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Abstract. While many arrhythmias pose minimal threat, certain heart rhythm 
irregularities elevate the potential for stroke or heart failure. The complexity 
arises particularly with the supraventricular premature heartbeat which 
has a resemblance to a normal beat and occurs infrequently. Consequently, 
this research proposes a data balancing and classification technique that 
enhances the accuracy of identifying mentioned hard-to-classify heartbeats 
while maintaining robust metrics for other classes. The study introduces a 
deep learning framework combined with a multi-head attention transformer, 
for balancing – under-sampling and synthetic minority oversampling are used. 
To evaluate the proposed model, various experiments based on real data were 
conducted.  The results were compared with an existing model used in chest 
belt heartbeat monitoring, and the results show that the transformer model 
achieved better performance for supraventricular premature heartbeats, at the 
same time reaching high overall and per-class metrics.

Keywords: ECG signals, Classification, Deep Learning, Transformer, Focal Loss, 
Data Balancing Techniques, Heartbeats.

1 Introduction

According to the Lithuanian Institute of Hygiene, more than 22.5 thousand 
people in Lithuania died in 2022 due to diseases of the circulatory system, 
accounting for 53 % of all deaths in the country. International data also show 
that Lithuania’s cardiovascular mortality rates are well above the European 
Union (EU) average and among the highest in the EU. While arrhythmias 
can be detected from electrocardiograms, the process is time-consuming 
and prone to errors even among experts. This underscores the significance 
of automated electrocardiogram analysis. Automated classification of 
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arrhythmias can alleviate the challenging daily workload for medical 
professionals and facilitate earlier identification of cardiac disorders in 
patients. Therefore, patients can receive appropriate treatment strategies 
earlier.

The most common classes of heartbeats analysed in studies are three 
or four – in this research three classes are chosen, namely supraventricular 
premature heartbeats (S), normal heartbeats (N) and ventricular premature 
contraction (V). For the classification of these heartbeats, different 
machine learning and deep learning models can be used. Approaches 
such as support vector machine, logistic regression, k-nearest neighbours, 
and random forest have been used in scientific literature and have 
demonstrated promising outcomes [3]. However, it has been noted that 
heart rate classification techniques, which depend on manually extracted 
features, frequently struggle to discern abstract relationships within 
the data. Therefore, there is an increasing number of research articles 
emphasizing the significance of using deep learning methodologies for this 
purpose [5]. Deep learning transformers have also become increasingly 
important in recent years, as they have attention mechanisms that give 
more weight to more important elements in the input sequence. In the 
arrhythmia classification task, the transformer relies on an attention 
mechanism and uses the electrocardiogram segments as input to capture 
global dependencies of signal values [5]. Researchers Rui Hu, Jie Chen, and 
Li Zhou propose a transformer and neural network architecture wherein 
a segmented one-dimensional electrocardiogram sequence serves as the 
input, undergoing multiple one-dimensional convolutional layers. The 
encoders within the transformer are constructed by iteratively stacking 
layers with identical structures containing a multi-head self-attention 
module and a feed-forward network featuring a single hidden layer [2]. 
The transformer exhibits versatility because it is adaptable not only to 
convolutional architectures but also to recurrent neural networks. Given 
the ability of recurrent neural networks to comprehend heart rhythm 
characteristics, employing a recurrent neural network-based sequence-
to-sequence approach could prove advantageous in addressing cardiac 
classification challenges [4].

The widespread applicability of transformers is evident, hence, in this 
study, an architecture comprising deep neural networks and transformers 
is proposed. A significant challenge lies in achieving robust classification 
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accuracy when using patient data in the test dataset that was not included 
in the training dataset. Given the anatomical variations among individuals, 
models tend to emphasize these distinctions over differences in heartbeats 
themselves. Furthermore, data imbalance poses a recurring complication, 
as normal heartbeats are disproportionately represented compared to S or 
V heartbeats, leading to inflated overall metric values primarily driven by 
the abundance of N class data. Therefore, different data balancing methods 
are used to overcome this problem [1].

In this research, we seek to improve the supraventricular premature 
heart beat classification recall metric by using a transformer model. Further-
more, the impact of different balancing techniques on classification metrics 
is analysed to find whether data balancing improves metrics. The rest of this 
paper is organized as follows. In Section 2, information about real data used 
in the research and its processing is provided. The proposed methodology 
is discussed in Section 3, while in Section 4 the experimental results are 
compared and presented. Finally, conclusions are drawn in Section 5.

2 Data

This study utilises data collected from a chest belt for heartbeat monitoring 
created by Zive company. The dataset consists of 1086 recordings from 
102 patients, each lasting 10 minutes. Each recording  is subsequently 
segmented  into individual signals. Across the dataset, there are 730860 
N heartbeats, 6550 S heartbeats, and 17463 V heartbeats.  For additional 
data combinations and experiments,  data from the PhysioNet MIT-BIH 
Arrhythmia Database  is utilised.  In the MIT-BIH dataset, which  is  also 
used for chest baseline CNN model training, there are 88349 N, 2668 S, and 
6783 V heartbeats. While comparing the two datasets, the Zive dataset has 
more occurrences, especially N heartbeats.

The R peaks of the signals are identified to divide the recordings into 
heartbeat segments. Following the detection of each R peak, the local minima 
from the left and the right sides (Q and S’ peaks) are found. These peaks 
create a QRS complex. Additionally, as shown in Figure 1, supplementary 
parameters such as RRl (the number of signal values to the left closest R 
peak) and RRr (the number of signal values to the right closest R peak) are 
computed to ascertain the signal length. The signal is defined as 70 % of RRl 
values to the left and 70 % of RRr values to the right. A transformation to 
functional data is then used to standardize all segments to a length of 200.
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Figure 1. Additional parameters computed from signals. RRl – R peak from the left, RRr – 
R peak from the right, wl – 70 % of RRl, wr – 70 % of RRr.

Afterwards, data is divided into training, validation, and testing sets. 
Each set consists of different patient data that were divided into sets by 
hand to have similar class distributions in all datasets. In the datasets, all 
200 signal values, additional derivative features, P, Q, R, S, P values and 
positions are used. 

In the under-sampled dataset, N class occurrences are reduced to 100 
thousand while in the SMOTE dataset, N class is reduced to 100 thousand, 
S class synthetically increased to 20 thousand and V to 40 thousand 
occurrences. For experimental analysis, different class proportions were 
used but in further analysis, it was decided to use classes S and V with a 
balance of 1:2 to have closer to real-life occurrence distribution, in addition 
to promising first received results. SMOTE numbers are chosen not that 
large because the synthetical creation can introduce noise and inaccurately 
imitate heartbeat data. In the original training dataset, there are 380025 N, 
4796 S and 11572 V signal segments.

3 Methodology

For data balancing, two different techniques are used: random under-
sampling of class N signals and synthetic minority oversampling (SMOTE) 
[1] of S and V signals in the training set. Random oversampling is not used 
in this case as the number of S and V classes is very low, and experiments 
showed that the model tends to learn how to identify only one class with 
high metrics. SMOTE algorithm creates a new sample for each instance xi 
using xi and its k nearest neighbours in feature space, as defined in the 1 
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equation. In the equation, x’i is a new example synthesised from the sample 
xi and a randomly selected sample xj from the nearest neighbours of xi and 
λ is a random value from the interval [0, 1] [1].
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A custom Focal Loss function is defined and used in the model which is 
particularly effective for imbalanced datasets, such as those often found in 
medical diagnosis tasks. This loss function prioritizes challenging instances 
over simpler ones by adjusting the alpha values used in computations, 
thereby enhancing focus on harder-to-classify examples. Focal Loss is 
implemented by adding a modulating factor to the Cross-Entropy loss. In 
Formula 2, α is considered a weighing factor, pi is the predicted probability, 
b is the logarithm base, n is the number of elements being predicted while 
γ is the focusing parameter. γ rescales the modulating factor such that the 
easy examples are down-weighted more than the hard ones, reducing their 
impact on the loss function.
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(2)

The proposed model in the research is created using PyTorch Lightning 
newest version used for streamlined model development and training. 
The model shown in Figure 2 starts with a multi-headed self-attention 
mechanism allowing the model to focus on different parts of the ECG 
signal simultaneously. That is why the input length must be dividable by 
the number of heads used in the attention mechanism. The mechanism 
is followed by feed-forward networks within each encoder block. Layer 
normalization and residual connections stabilize training and facilitate 
deeper networks. For the transformer encoder, encoder blocks are repeated. 
Finally, the output from the transformer encoder is passed through a final 
layer to produce predictions for the ECG signal classes. The decoder part 
is not used as the encoded signal does not require translation back into a 
signal for class predictions. The model adopts a 6-layer depth, and a batch 
size of 128 because it yields better outcomes to 32, 64 or 256. What is more, 
dropout is integrated to prevent model overfitting, alongside the utilization 
of a learning rate scheduler and early stopping mechanisms. Optimal epoch 
checkpoints are stored based on validation loss criteria.
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Figure 2. Proposed model architecture scheme that displays the overall model flow and 
transformer encoder elements. 

Base line model is a convolutional neural network with 13 convolutional 
layers, each followed by batch normalization and activation layers. Batch 
normalization helps to stabilize and accelerate the training process, while 
activation layers introduce non-linearity to the network. Additionally, there 
are two dense layers, a global average pooling layer that helps to reduce the 
number of parameters. Finally, an output layer is added at the end of the 
model architecture. 

4 Results

For different model and dataset results comparison recall is used as it shows 
the fraction of instances in a class that the model correctly classified out 
of all instances in that class. For overall metric calculation macro average 
recall is chosen to have the classes weighted equally as the amount of N 
occurrences would distort the results – the weighted metrics would be high 
even if individual class metrics would be low for S and V classes.

Comparing the model currently used in chest belts and the transformer 
model with different balance datasets, it is seen from Table 1 that the 
highest macro average recall for all classes combined is achieved using the 
transformer model and under-sampled dataset, the metric reaches 0.822 
value. Because the research aims to increase class S recall while having N 
and V class high metrics, the transformer model with an under-sampled 
dataset achieves 0.570 recall for the S class, which is 0.092 higher than the 
model in chest belts. N and V class recall values are also high – 0.942 and 
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0.955 respectively. As for the transformer model with SMOTE dataset, it also 
achieves promising results, especially for the V class where recall rockets up 
to 0.983. Regarding the transformer model with original dataset, different 
parameters and architectures were tried but if one class metrics rise, the 
other two class metrics decrease.

Table 1. Model recall results using different balance datasets. The model whose results 
are aimed to be increased is also included for comparison.

Model N recall S recall V recall Macro 
avg. recall

Baseline model 0.997 0.478 0.934 0.803

Transformer model + under sampled 
dataset

0.942 0.570 0.955 0.822

Transformer model + SMOTE dataset 0.929 0.550 0.983 0.821

Transformer model + original dataset 0.932 0.559 0.877 0.789

The model used in chest belts has a high weighted average precision 
of 0.986, recall of 0.987, and f1-score of 0.986 as it learned well class N 
occurrences and predicts this class most of the time correctly. Because in 
the test dataset class N appears more often than class S, the overall metrics 
are high. As for the model with the highest macro average recall score, 
which is the transformer model used with an under-sampled dataset, the 
weighted average precision is 0.984, recall 0.939, and f1-score 0.959. In this 
case, the metrics are also high, while the predictions for the S class have 
improved.

5 Conclusions

In this paper, we proposed a transformer model which classifies ECG signals 
into three heartbeat classes. The model architecture and parameters 
are changed accordingly to experiments made using different balance 
datasets – under-sampled, oversampled using the SMOTE technique, and 
the original dataset. In the training, validation, and testing datasets, different 
patients were used to avoid bias and model learning features relevant to the 
individuals, not the differences in heartbeats. The best results are received 
using the proposed transformed model and an under-sampled dataset. The 
model achieved a macro average recall score of 82.2 %, while the accuracy 
for the S class, which is the hardest to classify, increased by 9.2 % comparing 
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the results with a baseline model. In the future, our focus is to increase even 
more class S metrics by trying out different class proportions in datasets, 
introducing noisy signals to understand how the model performs when the 
signals are not high quality, and using transformers together with other 
deep learning architectures. 
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