VILNIUS GEDIMINAS TECHNICAL UNIVERSITY

Justas KAZANAVICIUS

RESEARCH ON LEGACY MONOLITH
APPLICATIONS DECOMPOSITION INTO
MICROSERVICE ARCHITECTURE

DOCTORAL DISSERTATION

TECHNOLOGICAL SCIENCES
INFORMATICS ENGINEERING (T 007)

Vilnius, 2024

The doctoral dissertation was prepared at Vilnius Gediminas Technical University in
2019-2024.

Supervisor

Prof. Dr Dalius MAZEIKA (Vilnius Gediminas Technical University,
Informatics Engineering — T 007).

The Dissertation Defence Council of the Scientific Field of Informatics Engineering
of Vilnius Gediminas Technical University:

Chairman

Prof. Dr Nikolaj GORANIN (Vilnius Gediminas Technical University,
Informatics Engineering — T 007).

Members

Prof. Dr Rimantas BUTLERIS (Kaunas University of Technology, Informatics
Engineering — T 007),

Prof. Dr Konstantinos DIAMANTARAS (International Hellenic University,
Greece, Informatics Engineering — T 007),

Prof. Dr Arnas KACENIAUSKAS (Vilnius Gediminas Technical University,
Informatics Engineering — T 007),

Dr Povilas TREIGYS (Vilnius University, Informatics Engineering — T 007).

The dissertation will be defended at the public meeting of the Dissertation Defence
Council of the Scientific Field of Informatics Engineering in the SRA-I Hall of Vilnius
Gediminas Technical University at 10 a.m. on 21 May 2024.

Address: Saulétekio al. 11, LT-10223 Vilnius, Lithuania.
Tel.: +370 5 274 4956; fax +370 5 270 0112; e-mail: doktor@vilniustech.lIt

A notification on the intended defence of the dissertation was sent on 19 April 2024.
A copy of the doctoral dissertation is available for review at the Vilnius Gediminas
Technical University repository https://etalpykla.vilniustech.It and the Library of Vilnius
Gediminas Technical University (Saulétekio al. 14, LT-10223 Vilnius, Lithuania) and the
library of Kaunas University of Technology (K. Donelai¢io st 20, LT-44239 Kaunas,
Lithuania).

Vilnius Gediminas Technical University book No 2024-018-M

https://doi.org/10.20334/2024-018-M

© Vilnius Gediminas Technical University, 2024
© Justas Kazanavicius, 2024
justas.kazanavicius@vilniustech.It

VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS

Justas KAZANAVICIUS

MONOLITINES ARCHITEKTUROS
PROGRAMUY MIGRACIJOS |
MIKROSERVISU ARCHITEKTURA TYRIMAS

DAKTARO DISERTACIJA

TECHNOLOGIJOS MOKSLAI,
INFORMATIKOS INZINERIJA (T 007)

Vilnius, 2024

Disertacija rengta 2019-2024 metais Vilniaus Gedimino technikos universitete.

Vadovas

prof. dr. Dalius MAZEIKA (Vilniaus Gedimino technikos universitetas,
Informatikos inZinerija — T 007).

Vilniaus Gedimino technikos universiteto Informatikos inzinerijos mokslo krypties
disertacijos gynimo taryba:

Pirmininkas

prof. dr. Nikolaj GORANIN (Vilniaus Gedimino technikos universitetas,
Informatikos inZinerija — T 007).

Nariai:
prof. dr. Rimantas BUTELRIS (Kauno technologijos universitetas, Informatikos
inzinerija — T 007),
prof. dr. Konstantinos DIAMANTARAS (Tarptautinis Graikijos universitetas,
Graikija, Informatikos inzinerija — T 007),
prof. dr. Arnas KACENIAUSKAS (Vilniaus Gedimino technikos universitetas,
Informatikos inzinerija — T 007),
dr. Povilas TREIGYS (Vilniaus universitetas, Informatikos inzinerija — T 007).

Disertacija bus ginama viesame informatikos inzinerijos mokslo krypties disertacijos
gynimo tarybos posédyje 2024 m. geguzés 21 d. 10 val. Vilniaus Gedimino technikos
universiteto SRA-1 posédziy saléje.

Adresas: Saulétekio al. 11, LT-10223 Vilnius, Lietuva.
Tel.: (8 5) 274 4956; faksas (8 5) 270 0112; el. pastas doktor@vilniustech.lt

Pranesimai apie numatoma ginti disertacijg iSsiysti 2024 m. balandzio 19 d.

Disertacija galima perzitréti Vilniaus Gedimino technikos universiteto talpykloje
https://etalpykla.vilniustech.lt ir Vilniaus Gedimino technikos universiteto bibliotekoje
(Saulétekio al. 14, LT-10223 Vilnius, Lietuva) bei Kauno technologijos universiteto
(K. Donelai¢io g. 20, LT-44239 Kaunas, Lietuva) bibliotekoje.

Abstract

Microservice architecture is becoming the de facto industry standard for building
new enterprise applications. According to the International Data Corporation, al-
most 90% of North American enterprises already use microservice architecture to
develop new and modernise legacy applications. Companies aiming to remain
competitive have started modernising their legacy monolithic systems by decom-
posing them into microservices. However, extracting microservices from legacy
monolithic software is an extremely complex task.

Although the topic of monolithic software migration into microservice archi-
tecture has already been explored by scientists and software engineers, it is a com-
plex and relatively new challenge; therefore, little research exists on its many
parts, such as database adaptation during the migration and communication estab-
lishment between microservices. Most research primarily focuses on microservice
identification within monolith applications and source code decomposition into
microservices. A new migration approach is proposed to bridge this gap. It con-
sists of code decomposition and covers communication establishment and data
management.

The dissertation consists of an introduction, four chapters, and general con-
clusions. The first chapter introduces microservice and monolithic architectures
and discusses the existing migration from monolithic to microservice architecture
methods. In addition, three main parts are identified, and deeper research is pro-
vided for code extraction methods, communication between microservices, and
data management. It also provides evaluation of existing methodologies for mon-
olith decomposition into microservices. The same enterprise application was de-
composed into microservices using three different methods. Based on the pro-
posed evaluation criteria, the advantages and disadvantages of each
decomposition method were determined. The second chapter presents the pro-
posed approach for migrating legacy monolithic applications into microservices.
The third chapter presents experimental research on possible communication tech-
nologies. Five communication technologies, such as HTTP Rest, RabbitMQ,
Kafka, gRPC, and GraphQL, have been evaluated and compared using the pro-
posed evaluation criteria. The fourth chapter presents an experimental evaluation
of the proposed approach of monolithic database migration into multi-model pol-
yglot persistence.

The dissertation’s results were published in 4 scientific publications, 2 of
which were in reviewed scientific journals indexed in the Clarivate Analytics Web
of Science database and presented at four international conferences.

Reziumeé

Mikroservisy architektiira tapo de facto pramonés standartu kuriant naujas taiko-
masias programas. Tarptautinés duomeny korporacijos duomenimis, beveik 90 %
Siaurés Amerikos jmoniy jau naudoja mikroservisy architektiira naujai programi-
néj jrangai kurti ir senai programinei jrangai modernizuoti. Siekdamos i§likti kon-
kurencingos, jimonés pradéjo modernizuoti savo monolitines programas, iSskaidy-
damos jas | mikroservisus. Taciau mikroservisy iSgavimas i§ senos monolitinés
programings jrangos yra labai kompleksiné uzduotis.

Nors monolitinés programinés jrangos perkélimo j mikroservisy architektiirg
tema nagrinéta mokslininky ir programinés jrangos inzinieriy, taciau tai yra paly-
riamas mikroservisams identifikuoti monolitinés programos iseities kode. O to-
kios temos kaip rysio tarp mikroservisy uzmezgimas ir duomeny bazés adaptacija
yra vis dar mazai tyrinéjamos. Siekiant uzpildyti Sig spraga, siilomas naujas per-
kélimo metodas. Ji sudaro ne tik iseities kodo iSskaidymas, bet ir rySio uzmezgi-
mas tarp mikroservisy bei duomeny bazés adaptacija.

Disertacija sudaryta i$ jvado, keturiy skyriy ir bendryjy i$vady. Pirmajame
skyriuje pristatomos mikroservisy ir monolitinés architektiiros bei aptariami e-
sami migracijos i§ monolitinés architektiros prie mikroservisy architektiiros me-
todai. Papildomai i$skiriamos trys pagrindinés perkélimo dalys ir atlikti issamesni
tyrimai: kodo i§gavimo metody, komunikacijos tarp mikroservisy ir duomeny ba-
ziy adaptacijos. Pirmajame skyriuje taip pat tiriamos esamos monolitinés progra-
minés jrangos skaidymo j mikroservisus metodikos. Ta pati programa buvo iSs-
kaidyta j mikroservisus, taikant tris skirtingus metodus. Remiantis pasitlytais
vertinimo Kriterijais, nustatyti kiekvieno migravimo metodo privalumai ir triku-
mai. Antrajame skyriuje pateikiamas sitilomas migracijos i§ monolitinés architek-
tiros j mikroservisy architektiirg metodas. Tre¢iajame skyriuje pristatomi ekspe-
rimentiniai komunikacijos technologijy tyrimai. Penkios komunikacijos
technologijos, tokios kaip HTTP Rest, RabbitMQ, Kafka, gRPC ir GraphQL,
buvo jvertintos ir palygintos pagal siilomus vertinimo kriterijus. Ketvirtajame
skyriuje pateikiamas sitilomas perkélimo metodas ir eksperimentinis monolitinés
duomeny bazés transformacijos j daugiamodelj poliglotinj model;j jvertinimas.

Disertacijos rezultatai buvo publikuoti 4 mokslinése publikacijose, i§ kuriy 2
publikacijos, publikuotos zurnaluose, indeksuojamuose Clarivate Analytics Web
of Science duomeny bazéje, ir pristatyti 4 mokslinése konferencijose.

Vi

Notations

Symbols

t — time used to process the message (liet. laikas, naudojamas pranesimui apdoroti.);

Mi — microservice with index | (liet. mikroservisas su indeksu 1.);

Req. — request (liet. uzklausa.);

Res. — response (liet. atsakymas.);

“—” — request/response operation (liet. uzklausos/atsakymo operacija.);

RPS — requests per second (liet. uzklausos per sekunde.);

1 — one relationship in the entity relationship diagram (liet. vienas rysys objekto santykiy
diagramoje.);

N —many relationships in the entity relationship diagram (liet. daug rysiy objekto santykiy
diagramoje.);

[] — collection (liet. sgrasas.);

“+” — means that the criteria is an advantage (liet. reiskia, kriterijai yra privalumas.);

“-” —means that the criterion is a disadvantage (liet. reiskia, kriterijus yra trikumas.);

Kk — Fleiss’ kappa inter-rater agreement (liet. Fleisso kappa vertintojy susitarimo koefi-
cientas.).

Abbreviations

AMQP — advanced message queuing protocol (liet. ispléstinis pranesimy eilés protoko-
las.);

Vii

APl — application programming interface (liet. taikomyjy programy programavimo
sgsaja.);
AQL — ArrangoDB query language (liet. ArrangoDB uzklausos kalba.);

CAP — consistency, availability, and partition tolerant (liet. nuoseklumas, prieinamumas
ir atsparumas skaidiniams.);

CI/CD - continuous integration and continuous deployment (liet. nuolatinis integravimas
ir nuolatinis diegimas.) ;

DDD — domain-driven development (liet. domenu pagrista plétra.);

DevOps — development operations (liet. plétros operacijos.);

DMBS - database management system (liet. duomeny baziy valdymo sistema.);

DNS — domain name system (liet. domeny vardy sistema.);

GRPC - Google remote procedure call (liet. google nuotolinés procediros skambutis.),

HTTP — hypertext transfer protocol (liet. hiperteksto perdavimo protokolas.);

HTTPS — hypertext transfer protocol secure (liet. saugus hiperteksto perdavimo protoko-
las.);

ID — identification (liet. identifikavimas.);

IDE - integrated development environment (liet. integruota plétros aplinka.);

IP — Internet protocol address (liet. interneto protokolo adresas.);

IT — information technology (liet. informacinés technologijos.);

JSON — JavaScript object notation (liet. JavaScript objekto Zyméjimas.);

KLOC — thousands of lines of code (liet. tizkstanciai kodo eiluciy.);

OS — operating system (liet. operaciné sistema.);

RAM - random access memory (liet. laisvosios kreipties atmintis.);

REST - representational state transfer (liet. reprezentacinis biisenos perdavimas.),
RPC — remote procedure call (liet. nuotolinés procediiros skambutis.);

SOA — service-oriented architecture (liet. j Servisus orientuota architektiira.);
SQL - structured query language (liet. struktirinés uzklausos kalba.);

SSD - solid-state drive (liet. kietojo kitno diskas.);

SSI - standard settlement instruction (liet. standartiné atsiskaitymo instrukcija.);
VM — virtual machine (liet. virtuali masina.);

XML — extensible markup language (liet. ispleciama Zyméjimo kalba.);

Definitions

ACID — acronym refers to the four key properties of a transaction: atomicity, consistency,
isolation, and durability (liet. akronimas reiskia keturias pagrindines transak-
Cijos savybes: atomiskumg, nuoseklumgq, izoliacijq ir ilgaamziskumg.).

AVAILABILITY ZONE - in the context of cloud computing, an availability zone is a
public cloud provider’s data centre that contains its own power and network
connectivity (liet. debesy kompiuterijos kontekste pasiekiamumo zona yra vie-
Sasis debesies paslaugy teikéjo duomeny centras, kuriame yra atskira galia ir
tinklo rysys.).

viii

BASE — acronym refers to the three key properties of consistency: available, soft state,
and eventually consistent (liet. akronimas reiskia tris pagrindines nuoseklumo
savybes. prieinama, minksta biisena ir galiausiai nuosekli.).

DOCKER - container image, which is a lightweight, standalone, executable package of
software that includes everything needed to run an application: code, runtime,
system tools, system libraries and settings (liet. atskiras vykdomasis programi-
nés jrangos paketas, kuriame yra viskas, ko reikia programai paleisti: kodas,
vykdymo laikas, sistemos jrankiai, sistemos bibliotekos ir nustatymai.).

OPENSHIFT —is a cloud-based Kubernetes platform that helps developers build applica-
tions. It offers automated installation, upgrades, and life cycle management
throughout the container stack — the operating system, Kubernetes and cluster
services, and applications — on any cloud (liet. yra debesy kompiuterijos pag-
rindu sukurta Kubernetes platforma, kuri padeda kiiréjams kurti programas. Ji
siilo automatizuotg diegimgq, atnaujinimus ir gyvavimo ciklo valdymgq visame
konteineriy kritvoje — operacinéje sistemoje, Kubernetes ir klasterio paslaugo-
mis bei programomis — bet kuriame debesy kompiuterijos centre..).

POD - can be defined as a collection of containers and its storage inside a node of the
OpenShift (Kubernetes) cluster (liet. gali biiti apibréztas kaip konteineriy rin-
kinys ir jo saugykla OpenShift (Kubernetes) klasterio mazge.).

SOAP — messaging protocol specification for exchanging structured information in the
implementation of web services in computer networks (liet. pranesimy proto-
kolo specifikacija, skirta keistis struktirizuota informacija diegiant Ziniatinklio
paslaugas kompiuteriy tinkluose.).

SOLID — acronym that stands for five key design principles: single responsibility princi-
ple, open-closed principle, Liskov substitution principle, interface segregation
principle, and dependency inversion principle (liet. akronimas, reiskiantis pen-
kis pagrindinius projektavimo principus: vienos atsakomybés principas, atviro
uzdarymo principas, Liskovo pakeitimo principas, sgsajos atskyrimo principas
ir priklausomybés inversijos principas.).

Contents

INTRODUCTION ..ottt ettt ettt sttt s be et e s ts st s satesba et e esbesrbesraeas 1
Problem FOrmMUIBLION..........coociiii ettt 1
Relevance of the DISSErTatIONc.ueieiiviie ettt e e e s eba e sarees 2
RESEAICN ODJECL.....c.eiiiiitiieci e reens 2
AIM OF the DISSEITALIONeevvieieie ittt sr s et s s sressba s s sbaeebesaas 2
TaSKS Of the DISSEITALIONcciveeieviiiceie ettt srae e sbe e s srbe e sbae e eees 3
Research MethOdolOgYccoeeiiiiieiie e e 3
The Scientific Novelty of the DIiSSertationc.ccocovriiinenneceeeees 4
The Practical Value of the Research FINdiNgS.........cccoovviriininnneneeeseeciens 4
DEfENAEd STALEIMENTS.......viieieeei ettt e e e st r e e s s sr b e e e s sabeeeesarees 5
Approval of the Research FiNdiNgscccoiiiiiiii e 5
The Structure of the DiISSErAtiON...........covviiiieieie e 6

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS OF
MIGRATION FROM LEGACY MONOLITHIC SOFTWARE INTO

MICROSERVICE ARCHITECTUREc.ccooiiiiiieiieecee e 7
1.1, MiCrosService ArChItECIUEoviiieriee et 8
1.2. Legacy Software Migration Methods..........ccccveveviieiiiiiie e 13
1.3. Investigation of Methods of Migration from Legacy Monolithic Software
iNt0 MiICroservice ArChItECUEocvv e 17
1.3.1. Enterprise Monolithic Application ArchiteCtureccococvervcnenncnnenn 17
1.3.2. Investigation Criteria of Methods of Migration from Legacy Monolithic
Software into Microservice ArchiteCtureocoooveeeieie i 19

1.3.3. Storage-Based Extraction EValuationccccoveveininninincincecienns 20

1.3.4. Code-Based Extraction Evaluation............cccccovereviniiieiiniieee e 23
1.3.5. Business-Domain-Based Extraction Evaluation...........cc.ccoccevevevvnvinnenne. 25
1.3.6. Comparison of Migration Methodsccoeveireniinincreces 27
1.4, COMMUNICALION ...eoveiiiiiiieice et ettt se b e b e 31
1.4.1. Communication TEChNOIOGIES.........ccciriiiiiriiiiiriee s 31
1.4.2. ArchiteCture PATEINSceoiiiiiie et 32
1.4.3. Streaming and Distributed Cacheccocviiiiiiiini e 33
1.4.4. Microservices and Service-Oriented Architecture Communication............ 33
1.4.5. COMMUNICALION SECUILY ...vcvvevveiiie ettt 34
1.4.6. Communication PerfOrmManCeccouveiiiriiiineieisee e 34
1.5. Data ManagemMENTcccoiiiiieirieiieie e s 35
1.5.1. Structured Query Language versus Non-Structured Query Language 36
1.5.2. POIYQIOt PEISISIENCE.iviieiviiiiiitiriet e 37
1.5.3. Data Storage in MiCIOSEIVICES.ccuiiriiiiirieicienieeee s 39
1.6. Conclusions of the First Chapter and Formulation of the Tasks of the
(DTS- o - To] o RSO P PR 42

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION IN

MICROSERVICE ARCHITECTUREccccoiiiriiiiiniesceee s 45
2.1. Proposed Migration APPrOACHcc.eiiiiiiiiiiiieie e 46
2.1.1. Analysis of an Existing Monolith Applicationccccoevevveveveiciecennen, 47
2.1.2. Monolith Code Decomposition into MiCroServiCes..........cevvevereieresereenns 48
2.1.3. Communication Establishment between MiCroServices..........ccocoevrerieeennen. 50
2.1.4. Database Adaptation to Microservice ArchiteCture...........ccooevvvvieneninennen. 52
2.1.5. Release and DeployMENt ..o 62
2.2. Conclusions of the Second Chapter...........cccveieieneneienenee e 63
3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE
DECOMPOSING MONOLITHS. ..ottt 65
3.1. Evaluation of Microservice COMMUNICALION........cccovirerererieeieieree e 66
3.2. Evaluation Criteria of Microservice CommuniCation............ccocvevereneiencrenncns 68
3.3. Topologies Used in Microservice Communication Evaluation.......................... 69
3.4. Tools Used in Microservice Communication Evaluation............cc.ccccecvvenieennen. 70
3.5. Evaluation Results of the Microservice Communication Experiment................ 70
3.5.1. Evaluation Results of Hypertext Transfer Protocol...........cccccoeeveveieininns 71
3.5.2. Evaluation Results of RabbitMQ...........ccocviviiiiiieee e 73
3.5.3. Evaluation Results of KafKa..........ccovvivririiinieiiie e 75
3.5.4. Evaluation Results of Google Remote Procedure Call.........c..cccccevvrvrnnnne 77
3.5.5. Evaluation Results of GraphQLcccoeiiiiiiniiiieneeseee e 79
3.6. Comparison of Communication TEChNOIOGIESccereriireriiiieeeeee 81
3.6.1. Communication Technologies Libraries...........c.ccccoiiiinniiiincineneee, 81
3.6.2. Communication Technologies ArchiteCturecccocvveiirieieie s 81
3.6.3. Communication Technologies TOPoIOgIes.........ccccevereieiinieiee e 82
3.6.4. Communication Technologies Performance.............ccoooveviriiieiciencnencns 82

Xii

3.6.5. Communication Technologies MetriCs.........ccocorvireneiineneienenee e 91

3.7. Conclusions of the Third Chapter.........c.ccoeiieiiiieicse e 93
4. APPROACH OF MONOLITH DATABASE MIGRATION INTO
MULTI-MODEL POLYGLOT PERSISTENCEcccccoiiiiinnennreenee s 97
4.1. Evaluation Criteria of the Approach of Monolith Database Migration into
Multi-Model Polyglot PersiStenCeccoeveireneiiiieineese e 99
4.2. Multi-Model Polyglot Database SOtWAre...........cccceiererinieiinieee e 99
4.3. Tools Used to Evaluate the Approach of Monolith Database Migration into
Multi-Model Polyglot PersiStencecocveiieieieii e 100
4.4. Evaluation results of the Approach of Monolith Database Migration
into Multi-Model Polyglot PersistenCe........ccccevvevevereiiieseeieesese e se e 100
4.4.1. Analysis of an Existing Monolith Application with a Mainframe
(D 17 o L USSP 100
4.4.2. Data Model DeVElOPMENL..........ccoiiiiiieirieee e 101
4.4.3. Microservice DeVEIOPMENT..........ccciiiieiriieiniees e 106
4.4.4. Data TransSformation...........coceeeieie i e 107
4.4.5. Data Validation...........cocoiiiiiiiiiee e e 108
4.4.6. Release and DeploymeNntccviieiiiniie e 108
4.5. Evaluation of the Data Quality of the Proposed Microservice with
Multi-Model Polyglot PersiStencecocveiieirieie e 109
4.8, DISCUSSIONS.....viueiriiiretiesrese et r ettt b et rer et 113
4.7. Conclusions of the Fourth Chapter..........ccocviviieiieicie s 115
GENERAL CONCLUSIONScoooiiiiiiireieee st 117
L N = S 121
LIST OF SCIENTIFIC PUBLICATIONS BY THE AUTHOR ON THE TOPIC OF
THE DISSERTATIONooiiiiiie ittt ettt ste e e e sme s e sneesneenaeeneenreeas 131
SUMMARY IN LITHUANIAN ..ottt 133
ANNEXES. ...ttt ettt b et ekttt e et et et n e es et e bene 149

Xiii

Introduction

Problem Formulation

Microservice architecture is becoming the standard by default in most enterprises
because many projects have been implemented using this architecture in the last
few years, and the results have been very positive. Top companies, such as Ama-
zon, eBay, Netflix, PayPal, Twitter, and others, successfully shifted from a mon-
olithic to a microservice architecture.

Microservice architecture, as well as software development and IT operations
(DevOps) practice, improve software development agility and flexibility. Enter-
prises can bring their digital products and services to a very competitive market
faster. Microservice architecture is becoming a design standard for modern cloud-
based software systems because it helps develop a cloud-native application. Using
microservices and embracing cloud-native technologies is the way to reduce de-
velopment time and increase deployment speed.

Migration from a monolithic architecture to a microservice architecture is a
complex challenge that consists of issues such as microservice identification, code
decomposition, communication establishment between microservices, data stor-
age adaptation, independent deployment, etc. Extracting microservices from leg-
acy monolithic software is an extremely complicated task. Each enterprise appli-
cation is unique. It was programmed using different programming languages and

1

2 INTRODUCTION

techniques, and different databases and communication mechanisms were used;
therefore, it creates different challenges. Different organisations use different mi-
gration patterns, techniques and methods because microservices are still a rela-
tively new architectural approach that has no widely approved implementation
methods.

Relevance of the Dissertation

According to the International Data Corporation, 89% of some 300 North Amer-
ican enterprise survey respondents already use microservices (Olofson etal.,
2021; Anand, 2021). The International Data Corporation predicts that 90% of all
new applications will be developed based on microservice architecture. To remain
competitive, companies have started to modernise their legacy monolithic systems
by decomposing them into microservices (Francesco et al., 2018; Knoche et al.,
2018; Wang et al., 2020; Wolfart et al., 2021; Beni et al., 2019; Mohamed et al.,
2021).

Although the topic of monolithic software migration into microservice archi-
tecture has already been explored by scientists and software engineers, it is a com-
plex and relatively new challenge; therefore, little research exists on its many
parts, such as database adaptation during the migration and communication estab-
lishment between microservices. The research primarily focuses on microservice
identification within monolithic applications and source code decomposition into
microservices. The author of this research proposes to bridge this gap using a mi-
gration approach that consists of three main parts: code decomposition methods,
communication, and data management.

Research Object

The object of the present research is methods of migrating legacy monolithic ap-
plications to microservice architecture.

Aim of the Dissertation

This dissertation aims to improve migration from legacy monolithic applications
to microservice architecture by proposing a novel migration approach that in-

cludes code base decomposition, communication establishment, and data manage-
ment.

INTRODUCTION

Tasks of the Dissertation

The following problems had to be solved to achieve the objective:

1.

To review microservice architecture and existing techniques of legacy
monolithic software migration into microservice architecture by con-
ducting a literature review and identifying the most important aspects
and existing gaps.

To investigate code decomposition methods of migration from legacy
monolithic software into a microservice architecture.

To investigate communication technologies for microservices and de-
termine particular cases for their use.

To propose and evaluate the approach of monolithic database migra-
tion into multi-model polyglot persistence based on microservice ar-
chitecture.

Devise an approach grounded in meticulous analysis and experimental
findings to effectively manage code decomposition, establish micro-
service communication, and handle databases during the transition
from monolithic systems to microservice architecture.

Research Methodology

To investigate the object, the following research methods were chosen:

1.

A systematic scientific literature review was conducted on existing
techniques of legacy monolithic software migration into a micro-
service architecture. Strengths and weaknesses were summarised. Ex-
isting gaps in communication establishment and data management
fields were identified.

The experimental research method was applied to investigate commu-
nication technologies for microservice architecture. The advantages
and disadvantages of each technology were summarised, and particu-
lar cases of their use were determined. All microservices were written
using the C# programming language. Latency tests were conducted
using the BenchmarkDotNet library. Throughput tests were executed
by using the NBomber library.

The constructive research method was employed to develop and vali-
date the proposed approach for migrating a monolithic database into a
multi-model polyglot persistence based on microservice architecture.

4 INTRODUCTION

The ArangoDB database was used as the multi-model polyglot data-
base engine. The microservice that exposes multi-model polyglot per-
sistence was written using the C# programming language.

The Scientific Novelty of the Dissertation

The scientific novelty of this research is specified as follows:

1. The proposed migration approach from legacy monolithic software to
amicroservice architecture stands out in the realm of microservice mi-
gration by uniquely encompassing three essential components: code
decomposition, communication establishment, and data management.
This contrasts with conventional methods, which often provide more
limited coverage by addressing only the code decomposition part.

2. The novel migration approach shifts monolith databases to a multi-
model polyglot persistence within a microservices architecture. This
transformation enhances consistency, understandability, availability,
and portability while successfully preserving data quality across
eleven of the ISO/IEC 25012:2008 standard attributes.

3. The proposed criteria offer a distinctive framework for selecting a
code decomposition method from three available choices, each
uniquely scrutinised across eight criteria, including microservice size
and count. Additionally, the criteria provide an innovative basis for
choosing among five communication technologies, evaluated and
compared based on eight criteria, such as latency and throughput.

The Practical Value of the Research Findings

The proposed novel migration from legacy monolithic software to a microservice
architecture approach allows for the execution of the migration based on three
main aspects: code decomposition, communication establishment, and transfor-
mation of data management. By using the proposed migration approach, migration
executors can choose one of three code decomposition methods and one of five
communication technologies based on their needs. Research results showed that
the proposed data management approach can be used to conduct data storage mi-
gration from a monolith to a microservice architecture and improve the quality of
the consistency, understandability, availability, and portability attributes. Moreo-
ver, the author expects that his results could inspire researchers and practitioners
towards further work aimed at improving and automating the proposed approach.

INTRODUCTION

Defended Statements

The following statements based on the results of the present investigation may
serve as the official hypotheses to be defended:

1. The proposed migration approach allows for an enhancement in areas

of consistency, understandability, availability, and portability. The
transition from a monolithic mainframe persistence model to a multi-
model polyglot persistence model not only adeptly addresses these
pivotal concerns but also excels in up-holding data quality, spanning
eleven of the fifteen ISO/IEC 25012:2008 standard quality attributes.
RabbitMQ and gRPC are the most suitable technologies if latency and
throughput are the main criteria for choosing a communication tech-
nology during the migration from a monolithic architecture to a mi-
croservice architecture. Binary serialisation used by gRPC outper-
forms RabbitMQ when communicating messages with higher
complexity.

Code-based and storage-based methods allow for identifying technical
functions and group code and storage components based on them,
while business-domain-based methods allow the decommissioning of
applications into microservices based on identified business domains.
Microservices based on technical function provide higher granularity.

Approval of the Research Findings

The results of the dissertation were published in two scientific publications in re-
viewed scientific journals indexed in the Clarivate Analytics Web of Science da-
tabase with Science Citation Index, and two were published in conference pro-
ceedings. The author gave four presentations at international scientific
conferences:

2019 Open Conference of Electrical, Electronic and Information Sciences
(eStream) 1 April 2019, Vilnius, Lithuania.

Baltic DB&IS 2020, 14th International Baltic Conference on Databases
and Information Systems, 1619 June 2020, Tallinn, Estonia.

Data Analysis Methods for Software Systems (DAMSS), 2-4 December
2021, Druskininkai, Lithuania.

2023 Open Conference of Electrical, Electronic and Information Sciences
(eStream) 27 April 2023, Vilnius, Lithuania.

6 INTRODUCTION

The Structure of the Dissertation

The dissertation consists of an introduction, five main chapters, general conclu-
sions, references, a list of publications by the author on the topic of the dissertation
and a summary in Lithuanian. The total scope of the dissertation is 162 pages, one
equation, 74 figures and 21 tables.

Analysis of Microservice
Architecture and Methods of
Migration from Legacy Monolithic
Software into Microservice
Architecture

This chapter reviews microservice architecture and its advantages and disad-
vantages over monolithic architecture. It starts by explaining the most important
aspects of microservice architecture and the reasons why companies are aiming to
migrate their legacy monolithic software to it. Next, the text provides an analysis
of existing migration from legacy monolithic software to microservice architec-
ture methods. It explains the difference between rebuilding and modernising. Dif-
ferent migration methods are analysed, and their advantages and disadvantages
are provided. Different communication technologies, techniques and aspects are
explained, and findings of the communication between microservices analysis are
provided. Finally, a literature review is conducted of one of the key issues for
microservice architecture: data storage adaptation to a microservice architecture.

8 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS...

Four publications were published on the topic of this chapter (Kazanavicius,
Mazeika et al., 2019; Kazanavicius, Mazeika et al., 2020; Kazanavicius, Mazeika,
Kalibatiene et al., 2022; Kazanavicius, Mazeika et al. 2023).

1.1. Microservice Architecture

Monolithic architecture is the traditional software development method when all
functions are encapsulated into one single application. Monolithic software is de-
signed to be self-contained. This type of architecture is tightly coupled, which
means that if one of the components is not present, then it will not be executed or
compiled. Monolith architecture has benefits and drawbacks. The following ben-
efits of monolithic architecture can be mentioned: fewer cross-cutting concerns —
it is simpler to hook up components to cross-cutting concerns when everything is
running through the same application; less operational overhead — only one appli-
cation needs to be set up, and less complex to deploy — only one application needs
to be deployed. Drawbacks of monolithic architecture are as follows: coupled — it
is especially difficult to make changes when monolith becomes highly complex;
continuous deployment — the entire application should be deployed on each up-
date; scalability — it is difficult to scale when different modules have conflicting
resource requirements; and reliability — a bug in any component can potentially
bring down the entire application (Dehghani et al., 2018; Fritzsch et al., 2018;
Kalske et al., 2017).

Usually, legacy applications grow in size and complexity, leading to mon-
strous monolithic software after several years of development, and the disad-
vantages of monolithic architecture outweigh its advantages (Blanch et al., 2017).
Fixing bugs and adding new features to such applications is a complex and time-
consuming operation. Scalability is usually impossible or requires a lot of work.
Under such circumstances, organisations start looking for a new architectural so-
lution (Dehghani et al., 2018). Microservice architecture is becoming a standard
by default in most enterprises because many projects have been implemented us-
ing this architecture in the last few years, and the results have been very positive.
Top companies, such as Amazon, eBay, Netflix, PayPal, Twitter, and others, have
successfully shifted to microservice architecture (Kwiecen, 2019).

A microservice architectural (Fig. 1) style is an approach to developing a
single application as a suite of small services, each running in its process and
communicating with lightweight mechanisms, often HTTP resource API. These
services are built around business capabilities and are independently deployable
by fully automated deployment machinery. There is a bare minimum of central-
ised management of these services, which may be written in different program-
ming languages and use different data storage technologies (Fowler et al., 2014).

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS...

The main three principles of microservice architecture are (Blinowski et al.,

2022):

Microservice has a single responsibility: similar to the single responsibil-
ity principle from SOLID principles, where every class should have only
one responsibility. Multiple microservices should not share the same re-
sponsibility, and none of the single microservices should have more than
one responsibility. Each microservice should deliver complete business
capability as one unit. In other words, microservices should perform only
one function.

Microservice is autonomous: it is a self-contained and independently de-
ployable service. Due to its autonomy, it must contain all dependencies,
such as libraries and the execution environments — web servers, contain-
ers, virtual machines, etc.

Microservice is a polyglot: it exposes its endpoints as APIs and abstracts
all its implementation details, such as implementation logic, architecture,
technologies, etc.

H :
User inteface J H User inteface

Business logic 1 : Microservice

Data access ' : Microservice Microservice Microservice

Fig. 1.1. Comparison of monolithic and microservice architectures

One of the main reasons why microservice architecture is considered a better
option than monolithic architecture is the decomposition of complex applications
into smaller components that are easier to develop, manage, and maintain than a

10 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS...

single monolith application. Splitting applications into distinct, independent mi-
croservices allows individual teams to manage them within the software develop-
ment organisation and work independently (Ghofrani et al., 2018). Because mi-
croservices are autonomous and communicate via open protocols, they can be
developed independently with different technologies and programming languages
(Al-Debagy et al., 2018; de Camargo et al., 2016; Lenarduzzi et al., 2018). Usu-
ally, teams developing microservices are organised around business rather than
technical capabilities. Each new requirement should be addressed by only one mi-
croservice to retain independent development (Ghofrani et al., 2018; Atchison,
2018). Independence and autonomy allow microservices to be scaled horizontally,
technically-wise, and within the organisation, as teams can be smaller and more
agile. Consequently, microservice architecture improves technical aspects and in-
creases business agility and the possibility of delivering new features faster (Bli-
nowski et al., 2022; Lenarduzzi et al., 2020; Ramin et al., 2020).

Other worth mentioning benefits of microservice architecture compared to
monolithic architecture (Pozdniakova et al., 2017; Chen et al., 2017; Blinowski
etal., 2022):

— Deployability: microservices can be deployed independently, and there is
no need to restart an entire application. The possibility of identifying crit-
ical business functionality allows the deployment of corresponding mi-
croservices in a more redundant environment.

— Reliability: a microservice’s fault affects that microservice alone, not nec-
essarily the entire application. Loosely coupled architecture makes micro-
services more fault-tolerant.

— Cloudability: the deployment characteristics make microservices a great
match for the elasticity of the cloud. Microservices are cloud-native ap-
plications. Because microservices are independent processes, each could
be deployed to a separate container or virtual machine in the cloud. Mi-
croservices could be updated and scaled separately. Scalability could be
controlled by load requirements on demand. This approach enables more
granular application elasticity. Solutions like Docker or Rocket contain-
ers, together with Docker Swarm, Mesos, or Kubernetes orchestration
tools, enable microservice architecture to be used as architecture for
cloud-ready applications.

— Modifiability: each microservice is encapsulated; therefore, it is more
flexible to use new frameworks, libraries, data sources, and other re-
sources. Management of the microservice-based application development
is divided across smaller teams that work more independently. The mi-
croservice architecture allows for achieving better alignment of develop-
ers with business users since microservice architecture is organised

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS... 11

around business capabilities, and developers can easily understand user
perspective and create microservices that are better aligned with the busi-
ness needs.

The microservices architecture is not a panacea and has drawbacks (Chen
et al., 2017; Blinowski et al., 2022). Complexity is its biggest drawback compared
to monolithic architecture. Microservice architecture adds complexity to the pro-
ject just by being a distributed system. Deployment, scaling, and monitoring are
more complex tasks in microservice architecture than in monolithic architecture.

Both monolithic and microservice architectures have their advantages and
disadvantages, and the choice between them depends on various factors such as
the size of the project, the team’s experience, the complexity of the system, the
desired scalability, etc. It is necessary for developers and architects to closely
evaluate whether the decomposition of an existing monolith is the right path and
whether the microservices itself is the right destination (Dehghani et al., 2018).

A monolithic architecture better suited for a simple, lightweight application.
The microservice architecture solution is the better choice for complex, evolving
applications. Monolith applications should be modernised to a microservice archi-
tecture when:

— The monolithic application becomes too big and complex to maintain or
extend. It becomes very expensive, both in terms of resources and time,
to perform daily maintenance operations, add new functionality or fix ex-
isting issues.

— Modularity and decentralisation are important aspects. The microservice
architecture allows working on each microservice separately. Challenges,
such as scalability, can be applied only to a specific microservice instead
of the entire application.

— Preference for gaining long-term benefits in comparison to those in the

short term.

An environment that supports microservices fundamentally needs a set of
baseline requirements to ensure some level of sanity. An organisation must be will-
ing to bear the overhead of starting and supporting them. The overhead will not be
insignificant. Well-performed microservices will take time and money. Each or-
ganisation must have an internal group responsible for infrastructure, which will
be provided for development and operation teams to use microservices. This group
must consist of the best organisation’s developers or even external consultants.
There is no one rule for setting up an infrastructure for microservices. Each area
below describes functionality that should be implemented in infrastructure (Mayer
etal., 2018).

12 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS...

Continuous Integration/Continuous Delivery: an organisation should decide
how microservices should be built, tested and deployed. These operations should
be automatic (Andrawos, 2018; Douglass, 2018). Nowadays, many build systems
provide pipeline functionality (Balalaie et al., 2016; Levcovitz et al., 2016). The
group responsible for microservice infrastructure should decide on a strategy for
how to do it and choose tools for it:

— Source control: how the source code should be stored and maintained.
— Build tool: how the microservice should be built.
— Tests tool: how the tests should implemented.

— Deploy tool: how the microservice should be deployed.

Virtual Machines/Containers and Cloud: another important decision is what
technology to use for the execution environment. Many enterprises with existing
applications running on a stable virtual machine infrastructure are choosing to take
a “toe in the water” approach. By deploying containers on virtual machines, they
get the benefits of mature monitoring and isolation with more rapid DevOps pro-
cesses. Compared to containers running on bare metal, they do give up some per-
formance, scalability, and cost. But it is certainly a valid way to transition (Azarny,
2017). Microservice architecture is a natural fit for cloud-native applications. A
cloud-native application is defined as an application built from the ground up for
cloud computing architectures. This means that the application is cloud-native if it
is designed as if it is expected to be deployed on a distributed and scalable infra-
structure (Pozdniakova et al., 2017; Mulesoft, 2018).

Monitoring is a critical part of the infrastructure of microservices. Organisa-
tions should follow five principles to establish more effective monitoring, which
are listed below. These principles will allow organisations to address both the tech-
nological changes associated with microservices and the organisational changes
related to them (Rosendahl, 2016).

— Monitor containers and their content.

— Alert on service performance but not on container performance.
— Monitor services that are elastic and have multi-location.

— Monitor APIs.

— Map monitoring to organisational structure.

Logging plays a critical part in application maintenance. To do it efficiently
for microservices, a logging service should be centralised and have a strong visu-
aliser. Best practices for logging microservices are listed below (Dave et al., 2016;
Soroko, 2017; Melendez et al., 2018).

— Correlate Requests with a Unique ID.
— Include a Unique ID in the Response.

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS... 13

Structure Your Log Data.

— Add Context to Every Request.

Write Logs to Local Storage.

Log Useful and Meaningful Data to Avoid Regret.

1.2. Legacy Software Migration Methods

Migration to microservices from monolithic legacy software cannot be done fast.
It is important to know that there is a high overall cost associated with decompos-
ing an existing system into microservices, and it may take many iterations
(Dehghani et al., 2018; Fowler et al., 2014). Because enterprise legacy application
is a broad term, it is not possible to say that there is only one good way to migrate
from legacy monolith to microservice architecture (Linthicum, 2018; Linthicum,
2017; Koltovich, 2017). Because microservices are a relatively new architectural
style and no widely approved way of migrating exists, different organisations use
different migration patterns and techniques (Furda et al., 2018; Mishra et al.,
2018).

One of the key challenges in this context is the extraction of microservices
from existing legacy monolithic code bases (Carrasco et al., 2018; Mazlami et al.,
2017). This chapter reviews different techniques used to accomplish migration. In
general, there are two strategies, e.g., rebuilding and modernisation (refactoring).

Not all monolithic applications can be easily migrated to microservice archi-
tecture. Sometimes, it is more economically beneficial to rebuild an application
from scratch instead of refactoring it (Linthicum, 2018). The following type of
legacy applications is not recommended for refactoring:

— Very old applications that are built using very old languages and databases
that are not up to current standards.

— Applications that have a poor design.

— Applications that are tightly coupled to the database.

A different approach to legacy application modernisation is to refactor every-
thing to split legacy apps into microservices and connect these microservices into
one platform (Linthicum, 2018). Different ways to decompose legacy monolith
applications into microservices are shown in Table 1.1. Each of them has benefits
and drawbacks. Some of them are very general and could be used with any type of
application, while others are more specific and will work only with some assump-
tions.

14 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS...

Table 1.1. Migration methods

Description of the migration method

Genc Mazlami, Jurgen Cito and Philipp Leitner present a formal microservice extraction
model to allow algorithmic recommendation of microservice candidates in a refactoring
and migration scenario (Mazlami et al., 2017). The authors present a tool that supports
structured service decomposition through graph cutting. The internal representation of
the system to be decomposed is based on a catalogue of 16 different coupling criteria
that were abstracted from literature and industry know-how. Software engineering arte-
facts and documents, such as domain models and use cases, act as input to generate the
coupling values that build the graph representation. The evaluation was conducted on
21 open-source projects written in Java, Ruby, and Python programming languages.

Benefits Drawbacks

The performance evaluation shows that,
for the most part, the proposed approach | One limitation is the fact that the extraction
scales concern the size of the revision | model is based on classes as the atomic unit
history (logical and contributor cou- | of computation in the strategies and the
pling). graph. Using methods, procedures or func-
The quality evaluation shows that the | tions as atomic units of extraction might po-
proposed approach can reduce the mi- | tentially improve the granularity and preci-
croservice’s team size to a quarter of the | sion of the code rearrangement and
monolith’s team size or even smaller. reorganisation.

Description of the migration method

Rui Chen, Shanshan Li and Zheng Li proposed a top-down analysis approach and de-
veloped a dataflow-driven decomposition algorithm (Chen et al., 2017). The three-step
process is defined below:
o Engineers, together with users, conduct business requirement analysis and con-
struct a purified while detailed dataflow diagram of the business logic.
e The algorithm combines the same operations with the same type of output data
into a virtual abstract dataflow.
e The algorithm extracts individual modules of “operation and its output data”
from the virtual abstract dataflow to represent the identified microservice can-
didates.

Benefits Drawbacks

Identifying the same data operations re-
quires expertise to some extent. Candidate
microservices obtained from the suggested
decomposition mechanism could still need
expert judgment before being developed in
practice. The proposed decomposition
mechanism has not been widely applied to
large-scale projects.

A dataflow-driven mechanism guarantees
the most fine-grained microservice candi-
dates in terms of data operation within a
business logic.

Extraction can accept various text sources
besides the webpage content, and it cares
little about where its output data will go.

. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS... 15

Continued Table 1.1

Description of the migration method

Alessandra Levcovitz, Ricardo Terra and Marco Tulio Valente describe a technique to
identify microservices on monolithic systems (Levcovitz et al., 2016). The evaluation
was conducted on 750 KLOC programs written with C programming language and
DBMS with 198 tables. The proposed technique consists of the following steps:

e Database decomposition — map database tables into subsystems based on busi-
ness functions.

o Dependency Graph — create a dependency graph between facades, business
functions and database tables.

e Based on the dependency graph, identify pairs of facades and database tables.
Map subsystems and identify pairs of facades and database tables.

o Identify candidates to be transformed on microservices. For each distinct pair
obtained in the prior step, inspect the code of the facade and business functions
that are on the path from the facade to the database table in the dependency
graph.

o Create API gateways to make the migration to microservices transparent to
clients. APl gateway consists of an intermediate layer between client-side and
server-side applications.

Benefits Drawbacks

In some scenarios, an additional effort might
be needed to migrate the subsystem to a set
of microservices: subsystems that share the
same database table. A microservice repre-
sents an operation that is always in the mid-
dle of another operation. Business operations
that involve more than one business subsys-
tem on a transaction scope.

The proposed technique was able to
identify and classify all subsystems and
create and analyse the dependency
graph when evaluating and classifying
only database tables into business sub-
systems, which demands access only to
the source code and the database mode.

Description of the migration method

Zhamak Dehghani proposed a very formal migration process from monolith to micro-

service architecture (Dehghani, 2018). The suggested flow consists of these principles:
¢ Minimise dependency back to the monolith.

Split sticky capabilities early.

Decouple vertically and release the data early.

Decouple what is important to the business and changes frequently.

Decouple capability and not code.

Migrate in atomic evolutionary steps.

Benefits Drawbacks

The migrating process with this ap-
proach can be divided into small steps.
It is possible to safely stop and restore.

Very long migration process. It is a very for-
mal way without any measurements.

16 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS...

End of Table 1.1

Description of the migration method

process consists of five steps:

defined service operations.
ality.

service facade interfaces.

Holger Knoche and Wilhelm Hasslbring proposed a migration process to decompose an
application into microservices (Knoche et al., 2018). The evaluation was conducted on
100 KLOC programs written with Cobol programming language. The modernisation

o Defining an External Service Facade — defining an external service facade that
captures the functionality required by the client systems in the form of well-

e Adapting the Service Facade — implement an external service fagade function-
e Migrating Clients to the Service Fagade — start using newly created external
e Establishing Internal Service Facades — restructure applications internally.

e Replacing the Service Implementations with Microservices — monolithic appli-
cation is replaced by microservices.

Benefits

Drawbacks

Establishing well-defined, platform-in-
dependent interfaces based on the
bounded contexts of the underlying do-
main. Reducing the number of entry
points and preventing access to the in-
ternals, moving noncustomer function-
ality into separate components, and
eliminating redundant and obsolete
parts of the application.

Certain parts of the application cannot be
modernised using the presented approach. In
particular, some user interfaces, which are
built on highly proprietary technologies, lack
the necessary means for service abstraction.

Description of the migration method

(Fan et al., 2017).

Chen-Yuan Fan and Shang-Pin proposed a migration process based on SDLC, including
all of the methods and tools required during design, development, and implementation

Benefits

Drawbacks

Specialised and simple: microservices
are designed to handle problems in a
single domain.

Fault Tolerance: one microservice’s
fault cannot break the entire application.
Automated: automation tools used for
building, deployment, and monitoring.

Complex environment settings: the configu-
ration is not as simple as in a Monolithic ar-
chitecture system, and many automation
tools must be carefully set up to achieve the
desired results.

Using more resources: microservices use
multiple tools to achieve architectural flexi-
bility, such as Service Discovery and API
Gateway.

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS... 17

1.3. Investigation of Methods of Migration from
Legacy Monolithic Software into Microservice
Architecture

Extracting microservices from legacy monolithic software is an extremely com-
plicated task. Each enterprise application is unique. It was programmed using dif-
ferent programming languages and techniques, and different databases and com-
munication mechanisms were used; therefore, it creates different challenges.
During the literature review and analysis, three main directions on how decompo-
sition from monoliths to microservices could be realised were identified: Storage-
based — all code related to specific storage items like database or database table
should be placed in one microservice. Code-based — application decomposition
should be implemented based on code items like class. Application functions
should be identified, and all code items should then be assigned to one of these
functions. Business-domain-based — applications should be divided into micro-
services by business domains, for each business domain should be a separate mi-
croservice (Levcovitz et al., 2016; Mazlami et al., 2017; Fan et al., 2017; Chen
etal., 2017; Knoche et al., 2018).

Three methods were chosen for the analysis because each is the best repre-
sentation of a separate direction of how decomposition from monoliths to micro-
services could be implemented. Other methods found during the literature review
and analysis use the same directions or combine them to achieve better results.

A comparison between selected methodologies was made by decomposing
the same enterprise legacy monolith application into microservices three times,
using all selected methodologies. The benefits and drawbacks of each methodol-
ogy were analysed and compared.

1.3.1. Enterprise Monolithic Application Architecture

An enterprise legacy monolithic application named DataProvider was selected for
this analysis because its functionality and architecture are very common in enter-
prise organisations, and its size allows it to conduct decomposition within a rela-
tively short period (2-4 months). Although the system was not large and complex,
it had a standard architecture and was composed of three components: API, data-
base, and business logic. Due to its size and simplicity, it is perfectly suited to be
a subject in comparison to selected methodologies. The dissertation’s author pos-
its that the acquired findings and deductions possess scientific merit, warranting
application in the dissection of more extensive and intricate systems. The disser-
tation’s author acknowledges that a nuanced decomposition tailored for larger and

18 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS...

more complex systems would enhance the precision and depth of both results and
conclusions.

The primary function of the DataProvider application is to provide important
organisation’s data from one place to other information systems within organiza-
tion. An organisation stores different types of data, like accounts, books, customer
data, etc., in different mainframe systems. The DataProvider application reduces
complexity because fewer integrations are needed and increases performance be-
cause the mainframe is slower than the DataProvider.

The DataProvider application (Fig. 1.2) is written with Microsoft .NET
framework, and C# programming language is used. It consists of three main com-
ponents:

1. Business logic — collecting and caching data from old mainframe systems.

Business logic writes collected data to the DataProvider local database.

2. Database — MS SQL database technology is used to store collected data

from mainframe systems.

3. Rest APl — HTML endpoint for other information systems to access im-

portant organisation’s data in DataProvider. Swagger tools are used to
provide Rest API functionality.

DataProvider application

‘ Clients }1*4)‘ Rest API H Business logic }174){ MainFrame systems

¢ :

‘ Database ’

Fig. 1.2. DataProvider application architecture

The DataProvider application is a relatively small and simple typical enter-
prise application containing three main parts: Ul, logic, and database. It has 350
classes, 5500 lines of code, 44 facades, and 15 database tables. More details about
the code quality are presented in Table 1.2.

Table 1.2. DataProvider code quality

Parameter Average Max Min
Maintainability Index 86.2 100 40
Cyclomatic Complexity 8.6 116 0
Depth of Inheritance 15 5 0
Class Coupling 12.2 96 0

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS... 19

86.2 maintainability index and 8.6 cyclomatic complexity values indicate
high code quality regarding maintainability. 1.5 depth of inheritance value shows
that inheritance is widely used in the application. 12.2 class coupling value is high,
which means that classes are coupled. High coupling is difficult to maintain and
reuse. Code metrics values were obtained by using Visual Studio IDE (Microsoft,
2022).

1.3.2. Investigation Criteria of Methods of Migration from
Legacy Monolithic Software into Microservice Architecture

This chapter provides information about criteria that were considered while inves-
tigating different methods of migration from legacy monolithic software into mi-
croservice architecture. As each legacy monolithic application could be different
in many aspects, the list of criteria was introduced to compare migration methods
from different angles:

— Microservice candidate count: to evaluate the potential number of micro-
services identified during the migration to microservice architecture
within legacy monolithic applications.

— Size of microservice: to evaluate the potential size of extracted micro-
service from a legacy monolithic application.

— The database: to evaluate if the migration method supports monolithic
database adaptation to microservice architecture.

— Connecting microservices: to evaluate if the migration method supports
communication establishment between decomposed microservices.

— The automation: to evaluate the migration method’s possibility of being
fully automated.

— The technological stack: to evaluate the technological stack used during
the migration from monolithic architecture to microservice architecture.

— Implementation and tools: to evaluate implementation details and tools
used during the migration from monolithic architecture to microservice
architecture.

— Code quality: to evaluate the impact of code quality on the migration from
monolithic architecture to microservice architecture.

20 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS...

1.3.3. Storage-Based Extraction Evaluation

Alessandra Levcovitz, Ricardo Terra and Marco Tulio Valente describe a tech-
nique to identify microservices on monolithic systems. The main idea of the tech-
nique is that decomposition should be done based on unique database tables and
facade pairs. Each unique pair could be considered a microservice candidate. All
business functions, which are used by a facade and database table pair, should be
included in a microservice. During the decomposition process, facades, business
functions, and database tables need to be identified, and unique pairs must be
found. The proposed technique consists of the following four steps.

1.3.3.1. Database Decomposition

The first step is mapping database tables into subsystems. Each subsystem repre-
sents an organisation’s business area. Tables unrelated to a business process called
the control subsystem. Fig. 1.3 presents part of the database decomposition done
in the DataProvider application.

Account | :) Accounting
‘ table AU S business area
Book ‘ Booking Booking
table : subsystem business area
ObjectState
table
RequestLog Contrlol
table subsystem
UpdateOrder
table

Fig. 1.3. Database decomposition

The DataProvider application has 15 database tables, nine subsystems, and
eight different business areas. This step of the methodology allows for the identi-
fication of a number of tables and business areas. ldentifying database tables is a
task that requires only technical skills. On the other hand, identifying business
subsystems and assigning a table to them require additional effort to understand
the business process.

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS... 21

1.3.3.2. Dependency Graph

In the second step, a dependency graph between facades, business functions, and
database tables was created. It shows business functionality and database depend-
encies. Fig. 1.4 illustrates some graphs of the DataProvider application.

GetByldkt [GetByIdkt

facade finction
Account table

GetByldkts GetByldkts
facade function

GetByName GetByName
facade function

GetByNames GetByNames
facade | fimction
GetByType GetByType

‘ facade [function BEEERAT

GetByRegNo GetByRegNo
facade function

UpdateBook UpdateBook
facade function

Fig. 1.4. Dependency graph

Five graphs were pretty straightforward: containing only one database table,
one business functionality layer, and 0 dependencies from other database tables
and business functionality subsystems. The other 12 database tables were joined
into one more complex and complicated dependency graph. Some business func-
tionality contains up to four dependencies from other database tables. Mostly, four
business functionality layers were identified for full operation from the facade to
the database table.

1.3.3.3. Database Tables and Facades Pairs

Based on the dependency graph, unique pairs of facades and database tables were
identified and mapped with business subsystem functions. Fig. 1.5 presents two
unique pairs in the DataProvider application.

Fig. 1.5. Tables and facades pairs

22 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS...

The DataProvider application has 68 unique pairs of database tables and fa-
cades. Fifteen facades were in pairs with only one database table. Some of the
facades were in pairs with different database tables up to eight times. More unique
pairs with the same facade exist in a more complicated dependency graph.

1.3.3.4. Microservice Candidates

In the last step, candidates to be transformed into microservices were identified.
For each distinct pair obtained in the prior step, inspection focused on the code of
the facade and business functions that are on the path from the facade to the data-
base table in the dependency graph. Fig. 1.6 illustrates two candidates to be trans-
formed into microservices of the DataProvider application.

Facade GetByldkt ~——> Function GetByldkt —> Table Account

Facade GetByName —> Function GetByName —>» Table.Book

Fig. 1.6. Microservices candidates

The decomposition using a storage-based method resulted in 37 micro-
services candidates found in the DataProvider application. Detailed evaluation re-
sults are presented in Table 1.3.

Table 1.3. Storage-based extraction evaluation results

Subsystems Tables Functions Microservice
candidates

Accounting 1 2 2
Booking 1 5 5
Departments 1 3 3
Customers 5 9 15
Ratings 1 4 4
Users 3 3 3
Country definitions 1 2 2
Currency definitions 1 3 3

More functions and table subsystems had more microservice candidates iden-
tified. It is possible that the microservice candidate size could be very small if it

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS... 23

contains only one business function. The method requires identifying business
subsystems. To do so, business knowledge is needed, which is why the method’s
implementation could not be completely automated.

1.3.4. Code-Based Extraction Evaluation

Genc Mazlami, Jurgen Cito and Philipp Leitner created a model for microservice
extraction from monolithic systems. The extraction model is based on code classes
and their relationships. The application could be represented as a graph of its code
classes. Decomposition is done by splitting a graph into microservice candidates.
Which classes should belong to the microservice candidate could be determined
by relationship weight. A higher weight value indicates stronger coupling. Micro-
services extraction from the monolithic systems model comprises three extraction
stages: monolith, graph, and microservices. Two transformations take place be-
tween the stages.

1.3.4.1. Construction Step

The first step is the monolith transformation into the graph representation. In the
graph, each vertex represents a class from the monolith and undirected edges rep-
resent its coupling with other classes in the monolith. Fig. 1.7 illustrates the con-
struction step.

Application :{> @ @ @

Fig. 1.7. Construction step

The DataProvider application has 273 classes. One class has the biggest num-
ber of dependencies, which is 96, and 17 classes have 0 dependencies and are not
part of a graph. The average class coupling is ~10. Unit, integration, and manual
test classes were excluded from the graph.

A better-quality code has fewer coupled classes, so a lower number of edges
in the graph indicates a higher quality of the code. It is not clear how to treat class

24 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS...

inheritance from the article; in this evaluation, a decision was made not to treat
class inheritance as a dependency. Visual studio provides tools for extracting the
information on code metrics automatically. It saves a lot of time in the construc-
tion step.

1.3.4.2. Clustering Step

The second and final transformation is to cut the graph into components that rep-
resent recommended microservice candidates. For this, the authors proposed three
different strategies: logical coupling, semantic coupling, and contributor coupling.
During this comparison, semantic coupling was chosen for evaluation.

Fig. 1.8. Clustering step

The main idea of semantic coupling is that each microservice should corre-
spond to one single defined bounded context from the problem domain. The strat-
egy couples together classes that contain the code about the same “things”, e.g.,
domain model entities. Fig. 1.8 illustrates the microservice candidates’ extraction
from the graph.

Eight microservices candidates were found in the DataProvider application.
In total, 180 classes were identified for a specific business domain by class name.
It was not possible to identify the business domain by class name for 93 classes.

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS... 25

About 33% of classes need an additional effort to be reviewed and assigned man-
ually to the specific business domain or refactored and split into more classes.
Detailed results of evaluations are presented in Table 1.4.

Table 1.4. Code-based extraction evaluation results

Business domain Classes Microservice candidates
Accounting 13 1
Booking 13 1
Departments 14 1
Customers 63 1
Ratings 13 1
Users 38 1
Country definitions 13 1
Currency definitions 13 1

Code quality plays a vital role in how easily a microservice candidate can be
identified in the graph. If the code is written following clean code standards, the
class should only have one responsibility, few dependencies, and a meaningful
name. Automation can be accurate in extraction only if the monolith code is high
quality. If a class has a lot of dependencies, no meaningful name or too many
responsibilities, it is not clear to which microservice candidate it belongs. In this
case, the additional effort is needed to refactor the class.

The code-based method is very formal and requires additional tools to be
implemented properly. These tools are not available; only an algorithm and a
mathematical model are provided, so organisations should implement them them-
selves.

1.3.5. Business-Domain-Based Extraction Evaluation

Chen-Yuan Fan and Shang-Pin proposed a migration process based on SDLC,
including all of the methods and tools required during design, development, and
implementation. The main criteria for a microservice candidate is the business
domain; each separate business should have separate microservices. The proposed
method suggests how specific business domain codes and database tables could
be extracted. Two analysis methods are used in the migration of a legacy mono-
lithic architecture into a microservice architecture.

1.3.5.1. Domain-Driven Design Analysis

In the first step, Domain-Driven Design (DDD) was used to find microservice
candidates in the original system. The bounded context analysis results are a key

26 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS...

tool for identifying microservice candidates in applications. The DDD was used
to identify specific domains in the solution and identify domain modules in each
domain. DDD approach analysis allows for the extraction of low-coupling micro-
services.

Eight different specific business domains were identified in DataProvider
during DDD analysis: Accounting, Booking, Departments, Customers, Ratings,
Users, Country definitions, and Currency definitions.

This step does not require any technical skills, only business process
knowledge. It is a possibility that different people could identify different business
domains per application. The business process tends to change in enterprise or-
ganisations so it’s possible that the business domain could change during migra-
tion from monolith to microservices.

1.3.5.2. Database Analysis

The second step involves the analysis of the database structure. It is common prac-
tice for each microservice to use a discrete database. This allows for avoiding high
coupling between services. Foreign keys could be used as an indication of the
microservice candidate.

The database schema of the DataProvider application could be divided into
eight business domains identified in the DDD analysis stage. The customer busi-
ness domain contains the biggest number of tables, e.g., five, and six business
domains contain only one table.

1.3.5.3. New Architecture

The Domain-Driven Design and database analysis resulted in eight microservice
candidates being found in the DataProvider application. One additional micro-
service should be created. Fig. 1.9 illustrates the new microservices architecture.

Clients

P — e

|| Booking Microservice Sync Service Ratings Microservice
: Departments

: User Microservice
Microservice

T

Accounting Country definitions Currency definitions 3 5
= z = Customer Microservice

Microservice Microservice Microservice

Fig. 1.9. Microservices extracted from DataProvider

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS... 27

To connect all microservices into one solution, a new microservice was in-
troduced. Sync Service provides data synchronisation and an interface for front-
end systems. Detailed results of evaluations are presented in Table 1.5.

Table 1.5. Business-domain-based extraction evaluation results

Business domain Tables Microservice candidates
Accounting 1 1
Booking 1 1
Departments 1 1
Customers 5 1
Ratings 1 1
Users 3 1
Country definitions 1 1
Currency definitions 1 1

The most important things for a successful migration from monolith to mi-
croservices using the business-domain-based method are strong business
knowledge, business process stability in the organisation, and high-quality data-
base schema.

1.3.6. Comparison of Migration Methods

This chapter compares different aspects of the evaluation results of extraction
methods. Microservice candidate count and Size of microservice chapter overview
how big and how many microservice candidates a method can extract. The data-
bases chapter evaluates if methods can decompose databases within the monolith
decomposition process. Connecting microservices analyses how microservices
should work as one solution after the decomposition process. The automation
chapter evaluates each method’s possibility to be fully automated. The technolog-
ical stack and Implementation and tools chapters provide more detail about how
methods could be implemented and what technologies and tools could be used in
the implementation. The last chapter, Code quality, evaluates the impact of the
code quality in the decomposition process.

1.3.6.1. Microservice Candidates Count

The storage-based extraction method found most microservice candidates in the
DataProvider application. The storage-based method found 37 candidates, the
code-based method found eight candidates, and the business-domain-based
method also found eight candidates.

28 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS...

In the storage-based method, microservice is extracted as a concrete function
in the application while in the business-domain-based method, microservice rep-
resents a specific business domain. The storage-based method will always provide
more microservices than the business-domain-based method because the business
domain always has at least one function.

The code-based method is more flexible than other compared methods. It
provides the optionality to choose a strategy for how microservice should be ex-
tracted. A semantic coupling strategy was chosen during this comparison. Its key
idea, in general, is very similar to Domain-Driven Design, which explains why it
found the same number of microservice candidates as the business-domain-based
method. Another extraction strategy is logical coupling, which focuses on con-
crete functions. It could be predicted that microservice candidates were similar to
Method I. The last strategy is contributor coupling, the main idea of which is that
microservice should belong to one team. In this case, the number of microservice
candidates directly depends on the number of teams working with an application.

1.3.6.2. Size of Microservice

The main idea of a microservice is that it should have only one responsibility. The
technical community interprets it differently. What kind of responsibility? Is it a
Business or functional type? Business responsibility is bigger than a function be-
cause it contains at least one function and usually much more than one. Split by
functions, microservices are much smaller and have been named serverless.

Suppose organisations decide to split their monolith application into micro-
services by business domains. Then, they should choose the business-domain-
based method or the code-based method with a semantic coupling strategy. If the
decision is to split into microservices by functions, the storage-based method or
code-based method with a logical coupling strategy could be used. The real dif-
ference in a microservice’s size depends on how much the business domain con-
tains functions. The more functions the business domain will have, the bigger the
microservices candidate will be extracted using the business-domain-based
method or the code-based method with a semantic coupling strategy.

Given the absence of a universally agreed criterion for the optimal scale of a
microservice, assessing the efficacy of a method remains inconclusive based
solely on the number of microservices derived. The singular widely embraced
guideline dictates adherence to the single responsibility principle. An organisation
should delineate the designated scope of responsibility within a microservice and
subsequently select the most fitting decomposition method to attain the desired
outcome. The author proposes considering the quality attributes outlined in the
ISO/IEC 25012:2008 standard as a viable approach for determining optimal out-
comes.

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS... 29

1.3.6.3. Databases

The most common and popular practice is that each microservice should use its
private database. The business-domain-based method fits this approach perfectly.
After the Domain-Driven Design analysis, tables from the monolith database
should be grouped and split into separate databases.

The storage-based method splits the monolith into microservices by func-
tions, and some functions will most likely use the same table. If the decision was
made to use this method, the database will probably be shared. Method authors do
not provide any recommendations on how to deal with this challenge.

Code-based method authors assume that monolith applications use a reposi-
tory pattern, and each table is represented as a repository class in the solution.
Methods do not contain any recommendations on how databases should be
adapted to the microservice architecture. A semantic coupling strategy approach
used in the business-domain-based method could be used to split the database into
separate databases for each microservice.

1.3.6.4. Connecting Microservices

To provide the same business value for users as the monolith application, micro-
services should be connected into one solution via lightweight mechanisms, often
an HTTP resource API.

The storage-based method and the business-domain-based method suggest
creating APl gateways to make the migration to microservices transparent to cli-
ents. API gateway should be an intermediate layer between client-side and server-
side applications. It handles requests from the client side using the same technol-
ogy as it did before migration.

The code-based method does not provide any recommendations on how mi-
croservices should be connected after migration from the monolith architecture.

1.3.6.5. Automation

The code-based method with a contributor coupling strategy could be imple-
mented fully automatically. The monolith must be implemented with object-ori-
ented programming language because the extraction model is based on classes
such as the atomic unit of computation and the graph.

The code-based method with a semantic coupling strategy could be imple-
mented semi-automatically. In this case, business domains should be identified
manually. How accurately the method will be able to identify the class relation to
the business domain depends on the naming convention in the code.

30 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS...

The storage-based method and the business-domain-based method cannot be
implemented automatically. The storage-based method requires manually identi-
fying business subsystems and assigning database tables to one of the subsystems.
The business-domain-based method requires two manual analyses.

1.3.6.6. Technological Stack

The storage-based method is designed to work with backend-type applications. It
is programming language agnostic. Database storing data in tables must be part of
the application because extraction uses tables to generate graphs.

The code-based method is suitable for backend-type applications written with
object-oriented programming language. The extraction model is based on classes
as the atomic unit. If the application is written in another type of language or sev-
eral different languages, it is not possible to use a Code-based method for micro-
services extraction. Only one requirement exists for databases: repository pattern
should be used in the code to describe database data models. SQL and NoSQL
databases could be used.

The business-domain-based method is technologically agnostic and could be
used with any kind of programming language and databases.

1.3.6.7. Implementation and Tools

The business-domain-based method is the least formal and most universal. On the
other hand, it is most uncertain and requires the implementer to have a strong
knowledge of the application business domain and implementation technical de-
tails.

The code-based method is the most formal and requires an additional tool to
generate a graph representing the dependencies of classes. It is not clear what
would be cheaper in terms of time and resources: implement a tool and use it or
use other methods to do a microservice extraction from the monolith.

The storage-based method does not require any additional tools to imple-
ment, but it requires some knowledge of business domains to identify business
subsystems. The storage-based method is less formal and more universal than the
code-based method; on the other hand, the storage-based method is more formal
and less universal than the business-domain-based method.

1.3.6.8. Code Quality

Code quality has the most impact on the code-based method because it creates a
graph of the dependency classes. Clean and solid code generates more accurate

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS... 31

graphs. A more accurate graph allows for the extraction of more accurate micro-
services. Also, higher quality code is more readable, reusable, and transferable
quickly.

The code quality also impacts the storage-based method and the business-
domain-based method. The better the code quality, the easier it is to extract func-
tions from it.

1.4. Communication

One of the biggest challenges while migrating from a monolith architecture to a
microservice architecture is to define a proper communication technology. In
monolith applications, communication between components is performed using
process methods or function calls, while different communication methods have
to be established to achieve the same functionality in a microservice architecture.
A microservice-based application is a distributed system running on multiple pro-
cesses or services. Therefore, microservices must interact using inter-process
communication technologies. The design of communication between micro-
services is one of the most significant challenges while migrating from monolithic
software to microservices architecture (Microsoft, 2020).

1.4.1. Communication Technologies

Microservices can communicate in different ways, but all of them can be classi-
fied into two groups — synchronous and asynchronous. The client sends a request
and waits for a response from the service in a synchronous communication style.
It results in tight runtime coupling because both the client and service must be
available for the duration of the request. Usually, HTTP/HTTPS protocols are
used for synchronous communication. The main advantage of this communication
is that the system is simple and easily implemented. Also, there is no intermediate
component, such as a message broker. In asynchronous communication, micro-
services communicate by exchanging messages over messaging channels based
on advanced message queuing protocol (AMQP). All counterparts can send mes-
sages, and senders do not wait for the response message. There are several differ-
ent asynchronous communication patterns, such as request—response, publish—
subscribe, and notification. Loose runtime coupling and improved availability are
benefits of asynchronous communication. However, its implementation is more
complex. Message-based technologies, such as RabbitMQ, Apache Kafka, etc.,
use asynchronous communication between microservices. The most popular com-
munications technologies used for microservices are based on HTTP protocol and

32 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS...

asynchronous message patterns (Fowler etal., 2014; Microsoft, 2020;
Bandhamneni, 2018; Galbraith, 2019).

The gRPC is an open-source Remote Procedure Call (RPC) framework devel-
oped by Google. It enables the establishment of transparent communication be-
tween server and client applications in any environment. Before gRPC became
open source in March 2015, it had been used as a single general-purpose RPC in-
frastructure to connect a large number of microservices running within and across
Google data centres for over a decade (Biswas et al., 2018; gRPC, 2022).

GraphQL is a query language for APIs and a runtime for filling those queries
with existing data. GraphQL was developed internally by Facebook in 2012 and
was published to the community in 2015. The key functionality of the GraphQL
framework is a query language that allows clients to define the structure of the data
required, and the same structure of the data is returned from the server (Hartig
et al., 2017; Brito et al., 2020; Bandhamneni, 2018; GraphQL, 2022).

It must be noted that it is a common practice to use several communication
technologies to develop microservice-based applications.

1.4.2. Architecture Patterns

Taibi et al. (2020) conducted a systematic literature review and identified three
microservice orchestration architecture patterns that also include communication
and coordination of the microservices. Patterns were classified as APl Gateway,
service discovery, and hybrid. A summary of the advantages and disadvantages
of each architectural pattern was presented in the paper as well.

The API Gateway operates as the entry point of the system that routes the
requests to the appropriate microservices. This pattern is technology agnostic but
is usually implemented using the HTTP protocol. Ease of extension, market-centric
architecture, and backward compatibility are the advantages of the APl Gateway.
The high complexity of implementation, low reusability, and low scalability can
be mentioned as disadvantages of the pattern (Taibi et al., 2020; Montesi et al.,
2016).

The service discovery pattern uses a different approach, e.g., the client can
communicate with each service directly without an intermediate layer. The domain
name system (DNS) address resolution into internet protocol (IP) address must be
supported to achieve end-to-end communication between services. The pattern re-
lies on the service-register service that performs similarly to DNS. The advantages
of service discovery patterns are ease of development, maintainability, migration,
communication, and health management. Disadvantages of the pattern are high
coupling between the client and the service registry, high complexity of the service
registry, and high complexity of the distributed system (Taibi et al., 2020; Montesi
etal., 2016).

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS... 33

The hybrid pattern combines the service registry and the API gateway and
replaces the API gateway with the message bus. Clients communicate only with
the message bus that operates as a registry and gateway. Services communicate
with each other via message bus, and direct communication between microservices
is not used. The advantages of the pattern are ease of migration, while the disad-
vantages are high coupling between services and message buses (Taibi etal.,
2020).

1.4.3. Streaming and Distributed Cache

Smid et al. (2019) discussed the balance between performance and coupling and
pointed out situations where suggested architectures were appropriate. The au-
thors introduced a streaming platform based on the message bus (Kafka) and data
change capture platform (Debezium) to synchronise data between different data-
bases effectively. Streaming is a different approach to orchestration and commu-
nication patterns mentioned in the previous chapter. The service-generating event
notifies other services by using streaming events on the message bus. Therefore,
almost all communication is performed by consuming events from the message
bus or database. The proposed solution has a limitation: the overhead for deploy-
ment and maintenance for applying the streaming platform. The microservices
need to be synchronised under a data model similar to the master system, and
additional source code must be introduced. A distributed cache was introduced to
improve communication performance. The advantages of using a distributed
cache are performance, scalability, and ease of migration, while high complexity
is a disadvantage. Communication performance decreases significantly when data
changes frequently. The authors concluded that the message broker is an efficient
way of communication between microservices, and the publish/subscribe model
is very flexible and provides a faster mechanism than HTTP request with the ben-
efit of persistent messages (Smid et al., 2019; Montesi et al., 2016).

1.4.4. Microservices and Service-Oriented Architecture
Communication

Cerny et al. (2018) performed a detailed research analysing differences between
microservice architecture and SOA. Microservices provide decomposition, pre-
ferring smart services while considering simple routing mechanisms without the
global governance notable in SOA. This leads to higher service autonomy and
decoupling since services do not need to make agreements on the global level. In
general, there are two well-defined approaches used to coordinate services, e.g.,
using a central orchestrator or a decentralised distributed way. The centrally or-
chestrated approach is the typical SOA pattern, while the distributed approach is

34 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS...

dominant for microservice-based applications. These approaches are named or-
chestration and choreography, respectively. Service orchestration works as a cen-
tralised business process, coordinating activities over different services and com-
bining the outcomes. The choreography works without a centralised element. The
control logic is described by message exchanges and rules of interactions as well
as agreements among interacting services (Cerny et al., 2018; Smid et al., 2019).

1.4.5. Communication Security

Yarygina et al. (2018) analysed security challenges in a microservice architecture.
Potential threats in microservice communication were identified, such as attacks
on the network stack and protocols and attacks against protocols specific to the
service integration style (SOAP, REST Web Services). Security threat mitigation
techniques were proposed. The authors highlighted the leading microservice se-
curity industry practices, such as Mutual Authentication of Services using Mutual
Transport Layer Security and Principal Propagation via Security Tokens. The au-
thors proposed a method that combined both techniques and presented proof-of-
concept evaluation results. Walsh et al. (2017) introduced new comprehensive,
automated, and fine-grained mutual authentication mechanisms. To ensure a se-
cure connection between microservices, the authors suggested using a combina-
tion of authentication and attestation. The proposed attestation mechanisms were
built on top of standard transport layer security channels and certificates.

1.4.6. Communication Performance

Hong et al. (2018) provided a detailed research on the performance evaluation of
RESTful API and RabbitMQ for Microservice Web Applications. Experimental
results showed that when a large number of users sent requests to the web appli-
cation in parallel, RabbitMQ, as the message-oriented middleware, provided more
stable results compared to the RESTful API. On the other hand, the RESTful API
has shown better request-response performance results.

Fernandes et al. (2013) performed a comparison research between a RESTful
Web service and the AMQP protocol for exchanging messages between clients and
servers. The final results showed that for applications that exchange a large amount
of data, the best approach is to use the RabbitMQ server and the back-end service
to consume the messages, process them, and send them to the database. As a result,
fewer messages per second were sent, the time for exchange increased, and even
more resources were used evaluating RESTful Web service.

It can be summarised that different factors like request load, IT environment,
and network technologies determine communication performance between micro-
services. It cannot be unambiguously defined which communication technology is

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS... 35

faster. It depends on the specific application. Asynchronous communication is a
more robust and stable communication mechanism than HTTP (Rest) and enforces
microservice autonomy. Detailed analysis and in-depth evaluation of chosen com-
munication technologies are provided in the fourth chapter.

1.5. Data Management

Migration from a monolithic architecture to a microservice architecture is a com-
plex challenge that consists of issues such as microservice identification, code
decomposition, combination between microservices, independent deployment,
etc. One of the key issues is data storage adaptation to a microservice architecture.
A monolithic architecture interacts with a single database, while in a microservice
architecture, each microservice works independently and has its private data stor-
age, e.g., data storage is decentralised. A viable option to fulfil different micro-
service persistence requirements is polyglot persistence, which is data storage
technology selected according to the characteristics of each microservice need.

Although the topic of monolithic software migration into microservice archi-
tecture has already been explored by scientists and software engineers, there is little
research on database adaptation during the migration from a monolith to a micro-
service architecture. Despite this, it is recognised that data management is a major
challenge in microservices (Laigner et al., 2021; Azevedo et al., 2019; Richter
etal., 2017; Francesco et al., 2017; Knoche et al., 2019; Luz et al., 2018; Soldani
et al., 2018). The primary focus of most of the research is microservice identifica-
tion within monolith applications and source code decomposition into micro-
services. All of the existing migration methods provide very little to no recommen-
dations on how to adopt data storage to a microservice architecture during the
migration from a monolith to a microservice architecture. To the best of the au-
thors’ knowledge, besides Levcovitz et al. (2016), who proposed a technique of
microservice extraction from monolith enterprise systems, there have been no fur-
ther migration methods that have investigated the adaption of data storage to a mi-
croservice architecture.

To better understand the decisions made by the authors while creating the pro-
posed approach, this chapter provides the background of a literature review con-
ducted on the following topics: SQL vs. NoSQL, polyglot persistence, and data
storage in microservices.

36 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS...

1.5.1. Structured Query Language versus Non-Structured
Query Language

For the last 40 years, relational databases (SQL) have been the market leader be-
cause of their ability to solve most of the challenges. Such a long existence has
given a high level of maturity, and it is still the most recommended storage for
many applications. However, SQL databases are not capable of solving all of to-
day’s challenges. Inspired by SQL limitations, NoSQL has emerged as a solution
to fill these gaps (Brewer, 2000; Khine et al., 2019).

The key feature of relational databases is the high consistency guarantee pro-
vided by ACID (atomicity, consistency, isolation, and durability) properties. Many
NoSQL databases have focused on high levels of availability and resilience, even
though this may compromise consistency for a few moments. To achieve availa-
bility and resilience, NoSQL databases work with BASE (basically available, soft
state, and eventually consistent) properties (Khine et al., 2019).

The CAP theorem (consistency, availability, and partition-tolerant), also
known as Brewer’s theorem, states that it is impossible to provide all three guar-
antees simultaneously (Meier et al., 2019). While SQL primarily focuses on con-
sistency, NoSQL is giving up either consistency or availability and embracing par-
tition tolerance (Brewer, 2000). There is no perfect database that could solve all
the problems and fit all the requirements. Polyglot persistence is a single storage
system that combines the SQL and NoSQL database features.

In relational databases, the stored data are managed and represented as tables.
Each table can have a relation to an arbitrary number of tables. A table consists of
rows and columns. A row represents a dataset item, and a column represents a
dataset item’s field. In NoSQL, the data store management can be grouped into
four types: key—value, wide-column, document, and graph. Data in key—value
stores are managed and represented as key and value pairs stored in efficient,
highly scalable, key-based lookup structures. A value represents data with an arbi-
trary type, structure, and size that is uniquely identified by an indexed key. Index-
ing and querying based on values are not supported, so in cases where querying is
needed, it must be implemented on the client’s side. The conception of wide-col-
umn stores (also known as column-family stores) was taken from the Google
Bigtable store. Data are represented in a tabular format of rows and column-fami-
lies. A column-family is an arbitrary number of columns logically connected. A
wide-column store is an extended key—value store in which the value is represented
as a sequence of nested (key, value) pairs. An extended key—value store in which
the value is represented as a document encoded in standard formats such as XML,
JSON, or BSON (Binary JSON) is a Document store. The biggest difference from
the key—value store is that document stores know the format of the documents and
support querying based on value functionality. Graph stores are based on graph

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS... 37

theory, in which a graph consists of vertices representing entities and edges repre-
senting the relationships between them. The graph datasets are stored efficiently to
provide effective operations for querying and analysis. Because the data relation-
ship variety can be very different in many aspects, many types of graphs, such as
undirected, directed, labelled, etc., are used to represent different types of data
(Meier et al., 2019; Shah et al., 2016; Richter et al., 2017; Davoudian et al., 2016;
Krishnan et al., 2002; Luz et al., 2018; Sharma et al., 2012; Nayak et al., 2013).

According to Nayak et al. (2013), NoSQL has several advantages: it provides
a wide range of data models to choose from, is easily scalable, no database ad-
ministrators are needed, it can handle hardware failures, it is faster and more flex-
ible, and evolves at a very high pace. The disadvantages of NoSQL are its imma-
turity, inexistence of a standard query language, incompliance of some NoSQL
databases with ACID, inexistence of a standard interface, and difficult mainte-
nance.

1.5.2. Polyglot Persistence

The general polyglot persistence conception was evaluated from the point of view
of the polyglot programming conception proposed by Neal Ford in 2006. The
main idea of both conceptions is choosing the right tool for the given task. In
polyglot programming, it is a programming language, and in polyglot persistence,
it is a data storage engine. Polyglot persistence defines a hybrid approach where
different kinds of data are best dealt with in different data stores (Zdepski et al.,
2018; Serra, 2015).

No single database technology, be it SQL or NoSQL, can satisfy all of the
business needs and solve all technological challenges. To choose the right data-
base, a set of criteria must be considered: the data model, CAP support, capacity,
performance, query API, reliability, data persistence, rebalancing, and business
support. It is also important to evaluate databases from different viewpoints: tech-
nical, business, system domain, and environmental. Polyglot persistence technol-
ogy has the potential to scale to millions of users a day and be able to store an
incredible amount of data by combining SQL and NoSQL technologies into one
solution (Brewer, 2018; Khine et al., 2019; Meier et al., 2019; Shah et al., 2016;
Zdepski et al., 2018; Zdepski et al., 2018; Wiese et al., 2015).

In 2012, Fowler predicted that polyglot persistence would occur over the en-
terprise as different applications use different data storage technologies. It would
also occur within a single application as different parts of an application’s data
store have different access characteristics. A hypothetical example of polyglot
persistence is shown in Fig. 1.10. In the provided example, different types of da-
tabases are used to store different types of data to fulfil the concept of choosing
the right tool for the given task (Fowler et al., 2012).

38 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS...

User sessions Financial data

Rapid access for reads and writes. No need
to be durable

Needs transactional updates. Tabular

REDIS (Key-Value) structure fits data

J

Product catalog Analytics

Lots of reads, infrequent writes. Products

MON(= .
MONGODB (Document) make natural aggregate.

Casandra (Wide column) Large-scale analytics on large cluster

User sessions Recomendations

Needs high availability across multiple
locations. Can merge inconsistent writes.

Rapidly traverse links between friends,

RIAK (Key-Value) product purchases and ratings

NEO4J (Graph)

((l | (| | ftl

((l {(l (| |

7

Fig. 1.10. Hypothetical example of polyglot persistence (Fowler, 2012)

On the other hand, polyglot persistence is a complex solution and creates

many new challenges. A decision is required on which technology to use rather
than just storing everything in one database. The immaturity of NoSQL tools is
another issue. The consistency problem in an organisation raises the question of
how to ensure data sync between different parts of the organisation.
Wiese (2015) categorised polyglot database architectures into three types: poly-
glot persistence, lambda architecture, and multi-model databases. Wiese (2015)
recommends using polyglot persistence only if several diverse data models must
be supported; otherwise, there is a risk of overhead maintenance. The lambda ar-
chitecture is recommended for real-time data analytics applications. The lambda
architecture relies on the same data stores as polyglot persistence and has similar
disadvantages. Multi-model databases store data in a single store but provide ac-
cess to the data with different APIs according to different data models. This type
of polyglot database architecture is recommended if only a limited set of data
models is required by accessing applications (Wiese et al., 2015).

Zdepski et al. (2018) proposed a modelling methodology capable of unifying
design patterns for polyglot persistence, bringing an overview of the system as
well as a detailed view of each database design. The proposed methodology con-
sists of three steps: (1) conceptual design, (2) logical design, and (3) physical de-
sign. The conceptual design translates the requirements into a conceptual database
schema. The logical design realises the translation of the conceptual model to the
internal model of a database management system. The physical design imple-
ments all the peculiarities of each database software.

According to Shah et al. (2016), a crucial part of the efficiency of a polyglot
system is the selection of a database engine (Shah et al., 2016). The authors pro-
posed the design of a polyglot persistence system for an e-commerce application
and compared it with a system where data were stored only in the SQL or NoSQL
databases. The most optimum results were obtained from the polyglot system with

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS... 39

three databases: (1) document type (Mongo DB), (2) key—value type (Redis), and
(3) a relational database (SQL.ite).

Trivedi et al. (2020). proposed the design of a polyglot persistence system
for an e-commerce application based on the intelligent data mapper. A crucial part
of the proposed design is the selection of databases: different databases are opti-
mal for handling different types of data. Mapping of data from these dissimilar
databases is only possible if the compatibility criteria are met. The proposed de-
sign consists of three types of databases: (1) document type (MongoDB) to store
tore product details, customer details and other document-type data, (2) key—value
type (Redis) to store data, such as product search counter, which requires constant
update or modification, (3) relational database (SQL.ite) to store aggregate queries,
such as payment details. The proposed polyglot persistence system was compared
with a system where data was stored only in MongoDB and a system where data
was stored only in SQL.ite. The most optimum results were obtained from the pol-
yglot system.

An evaluation of the NoSQL multi-model data stores in polyglot persistence
applications were conducted by Oliveira et al. Multi-model databases (ArangoDB
and OrientDB) were compared with a combination of the document type database
(MongoDB) and graph type database (Neo4j). The experimental results showed
that in some scenarios, multi-model data stores had similar or even better perfor-
mance than a combination of different data stores.

1.5.3. Data Storage in Microservices

A microservice architectural style is an approach for developing an application as
a suite of small services where every service communicates with other services
via lightweight mechanisms, such as HTTP API. Services are built around busi-
ness capabilities and are independently deployable by fully automated deploy-
ment machinery. There is a bare minimum of centralised management of services
that may be written in different programming languages and use diverse data stor-
age technologies (Newman, 2019).

In the book Building Microservices Applications on Microsoft Azure, Chawla
et al. (2019) discuss the various critical factors of designing a database for micro-
service architecture-based applications. The authors recommend that each micro-
service should have a separate database because data access segregation helps fit
the best technology to handle the respective business problem. The authors, based
on the CAP theorem, suggested choosing an intersection of two functionalities:
consistency and availability or availability and partition. The database should de-
pend on the nature of the application. While monolith applications usually use a
single data store, microservices use many data stores, both SQL and NoSQL. SQL
is recommended where transactional consistency is critical and structured data are

40 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS...

stored. NoSQL is recommended for microservices where schema changes are fre-
guent, maintaining transactional consistency is secondary, and semi-structured or
unstructured data are stored. Microservice architecture offers the flexibility to use
polyglot persistence.

According to Chawla et al. (2019), there are four main challenges to using
microservice architecture and polyglot persistence: (1) maintaining the consistency
for transactions spanning across microservice databases, (2) sharing or making the
master database records available across microservices databases, (3) making data
available to reports that need data from multiple microservices databases, and (4)
allowing effective searches that receive data from multiple microservices data-
bases. To ensure that changes are efficiently transferred across the microservices,
the authors suggest using two approaches: (1) a two-phase commit for managing
transactions in SQL databases and (2) eventual consistency in managing any dis-
tributed application.

Laigner et al. (2021). attempted to bridge the gap of a lack of thorough inves-
tigation of the state of the practice and the major challenges faced by microservice
architecture practitioners regarding data management. The authors identified three
main reasons why a microservice architecture should be adopted regarding data
management: (1) functional partitioning is used to support scalability and high data
availability, (2) decentralised data management provides the ability to manage data
store schemas for each microservice independently, and (3) even driven architec-
ture allows for a reactive application to be built.

Database and deployment patterns were investigated by Laigner (2021). Three
mainstream approaches for using database systems in microservice architectures
were identified: (1) private tables per microservice, sharing a database server and
schema, (2) schema per microservice, sharing a common database server, and (3)
database server per microservice. Based on the conducted survey, the authors
stated that the most preferred and efficient way for data persistence in a micro-
service architecture is to encapsulate a microservice state within its own managed
database server and avoid any resource sharing between different microservices.
The most widely used databases in a microservice architecture are Redis, Mon-
goDB, MySQL, PostgreSQL, and MS SQL.

Brown et al. (2016) researched the implementation patterns for microservice
architectures and proposed a pattern language. Part of the proposed pattern lan-
guage consisted of scalable store patterns used to build a scalable and stateless data
store for a microservice architecture-based application. The key to these patterns is
that the database must be naturally distributed and able to both scale horizontally
and survive the failure of a database node. The authors suggest choosing a database
based on the need: if the application strongly depends on the SQL-centric complex
query capability, then a solution such as a SQL database or a distributed in-memory

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS... 41

SQL database may be more efficient. Otherwise, the recommendation is to use
NoSQL databases.

The importance of data persistence choice in microservice architecture-based
applications was highlighted by Ntentos et al. (2020) in the article Assessing Ar-
chitecture Conformance to Coupling-Related Patterns and Practices in Micro-
services. According to the authors, three things have to be considered while choos-
ing data storage: reliability quality, scalability quality, and adherence to best
practices of microservice architecture. The most recommended option is the data-
base per service pattern, and the second option is to use a shared database, but it
negatively affects the loose coupling quality.

Messina et al. (2016) proposed and tested a simplified database pattern for
microservice architecture where a database is a separate microservice itself. The
proposed data persistence pattern was based on four patterns: (1) the APl gateway
pattern, (2) the client-side discovery and server-side discovery patterns, (3) the ser-
vice registry pattern, and (4) the database-per-service pattern. Proposed pattern
benefits are no traditional service layer, microservices have no third-party depend-
encies, database microservices encapsulate all specific database details, less in-
volved components, and less complexity. The main drawback is the dependency
on the chosen database. Proof-of-concept showed an improved performance com-
pared with the standard SQL-based storage.

Villaca et al. (2020) evaluated the use of a multistore database canonical data
model in a microservice architecture. The authors proposed and implemented an
architecture for microservices with polyglot persistence based on the strategy of a
canonical data model. The benefits found during the evaluation were: (1) usabil-
ity — high understandability and operability, (2) high performance — better resource
utilisation and shorter response time, (3) compatibility — the proposed architecture
has enabled systems implemented with different technologies to coexist in an en-
capsulated form, and (4) maintainability — the API structure provides processing
of the linked objects (as defined in the scheme) in a segregated manner, facilitating
the decomposition processing logic and improving the readability of the mediator
node code.

A different approach to data persistence in microservice architecture was pre-
sented by Viennot et al. (2015) in the paper Synapse: A Microservices Architecture
for Heterogeneous-Database Web Applications. The authors developed a frame-
work called Synapse, which supports data replication among a wide variety of SQL
and NoSQL databases, including MySQL, Oracle, PostgreSQL, MongoDB, Cas-
sandra, Neo4j, and Elasticsearch. With Synapse, different microservices that oper-
ate on the same data but demand different structures can be developed inde-
pendently and with their database. Synapse transparently synchronises shared data
subsets between different databases in real-time. Synchronisation is conducted via
a reliable publish/subscribe communication mechanism. The biggest advantage of

42 1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS...

the synapse is that it enables microservices to use any combination of heterogene-
ous databases (SQL and NoSQL) in an easy-to-use framework.

To sum up, it can be stated that there are no criteria, based on which SQL or
NoSQL could be chosen as a database for microservice. Instead, there are recom-
mendations when SQL or NoSQL could be a better option. For example, SQL is
a recommended technology if transactional consistency is critical, and NoSQL is
a recommended technology if schema changes are frequent, etc. In theory, there
are clear boundaries between SQL and NoSQL, but in practice, it is much more
complicated. For example, even though transaction consistency is considered a
benefit of SQL, there are NoSQL databases, such as RavenDB or MongoDB, that
also support it.

On the other hand, the nature of microservice architecture offers the flexibility
to use a polyglot persistence and leverage different data store models and engines.
Polyglot persistence based on supported models can be grouped into two types:
single-model and multi-model. The biggest advantage of multi-model polyglot per-
sistence is that it uses only one database engine to support all models, while in
single-model polyglot persistence, each model is supported by a separate database
engine. According to Wiese (2015), multi-model polyglot persistence is recom-
mended only if a limited set of data models is required to be accessed.

There are many different suggestions on how to implement data persistence
for microservice architecture, but a common consensus among practitioners is that
good practice is to use a separate database for each microservice. However, an
actual implementation depends on many different factors, such as the size of a mi-
croservice, the actual need for the database for each microservice, the limitations
of the existing infrastructure and architecture, security requirements, consistency
requirements, code quality, etc. The most common patterns used for data persis-
tence in microservice architecture are table per microservice, schema per micro-
service, database per microservice, and database as microservice. The proposed
approach of monolith database migration into multi-model polyglot persistence
based on microservice architecture is provided in Chapter 2.1.4, and its evaluation
is provided in the Fourth Chapter.

1.6. Conclusions of the First Chapter and
Formulation of the Tasks of the Dissertation

The first chapter of the dissertation provides an overview of microservice archi-
tecture and migration from monolith architecture to microservice architecture.
The following conclusions have been drawn:

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS... 43

1. Microservice architecture has many advantages over monolithic architec-
ture and has become a standard by default for modern cloud-based soft-
ware systems in most enterprises. Many enterprises have started modern-
ising their legacy monolithic applications by decomposing to
microservices to remain competitive. Migrating from a monolithic to a
microservices architecture poses challenges such as defining appropriate
service boundaries, handling data management shifts from a unified to a
distributed model and managing complex inter-service communication.
The process involves a more intricate deployment and monitoring system,
introduces testing and service coordination complexities, and necessitates
an understanding of distributed systems. Furthermore, the transition may
introduce network latency, potentially affecting performance. As micro-
services architecture is so complex and a relatively new architectural style,
no widely approved way of conducting a migration from monolithic ar-
chitecture to microservice architecture exists.

2. Three main challenges of migration to microservice architecture have
been identified: microservice extraction from legacy monolith code bases,
communication establishment between decomposed microservices, and
data management adaptation to microservice architecture. While micro-
service extraction from legacy monolith code bases has already been ex-
plored by scientists and software engineers, there is very little research
communication between microservices and data management.

3. The number of extracted microservices and the size of each microservice
depend on the chosen code decomposition method. Code-based and stor-
age-based methods allow for the identification of different technical func-
tions and group code and storage components based on them. Business
domain-based methods allow the decommissioning of applications into
microservices based on identified business domains. Code-based and stor-
age-based methods provide higher granularity.

4. The code quality of legacy monolithic applications has a great impact on
the migration process. The better quality is, the less effort is needed to mi-
grate from monolithic to microservice architecture.

5. Each microservice can be different in a variety of aspects, and no one da-
tabase could potentially satisfy all the needs, which naturally leads to the
use of polyglot persistence as a microservice data store.

Based on the conclusions, the following tasks are formulated to achieve the

goal of the dissertation:

1. To investigate communication technologies for microservices and deter-
mine particular cases for their use.

44

1. ANALYSIS OF MICROSERVICE ARCHITECTURE AND METHODS...

2.

3.

To propose and evaluate the approach of monolith database migration into
multi-model polyglot persistence based on microservice architecture.

To propose a new approach to migration from legacy monolith application
to microservice architecture, which will combine code decomposition, es-
tablishing communication between microservices and data management
areas.

Approach to Migrating a Legacy
Monolithic Application in
Microservice Architecture

This chapter proposes an approach that allows migrating existing legacy monolith
applications into a microservice architecture. Migration from a monolithic archi-
tecture to a microservice architecture is a complex challenge, which consists of
many different issues, such as microservice identification, code decomposition,
commination establishment between decomposed microservices, independent de-
ployment, data storage adaptation, etc. Unlike other migration approaches, the
proposed migration approach consists of three parts: code decomposition, com-
munication establishment and database migration. The primary focus of most of
the other research is microservice identification within monolith applications and
source code decomposition into microservices. All of the existing migration meth-
ods provide very little or no recommendations on how to adapt data storage to a
microservice architecture and how to establish the connection between micro-
services during the migration from a monolith to a microservice architecture.

Two publications were published on the topic of this chapter (Kazanavicius,
Mazeika, Kalibatiene et al., 2022; Kazanavicius, Mazeika et al., 2023).

45

46 2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION...

2.1. Proposed Migration Approach

The main steps of the proposed approach for the migration from legacy monolith
application to microservice architecture are shown in Fig. 2.1. It consists of five
main steps, divided into several sub-steps: Step 1 — Analysis of an existing mono-
lith application; Step 2 — Monolith code decomposition into microservices;
Step 3 — Communication establishment between microservices; Step 4 — Database
adaptation to microservice architecture; Step 5 — Release and deployment. A de-
tailed explanation of each step and its sub-steps is provided next.

Step 1. Step 2. Step 3. Step 4. Step 5.
Analysis of an existing Monolith code Communication Database adaptation to Release and Deployment
monolith application decomposition into establishment between microservice architecture

microservices microservices

A 4 A A 4 A 4 A
Sub-Step 1. Sub-Step 1. Sub-Step 1. Sub-Step 1. Sub-Step 1.
Identifving code Choice of code Choice of Data model development Infrastructure
decomposition decomposition communication establishment
requirements method technology
v v \ v " y
Sub-Step 2. A Sub-Step 2. Sub-Step 2. Sub-Step 2. Sub-Step 2. N
Identifving Decomposition Establishment of Microservice Microservices
communication monolithic application communication between development deployment
requirements code into microservices microservices
J/
A 4 A 4 ~ Y
Sub-Step 3. Sub-Step 3. Sub-Step 3.)
Identifying data Data Hypercare
management transformation
requirements
5 A

A 4 y
Sub-Step 4. Sub-Step 4.
Data Decommission of
validation monolithic application

Fig. 2.1. Proposed approach of migration from legacy monolith application
into a microservice architecture

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION... 47

2.1.1. Analysis of an Existing Monolith Application

Step 1 aims to analyse existing legacy monolith applications and identify func-
tional and non-functional requirements for the next steps. Three types of require-
ments must be gathered: for monolith code decomposition, communication estab-
lishment between microservices, and database adaptation to microservice
architecture.

Gathering monolithic code decompression requirements requires answering
the following question: What is the microservice s responsibility? There are two
types of responsibilities: business domain and technical function. Depending on
the microservice’s responsibility, Step 2 will be to choose a decomposition
method. Microservices based on technical function provide higher granularity.
Another important aspect which has to be identified is code quality. The better the
code quality, the easier and faster it is to extract functions from it. If the code
quality is very low, it may not be possible to use code-based decomposition meth-
ods.

To help choose the most appropriate communication technology for micro-
services, the author has provided the list of criteria: performance, message size,
memory size, and storage size. Performance requirements, such as latency and
throughput, should be provided. Message size, message complexity, and network
load have the biggest impact on latency and throughput. Hence, these metrics have
to be specified at the beginning to choose the most appropriate communication
technology. Message size and network load should also be used to evaluate the
impact on network bandwidth. The larger the message or the higher the network
load, the greater its impact on network bandwidth. In case there is a network lim-
itation, the size of the message and network load have to be considered. While
evaluating microservice memory and storage consumptions, other environmental
limitations, such as memory or storage size, have to be considered as well. A need
for horizontal scalability could also be evaluated, as some communication tech-
nologies have this feature built-in, while others require additional tools and effort.

The database requirements consist of functional requirements and data mod-
els of existing legacy monolith applications. Domain experts and IT experts have
to work together to identify all functional requirements and build the most opti-
mum data model. A business analysis must be conducted to identify business pro-
cesses and their data models. Understanding business logic is crucial to list the
essential business rules. Once business rules are clear, technical analysis related
to business rules has to be conducted to identify functional requirements for the
database. Finally, a data model of existing legacy monolith applications has to be
identified. To achieve the optimal data model results, a top-down approach is rec-
ommended to use instead of a bottom-up one.

48 2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION...

2.1.2. Monolith Code Decomposition into Microservices

During Step 2, a code decomposition method has to be chosen and based on it; a
legacy monolith application has to be decomposed into microservices (Fig. 2.2).
The proposed approach provides three decomposition methods to choose from:
Code based — application decomposition should be implemented based on code
items like class. Application functions should be identified, and all code items
should then be assigned to one of these functions. Business domain-based — ap-
plications should be divided into business domains, and each business domain
should have a separate microservice. Storage-based — all the code related to spe-
cific storage items like databases or database tables should be placed in one mi-
croservice. More details about methods and their evaluations are provided in the
first chapter.

Identify microservices !

i Foglep it rcsponsibility "“;::::::::::::::::::
’ Code-Based-Method E boundaries ! Code-Based-Method E
1 with semantic coupling ! i with logical coupling !
: strategy strategy

Choose from:

Choose from:

E]

E]

Decompose monolith
application into
microservices

Fig. 2.2. Monolith code decomposition into microservices

One of the main principles of microservice architecture is that it should have
only one responsibility. There are two types of responsibilities: business domain
and business or technical function. Business domain responsibility is bigger than
functional responsibility because it contains at least one function, and usually, it

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION... 49

contains much more than one. Split by functions, microservices are smaller and
have been called serverless.

If an organisation decides to decompose legacy monolith applications into
microservices based on business domains, then it is recommended to choose the
business-domain-based method or the code-based method with a semantic cou-
pling strategy. If the decision is to decompose legacy monolith applications into
microservices based on functions, then the storage-based method or code-based
method with a logical coupling strategy could be used. The real difference in mi-
croservice size depends on how much the business domain contains functions.
The more functions the business domain will have, the bigger the microservices
candidate will be extracted using the business-domain-based method or code-
based method with a semantic coupling strategy.

If the organisation aims to have automatic decomposition, then the code-
based method with a contributor coupling strategy should be chosen as it has the
potential to be implemented fully automatically. The monolith must be imple-
mented using object-oriented programming language because the extraction
model is based on classes such as the atomic unit of computation and the graph.
The code-based method with a semantic coupling strategy could be implemented
semi-automatically. In this case, business domains should be identified manually.
How accurately the method will be able to identify the class relation to the busi-
ness domain depends on the naming convention in the code. The storage-based
methods and business-domain-based methods cannot be implemented automati-
cally. The storage-based method requires manually identifying business subsys-
tems and assigning database tables to one of the subsystems. The business-do-
main-based method requires two manual analyses to do.

Choosing the right method for microservice extraction from the legacy mon-
olith application method is a hard task, which is crucial for successful migration.
Each legacy monolithic application is unique and creates unigque challenges. Tech-
nology stack, complexity, business object, team size or skills, etc. are the things
which could be very different in each case.

No one best methodology for extracting microservices from the monolith ex-
ists. Each case is different, and the organisation should choose which method or
combination of methods best suits its migration from monolith to microservices.
Each organisation has its reasons and goals for migrating from the monolith to
microservices. The chosen extraction methodology should help to achieve those
goals. Selected methodology or combination of methodologies should be:

— Able to extract microservices by selected factors and expected size.

— Compatible with technological stack and database technologies used in
monolith applications.

50 2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION...

2.1.3. Communication Establishment between Microservices

The main goal of Step 3 is to choose communication technology and establish
communication between microservices decomposed from the legacy monolith ap-
plications in Step 2. The proposed approach provides five communication tech-
nologies to choose from: (1) HTTP Rest — usually, HTTP/HTTPS protocols are
used for synchronous communication. The main advantage of this communication
is that the system is simple and easily implemented. Also, there is no intermediate
component, such as a message broker. (2) RabbitMQ is open-source general-pur-
pose broker-based asynchronous communication technology. RabbitMQ natively
implements an Advanced Message Queuing Protocol. It was originally developed
by Rabbit Technologies Ltd. (3) Kafka is an open-source distributed publish—sub-
scribe messaging system. Instead of relying on a message queue, Kafka stores
messages to the stream and allows consumers to pool. It was originally developed
by the Apache Software Foundation. (4) gRPC is an open-source Remote Proce-
dure Call (RPC) framework developed by Google. It enables the establishment of
transparent communication between server and client applications in any environ-
ment. Before gRPC became open source, it was used as a single general-purpose
RPC infrastructure to connect the large number of microservices running within
and across Google data centres for over a decade. (5) GraphQL is a query lan-
guage for APIs and a runtime for fulfilling those queries with existing data.
GraphQL was developed internally by Facebook in 2012 and was published to the
community in 2015. The key functionality of the GraphQL framework is a query
language that allows clients to define the structure of the data required, and the
same structure of the data is returned from the server. More details about technol-
ogies are provided in the first chapter, and their experimental evaluations are pro-
vided in the third chapter.

One of the most significant challenges during migration from legacy mono-
lith applications into microservices is data communication management. How are
in-process methods or function calls in monolith applications transformed into
inter-process communication? The high complexity, variety of architectural as-
pects, technological stack, and business objects make every application different
and create challenges during monolith application decomposition to micro-
services. The proposed approach provides criteria based on communication tech-
nology (Fig. 2.3).

If latency and throughput are the main criteria, then RabbitMQ and gRPC are
the most suitable technologies. RabbitMQ showed the best results in RPC latency
and throughput tests for small messages (up to 0.1 MB and a data model up to 100
properties), while gRPC showed the best results in RPC latency and throughput
tests for big messages.

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION... 51

Establish
communication betwee:

MICEToservIces

Identify criteria

Small
message

! — &

RabbitMQ

Throughput

Big
message

Memory RabbithiQ/Kafka
.
—

Boot time Kafka
-~

Fig. 2.3. Communication establishment between microservices

Kafka showed the best throughput results in the most loaded conditions: re-
quested by more than 100 clients at the same time and processing 1,000,000 char-
acters of messages. However, the latency of RPC was high, more than one second.
HTTP Rest has the smallest request and response message size. If message size is
an important criterion when choosing communication technology, then HTTP
Rest is a recommended technology. On the other hand, gRPC has the smallest
payload as it uses binary serialisation. Theoretically, at some point of complexity,
for complex data models with many properties, gRPC request and response mes-
sage size should become smaller than HTTP Rest. Deeper research is needed to
determine the exact complexity threshold. The gRPC library is using the least
amount of storage. If microservices are running in an environment with limited
storage, then gRPC must be used. RabbitMQ and Kafka consume the smallest
amount of memory. Therefore, if memory size is one of the essential criteria, then

52 2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION...

RabbitMQ and Kafka must be used for implementation. Microservice imple-
mented using Kafka library boots up the fastest.

If horizontal scalability is an important aspect, Kafka and RabbitMQ are the
best candidates as they have built-in cluster functionality. It must be noted that
other technologies can be scaled horizontally as well, but it requires additional
tools and effort. HTTP Rest and RabbitMQ are prevalent communication technol-
ogies, and many different libraries exist in the market to choose from, while
GraphQL and gRPC are relatively new and rapidly growing communication tech-
nologies with fewer libraries to choose from. Synchronous communication style
communication technologies gRPC, HTTP Rest, and GraphQL do not require any
additional components to communicate, while asynchronous communication
technologies RabbitMQ and Kafka require service as an interim communication
layer. Hence, additional components increase solution complexity and mainte-
nance costs. On the other hand, if a solution contains many microservices and
scalability is a challenge, RabbitMQ and Kafka as an interim layer can provide
centralised communication routing functionality.

2.1.4. Database Adaptation to Microservice Architecture

During Step 4, the existing legacy monolith application database has to be adapted
to microservice architecture. The purpose of the proposed approach is shown in
Fig. 2.4.

MONOLITH APPLICATION

MICROSERVICE 1

' DATABASE AS
o] MICROSERVICE
S MICROSERVICE 2
Database i s v '
i1 4 pelyglot ;
MICROSERVICE n

BEFORE MIGRATION AFTER MIGRATION

Fig. 2.4. Purpose of the proposed database migration approach

The approach can extract a database from a monolith application and trans-
form it into a multi-mode polyglot persistence, which is encapsulated as a micro-
service itself and exposes data access through a representational state transfer

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION... 53

(REST) application programming interface (API). Multi-model polyglot persis-
tence allows the benefits of microservices, such as agility and scalability, to be
used better. The encapsulation of a database into a microservice reduces the com-
plexity and increases the performance. After migration, the data are accessible not
only to an existing monolith application but also to any microservice within an
ecosystem.

The proposed approach of migration from a monolith database to multi-
model polyglot persistence based on microservice architecture is shown in
Fig. 2.5. It consists of four steps, and each step is divided into sub-steps. A de-
tailed explanation of each step and its sub-steps are provided in the next chapters.

Sub-step 1.
Step 1. &) Sub-step 2. N Sub-step 3.
Data model development & CO;I:;;;U&I Segmentation design Consistency design —‘
Sub-step 4. Sub-step 5.
»| Target data model [~ Physical
design design
Sten 2 Sub-step 1. Sub-step 2. Sub-step 3.
2 1P 2. > Database —>»| Implementation [—»| Microservice
Microservice development
setup of data model skeleton
Sub-step 4. Sub-step 5. Sub-step 6.
»| Implementation of ——3»{ Impl ion |—>»{ Impl ion
repository layer of API of business logic
Step3. " S“b[‘)f;" L Sub-step 2. 5 S“';i‘;” it
Data transformation eriattion Data transformation o
Step 4 Sub-step 1. Sub-step 3. Sub-step 3.
; .~ S 3 s enas
Data validation P Identification of test [Implementgnon of »| Execution of test —‘
cases test engine cases
Sub-step 4. Sub-step 5.
»| Analysis of tests [—=>»| Implementation of
results amendments

Fig. 2.5. Proposed database migration approach

54

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION...

During Step 1 (Fig. 2.6), the data model for multi-model polyglot persistence
has to be created based on the defined model of an existing monolith database.
The proposed data model creation process consists of five sub-steps:

T

Is segmentation unit is independant - Is data model compatibile with
and can fullfil functional requirements? 3 segmentation unit data structure?

Develop entity

relationship diagram

N &

Identify consistency
units

Of+] Of+]

Implement physical
design

Identify
segmentation units

O[]

Define data model

J

L Is consistency unit is complete and can
ensure consistency requirements?

Fig. 2.6. Data model development

Conceptual design, based on the gathered functional requirements to
build a conceptual database schema as an entity-relationship model. A
conceptual database schema is a foundation that will be used in the
next sub-steps to develop a new data model.

Segmentation design divides the conceptual database schema into in-
dependent function units and defines borders between these units. The
cut points defined on the existing data model during segmentation de-
sign will be used to split the current data model into different data
models suitable for multi-model polyglot persistence.

Consistency design identifies consistency units to allow data fragmen-
tation and horizontal scalability.

Target data model design chooses the best data structure for each iden-
tified segmentation unit from different data structures supported by
multi-model polyglot persistence.

The physical design implements the built target data model into a
multi-model polyglot persistence database. As each database is differ-
ent, this sub-step aims to implement all technical peculiarities needed
to support the developed target data model in the database.

The main goals of Step 2 are to set up the multi-model database and encap-
sulate it into the microservice. This allows for the implementation of the database
as a service pattern, where a database is a microservice itself.

Sub-step 1 is to install a multi-model polyglot database and set up technical
peculiarities, such as creating a cluster, users, firewall rules, etc. The database

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION... 55

setup can be different in many aspects, such as the operating system, virtual ma-
chine or Docker, cluster or single instance, cluster type, etc. The decision on how
to install and set up a database has to be determined based on the application of
non-functional requirements, the capabilities of the existing company infrastruc-
ture, database capabilities, availability requirements, security requirements, scala-
bility requirements, etc.

During the next sub-step, the physical design of the data model created in the
second step has to be implemented into the installed database. All models and data
structures defined in Step 2 have to be implemented and ready to be used. This
sub-step could be skipped if the database supports a code — the first approach
where models and data structures are defined in an application.

The purpose of Sub-step 3 is to create a microservice skeleton that can de-
ployed and run as a Docker container. At this stage, a microservice should only
contain the code and settings needed to run it as a Docker container in the com-
pany’s infrastructure. An infrastructure has to be created to run a Docker con-
tainer; e.g., it could be an OpenShift project in a private cloud. The number of
active containers and scalability settings has to be determined based on the non-
functional requirements, the capabilities of the existing company infrastructure,
database capabilities, availability requirements, security requirements, scalability
requirements, etc. A continuous integration and continuous deployment (CI/CD)
pipeline has to be set up to automate build, test, and deploy activities and ensure
security so that only the entitled person can deploy a new version of the micro-
service. Microservice capabilities to log have to be ensured. A good practice for a
microservice architecture is to use centralised logging solutions. ELK Stack could
be an example of a good logging solution.

The repository layer has to be built to provide microservice accessibility to
the database in Sub-step 4. All actions needed to establish a connection between
a database and a microservice have to be executed first, e.g., firewall rules, service
account access rights, connection string, etc. The next step is the implementation
of a repository layer. The code that can communicate with a database and manip-
ulate its data has to be written. For each data model defined in step 2 and imple-
mented in the database, a repository has to be created and support four main op-
erations: create, read, update, and delete.

During Sub-step 5, the API has to be built and exposed with all of the neces-
sary methods to support the interfaces for all identified functional requirements.
For example, if the functional requirements consist of creating a customer, view-
ing a customer, updating a customer, or deleting a customer. All four methods
have to be created in the customer’s controller. The authentication and authorisa-
tion functionality has to be implemented to fulfil the security requirements and
manage the accessibility to different methods.

56 2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION...

The last sub-step aims to implement the business logic layer, which has to
connect the API layer and the repositories layer. Because the API layer operates
with business domain data models and the repository layer operates with database-
specific data models, they cannot work directly. The business logic layer works
as an intermediate layer that contains all of the logic needed to implement all of
the functional requirements identified in Step 1 and connects the APl and reposi-
tory layers.

An example of one possible implementation is presented in the sequence dia-
gram below (Fig. 2.7). The API layer exposes a method GetCustomer, which can be
called by a client application to obtain all the customer details. Once the call is re-
ceived, it is routed to the business logic layer, which calls the repository twice to
obtain different details about the customer: GetCustomerinfo and GetCustomerHis-
tory. GetCustomerinfo obtains general customer information, such as name, sur-
name, address, etc. GetCustomerHistory obtains the customer’s payment history.

! Client application | / Microservice ! Database cluster

i :API :Business logic ‘Repository :Database
GetCustomer() '
S T GetCust ' :
A0 pr GetCustomerInfo() :
» GetCustomerInfo()
Cust'omerlflf LJ
____ CustomerInfo [Ronensisng e Reoasenes
GetCustomerHistory() GetHistory()
Customerl . ________ U
: Customer : '
Customer [

....................

layers

The repository layer is called twice because Customerinfo and History data
are stored in separate data models within a database, and two separate calls to a
database are needed. In the business layer, Customerinfo and History data re-
ceived from the repository layer are combined and mapped into one consistent
domain data model — Customer, which is used as a response to a client’s GetCus-
tomer request. To sum up, the repository layer is responsible for data manipulation
within the database; it encapsulates all of the technical implementation peculiari-

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION... 57

ties, such as connection establishment, data mapping, etc. The API layer is re-
sponsible for data exposure to clients via the API interface and encapsulates all
technical implementation peculiarities, such as connection establishment, author-
isation, authentication, etc. The business logic layer is responsible for building a
consistent domain data model.

Once a microservice is created, the next step is to transform the data from a
monolith database into multi-model polyglot persistence. The biggest challenge
here is that both databases use different data models, so it is not possible to directly
transfer data from one to another; it has to be transformed. This step aims to create
an application that can execute data transformation between databases. The pro-
posed data transformation process is shown in Fig. 2.8.

Monolith
database

]
Kl

Multi-model
polyglot

Identify all data Create entities for
Extract data structures in new each identified data Import data
data model structure

Fig. 2.8. Proposed data transformation process

Sub-step 1 is to extract everything needed to transform the data from a mon-
olith database. A code that can read data from a monolith database and transform
it into data models that represent the used data structure has to be written. The
author recommends creating a repository layer with a repository for each data ta-
ble in a monolith database.

An example of the simplified repository and model implementations written
in the C# programming language is shown in Fig. 2.9. The simplified example of
the data model of multi-model polyglot persistence is shown in Fig. 2.10. The
MonolithModell is a model that represents the data in the Model1Table data table.
The MonolithModel1Repository has one method, GetAllRecords, which calls the
generic interface IDatabase that executes the SQL query to obtain all records from
the specific table Model1Table and maps the result to the defined model Mono-
lithModell. Finally, read-only access rights should be granted, and firewall rules
should be set up for the application to access the data in a monolith database.

The purpose of the next sub-step is to transform the extracted data into a data
model that is supported by multi-model polyglot persistence. As the data models
and repository layer for multi-modal polyglot persistence have already been im-
plemented in Step 3, the code can be reused. Once both data models for the mon-
olith database and multi-modal polyglot persistence are created, the mapping logic

58 2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION...

between models has to be implemented. Each field of each data model for polyglot

persistence has to be mapped.

public class MonolithModel 1Repository
{

private readonly IDatabase<MonolithModell> _database;

public CustomerRepository(IDatabase <MonolithModell> database)

{

_database = database;

K

public IEnumerable<MonolithModell> GetAllRecords()

{
return _database.GetAllRecords(tableName: "Model1Table");

public class MonolithModell

{
public long Id { get; set; }
public string PropertyA { get; set; }
public long MonclithModel2Id { get; set; }

Fig. 2.9. Example of the simplified repository and model implementations

public class MonolithModel1
{
public long Id { get; set; }
public string PropertyA { get; set; }
public long MonolithModel2Id { get; set; }
¥
public class MonolithModel2
{
public long Id { get; set; }
public string PropertyB { get; set; }
public string PrapertyC { get; set; }

public class PolyglotModel
{
public long Id { get; set; }
public string PropertyA { get; set; }
public PolyglotChildModel Child { get; set; }
}
public class PolyglotChildModel
{
public long Id { get; set; }
public string PropertyB { get; set; }
public string PropertyC { get; set; }

{
return new PolyglotModel
{
Id = modell.Id,
PropertyA = modell.PropertyA,
Child = new PolyglotChildModel
{
Id = model2.1d,
PropertyB = model2.PropertyB,
PropertyC = model2.PropertyC,

Y

public PolyglotModel Map(MonolithModell model1, MonolithModel2 model2)

Fig. 2.10. Example of simplified data model mapping

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION... 59

It is a combination of two data models used in monolith applications. The
MonolithModell and MonolithModel2 models represent two data tables in the
monolith database, and PolyglotModel represents a document with the embedded
subdocument PolyglotChildModel. Even though the given example looks straight-
forward, in practice, the mapping logic can be more complicated: the data model
for the polyglot can be a combination of dozens of data tables, and fields from the
same data table can be part of many data models of the polyglot, data types for
fields could be different, etc. The complexity of data model mapping strongly de-
pends on the quality of the monolith database data model, where a lower quality
means a higher complexity.

public class PolyglotModelTransformer

{
private readonly MonolithModel1Repository _monolithModel1Repository;
private readonly MonolithModel2Repository _monolithModel2Repository;
private readenly PolyglotModelMapper _polyglotMedelMapper;

public PolyglotModelTransformer(
MonalithModel1Repository monolithModel1Repository,
MonolithModel2Repository monolithModel2Repository,
PolyglotModelMapper polyglotModelMapper
)

_monclithModel1Repository = monolithModel1Repository;
_monoalithModel2Repository = monolithModel2Repository;
_polyglotModelMapper = polyglotModelMapper;

b

public IEnumerable<PolyglotModel> Transform()

{
var monolithModels1 = _monolithModel1Repository.GetAllRecords();
var monolithModels2 = _monolithModel2Repository.GetAllRecords();

foreach (var modell in monolithModels1)
{
var model2 = monolithModels2.Single(x => x.Id == model1.MonolithModel21d);
yield return _polyglotModelMapper.Map(modell, model2);
}
}
}

Fig. 2.11. Example of the simplified record creation class

The next action in Sub-step 2 is to create all records for polyglot persistence
based on records in a monolith database. In examples defined in Figs. 2.9 and
2.10, the number of records for the PolyglotModel model should be equal to the

60 2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION...

number of records in the Model1Table table. For each data model of polyglot per-
sistence, a main data table in a monolith database has to be identified. A simplified
example of record creation is shown in Fig. 2.11. The PolyglotModelTransformer
class uses MonolithModel1Repository and MonolithModel2Repository classes to
obtain MonolithModel1 and MonolithModel2 records from the monolith database
and passes these to the PolyglotModelMapper, which maps all of the fields and
creates PolyglotModel records.

The last sub-step imports all records created in Sub-step 2 into a multi-model
polyglot database installed in the third step. The author suggests reusing the re-
pository layer created in the microservice.

Even though the data transformation process could be implemented in differ-
ent ways, the author recommends building a separate application for this purpose.
This would allow for the process to be repeated as many times as needed if errors
or failures occur. It also would allow for the transformation process to be executed
gradually in case it is planned to transform the data in stages.

The purpose of Step 4 is to create automatic data validation. Transformed
data have to be validated before it is released for production. In Sub-step 1, test
cases have to be created based on the functional requirements and data in the
mainframe monolith database. Sub-step 2 is to create a test engine that has to be
able to execute the created test cases in the previous sub-step. The purpose of the
last three sub-steps is to execute the test cases and make amendments if needed
(Fig. 2.12). The step is finished only when all of the test cases are passed.

Make amendments

Fig. 2.12. Test case execution

For example, the functional requirements for the data records of Polyglot-
Model defined in Fig. 2.10 are read, create, update, and delete. Four test cases
have to be created to validate the data integrity and persistence, and one test case
for one functional requirement. The first functional requirement is the possibility
to read the data. In this example, it is possible to read data records by Polyglot-

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION... 61

Model. Two main criteria have to be verified. First, in each data record of Poly-
glotModel, all fields have to be mapped correctly, and the data must be consistent.
Second, the multi-model polyglot persistence has to contain the same number of
records as the data table Model1Table in the monolith database. Fig. 2.13 contains
an example of the possible records. The monolithModel1Record represents a rec-
ord of the data table ModellTable in the monolith database, the mono-
lithModel2Record represents a record of the data table Model2Table in the mon-
olith database, and the polyglotModelRecord represents a record of the
PolyglotModel in multi-model polyglot persistence. The test case for functional
requirement read has to verify that all fields that exist in the MonolithModell and
MonolithModel2 models also exist in PolyglotModel and that the values are the
same. For example, the PropertyB value in monolithModel2Record should be the
same as the PropertyB value in polyglotModelRecord. To verify that all records
were transformed to multi-model polyglot persistence during Step 3, the test case
has to be executed as many times as the Model1Table table has records.

var monolithModel1Record = new MonolithModell var polyglotModelRecord = new PolyglotModel

{ {
Id=1, d=1,

PropertyA = "PropertyAValue", PropertyA = "PropertyAValue",

MonolithModel2Id = 2 Child = new PolyglotChildModel
Yi {

Id=2,

var monolithModel2Record = new MonolithModel2 PropertyB = "PropertyBValue”,
{ PropertyC = "PropertyCValue"

Id=2, }

PropertyB = "PropertyBValue", I

PropertyC = "PropertyCValue"
Y

Fig. 2.13. Example of the data records in the monolith database and
multi-model polyglot persistence

Three more test cases have to be created to validate functional requirements:
create, update and delete. The test case for creation should try to create a new
record of PolyglotModel and verify that the record is actually created and that all
of the fields are filled correctly. The test case for update should try to update all
of the value fields in a record of PolyglotModel and verify that all of them are
updated correctly. Finally, the test case for delete should try to delete a record of
PolyglotModel and verify that it was deleted.

62 2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION...

2.1.5. Release and Deployment

The last step aims to release and deploy extracted microservices and adapted da-
tabases. It includes all technical peculiarities needed to deploy and run micro-
services and databases.

First, an execution environment has to be chosen and prepared for extracted
microservices. The two most common options are virtual machines and contain-
ers. While virtual machines virtualise hardware and OS, containers virtualise only
OS. The possibility of running multiple containers on a single operating system
makes containers advantageous in terms of scalability, lower cost, efficient re-
source usage, portability, etc. The biggest advantages of virtual machines are that
they have harder security boundaries and more resources. There is the possibility
of running a few microservices in a virtual machine; however, it compromises the
single biggest advantage of breaking down a monolithic application into small,
easily executable microservices. Even though it is possible to run microservices
in virtual machines, the author strongly recommends the use of containers as they
better utilise microservice architecture advantages.

A CI/CD pipeline should be set up for each microservice to make them inde-
pendent. The philosophy of microservices states that there should never be a long
release queue where every team has to get in line. There should be no dependen-
cies, and the team that builds microservice “X” should be able to release it at any
time without waiting for any changes in microservice “Y”. To achieve a high re-
lease velocity, the release pipeline has to be automated as much as possible. Each
organisation should decide on a strategy on how to do it and choose tools for it:
source control — where and how should be stored and maintained source code,
build tool — how microservice should be built, tests tool — how tests should be run,
and deploy tool — how microservice should be deployed.

Monitoring and logging are other important aspects to be considered while
building infrastructure for microservices. Microservices are distributed applica-
tions, and the flow goes through multiple processes. It is difficult to get a holistic
view of the entire application and its flow. To do it efficiently, monitoring and
logging services should be centralised and have a strong visualiser.

. Start new version
Stop monolith Transform Verify Yes oy
application data data L
application

No

}

Start old version
of monolith
application

Fix the Identify the
problem problem

Fig. 2.14. Deployment of microservices

2. APPROACH TO MIGRATING A LEGACY MONOLITHIC APPLICATION... 63

Once the infrastructure is established, all microservices can be deployed into
the production environment (Fig. 2.14). At first, the monolith application has to
be stopped, and data transformation has to be executed. The precondition for the
deployment of all microservices is successful data transformation.

Sub-step 3 is hyper care, during which domain and IT experts have to give
hyper attention to newly released software and fix any last errors if they appear.
The last sub-step is decommissioning an unused monolith application and data-
base.

2.2. Conclusions of the Second Chapter

The second chapter of the dissertation proposes an approach that allows migrating
the existing legacy monolith applications into a microservice architecture. The
following conclusions have been drawn:

1. To bridge the existing gaps in communication and database management,
a novel approach is proposed for migration from legacy monolithic soft-
ware to microservice architecture. It consists of five steps: Step 1 — Anal-
ysis of an existing monolith application, Step 2 — Monolith code decom-
position into microservices, Step 3 — Communication establishment
between microservices, Step 4 — Database adaptation to microservice ar-
chitecture, and Step 5 — Release and Deployment.

2. The proposed novel approach allows conducting database migration from
monolith architecture into a microservice architecture by transforming the
existing data model into multi-model polyglot persistence that is embed-
ded in a microservice and exposed via an API.

3. Novel evaluation criteria are proposed, according to which code decom-
position methods and communication technologies are selected, consid-
ering their advantages and disadvantages.

Investigation of Microservice
Communication while
Decomposing Monoliths

One of the biggest challenges while migrating from a monolith architecture to a
microservice architecture is to define a proper communication technology. In
monolith applications, communication between components is performed using
the in-process method or function calls, while different communication methods
have to be established to achieve the same functionality in a microservice archi-
tecture. A microservices-based application is a distributed system running on mul-
tiple processes or services. Therefore, microservices must interact using inter-pro-
cess communication technologies.

This chapter provides an analysis of how proper communication between de-
composed microservices could be established. A set of criteria, which is important
while decomposing monoliths to microservices, was identified. The benefits and
drawbacks of communication technologies and the impact on communication be-
tween microservices were evaluated based on these criteria. Five technologies
were chosen for analysis, e.g., HTTP Representational State (Rest) API, Rab-
bitMQ, Kafka, gRPC, and GraphQL. Rest API represents an asynchronous com-
munication style and has become a de facto standard synchronous communication
technology. RabbitMQ and Kafka represent asynchronous communication based

65

66 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE...

on a message broker. GraphQL and gRPC have been selected for the investigation
because of their rapidly growing popularity. GraphQL provides the functionality
of client-side applications to query databases at server-side applications, while
gRPC is a technology that implements remote procedure call (RPC) APLI. It uses
HTTP 2.0 as its underlying transport protocol and is provided as a data structure.
Various criteria were considered while analysing selected communication tech-
nologies, including influence on microservice topology, the performance of re-
mote procedure calls, message size, memory consumption, storage usage, boot
time, and availability of the corresponding libraries. The main contribution of this
work is a unique set of criteria used to compare five communication technologies
and evaluate their advantages and disadvantages in the context of monolith de-
composition to microservices. The key findings identified during this research are
provided as a guideline for the researchers and industry that can help to speed up
legacy monolith decomposition to microservices and make this complex proce-
dure more obvious.

One publication was published on the topic of this chapter (Kazanavicius,
Mazeika et al., 2023).

3.1. Evaluation of Microservice Communication

A set of five microservices was created and connected in a line topology to eval-
uate and compare communication technologies (Fig. 3.1). The RPC technique was
used for communication between microservices. Only pure server and client func-
tionality were implemented in each microservice; the server component exposes
API, and the client component is used to execute RPC. The experiment aimed to
evaluate and compare communication-based on the remote procedure call (RPC).
RPC technique was chosen because it supports the same functionality as a func-
tion call and in-process-based communication.

Res.

o
[3)
o
v

Fig. 3.1. Topology of microservices used for the experiment. Where: Req. is a request,
Res. is a response, and Mi is a microservice

The full flow of message processing in the conducted experiment is defined
as follows:

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE... 67

t = (TM; > Myyy) + (T8 Ms_; > Ms_i_4), (3.1)

where: t is the time used to process the message, Mi is microservice with index i,
and arrow (—) is request/response operation. Different size and complexity mes-
sages were sent to evaluate and compare the impact of message size, message
complexity and request load on the latency and throughput of each technology.
The time duration between requests sent from M1 to M5 and the response received
from M5 to M1 was measured and was used to calculate latency and throughput.

Different data models were used (Fig. 3.2) for messages to measure the im-
pact of message size and complexity on latency and throughput. The Test-
ModelOnlyText data model was used to measure the impact on message size; the
TextField value was set to 10, 1,000, 100,000, and 1,000,000 characters. The Test-
ModelAllTypes data model was used to measure the impact on message complex-
ity, especially on serialisation. Messages with 10, 100, 1,000 and 10,000 proper-
ties were used.

public class TestModelOnly Text
{
public string TextField { get; set; }

X
§

public class TestModclAllTypes

§
v

public string TextField { get; set; }

public bool BoolField { get; set; }

public bytc BytaFicld { get; set; }

public DateTime DateTimeField { get; set; }
public decimal Decimal Field { get; set; }
public double Double Field { get; set; }
public float FloatField { get; set; }

public int IntFicld { get; sct; }

public short ShortField { get; set; }

public long LongField { get; set; }

Fig. 3.2. Data models used in the experiment

68 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE...

The latency was measured by processing different sizes and complex mes-
sages while requesting using one client. The throughput was measured by pro-
cessing the same messages as it was processed in latency tests but with an in-
creased request load. During the experiment, the request load started with ten
clients and was constantly increased by ten clients every 30 seconds until it
reached 200 clients.

3.2. Evaluation Criteria of Microservice
Communication

This chapter provides information about criteria that were considered while ana-
lysing different communication technologies. Previous research performed by dif-
ferent authors was mainly focused on performance evaluations and comparisons.
To cover more communication aspects that can potentially be a challenge during
legacy monolith application decomposition to microservices, a set of new criteria
was introduced. These criteria were chosen to compare each communication tech-
nology in the context of communication between microservices decomposed from
monolith applications.

— Performance: communication technology performance is measured and
analysed by latency and throughput. Latency was measured by time in
milliseconds since the request was sent till the response was received.
Throughput was measured by the number of successful requests per sec-
ond (RPS). The successful request was considered if a response was re-
ceived within one second.

— Message size: to determine the potential technology impact on network
load request and response, message size in bytes was measured during the
experiment.

— Memory size: to evaluate how much memory is needed to run an applica-
tion with each communication technology, application memory usage in
bytes was measured.

— Storage size: to evaluate how much storage is needed to store an applica-

tion with each communication technology, storage usage in bytes was
measured.

— Boot time: application boot time in seconds was measured to determine
how much time is needed to start the application.

— Architecture: to highlight the specific impact of each technology regard-
ing application architecture.

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE... 69

— Topology: technology impact on the topology of microservices. More de-
tails about the topology used in the experiment are provided in Chap-
ter 3.4.

— Used applications and libraries: to analyse the availability of the particu-
lar library.

3.3. Topologies Used in Microservice Communication
Evaluation

Three different topologies of microservices were chosen to analyse how commu-
nication technology influences topology criteria defined in the previous chapter
(Fig. 3.3).

D 3 ©

= =

Line Tree Star

poooos
poog

Fig. 3.3. Topologies used in the experiment

Linear (single receiver) topology — request processing flow has only one way
in, and each microservice is involved in request processing. Tree type topology —
request processing flow has a few ways. Middleware microservices work as gate-
ways. Star-type topology (multiple receivers) — the first microservice works as a
gateway and routes requests to a specific microservice. Those topologies were
chosen because each of them represents a different way in which data can be pro-
cessed, and communication between microservices can be established.

70 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE...

3.4. Tools Used in Microservice Communication
Evaluation

All microservices were written using C Sharp and .Net Core. All coding and test-
ing were done using Microsoft Visual Studio 2022 IDE. All libraries used in the
research were downloaded from the NuGet gallery. Latency tests were conducted
using the BenchmarkDotNet library. Throughput tests were executed by using the
NBomber library. Network data was analysed using the Wireshark application.

All experiments were performed on a computer with the following specifica-
tions: CPU — Core i7 9850H, memory — 30 GB RAM, storage — 512 GB SSD, and
OS — Windows 10 Enterprise (20H2). All applications were run on a computer,
and no external devices or networks were used.

The experiment can be reproduced on a computer with Visual Studio 2022
IDE, RabbitMQ (3.10.0 version) and Kafka (3.2.0). The source code used in the
experiment and experimental results are freely accessible and can be found at the
following link: https://bitbucket.org/justas_kazanavicius/communicationexperi-
ment.

3.5. Evaluation Results of the Microservice
Communication Experiment

This chapter provides results obtained during the evaluation of five communica-
tion technologies: HTTP (Rest API), RabbitMQ, Kafka, gRPC, and GraphQL.
Deeper discussions on results are provided in Chapter 3.6. Each section on tech-
nology is divided into six sub-chapters to provide more details in terms of exper-
iment results:
— Latency results: Latency evaluation results are based on message size and
complexity.
— Throughput results: Throughput evaluation results are based on message
size and complexity.

— Results of other metrics: Request/Response size, Microservice application
size, Memory usage size, Boot time.

— Architecture: technology and libraries impact the architecture.
— Topology: technology and libraries impact the topology.

— Libraries: a list of libraries that were used in the experiment to establish
a connection between microservices via particular technology.

https://bitbucket.org/justas_kazanavicius/communicationexperiment
https://bitbucket.org/justas_kazanavicius/communicationexperiment

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE... 71

3.5.1. Evaluation Results of Hypertext Transfer Protocol

Latency results: Results of the latency test are shown in Table 3.1. The best result,
7.265 ms, was achieved by processing 1,000-character messages. The worst re-
sult, 31.410 ms, was achieved by processing 1,000,000 characters messages.

Table 3.1. Latency test results for message processing with HTTP

Message size Mean Median Min Max
10 characters 7.527 ms 7.404 ms 5.801 ms 9.923 ms
1,000 characters 7.265 ms 7.149 ms 5.685 ms 9.459 ms
100,000 characters 11.745 ms 11.356 ms 9.543 ms 15.875 ms
1,000,000 characters 31.410 ms 30.563 ms 25.304 ms 44.212 ms
10 properties 8.236 ms 8.055 ms 6.465 ms 11.516 ms
100 properties 8.459 ms 8.408 ms 6.396 ms 10.940 ms
1,000 properties 9.826 ms 9.726 ms 7.567 ms 13.284 ms
10,000 properties 21.779 ms 21.096 ms 19.010 ms 26.546 ms

Throughput results: The throughput results of the load test are shown in
Fig. 3.4. The best average results, 99.7 RPS, were achieved by processing ten
properties messages. The worst average result, 4.7 RPS, was achieved by pro-
cessing 1,000,000 character messages.

Throughput

200
140

RPS

100

]
a

T HFIF T FTFIFISFFIFITFSS
FFPFFTPFFFIFFFIFIFIIFIFSTSFSS

Duration

=== 10 characters

== |0 Properties 100 Properties 1000 Properties == | 0000 Properties

e | 000 characters e 100000 characters == 10000000 characters === Load

Fig. 3.4. Load test results for message processing with HTTP

72 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE...

Results of other metrics: Other results obtained during the experiment are
presented in Table 3.2.

Table 3.2. Results of HTTP Rest experiment measurements

Metric Result
Request/Response size 172 B/185 B (payload 26 B)
Microservice application size 4.71 MB (empty 159 KB)
Memory usage size 69 MB (empty 9 MB)
Boot time 3.1 seconds

Architecture: To communicate via Rest API, the microservice has to have at
least three additional components: Rest API, Controller, and Rest Client
(Fig. 3.5). Rest APl component exposes the HTTP server and routes requests to
the Controller component, which operates as a facade for business logic. Rest Cli-
ent is needed to make requests to Rest APIs exposed by other microservices.

Restclient s E Ak Microservice business Rest API
iTIP} Rest A .

Fig. 3.5. Architecture of Rest API in microservice

Topology: Microservices M1-M5 have to know how to reach the next mi-
croservice (M1—-M2, M2—M3, etc.) when a linear topology is used. Micro-
service M6 only exposes Rest API. The tree-type topology shows that micro-
services M1, M2, and M3 each have two dependencies (M1 should know the
URLs of M2 and M3). M4, M5, and M6 only expose the Rest API. In the star-
type topology, the M1 microservice has to know the URLSs of all microservices.

Libraries: The list of libraries that were used in the experiment to establish a
connection between microservices via HTTP Rest technology is provided below:

— Microsoft. AspNetCore.App (Version 6.0.7)
— Microsoft. NETCore.App (Version 6.0.7)

— Swashbuckle.AspNetCore (Version 6.2.3)
— System.Net.Http.Json (Version 6.0.0)

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE...

73

3.5.2. Evaluation Results of RabbitMQ

Latency results: Results of the latency test are shown in Table 3.3. The best result,
2.976 ms, was achieved by processing 1,000-character messages. The worst re-
sult, 118.657 ms, was achieved by processing 1,000,000 characters messages.

Table 3.3. Latency test results for message processing with RabbitMQ

Message size Mean Median Min Max

10 characters 2.982 ms 2.946 ms 2.551 ms 3.491 ms

1,000 characters 2.976 ms 2.939 ms 2.721 ms 3.712 ms

100,000 characters 5.166 ms 5.023 ms 4.674 ms 6.360 ms
1,000,000 characters 118.657ms | 116.824 ms 73.740 ms 157.821 ms

10 properties 4.354 ms 4.265 ms 3.059 ms 6.605 ms

100 properties 3.197 ms 3.108 ms 2.843 ms 4.387 ms

1,000 properties 4.752 ms 4.670 ms 4.278 ms 5.875 ms
10,000 properties 20.310 ms 19.974 ms 19.529 ms 23.098 ms

Throughput results: Throughput results of the load test are shown in Fig. 3.6.

The best average result, 231.5 RPS, was achieved by processing 10-character mes-
sages. The worst average result, 0.01 RPS, was achieved by processing 1,000,000
characters messages.

Throughput

300

200

100

Duration

=== | 0 Propertics 100 Properties 1000 Propertics === | 0000 Propertics === | () characters

e | 000 characters. s | 00000 characters === | 0000000 characters o | 0ad

Fig. 3.6. Load test results for message processing with RabbitMQ

74 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE...

Results of other metrics: Other results obtained during the experiment are
presented in Table 3.4.

Table 3.4. Results of RabbitMQ experiment measurements

Metric Result
Request/Response size 206 B/225 B (payload 26 B)
Microservice application size 2.26 MB (empty 159 KB)
Memory usage size 23 MB (empty 9 MB)
Boot time 3.8 seconds

Architecture: To utilise RabbitMQ as RPC, microservices have to contain
two additional components: a Rabbit server and a Rabbit client (Fig. 3.7). The
Rabbit server consumes messages from queue x1 and routes them to business
logic where messages are processed and moved to the Rabbit client to publish
them to queue y1. After pushing messages to queue y1, the Rabbit client starts
listening to queue y2 for a response. A message that is consumed from queue y2
goes from the Rabbit client through business logic to the Rabbit server, where it
is published to queue x2.

Wi - Queue x1 |-+ f—» ” > -5» Queveyl “1 i
Rabbit client | Microservice ! - abbit server
B ' Rabbit server - Rabbit client : =
X H business logic : ¥
l€-{1 Queuex2 1= <—| | [€:-1 Queuey2 |--»

Fig. 3.7. Architecture of RabbitMQ in microservice

Topology: Similar to HTTP communication, the Rabbit server component is
not needed for those microservices that are only used as clients, and the client
component is not needed for those microservices that are only used as servers.
The most significant difference using RabbitMQ is that there is no need for mi-
croservices to know about each other’s endpoints, such as IP address or hostname.
Instead of communicating directly with each other, microservices are communi-
cating through RabbitMQ, which acts as a router. Clients are producers and pro-
duce messages to the RabbitMQ queue while servers are consumers and consume
messages from the same RabbitMQ queue.

Libraries: The list of libraries that were used in the experiment to establish a
connection between microservices via RabbitMQ technology is provided below:

— Microsoft. NETCore.App (Version 6.0.7)
— RabbitMQ.Client (Version 6.3.0)
— Nito.AsyncEx (Version 5.1.2)

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE...

75

3.5.3. Evaluation Results of Kafka

Latency results: Results of the latency test are shown in Table 3.5. The best result,
7.191 ms, was achieved by processing 10-character messages. The worst result,
42.600 ms, was achieved by processing 1,000,000-character messages.

Table 3.5. Latency test results for message processing with Kafka

Message size Mean Median Min Max
10 characters 7.191 ms 7.130 ms 6.836 ms 8.023 ms
1,000 characters 8.073 ms 8.016 ms 5.398 ms 11.428 ms
100,000 characters 11.643 ms 11.397 ms 8.811 ms 15.241 ms
1,000,000 characters 42.600 ms 42.187 ms 35.172 ms 54.572 ms
10 properties 8.183 ms 8.115 ms 6.009 ms 11.441 ms
100 properties 7.761 ms 7.605 ms 5.782 ms 10.627 ms
1,000 properties 12.116 ms 11.566 ms 8.704 ms 16.905 ms
10,000 properties 28.612 ms 28.366 ms 24.451 ms 34.667 ms

Throughput results: The throughput results of the load test are shown in
Fig. 3.8. The best average result, 93.3 RPS, was achieved by processing 10-char-
acter messages. The worst average result, 1.6 RPS, was achieved by processing

1,000,000 character messages.

Throughput

160

140

RPS

200

100

Load simulation (clicnts)

NN

/o
%
/a

SOOI IO IR JEII P NI I A R R N MR RN
FHFTFTFTIIFSFE S \5‘ & FFFSS DO &
F&EFSS a\ ISR RSOOSR MR RS

%,
%,

Duration

~—#— 10 Propertics

e | 000 characters e | 00000 characters === | 0000000 characters e L 0ad

Fig. 3.8. Load test results for message processing with Kafka

S ST e

8

100 Propertics 1000 Propertics ~—= | 0000 Propertics === 1() characters

76 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE...

Results of other metrics: Other results obtained during the experiment are
presented in Table 3.6.

Table 3.6. Results of Kafka experiment measurements

Metric Result
Request/Response size 219 B/252 B (payload 26 B)
Microservice application size 2.18 MB (empty 159 KB)
Memory usage size 40 MB (empty 9 MB)
Boot time 2.6 seconds

Architecture: To utilise Kafka as RPC, microservices have to contain two
additional components: a Kafka server and a Kafka client (Fig. 3.9). The Kafka
server consumes messages from topic x1 and routes them to business logic where
messages are processed and moved to the Kafka client to publish them to topic
y1. After pushing messages to topic y1, the Kafka client starts listening to topic
y2 for a response. A message, which is consumed from topic y2, goes from the
Kafka client through business logic to the Kafka server, where it is published to
topic x2.

N - Topicxl f--» — — -- Topic v1 B .
Kafka client S Microservice e Kafka server
Kafka server Kafka client
p 3 business logic
l€-1 Topic x2 - « <« l€--1 Topicy2 [--»

Fig. 3.9. Architecture of Kafka in microservice

Topology: The Kafka server component is not needed for those microservices
that are only used as clients, and the client component is not needed for those
microservices which are only used as servers. Similar to RabbitMQ, the most sig-
nificant difference between HTTP Rest, gRPC and GraphQL is that there is no
need for microservices to know about each other’s endpoints, such as IP address
or hostname. Instead of communicating directly with each other, microservices
communicate through Kafka, which acts as a router. Clients are producers and
produce messages to the Kafka topic while servers are consumers and consume
messages from the same Kafka topic.

Libraries: The list of libraries that were used in the experiment to establish a
connection between microservices via Kafka technology is provided below:

— Microsoft. NETCore.App (Version 6.0.7)
— Simple.Kafka.Rpc (Version 1.8.3)

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE... 77

3.5.4. Evaluation Results of Google Remote Procedure Call

Latency results: Results of the latency test are shown in Table 3.7. The best re-
sults, 6.761 ms, were achieved by processing 1,000-character messages. The
worst results, 35.384 ms, were achieved by processing 1,000,000 characters mes-

sages.

Table 3.7. Latency test results for message processing with gRPC

Message size Mean Median Min Max
10 characters 7.004 ms 6.787 ms 5.336 ms 9.455 ms
1,000 characters 6.716 ms 6.729 ms 5.396 ms 8.136 ms
100,000 characters 10.188 ms 10.021 ms 7.976 ms 13.537 ms
1,000,000 characters 35.384 ms 34.262 ms 25.406 ms 52.120 ms
10 properties 8.022 ms 7.929 ms 6.651 ms 9.874 ms
100 properties 8.183 ms 8.211 ms 6.692 ms 10.243 ms
1,000 properties 8.501 ms 8.487 ms 7.354 ms 10.228 ms
10,000 properties 14.855 ms 14.562 ms 12.778 ms 18.263 ms

Throughput results: The throughput results of the load test are shown in

Fig. 3.10. The best average results, 170.1 RPS, were achieved by processing
1,000-character messages. The worst average result, 5.0 RPS, was achieved by
processing 1,000,000-character messages.

Throughput

300 250

Iy 200

200 % \'
»
& 150

4

100

D P DD o D SR DD D) AD o aDaD el D A A D
& FHFFIFFFIFFHIFFFgFFSHFFFHFT&FFHFHFI NS
FFFFFFFFgddFddFgd@dddd@y@g@@F@Fdd@Fd@fdFFFdgFFdasFsss

%

Duration

=@ () Properties 100 Properties 1000 Properties == | 0000 Properties w1 () characters

s | 00 characters e | 00000 characters == | 1000000 characters s Load

Fig. 3.10. Load test results for message processing with gRPC

78 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE...

Results of other metrics: Other results obtained during the experiment are
presented in Table 3.8.

Table 3.8. Results of gRPC experiment measurements

Metric Result
Request/Response size 363 B/162 B (payload 12 B)
Microservice application size 1.85 MB (empty 159 KB)
Memory usage size 70 MB (empty 9 MB)
Boot time 3.4 seconds

Architecture: To communicate via gRPC, a microservice has to have at least
three additional components: gRPC server, Service, and gRPC Client (Fig. 3.11).
The gRPC server component exposes the gRPC server and sends requests to the
Service component, which acts as a facade for business logic. gRPC Client sends
a request to gRPC server y. The components and flow are very similar to those in
the Rest API case.

>
gRPC client Microservice : 3 gRPC server
X = H i : o business logic ¥
H e

Fig. 3.11. The architecture of gRPC in microservice

Topology: In terms of topology, gRPC and Rest API have no difference. Mi-
croservices M1-M5 have to know how to reach the next microservice when a
linear topology is used. Microservice M6 only exposes the gRPC server. Micro-
services M1, M2, and M3 have two dependencies in the tree-type topology. Mi-
croservices M4, M5, and M6 only expose the gRPC server. In the star-type topol-
ogy, the M1 microservice has to know all microservice URLS.

Libraries: The list of libraries that were used in the experiment to establish a
connection between microservices via gRPC technology is provided below:

— Microsoft. NETCore.App (Version 6.0.7)

— protobuf-net.Grpc (Version 1.0.152)

— protobuf-net.Grpc.AspNetCore (Version 1.0.152)
— Grpc.Net.Client (Version 2.45.0)

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE...

79

3.5.5. Evaluation Results of GraphQL

Latency results: Results of the latency test are shown in Table 3.9. The best result,
7.711 ms, was achieved by processing 1,000-character messages. The worst re-
sult, 51.170 ms, was achieved by processing 10,000-property messages.

Table 3.9. Latency test results for message processing with GraphQL

Message size Mean Median Min Max
10 characters 7.755 ms 7.718 ms 5.945 ms 10.69 ms
1,000 characters 7.711 ms 7.376 ms 5.846 ms 12.02 ms
100,000 characters 12.349 ms 11.392 ms 9.083 ms 18.83 ms
1,000,000 characters 29.575 ms 29.137 ms 24.780 ms 38.70 ms
10 properties 10.498 ms 10.302 ms 7.652 ms 14.67 ms
100 properties 9.860 ms 9.624 ms 8.383 ms 12.63 ms
1,000 properties 13.262 ms 13.261 ms 10.921 ms 15.73 ms
10,000 properties 51.170 ms 49.828 ms 44.979 ms 65.10 ms

Throughput results: The throughput results of the load test are shown in
Fig. 3.12. The best average result, 185.5 RPS, was achieved by processing 10-
property messages. The worst average result, 4.8 RPS, was achieved by pro-

cessing 1,000,000 characters messages.

Throughput

200 ©

RPS

100

200

150

=
1)

100

Load s

QS D D DD D Q
IROIE SN
S S S

N
&

ST I I I I I E S EE
N

P D T I S Ny N
SN SN SN

Y

Duration

8~ 10 Propertics 100 Propertics 1000 Propertics

e | (100 characters | 00000} characters === | 0000000 characters

== 10000 Propcrtics

[oad

=== 1() characters

Fig. 3.12. Load test results for message processing with GraphQL

80 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE...

Results of other metrics: Other results obtained during the experiment are
presented in Table 3.10.

Table 3.10. Results of GraphQL experiment measurements

Metric Result
Request/Response size 390 B/843 B (payload 49 B)
Microservice application size 5.53 MB (empty 159 KB)
Memory usage size 65 MB (empty 9 MB)
Boot time 4.4 seconds

Architecture: GraphQL flow is quite similar to REST API. Three additional
components are needed to communicate via GraphQL: GraphQL Server,
GraphQL abstraction layer, and GraphQL client (Fig.3.13). GraphQL is
transport-layer agnostic, but the most common technology used for transport is
HTML.

2 7 > >
gRPC client i H s Microservice s gRPC server
g VIC 18
X - H business logic i
-«

Fig. 3.13. The architecture of GraphQL in microservice

Topology: GraphQL, gRPC, and Rest API have no big difference in terms of
topology. All technologies use a client/server synchronous communication model.
To establish communication, a client has to know the server endpoints, such as IP
address or hostname.

GraphQL is also a query language for APIs — a client can request very spe-
cific data from the server. Queries in GraphQL can be written in such a manner
that would not only access separate properties but also follow references between
them. Star-type topology best utilises this GraphQL feature.

Libraries: The list of libraries that were used in the experiment to establish a
connection between microservices via GraphQL technology is provided below:

— Microsoft. NETCore.App (Version 6.0.7)
— RabbitMQ.Client (Version 6.3.0)
— Nito.AsyncEx (Version 5.1.2)

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE... 81

3.6. Comparison of Communication Technologies

This chapter compares communication technologies in different aspects based on
the obtained results of the executed experiments. Chapter 3.6.1 provides details
about available libraries for each technology. Chapter 3.6.2 gives an overview of
the components used for each technology and highlights specific requirements for
some technologies. Chapter 4.3.3 analyses the impact of the communication tech-
nology on the topology. Performance evaluation is presented in Chapter 3.6.4,
using different aspects. The last sub-chapter evaluates different metrics of each
technology.

3.6.1. Communication Technologies Libraries

Many different libraries can be chosen for HTTP Rest implementation mainly be-
cause it is the oldest and relatively simple technology. RabbitMQ and Kafka are
also very popular technologies, so they also have quite a few libraries. GraphQL
and gRPC are relatively new technologies, and not so many libraries exist in the
market. Microsoft .Net framework has built-in support and provides libraries for
HTTP Rest and gRPC communication technologies.

3.6.2. Communication Technologies Architecture

HTTP Rest, gRPC, and GraphQL communication technologies have very similar
architecture: one component is used to expose a server, the second one is to trans-
late from a technology-specific to business-specific message, and the last compo-
nent is used to send a message.

Communication models and methods must be defined in *proto files and
shared between microservices to use gRPC communication technology. Like
gRPC *proto files, GraphQL has a schema. GraphQL schema contains infor-
mation about server methods and data types.

RabbitMQ and Kafka are message-based technologies, and they are different
from others used in the research. Communication between microservices is not
point-to-point like in HTTP Rest, gRPC, and GraphQL. All communication in
RabbitMQ is implemented via queues: microservices can publish to and consume
from the queue. Like RabbitMQ, Kafka uses topics to implement communication.
Two queues, or two topics in the Kafka case, must be created to implement RPC
calls between microservices: one for a request and the second for a response.

82 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE...

3.6.3. Communication Technologies Topologies

HTTP Rest, gRPC, and GraphQL technologies are independent of topology. A
microservice must know how to reach other microservices to establish communi-
cation, e.g., it has to know the addresses of other microservices. It is a known
problem, and there are many solutions how to solve it, but all of them increase the
complexity of the solution, especially if scalability is needed.

RabbitMQ and Kafka technologies do not have this challenge because they
work as an intermediary communication layer, and all communication between
microservices happens through it. Communication in RabbitMQ and Kafka is
based on queues and topics. A microservice has to know only the name of the
gueue, or topic name in the Kafka case, to communicate with other microservice.
A few microservices can publish and consume the same queue or topic. It is a
powerful feature to support scalability.

GraphQL best utilises its features in a star-type topology where one micro-
service acts as a gateway and others as data sources. Powerful GraphQL query
language allows the creation of a specific request in such a way that it can fetch
data from multiple data sources in one API call. This feature can potentially re-
duce the number of calls between microservices needed to implement the func-
tionality.

3.6.4. Communication Technologies Performance

Performance tests were executed to compare latency and throughput in the case
of RPC calls between five microservices. No performance optimisations were ap-
plied to any technology during this experiment. Latency results based on message
size in characters are shown in Fig. 3.14. Latency results based on several prop-
erties are shown in Fig. 3.15.

The lowest latency results for strings up to 1,000,000 characters were ob-
tained by RabbitMQ technology. RabbitMQ RPC calls were two times faster than
other technologies. It showed the best results for processing the smallest messages
(ten and 1,000 characters); the results were two times better than processing
100,000-character messages. HTTP Rest, Kafka, gRPC and GraphQL showed
similar latency results; however, results obtained by gRPC were slightly better.

On the other hand, the RabbitMQ had the highest latency results while pro-
cessing messages which consisted of 10,000,000 characters. It was from three to
four times slower than others. The best latency results for 10,000,000-character
messages were obtained by GraphQL and HTTP Rest technologies. Kafka was
40% and gRPC was 16% and slower than GraphQL and HTTP Rest technologies.

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE...

Latency
140 =
el
o
=
120 —
100
kel
£
2 80 SHTTP Rest WRabbitMQ ®Kafka BgRPC = GraphQL
‘E
Z' 60
=
Q
bS]
|
40
vy fan) =
< = B
©~ —_ e) v o — L5 O = o
Yo gE88 §egifF Fg-cS-
[A oo ® g o~ iy
eaes =—mas BAnN
0
10 characters 1000 characters 100000 characters 10000000 characters
Message size
Fig. 3.14. Latency test results based on string size
Latency
60
=
s
50
% 40
g
§ WHTTP Rest H RabbitMQ ® Kafka ugRPC ® GraphQL
E 30
=
2
5
320 © &
% = o
g ¢ o _ =
2 249 -s 2 g 8% & ~= 3
o - o oK ~ — & = Y
10 % 6 o0 i e o 2
el =N 5=
~t e s
o
0
10 properties 100 properties 1000 properties 10000 properties

Message size

Fig. 3.15. Latency test results based on string size

84 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE...

The lowest latency results for messages containing up to 1,000 properties
were also obtained by RabbitMQ technology. RabbitMQ RPC calls were two to
three times faster than other technologies. It showed the best results for processing
messages containing 100 properties; the results were 37% better than processing
messages containing 1,000 properties and 47% better than processing messages
containing ten properties. HTTP Rest, Kafka and gRPC showed similar results for
messages containing ten and 100 properties. The best results for communicating
via messages containing 10,000 properties were obtained by gRPC technology.
The binary serialisation used by gRPC technology is faster than JSON serialisa-
tion, which has been used by other technologies during the experiment; hence, the
more properties the message contains, the greater advantage gRPC has. The
GraphQL showed the worst latency results for messages containing at least ten
properties. The more properties the message contained, the greater the difference
was compared to other technologies. It was from two to four times slower than
others while communicating via messages containing 10,000 properties. Analysis
of the results shows that RabbitMQ achieved the best RPC call latency results in
six out of eight cases. However, the RabbitMQ was the slowest technology, pro-
cessing 10,000,000 characters of messages. It can be summarised that the Rab-
bitMQ has the lowest latency if the message size is not bigger than 0.1MB and the
data model contains up to 1,000 properties.

Throughput

100

Load simulation (clients)

100

Duration

HTTP Rest RabbitMQ Kafka o= oRPC s GraphQL e[oad

Fig. 3.16. Throughput test result for 10-character size messages

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE... 85

Throughput results for 10-character-size messages are shown in Fig. 3.16.
The best throughput results were obtained by RabbitMQ technology, with an av-
erage of 231.6 RPS. The maximum result, 315.1 RPS, was reached while request-
ing ten clients. The worst RPC throughput test results were obtained by HTTP
Rest technology with an average of 89.8 RPS and a limit of 140 clients.

Throughput results for 1,000 character-size messages are shown in Fig. 3.17.
The best throughput results were obtained by RabbitMQ technology, with an av-
erage of 219.5 RPS. The maximum result, 300.1 RPS, was reached while request-
ing ten clients. The worst RPC throughput test results were obtained by HTTP
Rest technology with an average of 89.9 RPS and a limit of 140 clients.

Throughput results for 100,000 character-size messages are shown in
Fig. 3.18. The best throughput results were obtained by RabbitMQ technology,
with an average of 93.3 RPS. The maximum result, 179.3 RPS, was reached while
requesting ten clients. The worst RPC throughput test results were obtained by
Kafka technology, with an average of 36.2 RPS and a limit of 80 clients.

Throughput results for 10,000,000 characters size message are shown in
Fig. 3.19. The best throughput results were obtained by gRPC technology, with
an average of 5.0 RPS and a limit of 40 clients. The maximum result, 37.1 RPS,
was reached while requesting ten clients. The worst RPC throughput test results
were obtained by RabbitMQ technology with an average of 0.01 RPS.

Throughput results for ten properties size messages are shown in Fig. 3.20.
The best throughput results were obtained by RabbitMQ technology, with an av-
erage of 200.4 RPS. The maximum result, 291.5 RPS, was reached while request-
ing ten clients. The worst RPC throughput test results were obtained by Kafka
technology, with an average of 87.0 RPS and a limit of 140 clients.

Throughput results for 100 properties size messages are shown in Fig. 3.21.
The best throughput results were obtained by RabbitMQ technology, with an av-
erage of 203.5 RPS. The maximum result, 295.5 RPS, was reached while request-
ing ten clients. The worst RPC throughput test results were obtained by Kafka
technology, with an average of 72.2 RPS and a limit of 130 clients.

Throughput results for 1,000 properties size messages are shown in Fig. 3.22.
The best throughput results were obtained by gRPC technology, with an average
of 161.9 RPS. The maximum result, 227.0 RPS, was reached while requesting ten
clients. The worst RPC throughput test results were obtained by Kafka technol-
ogy, with an average of 43.7 RPS and a limit of 100 clients.

Throughput results for 10,000 properties size messages are shown in
Fig. 3.23. The best throughput results were obtained by gRPC technology, with
an average of 83.3 RPS. The maximum result, 146.6 RPS, was reached while re-
guesting 20 clients. The worst RPC throughput test results were obtained by Kafka
technology, with an average of 3.9 RPS and a limit of 30 clients.

86 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE...

Throughput

350 250

200 4 [\ A"

wn
o
o
Py
150 o S
100
50
50
0 0
O T T A NS NS \ SR P
ST E T I F
FFPFFFgFFgFFes
Duration
«@=HTTP Rest ===RabbitMQ ==Kafka e=gemmoRPC = GraphQL === Load
Fig. 3.17. Throughput test results for 1,000-character-size messages
Throughput
200 250
180
160 200
140
120 150 E
2
g
£ 100 £
@ -
£
80 100 —
E
=
60
40 50
20

0

S D L S N D Q AN S D D DD D S S D S D Q D QD Q CNBPINE S D L
S E I P FIFTEFTFTFFFIFEFFFFFEEF GO
FFF F@ FFFFgdgd@dfgdigd @ @@ g §PFye & &

Duration

e [ITTP Rest s RabbitMQ ==i==Katka ewem gRPC s GraphQL e[oad

Fig. 3.18. Throughput test results for 100,000-character-size messages

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE... 87

Throughput

RPS

350

200

150

Duration

=@=TTP Rest ===RabbitMQ =#=Kafka e=femgRPC == GraphQL ====Load

Fig. 3.19. Throughput test results for 10,000,000-character-size messages

Throughput

200

iy
=
150 .2
2
g

S D

N

& ¥
N

S
& P S
FFF T

NN

€ ‘\r\
& &

Duration

e [ITTP Rest s RabbitMQ ==i==Katka ewem gRPC s GraphQL e[oad

Fig. 3.20. Throughput test results for 10-property-size messages

88 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE...

Throughput
350
300
250
I\
w Ay “‘@‘ ‘\A
& '- .A <7\ o .-,'v
g X7 X\ A
150
fm B #ﬂmw gl a-a S

100
50
0

R R RPN RO SR L S 4 P e,

@‘@ QQ @Q\\@Q\ \\{LQQ-AQ’QQ‘\SV@&QQ.Q‘\\@Q FFFFFFFFF G eQé\\\ e"

Duration
w<@==ITTP Rest ===RabbitM(Q «===Kafka ewgrmmoRPC =sibeeGraphQL e==Load
Fig. 3.21. Throughput test results for 100-property-size messages
Throughput

250

S D S D D S S S O D S S NN I

S LS B OIIEN _', -) o 2R DD

S S e e S e e e e &
TP P T T T FF T & & @

Duration

e [ITTP Rest s RabbitMQ ==i==Katka ewem gRPC s GraphQL e[oad

Fig. 3.22. Throughput test results for 1,000-property-size messages

250

150

tion (clients)

E
100 &
E]
i
50
0
250
200
z
=
150 2
2
E]
£
100 &
E]
=
50

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE... 89

Throughput

160 250

140

200

100

RPS

80

100

Load simulation (clients)

40

PR LA PO DL DS DS DS DS S SO DD DS DS
J FTIE I F FHIIFFFFFEFS

N F & F I BN N S
FFgFFgdgFFadFgagaysys

7
o,
)
%.
%.

Duration

==@==HTTP Rest =RabbitMQ Katka emgpmm oRPC ~ seisbem GraphQL — es==].o0ad

Fig. 3.23. Throughput test results for 10,000-property-size messages

It can be summarised that the best RPC call throughput results for smaller
messages, up to 0.1MB and up to 100 properties, were achieved by RabbitMQ
technology. The best RPC call throughput results for bigger messages were
achieved by gRPC communication technology. The worst throughput results in
five of eight cases were achieved by Kafka.

However, latency distribution results (Figs. 3.24-3.28) show that both Kafka
and RabbitMQ can process more messages (with latency higher than one second)
and work more stable when dealing with more than 50 clients load, compared to
HTTP Rest, gRPC and GraphQL technologies.

Latency distribution

Duration

— = 500ms [00ms < 1 < 1200ms t = 1200ms —Tond

Fig. 3.24. Kafka latency distribution for 1,000,000-character-size messages

90 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE...

Latency distribution

2500 250
2000

1500

RPS

1000

500

Duration

— = §((ms [00ms < 1 < 1200ms t = 1200ms —Toad

Fig. 3.25. RabbitMQ latency distribution for 1,000,000-character-size messages

Latency distribution

1000 250
900
500

700

600

RPS

00
400
v

200

100
0 .

Duration

— = §00ms 800ms < 1 < 1200ms t = 1200ms —Toad

Fig. 3.26. HTTP Rest latency distribution for 1,000,000-character-size messages

Latency distribution
1600 250
1400
1200

1000

RPS

00

600

400

200

[0

Duration

— = §((ms 800ms < 1 < 1200ms t = 1200ms —Tond

Fig. 3.27. gRPC latency distribution for 1,000,000-character-size messages

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE... 91

Latency distribution

Load simulation (clients)

00:00:10

Dur

— = §00ms [00ms < 1 < 1200ms t == 1200ms —Toad

Fig. 3.28. GraphQL latency distribution for 1,000,000-character-size messages

The latency distribution results reveal that Kafka and RabbitMQ outperform
HTTP Rest, gRPC, and GraphQL technologies in terms of stability and processing
capacity for messages with higher latency, especially under heavy client load.

3.6.5. Communication Technologies Metrics

The smallest size of request/response was obtained by HTTP Rest technology,
with a total size of 357 B. The GraphQL request/response was approx. 2—3 times
bigger than others (Fig. 3.29). If the message size is an important criterion when
choosing communication technology, then HTTP Rest is a recommended technol-
ogy. On the other hand, GraphQL supports remote querying, so potentially, one
GraphQL request/response could transfer as much information as a few re-
quests/responses using other technologies.

Request/Response size

900 843

800

700 = Request = Response 1 Payload

600
» 500
z 390
2400 363 :

300 .- 205 225 219 252

200 17218 162

-1 WL DL I AL

0 . L
HTTP Rest RabbitMQ Katka gRPC GraphQL

Fig. 3.29. Request/Response size measured during the experiment

92 3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE...

A comparison of application size is presented in Fig. 3.30. It can be seen that
the biggest application size of 5530 KB was obtained when GraphQL libraries
were used for microservices. The smallest application size of 1850 KB was when
GraphQL libraries were included. Application size is independent of communica-
tion technology. It depends on how it was implemented in the library. If the library
size is too big, then the microservice developer can implement it by him selves.

Application size
6000 5530

5000 4710

4000

2 Y
& 3000

2260 2180

2000]
1000 I
0
HTTP Rest RabbitM(Q) Kafka gRPC GraphQL

Fig. 3.30. Application size measured during the experiment

The smallest amount of memory, 23 MB, was allocated using RabbitMQ li-
braries, while gRPC used 70 MB of memory, which is almost three times more
than RabbitMQ (Fig. 3.31). It can be noted that if an application is running in an
environment where memory is limited, then the best solution for implementing
communication is between RabbitMQ and Kafka. Also, it must be pointed out that
RabbitMQ and Kafka do require additional applications compared to other com-
munication technologies.

Memory consumption

80
69

70
65
60
50
g4 =
30 23
20
1B
0

HTTP Rest RabbitMQ Katka gRPC GraphQL

Fig. 3.31. Memory consumption measured during the experiment

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE... 93

A comparison of microservice boot time is shown in Fig. 3.32. The longest
boot time was spotted using GraphQL technology, and it took 4.4 seconds, while
the shortest boot time of 2.6 seconds was obtained using Kafka technology. Boot
time, as well as the microservice size, mostly depend on implementation, but not
on communication technology itself and can be potentially improved by tuning
implementation details.

Boot time

33
3
25
5
1.5
1
0.5
0

HTTP Rest RabbitMQ Kafka GraphQl

seconds

Fig. 3.32. Boot time measured during the experiment

HTTP Rest technology is optimal for smaller request/response sizes, while
GraphQL, despite larger sizes, offers robust remote querying capabilities. Appli-
cation size, influenced more by library implementation than communication tech-
nology, can vary significantly with GraphQL libraries. Memory allocation is low-
est with RabbitMQ libraries, making them suitable for memory-limited
environments, though RabbitMQ and Kafka do require additional applications.
Microservice boot time, primarily dependent on implementation rather than com-
munication technology, is longest with GraphQL and shortest with Kafka.

3.7. Conclusions of the Third Chapter

One of the most significant challenges during the monolith application transition
into microservice architecture is data communication management. How should
migration from process method or function calls to inter-process communication
be done? The high complexity, variety of architectural aspects, technological
stack, and business objects make every application different and create challenges
during monolith application decomposition to microservices. The introduced cri-
teria allow for the evaluation of various aspects of communication technologies
that are important while designing microservices. The key findings discovered in
this research are provided below:

94

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE...

. If latency and throughput are the main criteria during the transition from

a monolith architecture to a microservice architecture, then RabbitMQ
and gRPC are the most suitable technologies. RabbitMQ showed the best
results in RPC latency and throughput tests for small messages (up to
0.1MB and data model up to 100 properties), while gRPC showed the best
results in RPC latency and throughput tests for big messages. The worst
result was obtained by HTTP Rest and Kafka technologies.

. Kafka and RabbitMQ showed the best throughput results in the most

loaded conditions: requested by more than 100 clients at the same time
and processing 1,000,000 characters of messages. However, the latency
of RPC was high, more than one second.

. If horizontal scalability is an important aspect, Kafka and RabbitMQ are

the best candidates as they have built-in cluster functionality. It must be
noted that other technologies can be scaled horizontally as well, but it re-
quires additional tools and effort.

. HTTP Rest has the smallest request and response message size. If the

message size is an important criterion when choosing communication
technology, then HTTP Rest is a recommended technology. On the other
hand, gRPC has the smallest payload as it uses binary serialisation. The-
oretically, at some point of complexity, for complex data models with
many properties, gRPC request and response message size should become
smaller than HTTP Rest. Deeper research is needed to determine the exact
complexity threshold.

. The gRPC library uses the least amount of storage. If microservices are

running in an environment with limited storage, then gRPC must be used.
The maximum amount of storage is allocated for GraphQL libraries. It
must be pointed out that storage size weakly depends on technology. It
mostly depends on how it was implemented in the particular library. If the
library size is too big, then microservice developers can implement it by
themselves, but there is no guarantee that the new library will be smaller.

. RabbitMQ and Kafka consume the smallest amount of memory. There-

fore, if memory size is one of the essential criteria, then RabbitMQ and
Kafka must be used for implementation. On the other hand, HTTP Rest
consumes the largest amount of memory. Memory size and storage usage
depend on library implementation, so a similar recommendation can be
provided to the previous item on the list.

. Microservice implemented using Kafka library boots up in the fastest way

while using GraphQL library boots up in the slowest way. If the boot time
or restart time of the microservice is essential, then Kafka must be used
for microservice communication.

3. INVESTIGATION OF MICROSERVICE COMMUNICATION WHILE... 95

8. HTTP Rest and RabbitMQ are prevalent communication technologies,
and many different libraries exist in the market to choose from, while
GraphQL and gRPC are relatively new and rapidly growing communica-
tion technologies with fewer libraries to choose from.

9. Synchronous communication style communication technologies gRPC,
HTTP Rest, and GraphQL do not require any additional components to
communicate, while asynchronous communication technologies Rab-
bitMQ and Kafka require service as an interim communication layer.
Hence, additional components increase solution complexity and mainte-
nance costs. On the other hand, if a solution contains many microservices
and scalability is a challenge, RabbitMQ and Kafka as an interim layer
can provide centralised communication routing functionality.

Known limitations and threats to the validity of the conducted research are

provided below:

1. The experiment was conducted using the programming language C Sharp.
Measured results can be different using other programming languages and
libraries.

2. The experiment was conducted using a computer with Windows OS.
Measured results can be different when using different environments such
as Linux, Docker, OpenShift, public cloud, etc., due to their specifics and
the implementation details of the libraries.

The approach of Monolith Database
Migration into Multi-Model Polyglot
Persistence

Migration from a monolithic architecture to a microservice architecture is a com-
plex challenge that consists of issues such as microservice identification, code
decomposition, a combination of microservices, independent deployment, etc.
One of the key issues is data storage adaptation to a microservice architecture. A
monolithic architecture interacts with a single database, while in a microservice
architecture, data storage is decentralised, and each microservice works inde-
pendently and has its own private data storage. A viable option to fulfil different
microservice persistence requirements is polyglot persistence, which is data stor-
age technology selected according to the characteristics of each microservice’s
need.

This chapter evaluates the proposed approach of monolith database migration
into multi-model polyglot persistence based on microservice architecture. The
novelty and relevance of the proposed approach are double; e.g., it provides a
general approach to conducting database migration from a monolith architecture
into a microservice architecture and allows the data model to be transformed into
multi-model polyglot persistence. Migration from a mainframe monolith database
to a multi-model polyglot persistence was performed as a proof-of-concept for the

97

98 4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO...

proposed migration approach. Quality attributes defined in the ISO/IEC
25012:2008 standard were used to evaluate and compare the data quality of the
microservice with the multi-model polyglot persistence and the existing monolith
mainframe database. Results of the research showed that the proposed approach
could be used to conduct data storage migration from a monolith to a microservice
architecture and improve the quality of the consistency, understandability, avail-
ability, and portability attributes. The purpose of the proposed approach is shown
in Fig. 4.1. A detailed explanation of the proposed migration approach is provided
in Chapter 2.5.

MONOLITH APPLICATION

MICROSERVICE 1

DATABASE AS
MICROSERVICE

..... o
i

MICROSERVICE 2

MICROSERVICE n

BEFORE MIGRATION AFTER MIGRATION

Fig. 4.1. Purpose of the proposed database migration approach

The approach can extract a database from a monolith application and trans-
form it into a multi-model polyglot persistence, which is encapsulated as a micro-
service itself and exposes data access through a representational state transfer
(REST) application programming interface (API). Multi-model polyglot persis-
tence allows us to better utilise the benefits of microservices, such as agility and
scalability. The encapsulation of a database into a microservice reduces the com-
plexity and increases the performance. After migration, the data are accessible not
only to an existing monolith application but also to any microservice within an
ecosystem. This allows source code migration to be conducted gradually from the
monolith architecture to the microservice architecture without considering the da-
tabase that has already been adopted into the microservice architecture.

As a proof-of-concept for the proposed approach, the migration has been ex-
ecuted from an existing mainframe monolith application to a new microservice
architecture-based application with multi-model polyglot persistence. The migra-
tion results were evaluated by the chosen criteria.

The proposed approach and results presented in this chapter were published
in the author’s publication (Kazanavicius, Mazeika, Kalibatiene et al., 2022).

4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO... 99

4.1. Evaluation Criteria of the Approach of Monolith
Database Migration into Multi-Model Polyglot
Persistence

The ISO/IEC 25012:2008 standard quality attributes were used to evaluate and
compare the data quality of the proposed multi-model polyglot persistence model
and the existing monolith mainframe persistence model. The quality attributes
used in the evaluation were Accuracy, Completeness, Consistency, Credibility,
Correctness, Accessibility, Compliance, Confidentiality, Efficiency, Precision,
Traceability, Understandability, Availability, Portability, and Recoverability.

4.2. Multi-Model Polyglot Database Software

ArangoDB is an open-source multi-model polyglot persistence system that imple-
ments a data model integrating document, graph, and key—value models with one
database core. It supports transactions, partitioning, and replication (ArrangoDB,
2023). ArangoDB has its query language AQL, which allows joins, operations on
graphs, iterations, filters, projections, ordering, grouping, aggregate functions, un-
ion, and intersection. The ArangoDB supports all the ACID properties.

Table 4.1. Comparison of multi-model polyglot databases

Database Docu- | Graph | ACID SQL | AQL | C# On
ment prem-
ise
ArrangoDB Yes Yes Yes No Yes | Yes Yes
Azure Cosmos Yes Yes Yes Yes No Yes No
DB
CrateDB Yes No Yes Yes No Yes Yes
EnterpriseDB Yes No Yes Yes No Yes Yes
MarkLogic Yes Yes Yes Yes No | Yes Yes
OrientDB Yes Yes Yes Yes No Yes Yes
SAP HANA Yes Yes Yes Yes No Yes No
Virtuoso Yes Yes Yes Yes No No Yes

The most important criteria used to choose multi-model polyglot database
are Table 4.1. Even though ArrangoDB does not support SQL it has AQL support
which better utilises multi-model polyglot persistence features and advantages as
it supports various data formats or patterns.

100 4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO...

4.3. Tools Used to Evaluate the Approach of Monolith
Database Migration into Multi-Model Polyglot
Persistence

The ArangoDB community edition version 3.7.11 database was used as the data-
base engine. The microservice that exposes multi-model polyglot persistence was
written using C#NETS5 framework. All coding and testing were done using Mi-
crosoft Visual Studio IDE and Arango Management Interface. All libraries used
in the research were downloaded from the NuGet gallery. The experiment was
performed on a computer with the following specifications: CPU — Core i7 9850H,
memory — 32 GB RAM, storage — 512 GB SSD, and OS — Windows 10 Enterprise.
All applications were run on a computer, and no external devices or networks were
used.

4.4. Evaluation results of the Approach of Monolith
Database Migration into Multi-Model Polyglot
Persistence

This chapter provides results obtained during the evaluation of the method of
mainframe monolith database migration to multi-model polyglot persistence
based on microservice architecture. The results of each step of the proposed ap-
proach are explained in separate sub-chapters: 4.4.1. Analysis of an Existing Mon-
olith Application with a Mainframe Database, 4.4.2. Data Model Development,
4.4.3. Microservice Development, 4.4.4. Data Transformation, 4.4.5. Data Vali-
dation, and 4.4.6. Release and Deployment.

4.4.1. Analysis of an Existing Monolith Application with a
Mainframe Database

The primary function of the SSI application is to store and provide standard set-
tlement instructions to other information systems across the organisation. Stand-
ard settlement instructions are used to execute payments between banks and or-
ganisations. A simplified model of the SSI application is shown in Fig. 4.2.

4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO... 101

Consumers "; 3 Microsoft Net ; ,"‘ IBM Mainframe

f N

Modules DB2 Database

Module 1 Table 1

Module 2

> Table 2

I

Module 3 < Table 3

mx
(ot

Module x a > Table x

This SSI application is implemented with IBM mainframe and Microsoft .Net
framework technologies. The data is persisted in 35 tables in the DB2 database,
and it can be accessed and edited through IBM mainframe modules. SSI data is
exposed to other information systems across the organisation through Rest API,
which is implemented with the Microsoft .Net framework. The most important
functional requirements gathered during the evaluation are presented in Table 4.2.

Table 4.2. Functional requirements of SSI application

Functional requirements
Ability to view/add/update/delete customers
Ability to view/add/update/delete agreements
Ability to view/add/update/delete standard settlement instruction
Two types of standard settlement instruction: receive and deliver
One customer can have many agreements
One customer can have many confirmation settings
One customer can have one netting settings
An agreement can have many instructions
An agreement can have one account information

© |00 NSO AW IN =

Using a top-down approach, functional requirements were collected in two
steps. Firstly, essential features were identified through discussions with domain
experts. Secondly, a thorough review of the legacy code was conducted, which
provided insights into existing practices and highlighted areas for improvement or
reuse. This approach ensured a comprehensive understanding of the system's
needs.

102 4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO...

4.4.2. Data Model Development

This step aims to design a new data model that will be used in multi-model poly-
glot persistence. The creation of a new model process consists of five steps: (1)
conceptual design, (2) segmentation design, (3) consistency design, (4) target data
model design, and (5) physical design.

4.4.2.1. Conceptual Design

The conceptual design step aims to translate the identified functional requirements
into a conceptual schema. The entity-relationship model is used as a conceptual
schema because it is a widely exploited model and allows for a detailed definition
of the entities and their relationships in the database. The simplified conceptual
database schema of the SSI application is shown in Fig. 4.3.

Customer has A has Account

N
Confirmation Netting Receive Instruction Deliver Instruction ﬂ’;

Fig. 4.3. Simplified conceptual schema of the SSI application

The root element of the system is a customer, which can have one netting
agreement and many confirmations and agreements. Netting is an option to merge
many payments into one. An agreement is a special contract with a customer, usu-
ally for a specific product and currency that has a specific settlement instruction.
Each short name can have one account, and many receive and deliver instructions.
A receive instruction is an instruction for incoming payment, and a delivery in-
struction is an instruction for outgoing payment.

4.4.2.2. Segmentation Design

The segmentation step identifies independent functional units and defines the bor-
ders between them. Segmentation units have to be identified to take full advantage
of the multi-model polyglot persistence feature, which is the capability of using

4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO... 103

multiple different data models in the same database. The outcome of this step is
the defined cut points on the existing data model that can be used to split it into
different data models. Any of the segmentation units can be detached from the
model and work as an independent system. Segmentation units identified in the
simplified conceptual database schema of the SSI application are shown in
Fig. 4.4.

Cutomer management RN o Agreement management

Customer has Account

1

Confirmation Netting : i'| Receive Instruction Deliver Instruction

Instructions management

Fig. 4.4. Segmentation units are identified in the simplified conceptual database schema

During the segmentation design sub-step, the SSI application was divided
into three independent functional units: customer management, agreement man-
agement, and instruction management.

4.4.2.3. Consistency Design

The consistency step ensures the dataset’s consistency across all subsystems and
allows for data fragmentation. As polyglot supports NoSQL data models, the
eventual consistency provided by BASE properties has to be considered during
the data model creation step. Polyglot persistence does not have to be consistent
across the entire database, but some data groups must be consistent to be valid.
These groups are called consistency units and play a key role in allowing data
fragmentation and horizontal scalability.

104 4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO...

1 N 1 1
Customer has Ag has Account

‘

N
Confirmation Netting Receive Instruction Deliver Instruction ﬂ;

Fig. 4.5. Consistency unit identified in the simplified conceptual database schema

The consistency unit must guarantee that all reads of the entity will eventu-
ally return the last updated value, provided no new updates are made to an entity.
An example of one consistency unit in the SSI application is shown in Fig. 4.5.
Customer, agreement, and receive instruction comprise a consistency unit, and in
the case that a query returns the response with different versions of items, an in-
consistency arises that may cause a system failure.

4.4.2.4. Target Model Design

The target data model step defines the best data model for each segmentation unit.
All three subsystems fit into a combination of the key—value and document-ori-
ented data models. The identified target data model is shown in Fig. 4.6.

AgreementsInCustomers InstructionsInAgreements
Customers > Agr t > Instructions

Fig. 4.6. Target data model

One customer can have many agreements, and each agreement can contain
many instructions. Customers, agreements, and instructions are saved as docu-
ments in separate collections. The relations between the customers and agree-
ments and relations between the agreements and instructions were defined as col-
lections and stored in separate collections.

4.4.2.5. Physical Design

The physical design step aims to implement all peculiarities of the planned-to-use
database to implement the target model. As multi-model polyglot persistence was

4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO... 105

chosen as data persistence, only one database engine was used. The physical de-
sign step is less complex with a multi-model compared to standard polyglot per-
sistence, which is used by many different databases.

In the ArangoDB database, data are stored as documents (JSON format), and
each document could be considered as key—value pair. Documents are grouped
into collections. ArangoDB supports two types of collections: document collec-
tions and edge collections. Documents are vertices, and edges are edges in the
context of graphs. Edge collections are used to create relations between docu-
ments.

The physical model created during the experiment is shown in Fig. 4.7. and
its representation as a graph, where customer has two agreements, is shown in
Fig. 4.8.

Agreements in C s collection Instructions in Agreements collection
Key Key
From (Customer key) From (Agreement key)
To (Agreement key) To (Instruction key)
Customers collection Agreements collection Instructions collection
Key Key Key

Customer information Agreement information Instruction information
Confirmations [] Account Instruction type
Netting

Fig. 4.7. Target data model

Fig. 4.8. Graphical representation of the physical data model

The physical model consists of a document collection: (1) Customers — to
store the customer data, (2) Agreements — to store the agreement data, and (3)
Instructions — to store the instruction data. To create relations between the docu-
ments, two edge collections were introduced: (1) AgreementsinCustomers — to
store the relations between a customer and its agreements, and (2) Instructionsl-
nAgreement — to store the relations between an agreement and its instructions.

106 4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO...

4.4.3. Microservice Development

The simplified model of the built microservice with multi-model polyglot persis-
tence is shown in Fig. 4.9.

The pattern database as a service was chosen to be used to build multi-model
polyglot persistence based on microservice architecture. Based on the gathered
functional requirements, the application was implemented as a microservice writ-
ten with the C# programming language within the Microsoft. NET framework. It
was deployed to the OpenShift project as a Docker container by the AzureDevOps
CI/CD pipeline. Based on the availability and scalability requirements, two sepa-
rate OpenShift projects were created, each in a separate availability zone. In each
availability zone, one Docker container was created with the possibility of scaling
up on demand automatically. The ArangoDB was used as a multi-polyglot data-
base, and its cluster was established with two nodes, one per availability zone.
Security and accessibility were ensured by firewall rules and separate access rights
for specific operations.

OpenShift 1 ArrangoDB cluster

Docker 1

Microservice 1

Business . :

Rest API Repository Wl HE H

oty H logic fayer U — ; ArrangoDB 1
7 layer [:

Rest API endpoint 1

Docker 2

Microservice 2

Rest API endpoint 2

Rest API Busincss Repositor_vw

layer logic layer U HE ; > ArrangoDB 2
7 layer Lo \

Fig. 4.9. Simplified model of a new SSI application with multi-model polyglot
persistence

4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO... 107

In the new SSI application, a database and a business logic worked as one
unit — the SSI microservice. The data are exposed to other information systems
across an organisation via REST API, which is available to new microservices
and legacy monolith solutions. The business logic layer interacts with a database
through a repository layer that encapsulates the database-specific details. The de-
tails of the business logic and database are hidden from the consumers: the only
way to manipulate the data is through the REST API by using domain data mod-
els.

4.4.4. Data Transformation

A data transformation application was written with the C# programming language
(Fig. 4.10) for migrating data from a monolith database to a multi-model polyglot
persistence database. The application contained three layers: extraction, transfor-
mation, and import. The Extraction layer extracts all data from the existing mon-
olith database. Thirty-five repositories and data models were created to extract
data from each data table. The Transformation layer transforms the extracted data
into a data model that is supported by multi-model polyglot persistence. The Im-
port layer imports the transformed data into a multi-model polyglot database. The
repository layer code from the microservice code base was reused.

Extraction Transformation Import
layer layer layer

Data transformation application

Multi-model
polyglot
persistence

Monolth
database

Fig. 4.10. Data transformation from the monolith database to multi-model
polyglot persistence

The data was extracted from 35 tables in the IBM DB2 database, trans-
formed, and imported into three document collections and two edge collections.
This complex process was meticulously designed to ensure data integrity and con-
sistency across both databases.To make sure that the data is consistent in both
databases, the actual data transformation was conducted during the release and
deployment steps. The mainframe application was temporarily stopped to trans-
form the data. This pause allowed the team to carry out the data transformation
effectively, ensuring there were no active changes happening in the database while
the process took place. After successfully transforming the data, necessary amend-
ments were made to the system configuration to start using the microservice in-
stead of the existing monolith database.

108 4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO...

4.4.5. Data Validation

Based on specified functional requirements, test cases for data validation were
created in a forum of domain experts and IT experts within the organisation. The
forum consisted of three SSI domain experts, three mainframe software engineers,
and four C# software engineers. A test engine was written with the C# program-
ming language to execute automatic data validation (Fig. 4.11) and contained
three modules.

Monolith application | ! Test engine

1) Extract data

' '
9 '
, 2) Execute tests T
: '
' ‘8
: 3) Analyse results —

Database Microservice

Multi-model
polyglot

REST API

Fig. 4.11. Automatic data validation process

The data extraction module extracts data from the monolith database. The
Test execution module uses the extracted data to make calls to the Microservice
REST API. The analysis module compares responses from Microservice REST
API and data extracted from the monolith database. For example, the data extrac-
tion module extracts all of the existing customers from the monolith database, the
test execution module requests customer data, one by one, from Microservice
REST API, and the analysis module validates that all customers exist in multi-
model polyglot persistence.

4.4.6. Release and Deployment

The first sub-step during the release is the deployment of microservice to the pro-
duction environment. The microservice was deployed to the on-premises cloud as
a Docker container to OpenShift. Four instances of microservice were distributed
between two microsegments, two instances in each microsegment. Each mi-
crosegment was in different data centres. Microservice deployment into the cloud
schema ensures a high resilience and availability level (Fig. 4.12). Kubernetes en-
sure resilience for containers in each microsegment and the distribution between
two microsegments ensures high availability. A load balancer provides one point
for the clients to the REST API. The continuous integration (CI) and continuous
deployment (CD) pipelines were created in Azure DevOps.

4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO... 109

Load balancer

Microservice Microservice b Microservice Microservice
POD 1 POD 2 £ POD 1 POD 2

Microsegment | Vo Microsegment 2
P

Fig. 4.12. Automatic data validation process

During the next sub-step, the monolith mainframe application was stopped,
and data transformation and validation were executed with separate applications.
Then, the code of the existing monolith application was amended to use a micro-
service instead of a monolith database, and all of the SQL queries were changed
to calls to the microservice exposed REST API. The new version of the mainframe
monolith application was released into production and the hyper-care period
started. Once the hyper-care was over, the legacy monolith mainframe database
was decommissioned.

4.5. Evaluation of the Data Quality of the Proposed
Microservice with Multi-Model Polyglot Persistence

Data quality is a key component of the quality and usefulness of information sys-
tems. The effectiveness of business processes directly depends on the quality of
the data. This chapter provides the results of the evaluation and comparison of the
ISO/IEC 25012:2008 standard quality attributes between the monolith mainframe
application and microservice with multi-model polyglot persistence. Each quality
attribute was evaluated and graded on a scale from 1 to 5 for each application. A
lower value showed a lower quality, and a higher value showed a higher quality.
Descriptions of the used evaluation grades are provided in Table 4.3.

Table 4.3. Description of the used evaluation grades

Value Description
1 Lowest quality
2 Low quality
3 Average quality
4 High quality
5 Highest guality

110 4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO...

The evaluation was conducted in a forum of domain experts and IT experts
within the organisation. The forum consisted of two SSI domain experts, four
mainframes software engineers, and four C# software engineers. To ensure the
reliability of experts, a two-part verification has been conducted. At first, it was
ensured that the experts had relevant knowledge and at least five years of experi-
ence in the domain. Secondly, experts had to pass interviews that allowed them to
ensure the sufficiency of their knowledge in relevant domains. Proof-of-the con-
cept of a microservice with multi-model polyglot persistence was compared to an
existing monolith mainframe application, going through the list of questions for
each quality attribute. There were 150 questions, ten questions for each quality
attribute. Each question had to be applied to both applications. Questionnaires
were constructed in a way that made answering possible for staff with low IT
knowledge levels (domain experts). For example, one of the questions to evaluate
understandability is: “Is the data model easily understandable? . Experts had to
choose an answer from five possible options: strongly disagree (1 point), disagree
(2 points), neither agree nor disagree (3 points), agree (4 points), and strongly
agree (5 points). Fleiss’ kappa «k inter-rater agreement was used to assess the
agreement among the experts (Fleiss et al., 2003). The coefficient value was 0.77,
which indicates a relatively high level of agreement between the experts. If the
test statistic k was 1, then all of the survey respondents were unanimous, and each
respondent was assigned the same rate to the list of concerns. If x was 0, then there
was no overall trend of agreement among the respondents, and their responses
may be regarded as essentially random. Intermediate values of k indicate a greater
or lesser degree of unanimity among the various responses.

In Table 4.4, the conclusive outcomes derived from the comprehensive eval-
uation and comparison process are meticulously displayed. The final value of each
quality attribute is a calculated average, precisely rounded to the nearest whole
number, based on the collective opinions of the experts involved.

Table 4.4. Results of the evaluation and comparison of the ISO/IEC 25012:2008 stand-
ard quality attributes between the monolith mainframe and microservice applications

Quality Attribute Monolith Microservice

Accuracy 5 5

Confidentiality

Completeness 5 5
Consistency 3 5
Credibility 5 5
Correctness 4 4
Accessibility 4 4
Compliance 5 5
5 5

4 4

Efficiency

4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO... 111

End of Table 4.4

Quality Attribute Monolith Microservice
Precision 5 5
Traceability 5 5
Understandability 3 5
Availability 2 4
Portability 1 5
Recoverability 4 4

The meticulous portrayal of the evaluative landscape extends further as
Fig. 4.13 is scrutinised, providing a comprehensive visual analysis of the ISO/IEC
25012:2008 standard quality attributes tailored to the intricacies of the monolith
mainframe application.

Simultaneously, Fig. 4.14 delves into the corresponding assessment for the
microservice application, amplifying the scientific rigour applied to the evaluation
process. The graph meticulously elucidates the distribution patterns of expert re-
sponses, underlining the nuances inherent in their qualitative judgments. Further-
more, the inclusion of standard deviation metrics serves as a pivotal component,
enhancing the robustness of the analysis by providing insights into the degree of
variability among expert opinions.

5
4
3
2
1
0
\,@Cﬁ @o@%% @&@ @\@ & ,\6\\‘6 ‘&&\& ;\\é@ & -\é@\ S ~6\'\© \é\\@ 5\'\@ S
& &R 6‘2’0 & & & & &N F
TS TS S RPN W
§©
00
mmm Expert 1 mmm Expert 2 mmmm Expert 3
Expert 4 m Expert 5 m Expert 6
m xpert 7 [xpert 8 m xpert 9
mmm Expert 10 —@=— Avarage value =@= Standard deviation

Fig. 4.13. Evaluation results of the monolith

112 4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO...

o [l N w > (O3]
/'}.
N &
5 -
%,

S . . . > . .
FFIFEFFTITE T E s
YS’Q Q\e} _\gﬁ& @b\ OQ’Q & @Q\\ bq)é‘ & 8 & F F L 4&‘2’
S > «
C/éé\ CJO C CJO ?&Q C«o g > o b&c}(b Aad Q 600
S <
0\
. Expert 1 . Expert 2 Expert 3
Expert 4 I Expert 5 I Expert 6
I Expert 7 I Expert 8 I Expert 9
. Expert 10 ==@==Avarage value ==@==Standard deviation

Fig. 4.14. Evaluation results of microservice

Most of the ISO/IEC 25012:2008 standard quality attributes, such as accu-
racy, completeness, credibility, correctness, accessibility, compliance, confiden-
tiality, efficiency, precision, traceability, and recoverability, were the same for
both applications, but microservice with multi-model polyglot persistence showed
better results in consistency, understandability, availability, and portability.

1. Consistency — a microservice with multi-model polyglot persistence
provides strong data consistency and uses three methods to ensure con-
sistency: eventual, immediate, and OneShard (highly available, fault-
tolerant deployment mode with ACID semantics), while mainframe
monolith data persistence only uses an immediate method to ensure
consistency. In addition to a database-supported consistency method,
the business layer of microservice ensures that consumers operate only
with consistent data models. Consumers using REST API can only
manipulate data at the domain level as they are not aware of the data-
base schema details and do not have access rights to access it directly.

2. Understandability — a new data model with five collections instead of
the 35 tables that were used in the mainframe application is simpler
and easier to understand. The relations between entities are repre-
sented as a graph, which is a great help in improving readability. The
AQL query language used to query polyglot persistence is considered

4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO... 113

a human-readable query language and increases understandability
compared to the SQL query language used in mainframe applications.

3. Auvailability — the biggest advantage of microservice with polyglot per-
sistence in terms of availability is that it supports many resilient de-
ployment modes to meet the different needs of a different project. Ac-
tive failover deployment is used for smaller projects with fast
asynchronous replication from the leading node to passive replicas.
OneShard deployment is used for multi-node clusters with synchro-
nous replication from the leading node it provides. A synchronously
replicating cluster technology allows it to scale elastically with the ap-
plications and all data models. The last but not least feature of multi-
model polyglot persistence is the support for datacentre-to-datacentre
replication.

4. Portability — while the mainframe requires a very specific infrastruc-
ture to run an application, a microservice with multi-model polyglot
persistence can be installed on all main operating systems (Linux,
Windows and macOS) and can be deployed to a private or public
cloud.

It can be summarised that by using the proposed migration approach, it is
possible to execute the migration from the monolith mainframe persistence model
to the multi-model polyglot persistence model without losing data quality. Eleven
of fifteen 1SO/IEC 25012:2008 standard quality attributes were the same for both
models, and four were even better for the multi-model polyglot persistence model.
It must also be noted that the results could be different for different monolith ap-
plications.

4.6. Discussions

This chapter provides the results of the comparison between the author’s proposed
monolith database migration approach and the alternative technique for extracting
microservices from monolith enterprise systems. The author has chosen to com-
pare its approach with a technique proposed by Levcovitz et al. (2016) because
methods proposed by other authors do not provide or provide very little detail on
how to adopt data storage to microservice architecture during the migration from
monolith to microservice architecture. The advantages and disadvantages of the
author’s proposed approach compared with the alternative proposed technique are
shown in Table 4.5. The sign “+” means that the criterion is an advantage, while
the sign “— means that the criterion is a disadvantage or there is no mention of
this criterion. The final grades were based on common agreements between the
authors of the research.

114 4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO...

Table 4.5. Results of the evaluation and comparison of the ISO/IEC 25012:2008 stand-
ard quality attributes between the monolith mainframe and microservice applications

Quality Attribute Monolith Micro-
service

1. Possible improvement of the quality of + —
consistency, understandability, availabil-
ity, and portability

2. Availability to use different data models + -
for different data structures

3. Database adaptation to microservice archi- + -
tecture

4. Extensive involvement of business ex- - +
perts in the migration process

5. Ability to divide database per microservice - +

Three advantages of the migration approach proposed in the dissertation were
identified. First, it allowed us to improve the quality of consistency, understanda-
bility, availability, and portability, while the technique proposed by Levcovitz
et al. does not provide any information about improved quality after migration.
Second, it migrates the data store to multi-model polyglot persistence, which al-
lows for the use of different data models for different data structures and better
utilises the advantages of the microservice architecture. Meanwhile, the alterna-
tive technique divides the monolith database by tables and reuses the same legacy
relational data store. Third, it allows for the extraction of the database from the
monolith application and its adaptation to the microservice architecture. Data are
exposed through the REST API and are accessible not only within the micro-
service ecosystem but also for the legacy monolith application. This allows for the
migration to be conducted gradually and to combine other migration methods for
code decomposition.

Two disadvantages of the proposed migration approach were identified as
well. First, extensive involvement of business experts is required to create a con-
ceptual diagram and identify functional requirements. On the other hand, an alter-
native technique can be executed without the involvement of business experts.
Second, the technique proposed by Levcovitz et al. allows for the division of the
database per microservice, while the method proposed in the dissertation extracts
the database and converts it to the microservice.

In theory, both disadvantages of the proposed approach could be addressed,
but a deeper investigation is needed. A hypothetical possible solution to reduce
the extensive involvement of business analysts in the first step could be a program
that would automatically analyse the existing monolithic program and its database
and provide a list of possible functional requirements and an optimal data model.
A potential solution for the second disadvantage could be an additional step or an

4. THE APPROACH OF MONOLITH DATABASE MIGRATION INTO... 115

extension of the first step in the proposed approach. The purpose of additional
action would be to identify different business domains in the current data model
and decompose it into as many data models as business domains are identified.
For each identified business domain, steps 2-6 of the proposed approach should
be applied separately.

4.7. Conclusions of the Fourth Chapter

This chapter of the dissertation provided an evaluation of the proposed approach
of monolith database migration into multi-model polyglot persistence based on
microservice architecture. As a proof-of-concept, the migration from an existing
monolith mainframe application to a microservice was conducted. Existing and
new applications were evaluated and compared based on the quality attributes de-
fined in the ISO/IEC 25012:2008 standard. The following conclusions have been
drawn:

1. Based on the results of the research, it can be stated that the proposed
approach can be applied to the migration from a monolith mainframe per-
sistence to a microservice architecture-based multi-model polyglot persis-
tence, and multi-model polyglot can be used as storage persistence for
microservices.

2. By using the proposed migration approach, it is possible to improve the
quality of the consistency, understandability, availability, and portability
attributes.

3. Three advantages of the proposed migration approach were identified
compared to the technique proposed by Levcovitz et al.: quality improve-
ment of consistency, understandability, availability, and portability qual-
ity attribute, the use of multi-model polyglot persistence, which allows for
better utilisation of the advantages of the microservice architecture, and
gradual migration and the combined use of other migration methods for
code decomposition.

General Conclusions

1. The performed literature review has shown that microservice architecture
is becoming the de facto industry standard for building new enterprise
applications. To remain competitive, companies have started to modern-
ise their legacy monolithic systems by decomposing them into micro-
services. However, the migration from a monolithic architecture to a mi-
croservice architecture is a complex challenge, which consists of issues
such as microservices identification, code decomposition, a combination
between microservices, independent deployment, etc. Each enterprise ap-
plication is unique. It was programmed using different programming lan-
guages and techniques, and different databases and communication mech-
anisms were used; therefore, it creates different challenges. Although the
topic of monolithic software migration into microservice architecture has
already been explored by scientists and software engineers, it is a complex
and relatively new challenge; therefore, there is still little research on
many parts of it, such as database adaptation during the migration, com-
munication establishment between microservices. The primary focus of
most of the research is microservice identification within monolith appli-
cations and source code decomposition into microservices.

117

118

GENERAL CONCLUSIONS

2. To address the prevailing deficiencies in communication and database

components, a novel migration approach grounded in experimental inves-
tigations has been developed. This approach encompasses three primary
elements: code decomposition techniques, communication establishment,
and database adaptation. The innovative evaluation criteria and guide-
lines, derived from empirical findings, serve to recommend the most suit-
able code decomposition method and communication technology, consid-
ering their respective merits and demerits. To facilitate the transition of
the database to a microservice architecture, a novel approach employing
multi-model polyglot persistence has been proposed and assessed through
experimental evaluation.

. Three code decomposition methods were chosen for analysis and compar-

ison: Code-based, Business domain-based, and Storage-based. The com-
parison between selected methodologies was done by decomposing the
same enterprise legacy monolith application into microservices using all
three selected methodologies.

3.1. The number of extracted microservices and the size of each micro-
services mostly depend on the chosen microservice responsibility.
There are two types of responsibilities: business domain and tech-
nical function. Microservices based on technical function provide
higher granularity.

3.2. The Business-domain-based method or the Code-based method with
semantic coupling strategy methods are recommended for decom-
posing legacy monolith applications into microservices based on
business domains.

3.3. Storage-based methods or Code-based methods with logical cou-
pling strategy methods are recommended for decomposing legacy
monolith applications into microservices based on functions.

. Five communication technologies, such as HTTP Rest, RabbitMQ, Kafka,

gRPC, and GraphQL, have been evaluated and compared by the proposed
evaluation criteria. The advantages and disadvantages of each communi-
cation technology were identified in the context of microservices archi-
tecture.

4.1. If latency and throughput are the main criteria during the transition
from a monolith architecture to a microservice architecture, then
RabbitMQ and gRPC are the most suitable technologies. RabbitMQ
showed the best results in RPC latency and throughput tests for small
messages (up to 0.1MB and data model up to 100 properties), while
gRPC showed the best results in RPC latency and throughput tests
for big messages.

GENERAL CONCLUSIONS 119

4.2. Kafka and RabbitMQ showed the best throughput results in the most
loaded conditions: requested by more than 100 clients at the same
time and processing 1,000,000 characters of messages. However, the
latency of RPC was high, more than one second.

4.3. With the smallest request and response message size, HTTP Rest is
the recommended communication technology when message size is
a crucial criterion for selection.

4.4. Given its minimal storage requirements, the gRPC library is the cor-
rect choice for microservices operating in environments with limited
storage capacity.

4.5. As RabbitMQ and Kafka utilise the least amount of memory, they
are the recommended choices for implementation when memory size
is a critical criterion.

5. The monolith database migration to a multi-model polyglot persistence
based on microservices was proposed, executed as a proof-of-concept,
and evaluated by domain and IT experts. Fleiss’ kappa k inter-rater agree-
ment was used to assess the agreement among the experts (Fleiss et al.,
2003). The coefficient value was 0.77, which indicates a relatively high
level of agreement between the experts. The research results showed that
the proposed approach could be used to conduct data storage migration
from a monolith to a microservice architecture and improve the quality of
the consistency, understandability, availability, and portability attributes.
Moreover, it is expected that research results could inspire researchers and
practitioners toward further work aimed at improving and automating the
proposed approach.

References

Al-Debagy, O., & Martinek, P. (2018). A comparative review of microservices and mon-
olithic architectures. In Proceedings of IEEE 18th International Symposium on Computa-
tional Intelligence and Informatics — CINTI (pp. 149-154). https://doi.org/
10.1109/CINTI.2018.8928192

Anand, M. (2021). Microservices and the Data Layer — a New IDC InfoBrief. https://re-
dis.com/blog/microservices—and-the—data—layer—new—idc—infobrief/

Andrawos, M. (2018). Modern cloud native architecture: What you need to know about
micro-services, containers and serverless. http://superuser.openstack.org/articles/modern—
cloud-native-architecture-what-you—need-to—know-about-micro-services—containers—-and-serv-
erless/

ArrangoDB. (2023). ArangoDB. https://www.arangodb.com

Atchison, L. (2018). Microservice Architectures: What They Are and Why You Should Use
Them. https://blog.newrelic.com/technology/microservices—what-they—are—why-to-use-them/

Azarny, 1. (2017). CI/CD for Containerized Microservices. https://dzone.com/articles/cicd—
for—containerised—-microservices

Azevedo, L. G,, Ferreira RD, S., Silva VT, D., de Bayser, M., Soares, E. F. D. S., & Thi-
ago, R. M. (2019). Geological Data Access on a Polyglot Database Using a Service Ar-
chitecture. In Proceedings of the X111 Brazilian Symposium on Software Components, Ar-
chitectures (pp. 103-112). https://doi.org/10.1145/3357141.3357603

121

https://redis.com/blog/microservices-and-the-data-layer-new-idc-infobrief/
https://redis.com/blog/microservices-and-the-data-layer-new-idc-infobrief/
http://superuser.openstack.org/articles/modern-cloud-native-architecture-what-you-need-to-know-about-micro-services-containers-and-serverless/
http://superuser.openstack.org/articles/modern-cloud-native-architecture-what-you-need-to-know-about-micro-services-containers-and-serverless/
http://superuser.openstack.org/articles/modern-cloud-native-architecture-what-you-need-to-know-about-micro-services-containers-and-serverless/
https://www.arangodb.com/
https://blog.newrelic.com/technology/microservices-what-they-are-why-to-use-them/
https://dzone.com/articles/cicd-for-containerised-microservices
https://dzone.com/articles/cicd-for-containerised-microservices

122 REFERENCES

Azevedo, L. G., Ferreira, R. S., Silva, V. T., Bayser, M., Soares, E. F. de S., & Thiago, R.
M. (2019). Geological Data Access on a Polyglot Database Using a Service Architecture.
In Proceedings of the X111 Brazilian Symposium on Software Components, Architectures,
and Reuse (pp. 103-112). https://doi.org/10.1145/3357141.3357603

Balalaie, O., Heydarnoori, A., & Jamshidi, P. (2016). Microservice architecture enables
DevOps. Journal of IEEE Software, 33(3), 42-52. https://doi.org/10.1109/MS.2016.64

Bandhamneni, N. (2018). Inter-service communication in Microservices. https://walk-
ingtreetech.medium.com/inter-service-communication-in-microservices-c54f41678998

Banijamali, A., Kuvaja, P., Oivo, M., & Jamshidi, P. (2020). Kuksa: Self-adaptive micro-
services in automotive systems in Product—Focused Software Process Improvement. In
International Conference on Product-Focused Software Process Improvement (pp. 367—
384). Springer, Cham. https://doi.org/10.1007/978-3-030-64148-1_23

Benchmarkdotnet community. (2023). Benchmarkdotnet. https://benchmarkdotnet.org/arti-
cles/overview.html

Beni, E. H., Lagaisse, B., & Joosen, W. (2019). Infracomposer: Policy—driven adaptive
and reflective middleware for the cloudification of simulation & optimization workflows.
Journal of Systems Architecture, 95, 36-46. https://doi.org/10.1016/j.sysarc.2019.03.001

Biswas, R., Xiaoyi, L., & Panda D. K. (2018). Designing a Micro—Benchmark Suite to
Evaluate gRPC for TensorFlow: Early Experiences. In Proceedings of The Ninth Work-
shop on Big Data Benchmarks, Performance, Optimization and Emerging Hardware.
https://doi.org/10.48550/arXiv.1804.01138

Blanch, R. (2017). Microservices: Strategies for Migration in a Brownfield Environment.
https://medium.com/@rhettblanch_48135/microservices-strategies-for-migration-in-a-brownfield-
environment-6¢14335a8069

Blinowski, G., Ojdowska, A., & Przybytek, A. (2022). Monolithic vs. Microservice Ar-
chitecture: A Performance and Scalability Evaluation. Journal of IEEE Access, 10,
20357-20374. https://doi.org/10.1109/ACCESS.2022.3152803

Brewer, E. A. (2000). Towards robust distributed systems. In Proceedings of the Sympo-
sium on Principles of Distributed Computing (PODC).
https://doi.org/10.1145/343477.343502

Brito, G., & Valente, M. (2020). Microservices. REST vs GraphQL: A Controlled Exper-
iment. In Proceedings of 2020 IEEE International Conference on Software Architecture
(pp. 81-91). https://doi.org/10.1109/ICSA47634.2020.00016

Brown, K., & Bobby, W. (2016). Implementation patterns for microservices architectures.
In Proceedings of the Pattern Language of Programs Conference (pp. 1-35), Allerton
Park.

Carrasco, A., Bladel, B. V., & Demeyer, S. (2018). Migrating towards Microservices: Mi-
gration and Architecture Smells. In Proceedings of the 2nd International Workshop on
Refactoring (pp. 1-6). https://doi.org/0.1145/3242163.3242164

https://walkingtreetech.medium.com/inter-service-communication-in-microservices-c54f41678998
https://walkingtreetech.medium.com/inter-service-communication-in-microservices-c54f41678998
https://benchmarkdotnet.org/articles/overview.html
https://benchmarkdotnet.org/articles/overview.html

REFERENCES 123

Carrasco, A., Bladel, B., & Demeyer, S. (2018). Migrating towards microservices: Migra-
tion and architecture smells. In Proceedings of the 2nd International Workshop on Refac-
toring (pp. 1-6). https:/doi.org/10.1145/3242163.3242164

Carvalho, L., Garcia, A., Assun¢do, W., Mello, R., & de Lima, M.J. (2019). Analysis of
the criteria adopted in industry to extract micro—services. In Proceedings of the 2019
IEEE/ACM Joint 7th International Workshop on Conducting Empirical Studies in Indus—
try (CESI) and 6th International Workshop on Software Engineering Research and Indus-
trial Practice (pp. 22-29). https://doi.org/10.1109/CESSER-IP.2019.00012

Cerny, T., Donahoo, M., & Trnka, M. (2018). Contextual understanding of microservice
architecture: current and future directions. Journal of ACM SIGAPP Applied Computing
Review, 17, 29-45. https://doi.org/10.1145/3183628.3183631

Chawla, H., & Kathuria, H. (2019) Building Microservices Applications on Microsoft Az-
ure. Apress.

Chen, R., Li, S., & Li, Z. (2017). From Monolith to Microservices: A Dataflow—Driven
Approach. In Proceedings of 24th Asia-Pacific Software Engineering Conference —
APSEC (pp. 466—475). https://doi.org/10.1109/APSEC.2017.53

Columbus, L. (2019). IDC Top 10 Predictions for Worldwide IT.
https://www.forbes.com/sites/louiscolumbus/2018/11/04/idc—top—10—predictions—for—worldwide—
it-2019/?sh=5e55583¢c7h96.

Cruz, P., Astudillo, H., Hilliard, R., & Collado, M. (2019). Assessing Migration of a 20—
Year—Old System to a Micro—Service Platform Using ATAM. In Proceedings of the 2019
IEEE International Conference on Software Architecture Companion (pp. 174-181).
https://doi.org/10.1109/ICSA-C.2019.00039

Dave, A., & Degioanni, L. (2016). The Five Principles of Monitoring Microservices.
https://thenewstack.io/five—principles—monitoring—microservices/

Davoudian, A., Chen, L., & Liu, M. (2018). A Survey on NoSQL Stores. Journal of ACM
Computing Surveys, 51, 1-43. https://doi.org/10.1145/3158661

Dayaratna, A. (2019). Key Considerations for Application Transformation and Moderni-
zation Using Microservices. https://www.idc.com/getdoc.jsp?containerld=US45714619

DB-ENGINES. (2023). DB—Engines Ranking. https://db—engines.com/en/ranking

De Camargo, A., Salvadori, 1., Mello, R. D. S., & Siqueira, F. (2016). An architecture to
automate performance tests on microservices. In Proceedings of the 18th International

Conference Web-Based Applied Services (pp. 422-429). https://doi.org/
10.1145/3011141.3011179

Dehghani, Z. (2018). How to break a Monolith into Microservices. https://martin-
fowler.com/articles/break—monolith—into—microservices.htmil

Douglass, M. (2018). Understanding Microservices: From Idea to Starting Line.
https://medium.freecodecamp.org/microservices—from-idea—to—starting—line—ae5317a6ff02

https://www.forbes.com/sites/louiscolumbus/2018/11/04/idc-top-10-predictions-for-worldwide-it-2019/?sh=5e55583c7b96
https://www.forbes.com/sites/louiscolumbus/2018/11/04/idc-top-10-predictions-for-worldwide-it-2019/?sh=5e55583c7b96
https://thenewstack.io/five-principles-monitoring-microservices/
https://www.idc.com/getdoc.jsp?containerId=US45714619
https://db–engines.com/en/ranking
https://martinfowler.com/articles/break-monolith-into-microservices.html
https://martinfowler.com/articles/break-monolith-into-microservices.html
https://medium.freecodecamp.org/microservices-from-idea-to-starting-line-ae5317a6ff02

124 REFERENCES

Esposte, A.M., Kon, F., Costa, F.M., & Lago, N. (2017). InterSCity: A Scalable Micro-
service—Based Open Source Platform for Smart Cities. In Proceedings of the 6th Interna-
tional Conference on Smart Cities and Green ICT Systems (pp. 35-46).
https://doi.org/10.5220/0006306200350046

Fan, C., & Ma, S. (2017). Migrating Monolithic Mobile Application to Microservice Ar-
chitecture: An Experiment Report. In Proceedings of the 2017 IEEE International Con-
ference on Al & Mobile Services (pp. 109-112). https://doi.org/10.1109/AIMS.2017.23

Fernandes, J., Lopes, I., & Rodrigues, J. (2013). Performance evaluation of RESTful web
services and AMQP protocol. In Proceedings of International Conference on Ubiquitous
and Future Networks (pp. 810-514). https://doi.org/10.1109/ICUFN.2013.6614932

Fleiss, J. L., Levin, B., & Paik, M. C. (2003). Statistical methods for rates and proportions
(3rd ed.). John Wiley & Sons.

Fowler, M., & Lewis, J. (2014). Microservices. http:/martinfowler.com/articles/micro-
services.html

Francesco, P. D., Lago, P., & Malavolta, I. (2018). Migrating towards microservice archi-
tectures: An industrial survey. In Proceedings of the International conference on software
architecture - IEEE (pp. 29-2909). https://doi.org/10.1109/ICSA.2018.00012

Francesco, P., Malavolta, I., & Lago, P. (2017). Research on Architecting Microservices:
Trends, Focus, and Potential for Industrial Adoption. In Proceedings of International Con-
ference on Software Architecture (pp. 21-30). https://doi.org/10.1109/ICSA.2017.24

Fritzsch, J., Bogner, J., Zimmermann, A., & Wagner, S. (2018). From monolith to micro-
services: A classification of refactoring approaches. In International Workshop on Soft-
ware Engineering Aspects of Continuous Development and New Paradigms of Software
Production and Deployment (pp. 128-141). Springer, Cham. https://doi.org/10.1007/978-3-
030-06019-0_10

Furda, A., Fidge, C., Zimmermann, O., Kelly, W., & Barros, A. (2018). Migrating Enter-
prise Legacy Source Code to Microservices. Journal of IEEE Software, 35, 63-72.
https://doi.org/10.1109/MS.2017.440134612

Furda, A., Fidge, C., Zimmermann, O., Kelly, W., & Barros, A. (2018). Migrating Enter-
prise Legacy Source Code to Microservices: On Multitenancy, Statefulness, and Data
Consistency. Journal of IEEE Software, 35, 63-72.
https://doi.org/10.1109/MS.2017.440134612

Galbraith, K. (2019). 3 methods for microservice communication.
https://blog.logrocket.com/methods-for-microservice-communication/

Ghofrani, J., & Bozorgmehr, A. (2019). Migration to microservices: Barriers and solutions
in Applied Informatics. In Proceedings of Second International Conference - ICAI 2019
(pp. 269-281). https://doi.org/10.1007/978-3-030-32475-9_20

Gouigoux, J. P., & Tamzalit, D. (2017). From Monolith to Microservices: Lessons
Learned on an Industrial Migration to a Web Orient—ed Architecture. In Proceedings of
the 2017 IEEE International Conference on Software Architecture Workshops (pp. 62—
65). https://doi.org/10.1109/ICSAW.2017.35

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://blog.logrocket.com/methods-for-microservice-communication/

REFERENCES 125

GraphQL. (2023). GraphQL — A query language for your API. https://www.graphgl.org

gRPC. (2023). gRPC — A High—Performance, Open—Source Universal RPC Framework.
https://www.grpc.io.

Hartig, O., & Perez J. (2017). Microservices. An Initial Analysis of Facebook's GraphQL
Language. AMW.

Hasselbring, W., & Steinacker, G. (2017). Microservice Architectures for Scalability,
Agility and Reliability in E-Commerce. In Proceedings of the 2017 IEEE International
Conference on Software Architecture Workshops (pp. 243-246).
https://doi.org/10.1109/ICSAW.2017.11

Hong, X., Yang, H., & Kim, Y. (2018). Performance Analysis of RESTful API and Rab-
bitMQ for Microservice Web Application. In Proceedings of 2018 International Confer-
ence on Information and Communication Technology Convergence (pp. 257-259)..
https://doi.org/10.1109/ICTC.2018.8539409

Kalske, M., Mékitalo, N., & Mikkonen, T. (2017). Challenges when moving from mono-
lith to microservice architecture. In International Conference on Web Engineering (pp.
32-47). Springer, Cham. https://doi.org/10.1007/978-3-319-74433-9_3

Karwowski, W., Rusek, M., Dwornicki, G., & Ortowski, A. (2018). Swarm based system
for management of containerized microservices in a cloud consisting of heterogeneous
servers. In Proceedings of 38th International Conference on Information Systems Archi-
tecture and Technology - ISAT 2017 (pp. 262-271). Springer, Cham.
https://doi.org/10.1007/978-3-319-67220-5_24

Khine, P. P., & Wang, Z. (2019). A Review of Polyglot Persistence in the Big Data World.
Journal of Information, 10, 1-141. https://doi.org/10.3390/info10040141

Knoche, H., & Hasselbring, W. (2018). Using Microservices for Legacy Software Mod-
ernization. Journal of IEEE Software, 35, 44-49. https://doi.org/10.1109/MS.2018.2141035.

Knoche, H., & Hasselbring, W. (2019). Drivers and Barriers for Microservice Adoption—
A Survey among Professionals in Germany. Journal of Enterprise Modelling and Infor-
mation Systems Architectures. (EMISAJ)-Int. J. Concept, 14, 1-35.
https://doi.org/10.18417/emisa.14.1

Koltovich, S. (2017). How to Modernize Legacy Applications for a Microservices—Based
Deployment. https://thenewstack.io/modernize—legacy—applications—keep—update—re—write—
needs—re—written/

Krishnan, G. (2002). IBM Mainframe Database Overview and Evolution of DB2 as Web
Enabled Scalable Server. Journal of Datenbank—Spektrum, 3, 6-14.

Krylovskiy, A., Jahn, M., & Patti, E. (2015). Designing a Smart City Internet of Things
Platform with Microservice Architecture. In Proceedings of the 2015 3rd International
Conference on Future Internet of Things and Cloud (pp. 25-30).
https://doi.org/10.1109/FiCloud.2015.55

https://www.graphql.org/
https://www.grpc.io/
https://doi.org/10.3390/info10040141
https://thenewstack.io/modernize-legacy-applications-keep-update-re-write-needs-re-written/
https://thenewstack.io/modernize-legacy-applications-keep-update-re-write-needs-re-written/

126 REFERENCES

Kwiecen, A. (2019). 10 companies that implemented the microservice architecture and
paved the way for others. https://www.divante.com/blog/10-companies-that-implemented-the—
microservice—architecture—and-paved-the-way—for—others

Laigner, R., Zhou, Y., Salles, M. A. V.; Liu, Y., & Kalinowski, M. (2021). Data Manage-
ment in Microservices: State of the Practice, Challenges, and Research Directions. In Pro-
ceedings of the Proceedings of the VLDB Endowment, 14, (pp. 3348-3361).
https://doi.org/10.14778/3484224.3484232

Lenarduzzi, V., & Sievi-Korte, O. (2018). On the negative impact of team independence
in microservices software development. In Proceedings of the 19th International Confer-
ence on Agile Software Development: Companion (pp. 1-4).
https://doi.org/10.1145/3234152.3234191

Lenarduzzi, V., Lomio, F., Saariméki, N., & Taibi, D. (2020). Does migrating a monolithic
system to microservices decrease the technical debt? Journal of Systems and Software,
169. https://doi.org/10.1016/j.jss.2020.110710

Levcovitz, A., Terra, R., & Valente, M. T. (2015). Towards a Technique for Extracting
Microservices from Monolithic Enterprise Systems. In Proceedings of the 3rd Brazilian
Workshop on Software Visualization, Evolution and Maintenance (pp. 97-104).
https://doi.org/10.48550/arXiv.1605.03175

Levcovitz, A., Terra, R., & Valente, M. T. (2016). Towards a Technique for Extracting
Microservices from Monolithic Enterprise Systems. In Proceedings of 3rd Brazilian
Workshop on Software Visualization, Evolution and Maintenance (pp. 97-104).
https://doi.org/10.48550/arXiv.1605.03175

Linthicum, D. (2018). From containers to microservices: Modernizing legacy applica-
tions. https://techbeacon.com/enterprise—it/containers—microservices-modernizing-legacy-appli-
cations

Lotz, J., Vogelsang, A., Benderius, O., & Berger, C. (2019). Microservice Architectures
for Advanced Driver Assistance Systems: A Case-Study. In Proceedings of the 2019
IEEE International Conference on Software Architecture Companion (pp. 45-52).
https://doi.org/10.1109/ICSA-C.2019.00016

Luz, W., Agilar, E., Oliveira, M. S., Melo, C. E. R,, Pinto, G., & Bonifacio, R. (2018). An
Experience Report on the Adoption of Micro—services in Three Brazilian Government
Institutions. In Proceedings of the XXXII Brazilian Symposium on Software Engineering
(pp. 32—-41). https://doi.org/10.1145/3266237.3266262

Mayer, B., & Weinreich, R. (2018). An Approach to Extract the Architecture of Micro-
service—Based Software Systems. In Proceedings of 2018 IEEE Symposium on Service—
Oriented System Engineering (SOSE). https://doi.org/10.1109/SOSE.2018.00012

Mazlami, G., Cito, J., & Leitner, P. (2017). Extraction of Microservices from Monolithic
Software Architectures. In Proceedings of 2017 IEEE International Conference on Web
Services (pp. 524-531). https://doi.org/10.1109/ICWS.2017.61.

https://www.divante.com/blog/10-companies-that-implemented-the-microservice-architecture-and-paved-the-way-for-others
https://www.divante.com/blog/10-companies-that-implemented-the-microservice-architecture-and-paved-the-way-for-others
https://doi.org/10.48550/arXiv.1605.03175
https://techbeacon.com/enterprise-it/containers-microservices-modernizing-legacy-applications
https://techbeacon.com/enterprise-it/containers-microservices-modernizing-legacy-applications

REFERENCES 127

Mazlami, G., Cito, J., & Leitner, P. (2017). Extraction of Microservices from Monolithic
Software Architectures. In Proceedings of the 2017 IEEE International Conference on
Web Services (pp. 524-531). https://doi.org/10.1109/ICWS.2017.61

Mazzara, M., Dragoni, N., Bucchiarone, A., Giaretta, A., Larsen, S. T., & Dustdar, S.
(2018). Microservices: Migration of a Mission Critical System. Journal of IEEE Transac-
tions on Services Computing, 14, 1464—1477. https://doi.org/10.48550/arXiv.1704.04173

Meier, A., & Kaufmann, M. (2018). SQL & NoSQL Databases: Models, Languages, Con-
sistency Options and Architectures for Big Data Management. Springer.
https://doi.org/10.1007/978-3-658-24549-8

Melendez C., & McAllister, D. (2018). Microservices Logging Best Practices.
https://dzone.com/articles/microservices—logging—best—practices

Messina, A., Rizzo, R., Storniolo, P., & Urso, A. (2016). A Simplified Database Pattern
for the Microservice Architecture. In Proceedings of the Conference: DBKDA 2016, The
Eighth International Conference on Advances in Databases, Knowledge, and Data Appli-
cations (pp. 223-233). https://doi.org/10.13140/RG.2.1.3529.3681

Microsoft, (2020). Communication in a microservice architecture. https://docs.mi-
crosoft.com/en—us/dotnet/architecture/microservices/architect-microservice—container—applica-
tions/communication—in—microservice-architecture

Microsoft. (2022). Code metrics values. https://learn.microsoft.com/en-us/visualstudio/code-
quality/code-metrics-values?view=vs-2022

Microsoft. (2023). C Sharp documentation. https://docs.microsoft.com/en—us/dotnet/csharp
Microsoft. (2023). NuGet. https://www.nuget.org
Microsoft. (2023). Visual Studio. https://visualstudio.microsoft.com

Mishra, M., Kunde, S., & Nambiar, M. (2017). Cracking the Monolith: Challenges in Data
Transitioning to Cloud Native Architectures. In Proceedings of the 12th European Con-
ference on Software Architecture: Companion Proceedings (pp. 1-4).
https://doi.org/10.1145/3241403.3241440

Mishra, M., Kunde, S., & Nambiar, M. (2018). Cracking the Monolith: Challenges in Data
Transitioning to Cloud Native Architectures. In Proceedings of the 12th European Con-
ference on Software Architecture: Companion Proceedings (pp. 1-4).
https://doi.org/10.1109/MS.2017.440134612

Mohamed, D., Mezouari, A., Faci, N., Benslimane, D., Maamar, Z., & Fazziki, A. (2021).
A multi-model based microservices identification approach. Journal of Systems Architec-
ture, 118. https://doi.org/10.1016/j.sysarc.2021.102200

Montesi, F., & Weber, J. (2016). Circuit Breakers, Discovery, and APl Gateways in Mi-
croservices. Journal of ArXiv, abs/1609.05830. https://doi.org/10.48550/arXiv.1609.05830

Mulesoft, (2023). https://www.mulesoft.com/resources/api/microservices—devops—bet-
ter—together. https://www.mulesoft.com/resources/api/microservices—devops—better—together

https://doi.org/10.1007/978-3-658-24549-8
https://dzone.com/articles/microservices-logging-best-practices
https://docs.microsoft.com/en–us/dotnet/architecture/microservices/architect–microservice–container–applications/communication–in–microservice–architecture
https://docs.microsoft.com/en–us/dotnet/architecture/microservices/architect–microservice–container–applications/communication–in–microservice–architecture
https://docs.microsoft.com/en–us/dotnet/architecture/microservices/architect–microservice–container–applications/communication–in–microservice–architecture
https://docs.microsoft.com/en–us/dotnet/csharp
https://www.nuget.org/
https://visualstudio.microsoft.com/
https://www.mulesoft.com/resources/api/microservices-devops-better-together

128 REFERENCES

Nayak, A., Poriya, A., & Poojary, D. (2013). Type of NoSQL databases and its compari-
son with relational databases. International Journal of Applied Information Systems, 5,
16-19. https://doi.org/10.5120/ijais12-450888

NBomber. (2023). NBomber. https://nbomber.com/docs/overview/

Newman, S. (2019). Monolith to Microservices. Evolutionary Patterns to Transform Your
Monolith, 1st ed. O’Reilly Media.

Ntentos, E., Zdun, U., Plakidas, K., Meixner, S., & Geiger, S. (2020). Assessing Archi-
tecture Conformance to Coupling—Related Patterns and Practices in Microservices. In
Proceedings of European Conference on Software Architecture (pp. 3-20). L'Aquila.
https://doi.org/10.1007/978-3-030-58923-3_1

Olofson, C., & Chen, G. (2021). The Impact of Application Modernization on the Data
Layer. https://redis.com/docs/application—modernizaton-impact-on-data—layer/

Pozdniakova, O., & Mazeika, D. (2017). A cloud software isolation and crossplatform
portability methods. In Proceedings of Open Conference of Electrical, Electronic and In-
formation Sciences - eStream (pp. 1-6). https://doi.org/10.1109/eStream.2017.7950315.

Pozdniakova, O., & Mazeika, D. (2017). Systematic Literature Review of the Cloud-ready
Software Architecture. Journal of Modern Computing, 5, 124-135.
https://doi.org/10.22364/bjmc.2017.5.1.08

Rajasekharaiah, C. (2021). Case Study: Energence. In Book Cloud-Based Microservices
(pp. 1-12). Apress. https://doi.org/10.1007/978-1-4842-6564-2_1

Ramin, F., Matthies, C., & Teusner, R. (2020). More than code: Contributions in scrum
software engineering teams. In Proceedings of IEEE/ACM 42nd International Conference
on Software Engineering Workshops (pp. 137-140).
https://doi.org/10.1145/3387940.3392241

Richter, D., Konrad, M., Utecht, K., & Polze, A. (2017). Highly—Available Applications
on Unreliable Infrastructure: Microservice Architectures in Practice. In Proceedings of
2017 IEEE International Conference on Software Quality, Reliability and Security Com-
panion (pp. 130-137). https://doi.org/10.1109/TSC.2018.2889087

Rosendahl, H. (2016). Containers vs Virtual Machines (vms) — A Security Perspective.
https://neuvector.com/container—security/containers—vs—virtual-machines—-vms/

Serra, J. (2015). What is Polyglot Persistence? https://www.jamesserra.com/ar-
chive/2015/07/what—is—polyglot—persistence/

Shah, C., Srivastava, K., & Shekokar, N.M. (2016). A novel polyglot data mapper for an
E—Commerce business model. In Proceedings of the 2016 IEEE Conference on e-Learn-
ing, e-Management and e-Services (pp. 40-45). https://doi.org/10.1109/1C3e.2016.8009037

Sharma, V., & Dave, M. (2012). SQL and NoSQL Databases. International Journal of
Advanced Research in Computer Science and Software Engineering, 12, 467-471.
https://doi.org/10.1145/3158661

https://nbomber.com/docs/overview/
https://redis.com/docs/application-modernizaton-impact-on-data-layer/
https://neuvector.com/container-security/containers-vs-virtual-machines-vms/
https://www.jamesserra.com/archive/2015/07/what–is–polyglot–persistence/
https://www.jamesserra.com/archive/2015/07/what–is–polyglot–persistence/

REFERENCES 129

Singhal, H., Saxena, A., Mittal, N., Dabas, C., & Kaur, P. (2021). Polyglot Persistence for
Microservices—Based Applications. Journal of Information Technologies and Systems Ap-
proach, 14, 17-32. https://doi.org/10.4018/1JITSA.2021010102

Smid, A., Wang, R., & Cerny, T. (2019). Case study on data communication in micro-
service architecture. In Proceedings of the Conference on Research in Adaptive and Con-
vergent Systems (pp. 261-267), Chongging, China. https://doi.org/10.1145/3338840.3355659

Soldani, J., Tamburri, D. A., & Van Den Heuvel, W. J. (2018). The pains and gains of
microservices: A Systematic grey literature review. Journal of System Software, 146, 215—
232. https://doi.org/10.1016/j.jss.2018.09.082

Soroko, A. (2017). Cloud Foundry Deployment Metrics That Matter Most. https://www.al-
toros.com/blog/cloud—foundry—deployment—metrics—that—-matter—most/

Stefanko, M., Chaloupka, O., & Rossi, B. (2019). The saga pattern in a reactive micro-
services environment. In Proceedings of International Conference on Software and Data
Technologies (pp. 483—-490). https://doi.org/10.5220/0007918704830490

Taibi, D., Lenarduzzi, V., & Pahl, C. (2020). Architectural Patterns for Microservices: A
Systematic Mapping Study. In Proceedings of International Conference on Cloud Com-
puting and Services Science (pp.100-104). https://doi.org/10.5220/0006798302210232

Terzic, B., & Dimitrieski, V. (2018). A model-driven approach to microservice software
architecture establishment. In Proceedings of 2018 Federated Conference on Computer
Science and Information Systems (pp. 73 —80). https://doi.org/10.15439/2018F370

Trivedi, K., Shah, S., & Srivastava, K. (2018). An Efficient E-Commerce Design by Im-
plementing a Novel Data Mapper for Polyglot Persistence. In Proceedings of 2nd Inter-
national Conference on Advanced Computing Technologies and Applications - ICACTA
2020 (pp. 149-156). https://doi.org/10.1007/978-981-15-3242-9_15

Vennaro, N. (2017). How to introduce microservices in a legacy environment.
https://www.infoworld.com/article/3237175/how-to—introduce—microservices—in—a—legacy—envi-
ronment.html

Viennot, N., Lécuyer, M., Bell, J., Geambasu, R., & Nieh, J. (2015). Synapse: A micro-
services architecture for heterogeneous—database web applications. In Proceedings of the
10th European Conference on Computer Systems (pp. 1-16).
https://doi.org/10.1145/2741948.2741975

Villaga, L. H., Azevedo, L. G., & Siqueira, S. W. (2020). Microservice Architecture for
Multistore Database Using Canonical Data Model. In Proceedings of the XVI Brazilian

Symposium on Information Systems, Sdo Bernardo do Campo (pp. 1-8).
https://doi.org/10.1145/3411564.3411629

Walsh, K., & Manferdelli, J. (2017). Mechanisms for Mutual Attested Microservice Com-
munication. In Proceedings of the 10th International Conference on Utility and Cloud
Computing (pp. 59-64). https://doi.org/10.1145/3147234.3148102

Wang, Y., Kadyala, H., & Rubin, J. (2020). Promises and Challenges of Microservices:
An Exploratory Study. Journal of Empirical Software, 26(4), 1-44.
https://doi.org/10.1007/s10664—-020-09910-y.

https://doi.org/10.1016/j.jss.2018.09.082
https://www.altoros.com/blog/cloud-foundry-deployment-metrics-that-matter-most/
https://www.altoros.com/blog/cloud-foundry-deployment-metrics-that-matter-most/
https://www.infoworld.com/article/3237175/how-to-introduce-microservices-in-a-legacy-environment.html
https://www.infoworld.com/article/3237175/how-to-introduce-microservices-in-a-legacy-environment.html
https://doi.org/10.1145/2741948.2741975

130 REFERENCES

Wiese, L. (2015). Polyglot Database Architectures. In Proceedings of the LWA 2015
Workshops: KDML, FGWM, IR, and FGDB, Trier.

Wireshark. (2023). Wireshark. https://www.wireshark.org/

Wolfart, D., Assung@o, W., Silva, ., Domingos, D., Schmeing, E., Villaca, G., & Paza, D.
(2021). Modernizing Legacy Systems with Microservices: A Roadmap. In Proceedings of
the 25th International Conference on Evaluation and Assessment in Software Engineering
(pp. 149-159). https://doi.org/10.1145/3463274.3463334

Yarygina, T., & Bagge, A. (2018). Overcoming Security Challenges in Microservice Ar-
chitectures. In Proceedings of 2018 IEEE Symposium on Service—Oriented System Engi-
neering (pp. 11-20). https://doi.org/10.1109/SOSE.2018.00011

Zdepski, C., Bini, T. A., & Matos, S. N. (2018). An Approach for Modelling Polyglot
Persistence. In Proceedings of the International Conference on Information Systems
(ICEIS). https://doi.org/10.5220/0006684901200126

Zdepski, C., Bini, T. A., & Matos, S. N. (2020). PDDM: A Database Design Method for
Polyglot Persistence. American Academic Scientific Research Journal for Engineering,
Technology, and Sciences, 71(1), 136-152.

https://www.wireshark.org/
https://doi.org/10.5220/0006684901200126

List of Scientific Publications by the
Author on the Topic of the
Dissertation

Papers in the Reviewed Scientific Journals

Kazanavicius, J., Mazeika, D., & Kalibatiene, D. (2022). An Approach to Migrate a Mon-
olith Database into Multi—-Model Polyglot Persistence Based on Microservice Architec-
ture: A Case Study for Mainframe Database. Journal of Applied Sciences, 12(12), 6189.
https://doi.org/10.3390/app12126189

Kazanavicius, J., & Mazeika, D. (2023). The Evaluation of Microservice Communication
While Decomposing Monoliths. Journal of Computing and Informatics, 42(1), 1-36.
https://doi.org/10.31577/cai_2023_1 1

Papers in Other Editions

Kazanavicius, J., & Mazeika, D. (2019). Migrating Legacy Software to Microservices Ar-
chitecture. In Proceedings of the 2019 Open Conference of Electrical, Electronic and In-
formation Sciences — eStream (pp. 1-5). https://doi.org/10.1109/estream.2019.8732170

Kazanavicius, J., & Mazeika, D. (2020). Analysis of Legacy Monolithic Software Decom-
position into Microservices. In Proceedings of the Baltic-DB&IS—Forum-DC 2020
(pp. 25-32). https://ceur-ws.org/VVol-2620/paper4.pdf

131

132 LIST OF SCIENTIFIC PUBLICATIONS BY THE AUTHOR ON THE TOPIC OF THE...

Kazanavicius, J., & Mazeika, D. (2023). An Approach to Migrate Legacy Monolithic Ap-
plication in Microservice Architecture. In Proceedings of the 2023 Open Conference of
Electrical, Electronic and Information Sciences — eStream (pp. 1-6). https://doi.org/
10.1109/eStream59056.2023.10135021

Summary in Lithuanian

Jvadas

Problemos formulavimas

Atsizvelgiant | daugybe pastaraisiais metais sékmingai jgyvendinty projekty, naudojant
mikroservisy architekttirg, ji tapo standartu, pagal numatytuosius parametrus daugumoje
jmoniy kuriant naujg ir modernizuojant jau esamg programing jrangg. DidZiosios jmonés,
tokios kaip ,,Amazon®, ,,EBay*, ,Netflix“, ,,PayPal®, ,, Twitter” ir kitos, sé¢kmingai peréjo
nuo monolitinés architektiiros prie mikroservisy architektiiros.

Mikroservisy architektiira kombinuojant kartu su programinés jrangos kiirimo ir IT
operacijy (DevOps) praktika, pagerinamas programinés jrangos kiirimo judrumas ir lanks-
tumas. [monés gali grei¢iau pristatyti savo skaitmeninius produktus ir paslaugas labai kon-
kurencingai rinkai. Mikroservisy architektiira tampa $iuolaikiniy debesy kompiuterijos
pagrindu veikianciy programinés jrangos sistemy projektavimo standartu, nes ji geriausia
i$naudoja debesy kompiuterijos privalumus. Kartu naudojant mikroservisy architekttiros
ir debesy technologijas, sutrumpinamas programinés jrangos kiirimo laikas ir padidinamas
diegimo greitis.

Perkélimas i§ monolitinés architektiiros | mikroservisy architektiirg yra sudétingas
ties kodo i§skaidyma, rysio tarp mikroservisy uzmezgima, duomeny bazés adaptacija, nep-
riklausoma diegima ir kt. Mikroservisy identifikavimas ir i§skyrimas i§ esamos monoliti-
nés programinés jrangos yra labai sudétinga uzduotis. Pazymétina, kad kiekviena jmonés

133

134 SUMMARY IN LITHUANIAN

programa yra unikali, nes buvo programuojama naudojant skirtingas programavimo kal-
bas ir technikas, skirtingas duomeny bazés ir komunikacijos technologijas. Atsizvelgiant
i tai kiekviena monolitiné programa kuria skirtingus i$$ukius. Skirtingos organizacijos
taiko skirtingus perkélimo modelius ir metodus, nes mikroservisy architektiira vis dar yra
palyginti naujas architekttirinis pozitiris, o placiai patvirtinto biido, kaip atlikti perkélima
i§ monolitinés programos, néra.

Darbo aktualumas

Tarptautinés duomeny korporacijos duomenimis, 89 % i§ mazdaug 300 Siaurés Amerikos
imoniy apklausos respondenty jau naudoja mikroservisy architektiirg kuriant programine
jranga (Olofson etal., 2021; Anand, 2021). Tarptautiné duomeny korporacija progno-
zuoja, kad 90 % visy naujy programy bus sukurtos remiantis mikroservisy architektira.
Imonés, siekdamos ilikti konkurencingos rinkoje, pradéjo modernizuoti savo esamas mo-
nolitines sistemas, iSskaidydamos jas | mikroservisus (Francesco et al., 2018; Knoche
etal., 2018; Wang et al., 2020; Wolfart et al.)., 2021; Beni et al., 2019; Mohamed et al.,
2021).

Nors monolitinés programinés jrangos perkélimo j mikroservisy architekttrg tema
yra nagrinéjama mokslininky ir programinés jrangos inZzinieriy, tai vis dar palyginti naujas
i§8ukis. Mikroservisy identifikavimas ir iseities kodo skaidymas yra placiai iSnagrinétas,
taciau tokios temos kaip rySio technologijos parinkimas ir ryS$io uzmezgimas tarp mikro-
servisy ar duomeny bazés adaptacija prie mikroservisy architektiiros yra mazai tyrinétos.
Siekiant uzpildyti Sig spraga, Siame darbe pasitilytas perkélimo metodas, sudarytas i$ trijy
pagrindiniy daliy: mikroservisy identifikavimo ir iSeities kodo i§skaidymo metody, komu-
nikacijos technologijos parinkimo ir duomeny bazés adaptacijos.

Tyrimo objektas

Disertaciniy tyrimy objektas — taikomyjy monolitiniy programy perkélimo j mikroservisy
architekttirg metodai.

Darbo tikslas

Disertacijos tikslas — pagerinti perkélima i$ taikomyjy monolitiniy programy prie mikro-
servisy architektiiros, pasitilant nauja perkélimo metoda, kuris apima iseities kodo iSskai-
dyma, rySio uzmezgimg ir duomeny bazés adaptacija.

Darbo uzdaviniai

Darbo tikslui pasiekti buvo keliami $ie uzdaviniai:

1. Apzvelgti mikroservisy architekttiros ypatumus ir esamas monolitinés programi-
nés jrangos perkélimo j mikroservisy architektirg metodikas, nustatant svarbiau-
sius aspektus bei esamas spragas.

2. Istirti monolitinés programings jrangos iseities kody iSskaidymo biidus migruo-
jant j mikroservisy architekttira.

3. Istirti mikroservisy komunikacijos technologijas ir nustatyti konkrecius jy panau-
dojimo atvejus.

SUMMARY IN LITHUANIAN 135

4.

5.

Ivertinti ir pasialyti monolitinés duomeny bazés perkélima j mikroservisy archi-
tektarg, pagrista daugiamodeliniu poligloty modeliu.

Pasiiilyti naujg metoda peré¢jimui i§ monolitinés architekttiros prie mikroservisy
architekttiros, sujungiantj iSeities kodo dekompozicija, rySio uzmezgima tarp
mikroservisy ir duomeny bazés adaptavimg mikroservisy architektiirai.

Tyrimy metodika

Nagrinéjant darbo objekta, taikyti Sie metodai:

1.

Atlikta sisteminé mokslinés literatiros apzvalga apie esamus monolitinés prog-
raminés jrangos perkélimo i mikroservisy architektiira metodus. Apibendrintos
kiekvieno metodo privalumai ir trakumai. Nustatytos spragos komunikacijos ir
duomeny baziy srityse.

Eksperimentinis tyrimo metodas, pritaikytas tiriant mikroservisy architektiiros
komunikacijos technologijas. Apibendrinti kiekvienos technologijos pranaSumai
ir trikumai bei nustatyti konkretiis jy panaudojimo atvejai. Visi mikroservisai
buvo para§yti naudojant C# programavimo kalbg. Delsos testai buvo atlikti nau-
dojant ,,BenchmarkDotNet“ bibliotekg. Pralaidumo testai buvo atlikti naudojant
,,NBomber biblioteka.

Konstruktyvus tyrimo metodas buvo pritaikytas kuriant ir patvirtinant sitiloma
monolitinés duomeny bazés perkélimo i mikroservisy architektiira metoda. Dau-
giamodelinis poliglotinis modelis buvo jgyvendintas ArangoDB duomeny bazéje
ir inkapsuliuotas mikroservise, parasytame C# programavimo kalba.

Darbo mokslinis naujumas

1.

Sitlomas perkélimo i§ monolitinés programinés jrangos j mikroservisy architek-
tiirg metodas iSsiskiria, nes unikaliai apima tris esminius komponentus: iSeities
kodo dekompozicija, rySio uzmezgima tarp mikroservisy ir duomeny bazés adap-
tacija. Esami metodai daznai suteikia ribota apréptj, sprendziant tik iSeities kodo
dekompozicijos problema.

Pasitlytas naujas monolitiniy duomeny baziy perkélimo j mikroservisy architek-
targ metodas. Perkélimo metu esamas duomeny modelis yra transformuojamas j
daugiamodelinj poliglotinj modelj. Si transformacija pagerina nuosekluma, sup-
rantamuma, prieinamuma ir perkeliamuma, kartu sékmingai iSsaugant duomeny
kokybe vienuolikoje ISO/IEC 25012:2008 standarto atributy.

Pasitlyti nauji iseities kody dekompozicijos metody ir komunikacijos technolo-
gijy vertinimo kriterijai yra pagrjsti i§samia jy privalumy ir trikumy analize. Kri-
terijai suteikia novatoriska pagrinda pasirinkti viena i$ trijy kodo dekompozicijos
metody ir penkiy komunikacijos technologijuy, jvertinty ir palyginty pagal aStuo-
nis Kriterijus.

136 SUMMARY IN LITHUANIAN

Darbo rezultaty praktiné reikSmé

Pasitilytas naujas perkélimo metodas i§ esamos monolitinés programinés jrangos j mikro-
servisy architekttirg leidzia atlikti perkélima remiantis trimis pagrindiniais aspektais:
iSeities kodo i$skaidymu, ry$io uzmezgimu ir duomeny bazés transformavimu. Taikydami
sitilomg perkélimo metoda, perkélimo vykdytojai, atsizvelgdami i savo poreikius, gali pa-
sirinkti viena i$ trijy kody skaidymo budy ir vieng i penkiy komunikacijos technologijy.
Tyrimo rezultatai parodé, kad sitilomas duomeny bazés perkélimo metodas gali biti tai-
komas duomeny baziy perkélimui i§ monolitinés | mikroservisy architektiirg ir nuosek-
lumo, suprantamumo, prieinamumo ir perkeliamumo atributy kokybei pagerinti. Be to,
autorius tikisi, kad darbo rezultatai gali paskatinti tyréjus ir praktikus tolesniam darbui,
siekiant pagerinti ir automatizuoti siiiloma metoda.

Ginamieji teiginiai
1. Pasiilytas perkelimo metodas leidzia atlikti perkélima i§ monolitinés duomeny
bazés i mikroservisy architektiirai pritaikyta daugiamodeline poligloting duo-
meny baze, neprarandant duomeny modelio kokybés vienuolikoje i$ penkiolikos

ISO/IEC 25012:2008 standarto kokybés atributy, bei pagerinti nuosekluma, sup-
rantamuma, prieinamuma ir perkeliamuma.

2. RabbitMQ ir gRPC yra tinkamiausios technologijos, jei delsa ir pralaidumas yra
pagrindiniai komunikacijos technologijos pasirinkimo kriterijai migruojant i$
monolitinés architektiiros j mikroservisy architektiirag. GRPC naudojamas dveje-
tainis serializavimas pranoksta RabbitMQ perduodant sudétingesnius pranesi-
mus.

3. Kodo ir duomeny baziy elementais pagrjsti mikroservisy identifikavimo metodai
leidZia identifikuoti monolitinés programos technines funkcijas ir priskirti joms
atitinkamus kodo ir duomeny baziy komponentus, 0 verslo domenais pagrjsti
mikroservisy identifikavimo metodai leidzia identifikuoti mikroservisus pagal
identifikuotas verslo sritis. Mikroservisai, pagristi techninémis funkcijomis, uz-
tikrina didesn]j detaluma.

Darbo rezultaty aprobavimas

Disertacijos tema paskelbta 2 zurnaluose, jtrauktuose j Clarivate Analytics (buv. Thomson
Reuters) Web of Science duomeny baze ir turin¢iuose citavimo rodiklj, 2 — moksliniy kon-
ferencijy praneSimy rinkiniuose. Moksliniai rezultatai buvo pristatyti 4 mokslinése konfe-
rencijose:

— 2019 Open Conference of Electrical, Electronic and Information Sciences (eSt-
ream), 2019 m. balandzio 1 d., Vilnius, Lietuva.

— Baltic DB&IS 2020, 14th International Baltic Conference on Databases and In-
formation Systems, 2020 m. birzelio 16-19 d., Talinas, Estija.

— Data Analysis Methods for Software Systems (DAMSS), 2021 m. gruodzio 2—
4 d., Druskininkai, Lietuva.

— 2023 Open Conference of Electrical, Electronic and Information Sciences (eSt-
ream), 2023 m. balandzio 27 d., Vilnius, Lietuva.

SUMMARY IN LITHUANIAN 137

Disertacijos strukttira

Disertacijg sudaro jvadas, penki pagrindiniai skyriai, bendrosios iSvados, literattiros salti-
niy sgrasas, disertacijos autoriaus publikacijy saraSas ir santrauka lietuviy kalba. Diserta-
cijos apimtis: 162 puslapiai, 1 formulé, 74 paveikslai ir 21 lentele.

1. Mikroservisy architekturos ir esamy perkélimo is$
monolitinés programinés jrangos j mikroservisy architektira
metody analizé

Siame skyriuje apzvelgiama mikroservisy architektiira ir jos pranasumai bei trikumai ly-
ginant su monolitine architektiira. Pirmiausia paaiskinami svarbiausi mikroservisy archi-
tektiiros aspektai ir priezastys, kodél jmonés siekia perkelti savo esamg monoliting prog-
raming jrangg. Toliau tekste pateikiama perkélimo i§ monolitinés programinés jrangos j
mikroservisy architektiirg metody analizé. Nagrinéjami jvairis perkélimo metodai, patei-
kiami jy privalumai ir trikumai. Toliau tekste apzvelgiamos jvairios komunikacijy tech-
nologijos ir budai, tinkami mikroservisy architektiirai. Galiausiai pateikiami duomeny
bazés adaptavimo mikroservisy architektiirai literatiiros analizés rezultatai.

Monolitiné architektiira yra tradicinis programinés jrangos kiirimo biidas, kai visos
funkcijos yra jtrauktos j vieng programg — vientisg autonominj vienetg. Monolitinés archi-
tekttiros trikumai yra §ie: labai sunku atlikti pakeitimus, kai monolitiné programa yra labai
didelé ir sudétinga, su kiekvienu atnaujinimu turi bati atnaujinta visa programa, bet kurio
komponento klaida gali sugadinti visag programa (Dehghani et al., 2018; Fritzsch etal.,
2018; Kalske et al., 2017). Klaidy taisymas ir naujy funkcijy jtraukimas j tokig programa
yra labai sudétingas ir daug laiko bei resursy reikalaujantis darbas. Dél §iy monolitinés
architektaros trikumy organizacijos pradeda ieskoti naujo architektiirinio sprendimo
(Dehghani et al., 2018). D¢l daugybés pastaraisiais metais sékmingai jgyvendinty pro-
jekty, naudojant mikroservisy architektiira, §i tapo standartu pagal numatytuosius para-
metrus daugumoje jmoniy kuriant naujg ir modernizuojant esamg programing jrangg
(Kwiecen, 2019).

Mikroservisy architektiira — tai bidas sukurti vieng programa kaip mazy programéliy
rinkinj, kur kiekviena programélé veikia atskirai ir palaiko ry$j su Kitomis programeélémis
lengvomis komunikacijos technologijomis, tokiomis kaip HTTP. Sios programélés yra su-
kurtos remiantis atskiromis verslo sritimis ir yra nepriklausomai jdiegiamos visiskai auto-
matizuotais diegimo mechanizmais. Siy programéliy, kurios gali biiti parasytos skirtingo-
mis programavimo kalbomis ir naudojamos skirtingos duomeny saugojimo technologijos,
centralizuotas valdymas yra minimalus (Fowler et al., 2014). Pagrindiniai trys mikroser-
visy architektiiros principai yra Sie: mikroservisas turi viena atsakomybe, mikroservisas
yra autonomiskas, mikroservisas yra poliglotas (Blinowski et al., 2022).

Perkélimas i§ monolitinés architekttiros j mikroservisy architekttirg yra sudétingas ir

v —

v v —

mas monolitiniy kody bazése (Carrasco et al., 2018; Mazlami et al., 2017; Furda et al.,
2018; Mishra et al., 2018; Linthicum, 2018). Kitas didelis i§8tkis yra apibrézti tinkamag

138 SUMMARY IN LITHUANIAN

komunikacijos technologijg. Monolitinése programose rySys tarp komponenty vykdomas
taikant proceso metodus arba funkcijy i8kvietimus. Mikroservisy architektiira pagrjsta
programa yra paskirstyta sistema, veikianti keliuose procesuose ar taikant kelias paslau-
gas. Todél mikroservisai turi sgveikauti naudodami tarp procesines komunikacijos tech-
nologijas (Microsoft, 2020; Cerny et al., 2018; Smid et al., 2019). Treciasis i§§tkis, duo-
meny bazés pritaikymas mikroservisy architekturai, yra pripazjstamas kaip vienas i§
opiausiy ir Viena maziausiai nagrinéty temy perkélimas i§ monolitinés j mikroservisy ar-
chitektiirg kontekste (Laigner et al., 2021; Azevedo et al., 2019; Richter et al., 2017; Fran-
cesco et al., 2017; Knoche et al., 2019; Luz et al., 2018; Soldani et al., 2018).

Literatiiros apzvalgos ir analizés metu buvo nustatytos trys pagrindinés kryptys, kaip
buty galima realizuoti perkélima i§ monolitinés | mikroservisy architektiira: Duomeny
bazés elementais pagrista kryptis — iSeities kodas, susijes su konkreciais duomeny bazés
elementais, pavyzdziui, duomeny bazés lentele, turi bati pateikiamas viename mikroser-
vise. Kodo elementais pagrista kryptis — programy i$skaidymas j mikroservisus turéty buti
igyvendintas remiantis iSeities kodo elementais, tokiais kaip klasé ar metodas. Mikroser-
visy funkcijos turéty biiti identifikuotos ir visi atitinkami kodo elementai priskirti vienai
i§ $iy funkcijy. Verslo domenu pagrista kryptis — programa turi bati suskirstyta j mikro-
servisus pagal identifikuotas verslo sritis, kiekvienam verslo domenui turi biiti atskiras
mikroservisas (Levcovitz et al., 2016; Mazlami et al., 2017; Fan et al., 2017; Chen et al.,
2017; Knoche et al., 2018).

Perkélimo rezultatai, pasitelkiant skirtingas metodikas, buvo jvertinti ir palyginti tai-
kant jvarius kriterijus. Mikroservisy kandidaty skaicius ir mikroserviso dydis — kriterijai, nu-
rodantys, kokio dydZio ir kiek mikroservisy kandidaty galima potencialiai i$gauti taikant
pasirinktg metodika. Duomeny baziy Kriterijumi jvertinama, ar metodikos gali i8skaidyti
duomeny bazes monolity skaidymo procese. Mikroservisy komunikacijos kriterijumi anali-
zuojamas mikroservisy kaip vieno sprendimo veikimas po dekomponavimo proceso. Auto-
matizavimo kriterijumi jvertinamos kiekvienos metodikos galimybés biti visiskai automati-
zuotoms. Analizuojant kriterijus technologijos ir jrankiai, pateikiama daugiau informacijos
apie tai, kaip biity galima realizuoti metodikas ir kokias technologijas bei priemones biity
galima taikyti. Paskutinis kriterijus, kodo kokybé, jvertina kodo kokybés poveikj perkélimo
procese.
mos technologijos sudétingumas, verslo domenas, komandos dydis ar jos jgidziai — tai
parametrai, kurie kiekvienu atveju gali bati labai skirtingi. Kiekvienas atvejis yra skirtin-
gas ir organizacija turéty pasirinkti, kuris metodas ar metody rinkinys geriausiai tinka per-
kélimui i§ monolitinés] mikroservisy architektiirg. Pasirinkta metodika arba metodiky rin-
kinys turéty turéti galimybe iSgauti mikroservisus pagal pasirinktus kriterijus ir biti
suderinami su jmonés naudojamomis technologijomis. Kodo ir duomeny baziy elementais
pagristi mikroservisy identifikavimo metodai leidzia identifikuoti monolitinés programos
technines funkcijas ir priskirti joms atitinkamus kodo ir duomeny baziy komponentus, 0
verslo domenais pagrjsti mikroservisy identifikavimo metodai leidzia identifikuoti mikro-
servisus pagal identifikuotus verslo domenus. Mikroservisai, pagristi techninémis funkci-
jomis, uztikrina didesnj detaluma. N¢é viena i§ analizuojamy metodiky neturi i§samiy nu-
rodymy, kaip turéty buiti uzmezgama komunikacija tarp mikroservisy ir pritaikoma
duomeny bazé mikroservisy architektiirai. Monolitinés programos kodo kokybé turi didele

SUMMARY IN LITHUANIAN 139

itakg perkélimo procesui. Kuo geresné kokybé, tuo maziau pastangy reikia norint pereiti
nuo monolitinés prie mikroservisy architektiiros.

Apibendrinant galima teigti, kad mikroservisy architektiira turi daug pranasumy, ly-
ginant su monolitine architekttra, ir daugelyje jmoniy tapo standartine architekttira kuriant
Siuolaiking debesy kompiuterija grista programing jranga. Daugelis jmoniy pradéjo mo-
dernizuoti savo esamas monolitines programas, i§skaidydamos jas j mikroservisus, siek-
damos islaikyti konkurencinguma rinkoje. PaZzymétina, kad mikroservisy architekttira yra
sudétingas, kompleksinis ir palyginti naujas architektiiros stilius. Néra placiai patvirtinto
btdo, kaip atlikti perkélimag i§ monolitinés architekttiros i mikroservisy architekttira. Nus-
tatyti trys pagrindiniai i§§tikiai migruojant i§ monolitinés] mikroservisy architektiirg: mik-
roservisy identifikavimas ir iSgavimas i§ monolitiniy programy iseities kody baziy, rysio
tarp iSskaidyty mikroservisy uzmezgimas, duomeny baziy pritaikymas mikroservisy ar-
chitekttrai. Nors mikroservisy identifikavimas ir iSgavimas i$ iSeities kodo yra pladiai ty-
rinétas mokslininky ir programinés jrangos inzinieriy, tac¢iau komunikacijos uzmezgimas
tarp mikroservisy ir duomeny bazés pritaikymas mikroservisy architektiirai vis dar yra
mazai tyrinétas. Kiekvienas mikroservisas gali bati skirtingas jvairiais aspektais ir néra
vienos duomeny bazés, kuri potencialiai galéty patenkinti visus poreikius, todél natiiralu,
kad daugiamodeliné poliglotiné duomeny bazés technologija tampa puikiu pasirinkimu
siekiant isnaudoti mikroservisy architektiiros teikiamos privalumus modernizuojant mo-
noliting duomeny baze.

2. Perkélimo iS monolitinés j mikroservisy architektiirg
metodas

Siame skyriuje apzvelgiamas sitilomas perkélimo metodas, leidziantis perkelti esama mo-
noliting programa i mikroservisy architektiirg. Perkélimas i§ monolitinés architektiiros j
mikroservisy architektiirg yra sudétingas kompleksinis i88tkis, sudarytas i§ daugybés skir-
tingy problemy, tokiy kaip mikroservisy identifikavimas, iSeities kodo i$skaidymas, mik-
roservisy komunikacijos uzmezgimas, nepriklausomas diegimas, duomeny saugojimo pri-
taikymas ir kt. Skirtingai nuo kity pasitilyty migracijos metody, siilomas metodas
susideda i$ trijy daliy: iSeities kodo iSskaidymo j mikroservisus, ry$io uzmezgimo tarp
i§skaidyty mikroservisy ir duomeny bazés adaptacijos prie mikroservisy architektiiros. Pa-
Zymétina, jog daugumos kity tyrimy pagrindinis démesys skiriamas mikroservisams iden-
tifikuoti monolitinéje programoje ir iSeities kodo i§skaidymui j mikroservisus. Pabréztina,
jog esami perkélimo metodai pateikia labai mazai arba visai nepateikia rekomendacijy,
kaip pritaikyti duomeny saugykla prie mikroservisy architektiiros ir kaip uzmegzti rysj
tarp mikroservisy i§ monolitinés architektiiros j mikroservisy architektiirg perkélimo metu.

Pagrindiniai sifilomo perkélimo i§ monolitinés architekttiros | mikroservisy architek-
tiira metodo Zingsniai parodyti S2.1 paveiksle. Sj metoda sudaro penki pagrindiniai Zings-
niai, kuriy kiekvienas yra padalintas j keleta poveiksmiy: 1 zingsnis — esamos monolitinés
programos analiz¢; 2 zingsnis — iSeities kodo i§skaidymas j mikroservisus; 3 Zingsnis — rysio
tarp i$skaidyty mikroservisy uzmezgimas; 4 zingsnis — duomeny bazés pritaikymas mikro-
servisy architekttirai; 5 zingsnis — i§leidimas ir diegimas.

140 SUMMARY IN LITHUANIAN

5 5 R 5 5 4 s ¢ N\ %o ziu g = o
Zingsnis 1. Zingsnis 2. Zingsnis 3. 3 Zingsnis 4. R (Zingsnis 5.
Esamos monolitinés =D Monolitinés programos ='\> Komunikacijos ="> Duomenu bazés =D Diegimas
programos analizé kodo isskaidymas uZmezgimas tarp adaptacija
mikroservisus mikroservisy
(. J/ |\ J (. J g J \ J
A A y Y
— R { —— R —— N
Pozingsnis 1. R (Pozingsnis 1. Pozingsnis 1.) Pozingsnis 1. (Pozingsnis 1.
Kodo skaidymo Kodo skaidymo metodo Komunikacijos Duomenu modelio Infrastruktiros sukirimas
reikalavimy nustatymas pasirinkimas technologijos sukiirimas
pasirinkimas
SN N A 3 N J
A A y Y
. N spsovicas R { — N T
Pozingsnis 2. (Pozingsnis 2. Pozingsnis 2. N Pozingsnis 2. Pozingsnis 2.
Komunikacijos Kodo i$skaidymo i Komunikacijos Mikroserviso sukiirimas Mikroserviso diegimas
reikalavimu nustatymas mikroservisus uzmezgimo
igyvendinimas igyvendinimas
N 2 F N A 3 J J
4 ¥ Y
zingsni a3 S N 7 I ™
Pozingsnis 3. Pozingsnis 3. Pozingsnis 3.
Ducmeny valdymo Duomenu transformacija Hiperpriezitra
reikalavimy nustatymas
- J A J
A4 ~ - Y
Pozingsnis 4. Pozingsnis 4.
Duomeny validacija Monolitinés programos
sustabdymas
$<3 J

S2.1 pav. Pasitlytas migracijos i§ monolitinés architekttiros j mikroservisy architektiira metodas

Pirmojo zingsnio tikslas yra iSanalizuoti esama monoliting programg ir identifikuoti
funkcinius ir nefunkcinius reikalavimus tolesniems zingsniams. Turi biiti surinkti trijy tipy
reikalavimai: iSeities kodo i$skaidymo, rySio tarp mikroservisy uzmezgimo ir duomeny
bazés pritaikymo mikroservisy architektiirai.

Antrame zingsnyje reikia parinkti kodo iSskaidymo metoda ir juo remiantis i$skaidyti
esamg monoliting programa j mikroservisus. Taikant sitilomg metoda numatomi trys iSeities
kodo i$skaidymo metodai, i§ kuriy galima pasirinkti: iseities kodo elementais pagristas, duo-
meny bazés elementais pagristas ir verslo domenais pagristas. I$samiau apie metodus ir jy
vertinimus galima rasti 1 ir 2 disertacijos skyriuose. Pagrindiniai kriterijai renkantis iSeities
kodo i8skaidymo metoda turéty buti numatyti mikroservisy dydis ir atsakomybiy ribos.

Pagrindinis tre¢iojo zingsnio tikslas yra parinkti komunikacijos technologijg ir uz-
megzti ry§j tarp mikroservisy, iSskaidyty i§ monolitinés programos antrajame zingsnyje. Sit-
lomas metodas leidzia pasirinkti i§ penkiy komunikacijos technologijy: HTTP Rest,
RabbitMQ, Kafka, gRPC ir GraphQL. Taikant sitiloma metoda numatomi kriterijai, kuriais
remiantis turéty biiti parinkta komunikacijos technologija. Jei pagrindiniai kriterijai yra delsa
ir pralaidumas, tai RabbitMQ ir gRPC yra tinkamiausios technologijos. RabbitMQ labiausia
tinkama RPC zinutéms iki 0.1 MB, gRPC labiausiai tinka RPC Zinutéms, turin¢ioms daugiau

SUMMARY IN LITHUANIAN 141

nei 10000 lauky. Kafka parodé geriausius pralaidumo rezultatus labiausiai apkrautomis sg-
lygomis. Jei prane$imo dydis yra svarbus kriterijus renkantis komunikacijos technologija,
tuomet HTTP Rest yra rekomenduojama technologija. Jei haudojamos atminties dydis yra
vienas i§ esminiy kriterijy, tada komunikacijai tarp mikroservisy turi biiti naudojamos
RabbitMQ arba Kafka technologijos.

Ketvirtajame zingsnyje esama monolitiné duomeny bazé turi biti pritaikyta mikroser-
visy architektiirai. Pasiiilytas metodas leidzia transformuoti ir perkelti monoliting duomeny
baze | daugiamodeling poligloting duomeny baze. Transformuota duomeny bazé yra inkap-
suliuojama atskirame mikroservise ir pri¢jimas prie duomeny kitiems mikroservisams yra
leidziamas tik per API. Siiilomas duomeny bazés migracijos metodas yra pateiktas S2.2 pa-
veiksle.

- Pozingsnis 1 Pozingsnis 2. Pozingsnis 3.
Zingsnis | | —>| Konceptualns |—>»| Segmentavimo |—3{ Konsistencijo
onc s 2 v Konsistencijos
Duomeny modelio sikurimas e . 4
g dizainas dizainas dizainas
Pozingsnis 4 Pozingsnis 5
Duomeny modelio [—3» Fizinis
projektavimas dizainas
Finosnis 2 Pozingsnis 1 Pozingsnis 2
P —>»| Duomenybazés [—p{ Duomeny modelio
Mikroserviso sukiirimas : SRR
diegimas igyvendinimas

Pozingsnis 4.
ugyklos sluoksnio —3»
igyvendinimas

Pozingsnis 5
AP jgyvendinimas sluoksnio

igyvendinimas

<‘:

Pozingsnis 2
—> Duomeny —>
transformacija

Zingsnis 3
Duomeny transformacija

Pozingsnis 1
Duomeny eksportas

Pozingsnis 3
Duomeny importas

(i

Pozingsnis 3 P ingeian
gsnis 3
iju | —| Testavimo aplinkos f—pf 22T E
= Testavimas
s sukidiimas

Pozingsnis 4 Pozingsnis 5
Testavimo rezultaty —»{ Patol imy

analize

Zingsnis 4
Duomeny validacija

S2.2 pav. Sitilomas duomeny bazés migracijos metodas

Pirmajame duomeny bazés migracijos metodo zingsnyje, remiantis apibréZtu esamos
monolitinés duomeny bazés modeliu, turi biti sukurtas daugiamodelinio poliglotinio patva-
rumo duomeny modelis. Pagrindiniai antrojo zingsnio tikslai yra sukurti daugiamodeling
poligloting duomeny baze ir inkapsuliuoti jg j atskirg mikroservisg. Tai leidZia jdiegti duo-
meny baze kaip paslaugy modelj, kai duomeny bazé pati yra mikroservisas. Treciajame
zingsnyje duomenys i§ esamos monolitinés duomeny bazés turi biiti transformuoti ir perkelti
1 daugiamodeling poligloting duomeny bazg. Paskutinio Zingsnio tikslas yra transformuoty
duomeny validacija.

Paskutinio zingsnio tikslas — i§leisti ir jdiegti sukurtus mikroservisus ir daugiamodeling
poligloting duomeny baze. Tai apima visus techninius ypatumus, reikalingus mikroservi-
sams ir duomeny bazei jdiegti ir paleisti.

142 SUMMARY IN LITHUANIAN

3. Mikroservisy komunikacijos tyrimas

chitektiiros yra pasirinkti tinkama komunikacijos technologija. Monolitinése programose
komunikacija tarp komponenty vykdoma naudojant funkcijy iSkvietimus. Mikroservisy
architekttira pagrista programa yra paskirstyta sistema, veikianti keliuose procesuose, to-
dél mikroservisai turi sgveikauti naudodami tarp procesines komunikacijos technologijas.
Siame skyriuje jvertinamos skirtingos komunikacijos technologijos ir nustatomi konkretis
ju taikymo atvejai, i§skaidant monolitg j mikroservisus. Penkios komunikacijos technolo-
gijos, tokios kaip HTTP Rest, RabbitMQ, Kafka, gRPC ir GraphQL, buvo jvertintos ir
palygintos pagal sitlomus vertinimo Kriterijus: greitaveika (delsa ir pralaidumas), Zinutés
dydis, naudojamas operatyviosios atminties kiekis, naudojamas saugyklos atminties kie-
kis, paleidimo laikas, architektiira, topologija ir naudojamos bibliotekos.

Komunikacijos technologijoms jvertinti ir palyginti buvo sukurtas ir linijine topologija
sujungtas penkiy mikroservisy rinkinys. Rysiui tarp mikroservisy buvo naudojama RPC
technika. Eksperimentu buvo siekiama jvertinti ir palyginti rysj, pagrista nuotoliniu pro-
cediry iSkvietimu (RPC). RPC technika buvo pasirinkta, nes ji palaiko tg patj funkcionaluma
kaip funkcijos i8kvietimas. Skirtingos Zinutés buvo naudojamos eksperimento metu nustatyti
zinutés dydzio ir kompleksiskumo jtakg delsos ir pralaidumo parametrams. Visi mikroser-
visai buvo parasytos naudojant C# programavimo kalbg. Kodo rasymas ir testavimas buvo
atliktas naudojant ,,Microsoft Visual Studio 2022 IDE*. Delsos testai buvo atlikti naudojant
,,BenchmarkDotNet“ bibliotekg. Pralaidumo testai buvo atlikti naudojant ,,NBomber bib-
lioteka. Tinklo duomenys buvo iSanalizuoti ,,Wireshark* programa.

Geriausi delsos rezultatai zinutéms iki 1 000 000 simboliy buvo gauti naudojant
RabbitMQ technologija (S3.1 pav.). RabbitMQ buvo 2 kartus greitesnis nei kitos technolo-
gijos. Jis parodé geriausius rezultatus apdorojant maziausius pranesimus (10 ir 1000 simbo-
liy). HTTP Rest, Kafka, gRPC ir GraphQL rodé panasius delsos rezultatus, taciau gRPC
gauti rezultatai buvo 8Siek tiek geresni. Kita vertus, RabbitMQ turéjo blogiausius delsos re-
zultatus apdorojant prane$imus, kuriuos sudaré 10 000 000 simboliy. Jis buvo nuo 3 iki 4
karty létesnis nei kiti. Geriausi 10 000 000 simboliy prane$imy delsos rezultatai buvo gauti
naudojant GraphQL ir HTTP Rest technologijas. Kafka buvo 40 %, o gRPC — 16 % ir létes-
nis nei GraphQL ir HTTP Rest technologijos.

Maziausio kompleksiskumo zinutéms, kuriose buvo iki 1000 lauky, geriausi delsos re-
zultatai taip pat buvo gauti naudojant RabbitMQ technologijg. RabbitMQ delsos rezultatai
buvo nuo 2 iki 3 karty greitesni nei kitos technologijos. Geriausi rezultatai bendraujant Zi-
nutémis, kuriose buvo 10 000 lauky, buvo gauti naudojant gRPC technologija. GRPC tech-
nologijos naudojamas dvejetainis serializavimas yra greitesnis nei JSON serializavimas, kurj
eksperimento metu naudojo kitos technologijos, todél kuo daugiau lauky pranesimas turi,
tuo didesnis gRPC pranaSumas.

10 simboliy dydZio pranesimo pralaidumo rezultatai parodyti S3.2 paveiksle. Geriausi
nasumo rezultatai buvo gauti naudojant RabbitMQ technologija, vidutinis 231,6 RPS. Mak-
simalus rezultatas — 315,1 RPS — pasiektas kreipiantis su 10 klienty. Blogiausius RPC pra-
laidumo testo rezultatus gavo HTTP Rest technologija su vidutiniu 89,8 RPS ir 140 klienty
limitu.

SUMMARY IN LITHUANIAN 143

140
.
<
oc
120 =
100
B 80 -
b BHTTP Rest B RabbitMQ m Kafka ugRPC # GraphQL
2
2
E 60
40
w on (=)
< = % =
20 o~ = % @ w o = s 2%
D g 288 Se S e=& B T e
[T S o =S % g]
0
10 simboliy 1000 simboliy 100000 simboliy 10000000 simboliy
S3.1 pav. Delsos testy rezultatai
Pralaidumas
350 250
300

A
PR

RPS
{
P‘
=,
Apkrova (klientai)

150 S e e ST T e . e ' 100
100

50
50
§ 0

D DD DA DD S NP
FHFF T IS I $

&, & g
FFFFFPFFFEs S

—o—HTTP Rest —+—RabhitMQ —#—Kafka =—a=gRPC =—=GraphQL =——ILoad

S3.2 pav. Pralaidumo testy rezultatai 10 simboliy Zinutéms

144 SUMMARY IN LITHUANIAN

Galima apibendrinti, kad geriausi RPC pralaidumo rezultatai mazesniems pranesi-
mams, iki 0,1 MB ir iki 100 lauky, buvo pasiekti naudojant RabbitMQ technologija. Geriausi
RPC pralaidumo rezultatai didesniems praneSimams buvo pasiekti naudojant gRPC rySio
technologija. Naudojant Kafka technologija buvo pasiekti pras¢iausi pralaidumo rezultatai —
5 1§ 8 atvejy. Léciausia technologija, apdorojanti didziausias zinutes, 1 000 000 simboliy,
buvo RabbitMQ.

Taciau palyginus delsos pasiskirstymo rezultatus matyti, kad tiek Kafka, tiek
RabbitMQ technologijos gali apdoroti daugiau pranesimy (su delsa, didesne nei 1 sekundé¢)
ir veikia stabiliau bendradarbiaudamos su daugiau nei 50 klienty, palyginti su HTTP Rest,
gRPC ir GraphQL technologijomis.

4. Monolitinés duomeny bazés perkélimo j daugiamodeline
poliglotine duomeny baze tyrimas

Perkélimas i8 monolitinés architektiiros j mikroservisy architektiirg yra sudétingas ir
kompleksinis procesas. Vienas i§ pagrindiniy i8$tkiy yra duomeny bazés pritaikymas prie
mikroservisy architektiiros. Monolitinéje architektiiroje programa sgveikauja su viena
duomeny baze, o mikroservisy architekttiroje duomeny saugojimas yra decentralizuotas —
kiekvienas mikroservisas veikia savarankiskai. Poliglotiné duomeny baziy technologija
puikiai tinka mikroservisy architektiirai patenkinti skirtingas, skirtingy mikroservisy duo-
meny saugojimo poreikio, ypatybes.

Siame skyriuje jvertinamas sitilomas monolitinés duomeny bazés perkélimo j daugia-
modeling poligloting duomeny bazg, pritaikyta mikroservisy architektiirai, metodas. Perké-
limas i$ egzistuojancios monolitinés duomeny bazés j daugiamodeling poligloting duomeny
baze buvo atliktas kaip sifilomo migracijos metodo koncepcijos jrodymas. Kokybés atribu-
tai, apibrézti standarte ISO/IEC 25012:2008, buvo naudojami vertinant ir lyginant mikroser-
visy architekttira grista daugiamodeling poligloting ir esama monoliting duomeny bazes. Ty-
rimo rezultatai parodé, kad sitilomas metodas gali biiti naudojamas atlickant duomeny bazés
perkélimg i§ monolitinés architektaros j mikroservisy architektiirg bei pagerinti nuoseklumo,
suprantamumo, pricinamumo ir perkeliamumo atributy kokybe.

................................. [
Monolitiné programa :

Duomenu bazé kaip
mikroservisas

2 Mikroservisas

n Mikroservisas

Pries perkélima " Po perkélimo

S4.1 pav. Sitlomo duomeny baziy perkélimo metodo tikslas

SUMMARY IN LITHUANIAN 145

Sitilomo metodo tikslas pateiktas S4.1 paveiksle. Sitilomas metodas suteikia galimybg
transformuoti ir perkelti monoliting duomeny bazg | daugiamodeling poligloting duomeny
bazg. Transformuota duomeny bazé yra inkapsuliuojama atskirame mikroservise ir pri¢jimas
prie duomeny kitiems mikroservisams yra leidziamas tik per taikomyjy programy progra-
mavimo s3sajg. Daugiamodeliné poliglotiné duomeny bazé leidzia geriau iSnaudoti mikro-
servisy architekttiros pranaSumus, tokius kaip judrumas ir mastelio keitimas. Duomeny
bazés jtraukimas j mikroservisg sumazina sudétinguma ir padidina nasuma. Atlikus duo-
meny perkélima, jie tampa pasiekiami ne tik esamai monolitinei programai, bet ir bet kuriam
ekosistemos mikroservisui. Sukurtas duomeny pasiekiamumas, suteikia galimybe palaips-
niui dekomponuoti iseities kodg i§ monolitinés j mikroservisy architektiirg.

Duomeny kokybé yra pagrindinis Kriterijus, nusakantis informaciniy sistemy kokybe
ir naudingumg. Verslo procesy efektyvumas tiesiogiai priklauso nuo duomeny kokybés.
Siame skyriuje pateikiami ISO/IEC 25012:2008 standarto kokybés atributy jvertinimo ir pa-
lyginimo rezultatai tarp esamos monolitinés duomeny bazés ir mikroservisy architektiira
pagristos daugiamodelinés poliglotinés duomeny bazés. Kiekvienas kokybés pozymis buvo
ivertintas balais nuo 1 iki 5. Mazesné balo verté rodo Zzemesng kokybe, o didesné balo verté —
aukstesng kokybe. Naudoty vertinimo baly apraSymai pateikti S4.1 lenteléje.

S4.1 lentelé. Balai, naudoti kokybés pozymiams jvertinti

Balo verté Apibrézimas

Zemiausia kokybé

Zema kokybé

Vidutiniska kokybé

Auksta kokybé

A |W|IN |-

Auksciausia kokybe

Vertinimas buvo atliktas organizacijos verslo srities eksperty ir IT eksperty forume.
Forume dalyvavo trys domeno ekspertai, keturi monolitinés programinés jrangos inzinieriai
ir keturi C# programinés jrangos inZinieriai. Buvo pateikta 150 klausimy, po 10 klausimy
kiekvienam kokybés poZzymiui. Kiekvienas klausimas buvo taikomas abiem duomeny
bazéms. Fleiso Kapos k koeficientas buvo naudojamas eksperty susitarimui jvertinti (Fleiss
et al., 2003). Koeficiento reik§mé buvo 0,77, 0 tai rodo gana aukstg eksperty sutarimo lygj.
Galutiniai vertinimo ir palyginimo rezultatai pateikti S4.2 lenteléje. Galuting kiekvienos ko-
kybés atributo verté yra jverciy vidurkis, suapvalintas iki artimiausio sveikojo skaiciaus.

S4.2 lentelé. ISO/IEC 25012:2008 standarto kokybés atributy tarp monolitinés ir mikroservisy
duomeny baziy jvertinimo ir palyginimo rezultatai

Kokybés atributas Monolitas Mikroservisas

Tikslumas 5 5

ISsamumas

5 5
Nuoseklumas 3 5
Patikimumas 5 5

146

SUMMARY IN LITHUANIAN

S4.2 lentelés pabaiga

Kokybés atributas Monolitas Mikroservisas
Teisingumas 4 4
Prieinamumas 4 4
Atitikimas 5 5
Konfidencialumas 5 5
Efektyvumas 4 4
Tikslumas 5 5
Atsekamumas 5 5
Supratimas 3 5
Prieinamumas 2 4
Perkeliamumas 1 5
Atkuriamumas 4 4

Dauguma ISO/IEC 25012:2008 standarto kokybés atributy, tokiy kaip tikslumas, is-

samumas, patikimumas, teisingumas, prieinamumas, atitiktis, konfidencialumas, efektyvu-
mas, tikslumas, atsekamumas ir atkuriamumas, buvo vienodi abiem duomeny bazéms, ta-
¢iau mikroservisy architektiira pagristos daugiamodelinés poliglotinés duomeny bazés
parodé geresnius nuoseklumo, suprantamumo, prieinamumo ir perkeliamumo rezultatus.

Bendrosios iSvados

1. Atlikta literattiros apzvalga parodé, kad mikroservisy architekttira tampa de facto

pramonés standartu kuriant naujas programas. Sickdamos islikti konkurencingos,
jmonés pradéjo modernizuoti savo senas monolitines sistemas, i§skaidydamos jas
i mikroservisus. Taciau peréjimas nuo monolitinés architektiiros prie mikroser-
roservisy identifikavimas, kodo i$skaidymas, nepriklausomas diegimas ir kt.
Kiekviena jmonés programa yra unikali. Ji buvo programuojama naudojant skir-
tingas programavimo kalbas ir technologijas, buvo naudojamos skirtingos duo-
Nors monolitinés programinés jrangos perkélimo j mikroservisy architektiirg ak-
tualijas jau tyriné¢jo mokslininkai ir programinés jrangos inZinieriai, tai sudétin-
pavyzdziui: duomeny bazés pritaikymas ir komunikacijos tarp mikroservisy uz-
mezgimas. Pagrindinis daugumos tyrimy démesys skiriamas mikroservisams i-
dentifikuoti monolitinéje programoje ir $altinio kodui i$skaidyti j mikroservisus.

. Siekiant uzpildyti spragas komunikacijos ir duomeny baziy srityse buvo pasialy-

tas naujas perkélimo metodas, pagristas eksperimentiniais tyrimais. Sis metodas
apima tris pagrindinius elementus: kodo i$skaidymo biidus, rySio sukiirimg ir
duomeny bazés pritaikyma. Inovatyvis vertinimo kriterijai ir gairés, paimtos i$
empiriniy iSvady, padeda rekomenduoti tinkamiausig kody skaidymo metoda ir
komunikacijos technologija, atsizvelgiant j jy privalumus ir trikumus. Siekiant

SUMMARY IN LITHUANIAN 147

palengvinti duomeny bazés peréjima prie mikroservisy architektiiros, buvo pa-

sitilytas naujas duomeny bazés perkélimo metodas, kurj taikant naudojamas keliy

modeliy poliglotinis duomeny saugojimo modelis, ir jvertintas atliekant eksperi-
mentinj vertinima.

3. I3analizuoti ir palyginti pasirinkti trys monolitinés architektiiros programos iSei-
ties kody skaidymo j mikroservisus metodai: Duomeny bazés elementais pagris-
tas metodas, Kodo elementais pagristas metodas, Verslo domenu pagristas me-
todas. Pasirinkty metody palyginimas buvo atliktas tris kartus i$skaidzius tg pacig
monoliting programg j mikroservisus, taikant visus pasirinktus metodus.

3.1. Kodo ir duomeny baziy elementais pagrjsti mikroservisy identifikavimo
metodai leidzia identifikuoti monolitinés programos technines funkcijas ir
priskirti joms atitinkamus kodo ir duomeny baziy komponentus, 0 verslo
domenais pagrijsti mikroservisy identifikavimo metodai leidzia identifikuoti
mikroservisus pagal identifikuotas verslo sritis. Mikroservisai, pagrjsti
techninémis funkcijomis, uztikrina didesnj detaluma.

3.2. Verslo domenu grjstas metodas ir kodo elementais grjstas metodas su Se-
mantinio susiejimo strategija turéty buti taikomas monolitinei programai
i§skaidyti mikroservisus, paremtus atskirais verslo domenais.

3.3. Duomeny bazés elementais grjstas metodas arba kodo elementais grjstas
metodas su loginio susiejimo strategija turéty buti taikomas, norint i$skai-
dyti monoliting programa j mikroservisus, paremtus techninémis funkcijo-
mis.

4. Penkios komunikacijos technologijos, HTTP Rest, RabbitMQ, Kafka, gRPC ir
GraphQL, buvo jvertintos ir palygintos pagal sitilomus vertinimo kriterijus. Kiek-
vienos komunikacijos technologijos privalumai ir triikumai buvo nustatyti mik-
roservisy architektiiros kontekste.

4.1. Pereinant nuo monolitinés architektiiros prie mikroservisy architekttros
pagrindiniai kriterijai yra delsa ir pralaidumas, o RabbitMQ ir gRPC yra
tinkamiausios technologijos. RabbitMQ parodé geriausius delsos ir pralai-
dumo testy rezultatus zinutéms iki 0,1 MB, o gRPC parodé geriausius re-
zultatus bendraujant Zinutémis, turin¢iomis daugiau kaip 1000 lauky.

4.2. Kafka ir RabbitMQ parodé geriausius pralaidumo rezultatus labiausiai apk-
rautomis sglygomis, ta¢iau delsos laikas buvo didesnis nei 1 sekundé.

4.3. HTTP Rest turi maziausia uzklausos ir atsakymo pranesimo dydj. Jei pra-
nesimo dydis yra svarbus kriterijus renkantis komunikacijos technologija,
tada HTTP Rest yra rekomenduojama technologija.

4.4. gRPC biblioteka naudoja maziausiai saugyklos vietos. Jei mikroservisai
veikia aplinkoje su ribota saugykla, reikia naudoti gRPC.

4.5. RabbitMQ ir Kafka naudoja maziausig operatyviosios atminties kiekj. To-
dél, jei operatyviosios atminties dydis yra vienas i§ esminiy kriterijy, diegi-
mui reikia naudoti RabbitMQ ir Kafka.

5. Pasitilytas monolitinés duomeny bazés perkélimas j daugiamodeling poligloting
duomeny bazg, paremtas mikroservisy architektiira, atliktas kaip koncepcijos
irodymas ir jvertintas domeny ir IT eksperty. Eksperty sutarimui jvertinti buvo

148 SUMMARY IN LITHUANIAN

naudojamas sutarimas tarp vertintojy Fleiss kappa « (Fleiss et al., 2003). Koefi-
ciento reik§meé buvo 0,77, o tai rodo gana auksta eksperty sutarimo lygj. Tyrimo
rezultatai parodé, kad sitilomas metodas gali biiti taikomas duomeny saugyklai
perkelti i§ monolitinés j mikroservisy architektiirg ir nuoseklumo, nesupratimo,
prieinamumo ir perkeliamumo atributy kokybei pagerinti. Be to, tikimasi, kad
gauti rezultatai galéty jkvepti tyréjus ir praktikus tolesniam darbui, siekiant pa-
gerinti ir automatizuoti siiiloma metoda.

Annexes

The questionnaire of the evaluation of the data quality of the proposed microservice
with multi-model polyglot persistence is provided in Tables A1.1-A1.15.

Table Al.1. Accuracy attribute questions

Nr. Question
1 | Are the names and details of the items in the database correct and up-to-date?
2 | Does the database provide accurate information when you search for something?
3 | Are the numbers and calculations in the database correct, without errors or

miscalculations?

4 | Are dates and times in the database accurate, reflecting the real-world events they
represent?

5 | Do you trust the data in the database to make informed decisions?

6 | Have you encountered any instances where the information in the database
contradicts real-world facts?

7 | Are there mechanisms in place to prevent or correct errors in the database?

8 | Can you rely on the database to give you a clear picture of what is happening in a
specific situation?

9 | Have you noticed any inconsistencies or discrepancies between different parts of
the database?

10 | Is there a process for regularly checking and ensuring the accuracy of the data in
the database?

149

150

ANNEXES

Table Al.2. Completeness attribute questions

Nr. Question
1 | Does the database contain all the necessary information you expect to find?
2 | Are there any gaps or missing details in the data that you need?
3 | Are there placeholders or placeholders for missing information in the database?
4 | Are dates and times in the database accurate, reflecting the real-world events they
represent?
5 | Has anyone encountered situations where they couldn't find the data they were
looking for?
6 | Is the database regularly updated to include new and relevant information?
7 | Are there any areas in the database where information seems to be lacking or
incomplete?
8 | Can you trust that the data in the database gives you a full picture of a particular
situation?
9 | Have you experienced instances where the database lacks details about specific
events or items?
10 | Is there a process in place to identify and fill in missing information in the
database?

Table Al.3. Consistency attribute questions

Nr. Question
1 | Do you notice any conflicting information or contradictions within the database?
2 | Are there instances where terms or units vary inconsistently throughout the
database?
3 | Does the database maintain a standardized and consistent format for presenting
information?
4 | Have you encountered situations where the same data appears differently in
different sections of the database?
5 | Is there a clear and consistent approach to handling data across various parts of
the database?
6 | Are there established rules for data entry and storage to ensure overall
consistency?
7 | Does the database use consistent terminology and definitions for similar data
elements?
8 | Have you observed any discrepancies in how dates and times are formatted or
recorded?
9 | Isthere a process in place to resolve inconsistencies and ensure data uniformity?
10 | Are users provided with guidelines to maintain consistency when entering or
updating data in the database?

ANNEXES 151

Table Al.4. Credibility attribute questions

Nr. Question
1 | Can you trust the accuracy of the information stored in the database?
2 | Have you encountered situations where the database provided misleading or
inaccurate data?
3 | Is there a clear source or origin documented for the information in the database?
4 | Are there measures in place to verify and validate the data before it is entered into
the database?
5 | Does the database provide information about the reliability of its sources?
6 | Are there mechanisms to identify and flag potentially unreliable or outdated
information?
7 | Have users experienced instances where they questioned the trustworthiness of
the database data?
8 | Is there a process to regularly review and update information to maintain
credibility?
9 | Does the database follow industry standards for data quality and credibility?
10 | Are there user permissions or access controls to prevent unauthorized
modifications that could impact credibility?

Table Al.5. Correctness attribute questions

Nr. Question
1 | Are the names and details of items in the database accurate and error-free?
2 | Do calculations and numerical data in the database appear correct without
miscalculations?
3 | Are dates and times accurately represented in the database, reflecting real-world
events?
4 | Has the database been reliable in providing accurate information when searched
or queried?
5 | Isthere a process to verify and validate data before it is entered into the database?
6 | Have users experienced any situations where the database contained incorrect or
misleading information?
7 | Are there mechanisms in place to identify and correct errors or discrepancies in
the database?
8 | Can you trust the data in the database to make informed decisions without
concerns about correctness?
9 | Is there a standardized approach to data entry and storage to ensure correctness?
10 | Are there regular audits or checks to ensure the overall correctness of the
information in the database?

152

ANNEXES

Table A1.6. Accessibility attribute questions

Nr. Question

1 | Can authorized users easily access the database when needed?

2 | Isthe interface of the database user-friendly for individuals with varying technical
backgrounds?

3 | Are there restrictions or barriers preventing certain users from accessing specific
data?

4 | Can the database be accessed from different devices or locations without
difficulty?

5 | Isthere a support system in place to assist users with accessing and navigating the
database?

6 | Are there clear guidelines on how to request access or permissions for specific
database features?

7 | Does the database provide options for accessibility features, such as screen
readers or keyboard navigation?

8 | Have users experienced any challenges in accessing specific functionalities within
the database?

9 | Is there a process for securely sharing or distributing relevant information from
the database to authorized users?

10 | Are there measures in place to protect sensitive data and ensure secure access to
the database?

Table A1.7. Compliance attribute questions

Nr. Question

1 | Does the database adhere to relevant legal regulations and industry standards?

2 | Are there documented policies outlining the compliance requirements for the
database?

3 | Has the database undergone audits or assessments to ensure compliance with
standards?

4 | Are there mechanisms in place to monitor and address changes in compliance
regulations?

5 | Does the database provide clear documentation on data handling and privacy
practices?

6 | Are there measures to ensure that the database complies with data protection
laws?

7 | Is user access to sensitive information controlled to meet privacy and security
standards?

8 | Does the database have features to support compliance reporting and
documentation?

9 | Are there procedures in place to address and rectify any non-compliance issues
promptly?

10 | Has the database been designed and maintained with considerations for ethical
and legal data usage?

ANNEXES 153

Table A1.8. Confidentiality attribute questions

Nr. Question

1 | Arethere measures in place to safeguard sensitive information from unauthorized
access?

2 | Does the database use encryption to protect confidential data during storage and
transmission?

3 | Are there access controls to restrict user access based on their roles and
responsibilities?

4 | Is there a clear policy outlining the handling of confidential information within
the database?

5 | Are user authentication mechanisms in place to ensure that only authorized users
can access sensitive data?

6 | Has the database undergone security assessments to identify and address potential
vulnerabilities?

7 | Are there procedures for securely sharing confidential information with
authorized parties?

8 | Isthere asystem for monitoring and detecting any unauthorized attempts to access
confidential data?

9 | Have there been incidents of data breaches or unauthorized access to confidential
information?

10 | Is there ongoing training for users on the importance of maintaining the
confidentiality of data in the database?

Table A1.9. Efficiency attribute questions

Nr. Question
1 | Does the database efficiently handle a large volume of data without significant
performance degradation?
2 | Are there features or tools to optimize and improve the overall performance of the
database?
3 | Have users experienced delays or slowdowns when interacting with the database?
4 | Is there a process for periodically tuning the database to maintain optimal
performance?
5 | Does the database efficiently manage and allocate system resources to avoid
bottlenecks?
6 | Arethere measures in place to identify and address performance issues promptly?
7 | Has the database been designed with considerations for scalability to
accommodate future growth?
8 | Is there documentation available on best practices for maximizing the efficiency
of the database?
9 | Does the database efficiently handle a large volume of data without significant
performance degradation?
10 | Are there features or tools to optimize and improve the overall performance of the

database?

154 ANNEXES

Table A1.10. Precision attribute questions

Nr. Question

1 | Does the database provide accurate and detailed information with a high level of
precision?
2 | Are there clear definitions and standards for the precision of numerical values in
the database?
3 | Does the database avoid rounding errors or inaccuracies in calculations involving
numerical data?
4 | Are there measures to ensure that data with a specific level of precision is
consistently maintained?
5 | Have users encountered situations where the precision of data was insufficient for
their needs?
6 | Is there a documented policy or guideline on maintaining precision in the
database?
7 | Arethere tools or features in place to support precise data entry and validation?

8 | Does the database handle decimal points and significant figures accurately?

9 | Is there a process for reviewing and correcting precision-related issues in the
database?

10 | Have there been instances where the precision of data impacted decision-making
or analysis?

Table Al1.11. Traceability attribute questions

Nr. Question
1 | Isthere a clear trail or record of changes made to the data in the database?
2 | Can you trace the origin or source of specific information stored in the database?
3 | Does the database provide an audit trail for data modifications and updates?
4 | Are there mechanisms to track and trace the flow of data through different

processes in the database?

5 | Is there documentation on how data is transformed and transferred within the
database?

6 | Can users easily identify the relationships and dependencies between different
data elements?

7 | Does the database maintain a history of changes, allowing for rollback or recovery
if needed?

8 | Are there tools or features in place to support effective data lineage and
traceability?

9 | Is there a process for documenting and managing the relationships between
different data sets?

10 | Have users experienced difficulties in tracing the history or lineage of specific
data elements?

ANNEXES 155

Table A1.12. Understandability attribute questions

Nr. Question
1 | Is the data model easily understandable?
2 | Can users easily comprehend the meaning and purpose of different data elements
in the database?
3 | Are there clear and concise labels used for fields and categories in the database?
4 | Does the database provide documentation or guides to help users understand its
structure and use?
5 | Have users encountered difficulties in interpreting or navigating the database?
6 | Is there a standardized format for presenting information that enhances user
comprehension?
7 | Does the database use terminology that is familiar and easily understood by its
users?
8 | Are there tooltips or contextual help features to assist users in understanding
specific elements?
9 | Isthere aprocess for user feedback and improvement based on user understanding
challenges?
10 | Have there been instances where misunderstandings of data in the database led to
errors or confusion?

Table A1.13. Availability attribute questions

Nr. Question

1 | Has the database been consistently available and accessible when needed?

2 | Are there measures in place to prevent or minimize downtime for routine
maintenance?

3 | Is there a backup and recovery system to ensure data availability in case of
unexpected issues?

4 | Have users experienced any difficulties accessing the database due to technical
issues?

5 | Does the database have failover mechanisms to ensure continuous access in case
of server failures?

6 | Is there a process for monitoring and addressing performance issues that could
impact availability?

7 | Are there redundant systems or servers to provide backup in case of hardware
failures?

8 | Is there a documented service level agreement (SLA) outlining expected
availability standards?

9 | Have there been instances where users were unable to access critical information
due to database unavailability?

10 | Are there alerts or notifications in place to inform users of planned downtime or
maintenance?

156 ANNEXES

Table Al.14. Portability attribute questions

Nr. Question

1 | Can the database be easily migrated or transferred to different platforms or
environments?
2 | Are there documented procedures for moving the database to a new system or
location?
3 | Does the database support standard data formats that facilitate interoperability
with other systems?
4 | Is there compatibility with various operating systems for hosting the database?
5 | Can users access and use the database from different devices and locations
without major issues?
6 | Arethere measures in place to handle data migrations seamlessly when upgrading
the database?
7 | Does the database support standard communication protocols for data exchange?
8 | Isthere a process for ensuring that third-party applications can integrate smoothly
with the database?
9 | Have users experienced challenges when attempting to use the database on
different platforms?
10 | Is there documentation available on best practices for maintaining portability in
the database?

Table A1.15. Recoverability attribute questions

Nr. Question

1 | Isthere a robust backup and recovery system in place for the database?

2 | Can the database be restored to a consistent state after unexpected failures or
outages?

3 | Are there regular backup procedures to ensure data can be recovered from
different points in time?

4 | Does the database provide options for partial or full recovery in case of data
corruption?

5 | Are there mechanisms to detect and repair errors in the database to facilitate
recovery?

6 | Is there documentation on recovery procedures in case of data loss or system
failures?

7 | Have users experienced instances where data could not be successfully recovered
from backups?

8 | Is there a process for testing and validating the effectiveness of the recovery
mechanisms?

9 | Does the database provide options for disaster recovery to handle major incidents?

10 | Are there measures in place to minimize downtime and data loss during the
recovery process?

Justas KAZANAVICIUS

RESEARCH ON LEGACY MONOLITH APPLICATIONS
DECOMPOSITION INTO MICROSERVICE ARCHITECTURE

Doctoral Dissertation

Technological Sciences,
Informatics Engineering (T 007)

MONOLITINES ARCHITEKTUR_OS PROGRAMUY MIGRACIJOS
| MIKROSERVISY ARCHITEKTURA TYRIMAS

Daktaro disertacija

Technologijos mokslai,
Informatikos inzinerija (T 007)

Lietuviy kalbos redaktoré Dalia Markeviciaté
Angly kalbos redaktoré Jaraté Griskenaité

2024 04 19. 14,2 sp. |. Tirazas 20 egz.

Leidinio el. versija https://doi.org/10.20334/2024-018-M
Vilniaus Gedimino technikos universitetas

Saulétekio al. 11, 10223 Vilnius

Spausdino UAB ,Ciklonas®,

Zirminy g. 68, 09124 Vilnius

	Blank Page
	Blank Page
	Blank Page

