https://doi.org/10.15388 /vu.thesis.618
https://orcid.org/0000-0001-6530-0176

VILNIUS UNIVERSITY

Saulius Tautvaisas

Scalable Bayesian Global
Optimization of Black-Box Functions

DOCTORAL DISSERTATION

Natural Sciences,
Informatics (N 009)

VILNIUS 2024

This dissertation was written between 2019 and 2023 at Vilnius University.

Academic supervisor:
Prof. Dr. Julius Zilinskas (Vilnius University, Natural Sciences, Informatics
- N 009).

Defence Panel:
Chair — Prof. Habil. Dr. Gintautas Dzemyda (Vilnius University,
Natural Sciences, Informatics — N 009).

Members:

Prof. Dr. Audrius Kabasinskas (Kaunas University of Technology,
Natural Sciences, Informatics — N 009).

Assoc. Prof. Dr. Algirdas Lancinskas (Vilnius University, Natural
Sciences, Informatics — N 009).

Prof. Dr. Dmitrij Se$ok (Vilnius Gediminas Technical University,
Natural Sciences, Informatics — N 009).

Prof. Habil. Dr. Anatoly Zhigljavsky (Cardiff University, Natural
Sciences, Mathematics — N 001).

The dissertation shall be defended at a public meeting of the Dissertation
Defence Panel at 12 p.m. on 26-th June 2024 in Room 203 at the Institute
of Data Science and Digital Technologies of Vilnius University. Address:
Akademijos g. 4, LT-04812, Vilnius, Lithuania.

The text of this dissertation can be accessed at the Library of Vilnius
University and on the website of Vilnius University:
| www.vu.lt/It/naujienos /ivykiu-kalendorius|

https://doi.org/10.15388 /vu.thesis.618
https://orcid.org/0000-0001-6530-0176

VILNIAUS UNIVERSITETAS

Saulius Tautvaisas

Bajeso metodai didelio masto
juodosios dézés globaliajam
optimizavimul

DAKTARO DISERTACIJA

Gamtos mokslai,
Informatika (N 009)

VILNIUS 2024

Disertacija rengta 2019 — 2023 metais Vilniaus universitete.

Mokslinis vadovas:
prof. dr. Julius Zilinskas (Vilniaus universitetas, gamtos mokslai,
informatika — N 009).

Gynimo taryba:
Pirmininkas — prof. habil. dr. Gintautas Dzemyda (Vilniaus uni-
versitetas, gamtos mokslai, informatika — N 009).

Nariai:

prof. dr. Audrius Kabasinskas (Kauno technologijos universitetas,
gamtos mokslai, informatika — N 009).

doc. dr. Algirdas Lan¢inskas (Vilniaus universitetas, gamtos mokslai,
informatika — N 009).

prof. dr. Dmitrij Se$ok (Vilniaus Gedimino technikos universitetas,
gamtos mokslai, informatika — N 009).

prof. habil. dr. Anatoly Zhigljavsky (Kardifo universitetas, Jungtine
Karalysté, gamtos mokslai, matematika -— N 001).

Disertacija ginama vieSame Gynimo tarybos posédyje 2024 m. birZelio
26 d. 12 val. Vilniaus universiteto Duomenu mokslo ir skaitmeniniuy
technologiju institute Vilniuje, Akademijos g. 4, 203 auditorijoje.

Disertacija galima perZzitiréti Vilniaus universiteto bibliotekoje ir Vilniaus
universiteto interneto svetainéje adresu:
| www.vu.lt/It/naujienos/ivykiu-kalendorius|

Table of Contents

[Notationl 7
1 _INTRODUCTION 18
1.1 Research Context an ivation 18
[L.2 Objectives and Tasks of the Thesis| 19
[[.3 Scientific Novelty and Results] 20

20

21

22

2 A REVIEW OF GLOBAL BAYESTAN OPTIMIZATION] 23

2.1 Global Optimization| 23
22 Bayesian Optimization] 24
2.3 _Gaussian Process|

....................... 25

2.3.1 Gaussian Process Regression| 27
232 Predictions. L 30
2.3.3 Learning Gaussian Process Hyperparameters|. . . 31
234 Covarance Functions 32
2.3.5 Computational Issues| 34
2.3.6 Relationships between GP and Other Models|. . . 35

24 Acquisition Functions| 37
2.41 Optimizing the Acquisition Function| 39

2.5 Limitations of Bayesian Optimization| 41

2.6 Scalable Bayesian Optimization| 42
2.6.1 Gaussian Process Experts| 44
[2.6.2 Sparse Gaussian Process| 51

[2.7 Heteroscedastic Bayesian Optimization| 54
2.71 Heteroscedastic Gaussian Process 54
2.7.2 Heteroscedastic Acquisition Functions|. 57

28 Conclusions| o 0oL 58

3 EXTENDING GLOBAL BAYESTAN OPTIMIZATION] 59
[3.1 Bayesian Optimization with Generalized Product of Experts| 60

5

B2

Trust region Bayesian optimization with Generalized Product |

| of Experts| 60
B.21 The gPoETRBO Algorithm| 61

.22 RestartStrategy| 64

[3.3 Heteroscedastic Bayesian Optimization using General- |
[ized Productof Experts|. 65
B4 Condusions 71

72
@d.1 Scalable Bayesian Optimization| 72
4.1.1 Results on 20D Benchmark Functions| 73

412 Results on 50D Benchmark Functions 76

4.1.3 12D Lunar Landing Reinforcement Learning| . . . 79

414 RobotPushing| 82

4.1.5 Rover Trajectory Planning| 83
4.1.6Ablation Studies| 84

4.2 Heteroscedastic Bayesian Optimization| 90
4.2.1 Synthetic Benchmark Functions Optimization| . . 90

4.2.2 5oil Phosphorus Fraction Optimisation| 94

4.2.3 Molecular Hydration Free Energy Optimization] . 96

4.2.4 Performance Sensitivity Analysig|. 99

425 Conclusions 102

104
107

SUMMARY IN LITHUANIAN 115

LIST OF AUTHOR PUBLICATIONS 132

ABOUT THE AUTHOR 133

Notation

An objective function.

Global maximizer of the optimization function.
Optimization search space.

Training dataset with n observations.

Acquisition function conditioned on the dataset.
Vector of output labels, y = {y;}-;.

Function value for the i-th input.

)T
Cholesky decomposition: L is a lower triangular
matrix such that LLT = A.

The covariance (or kernel) function evaluated at x

Vector of function evaluations, f = [f,...

and z’.

D-dimensional Euclidean space.

Covariance function of the GP prior distribution.
An n x n covariance matrix, [Kp,]ij = k(z4, ;).
n-dimensional Euclidean space.

Noise variance.

i-th GP expert model.

Relevant dataset for the i-th GP expert.

Predictive distribution of i-th GP expert at test
point z,.

The noise for observation y; at point ; (1 < i < n).
Training and test data points.

Predictive mean of the i-th GP expert at test point
Ty

Predictive variance of the i-th GP expert at test
point z,.

Noisy test data.

Ue,i

0_?-1**

2
MfA*’JfA*

2
MA*? O-_A*

Posterior predictive variance for the i-th expert at
test point .

Posterior predictive variance at the noise-free test
point z, for the i-th GP expert.

Noise variance for the i-th expert.

Variance of the prior distribution for the i-th GP
expert.

Aggregated GP predictive mean and variance for
noise-free observation.

Aggregated GP predictive mean and variance for
noisy observation.

Summary

Bayesian optimization (BO) has recently become a popular approach for
the global optimization of black-box functions. It has been demonstrated
to outperform other state-of-the-art black-box optimization methods
when function evaluations are expensive or if the number of allowed
function evaluations is low. Many real-life optimization problems re-
quire a large number of observations in order to find the global optimum.
However, existing BO approaches do not support a large number of
observations or they require specialized hardware, which limits the
usability of these methods for a regular user.

In this thesis, we propose to replace the standard Gaussian Process
(GP) model in BO with the generalized product of experts (gPoE) model.
Our proposed gPoEBO algorithm addresses the shortcomings of exist-
ing BO approaches based on standard GP model, allowing to scale BO
to large-scale optimization problems on regular consumer hardware.
We empirically show the efficiency and scalability of the gPoE-based
BO on standard global optimization benchmark functions and real life
problems. Additionally, we have shown that optimization accuracy can
be improved by combining the gPoE model with search space reduc-
tion methods. The proposed gPoETRBO algorithm, which combines
the trust region (TR) method with gPoE achieves the best performance
compared to other GP experts based BO models and matches the perfo-
mance of other state-of-the-art BO models with a significant speedup in
computational time and using only moderate computing hardware.

Moreover, we show the benefits of using the gPoE model based BO
for capturing the changing noise levels in the objective function. Many
real-world optimization problems exhibit input-dependent (heterosce-

9

dastic) noise levels, which poses a challenge for the standard BO due
to a homoscedastic noise assumtion. We proposed two heteroscedastic
gPoE-based BO (GPOEBO) algorithms for the global optimization of
functions with heteroscedastic noise. We modified two existing hetero-
scedastic acquisition functions to use individual noise levels from the
GPOE model and penalize input space regions with high noise. Experi-
ments on six global optimization functions and two real-world scientific
datasets show that our proposed algorithms achieve the best results
compared to other BO algorithms and are more robust to the magnitude
of heteroscedastic noise.

10

Santrauka

Dél efektyvaus geriausio optimizavimo uzdavinio sprendinio radimo
per maziausia bandymu skaiciuy pastaruoju metu sparciai pasaulyje is-
populiaréjo Bajeso optimizavimo (BO) algoritmai. Sie algoritmai ypaé¢
veiksmingi, kai optimizavimo tikslo funkcijos analiziné iSraiska nera
zinoma (tokios funkcijos kitaip dar vadinamos juodosios dézés funkcijo-
mis), o funkcijos maksimumo (minimumo) tasko radimas trunka ilgai
ar brangiai kainuoja. Didéjant duomenu kiekiui, BO algoritmas tampa
maZiau efektyvus ir reikalauja daug skai¢iavimo istekliu. Sio algoritmo
efektyvumo maZzéjima daZznai lemia Gauso proceso, kuris yra esminé
BO algoritmo dalis, apskai¢iavimo laiko sudétingumas. Dél Sio tritkumo
Siame darbe sitilome keisti standartinj Gauso proceso modeli i apibend-
rinta Gauso procesu ekspertu (gPoE) modeli. Sis modelis leid%ia dalyti
mokymo duomenu aibe i poaibius ir apmokyti skirtingus Gauso procesu
modelius ant duomenuy aibés poaibiy, kurie dar vadinami ekspertu mo-
deliais. Galiausiai kiekvieno eksperto modelio rezultatai agreguojami i
galutini modelj. Tai leidZia sumazinti BO algoritmo skai¢iavimo laiko
sudétinguma, nes kiekvienas Gauso proceso ekspertas apmokomas su
mazesniu duomenu kiekiu. Be to, ekspertu modelius galima apmokyti
sykiu naudojant lygiagreciuosius skaic¢iavimus. Gauti rezultatai parode,
kad $is modelis leidZia reikSmingai sumaZinti standartinio BO algoritmo
vykdymo laika, neprarandant optimizavimo tikslumo.

Taip pat Siame darbe sitilome dar viena Bajeso optimizavimo algorit-
mo modifikacija — gPoETRBO optimizavimo algoritma, kuris sujungia
Gauso proceso ekspertu (gPoE) modelj su patikimos srities metodu
(TR), leidZian¢iu sumaZinti paieSkos erdve. Atlikti tyrimai parode, kad
naudojant gPoETRBO algoritma galima pasiekti toki pat optimizavi-

11

mo tiksluma, koki pasiekia esami paZangiausi BO algoritmai, taciau
per daug trumpesnj vykdymo laika. Be to, papildomi eksperimentai
parodé, kad gPoETRBO optimizavimo tikslumas yra geriausias, kai
optimizavimo vykdymo laikas yra apribotas tam tikru laiko intervalu.

Papildomai Siame darbe parodéme, kad Gauso proceso ekspertu
modeliu paremtas Bajeso optimizavimo algoritmas gali biiti sékmingai
pritaikoma uZdaviniams su kintamu triuksmo lygiu, priklausomu nuo
tasko padéties reikSmiu srityje. Sitilome dvi ivercio funkcijas, kurios su-
jungia kiekvieno Gauso proceso eksperto modelio iSmokta triuksmo lygi
i apibendrinta triuk8mo lygio funkcija. Tai leidZia sumazinti sprendiniuy
naudinguma reikSmiy srityje, kurioje triukS8mo lygis yra didelis. Gauti
rezultatai parode, kad miisu pasitilytos modifikacijos pasiekia geresni
optimizavimo funkciju tiksluma uz kitus Bajeso optimizavimo algorit-
mus.

12

List of Figures

2.1 Illustration of the Bayesian optimisation algorithm.| . . . 26

2.4 Block-diagonal approximation of full covariance matrix.| 47

2.5 Illustrative sin wave function with heteroscedastic noise| 55
(3.1 Illustration of building local GP experts model|. 62
(3.2 Workflow of the gPoETRBO algorithm. 64

(3.3 Illustration of building a gPoE model with heteroscedastic |

4.1 Optimization performance on 20D benchmark functions.| 74

4.2 Optimization performance on 50D benchmark functions,| 77

4.3 Optimization performance on optimal control problems.| 80

4.4 The etfect of the number of data points per expert on |

optimization performance for gPoEBO and gPoETRBO |

algorithms| o 000 87

4.5 Optimization performance on 20D benchmark functions |

with time (in seconds) restricted budget.|. 88

13

A6

Optimization performance on 50D benchmark functions

with time (in seconds) restricted budget.|.

89

a7

Optimization performance on 20D benchmark functions

with different point allocation strategies and restricted-

time budget (inseconds)|. 0L

90

s

Optimization performance on 50D benchmark functions

with different point allocation strategies and restricted-

time budget (inseconds).|.

91

£9

The performance results on the soil phosphorus fraction

optimization problem, 000,

95

E.10

The performance results on the FreeSolv hydration free

energy optimization problem.

97

BT

The effect of the number of data points per expert on the

optimization performance of heteroscedastic synthetic

| benchmark functions). 101

14

List of Tables

15

.1 Optimization performance on 20D benchmark functions| 75

P p
4.2 Optimization running times on 20D benchmark functions |
(seconds)| 75
4.3 Improvement in optimization performance and running |
times compared to the standard BO on 20D benchmark |
[functions| oL oo 76
4.4 Optimization performance on 50D benchmark functions| 77

.5 Optimization running times on 50D benchmark functions
P &

(seconds)| 78
4.6 Improvement in optimization performance and running |
times compared to the standard BO on 50D benchmark |
[functionsl o oo 78
4.7 Optimization performance on optimal control problems|. 81
4.8 Optimization running times on optimal control problems |
(seconds)| 81
4.9 Improvement in optimization performance and running |
| times compared to the standard BO on optimal control |
| problems| oo oo 82
{4.10 The optimization performance on heteroscedastic syn- |
L theticbenchmark functions| 93

{4.11 Improvement in optimization accuracy compared to the |
| standard BO and MLHGPBO on heteroscedastic synthetic |

.12 Comparative analysis of average optimization perform-

| over multiple runs for various algorithms aimed at min-

|
| ance with corresponding standard deviations (in brackets) |
|
|

| imizing phosphorus content in soil under heteroscedastic

| noise conditions.o 96

{4.13 Improvement in optimization accuracy compared to BO_- |
L Eland MLHGPBO on real-world scientific benchmarks . 96

.14 Comparative analysis of average optimization perform- |

| ance with corresponding standard deviations (in brack- |

| ets) over multiple runs for various algorithms aimed at |

| minimizing hydration free energy of a molecule, 98

{4.15 Optimization performance on heteroscedastic synthetic |

| benchmark functions with ditferent point allocation strategies.[100

.16 Optimization performance for heteroscedastic synthetic |

| benchmark functions with varying numbers of points |
| allocated to each GPexpert| 102

16

List of Algorithms

(I Bayesian Optimization| 25
2 Gaussian Process regression algorithm|. 35
3 Generalized PoE based Bayesian Optimization (gPoEBO) 61
4 Generalized PoE based Trust Region Bayesian Optimiza- |

tion (gPoETRBO)[. 63
©_ Heteroscedastic GPOEBO with HAEIl 70

17

Chapter 1

INTRODUCTION

1.1 Research Context and Motivation

Global optimization is concerned with the computation and character-
ization of global minima (or maxima) of nonlinear functions. Global
optimization problems are widespread in the mathematical modelling of
real-world systems for a very broad range of applications [27]. Bayesian
optimization (BO) has become a popular approach for the global optim-
ization of black-box functions [8} [18],/45]. It has been demonstrated to
outperform other state-of-the-art black-box optimization methods when
function evaluations are expensive or the number of allowed function
evaluations is low [78]. The main efficiency of BO originates from the
surrogate model which is used to approximate the original black-box
function using the available observations. The most commonly used sur-
rogate model is a Gaussian process (GP), which provides a principled
and tractable way of modeling uncertainty and allows an informed
exploration-exploitation trade-off during optimization.

BO typically works well for low-dimensional problems with a small
number of observations. However, as the dimensionality increases, the
number of observations required to accurately model the search space
grows exponentially due to the curse of dimensionality [6,47]. Train-
ing GP based BO requires an inversion of full covariance matrix. This
process has a cubical computational time in the number of observations

18

and becomes the major limiting factor for scaling BO to problems with
a large number of observations. As a result, BO is typically limited to
only a few thousands of evaluations [79]. However, with an increasing
availability of distributed computing resources, a large number of func-
tion evaluations becomes possible if the underlying approach allows
parallelisation and distributed computations. This motivates scientists
to develop the algorithms that could be run in parallel and provide
scalable uncertainty estimates to guide the search.

Another limiting factor in Bayesian optimization is the assumption
that the noise level remains constant across the entire input space, which
is considered homoscedastic, for the standard Gaussian Process. How-
ever, this assumption is often too restrictive in real-world applications as
the noise levels can be input-dependent (i.e., heteroscedastic). Using the
homoscedastic noise assumption in GP when the underlying objective
function is corrupted with the heteroscedastic noise can lead to learning
a model that will not be able to correctly capture the complexity of the
objective function, which presents a challenge for Bayesian optimization.

1.2 Objectives and Tasks of the Thesis

The object of this thesis is Bayesian optimization algorithms. The main
goal is to enhance the scalability and efficiency of existing Bayesian
optimization algorithms ensuring their applicability for a broad range
of optimization problems. The following specific objectives have been
established:

1. Propose modifications for existing Bayesian optimization algorithms
to improve their scalability and efficiency;

2. Demonstrate the generalizability of the proposed algorithms to
problems characterized by heteroscedastic noise levels;

3. Compare the performance of the proposed algorithms to other
related optimization methods in terms of efficiency and outcomes.

19

1.3 Scientific Novelty and Results

Existing BO approaches do not support a large number of observations
or they require specialized hardware, which limits the usability of these
methods for a regular user. Performing optimization using existing
algorithms on regular hardware with only a moderate number of CPU
cores increases their reported computational times significantly. In this
thesis, we proposed two new algorithms gPoEBO and gPoETRBO based
on the generalized product of experts (gPoE) model, which allowed to
scale BO to the problems with a large number of observations without
the need to have access to specialized hardware for optimization. We
experimentally demonstrated the efficiency and scalability of these al-
gorithms compared to the existing algorithms in terms of reduction
in runtime. We also theoretically showed that our proposed modifica-
tion that used search space reduction methods converges to the global
maximum of the objective function.

Additionally, we show that our proposed gPoEBO algorithm can be
extended to global optimization problems with heteroscedastic noise.
We developed two new heteroscedastic gPoE based BO (GPOEBO) al-
gorithms which use a novel combination of gPoE model with a heteros-
cedastic acquisition function that uses the individual noise levels learned
from each GP expert to model the functions with varying noise levels.
Our experiments showed the ability of our algorithms to outperform
other state-of-the-art heteroscedastic and homoscedastic BO algorithms.

1.4 Statements Defended
The statements defended in this thesis are:

1. The algorithm based on the generalized product of experts model
allows scaling Bayesian optimization to problems with a large
number of observations without the need to have access to special-
ized hardware.

20

2. The gPoETRBO algorithm achieves the best accuracy compared
to other expert based optimization algorithms and matches the
performance of the state-of-the-art algorithm with a significant
speedup in computational time while using only moderate com-
puting hardware.

3. The proposed Bayesian optimization algorithm based on the gen-
eralized product of experts model is capable of handling heteros-
cedastic noise in optimization problems.

1.5 Approbation of the Thesis Results

The results of the dissertation were published in international research
journals with a citation index in the Clarivate Analytics Web of Science
(CA WoS) database:

1. TautvaiSas, S. and Zilinskas, J., 2024. Scalable Bayesian optim-
ization with generalized product of experts. Journal of Global
Optimization, 88(3), pp.777-802.

2. Tautvaigas, S. and Zilinskas, J., 2023. Heteroscedastic Bayesian
optimization using generalized product of experts. Journal of
Global Optimization, pp.1-21.

The results of this research were presented at the plenary sessions of
the following conferences:

1. Tautvaigas S., Zilinskas J. , “Scalable Bayesian Optimization with
Generalized Product of Experts”, World Congress on Global Op-
timization 2021 (WCGO 2021), July 7-10, 2021, Athens, Greece.

2. Tautvaigas S., Zilinskas J. “Noisy Global Bayesian Optimization
Using Generalized Product of Experts”, HUGO 2022 - XV. Work-
shop on Global Optimization, September 6-8, Szeged, Hungary,
2022.

21

The results of this research were also presented at the following
conference:

1. Tautvaigas S., Zilinskas J. , “Scalable Trust Region Bayesian Optim-
ization with Product of Experts”, 12th International Workshop on
Data Analysis Methods for Software Systems (DAMSS), December
2-4,2021. Druskininkai, Lithuania.

1.6 Structure of the Dissertation

This dissertation is organized into four main chapters, followed by
general conclusions and a bibliography. Chapter 1 offers an introduction
to the research topic and outlines the structure of the thesis. Chapter
2 presents an overview of global Bayesian optimization with its main
components and related global optimization algorithms. Chapter 3 gives
the main findings and introduces the proposed algorithms. In Chapter
4, we conduct numerical experiments and offer additional analyses
to evaluate the performance and efficacy of the proposed algorithms.
Finally, the key findings and insights of the research are summarized in
the general conclusion section. This thesis contains 133 pages including
the summary in Lithuanian, which starts from page 115. It includes 19
figures, 16 tables and five algorithms.

22

Chapter 2

A REVIEW OF GLOBAL
BAYESIAN OPTIMIZATION

Bayesian optimization (BO) has become a popular approach for global
optimization of black-box functions. It has been demonstrated to out-
perform other state-of-the-art black-box optimization methods when
function evaluations are expensive or the number of allowed function
evaluations is low. The main efficiency of BO originates from the surrog-
ate model which is used to approximate the original black-box function
using the available observations. The most commonly used surrog-
ate model is a Gaussian process (GP), which provides a principled
and tractable way of modeling the uncertainty and allows informed
exploration-exploitation trade-off during optimization.

2.1 Global Optimization

Global optimization is a branch of applied mathematics and numerical
analysis that focuses on finding the global maximizer (minimizer) x*
of an unknown continuous function f : X — R defined on a compact
subset X C RP [44, [52]. It has a wide range of applications in vari-
ous fields, including engineering, economics, and operations research.
Mathematically, the global optimization problem can be formulated as

23

follows:

" = arg max f(x) 2.1

The function f is called an objective function and X’ is called a feasible
set. Alternatively, X' is referred to as the search space or domain [52].
The objective function f is called a black-box function if it does not have
a closed-form expression and does not have easily available gradient in-
formation. We can only obtain black-box function f values by querying
its function values at arbitrary x € X'

In general, global optimization problems can be challenging to solve.
A variety of techniques have been developed to tackle these issues,
ranging from deterministic approaches, such as branch-and-bound and
interval arithmetic, to stochastic methods, like simulated annealing and
genetic algorithms. Bayesian optimization is a particularly promising
method for global optimization, as it leverages probabilistic models to
guide the search for the global minimum or maximum.

2.2 Bayesian Optimization

Bayesian optimization is a methodology for performing global optimiz-
ation of black-box functions that are noisy and expensive to evaluate[8|
18,145, 58]. Given a small number of observed objective function inputs
and corresponding outputs, Bayesian optimization iteratively develops
a global statistical model of the objective function, which could provide
an estimate of uncertainty about the objective function and can be used
to balance trade-off between exploration and exploitation. The statistical
model consists of a prior distribution that captures our assumptions
about the behaviour of unknown objective function and data generation
mechanism [60]. During each optimization iteration a posterior distri-
bution is computed by conditioning on the previous evaluations of the
objective function. This model is also called a probabilistic surrogate
model because it approximates the original objective function and can
be queried efficiently at lower computational cost.

In Bayesian optimization (BO) we specify a prior belief over the
possible objective function f using the surrogate model and then se-

24

Algorithm 1 Bayesian Optimization

Require: objective function f, acquisition function «, search space &,
model M, initial design D

1: repeat
2: Fit the model M to the data D
3: Maximize the acquisition function: z = arg maxa (z, M)

TeEX

A~

4: Evaluate the function: y = f ()
5: Add the new data to the data set: D = DU (7,)
6: until termination condition is met

7. Output: the recommendation z* = arg maxEq [f(z)]
reX

quentially at each iteration n the belief is updated conditioned on the
current optimization history D,, [8]. BO uses an acquisition function
a(-|Dy) : X — R to measure how promising is each point in the search
space X if it were to be evaluated next, based on the belief about f
given D,,. The main goal is to find the next candidate point x,; which
maximizes the acquisition function given by x,,11 = argmax__ ,a (x|Dy)
and use it to evaluate the objective function f. The detailed steps are
shown in Algorithm[I|and an illustration of the first three iterations is
showed in Figure

2.3 Gaussian Process

The Gaussian process (GP) is the most popular surrogate model used
in Bayesian optimization for modelling the objective function f [60,
63]. It is defined as a collection of random variables, that any finite
number of which has a joint Gaussian distribution[81]. The random
variables in GP represent the value of the function f(z) at location .
The illustration of GP function values is shown in Figure The figure
illustrates Gaussian Process prior functions alongside three slices at
varying regions, marked as points x1 to 3. Scatter plots are shown
for function values f(x1) and f(z2), as well as for f(z2) and f(23).
Points z1 and 22 are closer to each other, and their function values are
also closely aligned, indicating a higher degree of correlation between
function values, which is evident from the scatter plot. In contrast, point

25

Iteration 1

f(x)

0.0 0.2 0.4 0.6 0.8 1.0
= :
= /\/\
Iteration 2

f(x)

o
<)

0.2 0.4 0.6 0.8 1.0

El(x)

Iteration 3

f(x)

o

El(x)

Figure 2.1: Illustration of the Bayesian optimisation algorithm.

x3 is further away, and its function values in relation to z2 are more
dispersed, showing less correlation.

The Gaussian process is fully specified by the mean function and the
covariance function (also known as the kernel function). We define the

26

mean function x(z) and the covariance function k(z, z) of a real process

f(zx) as:

px) = E[f (2)], (2.2)
k(w,2") = E[(f(x) — u(2))(f (@) — p(a"))], (2.3)

and express the Gaussian process as

f(z) ~ GP(u(x), k(wvx/))' (2.4)

The main component of GP is the covariance function, or kernel,
which quantifies the relationship between data points and shapes the
properties of the GP. Covariance functions play a pivotal role in de-
termining the smoothness, continuity, and other characteristics of the
modeled function.

Covariance functions, denoted as k(z, '), quantify the correlation
between function values f(z) and f(2’) at points x and 2’ in the input
space X. They are symmetric and positive definite functions that encode
assumptions about how the function values f(z) and f(z’) are related to
their corresponding input values. The covariance function k(x, z') maps
two points z, 2’ € X in the input space points to a scalar value repres-
enting their covariance, which is then used to create a kernel matrix K
with elements K;; = k(z;, z;). The choice of covariance function affects
the predictions made by GP and determines the model’s flexibility and
generalization capabilities[81].

2.3.1 Gaussian Process Regression

In this thesis, we focus on supervised learning of regression problem.
Given the training data D = {X,y} with X = {z;};",,y = {vi}iy,
we consider a regression task y; = f(x;) + ¢, where xz € RP. We
assume that the observed values y; differ from the function values f(x;)
by additive noise ¢, which we assume follows an independent and
identically distributed Gaussian distribution ¢ ~ N (0, 02) with zero
mean and variance o2. We define f = [f1,..., f.]! as the evaluation of
f(-) on the inputs X. Then, the probability of observing the targets y,

27

4 4 .
2
= 0
=
=2
-4
L]
-6 T T T
x1 x2 x3
4 -
2 L : ¢
o - .
. 2 % . e
1 . ’ B .
. . .’-:- . .
g 0 ;-k_. 0 . ..v.-; . 3 . .
= = |- L P TR
. e l.. . .
-1 v Lo LI
-2 . et s ' ‘
ol -
-31{ . * .
-3 -2 -1 0 1 -3 -2 -1 0 1
fix1) fix2)

Figure 2.2: Illustration of Gaussian Process functions.

given the function f values is given by the Gaussian likelihood p(y|f) =
N (y|f,0?). The objective is to infer the noiseless latent function f from
a training data set of n noisy observations.

To achieve this the GP prior distribution is placed over latent func-
tion f with a zero mean m(xz) = 0 and a positive-definite covariance
k(z,z") function. A GP prior for the function f values at the input
points is given by p(f|X) = N(f|0, K,,) with the covariance matrix
[Kunlij = k(x;, ;) evaluated at all pairs of input vectors. The covari-
ance matrix K, constructed from the data inputs captures our assump-
tions about the smoothness, periodicity, and other properties of the
unknown function, before we observe the corresponding target values.

28

Given the prior distribution p(f|X) and the likelihood p(y|f), we can
compute the GP posterior distribution p(f|y, X) using Bayes’ theorem
as follows:

(y|f) - p(f1X)
pylX)

p(fly, X) =2 (2.5)

The marginal likelihood in the denominator is a measure of the prob-
ability of observing the targets y given the inputs X, marginalizing
over all possible function values f. This can be computed using the
likelihood p(y|f) and prior p(f|X) as follows:

p(y|X) = / p(ylf) p(F1X) df. (2.6)

In the case of GP, due to the conjugacy between the Gaussian pro-
cess prior p(f|X) and the Gaussian likelihood p(y|f), this integral is
tractable and a closed-form solution can be derived. Thus, the marginal
likelihood simplifies to:

p(y|X) =N (y|0, Knn + 02 15), (2.7)

where o2 is the noise variance and I, is the identity matrix of size n.
This expression states that the marginal likelihood is a multivariate
normal distribution with zero mean and a covariance matrix that takes
into account both the kernel-induced correlation structure among the
inputs and the noise in the data.

In a simple 1-d regression problem, where we map from an input x
to an output f(x), we can first consider the prior distribution which rep-
resents our initial beliefs about the kinds of functions we might observe.
This is illustrated in Figure 2.3) where multiple random functions are
drawn from a GP prior. Observing certain data points, we can update
our beliefs to form a posterior distribution, only considering functions
that align with these data points. This combination of the prior and the
data points leads to the posterior distribution over functions, reducing
uncertainty near observed values.

29

cé ce 10 co c2 cd Y3 c8 10

c4d y y
Prior Posterior

Figure 2.3: Illustration of the Gaussian Process prior and posterior func-
tion distributions. (Left) The panel shows functions drawn at random
from a GP prior distribution. (Right) The panel shows the GP posterior
after four datapoints have been observed. In both plots, the shaded
region represents twice the standard deviation at each input value x.

The covariance function in the GP model is characterized by a set
of parameters, denoted as A, which directly influence the behaviour
of the function we aim to learn, including its smoothness, length scale,
and periodicity. In addition to these parameters, the GP model includes
a parameter o2 to capture the variance of the inherent noise in the
observations. Together, these parameters A and o2 form the set of hy-
perparameters of the GP model, which we denote by § = {\,02}. A GP
is typically trained by finding the hyperparameters 6 that maximize the
log-marginal likelihood:

1 _ 1 n
logp (y| X, 0) = =5y (Kun+ D) "'y = Slog [Knn + o2 1| = 5 log2r .
(2.8)

2.3.2 Predictions

Conditioned on the training set (X, y), hyperparameters ¢ and a test in-
putz, € RP, the GP posterior predictive distribution p (f.| X, v, 0, z.) =
N (ps,02) is Gaussian with the mean and variance given by

Hx = k*nT (Knn + 0'521)71 Y, (2.9)
02 = kuw — kun (Kn + 021) ka7, (2.10)

30

where k., = k (2., X) and k.. = k (24, z,). The main challenge of GP
is that training requires the inversion and the determinant of matrix
K, +02I,whichis frequently realised via the Cholesky decomposition
with the computational cost of O (n?). For this reason, training GP on
large datasets is computationally intractable.

2.3.3 Learning Gaussian Process Hyperparameters

In many practical applications of the Gaussian Process (GP) regression,
specifying all aspects of the kernel function may not be straightforward.
While some properties such as stationarity of the covariance function
can be determined from the context, it is more challenging to obtain
information about other properties, such as the value of free hyperpara-
meters. A mismatch between the hyperparameters and the data can
lead to poor performance [6].

For the squared exponential kernel function, hyperparameters play
the role of characteristic length-scales, which define how far the length-
scale needs to move along a particular axis in input space for the function
values to become uncorrelated. If the length-scales in the kernel function
are set very large, GP prior may not capture the higher variations in the
objective function. Conversely, if the length scales are set too small, GP
might fail to generalize. The kernel hyperparameters can be learned
from the data by maximizing the marginal likelihood of GP, which is
given by:

1 _ 1 n
logp(y[X,0) = =5y K,y — 5 log[K,| — log(2m), (2.11)

where K, = K j+021 is the covariance matrix for the noisy targets y, and
K is the covariance matrix for the noise-free latent function f values.
In most cases the complete marginalization over all hyper-parameter
variables is analytically intractable in a fully Bayesian approach. Thus,
the use of approximation is needed. This is known as type 2 maximum
likelihood or evidence approximation [6].

The simplest approach is to make a point estimate of 8 by max-

31

imizing the log-marginal likelihood function. The maximization of
the log-marginal likelihood can be done using efficient gradient-based
optimization algorithms such as conjugate gradients, which will also
require to estimate partial derivatives information of the marginal likeli-
hood with respect to the hyperparameters [6].

The complexity of computing the marginal likelihood is dominated
by the need to invert the K, ! matrix, which requires O(n?) time for
inversion of an n X n matrix. Once the inverted matrix is known, the
computation of the derivatives with respect to hyperparameters requires
only time O(n?) per hyperparameter [81].

2.3.4 Covariance Functions

Covariance functions can be classified into stationary, dot-product or
non-stationary functions. The choice of covariance function depends
on the specific problem and the properties of the modeled data. The
main differences between stationary, dot-product, and non-stationary
covariance functions are in how they model the correlation between the
function values at input points and the assumptions they make about
the underlying function.

2.3.4.1 Stationary Covariance Functions

Stationary kernels are functions whose value depends only on the rel-
ative distance between the input points, not their absolute position in
the input space. In other words, they are invariant under translation. A
stationary kernel can be expressed as:

k(z,2') = k(||lx — 2|]). (2.12)

Stationary kernels are often used when the underlying function ex-
hibits a similar behaviour throughout the input space. These kernels
assume that the correlation between data points depends only on their

32

distance from each other. The most popular and widely used are the
Squared Exponential (SE) kernel and the Matérn kernel functions.

Squared Exponential (SE) Kernel Also known as the Radial Basis
Function (RBF) kernel, the SE kernel is one of the most widely used cov-
ariance functions. It is a smooth and infinitely differentiable stationary
kernel that assumes a higher correlation for points closer in the input
space. The SE kernel is defined as:

)12
ksg(z,z') = 0% exp <||ZBQ;||) , (2.13)

where o2 is the amplitude parameter, is the length scale parameter, and
||z — 2’|| denotes the Euclidean distance between x and z’. SE kernel
puts a strong smoothness assumption on the objective function, which
is unrealistic for modelling many physical processes. For this reason, it
is recommended to use the Matérn 5/2 kernel function which is only
two times mean square differentiable.

Matérn Kernel The Matérn kernel is a more general and flexible cov-
ariance function, encompassing a family of kernels with varying degrees
of smoothness. It is defined as:

(V2v||lz — o'|))" K, (V2v e — 2'|])
2v=1T(v)

FMatern (T, I‘,) =0’) (2.14)
where o2 is the amplitude parameter, v is the smoothness parameter, is
the length scale parameter, I'(-) is the gamma function, and K, (-) is the
modified Bessel function of the second kind of order v. As v increases,
the Matérn kernel converges to the SE kernel.

2.3.4.2 Dot-Product Covariance Functions

Dot-product kernels depend on the inner product of the input points
rather than their distance. These kernels are often used for modeling
linear or polynomial relationships between the input variables. A dot-
product kernel can be expressed as:

33

k(z,2") = k({z,2)), (2.15)

where (-,) denotes the inner product. Dot-product kernels are less
flexible than stationary kernels, but they can model different degrees of
polynomial relationships between input variables. The Linear kernel and
the Polynomial kernel are examples of dot-product covariance functions.

2.3.4.3 Non-Stationary Covariance Functions

Non-stationary kernels are functions whose value depends on the abso-
lute position of the input points in the input space, and the correlation
structure may change across the input space. These kernels are suitable
for modeling functions that exhibit different behaviour in different re-
gions of the input space. The Periodic kernel and the Neural Network
kernel are examples of non-stationary covariance functions.

2.3.5 Computational Issues

We can see from Section 2.3.2) that the predictive mean of the Gaussian
process can be computed as 1. = Ky (Kpn + 021)_1 y. Direct inver-
sion of covariance matrix K ,,,, + 21 is not recommended, because it can
result in numerical instability [47]. The main reason for this is that cov-
ariance matrix can be ill-conditioned, i.e., it can have a large condition
number, which means that the matrix is close to being singular. Also,
due to the limitations of floating-point arithmetic in computers, direct
matrix inversion can accumulate errors that make the results unreliable
or incorrect.

An alternative to direct inversion of the covariance matrix is the
Cholesky decomposition, which can be expressed as K ,,, + 021 = LL".
The Cholesky decomposition takes O(n?) time to compute, and O(n?)
time is needed to solve for @ = (K,m + UEQI)_1 y = L TL7'y. Then,
the mean can be computed using k.,,” a in O(N) time and the variance
can be computed using k.. — ks, L~T L™ k,, in O(n?) time for each
test case.

34

The pseudo-code presented in Algorithm []illustrates the computa-
tion of the predictive mean and variance, as well as the log marginal
likelihood, using Cholesky decomposition, as described in the book by
[81].

Algorithm 2 Gaussian Process regression algorithm

02 = k(Xun, Tun) — v 0

logp(y|X) = —2yTa — 3", log Li; — & log(2m)

1: L = cholesky(K ,, + 02I)
2 a=L"\(L\y)

3 s = k:*Tnoz

4: v=1L \ k.,

5:

6:

To avoid cubic training cost of GP on large datasets several ap-
proaches have been proposed. These methods are mostly based on
sparse approximation of the covariance matrix using the inducing point
methods [53, 62, 71] or training distributed local experts on subsets of
training data [12} (16, 25| 38, [72] [73]. Alternative approaches use large-
scale computing infrastructure and incomplete Cholesky decomposi-
tions [76].

2.3.6 Relationships between GP and Other Models

The Gaussian process model has connections to several other models in
machine learning and statistics, which share some similarities in their
underlying concepts or mathematical foundations.

Linear Regression The Gaussian process can be viewed as a gener-
alization of linear regression [81]. In linear regression, the goal is to
learn a linear function that maps input features to output values. The
model is parametric, with the parameters being the weights and biases
of the linear function. In contrast, GP is a non-parametric models that
defines a prior distribution over functions using a covariance function or
kernel. If the kernel chosen for the GP is a linear kernel, the GP reduces
to a Bayesian linear regression model [6]. The main difference between
the two approaches is that GP provide full Bayesian treatment, which

35

provides a predictive distribution over the output values and allows for
the quantification of uncertainties in the predictions.

Kernel Methods Gaussian process is closely related to kernel meth-
ods, such as kernel ridge regression (KRR) [59]. Both GP and kernel
methods use a kernel function to implicitly map the input data into a
high-dimensional feature space, where linear methods can be applied
to learn complex, non-linear relationships in the data. The choice of a
kernel function plays a crucial role in determining the capacity of both
models to capture these relationships.

The primary difference between GP and kernel methods lies in their
treatment of uncertainty and their learning objectives. GP are probabil-
istic models that provide a distribution over function values, whereas
kernel methods typically produce point estimates for the predictions.
Additionally, GP learns the kernel hyperparameters by maximizing the
marginal likelihood of the data, while kernel methods, such as SVM,
employ a margin-based learning approach, and KRR relies on regulariz-
ation [59].

Artificial Neural Networks The Gaussian process and artificial neural
networks (ANN) share some connections, particularly in terms of func-
tion approximation and the limiting behaviour of infinitely wide neural
networks [48, 80]. Both models aim to learn a mapping from input
features to output values, with GP using a kernel function to define the
prior belief about the function and ANN learning this mapping through
a composition of layers, activation functions, and weights.

An interesting connection between GP and NN arises when consid-
ering the limit of an infinitely wide neural network. In this case, the
distribution of the function values of the neural network converges to
the Gaussian process, with a specific covariance function determined by
the network architecture and activation functions [48, 80]. This result
highlights the potential for GP to be used as a tractable and analytically
convenient approximation of large neural networks.

Uncertainty quantification is a key difference between GP and stand-

36

ard NN, with GP providing a full Bayesian treatment and NN producing
point estimates for the predictions. Recent developments in Bayesian
neural networks aim to incorporate uncertainty estimates into NN by
placing priors over the weights and performing Bayesian inference
[7]. Scalability is another significant difference, with GP facing com-
putational challenges for large datasets, while NN is more suitable for
large-scale problems.

2.4 Acquisition Functions

In Bayesian optimization, an acquisition function plays a crucial role
in guiding the search for the global optimum of an unknown object-
ive function. These functions leverage the Gaussian process model’s
predictive uncertainty to find a balance between exploration and exploit-
ation, resulting in efficient optimization [44]. The choice of acquisition
function is nontrivial. Each works well for certain classes of functions,
and it is often difficult or impossible to know which will perform best
on an unknown function [§].

Probability of Improvement (PI) Introduced by [36], PI is the simplest
acquisition function that quantifies the likelihood of an improvement
over the current best observed value. Given a Gaussian process model
with predictive mean y(z) and standard deviation o (z), the PI at a point
x is given by:

api(z) = @ ((2.16)

where ® is the cumulative distribution function of a standard normal

() — f(@pest) — £> ’

o(x)

distribution, f(zpest) is the current best observed function value, and &
is an optional exploration parameter.

Expected Improvement (EI) Proposed by [45], EI measures the expec-
ted improvement over the current best observed value. EI has been
widely used due to its desirable properties, such as being differentiable

37

and having a closed-form expression [33} 44, 45]. The EI at a point x is
given by:

agi(z) = o(x) [Z0(Z) + ¢(Z)], (2.17)

where Z = %, ® is the cumulative distribution function of a
standard normal distribution and ¢ is the probability density function

of a standard normal distribution.

Upper Confidence Bound (UCB) UCB was introduced by [66] and is
based on the optimism in the face of the uncertainty principle. It sets
an upper bound on the true function value by taking into account the
predictive mean and standard deviation. The UCB at a point z is given
by:

aycp(®) = p(x) + Ko (z), (2.18)

where « is a tunable exploration parameter that controls the trade-off
between exploration and exploitation.

Thompson Sampling (TS) TS is a sampling-based acquisition function
that involves drawing a sample from the posterior distribution and
selecting the point that maximizes the sampled function [70]. Recently it
has attracted renewed interest in multi-armed bandits problems. In the
bandit setting this strategy samples a reward function from the posterior
and selects the arm with the highest simulated reward, while in GP
context, this strategy corresponds to sampling the objective function
from the GP posterior and then finding the maximum of that sample.
TS can be formulated as an acquisition function:

ars (z, Dp) = f)(z) (2.19)
F"Nx) ~ GP(u, k| Dn), (2.20)

Empirical evaluations show good performance which, however, seems

38

to deteriorate in high dimensional problems, likely due to aggressive
exploration [60].

Entropy search (ES) The goal of the ES acquisition function is to reduce
the uncertainty in the location z* by selecting the point which is expected
to cause the largest reduction in entropy of the distribution p, (x| Dy,)
[22]. The acquisition function for ES can be expressed formally as:

O‘ES(x) = H(x*‘ Dn) - IEy| Dn, H(QZ*’ Dy U {(:E» y)})v (2.21)

where H (z*| D,,) denotes the differential entropy of the posterior dis-
tribution p. (x| D,) and the expectation is over the distribution of the
random variable y. This function is not tractable for continuous search
spaces so approximations must be made. Recent work uses a discretiz-
ation of the search space to obtain a smooth approximation p, (z| Dy,)
and its expected information gain [60].

Predictive Entropy Search (PES) The strategy of the PES acquisition

function is to select the next point from the search space which max-
imizes the expected reduction in the negative differential entropy of
P« (2] D)

apps(x) = Hlp (z*| Dn)] = Ey | p,, o [H[p (2" Dn U (z,9))]], (2.22)

where H [p(z)] = — [p(z)log p(z)dz represents the differential entropy
of its argument and the expectation above is taken with respect to the
posterior predictive distribution of y given x [23]]. The exact evaluation
of this equation is not feasible in practice. However, after making a
few simplifying assumptions the expectation can be approximated via
Monte Carlo with Thompson samples [18,60].

2.4.1 Optimizing the Acquisition Function

Optimizing the acquisition function is a challenging task as it often
involves optimizing a multimodal and potentially non-differentiable
function. There are several optimization methods that can be applied to

39

this problem, depending on the properties of the acquisition function
and the complexity of the search space. Some common approaches
include:

* Grid search: One straightforward approach is to perform a grid
search over the input space, evaluating the acquisition function at
each point and selecting the point with the highest value. However,
this method can be computationally expensive, especially in high-
dimensional spaces [60].

* Random search: Another simple approach is to use random search,
where a set of candidate points are sampled randomly from the
input space, and the acquisition function is evaluated at each point.
The point with the highest acquisition value is then selected. While
random search is less efficient than BO, it can still provide reason-
able results, especially when combined with other optimization
methods [3].

* Gradient-based optimization: If the acquisition function is differ-
entiable, gradient-based optimization methods can be employed
to find the maximum of the acquisition function. Techniques such
as gradient descent, conjugate gradient, or quasi-Newton methods
can be used for this purpose [82]. However, these methods may
require multiple evaluations of the acquisition function and its
gradients, which can be computationally expensive. Additionally,
they are prone to getting trapped in local optima if the acquisition
function is multimodal.

* Global optimization algorithms: In cases where the acquisition
function is multimodal and non-differentiable, global optimization
algorithms such as genetic algorithms, particle swarm optimiza-
tion, or simulated annealing can be employed [27]. These methods
are typically more robust to local optima but they can be computa-
tionally intensive. Moreover, the DIviding RECTangles (DIRECT)
algorithm is another global optimization method suitable for op-
timizing the acquisition function, particularly when dealing with a
black-box objective function with a potentially unknown Lipschitz
constant [32].

40

* Multi-start local optimization: A popular approach for optimiz-
ing acquisition functions is to use a multi-start local optimization
strategy [60]. This method involves initializing multiple local op-
timizers at different starting points in the input space and running
them in parallel or sequentially. The best solution found across all
local optimizers is then selected. This approach has been shown
to be effective in practice.

When optimizing the acquisition function, it is important to balance
the computational complexity of the optimization method with the de-
sired accuracy and robustness. In practice, many Bayesian optimization
algorithms employ a combination of techniques, such as using a multi-
start local optimization strategy with a random search initialization
or employing gradient-based optimization methods with occasional
random restarts [60].

2.5 Limitations of Bayesian Optimization

Despite its numerous advantages, Bayesian optimization also has certain
limitations that can affect its performance and applicability. Some of the
well known limitations of Bayesian optimization are:

1. High-dimensional spaces: Bayesian optimization tends to be less
efficient in high-dimensional spaces, as the complexity of model-
ing the objective function and optimizing the acquisition function
increases with the number of dimensions [18}60]. As a result, more
iterations are required to find the global optimum, which increases
both the time and computational resources. There have been
efforts to address this limitation, such as the use of random embed-
dings [78] or additive models [34], but handling high-dimensional
spaces remains a challenging task.

2. Scalability: Bayesian optimization can become computationally
expensive as the number of observed data points increases. This is
primarily due to the need to invert the covariance matrix, which
has a computational complexity of O(n?), where n is the number

41

of data points [81]. Various approaches have been proposed to
alleviate this limitation, such as sparse Gaussian processes [53] and
local approximation methods [9], but the scalability issue remains
a significant concern in large-scale problems.

3. Noisy evaluations: When the objective function evaluations are
noisy and noise levels can be input-dependent (i.e., heterosce-
dastic), Bayesian optimization performance can be adversely af-
fected [37, 51]]. Although Gaussian process models can handle
noise through the incorporation of a noise term in the covariance
function, this can lead to a more complex optimization problem
and increased computational cost [63]. Some research has focused
on developing robust acquisition functions to handle noisy evalu-
ations, but noisy evaluations continue to be a challenging issue in
Bayesian optimization [21} 137, 67].

4. Discrete or categorical variables: Bayesian optimization is primar-
ily designed for continuous optimization problems. Handling
discrete or categorical variables can be challenging, as Gaussian
process models are not well-suited for modeling discrete or cat-
egorical input spaces [57,160]. Various approaches have been pro-
posed to address this issue, such as using a continuous relaxation
of the categorical variables [64], employing specialized kernels for
mixed continuous-discrete input spaces [67] or using multi-armed
bandits to select values for both categorical and continuous in-
puts [57] but the performance of these methods can be problem
dependent.

2.6 Scalable Bayesian Optimization

BO typically works well for low-dimensional problems with a small
number of observations. As the dimensionality increases, the number of
observations required to generalize well over the whole search space,
grows exponentially due to the curse of dimensionality. The training
of the GP based BO requires the inversion of a full covariance matrix,
which has a cubical computational time in the number of observations.

42

For this reason, BO is typically limited to only a few thousand of evalu-
ations [79]]. Thus, the lack of scalable uncertainty estimates to guide the
search is a major limiting factor for large-scale BO. However, with an
increasing availability of distributed computing resources, a large num-
ber of function evaluations becomes possible if the underlying approach
allows parallelisation and distributed computations.

There has been a series of research trying to reduce the number of re-
quired observations for high-dimensional BO problems to overcome the
curse of dimensionality. Some methods rely on structural assumptions,
such as additive structure, where methods try to exploit additive struc-
ture in the objective function [19, 34} 79]. Other methods assume low
effective dimensionality of the objective function and rely on transform-
ing a high-dimensional space into a low-dimensional subspace [5, 78].
A novel subspace embedding algorithm HeSBO [46] has been proposed
that overcomes the limitations of the high-dimensional projections and
is based on a sound theoretical framework.

It was observed that in high dimensional problems, where the num-
ber of observations is large, BO over-explores the boundary of a search
space [49]. To reduce the number of redundant observations, recent
works have started to explore space partitioning algorithms and local
modeling that uses multiple local models in promising regions, which
showed very promising empirical results. The BOCK algorithm [49]
applies a cylindrical transformation on Euclidean geometry of the search
space to avoid over-exploring the boundary. Ensemble Bayesian optim-
ization (EBO) [79] builds an ensemble of local additive GP models on
partitioned search space to scale BO to high-dimensional problems with
a large number of observations. A trust region method based BO al-
gorithm TuRBO was proposed [17], which abandons a global GP model
and uses a collection of independent local GP models, where each model
represents a different trust region. To address computational issues in
the standard GP model the authors used the Lanczos process approxima-
tion method. A novel meta-algorithm LA-MCTS was proposed [77] that
learns how to partition the search space and find the most promising
regions to avoid over-exploration. The authors empirically showed that
by combining their algorithm with the TuRBO algorithm they were able
to improve the state-of-the art results for many high dimensional optim-

43

ization problems. Recently, the Vecchia approximation of the standard
GP was used in the TuRBO algorithm to scale the BO to large number
of observation [31]. The results showed that TuRBO with Vecchia ap-
proximation compared favorably to the other state-of-the-art algorithms
and can be used to speed up BO when many evaluations of the objective
function are necessary.

The major problem with the proposed algorithms is that to accelerate
the computations they use a specialized hardware, which is expensive or
not available for a regular user. To achieve scalability the EBO algorithm
uses 240 CPU cores [79], while TuRBO and LA-MCTS use GPU hardware
to accelerate the computations. Performing the optimization using these
algorithms on regular hardware with only a moderate number of CPU
cores significantly increases their computational times.

2.6.1 Gaussian Process Experts

Gaussian Process Expert (GPE) models have been introduced to address
GP scalability issues by combining multiple GP models, each focusing
on different aspects of the underlying function or different regions of
the input space [74]. GPE models offer improved scalability compared
to standalone GP models. The computational complexity of training a
GP model scales cubically with the number of data points, which can
become infeasible for large-scale problems. By dividing the data into
smaller subsets and training a GP expert on each subset, GPE models can
reduce the overall computational complexity. Additionally, each expert
can be trained and updated independently, allowing for parallelization
and more effective allocation of computational resources. Furthermore,
GPE models can provide more accurate and expressive representations
of the target function by combining the strengths of individual GP
experts. This can lead to better generalization performance and more
robust predictions compared to using a single GP model.

GPE models can be grouped into two main categories: mixture of
experts and product of experts. The mixture of experts models (MoE)
divides the input space into regions, and each expert is responsible
for modeling the target function within its assigned region [30, [74, 184].

44

This approach can be useful for capturing local patterns in the data and
can lead to more accurate predictions. However, mixture of experts
models may suffer from overfitting or underfitting if the regions are not
appropriately defined, and the combination of experts’ predictions can
be less straightforward.

Product of experts models (PoE) considers the contribution of all
experts for every input point but weighs their predictions based on
their uncertainty levels [26]. This approach can help to capture complex
dependencies in the data and can be more robust to noise and overfitting.
Moreover, the combination of experts” predictions in product of experts
models is very simple computation as they only directly take the product
of the predictive distributions, allowing for a more coherent integration
of the individual experts’ contributions.

Despite these useful properties not all POE models offer consistent
predictions which means that aggregated predictive distribution can-
not converge to the true underlying predictive distribution when the
training size n approaches infinity [38]. Furthermore, different model
assumptions limit its efficiency and flexibility.

The best state-of-the-art models like Bayesian committee machine
(BCM) [73] is derived from the conditional independence assumption
and a common prior p(f). The conditional independence assumption
means that different subsets of training data have low correlation, while
common prior means that each local expert trained on the subset of
data needs to share the same kernel and kernel hyperparameters. There-
fore, hyperparameters have to be learned jointly for all expert GP mod-
els. Also, common prior requirement limits the expressiveness of the
objective function that can be learned using this model. The robust
Bayesian committee machine (rBCM) has been shown empirically to
outperform BCM [16], but because it inherits the theoretical basis of
the BCM it is limited to all the restrictions of BCM [13]. Recently, the
generalized robust Bayesian committee machine (grBCM) model [38]]
was proposed as an extension to the rBCM. This model introduces a
global GP expert which communicates with child GP experts leading
to consistent and more accurate predictive distribution compared to
the BCM and rBCM. Compared to the BCM and rBCM model where

45

aggregation is performed in f-space, this model aggregates predictive
distribution in y-space. However, this model still inherits common prior
restriction and because it has additional independence assumptions,
it has higher computing complexity cost compared to rBCM. Another
approach is generalised product of experts (gPoE) proposed by [12}[13].
This approach is strongly motivated by the log opinion pool [24]. This
framework provides a sound and flexible theoretical basis for combining
GP experts which does not require conditional independence assump-
tion between different subsets of training data and expert GP models do
not need to share common prior. For this reason, training data subsets
can potentially overlap, and local GP experts can have different kernels
[11]. Furthermore, this approach can also potentially model heterosce-
dasticity and non-stationarity, even though individual expert GPs use
relatively simple stationary kernels [13].

2.6.1.1 Training

To train the GP on a large training set the product-of-expert models
partitions the data into M subsets D) = {X @) 4@ }, where 1 <i <
M, and train GP on D as an expert GP model. All M experts share
hyperparameters. If we partition the training data into disjoint subsets
and ignore the correlation between GP experts, then marginal likelihood
can be factorized into

M

pWIX,)~ [T wi (v1X7,0), (2.23)
=1

where p; (y<i>|X<i>, 9) ~ N (0, K; + 02I,) with K, = k (X(i), X@) c
R™>™ and n; is the size of training data assigned to the i-th GP expert
model and n; < n. The factorization of the log-marginal likelihood de-
generates the full covariance matrix K ,,, = k(X , X) into block-diagonal

matrix and, thus full inverse covariance matrix can be approximated by
K' ~diag [K7", ..., K};|. This process is illustrated in Figure

For training the model we seek to maximise the log-marginal likeli-

46

K=t = k(X,X)™

T PG1X.0) 1

y ~N(0, kxx + 021)

M
poIx6) ~ [[m(y@1x®,00)
i=1

[]

y D ~N(0,K; + oZi1;)

Figure 2.4: Block-diagonal approximation of full covariance matrix,
which allows efficient training and prediction, because we only need to
invert a covariance matrix for each expert with only a subset of data.

hood with respect to the (shared) kernel hyperparameters

. 4 1 .. o
log p; (y(”IX(”,G) = 3y (Ki+021) ' y?

. (2.24)
-3 log | K; + 021;| + const.

Training can be distributed, which reduces the training complexity time
to O(Mn;3), where M is the number of experts. If we run the training in
parallel with M compute nodes the training time complexity is reduced
to O(n;*), which is significantly lower than O (n*) thecomplexity of the
full GP training.

2.6.1.2 Prediction aggregation

In this section we describe the process of computing the predictive GP
distribution and introduce to several of product-of-GP-experts models.
We will assume that a set of M GP experts has been trained according
to Section We want to predict a function value f, at a corres-
ponding test input .. An important feature of product-of-GP-experts
models is that the predictive distribution p (f«|z.) of function values
after recombining predictions from trained GP experts is still a Gaussian
distribution. Also, the prediction aggregation is performed in func-

47

tion space f, except specified otherwise, which means that we need to
map the aggregated predictive GP distribution predictive distribution
p (f«|zs) through a likelihood function to predict the . labels.

Product of Experts (PoE) The Product of Experts model [26] aggregates
predictions of M experts at test point x, according to

M

pa(folee D) = [Ipi (£l D). (2.25)

i=1

where the predictive aggregated mean and precision are

M
pa =0 (x) > 077 (@) i (22) (2.26)
=1
M
o2 (z) = Z 072 (). (2.27)

The experts in this model need to be jointly calibrated by training the
entire model to avoid the risk of double counting the shared information
[11]. Also, when we increase the number of experts the predictive
variance vanishes, which leads to overconfident predictions, especially
in regions without data [16].

Bayesian Committee Machine (BCM) Bayesian Committee Machine
(BCM) has been introduced in [73] to aggregate predictions of GP experts.
BCM makes the conditional independence assumption that D*DU) |
[+ and explicitly incorporates the GP prior p (f«|z.) when combining
predictions. BCM posterior predictive distribution

Hij\il Di (y* |$*> D(l))

«|T, D) = , 2.28
pafulen D) = TGS (228)
here the predictive aggregated mean and precision are
M
pa =0 (@) > o () 072 () i () (2.29)
i=1

48

M
o7 (@) =) 07 (x) + (1 - M)o.2, (2.30)
=1

where 0.2 is the prior precision of p (f.).

Because BCM is derived from the conditional independence assump-
tion and a common GP prior, GP on each subset of training data D)
need to share the same kernel and kernel hyperparameters [11]. The
main disadvantage of this model is that BCM exhibit problematic beha-
viour in regions transitioning from high to low-density data [16].

Robust Bayesian Committee Machine (rBCM) The rBCM has been
introduced by [16] and mitigates some of the issues of the BCM in the
case where there are only a few observations and allows for flexible
weighting of GP experts, via «; (), which controls the contribution of
expert i at z,.. The rBCM predictive distribution is

1Y, pi (ye|z., DD)

pa (filzs, D) =) (2.31)
PR (fule)
where the predictive mean and precision are given as
M
pa =0 (@) > o () 072 () i () (2.32)
i=1

M M
0;\2 (ry) = Z i (z4) 05 % (24) + (1 — Z Q; (ZL‘*)> ol (2.33)
i=1 =1

The rBCM has similar limitations of BCM, that subsets of training
data for the different GP experts need to be disjoint and experts need
to share the same kernel and hyperparameters. Although the rBCM
mitigates some problematic issues of the BCM and allows for flexible
weighting of GP experts, it still exhibits problematic behaviour in regions
with changing data density [16].

49

Generalised product of experts (POE) Generalized Product of Ex-
perts (gPoE) has been introduced by [12]. The gPoE is strongly motivated
by the log opinion pool framework [24]. The gPoE model combines each
individual GP expert prediction into the final aggregate model

M
pa(felze, D) = [[p) (£ilae, DO), (2.34)

=1

which is again Gaussian with mean and covariance given by

M
pa =0 (@) > o () 072 () i () (2.35)
i=1
M
022 (xy) = Z i (z4) 0% (24) - (2.36)
i=1

The weight o; (x.) is a measure of reliability and controls the contribu-
tion of each expert 7 at test point x,, where «; (z,) >0 and Zfz L0 () =
1. The gPoE considers «; (x,) to be proportional to the change between
prior p (fi| z.) and posterior p (f.| z., D) entropy of the Gaussian dis-
tributions of the i-th expert at point z, [13]. It can be represented as

o (@) o< H; (z,) = = (log o2, —logo? (1)), (2.37)

N |

where o2, is the prior and o? (z.) is the posterior variance at the test
point x,.. When the change in entropy at point z. is zero, it means the
i-th expert provides no information about this point that comes from
training observation and should not be used in combined predictions. In
a case when the point z, is significantly distant from the regions where
the experts were trained, then o; (z,) becomes Vi and the combined
model falls back to the average of the priors of the experts [11]].

Prediction aggregation in y-space Compared to other models the
gPoE model does not require conditional independence assumption
between subsets of training data and GP experts do not need to share
a common prior. For this reason, training data subsets can potentially
overlap and GP experts can have different kernels and hyperparameters.

50

As a results, GP experts can be trained independently without the need
of joint training for all experts in y-space instead of f-space [11].

Predictive distribution of GP expert i conditioned on the related
subset of the data D) and test input z,, € R” in y-space is Gaussian
pi (v DD, 2,) ~ N (pi(2.),0%(z+)) with mean and covariance

i (22) = ki (K +02,0) 'y, (2.38)
07 (24) = kur — kui (Ki+ 02 I)” "k T+ o2, (2.39)

where o ; is the noise variance of each GP expert. The gPoE model
combines individual GP experts predictions into the final aggregate
model

4 (gl D pr* (9l DO), (2.40)

with mean and covariance given by (2.35) and (2.36), respectively.

Conservative prediction variance A well-known weakness of the
gPoE is that it overestimates the prediction variance, which means that
prediction variance becomes too conservative. The proof provided by
[38] shows that when the number of data points increases together
with an increasing number of experts, the gPoE yields a conservative
prediction variance. The prediction variance at the test point z, is higher
than the true prediction variance and equal to the variance from the
expert, which is farthest away from the test point and its variance is
closest to o2, prior variance. This is consistent with the conservative
fusion rule [2], also known as the covariance intersection algorithm,
which states that when we combine multiple Gaussian distributions by
raising to a power of weights, adding up to 1, we get a conservative
distribution which is upper bound of true distribution.

2.6.2 Sparse Gaussian Process

Another approach to scale GP to large datasets is to use Sparse Gaussian
Process (SPGP). SPGP provides an efficient approximation of the full
Gaussian Process by utilizing a small set of representative points, called

51

pseudo-inputs or inducing points, to capture the underlying structure
of the data [62]. The main idea behind this method is to use a small
set of representative points, called pseudo-inputs or inducing points, to
approximate the full GP.

Given a dataset with NV number of input-output pairs (X, y), the first
step in the SPGP method is to select a subset of M inducing points. The

sparsity in the model arises because we consider only a pseudo-data

M

m—1 and

set D of size M < N with pseudo-inputs denoted as X = {X,,}
pseudo targets as f= { fm}i{:l [62]. Given the pseudo-inputs the target
data are assumed to be i.i.d., which leads to the complete data likelihood
as follows:

N
p(y | X, X6) = [[p(yn [%0, X, £
vl ! 11 |) (2.41)
=N (y | KnnKy £, A+ 0%1)
where A = diag(A\), A\, = K — k) K/ kn and [Knal,,,, = K (X0, Xim).-
A Gaussian prior is placed on the pseudo-targets f, which are the

function values at the inducing points X:

p(E|X) =N (f|0,Ky). (2.42)

The posterior distribution over the pseudo targets can be obtained

using the Bayes rule on (2.41) and (2.42):

p(E1D,%) = N (F| KuQy/ Koy (A+0°) 'y, Ky QK),
(2.43)

where Q) = Ky + Kyn (A +U2I)71 Ky

The predictive distribution for a new input x, is then obtained by

52

integrating the likelihood (2.41) with the posterior (2.43):

p (. | ., D,X) = / p (e | %0, X, F) p(E | D, X)dF

:N(y* ‘ N*703)7

(2.44)

where

p = k] QK (A +0°1) 'y,

(2.45)
o =K, — k! (K3} — Qyf) ke + 07

The computational cost is dominated by the matrix multiplication
Ky (A + o) 1K yar in the calculation of Q; which is © (M?N). By
using the pseudo-inputs, the SPGP method reduces the computational
complexity of GP from O(N?) to O(M?). This allows for the applic-
ation of GP to much larger datasets while maintaining a reasonable
computational cost [53,62].

The inducing points X can be selected heuristically or optimized
jointly with the kernel hyperparameters using gradient-based optimiza-
tion techniques, such as conjugate gradients or L-BFGS, by maximizing
the marginal likelihood of the sparse approximation.

The main limitation of SPGP is that the modeling performance is
limited by the small set of global inducing points, which limits its ability
to capture the quick-varying features, especially in high dimensions
[39]. Despite the fact, that SPGP reduce the computational complexity
of full GP from O(N?3) to O(M?3), the complexity still scales cubically
with the number of inducing points where as Gaussian Process Expert
models can scale linearly with the number of experts or regions, making
them more suitable for larger datasets and higher-dimensional problems
[16,54]. Moreover, GPE models can incorporate various types of expert
models, such as different kernel functions or even non-Gaussian models,
to better fit the underlying data distribution, while the SPGP model can
only use the same kernel function for the entire input space, which may
not capture the full range of data variability [74].

53

2.7 Heteroscedastic Bayesian Optimization

In many optimization problems the evaluations of the objective function
are only available via noisy observations. For the standard Gaussian Pro-
cess (GP), the noise level is assumed to be constant across all the input
space (i.e., homoscedastic). However, this assumption is too restrictive
in real-world applications as the noise levels can be input-dependent
(i.e., heteroscedastic). Using the homoscedastic noise assumption in
GP when the underlying objective function is corrupted with the het-
eroscedastic noise can lead to learning a model that will not be able
to correctly capture the complexity of the objective function, which
presents a challenge for Bayesian optimization (BO).

Several approaches have been proposed to handle a heteroscedastic
noise in BO. A treed GP model was proposed by [1] to handle the het-
eroscedasticity of the objective function. However, the authors used
the standard expected improvement acquisition function, which does
not take into account the noise level. The work by [10] used heteros-
cedastic Gaussian process from [42] to learn the noise distribution as a
robustness metric, which was used as an additional objective within the
multi-objective Bayesian optimization framework to estimate the Pareto
front. Another work proposed by [21] used heteroscedastic Gaussian
process and heteroscedastic acquisition functions for Bayesian optimiza-
tion.

2.7.1 Heteroscedastic Gaussian Process

To define the heteroscedastic GP we proceed by placing a GP prior on
[and assume that our observations have been generated according to
yi = f (z;) + € with independent Gaussian noise terms ¢; ~ N (0,07),
where noise variances are given by 0?2 = r (z;). For standard (homosce-
dastic) GP we assume that noise variance is constant (i.e. r (z;) = 02)
across all the input space « and for this reason analytical inference is pos-
sible. In heteroscedastic setting the noise function r (z;) is non-constant
function and it was observed that the input-dependent noise variance
o? (z;) enables to describe the possible heteroscedasticity in the objective

54

function[40]. An example of heteroscedastic noise distorted sin wave
function is depicted in Figure The noisy observations y; are gener-
ated using noise free sin wave function f (z;) = sin (z;) + 0.2 (x;) + 3
and noise variance function r (z;) = 0.5 (z;). We can observe that with
larger x; the sample values are spread further away from the noise free
function f (z;).

Latent Function

5 /_\/\
<
=
0
Noi'se Func{:ion
5
Ko
(@)}
0
Noi'sy Sambles
‘;E * ol
- 10 .
e, * %
-+ ~ I . 2
.;? . i**::ﬂ‘r-: *
= 0 * - o
0 2 4 6 8 10
X

Figure 2.5: Illustrative sin wave function with heteroscedastic noise.

In order to learn the appropriate noise structure from the data and

55

ensure that the model remains non-parametric, many authors does not
specify the functional form for noise level, but place a Gaussian prior
over it [20, 21, B5]. A secondary GP is placed on the latent function
g(x;), which is used to model noise level directly from the data. To
ensure the positivity for the noise function r(x;) it is parameterized as
exponential form r(x;) = exp g(z;). The main problem with modeling
heteroscedastic noise using secondary GP is that the marginal likelihood
(evidence) p (y| X, 6) and posterior p (f«| X, y,0, x.) cannot be com-
puted analytically due to the exponential relationship between the noise
function and its GP, which breaks the traditional conjugacy property
that allows analytical computations in homoscedastic GP models.

To circumvent this problem, the most likely heteroscedastic Gaussian
process (MLHGP) was proposed in [35]. The parameters of both GP are
learned using a modified version of the expectation—-maximization (EM)
algorithm. The predictive MLHGP distribution is similar to the homo-
scedastic GP described in Section except that the homoscedastic
noise in is replaced with heteroscedastic noise variance, which was
learned using secondary GP. By placing a GP prior on f and taking
r(z) as the assumed heteroscedastic noise function, the GP predictive
distribution p (ys| z.) = N (114, 02) at the test input z, is Gaussian with
the mean and variance given by

Hx = k. (Krm + Rnn)_l Y, (246)
02 = Eyy — kun (Kpn + Run) 7 Eant + T, (2.47)
where R, = diag(r) with r = (r(x1),...,7(z,))T and r.. = r(z.) rep-

resents posterior and predictive heteroscedastic noise variance. The cov-
ariance matrices K,,,, = k(X , X), kup, = k (24, X) and k., = k (24, z4)
are the same as in homoscedastic GP. The main characteristic of this
algorithm is that we learn the latent objective function using primary
GP and then we use secondary GP to learn the noise variance function.
The details of how to train MLHGP can be found in [35]].

56

2.7.2 Heteroscedastic Acquisition Functions

The acquisition function is used to guide the search for finding the max-
imum of objective by trading off exploration and exploitation function
in as few iterations as possible. At each iteration of BO, the acquisition
function takes into account the GP predictive mean and variance to
model the utility function, which is maximized to determine where to
sample next.

Many acquisition functions have been proposed [18} 22} 133} 45], but
the expected improvement (EI) acquisition function is the most popular
and the most widely used acquisition function. In the noise-free setting,
when we observe f(z) without noise, we can find the largest observed
objective function value f* = maxy,ex,., f(xi), where n is the number
of observations. Then the EI acquisition function can be written in a
closed form as

agr, (x) = E[max(f(x) - f*),0]
= E[(f(x) = f*)7] (2.48)
= on(x) - (V(x)2(v(x)) + d(7(x)),

where y(x) = % () and ®(-) are the PDF and CDF of standard
normal distribution, respectively. The expected improvement algorithm

then evaluates at the point with the largest expected improvement

Xp+41 = argmax ogr, (X). (2.49)

However, when we deal with noisy observations, we do not observe
f(x;), butrather y; = f (x;)+€;, where ¢; is the observation noise and for
homoscedastic GP assumed to have fixed noise variance across all input
space: €; ~ N (0,02). To compute EI becomes challenging with noisy
observations because we do not know the exact value of the current best
observation f*. One of the strategies proposed by [50] is to replace the
current best observation f* with the GP posterior mean estimate of the
best function value g* = maxy p1(x) referred to as a plug-in value. Using
this strategy EI can be computed analytically in a similar way as with
noise-free observations. However, one drawback using this approach

57

with noisy observations is that it does not take into account the noise of
the future observations.

The augmented expected improvement (AEI) proposed by [28] intro-

duced a multiplicative penalty in order to penalize the points whose GP

2

2 is small compared to the noise variance o2, which

posterior variance o
can be computed as

aael(x) = oagr,(x) x (1 - \/O'EL%TJ?) (2.50)

When the noise level is 0. = 0, AEI reduces to the original EI func-
tion. The heteroscedastic augmented expected improvement (HAEI)
was proposed by [21], which extends the AEI acquisition function by
exchanging the fixed noise level with input-dependent noise level:

o(X
aparl(X) = ag,(x) x [1-— - (2) - , (2.51)
on + 7202 (x)
where o2 (x) is the predictive posterior noise variance at the input x and

7 is a positive penalty parameter for regions with high heteroscedastic
noise.

2.8 Conclusions

In this chapter, we introduced Bayesian optimization and its main com-
ponents, including Gaussian process regression, acquisition functions,
and the process of learning hyperparameters. We then discussed the
primary challenges and limitations facing Bayesian optimization. Next,
we presented various approaches for scaling Bayesian optimization to
handle problems with a large number of observations. Moreover, we
described optimization problems with heteroscedastic noise and why
this type of noise presents a challenge for Bayesian optimization. Finally,
we presented different approaches for handling heteroscedastic noise in
Bayesian optimization, employing heteroscedastic Gaussian processes
and heteroscedastic acquisition functions.

58

Chapter 3

EXTENDING GLOBAL
BAYESIAN OPTIMIZATION

Bayesian optimization is challenging for problems with thousands of ob-
servations. One of the approaches to scale BO to large-scale optimization
problems is to replace the standard Gaussian process with Gaussian pro-
cess expert models. Product-of-expert belongs to this group of models
which are effective with low computation cost and is easy to parallel-
ize. Despite these useful properties not all PoOE models offer consistent
predictions which means that aggregated predictive distribution can-
not converge to the true underlying predictive distribution when the
training size approaches infinity [40]. Furthermore, different model
assumptions limit its efficiency and flexibility.

In this chapter, we propose to replace the standard GP model in BO
with generalized product of experts (gPoE) model in Section Addi-
tionally, we propose a new algorithm gPoETRBO which combines trust
region and gPoE models in Section[3.2] We finally show that generalized
product of experts (gPoE) model can be applied to heteroscedastic BO in
Section[3.3] The proposed algorithms and main findings were published
in [68)169].

59

3.1 Bayesian Optimization with Generalized Product
of Experts

To scale BO we propose to replace the standard GP model with GP
experts model. In this section we focus on the gPoE model, because
it provides the most flexible framework and has the most desirable
properties compared to other GP experts model [13]. We name our
algorithm gPoEBO (generalized PoE based Bayesian Optimization) and
present the pseudoc?)de in Algorithm 3l We highlight the key features
of our algorithm in this section below.

At each iteration ¢, we have a dataset D; = {xy, yi}i_, from pre-
vious evaluations. We randomly partition this dataset into M disjoint
subsets, each with ¢/M data points, and use them to train M local GP
experts. Once the set of M GP experts has been trained, we compute
their posterior mean and variance on a candidate set from ¢ randomly
generated samples using Sobol sequence [65]. We use the gPoE model
to aggregate the final GP model by using a differential entropy weight-
ing scheme [13]. Figure 3.1|illustrates the process of creating the final
aggregated GP model from local GP experts. To find the next most
promising candidate point for optimization problem we use the Upper
Confidence Bound (UCB) acquisition function [66]. To optimize UCB we
use the mean and variance measures already available from final the GP
model. The objective function is evaluated at this candidate point and
the new data point is added to the dataset. The iterations continue until
the desired number of iterations is reached. The output of the algorithm
is the best recommendation obtained through these iterations.

3.2 Trust region Bayesian optimization with Gener-
alized Product of Experts

To improve the accuracy of gPoEBO algorithm, we propose a gPoETRBO
algorithm which is inspired by trust region BO algorithms [17,55]. The
main idea of the trust region method is to use an approximate model for
the objective function which can be trusted and is significantly easier

60

Algorithm 3 Generalized PoE based Bayesian Optimization (gPoEBO)

Input: Number of initializing points N, number of iterations T,
number of points per expert n;.
Output: The best recommendation z7..

1: Randomly select and evaluate N points in the search space Dy =

{(iy)},

2: fort =1to7T do

3: Randomly partition D;_; into M = |D;_1|/n; subsets.

4: Train M local GP experts on {Di_;}M, subsets.

5: Generate g candidate points X® = {xf,..., 2} from the search
space.

6: Evaluate i local GP expert posterior mean ¢ and variance o} on
X¢ points.

7: Aggregate 1/ and o using and .

8: Maximize UCB acquisition function & = argmax,cxe i () +
VBoi(x)

9: Evaluate the objective function y = f(z).

10: Add new data point to the dataset D; = D;_; U {Z,9}
11: end for

to optimize in a neighbourhood of the current guess of the solution
of the optimization problem. The neighborhood considered is called
the trust region. The trust region is expanded or shrunk depending
on the improvement of the objective function. If the comparison is
good, we take the new step and increase the trust-region radius. If the
comparison is bad, we reject the new step and decrease the trust-region
radius [15, 83].

3.2.1 The gPoETRBO Algorithm

We present the pseudocode in Algorithm [4/and an illustrated workflow
in Figure Our algorithm uses generalized PoE as a surrogate model
with UCB acquisition function. We define a trust region to be a rectangle
around the current best solution. The size of the trust region is adjusted
based on whether we find a better solution in that region. The region is
increased if we find a better solution and decreased if we are not able to
make progress.

We start optimization by initializing the base length size of the trust

61

osof gieedme, Standard GP
0.25
0.00
—0.25
-0.50

-0.75

-1.00

x1 x2 x3 x4 x5 x6 x7 x8 x9

Local GP experts

0.75

10 1.0
050
05
025
004 7
0.00
-05
-0.25

-1.0
-0.50

-0.75

-2.0

x1 x5 x9 x2 x6 x8 x3x4 x7

Aggregated GP

x1 x2 x3 x4 x5 x6 x7 x8 x9

Figure 3.1: Illustration of building local GP experts model. Suppose we
have a dataset D = {(z1,91), ..., (29, ¥9)}. In a standard approach we
use all available data to build a GP. However, in the gPoE model, we
randomly partition the dataset into A/ = |D|/n; = 3 subsets, where we
choose the expert size of n; = 3 and build M local GP experts {M;},
independently. We combine experts posterior predictions using to
get the aggregated GP model.

region L = Ljyi: and defining the minimum L,,;, and maximum
Lynaq side length. At every iteration, as in the gPoEBO algorithm, we
partition the data randomly into M disjoint sets and train the M GP
experts. Then, we find the best point in our dataset D, corresponding
to the best objective function value. We draw a trust region rectangle
around this point and generate ¢ random points using the Sobol se-
quence in that region. For each GP expert, we compute posterior mean
and variance on generated points and use the gPoE model to compute
the final aggregated GP model. To find the next most promising can-
didate point we optimize the UCB acquisition function. We evaluate
the objective function value on that candidate point and compare the
objective function value to the current best solution. If we improve the

62

Algorithm 4 Generalized PoE based Trust Region Bayesian Optimization
(gPoETRBO)

Input: Number of initializing points /N, number of iterations T,
number of points per expert n;, initial TR parameters.
Output: The best recommendation z7..
1: Randomly select and evaluate N points in the search space Dy =
{(i, () 1Ly
fort =1toT do
Randomly partition D;_; into M = |D;_;|/n; subsets.
Train M local GP experts on {D:_;}, subsets.
Construct a hyper-rectangle TR of the length L around the best
point z; = max;<;<|p,_,| f (i).
Generate g candidate points X° = {zf, ..., 23} from TR (7).
7: Evaluate i local GP expert posterior mean y; and variance o; on
X¢ points.
8 Aggregate uf' and 07! using and .
9: Maximize UCB acquisition function & = argmax,cxe i () +
VBo(x)
10: Evaluate the objective function § = ().
11: Add a new data point to the dataset D, = D, U {,7}
12: Update the TR parameters and check whether to restart.
13: end for

A

current best solution, we increment the success counter and reset the
failure counter to zero, otherwise we set the success counter to zero
and increment the failure counter. We use expansion rate o = 2 to
increase the size of the trust region L = min (Lyaz, @ X L) after Toyec
number of successive improvements and shrinking rate of oy = a% =1
to reduce the size L = L x a after 7y, consecutive failures. We reset
the counters after we change the size of the trust region. Additionally,
we do not allow the side length of a trust region to become larger than
Lyaz- When the trust region length size becomes less than L,,;,, we
discard all the values and restart the optimization. In all experiments,
we use the following hyperparameters suggested by [17]: Tsuce = 3,
Tfailt = d, Lipin = 27", Lyaw = 1.6, Ly = 0.8, where d is the number of
dimensions.

63

Aggregate GP experts

04 : /68 *\ 5, Draw arectangle

0.2 f 1\ | centered at best 0.5 P
| \ | =
00 | * | point x* &
02| | B AR 001 &
e L A
\]
-04 i *\ ' ',1 v“ -05
-061 ! S i *
| i / \
| / \ -10
-0.81 | N
: et
ix1 23 x| 5 X6 x7 xBx3 -5
[S x1 2 3 x4
. Partition data and build GP experts S—— Maximize acquisition function
051 | == — || @
. e — 7 B
0 o |- = . s
N | =
05 . .

A 2

Figure 3.2: Workflow of the gPoETRBO algorithm.

3.2.2 Restart Strategy

The trust region is a local optimization method and is biased toward
the starting points. To achieve global optimization, we use a restart
strategy. It was shown numerically that restarting optimization from
scratch achieves a better performance than allowing the algorithm to
continue [17, 55, [75]. In our case, we restart the optimization when
the trust region length size falls bellow Ly, (line[12]in Algorithm [4).
Moreover, the proofs of convergence to the global maximum with restart
strategy were provided in [56, 61} 75].

We briefly describe the proof provided by [75] for categorical and
mixed search space, but in our case we use it to prove that gPoETRBO
converges to the global maximum in continuous search space. The proof
is based on assumptions that (i) the objective function f is bounded in
the search space X" and (ii) the surrogate model accurately approximates
f in a small enough region. In BO it is generally assumed that f is
Lipschitz continuous and we can choose a small enough trust region
with the side length L,,,;,, so that the GP surrogate model can accurately
approximate any data point in that region, these assumptions are satis-
fied. Given these two assumptions, we can show that if after a restart,
gPoETRBO terminates in a finite number of iterations, then it converges
to the local maxima of f, or, if it does not terminate after a finite number
of iterations, it converges to the global maximum. If gPoETRBO does not
terminate after a finite number of iterations there must have been at least

64

one successive improvement per Nyuin = Trait X [108,, (Linit/Lmin)|
iterations, and thus, we have a strictly increasing series { f (zk)}zozl,
where f(z%) = MAX (k1) X Nyin+1,...kx Nin 1/ (%)} @nd f(2;) is the func-
tion value at the iteration i. Using the monotone convergence theorem
[4] we can show that this series converges to the global maximum of the
objective function.

3.3 Heteroscedastic Bayesian Optimization using
Generalized Product of Experts

In many real-world optimization problems observations are corrup-
ted by a heteroscedastic noise, which depends on the input location.
Bayesian optimization (BO) is an efficient approach for the global optim-
ization of black-box functions, but the performance of using a standard
GP model can degrade with changing levels of noise due to a homosce-
dastic noise assumption.

The gPoE model is capable of modeling heteroscedastic noise be-
cause each GP expert can have its own individual hyperparameters.
After training the experts {M;} | on the relevant subsets {D;}}" |, we
obtain their predictive distributions {p; (y | D;, z.)}, at the test point
x, where predictive mean p,, (.) and variance azi (x) for each expert

is defined as in (2.38) and (2.39). Figure |3.3|illustrates the process of

building the gPoE model to handle heteroscedastic noise.

When dealing with heteroscedastic noise we would like to avoid dir-
ectly aggregating predictive distribution for noisy test data y., because
its predictive variance includes the heteroscedastic noise variance. From
we see that for noisy test data y, the posterior predictive variance
for the i-th expert is equal to o7, (z.) = 07, (2.) +02;, where o7 (z.)isa
predictive variance for a noise free test data point z, and Jii is the noise
variance.

To have a meaningful aggregated prediction variance, where pre-
diction variance approaches zero with an increasing number of ob-
servations [40], we aggregate GP experts in latent functions space f.
Then predictive distributions are equal to {p; (fs | Ds, z.)}2,, which

i=17

65

are similar to {p; (y« | D;, x*)}i\i 1, but without added noise level Jg’i
to each GP expert variance 051 (z«). Conditioned on the related data-
set D(¥), individual GP expert predictive distribution p; (f,|z., D?) =

N (,u £ (@) 012% (m*)) has the posterior predictive mean and variance:

tg, () = ki (K + a?,iI)_l Yis (3.1)
0% () = ks — ki (Ki+ 02 1) kT (3.2)

We can aggregate the predictive distribution for f. using the gPoE

M

pa(filze D) = [[p) (£ilae, DO), (3.3)

=1

where predictive mean and variance is equal to

M
Hian = Oh, (@) D (w) o7 (@) sy (@), (3.4)
o i=1
U;j* = Z a; (4) O’EQ (x4) . (3.5)
i=1

The weight «; (z) for each expert i at the test point z, is the differ-
ence in differential entropy between the prior p (f| z.) and posterior
p (f+] 2+, D), which can be computed as

Qg (:L'*) = (log 0-]2%** - log O-?',L- (:C*))) (36)

N |

where a]%i** is the prior and 0]201_ (x4) is the posterior predictive variance
at the test point z, for the i-th GP expert.

To make predictions for noisy observation y., we need to map an
aggregated predictive GP distribution p 4 (f«|z«, D) through a likelihood
function p (y«|f«, r«). Here, 7. is a heteroscedastic noise variance at a test
point z,. Finally, the aggregated GP predictive distribution for noisy
observations pa (y.|z+, D) = N (pas,0%,) with posterior predictive

66

mean and variance equal to

2 2
HAs = Hfus OAs = Of,, + T (3.7)
3 X
X
2 w2y x
+ X% "
— XX
1 + x X x X X
’ % % * \\
0 * FEE R e 1 2 X x
A *, L ++ g X xx ox
1| % ey + o x *
- et o+, Ty X
— * . » %
-2 y

0.0 0.2 0.4 0.6 0.8 1.0

gh b b M Lo n o

o B N w &

)

-2

0.0

Figure 3.3: Illustration of building a gPoE model with heteroscedastic
noise. (Top) Suppose we have n noisy observations D = {(z;,v;)},
(denoted as markers) which are generated by adding heteroscedastic
noise to the noise free objective function (smooth line). (Middle) We
partition the noisy observations into M = 3 subsets using a clustering
algorithm and build M local GP experts {M;}, independently. (Bot-
tom) We combine individual GP experts posterior predictions using

Equation and to get the aggregated gPoE model.

We propose to use the posterior noise variances from each GP ex-

M
pert {0}2@}) to find the r,.. We use the simple weighted average to
aggregate the noise variances

M
re=r(1) =Y o (2.) 02, (3.8)
i=1
where «; () is a measure of reliability and quantifies the contribution

67

of each GP expert i at the test point z, by the prediction precision and is
the same weight that is used to aggregate the mean and variance in (3.4)

and (3.5).

To model the heteroscedastic noise in BO with the gPoE we propose a
modified version of the HAEI acquisition function in combination with
the individual noise variance levels learned from each individual GP
expert. This acquisition function can be expressed as

apael(r) = ag,(7) X <1— (o)) (3.9)

U]%A + 27 (x)

The aggregated noise variance function r (z) = >, a; () o?; com-
bines the noise levels 0?;, where «; (x) > 0 and S M i (z) = 1. This
multiplicative penalty factor accounts for the diminishing return of ad-
ditional replicates as the predictions become more accurate [28]. Similar
to [21], we can show that the original EI acquisition function ag;, (=) can
be recovered in the case that noise variance r () = 0 and in the case that
r (x) > 0 the penalty factor operates as a rescaling of the EI acquisition
function penalising the regions where the GP predictive variance is
small relative to the noise variance level r (x). Additionally, using the
parameter we can control the penalty size for regions with high noise

variance.

Proposition 1. The HAEI acquisition function with the gPoE aggregated
noise variance reduces to EI when the ratio of predictive posterior variance to
predictive noise variance is much greater than 2.

2
g
Proof. Let k = ﬁ denote the ratio of posterior predictive variance to

noise variance at an arbitrary input location x. Dividing the numerator
and the denominator of the second term in the second factor of (3.9) by

Vr(z) yields

agagl(7) = agr, (7) X (1 - ﬁ) : (3.10)

68

Taking the limit analytically as k tends to infinity and assuming finite

v, we get
. T B v _
klggo apael(z) = klggo agr, () (1 m) = ag,(r), (B.11)
which recovers the expected improvement acquisition. O

In the Proposition 2] we show that the multiplicative factor penalizes
the locations with small posterior prediction variance compared to the
noise variance and therefore enhances exploration.

Proposition 2. The HAEI acquisition function with the gPoE aggregated
noise variance goes to zero as the ratio of posterior predictive variance to noise
variance approaches zero.

Proof. Taking the limit as & tends to zero in Equation yields

. . v
| =1 l1—-————1]=0. 12
lim apapi(2) = lim ag, (2) <) 0 (3.12)

N

We present the pseudocode for heteroscedastic the gPoE with the
HAEI acquisition function in Algorithm |

Additionally, it can be shown [21] that in the case of large noise

variance, when lim;,_,(the multiplicative penalty <1 - ﬁ) can be

approximated using Taylor expansion around k£ = 0. This approxim-
ation can be used when the ratio k is small relative to v and could
provide guidance in setting the v parameter if prior knowledge about &
is available.

Moreover, we propose a modified version of aleatoric noise-penalized
expected improvement (ANPEI) [21]] acquisition function, where we
explicitly penalize the input space regions with large noise levels. The

69

Algorithm 5 Heteroscedastic GPOEBO with HAEI

Input: Number of initializing points /N, number of iterations T,
number of points per expert n;.
Output: The best recommendation z7..

1: Randomly select and evaluate N points in the search space Dy =

{(, fli)}

2: fort =1to7T do
3: Randomly partition D;_; into M = |D;_1|/n; subsets.
4: Train M local GP experts on {Di_;}M, subsets.
5: For each i-th GP expert, compute noise variance UZZ-.
6: Generate g candidate points X° = {z{,...,z{} from the search
space.
7: Evaluate i local GP expert pred1ct1ve mean py, (5) and variance
o7 (5) on X° points usmg 1) and (3 .)
8: Aggregate iy, and Uf usmg) and .
9: Compute r(z§) = M a;(x5)o?; for all candidate points using
(3.8).
10: Compute the HAEI acquisition function ap AEI(xj) for all candid-
ate points using (3.9).
11: Select the candidate point with the maximum HAEI value: 2 =

argmax,cxe HAEI(Z).
12: Evaluate the objective function y = f(z).
13: Add new data point to the dataset D; = D;—; U {Z,7}.
14: end for

ANPEI acquisition function for POE models has the form

aANPEI(x) = ﬂ X CtEIn(:C) — (1 — ,8) X T (1‘), (313)

where r () = Y2, a; () 0?; is an aggregated noise function from the
individual GP experts and 5 is a constant, which controls the penalty
trade-off between original EI and the noise variance level. The agp,, ()
term contributes positively to aanper(z) and the noise penalty term
contributes negatively. When £ is closer to 1, more weight is given to
the original EI and less weight is given to the noise penalty. Conversely,
when f3 is closer to 0, more weight is given to the noise penalty and less
weight is given to the EI acquisition function. We show the advantages
of our proposed modifications of acquisition functions in conjunction
with the gPoE model compared to other algorithms in Section [4.2}

70

3.4 Conclusions

In this chapter, we propose a new approach how to scale Bayesian optim-
ization to problems with a large number of observations. Our proposed
algorithms replace the standard Gaussian process model with the gener-
alized product of experts model in Bayesian optimization. This model
trains multiple local Gaussian process experts on the subsets of training
data and combines their weighted posterior distributions through a
product operation. Given that the local Gaussian process experts in the
generalized product of experts model can be trained independently, this
allows the generalized product of experts based Bayesian optimization
to achieve high levels of efficiency and scalability. Additionally, we
have presented an approach for performing heteroscedastic Bayesian
optimization using the generalized product of experts. We proposed
two modified versions of excising heteroscedastic acquisition functions
which use the individual noise levels form GP experts and can penalize
the input space regions with high noise.

71

Chapter 4

NUMERICAL
EXPERIMENTS

In this chapter, we empirically evaluate the efficiency and scalability
of our proposed gPoEBO and gPoETRBO algorithms, and compare
them with other baseline algorithms. Additionally, we perform ablation
studies to assess the impact of different properties on optimization
accuracy. Finally, we conduct an empirical comparison of our proposed
heteroscedastic BO algorithms with other baseline algorithms. The
results of this chapter have been published in scientific papers [68,69].

4.1 Scalable Bayesian Optimization

We compare the performance and running times of our proposed gPoEBO
and gPoETRBO algorithms with other GP experts based BO algorithms
(PoE_BO, BCM_BO, rBCM_BO), sparse GP regression (SGPRBO) based
BO, standard BO, TuRBO and random search baselines. Also, we com-
pare gPoEBO with a modified gPoEBO version, where all GP experts
share the same hyperparameters, which we call gPoEBO_f. We evaluate
the algorithms on four global optimization benchmark functions with
varying dimensions and continuous optimal control problems used in
[17].

72

For global optimization benchmark functions we use Rosenbrock,
Levy, Ackley and Rastrigin in domains [—10, 10]?, [-10, 10]”, [-5, 107,
[—5.12,5.12]P, respectively. Global optimization benchmark functions
vary in optimization difficulty. Rosenbrock is unimodal function with
the global minimum point found in a narrow, parabolic valley, which
makes convergence to the minimum difficult. Levy, Ackley and Rastri-
gin functions have multiple local minima points, which makes it difficult
to find the global minimum. In our experiments we transform the min-
imization problem to maximization problem by changing the sign of the
objective function value for these benchmark functions. We evaluate the
performance on these benchmark functions on 20 and 50 dimensions.

For continuous optimal control problems, we use a 12D Lunar Land-
ing, 14D robot pushing problem, a 60D rover trajectory planning prob-
lem. The problems are multi-modal and challenging for many global
optimization algorithms.

We use random and disjoint data partitioning to assign data points
for GP experts models. Also, in all our models we use the Matérn-5/2
kernel with automatic relevance determination (ARD) for computing
the covariance matrices. We evaluate all experiments using modest 8
core virtual CPU with 32 GB memory on Google Cloud platform, which
is available on regular a laptop.

41.1 Results on 20D Benchmark Functions

For optimization on 20D benchmark functions we use a budget of 500
function evaluations with 50 initial points, 550 data points in total. We
assign 50 data points per expert for all GP experts based BO algorithms.
We choose to use 50 inducing points for the SPGPBO. All experiments
are repeated 10 times.

The detailed results of optimization performance and running times
are provided in Tables.Tjand [4.2] The Figure .T|shows an optimization
progress with respect to the number of evaluations. The improvement
in optimization performance and running times for our proposed al-
gorithms and TuRBO algorithm compared to the standard BO on 20D
benchmark functions is provided in Table

73

Based on the results, we can see that the best optimization results
are achieved using the trust region based algorithms. The GP experts
based BO algorithms show similar performance to the standard BO
performance, but the runtimes of these algorithms are 2 times better.
The gPoEBO algorithm showed the best runtimes on all functions and
the best performance on Levy and Rastring functions compared to other
GP experts based BO algorithms. Comparing gPoEBO with gPoEBO_f,
we see that gPoEBO has better accuracy and runtimes on all functions,
except the Ackley function, and faster runtimes on all functions.

Ackley 1e6 Rosenbrock
00_ 0— o e e S i - - o— o o ————
T T aaied B s = e e = e
25— e dfr’""j B
- e e [T T ET T LETY TYLT Tt
-5.0 - P B o
9 S o
> -7.5= - N e
© v R]
> _10.0- F"' _____ =31 ¢
U S s f
-125- —a— |
i
I

1
-15.0— '
1

e s ~100— 7
3% L —— Pile
—100— A= 7
3 : 200 =
3 ! FEETE ez -
£ 200 f ﬁj&?— -----
-300— /I
| ¥
-300 !
: —400 =
I I I I I I I I I I I
0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration
—— QgPOEBO -see- BO —-= BCM_BO SGPRBO gPOETRBO
gPoEBO_f =~ === PoE_BO === rBCM_BO ==+ TuRBO ~=- Random_Search

Figure 4.1: Optimization performance on 20D benchmark functions.

Similar results can be seen when comparing gPoETRBO to the TuRBO
algorithm. The gPoETRBO algorithm outperformed the TuRBO al-
gorithm on the Ackley and Rastrigin function with 2 times speedup
in computational time.

Based on the results in Table we can see that for the gPoEBO
algorithm, the improvement in accuracies on 20D benchmark functions
ranged from -2.87% to 6.45% compared to standard BO. However, the
improvement in runtimes ranged from 106.10% to 209.58%, showing
a significant improvement in running times while maintaining similar
accuracy to the standard BO. For the gPoETRBO algorithm, the im-

74

Table 4.1: Optimization performance on 20D benchmark functions

Ackley Rosenbrock Levy Rastrigin

Algorithm

BO 7.935(0.286) -167163.444 (43356.440) -33.792 (6.760) -177.085 (10.278)
PoE_BO -8.005 (0.269) -186342.913 (43712.196) -32.750 (3.270) -173.878 (8.577)
BCM_BO 7990 (0.293) -163501.899 (42181.016) -38.033 (6.701) -190.851 (8.018)
rBCM_BO -8.101 (0.224) -179548.000 (54906.183) -35.413 (4.180) -185.918 (15.210)
gPoEBO_f -7.971(0.373) -173253.006 (44954.889) -32.296 (4.525) -184.812 (9.805)
gPoEBO 8.043 (0.417) -171959.197 (25469.116) -31.614 (5.033) -172.071 (15.096)
TuRBO -0.922 (0.730) -271.574 (179.904) -7.847 (7.424) -74.099 (39.399)
gPoETRBO -0.595 (0.067) -2549.391 (1455.148) -8.240 (2.616) -52.219 (10.675)
SGPRBO -7.930 (0.299) -182059.152 (32591.474) -34.010 (6.417) -176.999 (7.362)
Random Search -10.511 (0.636) -1033732.896 (292204.172) -79.720 (21.641) -234.806 (16.995)
Optimal value 0 0 0 0

Table 4.2: Optimization running times on 20D benchmark functions
(seconds)

Ackley Rosenbrock Levy Rastrigin

Algorithm

BO 364.633 (5.146) 566.642 (19.928) 503.049 (17.532) 365.657 (12.068)
PoE_BO 179.413 (4.956) 256.924 (8.953) 247.778 (10.600) 259.505 (8.616)
BCM_BO 178.048 (3.323) 258.223(7.302) 250.388 (7.184) 262.411 (7.152)
rBCM_BO 179.389 (3.976) 268.037 (11.002) 244.259 (8.945) 260.350 (8.493)
gPoEBO_f 181.411 (4.555) 257.952(8.118) 251.952 (10.063) 249.782 (5.401)
gPoEBO 176.917 (6.153) 183.036 (7.698) 169.257 (2.886) 169.936 (2.201)
TuRBO 380.452 (2.115) 434.922 (3.055) 440.946 (4.397) 442.488 (3.439)
gPoETRBO 202.628 (4.404) 224513 (5.732) 226.182(3.426) 216.930 (6.729)
SGPRBO 388.049 (6.269) 383.875(3.950) 386.994 (1.996) 385.133 (3.967)
Random Search ~ 0.091 (0.010) 0.059 (0.008) 0.122 (0.010) 0.067 (0.012)

provement in accuracies ranged from 70.51% to 98.47% compared to
the standard BO on 20D benchmark functions. The improvement in
runtimes ranged from 68.56% to 152.39%, indicating an improvement in
optimization performance and efficiency over the standard BO. Com-
paring gPoETRBO to TuRBO, we can see that the gPoETRBO algorithm
can match the accuracies of the TuRBO algorithm while demonstrat-
ing significant improvements in running times across all benchmark
functions. For the Ackley function, gPoETRBO outperformed TuRBO
in accuracy and showed a runtime improvement of 79.95% compared
to decline of 4.16% for the TuRBO algorithm. Similarly, for the Rastri-
gin function, gPoETRBO surpassed TuRBO in accuracy and achieved
a runtime improvement of 68.56%, while TuRBO showed a decrease of

75

17.36%.

Table 4.3: Improvement in optimization performance and running times
compared to the standard BO on 20D benchmark functions

Ackley Rosenbrock Levy Rastrigin

gPoEBO

Accuracy (%) -1.36 -2.87 6.45 2.83
Runtime (%) 106.10 209.58 197.21 115.17
gPoETRBO

Accuracy (%) 92.50 98.47 75.62 70.51
Runtime (%) 79.95 152.39 122.41 68.56
TuRBO

Accuracy (%) 88.38 99.84 76.78 58.16
Runtime (%) -4.16 30.29 14.08 -17.36

4.1.2 Results on 50D Benchmark Functions

The performance on 50D benchmark functions is evaluated using a
budget of 2000 function evaluations with 100 initial data points. We
chose the expert size to be 200 data points per experts for all GP expert
based BO algorithms. We repeated the experiments 10 times and the
optimization performance and computational time with the standard
deviation of the results are presented in Table 4.4/and while Figure
shows the optimization progress over the number of iterations. The
improvement in optimization performance and running times for our
proposed algorithms and TuRBO algorithm compared to the standard
BO on 50D benchmark functions is provided in Table

We see that the gPoEBO algorithm is not able to achieve the expected
results on 50D benchmark functions. Its accuracy is worse than standard
BO and random search on Levy and Rosenbrock functions. Other GP
expert models based BO performed better than gPoEBO and perform-
ance closely matched the standard BO. Despite that, when comparing
the efficiency of the algorithms, we see that the GP experts based BO
algorithms are more efficient and their computational times are between
7 to 10 times shorter than standard BO depending on the optimization
functions.

Comparing gPoEBO_f with gPoEBO we see that gPoEBO_f achieves

76

better accuracy on all functions, even though it has slightly worse

runtime than gPoEBO.
Ackley Rosenbrock
0.0 0.0 = S
T e 0.2
» 207 Rl 04— A e
E 7.5 @
3 -75- o ~0.6
= 10.0 o
: 1] puommeasians -0.8
—-12.5— !“'L‘-— 104
-15.0—
I I I I I I I I
Rastrigin

—200 =

—400 -

—600 —

600 — —800 —

—1000

I I I
1000 1500 2000

Iteration

I I I
1000 1500 500

Iteration

2000

SGPRBO
TuRBO -

...... BO
--= PoE_BO

gPoETRBO
Random_Search

—— gPoEBO
gPoEBO_f

—-= BCM_BO
-w= rBCM_BO ==+

Figure 4.2: Optimization performance on 50D benchmark functions.

Table 4.4: Optimization performance on 50D benchmark functions

Ackley Rosenbrock Levy Rastrigin

Algorithm

BO -10.216 (0.242) -2042973.383 (191889.884) -180.611 (7.079) -573.166 (17.653)
PoE_BO -10.451 (0.104) -1881639.575 (292858.153) -205.602 (8.156) -584.058 (20.305)
BCM_BO -10.498 (0.226) -2093670.300 (200765.134) -193.730 (8.170) -596.781 (11.721)
rBCM_BO -10.321 (0.129) -2062894.800 (152171.924) -204.405 (5.692) -569.846 (12.555)
gPoEBO_f -10.470 (0.188) -2132363.400 (252235.246) -197.435 (15.438) -571.605 (22.915)
gPoEBO -11.935 (0.316) -5039677.700 (391263.730) -345.149 (19.835) -683.752 (24.088)
TuRBO -1.230 (0.166) -384.571 (121.836) -3.610 (2.813) -118.111 (38.689)
gPoETRBO -0.220 (0.034) -7956.787 (3665.374) -9.382 (6.797) -140.077 (31.921)
SGPRBO -10.553 (0.132) -2241390.000 (199413.062) -207.832 (6.421) -601.082 (27.282)
Random_Search -11.982(0.241) -4180252.092 (432158.966) -301.336 (33.074) -689.411 (19.190)
Optimal value 0 0 0 0

Trust region method based gPoETRBO and TuRBO achieve the best
performance compared to other BO algorithms. We see that the gPo-
ETRBO algorithm shows very good results on all 50D benchmark func-
tions. It matches the performance of the state-of-the-art TuRBO al-
gorithm and achieves a better accuracy on the Ackley function. Moreover,
gPoETRBO is very efficient with a runtimes 11 to 12 times shorter than

77

the TuRBO algorithm on all benchmark functions. For example, on the
Ackley function gPoETRBO runtime was 2265.742 seconds compared
26864.023 seconds for TuRBO, which is 11.85 times shorter. For Levy
function the runtime for gPoETRBO is 12.45 times shorter (2108.032
seconds vs 26240.322 seconds).

Table 4.5: Optimization running times on 50D benchmark functions
(seconds)

Ackley Rosenbrock Levy Rastrigin
Algorithm
BO 17388.273 (1858.737) 19893.231 (2011.091) 25690.148 (997.904) 21093.616 (540.624)
PoE_BO 2244.812 (66.189) 2924.190 (123.574) 3305.685 (139.850) 3886.263 (129.530)
BCM_BO 2269.010 (58.671) 3001.214 (100.393) 3324.535 (128.264) 3984.716 (58.673)
rBCM_BO 2235.832 (55.324) 2920.929 (109.558) 3332.704 (88.607) 3625.325 (201.311)
gPoEBO_f 2200.432 (97.215) 2947.697 (87.119) 3314.335 (125.566) 3717.829 (144.038)
gPoEBO 2123.860 (19.559) 2157.512 (17.734) 2109.236 (17.261) 2116.775 (25.977)
TuRBO 26864.023 (1921.912) 25075.302 (99.474) 26240.322 (289.881) 25365.491 (94.976)
gPoETRBO 2265.742 (56.076) 2058.945 (29.689) 2108.032 (68.645) 2071.761 (33.439)
SGPRBO 9260.272 (138.201) 9430.895 (367.998) 9154.619 (110.815) 9329.038 (185.747)
Random_Search 0.304 (0.018) 0.257 (0.054) 0.512 (0.069) 0.212 (0.032)

Table 4.6: Improvement in optimization performance and running times
compared to the standard BO on 50D benchmark functions

Ackley Rosenbrock Levy Rastrigin

gPoEBO

Accuracy (%) -16.83 -146.68 -91.10 -19.29
Runtime (%) 718.71 822.04 1117.98 896.50
gPoETRBO

Accuracy (%) 97.85 99.61 94.81 75.56
Runtime (%) 667.44 866.19 1118.68 918.15
TuRBO

Accuracy (%) 87.96 99.98 98.00 79.39
Runtime (%) -35.27 -20.67 -2.10 -16.84

Comparing the algorithms improvement over the standard BO in
Table we can see that for the gPoEBO algorithm accuracies declined
compared to the standard BO on 50D benchmark functions, with reduc-
tions ranging from -146.68% to -16.83%. However, runtimes increased
between 718.71% and 1117.98%, implying that despite not being able
to improve the accuracy, the gPoEBO is still very efficient in handlling
large number of observations compared to the standard BO. For the
gPoETRBO algorithm, accuracies improved between 75.56% and 99.61%
compared to the standard BO. Also, we see that runtime improvements

78

are ranging from 667.44% to 1118.68%, indicating significant optimiza-
tion performance and efficiency gains over the standard BO approach.
For example, on the Levy benchmark function, the gPoETRBO algorithm
demonstrated a 94.81% accuracy improvement compared to the stand-
ard BO. Comparing the runtimes, gPoETRBO consistently outperformed
TuRBO across all 50D benchmark functions with improvements range
between 667.44% and 1118.68%, while TuRBO showed declines ranging
from -2.10% to -35.27%.

Our results show GP experts based BO suffers from the same over-
exploration problem as in standard BO. Moreover, we see that GP expert
models, which share the same hyperparameters perform slightly better
compared to the gPoEBO algorithm, where GP experts have individual
hyperparameters. The poor results of the gPoEBO algorithm on high
dimensional functions can be explained by the conservative variance
prediction problem discussed in Section

4.1.3 12D Lunar Landing Reinforcement Learning

The goal for 12D Lunar Landing problem is to learn a controller for a
lunar lander that minimizes fuel consumption and distance to a landing
target, while also preventing crashes. We used the same heuristic policy
from TuRBO [17] that has 12 parameters to optimize. The objective
is to maximize the average final reward over 5 episodes because the
simulation can be sensitive to small perturbations as was noticed by
[17].

Table 4.7l shows the results for a total of 1000 function evaluations
with 50 initial points for all algorithms with the runtimes provided
in Table The optimization progress is depicted in Figure We
choose to assign 50 data points per expert for all GP experts based
BO algorithms with a maximum number of six experts. The results
demonstrate that all algorithms except random search achieve better
rewards than the handcrafted controller provided by OpenAl, whose
value is around 280 [17]. We see that the gPoEBO_f algorithm reported
the highest reward among other GP expert models, but was slightly
worse than standard BO. However, when comparing the runtimes in

79

Table we see that the GP experts based BO models are 6-10 times
faster than standard BO. For example, the PoE_BO runtime was 6.17
times better compared with standard BO (1146.710 seconds compared
to 7075.555 seconds), while the gPoEBO runtime is 10.64 times shorter
(664.947 seconds compared to 7075.555 seconds).

Lunar Landing

300 = I p— Y
200 = S e
S 100 —
3
g 07
—100 —
—-200 =
I | I | I I
200 400 600 800 1000
Robot Pushing
10.0 =
7.5 =
0 5.0—
=
g 2.5 =
0.0 = l
_25 —
I I I I I I
0 1000 2000 3000 4000 5000
Rover Trajectory
0 —
" A
$-10 i
©]
> 5
]
-20 |
i
I I I I I I
0 2000 4000 6000 8000 10000
Iteration
—— gPOEBO e BO —:= BCM_BO SGPRBO gPOoETRBO
—=— gPoEBO_f =-=' PoE_BO === rBCM_BO === TuRBO =--- Random_Search

Figure 4.3: Optimization performance on optimal control problems.

Trust region-based algorithms gPoETRBO and TuRBO show sim-
ilar accuracy and runtimes. It is evident from Table [4.8|that gPoETRBO
runtime is 16.59 times shorter that compared to the standard BO (426.478
seconds compared to 7075.555 seconds), while TuRBO runtime is 14.16
times shorter (499.557 seconds compared to 7075.555 seconds). Compar-
ing gPoETRBO and TuRBO to the other GP experts based BO algorithms

80

Table 4.7: Optimization performance on optimal control problems

12D Lunar Landing 14D Robot Pushing 60D Rover Trajectory

Algorithm

BO 305.028 (3.131) 8.308 (0.384) -0.365 (0.172)
PoE_BO 292.794 (17.844) 9.185 (0.901) 0.278 (0.901)
BCM_BO 293.580 (5.083) 9.472 (0.525) -0.059 (0.212)
rBCM_BO 293.738 (7.249) 7.919 (0.710) 0.438 (0.321)
gPoEBO_f 295.418 (11.217) 8.545 (0.505) 0.183 (0.170)
gPoEBO 294.274 (4.865) 8.787 (0.176) -3.118 (0.297)
TuRBO 305.910 (4.530) 10.223 (0.171) 4.186 (0.622)
gPoETRBO 300.026 (8.352) 8.123 (1.394) 2.935 (0.652)
SGPRBO 303.285 (6.393) 8.003 (0.009) -0.352 (0.396)
Random_Search ~ 192.280 (52.448) 5.852 (0.147) -3.603 (0.962)

we see that their runtimes are up to 1.5 times shorter. Moreover, we
noticed that trust region based algorithms with restart strategy are re-
started multiple times during the optimization for this problem, because
they stuck in the local maximum and are not able to make any further
progress. For this reason, models do not use all collected data points
and GP is trained only on a small subset of newly collected data points,
so training the GP is very fast and efficient.

Table 4.8: Optimization running times on optimal control problems
(seconds)

12D Lunar Landing 14D Robot Pushing 60D Rover Trajectory

Algorithm

BO 7075.555 (1995.906) 8972.261 (659.187) 11083.001 (121.252)
PoE_BO 1146.710 (139.087) 3550.812 (21.950) 28004.079 (724.833)
BCM_BO 1004.450 (105.564) 3424.899 (39.532) 27947.945 (496.754)
rBCM_BO 987.079 (57.678) 3481.163 (192.793) 31972.164 (1299.382)
gPoEBO_f 962.113 (166.063) 3350.469 (119.729) 27262.038 (389.318)
gPoEBO 664.947 (82.385) 1895.881 (5.192) 5322.493 (54.741)
TuRBO 499.557 (135.357) 1288.586 (39.326) 31219.460 (755.911)
gPoETRBO 426.478 (41.860) 1113.866 (18.665) 4981.538 (89.362)
SGPRBO 970.373 (51.176) 8273.872 (54.583) 9346.468 (442.238)
Random_Search 43.447 (10.320) 24.744 (0.155) 11.893 (1.148)

Comparing the gPoEBO and gPoETRBO improvement over the stand-
ard BO in Table 4.9} we can see that accuracy for gPoEBO is 3.53 % lower,
but improvement in running time is 964.08 % better, indicating a substan-

81

tial improvement over the standard BO. Similarly, for the gPoOETRBO
the improvement in accuracy is 1.64% lower, but the improvement in
runtime is very significant and is 1559.07%. We can see that only TuRBO
is able to improve the accuracy by 4.2% with a runtime improvement
over 1316.37%, which is significant, but lower than gPoETRBO.

Table 4.9: Improvement in optimization performance and running times
compared to the standard BO on optimal control problems

12D Lunar Landing 14D Robot Pushing 60D Rover Trajectory

gPoEBO

Accuracy (%) -3.53 5.77 -754.25
Runtime (%) 964.08 373.25 108.23
gPoETRBO

Accuracy (%) -1.64 -2.23 904.11
Runtime (%) 1559.07 705.51 122.48
TuRBO

Accuracy (%) 4.20 7.93 1246.85
Runtime (%) 1316.37 596.29 -64.50

414 Robot Pushing

The robot pushing problem is a 14D control problem considered in
[17],179]. We run each method for a total of 5K evaluations with initial
100 data points, except for standard BO and SGPRBO where we run
only 2K evaluations, because of the limitation of the algorithms. We
assign 100 data points per experts for GP experts and limit the maximum
number of GP experts to 6. For the SGPRBO we use 50 inducing points.

We observe from Table 4.7| and Figure 4.3| that all algorithms out-
perform the random search. The BCM_BO algorithm shows the best
performance between the GP experts based BO algorithms. The gPoEBO
shows slightly worse results than BCM_BO, but from Table we can
see that the runtime is almost 2 times faster. The gPoETRBO shows
slightly worse performance than TuRBO, but has the shortest runtime
compared to other BO algorithms. Note that [79] reported a median
value of 8.3 for their EBO after 30K evaluations, while gPoEBO and
gPoETRBO achieved mean and median rewards of around 8.8 and 8.1
only after 5K samples.

82

Analyzing the data in Table for the 14D Robot Pushing prob-
lem, we observe that gPoEBO accuracy surpasses the standard BO by
5.77%. Furthermore, its running time shows an improvement of 373.25%,
showing its efficiency. For the gPoETRBO algorithm, there is a slight
decrease in accuracy by 2.23% relative to the standard BO. Nevertheless,
it shows a significant runtime improvement of 705.51%. On the other
hand, TuRBO shows an improvement of 7.93% in accuracy with an im-
provement in runnting time of 596.29%, which is lower than gPoETRBO
runtime.

4.1.5 Rover Trajectory Planning

The Rover trajectory planning problem is 60D control problem con-
sidered in [17, 77, [79]. Here the goal is to optimize the locations of 30
points in the 2D-plane that determine the trajectory of a rover. We run
each method for a total of 10K evaluations with initial 200 data points,
except for standard BO and SGPRBO, which we run only for 2K evalu-
ations. For GP experts based BO algorithms, we assign 100 data points
per expert and limit the maximum number of experts to six experts. We
use 100 inducing points for the SGPRBO algorithm.

The results in Table 4.7l demonstrate that after 10K evaluations the
best results between GP expert based BO is achieved by rBCM_BO. The
gPoEBO shows only a slightly better performance than the random
search, but unperformed compared to other algorithms. We see that
gPoEBQO_f achieve higher reward than gPoEBO, despite having 5 times
shorter computational time. We can see from Figure 4.2| that trust region
based BO show the best results and TuRBO achieve the best overall
performance. Authors in [79] reported a mean value of 1.5 for EBO after
35K evaluations, while TuRBO and gPoETRBO achieved a mean reward
of about 4.1 and 2.9 after 10K evaluations, respectively. We see from
Table 4.8 that gPoETRBO mean runtime is 4981.538 seconds (1.38 hours),
which compared to TuRBO 31219.46 seconds (8.67 hours) provides 6.27
times speedup in computational time.

Comparing the gPoEBO and gPoETRBO improvement over the stand-
ard BO in Table[f.9/for the 60D Rover Trajectory, we find that the accuracy

83

for gPoEBO has deteriorated significantly and was 754.25% lower. We
compare the running times for gPoEBO, gPoETRBO and TuRBO for
10k evaluations with 2k evaluations of the standard BO, because it is
not able to handle larger number of iterations. Comparing the running
times for gPoEBO we still see an improvement of 108.23%. In the case of
gPoETRBO, the accuracy shows a significant improvement by 904.11%
with an improvement in runtime by 122.48%. We can see that TuRBO
achieved the best improvement in accuracy of 1246.85%. However, the
running time compared to the standard BO is lower -64.50%.

4.1.6 Ablation Studies

We investigate how the data size assigned to the expert in gPoEBO and
gPoETRBO affects the optimization performance. We also compare the
performance of gPoEBO, gPoETRBO, BO and TuRBO on 20D and 50D
with time-restricted budget of 5 and 15 minutes. Finally, we compare
two different point allocation strategies for GP experts in the gPoEBO
algorithm.

4.1.6.1 The impact of number of points per expert

We choose to evaluate the impact of the number of data points assigned
to the GP expert size on optimization accuracy using four synthetic
benchmark function in 20D and 50D. For 20D experiments, we initialize
algorithms with 200 initial points and use 200 function evaluations. We
evaluate the algorithms using 25, 50, 100 and 200 data points per expert.
For 50D experiments, we use 1000 initial data points with 500 function
evaluations and evaluate the performance using 100, 200, 300 and 500
data points per GP expert. Each experiment is repeated 10 times.

Figure 4.4 shows the optimization results for different 20D and 50D
functions for both algorithms. The plot shows the trade-off between
accuracy and runtime. As we assign more training points per expert
the accuracy improves, but computing time increases. We see that
the best balance between accuracy and computing time is achieved by
gPoETRBO compared to gPoEBO on 20D and 50D functions. We also

84

see that for higher dimensional functions on 50D increasing the GP
expert size does not improve the accuracy for the gPoEBO algorithm.
However, we see that for gPoETRBO increasing the size of data points
per expert results in an improvement of accuracy, but also an increased
computational time.

Computing time

[s]

(a) Ackley function

85

20D Ackley 50D Ackley
-11.00
" +
+ +
-8.0 4 LT | -11.254 M
. . + 4 .
. -11.50 4 .
I3 +
-85 £ .
1 L]
3 . + -11.754
©
> . . L
§ 90 -12.004 ¢ .
E ° : ¢ H ++
S -12.251 & +
2 _gs . . +
+
® gPOEBO_25 pts —12.501 ® gPoEBO_100_pts
~10.0 4 gPoEBO_50_pts gPoEBO_200_pts
= gPOEBO_100_pts —12.75 = gPoEBO_300_pts
® . + gPoEBO_200_pts + gPoEBO_500_pts
- T T T - T - — -13.00 r T T - - T -
60 65 70 75 80 8 90 95 400 600 800 1000 1200 1400 1600
. -2 +
+ e
24 T4 o +f+—++. +
. St
_3
_3
[
=l
g —4] .
c —41
S .
=1 .
‘LJCJ . . an
4 e - 3
2751 e o 5 & ._'.
. .
_6{ . @ gPOETRBO_25_pts o @ gPoETRBO_100_pts
. gPOETRBO_50_pts -6 gPOETRBO_200_pts
= gPOETRBO_100_pts . = gPOETRBO_300_pts
-7 . # gPoETRBO_200_pts L] # gPoETRBO_500_pts
T T T T T T T T T T T T T T
60 70 80 90 100 110 400 600 800 1000 1200 1400 1600 1800

Computing time [s]

Function value

Function value

Function value

Function value

20D Levy 50D Levy
~30 + | 200 +
30 .
[+ L+
. ¥ _2254
_404 . ¥ 225
- . . +
°* -2501
_504
—2751
—60 4 . *
.
-3001 o " *
—704 ¢ * . i
° -3254 ¢ n
® gPoEBO_25 pts L4 ® gPoEBO_100_pts
-804 gPOEBO_50_pts L3 . gPOEBO_200_pts
LI s gPOEBO 100 pts | ~3°07 & s gPOEBO_300 pts
-901 4 o # gPoEBO_200_pts 3751 ° # gPoEBO_500_pts
60 65 70 75 80 85 90 400 600 800 1000 1200 1400
04 . - #
n " +
- -20
_s5 -
+ + .
-104 —40 4 +
+
_15{ e
© —60
®
-204 M -
. -go{ ¢ L}
» o "
_25 .
. ® gPoETRBO_25_pts ® gPoETRBO_100_pts
. gPOETRBO 50 pts | _1004 © gPOETRBO_200_pts
-30 1 = gPOETRBO_100_pts ° = gPOETRBO_300_pts
° + gPoETRBO_200_pts + gPoETRBO_500_pts
T T T T T T T T — —120+ T T T T T T T T
60 65 70 75 80 8 90 95 100 400 600 800 1000 1200 1400 1600 1800
Computing time [s] Computing time [s]
(b) Levy function
20D Rastrigin 50D Rastrigin
—160 .t
. . * | -620
. +
~1804 - o,
.k * 6401 o
. .-
~200 4 * 6604
. 660 .
— 4 *
_2201 o. 680
. . H
@ ® gPoEBO_25 pts -=7001 o " ® gPoEBO_100_pts
-2409 gPOEBO_50_pts ¢ = gPOEBO_200_pts
= gPOEBO_100pts | _;50) o 3 = gPOEBO_300_pts
e ® + gPoEBO_200_pts ° - + gPoEBO_500_pts
—260 - - - - - - - - - T T - - T
55 60 65 70 75 80 85 90 95 400 600 800 1000 1200 1400
+
—404
. " —275
~60 .
. ~300 .
—801 = am .
. "+ —3251 -
—1004 ' + * . +
+ -3501 © . .
-120 . . - N
e % et —-375 . +
~1404
. ® gPoETRBO_25 pts - ® gPoETRBO_100_pts
1604 ® e gPOETRBO_50_pts —400 1 . gPOETRBO_200_pts
= gPOETRBO_100_pts . = gPOETRBO_300_pts
—425
~1804 ° + gPoETRBO_200_pts . + gPoETRBO_500_pts
60 70 80 90 100 110 120 400 600 800 1000 1200 1400 1600 1800

Computing time [s]

Computing time [s]

(c) Rastrigin function

86

1e6 20D Rosenbrock 1e6 50D Rosenbrock

. R -364 o
-0.24 " +h F
- PR -3.8 .
—04 -4.04 ®
g
T -4.2 . -
064 o *
S . —4.4 . +
=1 LY . +
5] . e
S -084 -4.61 o +
H
frd o .
® QPOEBO_25 pts 484 e ® gPOEBO_100_pts
-1.01 gPoEBO_50_pts ° gPoEBO_200_pts
= gPOEBO_100_pts —5.01 = gPOEBO_300_pts
J 4 QPOEBO_200_pts - + QPOEBO_500_pts
“12 -5.2
60 70 80 90 400 600 800 1000 1200 1400
0 o oREEE L & 4 01 o+
o H]
-20000{ ¢
~50000 o
o 20000+ R
L] L
=} 3] -
© -600004{ * ° —1000007 &
2 s
5 L4 .
g 800007 ~150000 1
5]
< -
2 —100000 4 R
_1200004 ¢ ® gPOETRBO_25_pts —200000 4 ® gPOETRBO_100_pts
gPoETRBO_50_pts . gPoETRBO_200_pts
140000 4 = GPOETRBO_100.pts | _,ci000 | = gPOETRBO_300_pts
+ gPoETRBO_200_pts # gPoETRBO_500_pts
60 70 80 90 100 400 600 800 1000 1200 1400 1600
Computing time [s] Computing time [s]

(d) Rosenbrock function

Figure 4.4: The effect of the number of data points per expert on optim-
ization performance for gPoEBO and gPoETRBO algorithms

4.1.6.2 Time restricted optimization experiments

To evaluate the efficiency of the proposed algorithms we compare the
performance of gPoEBO against BO and gPoETRBO against TuRBO with
time restricted budget on 20D and 50D synthetic benchmark function.
For 20D and 50D benchmark functions we run the experiments for 5
and 15 minutes respectively.

We can see from the results in Fig. that for 20D benchmark
functions gPoEBO performance was better than BO on all functions,
except for the Rosenbrock function. Comparing the performance of
gPoETRBO with TuRBO, we can see that gPoOETRBO achieved similar
or better performance as TuRBO on all functions except on the Rastring

function.

Figure 4.6/shows that the standard BO outperformed gPoEBO on all
50D benchmark functions. The poor performance is the result of the

87

1e6 Rosenbrock

Values

Values

—100 =

—-120—

I | I I | I | I | I |
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time Time

—— gPoETRBO gPoEBO =e=e BO —= TuRBO

Figure 4.5: Optimization performance on 20D benchmark functions with
time (in seconds) restricted budget.

conservative variance prediction problem in gPoEBO which becomes
even worse in high dimensions. However, gPoETRBO outperformed
TuRBO all 50D benchmark functions with a time-restricted budget.

Based on the results above we see that gPoEBO is not able to achieve
good results on high dimensional functions. However, we see that
gPoETRBO algorithm is very effective on high dimensional functions
when we have limited amount of time to run the optimization and using

only modest computational resources.

4.1.6.3 Point allocation strategies for GP exports

We compared the performance of gPoEBO with two different point
allocation strategies for GP experts: 1) the points are randomly parti-
tioned into disjoint subsets (gPoOEBO_RANDOM) and 2) the points are
partitioned into disjoint subsets using k-means clustering technique
(gPoEBO_KMEANS). We use time-restricted budget of 5 and 15 minutes
for 20D and 50D synthetic benchmark functions respectively.

88

Rosenbrock

Ackley

Values

—300 =

—400 —

| | | | | | | | |
200 400 600 800 0 200 400 600 800

Time Time
—— gPoETRBO gPoEBO -::-- BO === TuRBO

Figure 4.6: Optimization performance on 50D benchmark functions with
time (in seconds) restricted budget.

We can see from the 20D experiment results in Figure[4.7] that perform-
ance for both strategies is very similar, but gPoEBO_RANDOM achieves
slightly better objective function values than gPoEBO_KMEANS.

Comparing the results for 50D benchmark functions in Figure
we see that the results are mixed and gPoEBO_RANDOM shows better
results on Ackley and Rosenbrock functions, while gPoEBO_KMEANS
shows better results on Levy and Rastring functions.

Based on the results, we do not see a significant difference between
these two point allocation strategies for GP experts. Therefore, we would
recommend using a point allocation strategy where points are randomly
partitioned into disjoint subsets, because this strategy is simpler and

easier to implement.

89

Ackley Rosenbrock
—-7.5=

60 =" -200000—
_g.5—

—400000 =
-9.0 -

Values

—9.5— —600000 =
—-10.0 —
_10.5- —800000 —
-11.0
1 1 1 1 1 1 1 1 1 1 1 1 1 1
Lev Rastrigin
v —160 = K
a0 -,-/-FJ_'_F/_,——— oo /,_J_’_"—’_
g —60— [‘ —200 — Ir
=
g

_80 — f —220— [

—260 =

-240 = !
]
T
0

| I | I I I | I | I | I |
0 50 100 150 200 250 300 50 100 150 200 250 300

Time Time

—— gPoEBO_KMEANS gPoEBO_RANDOM

Figure 4.7: Optimization performance on 20D benchmark functions
with different point allocation strategies and restricted-time budget (in
seconds).

4.2 Heteroscedastic Bayesian Optimization

In this section we will empirically evaluate the algorithms on six syn-
thetic global optimization functions and two real-world scientific data-
sets.

4.2.1 Synthetic Benchmark Functions Optimization

The performance of our proposed algorithms is evaluated on six widely
used synthetic global optimization functions as in [51], which cover
important problem properties, such as uni- and multi-modality. We use
functions with 2D (Branin, GoldsteinPrice), 4D (Hartman, Rosenbrock)
and 6D (Hartman, Sphere) search space dimensions. The search spaces
of the original functions have been rescaled to [0, 1]?, with their mean
equal to zero and variance equal to one. To simulate heteroscedastic
noise, we model the noise variance function by the Sphere function,
which is scaled to a range of [0.0, 1.0].

90

Ackley 1e6 Rosenbrock
~12.0 4.8 =

~12.2— =30

—5.2 =
—12.4 — _'_'_,_,_
— —5.4 =

-12.6 =

Values

—5.6 =

B

-12.8 =

-

—5.8 =

1 1 1 1 1 1 1 1 1 1
Levy Rastrigin

330 — —700 =
—340 =
—=720 =
—350 =
—360— —740 =
—370 =
—380 = —760 =4

I I I I I I I I I I
0 200 400 600 800 0 200 400 600 800

Time Time

Values

—— gPoEBO_KMEANS gPoEBO_RANDOM

Figure 4.8: Optimization performance on 50D benchmark functions
with different point allocation strategies and restricted-time budget (in
seconds).

We compare the performance of PoE based BO (POEBO) and gPoE
based BO (GPOEBO) using our proposed modifications of heterosce-
dastic acquisition functions (HAEI, ANPEI) against heteroscedastic BO
algorithm version which replaces the standard GP model with MLHGP
model (MLHGPBO)[21]]. Also, we include the results of homoscedastic
BO with EI (BO_EI) and AEI(BO_AEI) acquisition functions to demon-
strate the benefits of considering heteroscedastic noise in optimization
problems. Moreover, we compare our results with random search as it
is known to be competitive with BO in noisy settings [21].

We train GP expert models on the subsets of data partitioned by using
a random and disjoint point allocation strategy. This strategy performs
similarly to using the clustering based allocation strategy using k-means
algorithm, see the results in Section This is in line with a work of
[14] which found that simple random data partitioning worked similarly
or better compared to the clustering algorithms.

In our experiments we set v and /3 to equal values of 0.1 for 2D, 0.5
for 4D and 6D optimization functions in HAEI and ANPEI acquisition

91

functions, respectively. We use the code and parameters for MLHGP
based BO from [21].

All experiments are initialized with 10 x D data points depending
on the search space dimensionality. We set the maximum number of
function evaluations to 5 x D and use 4 x D number of points per experts
for PoE and gPoE models.

The performance measure is the absolute difference between the
function value at the best f (z*) and the actual maximum of the noise
free function f* rescaled by the benchmark function standard deviation.
Since our synthetic functions are scaled to have zero mean and a variance
of one, the performance metric is the absolute error. Each experiment is
repeated 50 times.

The results in Table show the mean absolute error and standard
deviation of absolute error (in brackets) between the function value at
the best-found point and the actual function maximum across different
synthetic benchmark functions for repeated runs. We can see that our
proposed modifications of the acquisition function combined with the
gPoE model show the best performance on all functions, except the
Sphere function. The GPOEBO_HAEI algorithm had the lowest error
in GoldsteinPrice, Rosenbrock, and HartmannéD benchmark functions,
with values of 0.8265, 0.0039, and 0.2932, respectively. The GPOEBO_-
ANPEI algorithm achieved the best performance in the Branin func-
tion with an error value of 0.0332, which was the lowest among all
the algorithms. Additionally, it showed the best result for the Hart-
mann4D function with an error of 0.1630. However,it is worth noting
that the POEBO_ANPEI algorithm outperformed other algorithms for
the Sphere function with an error of 0.0040, while other algorithms per-
formed worse than random search. Also, we can see that on average the
gPoE based BO performs better than PoE based BO on most benchmark
functions. Moreover, comparing the performance of the GPOEBO based
algorithms (GPOEBO_HAEI and GPOEBO_ANPE) and MLHGPBO al-
gorithms (MLHGPBO_HAEI and MLHGPBO_ANPEI), we see that our
proposed algorithms outperform MLHGPBO algorithms on all synthetic
benchmark functions.

We compare the improvement in optimization accuracy for our pro-

92

Table 4.10: The optimization performance on heteroscedastic synthetic
benchmark functions.

Function Branin GoldsteinPrice Hartmann4D Rosenbrock Hartmann6D Sphere

BO_EI 0.0422 (0.0370) 0.8930 (0.5840) 0.1839 (0.1927) 0.0048 (0.0055) 0.3473 (0.2477) 0.0236 (0.0099)
BO_AEI 0.0422 (0.0322) 0.8966 (0.5946) 0.1734 (0.1858) 0.0055 (0.0064) 0.3056 (0.1999) 0.0235 (0.0098)
GPOEBO_HAEI 0.0333 (0.0273) 0.8265 (0.5558) 0.1759 (0.1517) 0.0039 (0.0034) 0.2932 (0.2144) 0.0156 (0.0063)
GPOEBO_ANPEI 0.0332 (0.0262) 0.8371 (0.5237) 0.1630 (0.1464) 0.0057 (0.0071) 0.3109 (0.2035) 0.0171 (0.0066)
POEBO_HAEI 0.0406 (0.0330) 0.9671 (0.5655) 0.8603 (0.6499) 0.0834 (0.0620) 1.3205 (0.1804) 0.0043 (0.0027)
POEBO_ANPEI 0.0371 (0.0294) 0.9509 (0.5859) 1.0092 (0.5935) 0.0945 (0.0566) 1.3242 (0.1771) 0.0040 (0.0025)

MLHGPBO_HAEI 0.0443 (0.0319) 1.0693 (0.5463) 0.2851 (0.2197) 0.0214 (0.0159) 0.5252 (0.2984) 0.0204 (0.0088)
MLHGPBO_ANPEI 0.0465 (0.0444) 1.0004 (0.6133) 0.3079 (0.2473) 0.0245 (0.0127) 0.5231 (0.3439) 0.0174 (0.0042)
RANDOM_SEARCH 0.0802 (0.0748) 1.5819 (0.5698) 1.0465 (0.4233) 0.0234 (0.0241) 0.9077 (0.2488) 0.0082 (0.0040)

Table 4.11: Improvement in optimization accuracy compared to the
standard BO and MLHGPBO on heteroscedastic synthetic benchmark
functions

Branin GoldsteinPrice Hartmann4D Rosenbrock Hartmann6D Sphere

Improvement over BO_EI (%)

GPOEBO_HAEI 21.09 745 435 18.75 15.58 33.90
GPOEBO_ANPEI 21.33 6.26 11.36 -18.75 10.48 27.54
Improvement over MLHGPBO (%)

GPOEBO_HAEI 24.83 22.71 38.30 81.78 4417 23.53
GPOEBO_ANPEI 28.60 16.32 47.06 76.73 40.57 1.72

posed algorithms GPOEBO_HAEI and GPOEBO_ANPEI compared to
the standard BO on synthetic benchmark functions. The results are
presented in Table We can see that for the GPOEBO_HAEI al-
gorithm, the improvement in accuracies on synthetic benchmark func-
tions ranged from 4.35% to 33.90% compared to standard BO. For the
GPOEBO_ANPEI algorithm, the improvement in accuracies on syn-
thetic benchmark functions ranged from 6.26% to 27.54% compared to
the standard BO, except for the Rosenbrock function, where we see a
decline of -18.75%.

Comparing the GPOEBO_HAEI to MLHGPBO_HAEI we can see
that the improvement in accuracy for GPOEBO_HAEI compared to
MLHGPBO_HAEI ranged from 22.71% to 81.78%. We can see similar
results when comparing the GPOEBO_ANPEI and MLHGPBO_ANPEI,
the improvement for GPOEBO_ANPEI ranged from 1.72% to 76.73%.

Based on the results, we see that both our proposed algorithms
consistently exhibit superior performance across most of the synthetic
benchmark functions compared to the other algorithms. Their respective

93

results suggest that they are capable of achieving more accurate approx-
imations of the actual function maxima, thereby demonstrating a better
capability to handle heteroscedastic noise.

We also evaluate the performance sensitivity of the PoE and gPoE
based BO algorithms using the synthetic benchmark functions to a
different number of points per expert in Section [4.2.4]

4.2.2 Soil Phosphorus Fraction Optimisation

In this real-world experiment we consider the optimization of the phos-
phorus fraction of soil, which is an essential nutrient for plant growth.
We use the data provided by [21] to study the relationship between bulk
soil density and the phosphorus fraction with the goal of minimising
the phosphorus content of soil. Since we do not have access to a real
objective function, we use a subset of the data for algorithm initialization
and the query points are selected by mapping to the closest point in the
heldout data. This is a 1-D problem and the algorithms are initialized
with 12 data points, while the remaining 102 are used for heldout data.
Each GP expert in the GPOEBO algorithm is initialized with 6 data
points. We set the v and 3 values to 0.1 for HAEI and ANPEI acquisition
functions. We choose not to include POEBO in the experiment and use
GPOEBO as a benchmark algorithm to compare to other algorithms.
The performances of different algorithms are compared in Figure
and Table

We can see that the GPOEBO_ANPEI achieves the best performance
compared to other heteroscedastic and homoscedastic BO algorithms,
showing the lowest function value by the fifth iteration at 5.53. Both
GPOEBO_ANPEI and GPOEBO_HAEI consistently outperform the ML-
HGPBO algorithms (MLHGPBO_ANPEI and MLHGPBO_HAEI). The
MLHGPBO_ANPEI and MLHGPBO_HAEI have higher function val-
ues across all iterations, ending with 7.10 and 7.24 respectively at the
fifth iteration. Despite the fact, that MLHGPBO algorithms do show
improvements over iterations, indicating their learning capability, they
do not match the efficiency and robustness of GPOEBO algorithms in
minimizing phosphorus content.

94

\ —— BO_EI
\ BO_AEI

S GPOEBO_HAEI

184 N, \ ---- GPOEBO_ANPEI

\ —-— RANDOM_SEARCH
\ ---= MLHGPBO_HAEI

P \
16 4 X \\ \ MLHGPBO_ANPEI

-
IS
/

Function value
=
Iy]
7/
7/
/

<, N
N\, N
o~ N,
N LY
N AN N
\ O, ST T ———
10 4 \._\'\‘“--__.\":.,

1 2 3 4 5
Number of evaluations

Figure 4.9: The performance results on the soil phosphorus fraction
optimization problem.

Moreover, the performance of the standard BO_EI proves to be highly
competitive compared to other algorithms. BO_EI consistently out-
performs BO_AEI in all iterations. It also significantly outperforms
both MLHGPBO algorithms and shows results which are very close to
GPOEBO_ANPEI and GPOEBO_HAEI. By the fifth iteration, its func-
tion value is 6.16, just slightly higher than the GPOEBO algorithms. It
indicates that standard BO_EI can provide robust results, outperforming
all other algorithms with the exception of the GPOEBO algorithms. This
can also be due to the reason that the regions of low phosphorus fraction
coincide with the regions of small heteroscedastic noise as explained
by the authors in [21]]. In contrast, the RANDOM_SEARCH algorithm,
while improving over time, consistently performs worse than the other
algorithms in all iterations. Its function value at the fifth iteration is
higher than any of the other algorithms.

The improvement in optimization accuracy for GPOEBO_HAEI and
GPOEBO_ANPEI algorithms compared to the standard BO on the soil
phosphorus fraction optimization problem is provided in Table
Based on the results, we can see that for the GPOEBO_HAEI, the im-

95

Table 4.12: Comparative analysis of average optimization performance
with corresponding standard deviations (in brackets) over multiple runs
for various algorithms aimed at minimizing phosphorus content in soil
under heteroscedastic noise conditions.

BO_AEI BO_EI GPOEBO_ANPEI GPOEBO_HAEI MLHGPBO_ANPEI MLHGPBO_HAEI RANDOM_SEARCH
Tteration
1 10.83 (7.55) 11.17 (7.94) 14.29 (7.54) 17.43 (15.23) 15.15 (24.76) 18.79 (27.79) 66.42 (94.27)
2 8.87(6.36) 8.52(6.30) 10.17 (6.07) 11.99 (10.70) 9.05 (6.52) 10.50 (6.78) 27.91 (44.58)
3 7.88(5.71) 7.17(5.13) 7.70 (4.89) 8.52 (5.34) 7.93 (5.50) 9.06 (5.39) 15.42 (14.77)
4 6.80 (4.85) 6.23 (3.56) 6.30 (3.85) 6.85 (4.04) 7.33 (4.93) 8.35 (5.08) 10.95 (7.37)
5 6.35(4.55) 6.16 (3.53) 5.53 (2.54) 6.11 (3.13) 7.10 (4.93) 7.24 (3.91) 10.42 (6.32)

provement in accuracy is 3.78% and for GPOEBO_ANPEI is 12.91%
compared to standard BO.

Comparing the GPOEBO_HAEI to MLHGPBO_HAEI we can see that
the improvement in accuracy for GPOEBO_HAEI compared to MLHG-
PBO_HAEI is 15.61%. Similary, comparing the GPOEBO_ANPEI and
MLHGPBO_ANPEI, the improvement for GPOEBO_ANPEI is 22.11%.

Table 4.13: Improvement in optimization accuracy compared to BO_EI
and MLHGPBO on real-world scientific benchmarks

Soil Phosphorus Fraction ~ Molecular Hydration Free Energy

Improvement over BO_EI (%)
GPOEBO_HAEI 3.78% 10.14%
GPOEBO_ANPEI 12.91% 7.93%

Improvement over MLHGPBO (%)
GPOEBO_HAEI 15.61% 22.96%
GPOEBO_ANPEI 22.11% 46.17%

In conclusion, it is apparent that GPOEBO algorithms showed the
best performance compared to the other algorithms underlining their
efficiency and robustness in dealing with heteroscedastic noise.

4.2.3 Molecular Hydration Free Energy Optimization

In the second real-world experiment we used Freesolv dataset and
evaluation method proposed by [21]. The goal of this experiment is
to perform a retrospective virtual screening experiment to identify the
molecules with favorable hydration free energy, which is an important
property in determining the binding affinity of a drug candidate. This is
a minimization problem with 642 molecules from the FreeSolv dataset.

96

The lower the hydration free energy of a molecule, the more likely it
is to dissolve in water and bind with its target. It is because when a
molecule has a lower hydration-free-energy, it interacts more favourably
with water molecules, making it easier to dissolve in water [29)] 43].

The algorithms are initialized with 64 molecules, while the remaining
578 molecules are used as a heldout set. The dimensionality of chemical
fragment features is reduced from 85 to 14 dimensions using principal
component analysis while retaining more than 90 % of the variance on
average across random trials. The results are shown in Figure and

Table

—— BO_EI
-25 BO_AEI
------- GPOEBO_HAEI
N -- GPOEBO_ANPEI
=5.0 1 \ —-— RANDOM_SEARCH
TN ---= MLHGPBO_HAEI
S . MLHGPBO_ANPEI
-7.5 \
N
N ~,
~
T
s
g 100 S
K —_—
> .
c N~
o TN
5 -12.5 .
[¥] PR
c R
=] . ~
[e, . _
-15.0 4 TR~
1754 R
-20.0 4
2 4 8 10

6
Number of evaluations

Figure 4.10: The performance results on the FreeSolv hydration free
energy optimization problem.

We can see that our proposed GPOEBO_HAEI shows the best per-
formance, achieving the lowest phosphorus value of -19.87. The GPOEBO _-
ANPEI achieve the second-best value of -19.47. Both GPOEBO al-
gorithms significantly outperformed other methods, indicating that
the GPOEBO algorithms are more effective in minimizing phosphorus
content in these specific soil conditions.

Comparatively, the standard BO algorithms, BO_AEI and BO_EI,
exhibit similar performance throughout all the iterations, with BO_AEI

97

Table 4.14: Comparative analysis of average optimization performance
with corresponding standard deviations (in brackets) over multiple runs
for various algorithms aimed at minimizing hydration free energy of a
molecule.

BO_AEI BO_EI GPOEBO_ANPEI GPOEBO_HAEI MLHGPBO_ANPEI MLHGPBO_HAEI RANDOM_SEARCH

Tteration

1 -12.21(9.32) -11.55 (10.00) -14.04 (7.96) -11.58 (7.57) 331 (347) -5.58 (6.50) -4.04 (4.00)
2 -15.70 (8.34) -15.32 (8.85) -16.19 (7.31) -14.85 (7.58) -6.94 (5.19) -6.54 (6.81) -8.04 (4.98)
3 -16.09 (7.88) -16.04 (8.08) -17.18 (8.20) -17.05 (4.75) -8.60 (7.84) -7.70 (5.86) -9.84 (4.35)
4 -16.09 (7.88) -16.04 (8.08) -17.18 (8.20) -18.02 (4.88) -8.78 (7.75) 9.09 (7.97) -10.59 (4.20)
5 -16.52 (7.47) -16.15 (7.97) -17.41 (8.13) -18.02 (4.88) 9.11 (7.85) -9.35 (7.86) -11.86 (6.32)
6 -16.78 (7.11) -16.15 (7.97) -18.44 (7.21) -18.52 (5.38) -10.02 (7.76) -9.35 (7.86) -11.86 (6.32)
7 -17.94 (6.57) -16.16 (7.96) -18.49 (7.15) -19.72 (5.47) -10.34 (7.59) -11.89 (7.95) -12.00 (6.15)
8 -17.98 (6.52) -16.32 (7.83) -19.01 (6.55) -19.72 (5.47) -13.28 (7.44) -14.08 (7.60) -13.03 (6.66)
9 -17.98 (6.52) -17.70 (7.10) -19.47 (6.33) -19.72 (5.47) -13.32 (7.39) -14.58 (7.86) -14.51 (6.50)
10 -18.04 (6.44) -17.70 (7.10) -19.47 (6.33) -19.87 (5.36) -13.32 (7.39) -16.16 (7.24) -15.30 (6.23)

slightly outperforming BO_EI by the 10th iteration (-18.04 vs. -17.70).
However, both of these algorithms are outperformed by the GPOEBO
based algorithms, indicating the GPOEBO approach provides better
optimization in this context.

The improvement in optimization accuracy for our proposed GPOEBO_-
HAEI and GPOEBO_ANPEI algorithms compared to the standard BO on
the FreeSolv hydration free energy optimization problem is provided in
Table Based on the results, we can see that for the GPOEBO_HAEI
algorithm, the improvement in accuracy is 10.14% and for GPOEBO_-
ANPEI is 7.93% compared to the standard BO.

Comparing GPOEBO_HAEI to MLHGPBO_HAEI we can see that
the improvement in mean absolute error is 22.96%. Similary, compar-
ing GPOEBO_ANPEI and MLHGPBO_ANPEI, the improvement for
GPOEBO_ANPEI is 46.17%.

In conclusion, we can observe that the standard BO algorithms out-
performed the heteroscedastic MLHGPBO models. We see that the
MLHGPBO models underperform compared to other algorithms. The
main reason for this is that the noise levels in this problem is lower
relative to the magnitude of the hydration free energy, which leads to
only very marginal gains in obtaining low noise solutions[21].

98

4.2.4 Performance Sensitivity Analysis
4.2.4.1 Data Partitioning Strategies for GP Experts

The effectiveness of GPOEBO algorithms can be influenced by various
factors, among which the strategy for partitioning the data is particu-
larly critical. In this section we investigate the performance of GPOEBO
algorithms with two distinct partitioning strategies: a random allocation
strategy and a k-means-based allocation strategy. In the random parti-
tioning strategy, we partition the data D,, into M subsets, where each
expert is allocated a random subset of n; data points without replace-
ment. This guarantees that each expert receives a unique set of data
points, ensuring diversity across experts. The k-means point allocation
strategy aims to group data points with similar characteristics, allowing
experts to specialize in distinct data patterns. We use k-means algorithm
to identify M cluster centers, which equals the number of experts. Then,
for each cluster center, we query the BallTree [41] to identify its n; nearest
data points. These points are then assigned to the corresponding i-th
expert.

We evaluate these strategies based on the mean and standard devi-
ation of absolute error between the function value at the best found point
and the actual function maximum across several benchmark functions
and multiple runs.

The results presented in Table show the effectiveness of different
partitioning strategies. In particular, the random allocation strategy
consistently outperforms the k-means-based strategy across various test
functions. For instance, in the case of the Branin, GoldsteinPrice, and
Rosenbrock functions, the strategies GPOEBO_ANPEI_RANDOM and
GPOEBO_HAEI RANDOM achieve the smallest mean errors, which
are 0.0332, 0.8265, and 0.0039 respectively.

In contrast, the data allocation strategy using the k-means allocation
(GPOEBO_HAEI_KMEANS and GPOEBO_ANPEI_KMEANS) shows
larger mean absolute error. This is more visible in the GoldsteinPrice
and Branin functions, where the mean errors for the k-means strategy
are noticeably larger than those for the random allocation strategies.

99

Table 4.15: Optimization performance on heteroscedastic synthetic
benchmark functions with different point allocation strategies.

Function Branin GoldsteinPrice ~ Hartmann4D Rosenbrock Hartmann6D Sphere

GPOEBO_HAEI_RANDOM 0.0333 (0.0273) 0.8265 (0.5558) 0.1759 (0.1517) 0.0039 (0.0034) 0.2932 (0.2144) 0.0156 (0.0063)
GPOEBO_ANPEI_RANDOM 0.0332 (0.0262) 0.8371 (0.5237) ~ 0.1630 (0.1464) 0.0057 (0.0071) 0.3109 (0.2035) 0.0171 (0.0066)
GPOEBO_HAEI_KMEANS 0.0453 (0.0367) 1.0991 (0.5513) 0.1841 (0.1479) 0.0135 (0.0146) 0.2573 (0.1114) 0.0179 (0.0067)
GPOEBO_ANPEI_KMEANS 0.0455 (0.0343) 1.0365 (0.5481) 0.2071 (0.1851) ~ 0.0091 (0.0092) 0.2847 (0.1576) 0.0151 (0.0077)

Nonetheless, the random allocation strategy does not always shows
the best performance. For Hartmann6D and Sphere functions the k-
means strategy show the smallest absolute mean errors. Despite this,
the overall performance of the random allocation strategy across all test
functions suggests its promise as a robust and effective approach for
partitioning data for GPOEBO algorithms.

4.2.4.2 Number of data points per GP expert

The optimization performance of the GP expert models tends to vary
depending on the number of points assigned per expert. We evaluate
the performance of POEBO and GPOEBO algorithms using 4 x D, 3 x D,
2 x D and 1 x D number of points per experts. The effect of the number
of data points per expert on optimization performance are shown in

Table and Figure

We can see that performance tends to vary between different func-
tions, but the overall performance improves (absolute error gets closer
to zero) as the number of points per expert increases. The GPOEBO
methods consistently achieve a lower average mean error across most
functions, highlighting a better optimization performance over POEBO
methods.

When analysing the results per individual optimization function, we
can see that for the functions like Branin, Hartmann4D, Rosenbrock, and
HartmannéD, as the number of data points per expert increased from
1x D to4 x D, both GPOEBO_HAEI and GPOEBO_ANPEI showed a re-
duction in average mean absolute error. The GPOEBO_HAEI algorithm
showed a large decrease in mean absolute error for Hartmann4D func-
tion from 0.4155at 1 x D to 0.1759 at 4 x D.

100

Branin GoldsteinPrice Hartmann4D

0.0525
0.0500
0.0475
13

0.0450

0.0425

0.0400

Mean Absolute Error
Mean Absolute Error
Mean Absolute Error

0.0375

0.0350

0.0325

1xD 2xD 3xD 4xD 1xD 2xD 3xD 4xD 1xD 2xD 3xD 4xD
Number of Experts Number of Experts Number of Experts

Rosenbrock HartmannéD Sphere

0.175 &\ -

. 0.016 S —
i 12 /’\

0.014
0.012

0.010

0.150

0.125

-
o

°
j
o
3

°

)

0.075

Mean Absolute Error
Mean Absolute Error
Mean Absolute Error

0.008

o
o

0.050
0.006

I T [0.004 e w—
_ — o

B — ———eec=

0.025

/
o
IS

0.000

1xD 2xD 3xD 4xD 1xD 2xD 3xD 4xD 1xD 2xD 3xD 4xD
Number of Experts Number of Experts Number of Experts

—o— GPOEBO_HAEI GPOEBO_ANPEI ~ —®- POEBO_HAEI --®: POEBO_ANPEI

Figure 4.11: The effect of the number of data points per expert on
the optimization performance of heteroscedastic synthetic benchmark

functions.

However, the results for the GoldsteinPrice and Sphere functions
showed different results. As the number of data points per expert
increased, both GPOEBO algorithms showcased a decrease in their
performance. For the GoldsteinPrice function, the GPOEBO_ANPEI
mean absolute error increased from 0.7772 at 1 x D to 0.8371 at 4 x D.

Based on the results, we can see that GPOEBO algorithms, regardless
of whether they use the HAEI or ANPEI acquisition function, gener-
ally outperform POEBO algorithms for most heteroscedastic synthetic
benchmark functions, especially when more data points are allocated
to each GP expert. The only exception is the Sphere function, where
POEBO algorithms show marginally lower mean absolute errors than
GPOEBO algorithms.

101

Table 4.16: Optimization performance for heteroscedastic synthetic
benchmark functions with varying numbers of points allocated to each
GP expert.

. Functions
Number of Points Method Branin | GoldsteinPrice | Hartmann4D | Rosenbrock | HartmannéD | Sphere
GPOEBO_HAEI | 0.0333 0.8265 0.1759 0.0039 0.2932 0.0156
4xD GPOEBO_ANPEI | 0.0332 0.8371 0.1630 0.0057 0.3109 0.0171
POEBO_HAEI 0.0406 0.9671 0.8603 0.0834 1.3205 0.0043
POEBO_ANPEI | 0.0371 0.9509 1.0092 0.0945 1.3242 0.0040
GPOEBO_HAEI | 0.0404 0.7870 0.1593 0.0043 0.3044 0.0150
3xD GPOEBO_ANPEI | 0.0408 0.8250 0.1597 0.0048 0.3035 0.0161
POEBO_HAEI 0.0446 1.2153 1.3678 0.1366 1.3675 0.0042
POEBO_ANPEI | 0.0435 1.1823 1.6800 0.1415 1.3681 0.0042
GPOEBO_HAEI | 0.0356 0.8823 0.2343 0.0101 0.3317 0.0155
2xD GPOEBO_ANPEI | 0.0330 0.9027 0.2374 0.0085 0.3395 0.0147
POEBO_HAEI | 0.0514 1.3877 1.9561 0.1577 1.3561 0.0039
POEBO_ANPEI | 0.0516 1.5031 2.0017 0.1540 1.3566 0.0040
GPOEBO_HAEI | 0.0342 0.8144 0.4155 0.0232 0.3822 0.0113
1xD GPOEBO_ANPEI | 0.0359 0.7772 0.3173 0.0234 0.4026 0.0132
POEBO_HAEI | 0.0469 1.4352 1.9990 0.1772 1.3153 0.0032
POEBO_ANPEI | 0.0455 1.4771 1.9795 0.1818 1.3152 0.0032

4.2.5 Conclusions

In this chapter, we empirically showed the efficiency and scalability
of the generalized product of experts based Bayesian optimization on
standard global optimization benchmark functions and real-life prob-
lems ranging from 550 to 10K observations. Moreover, we saw that
the accuracy could be improved by combining the generalized product
of experts model with search space reduction methods. The proposed
gPoETRBO algorithm, which combines the trust region method with
the generalized product of experts model achieves the best performance
compared to the other Gaussian process experts based Bayesian optim-
ization algorithms and matches the performance of the state-of-the-art
TuRBO algorithm with a significant speedup in computational time and
using only moderate computing hardware.

We compared the performance of gPoEBO with two different point
allocation strategies for Gaussian process experts. Based on our results,
we found that there is no significant difference between these two point
allocation strategies for Gaussian process experts. Additional experi-
ments show that gPoETRBO outperforms other algorithms using limited
time budget for optimization. Moreover, our analysis shows that there is
a trade-off between the number of points assigned per Gaussian process
expert and computing time.

102

Finally, our experiments on synthetic and real-world optimization
problems show that, on average, the proposed heteroscedastic gener-
alized product of experts based Bayesian optimization algorithms are
competitive on many problems compared to other heteroscedastic and
homoscedastic Bayesian optimization algorithms. Moreover, we can
see that our proposed algorithms are more robust to the magnitude of
heteroscedastic noise compared to MLHGPBO algorithms. However,
our proposed algorithms have some limitations as their performance
is sensitive to many points allocated to each Gaussian process expert,
and their performance can degrade significantly if the number is set

incorrectly.

103

GENERAL CONCLUSIONS

1. To address the scalability issues of standard Bayesian optimization,

we proposed two new algorithms gPoEBO and gPoETRBO for

global Bayesian optimization with large number of observations:

1.1

1.2

1.3

14

For the gPoEBO algorithm, the improvement in accuracy
ranged from -2.87% to 6.45% compared to standard Bayesian
optimization on 20D benchmark functions. The improve-
ment in runtimes ranged from 106.10% to 209.58%, showing
the significant improvement in runtime while maintaining
competitive accuracy.

For the gPoETRBO algorithm, the improvement in accuracies
on 20D ranged from 70.51% to 98.47% and from 75.56% to
99.61% on 50D benchmark functions compared to standard
Bayesian optimization. The improvement in runtimes ranged
from 68.56% to 152.39% for 20D benchmark functions and
from 667.44% to 1118.68% for 50D benchmark functions, in-
dicating substantial improvement in optimization accuracy
and efficiency over the standard Bayesian optimization.

The trust region method based gPoETRBO matches or achieves
better optimization accuracy than the state-of-the-art TuRBO
algorithm. Runtimes for the gPoOETRBO compared to the
TuRBO are between 11 to 12 times shorter on 50D benchmark
functions.

Experiments on real-life problems with our proposed the
gPoETRBO algorithm, achieved similar accuracy on the 12D
Lunar Landing problem with 1K observations and the 14D Ro-
bot Pushing problem with 2K observations compared to the

104

1.5

1.6

standard Bayesian optimization with 8 and 16 times shorter
runtimes. Additionally, we were able to optimize the 60D
Rover Trajectory problem with 10K observations using gPo-
ETRBO and aciehve 904% improvement in accuracy com-
pared to standard Bayesian optimization. Moreover, gPo-
ETRBO matched the performance of TuRBO with up to 6
times improvement in runtime on the 60D Rover Trajectory
problem.

Our ablation study shows that there is a trade-off between the
number of points assigned per Gaussian process expert and
computing time for gPoOETRBO on 20D and 50D benchmark
functions and increasing the size of data points per expert
results in an improvement of accuracy, but also an increased
computational time.

The experiments with time restricted budget on 20D and
50D synthetic benchmark functions with time budgets of 5
and 15 minutes, showed that gPoETRBO achieved similar or
better performance on 20D functions and outperformed other
algorithms on all 50D benchmark functions.

2. We have presented an approach for performing heteroscedastic

Bayesian optimization using the generalized product of experts

with excising heteroscedastic acquisition functions:

2.1

2.2

23

24

The results showed that GPOEBO_HAEI compared to stand-
ard Bayesian optimization algorithm had from 4.35% to 33.90%
lower mean absolute error on all synthetic benchmark func-
tions.

The GPOEBO_HAEI compared to the state-of-the-art MLHG-
PBO_HAEI had from 22.71% to 81.78% lower mean absolute
error on all synthetic benchmark functions.

The results on real-life scientific problems showed that our
proposed GPOEBO_HAEI and GPOEBO_ANPEI algorithms
on average achieved between 15.61% to 46.17% lower mean
absolute error compared to MLHGPBO algorithm.

The sensitivity analysis shows that random allocation strategy
for partitioning the data for Gaussian process experts, con-

105

2.5

sistently outperforms the k-means based strategy across all
synthetic benchmark functions.

Finally, we showed that optimization performance for our
proposed algorithms is sensitive to the number of points al-
located to each Gaussian process experts and its performance
can degrade significantly if the number is set incorrectly. Our
experiments showed that setting 4 x D number of points per
expert for each problem was the optimal number.

106

REFERENCES

[1] J.-A. M. Assael, Z. Wang, B. Shahriari, and N. de Freitas. Heterosce-
dastic treed Bayesian optimisation. arXiv preprint arXiv:1410.7172,
2014.

[2] T. Bailey, S. Julier, and G. Agamennoni. On conservative fusion
of information with unknown non-Gaussian dependence. 15th
International Conference on Information Fusion, FUSION 2012, pages
1876-1883, 2012.

[3] J. Bergstra and Y. Bengio. Random search for hyper-parameter
optimization. Journal of Machine Learning Research, 13(2), 2012.

[4]]. Bibby. Axiomatisations of the average and a further generalisation
of monotonic sequences. Glasgow Mathematical Journal, 15(1):63-65,
1974.

[5] M. Binois, D. Ginsbourger, and O. Roustant. On the choice of
the low-dimensional domain for global optimization via random
embeddings. Journal of Global Optimization, 76(1):69-90, Jan 2020.

[6] C. M. Bishop and N. M. Nasrabadi. Pattern Recognition and Machine
Learning, volume 4. Springer, 2006.

[7] C.Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight
uncertainty in neural network. In International Conference on Machine
Learning, pages 1613-1622. PMLR, 2015.

[8] E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on Bayesian
optimization of expensive cost functions, with application to act-
ive user modeling and hierarchical reinforcement learning. arXiv
preprint arXiv:1012.2599, 2010.

[9] T. D. Bui, J. Yan, and R. E. Turner. A unifying framework for
gaussian process pseudo-point approximations using power ex-
pectation propagation. The Journal of Machine Learning Research, 18
(1):3649-3720, 2017.

[10] R. Calandra. Bayesian Modeling for Optimization and Control in Robot-
ics. PhD thesis, Technische Universitit Darmstadt, 2017.

[11] Y. Cao. Scaling Gaussian Processes. PhD thesis, University of Toronto
(Canada), 2018.

[12] Y. Cao and D.J. Fleet. Generalized product of experts for automatic
and principled fusion of Gaussian process predictions. Modern
Nonparametrics 3: Automating the Learning Pipeline workshop at NIPS.

107

arXiv:1410.7827, 2014.

[13] Y. Cao and D.]. Fleet. Transductive log opinion pool of Gaussian
process experts. Workshop on Nonparametric Methods for Large Scale
Representation Learning at NIPS. arXiv:1511.07551, 2015.

[14] K. Chalupka, C. K. Williams, and I. Murray. A framework for
evaluating approximation methods for Gaussian process regression.
Journal of Machine Learning Research, 14:333-350, 2013.

[15] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to
Derivative-Free Optimization. SIAM, USA, 2009.

[16] M. P. Deisenroth and J. W. Ng. Distributed Gaussian processes.
In 32nd International Conference on Machine Learning, ICML 2015,
volume 2, 2015.

[17] D. Eriksson, M. Pearce,]J. Gardner, R. D. Turner, and M. Poloczek.
Scalable global optimization via local Bayesian optimization. In
Advances in Neural Information Processing Systems, volume 32, pages
5496-5507, 2019.

[18] P. I. Frazier. Bayesian Optimization. In Recent Advances in Op-
timization and Modeling of Contemporary Problems, pages 255-278.
2018.

[19] J. R. Gardner, C. Guo, K. Q. Weinberger, R. Garnett, and R. Grosse.
Discovering and exploiting additive structure for Bayesian optimiz-
ation. volume 54 of Proceedings of Machine Learning Research, pages
1311-1319, 2017.

[20] P. Goldberg, C. Williams, and C. Bishop. Regression with input-
dependent noise: A Gaussian process treatment. Advances in Neural
Information Processing Systems, 10, 1997.

[21] R.-R. Griffiths, A. A. Aldrick, M. Garcia-Ortegon, V. Lalchand, et al.
Achieving robustness to aleatoric uncertainty with heteroscedastic
Bayesian optimisation. Machine Learning: Science and Technology, 3
(1):015004, 2021.

[22] P.Hennigand C.]. Schuler. Entropy search for information-efficient
global optimization. Journal of Machine Learning Research, 13(6),
2012.

[23] J. M. Herndndez-Lobato, M. W. Hoffman, and Z. Ghahramani.
Predictive entropy search for efficient global optimization of black-
box functions. Advances in Neural Information Processing Systems, 27,
2014.

108

[24] T. Heskes. Selecting weighting factors in logarithmic opinion pools.
In Advances in Neural Information Processing Systems, volume 10,
page 266-272, 1998.

[25] G. E. Hinton. Products of experts. In Proceedings of the Ninth Inter-
national Conference on Artificial Neural Networks, volume 1, pages
1-6, 1999.

[26] G.E. Hinton. Training products of experts by minimizing contrast-
ive divergence. Neural Computation, 14(8), 2002.

[27] R. Horst and P. M. Pardalos. Handbook of Global Optimization,
volume 2. Springer Science & Business Media, 2013.

[28] D.Huang, T. T. Allen, W. I. Notz, and N. Zeng. Global optimization
of stochastic black-box systems via sequential kriging meta-models.
Journal of Global Optimization, 34(3):441-466, 2006.

[29] G. Hummer, L. R. Pratt, and A. E. Garcia. Hydration free energy of
water. The Journal of Physical Chemistry, 99(38):14188-14194, 1995.

[30] R. A.Jacobs, M. I. Jordan, S.J. Nowlan, and G. E. Hinton. Adaptive
mixtures of local experts. Neural computation, 3(1):79-87, 1991.

[31] E Jimenez and M. Katzfuss. Scalable Bayesian optimization using
vecchia approximations of Gaussian processes. In Proceedings of
The 26th International Conference on Artificial Intelligence and Statistics,
volume 206 of Proceedings of Machine Learning Research, pages 1492—
1512. PMLR, 25-27 Apr 2023.

[32] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian
optimization without the Lipschitz constant. Journal of Optimization
Theory and Applications, 79:157-181, 1993.

[33] D.R.]Jones, M. Schonlau, and W. J. Welch. Efficient global optimiza-
tion of expensive black-box functions. Journal of Global Optimization,
13(4):455-492, 1998.

[34] K. Kandasamy, J. Schneider, and B. Péczos. High dimensional
Bayesian Optimisation and bandits via additive models. In 32nd In-
ternational Conference on Machine Learning, volume 37, page 295-304,
2015.

[35] K. Kersting, C. Plagemann, P. Pfaff, and W. Burgard. Most likely
heteroscedastic Gaussian process regression. In Proceedings of the
24th International Conference on Machine Learning, pages 393—400,
2007.

[36] H. J. Kushner. A new method of locating the maximum point

109

of an arbitrary multipeak curve in the presence of noise. Journal
of Basic Engineering, 86(1):97-106, 03 1964. ISSN 0021-9223. doi:
10.1115/1.3653121.

[37] B. Letham, B. Karrer, G. Ottoni, and E. Bakshy. Constrained
bayesian optimization with noisy experiments. Bayesian Analysis,
14(2):495-519, 2019.

[38] H. Liu, J. Cai, Y. Wang, and Y. S. Ong. Generalized robust Bayesian
committee machine for large-scale Gaussian process regression.
In 35th International Conference on Machine Learning, ICML 2018,
volume 80, pages 3131-3140, 2018.

[39] H. Liu, J. Cai, Y.-S. Ong, and Y. Wang. Understanding and compar-
ing scalable Gaussian process regression for big data. Knowledge-
Based Systems, 164:324-335, 2019.

[40] H. Liu, Y.-S. Ong, and J. Cai. Large-scale heteroscedastic regression
via Gaussian process. IEEE Transactions on Neural Networks and
Learning Systems, 32(2):708-721, 2020.

[41] T. Liu, A. W. Moore, A. Gray, and C. Cardie. New algorithms for
efficient high-dimensional nonparametric classification. Journal of
Machine Learning Research, 7(6), 2006.

[42] M. Lazaro-Gredilla and M. Titsias. Variational heteroscedastic
Gaussian process regression. In Proceedings of the 28th International
Conference on Machine Learning, ICML 2011, pages 841-848, 01 2011.

[43] D. L. Mobley and J. P. Guthrie. Freesolv: a database of experimental
and calculated hydration free energies, with input files. Journal of
Computer-Aided Molecular Design, 28:711-720, 2014.

[44] J. Mockus. Bayesian Approach to Global Optimization: Theory and Ap-
plications. Mathematics and its Applications. Springer Netherlands,
2011. ISBN 9789401068987.

[45] J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian
methods for seeking the extremum. In Towards Global Optimisation,
volume 2, pages 117-129, 1978.

[46] A. Munteanu, A. Nayebi, and M. Poloczek. A framework for
Bayesian optimization in embedded subspaces. In Proceedings of the
36th International Conference on Machine Learning, volume 97, pages
47524761, 2019.

[47] K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT
press, USA, 2012.

110

[48] R. M. Neal and R. M. Neal. Priors for infinite networks. Bayesian
Learning for Neural Networks, pages 29-53, 1996.

[49] C.Y.Oh, E. Gavves, and M. Welling. BOCK: Bayesian Optimization
with Cylindrical Kernels. In Proceedings of the 35th International
Conference on Machine Learning, volume 80, pages 3868-3877, 2018.

[50] V. Picheny, D. Ginsbourger, Y. Richet, and G. Caplin. Quantile-
based optimization of noisy computer experiments with tunable
precision. Technometrics, 55(1):2-13, 2013.

[51] V.Picheny, T. Wagner, and D. Ginsbourger. A benchmark of kriging-
based infill criteria for noisy optimization. Structural and Multidiscip-
linary Optimization, 48(3):607-626, 2013.

[52] J. D. Pintér. Global Optimization: Scientific and Engineering Case
Studies, volume 85. Springer Science & Business Media, 2006.

[53] J. Quinonero-Candela and C. E. Rasmussen. A unifying view of
sparse approximate Gaussian process regression. The Journal of
Machine Learning Research, 6:1939-1959, 2005.

[54] C. Rasmussen and Z. Ghahramani. Infinite mixtures of Gaussian
process experts. Advances in Neural Information Processing Systems,
14, 2001.

[55] R. G. Regis. Trust regions in kriging-based optimization with ex-
pected improvement. Engineering Optimization, 48(6):1037-1059,
2016.

[56] R. G. Regis and C. A. Shoemaker. Improved strategies for radial
basis function methods for global optimization. Journal of Global
Optimization, 37(1):113-135, 2007.

[57] B.Ru, A. Alvi, V. Nguyen, M. A. Osborne, and S. Roberts. Bayesian
optimisation over multiple continuous and categorical inputs. In
International Conference on Machine Learning, pages 8276-8285, 2020.

[58] V. Saltenis. On a method of multi-extremal optimization. Automat-
ics and Computers (Avtomatika i Vychislitelnayya Tekchnika), 3:33-38,
1971.

[59] B.Scholkopf, A.J. Smola, E. Bach, et al. Learning with kernels: support
vector machines, regularization, optimization, and beyond. MIT press,
2002.

[60] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas.
Taking the human out of the loop: A review of Bayesian optimiza-
tion. Proceedings of the IEEE, 104(1):148-175, 2016.

111

[61] O. V. Shylo, T. Middelkoop, and P. M. Pardalos. Restart strategies
in optimization: parallel and serial cases. Parallel Computing, 37(1):
60-68, 2011.

[62] E. Snelson and Z. Ghahramani. Sparse Gaussian processes using
pseudo-inputs. In Advances in Neural Information Processing Systems,
volume 18, 2006.

[63] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian op-
timization of machine learning algorithms. In Advances in Neural
Information Processing Systems, volume 25, 2012.

[64] J. Snoek, K. Swersky, R. Zemel, and R. Adams. Input warping for
Bayesian optimization of non-stationary functions. In International
Conference on Machine Learning, pages 1674-1682. PMLR, 2014.

[65] I. M. Sobol. On the distribution of points in a cube and the approx-
imate evaluation of integrals. USSR Computational Mathematics and
Mathematical Physics, 7(4):86-112, 1967. ISSN 0041-5553.

[66] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process
optimization in the bandit setting: No regret and experimental
design. In Proceedings of the 27th International Conference on Interna-
tional Conference on Machine Learning, page 1015-1022, 2010.

[67] K. Swersky, J. Snoek, and R. P. Adams. Multi-task Bayesian op-
timization. Advances in Neural Information Processing Systems, 26,
2013.

[68] S. TautvaiSas and J. Zilinskas. Heteroscedastic bayesian optimiza-
tion using generalized product of experts. Journal of Global Optimiz-
ation, pages 1-21, 2023.

[69] S. Tautvaigas and J. Zilinskas. Scalable bayesian optimization with
generalized product of experts. Journal of Global Optimization, 88(3):
777-802, 2024.

[70] W. R. Thompson. On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples. Biometrika,
25(3-4):285-294, 1933.

[71] M. Titsias. Variational learning of inducing variables in sparse
Gaussian processes. In Proceedings of the Twelth International Confer-
ence on Artificial Intelligence and Statistics, volume 5 of Proceedings
of Machine Learning Research, pages 567-574, USA, 16-18 Apr 2009.
PMLR.

[72] M. Trapp, R. Peharz, F. Pernkopf, and C. E. Rasmussen. Deep

112

structured mixtures of gaussian processes. In Proceedings of the
Twenty Third International Conference on Artificial Intelligence and
Statistics, volume 108 of Proceedings of Machine Learning Research,
pages 2251-2261, 26-28 Aug 2020.

[73] V. Tresp. A Bayesian committee machine. Neural Computation, 12
(11):2719-2741, 2000.

[74] V. Tresp. Mixtures of Gaussian processes. Advances in Neural
Information Processing Systems, 13, 2000.

[75] X. Wan, V. Nguyen, H. Ha, B. Ru, C. Lu, and M. A. Osborne. Think
global and act local: Bayesian optimisation over high-dimensional
categorical and mixed search spaces. In 38th International Conference
on Machine Learning (ICML 2021), pages 10663-10674, 2021.

[76] K. Wang, G. Pleiss, J. Gardner, S. Tyree, K. Q. Weinberger, and A. G.
Wilson. Exact Gaussian processes on a million data points. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32, 2019.

[77] L. Wang, R. Fonseca, and Y. Tian. Learning search space partition
for black-box optimization using Monte Carlo Tree Search. In
Advances in Neural Information Processing Systems, volume 33, pages
19511-19522, 2020.

[78] Z. Wang, F. Hutter, M. Zoghi, D. Matheson, and N. De Freitas.
Bayesian optimization in a billion dimensions via random embed-
dings. Journal of Artificial Intelligence Research, 55:361-387, 2016.

[79] Z. Wang, C. Gehring, P. Kohli, and S. Jegelka. Batched large-scale
Bayesian optimization in high-dimensional spaces. In Interna-
tional Conference on Artificial Intelligence and Statistics, AISTATS 2018,
volume 84, pages 745-754, 2018.

[80] C. Williams and M. Seeger. Using the Nystrom method to speed up
kernel machines. Advances in neural information processing systems,
13, 2000.

[81] C. K. Williams and C. E. Rasmussen. Gaussian processes for machine
learning, volume 2. MIT press Cambridge, MA, USA, 2006.

[82] S. Wright, J. Nocedal, et al. Numerical optimization. Springer
Science, 35(67-68):7, 1999.

[83] Y.-x. Yuan. A review of trust region algorithms for optimization. In
ICIAM99: Proceedings of the Fourth International Congress on Industrial

113

and Applied Mathematics Edinburgh, volume 99, pages 271-282, 2000.

[84] S. E. Yuksel, J. N. Wilson, and P. D. Gader. Twenty years of mix-
ture of experts. IEEE Transactions on Neural Networks and Learning
Systems, 23(8):1177-1193, 2012.

114

SUMMARY IN
LITHUANIAN

Siame darbe nagrinéjamas globalusis optimizavimas, kuris naudojamas
tikslo funkcijos maksimumo (minimumo) taskui visoje funkcijos api-
brézimo srityje rasti. Siuo metu vienas i§ pladiai paplitusiy algoritmu
tokio tipo uZdaviniams spresti yra Bajeso optimizavimo (toliau — BO)
algoritmas. Jis naudojamas, kai tikslo funkcijos analiziné iraiska néra
zinoma (tokios funkcijos kitaip dar vadinamos juodosios déZés funkcijo-
mis), o funkcijos maksimumo (minimumo) tasko radimas trunka ilgai
ar brangiai kainuoja.

Statistinis modelis (daZniausiai Gauso procesas), kuriuo pagristas
BO algoritmas, aproksimuoja tikslo funkcija, remdamasis Zinomomis
Sios funkcijos reik§mémis. Sis modelis leidia prognozuoti tikslo funk-
cijos reikSmes dar neistirtuose apibréZimo srities taSkuose bei jvertinti
iy prognoziy patikimumo mata. Naudojant §i modelj, BO algoritmas
ivertina tikimybe aptikti didesne (maZesne) tikslo funkcijos reikSme lygi-
nant su turimais duomenimis. Tai leidZia BO algoritmui rasti maksimaly
(minimalyy) tikslo funkcijos taska per maZiausia funkcijos jverciu skaiciu.
Dél $iu savybiu BO daZnai naudojamas jvairiose srityse, pavyzdZiui,
investavimo, inZinerijos ar moksliniuose tyrimuose.

Tyrimo sritis ir problemos aktualumas

BO algoritmas veikia ypac gerai, kai turimuy duomenu kiekis yra mazas
ar optimizavimui reikalingas tik nedidelis tikslo funkcijos jver¢iu skaicius.

115

Didéjant duomenu kiekiui, BO algoritmas tampa maZiau efektyvus ir rei-
kalauja daug skaitiavimo istekliu. Sio algoritmo efektyvumo mazéjima
daznai lemia Gauso proceso, kuris yra esminé BO algoritmo dalis, ap-
skaiciavimo laiko sudétingumas.

Net nedidelis duomenu kiekio ar reikalingu tikslo funkcijos jver¢iu
skai¢iaus padidéjimas gali reikSmingai pailginti BO algoritmo skai¢iavi-
mo laika, nes Gauso procesas naudoja kovariacijos matrica, kuri apraso
turimy duomeny sarysi. Prognozéms, kurios véliau naudojamos atnau-
jinti modelj, apskaic¢iuoti reikia rasti $ios matricos atvirkstine matrica.
Kadangi prognozeés apskaiciuojamos iteraciju btidu, atvirkstinés mat-
ricos apskaic¢iavimo greitis iSauga labai greitai. Dél Sios prieZasties
BO algoritmas paprastai apsiriboja tik iki 2000 funkcijos iverciu [79].
Technologijoms tobuléjant ir didéjant lygiagreciu skai¢iavimo istekliu
prieinamumui, galima atlikti vis didesnj tikslo funkcijos iverc¢iu skaiciu.
Tai skatina tobulinti ir kurti algoritmus, kurie galéty biiti vykdomi ly-
glagreciai.

Dar vienas BO algoritmo tritkumas yra tas, kad standartiniame BO
algoritme laikomasi prielaidos, jog triukSmas visoje tikslo funkcijos
apibrézimo srityje yra pastovus (toks triukSmas kitaip dar vadinamas
homoskedastisku triukSmu). Praktiskai 8i prielaida ne visada tenkinama.
Gali biiti, kad triukSmas keiciasi priklausomai nuo kintamojo padéties
tikslo funkcijos apibrézimo srityje (toks triuk§mas kitaip dar vadina-
mas heteroskedastisku triukSmu). Del Sios prieZasties BO algoritmo
rezultatai gali baiti klaidingi. Todél reikalingos BO algoritmo modifi-
kacijos, kurios galéty buiti pritaikomos optimizavimo problemoms su
heteroskedastisku triuksmu.

Tyrimo objektas

Sios disertacijos darbo objektas yra Bajeso optimizavimo algoritmai,
skirti didelio masto globaliojo optimizavimo problemoms spresti.

116

Tyrimo tikslas ir uZdaviniai

Sio darbo objektas yra Bajeso optimizavimo algoritmai. Pagrindinis
tikslas — sukurti efektyvias Bajeso optimizavimo algoritmo modifikaci-
jas, kurios btitu pritaikomos skirtingiems optimizavimo uZdaviniams
spresti. Siam tikslui pasiekti numatyti konkretiis uzdaviniai:

1. Sukurti naujus arba modifikuoti esamus Bajeso optimizavimo
algoritmus, siekiant pagerinti ju pritaikomuma didelio masto opti-

mizavimo uzdaviniams ir pagerinti ju efektyvuma;

2. Parodyti sitilomy algoritmu pritaikomuma optimizavimo uzdavi-
niams su kintamu triuk$mo lygiu;

3. Palyginti sitilomu algoritmu rezultatus su kitais optimizavimo
algoritmais.

Mokslinis naujumas ir rezultatai

Dauguma iki Siol sukurty BO algoritmo modifikaciju yra nepritaiko-
mos didelio masto problemoms, kai pradiniu duomenu kiekis yra dide-
lis arba tikslo funkcijos optimizavimui yra reikalingas didelis iver¢iu
skai¢ius. Kai duomeny kiekis yra didesnis uz 2000, BO algoritmo vei-
kimas gali tapti sudétingas, o vykdymas uztrukti labai ilgai. Norint
apdoroti tokji duomenu kieki, reikalingi specialiis skai¢iavimus sparti-
nantys jrenginiai, kurie yra brangts ir prieinami ne visiems. Tai riboja
BO algoritmu pritaikomuma ir platesni naudojima.

Sioje disertacijoje sitilomos dvi naujos BO algoritmo modifikacijos,
paremtos apibendrintu eksperty sandaugos (toliau — gPoE) modeliu.
Sis modelis leidZia pritaikyti BO algoritma problemoms, kurioms reika-
lingas didelis funkcijos iverciu skaicius, be poreikio turéti prieiga prie
specializuoty skai¢iavimo jrenginiu. EksperimentiSkai parodéme 3iu
algoritmu veiksminguma ir pritaikomuma didelio masto problemoms
lygindami su esamais algoritmais. Taip pat teoriskai irodéme, kad mtisu
sitiloma BO algoritmo modifikacija, naudojanti patikimos srities metoda,
konverguoja i funkcijos globaly maksimuma.

117

Be to, Siame darbe parodome, kad miisu sitilomas gPoEBO gali biiti
sékmingai pritaikytas globaliojo optimizavimo problemoms su heteros-
kedastisku triukSmu. Sukiréme du naujus heteroskedastiskus gPoE
pagristus BO (toliau — GPOEBO) algoritmus. Sie algoritmai pagristi
gPoE modelio ir heteroskedastiskos jvercio (angl. acquisition) funkcijos
deriniu, naudojant kiekvieno atskiro GP eksperto iSmoktus individua-
lius triukSmus modeliuoti funkcijoms su heteroskedastisku triukSmu.
Atlikti eksperimentai parodé, kad misu sukurti algoritmai pranoko
kitus heteroskedastiskus ir homoskedastiskus BO algoritmus.

Ginamieji teiginiai
Sios disertacijos ginamieji teiginiai:

1. Naujai sitilomas gPoEBO algoritmas yra efektyvesnis uz standartinj
BO algoritma skai¢iavimo laiko atzvilgiu.

2. Sitlomas gPoETRBO algoritmas pasiekia geriausia tiksluma lygi-
nant su kitais Gauso proceso ekspertyu modelio pagrindu veikia-
nciais BO algoritmais ir atitinka paZangiausio BO algoritmo op-
timizavimo tiksluma, bei reik§mingai sutrumpina optimizavimo
vykdymo laika, naudojant standartine kompiuterine skai¢iavimo

iranga.

3. Sukurti du heteroskedastiski Bajeso optimizavimo algoritmai pa-
rodé geriausia optimizavimo tiksluma lyginant su kitais heteros-
kedastiskais ir homoskedastiskais BO algoritmais.

Darbo rezultaty aprobavimas

Disertacijos rezultatai paskelbti tarptautiniuose mokslo Zurnaluose, tu-
rin¢iuose citavimo indeksa ,Clarivate Analytics Web of Science” (CA

WoS) duomenu bazéje:

118

1. TautvaiSas, S. and Zilinskas, J., 2024. Scalable Bayesian optimi-
zation with generalized product of experts. Journal of Global
Optimization, 88(3), pp.777-802.

2. Tautvaisas, S. and Zilinskas, J., 2023. Heteroscedastic Bayesian
optimization using generalized product of experts. Journal of
Global Optimization, pp.1-21.

Disertacijos struktiira ir apimtis

Si disertacija suskirstyta i keturis pagrindinius skyrius, o po ju pristato-
mos apibendrintos iSvados ir literattiros sarasas. Pirmajame skyriuje pa-
teikiamas jvadas i tyrimo tematika ir apibréZiama disertacijos struktiira.
Antrajame skyriuje pateikiama globaliojo Bajeso optimizavimo apZvalga
ir supazindinama su pagrindiniais Bajeso optimizavimo komponentais.
Trec¢iajame skyriuje pristatomos sitilomos Bajeso algoritmu modifika-
cijos. Ketvirtajame skyriuje apraSomi empiriniai eksperimentai, gauti
rezultatai ir rezultaty analizeé. Pagrindiniai eksperimentinio tyrimo
rezultatai ir iZvalgos pateikiamos apibendrinty iSvadu skyriuje. Diserta-
cija susideda i$ 133 puslapiuy, kuriuose yra 19 paveiksléliy, 16 lenteliy ir
penki algoritmai.

S1 BAJESO OPTIMIZAVIMO ALGORITMU AP-
ZVALGA

Sioje dalyje pristatomas Bajeso optimizavimo algoritmas, jo pagrindiniai
komponentai, privalumai ir tritkumai.

S1.1 Bajeso optimizavimo algoritmas

BO algoritmas yra statistiniu modeliu pagristas optimizavimo algo-
ritmas, kuris naudojamas funkcijy optimizavimui, kuriu reikdmiuy ap-
skaitiavimas yra brangus ar uZtrunkantis ilga laika [8}[18,45]. Sis algorit-
mas naudoja statistini modelj aproksimuoti tikslo funkcijos reikSméms,

119

pasitelkiant jau turimus funkcijos taskus. Statistinis modelis leidZia
prognozuoti funkcijos reikSmes dar neistirtuose apibrézimo srities tas-
kuose bei parodo prognozés patikimumo mata.

Remdamasis statistiniu modeliu ir jver¢io (angl. acquisition) funkcija,
BO algoritmas kiekvienam apibrézimo srities taskui priskiria kiekybinj
iverti, kuris parodo tinkamuma jame skaiciuoti tikslinés funkcijos rei-
kSme. Norint surasti nauja taska, kuris turetu didZiausia potenciala
bti tikslo funkcijos maksimumas, ieSkomas didZiausia kiekybini jverti
turintis taskas. Kiekviena karta apskaiciavus nauja funkcijos reikSme,
statistinis modelis atnaujinamas, kad atspindétu naujausia turima in-
formacija apie tikslo funkcija. Procesas kartojamas, kol pasiekiamas
nustatytas maksimalus funkcijos jver¢iu skaicius.

Gauso procesas, (toliau — GP) populiariausias statistinis modelis, yra
naudojamas BO algoritme tikslo funkcijai f modeliuoti [81]. Jis api-
bréziamas kaip atsitiktiniu kartu pagal Gauso skirstinj pasiskirs¢iusiu
dydziu rinkinys. Statistinis modelis gali biiti interpretuojamas kaip funk-
cijos f aproksimacija visoje apibrézimo srityje remiantis jau Zinomomis
tikslo funkcijos reikSmémis. Gauso procesas visiSkai apraSomas vidur-
kio ir kovariacijos funkcijomis (pastaroji kitaip dar vadinama branduolio
funkcija). Gauso proceso f(z) vidurkio p(x) ir kovariacijos funkcijos
k(z,2") apibréziamos taip:

k(z,2") = E[(f(x) — p(2))(f(2') — p(a"))],

o Gauso procesas iSreiSkiamas kaip

f(@) ~ GP(u(x), k(z, 2')).

Pagrindiné GP sudedamoji dalis — kovariacijos funkcija, nustatanti rysj
tarp duomenu ir apibréZianti GP savybes. Kovariacijos funkcijos atlieka
lemiama vaidmenj nustatant modeliuojamos tikslo funkcijos savybes.

Kita svarbi BO algoritmo dalis yra jvercio funkcija. Ji priskiria
kiekybinj jverti kiekvienam apibrézimo srities taskui z, kuris parodo
tinkamuma skaiciuoti funkcijos reikSme. Renkantis nauja taska tikslo
funkcijos reik$mei apskaiciuoti, siekiama rasti didZiausia jverti turinti

120

taska apibréZimo srityje [44].

Populiariausia jver¢io funkcija yra maksimalaus tikétino pagerini-
mo funkcija (angl. expected improvement (EI)) [33, 44, 45]. Si funkcija
matuoja tikétina pageréjima lyginant su jau apskaiciuotomis tikslo funk-
cijos reik§mémis. Naudojantis $ia funkcija, galime apskaiciuoti tasko =
ivertj pagal toliau pateikta formule:

ap(@) = o(@) [28(2) + 6(2)], (84.1)

kur Z = % (I)ff(:fir)m“m)*g, ® yra standartinio normaliojo dydzio pasi-

skirstymo funkcija, o ¢ yra standartinio normaliojo skirstinio tankio
funkcija.

S1.2 Bajeso optimizavimo algoritmo trilkumai

Nepaisant savo privalumy, BO algoritmas susiduria su keletu i$$iikiy ir
ribotumu, kurie gali paveikti algoritmo efektyvuma ir pritaikomuma.
Vieni i$ pagrindiniy trilkumuy yra:

Skaiciavimo sudétingumas. Didéjant duomenu kiekiui ar funkcijos
iverciy skaiciui, BO algoritmas reikalauja vis daugiau skai¢iavimo istekliu.
Viena i$ to priezas¢iu — Gauso proceso modelis, kuriuo remiasi BO al-
goritmas. Gauso proceso modelis naudoja kovariacijos matrica, kuri
apraso sary$j tarp skirtingu funkcijos reiksmiu. Norint atlikti progno-
zes ir atnaujinti modelj, reikia rasti $ios matricos atvirkstine matrica.
Atvirkstinés matricos skai¢iavimo sudétingumas yra O(n?), kur n yra
duomenu kiekis [81]. Pasitilyti ivairtis algoritmai, leidZiantys supapras-
tinti §j apskaic¢iavima — standartinio Gauso proceso modelio pakeitimas
retu Gauso procesu (angl. sparse Gaussian Process) [53] ar duomenu kie-
kio sumazinimas aproksimuojant duomenis lokaliais duomenu taskais
[9]. Nepaisant to, Sie algoritmai turi triikumu ir didéjant duomenu
kiekiui, ju tikslumas labai suprastéja.

Heteroskedastiskas duomeny triukSmas. Standartiniame Gauso pro-
ceso modelyje laikomasi prielaidos, kad duomenu triukSmas yra homos-

121

kedastiskas. Taciau kai duomenu triukSmas yra kintamas ir priklauso
nuo padéties apibrézimo srityje (t. y. heteroskedastiskas), BO algoritmo
rezultatai gali baiti klaidingi [37, 151} 63]]. Siekiant sukurti BO algoritmus,
kurie galéty palaikyti kintama triukSma duomenyse, pasitilytos naujos
ivercio funkciju modifikacijos [21} 37, 67]. Sios modifikacijos padidina
BO algoritmo skai¢iavimo sudétinguma ir didéjant duomenuy kiekiui,
Sie algoritmai tampa nepritaikomi praktiskai.

S$1.3 Didelio masto Bajeso optimizavimo algoritmai

BO algoritmas veikia gerai, kai duomenu kiekis yra nedidelis ar optimi-
zavimui reikalingas nedidelis tikslo funkcijos iver¢iu skaicius. Didéjant
duomenu kiekiui, $io algoritmo vykdymo laikas pradeda spar¢iai ilgeti.
Taip atsitinka todel, kad Gauso procesu paremtam BO algoritmui reikia
apskaiciuoti atvirkstine kovariacijos matricq su visais turimais duomeni-
mis. Dél Sios priezasties BO paprastai apsiriboja tik keliais tiikstanciais
funkcijos iverciuy [79]. Atsizvelgiant i didéjanti lygiagreciu skai¢iavimo
irenginiy prieinamuma, verta paZyméti, kad optimizavimo vykdymo
laika galima sumazinti, jei optimizavimo algoritmas galéty btti pritai-
komas lygiagretiems skai¢iavimams.

Pagrindiné sukurty algoritmy problema yra ta, kad skai¢iavimams
pagreitinti jie naudoja specialia skai¢iavimo jranga, kuri yra brangi arba
neprieinama paprastam vartotojui. Siekiant apdoroti dideli duomenu
kieki, pasitilyti tokie algoritmai kaip EBO, naudojantis 240 procesoriu
branduolius [79], ir pazangiausi TuRBO ir LA-MCTS, naudojantys vaiz-
do apdorojimo procesorius skai¢iavimams paspartinti. Siy algoritmy,
naudojamu optimizavimo problemoms spresti su paprasta kompiute-
rine jranga ar asmeniniu kompiuteriu, turinc¢iu tik ribota procesoriaus
branduoliu skai¢iy, vykdymo laikas reikSmingai pailgéja ir gali trukti
meénesius ar net metus. Todél Sie algoritmai néra placiai taikomi prak-
tiskai.

122

S1.4 Gauso proceso eksperty modeliai

Apibendrintas sandaugos eksperty modelis (angl. generalised Product
of Experts (gPoE) — vienas i§ Gauso proceso ekspertu modeliu tipu,
leidziantis lanks¢iai ir efektyviai modeliuoti tikslo funkcijas su dideliu
duomenu kiekiu [12,[13]. Sis sandaugos eksperty modelis yra sudarytas
i§ daugelio maZzesniy Gauso proceso modeliy, kurie vadinami eksperto
modeliais. Kiekvieno eksperto modelis gali turéti skirtingus parametrus,
nepriklausomus nuo kito eksperto modelio parametry, o tai leidzia
panaudoti lygiagrec¢iuosius skai¢iavimus ekspertu mokymui [11].

Apibendrintas sandaugos ekspertu modelis sujungia kiekvieno atski-
ro GP eksperto prognoze i galutinj bendra modeli [11]

M
pa(filae, D) = T]p0) (filae, DO, (542)

=1

kurio prognozés rezultatas — atsitiktinis dydis, pasiskirstes pagal Gauso
skirstinj. Jo vidurkis ir dispersija taske x, apskai¢iuojami kaip

M
pa =0 (@) Y i (w) 0y () i (), (54.3)
=1
M
02‘2 (xy) = Z i (24) 07 % (24) - (54.4)
i=1

Svoris «; (z,) yra patikimumo matas, kontroliuojantis kiekvieno eks-
perto i svorj testavimo taske z., kur «; (z,) > 0 ir Zf\il ai(zy) =1

Apibendrintame sandaugos ekspertu modelyje kiekvienas ekspertas
gali btiti apmokytas atskirai naudojant lygiagreciuosius skaic¢iavimus.
Jei mokymas vykdomas su M procesoriaus branduoliais, mokymo lai-
ko sudétingumas sumazéja lyginant su standartiniu GP nuo O (n?) iki
O(n;?), kur n; — duomeny aibés dydis, o n; — ekspertui mokyti naudoja-
mas duomenuy poaibio dydis.

123

S1.5 Heteroskedastiskas Bajeso optimizavimo algoritmas

Daugelyje optimizavimo uzdaviniu tikslo funkcijos iverciai gali bati
netiksliis ar net klaidingi dél triuk§mo itakos duomenims. Triuk$mas
gali i8kraipyti arba sumazinti duomenuy kokybe ir tiksluma. Taip nu-
tinka dél jvairiu prieZasc¢iu: klaidingy matavimuy, signalo perdavimo
trikdziy ar netinkamo duomenu tvarkymo. Standartiniame Gauso pro-
ceso modelyje laikomasi prielaidos, kad triuk8mo lygis yra pastovus (t. y.
homoskedastigkas) visoje apibréZimo srityje. Si prielaida yra pernelyg ri-
bota ir netinkama, nes daznai triukSmo lygis praktiniuose optimizavimo
uzdaviniuose yra nepastovus ir priklauso nuo tasko padéties (t. y. hete-
roskedastiski) apibrézimo srityje. Klaidingai laikantis homoskedastisko
triukSmo prielaidos, BO algoritmo rezultatai gali biti klaidingi.

Dél sios priezasties pasitilytos kelios BO algoritmo modifikacijos,
kurios galéty biiti naudojamas tikslo funkcijai optimizuoti su heteros-
kedastisku triuk8mu. DaZniausiai autoriai sitilo pakeisti standartinj
Gauso procesa kitomis jo modifikacijomis, kurios palaikytu heteroske-
dastiska triuksma [1}[10]. Be to, pasiiilytos BO algoritmo modifikacijos,
naudojancios papildoma Gauso proceso modelj triukSmui prognozuoti
priklausomai nuo tasko padéties apibrézimo srityje ir ji naudoti jvercio
funkcijoje [20} 21} 35].

S2 BAJESO OPTIMIZAVIMO ALGORITMO MO-
DIFIKACIJOS

Siame skyriuje aprasomos msy pasitlytos BO algoritmo modifikaci-
jos. Sitilome keisti standartinj Gauso proceso modelj BO algoritme i
apibendrinta sandaugos ekspertu (gPoE) modeli. Sis naujas gPoEBO
algoritmas pristatomas skyriuje. Be to, sitilome nauja gPoETRBO
algoritma, sujungiantj patikimumo srities ir gPoE modelj, kaip nurodyta
52.2]skyriuje. Papildomai parodome, kad pasitilytas gPoEBO algoritmas
gali biti pritaikomas optimizavimo problemoms su heteroskedastisku
triukdmu. Sis algoritmas apragomas skyriuje Pasitilyti algoritmai
publikuoti moksliniuose straipsniuose [68, 69].

124

S2.1 Bajeso optimizavimo algoritmas su apibendrintu sandau-
gos eksperty modeliu

Siekdami iSplésti BO algoritmo taikymo galimybes didelio masto opti-
mizavimo problemoms, sitilome pakeisti standartini GP modelj i api-
bendrinta sandaugos ekspertu (gPoE) modeli. S algoritma pavadinome
BO algoritmu su apibendrintu sandaugos eksperty modeliu (gPoEBO).

Sis algoritmas veikia kiekvienoje iteracijoje ¢, dalydamas turima
duomenu aibe D; = {xy, yk}i;:l i M nepersidengiancius poaibius,
gautus i§ ankstesniy funkcijos jver¢iu. Kiekviename poaibyje duomenu
kiekis yra t/M, kuri panaudojame mokyti M GP ekspertu modeliu.
Kai M GP eksperty modeliai apmokomi, ju aposteriorinis vidurkis ir
dispersija apskai¢iuojami naudojantis atsitiktinai atrinktais ¢ taskais i$
apibréZimo srities. Taskams atrinkti naudojamas Sobolio sekos meto-
das [65]. Kiekvieno GP eksperto modelio prognozuojamos vidurkio ir
dispersijos reikSmés Siuose taskuose yra agreguojamos naudojant gPoE
modelj, kur kiekvieno eksperto jtaka galutiniam rezultatui apskai¢iuoja-
ma naudojant diferencialinés entropijos metoda [13].

Norédami rasti didZiausia kiekybini jverti turinti taska i$ atrinktu
q tasky, kiekvienam taskui priskiriame kiekybinj jiverti, naudodami
virSutinio patikimumo ribos (angl. Upper Confidence Bound) ivercio
funkcija [66]. Si iver¢io funkcija skai¢iavimui naudoja turimas vidur-
kio ir dispersijos reikdmes i$ galutinio GP ekspertu modelio. Suradus
geriausia jvertj turintj taska, tikslo funkcija Siame taske jvertinama, o
naujas taskas yra pridedamas prie turimy duomenuy. Optimizavimo
procesas tesiamas, kol pasiekiamas maksimalus nustatytas funkcijos
iverciy skaicius. BO algoritmo rezultatas — didZiausia funkcijos reikSme
turintis taskas, surastas per optimizavcijos procesa.

S2.2 Bajeso optimizavimo algoritmas su patikimos srities ir
apibendrintu sandaugos eksperty modeliu

Sitilome gPoETRBO algoritma pagerinti gPoEBO algoritmo tikslumui.
gPoETRBO algoritmas sujungia patikimumo srities metoda (angl. trust

125

region) su gPoE modeliu. Patikimumo srities metodas remiasi supapras-
tintu tikslo funkcijos modeliu, kuris leidZia efektyviau ieSkoti optima-
laus sprendimo sudétingose optimizavimo problemose. Patikimumo
sritis daZniausiai yra hiper-sta¢iakampis, bréZiamas aplink geriausia jau
zinoma tikslo funkcijos reiksme [17,55]]. Priklausomai nuo to, ar nauja
tikslo funkcijos reikSmeé yra geresné uz jau Zinoma, patikimumo sritis
yra koreguojama: iSple¢iama, jei randamas taskas su geresne funkcijos
reikSme, arba susiaurinama, jei funkcijos reiksmés nepavyksta pagerinti.
Teigiamas rezultatas veda prie naujo Zingsnio priémimo ir patikimumo
srities iSplétimo, o neigiamas rezultatas reiSkia naujo Zingsnio atmetima
ir patikimumo srities susiaurinima [15,83].

Naudojantis $iuo algoritmu, optimizavima pradedame nustatydami
patikimumo srities hiper-sta¢iakampio pradini L = L;y;;, minimalu
Ly ir maksimaly L,,q, krastines ilgj. Kiekvienoje iteracijoje, kaip ir
gPoEBO algoritme, atsitiktinai dalijame duomenu aibe i M nepersi-
dengianc¢ius poaibius ir mokome M GP ekspertus. Paskui turimoje
duomeny aibéje randame taska su didZiausia tikslo funkcijos reikSme.
Aplink §j taska nustatome patikimumo srities hiper-sta¢iakampj ir suge-
neruojame q atsitiktinius taskus Sioje srityje naudodami Sobolio sekos
metoda. Siuose sugeneruotose taskuose apskaitiuojame kiekvieno GP
eksperto aposteriorinj vidurkj ir dispersija. Sias reik§mes naudojame
rasti agreguotam GP modeliui, naudojantis gPoE modeliu. Norédami
rasti kitq didZiausia potenciala turinti taska i sugeneruoty taskuy, ran-
dame taska, turintj maksimalia UCB jvercio funkcijos verte. Radus §j
taska, randame tikslo funkcijos reikSme Siame taske ir lyginame 8ia verte
su geriausia jau Zinoma tikslo funkcijos reikSme. Jei pagerinome funk-
cijos verte, didiname sékmeés skaitiklj ir nustatome nesékmeés skaitiklj
i nulj, prieSingu atveju nustatome sékmés skaitiklj i nulj ir didiname
nesékmes skaitiklj. Kai patikimumo srities hiper-sta¢iakampio ilgis
tampa maZzesnis uz L,;,, optimizavimo procesa pradedame i$ naujo.

S2.3 Heteroskedastiskas Bajeso optimizavimo algoritmas su
apibendrintu sandaugos eksperty modeliu

BO algoritmas su apibendrintu sandaugos ekspertu modeliu gali baiti
pritaikytas modeliuoti heteroskedastiskqa duomenu triuksma, nes kiek-

126

vienas GP ekspertas gali turéti individualius parametrus su skirtingu
duomeny triuk¥mu. Apmokius ekspertus {M;} | su jiems priskirtais
duomeny aibés poaibiais {Dz}f\i 1» randame ju tikimybinius skirstinius
{pi (y | Ds, x*)}i]‘il, kur taskas z, — duomenu aibés elementas, ji, () ir

oy (x.) — kiekvieno i-tojo eksperto vidurkis ir dispersija.

Sitilome sujungti kiekvieno GP eksperto iSmoktus triuksmo lygius
M
ju duomenu poaibiuose {062 l} , siekiant rasti galutinj triukSma 7,
) i=1
duomeny aibés taske .. Nauciojame paprasta aritmetinj vidurkj ap-
skaiciuoti galutiniam triukSmui

M

re =1 (z4) = Z a; (x4) 06271-, (54.5)

i=1

kur o (x,) — patikimumo matas, nurodantis kiekvieno i-tojo GP eksperto
svorij taske z,, pagal prognozes tiksluma.

Be to, sitilome dvi jvercio funkciju modifikacijas, kurios naudoja
8i triuk8mo lygi siekiant rasti didZiausia potenciala turinti taska api-
brézimo srityje. Pirmoji jvercio funkcija HAEI apskai¢iuojama

anael(r) = ag,(T) X (1— V(@)) (54.6)

o7, +7%r(x)

Antroji pasitlyta jvercio funkcija ANPEI tiesiogiai sumaZzina api-
bréZzimo srities tasko jvertj, priklausomai nuo triuksmo lygio dydzio. Ji
apskai¢iuojama

aanpei(z) = B xag,(z)— (1-8) x /r(2), (54.7)

¢ia 3 — konstanta, kurios dydis yra tarp 0 ir 1. Si konstanta parodo
pusiausvyra tarp tikétino patikimumo jvercio funkcijos El ir galutinio
triukSmo lygio.

127

S3 EMPIRINIS TYRIMAS

Siame skyrelyje pristatysime disertacijoje atliktus eksperimentinius ty-
rimus ir pagrindinius gautus rezultatus. Gauti rezultatai publikuoti
moksliniuose straipsniuose [68, 69].

S$3.1 Didelio masto Bajeso optimizavimo algoritmy rezultatai

Lyginame savo sitilomu gPoEBO ir gPoETRBO algoritmy efektyvuma
ir vykdymo trukme su kitais GP eksperty paremtais BO algoritmais
(PoE_BO, BCM_BO, rBCM_BO), retosios GP regresijos (SGPRBO) pag-
rindu veikian¢iu BO, standartiniu BO, TuRBO bei atsitiktinés paieskos
algoritmu. Siuos algoritmus vertiname naudodami keturias skirtingu
20 ir 50 dimensiju globaliojo optimizavimo testines funkcijas bei opti-
malios kontrolés valdymo problemas. Eksperimentai atlikti specialiai
miisy tyrimo problemoms sukurtoje , Google Cloud Platform” (GCP)
virtualioje aplinkoje, turin¢ioje 8 branduoliu procesoriu.

Eksperimentuy rezultatai su 20 ir 50 dimensiju globaliojo optimizavi-
mo testinémis funkcijomis pateiktifd.1} 4.2} [4.4]ir[4.5lentelése, o praktiniy
problemy optimizavimo rezultatai —[4.7)ir[4.8] Matome, kad geriausi opti-
mizavimo rezultatai gauti naudojant patikimos srities metodo pagrindu
veikian¢ius algoritmus (gPoETRBO, TuRBO). Sie algoritmai pasieke ge-
riausia optimizuojamos funkcijos tiksluma. Miisuy pasitilyto gPoETRBO
algoritmo tikslumas buvo panasus i TuRBO algoritmo, ta¢iau vykdymo
laikas buvo trumpesnis. Sitlomo gPoEBO algoritmo rezultatai parodeé
panasy optimizavimo tiksluma, kaip ir standartinio BO, ta¢iau optimi-
zavimo vykdymo laikas buvo 2 kartus trumpesnis.

S3.2 Heteroskedastisky Bajeso optimizavimy algoritmy rezul-
tatai

EksperimentiSkai jvertinome gPoE pagristo BO (GPOEBO) algoritmo
optimizavimo rezultata su miuisu pasitilytomis heteroskedastiSkomis
iver¢io funkciju modifikacijomis (HAEI, ANPEI), lygindami su paZan-
giausiu heteroskedastisku BO algoritmu, naudojan¢iu MLHGP modeli

128

(MLHGPBO). Taip pat palyginome rezultatus su standartiniu BO algo-
ritmu, naudojanciu dvi standartines jvercio funkcijas (BO_EI) ir AEI
(BO_AEI), bei su atsitiktines paieSkos algoritmu, kuris daznai naudoja-
mas triukSmingu funkciju optimizavime. [21]].

Misu pasitlytu algoritmu optimizavimo tikslumas buvo vertina-
mas naudojant SeSias placiai naudojamas globaliojo optimizavimo testi-
nes funkcijas, kaip nurodyta [51]. Eksperimentuose buvo naudojamos
ivairiy dimensiju funkcijos: 2D (Branin, GoldsteinPrice), 4D (Hartman,
Rosenbrock) ir 6D (Hartman, Sphere). Be to, remiantis [21] pasitlyta
metodologija, eksperimentams panaudotos dvi cheminiu junginiu opti-
mizavimo funkcijos.

Eksperimentiniy tyrimuy rezultatai buvo vertinami skai¢iuojant abso-
liutine paklaida tarp Zinomos testinés funkcijos maksimalios reikSmés ir
optimizavimo algoritmo rastos geriausios funkcijos reiksmeés. Eksper-
imentai su testinémis funkcijomis pakartoti 50 karty. Kaip matome i3

4.10} 4.12]ir [4.14}lenteliy, misy pasitilyty algoritmu vidutiné absoliuti

paklaida buvo maZiausia lyginant su kitais optimizavimo algoritmais
naudojant heteroskedastiSkas testines ir praktines optimizavimo funk-
cijas. Remiantis gautais rezultatais, galime teigti, kad mtisy pasitlyti
algoritmai yra patikimesni spendZiant optimizavimo problemas su hete-
roskedastisku triukSmu.

ISVADOS

1. Norédami pagerinti Bajeso optimizavimo algoritmo taikyma dide-
lio masto optimizavimo problemoms, sitilome du naujus gPoEBO
ir gPoETRBO algoritmus. I8 atlikty eksperimentiniy tyrimu galime
daryti tokias iSvadas:

1.1 I8 gauty rezultaty nustatéme, kad lyginant su standartiniu BO
algoritmu, gPoEBO algoritmo tikslumas geréja nuo -2,87% iki
6,45%, naudojant 20 dimensiju globaliojo optimizavimo testi-
nes funkcijas. Optimizavimo vykdymo trukmés pageréjimas
sieke nuo 106,10% iki 209,58%. Sie rezultatai rodo, kad miisy
algoritmas labai sutrumpina optimizavimo vykdymo laika,

129

1.2

1.3

14

1.5

1.6

tuo paciu iSlaikydamas auksta optimizavimo tikslumo lygi.

Pasitilyto gPoETRBO algoritmo optimizavimo tikslumo pa-
geréjimas, naudojant 20 ir 50 dimensiju globaliojo optimiza-
vimo testines funkcijas, atitinkamai svyravo nuo 70,51% iki
98,47%, ir nuo 75,56% iki 99,61%, lyginant su standartiniu BO
algoritmu. Optimizavimo vykdymo laikas, lyginant su stan-
dartiniu BO, sutrumpéjo nuo 68,56% iki 152,39% naudojant
20 dimensiju testines funkcijas, ir nuo 667,44% iki 1118,68%,
naudojant 50 dimensiju testines funkcijas. Gauti rezultatai
rodo, kad patikimos srities metodas su gPoEBO algoritmu
reik§mingai pagerina optimizavimo tiksluma ir sutrumpina
vykdymo trukme.

Patikimos srities metodu pagristo gPoETRBO optimizavimo
tikslumas, lyginant su paZzangiausiu TuRBO algoritmu, yra
toks pats arba geresnis. Tac¢iau miisuy pasitilyto gPoETRBO
algoritmo optimizavimo trukmé yra nuo 11 iki 12 karty trum-
pesné nei TuRBO algoritmo, naudojant 50 dimensiju testines
funkcijas.

Atlike eksperimentus su praktinémis optimizavimo proble-
momis, nustatéme, kad miisuy sitilomas gPoETRBO algorit-
mas pasieké panasy tiksluma, kaip ir standartinis BO, ta¢iau
optimizavimo vykdymas uztruko daug trumpiau. Be to,
naudodami gPoETRBO, galéjome optimizuoti 60 dimensiju
funkcija su 10000 duomenu aibés elementuy standartine kom-
piuterine jranga, ir pasiekéme 904% optimizavimo tikslumo
pageréjima, lyginant su standartiniu BO. Lyginant gPoETR-
BO su TuRBO algoritmu, naudojant 60 dimensiju funkcija,
pasiektas panasus tikslumas, tatiau vykdymo trukme buvo
iki 6 kartu trumpesné.

Nustatéme, kad gPoETRBO algoritmas, lyginant su kitais
algoritmais, veikia geriausiai, kai optimizavimo trukme yra
ribota ir naudojant 20 ir 50 dimensiju globaliojo optimizavimo
testines funkcijas su 5 ir 15 minuciu optimizavimo vykdymo
laiko apribojimu.

Papildomi eksperimentiniai tyrimai parodé, kad didinant
GP eksperty modeliams priskiriamo duomenu poaibio dydi,

130

gPoEBO ir gPoETRBO optimizavimo tikslumas geréja, taciau
vykdymo laikas pradeda ilgeti.

2. Siame darbe siilome GPOEBO_HAEI ir GPOEBO_ANPEI he-
teroskedastiskus Bajeso optimizavimo algoritmus, kurie leidZia

sekmingai pritaikyti gPoEBO algoritma globaliojo optimizavimo

problemoms su heteroskedastisku triukSmu:

2.1

2.2

23

24

2.5

Atlikti eksperimentiniai tyrimai parodé, kad GPOEBO_HA-
El algoritmo vidutiné absoliuti paklaida buvo nuo 4,35% iki
33,90% mazesneé visose globaliojo optimizavimo testinéese
funkcijose su heteroskedastisku triukSmu, lyginant su stan-
dartiniu BO algoritmu.

Lyginant GPOEBO_HAEI su pazangiausiu MLHGPBO_HA-
El algoritmu, nustatéme, kad miisu pasitilyto algoritmo abso-
liuti vidutiné paklaida buvo nuo 22,71% iki 81,78% maZesné
naudojant testines funkcijas su heteroskedastisku triukSmu.

Sitlomuy GPOEBO_HAEI ir GPOEBO_ANPEI algoritmu re-
zultatai parodé nuo 15,61% iki 46,17% maZesne vidutine ab-
soliucia paklaida, lyginant su MLHGPBO_HAEI ir GPOE-
BO_ANPEI algoritmais, sprendZiant praktines optimizavimo
problemas.

Atlikus duomenu aibés elementu paskirstymo GP eksperty
modeliui jautrumo analize, parodéme, kad BO optimizavimo
rezultatai su atsitiktine duomeny aibés elementy paskirstymo
strategija GP ekspertu modeliui yra tikslesni uz K-vidurkiu
pagrista strategija.

Atlikti papildomi eksperimentiniai tyrimai parodeé, kad GPO-
EBO_HAEI ir GPOEBO_ANPEI algoritmuy optimizavimo tiks-
lumas priklauso nuo skiriamu duomenu kiekio kiekvienam
GP ekspertui. Jei Sis skai¢ius nustatomas neteisingai, $iu
algoritmy tikslumas gali Zenkliai pablogéti.

131

LIST OF AUTHOR
PUBLICATIONS

The results of the dissertation were published in international research
journals with a citation index in the Clarivate Analytics Web of Science
(CA WoS) database:

e Tautvaisas, S. and Zilinskas, J., 2024. Scalable Bayesian optim-
ization with generalized product of experts. Journal of Global
Optimization, 88(3), pp.777-802.

e TautvaiSas, S. and Zilinskas, J., 2023. Heteroscedastic Bayesian
optimization using generalized product of experts. Journal of
Global Optimization, pp.1-21.

Conference proceedings and abstracts:

e Tautvaigas, S. and Zilinskas, J., 2022. Noisy global Bayesian op-
timization using generalized product of experts. In Proceedings
of the Hungarian global optimization workshop HUGO 2022 (pp.
185-188). University of Szeged.

e Tautvai3as, S. and Zilinskas, J., 2021. Scalable trust region Bayesian
optimization with product of experts. 12th International workshop
on Data Analysis Methods for Software Systems (DAMSS) (pp.
74), December, Druskininkai, Lithuania.

132

ABOUT THE AUTHOR

Saulius TautvaiSas was born in Skaistgirys, Joniskis district, Lithuania,
in 1988. He graduated from Skaistgirys High School in 2007. Saulius
received a Bachelor’s degree in Economics from Kaunas University of
Technology in 2011 and a Master’s degree in Informatics from Vilnius
University in 2017. From 2019 to 2023, he was a Ph.D. student at Vilnius
University. His industrial experience includes working as an application
support analyst at Barclays Technology Centre Lithuania from 2013 to
2015 in Vilnius, Lithuania. He also held various software engineering
positions at JP Morgan, UBS, and CME Group between 2015 and 2019 in
London, United Kingdom. Since 2021, he has been working as a Data
Scientist at Danske Bank in Vilnius, Lithuania.

133

NOTES

Saulius Tautvaisas

Scalable Bayesian Global
Optimization of Black-Box Functions

Doctoral Dissertation

Natural Sciences

Informatics (N 009)

Thesis Editor: Zuzana Siugaite

Saulius TautvaiSas

Bajeso metodai didelio masto juodosios déZés
globaliajam optimizavimui

Daktaro disertacija

Gamtos mokslai

Informatika (N 009)

Santraukos redaktoré: Jortiné Rimeisyté-NekraSiené

Vilnius University Press
9 Saulétekio al., LT-10222 Vilnius
Email: info@leidykla.vu.lt, www.leidykla.vu.lt
Print run of 20 copies

	 Notation
	1 INTRODUCTION
	1.1 Research Context and Motivation
	1.2 Objectives and Tasks of the Thesis
	1.3 Scientific Novelty and Results
	1.4 Statements Defended
	1.5 Approbation of the Thesis Results
	1.6 Structure of the Dissertation

	2 A REVIEW OF GLOBAL BAYESIAN OPTIMIZATION
	2.1 Global Optimization
	2.2 Bayesian Optimization
	2.3 Gaussian Process
	2.4 Acquisition Functions
	2.5 Limitations of Bayesian Optimization
	2.6 Scalable Bayesian Optimization
	2.7 Heteroscedastic Bayesian Optimization
	2.8 Conclusions

	3 EXTENDING GLOBAL BAYESIAN OPTIMIZATION
	3.1 Bayesian Optimization with Generalized Product of Experts
	3.2 Trust region Bayesian optimization with Generalized Product of Experts
	3.3 Heteroscedastic Bayesian Optimization using Generalized Product of Experts
	3.4 Conclusions

	4 NUMERICAL EXPERIMENTS
	4.1 Scalable Bayesian Optimization
	4.2 Heteroscedastic Bayesian Optimization

	GENERAL CONCLUSIONS
	REFERENCES
	SUMMARY IN LITHUANIAN
	S1 BAJESO OPTIMIZAVIMO ALGORITMŲ APŽVALGA
	S2 BAJESO OPTIMIZAVIMO ALGORITMO MODIFIKACIJOS
	S3 EMPIRINIS TYRIMAS

	LIST OF AUTHOR PUBLICATIONS
	ABOUT THE AUTHOR

