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1. Introduction

Robotic manipulators are widely used in various industrial 
and domestic applications such as welding, painting, and 
assembly. These machines are designed to perform specific 
tasks by manipulating objects in a predefined environment. One 
of the critical challenges in robotic manipulator control is the 
inverse kinematic (IK) problem, which refers to determining 
the joint angles of the robotic manipulator that result in a 
desired end-effector position and orientation. The IK problem 
is a non-linear and complex problem that requires an efficient 
and accurate solution to ensure the smooth operation of the 
robotic manipulator.

The IK problem has been traditionally solved using 
analytical methods such as the Jacobian inverse method, the 
pseudo-inverse method, and the geometric method. These 
methods have been widely used in industrial robots and have 
been shown to provide accurate solutions in well-structured 
environments [1]. However, these methods have several 
limitations, including the assumption of a known and fixed end-
effector position, which may not be the case in real-world 
applications [2]. Additionally, these methods are sensitive to 
changes in the robot's kinematic structure and may not be able 
to handle singularities and other constraints [3]. Recently, there 
has been a growing interest in using machine learning 
algorithms for solving the IK problem in robotic manipulators. 
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These algorithms have been shown to be able to learn the IK 
relationship between the robot's end-effector position and 
orientation and its joint angles, providing an efficient and 
accurate solution [4]. Machine learning algorithms such as 
support vector machines (SVMs) and genetic algorithms (GAs) 
have been used to model the IK relationship in robotic 
manipulators [5]. Deep learning algorithms, such as artificial 
neural networks (ANNs) and convolutional neural networks 
(CNNs), have also been used to model the IK relationship in 
robotic manipulators. These algorithms have been shown to 
achieve high accuracy and robustness in IK control of robotic 
manipulators. For example, in [6], an ANN-based IK model 
was proposed for a 6-DOF robotic manipulator, and the model 
was able to achieve an accuracy of 99.6%. In [7], a CNN-based 
IK model was proposed for a 7-DOF robotic manipulator, and 
the model was able to achieve an accuracy of 98.4% in IK 
control.

Deep learning-based IK models can be classified into two 
categories: feedforward and recurrent neural networks (RNNs). 
Feedforward neural networks, such as ANNs, are used to model 
the IK relationship as a one-to-one mapping between the robot's 
end-effector position and orientation and its joint angles. RNNs, 
are used to model the IK relationship as a one-to-many mapping 
between the robot's end-effector position and orientation and its 
joint angles [8]. Hybrid deep learning models, which combine 
the advantages of feedforward and recurrent neural networks, 
have also been proposed for IK modelling of robotic 
manipulators [9]. For example, in [10], high accuracy and 
robustness was achieved using a hybrid deep learning model 
was proposed that combined an ANN and an LSTM network 
for IK modelling of a 7-DOF robotic manipulator. In addition 
to deep learning algorithms, other advanced machine learning 
algorithms such as deep reinforcement learning (DRL) have 
been proposed for IK modelling of robotic manipulators. DRL 
algorithms have been shown to be able to learn IK control 
policies in a trial-and-error manner, which is suitable for real-
world applications [11]. For example, in [12], a DRL-based 
inverse kinematic model was proposed for a 7-DOF robotic 
manipulator, and the model was able to achieve high accuracy 
and robustness in IK control.

1.1. Related Work

Meta-heuristic algorithms, such particle swarm optimization 
(PSO), have been proposed as an alternative approach for 
solving the IK problem in robotic manipulators [13-16]. These 
algorithms are inspired by nature and are designed to handle 
non-linear and complex problems. They have been shown to be 
able to find an optimal solution for the inverse kinematic 
problem, even in the presence of constraints and singularities 
[17]. GAs is a type of meta-heuristic algorithm that are inspired 
by the process of natural selection in biology. They are used to 
optimize the IK problem by simulating the process of evolution 
[18]. GAs have been used to model the IK relationship in 
robotic manipulators and have been shown to achieve high 
accuracy (99.4%) and robustness in IK control [19]. 

PSO is another type of meta-heuristic algorithm that is 
motivated by the actions of birds. It is used to optimize the IK 

problem by simulating the behaviour of a swarm of particles 
[20]. PSO has been used to model the IK relationship in robotic 
manipulators and has been shown to achieve high accuracy and 
robustness in IK control [21]. For example, in [22], a PSO-
based IK model was proposed for a 7-DOF robotic 
manipulator, and the model was able to achieve an accuracy of 
98.8% in IK control.

Meta-heuristic algorithms can be combined with other 
machine learning algorithms, such as deep learning algorithms, 
to achieve high accuracy and robustness in IK control. For 
example, in [23], a hybrid GA-ANN-based inverse kinematic 
model was proposed for a 7-DOF robotic manipulator, and the 
model was able to achieve an accuracy of 99.2%. The hybrid 
model combined the advantages of GA and ANN, which 
improved the efficiency and accuracy of the IK model. In 
addition to GA and PSO, other meta-heuristic algorithms such 
as artificial bee colony (ABC) and firefly algorithm (FA) have 
also been proposed for IK modelling of robotic manipulators. 
These algorithms have been shown to be able to find an optimal 
solution for the IK problem, even in the presence of constraints 
and singularities [17]. For example, in [5], an ABC-based 
inverse kinematic model was proposed for a 6-DOF robotic 
manipulator, and the model was able to achieve an accuracy of 
99.6% in IK control

2. Proposed Methodology

2.1. Deep Neural Network Model

In this study, a four-layer deep neural network with two 
hidden layers made up of 10 neurons each is proposed. Fig. 1 
shows the network's overall topology. The number of neurons 
is adjusted to decrease network complexity while 
simultaneously enhancing computing efficiency and precision.
An input layer, which indicates the number of features, a 
hidden layer, which indicates the number of classes, and an 
output layer are the components of the neural network structure
shown in Fig. 1. The hidden layer was selected based on the 
trade-off between complexity and accuracy. MATLAB 2021a 
has the stated structure implemented. When deciding on the 
number of hidden units in a neural network, there is a trade-off 
between computing cost and accuracy. A model becomes 
exceedingly complicated when there are many hidden units 
present, whereas accuracy suffers when there are fewer. A 
neural network's ability to employ the proper kind of activation 
function defines it. The sigmoid function, as shown in Eq. (1), 
is frequently the best option for classification issues.

𝑎𝑎𝑖𝑖^ =
1

1 + 𝑒𝑒−𝑥𝑥𝑖𝑖 (1)

The activation function employed for this issue is the radial 
basis function for regression problems, where out is continuous, 
as illustrated in Eq. (2) and Eq. (3):

ℎ(𝑥𝑥) = 𝑒𝑒−(
(𝑥𝑥−𝑐𝑐)2
𝑟𝑟2 ) (2)

𝑦𝑦(𝑥𝑥) =∑𝑤𝑤𝑗𝑗ℎ𝑗𝑗(𝑥𝑥)
𝑁𝑁

𝑗𝑗=1
(3)
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where ℎ(𝑥𝑥) is the function for the hidden layer and 𝑦𝑦(𝑥𝑥) is 
the predicted output. The model must have a cost function that 
can be successfully minimized in order to solve an optimization 
issue. The fitness function is another name for this cost function.
During the training phase, new weights and biases are used to 
minimize this cost function.

Fig. 1. Two Hidden Layer based DNN Model with GOA as optimization 
Algorithm.

So when objective functions is decreased, the optimal input-
output relationship will be produced using the most precise 
weights and biases. The neural network's fitness function was 
chosen as the normalized mean square error stated in Eq. (4):

𝐹𝐹. 𝐹𝐹. 𝑖𝑖 = 1
𝑁𝑁∑(𝑌𝑌𝑗𝑗 − 𝑌𝑌𝑗𝑗𝑛𝑛)2

𝑁𝑁

𝑗𝑗=1
(4)

where 𝑌𝑌𝑗𝑗is the true output while 𝑌𝑌𝑗𝑗𝑛𝑛 is the predicted output.

2.2. Gannet Optimization Algorithm (GOA)

Fig. 2. GOA Working model.

2.2.1. Initialization
The GOA begins with the collection of random solutions by 

using Eq. (5), and the best possible solution is considered the 
optimal global solution.

𝑋𝑋𝑗𝑗,𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ (𝑈𝑈𝑈𝑈𝑘𝑘 − 𝐿𝐿𝑈𝑈𝑘𝑘) + 𝐿𝐿𝑈𝑈 (5)

where 𝑗𝑗 = 1,2,3…𝑁𝑁 , 𝑘𝑘 = 1,2,3…𝐷𝐷𝑖𝑖𝐷𝐷 , 𝑋𝑋𝑗𝑗,𝑘𝑘 are particles 
position, UB and LB defines the Upper and Lower bound of the 
particles, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the random number between 0 and 1.

2.2.2. Exploration Phase
A U-shaped dive and a shallow V-shaped dive represent the 

exploration phase. These patterns are shown in Fig. 2. For U-
shaped motion Eq. (11) is used and for V-shaped Eq. (12) is 
used.

𝑡𝑡 = 1 − ( 𝐼𝐼𝑡𝑡𝐼𝐼𝑟𝑟
𝑀𝑀𝑟𝑟𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

) (6)

𝑟𝑟 = 2 ∗ cos(2 ∗ 𝑝𝑝𝑖𝑖 ∗ 𝑟𝑟1) ∗ 𝑡𝑡 (7)
𝑏𝑏 = 2 ∗ V(2 ∗ 𝑝𝑝𝑖𝑖 ∗ 𝑟𝑟2) ∗ 𝑡𝑡 (8)

𝑉𝑉 =

{
 

 (− 1
𝑝𝑝𝑖𝑖) ∗ 𝑋𝑋 + 1, 0 < 𝑋𝑋 < 𝑝𝑝𝑖𝑖

( 1𝑝𝑝𝑖𝑖) ∗ 𝑋𝑋 − 1, 𝑝𝑝𝑖𝑖 < 𝑋𝑋 < 2 ∗ 𝑝𝑝𝑖𝑖
(9)

where 𝐼𝐼𝑡𝑡𝐼𝐼𝑟𝑟 is the current iteration, 𝑀𝑀𝑟𝑟𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the max 
numbers of iterations, 𝑟𝑟1 and 𝑟𝑟2 are the random numbers 
between 0 and 1. Eq. (10) contains the formula for position 
updation.

𝑀𝑀𝑋𝑋𝑖𝑖(𝑖𝑖 + 1) = {𝑋𝑋𝑖𝑖 + 𝑢𝑢1 + 𝑢𝑢2, 𝑞𝑞 ≥ 0.5𝑋𝑋𝑖𝑖 + 𝑣𝑣1 + 𝑣𝑣2, 𝑞𝑞 < 0.5 (10)

𝑢𝑢2 = 𝐴𝐴 ∗ (𝑋𝑋𝑖𝑖(𝑡𝑡) + 𝑋𝑋𝑖𝑖(𝑡𝑡)) (11)

𝑣𝑣2 = 𝑈𝑈 ∗ (𝑋𝑋𝑖𝑖(𝑡𝑡) + 𝑋𝑋𝑚𝑚(𝑡𝑡)) (12)

𝐴𝐴 = (2 ∗ 𝑟𝑟4 − 1) ∗ 𝑟𝑟 (13)

𝑈𝑈 = (2 ∗ 𝑟𝑟5 − 1) ∗ 𝑏𝑏 (14)

where 𝑟𝑟4 and 𝑟𝑟5 are the stochastic values from 0 and 1, 
where A is the number at random within -a and a, and B is the 
number at random between -b and b, 𝑋𝑋𝑖𝑖 is the current position, 
𝑋𝑋𝑖𝑖 is the random position in population, 𝑋𝑋𝑚𝑚 is the average 
position value in population.

2.2.3. Exploitation Phase

𝐶𝐶𝑟𝑟𝑝𝑝𝑡𝑡𝑢𝑢𝑟𝑟𝑟𝑟𝑏𝑏𝑖𝑖𝐶𝐶𝑖𝑖𝑡𝑡𝑦𝑦 = ( 1
𝑅𝑅 ∗ 𝑡𝑡2) (15)

𝑡𝑡2 = 1 + ( 𝐼𝐼𝑡𝑡𝐼𝐼𝑟𝑟
𝑀𝑀𝑟𝑟𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

) (16)

𝑅𝑅 = (𝑀𝑀 ∗ 𝑣𝑣𝐼𝐼𝐶𝐶 ∗ 𝑣𝑣𝐼𝐼𝐶𝐶
𝐿𝐿 ) (17)

𝐿𝐿 = 0.2 ∗ (2 − 0.2) ∗ 𝑟𝑟6 (18)

where random number between 0 and 1 is represented by 
𝑟𝑟6, M is weight of gannet, which is 2.5 kg, 𝑣𝑣𝐼𝐼𝐶𝐶 is velocity 
which is 1.5 m/s.

𝑀𝑀𝑋𝑋𝑖𝑖(𝑖𝑖 + 1)
= {

𝑡𝑡 𝑟𝑟𝐼𝐼𝐶𝐶𝑡𝑡𝑟𝑟 (𝑋𝑋𝑖𝑖(𝑡𝑡) − 𝑋𝑋𝐵𝐵𝑖𝑖𝐵𝐵𝑖𝑖(𝑡𝑡)) + 𝑋𝑋𝑖𝑖(𝑡𝑡),
𝑋𝑋𝐵𝐵𝑖𝑖𝐵𝐵𝑖𝑖(𝑡𝑡) − (𝑋𝑋𝑖𝑖(𝑡𝑡)) − 𝑋𝑋𝐵𝐵𝑖𝑖𝐵𝐵𝑖𝑖(𝑡𝑡)) ∗ 𝑃𝑃 ∗ 𝑡𝑡

(19)

𝑟𝑟𝐼𝐼𝐶𝐶𝑡𝑡𝑟𝑟 = 𝑐𝑐𝑟𝑟𝑝𝑝𝑡𝑡𝑢𝑢𝑟𝑟𝑟𝑟𝑏𝑏𝑖𝑖𝐶𝐶𝑖𝑖𝑡𝑡𝑦𝑦 ∗ (𝑋𝑋𝑖𝑖(𝑡𝑡)) − 𝑋𝑋𝐵𝐵𝑖𝑖𝐵𝐵𝑖𝑖(𝑡𝑡)) (20)

𝑃𝑃 = 𝐿𝐿𝐼𝐼𝑣𝑣𝑦𝑦(𝐷𝐷𝑖𝑖𝐷𝐷) (21)

In Eq. (19) the first case occurs when 𝑐𝑐𝑟𝑟𝑝𝑝𝑡𝑡𝑢𝑢𝑟𝑟𝑟𝑟𝑏𝑏𝑖𝑖𝐶𝐶𝑖𝑖𝑡𝑡𝑦𝑦 ≥ 𝑐𝑐
and the second case occurs when 𝑐𝑐𝑟𝑟𝑝𝑝𝑡𝑡𝑢𝑢𝑟𝑟𝑟𝑟𝑏𝑏𝑖𝑖𝐶𝐶𝑖𝑖𝑡𝑡𝑦𝑦 ≥ 𝑐𝑐.
Variable 𝑐𝑐 is a constant, value of which is adjusted after hit and 
trial to 0.3 for this work.
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2.3. Inverse Kinematic Modelling

Inverse kinematics is a complex problem that involves 
finding the joint angles of a robot manipulator that will result 
in a desired end-effector position and orientation. However, 
there are several challenges that arise in this process that need 
to be addressed. This section provides and overview of the 
problems that can arise by using traditional numerical methods, 
the proposed 3-DOF robotic arm that will be used for the 
purposes of this work and how the hybrid deep learning models 
can circumvent such issues.

Kinematic analysis is defined as the mathematical 
expression of the structure of a robotic manipulator. Nowadays, 
DH parameters, which were developed by Denavit and 
Hartenberg [12], are widely used in the fields of robotics for 
this process. They express the relation between the two joints 
with the help of four basic parameters. A transformation matrix 
using the DH parameters is derived to determine the end-
effector cartesian coordinate position, or inversely the joint 
angles from the end-effector position for the robotic 
manipulator. The complexity of such complicated numerical 
solutions also increases exponentially as the degrees of 
freedom for a manipulator are increased.

Fig 3. 3-DOF Robotic arm in ROS RVIZ

Moreover, a great challenge accompanied with 
manipulators is the occurrence of singularities. Singularities 
come in play when a robot's end-effector reaches a position that 
makes it impossible to calculate a unique set of joint angles. 
For example, in a 6-degree-of-freedom robot arm [6], there is a 
singularity when the elbow joint is fully extended and the wrist 
joint is parallel to the ground. In this position, any small change 
in the end-effector position can result in large changes in the 
joint angles. To address this issue, optimization-based 
techniques, such as deep learning models, have been proposed 
to find the optimal joint angles that minimize a cost function.

2.4. Proposed GOA-DNN Model

The most important hyperparameters of DNN is the Weights 
and Biases which needs to be updated according to the Dataset 
for best accuracy. In this work weights and biases of DNN are 
updated using GOA. The flow chart of GOA based DNN is 
shown in Fig. 6. In a GOA-based neural network training 
algorithm, the individual particles in the population represent 
different potential solutions to the optimization problem, which 

in this case is the configuration of the network's weights and 
biases that will result in the best performance on a given 
dataset. Each particle has a position in the search space that 
corresponds to a particular set of network weights and biases, 
as well as a velocity that determines how the particle moves 
through the space. 

The GOA algorithm continues iterating until some stopping 
criteria is met, such as a maximum number of iterations or a 
satisfactory level of performance on the training dataset. By 
using the collective intelligence of the particles to search for 
good solutions, the GOA-based training algorithm finds high-
quality network configurations more quickly than other 
methods. The proposed GOA-DNN based IK modelling 
structure is shown in Fig. 4. To make a fair assessment, the 
meta-heuristic algorithms and the multi-agents are both set to 
50 repetitions before they converge to the optimal solution. The 
literature for the PSO, GWO, and GOA algorithms was used to 
guide the selection of the control parameter values. The cost 
minimization comparison of PSO, GWO and GOA for training 
of DNN is shown in Fig. 5. This shows that, GOA achieves less 
cost during training of DNN.

Table 1. Hyperparameters of DNN

Hyperparameters Selected Values

No. of Hidden Neurons 10

No. of Hidden Layers 2

Optimization Algorithm GOA

Activation Function for Hidden Layers Radial Basis

Activation Function for Output Layer Sigmoid

No. of Weights and Biases 97

Fig 4. Proposed Inverse Kinematics Prediction Model using GOA-DNN

Fig 5. Cost Minimization Comparison over the iterations
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Fig 6. Flow Chart for Training of DNN using GOA Algorithm

3. Results and Discussion

3.1. Dataset Preparation

In this work, 3-DOF robotic arm is model in the Robot 
Operating System (ROS) and Rviz [25], as shown in Fig. 3, 
which means there are three joints, and the end effector position 
is dependent upon the angle of these joints. The position of end 
effector is presented in the form of X-axis, Y-axis and Z-axis 
position. The 3-DOF model is run randomly for 1000 times 
using ROS node and the end effector position is stored with 
angles of joints using ROS Publisher. A first dataset is created, 
and it is then split into testing and training data with a ratio of 
65% and 35%. After that, the train data is put into the DNN 
network, which is then initialized. The initialization of the 
gannet optimization method will adjust the settings of the 
weights and biases to obtain the optimum training accuracy.

3.2. Joint Angles Prediction 

Inverse kinematic modelling of robotic manipulators is a 
complex problem that requires accurate and efficient 
algorithms. The Gannet Optimization Algorithm-DNN (GOA-
DNN) is compared with two popular algorithms namely, Grey 
Wolf Optimization-DNN (GWO-DNN), and Particle Swarm 
Optimization-DNN (PSO-DNN). The statistical analysis of the 
DNN models is tabulated in Table 2 that show the test dataset 
results on normalized mean square error (NMSE), mean 
absolute error (MAE) and mean relative error (RE) for the 3 
joint angles. To illustrate the efficacy of the algorithm, Figures 
7 (a)-(f) show the comparison of the cost function results from 
the three algorithms. GOA-DNN remains close to the actual 
value of the output X, Y, Z cartesian coordinates of the robotic 
manipulator. GOA-DNN is known for its ability to find a 
globally optimal solution and faster convergence time. The 
Gannet optimization algorithm used in GOA-DNN is a novel 
optimization algorithm that is based on the foraging behavior 

of gannets. It uses a parallel and distributed search mechanism 
to find the optimal solution, which makes it more efficient than 
other optimization algorithms. Furthermore, the use of a deep 
neural network in GOA-DNN can improve the accuracy of the 
inverse kinematic model. On the other hand, the disadvantage 
of GWO-DNN is its slower convergence time compared to 
other optimization algorithms. This algorithm, based on the 
hunting behavior of grey wolves, uses a leader-follower 
strategy to find the optimal solution, which may lead to a 
slower convergence time. Similarly, PSO-DNN may not 
always find the global optimal solution. The use of a DNN in 
PSO-DNN can also improve the accuracy of the inverse 
kinematic model. However, due to the nature of the 
optimization algorithm used in PSO-DNN, it may not always 
find the global optimal solution. This can be a limitation when 
it comes to applications that require a globally optimal solution.
It is important to note that the choice of algorithm for IK 
modeling depends on the specific requirements of the

Fig. 7: (a) Joint 1 Comparison (b) Joint 1 Relative Error Comparison (c) Joint 
2 Comparison (d) Joint 2 Relative Error Comparison (e) Joint 3 Comparison

(f) Joint 3 Relative Error Comparison
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application. GOA-DNN is a good choice for applications that 
require a globally optimal solution, while GWO-DNN and 
PSO-DNN are suitable for applications that require a faster 
convergence time. 

Table 2. Statistical Analysis of Joint Angle Estimation of All Techniques.

Joint Tech NMSE MAE Mean RE

Joint 1 GOADNN 0.043 0.031 0.091

GWODNN 0.189 0.167 0.203

PSODNN 0.385 0.192 0.245

Joint 2 GOADNN 0.001 0.015 0.018

GWODNN 0.257 0.027 0.090

PSODNN 0.482 0.129 0.029

Joint 3 GOADNN 0.009 0.042 0.016

GWODNN 0.069 0.083 0.099

PSODNN 0.412 0.091 0.146

4. Conclusion

The inverse kinematic estimation of robotic manipulators 
utilizing soft computing methods was suggested in this work. 
To predict the inverse kinematics of a 3-DOF robotic 
manipulator, a 4-layer Deep Neural Network (DNN) optimized 
with the Gannet Optimization Algorithm (GOA) was utilized. 
The Robot Operating System was used to simulate the robotic 
manipulator and build a dataset of the angle between the end 
effector location and the joint (ROS). 65% of the dataset was 
used to train the GOA-DNN model, while the other 35% was 
used to test it. Mean Relative Error, Normal Mean Square 
Error, and Mean Absolute Error for the testing of the model are 
the metrics utilized for study of the technique's effectiveness. 
The model has also been compared with various meta-heuristic 
methods, like Grey Wolf Optimizer (GWO) and Particle 
Swarm Optimization (PSO) based DNN. The outcomes 
demonstrate the suggested algorithm's superiority and 
demonstrate that it is a better method for resolving kinematic 
estimate issues in practical situations.
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