
VILNIUS GEDIMINAS TECHNICAL UNIVERSITY

Justas KAZANAVIČIUS

RESEARCH ON LEGACY MONOLITH
APPLICATIONS DECOMPOSITION INTO
MICROSERVICE ARCHITECTURE

DOCTORAL DISSERTATION

TECHNOLOGICAL SCIENCES
INFORMATICS ENGINEERING (T 007)

Vilnius, 2024

The doctoral dissertation was prepared at Vilnius Gediminas Technical University in

2019–2024.

Supervisor

Prof. Dr Dalius MAŽEIKA (Vilnius Gediminas Technical University,

Informatics Engineering – T 007).

The Dissertation Defence Council of the Scientific Field of Informatics Engineering

of Vilnius Gediminas Technical University:

Chairman

Prof. Dr Nikolaj GORANIN (Vilnius Gediminas Technical University,

Informatics Engineering – T 007).

Members

Prof. Dr Rimantas BUTLERIS (Kaunas University of Technology, Informatics

Engineering – T 007),

Prof. Dr Konstantinos DIAMANTARAS (International Hellenic University,

Greece, Informatics Engineering – T 007),

Prof. Dr Arnas KAČENIAUSKAS (Vilnius Gediminas Technical University,

Informatics Engineering – T 007),

Dr Povilas TREIGYS (Vilnius University, Informatics Engineering – T 007).

The dissertation will be defended at the public meeting of the Dissertation Defence

Council of the Scientific Field of Informatics Engineering in the SRA-I Hall of Vilnius

Gediminas Technical University at 10 a.m. on 21 May 2024.

Address: Saulėtekio al. 11, LT–10223 Vilnius, Lithuania.

Tel.: +370 5 274 4956; fax +370 5 270 0112; e-mail: doktor@vilniustech.lt

A notification on the intended defence of the dissertation was sent on 19 April 2024.

A copy of the doctoral dissertation is available for review at the Vilnius Gediminas

Technical University repository https://etalpykla.vilniustech.lt and the Library of Vilnius

Gediminas Technical University (Saulėtekio al. 14, LT–10223 Vilnius, Lithuania) and the

library of Kaunas University of Technology (K. Donelaičio st 20, LT-44239 Kaunas,

Lithuania).

Vilnius Gediminas Technical University book No 2024-018-M

https://doi.org/10.20334/2024-018-M

© Vilnius Gediminas Technical University, 2024

© Justas Kazanavičius, 2024

justas.kazanavicius@vilniustech.lt

VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS

Justas KAZANAVIČIUS

MONOLITINĖS ARCHITEKTŪROS
PROGRAMŲ MIGRACIJOS Į
MIKROSERVISŲ ARCHITEKTŪRĄ TYRIMAS

DAKTARO DISERTACIJA

TECHNOLOGIJOS MOKSLAI,
INFORMATIKOS INŽINERIJA (T 007)

Vilnius, 2024

Disertacija rengta 2019–2024 metais Vilniaus Gedimino technikos universitete.

Vadovas

prof. dr. Dalius MAŽEIKA (Vilniaus Gedimino technikos universitetas,

Informatikos inžinerija – T 007).

Vilniaus Gedimino technikos universiteto Informatikos inžinerijos mokslo krypties

disertacijos gynimo taryba:

Pirmininkas

prof. dr. Nikolaj GORANIN (Vilniaus Gedimino technikos universitetas,

Informatikos inžinerija – T 007).

Nariai:

prof. dr. Rimantas BUTELRIS (Kauno technologijos universitetas, Informatikos

inžinerija – T 007),

prof. dr. Konstantinos DIAMANTARAS (Tarptautinis Graikijos universitetas,

Graikija, Informatikos inžinerija – T 007),

prof. dr. Arnas KAČENIAUSKAS (Vilniaus Gedimino technikos universitetas,

Informatikos inžinerija – T 007),

dr. Povilas TREIGYS (Vilniaus universitetas, Informatikos inžinerija – T 007).

Disertacija bus ginama viešame informatikos inžinerijos mokslo krypties disertacijos

gynimo tarybos posėdyje 2024 m. gegužės 21 d. 10 val. Vilniaus Gedimino technikos

universiteto SRA-I posėdžių salėje.

Adresas: Saulėtekio al. 11, LT-10223 Vilnius, Lietuva.

Tel.: (8 5) 274 4956; faksas (8 5) 270 0112; el. paštas doktor@vilniustech.lt

Pranešimai apie numatomą ginti disertaciją išsiųsti 2024 m. balandžio 19 d.

Disertaciją galima peržiūrėti Vilniaus Gedimino technikos universiteto talpykloje

https://etalpykla.vilniustech.lt ir Vilniaus Gedimino technikos universiteto bibliotekoje

(Saulėtekio al. 14, LT-10223 Vilnius, Lietuva) bei Kauno technologijos universiteto

(K. Donelaičio g. 20, LT-44239 Kaunas, Lietuva) bibliotekoje.

v

Abstract

Microservice architecture is becoming the de facto industry standard for building

new enterprise applications. According to the International Data Corporation, al-

most 90% of North American enterprises already use microservice architecture to

develop new and modernise legacy applications. Companies aiming to remain

competitive have started modernising their legacy monolithic systems by decom-

posing them into microservices. However, extracting microservices from legacy

monolithic software is an extremely complex task.

Although the topic of monolithic software migration into microservice archi-

tecture has already been explored by scientists and software engineers, it is a com-

plex and relatively new challenge; therefore, little research exists on its many

parts, such as database adaptation during the migration and communication estab-

lishment between microservices. Most research primarily focuses on microservice

identification within monolith applications and source code decomposition into

microservices. A new migration approach is proposed to bridge this gap. It con-

sists of code decomposition and covers communication establishment and data

management.

The dissertation consists of an introduction, four chapters, and general con-

clusions. The first chapter introduces microservice and monolithic architectures

and discusses the existing migration from monolithic to microservice architecture

methods. In addition, three main parts are identified, and deeper research is pro-

vided for code extraction methods, communication between microservices, and

data management. It also provides evaluation of existing methodologies for mon-

olith decomposition into microservices. The same enterprise application was de-

composed into microservices using three different methods. Based on the pro-

posed evaluation criteria, the advantages and disadvantages of each

decomposition method were determined. The second chapter presents the pro-

posed approach for migrating legacy monolithic applications into microservices.

The third chapter presents experimental research on possible communication tech-

nologies. Five communication technologies, such as HTTP Rest, RabbitMQ,

Kafka, gRPC, and GraphQL, have been evaluated and compared using the pro-

posed evaluation criteria. The fourth chapter presents an experimental evaluation

of the proposed approach of monolithic database migration into multi-model pol-

yglot persistence.

The dissertation’s results were published in 4 scientific publications, 2 of

which were in reviewed scientific journals indexed in the Clarivate Analytics Web

of Science database and presented at four international conferences.

vi

Reziumė

Mikroservisų architektūra tapo de facto pramonės standartu kuriant naujas taiko-

mąsias programas. Tarptautinės duomenų korporacijos duomenimis, beveik 90 %

Šiaurės Amerikos įmonių jau naudoja mikroservisų architektūrą naujai programi-

nėj įrangai kurti ir senai programinei įrangai modernizuoti. Siekdamos išlikti kon-

kurencingos, įmonės pradėjo modernizuoti savo monolitines programas, išskaidy-

damos jas į mikroservisus. Tačiau mikroservisų išgavimas iš senos monolitinės

programinės įrangos yra labai kompleksinė užduotis.

Nors monolitinės programinės įrangos perkėlimo į mikroservisų architektūrą

tema nagrinėta mokslininkų ir programinės įrangos inžinierių, tačiau tai yra paly-

ginti naujas ir kompleksinis iššūkis. Daugumos tyrimų pagrindinis dėmesys ski-

riamas mikroservisams identifikuoti monolitinės programos išeities kode. O to-

kios temos kaip ryšio tarp mikroservisų užmezgimas ir duomenų bazės adaptacija

yra vis dar mažai tyrinėjamos. Siekiant užpildyti šią spragą, siūlomas naujas per-

kėlimo metodas. Jį sudaro ne tik išeities kodo išskaidymas, bet ir ryšio užmezgi-

mas tarp mikroservisų bei duomenų bazės adaptacija.

Disertacija sudaryta iš įvado, keturių skyrių ir bendrųjų išvadų. Pirmajame

skyriuje pristatomos mikroservisų ir monolitinės architektūros bei aptariami e-

sami migracijos iš monolitinės architektūros prie mikroservisų architektūros me-

todai. Papildomai išskiriamos trys pagrindinės perkėlimo dalys ir atlikti išsamesni

tyrimai: kodo išgavimo metodų, komunikacijos tarp mikroservisų ir duomenų ba-

zių adaptacijos. Pirmajame skyriuje taip pat tiriamos esamos monolitinės progra-

minės įrangos skaidymo į mikroservisus metodikos. Ta pati programa buvo išs-

kaidyta į mikroservisus, taikant tris skirtingus metodus. Remiantis pasiūlytais

vertinimo kriterijais, nustatyti kiekvieno migravimo metodo privalumai ir trūku-

mai. Antrajame skyriuje pateikiamas siūlomas migracijos iš monolitinės architek-

tūros į mikroservisų architektūrą metodas. Trečiajame skyriuje pristatomi ekspe-

rimentiniai komunikacijos technologijų tyrimai. Penkios komunikacijos

technologijos, tokios kaip HTTP Rest, RabbitMQ, Kafka, gRPC ir GraphQL,

buvo įvertintos ir palygintos pagal siūlomus vertinimo kriterijus. Ketvirtajame

skyriuje pateikiamas siūlomas perkėlimo metodas ir eksperimentinis monolitinės

duomenų bazės transformacijos į daugiamodelį poliglotinį modelį įvertinimas.

Disertacijos rezultatai buvo publikuoti 4 mokslinėse publikacijose, iš kurių 2

publikacijos, publikuotos žurnaluose, indeksuojamuose Clarivate Analytics Web

of Science duomenų bazėje, ir pristatyti 4 mokslinėse konferencijose.

vii

Notations

Symbols

t – time used to process the message (liet. laikas, naudojamas pranešimui apdoroti.);

Mi – microservice with index I (liet. mikroservisas su indeksu I.);

Req. – request (liet. užklausa.);

Res. – response (liet. atsakymas.);

“→” – request/response operation (liet. užklausos/atsakymo operacija.);

RPS – requests per second (liet. užklausos per sekundę.);

1 – one relationship in the entity relationship diagram (liet. vienas ryšys objekto santykių
diagramoje.);

N – many relationships in the entity relationship diagram (liet. daug ryšių objekto santykių
diagramoje.);

[] – collection (liet. sąrašas.);

“+” – means that the criteria is an advantage (liet. reiškia, kriterijai yra privalumas.);

“-” – means that the criterion is a disadvantage (liet. reiškia, kriterijus yra trūkumas.);

κ – Fleiss’ kappa inter-rater agreement (liet. Fleisso kappa vertintojų susitarimo koefi-
cientas.).

Abbreviations

AMQP – advanced message queuing protocol (liet. išplėstinis pranešimų eilės protoko-
las.);

viii

API – application programming interface (liet. taikomųjų programų programavimo
sąsaja.);

AQL – ArrangoDB query language (liet. ArrangoDB užklausos kalba.);

CAP – consistency, availability, and partition tolerant (liet. nuoseklumas, prieinamumas
ir atsparumas skaidiniams.);

CI/CD – continuous integration and continuous deployment (liet. nuolatinis integravimas
ir nuolatinis diegimas.) ;

DDD – domain-driven development (liet. domenu pagrįsta plėtra.);

DevOps – development operations (liet. plėtros operacijos.);

DMBS – database management system (liet. duomenų bazių valdymo sistema.);

DNS – domain name system (liet. domenų vardų sistema.);

GRPC – Google remote procedure call (liet. google nuotolinės procedūros skambutis.);

HTTP – hypertext transfer protocol (liet. hiperteksto perdavimo protokolas.);

HTTPS – hypertext transfer protocol secure (liet. saugus hiperteksto perdavimo protoko-
las.);

ID – identification (liet. identifikavimas.);

IDE – integrated development environment (liet. integruota plėtros aplinka.);

IP – Internet protocol address (liet. interneto protokolo adresas.);

IT – information technology (liet. informacinės technologijos.);

JSON – JavaScript object notation (liet. JavaScript objekto žymėjimas.);

KLOC – thousands of lines of code (liet. tūkstančiai kodo eilučių.);

OS – operating system (liet. operacinė sistema.);

RAM – random access memory (liet. laisvosios kreipties atmintis.);

REST – representational state transfer (liet. reprezentacinis būsenos perdavimas.);

RPC – remote procedure call (liet. nuotolinės procedūros skambutis.);

SOA – service-oriented architecture (liet. į servisus orientuota architektūra.);

SQL – structured query language (liet. struktūrinės užklausos kalba.);

SSD – solid-state drive (liet. kietojo kūno diskas.);

SSI – standard settlement instruction (liet. standartinė atsiskaitymo instrukcija.);

VM – virtual machine (liet. virtuali mašina.);

XML – extensible markup language (liet. išplečiama žymėjimo kalba.);

Definitions

ACID – acronym refers to the four key properties of a transaction: atomicity, consistency,
isolation, and durability (liet. akronimas reiškia keturias pagrindines transak-
cijos savybes: atomiškumą, nuoseklumą, izoliaciją ir ilgaamžiškumą.).

AVAILABILITY ZONE – in the context of cloud computing, an availability zone is a
public cloud provider’s data centre that contains its own power and network
connectivity (liet. debesų kompiuterijos kontekste pasiekiamumo zona yra vie-
šasis debesies paslaugų teikėjo duomenų centras, kuriame yra atskira galia ir
tinklo ryšys.).

ix

BASE – acronym refers to the three key properties of consistency: available, soft state,
and eventually consistent (liet. akronimas reiškia tris pagrindines nuoseklumo
savybes: prieinama, minkšta būsena ir galiausiai nuosekli.).

DOCKER – container image, which is a lightweight, standalone, executable package of
software that includes everything needed to run an application: code, runtime,
system tools, system libraries and settings (liet. atskiras vykdomasis programi-
nės įrangos paketas, kuriame yra viskas, ko reikia programai paleisti: kodas,
vykdymo laikas, sistemos įrankiai, sistemos bibliotekos ir nustatymai.).

OPENSHIFT – is a cloud-based Kubernetes platform that helps developers build applica-
tions. It offers automated installation, upgrades, and life cycle management
throughout the container stack — the operating system, Kubernetes and cluster
services, and applications — on any cloud (liet. yra debesų kompiuterijos pag-
rindu sukurta Kubernetes platforma, kuri padeda kūrėjams kurti programas. Ji
siūlo automatizuotą diegimą, atnaujinimus ir gyvavimo ciklo valdymą visame
konteinerių krūvoje – operacinėje sistemoje, Kubernetes ir klasterio paslaugo-
mis bei programomis – bet kuriame debesų kompiuterijos centre..).

POD – can be defined as a collection of containers and its storage inside a node of the
OpenShift (Kubernetes) cluster (liet. gali būti apibrėžtas kaip konteinerių rin-
kinys ir jo saugykla OpenShift (Kubernetes) klasterio mazge.).

SOAP – messaging protocol specification for exchanging structured information in the
implementation of web services in computer networks (liet. pranešimų proto-
kolo specifikacija, skirta keistis struktūrizuota informacija diegiant žiniatinklio
paslaugas kompiuterių tinkluose.).

SOLID – acronym that stands for five key design principles: single responsibility princi-
ple, open-closed principle, Liskov substitution principle, interface segregation
principle, and dependency inversion principle (liet. akronimas, reiškiantis pen-
kis pagrindinius projektavimo principus: vienos atsakomybės principas, atviro
uždarymo principas, Liskovo pakeitimo principas, sąsajos atskyrimo principas
ir priklausomybės inversijos principas.).

xi

Contents

INTRODUCTION .. 1
Problem Formulation ... 1
Relevance of the Dissertation .. 2
Research Object... 2
Aim of the Dissertation ... 2
Tasks of the Dissertation ... 3
Research Methodology .. 3
The Scientific Novelty of the Dissertation .. 4
The Practical Value of the Research Findings ... 4
Defended Statements ... 5
Approval of the Research Findings ... 5
The Structure of the Dissertation ... 6

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS OF

MIGRATION FROM LEGACY MONOLITHIC SOFTWARE INTO

MICROSERVICE ARCHITECTURE .. 7
1.1. Microservice Architecture .. 8
1.2. Legacy Software Migration Methods ... 13
1.3. Investigation of Methods of Migration from Legacy Monolithic Software

into Microservice Architecture ... 17
1.3.1. Enterprise Monolithic Application Architecture ... 17
1.3.2. Investigation Criteria of Methods of Migration from Legacy Monolithic

Software into Microservice Architecture .. 19

xii

1.3.3. Storage-Based Extraction Evaluation .. 20
1.3.4. Code-Based Extraction Evaluation .. 23
1.3.5. Business-Domain-Based Extraction Evaluation .. 25
1.3.6. Comparison of Migration Methods ... 27

1.4. Communication .. 31
1.4.1. Communication Technologies ... 31
1.4.2. Architecture Patterns ... 32
1.4.3. Streaming and Distributed Cache .. 33
1.4.4. Microservices and Service-Oriented Architecture Communication 33
1.4.5. Communication Security ... 34
1.4.6. Communication Performance .. 34

1.5. Data Management .. 35
1.5.1. Structured Query Language versus Non-Structured Query Language 36
1.5.2. Polyglot Persistence... 37
1.5.3. Data Storage in Microservices ... 39

1.6. Conclusions of the First Chapter and Formulation of the Tasks of the

Dissertation ... 42

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION IN

MICROSERVICE ARCHITECTURE .. 45
2.1. Proposed Migration Approach ... 46

2.1.1. Analysis of an Existing Monolith Application .. 47
2.1.2. Monolith Code Decomposition into Microservices 48
2.1.3. Communication Establishment between Microservices 50
2.1.4. Database Adaptation to Microservice Architecture 52
2.1.5. Release and Deployment ... 62

2.2. Conclusions of the Second Chapter .. 63

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE

DECOMPOSING MONOLITHS .. 65
3.1. Evaluation of Microservice Communication .. 66
3.2. Evaluation Criteria of Microservice Communication ... 68
3.3. Topologies Used in Microservice Communication Evaluation 69
3.4. Tools Used in Microservice Communication Evaluation 70
3.5. Evaluation Results of the Microservice Communication Experiment 70

3.5.1. Evaluation Results of Hypertext Transfer Protocol 71
3.5.2. Evaluation Results of RabbitMQ ... 73
3.5.3. Evaluation Results of Kafka .. 75
3.5.4. Evaluation Results of Google Remote Procedure Call 77
3.5.5. Evaluation Results of GraphQL .. 79

3.6. Comparison of Communication Technologies ... 81
3.6.1. Communication Technologies Libraries .. 81
3.6.2. Communication Technologies Architecture .. 81
3.6.3. Communication Technologies Topologies .. 82
3.6.4. Communication Technologies Performance .. 82

xiii

3.6.5. Communication Technologies Metrics .. 91
3.7. Conclusions of the Third Chapter ... 93

4. APPROACH OF MONOLITH DATABASE MIGRATION INTO

MULTI-MODEL POLYGLOT PERSISTENCE .. 97
4.1. Evaluation Criteria of the Approach of Monolith Database Migration into

Multi-Model Polyglot Persistence .. 99
4.2. Multi-Model Polyglot Database Software .. 99
4.3. Tools Used to Evaluate the Approach of Monolith Database Migration into

Multi-Model Polyglot Persistence .. 100
4.4. Evaluation results of the Approach of Monolith Database Migration

into Multi-Model Polyglot Persistence ... 100
4.4.1. Analysis of an Existing Monolith Application with a Mainframe

Database .. 100
4.4.2. Data Model Development .. 101
4.4.3. Microservice Development.. 106
4.4.4. Data Transformation .. 107
4.4.5. Data Validation .. 108
4.4.6. Release and Deployment ... 108

4.5. Evaluation of the Data Quality of the Proposed Microservice with

Multi-Model Polyglot Persistence .. 109
4.6. Discussions ... 113
4.7. Conclusions of the Fourth Chapter ... 115

GENERAL CONCLUSIONS ... 117

REFERENCES ... 121

LIST OF SCIENTIFIC PUBLICATIONS BY THE AUTHOR ON THE TOPIC OF

THE DISSERTATION ... 131

SUMMARY IN LITHUANIAN ... 133

ANNEXES .. 149

1

Introduction

Problem Formulation

Microservice architecture is becoming the standard by default in most enterprises

because many projects have been implemented using this architecture in the last

few years, and the results have been very positive. Top companies, such as Ama-

zon, eBay, Netflix, PayPal, Twitter, and others, successfully shifted from a mon-

olithic to a microservice architecture.

Microservice architecture, as well as software development and IT operations

(DevOps) practice, improve software development agility and flexibility. Enter-

prises can bring their digital products and services to a very competitive market

faster. Microservice architecture is becoming a design standard for modern cloud-

based software systems because it helps develop a cloud-native application. Using

microservices and embracing cloud-native technologies is the way to reduce de-

velopment time and increase deployment speed.

Migration from a monolithic architecture to a microservice architecture is a

complex challenge that consists of issues such as microservice identification, code

decomposition, communication establishment between microservices, data stor-

age adaptation, independent deployment, etc. Extracting microservices from leg-

acy monolithic software is an extremely complicated task. Each enterprise appli-

cation is unique. It was programmed using different programming languages and

2 INTRODUCTION

techniques, and different databases and communication mechanisms were used;

therefore, it creates different challenges. Different organisations use different mi-

gration patterns, techniques and methods because microservices are still a rela-

tively new architectural approach that has no widely approved implementation

methods.

Relevance of the Dissertation

According to the International Data Corporation, 89% of some 300 North Amer-

ican enterprise survey respondents already use microservices (Olofson et al.,

2021; Anand, 2021). The International Data Corporation predicts that 90% of all

new applications will be developed based on microservice architecture. To remain

competitive, companies have started to modernise their legacy monolithic systems

by decomposing them into microservices (Francesco et al., 2018; Knoche et al.,

2018; Wang et al., 2020; Wolfart et al., 2021; Beni et al., 2019; Mohamed et al.,

2021).

Although the topic of monolithic software migration into microservice archi-

tecture has already been explored by scientists and software engineers, it is a com-

plex and relatively new challenge; therefore, little research exists on its many

parts, such as database adaptation during the migration and communication estab-

lishment between microservices. The research primarily focuses on microservice

identification within monolithic applications and source code decomposition into

microservices. The author of this research proposes to bridge this gap using a mi-

gration approach that consists of three main parts: code decomposition methods,

communication, and data management.

Research Object

The object of the present research is methods of migrating legacy monolithic ap-

plications to microservice architecture.

Aim of the Dissertation

This dissertation aims to improve migration from legacy monolithic applications

to microservice architecture by proposing a novel migration approach that in-

cludes code base decomposition, communication establishment, and data manage-

ment.

INTRODUCTION 3

Tasks of the Dissertation

The following problems had to be solved to achieve the objective:

1. To review microservice architecture and existing techniques of legacy

monolithic software migration into microservice architecture by con-

ducting a literature review and identifying the most important aspects

and existing gaps.

2. To investigate code decomposition methods of migration from legacy

monolithic software into a microservice architecture.

3. To investigate communication technologies for microservices and de-

termine particular cases for their use.

4. To propose and evaluate the approach of monolithic database migra-

tion into multi-model polyglot persistence based on microservice ar-

chitecture.

5. Devise an approach grounded in meticulous analysis and experimental

findings to effectively manage code decomposition, establish micro-

service communication, and handle databases during the transition

from monolithic systems to microservice architecture.

Research Methodology

To investigate the object, the following research methods were chosen:

1. A systematic scientific literature review was conducted on existing

techniques of legacy monolithic software migration into a micro-

service architecture. Strengths and weaknesses were summarised. Ex-

isting gaps in communication establishment and data management

fields were identified.

2. The experimental research method was applied to investigate commu-

nication technologies for microservice architecture. The advantages

and disadvantages of each technology were summarised, and particu-

lar cases of their use were determined. All microservices were written

using the C# programming language. Latency tests were conducted

using the BenchmarkDotNet library. Throughput tests were executed

by using the NBomber library.

3. The constructive research method was employed to develop and vali-

date the proposed approach for migrating a monolithic database into a

multi-model polyglot persistence based on microservice architecture.

4 INTRODUCTION

The ArangoDB database was used as the multi-model polyglot data-

base engine. The microservice that exposes multi-model polyglot per-

sistence was written using the C# programming language.

The Scientific Novelty of the Dissertation

The scientific novelty of this research is specified as follows:

1. The proposed migration approach from legacy monolithic software to

a microservice architecture stands out in the realm of microservice mi-

gration by uniquely encompassing three essential components: code

decomposition, communication establishment, and data management.

This contrasts with conventional methods, which often provide more

limited coverage by addressing only the code decomposition part.

2. The novel migration approach shifts monolith databases to a multi-

model polyglot persistence within a microservices architecture. This

transformation enhances consistency, understandability, availability,

and portability while successfully preserving data quality across

eleven of the ISO/IEC 25012:2008 standard attributes.

3. The proposed criteria offer a distinctive framework for selecting a

code decomposition method from three available choices, each

uniquely scrutinised across eight criteria, including microservice size

and count. Additionally, the criteria provide an innovative basis for

choosing among five communication technologies, evaluated and

compared based on eight criteria, such as latency and throughput.

The Practical Value of the Research Findings

The proposed novel migration from legacy monolithic software to a microservice

architecture approach allows for the execution of the migration based on three

main aspects: code decomposition, communication establishment, and transfor-

mation of data management. By using the proposed migration approach, migration

executors can choose one of three code decomposition methods and one of five

communication technologies based on their needs. Research results showed that

the proposed data management approach can be used to conduct data storage mi-

gration from a monolith to a microservice architecture and improve the quality of

the consistency, understandability, availability, and portability attributes. Moreo-

ver, the author expects that his results could inspire researchers and practitioners

towards further work aimed at improving and automating the proposed approach.

INTRODUCTION 5

Defended Statements

The following statements based on the results of the present investigation may

serve as the official hypotheses to be defended:

1. The proposed migration approach allows for an enhancement in areas

of consistency, understandability, availability, and portability. The

transition from a monolithic mainframe persistence model to a multi-

model polyglot persistence model not only adeptly addresses these

pivotal concerns but also excels in up-holding data quality, spanning

eleven of the fifteen ISO/IEC 25012:2008 standard quality attributes.

2. RabbitMQ and gRPC are the most suitable technologies if latency and

throughput are the main criteria for choosing a communication tech-

nology during the migration from a monolithic architecture to a mi-

croservice architecture. Binary serialisation used by gRPC outper-

forms RabbitMQ when communicating messages with higher

complexity.

3. Code-based and storage-based methods allow for identifying technical

functions and group code and storage components based on them,

while business-domain-based methods allow the decommissioning of

applications into microservices based on identified business domains.

Microservices based on technical function provide higher granularity.

Approval of the Research Findings

The results of the dissertation were published in two scientific publications in re-

viewed scientific journals indexed in the Clarivate Analytics Web of Science da-

tabase with Science Citation Index, and two were published in conference pro-

ceedings. The author gave four presentations at international scientific

conferences:

− 2019 Open Conference of Electrical, Electronic and Information Sciences

(eStream) 1 April 2019, Vilnius, Lithuania.

− Baltic DB&IS 2020, 14th International Baltic Conference on Databases

and Information Systems, 16–19 June 2020, Tallinn, Estonia.

− Data Analysis Methods for Software Systems (DAMSS), 2–4 December

2021, Druskininkai, Lithuania.

− 2023 Open Conference of Electrical, Electronic and Information Sciences

(eStream) 27 April 2023, Vilnius, Lithuania.

6 INTRODUCTION

The Structure of the Dissertation

The dissertation consists of an introduction, five main chapters, general conclu-

sions, references, a list of publications by the author on the topic of the dissertation

and a summary in Lithuanian. The total scope of the dissertation is 162 pages, one

equation, 74 figures and 21 tables.

7

1
Analysis of Microservice

Architecture and Methods of
Migration from Legacy Monolithic

Software into Microservice
Architecture

This chapter reviews microservice architecture and its advantages and disad-

vantages over monolithic architecture. It starts by explaining the most important

aspects of microservice architecture and the reasons why companies are aiming to

migrate their legacy monolithic software to it. Next, the text provides an analysis

of existing migration from legacy monolithic software to microservice architec-

ture methods. It explains the difference between rebuilding and modernising. Dif-

ferent migration methods are analysed, and their advantages and disadvantages

are provided. Different communication technologies, techniques and aspects are

explained, and findings of the communication between microservices analysis are

provided. Finally, a literature review is conducted of one of the key issues for

microservice architecture: data storage adaptation to a microservice architecture.

8 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS…

Four publications were published on the topic of this chapter (Kazanavicius,

Mazeika et al., 2019; Kazanavicius, Mazeika et al., 2020; Kazanavicius, Mazeika,

Kalibatiene et al., 2022; Kazanavicius, Mazeika et al. 2023).

1.1. Microservice Architecture

Monolithic architecture is the traditional software development method when all

functions are encapsulated into one single application. Monolithic software is de-

signed to be self-contained. This type of architecture is tightly coupled, which

means that if one of the components is not present, then it will not be executed or

compiled. Monolith architecture has benefits and drawbacks. The following ben-

efits of monolithic architecture can be mentioned: fewer cross-cutting concerns –

it is simpler to hook up components to cross-cutting concerns when everything is

running through the same application; less operational overhead – only one appli-

cation needs to be set up, and less complex to deploy – only one application needs

to be deployed. Drawbacks of monolithic architecture are as follows: coupled – it

is especially difficult to make changes when monolith becomes highly complex;

continuous deployment – the entire application should be deployed on each up-

date; scalability – it is difficult to scale when different modules have conflicting

resource requirements; and reliability – a bug in any component can potentially

bring down the entire application (Dehghani et al., 2018; Fritzsch et al., 2018;

Kalske et al., 2017).

Usually, legacy applications grow in size and complexity, leading to mon-

strous monolithic software after several years of development, and the disad-

vantages of monolithic architecture outweigh its advantages (Blanch et al., 2017).

Fixing bugs and adding new features to such applications is a complex and time-

consuming operation. Scalability is usually impossible or requires a lot of work.

Under such circumstances, organisations start looking for a new architectural so-

lution (Dehghani et al., 2018). Microservice architecture is becoming a standard

by default in most enterprises because many projects have been implemented us-

ing this architecture in the last few years, and the results have been very positive.

Top companies, such as Amazon, eBay, Netflix, PayPal, Twitter, and others, have

successfully shifted to microservice architecture (Kwiecen, 2019).

A microservice architectural (Fig. 1) style is an approach to developing a

single application as a suite of small services, each running in its process and

communicating with lightweight mechanisms, often HTTP resource API. These

services are built around business capabilities and are independently deployable

by fully automated deployment machinery. There is a bare minimum of central-

ised management of these services, which may be written in different program-

ming languages and use different data storage technologies (Fowler et al., 2014).

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS… 9

The main three principles of microservice architecture are (Blinowski et al.,

2022):

− Microservice has a single responsibility: similar to the single responsibil-

ity principle from SOLID principles, where every class should have only

one responsibility. Multiple microservices should not share the same re-

sponsibility, and none of the single microservices should have more than

one responsibility. Each microservice should deliver complete business

capability as one unit. In other words, microservices should perform only

one function.

− Microservice is autonomous: it is a self-contained and independently de-

ployable service. Due to its autonomy, it must contain all dependencies,

such as libraries and the execution environments – web servers, contain-

ers, virtual machines, etc.

− Microservice is a polyglot: it exposes its endpoints as APIs and abstracts

all its implementation details, such as implementation logic, architecture,

technologies, etc.

Fig. 1.1. Comparison of monolithic and microservice architectures

One of the main reasons why microservice architecture is considered a better

option than monolithic architecture is the decomposition of complex applications

into smaller components that are easier to develop, manage, and maintain than a

10 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS…

single monolith application. Splitting applications into distinct, independent mi-

croservices allows individual teams to manage them within the software develop-

ment organisation and work independently (Ghofrani et al., 2018). Because mi-

croservices are autonomous and communicate via open protocols, they can be

developed independently with different technologies and programming languages

(Al-Debagy et al., 2018; de Camargo et al., 2016; Lenarduzzi et al., 2018). Usu-

ally, teams developing microservices are organised around business rather than

technical capabilities. Each new requirement should be addressed by only one mi-

croservice to retain independent development (Ghofrani et al., 2018; Atchison,

2018). Independence and autonomy allow microservices to be scaled horizontally,

technically-wise, and within the organisation, as teams can be smaller and more

agile. Consequently, microservice architecture improves technical aspects and in-

creases business agility and the possibility of delivering new features faster (Bli-

nowski et al., 2022; Lenarduzzi et al., 2020; Ramin et al., 2020).

Other worth mentioning benefits of microservice architecture compared to

monolithic architecture (Pozdniakova et al., 2017; Chen et al., 2017; Blinowski

et al., 2022):

− Deployability: microservices can be deployed independently, and there is

no need to restart an entire application. The possibility of identifying crit-

ical business functionality allows the deployment of corresponding mi-

croservices in a more redundant environment.

− Reliability: a microservice’s fault affects that microservice alone, not nec-

essarily the entire application. Loosely coupled architecture makes micro-

services more fault-tolerant.

− Cloudability: the deployment characteristics make microservices a great

match for the elasticity of the cloud. Microservices are cloud-native ap-

plications. Because microservices are independent processes, each could

be deployed to a separate container or virtual machine in the cloud. Mi-

croservices could be updated and scaled separately. Scalability could be

controlled by load requirements on demand. This approach enables more

granular application elasticity. Solutions like Docker or Rocket contain-

ers, together with Docker Swarm, Mesos, or Kubernetes orchestration

tools, enable microservice architecture to be used as architecture for

cloud-ready applications.

− Modifiability: each microservice is encapsulated; therefore, it is more

flexible to use new frameworks, libraries, data sources, and other re-

sources. Management of the microservice-based application development

is divided across smaller teams that work more independently. The mi-

croservice architecture allows for achieving better alignment of develop-

ers with business users since microservice architecture is organised

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS… 11

around business capabilities, and developers can easily understand user

perspective and create microservices that are better aligned with the busi-

ness needs.

The microservices architecture is not a panacea and has drawbacks (Chen

et al., 2017; Blinowski et al., 2022). Complexity is its biggest drawback compared

to monolithic architecture. Microservice architecture adds complexity to the pro-

ject just by being a distributed system. Deployment, scaling, and monitoring are

more complex tasks in microservice architecture than in monolithic architecture.

Both monolithic and microservice architectures have their advantages and

disadvantages, and the choice between them depends on various factors such as

the size of the project, the team’s experience, the complexity of the system, the

desired scalability, etc. It is necessary for developers and architects to closely

evaluate whether the decomposition of an existing monolith is the right path and

whether the microservices itself is the right destination (Dehghani et al., 2018).

A monolithic architecture better suited for a simple, lightweight application.

The microservice architecture solution is the better choice for complex, evolving

applications. Monolith applications should be modernised to a microservice archi-

tecture when:

− The monolithic application becomes too big and complex to maintain or

extend. It becomes very expensive, both in terms of resources and time,

to perform daily maintenance operations, add new functionality or fix ex-

isting issues.

− Modularity and decentralisation are important aspects. The microservice

architecture allows working on each microservice separately. Challenges,

such as scalability, can be applied only to a specific microservice instead

of the entire application.

− Preference for gaining long-term benefits in comparison to those in the

short term.

An environment that supports microservices fundamentally needs a set of

baseline requirements to ensure some level of sanity. An organisation must be will-

ing to bear the overhead of starting and supporting them. The overhead will not be

insignificant. Well-performed microservices will take time and money. Each or-

ganisation must have an internal group responsible for infrastructure, which will

be provided for development and operation teams to use microservices. This group

must consist of the best organisation’s developers or even external consultants.

There is no one rule for setting up an infrastructure for microservices. Each area

below describes functionality that should be implemented in infrastructure (Mayer

et al., 2018).

12 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS…

Continuous Integration/Continuous Delivery: an organisation should decide

how microservices should be built, tested and deployed. These operations should

be automatic (Andrawos, 2018; Douglass, 2018). Nowadays, many build systems

provide pipeline functionality (Balalaie et al., 2016; Levcovitz et al., 2016). The

group responsible for microservice infrastructure should decide on a strategy for

how to do it and choose tools for it:

− Source control: how the source code should be stored and maintained.

− Build tool: how the microservice should be built.

− Tests tool: how the tests should implemented.

− Deploy tool: how the microservice should be deployed.

Virtual Machines/Containers and Cloud: another important decision is what

technology to use for the execution environment. Many enterprises with existing

applications running on a stable virtual machine infrastructure are choosing to take

a “toe in the water” approach. By deploying containers on virtual machines, they

get the benefits of mature monitoring and isolation with more rapid DevOps pro-

cesses. Compared to containers running on bare metal, they do give up some per-

formance, scalability, and cost. But it is certainly a valid way to transition (Azarny,

2017). Microservice architecture is a natural fit for cloud-native applications. A

cloud-native application is defined as an application built from the ground up for

cloud computing architectures. This means that the application is cloud-native if it

is designed as if it is expected to be deployed on a distributed and scalable infra-

structure (Pozdniakova et al., 2017; Mulesoft, 2018).

Monitoring is a critical part of the infrastructure of microservices. Organisa-

tions should follow five principles to establish more effective monitoring, which

are listed below. These principles will allow organisations to address both the tech-

nological changes associated with microservices and the organisational changes

related to them (Rosendahl, 2016).

− Monitor containers and their content.

− Alert on service performance but not on container performance.

− Monitor services that are elastic and have multi-location.

− Monitor APIs.

− Map monitoring to organisational structure.

Logging plays a critical part in application maintenance. To do it efficiently

for microservices, a logging service should be centralised and have a strong visu-

aliser. Best practices for logging microservices are listed below (Dave et al., 2016;

Soroko, 2017; Melendez et al., 2018).

− Correlate Requests with a Unique ID.

− Include a Unique ID in the Response.

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS… 13

− Structure Your Log Data.

− Add Context to Every Request.

− Write Logs to Local Storage.

− Log Useful and Meaningful Data to Avoid Regret.

1.2. Legacy Software Migration Methods

Migration to microservices from monolithic legacy software cannot be done fast.

It is important to know that there is a high overall cost associated with decompos-

ing an existing system into microservices, and it may take many iterations

(Dehghani et al., 2018; Fowler et al., 2014). Because enterprise legacy application

is a broad term, it is not possible to say that there is only one good way to migrate

from legacy monolith to microservice architecture (Linthicum, 2018; Linthicum,

2017; Koltovich, 2017). Because microservices are a relatively new architectural

style and no widely approved way of migrating exists, different organisations use

different migration patterns and techniques (Furda et al., 2018; Mishra et al.,

2018).

One of the key challenges in this context is the extraction of microservices

from existing legacy monolithic code bases (Carrasco et al., 2018; Mazlami et al.,

2017). This chapter reviews different techniques used to accomplish migration. In

general, there are two strategies, e.g., rebuilding and modernisation (refactoring).

Not all monolithic applications can be easily migrated to microservice archi-

tecture. Sometimes, it is more economically beneficial to rebuild an application

from scratch instead of refactoring it (Linthicum, 2018). The following type of

legacy applications is not recommended for refactoring:

− Very old applications that are built using very old languages and databases

that are not up to current standards.

− Applications that have a poor design.

− Applications that are tightly coupled to the database.

A different approach to legacy application modernisation is to refactor every-

thing to split legacy apps into microservices and connect these microservices into

one platform (Linthicum, 2018). Different ways to decompose legacy monolith

applications into microservices are shown in Table 1.1. Each of them has benefits

and drawbacks. Some of them are very general and could be used with any type of

application, while others are more specific and will work only with some assump-

tions.

14 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS…

Table 1.1. Migration methods

Description of the migration method

Genc Mazlami, Jurgen Cito and Philipp Leitner present a formal microservice extraction

model to allow algorithmic recommendation of microservice candidates in a refactoring

and migration scenario (Mazlami et al., 2017). The authors present a tool that supports

structured service decomposition through graph cutting. The internal representation of

the system to be decomposed is based on a catalogue of 16 different coupling criteria

that were abstracted from literature and industry know-how. Software engineering arte-

facts and documents, such as domain models and use cases, act as input to generate the

coupling values that build the graph representation. The evaluation was conducted on

21 open-source projects written in Java, Ruby, and Python programming languages.

Benefits Drawbacks

The performance evaluation shows that,

for the most part, the proposed approach

scales concern the size of the revision

history (logical and contributor cou-

pling).

The quality evaluation shows that the

proposed approach can reduce the mi-

croservice’s team size to a quarter of the

monolith’s team size or even smaller.

One limitation is the fact that the extraction

model is based on classes as the atomic unit

of computation in the strategies and the

graph. Using methods, procedures or func-

tions as atomic units of extraction might po-

tentially improve the granularity and preci-

sion of the code rearrangement and

reorganisation.

Description of the migration method

Rui Chen, Shanshan Li and Zheng Li proposed a top-down analysis approach and de-

veloped a dataflow-driven decomposition algorithm (Chen et al., 2017). The three-step

process is defined below:

• Engineers, together with users, conduct business requirement analysis and con-

struct a purified while detailed dataflow diagram of the business logic.

• The algorithm combines the same operations with the same type of output data

into a virtual abstract dataflow.

• The algorithm extracts individual modules of “operation and its output data”

from the virtual abstract dataflow to represent the identified microservice can-

didates.

Benefits Drawbacks

A dataflow-driven mechanism guarantees

the most fine-grained microservice candi-

dates in terms of data operation within a

business logic.

Extraction can accept various text sources

besides the webpage content, and it cares

little about where its output data will go.

Identifying the same data operations re-

quires expertise to some extent. Candidate

microservices obtained from the suggested

decomposition mechanism could still need

expert judgment before being developed in

practice. The proposed decomposition

mechanism has not been widely applied to

large-scale projects.

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS… 15

Continued Table 1.1

Description of the migration method

Alessandra Levcovitz, Ricardo Terra and Marco Tulio Valente describe a technique to

identify microservices on monolithic systems (Levcovitz et al., 2016). The evaluation

was conducted on 750 KLOC programs written with C programming language and

DBMS with 198 tables. The proposed technique consists of the following steps:

• Database decomposition – map database tables into subsystems based on busi-

ness functions.

• Dependency Graph – create a dependency graph between facades, business

functions and database tables.

• Based on the dependency graph, identify pairs of facades and database tables.

Map subsystems and identify pairs of facades and database tables.

• Identify candidates to be transformed on microservices. For each distinct pair

obtained in the prior step, inspect the code of the facade and business functions

that are on the path from the façade to the database table in the dependency

graph.

• Create API gateways to make the migration to microservices transparent to

clients. API gateway consists of an intermediate layer between client-side and

server-side applications.

Benefits Drawbacks

The proposed technique was able to

identify and classify all subsystems and

create and analyse the dependency

graph when evaluating and classifying

only database tables into business sub-

systems, which demands access only to

the source code and the database mode.

In some scenarios, an additional effort might

be needed to migrate the subsystem to a set

of microservices: subsystems that share the

same database table. A microservice repre-

sents an operation that is always in the mid-

dle of another operation. Business operations

that involve more than one business subsys-

tem on a transaction scope.

Description of the migration method

Zhamak Dehghani proposed a very formal migration process from monolith to micro-

service architecture (Dehghani, 2018). The suggested flow consists of these principles:

• Minimise dependency back to the monolith.

• Split sticky capabilities early.

• Decouple vertically and release the data early.

• Decouple what is important to the business and changes frequently.

• Decouple capability and not code.

• Migrate in atomic evolutionary steps.

Benefits Drawbacks

The migrating process with this ap-

proach can be divided into small steps.

It is possible to safely stop and restore.

Very long migration process. It is a very for-

mal way without any measurements.

16 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS…

End of Table 1.1

Description of the migration method

Holger Knoche and Wilhelm Hasslbring proposed a migration process to decompose an

application into microservices (Knoche et al., 2018). The evaluation was conducted on

100 KLOC programs written with Cobol programming language. The modernisation

process consists of five steps:

• Defining an External Service Facade – defining an external service facade that

captures the functionality required by the client systems in the form of well-

defined service operations.

• Adapting the Service Facade – implement an external service façade function-

ality.

• Migrating Clients to the Service Façade – start using newly created external

service façade interfaces.

• Establishing Internal Service Facades – restructure applications internally.

• Replacing the Service Implementations with Microservices – monolithic appli-

cation is replaced by microservices.

Benefits Drawbacks

Establishing well-defined, platform-in-

dependent interfaces based on the

bounded contexts of the underlying do-

main. Reducing the number of entry

points and preventing access to the in-

ternals, moving noncustomer function-

ality into separate components, and

eliminating redundant and obsolete

parts of the application.

Certain parts of the application cannot be

modernised using the presented approach. In

particular, some user interfaces, which are

built on highly proprietary technologies, lack

the necessary means for service abstraction.

Description of the migration method

Chen-Yuan Fan and Shang-Pin proposed a migration process based on SDLC, including

all of the methods and tools required during design, development, and implementation

(Fan et al., 2017).

Benefits Drawbacks

Specialised and simple: microservices

are designed to handle problems in a

single domain.

Fault Tolerance: one microservice’s

fault cannot break the entire application.

Automated: automation tools used for

building, deployment, and monitoring.

Complex environment settings: the configu-

ration is not as simple as in a Monolithic ar-

chitecture system, and many automation

tools must be carefully set up to achieve the

desired results.

Using more resources: microservices use

multiple tools to achieve architectural flexi-

bility, such as Service Discovery and API

Gateway.

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS… 17

1.3. Investigation of Methods of Migration from
Legacy Monolithic Software into Microservice
Architecture

Extracting microservices from legacy monolithic software is an extremely com-

plicated task. Each enterprise application is unique. It was programmed using dif-

ferent programming languages and techniques, and different databases and com-

munication mechanisms were used; therefore, it creates different challenges.

During the literature review and analysis, three main directions on how decompo-

sition from monoliths to microservices could be realised were identified: Storage-

based – all code related to specific storage items like database or database table

should be placed in one microservice. Code-based – application decomposition

should be implemented based on code items like class. Application functions

should be identified, and all code items should then be assigned to one of these

functions. Business-domain-based – applications should be divided into micro-

services by business domains, for each business domain should be a separate mi-

croservice (Levcovitz et al., 2016; Mazlami et al., 2017; Fan et al., 2017; Chen

et al., 2017; Knoche et al., 2018).

Three methods were chosen for the analysis because each is the best repre-

sentation of a separate direction of how decomposition from monoliths to micro-

services could be implemented. Other methods found during the literature review

and analysis use the same directions or combine them to achieve better results.

A comparison between selected methodologies was made by decomposing

the same enterprise legacy monolith application into microservices three times,

using all selected methodologies. The benefits and drawbacks of each methodol-

ogy were analysed and compared.

1.3.1. Enterprise Monolithic Application Architecture

An enterprise legacy monolithic application named DataProvider was selected for

this analysis because its functionality and architecture are very common in enter-

prise organisations, and its size allows it to conduct decomposition within a rela-

tively short period (2–4 months). Although the system was not large and complex,

it had a standard architecture and was composed of three components: API, data-

base, and business logic. Due to its size and simplicity, it is perfectly suited to be

a subject in comparison to selected methodologies. The dissertation’s author pos-

its that the acquired findings and deductions possess scientific merit, warranting

application in the dissection of more extensive and intricate systems. The disser-

tation’s author acknowledges that a nuanced decomposition tailored for larger and

18 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS…

more complex systems would enhance the precision and depth of both results and

conclusions.

The primary function of the DataProvider application is to provide important

organisation’s data from one place to other information systems within organiza-

tion. An organisation stores different types of data, like accounts, books, customer

data, etc., in different mainframe systems. The DataProvider application reduces

complexity because fewer integrations are needed and increases performance be-

cause the mainframe is slower than the DataProvider.

The DataProvider application (Fig. 1.2) is written with Microsoft .NET

framework, and C# programming language is used. It consists of three main com-

ponents:

1. Business logic – collecting and caching data from old mainframe systems.

Business logic writes collected data to the DataProvider local database.

2. Database – MS SQL database technology is used to store collected data

from mainframe systems.

3. Rest API – HTML endpoint for other information systems to access im-

portant organisation’s data in DataProvider. Swagger tools are used to

provide Rest API functionality.

Fig. 1.2. DataProvider application architecture

The DataProvider application is a relatively small and simple typical enter-

prise application containing three main parts: UI, logic, and database. It has 350

classes, 5500 lines of code, 44 facades, and 15 database tables. More details about

the code quality are presented in Table 1.2.

Table 1.2. DataProvider code quality

Parameter Average Max Min

Maintainability Index 86.2 100 40

Cyclomatic Complexity 8.6 116 0

Depth of Inheritance 1.5 5 0

Class Coupling 12.2 96 0

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS… 19

86.2 maintainability index and 8.6 cyclomatic complexity values indicate

high code quality regarding maintainability. 1.5 depth of inheritance value shows

that inheritance is widely used in the application. 12.2 class coupling value is high,

which means that classes are coupled. High coupling is difficult to maintain and

reuse. Code metrics values were obtained by using Visual Studio IDE (Microsoft,

2022).

1.3.2. Investigation Criteria of Methods of Migration from
Legacy Monolithic Software into Microservice Architecture

This chapter provides information about criteria that were considered while inves-

tigating different methods of migration from legacy monolithic software into mi-

croservice architecture. As each legacy monolithic application could be different

in many aspects, the list of criteria was introduced to compare migration methods

from different angles:

− Microservice candidate count: to evaluate the potential number of micro-

services identified during the migration to microservice architecture

within legacy monolithic applications.

− Size of microservice: to evaluate the potential size of extracted micro-

service from a legacy monolithic application.

− The database: to evaluate if the migration method supports monolithic

database adaptation to microservice architecture.

− Connecting microservices: to evaluate if the migration method supports

communication establishment between decomposed microservices.

− The automation: to evaluate the migration method’s possibility of being

fully automated.

− The technological stack: to evaluate the technological stack used during

the migration from monolithic architecture to microservice architecture.

− Implementation and tools: to evaluate implementation details and tools

used during the migration from monolithic architecture to microservice

architecture.

− Code quality: to evaluate the impact of code quality on the migration from

monolithic architecture to microservice architecture.

20 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS…

1.3.3. Storage-Based Extraction Evaluation

Alessandra Levcovitz, Ricardo Terra and Marco Tulio Valente describe a tech-

nique to identify microservices on monolithic systems. The main idea of the tech-

nique is that decomposition should be done based on unique database tables and

facade pairs. Each unique pair could be considered a microservice candidate. All

business functions, which are used by a facade and database table pair, should be

included in a microservice. During the decomposition process, facades, business

functions, and database tables need to be identified, and unique pairs must be

found. The proposed technique consists of the following four steps.

1.3.3.1. Database Decomposition

The first step is mapping database tables into subsystems. Each subsystem repre-

sents an organisation’s business area. Tables unrelated to a business process called

the control subsystem. Fig. 1.3 presents part of the database decomposition done

in the DataProvider application.

Fig. 1.3. Database decomposition

The DataProvider application has 15 database tables, nine subsystems, and

eight different business areas. This step of the methodology allows for the identi-

fication of a number of tables and business areas. Identifying database tables is a

task that requires only technical skills. On the other hand, identifying business

subsystems and assigning a table to them require additional effort to understand

the business process.

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS… 21

1.3.3.2. Dependency Graph

In the second step, a dependency graph between facades, business functions, and

database tables was created. It shows business functionality and database depend-

encies. Fig. 1.4 illustrates some graphs of the DataProvider application.

Fig. 1.4. Dependency graph

Five graphs were pretty straightforward: containing only one database table,

one business functionality layer, and 0 dependencies from other database tables

and business functionality subsystems. The other 12 database tables were joined

into one more complex and complicated dependency graph. Some business func-

tionality contains up to four dependencies from other database tables. Mostly, four

business functionality layers were identified for full operation from the facade to

the database table.

1.3.3.3. Database Tables and Facades Pairs

Based on the dependency graph, unique pairs of facades and database tables were

identified and mapped with business subsystem functions. Fig. 1.5 presents two

unique pairs in the DataProvider application.

Fig. 1.5. Tables and facades pairs

22 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS…

The DataProvider application has 68 unique pairs of database tables and fa-

cades. Fifteen facades were in pairs with only one database table. Some of the

facades were in pairs with different database tables up to eight times. More unique

pairs with the same facade exist in a more complicated dependency graph.

1.3.3.4. Microservice Candidates

In the last step, candidates to be transformed into microservices were identified.

For each distinct pair obtained in the prior step, inspection focused on the code of

the facade and business functions that are on the path from the facade to the data-

base table in the dependency graph. Fig. 1.6 illustrates two candidates to be trans-

formed into microservices of the DataProvider application.

Fig. 1.6. Microservices candidates

The decomposition using a storage-based method resulted in 37 micro-

services candidates found in the DataProvider application. Detailed evaluation re-

sults are presented in Table 1.3.

Table 1.3. Storage-based extraction evaluation results

More functions and table subsystems had more microservice candidates iden-

tified. It is possible that the microservice candidate size could be very small if it

Subsystems Tables Functions Microservice

candidates

Accounting 1 2 2

Booking 1 5 5

Departments 1 3 3

Customers 5 9 15

Ratings 1 4 4

Users 3 3 3

Country definitions 1 2 2

Currency definitions 1 3 3

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS… 23

contains only one business function. The method requires identifying business

subsystems. To do so, business knowledge is needed, which is why the method’s

implementation could not be completely automated.

1.3.4. Code-Based Extraction Evaluation

Genc Mazlami, Jurgen Cito and Philipp Leitner created a model for microservice

extraction from monolithic systems. The extraction model is based on code classes

and their relationships. The application could be represented as a graph of its code

classes. Decomposition is done by splitting a graph into microservice candidates.

Which classes should belong to the microservice candidate could be determined

by relationship weight. A higher weight value indicates stronger coupling. Micro-

services extraction from the monolithic systems model comprises three extraction

stages: monolith, graph, and microservices. Two transformations take place be-

tween the stages.

1.3.4.1. Construction Step

The first step is the monolith transformation into the graph representation. In the

graph, each vertex represents a class from the monolith and undirected edges rep-

resent its coupling with other classes in the monolith. Fig. 1.7 illustrates the con-

struction step.

Fig. 1.7. Construction step

The DataProvider application has 273 classes. One class has the biggest num-

ber of dependencies, which is 96, and 17 classes have 0 dependencies and are not

part of a graph. The average class coupling is ~10. Unit, integration, and manual

test classes were excluded from the graph.

A better-quality code has fewer coupled classes, so a lower number of edges

in the graph indicates a higher quality of the code. It is not clear how to treat class

24 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS…

inheritance from the article; in this evaluation, a decision was made not to treat

class inheritance as a dependency. Visual studio provides tools for extracting the

information on code metrics automatically. It saves a lot of time in the construc-

tion step.

1.3.4.2. Clustering Step

The second and final transformation is to cut the graph into components that rep-

resent recommended microservice candidates. For this, the authors proposed three

different strategies: logical coupling, semantic coupling, and contributor coupling.

During this comparison, semantic coupling was chosen for evaluation.

Fig. 1.8. Clustering step

The main idea of semantic coupling is that each microservice should corre-

spond to one single defined bounded context from the problem domain. The strat-

egy couples together classes that contain the code about the same “things”, e.g.,

domain model entities. Fig. 1.8 illustrates the microservice candidates’ extraction

from the graph.

Eight microservices candidates were found in the DataProvider application.

In total, 180 classes were identified for a specific business domain by class name.

It was not possible to identify the business domain by class name for 93 classes.

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS… 25

About 33% of classes need an additional effort to be reviewed and assigned man-

ually to the specific business domain or refactored and split into more classes.

Detailed results of evaluations are presented in Table 1.4.

Table 1.4. Code-based extraction evaluation results

Code quality plays a vital role in how easily a microservice candidate can be

identified in the graph. If the code is written following clean code standards, the

class should only have one responsibility, few dependencies, and a meaningful

name. Automation can be accurate in extraction only if the monolith code is high

quality. If a class has a lot of dependencies, no meaningful name or too many

responsibilities, it is not clear to which microservice candidate it belongs. In this

case, the additional effort is needed to refactor the class.

The code-based method is very formal and requires additional tools to be

implemented properly. These tools are not available; only an algorithm and a

mathematical model are provided, so organisations should implement them them-

selves.

1.3.5. Business-Domain-Based Extraction Evaluation

Chen-Yuan Fan and Shang-Pin proposed a migration process based on SDLC,

including all of the methods and tools required during design, development, and

implementation. The main criteria for a microservice candidate is the business

domain; each separate business should have separate microservices. The proposed

method suggests how specific business domain codes and database tables could

be extracted. Two analysis methods are used in the migration of a legacy mono-

lithic architecture into a microservice architecture.

1.3.5.1. Domain-Driven Design Analysis

In the first step, Domain-Driven Design (DDD) was used to find microservice

candidates in the original system. The bounded context analysis results are a key

Business domain Classes Microservice candidates

Accounting 13 1

Booking 13 1

Departments 14 1

Customers 63 1

Ratings 13 1

Users 38 1

Country definitions 13 1

Currency definitions 13 1

26 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS…

tool for identifying microservice candidates in applications. The DDD was used

to identify specific domains in the solution and identify domain modules in each

domain. DDD approach analysis allows for the extraction of low-coupling micro-

services.

Eight different specific business domains were identified in DataProvider

during DDD analysis: Accounting, Booking, Departments, Customers, Ratings,

Users, Country definitions, and Currency definitions.

This step does not require any technical skills, only business process

knowledge. It is a possibility that different people could identify different business

domains per application. The business process tends to change in enterprise or-

ganisations so it’s possible that the business domain could change during migra-

tion from monolith to microservices.

1.3.5.2. Database Analysis

The second step involves the analysis of the database structure. It is common prac-

tice for each microservice to use a discrete database. This allows for avoiding high

coupling between services. Foreign keys could be used as an indication of the

microservice candidate.

The database schema of the DataProvider application could be divided into

eight business domains identified in the DDD analysis stage. The customer busi-

ness domain contains the biggest number of tables, e.g., five, and six business

domains contain only one table.

1.3.5.3. New Architecture

The Domain-Driven Design and database analysis resulted in eight microservice

candidates being found in the DataProvider application. One additional micro-

service should be created. Fig. 1.9 illustrates the new microservices architecture.

Fig. 1.9. Microservices extracted from DataProvider

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS… 27

To connect all microservices into one solution, a new microservice was in-

troduced. Sync Service provides data synchronisation and an interface for front-

end systems. Detailed results of evaluations are presented in Table 1.5.

Table 1.5. Business-domain-based extraction evaluation results

The most important things for a successful migration from monolith to mi-

croservices using the business-domain-based method are strong business

knowledge, business process stability in the organisation, and high-quality data-

base schema.

1.3.6. Comparison of Migration Methods

This chapter compares different aspects of the evaluation results of extraction

methods. Microservice candidate count and Size of microservice chapter overview

how big and how many microservice candidates a method can extract. The data-

bases chapter evaluates if methods can decompose databases within the monolith

decomposition process. Connecting microservices analyses how microservices

should work as one solution after the decomposition process. The automation

chapter evaluates each method’s possibility to be fully automated. The technolog-

ical stack and Implementation and tools chapters provide more detail about how

methods could be implemented and what technologies and tools could be used in

the implementation. The last chapter, Code quality, evaluates the impact of the

code quality in the decomposition process.

1.3.6.1. Microservice Candidates Count

The storage-based extraction method found most microservice candidates in the

DataProvider application. The storage-based method found 37 candidates, the

code-based method found eight candidates, and the business-domain-based

method also found eight candidates.

Business domain Tables Microservice candidates

Accounting 1 1

Booking 1 1

Departments 1 1

Customers 5 1

Ratings 1 1

Users 3 1

Country definitions 1 1

Currency definitions 1 1

28 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS…

In the storage-based method, microservice is extracted as a concrete function

in the application while in the business-domain-based method, microservice rep-

resents a specific business domain. The storage-based method will always provide

more microservices than the business-domain-based method because the business

domain always has at least one function.

The code-based method is more flexible than other compared methods. It

provides the optionality to choose a strategy for how microservice should be ex-

tracted. A semantic coupling strategy was chosen during this comparison. Its key

idea, in general, is very similar to Domain-Driven Design, which explains why it

found the same number of microservice candidates as the business-domain-based

method. Another extraction strategy is logical coupling, which focuses on con-

crete functions. It could be predicted that microservice candidates were similar to

Method I. The last strategy is contributor coupling, the main idea of which is that

microservice should belong to one team. In this case, the number of microservice

candidates directly depends on the number of teams working with an application.

1.3.6.2. Size of Microservice

The main idea of a microservice is that it should have only one responsibility. The

technical community interprets it differently. What kind of responsibility? Is it a

Business or functional type? Business responsibility is bigger than a function be-

cause it contains at least one function and usually much more than one. Split by

functions, microservices are much smaller and have been named serverless.

Suppose organisations decide to split their monolith application into micro-

services by business domains. Then, they should choose the business-domain-

based method or the code-based method with a semantic coupling strategy. If the

decision is to split into microservices by functions, the storage-based method or

code-based method with a logical coupling strategy could be used. The real dif-

ference in a microservice’s size depends on how much the business domain con-

tains functions. The more functions the business domain will have, the bigger the

microservices candidate will be extracted using the business-domain-based

method or the code-based method with a semantic coupling strategy.

Given the absence of a universally agreed criterion for the optimal scale of a

microservice, assessing the efficacy of a method remains inconclusive based

solely on the number of microservices derived. The singular widely embraced

guideline dictates adherence to the single responsibility principle. An organisation

should delineate the designated scope of responsibility within a microservice and

subsequently select the most fitting decomposition method to attain the desired

outcome. The author proposes considering the quality attributes outlined in the

ISO/IEC 25012:2008 standard as a viable approach for determining optimal out-

comes.

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS… 29

1.3.6.3. Databases

The most common and popular practice is that each microservice should use its

private database. The business-domain-based method fits this approach perfectly.

After the Domain-Driven Design analysis, tables from the monolith database

should be grouped and split into separate databases.

The storage-based method splits the monolith into microservices by func-

tions, and some functions will most likely use the same table. If the decision was

made to use this method, the database will probably be shared. Method authors do

not provide any recommendations on how to deal with this challenge.

Code-based method authors assume that monolith applications use a reposi-

tory pattern, and each table is represented as a repository class in the solution.

Methods do not contain any recommendations on how databases should be

adapted to the microservice architecture. A semantic coupling strategy approach

used in the business-domain-based method could be used to split the database into

separate databases for each microservice.

1.3.6.4. Connecting Microservices

To provide the same business value for users as the monolith application, micro-

services should be connected into one solution via lightweight mechanisms, often

an HTTP resource API.

The storage-based method and the business-domain-based method suggest

creating API gateways to make the migration to microservices transparent to cli-

ents. API gateway should be an intermediate layer between client-side and server-

side applications. It handles requests from the client side using the same technol-

ogy as it did before migration.

The code-based method does not provide any recommendations on how mi-

croservices should be connected after migration from the monolith architecture.

1.3.6.5. Automation

The code-based method with a contributor coupling strategy could be imple-

mented fully automatically. The monolith must be implemented with object-ori-

ented programming language because the extraction model is based on classes

such as the atomic unit of computation and the graph.

The code-based method with a semantic coupling strategy could be imple-

mented semi-automatically. In this case, business domains should be identified

manually. How accurately the method will be able to identify the class relation to

the business domain depends on the naming convention in the code.

30 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS…

The storage-based method and the business-domain-based method cannot be

implemented automatically. The storage-based method requires manually identi-

fying business subsystems and assigning database tables to one of the subsystems.

The business-domain-based method requires two manual analyses.

1.3.6.6. Technological Stack

The storage-based method is designed to work with backend-type applications. It

is programming language agnostic. Database storing data in tables must be part of

the application because extraction uses tables to generate graphs.

The code-based method is suitable for backend-type applications written with

object-oriented programming language. The extraction model is based on classes

as the atomic unit. If the application is written in another type of language or sev-

eral different languages, it is not possible to use a Code-based method for micro-

services extraction. Only one requirement exists for databases: repository pattern

should be used in the code to describe database data models. SQL and NoSQL

databases could be used.

The business-domain-based method is technologically agnostic and could be

used with any kind of programming language and databases.

1.3.6.7. Implementation and Tools

The business-domain-based method is the least formal and most universal. On the

other hand, it is most uncertain and requires the implementer to have a strong

knowledge of the application business domain and implementation technical de-

tails.

The code-based method is the most formal and requires an additional tool to

generate a graph representing the dependencies of classes. It is not clear what

would be cheaper in terms of time and resources: implement a tool and use it or

use other methods to do a microservice extraction from the monolith.

The storage-based method does not require any additional tools to imple-

ment, but it requires some knowledge of business domains to identify business

subsystems. The storage-based method is less formal and more universal than the

code-based method; on the other hand, the storage-based method is more formal

and less universal than the business-domain-based method.

1.3.6.8. Code Quality

Code quality has the most impact on the code-based method because it creates a

graph of the dependency classes. Clean and solid code generates more accurate

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS… 31

graphs. A more accurate graph allows for the extraction of more accurate micro-

services. Also, higher quality code is more readable, reusable, and transferable

quickly.

The code quality also impacts the storage-based method and the business-

domain-based method. The better the code quality, the easier it is to extract func-

tions from it.

1.4. Communication

One of the biggest challenges while migrating from a monolith architecture to a

microservice architecture is to define a proper communication technology. In

monolith applications, communication between components is performed using

process methods or function calls, while different communication methods have

to be established to achieve the same functionality in a microservice architecture.

A microservice-based application is a distributed system running on multiple pro-

cesses or services. Therefore, microservices must interact using inter-process

communication technologies. The design of communication between micro-

services is one of the most significant challenges while migrating from monolithic

software to microservices architecture (Microsoft, 2020).

1.4.1. Communication Technologies

Microservices can communicate in different ways, but all of them can be classi-

fied into two groups – synchronous and asynchronous. The client sends a request

and waits for a response from the service in a synchronous communication style.

It results in tight runtime coupling because both the client and service must be

available for the duration of the request. Usually, HTTP/HTTPS protocols are

used for synchronous communication. The main advantage of this communication

is that the system is simple and easily implemented. Also, there is no intermediate

component, such as a message broker. In asynchronous communication, micro-

services communicate by exchanging messages over messaging channels based

on advanced message queuing protocol (AMQP). All counterparts can send mes-

sages, and senders do not wait for the response message. There are several differ-

ent asynchronous communication patterns, such as request–response, publish–

subscribe, and notification. Loose runtime coupling and improved availability are

benefits of asynchronous communication. However, its implementation is more

complex. Message-based technologies, such as RabbitMQ, Apache Kafka, etc.,

use asynchronous communication between microservices. The most popular com-

munications technologies used for microservices are based on HTTP protocol and

32 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS…

asynchronous message patterns (Fowler et al., 2014; Microsoft, 2020;

Bandhamneni, 2018; Galbraith, 2019).

The gRPC is an open-source Remote Procedure Call (RPC) framework devel-

oped by Google. It enables the establishment of transparent communication be-

tween server and client applications in any environment. Before gRPC became

open source in March 2015, it had been used as a single general-purpose RPC in-

frastructure to connect a large number of microservices running within and across

Google data centres for over a decade (Biswas et al., 2018; gRPC, 2022).

GraphQL is a query language for APIs and a runtime for filling those queries

with existing data. GraphQL was developed internally by Facebook in 2012 and

was published to the community in 2015. The key functionality of the GraphQL

framework is a query language that allows clients to define the structure of the data

required, and the same structure of the data is returned from the server (Hartig

et al., 2017; Brito et al., 2020; Bandhamneni, 2018; GraphQL, 2022).

It must be noted that it is a common practice to use several communication

technologies to develop microservice-based applications.

1.4.2. Architecture Patterns

Taibi et al. (2020) conducted a systematic literature review and identified three

microservice orchestration architecture patterns that also include communication

and coordination of the microservices. Patterns were classified as API Gateway,

service discovery, and hybrid. A summary of the advantages and disadvantages

of each architectural pattern was presented in the paper as well.

The API Gateway operates as the entry point of the system that routes the

requests to the appropriate microservices. This pattern is technology agnostic but

is usually implemented using the HTTP protocol. Ease of extension, market-centric

architecture, and backward compatibility are the advantages of the API Gateway.

The high complexity of implementation, low reusability, and low scalability can

be mentioned as disadvantages of the pattern (Taibi et al., 2020; Montesi et al.,

2016).

The service discovery pattern uses a different approach, e.g., the client can

communicate with each service directly without an intermediate layer. The domain

name system (DNS) address resolution into internet protocol (IP) address must be

supported to achieve end-to-end communication between services. The pattern re-

lies on the service-register service that performs similarly to DNS. The advantages

of service discovery patterns are ease of development, maintainability, migration,

communication, and health management. Disadvantages of the pattern are high

coupling between the client and the service registry, high complexity of the service

registry, and high complexity of the distributed system (Taibi et al., 2020; Montesi

et al., 2016).

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS… 33

The hybrid pattern combines the service registry and the API gateway and

replaces the API gateway with the message bus. Clients communicate only with

the message bus that operates as a registry and gateway. Services communicate

with each other via message bus, and direct communication between microservices

is not used. The advantages of the pattern are ease of migration, while the disad-

vantages are high coupling between services and message buses (Taibi et al.,

2020).

1.4.3. Streaming and Distributed Cache

Smid et al. (2019) discussed the balance between performance and coupling and

pointed out situations where suggested architectures were appropriate. The au-

thors introduced a streaming platform based on the message bus (Kafka) and data

change capture platform (Debezium) to synchronise data between different data-

bases effectively. Streaming is a different approach to orchestration and commu-

nication patterns mentioned in the previous chapter. The service-generating event

notifies other services by using streaming events on the message bus. Therefore,

almost all communication is performed by consuming events from the message

bus or database. The proposed solution has a limitation: the overhead for deploy-

ment and maintenance for applying the streaming platform. The microservices

need to be synchronised under a data model similar to the master system, and

additional source code must be introduced. A distributed cache was introduced to

improve communication performance. The advantages of using a distributed

cache are performance, scalability, and ease of migration, while high complexity

is a disadvantage. Communication performance decreases significantly when data

changes frequently. The authors concluded that the message broker is an efficient

way of communication between microservices, and the publish/subscribe model

is very flexible and provides a faster mechanism than HTTP request with the ben-

efit of persistent messages (Smid et al., 2019; Montesi et al., 2016).

1.4.4. Microservices and Service-Oriented Architecture
Communication

Cerny et al. (2018) performed a detailed research analysing differences between

microservice architecture and SOA. Microservices provide decomposition, pre-

ferring smart services while considering simple routing mechanisms without the

global governance notable in SOA. This leads to higher service autonomy and

decoupling since services do not need to make agreements on the global level. In

general, there are two well-defined approaches used to coordinate services, e.g.,

using a central orchestrator or a decentralised distributed way. The centrally or-

chestrated approach is the typical SOA pattern, while the distributed approach is

34 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS…

dominant for microservice-based applications. These approaches are named or-

chestration and choreography, respectively. Service orchestration works as a cen-

tralised business process, coordinating activities over different services and com-

bining the outcomes. The choreography works without a centralised element. The

control logic is described by message exchanges and rules of interactions as well

as agreements among interacting services (Cerny et al., 2018; Smid et al., 2019).

1.4.5. Communication Security

Yarygina et al. (2018) analysed security challenges in a microservice architecture.

Potential threats in microservice communication were identified, such as attacks

on the network stack and protocols and attacks against protocols specific to the

service integration style (SOAP, REST Web Services). Security threat mitigation

techniques were proposed. The authors highlighted the leading microservice se-

curity industry practices, such as Mutual Authentication of Services using Mutual

Transport Layer Security and Principal Propagation via Security Tokens. The au-

thors proposed a method that combined both techniques and presented proof-of-

concept evaluation results. Walsh et al. (2017) introduced new comprehensive,

automated, and fine-grained mutual authentication mechanisms. To ensure a se-

cure connection between microservices, the authors suggested using a combina-

tion of authentication and attestation. The proposed attestation mechanisms were

built on top of standard transport layer security channels and certificates.

1.4.6. Communication Performance

Hong et al. (2018) provided a detailed research on the performance evaluation of

RESTful API and RabbitMQ for Microservice Web Applications. Experimental

results showed that when a large number of users sent requests to the web appli-

cation in parallel, RabbitMQ, as the message-oriented middleware, provided more

stable results compared to the RESTful API. On the other hand, the RESTful API

has shown better request–response performance results.

Fernandes et al. (2013) performed a comparison research between a RESTful

Web service and the AMQP protocol for exchanging messages between clients and

servers. The final results showed that for applications that exchange a large amount

of data, the best approach is to use the RabbitMQ server and the back-end service

to consume the messages, process them, and send them to the database. As a result,

fewer messages per second were sent, the time for exchange increased, and even

more resources were used evaluating RESTful Web service.

It can be summarised that different factors like request load, IT environment,

and network technologies determine communication performance between micro-

services. It cannot be unambiguously defined which communication technology is

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS… 35

faster. It depends on the specific application. Asynchronous communication is a

more robust and stable communication mechanism than HTTP (Rest) and enforces

microservice autonomy. Detailed analysis and in-depth evaluation of chosen com-

munication technologies are provided in the fourth chapter.

1.5. Data Management

Migration from a monolithic architecture to a microservice architecture is a com-

plex challenge that consists of issues such as microservice identification, code

decomposition, combination between microservices, independent deployment,

etc. One of the key issues is data storage adaptation to a microservice architecture.

A monolithic architecture interacts with a single database, while in a microservice

architecture, each microservice works independently and has its private data stor-

age, e.g., data storage is decentralised. A viable option to fulfil different micro-

service persistence requirements is polyglot persistence, which is data storage

technology selected according to the characteristics of each microservice need.

Although the topic of monolithic software migration into microservice archi-

tecture has already been explored by scientists and software engineers, there is little

research on database adaptation during the migration from a monolith to a micro-

service architecture. Despite this, it is recognised that data management is a major

challenge in microservices (Laigner et al., 2021; Azevedo et al., 2019; Richter

et al., 2017; Francesco et al., 2017; Knoche et al., 2019; Luz et al., 2018; Soldani

et al., 2018). The primary focus of most of the research is microservice identifica-

tion within monolith applications and source code decomposition into micro-

services. All of the existing migration methods provide very little to no recommen-

dations on how to adopt data storage to a microservice architecture during the

migration from a monolith to a microservice architecture. To the best of the au-

thors’ knowledge, besides Levcovitz et al. (2016), who proposed a technique of

microservice extraction from monolith enterprise systems, there have been no fur-

ther migration methods that have investigated the adaption of data storage to a mi-

croservice architecture.

To better understand the decisions made by the authors while creating the pro-

posed approach, this chapter provides the background of a literature review con-

ducted on the following topics: SQL vs. NoSQL, polyglot persistence, and data

storage in microservices.

36 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS…

1.5.1. Structured Query Language versus Non-Structured
Query Language

For the last 40 years, relational databases (SQL) have been the market leader be-

cause of their ability to solve most of the challenges. Such a long existence has

given a high level of maturity, and it is still the most recommended storage for

many applications. However, SQL databases are not capable of solving all of to-

day’s challenges. Inspired by SQL limitations, NoSQL has emerged as a solution

to fill these gaps (Brewer, 2000; Khine et al., 2019).

The key feature of relational databases is the high consistency guarantee pro-

vided by ACID (atomicity, consistency, isolation, and durability) properties. Many

NoSQL databases have focused on high levels of availability and resilience, even

though this may compromise consistency for a few moments. To achieve availa-

bility and resilience, NoSQL databases work with BASE (basically available, soft

state, and eventually consistent) properties (Khine et al., 2019).

The CAP theorem (consistency, availability, and partition-tolerant), also

known as Brewer’s theorem, states that it is impossible to provide all three guar-

antees simultaneously (Meier et al., 2019). While SQL primarily focuses on con-

sistency, NoSQL is giving up either consistency or availability and embracing par-

tition tolerance (Brewer, 2000). There is no perfect database that could solve all

the problems and fit all the requirements. Polyglot persistence is a single storage

system that combines the SQL and NoSQL database features.

In relational databases, the stored data are managed and represented as tables.

Each table can have a relation to an arbitrary number of tables. A table consists of

rows and columns. A row represents a dataset item, and a column represents a

dataset item’s field. In NoSQL, the data store management can be grouped into

four types: key–value, wide-column, document, and graph. Data in key–value

stores are managed and represented as key and value pairs stored in efficient,

highly scalable, key-based lookup structures. A value represents data with an arbi-

trary type, structure, and size that is uniquely identified by an indexed key. Index-

ing and querying based on values are not supported, so in cases where querying is

needed, it must be implemented on the client’s side. The conception of wide-col-

umn stores (also known as column-family stores) was taken from the Google

Bigtable store. Data are represented in a tabular format of rows and column-fami-

lies. A column-family is an arbitrary number of columns logically connected. A

wide-column store is an extended key–value store in which the value is represented

as a sequence of nested (key, value) pairs. An extended key–value store in which

the value is represented as a document encoded in standard formats such as XML,

JSON, or BSON (Binary JSON) is a Document store. The biggest difference from

the key–value store is that document stores know the format of the documents and

support querying based on value functionality. Graph stores are based on graph

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS… 37

theory, in which a graph consists of vertices representing entities and edges repre-

senting the relationships between them. The graph datasets are stored efficiently to

provide effective operations for querying and analysis. Because the data relation-

ship variety can be very different in many aspects, many types of graphs, such as

undirected, directed, labelled, etc., are used to represent different types of data

(Meier et al., 2019; Shah et al., 2016; Richter et al., 2017; Davoudian et al., 2016;

Krishnan et al., 2002; Luz et al., 2018; Sharma et al., 2012; Nayak et al., 2013).

According to Nayak et al. (2013), NoSQL has several advantages: it provides

a wide range of data models to choose from, is easily scalable, no database ad-

ministrators are needed, it can handle hardware failures, it is faster and more flex-

ible, and evolves at a very high pace. The disadvantages of NoSQL are its imma-

turity, inexistence of a standard query language, incompliance of some NoSQL

databases with ACID, inexistence of a standard interface, and difficult mainte-

nance.

1.5.2. Polyglot Persistence

The general polyglot persistence conception was evaluated from the point of view

of the polyglot programming conception proposed by Neal Ford in 2006. The

main idea of both conceptions is choosing the right tool for the given task. In

polyglot programming, it is a programming language, and in polyglot persistence,

it is a data storage engine. Polyglot persistence defines a hybrid approach where

different kinds of data are best dealt with in different data stores (Zdepski et al.,

2018; Serra, 2015).

No single database technology, be it SQL or NoSQL, can satisfy all of the

business needs and solve all technological challenges. To choose the right data-

base, a set of criteria must be considered: the data model, CAP support, capacity,

performance, query API, reliability, data persistence, rebalancing, and business

support. It is also important to evaluate databases from different viewpoints: tech-

nical, business, system domain, and environmental. Polyglot persistence technol-

ogy has the potential to scale to millions of users a day and be able to store an

incredible amount of data by combining SQL and NoSQL technologies into one

solution (Brewer, 2018; Khine et al., 2019; Meier et al., 2019; Shah et al., 2016;

Zdepski et al., 2018; Zdepski et al., 2018; Wiese et al., 2015).

In 2012, Fowler predicted that polyglot persistence would occur over the en-

terprise as different applications use different data storage technologies. It would

also occur within a single application as different parts of an application’s data

store have different access characteristics. A hypothetical example of polyglot

persistence is shown in Fig. 1.10. In the provided example, different types of da-

tabases are used to store different types of data to fulfil the concept of choosing

the right tool for the given task (Fowler et al., 2012).

38 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS…

Fig. 1.10. Hypothetical example of polyglot persistence (Fowler, 2012)

On the other hand, polyglot persistence is a complex solution and creates

many new challenges. A decision is required on which technology to use rather

than just storing everything in one database. The immaturity of NoSQL tools is

another issue. The consistency problem in an organisation raises the question of

how to ensure data sync between different parts of the organisation.

Wiese (2015) categorised polyglot database architectures into three types: poly-

glot persistence, lambda architecture, and multi-model databases. Wiese (2015)

recommends using polyglot persistence only if several diverse data models must

be supported; otherwise, there is a risk of overhead maintenance. The lambda ar-

chitecture is recommended for real-time data analytics applications. The lambda

architecture relies on the same data stores as polyglot persistence and has similar

disadvantages. Multi-model databases store data in a single store but provide ac-

cess to the data with different APIs according to different data models. This type

of polyglot database architecture is recommended if only a limited set of data

models is required by accessing applications (Wiese et al., 2015).

Zdepski et al. (2018) proposed a modelling methodology capable of unifying

design patterns for polyglot persistence, bringing an overview of the system as

well as a detailed view of each database design. The proposed methodology con-

sists of three steps: (1) conceptual design, (2) logical design, and (3) physical de-

sign. The conceptual design translates the requirements into a conceptual database

schema. The logical design realises the translation of the conceptual model to the

internal model of a database management system. The physical design imple-

ments all the peculiarities of each database software.

According to Shah et al. (2016), a crucial part of the efficiency of a polyglot

system is the selection of a database engine (Shah et al., 2016). The authors pro-

posed the design of a polyglot persistence system for an e-commerce application

and compared it with a system where data were stored only in the SQL or NoSQL

databases. The most optimum results were obtained from the polyglot system with

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS… 39

three databases: (1) document type (Mongo DB), (2) key–value type (Redis), and

(3) a relational database (SQLite).

Trivedi et al. (2020). proposed the design of a polyglot persistence system

for an e-commerce application based on the intelligent data mapper. A crucial part

of the proposed design is the selection of databases: different databases are opti-

mal for handling different types of data. Mapping of data from these dissimilar

databases is only possible if the compatibility criteria are met. The proposed de-

sign consists of three types of databases: (1) document type (MongoDB) to store

tore product details, customer details and other document-type data, (2) key–value

type (Redis) to store data, such as product search counter, which requires constant

update or modification, (3) relational database (SQLite) to store aggregate queries,

such as payment details. The proposed polyglot persistence system was compared

with a system where data was stored only in MongoDB and a system where data

was stored only in SQLite. The most optimum results were obtained from the pol-

yglot system.

An evaluation of the NoSQL multi-model data stores in polyglot persistence

applications were conducted by Oliveira et al. Multi-model databases (ArangoDB

and OrientDB) were compared with a combination of the document type database

(MongoDB) and graph type database (Neo4j). The experimental results showed

that in some scenarios, multi-model data stores had similar or even better perfor-

mance than a combination of different data stores.

1.5.3. Data Storage in Microservices

A microservice architectural style is an approach for developing an application as

a suite of small services where every service communicates with other services

via lightweight mechanisms, such as HTTP API. Services are built around busi-

ness capabilities and are independently deployable by fully automated deploy-

ment machinery. There is a bare minimum of centralised management of services

that may be written in different programming languages and use diverse data stor-

age technologies (Newman, 2019).

In the book Building Microservices Applications on Microsoft Azure, Chawla

et al. (2019) discuss the various critical factors of designing a database for micro-

service architecture-based applications. The authors recommend that each micro-

service should have a separate database because data access segregation helps fit

the best technology to handle the respective business problem. The authors, based

on the CAP theorem, suggested choosing an intersection of two functionalities:

consistency and availability or availability and partition. The database should de-

pend on the nature of the application. While monolith applications usually use a

single data store, microservices use many data stores, both SQL and NoSQL. SQL

is recommended where transactional consistency is critical and structured data are

40 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS…

stored. NoSQL is recommended for microservices where schema changes are fre-

quent, maintaining transactional consistency is secondary, and semi-structured or

unstructured data are stored. Microservice architecture offers the flexibility to use

polyglot persistence.

According to Chawla et al. (2019), there are four main challenges to using

microservice architecture and polyglot persistence: (1) maintaining the consistency

for transactions spanning across microservice databases, (2) sharing or making the

master database records available across microservices databases, (3) making data

available to reports that need data from multiple microservices databases, and (4)

allowing effective searches that receive data from multiple microservices data-

bases. To ensure that changes are efficiently transferred across the microservices,

the authors suggest using two approaches: (1) a two-phase commit for managing

transactions in SQL databases and (2) eventual consistency in managing any dis-

tributed application.

Laigner et al. (2021). attempted to bridge the gap of a lack of thorough inves-

tigation of the state of the practice and the major challenges faced by microservice

architecture practitioners regarding data management. The authors identified three

main reasons why a microservice architecture should be adopted regarding data

management: (1) functional partitioning is used to support scalability and high data

availability, (2) decentralised data management provides the ability to manage data

store schemas for each microservice independently, and (3) even driven architec-

ture allows for a reactive application to be built.

Database and deployment patterns were investigated by Laigner (2021). Three

mainstream approaches for using database systems in microservice architectures

were identified: (1) private tables per microservice, sharing a database server and

schema, (2) schema per microservice, sharing a common database server, and (3)

database server per microservice. Based on the conducted survey, the authors

stated that the most preferred and efficient way for data persistence in a micro-

service architecture is to encapsulate a microservice state within its own managed

database server and avoid any resource sharing between different microservices.

The most widely used databases in a microservice architecture are Redis, Mon-

goDB, MySQL, PostgreSQL, and MS SQL.

Brown et al. (2016) researched the implementation patterns for microservice

architectures and proposed a pattern language. Part of the proposed pattern lan-

guage consisted of scalable store patterns used to build a scalable and stateless data

store for a microservice architecture-based application. The key to these patterns is

that the database must be naturally distributed and able to both scale horizontally

and survive the failure of a database node. The authors suggest choosing a database

based on the need: if the application strongly depends on the SQL-centric complex

query capability, then a solution such as a SQL database or a distributed in-memory

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS… 41

SQL database may be more efficient. Otherwise, the recommendation is to use

NoSQL databases.

The importance of data persistence choice in microservice architecture-based

applications was highlighted by Ntentos et al. (2020) in the article Assessing Ar-

chitecture Conformance to Coupling-Related Patterns and Practices in Micro-

services. According to the authors, three things have to be considered while choos-

ing data storage: reliability quality, scalability quality, and adherence to best

practices of microservice architecture. The most recommended option is the data-

base per service pattern, and the second option is to use a shared database, but it

negatively affects the loose coupling quality.

Messina et al. (2016) proposed and tested a simplified database pattern for

microservice architecture where a database is a separate microservice itself. The

proposed data persistence pattern was based on four patterns: (1) the API gateway

pattern, (2) the client-side discovery and server-side discovery patterns, (3) the ser-

vice registry pattern, and (4) the database-per-service pattern. Proposed pattern

benefits are no traditional service layer, microservices have no third-party depend-

encies, database microservices encapsulate all specific database details, less in-

volved components, and less complexity. The main drawback is the dependency

on the chosen database. Proof-of-concept showed an improved performance com-

pared with the standard SQL-based storage.

Villaca et al. (2020) evaluated the use of a multistore database canonical data

model in a microservice architecture. The authors proposed and implemented an

architecture for microservices with polyglot persistence based on the strategy of a

canonical data model. The benefits found during the evaluation were: (1) usabil-

ity – high understandability and operability, (2) high performance – better resource

utilisation and shorter response time, (3) compatibility – the proposed architecture

has enabled systems implemented with different technologies to coexist in an en-

capsulated form, and (4) maintainability – the API structure provides processing

of the linked objects (as defined in the scheme) in a segregated manner, facilitating

the decomposition processing logic and improving the readability of the mediator

node code.

A different approach to data persistence in microservice architecture was pre-

sented by Viennot et al. (2015) in the paper Synapse: A Microservices Architecture

for Heterogeneous-Database Web Applications. The authors developed a frame-

work called Synapse, which supports data replication among a wide variety of SQL

and NoSQL databases, including MySQL, Oracle, PostgreSQL, MongoDB, Cas-

sandra, Neo4j, and Elasticsearch. With Synapse, different microservices that oper-

ate on the same data but demand different structures can be developed inde-

pendently and with their database. Synapse transparently synchronises shared data

subsets between different databases in real-time. Synchronisation is conducted via

a reliable publish/subscribe communication mechanism. The biggest advantage of

42 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS…

the synapse is that it enables microservices to use any combination of heterogene-

ous databases (SQL and NoSQL) in an easy-to-use framework.

To sum up, it can be stated that there are no criteria, based on which SQL or

NoSQL could be chosen as a database for microservice. Instead, there are recom-

mendations when SQL or NoSQL could be a better option. For example, SQL is

a recommended technology if transactional consistency is critical, and NoSQL is

a recommended technology if schema changes are frequent, etc. In theory, there

are clear boundaries between SQL and NoSQL, but in practice, it is much more

complicated. For example, even though transaction consistency is considered a

benefit of SQL, there are NoSQL databases, such as RavenDB or MongoDB, that

also support it.

On the other hand, the nature of microservice architecture offers the flexibility

to use a polyglot persistence and leverage different data store models and engines.

Polyglot persistence based on supported models can be grouped into two types:

single-model and multi-model. The biggest advantage of multi-model polyglot per-

sistence is that it uses only one database engine to support all models, while in

single-model polyglot persistence, each model is supported by a separate database

engine. According to Wiese (2015), multi-model polyglot persistence is recom-

mended only if a limited set of data models is required to be accessed.

There are many different suggestions on how to implement data persistence

for microservice architecture, but a common consensus among practitioners is that

good practice is to use a separate database for each microservice. However, an

actual implementation depends on many different factors, such as the size of a mi-

croservice, the actual need for the database for each microservice, the limitations

of the existing infrastructure and architecture, security requirements, consistency

requirements, code quality, etc. The most common patterns used for data persis-

tence in microservice architecture are table per microservice, schema per micro-

service, database per microservice, and database as microservice. The proposed

approach of monolith database migration into multi-model polyglot persistence

based on microservice architecture is provided in Chapter 2.1.4, and its evaluation

is provided in the Fourth Chapter.

1.6. Conclusions of the First Chapter and
Formulation of the Tasks of the Dissertation

The first chapter of the dissertation provides an overview of microservice archi-

tecture and migration from monolith architecture to microservice architecture.

The following conclusions have been drawn:

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS… 43

1. Microservice architecture has many advantages over monolithic architec-

ture and has become a standard by default for modern cloud-based soft-

ware systems in most enterprises. Many enterprises have started modern-

ising their legacy monolithic applications by decomposing to

microservices to remain competitive. Migrating from a monolithic to a

microservices architecture poses challenges such as defining appropriate

service boundaries, handling data management shifts from a unified to a

distributed model and managing complex inter-service communication.

The process involves a more intricate deployment and monitoring system,

introduces testing and service coordination complexities, and necessitates

an understanding of distributed systems. Furthermore, the transition may

introduce network latency, potentially affecting performance. As micro-

services architecture is so complex and a relatively new architectural style,

no widely approved way of conducting a migration from monolithic ar-

chitecture to microservice architecture exists.

2. Three main challenges of migration to microservice architecture have

been identified: microservice extraction from legacy monolith code bases,

communication establishment between decomposed microservices, and

data management adaptation to microservice architecture. While micro-

service extraction from legacy monolith code bases has already been ex-

plored by scientists and software engineers, there is very little research

communication between microservices and data management.

3. The number of extracted microservices and the size of each microservice

depend on the chosen code decomposition method. Code-based and stor-

age-based methods allow for the identification of different technical func-

tions and group code and storage components based on them. Business

domain-based methods allow the decommissioning of applications into

microservices based on identified business domains. Code-based and stor-

age-based methods provide higher granularity.

4. The code quality of legacy monolithic applications has a great impact on

the migration process. The better quality is, the less effort is needed to mi-

grate from monolithic to microservice architecture.

5. Each microservice can be different in a variety of aspects, and no one da-

tabase could potentially satisfy all the needs, which naturally leads to the

use of polyglot persistence as a microservice data store.

Based on the conclusions, the following tasks are formulated to achieve the

goal of the dissertation:

1. To investigate communication technologies for microservices and deter-

mine particular cases for their use.

44 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS…

2. To propose and evaluate the approach of monolith database migration into

multi-model polyglot persistence based on microservice architecture.

3. To propose a new approach to migration from legacy monolith application

to microservice architecture, which will combine code decomposition, es-

tablishing communication between microservices and data management

areas.

45

2
Approach to Migrating a Legacy

Monolithic Application in
Microservice Architecture

This chapter proposes an approach that allows migrating existing legacy monolith

applications into a microservice architecture. Migration from a monolithic archi-

tecture to a microservice architecture is a complex challenge, which consists of

many different issues, such as microservice identification, code decomposition,

commination establishment between decomposed microservices, independent de-

ployment, data storage adaptation, etc. Unlike other migration approaches, the

proposed migration approach consists of three parts: code decomposition, com-

munication establishment and database migration. The primary focus of most of

the other research is microservice identification within monolith applications and

source code decomposition into microservices. All of the existing migration meth-

ods provide very little or no recommendations on how to adapt data storage to a

microservice architecture and how to establish the connection between micro-

services during the migration from a monolith to a microservice architecture.
Two publications were published on the topic of this chapter (Kazanavicius,

Mazeika, Kalibatiene et al., 2022; Kazanavicius, Mazeika et al., 2023).

46 2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION…

2.1. Proposed Migration Approach

The main steps of the proposed approach for the migration from legacy monolith

application to microservice architecture are shown in Fig. 2.1. It consists of five

main steps, divided into several sub-steps: Step 1 – Analysis of an existing mono-

lith application; Step 2 – Monolith code decomposition into microservices;

Step 3 – Communication establishment between microservices; Step 4 – Database

adaptation to microservice architecture; Step 5 – Release and deployment. A de-

tailed explanation of each step and its sub-steps is provided next.

Fig. 2.1. Proposed approach of migration from legacy monolith application

 into a microservice architecture

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION... 47

2.1.1. Analysis of an Existing Monolith Application

Step 1 aims to analyse existing legacy monolith applications and identify func-

tional and non-functional requirements for the next steps. Three types of require-

ments must be gathered: for monolith code decomposition, communication estab-

lishment between microservices, and database adaptation to microservice

architecture.
Gathering monolithic code decompression requirements requires answering

the following question: What is the microservice’s responsibility? There are two

types of responsibilities: business domain and technical function. Depending on

the microservice’s responsibility, Step 2 will be to choose a decomposition

method. Microservices based on technical function provide higher granularity.

Another important aspect which has to be identified is code quality. The better the

code quality, the easier and faster it is to extract functions from it. If the code

quality is very low, it may not be possible to use code-based decomposition meth-

ods.

To help choose the most appropriate communication technology for micro-

services, the author has provided the list of criteria: performance, message size,

memory size, and storage size. Performance requirements, such as latency and

throughput, should be provided. Message size, message complexity, and network

load have the biggest impact on latency and throughput. Hence, these metrics have

to be specified at the beginning to choose the most appropriate communication

technology. Message size and network load should also be used to evaluate the

impact on network bandwidth. The larger the message or the higher the network

load, the greater its impact on network bandwidth. In case there is a network lim-

itation, the size of the message and network load have to be considered. While

evaluating microservice memory and storage consumptions, other environmental

limitations, such as memory or storage size, have to be considered as well. A need

for horizontal scalability could also be evaluated, as some communication tech-

nologies have this feature built-in, while others require additional tools and effort.

The database requirements consist of functional requirements and data mod-

els of existing legacy monolith applications. Domain experts and IT experts have

to work together to identify all functional requirements and build the most opti-

mum data model. A business analysis must be conducted to identify business pro-

cesses and their data models. Understanding business logic is crucial to list the

essential business rules. Once business rules are clear, technical analysis related

to business rules has to be conducted to identify functional requirements for the

database. Finally, a data model of existing legacy monolith applications has to be

identified. To achieve the optimal data model results, a top-down approach is rec-

ommended to use instead of a bottom-up one.

48 2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION…

2.1.2. Monolith Code Decomposition into Microservices

During Step 2, a code decomposition method has to be chosen and based on it; a

legacy monolith application has to be decomposed into microservices (Fig. 2.2).

The proposed approach provides three decomposition methods to choose from:

Code based – application decomposition should be implemented based on code

items like class. Application functions should be identified, and all code items

should then be assigned to one of these functions. Business domain-based – ap-

plications should be divided into business domains, and each business domain

should have a separate microservice. Storage-based – all the code related to spe-

cific storage items like databases or database tables should be placed in one mi-

croservice. More details about methods and their evaluations are provided in the

first chapter.

Fig. 2.2. Monolith code decomposition into microservices

One of the main principles of microservice architecture is that it should have

only one responsibility. There are two types of responsibilities: business domain

and business or technical function. Business domain responsibility is bigger than

functional responsibility because it contains at least one function, and usually, it

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION... 49

contains much more than one. Split by functions, microservices are smaller and

have been called serverless.

If an organisation decides to decompose legacy monolith applications into

microservices based on business domains, then it is recommended to choose the

business-domain-based method or the code-based method with a semantic cou-
pling strategy. If the decision is to decompose legacy monolith applications into

microservices based on functions, then the storage-based method or code-based
method with a logical coupling strategy could be used. The real difference in mi-

croservice size depends on how much the business domain contains functions.

The more functions the business domain will have, the bigger the microservices

candidate will be extracted using the business-domain-based method or code-

based method with a semantic coupling strategy.

If the organisation aims to have automatic decomposition, then the code-
based method with a contributor coupling strategy should be chosen as it has the

potential to be implemented fully automatically. The monolith must be imple-

mented using object-oriented programming language because the extraction

model is based on classes such as the atomic unit of computation and the graph.

The code-based method with a semantic coupling strategy could be implemented

semi-automatically. In this case, business domains should be identified manually.

How accurately the method will be able to identify the class relation to the busi-

ness domain depends on the naming convention in the code. The storage-based

methods and business-domain-based methods cannot be implemented automati-

cally. The storage-based method requires manually identifying business subsys-

tems and assigning database tables to one of the subsystems. The business-do-

main-based method requires two manual analyses to do.

Choosing the right method for microservice extraction from the legacy mon-

olith application method is a hard task, which is crucial for successful migration.

Each legacy monolithic application is unique and creates unique challenges. Tech-

nology stack, complexity, business object, team size or skills, etc. are the things

which could be very different in each case.

No one best methodology for extracting microservices from the monolith ex-

ists. Each case is different, and the organisation should choose which method or

combination of methods best suits its migration from monolith to microservices.

Each organisation has its reasons and goals for migrating from the monolith to

microservices. The chosen extraction methodology should help to achieve those

goals. Selected methodology or combination of methodologies should be:

− Able to extract microservices by selected factors and expected size.

− Compatible with technological stack and database technologies used in

monolith applications.

50 2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION…

2.1.3. Communication Establishment between Microservices

The main goal of Step 3 is to choose communication technology and establish

communication between microservices decomposed from the legacy monolith ap-

plications in Step 2. The proposed approach provides five communication tech-

nologies to choose from: (1) HTTP Rest – usually, HTTP/HTTPS protocols are

used for synchronous communication. The main advantage of this communication

is that the system is simple and easily implemented. Also, there is no intermediate

component, such as a message broker. (2) RabbitMQ is open-source general-pur-

pose broker-based asynchronous communication technology. RabbitMQ natively

implements an Advanced Message Queuing Protocol. It was originally developed

by Rabbit Technologies Ltd. (3) Kafka is an open-source distributed publish–sub-

scribe messaging system. Instead of relying on a message queue, Kafka stores

messages to the stream and allows consumers to pool. It was originally developed

by the Apache Software Foundation. (4) gRPC is an open-source Remote Proce-

dure Call (RPC) framework developed by Google. It enables the establishment of

transparent communication between server and client applications in any environ-

ment. Before gRPC became open source, it was used as a single general-purpose

RPC infrastructure to connect the large number of microservices running within

and across Google data centres for over a decade. (5) GraphQL is a query lan-

guage for APIs and a runtime for fulfilling those queries with existing data.

GraphQL was developed internally by Facebook in 2012 and was published to the

community in 2015. The key functionality of the GraphQL framework is a query

language that allows clients to define the structure of the data required, and the

same structure of the data is returned from the server. More details about technol-

ogies are provided in the first chapter, and their experimental evaluations are pro-

vided in the third chapter.
One of the most significant challenges during migration from legacy mono-

lith applications into microservices is data communication management. How are

in-process methods or function calls in monolith applications transformed into

inter-process communication? The high complexity, variety of architectural as-

pects, technological stack, and business objects make every application different

and create challenges during monolith application decomposition to micro-

services. The proposed approach provides criteria based on communication tech-

nology (Fig. 2.3).

If latency and throughput are the main criteria, then RabbitMQ and gRPC are

the most suitable technologies. RabbitMQ showed the best results in RPC latency

and throughput tests for small messages (up to 0.1 MB and a data model up to 100

properties), while gRPC showed the best results in RPC latency and throughput

tests for big messages.

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION... 51

Fig. 2.3. Communication establishment between microservices

Kafka showed the best throughput results in the most loaded conditions: re-

quested by more than 100 clients at the same time and processing 1,000,000 char-

acters of messages. However, the latency of RPC was high, more than one second.

HTTP Rest has the smallest request and response message size. If message size is

an important criterion when choosing communication technology, then HTTP

Rest is a recommended technology. On the other hand, gRPC has the smallest

payload as it uses binary serialisation. Theoretically, at some point of complexity,

for complex data models with many properties, gRPC request and response mes-

sage size should become smaller than HTTP Rest. Deeper research is needed to

determine the exact complexity threshold. The gRPC library is using the least

amount of storage. If microservices are running in an environment with limited

storage, then gRPC must be used. RabbitMQ and Kafka consume the smallest

amount of memory. Therefore, if memory size is one of the essential criteria, then

52 2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION…

RabbitMQ and Kafka must be used for implementation. Microservice imple-

mented using Kafka library boots up the fastest.

If horizontal scalability is an important aspect, Kafka and RabbitMQ are the

best candidates as they have built-in cluster functionality. It must be noted that

other technologies can be scaled horizontally as well, but it requires additional

tools and effort. HTTP Rest and RabbitMQ are prevalent communication technol-

ogies, and many different libraries exist in the market to choose from, while

GraphQL and gRPC are relatively new and rapidly growing communication tech-

nologies with fewer libraries to choose from. Synchronous communication style

communication technologies gRPC, HTTP Rest, and GraphQL do not require any

additional components to communicate, while asynchronous communication

technologies RabbitMQ and Kafka require service as an interim communication

layer. Hence, additional components increase solution complexity and mainte-

nance costs. On the other hand, if a solution contains many microservices and

scalability is a challenge, RabbitMQ and Kafka as an interim layer can provide

centralised communication routing functionality.

2.1.4. Database Adaptation to Microservice Architecture

During Step 4, the existing legacy monolith application database has to be adapted

to microservice architecture. The purpose of the proposed approach is shown in

Fig. 2.4.

Fig. 2.4. Purpose of the proposed database migration approach

The approach can extract a database from a monolith application and trans-

form it into a multi-mode polyglot persistence, which is encapsulated as a micro-

service itself and exposes data access through a representational state transfer

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION... 53

(REST) application programming interface (API). Multi-model polyglot persis-

tence allows the benefits of microservices, such as agility and scalability, to be

used better. The encapsulation of a database into a microservice reduces the com-

plexity and increases the performance. After migration, the data are accessible not

only to an existing monolith application but also to any microservice within an

ecosystem.

The proposed approach of migration from a monolith database to multi-

model polyglot persistence based on microservice architecture is shown in

Fig. 2.5. It consists of four steps, and each step is divided into sub-steps. A de-

tailed explanation of each step and its sub-steps are provided in the next chapters.

Fig. 2.5. Proposed database migration approach

54 2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION…

During Step 1 (Fig. 2.6), the data model for multi-model polyglot persistence

has to be created based on the defined model of an existing monolith database.

The proposed data model creation process consists of five sub-steps:

Fig. 2.6. Data model development

1. Conceptual design, based on the gathered functional requirements to

build a conceptual database schema as an entity-relationship model. A

conceptual database schema is a foundation that will be used in the

next sub-steps to develop a new data model.

2. Segmentation design divides the conceptual database schema into in-

dependent function units and defines borders between these units. The

cut points defined on the existing data model during segmentation de-

sign will be used to split the current data model into different data

models suitable for multi-model polyglot persistence.

3. Consistency design identifies consistency units to allow data fragmen-

tation and horizontal scalability.

4. Target data model design chooses the best data structure for each iden-

tified segmentation unit from different data structures supported by

multi-model polyglot persistence.

5. The physical design implements the built target data model into a

multi-model polyglot persistence database. As each database is differ-

ent, this sub-step aims to implement all technical peculiarities needed

to support the developed target data model in the database.

The main goals of Step 2 are to set up the multi-model database and encap-

sulate it into the microservice. This allows for the implementation of the database

as a service pattern, where a database is a microservice itself.

Sub-step 1 is to install a multi-model polyglot database and set up technical

peculiarities, such as creating a cluster, users, firewall rules, etc. The database

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION... 55

setup can be different in many aspects, such as the operating system, virtual ma-

chine or Docker, cluster or single instance, cluster type, etc. The decision on how

to install and set up a database has to be determined based on the application of

non-functional requirements, the capabilities of the existing company infrastruc-

ture, database capabilities, availability requirements, security requirements, scala-

bility requirements, etc.

During the next sub-step, the physical design of the data model created in the

second step has to be implemented into the installed database. All models and data

structures defined in Step 2 have to be implemented and ready to be used. This

sub-step could be skipped if the database supports a code – the first approach

where models and data structures are defined in an application.

The purpose of Sub-step 3 is to create a microservice skeleton that can de-

ployed and run as a Docker container. At this stage, a microservice should only

contain the code and settings needed to run it as a Docker container in the com-

pany’s infrastructure. An infrastructure has to be created to run a Docker con-

tainer; e.g., it could be an OpenShift project in a private cloud. The number of

active containers and scalability settings has to be determined based on the non-

functional requirements, the capabilities of the existing company infrastructure,

database capabilities, availability requirements, security requirements, scalability

requirements, etc. A continuous integration and continuous deployment (CI/CD)

pipeline has to be set up to automate build, test, and deploy activities and ensure

security so that only the entitled person can deploy a new version of the micro-

service. Microservice capabilities to log have to be ensured. A good practice for a

microservice architecture is to use centralised logging solutions. ELK Stack could

be an example of a good logging solution.

The repository layer has to be built to provide microservice accessibility to

the database in Sub-step 4. All actions needed to establish a connection between

a database and a microservice have to be executed first, e.g., firewall rules, service

account access rights, connection string, etc. The next step is the implementation

of a repository layer. The code that can communicate with a database and manip-

ulate its data has to be written. For each data model defined in step 2 and imple-

mented in the database, a repository has to be created and support four main op-

erations: create, read, update, and delete.

During Sub-step 5, the API has to be built and exposed with all of the neces-

sary methods to support the interfaces for all identified functional requirements.

For example, if the functional requirements consist of creating a customer, view-

ing a customer, updating a customer, or deleting a customer. All four methods

have to be created in the customer’s controller. The authentication and authorisa-

tion functionality has to be implemented to fulfil the security requirements and

manage the accessibility to different methods.

56 2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION…

The last sub-step aims to implement the business logic layer, which has to

connect the API layer and the repositories layer. Because the API layer operates

with business domain data models and the repository layer operates with database-

specific data models, they cannot work directly. The business logic layer works

as an intermediate layer that contains all of the logic needed to implement all of

the functional requirements identified in Step 1 and connects the API and reposi-

tory layers.

An example of one possible implementation is presented in the sequence dia-

gram below (Fig. 2.7). The API layer exposes a method GetCustomer, which can be

called by a client application to obtain all the customer details. Once the call is re-

ceived, it is routed to the business logic layer, which calls the repository twice to

obtain different details about the customer: GetCustomerInfo and GetCustomerHis-

tory. GetCustomerInfo obtains general customer information, such as name, sur-

name, address, etc. GetCustomerHistory obtains the customer’s payment history.

Fig. 2.7. Example of the function GetCustomer implementation within the microservice

layers

The repository layer is called twice because CustomerInfo and History data

are stored in separate data models within a database, and two separate calls to a

database are needed. In the business layer, CustomerInfo and History data re-

ceived from the repository layer are combined and mapped into one consistent

domain data model – Customer, which is used as a response to a client’s GetCus-

tomer request. To sum up, the repository layer is responsible for data manipulation

within the database; it encapsulates all of the technical implementation peculiari-

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION... 57

ties, such as connection establishment, data mapping, etc. The API layer is re-

sponsible for data exposure to clients via the API interface and encapsulates all

technical implementation peculiarities, such as connection establishment, author-

isation, authentication, etc. The business logic layer is responsible for building a

consistent domain data model.

Once a microservice is created, the next step is to transform the data from a

monolith database into multi-model polyglot persistence. The biggest challenge

here is that both databases use different data models, so it is not possible to directly

transfer data from one to another; it has to be transformed. This step aims to create

an application that can execute data transformation between databases. The pro-

posed data transformation process is shown in Fig. 2.8.

Fig. 2.8. Proposed data transformation process

Sub-step 1 is to extract everything needed to transform the data from a mon-

olith database. A code that can read data from a monolith database and transform

it into data models that represent the used data structure has to be written. The

author recommends creating a repository layer with a repository for each data ta-

ble in a monolith database.

An example of the simplified repository and model implementations written

in the C# programming language is shown in Fig. 2.9. The simplified example of

the data model of multi-model polyglot persistence is shown in Fig. 2.10. The

MonolithModel1 is a model that represents the data in the Model1Table data table.

The MonolithModel1Repository has one method, GetAllRecords, which calls the

generic interface IDatabase that executes the SQL query to obtain all records from

the specific table Model1Table and maps the result to the defined model Mono-

lithModel1. Finally, read-only access rights should be granted, and firewall rules

should be set up for the application to access the data in a monolith database.

The purpose of the next sub-step is to transform the extracted data into a data

model that is supported by multi-model polyglot persistence. As the data models

and repository layer for multi-modal polyglot persistence have already been im-

plemented in Step 3, the code can be reused. Once both data models for the mon-

olith database and multi-modal polyglot persistence are created, the mapping logic

58 2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION…

between models has to be implemented. Each field of each data model for polyglot

persistence has to be mapped.

Fig. 2.9. Example of the simplified repository and model implementations

Fig. 2.10. Example of simplified data model mapping

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION... 59

It is a combination of two data models used in monolith applications. The

MonolithModel1 and MonolithModel2 models represent two data tables in the

monolith database, and PolyglotModel represents a document with the embedded

subdocument PolyglotChildModel. Even though the given example looks straight-

forward, in practice, the mapping logic can be more complicated: the data model

for the polyglot can be a combination of dozens of data tables, and fields from the

same data table can be part of many data models of the polyglot, data types for

fields could be different, etc. The complexity of data model mapping strongly de-

pends on the quality of the monolith database data model, where a lower quality

means a higher complexity.

Fig. 2.11. Example of the simplified record creation class

The next action in Sub-step 2 is to create all records for polyglot persistence

based on records in a monolith database. In examples defined in Figs. 2.9 and

2.10, the number of records for the PolyglotModel model should be equal to the

60 2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION…

number of records in the Model1Table table. For each data model of polyglot per-

sistence, a main data table in a monolith database has to be identified. A simplified

example of record creation is shown in Fig. 2.11. The PolyglotModelTransformer

class uses MonolithModel1Repository and MonolithModel2Repository classes to

obtain MonolithModel1 and MonolithModel2 records from the monolith database

and passes these to the PolyglotModelMapper, which maps all of the fields and

creates PolyglotModel records.

The last sub-step imports all records created in Sub-step 2 into a multi-model

polyglot database installed in the third step. The author suggests reusing the re-

pository layer created in the microservice.

Even though the data transformation process could be implemented in differ-

ent ways, the author recommends building a separate application for this purpose.

This would allow for the process to be repeated as many times as needed if errors

or failures occur. It also would allow for the transformation process to be executed

gradually in case it is planned to transform the data in stages.

The purpose of Step 4 is to create automatic data validation. Transformed

data have to be validated before it is released for production. In Sub-step 1, test

cases have to be created based on the functional requirements and data in the

mainframe monolith database. Sub-step 2 is to create a test engine that has to be

able to execute the created test cases in the previous sub-step. The purpose of the

last three sub-steps is to execute the test cases and make amendments if needed

(Fig. 2.12). The step is finished only when all of the test cases are passed.

Fig. 2.12. Test case execution

For example, the functional requirements for the data records of Polyglot-

Model defined in Fig. 2.10 are read, create, update, and delete. Four test cases

have to be created to validate the data integrity and persistence, and one test case

for one functional requirement. The first functional requirement is the possibility

to read the data. In this example, it is possible to read data records by Polyglot-

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION... 61

Model. Two main criteria have to be verified. First, in each data record of Poly-

glotModel, all fields have to be mapped correctly, and the data must be consistent.

Second, the multi-model polyglot persistence has to contain the same number of

records as the data table Model1Table in the monolith database. Fig. 2.13 contains

an example of the possible records. The monolithModel1Record represents a rec-

ord of the data table Model1Table in the monolith database, the mono-

lithModel2Record represents a record of the data table Model2Table in the mon-

olith database, and the polyglotModelRecord represents a record of the

PolyglotModel in multi-model polyglot persistence. The test case for functional

requirement read has to verify that all fields that exist in the MonolithModel1 and

MonolithModel2 models also exist in PolyglotModel and that the values are the

same. For example, the PropertyB value in monolithModel2Record should be the

same as the PropertyB value in polyglotModelRecord. To verify that all records

were transformed to multi-model polyglot persistence during Step 3, the test case

has to be executed as many times as the Model1Table table has records.

Fig. 2.13. Example of the data records in the monolith database and

multi-model polyglot persistence

Three more test cases have to be created to validate functional requirements:

create, update and delete. The test case for creation should try to create a new

record of PolyglotModel and verify that the record is actually created and that all

of the fields are filled correctly. The test case for update should try to update all

of the value fields in a record of PolyglotModel and verify that all of them are

updated correctly. Finally, the test case for delete should try to delete a record of

PolyglotModel and verify that it was deleted.

62 2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION…

2.1.5. Release and Deployment

The last step aims to release and deploy extracted microservices and adapted da-

tabases. It includes all technical peculiarities needed to deploy and run micro-

services and databases.
First, an execution environment has to be chosen and prepared for extracted

microservices. The two most common options are virtual machines and contain-

ers. While virtual machines virtualise hardware and OS, containers virtualise only

OS. The possibility of running multiple containers on a single operating system

makes containers advantageous in terms of scalability, lower cost, efficient re-

source usage, portability, etc. The biggest advantages of virtual machines are that

they have harder security boundaries and more resources. There is the possibility

of running a few microservices in a virtual machine; however, it compromises the

single biggest advantage of breaking down a monolithic application into small,

easily executable microservices. Even though it is possible to run microservices

in virtual machines, the author strongly recommends the use of containers as they

better utilise microservice architecture advantages.

A CI/CD pipeline should be set up for each microservice to make them inde-

pendent. The philosophy of microservices states that there should never be a long

release queue where every team has to get in line. There should be no dependen-

cies, and the team that builds microservice “X” should be able to release it at any

time without waiting for any changes in microservice “Y”. To achieve a high re-

lease velocity, the release pipeline has to be automated as much as possible. Each

organisation should decide on a strategy on how to do it and choose tools for it:

source control – where and how should be stored and maintained source code,

build tool – how microservice should be built, tests tool – how tests should be run,

and deploy tool – how microservice should be deployed.

Monitoring and logging are other important aspects to be considered while

building infrastructure for microservices. Microservices are distributed applica-

tions, and the flow goes through multiple processes. It is difficult to get a holistic

view of the entire application and its flow. To do it efficiently, monitoring and

logging services should be centralised and have a strong visualiser.

Fig. 2.14. Deployment of microservices

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION... 63

Once the infrastructure is established, all microservices can be deployed into

the production environment (Fig. 2.14). At first, the monolith application has to

be stopped, and data transformation has to be executed. The precondition for the

deployment of all microservices is successful data transformation.
Sub-step 3 is hyper care, during which domain and IT experts have to give

hyper attention to newly released software and fix any last errors if they appear.

The last sub-step is decommissioning an unused monolith application and data-

base.

2.2. Conclusions of the Second Chapter

The second chapter of the dissertation proposes an approach that allows migrating

the existing legacy monolith applications into a microservice architecture. The

following conclusions have been drawn:

1. To bridge the existing gaps in communication and database management,

a novel approach is proposed for migration from legacy monolithic soft-

ware to microservice architecture. It consists of five steps: Step 1 – Anal-

ysis of an existing monolith application, Step 2 – Monolith code decom-

position into microservices, Step 3 – Communication establishment

between microservices, Step 4 – Database adaptation to microservice ar-

chitecture, and Step 5 – Release and Deployment.

2. The proposed novel approach allows conducting database migration from

monolith architecture into a microservice architecture by transforming the

existing data model into multi-model polyglot persistence that is embed-

ded in a microservice and exposed via an API.

3. Novel evaluation criteria are proposed, according to which code decom-

position methods and communication technologies are selected, consid-

ering their advantages and disadvantages.

65

3
Investigation of Microservice

Communication while
Decomposing Monoliths

One of the biggest challenges while migrating from a monolith architecture to a

microservice architecture is to define a proper communication technology. In

monolith applications, communication between components is performed using

the in-process method or function calls, while different communication methods

have to be established to achieve the same functionality in a microservice archi-

tecture. A microservices-based application is a distributed system running on mul-

tiple processes or services. Therefore, microservices must interact using inter-pro-

cess communication technologies.

This chapter provides an analysis of how proper communication between de-

composed microservices could be established. A set of criteria, which is important

while decomposing monoliths to microservices, was identified. The benefits and

drawbacks of communication technologies and the impact on communication be-

tween microservices were evaluated based on these criteria. Five technologies

were chosen for analysis, e.g., HTTP Representational State (Rest) API, Rab-

bitMQ, Kafka, gRPC, and GraphQL. Rest API represents an asynchronous com-

munication style and has become a de facto standard synchronous communication

technology. RabbitMQ and Kafka represent asynchronous communication based

66 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE…

on a message broker. GraphQL and gRPC have been selected for the investigation

because of their rapidly growing popularity. GraphQL provides the functionality

of client-side applications to query databases at server-side applications, while

gRPC is a technology that implements remote procedure call (RPC) API. It uses

HTTP 2.0 as its underlying transport protocol and is provided as a data structure.

Various criteria were considered while analysing selected communication tech-

nologies, including influence on microservice topology, the performance of re-

mote procedure calls, message size, memory consumption, storage usage, boot

time, and availability of the corresponding libraries. The main contribution of this

work is a unique set of criteria used to compare five communication technologies

and evaluate their advantages and disadvantages in the context of monolith de-

composition to microservices. The key findings identified during this research are

provided as a guideline for the researchers and industry that can help to speed up

legacy monolith decomposition to microservices and make this complex proce-

dure more obvious.

One publication was published on the topic of this chapter (Kazanavicius,

Mazeika et al., 2023).

3.1. Evaluation of Microservice Communication

A set of five microservices was created and connected in a line topology to eval-

uate and compare communication technologies (Fig. 3.1). The RPC technique was

used for communication between microservices. Only pure server and client func-

tionality were implemented in each microservice; the server component exposes

API, and the client component is used to execute RPC. The experiment aimed to

evaluate and compare communication-based on the remote procedure call (RPC).

RPC technique was chosen because it supports the same functionality as a func-

tion call and in-process-based communication.

Fig. 3.1. Topology of microservices used for the experiment. Where: Req. is a request,

Res. is a response, and Mi is a microservice

The full flow of message processing in the conducted experiment is defined

as follows:

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE… 67

 t = (∑ 𝑀𝑖 → 𝑀𝑖+1
𝑛=4
𝑖=1) + (∑ 𝑀5−𝑖 → 𝑀5−𝑖−1

𝑛=3
𝑖=0), (3.1)

where: t is the time used to process the message, Mi is microservice with index i,

and arrow (→) is request/response operation. Different size and complexity mes-

sages were sent to evaluate and compare the impact of message size, message

complexity and request load on the latency and throughput of each technology.

The time duration between requests sent from M1 to M5 and the response received

from M5 to M1 was measured and was used to calculate latency and throughput.

Different data models were used (Fig. 3.2) for messages to measure the im-

pact of message size and complexity on latency and throughput. The Test-

ModelOnlyText data model was used to measure the impact on message size; the

TextField value was set to 10, 1,000, 100,000, and 1,000,000 characters. The Test-

ModelAllTypes data model was used to measure the impact on message complex-

ity, especially on serialisation. Messages with 10, 100, 1,000 and 10,000 proper-

ties were used.

Fig. 3.2. Data models used in the experiment

68 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE…

The latency was measured by processing different sizes and complex mes-

sages while requesting using one client. The throughput was measured by pro-

cessing the same messages as it was processed in latency tests but with an in-

creased request load. During the experiment, the request load started with ten

clients and was constantly increased by ten clients every 30 seconds until it

reached 200 clients.

3.2. Evaluation Criteria of Microservice
Communication

This chapter provides information about criteria that were considered while ana-

lysing different communication technologies. Previous research performed by dif-

ferent authors was mainly focused on performance evaluations and comparisons.

To cover more communication aspects that can potentially be a challenge during

legacy monolith application decomposition to microservices, a set of new criteria

was introduced. These criteria were chosen to compare each communication tech-

nology in the context of communication between microservices decomposed from

monolith applications.

− Performance: communication technology performance is measured and

analysed by latency and throughput. Latency was measured by time in

milliseconds since the request was sent till the response was received.

Throughput was measured by the number of successful requests per sec-

ond (RPS). The successful request was considered if a response was re-

ceived within one second.

− Message size: to determine the potential technology impact on network

load request and response, message size in bytes was measured during the

experiment.

− Memory size: to evaluate how much memory is needed to run an applica-

tion with each communication technology, application memory usage in

bytes was measured.

− Storage size: to evaluate how much storage is needed to store an applica-

tion with each communication technology, storage usage in bytes was

measured.

− Boot time: application boot time in seconds was measured to determine

how much time is needed to start the application.

− Architecture: to highlight the specific impact of each technology regard-

ing application architecture.

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE… 69

− Topology: technology impact on the topology of microservices. More de-

tails about the topology used in the experiment are provided in Chap-

ter 3.4.

− Used applications and libraries: to analyse the availability of the particu-

lar library.

3.3. Topologies Used in Microservice Communication
Evaluation

Three different topologies of microservices were chosen to analyse how commu-

nication technology influences topology criteria defined in the previous chapter

(Fig. 3.3).

Fig. 3.3. Topologies used in the experiment

Linear (single receiver) topology – request processing flow has only one way

in, and each microservice is involved in request processing. Tree type topology –

request processing flow has a few ways. Middleware microservices work as gate-

ways. Star-type topology (multiple receivers) – the first microservice works as a

gateway and routes requests to a specific microservice. Those topologies were

chosen because each of them represents a different way in which data can be pro-

cessed, and communication between microservices can be established.

70 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE…

3.4. Tools Used in Microservice Communication
Evaluation

All microservices were written using C Sharp and .Net Core. All coding and test-

ing were done using Microsoft Visual Studio 2022 IDE. All libraries used in the

research were downloaded from the NuGet gallery. Latency tests were conducted

using the BenchmarkDotNet library. Throughput tests were executed by using the

NBomber library. Network data was analysed using the Wireshark application.

All experiments were performed on a computer with the following specifica-

tions: CPU – Core i7 9850H, memory – 30 GB RAM, storage – 512 GB SSD, and

OS – Windows 10 Enterprise (20H2). All applications were run on a computer,

and no external devices or networks were used.

The experiment can be reproduced on a computer with Visual Studio 2022

IDE, RabbitMQ (3.10.0 version) and Kafka (3.2.0). The source code used in the

experiment and experimental results are freely accessible and can be found at the

following link: https://bitbucket.org/justas_kazanavicius/communicationexperi-

ment.

3.5. Evaluation Results of the Microservice
Communication Experiment

This chapter provides results obtained during the evaluation of five communica-

tion technologies: HTTP (Rest API), RabbitMQ, Kafka, gRPC, and GraphQL.

Deeper discussions on results are provided in Chapter 3.6. Each section on tech-

nology is divided into six sub-chapters to provide more details in terms of exper-

iment results:

− Latency results: Latency evaluation results are based on message size and

complexity.

− Throughput results: Throughput evaluation results are based on message

size and complexity.

− Results of other metrics: Request/Response size, Microservice application

size, Memory usage size, Boot time.

− Architecture: technology and libraries impact the architecture.

− Topology: technology and libraries impact the topology.

− Libraries: a list of libraries that were used in the experiment to establish

a connection between microservices via particular technology.

https://bitbucket.org/justas_kazanavicius/communicationexperiment
https://bitbucket.org/justas_kazanavicius/communicationexperiment

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE… 71

3.5.1. Evaluation Results of Hypertext Transfer Protocol

Latency results: Results of the latency test are shown in Table 3.1. The best result,

7.265 ms, was achieved by processing 1,000-character messages. The worst re-

sult, 31.410 ms, was achieved by processing 1,000,000 characters messages.

Table 3.1. Latency test results for message processing with HTTP

Throughput results: The throughput results of the load test are shown in

Fig. 3.4. The best average results, 99.7 RPS, were achieved by processing ten

properties messages. The worst average result, 4.7 RPS, was achieved by pro-

cessing 1,000,000 character messages.

Fig. 3.4. Load test results for message processing with HTTP

Message size Mean Median Min Max

10 characters 7.527 ms 7.404 ms 5.801 ms 9.923 ms

1,000 characters 7.265 ms 7.149 ms 5.685 ms 9.459 ms

100,000 characters 11.745 ms 11.356 ms 9.543 ms 15.875 ms

1,000,000 characters 31.410 ms 30.563 ms 25.304 ms 44.212 ms

10 properties 8.236 ms 8.055 ms 6.465 ms 11.516 ms

100 properties 8.459 ms 8.408 ms 6.396 ms 10.940 ms

1,000 properties 9.826 ms 9.726 ms 7.567 ms 13.284 ms

10,000 properties 21.779 ms 21.096 ms 19.010 ms 26.546 ms

72 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE…

Results of other metrics: Other results obtained during the experiment are

presented in Table 3.2.

Table 3.2. Results of HTTP Rest experiment measurements

Architecture: To communicate via Rest API, the microservice has to have at

least three additional components: Rest API, Controller, and Rest Client

(Fig. 3.5). Rest API component exposes the HTTP server and routes requests to

the Controller component, which operates as a facade for business logic. Rest Cli-

ent is needed to make requests to Rest APIs exposed by other microservices.

Fig. 3.5. Architecture of Rest API in microservice

Topology: Microservices M1–M5 have to know how to reach the next mi-

croservice (M1→M2, M2→M3, etc.) when a linear topology is used. Micro-

service M6 only exposes Rest API. The tree-type topology shows that micro-

services M1, M2, and M3 each have two dependencies (M1 should know the

URLs of M2 and M3). M4, M5, and M6 only expose the Rest API. In the star-

type topology, the M1 microservice has to know the URLs of all microservices.

Libraries: The list of libraries that were used in the experiment to establish a

connection between microservices via HTTP Rest technology is provided below:

− Microsoft.AspNetCore.App (Version 6.0.7)

− Microsoft.NETCore.App (Version 6.0.7)

− Swashbuckle.AspNetCore (Version 6.2.3)

− System.Net.Http.Json (Version 6.0.0)

Metric Result

Request/Response size 172 B/185 B (payload 26 B)

Microservice application size 4.71 MB (empty 159 KB)

Memory usage size 69 MB (empty 9 MB)

Boot time 3.1 seconds

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE… 73

3.5.2. Evaluation Results of RabbitMQ

Latency results: Results of the latency test are shown in Table 3.3. The best result,

2.976 ms, was achieved by processing 1,000-character messages. The worst re-

sult, 118.657 ms, was achieved by processing 1,000,000 characters messages.

Table 3.3. Latency test results for message processing with RabbitMQ

Throughput results: Throughput results of the load test are shown in Fig. 3.6.

The best average result, 231.5 RPS, was achieved by processing 10-character mes-

sages. The worst average result, 0.01 RPS, was achieved by processing 1,000,000

characters messages.

Fig. 3.6. Load test results for message processing with RabbitMQ

Message size Mean Median Min Max

10 characters 2.982 ms 2.946 ms 2.551 ms 3.491 ms

1,000 characters 2.976 ms 2.939 ms 2.721 ms 3.712 ms

100,000 characters 5.166 ms 5.023 ms 4.674 ms 6.360 ms

1,000,000 characters 118.657 ms 116.824 ms 73.740 ms 157.821 ms

10 properties 4.354 ms 4.265 ms 3.059 ms 6.605 ms

100 properties 3.197 ms 3.108 ms 2.843 ms 4.387 ms

1,000 properties 4.752 ms 4.670 ms 4.278 ms 5.875 ms

10,000 properties 20.310 ms 19.974 ms 19.529 ms 23.098 ms

74 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE…

Results of other metrics: Other results obtained during the experiment are

presented in Table 3.4.

Table 3.4. Results of RabbitMQ experiment measurements

Architecture: To utilise RabbitMQ as RPC, microservices have to contain

two additional components: a Rabbit server and a Rabbit client (Fig. 3.7). The

Rabbit server consumes messages from queue x1 and routes them to business

logic where messages are processed and moved to the Rabbit client to publish

them to queue y1. After pushing messages to queue y1, the Rabbit client starts

listening to queue y2 for a response. A message that is consumed from queue y2

goes from the Rabbit client through business logic to the Rabbit server, where it

is published to queue x2.

Fig. 3.7. Architecture of RabbitMQ in microservice

Topology: Similar to HTTP communication, the Rabbit server component is

not needed for those microservices that are only used as clients, and the client

component is not needed for those microservices that are only used as servers.

The most significant difference using RabbitMQ is that there is no need for mi-

croservices to know about each other’s endpoints, such as IP address or hostname.

Instead of communicating directly with each other, microservices are communi-

cating through RabbitMQ, which acts as a router. Clients are producers and pro-

duce messages to the RabbitMQ queue while servers are consumers and consume

messages from the same RabbitMQ queue.

Libraries: The list of libraries that were used in the experiment to establish a

connection between microservices via RabbitMQ technology is provided below:

− Microsoft.NETCore.App (Version 6.0.7)

− RabbitMQ.Client (Version 6.3.0)

− Nito.AsyncEx (Version 5.1.2)

Metric Result

Request/Response size 206 B/225 B (payload 26 B)

Microservice application size 2.26 MB (empty 159 KB)

Memory usage size 23 MB (empty 9 MB)

Boot time 3.8 seconds

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE… 75

3.5.3. Evaluation Results of Kafka

Latency results: Results of the latency test are shown in Table 3.5. The best result,

7.191 ms, was achieved by processing 10-character messages. The worst result,

42.600 ms, was achieved by processing 1,000,000-character messages.

Table 3.5. Latency test results for message processing with Kafka

Throughput results: The throughput results of the load test are shown in

Fig. 3.8. The best average result, 93.3 RPS, was achieved by processing 10-char-

acter messages. The worst average result, 1.6 RPS, was achieved by processing

1,000,000 character messages.

Fig. 3.8. Load test results for message processing with Kafka

Message size Mean Median Min Max

10 characters 7.191 ms 7.130 ms 6.836 ms 8.023 ms

1,000 characters 8.073 ms 8.016 ms 5.398 ms 11.428 ms

100,000 characters 11.643 ms 11.397 ms 8.811 ms 15.241 ms

1,000,000 characters 42.600 ms 42.187 ms 35.172 ms 54.572 ms

10 properties 8.183 ms 8.115 ms 6.009 ms 11.441 ms

100 properties 7.761 ms 7.605 ms 5.782 ms 10.627 ms

1,000 properties 12.116 ms 11.566 ms 8.704 ms 16.905 ms

10,000 properties 28.612 ms 28.366 ms 24.451 ms 34.667 ms

76 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE…

Results of other metrics: Other results obtained during the experiment are

presented in Table 3.6.

Table 3.6. Results of Kafka experiment measurements

Architecture: To utilise Kafka as RPC, microservices have to contain two

additional components: a Kafka server and a Kafka client (Fig. 3.9). The Kafka

server consumes messages from topic x1 and routes them to business logic where

messages are processed and moved to the Kafka client to publish them to topic

y1. After pushing messages to topic y1, the Kafka client starts listening to topic

y2 for a response. A message, which is consumed from topic y2, goes from the

Kafka client through business logic to the Kafka server, where it is published to

topic x2.

Fig. 3.9. Architecture of Kafka in microservice

Topology: The Kafka server component is not needed for those microservices

that are only used as clients, and the client component is not needed for those

microservices which are only used as servers. Similar to RabbitMQ, the most sig-

nificant difference between HTTP Rest, gRPC and GraphQL is that there is no

need for microservices to know about each other’s endpoints, such as IP address

or hostname. Instead of communicating directly with each other, microservices

communicate through Kafka, which acts as a router. Clients are producers and

produce messages to the Kafka topic while servers are consumers and consume

messages from the same Kafka topic.

Libraries: The list of libraries that were used in the experiment to establish a

connection between microservices via Kafka technology is provided below:

− Microsoft.NETCore.App (Version 6.0.7)

− Simple.Kafka.Rpc (Version 1.8.3)

Metric Result

Request/Response size 219 B/252 B (payload 26 B)

Microservice application size 2.18 MB (empty 159 KB)

Memory usage size 40 MB (empty 9 MB)

Boot time 2.6 seconds

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE… 77

3.5.4. Evaluation Results of Google Remote Procedure Call

Latency results: Results of the latency test are shown in Table 3.7. The best re-

sults, 6.761 ms, were achieved by processing 1,000-character messages. The

worst results, 35.384 ms, were achieved by processing 1,000,000 characters mes-

sages.

Table 3.7. Latency test results for message processing with gRPC

Throughput results: The throughput results of the load test are shown in

Fig. 3.10. The best average results, 170.1 RPS, were achieved by processing

1,000-character messages. The worst average result, 5.0 RPS, was achieved by

processing 1,000,000-character messages.

Fig. 3.10. Load test results for message processing with gRPC

Message size Mean Median Min Max

10 characters 7.004 ms 6.787 ms 5.336 ms 9.455 ms

1,000 characters 6.716 ms 6.729 ms 5.396 ms 8.136 ms

100,000 characters 10.188 ms 10.021 ms 7.976 ms 13.537 ms

1,000,000 characters 35.384 ms 34.262 ms 25.406 ms 52.120 ms

10 properties 8.022 ms 7.929 ms 6.651 ms 9.874 ms

100 properties 8.183 ms 8.211 ms 6.692 ms 10.243 ms

1,000 properties 8.501 ms 8.487 ms 7.354 ms 10.228 ms

10,000 properties 14.855 ms 14.562 ms 12.778 ms 18.263 ms

78 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE…

Results of other metrics: Other results obtained during the experiment are

presented in Table 3.8.

Table 3.8. Results of gRPC experiment measurements

Architecture: To communicate via gRPC, a microservice has to have at least

three additional components: gRPC server, Service, and gRPC Client (Fig. 3.11).

The gRPC server component exposes the gRPC server and sends requests to the

Service component, which acts as a facade for business logic. gRPC Client sends

a request to gRPC server y. The components and flow are very similar to those in

the Rest API case.

Fig. 3.11. The architecture of gRPC in microservice

Topology: In terms of topology, gRPC and Rest API have no difference. Mi-

croservices M1–M5 have to know how to reach the next microservice when a

linear topology is used. Microservice M6 only exposes the gRPC server. Micro-

services M1, M2, and M3 have two dependencies in the tree-type topology. Mi-

croservices M4, M5, and M6 only expose the gRPC server. In the star-type topol-

ogy, the M1 microservice has to know all microservice URLs.

Libraries: The list of libraries that were used in the experiment to establish a

connection between microservices via gRPC technology is provided below:

− Microsoft.NETCore.App (Version 6.0.7)

− protobuf-net.Grpc (Version 1.0.152)

− protobuf-net.Grpc.AspNetCore (Version 1.0.152)

− Grpc.Net.Client (Version 2.45.0)

Metric Result

Request/Response size 363 B/162 B (payload 12 B)

Microservice application size 1.85 MB (empty 159 KB)

Memory usage size 70 MB (empty 9 MB)

Boot time 3.4 seconds

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE… 79

3.5.5. Evaluation Results of GraphQL

Latency results: Results of the latency test are shown in Table 3.9. The best result,

7.711 ms, was achieved by processing 1,000-character messages. The worst re-

sult, 51.170 ms, was achieved by processing 10,000-property messages.

Table 3.9. Latency test results for message processing with GraphQL

Throughput results: The throughput results of the load test are shown in

Fig. 3.12. The best average result, 185.5 RPS, was achieved by processing 10-

property messages. The worst average result, 4.8 RPS, was achieved by pro-

cessing 1,000,000 characters messages.

Fig. 3.12. Load test results for message processing with GraphQL

Message size Mean Median Min Max

10 characters 7.755 ms 7.718 ms 5.945 ms 10.69 ms

1,000 characters 7.711 ms 7.376 ms 5.846 ms 12.02 ms

100,000 characters 12.349 ms 11.392 ms 9.083 ms 18.83 ms

1,000,000 characters 29.575 ms 29.137 ms 24.780 ms 38.70 ms

10 properties 10.498 ms 10.302 ms 7.652 ms 14.67 ms

100 properties 9.860 ms 9.624 ms 8.383 ms 12.63 ms

1,000 properties 13.262 ms 13.261 ms 10.921 ms 15.73 ms

10,000 properties 51.170 ms 49.828 ms 44.979 ms 65.10 ms

80 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE…

Results of other metrics: Other results obtained during the experiment are

presented in Table 3.10.

Table 3.10. Results of GraphQL experiment measurements

Architecture: GraphQL flow is quite similar to REST API. Three additional

components are needed to communicate via GraphQL: GraphQL Server,

GraphQL abstraction layer, and GraphQL client (Fig. 3.13). GraphQL is

transport-layer agnostic, but the most common technology used for transport is

HTML.

Fig. 3.13. The architecture of GraphQL in microservice

Topology: GraphQL, gRPC, and Rest API have no big difference in terms of

topology. All technologies use a client/server synchronous communication model.

To establish communication, a client has to know the server endpoints, such as IP

address or hostname.

GraphQL is also a query language for APIs – a client can request very spe-

cific data from the server. Queries in GraphQL can be written in such a manner

that would not only access separate properties but also follow references between

them. Star-type topology best utilises this GraphQL feature.

Libraries: The list of libraries that were used in the experiment to establish a

connection between microservices via GraphQL technology is provided below:

− Microsoft.NETCore.App (Version 6.0.7)

− RabbitMQ.Client (Version 6.3.0)

− Nito.AsyncEx (Version 5.1.2)

Metric Result

Request/Response size 390 B/843 B (payload 49 B)

Microservice application size 5.53 MB (empty 159 KB)

Memory usage size 65 MB (empty 9 MB)

Boot time 4.4 seconds

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE… 81

3.6. Comparison of Communication Technologies

This chapter compares communication technologies in different aspects based on

the obtained results of the executed experiments. Chapter 3.6.1 provides details

about available libraries for each technology. Chapter 3.6.2 gives an overview of

the components used for each technology and highlights specific requirements for

some technologies. Chapter 4.3.3 analyses the impact of the communication tech-

nology on the topology. Performance evaluation is presented in Chapter 3.6.4,

using different aspects. The last sub-chapter evaluates different metrics of each

technology.

3.6.1. Communication Technologies Libraries

Many different libraries can be chosen for HTTP Rest implementation mainly be-

cause it is the oldest and relatively simple technology. RabbitMQ and Kafka are

also very popular technologies, so they also have quite a few libraries. GraphQL

and gRPC are relatively new technologies, and not so many libraries exist in the

market. Microsoft .Net framework has built-in support and provides libraries for

HTTP Rest and gRPC communication technologies.

3.6.2. Communication Technologies Architecture

HTTP Rest, gRPC, and GraphQL communication technologies have very similar

architecture: one component is used to expose a server, the second one is to trans-

late from a technology-specific to business-specific message, and the last compo-

nent is used to send a message.

Communication models and methods must be defined in *proto files and

shared between microservices to use gRPC communication technology. Like

gRPC *proto files, GraphQL has a schema. GraphQL schema contains infor-

mation about server methods and data types.

RabbitMQ and Kafka are message-based technologies, and they are different

from others used in the research. Communication between microservices is not

point-to-point like in HTTP Rest, gRPC, and GraphQL. All communication in

RabbitMQ is implemented via queues: microservices can publish to and consume

from the queue. Like RabbitMQ, Kafka uses topics to implement communication.

Two queues, or two topics in the Kafka case, must be created to implement RPC

calls between microservices: one for a request and the second for a response.

82 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE…

3.6.3. Communication Technologies Topologies

HTTP Rest, gRPC, and GraphQL technologies are independent of topology. A

microservice must know how to reach other microservices to establish communi-

cation, e.g., it has to know the addresses of other microservices. It is a known

problem, and there are many solutions how to solve it, but all of them increase the

complexity of the solution, especially if scalability is needed.

RabbitMQ and Kafka technologies do not have this challenge because they

work as an intermediary communication layer, and all communication between

microservices happens through it. Communication in RabbitMQ and Kafka is

based on queues and topics. A microservice has to know only the name of the

queue, or topic name in the Kafka case, to communicate with other microservice.

A few microservices can publish and consume the same queue or topic. It is a

powerful feature to support scalability.

GraphQL best utilises its features in a star-type topology where one micro-

service acts as a gateway and others as data sources. Powerful GraphQL query

language allows the creation of a specific request in such a way that it can fetch

data from multiple data sources in one API call. This feature can potentially re-

duce the number of calls between microservices needed to implement the func-

tionality.

3.6.4. Communication Technologies Performance

Performance tests were executed to compare latency and throughput in the case

of RPC calls between five microservices. No performance optimisations were ap-

plied to any technology during this experiment. Latency results based on message

size in characters are shown in Fig. 3.14. Latency results based on several prop-

erties are shown in Fig. 3.15.

The lowest latency results for strings up to 1,000,000 characters were ob-

tained by RabbitMQ technology. RabbitMQ RPC calls were two times faster than

other technologies. It showed the best results for processing the smallest messages

(ten and 1,000 characters); the results were two times better than processing

100,000-character messages. HTTP Rest, Kafka, gRPC and GraphQL showed

similar latency results; however, results obtained by gRPC were slightly better.

On the other hand, the RabbitMQ had the highest latency results while pro-

cessing messages which consisted of 10,000,000 characters. It was from three to

four times slower than others. The best latency results for 10,000,000-character

messages were obtained by GraphQL and HTTP Rest technologies. Kafka was

40% and gRPC was 16% and slower than GraphQL and HTTP Rest technologies.

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE… 83

Fig. 3.14. Latency test results based on string size

Fig. 3.15. Latency test results based on string size

84 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE…

The lowest latency results for messages containing up to 1,000 properties

were also obtained by RabbitMQ technology. RabbitMQ RPC calls were two to

three times faster than other technologies. It showed the best results for processing

messages containing 100 properties; the results were 37% better than processing

messages containing 1,000 properties and 47% better than processing messages

containing ten properties. HTTP Rest, Kafka and gRPC showed similar results for

messages containing ten and 100 properties. The best results for communicating

via messages containing 10,000 properties were obtained by gRPC technology.

The binary serialisation used by gRPC technology is faster than JSON serialisa-

tion, which has been used by other technologies during the experiment; hence, the

more properties the message contains, the greater advantage gRPC has. The

GraphQL showed the worst latency results for messages containing at least ten

properties. The more properties the message contained, the greater the difference

was compared to other technologies. It was from two to four times slower than

others while communicating via messages containing 10,000 properties. Analysis

of the results shows that RabbitMQ achieved the best RPC call latency results in

six out of eight cases. However, the RabbitMQ was the slowest technology, pro-

cessing 10,000,000 characters of messages. It can be summarised that the Rab-

bitMQ has the lowest latency if the message size is not bigger than 0.1MB and the

data model contains up to 1,000 properties.

Fig. 3.16. Throughput test result for 10-character size messages

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE… 85

Throughput results for 10-character-size messages are shown in Fig. 3.16.

The best throughput results were obtained by RabbitMQ technology, with an av-

erage of 231.6 RPS. The maximum result, 315.1 RPS, was reached while request-

ing ten clients. The worst RPC throughput test results were obtained by HTTP

Rest technology with an average of 89.8 RPS and a limit of 140 clients.

Throughput results for 1,000 character-size messages are shown in Fig. 3.17.

The best throughput results were obtained by RabbitMQ technology, with an av-

erage of 219.5 RPS. The maximum result, 300.1 RPS, was reached while request-

ing ten clients. The worst RPC throughput test results were obtained by HTTP

Rest technology with an average of 89.9 RPS and a limit of 140 clients.

Throughput results for 100,000 character-size messages are shown in

Fig. 3.18. The best throughput results were obtained by RabbitMQ technology,

with an average of 93.3 RPS. The maximum result, 179.3 RPS, was reached while

requesting ten clients. The worst RPC throughput test results were obtained by

Kafka technology, with an average of 36.2 RPS and a limit of 80 clients.

Throughput results for 10,000,000 characters size message are shown in

Fig. 3.19. The best throughput results were obtained by gRPC technology, with

an average of 5.0 RPS and a limit of 40 clients. The maximum result, 37.1 RPS,

was reached while requesting ten clients. The worst RPC throughput test results

were obtained by RabbitMQ technology with an average of 0.01 RPS.

Throughput results for ten properties size messages are shown in Fig. 3.20.

The best throughput results were obtained by RabbitMQ technology, with an av-

erage of 200.4 RPS. The maximum result, 291.5 RPS, was reached while request-

ing ten clients. The worst RPC throughput test results were obtained by Kafka

technology, with an average of 87.0 RPS and a limit of 140 clients.

Throughput results for 100 properties size messages are shown in Fig. 3.21.

The best throughput results were obtained by RabbitMQ technology, with an av-

erage of 203.5 RPS. The maximum result, 295.5 RPS, was reached while request-

ing ten clients. The worst RPC throughput test results were obtained by Kafka

technology, with an average of 72.2 RPS and a limit of 130 clients.

Throughput results for 1,000 properties size messages are shown in Fig. 3.22.

The best throughput results were obtained by gRPC technology, with an average

of 161.9 RPS. The maximum result, 227.0 RPS, was reached while requesting ten

clients. The worst RPC throughput test results were obtained by Kafka technol-

ogy, with an average of 43.7 RPS and a limit of 100 clients.

Throughput results for 10,000 properties size messages are shown in

Fig. 3.23. The best throughput results were obtained by gRPC technology, with

an average of 83.3 RPS. The maximum result, 146.6 RPS, was reached while re-

questing 20 clients. The worst RPC throughput test results were obtained by Kafka

technology, with an average of 3.9 RPS and a limit of 30 clients.

86 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE…

Fig. 3.17. Throughput test results for 1,000-character-size messages

Fig. 3.18. Throughput test results for 100,000-character-size messages

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE… 87

Fig. 3.19. Throughput test results for 10,000,000-character-size messages

Fig. 3.20. Throughput test results for 10-property-size messages

88 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE…

Fig. 3.21. Throughput test results for 100-property-size messages

Fig. 3.22. Throughput test results for 1,000-property-size messages

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE… 89

Fig. 3.23. Throughput test results for 10,000-property-size messages

It can be summarised that the best RPC call throughput results for smaller

messages, up to 0.1MB and up to 100 properties, were achieved by RabbitMQ

technology. The best RPC call throughput results for bigger messages were

achieved by gRPC communication technology. The worst throughput results in

five of eight cases were achieved by Kafka.

However, latency distribution results (Figs. 3.24–3.28) show that both Kafka

and RabbitMQ can process more messages (with latency higher than one second)

and work more stable when dealing with more than 50 clients load, compared to

HTTP Rest, gRPC and GraphQL technologies.

Fig. 3.24. Kafka latency distribution for 1,000,000-character-size messages

90 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE…

Fig. 3.25. RabbitMQ latency distribution for 1,000,000-character-size messages

Fig. 3.26. HTTP Rest latency distribution for 1,000,000-character-size messages

Fig. 3.27. gRPC latency distribution for 1,000,000-character-size messages

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE… 91

Fig. 3.28. GraphQL latency distribution for 1,000,000-character-size messages

The latency distribution results reveal that Kafka and RabbitMQ outperform

HTTP Rest, gRPC, and GraphQL technologies in terms of stability and processing

capacity for messages with higher latency, especially under heavy client load.

3.6.5. Communication Technologies Metrics

The smallest size of request/response was obtained by HTTP Rest technology,

with a total size of 357 B. The GraphQL request/response was approx. 2–3 times

bigger than others (Fig. 3.29). If the message size is an important criterion when

choosing communication technology, then HTTP Rest is a recommended technol-

ogy. On the other hand, GraphQL supports remote querying, so potentially, one

GraphQL request/response could transfer as much information as a few re-

quests/responses using other technologies.

Fig. 3.29. Request/Response size measured during the experiment

92 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE…

A comparison of application size is presented in Fig. 3.30. It can be seen that

the biggest application size of 5530 KB was obtained when GraphQL libraries

were used for microservices. The smallest application size of 1850 KB was when

GraphQL libraries were included. Application size is independent of communica-

tion technology. It depends on how it was implemented in the library. If the library

size is too big, then the microservice developer can implement it by him selves.

Fig. 3.30. Application size measured during the experiment

The smallest amount of memory, 23 MB, was allocated using RabbitMQ li-

braries, while gRPC used 70 MB of memory, which is almost three times more

than RabbitMQ (Fig. 3.31). It can be noted that if an application is running in an

environment where memory is limited, then the best solution for implementing

communication is between RabbitMQ and Kafka. Also, it must be pointed out that

RabbitMQ and Kafka do require additional applications compared to other com-

munication technologies.

Fig. 3.31. Memory consumption measured during the experiment

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE… 93

A comparison of microservice boot time is shown in Fig. 3.32. The longest

boot time was spotted using GraphQL technology, and it took 4.4 seconds, while

the shortest boot time of 2.6 seconds was obtained using Kafka technology. Boot

time, as well as the microservice size, mostly depend on implementation, but not

on communication technology itself and can be potentially improved by tuning

implementation details.

Fig. 3.32. Boot time measured during the experiment

HTTP Rest technology is optimal for smaller request/response sizes, while

GraphQL, despite larger sizes, offers robust remote querying capabilities. Appli-

cation size, influenced more by library implementation than communication tech-

nology, can vary significantly with GraphQL libraries. Memory allocation is low-

est with RabbitMQ libraries, making them suitable for memory-limited

environments, though RabbitMQ and Kafka do require additional applications.

Microservice boot time, primarily dependent on implementation rather than com-

munication technology, is longest with GraphQL and shortest with Kafka.

3.7. Conclusions of the Third Chapter

One of the most significant challenges during the monolith application transition

into microservice architecture is data communication management. How should

migration from process method or function calls to inter-process communication

be done? The high complexity, variety of architectural aspects, technological

stack, and business objects make every application different and create challenges

during monolith application decomposition to microservices. The introduced cri-

teria allow for the evaluation of various aspects of communication technologies

that are important while designing microservices. The key findings discovered in

this research are provided below:

94 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE…

1. If latency and throughput are the main criteria during the transition from

a monolith architecture to a microservice architecture, then RabbitMQ

and gRPC are the most suitable technologies. RabbitMQ showed the best

results in RPC latency and throughput tests for small messages (up to

0.1MB and data model up to 100 properties), while gRPC showed the best

results in RPC latency and throughput tests for big messages. The worst

result was obtained by HTTP Rest and Kafka technologies.

2. Kafka and RabbitMQ showed the best throughput results in the most

loaded conditions: requested by more than 100 clients at the same time

and processing 1,000,000 characters of messages. However, the latency

of RPC was high, more than one second.

3. If horizontal scalability is an important aspect, Kafka and RabbitMQ are

the best candidates as they have built-in cluster functionality. It must be

noted that other technologies can be scaled horizontally as well, but it re-

quires additional tools and effort.

4. HTTP Rest has the smallest request and response message size. If the

message size is an important criterion when choosing communication

technology, then HTTP Rest is a recommended technology. On the other

hand, gRPC has the smallest payload as it uses binary serialisation. The-

oretically, at some point of complexity, for complex data models with

many properties, gRPC request and response message size should become

smaller than HTTP Rest. Deeper research is needed to determine the exact

complexity threshold.

5. The gRPC library uses the least amount of storage. If microservices are

running in an environment with limited storage, then gRPC must be used.

The maximum amount of storage is allocated for GraphQL libraries. It

must be pointed out that storage size weakly depends on technology. It

mostly depends on how it was implemented in the particular library. If the

library size is too big, then microservice developers can implement it by

themselves, but there is no guarantee that the new library will be smaller.

6. RabbitMQ and Kafka consume the smallest amount of memory. There-

fore, if memory size is one of the essential criteria, then RabbitMQ and

Kafka must be used for implementation. On the other hand, HTTP Rest

consumes the largest amount of memory. Memory size and storage usage

depend on library implementation, so a similar recommendation can be

provided to the previous item on the list.

7. Microservice implemented using Kafka library boots up in the fastest way

while using GraphQL library boots up in the slowest way. If the boot time

or restart time of the microservice is essential, then Kafka must be used

for microservice communication.

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE… 95

8. HTTP Rest and RabbitMQ are prevalent communication technologies,

and many different libraries exist in the market to choose from, while

GraphQL and gRPC are relatively new and rapidly growing communica-

tion technologies with fewer libraries to choose from.

9. Synchronous communication style communication technologies gRPC,

HTTP Rest, and GraphQL do not require any additional components to

communicate, while asynchronous communication technologies Rab-

bitMQ and Kafka require service as an interim communication layer.

Hence, additional components increase solution complexity and mainte-

nance costs. On the other hand, if a solution contains many microservices

and scalability is a challenge, RabbitMQ and Kafka as an interim layer

can provide centralised communication routing functionality.

Known limitations and threats to the validity of the conducted research are

provided below:

1. The experiment was conducted using the programming language C Sharp.

Measured results can be different using other programming languages and

libraries.

2. The experiment was conducted using a computer with Windows OS.

Measured results can be different when using different environments such

as Linux, Docker, OpenShift, public cloud, etc., due to their specifics and

the implementation details of the libraries.

96 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE…

97

4
The approach of Monolith Database
Migration into Multi-Model Polyglot

Persistence

Migration from a monolithic architecture to a microservice architecture is a com-

plex challenge that consists of issues such as microservice identification, code

decomposition, a combination of microservices, independent deployment, etc.

One of the key issues is data storage adaptation to a microservice architecture. A

monolithic architecture interacts with a single database, while in a microservice

architecture, data storage is decentralised, and each microservice works inde-

pendently and has its own private data storage. A viable option to fulfil different

microservice persistence requirements is polyglot persistence, which is data stor-

age technology selected according to the characteristics of each microservice’s

need.

This chapter evaluates the proposed approach of monolith database migration

into multi-model polyglot persistence based on microservice architecture. The

novelty and relevance of the proposed approach are double; e.g., it provides a

general approach to conducting database migration from a monolith architecture

into a microservice architecture and allows the data model to be transformed into

multi-model polyglot persistence. Migration from a mainframe monolith database

to a multi-model polyglot persistence was performed as a proof-of-concept for the

98 4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO…

proposed migration approach. Quality attributes defined in the ISO/IEC

25012:2008 standard were used to evaluate and compare the data quality of the

microservice with the multi-model polyglot persistence and the existing monolith

mainframe database. Results of the research showed that the proposed approach

could be used to conduct data storage migration from a monolith to a microservice

architecture and improve the quality of the consistency, understandability, avail-

ability, and portability attributes. The purpose of the proposed approach is shown

in Fig. 4.1. A detailed explanation of the proposed migration approach is provided

in Chapter 2.5.

Fig. 4.1. Purpose of the proposed database migration approach

The approach can extract a database from a monolith application and trans-

form it into a multi-model polyglot persistence, which is encapsulated as a micro-

service itself and exposes data access through a representational state transfer

(REST) application programming interface (API). Multi-model polyglot persis-

tence allows us to better utilise the benefits of microservices, such as agility and

scalability. The encapsulation of a database into a microservice reduces the com-

plexity and increases the performance. After migration, the data are accessible not

only to an existing monolith application but also to any microservice within an

ecosystem. This allows source code migration to be conducted gradually from the

monolith architecture to the microservice architecture without considering the da-

tabase that has already been adopted into the microservice architecture.

As a proof-of-concept for the proposed approach, the migration has been ex-

ecuted from an existing mainframe monolith application to a new microservice

architecture-based application with multi-model polyglot persistence. The migra-

tion results were evaluated by the chosen criteria.

The proposed approach and results presented in this chapter were published

in the author’s publication (Kazanavicius, Mazeika, Kalibatiene et al., 2022).

4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO… 99

4.1. Evaluation Criteria of the Approach of Monolith
Database Migration into Multi-Model Polyglot
Persistence

The ISO/IEC 25012:2008 standard quality attributes were used to evaluate and

compare the data quality of the proposed multi-model polyglot persistence model

and the existing monolith mainframe persistence model. The quality attributes

used in the evaluation were Accuracy, Completeness, Consistency, Credibility,

Correctness, Accessibility, Compliance, Confidentiality, Efficiency, Precision,

Traceability, Understandability, Availability, Portability, and Recoverability.

4.2. Multi-Model Polyglot Database Software

ArangoDB is an open-source multi-model polyglot persistence system that imple-

ments a data model integrating document, graph, and key–value models with one

database core. It supports transactions, partitioning, and replication (ArrangoDB,

2023). ArangoDB has its query language AQL, which allows joins, operations on

graphs, iterations, filters, projections, ordering, grouping, aggregate functions, un-

ion, and intersection. The ArangoDB supports all the ACID properties.

Table 4.1. Comparison of multi-model polyglot databases

The most important criteria used to choose multi-model polyglot database

are Table 4.1. Even though ArrangoDB does not support SQL it has AQL support

which better utilises multi-model polyglot persistence features and advantages as

it supports various data formats or patterns.

Database Docu-

ment

Graph ACID SQL AQL C# On

prem-

ise

ArrangoDB Yes Yes Yes No Yes Yes Yes

Azure Cosmos

DB

Yes Yes Yes Yes No Yes No

CrateDB Yes No Yes Yes No Yes Yes

EnterpriseDB Yes No Yes Yes No Yes Yes

MarkLogic Yes Yes Yes Yes No Yes Yes

OrientDB Yes Yes Yes Yes No Yes Yes

SAP HANA Yes Yes Yes Yes No Yes No

Virtuoso Yes Yes Yes Yes No No Yes

100 4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO…

4.3. Tools Used to Evaluate the Approach of Monolith
Database Migration into Multi-Model Polyglot
Persistence

The ArangoDB community edition version 3.7.11 database was used as the data-

base engine. The microservice that exposes multi-model polyglot persistence was

written using C#.NET5 framework. All coding and testing were done using Mi-

crosoft Visual Studio IDE and Arango Management Interface. All libraries used

in the research were downloaded from the NuGet gallery. The experiment was

performed on a computer with the following specifications: CPU – Core i7 9850H,

memory – 32 GB RAM, storage – 512 GB SSD, and OS – Windows 10 Enterprise.

All applications were run on a computer, and no external devices or networks were

used.

4.4. Evaluation results of the Approach of Monolith
Database Migration into Multi-Model Polyglot
Persistence

This chapter provides results obtained during the evaluation of the method of

mainframe monolith database migration to multi-model polyglot persistence

based on microservice architecture. The results of each step of the proposed ap-

proach are explained in separate sub-chapters: 4.4.1. Analysis of an Existing Mon-

olith Application with a Mainframe Database, 4.4.2. Data Model Development,

4.4.3. Microservice Development, 4.4.4. Data Transformation, 4.4.5. Data Vali-

dation, and 4.4.6. Release and Deployment.

4.4.1. Analysis of an Existing Monolith Application with a
Mainframe Database

The primary function of the SSI application is to store and provide standard set-

tlement instructions to other information systems across the organisation. Stand-

ard settlement instructions are used to execute payments between banks and or-

ganisations. A simplified model of the SSI application is shown in Fig. 4.2.

4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO… 101

Fig. 4.2. Simplified model of the SSI application

This SSI application is implemented with IBM mainframe and Microsoft .Net

framework technologies. The data is persisted in 35 tables in the DB2 database,

and it can be accessed and edited through IBM mainframe modules. SSI data is

exposed to other information systems across the organisation through Rest API,

which is implemented with the Microsoft .Net framework. The most important

functional requirements gathered during the evaluation are presented in Table 4.2.

Table 4.2. Functional requirements of SSI application

Using a top-down approach, functional requirements were collected in two

steps. Firstly, essential features were identified through discussions with domain

experts. Secondly, a thorough review of the legacy code was conducted, which

provided insights into existing practices and highlighted areas for improvement or

reuse. This approach ensured a comprehensive understanding of the system's

needs.

Functional requirements

1. Ability to view/add/update/delete customers

2. Ability to view/add/update/delete agreements

3. Ability to view/add/update/delete standard settlement instruction

4. Two types of standard settlement instruction: receive and deliver

5. One customer can have many agreements

6. One customer can have many confirmation settings

7. One customer can have one netting settings

8. An agreement can have many instructions

9. An agreement can have one account information

102 4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO…

4.4.2. Data Model Development

This step aims to design a new data model that will be used in multi-model poly-

glot persistence. The creation of a new model process consists of five steps: (1)

conceptual design, (2) segmentation design, (3) consistency design, (4) target data

model design, and (5) physical design.

4.4.2.1. Conceptual Design

The conceptual design step aims to translate the identified functional requirements

into a conceptual schema. The entity-relationship model is used as a conceptual

schema because it is a widely exploited model and allows for a detailed definition

of the entities and their relationships in the database. The simplified conceptual

database schema of the SSI application is shown in Fig. 4.3.

Fig. 4.3. Simplified conceptual schema of the SSI application

The root element of the system is a customer, which can have one netting

agreement and many confirmations and agreements. Netting is an option to merge

many payments into one. An agreement is a special contract with a customer, usu-

ally for a specific product and currency that has a specific settlement instruction.

Each short name can have one account, and many receive and deliver instructions.

A receive instruction is an instruction for incoming payment, and a delivery in-

struction is an instruction for outgoing payment.

4.4.2.2. Segmentation Design

The segmentation step identifies independent functional units and defines the bor-

ders between them. Segmentation units have to be identified to take full advantage

of the multi-model polyglot persistence feature, which is the capability of using

4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO… 103

multiple different data models in the same database. The outcome of this step is

the defined cut points on the existing data model that can be used to split it into

different data models. Any of the segmentation units can be detached from the

model and work as an independent system. Segmentation units identified in the

simplified conceptual database schema of the SSI application are shown in

Fig. 4.4.

Fig. 4.4. Segmentation units are identified in the simplified conceptual database schema

During the segmentation design sub-step, the SSI application was divided

into three independent functional units: customer management, agreement man-

agement, and instruction management.

4.4.2.3. Consistency Design

The consistency step ensures the dataset’s consistency across all subsystems and

allows for data fragmentation. As polyglot supports NoSQL data models, the

eventual consistency provided by BASE properties has to be considered during

the data model creation step. Polyglot persistence does not have to be consistent

across the entire database, but some data groups must be consistent to be valid.

These groups are called consistency units and play a key role in allowing data

fragmentation and horizontal scalability.

104 4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO…

Fig. 4.5. Consistency unit identified in the simplified conceptual database schema

The consistency unit must guarantee that all reads of the entity will eventu-

ally return the last updated value, provided no new updates are made to an entity.

An example of one consistency unit in the SSI application is shown in Fig. 4.5.

Customer, agreement, and receive instruction comprise a consistency unit, and in

the case that a query returns the response with different versions of items, an in-

consistency arises that may cause a system failure.

4.4.2.4. Target Model Design

The target data model step defines the best data model for each segmentation unit.

All three subsystems fit into a combination of the key–value and document-ori-

ented data models. The identified target data model is shown in Fig. 4.6.

Fig. 4.6. Target data model

One customer can have many agreements, and each agreement can contain

many instructions. Customers, agreements, and instructions are saved as docu-

ments in separate collections. The relations between the customers and agree-

ments and relations between the agreements and instructions were defined as col-

lections and stored in separate collections.

4.4.2.5. Physical Design

The physical design step aims to implement all peculiarities of the planned-to-use

database to implement the target model. As multi-model polyglot persistence was

4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO… 105

chosen as data persistence, only one database engine was used. The physical de-

sign step is less complex with a multi-model compared to standard polyglot per-

sistence, which is used by many different databases.

In the ArangoDB database, data are stored as documents (JSON format), and

each document could be considered as key–value pair. Documents are grouped

into collections. ArangoDB supports two types of collections: document collec-

tions and edge collections. Documents are vertices, and edges are edges in the

context of graphs. Edge collections are used to create relations between docu-

ments.

The physical model created during the experiment is shown in Fig. 4.7. and

its representation as a graph, where customer has two agreements, is shown in

Fig. 4.8.

Fig. 4.7. Target data model

Fig. 4.8. Graphical representation of the physical data model

The physical model consists of a document collection: (1) Customers – to

store the customer data, (2) Agreements – to store the agreement data, and (3)

Instructions – to store the instruction data. To create relations between the docu-

ments, two edge collections were introduced: (1) AgreementsInCustomers – to

store the relations between a customer and its agreements, and (2) InstructionsI-

nAgreement – to store the relations between an agreement and its instructions.

106 4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO…

4.4.3. Microservice Development

The simplified model of the built microservice with multi-model polyglot persis-

tence is shown in Fig. 4.9.

The pattern database as a service was chosen to be used to build multi-model

polyglot persistence based on microservice architecture. Based on the gathered

functional requirements, the application was implemented as a microservice writ-

ten with the C# programming language within the Microsoft.NET framework. It

was deployed to the OpenShift project as a Docker container by the AzureDevOps

CI/CD pipeline. Based on the availability and scalability requirements, two sepa-

rate OpenShift projects were created, each in a separate availability zone. In each

availability zone, one Docker container was created with the possibility of scaling

up on demand automatically. The ArangoDB was used as a multi-polyglot data-

base, and its cluster was established with two nodes, one per availability zone.

Security and accessibility were ensured by firewall rules and separate access rights

for specific operations.

Fig. 4.9. Simplified model of a new SSI application with multi-model polyglot

persistence

4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO… 107

In the new SSI application, a database and a business logic worked as one

unit – the SSI microservice. The data are exposed to other information systems

across an organisation via REST API, which is available to new microservices

and legacy monolith solutions. The business logic layer interacts with a database

through a repository layer that encapsulates the database-specific details. The de-

tails of the business logic and database are hidden from the consumers: the only

way to manipulate the data is through the REST API by using domain data mod-

els.

4.4.4. Data Transformation

A data transformation application was written with the C# programming language

(Fig. 4.10) for migrating data from a monolith database to a multi-model polyglot

persistence database. The application contained three layers: extraction, transfor-
mation, and import. The Extraction layer extracts all data from the existing mon-

olith database. Thirty-five repositories and data models were created to extract

data from each data table. The Transformation layer transforms the extracted data

into a data model that is supported by multi-model polyglot persistence. The Im-

port layer imports the transformed data into a multi-model polyglot database. The

repository layer code from the microservice code base was reused.

Fig. 4.10. Data transformation from the monolith database to multi-model

polyglot persistence

The data was extracted from 35 tables in the IBM DB2 database, trans-

formed, and imported into three document collections and two edge collections.

This complex process was meticulously designed to ensure data integrity and con-

sistency across both databases.To make sure that the data is consistent in both

databases, the actual data transformation was conducted during the release and

deployment steps. The mainframe application was temporarily stopped to trans-

form the data. This pause allowed the team to carry out the data transformation

effectively, ensuring there were no active changes happening in the database while

the process took place. After successfully transforming the data, necessary amend-

ments were made to the system configuration to start using the microservice in-

stead of the existing monolith database.

108 4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO…

4.4.5. Data Validation

Based on specified functional requirements, test cases for data validation were

created in a forum of domain experts and IT experts within the organisation. The

forum consisted of three SSI domain experts, three mainframe software engineers,

and four C# software engineers. A test engine was written with the C# program-

ming language to execute automatic data validation (Fig. 4.11) and contained

three modules.

Fig. 4.11. Automatic data validation process

The data extraction module extracts data from the monolith database. The

Test execution module uses the extracted data to make calls to the Microservice

REST API. The analysis module compares responses from Microservice REST

API and data extracted from the monolith database. For example, the data extrac-

tion module extracts all of the existing customers from the monolith database, the

test execution module requests customer data, one by one, from Microservice

REST API, and the analysis module validates that all customers exist in multi-

model polyglot persistence.

4.4.6. Release and Deployment

The first sub-step during the release is the deployment of microservice to the pro-

duction environment. The microservice was deployed to the on-premises cloud as

a Docker container to OpenShift. Four instances of microservice were distributed

between two microsegments, two instances in each microsegment. Each mi-

crosegment was in different data centres. Microservice deployment into the cloud

schema ensures a high resilience and availability level (Fig. 4.12). Kubernetes en-

sure resilience for containers in each microsegment and the distribution between

two microsegments ensures high availability. A load balancer provides one point

for the clients to the REST API. The continuous integration (CI) and continuous

deployment (CD) pipelines were created in Azure DevOps.

4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO… 109

Fig. 4.12. Automatic data validation process

During the next sub-step, the monolith mainframe application was stopped,

and data transformation and validation were executed with separate applications.

Then, the code of the existing monolith application was amended to use a micro-

service instead of a monolith database, and all of the SQL queries were changed

to calls to the microservice exposed REST API. The new version of the mainframe

monolith application was released into production and the hyper-care period

started. Once the hyper-care was over, the legacy monolith mainframe database

was decommissioned.

4.5. Evaluation of the Data Quality of the Proposed
Microservice with Multi-Model Polyglot Persistence

Data quality is a key component of the quality and usefulness of information sys-

tems. The effectiveness of business processes directly depends on the quality of

the data. This chapter provides the results of the evaluation and comparison of the

ISO/IEC 25012:2008 standard quality attributes between the monolith mainframe

application and microservice with multi-model polyglot persistence. Each quality

attribute was evaluated and graded on a scale from 1 to 5 for each application. A

lower value showed a lower quality, and a higher value showed a higher quality.

Descriptions of the used evaluation grades are provided in Table 4.3.

Table 4.3. Description of the used evaluation grades

Value Description

1 Lowest quality

2 Low quality

3 Average quality

4 High quality

5 Highest quality

110 4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO…

The evaluation was conducted in a forum of domain experts and IT experts

within the organisation. The forum consisted of two SSI domain experts, four

mainframes software engineers, and four C# software engineers. To ensure the

reliability of experts, a two-part verification has been conducted. At first, it was

ensured that the experts had relevant knowledge and at least five years of experi-

ence in the domain. Secondly, experts had to pass interviews that allowed them to

ensure the sufficiency of their knowledge in relevant domains. Proof-of-the con-

cept of a microservice with multi-model polyglot persistence was compared to an

existing monolith mainframe application, going through the list of questions for

each quality attribute. There were 150 questions, ten questions for each quality

attribute. Each question had to be applied to both applications. Questionnaires

were constructed in a way that made answering possible for staff with low IT

knowledge levels (domain experts). For example, one of the questions to evaluate

understandability is: “Is the data model easily understandable?”. Experts had to

choose an answer from five possible options: strongly disagree (1 point), disagree

(2 points), neither agree nor disagree (3 points), agree (4 points), and strongly

agree (5 points). Fleiss’ kappa κ inter-rater agreement was used to assess the

agreement among the experts (Fleiss et al., 2003). The coefficient value was 0.77,

which indicates a relatively high level of agreement between the experts. If the

test statistic κ was 1, then all of the survey respondents were unanimous, and each

respondent was assigned the same rate to the list of concerns. If κ was 0, then there

was no overall trend of agreement among the respondents, and their responses

may be regarded as essentially random. Intermediate values of κ indicate a greater

or lesser degree of unanimity among the various responses.

In Table 4.4, the conclusive outcomes derived from the comprehensive eval-

uation and comparison process are meticulously displayed. The final value of each

quality attribute is a calculated average, precisely rounded to the nearest whole

number, based on the collective opinions of the experts involved.

Table 4.4. Results of the evaluation and comparison of the ISO/IEC 25012:2008 stand-

ard quality attributes between the monolith mainframe and microservice applications

Quality Attribute Monolith Microservice

Accuracy 5 5

Completeness 5 5

Consistency 3 5

Credibility 5 5

Correctness 4 4

Accessibility 4 4

Compliance 5 5

Confidentiality 5 5

Efficiency 4 4

4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO… 111

End of Table 4.4

The meticulous portrayal of the evaluative landscape extends further as

Fig. 4.13 is scrutinised, providing a comprehensive visual analysis of the ISO/IEC

25012:2008 standard quality attributes tailored to the intricacies of the monolith

mainframe application.

Simultaneously, Fig. 4.14 delves into the corresponding assessment for the

microservice application, amplifying the scientific rigour applied to the evaluation

process. The graph meticulously elucidates the distribution patterns of expert re-

sponses, underlining the nuances inherent in their qualitative judgments. Further-

more, the inclusion of standard deviation metrics serves as a pivotal component,

enhancing the robustness of the analysis by providing insights into the degree of

variability among expert opinions.

Fig. 4.13. Evaluation results of the monolith

0

1

2

3

4

5

Expert 1 Expert 2 Expert 3

Expert 4 Expert 5 Expert 6

Expert 7 Expert 8 Expert 9

Expert 10 Avarage value Standard deviation

Quality Attribute Monolith Microservice

Precision 5 5

Traceability 5 5

Understandability 3 5

Availability 2 4

Portability 1 5

Recoverability 4 4

112 4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO…

Fig. 4.14. Evaluation results of microservice

Most of the ISO/IEC 25012:2008 standard quality attributes, such as accu-

racy, completeness, credibility, correctness, accessibility, compliance, confiden-

tiality, efficiency, precision, traceability, and recoverability, were the same for

both applications, but microservice with multi-model polyglot persistence showed

better results in consistency, understandability, availability, and portability.

1. Consistency – a microservice with multi-model polyglot persistence

provides strong data consistency and uses three methods to ensure con-

sistency: eventual, immediate, and OneShard (highly available, fault-

tolerant deployment mode with ACID semantics), while mainframe

monolith data persistence only uses an immediate method to ensure

consistency. In addition to a database-supported consistency method,

the business layer of microservice ensures that consumers operate only

with consistent data models. Consumers using REST API can only

manipulate data at the domain level as they are not aware of the data-

base schema details and do not have access rights to access it directly.

2. Understandability – a new data model with five collections instead of

the 35 tables that were used in the mainframe application is simpler

and easier to understand. The relations between entities are repre-

sented as a graph, which is a great help in improving readability. The

AQL query language used to query polyglot persistence is considered

0

1

2

3

4

5

Expert 1 Expert 2 Expert 3

Expert 4 Expert 5 Expert 6

Expert 7 Expert 8 Expert 9

Expert 10 Avarage value Standard deviation

4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO… 113

a human-readable query language and increases understandability

compared to the SQL query language used in mainframe applications.

3. Availability – the biggest advantage of microservice with polyglot per-

sistence in terms of availability is that it supports many resilient de-

ployment modes to meet the different needs of a different project. Ac-

tive failover deployment is used for smaller projects with fast

asynchronous replication from the leading node to passive replicas.

OneShard deployment is used for multi-node clusters with synchro-

nous replication from the leading node it provides. A synchronously

replicating cluster technology allows it to scale elastically with the ap-

plications and all data models. The last but not least feature of multi-

model polyglot persistence is the support for datacentre-to-datacentre

replication.

4. Portability – while the mainframe requires a very specific infrastruc-

ture to run an application, a microservice with multi-model polyglot

persistence can be installed on all main operating systems (Linux,

Windows and macOS) and can be deployed to a private or public

cloud.

It can be summarised that by using the proposed migration approach, it is

possible to execute the migration from the monolith mainframe persistence model

to the multi-model polyglot persistence model without losing data quality. Eleven

of fifteen ISO/IEC 25012:2008 standard quality attributes were the same for both

models, and four were even better for the multi-model polyglot persistence model.

It must also be noted that the results could be different for different monolith ap-

plications.

4.6. Discussions

This chapter provides the results of the comparison between the author’s proposed

monolith database migration approach and the alternative technique for extracting

microservices from monolith enterprise systems. The author has chosen to com-

pare its approach with a technique proposed by Levcovitz et al. (2016) because

methods proposed by other authors do not provide or provide very little detail on

how to adopt data storage to microservice architecture during the migration from

monolith to microservice architecture. The advantages and disadvantages of the

author’s proposed approach compared with the alternative proposed technique are

shown in Table 4.5. The sign “+” means that the criterion is an advantage, while

the sign “−” means that the criterion is a disadvantage or there is no mention of

this criterion. The final grades were based on common agreements between the

authors of the research.

114 4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO…

Table 4.5. Results of the evaluation and comparison of the ISO/IEC 25012:2008 stand-

ard quality attributes between the monolith mainframe and microservice applications

Three advantages of the migration approach proposed in the dissertation were

identified. First, it allowed us to improve the quality of consistency, understanda-

bility, availability, and portability, while the technique proposed by Levcovitz

et al. does not provide any information about improved quality after migration.

Second, it migrates the data store to multi-model polyglot persistence, which al-

lows for the use of different data models for different data structures and better

utilises the advantages of the microservice architecture. Meanwhile, the alterna-

tive technique divides the monolith database by tables and reuses the same legacy

relational data store. Third, it allows for the extraction of the database from the

monolith application and its adaptation to the microservice architecture. Data are

exposed through the REST API and are accessible not only within the micro-

service ecosystem but also for the legacy monolith application. This allows for the

migration to be conducted gradually and to combine other migration methods for

code decomposition.

Two disadvantages of the proposed migration approach were identified as

well. First, extensive involvement of business experts is required to create a con-

ceptual diagram and identify functional requirements. On the other hand, an alter-

native technique can be executed without the involvement of business experts.

Second, the technique proposed by Levcovitz et al. allows for the division of the

database per microservice, while the method proposed in the dissertation extracts

the database and converts it to the microservice.

In theory, both disadvantages of the proposed approach could be addressed,

but a deeper investigation is needed. A hypothetical possible solution to reduce

the extensive involvement of business analysts in the first step could be a program

that would automatically analyse the existing monolithic program and its database

and provide a list of possible functional requirements and an optimal data model.

A potential solution for the second disadvantage could be an additional step or an

Quality Attribute Monolith Micro-

service

1. Possible improvement of the quality of

consistency, understandability, availabil-

ity, and portability

+ −

2. Availability to use different data models

for different data structures

+ −

3. Database adaptation to microservice archi-

tecture

+ −

4. Extensive involvement of business ex-

perts in the migration process

− +

5. Ability to divide database per microservice − +

4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO… 115

extension of the first step in the proposed approach. The purpose of additional

action would be to identify different business domains in the current data model

and decompose it into as many data models as business domains are identified.

For each identified business domain, steps 2–6 of the proposed approach should

be applied separately.

4.7. Conclusions of the Fourth Chapter

This chapter of the dissertation provided an evaluation of the proposed approach

of monolith database migration into multi-model polyglot persistence based on

microservice architecture. As a proof-of-concept, the migration from an existing

monolith mainframe application to a microservice was conducted. Existing and

new applications were evaluated and compared based on the quality attributes de-

fined in the ISO/IEC 25012:2008 standard. The following conclusions have been

drawn:

1. Based on the results of the research, it can be stated that the proposed

approach can be applied to the migration from a monolith mainframe per-

sistence to a microservice architecture-based multi-model polyglot persis-

tence, and multi-model polyglot can be used as storage persistence for

microservices.

2. By using the proposed migration approach, it is possible to improve the

quality of the consistency, understandability, availability, and portability

attributes.

3. Three advantages of the proposed migration approach were identified

compared to the technique proposed by Levcovitz et al.: quality improve-

ment of consistency, understandability, availability, and portability qual-

ity attribute, the use of multi-model polyglot persistence, which allows for

better utilisation of the advantages of the microservice architecture, and

gradual migration and the combined use of other migration methods for

code decomposition.

117

General Conclusions

1. The performed literature review has shown that microservice architecture

is becoming the de facto industry standard for building new enterprise

applications. To remain competitive, companies have started to modern-

ise their legacy monolithic systems by decomposing them into micro-

services. However, the migration from a monolithic architecture to a mi-

croservice architecture is a complex challenge, which consists of issues

such as microservices identification, code decomposition, a combination

between microservices, independent deployment, etc. Each enterprise ap-

plication is unique. It was programmed using different programming lan-

guages and techniques, and different databases and communication mech-

anisms were used; therefore, it creates different challenges. Although the

topic of monolithic software migration into microservice architecture has

already been explored by scientists and software engineers, it is a complex

and relatively new challenge; therefore, there is still little research on

many parts of it, such as database adaptation during the migration, com-

munication establishment between microservices. The primary focus of

most of the research is microservice identification within monolith appli-

cations and source code decomposition into microservices.

118 GENERAL CONCLUSIONS

2. To address the prevailing deficiencies in communication and database

components, a novel migration approach grounded in experimental inves-

tigations has been developed. This approach encompasses three primary

elements: code decomposition techniques, communication establishment,

and database adaptation. The innovative evaluation criteria and guide-

lines, derived from empirical findings, serve to recommend the most suit-

able code decomposition method and communication technology, consid-

ering their respective merits and demerits. To facilitate the transition of

the database to a microservice architecture, a novel approach employing

multi-model polyglot persistence has been proposed and assessed through

experimental evaluation.

3. Three code decomposition methods were chosen for analysis and compar-

ison: Code-based, Business domain-based, and Storage-based. The com-

parison between selected methodologies was done by decomposing the

same enterprise legacy monolith application into microservices using all

three selected methodologies.

3.1. The number of extracted microservices and the size of each micro-

services mostly depend on the chosen microservice responsibility.

There are two types of responsibilities: business domain and tech-

nical function. Microservices based on technical function provide

higher granularity.

3.2. The Business-domain-based method or the Code-based method with

semantic coupling strategy methods are recommended for decom-

posing legacy monolith applications into microservices based on

business domains.

3.3. Storage-based methods or Code-based methods with logical cou-

pling strategy methods are recommended for decomposing legacy

monolith applications into microservices based on functions.

4. Five communication technologies, such as HTTP Rest, RabbitMQ, Kafka,

gRPC, and GraphQL, have been evaluated and compared by the proposed

evaluation criteria. The advantages and disadvantages of each communi-

cation technology were identified in the context of microservices archi-

tecture.

4.1. If latency and throughput are the main criteria during the transition

from a monolith architecture to a microservice architecture, then

RabbitMQ and gRPC are the most suitable technologies. RabbitMQ

showed the best results in RPC latency and throughput tests for small

messages (up to 0.1MB and data model up to 100 properties), while

gRPC showed the best results in RPC latency and throughput tests

for big messages.

GENERAL CONCLUSIONS 119

4.2. Kafka and RabbitMQ showed the best throughput results in the most

loaded conditions: requested by more than 100 clients at the same

time and processing 1,000,000 characters of messages. However, the

latency of RPC was high, more than one second.

4.3. With the smallest request and response message size, HTTP Rest is

the recommended communication technology when message size is

a crucial criterion for selection.

4.4. Given its minimal storage requirements, the gRPC library is the cor-

rect choice for microservices operating in environments with limited

storage capacity.

4.5. As RabbitMQ and Kafka utilise the least amount of memory, they

are the recommended choices for implementation when memory size

is a critical criterion.

5. The monolith database migration to a multi-model polyglot persistence

based on microservices was proposed, executed as a proof-of-concept,

and evaluated by domain and IT experts. Fleiss’ kappa κ inter-rater agree-

ment was used to assess the agreement among the experts (Fleiss et al.,

2003). The coefficient value was 0.77, which indicates a relatively high

level of agreement between the experts. The research results showed that

the proposed approach could be used to conduct data storage migration

from a monolith to a microservice architecture and improve the quality of

the consistency, understandability, availability, and portability attributes.

Moreover, it is expected that research results could inspire researchers and

practitioners toward further work aimed at improving and automating the

proposed approach.

121

References

Al–Debagy, O., & Martinek, P. (2018). A comparative review of microservices and mon-

olithic architectures. In Proceedings of IEEE 18th International Symposium on Computa-

tional Intelligence and Informatics – CINTI (pp. 149–154). https://doi.org/
10.1109/CINTI.2018.8928192

Anand, M. (2021). Microservices and the Data Layer – a New IDC InfoBrief. https://re-

dis.com/blog/microservices–and–the–data–layer–new–idc–infobrief/

Andrawos, M. (2018). Modern cloud native architecture: What you need to know about

micro–services, containers and serverless. http://superuser.openstack.org/articles/modern–

cloud–native–architecture–what–you–need–to–know–about–micro–services–containers–and–serv-

erless/

ArrangoDB. (2023). ArangoDB. https://www.arangodb.com

Atchison, L. (2018). Microservice Architectures: What They Are and Why You Should Use

Them. https://blog.newrelic.com/technology/microservices–what–they–are–why–to–use–them/

Azarny, I. (2017). CI/CD for Containerized Microservices. https://dzone.com/articles/cicd–

for–containerised–microservices

Azevedo, L. G., Ferreira RD, S., Silva VT, D., de Bayser, M., Soares, E. F. D. S., & Thi-

ago, R. M. (2019). Geological Data Access on a Polyglot Database Using a Service Ar-

chitecture. In Proceedings of the XIII Brazilian Symposium on Software Components, Ar-

chitectures (pp. 103–112). https://doi.org/10.1145/3357141.3357603

https://redis.com/blog/microservices-and-the-data-layer-new-idc-infobrief/
https://redis.com/blog/microservices-and-the-data-layer-new-idc-infobrief/
http://superuser.openstack.org/articles/modern-cloud-native-architecture-what-you-need-to-know-about-micro-services-containers-and-serverless/
http://superuser.openstack.org/articles/modern-cloud-native-architecture-what-you-need-to-know-about-micro-services-containers-and-serverless/
http://superuser.openstack.org/articles/modern-cloud-native-architecture-what-you-need-to-know-about-micro-services-containers-and-serverless/
https://www.arangodb.com/
https://blog.newrelic.com/technology/microservices-what-they-are-why-to-use-them/
https://dzone.com/articles/cicd-for-containerised-microservices
https://dzone.com/articles/cicd-for-containerised-microservices

122 REFERENCES

Azevedo, L. G., Ferreira, R. S., Silva, V. T., Bayser, M., Soares, E. F. de S., & Thiago, R.

M. (2019). Geological Data Access on a Polyglot Database Using a Service Architecture.

In Proceedings of the XIII Brazilian Symposium on Software Components, Architectures,

and Reuse (pp. 103–112). https://doi.org/10.1145/3357141.3357603

Balalaie, O., Heydarnoori, A., & Jamshidi, P. (2016). Microservice architecture enables

DevOps. Journal of IEEE Software, 33(3), 42–52. https://doi.org/10.1109/MS.2016.64

Bandhamneni, N. (2018). Inter-service communication in Microservices. https://walk-

ingtreetech.medium.com/inter-service-communication-in-microservices-c54f41678998

Banijamali, A., Kuvaja, P., Oivo, M., & Jamshidi, P. (2020). Kuksa: Self–adaptive micro-

services in automotive systems in Product–Focused Software Process Improvement. In

International Conference on Product-Focused Software Process Improvement (pp. 367–

384). Springer, Cham. https://doi.org/10.1007/978-3-030-64148-1_23

Benchmarkdotnet community. (2023). Benchmarkdotnet. https://benchmarkdotnet.org/arti-

cles/overview.html

Beni, E. H., Lagaisse, B., & Joosen, W. (2019). Infracomposer: Policy–driven adaptive

and reflective middleware for the cloudification of simulation & optimization workflows.

Journal of Systems Architecture, 95, 36–46. https://doi.org/10.1016/j.sysarc.2019.03.001

Biswas, R., Xiaoyi, L., & Panda D. K. (2018). Designing a Micro–Benchmark Suite to

Evaluate gRPC for TensorFlow: Early Experiences. In Proceedings of The Ninth Work-

shop on Big Data Benchmarks, Performance, Optimization and Emerging Hardware.
https://doi.org/10.48550/arXiv.1804.01138

Blanch, R. (2017). Microservices: Strategies for Migration in a Brownfield Environment.
https://medium.com/@rhettblanch_48135/microservices-strategies-for-migration-in-a-brownfield-

environment-6c14335a8069

Blinowski, G., Ojdowska, A., & Przybyłek, A. (2022). Monolithic vs. Microservice Ar-

chitecture: A Performance and Scalability Evaluation. Journal of IEEE Access, 10,

20357–20374. https://doi.org/10.1109/ACCESS.2022.3152803

Brewer, E. A. (2000). Towards robust distributed systems. In Proceedings of the Sympo-

sium on Principles of Distributed Computing (PODC).
https://doi.org/10.1145/343477.343502

Brito, G., & Valente, M. (2020). Microservices. REST vs GraphQL: A Controlled Exper-

iment. In Proceedings of 2020 IEEE International Conference on Software Architecture

(pp. 81–91). https://doi.org/10.1109/ICSA47634.2020.00016

Brown, K., & Bobby, W. (2016). Implementation patterns for microservices architectures.

In Proceedings of the Pattern Language of Programs Conference (pp. 1–35), Allerton

Park.

Carrasco, A., Bladel, B. V., & Demeyer, S. (2018). Migrating towards Microservices: Mi-

gration and Architecture Smells. In Proceedings of the 2nd International Workshop on

Refactoring (pp. 1–6). https://doi.org/0.1145/3242163.3242164

https://walkingtreetech.medium.com/inter-service-communication-in-microservices-c54f41678998
https://walkingtreetech.medium.com/inter-service-communication-in-microservices-c54f41678998
https://benchmarkdotnet.org/articles/overview.html
https://benchmarkdotnet.org/articles/overview.html

REFERENCES 123

Carrasco, A., Bladel, B., & Demeyer, S. (2018). Migrating towards microservices: Migra-

tion and architecture smells. In Proceedings of the 2nd International Workshop on Refac-

toring (pp. 1–6). https://doi.org/10.1145/3242163.3242164

Carvalho, L., Garcia, A., Assunção, W., Mello, R., & de Lima, M.J. (2019). Analysis of

the criteria adopted in industry to extract micro–services. In Proceedings of the 2019

IEEE/ACM Joint 7th International Workshop on Conducting Empirical Studies in Indus–

try (CESI) and 6th International Workshop on Software Engineering Research and Indus-

trial Practice (pp. 22–29). https://doi.org/10.1109/CESSER–IP.2019.00012

Cerny, T., Donahoo, M., & Trnka, M. (2018). Contextual understanding of microservice

architecture: current and future directions. Journal of ACM SIGAPP Applied Computing

Review, 17, 29–45. https://doi.org/10.1145/3183628.3183631

Chawla, H., & Kathuria, H. (2019) Building Microservices Applications on Microsoft Az-

ure. Apress.

Chen, R., Li, S., & Li, Z. (2017). From Monolith to Microservices: A Dataflow–Driven

Approach. In Proceedings of 24th Asia-Pacific Software Engineering Conference –

APSEC (pp. 466–475). https://doi.org/10.1109/APSEC.2017.53

Columbus, L. (2019). IDC Top 10 Predictions for Worldwide IT.
https://www.forbes.com/sites/louiscolumbus/2018/11/04/idc–top–10–predictions–for–worldwide–

it–2019/?sh=5e55583c7b96.

Cruz, P., Astudillo, H., Hilliard, R., & Collado, M. (2019). Assessing Migration of a 20–

Year–Old System to a Micro–Service Platform Using ATAM. In Proceedings of the 2019

IEEE International Conference on Software Architecture Companion (pp. 174–181).
https://doi.org/10.1109/ICSA–C.2019.00039

Dave, A., & Degioanni, L. (2016). The Five Principles of Monitoring Microservices.
https://thenewstack.io/five–principles–monitoring–microservices/

Davoudian, A., Chen, L., & Liu, M. (2018). A Survey on NoSQL Stores. Journal of ACM

Computing Surveys, 51, 1–43. https://doi.org/10.1145/3158661

Dayaratna, A. (2019). Key Considerations for Application Transformation and Moderni-

zation Using Microservices. https://www.idc.com/getdoc.jsp?containerId=US45714619

DB-ENGINES. (2023). DB–Engines Ranking. https://db–engines.com/en/ranking

De Camargo, A., Salvadori, I., Mello, R. D. S., & Siqueira, F. (2016). An architecture to

automate performance tests on microservices. In Proceedings of the 18th International

Conference Web–Based Applied Services (pp. 422–429). https://doi.org/
10.1145/3011141.3011179

Dehghani, Z. (2018). How to break a Monolith into Microservices. https://martin-

fowler.com/articles/break–monolith–into–microservices.html

Douglass, M. (2018). Understanding Microservices: From Idea to Starting Line.
https://medium.freecodecamp.org/microservices–from–idea–to–starting–line–ae5317a6ff02

https://www.forbes.com/sites/louiscolumbus/2018/11/04/idc-top-10-predictions-for-worldwide-it-2019/?sh=5e55583c7b96
https://www.forbes.com/sites/louiscolumbus/2018/11/04/idc-top-10-predictions-for-worldwide-it-2019/?sh=5e55583c7b96
https://thenewstack.io/five-principles-monitoring-microservices/
https://www.idc.com/getdoc.jsp?containerId=US45714619
https://db–engines.com/en/ranking
https://martinfowler.com/articles/break-monolith-into-microservices.html
https://martinfowler.com/articles/break-monolith-into-microservices.html
https://medium.freecodecamp.org/microservices-from-idea-to-starting-line-ae5317a6ff02

124 REFERENCES

Esposte, A.M., Kon, F., Costa, F.M., & Lago, N. (2017). InterSCity: A Scalable Micro-

service–Based Open Source Platform for Smart Cities. In Proceedings of the 6th Interna-

tional Conference on Smart Cities and Green ICT Systems (pp. 35–46).
https://doi.org/10.5220/0006306200350046

Fan, C., & Ma, S. (2017). Migrating Monolithic Mobile Application to Microservice Ar-

chitecture: An Experiment Report. In Proceedings of the 2017 IEEE International Con-

ference on AI & Mobile Services (pp. 109–112). https://doi.org/10.1109/AIMS.2017.23

Fernandes, J., Lopes, I., & Rodrigues, J. (2013). Performance evaluation of RESTful web

services and AMQP protocol. In Proceedings of International Conference on Ubiquitous

and Future Networks (pp. 810–514). https://doi.org/10.1109/ICUFN.2013.6614932

Fleiss, J. L., Levin, B., & Paik, M. C. (2003). Statistical methods for rates and proportions

(3rd ed.). John Wiley & Sons.

Fowler, M., & Lewis, J. (2014). Microservices. http://martinfowler.com/articles/micro-

services.html

Francesco, P. D., Lago, P., & Malavolta, I. (2018). Migrating towards microservice archi-

tectures: An industrial survey. In Proceedings of the International conference on software

architecture - IEEE (pp. 29–2909). https://doi.org/10.1109/ICSA.2018.00012

Francesco, P., Malavolta, I., & Lago, P. (2017). Research on Architecting Microservices:

Trends, Focus, and Potential for Industrial Adoption. In Proceedings of International Con-

ference on Software Architecture (pp. 21–30). https://doi.org/10.1109/ICSA.2017.24

Fritzsch, J., Bogner, J., Zimmermann, A., & Wagner, S. (2018). From monolith to micro-

services: A classification of refactoring approaches. In International Workshop on Soft-

ware Engineering Aspects of Continuous Development and New Paradigms of Software

Production and Deployment (pp. 128–141). Springer, Cham. https://doi.org/10.1007/978-3-

030-06019-0_10

Furda, A., Fidge, C., Zimmermann, O., Kelly, W., & Barros, A. (2018). Migrating Enter-

prise Legacy Source Code to Microservices. Journal of IEEE Software, 35, 63–72.
https://doi.org/10.1109/MS.2017.440134612

Furda, A., Fidge, C., Zimmermann, O., Kelly, W., & Barros, A. (2018). Migrating Enter-

prise Legacy Source Code to Microservices: On Multitenancy, Statefulness, and Data

Consistency. Journal of IEEE Software, 35, 63–72.
https://doi.org/10.1109/MS.2017.440134612

Galbraith, K. (2019). 3 methods for microservice communication.
https://blog.logrocket.com/methods-for-microservice-communication/

Ghofrani, J., & Bozorgmehr, A. (2019). Migration to microservices: Barriers and solutions

in Applied Informatics. In Proceedings of Second International Conference - ICAI 2019

(pp. 269–281). https://doi.org/10.1007/978-3-030-32475-9_20

Gouigoux, J. P., & Tamzalit, D. (2017). From Monolith to Microservices: Lessons

Learned on an Industrial Migration to a Web Orient–ed Architecture. In Proceedings of

the 2017 IEEE International Conference on Software Architecture Workshops (pp. 62–

65). https://doi.org/10.1109/ICSAW.2017.35

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://blog.logrocket.com/methods-for-microservice-communication/

REFERENCES 125

GraphQL. (2023). GraphQL – A query language for your API. https://www.graphql.org

gRPC. (2023). gRPC – A High–Performance, Open–Source Universal RPC Framework.

https://www.grpc.io.

Hartig, O., & Perez J. (2017). Microservices. An Initial Analysis of Facebook's GraphQL

Language. AMW.

Hasselbring, W., & Steinacker, G. (2017). Microservice Architectures for Scalability,

Agility and Reliability in E–Commerce. In Proceedings of the 2017 IEEE International

Conference on Software Architecture Workshops (pp. 243–246).
https://doi.org/10.1109/ICSAW.2017.11

Hong, X., Yang, H., & Kim, Y. (2018). Performance Analysis of RESTful API and Rab-

bitMQ for Microservice Web Application. In Proceedings of 2018 International Confer-

ence on Information and Communication Technology Convergence (pp. 257–259)..
https://doi.org/10.1109/ICTC.2018.8539409

Kalske, M., Mäkitalo, N., & Mikkonen, T. (2017). Challenges when moving from mono-

lith to microservice architecture. In International Conference on Web Engineering (pp.

32–47). Springer, Cham. https://doi.org/10.1007/978-3-319-74433-9_3

Karwowski, W., Rusek, M., Dwornicki, G., & Orłowski, A. (2018). Swarm based system

for management of containerized microservices in a cloud consisting of heterogeneous

servers. In Proceedings of 38th International Conference on Information Systems Archi-

tecture and Technology – ISAT 2017 (pp. 262–271). Springer, Cham.
https://doi.org/10.1007/978-3-319-67220-5_24

Khine, P. P., & Wang, Z. (2019). A Review of Polyglot Persistence in the Big Data World.

Journal of Information, 10, 1-141. https://doi.org/10.3390/info10040141

Knoche, H., & Hasselbring, W. (2018). Using Microservices for Legacy Software Mod-

ernization. Journal of IEEE Software, 35, 44–49. https://doi.org/10.1109/MS.2018.2141035.

Knoche, H., & Hasselbring, W. (2019). Drivers and Barriers for Microservice Adoption—

A Survey among Professionals in Germany. Journal of Enterprise Modelling and Infor-

mation Systems Architectures. (EMISAJ)–Int. J. Concept, 14, 1–35.

https://doi.org/10.18417/emisa.14.1

Koltovich, S. (2017). How to Modernize Legacy Applications for a Microservices–Based

Deployment. https://thenewstack.io/modernize–legacy–applications–keep–update–re–write–

needs–re–written/

Krishnan, G. (2002). IBM Mainframe Database Overview and Evolution of DB2 as Web

Enabled Scalable Server. Journal of Datenbank–Spektrum, 3, 6–14.

Krylovskiy, A., Jahn, M., & Patti, E. (2015). Designing a Smart City Internet of Things

Platform with Microservice Architecture. In Proceedings of the 2015 3rd International

Conference on Future Internet of Things and Cloud (pp. 25–30).
https://doi.org/10.1109/FiCloud.2015.55

https://www.graphql.org/
https://www.grpc.io/
https://doi.org/10.3390/info10040141
https://thenewstack.io/modernize-legacy-applications-keep-update-re-write-needs-re-written/
https://thenewstack.io/modernize-legacy-applications-keep-update-re-write-needs-re-written/

126 REFERENCES

Kwiecen, A. (2019). 10 companies that implemented the microservice architecture and

paved the way for others. https://www.divante.com/blog/10–companies–that–implemented–the–

microservice–architecture–and–paved–the–way–for–others

Laigner, R., Zhou, Y., Salles, M. A. V.; Liu, Y., & Kalinowski, M. (2021). Data Manage-

ment in Microservices: State of the Practice, Challenges, and Research Directions. In Pro-

ceedings of the Proceedings of the VLDB Endowment, 14, (pp. 3348–3361).
https://doi.org/10.14778/3484224.3484232

Lenarduzzi, V., & Sievi-Korte, O. (2018). On the negative impact of team independence

in microservices software development. In Proceedings of the 19th International Confer-

ence on Agile Software Development: Companion (pp. 1–4).
https://doi.org/10.1145/3234152.3234191

Lenarduzzi, V., Lomio, F., Saarimäki, N., & Taibi, D. (2020). Does migrating a monolithic

system to microservices decrease the technical debt? Journal of Systems and Software,

169. https://doi.org/10.1016/j.jss.2020.110710

Levcovitz, A., Terra, R., & Valente, M. T. (2015). Towards a Technique for Extracting

Microservices from Monolithic Enterprise Systems. In Proceedings of the 3rd Brazilian

Workshop on Software Visualization, Evolution and Maintenance (pp. 97–104).
https://doi.org/10.48550/arXiv.1605.03175

Levcovitz, A., Terra, R., & Valente, M. T. (2016). Towards a Technique for Extracting

Microservices from Monolithic Enterprise Systems. In Proceedings of 3rd Brazilian

Workshop on Software Visualization, Evolution and Maintenance (pp. 97–104).
https://doi.org/10.48550/arXiv.1605.03175

Linthicum, D. (2018). From containers to microservices: Modernizing legacy applica-

tions. https://techbeacon.com/enterprise–it/containers–microservices–modernizing–legacy–appli-

cations

Lotz, J., Vogelsang, A., Benderius, O., & Berger, C. (2019). Microservice Architectures

for Advanced Driver Assistance Systems: A Case–Study. In Proceedings of the 2019

IEEE International Conference on Software Architecture Companion (pp. 45–52).
https://doi.org/10.1109/ICSA–C.2019.00016

Luz, W., Agilar, E., Oliveira, M. S., Melo, C. E. R., Pinto, G., & Bonifácio, R. (2018). An

Experience Report on the Adoption of Micro–services in Three Brazilian Government

Institutions. In Proceedings of the XXXII Brazilian Symposium on Software Engineering

(pp. 32–41). https://doi.org/10.1145/3266237.3266262

Mayer, B., & Weinreich, R. (2018). An Approach to Extract the Architecture of Micro-

service–Based Software Systems. In Proceedings of 2018 IEEE Symposium on Service–

Oriented System Engineering (SOSE). https://doi.org/10.1109/SOSE.2018.00012

Mazlami, G., Cito, J., & Leitner, P. (2017). Extraction of Microservices from Monolithic

Software Architectures. In Proceedings of 2017 IEEE International Conference on Web

Services (pp. 524–531). https://doi.org/10.1109/ICWS.2017.61.

https://www.divante.com/blog/10-companies-that-implemented-the-microservice-architecture-and-paved-the-way-for-others
https://www.divante.com/blog/10-companies-that-implemented-the-microservice-architecture-and-paved-the-way-for-others
https://doi.org/10.48550/arXiv.1605.03175
https://techbeacon.com/enterprise-it/containers-microservices-modernizing-legacy-applications
https://techbeacon.com/enterprise-it/containers-microservices-modernizing-legacy-applications

REFERENCES 127

Mazlami, G., Cito, J., & Leitner, P. (2017). Extraction of Microservices from Monolithic

Software Architectures. In Proceedings of the 2017 IEEE International Conference on

Web Services (pp. 524–531). https://doi.org/10.1109/ICWS.2017.61

Mazzara, M., Dragoni, N., Bucchiarone, A., Giaretta, A., Larsen, S. T., & Dustdar, S.

(2018). Microservices: Migration of a Mission Critical System. Journal of IEEE Transac-

tions on Services Computing, 14, 1464–1477. https://doi.org/10.48550/arXiv.1704.04173

Meier, A., & Kaufmann, M. (2018). SQL & NoSQL Databases: Models, Languages, Con-

sistency Options and Architectures for Big Data Management. Springer.
https://doi.org/10.1007/978–3–658–24549–8

Melendez C., & McAllister, D. (2018). Microservices Logging Best Practices.
https://dzone.com/articles/microservices–logging–best–practices

Messina, A., Rizzo, R., Storniolo, P., & Urso, A. (2016). A Simplified Database Pattern

for the Microservice Architecture. In Proceedings of the Conference: DBKDA 2016, The

Eighth International Conference on Advances in Databases, Knowledge, and Data Appli-

cations (pp. 223–233). https://doi.org/10.13140/RG.2.1.3529.3681

Microsoft, (2020). Communication in a microservice architecture. https://docs.mi-

crosoft.com/en–us/dotnet/architecture/microservices/architect–microservice–container–applica-

tions/communication–in–microservice–architecture

Microsoft. (2022). Code metrics values. https://learn.microsoft.com/en-us/visualstudio/code-

quality/code-metrics-values?view=vs-2022

Microsoft. (2023). C Sharp documentation. https://docs.microsoft.com/en–us/dotnet/csharp

Microsoft. (2023). NuGet. https://www.nuget.org

Microsoft. (2023). Visual Studio. https://visualstudio.microsoft.com

Mishra, M., Kunde, S., & Nambiar, M. (2017). Cracking the Monolith: Challenges in Data

Transitioning to Cloud Native Architectures. In Proceedings of the 12th European Con-

ference on Software Architecture: Companion Proceedings (pp. 1–4).
https://doi.org/10.1145/3241403.3241440

Mishra, M., Kunde, S., & Nambiar, M. (2018). Cracking the Monolith: Challenges in Data

Transitioning to Cloud Native Architectures. In Proceedings of the 12th European Con-

ference on Software Architecture: Companion Proceedings (pp. 1–4).
https://doi.org/10.1109/MS.2017.440134612

Mohamed, D., Mezouari, A., Faci, N., Benslimane, D., Maamar, Z., & Fazziki, A. (2021).

A multi–model based microservices identification approach. Journal of Systems Architec-

ture, 118. https://doi.org/10.1016/j.sysarc.2021.102200

Montesi, F., & Weber, J. (2016). Circuit Breakers, Discovery, and API Gateways in Mi-

croservices. Journal of ArXiv, abs/1609.05830. https://doi.org/10.48550/arXiv.1609.05830

Mulesoft, (2023). https://www.mulesoft.com/resources/api/microservices–devops–bet-

ter–together. https://www.mulesoft.com/resources/api/microservices–devops–better–together

https://doi.org/10.1007/978-3-658-24549-8
https://dzone.com/articles/microservices-logging-best-practices
https://docs.microsoft.com/en–us/dotnet/architecture/microservices/architect–microservice–container–applications/communication–in–microservice–architecture
https://docs.microsoft.com/en–us/dotnet/architecture/microservices/architect–microservice–container–applications/communication–in–microservice–architecture
https://docs.microsoft.com/en–us/dotnet/architecture/microservices/architect–microservice–container–applications/communication–in–microservice–architecture
https://docs.microsoft.com/en–us/dotnet/csharp
https://www.nuget.org/
https://visualstudio.microsoft.com/
https://www.mulesoft.com/resources/api/microservices-devops-better-together

128 REFERENCES

Nayak, A., Poriya, A., & Poojary, D. (2013). Type of NoSQL databases and its compari-

son with relational databases. International Journal of Applied Information Systems, 5,

16–19. https://doi.org/10.5120/ijais12-450888

NBomber. (2023). NBomber. https://nbomber.com/docs/overview/

Newman, S. (2019). Monolith to Microservices. Evolutionary Patterns to Transform Your

Monolith, 1st ed. O’Reilly Media.

Ntentos, E., Zdun, U., Plakidas, K., Meixner, S., & Geiger, S. (2020). Assessing Archi-

tecture Conformance to Coupling–Related Patterns and Practices in Microservices. In

Proceedings of European Conference on Software Architecture (pp. 3–20). L'Aquila.
https://doi.org/10.1007/978–3–030–58923–3_1

Olofson, C., & Chen, G. (2021). The Impact of Application Modernization on the Data

Layer. https://redis.com/docs/application–modernizaton–impact–on–data–layer/

Pozdniakova, O., & Mažeika, D. (2017). A cloud software isolation and crossplatform

portability methods. In Proceedings of Open Conference of Electrical, Electronic and In-

formation Sciences - eStream (pp. 1–6). https://doi.org/10.1109/eStream.2017.7950315.

Pozdniakova, O., & Mažeika, D. (2017). Systematic Literature Review of the Cloud–ready

Software Architecture. Journal of Modern Computing, 5, 124–135.
https://doi.org/10.22364/bjmc.2017.5.1.08

Rajasekharaiah, C. (2021). Case Study: Energence. In Book Cloud-Based Microservices

(pp. 1–12). Apress. https://doi.org/10.1007/978-1-4842-6564-2_1

Ramin, F., Matthies, C., & Teusner, R. (2020). More than code: Contributions in scrum

software engineering teams. In Proceedings of IEEE/ACM 42nd International Conference

on Software Engineering Workshops (pp. 137–140).
https://doi.org/10.1145/3387940.3392241

Richter, D., Konrad, M., Utecht, K., & Polze, A. (2017). Highly–Available Applications

on Unreliable Infrastructure: Microservice Architectures in Practice. In Proceedings of

2017 IEEE International Conference on Software Quality, Reliability and Security Com-

panion (pp. 130–137). https://doi.org/10.1109/TSC.2018.2889087

Rosendahl, H. (2016). Containers vs Virtual Machines (vms) – A Security Perspective.
https://neuvector.com/container–security/containers–vs–virtual–machines–vms/

Serra, J. (2015). What is Polyglot Persistence? https://www.jamesserra.com/ar-

chive/2015/07/what–is–polyglot–persistence/

Shah, C., Srivastava, K., & Shekokar, N.M. (2016). A novel polyglot data mapper for an

E–Commerce business model. In Proceedings of the 2016 IEEE Conference on e–Learn-

ing, e–Management and e–Services (pp. 40–45). https://doi.org/10.1109/IC3e.2016.8009037

Sharma, V., & Dave, M. (2012). SQL and NoSQL Databases. International Journal of

Advanced Research in Computer Science and Software Engineering, 12, 467–471.
https://doi.org/10.1145/3158661

https://nbomber.com/docs/overview/
https://redis.com/docs/application-modernizaton-impact-on-data-layer/
https://neuvector.com/container-security/containers-vs-virtual-machines-vms/
https://www.jamesserra.com/archive/2015/07/what–is–polyglot–persistence/
https://www.jamesserra.com/archive/2015/07/what–is–polyglot–persistence/

REFERENCES 129

Singhal, H., Saxena, A., Mittal, N., Dabas, C., & Kaur, P. (2021). Polyglot Persistence for

Microservices–Based Applications. Journal of Information Technologies and Systems Ap-

proach, 14, 17–32. https://doi.org/10.4018/IJITSA.2021010102

Smid, A., Wang, R., & Cerny, T. (2019). Case study on data communication in micro-

service architecture. In Proceedings of the Conference on Research in Adaptive and Con-

vergent Systems (pp. 261–267), Chongqing, China. https://doi.org/10.1145/3338840.3355659

Soldani, J., Tamburri, D. A., & Van Den Heuvel, W. J. (2018). The pains and gains of

microservices: A Systematic grey literature review. Journal of System Software, 146, 215–

232. https://doi.org/10.1016/j.jss.2018.09.082

Soroko, A. (2017). Cloud Foundry Deployment Metrics That Matter Most. https://www.al-

toros.com/blog/cloud–foundry–deployment–metrics–that–matter–most/

Štefanko, M., Chaloupka, O., & Rossi, B. (2019). The saga pattern in a reactive micro-

services environment. In Proceedings of International Conference on Software and Data

Technologies (pp. 483–490). https://doi.org/10.5220/0007918704830490

Taibi, D., Lenarduzzi, V., & Pahl, C. (2020). Architectural Patterns for Microservices: A

Systematic Mapping Study. In Proceedings of International Conference on Cloud Com-

puting and Services Science (pp.100–104). https://doi.org/10.5220/0006798302210232

Terzic, B., & Dimitrieski, V. (2018). A model–driven approach to microservice software

architecture establishment. In Proceedings of 2018 Federated Conference on Computer

Science and Information Systems (pp. 73 –80). https://doi.org/10.15439/2018F370

Trivedi, K., Shah, S., & Srivastava, K. (2018). An Efficient E–Commerce Design by Im-

plementing a Novel Data Mapper for Polyglot Persistence. In Proceedings of 2nd Inter-

national Conference on Advanced Computing Technologies and Applications - ICACTA

2020 (pp. 149–156). https://doi.org/10.1007/978-981-15-3242-9_15

Vennaro, N. (2017). How to introduce microservices in a legacy environment.
https://www.infoworld.com/article/3237175/how–to–introduce–microservices–in–a–legacy–envi-

ronment.html

Viennot, N., Lécuyer, M., Bell, J., Geambasu, R., & Nieh, J. (2015). Synapse: A micro-

services architecture for heterogeneous–database web applications. In Proceedings of the

10th European Conference on Computer Systems (pp. 1–16).
https://doi.org/10.1145/2741948.2741975

Villaça, L. H., Azevedo, L. G., & Siqueira, S. W. (2020). Microservice Architecture for

Multistore Database Using Canonical Data Model. In Proceedings of the XVI Brazilian

Symposium on Information Systems, São Bernardo do Campo (pp. 1–8).
https://doi.org/10.1145/3411564.3411629

Walsh, K., & Manferdelli, J. (2017). Mechanisms for Mutual Attested Microservice Com-

munication. In Proceedings of the 10th International Conference on Utility and Cloud

Computing (pp. 59–64). https://doi.org/10.1145/3147234.3148102

Wang, Y., Kadyala, H., & Rubin, J. (2020). Promises and Challenges of Microservices:

An Exploratory Study. Journal of Empirical Software, 26(4), 1–44.

https://doi.org/10.1007/s10664–020–09910–y.

https://doi.org/10.1016/j.jss.2018.09.082
https://www.altoros.com/blog/cloud-foundry-deployment-metrics-that-matter-most/
https://www.altoros.com/blog/cloud-foundry-deployment-metrics-that-matter-most/
https://www.infoworld.com/article/3237175/how-to-introduce-microservices-in-a-legacy-environment.html
https://www.infoworld.com/article/3237175/how-to-introduce-microservices-in-a-legacy-environment.html
https://doi.org/10.1145/2741948.2741975

130 REFERENCES

Wiese, L. (2015). Polyglot Database Architectures. In Proceedings of the LWA 2015

Workshops: KDML, FGWM, IR, and FGDB, Trier.

Wireshark. (2023). Wireshark. https://www.wireshark.org/

Wolfart, D., Assunção, W., Silva, I., Domingos, D., Schmeing, E., Villaca, G., & Paza, D.

(2021). Modernizing Legacy Systems with Microservices: A Roadmap. In Proceedings of

the 25th International Conference on Evaluation and Assessment in Software Engineering

(pp. 149–159). https://doi.org/10.1145/3463274.3463334

Yarygina, T., & Bagge, A. (2018). Overcoming Security Challenges in Microservice Ar-

chitectures. In Proceedings of 2018 IEEE Symposium on Service–Oriented System Engi-

neering (pp. 11–20). https://doi.org/10.1109/SOSE.2018.00011

Zdepski, C., Bini, T. A., & Matos, S. N. (2018). An Approach for Modelling Polyglot

Persistence. In Proceedings of the International Conference on Information Systems

(ICEIS). https://doi.org/10.5220/0006684901200126

Zdepski, C., Bini, T. A., & Matos, S. N. (2020). PDDM: A Database Design Method for

Polyglot Persistence. American Academic Scientific Research Journal for Engineering,

Technology, and Sciences, 71(1), 136–152.

https://www.wireshark.org/
https://doi.org/10.5220/0006684901200126

131

List of Scientific Publications by the

Author on the Topic of the
Dissertation

Papers in the Reviewed Scientific Journals

Kazanavicius, J., Mazeika, D., & Kalibatiene, D. (2022). An Approach to Migrate a Mon-

olith Database into Multi–Model Polyglot Persistence Based on Microservice Architec-

ture: A Case Study for Mainframe Database. Journal of Applied Sciences, 12(12), 6189.

https://doi.org/10.3390/app12126189

Kazanavicius, J., & Mazeika, D. (2023). The Evaluation of Microservice Communication

While Decomposing Monoliths. Journal of Computing and Informatics, 42(1), 1–36.

https://doi.org/10.31577/cai_2023_1_1

Papers in Other Editions

Kazanavicius, J., & Mazeika, D. (2019). Migrating Legacy Software to Microservices Ar-

chitecture. In Proceedings of the 2019 Open Conference of Electrical, Electronic and In-

formation Sciences – eStream (pp. 1–5). https://doi.org/10.1109/estream.2019.8732170

Kazanavicius, J., & Mazeika, D. (2020). Analysis of Legacy Monolithic Software Decom-

position into Microservices. In Proceedings of the Baltic–DB&IS–Forum–DC 2020

(pp. 25–32). https://ceur-ws.org/Vol-2620/paper4.pdf

132 LIST OF SCIENTIFIC PUBLICATIONS BY THE AUTHOR ON THE TOPIC OF THE…

Kazanavicius, J., & Mazeika, D. (2023). An Approach to Migrate Legacy Monolithic Ap-

plication in Microservice Architecture. In Proceedings of the 2023 Open Conference of

Electrical, Electronic and Information Sciences – eStream (pp. 1–6). https://doi.org/

10.1109/eStream59056.2023.10135021

133

Summary in Lithuanian

Įvadas

Problemos formulavimas

Atsižvelgiant į daugybę pastaraisiais metais sėkmingai įgyvendintų projektų, naudojant

mikroservisų architektūrą, ji tapo standartu, pagal numatytuosius parametrus daugumoje

įmonių kuriant naują ir modernizuojant jau esamą programinę įrangą. Didžiosios įmonės,

tokios kaip „Amazon“, „EBay“, „Netflix“, „PayPal“, „Twitter“ ir kitos, sėkmingai perėjo

nuo monolitinės architektūros prie mikroservisų architektūros.

Mikroservisų architektūrą kombinuojant kartu su programinės įrangos kūrimo ir IT

operacijų (DevOps) praktika, pagerinamas programinės įrangos kūrimo judrumas ir lanks-

tumas. Įmonės gali greičiau pristatyti savo skaitmeninius produktus ir paslaugas labai kon-

kurencingai rinkai. Mikroservisų architektūra tampa šiuolaikinių debesų kompiuterijos

pagrindu veikiančių programinės įrangos sistemų projektavimo standartu, nes ji geriausia

išnaudoja debesų kompiuterijos privalumus. Kartu naudojant mikroservisų architektūros

ir debesų technologijas, sutrumpinamas programinės įrangos kūrimo laikas ir padidinamas

diegimo greitis.

Perkėlimas iš monolitinės architektūros į mikroservisų architektūrą yra sudėtingas

kompleksinis iššūkis, apimantis tokias problemas kaip mikroservisų identifikavimą, išei-

ties kodo išskaidymą, ryšio tarp mikroservisų užmezgimą, duomenų bazės adaptaciją, nep-

riklausomą diegimą ir kt. Mikroservisų identifikavimas ir išskyrimas iš esamos monoliti-

nės programinės įrangos yra labai sudėtinga užduotis. Pažymėtina, kad kiekviena įmonės

134 SUMMARY IN LITHUANIAN

programa yra unikali, nes buvo programuojama naudojant skirtingas programavimo kal-

bas ir technikas, skirtingas duomenų bazės ir komunikacijos technologijas. Atsižvelgiant

į tai kiekviena monolitinė programa kuria skirtingus iššūkius. Skirtingos organizacijos

taiko skirtingus perkėlimo modelius ir metodus, nes mikroservisų architektūra vis dar yra

palyginti naujas architektūrinis požiūris, o plačiai patvirtinto būdo, kaip atlikti perkėlimą

iš monolitinės programos, nėra.

Darbo aktualumas

Tarptautinės duomenų korporacijos duomenimis, 89 % iš maždaug 300 Šiaurės Amerikos

įmonių apklausos respondentų jau naudoja mikroservisų architektūrą kuriant programinę

įrangą (Olofson et al., 2021; Anand, 2021). Tarptautinė duomenų korporacija progno-

zuoja, kad 90 % visų naujų programų bus sukurtos remiantis mikroservisų architektūra.

Įmonės, siekdamos išlikti konkurencingos rinkoje, pradėjo modernizuoti savo esamas mo-

nolitines sistemas, išskaidydamos jas į mikroservisus (Francesco et al., 2018; Knoche

et al., 2018; Wang et al., 2020; Wolfart et al.)., 2021; Beni et al., 2019; Mohamed et al.,

2021).

Nors monolitinės programinės įrangos perkėlimo į mikroservisų architektūrą tema

yra nagrinėjama mokslininkų ir programinės įrangos inžinierių, tai vis dar palyginti naujas

iššūkis. Mikroservisų identifikavimas ir išeities kodo skaidymas yra plačiai išnagrinėtas,

tačiau tokios temos kaip ryšio technologijos parinkimas ir ryšio užmezgimas tarp mikro-

servisų ar duomenų bazės adaptacija prie mikroservisų architektūros yra mažai tyrinėtos.

Siekiant užpildyti šią spragą, šiame darbe pasiūlytas perkėlimo metodas, sudarytas iš trijų

pagrindinių dalių: mikroservisų identifikavimo ir išeities kodo išskaidymo metodų, komu-

nikacijos technologijos parinkimo ir duomenų bazės adaptacijos.

Tyrimo objektas

Disertacinių tyrimų objektas – taikomųjų monolitinių programų perkėlimo į mikroservisų

architektūrą metodai.

Darbo tikslas

Disertacijos tikslas – pagerinti perkėlimą iš taikomųjų monolitinių programų prie mikro-

servisų architektūros, pasiūlant naują perkėlimo metodą, kuris apima išeities kodo išskai-

dymą, ryšio užmezgimą ir duomenų bazės adaptaciją.

Darbo uždaviniai

Darbo tikslui pasiekti buvo keliami šie uždaviniai:

1. Apžvelgti mikroservisų architektūros ypatumus ir esamas monolitinės programi-

nės įrangos perkėlimo į mikroservisų architektūrą metodikas, nustatant svarbiau-

sius aspektus bei esamas spragas.

2. Ištirti monolitinės programinės įrangos išeities kodų išskaidymo būdus migruo-

jant į mikroservisų architektūrą.

3. Ištirti mikroservisų komunikacijos technologijas ir nustatyti konkrečius jų panau-

dojimo atvejus.

SUMMARY IN LITHUANIAN 135

4. Įvertinti ir pasiūlyti monolitinės duomenų bazės perkėlimą į mikroservisų archi-

tektūrą, pagrįstą daugiamodeliniu poliglotų modeliu.

5. Pasiūlyti naują metodą perėjimui iš monolitinės architektūros prie mikroservisų

architektūros, sujungiantį išeities kodo dekompoziciją, ryšio užmezgimą tarp

mikroservisų ir duomenų bazės adaptavimą mikroservisų architektūrai.

Tyrimų metodika

Nagrinėjant darbo objektą, taikyti šie metodai:

1. Atlikta sisteminė mokslinės literatūros apžvalga apie esamus monolitinės prog-

raminės įrangos perkėlimo į mikroservisų architektūrą metodus. Apibendrintos

kiekvieno metodo privalumai ir trūkumai. Nustatytos spragos komunikacijos ir

duomenų bazių srityse.

2. Eksperimentinis tyrimo metodas, pritaikytas tiriant mikroservisų architektūros

komunikacijos technologijas. Apibendrinti kiekvienos technologijos pranašumai

ir trūkumai bei nustatyti konkretūs jų panaudojimo atvejai. Visi mikroservisai

buvo parašyti naudojant C# programavimo kalbą. Delsos testai buvo atlikti nau-

dojant „BenchmarkDotNet“ biblioteką. Pralaidumo testai buvo atlikti naudojant

„NBomber“ biblioteką.

3. Konstruktyvus tyrimo metodas buvo pritaikytas kuriant ir patvirtinant siūlomą

monolitinės duomenų bazės perkėlimo į mikroservisų architektūrą metodą. Dau-

giamodelinis poliglotinis modelis buvo įgyvendintas ArangoDB duomenų bazėje

ir inkapsuliuotas mikroservise, parašytame C# programavimo kalba.

Darbo mokslinis naujumas

1. Siūlomas perkėlimo iš monolitinės programinės įrangos į mikroservisų architek-

tūrą metodas išsiskiria, nes unikaliai apima tris esminius komponentus: išeities

kodo dekompoziciją, ryšio užmezgimą tarp mikroservisų ir duomenų bazės adap-

taciją. Esami metodai dažnai suteikia ribotą aprėptį, sprendžiant tik išeities kodo

dekompozicijos problemą.

2. Pasiūlytas naujas monolitinių duomenų bazių perkėlimo į mikroservisų architek-

tūrą metodas. Perkėlimo metu esamas duomenų modelis yra transformuojamas į

daugiamodelinį poliglotinį modelį. Ši transformacija pagerina nuoseklumą, sup-

rantamumą, prieinamumą ir perkeliamumą, kartu sėkmingai išsaugant duomenų

kokybę vienuolikoje ISO/IEC 25012:2008 standarto atributų.

3. Pasiūlyti nauji išeities kodų dekompozicijos metodų ir komunikacijos technolo-

gijų vertinimo kriterijai yra pagrįsti išsamia jų privalumų ir trūkumų analize. Kri-

terijai suteikia novatorišką pagrindą pasirinkti vieną iš trijų kodo dekompozicijos

metodų ir penkių komunikacijos technologijų, įvertintų ir palygintų pagal aštuo-

nis kriterijus.

136 SUMMARY IN LITHUANIAN

Darbo rezultatų praktinė reikšmė

Pasiūlytas naujas perkėlimo metodas iš esamos monolitinės programinės įrangos į mikro-

servisų architektūrą leidžia atlikti perkėlimą remiantis trimis pagrindiniais aspektais:

išeities kodo išskaidymu, ryšio užmezgimu ir duomenų bazės transformavimu. Taikydami

siūlomą perkėlimo metodą, perkėlimo vykdytojai, atsižvelgdami į savo poreikius, gali pa-

sirinkti vieną iš trijų kodų skaidymo būdų ir vieną iš penkių komunikacijos technologijų.

Tyrimo rezultatai parodė, kad siūlomas duomenų bazės perkėlimo metodas gali būti tai-

komas duomenų bazių perkėlimui iš monolitinės į mikroservisų architektūrą ir nuosek-

lumo, suprantamumo, prieinamumo ir perkeliamumo atributų kokybei pagerinti. Be to,

autorius tikisi, kad darbo rezultatai gali paskatinti tyrėjus ir praktikus tolesniam darbui,

siekiant pagerinti ir automatizuoti siūlomą metodą.

Ginamieji teiginiai

1. Pasiūlytas perkėlimo metodas leidžia atlikti perkėlimą iš monolitinės duomenų

bazės į mikroservisų architektūrai pritaikytą daugiamodelinę poliglotinę duo-

menų bazę, neprarandant duomenų modelio kokybės vienuolikoje iš penkiolikos

ISO/IEC 25012:2008 standarto kokybės atributų, bei pagerinti nuoseklumą, sup-

rantamumą, prieinamumą ir perkeliamumą.

2. RabbitMQ ir gRPC yra tinkamiausios technologijos, jei delsa ir pralaidumas yra

pagrindiniai komunikacijos technologijos pasirinkimo kriterijai migruojant iš

monolitinės architektūros į mikroservisų architektūrą. GRPC naudojamas dveje-

tainis serializavimas pranoksta RabbitMQ perduodant sudėtingesnius praneši-

mus.

3. Kodo ir duomenų bazių elementais pagrįsti mikroservisų identifikavimo metodai

leidžia identifikuoti monolitinės programos technines funkcijas ir priskirti joms

atitinkamus kodo ir duomenų bazių komponentus, o verslo domenais pagrįsti

mikroservisų identifikavimo metodai leidžia identifikuoti mikroservisus pagal

identifikuotas verslo sritis. Mikroservisai, pagrįsti techninėmis funkcijomis, už-

tikrina didesnį detalumą.

Darbo rezultatų aprobavimas

Disertacijos tema paskelbta 2 žurnaluose, įtrauktuose į Clarivate Analytics (buv. Thomson

Reuters) Web of Science duomenų bazę ir turinčiuose citavimo rodiklį, 2 – mokslinių kon-

ferencijų pranešimų rinkiniuose. Moksliniai rezultatai buvo pristatyti 4 mokslinėse konfe-

rencijose:

− 2019 Open Conference of Electrical, Electronic and Information Sciences (eSt-

ream), 2019 m. balandžio 1 d., Vilnius, Lietuva.

− Baltic DB&IS 2020, 14th International Baltic Conference on Databases and In-

formation Systems, 2020 m. birželio 16–19 d., Talinas, Estija.

− Data Analysis Methods for Software Systems (DAMSS), 2021 m. gruodžio 2–

4 d., Druskininkai, Lietuva.

− 2023 Open Conference of Electrical, Electronic and Information Sciences (eSt-

ream), 2023 m. balandžio 27 d., Vilnius, Lietuva.

SUMMARY IN LITHUANIAN 137

Disertacijos struktūra

Disertaciją sudaro įvadas, penki pagrindiniai skyriai, bendrosios išvados, literatūros šalti-

nių sąrašas, disertacijos autoriaus publikacijų sąrašas ir santrauka lietuvių kalba. Diserta-

cijos apimtis: 162 puslapiai, 1 formulė, 74 paveikslai ir 21 lentelė.

1. Mikroservisų architektūros ir esamų perkėlimo iš
monolitinės programinės įrangos į mikroservisų architektūrą
metodų analizė

Šiame skyriuje apžvelgiama mikroservisų architektūra ir jos pranašumai bei trūkumai ly-

ginant su monolitine architektūra. Pirmiausia paaiškinami svarbiausi mikroservisų archi-

tektūros aspektai ir priežastys, kodėl įmonės siekia perkelti savo esamą monolitinę prog-

raminę įrangą. Toliau tekste pateikiama perkėlimo iš monolitinės programinės įrangos į

mikroservisų architektūrą metodų analizė. Nagrinėjami įvairūs perkėlimo metodai, patei-

kiami jų privalumai ir trūkumai. Toliau tekste apžvelgiamos įvairios komunikacijų tech-

nologijos ir būdai, tinkami mikroservisų architektūrai. Galiausiai pateikiami duomenų

bazės adaptavimo mikroservisų architektūrai literatūros analizės rezultatai.

Monolitinė architektūra yra tradicinis programinės įrangos kūrimo būdas, kai visos

funkcijos yra įtrauktos į vieną programą – vientisą autonominį vienetą. Monolitinės archi-

tektūros trūkumai yra šie: labai sunku atlikti pakeitimus, kai monolitinė programa yra labai

didelė ir sudėtinga, su kiekvienu atnaujinimu turi būti atnaujinta visa programa, bet kurio

komponento klaida gali sugadinti visą programą (Dehghani et al., 2018; Fritzsch et al.,

2018; Kalske et al., 2017). Klaidų taisymas ir naujų funkcijų įtraukimas į tokią programą

yra labai sudėtingas ir daug laiko bei resursų reikalaujantis darbas. Dėl šių monolitinės

architektūros trūkumų organizacijos pradeda ieškoti naujo architektūrinio sprendimo

(Dehghani et al., 2018). Dėl daugybės pastaraisiais metais sėkmingai įgyvendintų pro-

jektų, naudojant mikroservisų architektūrą, ši tapo standartu pagal numatytuosius para-

metrus daugumoje įmonių kuriant naują ir modernizuojant esamą programinę įrangą

(Kwiecen, 2019).

Mikroservisų architektūra – tai būdas sukurti vieną programą kaip mažų programėlių

rinkinį, kur kiekviena programėlė veikia atskirai ir palaiko ryšį su kitomis programėlėmis

lengvomis komunikacijos technologijomis, tokiomis kaip HTTP. Šios programėlės yra su-

kurtos remiantis atskiromis verslo sritimis ir yra nepriklausomai įdiegiamos visiškai auto-

matizuotais diegimo mechanizmais. Šių programėlių, kurios gali būti parašytos skirtingo-

mis programavimo kalbomis ir naudojamos skirtingos duomenų saugojimo technologijos,

centralizuotas valdymas yra minimalus (Fowler et al., 2014). Pagrindiniai trys mikroser-

visų architektūros principai yra šie: mikroservisas turi vieną atsakomybę, mikroservisas

yra autonomiškas, mikroservisas yra poliglotas (Blinowski et al., 2022).

Perkėlimas iš monolitinės architektūros į mikroservisų architektūrą yra sudėtingas ir

kompleksinis iššūkis, kurį sudaro tokios problemos kaip mikroservisų identifikavimas,

išeities kodo išskaidymas, mikroservisų komunikacijos užmezgimas, nepriklausomas die-

gimas ir kt. Vienas iš pagrindinių iššūkių šiame kontekste yra mikroservisų identifikavi-

mas monolitinių kodų bazėse (Carrasco et al., 2018; Mazlami et al., 2017; Furda et al.,

2018; Mishra et al., 2018; Linthicum, 2018). Kitas didelis iššūkis yra apibrėžti tinkamą

138 SUMMARY IN LITHUANIAN

komunikacijos technologiją. Monolitinėse programose ryšys tarp komponentų vykdomas

taikant proceso metodus arba funkcijų iškvietimus. Mikroservisų architektūra pagrįsta

programa yra paskirstyta sistema, veikianti keliuose procesuose ar taikant kelias paslau-

gas. Todėl mikroservisai turi sąveikauti naudodami tarp procesines komunikacijos tech-

nologijas (Microsoft, 2020; Cerny et al., 2018; Smid et al., 2019). Trečiasis iššūkis, duo-

menų bazės pritaikymas mikroservisų architektūrai, yra pripažįstamas kaip vienas iš

opiausių ir viena mažiausiai nagrinėtų temų perkėlimas iš monolitinės į mikroservisų ar-

chitektūrą kontekste (Laigner et al., 2021; Azevedo et al., 2019; Richter et al., 2017; Fran-

cesco et al., 2017; Knoche et al., 2019; Luz et al., 2018; Soldani et al., 2018).

Literatūros apžvalgos ir analizės metu buvo nustatytos trys pagrindinės kryptys, kaip

būtų galima realizuoti perkėlimą iš monolitinės į mikroservisų architektūrą: Duomenų

bazės elementais pagrįsta kryptis – išeities kodas, susijęs su konkrečiais duomenų bazės

elementais, pavyzdžiui, duomenų bazės lentele, turi būti pateikiamas viename mikroser-

vise. Kodo elementais pagrįsta kryptis – programų išskaidymas į mikroservisus turėtų būti

įgyvendintas remiantis išeities kodo elementais, tokiais kaip klasė ar metodas. Mikroser-

visų funkcijos turėtų būti identifikuotos ir visi atitinkami kodo elementai priskirti vienai

iš šių funkcijų. Verslo domenu pagrįsta kryptis – programa turi būti suskirstyta į mikro-

servisus pagal identifikuotas verslo sritis, kiekvienam verslo domenui turi būti atskiras

mikroservisas (Levcovitz et al., 2016; Mazlami et al., 2017; Fan et al., 2017; Chen et al.,

2017; Knoche et al., 2018).

Perkėlimo rezultatai, pasitelkiant skirtingas metodikas, buvo įvertinti ir palyginti tai-

kant įvarius kriterijus. Mikroservisų kandidatų skaičius ir mikroserviso dydis – kriterijai, nu-

rodantys, kokio dydžio ir kiek mikroservisų kandidatų galima potencialiai išgauti taikant

pasirinktą metodiką. Duomenų bazių kriterijumi įvertinama, ar metodikos gali išskaidyti

duomenų bazes monolitų skaidymo procese. Mikroservisų komunikacijos kriterijumi anali-

zuojamas mikroservisų kaip vieno sprendimo veikimas po dekomponavimo proceso. Auto-

matizavimo kriterijumi įvertinamos kiekvienos metodikos galimybės būti visiškai automati-

zuotoms. Analizuojant kriterijus technologijos ir įrankiai, pateikiama daugiau informacijos

apie tai, kaip būtų galima realizuoti metodikas ir kokias technologijas bei priemones būtų

galima taikyti. Paskutinis kriterijus, kodo kokybė, įvertina kodo kokybės poveikį perkėlimo

procese.

Kiekviena monolitinė programa yra unikali, sukurianti unikalius iššūkius. Naudoja-

mos technologijos sudėtingumas, verslo domenas, komandos dydis ar jos įgūdžiai – tai

parametrai, kurie kiekvienu atveju gali būti labai skirtingi. Kiekvienas atvejis yra skirtin-

gas ir organizacija turėtų pasirinkti, kuris metodas ar metodų rinkinys geriausiai tinka per-

kėlimui iš monolitinės į mikroservisų architektūrą. Pasirinkta metodika arba metodikų rin-

kinys turėtų turėti galimybę išgauti mikroservisus pagal pasirinktus kriterijus ir būti

suderinami su įmonės naudojamomis technologijomis. Kodo ir duomenų bazių elementais

pagrįsti mikroservisų identifikavimo metodai leidžia identifikuoti monolitinės programos

technines funkcijas ir priskirti joms atitinkamus kodo ir duomenų bazių komponentus, o

verslo domenais pagrįsti mikroservisų identifikavimo metodai leidžia identifikuoti mikro-

servisus pagal identifikuotus verslo domenus. Mikroservisai, pagrįsti techninėmis funkci-

jomis, užtikrina didesnį detalumą. Nė viena iš analizuojamų metodikų neturi išsamių nu-

rodymų, kaip turėtų būti užmezgama komunikacija tarp mikroservisų ir pritaikoma

duomenų bazė mikroservisų architektūrai. Monolitinės programos kodo kokybė turi didelę

SUMMARY IN LITHUANIAN 139

įtaką perkėlimo procesui. Kuo geresnė kokybė, tuo mažiau pastangų reikia norint pereiti

nuo monolitinės prie mikroservisų architektūros.

Apibendrinant galima teigti, kad mikroservisų architektūra turi daug pranašumų, ly-

ginant su monolitine architektūra, ir daugelyje įmonių tapo standartine architektūra kuriant

šiuolaikinę debesų kompiuterija grįstą programinę įrangą. Daugelis įmonių pradėjo mo-

dernizuoti savo esamas monolitines programas, išskaidydamos jas į mikroservisus, siek-

damos išlaikyti konkurencingumą rinkoje. Pažymėtina, kad mikroservisų architektūra yra

sudėtingas, kompleksinis ir palyginti naujas architektūros stilius. Nėra plačiai patvirtinto

būdo, kaip atlikti perkėlimą iš monolitinės architektūros į mikroservisų architektūrą. Nus-

tatyti trys pagrindiniai iššūkiai migruojant iš monolitinės į mikroservisų architektūrą: mik-

roservisų identifikavimas ir išgavimas iš monolitinių programų išeities kodų bazių, ryšio

tarp išskaidytų mikroservisų užmezgimas, duomenų bazių pritaikymas mikroservisų ar-

chitektūrai. Nors mikroservisų identifikavimas ir išgavimas iš išeities kodo yra plačiai ty-

rinėtas mokslininkų ir programinės įrangos inžinierių, tačiau komunikacijos užmezgimas

tarp mikroservisų ir duomenų bazės pritaikymas mikroservisų architektūrai vis dar yra

mažai tyrinėtas. Kiekvienas mikroservisas gali būti skirtingas įvairiais aspektais ir nėra

vienos duomenų bazės, kuri potencialiai galėtų patenkinti visus poreikius, todėl natūralu,

kad daugiamodelinė poliglotinė duomenų bazės technologija tampa puikiu pasirinkimu

siekiant išnaudoti mikroservisų architektūros teikiamos privalumus modernizuojant mo-

nolitinę duomenų bazę.

2. Perkėlimo iš monolitinės į mikroservisų architektūrą
metodas

Šiame skyriuje apžvelgiamas siūlomas perkėlimo metodas, leidžiantis perkelti esamą mo-

nolitinę programą į mikroservisų architektūrą. Perkėlimas iš monolitinės architektūros į

mikroservisų architektūrą yra sudėtingas kompleksinis iššūkis, sudarytas iš daugybės skir-

tingų problemų, tokių kaip mikroservisų identifikavimas, išeities kodo išskaidymas, mik-

roservisų komunikacijos užmezgimas, nepriklausomas diegimas, duomenų saugojimo pri-

taikymas ir kt. Skirtingai nuo kitų pasiūlytų migracijos metodų, siūlomas metodas

susideda iš trijų dalių: išeities kodo išskaidymo į mikroservisus, ryšio užmezgimo tarp

išskaidytų mikroservisų ir duomenų bazės adaptacijos prie mikroservisų architektūros. Pa-

žymėtina, jog daugumos kitų tyrimų pagrindinis dėmesys skiriamas mikroservisams iden-

tifikuoti monolitinėje programoje ir išeities kodo išskaidymui į mikroservisus. Pabrėžtina,

jog esami perkėlimo metodai pateikia labai mažai arba visai nepateikia rekomendacijų,

kaip pritaikyti duomenų saugyklą prie mikroservisų architektūros ir kaip užmegzti ryšį

tarp mikroservisų iš monolitinės architektūros į mikroservisų architektūrą perkėlimo metu.

Pagrindiniai siūlomo perkėlimo iš monolitinės architektūros į mikroservisų architek-

tūrą metodo žingsniai parodyti S2.1 paveiksle. Šį metodą sudaro penki pagrindiniai žings-

niai, kurių kiekvienas yra padalintas į keletą poveiksmių: 1 žingsnis – esamos monolitinės

programos analizė; 2 žingsnis – išeities kodo išskaidymas į mikroservisus; 3 žingsnis – ryšio

tarp išskaidytų mikroservisų užmezgimas; 4 žingsnis – duomenų bazės pritaikymas mikro-

servisų architektūrai; 5 žingsnis – išleidimas ir diegimas.

140 SUMMARY IN LITHUANIAN

S2.1 pav. Pasiūlytas migracijos iš monolitinės architektūros į mikroservisų architektūrą metodas

Pirmojo žingsnio tikslas yra išanalizuoti esamą monolitinę programą ir identifikuoti

funkcinius ir nefunkcinius reikalavimus tolesniems žingsniams. Turi būti surinkti trijų tipų

reikalavimai: išeities kodo išskaidymo, ryšio tarp mikroservisų užmezgimo ir duomenų

bazės pritaikymo mikroservisų architektūrai.

Antrame žingsnyje reikia parinkti kodo išskaidymo metodą ir juo remiantis išskaidyti

esamą monolitinę programą į mikroservisus. Taikant siūlomą metodą numatomi trys išeities

kodo išskaidymo metodai, iš kurių galima pasirinkti: išeities kodo elementais pagrįstas, duo-

menų bazės elementais pagrįstas ir verslo domenais pagrįstas. Išsamiau apie metodus ir jų

vertinimus galima rasti 1 ir 2 disertacijos skyriuose. Pagrindiniai kriterijai renkantis išeities

kodo išskaidymo metodą turėtų būti numatyti mikroservisų dydis ir atsakomybių ribos.

Pagrindinis trečiojo žingsnio tikslas yra parinkti komunikacijos technologiją ir už-

megzti ryšį tarp mikroservisų, išskaidytų iš monolitinės programos antrajame žingsnyje. Siū-

lomas metodas leidžia pasirinkti iš penkių komunikacijos technologijų: HTTP Rest,

RabbitMQ, Kafka, gRPC ir GraphQL. Taikant siūlomą metodą numatomi kriterijai, kuriais

remiantis turėtų būti parinkta komunikacijos technologija. Jei pagrindiniai kriterijai yra delsa

ir pralaidumas, tai RabbitMQ ir gRPC yra tinkamiausios technologijos. RabbitMQ labiausia

tinkama RPC žinutėms iki 0.1 MB, gRPC labiausiai tinka RPC žinutėms, turinčioms daugiau

SUMMARY IN LITHUANIAN 141

nei 10000 laukų. Kafka parodė geriausius pralaidumo rezultatus labiausiai apkrautomis są-

lygomis. Jei pranešimo dydis yra svarbus kriterijus renkantis komunikacijos technologiją,

tuomet HTTP Rest yra rekomenduojama technologija. Jei naudojamos atminties dydis yra

vienas iš esminių kriterijų, tada komunikacijai tarp mikroservisų turi būti naudojamos

RabbitMQ arba Kafka technologijos.

Ketvirtajame žingsnyje esama monolitinė duomenų bazė turi būti pritaikyta mikroser-

visų architektūrai. Pasiūlytas metodas leidžia transformuoti ir perkelti monolitinę duomenų

bazę į daugiamodelinę poliglotinę duomenų bazę. Transformuota duomenų bazė yra inkap-

suliuojama atskirame mikroservise ir priėjimas prie duomenų kitiems mikroservisams yra

leidžiamas tik per API. Siūlomas duomenų bazės migracijos metodas yra pateiktas S2.2 pa-

veiksle.

S2.2 pav. Siūlomas duomenų bazės migracijos metodas

Pirmajame duomenų bazės migracijos metodo žingsnyje, remiantis apibrėžtu esamos

monolitinės duomenų bazės modeliu, turi būti sukurtas daugiamodelinio poliglotinio patva-

rumo duomenų modelis. Pagrindiniai antrojo žingsnio tikslai yra sukurti daugiamodelinę

poliglotinę duomenų bazę ir inkapsuliuoti ją į atskirą mikroservisą. Tai leidžia įdiegti duo-

menų bazę kaip paslaugų modelį, kai duomenų bazė pati yra mikroservisas. Trečiajame

žingsnyje duomenys iš esamos monolitinės duomenų bazės turi būti transformuoti ir perkelti

į daugiamodelinę poliglotinę duomenų bazę. Paskutinio žingsnio tikslas yra transformuotų

duomenų validacija.

Paskutinio žingsnio tikslas – išleisti ir įdiegti sukurtus mikroservisus ir daugiamodelinę

poliglotinę duomenų bazę. Tai apima visus techninius ypatumus, reikalingus mikroservi-

sams ir duomenų bazei įdiegti ir paleisti.

142 SUMMARY IN LITHUANIAN

3. Mikroservisų komunikacijos tyrimas

Vienas didžiausių iššūkių pereinant nuo monolitinės architektūros prie mikroservisų ar-

chitektūros yra pasirinkti tinkamą komunikacijos technologiją. Monolitinėse programose

komunikacija tarp komponentų vykdoma naudojant funkcijų iškvietimus. Mikroservisų

architektūra pagrįsta programa yra paskirstyta sistema, veikianti keliuose procesuose, to-

dėl mikroservisai turi sąveikauti naudodami tarp procesines komunikacijos technologijas.

Šiame skyriuje įvertinamos skirtingos komunikacijos technologijos ir nustatomi konkretūs

jų taikymo atvejai, išskaidant monolitą į mikroservisus. Penkios komunikacijos technolo-

gijos, tokios kaip HTTP Rest, RabbitMQ, Kafka, gRPC ir GraphQL, buvo įvertintos ir

palygintos pagal siūlomus vertinimo kriterijus: greitaveika (delsa ir pralaidumas), žinutės

dydis, naudojamas operatyviosios atminties kiekis, naudojamas saugyklos atminties kie-

kis, paleidimo laikas, architektūra, topologija ir naudojamos bibliotekos.

Komunikacijos technologijoms įvertinti ir palyginti buvo sukurtas ir linijine topologija

sujungtas penkių mikroservisų rinkinys. Ryšiui tarp mikroservisų buvo naudojama RPC

technika. Eksperimentu buvo siekiama įvertinti ir palyginti ryšį, pagrįstą nuotoliniu pro-

cedūrų iškvietimu (RPC). RPC technika buvo pasirinkta, nes ji palaiko tą patį funkcionalumą

kaip funkcijos iškvietimas. Skirtingos žinutės buvo naudojamos eksperimento metu nustatyti

žinutės dydžio ir kompleksiškumo įtaką delsos ir pralaidumo parametrams. Visi mikroser-

visai buvo parašytos naudojant C# programavimo kalbą. Kodo rašymas ir testavimas buvo

atliktas naudojant „Microsoft Visual Studio 2022 IDE“. Delsos testai buvo atlikti naudojant

„BenchmarkDotNet“ biblioteką. Pralaidumo testai buvo atlikti naudojant „NBomber“ bib-

lioteką. Tinklo duomenys buvo išanalizuoti „Wireshark“ programa.

Geriausi delsos rezultatai žinutėms iki 1 000 000 simbolių buvo gauti naudojant

RabbitMQ technologiją (S3.1 pav.). RabbitMQ buvo 2 kartus greitesnis nei kitos technolo-

gijos. Jis parodė geriausius rezultatus apdorojant mažiausius pranešimus (10 ir 1000 simbo-

lių). HTTP Rest, Kafka, gRPC ir GraphQL rodė panašius delsos rezultatus, tačiau gRPC

gauti rezultatai buvo šiek tiek geresni. Kita vertus, RabbitMQ turėjo blogiausius delsos re-

zultatus apdorojant pranešimus, kuriuos sudarė 10 000 000 simbolių. Jis buvo nuo 3 iki 4

kartų lėtesnis nei kiti. Geriausi 10 000 000 simbolių pranešimų delsos rezultatai buvo gauti

naudojant GraphQL ir HTTP Rest technologijas. Kafka buvo 40 %, o gRPC – 16 % ir lėtes-

nis nei GraphQL ir HTTP Rest technologijos.

Mažiausio kompleksiškumo žinutėms, kuriose buvo iki 1000 laukų, geriausi delsos re-

zultatai taip pat buvo gauti naudojant RabbitMQ technologiją. RabbitMQ delsos rezultatai

buvo nuo 2 iki 3 kartų greitesni nei kitos technologijos. Geriausi rezultatai bendraujant ži-

nutėmis, kuriose buvo 10 000 laukų, buvo gauti naudojant gRPC technologiją. GRPC tech-

nologijos naudojamas dvejetainis serializavimas yra greitesnis nei JSON serializavimas, kurį

eksperimento metu naudojo kitos technologijos, todėl kuo daugiau laukų pranešimas turi,

tuo didesnis gRPC pranašumas.

10 simbolių dydžio pranešimo pralaidumo rezultatai parodyti S3.2 paveiksle. Geriausi

našumo rezultatai buvo gauti naudojant RabbitMQ technologiją, vidutinis 231,6 RPS. Mak-

simalus rezultatas – 315,1 RPS – pasiektas kreipiantis su 10 klientų. Blogiausius RPC pra-

laidumo testo rezultatus gavo HTTP Rest technologija su vidutiniu 89,8 RPS ir 140 klientų

limitu.

SUMMARY IN LITHUANIAN 143

S3.1 pav. Delsos testų rezultatai

S3.2 pav. Pralaidumo testų rezultatai 10 simbolių žinutėms

144 SUMMARY IN LITHUANIAN

Galima apibendrinti, kad geriausi RPC pralaidumo rezultatai mažesniems praneši-

mams, iki 0,1 MB ir iki 100 laukų, buvo pasiekti naudojant RabbitMQ technologiją. Geriausi

RPC pralaidumo rezultatai didesniems pranešimams buvo pasiekti naudojant gRPC ryšio

technologiją. Naudojant Kafka technologiją buvo pasiekti prasčiausi pralaidumo rezultatai –

5 iš 8 atvejų. Lėčiausia technologija, apdorojanti didžiausias žinutes, 1 000 000 simbolių,

buvo RabbitMQ.

Tačiau palyginus delsos pasiskirstymo rezultatus matyti, kad tiek Kafka, tiek

RabbitMQ technologijos gali apdoroti daugiau pranešimų (su delsa, didesne nei 1 sekundė)

ir veikia stabiliau bendradarbiaudamos su daugiau nei 50 klientų, palyginti su HTTP Rest,

gRPC ir GraphQL technologijomis.

4. Monolitinės duomenų bazės perkėlimo į daugiamodelinę
poliglotinę duomenų bazę tyrimas

Perkėlimas iš monolitinės architektūros į mikroservisų architektūrą yra sudėtingas ir

kompleksinis procesas. Vienas iš pagrindinių iššūkių yra duomenų bazės pritaikymas prie

mikroservisų architektūros. Monolitinėje architektūroje programa sąveikauja su viena

duomenų baze, o mikroservisų architektūroje duomenų saugojimas yra decentralizuotas –

kiekvienas mikroservisas veikia savarankiškai. Poliglotinė duomenų bazių technologija

puikiai tinka mikroservisų architektūrai patenkinti skirtingas, skirtingų mikroservisų duo-

menų saugojimo poreikio, ypatybes.

Šiame skyriuje įvertinamas siūlomas monolitinės duomenų bazės perkėlimo į daugia-

modelinę poliglotinę duomenų bazę, pritaikytą mikroservisų architektūrai, metodas. Perkė-

limas iš egzistuojančios monolitinės duomenų bazės į daugiamodelinę poliglotinę duomenų

bazę buvo atliktas kaip siūlomo migracijos metodo koncepcijos įrodymas. Kokybės atribu-

tai, apibrėžti standarte ISO/IEC 25012:2008, buvo naudojami vertinant ir lyginant mikroser-

visų architektūra grįstą daugiamodelinę poliglotinę ir esamą monolitinę duomenų bazes. Ty-

rimo rezultatai parodė, kad siūlomas metodas gali būti naudojamas atliekant duomenų bazės

perkėlimą iš monolitinės architektūros į mikroservisų architektūrą bei pagerinti nuoseklumo,

suprantamumo, prieinamumo ir perkeliamumo atributų kokybę.

S4.1 pav. Siūlomo duomenų bazių perkėlimo metodo tikslas

SUMMARY IN LITHUANIAN 145

Siūlomo metodo tikslas pateiktas S4.1 paveiksle. Siūlomas metodas suteikia galimybę

transformuoti ir perkelti monolitinę duomenų bazę į daugiamodelinę poliglotinę duomenų

bazę. Transformuota duomenų bazė yra inkapsuliuojama atskirame mikroservise ir priėjimas

prie duomenų kitiems mikroservisams yra leidžiamas tik per taikomųjų programų progra-

mavimo sąsają. Daugiamodelinė poliglotinė duomenų bazė leidžia geriau išnaudoti mikro-

servisų architektūros pranašumus, tokius kaip judrumas ir mastelio keitimas. Duomenų

bazės įtraukimas į mikroservisą sumažina sudėtingumą ir padidina našumą. Atlikus duo-

menų perkėlimą, jie tampa pasiekiami ne tik esamai monolitinei programai, bet ir bet kuriam

ekosistemos mikroservisui. Sukurtas duomenų pasiekiamumas, suteikia galimybę palaips-

niui dekomponuoti išeities kodą iš monolitinės į mikroservisų architektūrą.

Duomenų kokybė yra pagrindinis kriterijus, nusakantis informacinių sistemų kokybę

ir naudingumą. Verslo procesų efektyvumas tiesiogiai priklauso nuo duomenų kokybės.

Šiame skyriuje pateikiami ISO/IEC 25012:2008 standarto kokybės atributų įvertinimo ir pa-

lyginimo rezultatai tarp esamos monolitinės duomenų bazės ir mikroservisų architektūra

pagrįstos daugiamodelinės poliglotinės duomenų bazės. Kiekvienas kokybės požymis buvo

įvertintas balais nuo 1 iki 5. Mažesnė balo vertė rodo žemesnę kokybę, o didesnė balo vertė –

aukštesnę kokybę. Naudotų vertinimo balų aprašymai pateikti S4.1 lentelėje.

S4.1 lentelė. Balai, naudoti kokybės požymiams įvertinti

Vertinimas buvo atliktas organizacijos verslo srities ekspertų ir IT ekspertų forume.

Forume dalyvavo trys domeno ekspertai, keturi monolitinės programinės įrangos inžinieriai

ir keturi C# programinės įrangos inžinieriai. Buvo pateikta 150 klausimų, po 10 klausimų

kiekvienam kokybės požymiui. Kiekvienas klausimas buvo taikomas abiem duomenų

bazėms. Fleiso Kapos κ koeficientas buvo naudojamas ekspertų susitarimui įvertinti (Fleiss

et al., 2003). Koeficiento reikšmė buvo 0,77, o tai rodo gana aukštą ekspertų sutarimo lygį.

Galutiniai vertinimo ir palyginimo rezultatai pateikti S4.2 lentelėje. Galutinė kiekvienos ko-

kybės atributo vertė yra įverčių vidurkis, suapvalintas iki artimiausio sveikojo skaičiaus.

S4.2 lentelė. ISO/IEC 25012:2008 standarto kokybės atributų tarp monolitinės ir mikroservisų

duomenų bazių įvertinimo ir palyginimo rezultatai

Balo vertė Apibrėžimas

1 Žemiausia kokybė

2 Žema kokybė

3 Vidutiniška kokybė

4 Aukšta kokybė

5 Aukščiausia kokybė

Kokybės atributas Monolitas Mikroservisas

Tikslumas 5 5

Išsamumas 5 5

Nuoseklumas 3 5

Patikimumas 5 5

146 SUMMARY IN LITHUANIAN

S4.2 lentelės pabaiga

Dauguma ISO/IEC 25012:2008 standarto kokybės atributų, tokių kaip tikslumas, iš-

samumas, patikimumas, teisingumas, prieinamumas, atitiktis, konfidencialumas, efektyvu-

mas, tikslumas, atsekamumas ir atkuriamumas, buvo vienodi abiem duomenų bazėms, ta-

čiau mikroservisų architektūra pagrįstos daugiamodelinės poliglotinės duomenų bazės

parodė geresnius nuoseklumo, suprantamumo, prieinamumo ir perkeliamumo rezultatus.

Bendrosios išvados

1. Atlikta literatūros apžvalga parodė, kad mikroservisų architektūra tampa de facto

pramonės standartu kuriant naujas programas. Siekdamos išlikti konkurencingos,

įmonės pradėjo modernizuoti savo senas monolitines sistemas, išskaidydamos jas

į mikroservisus. Tačiau perėjimas nuo monolitinės architektūros prie mikroser-

visų architektūros yra sudėtingas iššūkis, kurį sudaro tokios problemos kaip mik-

roservisų identifikavimas, kodo išskaidymas, nepriklausomas diegimas ir kt.

Kiekviena įmonės programa yra unikali. Ji buvo programuojama naudojant skir-

tingas programavimo kalbas ir technologijas, buvo naudojamos skirtingos duo-

menų bazės ir komunikacijos mechanizmai, todėl tai kelia skirtingus iššūkius.

Nors monolitinės programinės įrangos perkėlimo į mikroservisų architektūrą ak-

tualijas jau tyrinėjo mokslininkai ir programinės įrangos inžinieriai, tai sudėtin-

gas ir palyginti naujas iššūkis, todėl daugelis jo dalių vis dar mažai tyrinėjamos,

pavyzdžiui: duomenų bazės pritaikymas ir komunikacijos tarp mikroservisų už-

mezgimas. Pagrindinis daugumos tyrimų dėmesys skiriamas mikroservisams i-

dentifikuoti monolitinėje programoje ir šaltinio kodui išskaidyti į mikroservisus.

2. Siekiant užpildyti spragas komunikacijos ir duomenų bazių srityse buvo pasiūly-

tas naujas perkėlimo metodas, pagrįstas eksperimentiniais tyrimais. Šis metodas

apima tris pagrindinius elementus: kodo išskaidymo būdus, ryšio sukūrimą ir

duomenų bazės pritaikymą. Inovatyvūs vertinimo kriterijai ir gairės, paimtos iš

empirinių išvadų, padeda rekomenduoti tinkamiausią kodų skaidymo metodą ir

komunikacijos technologiją, atsižvelgiant į jų privalumus ir trūkumus. Siekiant

Kokybės atributas Monolitas Mikroservisas

Teisingumas 4 4

Prieinamumas 4 4

Atitikimas 5 5

Konfidencialumas 5 5

Efektyvumas 4 4

Tikslumas 5 5

Atsekamumas 5 5

Supratimas 3 5

Prieinamumas 2 4

Perkeliamumas 1 5

Atkuriamumas 4 4

SUMMARY IN LITHUANIAN 147

palengvinti duomenų bazės perėjimą prie mikroservisų architektūros, buvo pa-

siūlytas naujas duomenų bazės perkėlimo metodas, kurį taikant naudojamas kelių

modelių poliglotinis duomenų saugojimo modelis, ir įvertintas atliekant eksperi-

mentinį vertinimą.

3. Išanalizuoti ir palyginti pasirinkti trys monolitinės architektūros programos išei-

ties kodų skaidymo į mikroservisus metodai: Duomenų bazės elementais pagrįs-

tas metodas, Kodo elementais pagrįstas metodas, Verslo domenu pagrįstas me-

todas. Pasirinktų metodų palyginimas buvo atliktas tris kartus išskaidžius tą pačią

monolitinę programą į mikroservisus, taikant visus pasirinktus metodus.

3.1. Kodo ir duomenų bazių elementais pagrįsti mikroservisų identifikavimo

metodai leidžia identifikuoti monolitinės programos technines funkcijas ir

priskirti joms atitinkamus kodo ir duomenų bazių komponentus, o verslo

domenais pagrįsti mikroservisų identifikavimo metodai leidžia identifikuoti

mikroservisus pagal identifikuotas verslo sritis. Mikroservisai, pagrįsti

techninėmis funkcijomis, užtikrina didesnį detalumą.

3.2. Verslo domenu grįstas metodas ir kodo elementais grįstas metodas su se-

mantinio susiejimo strategija turėtų būti taikomas monolitinei programai

išskaidyti į mikroservisus, paremtus atskirais verslo domenais.

3.3. Duomenų bazės elementais grįstas metodas arba kodo elementais grįstas

metodas su loginio susiejimo strategija turėtų būti taikomas, norint išskai-

dyti monolitinę programą į mikroservisus, paremtus techninėmis funkcijo-

mis.

4. Penkios komunikacijos technologijos, HTTP Rest, RabbitMQ, Kafka, gRPC ir

GraphQL, buvo įvertintos ir palygintos pagal siūlomus vertinimo kriterijus. Kiek-

vienos komunikacijos technologijos privalumai ir trūkumai buvo nustatyti mik-

roservisų architektūros kontekste.

4.1. Pereinant nuo monolitinės architektūros prie mikroservisų architektūros

pagrindiniai kriterijai yra delsa ir pralaidumas, o RabbitMQ ir gRPC yra

tinkamiausios technologijos. RabbitMQ parodė geriausius delsos ir pralai-

dumo testų rezultatus žinutėms iki 0,1 MB, o gRPC parodė geriausius re-

zultatus bendraujant žinutėmis, turinčiomis daugiau kaip 1000 laukų.

4.2. Kafka ir RabbitMQ parodė geriausius pralaidumo rezultatus labiausiai apk-

rautomis sąlygomis, tačiau delsos laikas buvo didesnis nei 1 sekundė.

4.3. HTTP Rest turi mažiausią užklausos ir atsakymo pranešimo dydį. Jei pra-

nešimo dydis yra svarbus kriterijus renkantis komunikacijos technologiją,

tada HTTP Rest yra rekomenduojama technologija.

4.4. gRPC biblioteka naudoja mažiausiai saugyklos vietos. Jei mikroservisai

veikia aplinkoje su ribota saugykla, reikia naudoti gRPC.

4.5. RabbitMQ ir Kafka naudoja mažiausią operatyviosios atminties kiekį. To-

dėl, jei operatyviosios atminties dydis yra vienas iš esminių kriterijų, diegi-

mui reikia naudoti RabbitMQ ir Kafka.

5. Pasiūlytas monolitinės duomenų bazės perkėlimas į daugiamodelinę poliglotinę

duomenų bazę, paremtas mikroservisų architektūra, atliktas kaip koncepcijos

įrodymas ir įvertintas domenų ir IT ekspertų. Ekspertų sutarimui įvertinti buvo

148 SUMMARY IN LITHUANIAN

naudojamas sutarimas tarp vertintojų Fleiss kappa κ (Fleiss et al., 2003). Koefi-

ciento reikšmė buvo 0,77, o tai rodo gana aukštą ekspertų sutarimo lygį. Tyrimo

rezultatai parodė, kad siūlomas metodas gali būti taikomas duomenų saugyklai

perkelti iš monolitinės į mikroservisų architektūrą ir nuoseklumo, nesupratimo,

prieinamumo ir perkeliamumo atributų kokybei pagerinti. Be to, tikimasi, kad

gauti rezultatai galėtų įkvėpti tyrėjus ir praktikus tolesniam darbui, siekiant pa-

gerinti ir automatizuoti siūlomą metodą.

149

Annexes

The questionnaire of the evaluation of the data quality of the proposed microservice

with multi–model polyglot persistence is provided in Tables A1.1–A1.15.

Table A1.1. Accuracy attribute questions

Nr. Question

1 Are the names and details of the items in the database correct and up-to-date?

2 Does the database provide accurate information when you search for something?

3 Are the numbers and calculations in the database correct, without errors or

miscalculations?

4 Are dates and times in the database accurate, reflecting the real-world events they

represent?

5 Do you trust the data in the database to make informed decisions?

6 Have you encountered any instances where the information in the database

contradicts real-world facts?

7 Are there mechanisms in place to prevent or correct errors in the database?

8 Can you rely on the database to give you a clear picture of what is happening in a

specific situation?

9 Have you noticed any inconsistencies or discrepancies between different parts of

the database?

10 Is there a process for regularly checking and ensuring the accuracy of the data in

the database?

150 ANNEXES

Table A1.2. Completeness attribute questions

Table A1.3. Consistency attribute questions

Nr. Question

1 Does the database contain all the necessary information you expect to find?

2 Are there any gaps or missing details in the data that you need?

3 Are there placeholders or placeholders for missing information in the database?

4 Are dates and times in the database accurate, reflecting the real-world events they

represent?

5 Has anyone encountered situations where they couldn't find the data they were

looking for?

6 Is the database regularly updated to include new and relevant information?

7 Are there any areas in the database where information seems to be lacking or

incomplete?

8 Can you trust that the data in the database gives you a full picture of a particular

situation?

9 Have you experienced instances where the database lacks details about specific

events or items?

10 Is there a process in place to identify and fill in missing information in the

database?

Nr. Question

1 Do you notice any conflicting information or contradictions within the database?

2 Are there instances where terms or units vary inconsistently throughout the

database?

3 Does the database maintain a standardized and consistent format for presenting

information?

4 Have you encountered situations where the same data appears differently in

different sections of the database?

5 Is there a clear and consistent approach to handling data across various parts of

the database?

6 Are there established rules for data entry and storage to ensure overall

consistency?

7 Does the database use consistent terminology and definitions for similar data

elements?

8 Have you observed any discrepancies in how dates and times are formatted or

recorded?

9 Is there a process in place to resolve inconsistencies and ensure data uniformity?

10 Are users provided with guidelines to maintain consistency when entering or

updating data in the database?

ANNEXES 151

Table A1.4. Credibility attribute questions

Table A1.5. Correctness attribute questions

Nr. Question

1 Can you trust the accuracy of the information stored in the database?

2 Have you encountered situations where the database provided misleading or

inaccurate data?

3 Is there a clear source or origin documented for the information in the database?

4 Are there measures in place to verify and validate the data before it is entered into

the database?

5 Does the database provide information about the reliability of its sources?

6 Are there mechanisms to identify and flag potentially unreliable or outdated

information?

7 Have users experienced instances where they questioned the trustworthiness of

the database data?

8 Is there a process to regularly review and update information to maintain

credibility?

9 Does the database follow industry standards for data quality and credibility?

10 Are there user permissions or access controls to prevent unauthorized

modifications that could impact credibility?

Nr. Question

1 Are the names and details of items in the database accurate and error-free?

2 Do calculations and numerical data in the database appear correct without

miscalculations?

3 Are dates and times accurately represented in the database, reflecting real-world

events?

4 Has the database been reliable in providing accurate information when searched

or queried?

5 Is there a process to verify and validate data before it is entered into the database?

6 Have users experienced any situations where the database contained incorrect or

misleading information?

7 Are there mechanisms in place to identify and correct errors or discrepancies in

the database?

8 Can you trust the data in the database to make informed decisions without

concerns about correctness?

9 Is there a standardized approach to data entry and storage to ensure correctness?

10 Are there regular audits or checks to ensure the overall correctness of the

information in the database?

152 ANNEXES

Table A1.6. Accessibility attribute questions

Table A1.7. Compliance attribute questions

Nr. Question

1 Can authorized users easily access the database when needed?

2 Is the interface of the database user-friendly for individuals with varying technical

backgrounds?

3 Are there restrictions or barriers preventing certain users from accessing specific

data?

4 Can the database be accessed from different devices or locations without

difficulty?

5 Is there a support system in place to assist users with accessing and navigating the

database?

6 Are there clear guidelines on how to request access or permissions for specific

database features?

7 Does the database provide options for accessibility features, such as screen

readers or keyboard navigation?

8 Have users experienced any challenges in accessing specific functionalities within

the database?

9 Is there a process for securely sharing or distributing relevant information from

the database to authorized users?

10 Are there measures in place to protect sensitive data and ensure secure access to

the database?

Nr. Question

1 Does the database adhere to relevant legal regulations and industry standards?

2 Are there documented policies outlining the compliance requirements for the

database?

3 Has the database undergone audits or assessments to ensure compliance with

standards?

4 Are there mechanisms in place to monitor and address changes in compliance

regulations?

5 Does the database provide clear documentation on data handling and privacy

practices?

6 Are there measures to ensure that the database complies with data protection

laws?

7 Is user access to sensitive information controlled to meet privacy and security

standards?

8 Does the database have features to support compliance reporting and

documentation?

9 Are there procedures in place to address and rectify any non-compliance issues

promptly?

10 Has the database been designed and maintained with considerations for ethical

and legal data usage?

ANNEXES 153

Table A1.8. Confidentiality attribute questions

Table A1.9. Efficiency attribute questions

Nr. Question

1 Are there measures in place to safeguard sensitive information from unauthorized

access?

2 Does the database use encryption to protect confidential data during storage and

transmission?

3 Are there access controls to restrict user access based on their roles and

responsibilities?

4 Is there a clear policy outlining the handling of confidential information within

the database?

5 Are user authentication mechanisms in place to ensure that only authorized users

can access sensitive data?

6 Has the database undergone security assessments to identify and address potential

vulnerabilities?

7 Are there procedures for securely sharing confidential information with

authorized parties?

8 Is there a system for monitoring and detecting any unauthorized attempts to access

confidential data?

9 Have there been incidents of data breaches or unauthorized access to confidential

information?

10 Is there ongoing training for users on the importance of maintaining the

confidentiality of data in the database?

Nr. Question

1 Does the database efficiently handle a large volume of data without significant

performance degradation?

2 Are there features or tools to optimize and improve the overall performance of the

database?

3 Have users experienced delays or slowdowns when interacting with the database?

4 Is there a process for periodically tuning the database to maintain optimal

performance?

5 Does the database efficiently manage and allocate system resources to avoid

bottlenecks?

6 Are there measures in place to identify and address performance issues promptly?

7 Has the database been designed with considerations for scalability to

accommodate future growth?

8 Is there documentation available on best practices for maximizing the efficiency

of the database?

9 Does the database efficiently handle a large volume of data without significant

performance degradation?

10 Are there features or tools to optimize and improve the overall performance of the

database?

154 ANNEXES

Table A1.10. Precision attribute questions

Table A1.11. Traceability attribute questions

Nr. Question

1 Does the database provide accurate and detailed information with a high level of

precision?

2 Are there clear definitions and standards for the precision of numerical values in

the database?

3 Does the database avoid rounding errors or inaccuracies in calculations involving

numerical data?

4 Are there measures to ensure that data with a specific level of precision is

consistently maintained?

5 Have users encountered situations where the precision of data was insufficient for

their needs?

6 Is there a documented policy or guideline on maintaining precision in the

database?

7 Are there tools or features in place to support precise data entry and validation?

8 Does the database handle decimal points and significant figures accurately?

9 Is there a process for reviewing and correcting precision-related issues in the

database?

10 Have there been instances where the precision of data impacted decision-making

or analysis?

Nr. Question

1 Is there a clear trail or record of changes made to the data in the database?

2 Can you trace the origin or source of specific information stored in the database?

3 Does the database provide an audit trail for data modifications and updates?

4 Are there mechanisms to track and trace the flow of data through different

processes in the database?

5 Is there documentation on how data is transformed and transferred within the

database?

6 Can users easily identify the relationships and dependencies between different

data elements?

7 Does the database maintain a history of changes, allowing for rollback or recovery

if needed?

8 Are there tools or features in place to support effective data lineage and

traceability?

9 Is there a process for documenting and managing the relationships between

different data sets?

10 Have users experienced difficulties in tracing the history or lineage of specific

data elements?

ANNEXES 155

Table A1.12. Understandability attribute questions

Table A1.13. Availability attribute questions

Nr. Question

1 Is the data model easily understandable?

2 Can users easily comprehend the meaning and purpose of different data elements

in the database?

3 Are there clear and concise labels used for fields and categories in the database?

4 Does the database provide documentation or guides to help users understand its

structure and use?

5 Have users encountered difficulties in interpreting or navigating the database?

6 Is there a standardized format for presenting information that enhances user

comprehension?

7 Does the database use terminology that is familiar and easily understood by its

users?

8 Are there tooltips or contextual help features to assist users in understanding

specific elements?

9 Is there a process for user feedback and improvement based on user understanding

challenges?

10 Have there been instances where misunderstandings of data in the database led to

errors or confusion?

Nr. Question

1 Has the database been consistently available and accessible when needed?

2 Are there measures in place to prevent or minimize downtime for routine

maintenance?

3 Is there a backup and recovery system to ensure data availability in case of

unexpected issues?

4 Have users experienced any difficulties accessing the database due to technical

issues?

5 Does the database have failover mechanisms to ensure continuous access in case

of server failures?

6 Is there a process for monitoring and addressing performance issues that could

impact availability?

7 Are there redundant systems or servers to provide backup in case of hardware

failures?

8 Is there a documented service level agreement (SLA) outlining expected

availability standards?

9 Have there been instances where users were unable to access critical information

due to database unavailability?

10 Are there alerts or notifications in place to inform users of planned downtime or

maintenance?

156 ANNEXES

Table A1.14. Portability attribute questions

Table A1.15. Recoverability attribute questions

Nr. Question

1 Is there a robust backup and recovery system in place for the database?

2 Can the database be restored to a consistent state after unexpected failures or

outages?

3 Are there regular backup procedures to ensure data can be recovered from

different points in time?

4 Does the database provide options for partial or full recovery in case of data

corruption?

5 Are there mechanisms to detect and repair errors in the database to facilitate

recovery?

6 Is there documentation on recovery procedures in case of data loss or system

failures?

7 Have users experienced instances where data could not be successfully recovered

from backups?

8 Is there a process for testing and validating the effectiveness of the recovery

mechanisms?

9 Does the database provide options for disaster recovery to handle major incidents?

10 Are there measures in place to minimize downtime and data loss during the

recovery process?

Nr. Question

1 Can the database be easily migrated or transferred to different platforms or

environments?

2 Are there documented procedures for moving the database to a new system or

location?

3 Does the database support standard data formats that facilitate interoperability

with other systems?

4 Is there compatibility with various operating systems for hosting the database?

5 Can users access and use the database from different devices and locations

without major issues?

6 Are there measures in place to handle data migrations seamlessly when upgrading

the database?

7 Does the database support standard communication protocols for data exchange?

8 Is there a process for ensuring that third-party applications can integrate smoothly

with the database?

9 Have users experienced challenges when attempting to use the database on

different platforms?

10 Is there documentation available on best practices for maintaining portability in

the database?

Justas KAZANAVIČIUS

RESEARCH ON LEGACY MONOLITH APPLICATIONS
DECOMPOSITION INTO MICROSERVICE ARCHITECTURE

Doctoral Dissertation

Technological Sciences,
Informatics Engineering (T 007)

MONOLITINĖS ARCHITEKTŪROS PROGRAMŲ MIGRACIJOS
Į MIKROSERVISŲ ARCHITEKTŪRĄ TYRIMAS

Daktaro disertacija

Technologijos mokslai,
Informatikos inžinerija (T 007)

Lietuvių kalbos redaktorė Dalia Markevičiūtė
Anglų kalbos redaktorė Jūratė Griškėnaitė

2024 04 19. 14,2 sp. l. Tiražas 20 egz.
Leidinio el. versija https://doi.org/10.20334/2024-018-M
Vilniaus Gedimino technikos universitetas
Saulėtekio al. 11, 10223 Vilnius
Spausdino UAB „Ciklonas“,
Žirmūnų g. 68, 09124 Vilnius

	Blank Page
	Blank Page
	Blank Page

