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Notation

N Set of natural numbers {1,2,3, ...}.

No Set {0} U N.

R Set of real numbers (the real line).

R Set of nonnegative real numbers (the positive half-
line [0, 00)).

Liay Indicator function of A: 1g4y =1, if A holds, 14y =

0 otherwise.
:= (=:) Quantity on the left (on the right) is defined to be
equal to the quantity on the right (on the left).

|z] Integer part of the real number z.

{z} Fractional part of the real number z (z — |z]).
2t Positive part of z (27 = max{z, 0}).

z~ Negative part of z (27 = max{—z,0}).

P(B) Probability of the event B.

Fe(x) Distribution function of the random variable &.
Fe(z) Tail of the distribution function F.

E(¢ Mean of the random variable &.

g)  Quantile function of random variable &: inf{z € R :
Fe(x) = g}

Fe « I, Convolution of distribution functions F¢ and F;,. If £
and 7 are independent, then Fg * Fy(x) = P(£ +n <
z), and Fg * Fyy(z) = P(§ +n > x).

Fg*” n-fold convolution (convolution power) of a distribu-

tion function F¢. If &1, ..., &, are independent copies

of &, then Fé*”(ac) =P + -+ & < z),and

Fe(z) =P(&G + -+ & > o).

H Class of heavy-tailed distribution functions.

L Class of long-tailed distribution functions.

L, Class of exponential-type distribution functions.

oL Class of O-exponential distribution functions.

D Class of dominatedly varying-tailed distribution
functions.

S Class of subexponential distribution functions.

S* Class of strong subexponential distribution func-
tions.



C Class of consistently varying-tailed distribution func-
tions.
R Class of regularly varying-tailed distribution func-
tions.
5’75Z Sum of random variables &1,...,&,: & + - + &,
s%e Weighted sum of random variables &,...,&,
0161 + -+ + 0,6, where 04, ..., 0, are nonnegative,
nondegenerate at zero random variables.
Abbreviations:
r.v. (r.v.s) Abbreviation for “random variable” (“random vari-
ables”).
d.f. (d.f.:s) Abbreviation for “distribution function” (“distribu-
tion functions”).
ii.d. Abbreviation for “independent and identically dis-

tributed”.

For two positive functions f and g, we write:

fl@) _

f(z) =o(g(x)), if xh_{folo 9@ = 0,
f(z) =0(g(x)), if limsup L&) o,
R C))
fl@)~glw), if lim D=1,
f(z) = g(x), if 0 < hmlnf% lim sup % < o,
r—00
f(z) < g(x), if limsupL; < 1.
Tr—00



1. Introduction and preliminaries

1.1. Introduction

Interest in heavy-tailed distributions was increasingly growing during
the last few decades. We could find many reasons for this but amongst
most popular explanations are quick spread of information and com-
munication technologies, increased need for financial models that would
better correspond to real issues and constantly growing statistical ev-
idence for their appropriateness in natural sciences. Many researchers
in insurance and finance are particularly interested in such distributions
— see Embrechts, Kliippelberg, Mikosch [21] for a review. Some clas-
sic, but still very important examples of heavy-tailed distributions are
Pareto, lognormal and Weibull distributions. Among less known ex-
amples we find generalised Peter and Paul, discrete Weibull, Cauchy
distributions. We will later attribute these and some other examples
to specific classes of heavy-tailed distribution functions. Also, for il-
lustrational purposes, we will construct some mixed distributions that
would be in or outside specific class. In our study we are mainly in-
terested in class D of dominatedly varying-tailed distributions but we
will also analyse several properties of related classes, like C (consistently
varying-tailed distributions), class R (regularly varying-tailed distribu-
tions), class £ (long-tailed distributions) and class S (subexponential
distributions).

Since many models include cumulative effects, analysis of sums of
random variables, their distributions, moments and other probabilis-
tic properties is of high importance. Let n € N := {1,2,...} and let
&1,...,&, be possibly dependent, heavy-tailed, real-valued random vari-
ables (r.v.s.), called primary r.v.s. Also, let 61,...,6, be nonnegative,
nondegenerate at zero r.v.s, called random weights. Our main object of
study is the tail moment,

E((SS)QJL{S$L>¢C})> (1.1)

where « € [0, 00) and

SS =& +&++ &

In addition, some results will be formulated for weighted counterpart
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of tail moment (@)

E((S°)* L ygo 0y (1.2)

where « € [0, 00) and

SOE = 0161 + O2&a + -+ + Onbn. (1.3)

Sometimes we will limit exponent « to the case of nonnegative inte-
gers (N := {0} U N) and for more visual discernment, in that case, we
will use letter m instead of a. Also, let us note, that in the literature
the term truncated moment is often used instead of tail moment.

Inspired by recent results by Leipus et al. [40], we seek to bound
asymptotically the tail moments (EI) and (@) by the sums of individ-
ual tail moments E(fg‘ﬂ{gk>x}) and E((Gkﬁk)al{9k§k>$}), respectively,
with some specific correcting constants. Compared to their theorems,
we obtain more precise asymptotic bounds, showing that each summand
in the approximating sums can be accompanied by a separate L-index
(defined later in the introduction) of the corresponding distribution func-
tion. A novelty of our result, also, comes from employing a more abstract
dependence structure and considering nonnegative real exponent in the
tail moment instead of a natural one. In case when primary random
variables are nonnegative, we prove that correcting constants can be
omitted.

There are many papers addressing two special cases « = 0 and a = 1.
If we suppose that o = 0, then tail moments in (EI) and (@) are equal
to respective tail probabilities

]P’(Sf1 >z) and IP’(S;‘;5 > z).

Studies show that under various conditions (see Section @ for a brief
overview), these tail probabilities are asymptotically equal to the sums
of tail probabilities of individual summands,

i P(fk > :n and Z akgk > a:
k=1

respectively. If we suppose that @ = 1, then tail moments in (EI) and
(@) are equal to respective tail expectations

E(S51

and E (525]1

{s§>x}) {sﬁf>x})-
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The corresponding question to those mentioned above is investigated in
this case too.

We will provide a brief review of the literature on related studies
further in the text, after giving all the necessary definitions.

During our research we noticed that there are some regularities in the
behaviour of the tail moment in relation with the tail of a distribution,
which generated that moment. This evolved into a discussion about
closure properties of the classes of heavy-tailed and related distributions,
with respect to calculation of moments. As our research shows, for
the tail moment to have a property, which defines a specific class, it is
sufficient for corresponding distribution to belong to the same class, but
it is not always necessary.

Before finishing this subsection, we would like to mention one inter-
esting example, which illustrates how knowledge about randomly weigh-
ted sums (@) can be applied in financial or actuarial context. Let
primary random variable & correspond to the net losses (total claim
amount minus total premium income) of an insurance company during
period (k — 1,k], calculated at the moment k, and random weight 6
correspond to the stochastic discount factor, from the moment & to the
present moment 0, for all K = 1,...,n. In such a scenario, sum S’Zﬁ
could be treated as the total discounted net loss of a company in the
time interval (0, n].

When quantifying random losses of any portfolio or company, various
risk measures are employed — Value at Risk (VaR), Conditional Value at
Risk (CVaR), Haezendonck—Goovaerts (HG) risk measure among many
others. To read more about the mentioned risk measures, risk measure-
ment theory in general and its development, the reader is referred to Sec-
tions @ and @ To provide examples of application, we found asymp-
totic formulas specifically for the Haezendonck—Goovaerts risk measure
by combining our main results with the essential theorem from the paper
by Tang and Yang [63, Theorem 2.1].

The main results in Sections E and @ are original and can be consid-
ered as new. These results are achieved by the author of the dissertation
together with the co-authors. In essence, Section @ is based on the pa-
per by Leipus, Paukstys, Siaulys B8] and the paper by Dirma, Paukstys,
Siaulys [20]. The new closure properties in Section P are published in
the paper by Paukstys, Siaulys, Leipus [49].

12



1.2. Publication of results

The main results of this thesis are published in the following

scientific papers:

e R. Leipus, S. Paukstys, J. Siaulys, Tails of higher-order moments
of sums with heavy-tailed increments and application to the Haezendonck—
Goovaerts risk measure, Statistics & Probability Letters 170 (2021), 1-
12;

e M. Dirma, S. Paukstys, J. Siaulys, Tails of the Moments for Sums
with Dominatedly Varying Random Summands, Mathematics 9 (2021),
1-26;

e S.Paukstys, J. Siaulys, R. Leipus, Truncated Moments for Heavy-
Tailed and Related Distribution Classes, Mathematics 11 (2023), 1-15.

The results obtained during the preparation of the thesis

were presented in the following conferences and seminars:

e S. Paukstys, Atsitiktiniy dydziy sumy momenty uodegy asimpto-
tinis elgesys ir taikymai Haezendonck—Goovaerts rizikos matui, Finansy
ir draudimo matematikos seminaras, 23 February 2021, Vilnius;

o S. Paukstys, Atsitiktiniy dydZiy sumy nupjautiniy momenty rib-
inis elgesys, Finansy ir draudimo matematikos seminaras, 9 November
2021, Vilnius;

o S. Paukstys, Atsitiktiniy dydziy sumy nupjoutiniy momenty rib-
ingo elgesio tyrimai ir tatkymasi rizikos teorijoje, 10-asis Lietuvos jaunuyjy

matematiky susitikimas, 28 December 2021, Vilnius;

e S. Paukstys, Tuails of moments of sums with heavy-tailed sum-
mands and applications to the Haezendonck—Goovaerts risk measure,
European Actuarial Journal Conference 2022 Tartu, 22 August 2022.,

Tartu;

e S. Paukstys, Sunkiauodegivy skirstiniy momenty uodegy savybés
(disertacijos pristatymas), Finansy ir draudimo matematikos seminaras,
13 March 2023, Vilnius.
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1.3. Structure of the thesis

Section m is for introduction, preliminaries and providing the context
of our work. In Section we already introduced the problem and main
objects of study. In Sections @ and @ we give definitions of distri-
bution classes of interest and used dependence structures. In addition,
we give several examples for illustrational purposes. We also describe
known interrelationships among the classes. The introduction ends with
Section @, where we summarise known closure properties of the classes
of heavy-tailed and related distributions.

Section E is dedicated for novel closure properties of the popular
distribution classes R, C, D, L., v = 0 and OL. Main results concerning
those properties and their proofs are given in Section @

In Section @ we quote some interesting results that are related to
the main results of this thesis.

In Section @ we present the main results of our thesis, that is,
asymptotic results for tail moment of the sum of possibly dependent
random variables. In Section @ we present the proofs of those results.

In Section H we briefly discuss risk measure theory and show how
our main results can be applied to achieve asymptotic formulas for the
Haezendonck—Goovaerts risk measure. Illustration in case when primary
r.v.s are distributed according to the Pareto law is given in Section @,
and illustration in case when primary r.v.s. are distributed according to
the generalised Peter and Paul distribution is given in Section Q

1.4. Definitions
1.4.1. Heavy-tailed and related distributions

In this subsection we provide definitions of concepts that are used in
our research. Most of them will be used directly in the presentation of
main results, but some of them are given for illustrative purposes and
for better understanding of the context. We will try to make a clear
distinction where necessary. Before we start, we recall that distribution
function (d.f.) F is called “on RT” if F(—0) = 0. A d.f. F is called “on
R” if the condition F'(—0) = 0 can fail.

Let us begin by introducing some important classes of distributions.

First, we define heavy-tailed distributions.

14



Definition 1.1. A distribution function F' on R is called heavy-tailed,
written as F' € H, if for every h > 0, it holds that

o0
f " dF (x) = 0.
—00

The following proposition gives us an alternative way to look at
heavy-tailed distributions. It corresponds to usual intuition that we
have about them.

Proposition 1.1. A distribution function F' on R is heavy-tailed if and
only if for every h > 0, it holds that
lim sup F(z)e"* = 0. (1.4)
Tr—00
Intuition becomes more clear by noticing that condition (@) is

equivalent to
e—hx
lim inf — =0
T—00 F(x)

for every h > 0. We see that the tail of d.f. F vanishes slower (is
“heavier”) than the tail of any exponential distribution.

We say that distribution is light-tailed, if it is not heavy-tailed.

We define class £ (well-known subclass of H) in a same manner as
in Foss, Korshunov, Zachary [27].

Definition 1.2. A positive function f is called long-tailed if

o flety)
T
for all y > 0.

Definition 1.3. A distribution function F' on R is called long-tailed,
written as F' € L, if for any fized y > 0,

F(z +y) ~ F() (1.5)
as x — o0.

From the definitions above, one can see that distribution F' is long-
tailed if and only if its tail function F is a long-tailed function.

To determine whether the distribution function is long-tailed, it suf-
fices to verify that the relation (@) is satisfied for one chosen value of
y which is not zero.

One may use the concept of slowly varying functions to prove that
every long-tailed distribution function is heavy-tailed.

15



Definition 1.4. A positive function g is called slowly varying at infinity
if

=1 (1.6)
for any fized a > 0.

The above-mentioned fact that every long-tailed distribution func-
tion is heavy-tailed is well-known in the literature. Since we will often
use this result as an auxiliary statement (many times implicitly), for the
reader’s convenience, we state it here together with a detailed proof.

Lemma 1.1. Every long-tailed d.f. is heavy-tailed, that is, L < H.

Proof. Since F' € £ and lim logz = o0,
Tr—0

F(logx + )

2= F(logx)

for all y € R. Taking y = logz, z > 0, we have

F(logz + log z)
im —
z—o  F(logx)

Then

F(log(zz))
z—0 F(logz)
for any fixed z > 0. Thus, by Definition @, F(logz) is slowly varying
function at infinity.
Using Proposition 1.3.6 (v) by Bingham, Goldie, Teugels [11], we get
lim F(logz)z" = oo, (1.7)

r—00

where h > 0. Replacing x with e” in (), we have

lim F(z)e"® = oo
T—00

for every h > 0. This implies F' € H. O

Proposition 1.3.6 (v) in [11] additionally gives us intuition that slowly
varying tails are extremely heavy.

Further, we provide definitions of exponential-type distributions (see,
for instance, Ragulina, Siaulys [54]) and so called O-exponential distri-
butions (see, for instance, Xu, Foss, Wang [67]).

16



Definition 1.5. A distribution function F' on R is said to be exponentially-

tailed, written as F' € L, v > 0, if for any y > 0 (equivalently for all
yeR),

F
im M =e . (1.8)
% F()
Definition 1.6. A distribution function F' on R is said to be O-exponential,
written as F'€ OL, if for any y > 0,
F(x —
lim sup M < 0.

The classes of exponentially-tailed distributions £, were introduced
by Embrechts and Goldie [22], while class OL was first defined by
Shimura and Watanabe [60]. Notice that class £ can be obtained by
supposing v = 0 in (@) Hence, we can write Lo = L. As it is noted in
[67], class OL includes all classes L,y = 0.

Next we define an important subclass of heavy-tailed distributions,
known as the class D. It was introduced by Feller [25]. Our main results
will be formulated for this class of distributions.

Definition 1.7. A distribution function F on R is said to be dominatedly
varying-tailed, written as F € D, if for any fivred 0 < y < 1, its tail
F =1 — F satisfies the condition
F

(zy) _

lim sup —
x—»oop F a

Further we define a few other classes related to those mentioned
above but before that we would like to introduce concept of max-sum-
equivalence, which helps to acquire deeper understanding about heavy-
tailed distributions. For that we need to remember the concept of con-
volution. Recall that the convolution F'* G of any two distributions F
and G is given by

0

FiGla) = (F+G)(a) = |

—00

F(z—y)dG(y) = J_OO G(xz—y)dF(y), = € R.

If £ and 7 are independent random variables with respective distribution
functions F' and G, then

F«G)=PE+n<z), VYreR.

17



The tail function of the convolution (also known as the convolution tail)
of distributions F' and G is then given by

0

76 - [ Fe-picw) - [ G- paro)

—00

Clearly, if £ and 7 are independent r.v.s with respective d.f.s F' and G,
then
F«Gx)=PE¢+n>z), VzeR.

We define max-sum-equivalent distributions as follows.

Definition 1.8. Distributions (or distribution functions) Fy and Fy are

said to be max-sum-equivalent, written as Fy ~p Fy, if

Fy o« Fy(z) ~ Fi(z) + Fa(x) (1.9)
as r — 0.

From Foss et al. [27, Theorem 2.11], we get that for any distributions
Fy and F; on R* with unbounded supports (F(z) > 0 Va € R), it is true
that

i e T (1.10)

Therefore, to prove that requirement (@) holds, it is enough to show
that the limit superior of the same ratio as in () is less or equal to 1.
It is noted in the same monograph that for distributions on R property
() in general is not true.

As it is noted in Cai and Tang [12], if two independent random
variables £; and & have distributions F; and F3, then property Fy ~j
F5 is equivalent to

P& + & > o) ~ P(max{&, &} > x), (1.11)

as £ — 00, which means that the distribution of the sum of two inde-
pendent random variables is asymptotically determined by that of the
maximum of the two random variables. The equivalency of (@) and

18



() follows from these equalities:

lim Pl +& > o) = lim I+ Fy(2)
T—00 }P’(max{fl,ég} >l‘) T—0 E( )+F2( ) ( )FQ( )
Fl * FQ( )

im ————S—
w0 Fi(z) + Fa()
P+ Fi)

w0 Fy(z) + Fy(z) -

Fl * FQ( )

im —————.
w=% Fi(z) + Fa(x)
The term “max-sum-equivalence” comes from relation () In [12]

it is mentioned that this is an interesting property used in modelling

extremal events and in describing heavy-tailed distributions.
Usually, class S, one of the most important heavy-tailed classes, is
defined in the following manner.

Definition 1.9. A distribution function F' on RT is said to be subexpo-

nential, written as F' € S, if
F+F(x) ~2F(x) (1.12)
as x — o0.

If Fis on RT and F is max-sum-equivalent to itself, F' ~,; F, then
we see that F' is a subexponential distribution.

The following proposition gives us an alternative way to look at
subexponential distributions.

Proposition 1.2. A distribution function F' on RT is subexponential if
and only if

as x — oo, for any n = 2, where F*" denotes the n-fold convolution of
F.

It is obvious that relation in Proposition @ implies that one in
Definition @ but the proof of reverse implication is quite complicated.

Now we would like to extend Definition @ to distributions on the
whole line of real numbers. To require a distribution on R satisfy con-
dition () is not enough for an adequate definition. Example 3.3 in
[27] gives us a distribution for which

F«F(z) ~ 2F(x),

r—00
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but the respective d.f. F' is not long-tailed or even heavy-tailed. So
defining subexponentiality for d.f.s of any random variable it is required
that both condition () and condition of long-tailedness are met. The
definition, which is used more often, is as follows.

Definition 1.10. A d.f. F; on R of a real-valued r.v. § is said to be
subexponential, written as F¢ € S, if the distribution function Fet of
¢t = max{¢, 0} satisfies relation ([1.12).

Interestingly for any heavy-tailed distribution F' supported on R,

F«F
timsup T 5o
T—00 F(m)
This result can be obtained from Theorem 1.1 in Yu, Wang, Cui [66] by
taking constant r.v. 7 such that P(t =2) = 1.
It follows from () that for any distribution F' on R™ with un-

bounded support (F(x) > 0 for all z),

lim inf LF(:E)

minf = > 2. (1.13)

In the monograph by Foss et al. [27], we find the following related
result for the smaller class of heavy-tailed distributions (see also Foss
and Korshunov [26]).

Theorem 1.1 (Foss et al. [27, Theorem 2.12]). Let F' be a heavy-tailed
distribution on RT. Then
FxF
timint 72 g

The “if and only if” statement does not hold. Foss et al. [27] gave a
light-tailed example for which limit inferior is also equal to two.

Furthermore, note that this theorem could not be extended to the
case of distributions on R. Yu et al. [66] gave an example of two-sided
heavy-tailed distribution such that

lim inf 7F1F(x)
T—00 F(.’L‘)

< 2.

We would like to add that, if a distribution on R is long-tailed, property
() remains valid (see [27, Corollary 2.30]).
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Theorem @ implies that subexponentiality of a distribution F' on
R* is equivalent to heavy-tailedness and the reasonable regularity con-
dition that

lim LiF(x)
T—00 F(x)
exists.
Next we define a class S* with a stronger regularity condition than
imposed on the distributions in the class S. It was introduced by Kliip-

pelberg [37, p. 133].

Definition 1.11. A distribution function F' on R with finite mean E(£7T)
s said to be strong suberponential, written as F € 8*, if

L " Fla— ) Fy)dy ~ 2B F(2),
as r — 0.

It has been shown that D n £ < S. In a monograph by Foss, Kor-
shunov, Zachary [27], it is given together with a couple of other inter-
esting conclusions. We present their result as follows.

Theorem 1.2 (Foss et al. [27, Theorem 3.29]). Suppose that F' is a d.f.
of a real-valued r.v. Let '€ L nD. Then

(i) F is subexponential.

(ii) F € §*, provided F has a finite mean E(£T).

(iii) Fy, € S, for all nonnegative measures p on R such that

foo F(t)p(dt) (1.14)

0
is finite. Here distribution function F), is defined by its tail:

0
F,(z) := min (1,J F(x+ t)u(dt)), x = 0. (1.15)
0
Next we define a useful subclass of £ n D, called a class of distribu-

tions with consistently varying tails or, in short, class C.

Definition 1.12. A distribution function F' on R is said to be consis-
tently varying-tailed, written as F € C, if
F(zy)

lim lim sup — =1.
y1l z—o F(.’E)
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Equivalently, F' € C, if

F
lin lim inf 2EY) _
yll 2—0  F(x)

An important subclass of class C is the famous class of regularly
varying-tailed distributions.

Definition 1.13. A distribution function F' on R is said to be regqularly
varying-tailed with index o = 0, written as F' € Ry, if for any y > 0, it

holds that o
LG
m ———- .
T—>00 F(l’)

We write

We remark that class C is strictly larger than class R (see, for exam-
ple, Cline and Samorodnitsky [17]). For a full discussion about relations
between classes, see the end of this section.

In many cases Karamata theory helps to solve problems concern-
ing distributions of class R, but more abstract classes require different
techniques. Later we will see that this is the case in this thesis, too.

Now we introduce an alternative form of Karamata theorem as found
in the book by Bingham, Goldie and Teugels [[11]. This theorem will be
applied later on in the text. Before that we remind the reader about
some concepts of bounded variation as given in the same work by Bing-
ham et al. [11].

Definition 1.14. Let f be real-valued function defined on E < R. The
total variation of f on E is
n
V(f; E) i=sup Y |f(wi) = flzi1)],
i=1
where the supremum is taken over all finite sequences rg < x1 < T2 <
<z, in B

Definition 1.15. Let I be an interval in R. Class BViye(I) includes all
functions f : I — R that are right continuous and are locally of bounded

variation on I, i.e. V(f;J) < oo for each compact J < I.
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Theorem 1.3 (Bingham et al. |11, Theorem 1.6.5]). Let f be positive,
and f € BVjy[0,00). If f is reqularly varying with indez p, and c+p < 0,
then SOO af
lim == =
z=0 29 f(z) o+p
Conversely if o # 0, and () holds for some (finite) p with o+ p <0,
then f wvaries regularly with index p.

(1.16)

Here a measurable function f > 0 is called regularly varying with

index p, if
i JW) _

e fz)

for all y > 0.

In relation with Definition , we say that distribution function
F on R is regularly varying-tailed with index o > 0, if its tail F is a
regularly varying function with index —a.

As the class £ is linked to slow variation (see the proof of Lemma
@), classes Ly,v = 0, are linked to regular variation, in general. The
following result is well-known, but we haven’t found an article with the
proof to refer to, so we state short argumentation here.

Proposition 1.3. Distribution function F' € L, v = 0, if and only if

F(logz) is a reqularly varying function with index —v.

Proof. For any index vy = 0, we have

F(l
Fel,< lim (FO(?JU—F)y):e_w forall ye R
r—0 ng
F(1 1
< lim ((;%(af+ ())gz) =e V8% forall 2 > 0
r—0 ng
< lim M:zgyforallz>0

a—n  F(logx)

< F(log ) is a regularly varying function with index — 7.
O

The classes R, C and D can be characterised by specific indices. The
first index is the so-called upper Matuszewska index, defined as

F
J;E = inf { — log lim inf 7(1‘11/) }
y>1 logy =0 F(x)
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Another index, so-called L-index, is defined as

F
Lp = limliminf 7(3;3/)
yll 2—0  F(x)

The aforementioned indices give important characterisations for domi-
natedly varying and consistently varying d.f.s:

Lp>0 < FeD <« Jf<w; Lp=1 < FeC.

For a d.f. I' € Ry, we have that JFJF = «a and Lr = 1. These two
equalities can be verified in just a few steps. If F' € R, then

F
Ly = limliminf f(mw = limy “=1
yll z—0  F(x) yll
and
: 1 . F(xy) . 1 _
U — e — «a =
Jp = ;I;fl{ logyloghgloglf F(m)} ;2?{ 1Ogylogy } Q.

It is also known (see Tang and Tsitsiashvili [61, Lemma 3.5]) that
for a d.f. F' € D it is true that

% = o(F(x))

for any o > J;r.
We finish this section by summarising the interrelationships of the

heavy-tailed distribution classes:
RcCSLnDSSCLEH; DeH; DESand S¢D. (1.17)

These relationships are illustrated in Figure EI

e Inclusion R < C is evident from the definitions of respective classes.

e An example from C\R was first constructed by Cline and Samorod-
nitsky [17, Section 3]. In 2004 Cai and Tang proposed a simpler example
showing that C is strictly larger than R (see [12, Section 2]. We call it
the Cai and Tang distribution and discuss it in Section .

e The inclusion C < £ n D is mentioned by Foss et al. [27, Section
3.5].

e The result LD c S is established by Goldie [30, Theorem 1] for
d.f.s on RT. The general case is addressed in Foss et al. [27, Theorem
3.29]. In the same paper [30], one can find examples justifying that D ¢
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Figure 1.1: Visualisation of interrelationships among the subclasses of
heavy-tailed d.f.s.

S and § ¢ D. An example from D\S is the Peter and Paul distribution,
which we discuss in detail in Section . An example from S\D is
given by the d.f. F(z) = 1 — exp{—+/x}, = > 0. This is known as
Weibull distribution with scale parameter A = 1 and shape parameter
7 = 1/2. Actually, any Weibull distribution with shape parameter 0 <
7 < 1 is subexponential but doesn’t have dominatedly varying tail (see
Section ) A related family of examples is given by Embrechts and
Omey [24]. Another well-known example from S\D is the lognormal
distribution (see Section below).

e The result S © £ can be found in Foss et al. [27, Lemma 3.4].
An example from £\S was proposed by Embrechts and Goldie [22, Sec-
tion 3]. See Section of our thesis for definition and comments.
In the same year another example was proposed by Pitman [53, Sec-
tion 3], although from a different methodological perspective, which, in
some sense, takes the negative logarithms of tail functions as a basis for
research.

e In the previously mentioned article by Cline and Samorodnitsky
[17, Section 3], we find examples from the sets (£ n D)\C, S\(L n D)
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(also showing that S ¢ D) and D\L (also showing that D ¢ S).
e For an argument that £ < H, see the proof of Lemma . The
same elements (above) from D\L serve the purpose of showing that class

L is a proper subset of H.
e The same elements (above) from £\D serve the purpose of showing

that class D is a proper subset of H.

Similarly, it is well known that for class OL,

Jz,opcoc

v=0

This relationship is illustrated in Figure @

U E’Y oL

>0

Figure 1.2: Visualisation of interrelationships among the subclasses of

O-exponential d.f.s.

1.4.2. Dependence structures

There is a vast amount of literature about asymptotic tail behaviour
of distributions of sums of independent random variables. In various
settings there is already established that the tail probability of a sum of
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r.v.s is asymptotically equal to the sum of tail probabilities of individual
random summands. We will discuss more about this further in the text.
For now we would like to note that, since there is this almost univer-
sal agreement that independence assumption is often too unrealistic for
applied problems, our goal is to get asymptotic results under a more
general dependence structure.

The main dependence assumption about r.v.s &1,...,&, used in for-
mulation of the main results is called pairwise quasi-asymptotic in-
dependence. This dependence assumption was first introduced by

Chen and Yuen [13].
Definition 1.16. Real-valued r.v.5 &1, ...,&, are called pairwise quasi-
asymptotically independent (pQAI) if for any k,l € {1,2,...,n}, k #1,
. P(gk-‘r > x7§l+ > l’) . P(gk-‘r > x?ﬁl_ > JZ')
lim - ™ = lim - ™
e P& > 2) + P >x) 2o P > ) +PET > )

= 0. (1.18)

We note that the definitions of all classes under study in this thesis
guarantee the condition F(z) > 0 for all z € R. Therefore, the sums in
the denominators of the ratios in () are not equal to zero. A similar
remark applies to the definitions of other dependence structures later in
the text.

When proposing QAI dependence structure, Chen and Yuen, as
they note themselves, borrowed the term “asymptotic independence”
from Resnick (see [b5],[56]) and redefined respective definition for non-
identically distributed random variables. Here we define pairwise asymp-
totic independence as follows.

Definition 1.17. Random variables &, ..., &, are called pairwise asymp-
totically independent (pAl) if for any k,l=1,...,n, k #1,
lim P& >2a>2) . P& >26>2)
2w P(& > x) a—n PG > )

If rv.s &,...,&, are nonnegative, it is not difficult to see that pAl

implies pQAI. To prove that the first limit in () is equal to zero, we

write

=0.

. P& >, >x) P(&p > 2,6 > 2)
S B >0+ B >0) o Pl > 2) + P& > 7)
1 P(&k‘ > xagl > $)

= 250 P(fl > l’)

=0

27



for any k,l € {1,2,...,n}, k # [. From here, obviously,

. P& > 2,4 > 2)
lim T T =0
e=0 P(§" > ) + P(T > )
Proving that the second limit in () is equal to zero, we observe that

for x > 0, the set {{§, > 2} = J and, therefore,
P& > 2,§ > 2) , P(&, > o, &)

DB > )+ P > a) PG> 1 PGS a)

The following condition is sufficient for pAl = pQAI to hold in the
general case of real-valued r.v.s.

ASSUMPTION A. Random variables &1, ..., &, satisfy a tail condi-

tion

)
lim = ):0 for all 1e{l,...,n}.

Since {¢T > z} = {¢ > z} for any x > 0, we prove that the first limit in
() is equal to zero in the same manner as in the nonnegative case. To
prove that the second limit is equal to zero, we employ Assumption A:
. P(&]j > magli > $) . P(ﬁk > xygli > I‘)
lim - - = lim
=0 P(§" > ) +P(gT >2) w0 P(G > x) + P& > 2)

- Fgl— (x)
< lim =
zo® Fg, (z)

for any k,l € {1,2,...,n}, k # L.

In the paper by Leipus et al. [40], a new dependence structure is
proposed. It is given as follows.

ASSUMPTION B. Random variables &1, ...,&, forallk,l=1,... n,
k # [, satisfy

lim supP(&," > 2 | > u) = lim supP(¢§, >z | £ > u)

= lim supP(§,f >z | & >u) =0.

T—00 4>y

Assumption B and previously defined pairwise quasi-asymptotic in-
dependence are related. We can show that Assumption B implies the
pQAI condition. Indeed, for any &, &, 1 < k # [ < n,

P& > 2,6 >
lim igk 4 T 2) < lim supP(& >z | & > u) =0,
o0 PN > x) + P >x)  soPuze

P&, > 2,6 >
lim igk ild T 2) < lim supP(§, >z | & > u) = 0.
oo PN > x) + P& >x)  eoPuze
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In the end of this subsection, we would like to give two examples of
r.v.s possessing pQAI dependence structure, which is generated by cop-
ulas. The first example is constructed using well-known Farlie-Gumbel-
Morgenstein copula.

Example 1.1. Let {&1,...,&} be r.v.s with infinite right supports and
corresponding marginal d.f.s {Fi, ..., F,}. Consider the Farlie-Gumbel-
Morgenstein (FGM) copula:

Co(u,v) =uv + Ouv(l —u)(1 —v), u,ve0,1], 6e[-1,1].
Let r.v.s &, & have a joint d.f.
P (& < 21,&5 < 22) = Cp,(F(21), Fj(22))
with some 0; € [—1,1], if
max{i,j} —min{i,j} =1, min{i,j} =2k —1

for some k € N and be independent otherwise. Then r.v.s {&1,...,&n}
are pQAL

It follows from Sklar’s theorem (see, for instance, Nelsen [46, Theo-
rem 2.3.3]) that for any given marginal d.f.s i, F» and an arbitrary cop-
ula C(uy,uz), function F(z1,x2) := C(Fi(x1), Fa(z2)) is a bivariate d.f.
with marginal d.f.s Fy, Fo. If &, &, 4,5 = 1,...,n are independent, then
obviously they are pQALIL If max{i, j} —min{i, j} = 1, min{i, j} = 2k —1
for some k € N, then

P& >z, >x) 11— Fi(x)— Fj(x)

+ i
P(&>a2)+P(§>a) Fi(z) + Fj(z)
_ Fi(@)Fj(z) (1 + 0:Fy(2) F(x))
Fi(z) + Fj(x)
< 2F;(z). (1.19)

Similarly, by observing that

]P’<§i>x,§j_>x) ]P’<§z>x§ )
=P <—2)-P(& <2, < —x)
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for positive z, we get

P& > .6 >2) _ Fj(-x) = Cy, (Fi(x), Fj(~))
P(&>a)+P(g>a) Fi(z) + Fj(x)
_ Fi@)Fj(=2) (1 - 0;Fy(2) F;(~))
Fi(z) + Fj(x)
2F;(—x). (1.20)
Estimates () and () imply ([L.1§). It follows that random
variables {1, ...,&,} in Example @ are pQAIL

Another example shows that popular Ali-Mikhail-Haq copula (see
[B]) also generates pQAI dependence structure.

N

Example 1.2. Let &1, & be r.v.s with corresponding d.f.s Fy, Fo and
let random vector (&1,&2) have a bivariate d.f.
F(21,22) := Cp(Fi(z1), Fa(x2)),

where Cy is the Ali-Mikhail-Haq copula:

ce(u,v)zl_e(lfz)(l_v), wvel0,1, 6el-1,1].

Similarly as in Example , it can be shown that r.v.s &1, & are QAL

Indeed, for positive x, we have

P& >x,&>x)  1—Fi(z) — Fa(z) + Cy (Fi(x), Fa(x))
P& >x)+P(&>2) Fi(z) + Fa(x)
_ Fi(z)Fa(z) (146 (Fa(z) — Fi(z)))
(F1(z) + Fa(x))(1 — 0F 1 (2)F2())
2F(x)
T 1—0F (2)Fa(x)

In the same fashion for positive z, we obtain

P& >z, >x)  _ Fa(=x) = Cy (Fi(z), Fy(=7))
P& >a)+P(&>x) Fi(x) + Fa(x)
Fy(—2)F1(x) (l — 9?2(—1’))
(F1(z) + Fa(2))(1 — 0F1(2) F2(—x))
< ()
1—0F(x)Fa(—2)

The derived estimates imply that r.v.s & and & are QAL
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1.5. Examples of heavy-tailed and related distributions

In this section we define some wel-known and some less-known (but
still important) distributions and assign them to specific distribution
classes. The results are summarised in Table ﬁ]

Ditribution \ Class R|IC|S|L|D|H|OL
1. Pareto distribution + |+ |+ |+ ]+ +] +
2. Peter and Paul distribution e o e
3. Example of a mixed distribution | - | - | - | - | + | + | +
(see Section )

4. Weibull distribution (shape pa- T
rameter 0 < 7 < 1)

5. Weibull distribution (r =1;also | - | - | - | - | - | - | +
known as Exponential distribution)

6. Weibull distribution (7 > 1) N -
7. Embrechts and Goldie distribu- N B e R e s
tion

8. Cai and Tang distribution S R (VIR P R R
9. Lognormal distribution N RN

Table 1: Examples of heavy-tailed and related distributions.

1.5.1. Pareto distribution

Suppose that r.v. £ is distributed according to the Pareto law:

A\ @
Fe(w)= (1= (5) )1 (@),
where scale parameter A\ > 0, shape parameter o > 1.

For sufficiently large x, ratio of the tails is

Fe(wy) _ (5)" _ o

Fe(z)  (2)°
We see that the condition

F
im j(my) _ .«

for any y > 0, is satisfied. And, therefore, F; € R, = R.
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From relations ([L.17) it follows that F belongs, also, to other classes:
C,S, L,Dand H.

1.5.2. Peter and Paul distribution

Suppose that r.v. £ is distributed according to the generalised Peter
and Paul law:

Pé=aP) =" 1-0a), j=1,2,...,

where a € (0,1) and 8 > 0. For the properties of this distribution, see
Berkes et al. [9].
For z > 0,

log x J

P& >zx) = Z a1 —a)= a[m .
jia=IiB>x
Here and further |z| denotes the integer part of the real number z.
First we will prove that Peter and Paul distribution doesn’t belong
to class L. It is enough to show that relation (@) doesn’t hold for any
single y > 0. Let us choose y = 1. Then for sufficiently large x,

F&'(l’ + 1) B a[ log(z+1) Jfl log x J

Blog(1l/a) Blog(1l/a)
Fe(x)
log(z+1)  loga _{ log(z+1) }+{ log x
— @ Blog(l/a) Blog(l/a) g Blog(1l/a) Blog(1/a)
log(14+1/x) log(z+1) | log x
— g Blos(i/a) g ({Blog(l/a)} {ﬁlog(l/a) ) (1.21)

Here and further {z} denotes the fractional part of the real number z,
that is, {z} = z — |z]. From the expression (), we can see that

F 1
lim sup @ =1
T—00 Fg(x)
and _
F 1
liminf@ =ac€ (0,1).
220 Fe(x)

Necessary limit doesn’t exist and, therefore, F¢ ¢ £. As an immediate
consequence, we get that Fy ¢ S.

Now we will prove that Peter and Paul distribution function belongs
to class D. For the floor function, it is true that, for every real a and b,
the following inequalities hold:

la) + [b] < a+b] < |a) + 0] + 1. (1.22)
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Similarly as before, for any 0 < y < 1 and sufficiently large x, by

(1:23), we get

Fe(zy) | esten || s |

al BTog(1/ay 1~ L Flog(1/a)

[Bll“;({"/@mlog(l/a)J | et ]

< alB vl R Karernd I vl
)

since a € (0,1). Thus, for any fixed 0 <y < 1,

lim sup Fg( v) < alﬁlé(;%f/a)J < o0,

T—00 F& (l’)

implying that F¢ € D.

Now let us turn to class C. Since every distribution function with
consistently varying tail is also long-tailed and for Peter and Paul dis-
tribution it is true that Fy ¢ L, we conclude that F¢ ¢ C. It is also
possible to demonstrate this proposition in a straightforward way. For
sufficiently large z,

Fg(:cy) :a[ log(zy) J [ log = J

Blog(1/a) B 108(1/a)

Fe(x)

log x

log x log @ log x
— aﬂlog(l/a)+610g(l/a> {Blog(l/a)+ﬁlog(1/a)} Blog(l/a)+{ﬂlog(l/a)

logy log x log
:aﬁlog(l/a)a_({ﬁlog(l/a)+ﬂlog(1/a)} { szt )

for any y € (0,1). Therefore,

F
lim lim sup g(ey)
y1l z—owo Fﬁ()
= lim lim sup aﬂlog(ly/a) a_({ ﬂll(;(ll/a)+ﬁ10g(1/a)} {/31};;%11/0) )

Yyl z—w

= limaﬁlclg%ly/a) a ({Blogu/a) }+1)
ytl
=at#1

Thus, F¢ ¢ C. And, therefore, F¢ ¢ R.
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1.5.3. Example of a mixed distribution

Previously we have given examples of purely continuous and discrete
distributions. Here we give an example of a mixed distribution which
belongs to class D\L. It is constructed by “breaking” Pareto distribution
function at the points from a diverging sequence of real numbers.

Suppose that r.v. £ has the following distribution function:

0, <1,

-2, 271<2<2" neN, a>1.

2n—lxa Y
Then the tail function

, r <1,
Fe(x) = (1.23)
ﬁ, 2l < <2” neN, a> 1.

First we will prove that F¢ is not long-tailed. By definition, for
re[2"—1,2"), neN,

—= 1
Fee+l) o@eme 1 1
RS = = = < —.
Fe(x) 2”_1110‘ 2(1+ %) 2
There exists a diverging sequence x, = 2" — 1, n € N, such that
Fe(an +1) < 1
Fe(zp) 2’
and, therefore, Fe(atl) @ L doesn’t converge to 1 as x — 00. Thus, conditions
of Definition are not satisfied - the distribution function F¢ is not
long-tailed.
The values of the ratio %, in the case a = 2, are depicted in
3
Figure @ The graph illustrates the fact that hm mf Fe (m(l_)l =1/2 and
F§($+1) _
M @

Next we prove that F¢ is dominatedly varying-tailed. Condition
lim sup (xy) < oo, for all y € (0,1), is equivalent to lim sup (2 2 < o
1
Thus, we will consider the ratio ng( (2 x)), z e R. We get

e(z
e ( 1 ) 1, <1,
5T
22 x%, 1<z <2,
Fe(x)
20+l x> 2



1.0

\

0.4

0.2

Figure 1.3: Values of the ratio of tails in the z range (2, 65).

Fo(l
Indeed, when x < 1, then, also, %JZ’ < 1. Thus, by (), FFL(Q;S) =1.
¢
When 1 < x < 2, then % < %x < 1, and by (),

Fe(zz) _ 1 _ 4
Fe(z) 4=

Finally, when 2”71 < 2 < 2", n € N\{1}, then 22 < 1z < 2"~ 1.
Thus,

= 1
Fe(32) _ 57%0R7 _ gatt

Fe(x) ;

on—Tga
Fo(l
It is clear that lim sup w = 20t < . Therefore, F; € D, and we

T—00 ¢(@)

conclude that Fr € D\L.

1.5.4. Weibull distribution

Further we explore the classical Weibull distribution. Whether distri-
bution is heavy-tailed or not depends on the value of its shape parameter

T.
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The distribution function of Weibull random variable ¢ with scale

parameter A > 0 and shape parameter 7 > 0 is given by
Fe(r) = (1 - e_/\f)]l{xzoy

Notice that in case 7 = 1 it is a distribution function of the famous
exponential distribution.

First, we will show that in case 7 > 1 d.f. F¢ is not heavy-tailed.
Remembering Definition @, we have to show that there exists a number
h > 0 such that

lim sup F(x)e"* < co.
Tr—00

Let us take A = A. Then for z > 0,

F(x)eh® = e Ar = AlaT+a),

Thus,

_ 1, 7=1,
lim sup F(x)e"* =
T—00 0, 7>1.

Therefore, in case 7 > 1 d.f. F¢ ¢ H and, clearly, F¢ doesn’t belong to

any subclass of H. Belonging to the class OL, though, depends on the
choice of 7 = 1. Indeed, in case 7 = 1, with = 0 and y > 0, we have

Fe(w+y) _ e Moty -
Fe(x) e

and, therefore,

i Fe(z+y)
im ———=~
for any y > 0. Thus, exponential d.f. F¢ with parameter A > 0 belongs
to class £, with v = X and, also, belongs to class OL.
Further we analyse the case 7 > 1. The ratio of interest is
Fg(.’L‘ — 1) e A=l >\(JJT—(.Z‘—1)T).

= = = e
Fe(x) e A

Since with 7 > 1 the function ™ — (x — 1)” — 00, when = — 00,

Fe(x—1
lim sup M = o0,
r—00 Fg(.ﬁ)

and, clearly, Fr ¢ OL.
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Now let us turn to the case 0 < 7 < 1. First, we will show that
F: ¢ D. When z > 0,

Fe(z) e

- .
Fe(gr) _ 0 ara-gyn),

Since A >0,0<7<1,0<1—(3)" <1, we have

Fe(k
lim sup 5(233) =0
T—00 Fg(l’)

Therefore, F¢ does not belong to class D, nor does it belong to classes
R and C.

It is well known that Weibull distribution with shape parameter 0 <
7 < 1 is subexponential. See, for example, Kliippelberg [37] or Shimura,
Watanabe [60]. Consequently, it is also long-tailed and belongs to the
general class of heavy-tailed distributions H.

1.5.5. Embrechts and Goldie distribution

In 1980 Embrechts and Goldie [22, Section 3] gave an example show-
ing that S is a proper subset of £. Here, for the sake of discernibility,
we call this distribution by the names of mentioned authors.

Let {a,} be a sequence of positive numbers satisfying a,, — 0, a,, <
$(n+1)!, and let’s define d.f. Fy by its tail function:

— 1, —0<z<?2,

Fe(z) =4 | |

ESAE 4+ +na, <z<(n+2),n=12,...,
= l1+n—u/ay
F ! =—t =

The idea behind the construction can be observed in the graph of

, 0<u<na, n=1,2,...

the tail Fg, when taking some specific sequence {a,}, satisfying the
conditions above (see Figure @) For the proof that F¢ € £ but F¢ ¢ S,
look into the mentioned paper of Embrechts and Goldie [22]. The proof
that F¢ is long-tailed emerges from the idea that line segment slopes
flatten, when x increases, and flat segments in between become longer.
The proof that Fy is not subexponential is much more complicated and
requires specifying a sequence a,,, so that a, — o0 “very slowly”.

Since F¢ € L, it is clear that Fy is heavy-tailed. Since F¢ ¢ S and
interrelationships () hold, we conclude, also, that F¢ doesn’t belong
to any of the classes D, C or R.
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Figure 1.4: Values of the tail of Embrechts and Goldie distribution in
the x range (—5,90).

1.5.6. Cai and Tang distribution

The proposition that class C is strictly larger than class R was first
shown by Cline and Samorodnitsky [17, Section 3]. Cai and Tang [12,
Section 2] provided a simpler example. Since there is no name proposed
for the distribution of interest, we call it by the names of authors of the
mentioned paper. Consider a random variable, written, simply, as

&= (1+n)2",

where n and N are independent random variables, 7 is uniformly dis-
tributed on (0,1) and N is a geometric random variable with P(N =
kY= (1—-p)prfor0<p<landk=0,1,...Let F¢ be the distribution
of &.

Showing that F; ¢ R, Cai and Tang chose two different sequences
{r, = 2" n=1,2,...} and {y, = 2""1/3, n = 1,2,...}. It appears
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that for all 0 <p < 1,

lim Fi(l.f)xn) ~ fim Fi(l.Byn).
o0 Ff(xn) o0 F&(yn)
The limit o
lim Fi(1.5x)
220 Fe(x)
does not exist and, therefore, F¢ ¢ R.

The proof that F¢ € C involves noticing that for any x > 1, there
is a unique integer n = n(z) such that 2" < z < 2n+1 and, using this,
evaluating ratio %;éy)) by employing well-known properties from prob-
ability theory. Since F¢ € C, belonging to classes S, £, D, H and OL

is implied.

Furthermore, Cai and Tang [12] remark that, for any positive m, it is
possible to choose 0 < p = p(m) < 1 such that £ has the finite moment
of order m. So, in some sense, the tail of F¢ is moderately heavy.

1.5.7. Lognormal distribution

Finally, we mention the lognormal distribution. We are interested in
the d.f. of random variable e’ , where X is a standard normal r.v. and
o> 0.

The tail of lognormal distribution is

F(z) = 1f00 exp{ — U2}du, x> 0.
1

210 Joga 202

Short, but interesting proof that F' € § is given by Embrechts et al.
[23, Section 6]. They use a standard estimate, F(x) ~ Fo(z), where

Fo(z)

7 _exp{ - LB s
= —eX — .
v2mlogx 202 )’

Then F' € S if and only if Fjy € S (see Theorem (a) and the references
in the following subsection). Using a characterisation in [64, Theorem
2], they found that Fy € S and, therefore, F' € S.

The fact that lognormal d.f. F' € S is well-known. Besides [23] we
found it mentioned in [17],[19],[29],[87],[60],[69]. On the other hand, it
is mentioned in [29], [60], [69] that F ¢ D.
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1.6. Summary of known closure properties of the classes
of heavy-tailed and related distributions

Here we provide a summary of known closure properties of heavy-
tailed and related distributions’ classes, that is, the classes that we al-
ready defined in Section @ Some of these results will be used in the
proofs of our propositions further in the text.

e We say that a class of distribution functions A is closed under
convolutions, if for any F1 € A and Fy € A, it holds that F7 = F5 € A.

e We say that the max-sum-equivalence holds in class A, if for any
e Aand Fs € A, it holds that Fy ~p; Fo.

e We say that class A is closed under convolution power, if for any
F e A, it holds that F*" € A for all integer n > 2.

e We say that class A is closed under convolution root, if F*" € A
for some n > 2 implies F' € A.

The following closure properties are already established in the liter-
ature.

The class of regularly varying-tailed distributions R is closed under

convolutions and the max-sum-equivalence holds in this class.

Theorem 1.4 (Cai, Tang [12, Proposition 1.2]). Suppose that Fy,F»
are d.f.s corresponding to distributions supported on R™. If F} € R and
FQ € R, then F1 * Fg €R and F1 ~M FQ.

For the bigger class C, which includes all elements of R, we have an
analogous result.

Theorem 1.5 (Cai, Tang [12, Theorem 2.2]). Suppose that Fy,F> are
d.f.s corresponding to distributions supported on RT. If Fy € C and
FQ € C, then F1 * FQ eC and F1 ~M FQ.

When assuming independence, the following result holds for real-
valued random variables.

Theorem 1.6 (Kizinevic¢ et al. [36, Lemma 3|; Chen, Yuen [13, Theorem
3.1]; Wang, Tang [6§, Theorem 2.1] (i.i.d. case)). Let &1,&a,...,&y be
independent real-valued r.v.s. If F¢, € C for each k € {1,2,...,n}, then
the d.f. Fsﬁ eC and

k=1
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If &1 and & are independent, this is clearly an equivalent of Theorem
for real-valued random variables. For the sake of visual comparison,
we formulate the statement as the following corollary.

Corollary 1.1. Let & and & be independent real-valued r.v.s. with
d.f.s. Iy and Fs. If F1 € C and F5 € C, then Fy « F5 € C and Fy ~ Fb.

The set closure result for the class D nS = D n L is established by
Embrechts and Goldie [22].

Theorem 1.7 (Embrechts, Goldie [22, Proposition 2]). Let Fi,F» be
such d.f.s. that F1(0) =0 and F»(0) =0. If i e DnS and F € DN S,
then Fi * Fo e DN S.

The result that max-sum-equivalence holds in D n L is due to Cai,
Tang [12, Theorem 2.1] and Omey [47]. The closure of class £ D under
convolution power follows also from Leipus, Siaulys [39, Corollary 3].

In 1980, when Embrechts and Goldie wrote their paper, it was not
known if the class S is closed under convolutions, but they achieved

useful equivalent forms of convolution closure.

Theorem 1.8 (Embrechts, Goldie [22, Theorem 2]). Let Fy,F5 be such
d.f.s. that F1(0) = 0 and F»(0) = 0. If Fy € S, F5 € S, then the
following are equivalent:

(i) Fi«Fye S,

(it) Fi ~n Fa,

(iii) pF1 + (1 — p)Fy € S for some (all) p satisfying 0 <p < 1.

In the same article we find the theorem about convolution closure of
classes L£,7 = 0. We remind that Lo = £, that is, in case of 7 = 0 we
have in mind long-tailed distributions.

Theorem 1.9 (Embrechts, Goldie [22, Theorem 3]). Let F and F» be
d.f.s of real-valued random variables.

(a) If Fy € L and F> = o(F1), in particular if Fy € Ly for v > 7,
then Fy = Fy € L.

(b) If F1 € L, and Fy € L, then Fy * Fy e L.

Thus, clearly, class £ is closed under convolutions (see, also, [27,
Corollary 2.42]). But the subclass S < L is neither closed under con-
volutions nor max-sum-equivalence holds in it. Therefore, max-sum-
equivalence is invalid in class £, too. The result of non-closure of class
S is due to Leslie [41].
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Even though class § in general is not closed under convolutions, in
case of dominated relations between tails of F} and F5, the convolu-
tion F; = F5 stays in class S. Also nonnegative distribution with a tail
asymptotically equal (or related) to the tail of subexponential distri-
bution stays in class S; this fact is not immediately clear because the
definition of subexponential distributions involves convolution.

Theorem 1.10 (Pakes [48, Lemma 2|; Embrechts et al. [23, Proposition
1]; Pitman [53, Corollary 2]; Embrechts and Goldie [22, Lemma 2]; Cline
[16, Corollary 1]). Let Fy and Fy be two d.f.s on the half-line [0, 00).
(a) If 1 €S, Fa(x) x:wcfl(a?), c>0, then Fy € S.
(b) If F1 € S and Fo(x) = o(F1(x)), then Fy* Fy € S and Fy ~p Fy.
(c) If L €8, Foe L, and Fy(x) = O(F1(x)), then Fy * Fy € S and
Fy ~y Fo.

Result (a) was given in Pakes [48, Lemma 2|. Case ¢ = 1 (closure
under asymptotic equality) is also given in Teugels [64, Theorem 3]. For
the proof of (b), see Embrechts et al. [23, Proposition 1] and Pitman [53,
Corollary 2[; for the proof of (c), see Embrechts and Goldie [22, Lemma
2] and Cline [16, Corollary 1].

e Generalisation of Theorem (a) for distributions on R is given
in Foss et al. [27, Corollary 3.13]. Note that in the literature two distri-
butions Fy and F} satisfying condition Fa(x) S cF1(z), for some con-
stant ¢ > 0, are sometimes called proportionally tail-equivalent. Also,
in relation with Theorem part (a), we write another result with a

weaker condition of tail-equivalence.

Theorem 1.11 (Foss et al. [27, Theorem 3.11]). Let F} and Fy be two
distributions on R.
IfFi eS8, Fye L and Fi(z) = Fy(z), then Fr € S.

For the proof of this result, see [27, Theorem 3.11].

e Generalisation of Theorem (b) for distributions on R is Corol-
lary 3.18 in [27].

e Versions of Theorem (¢) for distributions on R are Lemma 3.2
in [61] and Corollaries 3.16 and 3.17 in [27].

It is well known that for any positive integer n,

FeS< F™eS. (1.24)
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Proofs can be found in Embrechts et al. [23, Theorem 2] and Chistyakov
[15]. Left-to-right implication can also be checked employing Theorem
1.10 (c) above. For the implication F' € § = F*" € S, when correspond-
ing distribution has support in R, see [27, Corollary 3.20].

Similarly, for any positive integer n, F' € L, = F*" e L, v > 0.
This follows straightforwardly from Theorem @ (b). For d.f.s supported
on R, the result also follows from Theorem 3.1 in the paper by Albin

2.

Using convolution root closure property of class S, that is, right-to-
left implication in (), we get the following proposition, which will be
useful later in the text.

Proposition 1.4. Classes Ry, a = 0, are closed under convolution root.

Proof. 1t follows from relations () that R, < S for any a > 0. From
the convolution root closure of S, we get that F*" € R, for some n > 2
implies F' € S. Therefore,

F*n(x) ~ nF(x), (1.25)

as x — o0. Then, by () and the definition of the class R, we have
FeR,. ]

Convolution closure result for the class D, in the case of distributions
on RT, is mentioned in the literature, but we haven’t found the full
proof. For a more complete review of closure properties, we provide it
here. First, we need the following lemma.

Lemma 1.2. Assume that {1 and & are nonnegative r.v.s with d.f.s F,
and F,. Then

max{Fg, (), Fg, ()} < Fe, * Fe,(2) < F, (z/2) + Fe, (2/2),
for x > 0.

Proof. Let us prove, firstly, the upper inequality. Starting with convo-
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lution definition, we obtain

Fe, # Fe,(x J Fe (2 —y)dFe,(y J Fe (2 — y)dFe,(y)
r/27 o
- &m—wwmwfﬂ&@ﬂM%@
L x/2 0
< F£1 (37/2) J;) dF§2 (y) + f/g dF52 (y)

< T, (2/2) + ey (2/2), 2> 0.

Similarly, for the lower inequality, we have
Fe # Fey(@ f Fy, (z — y)dFg, (y)

> [ Rwar.) = T
0

and
o8]
P+ Falo) = | Falo - p)dFa ()
OOO
> [ Fa)dre ) = Falo
Therefore, Fy,  Fg,(z) > max{F, (z), F¢,(x)}. O

Now we prove convolution closure of class D.

Theorem 1.12. Assume that £1,& are nonnegative r.v.s with d.f.s.
Fe\, F¢,. Then Fe, € D and Fy, € D implies F¢, * F¢, € D.

Proof. Since F¢, € D and F¢, € D, then lim sup I, (go)

< o0 and
£—00 F§1( x)

lim sup ;2( (4 )) < o0. Employing Lemma @, we get the following chain
xr— 00 52

of inequalities:

For Fahe) _Fa(n) + oo _FlGo)  Fale)
Fgl*F&(aj) Fﬁl*F&(‘T) Fﬁl(x) F&(‘T) 7
Therefore,
lim sup M < limsup @%x) + lim sup i(ix)
e Fe x Fe,(x) e—w  Fg (x) e Fe,(x)
Thus, clearly, Fy, * F¢, € D. O
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For the real-valued r.v.s, we have the following result by Tang and
Yan [62, Lemma 1].

Theorem 1.13 (Tang and Yan [62, Lemma 1]). Assume that &,&2 are
real-valued r.v.s with d.f.s. F¢ ,Fe,. Let F, € D. If Fy, is a d.f. such
that Fe,(x) = O(Fg, (x)), then Fg, = Fg, € D and Fg, * F,(z) = Fg, ().

Using induction, the following corollary can be obtain from the the-
orem above. See, also, Tang and Yan [62, Lemma 2]. Class D is closed

under convolution power.

Corollary 1.2. Let £ be a real-valued r.v. with d.f. F¢ € D. Then
Fg" e D for all integer n > 1 and FF"(x) = Fe(z).

We summarise the main results of this section (in the case, when
r.v.s are nonnegative) in the following table.

Class of distributions R C S L D
1. Is the class closed under convolu- Yes | Yes | No | Yes | Yes
tions?

2. Is the class closed under convolu- Yes | Yes | Yes | Yes | Yes

tion power?

3. Does the max-sum-equivalence hold | Yes | Yes | No | No | No

in the class?

2. New closure properties of the classes of dis-

tributions

In the previous section we concentrated on the results related to
convolution closure of heavy-tailed and related classes. Analysing spe-
cific distributions for our examples, we noticed that tails of moments of
random variables retain properties that ensure they belong to the same
class. Indeed, later in the text we will prove that most of the classes
that we mentioned in the introduction are closed with respect to calcu-
lation of moments (see Definition El] below). Though limit properties
that define distribution classes can clearly be used to define a wider set
of functions, we stick to definitions that are usual in the papers of ap-
plied probability theory. Thus, for the sake of formality, we “cut” tail
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moment function, so that usual formulations would hold. Since we are
interested in the right tail properties, the following definition is suitable
for the presentation of our results.

Definition 2.1. Let, as previously, & be a real-valued random variable
defined on a probability space (2, F,IP) with distribution function Fr.

Suppose that moment

E(¢H)™ = J 2™ dFe ()

[0,00)

is finite for m = 0. In such a case, the function
Fem(z) = max {0,1 — E(§" Ligspy) }, @ =0,
s a new distribution function with the tail function
Fem(z) = min {1, E(" 1ie=yy)}, = = 0.

We will prove that if F; belongs to some specific class, then F¢,,
belongs to the same class of regularity with all valid moment orders m.
Also, for some classes of distributions, we were able to find that, if F¢ ,,
belongs to some specific class, then the distribution, which generated
the moment, Fg, is necessarily from the same class. Although, working
in this direction is usually far more complicated, and some questions are
still left unanswered.

In some classes of heavy-tailed distributions, we extended the re-
sults to the sums of random variables, in the sense of showing that,
if d.f.s {Fg¢,, Fe,, ..., Fe,} belong to some specific class, then FSi,m be-
longs to the same class. To achieve this, we applied some known results
for independent or, more generally, pairwise quasi-asymptotically inde-
pendent random variables. If, in addition, random variables &1,...,&,
are identically distributed copies of £, the following question related to
convolution root property also makes sense: if Fsﬁ m belongs to some
specific class, is F¢ in the same class?

These results with some generalisations and additional facts will be
presented in the Section @

2.1. Some illustrative examples

Before presenting abstract results we would like to go through several
illustrative examples. We will take some distributions from the Section
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@, find formulas for their tail moments and attribute respective func-

tions Fg ,, to relevant regularity classes.

2.1.1. Tail moment of Pareto distribution
Let Pareto distribution be defined as in Section . It is not

difficult to calculate that, when m < «, formula for tail moment is

" g‘f:;, T < A,
E(é: ]l{§>:t:}) - axe 1 >

a—m xe—™m?

For sufficiently large x,
A 1
E(§m1{§>xy}) _ ;—m zoTmye ™ yf(afm)
E(§™ 1 e5ay) o 1o

Thus, o
. F{,m($y) _ . —(a—m)

for any y > 0.
This means that F¢ ,, € Ro—m < R. This is not a coincidence. Later

we will prove that F¢ € R if and only if F ,,, € R.
As in case m = 0, in general it is also true that Fy ,, belongs to other

classes (C, S, L, D and H), too.

2.1.2. Tail moment of mixed distribution
Let distribution of interest be defined as in Section . That is,

suppose that r.v. £ has the following distribution function:

Fe(o) xz <1,
€Tr) =
¢ L 2l <o <2” neN, a> 1.

1- on—TIgas

After some straightforward calculations, we get that tail moment of

distribution Fg is

_ aim(a—ﬁ)y T <1, 2.1)
1 o (2a+1—m71)7?2a+1—m)”—1)’ i<z <2n,

a—m \ 2n—lga—m
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Figure 2.1: Values of tail expectation.

where n € N, m < «. The graph of this function, in the case a = 2,
m = 1, is shown in Figure @

We will prove that, if m < «, then F¢,, ¢ £. When z € [2" —1,2"),
by (@), we have

E(gmﬂ{§>z+1}) 2n(x+ci)a—m - (2a+1—m,{7;(2a+1—m)n

E(£m1{§>x}) 2n71§a77n - (2a+17m,1)7ﬂ(2a+17m)n71 .

Let’s take the same diverging sequence x, = 2" — 1, n € N, as before.
Then

(0] m
E(l"ligsu,11))  Znontem — @aFmol)gati-m)m
m - a _ m
E(€ ]]‘{£>:Bn}) 2n71(2n_1)a7m (2a+17m_1)(2a+17m)n71
m

. & — saFi-m_1

- a2l—-ngn(a+1-—m) . moa+l—m

(2n_1)a—m Qa+l-m__1

m
a — gaFi—m_q

2c _ m2otl-m *
(1_2%)a7m 2a+l-m__1
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Thus,

y Fem(zn+1) - gartmy o227 —1)—m
now  F T 9a _ m2TIm T (90— pyetlom — g
f,m(l'n) 20& ga+l-m_1q
The ratio

a(20¢+1—m _ 1) —-m
(2 — m)2et1—m — 2¢
a2 1) —m = (20 — m)2°TIT™ — 2¢y
= (a—m)(1 -2t =0

=>m=aorm=u«o-+ 1.

=1

F{,m(x)
doesn’t converge to 1 as x — o0. The d.f. Fg,, is not long-tailed.

The values of the ratio % in the case a = 2, are depicted in

Figure @ The graph illustrates the fact that liminf M

z—o0  Fei(x)

Both solutions do not satisfy condition m < «. Therefore,

= 0.625

and lim sup M =
z—oo  Fea(@)

2.1.3. Tail moment of exponential distribution

The distribution function of exponential random variable £ with pa-
rameter A > 0 is given by F¢(x) = (1 — e*)‘r)ll{xgo}. The tail moment
of this distribution is

m!

T <0,
E(€m1{£>w}) =37

mle™ 37 ij mo x>0, meN.
We will prove that F¢ ,, ¢ £ for any m € N. Indeed, when x > 0,

E(§m1{£>x+1}) B mle—Az+1) Z;nzo (ﬁ%)]}\jfm

E(€™1ie=ay) mle= e 3 L pj—m

LS (L ) e

m ;1:] m m
Djo G

Therefore, the limit

F 1
lim 75;m(a: +1)

220 e ()

—e # 1.
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Figure 2.2: Values of the ratio of expectation tails in the x range
(2,65).

Consequently, the distribution function F¢ ,, is not long-tailed.

Similarly, when x > 0,

1y o

E(£m1{§>%x}) . m!e—%/\ﬁ ZTZO (2;;) AT . e%)\ ZT O( ) /\le =

E(é‘mﬂ{£>z}) mle—Az Zm_ Lj)\j—m Z;n o )\Jj!mwj m
ha mi(*) + 3 BV

m— 1)\3 mo 1
ml +Z zm—J

1
= e2

1
Thus, hmsupA—oo and Fg,, ¢ D, m e N.

r—00 F‘Em()

2.2. Closure properties and their proofs

In this section we formulate and prove results concerning closure
properties of introduced classes with respect to calculation of moments.
First, we state theorem regarding sufficient conditions, so that Fg,,
would belong to respective class.
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Theorem 2.1. Let £ be a real-valued r.v. with d.f. F¢ and finite moment
E(£T)™ for some m > 0. Then the following relations hold:

(i) FeeRaom<a = FepmeRaom (FeeR = FemeR),

(ii) FeeC = Femel,

(i) Fee D = FepmeD,

(iv) Fee L = Fepm€el,

(v) FeeLly, v>0 = FemeLl,,

(vi) Fee OL = Fg¢p € OL.

In the second theorem we present the relationships in the other di-
rection compared to Theorem @ We proved that for F¢,, to be in
class K it is sufficient that distribution function F¢ is in class K. But,
as we will see in the following theorem, it is not always necessary. For
example, d.f. F¢ outside class D may generate F¢,, € D. In some classes
having F¢ ,, € K implies, in general, F; € K or F¢ ¢ K.

Theorem 2.2. Let & be a real-valued r.v. with d.f. Fe and finite moment
E(ET)™ for some m > 0. Then, in general, the following relations hold:
(i) Fen € Raem, m<a = FeeRy (FemeR = F:eR),
(ii) FeneC =» FeeC,
(iii) FegmeD = FceD,
(iv) Feme L = Fee L,
(V) Femne OL =» Fre OL.

2.2.1. Proof of Theorem @

To prove this theorem and several other results in the thesis we will
employ the following lemma. Proof of it can be found in Leipus et al.
[40].

Lemma 2.1 (Leipus et al. [40, Lemma 3]). Let £ be a real-valued r.v
such that E(§ )P < oo for some p > 0. Then, for all z >0,

00]

E({pﬂ{§>m}) = 2PP(§ > x) —l—pf up_l]P’(£ > u) du, (2.2)

T
©¢]

E((¢—2)")" = pJ (u — )P P(€ > u) du. (2.3)

x
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Note that equation (@) follows directly from (@) Indeed,

E((€—2)")" =E((§ — 2)" Lg—s>0})

= 0PP(¢ — 2 > 0) —i—pJOO uPP(E — x> w)du
0

= pfw(u — x)p_1P(§ > u)du

T

Also, we will use the classic min-max inequality:

. a1 ar} ai+---+ap {al ar}
mind—,...,— ¢t < ————————— <max{ —,...,— , 2.4
{bl b, by +---+b, by b, (2.4)
where a; >0, b; >0foralli=1,...,r.

Proof of Theorem @ (i).

First, notice that for all z,

Felw) = —f W AT (1), (2.5)

Assume that Fe € R,. Applying Theorem @ for f = Fe¢, we get
§, u"dFe(u)  a

lim — = .
=0 gMFe(x) m—«

Thus, plugging in (@), we have

3 _Févm(x) (0%
lim = = = )
T pm(— Sw umdFe p(u))  m—a
or - _
hm Sa: u_nElFfvm (U) - _ m—« ]
o0 pTMEe o (x) -m+m—a«

Since m # 0 and —a < 0, by the converse part of Theorem @, we arrive
at the conclusion that F¢,, € Ro—m.

Proof of Theorem @ (ii).

Fix € > 0. Then there exists such a positive yy = yo(e) that

F
1 — e < limsup j(xy) < 1+€

T—00 F&(x)
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when yo < y < 1. For this y, there exists xg = xo(y) such that
Fe(ay) < (1+e)Fe(a),

when x > xg.
From Lemma @ and formulations above, we have that with y > yo
and sufficiently large x,

Fem(ry)  EE Lieony))
Fem(r) B Liea)
x™y"P(€ > zy) + my™ S;O u™IP(¢ > uy)du
2mP(€ > x) +m ) W IP(E > u)du
£y (14 B(E > ) + my™ (14 ) §° wB(E > u)du
P& > x) +m S, wrP(E > u)du

=(1+ey™ (2.6)

From (@), we get

(zy)

F
lim sup lim sup ="~""2 < 1+,
yit a—oo Fem(x)

and letting € | 0, we achieve

F
lim sup lim sup M <1 (2.7)

yii esw Fem(a)
Since function E(§™1y¢>4y) is not increasing in R*, we have that
E(€" Liesayy) = E(§M1iessy) with y € (0,1) and @ > 0. Thus, for
sufficiently large x,

Fem(zy)  E(Miesmy))

S = > 1.
Fem(z)  E(€1{esqy)

Therefore, o
F
Jimn inflim sup 2em ()
Y1l anw  Fep(x)

Finally, from (@) and (@), we get that

F
lim lim sup M =1
vl 2w Fep(x)

(2.8)

This implies that Fg,, € C.
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Proof of Theorem @ (iii).

Let us fix 0 < y < 1. By condition F¢ € D, there exists a positive
¢ = ¢(y) such that for sufficiently large x,

Fg(a:y) < CF&(JJ).
From this and Lemma @, we have that for sufficiently large =,
Fem(ry) _ E(€"Liesayy)

Fem(z) Bl liesa)
(zy)"Fe(xy) +m 7 u™ ' Fe(u)du
— amFe(z) +m §2 wn—1F¢(u)du
()" Fe(xy) +my™ {7 u™ ' Fe (uy)du
2 Fe(x) +m {7 un=1Fe(u)du
_ (zy)"cFe(x) + my™ Szo u" LeFg(u)du
2 Fe(z) +m§ 7 um=1Fe(u)du

=cy™ < 0.

Hence, for any fixed 0 <y < 1,

F
lim sup M < 0.
This implies that F¢ ,, € D and concludes the proof of Theorem @ part

(ii).

Proof of Theorem @ (iv).

Working on closure properties of class £ = Ly, we noticed that it is
possible to start the discussion from the more general statement about
limits of tail functions.

Theorem 2.3. Let & be a random wvariable with distribution function

such that Fe¢(z) > 0 for all x and, for any fized y > 0, zh_I)I&) % =

a (0 <a<1). Also, E(¢T)™ < o for some m > 0. Then for the same
a, _

7}78”(:6 +v) =a for all y > 0.

v Fem(x)

Proof. Let us fix € > 0 and y > 0. By conditions of the theorem, we

have that for sufficiently large x,

(a—€)Fe(z) < Fe(x +y) < (a+ €)Fe(z). (2.9)
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Thus, applying Lemma 2.1 and the min-max inequality (@) in case
r = 2, we get that for sufficiently large =,

Fﬁ,m(fx +y) i E(£m1{§>x+y})

Fem(z)  E(™lgesa)
B (x+y)™F e(z+y) +msx+y um™ 1F5(u)du
a2 Fe(z) +m {7 un=1Fe(u)du

_ (@t y)"Fe(xty)+m §2(u+y)" ' Fe(u+y)du
2 Fe(z) +m§ 7 um—1F¢(u)du
- (z+y)™a+e)Fe(z) +m > (u+y)™ Ha+ €)Fe(u)du
2 Fe(z) +m § um=1F¢(u)du
(a+e)(L+L)ma™Fe(z) + (a+e) igg(l + Dym=lp 0 um=1Fe (u)du

<

a2 Fe(x) +m 7 un=1Fe(u)du
TR M
—(a+e)(1+ %)m

From this, we have that

lim sup w < lim sup ((a +€) (1 + %)m)

T—00 £, m(l’) T—>00

=a + €.

Letting € | 0, we have

Fgm(ft-i-y) <a

lim sup (2.10)
r—00 {m( )
Using the same techniques, we get
F
liming TemEHY) (2.11)

e Fem(@)
Finally, from () and () for any fixed y > 0, we achieve the

equality
lim F{ m('r + y)

w0 Fem(x)
The theorem is proved. O

Taking a = 1 in Theorem @, we get the result of Theorem @
part (iv) as the following corollary.
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Corollary 2.1. Let £ be a random variable with distribution function
Fee L and E(€T)™ < o0 for some m > 0. Then with this m, F¢,, € L.

Also, using Theorem @ we conclude that if F; ¢ £ due to the reason

that lim £ oxists but is not equal to 1, then lim Fem@ty) o vists
z—oo Fe() —00 em(x)

but is not equal to one as well. This means that, in this case, F¢,, ¢ L.

Proof of Theorem @ (v).

Let us fix v > 0, y > 0 and € > 0. By conditions of the theorem, we

have that for sufficiently large x,
(e7W —€)F¢(x) < Fe(z +y) < (€7 4 €)Fe(x).
Similarly, as in the proof of Theorem @, we get

F
limsup LemEHY) (2.12)

r—00 F&m ((L‘)

Also, o
F
lim infw > e Y.
=% Fem(2)

From () and () for any fixed y > 0, we achieve the equality

(2.13)

Part (v) of Theorem @ is proved.

Proof of Theorem @ (vi).

Let us fix y > 0. By condition Fy € OL, there exists a constant
¢ = c(y) > 0 such that for sufficiently large z,

F&({E — y) < CFg(l’).

From this inequality, Lemma @ and the min-max inequality (@)
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in case r=2, we have that for sufficiently large = > y,

Fim(x - y) _ E(§m1{§>x7’y})
Fem(x) E(€" 1{¢>a))

B (x —y)"Fe(x —y) +m S;O_y um_ng(u)du
2 Fe(x) +m {7 un=1Fe(u)du

_ (@—y)"Fer—y)+m;(w—y)" Fe(u—y)du

e Fe(z) +m§ um—1Fe(u)du

B (x — y)mcfg(m) +m Szo(u — y)m_lcff(u)du

a2 Fe(z) +m 7 um=1Fe(u)du
c(1—4)mamFe(x) + cilip;(l — Lym=Lpy (w1 Fe (u)du

N

2 Fe(z) +m§ um=1F¢(u)du
-1
< cmax{(l — g)m,sup (1 — g)m }
X u=x u

m—1
c( —ﬂ) , 0<m<1,

€T
c, m = 1.

Hence, for any fixed y > 0,

F _
lim sup M < .

T—00 Fg}m(x)

This implies that F,, € OL and concludes the proof of Theorem @
part (vi).

2.2.2. Proof of Theorem @

Proof of Theorem (i).
As in the proof of Theorem @ (i), for all z,

Fe(z) = — foo u*md< JOO smng(s)),

x u

and for sufficiently large =z,

Fe(z) = —j u " dF e (u). (2.14)

Assume that F¢ ,, € Ro—rm. We apply Theorem @ for function f =
Fem.
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We get

§0 uwmdF g (u) _ m-a

xr—00 $_mfg7m<$) -m-+m—« '

Remembering the definition of function F% ,,, we achieve

- _
mqF
o0 M Fe(x) m—«

Hence, F¢ € Rq.

Proof of Theorem (ii).

The converse statement is generally not true in class C. To demon-
strate this, we construct a counterexample. Let us define the tail func-
tion of r.v. £ as

0
1
Fg(l‘) = 1(_00,2) (x) + Z 7n22n1[2n72n+1)($).
=1

This tail function describes the distribution of r.v. &, for which

and ) )
_ +1\ _
P& =2""") = o~ (3 D22 ne{l,2,...}.

Then, computing the expectation of £, we get

Sl 1 2
E(EH) =E@¢)=1+2) (E—Q(i):wr?«;o.
n=1

n+1)2
For x = 2,
1 1
E(liea) =2 ), (7 - 72)
> fiomy 2] n 2(n+1)
Thus,
— 1
F ~ 2.15
a®) %, oy (215)
implying that F¢; € Ro = C.
However, for the sequence z,, = 2™ + %, n €N,
Fe(z—1 F -1
lmsup LEE =Yy, Felon =Dy (2.16)

om Fe(x)  noe Fe(z)
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This gives that Fe ¢ L. Since C < L, it follows that F¢ ¢ C, which
finishes the proof of part (ii) of the theorem.

Proof of Theorem (iii).

The converse statement is generally not true in class D. To prove
this part of the theorem, we construct a counterexample.
Let us take two recursive sequences:
DAan,m=1}: a1 =2, ap = ap—12", n=2,3,4,.
2) {bp,n=1}: by =1, by =1/2, b, 2n+2,n—34
We define distribution of interest by its tail:

= b17 T <ai,
Fe(z) =

bn, Gn1<zT<ap n=2734,...

Then the ratio of tails is

(1 ) 1, T <ayora,—1<Tr<ap n=2234,...,
5T
; (2$) =142, a1 < x < 2ay,

¢ 2n+3

anp < T < 2ap, n=2,3,4,...

Clearly, lim sup 5(2 9 _ o and F¢ ¢ D.

Fe(z)
T—00
After calculations, we get that first tail moment (tail expectation)

130/21, T <ai,
E(é]l{§>x}) =
L — L a <rzr<ap n=273,4
3% 22(n—4) 7x23(n—2)" n—1 = ) — Ly 9y ..
Thus,
.
1, T < aior 2a,-1 <z < ap,
E(§H{£>lx}) n=23,4,...,
2
— =
E(1{esqy) 130/109, a1 < < 2aq,
1 1
2(n—4) 3(n—2
322 1¥nD < p < 2an, n=2,3,4,...
L 3x22(n=3)  7y23(n—1)
Since
1 o 1 1 o 1
2(n—4 3 2) —8 —6 n
lim 3x21(n ) 7><21(" — lim 3><% 7x2 . xom 4,
n—o0 — n— — 3
3x22(n—3) 7x23(n—1) 3><2 6 Tx 23 %21
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it is clear that

limsup ———2— =4,
T—0 E(€H{§>z})
and, therefore,
Feq (L
limsupﬂ =4 < .
r—0 F§71(l‘)

We conclude that F¢; € D, but F¢ ¢ D.

Proof of Theorem (iv).

To prove this part of the theorem, we can use the same counterex-
ample as in the proof of part (ii). According to relation (), d.f. Fey
belongs to the class £. On the other hand, the relation () gives that
d.f. F¢ does not belong to £. Part (iv) is proved.

Proof of Theorem (v).

The converse statement is generally not true in class OL. To demon-
strate this, we construct a counterexample.

Let us take two recursive sequences:

1) {ap,n=1}: a1 =2, ap = ap—12", n=2,3,4,...;

2) {bn,n=1}: bi=1, bp=1/2, by = 2255, n=3,4,...

We define distribution of interest by its tail:

0
Fe(a) =bil(Cooa(@) + Y bnlig, ya(®)-

n=2
Then the ratio of tails is

Fe(z —1) S
W = IL(—oo,al)(x) + 2]]-[a1,a1+1) (.’L‘) =+ 7;2 ]]-[an_1+1,an)(x)

o0
+ Z 2" 30 0y (2).

n=2

. Fe(x—1)
learly, 1 S
Clearly, u;n _)Sololp Fe@)

In the proof of part (ii), we have already shown that F¢; € D. It
is well known that D < OL. Thus, we conclude that F¢; € OL, but
Fe ¢ OL.

= o0 and Fy ¢ OL.
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2.2.3. Corollaries and additional results

Though F; € D = Fg,, € D is true for every distribution with
required moment condition, as we just learned, F¢,, € D = F; € D gen-
erally. But in the smaller space of distributions, the following statement
about the closure of class D is valid.

Proposition 2.1. Let £ be a random variable with distribution function
F¢ such that ratio F¢(3u)/F¢(u) is monotonically increasing and let
E(£T)™ < o for some m > 0. Then F¢ € D if and only if Fg , € D.

Proof. Necessity follows directly from Theorem @ We will prove suffi-
ciency by showing that in the space of distribution functions with men-
tioned monotonic increasingness condition the tail moment of any dis-

tribution outside class D remains outside class D.

Toly
Inside class D, d.f. F satisfies condition lim sup % < 00. Then
xTr—00 S
any d.f. G outside of class D will satisfy condition
rele!
lim sup 2 _ o, (2.17)
r—00 G(l‘)

Let’s say that d.f. G, satisfies the condition () This means that

ralta!
. Gn(5u) _
lim sup — = 0.
TP uzz Gy u)

1
Thus, # M such that supM < M for all x € R. To put it an-

Gn(u)
uzx "1
other way, it is true that for any M there exists xgp € R such that
én(%u)

o () > M, and, therefore, for any M there exists Tg such that
n

sup
U=xo

Gn(3%0) > MGy (io). By given assumptions, function G, (3u)/G,(u) is
monotonically increasing. Thus, it is also true that
G (X
13% ar s g (2.18)
Gn(u)
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By inequality (), when Z( is chosen big enough, we have

m(320) B0 Lyoi1z,y)

m(«%()) B E(nmﬂ{n>£0})
(380)™Gy(5%0) + 3 :1:0“ 16, (3u)du

G
G

%:ﬁg‘Gn(io)+ Mo §E um Gy (u)du
"G ( )+mS;c; um1G, (u)du
M
T aom
We found that for any M, there exists Zg such that %’mi((ﬂo)) > 2Mm
n,m
From this it follows that lim sup M = . Therefore, G, , ¢ D. [
Tr—00 Gﬂ m(m) ’

Let us note that the set of d.f.s F' for which the ratio F(%u)/?(u)
is monotonically increasing is not empty. In what follows, we give an
example of such a d.f. Thus, such a condition in Proposition @ is
meaningful.

Let us take the recursive sequence {a,,n = 1} given by
J— anil
22’ an

Let us define the tail function of r.v. & as

ar =1, ay = an = n=3,4,...

Fe(u) = a11(_op —i—Ean fan—1 9m) (W),

Then the ratio of tails is

— - ]]_ _ 2”]]_ n— n .
Fe(u) (—o0,2) (1) + E 2n—1,2n) (1)

n=2

Fe(3u)
Fe(u)
Next result follows directly from Theorems @ and @

Clearly, the ratio is monotonically increasing.

Corollary 2.2. Let £ be a real-valued random variable with distribution
function Fg € L nD. Also, assume that E(§T)™ < o for some m > 0.
Then with this m, F¢ ;€ S.
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Employing known closure properties from Section @, we get the
following corollary of Theorem P.1I.

Corollary 2.3. Let &1,&9,...,&, be independent nonnegative r.v.s with
d.fs Fg, k = 1,...,n. Assume that for some m > 0 it holds that
E{R < oo for all k =1,...,n. Then the following relations hold:

(i) Fe, €Ray k=1,...,n, m<a = Fsg,mERa—W

(ii) Fg, eC, k=1,...,n = Fsgﬁmec,

(ili) Fg, €D, k=1,....,n = Fsﬁ,m eD,

(iv) Fe,e L, k=1,...,n = st.g“meﬁ,

(V) Fe,ely, v>0, k=1,....,n = Foe €Ly
Proof. Let us prove part (iii). The other parts can be proved by analogy.

Since &1,&2,...,&, are nonnegative r.v.s. with d.f.s Fy, € D, k =
1,...,n, applying Theorem , we get that convolution Fg, * Fg, % - - *
Fe, € D. Under the condition that {;,&2,...,&, are independent, we
have

FSSZFSI*F&*-H*FSn.

It follows that Fsﬁ € D. Furthermore, the existence of the moment

E& for some m > 0 and all £ = 1,...,n implies that the moment

E((S$)*)™ = E(S5)™ exists for the same m > 0. Thus, using Theorem
, we get that Fsﬁm e D.

O

It is known that, if F, € Ry, a > 0, for all &k = 1,...,n, then

F. € Ry with the same index a. No assumption about independence

S
is needed. Thus, we can formulate the following broader statement for

class R.

Corollary 2.4. Let §1,&2,...,&, be real-valued r.v.s with d.f.s Fy,, k =

1,...,n. Assume that for some m > 0 it holds that E(ﬁ,j)m < ®
for all k = 1,...,n. Then Fy, € Ro, k =1,...,n, m < «, implies
FSﬁ,m € Rafm-

The converse half follows from the convolution root property of reg-
ularly varying-tailed distributions (see Proposition @ in Section [L.G).
Assume that Fsﬁ is regularly varying-tailed with index o > 0 and r.v.s
£1,82,...,&, are iid., and F¢ denotes their distribution function. Then
this F¢ is also regularly varying-tailed with the same index o > 0. Thus,
we can formulate the following corollary of Theorem @
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Corollary 2.5. Let &1,&9,...,&, be independent copies of a random
variable & with distribution function Fe. Assume that for some m > 0 it
holds that E(f,j)m <o forallk=1,...,n. If FSﬁ,m €ERa—m, m < a,
then F; € Rq.

Employing Theorem @ (see Section @, where the main results are
given), we get the following corollary of Theorem P.1].

Corollary 2.6. Let &1,&9,...,&, be pQAI real-valued random variables
such that Fe, € C for each k € {1,2,...,n}. Assume that for somem > 0
it holds that E(f,j)m < forallk=1,....,n. Then Fe €C.

3. Main results

3.1. Related results

In this section we briefly review some of the existing related results to
the theorems, which we propose in Section @ Unless stated otherwise,
we assume that the collections of r.v.s. {&1,...,&,} and {6;,...,60,} are
independent.

As we mentioned earlier, while introducing needed dependence struc-
tures in Section , there is a vast amount of literature about asymp-
totic tail behaviour of distributions of sums of independent r.v.s or iden-
tically distributed r.v.s. See, for example, Tang and Tsitsiashvili [61],
Wang and Tang [68] and the references therein. In this discussion we
concentrate on the results, in which such restrictive assumptions have
been weakened. First, we mention several interesting results concerning

the equivalence
n

IP’(S’fL >z) ~ Z P(& > ). (3.1)
k=1

Geluk and Tang [29] achieved (@) for distributions F¢, € LD (for
all k =1,...,n), assuming a strong pairwise quasi-asymptotic indepen-
dence between r.v.s &1, ..., &, (see Assumption A in [29]).

In the same year Chen and Yuen [13] achieved (@) under a weaker
dependence structure, called pairwise quasi-asymptotic independence
(see Section for the definition and comments). Distributions, though,
were assumed to be from a smaller class C compared to the setting of
Geluk and Tang [29].
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Moreover, in the same article [13] Chen and Yuen extended the re-

sults to the case of randomly weighted sums, resulting in relation
n
Seﬁ > $ Z ekfk > 33

under an additional moment condition on nonnegative random weights:
max{E6Y, ... ,E0h} < oo for some p > max{JS, ..., J }. (3.2)

No requirements on the dependence structure of the weights were im-
posed.

Yi, Chen and Su in [65] considered the tail probability asymptotics
of the randomly weighted sum Szg, when r.v.s £1,...,&, belong to the
class D and follow the same pQAI dependence structure as in Chen and
Yuen [13]. It was shown that under (@) and additional assumption

lim L(gk_ il
z—w P(§ > )

the following asymptotic bounds hold:

=0 forallk=1,...n, (3.3)

n

1 n
2 (e, >z) < P(S®>z) < TEZ_: (06 > ), (3.4)

Tr—00 r—00

where L := min {LF§1 e Lpgn}. Cheng in [14] tightened the bounds
in (@) by putting the L-indices inside the sums and obtaining the
following asymptotic bounds:

i LEkP(ek&f > x) < P(Szg > l‘ i LL kak > x) (35)

=1 Tr—0
where F¢, € D for all Kk = 1,...,n. The moment condition (@) was
substituted by a weaker condition: for any u > 0,
P(6;, >
lim 7( k> ux) =0,
2= P(Ok&, > )
Yet the cost of the improvements is that pAl was considered instead

of pQAI. The negligibility of the left tail condition, namely (@), is
still needed. However, Cheng in the same paper proved that it is not

k=1,...,n.

needed whenr.v.s &, k = 1,...,n, are pairwise tail quasi-asymptotically
independent (pTQAI) (see [14, Definition 1.3]).

Jauné et al. in [35, Theorem 1] improved the mentioned result of
Yi et al. [65], achieving (@) under the same conditions, except for the
requirement of left tail negligibility (@)
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3.2. Main results

Before presenting our main results, we formulate a couple of recent
results from Leipus et al. [40]. We recall that Assumption B, required
in the theorems below, is given in Section . For the reader’s conve-
nience, we restate it here.

ASSUMPTION B. Random variables &1,...,&, forallk,l=1,...,n
k # 1, satisfy

lim sup P&, >z | & > u) = lim sup]P’(fkf >z | & > u)

r—00 u=x T—>00 4,

= lim supIP’(ﬁk >z |§ >u)=0.
T—00
The following theorem follows from Theorems 3 and 4 in [40].

Theorem 3.1 (Leipus et al. [40, Theorems 3 and 4]). Suppose that
&1, ..., &, are real-valued r.v.s. If Assumption B holds, F¢, € D, Fe, (x) =
Fe, (z), ng_(:x) O(F¢, () fork=1,...,n, andE |§|™ < o0 for some
m e N, then

E(6 le>a) S Bl Lisn)

with k=1,...,n, and

S Ty, P Laza) (B6)

n . m 1
L5 Y E(E o) 5 E((S) " Lisson) 5, ¢
k=1

~ L% ’;E(fk 1{£k>x})7

where (as before) L% := min {LF&, e ,Lan}.

The second result is Theorem 5 in [40] with some small changes in

notation.

Theorem 3.2 (Leipus et al. [40, Theorem 5]). Let &1,...,&, be r.v.s
satisfying Assumption B such that Fg, € D, E[&|™ < o for some
m € N. Let 01,...,0, be nonnegative, nondegenerate at zero, bounded
r.v.s, independent of &1,...,&n. If Foe (x) = Foe (), ngg (x) =
O(Fg¢,(x)) forallk =2,...,n, then

Ly Z E((0k8k) " Lgye,>2}) xfoo E((Szg)mﬂ{s#m})
k=1

T — 00

1 n
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Firstly, we obtain a more precise result, compared to that in Theorem

, showing that each summand in the approximating sums can be
accompanied by a separate L-index of the corresponding distribution
function. Also, we additionally include the case m = 0.

Theorem 3.3. Let &1,...,&, be real-valued r.v.s satisfying the require-
ments of Theorem @, where B |§1|™ < o for some m € Ny. Then

Z Lp, E (&" ﬂ{éwu’c}) —>$oo E((Srgb)m]l{sﬁm})

In a later study, we found that it is possible to generalise results

Lng gk R{Ek%’?})

in the last theorem by weakening conditions for a dependence structure
and exponent. Instead of nonnegative integer exponent, we will consider
nonnegative real exponent and allow for a wider class of dependence,
pQALI instead of Assumption B.

Theorem 3.4. Let &y, ..., &, be pQAI real-valued r.v.s. If E|&|® < o0,
F¢, €D forallke{l,...,n} and some a € [0,00), then

Z L, E (68 Ligu>a) _§oo E((Srgz)aﬂ{sﬁm})

S
S D —E(& g a})- 3.7
250 S L (6 g>a1) (3.7

When assuming pairwise quasi-asymptotic independence, the follow-
ing result follows from Theorem @ for the real-valued random variables.

Theorem 3.5. Let &1,...,&, be pQAI real-valued r.v.s. If F, € C for
each k€ {1,...,n}, then the d.f. Fe € C and

Felx) ~ ) Fe (). (3.8)

Consider now the case where the & are nonnegative r.v.s. In such
a case, the result in Theorem @ can be improved omitting the corre-
sponding L-indices in the lower asymptotic bound of (@)
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Theorem 3.6. Let &y, ..., &, be nonnegative pQAI r.v.s and let Fy, € D,
E{Y < oo forallk=1,...,n and some a € [0,0). Then

DB T gm) S, B D)

We finish this section with a generalisation of Theorem @ to the case
of randomly weighted sums S,Of. We can also look at it as a generalisation
of Theorem @ — in the following theorem we weaken the conditions for
a dependence structure and exponent and remove quite a restrictive

assumption about the boundedness of random weights 61, ...,60,.

Theorem 3.7. Let &y, ..., &, be pQAI real-valued r.v.s such that F¢, € D
forallke{l,...,n}, and let 01, ...,60, be arbitrary dependent, nonneg-
ative, nondegenerate at zero r.v.s with

max{E#Y,..., B0’} < oo for some p > max{JS TR JE':}
If collections {&1,...,&,} and {61, ...,0,} are independent, and
E(0k|&k) < o0 for all ke {1,...,n}

and some « € [0,00), then
Z LF& ekfk ]]'{ekfk>x}) x—smo E((Sfbg)a]l{sﬁf>x})

Lng Gkgk 1{9k€k>~’0})‘

3.3. Proofs of main results
3.3.1. Auxiliary lemmas

In this subsection we state auxiliary lemmas, which are crucial in the
proofs of the main results. The proof of the first can be found in Leipus
et al. [40]. It is a slight modification of Lemma 4 therein.

Lemma 3.1 (Leipus et al. [40, Lemma 4]). Let &1, ..., &, be real-valued

r.v.s satisfying Assumption B. If F¢, € D, Fe, (x) = F¢, (z), ng_ (z) =

O(F¢ (x)), E|&|™ <0 forallk =1,...,n and some m = 2, then
G 65 T 55.0y) %ZE@mwﬂ)
k=1
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for1 <ki,....kk<n,l>=2andmqy,...,m; =1, such that m; +--- +
m; =m.

Lemma 3.2 (Cline and Samorodnitsky [17, Lemma 3.1]; Jauneé et al.
85, Lemma 3]). If £ and 0 are two independent r.v.s such that Fr € D
and 0 is nonnegative, nondegenerate at zero r.v., then d.f. Fye of product

0¢ belongs to the class D. If, in addition, EOP < oo for some p > J;,
then the inequality L, = LF, holds for L-indices.

Lemma 3.3 (Jauneé et al. [B5, Lemma 4]). Let two pairs of r.v.s {£1,&2}
and {01,602} be independent. Let &1,& be QAI r.v.s such that Fy, €
D, k € {1,2}, and let 01,02 be two arbitrarily dependent, nonnegative,
nondegenerate at zero r.v.s with max{E@} E05} < oo for some p >
maX{Jg, Jg} Then r.v.s 01&1 and 6285 are QAI as well.

2

Previously used Lemma @ will be important in the proofs of the
main results too, but avoiding confusion we do not repeat it here and

refer the reader to Section .

3.3.2. Proofs

Proof of Theorem @ Let us start from the case m = 1. By (@),

Bkl g6 py) = (Lrg [2)E(ErT (g, 50)) > 0
for all K = 1,...,n and large . Thus, we can apply the min-max
inequality (@) and get
S b E(6igon) | Shot L E(Gi g on)
E(Sil g5 0)) i1 E(Gr s py)

Lrg, B(&h 1 g,>0)
< max
1<k<n E(fk]l{sﬁm})

for large x. Hence, by (@),

. 22:1 LngE(gkﬂ{§k>z}) . LF&kE(gkﬂ{£k>w})
lim sup ¢ < limsup max
oo B(Silge ) oo 1sksn E(&rlge. )
 Lr E(&1g0)
< max limsup
1<k<n  z—o0 E(§k1{5§>w})
<1 (3.9)
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Similarly, the min-max inequality (@) and relation (@) imply that

(Sg]l{s%x}) k=1 (5k1{55>z})
lim sup = limsup
e—0 D ILFE E(fkﬂ{éwz}) DY - 1LFE E(fkl{ikm})

(€k1{5’5>x})
< max limsup
1<ksn g—oo L E(€k1{§k>z})

<1 (3.10)
Estimates (@) and () yield the statement of Theorem @ in the
case m = 1.

Consider now the case m > 2. Note that

E ((S >m} Z E gk >z})

S ) 6

where only off-diagonal products are included in the second sum. As in
the case m = 1, by (@), with m > 2,

B L ge o py) = (L, /2)E(EE Vg 5ay) > 0

for all kK =1,...,n and large x. Thus, by the min-max inequality (@),
we get that

E ((Sg)mﬂ{sﬁn})

I LEjkE(fzﬁ”ﬂ{gkm})

Py =t (6 L sgopy) + 2 B (€ g Lisesqy)

- S, L;;kwfm{ww

< E (&' 56o0) i Yttt [E (6 G e )|
1<hen L, E (&0 ey >a)) i1 B (67 Lig>ay)

for large x.
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Thus, by (@) and Lemma @, we get

i b ((Sg)mﬂ{sﬁm})
imsup —; — .
1= Dpg LFélkE (&' Ve, >ap)

E (¢71,
< limsup max ( k {S"NC})

oo I<k<n L;;E (68 Lige>ap)

) Z#@’E(Iﬂl"fﬁ"ﬂ{sfm}ﬂ
+ lim sup o pouy -
r—00 Zk:lE (gk 1{5k>$})

< li E (@Tﬂ{sﬁn})
< Ela<x Imsup — ™
I<ks<n z—w Lpng (gk ]l{fk>$})

| E (£ ...6mn1
_i_Z#hmsup | (nl T:n {s§>x})|
mi:-c-Mp: z—oo Zk:l E (5k 1{£k>r}>
<1. (3.12)

Similarly, by (@), (), (@), we have

E ((Sg)mﬂ{sﬁn})
Yot L B (g >a})
_ 22:1 E (512”1{5,%”}) +2 #‘mn'E ( R 521"]1{85»})
a Dot L B (g >a})

> min E(ggzﬂ{sﬁm}) B 2 et ( Tl"'frrzn"ﬂ{sﬁm})
1sk<n L, E (&7 Lig>ay) D1 L B (6 Lig,>0})

> min E (glznﬂ{s,%n}) _ 2 #'mn"E( e '57T"ﬂ{s§>m})’

sk L B (G goey)  min Lig Y1 B (1 g5))

for large . Remembering () and min-max inequality (@), one can
see that

B )

lim inf — pon

20 Y g LngE (fk H{£k>w})
E (512”11{sg>x})

> liminf min
T-0 1<k<n LngE (g;ﬂnl{ik”})

(_ X et [E (™ "'§$n1{5§>w})‘>

min LFEk 22:1 E (5;?]1{§k>w})

1<k<n

+ lim inf

r—00
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Thus, by (@), Lemma @ and properties of limit inferior and limit
superior, we have

I ((Sg)mﬂ{sﬁn})
lim inf -
g0 3 1 L, E (gk ﬂ{fww})
E (6 L5 0)

> min liminf pooy
1<k<n z— LngE(gk 1{£k>w})

o lim sup 2 ml'm'mn! |E ( RS '57?”1{5§>x})|

min LFg T—00 ZZ:l E (glrfn:ﬂ'{fk>ff})

1<k<n
o B )
> min liminf ooy
1<k<n z—® LngE(fk 1{£k>x})

1 3 m [E (67" & Lige oy |
mil---m

lim sup
1I<I}cl£n LF& eeoemp! 2000 22:1 E (S?H{&&z})

> 1. (3.13)

The estimates () and () yield the proof for m > 2.

Finally, consider the case m = 0. In case n = 1, the relation of
the theorem is obvious. Suppose that n > 2. Considering > 0 and
01 € (0,1), we have (for similar arguments, see the proof of Theorem 3.1
in Chen and Yuen [13])

<P {€k> 1—61)x}> +]P><55>x ﬂ{&c 1—(51)37})

k=1

.Al a? +.A2( )

It is easy to see that
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Evaluation of Az(x) is more complicated. Since

{8y > 2} = | Jl& > 2/}

k=1

and, similarly,

(¢ >bube | 1&g > b/in- D),

Jj=1,j#k
we have
As(z)
= p(s5 > i > o/ (V16 < (1= 00a) )
k=1 k=1

{gk > x/n, S > x, ﬁ{sk <(1- 51)95}})

k=1

I
=
A~
=

i
I

)
1=
R

Eonl

Il

_
/N N

6 > a/n.55 = o, [ 16 < (1= 01)a)

k=1

7
1=
=

& > x/n, S5 > x,& < (1— (51)x>

e
Il
—_

]P)(&c > :c/n Sg fk > (51%)

N
1=

e
Il
—_

P

A
1=

B
Il

—
VR

& > x/n, U {&; >51x/n—1)}>

j=1,j#k

N
=
=

P(&k >x/n, & > oix/(n — 1))

T
—
<
I
—
[
*
-

P(& > min{z/n, 612/(n — 1)},& > min{z/n, d1z/(n — 1)})

/N
1=

B
Il
—
<
Il
—
&,
*
B

N
1=
1=

P(fk > 52x7€j > (52:1:)7

e
Il
—_
<
Il
—_
&,
*
B

where 62 € (0, min{1/n,d;/(n —1)}).
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Thus,

P(S5 > x) _Sh P& > (1—d1)a)
SiaLp P& >a)  Yi L P& > )
" Dihe1 21k P (& > 623,85 > dox)
2k—1 LE;kP(ék > 1)
< max —
Isksn Fe,(2)

n Lng]P)(fj > 521',£k > (521’)

+ max 2
1<k<nj:1,j;ék P(fk > a:)

By conditions of the theorem and properties of limit superior,

. P(SS > x)
lim sup — —
2= Dy LngP(fk > )

Lp, Fe ((1—61)z)

< max limsup

1<ksn z—w F&k (33‘)
" . LngP(ff > 52$,£k+ > 52.%)
+ max Z lim sup T
1§k<nj:17j¢k £—00 P(gk > JI)

Fe ((1—6
= max {LR5 lim sup M}
1<k<n ko oy ka($)

" P(¢F > dom, & > Sz
g i, 3y )
KN j=1,j#k T—00 <§/€ > f]}')

Fﬁk«l — 01)z) }

= max { Lpg. limsu —
1<k<n{ Sk :n—»oop ng(:r)

Therefore, by letting 6; | 0, we get

I P(SS > z)
im sup — <
z—0 Dy LF; P(& > )

k

since lim limsupM = 1/LF€k’ k =1,...,n. Thus, the upper

0110 z—oo Fe, (z)
asymptotic bound is proved.

Now let’s turn to the proof of lower asymptotic bound in case m = 0.
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Considering x > 0, 41 > 0, we have

P(S§ > z) > P(Sg >, O{gk > (1+ 51):c}>

k=1

_1P>< O{Sﬁ >z, & > (1+51)x}>.

k=1
Making use of Bonferroni inequality, we get that
n
IP’( €85 > 6> (1+ 51):13})
k=1

> Z P(S§ > 2,8, > (1 + 61)7)
k=1

— > P(SS > & > (L4 603,85 > (14 61)x)

1<k<j<n

IP’(SS >z, &> (1+ 51)x)

Y
=

Eod

[y

= > PG> (140, & > (1+6)).

1<k<j<n
Thus, for z > 0, §; > 0,
n
P(S5 > ) Z P(S5 > z,& > (1+ 61)z)

— > PG> (A+0)ng > (L+6)x).  (3.14)

1<k<j<n

Let us further analyse
= Y P(S5 > 2,8 > (1+61)7). (3.15)
k=1

To proceed, we need to remember that for any two events A and B, the
following formula is true:

P(A n B) = P(A) — P(A n B°), (3.16)

where B¢ marks the complement of an event B.

Using () and the fact that

{85 — & > =012, & > (1 +01)z} © (S > 2,8 > (1+ 61)z},
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we get

p
w

8
~—

— & > =01z, & > (14 01)x)

Y
1=
=

i
I

P(fk > (1+01)x Z fk > (1+01)x, S5 & < —(51:6)
k=1

I
=

e
Il
—

v
1=

P(& > (1+61)z)

e
Il
—

(gk> Qe | g 61x/n—1)}>

Jj=1,j#k

|
M 5

|
—

[
= ..

P(fk > (1 + 51):2)

i
I

n

( Lnj {& > (14 61)z,& < 51x/(n—1)}>

j=1j#k

|
M

I
—

v
D= .

B(¢ > (1+0))z)

ES
Il
N

- > PG> (1+0)n,& < —diz/(n— 1))

1<k#j<n

Z (& > (14 01)z)

— D P(g > b2, > ds), (3.17)
1<k#j<n
where 03 € (0,61/(n — 1)). Therefore, from (), () and (), we
have
]P’(SS > a;)

ko1 Lr, P(& > )
L 2kt P& > (14 00)7) Dichrjen P(& > 032,65 > 03)
- ZZ:1 LngP(gk > x) 2221 Lng]P)(EI;L > x)
Zlgkq‘gnﬂn(fk > (14 01)x,& > (14 01)x)
- St L, P& > ) '
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Hence, by min-max inequality (@),

IP’(S?1 > ;1:)
2221 LFEkP(é.k > x)
= no P > S3x, & > S
> mip TallF0)D) S fk )
1<k<n Lpnggk(l‘) I<ksn =, LFEkIP’(fk >:z:)
Y P& > (1461, & > (14 01)z)
— Imax :
1<k<n 44 LngP(ﬁk > )

By conditions of the theorem and properties of limit inferior,
o P(Sﬁ > x)
lim inf —;
T—00 Zk:l LngIP)(fk > x)

Fe (146
> liminf min M
T—0 1<k<n Lngka(m)

no P > S3x, 68 > 6
—|—liminf<— max Z (§J > 03 fk = 31’))
T—0 1<k<n Lpng(fk > .%')

J=1j#k
- nP(E > (463, & > (14 01))
+ liminf ( — max T
w00 Isksn 44 L, P(& > x)

Fe (1446
> min { L3} lim inf 61+ 91)2)
1<k<n Sk x—0 ng(gj)

n P(¢ > d3x, 68 > 6
— max {LEI Z lim sup (gj L e 39U)}

tsksn (10 = e P(&F > 2)
n P > (14 6))z,& > (146
— max {L}; Z lim sup (€] ( 1)+ e z) }
1<k<n k Rt 1 T—00 P(fk > x)
=1,
since lim lim infw =Lgr ,k=1,...,n. Thus, the proof of the
5110 z—00 Fe, (2) Sk
lower asymptotic bound is complete. O

Proof of Theorem . Let us begin with the case a = 0. In this case
we have to prove that

n o n 1 —
D Li, Fe(x) < PS> x) 5 > ?ka(m’). (3.18)
k=1 33

=1 r—00
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The casen = 1in () follows trivially from the definition of coefficient
Lp, . Now let n > 2. First, let us consider the upper asymptotic bound
in ( ). Identically to the proof of Theorem @, for an arbitrary
01 €(0,1) and x > 0,

Sf>x i £k> 1—51 —I—i i P(fk>52$,fj>521‘),

k=1 j=1,j#k
where 3 € (0, min{1/n,d;/(n —1)}).
Consequently,
P(Si>a) X P& > (1=0)2)

k-1 L;“glkp(gk > x) s =1 F; P(& > )
Zk 1 25— 1;# P(Sk > 022,&5 > o)
k=1 1k]P’(fk > x)
= Il(l‘, 01) +Ig(x,51).

Using the min-max inequality (@), we get

P& > (1 — 51)90)}
P(& > o) '

By the same inequality (@) and observation

Il(:l?,51) < max {LFék

1<k<n

n n n
Z Z §k>52x)+P(§]>52x = n—l Z]P)gk>5233
k=1j=1,5 k=1
(3.19)
we obtain

D1 2=t ek P(§k > 022, &5 > da)
k-1 ZJ 1,j#k (P(& > daz) + P(& > b))
" et 2t jur (P& > 622) +P(€; > o))
Xhe1 L P(& > )
< max { P(& > oz, &5 > 0o) }
1<kj<n | P(& > o) + P(§; > dax)

x 2(n —1) max {Lpgkw}.

1<k<n

(.%‘ (51)

The fact that F¢, € D for all k € {1,...,n} and condition of pQAI
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for r.v.s {&1,...,&,} implies

P 1—
limsup 7 (z,61) < limsup max {LFE (& > ( 51)95)}
T—0 z—o0 1<k<n k

P& > (1 —61)x)
< x| L, timsup 282 C W

limsup Zy(x,61) < 2(n —1)

T—00
X max lim sup P(& > 027,&; > 037)
1<kzj<n | zow P(§ > 02z) + P(§; > dox)
1)
X max { Lg limsup M
1<k<n * e P(& > )
=0.
Thus,
S§
lim sup (7711 > z) < limsup Z;(z, 61) + lim sup Zy(z, 01)
T—00 Zk 1 F.g P(fk > ZII) T—00 T—00
k
P& > (1 —d1)x)
< .
- lrénl?éxn {LFg hgl—?ogp P(fk > .Q;‘)

Therefore, by letting d; | 0, and from the definition of indices L Fy, > We
get
IP(S€ > )
lim sup 1 <
e Yy L P(fk > 1)

The upper bound i) is proved. Now let us turn to the lower
3.18)

asymptotic bound in (B.1§). Again, similarly to the proof of Theorem

, for an arbitrary 6, € (0,1) and = > 0,

P(S5 > z) > Z (>0 +d)z)— > P& > dsz,& > dsx)

1<k#j<n

— > PG> (1+0)n,g > (1+6)),

1<k#j<n

where 03 € (0,91/(n — 1)).
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Consequently,

P(SS > ) L 2 P& > (1+8)2)
Do L, P& > )~ Yo Lr P& > )
lek;ﬁanP(gk > 5353,5; > 5330)
- Yoy L P(& > )
Dickrjen P& > (1 +01)x,& > (1+01))
N k-1 LngP(gk > )
=:T1(x,01) — To(x, 01) — Zs(x, 61).

Using the min-max inequality (@), we get

{P(gk > (1+51)$)}‘

Zi(x,01) = min
e, %) L, P(& > @)

1<k<n

By the same inequality (@) and observation analogous to (), we
obtain

To(2,6)) = Dii<krjen P&k > 032, & > d37)
, Di<kri<n (P(& > d3x) + P(&; > d3w))
o Dil<kAi<n (P(& > 032) + P(&; > d32))
Yoy L P&k > )
P(& > d32,&; > d3) }

<2n-—1
(n )1££2ﬁgl{ﬁwﬁk:>53x)4—PK§j>>53x)

v max | E(&r > 052)
i<k<n | Lp, P(& > 2) )

Finally,

P(&k > (14 01)x,& > (14 01)x)
I3(x,61) <2(n—1) Kli‘f?in{ (B&r > (L+o0)2) + Ef,(gj ~ (1 + o)) }

B e
2(n — 1) }

Lp,

X max
1<k<n

< max {
P(&, > (1+61)x,& > (1 + 61)x)
g 1<T3f<n{19<5k > (L+01)z) + P& > (1+01)z) }

Using the fact that Fg, € D for all k € {1,...,n} and condition of pQAI
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for r.v.s {&1,...,&n}, we get the following estimates:

P& > (14 61)7)
I 8 P> o) }

liminf Z;(x,d1) > min {

T—00 1<k<n

lim sup Zy(x, d1)

T—00

P(&, > 032,& > 6
<2(n—1) max {limsup (& > ds,, 22) }

1<kzj<n | z—w P(& > 037) +P(§; > d3x)
1 P(&, > 03)
1 ZA\Gk ~ 934)
X lréll?gn { LFEk lin_?olgp P(fk > l‘)
lim sup Z3(x, d1)
Tr—00
2n —
< max {(nl)}
1<k<n Lpgk
. P(§p > (14 61)x, & > (1+61)7)
|
: %X{ St P& > (1+ 01)x) + B(E > (1+01)a)
=0.
Thus,
€
lim inf P(Si > )

n > liminf 7 (z, 61) + liminf (—Za(x, §
Z—00 Zk:l LngP(gk > IL‘) P 1( 1) P ( 2( 1))

+ liminf (—Z3(x, 61))

r—00

= lim iololf Zi(x,61) — limsup Zy(x, 1)

r—00

— limsup Z3(x, d1)

Tr—00

> min
= 1<k<n { Lng T—00 ]P’(fk > JI)

Therefore, letting 61 | 0, and from the definition of indices L Fe, > We

obtain the lower asymptotic bound in (B.1§):

o P(S5 > )
lim inf >
T—00 ZZ:l LFE;QP(&C > .CC)

The proof of the case a = 0 is finished. Consider a > 0. The case
n = 1 follows trivially from the definition of index L Fe,- Let n>2. By
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Lemma @ and the min-max inequality (@), we have
$yaq
E((S ) {S§>r})
Zk 1 LF (5k ﬂ£k>z)

oP(S§ > x) + aSOO uIP(SS > w)du
Zk 1 LF (zoP(§ > —l—aS u1IP(&, > u)du)

{ P(SS > z) §20uP(S5 > u)du }
< max o0
i Ll P(&k > ) Yy i §o uTIP(& > u)du
{ (SE > 1) 5 uO‘*lIF’(SE > u)du }
= Imax
D= 1L1Pk>x ) § ue Tt Y 1L P&k > u)du
=: max{B(z), B2(x)}. (3.20)

We already already proved that limsup Bi(xz) < 1. For the term

T—00
Ba(x), we have that

5 u=1P(SS > u)du
Yiior Ly B&r>w)
P(S5>u)

S;O u PS5 > u)du

limsup Ba(x) = limsup
Tr—00 T—00

§ ue—1P(S5 > u) du

< limsup 7 T
T—00 k=1 F
§2ua—1P(S5 > u) inf (SZ o du
li 1
= limsu
xHOOp i =1 L;;kP(§k>u)
Vg P(S5>w)
(S5 > u)
= lim sup sup —
T—0 u=x Zk; 1 kP(gk > u)
. P(SS > z)
= lim sup ST LLp
T—00 k=1 ka (fk > 1,‘)
<1

The desired upper estimate now follows from ()
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Now let us turn to the lower estimate. In the same fashion, we obtain

E((Si)a]l{sgn})
Dot L B T g>0)
B 2°P(S5 > z) + a 5 u*P(S5 > u)du
Yoy L (@°P(& > 7) + a § ) ut T P(é > u)du)

. { P(S5 > z) (2w 1P(S5 > u)du }
= min 7 ) =5
k=1 L P(&x > ) (7wt 350 Ly, P(& > u)du
=: min{Bs(z), B4(z)}. (3.21)

We have already proved that lim inf Bs(x) > 1. For the term By(z), we

T—00
have
§ u*1P(SS > w)du
k=1 Lr, P(Ex>u)
P(S5>u)
S;O u*1P(SS > u)du
D=1 Lrg, P(Ex>u)
P(S5>u)

liminf By(z) = liminf
T—00 T—0

du

5 u=1P(SS > )

> lim inf
xr—00

§ ue=1P(S§ > u) sup

uU=r
P(S5 > u)
= liminf inf =3
T—0 u=T Zk:l Lng]P)(gk > u)
P(S§ > z)
= liminf —;
T—00 Zk:l LFEkP(fk > IL‘)

> 1.

du

The desired lower estimate now follows from () Theorem @ is
proved. O

Proof of Theorem @ Result (@) is Theorem 3.1 in Chen, Yuen [13].
Since C < D (see Section ), relation (@) also follows from Theorem
in this dissertation. Consequently, for all y € (0, 1),

Felay) ~ 3 Fe (). (3.22)
k=1

We can write

Fge (zy) Foe(zy)  Yp_, Fe (oy) Yioy Fe, ()

Fy(o) — Yo Fe(ay) Sy Feulo)  Fye(a)
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Using this equation together with (@) and (), we get that

Fge(zy vy F
lim sup 757() = lim sup M (3.23)

T—0 Fss( x) z—w D Fe (2)

Properties of limit inferior and limit superior, equation () and classic
min-max inequality imply that the following chain of inequalities hold:

FSE («Ty) F5'5 (xy)
1 < lim inflim sup =2*—— < limsup limsup ==>——
ytl T—00 Fsg( ) y11 T—00 Fs,g( )

B
F
= lim sup lim sup M
vt T Zk 1F§k( )
FEk (xy) }

< max {hmsup lim sup ==
tshsn Ly aon Fe (o)

=1.
Thus, FgEC O

Proof of Theorem @ Thecasea =0, n=1 1s obvious. Let o = 0 and
> 2. Since r.v.s are nonnegative, we have U (& >z} < {S§ > z}.
k=1
Therefore, for any x > 0,

P(SS > ) > ]P’( CJ{&c > :c})

k=1
> Y P& >a) - Y, PG> >m) (3.24)
k=1 1<k#j<n
Let us further analyse
Asz) = ) P& >8> ). (3.25)
1<k#j<n

We have

B P&, > x,&5 > x)
Aie) = 2, P& > x) + P(&; > x)

1<k#j<n

< max P(&i > 2,8 > 7) Z (P(&x > =) + P(& > 2))

1<izj<n P(& > x) + P(& > o) <t Then

P&k > z) + P(§; > 2))

_ e P& g >a) >, (P& > )+ P& > x))

m
1<i#j<n ]P’(fZ > $) + P(&j > :B) 1<k<I<n

P > x &5 > x)
< 2n 3.26
(X B > 2) + PG > 2) Z > o). (3.26)
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Hence, from (B.24), (B.25) and (B.26), we get

P(S5 > )
=1 P(& > )

and, therefore,

P(gz > 1’,6]’ > .iL')
>1-2
"<t P& > 7) + P& > @)

Y

. P(S§>2)
liminf =5
e=0 ) P(& > x)

PN >z, 68 > o
>1—2n max lim sup Jfgl gj T )
Iizjsn ( a—oo P(§ > 2) + P(§ > )

=1,

since r.v.s are pQAIL
Let now a > 0. Conditions of the theorem imply E(S5)® < 0.
Thus, by Lemma @ and estimate (@), we obtain that for = > 0,

Y1 E(E0 e, >0y)
E((SS)Q]I{S%M})
Dy (2°P(& > =) + §F u T P& > w)du)
a 2oP(S5 > z) + a § ue—1P(SS > u)du
_ e Y P& > ) a7 u T Y P& > w)du
N 2oP(S5 > 1) + § ue=1P(SS > u)du
o { Shoa P& > @) §ue T Y PG > u)du}
P(S5 >z) § ue—1P(SS > u)du

0 q—1 2p—1 P(€x>u) 3
- maX{ZZﬂ P(&, > ) Jo u kJP’(155>u) F U)du}

P(S5 > z) 5 ue=1P(S5 > u)du
e [ B PG =2 B iG> 0]
P(S§ >z) use  P(S§ > )
— sup et P(&k > U)
U=z IP’(SS > u)

<

X

Therefore, using the fact that estimate in case a = 0 is already proved,
we get that for any a > 0,

T E(EX1 > noP
lim sup Zk_l g (gk {€r> }) < lim sup Zk:l é(gk > z) <1
R ) e BSE> )

This finishes the proof of Theorem @ O
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Proof of Theorem . It is easy to see that all conditions of Lemma

are satisfied, so that it implies Fy,¢, € D for all k € {1,...,n}.
In addition, since we have that max{E#?,... EfL} < co for some p >
maX{Jt, e Jg"}, the same lemma implies that Lpekgk > LFEk for all
ke {l,...,n}. By Lemma @, we have that for any k,l € {1,...,n}, k #
[, r.v.s 0p& and 6;& are QAL In other words, r.v.s #1&1,...,0,&, are
pQAIL Using these observations and condition E(6|&x|)® < oo for all
k e {1,...,n} and some « € [0,00), we apply Theorem for r.v.s
01&1, ..., 0,&, to obtain the desired result. O

4. Applications in risk measure theory

4.1. Brief introduction to risk measure theory

Before presenting results concerning Haezendonck—Goovaerts risk
measure, we give a brief introduction to the risk measure theory in
general. We shall follow the same definitions and notation as in Artzner
et al. [p]. Denote by X the random variable defined on a sample space
Q. And let G be the set of all risks, that is, the set of all r.v.s defined
on €.

Definition 4.1. A measure of risk is a mapping from G into R.

Attempting to summarise random variable in one number is clearly
not a recent idea and goes back to the time of introduction of expec-
tation, variance (respectively standard deviation), etc. Thus, the his-
tory of risk measurement can be traced back to 16th century and even
earlier. Many scholars agree, that speaking about risk measurement
with modern economic connotation, the first groundbreaking work in
this direction is Daniel Bernoulli’s “Specimen theoriae novae de men-
sura sortis” (“Exposition of a new theory on the measurement of risk”)
[10]. Bernoulli noticed that risk taking depends not only on the risk
but also on the risk takers resources. Before Bernoulli there was a wide
acceptance of the expected value as a sufficient tool to evaluate the
risk. Significant doubts and debates emerged when Nicolaus Bernoulli
(cousin of Daniel Bernoulli) proposed famous St Petersburg paradox in
1713. The paradox, historical context and possible resolutions are well
presented in O. Peters work [50]. Here we give just a few elements for
the basic understanding.
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The proposed lottery of N. Bernoulli is as follows. Assume that the
player starts the game with unit capital 1. The coin is tossed. Every
time the coin shows tails, the capital doubles. The game ends, when
heads show up for the first time. Shortly, this means that in this lottery
a player wins 2”1 units of money, where n is the number of that toss,
when the first heads appeared. For example, if the heads appear on the
first try, the player leaves with 1 unit of money. If this happens on the
second try, 2 units of money, and so on.

Deciding to play the game or not and what amount of money to pay
for the lottery ticket is a risk taking decision. Since the coin is fair,

o0

the expected value of this game is > 2"~1(1/2)". It is obvious that
n=1

this series diverges. N. Bernoulli argued that a rational person should

be willing to pay any price for the ticket. But in reality he noticed
that people agree to pay only small sums of money. This contradiction
constitutes the St. Petersburg paradox.

There were various resolutions proposed for this paradox (see [50])
but the most widely accepted one was proposed by Daniel Bernoulli
[10]. Claiming that decision depends not only on the possible gain but
also on the person’s wealth, he proposed to calculate expectation of
gain in “utility” instead of expected win itself. For that, he introduced
the so-called utility function u(w). It is required to have the property of
concavity and du(w)/dw should be monotonically decreasing. The same
win is worth less for a wealthy person than for a poor person. Bernoulli
suggested the logarithmic function u(w) = In(w) noticing that it would
satisfy the equation du/dw = 1/w. As it is stated in Peters [50], this
means it would cover our intuition that the increase in wealth should
correspond to an increase in utility that is inversely proportional to the
wealth a person already has. This Bernoulli’s response to the paradox
was revolutionary at the time and gained quite a big prominence in
econoImics.

With an emergence of a huge variety of financial instruments and
portfolios becoming more and more complicated, there was a need for
fresh ideas how to measure and understand risk. In the first half of
the 20th century, some economists were suggesting to use variance as
a measure of portfolio risk. In 1952 Harry Markowitz proposed very
compelling theory for portfolio allocation under uncertainty (see [42]).
Markowitz’s Portfolio Theory can shortly be described as follows. Let’s
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define the weighted expected return of a portfolio (1) as

N
Hp = Z Wi,
i=1

then the portfolio’s variance (07) is

N N
2
EDIDI T
i=1j=1

where N is the number of assets in a portfolio, u; is the expected return
of asset i, w; is the asset weight (0 < w; <1 and w) +we+---+wy = 1),
0;; is the covariance between returns of assets 7 and j. And interesting
ratio for measurement of portfolio quality was proposed by William F.
Sharpe [p9]. This ratio is called Sharpe ratio (S) and defined as

pp — Ry
op

S =

where Ry is the risk-free rate of return, p, and o, are as defined in
Markowitz’s Portfolio Theory description.

Further in this thesis we will not refer to Markowitz’s Portfolio The-
ory or Sharpe ratio anymore. We mentioned them here because of their
significance to development of modern financial mathematics and risk
measure theory.

Next important milestone in risk measurement was achieved by the
introduction of Value at Risk (VaR) risk measure. To define VaR, we
have to understand the concept of quantiles. We find the following
definition given in Petrov [51, p.9].

Definition 4.2. Let X be a random wvariable, ¢ € (0,1). A quantile
of order q of the random variable X is called any number kg satisfying
inequalities

P(X <kg)=2q, P(X 2krg) =21—4¢.

It is noted that either the random variable has just one quantile of
order ¢, or the set of all quantiles of order ¢ of this random variable
coincides with some closed interval on the real line. If the distribution
function of this random variable is strictly increasing on the real line,

the r.v. X has just one quantile of arbitrary order q.
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We defined the risk measure as a function which assigns only one
real number to r.v. X. If the random variable has just one quantile of
order ¢, the situation is clear. If the set of such quantiles of order ¢ is
a closed interval, we take the left endpoint of this interval as a value of
VaR. Formally, we define VaR risk measure as follows.

Definition 4.3. Given q € (0,1), the Value at Risk risk measure at level
q (VaRy) of random variable X with distribution function Fx is defined
as the lower quantile of order q of distribution Fx:

VaRy[X] =inf{z e R : Fx(z) > ¢}.

In practical applications, typically ¢ is chosen to be 0.9, 0.95 and
0.99. For discussions about VaR implementation, we refer the reader to
Mausser and Rosen [43], [44] and the references therein.

In 1997 and 1999 a team of authors, P. Artzner, F. Delbaen, J.M.
Eber and D. Heath, published two very important papers (see [4] and
[6]), where they proposed and justified a unified framework for the analy-
sis, construction and implementation of measures of risk. The approach
to risk measurement became far less fragmented and to this day special-
ists in the field use elements of this theory to decide which risk measures
are effective in managing and regulating risks, and which better should
be changed or discarded. Most importantly, authors introduced the first
axioms of risk measures. These axioms are called coherency axioms and
risk measures satisfying these axioms are called coherent risk measures.
Axioms on risk measures are quite intuitive to understand, however, be-
fore that acceptance sets were introduced, which Artzner et al. [p] claim
to be the “fundamental object” in risk measurement. Let’s start with a
definition.

Definition 4.4. An acceptance set A < G is any set of risks that are
acceptable to a regulator or supervisor. It satisfies four axioms:

Aziom Al. Ly ¢ A, where Ly = {X € G : X is nonnegative}.

Azxiom A2. AnL__ =,
where L__ ={X € G : X is strictly negative random variable}.

Aziom AS. A is convex, that is, for all r.v.s X and Y in A, r.v.
(1=XNX+AY €A forall X [0,1].

Axiom A4. A is positively homogenious cone, that is, for each r.v.
X e A and X >0, the product \X € A.
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Sometimes Axiom A2 is changed by a stronger axiom:

Axiom A2. An L_ = {o}, where L_ = {X € G : X is not positive}
and o is a r.v. degenerate at 0.

Axioms Al, A2 and A2’ are easy to interpret. Positions with final
net worth that is always nonnegative do not require extra capital and
are acceptable. Positions with a net worth that is always negative are
not acceptable. Axiom A2’ is stricter in a sense that it does not allow
any positions that have at least one outcome with negative net worth.
As stated by authors, Axiom A3 reflects risk aversion of the regulator
or supervisor, but they didn’t give explicit interpretation for Axiom A4.
We just find hints that, if currencies are changed, acceptable positions
should remain acceptable. Without the cone property that wouldn’t
necessarily be guaranteed.

Let us remember that a risk measure p is any function from G into
R. Take X € G. If p(X) > 0, the number p(X) can be interpreted as the
minimum extra cash that has to be invested into “prudent” instrument
and added to the risky position X, so that it would become acceptable.
If p(X) < 0, then cash amount —p(X) can be withdrawn from the
position X. For the sake of clarity, we would like to note that in this
thesis we will distance ourselves from such interpretations and simply
analyse mathematical properties of risk measures.

Following the same paper by Artzner et al. [p], we define a corre-
spondence between acceptance sets and measures of risk.

Definition 4.5. Given the total rate of return r on a reference in-
strument, the risk measure associated with the acceptance set A is the

mapping from G to R denoted by pa, and defined by
pAr(X)=1inf{m: X +mr e A}.

Reference instrument is an asset having the initial price 1 and a strictly
positive price r in any scenario at date T'.

Definition 4.6. The acceptance set associated with a risk measure p is

the set denoted by A, and defined by
A, ={XeG:p(X) <0}

Now let’s turn to axioms stated above risk measure p : G — R.

As mentioned earlier, these axioms are called coherency axioms and are
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crucial in determining whether a risk measure is appropriate for practical
use or should be taken with extreme caution. The first requirement is
translation invariance.

Axiom T. Translation invariance. For all X € G and all c € R,
p(X +¢) = p(X) - c.

The second requirement is subadditivity. Speaking in economic
terms, it ensures that risk measure is sensitive to diversification.

Axiom S. Subadditivity. For all X, X5 € G,
p( X1+ Xo) < p(X1) + p(Xo).

Furthermore, Artzner et al. argues that this property of merger not cre-
ating extra risk is a natural requirement by giving substantial examples.
Also, it can be used as a way for a firm to allocate its capital among
desks or managers. Let’s suppose that two desks in a firm compute in a
decentralized way the measures p(X1) and p(X3) of the risks they have
taken. If the function p is subadditive, the supervisor of the two desks
can count on the fact that p(X1) + p(X2) is a feasible guarantee relative
to the global risk X7 + Xs. If there is an amount m of cash available for
their joint business, the supervisor can decentralize his cash constraint

into two cash constraints (one per desk) m; and mo: m = my + mo.

The remaining two axioms are very natural to insist on.
Axiom PH. Positive homogeneity. For all A = 0 and all X € G,

p(AX) = Ap(X).

Axiom M. Monotonicity. For all X1, Xo € G with X7 < X,
p(X1) = p(X2).

Now we can formally define a coherent risk measure.

Definition 4.7. A risk measure satisfying the four axioms of transla-
tion invariance, subadditivity, positive homogeneity, and monotonicity

1s called coherent.

Sometimes the notion of convexity is considered in the literature,

too.
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Axiom C. Convexity. For all X1, X5 € G,
p(AX1+ (1= A)Xs) < Ap(X1) + (1 — A)p(X2)

for0 < A<1.

It is said that a risk measure is weakly coherent if it is convex (sat-
isfies Axiom C), translationally invariant and homogeneous. Coherency
axioms ensure that a risk measure is convex. So it is obvious that every
coherent measure is, also, weakly coherent.

It is obvious that axioms proposed by Artzener et al. are not restric-
tive enough to specify a unique risk measure. Instead, they characterise
a large class of risk measures. Financial and economic context should be
studied before selecting a specific risk measure from the class. We do not
study this topic deeper not wanting to overcomplicate this introduction
and go too far from theoretical boundaries of the thesis.

After introduction of the axioms, VaR, which we mentioned above,
was no longer considered an adequate risk measure because it does not
satisfy subadditivity axiom in general. In economic terms, managing risk
using VaR may not stimulate diversification. So there were proposed
VaR related risk measures: Conditional Value at Risk (CVaR) (see dis-
cussion below), Conditional Tail Expectation (CTE), Worst Conditional
Expectation (WCE) (see, for example, Artzner et al. [5]) among others.

One risk measure that has significant advantages over VaR is Con-
ditional Value at Risk (CVaR). Here we define it as it is given in Pflug
[62]. Originally definition of this style was proposed by Rockafellar and
Uryasev [57] in a continuous framework, and by Rockafellar and Uryasev
[68] in a general framework.

Definition 4.8. Given g € (0,1), Conditional Value at Risk risk measure
at level ¢ (CVaRy) of random variable X is defined as follows:

— 1 +
CVaR,[X] = ;gﬂfq{ {x + 17_qE(X — ) }

Rockafellar and Uryasev have shown that in the case when Fx is
continuous,

CVaRy[X] = E[X|X > VaRy(X)], (4.1)

which was the usual definition of CVaR at the time. Note that (@)

is sometimes called “expected shortfall” (see, for example, Mausser and
Rosen [44]).
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A very important advantage of CVaR (compared to VaR) is that it
is coherent risk measure (see Pflug [52], Acerbi et al. [l], Rockafellar
and Uryasev [58]). Another advantage can be seen directly from the
definitions. VaR is a lower bound for values in the tail of the distribu-
tion, and, as Rockafellar and Uryasev [68] put it, “has a bias toward
optimism instead of conservatism that ought to prevail in risk manage-
ment”. Indeed, obviously, for a chosen ¢ € (0,1), CVaR, > VaR,. Also,
it is mentioned in the same paper that VaR is unstable and difficult to
work with numerically when losses are not normally distributed, which
is often the case, since loss distributions are oftentimes heavy-tailed.
Similar remark in the context of credit risks is made by Mausser and
Rosen [45] — distributions of credit losses are claimed to be heavy-tailed
in general.

We conclude this introduction by quoting two important proposi-
tions, which establish correspondence between the axioms on acceptance

sets and the axioms on risk measures.

Proposition 4.1 (Artzner et al. [5, Proposition 2.1]). If the set B
satisfies Azioms Al, A2, A3, and A4, the risk measure pg, is coherent.

Moreover, Ay, , = B, where B is a closure of set B.

Proposition 4.2 (Artzner et al. [5, Proposition 2.2]). If a risk measure
p is coherent, then the acceptance set A, is closed and satisfies Axioms
Al, A2, A3, and A4. Moreover, p = pa, -

In the next subsection we introduce a particular coherent risk mea-
sure, which is in the focus of our further study.

4.2. Introduction of the Haezendonck—Goovaerts risk mea-
sure

In this subsection we introduce Haezendonck-Goovaerts (HG) risk
measure, which has some connections with previously mentioned risk
measures VaR and CVaR. HG risk measure was introduced by Haezen-
donck and Goovaerts [B4] in 1982 and since then received much attention
in insurance and finance. Original definition was extended in Goovaerts
et al. [32], where the authors consider real-valued, but not necessarily
nonnegative, random variables. In the latter article, this risk measure
was called the Haezendonck risk measure in honor of the late J. Haezen-
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donck. It was only later that it came to be called the Haezendonck—
Goovaerts risk measure, so that contribution of both authors would be
acknowledged. A useful alternative formulation of the definition was
introduced by Bellini and Rosazza Gianin [6]. Many authors since then
use their style — it is the case in this thesis, too. The proposal of this
formulation was motivated by coherence problem. Goovaerts et al. [32]
solved it only partially — they proved that HG risk measure satisfies all
coherence axioms, except that subadditivity was proved only for “spe-
cial” pairs of r.v.s (see [32, Theorem 3.2]). Even though restriction is
very mild, the full treatment of the problem was still missing. Using
an alternative formulation, Bellini and Rosazza Gianin [6] showed that
subadditivity holds for any pair of random variables within the domain
L*®. Thus, the HG risk measure is coherent. Definition and respec-
tive proposition for coherence in Orlicz spaces was given by the same
authors in 2012 (see [§]). It is natural to expect coherence and other
“nice” properties from HG risk measure, as it is considered a generalisa-
tion of CVaR, which is known to have such properties since early works
by Pflug [62], Acerbi et al. [1], Rockafellar and Uryasev [68]. We remark
that Orlicz premium principle (risk measure), though closely related to
HG risk measure, is not coherent. It doesn’t satisfy translation invari-
ance axiom (Axiom T). For definition, statement and comments, see the
paper of Goovaerts et al. [31].

Stability properties of HG risk measure were investigated in a recent
paper by Gao et al. [28]. They proved that it always satisfies the Fatou
property and established necessary and sufficient condition so that a
stronger Lebesgue property would be satisfied.

Possible economic interpretations of Haezendonck—Goovaerts risk
measure are discussed in the works by Bellini and Rosazza Gianin [6],
[7]. Several intersting relations between distortion, mean value and HG
risk measures can be found in the paper by Goovaerts et al. [33].

Now, after introductory discussion, let’s formally define Haezendonck—
Goovaerts risk measure. We will follow the definitions given by Tang
and Yang [63].

A function ¢ (defined on R) is said to be a normalized Young function
if ¢ is nonnegative, convex on the interval [0, 00) with ¢(0) =0, p(1) =1
and ¢(o0) = 00. Orlicz space L? and the Orlicz heart Lj of real-valued
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r.v.s X associated with function ¢ are defined by the following equalities:

L? = {X : E[p(cX)] < o0 for some ¢ > 0},
LE ={X : E[p(cX)] < o for all ¢ > 0}.

Let ¢ be a Young function and X € L. For g € (0, 1), the Haezendonck—
Goovaerts (HG) risk measure for variable X is defined as

H,[X] = inf (& + H,[X, ),

where H,[X, z] is a unique solution h of the equation

if Fx(z) >0, and H,[X,z] =0 if Fx(z)=0.

It is mentioned in Tang and Yang [63] that an analytic expression
for risk measure H,[X] is not possible in general. Although, in the case
of power function ¢(t) = t* with s» > 1, the analytic expressions and
asymptotic formulas can be derived for certain type of distributions.
The following theorem is based on equality (1.3) and Theorem 2.1 from
Tang and Yang [63]. It is later used to obtain asymptotic formulas for
the HG risk measure of sums SS.

Theorem 4.1 (Tang, Yang [63, equality (1.3) and Theorem 2.1]). Con-
sider the power Young function p(t) =t with » > 1.

(i) If =1 and r.v. X is such that EX' < o0, then
P +
E(X — Fx (q))
l—gq

Hy[X] = Fx (q) + = CVaR,[X],

where F'y (¢q) := inf{z e R : Fx(x) > ¢} is the quantile function of r.v.
X.

(ii) If x> 1, P(X = F5 (¢)) =0 and E(XT)* < o0, then
1/
E(X —2)")*
Hy[X] ==+ <((1_?)> , q€(0,1),
where x = x(q) € (=00, F'5 (1)) is the unique solution to the equation

(E((X —2)T)1)*
(E((X —x)*)*)*

=1—q. (4.2)
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4.3. Asymptotic formulas for the HG risk measure. Pareto
example

Let r.v.s &1,...,&, be pQAIL Suppose that, for each k, r.v. & is
distributed according to the Pareto law (see Section ), ie.,

Fy, (x) = (1 - (ﬁ)aﬁ[m)(x), k=1,....n

T

with shape parameter o > 1.

In this subsection we derive asymptotic formulas for the HG risk
measures H, [Sﬂ, as ¢ T 1, with the power generating functions ¢(t) =
t*, € {1,2,...}. To achieve this, we need the following lemma about
the quantile function (see, for example, [18, Lemma 3] or [55, Proposition
0.8(vi)]).

Lemma 4.1 (De Haan [1§, Lemma 3]; Resnick [55, Proposition 0.8(vi)]).
Let F and G be two d.f.s such that G € Ro, a > 0. Then F(x) ~ cG(z)

Tr—00
for a positive ¢ if and only if F* (q) > /G (q).
q
Firstly, consider the case K = 1. For k € {1,...,n} and x > k, we
have
+0o0 a e
E(§k1{5k>$}) = L ungk(u) = o — 1go-1

Since in Pareto case L R, =1 for all k € {1,...,n}, applying Theo-
rem @ we get

n 1 a
E(S H{Sg>x} Z gkﬂ{§k>$} xﬂoo ro—laog—1 Z k

Sé>x Zn: §k>xm~ %Zn: (4.3)

—00
These two asymptotic relations imply that

E(Sﬁ - x)+ = E((Sg - x)]l{sﬁ> }> = E<S§Lﬂ{sﬁ>x}> — xIP’(S,% > x)

jxy
a:—>oo ro— 1 a — Z
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Hence, using the formula in Theorem @(i), we get
¢ pe(a))
E<Sn - FSE (Q)>
l—gq

. 1 1 H 1 —a o
e Fs,a(q”fqa_l g (4 Z’f

H, [Sﬁ] = F:q%(q) +

because F';(q) — oo if and only if ¢ 1 1. Here, by Lemma @ and
relation (ﬁ),

1/a n 1/a 1 1/a
g0 5 () = (2e) ()
and we get in the case ¢(t) =t that

H,y[S

a n N 1/a 1 1/a
ﬂ&a—l(é’“) (1—q> ' (44)

Consider now the case s € {2,3,...}. By equation (@) in Lemma
@ and definition of Pareto distribution, we have for all j =0,1,..
x<aand k=1,...,n that

E (& 1g50) =

If a > 2, then the asymptotics of the HG risk measure can be derived

'7%7

1 ak®
I a—j’

x> k. (4.5)

using Theorem @ The binomial theorem and properties of expectation
imply that

E((Sﬁ—x)”]l{ >x}) <i< > ) ](55) {s ﬁ>m}>

]:

i < ) ) ]E (S ) ﬂ{Sﬁ>x})' (4.6)

7=0
By Theorem @, we have

.% (j) (—2)*/E ((Si)jl{sﬁﬂ})
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where we have also used (@) and then the identity

i (ﬁ S - 5 = #B(ra—x).

Here, B(u, v) denotes the Beta function. The last identity can be verified

using equality
1

7B, — %) =aB(xe+ 1,a— x) = af (1 -ty tdt.  (4.8)
0

Thus, from (@) and (@), we get

E((Sﬁ—x)%ﬂ{sgn}) ~ L Qo — ) 2 (4.9)

x—00 rY¢ Pl

In order to get asymptotic formula for H, [Sﬁ], we have to approxi-
mate x that solves equation (@) Using (@)

(E((S5 —a)")* )

(E((S% —a)"))

N ( (% 1)( 1)B(5 _1‘1_(%_1))27;:1]‘7&)%
2—00 (za =B, o0 — ) Y0 ka)%_l

1 (B, — 2 +1))* &
2% (3B(3e, a — 3))#1

, we obtain

1—q=

«

k=1

x®  (xB(,a —

1 (B(s,a — a—x))" &
e e )7 § o

k

1= I

1 ja— e\~ o
:x—a( > ) #B(se, a0 — 3) » Kk, (4.10)

=
Il

1

where we have applied (@) again (for >z — 1) and identity B(u,v+1) =

B(u, v)uﬂ
Since z = x(q) — oo if and only if ¢ 1 1, from (), we obtain that

1/«

i (5 (S ()"

1—gq
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By Theorem @(ii) and relation (@),

Hq[sﬁ]=:c+(E((5§_$)+)%)1/%<L)1/%

l—gq
a — s\ #/o o Ve )
() bmma—a o ($0) (1)
" (B =) (Swe) ()
(=) (B =) (i) () ™)

Thus, performing elementary mathematical operations, we have

H, [Sﬁ] = <a — %>%/a (3B(5¢, 0 — %))1/a(§:1ka> e <L> La

r 1_q

o — ¢\ #/a—1 Bl v — o 1/; n N 1/a L 1/a
() e (Nw) ()
/o n 1/a o
:(a;%> / _ %(%B(%,a—%))l/a<2k°‘> <L>1/
k=1

— 1—g

a—sx °
>

x/a—1

-l = (£0) ()

1—g¢q

Therefore, the following asymptotic formula holds for generating func-
tion p(t) = t*, with »x e N, » < az

ala — )1 ol &
Hﬂﬁkﬁ(%lem%a—@f/<Zk>
k=1

1 Ve
(1)
(4.11)
Notice that formula () covers the case » = 1 given by relation
(@) Indeed, plugging in > = 1 and using identity B(1,z) = 1/z, we
have

R MR

=1
—ete- 0 () (S ()
n . 1/a Ja
:ail(;1k> (11q)1
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Figure 4.1: The exact and asymptotic values of the HG risk measure
for sum S5 of independent r.v.s in the case a = 3, % =2 and n = 2.

In Figure @, we compare the exact and asymptotic values of the
HG risk measure for sum S5 of independent r.v.s in the case a = 3,
» =2 and n = 2. The exact values are obtained by using Theorem @
In our case, equation (@) has the form

2
(B(SS — )7)? <§§O S0y (U Y — ) i du dy) 1
= — o q‘
E((Sg - $)+)2 Sgo Sﬁax{lw—y} (u +y— 'CC)2 2 du dy

Py

After calculations and some simplifications, we obtain the following
equation:

2
_9pd_ 3 2 _ _
3( =T ey + 18 (log |2 — o] + log|5))
33 + 522 + 12z + 8(log |2 — x| + log | 251

=1- q,
where x ¢ {0, 1,2}. To get exact values of HG risk measure, we solve this

equation for different values of ¢ € (0, 1) by using computer software and
substitute the obtained solutions x = x(g) into expression of Theorem
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@(ii), which in our case has the form

922 + 152 + 36 24 r—1pn\ 2
Hq[SS] =x+ (9312)+x41(10g‘2_x| +log‘2‘>)

( 1 )1/2
X a— .
1—q

4.4. Asymptotic formulas for the HG risk measure. Peter
and Paul example

Let r.v.s &1,...,&, be pQAIL Suppose that, for each k, r.v. & is
distributed according to the generalised Peter and Paul law (see Section

)’ i'e'7
P& =a; %) =al Y1 —ap), j=1,2
(gk Qg ) a ( (Zk), J g Ly ey

where ay € (0,1) and 5 > 0.

We will derive the asymptotic bounds for the HG risk measure H, [S,%]
assuming the Young function o(t) = t2.

According to Theorem @, the asymptotics of the risk measure H, [Sfl]
as ¢ T 1 is related to the asymptotic behaviour of moments E(SS —x)t
and IEQ((S?1 — x)+)2 as * — 00. These moments admit the integral repre-
sentation in Lemma @ equation (@), i.e., depend on tail probabilities
}P’(Sg > u), whose behaviour can be established applying Theorems @
and

For x > 0, we have

) log x
P >a)= > a '(1-a) = aLB‘°g<1/“k)J. (4.12)

j:a;jﬁ>az

Hence, for each k, L Fe, = Gk and the following inequalities are true:

(1)1/6 < aLﬁ%J < i(l)l/ﬁ. (4.13)
x ag \x
One can prove these inequalities in the following way. For any real
number z > 0, it is true that |z] = z —{z}, where {z} is a fractional part
of z, satisfying 0 < {z} < 1. Thus, z—1 < |z| < z, and, since a; € (0,1)
for all ke {1,...,n},

z—1 [=] z
ap ~ > ap = ag.
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Applying these inequalities for the tail of generalised Peter and Paul

distribution, we get

log z
log x log x _—
Blog(1/ay) __logz
aLﬁlog(l/ak)J > alflog(l/ak) _ elogak k — eBloa(l/ag) log ay,
_logz 1\1/8
X
Similarly,

a
k X

log « log x _
lpreston] _ sestan—t_ 1 <1>1/5
< ay, — .
ag

Relation () is proved.
If0 < B < 1, then ES5 = D1 E& < o0 and, by Lemma @
equation (@), we have that

E(S§ — )" = fop(sg - w)du. (4.14)

n
x
Finishing the preliminaries for further arguments, from Theorems
@ and @, we get that in case a = 0,

DPG>a) s P(SS>1) £ D Lp(gk > ). (4.15)

From (|41j), (|41j), (|414l) and (), we have that with 0 < 8 < 1

and sufficiently large x,

o0 o n
E(S5—2)" = f P(S5 > u)du < f > L;IP’(& > u)du
r T k=1 k
n Q0 log u n 0
- Z 1f a’Eﬁlog(l/adeu < Z 12j (l)l/ﬁdu
k=1 ag Jy 1 ap Jx U
_ B 1 ¢
= {57 kzl 2 (4.16)

Similarly, evaluating from below, we have that with 0 < § < 1 and

sufficiently large z,

E(SS — ;p)+ = JOO]P’(S,EZ > u)du > foo i P(&, > u)du

_y foo Ay, -, f" (3)"au
u

xT

(4.17)



Using inequalities ( ﬂ and E () we get

B N < IE(SfL—QU)+

n

1

[ — < —
1-61’1/6_1 500 2500 1-,8%”6 ZZJ i

If 0 < B < 1/2, then by equation (@) (in case p=2), we have that

E((Sﬁ - x)+)2 = 2foo(u - x)]P’(SfL > u)du. (4.18)

T

Similarly to the case of first order moment, from (|41ﬂ), (|41£4), (|41d)
and (), we have that with 0 < § < 1/2,

232
(1-28)(1-5) xlféfg = E((S§ —2)")?

252 n 1
oS (1= 2B)(1 = ) a1/P- QZ:]*% (4.19)

In order to obtain the asymptotics of H, [S |, we need to approximate
solution z of equation (@) in the case » = 2. Using derived asymp-
totic relations for the first and second order moments, we get that for
sufficiently large z, the ratio in (@) satisfies the following inequalities:

5 2 32 1 n 12
gy e _(ESE -0t e (M o)

232 1 1 3 2 = 232
(1—2B)(1—B) £1/5-2 D1 a? E((Si —2)*) (1—2B)(1-P) VR

After some simplifications and employing properties of limit superior,

we prove that the following asymptic relation is true:

11 1-2 nop\ ! E(SS — 2))*
a($1)" ¢ @S0

221/ 1 -3 a,) 25w E((S5 —a)t)?
_o1 11281/ 1)
S 228 1 -8 n kzlai '
Thus, solution of equation (@) satisfies the asymptotic inequality
1 /1-28\" O AR B
w(=) “(2a) () 5
26\ 1-p = ay l=q/) n
1/1-28\"1 /& 1\#/ 1\
< - il — - 4.2
5l 6>n5<zai) -4 (420

k=1
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because x = x(q) — oo if and only if ¢ 1 1.

Using expression from Theorem @(ii) together with () and (),

we get that for ¢ that is sufficiently close to 1,

1/2
m(s) =)+ (1) (E(SE =)

l—gq
1\ 12 91/23 1 no1\ Y2
< z(q) + (1_(]) (1_26)1/2(1_5)1/2$(Q) 25+1<Z a>

=%
1/1-28\"1 /& 1\?#/ 1Y\
S <1—6> nﬁ(,é%) (1—q>
L \I2 2V28( S, &)
+(1—q> (1—26)2(1 - A)I/2

1 /1-28)\" oINPT\ e
) ~(28) ()
2 1-06 = 1—gq
101 ) (1—25) [1(" 1)
26\1—¢q 1-— nb ;a%
28 s 1 e
1" ];1az '
Similarly, for g that is sufficiently close to 1, we get the lower bound
1/ 1 \’/1-28\" 21\
H,[S5] > OV ey L
26\1—¢ 1-p = aj;

26 1 n i 28—1
125" <Z a%) ’

k=1

Finally, we get that with generating function ¢(t) = t? and 0 < 8 <
1/2 the following asymptotic upper and lower bounds for the HG risk
measure H[S5] are valid:

mist 5 5 () (75) [o(52)

261 Sl
+1—2/a’ <,§1ai>]
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and

e o (L1228 s 50 L)
misi) 5 () (=7) (2
2,8 s n 1 28—1
2 (La) |

k=1

In Figure @, the values of risk measure H, [S5] are presented to-
gether with its asymptotic bounds in the case n = 3, a; = 0.35, a2 =
0.45, ag = 0.55 and k = 2. These values are obtained using the stan-
dard Monte-Carlo method (with 2 - 10% simulations) by supposing that
summands in S$ are independent.

5. Conclusions

Here we summarise the main results obtained in this dissertation:

o Let &1,...,&, be pQAI real-valued r.v.s. If E |&|® < o0, Fg, € D
for all ke {1,...,n} and some « € [0,0), then

Z L, E (& I[{£k>r}) EOO E((Sg)aﬂ{sﬁm})

<
~
r—00

nq .
kgl Lo E(¢0 g, >a))- (5.1)
If primary random variables are nonnegative, L-indices in the lower
asymptotic bound can be omitted.

o If d.f.s of primary real-valued r.v.s are restricted to the class C < D,
L-indices in equation (EI) are equal to 1. Thus, we have the exact
asymptotics

n

E((S5) " Ligeony) Z (68 Lgya})-

e In essence, under additional requirement for existence of moments

of random weights 61, ...,6,,

max{E6Y, ..., Efh} < oo for some p > max{JZ,..., J7 },
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Figure 4.2: Values of HG risk measure and corresponding asymptotic
bounds for § = 0.15 (top) and 8 = 0.33 (bottom). In both pictures
n =3, a1 = 0.35, ag = 0.45, a3 = 0.55 and k = 2.

we get asymptotic bounds for the tail moment of the randomly weighted

sum
Z LF&kE((eké.k)a]l{ekék>x}) xEOO E((st)a]l{sﬁ§>x})
k=1

n 1 o
< ZL—E((%&@) Lot >a})-

To0 2 My,

e We demonstrated the way of combining our main results with
Theorem 2.1 in the paper by Tang and Yang [63], so that asymptotic
formulas for Haezendonck—Goovaerts risk measure would be achieved.
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Illustrations, when primary r.v.s are distributed according to the Pareto
law or the generalised Peter and Paul law, are given.

e We established new closure properties of the classes of heavy-tailed
and related distributions. If the tail of a distribution has the property
defining specific class, the tail of the moment has the same property.
The converse statement is true in the class R, but in other analysed
classes the fact that the tail of the moment has class defining property
doesn’t imply that the tail of respective distribution has that property.
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6. Santrauka

6.1. Izanga

Pastaruosius kelis desimtmecius stebime susidoméjimo sunkiauode-
giais skirstiniais augima. Priezasciy tam yra nemazai, tac¢iau tarp populia-
riausiy paaiskinimy jvardijami informaciniy ir komunikacijos technologijy
plétra, finansiniy modeliy, kurie geriau atspindéty realias problemas,
poreikis, bei gauséjantys jrodymai apie tokiy skirstiniy taikymo tinka-
muma gamtos moksluose. Daznai mokslininkai, kurie domisi finansais ir
draudimu, domisi ir sunkiauodegiais skirstiniais - tyrimy apzvalga gal-
ima rasti Embrechts, Kliippelberg, Mikosch [21] knygoje. Tarp klasikiniy
sunkiauodegiy skirstiniy pavyzdziy sutinkame Pareto, lognormalyjj ir
Weibull skirstinius. Tarp maziau zinomuy, taciau svarbiy, pavyzdziy ran-
dame apibendrinta Petro ir Pauliaus, diskretyjj Weibull, Kosi skirtinius.
Disertacijoje pateikta iliustaraciné lentelé, kur jvairus skirstiniy pavyz-
dziai priskiriami sunkiauodegiy skirstiniy ir susijusioms klaséms. Siame
darbe mus labiausiai domina skirstiniy su dominuojamai kintan¢iomis
uodegomis klas¢ D. Taciau atsakéme ir keleta klausimy apie susijusias
klases, tarp kuriy jvardintume klase skirstiniy su nuosaikiai kintanc¢iomis
uodegomis C, klase skirstiniy su reguliariai kintan¢iomis uodegomis R,
ilgauodegiy skirstiniy klase £ ir subeksponentiniy skirtiniy klase S.

FEgzistuoja daug praktiniy modeliy, jtraukianciy kumuliatyvius efek-
tus, todél yra svarbi atsitiktiniy dydziy sumy, ju skirstiniy, momenty
ir kity tikimybiniy charakteristiky analizé. Tarkime, kad n € N :=
{1,2,...} ir &1,...,&, yra galimai priklausomi, sunkiauodegiai, realia-
reikSmiai atsitiktiniai dydziai, vadinami pagrindiniais atsitiktiniais dy-
dziais, 0 61, . .., 0, yra neneigiami, neissigime nulyje atsitiktiniai dydziai,
vadinami atsitiktiniais svoriais. Musy pagrindinis tyrimy objektas yra
momento uodega

E((Srgz)a]l{sg>x})7 (6-1)

kur a € [0, 0) ir

Sei=&+b+ -+
Be to, suformulavome keletg rezultaty svoriniam momento uodegos (Ell)
atitikmeniui:

E((Szg)a]l{szg>x})’ (62)
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kur a € [0, 0) ir
Szg = 01&1 + 92{2 + -+ ann (6.3)

Kartais laikysime, kad rodiklis « € Ny := {0} u N ir tokiu atveju
vizualinio atskyrimo tikslais vietoj raidés « rasysime m. Taip pat, atkrei-
piame démesj, kad literaturoje gana daznai vietoj termino “momento
uodega” (angl. “tail moment”) yra naudojamas terminas “nupjautinis

momentas” (angl. “truncated moment”).

Tkvépti Leipaus, Siaulio, Vareikaités [40] rezultato siekéme asimp-
totiskai aprézti momenty uodegas ( @ @ atitinkamomis momenty
uodegy

E(6i g, >ay) it E((Ok&k) " Lioep>a))

sumomis su tam tikromis koreguojanciomis konstantomis. Palyginus su
ankstesniais rezultatais Sioje disertacijoje yra gaunami tikslesni asimpto-
tiniai réziai, parodant, kad kiekvienas démuo aproksimuojanciose sumose
gali buti lydimas atitinkamos pasiskirstymo funkcijos L-indekso. Musy
rezultatui naujumo suteikia ir tai, kad naudojame abstraktesne prik-
lausomybeés struktura, bei tai, kad vietoj naturalaus momento uode-
gos rodiklio imamas bet koks neneigiamas realus skaic¢ius. Tuo atveju,
kai pagrindiniai atsitiktiniai dydziai neneigiami, jrodéme, kad koreguo-
jancios konstantos gali buti praleistos.

Yra parasyta nemazai straipsniy, kur nagrinéjami du atskiri atvejai
a = 0ir a = 1. Tarkime, kad a = 0. Siuo atveju momenty uodegos
(EI) ir (@) yra lygios skirstiniy uodegoms, atitinkamai

]P’(Sf; > IL‘) ir P(Sﬁg > 3:)

Ivairiose studijose (trumpa apzvalga pateikéme @—iame disertacijos
skyriuje) parodyta, kad Sios skirstiniy uodegos yra asimptotiskai lygios
atitinkamoms atskiry atsitiktiniy dydziy skirstiniy uodegy sumoms:

Z P(fk > .212 ir Z ngk > x
k=1 k=1

Tarkime, kad o = 1. Tada momenty uodegos (@) ir () yra lygios

vidurkiy uodegoms, atitinkamai
. 0.
E(Sg]l{sﬁn}) 1 E(Sngﬂ{sﬁin})-
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Tie patys auksc¢iau paminéti klausimai tyréjus domina ir Siuo atveju.

Atlikdami tyrimus pastebéjome tam tikrus momento uodegos elge-
sio reguliarumus lyginant su atitinkamo skirstinio uodega. Tai iSaugo
iki diskusijos apie sunkiauodegiy ir susijusiy skirstiniy klasiy uzdarumo
savybes momento skai¢iavimo atzvilgiu. Miusy tyrimai rodo, kad tam jog
momento uodega turéty savybe, apibréziancia konkrecia klase, pakanka,
kad atitinkamo skirstinio uodega turéty ta pacia savybe, taciau tai ne
visada biutina.

Vienas is budy disertacijos rezultatus taikyti finansy ir draudimo sri-
tyje siejasi su aukséiau paminétomis svorinémis sumomis (@) Tarkime,
kad pagrindiniai atsitiktiniai dydziai &, k = 1,...,n, reprezentuoja
grynaji draudimo kompanijos nuostolj (zaly sumos ir jmoky sumos skir-
tuma) periode (k — 1, k], suskaic¢iuota laiko momentu k. Be to, tarkime,
kad atsitiktiniai svoriai 0, k = 1, ..., n, reprezentuoja stochastinj diskon-
to faktoriy i$ laiko momento k j dabarties momenta 0. Tada suma STGLE
interpretuojama, kaip laiko periodo (0, n] diskontuoti grynieji kompani-
jos nuostoliai.

Kiekybiskai vertindami bet kurio portfelio ar kompanijos atsitik-
tinius nuostolius galime pritaikyti jvairius rizikos matus, pavyzdziui,
“Value at Risk” (VaR), “Conditional Value at Risk” (CVaR), ar Haezen-
donck-Goovaerts (HG) rizikos mata. Disertacijos @ ir @ apraséme
minétus rizikos matus bei trumpai pristatéme rizikos matavimo teorija ir
jos vystymasi. Taip pat, disertacijoje pateikiame naujy taikymo pavyz-
dziy, t.y. radome Haezendonck—Goovaerts rizikos mato formules konkre-
tiems skirstiniams kombinuodami musy tyrimy rezultatus su svarbia teo-
rema i$ Tang ir Yang [63, 2.1 Teorema| straipsnio.

Pagrindiniai rezultatai E ir @ skyriuose yra nauji ir originaltis. Sie
rezultatai yra gauti disertacijos autoriaus kartu su bendraautoriais. IS
esmes, skyrius yra grindziamas Leipaus, Pauks¢io, Siaulio [38] ir
Dirmos, Pauks¢io, Siaulio [20] straipsniais. Naujos uzdarumo savybes,
kurios pateiktos E skyriuje, yra publikuotos Pauks¢io, Siaulio, Leipaus
[49] straipsnyje.
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6.2. Apibrézimai
6.2.1. Sunkiauodegiai ir susije skirstiniai

Pries pristatydami pagrindinius disertacijos rezultatus apibrézkime
pagrindines tam reikalingas savokas. Pirma, apibrésime sunkiauodegiy
ir susijusiy skirstiniy klases, kuriy elementams formuluoti musy rezul-
tatai. Priminsime, kad sakome, jog pasiskirstymo funkcija F' yra “virs
R*”, jeigu F(—0) = 0. PanasSiai, sakome, kad pasiskirstymo funkcija
yra “vir§ R”, jeigu salyga F'(—0) = 0 gali buti netenkinama.

Pirmiausia formaliai apibréskime sunkiauodegiy skirstiniy klase H.

Apibrézimas 6.1. Pasiskirstymo funkcija F' virs R yra vadinama sunki-

auodege, rasome F € H, jeigu kiekvienam h > 0 yra teisinga, kad

o0
f " dF (z) = 0.
—Q0

Sakysime, kad skirstinys yra lengvauodegis, jeigu jis néra sunkiauode-
gis.

Toliau apibréziame placiai zinoma klasés ‘H poklasj £ taip, kaip api-
brézia Foss, Korshunov, Zachary [27].

Apibrézimas 6.2. Pasiskirstymo funkcija F virs R yra vadinama il-
gauodege, rasome F € L, jeigu kiekvienam fiksuotam y > 0 yra teisinga,
kad

F(zx+y) ~ F(x), (6.4)

kai x — 0.

Tam, kad jsitikintume, jog pasiskirstymo funkcija yra ilgauodegé
uztenka patikrinti, kad sarysis (@) galioja kuriam nors vienam y nely-
giam nuliui.

Panasiu budu apibréziami ir eksponentinio tipo skirstiniai (skaitykite,
pavyzdziui, Ragulina, Siaulys [54]) ir O-eksponentiniai skirstiniai (skaity-
kite, pavyzdziui, Xu, Foss, Wang [67]).

Apibrézimas 6.3. Sakome, kad pasiskirstymo funkcija F virs R yra su
eksponentine uodega, rasome ' € L., v > 0, jeigu kiekvienam y > 0
(ekvivalenciai visiems y € R),
F
lim ZEHY) o, (6.5)

= T 2)
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Apibrézimas 6.4. Pasiskirstymo funkcija F virs R yra vadinama O-
eksponentine, rasome F € OL, jeigu kiekvienam y > 0 yra teisinga,
kad o
lim sup M < 0.
xr—0 F(.%')

Skirstiniy su eksponentinémis uodegomis klases £, pristaté Embrechts
ir Goldie [22]. Klase OL pirmieji pristaté Shimura ir Watanabe [60].
Pastebékime, kad tuos pacius klasés £ elementus galétume gauti im-
dami v = 0 lygybéje (@) Todél galime rasyti Lo = L. Be to, kaip
pastebéta straipsnyje [67], klasé OL apima visas klases £,v = 0.

Toliau apibréziame klase D, svarby sunkiauodegiy skirstiniy poklas;j.
Sia klase pristate Feller [25]. Miisy pagrindiniai rezultatai bus formulu-
ojami butent Siai skirstiniy klasei.

Apibrézimas 6.5. Sakome, kad pasiskirstymo funkcija F virs R yra
su dominuojamai kintancia uodega, rasome F € D, jeigu kiekvienam

fiksuotam 0 <y < 1,

F
lim sup 7(953/) <
T—>00 F(.T)

Iprastai klasé S, viena svarbiausiy sunkiauodegiy skirstiniy klasiy,
yra apibréziama tokiu budu.

ApibréZimas 6.6. Pasiskirstymo funkcija F vir§ R yra vadinama
sub-eksponentine, rasome F € S, jeigu

F« F(z) ~ 2F(x) (6.6)
kai © — 0.

Norint korektiskai apibrézti subeksponentiniy skirstiniy klase visiems
skirstiniams vir$s R, nepakanka, kad buty tenkinama salyga (@)

Foss, Korshunov, Zachary [27, Example 3.3] pateikia pavyzdj skirs-
tinio, kuriam

F+«F(x) ~ 2F(x),

T—>0
bet atitinkama pasiskirstymo funkcija F' néra ilgauodegé ir net néra
sunkiauodegé. Taigi apibréziant pasiskirstymo funkcijos virs R subek-
sponentiskuma yra reikalaujama, kad buty tenkinamos abi salygos -
salyga (@) ir ilgauodegiskumas. Daznai yra naudojamas ir toks api-

brézimas.
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Apibrézimas 6.7. Reliareiksmio atsitiktinio dydzio & pasiskirstymo funk-
cija Fe virs R yra vadinama subeksponentine, rasome F' € S, jeigu
atsitiktinio dydzio £t = max{¢,0} pasiskirstymo funkcija Fg+ tenkina
sarysi (b.d).

Apibrézkime klase C, naudinga £ n D poklasj.

Apibrézimas 6.8. Sakome, kad pasiskirstymo funkcija F virs R yra su
nuosaikiai kintancia vodega, rasome F € C, jeigu

F(zy)

lim lim sup — =1.
y1l z—o F(w)

Ekvivalenciai, F' € C, jeigu

F
limm T inf 2 )

yll 2= F(x)

Svarbus klasés C poklasis yra gerai zinoma skirstiniy su reguliariai
kintanc¢iomis uodegomis klasé.

Apibrézimas 6.9. Sakome, kad pasiskirstymo funkcija F virs R turi
requliariai kintancig vodegq su indeksu o = 0, rasome F' € R, jeigu bet
kuriam y > 0 galioja, kad

Rasome
R = U Ra-
az=0
Klasés R, C ir D gali buti apibudinamos specifiniais indeksais. Per-
masis mus dominantis indeksas, vadinamas virsutiniuoju Matuszewska
indeksu, apibréziamas taip:

+ . _
si = i |

F
log lim inf 7(:163/) }
logy = e= F(z)

Antras indeksas, vadinamas L-indeksu, yra apibréziamas taip:

F
Lp := lim lim inf 7(1‘3/)

yll == F(x)

Yra gerai zinomi tokie sarysiai:

Lp>0 & FeD < Jf<w; Lp=1 < FeC.
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Be to, jei pasiskirstymo funkcija F' € R, tai J];r = air Lp = 1. Sias
dvi lygybes nesunku patikrinti. Jeigu F' € R, tai
F(zy)

Lp = limliminf — =limy “=1
yll 2> F(z)  yll

ir

1 F 1
Jt =inf{ — log lim inf 7(3:3/) = inf < — logy™ @} = a.
y>1 logy z—0  F(x) y>1 logy
Si skyriy uzbaigsime pateikdami Zinomus rysius tarp auks¢iau apibréz-

tu skirstiniy klasiy. Sunkiauodegiy skirstiniy klaséms teisinga:
RcCeLnDeSSLEH; DEcH; DESand SED.

Nuorodas j straipsnius, kur jrodyti Sie faktai, ar komentarus (angly
kalba) galima rasti Sios disertacijos skyrelyje.
Panasiai, yra gerai zinoma, kad klasei OL teisinga:

Jg,vpcocL

=0

6.2.2. Priklausomumo strukturos

Jau yra parasyta daug straipsniy apie nepriklausomy atsitiktiniy dy-
dziy sumy skirstiniy uodegy asimptotinj elgesj. Esant jvairioms papildo-
moms prielaidoms parodyta, kad si uodega yra asimptotiskai lygi atskiry
atsitiktiniy démeny skirstiniy uodegy sumai. Yra platus sutarimas, kad
nepriklausomumo prielaida daznai nerealistiska praktiniuose taikymu-
ose, todél musy tikslas yra gauti asimptotinius rezultatus abstraktesnéje
priklausomumo klaséje.

Siame darbe pagrindiné atsitiktiniy dydziy &, . . ., &, priklausomumo
prielaida, kuri naudojama formuluojant pagrindinius rezultatus, yra poro-
mis kvazi-asimptotinis nepriklausomumas (angl. “pairwise quasi-asymp-
totic independence”). Sia priklausomumo struktiira pristaté mokslininkai
Chen ir Yuen [13].

Apibrézimas 6.10. Realiy reiksmiy atsitiktiniai dydziai &1, ..., &, yra
vadinami poromis kvazi-asimptotiskai nepriklausomais (pQAI), jei bet
kuriems k,l € {1,2,...,n}, k #,

P& > 2,6t > ) ) P& > x,& > )

R >0 RG> 1) R PE 0BG > )
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Kaip pazymi patys Chen ir Yuen, siulydami QAI priklausomybés
struktura jie pasiskolino termina “asimptotinis nepriklausomumas” (angl.
“asymptotic independence”) i§ Resnick (zr. [55],[p6]) ir pritaiké atitinka-
ma apibrézima nebutinai vienodai pasiskirs¢iusiems atsitiktiniams dy-
dziams. Cia apibréziame poromis asimptotinj nepriklausomuma tokiu
budu.

Apibrézimas 6.11. Atsitiktiniai dydziai &y, ..., &, yra vadinami poromis
asimptotiskai nepriklausomais (pAl), jei bet kuriems k,l = 1,...,n,
k#1,
P P
lim (gk > z,§ >‘/E) — lim (ék’ > z,§ >.’L’) - 0.
z—w P(& > x) e P(§ > )

Leipaus, Siaulio ir Vareikaités straipsnyje [40] randame pasiiilyta
nauja priklausomybés struktira:

PRIELAIDA B. Atsitiktiniai dydziai &1, ...,&, visiems k, Il =1,...,n,
k # [, tenkina

lim supP(&F > 2 | &7 > w) = lim supP(§, >z | &7 > w)

= lim supP(§,f >z | & >u) =0.

Tr—0 u=x
Prielaida B ir anksc¢iau apibréztas poromis kvazi-asimptotinis neprik-
lausomumas yra susije. Galima parodyti, kad i$ Prielaidos B isplaukia
pQAI salyga. Tikrai, bet kuriems &, &, 1 < k # [ < n,

P& > 2,6 >
lim igk ild T 2) < lim supP(& >z | & > u) =0,
o0 PN > x) + P& >x)  eoDuze

P& >z, & >
lim Jfgk ild T 2) < lim supP(§, >z | & > u) = 0.
0 P(fk > ﬂf) + P(ﬁl > ZE) T=0 >y

Baigdami §j skyrelj uzsiminsime, kad disertacijos skyrelyje patei-
kéme du pavyzdzius, kai atsitiktiniy dydziy rinkiniai turi pQAI struk-
tura, generuota konkreciomis kopulomis. Pirmas pavyzdys konstruoja-
mas pasitelkiant gerai zinoma Farlie-Gumbel-Morgenstein kopula, antras
— po-puliarig Ali-Mikhail-Haq kopula.

6.3. Pagrindiniai rezultatai

Pries pristatydami pagrindinius rezultatus suformuluosime porg rezul-
taty i$ Leipaus, Siaulio, Vareikaités [40] straipsnio. IS 3 ir 4 Teoremuy
straipsnyje [40] seka tokia teorema.
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Teorema 6.1 (Leipus, Siaulys, Vareikaité [40, 3 ir 4 Teoremos]). Tarkime,
kad &1,...,& yra realiy reiksmiy atsitiktinias dydzZiai. Jeigu galioja
Prie-laida B, F¢, € D, F¢, (z) = F¢, (2), F&,{ (z) = O(F¢, (x)) visiems
k=1,...,n, irE|&|™ < oo kuriam nors m € N, tada

Lr B Heoa) S E(E ssq) S E(&' Lige>n))

a0 L

suk=1,...,n, ir

n

m m 1 S
L5 B Yemn) S E((SD) " Liseany) S ¢ 2 (6" L)

k=1 =0

kur L% = min{Lpé1 vooos L, }

Toliau cituojame 5 Teorema i$ [40] su nedideliais zyméjimy pakeiti-
mais.

Teorema 6.2 (Leipus, Siaulys, Vareikaité [40, 5 Teorema)). Tarkime,
kad atsitiktiniai dydZiai &1,...,&, tenkina Prielaidg B, o F¢ € D ir
E|&|™ < oo kuriam nors m € N. Be to, tarkime, kad 01,...,0, yra
neneigiams, neissigime nulyje, aprézti atsitiktiniai dydzZiai nepriklausan-
tys nuo &1,...,&,. Jeigu Foe, () =< Fo,¢ (), F(’kﬁk_ (z) = O(Fyy¢, (2))
visiems k = 2,...,n, tada

n

L5 2 B((068) " Vpoy) S B((SR) "1 ygoes )
k=1

1 n
E 7& Z 9"3&“ 1{9k€k>1})‘
TL k=1
Pirma, gavome rezultata, kuris patikslina @ Teorema. Parodéme,
kad kiekvienas démuo aproksimuojanéiose sumose gali buti lydimas atski-
ro atitinkamos pasiskirstymo funkcijos L-indekso. Be to, papildomai

itraukéme atveji m = 0.

Teorema 6.3. Tarkime, kad &1,...,&, yra reliareiksmiai atsitiktiniai
dydziai tenkinantys Teoremos reikalavimus, kur E |£1|™ < oo kuriam
nors m € Ng. Tada

Z LFS gk ﬂ{§k>$}) —$>oo E((Sfl)m]]'{57€>x})
n 1 m
5 27 B gen):
k=

© = LFﬁk
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Vélesnéje studijoje parodéme, kad galima apibendrinti pastarosios
teoremos rezultatus susilpninant reikalavimus priklausomybés strukturai
ir momento rodikliui. Vietoj neneigiamo sveikojo laipsnio rodiklio imame
bet kokj neneigiamg reliareikSmj rodiklj, o vietoj Prielaidos B leidziame
platesne priklausomybés klase pQAI.

Teorema 6.4. Tarkime, kad &1, ...,&, yra pQAI reliareiksmiai atsitik-
tiniai dydziai. Jeigu E|§p|¢ < oo, Fe, € D visiems k € {1,...,n} ir
kuriam nors « € [0,0), tada

Z Lr B Lg>a) S E((Si)aﬂ{sgn})
= Z E (&5 Ligy>a})- (6.7)

Esant poromis kvazi-asimptotinio nepriklausomumo prielaidai is @
Teoremos seka Stai toks rezultatas realiy reiksmiy atsitiktiniams dydzi-

ams.

Teorema 6.5. Tarkime, kad &1,...,&, yra pQAI reliareiksmiai atsi-
tiktiniai dydziai. Jeigu Fe, € C kiekvienam k € {1,...,n}, tada pa-
siskirstymo funkcija F ¢ € C ir

x) ~ i F
k=1

Dabar nagrinékime atveji, kai & yra neneigiami atsitiktiniai dy-
dziai. Tokiu atveju Teoremos rezultatas gali buti pagerintas pralei-
dziant atitinkamus L-indeksus apatiniame asimptotiniame rézyje (@)

formuléje.

Teorema 6.6. Tarkime, kad &1, ..., &, yra neneigiami pQAI atsitiktiniai
dydziai. Jeigu Fy, € D, E&Y < oo visiems k = 1,...,n ir kuriam nors
a € [0,0), tada

2 EE esn) £ B((S5) ge.):
k=1

Pagrindiniy rezultaty skyrelj baigiame @ Teoremos apibendrinimu
atsitiktinei svorinei sumai S%°. I toliau pateikiama rezultata galime
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ziuréti ir kaip i @ Teoremos apibendrinimg, t.y. mes imame abstrak-
tesne priklausomybés struktura, leidziame bet kokj neneigiamg realyjj
momento rodiklj ir atsisakome ganétinai apribojancios atsitiktiniy svoriy

01,...,0, apréztumo salygos.

Teorema 6.7. Tarkime, kad &1,...,&, yra pQAI realiareiksmiai atsi-
tiktiniai dydziai tokie, kad Fg, € D visiems k € {1,...,n}, ir tarkime,
kad 01, .. .0, yra kaip norima priklausomi, neneigiami, neissigime nulyje

atsitiktinial dydziai su

max{E6, ... , E6P} < oo kuriam nors p > max{Jt, . ng}
Jei rinkiniai {&1,...,&n} ir {01,...,0,} yra nepriklausomi, bei
E(0k|&k|)™ < o0 visiems k € {1,...,n}

ir kuriam nors a € [0,0), tada

Z LFskE((9k5k>a1{9k£k>x}) zéoo E((Szé)al{sﬁfn})
k=1

n 1 N
S & T, O )

6.4. Taikymai Haezendonck—Goovaerts rizikos matui

Siame skyriuje pristatome Haezendonck-Goovaerts (HG) rizikos mata,
kuris turi sasajy su tokiais gerai zinomais rizikos matais kaip VaR ar
CVaR. HG rizikos mata 1982-aisiais pristaté mokslininkai Haezendonck
ir Goovaerts [34]. Nuo tada $is matas sulauké daug démesio finansy ir
draudimo matematikoje. Apibrézdami §j rizikos mata remsimés formu-
luotémis, kurias siulo Tang ir Yang [63].

Funkcija ¢ (apibrézta virs R) yra vadinama normuota Young funkcija,
jeigu @ yra neneigiama, iskila | apacia intervale [0,0), o ¢(0) = 0,
¢(1) = 1ir ¢(w0) = co. Orlicz erdve L? ir Orlicz Serdimi L§ vadinsime
atsitiktiniy dydziy X aibes, apibréztas lygybémis:

L¥ = {X : E[p(cX)] < 0o kuriam nors ¢ > 0},
Ly ={X : E[p(cX)] < oo visiems ¢ > 0}.
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Tarkime, kad ¢ yra Young funkcija ir X € Lg. Pasirinktam ¢ € (0,1),
atsitiktinio dydzio X Haezendonck-Goovaerts (HG) rizikos matas yra

apibréziamas lygybe

Hy[X] = inf (z + Hy[X, 2]),

zeR

kur H,[X, z] yra vienintelis lygties
X — )t
(52 1

sprendinys h, jeigu Fx(z) > 0, ir H,[X,z] = 0, jeigu Fx(z) = 0.

Tang ir Yang [63] mini, kad analiziné rizikos mato H,[X] israiska
bendrai néra galima, taciau tuo atveju, kai ¢(t) = t*, » > 1, galima
iSvesti analizine israiska kai kuriy tipy skirstiniams. Toliau pateikiame
svarbig teorema i§ Tang ir Yang [63] straipsnio, kurig disertacijoje nau-
dojame atsitiktiniy dydziy sumos 5% HG rizikos mato asimptotinéms

formuléms gauti.

Teorema 6.8 (Tang, Yang [63, (1.3) lygybé ir 2.1 Teoremal). Nagrinéki-
me laipsnine Young funkcijg p(t) = t*, 2 > 1.
(i) Jeigu s = 1, o atsitiktinis dydis X yra toks, kad EX' < oo, tada

E(X - F5(q)"
1—g¢q

Hy[X] = Fx (q) + — OVaR,[X],

kur Fx (q) :==inf{z e R : Fx(x) > ¢} yra atsitiktinio dydzio X kvantiliy
funkcija.
(ii) Jeigu > 1, P(X = Fx (¢)) =0 ir E(X")* < 00, tada

B 1/
W) Cae)

HyX]=xz+ <

kur x = x(q) € (—o0, Fx (1)) yra vienintelis lygties

(E((X —2)t)1)”
(E((X —x)+)=)" "

sprendinys.

119



6.4.1. HG rizikos mato asimptotinés formulés. Pareto pavyzdys

Tarkime, kad atsitiktiniai dydziai &1, ..., &, yra pQAL Be to, tarkime,
kad kiekvienam k atsitiktinis dydis &, yra pasiskirstes pagal Pareto
désnj, t.y.

F, (z) = (1 - (;)“)n[k@o)(m), k=1,...,n,

su formos parametru o > 1.
Taikydami @ ir @ Teoremas disertacijoje parodome, kad tuo atveju,
kai p(t) =t*, x € N, » < a, galioja Stai tokia asimptotiné formuleé:

] ala — )71 1o

n 1/a
1/ ey 1
qu /o (%B(%’ = %)) (kz:l k ) (1 — q) ’

¢ia B(u,v) Zymi Beta funkcija.

H,[S

n

6.4.2. HG rizikos mato asimptotinés formulés. Petro ir Pau-
liaus pavyzdys

Tarkime, kad atsitiktiniai dydziai &1, ... &, yra pQAL Be to, tarkime,
kad kiekvienam k atsitiktiniai dydziai & yra pasiskirste pagal apiben-
drinta Petro ir Pauliaus désnj, t.y.

P& =a, ") =al "1 —a), j=1,2,...,

kur ay € (0,1) ir 5 > 0.

Tuo atveju, kai generuojanti funkcija () = t2, 0 0 < 3 < 1/2,
taikant @, @ ir @ Teoremas, disertacijoje gauti tokie virsutinis ir
apatinis HG rizikos mato H [SSL] réziai:

; 1/ 1 \'(1-28
s 5 () (2

26 251 nil—ﬂ
12" <2a> ’

N———
™
| — |
==
N
=
D=
?rgm‘ =
N———
3




6.5. Naujos skirstiniy klasiy uzdarumo savybés

Sioje disertacijoje gavome ir naujas skirstiniy klasiy uzarumo savybes,
kurios siejasi su nupjautiniais momentais. Patogumo délei apibrézkime
nauja pasiskirstymo funkcija.

Apibrézimas 6.12. Tarkime, kad & yra realiareiksmis atsitiktinis dydis,
apibréztas tikimybinéje erdvéje (Q, F,P) ir turi pasiskirstymo funkcijg
Fe. Tarkime, kad momentas

B = [ amdFe(a)

[0,00)

yra baigtinis, kai m = 0. Tokiu atveju funkcija
Fem(z) = max {0,1 — E(§" Ligspy) }, @ =0,
yra nauja pasiskirstymo funkcija su uodega
Fem(z) = min {1, E(" 1(eqy)}, = = 0.

Pirma, pristatome teorema su pakankamomis sglygomis, kad F¢,,
priklausyty konkreciai skirstiniy klasei.

Teorema 6.9. Tarkime, kad & yra realiy reiksmiy atsitiktinis dydis su
pasiskirstymo funkcija F ir baigtiniu momentu E(E1)™ kuriam norsm >
0. Tada galioja tokie sqrysiai:

(i) FeeRay m<a = FemeRa—m (Fe€R = FemeR),

(i) FeeC = FepeC,

(i) Fee D = FepeD,

(iv) Fee L = Fepmel,

(V) Fee Ly, v>0 = Fepel,,

(vi) Fee OL = Fg¢p e OL.

Taigi jrodéme, kad norint, jog F¢,, buty klas¢je K yra pakankama,
kad pasiskirstymo funkcija F¢ buty kalséje K, taciau kita teorema teigia,
kad tai ne visada butina. Pavyzdziui, F¢, nepriklausanti klasei D, gali

generuoti F¢ ,, € D.

Teorema 6.10. Tarkime, kad & yra realiy reiksmivy atsitiktinis dydis
su pasiskirstymo funkcija Fy ir beigtiniu momentu E({T)™ kuriam nors

m > 0. Tada, bendrai, galioja tokie sqrysiai:
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(i) Fen € Raem, m<a = FeeRy (FemeR = F:eR),
(ii) FeneC = FeeC,

(iii) FemeD =» FceD,

(iV) Fg’m el =» Fg € ,C,

(V) Ferme OL =» F.e OL.
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6.6. Rezultaty sklaida

Disertacijos rezultatai publikuojami siuose moksliniuose straip-

sniuose:

e R. Leipus, S. Paukstys, J. Siaulys, Tails of higher-order moments
of sums with heavy-tailed increments and application to the Haezendonck—
Goovaerts risk measure, Statistics & Probability Letters 170 (2021), 1-
12;

e M. Dirma, S. Paukstys, J. Siaulys, Tails of the Moments for Sums
with Dominatedly Varying Random Summands, Mathematics 9 (2021),
1-26;

e S.Paukstys, J. Siaulys, R. Leipus, Truncated Moments for Heavy-
Tailed and Related Distribution Classes, Mathematics 11 (2023), 1-15.

Disertacijos rezultatai buvo paskelbti siuose moksliniuose

renginiuose:

e S. Paukstys, Atsitiktiniy dydziy sumy momenty uodegy asimpto-
tinis elgesys ir taikymai Haezendonck—Goovaerts rizikos matui, Finansy
ir draudimo matematikos seminaras, 2021 m. vasario 23 d., Vilnius;

o S. Paukstys, Atsitiktiniy dydZiy sumy nupjautiniy momenty rib-
inis elgesys, Finansy ir draudimo matematikos seminaras, 2021 m. lap-
kricio 9d., Vilnius;

o S. Paukstys, Atsitiktiniy dydziy sumy nupjoutiniy momenty rib-
ingo elgesio tyrimai ir tatkymasi rizikos teorijoje, 10-asis Lietuvos jaunuyjy

matematiky susitikimas, 2021 m. gruodzio 28 d., Vilnius;

e S. Paukstys, Tuails of moments of sums with heavy-tailed sum-
mands and applications to the Haezendonck—Goovaerts risk measure,
European Actuarial Journal Conference 2022 Tartu, 2022 m. rugpjucio
22 d., Tartu;

e S. Paukstys, Sunkiauodegivy skirstiniy momenty uodegy savybés
(disertacijos pristatymas), Finansy ir draudimo matematikos seminaras,
2023 m. kovo 13 d., Vilnius.
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6.7. Trumpos zinios apie autoriy

Gimimo data ir vieta

1992 m. geguzés 18 d., Klaipéda.

ISsilavinimas

2011-2015 m. Vilniaus universitetas, Matematikos ir informatikos
fakultetas, finansy ir draudimo matematikos bakalauras;

2011-2015 m. Vilniaus universitetas, Matematikos ir informatikos
fakultetas, finansy ir draudimo matematikos magistras;

2018-2022 m. Vilniaus universitetas, Matematikos ir informatikos
fakultetas, gamtos moksly matematikos kryptis, doktorantiros studijos.
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