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prof. dr. Arnas Kačeniauskas (Vilniaus Gedimino technikos universitetas,
technologijos mokslai, informatikos inžinerija – T 007).

Disertacija ginama viešame Gynimo tarybos posėdyje 2022 m. rugsėjo 12
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Tyrimų sritis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Tyrimo objektas, tikslas ir uždaviniai . . . . . . . . . . . . . . . . . 124
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Notation

argYmin - minimum admittance (Y ) phase value
f - frequency of alternating electric current
fmin - frequency at the minimum admittance phase (argYmin) value
N - defect count
Nde f - defect density
rde f - defect radius
R2 - coefficient of determination
ρsub - specific resistance of the submembrane layer
Y - admittance

Abbreviations

AC - alternating current
AFM - atomic force microscopy
CHT - circular Hough transform
CNN - convolutional neural network
EEC - equivalent electrical circuit
EIS - electrochemical impedance spectroscopy
FEA - finite element analysis
KNN - K-nearest neighbors
MAE - mean absolute error
MAPE - mean absolute percentage error
PCR - principal component regression
PDE - partial differential equation
PLS - partial least squares
PFT - pore-forming toxin
tBLM - tethered bilayer lipid membrane
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Introduction

Biological membranes are a major object of research in various life sciences
due to their key role in many vital physiological processes taking place in
the cells of living organisms. Due to their complex nature and difficulties
associated with studying them in their natural environment, a variety of artifi-
cial membrane models have been developed over the last decades [78]. Such
biomimetic membranes closely resemble the main workings of their natural
counterparts while enabling their extensive study in a controlled laboratory
environment by various experimental techniques. Tethered bilayer lipid mem-
branes (tBLMs, Figure 1) is one particular type of such artificial membrane,
notable in their versatility and stability under experimental conditions [88].
Applications of tBLMs include studies of membrane-protein or membrane-
peptide interactions [27, 46, 68], biosensor development [9, 41, 91, 87], pho-
tocurrent generation [39] and others.

Figure 1: Schematic of the structure of a tethered bilayer lipid membrane [63].

One of the key experimental techniques used in tBLM research is the elec-
trochemical impedance spectroscopy (EIS) [45]. This method is based on
the measurement of the electrical response (impedance) to alternating current
(AC) applied over a certain frequency range to the system under test. EIS has
been applied to assess the tBLM membrane damage caused by interaction with
pore-forming toxins (PFT), contributing to the research of tBLM-based biosen-
sors [63, 38]. Although EIS can reveal basic physical properties of the exam-
ined object, in-depth interpretation of the spectra is only possible by modeling.
A common approach is the equivalent electrical circuit (EEC) model, which
involves matching the experimentally obtained EIS spectra with the ones ob-
tained from electrical circuits consisting of simple elements (resistors, capaci-
tors). Despite being extensively used in lipid membrane studies [27, 8] such a
model proved to be insufficient for explaining certain parameters of more com-
plex tBLM systems, such as the properties of membrane defects. One notable
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work in alleviating this problem was the development of an analytical model
for tBLMs with a special case of regularly-distributed defects [45]. Numerical
modeling approaches for EIS such as finite element analysis (FEA) [49] have
also been recently applied in tBLM research and related fields [37, 32, 85, 95].

Another crucial tool in studying tBLMs is atomic force microscopy (AFM).
This is a nanometer-resolution non-optical imaging technique that is based on
measuring the interaction between the sample and the microscope’s mechani-
cal probe [36]. In contrast to EIS, which is used to determine the overall phys-
ical properties of a tBLM sample (possibly spanning millimeters in surface
area), AFM is typically used to probe a micrometer-size tBLM surface patch
acquiring a localized but very detailed view. This can reveal various surface
features, such as membrane defects caused by interaction with PFTs or other
phenomena. AFM is sometimes used in conjunction with EIS in analyzing the
same tBLM samples [71, 75].

Despite the well-established experimental procedures and sophisticated
measurement equipment used in studying tBLMs, methods for analyzing and
intepreting experimental EIS or AFM data are still limited. EIS spectra can-
not directly reveal important membrane properties, such as density or size of
membrane defects - although these properties can be estimated from AFM im-
age data. However, analyzing AFM images of tBLMs often involves mostly
manual work of annotating and quantifying objects of interest and using only
basic image processing tools [68, 84].

Research objectives

The main goal of the research is to develop a methodology for modeling the
electrochemical response of three-dimensional tBLM membranes with arbi-
trarily distributed defects and interpreting EIS data by using machine learning
techniques in order to estimate qualitative and quantitative properties of the
membrane damage. The key objectives in achieving this are the following:

1. Develop a three-dimensional numerical model capable of simulating EIS
spectra of tBLM membrane with an arbitrary spatial defect distribution.

2. Create predictive models for estimating quantitative tBLM membrane
characteristics from their EIS spectra by using machine learning tech-
niques.
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3. Create defect distribution models suitable for producing realistic com-
puter-generated defect sets, define metrics for their comparison and in-
vestigate model effects on simulated EIS data.

4. Develop methods for automated defect detection in AFM image data and
their accuracy evaluation, and examine the performance impact on the
modeled EIS spectra.

5. Validate proposed methods and synthetically-generated modeling data
against experimentally-obtained EIS and AFM measurement data.

Research methods and tools

The three-dimensional tBLM membrane model was implemented using the
finite element method (FEM) and COMSOL Multiphysics FEM package (ver-
sions 5.3 - 5.4), and a special model preparation tool (using COMSOL API)
was implemented in Java. Most scripts used for data analysis were imple-
mented in Python (version 3.7), using core scientific libraries (Numpy, SciPy,
Pandas, Matplotlib), machine learning libraries (scikit-learn, Tensorflow) and
Jupyter Notebook environment. Calculations were performed in several differ-
ent hardware environments:

• Workstation 1 (Intel Core i5-8600K 3.60 GHz CPU (6 cores), 64 GB of
RAM, Ubuntu Linux 18.04 OS).

• Workstation 2 (4 x Intel Xeon Gold 6126 2.60GHz CPU (4 x 12 cores),
377 GB RAM, CentOS Linux 7).

• Thinkpad T470s notebook (Intel Core i5-7300 CPU (4 cores), 20 GB
RAM, Debian Linux).

Scientific novelty

The presented methodology is novel in its capabilities of analyzing a broad
range of tBLM membrane models having different properties and interpreting
their electrochemical response to estimate various qualitative and quantitative
characteristics of the membranes. It can be summarized as follows:

1. A three-dimensional model of a tBLM membrane was implemented us-
ing the finite element method which allows for modelling electrochem-
ical impedance response with any given defect distribution, generated
independently.
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2. Novel defect clustering models were developed and demonstrated to be
capable of generating realistic defect sets at varying clustering levels. In
addition, metrics for clustering effect estimation from arbitrary defect
sets were defined.

3. Algorithms for automated defect detection in AFM images were devel-
oped and the relationship between their accuracy and correspondingly
modeled EIS spectra were investigated for the first time.

Practical significance of the results

The developed methodology of EIS data analysis can be applied for fast quan-
titative membrane damage assessment in tBLM-based impedance biosensors
or other similar systems. It also enables the estimation of certain membrane
properties (such as the specific resistance of submembrane reservoir or the
clustering of membrane defects) which cannot be measured directly by using
EIS or AFM techniques. Methods of automated defect detection in AFM im-
ages can be beneficial to researchers working in the domain area by making
the process of AFM data analysis faster and more precise.

Statements to be defended

1. Quantitative properties of phospholipid membranes with defects can be
estimated from their electrochemical impedance spectra by using finite
element modeling and machine learning methods.

2. Defect clustering phenomena in phospholipid membranes can be de-
scribed with computational models which enable the quantification of
the clustering effect from atomic force microscopy images or electro-
chemical impedance spectra.

3. Computer vision techniques can be applied to automatically detect mem-
brane defects in atomic force microscopy images at the accuracy levels
sufficient for modeling purposes.

Approbation

The research results have been published in peer-reviewed periodical scientific
journals by three publications [A1, A2, A5]. The thesis author’s contributions
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to each listed publication include numerical model development and imple-
mentation, conducting computational experiments, data validation and analy-
sis, writing parts of manuscripts and LaTeX text formatting. In addition, two
articles have been published in international conference proceedings [A4, A3].

The author has presented the research results in the following scientific
conferences:

1. DAMSS 2018 (Druskininkai, Lithuania). Finite elements modeling of
electrochemical impedance spectra of defected phospholipid membranes
(poster presentation). Data Analysis Methods for Software Systems,
10th international workshop. November 29 - December 1, 2018.

2. JMK 2019 (Vilnius, Lithuania). Baigtinių elementų metodo taikymas
modeliuojant defektuotų fosfolipidinių membranų elektrocheminio im-
pedanso spektrus (poster presentation). 9th Conference for Lithuanian
Junior Researchers, Interdisciplinary Applications of Physical and Tech-
nological Sciences. March 12, 2019.

3. NUMTA 2019 (Crotone, Italy). Computer modeling of electrochemical
impedance spectra for defected phospholipid membranes: finite element
analysis (oral presentation). Numerical Computations: Theory and Al-
gorithms, 3rd international conference. June 15 - June 20, 2019.

4. ICCSA 2020 (online). Computational models of defect clustering for
tethered bilayer membranes (oral presentation). International Confer-
ence on Computational Science and its Applications, 20th international
conference. July 1 - July 4, 2020.

Structure of the thesis

The thesis consists of three main chapters. Chapter 1 presents the three-
dimensional tBLM model, capable of simulating EIS response of a membrane
with an arbitrary defect distribution. Finite element analysis is applied for var-
ious modeling cases, involving different membrane defect sizes, densities and
distribution patterns. Membrane parameter estimation is performed by apply-
ing machine learning techniques both for modeled and experimental EIS and
AFM data. Chapter 2 describes the membrane defect clustering phenomena
and presents several algorithms applicable in generating realistic clustered de-
fect sets. Clustering effect on modeled EIS spectra and the methods for its
quantification are investigated, with the presented approach also being applied
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for experimental AFM data. Chapter 3 covers the problem of automated defect
detection in AFM images and presents several algorithms for this task, with the
impact of defect detection accuracy on modeled EIS spectra being analyzed as
well.
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1. Electrochemical response modeling of damaged phospholipid
membranes

1.1. Atomic force microscopy

Atomic force microscopy (AFM) is an imaging technique based on the mea-
surement of the mechanical interaction between the instrument’s probe and the
sample surface. AFM microscope typically consists (Figure 2) of a cantilever
with a sharp tip, feedback control of the detection system for measuring the
cantilever’s bending, sample movement system and the visualization system
of the acquired data [83].

Sample
surface Cantilever and tip

Laser Photo 
detector

Beam

Figure 2: Schematic illustration of the working principle of AFM microscope.

The imaging process involves moving the cantilever with the tip over the
sample and measuring its displacement which is caused by a repulsive or at-
tractive force acting between the tip and the surface. The tip can interact with
the sample in different operation modes, such as the contact mode (the tip is
constantly in contact with the surface) or the oscillation mode (the cantilever
with the tip oscillates with a certain frequency and amplitude). Collecting and
processing the data allows the topography of the sample surface to be recon-
structed, as well as additional information depending on the operation mode
(i.e. amplitude and phase - Fig. 3).
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Figure 3: Example of tBLM surface images obtained by AFM. Left: height
data; center: amplitude data; right: phase data.

AFM is capable of obtaining much higher image resolution compared to
optical microscopy, which is limited by the wavelength of light being used. It
also has the advantage of not requiring the sample to be conductive, in contrast
to another powerful microscopy technique, the scanning tunneling microscopy
(STM). Such properties make AFM a useful tool in life sciences and the study
of cells, proteins, viruses and other biological objects [36, 33].

1.2. Electrochemical impedance spectroscopy

Electrochemical impedance spectroscopy (EIS) is a popular technique for char-
acterizing electrochemical systems in terms of their conductive and dielectric
properties. The basic working principle of EIS is the application of AC (al-
ternating current) voltage on the system and measuring the current flowing
through. This allows determining the impedance of the system, a physical
quantity describing the ability to resist the flow of electric current. By measur-
ing impedance at different AC frequencies, one can obtain a spectrum reflect-
ing the physical properties of the object under investigation [30].

AC voltage with angular frequency ω and amplitude V0 applied to the sys-
tem can be expressed as a function of time t:

V (t) =V0 sin(ωt). (1)

The measured current has the same frequency but can differ in amplitude
I0 and phase φ :

I(t) = I0 sin(ωt +φ). (2)

Following Ohm’s law, the impedance Z is then defined as:

Z =
V (t)
I(t)

=
V0 sin(ωt)

I0 sin(ωt +φ)
= Z0

sin(ωt)
sin(ωt +φ)

. (3)
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Impedance can be expressed as a complex number with magnitude Z0 and
argument φ . Another physical quantity commonly used in place of impedance
is the admittance Y - a reciprocal term indicating how easily the circuit lets the
electric current flow through:

Y =
1
Z
. (4)

The admittance or impedance of an EIS measurement is often visualized
in the form of Bode plots (Fig. 4), which show the frequency response of the
system:

Figure 4: Example of Bode plots of modeled EIS data. Left: admittance mag-
nitude; Right: admittance phase.

1.3. Three-dimensional membrane model

1.3.1. Model definition

The purpose of the three-dimensional membrane model presented in this thesis
is to simulate the flow of alternating current through a membrane cell contain-
ing defects and determine its electrochemical response as a function of AC
frequency. The model consists of four stacked layers, representing (in top-
down order) the solution, membrane, submembrane reservoir and Helmholtz
layers, with the addition of an arbitrary number of membrane defects (Figure
5, left). The solution and submembrane layers together with membrane defects
are electrically conductive, while the membrane and Helmholtz layers are not
and have dielectric properties. A similar structure of a tBLM membrane model
was described earlier [37].
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Figure 5: Schematic representation of the three-dimensional membrane model.
Left: cross-section of the model within the vicinity of a defect. Right: hexag-
onal modeling domain.

The modeling domain consisting of the listed layers is shaped like a hexag-
onal prism (Figure 5, right) with lhex side length. The height of the prism hhex

is the sum of the heights of Helmholtz (dH), submembrane (dsub), membrane
(dm) and solution (dsol) layers:

hhex = dH +dsub +dm +dsol. (5)

The area of the hexagon is defined as:

Shex =
3
√

3(lhex)
2

2
. (6)

The motivation for the choice of this specific model geometry relates to
the fact that any flat macroscopic 2D area can be filled by the microscopic
hexagons with no voids. A hexagon also allows for the densest possible pack-
ing of equally-sized circles [35] which is advantageous for the comparison
of this model and the radial symmetry approach [45] where each membrane
defect is associated with a certain occupancy radius. Despite these prefer-
ences, the model geometry can also be derived from a different shape, such as
a square, without changes in any other properties of the model.

The given instance of the model may contain any number N of arbitrarily
positioned membrane defects. Each defect is represented as a cylinder with
radius rde f intersecting the membrane and submembrane layers and having a
height of dm +dsub. Defect density Nde f is expressed as the number of defects
per square micrometer (assuming the same units of Shex):

Nde f =
N

Shex
. (7)
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The flow of electric current through the system is governed by Laplace’s
equation. This is an elliptic second-order partial differential equation applica-
ble to steady-state (independent of time) problems and is commonly used in
many areas of physics, such as electrostatics, fluid dynamics, heat conduction
and others [40]. Its application in computing impedance of various electro-
chemical systems has been described in many works [32, 14, 31, 7, 42].

In the current modeling case the solution of this equation is the complex
voltage Φ expressed as a function over the 3D modeling domain:

∇ · (σ̃(x,y,z)∇Φ(x,y,z)) = 0. (8)

Here σ̃ denotes the complex conductivity at any point of the system:

σ̃(x,y,z) = σ(x,y,z)+ j ωε(x,y,z). (9)

The real and imaginary parts (imaginary unit denoted by j) correspond
to the conductivity and permittivity of different parts of the system. Specific
conductivity σ is applicable for conductive layers of the model: the solution,
submembrane layers and the membrane defects. In contrast, permittivity ε

(dielectric constant) is defined for the membrane and Helmholtz layers. ω =

2π f denotes the angular AC frequency and f is the frequency in hertz (Hz).
Specific resistance ρ can also be used to describe the conductive layers and is
defined as the reciprocal of specific conductivity:

ρ =
1
σ
. (10)

Electric current flow through the system is facilitated by the application of
1 V electric potential at the top of the modeling domain and 0 V at the bottom.
This defines the following Dirichlet boundary conditions of the model:

Φ(x,y,hhex) = 1, (11)

Φ(x,y,0) = 0. (12)

Each side wall of the hexagonal prism is assumed to be electrically insu-
lating. This allows us to define the Neumann boundary conditions, where n
denotes the normal vector of a side wall:

n ·∇Φ(x,y,z) = 0. (13)

Once the equation (8) is solved for Φ, the current density J can be calcu-
lated at any point of the modeling domain, following Ohm’s law [40]:
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J(x,y,z) =−σ̃(x,y,z)∇Φ(x,y,z). (14)

The final step is computing the admittance Y at the top of the modeling
domain, where n is the normal vector of the surface:

Y =

∫∫
(x,y)∈Γhex

−n · J(x,y,hhex)dxdy

Shex
× 1

Φ(x,y,hhex)
. (15)

As the admittance is evaluated for a single AC frequency value selected in
(9), obtaining the full EIS spectrum requires performing the described calcu-
lations with a certain range of discrete frequency values. All modeling cases
presented in this thesis were computed with frequency values spanning a range
from 10−2 Hz to 106 Hz on a logarithmic scale with 10 points per decade, re-
sulting in a total of 81 values.

Table 1: Parameters employed in modeling.

Description Notation Value Dimension

Thickness of the Helmholtz layer dH 6.6 ·10−8 cm
Thickness of the submembrane reservoir dsub 1.8 ·10−7 cm
Thickness of the membrane hydrophobic
core

dm 3 ·10−7 cm

Thickness of the solution dsol 50 ·10−7 cm
Height of the model hexagonal prism hhex 6.46 ·10−7 cm
Side length of the base of the model hexag-
onal prism

lhex variable cm

Relative dielectric constant of the
Helmholtz layer

εH 4.0975 dimensionless

Relative dielectric constant of the phos-
pholipid membrane

εm 2.2 dimensionless

Specific conductance of the submembrane
reservoir

σsub 1×10−5 Scm−1

Specific conductance of the water-filled
channel∗

σde f 1×10−2 Scm−1

Specific conductance of the solution σsol 1×10−2 Scm−1

Defect radius rde f variable cm
Defect count N variable dimensionless
Defect density Nde f variable cm−2

∗ it is assumed that the water-filled channel extends from the top of the membrane to the

Helmholtz layer.
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Figure 6 shows an example of a modeled EIS spectrum (admittance phase
argY dependency on AC frequency f ). Admittance Y is a complex quantity,
thus its argument (phase) argY is expressed in degrees (deg), while the fre-
quency is measured in hertz (Hz). Qualitatively similar curves have been ob-
served both in experimental measurements and modeled data in earlier stud-
ies [71, 46]. A notable property of such EIS spectra is the presence of a single
minimum point at mid-range frequencies. Previous research showed that the
coordinates (16,17) of this particular point can be indicative of certain quan-
titative membrane parameters, such as the defect density or their size [45].
However, it is assumed in this thesis that such property may not necessarily
apply to all modeling cases and some variations in the shape of EIS spectrum
(i.e. more than one minimum point) might be encountered as well.

fmin – frequency f at which argY ( f ) is lowest, (16)

argYmin – admittance phase value at fmin. (17)

Figure 6: Bode plot of modeled EIS spectrum showing admittance phase de-
pendency on the AC frequency. The annotated black dot indicates the mini-
mum point of the curve. The admittance phase argY is expressed in degrees
(deg), frequency f units are hertz (Hz).

A special case of the membrane model with zero defects could also be
considered. Such a case results in a distinct EIS spectrum that does not have
a distinguishable minimum qualitatively similar to the model cases containing
defects. Figure 7 shows an example of such a spectrum which has constant
argY values in the major part of the frequency range and indicates a decrease
only in the higher frequencies ( f > 104). Due to such properties, modeling
cases with N = 0 are not further considered in this thesis.
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Figure 7: Example of EIS spectrum of a membrane model containing no de-
fects.

1.3.2. Finite element analysis

Partial differential equations (PDE) describing various real-world phenomena
are often impossible to be solved analytically, which requires the use of nu-
merical techniques to find approximate solutions. The most widely used types
of such numerical methods are the finite difference method (FDM), finite ele-
ment method (FEM) and finite volume method (FVM) [50]. FDM is the oldest
and relatively simplest approach which approximates the derivative terms of
PDEs by finite differences, expressed over the problem domain discretized by
a regularly-spaced grid [12]. This converts the problem defined by PDE into a
system of linear equations, which can be solved efficiently by various linear al-
gebra techniques to obtain an approximate solution with the desired accuracy.
However, FDM is difficult to use with curved, irregular or otherwise com-
plex geometries and is preferable for problem areas involving rectangular or
box-shaped geometries, such as meteorological, seismological, astrophysical
simulations and many others [80, 66].

Due to the non-trivial geometry of the described 3D membrane model,
consisting of several layers with different physical properties and containing
cylinder-shaped defects, FEM has been chosen over FDM to perform simula-
tions. FEM [49] is based on a different approach of discretization where the
solution is approximated as the sum of elementary (basis) functions defined
over small discrete parts of the domain (elements). Originally developed for
simulations in structural mechanics, FEM has since evolved into a highly ver-
satile numerical technique applicable to various problems in solid and fluid
mechanics, electromagnetics and other areas [48]. Solving this problem with
FEM generally involves the following steps:

1. Weak formulation of the problem. The original (strong) PDE form is
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converted to the weak form, relaxing continuity requirements for the so-
lution. Such a concept is illustrated by the following classic example of
Poisson’s equation (generalization of Laplace’s equation) with Dirichlet
boundary conditions:

−∆u = f in Ω, u = 0 on δΩ.

Weak formulation is derived by integrating over domain Ω, multiplying
both sides of the equation by a test function v and integrating by parts:∫

Ω

∇u ·∇v dΩ =
∫

Ω

f · v dΩ.

2. Selection of the shape functions. The solution ũ(x) is approximated by
a linear combination of the basis (shape) functions φi:

ũ(x) =
N

∑
i=0

uiφi(x).

Shape functions interpolate the solution locally over each element. An
important characteristic is that a single function φi is equal to 1 at i-th
node and 0 at all other nodes (where nodes are points of intersection
between discrete elements). Linear or low-order polynomial functions
are usually used as shape functions.

3. Discretization of the modeling domain (mesh). The domain Ω is sub-
divided into non-overlapping elements of an arbitrary size, intersecting
at N nodal points (nodes). In the case of 2D problems triangular or
quadrilateral elements are commonly used, while 3D domains can be
discretized by tetrahedra, hexahedra, prisms or pyramids.

4. Assembling the stiffness matrix. The contributions of all basis functions
to the k-th element are defined by a local stiffness matrix:

A(k)
i j =

∫
Ωk

∇φi ·∇φ j dx.

The global stiffness matrix is constructed by summing all local stiffness
matrices, leading to a linear system:

Au = f .

Matrix A is a sparse, symmetric and positive-definite N ×N square ma-
trix.
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5. Solving the system of linear equations. The assembled linear system is
solved either by a direct or iterative method (solver) [51]. Direct solvers
are robust and guaranteed to find the exact solution in a finite amount
of calculations, although they typically require lots of computing re-
sources and scale poorly as the size of the linear system increases. It-
erative solvers gradually converge towards an approximate solution, are
less stable and their performance for a specific problem largely depends
on their configuration (such as convergence tolerance or the choice of
preconditioner). However, they tend to require much less memory, mak-
ing them applicable to large-scale problems, for which direct methods
would be impractical. Most FEM software packages include efficient,
parallelized implementations of both types of solvers [17, 5].

1.3.3. Defect distribution models

As the presented three-dimensional membrane model is flexible in its ability
to represent an arbitrary number of membrane defects distributed in any way,
it is necessary to define algorithms for generating such defect sets so that they
would exhibit some desired properties. Given the defect count N and the defect
density Nde f , such an algorithm would generate a list of defects where each
instance is defined by its center coordinates (X and Y) in the modeling plane
and its radius. Although in principle both coordinates and radii can vary across
the defect set, all defect distribution models in this thesis are defined with a
simplifying assumption of constant defect radius rde f , which is provided as a
parameter for the defect set generation algorithm.

The regular defect distribution model is the first one introduced in this
thesis. This model defines a pattern where each defect has a constant occu-
pancy radius and all defects are placed in the modeling domain with equal
distances between each other, resembling a regular grid. From the computa-
tional point of view this can be considered a circle packing problem [29] with
the aim of placing N equal-sized circles into a hexagonal container. Such a
model closely resembles the modeling approach presented in the earlier study,
where the EIS response of a tBLM membrane is computed analytically, using
Hankel functions [45]. The algorithm for generating a defect set following the
regular model is implemented with the limitation that the N value is chosen
specifically to result in a maximum fill of the hexagonal area. If k denotes the
number of defects along a single hexagon side, N is then derived as:
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N = 3k(k+1)+1. (18)

Figure 8 (left panel) shows an example of a defect set generated following
this approach.

Figure 8: Examples of different spatial defect distributions on the modeled
hexagonal membrane surface (N = 127). Left: regular defect distribution.
Right: random defect distribution.

Although the regular defect distribution model enables a direct comparison
of the FEA-based approach described in subsection 1.3.1 against the analyti-
cal solution [45], experimental evidence shows that such defect patterns are
unlikely to be observed in real tBLM membranes [37, 71]. The next model,
introduced as a more realistic yet simple alternative to the aforementioned reg-
ular model is the random defect distribution model. In this approach, the X and
Y coordinates of each defect are sampled randomly from the uniform distribu-
tion, in which the low and high bounds match the dimensions of the modeling
domain (which depends on the defect count N and the defect density Nde f se-
lected for the model). In the case of the hexagonal model domain shape, the
sampled coordinates are also checked if they are inside the domain, otherwise
the defect instance is discarded. Based on the assumption that there is no inter-
action between individual defects in the membrane, this procedure is repeated
until the required number of defects inside the modeling domain are collected.
An instance of the random defect distribution model is shown in Figure 8 (right
panel).
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1.3.4. Membrane parameter properties

The parameters Nde f , rde f and ρsub (the reciprocal of specific conductance of
the submembrane layer σsub) are the most important in quantifying the mem-
brane damage and directly influence the EIS response of the system [63, 71].
However, it has been shown that these parameters are coupled and their effect
on the EIS spectrum depends on the combination of their values [45]. This
poses an issue that the three listed parameters cannot be unambiguously deter-
mined all at once from a given EIS spectrum and different parameter combi-
nations can correspond to identical EIS spectra.

A proposed solution is presented further. The initial assumption (based on
earlier research [45]) is that any triplet of Nde f (0), rde f (0) and ρsub(0) values is
related to other Nde f , rde f and ρsub triplet via some constant t:

Nde f = Nde f (0) · t2,

rde f = rde f (0) / t,

ρsub = ρsub(0) · t2.

(19)

Taking the logarithm of both sides of all equations:

logNde f = logNde f (0)+2log t,

logrde f = logrde f (0)− log t,

logρsub = logρsub(0)+2log t.

(20)

Substituting logNde f = x, logrde f = y, logρsub = z and log t = s:

x = x0 +2s,

y = y0 − s,

z = z0 +2s.

(21)

This can be interpreted as the parametric equations of a 3D line. As the di-
rection vector d⃗ = (2,−1,2) is constant, lines corresponding to different model
parameters will be parallel to each other. Furthermore, each line can be charac-
terized by a point at which it intersects a plane whose normal vector is equal to
the direction vector d⃗. Given that such plane passes through the point (0,0,0),
its equation is the following:

2x− y+2z = 0. (22)
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Substituting each component by its parametric expression (21) allows us
to define the parameter s at which the line intersects the plane:

s =−2
9

x0 +
1
9

y0 −
2
9

z0. (23)

The intersection point p of the line (expressed by p0 = (x0,y0,z0)) and this
plane can then be derived from (21) and (23):

p = Qp0 =


5
9

2
9 −4

9
2
9

8
9

2
9

−4
9

2
9

5
9


x0

y0

z0

 . (24)

As these 3D points lie on the same plane, they can be equivalently repre-
sented by two coordinates instead of three. This can be achieved with a linear
transformation (rotation) into a plane perpendicular to the z-axis (normal vec-
tor n⃗ = (0,0,1)) and containing the point (0,0,0). The rotation matrix can
be derived from the angle θ between the normal vectors of the both planes
(cosθ = 2

3 , sinθ =
√

5
3 ) and the intersection line (− 1√

5
,− 2√

5
,0):

R =


11
15

2
15 −2

3
2

15
14
15

1
3

2
3 −1

3
2
3

 . (25)

Applying this rotation on a given intersection point p (24) results in a point
on the x-y plane with z = 0:

Rp =

v1

v2

0

 . (26)

The described procedure can be applied in reverse to reconstruct the initial
Nde f , rde f and ρsub values when the coefficients v1 and v2 are known. How-
ever, this requires one of the three parameters to be fixed so that the other two
can be unambiguously determined. The first step in the reverse procedure is
calculating the point p0 (24) by solving the following equation:

Qp0 = RT v. (27)
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Assuming that either x, y or z is known, the point on the line defined by s
can then be determined from (21), leading to the remaining two coordinates of
that point and, subsequently, the values of Nde f , rde f and ρsub.

In summary, the coefficients v1 and v2 can be used to represent the set of
all membrane parameter values (19) given some initial point p0 = (x0,y0,z0).
This also implies that EIS spectra obtained from multiple membrane models
with the same spatial defect distribution but different sets of parameters sat-
isfying the (19) condition should be equivalent and could be represented by
a single unique pair of v1 and v2 values. To verify this assumption experi-
mentally, a single membrane model was prepared with randomly distributed
defects (N = 200) and specific initial parameters (Nde f (0) = 10; rde f (0) = 10;
ρsub(0) = 104.5). Then, a series of additional models were generated from the
initial one, where each new set of Nde f , rde f and ρsub parameters was derived
by applying the coefficient t, which was adjusted from 0.4 to 2 with increments
of 0.1. This resulted in a total of 17 models, each having the same coefficients
v1 = −2.1(3) and v2 = 2.5(6). The changes of Nde f were implemented by
scaling the modeling domain and the center coordinates of each defect so that
the same overall defect count and their relative positions would be retained.

Figure 9 shows the modeled EIS spectra of all models. The only noticeable
differences exist in the highest frequency range ( f > 105), while the remaining
parts of the spectra look identical. The standard deviations of log fmin and
argYmin values are 6.34× 10−4 and 1.34× 10−2 respectively. Such negligible
variations can be attributed to the inherent approximation errors existing in the
FEA modeling process.

Figure 9: Series of EIS spectra corresponding to the same v1 and v2 values.

1.3.5. Model implementation

The presented three-dimensional membrane model was implemented with COM-
SOL Multiphysics FEA software. Two types of mesh elements were consid-
ered for the membrane models - tetrahedral elements and triangular prisms.
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Both types of meshes were generated using built-in COMSOL mesh genera-
tion functionality. The assumption was made that current flux was the most
intense inside and close to defects, so mesh generation parameters for the ar-
eas inside and outside defects were set separately (Table 2), ensuring that the
defect areas were meshed significantly more densely. Both tetrahedral and
prismatic meshes were generated in several density levels depending on the
following parameters:

• kd - ratio between defect radius and mesh element size inside the defect;

• kh - ratio between the hexagonal prism side length and maximum mesh
element size outside defects;

• ks - number of swept mesh layers for defect and its surrounding sub-
membrane and membrane layers (prismatic mesh only);

• r0 - defect radius;

• lh - hexagonal prism side length.

The ratio kd was varied, while kh was fixed and set to 20. All defects
had the same radius r0 of 1 nm. The hexagon side length lh was also fixed
in all cases and derived from defect count and density during defect distribu-
tion generation. Table 3 shows the dependency between the mesh generation
parameters kd and ks and the degrees of freedom (DoF) of the resulting model.

Table 2: COMSOL mesh generation settings.

Element size parameter Value (defect areas) Value (other areas)
Maximum element size r0 / kd lh / kh

Minimum element size r0 / kd lh / kh

Maximum element growth rate 1.7 1.7
Curvature factor 0.5 0.5
Resolution of narrow regions 0.5 0.5

In order to estimate the effect of mesh density level (Table 3) on the so-
lution accuracy expressed in terms of EIS spectral features, experiments were
performed with the direct solver (MUMPS [17]), both mesh element types
(prisms and tetrahedra) and varying mesh densities. In all modeling cases
the same model geometry having 100 randomly scattered defects was used.
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Figure 10: Exam-
ple of tetrahedral
mesh elements at
density level #4 in
and around the de-
fect.

Table 3: DoF dependency on mesh type and the kd ra-
tio when the model contains 100 randomly distributed
defects.

# Ratio Swept layers DoF DoF
(kd) (prisms) (prisms) (tetrahedra)

1 0.5 2 3.15E+05 5.05E+05
2 1.0 4 6.46E+05 7.87E+05
3 1.5 6 1.04E+06 9.99E+05
4 2.0 8 1.38E+06 1.27E+06
5 2.5 10 2.03E+06 1.82E+06
6 3.0 12 1.78E+06 2.38E+06
7 3.5 14 3.95E+06 3.25E+06

Results (Figure 11) indicate that for both tetrahedral and prismatic meshes in-
creasing their density past level #3 (kd = 1.5) does not result in significant
changes in argY ( fmin) values, although fmin still shows a slight increase or de-
crease, depending on the mesh element type. By considering such variations
at higher mesh density levels as negligible, the majority of modeling instances
examined in this thesis were computed with mesh density of levels 3 and 4.
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Figure 11: Solution dependency on mesh density levels for tetrahedral and
prismatic meshes.

1.4. Regression models

1.4.1. Linear regression

Linear regression is a fundamental concept in statistics and the related fields
which models linear relationships between quantitative variables [34]. Such
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dependency is expressed between the dependent (target) variable y and one or
more independent variables xi, where the model is defined by its coefficients
w0 to wd :

y = w0 +
d

∑
i=1

wixi. (28)

Variables xi (features) can represent not only the original knowledge about
the modeling domain but can also be derived from other variables by apply-
ing various transformations (logxi,

√
xi), polynomial basis expansion (x2

i , x3
i ),

interactions between variables (x3 = x1 · x2) and more. This allows describing
non-linear relationships between the variables while keeping the model itself
linear.

Fitting the model to the data requires determining the coefficients
w = (w0, ...,wd). The most common approach is the least-squares method,
where the coefficients are chosen by minimizing the residual sum of squares
(RSS):

RSS(w) =
n

∑
i=1

(yi − ŷi)
2. (29)

Here n denotes the number of training examples, yi is the actual value of
the target variable and ŷi is the prediction of the model (28). This cost function
is quadratic with respect to its coefficients w and can be minimized by solving
the closed-form equations or using some optimization algorithm, such as the
gradient descent.

One of the variations of the described linear model is Lasso regression,
which introduces an additional regularization term to the cost function:

J(w) = RSS(w)+λ ||w||1 =
n

∑
i=1

(yi − ŷi)
2 +λ

d

∑
j=0

|w j|.

This term penalizes the model by the coefficient magnitudes resulting in
a sparse model, where some coefficients become equal to 0. Such property
makes lasso applicable as a feature selection technique which simplifies a lin-
ear model by discarding the least informative features. The shrinkage effect is
controlled by the regularization parameter λ with higher values increasing the
effect.
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1.4.2. Principal component regression

One of the regression techniques commonly used with spectral data is the prin-
cipal component regression (PCR) [13]. This method is based on the combi-
nation of principal component analysis (PCA) and linear regression. In this
approach, PCA (with selected k principal components) is first performed on
the data matrix X to decompose it into score matrix S and loading matrix P:

X = SPT +E. (30)

Then, a linear regression model for the prediction of response variable y is
trained using the selected principal components S. The advantage of PCR over
multiple linear regression (MLR) is that the linear transformation performed
by PCA produces uncorrelated variables and thus prevents multicollinearity,
which is common in spectroscopy data and can make fitting a linear regression
model numerically unstable and increase the risk of overfitting. Although PCR
is a relatively lesser-known technique, it has been used with impedance data
by some authors [10, 70, 19].

1.4.3. PLS regression

Another regression technique, popular in chemometrics and applicable to spec-
tral data as well, is the partial least squares (PLS) regression [4]. This model
represents a linear dependency between predictors and one or more response
variables. Like PCR, the PLS method performs linear projection of data into
a new space with fewer dimensions and fits a linear regression model on the
projected variables. However, PLS works in a supervised approach and the
projection is selected to maximize the covariance between the predictor and
response variables (unlike PCR which projects only the predictor variables):

X = SPT +E, (31)

Y =UQT +F. (32)

Here X is the n×m matrix of predictors, Y is the n× p matrix of response
variables, S and U are n× k score (projection) matrices of X and Y , P and Q
are loading matrices and E and F denote the error terms. The objective of the
PLS algorithm is to maximize the covariance between S and U matrices.
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PLS can also be applied for classification tasks where discrete classes are
represented as unit vectors (i.e. by performing one-hot encoding), referring to
such approach as PLS-DA (PLS discriminant analysis). Some applications of
PLS in multivariate analysis of impedance spectra have been described in the
literature [89, 44].

1.4.4. K-nearest neighbors regression

K-nearest neighbors (KNN) is a non-parametric supervised learning method
applicable to non-linear classification and regression tasks [34]. KNN predic-
tions are based on the selection of the k nearest points (relative to the provided
query point) from the training dataset. The general working principle of KNN
regression can be described by the following steps:

1. Given the input vector xt , find k examples {(xi,yi) : i = 1..k} from the
training set (xi and yi denote the feature vector and target value of a
single observation) which are most similar to xt in terms of distance
metric D.

2. Return the mean of selected yi values as the prediction of the model.

The distance metric D can be chosen arbitrarily, with Euclidean distance be-
ing one of the most common options. The prediction can also be computed
as a weighted average, such that the closer neighbors of the input point could
have greater influence. Although KNN regression is less common in the anal-
ysis of impedance spectra, successful applications of this method have been
demonstrated for other types of multivariate spectroscopic data [72, 52, 92].

1.4.5. Model evaluation

Different regression models can be evaluated and compared by using various
quantitative metrics. The following list includes several well-known regression
metrics [34] used further in this thesis:

• Coefficient of determination (R2):

R2 = 1− ∑
n
i=1(yi − ŷi)

2

∑
n
i=1(yi − ȳ)2 = 1− RSS

Var(y)
, (33)

where ȳ denotes the mean of the true values of y. R2 metric indicates the
fraction of explained variance in model predictions. The best possible
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score is R2 = 1, while a constant model which always predicts the same
value would have the score R2 = 0. It does not have a lower bound and
the values can be negative and arbitrarily low.

• Mean absolute error (MAE):

MAE =
1
n

n

∑
i=1

|yi − ŷi| . (34)

MAE metric indicates how much, on average, the predictions of the
model deviate from the true values. One of the benefits of MAE is its
ease of interpretability due to it having the same units as the quantities
it describes.

• Mean absolute percentage error (MAPE):

MAPE =
100

n

n

∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣ . (35)

MAPE represents the relative error between the true and predicted values
in an intuitive way, although it has the drawback of being inapplicable
to data with zero values.

1.5. Computational experiments

1.5.1. Defect distribution model comparison

To validate the three-dimensional membrane model implemented using the
FEA approach, EIS responses of membrane models with regular defect distri-
butions were first compared with the corresponding analytical solutions. EIS
spectra were computed with defect densities Nde f varying in a logarithmic
scale from 10−1 to 102 and using two defect size rde f options of 1 nm and
25 nm. Regular defect sets used in FEA modeling contained N = 127 defects.
Analytical solutions were computed by using the most of physical constants
and geometry parameters listed in Table 1 and additional specific parameters
required by the analytical model: the solution impedance Zsol was set to 0 Ω

and defect resistance Zde f set to 1.13× 109 Ω and 8.08× 106 Ω for 1 nm and
25 nm defect sizes correspondingly.

Figure 12 shows the comparison of both sets of spectra. With both rde f

options the resulting spectra are qualitatively similar at every Nde f value, al-
though some discrepancies in terms of minimum point coordinates log fmin
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and argYmin are apparent. As the defect density increases (in the case of
rde f = 1nm), the absolute difference of log fmin values remains almost con-
stant with a minor increase from 0.1 to 0.12 while the average shift of argYmin

is 1.58. In the case of large (25 nm) defects the differences are relatively more
significant with log fmin shift increasing from 0.09 to 0.14 and argYmin shift
decreasing from 1.34 to 0.44.
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Figure 12: Comparison of EIS spectra obtained by the analytical approach
(solid lines) and FEA modeling with regular defect distributions (dashed lines)
at varying defect densities and two defect size options.

The next comparison was performed between the regular and random de-
fect distribution models. For each combination of Nde f and rde f a group of 10
membrane models with random defect distributions (N = 100) was generated
and their EIS spectra were computed. Figure 13 shows the averaged curves of
each group in comparison with the regular defect distribution cases. Results
indicate much more significant differences between both defect distribution
models relative to the previous comparison with the analytical solutions. For
1 nm defects the shift in log fmin values increases from 0.02 to 0.1 while the
differences in argYmin values show a linear increase from 3.4 to 5.92. The devi-
ations are even higher in the case of 25 nm defects: log fmin shift increases from
0.02 to 0.4 whereas the argYmin shifts display a non-linear trend of increasing
from 5.62 to 8.11 at Nde f = 101 and then dropping to 5.77 at Nde f = 102.
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Figure 13: Comparison of averaged EIS spectra modeled using random de-
fect distributions (solid lines) and regular defect distributions (dashed lines) at
varying defect densities and two defect size options. The colored bands repre-
sent the standard deviations of argY values in each group of random cases.

1.5.2. Dependency on the modeled defect count

Although the defect density Nde f is one of the main parameters determining
the EIS response of the membrane, defect count N is also important to consider
from the modeling perspective. There is a trade-off in the selection of specific
N value, where the lower number of defects corresponds to a simpler and faster
to compute but less representative model of the membrane, resulting in higher
variability of EIS spectral features, while a higher defect count leads to more
stable results at the expense of a significant increase in computation times and
resource utilization.

In order to evaluate the effect of defect count on the properties of mod-
eled EIS spectra and modeling process performance, a series of models with
varying defect counts were generated by using the random defect distribu-
tion approach. Defect count N was adjusted on an approximately-logarithmic
scale from 6 to 500, while the defect density was kept constant at Nde f = 10.
This was repeated with two options for defect size rde f values of 1nm and
25nm. For each unique parameter combination a total of 10 modeling cases
with unique random defect distributions were prepared. Modeling was per-
formed in the computing environment equipped with four Intel Xeon Gold
6126 2.60GHz CPUs (4 x 12 cores), 377 GB of RAM and CentOS Linux 7.
COMSOL was run in distributed mode using 6 nodes (instances) and 3 CPU
cores per node, resulting in a total of 18 cores being utilized in parallel.

Table 4 shows the results of the described experiment. Mean CPU time val-
ues indicate approximately linear dependency on the defect count. The stan-
dard deviations of log fmin and argYmin decrease by lower amounts as defect
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count grows. A significant distinction between two rde f options can be ob-
served, where the models with small (1nm) defects and N ≥ 25 take almost
twice as long to compute, relative to models with rde f = 25.

Table 4: Modeling results of random defect distribution model cases with in-
creasing defect counts N.

N rde f
log fmin argYmin DoF CPU time(s)

Mean Stdev Mean Stdev Mean Stdev Mean Stdev

6 1 2.117 0.074 41.336 1.547 149632 2197 96 1
12 1 2.166 0.037 42.209 1.606 198765 5239 117 3
25 1 2.184 0.023 41.894 1.216 348510 9314 196 6
50 1 2.190 0.013 42.012 0.872 639877 13167 346 9

100 1 2.199 0.018 42.076 0.815 1261131 13448 703 9
200 1 2.201 0.019 42.148 0.322 2524987 7433 1440 24
500 1 2.203 0.008 41.770 0.337 6136825 20407 4038 46

6 25 2.568 0.163 52.540 3.912 108713 1362 75 1
12 25 2.546 0.079 52.736 1.625 119655 2442 73 1
25 25 2.567 0.041 53.258 1.626 187673 5124 107 3
50 25 2.556 0.033 52.852 0.962 324837 5803 173 4

100 25 2.588 0.037 53.072 0.692 627343 17007 334 10
200 25 2.581 0.021 52.800 0.505 1225674 14614 681 42
500 25 2.577 0.016 52.604 0.396 3001465 23966 1800 50

1.5.3. Comparison with experimental AFM data

To evaluate how well the random defect distribution model corresponds to the
positions of defects observed in actual tBLM membranes, EIS spectra of both
computer-generated and experimentally-measured defect sets were compared.
Figures 14 and 15 show two different AFM images of actual tBLM membranes
with and without visible defect clusters. Membrane defects were manually
annotated by domain expert and their coordinates (ones within the hexagonal
modeling domain) were used to model EIS spectra. The first model (without
clusters) contained N = 74 defects at Nde f = 12.66 density, while the second
model (with clusters) had N = 41 defects at Nde f = 15.78 density. Additionally,
random defect sets were generated (10 cases for each parameter combination)
using the same defect counts N and densities Nde f of the two images to obtain
additional models differing only in the exact positions of the defects. Modeling
of all cases was performed using four different defect radii rde f = 1,9,17,
25 nm, representing most likely real defect sizes, according to earlier research
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[22].
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Figure 14: Example of the membrane sample containing no clearly distin-
guishable defect clusters. Left: AFM image of the membrane. Right: anno-
tated defects in the hexagonal modeling domain.
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Figure 15: Example of the membrane sample containing defect clusters. Left:
AFM image of the membrane. Right: annotated defects in the hexagonal mod-
eling domain.

The comparison of EIS spectra obtained from the experimental and com-
puter-generated random defect sets is presented in Figure 16. Spectra of non-
clustered defect distribution indicate a good match with corresponding ran-
dom cases at all rde f levels, where log fmin shift does not exceed 0.02 and
argYmin difference ranges from 0.37 to 0.93 (comparing with the averaged
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curves of random cases). However, an apparent mismatch between actual
AFM-registered defect coordinates and the random defect distribution model
is visible for the clustered case, where log fmin is shifted towards low frequen-
cies by 0.17 to 0.30 and argYmin difference varies from 1.35 to −1.21 as rde f

increases.
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Figure 16: Modeled EIS spectra of computer-generated random defect distri-
butions (gray bands) and experimentally registered distributions obtained from
AFM images (colored curves). Left: non-clustered defect distribution. Right:
clustered defect distribution

1.5.4. Membrane parameter prediction from EIS spectra

The dataset for the membrane parameter prediction experiments was collected
by modeling EIS spectra with various combinations of Nde f , rde f and ρsub

parameters. In each case the coordinates of a fixed number of defects (N =

200) were sampled using the random defect distribution model. A total of
10 such cases were generated for each of 546 unique parameter combinations
(Table 5), resulting in 5460 distinct models. Finite element modeling was then
performed for each instance and EIS spectra were computed. This dataset
was therefore used to compare different regression models and assess their
prediction accuracy.

Table 5: Parameter values used for EIS dataset.

Parameter Scale Min Max Values

Nde f Log 10−1 102 13
rde f Linear 1 25 7
ρsub Log 104 105 6
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Each model was evaluated by performing 10-fold cross-validation on the
described dataset. Treating each of 546 unique parameter combinations and its
corresponding 10 model instances as a cohesive group of examples, training
and validation sets for each fold were collected in such a way that examples
of any given group would not be split among both sets. In each experiment
two separate regression models were evaluated in predicting v1 and v2 coeffi-
cients, which represent a unique EIS spectrum (coefficients described in detail
in subsection 1.3.4). The model accuracy was assessed in terms of the coef-
ficient of determination (R2), by computing the values for each fold and then
aggregating them by calculating the mean and the standard deviation.

Table 6 shows the performance of linear regression models trained using
two input features (log fmin and argYmin) and their additional polynomial terms
(up to the 3rd degree). The prediction accuracy of v1 is very high regardless
of the specific feature set being used, indicating a clear linear dependency be-
tween the minimum point of the EIS spectrum and the coefficient. However,
v2 predictions are less accurate, especially if only the two initial features are
used. Adding 2nd or 3rd-degree polynomial features to the model results in a
significant improvement and relatively high overall accuracy.

Table 6: Cross-validation results of linear regression models with polynomial
features.

Poly. degree Features
v1 v2

Mean Stdev Mean Stdev

1 2 0.999 0.000 0.564 0.040
2 5 0.999 0.000 0.829 0.019
3 9 0.999 0.000 0.880 0.013

Lasso regression models were evaluated for the same prediction task as
well, with the objective of simplifying the linear regression models by remov-
ing some less important features without a significant decrease in model accu-
racy. The initial feature set consisted of log fmin and argYmin values plus poly-
nomial features of up to 3rd degree, comprising a total set of 9 input features.
Regularization parameter λ was adjusted on a logarithmic scale from 10−2 to
102. Table 7 shows the cross-validation scores (mean and standard deviation
values) and the counts of non-zero model coefficients at each λ value. The
prediction accuracy of v1 coefficient is not significantly influenced by λ and
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this model does not show any clear benefits compared to its simpler alternative
presented in Table 6. The results of v2 model display a more interesting trend
where the accuracy remains almost constant and relatively high for λ values
below 100 while the number of non-zero coefficients of the model is decreased
to 3. This suggests that the Lasso regression model with λ = 100 could be
useful for v2 prediction as a simpler alternative to previously examined linear
regression models at the expense of slightly lower accuracy.

Table 7: Cross-validation results of Lasso regression models with varying reg-
ularization parameter values.

λ
v1 v2

Mean SD Coefs. Mean SD Coefs.

10−2.0 0.999 0.000 5 0.804 0.024 6
10−1.5 0.999 0.000 5 0.801 0.025 5
10−1.0 0.997 0.001 5 0.801 0.026 3
10−0.5 0.984 0.005 4 0.801 0.026 3
100.0 0.982 0.005 4 0.798 0.025 3
100.5 0.968 0.005 2 0.773 0.025 3
101.0 0.968 0.005 2 0.533 0.043 3
101.5 0.967 0.004 2 0.468 0.037 2
102.0 0.959 0.004 2 0.446 0.028 2

While the described linear regression and lasso regression models show
adequate performance in predicting v2 values based on EIS minimum point co-
ordinates, there remains a possibility that even better results could be achieved
by using the whole EIS spectrum instead. To test this assumption, PCR and
PLS regression models were evaluated by the same cross-validation procedure
but using the full frequency range of the EIS response (consisting of 81 points)
as the input feature set. The number of components for both model types was
adjusted from 4 to 20 with the increments of 4. Tables 8 and 9 show the results
of PCR and PLS models respectively. While v1 prediction accuracy remains
high in all cases, v2 prediction is much worse compared to linear models dis-
cussed earlier with the mean R2 scores not exceeding 0.26. Increasing the
number of components does not indicate any significant improving trend for
either of the models.
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Table 8: Cross-validation results of the PCR model.

Components
v1 v2

Mean Stdev Mean Stdev

4 0.983 0.005 0.083 0.045
8 0.994 0.001 0.210 0.043

12 0.995 0.001 0.259 0.091
16 0.995 0.001 0.249 0.098
20 0.995 0.001 0.246 0.104

Table 9: Cross-validation results of the PLS regression model.

Components
v1 v2

Mean Stdev Mean Stdev

4 0.992 0.003 0.151 0.056
8 0.995 0.001 0.254 0.102

12 0.995 0.001 0.247 0.098
16 0.995 0.001 0.238 0.108
20 0.995 0.001 0.224 0.121

K-nearest neighbors regression was also evaluated as a non-linear alterna-
tive to PCR and PLS methods. The model was cross-validated in the same way
as the aforementioned linear models by using all EIS spectral values as the in-
put features. The experiment was repeated with several different settings of the
number of neighbors and the Euclidean distance metric was used to measure
similarity between examples. The predictions of v1 and v2 were computed by
weighing all neighbourhood points equally. As indicated in Table 10, the KNN
regression model showed much better performance in predicting v2 compared
to PCR or PLS models, although still somewhat worse than the linear regres-
sion models examined earlier. Mean prediction accuracy did not depend much
on the chosen number of neighbors, while the standard deviations of R2 scores
show a slight decreasing trend, suggesting that model variance gets lower.
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Table 10: Cross-validation results of the K-nearest neighbors regression

Neighbors
v1 v2

Mean SD Mean SD

2 0.999 0.000 0.700 0.058
5 0.999 0.000 0.725 0.050

10 0.999 0.000 0.733 0.042
20 0.999 0.000 0.729 0.031

Although the described experiments illustrate how accurately different re-
gression models can predict v1 and v2 coefficients, it does not reveal the pre-
diction accuracy of the actual membrane parameters, which are derived from
these coefficients. In order to estimate it for the best-performing linear re-
gression models described in Table 6 their cross-validation with the modeled
dataset was performed with the additional step of reconstructing membrane pa-
rameters (Nde f , rde f , ρsub) using the predictions of v1, v2 and the actual known
values of one of the three listed membrane parameters. The v1 is predicted
with a linear regression model using log fmin and argYmin as the inputs and no
additional polynomial features, while the v2 model used 3rd-degree polyno-
mial features. Mean absolute error (MAE) and mean absolute percentage error
(MAPE) were used in place of the coefficient of determination to provide more
interpretable estimates. Although both Nde f and ρsub parameters are preferred
to be expressed in logarithmic scale, this is only performed for ρsub, as some
of the logNde f values used in modeling were equal to 0 (Table 5), rendering
MAPE estimates invalid in such cases.

Table 11 shows the MAE and MAPE values for each membrane parame-
ter, where one of the remaining two parameters is assumed to be known. Nde f

and logρsub predictions strongly depend on which of the other two parame-
ters is fixed - selecting rde f in both cases results in significantly less accurate
estimates in terms of relative error, while using ρsub to predict Nde f and vice
versa gives the best results. The prediction accuracy of rde f remains the lowest
among all three parameters, where choosing between Nde f and logρsub as the
fixed parameter makes no significant impact.
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Table 11: Membrane parameter prediction with linear regression models using
full feature sets.

Fixed parameter
Nde f rde f logρsub

MAE MAPE MAE MAPE MAE MAPE

Nde f - - 2.607 28.320 0.034 0.762
rde f 6.028 77.580 - - 0.246 5.507
ρsub 1.349 7.842 2.965 32.184 - -

As was shown in Table 7, linear regression models can be simplified to
use fewer input features at the expense of a relatively small reduction in their
predictive accuracy. Equations (36) and (37) show such simplified models,
where the v1 equation represents the linear regression model with no additional
polynomial features (Table 6) and the v2 equation is expressed from the lasso
regression model with λ = 1 (Table 7).

v1 ≈ 0.669log fmin −0.005argYmin −3.88; (36)

v2 ≈ 5.427×10−3(argYmin)
2 −1.448×10−4 log fmin(argYmin)

2

−5.164×10−5(argYmin)
3 −3.248.

(37)

Table 12 shows the parameter prediction accuracy where the simplified
models were used to predict v1 and v2 coefficients. As expected, the MAE and
MAPE estimates are lower in all cases compared to the original results (Table
11). However, the reduction in accuracy is most significant in predicting rde f ,
while the MAPE value of Nde f predictions (given that the exact ρsub value is
known) increased by just 1% and the impact on logρsub predictions is almost
negligible.

Table 12: Membrane parameter prediction with simplified regression models.

Fixed parameter
Nde f rde f logρsub

MAE MAPE MAE MAPE MAE MAPE

Nde f - - 3.731 42.100 0.040 0.890
rde f 9.613 135.245 - - 0.332 7.405
ρsub 1.623 8.713 4.130 48.072 - -
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1.5.5. EIS spectral feature prediction from membrane parameters

In addition to the membrane parameter estimation from EIS spectra, a reverse
task of predicting EIS spectral features (log fmin and argYmin) from membrane
parameters by regression models was attempted as well. Such models can
be useful as a faster method to estimate the most informative properties of
EIS spectra, compared to the time-consuming process of modeling the entire
EIS spectrum with FEA. Linear regression models were fitted to the modeled
dataset described in subsection 1.5.4. Table 13 shows the cross-validation re-
sults in terms of MAE and MAPE errors. The results indicate that simple
linear models can adequately describe the relationship between the three listed
membrane parameters and EIS spectral features. Adding 2nd or 3rd-degree
polynomial features results in some error reduction, more significant for the
argYmin model, compared to log fmin.

Table 13: Performance of linear regression models with polynomial features

Poly. degree Model coefs.
log fmin argYmin

MAE MAPE MAE MAPE

1 3 0.041 2.481 2.019 4.238
2 9 0.024 1.287 0.869 1.849
3 19 0.020 1.042 0.599 1.285

The equations (38) and (39) represent the fitted linear regression models
for the prediction of both spectral features. The position of the minimum point
in the frequency axis (expressed in log fmin) strongly depends on logNde f and
logρsub, while rde f has relatively little effect. The significance of logNde f is
also evident in the regression equation of argYmin, with rde f being the next
important feature and logρsub having the least influence.

log fmin ≈ 1.127logNde f +0.013 rde f −0.997logρsub +6.139; (38)

argYmin ≈ 4.603logNde f +0.390 rde f +0.092logρsub +39.279. (39)
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1.5.6. Membrane parameter prediction from experimental EIS spectra

The described methodology for predicting quantitative membrane properties
was validated using experimental EIS data. The dataset (Figure 17) was ob-
tained in experimental conditions where the assembled tBLMs were exposed
to a solution containing pore-forming toxin vaginolysin (VLY) [46] which in-
duced defects in the membrane samples. EIS measurements were taken us-
ing an electrochemical workstation (Zennium, Zahner-Elektrik) at a frequency
range from 0.1 Hz to 100 kHz, with 10 logarithmically distributed measure-
ment points per decade. EIS spectra were registered at different periods after
VLY exposure, ranging from 2 to 120 minutes. The experiment was conducted
by Dr. Tadas Penkauskas, researcher at the Department of Bioelectrochemistry
and Biospectroscopy, Life Sciences Center, Vilnius University. The true values
of Nde f , rde f or ρsub were not known due to the nature of the EIS measurement
technique and the specific experimental setting in which no additional methods
were used to independently measure these properties.

Figure 17: Experimental EIS data measured for tBLM sample at different
times (listed in the legend) after its exposure to the pore-forming toxin.

For prediction of the quantitative membrane properties from experimental
EIS spectra the regression models were trained using the model dataset de-
scribed in subsection 1.5.4 and the specific models were selected according to
their prediction accuracy presented earlier. The model for predicting the v1

coefficient was a linear regression model using log fmin and argYmin as the in-
put features, while the v2 prediction model was also a linear regression model
using both the listed two quantities and their 3rd-degree polynomial features.
The predicted values of v1 and v2 were then used to compute the estimates of
Nde f and rde f while keeping the value of the remaining parameter ρsub fixed
at 105 Ω · cm. Table 14 shows the estimated parameter values for each experi-
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mental EIS spectrum (excluding the initial measurement).

Table 14: Membrane parameter estimates predicted from experimental EIS
spectra by using linear regression models.

Time (min.) Nde f rde f

2 2.019 10.795
4 3.696 6.300
6 4.482 6.036
10 4.990 7.750
20 5.458 11.956
30 6.601 14.225
120 7.863 19.305

Although the predicted values cannot be directly compared with the true
ones, some trends in the data may suggest the validity of the applied method-
ology. Nde f estimates display a monotonic increase which corresponds to the
experimental conditions of membrane damage accumulating over time, due to
the prolonged contact with the pore-forming toxin. The range of Nde f predic-
tions is on the same order of magnitude as the estimates presented in similar
studies [71] and the values determined from experimental AFM data, as de-
scribed in subsection 1.5.3. The rde f values show the pattern of an initial de-
crease followed by an increase - this can be attributed to a complex process of
defect formation and varying amounts of both complete and incomplete pores
present on the membrane surface at different times [53]. The highest predicted
rde f value of 19.3 is also in agreement with the approximate maximum pore
size of 25nm (induced by a toxin similar to VLY), as described in another
study [22].

1.6. Conclusions

• The three-dimensional membrane model implemented using FEA is ca-
pable of simulating EIS responses qualitatively similar to the ones ob-
tained by using the analytical model [45], assuming the regular defect
distribution. The versatility of the model relative to the previous ap-
proach is that it supports defect sets with arbitrary defect positions,
counts and sizes.
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• The series of EIS modeling tasks performed with the random defect dis-
tribution model, varying defect counts N and multiple levels of mesh
density provided practical guidelines for choosing the suitable modeling
parameters according to the available computing resources or the solu-
tion accuracy requirements.

• Comparison of EIS spectra modeled by using the AFM-recorded non-
clustered defect set and randomly generated defect sets of equivalent
density showed no significant differences. However, a similar compar-
ison involving AFM-recorded clustered defect set demonstrated a clear
discrepancy against equivalent random defect sets. This indicates that
the random defect distribution model cannot adequately describe clus-
tered defect distributions and the clustering effect causes quantitative
changes in the EIS spectrum.

• A novel methodology of EIS spectral data analysis based on machine
learning methods has been presented and evaluated using modeled EIS
data. The methodology enables the estimation of defect density Nde f ,
defect size rde f and submembrane specific resistance ρsub assuming that
one of the three parameters is known. A comparison of several regres-
sion approaches showed that the linear regression models using the poly-
nomial combinations of EIS minimum point coordinates log fmin and
argYmin were the most accurate in predicting the aforementioned mem-
brane parameters.

• The preliminary application of the developed membrane parameter pre-
diction methodology on the experimental EIS data demonstrated qualita-
tively valid results which are in agreement with the experimental settings
and within the ranges of expected values.
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2. Defect clustering models

2.1. Clustering evaluation methods

Assuming that all defects distributed on the membrane surface have identical
physical properties and dimensions, they can be characterized as points on a
2D plane. As the clustering effect is expressed more by the spatial relationship
between a group of points rather than their exact coordinates, a useful tool
for estimating it is the Voronoi diagram. This is a well-known computational
geometry concept that has applications in a variety of different fields [15]. A
Voronoi diagram is computed for a finite set of points on a 2D plane, where
the plane is subdivided into regions assigned to each point and enclosing the
area of the plane closest to the corresponding point. Membrane model planes
(hexagonal or rectangular) containing defects are partitioned into such regions
accordingly (Figure 18, left). Isolated defects correspond to larger regions,
while closely packed groups (clusters) of defects produce a number of smaller
regions, thus reflecting the defect clustering effect and enabling its quantifica-
tion.

In order to estimate and compare the clustering strength for different de-
fect sets, possibly having different amounts of defects, histograms of Voronoi
diagram sector areas are used (Fig. 18, right). They are computed using a fixed
number of bins with equal widths from the sector areas scaled with respect to
defect density Nde f . Such an approach enables direct analysis and compari-
son of relative sector areas across different defect distribution cases, although
at the expense of omitting some spatial properties of each defect, such as the
number of its neighboring defects.
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Figure 18: Example of computer-generated random defect distribution. Left:
Voronoi diagram of defects distributed over the hexagonal modeling domain.
Right: histogram of corresponding Voronoi sector areas.
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As the probability distribution of Voronoi sector areas is unknown, statisti-
cal moments can be used to describe the general quantitative properties of these
distributions, without assuming normality. The first four moments are mean,
standard deviation, skewness and kurtosis. In addition, the median absolute
deviation (MAD) is used as a more robust (in terms of outliers) alternative to
standard deviation. As the sector areas are normalized with respect to defect
density, their mean is always equal to 1, so this measure is discarded. The
metrics are defined as follows:

• Standard deviation:

σ =

√
1
N

N

∑
i=0

(xi −µ)2. (40)

• Median absolute deviation (MAD):

MAD = median(|xi − x̃|). (41)

• Skewness:

Skew[X ] =
1
N

N

∑
i=0

(xi −µ)3

σ3 . (42)

• Kurtosis:

Kurt[X ] =
1
N

N

∑
i=0

(xi −µ)4

σ4 . (43)

Here X = (xi, ...,xN) denotes the vector of Voronoi sector areas, N - defect
count, µ - area mean, x̃ - area median.

In order to measure the similarity between two defect sets, without mak-
ing any statistical assumptions about the distribution of their Voronoi sector
area values, the Earth mover’s distance (EMD) metric was selected [16]. This
measure represents the minimum cost required to transform one probability
distribution to the other and will be used to compare the histograms of Voronoi
sector areas of a given pair of defect sets.

2.2. Clustering models

2.2.1. Attraction model

The first method of generating clustered defect sets is based on the assumption
that defects naturally attract one another and thus tend to cluster together. Such
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type of object interaction is fundamental and common in nature (i.e. gravita-
tional and electromagnetic forces) and also applicable in biological membrane
models [43]. In this model attraction takes effect if the distance between two
defects is below the predefined threshold dT , which can be expressed in one of
these two ways:

• Number of defect radiuses (of the attracting defect).

• Fixed distance in nanometers.

Generating a clustered defect distribution involves the following steps:

1. Coordinates of the first defect are picked randomly from uniform distri-
bution.

2. For each of the subsequent defects:

(a) Initial coordinates for the current defect with radius rc are selected
randomly from a uniform distribution.

(b) Closest existing defect is selected and designated as the attractor
with radius ra.

(c) Distance between the current and attractor defects is calculated.

(d) If the distance is below the predefined threshold dT and above the
minimum distance of 1.5× (rc + ra), the current defect is shifted
towards the attractor defect. The minimum distance is retained to
avoid defect overlapping.

(e) Otherwise, if the distance is below the minimum distance of 1.5×
(rc + ra), the current defect is shifted away from the attractor de-
fect until the distance between their centers matches the minimum
distance.

(f) If the updated coordinates of the current defect fall outside the
hexagon area, the defect is discarded.
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Figure 19: Example of synthetic defect distribution generated using the attrac-
tion model, where dT = 15 (expressed in defect radii).

Assuming that dT is expressed in defect radii, the clustering model has
three parameters directly influencing the clustering effect (thus excluding the
defect count): defect density Nde f , defect radius rde f and attraction threshold
dT . Figure 19 shows one example of generated defect set, obtained by the
described model. The distribution consists of 500 defects with equal radius
(13nm), dispersed with a density of 100 defects per square micrometer. Such
cases are characterized by tightly packed defect groups all containing a similar
number of defects. This is reflected in the sector area histogram where the
clustered defects represent a large number of small Voronoi sectors, in contrast
with random distributions (Fig. 18).

2.2.2. LCN model

This model is inspired by the idea that membrane defect clusters tend to form
complex structures of varying size and shape, visually resembling clouds. This
concept is relevant in computer graphics where various algorithms are used
to procedurally generate cloud or smoke textures. For the implementation of
this model we chose the lattice convolutional noise (LCN) algorithm [20] and
extended it by introducing two additional parameters by which the clustering
effects are adjusted:

• Average relative cluster size: S,

• Minimal probability of defect appearance: P.

The parameter S is a positive real number which adjusts the scaling of the
LCN-generated initial image - smaller values correspond to a larger amount
of small clusters. P is selected from [0,1] interval and represents the lower
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bound of probability field values. Defect distribution generation consists of
the following steps:

1. By using the LCN algorithm a probability field of fixed resolution (i.e.
4096 × 4096) is generated and clipped by the hexagonal model domain
shape (Fig. 20). Each pixel in the field corresponds to the probability pi

of a defect appearing at that point.
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Figure 20: Example of probability field generated with the LCN algorithm.

2. Probability sum SN is calculated for the field consisting of N points.
Interval [0;SN ] is divided into N subintervals, where each corresponds to
the probability pi of the respective pixel (Fig. 21).

Figure 21: Weighted roulette wheel selection of probability field pixels

3. For each defect a random number is uniformly sampled from the interval
[0;SN ] and the corresponding pixel of the probability field is designated
as the center of that defect.

This model produces clustered defect distributions (Fig. 22) which are
visually distinct from the ones obtained by applying the attraction model (Fig.
19). Clusters exhibit different sizes and various irregularities which are also
reflected by statistical properties of Voronoi sector areas, where the majority
of small sectors are offset by a number of very large ones.
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Figure 22: Example of synthetic defect distribution generated using the LCN
model, where S = 1 and P = 0.1.

2.2.3. Point process model

One more approach for modeling the clustered placement of defects on the
membrane surface is based on the theory of spatial point processes. Such mod-
els describe the random patterns of 2D or 3D points representing objects in a
spatial context and are commonly used in various research areas, such as epi-
demiology, ecology, astronomy, geography and others [21, 56]. The specific
model chosen as the basis for clustered defect set generation is the Thomas
cluster point process, which extends the more general Poisson point process.
The Thomas cluster process generates a random number of parent points (clus-
ter centers), each of which is assigned a random number of offspring points
(cluster members) randomly displaced from the center by a vector sampled
from isotropic Gaussian distribution (with the same scale for each axis). Thus,
the process is controlled by three parameters:

• Parent point rate κ

• Cluster scale r

• Offspring point rate α

The Thomas cluster point process will be referred to simply as the point
process model further in this thesis. The algorithm for generating an instance
of the point process model (a clustered defect set with density Nde f ) is defined
as follows:

1. Number of parent points (cluster centers) is sampled from a Poisson
distribution with the rate parameter κ .
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2. Coordinates of all parent points are sampled from the uniform distribu-
tion with the interval [−4r,1+4r], corresponding to an extended simula-
tion window (unit square Ω ∈ [0,1]2 with additional margins depending
on r).

3. For each parent point:

(a) Number of offspring points (belonging to a cluster) is sampled
from a Poisson distribution with the rate parameter α .

(b) Coordinates of the offspring points related to the current parent
point are sampled from normal distributions N (xi,r2) and N (yi,r2),
where xi and yi are the parent point coordinates.

4. Offspring points belonging to the original simulation window (unit squa-
re) are retained, while the ones outside it and the parent points are dis-
carded.

5. The unit square and the point coordinates are scaled to match the speci-
fied defect density Nde f .

Contrary to the previously described attraction and LCN models, the point
process model does not generate defect sets with an exact defect count N,
although this quantity is influenced by the parameters κ and α . Figure 23
shows an example of a defect set generated using this model.
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Figure 23: Example of a clustered defect distribution generated using the point
process model, where κ = 10, σ = 0.1 and α = 10.

A distinct advantage of the point process model over the attraction and
LCN models is the possibility to infer model parameters directly from data.
One well-known method is the minimum contrast [3], although other methods
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have been developed as well [24, 60]. The minimum contrast method uses the
so-called K-function [23] as a statistic of the clustering effect in point process
data and finds the model parameters which result in the lowest discrepancy
between the empirical K-function values directly computed from data and the
theoretical K-function of the chosen spatial point process model. The em-
pirical K-function represents the standardised average number of neighbours
around a point within the t radius and is defined as follows [56]:

K̂(t) =
|W |

n(n−1)

n

∑
i=1

n

∑
j=1
j ̸=i

1{di j ≤ t}ei j(t). (44)

Here n is the number of points, di j is a pairwise distance between two
points, |W | is the area of the observation window and ei j is the correction
weight to compensate for edge effects. The theoretical K-function of the
Thomas cluster point process is the following:

K(t) = πt2 +
1
κ

(
1− exp

(
−t2

4r2

))
. (45)

The model parameters are then chosen to minimize:∫ b

a
|K(t)− K̂(t)|pdt, (46)

with chosen 0 ≤ a ≤ b and p > 0.

2.3. Clustering model comparison

The described defect clustering models were first evaluated with respect to the
random defect distribution model. For that purpose 100 instances of random
defect distributions were independently generated, each consisting of N = 500
defects at Nde f = 10 defect density. Voronoi diagrams were then computed for
each defect set and Voronoi sector areas were normalized by the defect density,
to enable a valid comparison with other defect sets, exhibiting different defect
counts or densities. Figure 24 shows the histogram of all normalized Voronoi
sector areas and the statistical properties of their distribution. By attempting
to fit various well-known probability distributions to this dataset the Gamma
distribution was determined to be the best fit (parameters listed in Figure 24
legend).
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Figure 24: Histogram of normalized Voronoi sector areas of 100 independently
generated random defect sets.

To compare the random and clustered defect distributions, a number of
synthetic defect sets were generated by applying the described clustering mod-
els with different parameter combinations (Table 15). A total of 54, 48 and 60
combinations for attraction, LCN and point process models respectively were
examined and summary statistics were computed for 100 independently gen-
erated cases for each option. In the case of attraction and LCN models each
defect distribution instance consisted of 500 defects. Parameters of all models
were selected to cover a wide range of visually different clustering cases, rang-
ing from instances practically identical to random distributions to a strongly
expressed clustering effect. Sector areas in all cases were normalized with
respect to defect density.
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Table 15: Clustering model parameter values used in synthetic defect set gen-
eration.

Clustering model Model parameter Values

Attraction Defect density Nde f 1; 10; 100
Defect size rde f (nm) 0.5; 13; 25.5
Attraction threshold1 dT 5; 10; 15; 20; 25; 30

LCN Min. probability P
0; 0.03; 0.06; 0.09;

0.12; 0.15

Cluster size S
0.25; 0.5; 0.75; 1;
1.25; 1.5; 1.75; 2

Point process Parent rate κ 5; 10; 15
Cluster scale r 0.03; 0.06; 0.09; 0.12; 0.15
Offspring rate α 5; 10; 15; 20

1 Expressed as the number of defect radii (rde f ).

Summary statistics (described in subsection 2.1) were computed from Vo-
ronoi sector areas for each set of 100 defect set instances generated with partic-
ular parameter combinations. Figure 25 shows the statistics of each clustering
model compared to the random defect distribution model. Although none of
the metrics indicate unambiguous separation of the random and all of the clus-
tered defect sets obtained from the three models, the standard deviation is the
most indicative of the clustering effect as almost clustered cases (except for
several attraction model cases) show values higher than approximately 0.54
(random defect distribution model). Due to this property and intuitive inter-
pretation of this metric, the standard deviation of Voronoi sector areas will be
used as a simple quantitative measure of defect clustering effect and will be
referred to as the Voronoi σ further in this thesis.
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Figure 25: Summary statistics of Voronoi sector areas (averaged histogram of
100 cases) of clustered defect sets (coloured circles) compared against the ran-
dom defect distribution model (vertical red lines). Attraction, LCN and point
process models are represented by blue, green and yellow circles, respectively.
Standard deviation is further referred to as Voronoi σ .

For each group of 100 defect sets generated by a specific clustering model
and its parameter combination (Table 15) a best-fitting probability distribu-
tion was determined by the same approach as described earlier for the random
defect distribution model (Figure 24). As shown in Table 16, the selected
probability distributions vary depending on clustering model parameters. The
majority of attraction model cases can be characterized by gamma, beta or
generalized extreme value probability distributions, where gamma distribution
fits mostly correspond to parameter combinations with rde f = 0.5 values. In
the case of LCN instances, defect sets with S < 1 values tend to be more often
characterized by a gamma distribution, while the larger S values mostly corre-
spond to a lognormal distribution. Most of the generated point process model
instances are characterized either by lognormal or generalized extreme value
distributions.
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Table 16: Summary of best-fitting probability distributions determined for
clustered defect sets generated by different clustering models with varying pa-
rameter combinations.

Prob. distribution Attraction LCN Point process

Beta 15 9 3
Exponential 1 1 2
Gamma 22 11 0
Generalized extreme value 10 5 16
Lognormal 5 18 28
Pareto 1 3 10
Student’s t 0 1 1

Total cases 54 48 60

To better understand how each of the clustering model parameters is related
to the overall clustering effect in resulting defect sets, Voronoi σ values were
plotted against particular parameter values in the following figures. Attraction
model results (Fig. 26) show very different Voronoi σ trends for various defect
size (rde f ) and density (Nde f ) values. In the case of small (0.5 nm) defects it
is impossible to distinguish the clustered and random distributions. A similar
issue applies for medium size (13 nm) defects with low density, although den-
sity increase introduces a clear trend of Voronoi σ growth depending on the
attraction threshold.

5 10 15 20 25 30
0.4

0.6

0.8

1.0

1.2

Vo
ro

no
i 

rdef = 0.5nm
Ndef = 1
Ndef = 10
Ndef = 100

5 10 15 20 25 30
Attraction threshold (radii)

0.4

0.6

0.8

1.0

1.2
rdef = 13nm

Ndef = 1
Ndef = 10
Ndef = 100

5 10 15 20 25 30
0.4

0.6

0.8

1.0

1.2
rdef = 25.5nm

Ndef = 1
Ndef = 10
Ndef = 100

Figure 26: Voronoi σ values (averaged from 100 generated defect sets) of
attraction model instances.

An interesting effect of the largest Voronoi σ growth with medium defect
density can be observed in the largest (25.5 nm) defect case. This can be ex-
plained by the relationship between the defect density Nde f and the range over
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which the attraction effect takes place (defined by rde f and dT ). When the at-
traction range is relatively low concerning the overall dimensions of the model
domain (depending on selected Nde f ), defect clusters tend to be numerous and
contain small amounts of individual defects, leading to comparatively low vari-
ations in Voronoi sector areas and Voronoi σ values being close to the baseline
of the random defect distributions. Due to the increase of either the attraction
range or the defect density, the clusters tend to accumulate more defects while
their overall count decreases and they get more isolated, causing an increase
in Voronoi σ . However, when the attraction range approaches the dimensions
of the modeling domain, the clusters merge and form irregular structures of
non-overlapping defects covering the major part of the model area. This leads
to more evenly-sized Voronoi sectors (relative to heavily-clustered instances)
and a decrease in Voronoi σ . Such phenomena are also illustrated in Figure
27.
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Figure 27: Examples of attraction model instances (N = 500; rde f = 25.5nm,
dT = 30) generated with different Nde f values.

Figure 28 illustrates the dependency of Voronoi σ values by S and P pa-
rameters of LCN model. By decreasing the values of both parameters, stan-
dard deviation approaches the random distribution baseline, but does not cross
that threshold (Voronoi σ ≈ 0.54). Although a clear increasing trend can be
observed in all P cases, the specific clustering parameter values for a given
clustered distribution cannot be unambiguously estimated just from the stan-
dard deviation of its Voronoi sector areas. A similar trend can be observed for
the point process model as well (Figure 29).
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Figure 28: Voronoi σ values (averaged from 100 generated defect sets) of LCN
model instances.
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Figure 29: Voronoi σ values (averaged from 100 generated defect sets) of point
process model instances.

Dependency between clustering model parameters and Voronoi σ was also
evaluated by fitting linear regression models for predicting the aforementioned
value. Models were cross-validated (10-fold) using the datasets described in
Table 15, where each training example corresponded either to a group of 100
defect set cases generated with the specific clustering parameter combination
(Figure 30) or an individual defect set (Figure 31). Models additionally had
included 2nd degree polynomial features derived from the original clustering
parameter values. The results obtained indicate that such regression models
can accurately (R2 > 0.94) describe the dependency for LCN and point pro-
cess models in the averaged case, although the accuracy drops when individ-
ual defect sets are considered (Figure 31). This indicates that Voronoi σ varies
significantly among the series of defect sets generated by using the same clus-
tering parameter values.
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Figure 30: Linear regression model predictions of Voronoi σ by clustering
model parameters (averaged instances).

Figure 31: Linear regression model predictions of Voronoi σ by clustering
model parameters (individual instances).

2.4. Clustering effect estimation from EIS spectra

2.4.1. EIS spectra of clustered defect distributions

As the methodology of EIS data analysis presented in Chapter 1 was developed
solely with the random defect distribution model in mind, it is unclear whether
the same approaches would be applicable to the qualitatively different cases of
clustered defect distributions. To evaluate and compare predictive models for
estimating clustering effect from EIS spectrum, a dataset of EIS spectra was
collected by modeling various clustered defect set cases. The point process
clustering model was used to generate membrane model instances exhibiting
a varying degree of defect clustering effect, which was controlled by adjust-
ing clustering model parameters as well as the defect density and defect size.
Defect count was not explicitly defined and varied in the range from 4 to 477,
depending on the clustering model parameters. Table 17 lists the individual
parameter values, yielding 216 unique parameter combinations. Ten model
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instances were independently generated for each combination, resulting in a
total of 2160 FEA model cases.

Table 17: Parameters used to produce the modeled EIS dataset of clustered
defect distributions.

Parameter Values

Nde f 0.1; 1; 10; 100
rde f 0.5; 25.5

Parent rate κ 5; 10; 15
Cluster scale r 0.05; 0.1; 0.15

Offspring rate α 5; 10; 15

The initial review of the modeled EIS curves of clustered defect sets re-
vealed some important qualitative differences relative to the EIS data of ran-
dom defect distributions examined in Chapter 1. This was assessed by the
number of minimum and maximum points in the admittance phase curves as
well as their first and second-order derivatives (calculated numerically using
the forward difference scheme). All EIS spectra of random cases were found
to satisfy the following conditions, related to the numbers of the extremum
points:

• One minimum point and zero or one maximum points in EIS spectrum
(the latter implied by the possible argY decrease in a high-frequency
spectral region).

• One minimum and one maximum point in the first derivative of EIS
spectrum.

• One or two minima points and one or two maxima points in the second
derivative of EIS spectrum.

However, the described properties did not apply to a significant part of the
clustered cases. Approximately 1% of them had clearly distinguishable double
minima, while an additional 30% had other unusual spectral features reflected
by higher counts of extrema in their first and second derivatives, compared
to random cases. Figure 32 illustrates these phenomena where two clustered
cases exhibit anomalous spectral shapes relative to an example of a random
case.
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Figure 32: Examples of modeled EIS spectra obtained using random and clus-
tered defect distributions. The top plot displays the raw spectra, middle and
bottom plots show the first and second derivatives of the admittance phase, re-
spectively.

Some insight into the occurrence of such spectral anomalies can be gained
by partitioning and analyzing the clustered spectra dataset (Table 17) either
by defect set properties (density and size) or the parameters of the clustering
model. Figure 33 shows the fractions of anomalous spectra in the subsets rep-
resented by the specific Nde f and rde f values. Although each subset contains a
significant part of anomalies, ranging from 0.17 to 0.44, different trends can be
observed for both defect size options, where the fraction for small (0.5 nm) de-
fects grows with the increase of defect density and the opposite can be noticed
for large (25.5 nm) defects.
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Figure 33: Heatmap of fractions of anomalous spectra in the clustered spectra
dataset grouped by defect density and defect size.

Partitioning the dataset by clustering model parameters reveals a stronger
effect on the fraction of anomalous spectra, compared to defect density and
size parameters. As Figure 34 indicates, the fraction ranges widely from 0.03
to 0.70 depending on the parameter combination. Parent rate κ has a moderate
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influence which is most distinct at κ = 5, while the larger values tend to reduce
the effect. The combination of low cluster scale r and high offspring rate
α values is more significant in increasing the fraction of anomalous spectra,
which can be seen for all κ values. These observations suggest that defect
distributions containing a relatively low number of tightly-packed clusters with
high numbers of defects are most likely to result in unusual features in EIS
spectra. This is also reflected by the mean values of standard deviations of
Voronoi sector areas (Figure 35) which correlate well with the aforementioned
fractions of anomalous spectra.
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Figure 34: Heatmaps of fractions of anomalies in the clustered spectra dataset
grouped by parameters of the point process clustering model.
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Figure 35: Heatmaps of mean Voronoi σ values in the clustered spectra dataset
grouped by parameters of the point process clustering model.

2.4.2. Clustering effect prediction

As discussed earlier, the standard deviation σ of Voronoi sector areas can be
used as a simple and interpretable metric for quantifying the clustering effect
in a given defect set. While it is trivial to compute for the defect set itself, it is
unclear how accurately it could be predicted from an EIS spectrum using a re-
gression model. Ideally, such a model would require no additional knowledge
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about the properties of the defect set, such as the defect density or size, and
would be based solely on features extracted from EIS spectra.

To evaluate how the minimum EIS spectrum point coordinates are related
to Voronoi σ values, log fmin and argYmin were determined for each EIS spec-
trum in the clustered set. In the case of anomalous spectra containing two min-
ima (approx. 1% of the dataset), the point with a lower argY value is selected.
Visualization of the data revealed the major influence of Voronoi σ values on
the two listed spectral features, when the defect density and size parameters
are constant. An example of this effect is presented in Figure 36, where the
minimum points of EIS spectra from the clustered set (with varying Voronoi
σ values) are compared to the equivalent points obtained using random defect
distributions (averaged from 10 independently modeled cases). This observa-
tion points toward an alternative approach – extracting spectral features from
EIS data by characterizing the peak shape rather than its exact position in the
spectrum.
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Figure 36: Voronoi σ dependency on log fmin and argYmin in the clustered EIS
dataset at two defect densities Nde f = 0.1 and Nde f = 100. Green rectangles
represent averaged minimum point positions of random defect sets whose EIS
spectra were modeled with the same Nde f and rde f values.

The full width at half maximum (FWHM) is a common metric used to
characterize peak shapes in various types of spectral data [94, 73]. This mea-
sure defines the width of a spectral peak at half of its height from the baseline.
While FWHM is commonly computed by fitting the spectrum with some ana-
lytical function (i.e. Gaussian), a simplified approach can be used in the case
of EIS spectra, assuming that argY values are always in the range from 0deg
to 90deg. FWHM is then defined as follows:

FWHM = log10 f2 − log10 f1. (47)
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Here frequencies f1 and f2 represent two points of EIS spectrum (illus-
trated in Figure 37) where:

argY = 90− 90− argYmin

2
. (48)
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Figure 37: Frequency points in EIS spectrum used to compute FWHM.

Computing FWHM values for EIS spectra in the clustered dataset and com-
paring them to corresponding Voronoi σ values showed a moderate correlation
of 0.62. While this suggests that FWHM can be used as a predictor variable
for estimating Voronoi σ , additional features related to the overall peak shape
could also be informative, as evident in Figure 32. They can be derived by
performing peak fitting, which is a common practice employed in spectral data
analysis [94, 79, 28]. Based on the visual evaluation of the peak shapes in EIS
spectra, the Gaussian function was chosen, assuming that a higher mismatch
between the curve and argY values should correspond to higher Voronoi σ

values. Curve fitting is performed only for the spectral region around the min-
imum point (argY values not exceeding 87 degrees), as illustrated in Figure
38.
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Figure 38: Example of a Gaussian curve fitted to EIS spectrum in the vicinity
of the minimum point.

The mismatch between k actual (argY ) and fitted (argŶ ) points (indices
ranging from t1 to t2) can then be summarized by several quantities:
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• Mean absolute difference:

pmean =
1
k

t2

∑
i=t1

|argYi − argŶi|. (49)

• Standard deviation of absolute differences:

pstd =

√√√√1
k

t2

∑
i=t1

(argŶi − pmean)2. (50)

• Maximum absolute difference:

pmax = max(|argYi − argŶi|), i = t1, ..., t2. (51)

In addition to the described features, extrema counts in EIS spectrum or its
first and second derivatives (discussed in subsection 2.4.1) are used with the
following notation: m0, m1 and m2 denotes the maxima counts in EIS spec-
trum, its first and second derivatives respectively, while n0, n1 and n2 repre-
sent the minima counts in the same way. The full feature set selected for the
regression task included FWHM, pmean, pstd , pmax and the 6 extrema count
features, comprising a total of 10 features. A linear regression model with L1
regularization (Lasso) was used to represent the relationship between the 10
listed features and Voronoi σ as well as distinguishing the most informative
features. To investigate how the model describes the spectral variations related
exclusively to defect clustering, rather than caused by varying Nde f and rde f

values, 8-fold cross-validation was performed using the leave-one-group-out
approach, by excluding all EIS spectra of a specific Nde f and rde f combination
in each fold. Regularization parameter λ was varied from 10−3 to 10−1.

69



Table 18: Lasso regression model performance (in terms of R2) of predicting
Voronoi σ from EIS spectra of clustered defect sets.

λ Coefs.
Training Validation

Mean SD Mean SD

10−3.0 9 0.603 0.024 0.295 0.372
10−2.75 9 0.597 0.023 0.346 0.299
10−2.5 7 0.582 0.023 0.383 0.244
10−2.25 5 0.572 0.020 0.430 0.209
10−2.0 6 0.559 0.021 0.449 0.187
10−1.75 4 0.518 0.023 0.450 0.153
10−1.5 3 0.463 0.023 0.432 0.110
10−1.25 3 0.319 0.018 0.309 0.082
10−1.0 2 0.176 0.014 0.170 0.071

Table 18 summarizes the training and validation scores (R2) at each λ level
and the counts of non-zero model coefficients. The high variance of the model
is evident at lower λ values, while the higher λ leads to the opposite effect of
high bias. An acceptable bias-variance tradeoff can be observed at λ = 10−1.5

with 3 selected features: FWHM, pmax and m2. MAE and MAPE errors of this
specific model were equal to 0.22 and 24% respectively. The mediocre overall
performance suggests that the engineered spectral features and a linear model
cannot fully represent the effect of varying Voronoi σ on the spectrum, while
discarding the similar variations caused by Nde f and rde f parameters. To test
this claim, a linear regression model using the three selected features (FWHM,
pmax, m2) was cross-validated with each of 8 subsets (corresponding to the
specific combinations of Nde f and rde f ) of the clustered EIS dataset separately,
instead of using the full dataset.
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Table 19: Cross-validation results of predicting Voronoi σ for subsets of clus-
tered EIS dataset.

Nde f rde f
Training Validation

Mean SD Mean SD

0.1 0.5 0.800 0.010 0.775 0.100
0.1 25.5 0.824 0.007 0.808 0.070

1 0.5 0.805 0.010 0.785 0.072
1 25.5 0.750 0.009 0.706 0.120

10 0.5 0.799 0.007 0.779 0.046
10 25.5 0.635 0.015 0.574 0.146

100 0.5 0.760 0.018 0.708 0.218
100 25.5 0.274 0.010 0.245 0.118

The results listed in Table 19 indicate significantly better model perfor-
mance in most cases, except for the subset of Nde f = 100 and rde f = 25.5. Still,
a performance drop can be noticed with an increase in defect density, more ev-
ident for large defects (25.5 nm). Figure 39 illustrates the comparison of the
cross-validation results of the linear regression model trained using the three
selected features (FWHM, pmax, m2) both for the full clustered EIS dataset and
its specific subset (Nde f = 1; rde f = 25.5). In the case of the full dataset, the
model tends to overestimate low values of Voronoi σ and underestimate high
values.
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Figure 39: Cross-validation results of Voronoi σ prediction using different sets
of EIS spectra. Left: entire clustered EIS dataset. Right: subset of clustered
EIS dataset with Nde f = 1 and rde f = 25.5nm.

In addition to the regression models trained to predict Voronoi σ value, a
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classification experiment was also performed using the clustered EIS dataset
and another one, consisting of EIS spectra obtained from random defect dis-
tributions (dataset described in subsection 1.5.4). A logistic regression model
was used for both datasets to predict whether the spectrum originated from a
random defect set (negative class) or clustered one (positive class). The same
binary classification task was performed twice, using only the Voronoi σ fea-
ture for the reference and the set of three features used in regression experi-
ments previously. 10-fold cross-validation was performed in both cases, where
splits were made according to groups representing specific Nde f and rde f com-
binations. Results are shown in Table 20.

Table 20: Classification results of random/clustered cases using different fea-
tures.

Features Accuracy Precision Recall F1

Voronoi σ 0.95 0.98 0.84 0.90
Spectral features 0.90 0.85 0.78 0.82

2.4.3. Defect set parameter prediction

As previously shown, the clustering of defects affects the modeled EIS spec-
trum not just in terms of its minimum point coordinates (log fmin and argYmin),
but also the overall shape of the curve. This prompts us to re-evaluate the
regression models for predicting membrane parameters from EIS spectral fea-
tures, as presented in subsection 1.5.4. For the reference, linear regression
models for predicting v1 and v2 coefficients (equations 36 and 37, chapter 1)
trained on the random EIS dataset were applied for the clustered dataset to
predict the two coefficients. Additionally, the same models were also cross-
validated using the clustered EIS dataset only (Table 21). As the modeling of
all clustered defect distribution cases was performed with ρsub = 105, the same
value was used to reconstruct Nde f and rde f based on v1 and v2 values predicted
by the models.

As Table 21 shows, the prediction accuracy of Nde f is worse (when the
models are trained on the random EIS dataset), but comparable to results ob-
tained with random defect set spectra only (Table 12, Chapter 1), while the
rde f predictions are extremely inaccurate. This resonates with an earlier obser-
vation where Voronoi σ was shown to have a major impact on the position of
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the minimum point in the EIS spectrum, especially in terms of argYmin (Fig-
ure 36). Same models cross-validated on the clustered EIS dataset show even
higher errors in predicting Nde f , although rde f predictions are relatively better.

Training dataset
Nde f rde f

MAE MAPE MAE MAPE

Random 12.318 46.823 314.526 14896.688
Clustered 22.195 69.728 12.425 442.098

Table 21: Comparison of the membrane parameter prediction accuracy using
the linear regression models for predicting v1 and v2 coefficients, trained using
random or clustered EIS datasets.

2.5. Clustering model parameter estimation

Although all three presented defect clustering algorithms enable the genera-
tion of synthetic defect sets with varying degrees of clustering (adjusted via
the model parameters), an important aspect of evaluating the model applicabil-
ity to experimental AFM data is the comparison of EIS spectra modeled using
both generated and real defect sets. However, reconstructing the parameter
values of the selected clustering model from a given defect set is not possible
analytically (with an exception of the minimum contrast estimation method ap-
plicable to the point process clustering model). Although some dependencies
between the numerical properties of the generated defect sets and the clus-
tering algorithm parameters are evident (Figures 26, 28, 29), unambiguously
determining the parameters from i.e. Voronoi σ values alone is not possible.
This poses the question of whether the parameter values could be estimated
with an acceptable accuracy using machine learning approaches and certain
numeric features of defect sets.

Normalized Voronoi sector areas of all defect sets generated with parame-
ters listed in Table 15 were selected as the initial data source from which nu-
merical features for machine learning models could be derived. The four pre-
viously discussed statistical measures (standard deviation, MAD, skewness,
kurtosis) were first used as predictor variables for linear regression models
predicting parameter values of each clustering model. 10-fold cross-validation
was performed to evaluate the regression models, where the training and val-
idation splits were made according to sample groups representing different
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clustering parameter value combinations.
Table 22 shows the performance of the regression models, presented in

terms of R2 and MAE scores. The prediction accuracy of the models is rather
poor in all cases, with a relative exception of the LCN clustering algorithm.

Metric
Attraction LCN Point process

Nde f rde f dT P S κ r α

R2 0.150 0.089 0.105 0.254 0.401 −0.428 0.374 0.225
MAE 33.931 8.651 6.871 0.036 0.367 4.456 0.026 3.859

Table 22: Cross-validation scores of linear regression models predicting clus-
tering algorithm parameters based on statistical properties of Voronoi sector
areas.

Another approach was based on using the histograms of Voronoi sector
areas as the input features for the regression models. The histograms were
computed for each instance of generated clustered defect sets and consisted
of 40 bins in a range from 0 to 4, normalized for the values to sum up to
1. PCR models with a varying number of principal components were cross
validated following the same principle as described earlier. Despite the more
informative feature set, no significant performance gains for any clustering
algorithm parameter were achieved (Table 23) in comparison to simpler linear
regression models.

Model
Attraction LCN Point process

Nde f rde f dT P S κ r α

PCR(2) 0.165 0.084 0.044 0.310 0.504 −0.875 0.548 0.023
PCR(5) 0.264 0.099 0.113 0.309 0.513 −0.829 0.542 0.049
PCR(8) 0.260 0.096 0.116 0.310 0.518 −0.832 0.541 0.072

Table 23: Cross-validation scores (R2) of PCR models predicting clustering
algorithm parameters based on histograms of Voronoi sector areas.

Lastly, the linear models were replaced with a non-linear alternative, the
k-nearest neighbors regression. KNN models were fitted by using the EMD
metric for computing the distances between points (represented as histograms,
computed in the same way as before) and predictions were computed using
uniform weights assigned to neighborhood points. Table 24 shows the cross-
validation scores of all clustering parameter predictions, where the number of
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neighbors for the KNN algorithm was varied. Still, the use of a completely dif-
ferent regression approach did not result in a significantly improved prediction
accuracy, while the scores for some parameters got even lower.

Model
Attraction LCN Point process

Nde f rde f dT P S κ r α

KNN(2) −0.228 −0.094 −0.227 −0.048 0.199 −0.502 0.180 0.247
KNN(5) −0.089 0.081 −0.010 0.144 0.360 −0.342 0.307 0.387
KNN(10) −0.025 0.140 0.070 0.205 0.412 −0.296 0.352 0.413
KNN(20) −0.003 0.183 0.106 0.240 0.442 −0.285 0.385 0.424
KNN(50) 0.021 0.202 0.124 0.259 0.457 −0.295 0.408 0.420

Table 24: Cross-validation scores (R2) of KNN regresion models predicting
clustering algorithm parameters based on the histograms of Voronoi sector ar-
eas.

One explanation for the poor performance of all tested regression models
is related to the intrinsic properties of the data used in experiments. As for each
clustering algorithm and a specific combination of its parameters (Table 15) a
total of 100 defect sets were generated independently, each such group displays
certain variability due to the stochastic nature of all three clustering algorithms.
By treating each group of 100 such cases as a cluster (not to be confused with
defect clusters) of multivariate data points, where each point is a histogram of
the Voronoi sector areas of the defect set, one can define the centroid of the
data cluster as an averaged histogram of all defect sets belonging to that group.
Then, an average distance (in terms of EMD metric) between each histogram
of an individual defect set and its corresponding averaged histogram of the
group can be defined as follows:

d̄w =
1

GM

G

∑
i=1

M

∑
k=1

d(hi,k, h̄i). (52)

Here G denotes the total number of groups (unique clustering parameter
value combinations), M is the number of generated cases in each group (M =

100), hi,k is the k-th histogram from i-th group and h̄i is the averaged histogram
of i-th group. Similarly, an average distance between an averaged histogram h̄i

of i-th group and averaged histograms of all other groups can be defined:

d̄b =
1

G(G−1)

G

∑
i=1

G

∑
j=1,i ̸= j

d(h̄i, h̄ j). (53)
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The defined quantities are loosely related to the concepts of within-cluster
sum of squares (WCSS) and between-cluster sum of squares (BCSS), com-
monly used in evaluating the results of clustering algorithms, such as K-Means
[18]. As shown in Table 25, the values of d̄w and d̄b are in the same order
of magnitude for all defect clustering models, which suggests that defect set
groups generated with different parameter combinations can still overlap sig-
nificantly. The same is reflected by the silhouette scores, where negative or
zero values indicate poor separation of the groups.

Table 25: Group separation evaluated for different defect clustering models.

Clustering model Silhouette score d̄w d̄b

Attraction 0.021 2.42×10−3 5.22×10−3

LCN −0.057 3.95×10−3 5.42×10−3

Point process −0.209 7.08×10−3 8.48×10−3

2.6. Methodology validation with experimental AFM data

2.6.1. AFM dataset description

To validate the proposed methodology against real-world data, three AFM im-
ages of actual tBLMs were obtained. Each tBLM sample was formed in a sepa-
rate vial (following the experimental procedure described in earlier work [77])
and injected with vaginolysin (VLY) solution to induce membrane defects.
Samples were then imaged with an AFM microscope (Dimension Icon AFM,
Bruker) by scanning a single 2µm × 2µm surface at a time. Raw images
were pre-processed by performing 3rd-degree polynomial flattening, using
NanoScope Analysis software. The experiment and data acquisition were con-
ducted by Dr. Marija Jankunec, researcher at the Department of Bioelectro-
chemistry and Biospectroscopy, Life Sciences Center, Vilnius University.

Each image was stitched from a grid of 9 AFM image fragments taken at
512× 512 resolution and covering 2µm× 2µm membrane surface area, thus
the final image represents the area of 6µm× 6µm at 1536× 1536 resolution.
Figure 40 illustrates one such example with Voronoi diagram overlaid on top of
the AFM image where several defect clusters, characterized by a large number
of small sectors, can be observed. Coordinates of the defects present in each
image were annotated manually by a domain expert and Voronoi diagrams
with corresponding statistical properties were computed for all cases (Table
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26). Results show that experimentally registered defect distributions are sig-
nificantly different from baseline random cases in terms of standard deviation
and MAD, although this does not apply for skewness and kurtosis. Finding the
most closely matching probability distribution (a similar approach used for the
random defect distribution model, described in section 2.3) was not attempted
for this dataset, as its sample size was considered to be too small for this task.
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Figure 40: Left: combined AFM image, scan size is 36 µm2. Each highlighted
dot represents a membrane defect. A total of 235 defects are present in the
hexagonal domain denoted in the image, overlaid with the Voronoi diagram.
Right: histogram of Voronoi sector areas for the given defect set.

Table 26: Statistical properties of Voronoi sector areas of experimentally regis-
tered defect distributions in comparison with random defect distribution prop-
erties.

Domain Image N Nde f Stdev Skewness Kurtosis MAD

Hexagonal
1 234 10.01 1.22 2.21 10.00 0.83
2 148 6.33 1.12 1.80 6.52 0.70
3 235 10.05 0.88 1.21 4.25 0.79

Rectangular
1 374 10.39 1.17 1.78 6.40 0.83
2 235 6.53 1.06 2.02 8.63 0.72
3 328 9.11 0.81 1.06 3.78 0.78

- Random - - 0.54 1.18 5.38 0.49

2.6.2. Clustering model evaluation

In order to evaluate how applicable the proposed defect clustering models are
to the real defect sets (measured by AFM), the modeled EIS spectra obtained
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from the generated defect sets were compared with the corresponding spectra
of AFM defect sets (described in subsection 2.6.1). To perform that, the pa-
rameters for each clustering algorithm had to be selected so that the resulting
generated defect sets would be as similar as possible (in terms of clustering
effect) to the real ones. As shown earlier, Voronoi σ cannot be used alone
to unambiguously select parameters of any clustering algorithm, while the
regression models (subsection 2.5) exhibited poor performance of parameter
prediction. For these reasons, the algorithm parameters were instead selected
by comparing (using the EMD metric) the histograms of AFM defect sets to
the averaged histograms of generated defect sets (Table 15) and choosing the
closest match (lowest EMD value). All calculations were performed with three
defect size rde f options of 0.5 nm, 13 nm and 25.5 nm.

Table 27 shows the selected attraction clustering algorithm parameters for
each AFM surface as well as the EMD distances to the closest matching av-
eraged histogram of the generated defect sets. Due to the algorithm’s depen-
dency on Nde f and rde f parameters, dT was selected for each AFM surface and
rde f value, assuming the fixed defect density of Nde f = 10.

AFM surface rde f dT EMD

1 0.5 10 1.24×10−2

13.0 30 8.27×10−3

25.5 25 8.15×10−3

2 0.5 10 7.62×10−3

13.0 30 7.22×10−3

25.5 20 6.55×10−3

3 0.5 10 5.69×10−3

13.0 15 4.54×10−3

25.5 10 4.69×10−3

Table 27: Modeling parameters of the attraction algorithm selected for com-
parison with AFM data.

Parameters for the LCN algorithm were selected in a similar way (Table
28), except no distinction between different defect densities or sizes was made.
EMD distances to the best matching averaged histograms are somewhat lower
among all AFM surface cases, suggesting a relatively better fit between this
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model and the experimental data.

AFM surface P S EMD

1 0.00 0.75 7.94×10−3

2 0.06 1.00 4.95×10−3

3 0.06 0.75 2.62×10−3

Table 28: Modeling parameters of LCN algorithm selected for comparison
with AFM data.

Parameters for the point process model were selected in two different ways.
In the first approach, the parameter values (Table 29) were selected by his-
togram comparison, in the same way as for attraction and LCN models. The
other approach involved fitting the point process model to AFM data using
the minimum contrast method (described in subsection 2.2.3). Table 30 shows
this alternative set of parameters with the addition of EMD distances, com-
puted by generating 100 defect set instances with each parameter combination
and comparing their averaged histograms with corresponding histograms of
AFM defect sets.

AFM surface κ r α EMD

1 5 0.03 5 2.29×10−3

2 10 0.06 5 3.95×10−3

3 10 0.12 5 3.82×10−3

Table 29: Modeling parameters of point process algorithm selected for com-
parison with AFM data (minimum EMD distances from histogram compari-
son).

AFM surface κ r α EMD

1 61.14 0.006 6.12 6.04×10−3

2 80.71 0.005 2.91 2.59×10−3

3 159.64 0.005 2.05 2.77×10−3

Table 30: Modeling parameters of point process algorithm selected for com-
parison with AFM data (minimum contrast estimation).
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To perform further modeling of EIS spectra, for each one of the three AFM
surfaces and each rde f value a total of 10 defect set cases were generated, us-
ing the parameter values listed in the previous tables. In the case of attraction
and LCN models both defect density Nde f and count N were set equal to the
corresponding Nde f and N values of the AFM defect sets (Table 26), whereas
the defect sets produced by the point process model also had fixed Nde f , but
varying N values, ranging from 7 to 78 and from 174 to 511 for histogram
comparison and minimum contrast approaches correspondingly. The compar-
ison of EIS spectra obtained from AFM data and the generated clustered cases
is visualized in Figures S.15–S.16, Appendix 1.

Table 31 shows the means and standard deviations of Voronoi σ values
of defect sets generated with each AFM surface and defect clustering model
(using the selected parameters).

AFM surface Attraction LCN PP (EMD) PP (MC)

1 0.78 (0.19) 1.03 (0.10) 1.26 (0.37) 1.43 (0.11)
2 0.69 (0.12) 0.98 (0.11) 1.12 (0.32) 1.08 (0.08)
3 0.60 (0.05) 0.87 (0.08) 0.83 (0.18) 0.94 (0.06)

Table 31: Mean Voronoi σ values (standard deviations in parentheses) of clus-
tered defect sets generated using the selected parameters. PP denotes the point
process model, where EMD and MC stand for histogram comparison and min-
imum contrast methods, respectively.

Due to the moderate clustering effect evident in AFM data (Table 26) and
the corresponding EIS spectra containing no anomalous features (such as the
double minima), the EIS spectra of both experimental and generated clustered
defect sets were compared in terms of the minimum point coordinates, ex-
pressed as log fmin and argYmin. The following notation is used to represent the
differences between the generated and AFM cases on both axes:

D f = log f (model)
min − log f (a f m)

min , (54)

DY = argY (model)
min − argY (a f m)

min . (55)

For reference purposes, the random defect distribution model was initially
used to generate defect sets with N and Nde f properties equivalent to AFM data.
Table 32 shows the comparison of EIS spectra of both datasets. In all cases
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a systemic shift of both log fmin and argYmin is evident with the magnitude
depending on rde f . This is consistent with earlier observations discussed in
subsection 1.5.3. However, the shifts can be noticed to decrease as the Voronoi
σ gets lower in AFM defect sets.

AFM D f DY

surf. rde f = 0.5 rde f = 13.0 rde f = 25.5 rde f = 0.5 rde f = 13.0 rde f = 25.5

1 0.35 (0.01) 0.51 (0.01) 0.55 (0.01) -3.73 (0.58) -1.01 (0.38) 1.07 (0.36)
2 0.27 (0.01) 0.39 (0.02) 0.41 (0.02) -3.24 (0.52) -0.57 (0.66) 0.62 (0.63)
3 0.21 (0.01) 0.31 (0.03) 0.38 (0.02) -2.55 (0.45) -1.27 (0.45) -0.21 (0.38)

Table 32: Comparison of the minimum point coordinates of EIS spectra ob-
tained from AFM data and generated by using the random defect distribution
model.

A comparison of EIS spectra of attraction clustering model cases (Table
33) still indicate dependency on rde f , but D f tends to decrease when rde f in-
creases, in contrast to the random model. Although DY values are comparable
to the ones of random cases, the trend in their decrease (when rde f increases)
is less identifiable as DY is highest at rde f = 13 for all AFM cases. Standard
deviations of both D f and DY are similar to the random model, indicating rel-
atively low variation among the generated defect set instances of the attraction
model. Despite the lower Voronoi σ values (Table 31) of the generated attrac-
tion model cases relative to AFM defect sets, this clustering model shows a
slightly better match to AFM data in terms of D f and DY , as compared to the
random defect distribution model.

AFM D f DY

surf. rde f = 0.5 rde f = 13.0 rde f = 25.5 rde f = 0.5 rde f = 13.0 rde f = 25.5

1 0.36 (0.01) 0.14 (0.02) -0.04 (0.03) -3.48 (0.44) -3.52 (0.23) 1.64 (0.37)
2 0.27 (0.01) 0.14 (0.02) 0.05 (0.01) -3.09 (0.54) -3.43 (0.43) -0.62 (0.45)
3 0.21 (0.02) 0.24 (0.03) 0.24 (0.02) -2.16 (0.35) -3.04 (0.56) -1.32 (0.55)

Table 33: Comparison of the minimum point coordinates of EIS spectra ob-
tained from AFM data and the attraction model instances.

The comparison of LCN clustering model data (Table 34) against AFM
data reveals somewhat different trends. Mean D f values show little depen-
dency on rde f or specific AFM cases and are, in general, lower than corre-
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sponding log fmin shifts produced by the random model. However, DY values
are significantly higher in most cases, indicating a consistent upward shift of
argYmin. This is observed despite the fact that the Voronoi σ values of LCN de-
fect sets are closer to the AFM cases than the corresponding attraction model
instances. Standard deviations of both D f and DY are also much higher than in
the case of the attraction model, indicating more significant variations among
defect sets generated with the same clustering algorithm parameters.

AFM D f DY

surf. rde f = 0.5 rde f = 13.0 rde f = 25.5 rde f = 0.5 rde f = 13.0 rde f = 25.5

1 0.22 (0.04) 0.35 (0.10) 0.31 (0.16) 3.41 (1.18) 6.17 (0.80) 7.23 (1.29)
2 0.16 (0.04) 0.11 (0.13) 0.18 (0.05) 2.32 (0.98) 6.24 (1.53) 6.20 (0.91)
3 0.15 (0.04) 0.21 (0.04) 0.24 (0.04) 1.60 (0.75) 2.92 (1.07) 3.77 (0.98)

Table 34: Comparison of the minimum point coordinates of EIS spectra ob-
tained from AFM data and the LCN model instances.

The point process model showed qualitatively different results depending
on the method by which the algorithm parameters for generating defect set in-
stances were selected - histogram comparison (Table 35) or minimum contrast
method (Table 36). Results of the first approach indicate mean D f and DY

values comparable to LCN results in most cases. However, the standard de-
viations of both D f and DY are the highest among all tested defect clustering
models (often much exceeding the standard deviations of log fmin and argYmin

of comparable random defect distribution cases, presented in Table 4), reflect-
ing the influence of varying and relatively low defect counts N on the features
of EIS spectra.

The other approach by which the point process model parameters were
selected for modeling (minimum contrast method) produced the overall best
match to AFM data, compared to other tested defect clustering algorithms. As
Table 35 shows, the magnitudes of D f values for AFM surfaces 2 and 3 are
much lower than any previous scores of other models, with relatively worse
results of surface 1 still being better than the reference cases of the random
defect distribution model. An improvement over the said approach and other
defect clustering models is evident in DY values as well. Standard deviations of
D f and DY are significantly lower than in the alternative point process model
parameter selection approach and are comparable to the attraction clustering
model.
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AFM D f DY

surf. rde f = 0.5 rde f = 13.0 rde f = 25.5 rde f = 0.5 rde f = 13.0 rde f = 25.5

1 -0.04 (0.13) -0.30 (0.19) -0.15 (0.14) 3.20 (3.07) 4.17 (2.77) 3.62 (1.02)
2 0.11 (0.10) 0.18 (0.21) 0.15 (0.21) 5.37 (4.01) 7.29 (2.70) 7.08 (2.50)
3 0.20 (0.04) 0.28 (0.04) 0.35 (0.04) 2.64 (2.70) 2.46 (1.28) 3.20 (1.80)

Table 35: Comparison of the minimum point coordinates of EIS spectra ob-
tained from AFM data and the LCN model instances (parameters fitted by
histogram comparison).

AFM D f DY

surf. rde f = 0.5 rde f = 13.0 rde f = 25.5 rde f = 0.5 rde f = 13.0 rde f = 25.5

1 -0.13 (0.06) -0.24 (0.05) -0.28 (0.09) 3.23 (0.84) 2.71 (1.06) 1.87 (0.93)
2 -0.03 (0.03) -0.07 (0.05) -0.08 (0.03) 0.74 (1.03) 1.47 (0.88) 1.26 (0.80)
3 -0.03 (0.02) -0.04 (0.02) -0.04 (0.02) 1.14 (0.77) 0.93 (0.47) 0.68 (0.79)

Table 36: Comparison of the minimum point coordinates of EIS spectra ob-
tained from AFM data and the LCN model instances (parameters fitted with
the minimum contrast method).

2.7. Conclusions

• Three different algorithms (attraction, LCN, point process) for generat-
ing synthetic clustered defect sets have been presented and compared
against the random defect distribution model. All algorithms are capa-
ble of producing defect sets distinct from random cases and exhibiting a
varying degree of defect clustering.

• The standard deviation of Voronoi diagram sector areas (Voronoi σ )
computed for a defect set enables the quantification of the clustering
effect by a simple and interpretable metric. The mean value of 0.54 was
determined for the random defect distribution model which can be used
for the differentiation of random and clustered defect sets.

• Modeled EIS spectra of clustered defect sets exhibit qualitative differ-
ences compared to similar EIS data of random defect sets. The shapes
of EIS curves show dependency on Voronoi σ , where higher amounts
of defect clustering cause distortions (such as double minima) of EIS
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curves relative to the canonical cases of random or regular defect distri-
butions.

• Linear regression models for predicting Voronoi σ based on engineered
spectral features (describing the properties of EIS spectral peak) have
been shown to perform relatively poorly (R2 < 0.45) on the full clustered
EIS dataset. However, the analogous models performed better (R2 > 0.7)
on most of the subsets of the dataset corresponding to specific combina-
tions of Nde f and rde f . This indicates that the current approach cannot
fully decouple the variations in EIS spectra caused by clustering effects
from the variations related to membrane parameter values (such as Nde f

and rde f ). Such an issue is also reflected by significantly worse accuracy
of the membrane parameter predictions obtained with the methodology
presented in Chapter 1.

• The presented defect clustering models were compared with the random
defect distribution model in the context of experimentally-measured AFM
defect sets. Analysis of modeled EIS data showed that the point process
model with its parameters estimated by the minimum contrast method
displayed the best match.
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3. Automated defect detection in AFM images

Automated object detection in digital images has been a key area of interest
in computer vision research during the last few decades [90, 86]. A mul-
titude of traditional image processing methods based on handcrafted feature
extraction have, for many tasks, recently been outperformed by deep learning
approaches, based on various architectures of convolutional neural networks
(CNN) and enabled by the availability of large amounts of training data and
high-performance specialized computing hardware. The automated detection
of membrane defects in AFM images also falls into the described problem cat-
egory and is relevant in the context of computational membrane models. EIS
modeling of real defect distributions obtained from AFM images (discussed
in Chapters 1 and 2) was so far performed using the defect coordinate sets
manually annotated by a domain expert. Automating this process would be
beneficial in various aspects of EIS modeling and quantifying membrane dam-
age from AFM data.

The task of defect detection in AFM images can be predefined by several
assumptions:

• Membrane defects present in the grayscale height-channel AFM images
are visible as light objects on a dark background and can be character-
ized as either complete or incomplete ring-like structures with an ap-
proximately constant diameter.

• Defects of varying completeness can be clustered together.

• Membrane images are affected by noise and distortions inherent in the
AFM image acquisition process.

• The amount of available image data is often limited due to expensive
imaging equipment or materials and complex measurement process.

To the best of our knowledge, no generic methods have yet been proposed
for automated defect detection in AFM images of tBLM membranes, taking
into account the listed properties of the problem. Our literature review suggests
that in many cases researchers still resort to the manual work of annotating and
quantifying objects of interest in AFM images of lipid membranes [68, 84, 53].

Despite the absence of available solutions for this specific defect detec-
tion task, substantial progress has been recently made in developing practical
methods for other similar problems. Meng et al. [82] presented an algorithm
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based on local adaptive Canny edge detection and circular Hough transform
which is suitable for recognizing particles in scanning electron microscope
(SEM) or transmission electron microscope (TEM) images. Another study
conducted by Venkataraman et al. [25] showed that rotavirus particles in AFM
images can be detected by applying a series of image pre-processing, segmen-
tation and morphological operations. Marsh et al. [81] proposed the Hessian
blob algorithm for detecting biomolecules in AFM images and showed its su-
periority against the threshold and watershed image segmentation algorithms.
Other recent studies also showed that deep learning techniques can be success-
fully applied to detect complex-shaped objects in microscopy images. Sotres
et al. [98] used the YOLOv3 object detection model and a Siamese neural
network to determine the locations of DNA molecules in AFM images and
identify the same molecule in different images. Okunev et al. [93] applied a
Cascade Mask-RCNN neural network to detect metal nanoparticles in scan-
ning tunneling microscopy (STM) images. An open-source software tool for
the automated biomolecule tracing in AFM data based was also recently de-
veloped and presented by Beton et al. [96]

3.1. Object detection algorithms

3.1.1. Hough transform

Hough transform (HT) is one of the classic image processing algorithms, first
developed for the detection of straight lines in noisy images [2]. The original
algorithm operates on a binary image and is based on a voting procedure, in
which each pixel in the image coordinate space is mapped to all possible object
locations in its parameter space. In the case of straight-line detection, points
(x and y coordinates) belonging to a single line are defined by a parametric
equation in polar coordinates (line parameterized by θ and ρ):

ρ = xcosθ + ysinθ . (56)

HT for a given binary image is performed by initializing a 2D array (re-
ferred to as the accumulator array) representing all possible values of θ and ρ

at a desired level of discretization. For each non-zero pixel in the image, the
accumulator array values corresponding to all lines possibly passing through
that point are incremented. Afterwards, the coordinates of the maximum val-
ues in the accumulator array are selected (by a specified threshold or some
non-maximum suppression technique) as the detected lines in the image.
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Figure 41: Example of the original image and the corresponding Hough accu-
mulator array [55].

Circular Hough transform (CHT) is a modification of standard HT used to
detect circular patterns in images, where a circle is characterized by its center
coordinates a and b and the radius r:

(x−a)2 +(y−b)2 = r2. (57)

CHT is implemented in a similar way as the standard HT, where the accu-
mulator array is three-dimensional (representing possible circle parameters a,
b and r).

3.1.2. Convolutional neural network

Convolutional neural networks (CNN) were first introduced by LeCun et al. [11]
as a novel method for handwritten character recognition. The main advantages
of CNNs over the typical feed-forward artificial neural networks (ANN) are
the reduced number of trainable weights and sensitivity to spatial features of
an input image. Such models typically consist of the following layers [65]:

• Convolutional layer. This layer represents a number of convolutional
image filters of selected dimensions (i.e. 3× 3 pixels) and strides that
are applied on the input matrix, resulting in feature maps which are then
passed to the subsequent layer of the network.

• Pooling layer. This special type of non-trainable layer (also refered to
as the subsampling layer) reduces the dimensions of the feature maps
(outputs of the preceding convolutional layer) by computing the average
or maximum values.
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• Fully connected (FC) layer. Analogous to feed-forward neural networks,
FC layers consist of fully connected neurons with some activation func-
tions (i.e. sigmoid), use the flattened output of previous convolutional
and pooling layers as its input and perform the actual classification task
on the image.

Figure 42 illustrates an example of CNN architecture, consisting of multi-
ple convolution, pooling (subsampling) and fully-connected layers.

Figure 42: Example of LeNet-5 CNN architecture [11].

Although the original CNN models were most often applied for image
classification tasks, various architectures were recently developed for object
detection as well. Region-based CNN (R-CNN) [47] was one of the initial
solutions based on a two-stage object detection approach, where candidate re-
gions (likely to contain the objects of interest) are first selected in the original
image and then subsequently classified using a CNN model. The original R-
CNN was later modified to achieve better performance (Fast R-CNN [58]) and
perform image segmentation tasks (Mask R-CNN [74]).

Another family of object detection models, referred to as one-stage detec-
tors was recently introduced with the YOLO model [69]. In this approach, a
single deep neural network is applied for the full image, subdivided into candi-
date regions, and probabilities of object presence are predicted simultaneously
for all possible locations. In comparison to two-stage detectors, such imple-
mentation greatly improved detection performance, albeit at the expense of
lower object localization accuracy. SSD (single-shot multibox detector) [67]
is another notable example of one-stage detectors, which operate on multiple-
scale feature maps.
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3.1.3. Detection accuracy evaluation

Although membrane defects are primarily characterized by their center coor-
dinates and defect radius, these attributes can be used to express the defect
position in the image as its bounding rectangle. By comparing two sets of
bounding rectangles, corresponding to true and predicted defect positions, de-
fect detection accuracy can be quantitatively evaluated.

(a) Intersection (b) Union

Figure 43: Bounding rectangle overlap of true and predicted defect positions.

IoU =
Btrue ∩Bpred

Btrue ∪Bpred
. (58)

To count the number of correct detections, the bounding rectangle of each
true defect position (Btrue) is matched with its closest prediction (Bpred). The
overlap between each such pair of true and predicted bounding rectangles is
evaluated by the intersection over union (IoU) metric (58) (also known as the
Jaccard index), which is expressed as the ratio of bounding rectangle intersec-
tion and union areas (Fig. 43). Higher IoU values correspond to a better match
between both bounding rectangles. If IoU value is above the chosen threshold
(i.e. 0.5), the detection is assumed to be a true positive (TP). Otherwise, if no
matching prediction exists for a given true position, such detection is counted
as a false negative (FN). In the opposite case, when no true bounding rectan-
gle can be matched for a given prediction, a false positive (FP) is assumed.
By counting all such cases of correct and incorrect detections, overall defect
detection accuracy is summarized by precision and recall metrics [62]:

Precision =
T P

T P+FP
. (59)

Recall =
T P

T P+FN
. (60)
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Both precision and recall can also be expressed by the F1 metric:

F1 = 2× Precision×Recall
Precision+Recall

. (61)

Although the described metrics are most commonly used to measure clas-
sification model performance, they have also been applied in evaluating object
detection accuracy in many works [26, 64, 57].

3.2. Defect detection experiments

3.2.1. AFM image dataset

The AFM dataset described earlier (Table 26, chapter 2) was reused for de-
fect detection experiments further described in this section. Image fragment
sets of each cell were partitioned into training and test subsets by assigning 5
fragments for training and 4 for testing. Test fragments were selected to rep-
resent a cohesive 4µm× 4µm surface patch at the lower right corner of the
fully stitched image. Table 37 shows the total number of annotated defects (N)
and average defect density (Nde f ) for each AFM image cell and training/test
subset.

Table 37: AFM image sets used for the defect detection model training and
testing.

AFM surface Subset Image fragments N Nde f Voronoi σ

1 Training 5 202 10.10 1.18
2 Training 5 138 6.90 1.12
3 Training 5 170 8.50 0.77

1 Test 4 172 10.75 1.20
2 Test 4 97 6.06 1.02
3 Test 4 158 9.88 0.91
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Figure 44: Example of an AFM image fragment with an instance of defect
cluster zoomed in.

3.2.2. TopoStats

The first defect detection experiment was performed using an open-source soft-
ware tool TopoStats, recently developed for biomolecule detection in AFM im-
ages [96]. Although the tool is not specifically designed for defect detection in
tBLM membrane images, it does support several types of molecules including
the so-called membrane attack complexes (MAC) which are ring-like protein
structures somewhat resembling the tBLM membrane defects. The default pa-
rameter settings specified for MAC pore detection were adjusted by setting the
minimum area to 2×10−7 and the maximum and minimum deviation from the
median pixel size to 5.0 and 0.5 respectively, to adapt the tool for the specific
resolution of AFM images. Each detected grain was treated as an individual
defect with its coordinates derived from the center of the grain area. Precision,
recall and F1 values were computed as described in subsection 3.1.3. Table 38
summarizes the obtained detection results.

Table 38: Defect detection (with TopoStats) accuracy in test AFM images.

AFM surface Ntrue Npred Precision Recall F1

1 172 53 0.754 0.233 0.355
2 97 31 0.742 0.237 0.359
3 158 79 0.886 0.443 0.591
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(a) Illustrative image fragment containing
defect clusters (surface 2).

(b) Illustrative image fragment without
defect clusters (surface 3).

Figure 45: Examples of true defect positions (green rectangles) and detected
ones by using TopoStats (red rectangles). An instance of a defect cluster and
the corresponding true and predicted defect positions is zoomed in on the left
image.

Despite the relatively high precision, the recall is low in all cases, indicat-
ing a large number of false negatives. The visual inspection of the detection
results revealed that the tool poorly resolved defect clusters where the major-
ity of such instances were treated as a single defect (example shown in Figure
45). This can be explained by the lack of the tool’s sensitivity to the sizes of
detected objects, which is relevant for the detection task.

3.2.3. Area measurement method

To address the issue of defect cluster separation observed in the previous ex-
periment, a simple method based on basic image processing operations was
implemented and tested. The main assumption of the approach was that a sin-
gle defect takes up a certain number of pixels in the image and their clusters
can be resolved by dividing them into equally-sized parts, ignoring the fine
details of image data in those regions. The algorithm (further referred to as the
area measurement method) consists of the following steps:

1. Image thresholding. The initial grayscale AFM image is converted into
a binary image using a fixed threshold value T .
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2. Morphological processing. Thresholded regions are denoised by apply-
ing the binary closing operation and removing small objects (lesser than
5 pixels) [55].

3. Defect count determination. The number of defects making up each re-
gion is determined by dividing the region area (in pixels) by a predefined
amount S and rounding up the resulting ratio.

4. Defect coordinate assignment. The exact center coordinates of the de-
fects are determined by performing K-means clustering of the pixel co-
ordinates of each region (using the cluster count from the previous step)
and using the centroids of each pixel cluster.

To perform the experiment on the test AFM images, the parameter values
of T = 100 and S = 130 were selected by running the algorithm on the training
set AFM images with varying S and T values and selecting the ones yielding
the highest average F1 value. Table 39 shows the test results. Despite the sim-
plistic approach, the algorithm performed significantly better than TopoStats
in terms of recall, although precision was reduced for test images 2 and 3 (de-
tection examples presented in Fig. 46). Overall F1 scores were higher for all
test cases.

AFM surface Ntrue Npred Precision Recall F1

1 172 114 0.860 0.570 0.685
2 97 114 0.553 0.649 0.597
3 158 194 0.613 0.753 0.676

Table 39: Defect detection accuracy in test AFM images of the area measure-
ment method.
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(a) Illustrative image fragment containing
defect clusters (surface 2).

(b) Illustrative image fragment without
defect clusters (surface 3).

Figure 46: Examples of true defect positions (green rectangles) and detected
ones by using the area measurement method (red rectangles).

3.2.4. Hough transform

The next algorithm, based on circular Hough transform (CHT), is defined with
an assumption that membrane defects in AFM images are visible as light
circle-like structures on dark background, having an approximately constant
diameter. The implemented algorithm consists of the following steps:

1. Image thresholding. The initial grayscale AFM image is converted into
a binary image, where ones represent the objects (defects) and zeros
represent the background (membrane). The exact threshold is obtained
using the minimum method [1].

2. Morphological processing. Binary image areas corresponding to defects
are converted into single-pixel width contours by applying the morpho-
logical thinning operation [6].

3. Circular Hough transform. The final defect detection is performed by
applying CHT on the thresholded and thinned binary image, using some
pre-selected Hough threshold and a varying circular radius.

The algorithm was applied to the test image set using the Hough threshold
value of 0.28 and circle radius varied from 3 to 7 pixels. These specific param-
eter values were selected from a set of different combinations by first running
this algorithm on the training image set, evaluating defect detection accuracy
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in terms of F1 and selecting the parameter combination resulting in the highest
average F1 value (0.468 on the training image set). Test results (Table 40) are
comparable to the previously described area measurement method, although
the average precision is lower due to overall higher detection counts, corre-
sponding to more false positives. Figure 47 illustrates the detection results
with two different AFM image fragments.

AFM surface Ntrue Npred Precision Recall F1

1 172 201 0.577 0.674 0.622
2 97 156 0.436 0.701 0.538
3 158 140 0.614 0.544 0.577

Table 40: Defect detection accuracy in test AFM images of the CHT-based
algorithm.

(a) Illustrative image fragment containing
defect clusters (surface 2).

(b) Illustrative image fragment without
defect clusters (surface 3).

Figure 47: Examples of true defect positions (green rectangles) and detected
ones by using the CHT-based method (red rectangles).

3.2.5. Convolutional neural network

To perform defect detection experiments using convolutional neural networks,
we used an SSD FPN architecture object detector. This model consists of mul-
tiple components. ResNet-50 is used as the backbone for deep feature extrac-
tion. Feature Pyramid Network (FPN) uses ResNet to construct a multi-scale
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feature pyramid from a single input image. Finally, a variation of a single-shot
multibox detector (SSD) with focal loss (RetinaNet) is used to perform the
actual object detection. Network architectures are described in more detail in
publications [59, 61, 76].

The initial model [97] was pre-trained with the COCO image dataset [54]
to detect objects of 90 different types. In order to adapt it for defect detection in
AFM images, the model was re-trained to detect a single type of object (mem-
brane defect) using 15 AFM images (training fragments) described in Table
37 and containing a total of 510 annotated defect instances. Data augmenta-
tion techniques were not applied for the initial experiments with the described
CNN model, considering the defect instances to be relatively simple objects,
weakly affected by scale or orientation. Each training image fragment with
512×512 resolution was scaled to match the model input of 640×640 color
(RGB) images. Tensorflow 2.0 framework was used to train and evaluate the
model and the training was performed using Nvidia GTX 1080 GPU hardware.
The model was trained for 104 epochs and total training loss (expressed as the
weighted sum of localization and classification loss) is visualized in Figure 48.
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Figure 48: Total training loss of the model.

The trained model was evaluated with each of 12 test image fragments
(Table 37) and the detection results were aggregated to match the layout of
4 stitched fragments per each AFM surface. Bounding boxes of all detected
defect instances were equalized to match the width and height of 50 nm, corre-
sponding to defects with a circular radius of 25 nm. Defect instances predicted
by the model were compared with the true defect positions and the overall
model accuracy was evaluated using the precision, recall and F1 metrics for
each AFM surface (Table 41).

Precision and recall scores are comparable to previous experiments con-
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ducted with simpler algorithms, although the average F1 score among all test
images is slightly higher. Defect clusters (Figure 49, left) still proved to be
relatively difficult to resolve due to poorly visible surface features inside the
clusters. However, the model performed fairly well for certain image frag-
ments with no defect clusters present (Figure 49, right). This is also illustrated
by the fact that the test image of AFM surface 3 which indicates the lowest
amount of defect clustering in terms of σ (Table 37) also have the highest
overall F1 score among all tested algorithms.

(a) Illustrative image fragment containing
defect clusters (surface 2)

(b) Illustrative image fragment without
defect clusters (surface 3)

Figure 49: Examples of the true defect positions (green rectangles) and the
predicted (red rectangles) ones by using the convolutional neural network. An
instance of a defect cluster and the corresponding true and predicted defect
positions is zoomed in on the left image.

Table 41: Defect detection accuracy of the test AFM images and the resulting
differences between EIS spectra of true and predicted defect sets.

AFM surface Ntrue Npred Precision Recall F1

1 172 129 0.775 0.581 0.664
2 97 119 0.555 0.680 0.611
3 158 152 0.757 0.728 0.742
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3.3. Defect detection accuracy effect on EIS spectra

While the investigated defect detection algorithms indicated adequate perfor-
mance with real AFM data, it remains unclear how much the detection inaccu-
racies impact modeled EIS spectra, relative to true known defect coordinates.
In order to quantitatively assess the relationship between the defect detection
accuracy and the corresponding variations in EIS spectra, a substantial number
of defect detection result sets is required. Such detection results should exhibit
different precision and recall values distributed in a certain range. However,
such specific detection results can be difficult to acquire by applying object
detection models trained using real AFM images and annotated true defect po-
sitions. Another issue is the limited amount of available AFM image data,
which prevents from collecting a sufficiently large collection of true and pre-
dicted defect set pairs for EIS modeling.

To work around these issues, an alternative approach was chosen by which
defect sets are synthetically generated to emulate imperfect defect detection
results at varying accuracy levels. Each synthetic case is generated by starting
with the initial set of annotated true defect coordinates and applying certain
modifications (defect addition, removal, coordinate shifting) to acquire a new
defect set equivalent to the defects being detected by some model with im-
perfect accuracy. Such a method is different from other defect set generation
algorithms presented in this work in the way that it aims to modify an existing
(AFM-registered) defect set, instead of generating a completely new defect set
with selected N, Nde f or other properties (such as the clustering model param-
eters).

3.3.1. EIS modeling

To quantify the discrepancy between the EIS spectra modeled for any given
pair of true (annotated by the domain expert) and predicted (by an object de-
tection algorithm) defect sets we used the positions of the minima points of the
curves (example in Figure 50) along both frequency and admittance phase axes
(assuming that the clustering effect on the EIS spectral shapes is negligible):

∆ flog = log10( f (true)
min )− log10( f (pred)

min ), (62)

∆argY = argY (true)
min − argY (pred)

min . (63)
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Figure 50: Spectral features of modeled EIS spectra used in quantifying the
difference between true and predicted defect set cases.

To characterize the relationship between the defect detection accuracy and
deviations in the resulting EIS spectra, using the F1 metric alone is not enough
due to the observation that EIS spectral features are more strongly influenced
by the defect size and density than by the specific positions of the defects (as
discussed in chapter 1). For this reason, a predicted defect set might poorly
match the true one and thus exhibit a low F1 value, although their correspond-
ing EIS spectra might closely match, as long as the overall properties of defect
count and size are similar. To take this effect into account we also use an ad-
ditional QN metric which represents the ratio of defect densities (number of
defects per square micrometer) from predicted and true defect sets:

QN = N(pred)
de f /N(true)

de f . (64)

3.3.2. Synthetic non-clustered defect set generation

The initial approach of producing defect sets imitating non-perfect defect de-
tection results was based on the assumption that the original defect set contains
randomly distributed defects and no clustering is in effect. Such defect sets
would imitate the results of a defect detection algorithm that poorly resolves
defect clusters present in AFM images (such as the TopoStats tool, described in
subsection 3.2.2). A single defect set is generated by the following procedure:

1. True coordinates (x(true) and y(true)) of each existing defect (in the origi-
nal defect set) are shifted by adding normally-distributed random values:

x(pred) = x(true)+δ ; y(pred) = y(true)+δ ; δ ∼ N (µ,σ2).

This results in realistically imperfect matches between true and pre-
dicted bounding rectangles of the defects.
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2. False negatives are introduced by removing nremove number of randomly
selected defects from the original defect sets.

3. False positives are introduced by adding nadd number of defects with
coordinates sampled from the uniform distribution, matching the image
dimensions.

For each of the 3 test AFM surfaces, a total of 100 defect sets were gen-
erated by independently adjusting nadd and nremove from 0 to N/2 (half of the
original defect count). Due to the varying numbers of artificially introduced
false positive and false negative detections, the defect sets exhibited precision
and recall values ranging from approximately 0.5 to 1 (Table 42).

Table 42: Summary of generated non-clustered defect sets for each AFM test
image. Precision, recall and F1 values were computed against true defect sets
annotated in the given AFM image.

AFM surface Cases Precision Recall F1

1 100 0.52 - 1.00 0.52 - 0.99 0.52 - 0.98
2 100 0.53 - 1.00 0.53 - 1.00 0.53 - 1.00
3 100 0.55 - 1.00 0.53 - 1.00 0.54 - 0.99

In addition to the aforementioned detection accuracy metrics, Voronoi σ

values were also computed for all generated defect sets and compared with
the corresponding values of the original AFM test surfaces. Voronoi σ his-
tograms (Figure 51) indicate that most of the generated defect sets exhibit a
lower degree of clustering as compared to the original AFM defect sets.
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Figure 51: Voronoi σ histograms of synthetically generated non-clustered de-
fect sets. Red dashed lines are the Voronoi σ of original AFM test defect sets.
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EIS spectra were modeled for all of the generated defect sets and com-
pared against the initial EIS spectra of AFM defect sets in terms of ∆ flog and
∆argY. To summarize the effect of defect detection accuracy on the resulting
EIS spectra, generated defect sets of each AFM surface were partitioned into
several subsets corresponding to fixed-width intervals of F1 and QN values.
Mean ∆ flog and ∆argY values were then computed for each subset.

The results presented in Figure 52 indicate that mean ∆ flog values across
all F1 and QN intervals significantly differ among the three AFM test surfaces
and tend to get lower in magnitude as the Voronoi σ of original AFM de-
fect sets decreases (the lowest absolute ∆ flog values can be observed for AFM
surface 3). However, mean ∆argY values do not indicate clear dependency
on Voronoi σ of original AFM defect sets, although on average they still ap-
proach 0 as the simulated defect detection accuracy increases. As could be
expected from the simplistic approach of non-clustered defect set generation,
the effect of decreasing Voronoi σ is evident, for example, in mean ∆ flog ver-
sus QN intervals where the average deviations are significantly below 0 for
[0.9;1.1] interval (which corresponds to a relatively small difference in defect
count between original and generated defect sets). In total, ∆ flog and ∆argY
range from −0.47 to 0.23 and from −2.38 to 2.79 respectively (full datasets
are visualized in Fig. 62, App. 2), which could be considered as relatively
low deviations assuming the widely varying F1 and QN values and systemic
decrease of Voronoi σ .
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Figure 52: Mean ∆ flog and ∆argY values computed for subsets of generated
non-clustered defect sets corresponding to different intervals of F1 and QN.
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3.3.3. Synthetic clustered defect set generation

An alternative method for generating synthetic defect sets is based on the as-
sumption that the defect detection algorithm can resolve defect clusters rea-
sonably well and the overall clustering effect in the predicted set is retained
(relative to the true set) despite some incorrect detections. To generate such
defect sets, the previously described method was modified to sample the co-
ordinates of FP or FN cases using the method of kernel density estimation
(KDE) [34] instead of the uniform distribution. The KDE model represents an
empirical probability distribution function of the X and Y coordinates of the
defects. Figure 53 shows an example of a clustered defect set and its corre-
sponding KDE model, where warmer colors correspond to the higher values
of its probability density function.

Figure 53: KDE model of true defect coordinates (white dots) annotated for
AFM test image #1. The background color represents the log probability den-
sity of the fitted KDE distribution.

The modified procedure for generating a series of clustered defect sets con-
sists of the following steps:

1. KDE model is fitted to the coordinates of the original defect set.

2. For each synthetic defect set case:

(a) True coordinates (x(true) and y(true)) of each existing defect are
modified by adding normally-distributed random values:

x(pred) = x(true)+δ ; y(pred) = y(true)+δ ; δ ∼ N (µ,σ2).
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(b) A number nremove of defect coordinate pairs are sampled from the
KDE model. True defects closest to the sampled coordinates are
selected and removed from the initial defect set. This introduces
false negatives (FN) into the generated defect set and reduces recall
accordingly.

(c) A number nadd of new coordinate pairs are sampled from the KDE
model and defects with these coordinates are added to the gen-
erated defect set. This represents false positives (FP) and corre-
sponds to lowered precision values.

The described algorithm was used to generate the synthetic cases for each
of the three AFM test images independently. KDE instances were fitted using
the Gaussian kernel and bandwidth parameter set to 400. Parameters nremove

and nadd were initially set to 0 and then incremented throughout the generation
process by a step quantity corresponding to 3% of true defect count N until the
maximum value of N/2 was reached. Table 43 shows the properties of the
synthetic defect sets generated by the described procedure. Although some
variability of the clustering effect is still present in the defect sets (Figure 54) a
qualitative difference relative to the previously described method (Figure 51) is
evident as the Voronoi σ of generated defect sets are approximately normally
distributed around the initial Voronoi σ values.

Table 43: Summary of generated defect sets for each AFM test image. Preci-
sion, recall and F1 values were computed against true defect sets annotated in
the given AFM image.

AFM surface Cases Precision Recall F1

1 324 0.49 – 1.00 0.48 – 0.99 0.49 – 0.98
2 256 0.54 – 1.00 0.51 – 1.00 0.53 – 1.00
3 256 0.53 – 1.00 0.51 – 1.00 0.53 – 0.99
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Figure 54: Voronoi σ histograms of synthetically generated clustered defect
sets. Red dashed lines are the Voronoi σ values of the original AFM defect
sets.

The EIS spectra of the generated cases were compared to the initial data
and summarized in the same way as previously, with results presented in Figure
55. Despite the modification in the defect set generation process, allowing to
better retain the clustering effect of the original defect set, discrepancies in the
modeled spectra in terms of ∆ flog decreased by no more than 40%, while the
mean ∆argY values show a significant fewfold increase. The full dataset from
which the mean values were derived is visualized in Figure 63, Appendix 2.
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Figure 55: Mean ∆ flog and ∆argY values computed for subsets of generated
clustered defect sets corresponding to different intervals of F1 and QN.
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3.4. Comparison of modeled and experimental EIS spectra

The effect of imperfect defect detections on EIS spectra was also evaluated
using the actual detection results (further referred to as the predicted defect set)
obtained with a convolutional neural network (subsection 3.2.5) as well as the
experimental EIS data measured for the three AFM surfaces (Table 26, Chapter
2). Experimental data was obtained by the similar procedures as described in
sections 1.5.6 and 2.6.1. For the initial comparison, EIS spectra were modeled
using both true and predicted defect sets. Table 44 shows the discrepancy in
terms of ∆ flog and ∆argY.

Table 44: Discrepancies in EIS spectra of true and predicted (with CNN model)
defect sets.

AFM surface F1 QN ∆ flog ∆argY

1 0.664 0.750 0.009 0.735
2 0.611 1.227 -0.013 0.681
3 0.742 0.962 -0.027 0.864

To evaluate how this mismatch would translate to membrane parameter
(ρsub and rde f ) predictions from EIS spectra, a series of FEA modeling tasks
were performed with each pair of true and predicted defect sets for all three
AFM surfaces (test data) separately. Two parameters were varied in each sce-
nario: defect radius rde f was adjusted from 1 nm to 13 nm with increments
of 2 nm, while the specific conductivity of the submembrane layer ρsub was
adjusted in logarithmic scale from 104 to 105 Ω·cm with power increments
of 0.1, resulting in a total of 77 parameter combinations. Modeled curves of
both true and predicted defect sets were matched against the experimental EIS
data by minimizing the L1 norm of minimum point coordinates (frequency and
admittance phase axes) between a pair of curves.

Figure 56 shows the modeled and experimental curves of each surface as
well as the specific rde f and ρsub values of the corresponding modeled cases.
As the experimental EIS measurements were conducted at a narrower fre-
quency range (from 100 Hz to 104 Hz), the modeled curves were truncated
accordingly. The best-matched modeled curves from both true and predicted
defect sets display a minor difference of 0.1 in terms of logρsub in all cases,
while rde f differences range from 0 nm to 4 nm.
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Figure 56: Admittance phase data of experimental EIS measurements (blue
curves) versus modeled cases (green and red curves corresponding to manually
annotated defect coordinates and CNN model predictions, respectively). The
A, B and C panes correspond to AFM surfaces 1, 2 and 3, respectively.

For reference, the regression equations (36) and (37) were also used to
estimate ρsub and rde f values from experimental EIS curves by using the de-
fect densities Nde f determined from AFM data (Table 26). Table 45 shows
predicted parameter values for each membrane sample. The data shows that
regression models over-estimate both ρsub and rde f in comparison to the pre-
vious set of results (Figure 56), although the values from both sets still show
correlation, where logρsub difference ranges approximately from 0.3 to 0.5 in
all test cases. Such systemic shifts can be explained by the fact that the cur-
rently used regression models do not take into account the clustering effect,
which is evident from AFM data although being relatively low (in terms of
Voronoi σ ).
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Table 45: Membrane parameters predicted from experimental EIS data by us-
ing linear regression models and Nde f values determined from AFM data.

AFM surface rde f log10 ρsub

1 4.289 4.717
2 5.435 4.516
3 3.534 4.810

3.5. Conclusions

• Defect detection experiments performed with a small amount of AFM
image data produced F1 scores ranging from 0.538 to 0.742 (excluding
the results of the TopoStats tool). The convolutional neural network ap-
plied for the task showed only marginally better results compared to the
simpler methods based on Hough transform or basic image processing
operations.

• With the goal of estimating the effect of defect detection errors on the
modeled EIS spectra (given that only a small amount of annotated AFM
image data is available), two methods of generating synthetic defect de-
tection sets with specific F1 and QN values were presented. The com-
parison of EIS spectra obtained from original and generated defect sets
defines the approximate error margins (in terms of ∆ flog and ∆argY)
for defect detection algorithms with known accuracy (expressed in F1
metric). However, both defect set generation methods produce signifi-
cant variations of the clustering properties (in terms of Voronoi σ ). This
leads to systemic deviations in the modeled EIS spectra which cannot
yet be reliably decoupled from deviations caused by varying F1 and QN

values.

• The methodology of membrane parameter prediction was applied in
conjunction with a defect detection algorithm (convolutional neural net-
work) to predict membrane properties by using both EIS and AFM data,
measured for the same tBLM samples. This presented a proof-of-concept
case of estimating membrane parameters (specific resistance of sub-
membrane layer ρsub) which are inaccessible to EIS or AFM measure-
ment techniques in laboratory conditions.
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General conclusions

• The three-dimensional membrane model (implemented with FEA tech-
nique) is capable of simulating valid EIS responses with arbitrary mem-
brane defect distributions. The methodology of EIS data analysis based
on machine learning techniques was demonstrated by predicting quanti-
tative membrane parameters of defect density, size and submembrane
specific resistance (all of which are not directly accessible from EIS
spectra), using EIS data modeled by using random defect distributions
as well as experimental EIS data.

• Three presented defect clustering models can be used to generate realis-
tic defect sets exhibiting a varying degree of clustering and parameterize
real AFM-registered defect sets. The standard deviation of Voronoi dia-
gram sector areas computed for clustered defect sets has been proposed
as a simple metric suitable for quantifying clustering effect and differen-
tiating clustered and randomly-distributed defect sets. The defect clus-
tering effect is reflected by changes in resulting EIS spectra which can-
not yet be fully decoupled (with investigated methods) from the influ-
ence of other membrane parameters (such as defect density and size).

• Tests of automated defect detection algorithms on AFM membrane im-
ages indicated F1 scores ranging from 0.538 to 0.742, with the convolu-
tional neural network performing marginally better than simpler meth-
ods based on Hough transform and basic image processing operations.
Due to the limited amount of AFM image data, two methods were pre-
sented for generating synthetic defect sets corresponding to specific de-
tection accuracy levels and estimating error margins in resulting EIS
spectra.
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Appendix 1
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Figure 57: Comparison of EIS spectra modeled using AFM-measured defect
sets (dashed curves) and instances of random defect distribution model (solid
bands).
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Figure 58: Comparison of EIS spectra modeled using AFM-measured defect
sets (dashed curves) and instances of attraction clustering model (solid bands).
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Figure 59: Comparison of EIS spectra modeled using AFM-measured defect
sets (dashed curves) and instances of LCN clustering model (solid bands).
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Figure 60: Comparison of EIS spectra modeled using AFM-measured defect
sets (dashed curves) and instances of point process clustering model (solid
bands), with parameters determined by histogram comparison.
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Figure 61: Comparison of EIS spectra modeled using AFM-measured defect
sets (dashed curves) and instances of point process clustering model (solid
bands), with parameters determined by minimum contrast method.
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Appendix 2
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Figure 62: Dependencies between defect detection accuracy (expressed in
terms of F1 and QN) and deviations in corresponding EIS spectra. Coloured
dots represent synthetically generated non-clustered defect sets at varying de-
tection accuracy levels, squares with green borders indicate real detection re-
sults obtained with CNN model (Table 41). Scatter plot pairs A/B, C/D and
E/F represent AFM surfaces 1, 2 and 3 respectively.
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Figure 63: Dependencies between defect detection accuracy (expressed in
terms of F1 and QN) and deviations in corresponding EIS spectra. Coloured
dots represent synthetically generated clustered defect sets at varying detec-
tion accuracy levels, squares with green borders indicate real detection results
obtained with CNN model (Table 41). Scatter plot pairs A/B, C/D and E/F
represent AFM surfaces 1, 2 and 3 respectively.
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Santrauka (Summary in Lithuanian)

Tyrimų sritis

Disertacijoje pristatomo tarpdisciplininio tyrimo sritis - prikabintų dvisluoksnių
fosfolipidinių membranų (tBLM) pažaidos įvertinimas, taikant kompiuterinio
modeliavimo metodus. Laboratorinėmis sąlygomis šio tipo membranos tiria-
mos taikant tokius eksperimentinius metodus, kaip atominės jėgos mikrosko-
pija (AJM) bei elektrocheminio impedanso spektroskopija (EIS). Gaunamų šių
tipų duomenų analizėje yra svarbūs informatikos mokslo metodai, leidžiantys
tiksliai ir efektyviai interpretuoti duomenis bei kiekybiškai arba kokybiškai
įvertinti membranų savybes. Šiame darbe nagrinėjami tBLM membranų EIS
ir AJM duomenų analizės ir modeliavimo metodai, paremti baigtinių elementų
metodu, mašininio mokymosi metodais bei kitais skaitiniais algoritmais.

Tyrimo tikslas ir uždaviniai

Pagrindinis tyrimo tikslas – sukurti metodiką, leidžiančią modeliuoti trimačių
tBLM membranų su įvairiai išsidėsčiusiais defektais elektrocheminį atsaką, ir
interpretuoti EIS duomenis naudojant mašininio mokymosi metodus, siekiant
įvertinti kokybines ir kiekybines membranos pažeidimo savybes. Sprendžiami
šie uždaviniai:

1. Sukurti trimatį skaitinį modelį, leidžiantį simuliuoti tBLM membranų
EIS spektrus, esant bet kokiam defektų išsidėstymui.

2. Naudojant mašininio mokymosi metodus sudaryti prognozavimo mo-
delius, skirtus kiekybinių tBLM membranų charakteristikoms įvertinti
pagal jų EIS spektrus.

3. Sukurti defektų išsidėstymo modelius, leidžiančius kompiuteriu gene-
ruoti tikroviškus defektų rinkinius, apibrėžti jų palyginimo metrikas ir
ištirti modelių ryšį su modeliuotais EIS duomenimis.

4. Ištirti AJM vaizdo duomenų automatizuoto defektų aptikimo ir jų tiks-
lumo įvertinimo metodus, įvertinti veikimo įtaką modeliuojamiems EIS
spektrams.

5. Patvirtinti siūlomus metodus ir sintetinius modeliavimo duomenis, pa-
lyginant juos su eksperimentiniu būdu gautais EIS ir AJM matavimų
duomenimis.
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Tyrimo metodai ir priemonės

Trimatis tBLM membranos modelis įgyvendintas naudojant baigtinių elementų
metodą ir COMSOL Multiphysics paketą (5.3–5.4 versijos), specialus modelių
rengimo įrankis (naudojantis COMSOL API) realizuotas Java kalba. Daugu-
ma duomenų analizei naudotų programų parašytos naudojant Python (3.7 ver-
sija), pagrindines mokslines bibliotekas (Numpy, SciPy, Pandas, Matplotlib),
mašininio mokymosi bibliotekas (scikit-learn, Tensorflow) ir Jupyter Notebo-
ok aplinką.

Mokslinis naujumas ir praktinė reikšmė

Darbe aprašoma metodika yra nauja savo galimybėmis, pritaikomomis skirtin-
gomis savybėmis pasižyminčių tBLM membranų modelių analizei ir jų elekt-
rocheminiam atsakui interpretuoti, siekiant įvertinti įvairias kokybines ir kie-
kybines membranų charakteristikas. Mokslinį naujumą pagrindžia šie esminiai
rezultatai:

1. Taikant baigtinių elementų metodą pirmą kartą įgyvendintas trimatis
tBLM membranos modelis, leidžiantis modeliuoti sistemos EIS spekt-
rą esant bet kokiam defektų išsidėstymui.

2. Sukurti nauji defektų klasterizacijos modeliai ir parodyta, kad jie gali
generuoti realistiškus defektų rinkinius įvairiais klasterizacijos lygiais.
Taip pat apibrėžtos metrikos, skirtos klasterizacijos efektui įvertinti iš
defektų rinkinių.

3. Sukurti ir palyginti įvairūs automatinio defektų aptikimo AFM vaizduo-
se algoritmai ir pirmą kartą ištirtas ryšys tarp jų tikslumo ir modeliuojamų
EIS spektrų.

Praktiniu aspektu metodika galėtų būti taikoma greitam kiekybiniam memb-
ranos pažaidos įvertinimui tBLM pagrindu veikiančiuose impedanso bioju-
tikliuose ar kitose panašiose sistemose. Ji taip pat leidžia įvertinti tam tik-
ras membranos savybes (pvz., pomembraninio sluoksnio savitajį laidumą ar-
ba membranos defektų klasterizaciją), kurių negalima išmatuoti tiesiogiai EIS
arba AJM metodais. Automatinio defektų aptikimo AJM vaizduose meto-
dai galėtų būti naudingi tyrėjams, dirbantiems šioje srityje, ir padaryti šių
duomenų analizės procesą greitesnį ir tikslesnį.
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Ginamieji teiginiai

1. Fosfolipidinių membranų su defektais kiekybines savybes galima įvertinti
pagal jų elektrocheminio impedanso spektrus, naudojant baigtinių ele-
mentų modeliavimo ir mašininio mokymosi metodus.

2. Defektų klasterizacijos reiškinius fosfolipidinėse membranose galima
aprašyti skaičiavimo modeliais, kurie leidžia kiekybiškai įvertinti klas-
terizacijos efektą iš atominės jėgos mikroskopijos vaizdų arba elektro-
cheminio impedanso spektrų.

3. Kompiuterinės regos metodai gali būti taikomi automatizuotam memb-
ranos defektų aptikimui modeliavimo tikslams pakankamu tikslumu ato-
minės jėgos mikroskopijos vaizduose.

S.1. Pažeistų fosfolipidinių membranų electrocheminio atsako mo-
deliavimas

S.1.1. Trimatis membranos modelis

Šiame darbe nagrinėjamo trimačio membranos modelio paskirtis – simuliuoti
kintamosios elektros srovės tekėjimą per membraną, turinčią tam tikru būdu
išsidėsčiusių defektų, ir įvertinti elektrocheminį sistemos atsaką srovės dažnio
atžvilgiu. Modelis susideda iš keturių sluoksnių, atitinkančių (iš viršaus į ap-
ačią) tirpalą, membraną, pomembraninį sluoksnį bei Helmholco sluoksnį, kar-
tu su pasirinktu membranos defektų kiekiu (S.1 pav., kairėje). Tirpalo, po-
membraniniai sluoksniai ir defektai yra laidūs elektros srovei, o membranos
ir Helmholco sluoksniai – nelaidūs (dielektrikai). Panašios struktūros tBLM
membranos modelis buvo nagrinėjamas ankstesniame darbe [37].
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S.1 pav.: Trimačio tBLM membranos modelio schema. Kairėje: modelio sker-
spjūvis defekto aplinkoje. Dešinėje: šešiakampė prizmė, atitinkanti modelia-
vimo sritį.

Modeliavimo sritis, susidedanti iš aprašytų sluoksnių, atitinka šešiakampę
prizmę (S.1 pav., dešinėje) su briaunos ilgiu lhex. Prizmės aukštis hhex ati-
tinka Helmholco, pomembraninio sluoksnio, membranos ir tirpalo sluoksnių
aukščių sumą:

hhex = dH +dsub +dm +dsol. (S.1)

Prizmės viršutinės arba apatinės plokštumos (šešiakampio) plotas Shex api-
brėžiamas:

Shex =
3
√

3(lhex)
2

2
. (S.2)

Konkrečiu atveju modelis gali turėti N membranos defektų, išsidėsčiusių
norima tvarka. Kiekvienas defektas apibrėžiamas kaip cilindras su spindu-
liu rde f , kertantis membranos bei pomembraninį sluoksnius ir turintis fiksuotą
aukštį dm +dsub. Defektų tankis Nde f atitinka defektų skaičių viename kvadra-
tiniame mikrometre:

Nde f =
N

Shex
. (S.3)

Kintamosios elektros srovės tekėjimas per membraną yra apibrėžiamas La-
plaso lygtimi, kur lygties sprendinys yra kompleksinė įtampa Φ, atitinkanti
trimatėje modelio srityje apibrėžtą funkciją:

∇ · (σ̃(x,y,z)∇Φ(x,y,z)) = 0, (S.4)

Čia σ̃ žymi kompleksinį laidumą tam tikrame srities taške:

σ̃(x,y,z) = σ(x,y,z)+ j ωε(x,y,z). (S.5)
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Realioji ir menamoji dalys (menamasis vienetas žymimas j) atitinka el-
ektrinį laidumą bei dielektrinę skvarbą skirtingose sistemos dalyse. Elektrinio
laidumo konstanta σ galioja laidiems modelio sluoksniams (tirpalas, pomemb-
raninis sluoksnis ir defektai), o dielektrinė skvarba ε apibrėžia dielektrinių
sluoksnių (membranos ir Helmholco) savybes. ω = 2π f žymi kampinį kin-
tamosios elektros srovės dažnį, kur f – dažnis hercais (Hz).

Laikoma, kad šešiakampės modelio prizmės viršuje yra fiksuotas 1 V elekt-
rinis potencialas, o po Helmholco sluoksniu potencialas lygus 0 V. Šios prie-
laidos modelyje išreiškiamos kaip Dirichlė kraštinės sąlygos:

Φ(x,y,hhex) = 1, (S.6)

Φ(x,y,0) = 0. (S.7)

Taip pat laikoma, kad šešiakampės prizmės šonai yra nelaidūs srovei, api-
brėžiant atitinkamą kraštinės sąlygą, kur n – prizmės šoninės sienos normalinis
vektorius:

n ·∇Φ(x,y,z) = 0. (S.8)

Išsprendus (S.4) lygtį kintamosios srovės Φ atžvilgiu, modeliavimo srityje
apskaičiuojamas srovės tankis J, taikant Omo dėsnį [40]:

J(x,y,z) =−σ̃(x,y,z)∇Φ(x,y,z). (S.9)

Pagal srovės tankio reikšmes modeliavimo srities viršutinėje plokštumoje
skaičiuojamas admitansas Y . Tai – atvirkštinis impedansui kompleksinis dydis,
nusakantis, kaip lengvai sistema praleidžia elektros srovę:

Y =

∫∫
(x,y)∈Γhex

−n · J(x,y,hhex)dxdy

Shex
× 1

Φ(x,y,hhex)
. (S.10)

Sprendžiant aprašytą modeliavimo uždavinį su diskrečiomis srovės dažnio
reikšmėmis pasirinktame intervale, sumodeliuojamas išsamus sistemos elekt-
rocheminis atsakas. Visiems šiame darbe aprašomiems modeliavimo atvejams
naudotas dažnių intervalas nuo 10−2 Hz iki 106 Hz, reikšmes išdėstant logarit-
miškai po 10 taškų dekadai (iš viso 81 dažnio reikšmė).

Sumodeliuotas elektrocheminis atsakas išreiškiamas kaip admitanso fazės
(laipsniais) priklausomybė nuo dažnio (S.2 pav.). Tokių reikšmių rinkinys to-
liau įvardijimas kaip elektrocheminio impedanso arba EIS spektras. Šiame ir
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ankstesniuose susijusiuose darbuose [71, 46] nagrinėjami EIS spektrai pasi-
žymi charakteringa kreivės forma, turinčią vieną minimumo tašką. Ankstes-
niame tyrime įrodyta, kad šio taško koordinatės yra susijusios su įvairiais kie-
kybiniais pažeistos membranos parametrais, tokiais kaip defektų tankis ar dy-
dis [45]. Šiems spektriniams požymiams naudojami toliau nurodyti žymėjimai:

fmin – dažnis f , kuriame argY ( f ) įgyja mažiausią reikšmę, (S.11)

argYmin – admitanso fazės reikšmė taške fmin. (S.12)

Aprašytas trimatis membranos modelis realizuotas taikant baigtinių elem-
entų metodą (BEM) ir naudojant COMSOL Multiphysics programinį paketą.
Modeliavimo sritis diskretizuojama naudojant tetraedrų arba prizmių elemen-
tus, sudaryta tiesinių lygčių sistema sprendžiama tiesioginiu algoritmu (angl.
direct solver) MUMPS [17]. Skaičiavimai lygiagretinami pagal srovės dažnio
f parametrą.

S.2 pav.: Sumodeliuotas EIS spektras ir jo požymiai.

Membranos modelyje defektai gali būti išsidėstę bet kokia norima tvar-
ka. Konkretų defektų rinkinį sugeneruoja tam tikras algoritmas, parenkantis
defektų centrų koordinates pagal nustatytas defektų kiekio N ir defektų tan-
kio Nde f reikšmes. Šiame skyriuje nagrinėjami du defektų rinkinių modeliai
(algoritmai):

• Tolygus defektų išsidėstymas (S.3 pav., kairėje). Šiame modelyje defek-
tai yra išdėstomi vienodais tarpusavio atstumais, taip sudarant reguliarų
tinklelį. Membranų modeliai su tokiu defektų išdėstymu yra analogiški
nagrinėtiems ankstesniame darbe, kuriame membranos elektrocheminis
atsakas buvo modeliuojamas analitiškai [45].
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• Atsitiktinis defektų išsidėstymas (S.3 pav., dešinėje). Laikant, kad de-
fektų tarpusavio sąveikos nėra, kiekvieno atskiro defekto koordinatės
parenkamos atsitiktinai iš tolygiojo skirstinio, kurio intervalas atitinka
modeliuojamos srities išmatavimus.

S.3 pav.: Defektų išsidėstymo membranos modelyje pavyzdžiai (N = 127).
Kairėje: tolygus defektų išsidėstymas. Dešinėje: atsitiktinis defektų
išsidėstymas.

S.1.2. Palyginimas su eksperimentiniais AJM duomenimis

Norint įvertinti, kaip atsitiktinis defektų išsidėstymo modelis atitinka faktinėse
tBLM membranose pastebėtų defektų padėtis, buvo lyginami kompiuteriu su-
generuotų ir eksperimentiškai išmatuotų defektų rinkinių EIS spektrai. Memb-
ranos defektus rankiniu būdu anotavo srities ekspertas, o jų koordinatės (šešia-
kampėje modelio srityje) buvo naudojamos EIS spektrams modeliuoti. Pirma-
sis modelis (be klasterių) turėjo N = 74 defektų esant Nde f = 12,66 tankiui,
o antrasis modelis (su klasteriais) turėjo N = 41 defektus esant Nde f = 15,78
tankiui. Be to, sugeneruoti atsitiktinių defektų rinkiniai (10 atvejų kiekvienam
parametrų deriniui), naudojant tuos pačius dviejų vaizdų defektų kiekius N ir
tankius Nde f , kad būtų gauti papildomi modeliai, besiskiriantys tik tiksliomis
defektų padėtimis. Visų atvejų modeliavimas atliktas naudojant keturis skirtin-
gus defektų spindulius rde f = 1,9,17,25 nm, atitinkančius labiausiai tikėtinus
defektų dydžius, remiantis ankstesniais tyrimais [22].

EIS spektrų, gautų iš eksperimentinių ir kompiuteriu sugeneruotų atsitik-
tinių defektų rinkinių, palyginimas pateiktas S.4 pav. Neklasterizuoto defektų
pasiskirstymo spektrai rodo gerą sutapimą su atitinkamais atsitiktiniais atve-
jais visuose rde f lygiuose. Tačiau akivaizdus neatitikimas tarp faktinių AFM
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registruotų defektų koordinačių ir atsitiktinio defektų pasiskirstymo modelio
matomas defektų klasterizacijos atveju, kur log fmin poslinkis yra nuo 0,17 iki
0,30, o argYmin skirtumas svyruoja nuo 1,35 iki −1,21, didėjant rde f .

10-2 10-1 100 101 102 103 104 105 106

40

50

60

70

80

90

f /Hz

a
rg

Y
/d

e
g

rdef = 1 nm

rdef = 9 nm

rdef = 17 nm

rdef = 25 nm

102 102.5 103

42
44
46
48
50
52
54
56
58
60

10-2 10-1 100 101 102 103 104 105 106

40

50

60

70

80

90

f /Hz

a
rg

Y
/d

e
g

rdef = 1 nm

rdef = 9 nm

rdef = 17 nm

rdef = 25 nm

102 102.5 103

42
44
46
48
50
52
54
56
58
60

S.4 pav.: Sumodeliuoti kompiuteriu sugeneruotų atsitiktinių defektų
pasiskirstymų (pilkos juostos) ir eksperimentiškai registruotų defektų rinkinių
(spalvotos kreivės), EIS spektrai. Kairėje: neklasterizuotas defektų pasiskirs-
tymas. Dešinėje: klasterizuotas defektų pasiskirstymas.

S.1.3. Membranos parametrų įvertinimas pagal EIS spektrus

Duomenų rinkinys membranos parametrų prognozavimo eksperimentams su-
darytas modeliuojant EIS spektrus su įvairiomis Nde f , rde f ir ρsub parametrų
kombinacijomis. Kiekvienu atveju fiksuoto kiekio defektų (N = 200) koordi-
natės sugeneruotos pagal atsitiktinio defektų pasiskirstymo modelį. Iš viso su-
generuota po 10 tokių atvejų kiekvienam iš 546 unikalių parametrų derinių. Ta-
da kiekvienam atvejui atliktas baigtinių elementų modeliavimas ir apskaičiuoti
EIS spektrai. Šis duomenų rinkinys buvo naudojamas skirtingiems regresijos
modeliams (tiesinė, Lasso, PCR, PLS, artimiausių kaimynų regresija) palyginti
ir jų prognozavimo tikslumui įvertinti.

Kiekvienas regresijos modelis buvo validuojamas atliekant 10 dalių kryžmi-
nę patikrą (angl. 10-fold cross-validation). Laikant kiekvieną iš 546 unikalių
parametrų derinių ir atitinkamų 10 modelių pavyzdžių vientisa pavyzdžių gru-
pe, kiekvieno validavimo etapo mokymo ir validavimo rinkiniai sudaryti taip,
kad bet kurios konkrečios grupės pavyzdžiai nebūtų padalyti tarp abiejų rinki-
nių. Kiekviename eksperimente buvo vertinami du atskiri regresijos modeliai
numatant v1 ir v2 koeficientus (plačiau aprašyti disertacijos tekste). Modelių
tikslumas buvo vertinamas pagal R2 koeficientą, apskaičiuojant validavimo
reikšmių vidurkį ir standartinį nuokrypį. S.1 lentelėje parodytas tiesinės regre-
sijos modelių, apmokytų pagal du spektrinius požymius (log fmin ir argYmin) ir
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iš jų išvestus papildomus polinominius požymius (iki 3 laipsnio), tikslumas.

S.1 lentelė: Tiesinės regresijos modelių su polinominiais požymiais kryžminės
patikros rezultatai. SN žymimas standartinis nuokrypis.

Poly. degree Features
v1 v2

Mean Stdev Mean Stdev

1 2 0.999 0.000 0.564 0.040
2 5 0.999 0.000 0.829 0.019
3 9 0.999 0.000 0.880 0.013

Naudojant iš EIS spektrų prognozuojamas koeficientų v1 ir v2 reikšmes
papildomai įvertintas membranos parametrų Nde f , rde f ir ρsub prognozavi-
mo tikslumas. S.2 lentelėje parodytos MAE ir MAPE reikšmės kiekvienam
membranos parametrui, kur vienas iš likusių dviejų parametrų laikomas žino-
mu. Nde f ir logρsub prognozavimo tikslumas priklauso nuo to, kuris iš kitų
dviejų parametrų yra fiksuotas – pasirinkus rde f abiem atvejais gaunami žy-
miai mažiau tikslūs santykinės paklaidos įverčiai, o pagal ρsub prognozuojant
Nde f (arba atvirkščiai) gaunami geriausi rezultatai.

S.2 lentelė: Membranos parametrų nustatymo tikslumas naudojant tiesinės re-
gresijos modelius.

Fixed parameter
Nde f rde f logρsub

MAE MAPE MAE MAPE MAE MAPE

Nde f - - 2.607 28.320 0.034 0.762
rde f 6.028 77.580 - - 0.246 5.507
ρsub 1.349 7.842 2.965 32.184 - -

S.1.4. Membranos parametrų numatymas iš eksperimentinių EIS spek-
trų

Aprašyta kiekybinių membranų savybių prognozavimo metodika patvirtinta
naudojant eksperimentinius EIS duomenis. Duomenų rinkinys (S.5 pav.) gau-
tas eksperimentinėmis sąlygomis, kai surinktos tBLM buvo veikiamos tirpalu,
kuriame yra poras formuojančio toksino vaginolizino (VLY) [46], ir atlikti at-
skiri EIS matavimai skirtingais laikotarpiais, praėjusiais po ekspozicijos. Tik-
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rosios Nde f , rde f arba ρsub reikšmės nebuvo žinomos dėl EIS matavimo meto-
do pobūdžio bei specifinių eksperimentinių sąlygų, kai nebuvo taikomi atskiri
metodai šioms savybėms nepriklausomai išmatuoti.

S.5 pav.: Eksperimentiniai EIS duomenys, išmatuoti tBLM mėginiui skirtingu
laiku (nurodyta legendoje), kai jis paveiktas poras formuojančiu toksinu.

Kiekybinėms membranų savybėms prognozuoti iš eksperimentinių EIS sp-
ektrų regresijos modeliai buvo mokomi naudojant modelių duomenų rinkinį,
aprašytą S.1.3 skyrelyje, o konkretūs modeliai parinkti pagal anksčiau pateiktą
prognozavimo tikslumą. Numatytos v1 ir v2 reikšmės panaudotos Nde f ir rde f

įverčiams apskaičiuoti, laikant ρsub reikšmę fiksuotą ir lygią 105 Ω · cm. S.3
lentelėje pateikiamos apskaičiuotos parametrų reikšmės kiekvienam eksperi-
mentiniam EIS spektrui (išskyrus pradinį matavimą).

S.3 lentelė: Membranos parametrų įverčiai, numatyti iš eksperimentinių EIS
spektrų, naudojant tiesinės regresijos modelius.

Time (min.) Nde f rde f

2 2.019 10.795
4 3.696 6.300
6 4.482 6.036
10 4.990 7.750
20 5.458 11.956
30 6.601 14.225
120 7.863 19.305

Nde f įvertinimai rodo monotonišką padidėjimą, atitinkantį eksperimentines
membranos pažeidimo, besikaupiančio laikui bėgant (dėl ilgalaikio kontakto
su poras formuojančiu toksinu), sąlygas. Nde f prognozių diapazonas yra tokio
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paties dydžio kaip ir panašiuose tyrimuose pateikti įverčiai [71] ir vertės, nu-
statytos iš eksperimentinių AFM duomenų, kaip aprašyta S.1.2. rde f reikšmės
rodo pradinio sumažėjimo, po kurio matyti padidėjimas, tendenciją – tai gali
būti siejama su sudėtingu defektų susidarymo procesu ir skirtingu metu memb-
ranos paviršiuje esančiu visų ir nevisų porų kiekiu [53]. Didžiausia numatoma
rde f vertė 19,3 taip pat atitinka apytikslį didžiausią porų dydį 25nm (sukelta
toksino, panašaus į VLY), kaip aprašyta kitame tyrime [22].

Išsamesni eksperimentų aprašymai ir skyriaus išvados pateikiamos diser-
tacijos tekste ir publikacijose [A1, A4].

S.2. Defektų klasterizacijos modeliai

S.2.1. Klasterizacijos įvertinimo metodai

Norint įvertinti ir palyginti skirtingų defektų rinkinių, galinčių turėti skirtingą
defektų kiekį, klasterizacijos stiprumą, naudojamos Voronojaus diagramos ir
jų sektorių sričių histogramos (S.6 pav., dešinėje). Jos apskaičiuojamos nau-
dojant fiksuotą vienodo dydžio intervalų kiekį iš sektorių plotų, normalizuotų
pagal defektų tankį Nde f .
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S.6 pav.: Kompiuteriu sugeneruoto atsitiktinio defektų pasiskirstymo pavyz-
dys. Kairėje: šešiakampėje modeliavimo srityje išsidėsčiusių defektų Vorono-
jaus diagrama. Dešinėje: Voronojaus diagramos sektorių plotų histograma.

Siekiant supaprastinti histogramų lyginimą ir nustatyti svarbiausias jų sta-
tistines savybes, naudojamos keturios apibendrinančios statistikos: standarti-
nis nuokrypis, vidutinis absoliutusis nuokrypis (angl. mean absolute deviation
- MAD), asimetrijos koeficientas (angl. skewness) ir ekscesas (angl. kurto-
sis). Taip pat dviem histogramoms lyginti naudojama EMD metrika (angl.
earth mover’s distance) [16], kuri apibrėžia minimalias sąnaudas, reikalingas
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vienam duomenų skirstiniui transformuoti į kitą.

S.2.2. Klasterizacijos modeliai

Traukos modelis

Pirmasis klasterizuotų defektų rinkinių generavimo metodas pagrįstas prielai-
da, kad defektai natūraliai traukia vienas kitą ir todėl linkę telktis į grupes.
Tokio tipo objektų sąveika yra fundamentali ir paplitusi gamtoje (t. y. gravita-
cinės ir elektromagnetinės jėgos), taip pat taikoma biologinių membranų mo-
deliuose [43]. Šiame modelyje trauka veikia, jei atstumas tarp dviejų defektų
yra mažesnis už iš anksto nustatytą slenkstį dT , kurį galima išreikšti vienu iš
dviejų būdų:

• Defekto spindulių skaičius (pritraukiančio defekto).

• Fiksuotas atstumas nanometrais.
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S.7 pav.: Sintetinis defektų rinkinys, sugeneruotas pagal traukos modelį, kur
dT = 15 (išreikšta defektų spinduliais), N = 500, Nde f = 100 ir rde f = 13.

Darant prielaidą, kad dT išreiškiamas defekto spinduliais, klasterizacijos
modelis turi tris parametrus, turinčius tiesioginę įtaką klasterizacijos efektui
(neįskaitant defektų skaičiaus): defektų tankis Nde f , defektų spindulys rde f ir
traukos slenkstis dT . S.7 pav. parodytas vienas sugeneruoto defektų rinkinio
pavyzdys, gautas pagal aprašytą modelį.

LCN modelis

Šis modelis paremtas idėja, kad membranos defektų sankaupos linkusios su-
daryti sudėtingas įvairaus dydžio ir formos struktūras, vizualiai primenančias
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debesis. Ši koncepcija aktuali kompiuterinėje grafikoje, kur debesų ar dūmų
tekstūroms procedūriškai generuoti naudojami įvairūs algoritmai. Modeliui
įgyvendinti pasirinktas lattice convolutional noise (LCN) algoritmas [20], iš-
plėstas įvedant du papildomus parametrus, kuriais koreguojami klasterizacijos
efektai:

• Vidutinis santykinis klasterio dydis: S

• Minimali defekto atsiradimo tikimybė: P

Defektai atsitiktinai parenkami pagal LCN algoritmu sugeneruotą rastrinį
vaizdą, laikomą tikimybių lauku, kuriame vaizdo taškų reikšmės patenka į
intervalą [P,1]. Parametras S yra teigiamas realusis skaičius, kuris koreguo-
ja LCN sugeneruoto pradinio vaizdo mastelį – mažesnės reikšmės atitinka
didesnį mažų defektų grupių skaičių. Šis algoritmas sugeneruoja klasterizuo-
tus defektų rinkinius (S.8 pav.), kurie vizualiai skiriasi nuo tų, kurie gauna-
mi taikant traukos modelį (S.7 pav.). Klasteriai pasižymi skirtingu dydžiu ir
įvairiais nelygumais, kuriuos atspindi ir Voronojaus sektorių plotų statistinės
savybės, kur didelį mažų sektorių kiekį atsveria gana nedaug didelių sektorių.
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S.8 pav.: Sintetinis defektų rinkinys, sugeneruotas pagal LCN modelį, kur S =

1 ir P = 0,1.

Taškinio proceso modelis

Dar vienas būdas modeliuoti klasterinį defektų išdėstymą membranos paviršiu-
je yra pagrįstas erdvinių taškų procesų teorija. Konkretus pasirinktas modelis
yra Thomas klasterių taškinis procesas (toliau vadinamas taškiniu procesu),
kuris generuoja atsitiktinį pirminių taškų (klasterių centrų) skaičių, o kiekvie-
nam iš jų priskiriamas atsitiktinis palikuonių taškų (klasterio narių), atsitiktinai
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išstumtų iš centro vektoriaus, paimto iš izotropinio Gauso skirstinio (su ta pa-
čia skale kiekvienoje ašyje), skaičius. Procesas valdomas trimis parametrais:

• Pirminių taškų vidutinis kiekis κ

• Klasterių mastelis r

• Palikuonių taškų vidutinis kiekis α

Kitaip nei anksčiau aprašyti traukos ir LCN modeliai, taškinio proceso mo-
delis negeneruoja defektų rinkinių su tiksliu defektų skaičiumi N, nors šiam
kiekiui įtakos turi parametrai κ ir α . S.9 pav. parodytas defektų rinkinio, suge-
neruoto naudojant šį modelį, pavyzdys. Taškinio proceso modelio pranašumas,
palyginti su traukos ir LCN modeliais, yra galimybė tiesiogiai iš duomenų nu-
statyti modelio parametrus. Šiame darbe tam naudojamas mažiausio kontrasto
metodas [3].
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S.9 pav.: Sintetinis defektų rinkinys, sugeneruotas pagal taškinio proceso
modelį, kur κ = 10, σ = 0.1 ir α = 10.

Klasterizacijos modelių palyginimas

Aprašyti defektų klasterizacijos modeliai pirmiausia įvertinti atsižvelgiant į at-
sitiktinio defektų pasiskirstymo modelį. Šiuo tikslu nepriklausomai sugene-
ruota 100 atsitiktinių defektų pasiskirstymo atvejų, iš kurių kiekvienas suside-
da iš N = 500 defektų, kai defektų tankis yra Nde f = 10. S.10 pav. parodyta
visų normalizuotų Voronojaus sektorių plotų histograma ir statistinės jų pasi-
skirstymo savybės.

137



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Sdef × Ndef

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Std. dev. = 0.548
MAD = 0.494
Skewness = 1.180
Kurtosis = 5.384

Gamma distribution (  = 3.492,  = 0.291)

S.10 pav.: Normalizuotų Voronojaus diagramos sektorių plotų histograma iš
100 nepriklausomai sugeneruotų atsitiktinių defektų rinkinių.

Norint palyginti atsitiktinius ir klasterizuotus defektų pasiskirstymus, su-
generuoti sintetiniai defektų rinkiniai, taikant aprašytus klasterizacijos mode-
lius su skirtingais parametrų deriniais. Buvo nagrinėjama 54, 48 ir 60 parametrų
kombinacijų atitinkamai traukos, LCN ir taškinio proceso modeliams. Kiek-
vienam parametrų deriniui sugeneruota po 100 defektų rinkinių. Traukos ir
LCN modelių atveju kiekvieną defektų rinkinį sudarė 500 defektų.

S.11 pav. pateiktos statistinės klasterizuotų defektų rinkinių savybės (ap-
skaičiuotos kiekvienai unikaliai parametrų kombinacijai) ir palygintos su ati-
tinkamomis atsitiktinio defektų pasiskirstymo modelio reikšmėmis. Standar-
tinis nuokrypis geriausiai atskleidžia klasterizacijos efektą, kur beveik visi at-
vejai (išskyrus kelis traukos modelio atvejus) pasižymi didesnėmis kaip 0,54
(atsitiktinio defektų paskirstymo modelis) reikšmėmis. Toliau šiame darbe
įvardinta metrika bus vadinama Voronojaus σ .
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S.11 pav.: Klasterizuotų defektų rinkinių statistinės savybės (spalvoti apskriti-
mai), palygintos su atsitiktinio defektų pasiskirstymo modeliu (vertikalios rau-
donos linijos). Traukos, LCN ir taškinio proceso modelių atvejai pavaizduoti
atitinkamai mėlynais, žaliais ir geltonais apskritimais.
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S.2.3. Klasterizacijos efekto įvertinimas pagal EIS spektrus

Siekiant įvertinti defektų klasterizacijos efektą EIS spektrams, sudarytas EIS
duomenų rinkinys, modeliuojant įvairius klasterizuotų defektų rinkinių atve-
jus. Taškinio proceso klasterizacijos modelis buvo naudojamas generuoti mem-
branos modelio egzempliorius, keičiant klasterizacijos modelio parametrus bei
defektų tankį ir dydį (viso 216 kombinacijų). Kiekvienam deriniui atskirai su-
generuota 10 modelių egzempliorių, todėl iš viso buvo modeliuojama 2160
unikalių atvejų.

Pirminė sumodeliuotų klasterizuotų defektų rinkinių EIS spektrų peržiūra
atskleidė keletą svarbių kokybinių skirtumų, palyginti su atsitiktinių defektų
pasiskirstymo EIS duomenimis, išnagrinėtais S.1 skyriuje. Visais atsitikti-
nio defektų išsidėstymo modelio atvejais EIS spektrai turėjo vieną minimumo
tašką ir nulį arba vieną maksimumo tašką. Šių EIS spektrų pirmoms išves-
tinėms taip pat būdingas vienas minimumo ir vienas maksimumo taškas, o ant-
rosios išvestinės turėjo nuo vieno iki dviejų minimumų ir nuo vieno iki dviejų
maksimumų. Tačiau šios savybės negaliojo reikšmingai daliai klasterizuotų
atvejų. Maždaug 1 % iš jų turėjo aiškiai išskiriamus dvigubus minimumus, o
papildomi 30 % turėjo kitų neįprastų spektrinių požymių, kuriuos atspindėjo
didesnis ekstremumų skaičius jų pirmoje ir antroje išvestinėse, palyginti su at-
sitiktiniais atvejais. S.12 pav. iliustruoja šį reiškinį, kai du klasterizuoti atvejai
pasižymi aprašytais skirtumais, palyginti su atsitiktinio atvejo pavyzdžiu.
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S.12 pav.: Sumodeliuotų EIS spektrų pavyzdžiai, gauti naudojant atsitikti-
nius ir klasterizuotus defektų rinkinius. Viršutinė diagrama rodo pradinius EIS
spektrus, vidurinė ir apatinė diagramos rodo atitinkamai pirmą ir antrą spektro
išvestinę.

Priklausomai nuo konkrečios klasterizacijos modelio parametrų kombina-
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cijos, spektrų su neįprastais kokybiniais požymiais dalis svyruoja nuo 3 % iki
70 %. Didžiausią įtaką turi mažos r ir didelės α reikšmės, lemiančios nedidelį
kiekį klasterių su dideliu glaudžiai išsibarsčiusių defektų skaičiumi. Atitinka-
mai pastebimas šio efekto ryšys su Voronojaus σ reikšmėmis, kurių augimas
lemia didesnę tikimybę atsirasti anomalijoms spektruose.

Kadangi defektų klasterizacija lemia pokyčius EIS spektruose, šis efektas,
išreikštas Voronojaus σ reikšmėmis, galėtų būti kiekybiškai įvertinamas pagal
tam tikrus spektrinius požymius. Šie požymiai, užuot siedamiesi su minimu-
mo taško padėtimi, turėtų apibrėžti spektro kreivės formą, apibūdinamą fmin ir
argYmin reikšmėmis. Viena iš tokių charakteristikų, apibūdinančių kreivės for-
mą ir dažnai naudojamų spektroskopijos duomenų analizėje, yra pusaukščio
plotis (FWHM) [94, 73]:

FWHM = log10 f2 − log10 f1. (S.13)

Čia dažniai f1 ir f2 reiškia du taškus (pavaizduoti S.13 pav.), kur:

argY = 90− 90− argYmin

2
. (S.14)
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S.13 pav.: EIS spektro taškai, naudojami apskaičiuoti pusaukščio plotį.

Darant prielaidą, kad tam tikra EIS spektro sritis gali būti aproksimuoja-
ma pasirinkta analitine funkcija, spektro neatitikimas jai (pvz., dėl dvigubų
minimumų) galėtų reikšti klasterizacijos efektą. Tokiu atveju atliekamas Gau-
so kreivės pritaikymas spektrinėje srityje aplink minimumo tašką (kur argY
vertės neviršija 87 deg), kaip parodyta S.14 pav.
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S.14 pav.: Gauso kreivės, pritaikytos EIS spektrui minimumo taško aplinkoje,
pavyzdys.

k faktinių (argY ) ir pritaikytų (argŶ ) spektro reikšmių (indeksai nuo t1 iki
t2) neatitikimas tuomet apibendrinamas keliais dydžiais:

• Vidutinis absoliutus skirtumas:

pmean =
1
k

t2

∑
i=t1

|argYi − argŶi|. (S.15)

• Absoliučių skirtumų standartinis nuokrypis:

pstd =

√√√√1
k

t2

∑
i=t1

(argŶi − pmean)2. (S.16)

• Didžiausias absoliutus skirtumas:

pmax = max(|argYi − argŶi|), i = t1, ..., t2. (S.17)

Taip pat naudojami spektriniai požymiai, apibūdinantys ekstremumų kie-
kius spektre ar jo išvestinėse. Visas regresijos užduočiai pasirinktas požymių
rinkinys apėmė FWHM, pmean, pstd , pmax ir 6 ekstremumų kiekių požymius
(viso 10 reikšmių). Tiesinės regresijos modelis su L1 reguliarizacija (Lasso)
buvo naudojamas 10 išvardytų požymių ir Voronojaus σ ryšiui išreikšti bei
informatyviausiems požymiams išskirti. Norint ištirti, kaip modelis apibūdina
spektrinius pokyčius, susijusius tik su defektų klasterizacija, o ne su kintančio-
mis Nde f ir rde f reikšmėmis, atlikta 8 dalių kryžminė patikra, kur kiekvienoje
iteracijoje modelis buvo validuojamas naudojant visus konkretaus Nde f ir rde f

derinio EIS spektrus. Reguliarizacijos parametras λ buvo keičiamas nuo 10−3

iki 10−1.
Priimtinas validavimo tikslumas buvo stebimas ties λ = 10−1,5 su 3 požy-

miais: FWHM, pmax ir m2. Šio konkretaus modelio MAE ir MAPE paklaidos
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buvo atitinkamai lygios 0,22 ir 24 %. Gana žemas bendras tikslumas rodo, kad
parinkti spektriniai požymiai ir tiesinis modelis negali visiškai atspindėti kin-
tančio Voronojaus σ poveikio spektrui, tuo pačiu atmetant panašius pokyčius,
kuriuos lemia Nde f ir rde f parametrai.

S.2.4. Metodikos patvirtinimas naudojant AJM duomenis

Norint patikrinti siūlomą metodiką su realiais duomenimis, eksperimentiškai
gauti trys tBLM membranų, paveiktų poras formuojančiu toksinu vaginoli-
zinu (VLY), AJM vaizdai. Kiekvienas vaizdas sujungtas iš 9 AJM vaizdo
fragmentų, fiksuotų 512×512 skiriamąja geba ir apimančių 2µm×2µm memb-
ranos paviršiaus plotą, todėl galutinis vaizdas sudaro 6µm×6µm esant 1536×
1536 skiriamajai gebai. Kiekviename vaizde esančių defektų koordinates daly-
kinės srities ekspertas anotavo rankiniu būdu (visame vaizde arba pagal šešia-
kampę modeliavimo sritį). S.4 lentelėje pateiktos pagrindinės šių defektų rin-
kinių savybės.

S.4 lentelė: AJM vaizduose sužymėtų defektų rinkinių savybės.

Modeliavimo sritis AJM vaizdo Nr. N Nde f Voronojaus σ

Šešiakampė
1 234 10,01 1,22
2 148 6,33 1,12
3 235 10,05 0,88

Keturkampė
1 374 10,39 1,17
2 235 6,53 1,06
3 328 9,11 0,81

Siekiant įvertinti, ar aprašyti defektų klasterizacijos modeliai yra pritaiko-
mi realiems defektų rinkiniams (išmatuotiems AJM), sugeneruotų klasterizuotų
defektų rinkinių EIS spektrai buvo lyginami su atitinkamais AJM defektų rin-
kinių spektrais. Skirtingų klasterizacijos algoritmų parametrai modeliuoti pa-
rinkti naudojant S.2.2 skyrelyje nagrinėtus atvejus, lyginant sintetinių klaste-
rizuotų defektų rinkinių histogramas su atitinkamomis realių AJM duomenų
rinkinių histogramomis (naudojant EMD metriką). Taškinio proceso modelio
parametrams parinkti papildomai buvo taikomas mažiausio kontrasto metodas,
pagal kurį parametrai įvertinti tiesiogiai iš AJM duomenų. Visi skaičiavimai
atlikti naudojant tris defekto dydžio rde f parinktis: 0.5 nm, 13 nm ir 25.5 nm.
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Kiekvienai klasterizacijos algoritmo, AJM defektų rinkinio ir rde f kombina-
cijai buvo nepriklausomai generuojama 10 klasterizuotų defektų rinkinių, su
kuriais atliktas EIS modeliavimas.

Palyginimui analogiški skaičiavimai atlikti naudojant ir atsitiktinį defektų
išsidėstymo modelį (S.15 pav.). EIS kreivėse matomi sintetinių defektų rinkinių
neatitikimai AJM atvejams, taip pat pastebėti ankstesnio eksperimento metu
(S.1.2 punktas). Iš nagrinėtų klasterizacijos modelių geriausiai AJM duomenis
atitinka taškinio proceso modelis ir jo parametrai, parinkti naudojant mažiau-
sio kontrasto metodą (S.16 pav.). Šio modelio atvejo skirtumai tarp minimumo
taškų log f ir argY ašyse svyruoja atitinkamai nuo -0,28 iki -0,03 ir nuo 0,74
iki 3,32.
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S.15 pav.: EIS spektrų, modeliuotų naudojant AJM vaizdų defektų rinkinius
(punktyrinės kreivės) ir atsitiktinį defektų išsidėstymo modelį (vientisos juos-
tos), lyginimas.
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S.16 pav.: EIS spektrų, modeliuotų naudojant AJM vaizdų defektų rinkinius
(punktyrinės kreivės) ir taškinio proceso klasterizacijos modelį (vientisos juos-
tos), lyginimas.

Išsamūs klasterizacijos modelių ir eksperimentų aprašymai bei skyriaus
išvados yra pateiktos disertacijos tekste ir publikacijose [A2, A3].

S.3. Automatinis defektų aptikimas AJM vaizduose

S.3.1. Defektų aptikimo eksperimentai

Anksčiau aprašytas AJM duomenų rinkinys (S.4 lentelė, S.2 skyrius) buvo pa-
kartotinai naudojamas defektų aptikimo eksperimentams, aprašytiems toliau
šiame skyriuje. Kiekvieno tBLM membranos mėginio vaizdo fragmentų rinki-
niai suskirstyti į mokymo ir testavimo poaibius, priskiriant 5 fragmentus mo-
kymui ir 4 testavimui. Pastarieji fragmentai parinkti taip, kad atitiktų vientisą
4µm× 4µm paviršiaus plotą apatiniame dešiniajame visiškai susiūto vaizdo
kampe. S.5 lentelėje rodomas bendras anotuotų defektų skaičius (N) ir vidu-
tinis defektų tankis (Nde f ) kiekviename AJM vaizde ir mokymo bei testavimo
fragmentų poaibyje.
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S.5 lentelė: AJM vaizdų rinkiniai, naudojami defektų aptikimo modeliams mo-
kyti ir testuoti.

AJM vaizdas Poaibis Fragmentų sk. N Nde f Voronojaus σ

1 Mokymo 5 202 10,10 1,18
2 Mokymo 5 138 6,90 1,12
3 Mokymo 5 170 8,50 0,77

1 Testavimo 4 172 10,75 1,20
2 Testavimo 4 97 6,06 1,02
3 Testavimo 4 158 9,88 0,91

TopoStats

Pirmasis defektų aptikimo eksperimentas atliktas naudojant atvirojo kodo prog-
raminės įrangos įrankį TopoStats, sukurtą biomolekulėms aptikti AJM vaiz-
duose [96]. Defektų aptikimo tikslumas buvo vertinamas tikslumo (angl. pre-
cision), jautrumo (angl. recall) bei F1 metrikomis (S.6 lentelė).

S.6 lentelė: Defektų aptikimo tikslumas testiniuose AJM vaizdų fragmentuose,
naudojant TopoStats įrankį.

AJM vaizdas Ntrue Npred Tikslumas Jautrumas F1

1 172 53 0,754 0,233 0,355
2 97 31 0,742 0,237 0,359
3 158 79 0,886 0,443 0,591

Nepaisant gana aukšto tikslumo, visais atvejais jautrumas yra žemas, o dėl
to gaunama daug klaidingų neigiamų rezultatų. Vizualiai patikrinus aptikimo
rezultatus paaiškėjo, kad įrankis prastai aptiko defektų grupes, kuriose dau-
guma tokių atvejų buvo traktuojami kaip vienas defektas (pavyzdys parodytas
S.17 pav.).
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(a) Iliustratyvus AJM vaizdo fragmen-
tas su defektų klasteriais.

(b) Iliustratyvus AJM vaizdo fragmen-
tas be defektų klasterių.

S.17 pav.: Tikrųjų defektų padėčių (žali stačiakampiai) ir aptiktų naudojant To-
poStats įrankį pavyzdžiai (raudoni stačiakampiai). Defektų klasterio pavyzdys
ir atitinkamos tikrosios ir numatomos defektų vietos yra priartintos kairiajame
vaizde.

Ploto matavimo metodas

Siekiant išspręsti ankstesniame eksperimente pastebėtą defektų klasterių at-
skyrimo problemą, išbandytas paprastas metodas, pagrįstas tipinėmis skaitme-
ninių vaizdų apdorojimo operacijomis. Algoritmas (toliau vadinamas ploto
matavimo metodu) susideda iš šių žingsnių:

1. Objektų ir fono atskyrimas. Pradinis pilkos skalės AJM vaizdas konver-
tuojamas į dvejetainį vaizdą naudojant fiksuotą slenkstinę vertę T .

2. Morfologinis apdorojimas. Objektus atitinkantys regionai apdorojami
taikant dvejetainę uždarymo operaciją (angl. binary closing) ir pašali-
nant mažus objektus (mažesnius kaip 5 pikseliai) [55].

3. Defektų skaičiaus nustatymas. Defektų, sudarančių kiekvieną regioną,
skaičius nustatomas padalijus regiono plotą (pikseliais) iš nustatytos rei-
kšmės S (vidutinis vieno defekto užimamas plotas) ir suapvalinant gautą
santykį.

4. Defekto koordinačių priskyrimas. Tikslios defektų centro koordinatės
nustatomos atliekant kiekvienos srities pikselių koordinačių K-means
klasterizavimą (naudojant ankstesniame žingsnyje gautą klasterių ska-
ičių) ir naudojant kiekvieno pikselių klasterio centrus.
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Norint atlikti eksperimentą su testiniais AJM vaizdų fragmentais, pasirink-
tos parametrų reikšmės T = 100 ir S = 130, paleidus algoritmą apmokymo
rinkinio AJM vaizdo fragmentams su kintančiomis S ir T reikšmėmis ir pa-
sirinkus tuos, kurie duoda didžiausią vidutinę F1 vertę. S.7 lentelėje rodomi
bandymo rezultatai.

S.7 lentelė: Defektų aptikimo tikslumas testiniuose AJM vaizdų fragmentuose,
naudojant ploto matavimo metodą.

AJM vaizdas Ntrue Npred Tikslumas Jautrumas F1

1 172 114 0,860 0,570 0,685
2 97 114 0,553 0,649 0,597
3 158 194 0,613 0,753 0,676

Hough transformacija

Alternatyvus defektų aptikimo algoritmas realizuotas naudojant apskritiminę
Hough transformaciją, remiantis prielaida, kad membranos defektai matomi
kaip apytiksliai vienodo spindulio žiedinės struktūros. Algoritmas susideda iš
šių žingsnių:

1. Objektų ir fono atskyrimas. Pradinis pilkos skalės AJM vaizdas konver-
tuojamas į dvejetainį vaizdą naudojant minimumo slenksčio metodą [1].

2. Morfologinis apdorojimas. Defektus atitinkančios vaizdo sritys pave-
rčiamos vieno pikselio pločio kontūrais, taikant morfologinio retinimo
operaciją (angl. thinning) [6].

3. Apskritiminė Hough transformacija (CHT). Galutinis defekto aptikimas
atliekamas taikant CHT apdorotam dvejetainiam vaizdui, naudojant pa-
sirinktą Hough slenkstį ir kintantį apskritimo spindulį.

Aprašytas algoritmas pritaikytas testiniams vaizdų fragmentams, naudo-
jant Hough slenksčio reikšmę, lygią 0,28, o apskritimo spindulys svyravo nuo
3 iki 7 taškų. Bandymo rezultatai (S.8 lentelė) palyginami su anksčiau aprašytu
ploto matavimo metodu, nors vidutinis tikslumas yra mažesnis dėl bendro di-
desnio aptikimo skaičiaus, atitinkančio daugiau klaidingai teigiamų rezultatų.
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AJM vaizdas Ntrue Npred Tikslumas Jautrumas F1

1 172 201 0.577 0.674 0.622
2 97 156 0.436 0.701 0.538
3 158 140 0.614 0.544 0.577

S.8 lentelė: Defektų aptikimo tikslumas testiniuose AJM vaizdų fragmentuose,
naudojant apskritiminę Hough transformaciją.

Konvoliucinis neuroninis tinklas

Defektams aptikti su konvoliuciniu neuroniniu tinklu panaudotas SSD FPN ar-
chitektūros objektų aptikimo modelis [76], pritaikytas defektams aptikti AJM
vaizduose pagal apmokymo poaibio fragmentus. Nustatyti tikslumo ir jautru-
mo balai (S.9 lentelė) yra panašūs į ankstesnius eksperimentus, atliktus nau-
dojant paprastesnius algoritmus, nors vidutinis F1 balas tarp visų bandomųjų
vaizdų yra šiek tiek didesnis. Defektų klasteriai (S.18 pav., kairėje) vis dar
buvo sunkiai išskiriami dėl prastai matomų paviršiaus savybių grupių viduje.
Tačiau modelis gana gerai veikė su tam tikrais vaizdų fragmentais, kuriuose
nebuvo defektų klasterių (S.18 pav., dešinėje). Tai taip pat iliustruoja faktas,
kad testinis AJM 3-ojo paviršiaus vaizdas, rodantis mažiausią defektų klaste-
rizaciją pagal Voronojaus σ (S.5 lentelė), taip pat turi aukščiausią bendrą F1
balą iš visų patikrintų algoritmų.
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(a) Iliustratyvus AJM vaizdo fragmen-
tas su defektų klasteriais.

(b) Iliustratyvus AJM vaizdo fragmen-
tas be defektų klasterių.

S.18 pav.: Tikrųjų defektų padėčių (žali stačiakampiai) ir aptiktų naudojant
konvoliucinį neuroninį tinklą pavyzdžiai (raudoni stačiakampiai). Defektų
klasterio pavyzdys ir atitinkamos tikrosios ir numatomos defektų vietos pri-
artintos kairiajame vaizde.

S.9 lentelė: Defektų aptikimo tikslumas testiniuose AJM vaizdų fragmentuose,
naudojant konvoliucinį neuroninį tinklą.

AJM vaizdas Ntrue Npred Tikslumas Jautrumas F1

1 172 129 0,775 0,581 0,664
2 97 119 0,555 0,680 0,611
3 158 152 0,757 0,728 0,742

S.3.2. Defektų aptikimo tikslumo įtaka EIS spektrams

Norint įvertinti ryšį tarp defektų aptikimo tikslumo ir atitinkamų pokyčių EIS
spektruose, reikalingas didelis defektų aptikimo rezultatų rinkinių skaičius.
Tokie aptikimo rezultatai turėtų pasižymėti skirtingomis tikslumo ir jautrumo
reikšmėmis, tačiau tokius specifinius aptikimo rezultatus gali būti sunku gauti
taikant objektų aptikimo modelius, sudarytus naudojant tikrus AJM vaizdus
ir anotuotas tikras defektų vietas. Kita problema – ribotas turimų AJM vaiz-
do duomenų kiekis. Dėl šių priežasčių nagrinėjamas alternatyvus būdas, ku-
riuo generuojami sintetiniai defektų rinkiniai, imituojantys defektų aptikimo
rezultatus skirtinguose tikslumo lygiuose. Kiekvienas sintetinis atvejis gene-
ruojamas iš pradinio tikrųjų defektų koordinačių rinkinio, pritaikant tam tik-

149



ras modifikacijas (defektų pridėjimą, pašalinimą, koordinačių perkėlimą), kad
būtų gautas naujas defektų rinkinys analogiškiems rezultatams, gaunamiems
taikant kurį nors defektų aptikimo algoritmą.

Siekiant kiekybiškai įvertinti neatitikimą tarp EIS spektrų, sumodeliuotų
pateiktai porai tikrųjų (sužymėtų eksperto) ir automatiškai aptiktų (objekto ap-
tikimo algoritmu) defektų rinkinių, naudojama kreivių minimumo taškų padėtis
log f ir argY ašyse (darant prielaidą, kad defektų klasterizacijos poveikis EIS
spektrų formoms yra nereikšmingas):

∆ flog = log10( f (true)
min )− log10( f (pred)

min ). (S.18)

∆argY = argY (true)
min − argY (pred)

min . (S.19)

Taip pat naudojama papildoma QN metrika, kuri parodo defektų tankio
santykį (defektų skaičių kvadratiniame mikrometre) iš numatytų ir tikrų defektų
rinkinių:

QN = N(pred)
de f /N(true)

de f . (S.20)

Algoritmas sintetinių defektų rinkiniams (analogiškiems defektų aptikimo
rezultatams) generuoti sudarytas remiantis prielaida, kad defektų klasteriai yra
išskiriami gana gerai, o klasterizacijos lygis pradinio (tikrojo) defektų rinkinio
atžvilgiu yra išlaikomas. Jį sudaro šie žingsniai:

1. Tikrosioms defektų koordinatėms atliekamas dvimatis branduolio tankio
įvertinimas (angl. kernel density estimation – KDE) [34].

2. Kiekvienam generuojamam defektų rinkiniui:

(a) Tikrosios koordinatės (x(true) ir y(true)) kiekvienam defektui yra
modifikuojamos pridedant atsitiktinę reikšmę, parinktą iš norma-
liojo skirstinio:

x(pred) = x(true)+δ ; y(pred) = y(true)+δ ; δ ∼ N (µ,σ2)

(b) Pagal KDE modelį parenkamas nremove defektų koordinačių porų
skaičius. Tikrieji defektai, esantys arčiausiai atrinktų koordinačių,
atrenkami ir pašalinami iš pradinio defektų rinkinio. Tai įveda klai-
dingai neigiamus atvejus į generuojamą defektų rinkinį ir atitinka-
mai sumažina aptikimo jautrumą.
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(c) Pagal KDE modelį parenkamas nadd naujų koordinačių porų skai-
čius, o defektai su šiomis koordinatėmis įtraukiami į sugeneruotą
defektų rinkinį. Tai atitinka klaidingai teigiamus atvejus ir sumaži-
na aptikimo tikslumą.

Aprašytas algoritmas buvo naudojamas sintetiniams atvejams generuoti
kiekvienam iš trijų AJM bandomųjų vaizdų atskirai. KDE modeliai buvo pri-
taikyti naudojant Gauso branduolį, o pralaidumo (angl. bandwidth) parametras
nustatytas į 400. Parametrų nremove ir nadd reikšmės buvo keičiamos nuo 0 iki
N/2, su žingsniu, atitinkančiu 3 % bendro defektų skaičiaus N.
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S.19 pav.: Vidutinės ∆ flog ir ∆argY vertės, apskaičiuotos sugeneruotų defektų
rinkinių poaibiams, atitinkantiems skirtingus F1 ir QN intervalus.

Apibendrinti rezultatai, pateikti S.19 pav., rodo vidutinius minimumo taš-
ko koordinačių nuokrypius skirtinguose F1 ir QN intervaluose. Vidutinės ab-
soliučios ∆ flog ir ∆argY vertės reikšmingai skiriasi tarp trijų AJM vaizdų, kur
mažiausiais nuokrypiais pasižymi AJM defektų rinkinys su mažiausia Vorono-
jaus σ reikšme.

S.3.3. Modeliuotų ir eksperimentinių EIS spektrų palyginimas

Siekiant įvertinti, kaip automatizuoto defektų aptikimo netikslumas realiuose
AJM vaizduose paveiktų parametrų ρsub ir rde f prognozavimą iš atitinkamų
EIS spektrų, atlikta modeliavimo užduočių serija su kiekviena tikrų ir prog-
nozuotų defektų rinkinių (gautų naudojant konvoliucinį neuroninį tinklą) pora,
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naudojant skirtingas rde f ir ρsub reikšmes. Sumodeliuotos tikrų ir prognozuotų
defektų rinkinių kreivės sulygintos su eksperimentiniais EIS duomenimis, gau-
tais atlikus matavimus kiekvienam iš trijų tBLM membranų mėginių. Visų
trijų tipų EIS kreivės sugretintos pagal minimumo taško koordinates (log fmin

ir argYmin).
S.20 pav. parodytos modeliuojamos ir eksperimentinės kiekvieno pavi-

ršiaus kreivės, taip pat konkrečios atitinkamų modeliuotų atvejų rde f ir ρsub

reikšmės. Geriausiai suderintos modeliuotos kreivės iš tikrųjų ir prognozuotų
defektų rinkinių visais atvejais rodo nedidelį 0,1 skirtumą pagal logρsub, o rde f

skirtumai svyruoja nuo 0 nm iki 4 nm.
Išsamūs defektų aptikimo metodų ir eksperimentų aprašymai bei skyriaus

išvados pateikiamos disertacijos tekste ir publikacijoje [A5].
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S.20 pav.: Eksperimentinių EIS matavimų duomenys (mėlynos kreivės), paly-
ginti su modeliuotais atvejais (žalios ir raudonos kreivės, atitinkančios atitinka-
mai rankiniu būdu anotuotas defektų koordinates ir CNN modelio prognozes).
A, B ir C dalys atitinka 1, 2 ir 3 AJM paviršius.

Bendrosios išvados

• Aprašytas trimatis membranos modelis (įgyvendintas naudojant baigtinių
elementų metodą) leidžia imituoti realistiškus EIS atsakus su įvairaus
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pobūdžio membranos defektų išsidėstymais. Mašininio mokymosi me-
todais pagrįstos EIS duomenų analizės metodika pademonstruota prog-
nozuojant kiekybinius membranos parametrus, tiesiogiai nepasiekiamus
iš EIS spektro – defektų tankį, dydį ir pomembraninio sluoksnio savitają
varžą.

• Trys pateikti defektų klasterizacijos modeliai gali būti naudojami ge-
neruojant tikroviškus defektų rinkinius, pasižyminčius skirtingu klaste-
rizacijos laipsniu, ir parametrizuojant realius defektų rinkinius, gauna-
mus iš AJM duomenų. Voronojaus diagramos sektorių plotų standar-
tinis nuokrypis, apskaičiuotas klasterizuotiems defektų rinkiniams, pa-
siūlytas kaip paprasta metrika, tinkanti kiekybiškai įvertinti klasteriza-
cijos efektą ir atskirti klasterizuotus ir atsitiktinai paskirstytus defektų
rinkinius. Defektų klasterizacijos efektą atspindi EIS spektrų pokyčiai,
kurie dar negali būti visiškai atsieti (ištirtais metodais) nuo kitų memb-
ranos parametrų (tokių kaip defekto tankis ir dydis) įtakos.

• Automatizuoto defektų aptikimo algoritmų bandymai su realių membra-
nų AJM vaizdais parodė F1 reikšmes nuo 0,538 iki 0,742. Konvoliuci-
nis neuroninis tinklas veikė nežymiai tiksliau už paprastesnius metodus,
pagrįstus Hough transformacija, ir paprastomis vaizdų apdorojimo ope-
racijomis. Dėl riboto AJM vaizdo duomenų kiekio įgyvendintas me-
todas, leidžiantis generuoti sintetinius defektų rinkinius, atitinkančius
įvairius defektų aptikimo tikslumo lygius ir įvertinti gautų EIS spektrų
paklaidų ribas.
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Vilnius University Press
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