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Introduction

With the rapid development of technology, great progress has been made in
the digitization of data. Over the past decades, the amount and variety of data
collected have grown exponentially. Data is collected in practically all areas:
starting from physical phenomena observed in nature, physiological data in
medicine, economic phenomena or smart watches that record the physiological
data. Indeed, there is no field left untouched by the digitization revolution.
Naturally, such rapid digitization raises many questions about data structure.
One of the problems often encountered in data analysis is structural changes
in time series. Changes may not be obvious or difficult to notice, therefore,
solving such problems requires theoretically based mathematical instruments.

A change point, also known as a structural break or regime shift is a point
in time at which the mean, variance, pattern, distribution, or other statistical
property in time series changes abruptly or continuously. Change-points can
occur in a variety of different contexts and can be caused by a wide range of
factors, such as shifts in consumer behavior, changes in market conditions, or
the introduction of new policies or regulations.

Change-points are often of interest in statistical analysis and data mining,
as they can provide valuable insights into the underlying patterns and trends in
the data. For example, detecting change-points in a time series data can help
identify anomalies or irregularities in the data, and can be useful for predicting
future trends or making informed decisions. Change point detection involves
the analysis of two main questions:

1. Did the statistical characteristics of the data alter at any point in time?

2. If there was a change, when did it occur?

In certain situations, it is straightforward to identify structural changes in
processes. For instance, the economy may experience a recession and then re-
cover. The criteria that define a recession are well-defined and clearly stated.
In other areas, it can be almost impossible to detect change points without us-
ing mathematical methods. Mathematical methods are particularly important
when systems must automatically respond to a changed situation. For exam-
ple, if the vibration level has changed, the engine must be shut off to prevent a
crash. The analysis of change points has gained popularity with the emergence
of smart devices, such as smart watches that can detect in real-time when a
person starts running, climbing stairs, or falling asleep. Change point analy-
sis is particularly relevant in the field of medicine, where medical measuring
devices are used to continuously record data on a patient’s physiological con-
dition. This is important because detecting and reacting to changes as soon as
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possible can help to prevent negative consequences. For example, if a medical
device is able to detect that a patient’s physiological condition has changed
significantly, medical intervention can be provided in a timely manner to avoid
serious health complications. One specific application of change point analysis
is in the detection and real-time recording of epileptic seizures. As an example,
Malladi et al. presented a method for real-time monitoring of epileptic seizures
in their publication [46]. Another example where change point analysis is fre-
quently employed in the field of medicine is when monitoring of cardiac activity
through Electrocardiogram (ECG). To identify changes in the heart, various
transformation methods, including wavelet transformations [53, 57], have been
utilized. Hidden Markov models [41] and graph-constrained methods [25] are
additional approaches that have been applied to ECG data. Fotoohinasab et
al. provide a comprehensive overview of the different methods for change point
analysis of ECG data in their publication [25].

Change point analysis is not limited to time series data. It is also frequently
used to analyze images and audio signals. For example, magnetic resonance
imaging produces 3D images that can be analyzed for change points [12,47,68].
In the case of audio recordings, change point analysis is often used to separate
segments of speech from other sounds, which is important for tasks such as
developing automatic speech recognition models, echo cancellation, and speech
segmentation [35,37,73]. In many cases, the first step in solving these types of
problems is to split the audio signal into distinct segments.

Overall, change point analysis is a useful technique for identifying changes
in various types of data, including time series, images, and audio signals.

There is no universal definition of what constitutes a change. A change
could be seen as a change in the data-generating model or model parameters,
or it could be a change in distribution parameters such as mean (as shown
in Fig. 1.4a in Chapter 1, section 1.3) or variance (as shown in Fig. 1.4b in
Chapter 1, section 1.3). These types of changes are often considered in change
point analysis. There are many methods that have been proposed for detecting
changes in distributions (see [55]). However, other types of changes, such as
changes in frequency and pattern, have received less attention. Changes in
frequency (as shown in Fig. 1.5b in Chapter 1, section 1.3) are important for
analyzing data with cyclical properties. These changes are often studied in the
frequency domain using techniques such as the Fourier or wavelet transform
(see [53, 57]). Detecting pattern changes (as shown in Fig. 1.5a in Chapter
1, section 1.3) is one of the most challenging tasks in change point analysis,
and the coverage of methods for this problem in the scientific literature is not
extensive. However, this is a relevant problem in areas such as brain wave
analysis (see [72]).

The problem of change points has been extensively studied in the clas-
sical literature, and many detection algorithms have been proposed for one-
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dimensional time series data. One of the first algorithms for change point
detection is the Cumulative Sum (CUMSUM) algorithm, which was developed
by Page in 1954 [50]. The CUMSUM algorithm was specifically designed to
detect changes in the mean of a time series, and it has been widely used in
quality control processes to ensure consistent production.

Change point detection methods can be classified into two main categories:
parametric and nonparametric methods. Parametric methods assume a specific
underlying probability distribution for the data, while nonparametric methods
do not make such assumptions and instead use a range of heuristic and data-
driven approaches to identify change points.

In change point detection, the concept of online and offline refers to the
availability of the data being analyzed. Offline change point detection refers to
the analysis of a complete, fixed dataset, while online change point detection,
on the other hand, refers to the analysis of a dataset that is continuously
growing.

In contrast, this thesis focuses on the offline problem of change point de-
tection in a data sample that is invariant, meaning that the data set is fixed
and not constantly growing.

Change point analysis is not limited to univariate time series data. In recent
years, there has been a significant increase in research on change point detection
in multidimensional time series data, which refers to data that has multiple
variables measured over time. This type of analysis is useful in situations
where there are multiple factors that may be influencing a system or process,
and it can provide insights into how these factors are related and how they
change over time.

Functional data analysis provides a natural framework for analyzing mul-
tivariate time series data. As a result, more and more classical methods are
being adapted to work with functional data, which is a natural extension of
multidimensional data from finite dimensions to infinite dimensions. In prac-
tice, functional data is often obtained by observing multiple subjects over time,
space, or other continuous domains, and it can take the form of curves, surfaces,
or other complex objects. Representing multidimensional data as functions
greatly expands the range of analysis tools available, and functional principal
components are often more informative than multidimensional principal com-
ponents. As functional data analysis becomes more popular, the problem of
detecting change points between curves (as shown in Fig. 1.6a and Fig. 1.6b,
in Chapter 1, section 1.3) becomes increasingly relevant.

The first methods for analyzing functional data were mentioned as early
as 1950, when Grenander (see [29]) attempted to apply statistical methods
to stochastic processes. Later, in 1958, Rao (see [64]) used functional data
analysis to compare the growth curves of organisms. The term "functional
data analysis" itself was first coined by Ramsey in 1982 (see [61]). Extensive
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discussions on the analysis and applications of functional data can be found in
Ramsey and Silverman’s book (see [63]), and a comprehensive review of the
field is provided by Wang et al. (see [77]).

Aim and objectives

The primary objective of this dissertation is to investigate statistical techniques
for the identification of change points in both univariate and functional samples.
Specifically, the focus will be on proposing novel statistical tests based on the
variation properties of the CUSUM process for change point detection.

To achieve the goal of the research, the following objectives have been for-
mulated:

1. Define the objects and models under consideration.

2. Define and investigate a mean instability testing model based on the p-
variation of the partial sum process.

3. Establish the limiting distribution of the test statistics under the null
hypothesis and the contiguous alternative.

4. Define the G-sum process and analyze its asymptotic behavior.

5. Construct statistical tests for change point detection in functional data
based on the G-sum process.

6. Analyze the proposed tests using simulation methods.

7. Apply the tests to real data.

Practical and scientific novelty

This thesis presents the development of novel statistical tests based on a p-
variation of CUSUM process for the efficient detection of mean instabilities in
both univariate and functional samples. The proposed tests include:

1. A test for At Most One Change (AMOC) in mean instabilities over time.

2. A test for detecting at most m change points.

3. A test for detecting an unknown number of change points.

The tests proposed in this thesis are effective for both large and small
samples, and they can be practically applied in various fields such as medicine,
image and sound analysis, climate change, and others. The tests are designed
to detect changes in the mean, but the design of the tests can be generalized
for other types of changes.
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Layout of the dissertation

The dissertation consists of an summary, three chapters, general conclusions
and a discussion of further research and a bibliography.

• Chapter 1 introduces the reader to the main concept of function varia-
tion, as well as basic concepts of functional data analysis. It then focuses
on change point problems, with an extensive review of available methods
and their importance in different domains.

• In Chapter 2, a new method based on the p-variation properties of
partial sums is proposed for detecting mean changes, and the theoretical
aspects are examined. At the end of the chapter, the statistical power
of the proposed test is evaluated through simulations and applied to real
data.

• In Chapter 3, the proposed univariate test is generalized and adapted
to functional data. The G-sum and G-cusum processes are defined and
their asymptotic behavior is considered in the framework of the ℓ∞(G)
space. This framework is used to derive the asymptotic distributions
of the test statistics, and three tests are presented, following simulation
studies. Finally, the tests are applied to real data.

Maintaining statements

• The limit distributions of the G-sum and G-cusum processes has been
determined for random functions.

• A statistical test based on the p-variation of partial sums has been de-
veloped to detect changes in the mean.

• The asymptotic properties of G-cusum process has been used for testing
known and unknown number of change points in the mean of a functional
sample.

Dissemination of results

Publications

[A1] T. Danielius, A. Račkauskas, p-Variation of CUSUM process and testing
change in the mean, Communications in Statistics-Simulation and Com-
putation, 1–13 (2020). https://doi.org/10.1080/03610918.2020.1844899

[A2] T. Danielius, A. Račkauskas, Multiple change point detection in
functional sample via G-sum process, Mathematics 10.13, (2022).
https://doi.org/10.3390/math10132294
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Conferences

[C1] T. Danielius. Functional data analysis of neurophysiological data: case
study. NBBC19 : 7th Nordic-Baltic biometric conference, 3-5 June 2019,
Vilnius, Lithuania.

[C2] T. Danielius, A. Račkauskas. p-variation of cusum process and testing
change in the mean, 13th International Conference of the ERCIM WG on
Computational and Methodological Statistics (CMStatistics 2020) 19-21
December 2020, Virtual Conference.

[C3] T. Danielius, A. Račkauskas. Multiple change point detection in func-
tional sample via G-sum process, 63th Conference of the Lithuanian Math-
ematical Society, Kaunas University, 16-27 June 2022.

[C4] T. Danielius, A. Račkauskas. Multiple change point detection in func-
tional sample via G-sum process, 24th International Conference on Com-
putational Statistics (CompStat 2022), 23-26 August 2022, Bologna,
Italy.

[C5] T. Danielius. Pasikeitimo taškų testai funkciniams duomenims paremti
p-variacija, Seminar Statistics and its applications, Vilnius University
Institute of Applied Mathematics, 7 August 2022, Vilnius, Lithuania.

Main results

For a univariate sample X1, X2, . . . , Xn and the number p > 2, we define the
test statistics

Tp,n(X1, . . . , Xn) = max
{∑m

j=1

∣∣∣∑kj

i=kj−1+1(Xi −Xn)
∣∣∣p : 0 = k0 < · · · < km = n; 1 ≤ m ≤ n

}
,

where Xn = n−1(X1 + · · · + Xn). It is important to review some necessary
definitions as we continue to analyze these statistics. For a function f : [0, 1] →
R and a number 0 < p < ∞, the p-variation of f on the interval [0, t] is

vp(f ; [0, t]) := sup


m∑
j=1

|f(tj) − f(tj−1)|p
 ≤ +∞,

where the supremum is taken over all partitions

0 = t0 < t1 < · · · < tm = t; m = 1, 2, . . . ,

of the interval [0, t]. We abbreviate vp(f) := vp(f ; [0, 1]). If vp(f) < ∞ then we
say that f has bounded p-variation, and Wp[0, 1] is the set of all such functions.
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The set Wp[0, 1], p ≥ 1, is a non separable Banach space with the norm

∥f∥[p] := |f(0)| + v1/p
p (f).

For each n ≥ 1 and each t ∈ [0, 1], let

Sn(t) = 0 if t ∈ [0, 1/n), Sn(t) :=
⌊nt⌋∑
i=1

Xi, if t ∈ [1/n, 1],

where for a real number x ≥ 0, ⌊x⌋ := max{k : k ∈ N, k ≤ x},N = {0, 1, . . . }.
Then the cusum process Zn = (Zn(t), t ∈ [0, 1]) is defined as

Zn(t) = Sn(t) − ⌊nt⌋
n

Sn(1) =
⌊nt⌋∑
i=1

(Xi −Xn).

Classical examples of path spaces for the process Zn include the Hilbert
space L2[0, 1] and the Skorohod space D[0, 1]. Under various assumptions, a
functional central limit theorem is established in these spaces. For example, the
classical Donsker theorem for i.i.d. sequence (Xn) with finite second moment
states that

n−1/2Zn
D−−−−→

n→∞
σB in the space D[0, 1],

where B = (B(s) := W (s) − sW (1), s ∈ [0, 1]) is a standard Brownian bridge,
and W = (W (s), s ∈ [0, 1]) is a standard Wiener process, and σ2 = var(X1).

The main result of the Chapter 2 is the following theorem

Theorem 1. Fix p > 2. Let X1, X2, . . . be a sequence of independent identi-
cally distributed random variables and let Sn = (Sn(t), t ∈ [0, 1]) be the partial
sum process. If σ2 := EX2

1 < ∞, then the convergence

n−1/2Zn
D∗

−−−−→
n→∞

σB in Wp[0, 1]

holds.

For independent random sampleX1, . . . , Xn we consider the following model

Xi = δ1(k∗,n](i) + Yi, i = 1, . . . , n,

where Y1, . . . , Yn are i.i.d. random variables with E(Yi) = 0, E(Y 2
i ) = 1 and

δ ∈ R, k∗ ∈ {1, . . . , n} are unknown parameters.
Under H0 : δ = 0, we prove that for any p > 2,

n−1/2v1/p
p (Zn) D−−−−→

n→∞
v1/p
p (B).

Under contiguous alternative where δ = δn ≈
√
nδ∗, and k∗ = ⌊nθ∗⌋ with some
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δ∗ > 0, and θ∗ ∈ (0, 1), we prove that

n−1/2v1/p
p (Zn) D−−−−→

n→∞
v1/p
p (B − f),

where f(t) =
{
δ∗t(1 − θ∗) if 0 ≤ t < θ∗

δ∗θ∗(1 − t) if θ∗ ≤ t ≤ 1
.

These two results are theoretical justification for statistics used to detect a
change point in the mean. The power of the test was investigated by simula-
tions.

Next, we consider a second-order stationary sequence of stochastic processes
Yi = (Yi(t), t ∈ [0, 1]), i ∈ N, defined on a probability space (Ω,F , P ), having
zero mean and covariance function γ = {γ(s, t), s, t ∈ [0, 1]}. For a given
functional sample X1(t), . . . , Xn(t), t ∈ [0, 1], we consider the model:

Xk(t) = g(k/n, t) + Yk(t), t ∈ [0, 1], k = 1, . . . , n, (1)

where the function g : [0, 1] × [0, 1] → R is deterministic, but unobserved. Our
aim is to test the hypothesis:

H0 : g = 0 versus H1 : g ̸= 0

with emphasis on a case of change-point detection, which corresponds to a
piecewise-constant function g with respect to the first argument.

This model covers a broad range of real-world problems such as climate
change detection, image analysis, analysis of medical treatments, especially
magnetic resonance images of brain activities, and speech recognition, to name
a few. Besides, the change-point detection model (1) can be used for knot
selection in spline smoothing as well as for trend changes in functional time
series analysis.

The methodology we propose is based on some measures of variation of the
process:

Wn(s) =
⌊ns⌋∑
k=1

(Xk −Xn) + (ns− ⌊ns⌋)(X⌊ns⌋+1 −Xn), s ∈ [0, 1],

where Xn = n−1(X1 + · · · +Xn).
Since this process is infinite-dimensional, we used the projections tech-

nique to reduce the dimension. To this aim, we assumed that Yi is mean-
squared continuous and jointly measurable and that γ has finite trace: tr(γ) =∫ 1

0 γ(t, t) dt < ∞. In this case, Yi is also an L2(0, 1)-valued random element,
where L2 := L2(0, 1) is a Hilbert space of Lebesgue square integrable functions
on [0, 1] endowed with the inner product ⟨f, g⟩ =

∫ 1
0 f(t)g(t) dt and the norm

∥f∥ :=
√

⟨f, f⟩. For two given sets F ,Ψ ⊂ L2, we consider the F × Ψ-sum
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process:

νn =
( n∑
k=1

νnk(f, ψ), f ∈ F , ψ ∈ Ψ
)
,

where νnk(f, ψ) = ⟨Xk, ψ⟩λnk(f), λnk is a uniform probability on the inter-
val [(k − 1)/n, k/n] and λnk(f) =

∫ 1
0 f(t) dλnk(t). A natural framework for

stochastic process νn is the space ℓ∞(G), where G = F × Ψ. Recall for a class
G that ℓ∞(G) is a Banach space of all uniformly bounded real-valued functions
µ on G endowed with the uniform norm:

∥µ∥G := sup{|µ(g)| : g ∈ G}.

The limiting zero mean Gaussian process νγ = (ν(f, ψ), f ∈ F , ψ ∈ Ψ) is
defined via covariance:

Eνγ(f, ψ)νγ(f ′, ψ′) = Kγ((f, ψ), (f ′, ψ, )) := ⟨Γψ,ψ′⟩⟨f, f ′⟩, ψ, ψ′, f, f ′ ∈ L2,

where Γ : L2 → L2 is the covariance operator corresponding to the kernel γ.

Assumption 1. Random processes Y, Y1, Y2, . . . are i.i.d. mean square con-
tinuous, jointly measurable, with mean zero and covariance γ such that∫ 1

0 γ(t, t) dt < ∞.

For the model (1), we consider null hypothesis H0 : g = 0 and two possible
alternatives:

HA : g = gn = unqn, where un → u in W2[0, 1],
√
nqn → q in L2,

and

H ′
A : g = gn = unqn, where un → u in W2[0, 1],

√
n sup
ψ∈Ψ

|⟨qn, ψ⟩| → ∞.

In both alternatives, the function un is responsible for the configuration of
a drift within the sample, whereas the function qn estimates a magnitude of
the drift.

Theorem 2. Let the random processes (Xk) be defined by (1), where
Y, Y1, Y2, . . . satisfy Assumption 1. Assume that, for some 1 ≤ q < 2, the
set F ⊂ Wq[0, 1] is bounded and the set Ψ ⊂ L2 satisfies∫ 1

0

√
logN(ε,Ψ, ρ) dε < ∞. (2)

Then, there exists a version of a Gaussian process νγ on L2 × L2 such that its
restriction on F × Ψ, (νγ(f, ψ), f ∈ F , ψ ∈ Ψ) is continuous and the follow-
ing hold:
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(1a) Under H0:
n−1/2νn

D−−−−→
n→∞

νγ in ℓ∞(F × Ψ). (3)

(1b) Under HA,

n−1/2νn
D−−−−→

n→∞
νγ + ∆, in ℓ∞(F × Ψ), (4)

where
∆(f, ψ) = ⟨u, f⟩⟨q, ψ⟩.

If u(s) = 1, s ∈ [0, 1], then the alternative HA corresponds to the presence
of a signal in a noise. In this case, ∆(f, ψ) = λ(f)⟨q, ψ⟩. Therefore, the use of
this theorem for testing a signal in a noise is meaningful provided ⟨q, ψ⟩ ≠ 0.

Assumption 2. The eigenvalues λr satisfy, for some d > 0,

λ1 > λ2 > · · · > λd > λd+1 ≥ 0.

One estimates Γ by

Γ̂n := 1
n

n∑
i=1

[(Xi −Xn) ⊗ (Xi −Xn)],

where Xn(s) = n−1(X1(s) + · · · + Xn(s)). We denote the eigenvalues and
eigenfunctions of Γ̂ by λ̂nr and ψ̂nr, r = 1, . . . , n− 1, respectively. In order to
ensure that ψ̂nr may be viewed as an estimator of ψr rather than of −ψr, we
will in the following assume that the signs are such that ⟨ψ̂nr, ψr⟩ ≥ 0. Note
that

Γ̂ψ̂nr = λ̂nrψ̂nr, r = 1, . . . , n− 1, (5)

and

λ̂nr = 1
n− 1

n∑
i=1

⟨Xi −Xn, ψ̂nr⟩2, r = 1, . . . , n. (6)

Define for d > 0,

T̂n,1(d) := max
1≤j≤d

1√
λ̂j

max
1≤k≤n

∣∣∣ k∑
i=1

⟨Xi −Xn, ψ̂j⟩
∣∣∣. (7)

This statistic is designed for at most one change-point alternative. Its lim-
iting distribution is established in the following theorem.

Theorem 3. Let random functional sample (Xk) be defined by (1) where
Y, Y1, Y2, . . . satisfies Assumptions 1 and 2. Then,
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(a) Under H0, it holds that

n−1/2T̂n,1(d) D−−−−→
n→∞

sup
1≤k≤d

sup
0≤t≤1

|Bk(t)|,

where B1, . . . , Bd are independent standard Brownian bridge processes;

(b) Under HA, it holds that

n−1/2T̂n,1(d) D−−−−→
n→∞

sup
1≤k≤d

sup
0≤t≤1

|Bk(t) + ∆(t)⟨q, ψk/
√
λk⟩|,

where
∆(t) =

∫ t

0
u(s) ds− t

∫ 1

0
u(s) ds, t ∈ [0, 1]. (8)

(c) Under H ′
A, it holds that

n−1/2T̂n,1(d) P−−−−→
n→∞

∞.

Based on this result, we construct the testing procedure in a classical way.
Choose for a given α ∈ (0, 1), Cα > 0 such that

P ( sup
1≤k≤d

sup
0≤t≤1

|Bk(t)| > Cα) = α.

According to Theorem 3, the test:

T̂n,1(d) ≥
√
nCα (9)

has asymptotic level α.
Let us note that, due to the independence of Brownian bridges Bk, k =

1, . . . , d, we have

1 − α = P ( sup
1≤k≤d

sup
0≤t≤1

|Bk(t)| ≤ Cα) = P d( sup
0≤t≤1

|B1(t)| ≤ Cα).

This yields
P ( sup

0≤t≤1
|B1(t)| ≤ Cα) = (1 − α)1/d.

Hence, Cα is the (1 − α)1/d-quantile of the distribution of sup0≤t≤1 |B1(t)|.
This observation simplifies the calculations of critical values Cα.

In particular, if there is s∗ ∈ (0, 1) such that u(s) = 1[0,s∗](s), s ∈ [0, 1],
then we have one change-point model:

Xk(t) = 1[0,s∗](k/n)qn(t) + Yk(t), t ∈ [0, 1].

In this case, ∆(t) = ∆∗(t) := min{t, s∗} − ts∗, t ∈ [0, 1]. Let us observe
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that test statistic T̂n,1(d) tends to infinity when d → ∞. On the other hand,
with larger d, the approximation of Xj by series

∑d
k=1⟨X, ψ̂j⟩ψ̂j is better and

leads to better testing power. The following result establishes the asymptotic
distribution of T̂n,1(d) as d → ∞.

Theorem 4. Let random functional sample (Xk) be defined by (1) where
Y, Y1, Y2, . . . satisfies Assumption 1. Then, under H0,

lim
d→∞

lim
n→∞

P
(
n−1/2T̂n,1(d) ≤ x

ad
+ bd

)
= exp{−e−x}, x ≥ 0, (10)

where
ad = (8 ln d)1/2, bd = 1

4ad + ln ln d
ad

. (11)

When d is large, the test (9) becomes

T̂n,1 ≥
√
n
[ 1
ad

ln
( 1

ln(1/α)

)
+ bd

]
(12)

and has asymptotic level α as n and d tend to infinity.
For m > 1, let Nm be a set of all partitions κ = (ki, i = 0, 1, . . . ,m) of the

set {0, 1, . . . , n} such that 0 = k0 < k1 < · · · < km−1 < km = n. Next, consider
for fixed integers d, 1 ≤ m < n and real p > 2,

T̂n,m(d, p) := max
1≤j≤d

1√
λ̂j

max
κ∈Nm

{ m∑
i=1

∣∣∣ ki∑
k=ki−1+1

⟨Xk −Xn, ψ̂j⟩
∣∣∣p}1/p

. (13)

The statistic T̂n,m(d, p) is designed for testing at most m change-points in
a sample.

Theorem 5. Let the random sample (Xi, i = 1, . . . , n) be as in Theorem
2. Then:

(a) Under H0,
n−1/2T̂n,m(d, p) D−−−−→

n→∞
max

1≤j≤d
v1/p
m,p(Bj),

where B1, . . . , Bd are independent standard Brownian bridges.

(b) Under HA,

n−1/2T̂n,m(d, p) D−−−−→
n→∞

max
1≤j≤d

v1/p
m,p(Bj + ∆⟨q, ψ̂j/

√
λ̂j⟩).

(c) Under H ′
A,

n−1/2T̂n,m(d, p) P−−−−→
n→∞

∞.
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According to this theorem, the test:

T̂n,m(d, p) ≥
√
nCα(m, d, p) (14)

has asymptotic level α, if Cα(m, d, p) is such that

P (v1/p
m,p(B) ≤ Cα(m, d, p)) = (1 − α)1/d.

Next, fixed integer d and real p > 2, we define

T̂n(d, p) := max
1≤j≤d

1√
λ̂j

max
1≤m≤n

max
κ∈Nm

{ m∑
i=1

∣∣∣ ki∑
k=ki−1+1

⟨Xk −Xn, ψ̂j⟩
∣∣∣p}1/p

. (15)

The statistic T̂n(d, p) is designed for testing an unknown number of change-
points in a sample.

Theorem 6. Let random sample (Xi, i = 1, . . . , n) be as in Theorem 2. Then:

(a) Under H0,
n−1/2T̂n(d, p) D−−−−→

n→∞
max

1≤j≤d
v1/p
p (Bj),

where B1, . . . , Bd are independent standard Brownian bridges.

(b) Under HA,

n−1/2T̂n(d, p) D−−−−→
n→∞

max
1≤j≤d

v1/p
p (Bj + ∆⟨q, ψ̂j/

√
λ̂j⟩),

where ∆(t), t ∈ [0, 1] is as defined in Theorem 2.

(c) Under H ′
A,

n−1/2T̂n(d, p) P−−−−→
n→∞

∞.

According to this result the test:

T̂n(d, p) ≥
√
nCα(d, p) (16)

has asymptotic level α, if Cα(d, p) is such that

P (v1/p
p (B) ≤ Cα(d, p)) = (1 − α)1/d.

Simulation results

In the univariate case, the statistical power was estimated using Monte-Carlo
simulations. The sliding window approach was then used to identify the lo-
cations of change points and to detect multiple change points. The test was
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applied to a dataset of annual Nile river flow measurements from 1871 to 1970,
which contained a known change point around 1898 [18].

Consider a sequence X1, . . . , Xn, n ≥ 1, of independent random variables.
Suppose there exists a τ ∈ [0, 1] such that X1, . . . , Xnτ have the distribution
N (µ1, σ

2) and Xnτ+1, . . . , Xn have the distribution N (µ2, σ
2). Given α we

construct consistent critical point aα such that

P
(
v1/p
p (Zn) < aα

)
= α

for H0 : τ = 0 versus H1 : τ ∈ (0, 1].
The distribution of v1/p

p (Zn) was estimated using Monte-Carlo simulations
with n = 1000 and k = 100000 where k is number of replicated copies of
the Zn process. The resulting distribution for different values of p-variation
(p = 3, 4, 8) is shown in Figure 2.1, with critical values at the asymptotic level
of α = 0.95 marked.

The power of detection was evaluated by studying Type II errors under
the alternative hypothesis. The aim was to evaluate the statistical power in
different scenarios. First, the magnitude of the change was varied by incre-
mentally increasing the value of a, such that µ2 = a. The resulting statistical
power with respect to different values of a and different numbers of observa-
tions (n = 1000, 10000, 30000) is shown in Figure 2.2a. The simulation results
show that if the number of observations is large enough (n ≥ 30000), the null
hypothesis is correctly rejected more than 80% of the time when µ2 > 0.035.

In the second scenario, the statistical power was evaluated with respect
to τ values with n = 1000. The value of τ represents the location of the
change point. This simulation demonstrates the speed at which changes can be
detected. The simulated results are shown in Figure 2.2b. It can be seen that
if |µ1 − µ2| ≥ 0.3, a τ value as small as 0.20 is sufficient to achieve a statistical
power of 80%.

Simulation results demonstrate that the sliding window method is effective
at identifying the location of the change points in data (see Figure 2.3). The red
dashed line indicates the critical value with a significance level of α = 0.95. It is
typically observed that the statistic used to detect change points will approach
this critical value around the point where a change is present.

We analyzed the annual flow of the River Nile at Aswan from 1871 to 1970,
using data recorded in units of 108m3. There is a known change point in
the data near 1898 [18], and the measurements may provide insight into the
patterns of rainfall in the region. The results of the proposed test show (see
Figure 2.4) that the null hypothesis was rejected around the year 1898, which
is very similar to what other researchers have indicated.

In our tests of the functional sample, we used three scenarios to evaluate
statistical power. In the first scenario, the actual eigenvalues and eigenfunctions
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were known, allowing us to avoid any data loss or measurement errors. In the
second scenario, we reconstructed the generated functional sample from the
first scenario by measuring the values at random times (10 and 200 data points)
and using a different set of basis functions constructed functional sample. This
allowed us to measure the impact of information loss due to measurements
taken at discrete points and smoothing. The simulation results showed (see
Figure 3.6) that the performance of the test is not significantly affected by the
reconstruction of the random functional sample if we have enough data points.
However, if the number of points is much lower (from 200 points to 10 points),
we can see a degradation in performance.

In the third scenario the discrete observations (i/M, yij), i =
0, 1, . . . ,M, j = 1, . . . , n, are generated by taking

yij = M−1/2
i∑

k=1
ξkj ,

where (ξjk) are i.i.d. symmetrized Pareto random variables with index p (we
used p = 5). The yij can be interpreted as the observation of a standard Wiener
process at i/M . From (yij , i = 1, . . . ,M), the function Yj is obtained using the
B-spline smoothing technique. During the simulation, we used M = 1000 and
D = 50 B-spline functions, thus obtaining n = 500 functions Y1, . . . , Yn.

Then, we define for j = 1, . . . , n,

Xj =
{
Yj , under null
un(j/n)qn + Yj , under alternative

and consider different configurations un of change-points and qn(t) =
an

√
Mt, t ∈ [0, 1].

In the power studies, we tested two variants of the random functional sam-
ples. One had a single change point in the middle, and the other had two change
points forming an epidemic change. In the first case, we modified 500 of the
1000 curves in the functional sample to violate the null hypothesis. In the sec-
ond case, we modified 500 of the 1500 curves in the middle of the sample. For
each repetition, we calculated two statistics in the single change-point simula-
tion: T̂n(d, p) and T̂n,1(d). For the epidemic change simulation, we calculated
T̂n,m(d, p) with m = 2.

Figure 3.8 presents the results of the statistical power simulation for a single
change point (left) and an epidemic change (right). The results show that the
epidemic change has weaker statistical power when using the statistic T̂n,m(d, p)
compared to the unknown number of change point statistic T̂n(d, p). However,
when restricting the partition count, the locations of the partitions often match
or are very close to the actual locations of the change point.
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For the real-world data, we used neurophysiological data and lickometer
data from a long-term study on alcohol-consuming rats to demonstrate the
performance of the proposed test for change-point detection. The rats were
given two drinking bouts, one with alcohol and one with water, and were able
to freely choose what to drink while their brain activity was monitored. In
our analysis, we analyzed the first alcohol-drinking event, which lasted ap-
proximately 27 seconds. We included 10 seconds before and after the event,
totaling 47 seconds. The time series was divided into processes of 100 ms, each
containing 100 data points.

The results are visualized in Figure 3.9. We can see that the tests with
statistics T̂n(d, p) and T̂(n,m)(d, p) strongly rejected the null hypothesis at
around 2 seconds after the rat started to drink alcohol, indicating changes
in brain activity during alcohol consumption in the CPu brain region. The
statistic T̂n,m(d, p) had larger volatility in the Nacc brain region before the
drinking event and lower volatility just after the event began.

Finally, the locations of the restricted (m = 2) p-variation partition points
closely matched the beginning and end of the drinking period. In Figure 3.9, the
gray vertical dashed lines indicate the actual beginning and end of the drinking
period measured by the lickometer, and the black vertical lines indicate the
location of the partitions calculated from the functional sample F̂450. The first
partition is located at 10.5 seconds, and the second partition point is at 38.4
seconds, which aligns well with the data collected from the lickometer. The
test with a restricted partition count showed larger volatility but accurately
determined the locations of the change points.
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1. Background

This manuscript is devoted to problems related to Change point detection
(CPD). Change point Analysis (CPA) is a powerful tool for evaluating struc-
tural changes in data and is widely used in many fields. The goal of this work
is to extend the existing set of tools with a novel approach. First, we lay the
foundation for the univariate process, based on measures of variation of the
partial sum process. Then, we extend the method to a functional sample.

Before discussing change points in detail, we introduce the reader to con-
cepts that are fundamental to the methods we propose in Chapters 2 and 3.
Specifically, we focus on two concepts: the variation of functions (covered in
section 1.1) and Funtional Data Analysis (FDA) concepts and tools (covered
in Section 1.2).

Next, we introduce the reader to the field of change point analysis. Section
1.3 defines the terminology that is used throughout this thesis. Then, we
review the existing methods and how our work relates to the existing literature
on CPD. In Section 1.3, we present real-world situations where CPD is applied.
Finally, we review the progress in CPD for functional data in Section 1.4.

1.1. p-Variation of the function

Camile Jordan in his paper [36], devoted to the convergence of Fourier series,
introduced notation of the variation of the function. He used the new concept
in order to prove the convergence theorem for the Fourier series of discontinuous
period functions whose variation is bounded. Several generalizations and exten-
sions of the concept of p-variation have been proposed, including the functions
of bounded p-variation and the functions of bounded φ-variation. The latter
notation was introduced by L.C. Young in 1937 [82] and has found widespread
application. The p-variation term was first coined by Wiener in 1924 [78]. In
his work, Wiener mainly focused on the case of the 2-variation (p = 2). He
defined the p-variation of a function f as a collection of seminorms indexed by
a real number p ≥ 1, derived from the function defined on an ordered set of a
metric space.

Later, major research with p ̸= 2 was done by Young [81] and partly Love
[45]. Young considered an inequality bearing a formal resemblance to that of
Hölder and derived conditions for the existence of a Stieltjes integral. Young’s
integration theory allowed to define

∫
ydx as soon as y had finite q-variation

and x had a finite p-variation with 1/p+ 1/q > 1.
If p = 1, the variation is referred to as the total variation. Functions with a

finite 1-variation are known as bounded variation functions. The concept of the
total variation was introduced by Camile Jordan in 1881 [36]. The total varia-
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tion has found numerous applications in various branches of mathematics and
engineering, including the numerical analysis of differential equations (see [32]).
Functions of bounded variation have received significant attention due to their
use in the study of discontinuities and differentiability. These types of func-
tions, which exhibit bounded oscillation or "roughness", have found numerous
applications in the applied sciences, including physics, mechanics, chemistry,
and more. Their ability to accommodate discontinuities has made them par-
ticularly useful in these fields. In image denoising, total variation was applied
in order to reduce the noise of the image [15,66].

For extensive use of p-variation, the reader may refer to the book by Dudley
and Norvaiša [23].

Definition 1.1.1. A finite sequence κ = {ti}ni=0 for a positive integer n is
called a partition of [a, b] if a = t0 < t1 · · · < tn = b.

Definition 1.1.2. Let f be any real-valued function on an interval [a, b] with
−∞ < a ≤ b < +∞ and let 0 < p < ∞. If a < b, for a partition κ = {ti}ni=0,
the p-variation sum for f over κ is defined by

sp(f ;κ) :=
{

n∑
i=1

|f(ti) − f(ti−1)|p
}
.

The p-variation of f on [a, b] is defined as vp(f ; [a, b]) := 0 if a = b and

vp(f) := vp(f ; [a, b]) := sup
κ
sp(f ;κ)

if a < b, where the supremum is over all partitions κ of [a, b]. Then f is said
to be of bounded p-variation on [a, b], or f ∈ Wp[a, b], if and only if vp(f) < +∞
and Wp[0, 1] is the set of all such functions. The set Wp[0, 1], p ≥ 1, is a non
separable Banach space with the norm

∥f∥[p] := |f(0)| + v1/p
p (f).

The embedding Wp[0, 1] ↪→ Wq[0, 1] is continuous and

v1/q
q (f) ≤ v1/p

p (f), for 1 ≤ p < q.

For a comparison with the α-Hölder, α ∈ (0, 1], property of f , if p := 1/α
and |f(t) − f(s)| ≤ C|t− s|α, t, s ∈ [0, 1], then we have

m∑
j=1

|f(tj) − f(tj−1)|p ≤ Cp
m∑
j=1

(tj − tj−1) = Cp

and so vp(f) ≤ Cp < ∞.
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It is possible for a f to have unbounded variation, but still vp(f) < ∞ for
some p > 1 and if vp(f) < ∞ then vq(f) < ∞ for q > p. For example, indicator
functions have bounded p-variation for any p > 0.

Computational challenges

To calculate the p-variation of a function f , it is necessary to determine the
supremum in the definition of vp(f) and find a partition κ of the interval
[0, 1] that achieves this maximum. If f is a piecewise monotone function with
local extrema forming a partition κ = (ti) and p = 1, then the supremum in
vp(f) is attainable using this partition. The algorithm for computing the total
variation, given in reference 1, is straightforward and has a complexity of O(n).

Algorithm 1: Computation of the total variation
1 Function 1-variation(X):

/* n is the size of the sample X */
2 n = |X|;
3 v1 = 0;
4 for i = 0; i < n do
5 v1 = v1 + |X[i] −X[i+ 1]|
6 end
7 return v1;

On the other hand, finding a maximizing partition is more complex when
p ̸= 1. Intuitively, it might seem that the maximizing partition points should
be corner points. However, this is not necessarily the case if the function f is
not piecewise monotone. In such a situation, it may be necessary to exclude
certain points from the partition κ to achieve the maximum in the definition
of vp(f). For example, intermediate points within an interval over which f

is increasing should not be treated as corner points, as their inclusion would
result in a smaller value of the variation. Instead, only the endpoints of the
interval should be considered as corner points in this case. To show this we
define the following lemma:

Lemma 1. Let f be a function and Π = {t0, t1, . . . , tn} be a partition. Assume,
that f is a monotone increasing function on interval [ti−1, ti+1]. Then if Π′ =
Πti , vp(f,Π′) ≥ vp(f,Π). If f is strictly increasing and p > 1, then inequality
is strict.

In order to prove lemma 1 we use the following inequality (a+ b)p ≥ ap+ bp

for all a, b ≥ 0 and p ≥ 1.

Proof of lemma 1. From the inequality (a+ b)p ≥ ap + bp it follows
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vp(f,Π
′
)p − vp(f,Π)p = (f (ti+1) − f (ti−1))p − (f (ti+1) − f (ti))p − (f (ti) − f (ti−1))p

=
(
∆tif + ∆ti+1f

)p − (∆tif)p −
(
∆ti+1f

)p ≥ 0

The inequality is strict if ∆t, f > 0,∆t+1f > 0 and p > 1.
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Figure 1.1: figure of the function

Example 1.1.1. Consider the function on an interval [0, 1] illustrated in Figure
1.1 defined as

f(x) =
{
x(2ϵ+ 1), if x < 2−1

2ϵ(x− 1) + x, otherwise

With 0 < ϵ < 0.16, if we partition at the corner points, then

vp(f,Π)p =
(
2−1 + ϵ

)p + (2ϵ)p +
(
2−1 + ϵ

)p = (2ϵ)p + 2
(
2−1 + ϵ

)p ≈ 21−p < 1.

However, this approach does not necessarily result in the maximum p-variation.
If we consider a trivial partition Π′ = 0, 1, then vp(f,Π′) = 1, which is larger
than vp(f,Π) < 1 ≤ vp(f,Π′) for any p > 1. This demonstrates that the trivial
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partition Π′ may yield a larger p-variation than a partition Π that includes
intermediate points.
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Figure 1.2: Illustration of the effect of varying p on the p-variation of the
Brownian bridge.

The p-variation of the Brownian bridge can be illustrated through the exam-
ple depicted in Figure 1.2. The figure shows how the locations of the maximal
partition points, marked in red, vary as the value of p is changed. This demon-
strates how the p-variation of the Brownian bridge is influenced by the value
of p.

Note that, it is necessary to restrict the value of p to be greater than 2
when calculating the p-variation of the Brownian bridge, as shown by the well-
known results of N. Wiener (1923) and P. Lévy (1940). Specifically, it has been
established that

vp(W ) < ∞ almost surely if and only if p > 2;
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as well
vp(B) < ∞ almost surely if and only if p > 2

and v2(W ) = ∞ and v2(B) = ∞ almost surely.

Algorithm 2: Computation of the p-variation with complexity of
O(n2)
Input : sample X and scalar p > 0
Output: vp(X) - p-variation of the sample X

1 Function p-variation(X, p):
/* n is the size of the sample X */

2 n = |X|;
/* P is an array of the cumulative p-variation */

3 P = array[n];
4 for i = 1; i < n do
5 for j = 0; j < i do
6 d = P [j] + |X[i] −X[j]|p;
7 P [j] = max(P [i], d);
8 end
9 end

10 vp = P [n]1/p;
11 return vp;

Calculating vp using a naive approach involves considering all combinations
(see pseudo-code 2), which has a computational complexity of O(n2). This
makes it impractical for larger values of n. An alternative method was pro-
posed by Butkus and Norvaiša in their work, "Computing p-variation of func-
tions," published in 2018 [14]. The algorithm, which has a lower computational
complexity, is available on CRAN1.

In their paper, Butkus and Norvaiša demonstrated that the p-variation
of a piecewise monotonic function f is dependent only on a tuple
(f(t0), f(t1), . . . , f(tn)), where (ti)ni=0 is the minimal monotonicity partition
of [a, b]. The general steps of the BN algorithm are as follows:

• Find minimal monotonicity partition. The goal is to find all points of strict
local extrema of the sample function. The points which are not strict local
extremum points are excluded.

• Check small subsamples. Each sample is checked for redundant points.

• Merge smaller subsamples. Let Π0,i and Πi,n be maximizing partitions for
the p-variation over inerval [0, i] and [i, n], respectively. The union sample
Π0,i ⊔ Πi,n is used to find a maximizing partition Π0,n. This operation is called
merging. The merging is repeated for all small maximizing partitions until final
maximization is found.

1https://cran.r-project.org/web/packages/pvar/index.html
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• Calculate the value of p-variation. Having all maximizing partitions (Si)n
i=0 it

is easy to compute the p-variation sum

vp =
n∑
i1

|Si−1 − Si|p.

The BN algorithm is efficient for calculating the p-variation of real-valued
functions. However, it is not applicable to functions in R2. An alternative algo-
rithm, developed by Alexey Korepanov, Terry Lyons, and Pavel Zorin-Kranich
(KLZ), is available on GitHub2. According to the authors, this algorithm is
fast enough for paths with a large number of points, and has a computational
complexity that is close to O(n log(n)). However, it should be noted that the
worst-case complexity of the KLZ algorithm is O(n2). A comparison of the
performance of these algorithms can be found in Table 1.1.

Table 1.1: A performance analysis of various algorithms for calculating p-
variation was conducted on a machine with an Intel i7 CPU and 64GB of
RAM running Linux. The evaluation was based on execution time in seconds
for various combinations of p and n values.

Algorithm p=2.5 p=4 p=5.5 p=7 p=8.5

n=100
BN 0,0001 0.0001 0.0001 0.0001 0.0001
KLZ 0.0037 0.0035 0.0033 0.0031 0.0029
Simplistic O(n2) 0.0166

n=1000
BN 0.0002 0.0002 0.0002 0.0001 0.0001
KLZ 0.0513 0.0456 0.045 0.0418 0.0425
Simplistic O(n2) 0.2921

n=10000
BN 0.0013 0.0009 0.0009 0.0008 0.0008
KLZ 0.6652 0.6111 0.5788 0.5606 0.567
Simplistic O(n2) 26.2577

n=100000
BN 0.0128 0.0084 0.0077 0.0074 0.007
KLZ 8.1725 7.4600 7.1236 7.0809 8.6697
Simplistic O(n2) 2621.3418 (approx. 43 minutes)

n=1000000
BN 0.14 0.103 0.0954 0.4466 0.151
KLZ 95.8404 89.2490 83.9256 95.8208 180.5138
Simplistic O(n2) 264822.6296 (approx. 3 days)

1.2. Functional Data Analysis

When studying the environment, we often observe it not as a single point, but
rather as a curve. For instance, a comprehensive view of the trajectory of a
moving object over time is more informative than just a single coordinate at a
particular moment. As such, for data samples of this form, it is more natural to
treat each atomic observation as a curve rather than a discrete point. With the
advancement of computational power and the proliferation of devices capable of

2https://github.com/khumarahn/p-var
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continuously recording data, statistical inference and analysis of curve-shaped
data has become increasingly challenging. This has led to the development of
FDA in many research areas.

The history of Functional Data (FD) can be traced back to 1950 when
Grenander attempted to apply statistical concepts and methods of inference
to stochastic processes [29]. In 1958, Rao analyzed statistical methods for
comparing growth curves in the study of growing organisms [64]. The term
FDA was first coined by Ramsey in 1982 [61] and later by Ramsay and Dalzell
in 1991 [62]. In their book [63], Ramsey and Silverman provide a thorough
overview of FDA and offer numerous examples of its application in various
domains.

In practice, FD are typically represented as discrete data points measured
over time, space, or other continuum. These discrete data points for an indi-
vidual function can be denoted as Xi = (ti,j , yi,j), where i = 1, 2, . . . , n and
j = 1, 2, . . . ,m. The variables ti,j denote design time points, while yi,j are
the responses at those time points. A random sample of FD typically consists
of independent real-valued functions, X1(t), X2(t), . . . , Xn(t), on an interval
[0, T ] on the real line. Often, it is convenient to view these functions as a one-
dimensional stochastic process in a Hilbert space, such as L2([0, T ]). A process
Xi(t) is considered to be in L2 if it satisfies the following condition:

E

(∫
[0,T ]

X2(t) dt
)
< ∞.

Zhang [83] described the FD as a generalization of multivariate data from
a finite dimensional to an infinite dimensional. Wang et. al. [77] refer FD
to the first generation and the next generation. The latter was said to be
more complex objects, and possibly are multivariate, correlated, or involved
images or shapes. Examples of the next-generation FD data include brain and
neuroimaging data.

Before FDA gained popularity, data that were continuously recorded over
a time interval at several discrete time points were historically analyzed using
classical Multivariate Data Analysis (MDA) methods. However, interpreting
a sample of curves in a multivariate fashion does not take into account the
fact that the fundamental unit of the sample is a curve, therefore MDA has
its limitations. Some problematic cases when analyzing FD within the MDA
framework include:

• Observed data is sampled with non-equal spaces between data points.

• High-Frequency data can have more data points than a number of sub-
jects.

• The total number of sampled data points may vary across the subjects.
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Many MDA algorithms have an analogous version in FDA, such as Principal
Components analysis (PCA), correlation analysis, and discriminant analysis.
In addition, taking advantage of the unique characteristics of the functional
framework, new tools are being developed. For example, the ability to com-
pute derivatives allows the use of differential equations. For a comprehensive
review of tools, readers may refer to the book by Ramsay and Silverman [63].
Nonparametric techniques for analyzing FD are also becoming well established
(see [24,34] for an extensive overview).

The high or infinite dimensionality of FD is a significant challenge for re-
searchers. From a theoretical perspective, it can be difficult to develop sta-
tistical models and methods that are able to accurately capture the complex
structure of FD. From a computational standpoint, the high dimensionality of
FD can lead to poor scalability, making it difficult to process and analyze large
datasets in a timely manner. This can result in insufficient statistical power,
meaning that the results of statistical tests may not be reliable.

Despite these challenges, FD is a valuable source of information for re-
searchers. The fact that FD is structured as an infinite dimensional space
means that it has the potential to capture a wide range of complex patterns
and trends. This opens up new opportunities for research and data analysis,
and has made change point analysis for FD an important area of study.

It is important to note that in functional change point analysis, changes
are measured between functions rather than at individual points. This is in
contrast to traditional change point analysis, which typically focuses on changes
at specific points in time. By focusing on changes between functions, functional
change point analysis is able to capture more nuanced and subtle changes in
data, making it a powerful tool for data analysis.

Construction of the functional objects

In practice, data collections involve observations at discrete points in time, re-
sulting in non-continuous data. Even when the sampling rate is very high, the
recorded data are still not continuous. The sampling rate, or the number of ob-
servations taken per unit of time, typically depends on the characteristics of the
signal being measured. For example, a signal with high frequency components
may require a higher sampling rate to capture the full range of variation. In
any case, measurement error is almost always present in discrete observations,
meaning that the recorded data may not perfectly reflect the true underlying
signal.

Due to these considerations, the first step in FDA is often to construct con-
tinuous functional objects from discrete observations. One common approach
to achieving this is through the use of a basis expansion. This involves express-
ing the data in terms of a set of basis functions, which are typically chosen to
be smooth and well-behaved. By expressing the data in this way, it is possible
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to capture the underlying structure of the data more accurately and to analyze
it more effectively.

Basis expansion is a fundamental concept in FDA, and there are many
different types of basis functions that can be used. Some common examples
include B-splines, Fourier basis functions, and wavelets. The choice of basis
functions will depend on the characteristics of the data and the goals of the
analysis. In any case, the use of basis expansion allows for the construction of
continuous functional objects from discrete observations, enabling more accu-
rate and effective analysis of FD.

The basis expansion can be defined as follows:

x =
K∑
k=1

ckϕk = c′ϕ,
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Figure 1.3: A smoothed Wiener process is demonstrated using B-spline and
Fourier basis functions. The upper left figure displays 31 basis curves, and the
upper right figure displays 5 basis functions. The derivative of the smoothed
curves is depicted in the lower figures.
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In basis expansion methods, a potentially infinite-dimensional space of func-
tions is represented within the finite-dimensional framework of vectors like c,
where K is the number of basis functions ϕk [63]. The smoothness of the data
is controlled by the value of K, which can be chosen by the researcher. When
selecting a basis system, it is important to consider two aspects. First, the
basis should reflect the nature of the data as accurately as possible. For exam-
ple, Fourier basis functions are well-suited for periodic curves, while B-spline
functions are better at capturing nonperiodic and complex features [21]. Sec-
ond, the derivatives of the basis should be considered. While the basis may
represent the data well, it may not provide a good estimate of the derivative.

The choice of the parameter K depends on how closely the data should be
represented in the functional object. When K = n, the data are represented
exactly. However, using a smaller value of K allows for more degrees of freedom
to test hypotheses and requires less computational power. The coefficients
themselves can also be important descriptors of the data. The effect of different
basis systems and values of K are illustrated in Figure 1.3. The upper left plot
of the figure was smoothed using K = 31 basis functions, while the upper right
plot was smoothed with K = 5.

One of the approaches of estimating c is by using the least square principle.
This is equivalent to the minimization of the sum of squared errors:

SSE(y|c) =
J∑
j=1

[
yj −

K∑
k=1

ckϕk(tj)
]2

.

Let Φ be a J ×K such that Φkj = ϕk(tj). Then setting the gradient of the
loss to zero and solving for c we get:

ĉ = (Φ′Φ)−1 Φ′y.

This method was further extended by Green and Silverman [28]. The au-
thors introduced a roughness penalty to fit a more smooth curve. The measure
of a function’s roughness was measured by the integrated square second deriva-
tive

PENm(x) =
∫ [

x(m)(s)
]m

ds,

where x(m)(s) denotes the m order derivative of x evaluated at time s. Then,
we can define the penalized residual sum of squares as

PENSSEm(x|y) = [y − x]′ [y − x] + λPENm(x),

where λ is a smoothing parameter. Then, the authors obtained the expression
of the estimated coefficient vector
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ĉ = (Φ′Φ + λR)−1 Φ′y,

where
Rij =

∫
ϕ(s)(m)

i ϕ(s)(m)
j ds

is the penalty matrix.

Functional Principal Components Analysis

PCA was first proposed by Pearson [54] in 1901 and became the essential
technique for data analysis. Mostly it was used for dimensionality reduction
by projecting each data point onto a reduced number of components while
preserving as much of the data variation as possible. PCA projects the data
onto a subspace which minimizes the reconstruction error and maximizes the
projected variance. The reduced space can reveal a latent structure in relations
between variables. PCA became an essential part in the development of MDA.
In general terms the goal is to find a transformation τ : Rd → Rk that maps
data points in Rd to data points in Rk. In PCA case, the approach is to find a
linear transformation that preserves the maximum variance. Before introducing
the Functional Principal Components Analysis (fPCA), we briefly discuss the
classical PCA. Consider m data points x1, . . . xm ∈ Rd and a positive number
k < d. The k is the number of the target dimension. In particular, define a
matrix X of an m× d:

X =


−x′

1−
...

−x′
m−

 ∈ Rm×d.

Next, we need to subtract the mean from each row. Denote the sample
mean by µ

µ = m−1
m∑
i=1

xi

Then, denote
x̂i = xi − µ.

And then we denote X̂ as a mean-centered data matrix:

X̂ =


−x̂′

1−
...

−x̂′
m−

 ∈ Rm×d.

The next step is to calculate a covariance matrix S of d× d in terms of X̂ as
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S = 1
m− 1

m∑
i=1

(xi − µ) (xi − µ)′ = 1
m− 1X̂′X̂.

fPCA technique is an analogous version of PCA for a functional data. It was
one of the first MDA tools to be adopted to functional framework [20]. Basi-
cally, the adaptation was based on replacing vectors with functions matrices
by compact linear operators, covariance matrices by covariance operators and
scalar products in a vector space by scalar products in square-integrable func-
tional space. Therefore, principal components became weight functions varying
over the same interval [a, b] as the data. An eigenbasis, representing data, is
an orthonormal basis of the Hilbert space L2, that consists of eigenfunctions
of the autocovariance operator. Formally we can define the fPCA as follows.
For a square-integrable stochastic process X(t), let

µ(t) = E(X(t))

and

G(s, t) = Cov(X(s), X(t)) =
∞∑
k=1

λkφk(s)φk(t),

where λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues and φ1, φ2, . . . are the orthonormal
eigenfunctions of the linear Hilbert–Schmidt operator

G : L2(T ) → L2(T ), G(f) =
∫

T
G(s, t)f(s) ds.

By the Karhunen–Loève theorem, one can express the centered process in
the eigenbasis

X(t) − µ(t) =
∞∑
k=1

ξkφk(t),

where ξk =
∫

T (X(t) − µ(t))φk(t)dt is the principal component associated with
the k-th eigenfunction φk, with the following properties: E(ξk) = 0,Var(ξk) =
λk and E(ξkξl) = 0 for k ̸= l. The centered process is then equivalent to
ξ1, ξ2, . . . A common assumption is that X can be represented with good pre-
cision by only the first few eigenfunctions after subracting the mean function,
i.e.

X(t) ≈ Xm(t) = µ(t) +
m∑
k=1

ξkφk(t),

where
E
(∫

T
(X(t) −Xm(t))2 dt

)
=
∑
j>m

λj → 0 as m → ∞.

A range of techniques have been developed for calculating fPCA, including
parametric and nonparametric methods (e.g., Yao et al. 2007 [80], Sang et al.
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2017 [67]). Wu et al. (2021) [79] offer a comprehensive review of these tech-
niques, while Shang et al. (2014) [69] provide a review of the use of functional
principal component analysis in explanatory analysis.

1.3. Change Point problem

Studies related to time series often assume that the process is stationary, mean-
ing that its properties are independent of time. However, in practice, this as-
sumption almost always fails in environments where there are shocks or other
changes in the background. As a result, it is more reasonable to assume that
the observed data is stationary only for certain segments of the whole sequence.
This raises the question of how to identify and recover these segments.

Change point analysis involves partitioning the sequence into a number of
segments, with points that divide the sequence into one or more segments that
have different statistical properties known as change points. In general terms,
there are two sets of problems related to CPD consists of the following two
steps:

1. Did the statistical characteristics of the data alter at any point in time?

2. If there was a change, when did it occur?

Many researches consider this problem as classical hypothesis testing with
null hypothesis (H0) indicating of change, but Basseville [9] pointed out that
change point estimation is different from classical hypothesis testing. When
testing for change points, the multiple testing problem must be taken into
account, meaning that almost every point is a a priori candidate for a Change
point (CP). In order to identify the change points, an appropriately constructed
test statistic is used. If the null hypothesis is rejected, the candidate point that
provides the strongest evidence becomes the estimated CP.
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Figure 1.4: Examples of change points.

CP are not uniquely defined and the type of change must be taken into
consideration. The change can happen in model parameters, in the model
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itself, in the dependency structure, or even in a way that can’t be specified
mathematically. There exists a large set of cases that can be considered as
changes in the sequence. The most widely studied problem includes the range
of parameters of the distribution. The formulation can be rewritten as:

H0 : Xi ∼ Φ0 (x; θ0) , i = 1, . . . , n,

H1 : Xi ∼

{
Φ0 (x; θ0) i = 1, 2, . . . , τ,
Φ1 (x; θ1) i = τ + 1, τ + 2, . . . , n,

where θi represents potentially unknown parameters of the probability distri-
bution Φ. Many previous works have focused on the parametric characteristics
such as the mean (see figure 1.4a) or the variance (see figure 1.4b) for retro-
spectively detecting changes, meaning that Φ0 = Φ1 but θ0 ̸= θ1.

Another case of common CPD problem is when the probability distribution
after the time τ changes together with the parameters of the corresponding
distribution. The problem can also be extended to the multiple CP, when the
sequence of the distributions exists (illustrative example in the figure 1.4c),
meaning that Φ0 ̸= Φ1 ̸= . . . ̸= Φn.
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Figure 1.5: Examples of the change in pattern and periodicity

There are cases that attracted less attention but are also relevant in many
fields. Change in periodicity (see figure 1.5b) which is centered around time
series with cyclic properties usually focuses on a frequency domain, for example
by using Fourier transform or wavelet transform [17]. Finally, probably the
most complex changes to detect are related to changes in the pattern (see
figure 1.5a). Pattern changes are difficult to detect and there is not much
coverage on detection methods. One approach was proposed by Shvetsov et.
al. [72] in electrocardiography.
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At Most One Change and multiple changes

The majority of CP techniques start with AMOC problem or a single CP as
illustrated in the figure 1.4b. The multiple change-point detection is more rele-
vant in an offline setting and it is much harder to solve. While the single change
point detection can have at most n−1 outcomes, the latter can have 2n−1 out-
comes. The sequence of size n can be segmented in k segments

(
n−1
k−1
)
, therefore

the total number of possibilities can be
∑n−1
k−1

(
n−1
k−1
)

= 2n−1. There are other
adaptations where the number of changes is known in advance, lowering the
number of possible outcomes. Naturally, multiple change point detection al-
gorithms can be used on datasets which have only one change, however, the
opposite is not that trivial. Few possible procedures can be used together with
the detection algorithm. One of the approaches is the sliding window approach,
where the window is formed over some part of the sequence which satisfies the
problem constraints, then, this window can slide over the whole sequence and
capture different portions of that. Another procedure is called binary segmen-
tation where one can search for a change in the entire dataset. If a change-point
is found then the dataset sequence is divided into two parts and repeats the
steps on both segments in a recursive fashion [76].

The focus of this thesis is on the detection of single, multiple, and unknown
number of change points in an offline setting.

Online and Off-line environment

In CPD, the concept of "online" and "offline" refers to the availability of the
data being analyzed.

"Offline" (see [74] selective survey of algorithms) change point detection
refers to the analysis of a complete, fixed dataset. The goal of offline change
point detection is to identify changes that have occurred in the past, based
on the complete dataset. This type of change point detection is also known
as "a-posteriori" change point detection, as the analysis is performed after
the data has been collected. Another important aspect is that, with all the
data, the number of changes can be more than one. In this case, the problem
becomes more complex and an additional task is to determine the total number
of changes. A particularly relevant problem is identifying epidemic changes
when the change is temporal (as shown in Fig. 1.4a and 1.5b)

"Online" (see [65] for comparison of online CP algorithms) change point
detection, on the other hand, refers to the analysis of a dataset that is continu-
ously growing. The goal of online change point detection is to identify changes
as soon as they occur, in real-time. This requires the use of algorithms that
can continuously update their results as new data becomes available. Online
change point detection is useful in situations where it is important to react to
changes as soon as they happen, such as in monitoring the performance of a
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machine or the health of a patient.
Online methods can be adapted for use in an offline setting by iteratively

processing data points. However, adapting offline methods for use in an online
setting presents more challenges. One potential approach is to utilize the entire
recorded time series each time a new data point is received, though this may
be impractical due to computational constraints, particularly for time series
with a large number of data points recorded over an extended period. There
may also be a lag in detection, as the algorithm may not have the necessary
sensitivity to detect the change as promptly as online methods.

Offline methods have some advantages over online methods. They can po-
tentially be more accurate as they can take into account the entire available
data set. They also have the added flexibility of allowing for the analysis of
multiple change points.

Parametric and non-parametric methods

Change point detection methods can be broadly classified into two main cate-
gories: parametric and nonparametric methods. Parametric methods assume a
specific underlying probability distribution for the data and estimate the change
points by maximizing the likelihood function or minimizing the distance be-
tween the data and the assumed distribution (see [16] for extensive review of
parametric approaches). Nonparametric methods, on the other hand, do not
assume any specific underlying distribution for the data, and instead use a vari-
ety of heuristic and data-driven approaches to identify the change points. The
reader may refer to the book [13] by Brodsky and Darkhovsky for extensive
review on nonparametric change point detection.

Both parametric and nonparametric methods have their own advantages
and limitations, and the choice of method will depend on the specific charac-
teristics of the data and the goals of the analysis. Some common parametric
methods for change point detection include the CUSUM method, the Shewhart
chart, and the Binary Segmentation method. Nonparametric methods include
the Mann-Kendall test, the ChangeFinder method, and the Pelt method. There
are many other methods and algorithms available, and researchers and practi-
tioners may choose to use a combination of approaches to get the best results.

Approaches to change point detection

First, we provide a brief overview of some classical sequential procedures for
CPD.

Control charts

One method for identifying change points in a process is to establish a threshold
value and determine if the statistic being measured exceeds this threshold.
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If it does, it can be interpreted as indicating a change in the process. The
effectiveness of this approach depends heavily on the choice of the threshold
value. The first effort to select a threshold in a more systematic manner was
undertaken by Shewhart [71]. In this approach, it is assumed that the true
mean, represented by µ′, and the variance, represented by σ2, of the process
are known. The method is then applied to a batch of size n, with the goal of
detecting any changes that may have occurred in the process. For a batch of
size n

X(t) = n−1
nk∑

i=n(k−1)+1

Xi.

The change is detected if it satisfies the following inequality

|X(t) − µ′| > β
σ√
n
,

where β is a constant.

CUSUM tests

Page [50] approach is to consider a CP not based on the statistic crossing
threshold but if it moves far away from the historical minimum. For sequential
detection, Page suggested the stopping rule

min
{
m : Sm − min

0≤i<m
Si ≥ h

}
,

where h is a positive constant, Sm =
∑m
k=1 ψ(k), ψ is a score function of the

k-th sample. It is common to use the log-likelihood ratio, assuming that Xi are
drawn from the distribution Φi, i = 0, 1 with a parameter θ ∈ Θ, equal θ0 and
θ1 after the change, we set

ψ(k) =
nk∑

i−n(k−1)+1

log Φ0(Xi; θ0)
Φ1(Xi; θ1) .

This test works only if we have a positive change in the mean of the score.
One way to improve this, one can use two CUSUM algorithms together [50].
Barnard [7] suggested a special case, when X is normally distributed with mean
0 and σ2, hence Φ0(Xi; θ0) = N (0, σ2) and Φ1(Xi; θ1) is normal with a mean
σ. Then log [Φ0/Φ1] = σx − σ2/2 is maximized with respect to σ at σ̂ = x.
One should test for a change in a normal mean with an initial value of 0 by
using the following expression:

min
{
i : max

m≤i

|Sm − Si|
σ(i−m)1/2 ≥ h

}
.
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This equation tests for a change in mean by comparing the difference between
the cumulative sum of the data and the cumulative sum of the mean with a
threshold value h.

Filtered Derivatives

The filtered derivative method was proposed by Basseville [8]. The way of
estimating the instants at which jumps occur consists in filtering a signal and
comparing its derivative to a threshold. Define a moving average

gk =
n−1∑
i=0

γi log Φ0(Xk−i; θ0)
Φ1(Xk−i; θ1) ,

where the γi are positive weights. Then, consider a discrete derivative ∇gk
:=

gk − gk−1. If a sufficient number of discrete derivatives is above the threshold
h

n−1∑
i=0

1∇gk−1>h ≥ η.

Note, that the parameter η normally should be small i.e. η ≈ 2.
This concludes an overview of well-known sequential procedures for CPD.

While most of the online algorithms are centered around stopping rule and
threshold the idea for offline algorithms closely relates to the statistical hypoth-
esis testing discussed in section 1.3. It can also be treated as an estimation
problem, where CP is seen as parameters from the model one wish to estimate.

Likelihood ratio tests

In parametric CPD, a likelihood ratio (LR) is frequently found in the lit-
erature. Early works by Quandt [58, 59] about changes in the conditional
mean of normally distributed data assumed that the likelihood theory was
Sup-F or Sup-Wald test. Assume, the following form Φi = Φ̂(θi), where
θi = (θi,1, θi,2, . . . , θi,k) is a vector of the parameters which define the dis-
tribution Φi. Then, the likelihood estimation can be defined as

L(θ | x) = L (θ1, . . . , θk | x1, . . . , xD) =
D∏
k=1

f (xt | θ1, . . . , θk) ,

where f(·|θ) denotes the probability density function of Φ̂. The likelihood
function is maximized to estimate the parameter vector θ of x sequence. For
the model containing a CP at some position τ to one without CP, we have to
compare supremum over the parameter spaces. In case, the τ is not known, the
double-supremum of the overall likelihood function over all candidate points τ
and the corresponding parameter spaces are compared to the supremum of
the likelihood over the parameter space without a change. This defines the
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likelihood ratio for the estimation of a CP,

LR(x) =
supτ supθi∈Θi,i={1,2} L (θ1 | xt, t = 1, . . . , τ1) L (θ2 | xt, t = τ1 + 1, . . . , D)

supθ∈Θ L(θ | xt, t = 1, . . . , D)

where Θ and Θ1, Θ2 denotes parameter spaces with and without CP re-
spectively. For any integer n, the segmentation integers 1 ≤ D ≤ n and
τ0 := 0 < τ1 < · · · < τD−1 < τD = n. Then, segments are defined as
{1, . . . τ1}, . . . {τ1 + 1, . . . , n}. These segments represent the different parts of
the data that have distinct characteristics.

CUSUM extensions

In an offline setting, the CUSUM approach is extended to choosing the H0

that maximizes the likelihood function of the hypothesis. In this sense, τ is
estimated by

τ̂1 ∈ arg max
1≤t≤n


t∑

j=1
log Φθ0(xj) +

n∑
j=t+1

log Φθ1(xj)

 .

With a one-sided change in the mean and known σ2 of Gaussian observations,
Page [51] proposes to define the CUMSUM as

St :=
t∑
i=1

(Xi − θ0 + σδ) .

The H0 is rejected if Sn − maxt<n St < −h, h > 0.

Model selection

The concept of CPD is widely accepted within the academic community. How-
ever, selecting the most appropriate approach for a given situation is crucial,
as it can greatly impact the accuracy of the results. No single model is capable
of effectively detecting all types of changes, so it is important to carefully con-
sider the specific characteristics of the process being analyzed and the types of
changes that are expected to occur. Formally, CPD can be considered a model
selection problem, in which the goal is to identify the optimal segmentation,
represented by T, based on a quantitative criterion, represented by V(T, y),
that should be minimized [74]. If the wrong model is chosen, it may lead to a
high number of false positive results.

It is also important to consider the computational complexity of change
point detection methods, especially when they are being used in online appli-
cations that require real-time processing. Sensors can generate a large volume
of data per second, but may have limited computing resources. Some well-
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known CPD methods can have a time complexity of O(n3) [1], which can be
a significant limitation in terms of processing speed. To address this issue, re-
searchers have developed search methods as a resolution procedure for discrete
optimization problems in CPD. These methods aim to improve the efficiency
and speed of the change point detection process, enabling it to be used in
resource-constrained environments with high volumes of data.

Overall, CPD methods can generally be divided into two categories: opti-
mal detection algorithms and approximate solution methods. Optimal detec-
tion algorithms are designed to find the exact solution to the CPD problem
by considering all possible combinations and selecting the one that minimizes
the objective function. However, this approach is not practical in most cases
due to the high computational demands. In contrast, approximate solution
methods provide approximate results that are faster to compute, but may be
less accurate. These methods are more suitable for practical applications where
computational efficiency is a concern.

Areas of application

The CPD problem was originally developed for statistical quality control, but
it has since become an important tool in various fields where signal analysis
is used. Extracting quantitative features from signals requires the use of solid
mathematical models, and CPD is an active area of research in many different
domains. In this section, we will provide a brief overview of some of the areas
where CPD has been applied extensively.

Application on medical data

Nowadays there exist many sensors and diagnostic devices which help doctors
monitor and diagnose health-related issues. No wonder that CPD is an impor-
tant component of overall signal analysis.

German psychiatrist Hans Berger recorded the first human Electroen-
cephalogram (EEG) in 1924 [30]. He showed that actions such as closing the
eyes rise could be detected in the EEG. In contrast, during mental activity, the
oscillations of the EEG has a higher frequency and was less regular. 70 years af-
ter the first EEG recordings it attracted the attention of many researchers who
focused on mathematical models related to the analysis of the EEG signals. For
example, during epileptic seizures the brain activity transitions between differ-
ent states, which can be monitored with EEG. Malladi et. al. [46] propose an
online bayesian CPD for an epileptic activity for real-time monitoring.

An ECG signal analysis is another area where CPD researches focus. An
ECG is a test that is used to check the heart’s rhythm in order to assess car-
diovascular diseases. The key step for an ECG analysis is to segment the signal
and locate its constitutive waves. Most of common approaches of ECG wave
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detection are based on wavelet transformation [53, 57], Hidden Markov mod-
els [41] and simple mathematical operations such as differentiation, integration,
and squaring. Other variants such as the graph-constrained changepoint de-
tection approach proposed by Fotoohinasab et. al. [25]. We refer the reader
to Beraza et. al [10] study for an in-depth review of a wide range of ECG
segmentation algorithms.

Image and video analysis

Detecting changes in video or image data is a widely researched topic in the
field of computer vision, with applications in areas such as surveillance, remote
sensing, and medical image analysis. For a more detailed review of this topic,
see Radke et al. [60]. Another closely related problem is shot detection, which
involves identifying the longest continuous sequences within a video and orga-
nizing the data into more compact forms or extracting semantically meaningful
information [19].

Magnetic resonance imaging (MRI) is a medical procedure that uses strong
magnetic fields and radio waves to produce detailed images of the inside of the
body. MRI scans are used to examine almost any part of the body, and the
detection of small changes between scans can reveal how diseases progress over
time. However, the change detection in 3D MRI data remains a challenging
problem in computer vision. Some progress has been made in detecting state
changes in MRI data [12,47,68].

Human activity analysis

There have been significant advancements in internet of things (IoT) wearable
sensor technology, including devices like smartwatches and smartphones that
continuously record human activity (e.g. [1, 42, 44]). One application of CPD
in this field is the segmentation of signals and the mapping of human activity,
such as sitting, standing, walking, or sleeping. By identifying changes in the
signal data, it is possible to determine the specific activities that an individual
is engaging in. This can be useful for a variety of purposes, such as monitoring
physical activity levels, assessing health and wellness, and identifying patterns
of behavior.

Speech signal analysis

There are many different applications for voice activity detection (VAD) in
the field of speech analysis. VAD algorithms are used to identify periods of
conversational speech within a signal, which can then be further analyzed or
processed. This is useful for a variety of purposes, such as automatic speech
recognition, speech communication over networks, speech coding, speech aug-
mentation, and echo cancellation. In order to detect periods of speech within a
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signal, VAD algorithms typically rely on CPD methods to identify changes in
the signal data that correspond to transitions between speech and non-speech
segments (see [35,37,73]).

In order to accurately identify speech segments, VAD algorithms must be
able to distinguish between speech and non-speech sounds based on various
characteristics of the signal data. These characteristics may include the spectral
content of the signal, the presence of periodic patterns, the intensity of the
signal, and other features that are unique to speech sounds. VAD algorithms
may also take into account contextual information, such as the presence of other
sounds or the history of the signal, in order to make more accurate predictions.

Overall, VAD algorithms are an important tool in the field of speech analy-
sis, as they enable the automatic separation of speech segments from non-speech
segments, which can be useful for a variety of purposes.

Application to climate changes

Climate change is a complex and multifaceted phenomenon that affects a wide
range of environmental, social, and economic systems. As such, understanding
and predicting the impacts of climate change requires the analysis of a wide
range of data sources and variables. CPD methods have proven to be useful in
this context, as they can help to identify trends and changes in climate data
over time.

For example, CPD has been used to detect abrupt changes and variations in
rainfall patterns [48,52] and temperature trends [39]. By analyzing these vari-
ables, researchers can gain insight into the impacts of climate change on local
and regional weather patterns, and how these patterns may evolve over time.
This information can be used to inform the development of climate change miti-
gation and adaptation strategies, such as water resource management, land use
planning, and the design of infrastructure and buildings to withstand extreme
weather events.

In addition to analyzing data on weather and temperature, CPD methods
have also been applied to other climate-related variables, such as sea level
rise, atmospheric concentrations of greenhouse gases, and ocean temperatures
and currents. By detecting changes in these variables, researchers can gain a
more comprehensive understanding of the impacts of climate change and the
complex interactions between different environmental systems.

In this section, we have highlighted a number of applications in which CPD
plays a significant role. However, the list of applications is by no means exhaus-
tive, as CPD methods are also widely used in other domains. Some examples
of the types of data and applications that can also benefit from the use of CPD
methods include:
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• Financial data (e.g. [6,26]): CPD methods can be used to detect changes
in financial markets, such as changes in stock prices, exchange rates, or
interest rates. These methods can help analysts and investors to identify
trends and make informed decisions about investments and risk manage-
ment.

• Biological data (e.g. [56]): CPD methods can be used to analyze bio-
logical data, such as gene expression data, protein expression data, or
microbiome data, in order to identify changes and trends that may be
relevant to the understanding of various biological processes. This can
be useful for researchers studying diseases, development, and evolution.

• Social network data (e.g. [38]): CPD methods can be used to analyze data
from social networks, such as Twitter or Facebook, in order to identify
changes and trends in social interactions and behavior. This can be useful
for researchers studying social networks, marketing, and public opinion.

• Natural language data (e.g. [27]): CPD methods can be used to analyze
data from natural language sources, such as text or speech data, in order
to identify changes and trends in language use. This can be useful for
researchers studying language evolution, language processing, and social
interactions.

In fact, any analysis of a sequence of events can benefit from the use of CPD
methods, as these methods are well-suited for identifying changes and trends
in data over time.

1.4. Change point detection for functional data

In this section, we will review some of the recent developments in the use of
change point detection (CPD) methods for functional data (FD).

In section 1.2 we covered the basic principles of FDA. In this section we
will review some of the recent developments of CPD for FD.

In a univariate case which we covered in previous sections, changes were
measured between observed points. In FDA case, changes have to be measured
between curves. This, makes the problem more challenging. The figure 1.6 show
two functional samples: figure 1.6a without change, while figure 1.6b illustrate
the functional sample with a change point in the middle of the dataset.

Despite the challenges, the adoption of a CPD statistical test to FDA is
accelerating in recent years. A functional data CPD was successfully applied
in many areas.

A cumulative sum (CUSUM) test was proposed by Berkes et al. [11] for inde-
pendent functional data by using projections of the sample onto some principal
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(a) An example of a simulated functional
sample without change point.

(b) An example of a simulated functional
sample with change.

Figure 1.6: Illustration of a Functional Data Sample with and without Change
Points

components of a covariance γ. The test statistics proposed by Berkes et al.
was defined as

SN,d := 1
N2

d∑
l=1

λ̂−1
ℓ

N∑
k=1

 ∑
1≤i≤k

η̂i,ℓ − k

N

∑
1≤i≤N

η̂i,ℓ

2

,

where λ̂ℓ are eigenvalues, η̂i,ℓ are scores corresponding to the largest d eigen-
values and v̂l are eigenfunctions:

η̂i,ℓ =
∫ {

Xi(t) −XN (t)
}
v̂l(t) dt, i = 1, . . . , N, l = 1, . . . , N.

Denoting by cd(α) its (1 −α) quantile, the test rejects H0 hypothesis if SN,d >
cd(α). The distribution of the random variable was derived by Kiefer [40].

Later, the problem was studied by Aue et al. [3], where its asymptotic prop-
erties were developed. The assumption of independence in many applications
is too unrealistic. More often the observation is dependent to some degree on
previous observations. Hörmann et al. [33] in their work weakly dependent
functional data extended the test to accommodate the dependence.

The problem was further studied by Banerjee et al. [5]. Authors have pro-
posed an alternative estimator of the covariance kernel, which is a consistent
estimator of the true covariance kernel under the null hypothesis for both the
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independent and the dependent data [5]. The test is defined as

HN,d := 1
N2

d∑
l=1

N∑
[Nu]=1

1
λ̂

(u)
l

[Nu]∑
i=1

η̂i,l(u) − u

N∑
i=1

η̂i,l(u)

2

.

It is proven [5], thatHN,d
d→
∫ 1

0
∑d
l=1 B

2
l (u)du under the null hypothesis, where

B1(·), B2(·), . . . , Bd(·) denotes the standard independent Brownian bridges.
The test rejects H0 if value of HN,d is bigger than the tabulated (1 − α)th
quantile Kd(α) in Berkes et al. [11].

Aston and Kirch [2] proposed an estimator of a CP in a model for an AMOC
and an epidemic change as well as accounted for a wide class of dependency
structures. Aue et al. [4] proposed a fully functional method for finding a change
in the mean without losing information due to dimension reduction. Despite
these advances, there are several outstanding issues with these approaches.
Namely, computational scalability, an insufficient power to detect covariance
and shape-based alternatives, and a lack of robustness. To address those prob-
lems T. Harris, Bo Li, and J. D. Tucker [31] proposed the multiple change-point
isolation method for detecting multiple changes in the mean and covariance of
a functional process. In contrast to all former approaches, Sharipov et al. [70]
developed a test for structural changes in functional data which is based on
Hilbert space theory. Recently, Li et. al. [43] proposed a method of finding
multiple change points in a mean of functional data using a Bayesian approach,
where the change was viewed as the result of an evolutionary process changing
some wavelet coefficients at a time.
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2. Testing change in the mean: univariate case

2.1. Introduction

In this chapter, we propose a new test statistic for the detection of a mean
change in the sequence of observations which is built on the p-variation of a
corresponding CUSUM process. More precisely, for a sample X1, X2, . . . , Xn

and the number p > 2, we define the test statistics

Tp,n(X1, . . . , Xn) = max
{∑m

j=1

∣∣∣∑kj

i=kj−1+1(Xi −Xn)
∣∣∣p : 0 = k0 < · · · < km = n; 1 ≤ m ≤ n

}
,

where Xn = n−1(X1 + · · ·+Xn). As a theoretical support for changed segment
tests based on this statistic, we establish its asymptotic distribution under the
null hypothesis (see Theorem 9). We also evaluate finite sample performance
through a simulation study.

The chapter is organized as follows. In section 2.2 we introduce a space of
functions with bounded p-variation as a functional framework for the CUSUM
process.

There we also present asymptotic results that are relevant to test statistics
defined and discussed in section 2.3. Section 2.4 presents a Monte Carlo analysis
of the finite sample properties of the tests and compares their size and power
performance. We also compared the performance of other well-known change-
point detection algorithms. Finally, in section 2.4.2 we demonstrate how the
proposed method can be applied to real-world data.

2.2. Asymptotics of stepwise CUSUM process

Consider univariate time series, Xk, k = 1, 2, . . . . For each n ≥ 1 and each
t ∈ [0, 1], let

Sn(t) = 0 if t ∈ [0, 1/n), Sn(t) :=
⌊nt⌋∑
i=1

Xi, if t ∈ [1/n, 1],

where for a real number x ≥ 0, ⌊x⌋ := max{k : k ∈ N, k ≤ x},N = {0, 1, . . . }.
The p-variation for partial sums is defined as

vp(f ; [0, t]) := sup


m∑
j=1

|Sj − Sj−1|p
 .
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The stepwise CUSUM process Zn = (Zn(t), t ∈ [0, 1]) is defined as

Zn(t) = Sn(t) − ⌊nt⌋
n

Sn(1) =
⌊nt⌋∑
i=1

(Xi −Xn).

Classical examples of path spaces for the process Zn include the Hilbert
space L2[0, 1] and the Skorohod space D[0, 1]. Under various assumptions, a
functional central limit theorem is established in these spaces. For example, the
classical Donsker theorem for i.i.d. sequence (Xn) with finite second moment
states that

n−1/2Zn
D−−−−→

n→∞
σB in the space D[0, 1],

where B = (B(s) := W (s) − sW (1), s ∈ [0, 1]) is a standard Brownian bridge,
and W = (W (s), s ∈ [0, 1]) is a standard Wiener process, and σ2 = var(X1).
The symbol D−−−−→

n→∞
means convergence in distribution.

In this section, we consider a step-wise CUSUM process Zn in the path
spaces of functions with bounded p-variation.

It is straightforward to find that for any p ∈ (0,∞),

vp(Zn) = max


m∑
j=1

∣∣∣∣∣∣
kj∑

k=kj−1+1
(Xk −Xn)

∣∣∣∣∣∣
p ,

where the maximum is taken over 0 = k0 < · · · < km = n, and 1 ≤ m ≤
n. Hence, Zn ∈ Wp[0, 1] for any p > 0, and Tp,n(X1, . . . , Xn) = vp(Zn).
To obtain limit distribution of the statistics Tp,n(X1, . . . , Xn) we consider the
limit behaviour of (Zn) in the paths space Wp[0, 1]. Since finite-dimensional
distributions of the process Zn converge to those of a Brownian bridge we need
to restrict to the index p > 2.

Since Wp[0, 1] is a non-separable space we use convergence in law concept
as defined by Hoffmann-Jørgensen denoting it by D∗

−−−−→
n→∞

.

Theorem 7. Fix p > 2. Let X1, X2, . . . be a sequence of independent identi-
cally distributed random variables and let Sn = (Sn(t), t ∈ [0, 1]) be the partial
sum process. If σ2 := EX2

1 < ∞, then the convergence

n−1/2Zn
D∗

−−−−→
n→∞

σB in Wp[0, 1]

holds.

Proof. It is proved by [49] that for p > 2,

n−1/2σ−1Sn
D∗

−−−−→
n→∞

W in the space Wp[0, 1].
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Consider the mappings Tn and T defined for any function f : [0, 1] → R by

Tnf(t) = f(t) − ⌊nt⌋
n

f(1), T f(t) = f(t) − tf(1), t ∈ [0, 1].

Both functions Tn and T map Wp[0, 1] → Wp[0, 1] and both are linear and
bounded, hence continuous. Since the continuous mapping theorem is valid for
the space Wp[0, 1] (see, e.g., [49]), we have

n−1/2σ−1TSn
D∗

−−−−→
n→∞

TW in the space Wp[0, 1].

Next observe that

n−1/2σ−1Zn = n−1/2σ−1TnSn = n−1/2σ−1TSn + oP (1). (2.1)

Indeed
||TnSn − TSn||[p] ≤ ||In||[p]|Sn(1)|,

where In(t) = t − ⌊nt⌋/n. By the central limit theorem n−1/2σ−1|Sn(1)| =
OP (1) whereas ||In||[p] ≤ n−1+1/p. Hence, equation 2.1 is true and this relation
completes the proof.

The continuous mapping theorem yields

Corollary 8. Fix p > 2. Let X1, X2, . . . be a sequence of independent identi-
cally distributed random variables and let Zn be the step-wise CUSUM process.
If EX2

1 = σ2 ∈ (0,∞) then

G(n−1/2σ−1Zn) D−−−−→
n→∞

G(B)

for any continuous functional G : Wp[0, 1] → R.

Among many interesting examples of continuous functional G we pick out
the p-variation of a function G1(f) = v

1/p
p (f).

The following theorem is the theoretical justification for statistics used to
detect a change point in the mean.

Theorem 9. Fix p > 2. Let X1, X2, . . . be a sequence of independent identi-
cally distributed random variables. If EX2

1 = σ2 ∈ (0,∞) then

n−1/2σ−1T 1/p
p,n (X1, . . . , Xn) D−−−−→

n→∞
v1/p
p (B).

Proof. The result follows directly from Corollary 8

Approximate values of the distribution of vp(B) can be obtained by using
Theorem 9 with standard normal random variables. Assume that we have for
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each n ≥ 1 and each M ≥ 1 a collection of independent standard normal
random variables {Ykj , k = 1, . . . , n; j = 1, . . . ,M}. Let for each j = 1, . . . ,M ,

vp(n, j) = max


m∑
i=1

∣∣∣∣∣∣
ki∑

k=ki−1+1
(Ykj − Yjn)

∣∣∣∣∣∣
p ,

where the maximum is taken over 0 = k0 < · · · < km = n, and 1 ≤ m ≤ n, and
Yjn = n−1(Y1j + · · · + Ynj). Consider

FnM (x) := 1
M

M∑
j=1

1(n−1/2v1/p
p (n, j) ≤ x), x ≥ 0.

By the law of large numbers for any n ≥ 1,

lim
M→∞

FnM (x) = P (n−1/2v1/p
p (n, 1) ≤ x), x ≥ 0.

On the other hand, n−1/2v
1/p
p (n, 1) D−−−−→

n→∞
v

1/p
p (B), by Corollary 8. Hence,

Fn,M (x) ≈ P (v1/p
p (B) ≤ x).

for large n,M .

2.3. Application to change point problem

For independent random sample X1, . . . , Xn consider the model

Xi = δ1(k∗,n](i) + Yi, i = 1, . . . , n,

where Y1, . . . , Yn are i.i.d. random variables with E(Yi) = 0, E(Y 2
i ) = 1 and

δ ∈ R, k∗ ∈ {1, . . . , n} are unknown parameters.
Under H0 : δ = 0, we have for any p > 2,

n−1/2v1/p
p (Zn) D−−−−→

n→∞
v1/p
p (B).

Under contiguous alternative where δ = δn ≈
√
nδ∗, and k∗ = ⌊nθ∗⌋ with some

δ∗ > 0, and θ∗ ∈ (0, 1), it holds

n−1/2v1/p
p (Zn) D−−−−→

n→∞
v1/p
p (B − f),

where f(t) =
{
δ∗t(1 − θ∗) if 0 ≤ t < θ∗

δ∗θ∗(1 − t) if θ∗ ≤ t ≤ 1
.

In the next section, we carry out some simulations to study the performance
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of the proposed approach to the change-point detection problem.

2.4. Simulation experiments

The statistical power is estimated by Monte-Carlo simulations. Then, we inves-
tigate the "sliding window" approach for change-point localization and multiple
change-point detections. Finally, the test is applied to a well-known dataset of
the annual flow of the river Nile at Aswan (formerly Assuan), 1871–1970, in
108m3 with apparent change-point near 1898 [18].

Throughout this section, the following parameters are used n - number of
observations, k - number of simulations, τ - change point position, aα - critical
value.

Consider a sequence X1, . . . , Xn, n ≥ 1, of independent random variables.
Suppose there exists a τ ∈ [0, 1] such that X1, . . . , Xnτ have the distribution
N (µ1, σ

2) and Xnτ+1, . . . , Xn have the distribution N (µ2, σ
2). Given α we

construct consistent critical point aα such that

P
(
v1/p
p (Zn) < aα

)
= α

for H0 : τ = 0 versus H1 : τ ∈ (0, 1].
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Figure 2.1: The probability distribution of v1/p
p (Zn) with critical values at a

significance level of α = 0.05 highlighted

The distribution of the v1/p
p (Zn) was estimated using Monte-Carlo tech-

nique, where parameters were set to n = 1000, k = 100000. The figure 2.1
show distribution with different p-variation p = {3, 4, 8} values and marked
critical values at asymptotic level α = 0.95.

During experiments, every simulated data has a common structure. In a
general setting, a sequence of observations x1, x2, . . . , xn is drawn from the i.i.d.
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Figure 2.2: These figures illustrate the statistical power at different levels of
magnitude change and change point location

random variables X1, X2, . . . , Xn and undergoes abrupt change in mean from
µ1 to µ2 at a point τ . Recall that X ∼ N (µ, σ2) means that X has Gaussian
distribution with mean µ and variance σ2. So, Xi is defined as

Xi ∼

{
N (µ1, σ

2) if i ≤ nτ

N (µ2, σ
2) if i > nτ

.

Consider the simulated copies of Znj(t), j = 0, . . . , k of the process Zn(t) where
k is subject to choice.

We estimate the power of detection by investigating Type II errors, given
that a change-point exists. In this case, an alternative hypothesis is correct
with level α = 0.95.

Our aim is to evaluate the statistical power under different circumstances.
First, we focus on the magnitude of the change by gradually increasing a value,
µ2 = a. The figure 2.2a show statistical power with respect to different a
values with different number of observations n = {1000, 10000, 30000}. The
simulation results show that if the number of observations is large enough
(n ≥ 30000), then the null hypothesis is correctly rejected more than 80%
times with µ2 > 0.035.

The second objective of this study is to evaluate the statistical power with
respect to change point location (τ) using a sample size of n = 1000. The
change point location (τ) parameter is used to indicate the location of the
change point, which is a crucial aspect in determining the ability to detect
changes quickly. The results of this simulation are presented in Figure 2.2b. It
can be observed that with a difference in means (|µ1 − µ2|) of at least 0.3, a
change point location (τ) as small as 0.20 is sufficient to achieve a statistical
power of 80%
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Figure 2.3: Sliding window approach. The top plot illustrates the whole process
with changes marked in blue dashed lines. The figure at the bottom shows p-
variation at each window position. The Red dashed line marks a critical value
aα, with α = 0.95

2.4.1. Sliding window approach

In the previous section, we showed that the proposed algorithm is effective at
identifying change points in data when all of the data are available for analysis,
which is known as an "offline" approach. However, it is often the case that data
arrive in batches or streams, rather than all at once. In this "semi-online"
scenario, it can be useful to analyze only a subset of the data in order to find
and localize multiple change points more efficiently. To address this, we have
extended the method to use a sliding window approach, where a subset of the
data is analyzed at a time. This allows for a more efficient and computationally
less intensive analysis of the data, while still being able to detect change points.

The sliding window approach is a method used to analyze data that arrives
in a stream or in batches, rather than all at once. It involves dividing the data
into overlapping or non-overlapping windows of a fixed size, and then applying
a statistical test to each window. By moving the window along the data stream
and analyzing the data in each window, the sliding window approach allows
for the analysis of data in a more efficient and computationally less intensive
manner, compared to analyzing the entire dataset at once.

Sliding window approaches have been used in a variety of contexts, includ-
ing signal processing, image processing, natural language processing, and data
mining. They are particularly useful when dealing with large datasets that
cannot be processed all at once, or when analyzing data in real-time, as the
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window can be moved along the data stream as new data becomes available.
However, the choice of window size and the overlap between windows can af-
fect the performance of the sliding window approach and should be carefully
considered.

To perform CPD using a sliding window approach, a specific window size
h is chosen and applied to a large buffer of data points x1, . . . , xn, n ≥ 1. The
window starts at the first point (w = 1) and is then shifted to the right by
a defined number of elements λ at each iteration. The objective is to test
hypotheses about the data in the present window, which consists of the points
xλw, . . . , xλw+h, as the window moves from w = 1 to w = n/λ.

Simulations have shown that the sliding window method is effective at lo-
calizing change points in data (see figure 2.3). The red dashed line indicates
the critical value with a significance level of α = 0.95. Typically, the statistic
used to detect change points will approach this critical value line around the
point where a change is present.

2.4.2. Real Data

Figure 2.4: Data from the annual volume of discharge from the Nile River at
Aswan. An apparent changepoint is visible near 1898.

As an example of a problem that can be addressed using change point detec-
tion, we consider the case of the River Nile. Specifically, we use measurements
of the annual flow of the river at Aswan (formerly Assuan), which were recorded
from 1871 to 1970 in units of 108m3. According to [18], there appears to be a
change point in the data near 1898. These measurements are meteorologically
significant as they may provide evidence of a change in the pattern of rainfall in
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the region. Figure 2.4 shows that there appears to be a decrease in the annual
volume of the river after 1898.

2.5. Conclusions

In this chapter, we introduced a new test statistic for detecting changes in the
mean of a sequence of observations. This statistic is based on the p-variation
of the corresponding CUSUM process, and is designed to detect at most one
change point in the process. We demonstrated through experiments that our
approach is effective at detecting relatively small changes in the mean, and
is computationally efficient for use with large data sets. While our approach
works well in an offline setting with a single change point, it may not perform
as well when multiple change points are present. To address this limitation, we
demonstrated that using a "sliding window" approach can be an effective way
to detect multiple change points.
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3. Multiple change-point detection in a functional sample

The chapter is organized as follows. In Section 3.2, G-sum and G-CUSUM pro-
cesses are defined and their asymptotic behavior is considered in a framework
of the ℓ∞(G) space. The results presented in this section are used to derive
the asymptotic distributions of the test statistics presented in Section 3.3. Sec-
tion 3.4 is devoted to simulation studies of the proposed test algorithms. Sec-
tion 3.5 contains a case study. Finally, Section 3.6 is devoted to the proofs of
our main theoretical results.

3.1. Introduction

Consider a second-order stationary sequence of stochastic processes Yi =
(Yi(t), t ∈ [0, 1]), i ∈ N, defined on a probability space (Ω,F , P ), having zero
mean and covariance function γ = {γ(s, t), s, t ∈ [0, 1]}. For a given functional
sample X1(t), . . . , Xn(t), t ∈ [0, 1], consider the model:

Xk(t) = g(k/n, t) + Yk(t), t ∈ [0, 1], k = 1, . . . , n, (3.1)

where the function g : [0, 1] × [0, 1] → R is deterministic, but unobserved. Our
main aim is to test for null and alternative hypothesis:

H0 : g = 0 versus H1 : g ̸= 0

with emphasis on a case of change-point detection, which corresponds to a
piecewise-constant function g with respect to the first argument.

This model covers a broad range of real-world problems such as climate
change detection, image analysis, analysis of medical treatments, especially
magnetic resonance images of brain activities, and speech recognition, to name
a few. Besides, the change-point detection model (3.1) can be used for knot
selection in spline smoothing as well as for trend changes in functional time
series analysis.

The methodology we propose is based on some measures of variation of the
process:

Wn(s) =
⌊ns⌋∑
k=1

(Xk −Xn) + (ns− ⌊ns⌋)(X⌊ns⌋+1 −Xn), s ∈ [0, 1],

where Xn = n−1(X1 + · · · +Xn).
Since this process is infinite-dimensional, we used the projections tech-

nique to reduce the dimension. To this aim, we assumed that Yi is mean-
squared continuous and jointly measurable and that γ has finite trace: tr(γ) =
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∫ 1
0 γ(t, t) dt < ∞. In this case, Yi is also an L2(0, 1)-valued random element,

where L2 := L2(0, 1) is a Hilbert space of Lebesgue square integrable functions
on [0, 1] endowed with the inner product ⟨f, g⟩ =

∫ 1
0 f(t)g(t) dt and the norm

∥f∥ :=
√

⟨f, f⟩.
In the case where the number of change points is known to be no bigger

than m, our test statistics are constructed from (m, p)-variation (see the def-
inition 1.1) of the processes (⟨Wn(s), ψ⟩, s ∈ [0, 1]), where ψ ∈ Ψ ⊂ L2(0, 1)
runs through a finite set Ψ of possibly random directions in L2(0, 1). In
particular, Ψ consists of estimated principal components. If the number
of change-points is unknown, we consider the p-variation of the processes
(⟨Wn(s), ψ⟩, s ∈ [0, 1]), ψ ∈ Ψ and estimate the possible number of change-
points.

3.2. G-Sum Process and Its Asymptotic

Let Q be the set of all probability measures on ([0, 1],B[0,1]). For any Q ∈ Q
and Q-integrable function f , Qf :=

∫ 1
0 f dQ. As usual, L2([0, 1], Q) is a set of

measurable functions on [0, 1], which are square-integrable for the measure Q,
and L2([0, 1], Q) is an associated Hilbert space endowed with the inner product:

⟨f, g⟩Q =
∫ 1

0
f(t)g(t)Q( dt), f, g ∈ L2([0, 1], Q)

and corresponding distance ρQ(f, g), f, g ∈ L2([0, 1], Q). We abbreviate
L2([0, 1], λ) to L2 and ⟨·, ·⟩λ to ⟨·, ·⟩ for Lebesgue measure λ. We use the norm
∥f∥ :=

√
⟨f, f⟩ and the distance ρ(f, g) = ∥f − g∥ for the elements f, g ∈ L2.

On the set L2 × L2, we use the inner product:

⟨(f, g), (f ′, g′)⟩2 = ⟨f, f ′⟩ + ⟨g, g′⟩

and the corresponding distance:

ρ2((f, g), (f ′, g′)) =
(

∥f − f ′∥2 + ∥g − g′∥2
)1/2

, f, f ′, g, g′ ∈ L2.

For two given sets F ,Ψ ⊂ L2, we consider the F × Ψ-sum process:

νn =
( n∑
k=1

νnk(f, ψ), f ∈ F , ψ ∈ Ψ
)
,

where νnk(f, ψ) = ⟨Xk, ψ⟩λnk(f), λnk is a uniform probability on the inter-
val [(k − 1)/n, k/n] and λnk(f) =

∫ 1
0 f(t) dλnk(t). A natural framework for

stochastic process νn is the space ℓ∞(G), where G = F × Ψ. Recall for a class
G that ℓ∞(G) is a Banach space of all uniformly bounded real-valued functions
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µ on G endowed with the uniform norm:

∥µ∥G := sup{|µ(g)| : g ∈ G}.

Given a pseudometric d on G, UC(G, d) is a set of all µ ∈ ℓ∞(G), which are
uniformly d-continuous. The set UC(G, d) is a separable subspace of ℓ∞(G) if
and only if (G, d) is totally bounded. The pseudometric space (G, d) is totally
bounded if N(ε,G, d) is finite for every ε > 0, where N(ε,G, d) is the minimal
number of open balls of d-radius ε, which are necessary to cover G.

It is worth noting that the process νn is continuous when F × Ψ is endowed
with the metric ρ2. Indeed,

|νnk(f, ψ) − νnk(f ′, ψ′)| ≤ |⟨Yk, ψ⟩λnk(f) − ⟨Yk, ψ′⟩λnk(f ′)|
≤ |λnk(f)|⟨Yk, ψ − ψ′⟩ + ⟨Yk, ψ′⟩λnk(f − f ′)|
≤ ∥Yk∥[

√
n∥f∥ · ∥ψ − ψ′∥ + ∥ψ′∥ · ∥f − f ′∥]

≤
√

2∥Yk∥ max{
√
n∥f∥, ∥ψ∥}ρ2((f, ψ), (f ′, ψ′)),

since |λnk(f)| ≤
√
n∥f∥ for every f ∈ L2. If both sets F and Ψ are totally

bounded, then the process νn is uniformly continuous so that νn takes values
in the subspace UC(G).

Next, we specify the set F ⊂ L2. To this aim, we recall some definitions.
For a function f : [0, 1] → R, a positive number 0 < p < ∞, and an integer
m ∈ N, the (m, p)-variation of f on the interval [0, t] is

vm,p(f ; [0, t]) := sup
{ m∑
j=1

|f(tj) − f(tj−1)|p
}
,

where the supremum is taken over all partitions 0 = t0 < t1 < · · · < tm = t,

of the interval [0, t]. We abbreviate vm,p(f) := vm,p(f ; [0, 1]). If vp(f) :=
supm≥1 vm,p(f) < ∞, then we say that f has finite p-variation and Wp[0, 1]
is the set of all such functions. The set Wp[0, 1], p ≥ 1, is a (non-separable)
Banach space with the norm:

||f ||[p] := sup
0≤t≤1

|f(t)| + v1/p
p (f).

The embedding Wp[0, 1] ↪→ Wq[0, 1] is continuous and

v1/q
q (f) ≤ v1/p

p (f), for 1 ≤ p < q.

For more information on the space Wp[0, 1], we refer to [23].

The limiting zero mean Gaussian process νγ = (ν(f, ψ), f ∈ F , ψ ∈ Ψ) is
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defined via covariance:

Eνγ(f, ψ)νγ(f ′, ψ′) = Kγ((f, ψ), (f ′, ψ, )) := ⟨Γψ,ψ′⟩⟨f, f ′⟩, ψ, ψ′, f, f ′ ∈ L2,

(3.2)
where Γ : L2 → L2 is the covariance operator corresponding to the kernel γ.
The function Kγ : G × G → R is positive definite:

m∑
k,j=1

cjckKγ((fj , ψj), (fk, ψk)) ≥ 0, (3.3)

for all c1, . . . , cm ∈ R, (f1, ψ1), . . . , (fm, ψm) ∈ G, and m ≥ 1. Indeed, if we
denote by W = (W(f), f ∈ L2) the isonormal Gaussian process on the Hilbert
space L2, we see that

Kγ((fj , ψj), (fk, ψk)) = E⟨Y, ψj⟩⟨Y, ψk⟩EW(fj)W(fk);

hence,

m∑
k,j=1

cjckKγ((fj , ψj), (fk, ψk)) = E
( m∑
k=1

ck⟨Y, ψk⟩W(fk)
)2

and (3.3) follows. This justifies the existence of the process νγ .
Throughout, we shall exploit the following.

Assumption 3. Random processes Y, Y1, Y2, . . . are i.i.d. mean square con-
tinuous, jointly measurable, with mean zero and covariance γ such that∫ 1

0 γ(t, t) dt < ∞. For the model (3.1), we consider null hypothesis H0 : g = 0
and two possible alternatives:

HA : g = gn = unqn, where un → u in W2[0, 1],
√
nqn → q in L2,

and

H ′
A : g = gn = unqn, where un → u in W2[0, 1],

√
n sup
ψ∈Ψ

|⟨qn, ψ⟩| → ∞.

In both alternatives, the function un is responsible for the configuration of
a drift within the sample, whereas the function qn estimates a magnitude of
the drift.

Our main theoretical results are Theorems 10 and 12, which are proven in
Section 3.6.

Theorem 10. Let the random processes (Xk) be defined by (3.1), where
Y, Y1, Y2, . . . satisfy Assumption 3. Assume that, for some 1 ≤ q < 2, the
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set F ⊂ Wq[0, 1] is bounded and the set Ψ ⊂ L2 satisfies∫ 1

0

√
logN(ε,Ψ, ρ) dε < ∞. (3.4)

Then, there exists a version of a Gaussian process νγ on L2 × L2 such that its
restriction on F × Ψ, (νγ(f, ψ), f ∈ F , ψ ∈ Ψ) is continuous and the follow-
ing hold:

(1a) Under H0:
n−1/2νn

D−−−−→
n→∞

νγ in ℓ∞(F × Ψ). (3.5)

(1b) Under HA,

n−1/2νn
D−−−−→

n→∞
νγ + ∆, in ℓ∞(F × Ψ), (3.6)

where
∆(f, ψ) = ⟨u, f⟩⟨q, ψ⟩.

If u(s) = 1, s ∈ [0, 1], then the alternative HA corresponds to the presence
of a signal in a noise. In this case, ∆(f, ψ) = λ(f)⟨q, ψ⟩. Therefore, the use of
this theorem for testing a signal in a noise is meaningful provided ⟨q, ψ⟩ ≠ 0.

As a corollary, Theorem 10 combined with the continuous mapping theorem
gives the following result.

Theorem 11. Assume that conditions of Theorem 10 are satisfied. Then, the
following hold:

(2a) Under H0

sup
ψ∈Ψ,f∈F

|n−1/2νn(f, ψ)| D−−−−→
n→∞

sup
ψ∈Ψ,f∈F

|νγ(f, ψ)|.

(2b) Under HA,

sup
ψ∈Ψ,f∈F

|n−1/2νn(f, ψ)| D−−−−→
n→∞

sup
ψ∈Ψ,f∈F

|νγ(f, ψ) + ⟨u, f⟩⟨q, ψ⟩|.

(2c) Under H ′
A,

sup
ψ∈Ψ,f∈F

|n−1/2νn(f, ψ)| P−−−−→
n→∞

∞. (3.7)

Proof. Since both (2a) and (2b) are by-products of Theorem 10 and continuous
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mappings, we need to prove only (2c). First, we observe that

sup
ψ∈Ψ,f∈F

|νn(f, ψ)| ≥ sup
ψ∈Ψ,f∈F

∣∣∣ n∑
k=1

(
⟨Yk, ψ⟩ + ⟨qn, ψ⟩un(k/n)

)
λnk(f)

∣∣∣
≥ sup
ψ∈Ψ,f∈F

∣∣∣ n∑
k=1

un(k/n)λnk(f)
∣∣∣ · |⟨qn, ψ⟩| −OP (

√
n),

by (2a). Consider

In(f) :=
∣∣∣ n∑
k=1

un(k/n)λnk(f)
∣∣∣.

We have

In(f) = n
∣∣∣ n∑
k=1

un(k/n)
∫ k/n

(k−1)/n
f(t) dt

∣∣∣
≥ n

∣∣∣ n∑
k=1

∫ k/n

(k−1)/n
un(t)f(t) dt

∣∣∣− n
∣∣∣ n∑
k=1

∫ k/n

(k−1)/n
(un(t) − un(k/n))f(t) dt

∣∣∣
:= I ′

n(f) − I ′′
n(f).

By the Hölder inequality,

I ′′
n(f) ≤ n

n∑
k=1

(∫ k/n

(k−1)/n
(un(t) − un(k/n))2 dt

)1/2(∫ k/n

(k−1)/n
f2(t) dt

)1/2

≤ n
( n∑
k=1

∫ k/n

(k−1)/n
(un(t) − un(k/n))2 dt

)1/2( n∑
k=1

∫ k/n

(k−1)/n
f2(t) dt

)1/2

≤ n
(
n−1

n∑
k=1

v2(un, [(k − 1)/n, k/n])
)1/2

∥f∥ ≤
√
nv

1/2
2 (un)∥f∥.

Since I ′
n(f) = n|⟨un, f⟩|, we deduce

In(ψ, f) ≥ n|⟨un, f⟩| −
√
nv

1/2
2 (un)∥f∥.

Hence,

n−1/2 sup
ψ∈Ψ,f∈F

|νn(f, ψ)| ≥
√
n sup
ψ∈Ψ,f∈F

|⟨un, f⟩| · |⟨qn, ψ⟩| −OP (1)

and this completes the proof of (2c).

Next, we consider G-sum process µn = (µn(f, ψ), f ∈ F , ψ ∈ Ψ) defined by

µn(f, ψ) =
n∑
k=1

⟨Xk −Xn, ψ⟩λnk(f),
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where Xn = n−1(X1 + · · · +Xn). Its limiting zero mean Gaussian process µγ
is defined via covariance:

Eµγ(f, ψ)µγ(f ′, ψ′) = ⟨Γψ,ψ′⟩[⟨f, f ′⟩ − λ(f)λ(f ′)], ψ, ψ′, f, f ′ ∈ L2. (3.8)

The existence of Gaussian process µγ can be justified as that of νγ above. Just
notice that

⟨f, f ′⟩ − λ(f)λ(f ′) − E(W(f) − λ(f)W(1))(W(f ′) − λ(f ′)W(1)),

where 1(t) = 1, t ∈ [0, 1].

Theorem 12. Assume that the conditions of Theorem 10 are satisfied. Then,
there exists a version of the Gaussian process µγ on L2(0, 1) × L2(0, 1) such
that its restriction on F × Ψ, (ν(f, ψ), f ∈ F , ψ ∈ Ψ) is continuous and the
following hold:

(3a) Under H0,
n−1/2µn

D−−−−→
n→∞

µγ in ℓ∞(F × Ψ); (3.9)

(3b) Under alternative HA,

n−1/2µn
D−−−−→

n→∞
µγ + ∆̃ in ℓ∞(F × Ψ), (3.10)

where
∆̃(f, ψ) = [⟨u, f⟩ − λ(u)λ(f)]⟨q, ψ⟩.

We see that the limit distribution of the G-sum process separates the null
and alternative hypothesis provided [⟨u, f⟩ − λ(u)λ(f)]⟨q, ψ⟩ ̸= 0. As a corol-
lary, Theorem 12 combined with the continuous mapping theorem gives the
following results.

Theorem 13. Assume that the conditions of Theorem 10 are satisfied. Then,
the following hold:

(4a) Under H0,

sup
ψ∈Ψ,f∈F

|n−1/2µn(f, ψ)| D−−−−→
n→∞

sup
ψ∈Ψ,f∈F

|µγ(f, ψ)|. (3.11)

(4b) Under HA,

sup
ψ∈Ψ,f∈F

|n−1/2µn(f, ψ)| D−−−−→
n→∞

sup
ψ∈Ψ,f∈F

|µγ(f, ψ) + ∆̃(f, ψ)|. (3.12)

(4c) Under H ′
A,

sup
ψ∈Ψ,f∈F

|n−1/2µn(f, ψ)| P−−−−→
n→∞

∞. (3.13)

67



Proof. Both (4a) and (4b) are by-products of Theorem 12 and continuous map-
pings, whereas the proof of (4c) follows the lines of the proof of Theorem 11
(2c).

3.3. Test Statistics

Several useful test statistics can be obtained from the G-sum process µn =
(µn(f, ψ), (f, ψ) ∈ G = F ×Ψ), by considering concrete examples of sets Ψ and
F .

Throughout this section, we assume that the sample X1, X2, . . . , Xn follows
the model (3.1) and Y, Y1, Y2, . . . satisfies Assumption 3.

By Γ, we denote the covariance operator of Y : Γ = E(Y ⊗ Y ). Recall

Γx(t) =
∫ 1

0
γ(t, s)x(s) ds, t ∈ [0, 1].

According to Mercer’s theorem, the covariance γ has then the following
singular-value decomposition:

γ(s, t) =
m∑
r=1

λrψr(s)ψr(t), t, s ∈ [0, 1], (3.14)

where λ1, . . . , λm are all the decreasingly ordered positive eigenvalues of Γ and
ψ1, . . . , ψm are the associated eigenfunctions of Γ such that∫ 1

0
ψ2
r(t) dt = 1,

∫ 1

0
ψr(t)ψℓ(t) dt = 0, r ̸= ℓ,

and m is the smallest integer such that, when r > m, λr = 0. If m = ∞,
then all the eigenvalues are positive, and in this case,

∑
r λr < ∞. Note that

λr = E⟨Y, ψr⟩2. Besides, we shall assume the following.

Assumption 4. The eigenvalues λr satisfy, for some d > 0,

λ1 > λ2 > · · · > λd > λd+1.

In statistical analysis, the eigenvalues and eigenfunctions of Γ are replaced
by their estimated versions. Noting that, for each k,

E[(Xk − E(Xk)) ⊗ (Xk − E(Xk))] = Γ,

one estimates Γ by

Γ̂n := 1
n

n∑
i=1

[(Xi −Xn) ⊗ (Xi −Xn)],
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where Xn(s) = n−1(X1(s) + · · · +Xn(s). We denote the eigenvalues and eigen-
functions of Γ̂ by λ̂nr and ψ̂nr, r = 1, . . . , n−1, respectively. In order to ensure
that ψ̂nr may be viewed as an estimator of ψr rather than of −ψr, we will in
the following assume that the signs are such that ⟨ψ̂nr, ψr⟩ ≥ 0. Note that

Γ̂ψ̂nr = λ̂nrψ̂nr, r = 1, . . . , n− 1, (3.15)

and

λ̂nr = 1
n− 1

n∑
i=1

⟨Xi −Xn, ψ̂nr⟩2, r = 1, . . . , n. (3.16)

The use of the estimated eigenfunctions and eigenvalues in the test statistics
is justified by the following result. For a Hilbert–Schmidt operator T on L2,
we denote by ∥T∥HS its Hilbert–Schmidt norm.

Lemma 2. Assume that Assumption 3 holds. Then, under HA,

∥Γ̂n − Γ∥HS → 0 as n → ∞.

Proof. First, we observe that

Γ̂n = Γ̃n + Tn1 + Tn2 + Tn3,

where

Γ̃n = 1
n

n∑
k=1

(Yk − Y n) ⊗ (Yk − Y n),

Tn1 = 1
n

n∑
k=1

[
un(k/n) − 1

n

n∑
j=1

un(j/n)
]
(Yk − Y n) ⊗ qn,

Tn2 = 1
n

n∑
k=1

[
un(k/n) − 1

n

n∑
j=1

un(j/n)
]
qn ⊗ (Yk − Y n),

Tn3 = 1
n

n∑
k=1

[
un(k/n) − 1

n

n∑
j=1

un(j/n)
]2
qn ⊗ qn.

It is well known that ∥Γ̃n−Γ∥HS
a.s.−−−−→
n→∞

0 as n → ∞. By the moment inequality
for sums of independent random variables, we deduce

E∥Tni∥2
HS ≤ cn−2

n∑
k=1

[
un(k/n) − 1

n

n∑
j=1

un(j/n)
]2
E∥Y ∥2∥qn∥2,
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for both i = 1, 2. This yields Tni
P−−−−→

n→∞
0. Next, we have

∥Tn3∥HS = 1
n

n∑
k=1

[
un(k/n)− 1

n

n∑
j=1

un(j/n)
]2

∥qn∥2 ≤ 1
n

n∑
k=1

u2
n(k/n)∥qn∥2 → 0

as n → ∞ due to assumption HA. This completes the proof.

Lemma 3. Assume that Assumptions 3 and 4 for some finite d hold and
E(∥Y ∥4) < ∞. Then, under H0, as well as under HA:

n1/2|λ̂nj − λj | = OP (1), and n1/2∥ĉnjψ̂nj − ψj∥ = OP (1)

for each 1 ≤ j ≤ d, where ĉnj = ⟨ψ̂nj , ψj⟩.

Proof. If the null hypothesis is satisfied, then Γ̂n = Γ̃n and the asymptotic re-
sults for the eigenvalues and eigenfunctions of T̃n are well known (see, e.g., [34]).
Under alternative HA, the results follow from Lemma 2 and Lemma 2.2 and
Lemma 2.3 in [34].

Next, we consider separately the test statistics for at most one, at most m,
and for an unknown number of change-points.

3.3.1. Testing at Most One Change-Point

Define for d > 0,

Tn,1(d) := max
1≤j≤d

1√
λj

max
1≤k≤n

∣∣∣ k∑
i=1

⟨Xi −Xn, ψj⟩
∣∣∣. (3.17)

This statistic is designed for at most one change-point alternative. Its limiting
distribution is established in the following theorem.

Theorem 14. Let random functional sample (Xk) be defined by (3.1) where
Y, Y1, Y2, . . . satisfies Assumptions 3 and 4. Then,

(a) Under H0, it holds that

n−1/2Tn,1(d) D−−−−→
n→∞

sup
1≤k≤d

sup
0≤t≤1

|Bk(t)|,

where B1, . . . , Bd are independent standard Brownian bridge processes;

(b) Under HA, it holds that

n−1/2Tn,1(d) D−−−−→
n→∞

sup
1≤k≤d

sup
0≤t≤1

|Bk(t) + ∆(t)⟨q, ψk/
√
λk⟩|,
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where
∆(t) =

∫ t

0
u(s) ds− t

∫ 1

0
u(s) ds, t ∈ [0, 1]. (3.18)

(c) Under H ′
A, it holds that

n−1/2Tn,1(d) P−−−−→
n→∞

∞.

Proof. Consider the sets

Ψd,γ :=
{ ψ1√

λ1
, . . . ,

ψd√
λd

}
, and F1 = {1[0,t], t ∈ [0, 1]}. (3.19)

Observing that
Tn,1(d) = sup

ψ∈Ψd,γ ,f∈F1

|µn(f, ψ)|

and F1 is a bounded set in Wq, we complete the proof by applying Theorem
12.

Based on this result, we construct the testing procedure in a classical way.
Choose for a given α ∈ (0, 1), Cα > 0 such that

P ( sup
1≤k≤d

sup
0≤t≤1

|Bk(t)| > Cα) = α.

According to Theorem 14, the test:

Tn,1(d) ≥
√
nCα (3.20)

will have asymptotic level α. Under the alternative HA, we have

lim
n→∞

P (n−1/2Tn,1(d) ≥ Cα) ≥ P

(
sup

1≤k≤d

sup
0≤t≤1

|Bk(t)| ≤ max
1≤k≤d

max
0≤t≤1

|∆(t)⟨q, ψk/λk⟩| − Cα

)
≥ 1 − α,

when
max

1≤k≤d
max

0≤t≤1
|∆(t)⟨q, ψk/λk⟩| ≥ 2Cα. (3.21)

Hence, if g(s, t) = gn(s, t) = un(s)qn(t) and

√
n max

1≤k≤d
max

0≤t≤1
|⟨gn(t, ·), ψk/

√
λk⟩| → ∞

as n → ∞, then the test (3.20) is asymptotically consistent.
Let us note that, due to the independence of Brownian bridges Bk, k =

1, . . . , d, we have

1 − α = P ( sup
1≤k≤d

sup
0≤t≤1

|Bk(t)| ≤ Cα) = P d( sup
0≤t≤1

|B1(t)| ≤ Cα).
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Figure 3.1: Density functions.

This yields
P ( sup

0≤t≤1
|B1(t)| ≤ Cα) = (1 − α)1/d.

Hence, Cα is the (1 − α)1/d-quantile of the distribution of sup0≤t≤1 |B1(t)|.
This observation simplifies the calculations of critical values Cα.

In particular, if there is s∗ ∈ (0, 1) such that u(s) = 1[0,s∗](s), s ∈ [0, 1],
then we have one change-point model:

Xk(t) = 1[0,s∗](k/n)qn(t) + Yk(t), t ∈ [0, 1].

In this case, ∆(t) = ∆∗(t) := min{t, s∗} − ts∗, t ∈ [0, 1].

Figure 3.1 below shows generated density functions of
sup1≤k≤d sup0≤t≤1 |Bk(t)| and sup1≤k≤d sup0≤t≤1 |Bk(t) + ∆∗(t)⟨q, ψk/

√
λk⟩|

for d = [1, 10, 30], s∗ ∈ {1/4, 1/2, 3/4} where q = aψk
√
λk for a fixed k.

Let us observe that test statistic Tn,1(d) tends to infinity when d →
∞. On the other hand, with larger d, the approximation of Xj by series∑d
j=1⟨X,ψj⟩ψj is better and leads to better testing power. The following re-

sult establishes the asymptotic distribution of Tn,1(d) as d → ∞.

Theorem 15. Let random functional sample (Xk) be defined by (3.1) where
Y, Y1, Y2, . . . satisfies Assumption 3. Then, under H0,

lim
d→∞

lim
n→∞

P
(
n−1/2Tn,1(d) ≤ x

ad
+ bd

)
= exp{−e−x}, x ≥ 0, (3.22)

where
ad = (8 ln d)1/2, bd = 1

4ad + ln ln d
ad

. (3.23)
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Proof. By Theorem 14, the proof reduces to

lim
d→∞

P ( sup
1≤j≤d

∥Bj∥∞ ≤ x/ad + bd) = exp{−e−x}, x ≥ 0. (3.24)

It is known that

P (∥Bj∥∞ > u) = 2e−2u2
u2(1 + o(1)), u → ∞.

Since Brownian bridges Bj , 1 ≤ j ≤ d are independent, we have

P ( sup
1≤j≤d

∥Bj∥∞ ≤ x/ad + bd) = P d(∥B1∥0 ≤ x/ad + bd)

=
(

1 − P (∥B1∥0 ≥ x/ad + bd)
)d

and
lim
d→∞

dP (∥B1∥∞ ≥ x/ad + bd) = e−x.

This proves (3.24).

When d is large, the test (3.20) becomes

Tn,1 ≥
√
n
[ 1
ad

ln
( 1

ln(1/α)

)
+ bd

]
(3.25)

and has asymptotic level α as n and d tend to infinity.
The dependence on d of critical values of the tests (3.20) and (3.25) is

shown in Figure 3.2. A comparison was made for asymptotic level α = 0.05.
From Figure 3.2, we see that the critical values in (3.25) are smaller than those
in (3.20). This means that the error of the first kind is more likely with the
test (3.25), rather than with (3.36). This is confirmed by simulations.

If the eigenfunctions (ψk) are unknown, we use the statistics:

T̂n,1(d) := max
1≤j≤d

1√
λ̂j

max
1≤k≤n

∣∣∣ k∑
i=1

⟨Xi −Xn, ψ̂j⟩
∣∣∣. (3.26)

Theorem 16. Let random functional sample (Xk) be defined by (3.1), where
Y, Y1, Y2, . . . satisfies Assumptions 3 and 4. Then:

(a) Under H0,
n−1/2T̂n,1(d) D−−−−→

n→∞
sup

1≤k≤d
sup

0≤t≤1
|Bk(t)|,

where B1, . . . , Bd are independent standard Brownian bridge processes;
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Figure 3.2: A comparison of the critical values in equations (3.20) and (3.25) is
presented, with a significance level of α = 0.05, along with the density function
of Tn,1(d).

(b) Under HA, if E∥Y ∥4 < ∞, it holds that

n−1/2T̂n,1(d) D−−−−→
n→∞

sup
1≤k≤d

sup
0≤t≤1

|Bk(t) + ∆(t)⟨q, ψk/
√
λk⟩|,

where ∆(t) =
∫ t

0 u(s) ds− t
∫ 1

0 u(s) ds, t ∈ [0, 1].

(c) Under H ′
A, if E∥Y ∥4 < ∞, it holds that

n−1/2T̂n,1(d) P−−−−→
n→∞

∞.

Proof. The result follows from Theorem 14 if we show that

Dn := n−1/2|Tn,1(d) − T̂n,1(d)| P−−−−→
n→∞

0. (3.27)

On the set max1≤j≤d |λj − λ̂nj | + max1≤j≤d ∥ψj − ĉjψ̂nj∥ ≤ An−1/2 and for
n ≥ N0 such that An−1/2 < λd/2, simple algebra gives Dn ≤ Dn1 +Dn2, where

Dn1 = max
1≤j≤d

∣∣∣ 1
λj

− 1
λ̂nj

∣∣∣ max
1≤k≤1

∣∣∣ k∑
i=1

⟨Xi −Xn, ψj⟩
∣∣∣

≤ 2
λd

max
1≤j≤n

|λ̂nj − λj |n−1/2Tn,1(d) → 0 as n → ∞,
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and

Dn2 ≤ n−1/2 2
ε

max
1≤k≤n

∥∥∥ k∑
i=1

[Xi −Xn]
∥∥∥ max

1≤j≤d
∥ψ̂nj − ψj∥

≤ 2A
ε
n−1 max

1≤k≤n

∥∥∥ k∑
i=1

[Xi −Xn]
∥∥∥ → 0 as n → ∞

by the law of large numbers. Lemma 3 concludes the proof.

Test (3.20) now becomes

T̂n,1(d) ≥
√
nCα (3.28)

and has asymptotic level α by Theorem 16.

3.3.2. Testing at most m Change-Points

For m > 1, let Nm be a set of all partitions κ = (ki, i = 0, 1, . . . ,m) of the set
{0, 1, . . . , n} such that 0 = k0 < k1 < · · · < km−1 < km = n. Next, consider
for fixed integers d, 1 ≤ m < n and real p > 2,

Tn,m(d, p) := max
1≤j≤d

1√
λj

max
κ∈Nm

{ m∑
i=1

∣∣∣ ki∑
k=ki−1+1

⟨Xk −Xn, ψj⟩
∣∣∣p}1/p

. (3.29)

The statistics Tn,m(d, p) are designed for testing at most m change-points in
a sample.

Theorem 17. Let the random sample (Xi, i = 1, . . . , n) be as in Theorem
10. Then:

(a) Under H0,
n−1/2Tn,m(d, p) D−−−−→

n→∞
max

1≤j≤d
v1/p
m,p(Bj),

where B1, . . . , Bd are independent standard Brownian bridges.

(b) Under HA,

n−1/2Tn,m(d, p) D−−−−→
n→∞

max
1≤j≤d

v1/p
m,p(Bj + ∆⟨q, ψj/

√
λj⟩),

where ∆(t), t ∈ [0, 1] is as defined in Theorem 11.

(c) Under H ′
A,

n−1/2Tn,m(d, p) P−−−−→
n→∞

∞.
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Figure 3.3: Functions ∆∗
2 and density functions.

Proof. For 1 ≤ m ≤ n and q = p/(p− 1), set

Fm,q :=
{ m∑
j=1

bj1(tj−1,tj ] :
m∑
j=1

|bj |q ≤ 1, 0 = t0 < t1 < · · · < tm = 1
}
. (3.30)

It is easy to check that Fm,q ⊂ Wq[0, 1]. Since

sup
{∣∣∣ m∑

k=1
akbk

∣∣∣ :
m∑
k=1

|bk|q ≤ 1
}

=
( m∑
k=1

|ak|p
)1/p

,

we have
Tn,m(d) = max

ψ∈Ψd,γ

max
f∈Fm,q

|µn(ψ, f)|,

and the results follow from Theorem 11.

In particular, if there is s∗
1, s

∗
2 ∈ (0, 1) such that u(s) = 1[s∗

1 ,s
∗
2 ](s), s ∈ [0, 1],

then (3.1) corresponds to the so-called changed segment model. In this case,
we have ∆(t) = ∆∗

2(t) := max{0,min{t, s∗
2} − s∗

1} − t(s∗
2 − s∗

1), t ∈ [0, 1].
Figure 3.3) shows the generated density functions of max1≤k≤d v

1/p
4,p (Bk) and

max1≤k≤d v
1/p
4,p (Bk + ak∆∗

2) for different values of d ≥ 1, 0 < s∗
1 < s2 < 1, and

p > 2. The numbers a1, . . . , ad were sampled from the uniform distribution
on [0, 15].

With the estimated eigenvalues and eigenfunctions, we define

T̂n,m(d, p) := max
1≤j≤d

1√
λ̂nj

max
κ∈Nm

{ m∑
i=1

∣∣∣ ki∑
k=ki−1+1

⟨Xk −Xn, ψ̂nj⟩
∣∣∣p}1/p

. (3.31)

Theorem 18. Let the functional sample (Xk, k = 1, . . . , n) be defined by (3.1)
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where Y, Y1, Y2, . . . satisfies Assumptions 3 and 4. Then:

(a) Under H0,
n−1/2T̂n,m(d, p) D−−−−→

n→∞
max

1≤j≤d
v1/p
m,p(Bj),

where B1, . . . , Bd are independent standard Brownian bridges.

(b) Under HA,

n−1/2T̂n,m(d, p) D−−−−→
n→∞

max
1≤j≤d

v1/p
m,p(Bj + ∆⟨q, ψj/

√
λj⟩),

where ∆(t), t ∈ [0, 1] is as defined in Theorem 11.

(c) Under H ′
A,

n−1/2T̂n,m(d, p) P−−−−→
n→∞

∞.

Proof. This goes along the lines of the proof of Theorem 16.

According to Theorems 17 and 18, the tests:

Tn,m(d, p) ≥
√
nCα(m, d, p) and T̂n,m(d, p) ≥

√
nCα(m, d, p) (3.32)

respectively, will have asymptotic level α, if Cα(m, d, p) is such that

P (v1/p
m,p(B) ≤ Cα(m, d, p)) = (1 − α)1/d.

3.3.3. Testing Unknown Number of Change-Points

Next, consider for fixed integers d as above and real p > 2,

Tn(d, p) := max
1≤j≤d

1√
λj

max
1≤m≤n

max
κ∈Nm

{ m∑
i=1

∣∣∣ ki∑
k=ki−1+1

⟨Xk −Xn, ψj⟩
∣∣∣p}1/p

.

(3.33)
The statistics Tn(d, p) are designed for testing an unknown number of change-
points in a sample.

Theorem 19. Let random sample (Xi, i = 1, . . . , n) be as in Theorem
10. Then:

(a) Under H0,
n−1/2Tn(d, p) D−−−−→

n→∞
max

1≤j≤d
v1/p
p (Bj),

where B1, . . . , Bd are independent standard Brownian bridges.

(b) Under HA,

n−1/2Tn(d, p) D−−−−→
n→∞

max
1≤j≤d

v1/p
p (Bj + ∆⟨q, ψj/

√
λj⟩),
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where ∆(t), t ∈ [0, 1] is as defined in Theorem 10.

(c) Under H ′
A,

n−1/2Tn(d, p) P−−−−→
n→∞

∞.

Proof. For q = p/(p− 1), set

Fq :=
{ m∑

j=1

bj1(tj−1,tj ] :
∞∑

j=1

|bj |q ≤ 1, 0 = t0 < t1 < · · · < tm = 1,m ≥ 1
}
. (3.34)

It is easy to check that Fq ⊂ Wq[0, 1]. Since

sup
{∣∣∣ ∞∑

k=1
akbk

∣∣∣ :
∞∑
k=1

|bk|q ≤ 1
}

=
( ∞∑
k=1

|ak|p
)1/p

,

we have
Tn(d) = max

ψ∈Ψd,γ

max
f∈Fm,q

|µn(ψ, f)|,

and both statements (a) and (b) follow from Theorem 10.

With the estimated eigenvalues and eigenfunctions, we define:

T̂n(d, p) := max
1≤j≤d

1√
λ̂nj

max
1≤m≤n

max
κ∈Nm

{ m∑
i=1

∣∣∣ ki∑
k=ki−1+1

⟨Xk −Xn, ψ̂nj⟩
∣∣∣p}1/p

.

(3.35)

Theorem 20. Let random sample (Xi) be as in Theorem 10. Then:

(a) Under H0,
n−1/2T̂n(d, p) D−−−−→

n→∞
max

1≤j≤d
v1/p
p (Bj),

where B1, . . . , Bd are independent standard Brownian bridges.

(b) Under HA,

n−1/2T̂n(d, p) D−−−−→
n→∞

max
1≤j≤d

v1/p
p (Bj + ∆⟨q, ψj/

√
λj⟩),

where ∆(t), t ∈ [0, 1] is as defined in Theorem 10.

(c) Under H ′
A,

n−1/2T̂n(d, p) P−−−−→
n→∞

∞.

Proof. This goes along the lines of the proof of Theorem 16.

According to Theorems 19 and 20, the tests:

Tn(d, p) ≥
√
nCα(d, p) and T̂n(d, p) ≥

√
nCα(d, p) (3.36)
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respectively, will have asymptotic level α, if Cα(d, p) is such that

P (v1/p
p (B) ≤ Cα(d, p)) = (1 − α)1/d.

The quantiles of distribution function of v1/p
p (B) were estimated in chapter 2.

3.4. Simulation Results

We examined the above-defined test statistics in a Monte Carlo simulation
study. In the first subsection, we describe the simulated data under considera-
tion. The statistical power analysis of the tests (3.36) and (3.32) is presented
in Section 3.4.2.

3.4.1. Data

We used the following three scenarios:

(S1) Let (ξjk) be i.i.d. symmetrized Pareto random variables with index p (we
used p = 5). Set

Yj(t) =
d∑
k=1

ξjk

√
2 cos(kπt)
kσ

, t ∈ [0, 1], j ≥ 1, (3.37)

where σ2 = Eξ2
11. Under the null hypothesis, we take Xk = Yk, k =

1, 2, . . . , n.

Under the alternative, we consider

Xj(t) = un(j/n)
d∑
k=1

ank cos(kπt) + Yj , t ∈ [0, 1], j = 1, . . . , n,

where the function un defines the change-points’ configuration and the
coefficients (ank) are subject to choice.

(S2) We start with discrete observations (xij , j = 0, 1, . . . ,M), i = 1, . . . , n,
by taking xij = Xi(τj), where the random sample (Xj , j = 1, . . . , n) is
generated as in scenario (S1). Discrete observations are converted to the
functional data (Xj , j = 1, . . . , n) by using B-spline bases.

(S3) Discrete observations (i/M, yij), i = 0, 1, . . . ,M, j = 1, . . . , n, are gener-
ated by taking

yij = M−1/2
i∑

k=1
ξkj ,

so that yij can be interpreted as the observation of a standard Wiener
process at i/M . From (yij , i = 1, . . . ,M), the function Yj is obtained
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using the B-spline smoothing technique. During the simulation, we used
M = 1000 and D = 50 B-spline functions, thus obtaining n = 500
functions Y1, . . . , Yn.

Then, we define for j = 1, . . . , n,

Xj =
{
Yj , under null
un(j/n)qn + Yj , under alternative

and consider different configurations un of change-points and qn(t) =
an

√
Mt, t ∈ [0, 1].

We mainly concentrated on two possible change-point alternatives. The
first is obtained with un(t) = 1[0,θ](t) and corresponds to one change-point
alternative. Another is for the epidemic-type alternative, for which we take
un(t) = 1[θ1,θ2](t).

0.0 0.2 0.4 0.6 0.8 1.0

−1
.5

−0
.5

0.5
1.5

0.0 0.2 0.4 0.6 0.8 1.0

−1
.5

−0
.5

0.5
1.5

0.0 0.2 0.4 0.6 0.8 1.0

−1
.5

−0
.5

0.5
1.5

0.0 0.2 0.4 0.6 0.8 1.0

−1
.5

−0
.5

0.5
1.5

0.0 0.2 0.4 0.6 0.8 1.0

−1
.5

−0
.5

0.5
1.5

0.0 0.2 0.4 0.6 0.8 1.0

−1
.5

−0
.5

0.5
1.5

0.0 0.2 0.4 0.6 0.8 1.0

−1
.5

−0
.5

0.5
1.5

0.0 0.2 0.4 0.6 0.8 1.0

−1
.5

−0
.5

0.5
1.5

0.0 0.2 0.4 0.6 0.8 1.0

−1
.5

−0
.5

0.5
1.5

Figure 3.4: True basis functions (red) and “reconstructed” basis functions
(black) using fPCA method.

Scenario (S1) is used as an optimal case situation where the actual eigen-
values and eigenfunctions are known. In this case, we are not required to
approximate discrete functions, thus avoiding any data loss or measurement
errors. The second scenario continues with the same random functional sample
but goes through extra steps such as taking function values at discrete data
points and reconstructing the random functional sample on a different set of
basis functions. The aim of this exercise is to measure the impact when some
information could be lost due to measurements taken at discrete points and
smoothing. The simulation results show that, even after the reconstruction
of the random functional sample, the performance of the test does not suffer
too much.

Our simulation starts with the generation process of the random functional
sample Yj as described in the first scenario with d = 30.
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First of all, we can compare the true eigenfunctions of covariance oper-
ator Γ = E[Yj ⊗ Yj ] with the eigenfunctions of estimated operator Γ̂n (see
Figure 3.4).

We see that the estimated harmonics have almost the same shape; only
every second, the estimated eigenfunctions are phase shifted.

Next, for both scenarios (S1) and (S2), the density functions of the test
statistic Tn,1(d) (3.17) were estimated using Monte Carlo with 10,000 repeti-
tions (see Figure 3.5). It shows four density plots: the red density functions
of Tn,1(d) are calculated using the true eigenfunctions and eigenvalues, while
the black curves show the density of T̂n,1(d) (3.26) using the estimated eigen-
functions and eigenvalues. The left side density plots were estimated from the
samples under the null hypothesis, while the plots on the right side show the
density of Tn,1(d) and T̂n,1(d) with the sample:

Xj(t) =
d∑
k=1

(ξjk + 1(τ>j)a)
√

2 cos(kπt)
kσ

, t ∈ [0, 1], τ = 250, j = 1 . . . 500 (3.38)

with added drift a = 0.2.
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Figure 3.5: Density plots of the test statistic Tn,1(d) and T̂n,1(d).

Since fPCA represents a functional data sample in the most parsimonious
way, we can see that the density of the test statistics in scenario (S2) is more
on the left side and more concise. Critical values cd(α) with α = 0.05 of the
statistics Tn,1(d) and T̂n,1(d) were also calculated and are shown in Figure 3.5.
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3.4.2. Statistical Power Analysis

First, we compared the statistical power of the test (3.20) with statistic Tn,1(d)
of the scenario (S1) and scenario (S2) with statistic T̂n,1(d). To this aim, we
used sample (Xj , j = 1, . . . , n) defined in (3.38), where τ = 250, which is in the
middle of the sample. We started with the no drift a = 0 (corresponding to
the null hypothesis) and increasing the drift amount a by 0.03 up to the point
when a > 0.3. At each a value, we repeated the simulation 1000 times. This
gives a good indication of the statistical power with the amount of the added
drift. The statistical power is illustrated in Figure 3.6. Based on the simulation
results, we can see that, even if the random functional sample is approximated
from the discrete data points, it still holds the same statistical power and the
performance does not suffer from the information loss due to smoothing and
fPCA. These are important results, because, normally, in observed real-world
data, the true functions are unknown and have to be approximated, which
almost always introduces measurement errors.
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Figure 3.6: The comparison of the statistical power of scenario (S1) and (S2)

Next, we focus on the power tests (3.36) and (3.32) used directly on the
functional data sets simulated in scenario (S3).In Figures 1.6a and 1.6b we
presented the clear opposites of the functional data sets with respect to the
change-point. The changes can be easily observed. However, especially working
with functional data sets, the changes may not be that obvious. As an example,
Figure 3.7 illustrates another functional data set with the change-point, where
the presence of the change-point is not visible, but Monte Carlo experiments
show that, with the same magnitude of change, for almost 80% of the cases,
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H0 was correctly rejected.

(a) The Three-dimensional plot illus-
trates the variations in mean across the
dataset

(b) The heatmap presents a visual rep-
resentation of the differences in mean
across the dataset, with changes in mean
represented by variations in color inten-
sity

Figure 3.7: Sample with introduced drift of magnitude a = 0.004 after the
change-point.

The density of the limiting distribution and asymptotic critical values were
estimated using the Monte Carlo technique by simulating a Brownian bridge
with 1000 points and running 100,000 replications.

In the power studies, we tested two variants of the random functional sam-
ples, one with a single change-point in the middle of the functional sample
and the second with the two change-points forming epidemic change. In the
first case, the functional sample X1, . . . , Xn is constructed from n = 1000
random functions where 500 curves are changed in order to violate the null hy-
pothesis. The model that violates the null hypothesis is defined as Xk(t) =
∆(t)1{i > n/2} + Yi(t), ∆(t) = a

√
Mt, t ∈ [0, 1],M = 1000, and the

parameter a is used to control the magnitude of the drift after the change-
point. In the second case, during each iteration, n = 1500 random func-
tions are generated, where 500 curves in the middle were modified by taking
Xk(t) = ∆(t)1{2n/3 > i > n/3} + Yi(t), t ∈ [0, 1]. During each repetition,
two statistics are calculated: T̂n(d, p) (3.35) and T̂n,1(d) (3.26) in the single
change-point simulation. For the epidemic change simulation T̂n,m(d, p) (3.31),
m = 2 statistic is calculated. We set the p-variation p parameter to 3. We
also tested with different p-values, but this did not have any impact on the
overall performance.

Figure 3.8 presents the results of the statistical power simulation of both
cases: only one change point (left side figure) and epidemic change (right side
plot). From the results, we can see that epidemic change has weaker statis-
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tical power when using statistic T̂n,m(d, p) compared to an unknown number
of change point statistic T̂n(d, p). On the other hand, when restricting the
partition count, we observed one benefit, that the locations of the partitions in
many cases match or are very close to the actual locations of the change-point.
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Figure 3.8: Power curves.

3.5. Application to Brain Activity Data

The findings of real data analysis to show the performance of the proposed test
are demonstrated in this section. The data were collected during a long-term
study on voluntary alcohol- consuming rats following chronic alcohol experi-
ence. The data consist of two sets: neurophysiological activity from the two
brain centers (the dorsal and ventral striatum) and data from the lickometer
device. The lickometer devices were used to monitor the drinking bouts. Dur-
ing the single trial, two locations of the brain were monitored for each rat. Rats
were given two drinking bouts, one with alcohol and the other with water. Any
time, they were able to freely choose what to drink. Electrodes were attached
to the brains, and neurophysiological data were sampled at 1kHz intervals. It
was not the goal of this study to confirm nor reject the findings, but to show
the advantages of the functional approach for change-point detection. For this
reason, the data are well-suited to illustrate the behavior of the test in real-
world settings.

In our analysis, we took the first alcohol-drinking event, which lasted around
27s. We also included 10s before the drinking event and 10s after the event.
The total time was 47 s long. The time series was broken down into processes
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of 100ms. Each process had 100 data points.

A470,100 =


a1,1 a1,2 · · · a1,100

a2,1 a2,2 · · · a2,100
...

...
. . .

...
a470,1 a470,2 · · · a470,100


All the processes were smoothed to the functions using 50 B-spline ba-
sis functions. The overall functional sample contained 470 functions F̂ =
[f1, f2, . . . , f470]. The functional sample was separated into sub-samples F̂i =
[f1, f2, . . . , f20+i], i = 0, 1, . . . , 450. For each sub-sample F̂i, two statistics were
calculated (T̂n(d, p) (3.35) and T̂n,m(d, p) (3.31), m = 2).
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Figure 3.9: Statistics of the first alcohol drinking event, which lasted about 27
s. Ten seconds before and 10 s after were also included. The red horizontal
line indicates the critical value with α level 0.95. Vertical gray dashed lines
mark the beginning and the end of the drinking time. The black solid vertical
lines mark the locations of the change points detected using the restricted p-
variation method. Blue and light blue colors represent different brain regions.

The results are visualized in Figure 3.9. We can see that tests with statistics
T̂n(d, p) and T̂(n,m)(d, p) strongly rejected the null hypothesis at around 2 s and
onward after the rat started to consume the alcohol, which suggests that the
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changes in the brain activity can be observed. However, the changes appear to
happen only for the CPu brain region. Interestingly, the statistic T̂n,m(d, p) has
much larger volatility compared to the unrestricted T̂n(d, p) in the Nacc brain
region before the drinking event and lower volatility just after the drinking
event started. However, it is not fully clear if this is the expected behavior or
a Type I error.

Finally, the locations of the restricted (m = 2) p-variation partition points
nearly matched the beginning and the end of the drinking period. In Figure 3.9,
the gray vertical dashed lines indicate the actual beginning and the actual end
of the drinking period measured by the lickometer and the black vertical lines
indicate the location of the partitions calculated from the functional sample
F̂450. The first partition is located at 10.5 s and the second partition point at
38.4 s, which aligns well with the data collected from the lickometer.

The test with a restricted partition count showed weaker statistical power,
but it did help determine the location of the change-points.

3.6. Proof of Theorems 10 and 12

The following theorem is a version of Theorem 2.11.1 in [75] adapted to the
case of continuous processes.

Theorem 21. Assume that {Zni : 1 ≤ i ≤ mn} are independent continuous
stochastic processes indexed by a totally bounded semi-metric space (G, d) such
that

lim
n→∞

mn∑
i=1

E∥Zni∥2
F 1{∥Zni∥F>η} = 0 for every η > 0, (3.39)

lim
n→∞

sup
d(f,g)<δn

mn∑
i=1

E
[
Zni(f) − Zni(g)

]2 = 0 for every δn ↓ 0, (3.40)

∫ δn

0

√
logN(ϵ,G, dn) dϵ P−−−−→

n→∞
0 for every δn ↓ 0, (3.41)

where

dn(f, g) =
( mn∑
k=1

[Znk(f) − Znk(g)]2
)1/2

.

Then, the sequence Zn :=
∑mn

i=1(Zni − EZni) is asymptotically d-
equicontinuous, that is, for every ε > 0,

lim
δ↓0

lim sup
n→∞

P ( sup
d(f,g)<δ

|Zn(f) − Zn(g)| > ε) = 0.

Furthermore, (Zn) converges in law in ℓ∞(G) provided that covariances con-
verge pointwise on G × G.
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Proof of Theorem 10 (1a). Without loss of generality, we assumed that ∥ψ∥ ≤
1 for all ψ ∈ Ψ and ∥f∥sup ≤ 1 for all f ∈ F . To prove (1a), we applied Theorem
21 for G = F × Ψ, d = ρ2, and Znk = n−1/2νnk, k = 1, . . . , n, where, under H0,
νnk(f, ψ) = ⟨Yk, ψ⟩λnk(f). Let us check first the conditions (3.39)–(3.41). We
have

n−1/2∥νnk∥G = n−1/2 sup
ψ∈Ψ,f∈F

|⟨Yk, ψ⟩λnk(f)| ≤ n−1/2∥Yk∥ sup
ψ∈Ψ

∥ψ∥ sup
f∈F

∥f∥sup

≤ n−1/2∥Yk∥.

Hence, (3.39) easily follows from E∥Y ∥2 < ∞. Since

νnk(f, ψ) − νnk(f ′, ψ′) = ⟨Yk, ψ − ψ′⟩λnk(f) + ⟨Yk, ψ′⟩λnk(f − f ′)

and Y, Yk are identically distributed, we have

E[νnk(f, ψ) − νnk(f ′, ψ′)]2 ≤ 2E∥Y ∥2[λ2
nk(f − f ′)∥ψ′∥2 + λ2

nk(f)∥ψ − ψ′∥].

Summing this estimate and noting that for any g ∈ L2(0, 1),

n−1
n∑
k=1

λ2
nk(g) ≤ n−1

n∑
k=1

λnk(g2) = ∥g∥2

by the Hölder inequality, we find

n−1
n∑
k=1

E[νnk(f, ψ) − νnk(f ′, ψ′)]2 ≤ 2E∥Y ∥2[∥ψ∥2∥f − f ′∥2 + ∥f ′∥∥ψ − ψ′∥2]

≤ 2E∥Y ∥2[∥ψ∥2 + ∥f ′∥2]δn
≤ 4E∥Y ∥2δn

if ρ2((f, ψ), (f ′, ψ′)) < δn. This estimate yields (3.40). To check (3.41), we
have

dn((f, ψ), (f ′, ψ′)) =
(
n−1

n∑
k=1

[⟨Yk, ψ⟩λnk(f) − ⟨Yk, ψ
′⟩λnk(f ′)]2

)1/2

=
(
n−1

n∑
k=1

[⟨Yk, ψ − ψ′⟩λnk(f) + ⟨Yk, ψ
′⟩λnk(f − f ′)]2

)1/2

≤
(
n−1

n∑
k=1

⟨Yk, ψ − ψ′⟩2λ2
nk(f)

)1/2
+
(
n−1

n∑
k=1

⟨Yk, ψ
′⟩λ2

nk(f − f ′)
)1/2

≤
(
n−1

n∑
k=1

∥Yk∥2λnk(f2)
)1/2

ρ2,λ(ψ,ψ′) +
(
n−1

n∑
k=1

⟨Yk, ψ
′⟩2λnk(f − f ′)2

)1/2

≤ An[ρ2,λ(ψ,ψ′) + ρ2,Q(f, f ′)],
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where

An =
(
n−1

n∑
k=1

∥Yk∥2
)1/2

, and Q = A−2
n n−1

n∑
k=1

∥Yk∥2λnk

Hence,
N(ε,F × Ψ, dn) ≤ N(A−1

n ε,F , ρ2,Q)N(A−1
n ε,Ψ, ρ2,λ).

and the condition (3.41) is satisfied, provided that

I1(δn) :=
∫ δn

0
sup
Q∈Q

√
logN(A−1

n ϵ,F , ρ2,Q) dϵ P−−−−→
n→∞

0 for every δn ↓ 0,

(3.42)
and

I2(δn) :=
∫ δn

0

√
logN(B−1

n ϵ,Ψ, ρ2,λ) dϵ P−−−−→
n→∞

0 for every δn ↓ 0, (3.43)

hold. Set

J1(a) :=
∫ a

0
sup
Q∈Q

√
logN(ϵ,F , ρ2,Q) dϵ, J2(a) :=

∫ a

0

√
logN(ϵ,Ψ, ρ2,λ) dϵ.

It is known (see, e.g., [49]) that J1(1) < ∞. Hence, J1(a) → 0 as a → 0.
By the condition (3.4), J2(a) → 0 as a → 0. Changing the integration variables
gives I1(δn) = AnJ1(A−1

n δn) and J2(δn) = AnJ2(A−1
n δn).

Set σ2 := E∥Y ∥2. By the strong law of large numbers, A2
n

P−−−−→
n→∞

σ2.
Choosing η < 3σ2/4, we have, for any δ > 0,

P
(
I1(δn) > δ) ≤ P (AnJ1(A−1

n δn) > δ, |A2
n − σ2| < η

)
+ P (|A2

n − σ2| > η)

≤ P (AnJ1(A−1
n δn) > δ,A2

n > σ2/4
)

+ P (|A2
n − σ2| > η)

≤ P
(
AnJ1(ηδn/2) > δ) + P (|A2

n − σ2| > η) → 0

as n → ∞. Similarly, we prove I2(δn) P−−−−→
n→∞

0.

Next, we have to check the pointwise convergence of the covariances of (Zn).
Since Yk are independent, we have

E
( n∑

k=1

⟨Yk, ψ⟩λnk(f)
n∑

k=1

⟨Yk, ψ
′⟩λnk(f ′)

)
=

n∑
k=1

E
(

⟨Yk, ψ⟩⟨Yk, ψ
′⟩
)
λnk(f)λnk(f ′)

)
= (Γψ,ψ′)

n∑
k=1

λnk(f)λnk(f ′).
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We shall prove that

In := n−1
n∑
k=1

λnk(f)λnk(f ′) → ⟨f, f ′⟩ as n → ∞.

Set Ĩn := n−1∑n
k=1 f(k/n)f ′(k/n). Evidently, limn→∞ Ĩn = ⟨f, f ′⟩, and we

have to check
lim
n→∞

|In − În| → 0.

We have

∆n := |In − În| ≤ n−1
n∑
k=1

[λnk(f)λnk(f ′) − f(k/n)f ′(k/n)] ≤ |∆′
n| + |∆′′

n|,

where

∆′
n := n−1

n∑
k=1

[λnk(f)(λnk(f ′)−f ′(k/n))], ∆′′
n := n−1

n∑
k=1

[f ′(k/n)(λnk(f)−λnk(f ′))].

Observing that

|λnk(f) − f(k/n)| =
∣∣∣ ∫ 1

0
(f(t) − f(k/n)) dλnk(t)

∣∣∣ ≤ n
∣∣∣ ∫ k/n

(k−1)/n
(f(t) − f(k/n)) dt

∣∣∣
≤
∫ 1

0
sup{|f(t) − f(k/n)| : t ∈ [(k − 1)/n, k/n]} dλnk

≤ sup{|f(t) − f(k/n)| : t ∈ [(k − 1)/n, k/n]

≤ v
1/2
2 (f ; [(k − 1)/n, k/n)]),

we have

|∆n| ≤ n−1λnk(f)v1/2
2 (f, [(k − 1]/n, k/n])

≤ n−1
( n∑
k=1

λ2
nk(f)

)1/2( n∑
k=1

v2(f, [(k − 1)/n, k/n])
)1/2

≤ n−1/2∥f∥v1/2
2 (f).

This yields
lim
n→∞

E(Zn(f, ψ)Zn(f ′, ψ′)) = ⟨Γψ,ψ′⟩⟨f, f ′⟩.

To complete the proof of (a), note that the existence of the continuous mod-
ification of Gaussian process ν = ν(ψ, f), (ψ, f) ∈ G = Ψ × F) follows by
Dudley [22], since the entropy condition

∫ 1
0

√
logN(ϵ,G, ρ2) dϵ < ∞ is satis-

fied.
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Lemma 4. It holds that

lim
n→∞

sup
||g||(2)≤1

∣∣∣n−1
n∑
k=1

g(k/n) − λ(g)
∣∣∣ = 0.

Proof. We have

In := 1
n

n∑
k=1

g(k/n) − λ(g) =
n∑
k=1

∫ k/n

(k−1)/n
[g(k/n) − g(s)] ds

For every s ∈ [(k − 1)/n, k/n],

|g(k/n) − g(s)| ≤ v
1/2
2 (g, [(k − 1)/n, k/n]).

Hence,

|In| ≤
n∑
k=1

∫ k/n

(k−1)/n
v

1/2
2 (g, [(k − 1)/n, k/n]) ds

= 1
n

n∑
k=1

v
1/2
2 (g, [(k − 1)/n, k/n]) ≤ 1√

n

( n∑
k=1

v2(g, (k − 1)/n, k/n])
)1/2

≤ 1√
n

∥g∥(2)

and this completes the proof.

Proof of Theorem 10 (1b). Under HA,

⟨Xk, ψ⟩λnk(f) = ⟨Yk, ψ⟩λnk(f) + ⟨gn(k/n, ·), ψ⟩λnk(f)
= ⟨Yk, ψ⟩λnk(f) + n−1/2u(k/n)[⟨a, ψ⟩ + ⟨an, ψ⟩].

Hence,
νn(f, ψ) = ν̂n(f, ψ) + ∆n(f, ψ) + rn(f, ψ),

where

µ̂n(f, ψ) =
n∑
i=1

⟨Yi, ψ⟩λni(f),

∆n(f, ψ) = n−1/2
n∑
k=1

u(i/n)λni(f)⟨q, ψ⟩

and
rn(f, ψ) = n−1/2

∑
k=1

u(i/n)]λni(f)⟨qn, ψ⟩.
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We have by (1a)

n−1/2ν̂n
D−−−−→

n→∞
νγ in the space ℓ∞(F × Ψ).

To complete the proof, we have to check

lim
n→∞

sup
f∈F,ψ∈Ψ

|n−1/2∆n(f, ψ) − ∆(f, ψ)| = 0. (3.44)

and
lim
n→∞

sup
f∈F,ψ∈Ψ

|n−1/2rn(f, ψ)| = 0. (3.45)

To this aim, we involve lemma 4. We have

n−1/2∆n(f, ψ) − ∆(f, ψ) = [In1(f) + In2(f)]⟨q, ψ⟩,

where

In1(f) = 1
n

n∑
k=1

u(k/n)[λnk(f)−f(k/n)], In2(f) = 1
n

n∑
k=1

u(k/n)f(k/n)−⟨u, f⟩.

By Lemma 4 applied to the function uf , we have In2(f) → 0 uniformly over
f ∈ F . Consider In1. We have, as in the proof of Lemma 4,

|In1(f)| ≤
n∑
k=1

|u(k/n)|
∫ k/n

(k−1)/n
[f(s) − f(k/n)| ds ≤ n−1/2∥u∥∞∥f∥(2).

Hence, In2(f) → 0 uniformly over f ∈ F . The convergence (3.45) follows by
observing that

|n−1/2rn(f, ψ)| ≤ ∥u∥∞

∫ 1

0
|f(s)| ds∥ψ∥ · ∥qn∥.

This proves (3.45) and completes the proof of (1b).

Proof of Theorem 12 (3a). Consider the map T : ℓ∞(F) → ℓ∞(F), T (x)(f) =
x(f) − x(1)λ(f). The continuity of T is easy to check. Observing that ν̂n =
T (νn), the convergence (3.9) is a corollary of Theorem 10 and a continuous
mapping theorem.

To prove (3b), observe that, under HA,

⟨Xk, ψ⟩λnk(f) = ⟨Yk, ψ⟩λnk(f) + ⟨gn(k/n, ·), ψ⟩λnk(f)
= ⟨Yk, ψ⟩λnk(f) + n−1/2u(k/n)[⟨v, ψ⟩ + ⟨vn, ψ⟩]

hence
µn(f, ψ) = µ̂n(f, ψ) + ∆̃n(f, ψ) + r̃n(f, ψ),
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where

µ̂n(f, ψ) =
n∑
i=1

⟨Yi − Y n, ψ⟩λni(f),

∆̃n(f, ψ) = n−1/2
n∑
k=1

[u(i/n) − n−1
n∑
j=1

u(j/n)]λni(f)⟨q, ψ⟩

and

r̃n(f, ψ) = n−1/2
∑
k=1

[u(i/n) − n−1
n∑
j=1

u(j/n)]λni(f)⟨qn, ψ⟩.

We have by (a)

n−1/2µ̂n
D−−−−→

n→∞
µγ in the space ℓ∞(F × Ψ).

To complete the proof, we have to check

lim
n→∞

sup
f∈F,ψ∈Ψ

|n−1/2∆̃n(f, ψ) − ∆̃(f, ψ)| = 0. (3.46)

and
lim
n→∞

sup
f∈F,ψ∈Ψ

|n−1/2r̃n(f, ψ)| = 0. (3.47)

For this, we can use (3.44) and (3.45) and observe that n−1∑n
k=1 u(k/n) →

λ(u) as n → ∞.

92



4. Concluding remarks and future works

In this dissertation, we aimed to develop a method for detecting change points
in functional data samples. To this end, we proposed a mean instability testing
model based on the p-variation of the process of partial sums and analyzed its
statistical power through simulation methods. We also established the limiting
distribution for the null and alternative hypotheses theoretically. Furthermore,
we generalized the results of the univariate test and applied them to functional
data.

In addition, we studied the asymptotic behavior of the G-sums processes
indexed by functions and established the limiting distribution theoretically.
We proposed tests for detecting one change point, no more than m change
points, and an unknown number of change points, and analyzed these tests
using simulation methods on real data.

The results of this thesis contribute to the growing body of knowledge in
the field of functional data analysis and provide a new method for detecting
change points in functional data samples.

This study has identified several opportunities for further research and
adaptation of the methods introduced here. At their core, all of these methods
rely on the p-variation value, which is calculated by partitioning the sequence
into partitions. The location of these partition points can provide additional
interpretability and may help to localize the change points. In Chapter 3, we
demonstrated that the location of the partition points in a real dataset closely
matched the location of the true change points. This observation suggests that
there may be potential for further exploitation of this relationship with a more
robust justification.

Overall, there are many different tests and experiments that could be con-
ducted in future work to further develop and refine these methods. This will
be an important area of research as we continue to explore the capabilities of
functional data analysis in detecting change points.

The Continuous Wavelet Transform (CWT) technique produces real-valued
functions and represents nonstationary signals in a time-frequency domain.
There is a possibility that by representing signal information in this way, the
proposed functional change point detection tests could be adapted to detect
changes in periodicity. Further research is needed to explore this idea and
determine the feasibility and potential of using the CWT and functional change
point detection techniques in combination.

Finally, this thesis has not covered many real-world applications where the
methods introduced here could be applicable. Further research is needed to
explore the potential for applying these methods in various contexts and to
understand the full range of their capabilities and limitations.
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Įvadas

Sparčiai tobulėjant technologijoms, didelė pažanga buvo padaryta duomenų
skaitmenizavime. Per pastaruosius dešimtmečius renkamų duomenų kiekis ir
duomenų įvairovė augo eksponentiškai. Duomenys renkami praktiškai visose
srityse: pradedant nuo gamtoje stebimų fizinių reiškinių, medicinoje fiziologinių
duomenų, ekonominių reiškinių ar išmanių laikrodžių, kurie fiksuoja žmogaus
fiziologinę būklę. Iš tiesų neliko nė vienos srities, kuri nebūtų paveikta skait-
menizavimo revoliucijos. Natūralu, kad toks spartus visų sričių skaitmeniza-
vimas, kelia daug klausimų apie duomenų struktūrą. Viena iš problemų, su
kuria dažnai susiduriama analizuojant duomenis yra struktūriniai pokyčiai
laiko eilutėse. Pokyčiai gali būti neakivaizdūs ar sunkiai pastebimi, dėlto,
sprendžiant šią problemą, reikalingi teoriškai pagrįsti matematiniai instrumen-
tai.

Pasikeitimo taškų analizę galima apibrėžti kaip sekos suskaidymą į seg-
mentus, kurie pasižymi skirtingomis statistinėmis savybėmis. Taškai, kuriais
laiko eilutė padalijama į vieną ar daugiau segmentų, yra vadinami pasikeitimo
taškais (angl. change-point). Pasikeitimo taškų nustatymo uždaviniams yra
keliami du pagrindiniai klausimai:

1. Ar duomenų statistinės savybės kuriuo nors laiko momentu pasikeitė?

2. Jeigu pasikeitė, kada tai įvyko?

Kai kuriais atvejais procesų struktūriniai pokyčiai gali būti lengvai nus-
tatomi, pavyzdžiui, ekonomika gali pereiti į recesiją, o vėliau sekti atsistaty-
mas. Kriterijai, kurie apibrėžia recesijos sąvoką yra aiškiai apibrėžti. Ki-
tose srityse pasikeitimo taškus pastebėti be matematinių metodų gali būti
beveik neįmanoma. Matematiniai metodai ypač tampa aktualūs, kai siste-
mos automatiškai turi reaguoti į pasikeitusią situaciją, pavyzdžiui, išjungti
variklį ir išvengti katastrofos, jei vibracijos lygis pasikeitė. Pasikeitimo taškų
analizė sparčiai išpopuliarėjo atsiradus išmaniems įrenginiams, pavyzdžiui, iš-
manūs laikrodžiai realiu laiku nustato, kada žmogus pradėjo bėgti, lipti laip-
tais ar užmigo. Pokyčio taškų analizė yra ypač aktuali medicinoje. Naudojant
medicininius matavimo prietaisus nuolatos registruojami duomenys apie ligonio
fiziologinę būklę. Užfiksavus pasikeitimus svarbu kuo greičiau į tai reaguoti.
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Laiku sureagavus galima išvengti neigiamų pasekmių, pavyzdžiui, epilepsijos
priepuolio. Malladi et. al. [46] savo darbe pasiūlė metodą realiu laiku fiksuoti
epilepsijos priepuolius. Kita medicinos sritis kurioje plačiai taikoma pokyčio
taškų analizė yra širdies veiklos stebėjimas (EKG). Tam, kad nustatytume
pokyčius širdies veikloje dažnai taikomi vilnelių (angl. wavelet) transformacijų
metodai pokyčio taškams nustatyti [53, 57], Antti Koski [41] pritaikė paslėp-
tuosius Markovo modelius (angl. hidden Markov models), Fotoohinasab et.
al. [25] pritaikė grafų apribojimo (angl. graph-constrained) metodus. Plačiau
apie įvairius metodus susijusius su pokyčio taškų analize EKG duomenims savo
darbe pateikia Fotoohinasab et. al. [25].

Pokyčio taškų analizė neapsiriboja vien tik laiko eilutėmis. Šis uždavinys
dažnai sprendžiamas analizuojant vaizdus ir garso signalus. Atliekant magnet-
inį rezonansą yra kuriami 3D paveikslai (žr. [12, 47, 68]). Analizuojant garso
įrašus dažnai bandoma atskirti segmentus tarp kalbos ir kitų garsu. Tai svarbu,
kuriant automatinius kalbos atpažinimo modelius, aido panaikinimą (angl.
echo cancellation), kalbos segmentavimą ir t.t. Daugelyje atvejų sprendžiant
tokius uždavinius pirmi žingsniai yra suskaidyti audio signalą į skirtingus seg-
mentus (žr. [35, 37,73]).
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Figure 4.1: Skirtingų pasikeitimų pavyzdžiai

Nėra vienareikšmiško apibrėžimo, kuris apibrėžtų, kas yra pokytis.
Pokyčiu galime laikyti duomenis generuojančio modelio ar modelio parametrų
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pasikeitimą. Dažniausiai yra nagrinėjami skirstinio parametrų tokių kaip
vidurkis (4.1a pav.) ar dispersija (4.1b pav.), pasikeitimai. Daug metodų
yra pasiūlyta, norint nustatyti ar pasikeitė skirstinys (žr. [55]). Verta pam-
inėti ir kitas, mažiau dėmesio susilaukusias pasikeitimų kategorijas, kaip dažnio
pasikeitimai ir šablono (angl. pattern change) pasikeitimai. Dažnio (4.1d
pav.) pasikeitimai yra svarbūs analizuojant eilutes turinčias cikliškumo savy-
bių. Tokie pasikeitimai dažniausiai tiriami dažnių srityje, pavyzdžiui, naudo-
jant Furjė ar vilnelės (angl. wavelet) transformaciją (žr. [53, 57]). Galiausiai,
vienas iš sudėtingiausių uždavinių yra aptikti šabloninius pokyčius (4.1c pav.).
Tokių aptikimo metodų aprėptis mokslinėje literatūroje nėra plati, nors, ši
problema yra aktuali tokiose srityse kaip smegenų bangų analizė (žr. [72]).

Pasikeitimo taškų problema yra skirstoma į du specifinius atvejus. Pir-
muoju atveju (lot. a-posteriori) yra analizuojami pastovi ir nekintanti duomenų
aibė (angl. offline). Turint visą duomenų imtį, tikslas yra atsakyti į aukščiau
paminėtus klausimus. Tokių algoritmų efektyvumas vertinamas pagal tai kaip
jautriai reaguojama į pasikeitimus ir pasikeitimo vietos nustatymo tikslumu.
Kitas svarbus aspektas yra tai, kad turint visus duomenis, pasikeitimų skaičius
gali būti daugiau nei vienas. Tada problema tampa sudėtingesnė ir sprendžia-
mas papildomas uždavinys siekiant nustatyti kiek iš viso egzistuoja pasikeitimų.
Ypač aktuali problema yra nustatyti epideminius pasikeitimus, kai pasikeitimas
yra laikinas (4.1a ir 4.1d pav.).

Antruoju atveju yra analizuojami realaus laiko duomenys (angl. online)
kai duomenų aibė yra nuolatos auganti. Tikslas yra kuo anksčiau ir kuo tik-
sliau aptikti pasikeitimą jam tik įvykus. Šioje disertacijoje yra nagrinėjama
problema, kai duomenų imtis yra nekintanti.

Pasikeitimo taškų problema nėra nauja ir plačiai išanalizuota klasikinėje
literatūroje. Ypač daug aptikimo algoritmų yra pasiūlyta vienmatėms laiko
eilutėms. Vienas iš pirmųjų algoritmų, skirtų pokyčiams nustatyti, yra kau-
piamosios sumos (angl. CUMSUM ) algoritmas (Page 1954 [50]), kuris buvo
sukurtas vidurkio pokyčiui nustatyti. Algoritmas buvo taikomas kokybės
gamybos kontrolei užtikrinti.

Pokyčio taškų paieškos analizė neapsiriboja tik vienmatėmis laiko eilutėmis.
Pastaruoju metu didelis dėmesys yra skiriamas būtent daugiamatėms laiko
eilutėms.

Funkcinių duomenų analizė sukuria natūralią aplinką daugiamačių laiko
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(a) Funkcinių duomenų rinkinys be
pasikeitimo

(b) Funkcinių duomenų rinkinys su
pasikeitimu

Figure 4.2: Skirtingų pasikeitimų pavyzdžiai su funkciniais duomenimis

eilučių analizei. Todėl, vis daugiau klasikinių metodų yra adaptuojama
darbui su tokiais duomenimis. Funkciniai duomenys yra natūralus daugia-
mačių duomenų apibendrinimas iš baigtinės dimensijos į begalinę. Praktikoje
funkciniai duomenys gaunami stebint keletą tiriamųjų subjektų laike, erdvėje
ar kitose tęstinėse srityse. Jie gali būti kreivės, paviršiai ar kiti sudėtingi objek-
tai. Reprezentuojant daugiamačius duomenis kaip funkcijas stipriai išplečiamas
analizės instrumentų spektras. Ypač funkcinės principinės komponentės yra
daug informatyvesnės negu daugiamatės principinės komponentės. Populiarė-
jant tokių duomenų analizei vis aktualesnė tampa ir pasikeitimo taškų paieškos
problema ne tarp fiksuotų taškų ar vektorių o tarp kreivių (4.2 pav.).

Pirmieji tokių duomenų analizės metodai buvo minimi jau 1950. Kai
Grenanderis [29] savo publikacijoje bandė pritaikyti statistinius metodus
stochastiniams procesams. Vėliau, Rao [64] 1958 metais savo analizėje lygino
organizmo augimo kreives. Patį terminą funkcinė duomenų analizė pirmą kartą
paminėjo Ramsey [61] 1982 metais. Šių duomenų analizė ir taikymai plačiai na-
grinėjama Ramsey ir Silverman knygoje [63], taip pat išsamią apžvalgą galima
rasti Wang et. al. [77] publikacijoje.

Tikslai ir uždaviniai

Pagrindinė disertacijos tema – pasikeitimo taškų aptikimas vienmatėse laiko
eilutėse ir funkcinėse laiko eilutėse. Pagrindinis disertacijos tikslas pasiūlyti
statistinius testus, paremtus dalinių sumų proceso variacinėmis savybėmis.

Tyrimo tikslui pasiekti keliami šie uždaviniai:

1. Apibrėžti nagrinėjamus objektus ir modelius.
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2. Apibrėžti ir ištirti vidurkio nestabilumo testavimo modelį, paremtą
dalinių sumų proceso p-variacija.

3. Nustatyti testo ribinį skirstinį prie nulinės ir alternatyvios hipotezių

4. Išnagrinėti procesų indeksuotų funkcijomis sumų (G-sumų) asimptotiką.

5. Sudaryti pasikeitimo taškų statistinius testus funkciniams duomenims,
remiantis G-sumomis.

6. Sukonstruotus testus išanalizuoti imitaciniais metodais.

7. Pritaikyti testus realiems duomenims.

Mokslinis darbo naujumas

Disertacijoje pasiūlomas p-variacija paremtas statistinis testas, kuris leidžia
efektyviai aptikti vidurkio nestabilumus vienmatėse laiko eilutėse. Šis testas
apibendrinamas ir funkciniams duomenims. Pasiūlomi trys statistiniai testai:

• Ne daugiau kaip vieno pasikeitimo taško (angl. at most one change point)
nustatymui.

• Ne daugiau kaip m pasikeitimo taškų nustatymui.

• Kai pasikeitimo taškų skaičius nežinomas.

Disertacijos praktinė vertė

Disertacijoje siūlomi testai, paremti p-variacija, išlieka efektyvus analizuojant
tiek dideles tiek mažas duomenų aibes. Todėl gali būti plačiai taikomi įvairiose
srityse, tokiose kaip medicina, vaizdų ir garso analizė, klimato kaita ir kitose.
Siūlomi testai yra skirti vidurkio pokyčiui nustatyti, tačiau pačių testų kon-
strukcija gali būti apibendrinama ir kitiems pasikeitimų tipams nustatyti.

Darbo struktūra

Disertacija parašyta anglų kalba. Ją sudaro: įvadas, trys skyriai, bendrosios
išvados bei diskusija apie tolimesnius tyrimus, priedai ir literatūros sąrašas.
Pirmame disertacijos skyriuje pristatomos funkcijos variacijos savybės, kitų
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autorių metodai, skirti pokyčio taškų nustatymui, bei pateikiami jų prak-
tiniai taikymai ir svarba. Taip pat yra pateikiamos pagrindinės funkcinės
duomenų analizės sąvokos ir pateikiami kitų autorių metodai, pritaikyti dar-
bui su funkciniais duomenimis. Antrame disertacijos skyriuje yra pasiūlomas
naujas metodas paremtas dalinių sumų proceso p-variacijos savybėmis vidurkio
pasikeitimams nustatyti ir nagrinėjami teoriniai aspektai. Skyriaus pabaigoje
imitacijomis yra įvertinama ir aprašoma pasiūlyto testo statistinė galia. Gali-
ausiai statistinis testas yra pritaikomas realiems duomenimis. Trečiame dis-
ertacijos skyriuje yra pateikiamas pasiūlyto metodo apibendrinimas darbui su
funkciniais duomenimis ir pasiūlomi trys statistiniai testai vidurkio nestabilu-
mui patikrinti. Skyriaus pabaigoje teoriniai rezultatai patvirtinami imitaci-
jomis ir testai patikrinami su realiais duomenimis.

Ginamieji teiginiai

• Teoriškai pagrįstas statistinis testas, paremtas dalinių sumų proceso p-
variacijos savybėmis, vidurkio pasikeitimams aptikti.

• Nustatyti G-sumų proceso ribiniai skirstiniai.

• Panaudojant G-sumų asimptotines savybes sukonstruoti statistiniai tes-
tai tam, kad patikrinti funkcinės imties vidurkio pasikeitimo žinomam ir
nežinomam taškų skaičiui

Disertacijos rezultatų aprobavimas

Disertacijos tema paskelbti du straipsniai, žurnaluose su citavimo indeksu Clar-
ivate Analytics Web of Knowledge duomenų bazėje (WoS).

[A1] T. Danielius, A. Račkauskas, p-Variation of CUSUM process and testing
change in the mean, Communications in Statistics-Simulation and Com-
putation, 1–13 (2020). https://doi.org/10.1080/03610918.2020.1844899

[A2] T. Danielius, A. Račkauskas, Multiple change point detection in
functional sample via G-sum process, Mathematics 10.13, (2022).
https://doi.org/10.3390/math10132294

Disertacijos keliami klausimai ir rezultatai pristatyti trijose tarptautinėse
konferencijose ir vienoje konferencijoje, Lietuvoje:
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[C1] T. Danielius. Functional data analysis of neurophysiological data: case
study. NBBC19 : 7th Nordic-Baltic biometric conference, 3-5 June 2019,
Vilnius, Lithuania.

[C2] T. Danielius, A. Račkauskas. p-variation of cusum process and testing
change in the mean, 13th International Conference of the ERCIM WG on
Computational and Methodological Statistics (CMStatistics 2020) 19-21
December 2020, Virtual Conference.

[C3] T. Danielius, A. Račkauskas. Multiple change point detection in func-
tional sample via G-sum process, 63th Conference of the Lithuanian Math-
ematical Society, Kaunas University, 16-27 June 2022.

[C4] T. Danielius, A. Račkauskas. Multiple change point detection in func-
tional sample via G-sum process, 24th International Conference on Com-
putational Statistics (CompStat 2022), 23-26 August 2022, Bologna,
Italy.

[C5] T. Danielius. Pasikeitimo taškų testai funkciniams duomenims paremti
p-variacija, Seminar Statistics and its applications, Vilnius University
Institute of Applied Mathematics, 7 August 2022, Vilnius, Lithuania.
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5. Vidurkio pasikeitimo testas: vienmatis atvejis

Antroje disertacijos dalyje yra pasiūlomas naujas statistinis testas, skir-
tas vidurkio pokyčiui stebėti vienmatėje laiko eilutėje. Testas remiasi p-
variacijos pakitimais dalinių sumų (angl. CUSUM ) procesuose. Turint imtį
X1, X2, . . . , Xn ir skaičių p > 2, statistiką apibrėžiame kaip

Tp,n(X1, . . . , Xn) = max
{∑m

j=1

∣∣∣∑kj

i=kj−1+1(Xi −Xn)
∣∣∣p : 0 = k0 < · · · < km = n; 1 ≤ m ≤ n

}
,

čia Xn = n−1(X1 + · · · +Xn).

Tęsiant šios statistikos analizę verta prisiminti kai kuriuos būtinus api-
brėžimus. Funkcijai f : [0, 1] → R ir skaičiui 0 < p < ∞, funkcijos f p-variacija
intervale [0, t] apibrėžiama kaip

vp(f ; [0, t]) := sup


m∑
j=1

|f(tj) − f(tj−1)|p
 ≤ +∞,

kai supremumas yra imamas iš visų skaidinių (angl. partitions)

0 = t0 < t1 < · · · < tm = t; m = 1, 2, . . . ,

intervale [0, t]. Toliau, disertacijoje naudojamas trumpinys vp(f) :=
vp(f ; [0, 1]). Tuo atveju, kai vp(f) < ∞, sakome, kad funkcijos f p-variacija yra
aprėžta (angl. bounded) ir visų tokių funkcijų aibė yra neseparabili Banacho
erdvė Wp[0, 1] su norma

∥f∥[p] := |f(0)| + v1/p
p (f).

Įterpimai Wp[0, 1] ↪→ Wq[0, 1] yra tolydūs ir

v1/q
q (f) ≤ v1/p

p (f), kai 1 ≤ p < q.

Nagrinėkime vienmates laiko eilutes Xk, k = 1, 2, . . . . Tegul ∀n ≥ 1 ir ∀t ∈
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[0, 1], tada

Sn(t) = 0 jei t ∈ [0, 1/n), Sn(t) :=
⌊nt⌋∑
i=1

Xi, čia t ∈ [1/n, 1],

kai su kiekvienu realiu skaičiumi x ≥ 0, ⌊x⌋ := max{k : k ∈ N, k ≤ x},N =
{0, 1, . . . }. Tada laipsniškas CUSUM procesas Zn = (Zn(t), t ∈ [0, 1]) api-
brėžiamas

Zn(t) = Sn(t) − ⌊nt⌋
n

Sn(1) =
⌊nt⌋∑
i=1

(Xi −Xn).

Klasikiniai proceso Zn trajektorijų erdvių pavyzdžiai yra Hilberto erdvė L2[0, 1]
ir Skorodo erdvė D[0, 1]. Su įvairiomis prielaidomis šiose erdvėse galime įrodyti
centrinę ribinę teoremą. Pavyzdžiui, klasikinė Donskerio teorema su nepriklau-
somais ir vienodai pasiskirsčiusiais atsitiktiniais dydžiais, turinčiais baigtinį
antrąjį momentą, teigia, kad

n−1/2Zn
D−−−−→

n→∞
σB erdvėje D[0, 1],

čia B = (B(s) := W (s) − sW (1), s ∈ [0, 1]) yra standartinis Brauno tiltas.

5.1 teorema. (Su fiksuota p > 2 reikšme). Tarkime X1, X2, . . . yra neprik-
lausomų ir vienodai pasiskirsčiusiais atsitiktinių dydžių seka ir dalinių sumų
procesas Sn = (Sn(t), t ∈ [0, 1]).

Jei, σ2 := EX2
1 < ∞, tada

n−1/2Zn
D∗

−−−−→
n→∞

σB erdvėje Wp[0, 1].

5.2 teorema teoriškai pagrindžia, kad statistika gali būti naudojama
vidurkio pasikeitimo taškams nustatyti.

5.2 teorema. Tegu p > 2 ir X1, X2, . . . yra nepriklausomų ir vienodai pa-
siskirsčiusių atsitiktinių dydžių seka. Jei EX2

1 = σ2 ∈ (0,∞), tuomet:

n−1/2σ−1T 1/p
p,n (X1, . . . , Xn) D−−−−→

n→∞
v1/p
p (B).

Nagrinėkime paprastosios atsitiktinės imties X1, . . . , Xn modelį

Xi = δ1(k∗,n](i) + Yi, i = 1, . . . , n,
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kai Y1, . . . , Yn yra nepriklausomi ir vienodai pasiskirstę atsitiktiniai dydžiai su
E(Yi) = 0, E(Y 2

i ) = 1 ir δ ∈ R, k∗ ∈ {1, . . . , n} yra nežinomieji parametrai.

Nulinės hipotezės H0 : δ = 0, ir ∀p > 2, atveju turime,

n−1/2v1/p
p (Zn) D−−−−→

n→∞
v1/p
p (B).

Alternatyvios hipotezės HA atveju turime: δ = δn ≈
√
nδ∗, ir k∗ = ⌊nθ∗⌋ su

kai kuriais δ∗ > 0 ir θ∗ ∈ (0, 1), teisinga

n−1/2v1/p
p (Zn) D−−−−→

n→∞
v1/p
p (B − f),

kai f(t) =

δ
∗t(1 − θ∗) kai 0 ≤ t < θ∗

δ∗θ∗(1 − t) kai θ∗ ≤ t ≤ 1
.
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Figure 5.1: Statistinės galios vertinimas

Statistinio testo efektyvumas buvo įvertintas imitaciniais metodais. Na-
grinėkime nepriklausomą atsitiktinę imtį X1, . . . , Xn, kai Xi apibrėžiama kaip

Xi ∼

N (µ1, σ
2) kai i ≤ nτ

N (µ2, σ
2) kai i > nτ

.

Atlikus 10000 imitacijų buvo suskaičiuota statistinė galia. Nulinė hipotezė
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atmetama, kai
P
(
v1/p
p (Zn) > aα

)
= α

čia aα = 2.024352 yra atsitiktinio dydžio v1/p
p (B) skirstinio α = 0.95 kvantilis.

Rezultatai (5.1a pav.) rodo, kad kai a >= 0.22, testo statistinė galia pasiekia
80% tikslumą.

Kitu atveju buvo nagrinėjama statistinė galia, keičiant pasikeitimo taško k
poziciją, prie skirtingų a = 0.15, 0.22, 0.3 reikšmių. Rezultatai pavaizduoti 5.1b
paveiksle.
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6. Vidurkio pasikeitimo testai: funkcinis atvejis

Disertacijos trečiame skyriuje apibendrinami antro skyriaus rezultatai ir testas
adaptuotas funkcinių duomenų analizei. Šiame skyriuje yra apibrežiamas G-
CUSUM procesas ir nagrinėjami šio proceso teoriniai aspektai, įskaitant asimp-
totinį elgesį. Parenkant skirtingas aibes G, pasiūlomi trys statistiniai testai
pasikeitimo taškams aptikti:

1. Testas Tn,1 skirtas vieno pasikeitimo taškui nustatyti.

2. Testas Tn,m skirtas ne daugiau kaip m pasikeitimo taškams nustatyti.

3. Testas Tn nežinomam pasikeitimo taškų skaičiui nustatyti.

Dauguma autorių didelį dėmesį skiria vieno pasikeitimo taško nustatymo
problemai nagrinėti. Berkes et al. [11] pasiūlė CUSUM testą funkciniams
duomenims, naudojant imties projekcijas į kai kurias pagrindines kovariacijos
γ komponentes. Vėliau šią problemą ir asimptotines savybes nagrinėjo Aue [3]
ir kiti. Aston ir Kirch [2] išplėtė šį testą silpnai priklausomiems funkciniams
duomenims ir epideminiams pasikeitimams.

Nagrinėkime antros eilės stacionarią stochastinių procesų Yi = (Yi(t), t ∈
[0, 1]), i ∈ N seką, apibrėžtą tikimybinėje erdvėje (Ω,F , P ), su nuliniu vidurkiu
ir kovariacijos funkcija γ = {γ(s, t), s, t ∈ [0, 1]}. Funkcinių duomenų imčiai
X1(t), . . . , Xn(t), t ∈ [0, 1], nagrinėjamas modelis:

Xk(t) = g(k/n, t) + Yk(t), t ∈ [0, 1], k = 1, . . . , n, (6.1)

kai funkcija g : [0, 1] × [0, 1] → R yra deterministinė, bet nestebima. Pagrin-
dinis tikslas yra, remiantis funkcijos variacijos savybėmis, sukurti testus tokiai
nulinei hipotezei patikrinti prieš alternatyvą:

H0 : g = 0 prieš H1 : g ̸= 0

Disertacijoje didžiausias dėmesys yra skiriamas laiptinėms funkcijoms pirmojo
argumento atžvilgiu, kas apima pasikeitimo taško aptikimo uždavinį.

Šis modelis neapsiriboja tik pasikeitimo uždavinio sprendimu, bet gali būti
taikomas ir kitiems klausimams analizuoti, pvz.: vaizdų analizei, procesų seg-
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mentavimui. Taip pat, analizuojant funkcines laiko eilutes, toks modelis gali
būti taikomas nustatant tendencijas.

Šioje disertacijoje siūloma metodologija yra paremta proceso

Wn(s) =
⌊ns⌋∑
k=1

(Xk −Xn) + (ns− ⌊ns⌋)(X⌊ns⌋+1 −Xn), s ∈ [0, 1],

tam tikromis variacijos savybėmis. Čia Xn = n−1(X1 + · · · +Xn).
Kiekvienas elementas Xk yra funkcija, todėl tokie procesai turi begalinę

dimensiją, ir analizė tampa sudėtinga. Tam, kad pereitume iš begalinės dimen-
sijos į baigtinę dimensiją yra naudojamos įvairios projektavimo technikos.

6.1 prielaida. Y, Y1, Y2, . . . yra nepriklausomi ir vienodai pasiskirstę atsitik-
tiniai procesai.

1. Kiekvienas procesas Yi yra tolydus kvadratinio vidurkio prasme,

2. kiekvienas procesas Yi yra matus abiejų argumentų atžvilgiu,

3. proceso γ kovariacinė funkcija turi baigtinį pėdsaką: tr(γ) =∫ 1
0 γ(t, t) dt < ∞.

Kai 6.1 prielaida yra tenkinama, Yi galime laikyti atsitiktiniu elementu
su reikšmėmis erdvėje L2(0, 1). L2 := L2(0, 1) yra Lebego prasme kvadratu
integruojamų funkcijų, apibrėžtų intervale [0, 1] Hilberto erdvė su skaliarine
daugyba ⟨f, g⟩ =

∫ 1
0 f(t)g(t) dt ir atstumo funkcija ρ(f, g) = ∥f − g∥.

Nagrinėkime funkcijų klases F ,Φ ⊂ L2 ir G(= F × Φ)-sumų procesą

νn =
( n∑
k=1

νnk(f, ψ), f ∈ F , ψ ∈ Ψ
)
,

kai νnk(f, ψ) = ⟨Xk, ψ⟩λnk(f), λnk yra tolygioji tikimybė intervale [(k −
1)/n, k/n] ir λnk(f) =

∫ 1
0 f(t) dλnk(t). Šiuo žingsniu Xi yra projektuojama

į pasirinktą kryptį ψ ∈ Ψ Hilberto erdvėje. Natūrali aplinka, tokių stochas-
tinių νn procesų analizei yra erdvė ℓ∞(G), kai G = F × Φ. ℓ∞(G) yra Banacho
erdvė visų aprėžtų realiųjų funkcijų, apibrėžtų aibėje G su tolygia norma

∥µ∥G := sup{|µ(g)| : g ∈ G}, µ ∈ ℓ∞(G).
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Nagrinėjant G-sumų procesus apibrėžiamas ribinis Gauso procesas νγ =
(ν(f, ψ), f ∈ F , ψ ∈ Ψ) su kovariacija

Eνγ(f, ψ)νγ(f ′, ψ′) = Kγ((f, ψ), (f ′, ψ, )) := ⟨Γψ,ψ′⟩⟨f, f ′⟩, ψ, ψ′, f, f ′ ∈ L2,

kai Γ : L2 → L2 yra kovariacijos operatorius γ branduoliui.

(6.1) modeliui, nagrinėjama nulinė hipotezė H0 : g = 0 ir dvi galimos
alternatyvos

HA : g = gn = unqn, kai un → u iš W2[0, 1],
√
nqn → q ervėje L2,

ir

H ′
A : g = gn = unqn, kai un → u iš W2[0, 1],

√
n sup
ψ∈Ψ

|⟨qn, ψ⟩| → ∞.

Abiejose alternatyvose funkcija un aprašo pasikeitimo taškų konfigūraciją,
o funkcija qn įvertina dreifo dydį.

6.1 teorema. Tarkime, kad atsitiktiniai procesai (Xk), k > 1 yra apibrėžti
(6.1) modeliu, kai Y, Y1, Y2, . . . tenkina 6.1 prielaidą.

Tarkime, kad aibė 1 ≤ q < 2, ir F ⊂ Wq[0, 1] yra aprėžta, o aibė Ψ ⊂ L2

tenkina entropinę sąlygą

∫ 1

0

√
logN(ε,Ψ, ρ) dε < ∞. (6.2)

Tuomet egzistuoja tokia Gauso proceso νγ modifikacija erdvėje L2 ×L2, kad jo
susiaurinimas F × Ψ, (νγ(f, ψ), f ∈ F , ψ ∈ Ψ) yra tolydus procesas ir galioja
tokie ribiniai teiginiai:

(1a) Prie H0:
n−1/2νn

D−−−−→
n→∞

νγ erdvėje ℓ∞(F × Ψ). (6.3)

(1b) Prie HA,

n−1/2νn
D−−−−→

n→∞
νγ + ∆, erdvėje ℓ∞(F × Ψ), (6.4)
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kai
∆(f, ψ) = ⟨u, f⟩⟨q, ψ⟩.

Jei u(s) = 1, s ∈ [0, 1], tai alternatyvi HA hipotezė rodo signalo egzistavimą
triukšme. Šiuo atveju ∆(f, ψ) = λ(f)⟨q, ψ⟩. Todėl šios teoremos naudojimas
signalui tirti triukšme yra prasmingas, jei ⟨q, ψ⟩ ≠ 0.

6.2 prielaida. Egzistuoja toks d > 1, kad tikrinės reikšmės λr tenkina sąlygą

λ1 > λ2 > · · · > λd > λd+1 ≥ 0.

Statistinėje analizėje Γ tikrinės reikšmės ir tikrinės funkcijos yra pakeiči-
amos įvertintomis reikšmėmis. Atsižvelgiant į tai, kad kiekvienam k,

E[(Xk − E(Xk)) ⊗ (Xk − E(Xk))] = Γ,

Γ galime įvertinti

Γ̂n := 1
n

n∑
i=1

[(Xi −Xn) ⊗ (Xi −Xn)],

čia Xn(s) = n−1(X1(s) + · · · +Xn(s)).
Toliau Γ̂ tikrines reikšmes ir tikrines funkcijas atitinkamai žymėsime λ̂nr

ir ψ̂nr, r = 1, . . . , n − 1. Siekdami užtikrinti, kad ψ̂nr galėtų būti vertinamas
kaip ψr, o ne −ψr įvertis, toliau darysime prielaidą, kad ženklai yra tokie, kad
⟨ψ̂nr, ψr⟩ ≥ 0. Pabrėždami, kad

Γ̂ψ̂nr = λ̂nrψ̂nr, r = 1, . . . , n− 1, (6.5)

ir
λ̂nr = 1

n− 1

n∑
i=1

⟨Xi −Xn, ψ̂nr⟩2, r = 1, . . . , n. (6.6)

Su d > 0, apibrėžiame

T̂n,1(d) := max
1≤j≤d

1√
λ̂j

max
1≤k≤n

∣∣∣ k∑
i=1

⟨Xi −Xn, ψ̂j⟩
∣∣∣. (6.7)

Ši kriterijaus T̂n,1 statistika skirta daugiausia vieno pasikeitimo taško alter-
natyvai patikrinti. Jos ribinis pasiskirstymas nustatomas pagal šią teoremą.
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6.2 teorema. Tegul atsitiktinė funkcinių duomenų (Xk) imtis apibrėžta 6.1
modeliu, kur Y, Y1, Y2, . . . tenkina 6.1 ir 6.2 sąlygas. Tada:

(a) Jei H0 teisinga, tai

n−1/2T̂n,1(d) D−−−−→
n→∞

sup
1≤k≤d

sup
0≤t≤1

|Bk(t)|,

čia B1, . . . , Bd yra nepriklausomi standartiniai Brouno tilto procesai;

(b) Esant HA, jei E∥Y ∥4 < ∞, tuomet

n−1/2T̂n,1(d) D−−−−→
n→∞

sup
1≤k≤d

sup
0≤t≤1

|Bk(t) + ∆(t)⟨q, ψ̂k/
√
λ̂k⟩|,

čia ∆(t) =
∫ t

0 u(s) ds− t
∫ 1

0 u(s) ds, t ∈ [0, 1].

(c) Kai H ′
A teisinga ir jei E∥Y ∥4 < ∞, tai

n−1/2T̂n,1(d) P−−−−→
n→∞

∞.

Remiantis šia teorema, galima klasikiniu būdu sukonstruoti testavimo pro-
cedūrą. Duotam α ∈ (0, 1), Cα > 0 tokiam, kad

P ( sup
1≤k≤d

sup
0≤t≤1

|Bk(t)| > Cα) = α.

Pagal 6.2 teoremą, testas:

T̂n,1(d) ≥
√
nCα (6.8)

turi asimptotinį lygmenį α.
Pabrėžiame, kad dėl Brauno tiltų Bk, k = 1, . . . , d nepriklausomumo,

1 − α = P ( sup
1≤k≤d

sup
0≤t≤1

|Bk(t)| ≤ Cα) = P d( sup
0≤t≤1

|B1(t)| ≤ Cα).

Tuomet
P ( sup

0≤t≤1
|B1(t)| ≤ Cα) = (1 − α)1/d.

Taigi, Cα yra sup0≤t≤1 |B1(t)| skirstinio (1 − α)1/d kvantilis. Tai supa-
prastina kritinių reikšmių Cα skaičiavimus.
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Jei s∗ ∈ (0, 1) yra toks, kad u(s) = 1[0,s∗](s), s ∈ [0, 1], tada turime modelį
vienam pasikeitimui nustatyti:

Xk(t) = 1[0,s∗](k/n)qn(t) + Yk(t), t ∈ [0, 1].

Šiuo atveju, ∆(t) = ∆∗(t) := min{t, s∗} − ts∗, t ∈ [0, 1].

Akivaizdu, kad kriterijaus T̂n,1(d) statistika artėja į begalybę, kai d → ∞.
Kita vertus, su didesniu d, Xj aproksimacija pagal seką

∑d
k=1⟨X, ψ̂j⟩ψ̂j yra

tikslesnė ir užtikrina didesnę statistinę testo galią . Pagal žemiau suformuluotą
teoremą nustatome asimptotinį skirstinį kriterijui T̂n,1(d), kai d → ∞.

6.3 teorema. Tegul atsitiktinė funkcinė imtis (Xk) apibrėžta pagal (6.1) mod-
elį kai Y, Y1, Y2, . . . tenkina 6.1 prielaidas. Tada, esant H0,

lim
d→∞

lim
n→∞

P
(
n−1/2T̂n,1(d) ≤ x

ad
+ bd

)
= exp{−e−x}, x ≥ 0, (6.9)

čia
ad = (8 ln d)1/2, bd = 1

4ad + ln ln d
ad

. (6.10)

Kai d reikšmė yra pakankamai didelė, tada (6.8) tampa

T̂n,1 ≥
√
n
[ 1
ad

ln
( 1

ln(1/α)

)
+ bd

]
(6.11)

su asimptotiniu lygmeniu α, kai n ir d artėja prie begalybės.

Tuo atveju , kai m > 1, gauname statistiką

T̂n,m(d, p) := max
1≤j≤d

1√
λj

max
κ∈Nm

{ m∑
i=1

∣∣∣ ki∑
k=ki−1+1

⟨Xk −Xn, ψ̂j⟩
∣∣∣p}1/p

. (6.12)

Tokio kriterijaus T̂n,m(d, p) statistikos konstrukcija mums leidžia tikrinti
imtį, kurioje gali būti ne daugiau kaip m pasikeitimo taškų.

6.4 teorema. Tegul funkcinių duomenų imtis (Xk, k = 1, . . . , n) apibrėžta
pagal (6.1) modelį kai Y, Y1, Y2, . . . tenkina 6.1 ir 6.2 savybes. Tada:

(a) Jei hipotezė H0 yra teisinga, tai

n−1/2T̂n,m(d, p) D−−−−→
n→∞

max
1≤j≤d

v1/p
m,p(Bj),
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čia B1, . . . , Bd yra nepriklausomi standartiniai Brauno tiltai.

(b) Jei alternatyvi hipotezė HA yra teisinga, tai

n−1/2T̂n,m(d, p) D−−−−→
n→∞

max
1≤j≤d

v1/p
m,p(Bj + ∆⟨q, ψ̂j/

√
λ̂j⟩),

(c) Jei alternatyvi hipotezė H ′
A yra teisinga, tai

n−1/2T̂n,m(d, p) P−−−−→
n→∞

∞.

Pagal 6.4 teoremą, testas:

T̂n,m(d, p) ≥
√
nCα(m, d, p) (6.13)

atitinkamai, turi asimptotinį lygmenį α, jeigu Cα(m, d, p) yra

P (v1/p
m,p(B) ≤ Cα(m, d, p)) = (1 − α)1/d.

Toliau nagrinėjame atvejį, kai funkcinių duomenų imtyje pasikeitimų
skaičius yra nežinomas.

Parenkant d > 0 ir p > 2, apibrėžiame

T̂n(d, p) := max
1≤j≤d

1√
λ̂nj

max
1≤m≤n

max
κ∈Nm

{ m∑
i=1

∣∣∣ ki∑
k=ki−1+1

⟨Xk −Xn, ψ̂nj⟩
∣∣∣p}1/p

.

6.5 teorema. Tegul atsitiktinė imtis (Xi) yra tokia, kaip apibrėžta 6.1 teore-
moje. Tada:

(a) Jei H0 teisinga, tai

n−1/2T̂n(d, p) D−−−−→
n→∞

max
1≤j≤d

v1/p
p (Bj),

čia B1, . . . , Bd yra nepriklausomi standartiniai Brauno tiltai.

(b) Jei HA teisinga, tai

n−1/2T̂n(d, p) D−−−−→
n→∞

max
1≤j≤d

v1/p
p (Bj + ∆⟨q, ψ̂j/

√
λ̂j⟩),
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čia ∆(t), t ∈ [0, 1] apibrėžta 6.1 teoremoje.

(c) Jei H ′
A teisinga, tai

n−1/2T̂n(d, p) P−−−−→
n→∞

∞.

Pagal 6.5 teoremą, testas:

T̂n(d, p) ≥
√
nCα(d, p) (6.14)

turi asimptotinį lygmenį α, su Cα(d, p) jei

P (v1/p
p (B) ≤ Cα(d, p)) = (1 − α)1/d.

Tam, kad įvertintume statistinę testo galią, atlikome Monte Karlo imitaci-
jas. Aktualūs buvo trys pagrindiniai scenarijai:

(S1) Tegu imtis (ξjk) yra sudaryta iš nepriklausomų ir vienodai pasiskirsčiusių
simetrinių Pareto atsitiktinių dydžių su indeksu p (naudojame p = 5).

Yj(t) =
d∑
k=1

ξjk

√
2 cos(kπt)
kσ

, t ∈ [0, 1], j ≥ 1, (6.15)

čia σ2 = Eξ2
11. Kai nulinė hipotezė teisinga, naudojame Xk = Yk, k =

1, 2, . . . , n.

Kai alternatyvi hipotezė teisinga laikome, kad

Xj(t) = un(j/n)
d∑
k=1

ank cos(kπt) + Yj , t ∈ [0, 1], j = 1, . . . , n,

čia funkcija un nusako pasikeitimo taškų konfigūraciją ir koeficientai (ank)
yra laisvai pasirenkami.

(S2) Sakykime (xij , j = 0, 1, . . . ,M), i = 1, . . . , n yra diskretūs stebėjimai,
įvertinti taškuose xij = Xi(τj), kur atsitiktinė imtis (Xj , j = 1, . . . , n)
generuojama taip pat, kaip ir (S1) scenarijuje. Diskretūs stebėjimai yra
paverčiami į funkcinius duomenis (Xj , j = 1, . . . , n), naudojant B-spline
bazes.

(S3) Imkime diskrečius stebėjimus (i/M, yij), i = 0, 1, . . . ,M, j = 1, . . . , n,
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kurie yra generuojami

yij = M−1/2
i∑

k=1
ξkj ,

taip, kad yij galėtumėm interpretuoti, kaip standartinį Vynerio procesą
ties i/M . Iš imties (yij , i = 1, . . . ,M), funkcijos Yj yra sukonstruo-
jamos naudojant B-spline bazes. Imitacijos metu naudojame M = 1000
stebėjimų ir D = 50 bazinių funkcijų, taip sukonstruodami Y1, . . . , Yn,
funkcijų (n = 500). Tada, apibrėžiame

Xj =

Yj , prie nulinės hipotezės

un(j/n)qn + Yj , prie alternatyvios hipotezės

čia j = 1, . . . , n; naudojame skirtingas pasikeitimo taškų konfigūracijas
un su skirtingu dreifu, kurį nusako funkcija qn(t) = an

√
Mt, t ∈ [0, 1].
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Figure 6.1: Statistinė galia atlikus imitacijas pagal (S1, S2) scenarijus

(S1) Scenarijus sukuria optimalią situaciją, kai tikrinės reikšmės ir tikrinės
funkcijos yra žinomos. Šiuo atveju yra išvengiama duomenų praradimo ar
matavimo klaidų. Antrasis (S2) scenarijus yra pirmo scenarijaus tęsinys, kur
naudojama ta pati funkcinė duomenų imtis, tačiau atliekami papildomi žings-
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niai: funkcijos įvertinamos atsitiktiniuose taškuose, diskrečioji imtis yra glodi-
nama naudojant b-spline bazes, įvertinamos tikrinės reikšmės ir funkcijos. Gali-
ausia, skaičiuojama statistika su įverčiais. Taip sukuriama imtis su matavimo
paklaidos tikimybe.

Imitacijų rezultatai parodė, kad net ir po rekonstruotos atsitiktinės
funkcinės imties, statistinio testo galia išlieka tokia pat tuo atveju, kai diskrečių
stebėjimų skaičius pakankamai didelis (n = 200). Statistinės galios susilpnėji-
mas stebimas stipriai sumažinus diskrečių stebėjimų skaičių (n = 10). Rezul-
tatai pavaizduoti 6.1 paveikslėlyje.
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Figure 6.2: Statistinė galia atlikus imitacijas pagal (S3) scenarijų

(S3) Scenarijaus metu buvo konstruojama imtis iš diskrečių stebėjimų, kai
apie funkcinę duomenų imtį nieko nėra žinoma (išskyrus tai, kad egzistuoja
epideminis pasikeitimas), kas atspindi realaus gyvenimo atvejį. Imitacijos buvo
atliktos norint patikrinti (6.14) ir (6.13) statistinių testų galias. Rezultatai
pavaizduoti 6.2 paveiksle.
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Išvados

Šioje disertacijoje buvo apibrėžti nagrinėjami objektai ir modeliai vienmači-
ams ir funkciniams duomenims. Apibrėžtas vidurkio nestabilumo testavimo
modelis, paremtas dalinių sumų proceso p-variacija. Testo statistinė galia
buvo išanalizuota imitaciniais metodais ir teoriškai ištirtas testo suderinamu-
mas. Taip pat buvo teoriškai nustatyti ribiniai skirstiniai prie nulinės ir alter-
natyvios hipotezių. Šie rezultatai buvo apibendrinami ir pritaikyti funkciniams
duomenims. Buvo išnagrinėta procesų indeksuotų funkcijomis sumų (G-sumų)
asimptotika. Teoriškai buvo nustatyti ribiniai skirstiniai ir apibrėžti testai, tin-
kantys nustatyi vienam pasikeitimui, m pasikeitimams ir nežinomam skaičiui
pasikeitimų. Testai, pritaikyti funkciniams duomenims, buvo išanalizuoti im-
itaciniais metodais.

Su pasikeitimo taškų problema susiduriama daugelyje sričių, kaip medicina,
ekonomika, klimato kaita, vaizdų ir garsų analizė. Disertacijoje buvo pademon-
struota, kaip pasiūlyti testai gali būti pritaikomi klimato kaitos duomenims ir
fiziologiniams duomenims. Neapsiribojant tik šiomis sritimis, pasiūlyti testai
gali būti plačiai taikomi ir kitur.

Šie testai gali būti plėtojami toliau, pavyzdžiui, adaptuojami dažnio
pasikeitimams nustatyti, naudojant tolydžios vilnelės transformacijas (angl.
Continuous wavelet transform). Tolydžios vilnelių transformacijos metodai lei-
džia atlikti nestacionarių signalų spektrinę analizę ir įvertinti spektro pokyčius
laikui bėgant. Tokiu būdu sukonstruotiems funkciniams duomenims galime
taikyti vieno ar daugiau pasikeitimų taškų nustatymo testus, pasiūlytus šioje
disertacijoje.
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