasifikavimo tikslumo priklausomybé nuo neurony
skaiciaus prie§ ,Centre-Loss* esan¢iame sluoksnyje (oranziné linija);
palyginimas su klasikiniu klasifikatoriumi be ,Centre-Loss* (mélyna
linija).

Metodo tikslumas jvertintas naudojant ,Fruits 360" duomeny aibe [7]:
kiekvieno tinklo tipo modeliai (,Centre-Loss®, ,,Proxy-NCA*, ,Siamese" ir
,Triplet®) apmokyti su ,Fruits 360“. ,Fruits 360* prekés patikrinimo ROC
kreivés pateiktos 69a pav., o ROC AUC palyginimas tarp ,,Fruits 360* ir
autoriaus surinktos duomeny aibés pateiktas 69b pav. Dauguma metody
parodé geresnj veikima su ,Fruits 360° dél Svariy, sterilioje aplinkoje
surinkty vaizdy.

Fruits 360, Verifikavimo ROC AUC pagal neuroninio tinklo tipg Verifikavimo ROC AUC pagal vaizdy aibg
1.04 mmm Sio tyrimo metu surinkta  mmm Fruits 360
0.8 4 1.000
0 1.000
K]
2 o
= o
S @‘“ﬁ
= & o
E & El
s 3 2
-} & o 0.990
g & <]
< 0.4+ ¥ 2
2
@
@ AUC = f (tinklo tipas)
0.2 —— Centre-Loss : 1.000 0.980
——  Proxy-NCA: 0.985
— Triplet : 0.997
0.0 ——  Siamese:0.976
0.0 02 0.4 0.6 08 10 0.970

Klaidingy teigiamy (FP) dalis Centre-Loss Proxy-NCA siamese Triplet

(a) ,Fruits 360 aibé, patikrinimo (b) Patikrinimo rezultatai naudojant

ROC pagal tinklo tipa. Sio tyrimo metu surinkta aibe ir
LFruits 360%. [7]

69 paveikslas: Verifikavimo rezultaty palyginimas naudojant ,Fruits 360

[7] ir 8io tyrimo metu surinkta aibe.
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Vaizdy klasifikavimas j panasiy prekiy grupes
Sio tyrimo rezultatai:

e nustatytas efektyviausias budas klasiy panaSumui nustatyti.
Remiantis panasumu, klasés sujungiamos ] ,klasiy grupes“ ir
matuojamos klasifikavimo j grupes metrikos;

e klasifikatoriai, apmokyti naudojant atskiry klasiy Zymas, palyginti
su klasifikatoriais, apmokytais naudojant klasiy grupiy zymas, kur
klasés sujungtos j grupes pagal panasSuma.

70 pav. pateikiamas klasifikavimo metriky lyginimas: tikslumas
(kairéje) ir F-rodiklis (desinéje). Taskai rodo klasifikatoriy, apmokyty
naudojant grupiy zymas, metrikas; kreivés - klasifikatoriy, apmokyty
naudojant individualiy prekiy Zymas, metrikas. Pastarieji klasifikatoriai
daZniausiai pranoksta pirmuosius, t. y. norint tiksliai prognozuoti
grupe, klasifikatorius reikia mokyti naudojant individualiy prekiy Zymas.
Grafiko spalvos reiskia skirtingus prekiy panasumo matavimo budus.
SOM grynumo pageréjimo* budas paprastai pranoksta kitus, kai
svarbu optimizuoti tiksluma (pvz., mazmeninés prekybos savitarnos
kasose, kur klasiy pasiskirstymas yra netolygus). ,Klaidos jnago
klasifikavimo matricoje budas paprastai pranoksta kitus, kai svarbiausia
yra optimizuoti F-rodiklj.

Tikslumas suliejant klases F-rodiklis suliejant klases

1.000 —— Atstumas tarp aktyvacijy 1.0 P —— Atstumas tarp aktyvacijy
Klaidy jnasas Klaidy jnasas
—— SOM grynumas 09 —— SOM grynumas

—— Hierarchija pagal briksninj koda —— Hierarchija pagal briksninj koda

0.975

0.950

0.925
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o
o
=3
S
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o
o
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o
[

0.850

o
=

0.825 °o®

o
w
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0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
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70 paveikslas: Klasifikavimo j panasiy klasiy grupes metrikos: taskai rodo

klasifikatoriy, apmokyty naudojant grupiy Zymas, metrikas, o kreiveés -
klasifikatoriy, apmokyty naudojant individualiy prekiy Zymas, metrikas.

155



Bendrosios iSvados

1. Dviejy klasiy tustumo klasifikatorius tusciy vaizdy Salinimo etape
pasalino tusc¢ius vaizdus su didziuliu 98,8 % tikslumu. Kiti tustumo
metodai (,,Siamo“, OCC) pasirodé praséiau. Vaizdai su geru
ir blogu prekés matomumu atskirti naudojant eksperimentiskai
nustatyta atskyrimo slenkstj, kurio F-rodiklis yra 90,6 %.

2. Eksperimentai parodé, kad CLAHE yra veiksmingiausias budas
sumazinti kasy apsvietimo skirtumus. Didesnis variabilumas
augmentavus vaizdus naudojant ir afinine, ir perspektyvine
transformacija 1,3 %-2,8 % pralenké tik afinines transformacijas
ir 1,3 %-3,9 % — tik perspektyvines transformacijas. Naudojant
tris perspektyvas, rezultatai buvo geresni vidutiniskai 1,1 % nei
naudojant vieng perspektyva.

3. Produkty klasifikavimo eksperimentai parodé, kad pasiulyta 7
konvoliuciniy ir 3 tankiy sluoksniy neuroninio tinklo architektura
(tikslumas 80,5 % + 1,2 %), apmokyta naudojant savitarnos kasy
vaizdus, pralenké gerai Zinomas architekturas: ,EfficientNet B0“
(80,2 % + 1,2 %), ,ResNet-50¢ (58 % =+ 2,5 %). Pasiulytos
architekturos nasumas pablogéja paSalinus bet kokj konvoliucinj
ar tanky sluoksnj ir nebegeréja pridedant sluoksnius. Siulomos
architekturos tikslumas naudojant sintetinj rinkinj ,Fruits 360
pasiekia panasy 99,6 % tiksluma kaip ir kity autoriy darbuose.

4. Klasés patikrinimo tikslumas klasés prototipu (,Proxy-NCA®,
,Centre-Loss") ir vaizdy palyginimu (,,Siamo®, , Triplet”) paremtais
metodais buvo panagus: ,Proxy-NCA“ ROC AUC 0,985, ,Centre-
Loss® 0,979 ir ,Siamo* 0,981, ,Triplet* 0,980; ,Proxy-NCA*
EER 0,047, ,Centre-Loss”“ 0,073, palyginti su ,Siamo* 0,063 ir
,Iriplet” 0,060. FEuklidinis atstumas tikslo funkcijose tikslumu
nenusileido kitiems atstumo tipams (manhatano, minkovskio,
kosinuso), nors gretimos minkovskio p reik§meés (p = 1 manhatano,
p = 3) buvo 8alia. Taikant ,Centre-Loss“ metoda, naudojant
Euklido atstuma, pasiektas 0,979 ROC AUC, o naudojant
gretimas minkovskio p vertes buvo 0,962 (p = 1 manhatano)
ir 0,948 (p = 3). Eksperimentai su ,Centre-Loss“ architektura
atskleidé, kad prieSpaskutinis sluoksnis labiausiai tinka klasés
prototipui formuoti. PrieSpaskutinio sluoksnio dydis prisotinamas
priklausomai nuo minkovskio p reik§més: didesnéms minkovskio p
reikSméms prisotinti reikia daugiau neurony. Pasiulyta ,Centre-
Loss* tikslo funkcijos modifikacija, siekiant padidinti atstuma, tarp
klasiy centry, teigiamo rezultato nedave.
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5. Tas pats ,Centre-Loss“ arhitekturos neuroninis tinklas yra

tinkamas dviem skirtingoms uzduotims: prekéms klasifikuoti ir
pasirinktai prekei patikrinti. Taip yra dél netikéto atradimo,
kad dvilypeés tikslo funkcijos naudojimas nepablogino klasifikavimo
tikslumo: 73,2 % +0,8 % (palyginti su 73,2 % be ,Centre-Loss").

. Produkty grupavimo pagal panaSuma eksperimentai, kad
klasifikavimo j grupes tikslumas buty didZiausias, parodé, kad
,SOM grynumo® budas paprastai pagerino tikslumag 1,2 % + 1,5 %,
nors jo pranaSumas buvo mazesnis esant didesniam grupiy skaiciui.
,Klaidy klasifikavimo matricoje“ panaSumo metodas pagerino F-
rodiklj 8,9 % + 7,7 %. Geriausias prekiy panaSumo nustatymo
budas priklauso nuo grupiy skai¢iaus ir naudojamos metrikos
(tikslumo ar F-rodiklio). Klasifikatoriai, apmokyti naudojant
individualiy prekiy Zymas, pranoksta klasifikatorius, apmokytus
naudojant grupiy Zzymas: individualiy Kklasifikatoriy tikslumas
buvo 1,8 % + 1,5 %, o F-rodiklis buvo 10,3 % =+ 9,0 % didesnis
nei grupiniy klasifikatoriy tikslumas.
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