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Introduction

With the rapid development of technology, great progress has been made in
the digitization of data. Over the past decades, the amount and variety of data
collected have grown exponentially. Data is collected in practically all areas:
starting from physical phenomena observed in nature, physiological data in
medicine, economic phenomena or smart watches that record the physiological
data. Indeed, there is no field left untouched by the digitization revolution.
Naturally, such rapid digitization raises many questions about data structure.
One of the problems often encountered in data analysis is structural changes
in time series. Changes may not be obvious or difficult to notice, therefore,
solving such problems requires theoretically based mathematical instruments.

A change point, also known as a structural break or regime shift is a point
in time at which the mean, variance, pattern, distribution, or other statistical
property in time series changes abruptly or continuously. Change-points can
occur in a variety of different contexts and can be caused by a wide range of
factors, such as shifts in consumer behavior, changes in market conditions, or
the introduction of new policies or regulations.

Change-points are often of interest in statistical analysis and data mining,
as they can provide valuable insights into the underlying patterns and trends in
the data. For example, detecting change-points in a time series data can help
identify anomalies or irregularities in the data, and can be useful for predicting
future trends or making informed decisions. Change point detection involves
the analysis of two main questions:

1. Did the statistical characteristics of the data alter at any point in time?

2. If there was a change, when did it occur?

In certain situations, it is straightforward to identify structural changes in
processes. For instance, the economy may experience a recession and then re-
cover. The criteria that define a recession are well-defined and clearly stated.
In other areas, it can be almost impossible to detect change points without us-
ing mathematical methods. Mathematical methods are particularly important
when systems must automatically respond to a changed situation. For exam-
ple, if the vibration level has changed, the engine must be shut off to prevent a
crash. The analysis of change points has gained popularity with the emergence
of smart devices, such as smart watches that can detect in real-time when a
person starts running, climbing stairs, or falling asleep. Change point analy-
sis is particularly relevant in the field of medicine, where medical measuring
devices are used to continuously record data on a patient’s physiological con-
dition. This is important because detecting and reacting to changes as soon as
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possible can help to prevent negative consequences. For example, if a medical
device is able to detect that a patient’s physiological condition has changed
significantly, medical intervention can be provided in a timely manner to avoid
serious health complications. One specific application of change point analysis
is in the detection and real-time recording of epileptic seizures. As an example,
Malladi et al. presented a method for real-time monitoring of epileptic seizures
in their publication [46]. Another example where change point analysis is fre-
quently employed in the field of medicine is when monitoring of cardiac activity
through Electrocardiogram (ECG). To identify changes in the heart, various
transformation methods, including wavelet transformations [53,57], have been
utilized. Hidden Markov models [41] and graph-constrained methods [25] are
additional approaches that have been applied to ECG data. Fotoohinasab et
al. provide a comprehensive overview of the different methods for change point
analysis of ECG data in their publication [25].

Change point analysis is not limited to time series data. It is also frequently
used to analyze images and audio signals. For example, magnetic resonance
imaging produces 3D images that can be analyzed for change points [12,47,68].
In the case of audio recordings, change point analysis is often used to separate
segments of speech from other sounds, which is important for tasks such as
developing automatic speech recognition models, echo cancellation, and speech
segmentation [35,37,73]. In many cases, the first step in solving these types of
problems is to split the audio signal into distinct segments.

Overall, change point analysis is a useful technique for identifying changes
in various types of data, including time series, images, and audio signals.

There is no universal definition of what constitutes a change. A change
could be seen as a change in the data-generating model or model parameters,
or it could be a change in distribution parameters such as mean (as shown
in Fig. 1.4a in Chapter 1, section 1.3) or variance (as shown in Fig. 1.4b in
Chapter 1, section 1.3). These types of changes are often considered in change
point analysis. There are many methods that have been proposed for detecting
changes in distributions (see [55]). However, other types of changes, such as
changes in frequency and pattern, have received less attention. Changes in
frequency (as shown in Fig. 1.5b in Chapter 1, section 1.3) are important for
analyzing data with cyclical properties. These changes are often studied in the
frequency domain using techniques such as the Fourier or wavelet transform
(see [53,57]). Detecting pattern changes (as shown in Fig. 1.5a in Chapter
1, section 1.3) is one of the most challenging tasks in change point analysis,
and the coverage of methods for this problem in the scientific literature is not
extensive. However, this is a relevant problem in areas such as brain wave
analysis (see [72]).

The problem of change points has been extensively studied in the clas-
sical literature, and many detection algorithms have been proposed for one-
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dimensional time series data. Ome of the first algorithms for change point
detection is the Cumulative Sum (CUMSUM) algorithm, which was developed
by Page in 1954 [50]. The CUMSUM algorithm was specifically designed to
detect changes in the mean of a time series, and it has been widely used in
quality control processes to ensure consistent production.

Change point detection methods can be classified into two main categories:
parametric and nonparametric methods. Parametric methods assume a specific
underlying probability distribution for the data, while nonparametric methods
do not make such assumptions and instead use a range of heuristic and data-
driven approaches to identify change points.

In change point detection, the concept of online and offline refers to the
availability of the data being analyzed. Offline change point detection refers to
the analysis of a complete, fixed dataset, while online change point detection,
on the other hand, refers to the analysis of a dataset that is continuously
growing.

In contrast, this thesis focuses on the offline problem of change point de-
tection in a data sample that is invariant, meaning that the data set is fixed
and not constantly growing.

Change point analysis is not limited to univariate time series data. In recent
years, there has been a significant increase in research on change point detection
in multidimensional time series data, which refers to data that has multiple
variables measured over time. This type of analysis is useful in situations
where there are multiple factors that may be influencing a system or process,
and it can provide insights into how these factors are related and how they
change over time.

Functional data analysis provides a natural framework for analyzing mul-
tivariate time series data. As a result, more and more classical methods are
being adapted to work with functional data, which is a natural extension of
multidimensional data from finite dimensions to infinite dimensions. In prac-
tice, functional data is often obtained by observing multiple subjects over time,
space, or other continuous domains, and it can take the form of curves, surfaces,
or other complex objects. Representing multidimensional data as functions
greatly expands the range of analysis tools available, and functional principal
components are often more informative than multidimensional principal com-
ponents. As functional data analysis becomes more popular, the problem of
detecting change points between curves (as shown in Fig. 1.6a and Fig. 1.6b,
in Chapter 1, section 1.3) becomes increasingly relevant.

The first methods for analyzing functional data were mentioned as early
as 1950, when Grenander (see [29]) attempted to apply statistical methods
to stochastic processes. Later, in 1958, Rao (see [64]) used functional data
analysis to compare the growth curves of organisms. The term 'functional
data analysis" itself was first coined by Ramsey in 1982 (see [61]). Extensive
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discussions on the analysis and applications of functional data can be found in
Ramsey and Silverman’s book (see [63]), and a comprehensive review of the
field is provided by Wang et al. (see [77]).

Aim and objectives

The primary objective of this dissertation is to investigate statistical techniques
for the identification of change points in both univariate and functional samples.
Specifically, the focus will be on proposing novel statistical tests based on the
variation properties of the CUSUM process for change point detection.

To achieve the goal of the research, the following objectives have been for-
mulated:

1. Define the objects and models under consideration.

2. Define and investigate a mean instability testing model based on the p-
variation of the partial sum process.

3. Establish the limiting distribution of the test statistics under the null
hypothesis and the contiguous alternative.

4. Define the G-sum process and analyze its asymptotic behavior.

5. Construct statistical tests for change point detection in functional data
based on the G-sum process.

6. Analyze the proposed tests using simulation methods.

7. Apply the tests to real data.

Practical and scientific novelty

This thesis presents the development of novel statistical tests based on a p-
variation of CUSUM process for the efficient detection of mean instabilities in
both univariate and functional samples. The proposed tests include:

1. A test for At Most One Change (AMOC) in mean instabilities over time.
2. A test for detecting at most m change points.

3. A test for detecting an unknown number of change points.

The tests proposed in this thesis are effective for both large and small
samples, and they can be practically applied in various fields such as medicine,
image and sound analysis, climate change, and others. The tests are designed
to detect changes in the mean, but the design of the tests can be generalized
for other types of changes.
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Layout of the dissertation

The dissertation consists of an summary, three chapters, general conclusions
and a discussion of further research and a bibliography.

e Chapter 1 introduces the reader to the main concept of function varia-
tion, as well as basic concepts of functional data analysis. It then focuses
on change point problems, with an extensive review of available methods
and their importance in different domains.

e In Chapter 2, a new method based on the p-variation properties of
partial sums is proposed for detecting mean changes, and the theoretical
aspects are examined. At the end of the chapter, the statistical power
of the proposed test is evaluated through simulations and applied to real
data.

e In Chapter 3, the proposed univariate test is generalized and adapted
to functional data. The G-sum and G-cusum processes are defined and
their asymptotic behavior is considered in the framework of the £*°(G)
space. This framework is used to derive the asymptotic distributions
of the test statistics, and three tests are presented, following simulation
studies. Finally, the tests are applied to real data.

Maintaining statements
e The limit distributions of the G-sum and G-cusum processes has been

determined for random functions.

e A statistical test based on the p-variation of partial sums has been de-
veloped to detect changes in the mean.

e The asymptotic properties of G-cusum process has been used for testing
known and unknown number of change points in the mean of a functional
sample.

Dissemination of results

Publications

[A1] T. Danielius, A. Rackauskas, p-Variation of CUSUM process and testing
change in the mean, Communications in Statistics-Simulation and Com-
putation, 1-13 (2020). https://doi.org/10.1080/03610918.2020.1844899

[A2] T. Danielius, A. Rackauskas, Multiple change point detection in
functional sample via G-sum process, Mathematics 10.13, (2022).
https://doi.org,/10.3390/math10132294
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Conferences

[C1] T. Danielius. Functional data analysis of neurophysiological data: case
study. NBBC19 : Tth Nordic-Baltic biometric conference, 3-5 June 2019,
Vilnius, Lithuania.

[C2] T. Danielius, A. Rackauskas. p-variation of cusum process and testing
change in the mean, 13th International Conference of the ERCIM WG on
Computational and Methodological Statistics (CMStatistics 2020) 19-21
December 2020, Virtual Conference.

[C3] T. Danielius, A. Rackauskas. Multiple change point detection in func-
tional sample via G-sum process, 63th Conference of the Lithuanian Math-
ematical Society, Kaunas University, 16-27 June 2022.

[C4] T. Danielius, A. Rackauskas. Multiple change point detection in func-
tional sample via G-sum process, 24th International Conference on Com-
putational Statistics (CompStat 2022), 23-26 August 2022, Bologna,
Ttaly.

[C5] T. Danielius. Pasikeitimo tasky testai funkciniams duomenims paremti
p-variacija, Seminar Statistics and its applications, Vilnius University
Institute of Applied Mathematics, 7 August 2022, Vilnius, Lithuania.

Main results

For a univariate sample X1, Xo,...,X,, and the number p > 2, we define the
test statistics

P
Tp.n,(Xlw-an):Hlax{zy;l‘Z?;k]71+1(Xi—Xn) :0:k0<~~<km:n;1§m§n},

where X,, = n~1(X; + -+ + X,,). It is important to review some necessary
definitions as we continue to analyze these statistics. For a function f : [0,1] —
R and a number 0 < p < oo, the p-variation of f on the interval [0, ¢] is

p(f310,8]) = sup ¢ [ f(t5) = f(t;-1)|P § < oo,
j=1

where the supremum is taken over all partitions
O=to<ti < <ty =t m=12,...,

of the interval [0,¢]. We abbreviate v, (f) := v,(f;[0,1]). If v,(f) < oo then we
say that f has bounded p-variation, and W, [0, 1] is the set of all such functions.
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The set W,[0,1], p > 1, is a non separable Banach space with the norm

1£llis) == 1F(O)] + w,/P(f).

For each n > 1 and each t € [0, 1], let

Lnt]
Su(t) =0if t €[0,1/n), Su(t) =Y _ X;, if t € [1/n, 1],
i=1
where for a real number z > 0, |z] := max{k: k e Nk <z}, N={0,1,...}.
Then the cusum process Z,, = (Z,(t),t € [0,1]) is defined as

=1

Classical examples of path spaces for the process Z, include the Hilbert
space Ls[0,1] and the Skorohod space DI0,1]. Under various assumptions, a
functional central limit theorem is established in these spaces. For example, the
classical Donsker theorem for i.i.d. sequence (X,,) with finite second moment
states that

n127, 2 5 6B in the space DJ0,1],

n—00
where B = (B(s) := W(s) — sW(1),s € [0,1]) is a standard Brownian bridge,
and W = (W (s), s € [0,1]) is a standard Wiener process, and o2 = var(Xy).
The main result of the Chapter 2 is the following theorem

Theorem 1. Fix p > 2. Let X7, Xo,... be a sequence of independent identi-
cally distributed random variables and let S,, = (S, (t),t € [0,1]) be the partial
sum process. If 02 := EX? < oo, then the convergence

n Y2z, 25 6B in W,[0,1]

n—roo

holds.

For independent random sample X7, ..., X,, we consider the following model
Xi =01 (1) +Y;, i=1,...,n,

where Y1,...,Y,, are i.i.d. random variables with E(Y;) = 0, E(Y;?) = 1 and
0 € R, k* € {1,...,n} are unknown parameters.
Under Hy : § =0, we prove that for any p > 2,

n_l/QU;/p(Zn) 2, vll/p(B).

n—r oo

Under contiguous alternative where 6 = d,, & /nd*, and k* = |n#* | with some
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0* >0, and 0* € (0,1), we prove that

n_l/Qvé/p(Z ) 2, vl/p(B ),
n—roo
Wheref(t):{(s t1-07) if 0<t<0r
0 (1—t) if 9*<t<1
These two results are theoretical justification for statistics used to detect a
change point in the mean. The power of the test was investigated by simula-
tions.
Next, we consider a second-order stationary sequence of stochastic processes
Y: = (Yi(¥),t € [0,1]),i € N, defined on a probability space (2, F, P), having
zero mean and covariance function v = {7(s,t),s,t € [0,1]}. For a given
functional sample X;(¢),..., X, (t),t € [0,1], we consider the model:

Xi(t) = glk/n,t) + Yi(t), te0,1], k=1,...,n, (1)

where the function ¢ : [0, 1] x [0,1] — R is deterministic, but unobserved. Our
aim is to test the hypothesis:

Hy: g=0 versus Hy:g#0

with emphasis on a case of change-point detection, which corresponds to a
piecewise-constant function g with respect to the first argument.

This model covers a broad range of real-world problems such as climate
change detection, image analysis, analysis of medical treatments, especially
magnetic resonance images of brain activities, and speech recognition, to name
a few. Besides, the change-point detection model (1) can be used for knot
selection in spline smoothing as well as for trend changes in functional time
series analysis.

The methodology we propose is based on some measures of variation of the
process:

[ns]
Wi(s) =Y (Xp — Xp) + (ns — |ns]) (X nsj+1 — Xn), s €[0,1],
k=1

where X,, = n (X1 + -+ X,,).

Since this process is infinite-dimensional, we used the projections tech-
nique to reduce the dimension. To this aim, we assumed that Y; is mean-
squared continuous and jointly measurable and that + has finite trace: tr(y) =
fo (t,t)dt < oo. In this case, Y; is also an Ly(0, 1)-valued random element,
where Ly := L5(0,1) is a Hilbert space of Lebesgue square mtegrable functions
on [0, 1] endowed with the inner product (f,g) fo t)dt and the norm
IfIl == +/{f, f). For two given sets F,¥ C Lo, we con51der the F x W-sum
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process:

v (S rlfv) e Fvew).
k=1

where v, (f, %) = (X, ¥)Ank(f), Ank is a uniform probability on the inter-
val [(k — 1)/n,k/n] and Ak (f) = fol f(t)dAnk(t). A natural framework for
stochastic process v, is the space £°°(G), where G = F x W. Recall for a class
G that £°°(G) is a Banach space of all uniformly bounded real-valued functions
1 on G endowed with the uniform norm:

[ullg := sup{|u(g)| : g € G}.

The limiting zero mean Gaussian process v, = (v(f,¢),f € F,¢ € ¥) is
defined via covariance:

Eny(f, 1/})V“/(f,7w/) = IC’Y((f7w)7 (flvwv)) = <F1/}a1/}l><f7 f/>7 ¢a¢/7f7 fl S L2a

where I' : Ly — Lo is the covariance operator corresponding to the kernel ~.

Assumption 1. Random processes Y, Y7,Y5,... are i.i.d. mean square con-
tinuous, jointly measurable, with mean zero and covariance ~ such that
oy A(t,t) dt < co.

For the model (1), we consider null hypothesis Hy : g = 0 and two possible
alternatives:

Hy: g=gn=unqn, where u, —u in Wh[0,1], /ng, —q in Lo,
and

H): g=gn=1ung,, where u, —u in Wh[0,1], \/ﬁzug [{qn, )] — oo.
€
In both alternatives, the function wu, is responsible for the configuration of

a drift within the sample, whereas the function ¢, estimates a magnitude of
the drift.

Theorem 2. Let the random processes (Xj) be defined by (1), where
Y,Y1,Ys, ... satisfy Assumption 1. Assume that, for some 1 < ¢ < 2, the
set F C Wy[0,1] is bounded and the set ¥ C L, satisfies

/1 Vieg N(e, U, p)de < oo. (2)
0

Then, there exists a version of a Gaussian process v, on Ly X Ly such that its
restriction on F x W, (v, (f,v), f € F, € V) is continuous and the follow-
ing hold:
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(la) Under Hy:

2y, —2 s, in 0°(F x ). (3)
n—oo
(1b) Under Hy,
n~12y, %) vy + A, in °(F x ¥), (4)

where

A(f, ) = (u, f)la, ).

If u(s) = 1,s € [0,1], then the alternative H4 corresponds to the presence
of a signal in a noise. In this case, A(f,v) = A(f)(q,v). Therefore, the use of
this theorem for testing a signal in a noise is meaningful provided (g, 1) # 0.
Assumption 2. The eigenvalues A, satisfy, for some d > 0,

>\1>)\2>"'>>\d>>\d+120.

One estimates I' by

T, =

S|

Z[(Xi —Xn)® (X; — X)),

where X,,(s) = n=}(X1(s) + --- + X,.(s)). We denote the eigenvalues and
eigenfunctions of r by :\\m. and ﬁm., r=1,...,n—1, respectively. In order to
ensure that zZm may be viewed as an estimator of v, rather than of —,., we
will in the following assume that the signs are such that <7an>¢r> > 0. Note
that

fzﬂmzinr@m, r=1,...,n—1, (5)
and Lo
A”:n—1;<X“X"’w"T>2’ r=1,...,n. (6)
Define for d > 0,
. 1 k .
Toa(d) == max —— max | > (X; — X,,,15)]. (7)

= X
1<j<d [~ 1<k<n
=I= Aj T =t

This statistic is designed for at most one change-point alternative. Its lim-
iting distribution is established in the following theorem.

Theorem 3. Let random functional sample (Xj) be defined by (1) where
Y, Y1,Y5, ... satisfies Assumptions 1 and 2. Then,
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(a) Under Hy, it holds that

_1/25 D
n~Y2T,1(d) —— sup sup |Bi(t),
n—=00 1<k<d0<t<1

where B, ..., By are independent standard Brownian bridge processes;

(b) Under H4, it holds that

n V2T 0 (d) —— sup sup |By(t) + A (g v/ VA,

n—o0  1<k<d0<t<1

where

A(t) :/0 u(s)ds — t/o u(s)ds, tel0,1]. (8)

(c¢) Under H';, it holds that

n71/2fn71(d) L .

n— oo

Based on this result, we construct the testing procedure in a classical way.
Choose for a given « € (0,1), C, > 0 such that

P( sup sup |Bg(t)] > Cq) = a.
1<k<d 0<t<1

According to Theorem 3, the test:
Tn,l(d) Z \/ﬁca (9)

has asymptotic level a.
Let us note that, due to the independence of Brownian bridges By, k =
1,...,d, we have

l1—a=P(sup sup |Bi(t)] <C,) =P sup |Bi(t)] < Ch,).
1<k<d 0<t<1 0<t<1

This yields

P(sup [Bi(t)] < Ca) = (1 - a)"/".
0<t<1

Hence, C, is the (1 — a)'/4-quantile of the distribution of supy<,, |B1(t)].
This observation simplifies the calculations of critical values C,,. o

In particular, if there is s* € (0,1) such that u(s) = 1y (s),s € [0,1],
then we have one change-point model:

Xi(t) = Lpo,e1(k/n)gn(t) + Yi(t), ¢ € [0,1].

In this case, A(t) = A*(t) := min{t,s*} —ts*, t € [0,1]. Let us observe
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that test statistic fnyl(d) tends to infinity when d — oco. On the other hand,
with larger d, the approximation of X; by series ZZ:1<X, %)1})} is better and
leads to better testing power. The following result establishes the asymptotic
distribution of fn’l(d) as d — oo.

Theorem 4. Let random functional sample (Xj) be defined by (1) where
Y, Y1,Y5, ... satisfies Assumption 1. Then, under Hy,

lim lim P(n‘lﬂfn)l(d) < aﬁ + bd) —exp{—e®}, £>0, (10)
d

d— 00 n—00

where 1 Inlnd
nln
ag = (8Ind)'/?, by = 104+

(11)

aq

When d is large, the test (9) becomes

1
a2 Vil )+ :
1= n m(i/a)) " (12)
and has asymptotic level a as n and d tend to infinity.

For m > 1, let NV, be a set of all partitions x = (k;,s = 0,1,...,m) of the
set {0,1,...,n} such that 0 = kg < k1 < -+ < kypy—1 < ky = n. Next, consider
for fixed integers d, 1 < m < n and real p > 2,

m
Tym(d,p) := max —— max {Z’ (Xk — X, 0j)

1<5<d " KEN
j 1=1 k=k;_1+1

The statistic fnm(d7 p) is designed for testing at most m change-points in

P}l/P' (13)

a sample.

Theorem 5. Let the random sample (X;,7 = 1,...,n) be as in Theorem
2. Then:

(a) Under H,

—1/25 D 1/p(R.
P m{dip) S max v (B)),

where Bi,..., By are independent standard Brownian bridges.

(b) Under H 4,

WV, () 2 s {005, + Al B, ).

n—oo 1<

nil/QT\n,m(dap) _)L) oQ.
n—o0
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According to this theorem, the test:

Ty (d, p) > v/nCo(m,d,p) (14)

has asymptotic level «, if C,(m,d, p) is such that
P(vy/h(B) < Ca(m,d,p)) = (1 - a)"/4.

Next, fixed integer d and real p > 2, we define

m ki
~ 1 . — ~. |y Up
Tuldp) o= o, s s {2] 30 -Xadalf ) 09)

Aj i=1 k=k;_1+1

The statistic fn (d,p) is designed for testing an unknown number of change-
points in a sample.

Theorem 6. Let random sample (X;,7 =1,...,n) be as in Theorem 2. Then:
(a) Under H,

AT p) S a0/ (By),

where B, ..., By are independent standard Brownian bridges.

(b) Under H 4,

*1/2T (d,p) 2. max v /p( + A( q,wj/\/

n—oo 1<5<

where A(t),t € [0,1] is as defined in Theorem 2.

(¢) Under HY,
n_1/2fn(d,p) P .

n—oo

According to this result the test:

T, (d, p) > V/nCyu(d, p) (16)

has asymptotic level «, if C,,(d, p) is such that

P(v,/?(B) < Ca(d,p)) = (1 — )"/,

Simulation results

In the univariate case, the statistical power was estimated using Monte-Carlo
simulations. The sliding window approach was then used to identify the lo-
cations of change points and to detect multiple change points. The test was
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applied to a dataset of annual Nile river flow measurements from 1871 to 1970,
which contained a known change point around 1898 [18].

Consider a sequence X1, ..., X,, n > 1, of independent random variables.
Suppose there exists a 7 € [0, 1] such that Xi,..., X,,; have the distribution
N(u1,0%) and Xpr41,...,X, have the distribution N (u2,0?). Given o we
construct consistent critical point a, such that

P (vll,/p(Zn) < aa) =

for Hy : 7 =0 versus Hy : 7 € (0, 1].

The distribution of ’U[l,/ P(Z,) was estimated using Monte-Carlo simulations
with n = 1000 and & = 100000 where k is number of replicated copies of
the Z, process. The resulting distribution for different values of p-variation
(p = 3,4,8) is shown in Figure 2.1, with critical values at the asymptotic level
of a = 0.95 marked.

The power of detection was evaluated by studying Type II errors under
the alternative hypothesis. The aim was to evaluate the statistical power in
different scenarios. First, the magnitude of the change was varied by incre-
mentally increasing the value of a, such that ps = a. The resulting statistical
power with respect to different values of a and different numbers of observa-
tions (n = 1000, 10000, 30000) is shown in Figure 2.2a. The simulation results
show that if the number of observations is large enough (n > 30000), the null
hypothesis is correctly rejected more than 80% of the time when us > 0.035.

In the second scenario, the statistical power was evaluated with respect
to 7 values with n = 1000. The value of 7 represents the location of the
change point. This simulation demonstrates the speed at which changes can be
detected. The simulated results are shown in Figure 2.2b. It can be seen that
if |p1 — po| > 0.3, a 7 value as small as 0.20 is sufficient to achieve a statistical
power of 80%.

Simulation results demonstrate that the sliding window method is effective
at identifying the location of the change points in data (see Figure 2.3). The red
dashed line indicates the critical value with a significance level of & = 0.95. It is
typically observed that the statistic used to detect change points will approach
this critical value around the point where a change is present.

We analyzed the annual flow of the River Nile at Aswan from 1871 to 1970,

using data recorded in units of 108m?3.

There is a known change point in
the data near 1898 [18], and the measurements may provide insight into the
patterns of rainfall in the region. The results of the proposed test show (see
Figure 2.4) that the null hypothesis was rejected around the year 1898, which
is very similar to what other researchers have indicated.

In our tests of the functional sample, we used three scenarios to evaluate

statistical power. In the first scenario, the actual eigenvalues and eigenfunctions
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were known, allowing us to avoid any data loss or measurement errors. In the
second scenario, we reconstructed the generated functional sample from the
first scenario by measuring the values at random times (10 and 200 data points)
and using a different set of basis functions constructed functional sample. This
allowed us to measure the impact of information loss due to measurements
taken at discrete points and smoothing. The simulation results showed (see
Figure 3.6) that the performance of the test is not significantly affected by the
reconstruction of the random functional sample if we have enough data points.
However, if the number of points is much lower (from 200 points to 10 points),

we can see a degradation in performance.

In the third scenario the discrete observations (i/M,y;;),i =
0,1,...,M,5=1,...,n, are generated by taking

yij =M1/ kaj,
k=1

where (§;) are i.i.d. symmetrized Pareto random variables with index p (we
used p = 5). The y;; can be interpreted as the observation of a standard Wiener
process at i/M. From (y;;,7 = 1,..., M), the function Y} is obtained using the
B-spline smoothing technique. During the simulation, we used M = 1000 and
D = 50 B-spline functions, thus obtaining n = 500 functions Y7,...,Y,.

Then, we define for j =1,...,n,

X; =

Y; under null
un(j/n)gn +Y;, under alternative

and consider different configurations wu, of change-points and g¢,(t) =
anVMt,t € [0,1].

In the power studies, we tested two variants of the random functional sam-
ples. One had a single change point in the middle, and the other had two change
points forming an epidemic change. In the first case, we modified 500 of the
1000 curves in the functional sample to violate the null hypothesis. In the sec-
ond case, we modified 500 of the 1500 curves in the middle of the sample. For
each repetition, we calculated two statistics in the single change-point simula-
tion: fn(d, p) and fnﬁl(d). For the epidemic change simulation, we calculated
fmm(d,p) with m = 2.

Figure 3.8 presents the results of the statistical power simulation for a single
change point (left) and an epidemic change (right). The results show that the
epidemic change has weaker statistical power when using the statistic fn’m(d, D)
compared to the unknown number of change point statistic fn(d, p). However,
when restricting the partition count, the locations of the partitions often match
or are very close to the actual locations of the change point.
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For the real-world data, we used neurophysiological data and lickometer
data from a long-term study on alcohol-consuming rats to demonstrate the
performance of the proposed test for change-point detection. The rats were
given two drinking bouts, one with alcohol and one with water, and were able
to freely choose what to drink while their brain activity was monitored. In
our analysis, we analyzed the first alcohol-drinking event, which lasted ap-
proximately 27 seconds. We included 10 seconds before and after the event,
totaling 47 seconds. The time series was divided into processes of 100 ms, each
containing 100 data points.

The results are visualized in Figure 3.9. We can see that the tests with
statistics fn(d7p) and f(n_’m) (d,p) strongly rejected the null hypothesis at
around 2 seconds after the rat started to drink alcohol, indicating changes
in brain activity during alcohol consumption in the CPu brain region. The
statistic fn,m(d,p) had larger volatility in the Nacc brain region before the
drinking event and lower volatility just after the event began.

Finally, the locations of the restricted (m = 2) p-variation partition points
closely matched the beginning and end of the drinking period. In Figure 3.9, the
gray vertical dashed lines indicate the actual beginning and end of the drinking
period measured by the lickometer, and the black vertical lines indicate the
location of the partitions calculated from the functional sample 13450. The first
partition is located at 10.5 seconds, and the second partition point is at 38.4
seconds, which aligns well with the data collected from the lickometer. The
test with a restricted partition count showed larger volatility but accurately
determined the locations of the change points.
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1. Background

This manuscript is devoted to problems related to Change point detection
(CPD). Change point Analysis (CPA) is a powerful tool for evaluating struc-
tural changes in data and is widely used in many fields. The goal of this work
is to extend the existing set of tools with a novel approach. First, we lay the
foundation for the univariate process, based on measures of variation of the
partial sum process. Then, we extend the method to a functional sample.

Before discussing change points in detail, we introduce the reader to con-
cepts that are fundamental to the methods we propose in Chapters 2 and 3.
Specifically, we focus on two concepts: the variation of functions (covered in
section 1.1) and Funtional Data Analysis (FDA) concepts and tools (covered
in Section 1.2).

Next, we introduce the reader to the field of change point analysis. Section
1.3 defines the terminology that is used throughout this thesis. Then, we
review the existing methods and how our work relates to the existing literature
on CPD. In Section 1.3, we present real-world situations where CPD is applied.
Finally, we review the progress in CPD for functional data in Section 1.4.

1.1. p-Variation of the function

Camile Jordan in his paper [36], devoted to the convergence of Fourier series,
introduced notation of the variation of the function. He used the new concept
in order to prove the convergence theorem for the Fourier series of discontinuous
period functions whose variation is bounded. Several generalizations and exten-
sions of the concept of p-variation have been proposed, including the functions
of bounded p-variation and the functions of bounded ¢-variation. The latter
notation was introduced by L.C. Young in 1937 [82] and has found widespread
application. The p-variation term was first coined by Wiener in 1924 [78]. In
his work, Wiener mainly focused on the case of the 2-variation (p = 2). He
defined the p-variation of a function f as a collection of seminorms indexed by
a real number p > 1, derived from the function defined on an ordered set of a
metric space.

Later, major research with p # 2 was done by Young [81] and partly Love
[45]. Young considered an inequality bearing a formal resemblance to that of
Holder and derived conditions for the existence of a Stieltjes integral. Young’s
integration theory allowed to define [ydx as soon as y had finite g-variation
and z had a finite p-variation with 1/p+1/¢ > 1.

If p = 1, the variation is referred to as the total variation. Functions with a
finite 1-variation are known as bounded variation functions. The concept of the
total variation was introduced by Camile Jordan in 1881 [36]. The total varia-
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tion has found numerous applications in various branches of mathematics and
engineering, including the numerical analysis of differential equations (see [32]).
Functions of bounded variation have received significant attention due to their
use in the study of discontinuities and differentiability. These types of func-
tions, which exhibit bounded oscillation or "roughness", have found numerous
applications in the applied sciences, including physics, mechanics, chemistry,
and more. Their ability to accommodate discontinuities has made them par-
ticularly useful in these fields. In image denoising, total variation was applied
in order to reduce the noise of the image [15,66].

For extensive use of p-variation, the reader may refer to the book by Dudley
and Norvaisa [23].

Definition 1.1.1. A finite sequence k = {¢;}!, for a positive integer n is
called a partition of [a,b] if a =ty < t1--- <t, =0.

Definition 1.1.2. Let f be any real-valued function on an interval [a, b] with
—00o < a<b<+4ooandlet 0 <p < oo. If a<b, for a partition k = {t;}7,
the p-variation sum for f over « is defined by

k) = {Z f(t:) — f(ti1)|P}.
i=1

The p-variation of f on [a,b] is defined as v,(f;[a,b]) :==0if a = b and
vp(f) = vp(f;[a, b]) = sup s, (f; k)

if a < b, where the supremum is over all partitions & of [a,b]. Then f is said
to be of bounded p-variation on [a, b], or f € W,[a, b], if and only if v,(f) < o0
and W, [0, 1] is the set of all such functions. The set W,[0,1], p > 1, is a non
separable Banach space with the norm

1l = (O] +v/7(F).
The embedding W, [0, 1] — W, 0, 1] is continuous and
v;/q(f) < vll,/p(f), for 1 <p<yq.

For a comparison with the a-Holder, a € (0, 1], property of f, if p := 1/«
and |f(t) — f(s)] < C|¢t — s|*,t,s € [0,1], then we have

m m
Z fti)P<c Zt—tjl =Cr

and so v,(f) < CP < 0.
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It is possible for a f to have unbounded variation, but still v,(f) < oo for
some p > 1 and if v, (f) < oo then vy(f) < oo for ¢ > p. For example, indicator
functions have bounded p-variation for any p > 0.

Computational challenges

To calculate the p-variation of a function f, it is necessary to determine the
supremum in the definition of v,(f) and find a partition x of the interval
[0, 1] that achieves this maximum. If f is a piecewise monotone function with
local extrema forming a partition x = (¢;) and p = 1, then the supremum in
vp(f) is attainable using this partition. The algorithm for computing the total
variation, given in reference 1, is straightforward and has a complexity of O(n).

Algorithm 1: Computation of the total variation

1 Function 1-variation(X):

/* n is the size of the sample X x/
n=[X|;

vy = 0;

for i =0;i < n do

| o1 =v1 +|X[i] - X[i + 1]

end

return vq;

N o s W

On the other hand, finding a maximizing partition is more complex when
p # 1. Intuitively, it might seem that the maximizing partition points should
be corner points. However, this is not necessarily the case if the function f is
not piecewise monotone. In such a situation, it may be necessary to exclude
certain points from the partition s to achieve the maximum in the definition
of v,(f). For example, intermediate points within an interval over which f
is increasing should not be treated as corner points, as their inclusion would
result in a smaller value of the variation. Instead, only the endpoints of the
interval should be considered as corner points in this case. To show this we
define the following lemma:

Lemma 1. Let f be a function and IT = {¢¢, ¢1, ..., t, } be a partition. Assume,
that f is a monotone increasing function on interval [t;_1,¢;11]. Then if II' =
IL;,, vp(f,II') > v, (f,II). If f is strictly increasing and p > 1, then inequality

is strict.

In order to prove lemma 1 we use the following inequality (a+b)? > a? + bP
for all a,b > 0 and p > 1.

Proof of lemma 1. From the inequality (a 4+ b)? > a? + VP it follows
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0p(f,T1)P = v (f, TP = (f (tigr) — f (tim1))? = (F (tiv1) — £ (8))7 = (F () = f (ti—1))P
= (At’l.f + AtH—lf)p - (Atlf)p - (Ati+1f)p >0

The inequality is strict if Ay, f > 0,A441f > 0and p > 1. O

1.0

0.8
|

0.4

0.2

0.0
|

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.1: figure of the function

Example 1.1.1. Consider the function on an interval [0, 1] illustrated in Figure
1.1 defined as

(@) z(2e + 1), if . <271
xTr) =
2¢(x — 1) +z, otherwise

With 0 < € < 0.16, if we partition at the corner points, then
TP = (27 40 + 207+ (27 + ) = 0P 227 + ) m 2T < 1.

However, this approach does not necessarily result in the maximum p-variation.
If we consider a trivial partition II' = 0,1, then v,(f,II') = 1, which is larger
than v, (f,II) < 1 < v,(f,II') for any p > 1. This demonstrates that the trivial
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partition I’ may yield a larger p-variation than a partition II that includes
intermediate points.

p-variation p-variation
< <
c 7 o 7
N N
o 7 <
o o
c [SE
x x
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o o
[ |
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@ T T T T T T @ T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Time Time
p=2.1, p—variation: 3.55421 p=3, p-variation: 2.06871
p-variation p-variation
< <
c 7 <3
~N N
o 7 o 7
o o
c 7 (<3
x x

N N
o o
[ |
© ©
@ T T T T T T @ T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Time Time
p=4, p-variation: 1.34186 p=5, p—variation: 1.00224

Figure 1.2: Ilustration of the effect of varying p on the p-variation of the
Brownian bridge.

The p-variation of the Brownian bridge can be illustrated through the exam-
ple depicted in Figure 1.2. The figure shows how the locations of the maximal
partition points, marked in red, vary as the value of p is changed. This demon-
strates how the p-variation of the Brownian bridge is influenced by the value
of p.

Note that, it is necessary to restrict the value of p to be greater than 2
when calculating the p-variation of the Brownian bridge, as shown by the well-
known results of N. Wiener (1923) and P. Lévy (1940). Specifically, it has been
established that

vp(W) < oo almost surely if and only if p > 2;
29



as well
vp(B) < 0o almost surely if and only if p > 2

and va(W) = oo and vz (B) = oo almost surely.

Algorithm 2: Computation of the p-variation with complexity of
O(n?)

Input :sample X and scalar p > 0

Output: v,(X) - p-variation of the sample X
1 Function p-variation(X, p):

/* n is the size of the sample X */
2 | n=|X];
/* P is an array of the cumulative p-variation x/

P = array|n];
for i =1;i <n do
for j=0;j<ido
d= Plj]+ X[ - X[
P[j] = max(P[i], d);
end

© w0 g 0 ok W

end

_ 1/p.
10 v, = Pn]'/?;
11 return v,;

Calculating v, using a naive approach involves considering all combinations
(see pseudo-code 2), which has a computational complexity of O(n?). This
makes it impractical for larger values of n. An alternative method was pro-
posed by Butkus and Norvaisa in their work, "Computing p-variation of func-
tions," published in 2018 [14]. The algorithm, which has a lower computational
complexity, is available on CRAN!.

In their paper, Butkus and Norvaisa demonstrated that the p-variation
of a piecewise monotonic function f is dependent only on a tuple
(f(to), f(t1)s- -, f(tn)), where (¢;)I, is the minimal monotonicity partition
of [a,b]. The general steps of the BN algorithm are as follows:

o Find minimal monotonicity partition. The goal is to find all points of strict
local extrema of the sample function. The points which are not strict local
extremum points are excluded.

e Check small subsamples. Each sample is checked for redundant points.

e Merge smaller subsamples. Let Ilp; and II; , be maximizing partitions for
the p-variation over inerval [0,i] and [¢,n], respectively. The union sample
IIo,; UIT; » is used to find a maximizing partition Il ,. This operation is called
merging. The merging is repeated for all small maximizing partitions until final

maximization is found.

Thttps://cran.r-project.org/web/packages/pvar/index.html
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o Calculate the value of p-variation. Having all maximizing partitions (S;)i—q it
is easy to compute the p-variation sum

n
’Up = Z ‘51_1 — Sz‘p
i1

The BN algorithm is efficient for calculating the p-variation of real-valued
functions. However, it is not applicable to functions in R?. An alternative algo-
rithm, developed by Alexey Korepanov, Terry Lyons, and Pavel Zorin-Kranich
(KLZ), is available on GitHub?. According to the authors, this algorithm is
fast enough for paths with a large number of points, and has a computational
complexity that is close to O(nlog(n)). However, it should be noted that the
worst-case complexity of the KLZ algorithm is O(n?). A comparison of the
performance of these algorithms can be found in Table 1.1.

Table 1.1: A performance analysis of various algorithms for calculating p-
variation was conducted on a machine with an Intel i7 CPU and 64GB of
RAM running Linux. The evaluation was based on execution time in seconds
for various combinations of p and n values.

Algorithm p=2.5 p=4 p=5.5 p=7 p=8.5

BN 0,0001 0.0001 0.0001 0.0001 0.0001
n=100 KLZ 0.0037  0.0035 0.0033 1 0.0031 0.0029

Simplistic O(n?) = 0.0166

BN 0.0002 0.0002 0.0002 0.0001 0.0001
n=1000 KLZ 0.0513 1 0.0456 0.045 0.0418 0.0425

Simplistic O(n?) = 0.2921

BN 0.0013  0.0009 0.0009  0.0008 0.0008
n=10000 KLZ 0.6652 0.6111 0.5788 1 0.5606 0.567

Simplistic O(n?) | 26.2577

BN 0.0128  0.0084 = 0.0077  0.0074  0.007
n=100000 KLZ 8.1725 7.4600 7.1236 7.0809 8.6697

Simplistic O(n?) ' 2621.3418 (approx. 43 minutes)

BN 0.14 0.103 0.0954 0.4466 0.151
n=1000000 KLZ 95.8404 + 89.2490 | 83.9256 « 95.8208 « 180.5138

Simplistic O(n?) = 264822.6296 (approx. 3 days)

1.2. Functional Data Analysis

When studying the environment, we often observe it not as a single point, but
rather as a curve. For instance, a comprehensive view of the trajectory of a
moving object over time is more informative than just a single coordinate at a
particular moment. As such, for data samples of this form, it is more natural to
treat each atomic observation as a curve rather than a discrete point. With the
advancement of computational power and the proliferation of devices capable of

2https://github.com/khumarahn /p-var
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continuously recording data, statistical inference and analysis of curve-shaped
data has become increasingly challenging. This has led to the development of
FDA in many research areas.

The history of Functional Data (FD) can be traced back to 1950 when
Grenander attempted to apply statistical concepts and methods of inference
to stochastic processes [29]. In 1958, Rao analyzed statistical methods for
comparing growth curves in the study of growing organisms [64]. The term
FDA was first coined by Ramsey in 1982 [61] and later by Ramsay and Dalzell
in 1991 [62]. In their book [63], Ramsey and Silverman provide a thorough
overview of FDA and offer numerous examples of its application in various
domains.

In practice, FD are typically represented as discrete data points measured
over time, space, or other continuum. These discrete data points for an indi-
vidual function can be denoted as X; = (t;;,v: ), where i = 1,2,...,n and
Jj = 1,2,...,m. The variables t; ; denote design time points, while y; ; are
the responses at those time points. A random sample of FD typically consists
of independent real-valued functions, Xi(t), Xa2(t),...,X,(t), on an interval
[0,T] on the real line. Often, it is convenient to view these functions as a one-
dimensional stochastic process in a Hilbert space, such as L2([0,7T]). A process
X;(t) is considered to be in L? if it satisfies the following condition:

E X2(t)dt | < oo.
[0.7]

Zhang [83] described the FD as a generalization of multivariate data from
a finite dimensional to an infinite dimensional. Wang et. al. [77] refer FD
to the first generation and the next generation. The latter was said to be
more complex objects, and possibly are multivariate, correlated, or involved
images or shapes. Examples of the next-generation FD data include brain and
neuroimaging data.

Before FDA gained popularity, data that were continuously recorded over
a time interval at several discrete time points were historically analyzed using
classical Multivariate Data Analysis (MDA) methods. However, interpreting
a sample of curves in a multivariate fashion does not take into account the
fact that the fundamental unit of the sample is a curve, therefore MDA has
its limitations. Some problematic cases when analyzing FD within the MDA
framework include:

¢ Observed data is sampled with non-equal spaces between data points.

o High-Frequency data can have more data points than a number of sub-
jects.

e The total number of sampled data points may vary across the subjects.

32



Many MDA algorithms have an analogous version in FDA, such as Principal
Components analysis (PCA), correlation analysis, and discriminant analysis.
In addition, taking advantage of the unique characteristics of the functional
framework, new tools are being developed. For example, the ability to com-
pute derivatives allows the use of differential equations. For a comprehensive
review of tools, readers may refer to the book by Ramsay and Silverman [63].
Nonparametric techniques for analyzing FD are also becoming well established
(see [24,34] for an extensive overview).

The high or infinite dimensionality of FD is a significant challenge for re-
searchers. From a theoretical perspective, it can be difficult to develop sta-
tistical models and methods that are able to accurately capture the complex
structure of FD. From a computational standpoint, the high dimensionality of
FD can lead to poor scalability, making it difficult to process and analyze large
datasets in a timely manner. This can result in insufficient statistical power,
meaning that the results of statistical tests may not be reliable.

Despite these challenges, FD is a valuable source of information for re-
searchers. The fact that FD is structured as an infinite dimensional space
means that it has the potential to capture a wide range of complex patterns
and trends. This opens up new opportunities for research and data analysis,
and has made change point analysis for FD an important area of study.

It is important to note that in functional change point analysis, changes
are measured between functions rather than at individual points. This is in
contrast to traditional change point analysis, which typically focuses on changes
at specific points in time. By focusing on changes between functions, functional
change point analysis is able to capture more nuanced and subtle changes in
data, making it a powerful tool for data analysis.

Construction of the functional objects

In practice, data collections involve observations at discrete points in time, re-
sulting in non-continuous data. Even when the sampling rate is very high, the
recorded data are still not continuous. The sampling rate, or the number of ob-
servations taken per unit of time, typically depends on the characteristics of the
signal being measured. For example, a signal with high frequency components
may require a higher sampling rate to capture the full range of variation. In
any case, measurement error is almost always present in discrete observations,
meaning that the recorded data may not perfectly reflect the true underlying
signal.

Due to these considerations, the first step in FDA is often to construct con-
tinuous functional objects from discrete observations. One common approach
to achieving this is through the use of a basis expansion. This involves express-
ing the data in terms of a set of basis functions, which are typically chosen to
be smooth and well-behaved. By expressing the data in this way, it is possible
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to capture the underlying structure of the data more accurately and to analyze
it more effectively.

Basis expansion is a fundamental concept in FDA, and there are many
different types of basis functions that can be used. Some common examples
include B-splines, Fourier basis functions, and wavelets. The choice of basis
functions will depend on the characteristics of the data and the goals of the
analysis. In any case, the use of basis expansion allows for the construction of
continuous functional objects from discrete observations, enabling more accu-
rate and effective analysis of FD.

The basis expansion can be defined as follows:
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Figure 1.3: A smoothed Wiener process is demonstrated using B-spline and
Fourier basis functions. The upper left figure displays 31 basis curves, and the

upper right figure displays 5 basis functions. The derivative of the smoothed
curves is depicted in the lower figures.
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In basis expansion methods, a potentially infinite-dimensional space of func-
tions is represented within the finite-dimensional framework of vectors like ¢,
where K is the number of basis functions ¢y, [63]. The smoothness of the data
is controlled by the value of K, which can be chosen by the researcher. When
selecting a basis system, it is important to consider two aspects. First, the
basis should reflect the nature of the data as accurately as possible. For exam-
ple, Fourier basis functions are well-suited for periodic curves, while B-spline
functions are better at capturing nonperiodic and complex features [21]. Sec-
ond, the derivatives of the basis should be considered. While the basis may
represent the data well, it may not provide a good estimate of the derivative.

The choice of the parameter K depends on how closely the data should be
represented in the functional object. When K = n, the data are represented
exactly. However, using a smaller value of K allows for more degrees of freedom
to test hypotheses and requires less computational power. The coefficients
themselves can also be important descriptors of the data. The effect of different
basis systems and values of K are illustrated in Figure 1.3. The upper left plot
of the figure was smoothed using K = 31 basis functions, while the upper right
plot was smoothed with K = 5.

One of the approaches of estimating c is by using the least square principle.
This is equivalent to the minimization of the sum of squared errors:

K 2
SSE(ylc) = Z [yj - Zcm(tj)] :

j=1 k=1

Let ® be a J x K such that ®y; = ¢x(t;). Then setting the gradient of the
loss to zero and solving for ¢ we get:

¢= (/D) @y

This method was further extended by Green and Silverman [28]. The au-
thors introduced a roughness penalty to fit a more smooth curve. The measure
of a function’s roughness was measured by the integrated square second deriva-

tive

PEN,,(z) = / {x(m)(s)}m ds,

where (™) (s) denotes the m order derivative of z evaluated at time s. Then,
we can define the penalized residual sum of squares as

PENSSEp(zly) = [y — 2] [y — ] + APEN,,(x),

where A is a smoothing parameter. Then, the authors obtained the expression
of the estimated coefficient vector
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¢=(9'®+AR)”' @'y,

where

R = /¢(8)§m)¢(8)§m) ds

is the penalty matrix.

Functional Principal Components Analysis

PCA was first proposed by Pearson [54] in 1901 and became the essential
technique for data analysis. Mostly it was used for dimensionality reduction
by projecting each data point onto a reduced number of components while
preserving as much of the data variation as possible. PCA projects the data
onto a subspace which minimizes the reconstruction error and maximizes the
projected variance. The reduced space can reveal a latent structure in relations
between variables. PCA became an essential part in the development of MDA.
In general terms the goal is to find a transformation 7 : R¢ — R* that maps
data points in R? to data points in R¥. In PCA case, the approach is to find a
linear transformation that preserves the maximum variance. Before introducing
the Functional Principal Components Analysis (fPCA), we briefly discuss the
classical PCA. Consider m data points 1, ...z, € R and a positive number
k < d. The k is the number of the target dimension. In particular, define a
matrix X of an m x d:

X = : € R™*4,

Next, we need to subtract the mean from each row. Denote the sample

m
n= m~t g z;
i=1

mean by g

Then, denote
Tiy = Ty — M.

And then we denote X as a mean-centered data matrix:

The next step is to calculate a covariance matrix S of d x d in terms of X as
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S = 72(& — ) (xi —p) = L xx

m—1

fPCA technique is an analogous version of PCA for a functional data. It was
one of the first MDA tools to be adopted to functional framework [20]. Basi-
cally, the adaptation was based on replacing vectors with functions matrices
by compact linear operators, covariance matrices by covariance operators and
scalar products in a vector space by scalar products in square-integrable func-
tional space. Therefore, principal components became weight functions varying
over the same interval [a,b] as the data. An eigenbasis, representing data, is
an orthonormal basis of the Hilbert space L?, that consists of eigenfunctions
of the autocovariance operator. Formally we can define the fPCA as follows.
For a square-integrable stochastic process X (¢), let

and -
G(s,t) = Cov(X(s), X(t) = > Mespr(s)(t),
k=1
where A\ > Ao > --- > 0 are the eigenvalues and ¢1, @9, . . . are the orthonormal

eigenfunctions of the linear Hilbert—Schmidt operator

G:LQ(T)—>L2(T),G(f):/ G(s,)f(s) ds.
T

By the Karhunen—Loeve theorem, one can express the centered process in
the eigenbasis

X(t) = u(t) =Y en(t),
k=1

where &, = [-(X () — u(t))pr(t)dt is the principal component associated with
the k-th eigenfunction ¢y, with the following properties: E({x) = 0, Var(§) =
Ar and E(§x&) = Ofor k # I. The centered process is then equivalent to
£1,&, ... A common assumption is that X can be represented with good pre-
cision by only the first few eigenfunctions after subracting the mean function,

i.e.

X(t) ~ X (t) = u(t) + D &ron(h),
k=1

where

E(/T(X(t)Xm(t))2 dt) => X > 0asm— oo

j>m
A range of techniques have been developed for calculating fPCA, including

parametric and nonparametric methods (e.g., Yao et al. 2007 [80], Sang et al.
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2017 [67]). Wu et al. (2021) [79] offer a comprehensive review of these tech-
niques, while Shang et al. (2014) [69] provide a review of the use of functional
principal component analysis in explanatory analysis.

1.3. Change Point problem

Studies related to time series often assume that the process is stationary, mean-
ing that its properties are independent of time. However, in practice, this as-
sumption almost always fails in environments where there are shocks or other
changes in the background. As a result, it is more reasonable to assume that
the observed data is stationary only for certain segments of the whole sequence.
This raises the question of how to identify and recover these segments.

Change point analysis involves partitioning the sequence into a number of
segments, with points that divide the sequence into one or more segments that
have different statistical properties known as change points. In general terms,
there are two sets of problems related to CPD consists of the following two
steps:

1. Did the statistical characteristics of the data alter at any point in time?

2. If there was a change, when did it occur?

Many researches consider this problem as classical hypothesis testing with
null hypothesis (Hp) indicating of change, but Basseville [9] pointed out that
change point estimation is different from classical hypothesis testing. When
testing for change points, the multiple testing problem must be taken into
account, meaning that almost every point is a a priori candidate for a Change
point (CP). In order to identify the change points, an appropriately constructed
test statistic is used. If the null hypothesis is rejected, the candidate point that
provides the strongest evidence becomes the estimated CP.

(a) An example of the (b) An example of the (c) An example of the
change in the mean change in the variance change in the distribution

Figure 1.4: Examples of change points.

CP are not uniquely defined and the type of change must be taken into
consideration. The change can happen in model parameters, in the model
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itself, in the dependency structure, or even in a way that can’t be specified
mathematically. There exists a large set of cases that can be considered as
changes in the sequence. The most widely studied problem includes the range
of parameters of the distribution. The formulation can be rewritten as:

H()ZXZ'NCD()({E;Q()), ’L':].,...,'rL7

O (2:0,) i=1.2,....T,
HliXiN 0( O) g
Oy (2;601) i=7+1,7+2,...,n,

where 6; represents potentially unknown parameters of the probability distri-
bution ®. Many previous works have focused on the parametric characteristics
such as the mean (see figure 1.4a) or the variance (see figure 1.4b) for retro-
spectively detecting changes, meaning that ®; = ®; but 6y # 6.

Another case of common CPD problem is when the probability distribution
after the time 7 changes together with the parameters of the corresponding
distribution. The problem can also be extended to the multiple CP, when the
sequence of the distributions exists (illustrative example in the figure 1.4c),
meaning that &g #£ &1 £ ... #£ ®,,.

o © o
24

T T T T T
0 200 400 600 800

T T T T
50 100 150 200 250 300

o

(a) Change in the pattern (b) Change in the periodicity

Figure 1.5: Examples of the change in pattern and periodicity

There are cases that attracted less attention but are also relevant in many
fields. Change in periodicity (see figure 1.5b) which is centered around time
series with cyclic properties usually focuses on a frequency domain, for example
by using Fourier transform or wavelet transform [17]. Finally, probably the
most complex changes to detect are related to changes in the pattern (see
figure 1.5a). Pattern changes are difficult to detect and there is not much
coverage on detection methods. One approach was proposed by Shvetsov et.
al. [72] in electrocardiography.
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At Most One Change and multiple changes

The majority of CP techniques start with AMOC problem or a single CP as
illustrated in the figure 1.4b. The multiple change-point detection is more rele-
vant in an offline setting and it is much harder to solve. While the single change
point detection can have at most n — 1 outcomes, the latter can have 2! out-
comes. The sequence of size n can be segmented in k segments (Zj
the total number of possibilities can be 2:11 (Zj) = 271 There are other
adaptations where the number of changes is known in advance, lowering the

) , therefore

number of possible outcomes. Naturally, multiple change point detection al-
gorithms can be used on datasets which have only one change, however, the
opposite is not that trivial. Few possible procedures can be used together with
the detection algorithm. One of the approaches is the sliding window approach,
where the window is formed over some part of the sequence which satisfies the
problem constraints, then, this window can slide over the whole sequence and
capture different portions of that. Another procedure is called binary segmen-
tation where one can search for a change in the entire dataset. If a change-point
is found then the dataset sequence is divided into two parts and repeats the
steps on both segments in a recursive fashion [76].

The focus of this thesis is on the detection of single, multiple, and unknown
number of change points in an offline setting.

Online and Off-line environment

In CPD, the concept of "online" and "offline" refers to the availability of the
data being analyzed.

"Offline" (see [74] selective survey of algorithms) change point detection
refers to the analysis of a complete, fixed dataset. The goal of offline change
point detection is to identify changes that have occurred in the past, based
on the complete dataset. This type of change point detection is also known
as "a-posteriori" change point detection, as the analysis is performed after
the data has been collected. Another important aspect is that, with all the
data, the number of changes can be more than one. In this case, the problem
becomes more complex and an additional task is to determine the total number
of changes. A particularly relevant problem is identifying epidemic changes
when the change is temporal (as shown in Fig. 1.4a and 1.5b)

"Online" (see [65] for comparison of online CP algorithms) change point
detection, on the other hand, refers to the analysis of a dataset that is continu-
ously growing. The goal of online change point detection is to identify changes
as soon as they occur, in real-time. This requires the use of algorithms that
can continuously update their results as new data becomes available. Online
change point detection is useful in situations where it is important to react to
changes as soon as they happen, such as in monitoring the performance of a
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machine or the health of a patient.

Online methods can be adapted for use in an offline setting by iteratively
processing data points. However, adapting offline methods for use in an online
setting presents more challenges. One potential approach is to utilize the entire
recorded time series each time a new data point is received, though this may
be impractical due to computational constraints, particularly for time series
with a large number of data points recorded over an extended period. There
may also be a lag in detection, as the algorithm may not have the necessary
sensitivity to detect the change as promptly as online methods.

Offline methods have some advantages over online methods. They can po-
tentially be more accurate as they can take into account the entire available
data set. They also have the added flexibility of allowing for the analysis of
multiple change points.

Parametric and non-parametric methods

Change point detection methods can be broadly classified into two main cate-
gories: parametric and nonparametric methods. Parametric methods assume a
specific underlying probability distribution for the data and estimate the change
points by maximizing the likelihood function or minimizing the distance be-
tween the data and the assumed distribution (see [16] for extensive review of
parametric approaches). Nonparametric methods, on the other hand, do not
assume any specific underlying distribution for the data, and instead use a vari-
ety of heuristic and data-driven approaches to identify the change points. The
reader may refer to the book [13] by Brodsky and Darkhovsky for extensive
review on nonparametric change point detection.

Both parametric and nonparametric methods have their own advantages
and limitations, and the choice of method will depend on the specific charac-
teristics of the data and the goals of the analysis. Some common parametric
methods for change point detection include the CUSUM method, the Shewhart
chart, and the Binary Segmentation method. Nonparametric methods include
the Mann-Kendall test, the ChangeFinder method, and the Pelt method. There
are many other methods and algorithms available, and researchers and practi-
tioners may choose to use a combination of approaches to get the best results.

Approaches to change point detection
First, we provide a brief overview of some classical sequential procedures for
CPD.

Control charts

One method for identifying change points in a process is to establish a threshold
value and determine if the statistic being measured exceeds this threshold.
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If it does, it can be interpreted as indicating a change in the process. The
effectiveness of this approach depends heavily on the choice of the threshold
value. The first effort to select a threshold in a more systematic manner was
undertaken by Shewhart [71]. In this approach, it is assumed that the true
mean, represented by p/, and the variance, represented by o2, of the process
are known. The method is then applied to a batch of size n, with the goal of
detecting any changes that may have occurred in the process. For a batch of
size n

nk
Y(t) = nil Z Xl
i=n(k—1)+1
The change is detected if it satisfies the following inequality
— o
X(t) — | > B—,
X0 - | > 5

vn

where [ is a constant.

CUSUM tests

Page [50] approach is to consider a CP not based on the statistic crossing
threshold but if it moves far away from the historical minimum. For sequential
detection, Page suggested the stopping rule

min{m : Sy, — min S; > h},

0<i<m
where h is a positive constant, S, = > ;- ¥(k), ¥ is a score function of the
k-th sample. It is common to use the log-likelihood ratio, assuming that X; are
drawn from the distribution ®;,7 = 0,1 with a parameter 6 € O, equal 6y and
0, after the change, we set

nk

W= 3T lgiatan.

i—n(k—1)+1

This test works only if we have a positive change in the mean of the score.
One way to improve this, one can use two CUSUM algorithms together [50].
Barnard [7] suggested a special case, when X is normally distributed with mean
0 and o2, hence ®o(X;;600) = N(0, 0%) and ®1(X;;61) is normal with a mean
0. Then log [®¢/®,] = oz — 0%/2 is maximized with respect to o at & = .
One should test for a change in a normal mean with an initial value of 0 by
using the following expression:

min < 7 : ma [Sm = Sil >h
rmax ———————— .
m<i o(i —m)t/2
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This equation tests for a change in mean by comparing the difference between

the cumulative sum of the data and the cumulative sum of the mean with a
threshold value h.

Filtered Derivatives

The filtered derivative method was proposed by Basseville [8]. The way of
estimating the instants at which jumps occur consists in filtering a signal and
comparing its derivative to a threshold. Define a moving average

Xk 1790)
= 1
gk = Z% 0g Xk “91)

where the «; are positive weights. Then, consider a discrete derivative Vg, =
gr — gr—1. If a sufficient number of discrete derivatives is above the threshold

h

n—1

Z 19, i>h 217
=0

Note, that the parameter n normally should be small i.e. n ~ 2.

This concludes an overview of well-known sequential procedures for CPD.
While most of the online algorithms are centered around stopping rule and
threshold the idea for offline algorithms closely relates to the statistical hypoth-
esis testing discussed in section 1.3. It can also be treated as an estimation
problem, where CP is seen as parameters from the model one wish to estimate.

Likelihood ratio tests

In parametric CPD, a likelihood ratio (LR) is frequently found in the lit-
erature. Early works by Quandt [58, 59] about changes in the conditional
mean of normally distributed data assumed that the likelihood theory was
Sup-F or Sup-Wald test. Assume, the following form ®; = @(91-), where
0; = (051,0i2,...,0; k) is a vector of the parameters which define the dis-
tribution ®;. Then, the likelihood estimation can be defined as

L(G‘X):L(al,...79k|$1,...7JUD f('rt|917"'79k)7

I
s

where f(:|#) denotes the probability density function of ®. The likelihood
function is maximized to estimate the parameter vector 6 of x sequence. For
the model containing a CP at some position 7 to one without CP, we have to
compare supremum over the parameter spaces. In case, the 7 is not known, the
double-supremum of the overall likelihood function over all candidate points 7
and the corresponding parameter spaces are compared to the supremum of
the likelihood over the parameter space without a change. This defines the
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likelihood ratio for the estimation of a CP,

SUD, SUPy, co, i=q1,2y £ (01 | xe,t =1,...,71) L (02 | z,t =71 +1,...,D)
Supgeo L£(0 | xt,t =1,...,D)

LR(x) =

where © and ©;, O, denotes parameter spaces with and without CP re-

spectively. For any integer n, the segmentation integers 1 < D < n and
7 =0< 7 < - < 7Tp_1 < 7p = n. Then, segments are defined as
{1,...71},...{m1 + 1,...,n}. These segments represent the different parts of
the data that have distinct characteristics.

CUSUM extensions

In an offline setting, the CUSUM approach is extended to choosing the Hj
that maximizes the likelihood function of the hypothesis. In this sense, 7 is
estimated by

t n
71 € argmax Zlogégo(xj) + Z log ®g, (x;)

Istsn | 551 j=t+1

With a one-sided change in the mean and known o2 of Gaussian observations,
Page [51] proposes to define the CUMSUM as

t

Spi=Y_(Xi =0+ 09).

i=1

The Hj is rejected if S,, — max;<y, Sy < —h, h > 0.

Model selection

The concept of CPD is widely accepted within the academic community. How-
ever, selecting the most appropriate approach for a given situation is crucial,
as it can greatly impact the accuracy of the results. No single model is capable
of effectively detecting all types of changes, so it is important to carefully con-
sider the specific characteristics of the process being analyzed and the types of
changes that are expected to occur. Formally, CPD can be considered a model
selection problem, in which the goal is to identify the optimal segmentation,
represented by T, based on a quantitative criterion, represented by V(T,y),
that should be minimized [74]. If the wrong model is chosen, it may lead to a
high number of false positive results.

It is also important to consider the computational complexity of change
point detection methods, especially when they are being used in online appli-
cations that require real-time processing. Sensors can generate a large volume
of data per second, but may have limited computing resources. Some well-
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known CPD methods can have a time complexity of O(n?) [1], which can be
a significant limitation in terms of processing speed. To address this issue, re-
searchers have developed search methods as a resolution procedure for discrete
optimization problems in CPD. These methods aim to improve the efficiency
and speed of the change point detection process, enabling it to be used in
resource-constrained environments with high volumes of data.

Overall, CPD methods can generally be divided into two categories: opti-
mal detection algorithms and approximate solution methods. Optimal detec-
tion algorithms are designed to find the exact solution to the CPD problem
by considering all possible combinations and selecting the one that minimizes
the objective function. However, this approach is not practical in most cases
due to the high computational demands. In contrast, approximate solution
methods provide approximate results that are faster to compute, but may be
less accurate. These methods are more suitable for practical applications where
computational efficiency is a concern.

Areas of application

The CPD problem was originally developed for statistical quality control, but
it has since become an important tool in various fields where signal analysis
is used. Extracting quantitative features from signals requires the use of solid
mathematical models, and CPD is an active area of research in many different
domains. In this section, we will provide a brief overview of some of the areas
where CPD has been applied extensively.

Application on medical data

Nowadays there exist many sensors and diagnostic devices which help doctors
monitor and diagnose health-related issues. No wonder that CPD is an impor-
tant component of overall signal analysis.

German psychiatrist Hans Berger recorded the first human Electroen-
cephalogram (EEG) in 1924 [30]. He showed that actions such as closing the
eyes rise could be detected in the EEG. In contrast, during mental activity, the
oscillations of the EEG has a higher frequency and was less regular. 70 years af-
ter the first EEG recordings it attracted the attention of many researchers who
focused on mathematical models related to the analysis of the EEG signals. For
example, during epileptic seizures the brain activity transitions between differ-
ent states, which can be monitored with EEG. Malladi et. al. [46] propose an
online bayesian CPD for an epileptic activity for real-time monitoring.

An ECG signal analysis is another area where CPD researches focus. An
ECG is a test that is used to check the heart’s rhythm in order to assess car-
diovascular diseases. The key step for an ECG analysis is to segment the signal
and locate its constitutive waves. Most of common approaches of ECG wave
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detection are based on wavelet transformation [53,57], Hidden Markov mod-
els [41] and simple mathematical operations such as differentiation, integration,
and squaring. Other variants such as the graph-constrained changepoint de-
tection approach proposed by Fotoohinasab et. al. [25]. We refer the reader
to Beraza et. al [10] study for an in-depth review of a wide range of ECG
segmentation algorithms.

Image and video analysis

Detecting changes in video or image data is a widely researched topic in the
field of computer vision, with applications in areas such as surveillance, remote
sensing, and medical image analysis. For a more detailed review of this topic,
see Radke et al. [60]. Another closely related problem is shot detection, which
involves identifying the longest continuous sequences within a video and orga-
nizing the data into more compact forms or extracting semantically meaningful
information [19].

Magnetic resonance imaging (MRI) is a medical procedure that uses strong
magnetic fields and radio waves to produce detailed images of the inside of the
body. MRI scans are used to examine almost any part of the body, and the
detection of small changes between scans can reveal how diseases progress over
time. However, the change detection in 3D MRI data remains a challenging
problem in computer vision. Some progress has been made in detecting state
changes in MRI data [12,47,68].

Human activity analysis

There have been significant advancements in internet of things (IoT) wearable
sensor technology, including devices like smartwatches and smartphones that
continuously record human activity (e.g. [1,42,44]). One application of CPD
in this field is the segmentation of signals and the mapping of human activity,
such as sitting, standing, walking, or sleeping. By identifying changes in the
signal data, it is possible to determine the specific activities that an individual
is engaging in. This can be useful for a variety of purposes, such as monitoring
physical activity levels, assessing health and wellness, and identifying patterns
of behavior.

Speech signal analysis

There are many different applications for voice activity detection (VAD) in
the field of speech analysis. VAD algorithms are used to identify periods of
conversational speech within a signal, which can then be further analyzed or
processed. This is useful for a variety of purposes, such as automatic speech
recognition, speech communication over networks, speech coding, speech aug-
mentation, and echo cancellation. In order to detect periods of speech within a
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signal, VAD algorithms typically rely on CPD methods to identify changes in
the signal data that correspond to transitions between speech and non-speech
segments (see [35,37,73]).

In order to accurately identify speech segments, VAD algorithms must be
able to distinguish between speech and non-speech sounds based on various
characteristics of the signal data. These characteristics may include the spectral
content of the signal, the presence of periodic patterns, the intensity of the
signal, and other features that are unique to speech sounds. VAD algorithms
may also take into account contextual information, such as the presence of other
sounds or the history of the signal, in order to make more accurate predictions.

Overall, VAD algorithms are an important tool in the field of speech analy-
sis, as they enable the automatic separation of speech segments from non-speech
segments, which can be useful for a variety of purposes.

Application to climate changes

Climate change is a complex and multifaceted phenomenon that affects a wide
range of environmental, social, and economic systems. As such, understanding
and predicting the impacts of climate change requires the analysis of a wide
range of data sources and variables. CPD methods have proven to be useful in
this context, as they can help to identify trends and changes in climate data
over time.

For example, CPD has been used to detect abrupt changes and variations in
rainfall patterns [48,52] and temperature trends [39]. By analyzing these vari-
ables, researchers can gain insight into the impacts of climate change on local
and regional weather patterns, and how these patterns may evolve over time.
This information can be used to inform the development of climate change miti-
gation and adaptation strategies, such as water resource management, land use
planning, and the design of infrastructure and buildings to withstand extreme
weather events.

In addition to analyzing data on weather and temperature, CPD methods
have also been applied to other climate-related variables, such as sea level
rise, atmospheric concentrations of greenhouse gases, and ocean temperatures
and currents. By detecting changes in these variables, researchers can gain a
more comprehensive understanding of the impacts of climate change and the
complex interactions between different environmental systems.

In this section, we have highlighted a number of applications in which CPD
plays a significant role. However, the list of applications is by no means exhaus-
tive, as CPD methods are also widely used in other domains. Some examples
of the types of data and applications that can also benefit from the use of CPD
methods include:
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 Financial data (e.g. [6,26]): CPD methods can be used to detect changes
in financial markets, such as changes in stock prices, exchange rates, or
interest rates. These methods can help analysts and investors to identify
trends and make informed decisions about investments and risk manage-
ment.

« Biological data (e.g. [56]): CPD methods can be used to analyze bio-
logical data, such as gene expression data, protein expression data, or
microbiome data, in order to identify changes and trends that may be
relevant to the understanding of various biological processes. This can
be useful for researchers studying diseases, development, and evolution.

o Social network data (e.g. [38]): CPD methods can be used to analyze data
from social networks, such as Twitter or Facebook, in order to identify
changes and trends in social interactions and behavior. This can be useful
for researchers studying social networks, marketing, and public opinion.

o Natural language data (e.g. [27]): CPD methods can be used to analyze
data from natural language sources, such as text or speech data, in order
to identify changes and trends in language use. This can be useful for
researchers studying language evolution, language processing, and social
interactions.

In fact, any analysis of a sequence of events can benefit from the use of CPD
methods, as these methods are well-suited for identifying changes and trends
in data over time.

1.4. Change point detection for functional data

In this section, we will review some of the recent developments in the use of
change point detection (CPD) methods for functional data (FD).

In section 1.2 we covered the basic principles of FDA. In this section we
will review some of the recent developments of CPD for FD.

In a univariate case which we covered in previous sections, changes were
measured between observed points. In FDA case, changes have to be measured
between curves. This, makes the problem more challenging. The figure 1.6 show
two functional samples: figure 1.6a without change, while figure 1.6b illustrate
the functional sample with a change point in the middle of the dataset.

Despite the challenges, the adoption of a CPD statistical test to FDA is
accelerating in recent years. A functional data CPD was successfully applied
in many areas.

A cumulative sum (CUSUM) test was proposed by Berkes et al. [11] for inde-
pendent functional data by using projections of the sample onto some principal
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(a) An example of a simulated functional (b) An example of a simulated functional
sample without change point. sample with change.

Figure 1.6: Illustration of a Functional Data Sample with and without Change
Points

components of a covariance . The test statistics proposed by Berkes et al.
was defined as

2

1 < N k
Sva= 5 YA S e S
' N2 ¢ YN R
=1 k=1 \1<i<k 1<i<N

where A, are eigenvalues, 1); , are scores corresponding to the largest d eigen-
values and 9; are eigenfunctions:

ﬁi,é = /{Xz(t) —YN(t)}lA}l(t)dt, 1= 1,...,N,l = 1,...,N.

Denoting by cq(a) its (1 — «) quantile, the test rejects Hy hypothesis if Sy g >
¢q(a). The distribution of the random variable was derived by Kiefer [40].

Later, the problem was studied by Aue et al. [3], where its asymptotic prop-
erties were developed. The assumption of independence in many applications
is too unrealistic. More often the observation is dependent to some degree on
previous observations. Hormann et al. [33] in their work weakly dependent
functional data extended the test to accommodate the dependence.

The problem was further studied by Banerjee et al. [5]. Authors have pro-
posed an alternative estimator of the covariance kernel, which is a consistent
estimator of the true covariance kernel under the null hypothesis for both the
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independent and the dependent data [5]. The test is defined as

2

1 d N 1 [Nu] N
Hxam 553 3 = | 30 it = iuatw)
I=1 [Nu]=1 Al i=1 i=1

It is proven [5], that Hy 4 < fol 27:1 B?(u)du under the null hypothesis, where
Bi(-),Ba(+),...,Bg(-) denotes the standard independent Brownian bridges.
The test rejects Hy if value of Hy 4 is bigger than the tabulated (1 — a)th
quantile K4(a) in Berkes et al. [11].

Aston and Kirch [2] proposed an estimator of a CP in a model for an AMOC
and an epidemic change as well as accounted for a wide class of dependency
structures. Aue et al. [4] proposed a fully functional method for finding a change
in the mean without losing information due to dimension reduction. Despite
these advances, there are several outstanding issues with these approaches.
Namely, computational scalability, an insufficient power to detect covariance
and shape-based alternatives, and a lack of robustness. To address those prob-
lems T. Harris, Bo Li, and J. D. Tucker [31] proposed the multiple change-point
isolation method for detecting multiple changes in the mean and covariance of
a functional process. In contrast to all former approaches, Sharipov et al. [70]
developed a test for structural changes in functional data which is based on
Hilbert space theory. Recently, Li et. al. [43] proposed a method of finding
multiple change points in a mean of functional data using a Bayesian approach,
where the change was viewed as the result of an evolutionary process changing
some wavelet coefficients at a time.
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2. Testing change in the mean: univariate case

2.1. Introduction

In this chapter, we propose a new test statistic for the detection of a mean
change in the sequence of observations which is built on the p-variation of a
corresponding CUSUM process. More precisely, for a sample X1, Xs,..., X,
and the number p > 2, we define the test statistics

N — P
Tyn(X1,. . Xn) = max{2;11 ‘ZQ;kHH(Xi X 0=k < <k —mil <m< n},

where X,, = n~1(X1+--+X,,). As a theoretical support for changed segment
tests based on this statistic, we establish its asymptotic distribution under the
null hypothesis (see Theorem 9). We also evaluate finite sample performance
through a simulation study.

The chapter is organized as follows. In section 2.2 we introduce a space of
functions with bounded p-variation as a functional framework for the CUSUM
process.

There we also present asymptotic results that are relevant to test statistics
defined and discussed in section 2.3. Section 2.4 presents a Monte Carlo analysis
of the finite sample properties of the tests and compares their size and power
performance. We also compared the performance of other well-known change-
point detection algorithms. Finally, in section 2.4.2 we demonstrate how the
proposed method can be applied to real-world data.

2.2. Asymptotics of stepwise CUSUM process
Consider univariate time series, Xy, k = 1,2,.... For each n > 1 and each
t € [0,1], let

Lnt]
S,(t) =0ift € [0,1/n), S,(t) = ZX if t € [1/n,1],
=1

where for a real number « > 0, |z] :=max{k: ke Nk <z}, N={0,1,...}.

The p-variation for partial sums is defined as

vp(£3[0,4]) :=sup ¢ Y 1S — S 4P

Jj=1
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The stepwise CUSUM process Z,, = (Z,(t),t € [0,1]) is defined as

|nt] S
Zn(t) = Sn(t) = == 8u(1) = Z(XZ -X,)

Classical examples of path spaces for the process Z,, include the Hilbert
space Ls[0,1] and the Skorohod space DI0,1]. Under various assumptions, a
functional central limit theorem is established in these spaces. For example, the
classical Donsker theorem for i.i.d. sequence (X,,) with finite second moment
states that

n?z, % . 4B in the space DJ0,1],

n—oo
where B = (B(s) := W(s) — sW(1),s € [0,1]) is a standard Brownian bridge,
and W = (W(s),s € [0,1]) is a standard Wiener process, and % = var(X1).
The symbol % means convergence in distribution.
In this section, we consider a step-wise CUSUM process Z, in the path
spaces of functions with bounded p-variation.

It is straightforward to find that for any p € (0, c0),

m k; P
vp(Z,) = max Z Z (Xe = Xn)| ¢,
J=1 |k=k;_1+1
where the maximum is taken over 0 = kg < --- < k, = n,and 1 < m <

n. Hence, Z, € W,[0,1] for any p > 0, and T}, ,(X1,...,Xpn) = v,(Zy).
To obtain limit distribution of the statistics T}, (X1, ..., X,) we consider the
limit behaviour of (Z,,) in the paths space W,[0,1]. Since finite-dimensional
distributions of the process Z,, converge to those of a Brownian bridge we need
to restrict to the index p > 2.

Since W,[0, 1] is a non-separable space we use convergence in law concept

as defined by Hoffmann-Jgrgensen denoting it by AN
n—oo

Theorem 7. Fix p > 2. Let X7, X5,... be a sequence of independent identi-
cally distributed random variables and let S,, = (S, (¢),t € [0, 1]) be the partial
sum process. If 02 := EX? < oo, then the convergence

n Y27, 25 6B in W,[0,1]

n—oo

holds.
Proof. Tt is proved by [49] that for p > 2,

n~ 20715, —2 W in the space W,[0,1].

n—o0
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Consider the mappings T}, and T' defined for any function f : [0,1] — R by

T, (0) = 1)~ 0 1), 7o) = ) - 1), te o)

Both functions 7, and 7' map W,[0,1] — W,[0,1] and both are linear and
bounded, hence continuous. Since the continuous mapping theorem is valid for
the space W,[0,1] (see, e.g., [49]), we have

n~ 257118, P TW in the space W,[0, 1].

n— oo

Next observe that
n V267172, =n V2077, S, = n"Y2071TS,, + op(1). (2.1)

Indeed
||TnSn - TSnH[p] < HInH[pHSn(l)‘v

where I,,(t) = t — |nt]/n. By the central limit theorem n~='/2571|S,(1)| =
Op(1) whereas ||I,||j,) < n~1*/P. Hence, equation 2.1 is true and this relation
completes the proof. O

The continuous mapping theorem yields

Corollary 8. Fix p > 2. Let X1, Xs,... be a sequence of independent identi-
cally distributed random variables and let Z,, be the step-wise CUSUM process.
If EX? = 0% € (0,00) then

G(n~2%612,) —2— G(B)

n—oo

for any continuous functional G : W,[0,1] — R.

Among many interesting examples of continuous functional G we pick out
the p-variation of a function G1(f) = v,l,/p(f).
The following theorem is the theoretical justification for statistics used to

detect a change point in the mean.

Theorem 9. Fix p > 2. Let X1, Xo,... be a sequence of independent identi-
cally distributed random variables. If EX? = 02 € (0, 00) then

_ _ D
n VeI (X, L X) — vh/?(B).
Proof. The result follows directly from Corollary 8 O

Approximate values of the distribution of v,(B) can be obtained by using
Theorem 9 with standard normal random variables. Assume that we have for
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each n > 1 and each M > 1 a collection of independent standard normal
random variables {Y3;,k=1,...,n;j=1,...,M}. Let foreach j=1,..., M,

m k; p

wp(nj)=max ¢y | > (Vi —Y5,)| ¢

i=1 |k=k;_1+1
where the maximum is taken over 0 = kg < --- < k,, =n,and 1 <m < n, and

Y, =n"'(Y1;+ - +Y,;). Consider

In

M
Z —1/2 Upnj)ﬁx),xEO.

By the law of large numbers for any n > 1,

lim F,u(z) = P(nil/%;/p(n, 1)<z), z>0.
M —00

On the other hand, n’l/zvé/p(n, 1) SN U;/p(B), by Corollary 8. Hence,

n—oo

F, m(z) = P(vy/?(B) < ).

for large n, M.

2.3. Application to change point problem
For independent random sample X1, ..., X, consider the model
*61(k*n]( )+1/13 1:177’”7

where Y7,...,Y, are i.i.d. random variables with E(Y;) = 0, E(Y;?) = 1 and
0 € R, k* €{l,...,n} are unknown parameters.

Under Hp : § = 0, we have for any p > 2,

nil/QU;/”( )—>v1/p( )

n— oo

Under contiguous alternative where § = d,, & /nd*, and k* = |n#* | with some
0* >0, and 0* € (0,1), it holds

n Y2l (Z,) =2 ulf (B~ f),

n—oo

where f(t)

Ft1—07) if 0<t<Or
§*0*(1—t) if o*<t<1

In the next section, we carry out some simulations to study the performance
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of the proposed approach to the change-point detection problem.

2.4. Simulation experiments

The statistical power is estimated by Monte-Carlo simulations. Then, we inves-
tigate the "sliding window" approach for change-point localization and multiple
change-point detections. Finally, the test is applied to a well-known dataset of
the annual flow of the river Nile at Aswan (formerly Assuan), 1871-1970, in
108m? with apparent change-point near 1898 [18].

Throughout this section, the following parameters are used n - number of
observations, k - number of simulations, 7 - change point position, a,, - critical
value.

Consider a sequence X1q,...,X,, n > 1, of independent random variables.
Suppose there exists a 7 € [0,1] such that Xi,..., X,,; have the distribution
N(u1,0%) and Xpr41,...,X, have the distribution N (u2,0?). Given o we
construct consistent critical point a, such that

p (v;/p(Zn) < aa) =a

for Hy : 7 =0 versus Hy : 7 € (0,1].

15

Density
1.0

0.5
|

0.0

Figure 2.1: The probability distribution of ’U;/ P(Z,) with critical values at a
significance level of o = 0.05 highlighted

The distribution of the U;/ P(Z,) was estimated using Monte-Carlo tech-
nique, where parameters were set to n = 1000, £ = 100000. The figure 2.1
show distribution with different p-variation p = {3,4,8} values and marked
critical values at asymptotic level o = 0.95.

During experiments, every simulated data has a common structure. In a
general setting, a sequence of observations x1, xs, . . ., T, is drawn from the i.i.d.
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(a) This figure illustrates the statistical (b) This figure illustrates the statistical
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(a value). (7 value).

Figure 2.2: These figures illustrate the statistical power at different levels of
magnitude change and change point location

random variables X7, Xs, ..., X,, and undergoes abrupt change in mean from
U1 to pe at a point 7. Recall that X ~ N(p,0?) means that X has Gaussian
distribution with mean p and variance 0. So, X; is defined as

x N(py, 0?) ifi <nr
' N(pa, 02) ifi>nr

Consider the simulated copies of Z,,;(t), 7 =0, ...,k of the process Z,(t) where
k is subject to choice.

We estimate the power of detection by investigating Type II errors, given
that a change-point exists. In this case, an alternative hypothesis is correct
with level a@ = 0.95.

Our aim is to evaluate the statistical power under different circumstances.
First, we focus on the magnitude of the change by gradually increasing a value,
o = a. The figure 2.2a show statistical power with respect to different a
values with different number of observations n = {1000, 10000, 30000}. The
simulation results show that if the number of observations is large enough
(n > 30000), then the null hypothesis is correctly rejected more than 80%
times with s > 0.035.

The second objective of this study is to evaluate the statistical power with
respect to change point location (7) using a sample size of n = 1000. The
change point location (7) parameter is used to indicate the location of the
change point, which is a crucial aspect in determining the ability to detect
changes quickly. The results of this simulation are presented in Figure 2.2b. It
can be observed that with a difference in means (Ju1 — po|) of at least 0.3, a
change point location (7) as small as 0.20 is sufficient to achieve a statistical

power of 80%
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Figure 2.3: Sliding window approach. The top plot illustrates the whole process
with changes marked in blue dashed lines. The figure at the bottom shows p-
variation at each window position. The Red dashed line marks a critical value
Qq, Wwith o = 0.95

2.4.1. Sliding window approach

In the previous section, we showed that the proposed algorithm is effective at
identifying change points in data when all of the data are available for analysis,
which is known as an "offline" approach. However, it is often the case that data
arrive in batches or streams, rather than all at once. In this "semi-online"
scenario, it can be useful to analyze only a subset of the data in order to find
and localize multiple change points more efficiently. To address this, we have
extended the method to use a sliding window approach, where a subset of the
data is analyzed at a time. This allows for a more efficient and computationally
less intensive analysis of the data, while still being able to detect change points.

The sliding window approach is a method used to analyze data that arrives
in a stream or in batches, rather than all at once. It involves dividing the data
into overlapping or non-overlapping windows of a fixed size, and then applying
a statistical test to each window. By moving the window along the data stream
and analyzing the data in each window, the sliding window approach allows
for the analysis of data in a more efficient and computationally less intensive
manner, compared to analyzing the entire dataset at once.

Sliding window approaches have been used in a variety of contexts, includ-
ing signal processing, image processing, natural language processing, and data
mining. They are particularly useful when dealing with large datasets that
cannot be processed all at once, or when analyzing data in real-time, as the
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window can be moved along the data stream as new data becomes available.
However, the choice of window size and the overlap between windows can af-
fect the performance of the sliding window approach and should be carefully
considered.

To perform CPD using a sliding window approach, a specific window size
h is chosen and applied to a large buffer of data points x1,...,z,,n > 1. The
window starts at the first point (w = 1) and is then shifted to the right by
a defined number of elements A at each iteration. The objective is to test
hypotheses about the data in the present window, which consists of the points
Taw, - -+ » Taw+h, a8 the window moves from w =1 to w = n/\.

Simulations have shown that the sliding window method is effective at lo-
calizing change points in data (see figure 2.3). The red dashed line indicates
the critical value with a significance level of a = 0.95. Typically, the statistic
used to detect change points will approach this critical value line around the
point where a change is present.

2.4.2. Real Data

1000 1400
|

600
1

1880 1900 1920 1940

1880 1900 1920 1940

Figure 2.4: Data from the annual volume of discharge from the Nile River at
Aswan. An apparent changepoint is visible near 1898.

As an example of a problem that can be addressed using change point detec-
tion, we consider the case of the River Nile. Specifically, we use measurements
of the annual flow of the river at Aswan (formerly Assuan), which were recorded
from 1871 to 1970 in units of 108m3. According to [18], there appears to be a
change point in the data near 1898. These measurements are meteorologically
significant as they may provide evidence of a change in the pattern of rainfall in
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the region. Figure 2.4 shows that there appears to be a decrease in the annual
volume of the river after 1898.

2.5. Conclusions

In this chapter, we introduced a new test statistic for detecting changes in the
mean of a sequence of observations. This statistic is based on the p-variation
of the corresponding CUSUM process, and is designed to detect at most one
change point in the process. We demonstrated through experiments that our
approach is effective at detecting relatively small changes in the mean, and
is computationally efficient for use with large data sets. While our approach
works well in an offline setting with a single change point, it may not perform
as well when multiple change points are present. To address this limitation, we
demonstrated that using a "sliding window" approach can be an effective way
to detect multiple change points.
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3. Multiple change-point detection in a functional sample

The chapter is organized as follows. In Section 3.2, G-sum and G-CUSUM pro-
cesses are defined and their asymptotic behavior is considered in a framework
of the ¢>°(G) space. The results presented in this section are used to derive
the asymptotic distributions of the test statistics presented in Section 3.3. Sec-
tion 3.4 is devoted to simulation studies of the proposed test algorithms. Sec-
tion 3.5 contains a case study. Finally, Section 3.6 is devoted to the proofs of
our main theoretical results.

3.1. Introduction

Consider a second-order stationary sequence of stochastic processes Y; =
(Yi(t),t € [0,1]),4 € N, defined on a probability space (2, F, P), having zero
mean and covariance function v = {7(s,t),s,t € [0,1]}. For a given functional
sample X1 (t),..., X, (t),t € [0,1], consider the model:

Xu(t) = glk/n,t) + Yi(t), te0,1], k=1,....n, (3.1)

where the function g : [0,1] x [0,1] — R is deterministic, but unobserved. Our
main aim is to test for null and alternative hypothesis:

Hy: g=0 versus Hy :g#0

with emphasis on a case of change-point detection, which corresponds to a
piecewise-constant function g with respect to the first argument.

This model covers a broad range of real-world problems such as climate
change detection, image analysis, analysis of medical treatments, especially
magnetic resonance images of brain activities, and speech recognition, to name
a few. Besides, the change-point detection model (3.1) can be used for knot
selection in spline smoothing as well as for trend changes in functional time
series analysis.

The methodology we propose is based on some measures of variation of the
process:

[ns]
Wa(s) = Z(Xk — X))+ (ns — [n8)) (X ns)+1 — Xn), s €[0,1],
k=1

where X, = n 1 X1+ + X,,).
Since this process is infinite-dimensional, we used the projections tech-

nique to reduce the dimension. To this aim, we assumed that Y; is mean-
squared continuous and jointly measurable and that - has finite trace: tr(y) =
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fol ~(t,t)dt < co. In this case, Y; is also an Lo(0, 1)-valued random element,
where Lo := L2(0, 1) is a Hilbert space of Lebesgue square integrable functions
on [0, 1] endowed with the inner product (f,g) fo t)dt and the norm
11 = /T F.

In the case where the number of change points is known to be no bigger
than m, our test statistics are constructed from (m, p)-variation (see the def-
inition 1.1) of the processes ((W,(s),%),s € [0,1]), where ¢ € ¥ C L5(0,1)
runs through a finite set ¥ of possibly random directions in L2(0,1). In
particular, ¥ consists of estimated principal components. If the number
of change-points is unknown, we consider the p-variation of the processes
(Wa(s),¥),s € [0,1]),% € ¥ and estimate the possible number of change-
points.

3.2. G-Sum Process and Its Asymptotic

Let Q be the set of all probability measures on ([0, 1], Bjg,1}). For any Q € Q
and Q-integrable function f, Qf := fol £dQ. As usual, £5([0,1],Q) is a set of
measurable functions on [0, 1], which are square-integrable for the measure @),
and Ly([0, 1], Q) is an associated Hilbert space endowed with the inner product:

(.9 Q—/ FH9(0Q(dt), f.g€ Lo([0,1],Q)

and corresponding distance pg(f,9), f,g € L2([0,1],Q). We abbreviate
L2([0,1],A) to Ly and (-, ) to (-, ) for Lebesgue measure A\. We use the norm
IfIl :== \/{f, f) and the distance p(f,g) = ||f — g|| for the elements f,g € Ls.
On the set Ly X Lo, we use the inner product:

<(fvg)7 (f/vgl)>2 = <f7 f,> + <gag/>

and the corresponding distance:

1/2
pa(£:9), (£ 9N = (If = FIP+llg=o1?) . £.59.9 € Lo

For two given sets F, ¥ C Lo, we consider the F x W-sum process:

v (Srlrv) s e Fovew).
k=1

where v, (f, ) = (Xk,qm)\nk(f), )\nk is a uniform probability on the inter-
val [(k — 1)/n,k/n] and Ak (f fo t) dAuk(t). A natural framework for
stochastic process v, is the space £°°(G), where G = F x W. Recall for a class
G that £°°(G) is a Banach space of all uniformly bounded real-valued functions
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1 on G endowed with the uniform norm:

lullg == sup{|u(g)| : g € G}

Given a pseudometric d on G, UC(G, d) is a set of all u € £°°(G), which are
uniformly d-continuous. The set UC(G,d) is a separable subspace of £>°(G) if
and only if (G,d) is totally bounded. The pseudometric space (G, d) is totally
bounded if N (e, G,d) is finite for every £ > 0, where N(g,G,d) is the minimal
number of open balls of d-radius €, which are necessary to cover G.

It is worth noting that the process v, is continuous when F x VU is endowed
with the metric ps. Indeed,

[nk (f;90) = v (F's )] < [V, V) Ak (F) = (Vi ) Ak ()]
< (DI Yes 0 = 9") + (Vies ) i (f = f1)]
< NYllVRll £l - Nl ="+ 11 11F = 11
< V2||Ya[[max{v/n| £, 1]} p2((f, %), (f,4)),

since | Ak ()| < V1| f]l for every f € Lo. If both sets F and U are totally
bounded, then the process v, is uniformly continuous so that v, takes values
in the subspace UC(G).

Next, we specify the set F C Lo. To this aim, we recall some definitions.
For a function f : [0,1] — R, a positive number 0 < p < oo, and an integer
m € N, the (m, p)-variation of f on the interval [0,¢] is

m

vmp(310,1) = sup { 37 17(t5) = Fit;-1)P},

j=1

where the supremum is taken over all partitions 0 = tp < t1 < -+ < t,, = ¢,
of the interval [0,¢]. We abbreviate v, ,(f) = vmp(f;[0,1]). If v,(f) :=
SUP,,>1 Ump(f) < 00, then we say that f has finite p-variation and W,|0, 1]
is the set of all such functions. The set W,[0,1], p > 1, is a (non-separable)
Banach space with the norm:

Il = sup |F(O)]+vi/P(f).
0<t<1

The embedding W, [0, 1] — W,[0, 1] is continuous and
1 1
val1(f) < vp/P(f), for 1<p<q.

For more information on the space W, [0, 1], we refer to [23].

The limiting zero mean Gaussian process v, = (v(f,v), f € F,¢ € ¥) is
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defined via covariance:

EV’Y(fﬂ '@[})V’Y(flv 1/’/) = ,C’Y((fv ¢)v (flv wv )) = <F’¢)7 7//><f» f/>7 'l/}a 1/},7 f7 f/ S L23

(3.2)
where I' : Ly — Lo is the covariance operator corresponding to the kernel 7.
The function K, : G x G — R is positive definite:

S ek ((F,10), (Fin ) > 0, (3.3)

k=1

for all ¢1,...,cm € R, (f1,91),.-+, (fm,¥m) € G, and m > 1. Indeed, if we
denote by W = (W(f), f € Ls) the isonormal Gaussian process on the Hilbert
space Lo, we see that

Ky (55 %5), (frs ¥x)) = EXY,905) (Y, he) EW(f))WV(fr);

hence,

m

S sk (o). (i) = B( 3 exVoidW(R)

k,j=1 k=1
and (3.3) follows. This justifies the existence of the process v.,.

Throughout, we shall exploit the following.

Assumption 3. Random processes Y, Y7,Y5,... are i.i.d. mean square con-
tinuous, jointly measurable, with mean zero and covariance ~ such that
fol ~(t,t) dt < co. For the model (3.1), we consider null hypothesis Hy : g =0
and two possible alternatives:

Hy: g=gn=unqn, where u, —u in Wh[0,1], v/ng, —q in Lo,
and

H): g=gn=1unq,, where u, —u in W5[0,1], /nsup [{g,, )| — co.
Pew

In both alternatives, the function w, is responsible for the configuration of
a drift within the sample, whereas the function ¢, estimates a magnitude of
the drift.

Our main theoretical results are Theorems 10 and 12, which are proven in
Section 3.6.

Theorem 10. Let the random processes (Xj) be defined by (3.1), where
Y, Y1,Y5,... satisfy Assumption 3. Assume that, for some 1 < ¢ < 2, the
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set F C W,[0,1] is bounded and the set ¥ C L, satisfies

1
/ V1og N(g, ¥, p) de < 0. (3.4)

0
Then, there exists a version of a Gaussian process v., on Ly x Ly such that its
restriction on F x ¥, (v4(f,v), f € F,¢ € V) is continuous and the follow-

ing hold:

(1a) Under Hy:

Y2y, 2, vy in £°°(F x ). (3.5)
n— oo
(1b) Under Hy,
_ D oo
n 1/2Vn m} V,y + A, in ¢ (f X \IJ), (36)

where

A(f, ) = (u, f){g, ).

If u(s) = 1,s € [0,1], then the alternative H4 corresponds to the presence
of a signal in a noise. In this case, A(f, 1) = A(f){q, ). Therefore, the use of
this theorem for testing a signal in a noise is meaningful provided (g, 1) # 0.

As a corollary, Theorem 10 combined with the continuous mapping theorem
gives the following result.

Theorem 11. Assume that conditions of Theorem 10 are satisfied. Then, the
following hold:

(2a) Under Hy

_ D
sup |n”Pu(f ) ——  sup [v(f, ).
YEW, fEF N—=00 YW, feF

(20) Under Hy,

sup [ 20, (f ) ——  sup |y (£, ) + (u, £){g, ).
Yew, feF n—=00 e, feF

(2¢) Under HY,

sup \nil/QVn(f,z/Jﬂ P~ (3.7)
Yev, feF n—oo

Proof. Since both (2a) and (2b) are by-products of Theorem 10 and continuous
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mappings, we need to prove only (2c¢). First, we observe that

sup |vn(f, ) sup ‘Z(Yk qnv"/}>un(k/n)>)‘nk(f)‘

Yev,fer wE‘I’ feFr

> sup ‘Zun k /)X ( ‘|qm1/1 Op(Vn),

wG\II feF
by (2a). Consider
L(f) = | 3 unl/m) ()|
k=1

We have
n k/n
L) =l ;un(k/n) /<k_1)/n (t)d|
n. o rkin n_ rk/n
L) 3] RRRCNCEI D o R CHUR R IO

=I,(f) = L,(f)-
By the Holder inequality,

k/n k/n

n(f <n2(/k 1)/n n(t) —un(k/n))*d )1/2(/(k 1)/nf2(t)dt>1/z
- n(i:/k/n (0 (8) — (/)2 Z/k/" 1/2

h—1 v (k=1)/n 1)/n

n(n” sz (s 06— 1)/m /) 11 < Ve )1

IN

Since I),(f) = n|{un, f)|, we deduce

Lu(, ) = 0l g, £)] = vroy (un) | £

Hence,

nV2 sup (un(f ) =V sup [(uns f)] - [{gas 9)] = Op(1)
el feF

Yev, feF

and this completes the proof of (2c). O

Next, we consider G-sum process i, = (un(f,¥), f € F,¢ € ¥) defined by

Z Xk_ na¢ nk(f)v
k=1

66



where X,, = n’l(Xl +---+ X,,). Its limiting zero mean Gaussian process p.,
is defined via covariance:

Epy (f, )y (f4") = @), 1) = MOASD], ' o f € Lo (3.8)

The existence of Gaussian process p, can be justified as that of ., above. Just
notice that

(£, £7) = MDOAS) = EOV(S) = AHWL) V() = A(FHW(QA)),

where 1(t) = 1,t € [0,1].

Theorem 12. Assume that the conditions of Theorem 10 are satisfied. Then,
there exists a version of the Gaussian process py on L2(0,1) x L2(0,1) such
that its restriction on F x ¥, (v(f,v), f € F,¢ € ¥) is continuous and the
following hold:
(3a) Under Hy,

n~Y2u, %) Wy In £°°(F x W); (3.9)

(3b) Under alternative H 4,
2y, % [y + A in £2(F x U), (3.10)

where

A(f, ) = [(u, f) = Mw)AF)] (g, ).

We see that the limit distribution of the G-sum process separates the null
and alternative hypothesis provided [(u, f) — A(w)A(f)]{q, %) # 0. As a corol-
lary, Theorem 12 combined with the continuous mapping theorem gives the
following results.

Theorem 13. Assume that the conditions of Theorem 10 are satisfied. Then,
the following hold:

(4a) Under Hy,

_ D
sup |2 (f, ) ——  sup|uy(f 0] (3.11)
YEW, fEF N—=00 YW, feF

(4b) Under Ha4,

_ D ~
sup [P ()] ——  sup [y (fid) +A(S,9)]. (3.12)
YEV, fEF nN=0  YheW, fEF
(4c) Under HY,

_ P
sup [ 2 (f, )] —— oo. (3.13)
YEW,fEF =00

67



Proof. Both (4a) and (4b) are by-products of Theorem 12 and continuous map-
pings, whereas the proof of (4c) follows the lines of the proof of Theorem 11
(2¢). O

3.3. Test Statistics

Several useful test statistics can be obtained from the G-sum process p, =
(n(f, 1), (f,9) € G = F x ), by considering concrete examples of sets ¥ and
F.

Throughout this section, we assume that the sample X, X5, ..., X,, follows
the model (3.1) and Y, Y7,Y5, ... satisfies Assumption 3.

By I', we denote the covariance operator of Y: I' = E(Y ® V). Recall

1
Tz(t) = /0 (¢, s)x(s)ds, te€]0,1].

According to Mercer’s theorem, the covariance v has then the following
singular-value decomposition:

s, t) = 3 Mt ()8, (1), 5 € [0,1], (3.14)
r=1
where A1,..., A\, are all the decreasingly ordered positive eigenvalues of I" and
Y1, ..., ¥y are the associated eigenfunctions of I' such that

1 1
/d)f(t)dtzl, /wr(t)wg(t)dt:(), r#d,
0 0

and m is the smallest integer such that, when r > m, A\, = 0. If m = oo,
then all the eigenvalues are positive, and in this case, ), A, < co. Note that
A = E(Y,1,.)2. Besides, we shall assume the following.

Assumption 4. The eigenvalues A, satisfy, for some d > 0,
A1 > A > - >)\d>)\d+1-

In statistical analysis, the eigenvalues and eigenfunctions of I' are replaced
by their estimated versions. Noting that, for each k,

E[(X) — E(X1) ® (X) — E(X3))] =T,

one estimates I' by

fn = Z[(Xz - Yn) 0y (Xz - Yn)}v

SRS
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where X,,(s) = n~1(X1(s) + - - + X,,(s). We denote the eigenvalues and eigen-
functions of T by Xm and 7an7 r=1,...,n—1, respectively. In order to ensure
that {ﬁ\m may be viewed as an estimator of v, rather than of —,., we will in
the following assume that the signs are such that <QZM, 1,) > 0. Note that

f"z}\nr:/):nr{b\nra r=1,...,n—1, (315)
and
~ 1 & —
)\TLT: n_1;<Xz_Xn7wnr> 3 7‘:1’-“’”' (316)

The use of the estimated eigenfunctions and eigenvalues in the test statistics
is justified by the following result. For a Hilbert—Schmidt operator 7" on L,
we denote by ||| gs its Hilbert—-Schmidt norm.

Lemma 2. Assume that Assumption 3 holds. Then, under H 4,

||fn—F||Hs—>0 as n — o0o.

Proof. First, we observe that
fn = fn +Th1 + T2 + Tn3a

where

Vi —Y,)® (Y —Y,),

el
3
I
S|
[

k=1
I e 1 <& .
Th1 = — _ - ; v
nl n Z _un(k'/'fL) " Z un(j/n)_ (Yk Yn) Q Gn,
k=1 j=1
I 18 ; -
Tho = — un(k/n) — —Zun(j/n) an @ (Ve —Y5),
n k=1 nj:l -
T = LS Tk LS~ (im]
n3 = > (un(k/n) — ;;un@/n)_ In @ Gn-
J:

It is well known that ||T,, —T'|| g5 —=— 0 as n — cc. By the moment inequality
n—oo

for sums of independent random variables, we deduce

n

_ I 2
Bl|Tilihs < en™ Y [un(b/m) = = > uali/m)] EIY Plan,

k=1 j=1
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for both ¢ = 1,2. This yields T},; LN} Next, we have

n—oo

n

Tuslars = = 3 [alh/m) = S wnl/m)] lgall® < = 3 e k/m)lgal* = 0
j=1 k=1

k=1

3

as n — oo due to assumption H 4. This completes the proof. O

Lemma 3. Assume that Assumptions 3 and 4 for some finite d hold and
E(]|[Y]|*) < co. Then, under Hy, as well as under H:

02 Nnj = Ajl = Op(1), and n'/2|[é,m; — 0] = Op(1)
for each 1 < j < d, where ¢,,; = <1an71/)j>.

Proof. If the null hypothesis is satisfied, then fn = fn and the asymptotic re-
sults for the eigenvalues and eigenfunctions of T,, are well known (see, e.g., [34]).
Under alternative H,4, the results follow from Lemma 2 and Lemma 2.2 and
Lemma 2.3 in [34]. O

Next, we consider separately the test statistics for at most one, at most m,
and for an unknown number of change-points.

3.3.1. Testing at Most One Change-Point
Define for d > 0,

k

S (X = X )|, (3.17)

i=1

1
Torld) = oo, = W05,

This statistic is designed for at most one change-point alternative. Its limiting
distribution is established in the following theorem.

Theorem 14. Let random functional sample (X}) be defined by (3.1) where
Y,Y1,Ys, ... satisfies Assumptions 3 and 4. Then,

(a) Under Hy, it holds that

_ D
n~V2T, 1 (d) —— sup sup |Bi(t)],
n—=00  1<k<d0<t<1

where Bi,..., By are independent standard Brownian bridge processes;

(b) Under H4, it holds that

0TV, 0(d) —— sup sup |Bi(t) + A(t){q, ¥/ VA,

n—o0 1<k<d0<t<1
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where

t 1
A(t) :/0 u(s) dsft/o u(s)ds, tel0,1]. (3.18)

(c¢) Under H/;, it holds that

n~12%T, 1(d) EELEENYNS
? n—00
Proof. Consider the sets
U1
Uy, = {\F \ﬁ} and i = {10t € [0,1]}. (3.19)
Observing that
Tn,l(d) = sup ‘:un(f7 1/J)|

wE‘I’dme]i

and F; is a bounded set in W,, we complete the proof by applying Theorem
12. O

Based on this result, we construct the testing procedure in a classical way.
Choose for a given a € (0,1), Cy, > 0 such that

P( sup sup |Bi(t)| > C,) =«
1<k<d 0<t<1

According to Theorem 14, the test:

T (d) > VGl (3.20)

will have asymptotic level a. Under the alternative H 4, we have

lim P(n~'/2T,1(d) > Ca) > P( sup sup [Bg(t)] < max max |A(t){q,Yr/ k)] —Ca>

nreo 1<k<d0<t<1 1<k<d0<t<1
>1—a,
when
Alt > 2C,. 21
max, max [A(L)(g ¥e/Ae)| = 2Ca (3.21)

Hence, if g(s,t) = gu(s,t) = un(s)qn(t) and

Vv max max |{gn(t,-), e/ Ak)| = 00

1<k<d 0<t<L1

as n — oo, then the test (3.20) is asymptotically consistent.
Let us note that, due to the independence of Brownian bridges By, k =
1,...,d, we have

1—a=P(sup sup |Bi(t)] <C,) =P sup |Bi(t)] < Ch,).
1<k<d 0<t<1 0<t<1

71



20

Density
15
|
Density
1.0

1.0

0.5

05
I

0.0
0.0

s=1/4, a=15, d=[1, 10, 30] d=10, a=15, s=[1/4, 1/3, 1/2]

Figure 3.1: Density functions.

This yields
P(sup |Bi(D)] < Ca) = (1 — a)V/%,
0<t<1
Hence, C,, is the (1 — a)'/4-quantile of the distribution of Supg<;<1 | B1(t)]-
This observation simplifies the calculations of critical values C,,.

In particular, if there is s* € (0,1) such that u(s) = 1 (s),s € [0,1],
then we have one change-point model:

Xi(t) = 1,54 (k/n)an(t) + Yi(t), t€0,1].

In this case, A(t) = A*(¢) := min{¢, s*} — ts*, t € [0,1].

Figure 3.1  below shows  generated density functions  of
SUP1 <p<q SWPo<t<1 | Br(t)| and sup;<y<gsupg<i<i [Br(t) + A*(£)(q, Yr/VAk)]
for d = [1,10,30], s* € {1/4,1/2,3/4} where ¢ = app/ i, for a fixed k.

Let us observe that test statistic T}, 1(d) tends to infinity when d —
0o. On the other hand, with larger d, the approximation of X; by series
Zd (X,1;)1; is better and leads to better testing power. The following re-

j=1
sult establishes the asymptotic distribution of T}, 1(d) as d — oc.

Theorem 15. Let random functional sample (X}) be defined by (3.1) where
Y, Y1,Y5, ... satisfies Assumption 3. Then, under Hy,

lim lim P(n—l/QTn,l(d) <24 bd) —exp{—e "}, >0,  (3.22)
d— 00 N—>00 aq
where
1 Inlnd
aq = (8Ind)'"?, by = Jaa+ naz . (3.23)
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Proof. By Theorem 14, the proof reduces to

lim P( sup ||Bjllec < x/aq+ bg) = exp{—e *}, x>0. (3.24)
d—oo  1<j<d
It is known that

P(|B;loe > u) = 2e "2 u2(1+ 0(1)), u — oo.

Since Brownian bridges B;,1 < j < d are independent, we have

P( sup [|Bjlloc < x/ag+ba) = P*(|Billo < x/aq + ba)
1<j<d

= (1= PUIBillo = 2/aq + b))

and
dlim dP(||B1lloc = z/aq + bq) = e *.
—00

This proves (3.24). O

When d is large, the test (3.20) becomes
T, > \/ﬁ[i In (#) T bd} (3.25)
T a4 In(1/c)

and has asymptotic level o as n and d tend to infinity.

The dependence on d of critical values of the tests (3.20) and (3.25) is
shown in Figure 3.2. A comparison was made for asymptotic level a = 0.05.
From Figure 3.2, we see that the critical values in (3.25) are smaller than those
in (3.20). This means that the error of the first kind is more likely with the
test (3.25), rather than with (3.36). This is confirmed by simulations.

If the eigenfunctions (1) are unknown, we use the statistics:

k
To1(d) = max —— max | S(X; = %o, )], (3.26)

= max. 2
1<j<d [~ 1<k<
SR T =

Theorem 16. Let random functional sample (Xj) be defined by (3.1), where
Y, Y1,Y5, ... satisfies Assumptions 3 and 4. Then:

(a) Under Hy,

195 D
n 1/QTn’l(d) ——— sup sup |B(t),
N0 1 <E<d0<t<1

where Bi,..., By are independent standard Brownian bridge processes;
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Figure 3.2: A comparison of the critical values in equations (3.20) and (3.25) is
presented, with a significance level of & = 0.05, along with the density function

of Tn’l(d)

b) Under Hy, if E||Y]|* < oo, it holds that
(

n V2T, 0 (d) ——= sup  sup |By(t) + A6) (g, b/ VAR
n—o0  1<k<d0<t<1

where A(t) = fot u(s)ds — tfol u(s)ds, tel0,1].

(c) Under H'y, if E||Y||* < oo, it holds that

n‘lmfn’l(d) L .

n— oo

Proof. The result follows from Theorem 14 if we show that

Dy, i=n"Y2|T, 1(d) — T 1 (d)] —— 0. (3.27)

n—oo

On the set maxi<;<q |A; — Anj| + maxi<j<q [[1h; — ¢tbn;|| < An~Y/2 and for
n > Ny such that An=1/2 < Ad/2, simple algebra gives D,, < Dyq+ D2, where

D, = max
1<j<d

k
1 1 B
‘)‘77 - XTL] 11%113%(1 ’ ;<Xi — X, vj)
2 2 —1/2

Ay 122 Anj — AjIn V2T, 1(d) = 0 as n — oo,

IN
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and

k
2 _
< p-1/22 o .
Du <022 max | 30X = Xl | max, s — )
k
2A 4 —
S5 EE ZJXZ' — Xl
by the law of large numbers. Lemma 3 concludes the proof. O
Test (3.20) now becomes
Tna(d) > /nC, (3.28)

and has asymptotic level o by Theorem 16.

3.3.2. Testing at most m Change-Points

For m > 1, let \V,, be a set of all partitions k = (k;,7 = 0,1,...,m) of the set
{0,1,...,n} such that 0 = ko < k1 < -+ < kyp—1 < ky, = n. Next, consider
for fixed integers d, 1 < m < n and real p > 2,

Tom(d,p) ==

1555 \F nenr, { Z’ Z _me»‘p}up. (3.29)

=1 k=k;_1+1

The statistics T}, ., (d,p) are designed for testing at most m change-points in
a sample.

Theorem 17. Let the random sample (X;,i = 1,...,n) be as in Theorem
10. Then:

(a) Under H,

-1/2 1/p(B.
n Tl p) 0 i)

where Bi,..., By are independent standard Brownian bridges.
(b) Under H 4,

n_1/2T m(d,p) —> maxdvl/lz,(Bj + A<q7¢j/\/)‘7>)7

n—oo 1<

where A(t),t € [0, 1] is as defined in Theorem 11.

(¢) Under HY,
nil/QTn,m(dap) L) o0.

n—oo
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Figure 3.3: Functions A% and density functions.

Proof. For 1 <m <mnand ¢g=p/(p—1), set

Fm,q = {ijl(tj_l,tj] : Zlbjlq <1, 0=tg<t1 < <ty = 1} (330)
J=1

Jj=1

It is easy to check that F, , C W,[0,1]. Since

sup{’Zakbk‘: Z\bk|q§1}:(2|ak|p) )
k=1 k=1 k=1

we have
Tn m d) = n 5 5
;m(d) Jmax | max |1n (1, £)]
and the results follow from Theorem 11. O

In particular, if there is s7, s3 € (0, 1) such that u(s) = 1 s5)(s), s € [0,1],
then (3.1) corresponds to the so-called changed segment model. In this case,
we have A(t) = A3(t) := max{0, min{t, s5} — s7} — t(s5 — s7), ¢ € [0,1].
Figure 3.3) shows the generated density functions of maxj<x<q vi)pp (Bx) and
Maxj<p<d vig)(Bk + apA}) for different values of d > 1, 0 < s7 < s9 < 1, and
p > 2. The numbers ay,...,aq were sampled from the uniform distribution
on [0, 15].

With the estimated eigenvalues and eigenfunctions, we define

fn’m(d,p) ‘= max L max {i’ i (Xk —Ynﬂznj)‘p}l/p. (3.31)

1<j<d /X KENm
== v/ Anj ™ i=1 k=k;_1+1

Theorem 18. Let the functional sample (X, k =1,...,n) be defined by (3.1)
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where Y, Y1,Ys, ... satisfies Assumptions 3 and 4. Then:
(a) Under H,

—1/27 1/p(B.
Toam(op) = o, el ().

where Bi,..., By are independent standard Brownian bridges.

(b) Under Ha,

n—l/an)m(aLp) P, max vl/P(B + Ag, 05/ A)),s

n—oo 1<5<d
where A(t),t € [0,1] is as defined in Theorem 11.

(¢) Under HY,
nil/QT\nvm(d, D) L .

n—oo

Proof. This goes along the lines of the proof of Theorem 16. O

According to Theorems 17 and 18, the tests:

T (d, p) > v/nCo(m,d,p) and T n(d,p) > v/nCy(m,d,p) (3.32)

respectively, will have asymptotic level «, if C,(m,d, p) is such that

PwM?(B) < Co(m,d,p)) = (1 —a)'/4.

m,p

3.3.3. Testing Unknown Number of Change-Points

Next, consider for fixed integers d as above and real p > 2,

1 - b — py1/p
Tn(d.p) = 1<J<d \F1<n%)<(n~12/2\lfi{z’ Z (X _X"’wj>’ } '

i=1 k=k;_1+1
(3.33)
The statistics T,,(d, p) are designed for testing an unknown number of change-
points in a sample.

Theorem 19. Let random sample (X;,i = 1,...,n) be as in Theorem
10. Then:

(a) Under H,

nAT (A p) o pmax u/7(B;),

where Bi,..., By are independent standard Brownian bridges.

(b) Under Ha,

_1/2T (d p) —) max ’U 1/p (37 +A<Qawj/\/¥>)7

n—oo 1<5<d
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where A(t),t € [0,1] is as defined in Theorem 10.

(c) Under H/,
n~Y2T,(d, p) L .

n—oo

Proof. For ¢ =p/(p — 1), set

[e')

Fy = {ijlmfl,tj] P TS L0=t <t < <tm=1,m> 1}. (3.34)
j=1

Jj=1

It is easy to check that F;, C W,[0,1]. Since

Sup{’Zakbk‘ : Z\bk|q§1}: (Z|ak|p> ,
k=1 k=1 k=1

we have
T (d) = n\%, )
(d) = max  max |un(v, f)|
and both statements (a) and (b) follow from Theorem 10. O

With the estimated eigenvalues and eigenfunctions, we define:

m k;
N 1 i N
T.(d,p) := max max max {Z ' Z (X — X0, Unj)

:D}l/P
1<j<d [~ 1<m<n k€N, \ 4 '
Anj i=1 k=k;_1+1

(3.35)

Theorem 20. Let random sample (X;) be as in Theorem 10. Then:

(a) Under Hy,
—1/27p D 1/p(n.
n T,(d,p) — lléljagd v,/ P (By),

where Bi,..., By are independent standard Brownian bridges.

(b) Under Ha,

n_1/2fn(d,p) 2, maxdvll,/p(Bj + Al 03 /v/A))s

n—oo 1<5<
where A(t),t € [0, 1] is as defined in Theorem 10.
(¢) Under HY,

n~2T,(d,p) L .

n—oo

Proof. This goes along the lines of the proof of Theorem 16. 0

According to Theorems 19 and 20, the tests:

To(d,p) > vnCal(d,p) and To(d,p) > v/nCa(d,p) (3.36)
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respectively, will have asymptotic level «, if Cy(d, p) is such that
P(u/?(B) < Ca(d.p)) = (1~ )'/".
The quantiles of distribution function of v,l)/ P(B) were estimated in chapter 2.

3.4. Simulation Results

We examined the above-defined test statistics in a Monte Carlo simulation
study. In the first subsection, we describe the simulated data under considera-
tion. The statistical power analysis of the tests (3.36) and (3.32) is presented
in Section 3.4.2.

3.4.1. Data

We used the following three scenarios:

(S1) Let (&;x) be i.i.d. symmetrized Pareto random variables with index p (we
used p = 5). Set

d
v =32 oy e e
k=1

where 02 = E¢?,. Under the null hypothesis, we take X; = Yy, k =
1,2,...,n.

Under the alternative, we consider

d
X;i(t) =un(j/n) Za”k cos(kmt) +Y;, te[0,1],j=1,...,n,
k=1

where the function wu, defines the change-points’ configuration and the
coefficients (a,x) are subject to choice.

(S2) We start with discrete observations (z;;,j = 0,1,..., M), i =1,...,n,
by taking x;; = X;(7;), where the random sample (X;,j = 1,...,n) is
generated as in scenario (S1). Discrete observations are converted to the
functional data (X;,j =1,...,n) by using B-spline bases.

(S3) Discrete observations (i/M,y;;),i = 0,1,...,M,j = 1,...,n, are gener-
ated by taking

i
yij = M~/ Z&j,
k=1

so that y;; can be interpreted as the observation of a standard Wiener
process at i/M. From (y;;,¢ = 1,..., M), the function Y; is obtained
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using the B-spline smoothing technique. During the simulation, we used
M = 1000 and D = 50 B-spline functions, thus obtaining n = 500
functions Y7,...,Y,.

Then, we define for j =1,...,n,

¥ Y; under null
’ un(j/n)gn +Y;, under alternative

and consider different configurations w, of change-points and ¢, (t) =

anVMt,t €[0,1].

We mainly concentrated on two possible change-point alternatives. The
first is obtained with w,(t) = 1j9,(t) and corresponds to one change-point
alternative. Another is for the epidemic-type alternative, for which we take

un(t) = 1, 0,(t).
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Figure 3.4: True basis functions (red) and “reconstructed” basis functions
(black) using fPCA method.

Scenario (S1) is used as an optimal case situation where the actual eigen-
values and eigenfunctions are known. In this case, we are not required to
approximate discrete functions, thus avoiding any data loss or measurement
errors. The second scenario continues with the same random functional sample
but goes through extra steps such as taking function values at discrete data
points and reconstructing the random functional sample on a different set of
basis functions. The aim of this exercise is to measure the impact when some
information could be lost due to measurements taken at discrete points and
smoothing. The simulation results show that, even after the reconstruction
of the random functional sample, the performance of the test does not suffer
too much.

Our simulation starts with the generation process of the random functional
sample Y} as described in the first scenario with d = 30.
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First of all, we can compare the true eigenfunctions of covariance oper-
ator I' = E[Y; ® Y;] with the eigenfunctions of estimated operator T',, (see
Figure 3.4).

We see that the estimated harmonics have almost the same shape; only
every second, the estimated eigenfunctions are phase shifted.

Next, for both scenarios (S1) and (S2), the density functions of the test
statistic Tp, 1(d) (3.17) were estimated using Monte Carlo with 10,000 repeti-
tions (see Figure 3.5). It shows four density plots: the red density functions
of T, 1(d) are calculated using the true eigenfunctions and eigenvalues, while
the black curves show the density of ’fn,l(d) (3.26) using the estimated eigen-
functions and eigenvalues. The left side density plots were estimated from the
samples under the null hypothesis, while the plots on the right side show the
density of T}, 1(d) and fn)l(d) with the sample:

d
2 cos(krt
=Y e+ 1 )%,te[0,1},7’2250,.7':1...500 (3.38)
g
k=1

with added drift a = 0.2.
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Figure 3.5: Density plots of the test statistic T}, 1(d) and fn,l(d).

Since fPCA represents a functional data sample in the most parsimonious
way, we can see that the density of the test statistics in scenario (S2) is more
on the left side and more concise. Critical values cq(«) with @ = 0.05 of the
statistics T}, 1(d) and fml(d) were also calculated and are shown in Figure 3.5.
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3.4.2. Statistical Power Analysis

First, we compared the statistical power of the test (3.20) with statistic T}, 1 (d)
of the scenario (S1) and scenario (S2) with statistic fnﬁl(d). To this aim, we
used sample (X;,j =1,...,n) defined in (3.38), where 7 = 250, which is in the
middle of the sample. We started with the no drift @ = 0 (corresponding to
the null hypothesis) and increasing the drift amount a by 0.03 up to the point
when a > 0.3. At each a value, we repeated the simulation 1000 times. This
gives a good indication of the statistical power with the amount of the added
drift. The statistical power is illustrated in Figure 3.6. Based on the simulation
results, we can see that, even if the random functional sample is approximated
from the discrete data points, it still holds the same statistical power and the
performance does not suffer from the information loss due to smoothing and
fPCA. These are important results, because, normally, in observed real-world
data, the true functions are unknown and have to be approximated, which

almost always introduces measurement errors.
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Figure 3.6: The comparison of the statistical power of scenario (S1) and (S2)

Next, we focus on the power tests (3.36) and (3.32) used directly on the
functional data sets simulated in scenario (S3).In Figures 1.6a and 1.6b we
presented the clear opposites of the functional data sets with respect to the
change-point. The changes can be easily observed. However, especially working
with functional data sets, the changes may not be that obvious. As an example,
Figure 3.7 illustrates another functional data set with the change-point, where
the presence of the change-point is not visible, but Monte Carlo experiments
show that, with the same magnitude of change, for almost 80% of the cases,
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Hy was correctly rejected.

(b) The heatmap presents a visual rep-

resentation of the differences in mean
(a) The Three-dimensional plot illus- across the dataset, with changes in mean
trates the variations in mean across the represented by variations in color inten-
dataset sity

Figure 3.7: Sample with introduced drift of magnitude a = 0.004 after the
change-point.

The density of the limiting distribution and asymptotic critical values were
estimated using the Monte Carlo technique by simulating a Brownian bridge
with 1000 points and running 100,000 replications.

In the power studies, we tested two variants of the random functional sam-
ples, one with a single change-point in the middle of the functional sample
and the second with the two change-points forming epidemic change. In the
first case, the functional sample Xi,...,X,, is constructed from n = 1000
random functions where 500 curves are changed in order to violate the null hy-
pothesis. The model that violates the null hypothesis is defined as Xj(t) =
AM)1{i > n/2} +Yi(t), A(t) = av/Mt, t € [0,1], M = 1000, and the
parameter a is used to control the magnitude of the drift after the change-
point. In the second case, during each iteration, n = 1500 random func-
tions are generated, where 500 curves in the middle were modified by taking
Xi(t) = A(t)1{2n/3 > i > n/3} + Y;(t), t € [0,1]. During each repetition,
two statistics are calculated: T),(d,p) (3.35) and fn,l(d) (3.26) in the single
change-point simulation. For the epidemic change simulation fn’m(d, p) (3.31),
m = 2 statistic is calculated. We set the p-variation p parameter to 3. We
also tested with different p-values, but this did not have any impact on the
overall performance.

Figure 3.8 presents the results of the statistical power simulation of both
cases: only one change point (left side figure) and epidemic change (right side
plot). From the results, we can see that epidemic change has weaker statis-

83



tical power when using statistic fn,m (d,p) compared to an unknown number
of change point statistic fn(d,p). On the other hand, when restricting the
partition count, we observed one benefit, that the locations of the partitions in
many cases match or are very close to the actual locations of the change-point.

Statistical power (single change-point) Statistical power (epidemic change)

- — Tidp) statistic - — T.(d.p) statistic
— = Taa(d) statistic — = Ty(d.p) statistic

1.0
1.0

0.8
I
0.8
I

0.6
0.6

power
power

0.4
0.4

0.2
0.2

=T -

) o

T T T T T T T T T T T T
0.000 0.001 0.002 0.003 0.004 0.005 0.000 0.001 0.002 0.003 0.004 0.005

avalue avalue

Figure 3.8: Power curves.

3.5. Application to Brain Activity Data

The findings of real data analysis to show the performance of the proposed test
are demonstrated in this section. The data were collected during a long-term
study on voluntary alcohol- consuming rats following chronic alcohol experi-
ence. The data consist of two sets: neurophysiological activity from the two
brain centers (the dorsal and ventral striatum) and data from the lickometer
device. The lickometer devices were used to monitor the drinking bouts. Dur-
ing the single trial, two locations of the brain were monitored for each rat. Rats
were given two drinking bouts, one with alcohol and the other with water. Any
time, they were able to freely choose what to drink. Electrodes were attached
to the brains, and neurophysiological data were sampled at 1kHz intervals. It
was not the goal of this study to confirm nor reject the findings, but to show
the advantages of the functional approach for change-point detection. For this
reason, the data are well-suited to illustrate the behavior of the test in real-
world settings.

In our analysis, we took the first alcohol-drinking event, which lasted around
27s. We also included 10s before the drinking event and 10s after the event.
The total time was 47 s long. The time series was broken down into processes
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of 100ms. Each process had 100 data points.

1.1 ai,2 ce 1,100
a2.1 az 2 T 2100

Auro,100 =
a470,1 A470,2 - 470,100

All the processes were smoothed to the functions using 50 B-spline ba-
sis functions. The overall functional sample contained 470 functions F =
[f1, f2,- -, faro]. The functional sample was separated into sub-samples F =
[f1, f2s-- -, fa04i), t =0,1,...,450. For each sub-sample ﬁi, two statistics were
calculated (7, (d,p) (3.35) and fn’m(d,p) (3.31), m = 2).

?n(d,p) statistic
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Figure 3.9: Statistics of the first alcohol drinking event, which lasted about 27
s. Ten seconds before and 10 s after were also included. The red horizontal
line indicates the critical value with « level 0.95. Vertical gray dashed lines
mark the beginning and the end of the drinking time. The black solid vertical
lines mark the locations of the change points detected using the restricted p-
variation method. Blue and light blue colors represent different brain regions.

The results are visualized in Figure 3.9. We can see that tests with statistics
T,(d,p) and T, 1) (d, p) strongly rejected the null hypothesis at around 2 s and
onward after the rat started to consume the alcohol, which suggests that the

85



changes in the brain activity can be observed. However, the changes appear to
happen only for the CPu brain region. Interestingly, the statistic fmm(d, p) has
much larger volatility compared to the unrestricted fn(d, p) in the Nacc brain
region before the drinking event and lower volatility just after the drinking
event started. However, it is not fully clear if this is the expected behavior or
a Type I error.

Finally, the locations of the restricted (m = 2) p-variation partition points
nearly matched the beginning and the end of the drinking period. In Figure 3.9,
the gray vertical dashed lines indicate the actual beginning and the actual end
of the drinking period measured by the lickometer and the black vertical lines
indicate the location of the partitions calculated from the functional sample
13450. The first partition is located at 10.5 s and the second partition point at
38.4 s, which aligns well with the data collected from the lickometer.

The test with a restricted partition count showed weaker statistical power,
but it did help determine the location of the change-points.

3.6. Proof of Theorems 10 and 12

The following theorem is a version of Theorem 2.11.1 in [75] adapted to the
case of continuous processes.

Theorem 21. Assume that {Z,;: 1 < i < m,} are independent continuous
stochastic processes indexed by a totally bounded semi-metric space (G, d) such
that

My,

nhjgoZEHZM||3T1{HZT”H;>77} =0 forevery n >0, (3.39)
i=1
. - 2
lim  sup Z E[Zywi(f) = Zni(g)]” =0 for every 8, | 0, (3.40)

nreo d(f,9)<én i=1

On
/ V1og N(e,G,d,,) de % 0 for every 6, 0, (3.41)
0 n oo

where
D 1/2
dn(f,9) = (3(Zuk(f) = Zurl9)?)
k=1
Then, the sequence Z, := > " (Z, — EZ,) is asymptotically d-

equicontinuous, that is, for every € > 0,

limlimsup P( sup |Z,(f)— Z.(g9)] >¢)=0.
MO n—oo  d(f,9)<s

Furthermore, (Z,,) converges in law in £°°(G) provided that covariances con-
verge pointwise on G X G.
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Proof of Theorem 10 (1a). Without loss of generality, we assumed that ||| <
lforally € Uand | fllsup < 1forall f € F. To prove (1la), we applied Theorem
21 for G = Fx W, d = pa, and Zpr =n~Y?vpp, k=1,...,n, where, under Hy,
Unk(f, %) = (Y, 0) Ak (f). Let us check first the conditions (3.39)—(3.41). We
have

0 P vallg =02 sup [V, ) Ak ()] < 072 Yl sup (|9 sup [ f lsup
YeV, fEF Yev feF
<02Vl
Hence, (3.39) easily follows from E||Y||? < co. Since
Vnk (fs ) = var(f',9") = (Yi, 0 = ) Ak (F) + (Y, ©) i (f = f7)
and Y, Y} are identically distributed, we have

Blvar(f,9) = van(f, 92 < 2BV P2 (f = I + Xk (Dllw — 2]

Summing this estimate and noting that for any g € L2(0, 1),
Y A9 <7D Ak(g?) = llgll?
k=1 k=1
by the Holder inequality, we find

0=ty Elvan(fo ) = van (001 < 2BV IPIIIPIS — £11 + 111w — 17
k=1

<2B|YIP[I[D11* + 1£'[1*)0n
< A4B|Y|Ps,

if p2((f, %), (f',¢")) < é,. This estimate yields (3.40). To check (3.41), we
have

n

(10 (08 = (07 D) - Vit ()
= (v ;Kw k) + D lF — FP)
< (n ki% v-yan) e (! gjm, W)
< (v A () )+ (2 S0 (- 177

k=1

1
< Anlpa (@, ¢") + pa.o(f, )],
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where
—1 = 2 1/2 -2, -1 - 2
A= (SRR T and @ = A7) G PA
k=1 k=1

Hence,
N(Eaf X \Ijvdn) S N(Ar_ngv-Fv P2,Q)N(A;15a \Ijvp2,)\)~

and the condition (3.41) is satisfied, provided that

On
I (6,) ::/ sup \/logN(Alee,}", p2,0) de % 0 for every 6, 0,
0 n

QeQ
(3.42)
and

On
I5(6,) == / \/log N(Byle, U, ps ) de —j—» 0 for every d, )0, (3.43)
0 n oo

hold. Set

a a
J1(a) ::/0 Slé%\/logN(e,]:,pg,Q) de, Jo(a) ::/0 \/log N (e, ¥, pa5) de.

It is known (see, e.g., [49]) that J1(1) < co. Hence, J1(a) — 0 as a — 0.
By the condition (3.4), J2(a) — 0 as a — 0. Changing the integration variables
gives I1(0,) = AnJ1(A;15,) and Jo(6,) = AnJa(A,16,).

Set 02 := E|Y|?. By the strong law of large numbers, A2 ——— 2.

n— oo

Choosing 1 < 302 /4, we have, for any 6 > 0,

P(14(8,) > 8) < P(AJi(4;16,) > 6,142 — 0| <17) + P(|42 — 0% > 1)
< P(AJi(A716,) > 6, A2 > 02/4) + P(JA2 — 02| > )
< P(Anjl(nénﬂ) >0)+ P(|A2 — 02| >n) = 0

as n — oco. Similarly, we prove I5(d,) P o
n—oo

Next, we have to check the pointwise convergence of the covariances of (Z,,).
Since Y} are independent, we have

n n n

B( Y08 () 3o (1)) = D2 B (¥ 9) (45,8 ) Ani DAni(1)

k=1 k=1 k=1

= (0, 9) Y Ak () Ak ()
k=1
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We shall prove that
I,:=n"! Z)\nk(f))\nk(f’) = (f,f") as n — occ.

Set I, := n~'S27_, f(k/n)f (k/n). Evidently, lim, o0 I, = (f, f'), and we
have to check
lim |7, — 1, | — 0.

n— o0
We have
An =1L, -1, |<n’lz nk( f(k/n) f'(k/n)] < AL+ AT,
where

n

AL =07 Dk () Qo (F) = (/)] A7 =078 Y1 (/) e () =Aan (F))].

k=1 k=1
Observing that
k/n

A k/n|—‘/ F(k/n)) dni(t <n‘/ 1>/n — f(k/n))dt

< / sup{1f(8) = f(k/n)| : ¢ € [(k = 1)/m.k/n]} A\

< sup{|f(t) — f(k/n)| - t € [(k —1)/n, k/n]
<02 (f;[(k — 1) /n,k/n))),

we have
1An| < 0 Nk (F)oy (f, [(k — 1]/n, k/n])

<0t (0) (s = k)

k=1
<n V2| fllva>(f).

This yields
lim E(Z,(f,)Za(f',4) = T, ") (f, f).

n—oo

To complete the proof of (a), note that the existence of the continuous mod-
ification of Gaussian process v = v(v, f), (¢, f) € G = ¥ x F) follows by

Dudley [22], since the entropy condition fol V01og N(e,G, pa) de < oo is satis-
fied. O
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Lemma 4. It holds that

n

lim  sup ‘nfl Zg(k/n) - /\(g)‘ =0.

" |gll <1 =1

Proof. We have

n

n k/n
L= =3 glh/n) - Z/ lg(k/n) — g(s)] ds

k=1 k=17 (k=1)/n

3|

For every s € [(k —1)/n,k/n],
lg(k/n) — g(s)| < vy/*(g.[(k — 1) /n,k/n]).

Hence,

|1, \<Z/ 1/2 g,[(k—1)/n,k/n])ds

72 1/2(g 1)/n, k/n]) < va(g, (k —1)/n, k/n]))

-
NE

=~
Il
_

> EHQHQ)

and this completes the proof.

Proof of Theorem 10 (1b). Under Hy,

( Xk, V) Ak (f) = (Y, )Mk (f) + (gn(k/1, ), ) Ak (f)
= (Y, )Mk (f) + 17 Pulk/n)[(a, ) + (an, ).

Hence,
l/n(f7 w) = /V\n(fa 1/)) + An(faw) + Tn(f7'¢)7
where .
() = D _{¥is )il f)
An(foih) =072 uli/m)Aui(f) (g, )
k=1
and
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We have by (1la)

—1/2p —> v, in the space (*(F x ¥).

To complete the proof, we have to check

lim  sup |n Y2AL(f,0) — A(f, )] = 0. (3.44)
n—=0 fe F el

and

lim  sup |n"Y2r,(f,¢)] = 0. (3.45)
N0 FeF e

To this aim, we involve lemma 4. We have

nil/zAn(fa 7/)) - A(fa ”éff) - [Inl(f) + InQ(f)K(L 1/1>7

where

n

u(k/n)f(k/n)=(u, f).

k=1

1
n

£ = =S ulk /)i ()~ F /)], Taalf) =
k=1

By Lemma 4 applied to the function wf, we have I,5(f) — 0 uniformly over
f € F. Consider I,;. We have, as in the proof of Lemma 4,

Al < Z |u(k/n)] [£(s) = f(k/n)ds < n 2 |lullso |l £l 2)

(k—1)/n

Hence, I,2(f) — 0 uniformly over f € F. The convergence (3.45) follows by
observing that

1
=2 (f,0)] < ||U||c>o/0 [f () dsll¥[l - llgnll-
This proves (3.45) and completes the proof of (1b). O

Proof of Theorem 12 (3a). Consider the map T : £>°(F) — £°(F), T(z)(f) =
2(f) — z(1)A(f). The continuity of T is easy to check. Observing that 7,, =
T(vy), the convergence (3.9) is a corollary of Theorem 10 and a continuous
mapping theorem.

To prove (3b), observe that, under Hy4,

<Xk7’(/}>)‘nk<f) = <Yk7 w>)‘nk(f) + <gn(k/n? )7’(/}>)‘nlc(f)
= <Yk7 ¢>>\nk(f) + nil/Qu(k/n)K?% ¢> + <U7L7 ¢>]
hence N
/Jn(faw) = ﬂn(fvz/}) + An(fa 1/1) + 'Fn(.ﬂ w),
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where
n

ﬁn(ff(/}) = Z(Y; _?n7w>)‘ni(f)7

A 77171/22 (i/n) —n 12 (3/n))Ani(f){a,¥)

and
n

o (f, 0 _n—l/ZZ /7’L -n 12“(]/”)]>‘m(f)<%uw>

j=1

We have by (a)

n125 _> [ty in the space (*°(F x ).

To complete the proof, we have to check

lim  sup  |n"Y2A,(f, %) — A(f, )| = 0. (3.46)

n=0 feF el

and

lim  sup |n"Y2F,(f,¢)] = 0. (3.47)
n—oo fe]_‘7w€\1,

For this, we can use (3.44) and (3.45) and observe that n='>"}_, u(k/n) —
Alu) as n — 0. O
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4. Concluding remarks and future works

In this dissertation, we aimed to develop a method for detecting change points
in functional data samples. To this end, we proposed a mean instability testing
model based on the p-variation of the process of partial sums and analyzed its
statistical power through simulation methods. We also established the limiting
distribution for the null and alternative hypotheses theoretically. Furthermore,
we generalized the results of the univariate test and applied them to functional
data.

In addition, we studied the asymptotic behavior of the G-sums processes
indexed by functions and established the limiting distribution theoretically.
We proposed tests for detecting one change point, no more than m change
points, and an unknown number of change points, and analyzed these tests
using simulation methods on real data.

The results of this thesis contribute to the growing body of knowledge in
the field of functional data analysis and provide a new method for detecting
change points in functional data samples.

This study has identified several opportunities for further research and
adaptation of the methods introduced here. At their core, all of these methods
rely on the p-variation value, which is calculated by partitioning the sequence
into partitions. The location of these partition points can provide additional
interpretability and may help to localize the change points. In Chapter 3, we
demonstrated that the location of the partition points in a real dataset closely
matched the location of the true change points. This observation suggests that
there may be potential for further exploitation of this relationship with a more
robust justification.

Overall, there are many different tests and experiments that could be con-
ducted in future work to further develop and refine these methods. This will
be an important area of research as we continue to explore the capabilities of
functional data analysis in detecting change points.

The Continuous Wavelet Transform (CWT) technique produces real-valued
functions and represents nonstationary signals in a time-frequency domain.
There is a possibility that by representing signal information in this way, the
proposed functional change point detection tests could be adapted to detect
changes in periodicity. Further research is needed to explore this idea and
determine the feasibility and potential of using the CWT and functional change
point detection techniques in combination.

Finally, this thesis has not covered many real-world applications where the
methods introduced here could be applicable. Further research is needed to
explore the potential for applying these methods in various contexts and to
understand the full range of their capabilities and limitations.
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[vadas

Sparciai tobuléjant technologijoms, didelé pazanga buvo padaryta duomeny
skaitmenizavime. Per pastaruosius deSimtmecius renkamy duomeny kiekis ir
duomeny jvairové augo eksponentiskai. Duomenys renkami praktiskai visose
srityse: pradedant nuo gamtoje stebimy fiziniy reiskiniy, medicinoje fiziologiniy
duomeny, ekonominiy reiskiniy ar iSmaniy laikrodziy, kurie fiksuoja zmogaus
fiziologing bukle. IS tiesy neliko né vienos srities, kuri nebuty paveikta skait-
menizavimo revoliucijos. Naturalu, kad toks spartus visy sriciy skaitmeniza-
vimas, kelia daug klausimy apie duomeny struktura. Viena i$ problemy, su
kuria daznai susiduriama analizuojant duomenis yra strukturiniai pokyciai
laiko eilutése. Pokyciai gali buti neakivaizdus ar sunkiai pastebimi, délto,
sprendziant Sia problema, reikalingi teoriskai pagristi matematiniai instrumen-
tai.

Pasikeitimo tasky analize galima apibrézti kaip sekos suskaidymag i seg-
mentus, kurie pasizymi skirtingomis statistinémis savybémis. Taskai, kuriais
laiko eiluté padalijama j viena ar daugiau segmenty, yra vadinami pasikeitimo
taskais (angl. change-point). Pasikeitimo tasky nustatymo uzdaviniams yra

keliami du pagrindiniai klausimai:
1. Ar duomeny statistinés savybés kuriuo nors laiko momentu pasikeité?
2. Jeigu pasikeité, kada tai jvyko?

Kai kuriais atvejais procesy strukturiniai pokyciai gali buti lengvai nus-
tatomi, pavyzdziui, ekonomika gali pereiti j recesija, o véliau sekti atsistaty-
mas. Kriterijai, kurie apibrézia recesijos savoka yra aiskiai apibreézti. Ki-
tose srityse pasikeitimo taskus pastebéti be matematiniy metody gali buti
beveik nejmanoma. Matematiniai metodai ypac¢ tampa aktualus, kai siste-
mos automatiskai turi reaguoti j pasikeitusia situacija, pavyzdziui, iSjungti
variklj ir iSvengti katastrofos, jei vibracijos lygis pasikeité. Pasikeitimo tasky
analizé sparciai iSpopuliaréjo atsiradus iSmaniems jrenginiams, pavyzdziui, is-
manus laikrodziai realiu laiku nustato, kada zmogus pradéjo bégti, lipti laip-
tais ar uzmigo. Pokycio tasky analizé yra ypac aktuali medicinoje. Naudojant
medicininius matavimo prietaisus nuolatos registruojami duomenys apie ligonio

fiziologine bukle. Uzfiksavus pasikeitimus svarbu kuo grei¢iau j tai reaguoti.
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Laiku sureagavus galima iSvengti neigiamy pasekmiy, pavyzdziui, epilepsijos
priepuolio. Malladi et. al. [46] savo darbe pasitlé metoda realiu laiku fiksuoti
epilepsijos priepuolius. Kita medicinos sritis kurioje placiai taikoma pokycio
tasky analizé yra Sirdies veiklos stebé¢jimas (EKG). Tam, kad nustatytume
poky¢ius sirdies veikloje daznai taikomi vilneliy (angl. wavelet) transformaciju
metodai pokycio taskams nustatyti [53,57], Antti Koski [41] pritaiké paslép-
tuosius Markovo modelius (angl. hidden Markov models), Fotoohinasab et.
al. [25] pritaiké grafy apribojimo (angl. graph-constrained) metodus. Pladiau
apie jvairius metodus susijusius su poky¢io tasky analize EKG duomenims savo
darbe pateikia Fotoohinasab et. al. [25].

Poky¢io tasky analizé neapsiriboja vien tik laiko eilutémis. Sis uzdavinys
daznai sprendziamas analizuojant vaizdus ir garso signalus. Atliekant magnet-
inj rezonansa yra kuriami 3D paveikslai (Zr. [12,47,68]). Analizuojant garso
irasus daznai bandoma atskirti segmentus tarp kalbos ir kity garsu. Tai svarbu,
kuriant automatinius kalbos atpaZinimo modelius, aido panaikinima (angl.
echo cancellation), kalbos segmentavima ir t.t. Daugelyje atveju sprendziant
tokius uzdavinius pirmi zingsniai yra suskaidyti audio signala j skirtingus seg-

mentus (Zr. [35,37,73]).

qumu W me%w mm

(a) Epideminis vidurkio pasikeitimas (b) Dispersijos pasikeitimas

(c) Sablono pasikeitimas (d) Epideminis daznio pasikeitimas
Figure 4.1: Skirtingy pasikeitimy pavyzdziai

Néra vienareikSmisko apibrézimo, kuris apibrézty, kas yra pokytis.

Pokyciu galime laikyti duomenis generuojancio modelio ar modelio parametry

103



pasikeitima. Dazniausiai yra nagrinéjami skirstinio parametry tokiy kaip
vidurkis (4.1a pav.) ar dispersija (4.1b pav.), pasikeitimai. Daug metoduy
yra pasiulyta, norint nustatyti ar pasikeité skirstinys (zr. [55]). Verta pam-
inéti ir kitas, maziau démesio susilaukusias pasikeitimy kategorijas, kaip daznio
pasikeitimai ir sablono (angl. pattern change) pasikeitimai. Daznio (4.1d
pav.) pasikeitimai yra svarbus analizuojant eilutes turinéias cikliSkumo savy-
biy. Tokie pasikeitimai dazniausiai tiriami dazniy srityje, pavyzdziui, naudo-
jant Furjé ar vilnelés (angl. wavelet) transformacija (zr. [53,57]). Galiausiai,
vienas i$ sudétingiausiy uzdaviniy yra aptikti Sabloninius poky¢ius (4.1c pav.).
Tokiy aptikimo metody apréptis mokslinéje literaturoje néra plati, nors, Si
problema yra aktuali tokiose srityse kaip smegeny bangy analizé (zr. [72]).

Pasikeitimo tasky problema yra skirstoma j du specifinius atvejus. Pir-
muoju atveju (lot. a-posteriori) yra analizuojami pastovi ir nekintanti duomeny
aibé (angl. offline). Turint visa duomeny imtj, tikslas yra atsakyti i auksciau
paminétus klausimus. Tokiy algoritmy efektyvumas vertinamas pagal tai kaip
jautriai reaguojama j pasikeitimus ir pasikeitimo vietos nustatymo tikslumu.
Kitas svarbus aspektas yra tai, kad turint visus duomenis, pasikeitimy skaicius
gali buti daugiau nei vienas. Tada problema tampa sudétingesné ir sprendzia-
mas papildomas uzdavinys siekiant nustatyti kiek is viso egzistuoja pasikeitimy.
Ypac aktuali problema yra nustatyti epideminius pasikeitimus, kai pasikeitimas
yra laikinas (4.1a ir 4.1d pav.).

Antruoju atveju yra analizuojami realaus laiko duomenys (angl. online)
kai duomeny aibé yra nuolatos auganti. Tikslas yra kuo ankséiau ir kuo tik-
sliau aptikti pasikeitimg jam tik jvykus. Sioje disertacijoje yra nagrinéjama
problema, kai duomeny imtis yra nekintanti.

Pasikeitimo tasky problema néra nauja ir pladiai iSanalizuota klasikinéje
literaturoje. Ypa¢ daug aptikimo algoritmy yra pasiulyta vienmatéms laiko
eilutéms. Vienas i$ pirmyju algoritmy, skirty pokyc¢iams nustatyti, yra kau-
piamosios sumos (angl. CUMSUM) algoritmas (Page 1954 [50]), kuris buvo
sukurtas vidurkio pokyc¢iui nustatyti. Algoritmas buvo taikomas kokybeés
gamybos kontrolei uztikrinti.

Pokyc¢io tasky paieskos analizé neapsiriboja tik vienmatémis laiko eilutémis.
Pastaruoju metu didelis démesys yra skiriamas butent daugiamatéms laiko
eilutéms.

Funkciniy duomeny analizé sukuria naturaliag aplinka daugiamaciy laiko
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(a) Funkciniy duomeny rinkinys be (b) Funkciniy duomeny rinkinys su
pasikeitimo pasikeitimu

Figure 4.2: Skirtingy pasikeitimy pavyzdziai su funkciniais duomenimis

eiluciy analizei. Todél, vis daugiau klasikiniy metody yra adaptuojama
darbui su tokiais duomenimis. Funkciniai duomenys yra naturalus daugia-
maciy duomeny apibendrinimas i$ baigtinés dimensijos j begaline. Praktikoje
funkciniai duomenys gaunami stebint keleta tiriamyjy subjekty laike, erdvéje
ar kitose testinése srityse. Jie gali buti kreivés, pavirsiai ar kiti sudétingi objek-
tai. Reprezentuojant daugiamacius duomenis kaip funkcijas stipriai iSple¢iamas
analizés instrumenty spektras. Ypac¢ funkcinés principinés komponentés yra
daug informatyvesnés negu daugiamatés principinés komponentés. Populiare-
jant tokiy duomeny analizei vis aktualesné tampa ir pasikeitimo tasky paieskos
problema ne tarp fiksuoty tasky ar vektoriu o tarp kreiviy (4.2 pav.).

Pirmieji tokiy duomeny analizés metodai buvo minimi jau 1950. Kai
Grenanderis [29] savo publikacijoje bandé pritaikyti statistinius metodus
stochastiniams procesams. Véliau, Rao [64] 1958 metais savo analizéje lygino
organizmo augimo kreives. Patj termina funkciné duomeny analizé pirma karta
paminéjo Ramsey [61] 1982 metais. Siy duomeny analizé ir taikymai placiai na-
grinéjama Ramsey ir Silverman knygoje [63], taip pat iSsamia apZvalga galima

rasti Wang et. al. [77] publikacijoje.
Tikslai ir uzdaviniai

Pagrindiné disertacijos tema — pasikeitimo tasky aptikimas vienmatése laiko
eilutése ir funkcinése laiko eilutése. Pagrindinis disertacijos tikslas pasiulyti
statistinius testus, paremtus daliniy sumy proceso variacinémis savybémis.

Tyrimo tikslui pasiekti keliami sie uzdaviniai:

1. Apibrézti nagrinéjamus objektus ir modelius.
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2. Apibrézti ir istirti vidurkio nestabilumo testavimo modelj, paremta

daliniy sumy proceso p-variacija.
3. Nustatyti testo ribinj skirstinj prie nulinés ir alternatyvios hipoteziy
4. ISnagrinéti procesy indeksuoty funkcijomis sumy (G-sumy) asimptotika.

5. Sudaryti pasikeitimo tasky statistinius testus funkciniams duomenims,

remiantis G-sumomis.
6. Sukonstruotus testus iSanalizuoti imitaciniais metodais.

7. Pritaikyti testus realiems duomenims.

Mokslinis darbo naujumas

Disertacijoje pasiulomas p-variacija paremtas statistinis testas, kuris leidzia
efektyviai aptikti vidurkio nestabilumus vienmatése laiko eilutése. Sis testas

apibendrinamas ir funkciniams duomenims. Pasiulomi trys statistiniai testai:

o Ne daugiau kaip vieno pasikeitimo tasko (angl. at most one change point)

nustatymui.
e Ne daugiau kaip m pasikeitimo tasky nustatymui.

o Kai pasikeitimo tasky skaic¢ius nezinomas.

Disertacijos praktiné verté

Disertacijoje siulomi testai, paremti p-variacija, islieka efektyvus analizuojant
tiek dideles tiek mazas duomeny aibes. Todél gali buti placiai taikomi jvairiose
srityse, tokiose kaip medicina, vaizdy ir garso analizé, klimato kaita ir kitose.
Siulomi testai yra skirti vidurkio poky¢iui nustatyti, taciau paciy testy kon-

strukcija gali buti apibendrinama ir kitiems pasikeitimy tipams nustatyti.

Darbo struktura

Disertacija parasyta angly kalba. Ja sudaro: jvadas, trys skyriai, bendrosios
iSvados bei diskusija apie tolimesnius tyrimus, priedai ir literaturos sarasas.

Pirmame disertacijos skyriuje pristatomos funkcijos variacijos savybés, kity
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autoriy metodai, skirti pokyc¢io tasky nustatymui, bei pateikiami juy prak-
tiniai taikymai ir svarba. Taip pat yra pateikiamos pagrindinés funkcinés
duomeny analizés savokos ir pateikiami kity autoriy metodai, pritaikyti dar-
bui su funkciniais duomenimis. Antrame disertacijos skyriuje yra pasiulomas
naujas metodas paremtas daliniy sumy proceso p-variacijos savybémis vidurkio
pasikeitimams nustatyti ir nagrinéjami teoriniai aspektai. Skyriaus pabaigoje
imitacijomis yra jvertinama ir aprasoma pasiulyto testo statistiné galia. Gali-
ausiai statistinis testas yra pritaikomas realiems duomenimis. Treciame dis-
ertacijos skyriuje yra pateikiamas pasitilyto metodo apibendrinimas darbui su
funkciniais duomenimis ir pasiulomi trys statistiniai testai vidurkio nestabilu-
mui patikrinti. Skyriaus pabaigoje teoriniai rezultatai patvirtinami imitaci-

jomis ir testai patikrinami su realiais duomenimis.
Ginamieji teiginiai
o Teoriskai pagristas statistinis testas, paremtas daliniy sumy proceso p-
variacijos savybémis, vidurkio pasikeitimams aptikti.
o Nustatyti G-sumy proceso ribiniai skirstiniai.

e Panaudojant G-sumy asimptotines savybes sukonstruoti statistiniai tes-
tai tam, kad patikrinti funkcinés imties vidurkio pasikeitimo Zinomam ir

nezinomam tasky skaiciui

Disertacijos rezultaty aprobavimas

Disertacijos tema paskelbti du straipsniai, zurnaluose su citavimo indeksu Clar-

ivate Analytics Web of Knowledge duomeny bazéje (WoS).

[A1] T. Danielius, A. Rackauskas, p-Variation of CUSUM process and testing
change in the mean, Communications in Statistics-Simulation and Com-

putation, 1-13 (2020). https://doi.org/10.1080/03610918.2020.1844899

[A2] T. Danielius, A. Rackauskas, Multiple change point detection in
functional sample via G-sum process, Mathematics 10.13, (2022).

https://doi.org/10.3390/math10132294

Disertacijos keliami klausimai ir rezultatai pristatyti trijose tarptautinése

konferencijose ir vienoje konferencijoje, Lietuvoje:
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[C1]

[C2]

[C4]

[C5]

T. Danielius. Functional data analysis of neurophysiological data: case
study. NBBC19 : 7th Nordic-Baltic biometric conference, 3-5 June 2019,

Vilnius, Lithuania.

T. Danielius, A. Rackauskas. p-variation of cusum process and testing
change in the mean, 13th International Conference of the ERCIM WG on
Computational and Methodological Statistics (CMStatistics 2020) 19-21
December 2020, Virtual Conference.

T. Danielius, A. Rackauskas. Multiple change point detection in func-
tional sample via G-sum process, 63th Conference of the Lithuanian Math-

ematical Society, Kaunas University, 16-27 June 2022.

T. Danielius, A. Rackauskas. Multiple change point detection in func-
tional sample via G-sum process, 24th International Conference on Com-
putational Statistics (CompStat 2022), 23-26 August 2022, Bologna,
Ttaly.

T. Danielius. Pasikeitimo tasky testai funkciniams duomenims paremti
p-variacija, Seminar Statistics and its applications, Vilnius University

Institute of Applied Mathematics, 7 August 2022, Vilnius, Lithuania.
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5. Vidurkio pasikeitimo testas: vienmatis atvejis

Antroje disertacijos dalyje yra pasiulomas naujas statistinis testas, skir-
tas vidurkio pokyciui stebéti vienmatéje laiko eilutéje. Testas remiasi p-
variacijos pakitimais daliniy sumy (angl. CUSUM) procesuose. Turint imtj
X1, Xo,..., X, ir skaiciy p > 2, statistika apibréziame kaip

. — P
Ty (X1 X) = max {7, [0 — X 10— kg <o < by —mi1 <<},

gia X, =n " HX1 + -+ X,).
Tesiant Sios statistikos analize verta prisiminti kai kuriuos bitinus api-

brézimus. Funkcijai f : [0,1] — R ir skai¢iui 0 < p < oo, funkcijos f p-variacija

intervale [0, t] apibréziama kaip

m
p(£310,4]) :=sup Y[ f(ty) = f(t )P § < o0,
j=1
kai supremumas yra imamas i$ visy skaidiniy (angl. partitions)
O=to<ti < - <tym=t; m=1,2,...,

intervale [0,¢]. Toliau, disertacijoje naudojamas trumpinys v,(f) :=
vp(f310,1]). Tuo atveju, kai v,(f) < oo, sakome, kad funkcijos f p-variacija yra
aprézta (angl. bounded) ir visu tokiy funkeiju aibé yra neseparabili Banacho

erdvé W, [0, 1] su norma
£l = 1£O)] + v/ ()-
Iterpimai W, [0, 1] — W, [0, 1] yra tolydus ir
v;/q(f) < vll,/p(f), kai 1 <p<gq.

Nagrinékime vienmates laiko eilutes X,k = 1,2,.... Tegul Vn > 1 ir Vt €
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[0,1], tada

Lnt]
Su(t) =0jei t €[0,1/n), Su(t) == X;, éate [1/n,1],
i=1
kai su kiekvienu realiu skai¢iumi z > 0, |z] := max{k : k € N,k < 2}, N =
{0,1,...}. Tada laipsniskas CUSUM procesas Z, = (Z,(t),t € [0,1]) api-

bréziamas

|nt) A
Zn(t> = Sn(t) T Sn(l) = Z(Xz - Xn)

Klasikiniai proceso Z,, trajektoriju erdviy pavyzdziai yra Hilberto erdvé Ls [0, 1]
ir Skorodo erdvé D[0,1]. Su jvairiomis prielaidomis Siose erdvése galime jrodyti
centring ribing teorema. Pavyzdziui, klasikiné Donskerio teorema su nepriklau-
somais ir vienodai pasiskirsciusiais atsitiktiniais dydziais, turinciais baigtinj
antrajji momenta, teigia, kad

n 1%z, 2 .sB erdvéje D[0, 1],
n—oo

¢ia B = (B(s) := W(s) — sW(1),s € [0,1]) yra standartinis Brauno tiltas.

5.1 teorema. (Su fiksuota p > 2 reikSme). Tarkime X;, Xs,... yra neprik-
lausomy ir vienodai pasiskirsciusiais atsitiktiniy dydziy seka ir daliniy sumy
procesas S, = (Sn(t),t € [0,1]).

Jei, 02 := EX? < o0, tada

n~Y2%z, 2, sB erdvéje W,p[0,1].
n— oo

5.2 teorema teoriskai pagrindzia, kad statistika gali buti naudojama

vidurkio pasikeitimo taskams nustatyti.

5.2 teorema. Tegu p > 2 ir X3, Xs,... yra nepriklausomy ir vienodai pa-

siskirs¢iusiy atsitiktiniy dydziy seka. Jei EX? = 02 € (0, 00), tuomet:

~1/2 _—1m1 D 1
n VeI (X, X) — v)/?(B).
Nagrinékime paprastosios atsitiktinés imties X1, ..., X,, modelj

X; = 61(k*,n](i) +Y;, i=1,...,n,
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kai Y1,...,Y, yra nepriklausomi ir vienodai pasiskirste atsitiktiniai dydziai su
E(Y;)=0,E(Y?) =1iré € R,k* € {1,...,n} yra neZinomieji parametrai.
Nulinés hipotezés Hy : § = 0, ir Vp > 2, atveju turime,
_ D
n 1/21];/17(2”) — v;/p(B).
Alternatyvios hipotezés Hy atveju turime: § = 6, ~ /nd*, ir k* = [nf*| su
kai kuriais 0* > 0 ir 6* € (0, 1), teisinga

nPu/P(Z,) s /P (B - ),

n—roo

0*t(1—6*) kai 0<t<6*
kai f(t) = .
0*0*(1—t) kai 0* <t<1

Galia
o.
Galia
0.6
I
\n
°
o
°
/u

T T T T T T T T T T T T
0.00 0.05 0.10 0.15 0.20 025 0.30 0 200 400 600 800

Pasikeitimo stiprumas (a) Pasikeitimo pozicija

(a) Statistiné galia atlikus imitacijas, (b) Statistiné galia atlikus imitacijas,
keiciant pasikeitimo stipruma. keiciant pasikeitimo pozicija.

Figure 5.1: Statistinés galios vertinimas

Statistinio testo efektyvumas buvo jvertintas imitaciniais metodais. Na-

grinékime nepriklausoma atsitiktine imtj X7, ..., X,,, kai X; apibréziama kaip

Ny, 0%) kaii < nr
X, ~ (p1, 0%)

N(p2, 02) kaii > nt

Atlikus 10000 imitaciju buvo suskaic¢iuota statistiné galia. Nuliné hipotezé
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atmetama, kai
P (U;/’)(Zn) > aa) =a

¢ia a, = 2.024352 yra atsitiktinio dydzio vll,/p(B) skirstinio av = 0.95 kvantilis.
Rezultatai (5.1a pav.) rodo, kad kai a >= 0.22, testo statistiné galia pasiekia
80% tiksluma.

Kitu atveju buvo nagrinéjama statistiné galia, keic¢iant pasikeitimo tasko k
pozicija, prie skirtingy a = 0.15,0.22, 0.3 reikSmiy. Rezultatai pavaizduoti 5.1b

paveiksle.

112



6. Vidurkio pasikeitimo testai: funkcinis atvejis

Disertacijos trec¢iame skyriuje apibendrinami antro skyriaus rezultatai ir testas
adaptuotas funkciniy duomeny analizei. Siame skyriuje yra apibreziamas G-
CUSUM procesas ir nagrinéjami Sio proceso teoriniai aspektai, jskaitant asimp-
totinj elgesi. Parenkant skirtingas aibes G, pasiulomi trys statistiniai testai

pasikeitimo taskams aptikti:
1. Testas T;, 1 skirtas vieno pasikeitimo taskui nustatyti.
2. Testas T}, », skirtas ne daugiau kaip m pasikeitimo taskams nustatyti.
3. Testas T,, nezinomam pasikeitimo tasky skaic¢iui nustatyti.

Dauguma autoriy didelj démesj skiria vieno pasikeitimo tasko nustatymo
problemai nagrinéti. Berkes et al. [11] pasiule CUSUM testa funkciniams
duomenims, naudojant imties projekcijas j kai kurias pagrindines kovariacijos
~ komponentes. Véliau $ia problemg ir asimptotines savybes nagrinéjo Aue [3]
ir kiti. Aston ir Kirch [2] iSplété §j testa silpnai priklausomiems funkciniams
duomenims ir epideminiams pasikeitimams.

Nagrinékime antros eilés stacionaria stochastiniy procesu Y; = (Y;(t),t €
[0,1]),% € N seka, apibrézta tikimybinéje erdvéje (2, F, P), su nuliniu vidurkiu
ir kovariacijos funkcija v = {v(s,t),s,t € [0,1]}. Funkciniy duomeny imdciai

X1(t),...,X,(t),t € [0,1], nagrin¢jamas modelis:

Xi(t) = g(k/n,t) + Yi(t), t€]0,1], k=1,...,n, (6.1)

kai funkcija g : [0,1] x [0,1] — R yra deterministiné, bet nestebima. Pagrin-
dinis tikslas yra, remiantis funkcijos variacijos savybémis, sukurti testus tokiai

nulinei hipotezei patikrinti pries alternatyva:

Hy: g=0 pries H1:g#0

Disertacijoje didziausias démesys yra skiriamas laiptinéms funkcijoms pirmojo
argumento atzvilgiu, kas apima pasikeitimo tasko aptikimo uzdavinj.
Sis modelis neapsiriboja tik pasikeitimo uzdavinio sprendimu, bet gali biiti

taikomas ir kitiems klausimams analizuoti, pvz.: vaizdy analizei, procesy seg-
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mentavimui. Taip pat, analizuojant funkcines laiko eilutes, toks modelis gali
buti taikomas nustatant tendencijas.

Sioje disertacijoje sitiloma metodologija yra paremta proceso

s
Wa(s) = Y (Xk = Xp) + (ns = [n5))(Xjnsj11 = Xn), s € [0,1],
k=1
tam tikromis variacijos savybémis. Cia X,, =n= (X; +--- + X,,).
Kiekvienas elementas X yra funkcija, todél tokie procesai turi begaline
dimensija, ir analizé tampa sudétinga. Tam, kad pereitume is begalinés dimen-

sijos | baigtine dimensija yra naudojamos jvairios projektavimo technikos.

6.1 prielaida. Y, Y7, Y5, ... yra nepriklausomi ir vienodai pasiskirste atsitik-

tiniai procesai.
1. Kiekvienas procesas Y; yra tolydus kvadratinio vidurkio prasme,
2. kiekvienas procesas Y; yra matus abiejy argumenty atzvilgiu,

3. proceso v kovariaciné funkcija turi baigtinj peédsaka: tr(y) =

[ (1) dt < 0.

Kai 6.1 prielaida yra tenkinama, Y; galime laikyti atsitiktiniu elementu
su reikSmémis erdvéje Lo(0,1). Lo := Ly(0,1) yra Lebego prasme kvadratu
integruojamy funkcijq, apibréitq intervale [0,1] Hilberto erdvé su skaliarine
daugyba (f, g) fo t) dt ir atstumo funkeija p(f, g) = ||f — gl

Nagrinékime funkcuq klases F,® C Lo ir G(= F x ®)-sumuy procesa

(vl s eFuew)
k=1

kai v (f,0) = <Xk,1/1>)\nk(f), Ank yra tolygioji tikimybeé intervale [(k —
1)/n,k/n] iv A\pg(f fo t) dAnx(t). Siuo Zingsniu X; yra projektuojama
1 pasirinkta krypti w € U Hilberto erdvéje. Naturali aplinka, tokiy stochas-
tiniy v, procesy analizei yra erdve £>°(G), kai G = F x ®. £*°(G) yra Banacho

erdvé visy aprézty realiyjy funkcijy, apibrézty aibéje G su tolygia norma

lullg == sup{|u(g)| : g € G}, u € £7°(G).
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Nagrinéjant G-sumy procesus apibréZiamas ribinis Gauso procesas vy, =

(v(f,v), f € F,¢p € ¥) su kovariacija

EVV(fﬂ @[J)V“/(flvw/) = KW((fv¢)7 (flawv)) = <F¢7¢/><f» f/>7 ql}vql/mfv f/ € L2a

kai I' : Ly — Lo yra kovariacijos operatorius v branduoliui.
(6.1) modeliui, nagrinéjama nuliné hipotezé Hy : g = 0 ir dvi galimos

alternatyvos

Hp: g=0gn=1unqn, kai u, —u i§ Wh[0,1], Vng, — q ervéje Lo,

H): g=gn=1ungn, kai u, —u i Ws[0,1], /nsup [{qn, V)| — oc.
Yevw

Abiejose alternatyvose funkcija u, apraso pasikeitimo tasky konfiguracija,

o funkcija ¢, ivertina dreifo dydj.

6.1 teorema. Tarkime, kad atsitiktiniai procesai (Xy),k > 1 yra apibrézti
(6.1) modeliu, kai Y,Y7,Y5,... tenkina 6.1 prielaida.

Tarkime, kad aibé 1 < ¢ < 2, ir F C W,[0, 1] yra aprézta, o aibé ¥ C Lo
tenkina entropine salyga

/1 V1og N(g, ¥, p) de < cc. (6.2)
0

Tuomet egzistuoja tokia Gauso proceso v, modifikacija erdvéje Ly x Lo, kad jo
susiaurinimas F x U, (vy(f, ), f € F,¢ € ¥) yra tolydus procesas ir galioja

tokie ribiniai teiginiai:

(la) Prie Hy:

nl2y, 2, v, erdvéje (°°(F x ). (6.3)
n—oo
(1b) Prie Hay,
n~Y2y, ﬁ vy + A, erdvéje (°(F x ), (6.4)
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kai
A(f,¥) = (u, f)la, ).

Jeiu(s) = 1,s € [0, 1], tai alternatyvi H 4 hipotezé rodo signalo egzistavima
triuksme. Siuo atveju A(f,v) = A(f){g,%). Todél Sios teoremos naudojimas

signalui tirti triukSme yra prasmingas, jei (g, 1) # 0.

6.2 prielaida. Egzistuoja toks d > 1, kad tikrinés reikSmés A, tenkina salyga
AL > A > > Mg > Agyp1 > 0.

Statistinéje analizéje I' tikrinés reikSmeés ir tikrinés funkcijos yra pakeici-

amos jvertintomis reikSmémis. Atsizvelgiant j tai, kad kiekvienam k,
E[(Xy — E(Xy)) © (X — BE(Xp))] =T,
I' galime jvertinti

T, =

S|

Z[(Xl - Yn) @ (Xz - Xn)}v

¢ia X, (8) =n 1 X1(8) + -+ + Xn(s)).

Toliau T' tikrines reikSmes ir tikrines funkcijas atitinkamai Zymésime Xm
ir 12,”, r=1,...,n — 1. Siekdami uztikrinti, kad 127” galéty buti vertinamas
kaip 1., 0 ne —1,. jvertis, toliau darysime prielaida, kad zenklai yra tokie, kad
(thnr, ) > 0. Pabrézdami, kad

f{b\nr:}\\nr{p\nr; r=1,...,n—-1, (65)
ir n
N 1 -
A”T:n—1§<xi_x"’w"r>’ r=1,...,n. (6.6)

Su d > 0, apibréziame

~ 1
T,.1(d) := max ——

max
1<j<d /X 1<k<n
J

Si kriterijaus fml statistika skirta daugiausia vieno pasikeitimo tasko alter-

k
>_(Xi — X, 03)|. (6.7)

natyvai patikrinti. Jos ribinis pasiskirstymas nustatomas pagal Sia teorema.
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6.2 teorema. Tegul atsitiktiné funkciniy duomeny (X}) imtis apibrézta 6.1

modeliu, kur Y, Y7, Y5, ... tenkina 6.1 ir 6.2 salygas. Tada:

(a) Jei Hy teisinga, tai

1795 D
n~'2T, 1(d) —— sup sup |By(t)],
n—oo  1<k<d0<t<1

Cia By, ..., Bg yra nepriklausomi standartiniai Brouno tilto procesai;

(b) Esant Hy, jei E||Y||* < oo, tuomet

n V2T, 0 (d) —— sup  sup |Bk(t)+A(t)<Q7Tz)\k/\/i>|,

n—=0  1<k<d0<t<1
Gia A(t) = fot u(s)ds — tfol u(s)ds, te0,1].
(c) Kai H, teisinga ir jei E||Y||* < oo, tai

n_l/Qfml(d) P~
n—oo

Remiantis Sia teorema, galima klasikiniu budu sukonstruoti testavimo pro-

cedura. Duotam « € (0, 1), C, > 0 tokiam, kad

P( sup sup |Bg(t)] > Cq) = a.
1<k<d 0<t<1

Pagal 6.2 teorema, testas:

Tna(d) > /nC, (6.8)
turi asimptotinj lygmenj «.

Pabréziame, kad dél Brauno tilty By, k =1, ..., d nepriklausomumo,

1—a=P(sup sup |Bi(t)] <C,) =P sup |Bi(t)] < Cy).

1<k<d 0<t<1 0<t<1

Tuomet

P(sup [Bi(t)] < Ca) = (1 — )"/

0<t<1

Taigi, Co yra supg<,<; |Bi(t)| skirstinio (1 — a)'/¢ kvantilis. Tai supa-

prastina kritiniy reiksmiy C, skaic¢iavimus.
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Jei s* € (0,1) yra toks, kad u(s) = 1jg 4+1(s), s € [0,1], tada turime modelj

vienam pasikeitimui nustatyti:
Xk(t) = 1[0,5*](k/n)qn(t) + Yk(t), t e [0, 1].

Siuo atveju, A(t) = A*(t) := min{t, s*} — ts*, t € [0,1].

Akivaizdu, kad kriterijaus fn’l(d) statistika artéja i begalybe, kai d — oo.
Kita vertus, su didesniu d, X; aproksimacija pagal seka ZZ:1<X, 1@)1]}} yra
tikslesné ir uztikrina didesne statistine testo galia . Pagal zemiau suformuluota

teorema nustatome asimptotinj skirstinj kriterijui fn,l(d), kai d — oo.

6.3 teorema. Tegul atsitiktiné funkciné imtis (Xj) apibrézta pagal (6.1) mod-
elj kai Y,Y7,Y5,... tenkina 6.1 prielaidas. Tada, esant Hy,

lim lim P(n—l/QfM(d) < aﬁ n bd) = exp{—e~®}, ©>0, (6.9)
d

d— 00 Nn—00

¢ia

1 Inlnd

ag= (8Ind)'/?, by = 104+ (6.10)

ad

Kai d reikSmeé yra pakankamai didelé, tada (6.8) tampa

Ty > \/ﬁ[aid In (m) + bl (6.11)

su asimptotiniu lygmeniu «, kai n ir d artéja prie begalybés.

Tuo atveju , kai m > 1, gauname statistika

~

m ki
1 - — ~. P\ Ur
Tm(d,p) = max —— max { > ) > (Xk— X, ( . (6.12
m(d,p) = max, ~ Reja@;{i_l k:k.71+1< b bj) } (6.12)

Tokio kriterijaus fmm(d,p) statistikos konstrukcija mums leidzia tikrinti

imtj, kurioje gali buti ne daugiau kaip m pasikeitimo tasky.

6.4 teorema. Tegul funkciniy duomeny imtis (Xg,k = 1,...,n) apibrézta

pagal (6.1) modelj kai Y, Y7,Y5,... tenkina 6.1 ir 6.2 savybes. Tada:

(a) Jei hipotezé Hy yra teisinga, tai

—1/24 D 1/p(R.
n Tn,m(dap) m lrgja%{dvmm(B])?
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¢ia By, ..., By yra nepriklausomi standartiniai Brauno tiltai.

(b) Jei alternatyvi hipotezé H4 yra teisinga, tai

n_1/2Tn,m(d7p) 2, maxdvl/p(B + A( 71/)j/\//\>j>)’

n—oo 1<

(c) Jei alternatyvi hipotezé H/ yra teisinga, tai

nil/QT\nvm(d, D) AN

n—oo

Pagal 6.4 teorema, testas:

Tom(d,p) = v/nCa(m, d, p) (6.13)
atitinkamai, turi asimptotinj lygmenj «, jeigu C,(m,d,p) yra

P(Ul/p (B) < Ca(m,d,p)) = (1 - a)l/d'

m,p

Toliau nagrinéjame atveji, kai funkciniy duomenuy imtyje pasikeitimy
skaicius yra nezinomas.

Parenkant d > 0 ir p > 2, apibréziame

fn(dm) = max ! max max {i’ Z <Xk—yn,$nj>‘p}l/p.

1<j<d /o 1<m<n k€N,
=I= A T TN i=1 k=k;_1+1

6.5 teorema. Tegul atsitiktiné imtis (X;) yra tokia, kaip apibrézta 6.1 teore-

moje. Tada:

(a) Jei Hy teisinga, tai

n71/2fn(d7p) ::;7 112]82((1 U;/p(BJ)a

¢ia By, ..., By yra nepriklausomi standartiniai Brauno tiltai.

(b) Jei H, teisinga, tai

_1/2T(dp)—> maxv /P(Bj + Alg wj/\/>

n—oo 1<5<d
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¢ia A(t),t € [0, 1] apibrézta 6.1 teoremoje.

(c) Jei H'; teisinga, tai

W) 2 o
Pagal 6.5 teorema, testas:
T,(d,p) > VnCa(d,p) (6.14)

turi asimptotini lygmenj a, su Cy(d, p) jei
P(v,/?(B) < Ca(d,p)) = (1 — )"/,

Tam, kad jvertintume statistine testo galia, atlikome Monte Karlo imitaci-

jas. Aktualus buvo trys pagrindiniai scenarijai:

(S1) Tegu imtis (§;1) yra sudaryta i$ nepriklausomy ir vienodai pasiskirsciusiy

simetriniy Pareto atsitiktiniy dydziy su indeksu p (naudojame p = 5).

d
Vit = Y g 2eonlbr)
k=1

L tel0,1], 5> 1, (6.15)
o
¢ia 02 = FE¢Z,. Kai nuliné hipotezé teisinga, naudojame Xj = Y, k =

1,2,...,n.
Kai alternatyvi hipotezé teisinga laikome, kad

d
X;(t) = un(j/n) Y ankcos(kmt) +Y;, te€[0,1],j=1,...,n,
k=1
¢ia funkcija u,, nusako pasikeitimo tasky konfiguracija ir koeficientai (a,)

yra laisvai pasirenkami.

(S2) Sakykime (z;;,5 = 0,1,...,M), ¢ = 1,...,n yra diskretlis stebéjimai,
ivertinti taskuose x;; = X;(7;), kur atsitiktiné imtis (X;,j = 1,...,n)
generuojama taip pat, kaip ir (S1) scenarijuje. Diskretus stebéjimai yra
paveréiami j funkcinius duomenis (X;,j = 1,...,n), naudojant B-spline

bazes.

(S3) Imkime diskrecius stebéjimus (i/M,y;;),t = 0,1,...,M,j = 1,...,n,
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kurie yra generuojami

i
Yij = M_1/2Z§/cj,
k=1
taip, kad y;; galétumém interpretuoti, kaip standartinj Vynerio procesa
ties ¢/M. IS imties (y;;,4 = 1,..., M), funkcijos Y; yra sukonstruo-
jamos naudojant B-spline bazes. Imitacijos metu naudojame M = 1000
stebéjimy ir D = 50 baziniy funkcijy, taip sukonstruodami Yi,...,Y,,
funkeijy (n = 500). Tada, apibréziame

Y; prie nulinés hipotezés
X; =
un(j/n)gn, +Y;, prie alternatyvios hipotezés
¢ia 7 = 1,...,n; naudojame skirtingas pasikeitimo tasky konfiguracijas

uy, su skirtingu dreifu, kurj nusako funkcija g, (t) = a, vV Mt, t € [0,1].

2 o o )
= 5=
o / /
o o o
ol © 0/
© IS
S
N3
£ o
Rz}
s /
? =
o
O o
o~ s—
o
/ Scenarijus (S1)
8 —— M=10 stebeéjimy
o
e ——  M=200 stebejimy

T T T T
0.00 0.05 0.10 0.15

pasikeitimo stiprumas (a reik§me)

Figure 6.1: Statistiné galia atlikus imitacijas pagal (S1, S2) scenarijus

(S1) Scenarijus sukuria optimalia situacija, kai tikrinés reikSmes ir tikrinés
funkcijos yra zinomos. Siuo atveju yra iSvengiama duomeny praradimo ar
matavimo klaidy. Antrasis (S2) scenarijus yra pirmo scenarijaus tesinys, kur
naudojama ta pati funkciné duomeny imtis, tac¢iau atliekami papildomi zings-
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niai: funkcijos jvertinamos atsitiktiniuose taskuose, diskrecioji imtis yra glodi-
nama naudojant b-spline bazes, jvertinamos tikrinés reiksmes ir funkcijos. Gali-
ausia, skaiCiuojama statistika su jverciais. Taip sukuriama imtis su matavimo
paklaidos tikimybe.

Imitacijy rezultatai parodé, kad net ir po rekonstruotos atsitiktinés
funkcinés imties, statistinio testo galia islieka tokia pat tuo atveju, kai diskreciy
stebéjimy skaicius pakankamai didelis (n = 200). Statistinés galios susilpnéji-
mas stebimas stipriai sumazinus diskrec¢iy stebéjimy skaiciy (n = 10). Rezul-

tatai pavaizduoti 6.1 paveikslélyje.

Statistinio testo galia (vienas pasikeitimas)

2 o —— Ta(d.p) statistika P
— = Th,1(d) statistika _
@
3
< |
8 S
s
S
R
2
k7
B
I
S
N
S
o
=4

0.000 0.001 0.002 0.003 0.004 0.005

Pasikeitimo stiprumas (a reik§me)

Figure 6.2: Statistiné galia atlikus imitacijas pagal (S3) scenariju

(53) Scenarijaus metu buvo konstruojama imtis is diskreéiy stebéjimy, kai
apie funkcine duomeny imtj nieko néra zinoma (iSskyrus tai, kad egzistuoja
epideminis pasikeitimas), kas atspindi realaus gyvenimo atveji. Imitacijos buvo
atliktos norint patikrinti (6.14) ir (6.13) statistiniy testy galias. Rezultatai

pavaizduoti 6.2 paveiksle.
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Isvados

Sioje disertacijoje buvo apibrézti nagrinéjami objektai ir modeliai vienmagdi-
ams ir funkciniams duomenims. Apibréztas vidurkio nestabilumo testavimo
modelis, paremtas daliniy sumy proceso p-variacija. Testo statistiné galia
buvo isanalizuota imitaciniais metodais ir teoriskai istirtas testo suderinamu-
mas. Taip pat buvo teoriskai nustatyti ribiniai skirstiniai prie nulinés ir alter-
natyvios hipoteziy. Sie rezultatai buvo apibendrinami ir pritaikyti funkciniams
duomenims. Buvo iSnagrinéta procesy indeksuoty funkcijomis sumy (G-sumu)
asimptotika. Teoriskai buvo nustatyti ribiniai skirstiniai ir apibrézti testai, tin-
kantys nustatyi vienam pasikeitimui, m pasikeitimams ir nezinomam skaic¢iui
pasikeitimy. Testai, pritaikyti funkciniams duomenims, buvo iSanalizuoti im-
itaciniais metodais.

Su pasikeitimo tasky problema susiduriama daugelyje sri¢iy, kaip medicina,
ekonomika, klimato kaita, vaizdy ir garsy analizé. Disertacijoje buvo pademon-
struota, kaip pasiulyti testai gali buti pritaikomi klimato kaitos duomenims ir
fiziologiniams duomenims. Neapsiribojant tik Siomis sritimis, pasiulyti testai
gali buti placiai taikomi ir kitur.

Sie testai gali buti pléetojami toliau, pavyzdziui, adaptuojami daznio
pasikeitimams nustatyti, naudojant tolydzios vilnelés transformacijas (angl.
Continuous wavelet transform). TolydZios vilneliy transformacijos metodai lei-
dzia atlikti nestacionariy signaly spektrine analize ir jvertinti spektro pokycius
laikui bégant. Tokiu budu sukonstruotiems funkciniams duomenims galime
taikyti vieno ar daugiau pasikeitimy tasky nustatymo testus, pasiulytus sioje

disertacijoje.
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