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Abstract: Omission of frequency-dependent hydraulic resistance (skin friction) during modelling 

of the water hammer phenomenon is unacceptable. This resistance plays a major role when the 

transient liquid flow occurs in rigid-walled pipes (steel, copper, etc.). In the literature, there are at 

least two different modelling approaches to skin friction. The first group consists of models based 

on instantaneous changes in local and convective velocity derivatives, and the second group are 

models based on the convolution integral and full history of the flow. To date, more popular 

models are those from the first group, but their use requires empirical coefficients. The second 

group is still undervalued, even if based on good theoretical foundations and does not require any 

empirical coefficients. This is undoubtedly related to the calculation complexity of the convolution 

integral. In this work, a new improved effective solution of this integral is further validated, which 

is characterised with the use of a simplified weighting function consisting of just two exponential 

terms. This approach speeds the numerical calculations of the basic flow parameters (pressure and 

velocity) significantly. Presented comparisons of calculations using the new procedure with ex-

perimental pressure runs show the usefulness of the proposed solution and prove that it maintains 

sufficient accuracy. 

Keywords: water hammer; hydraulic transients; unsteady friction; convolution-based model;  

numerical simulation 

 

1. Introduction 

In water supply networks, power hydraulics systems, transmission and heating 

lines, etc., unsteady flows are common. Sudden changes in flow velocity are the source of 

pressure waves which propagate in these systems. Conditions caused by breakdowns or 

those related to incorrectly set operating conditions of the components (valves, pumps, 

motors, distributors, pipelines, etc.) are particularly dangerous in the event of a power 

failure. Large pressures may occur in the case of liquid column separation and unwanted 

wave interference. Their values may even exceed the Joukowsky pressure rise 𝛥𝑝: 
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𝛥𝑝 = 𝜌𝑐𝛥𝑣, (1) 

where: 𝜌 – liquid density; c – pressure wave speed; 𝛥𝑣—velocity change at the valve 

after its closure. 

An interesting practical example can be drawn using the dependency graph for 

pressure wave speeds in water flows presented in Pothof and Karney’s Chapter 1 of 

Guidelines for Transient Analysis in Water Transmission and Distribution Systems [1]. It is 

shown that a typical pressure wave speed in a steel pipe with elasticity modulus 𝐸 = 2 ∙

1011 N/m2 and inner diameter to wall thickness ratio (D/e) equal to 2 ∙ 102 is about 1300 

m/s, while for the same ratio of D/e in a PVC pipe (𝐸 = 3.5 ∙ 1010 N/m2) c is about 400 m/s 

and in a HDPE pipe (𝐸 = 8 ∙ 109 N/m2) c is just about 200 m/s. These values show that the 

pressure wave speed in metal pipes is more than three times larger than in PVC pipes 

and more than six times than in HDPE ones. Therefore, the initial pressure rise resulting 

from the Equation (1) is significantly larger in metal pipes than in plastic pipes, and that 

is why metal pipes are the subject of this research. During water hammer events, several 

accompanying phenomena may occur, including: cavitation [2–4] (when the pressure 

drops to the vapour pressure of the liquid), unsteady friction [5–7] (resistance of the liq-

uid during unsteady flow against the pipe wall), and fluid–structure interaction [8–10] 

(interactions of movable or deformable pipe structure with an internal or surrounding 

fluid flow). Assuming the adequate restraint of the pipe elements and pressure above the 

liquid vapour pressure, then the modelling of the unsteady friction remains the greatest 

challenge. To date, most of the hydraulic resistance models can be classified into one of 

two groups: (a) instantaneous acceleration-based (IAB) models or (b) convolution-based 

models (CBM). 

IAB-type models were introduced by Daily et al. [11], Carstens and Roller [12], and 

Safwat and van der Polder [13]. Chronologically, this model approach was refined by 

Brunone et al. [14], Vítkovský et al. [15], Ramos et al. [16], Reddy et al. [17], and Cao et al. 

[18]. Currently, it is widely used [19–23], despite a serious drawback which is the neces-

sity to experimentally calibrate the dissipation coefficient k. 

The CBM-type models are derived theoretically. A pioneering work has been done 

by Zielke [24]. The model is based on the convolutional integral. The solution of the 

convolutional integral requires a continuous return to the historical values of the local 

fluid accelerations, which are multiplied by analytical weighting factors. Such a proce-

dure in its original form requires a large number of calculations, which translates into a 

large load for computer processors in the analysis of long transient runs (t > 4 s). Trikha 

[25] developed a method that simplifies these calculations significantly. It requires an 

approximation form of the weighting function. Trikha’s method was improved by Ka-

gawa et al. [26], Schohl [27], and recently by Urbanowicz [28]. In this work, the procedure 

simplifying the CBM model is verified by referring to the experimental studies of water 

hammer carried out at the Institute of Fluid-Flow Machinery of the Polish Academy of 

Sciences by Adamkowski and Lewandowski [29]. The simplification of CBM consists in 

filtering the weighting function to just two exponential terms. The CBM solution requires 

simplifications, as the review of commercial programs [22] for modelling transients in 

pressurized conduits has shown that the quasi-steady model and IAB are widely used, 

and the CBM model has still not been implemented. However, the CBM model is char-

acterised by high model consistency in a wide range of Reynolds numbers (transient 

laminar and turbulent pipe flows—the weighting function for laminar flow was devel-

oped by Zielke [24] and for turbulent flows by Vardy and Brown [30]). The objective of 

this paper is aimed to further test a computationally effective and accurate CBM model 

developed by Urbanowicz [31]. In an earlier work, this approach was verified only for the 

case of unsteady flows with cavitation [31]; therefore, in this paper, we validate the 

model against the experimental results without cavitation [29]. The second objective is 

verification of the effectiveness of Johnston’s lumped friction model [32], according to 
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which the unsteady friction can be concentrated only at the boundary nodes of the nu-

merical grid. 

2. Basic Equations 

The basic continuity (2) and momentum (3) equations describing the unsteady pipe 

flow in horizontal pipes [33] follow: 

𝜕𝑝

𝜕𝑡
+ 𝜌𝑐2

𝜕𝑣

𝜕𝑥
= 0, (2) 

𝜕𝑝

𝜕𝑥
+ 𝜌

𝜕𝑣

𝜕𝑡
+
2

𝑅
𝜏 = 0, (3) 

where: p—pressure; t—time; v—average liquid velocity; R—inner pipe radius; 𝜏—wall 

shear stress. 

The system of Equations (2) and (3) above contains three unknowns: 𝑣, 𝑝, and 𝜏. In 

order to close the system, an additional relationship should be established, which is most 

often the relationship between the wall shear stress on the pipe wall 𝜏 and the average 

flow velocity 𝜏 = 𝑓(𝑣). Numerical details of modelling the wall stress on the pipe wall 

are the subject of the next section in this work. 

Using the commonly known method of characteristics [33], Equations (2) and (3) can 

be led to the form: 

𝐶+: {
 
𝑑𝑥

𝑑𝑡
= +𝑐

1

𝑐𝜌

dp

dt
+
𝑑𝑣

𝑑𝑡
+

2

𝜌𝑅
𝜏 = 0

𝐶−: {
 
𝑑𝑥

𝑑𝑡
= −𝑐

−
1

𝑐𝜌

dp

dt
+
𝑑𝑣

𝑑𝑡
+

2

𝜌𝑅
𝜏 = 0

. (4) 

At any internal point D of the characteristics grid (Figure 1), through which two 

characteristics C+ and C− pass, between points D and A as well as D and B, the integration 

can be performed using the finite linear differences. As a result, the following equations 

are obtained: 

 

Figure 1. Method of characteristics grid. 
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Solving the system of Equation (5), one can find the final formulas for the calculated 

values of pressure 𝑝𝐷 and velocity 𝑣𝐷 at the inner node D of the characteristics grid in 

the following form: 

𝑝𝐷 =
1

2
[(𝑝𝐴 + 𝑝𝐵) + 𝑐𝜌(𝑣𝐴 − 𝑣𝐵) +

2𝑐𝛥𝑡

𝑅
(𝜏𝐵 − 𝜏𝐴)], (6) 

𝑣𝐷 =
1

2
[(𝑣𝐴 + 𝑣𝐵) +

1

𝑐𝜌
(𝑝𝐴 − 𝑝𝐵) −

2𝛥𝑡

𝜌𝑅
(𝜏𝐴 + 𝜏𝐵)]. (7) 

In order to develop a complete solution of the presented task, it is necessary to know 

the boundary conditions (Figure 2). 

 

Figure 2. Boundary conditions. 

When at the i = 1 node (cross-section) of the characteristics grid, the flow velocity v is 

determined (quickly closing valve) for time t > 0, and at the i = N + 1 node the pressure p is 

known (reservoir pressure), then: 

𝑝𝑀 = 𝑝𝑅 + 𝑐𝜌(𝑣𝑀 − 𝑣𝑅) +
2𝑐𝛥𝑡

𝑅
𝜏𝑅, (8) 

𝑣𝑁 = 𝑣𝑆 −
1

𝑐𝜌
(𝑝𝑁 − 𝑝𝑆) −

2𝛥𝑡

𝜌𝑅
𝜏𝑆 . (9) 

Conversely, if the pressure p was determined as the boundary condition at the i = 1 

node of the characteristics grid (reservoir section), and the value of the flow velocity v at 

the i = N + 1 node (valve section), then: 

𝑣𝑀 = 𝑣𝑅 +
1

𝑐𝜌
(𝑝𝑀 − 𝑝𝑅) −

2𝛥𝑡

𝜌𝑅
𝜏𝑅, (10) 

𝑝𝑁 = 𝑝𝑆 − 𝑐𝜌(𝑣𝑁 − 𝑣𝑆) −
2𝑐𝛥𝑡

𝑅
𝜏𝑆. (11) 

3. Modelling Wall Shear Stress 

Commonly used quasi-steady, one-dimensional model of friction losses based on 

the Darcy–Weisbach formula can be used in the case of slow changes in liquid velocity at 

the pipe cross-section. However, it fails in the case of simulation for fast-changing flow, 

i.e., in the case of water hammer, the calculated results significantly differ from the re-

sults of measurements [29,34,35]. 

Models of unsteady friction losses, as mentioned in the introduction, can be divided 

into two groups. The first group consists of models based on the instantaneous values of 

k+1
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velocity and acceleration (in literature often named Instantaneous Accelerated Based 

(IAB) model). The forerunner in this group was the model proposed by Daily et al. [11]. 

The term associated with the unsteady shear stress at pipe wall is proportional to the 

acceleration of liquid. This model was later improved by other researchers [12,13]. In this 

group falls the Brunone et al. model [14], in which the wall shear stress is proportional 

not only to local derivative of flow velocity but also to its convective derivative: 

𝜏 =
𝑓𝑞𝜌𝑣|𝑣|

8
+
𝑘𝜌𝐷

4
(
𝜕𝑣

𝜕𝑡
− 𝑐

𝜕𝑣

𝜕𝑥
), (12) 

where: 𝑓𝑞—Darcy–Weisbach friction factor; k—empirical unsteady friction coefficient of 

the IAB model; D—inner pipe diameter. 

This model underwent further modifications. Vítkovský et al. [15] rightly pointed 

out that the acoustic convection term c(∂v/∂x) should be added or subtracted depending 

on the type of the flow: 

𝜏 =
𝑓𝑞𝜌𝑣|𝑣|

8
+
𝑘𝜌𝐷

4
(
𝜕𝑣

𝜕𝑡
+ 𝑐

|𝑣|

𝑣
|
𝜕𝑣

𝜕𝑥
|). (13) 

The next major change was the introduction of separate unsteady friction coeffi-

cients for the local derivative kt and convective derivative kx by Ramos et al. [16]: 

𝜏 =
𝑓𝑞𝜌𝑣|𝑣|

8
+
𝜌𝐷

4
(𝑘𝑡

𝜕𝑣

𝜕𝑡
+ 𝑘𝑥𝑐

|𝑣|

𝑣
|
𝜕𝑣

𝜕𝑥
|). (14) 

Ramos et al. [16] proved numerically that the expression kt(𝜕v/𝜕t) affects the phase 

shift of pressure waves and that kx(𝜕v/𝜕x) affects the rate of attenuation of these waves. 

The coefficients kt and kx can be calculated on the basis of known experimental results 

using the method presented by Reddy et al. [17]. The main disadvantage of this approach 

is the need to determine kt and kx empirically, and that the shape of simulated pressures 

differs significantly from the shape observed in experiments. Owing to its simplicity, the 

expression above is often cited and used in practise. It should be noted, however, that the 

details of the implementation of Equation (14) in the method of characteristics have been 

described in a comprehensive and clear manner only in one conference article, namely, in 

reference [15] written by Vítkovský et al. In all other papers the procedure to determine 

the spatial derivative 
𝜕𝑣

𝜕𝑥
, in particular at the boundary, is unclear. The most recent im-

provement of this model has been presented by Cao et al. [18]: 

𝜏 =
𝑓𝑞𝜌𝑣|𝑣|

8
+
𝑘𝜌𝐷

4
(
𝜕𝑣

𝜕𝑡
+ 𝑐

|𝑣|

𝑣
|
𝜕𝑣

𝜕𝑥
|) −

𝑘𝑑𝜌𝐷

4
|
𝜕2𝑣

𝜕𝑥2
|, (15) 

where: 𝑘𝑑 =
𝜇′

𝜌
≈ 716.1 ∙ 𝑙𝑛(0.135 ∙ 𝑙𝑛(𝑅𝑒)); 𝜇′—is the second viscosity coefficient. 

This model is a further modification of Vítkovský et al. model Equation (13). It takes 

into account an additional energy dissipation term describing a compression–expansion 

effect of the fluid. Although the Cao et al. model is an interesting alternative, but this 

model has a problem with guaranteeing the appropriate dispersion (delay, phase shift) of 

the pressure wave for low Reynolds numbers [18]. 

The second group consists of models based on the history of the flow 

(CBM—convolution-based models). The wall shear stress (and hence the instantaneous 

coefficient of friction losses) depends here on the frequency of changes in flow and 

pressure. These models reflect relatively well not only the degree of dissipation of pres-

sure waves but also dispersion. They treat the pressure histories in detail. The forerunner 

in this group of models has been proposed by Zielke [24], who developed the wall shear 

stress for transient laminar pipe flow in the form of the sum of quasi-steady shear stress 

and unsteady contribution, which is an integral convolution of the mean local accelera-

tion of the liquid and a weighting function w(t): 

𝜏(𝑡) = 𝜏𝑞 + 𝜏𝑢 =
4𝜇

𝑅
𝑣 +

2𝜇

𝑅
∫ 𝑤(𝑡 − 𝑢)

𝜕𝑣(𝑢)

𝜕𝑡

𝑡

0
𝑑𝑢, (16) 



Water 2022, 14, 3151 6 of 20 
 

 

where: μ—dynamic viscosity; u—time, used in convolution integral; w(t)—weighting 

function. 

The wall shear stress time domain solution given above is an inverse Laplace 

transform of the WSS function written in the frequency domain. For laminar flow, this 

function has a form based on multiplication of a certain frequency-dependent function 

𝐹̂(𝑠) with a partial time derivative of velocity transform. This form was firstly derived 

and presented by Zielke in his doctoral thesis [36]: 

𝜏̂(𝑠) = 𝐹̂(𝑠)
𝜕𝑣̂(𝑠)

𝜕𝑡
=

𝜌𝑅

𝑗√𝑠
𝑅2

𝜈 𝐽0(𝑗
√𝑠
𝑅2

𝜈 )

𝐽1(𝑗√𝑠
𝑅2

𝜈 )

−2

𝜕𝑣̂(𝑠)

𝜕𝑡
, 

(17) 

where: s—Laplace parameter, 𝜈—kinematic viscosity of liquid, j—imaginary unit; J0 and 

J1—Bessel functions of the first kind (order 0 and 1). Zielke calculated the inverse Laplace 

transform of 𝐹(𝑠), which gives the following time domain function: 

𝐹(𝑡) =
4𝜇

𝑅
+
2𝜇

𝑅
∑ 𝑒−𝜅𝑛

2 𝑡̂∞
𝑛=1 . (18) 

A time-domain solution of multiplication of two frequency-dependent functions is a 

convolutional integral, Equation (16). According to Equation (18), the weighting function 

in Equation (16) is an infinite series of exponential terms that has the following form for 

the laminar flow [36]: 

𝑤𝑙𝑎𝑚(𝑡̂) = ∑ 𝑒−𝜅𝑛
2 𝑡̂∞

𝑛=1 . (19) 

where κn in the power of exponent are nth zeros of the Bessel function of type J2. Zielke 

approximated this function [24,36] in the following way: 

𝑤𝑙𝑎𝑚,𝑐𝑙𝑎𝑠𝑠𝑖𝑐(𝑡̂) = ∑ 𝑚𝑖𝑡̂
(𝑖−2)/26

𝑖=1 , for 𝑡̂ ≤ 0.02, (19a) 

𝑤𝑙𝑎𝑚,𝑐𝑙𝑎𝑠𝑠𝑖𝑐(𝑡̂) = ∑ 𝑒−𝑚𝑖𝑡̂5
𝑖=1  , for 𝑡̂ > 0.02 , (19b) 

where: m1 = 0.282095; m2 = −1.25; m3 = 1.057855; m4 = 0.9375; m5 = 0.396696; m6 = −0.351563; 

n1 = 26.3744; n2 = 70.8493; n3 = 135.0198; n4 = 218.9216; and n5 = 322.5544. 

For turbulent flow, much more complicated formulas for impedance have been de-

rived by Vardy and Brown [30] and Zarzycki [37]. Both Zarzycki and Vardy and Brown 

concluded that in time domain the solution of Equation (16) can be used for turbulent 

flow, the only difference is that in this flow the weighting function shape depends not 

only on dimensionless time but also on the initial Reynolds number and characteristic 

roughness size. In this work, the Vardy and Brown weighting function is used for tran-

sient turbulent pipe flow: 

𝑤𝑡𝑢𝑟𝑏,𝑐𝑙𝑎𝑠𝑠𝑖𝑐(𝑡̂, 𝑅𝑒) ≈
𝐴∗𝑒−𝐵

∗𝑡̂

√𝑡̂
, (20) 

where: 𝐴∗ = √1/4𝜋, B *= Re/12.86,  = log10(15.29/Re0.0567)—for smooth pipes [30] and 

𝐴∗ = 0.0103 √𝑅𝑒
(
𝜀
𝐷)
0.39

, 𝐵∗ = 0.352𝑅𝑒 (
𝜀

𝐷
)
0.41

 for rough pipes [38]; the ratio ε/D is a relative 

roughness. 

In the method of characteristics based on a rectangular grid, the classical numerical 

solution of the convolution integral Equation (16) can be expressed as: 

𝜏𝑢 =
2𝜇

𝑅
∑ (𝑣𝑖,𝑗+1 − 𝑣𝑖,𝑗)
𝑛−1
𝑗=1 ⋅ 𝑤 ((𝑛 − 𝑗)𝛥𝑡̂ −

𝛥𝑡̂

2
) =

2𝜇

𝑅
∑ (𝑣𝑖,𝑛−𝑗+1 − 𝑣𝑖,𝑛−𝑗)
𝑛−1
𝑗=1 ⋅ 𝑤 (𝑗𝛥𝑡̂ −

𝛥𝑡̂

2
). (21) 

In the above equation, ∆t̂ is a dimensionless time step, which is: 

𝛥𝑡̂ = 𝛥𝑡 ⋅
𝜈

𝑅2
=

𝛥𝑥

𝑐
⋅
𝜈

𝑅2
=

𝐿

𝑁
⋅
𝜈

𝑐⋅𝑅2
=

𝑊ℎ

𝑁
, (22) 
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where: 𝛥𝑡—numerical time step; 𝛥𝑥—reach length between the nodes; L—pipe length, 

N—number of reaches (number of analysed pipe cross-sections—spatial nodes); 𝑊ℎ =
𝜈𝐿

𝑐𝑅2
—water hammer number [39]. 

One can see in Equation (21) that the number of iterations required to determine the 

shear stress increases with the time of simulation of the transient event. In the last forty 

years, a number of authors showed at least three distinct effective solutions. A simplified 

recursive solution was first presented by Trikha in 1975 [25]. Its drawback is due to an 

excessive number of simplifications; thus, it is not suitable for the calculation in a wide 

range of dimensionless times. Improved forms of recursive formulas have been pre-

sented by Kagawa et al. [26] and Schohl [27], respectively: 

𝜏𝑢(𝑡 + 𝛥𝑡) ≈
2𝜇

𝑅
∑ [𝑦𝑖(𝑡) ⋅ 𝑒

−𝑛𝑖⋅𝛥𝑡̂ +𝑚𝑖 ⋅ 𝑒
−𝑛𝑖⋅(

𝛥𝑡̂

2
)
⋅ [𝑣(𝑡+𝛥𝑡) − 𝑣𝑡]⏟                            

𝑦𝑖(𝑡+𝛥𝑡)

]
𝑗
𝑖=1 , (23) 

𝜏𝑢(𝑡 + 𝛥𝑡) ≈
2𝜇

𝑅
∑[𝑦𝑖(𝑡) ⋅ 𝑒

−𝑛𝑖⋅𝛥𝑡̂ +
𝑚𝑖

𝛥𝑡̂ ⋅ 𝑛𝑖
⋅ [1 − 𝑒−𝑛𝑖⋅𝛥𝑡̂] ⋅ [𝑣(𝑡+𝛥𝑡) − 𝑣𝑡]

⏟                                  
𝑦𝑖(𝑡+𝛥𝑡)

]

𝑗

𝑖=1

 . (24) 

Kagawa et al. [26] assumed that the integral of the weighting function can be ap-

proximated in the following form: 

∫ 𝑒
𝑛𝑖⋅

𝜈

𝑅2
⋅𝑢
𝑑𝑢

𝑡+𝛥𝑡

𝑡
≈ 𝑒

𝑛𝑖⋅
𝜈

𝑅2
⋅(𝑡+

𝛥𝑡

2
)
⋅ ∫ 𝑑𝑢

𝑡+𝛥𝑡

𝑡
. (25) 

Schohl [27] calculated the same integral symbolically: 

∫ 𝑒
𝑛𝑖⋅

𝜈

𝑅2
⋅𝑢
𝑑𝑢

𝑡+𝛥𝑡

𝑡
=

𝑅2

𝑛𝑖⋅𝜈
⋅ [𝑒

𝑛𝑖⋅
𝜈

𝑅2
⋅(𝑡+𝛥𝑡)

− 𝑒
𝑛𝑖⋅

𝜈

𝑅2
⋅𝑡
]. (26) 

It is worth noting that in all efficient solutions the weighting function needs to be 

written as a finite sum of exponential terms: 

𝑤𝑒𝑓𝑓. = 𝑚𝑖𝑒
𝑛𝑖⋅𝑡̂. (27) 

Recently, Vardy-Brown [40] pointed out an overlooked error in a classical computa-

tionally inefficient methodology of Equation (21) and suggested calculating the wall 

shear stress by using the following equation: 

𝜏𝑢 =
2𝜇

𝑅
∑ [(𝑣𝑖,𝑛−𝑗+1 − 𝑣𝑖,𝑛−𝑗) ⋅ ∫ 𝑤(𝑡̂)

𝑗𝛥𝑡̂

(𝑗−1)𝛥𝑡̂
𝑑𝑡̂]𝑛−1

𝑗=1 . (28) 

That is why in this work a corrected solution of CBM is used, which is an effective 

counterpart of the above-corrected Equation (28): 

𝜏𝑢 =
2𝜇

𝑅
∑ [𝑦𝑖(𝑡) ⋅ 𝐴𝑖 + 𝜂 ⋅ 𝐵𝑖 ⋅ [𝑣(𝑡+𝛥𝑡) − 𝑣(𝑡)] + [1 − 𝜂] ⋅ 𝐶𝑖 ⋅ [𝑣(𝑡) − 𝑣(𝑡−𝛥𝑡)]]⏟                                          

𝑦𝑖(𝑡+𝛥𝑡)

𝑗
𝑖=1 , 

(29) 

where: η—correction factor. The details of the derivation of Equation (29) can be found in 

[28]. The constants in the formula above are calculated as follows: 

𝐴𝑖 = 𝑒
−𝑛𝑖⋅𝛥𝑡̂; 𝐵𝑖 =

𝑚𝑖

𝛥𝑡̂⋅𝑛𝑖
⋅ [1 − 𝐴𝑖]; 𝐶𝑖 = 𝐴𝑖 ⋅ 𝐵𝑖 , (30) 

where: 𝑛𝑖 and 𝑚𝑖—coefficients describing the effective weighting functions. The algo-

rithm for determining the values of these coefficients is presented in Appendix A. In this 

efficient formula, Equation (29), the effective weighting function, does not need to have 

an extended range of applicability in dimensionless time to correctly model transient 

flows. For the dimensionless time range from 0 to 𝛥𝑡̂, the integral for the effective 

weighting function is replaced with either the integral from the classical laminar-flow 

weighting function according to the Zielke Equation (19) or the turbulent-flow weighting 

function according to Vardy-Brown Equation (20) (depending on the type of flow that 
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takes place: laminar or turbulent) as presented in Figure 3. In addition to the standard 

model in which the friction term is calculated in the same way at each node of the nu-

merical grid of characteristics, this work also investigates a model lumping the unsteady 

friction factor only at the boundary nodes of the pipe. The author of this approach is 

Johnston, who described its basics in [32]. The lumping of 𝜏𝑢 at the sections i = 1 and i = N 

+ 1 significantly shortens the numerical computational time, because in all other nodes 

calculations are based on the quasi-steady solution (𝜏𝑞). However, this approach requires 

modification of the velocity values 𝑣𝑀,𝑐 and 𝑣𝑁,𝑐  at the boundary nodes, as follows: 

 

Figure 3. Areas under classic and efficient weighting function for low dimensionless times. 

𝑣𝑀,𝑐 =
1

2
(𝑣𝑀 +

𝑝𝑀

𝜌𝑐
); 𝑣𝑁,𝑐 =

1

2
(𝑣𝑁 +

𝑝𝑁

𝜌𝑐
), (31) 

Equation (31) is used to determine the lumped values of the wall shear stress at the 

boundary nodes. This model has been recently investigated by Xu et al. [41] with an ob-

jective to develop an ultrafast numerical solution based on a gridless scheme. 

In some recent works [31,42], the impact of (i) the number of terms describing the 

effective weighting function, (ii) the scope of applicability in dimensionless time, and (iii) 

the lumped friction model, were analysed. The main conclusion from these studies was 

that the time range of applicability of the effective weighting function in order to model 

unsteady pressure events with sufficient accuracy should be from ∆t̂ to ∆t̂·103. This in-

dicates that the effective weighting functions do not need to be composed of many ex-

ponential terms, as only two are sufficient and it is less than in the well-known effective 

weighting function presented by Trikha [25]. In addition, Bergant et al. [43] found that 

CBM cannot produce a small-frequency shift in pressure history observed in experi-

mental results. This deficiency can be eliminated either by inclusion of the momentum 

correction factor in the inertia term of Equation (3) or by using the measured pressure 

wave propagation speed. 

4. Analysis of the Results 

The experimental tests of Adamkowski and Lewandowski [29], in which a simple 

water hammer event in a reservoir–pipeline–valve system occurred due to rapid closure 

of the valve, were selected for our comparison analysis. A test stand was located at the 

Institute of Fluid-Flow Machinery in Gdańsk, Poland, the main element of which was a 

long metal copper pipe. The pipe was 98 m long and a large part of it was wound on a 

steel cylinder (with a diameter of about 1.6 m; please note that pipe was rigidly mounted 

to the cylinder coating in order to minimise its vibrations), as can be seen in Figure 4. 

Horizontal parts of the pipeline (not coiled) were constrained with the help of steel 

clamps, spaced at about every 0.4 m to the concrete base of the laboratory. The upstream 

A1
0

1000

3000

5000

7000

9000

10-9 10-8 10-7 10-6 10-5

Standard  (true)

weighting function

Effective weighting

function (efficient)

t

First time step

w
ei

g
h

ti
n

g
 f

u
n

ct
io

n
 [
-]

A2

dimensionless time [- ]



Water 2022, 14, 3151 9 of 20 
 

 

end tank is a pressure reservoir with a capacity of 1.6 m3. Its main role was to maintain 

constant pressure during steady-flow conditions and near-constant pressure under tran-

sient operation. The test rig was equipped with absolute semiconductor pressure trans-

ducers (measuring range from 0 to 4 MPa; transmitted frequency band from 0 to 2 kHz, 

and precision class equal to 0.2%), turbine flowmeter (range of 1.5 m3/h and precision 

class of 1%), ball valve (installed between the quick-closing valve and flowmeter), and 

feed pump (with adjustable rotational speed). The two elements mentioned (ball valve 

and feed pump) were used to adjust required initial conditions in the system. A water 

hammer event was generated by a quick-closing valve in which the closing time was 

minimised using a specially designed spring driving mechanism. 

 

Figure 4. Gdansk Institute of Fluid-Flow Machinery test rig. 

Detailed values describing the basic parameters of the experimental apparatus are 

presented in Table 1, where: 𝑇𝑣𝑐—valve full closing time; 𝑇—temperature; 𝑒—pipe wall 

thickness. These parameters were used as input parameters in a proprietary computer 

program written in the MATLAB environment. 

Table 1. Test rig details. 

𝑳  

[𝐦] 

𝑫  
[𝐦] 

𝒆  
[𝐦] 

𝑻𝒗𝒄  
[𝐬] 

𝑻  
[˚𝐂] 

𝝂  

[m2/s] 

𝝆  

[kg/m3] 

98.11 0.016 0.001 0.003 22.6 9.493·10−7 997.65 

Comparative analysis was performed for nine test cases. Additional details on the 

boundary and initial conditions necessary to model these cases are summarized in Table 

2. 

Table 2. Analysed flow cases. 

Case v0 [m/s] Re0 [−] pR [Pa] c [m/s] 

01 0.066 1100 1.265·106 1300 

02 0.162 2750 1.264·106 1300 

03 0.340 5750 1.265·106 1300 

04 0.467 7900 1.253·106 1305 

05 0.559 9400 1.264·106 1300 

06 0.631 10,650 1.264·106 1303 

07 0.705 11,900 1.263·106 1300 

08 0.806 13,600 1.263·106 1300 

09 0.940 15,850 1.264·106 1300 
v0 and Re0—initial velocity and Reynolds number, respectively; pR—reservoir pressure. 
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Water hammer simulation, especially with the use of the classical full-convolutional 

integral and its computationally ineffective solution, takes a long time. Therefore, the 

comparative studies were limited to computational time of t = 5.5 s. This time covers 

eighteen water hammer periods (t/(4L/c)), more than enough for an adequate comparison 

study. 

The influence of the mesh refinement of the method of characteristics on the ob-

tained results was also examined. The results obtained for the simplified CBM model 

(SM—Equation (29)) and the lumped friction model (LFM—Equation (31)) were analysed 

for meshes with the following densities: coarse mesh N = 32 (nodes ≈ 77,000); N = 52 

(nodes ≈ 201,000), N = 102 (nodes ≈ 766,000), and very fine mesh N = 202 (nodes ≈ 

2,989,000). The N parameter influences not only the mesh refinement along its length, but 

also the time step ∆t, which determines the mesh refinement in time (due to 

Courant–Friedrichs–Lewy CFL stability condition): 

𝛥𝑥 = 𝐿/𝑁 and 𝛥𝑡 = 𝛥𝑥/𝑐. (32) 

All the results using the classical computationally ineffective solution of the convo-

lutional integral (FULL CONV.) were realised only for N = 32. In this case, to perform 5.5 

s simulation required about an hour; thus, in order to save the time, it was decided not to 

repeat these tests for fine meshes. 

When analysing the results of experimental studies by Adamkowski and Lewan-

dowski, one can notice an atypical pressure peak at the first amplitude of all the runs 

(Figure 5) to a value much higher than the predicted value, which can be calculated from 

the Joukowsky Equation (1). These short-duration peaks at the first pressure amplitude 

plateau are most probably the result of undesired mechanical vibrations produced by the 

valve closing drive [44]. They are quickly damped out for all types of supports and are 

present only at the first pressure pulse and do not influence further water hammer 

pressure oscillations. The other reason for these peaks (initial disturbances) can be 

probably linked to the system response due to the excitation from the step-load induced 

by the fast-closing valve [45]. Another source of such peaks can be explained to be the 

result of the type of valve used [46,47]. The use of the globe valve instead of the ball valve 

allows elimination of their presence in experiments. These peaks, however, with the 

correct restraint of the valve and pressure measurement sections, should not occur; 

therefore, the maximum pressure values from these peaks are not taken into account in 

the quantitative analysis. The maximum bulk pressure pulse is taken into consideration, 

as illustrated in Figure 5. At subsequent amplitudes, the observed maximum pressure 

values and the times in which these maximums appeared were taken into account (see 

Figure 6). 
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Figure 5. Pressure overshoot at the first bulk pressure amplitude. 

 

Figure 6. Analysed bulk pressure peaks in the quantitative comparison. 

As an example, the simulation results (N = 102) for Case 02 (Re = 2750) are shown in 

Figure 7. On the other hand, Figure 8 shows the enlargement of the three initial pressure 

amplitude crests (Figure 8a) and valleys (Figure 8b). It can be seen that the LFM slightly 

underestimates the pressure in the initial period of the water hammer event and deli-

cately distorts the valleys of these amplitudes. However, from the fourth amplitude to 

the eighteenth amplitude, there is a reasonable match. The analysed quantitative param-

eters were calculated from the following formulas: 

  

p0

t [s]

p
 [

P
a] p1 p2 p3

pk

t1 t2 tk- 1
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(a) (b) 

  

Figure 7. Selected results of pressures histories for Case 02 (Re = 2750): (a) initial phase; (b) later 

phase. 

(a) (b) 

  

Figure 8. Enlargement of pressure histories of the first three amplitudes for Case 02 (Re = 2750): (a) 

crest, (b) valley. 

𝐸𝑝 =
∑ |

𝑝𝑖𝑠−𝑝𝑖𝑒
𝑝𝑖𝑒

|⋅100%18
𝑖=1

18 ; 𝐸𝑡 =
∑ |

𝑡𝑖𝑠−𝑡𝑖𝑒
𝑡𝑖𝑒

|⋅100%17
𝑖=1

17

. (33) 

Note: In the time analysis, while calculating the Et parameters, the focus was on the 

times of the peaks at successive amplitudes starting from the second (excluding first). It is 

related to the registered fact of “overpressures” and their influence on this parameter on 

the first amplitude; if they were taken into account, the error Et value would be distorted. 

The final results of the Ep errors from all simulation tests are summarised graph-

ically (Figure 9), while the results of the Et errors are summarised in Table 3. 
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(a) (b) 

  

Figure 9. Variation in Ep error coefficient for: (a) standard method (SM); (b) lumped friction 

method (LFM). 

Table 3. Quantitative results of the Et coefficients. 

Case 
Velocity 

[m/s] 

SM—Standard Method LFM—Lumped Friction Method Full 

Conv. N = 32 N = 52 N = 102 N = 202 N = 32 N = 52 N = 102 N = 202 

01 0.066 1.72 1.59 1.49 1.49 1.82 1.66 1.54 1.53 1.48 

02 0.162 0.96 0.82 0.70 0.70 1.02 0.87 0.75 0.75 0.66 

03 0.340 0.92 0.78 0.67 0.66 0.98 0.84 0.73 0.72 0.63 

04 0.467 1.10 0.97 0.86 0.85 1.16 1.02 0.91 0.90 0.86 

05 0.559 1.16 1.03 0.93 0.91 1.22 1.09 0.98 0.97 0.86 

06 0.631 0.94 0.81 0.71 0.69 1.00 0.87 0.77 0.75 0.69 

07 0.705 0.72 0.61 0.50 0.48 0.78 0.65 0.56 0.54 0.48 

08 0.806 1.32 1.21 1.11 1.09 1.39 1.26 1.16 1.14 1.01 

09 0.940 1.03 0.92 0.82 0.80 1.10 0.98 0.88 0.85 0.86 

Table 3 shows that the time consistency Et of the transient pressure waveforms 

simulated in the way proposed in this work was worse than the waveforms simulated 

with the full-convolutional integral. However, it was noticed during the implementation 

of these simulations that this disadvantage representing the simplified simulations can be 

easily minimised. Namely, during the simulation for N = 32, assuming only one param-

eter other than in the case of the waveform simulated with the full convolution (ineffec-

tive), this parameter is a speed of pressure wave propagation c. Assuming the value of ce 

= 1.01 * cfc (one percent higher) during effective simulations, a significant improvement in 

the temporal consistency of the simulated waveforms is obtained (compare exemplary 

results presented in Figures 10 and 11 for Case 09—Re = 15,850), while maintaining very 

good agreement of the modelling of the maximum pressures (Figure 11). This necessity to 

modify the speed of pressure wave propagation can be explained by the use of a simpli-

fied weighting function in the calculations (made up of only two exponential terms). The 

quantitative results obtained from the additional simulations performed, presented in 

Figure 12, also indicate the improvement of the compliance fit. This improvement con-

firms similar findings by Bergant et al. [44]. 
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(a) (b) 

  

Figure 10. Results before correction of pressure wave (Case 09, Re = 15850): (a) initial phase; (b) later 

phase. 

(a) (b) 

  

Figure 11. Simulation results after pressure wave correction (Case 09, Re = 15,850): (a) initial phase; 

(b) later phase. 
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(a) (b) 

  

Figure 12. Variation in error coefficients: (a) Ep; (b) Et. 

Completed extensive simulations have shown that modelling of hydraulic resistance 

during water hammer using the SM does not have to be a very complicated issue. The 

main conclusions of the research carried out are as follows: 

- Use of simplified weighting functions, as shown in this paper, built from only two 

exponential terms, guarantees the results of a high agreement with the experimental 

results; 

- Division of the pipeline along its length into 52 computational reaches guarantees 

the results with the lowest Ep errors; 

- The smallest errors of parameter Et representing the time compliance of the simu-

lated amplitudes were obtained using the largest division, i.e., 202 elements. It 

should be noted, however, that the application of a simple correction in the form of a 

slight increase (decrease) in the value of the pressure wave speed c significantly 

reduces this error. 

Apart from the advantages, there are also disadvantages of the above-examined 

procedure: 

- Necessity to use a constant time step (in a way, it is also a disadvantage of the 

characteristics method); 

- Necessity of one-time analytical calculation of appropriate values of the weighting 

function coefficients (from the formulas presented in the Appendix A); 

- Owing to the filtering of the upper range of the weighting function (from 103∆𝑡̂ to 

∞), this method can only be used for modelling water hammer. Thus, preliminary 

analyses showed that it is not suitable for modelling typically unidirectional flows 

(accelerated and delayed). 

Further work should be aimed at an attempt to completely replace the weighting 

function built from a sum of exponential expressions with another simple function. 

5. Conclusions 

This paper investigates the performance of the computationally effective and accu-

rate convolutional-based unsteady skin friction model (CBM) developed recently by 

Urbanowicz [31]. The weighting function is constructed from just two exponential terms, 

although then the coefficients 𝑚𝑖 and 𝑛𝑖 need to be calculated from the formulas given 

in the Appendix A. These coefficients are a function of the assumed dimensionless time 

step 𝛥𝑡̂ in the numerical method. The simplification of the weighting function in con-

junction with the corrected effective method for solving the convolution integral enables 

the determination of resistances from the final formulas of mathematical complexity 
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similar to the IAB model. Contrary to the IAB models, in the analysed CBM approach, 

there is no need to calibrate the parameters describing the wall shear stress. A further 

possibility to simplify the modelling of unsteady resistance may be to use a model that 

lumps unsteady friction at the boundary nodes. The simulations carried out with the use 

of Johnston’s model showed that the analysed transient waveforms were simulated with 

sufficient compliance with this model, which also used the two-term weighting function. 

Thus, we do hope that the validated simplifications of the CBM model implemented in 

this paper will find wider practical application, for example, in commercial programs for 

modelling transient flows in hydraulic pipe networks. 
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Nomenclature 

Ai, Bi and Ci unsteady friction coefficients (-) 

c pressure wave speed (m/s) 

D pipe internal diameter (m) 

Ep and Et pressure and time compliance parameters (%) 

e pipe-wall thickness (m) 

f transient friction factor (-) 

fq Darcy–Weisbach friction factor (-) 

g acceleration due to gravity (m/s2) 

j imaginary unit (-) 

k empirical unsteady friction coefficient of the IAB model (-) 

L pipe length (m) 

mi and ni frictional weighting function coefficients (-) 

N number of computational reaches (-) 

p pressure (Pa) 

pR reservoir pressure (Pa) 

R pipe internal radius (m) 

Re0 initial Reynolds number (-) 

s Laplace parameter (1/s) 

T temperature in Celsius degrees (°C) 

t time (s) 

u dummy variable (s) 

Wh water hammer number (-) 

w weighting function of unsteady friction (-) 

v average flow velocity (m/s) 

v0 initial liquid velocity (m/s) 

x space coordinate (m) 

yi time dependent historical velocity effect (m/s) 

Δt numerical time step (s) 

Δ𝒕̂ dimensionless time step (-) 

Δx numerical spatial step (m) 
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Δv velocity change at the valve (m/s) 

ε pipe-wall roughness (m) 

η correction factor of unsteady friction (-) 

κn nth zeros of the Bessel function of type J2 (-) 

μ dynamic viscosity (Pa·s) 
𝝁′ second viscosity coefficient (Pa·s) 

ν kinematic viscosity of liquid (m2/s) 

ρ liquid density (kg/m3) 

τ wall shear stress (Pa) 

Acronyms  

ABS acrylonitrile butadiene styrene 

CBM convolution-based model 

CFM Courant–Friedrichs–Lewy condition 

CORR corrected 

EXP experimental 

FULL CONV ineffective solution of the convolutional integral 

HDPE high-density polyethylene 

IAB instantaneous acceleration-based model 

LFM lumped friction method 

MOC method of characteristics 

PVC polyvinyl chloride 

SM standard method 

Appendix A—Estimation of the Weighting Function Coefficients 

The estimation of the weighting function coefficients is performed at the initial stage 

of transient simulations (set-up of the initial conditions) by the following procedure: 

I. First calculate the constant time step ∆t, next 

𝛥𝑡̂ = 𝛥𝑡 ⋅
𝜈

𝑅2
=
𝑊ℎ

𝑁
 , (A1) 

where: 𝑊ℎ =
𝜈𝐿

𝑐𝑅2
 is a water hammer number. 

II. When a dimensionless time step is known, calculate efficient weighting function 

coefficients m1, m2 and n1, n2 (for a simplified two-term function): 

a) m1 calculation when 𝛥𝑡̂ ≤ 10−4: 

𝑚1 = 0.03234 ⋅ Δ𝑡̂
−0.5 + 48.35 ⋅ Δ𝑡̂0.5437 + 9.717 ⋅ Δ𝑡̂3.85 − 1.318, (A2) 

m1 calculation when 𝛥𝑡̂ > 10−4: 

𝑚1 = 0.148 ⋅ 𝑒𝑥𝑝(−𝛥𝑡̂ ⋅ 188.8) + 0.3227 ⋅ 𝑒𝑥𝑝(−𝛥𝑡̂ ⋅ 1316) + 0.8039 ⋅ 𝑒𝑥𝑝(−𝛥𝑡̂ ⋅ 5728) + 2.458 ⋅ 𝑒𝑥𝑝(−𝛥𝑡̂ ⋅ 19,270) + 1, (A3) 

b) m2 calculation when 𝛥𝑡̂ ≤ 10−4: 

𝑚2 = 0.1963 ⋅ Δ𝑡̂−0.5 + 2.88 ⋅ Δ𝑡̂3.575 − 0.2661 ⋅ Δ𝑡̂5.276 − 0.2351, (A4) 

m2 calculation when 𝛥𝑡̂ > 10−4: 

𝑚2 = 2.214 ⋅ 𝑒𝑥𝑝(−𝛥𝑡̂ ⋅ 62.02) + 4.155 ⋅ 𝑒𝑥𝑝(−𝛥𝑡̂ ⋅ 386.6) + 7.929 ⋅ 𝑒𝑥𝑝(−𝛥𝑡̂ ⋅ 2191) + 20.485 ⋅ 𝑒𝑥𝑝(−𝛥𝑡̂ ⋅ 12,570) + 1, (A5) 

c) n1 calculation when 𝛥𝑡̂ ≤ 10−5: 

𝑛1 = 0.001476 ⋅ Δ𝑡̂−1 + 0.1203 ⋅ Δ𝑡̂−0.5 + 526.7 ⋅ Δ𝑡̂0.5567 + 6.091, (A6) 

n1 calculation when 𝛥𝑡̂ > 10−5: 

𝑛1 = 9.317 ⋅ 𝑒𝑥𝑝(−𝛥𝑡̂ ⋅ 4459) + 87 ⋅ 𝑒𝑥𝑝(−𝛥𝑡̂ ⋅ 29,320) + 188.1 ⋅ 𝑒𝑥𝑝(−𝛥𝑡̂ ⋅ 104,300) + 477.43 ⋅ 𝑒𝑥𝑝(−𝛥𝑡̂ ⋅ 290,500) +

26.3744, 
(A7) 

d) n2 calculation when 𝛥𝑡̂ ≤ 10−4: 
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𝑛2 = 0.09021 ⋅ Δ𝑡̂−1 + 0.382 ⋅ Δ𝑡̂−0.4592 + 218.1 ⋅ Δ𝑡̂0.2615, (A8) 

n2 calculation when 𝛥𝑡̂ > 10−4: 

𝑛2 = 56.56 ⋅ 𝑒𝑥𝑝(−𝛥𝑡̂ ⋅ 79.71) + 136.5 ⋅ 𝑒𝑥𝑝(−𝛥𝑡̂ ⋅ 489.6) + 396.7 ⋅ 𝑒𝑥𝑝(−𝛥𝑡̂ ⋅ 2880) + 1903.3 ⋅ 𝑒𝑥𝑝(−𝛥𝑡̂ ⋅ 15,760) + 70.8493. (A9) 

III. Calculate correction coefficient η: 

a) For laminar flow when 𝛥𝑡̂ ≤ 0.02: 

𝜂 =
[2⋅𝑚1𝑧⋅𝛥𝑡̂

0.5+𝑚2𝑧⋅𝛥𝑡̂
1+(

2

3
)⋅𝑚3𝑧⋅𝛥𝑡̂

1.5+(
1

2
)⋅𝑚4𝑧⋅𝛥𝑡̂

2+(
2

5
)⋅𝑚5𝑧⋅𝛥𝑡̂

2.5+(
1

3
)⋅𝑚6𝑧⋅𝛥𝑡̂

3]

∑
𝑚𝑖
𝑛𝑖

2
𝑖=1 ⋅(1−𝑒−𝑛𝑖⋅𝛥𝑡̂)

, (A10) 

where: m1z = 0.282095; m2z = −1.25; m3z = 1.057855; m4z = 0.9375; m5z = 0.396696; and m6z = 

−0.351563. 

For laminar flow when 𝛥𝑡̂ > 0.02: 

𝜂 =
𝐶1+𝐶2

∑
𝑚𝑖
𝑛𝑖

2
𝑖=1 ⋅(1−𝑒−𝑛𝑖⋅𝛥𝑡̂)

, (A11) 

where: 

𝐶1 = 2 ⋅ 𝑚1𝑧 ⋅ 0.02
0.5 +𝑚2𝑧 ⋅ 0.02

1 + (
2

3
) ⋅ 𝑚3𝑧 ⋅ 0.02

1.5 + (
1

2
) ⋅ 𝑚4𝑧 ⋅ 0.02

2 + (
2

5
) ⋅ 𝑚5𝑧 ⋅ 0.02

2.5 + (
1

3
) ⋅ 𝑚6𝑧 ⋅ 0.02

3, (A12) 

𝐶2 = ∑
(1−𝑒−𝑛𝑖𝑧⋅𝛥𝑡̂)

𝑛𝑖𝑧

5
𝑖=1 − ∑

(1−𝑒−𝑛𝑖𝑧⋅0.02)

𝑛𝑖𝑧

5
𝑖=1 , (A13) 

and: n1z = 26.3744; n2z = 70.8493; n3z = 135.0198; n4z = 218.9216; and n5z = 322.5544; 

b) For turbulent flow (Re > 2320): 

𝜂 =
𝐴∗⋅√

𝜋

𝐵∗
⋅𝑒𝑟𝑓(√𝛥𝑡̂⋅𝐵∗)

∑
𝑚𝑖
𝑛𝑖𝑠

2
𝑖=1 ⋅(1−𝑒−𝑛𝑖𝑠⋅𝛥𝑡̂)

, (A14) 

where: 

𝐴∗ = √
1

4𝜋
; 𝐵∗ =

𝑅𝑒𝜅

12.86
; 𝜅 = 𝑙𝑜𝑔10(15.29/𝑅𝑒

0.0567), (A15) 

nis is scaled coefficient using a universal scaling procedure: 

𝑛1𝑠 = 𝑛1 − 171.6545 + 𝐵
∗; 𝑛2𝑠 = 𝑛2 − 171.6545 + 𝐵

∗. (A16) 

IV. Calculate the constants in the efficient solution of convolution integral 

𝐴1 = 𝑒
−𝑛1⋅𝛥𝑡̂; 𝐵1 =

𝑚1

𝛥𝑡̂⋅𝑛1
⋅ [1 − 𝐴1]; 𝐶1 = 𝐴1 ⋅ 𝐵1, (A17) 

𝐴2 = 𝑒
−𝑛2⋅𝛥𝑡̂; 𝐵2 =

𝑚2

𝛥𝑡̂ ⋅ 𝑛2
⋅ [1 − 𝐴2]; 𝐶2 = 𝐴2 ⋅ 𝐵2  . (A18) 

Finally, the temporary unsteady friction factor during simulations is calculated by 

the following equation: 

𝑓(𝑡+𝛥𝑡) = 𝑓𝑞,(𝑡+𝛥𝑡) +
32𝜈

𝐷|𝑣(𝑡+𝛥𝑡)|𝑣(𝑡+𝛥𝑡)
⋅∑[𝑦𝑖(𝑡) ⋅ 𝐴𝑖 + 𝜂 ⋅ 𝐵𝑖 ⋅ (𝑣(𝑡+𝛥𝑡) − 𝑣(𝑡)) + (1 − 𝜂) ⋅ 𝐶𝑖 ⋅ (𝑣(𝑡) − 𝑣(𝑡−𝛥𝑡))]⏟                                          

𝑦𝑖(𝑡+𝛥𝑡)

2

𝑖=1

 (A19) 

Note that: 

• when calculated velocity is in range −10−5 < v < 10−5, assume v = −10−5 if it has a minus sign and 

v = 10−5 when it has a positive sign (to avoid division by zero); 

• select optimal number of grid points through the pipe axis; it should generally not exceed N = 

52; 

• set yi(t) = 0 as an initial condition (for steady flow). 
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