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Abstract

In the dissertation special problems that may be encountered in finding op-
timal estimation strategy for small area estimation, in particular, model diag-
nostics for small area models, constrained estimation, sample design selection,
nonresponse adjustment and borrowing strength across both small areas and
time are considered.

The estimation strategy is a combination of sampling design and estima-
tion design. First of all several well known sample designs and population total
estimators are constructed for small areas. The changes of these estimators are
showed in the case of the use of various nonresponse adjustment methods. A
simulation using a real population from Statistics Lithuania is done to investi-
gate the performance of different types of estimation strategies when various
problems occurs: small area, nonresponse. The different underlying models
are examined for both design-based model assisted and model-based estima-
tors. This study showed that the nonresponse has bigger negative effect for
design-based estimators than for model-based estimators. Still, generally, the
design-based model assisted estimator performs better than model-based esti-
mator.

To improve estimation strategy a balance sample and model-based sample
design are introduced. The model-based sample design is based on the histo-
rical data, which are used to construct superpopulation model before sample
selection. The variance of prediction error is used to construct inclusion pro-
babilities, thus the element with larger variance of prediction error have larger
probability to be selected in to the sample. The simulation studies showed,
that in many cases the use of model-based sample design reduce the accuracy
measures.



Reziume

Disertacijoje nagrinémos problemos, iSkylancios ieSkant geriausios mazy
sri¢iy vertinimo strategijos. leSkant geriausios mazy sri¢iy vertinimo strategi-
jos susiduriama su modelio parinkimo, imties plano ir jvertinio konstravimo,
neatsakymy vertinimo ir papildomos informacijos panaudojimo problemomis.

Vertinimo strategija — tai imties plano ir jvertinio kombinacija. Visy pirma
disertacijoje pateikiama gerai Zinomy imties plany ir ivertiniy iSraiSkos mazy
sri¢iy vertinimo atveju. Taip pat pateikiama kaip nagrinéjami jvertiniai pasikei-
¢ia jei neatsakymy vertinimui pasirenkami jvairls persvérimo ar duomeny ira-
Symo metodai. Modeliavimams panaudota reali populiacija gauta i$ Lietuvos
statistikos departamento. Pasinaudojant modeliavimu buvo tiriama imties dy-
dZio maZoje srityje bei neatsakymy vertinimo metody itaka skirtingoms verti-
nimo strategijoms. Taip pat buvo tiriama pasirinkto modelio itaka imties planu
paremtiems ir modeliu pagristiems jvertiniams. Rezultatai parodé¢, jog neatsa-
kymai labiau paveikia imties planu paremty ivertiniy savybes, taciau daugeliu
atveju imties planu paremti jvertiniai naudojantys modelj tik kaip pagalbinj
irankij yra pranaSesni nei modeliu pagristi jvertiniai.

Siekiant pagerinti vertinimo strategija taip pat buvo nagrinéjamos subalan-
suotos imtys ir modeliu pagristi imties planai. Pastarieji yra paremti istoriniais
duomenimis, kurie yra naudojami modelio konstravimui prie§ imties iSrinki-
ma. Tokiuose planuose priklausymo imciai tikimybés yra konstruojamos at-
sizvelgiant i modelio paklaidy dispersijas: elementai kuriy modelio paklaidy
dispersija yra didelé turi didesng priklausymo imciai tikimybe, nei tie elemen-
tai, kuriy modelio paklaidy dispersija yra maZza. Modeliavimo rezultatai pa-
rodé¢, kad daugeliu atveju naudojant modeliu pagristus imties planus iverciy
poslinkis ir dispersija sumazgéja.



Notations

U — finite population consisting of [V units;

N — population size;

U@ — population domain consisting of N9 units;
D — number of domains;

N _ a domain size in d domain;

t — time;

yi(t) — a value of a study variable y for element & in time ¢;

xp(t) = {x1%(t), z2k(t),. ..,z 5k(t)} — the values of J auxiliary variables in
time ¢;

qr = {qk ,q(2) e q](gD)} — the domain indicators;

y,(€ )(t) — a value of domain variable for element & in time ¢;

TOTD(t) — a domain total of a study variable in time ¢;
S — a sampling vector;
S(t) — a sample;
n(t) — a sample size in time ¢;
s(t) —a sample set of S(¢);
Uns(t) —a non sampled set of S(¢);
p(S(t)) — a sample design;
7 (t) — an inclusion probability for unit % in time ¢;
7k (t) — an inclusion probability for units & and [ in time ¢;

vii



) — a sampling weight for unit & in time ¢;
t) — a sample set in domain;

n(?(t) — a sample size in d domain;

7(t) — a response set of S(t);

Snr(t) — a non response set of S(t);

Uk (t) — a predicted value of a study variable for unit & in time ¢;
6(t) — an estimator of parameter 0;

~

6(t) — an estimate of parameter 6,
———(d
TOT( )

TOT ? (t) — an estimate of domain total in time ¢;

BIAS(0(t)) — a bias of an estimator (t);

E,(8(t)) —a mean of an estimator A(t) under the sample design;
vary(8(t)) — a variance of an estimator §(t) under the sample design;

(t) — an estimator of domain total in time ¢;

_—(d ——(d
ARB(TOT( )(t)) — an absolute relative bias of TOT( )(t);
——(d ——(d
RRMSE(TOT( )(t)) — a relative root means square error TOT( )(t);

(d) (d)

MARB (ZI{O\T (t)) — a mean of absolute relative bias of TOT
(d)

MRRMSE(TOT"

(t);

— d
(t)) — a mean of relative root means square error TOT" " ().
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Introduction

Scientific problem

A general task of survey sampling is formulated such way: a finite po-
pulation is given and it is needed to estimate some parameter (for example,
population total) for study variable, when the information about the values of a
study variable is know not for all elements. An estimation strategy is a pair of
sample design and estimator. It is searching the better strategies in one or other
way. In this dissertation a strategies are analyzed not for all population, but for
the small areas.

The term “small area” and “local area” are commonly used to denote a
small geographical area, such as a county, a municipality or a census division.
They may also describe a “small domain”, i.e., a small subpopulation such as
a specific age-sex-race group of people within a large geographical area. Such
area estimation is becoming important in survey sampling due to a growing
demand for reliable small area statistics from both public and private sectors.
A lot of surveys are carried out not once, but from time to time, thus a huge
dataset of auxiliary information is stored. The possibility to use this informa-
tion for improvement of small area estimation is analyzed in this dissertation.

Also there is no survey, that there was no nonresponse. The estimates be-
come biased if there is no nonresponse adjustment done. In this dissertation
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the effect of different nonresponse adjustments methods are analyzed in the
case of small area estimation.

Topicality of the work

The nonresponse occurs in all surveys. It decreases the estimator’s accura-
cy, thus several methods of nonresponse adjustments are developed (Rubin
(1987), Siarndal and Lundstrom(2005)). However these methods are used just
for estimating the parameters of the whole population or large domain. To the
best of our knowledge, the influence of nonresponse for small area estimation
is not analyzed. Naturally it is desirable to examine this influence at least using
simulation technique.

Nowadays, official statistics repeats the same surveys from year to year, so
for most of the population elements it is possible to get information for the sa-
me variable in several time periods. It means that for many surveys individual
data for some objects are known for at least one previous time point. We will
call this panel-type data even when it is not a part of the design. Also, in some
cases it is possible to use information collected from the other sources (tax of-
fices, jobcenters, etc.). Such datasets of a large amount of auxiliary information
might improve the quality of the estimation strategy as compared with a stra-
tegy based on the current sample alone. Ghosh and Rao (1994) have already
applied this kind of information to construct area level model for estimating
small area estimations. Naturally it is desirable to construct an unit level model
and to use it not only in the estimation stage, but also for the sample design
construction.

The survey sampling is quite a new science. The first results were develo-
ped after 1940. In Lithuania, the first work from survey sampling was published
just after 1991. Today the survey sampling are widely used in all kind of the
surveys, however treating a population as fixed still prevails in the theory of
survey sampling. In the dissertation, an attempt to develop a superpopulation
model which takes into account both dynamics and randomness of population
elements as well as the finiteness of the population (and hence, a sampling
design) is made.
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Research object

The research object is properties of the estimating strategies for small area
totals with the aim of their improvement. Thus the objects of interest are: samp-
le designs, estimators and superpopulation models used in the small area esti-
mation.

The aim and tasks of the dissertation

The aim of the dissertation is, using real survey data, to find the best po-
pulation total in small areas estimating strategy, including nonresponse adjust-
ment, among the set of available strategies, and to propose a methodology for
the best strategy selection in real regular (repeated) surveys.

Let us state the following problems:

1. To review sample designs and estimators already used in small area
estimation and to form a set of estimating strategies to be compared.

2. To review nonresponse adjustment methods and to examine what of
these methods are best for small area estimation.

3. To propose a superpopulation model for a finite population with ran-
dom and varying in time elements.

4. Research of optimal strategy for small area estimation in the case when
the same variables are measured from time to time.

Research methods

The superpopulation model is based on panel data models. Also generali-
zed regression (GREG), stratified samples, balanced sampling design and other
survey sampling methods are applied. The main results are obtained by com-
puter simulations based on a real survey data. All calculations are performed
using SAS software.

Scientific novelty

1. The proposed superpopulation model based on panel data models enab-
les one to represent a finite population with both random and varying
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in time elements;

2. The effect (properties and etc.) of nonresponse adjustment methods in
small area estimation were not studied.

3. A model-based sample design for repeated surveys is constructed and
it is demonstrated using real survey data that in most of the cases it
works better than the other sampling designs;

4. A methodology of best strategy selection for repeated surveys is pro-
posed.

Practical value of the work results

A methodology of best strategy selection for small area estimation in rep-
eated surveys of official statistics is proposed. The stress on small area esti-
mation is made because of increasing demand of reliable statistics at lower
geographic and statistical classification of economic activities in the European
Community (NACE) levels, especially from local governments and from bu-
sinesses, in order to make investment, marketing, and location decisions that
depend on knowledge of local areas.

Propositions presented for defense

1. Donors methods for nonresponse adjustment in the case of small area
estimation should not be used.

2. Panel data models can be used to represent randomness and time va-
riability in real finite populations.

3. It was revealed that in the cases when there is auxiliary variable well
correlated with study variable (correlation coefficient is more than 0.9)
the best strategy is to use simple regression model as the assisted tool
for GREG estimation.

4. It is demonstrated by computer simulations using real survey data that
in the cases where a large amount of auxiliary information from the
past is available the model-based sample design might be the best cho-
ice.
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Approval of the work results

The main results are published in six articles and presented in the confe-
rences and workshops:

1.

10.

NekraSaité-Liege, V. Sumos vertinimas maZose srityse, Lietuvos ma-
tematiky draugijos konferencija, Kaunas, 2008 m. birzelio 25-26 d.

NekraSaité-Liege, V. Small area estimation in practice, Workshop on
Survey Sampling Theory and Methodology, Kuressaare, Estonia, 2008
August 25-29 d.

NekraSaité-Liege, V. Neatsakymuy itaka populiacijos sumos vertinimui,
12-0ji Lietuvos jaunyjy mokslininky konferencija, Vilnius, 2009 m. ba-
landZio 16 d.

Nekrasaité-Liegé, V. Mazy sri¢iy vertinimas neatsakymy atveju, Lie-
tuvos matematiky draugijos konferencija, Vilnius, 2009 m. birZelio
18-19 d.

. Nekrasaité-Liegé, V. Persvérimy ir iraSymo metody palyginimas ma-

7ose srityse, Lietuvos matematiky draugijos konferencija, Siauliai, 2010
m. birZelio 17-18 d.

NekraSaité-Liege, V., Radavicius, M., Rudys, T. Model-based design in
small area estimation, 10-th International Vilnius Conference on Pro-
bability Theory and Mathematical Statistics, Vilnius, 2010-06-28 —
2010-07-02.

Nekrasaité-Liegé, V. Nonresponse adjustment in SAE under different
sampling designs, Workshop on Survey Sampling Theory and Metho-
dology, Vilnius, 2010 rugpjacio 23-27 d.

. Nekragaité-Liegeé, V. Some applications of panel data models in small

area estimation, BaNoCoSS 2011, Norrfillsviken, Svedija, 2011 birZe-
lio 13-17 d.

Nekrasaité-Liege, V. MaZzy sriiy vertinimo strategijy palyginimas, Res-
publikiné jaunyjy mokslininky konferencija ,,Fundamanetiniai tyrimai
ir inovacijos moksly sandiroje 2012”, Klaipéda, 2012 balandZio 20 d.

Nekrasaite-Liege, V. MaZy sriciy vertinimo metodika naudojant pane-
linius duomenis, Lietuvos matematiky draugijos konferencija, Klaipé-
da, 2012 birzelio 11-12 d.
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11. Nekra$aité-Liegé, V. Estimation strategy for small areas, a case study,
Workshop on Survey Sampling Theory and Methodology, Valmiera,
Latvija, 2012 rugpjucio 24-28 d.

The scope of the scientific work

The scientific work layout consists of introduction, four chapters, conclu-
sions, references and lists of authors publications. The total scope of the dis-
sertation is 90 pages, 17 tables, 80 items of reference.

The first chapter is the literature overview, which presents the other au-
thors results on the topic of the dissertation. All the results are divided into
three separate parts: models in small area, nonresponse adjustment, estimation
strategy. Thus, the results of this dissertation are new, because there is no lite-
rature that combines all these parts.

The main notations and definitions used in this dissertation are presented
in the second chapter. Also this chapter is dedicated for the estimators, nonre-
sponse adjustment methods and the main models which can be used in small
area estimation.

The different searches of optimal strategy are presented in the third chap-
ter. Here the balance sample and model-based sample design are introduced.

The simulation results, which show the performance of the different small
area estimators in the case of nonresponse and comparison of different estima-
tion strategies are presented in the fourth chapter.



Literature about small area
estimation overview

1.1. Models in small area

As mentioned by Ghosh and Rao (1994) the term “small area” and “local
are” are commonly used to denote a small geographical area, such as a county,
a municipality or a census division. They may also describe a “small domain”,
i.e., a small subpopulation such as a specific age-sex-race group of people wi-
thin a large geographical area.

Sample sizes for small areas are typically small because the overall sample
size in a survey is usually determined to provide desired accuracy at a much
higher level of aggregation. To provide desired accuracy at small area level,
models are used.

Small area models may be broadly classified into two types: area level and
unit level.

The basic area level model was developed by Fay and Herriot (1979). It
has been extended to handle correlated sampling errors, spatial dependence of
random small area e ects, time series and cross-sectional data and others (see
Ghosh and Rao (1994)).

Singh, Stukel and Pfeffermann (1998) made a comparison of frequentest
and Bayesian measures of error, using analytical and empirical methods for the
basic unit-level model.
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The basic unit level model was developed by Battese, Harter and Fuller
(1988). Various extensions of the basic unit level models have been studied.
Stukel and Rao (1999) studied two-way nested error regression models whi-
ch are appropriate for two-stage sampling within small areas. Following Kleffe
and Rao (1992), Arora and Lahiri (1997) studied unit level models with random
error variances. Kleffe and Rao (1992) assumed the existence of only mean and
variance, without specifying a parametric distribution on variance. Datta, Day
and Basawa (1999) extended the unit level model to the multivariate case fol-
lowing Fuller and Harter (1987). This extension leads to a multivariate nested
error regression model. Moura and Holt (1999) allow some or all of the regres-
sion coefficients to be random and to depend on area level auxiliary variables,
thus e ectively integrating the use of unit level and area level covariates into
a single model. Malec, Davis and Cao (1999) and Malec, Sedransk, Moriarity
and LeClere (1997) studied the binary case, using logistic linear mixed models
with random slopes to link the small areas.

All main models used in small area estimation are described by Ghosh
and Rao (1994), Rao (1999), Rao (2003). Rao and Choudhry (1995) provided
an overview of small area estimation in the context of business surveys. Still,
the literature about the use of panel data model for small area estimation was
not found.

1.2. Nonresponse adjustment

Nonresponse is unavoidable in surveys. It is classified as unit nonresponse,
which occurs when, for a sample unit, all the survey variables are missing or
when not enough usable information is available, and item nonresponse when,
for a sample unit several, but not all survey variables are missing.

Weighting adjustment is a popular method for handling unit nonresponse
in sample surveys. Groves, Dillman, Eltinge and Little (2002), Sérndal, Lundst-
rom (2005) provided comprehensive overviews of nonresponse weighting ad-
justment (NWA) methods in survey sampling. There are two types of NWA:
nonresponse propensity weighting (NPW) and nonresponse calibration weigh-
ting (NCW).

When the estimated response probability is directly used and no other ad-
justment is made, the method is called the direct NWA method (see Rosenbaum
(1987)). Applications of the direct NWA method can be found in Ekholm and
Laaksonen (1991), Folsom and Singh (2000), and Iannacchione (2003). Be-
thlehem (1988) and Fuller and An (1998) discuss the regression NWA method.
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The second type of adjustment procedures, called nonresponse calibra-
tion weighting (NCW) can be seen as an extension of the calibration approach
(Deville and Sirndal (1992)) adapted to the context of unit nonresponse. The
reader is referred to Lundstrom and Sérndal (1999), Sidrndal, Lundstrom (2005)
and Kott (2006) for a comprehensive overview of NPW and NWC.

The problem of variance estimation in the context of NPW has been re-
cently studied by Kim and Kim (2007) and in context of NCW — by Haziza,
Thompson and Yung (2010). Kim and Kim (2007) showed that the estimator
using the estimated response probability is more efficient than the estimator
using the true response probability when the parameters for response proba-
bilities are estimated by the maximum likelihood method. Haziza, Thompson
and Yung (2010) considered two jackknife variance estimators.

As for the item nonresponse, imputation can be used. The important prac-
tical problem of estimating the variance of an estimate computed from a data
set in which some of the items are missing and values are assigned by imputa-
tion has been addressed in a number of different ways (e.g., see Rubin (1987)
and Rao and Shao (1992)). The problem of variance estimation for a linear es-
timator in which missing values are assigned by a single hot deck imputation (a
form of imputation that is widely used in practice) is studied by Brick, Kalton
and Kim (2004).

Still all these papers, which are mentioned above examine nonresponse
adjustment problems in the context of the whole population, but not in small
areas or even domains. Just Brick, Jones, Kalton and Valliant (2005) demonst-
rate, that even if an imputation method gives almost unbiased estimates for the
full population, estimates for domains may be very biased.

1.3. Estimation strategy

As Singh, Gambino and Mantel (1994) point out: “where possible, samples
should be designed to produce small area estimates of adequate precision, and
sample designs should be fashioned with this in mind. Auxiliary data should be
used, where possible, to improve the precision of direct small area estimates.”
One of the possible way to improve the precision might be the use of balanced
sampling.

In the model-based framework, Royall (1976a) advocated the use of balan-
ced sampling in order to reach the optimal strategy and to protect against mis-
specification of the model. (see also Royall (1976b), Royall and Pfeffermann
(1982), Kott (1986), Cumberland and Royall (1988), Royall (1988)). Nedyalko-
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va, Tille (2008) showed, that in the model-assisted and the model-based fra-
meworks, a balancing sampling design with the Horvitz-Thompson estimator
is often an optimal strategy. Indeed, when the sample is balanced, the varian-
ces of the Horvitz-Thompson estimators of the auxiliary variables are equal to
zero. Under a linear model, the variance of the Horvitz-Thompson estimator of
the interest variable will only depending on the residuals of the model.

For the whole population estimation the most efficient strategy always con-
sists of using balanced sampling and calibration together (see the simulation in
Deville and Tillé (2004)).

The main problem of using balance sample is to select such sample. The
first method for selecting a random balanced sample were proposed by Yates
(1946), but this method was rejective in the sense that it involved selecting
samples randomly in the sample until a balanced enough sample was obtained.

Deville, Grosbras and Roth (1988) and Deville (1992) proposed multiva-
riate methods for balanced sampling with equal inclusion probabilities. He-
dayat and Majumdar (1995) have proposed the adaptation of an experimental
design technique that would enable a balanced sampling design to be construc-
ted. Again, this technique is restricted to equal inclusion probabilities. Finally,
the cube method was proposed by Deville and Tillé (2004). It is an extension
of the splitting method that was developed by Deville and Tillé (1998). This
method is general in the sense that the inclusion probabilities are exactly sa-
tisfied, that these probabilities may be equal or unequal and that the sample
is as balanced as possible. There is and some other method to get a balance
sampling (see Fuller (2009)), but it is not so popular as cube method.

To program cube method is quite di cult, that is why free software prog-
rams are available. One of them is done by Chauvet and Tillé (2005). It is an
SAS/IML implementation and is available on the University of Neuchatel Web
site. In R language, the sampling package (Tillé and Matei (2007)) also allows
us to use the cube method.

The disadvantage of cube method is that, it is balanced for whole popula-
tion, but not for small areas or even domains. Falorsi and Righi (2008) studied a
balanced sampling approach for multi-way stratification designs for small area
estimation. The proposed sampling strategy is based on the use of both a balan-
ced sampling selection technique (Deville and Tillé (2004)) and a GREG-type
estimation (Lehtonen, Siarndal and Veijanen (2003)). The study showed, that in
some survey context, the proposed sampling strategy might define a too large
overall sample size for assuring the prefixed bound of the direct domain estima-
tes sampling errors. If the overall sample size is bounded by budget constraints,
then the proposed sampling strategy with direct estimators may be not feasible.
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The literature about model-based design was not found at all.






The elements of estimation
strategy

2.1. Definitions and notations
2.1.1. Population, auxiliary information and study variables

Let us start with a common framework of finite population survey samp-
ling. A finite population U = {uj,usg,...,un} of the size N is considered.
For simplicity, in the sequel we identify a population element wuy and its index
k.Hence U = {1, 2,..., N}.

The elements k (k = 1,..., N) of the population U has two components
y(t) and x(t). The component y(t) defines the value of a study variable (va-
riable of interest), and the component x(t) = {z1(t), z2(t),...,zs(t)} € R/
defines the values of the J auxiliary variables. The values of these two com-
ponents depends on time £, = 1, 2,....

The population is divided into D nonoverlapping domains (subpopula-
tions) U@ of size N@ where d = 1,...,D. Domain indicator variables
define whether £ € U belongs to a given domain:

' (d)
¢ = { (1) fﬂ’fefwiUse’ © VkeU, d=1,....D. (21

In dealing with a domain, U(?), it is convenient to use the domain specific

13
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variable, y(@ (t) defined as y\? (t) = yy(t) it k € U@, and y{? (1) = 0 if
k¢ U@,
For every k € U, values q,g ), d = 1,..., D construct a domain indicator

column vector q;, = (q,g ), q,g, ), .. ,q,(CD)). Hence all properties of unit & in

time ¢ are in vector ax(t) = (xx(t), Qx, yx(t)) of dimension (J + D + 1) x 1
and the properties of the population U in time ¢ are

ajl(t) le (t) le yi(t)
Alt) — 32:(75) _ Xz:(t) 0{2 yzz(t) . 2.2)
ajy(t) xn(t) dy yn(t)

The matrix A(t) of dimension N x (J 4+ D + 1) is called the data matrix
in time ¢. Its row vectors a(t) correspond to units & and the column vectors
correspond to the properties associated with the units. We denote

() = (x1(8), x5(t), ..., x\)(1),
Q = (q1,db; -+, dYy), (2.3)
Y(t) = (n1(t),v2(t), ..., yn (1))

Now the data matrix (2.2) can be writtenas A(t) = [ X(t) Q Y (¢) |.
2.1.2. Parameters of interest and sampling design

The parameter of interest is a domain total:

TOTD(t) = > w(®) = > ") = > u’(®), d=1,...,D.

keU(@) keU keU
2.4)

To estimate TOT (D (t), we need information about unknown variable (t).
This information is collected by sampling. The sampling vector

§: (§17§27°"7§N) (25)

is a random vector whose elements .S, indicate the number of selections for
k. The realization S(t) = (Si(t), S2(t),..., Sn(t)) in time ¢ is called a
sample. Let S(¢) be the set of all samples S(¢). The sampling vector S (and its
realization S(t)) define the sample set s (and the corresponding s(t)) and the



2. THE ELEMENTS OF ESTIMATION STRATEGY 15

non-sampled set U, (and the corresponding Uy,s(t)) as
s={k:kelU S,>21} (s(t) ={k:keU, Sk(t)>1}) and (2.6)

Uy ={k:keU S, =0} (Uns(t) = {k:keU, Sg(t) = 0}).
2.7)

The difference between sample S(t) and sample set s(t) is such: s(t) is
a subset of U and its units are determined by S(¢), which is a N-dimensional
vector of nonnegative integers.

Sampling can be with replacement (WR) and without replacement (WOR).
In WOR sampling, units can be sampled only once (S;, = 0or S, = 1,
k = 1,...,N) and in WR sampling, more than once. We are interesting just
in sampling without replacement in this research.

The distribution of S, denoted by p(.), is called a sample design. The
sampling design assigns a probability P(S = S(t)) = p(S(t)) for eve-
ry sample in time ¢. First and second order inclusion probabilities 7 (¢) and
7 (t) for sampling without replacement are defined as

m(t) = P(Sp = 1) = > p(S(t)), (2.8)
S(t):Sk=1
ma(t) = P(S, = 1,S, =1) = Y pSt). (29
S(t):Sk,S; =1

The design where first and second-order inclusion probabilities are strictly
positive is design measurable. For every sampling design 7y (t) = m(t) and
for WOR designs,

me(t) = E(Sg), mr(t) = E(Sk,S)), (2.10)
cov(Sk, S1) = Ap(t) = m(t) — m(t)m(t).

The sampling weights for WOR designs are defined as

—1 .
) o, ifk e s(t);
wi(t) = { 0, ifk € Un(t). @11

Depending on the sampling design the sample size

n(t) = > Sk(t), (2.12)

keU
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can be random or non-random. If n(t) is non-random, the sampling design is
fixed-size. The sample size and the sample set in domain U(%) are

n@) = 3 Si(t), and sD(t) = s(t)nU@. (2.13)
keU(d)

There are two types of domains:

1. Planned domains. (Singh, Gambino and Mantel (1994)) For planned
domains the sample size n(® (t) in domain sample is fixed in advance,
so really these domains are strata with possible different allocations.

2. Unplanned domains. If the sample size n(? (t) in domain sample is
random, domains are unplanned. The disadvantage of unplanned do-

mains is that, there might be domains with zero elements in the sample
S(t).

In this research domains are unplanned. It is assumed that the number of the
elements in each domain U(?, d = 1,..., D, is known, but the domains are
not used in the sample design. This means that the sample set in each domain,
5@ (t), has a random size.

In this research two special cases of the general sample design are conside-
red: simple random sampling without replacement (SRSWOR) and probability
proportional to size sampling. SRSWOR is a fixed-size design under which the
inclusion probabilities in time ¢ are constants:

"0 g, ma = pom 0L

(2.14)

Here ratio n(t)/N is sampling fraction, denoted by f(¢).

In probability proportional to size sampling the inclusion probabilities sa-
tisfy 7y (t) oo xy(t) for some x(t) whose values are known for every unit in the
population. The probability proportional to size sampling without replacement
is denoted as wPS. We consider only fixed size 7PS designs. In 7PS designs
first and second-order probabilities need to be strictly positive and Ay (t) < 0.
This allows the construction of unbiased variance estimator for simple linear
estimators.

In some cases sampling is done with stratification. It means, that popula-
tion U is divided into H nonoverlapping stratum Uj. The number of elements
in each stratum is Ny, h = 1,..., H. In each stratum the units to the sample
are selected separately. That means, that in each stratum the di erent sample
design can be used, but in practice for all stratum designs are the same. We
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will consider two cases of stratified sampling: stratified simple random samp-
ling without replacement (SSRSWOR) and stratified probability proportional
to size sampling without replacement (S7PS). In these cases for all stratum the
same sample design (SRSWOR or 7PS) is used.

Once the sample is selected, the values of variable yy () are recorded for
the units £ € s(¢) in time ¢. This information is collected into the vector
Y;(t). The unobserved values for Up,s(t) are collected into the vector Y,,s(%).
Auxiliary information, domain indicator matrix and sampling weights w(t) =

(wi(t), wa(t),..., wy(t)) are divided in a similar way to a sampled and non-
sampled parts. The data matrix (2.2) can be written
_ A1) _ Xs(t) Qs ws(t) Yi(t)
AD =1 AL ] - [ Xoslt) Qus 0 Yult) |7 @1

Here instead of w,(t) is written 0, because we are interested just in WOR
design, thus wy(¢) satisfy (2.11) equation. Once the information about study
variable y(t) is collected, the parameter of interest might be estimated.

2.1.3. Estimator, estimate and accuracy of estimator

An estimator is a rule or algorithm that defines how to estimate the pa-
rameter of interest (in our case: domain total). It is a random variable, whose
value depends on the sample and auxiliary information. An estimate is the rea-
lization of an estimator. In general, an estimator and estimate are denoted as
0(S) and O(S(t)), or briefly §(t) and (t). For parameter TOT?) (t), the esti-

. —— (d) —— (d)
mator and estimate are 7OT" *(t) and TOT" " (t).
The estimator is accurate if its bias and variance are small. The bias is a
difference between the parameter expectation and the value:

A A

BIAS(O(t)) = E@(t)) — 0(t). (2.16)

A

If the BIAS(6(t)) = 0, the estimator is unbiased. The bias might come
with respect to design or model. The symbols E,, var, denote, respectively,
expected value and variance under the sample design. They are defined as

A

E,(0(t)) = Ss(esp(S(t))0(t), and (2.17)
vary(0(t)) = Ssesp(S))[O(t) — E,p(9(1))]* (2.18)

The symbols F ¢, varas denote, respectively, an expected value and a
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variance under the model M. Thus the estimator might be model-unbiased or
design-unbiased.

2.1 definition. An estimator Q(t) is said to be model-unbiased in time t if
Em(0(t) —0(t)) = 0.

2.2 definition. An estimator 0(t) is said to be design-unbiased in time t if
E,(0(t)) - (t) = 0.
The other accuracy measures are:

e mean square error

A

MSE.(0(t)) =E.(0(t) — 0(t))* = (2.19)

o standard error

SE (0(t)) = \/var.(0(t)); (2.20)

. (0(t) = Y——2. (2.21)

Here subscript p or M should be used instead of . and the accuracy me-
asures will measure with respect to the sampling design or to the model. Of
course there are measures, which measure with respect to the sampling design
and to the model. One of them is called anticipated mean-squared error.

2.3 definition. The anticipated mean-squared error of an estimator 0 (t) is de-
fined by

MSEpmp(0(t)) = ExmBp(B(t) — 0(t)). (2.22)

The anticipated mean-squared error is very useful, when the goal is to
construct an optimal estimation strategy.

2.4 definition. A strategy is a pair {p(S(t)),0(t)} comprising a sample design
and an estimator.

Nedyalkova, Tille (2008) use such definition of optimal model-assisted
strategy:
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2.5 definition. An optimal model-assisted strategy is one with a design-unbiased
estimator that, subject to

om=n, 0<m<l, (2.23)
keU

minimizes the anticipated mean-squared error of that estimator.
2.1.4. Nonresponse

Nonresponse is present in almost all surveys and special estimation tech-
niques are required to deal with the problem. Nonresponse means that the de-
sired data are not obtained for the entire sample set s(¢).

There are two types of nonresponse: unit nonresponse and item nonres-
ponse. Let us say we are interesting not in a study variable y(¢), but in the
study variables y1(t), y2(t), ..., y;(t). Then

1. The element k is an unit nonresponse element if the entire vector of
y(t)-values, yx(t) = (v1x(t), y2r(t), ..., yjx(t)), in time ¢ is missing.

2. The element k is an item nonresponse element if at least one, but not
all j components of the vector yx(t) = (yir(t), yor(t), ..., yjr(t))
in time ¢ are missing.

In this research we focus on one study variable y(¢), thus the item nonres-
ponse is the same as the unit nonresponse and will be called just nonresponse.

We denote by r the response set (and its realization 7(¢)) and by s,,,. non-
response set (and the corresponding s,,,(t)):

r = {k:k € s, and y(t) is recorded} (2.24)

(r(t) = {k: k € s(t), and yg(t) is recorded}) and (2.25)
Spr = {k : k € s, and yi(t) is not recorded } (2.26)
(Snr(t) = {k : k € s(t), and yi(t) is not recorded}). (2.27)

Once the sample is selected, the values of variable y(t) are recorded for
the units k& € r(¢). This information is collected into the vector Y;.(¢). The se-
lected, but not recorded values for sy, (t) are collected to the vector Yy, (t) and
the unobserved values for Uy,5(t) are collected into the vector Y,,5(¢). Auxilia-
ry information, domain indicator matrix and sampling weights are divided in
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a similar way to a recorded, sampled but not recorded and non-sampled parts.
Thus the data matrix (2.2) can be written as:

A (t) Xo(t) Qr  welt) Yi(t)
At) = | Apr(t) | = | Xor(t) Qur Wi () Yor(2) (2.28)
Ans(t) an (t) Qns 0 Yns(t)

2.2. Types of estimators
2.2.1. Horvitz-Thompson estimator

Horvitz-Thompson (HT) estimator was developed by Narain (1951) and
Horvitz and Thompson (1952). Using this estimator the domain total in time ¢
can be estimated by this formula:

TOTyr(t) = Y wi(t)y(t). (2.29)
kes(d(t)

HT estimator is a design-based estimator. Design-based estimators use in-
formation about the sampling design by the means of sampling weights. HT
estimator is design unbiased by definition:

Ey(TOTr (1) = By Y wi(thu(t)) = (230)
kes(@(t)
= B( Y ww®)Sk(t)) =
keU(d)
= > wp(t)yr(t)Ep(Sk(t) =
keU(d)

= 2

keU(d

ye(t) o _ (d)
—0 k(1) ke%%d)yk(t) ToT™.
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It’s variance estimator is

() 1 —m(t
vary(LOTpr(t)) = 3. W?(’;)”yz(m (231)
kes@(t) Tk

+ Y Z (1) — mr(t)m(1) yk(t)yl(t).

kes(d (¢) l e s(d)(t) ”k(t)ﬂl(t) Wkl(t)

14k
2.2.2. GREG-type estimators

Following Lehtonen, Sarndal and Veijanen (2003), the generalized regres-
sion type (GREG-type) estimator in time ¢, may be expressed under the general
form

———(d) . .

TOTgrpc(t) = > )+ Y. wel®)(e(t) —dr(t). (232

keU(d) kes(d)(t)

where i (t) denotes the prediction of yy () under the assumed super popula-
tion model (see section 2.6). The predictions, {§x(t); k € U} differ from one
model specification to another, depending on the functional form and from the
choice of the auxiliary variables.

The GREG-type estimator is a design-based model-assisted estimator, whi-
ch is nearly design unbiased irrespective of the model choice. Here a statistical
model is used as an assisting tool to incorporate auxiliary information into the
estimation procedure.

If a working super population model is

v, () = %8 (1) + 4 (0). (2.33)
The predictions () are then obtained by
r(t) = x3,(0)6D(1) (2.34)

being

B0 = (Y amOxh0u®) Y Ouun(t). @39

kes(d)(t) kes(@(t)
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In this case GREG-type estimator might be expressed as:

TOTShpa() = 3w+ Y xL()AD(t

kes(d(¢) keU(d)
— > w@®x (B = Y wr(O)yk(t)+
kes(@(t) kes(d(t)
(X am - Y ) B0 =
keU(d) kes(@(t)
= Y [+ ( X w0 X suwln) x
kes(d(t) keU(d) kes(@(t)
(Y xxk0)/oROm(®)  xu(t)/oR(D)] x
kes(d)(t)
xwp(Oye(t) = D> ar(t)yr(t).
kes(d (¢)

Such estimator is the same as a calibrated estimator (Deville and Siarndal (1992))
if function

L= Y (ak(t) — wi(1))? (2.36)

kes(@ (1) wi(t)

is used for minimizing distance. Here ay(t) is called calibrated weight.

If x; = (1,21)" in (2.33) then the GREG-type estimator is equal to reg-
ression estimator (Deville and Sédrndal (1992)), and if x;, = =z, the GREG-
type estimator is equal to ratio estimator (Deville and Sdrndal (1992)).

As noted by Rao (2003) the GREG-type estimator under the superpopula-
tion model (2.33) is approximately design unbiased as the overall sample size
increases, even if the domain sample size n(9) is small. Moreover, the sum of

_————(d
the TOT (Gl)% £ (t) estimates over all the domains of a partitions is benchmar-
ked to the usual GREG estimate of the total

ZTOT‘GREG = Y [+ (Tt - Y xubuw®) x

d= kes(t) keU kes(t)

< (3 xuOxk(0) /R Om(®) xu(0)/ 0] (B ():

kes(t)
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The estimator of the variance of the GREG estimator in time ¢ can be
expressed as

@ (M0 o) = 3 Y (1- 20y,
kes(@ (¢) 1es(d) () (1)
() = 9 () i (t) — u(t)
ﬂ—k(t) ()

(2.37)

2.2.3. Model-based estimators

If sample sizes are too small to apply direct survey estimators and addi-
tional information is available, model-dependent or model-based estimation
procedures might be used to produce sufficiently reliable statistics. In these
procedures a model is applied to borrow information from other related data
sets to improve the precision of the estimates.

The general form of a model-based estimator for domain is equal to

TOT\ ) = 5w+ 3 wld). (2.38)

keU @\ (@) kes@

Therefore, in (2.38), the observed sample speaks for itself and the rest is
predicted according to the fitted model.

For the model-based estimators the sampling weights are used in the cal-
culation of superpopulation model’s coefficients. If the sampling weights are
equal w(t) = w(k) for all k£ € s, then model-based estimators are equal
to the model-dependent estimators (2.38). These estimators do not incorpora-
te the sampling weights in the calculation of superpopulation model’s coeffi-
cients.

The name of estimator (2.38) varies under the different superpopulation
model (Rao (2003)). For example, let the superpopulation model is

Y(t) = X(1)B(t) + Z(t)v(t) +£(t),

where X (t) and Z(t) are known n x J and n x p matrices, v(t) and £(¢) are in-
dependently distributed with mean O and covariances matrices G(t) and R(¢)
depending on some variances parameters 6(t) = {01(t),d2(t), ..., 4(t)}.
If a sampling weights are used in the calculation of superpopulation model’s
coefficients, then the estimator (2.38) is called a pseudo empirical best linear
unbiased predictor (pseudo-EBLUP estimator) (Rao (2003)).
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Compared to the traditional design-based survey estimators, model-based
estimators have much smaller variances. The price that is paid for this variance
reduction is that these model-based estimators are more or less design-biased.
The size of the bias depends on the correctness of the model.

2.2.4. Benchmarking

Direct survey estimates are often adequate at an aggregate (or large area)
level in terms of precision. It is, therefore, sometimes desirable to modify the
individual small area estimators so that a properly weighted sum of these es-
timators equals to the model-free, direct estimator at the aggregate level. The
modified estimators will be somewhat less efficient than the original, optimal
estimators, but they avoid possible aggregation bias by ensuring consistency
with the direct estimator.

One simple way to achieve consistency is to make a ratio adjustment, for

_—(d
example, the model-based estimator TOT E\/[)B () of total TOTD (¢) is modi-
fied to

—— (d)
— TOT —
TOT (1) = —O/i”{flft) TOT 4ir (1), (2:39)
224 TOT (1)

where I{O\Tdi,,(t) is a direct estimator of the aggregate population total

TOT(t) = Y TOTW(1).
d

2.3. Classification of estimators

There are several ways to classify estimators. One of the most popular is
estimator classification by the use of the super population model (see section
2.3.1). The other way to classify estimators is by the what auxiliary information
is used (see section 2.3.2). The last way of classification, which is mention in
this research is the classification by the estimator’s form (see section 2.3.3).

2.3.1. Design-based, model-depending and model-based
estimators

The purpose of survey sampling is to obtain statistical information about a
finite population by selecting a probability sample from this population, mea-
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suring the required information about the units in this sample and estimating
finite population parameters such as means, totals and ratios. The statistical in-
ference in this setting can be design-based, model-assisted, model-depending
or model-based.

In the design-based and model-assisted approach, the probability structure
for inferences comes from the randomization distribution, from the probabili-
ties with which different samples are potentially drawn (although one and only
one is realized in a survey). The statistical properties (mean, variance and so
on) of an estimate are evaluated by averaging over all possible samples under
the given sampling design. Here statistical modeling plays a minor role.

In the model-based and model-dependent context, the probability structu-
re of the sampling design plays a less pronounced role, since the inference is
based on the probability structure of an assumed statistical model.

Design-based and model-assisted estimators refer to a class of estimators
that expand or weight the observations in the sample with the so-called samp-
ling weights. Sampling weights are derived from the sampling design and avai-
lable auxiliary information about the target population. A well known design-
based estimator is Horvitz-Thompson estimator (see section 2.2.1). GREG-
type estimators (see section 2.2.2) are design-based model-assisted estimators.
These estimators are derived from model that specifies the relationship bet-
ween the values of a certain target parameter and a set of auxiliary variables
for which the totals in the finite target population are known. After these esti-
mators are derived, they are judged by their design-based properties, such as
design expectation and design variance.

If the underlying model of the GREG-type estimator explains the variation
of the target parameter in the finite population reasonably well, then this might
result in a reduction of the design variance of the Horvitz-Thompson estimator.
If the model is misspecified, then this might increase of the design variance but
the property that the GREG-type estimator is approximately design unbiased
remains. From this point of view, the GREG-type estimator is robust against
model-misspecification.

Model-dependent and model-based estimators (see section 2.2.3) refer to
the class of estimators that use models to estimate certain target parameter.
The model-dependent estimators does not use design information at all, thus
for estimating these estimators it is not needed to have probability sample.
As for the model-based estimators sampling weights are used to estimate mo-
del’s coefficients. Compared with design-based or model-assisted estimators,
model-based and model-dependent estimators have much smaller variances,
but they are more or less design-biased. The size of the bias depends on the
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correctness of the model and in many cases it does not decrease when sample
size increases.

2.3.2. Direct and indirect estimators

Estimators for domains are frequently classified as either direct or indirect.
In the terminology of Schaible (1992) and Federal Committee on Statistical
Methodology (1993), an estimator for a domain is called direct only if it uses
values of the variable of interest over the domain and for the time period in
question. Otherwise, it is indirect.

A convenient direct estimator is Horvitz-Thompson (HT) estimator (2.29).
The other estimators, used in this research are direct or indirect depending on
the superpopulation model used in estimation stage.

2.3.3. Linear and nonlinear estimators

A linear estimator can be described as

D= Y atum® = ¥ abunl®, @40

kes(d(t) keU

TOT

where the ay,, u € s(@ (t) are weights that can depend on the sample and I ,gd)

is equal to 1 if k € s(9)(¢) and equal 0 otherwise.

All design-based and model-assisted estimators are linear estimators.

The estimators, which can’t be expressed by (2.40) equation are called
nonlinear estimators.

2.4. Nonresponse adjustment using weighting
methods

Weighting adjustment is a popular method for handling unit nonrespon-
se in sample surveys. Groves, Dillman, Eltinge and Little (2002) and Sérndal,
Lundstrom (2005) provided comprehensive overviews of nonresponse weigh-
ting adjustment (NWA) methods in survey sampling. The primary objective
of a weight adjustment procedure is to reduce the nonresponse bias, which is
introduced when respondents and nonrespondents are different with respect to
the survey variables.
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Using weighting method the original inclusion probabilities 7y () are def-
lated by the response probabilities > (t) and new sampling weights wy(t) =
(mr(t)sa:(t)) 7L, k € r(t), are obtained.

2.4.1. Estimation of nonresponse probability

The original response probability is never known in practice, so there are
several methods to estimate it.

A very popular method for estimation of nonresponse probability in prac-
tice is called a weighting-class. It consists of first dividing the the response
sample set () and sample set s(¢) into G mutually exclusive weighting clas-
ses 74(t) and s4(t), g = 1,...,G, and adjusting the design weights of res-
pondents by the inverse of the response rate within each class. These classes
are formed on the basis of auxiliary information recorded for all units in the
sample (see, Little (1986) and Eltinge and Yansaneh (1997)).

The estimate of the response probability s (¢) for the unit is the same in
the same class:

Djer,(t) Wi(t)

q.(t) = ,
) Zjesg(t) w;(t)

ker(t) (2.41)

Another method for estimating the response probability is to apply a logis-
tic regression model (Ekholm and Laaksonen (1991)):

cap{B(t)zx(t)}

) = BB

ker(t) (2.42)

Here B(t) is the maximum likelihood estimator of the coefficients of the
logistic regression model based on the data {(I,x(t), zx(t)),k € s} where
I ,(t) = 1,if k € r(t), and I, ;(t) = O otherwise. The auxiliary informa-
tion is notated as z(¢), because it might be different from the auxiliary infor-
mation which will be used in estimation stage. Ekholm and Laaksonen (1991)
suggested response probabilities are model-based estimates (0 < 3z (t) < 1).

2.4.2. Estimation of domain total when weighting methods
are used

When weighting methods for nonresponse adjustment are applied in the
estimation of the domain total, the correction of estimators should be made by
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replacing sampling weights wy(t) with Wy (t) = (m(t)5a(t)) 7L, k € r(t),
not only in estimators equations, but also in calculation of the coefficients of
the model. Thus the HT estimator is equal to
——=(d) N
LOT yr weigne(t) = D w(t)ye(D), (2.43)
ker(d(t)

GREG-type estimator is equal to

TOT hicwee® = 3 G+ S e(®)(us(t) — f(t)) 2.44)
)

keyd ker(@(t)
and model-based estimator to
——(d) R
TOT v g eignt(t) = Z yr(t) + Z yr(t). (2.45)
keU(@\r(d) ker(@

Here r(4 (t) = r(t)Us®(t) and g (t) are predicted values of yy,(¢) under
the assumed super population model (see section 2.6). The difference between
yr(t) and 7§ (t) is that the model’s coe cients for 7 (t) are estimated using
just response set r(¢), but not the sample set s(¢) as it is done for g ().

If the response probability is estimated using weighting classes, the HT es-
timator, which use new sampling weights is unconditionally unbiased, but con-
ditional bias can arise when a di erence between the distribution of a weigh-
ted population and the sample level based weighted population exists. Oh and
Scheuren (1983) showed that conditional bias cannot be directly derived. Ho-
wever, an average can be obtained (Kalton and Maligalig (1991)).

If the response probability is estimated using Ekholm and Laaksonen (1991)
suggested method and if nonresponse is believed to be ignorable in each ad-
justment cell and the applied model is correct in explaining the true response
distribution, then the estimator 2.43 is asymptotically unbiased.

2.5. Nonresponse adjustment using imputation
methods

Imputation methods can be classified as a single imputation (when one
value is imputed instead of missing one) or multiple imputation. Multiple im-
putation produces several imputed datasets and instead of the missing value a
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mean of imputed datasets is used.
There are many types of imputation methods, which can be divided into
three main groups:
1. Logical (deductive) imputation, when the imputed value is calculated
using logical assumptions.

2. Real donor imputation, where the imputed observation value is borro-
wed from another respondent.

3. Model-based imputation, where the imputed value is calculated using
the model with the coefficients estimated from the response sample
r(t).
In this research logical imputation was not used. In the section 2.5.1 the main
imputation methods which are used in this research are described. How the
estimators change when imputation methods are used for nonresponse adjust-
ment are described in section 2.5.2.

2.5.1. Imputation methods

A once-common method of imputation using donors is a hot-deck impu-
tation in which each missing value is replaced with an observed response from
a “similar” unit. The term “hot deck™ dates back to the storage of data on
punched cards, and indicates that the information donors come from the same
dataset as the recipients. The stack of cards was “hot” because it was currently
being processed. Cold-deck imputation, by contrast, selects donors from ano-
ther dataset (e.g. previous surveys).

Hot deck imputation involves replacing missing values of one or more va-
riables for a non-respondent (called the recipient) with observed values from
a respondent (the donor) that is similar to the non-respondent with respect to
characteristics observed by both cases. Here we review two different forms of
the hot deck imputation.

In the first form, the donor is selected randomly from a set of potential do-
nors, which can be called the adjustment cells. Such method is called random
donor method. The adjustment cells are based on auxiliary variables which
are known and for donors and for recipients. The choice of auxiliary variab-
les for creating adjustment cells often relies on subjective knowledge of which
variables are associated with the item being imputed, and predictive of non-
response. Imputation is then carried out by randomly picking a donor for each
non-respondent within each cell.

In the second form, a single donor is identified for each recipient by using
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some metric. This method is called a nearest neighbor. For the nearest neigh-
bor imputation, a missing value y(t) is imputed by choosing that value y;(¢)
which corresponds to the value x;(t) closest to x(t). The closest value is de-
termined by the distance between any two response values:

J
dkl@):szj(t)—xlj(t»% ke sO\r(t), Lert). (246)

j=1

This procedure can be done if the continuous variables are use to identify the
distant.

The other group of imputation methods are model-based imputation. A
most common model-based method is regression model. Here an imputation
model predicts a missing value using a function of some auxiliary variables.
The auxiliary variables can be from the same survey, or from the other sour-
ces. The regression coe cients can be determined using response set from the
current survey or from historic survey data.

2.5.2. Estimation of domain total when imputation is used

Let us denote a new variable y*(¢) which values y;(t) are equal to yj(t),
if k € r(t), or y,"(t), if k € s(t)\r(t). Here y;™” can be a single imputed
value, if single imputation is used, or the mean of imputed datasets, if multiple
imputation is used.

Thus the HT estimator is equal to

TOT ) = 3 wi()yi(t), (2.47)

kes(d (¢)
GREG-type estimator is equal to
— (d) - R
TOT Grpcum®) = D 9@+ Y we®)(yi(t) — Gi(t) (2.48)
keU (@) kes(d (t)
and model-based estimator to

/\(d) o N
TOT \rg imp(t) = Z I (t) + Z i (1) (2.49)
keU(d)\s(d) kes(d)
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2.6. Models in small area estimation

If no other data sources are available, statisticians can only resort to model-
based methods which involve making assumptions about how data for a small
area relate to other data. These methods are often described as “borrowing
strength” since they borrow information from elsewhere in the sample survey
to augment the number of units that contribute to the estimate for a given small
area. The borrowing can be from other time periods, from sample units outside
the given small area, or from other variables measured on the same sample
unit.

There are two types of models used in small area estimation: area level
model and unit level model.

2.6.1. Area level model

. o d
For the area level model only area-specific auxiliary data x(? (¢) = (mg )(t),

. xf]d) (t))' in time ¢ are available for the sampled areas d = 1, ..., D as well
as the nonsampled areas and the parameters of interest, 7OT(@) (t), are assu-
med to be related to x(?(¢) through a linear model with random area effects:

TOTD(t) = xD(@)Yst) +vD(t), d=1,..D, (2.50)

where ((t) is the J-vector of regression parameters and the v(? (¢)’s are
independent and identically distributed (IID) random variables with
E(v(®) =0, wvar(v(@t) = o2(t). (2.51)
In addition, normality of the random effects v(%) () is often assumed.

It is also possible to partition the areas into groups and assume separate

models of the form (2.50) across groups.

_——(d
It is assumed that direct estimators 70T ( )(t) of TOT¥)(t) are available

whenever the area sample size n(t) > 1. It is also customary to assume that
o™ (@) (@)

TOT (t) = TOT(t) + 'Y (1), (2.52)

here the sampling errors (%) () are independent \V'(0, 4(%9) (t)) with known
() (t). Combining this sampling model (2.52) with the “linking” model (2.50),
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the well-known area level linear mixed model of Fay and Herriot (1979) is got:

T (1) = xD (1) B() + v (1) + D (1), 2.53)

Note that (2.53) involves both design-based random variables e(® (¢) and
model-based random variables v(?) (¢). In practice, sampling variances (% (t)
are seldom known, but smoothing of estimated variances i) (t) is often done
to get stable estimates 1v* (%) (t) which are then treated as the true 1@ (t).

The basic area level model has been extended to handle correlated samp-
ling errors, spatial dependence of random small area e ects, vectors of para-
meters TOT(@ (multivariate case), time series and cross-sectional data and
others (see Ghosh and Rao (1994)).

In this research the auxiliary information is available not only at the area
level, but also at the unit level. Also the sample designs are used so, that there
is no nonsampled small areas, thus the area level model won’t be used in the
simulation part.

2.6.2. The basic unit level model

A basic unit level population model assumes that the unit y(k)-values,
y, are related to auxiliary variables xj () through an one-way nested error
regression model

yk(t) = xk(t) B (1) + VIO (1) + ex(t), (2.54)

wherek = 1,...,Nandd = 1,...,D. Here v (¢) "P N(0,02(t)) are
independent of ey (t) P N (0,02(t)). The parameters of interest here are the

small area totals TOT (D (¢).
It is possible to write model (2.54) in matrix form as

Y(t) = X®)A) +V()1YD + E®1), (2.55)

where X(t)is N x J, Y (t), E(t)are N x 1and 14 = (1,...,1).
2.6.3. Generalized Unit level model

In this research a more general model than (2.54) is considered, namely a
panel data model. This type of the model was considered, because, the study
variable y (t) and auxiliary variables x(t) are time series, thus in time 7"+ 1,
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when the estimators of parameters of interest are needed, there is a huge set of
historical i.e. prior to the sample selection, auxiliary information

Al := (xi(t),yn(t), t € Te € {1,2,...,T}, k € U), (2.56)

which might be used to improve estimation strategy. One of the way to use
such kind of information is to use panel data model.
Below a general panel data model with random effects is given:

J
Y, (1) =Bogry (8) + vor(t) + D [Bjgeh)(t) + vjk(B)]a; o (t)+

j=1

+ Y Qigymi(t) +ex(t), ke U (2.57)
i=1

Herez;(t),j = 1,2,..., J, are fixed-effects variables, B ;) (t), B1,g(x) (1),
ws B1g(k)(t) are the unknown fixed-effects model coefficients, which are the
same in group g(k).

The groups g(k) divides population U into G nonoverlaping groups which
in some special cases can be the same as domains d, d = 1,..., D.

The unknown random-effects models coefficients are denoted as vg (),
V1 k(1) 1k (1), (V51 (t) ~ I1D(0, A%’g(k)(t)), g(k) = 1(k),....,G(k),j =
0,...,J.

The model error is denoted as €x(t) (Enm(ex(t)) = 0, varpm(er(t)) =
v2o?, Vk € U and covp(ex(t),€,(t)) = 0 when k # [).

It should be noticed that model error € () and the random-effects model
coefficients vg 1 (t), v1 k(t),..., v.sk(t) are conditionally independent if values
ofz;(t),j = 1,2,...,J, are known.

The component > /" | a; 4(x)pi(t) represents a time trend. The structure
of this component depends on historical auxiliary information and is specified
using exploratory analysis.

2.6.4. Special cases of generalized Unit level model

In this section it is shown how from the generalized unit level model can
be obtained some other well known models.

1. Example. Let 5079(143) (t) = ,30(15), Ung(t) =0, Bj,g(k) (t) = 6j(t),
vje(t) = 0,5 = 1,...,J and ¢ is equal to one moment (let this
moment is notated as ). Then the generalized unit level model has
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such form

Y, (W) = Bo(W) + Z Bi(W)z; (W) +ex(W), keU. (2.58)
j=1

This model is known as a common model (Lehtonen, Sdrndal and Vei-
janen (2003)), because it has the same model coefficients for all do-
mains.

. Example. Let Gy g (1) = BV (#), vor(t) = 0, Big)(t) = Bi(t),

vjr(t) = 0,7 = 1,...,J and ¢ is equal to one moment (let this
moment is notated as ). Then the generalized unit level model has
such form

y, (W) = )+ Z Bi(W)z; (W) + ex(W), kel.

j=1
(2.59)
This model is known as a model with domain-intercept (Lehtonen,
Sérndal and Veijanen (2003)), because it has the same slopes but sepa-
rate intercepts for all domains.

. Example. Let By 1) (t) = Bo,g(k)» ok () = 0, Bj ) (t) = Bj ()

vjr(t) = 0,7 = 1,...,J. Then the generalized unit level model has
such form

v, (t) = Bo gk +Zﬁjg +enlt), kelU — (2.60)
j=1

This model is fixed-effect panel data model. Here models coefficients
Bo,g(k)> B1,g(k)> - Brgk) do not depend on time which means they
are the same for the all periods of time. Such model is very useful in
practice since it enables to find the model coefficients just using data
from the past. The current data might be use just for prediction.

. Example Let BO,g( () = ,80() Vo k() = UO,g(k)(t)’ /Bj,g(k)(t) =

Bj(t), vix(t) = 0,] = 1,...,J and ¢ is equal to one moment (let this
moment is notated as ). Then the generalized unit level model has
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such form
Y, (W) =Bo(W) + vo g (W)+

J
+ 3 B W)z, (W) +ex(W), kelU. (261
i=1

This model is known as mixed model with random-intercept (Lehto-
nen, Siarndal and Veijanen (2003)), because it has the same fixed pa-
rameters for all domains and the random effect is defined at the group
level, which in separate case might be equal to domain.

5. Example. Let By gx)(t) = Bogk)> vor(t) = vogr) Bjgm) () =
Bjg(k)» Vik(t) = 0,7 = 1,...,J. Then the generalized unit level
model has such form

J
Y, (t) = Bogy + vogm) + O Bgwyzix(t) +er(t), kel
=1
(2.62)

This model is mixed panel data model, which coefficients do not de-
pend on time. Thus, the model coefficients might be calculated from
the previous information and auxiliary variables from the current samp-
le might be used just for prediction.

6. Example. Let So o) (1) = Bo,g(k)> v0k(t) = Vog(k)> Bgti) (t) =
Bjgk)> Vik(t) = 0,5 = 1,...,J and

D Aigyhi(t) = ag gt + aggalt),
i=1

where a ) € R3. Then the generalized unit level model has such
form

Y, (1) =Bog(k) T Vog(k) T G090t + Agryer(t)+

J
+ > Bjgmzix(t) +er(t), keU. (2.63)
j=1

This is a mixed panel data model with a linear trend and a seasonal
components.
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2.7. The summary of the second chapter

1. All definitions and notations used in this research are defined in the
second chapter.

2. The formulas of Horvitz-Thompson (HT), generalized regression (GREG)
and model-based (MB) estimators are described for small area estima-
tion case. Also all these formulas are adapted in respect of different
nonresponse adjustment methods.

3. Different methods of estimators classification (design-based, model-
based or model-dependent, direct or indirect, linear or nonlinear) are
described and for each estimator (Horvitz-Thompson, GREG-type and
model-based) the place in each classification is showed.

4. Two nonresponse adjustment types (nonresponse adjustment using weigh-
ting methods or imputation methods) are described.

5. Two types of models used in small area estimation are described. The
first is called area level model and the second — unit level model. Unit
level model is described in more detailed. It is showed, that it is possi-
ble to write it in a general form, from which main models used in small
area estimation can be obtained.



Optimal estimation strategy

The small area problem is usually considered to be treated via estimation. Ho-
wever, if the domain indicator variables are available for each unit in the popu-
lation there are opportunities to be exploited at the survey design stage.

As noted by Singh, Gambino and Mantel (1994), there is a need to develop
an overall strategy that deals with small area problems, involving both plan-
ning sample design and estimation aspects.

In this chapter some other not so common used sample designs are con-
sidered. A definition of balanced sample is introduced in section 3.1. Some
examples and methods how to select a balanced sample are also presented.

The other sample design is discussed in section 3.2. It is called model-
based design, because for selecting the sample the variance of the prediction
errors is used.

3.1. Balanced samples

Consider a sample S(t) of size n(t) that is a subset of a finite population U
of size N. A sample is said to be balanced if, for a vector of auxiliary variable

37
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Z, = (ZLk,..., Zp,ka ceey Zp7k),,

D oz(t) = % > z(t), 3.1)

1
n kes(t) keU

which means that the sample means of the z-variables match their popu-
lation means. Here the auxiliary information is notated as z(¢), because it
might be different from the auxiliary information which will be used in esti-
mation stage and which is notated as X, = (1, .. Tjjos -y Tik) -

Brewer (1999) drew a distinction between a balanced selection of samples
and a random selection of samples. However, a balanced sample may be sele-
cted randomly. If a random sample S(¢) is selected randomly, then each unit
of the population has an inclusion probability 7 (k) of being selected. In this
case, a random sample must satisfy the following balancing equation:

S 28 ) (3.2)

kes(t) keU

In other words, in a balanced sample, the total of the z-variables are es-
timated without error. Really equation (3.1) is a special case of equation (3.2)
(when 7 (t) = n(t)/N or when the sample is not selected randomly), but
several authors like Cumberland and Royall (1981) and Kott (1986) would call
a sample that satisfies equation (3.2) a “mr-balanced sample”, and a sample that
satisfies equation (3.1) as “mean-balanced sample”.

Deville and Tille (2004) defined such definition of a balanced sampling
design:

3.1 definition. A sampling design p(-) is said to be balanced on auxiliary va-
riables z1(t), ..., zp(t) if the Horvitz-Thompson estimator satisfies Equation
(3.2).

A balanced sampling can be viewed as a kind of calibration (GREG-type
estimators belongs to calibrated estimators class (see section 2.2.2)) that is
directly integrated into the sampling design. The main problem is that the ba-
lancing equations (3.2) can rarely be exactly satisfied.

Still the advantages of balanced sampling are as follows:

1. Balanced sampling increases the accuracy of the Horvitz-Thompson
estimator. The variance of the Horvitz-Thompson estimator only de-
pends on the residuals of the regression of the interest variable by the
balancing variables.
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2. Balanced sampling protects against large sampling errors. The most
unfavorable samples have a null probability of being selected when
balanced sampling design is used.

3. If the study variable is well explained by the auxiliary information,
in model-based inference, balanced sampling protects against a mis-
specification of the model. A recent discussion of this important ques-
tion is given in Nedyalkova, Tille (2008).

4. If an indicator variable of the domain is added in the list of auxiliary
variables, then the size of the domain is fixed in the sample and this
protect domains from the too small sample size in planned domains.

3.1.1. Special cases of balanced samples

Except multistage sampling, almost all the other sampling designs are par-
ticular cases of balanced sampling:

1. Example. Sampling with a fixed sample size. It is a balance sample if
the only balancing variable is 7 (k). The balancing equations given in
(3.2) become

2 ZZEQ = 2 1= m(t) = nl),
)

kes(t) kes(t keU

which means that the sample size must be fixed.

2. Example. Stratified simple random sampling without replacement. It
is a balance sample if balancing variables are the indicator variables of

the strata:
_ 1, ifk e Uy,
Onk = { 0, otherwise. (3.3)

Here h = 1,..., H. Under a stratified design, the Horvitz-Thompson
estimators of the sizes of the strata exactly equal the sizes of the strata,
which is a property of balancing on the indicator variables of the stra-
ta. Indeed, since the inclusion probabilities in stratum h are 7 (t) =
np(t)/Np, k € Up, the balancing equations become

N6
Z hohk :Z(sh,k‘:Nha h=1,...,H,
kes(t) nh(t) keU
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and are exactly satisfied.

. Example. Another interesting special case of balanced sampling occurs

when a constant is used as a balancing variable. If z; () = 1 for all
k € U, the balancing equations become

Z kl(t)_zl_N'

kes(t) keU

Actually, the left part of this equation is the Horvitz-Thompson estima-
tor of N. This means that, if a constant is used as a balancing variable,
the estimated population size matches the known size IV, which is far
from being a given when the statistical units are selected with unequal
inclusion probabilities.

In fact, balanced sampling is a more general method of sampling that inc-

ludes almost all the other methods.

3.1.2. The choice of balanced variables

There are several recommendations how to choose balancing variables

(Tillé (2011)):

1. The main recommendation is to choose balancing variables that are

closely correlated to the study variable or variables.

2. Not choose too many balancing variables because, accuracy no longer

improves with a large number of variables and the instability of the
variance estimator increases with each additional variable.

3. The auxiliary variables should not be too correlated amongst themsel-

VES.

In many cases, the balancing variables contain measurement errors. For examp-
le, in most registers, missing values can obviously occur and auxiliary variables
are often corrected by a method of imputation. Indeed, the gain in efficiency
only depends on the correlation between the balancing variables and the study
variable. This correlation is rarely affected by errors in the balancing variables.

Several auxiliary variables can be used to improve small domain estima-

tes. To ensure that a domain D is not empty, it is possible to add such auxiliary
variable:

| m(@), ifkeU®),
a(t) = { 0, otherwise. 34
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This implies that the number of sampled units that belong to D domain is equal

to
nP) =3 ) = Y m(t).

keU keU(D)

3.1.3. Balanced sample and the use of auxiliary information
in estimation stage

A balanced sample increases the accuracy of the Horvitz-Thompson esti-
mator, thus it is possible to think, that there is no need to use auxiliary informa-
tion in estimation stage. Indeed, in many cases, at the estimation stage, more
auxiliary variables are often available, thus the use of GREG-type estimator
might improve estimators even more.

Generally, it is recommended to incorporated and the same auxiliary va-
riables, us it were used as balanced variables, because if only new variables
will be used in estimation stage, the effect of balancing can be lost.

There is, however, one case where only new variables can be used at es-
timation stage: when the balancing variables are no longer correlated to the
study variable. This can occur when the balancing and the new variables are
the same variables measured at di erent moments, and the new variables are
more recent.

3.1.4. Cube method

One of the methods how to select a balanced sample is to use Cube met-
hod. The algorithm of the cube method was proposed by Deville and Tillé
(1998) and the method was published by Deville and Tillé (2004). This met-
hod is general in the sense that the inclusion probabilities are exactly satisfied,
that these probabilities may be equal or unequal and that the sample is as ba-
lanced as possible.

The name of the method comes from the geometric representation of a
sampling design. Indeed, a sample may be represented by a vector of samp-
le indicators S(t) = (S1(t), Sa2(t),..., Sn(t)) where Si(t) takes value 1 if
k € S(t) and 0 if not. A sample may thus be viewed as a vertex of an N-cube.

The algorithm of the cube method enables us to run a function with two
arguments: the vector of inclusion probabilities and the matrix of balancing
variables. It is based on a random transformation of the vector of inclusion
probabilities until a sample is obtained such that:

1. The inclusion probabilities are exactly satisfied.
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2. The balancing equations are satisfied to the furthest extent possible.

The Cube method is divided into two phases: the flight phase and the landing
phase. The flight phase is a random walk that begins at the vector of inclusion
probabilities and remains in the intersection of the cube and the constraint sub-
space. This random walk stops at a vertex of the intersection of the cube and
the constraint subspace. At the end of the flight phase, if a sample is not obtai-
ned, the landing phase entails in selecting a sample that is as close as possible
to the constraint subspace.

In some cases, it is interesting to balance on auxiliary variables in sub-
groups, domains or strata. An interesting procedure described in Chauvet (2009)
consists of separately running the flight phase in each stratum. A rounding
problem will then occur in each stratum. These rounding problems can then
be merged and a flight phase can be run again on the whole population. Final-
ly, the landing phase is applied only to the whole population. This procedure
enables us to roughly satisfy the balancing equations in each strata without
cumulating the rounding problems.

Let us look at this algorithm more precisely. Thus, at each step in the flight
phase, it is randomly chosen to either select or permanently discard one of the
population unit. At the end of the flight phase, in each stratum Uy, there is a
vector 7} (t) = (7} (t))kev, € [0,1]Y, that satisfies the following conditions:

E(ry(t) = mn(t), (3.5)
Zk(t) *
t) = 1), 3.6
k:;h Wk(t)ﬂk( ) kgt;h 0 G0
Card{k € Up; 0 < mi(t) < 1} < P, 3.7)

where F denotes the expectation for the sampling method used in the flight
phase. The vector 77 (t) gives the outcome of the flight phase: 77 (¢) is 1 if
unit k is selected in time ¢, O if it is rejected, and between 0 and 1 only if the
decision has not been made for unit k after the flight phase.

Equations (3.5) and (3.6) ensure that the inclusion probabilities and balan-
cing constraints are maintained perfectly at the end of the flight phase. Equ-
ation (3.7) ensures that a decision remains to be made for no more than P
individuals in each stratum, U}, where P is the number of balancing variables.

The flight phase ends when the balancing constraints can no longer be
exactly satisfied. The landing phase consists in defining, conditionally on the
outcome of the flight phase, an optimal sampling design defined on the re-
maining population V' (¢). This design is optimal in that it makes it possible
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to complete the sampling while minimizing the variance, conditionally on the
outcome of the flight phase, of the Horvitz-Thompson estimator of the balan-
cing variables. The remaining units are sampled, conditionally on the outcome
of the flight phase, with inclusion probabilities 7 (t)rey () so that the units’
unconditional inclusion probabilities 74 (t) ey (;) are maintained exactly.

In the case of stratified balanced sampling, the variance of Horvitz-Thompson
estimator is

e ul bi(t)
vary(TOT grrpa (1) ~ 3 W’; [ We(®) = BBz ), GY)
h=1keUy k
where
1(t) z(t) 1(t) wi(t)
bi( b ( . 3.9
(kGZU:h e k(1) Wk(t> kezL;h k(t k(1) T (t) G2

Deville and Tillé (2005) o er several approximations for the by(t). The
simplest is by (t) = 7 (t)(1 — mx(t)). The variance of the Horvitz-Thompson
estimator will be small if, in each stratum, study variable y is well explained
by balancing variables z(t).

Using equation (3.8) it is possible to write the variance of Horvitz-Thompson
estimator for the domain total:

vy T ) = S S B0 s mm©?, G0

h=1keU,\U® mi.()
whered = 1,...D.

If sample set s is selected from U in accordance with the stratified balan-
ced sampling procedure described above, sampling will be balanced in each
stratum as long as the landing phase a ects a small number of individuals re-
lative to the sample size. Specifically, equation (3.7) shows that the number
of balancing variables must be small relative to the sample allocation in each
stratum. In some cases, that constraint cannot be satisfied. The population is
often partitioned into very small groups to make the results more relevant, whi-
ch means decreasing the number of units selected in each stratum. In this case
balanced sampling will be only very approximate.

There is a SAS/IML version done by Chauvet and Tillé (2005) which is
available on the University of Neuchatel Web site. Also there is possibility
to use cube method in R language (Tillé and Matei (2007)). These software
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programs are free, available over the internet and are easy to use.

3.2. Model-based sample design

There are two cases, when the balanced sample might not work as good at
it is expected:

1. When the balancing variables are no longer correlated to the study
variable.

2. There are a lot of small domains.

Thus let us discussed and some other sample methods. Let yx(¢) and zx(t),
k = 1,..,N, be the realizations of random variables y, (¢) and z(t) of the
superpopulation model M:

Y, (t) = zx(t)B(t) +er(t), keU. (3.11)

Here z;,(t) = (1, 21 4(t), -, gp’k(t))’ are not random, 3(t) = (S, Si,
..., Bp)’ are the model coe cients, Erq(e(t)) = 0, varp(ex(t)) = vio?,
for all k € U, and covp(e(t),ei(t)) = 0, when k # . Also there is made
an assumption that v, are known and ) ;. .; v, = N. Then Nedyalkova, Tille
(2008) showed, that under superpopulation model (3.11), an optimal model-
assisted strategy consists of using inclusion probabilities that are proportional
to v, selecting the sample by means of a balanced sampling design on zj, and
using Horvitz-Thompson estimator (see 2.2.1).

In this research more general superpopulation model than (3.11) is consi-
dered:

P
gk(t) ZIBO,Q(k ( +'U(]k Z Bpg(k +vp k( )] ,k(t)+
p=1

m

+ Y Qigmma(t) +ex(t), keU. (3.12)
i=1

This model has the same assumptions as model (2.57), just instead of auxi-
liary variable x;,(t), the variable z;(t) is used. That is done, because the set
of covariates available at the design stage (z variables) could be different from
the set available at the estimation stage (x variables) even if in many practical
situations they could be the same.

In this case the construction of balanced sample for all auxiliary variables
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z,.(t) may not be reasonable from the practical point of view since it requires
to select in advance informative auxiliary variables. It might be enough to use
a model-based design. Thus the improvement of the estimation might be done
using GREG-type estimator (see section 2.2.2) instead of Horvitz-Thompson
estimator.

The suggested model-based sample design consists of three steps:

1. Model construction and estimation of it’s coefficients.
2. Estimation of the variance of the prediction error.

3. Construction of the sample design p(.).

In the first step the best superpopulation model is fitted to the available auxi-
liary information Al (2.56 equation).
In the second step the prediction errors (residuals)

are calculated and the variance of prediction error ygaQ is estimated.

Finally, in the third step the (approximately) optimal sample design p(.)
based on the variance of prediction error is chosen. Here really it possible to
use stratified simple random sample (where strata are constructed using the
variance of prediction error) or even probability proportional to size sampling
(where size variable is approximately equal to the variance of prediction error).

3.3. The summary of the third chapter

1. To improve estimation strategy, a balance sample or model-based samp-
le design can be used.

2. A balance sample is such sample where the total’s of balanced variab-
les are estimated without error. In the section 3.1.1. it is showed, that
some common used sample designs are balance.

3. To get a good balance sample it is recommended that balancing va-
riables should be closely correlated with the study variable, but not
amongst themselves. Also the number of balance variables must not
be large, because, accuracy no longer improves with a large number of
variables and the instability of the variance estimator increases with
each additional variable.

4. One of the way to get a balance sample is to use cube method.
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5. A use of balance sample might not give desirable improvement of ac-
curacies if here are a lot of small domains or the balancing variables
are no longer correlated to the study variable.

6. The proposed model-based sample consists of three steps: model const-
ruction and estimation of it’s coefficients, estimation of the variance of
the prediction error and Construction of the sample design.



Monte Carlo studies using real
data

4.1. Study population

For the simulation experiment, a real population from Statistics Lithuania
is used. Enterprises which are responsible for education are taken as the finite
population. Information about these enterprises is taken 20 times (each quarter
from 2005 till 2009). The average number of enterprises in each quarter is 750
(number of population).

The study variable y(t) is the income of an enterprise k and the auxiliary
variables are the number of employers x1 1 (t), tax of value added (VAT) x3 jt
and various indicators (specification of enterprise (5 indicators), size of enter-
prise (3 indicators), region (6 indicators)) z; , j = 3,...,15.

The total income in a domain in each quarter in 2008 and 2009 is chosen as
the parameter of interest (1" + [, T = 12,1 = 1,...,8). The domain is chosen
as counties (there are 10 counties in Lithuania) and specification of enterpriser
(5 specifications). Thus, in this research the study variables are elements of a
time series with 8 elements and the total number of domains of interest is 120.
The number of enterprises in each domain varies from 6 to over than 300.

Such population is chosen, because there are a lot of surveys in Lithu-
ania and other countries, that the relation between study variable and auxiliary
variables are similar. Furthermore the data are not homogeneous, thus the se-

47
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parate cases are investigate in separate domains.

From the real population (indicated by the number R = 0), two more po-
pulation where constructed by generating different response rate. The response
rates of 80% and 70% were generated for the first (R = 1) and the second
(R = 2) populations, respectively. These rates represents the response rate in
the survey (actually the response rate depends on county, number of employees
and specification).

4.2. Accuracy measures

Two accuracy measures were applied to compare the performance of the
different estimators for M = 1000 simulation. They are the absolute relative
bias

_——(d

ARB(TOT, (t)) = h w

TOT(t)

and the relative root means square error
—— (d) D)
RRMSE(TOT, (t)) = '
TOTW(t)

4.2)

Here Z{O\Tidr)n (t) is the predicted value of the total from m-th simulation in do-
main d using * estimator (what estimators are used in this research it is written
in section 4.3.1) and the TOT@ (t) refers to the true population in the same
domain at the same time ¢.

There are 120 domains of interest, so for the better comparison these do-
mains where grouped in three groups g;, 7 = 1,..., 3 (see table 4.1).

Table 4.1. Groups of the domains

Group  Number of domain Number of sampled enterprises

in group in the domain, (min - max)
Small 48 0-9
Medium 40 10 —29
Large 32 > 30

Total 120
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A mean of absolute relative bias and mean of relative root means square
error in each group were calculated:

—— (d)
ARB(TOT, (t
MaRrp — Zien AR5 ), (4.3)
Zngi 1

/\(d)
"RRMSE(TOT." (¢
MRRMSE = 2deg, ( : ()). (4.4)

Zdégi 1

4.3. Monte Carlo study I: Comparison of small
area estimators in the case of nonresponse

Using this simulation several things were compared:

1. The performance of different types of estimators using different sample
designs (see section 4.3.2).

2. The performance of model assisted and model-based estimators under
different superpopulation models(see sections 4.3.3 and 4.3.4).

3. The performance of different nonresponse methods using different es-
timators and response rates (see section 4.3.5).

4.3.1. Sample designs, nonresponse adjustment and
estimators

Different types of estimators and nonresponse adjustment methods are ap-
plied to 1000 samples generated by each of the following three sample designs
for all three populations:

1. SRS - simple random sample of 300 elements. Here the domain size
is unplanned.

2. SSRS - simple random stratified sample. Here population is divided
into three strata by the size of enterpriser. The number of selected en-
terprises from each strata are presented in table 4.2.

3. S@PS - stratified sampling proportional to size. Here the strata and the
number of selected enterprises in each strata are the same as for SSRS
(see table 4.2), just the probability to select enterpriser in to the sample
is proportional to the number of employees in the current enterprise.
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Table 4.2. Number of enterprises in the strata

Strata Number of enterprises Number of enterprises

in population in the sample
1 561 160
2 114 70
3 75 70
Total 750 300

Three types of estimators were chosen for estimation: Horvitz-Thompson, GREG-
type and Model-based. The notation of the estimator is constructed in this way:
Em, — LLR. The E € {HT,GREG, M B} notate which estimator is used,
M., c € {1,2,...,10} notate what model is used as superpopulation model,
two letters, LL € {WC, LR, RD, NN,CR, DR}, notate the nonresponse ad-
justment method and number R € {0, 1,2}, notate which population is used.

Thus 10 different superpopulation models were used as a assisted tool for
GREG-type estimator, or as the model for model-based estimator (see table
4.3).

The first model (see table 4.3) is based on the model with two auxiliary
variables. The model’s coefficients are the same for all domains but differs
from time to time. Thus the model’s coefficients in time ¢ are estimated using
just response sample data of the same time moment. The estimators, which use
this model us superpopulation model are indirect, because the model’s coef-
ficients for domain are estimated using data not only from the same domain,
but and from the others.

The difference between first and second model is just in the intercept. For
the first model it is the same for whole population, thus for the second model
it is separate for the groups. Here the groups divide enterprises by the size of
enterpriser and region.

In the model M5 the difference between groups is made by adding random
intercept vg 4(x)(t). This model, as and the previous two, has different model’s
coefficients from time to time, thus they can be calculated using just the single
sample data from the same time ¢ as the parameter of interest.

The same property has and M4 model, but the coefficients of this model
differs and between groups. It means that for some small groups model’s coef-
ficients are estimated using small number of enterprises.

The next 4 models M5, Mg, M7 and Mg are panel type models, because
the model’s coefficients do not depend on time, thus they might be estimated
using huge amount of auxiliary information which is possible to get even be-
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Table 4.3. Models used in estimation stage

Notation Model

My Y, (1) = Bo(t) + Bi(t)zy 1 (t) + B2(t)zg s (t)+
+ep(t), ke U

Mo Y, (1) = Bogr)(t) + Br(t)zy (1) + Ba(t) 2o () +
+er(t), ke U

M3 Y, (&) = Bo(t) +vogr)(t) + Br(t)zy 1 () + B2(t) 2o (t)+
+e(t), ke U

My Y, (1) = Bogry(t) + Brgr) (D)1 1 (8) + Bagr) ()22, (1) +
+ep(t), ke U

Ms Y, (t) = Bo+ Bz i (t) + Bazg i () +
+ep(t), ke U

M Y, () = Bogry + L1z i (t) + Bazo i (t)+
+ei(t), ke U

Mz Y, (t) = Bo+vogm) + 81211 (1) + Bazg i (H)+
+ei(t), ke U

Mg Y1) = Bogk) T Brge)T1i(t) + Bogmy ok (H)+
+ep(t), ke U

Mo Y, (1) = Bogr) + 5121 1) + Ba,gy (k) T2,k (1) +
+ 331 (aj +bjzg . (t)s; +ex(t), k €U

Mo Y, (1) = Bog(k) + V0,9, (k) T 51211 () + Bo g(r) Zo,k (1) +

+323_ 1 (aj +bjzo . (t)s; + ex(t). k €U
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fore current sample is selected.

The last two models Mg and M g also incorporates the linear trend and
seasonal components and for model M g random intercept for the groups also
is included. In this case the groups are divided by the regions.

Six different nonresponse adjustment method are used to estimate pa-
rameters of interest in two populations with different response rate (80% for
population R = 1 and 70% for population R = 2). The differences be-
tween nonresponse adjustment methods are denoted by adding two letters,
LL € {WC,LR,RD,NN,CR, DR}, at the end of the estimate’s name.
The meaning of these abbreviations is described below. The weighting-class
method (WC) and the logistic regression model (LR) are applied to estimate the
response probability. Also, the performance of different imputation methods
(random donor (RD), nearest neighbors (NN), regression imputation using the
common model (CR)(Lehtonen, Sérndal and Veijanen (2003)) and regression
imputation using the model with domain-intercepts (DR) (Lehtonen, Séarndal
and Veijanen (2003))) is investigated. For weighting-class, random donor and
nearest neighbors methods units are grouped by the number of employees and
specification.

4.3.2. Design-based estimators vs model-based estimators

From the survey sampling theory it is known, that design-based estimators
are unbiased (HT case) or approximately unbiased (GREG case). As for the
model-based estimators — the variance in usually smaller than for design-based
estimators, but they are design-bias.

Thus in this research these properties of the design-based and model-based
estimators are verified in the case of small area estimation (see table 4.4).

The results showed what was expected: design-based estimators are ap-
proximately unbiased even when the sample size is small. The model-based
estimator is bias and in some cases the bias is so large, that RRMSE is bigger
then for design-based estimators even if it is clear that the variance of model-
based estimator is significantly smaller than for design based estimator.

Here for the superpopulation model, a common model is chosen. It seems,
that it is not the best model for this population, thus the different models are
compared in the next two sections.
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Table 4.4. Performance of different types of estimators using different sample designs

Domain sample size classes
Estimator Small0 — 9 Medium 10 — 29 Large 30 — ...
MABR,% MRRMSE,% MABR,% MRRMSE,% MABR,% MRRMSE,%

Simple random sampling (SRS)

HT 2.0 56.4 3.2 38.6 2.1 23.6
GREG pm, 1.4 50.9 2.2 17.9 0.9 10.3
MBay, 48.5 55.6 18.4 24.1 5.5 11.2

Stratified simple random sampling (SSRS)

HT 2.4 31.6 0.7 15.2 0.4 8.8
GREG pm, 1.8 24.3 0.7 14.3 0.2 5.7
M B, 23.5 26.7 12.4 17.7 2.6 5.7

Stratified sampling proportional to size (S7PS)

HT 2.3 52.4 0.7 18.8 0.4 8.4
GREG p, 2.1 36.4 1.1 17.0 0.4 7.4
M By, 22.5 26.9 9.6 13.7 2.8 5.5

4.3.3. Models from the current sample vs panel type models

The idea of comparison of the models from the current sample and panel-
type model is based on these assumptions:

1. To estimate reliable model’s coefficient from the current sample might
be impossible especially when the sample size in domain is small.

2. The use of panel-type models where model’s coefficients do not de-
pend on time increase the amount of data from which the model’s
coefficients are estimated, thus the estimates of model’s coefficients
might be more reliable.

The results are showed in table 4.5 and table 4.6. The same sample design and
superpopulation models are used in both tables, just in table 4.5 the perfor-
mance of Greg-type estimator is investigated while in table 4.6 — Model-based
estimator.

The results in these tables are group by the model’s coefficients specifica-
tion.

In the first group model’s with the same coefficients for the whole popula-
tion are compared. Here for the model M coefficients depends on time, thus
the estimation of them can be done just using current sample data. As for the
model M coefficient are the same and for the whole population and from time
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Table 4.5. Performance of different models when GREG-type estimator is used. A
stratified simple random sample case

Domain sample size classes
Estimator Small0 — 9 Medium 10 — 29 Large 30 — ...
MABR,% MRRMSE,% MABR,% MRRMSE,% MABR,% MRRMSE, %

Models where model’s coefficients are the same for whole population

My 1.8 24.3 0.7 14.3 0.2 5.7
Ms 1.7 25.0 0.7 14.9 0.3 5.9

Models where fixed intercepts are different between groups

Mo 1.7 26.2 0.6 14.2 0.3 5.8
Mg 1.6 24.1 0.6 14.0 0.2 5.7

Models where random intercepts are different between groups

M3 1.7 26.3 0.6 14.2 0.3 5.9
Mz 1.6 24.1 0.6 14.0 0.2 5.7

Models where model’s coefficients are different between groups

My 1.1 23.0 0.4 14.4 0.3 5.7
Mg 1.1 22.9 0.7 13.3 0.2 5.7
Mo 0.8 20.0 0.7 12.7 0.2 5.5
Mo 0.8 20.0 0.7 12.7 0.2 5.5

to time. This model is perfect if the differences between enterprises can be ex-
pressed just through the auxiliary information. In this case the results showed,
that the income of enterpriser depends not only on the number of employees
and VAT, but and on some other information (the results for the model M3 is
worse than for the model M which also depends on time).

In the second group and third groups models with different intercepts for
the groups are investigates. The differences between groups are made using dif-
ferent fixed-effect intercepts (second group of results) or using random-effect
intercepts (third group of results). The results of these groups already showed
the the panel type models give better results, thus the use of different intercept
in the panel type model gives larger improvement than the use of the model
where coefficients depend on time (see model Mg and M in table 4.5 or
model M7 and M/ in table 4.6).

In the last group of results models with different coefficient in the groups
are compared. For the models Mg and M g the linear trend and seasonal com-
ponents are incorporated and for the model M 1y random-effect for intercept is
also included. The results showed, that panel type model with time components
(trend and seasonal components) is the best choice for both — design-based and
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Table 4.6. Performance of different models when Model-based estimator is used. A
stratified simple random sample case

Domain sample size classes
Estimator Small0 — 9 Medium 10 — 29 Large 30 — ...
MABR,% MRRMSE,% MABR,% MRRMSE,% MABR,% MRRMSE,%

Models where model’s coefficients are the same for whole population

Mi 23.5 26.7 12.4 17.7 2.6 5.7
Ms 25.5 30.1 13.1 18.5 2.9 5.9

Models where fixed intercepts are different between groups

Mo 229 27.4 12.9 18.6 2.7 5.4
Mg 21.2 25.3 12.5 18.0 2.6 5.3

Models where random intercepts are different between groups

M3 22.5 26.4 11.9 17.2 2.8 5.5
Mz 21.0 25.0 11.7 16.9 2.7 5.3

Models where model’s coefficients are different between groups

My 25.1 30.4 8.6 15.5 2.3 5.7
Mg 20.2 24.3 7.7 14.3 2.2 5.4
Mo 19.4 23.6 7.6 14.2 2.2 5.2
Mg 19.2 23.3 7.5 14.0 2.2 5.1

model-based estimators.

4.3.4. Models with random effect vs models without random
effect

The choice between models with random-effect and without random-ef-
fect is investigated in this section. Such kind of investigation is made because
in Lehtonen, Sérndal and Veijanen (2003) paper it was made an conclusion,
that for design-based model assisted estimators better to use models without
random effects and for model-based estimators — models with random-effects.
Still in this paper models of the current sample are investigated and in this
research it was already showed, that it is better to use the panel type model
instead of the model based on the data from the current sample.

For the comparison random-effect model and model without random ef-
fect a simple random sample (SRS) design is chosen. The results for Greg type
estimator are presented in table 4.7 while for the Model-based estimator — in
table 4.8. All these results in both tables are grouped in to three groups.

In the first group models where model’s coefficients are estimated us-
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Table 4.7. Performance of different models when GREG-type estimator is used. A
simple random sample case

Domain sample size classes
Estimator Small0 — 9 Medium 10 — 29 Large 30 — ...
MABR,% MRRMSE,% MABR,% MRRMSE,% MABR,% MRRMSE, %

Models where model’s coefficients are estimated using current sample data

Mo 2.0 53.7 2.1 18.5 0.7 10.6
M3 2.0 53.8 2.2 18.7 0.7 10.6

Models where model’s coefficients are estimated using data from the past

Mg 1.8 48.7 1.7 17.5 0.7 10.4
M= 1.8 48.7 1.7 17.5 0.7 10.4

Panel type models with linear trend and seasonal components

Mo 1.4 46.4 1.6 16.6 0.6 10.3
Mo 1.5 46.3 1.6 16.6 0.6 10.3

ing current sample design are compared. Here the model’s coefficients are the
same for the whole population except the intercept. For the model Mo the in-
tercept is fixed and differs between groups and for the model M3 the intercept
is random for the same groups as in model M.

Table 4.8. Performance of different models when model-based estimator is used. A
simple random sample case

Domain sample size classes
Estimator Small0 — 9 Medium 10 — 29 Large 30 — ...
MABR,% MRRMSE,% MABR,% MRRMSE,% MABR,% MRRMSE,%

Models where model’s coefficients are estimated using current sample data

Mo 47.0 56.3 15.1 20.5 5.4 10.3
M3 48.5 55.6 14.9 19.9 5.3 10.2

Models where model’s coefficients are estimated using data from the past

M 42.9 50.6 14.0 19.3 5.0 9.6
M= 42.7 50.1 13.8 19.0 5.0 9.5

Panel type models with linear trend and seasonal components

Mo 41.4 49.6 13.9 19.0 4.9 9.2
Mo 41.3 49.4 13.7 18.9 4.9 9.1

In the second group the panel type models are compared. For these models
coefficients do not depend on time, thus they are estimated using data from the
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past. For both model coefficients are the same for the whole population except
intercept (for the model Mg the intercept differs between groups but it is fixed
and for the model M the intercept is random for the same groups as in model
Me).

In the third group the panel type model with time components are com-
pared. Here the model’s coefficients are different between groups (size of en-
terpriser and region) and in model M the random intercept is incorporated
for larger groups (region).

The results for the GREG-type estimator are so similar that it is no possi-
ble to say which model (with random effect or without it) is better. Therefore
the performance of the hypothesis testing of equality of two variances is taken
as an additional criterion for the comparison. Here the results showed that in
most of the cases the difference between variances if not significant at 10%
level. Just for the 20% of domains (most of them are small ones) a model with-
out random effect give better results then the use of the model with random
effect.

The results for the model-based estimator is different. Here models with
random-effect (compared with models without random-effect) reduce the M ARB
and MRRMSE.

4.3.5. Weighting methods vs imputation methods

A comparison between different nonresponse adjustment methods is made
in this section.

Weighting methods, imputation using donors and imputation using models
are compared at first (see table 4.9). Here the population with 80% response
rate is used. For the GREG-type estimator model My is used as the assisted
tool and for the model-based estimator — M. They are chosen as the best
models for these estimators (see sections 4.3.3 and 4.3.4).

The results from the table 4.9 showed, that for the both estimators the im-
putation using donor increase the M ARB and M RRM S E more than using
other methods. The imputation using models increase RRM SE more than
weighting methods, thus in this research the best way to adjust nonresponse is
to use re-weighting, when inclusion probabilities are estimated using logistic
regression model.

The comparison between estimators when different response rate occurs is
the second task. Here the results are presented in tables 4.9 and 4.10. It shows,
that when response rate decreases the bias of the GREG-type estimator in-
creases quicker than the bias of the model-based estimator. The results in table
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Table 4.9. Comparison of different nonresponse adjustments methods when response
rate is 80%. A stratified simple random sample case

Domain sample size classes

Estimator Small 0 — 9 Medium 10 — 29 Large 30 — ...
MABR,% MRRMSE,% MABR,% MRRMSE,% MABR,% MRRMSE, %

GREG-type estimator

GREG My —WC1 5.1 22.7 3.3 14.0 1.9 6.4
GREG Mg — LRI 4.8 21.5 3.1 13.6 1.8 6.2
GREG My — RD1 9.5 44.3 6.5 25.9 3.7 10.2
GREG My — NN1 8.3 37.6 4.9 21.2 3.1 9.5
GREGMmy — CRI 4.9 22.3 3.2 13.9 1.8 6.3
GREG My — DR1 5.0 22.6 3.3 13.9 1.8 6.4

Model-based estimator

M By, — WC1 19.3 23.5 7.6 14.1 2.2 5.2
MB,, — LR1 19.2 23.5 7.5 14.0 2.2 5.1
M By, — RD1 25.3 29.8 9.9 18.2 43 7.8
M By, — NN1 24.7 28.4 9.6 17.9 4.1 7.5
MB,, — CR1 19.3 24.8 7.6 15.8 2.3 6.0
M By, — DR1 19.2 24.7 7.7 15.6 2.3 5.8

Table 4.10. Comparison of different nonresponse adjustments methods when response
rate is 70%. A stratified simple random sample case

Domain sample size classes

Estimator Small 0 — 9 Medium 10 — 29 Large 30 — ...
MABR,% MRRMSE,% MABR,% MRRMSE,% MABR,% MRRMSE, %

GREG-type estimator

GREG My, —WC1 7.3 25.6 4.8 17.2 2.3 8.7
GREG Mg — LR1 6.9 25.4 4.7 16.8 2.2 8.6
GREG My — RD1 15.7 54.5 8.6 32.5 4.4 13.2
GREGpMmy — NN1 12.1 45.6 7.7 26.3 3.6 11.5
GREGMmy — CR1 6.9 28.2 5.1 16.9 2.3 9.2
GREG Mg — DR1 7.1 27.8 5.2 16.8 2.2 9.0

Model-based estimator

M B,y — WC1 19.7 24.6 7.9 14.8 2.2 5.6
M By, — LRI 19.7 24.4 7.5 14.6 2.3 5.5
M By, — RD1 27.0 32.2 10.9 20.1 4.6 8.8
MBy,, — NN1 26.4 30.5 10.4 19.4 4.4 8.5
MB,, — CR1 19.8 28.0 7.8 17.8 2.4 6.4

MBa,, — DR1 19.9 27.6 7.8 17.5 2.3 6.2
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4.9 show that event in the GREG-type estimator becomes bias when nonre-
sponse occurs, it still has smaller RRM SE than the model-based estimator.
As for the table 4.10 the results are opposite: model-based estimator perform
better results than GREG-type estimator (except for the bias of small domains).
Thus when the response rate decreases more than some point (in this research
more than 70%) it is better to use model-based estimator, while till that point
GREG-type estimator gives better results than model-based estimator.

4.4. Monte Carlo study ll: Searching for the
optimal strategy when panel type data are
used

In this section several estimation strategies are used to answer the follow-
ing problems: what type of model, sample design and estimator should be used
in small area estimation.

4.4.1. Estimation strategies

For the simulation experiment, the same population as in section 4.1 is
considered. The study variable y (), the auxiliary variables =, j =1, ..., 15
and parameter of interest are also the same.

The purpose of this research is to find an optimal strategy (pair of sample
design and estimator) for small are estimation when the panel type data are
used. Thus this purpose can be divided into these steps:

1. To improve strategies what are showed in chapter 4.3 a balance sam-
ple is selected, where first order inclusion probabilities are defined in
the same way as for SRS, SSRS and S7PS designs. For these sample
designs different number of the balanced variables are used.

2. Compare the results of best strategies from the previous step when
NONresponse occurs.

3. To improve strategies by using model-based sample design.

The results of the each step are presented in sections 4.4.2, 4.4.3 and 4.5 re-
spectively.
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4.4.2.

Comparison of strategies when balanced sample is
used

A balanced samples are selected using different inclusion probabilities and
different number of balanced variables.
Three different methods are used to estimate inclusion probabilities:

1.

The inclusion probabilities are the same for all units. In this case inclu-
sion probabilities are the same as using SRS design, thus the notation
of a balanced sample when inclusion probabilities are the same is SRS.

The inclusion probabilities are the same for the units from the same
strata. In this case inclusion probabilities are the same as using SSRS
design, thus the notation of a such balanced sample is SSRS.

The inclusion probabilities are proportional to the size variable. In this
case inclusion probabilities are the same as using S7PS design, thus
the notation of a such balanced sample is S7PS.

There are chosen four different sets of balanced variables for constructing the
balance sample. These sets are notated by adding number to the name of bal-
ance sample:

4,

. For this case there is one balance variable — inclusion probability;

. There are two balanced variables: inclusion probability and number of

employees in the enterprise;

. There are two balanced variables: inclusion probability and tax of value

added (VAT);

There are three balanced variables: inclusion probability, number of
employees in the enterprise and VAT.

For this research the three types of estimators are considered: Horvitz-Thompson
(HT, see equation (2.29)), GREG-type (GREG, see equation (2.32)) and Model-
based (MB, see equation (2.38)) estimators. For the GREG-type estimator, the
predicted values are calculated using model My (see table 4.3) and for the MB
estimator — Mg (see table 4.3). The models coefficients are estimated using
the auxiliary information from the previous surveys. Thus, model coefficients
are the same for all quarters, the auxiliary variables from the current survey
are used just for estimation of the predicted values.

The results of this research are presented in tables 4.11, 4.12 and 4.13.

For the HT estimator the bigger effect has the difference between methods
of the inclusion probabilities estimation than the number of balanced variables.
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Table 4.11. Horvitz-Thompson estimates for different sample designs.

Domain sample size classes

Sample design Small0 — 9 Medium 10 — 29 Large 30 — ...
MABR,% MRRMSE,% MABR,% MRRMSE,% MABR,% MRRMSE,%

SRS-1 2.0 56.4 3.2 38.6 2.1 23.6
SRS-2 2.1 56.4 2.1 36.2 1.3 23.8
SRS-3 2.2 55.5 2.1 35.8 0.6 22.3
SRS-4 2.4 55.1 2.2 36.0 0.5 22.1
SSRS-1 2.4 31.6 0.7 15.2 0.4 8.8
SSRS-2 2.2 31.4 0.8 14.8 0.3 8.7
SSRS-3 1.7 30.5 0.8 15.1 0.4 8.0
SSRS-4 1.4 30.6 0.7 14.7 0.4 7.9
S7PS-1 2.3 52.4 0.7 18.8 0.4 8.4
S7PS-2 2.1 52.0 0.8 18.5 0.4 8.0
SwPS-3 1.6 51.1 0.7 18.4 0.3 7.9
S7PS-4 1.5 50.9 0.7 18.3 0.3 7.6

Table 4.12. GREG-type estimates under model My for different sample designs.

Domain sample size classes

Sample design Small0 — 9 Medium 10 — 29 Large 30 — ...
MABR,% MRRMSE,% MABR,% MRRMSE,% MABR,% MRRMSE,%

SRS-1 1.4 46.4 1.6 16.6 0.6 10.3
SRS-2 2.1 47.0 1.2 17.2 0.4 10.4
SRS-3 1.6 46.6 0.9 16.9 0.5 10.6
SRS-4 1.5 46.3 0.7 16.4 0.4 9.9
SSRS-1 0.8 20.0 0.7 12.7 0.2 5.5
SSRS-2 0.8 19.7 0.4 12.3 0.2 5.6
SSRS-3 0.7 19.4 0.4 12.3 0.2 5.4
SSRS-4 0.8 19.3 0.4 12.1 0.2 5.4
S7PS-1 0.8 34.0 0.8 17.0 0.5 7.4
S7PS-2 0.5 33.9 0.8 17.1 0.4 6.9
S7PS-3 0.5 33.2 0.7 16.6 0.3 6.7
S7PS-4 0.5 32.9 0.7 16.4 0.3 6.5

The same conclusions can be made and for GREG-type and MB estima-
tors. For all estimators a balance sample with inclusion probabilities that are
the same as for SSRS sample design presented best results. As for the estima-
tors it seems that GREG-type estimator is better than MB estimator (especially
for small domains). Still the previous research showed, that when nonresponse
occurs MB estimator might have smaller MARB and RRMSE (see section
4.3.5). Thus the case when a balance sample is selected and nonresponse oc-
curs is discussed in section 4.4.3.
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Table 4.13. Model-based estimation under model M for different sample designs

Domain sample size classes

Sample design Small0 — 9 Medium 10 — 29 Large 30 — ...
MABR,% MRRMSE,% MABR,% MRRMSE,% MABR,% MRRMSE,%

SRS-1 41.4 49.6 13.9 19.0 4.9 9.2
SRS-2 42.1 49.0 13.7 19.2 4.8 9.4
SRS-3 41.3 48.6 13.1 18.7 4.4 9.0
SRS-4 40.9 48.3 12.8 18.4 4.3 8.9
SSRS-1 19.2 23.3 7.5 14.0 2.2 5.1
SSRS-2 19.1 23.4 7.4 14.1 2.2 5.1
SSRS-3 18.5 22.7 7.2 13.5 2.2 5.0
SSRS-4 18.3 22.3 7.0 13.1 2.1 4.9
S7PS-1 23.8 27.9 10.2 14.7 3.1 6.0
S7PS-2 23.5 27.6 10.1 14.6 3.0 5.9
S7PS-3 23.6 27.7 10.0 14.2 3.3 6.0
S7PS-4 23.2 27.3 9.7 14.0 2.8 5.8

4.4.3. Balance sample and nonresponse

For comparison of the estimators when nonresponse occurs the a balance
sample with inclusion probabilities that are the same as for SSRS sample de-
sign is used. A re-weighting method where response probabilities are estimated
using logistic regression model is taken as the best nonresponse adjustment
method for small area estimation (see section 4.3.5).

The results presented in table 4.14 show that the bias of GREG-type es-
timator increases quicker than model-based estimator when response rate in-
creases.

Table 4.14. GREG-type and model-based estimators behavior when different response
rate occurs

Domain sample size classes
Response rate Small0 — 9 Medium 10 — 29 Large 30 — ...
MABR,% MRRMSE,% MABR,% MRRMSE,% MABR,% MRRMSE,%

GREG-type estimator

100% 0.8 19.3 0.4 12.1 0.2 5.4
80% 3.6 21.4 3.0 13.4 1.7 6.1
70% 6.7 25.2 4.6 16.0 2.2 7.2

Model-based estimator

100% 18.3 22.3 7.0 13.1 2.1 4.9
80% 18.5 22.9 7.2 13.2 2.2 5.1
70% 19.5 24.1 7.4 13.9 2.3 5.4
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The same conclusion is made and in section 4.3.5, but this time, when a
balance sample is used all the accuracy measures are smaller.

4.5. Model-based sample design and estimators

The results in section 4.4.2 show that accuracy measures depends more
on the way the inclusion probabilities are constructed than on the number of
balanced variables. Thus in this section model-based sample design is used to
select sample. The first model-based sample design step says that an appro-
priative model should be selected and estimation of it’s coefficients should be
done. The coefficients should be estimated using auxiliary information which
is available in the sample construction stage.

Six panel type models (Mzs—M1g) are used in previous researches (see
table 4.3), thus the same models are used and in this research.

After the model is selected and coefficients are estimated, the variance of
the prediction error is calculated for all units in the population. This variable
is used for the construction of inclusion probabilities, which are calculated in
two different ways:

1. The population is divided into three strata by the value of the variance
of the prediction error. The number of selected units from each strata is
estimated using Neyman allocation formula (Sarndal, Swensson, Wret-
man (1992)) where the variance is estimated not for a study variable
but for the variance of the prediction error. The inclusion probabilities
for the units from the same strata are equal. Thus using such sample
design, the units from these strata where the variance of the prediction
error is large have bigger probability to be selected, then the units from
these strata where the the variance of the prediction error is small.

2. The population is divided into strata and number of elements from
each strata are estimated in the same way as in the first case. Thus the
inclusion probabilities in each strata are calculated proportional to the
variance of the prediction error. Thus using such sample design, the
units where the variance of the prediction error is large have bigger
probability to be selected, then the units where the the variance of the
prediction error is small.

Two estimators (GREG-type and model-based) are used to estimated parameter
of interest. The model used in the estimation stage is the same as in the sample
selection stage. The results are presented in tables 4.15 and 4.16.
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Table 4.15. Results for model-based sample design when inclusion probabilities are
the same for all units in the same strata.

Domain sample size classes
Model Small 0 — 9 Medium 10 — 29 Large 30 — ...
MABR,% MRRMSE,% MABR,% MRRMSE,% MABR,% MRRMSE, %

GREG-type estimator

Ms 1.4 19.5 0.7 12.3 0.2 5.6
Me 1.3 19.2 0.6 12.1 0.2 5.4
Mz 1.3 19.2 0.6 12.1 0.2 5.4
Mg 1.0 19.0 0.5 12.0 0.1 5.2
Mo 0.7 18.7 0.5 11.7 0.1 5.0
Mo 0.8 18.7 0.5 11.8 0.1 5.0

Model-based estimator

Ms 20.1 25.1 11.1 16.5 2.4 5.4
Me 18.2 23.3 9.5 15.0 2.3 5.2
M= 18.0 23.0 9.2 14.8 2.2 5.0
Mg 16.0 21.8 7.0 13.1 2.1 4.9
My 15.4 20.6 6.9 12.7 2.0 4.6
Mo 15.2 20.3 6.6 12.5 2.0 4.4

Table 4.16. Results for model-based sample design when inclusion probabilities are
proportional to the variance of prediction error.

Domain sample size classes
Model Small 0 — 9 Medium 10 — 29 Large 30 — ...
MABR,% MRRMSE,% MABR,% MRRMSE,% MABR,% MRRMSE, %

GREG-type estimator

Ms 1.5 19.4 0.6 12.2 0.2 5.5
Mg 1.4 19.3 0.6 12.0 0.1 5.4
Mz 1.4 19.3 0.5 12.0 0.1 5.4
Mg 1.0 19.0 0.5 12.0 0.1 5.2
Mo 0.8 18.8 0.4 11.6 0.1 5.0
Mo 0.8 18.9 0.4 11.7 0.1 5.0

Model-based estimator

Ms 19.3 23.1 10.3 14.6 2.2 5.2
Me 17.6 21.2 9.0 13.4 2.0 5.0
Mz 17.4 20.4 8.8 13.3 1.9 4.8
Mg 15.2 19.5 7.0 12.6 1.8 4.6
My 14.6 18.7 6.5 11.8 1.5 4.1

Mo 14.4 18.4 6.4 11.6 1.5 4.0
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The comparison of the model-based sample designs demonstrates that for
the GREG-type estimator there is no difference how the inclusion probabili-
ties are constructed in the strata (in the table 4.15 they are the same and in the
table 4.16 they are proportional to the variance of prediction error). Thus the
difference between selected model is significant. For the GREG-type estimator
panel type model with time component, M, is the best.

The results also showed, that for model-based estimator the model-based
sample design with inclusion probabilities proportional to the variance of pre-
diction error (table 4.16) has smaller accuracy measures than model-based
sample design with the same inclusion probabilities in the strata (table 4.16).
The panel type model with time component and random intercept, Mg, seems
the best model for model-based estimator.

The analysis of sections 4.3.2, 4.4.2 and 4.5 reveals that model-based sam-
ple design for both estimators decrease accuracy measures more than other
types of sample designs. Thus the optimal strategy for such kind of data is
model-based sample design and GREG-type estimator.

4.6. The summary of the fourth chapter

The results of the first simulation showed, that:

1. Design-based estimators are approximately unbiased even when sam-
ple size is small. Thus the model-based estimators are biased and the
bias might be so large, that relative root mean square error is larger
then for the design-based estimators.

2. The use of panel type model for construction of superpopulation model
and it’s use for estimating small area estimators might improve the
properties of estimator (a bias and a variance might be smaller) in com-
parison with the model constructed just using current’s sample data.

3. The superpopulation models, which incorporate random effect improve
the properties of model-based estimators in comparison with the mod-
els without random effects. For design-based estimator the improve-
ment was not significant.

4. All estimators might be bias, if there is nonresponse. The bias depends
on response rate: when response rate is small the bias is large. The bias
grows quicker for design-based estimators in comparison with model-
based estimators.
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5. It is better not to use donor methods for nonresponse adjustments for

small areas. It is better to use weighting methods or imputation using
models.

The results of second simulation showed, that:

1.

When the balance samples are used it is more important to properly
choose inclusion probabilities, than the number of balancing variables.
The results were better when balance sample with the same inclusion
probabilities as SSRS design for all type estimators.

When the balance sample is used, the best estimation strategy is that
where GREG estimator is used.

. In the case of nonresponse, the properties of the estimators stay the

same even when balance sample is used. Still estimators might be bias
and it is better not to use donor method for nonresponse adjustment in
small areas.

. For model-based estimator the model-based sample design with inclu-

sion probabilities proportional to the variance of prediction error has
smaller accuracy measures than model-based sample design with the
same inclusion probabilities in the strata. For design-based estimator
both sample designs gave the same results.

. For model-based sample design the best strategy is to use GREG esti-

mator where panel type model without random effects and with time
trend is used as the assisted tool. Still, if the model-based estimator is
chosen, it is better to use panel type model with random effects and
time trend as a superpopulation model.



General conclusions

After solving the problems formulated in the chapter “Introduction”, we have
obtained the following conclusions:

1.

The analysis and simulation results using known sample designs and
estimators showed that for small area estimation it is important to
choose not only right estimator, but and the sample design and su-
perpopulation model.

Not all nonresponse adjustment methods, which are used in population
level, can be used and in small area level. For small area estimation it
is suggested to use re-weighting or imputation using models, but not
real donor imputation methods.

. Simulation results showed, that the bias for design-based estimators

increases quicker than for model-based estimators when response rate
decreases.

Panel data model can be used to describe element’s randomness and
dependence on time in real finite population. Such type models are
more useful than the models, which coefficients are estimated just us-
ing the current sample data.

Using balance sample it is more important to choose right inclusion
probabilities than the right number of balanced variables. Simulation

67
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results showed, that for all types of estimators it is better to use such
balance sample, where inclusion probabilities are the same as stratified
simple random sample, compared with other balanced samples.

. The proposed model-based sample design might be the best choice, if

a lot of information from previous researches are available. Simulation
results showed, that the best estimation strategy might be where model-
based sample design and GREG estimator are used. Here a panel data
model with fixed-effects and time component should be used as as-
sisted tool for GREG estimator. Still, if the model-based estimator is
considered, the panel data model with random-effects and time com-
ponent should be used.
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