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Chapter 1

Introduction

In this chapter, we present our research topic, aim and applied meth-
ods, novelty of main results, the list of published papers, and the list of
conferences where our results were presented.

1.1 Research topic

The main topics of the thesis are the following:

1. Construction of easy-to-implement weak first- and second-order ap-
proximations for the Wright–Fisher equation

Xx
t = x+

t∫
0

(a− bXx
s ) ds+ σ

t∫
0

√
Xx

s (1−Xx
s ) dBs, x ∈ [0, 1],

(1.1.1)

with parameters 0 ≤ a ≤ b and σ > 0. Here B is a standard
Brownian motion (Wiener process). It is well known that equa-
tion (1.1.1) has a unique strong solution Xx, which remains in the
interval [0, 1], i.e., P {Xx

t ∈ [0, 1] ∀t ⩾ 0} = 1 [4].

2. Regularity of the solutions of the backward Kolmogorov PDEs re-
lated to Wright–Fisher, CIR, and general Stratonovich equations.
Such a regularity is needed for a rigorous proof that a potential
(“candidate”) first- or second-order weak approximation of an SDE
is indeed a weak approximation of the corresponding order.

1.2 Aim and difficulties

The aim of the thesis has been to construct simple, yet effective first- and
second-order weak approximations for the solution of the WF model that
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use only generation of discrete random variables at each approximation
step. In addition, we have focused on proving the regularity of solutions
of the backward Kolmogorov equations for the WF equation and, in
addition, for the CIR and general Stratonovich equations with square-
root diffusion coefficient since this fact is essential in rigorous proofs of
the convergence rates of weak approximations of SDEs.

The main problem in developing numerical methods for “square-root”
diffusions is that the diffusion coefficient has unbounded derivatives near
“singular” points (in our case, 0 and 1), and therefore standard methods
(see, e.g., Milstein and Tretyakov [34]) are not applicable; typically, dis-
cretization schemes involving (explicitly or implicitly) the derivatives of
the coefficients usually lose their accuracy near singular points, especially
for large σ.

Alfonsi [4, Chap. 6] constructed a weak second-order approximation
of the WF process by using its connection with the CIR [11] process
and the earlier constructed approximations of the latter (Alfonsi [3]).
In comparison with the numerical scheme of Alfonsi [4, Prop. 6.1.13,
Algs. 6.1 and 6.2], our algorithm is direct and, in addition, much simpler
and easier to implement. In our constructions, we follow some ideas of
Lileika and Mackevičius [29,30]. However, we had to overcome a serious
additional challenge (in comparison with CIR or CKLS processes): two
“singular” points, 0 and 1, of the diffusion coefficient make it essentially
more difficult to ensure that the approximations take values in [0, 1]
(instead of [0,+∞) as in [29,30]).

1.3 Methods

Methods of calculus, stochastic calculus, probability theory, statistics,
and functional analysis are applied in the thesis. Numerical experiments
were simulated using the programming language Python. The figures
were generated using Python and the computing environment Maple.
The same software was also used for solving equalities and inequalities.

1.4 Actuality and novelty

The Wright–Fisher process was originally used to model gene frequencies,
i.e., the proportions of genes in a population. In recent years Wright–
Fisher and Jacobi processes have started appearing in the finance appli-
cations. These processes are restricted to a finite interval, and due to
this, they seem appropriate to model dynamic bounded variables such
as a regime probability or a default probability. However, closed-form
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solutions of the WF or Jacobi models are unknown therefore a need to
approximate them arises.

An existing weak second-order approximation of the WF process [4]
relies heavily on the WF process connection with the CIR process and the
earlier constructed approximations of the latter. However, we propose
schemes that are constructed directly for the WF process and are easier
to implement. The accuracy of the approximation is shown not only by
the rigorous proofs but also by the simulation examples, which are not
present for the existing approximation constructed by Alfonsi.

When it comes to the regularity of solutions of the backward Kol-
mogorov equations, known results rely on explicit formulas of density [2]
or partial differential equation theory [13]. In this thesis, we give proba-
bilistic proofs of the regularity of solutions for the WF equation and for
the CIR equation without relying on existing transition density formulas.
This enabled us to extend our method to general Stratonovich equations
with square-root diffusion coefficient.

1.5 Main results

We managed to construct simple and effective first- and second-order
weak approximations for the solution of the Wright–Fisher model. These
discretization schemes use only generation of discrete random variables
at each approximation step. They are presented in the theorems below.1

Theorem 1.1. Let

Dx
t = D(x, t) =

{
xe−bt + a

b

(
1− e−bt

)
, 0 ≤ a ≤ b ̸= 0,

x, a = b = 0,
(1.5.1)

and let the random variable Ŝx
h take the values

x̂1,2 :=

{
x1,2(x, h) with prob. p1,2 =

x
2x1,2(x,h)

, x ∈ [0, 1/2],

1− x1,2(1− x, h) with prob. p1,2 =
1−x

2x1,2(1−x,h) , x ∈ (1/2, 1],

(1.5.2)

where

x1,2(x, h) = x+ (1− x)σ2h∓
√
(x+ (1− x)σ2h)(1− x)σ2h.

Then the one-step approximation X̂x
h defined by the composition

X̂x
h := D(Ŝx

h , h), x ∈ [0, 1], h > 0,

defines a first-order weak approximation for the Wright–Fisher equa-
tion (1.1.1).

1For definitions, see Chapter 3.
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Theorem 1.2. Let

x1 = x1(x, h) = x+
3(1− x)σ2h

4
+

2xσ2h

3
−
√

3x(1− x)σ2h,

x2 = x2(x, h) = x+
17xσ2h

12
,

x3 = x3(x, h) = x+
3(1− x)σ2h

4
+

2xσ2h

3
+
√

3x(1− x)σ2h,

y1,2 = y1,2(x, h) = x+ (1− x)σ2h∓
√

(x+ (1− x)σ2h)(1− x)σ2h,

and let us define the random variable Ŝx
h as follows:

Ŝx
h :=



x1,2,3(x, h) with probabilities p1,2,3(x, h) and
0 with probability p0(x, h) = 1− (p1 + p2 + p3)(x, h),

x ∈ (σ
2h
3 , 12 ],

1− x1,2,3(1− x, h) with prob. p1,2,3(1− x, h) and
1 with probability p0(x, h) = 1− (p1 + p2 + p3)(1− x, h),

x ∈ (12 , 1−
σ2h
3 ),

y1,2(x, h) with probabilities p̃1,2(x, h) :=
x

2y1,2(x,h)
,

x ∈ [0, σ
2h
3 ],

1− y1,2(1− x, h) with probabilities p̃1,2(1− x, h),

x ∈ [1− σ2h
3 , 1],

(1.5.3)

where

p1(x, h) =
m̂1x2x3 − m̂2x2 − m̂2x3 + m̂3

x1(x1 − x3)(x1 − x2)
,

p2(x, h) = −m̂1x1x3 − m̂2x1 − m̂2x3 + m̂3

x2(x1 − x2)(x2 − x3)
, (1.5.4)

p3(x, h) =
m̂1x1x2 − m̂2x1 − m̂2x2 + m̂3

x3(x2 − x3)(x1 − x3)
,

with

m̂1 = x,

m̂2 = x2 + σ2hx(1− x)(1− 1
2σ

2h),

m̂3 = x3 + 3
2x(σ

2h)2(3x2 − 4x+ 1)− 3xσ2h(x2 − x).

Then the one-step approximation X̂x
h defined by the composition

X̂x
h = D(Ŝ(D(x, h/2), h), h/2), x ∈ [0, 1], h > 0, (1.5.5)

defines a second-order weak approximation of the Wright–Fisher equa-
tion (1.1.1).
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The PDE with initial condition{
∂tu(t, x) = Au(t, x), x ≥ 0, t ∈ [0, T ],

u(0, x) = f(x), x ≥ 0,
(1.5.6)

is called the backward Kolmogorov equation related to the SDE

Xx
t = x+

t∫
0

b(Xx
s ) ds+

t∫
0

σ̃(Xx
s ) dBs, t ≥ 0, x ∈ D ⊂ R, (1.5.7)

where Af = bf ′ + 1
2 σ̃

2f ′′ is the generator of the solution of Eq. (1.5.7).
We prove the regularity of solutions of the backward Kolmogorov equa-
tions for the WF equation and, in addition, for the CIR and general
Stratonovich equations with square-root diffusion coefficient. Such a reg-
ularity is needed for rigorous proofs that potential (“candidate”) weak
approximations are indeed weak approximations of the corresponding
order.

Theorem 1.3. Let

C∞
∗ [0, 1] :=

{
f ∈ C∞[0, 1] : lim sup

k→∞

1

k!
max
x∈[0,1]

|f (k)(x)| = 0
}
,

and let Xx
t be a Wright–Fisher process. If f ∈ C∞

∗ [0, 1], then

u(t, x) := Ef(Xx
t ), (t, x) ∈ R+ × [0, 1],

is a C∞ function that solves

∂tu(t, x) = Au(t, x). (1.5.8)

Theorem 1.3 is a known result proved by Epstein and Mazzeo [13] for
f ∈ C∞[0, 1] using methods of partial differential equation theory. We
present a probabilistic proof, which is much simpler and straightforward.

We denote by C∞
pol(D) the functions f ∈ C∞(D) such that

|f (n)(x)| ≤ Cn(1 + |x|kn), x ∈ D, n ∈ N0 := {0, 1, 2, . . . },

for some sequence (Cn, kn) ∈ R+×N0. Following Alfonsi [3], we say that
such a sequence {(Cn, kn), n ∈ N0} is a good sequence for f . In addition,
by Clin(D) we denote functions f ∈ C(D) such that

|f(x)| ≤ C(1 + |x|), x ∈ D.
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Theorem 1.4. Let

Xt(x) = Xx
t = x+

t∫
0

θ(κ−Xx
s ) ds+

t∫
0

σ
√

Xx
s dBs, t ∈ [0, T ],

be the CIR process with coefficients θ, κ, σ > 0 satisfying the condition
σ2 ≤ 4θκ and starting at x ≥ 0. Let f ∈ Cq

pol(R+) for some q ≥ 4. Then
the function

u(t, x) := Ef(Xt(x)), x ≥ 0, t ∈ [0, T ],

is l times continuously differentiable in x ≥ 0 and l′ times continuously
differentiable in t ∈ [0, T ] for l, l′ ∈ N such that 2l + 4l′ ≤ q. Moreover,
there exist constants C ≥ 0 and k ∈ N, depending only on a good set
{(Ci, ki), i = 0, 1, . . . , q} for f , such that∣∣∂j

x∂
i
tu(t, x)

∣∣ ⩽ C(1 + xk), x ≥ 0, t ∈ [0, T ], (1.5.9)

for j = 0, 1, . . . , l, i = 0, 1, . . . , l′. In particular, u(t, x) is a (classical)
solution of the Kolmogorov backward equation for (t, x) ∈ [0, T ]× R+.

As a consequence, if f ∈ C∞
pol(R+), then u(t, x) is infinitely differen-

tiable on [0, T ] × R+, and estimate (1.5.9) holds for all i, j ∈ N with C
and k depending on (i, j) and a good sequence {(Ci, ki), i ∈ N0} for f .

Theorem 1.4 is a known result proved by Alfonsi [2] by using the
complex analytical formula for the transition density of the CIR process.
We prove it without relying on this density. Our method allows us to
generalize the result to Stratonovich equations with square-root diffusion
coefficient:

Theorem 1.5. Let Xt(x) = Xx
t , t ≥ 0, be the process satisfying the

Stratonovich SDE

dXt =
√

Xta(Xt) ◦ dBt, X0 = x ≥ 0. (1.5.10)

In addition, let f ∈ Cq
pol(R+) for some q ⩾ 4, let a ∈ C2l−1

pol (R+) ∩
Clin(R+) for some l ⩾ 1, and suppose that 0 < C0 ⩽ a(x), x ⩾ 0. Then
the function

u(t, x) := Ef(Xt(x)), x ⩾ 0, t ∈ [0, T ],

is l times continuously differentiable in x ⩾ 0 and l′ times continuously
differentiable in t ∈ [0, T ] for l, l′ ∈ N such that 2l + 4l′ ⩽ q. Moreover,
there exist constants C ≥ 0 and k ∈ N, depending only on a good set
{(Ci, ki), i = 0, 1, . . . , q} for f such that
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∣∣∂j
x∂

i
tu(t, x)

∣∣ ⩽ C(1 + xk), x ≥ 0, (1.5.11)

for j = 0, 1, . . . , l,i = 0, 1, . . . , l′. In particular, u(t, x) is a (classical)
solution of the Kolmogorov backward equation for (t, x) ∈ [0, T ]× R+.

As a consequence, if f ∈ C∞
pol(R+) and a ∈ C∞

pol(R+)∩Clin(R+), then
u(t, x) is infinitely differentiable on [0, T ] × R+, and estimate (1.5.11)
holds for all i, j ∈ N with C and k depending on (i, j) and a good sequence
{(Ci, ki), i ∈ N0} for f .
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1.8 Structure of the thesis

The thesis is organized as follows. In Chapter 2, we give an overview of

related results obtained by other authors. Preliminaries and definitions

are provided in Chapter 3. In Section 4.1, we construct a first-order

weak approximation of the WF model, and in Section 4.2, we construct

a second-order weak approximation of the WF model. In the same sec-

tions, we summarize the constructed first- and second-order algorithms

and illustrate them by numerical simulation results. In Section 5, we

prove the regularity of solutions of backward Kolmogorov equations for

SDEs with square-root diffusion coefficients: for WF, CIR, and general

Stratonovich square-root diffusions (Sections 5.1, 5.2, and 5.3, respec-

tively). We provide conclusions of the thesis in Chapter 6, and in the

Appendix (Chapter 7), we provide additional calculations.

1.9 Acknowledgments

First and foremost I am extremely grateful to my scientific adviser prof. Vi-

girdas Mackevičius for his invaluable advice, continuous support, and pa-

tience during my PhD studies. Your guidance, experience and empathy

encouraged me to continue this sometimes rough path.

I would also like to thank prof. Kęstutis Kubilius and prof. Remigijus

Leipus for the careful reading of the thesis manuscript and their useful

remarks.

Finally, special thanks goes to my family and my significant other

Mindaugas. You encouraged me to embark on this journey and were

here for me to celebrate success and support during difficult times.

8



Chapter 2

A short historical overview

2.1 A deep dive into the Wright–Fisher process

The Wright–Fisher process was originally intended to model gene fre-

quencies, i.e., the proportions of genes in a population. Before the intro-

duction of the WF process, the change in gene frequencies was seen as

a deterministic process [17]. However, such assumptions are valid only

when the population is big enough and the surrounding environment is

constant or changes in a deterministic way [23]. Wright [41] summarized

all factors that cause secular changes in mutation rates, conditions of

selection, size and structure of the population, and the possibilities of

ingression from other populations. The list is as follows:

1. Systematic change

• Pressure of recurrent mutation.

• Pressure of immigration and crossbreeding.

• Pressure of intragroup selection.

2. Random fluctuations

• From accidents of sampling.

• From fluctuations in the systematic pressures.

3. Nonrecurrent change
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• Nonrecurrent mutation.

• Nonrecurrent hybridization.

• Nonrecurrent selective incidents.

• From nonrecurrent extreme reduction in numbers.

Let us introduce the mathematical rationale behind the WF pro-

cess [21, Chap. 15, Sec. 2], [14, Chap. 10]. Consider a population of N

individuals composed of two types A and a. Suppose that the current

state (the number of A-types) is i, and therefore the other N − i indi-

viduals are of a-type. The next generation is produced subject to the

influence of mutation, selection, and sampling forces. We stipulate that

mutation converts at birth an A-type to an a-type and an a-type to an

A-type with probabilities α and β, respectively. Given the parental pop-

ulation comprised of i A-types and N − i a-types, the expected fraction

of A-types after mutation is (i/N)(1 − α) + (1 − i/N)β and of the a-

types is (i/N)α + (1− i/N)(1− β). We next stipulate that the relative

survival abilities of the two types A and a in contributing to the next

generation are in the ratio of 1 + s to 1, where s is small and positive.

Thus type A is selectively superior to type a. Taking account of these

mutation and selection forces, the expected fraction of mature A-types

before reproduction is

pi =
(1 + s)[i(1− α) + (N − i)β]

(1 + s)[i(1− α) + (N − i)β] + [iα+ (N − i)(1− β)]
. (2.1.1)

The Wright–Fisher model postulates that the composition of the next

generation is determined through N binomial trials, where the probabil-

ity of producing an A-type offspring on each trial is pi as given in (2.1.1).

Thus the population process {X(t) = number of A-types in the tth

generation} evolves as a Markov chain governed by the transition prob-

ability matrix with elements

Pij =

(
N

j

)
pji (1− pi)

N−j . (2.1.2)

10



Kimura [22] showed that in large populations the discrete WF process can

be closely approximated by a continuous-time continuous-space diffusion

process of the form (1.1.1).

For various applications, we may be interested in similar processes

with values in [α, β] satisfying the equation

dX̃t = (ã− bX̃t) dt+ σ

√
(X̃t − α)(β − X̃t) dBt, X̃0 ∈ [α, β], (2.1.3)

which is well defined when bα ≤ ã ≤ bβ. A popular choice is the Jacobi

process with α = −1 and β = 1. Process (2.1.3) can be obtained from

the WF process by the affine transformation

X̃t = α+ (β − α)Xt, ã = a(β − α). (2.1.4)

For the rest of this chapter, all Jacobi SDE parameters are marked

with tilde, that is,

X̃x
t = x̃+

t∫
0

(ã−b̃X̃x
s ) ds+σ̃

t∫
0

√
(1− (X̃x

s )
2) dBs, x ∈ [−1, 1]. (2.1.5)

In more recent years the Wright–Fisher and Jacobi processes found their

place in finance applications. It seems only natural as these processes are

restricted to a finite interval, and due to this, they seem appropriate to

model dynamic bounded variables such as a regime probability or a de-

fault probability. For instance, Delbaen and Shirakawa [12] presented a

new interest rate dynamics model where the interest rates fluctuate in

a bounded region, whereas Ethier and Kurtz [31] proposed a modified

Jacobi process to evaluate risk premium of the stochastic correlation.

The multivariate Jacobi process has been studied by Gourieroux and

Jasiak [16], who suggested using it for modeling smooth transitions be-

tween alternative regimes in continuous time. The most recent research

regarding Wright–Fisher process applications in finance focused on credit

default swaps [6] and LIBOR market [5].
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2.2 One-step approximations

CIR approximation schemes employing the properties of
variance

The well-known Cox–Ingersoll–Ross (CIR) process [11] is the solution of

the SDE

Xx
t = x+

t∫
0

θ(κ−Xx
s ) ds+

t∫
0

σ
√

Xx
s dBs, t ∈ [0, T ], (2.2.1)

with parameters θ, κ, σ > 0 and x ≥ 0. The Ninomiya and Victoir

approximation scheme [36], starting from x with a time step t, for the

CIR equation is described in [4]

X̂x
t = e−

θt
2

(√
(θκ− σ2/4) ζθ(t/2) + e−

θt
2 x+

σ

2

√
tN

)2

+
(
θκ− σ2/4

)
ζθ(t/2), (2.2.2)

where

ζθ(t) =

t∫
0

e−θsds =

{
1
θ

(
1− e−θt

)
if θ ̸= 0,

t if θ = 0,

N ∼ N (0, 1),

is only appropriately defined when σ2 ⩽ 4θκ.

Alfonsi [3, Thm. 2.8] modifies the previous scheme and suggests

a second-order weak approximation that is well defined without restric-

tion on the parameters. First, he defines the threshold

K2(t) = 1{σ2>4θκ}e
θt
2

((
σ2

4
− θκ

)
ζθ(t/2)

+

[√
e

θt
2

[(
σ2

4
− θκ

)
ζθ(t/2)

]
+

σ

2

√
3t

]2 . (2.2.3)

Then the other nonnegative X̂x
t scheme such that{

∀i ∈ {1, 2},E
[
(X̂x

t )
i
]
= E

[
(Xx

t )
i
]
,

∀q ∈ N, ∃Cq > 0, ∀t ∈ [0, 1], x ∈ [0,K2(t)),E
[
(X̂x

t )
q
]
⩽ Cqt

q,
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is used in the interval [0,K2(t)). The algorithm of the discretization

scheme is presented in Algorithm 1.
Algorithm 1: Algorithm for the second-order scheme of the
CIR with time step t > 0, U being sampled uniformly on [0, 1].
1 if x ⩾ K2(t) then

2 X = e−
θt
2

(√
(θκ− σ2/4) ζθ(t/2) + e−

θt
2 x+ σ

2

√
tY

)2

3 +
(
θκ− σ2/4

)
ζθ(t/2),

4 else

5 p =
1−
√

1−ũ1(t,x)2/ũ2(t,x)

2 ,
6 if U < p then
7 X = ũ1(t,x)

2p ,

8 else
9 X = ũ1(t,x)

2(1−p) .

Here

P(Y =
√
3) = P(Y = −

√
3) =

1

6
,P(Y = 0) =

2

3
, (2.2.4)

ũ1(t, x) = xe−θt + θκζθ(t), (2.2.5)

ũ2(t, x) = ũ1(t, x)
2 + σ2ζθ(t)

[
θκζθ(t)/2 + xe−θt

]
. (2.2.6)

WF and Jacobi connection with CIR process

Alfonsi [1,4] establishes a connection between CIR (and squared-Bessel)

processes and one-dimensional Wright–Fisher and Jacobi diffusions.

Proposition 2.1. Let B1 and B2 be two independent real Brownian

motions. Let b1, b2, z1, z2 ⩾ 0 and σ > 0 be such that σ2 ⩽ 2 (b1 + b2)

and z1 + z2 > 0. We consider the following CIR processes:

Zi
t = zi + bit+

t∫
0

σ
√

Zi
sdB

i
s, i = 1, 2.

Then Yt = Z1
t +Z2

t is a CIR process that never reaches 0, and we define

t ⩾ 0, Xt =
Z1
t

Yt
, ϕ(t) =

t∫
0

1

Ys
ds.

13



Then ϕ is bijective on R+, and the process
(
Xϕ−1(t), t ⩾ 0

)
is a Wright–

Fisher diffusion with parameters a = b1, b = b1 + b2, and σ that is inde-

pendent of (Yt, t ⩾ 0).

Second-order schemes for WF and Jacobi processes

Alfonsi [4] presents two approaches that lead to a second-order scheme for

the Jacobi process without any restriction on the parameters. However,

none of them is illustrated by simulation examples.

The first method relies on the Ninomiya–Victoir scheme. The in-

finitesimal generator of X̃ is given by

L̃f(x) = (ã− b̃x)f ′(x) +
σ̃2

2

(
1− x2

)
f ′′(x), x ∈ [−1, 1],

for C2 functions f : [−1, 1] → R. The generator is split into L̃ = L̃1+ L̃2

with

L̃1f(x) =

(
ã−

(
b̃− σ̃2

2

)
x

)
f ′(x), (2.2.7)

L̃2f(x) = − σ̃2

2
xf ′(x) +

σ̃2

2

(
1− x2

)
f ′′(x). (2.2.8)

The SDE associated with L̃2 is equal to

Xt = sin (y + σ̃Wt) , y ∈ [−π/2, π/2] ⇒

dXt = σ̃ cos (y + σ̃Wt) dWt −
σ̃2

2
Xtdt = σ̃

√
1−X2

t dW
′
t −

σ̃2

2
Xtdt,

with dW ′
t =

[
1cos(y+σ̃Wt)⩾0 − 1cos(y+σ̃Wt)<0

]
dWt. The ODE associated

with L̃1 is linear and is solved by ξ(t, x) = xe
−
(
b̃− σ̃2

2

)
t
+ ãζ

b̃− σ̃2

2

(t). This

solution stays in [−1, 1] if and only if

ã−
(
b̃− σ̃2

2

)
⩽ 0 and ã+

(
b̃− σ̃2

2

)
⩾ 0.

Thus Alfonsi proposes the following steps:

1. First, use the Ninomiya and Victoir scheme

ξ(t/2, sin(arcsin(ξ(t/2, x)) + σ̃
√
tY )),
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where Y is given by (2.2.4). This scheme is well defined on the

interval[−1 +K(t), 1−K ′(t)], with K(t),K ′(t) ⩾ 0 that satisfy

K(t) =
t→0

O(t) and K ′(t) =
t→0

O(t).

2. Use a scheme valued in [−1, 1] that matches the two first moments

of the Jacobi process when the starting point is either in the interval

[−1,−1 +K(t)) or (1−K ′(t), 1].

However, from the experience we know that defining K(t),K ′(t) as well

as a scheme to be used near the singularity points seem to be more

complicated than it looks from the first glance.

The second method relies on the fact that CIR and Wright–Fisher

diffusions are closely related. This method reuses the high-order schemes

developed for the CIR process.

Proposition 2.2. Let ξ(t, x) = xe−b̃t + ãζb̃(t) for x ∈ [−1, 1] and t ⩾ 0.

The scheme defined by

X̂x
t = ξ

(
t/2, p

(
Ẑ

1,ξ(t/2,x)
ϕ(t) , Ẑ

2,ξ(t/2,x)
ϕ(t)

))
,

where

Ẑ1,x
t = x+ σ̃

√
tY with Y defined by (2.2.4),

Ẑ2,x
t is sampled independently according to the second-order

scheme of the CIR process, and

ϕ(t) =
−1 +

√
1 + 6σ̃2t

3σ̃2
,

is a second-order scheme for the Jacobi process.

This proposition is summarized in Algorithm 2:
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Algorithm 2: Algorithm for the second-order scheme of the
Jacobi process starting from x with time step t > 0.

1 X = xe−b̃t/2 + ãζb̃(t/2).

2 Z1 = X + σ̃
√

ϕ(t)Ñ , with N ∼ N (0, 1).
3 Sample independently Z2 by using Algorithm 1 with time

step ϕ(t), starting point 1−X2, and with CIR parameters
κ = 0, θ = 0 and σ = 2σ̃.

4 X = Z1√
(Z1)

2+Z2

.

5 X = Xe−b̃t/2 + ãζb̃(t/2).

By using Algorithm 2 Alfonsi provides an algorithm for the second–

order scheme for the Wright–Fisher process.
Algorithm 3: Algorithm for the second-order scheme of the
WF process starting from x with time step t > 0.
1 Sample X with Algorithm 2 starting from 2x− 1 and

parameters ã = 2a− b, b̃ = b, σ̃ = σ.
2 X = (X + 1)/2.

We believe that despite a brief form, these algorithms are pretty

difficult to simulate given their dependency on each other.

Overview of split-step schemes for other SDEs

The split-step method (also called the splitting technique) used in this

thesis has been suggested by Higham et al. [19] and reviewed in [35].

Mackevičius [33] provides first- and second–order weak approxima-

tions for the CIR process. Here we provide the formulation only for the

second order.

Theorem 2.3. Let a = σ2, and let the discretization scheme X̂x
t be

defined by composition

X̂h(x, h) := D
(
Ŝ

(
D
(
x,

h

2

)
, h
)
,
h

2

)
,

where the three-valued random variables Ŝx
h take the values x1, x2, and

x0 with probabilities p1, p2, and p0 = 1− p1 − p2 defined as follows:

• If x ⩾ 2ah, then

x1 = x+
s−

√
∆

2
, x2 = x+

s+
√
∆

2
, x0 = x,
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p1 =
2xah√

∆(
√
∆− s)

, p2 =
2xah√

∆(
√
∆+ s)

,

where

s =
3ah

2
, ∆ =

21

4
(ah)2 + 12xah.

• If 0 < x < 2ah, then

x1 =
s−

√
∆

2
, x2 =

s+
√
∆

2
, x0 = 0,

p1 =
x(2ah− s−

√
∆)√

∆(
√
∆− s)

, p2 =
x(2ah− s+

√
∆)√

∆(
√
∆+ s)

,

where

s =
4x2 + 9xah+ 3(ah)2

2x+ ah
,

∆ =
ah
(
16x3 + 33x2ah+ 18xa2h2 + 3a3h3

)
(2x+ ah)2

.

Then X̂x
t is a second-order discretization scheme for the CIR equation.

Similarly, Lenkšas and Mackevičius [26, 27] constructed first- and

second-order schemes for the Heston model [18], whereas Lileika and

Mackevičius [29, 30] constructed first- and second-order schemes for the

CKLS model [8].

2.3 Regularity of solutions of Kolmogorov
backward equation

In this section, we provide an overview of various trials to prove the reg-

ularity of the solutions of Kolmogorov backward equation. Such a regu-

larity is needed for a rigorous proof that a potential (“candidate”) weak

approximation is indeed a weak approximation of the corresponding or-

der.

Alfonsi [2] proves the regularity for the CIR process using available

analytical formula for the transition density

p(t, x, z) =
∞∑
i=0

e−λtx/2 (λtx/2)
i

i!

ct/2

Γ(i+ v/2)

(ctz
2

)i−1+v/2
e−ctz/2,
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where ct = 4θ
σ2(1−e−θt)

, v = 4θκ/σ2 and λt = cte
−θt. However, except

for a few models in finance, e.g. Black and Scholes (1973) [7], Vasicek

(1977) [40], Cox, Ingersoll and Ross (1985) [11] and Cox (1975) [10], the

transition density of the SDE is not usually available in a closed form.

Epstein and Mazzeo in [13] prove the regularity for the WF process

using methods of partial differential equation theory. However, such a

method, to the best of our knowledge, is not generalizable for a broader

class of square root diffusions and is overall long and complex.

Gabrielli in [15] made an effort to generalize the regularity result

for the affine type stochastic process. One-dimensional affine stochastic

process has the following form:

dXx
t = (a+ bXx

t )dt+
√

c+ dXx
t dBt. (2.3.1)

For instance, CIR, Coupled CIR, CIR with jumps or Heston models can

be written in such a form. However, the Wright-Fisher process is not

affine. Gabrielli result is provided below.

Theorem 2.4 (see [15, Thm. 4.23]). Let f ∈ C∞
pol. Then, the function

u : R+ × D → R defined by u(t, x) = Ex [f (Xt)] is smooth, with all

derivatives satisfying the following property:

for all (t, x) ∈ [0, T ]× D,
∣∣∣∂α

(t,x)u(t, x)
∣∣∣ ⩽ Kα(T )

(
1 + |x|2ηα(T )

)
,

where Kα(T ) and ηα(T ) are positive constants depending on the time

horizon T and the order of derivative α.

To our view, the proof of this theorem has a significant flaw. It is

based on the incorrect equality

∂t∂
ᾱ
xu(t, x) = A∂ᾱ

xu(t, x),

as the differentiation operator and generator of the Markov process do

not commute. Therefore we cannot clearly state that regularity is proved

for all affine stochastic processes.
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Chapter 3

Preliminaries

In this chapter, we provide all definitions and describe techniques used

to construct discretization schemes.

3.1 Preliminaries and definitions

In this section, we give some definitions for the general one-dimensional

stochastic differential equation

Xx
t = x+

t∫
0

b(Xx
s ) ds+

t∫
0

σ̃(Xx
s ) dBs, t ≥ 0, x ∈ D ⊂ R. (3.1.1)

To avoid ambiguity, we indicate functions with the supplementary sym-

bol ˜ if the same letter is used for a function and a constant, for example,

we denote by σ̃ the diffusion coefficient in the general equation (3.1.1)

and by σ the constant in the WF equation (1.1.1).

We assume that the equation has a unique weak solution Xx
t such

that P(Xx
t ∈ D, t ≥ 0) = 1 for all x ∈ D. For example, for Eq. (1.1.1),

D = [0, 1].

Having a fixed time interval [0, T ], consider an equidistant time dis-

cretization ∆h = {ih, i = 0, 1, . . . , ⌊T/h⌋, h ∈ (0, T ]}, where ⌊a⌋ is the

integer part of a. By a discretization scheme of Eq. (3.1.1) we mean a

family of discrete-time homogeneous Markov chains X̂h = {X̂h(x, t), x ∈
D, t ∈ ∆h} with initial values X̂h(x, 0) = x and one-step transition

probabilities ph(x, dz), x ∈ D. For convenience, we only consider steps
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h = T/n, n ∈ N. We shortly write X̂x
t or X̂(x, t) instead of X̂h(x, t).

Note that because of the Markovity, a one-step approximation X̂x
h of the

scheme completely defines the distribution of the whole discretization

scheme X̂x
t , so that we only need to construct the former.

We denote by C∞(D) the space of C∞ functions f : D → R, by

C∞
0 (D) the functions f ∈ C∞(D) with compact support in D, and by

C∞
pol(D) the functions f ∈ C∞(D) such that

|f (n)(x)| ≤ Cn(1 + |x|kn), x ∈ D, n ∈ N0 := {0, 1, 2, . . . }, (3.1.2)

for some sequence (Cn, kn) ∈ R+×N0. Following Alfonsi [3], we say that

such a sequence {(Cn, kn), n ∈ N0} is a good sequence for f . Finally, by

Clin(D) we denote functions f ∈ C(D) such that

|f(x)| ≤ C(1 + |x|), x ∈ D. (3.1.3)

We will write g(x, h) = O(hn) if for some C > 0, k ∈ N, and h0 > 0,

|g(x, h)| ≤ C(1 + |x|k)hn, x ≥ 0, 0 < h ≤ h0.

If, in particular, the function g is expressed in terms of another func-

tion f ∈ C∞
pol(R) and the constants C, k, and h0 only depend on a good

sequence for f , then we will, instead, write, g(x, h) = O(hn).

The following PDE is called the backward Kolmogorov equation, with

initial condition{
∂tu(t, x) = Au(t, x), x ≥ 0, t ∈ [0, T ],

u(0, x) = f(x), x ≥ 0,
(3.1.4)

where Af = bf ′ + 1
2 σ̃

2f ′′ is the generator of the solution of Eq. (3.1.1).

If the coefficients b, σ̃ and the initial function f are sufficiently “good”,

then the function u = u(t, x) := Ef(Xx
t ) is a (classical) solution of

PDE (3.1.4). From this by Itô’s formula it follows that the random

process Mx
t := u(T − t,Xx

t ), t ∈ [0, T ], is a martingale with mean

EMx
t = f(x) satisfying the final condition Mx

T = f(Xx
T ). This fact is

essential in rigorous proofs of the convergence rates of weak approxima-

tions of SDEs. The higher the convergence rate, the greater smoothness
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of the coefficients and final condition is to be assumed to get a sufficient

smoothness of the solution u of (3.1.4). The question of the existence of

smooth classical solutions of the backward Kolmogorov equation is more

complicated than it might seem from the first sight. General results

typically require smoothness and polynomial growth of several higher-

order derivatives of the coefficients; we refer to the book by Kloeden and

Platen [24, Thm. 4.8.6 on p. 153].

Definition 3.1. A discretization scheme X̂h is a weak νth-order ap-

proximation for the solution (Xx
t , t ∈ [0, T ]) of Eq. (3.1.1) if for every

f ∈ C∞
0 (D), there exists C > 0 such that

|Ef(Xx
T )− Ef(X̂x

T )| ≤ Chν , h > 0.

Definition 3.2. Suppose Af ∈ C∞
pol(D) for all f ∈ C∞

pol(D), that is,

b, σ̃2 ∈ C∞
pol(D). The νth-order remainder of a discretization scheme X̂x

t

for Xx
t is the operator Rh

ν : C∞
pol(D) → C(D) defined by

Rh
νf(x) := Ef(X̂x

h)−
[
f(x) +

ν∑
k=1

Akf(x)

k!
hk
]
, x ∈ D, h > 0. (3.1.5)

A discretization scheme X̂x
t is a local νth-order weak approximation of

Eq. (3.1.1) if

Rh
νf(x) = O(hν+1), h → 0,

for all f ∈ C∞
pol(D) and x ∈ D.

Remark 3.1. Iterating the Dynkin formula

Ef(Xx
h) = f(x) +

h∫
0

EAf(Xx
s )ds,

we have

Ef(Xx
h) = f(x) +

ν∑
k=1

Akf(x)

k!
hk

+

h∫
0

s1∫
0

· · ·
sν∫
0

EAν+1f(Xx
sν+1

)dsν+1 · · · ds2ds1, (3.1.6)
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which motivates Definition 3.2: If Aν+1f behaves “well” (e.g., b, σ̃2, f ∈
C∞
0 (D), and EAν+1f is bounded), then for the “one-step” νth-order weak

approximation scheme X̂x
h , we have

|Ef(Xx
h)− Ef(X̂x

h)| = O(hν+1), h → 0. (3.1.7)

We may expect that in “good” cases, a local νth-order weak discretiza-

tion scheme is a νth-order (global) approximation. Rigorous statements

require a certain uniformity of (3.1.7) with respect to f and regularity

of A.

Definition 3.3. A discretization scheme X̂x
t is a potential νth-order

weak approximation for Eq. (3.1.1) if for every f ∈ C∞
pol(D),

|Rh
νf(x)| = O(hν+1).

Definition 3.4. A discretization scheme X̂x
t = X̂h(x, t), h > 0, has

uniformly bounded moments if there exists h0 > 0 such that

sup
0<h≤h0

sup
t∈∆h

E(|X̂h(x, t)|n) < +∞, n ∈ N, x ∈ D.

We say that a potential νth-order weak approximation is a strongly po-

tential νth-order weak approximation if it has uniformly bounded mo-

ments.

The following two theorems ensure that a potential νth-order weak

approximation for the Wright–Fisher equation is in fact a νth-order weak

approximation (in the sense of Definition 3.1). Note that the requirement

of uniformly bounded moments (see, e.g., [3]) is obviously satisfied by

our approximations since they take values in [0, 1].

Theorem A (see [3, Thm. 1.19]). Let X̂h be a discretization scheme

with transition probabilities ph(x,dz) on [0, 1] that starts from X̂x
0 = x ∈

[0, 1]. We assume that

1. the scheme is a potential weak νth-order discretization scheme for

the operator A.
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2. f ∈ C∞[0, 1] is a function such that u(t, x) = Ef(Xx
T−t) defined on

[0, T ]× [0, 1] solves ∂tu(t, x) = −Au(t, x) for (t, x) ∈ [0, T ]× [0, 1].

Then |Ef(X̂x
T )− Ef(Xx

T )| = O(hν).

Theorem B (see [4, Thm. 6.1.12]). Let f ∈ C∞[0, 1]. Then

ũ(t, x) := Ef(Xx
t ), (t, x) ∈ R+ × [0, 1],

is a C∞ function that solves

∂tũ(t, x) = Aũ(t, x). (3.1.8)

3.2 Split-step technique for the WF model

We split Equation (1.1.1) into the deterministic part

dDx
t = (a− bDx

t ) dt, Dx
0 = x ∈ [0, 1], (3.2.1)

and the stochastic part

dSx
t = σ

√
Sx
t (1− Sx

t )dBt, Sx
0 = x ∈ [0, 1]. (3.2.2)

The solution of the deterministic part is positive for all (x, t) ∈ [0, 1]×
(0, T ], namely:

Dx
t = D(x, t) =

{
xe−bt + a

b

(
1− e−bt

)
, 0 ≤ a ≤ b ̸= 0,

x, a = b = 0.
(3.2.3)

The solution of the stochastic part is not explicitly known. However,

suppose that Ŝx
t is a discretization scheme for the stochastic part. We

define the first-order composition X̂x
t of the latter with the solution of the

deterministic part as a Markov chain that has the transition probability

in one step equal to the distribution of the random variable

X̂h(x, h) := D(Ŝ(x, h), h). (3.2.4)

Similarly, the second-order composition is defined by

X̂h(x, h) := D
(
Ŝ
(
D
(
x, h2

)
, h
)
, h2

)
. (3.2.5)
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Theorem C (see [3, Thm. 1.17]). Let Ŝx
t be a potential first- or second-

order approximation of the stochastic part of the WF equation. Then,

compositions (3.2.4) and (3.2.5) define, respectively, a first- or second-

order approximation X̂x
t of the WF Equation (1.1.1).

From this theorem, it follows that to construct a first- or second-order

weak approximation, we only need to construct a first- or second-order

approximation of the stochastic part, respectively.

Remark 3.2. Clearly, by the transformation (2.1.4) we can get weak

approximations for the similar to the WF processes (2.1.3) from weak

approximations for the WF process.

3.3 Moment matching technique for the WF
model

First-order

Let Ŝx
h be any discretization scheme. Applying Taylor’s formula to f ∈

C∞[0, 1], we have

Ef(Ŝx
h) = f(x) + f ′(x)E

(
Ŝx
h − x

)
+

f ′′(x)

2
E
(
Ŝx
h − x

)2
+

f ′′′(x)

6
E
(
Ŝx
h − x

)3
+

1

6
E

Ŝx
h∫

x

f (4)(s)
(
Ŝx
h − s

)3
ds.

Let us denote z = σ2h for brevity. The generator A0 of the stochastic

part dSx
t = σ

√
Sx
t (1− Sx

t )dBt is

A0f(x) =
1

2
σ2x(1− x)f ′′(x).

Thus the first-order remainder of the discretization scheme Ŝx
h is

Rh
1f(x) = Ef(Ŝx

h)− [f(x) +A0f(x)h]

= f ′(x)E
(
Ŝx
h − x

)
+

f ′′(x)

2

[
E
(
Ŝx
h − x

)2 − zx(1− x)
]

+
f ′′′(x)

6
E
(
Ŝx
h − x

)3
+ r1(x, h), x ⩾ 0, h > 0,
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where

|r1(x, h)| =
1

6

∣∣∣∣∣∣∣E
Ŝx
h∫

x

f (4)(s)
(
Ŝx
h − s

)3
ds

∣∣∣∣∣∣∣ ⩽
1

24
max
s∈[0,1]

∣∣f (4)(s)
∣∣E(Ŝx

h − x
)4
.

This expression shows that Ŝx
h is a potential first-order approximation

of the stochastic part (3.2.2) if

E
(
Ŝx
h − x

)
= O(h2), (3.3.1)

E
(
Ŝx
h − x

)2
= zx(1− x) +O(h2), (3.3.2)

E
(
Ŝx
h − x

)3
= O(h2), (3.3.3)

E
(
Ŝx
h − x

)4
= O(h2). (3.3.4)

Converting the central moments of Ŝx
h to noncentral moments, from

(3.3.1)–(3.3.2) we get

E
(
Ŝx
h

)i
= m̂i +O(h2), i = 1, 2, (3.3.5)

where the “moments” (further we call them approximate moments) m̂i =

m̂i(x, h), x ≥ 0, h > 0, i = 1, 2, are defined as

m̂1 = x,

m̂2 = x2 + zx(1− x).
(3.3.6)

Second-order

Let Ŝx
h be any discretization scheme. Applying Taylor’s formula to f ∈

C∞[0, 1], we have

Ef(Ŝx
h) = f(x) + f ′(x)E

(
Ŝx
h − x

)
+

f ′′(x)

2
E
(
Ŝx
h − x

)2
+

f ′′′(x)

6
E
(
Ŝx
h − x

)3
+

f (4)(x)

4!
E
(
Ŝx
h − x

)4
+

f (5)(x)

5!
E
(
Ŝx
h − x

)5
+

1

5!
E

Ŝx
h∫

x

f (6)(s)
(
Ŝx
h − s

)5
ds.

The square of the generator A0 of the stochastic part is

A2
0f(x) = −1

2
σ4x(1− x)f ′′(x) +

1

2
σ4x(1− x)(1− 2x)f ′′′(x)
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+
1

4
σ4x2(1− x)2f (4)(x).

Thus, the second-order remainder of the discretization scheme Ŝx
h is

Rh
2f(x) = Ef(Ŝx

h)−
[
f(x) +A0f(x)h+A2

0f(x)
h2

2

]
= f ′(x)E

(
Ŝx
h − x

)
+

f ′′(x)

2

[
E
(
Ŝx
h − x

)2 − zx(1− x)
(
1− 1

2z
)]

+
f ′′′(x)

6

[
E
(
Ŝx
h − x

)3 − 3

2
z2x(1− x)(1− 2x)

]
+

f (4)(x)

4!

[
E
(
Ŝx
h − x

)4 − 3z2(x(1− x))2
]

+
f (5)(x)

5!
E
(
Ŝx
h − x

)5
+ r2(x, h), x ⩾ 0, h > 0,

where

|r2(x, h)| =
1

5!

∣∣∣∣∣∣∣E
Ŝx
h∫

x

f (6)(s)
(
Ŝx
h − s

)5
ds

∣∣∣∣∣∣∣ ⩽
1

6!
max
s∈[0,1]

∣∣f (6)(s)
∣∣E(Ŝx

h − x
)6
.

This expression shows that Ŝx
h is a potential second-order approxi-

mation of the stochastic part (3.2.2) if

E
(
Ŝx
h − x

)
= O(h3), (3.3.7)

E
(
Ŝx
h − x

)2
= zx(1− x)

(
1− 1

2
z
)
+O(h3), (3.3.8)

E
(
Ŝx
h − x

)3
=

3

2
z2x(1− x)(1− 2x) +O(h3), (3.3.9)

E
(
Ŝx
h − x

)4
= 3z2(x(1− x))2 +O(h3), (3.3.10)

E
(
Ŝx
h − x

)5
= O(h3), (3.3.11)

E
(
Ŝx
h − x

)6
= O(h3). (3.3.12)

Converting the central moments of Ŝx
h to noncentral moments, from

(3.3.7)–(3.3.12) we get

E
(
Ŝx
h

)i
= m̂i +O(h3), i = 1, . . . , 6, (3.3.13)
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where

m̂1 = x,

m̂2 = x2 + zx(1− x)(1− 1
2z),

m̂3 = x3 + 3
2xz

2(3x2 − 4x+ 1)− 3xz(x2 − x),

m̂4 = x4 + 9x2z2(2x2 − 3x+ 1)− 6x2z(x2 − x), (3.3.14)

m̂5 = x5 + 10x3z2(5x2 − 8x+ 3)− 10x3z(x2 − x),

m̂6 = x6 + 75
2 x

4z2(3x2 − 5x+ 2)− 15x4z(x2 − x).

Note that (3.3.6) and (3.3.14) refer to respectively first- and second–

order “moments”. We use the same notation, since (3.3.6) “moments”

are used only in the context of the first-order approximation, whereas

(3.3.14) only for the second one.
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Chapter 4

Weak approximations of the
Wright–Fisher process

4.1 A first-order approximation

Approximation of the stochastic part

Let us construct an approximation for the stochastic part of the WF

equation, that is, the solution Sx
t of Equation (1.1.1) with a = b = 0.

In [33] (see also [29]), it is shown that a two-valued discrete random

variable Ŝx
h taking values x1, x2 ∈ [0, 1] with probabilities p1, p2 is a

first-order weak approximation if

p1 + p2 = 1, (4.1.1)

EŜx
h = x1p1 + x2p2 = m1 := ESx

h = x, (4.1.2)

E(Ŝx
h)

2 = x21p1 + x22p2 = m2 := E(Sx
h)

2, (4.1.3)

E(Ŝx
h − x)3 = (x1 − x)3p1 + (x2 − x)3p2 = O(h2), (4.1.4)

E(Ŝx
h − x)4 = (x1 − x)4p1 + (x2 − x)4p2 = O(h2), (4.1.5)

where the second moment m2 = E(Sx
h)

2 can be calculated by Lemma 5.3

with a = b = 0:

m2 = m2(x, h) = x2e−σ2h + x(1− e−σ2h) (4.1.6)

= x2 + x(1− x)σ2h+O(h2) (4.1.7)

= m̂2 +O(h2), x ∈ [0, 1].
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One of the solutions to the equation system (4.1.1)–(4.1.3) is (see [29])

x1,2 =
m2

m1
∓

√
m2(m2 −m2

1)

m2
1

,

p1,2 =
x

2x1,2
.

Therefore, in our case, we get

x1,2 = xe−σ2h + 1− e−σ2h

∓

√
xe−σ2h + (1− e−σ2h)

x

(
x2e−σ2h + x(1− e−σ2h)− x2

)
= xe−σ2h + 1− e−σ2h ∓

√
(xe−σ2h + 1− e−σ2h)(1− x)(1− e−σ2h).

(4.1.8)

Since 1− e−σ2h = σ2h+O(h2), to simplify the expressions, we may

try to replace 1− e−σ2h by σ2h and, instead of (4.1.8), use

x1,2 = x1,2(x, h) = x(1− σ2h) + σ2h∓
√
(x(1− σ2h) + σ2h)(1− x)σ2h

= x+ (1− x)σ2h∓
√
(x+ (1− x)σ2h)(1− x)σ2h.

(4.1.9)

In Lemma 4.1, we will check that after this replacement, x1,2 and

p1,2 still satisfy (4.1.1)–(4.1.5). Unfortunately, for the values of x near 1,

the values of x2 are slightly greater than 1 (as well as those defined

by (4.1.8)), which is unacceptable. We overcome this problem by using

the symmetry of the solution of the stochastic part with respect to the

point 1
2 ; to be precise, Sx

t
d
= 1−S1−x

t for all x ∈ [0, 1] ( d
= means equality

in distribution). Therefore, in the interval [0, 1/2], we can use the values

x1,2 defined by (4.1.9), whereas in the interval (1/2, 1], we use the values

corresponding to the process 1− S1−x
t , that is,

x̃1,2 = x̃1,2(x, h) := 1− x1,2(1− x, h)

= x− xσ2h±
√

(1− x+ xσ2h)xσ2h (4.1.10)
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with probabilities p̃1,2 = 1−x
2x1,2(1−x,h) . Thus, we obtain the acceptable

(i.e., with values in [0, 1]) approximation Ŝx
h taking the values

x̂1,2 :=

{
x1,2(x, h) with prob. p1,2 =

x
2x1,2(x,h)

, x ∈ [0, 1/2],

1− x1,2(1− x, h) with prob. p1,2 =
1−x

2x1,2(1−x,h) , x ∈ (1/2, 1].

(4.1.11)

Lemma 4.1. The values x̂1,2 defined by (4.1.11) satisfy conditions (4.1.1)–

(4.1.5) for h ⩽ h0 :=
1

4σ2 ; moreover, x̂1,2 ∈ [0, 1].

Proof. We first check that x1,2 defined by (4.1.9) obtain values from the

interval [0, 1] for x ∈ [0, 1/2]:

x1 = x+ (1− x)σ2h−
√

(x+ (1− x)σ2h)(1− x)σ2h ≥ 0

⇔ x+ (1− x)σ2h ≥
√

(x+ (1− x)σ2h)(1− x)σ2h

⇔ (x+ (1− x)σ2h)2 ≥ (x+ (1− x)σ2h)(1− x)σ2h

⇔ x2 + x(1− x)σ2h ≥ 0

⇔ x+ (1− x)σ2h ≥ 0;

x2 = x+ (1− x)σ2h+
√

(x+ (1− x)σ2h)(1− x)σ2h ≤ 1

⇔
√
(x+ (1− x)σ2h)(1− x)σ2h ≤ (1− x)(1− σ2h)

⇔ xσ2h+ (1− x)(σ2h)2 ≤ (1− x)(1− σ2h)2

⇔ xσ2h+ (1− x)(σ2h)2 ≤ (1− x)(1− 2σ2h+ (σ2h)2)

⇔ xσ2h ≤ (1− x)(1− 2σ2h)

⇔ xσ2h+ 1− x− 2σ2h ≥ 0.

If x ∈ [0, 1/2], then

xσ2h+ 1− x− 2σ2h ≥ 1/2− 2σ2h ≥ 0 for 0 < h ≤ 1

4σ2
. (4.1.12)

Thus 0 ≤ x1 < x2 ≤ 1 for x ∈ [0, 1/2] and 0 < h ≤ h0. So, if

x ∈ (1/2, 1], then 1 − x ∈ [0, 1/2), and according to (4.1.10), instead of

x1,2, we can take x̃1,2 = 1 − x1,2(1 − x, h) for 0 < h ≤ h0. Thus, as we

have just checked, we have 0 ≤ x1,2(1 − x, h) ≤ 1, that is, 0 ≤ x̃1,2 ≤ 1

for x ∈ (1/2, 1] and 0 < h ≤ h0.
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Now we check conditions (4.1.1)–(4.1.5) for x1,2:

p1 + p2 =
x

2x1
+

x

2x2

= 2x(x+(1−x)σ2h)
2(x2+2x(1−x)σ2h+(1−x)2(σ2h)2−(x(1−x)σ2h+(1−x)2(σ2h)2))

=
2x(x+ (1− x)σ2h)

2(x2 + x(1− x)σ2h)
= 1;

x1p1 + x2p2 = x1
x

2x1
+ x2

x

2x2
= x,

x21p1 + x22p2 = x21
x

2x1
+ x22

x

2x2
=

x

2
(x1 + x2)

=
x

2
· 2(x+ (1− x)σ2h) = x2 + x(1− x)σ2h

= m2 +O(h2);

(x1 − x)3p1 + (x2 − x)3p2 = 2x(1− x)2(σ2h)2 = O(h2),

(x1 − x)4p1 + (x2 − x)4p2 = x(1− x)2(x+ 4(1− x)σ2h)(σ2h)2 = O(h2).

The last two equalities were obtained by using the Python SymPy

package. The conditions for x̃1,2 follow automatically from the symmetry.

For the initial Equation (1.1.1) we obtain an approximation X̂x
h by

the “split-step” procedure defined by (3.2.4):

X̂x
h := Ŝx

he
−bh + a

b (1− e−bh). (4.1.13)

Now we can state the main result for the first-order weak approxi-

mation of the WF process.

Theorem 4.2. Let X̂x
t be the discretization scheme defined by one-step

approximation (4.1.13). Then, X̂x
t is a first-order weak approximation

of Equation (1.1.1) for functions f ∈ C∞[0, 1].

Algorithm

In this section, we provide an algorithm for calculating X̂(i+1)h given

X̂ih = x at each simulation step i:
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Algorithm 4: Algorithm for the first-order scheme of the WF.
1 Draw a uniform random variable U from the interval [0, 1].
2 if x ⩽ 1

2 then
3 calculate x1, x2 according to (4.1.9),
4 else
5 calculate x1, x2 according to (4.1.9) with x := 1− x,
6 x1,2 := 1− x1,2.

7 Calculate p1,2 :=
x

2x1,2(x,h)
.

8 if U < p1 then
9 Ŝ := x1,

10 else
11 Ŝ := x2.

12 Calculate (see (3.2.4) and (4.1.13))

X̂(i+1)h = D
(
Ŝ, h

)
= Ŝe−bh + a

b (1− e−bh).

Simulation examples

We illustrate our approximation for the test functions f(x) = x5 and

f(x) = e−x. Since we do not explicitly know the moments Ee−Xx
t , we

use the approximate equality e−x ≈ 1−x+ x2

2 − x3

6 + x4

24 −
x5

120 . We have

chosen the parameters of the WF equation so that the fifth moment of

Xx
t is nonmonotonic as a function of t to see how the approximated fifth

moment “follows” the bends of the true one as t varies. In Figures 4.1–

4.3, we compare Ef(X̂x
t ) and Ef(Xx

t ) as functions of t (top plots) and as

functions of a discretization step h (bottom plots) in terms of the relative

error
∣∣∣1 − Ef(X̂x

t )
Ef(Xx

t )

∣∣∣. As expected, the approximations agree with exact

values pretty well. Note an impressive match between the approximated

and true values of Ee−Xx
t in Figure 4.3 even for rather large discretization

step h.
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Figure 4.1: Comparison of Ef(X̂x
t ) and Ef(Xx

t ) as functions of t and
h for f(x) = x5: x = 0.24, σ2 = 0.6, a = 0.8, b = 5, the number of
iterations N = 1,000,000. Top: h = 0.001; bottom: the relative error at
t = 1.
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Figure 4.2: Comparison of Ef(X̂x
t ) and Ef(Xx

t ) as functions of t and
h for f(x) = x5: x = 0.83, σ2 = 2, a = 4, b = 5, N = 1,000,000. Top:
h = 0.001; bottom: the relative error at t = 1.

35



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

0.45

0.50

0.55

0.60

0.65
ex

p(
-X
)

1st-order approximation
exact

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
h

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

re
la
tiv

e 
er
ro
r, 
t=

1

1st-order approximation

Figure 4.3: Comparison of Ef(X̂x
t ) and Ef(Xx

t ) as functions of t and
h for f(x) = e−x: x = 0.4, σ2 = 1.6, a = 4, b = 5, N = 100,000. Top:
h = 0.1; bottom: the relative error at t = 1.
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4.2 A second-order approximation

Approximation of the stochastic part

Our aim is to construct a potential second-order approximation for the

WF equation by discrete random variables at each generation step. There-

fore, we look for approximations Ŝx
h taking three values x1, x2, x3 from

the interval [0, 1] with probabilities p1, p2, p3 satisfying the following con-

ditions:

p1 + p2 + p3 = 1, (4.2.1)

xi1p1 + xi2p2 + xi3p3 = m̂i +O(h3), i = 1, . . . , 6. (4.2.2)

In anticipation, note that when solving system (4.2.1)–(4.2.2), a se-

rious challenge is ensuring the first equality p1 + p2 + p3 = 1. A simple

way out of this situation is relaxing the latter by the inequality

p1 + p2 + p3 ≤ 1 (4.2.3)

and, at the same time, allowing Ŝx
h to take the additional trivial value 0

with probability p0 = 1−(p1+p2+p3). Notice that this does not change

Equation (4.2.2) in any way.

Solving the system

xi1p1 + xi2p2 + xi3p3 = m̂i, i = 1, 2, 3,

with respect to x1, x2, x3, we obtain (cf. [30])

p1 := p1(x, h) =
m̂1x2x3 − m̂2x2 − m̂2x3 + m̂3

x1(x1 − x3)(x1 − x2)
,

p2 := p2(x, h) = −m̂1x1x3 − m̂2x1 − m̂2x3 + m̂3

x2(x1 − x2)(x2 − x3)
, (4.2.4)

p3 := p3(x, h) =
m̂1x1x2 − m̂2x1 − m̂2x2 + m̂3

x3(x2 − x3)(x1 − x3)
.

Note that, here, differently from [30], we used the approximate “mo-

ments” m̂i instead of the true moments mi = E(Sx
h)

i. This eventually

allows us to get simpler expressions because m̂i are polynomials in x

and z.
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Now we have to find x1,2,3 that, together with p1,2,3 defined by Equa-

tions (4.2.4), satisfy the remaining conditions
x41p1 + x42p2 + x43p3 − m̂4 = O(h3),

x51p1 + x52p2 + x53p3 − m̂5 = O(h3),

x61p1 + x62p2 + x63p3 − m̂6 = O(h3).

(4.2.5)

Motivated by the first-order approximation (4.1.11) and [30], we look

for x1,2,3 of the following form:

x1 = x+ zA1(1− x) +A2xz −
√

(z(1− x)(Bx+ Cz(1− x))), (4.2.6)

x2 = x+A3xz, (4.2.7)

x3 = x+ zA1(1− x) +A2xz +
√

(z(1− x)(Bx+ Cz(1− x))), (4.2.8)

with unknown parameters A1, A2, A3, B,C ⩾ 0.

Calculation of the parameters

Substituting (4.2.6)–(4.2.8) into the left-hand sides of (4.2.5), we have

(for technical calculations, using Maple and Python)

x41p1 + x42p2 + x43p3 − m̂4 =
[
(BA3 +B + 2A1 − 2A2 −A3 − 6)x4

+
(
A3 − 2B −A3B − 4A1 + 2A2 +

21
2

)
x3

+
(
B + 2A1 − 9

2

)
x2
]
z2 +O(h3), (4.2.9)

x51p1 + x52p2 + x53p3 − m̂5 =
[
(8A1 + (4B − 4)A3 + 5B − 8A2 − 27)x5

+
(
(−4B + 4)A3 − 10B

+ 8A2 − 16A1 + 48
)
x4

+ (8A1 + 5B − 21)x3
]
z2 +O(h3),

(4.2.10)

x61p1 + x62p2 + x63p3 − m̂6 =
[
(20A1 + (10B − 10)A3 + 15B

− 20A2 − 75)x6

+
(
(−10B + 10)A3 − 30B + 20A2

− 40A1 + 135
)
x5

+ (15B + 20A1 − 60)x4
]
z2 +O(h3).

(4.2.11)
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To ensure equalities (4.2.5), we need to choose A1, A2, A3, B such

that expressions at z2 would be equal to 0. Equating the coefficients at

the lowest powers of x to zero, we get the system for the parameters A1

and B: 
B + 2A1 − 9

2 = 0,

8A1 + 5B − 21 = 0,

15B + 20A1 − 60 = 0.

Although the system contains three equations with respect to two

unknowns, it has the solution A1 = 3
4 , B = 3. Substituting these values

back to Equations (4.2.9)–(4.2.11), we get the relation A3 = A2 + 3
4 ,

which makes all the expressions at z2 vanish. Summarizing, we have

that x1,2,3 of the form (4.2.6)–(4.2.8) and p1,2,3 defined by (4.2.4) satisfy

all of Equation (4.2.2), provided that the parameters satisfy the following

relations:

A1 =
3

4
, A2 ≥ 0, A3 = A2 +

3

4
, B = 3, C ≥ 0. (4.2.12)

Positivity of the solution

Now we would like to choose the values of free parameters A2 and C so

that all x1, x2, x3, p1, p2, p3 are positive and p1 + p2 + p3 ⩽ 1. We first

consider the latter restriction.

Lemma 4.3. We have p1 + p2 + p3 ⩽ 1 if

A2 ⩾
(3 + 2

√
2)

1
3

4
+

1

4(3 + 2
√
2)

1
3

≈ 0.58883 (4.2.13)

and

0 ⩽ C ⩽
3(32A3

2 − 6A2 − 3)

16A2
2(16A

2
2 + 24A2 + 9)

.

Proof. We have

p1 + p2 + p3 =
N

D

with numerator

N = 64x2 +
(
(192A2 + 144)x2 − 96x

)
z
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+
(
(192A2

2 − 64C + 96A2 + 108)x2 + (128C − 144)x− 64C + 36
)
z2

+
(
48 + (−96A2 + 24)x2 + (96A2 − 72)x

)
z3

and denominator

D = 64x2 +
(
(192A2 + 144)x2 − 96x

)
z

+
(
(192A2

2 − 64C + 96A2 + 108)x2 + (128C − 144)x− 64C + 36
)
z2

+
(
(64A3

2 − 64CA2 − 48A2
2 − 48C − 36A2 + 27

)
x2

+
(
128CA2 + 96A2

2 + 96C − 54)x

− 64A2C − 48C + 36A2 + 27
)
z3.

The numerator and denominator differ only by the coefficients at z3.

Thus, it suffices to show that their difference D−N is nonnegative, that

is,

(64A3
2 − 48A2

2 + (−64C + 60)A2 − 48C + 3)x2

+ (96A2
2 + (128C − 96)A2 + 96C + 18)x

+ (−64C + 36)A2 − 48C − 21 =: a1x
2 + a2x+ a3 ⩾ 0. (4.2.14)

Inequality (4.2.14) is satisfied for all x ∈ R if

a1 > 0 and a3 ⩾
a22
4a1

. (4.2.15)

Solving inequality (4.2.15), we get

A2 > 0, C ⩽
3(32A3

2 − 6A2 − 3)

16(16A2
2 + 24A2 + 9)A2

2

.

Since C must be nonnegative, we obtain condition (4.2.13) for A2.

Remark 4.4. We observe that possible values of C are rather small (see

Figure 4.4). Therefore, to simplify the expressions for x1, x2, x3, we

simply take C = 0 and A2 =
2
3 .
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Figure 4.4: Possible values of A2 and C.

We have now arrived at the following expressions for x1, x2, x3:

x1 = x+
3(1− x)z

4
+

2xz

3
−
√

3x(1− x)z, (4.2.16)

x2 = x+
17xz

12
, (4.2.17)

x3 = x+
3(1− x)z

4
+

2xz

3
+
√

3x(1− x)z. (4.2.18)

However, at this point, we only have that x1, x2, x3 defined by (4.2.16)–

(4.2.18), together with p1, p2, p3 defined by (4.2.4), satisfy conditions

(4.2.2) and (4.2.3). From numerical calculations it appears that for

“small” x, it happens that x1 > x2 and thus p1, p2 < 0. Moreover, on the
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other hand, for “not small” x and “large” h, it happens that x3 > 1. We

can see a typical situation in Figure 4.5 with z = σ2h = 1
5 , where for

small x, p1 and p2 take values outside the interval [0, 1], whereas x3 > 1

for x near 1
2 .
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Figure 4.5: Graphs of p1,2,3 (top) and x1,2,3 (bottom) as functions of x
with fixed z. Gray area shows the region where first-order approximation
is used to avoid negative probabilities. Parameters: K = 1

3 , z = 1
5 .

Due to these reasons, similarly to [3] and [33], for small x below the
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threshold Kz (with some fixed K > 0), we will switch to the first-order

approximation (4.1.11), which behaves as a second-order one for such x.

We also have to consider z ≤ z0, where z0 is to be sufficiently small to

ensure that x3 ≤ 1. To be precise, for 0 ≤ x ≤ Kz, 0 < z ≤ z0, we will

use scheme (4.1.11), whereas for Kz ≤ x ≤ 1
2 , 0 < z ≤ z0, we will use

scheme (4.2.16)–(4.2.18) together with (4.2.4); finally, for x ∈ (12 , 1], we

will use the symmetry Sx
t

d
= 1−S1−x

t as in the first-order approximation.

The following lemmas justify such a switch for K = 1
3 and z0 =

1
6 .

Lemma 4.5. The first-order approximation (4.1.11) in the region x ⩽

Kσ2h (with arbitrary fixed K > 0) satisfies conditions (3.3.13). In other

words, in this region, it behaves as a second-order approximation.

Proof. We prove equalities (3.3.13) in the region x ⩽ Kz = Kσ2h, where

Ŝh
x and m̂i, i = 1, . . . , 6, are defined by (4.1.11) and (3.3.14), respectively:

E(Ŝx
h)

2 − m̂2 = x21p1 + x22p2 − m̂2

= x2 + x(1− x)z − (x2 + zx(1− x)(1− 1
2z))

= 1
2x(1− x)z2 = O(h3),

E(Ŝx
h)

3 − m̂3 = x31p1 + x32p2 − m̂3

= x3 − 3xz(x2 − x) + 2z2x2(x− 1)

− (x3 + 3
2xz

2(3x2 − 4x+ 1)− 3xz(x2 − x))

= 1
2xz

2(5x2 − 8x+ 3) = O(h3),

E(Ŝx
h)

4 − m̂4 = x41p1 + x42p2 − m̂4 = x4 − 6x2z(x2 − x)

+ x2z2(9x2 − 10x+ 1)− 4x3z3(x− 1)

− (x4 + 9x2z2(2x2 − 3x+ 1)− 6x2z(x2 − x))

= x2z2(−4x2z − 9x2 + 4xz + 17x− 8) = O(h4),

E(Ŝx
h)

5 − m̂5 = x51p1 + x52p2 − m̂5 = x5 − 10x3z(x2 − x)

+ 5x3z2(5x2 − 6x+ 1) + 4x3z3(−6x2 + 7x− 1)

+ 8x4z4(x− 1)

− (x5 + 10x3z2(5x2 − 8x+ 3)− 10x3z(x2 − x))

= x3z2
(
x2(8z2 − 24z − 25)
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−2x(4z2 − 14z − 25)− 4z − 25
)
= O(h5),

E(Sx
h)

6 − m̂6 = x61p1 + x62p2 − m̂6 = x6 − 15x4z(x2 − x)

+ 5x4z2(11x2 − 14x+ 3)

+ x3z3(−85x3 + 111x1 − 27x+ 1)

+ 12x4z4(5x2 − 6x+ 1)− 16x5z5(x− 1)

− (x6 + 75
2 x

4z2(3x2 − 5x+ 2)− 15x4z(x2 − x))

= 1
2x

3z2(x− 1)(−32x2z3 + 120x2z2 − 170x2 z

− 115x2 − 24xz2 − 170xz + 120x− 2z) = O(h6).

Lemma 4.6. For z ∈ [0, 16 ] and x ∈ [0, 12 ], x1, x2, x3 defined in (4.2.16)–

(4.2.18) take values in the interval [0, 1].

Proof. Obviously, x2 ∈ [0, 1]. Thus, we focus on x1 and x3. Since x1 ⩽

x3, it suffices to prove that x1 ⩾ 0 and x3 ≤ 1.

The condition x1 ≥ 0 is equivalent to the inequality(
x+

3(1− x)z

4
+

2xz

3

)2
− 3x(1− x)z ≥ 0.

By denoting y = 1− x > 0, this becomes(
x+

3yz

4
+

2xz

3

)2

− 3xyz

= x2 +
9

16
y2z2 +

4

9
x2z2 − 3

2
xyz +

4

3
x2z + xyz2 ≥ 0.

We will prove the stronger inequality

x2 +
9

16
y2z2 +

4

3
x2z − 3

2
xyz ⩾ 0,

which after substitution y = 1− x becomes(
1 +

17

6
z +

9

16
z2
)
x2 −

(
3

2
z +

9

8
z2
)
x+

9z2

16
⩾ 0. (4.2.19)

The discriminant of the quadratic polynomial (4.2.19) in x is

D =
(3
2
z +

9

8
z2
)2

− 4
(
1 +

17

6
z +

9

16
z2
)
· 9z

2

16
= −3z3,
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which is negative for all z > 0. This means that the left-hand side

(4.2.19) is positive and thus x1 > 0 for all x ∈ [0, 1] and z ≥ 0 except for

x = z = 0, where x1 = 0.

Let us now prove that x3 ≤ 1. For z ∈ [0, 16 ] and x ∈ [0, 12 ], we have

x3 = x+
3(1− x)z

4
+

2xz

3
+
√
3x(1− x)z

≤ x+
1

8
(1− x) +

1

18
+

√
x(1−x)

2

≤ 1

8
+

7

8
· 1
2
+

1

18
+

1√
8
≈ 0.972 < 1.

Lemma 4.7. For x ∈ ( z3 ,
1
2 ] and z ⩽ 1

6 , we have p1, p2, p3 ∈[0, 1].

Proof. From Lemma 4.3, we already have that p1 + p2 + p3 ⩽ 1. There-

fore, it suffices to prove that p1, p2, p3 ⩾ 0. Because of the complex

expressions of p1, p2, p3, we prefer to show this graphically by using the

Maple function plot3d. See Figures 4.6–4.8, where the 3D graphs of

p1, p2, p3 as functions of (x, z) are plotted in the domain {(x, z) : z/3 ≤
x ≤ 1/2, 0 ≤ z ≤ 1/6}.

Figure 4.6: Graph of p1 as a function of x and z.

45



Figure 4.7: Graph of p2 as a function of x and z.

Figure 4.8: Graphs of p3 as a function of x and z.

46



The second main result

Now let us summarize the results of this section. For clarity, recall the

main notations:

x1 = x1(x, h) = x+
3(1− x)σ2h

4
+

2xσ2h

3
−
√

3x(1− x)σ2h, (4.2.20)

x2 = x2(x, h) = x+
17xσ2h

12
, (4.2.21)

x3 = x3(x, h) = x+
3(1− x)σ2h

4
+

2xσ2h

3
+
√

3x(1− x)σ2h. (4.2.22)

To distinguish the functions x1,2,3 from x1,2 given by (4.1.9), here we

denote the latter by

y1,2 = y1,2(x, h) = x+ (1− x)σ2h∓
√

(x+ (1− x)σ2h)(1− x)σ2h.
(4.2.23)

Using the symmetry Sx
t

d
= 1 − S1−x

t for x ∈ [0, 1], we define the

approximation of the stochastic part of the WF equation as follows:

Ŝx
h :=



x1,2,3(x, h) with probabilities p1,2,3 (4.2.4) and
0 with probability p0 = 1− (p1 + p2 + p3),

x ∈ (σ
2h
3 , 12 ],

1− x1,2,3(1− x, h) with prob. p1,2,3(1− x, h) and
1 with probability p0 = 1− (p1 + p2 + p3),

x ∈ (12 , 1−
σ2h
3 ),

y1,2(x, h) with probabilities p̃1,2(x, h) :=
x

2y1,2(x,h)
,

x ∈ [0, σ
2h
3 ],

1− y1,2(1− x, h) with probabilities p̃1,2(1− x, h),

x ∈ [1− σ2h
3 , 1].

(4.2.24)

Now in the view of Theorem C and Lemmas 4.3–4.7, we can state

the main result on the second-order approximation of the WF process.

Theorem 4.8. Let X̂x
t be the discretization scheme defined by one-step

approximation

X̂x
h = D(Ŝ(D(x, h/2), h), h/2), (4.2.25)

where D(x, h) is defined by (3.2.3), and Ŝ(x, h) = Ŝx
h is defined by

(4.2.24). Then, X̂x
t is a second-order weak approximation of Equation (1.1.1).
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Algorithm for second-order approximation

In this section, we provide an algorithm for calculating X̂(i+1)h given

X̂ih = x at each simulation step i:
Algorithm 5: Algorithm for the second-order scheme of the
WF.
1 Draw a uniform random variable U from the interval [0, 1].
2 x := D(x, h/2) (where D is given by (3.2.3)).
3 if x ⩽ 1

2 then
4 if x > σ2h

3 then
5 x0 := 0,
6 calculate x1, x2, x3 according to (4.2.20)–(4.2.22),
7 calculate p1, p2, p3 according to (4.2.4),
8 if U < p1 then
9 Ŝ := x1,

10 else if U < p1 + p2 then
11 Ŝ := x2,
12 else if U < p1 + p2 + p3 then
13 Ŝ := x3,
14 else
15 Ŝ := x0,

16 else
17 calculate y1, y2 according to (4.2.23),
18 p1,2 :=

x
y1,2(x,h)

,
19 if U < p1 then
20 Ŝ := y1,
21 else
22 Ŝ := y2,

23 else
24 do if-step with x := 1− x, x0,1,2,3 := 1− x0,1,2,3,
25 y1,2 := 1− y1,2,

26 X̂(i+1)h := D
(
Ŝ, h/2

)
.

Simulation examples

We illustrate our approximation for the test function f(x) = x5. In Fig-

ures 4.9–4.13, we compare the moments Ef(X̂x
t ) and Ef(Xx

t ) as func-

tions of t (top plots, h = 0.01 or h = 0.02) and as functions of a dis-

cretization step h (bottom plots, t = 1) in terms of the relative error. We
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observe that with a rather small number of iterations, the second-order

approximation agrees with the exact values pretty well. These specific

examples have been chosen to illustrate the behavior of approximations

with small (σ2 = 0.6) and high (2 ⩽ σ2 ⩽ 6) volatility. In compari-

son with the simulation results for the first-order approximation, we see

that to get a similar accuracy, we can use the second-order approxima-

tion with a significantly smaller number of iterations N and larger step

size h, which in turn requires significantly less computation time.
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Figure 4.9: Comparison of Ef(X̂x
t ) and Ef(Xx

t ) as functions of t and
h for f(x) = x5: x = 0.24, σ2 = 0.6, a = 0.8, b = 5, the number of
iterations N = 100,000. Top: h = 0.01; bottom: the relative error at
t = 1.
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Figure 4.10: Comparison of Ef(X̂x
t ) and Ef(Xx

t ) as functions of t and h
for f(x) = x5: x = 0.83, σ2 = 2, a = 4, b = 5, the number of iterations
N = 100,000. Top: h = 0.01; bottom: the relative error at t = 1.
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Figure 4.11: Comparison of Ef(X̂x
t ) and Ef(Xx

t ) as functions of t and h
for f(x) = x5: x = 0.9, σ2 = 4, a = 4.5, b = 5, the number of iterations
N = 100,000. Top: h = 0.01; bottom: the relative error at t = 1.

52



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

0.000

0.005

0.010

0.015

0.020
EX

^5

1st-order approximation
2nd-order approximation
exact

0.01 0.02 0.03 0.04 0.05
h

0.05

0.10

0.15

re
la
tiv

e 
er
ro
r, 
t=

1

1st-order approximation
2nd-order approximation

Figure 4.12: Comparison of Ef(X̂x
t ) and Ef(Xx

t ) as functions of t and h
for f(x) = x5: x = 0.15, σ2 = 3, a = 0.2, b = 2, the number of iterations
N = 100,000. Top: h = 0.01; bottom: the relative error at t = 1.
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Figure 4.13: Comparison of Ef(X̂x
t ) and Ef(Xx

t ) as functions of t and
h for f(x) = x5: x = 0.005, σ2 = 6, a = 4.5, b = 5, the number of
iterations N = 100,000. Top: h = 0.02; bottom: the relative error
at t = 1.
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Chapter 5

Regularity of solutions of
Kolmogorov backward
equation related to
square-root diffusions

The regularity of solutions of backward Kolmogorov equations (as in

Theorem B) is needed in proving that a potential (“candidate”) weak

approximation of the solution to a SDE is, indeed, a true weak approx-

imation of the corresponding order. In this chapter, we prove three

variants of Theorem B for SDEs with square-root diffusion coefficient:

for WF, CIR, and general Stratonovich diffusions (Theorems 5.2, 5.8,

and 5.10, respectively).

5.1 Wright–Fisher equation

Theorem B is in fact Theorem 1.19 of [3] stated based on the results

of [13], which are proved by methods of partial differential equation the-

ory. Here we provide a significantly simpler probabilistic proof of the

theorem for a rather wide subclass of C∞[0, 1], which practically includes

all functions interesting for applications, for example, polynomials or ex-

ponentials.
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Definition 5.1. We denote by C∞
∗ [0, 1] the class of infinitely differen-

tiable functions on [0, 1] with “not too fast” growing derivatives:

C∞
∗ [0, 1] :=

{
f ∈ C∞[0, 1] : lim sup

k→∞

1

k!
max
x∈[0,1]

|f (k)(x)| = 0
}
.

Every f ∈ C∞
∗ [0, 1] is the sum of its (uniformly convergent) Taylor

series:

f(x) =
∞∑
k=0

ckx
k, x ∈ [0, 1], (5.1.1)

where ck = f (k)(0)/k!, k ∈ N0. This easily follows from the Lagrange

error bound for Taylor series. Indeed, for f ∈ C∞
∗ [0, 1], by the Taylor

formula with Lagrange error bound we have

f(x) =

n∑
k=0

f (k)(0)

k!
xk +Rn(x), x ∈ [0, 1],

where

sup
x∈[0,1]

|Rn(x)| ≤
1

(n+ 1)!
sup

x∈[0,1]
|f (n+1)(x)| → 0, n → ∞.

Remark 5.1. Clearly, every f ∈ C∞
∗ [0, 1] is a real analytic function;

see [25].

For convenience, here we restate Theorem B for f ∈ C∞
∗ [0, 1].

Theorem 5.2. Let f ∈ C∞
∗ [0, 1]. Then

u(t, x) := Ef(Xx
t ), (t, x) ∈ R+ × [0, 1],

is a C∞ function that solves

∂tu(t, x) = Au(t, x). (5.1.2)

Proof. Denote mk(x, t) := E(Xx
t )

k, k ∈ N0. Then from (5.1.1) we for-

mally have

u(t, x) = Ef(Xx
t ) =

∞∑
k=0

ckmk(x, t), x ∈ [0, 1], t ≥ 0. (5.1.3)

If u is infinitely continuously differentiable, then it satisfies Equa-

tion (5.1.2) (see, e.g., [37, Thm. 8.1.1] or [32, Cor. 10.8]). Therefore, to

prove Theorem 5.2, it suffices to show that
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(1) the moments mk(x, t) are infinitely continuously differentiable

and

(2) all formal partial derivatives of the series in (5.1.3),

∞∑
k=0

ck∂
p
t ∂

q
xmk(x, t), (5.1.4)

converge uniformly for (x, t) ∈ [0, 1]× [0, T ] for any fixed T > 0.

Statements (1) and (2) are proved below in Lemmas 5.3 and 5.4, respec-

tively.

Lemma 5.3. The moments of the WF process Xx
t satisfy the following

recurrence relation:

m1(x, t) =

{
xe−bt + a

b (1− e−bt), 0 ≤ a ≤ b ̸= 0,

x, a = b = 0,
(5.1.5)

mk(x, t) = e−bkt
(
xk + ak

t∫
0

ebksmk−1(x, s) ds
)
, k ≥ 2, (5.1.6)

where bk = kb+ k(k − 1)σ
2

2 , ak = ka+ k(k − 1)σ
2

2 .

In particular, by induction on k it follows that mk(x, t) are infinitely

continuously differentiable with respect to (x, t) ∈ [0, 1]× R+.

Proof. Taking the expectations of both sides of Equation (1.1.1) and

then differentiating with respect to t, we get

∂tm1(x, t) = a− bm1(x, t), m1(x, 0) = x.

Solving the latter, we get (5.1.5).

When k ≥ 2, by Itô’s formula, we have

(Xx
t )

k = xk + k

t∫
0

(Xx
t )

k−1dXx
s +

1

2
k(k − 1)

t∫
0

(Xx
t )

k−2d⟨Xx⟩s

= xk + k

t∫
0

(Xx
t )

k−1(a− bXx
s ) ds
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+ kσ

t∫
0

(Xx
t )

k−1
√

Xx
s (1−Xx

s ) dBs

+
1

2
k(k − 1)σ2

t∫
0

(Xx
t )

k−2Xx
s (1−Xx

s ) ds

= xk + k

t∫
0

(
a(Xx

t )
k−1 − b(Xx

s )
k
)
ds

+ kσ

t∫
0

(Xx
t )

k−1
√

Xx
s (1−Xx

s ) dBs

+
1

2
k(k − 1)σ2

t∫
0

(
(Xx

t )
k−1 − (Xx

s )
k
)
ds.

By taking the expectations, we get

mk(x, t) = xk +

t∫
0

{
[ka+ k(k − 1)σ

2

2 ]mk−1(x, s)

− [kb+ k(k − 1)σ
2

2 ]mk(x, s)
}
ds

= xk +

t∫
0

{
akmk−1(x, s)− bkmk(x, s)

}
ds,

and thus

∂tmk(x, t) = −bkmk(x, t) + akmk−1(x, t), mk(x, 0) = xk.

Solving the latter with respect to mk, we arrive at (5.1.6).

Lemma 5.4. All formal partial derivatives of the series (5.1.3),
∞∑
k=0

ck∂
p
t ∂

q
xmk(x, t), (5.1.7)

converge uniformly for (x, t) ∈ [0, 1]× [0, T ] (for any fixed T > 0).

Proof. It is obvious that 0 ≤ mk(x, t) ≤ 1, x ∈ [0, 1], k ∈ N0. First,

consider the derivatives with respect to x. Let us prove by induction on

k that

∂xmk(x, t) ≤ k, x ∈ [0, 1], k ∈ N.
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For k = 1, we have m′
1(x, t) = e−bt ≤ 1. Suppose

∂xmk−1(x, t) ≤ k − 1, x ∈ [0, 1].

Then,

∂xmk(x, t) = e−bkt
(
kxk−1 + ak

t∫
0

ebks∂xmk−1(x, s) ds
)

≤ e−bkt
(
k + ak(k − 1)

t∫
0

ebks ds
)

= e−bkt
(
k +

ak
bk

(k − 1)(ebkt − 1)
)

≤ e−bktk + k(1− e−bkt) = k,

where we used the fact that 0 ≤ ak ≤ bk, since 0 ≤ a ≤ b.

Similarly, by induction on k, we can prove that

∂l
xmk(x, t) ≤ (k)l = k(k − 1) . . . (k − l + 1), x ∈ [0, 1], k ∈ N, l ∈ N.

Indeed, for k = 1, ∂xm1(x, t) = e−bt ≤ 1 = (1)1, and ∂l
xmk(x, t) =

0 = (1)l for l ≥ 2. Now suppose that for some k,

∂l
xmk−1(x, t) ≤ (k − 1)l, x ∈ [0, 1], l ∈ N.

Then,

∂l
xmk(x, t) = e−bkt

(
k(k − 1) . . . (k − l + 1)xk−l

+ ak

t∫
0

ebks∂l
xmk−1(x, s) ds

)
⩽ e−bkt

(
k(k − 1) . . . (k − l + 1)

+
ak
bk

k(k − 1) . . . (k − l + 1)(ebkt − 1)
)

⩽ k(k − 1) . . . (k − l + 1) = (k)l.

Now let us differentiate the moments with respect to t. We have

|∂tm1(x, t)| =
∣∣∣(e−bt

(
x− a

b

)
+

a

b

)′
t

∣∣∣ = ∣∣− be−bt
(
x− a

b

)∣∣
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= |(a− bx)e−bt| ≤ b, x ∈ [0, 1];

|∂tmk(x, t)| =
∣∣∣− bke

−bkt
(
xk + ak

t∫
0

ebksmk−1(x, s) ds
)

+ e−bktake
bktmk−1(x, t)

∣∣∣
≤ bke

−bktxk + akbke
−bkt

t∫
0

ebks ds+ ak

≤ bk + ake
−bkt(ebkt − 1) + ak ≤ 3bk;

|∂2
tmk(x, t)| =

∣∣∣b2ke−bkt
(
xk + ak

t∫
0

ebksmk−1(x, s) ds
)

− akbkmk−1(x, t) + ak∂tmk−1(x, t)
∣∣∣

⩽ b2k + bkak + bkak + 3akbk ⩽ 6b2k,

|∂3
tmk(x, t)| ⩽

∣∣∣b3ke−bkt
(
xk + ak

t∫
0

ebksmk−1(x, s) ds
)
+ akb

2
kmk−1(x, t)

+ akbk∂tmk−1(x, t) + ak∂
2
tmk−1(x, t)

∣∣∣ ⩽ 12b3k,

and by induction

|∂l
tmk(x, t)| ⩽ 3× 2l−1blk.

Finally, for all mixed partial derivatives, we have

|∂p
t ∂

q
xmk(x, t)| =

∣∣∣∂p
t ∂

q
xe

−bkt
(
xk + ak

t∫
0

ebksmk−1(x, s) ds
)∣∣∣

⩽
∣∣∣∂p

t e
−bkt

(
k(k − 1) . . . (k − q + 1)

+ ak(k − 1)(k − 2) . . . (k − q)

t∫
0

ebks ds
)∣∣∣

⩽
∣∣∣∂p

t e
−bkt

(
k(k − 1) . . . (k − q + 1)

(
ak

t∫
0

ebks ds+ 1
))∣∣∣

=
∣∣∣(−bk)

pe−bkt
(
k(k − 1) . . . (k − q + 1)
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×
(
ak

t∫
0

ebks ds+ 1
))

+ k(k − 1) . . . (k − q + 1)ak

∣∣∣
= (bpk + 1)k(k − 1) . . . (k − q + 1)ak

= O(k2p+q+2), k → ∞.

Since ck = o(1/k!), we have that

∞∑
k=1

ckk
2p+q+2 < +∞,

and by the Weierstrass M-test it follows that, indeed, the function se-

ries (5.1.7) converges uniformly for all p, q ∈ N0.

5.2 CIR equation

The well-known Cox–Ingersoll–Ross (CIR) process [11] is the solution of

the SDE

Xx
t = x+

t∫
0

θ(κ−Xx
s ) ds+

t∫
0

σ
√

Xx
s dBs, t ∈ [0, T ], (5.2.1)

with parameters θ, κ, σ > 0, x ≥ 0.

Definition 5.2. For δ ⩾ 0 and x ⩾ 0, the unique strong solution Y to

the equation

Yt = x+ δt+ 2

t∫
0

√
Ys dBs, t ⩾ 0, (5.2.2)

is called a squared Bessel process with dimension δ, starting at x (BESQδ
x).

We further denote it by Y δ
t (x) or Y δ(t, x), and also, Y δ

t := Y δ
t (0).

Lemma 5.5 (see [20, Sect. 6.1]). Let B = (B1, B2, . . . , Bn) be a stan-

dard n-dimensional Brownian motion, n ∈ N. Then the process

R2
t := ∥z +Bt∥2 =

n∑
i=1

(zi +Bi
t)

2, t ≥ 0,
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where z = (z1, . . . , zn) ∈ Rn, coincides in distribution with Y n
t (∥z∥), that

is, with a BESQn
x random process starting at x = ∥z∥ =

√∑n
i=1 z

2
i . In

particular,

Y n
t (x)

d
= (

√
x+B1

t )
2+

n∑
i=2

(Bi
t)

2 d
= (

√
x+ξ

√
t)2+Y n−1

t , t ≥ 0, (5.2.3)

where ξ is a standard normal variable independent of Y n−1
t , and d

= means

equality in distribution.

Lemma 5.6 (see [20, Prop. 6.3.1.1]). The distribution of CIR process

(5.2.1) can be expressed in terms of a squared Bessel process as follows:

Xt(x)
d
= e−θtY δ

(
σ2

4θ
(eθt − 1), x

)
, t ≥ 0, (5.2.4)

where δ = 4θκ/σ2.

We will frequently use differentiation under the integral sign (in par-

ticular, under the expectation sign). Without special mentioning, this

will be clearly justified by Lemma 5.7, which seems to be a folklore the-

orem; we refer to the technical report [9].

Definition 5.3. Let (E,A, µ) be a measure space. Let X ⊂ Rk be an

open set, and f : X ×E → R be a measurable function. The function f

is said to be locally integrable in X if∫
K

∫
E

|f(x, ω)|µ(dω)dx < ∞

for all compact sets K ⊂ X.

Lemma 5.7 (Differentiation under the integral sign; see [9, Thm. 4.1]).

Let (E,A, µ), X, and let f be as in Definition 5.3. Suppose that f has

partial derivatives ∂f
∂xi

(x, ω) for all (x, ω) ∈ X × E and that both f and
∂f
∂xi

are locally integrable in X. Then

∂

∂xi

∫
E

f(x, ω)µ(dω) =

∫
E

∂

∂xi
f(x, ω)µ(dω)
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for almost all x ∈ X. In particular, if both sides are continuous in X,

then we have equality for all x ∈ X.

Alfonsi [2, Prop. 4.1], using the known expression of the transition

density of CIR process by a rather complicated function series, gave

an ad hoc proof that, indeed, u = u(t, x) := Ef(Xx
t ) is a solution of

the PDE (3.1.4), where Af(x) = θ(κ − x)f ′(x) + 1
2σ

2xf ′′(x), x ≥ 0, is

the generator of the CIR process (5.2.1). Moreover, he proved that if

f : R+ → R is sufficiently smooth with partial derivatives of polynomial

growth, then so is the solution u.

To have the possibility of extension of this result to other processes,

it is rather natural to look for a proof that is not based on explicit

expressions of the transition functions and can be extended to a wider

class of “square-root-type” processes. In this section, we give such a proof

in case the coefficients of Eq. (5.2.1) satisfy the condition σ2 ≤ 4θκ.

The main tools are the additivity property of CIR processes and their

representation in terms of squared Bessel processes. More precisely, we

use, after a smooth time–space transformation, the expression of the

solution of Eq. (5.2.1) in the form Xx
t = (

√
x+ Bt)

2 + Yt, where Y is a

squared Bessel process independent from B. The main challenge is the

negative powers of x appearing in the expression of u(t, x) = Ef(Xx
t )

after applying Itô’s formula. To overcome it, we use a “symmetrization”

trick (see Step 1 in the proof of Theorem 5.8) based on the simple fact

that replacing Bt by the “opposite” Brownian motion B̄t := −Bt does

not change the distribution of Xx
t .

In the following two chapters, the domain D = R+.

Theorem 5.8 (cf. Alfonsi [2, Prop. 4.1]). Let Xt(x) = Xx
t be a CIR

process with coefficients satisfying the condition σ2 ≤ 4θκ and starting

at x ≥ 0. Let f ∈ Cq
pol(R+) for some q ≥ 4. Then the function

u(t, x) := Ef(Xt(x)), x ≥ 0, t ∈ [0, T ],

is l times continuously differentiable in x ≥ 0 and l′ times continuously

differentiable in t ∈ [0, T ] for l, l′ ∈ N such that 2l + 4l′ ≤ q. Moreover,
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there exist constants C ≥ 0 and k ∈ N, depending only on a good set

{(Ci, ki), i = 0, 1, . . . , q} for f , such that

∣∣∂j
x∂

i
tu(t, x)

∣∣ ⩽ C(1 + xk), x ≥ 0, t ∈ [0, T ], (5.2.5)

for j = 0, 1, . . . , l, i = 0, 1, . . . , l′. In particular, u(t, x) is a (classical)

solution of the Kolmogorov backward equation (3.1.4) for (t, x) ∈ [0, T ]×
R+.

As a consequence, if f ∈ C∞
pol(R+), then u(t, x) is infinitely differen-

tiable on [0, T ] × R+, and estimate (5.2.5) holds for all i, j ∈ N with C

and k depending on (i, j) and a good sequence {(Ci, ki), i ∈ N0} for f .

Proof. We first focus ourselves on the differentiability in x ≥ 0. By

Lemma 5.6 the process Xt(x) can be reduced, by a space–time transfor-

mation, to the BESQδ process Y δ
t (x) with δ = 4θκ

σ2 ≥ 1. Since in (5.2.4),

only bounded smooth functions of t ∈ [0, T ] are involved, it suffices to

show estimate (5.2.5) for Y δ
t (x), t ∈ [0, T̃ ], instead of Xt(x), t ∈ [0, T ],

with T̃ = 1
θ ln(1 +

4θT
σ2 ). With an abuse of notation, we further write T

instead of T̃ . We proceed by induction on l.

Step 1. Let l = 1. First, suppose that δ = n ∈ N. By Lemma 5.5 we

have

Y n
t (x)

d
= (

√
x+ ξ

√
t)2 + Y n−1

t , (5.2.6)

where ξ ∼ N (0, 1) is independent of Y n−1
t (in the case n = 1, Y 0

t := 0).

Denote

Y +
t (x) := (

√
x+ ξ

√
t)2, Y −

t (x) := (
√
x− ξ

√
t)2.

Since the distributions of Y +
t (x) and Y −

t (x) coincide, we have

∂xEf(Y n
t (x)) = ∂xEf

(
Y +
t (x) + Y n−1

t

)
=

1

2

[
∂xEf

(
Y +
t (x) + Y n−1

t

)
+ ∂xEf

(
Y −
t (x) + Y n−1

t

) ]
=

1

2
E
[
f ′ (Y +

t (x) + Y n−1
t

) (
1 + ξ

√
t

x

)
(Lemma 5.7)

+ f ′ (Y −
t (x) + Y n−1

t

) (
1− ξ

√
t

x

)]
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= Ef ′ (Y n
t (x))

+
1

2

√
t

x
E
{
ξ
[
f ′ (Y +

t (x) + Y n−1
t

)
−f ′ (Y −

t (x) + Y n−1
t

)]}
= Ef ′ (Y n

t (x)) +
1

2

√
tE
(
ξg1(x, ξ

√
t, Y n−1

t )
)

(5.2.7)

=: P (t, x) +R(t, x), x > 0, (5.2.8)

where

g1(x, a, b) :=
f ′((√x+ a)2 + b

)
− f ′((√x− a)2 + b

)
√
x

,

x > 0, a ∈ R, b ≥ 0. We now estimate P (t, x) and R(t, x) separately.

By the well-known inequality∣∣∣∣ n∑
i=1

ai

∣∣∣∣p ≤ np−1
n∑

i=1

|ai|p for any n ∈ N, p ≥ 1, ai ∈ R, i = 1, 2, . . . , n,

(5.2.9)

we have the following estimates:

E(Y ±
t (x))p = E(

√
x± ξ

√
t)2p ≤ 22p−1(xp + E|ξ|2ptp)

= 22p−1
(
xp +

2pΓ(p+ 1
2)√

π
tp
)

≤ C(1 + xp), x ≥ 0, t ∈ [0, T ],

E(Y n
t )p = E

( n∑
i=1

∣∣Bi
t|2
)p

≤ np−1
n∑

i=1

E
∣∣Bi

t|2p

= np 2
pΓ(p+ 1

2)√
π

tp ≤ C, t ∈ [0, T ],

and, as a consequence,

E(Y n
t (x))p = E(Y +

t (x) + Y n−1
t )p ≤ 2p−1E

(
(Y +

t (x))p + E(Y n−1
t )p

)
≤ C(1 + xp), x ≥ 0, t ∈ [0, T ]. (5.2.10)

Now, for P (t, x), we have

|P (t, x)| = E|f ′ (Y n
t (x)) | ⩽ C1

(
1 + E(Y n

t (x))k1
)
⩽ C1

(
1 + C(1 + xk1)

)
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≤ C(1 + xk1), x ≥ 0, t ∈ [0, T ], (5.2.11)

where the constant C depends only on C1, k1, T , and n.

At this point, we need the following technical lemma, which we will

prove in the Appendix.

Lemma 5.9. For a function f : R+ → R, define the function

g(x; a, b) :=
f
(
(
√
x+ a)2 + b

)
− f

(
(
√
x− a)2 + b

)
√
x

,

x > 0, a ∈ R, b ∈ R+. If f ∈ Cq
pol(R+) for some q = 2l+ 1 ∈ N (l ∈ N0),

then the function g is extendable to a continuous function on R+×R×R+

such that g(·; a, b) ∈ C l
pol(R+) for all a ∈ R and b ∈ R+. Moreover, there

exist constants C ≥ 0 and k ∈ N, depending only on a good set {(Ci, ki),

i = 0, 1, . . . , q} for f , such that

|∂j
xg(x; a, b)| ≤ C|a|(1 + xk + |a2 + b|k), x ∈ R+, a ∈ R, b ∈ R+,

(5.2.12)

for all j = 0, 1, . . . , l.

Now consider R(t, x). Applying Lemma 5.9 with f ′ instead of f (and

thus with g1 instead of g), we have

|R(t, x)| ≤ 1

2

√
tE
∣∣∣ξg1(x, ξ√t, Y n−1

t )
∣∣∣

⩽ CtE
[
ξ2(1 + xk2 + |(ξ

√
t)2 + Y n−1

t |k2)
]

⩽ CtE
[
ξ2
(
1 + xk2 + 2k−1

(
(ξ
√
t)2k2 + (Y n−1

t )k2
))]

⩽ C(1 + xk2), x ≥ 0, t ∈ [0, T ], (5.2.13)

where the constant C clearly depends only on C2, k2, T , and n.

Combining the obtained estimates, we finally obtain∣∣∣∣∂xEf(Xt(x))

∣∣∣∣ ⩽ C(1 + xk1) + C(1 + xk2)

⩽ C(1 + xk), x ≥ 0, t ∈ [0, T ],

where k = max{k1, k2}, and the constant C depends only on C1, C2,

k1, k2, T , and n.
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Now consider the general case where δ ≥ 1, δ /∈ N. Note that we

consider the general case only for l = 1 because the reasoning for higher-

order derivatives is the same.

Let n < δ < n + 1, n ∈ N. According to [20, Prop. 6.2.1.1], Y δ
t (x)

has the same distribution as the affine sum of two independent BESQ

processes, namely,

Y δ
t (x)

d
= Ỹ n−1

t (x) + Ŷ δ−n+1
t (0),

where Ỹ n−1
t (x) and Ŷ δ−n+1

t (0) are two independent BESQ processes of

dimensions n− 1 and δ − n+ 1, respectively, starting at x, and 0.

Using the density of BESQδ(0) given in [39, Prop. 3.1], we get

E(Y δ−n+1
t (0))p = Γ

(δ − n+ 1

2

)
2

δ−n+1
2

−1t−
δ−n+1

2

∞∫
0

ypyδ−ne−y2/2t dy

= Γ
(δ − n+ 1

2

)
2

δ−n+1
2

−1t−
δ−n+1

2

× 2
p+δ−n−1

2 t
p+δ−n+1

2 Γ
(p+ δ − n+ 1

2

)
= 2

p
2
+δ−n−1t

p
2Γ
(δ − n+ 1

2

)
Γ
(p+ δ − n+ 1

2

)
≤ C, t ∈ [0, T ].

Using the estimates just obtained for δ ∈ N and E(Y δ−n+1
t (0))p, we

have

∂xEf(Y δ
t (x)) = ∂xEf

(
Ỹ n−1
t (x) + Ŷ δ−n+1

t (0)
)

=
1

2

[
∂xEf

(
Ỹ +
t (x) + Ỹ n−2

t + Ŷ δ−n+1
t (0)

)
+ ∂xEf

(
Ỹ −
t (x) + Ỹ n−2

t + Ŷ δ−n+1
t (0)

) ]
,

where

Ỹ +
t (x) := (

√
x+ ξ̃

√
t)2, Ỹ −

t (x) := (
√
x− ξ̃

√
t)2, Ỹ n−2

t :=
n−2∑
i=1

(B̃i
t)

2.

Using again the fact that the distributions of Ỹ ±
t (x) coincide and pro-

ceeding as in (5.2.8), we have

∂xEf(Y δ
t (x)) =

1

2

[
∂xEf

(
(
√
x+ ξ̃

√
t)2 + Ỹ n−2

t + Ŷ δ−n+1
t (0)

)
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+ ∂xEf
(
(
√
x− ξ̃

√
t)2 + Ỹ n−2

t + Ŷ δ−n+1
t (0)

) ]
=

1

2

[
Ef ′

(
(
√
x+ ξ̃

√
t)2 + Ỹ n−2

t + Ŷ δ−n+1
t (0)

)
×
(
1 + ξ̃

√
t

x

)
+ Ef ′

(
(
√
x− ξ̃

√
t)2 + Ỹ n−2

t + Ŷ δ−n+1
t (0)

)
×
(
1− ξ̃

√
t

x

)]
= Ef ′(Y δ

t (x)) +

√
t

2
E
[
ξ̃g1

(
x, ξ̃

√
t, Ỹ n−2

t + Ŷ δ−n+1
t (0)

)]
=: P1(t, x) +R1(t, x).

Combination of estimates (5.2.9) and (5.2.10) leads to the estimate

|P1(t, x)| = |Ef ′(Y δ
t (x))| ⩽ C1E(1 + |Y δ

t (x)|k1)

⩽ C1E
(
1 + 2k1−1

∣∣(Ỹ n−1
t (x))k1 + (Ŷ δ−n+1

t (0))k1
∣∣)

⩽ C(1 + xk1), x ≥ 0, t ∈ [0, T ],

where the constant C depends only on C1, k1, T , and n. By Lemma 5.9,

similarly to estimate (5.2.13), we have

|R1(t, x)| ⩽ C2E
[
ξ̃2
(
1 + xk2 +

∣∣∣ξ̃2t+ Ỹ n−2
t + Ŷ δ−n+1

t (0)
∣∣∣k2)]

⩽ C(1 + xk), x ≥ 0, t ∈ [0, T ],

where the constant C depends only on C2, k2, T , and n. Combining the

last two estimates, we get∣∣∣∣∂xEf(Xt(x))

∣∣∣∣ ⩽ C(1 + xk), x ≥ 0, t ∈ [0, T ], (5.2.14)

where k = max{k1, k2}, and the constant C depends only on C1, C2,

k1, k2, and T .

Step 2. Let l = 2. From Step 1 we have

∂xEf(Y n
t (x)) = Ef ′ (Y n

t (x)) +
1

2

√
tE
(
ξg1(x, ξ

√
t, Y n−1

t )
)
.

Therefore,

∂2
xEf(Y n

t (x)) = ∂xEf ′ (Y n
t (x)) +

1

2

√
tE
(
ξ∂xg1(x, ξ

√
t, Y n−1

t )
)

=: P2(t, x) +R2(t, x).
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From estimate (5.2.14) with f replaced by f ′ we obtain

|P2(t, x)| ⩽ C(1 + xk3), x ≥ 0, t ∈ [0, T ], (5.2.15)

where the constant C depends only on C1, C3, k1, k3, T , and n. For

R2(t, x), applying Lemma 5.9 once more to g1 instead of g, we get

|R2(t, x)| ⩽
1

2

√
tE
∣∣ξ∂xg1(x, ξ√t, Y n−1

t )
∣∣

⩽ CtE
(
ξ2(1 + xk + |ξ

√
t|k + (Y n−1

t )k)
)

⩽ C(1 + xk), x ≥ 0, t ∈ [0, T ],

where the constants C and k ∈ N depend only on {(Ci, ki), i = 1, 2, 3, 4},
T , and n. Combining the obtained estimates, we finally obtain∣∣∣∣∂2

x Ef(Xt(x))

∣∣∣∣ ⩽ C(1 + xk), x ≥ 0, t ∈ [0, T ],

where the constants C and k ∈ N depend only on {(Ci, ki), i = 1, 2, 3, 4},

T , and n.

Step 3. Now we may continue by induction on l. Suppose that

estimate (5.2.5) is valid for l = m − 1. Let us show that it is still valid

for l = m. The arguments are similar to those in the case m = 2 (Step

2). We have

∂m
x Ef(Y n

t (x)) = ∂m−1
x Ef ′ (Y n

t (x)) +
1

2

√
t ∂m−1

x E
(
ξg1(x, ξ

√
t, Y n−1

t )
)

=: Pm(t, x) +Rm(t, x).

Then, similarly to estimates (5.2.11) and (5.2.15), we have

|Pm(t, x)| ⩽ C(1 + xkm).

where the constant C depends only on {(Ci, ki), i = 1, 3, . . . , 2m − 1},
T , and n.

For Rm(t, x), applying Lemma 5.9 to g1 instead of g, we get

|Rm(t, x)| ⩽ 1

2

√
tE
∣∣∣ξ∂m−1

x g1(x, ξ
√
t, Y n−1

t )
∣∣∣ ⩽ C(1 + xk),
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where the constants C and k ∈ N depend only on {(Ci, ki), i = 1, . . . , 2m},
T , and n. Combining the obtained estimates, we get∣∣∣∂m

x Ef(Xt(x))
∣∣∣ ⩽ C(1 + xk), x > 0, t ∈ [0, T ],

where the constants C and k ∈ N depend only on {(Ci, ki), i = 1, . . . , 2m},
T , and n. Thus, Theorem 5.8 is proved for all l ∈ N.

Step 4. As in Alfonsi [2, p. 28], inequality (5.2.5) for the derivatives with

respect to t and mixed derivatives follows automatically by an induction

on l′ using that, for l′ ≥ 1 such that 4l′ + 2l ≤ q,

∂l
x∂

l′
t u(t, x) = ∂l

x

(
θ(κ− x)∂x∂

l′−1
t u(t, x) +

σ2

2
x∂2

x∂
l′−1
t u(t, x)

)
=

σ2

2
x∂l+2

x ∂l′−1
t u(t, x) +

(
l
σ2

2
+ θ(κ− x)

)
∂l+1
x ∂l′−1

t u(t, x)

− lθ∂l
x∂

l′−1
t u(t, x).

5.3 Stratonovich square-root SDE

In this chapter, we prove the regularity of the solution of backward Kol-

mogorov equation for the Stratonovich SDE

dXt =
√

Xta(Xt) ◦ dBt, X0 = x ≥ 0. (5.3.1)

For self-consistency, let us briefly recall the definition and some prop-

erties of the Stratonovich integral. (For more detail, we refer to [37,

Chs. 3 and 5] or [32, Ch. 8]). The Stratonovich integral of an Itô pro-

cess Xt = X0 +
∫ t
0 Ks ds +

∫ t
0 Hs dBs with respect another Itô process

Yt = Y0 +
∫ t
0 K̃s ds+

∫ t
0 H̃s dBs may be defined as

t∫
0

Xs ◦ dYs :=
t∫

0

Xs dYs +
1

2
⟨X,Y ⟩t

=

t∫
0

Xs dYs +
1

2

t∫
0

HsH̃s ds, t ≥ 0,
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or, in a short differential form,

Xt ◦ dYt := Xt dYt +
1

2
d⟨X,Y ⟩t.

We will need the following properties of the Stratonovich integral,

which are similar to the properties of ordinary (nonstochastic) integrals:

1. (Itô’s formula) If F ∈ C3(R), then dF (Xt) = F ′(Xt) ◦ dXt.

2. If dZt = Xt ◦ dYt, then Wt ◦ dZt = WtXt ◦ dYt, or in the integral

form: if Zt =
∫ t
0 Xs ◦ dYs, then

∫ t
0 Ws ◦ dZs =

∫ t
0 WsXs ◦ dYs,

provided that one of the integrals is well-defined.

3. If σ ∈ C2(R), then the Stratonovich SDE

dXt = b(Xt) dt+ σ(Xt) ◦ dBt

is equivalent to the Itô SDE

dXt =
(
b(Xt) +

1
2 σ(Xt)σ

′(Xt)
)
dt+ σ(Xt) dBt.

In particular, the Stratonovich equation (5.3.1) is equivalent to the Itô

SDE

dXt =
1

4

(
a(Xt) +Xta

′(Xt)
)
dt+

√
Xta(Xt) dBt, X0 = x ≥ 0.

The main result of this section is the following theorem on regu-

larity of the solution of the backward Kolmogorov equation related to

Eq. (5.3.1). In its proof, we use the ideas of the previous section. How-

ever, it is significantly more technical.

Theorem 5.10 (cf. Thm. 5.8). Let Xt(x) = Xx
t , t ≥ 0, be the process

satisfying the SDE (5.3.1). In addition, let f ∈ Cq
pol(R+) for some q ⩾ 4,

let a ∈ C2l−1
pol (R+)∩Clin(R+) for some l ⩾ 1, and suppose that 0 < C0 ⩽

a(x), x ⩾ 0. Then the function

u(t, x) := Ef(Xt(x)), x ⩾ 0, t ∈ [0, T ],
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is l times continuously differentiable in x ⩾ 0 and l′ times continuously

differentiable in t ∈ [0, T ] for l, l′ ∈ N such that 2l + 4l′ ⩽ q. Moreover,

there exist constants C ≥ 0 and k ∈ N, depending only on a good set

{(Ci, ki), i = 0, 1, . . . , q} for f such that

∣∣∂j
x∂

i
tu(t, x)

∣∣ ⩽ C(1 + xk), x ≥ 0, (5.3.2)

for j = 0, 1, . . . , l,i = 0, 1, . . . , l′.In particular, u(t, x) is a (classical)

solution of the Kolmogorov backward equation for (t, x) ∈ [0, T ]× R+.

As a consequence, if f ∈ C∞
pol(R+) and a ∈ C∞

pol(R+) ∩ Clin(R+),

then u(t, x) is infinitely differentiable on [0, T ]×R+, and estimate (5.3.2)

holds for all i, j ∈ N with C and k depending on (i, j) and a good sequence

{(Ci, ki), i ∈ N0} for f .

Proof. To start with, let us write down the assumed estimates:

0 < C0 ⩽ a(x), x ⩾ 0,

a(x) ⩽ C1(1 + x), x ⩾ 0,

a(k)(x) ⩽ Ck(1 + xpk), x ⩾ 0, k ⩾ 1,

f (k)(x) ⩽ Ck(1 + xpk), x ⩾ 0, k ⩾ 1.

To simplify the expressions, we use the same notation for estimates of

functions a and f : if the functions a and f have different constants Ck, pk,

then we take their maxima and apply them for both functions.

Let us introduce the following functions:

G(x) =

x∫
0

dy√
ya(y)

, x ⩾ 0, (5.3.3)

K(x) = G(x2) =

x2∫
0

dy√
ya(y)

=

x∫
0

2dy√
a(y2)

, x ∈ R, (5.3.4)

J(x) = K−1(x), x ∈ R. (5.3.5)

We will need the following derivatives of J and J2:

J ′(x) =
1

K ′(J(x))
=

1
2√

a(J2(x))

=

√
a(J2(x))

2
,
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J ′′(x) =
1

4
√
a(J2(x))

a′(J2(x)) · 2J(x)J ′(x) =
a′(J2(x))J(x)

4
,

(J2)′(x) = 2J(x)J ′(x) = J(x)
√
a(J2(x)),

(J2)′′(x) = 2
(
J(x)J ′(x)

)′
= 2J ′2(x) + 2J(x)J ′′(x)

=
1

2

(
a(J2(x)) + J2(x)a′(J2(x))

)
,

(J2)′′′(x) =
1

2
(J2)′(x)

(
2a′(J2(x)) + J2(x)a′′(J2(x))

)
.

Continuing, we get that the higher-order derivatives of J2(x) are of the

following form:

(J2(x))(n) = Fn((J
2(x))(n−2), (J2(x))(n−3) . . . , ,

J2(x), a(n−1)(x), a(n−2)(x), . . . , a′(x)), n = 1, . . . , 2l.
(5.3.6)

where Fn has polynomial growth in all variables.

Let us check that the process X̃t(x) := J2(G(x)+Bt), t ≥ 0, has the

same distribution as that of Xt(x). Indeed, by Itô’s formula we have

dX̃t(x) = (J2)′(G(x) +Bt) dBt +
1

2
(J2)′′(G(x) +Bt) dt

= J(G(x) +Bt)
√

a(J2(G(x) +Bt)) dBt

+
1

4

(
a(J2(G(x) +Bt)) + J2(G(x) +Bt)a

′(J2(G(x) +Bt))
)
dt

=

√
X̃t(x)a(X̃t(x)) sgn(J(G(x) +Bt)) dBt

+
1

4

(
a(X̃t(x)) + X̃t(x)a

′(X̃t(x))
)
dt

=

√
X̃ta(X̃t) ◦ dB̃t,

where B̃t :=
∫ t
0 sgn(J(G(x) + Bs))dBs, t ≥ 0, is a Brownian motion

since | sgn(J(G(x) +Bs))| = 1 (see Lévy’s characterization of Brownian

motion [28]). With some abuse in notation, we further write X instead

of X̃. Thus

Xt(x) = J2

 x∫
0

dy√
ya(y)

+Bt

 ,
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and we denote

X+
t (x) = J2

 x∫
0

dy√
ya(y)

+Bt

 ,

X−
t (x) = J2

 x∫
0

dy√
ya(y)

−Bt

 .

Note that the processes X+
t (x) and X−

t (x) coincide in distribution. Fur-

thermore, the function d(x) = G(x)/2
√
x, x > 0, can be continuously

extended to the whole semiaxis R+ = [0,∞) and is continuously differ-

entiable there as many times as the derivative a′ is. Indeed, denoting

h := 1/
√

a(x), x ⩾ 0, we have h′(x) = −1
2a

′(x)/a3/2(x) and

d(x) =
G(x)

2
√
x

=

∫ x
0

h(y)√
y dy

2
√
x

=
2
∫ x
0 h(y)d(

√
y)

2
√
x

=
(
√
xh(x)−

∫ x
0

√
yh′(y)dy)

√
x

= h(x)−
x∫

0

√
y
xh

′(y)dy

= h(x)− x

1∫
0

√
zh′(xz)dz, x > 0,

so that we can define d(0) := limx↓0 d(x) = h(0). Clearly, if the function

a, and thus h, is 2l− 1 times continuously differentiable, then d is 2l− 2

times continuously differentiable. Moreover, if a ∈ C2l−1
pol (R+), then since

0 < C0 ⩽ a(x), x ⩾ 0, we have that also h ∈ C2l−1
pol (R+). If n ⩽ 2l − 2

then

d′(x) = h′(x)−
1∫

0

√
zh′(xz) dz − x

1∫
0

√
zh′′(xz)z dz,

d′′(x) = h′′(x)−
1∫

0

√
zh′′(xz)z dz −

1∫
0

√
zh′′(xz)z dz

− x

1∫
0

√
zh′′′(xz)z2 dz,
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. . .

d(n)(x) = h(n)(x)− n

1∫
0

√
zh(n)(xz)zn−1 dz − x

1∫
0

√
zh(n+1)(xz)zn dz,

and therefore, the function d ∈ C2l−2
pol (R+).

We assume that function J2 has the following form

J2(x) = x2d̃(x), (5.3.7)

where d̃ behaves properly close to 0. Since G(x) → 0 when x → 0, we

have

lim
x→0

d̃(x) = lim
x→0

J2(x)

x2
= lim

x→0

J2(G(x))

G2(x)
= lim

x→0

x

(2
√
xd(x))2

= lim
x→0

1

4d2(x)
=

a(0)

4
. (5.3.8)

Since the distributions of X+
t (x) and X−

t (x) coincide, we have

Xt(x) = X+
t (x) = J2(G(x) +Bt) = J2(Bt +G(x))

d
= J2(Bt −G(x)) =: X−

t (x);

Ef(Xt(x)) =
1

2
E
(
f
(
J2(Bt +G(x))

)
+ f(J2(Bt −G(x)))

)
;

(5.3.9)
∂

∂x
Ef(Xt(x)) =

1

2
√
xa(x)

E
(
f ′
(
J2(Bt +G(x))

)
(J2)′(Bt +G(x))

− f ′(J2(Bt −G(x)))(J2)′(Bt −G(x))
)

=
1

2
√
xa(x)

E
(
f ′
(
J2(Bt +G(x)s)

)
× (J2)′(Bt +G(x)s)

)∣∣∣1
s=−1

=
1

2
√
xa(x)

E
1∫

−1

(
f ′
(
J2(Bt +G(x)s)

)
× (J2)′(Bt +G(x)s)

)′
s
ds

= d(x)h(x)E
1∫

−1

(
f ′′
(
J2(Bt +G(x)s)

)
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× (J2)′(Bt +G(x)s)

+ f ′
(
J2(Bt +G(x)s)

)
× (J2)′′(Bt +G(x)s)

)
ds, (5.3.10)

and

lim
x↓0

d(x)h(x) =
1

a(0)
. (5.3.11)

To prove the polynomial growth, let us analyze every component sepa-

rately. We have 0 < C0 ≤ a(x) ≤ C1(1 + x), x ≥ 0 and therefore using

(5.3.8) and (5.3.11), we obtain∣∣∣d(x)h(x)∣∣∣ ⩽ 1

C0
, x ⩾ 0 and

C0

4
x2 ≤ J2(x) ≤ C1

4
x2, x ∈ R.

From that it follows:

|f ′′(J2(Bt +G(x)s)
)
| ≤ C2

(
1 +

(C1

4
(Bt +G(x)s)2

)p2)
≤ C2

(
1 +

(C1

4
(Bt +G(x))2

)p2)
≤ C2

(
1 +

(C1

2
(B2

t +G2(x))
)p2)

≤ C2

(
1 +

(C1

2

(
B2

t +
4

C0
x
))p2)

, (5.3.12)

here we used the well known inequality, e.g. see [38, Lemma 1.2]

(a+ b)p ⩽ cp(a
p + bp),

where cp = max
{
1, 2p−1

}
, and which holds with all a, b ⩾ 0 if p > 0, as

well as the fact that function G is the inverse function of function J2.

As we know that (J2)′(x) = J(x)
√
a(J2(x)), then

|(J2)′(Bt +G(x)s)| ≤
√
C1

2

(
Bt +

2
√
x√

C0

)√
C1

(
1 +

C1

2

(
B2

t +
4

C0
x

))

≤ C1

2

(
Bt +

2
√
x√

C0

)(
1 +

√
C1

2

(
Bt +

2
√
x√

C0

))
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≤ C1

2

(
Bt +

x+ 1√
C0

+

√
C1

2
B2

t

+
4√
C0

√
C1

2

(
B2

t

2
+

x

2

)
+

4

C0

√
C1

2
x

)
≤ C(1 +Bt +B2

t + x), (5.3.13)

where C depends only on C0 and C1. Finally, since |a′(x)| ≤ C1(1 +

xp1), x ≥ 0, p1 ∈ N we get

|(J2)′′(Bt +G(x)s)| = 1

2

(
a(J2(Bt +G(x)s))

+J2(Bt +G(x)s)a′(J2(Bt +G(x)s))
)

≤ 1

2

(
C1(1 + J2(Bt +G(x)s)) +

C1

2

(
B2

t +
4

C0
x

)
×C1(1 + J2p1(Bt +G(x)s))

)
≤ C(1 +B2

t +B2p1+2
t + xp1+1), (5.3.14)

where C depends only on C0, C1 and p1.

Combination of estimates (5.3.12)–(5.3.14) leads to∣∣∣ ∂
∂x

Ef(Xt(x))
∣∣∣ ⩽ C̃1(1 + xk̃1), x ⩾ 0, t ∈ [0, T ],

where the constants C̃1 and k̃1 depend only on C0, C1 and p1.

For the second derivative, denoting H = H(t, x, s, u) = Bt +G(x)su, we

get

∂2

∂x2
Ef(Xt(x)) = (d(x)h(x))′ E

1∫
−1

(
f ′′(J2(Bt +G(x)s)

)
(J2)′(Bt +G(x)s)

+ f ′(J2(Bt +G(x)s)
)
(J2)′′(Bt +G(x)s)

)
ds

+ (d(x)h(x))2 E
1∫

−1

1∫
−1

(
f (iv)

(
J2(H)

)
((J2)′(H))3

+ 2f ′′′(J2(H)
)
(J2)′(H)(J2)′′(H)

+ f ′′′(J2(H)
)
(J2)′(H)(J2)′′(H)

+ f ′′(J2(H)
)
(J2)′′′(H)

+ f ′′′(J2(H)
)
((J2)′(H))2(J2)′′(H)
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+ f ′′(J2(H)
)
((J2)′′(H))2

+ f ′′(J2(H)
)
(J2)′(H)(J2)′′′(H)

+ f ′′(J2(H)
)
(J2)′(H)(J2)′′′(H)

+ f ′(J2(H)
)
(J2)(iv)(H)

)
duds. (5.3.15)

Previously, we have already proved that function d(x) = G(x)
2
√
x

belongs to

C2l−2
pol (R+) if a ∈ C2l−1

pol (R+). Thus the first summand has the polynomial

growth. The second summand has the polynomial growth too since

(J2(x))′′′ = F3((J
2(x))′, J2(x), a′′(x), a′(x)),

(J2(x))(iv) = F4((J
2(x))′′, (J2(x))′, J2(x), a′′′(x), a′′(x), a′(x)),

and |a′′(x)| ≤ C2(1 + xp2), |a′′′(x)| ≤ C3(1 + xp3) x ≥ 0, p2, p3 ∈ N.

Combining, we get∣∣∣ ∂2

∂x2
Ef(Xt(x))

∣∣∣ ⩽ C̃2(1 + xk̃2), x ⩾ 0, t ∈ [0, T ],

where the constants C̃2 and k̃2 depend only on C0, C1, C2, C3, p1, p2,

and p3.

Now, for any higher-order derivative n ⩽ l, we see that

∂n

∂xn
Ef(Xt(x)) = F̃n

(
(d(x)h(x))(i) , (d(x)h(x))m ,

f (j)
(
J2(Bt +G(x))

)
, (J2)(j)(Bt +G(x))

)
,

where F̃n has polynomial growth in all variables, i = 1, . . . , n − 1, m =

1, . . . , n, and j = 1, . . . , 2n. From this we see that if a ∈ C2l−1
pol (R+) ∩

Clin(R+), then∣∣∣ ∂l

∂xl
Ef(Xt(x))

∣∣∣ ⩽ C̃l(1 + xk̃l), x ⩾ 0, t ∈ [0, T ],

where C̃l and k̃l depend only on Ci and pi, i = 0, . . . , 2l − 1.

Finally, inequality (5.3.2) for the derivatives with respect to t and

mixed derivatives follows automatically by an induction on l′ using that,

for l′ ≥ 1 such that 4l′ + 2l ≤ q,

∂l
x∂

l′
t u(t, x) = ∂l

x

(1
4
(a(x) + xa′(x))∂x∂

l′−1
t u(t, x) +

1

2
a(x)x∂2

x∂
l′−1
t u(t, x)

)
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=
1

4

l∑
i=0

(
l

i

)
a(l−i)(x)∂i+1

x ∂l′−1
t u(t, x)

+
1

4

(
l
l−1∑
i=0

(
l − 1

i

)
a(l−i)(x)∂i+1

x ∂l′−1
t u(t, x)

+ x
l∑

i=0

(
l

i

)
a(l−i+1)(x)∂i+1

x ∂l′−1
t u(t, x)

)
+

1

2

(
l

l−1∑
i=0

(
l − 1

i

)
a(l−i−1)(x)∂i+2

x ∂l′−1
t u(t, x)

+ x
l∑

i=0

(
l

i

)
a(l−i)(x)∂i+2

x ∂l′−1
t u(t, x)

)
,

where we used the fact that

∂l
xa(x)x∂xf(x) = l

l−1∑
i=0

(
l − 1

i

)
a(l−i−1)(x)∂i+1

x f(x)

+ x
l∑

i=0

(
l

i

)
a(l−i)(x)∂i+1

x f(x), (5.3.16)

which is proved in the Appendix.
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Chapter 6

Conclusions

In the doctoral thesis, we construct first- and second-order weak approx-

imations for the WF model using split-step, moments matching, and

approximate moment matching techniques. Split-step technique allows

us to divide the model into deterministic and stochastic parts, so that

we only need to construct a discretization scheme for the stochastic part,

as the deterministic part is easily solvable in an explicit way. Moment

matching and approximate moments matching techniques enable us to

construct discrete random variables to get weak approximations of the

desired order.

Also, we provide a probabilistic proof of the regularity of solutions

of the backward Kolmogorov equations for the WF equation and, in

addition, for the CIR and general Stratonovich equations with square-

root diffusion coefficient without relying on existing transition density

formulas. Such a regularity is needed for rigorous proofs that potential

(“candidate”) weak approximations are indeed weak approximations of

the corresponding order.

The following contributions are the main results of the thesis:

• A first-order weak approximation of the WF equation;

• A second-order weak approximation of the WF equation;

• Simulation examples of first- and second-order weak approxima-

tions of the WF equation;
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• A probabilistic proof of the regularity of solutions of the backward

Kolmogorov equations for the WF equation;

• A proof of the regularity of solutions of the backward Kolmogorov

equations for the CIR equation without relying on its transition

density. This allowed us to extend the method to the case of general

Stratonovich equations with square-root diffusion coefficient.
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Chapter 7

Appendix

In this chapter, we provide additional calculations which we think would

only distract the reader if placed elsewhere in the text.

Appendix: Proof of Lemma 5.9

Proof. First, let n = 5 (l = 2), that is, f ∈ C5(R+). Then, denoting

A := a2 + b, for i = 0, . . . , 4, we have

gi(x; a, b) =
f (i)(A+ x+ 2a

√
x)− f (i)(A+ x− 2a

√
x)√

x

=
1√
x
f (i)(A+ x+ 2a

√
xs)
∣∣∣s=1

s=−1

=
1√
x

1∫
−1

f (i+1)(A+ x+ 2a
√
xs)2a

√
x ds

= 2a

1∫
−1

f (i+1)(A+ x+ 2a
√
xs) ds, x > 0.

From this it follows that

lim
x↓0

gi(x; a, b) = 2a

1∫
−1

f (i+1)(A) ds = 4af (i+1)(A).

In particular, every function gi, i = 0, . . . , 4, is continuously extendable

to the whole half-line R+ = [0,∞) by defining gi(0; a, b) := 4af (i+1)(A).

Let, moreover, f ∈ C5
pol(R+) with the estimates
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|f (i)(x)| ≤ Ci(1 + xki), x ≥ 0, i = 0, 1, . . . , 5, (7.0.1)

for some constants Ci > 0 and ki ∈ N, i = 0, 1, . . . , 5.

Then we have the estimate

|gi(x; a, b)| ≤ 2|a|
1∫

−1

|f (i+1)(A+ x+ 2a
√
xs)|ds

≤ 4|a|Ci+1

(
1 + (A+ x+ 2|a|

√
x)ki+1

)
≤ 4|a|Ci+1

(
1 + (A+ a2 + 2x)ki+1

)
≤ C|a|

(
1 +Aki+1 + xki+1

)
, x ≥ 0,

where C depends on Ci+1 and ki+1 only.

Now let us concentrate ourselves on the derivatives of g = g0 with

respect to x. We have

g′0(x; a, b) = 2a

1∫
−1

f ′′(A+ x+ 2a
√
xs)
(
1 +

as√
x

)
ds

= 2a

1∫
−1

f ′′(A+ x+ 2a
√
xs) ds

+
2a2√
x

1∫
−1

f ′′(A+ x+ 2a
√
xs)s ds

= g1(x; a, b) +
2a2√
x

1∫
−1

(
f ′′(A+ x)

+

s∫
0

f ′′′(A+ x+ 2a
√
xu)2a

√
x du

)
s ds

= g1(x; a, b) +
2a2f ′′(A+ x)√

x

1∫
−1

s ds

+ 4a3
1∫

−1

s∫
0

f ′′′(A+ x+ 2a
√
xu) du s ds
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= g1(x; a, b) + 4a3
1∫

−1

s∫
0

f ′′′(A+ x+ 2a
√
xu) du s ds, x > 0.

(7.0.2)

(Note that the term at the negative power of x, that is, at 1/
√
x,

vanishes since
∫ 1
−1 sds = 0.) From this it follows that there exists the

limit

lim
x↓0

g′0(x; a, b) = lim
x↓0

g1(x; a, b) + 4a3
1∫

−1

s∫
0

f ′′′(A) du s ds

= 4af ′′(A) +
8a3

3
f ′′′(A).

In particular, the function g = g0 is continuously differentiable at x = 0

and thus belongs to C1(R+) since g′0(0; a, b) = limx↓0 g
′
0(x; a, b) by the

Lagrange theorem.

If, moreover, f ∈ C5
pol(R+) satisfies estimates (3.1.2) for i ≤ 5, then

we have the corresponding estimate for g′0:

|g′0(x; a, b)| ≤ |g1(x; a, b)|+ 4|a|3
1∫

−1

s∫
−s

|f ′′′(A+ x+ 2a
√
xu)| du |s| ds

≤ C2|a|
(
1 +Ak2 + xk2

)
+ 4|a|3

1∫
0

s∫
−s

C3(1 + (A+ x+ 2|a|
√
xu)k3) du ds

≤ C2|a|
(
1 +Ak2 + xk2

)
+ 4|a|3C3(1 +Ak3 + xk3)

≤ C|a|
(
1 +Ak + xk

)
, x ≥ 0. (7.0.3)

where C and k depend on C2,3, k2,3, and A = a2 + b only.

Thus, we have proved that g = g0 ∈ C1
pol(R+), provided that f ∈

C5
pol(R+). (In fact, for estimate (7.0.3), it suffices that f ∈ C3

pol(R+).)

More precisely, if

|f (i)(x)| ≤ Ci(1 + xki), x ≥ 0, i = 1, 2, 3,
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then

|g(j)0 (x; a, b)| ≤ C(1 +Ak + xk), x ≥ 0, j = 0, 1,

where the constants C > 0 and k ∈ N depend only on Ci and ki, i =

1, 2, 3, and, in particular, on a good set of the function f ∈ C5
pol(R+).

Now, let us proceed to the second derivative of g0. From Eq. (7.0.2),

denoting Ãu = Ã(x, u) = A+ x+ 2a
√
xu, we have

g′′0(x; a, b) = g′1(x; a, b) + 4a3
1∫

−1

s∫
0

f (4)(Ãu)
(
1 +

au√
x

)
du s ds

=

2a

1∫
−1

f (2)(Ãs) ds

′

+ 4a3
1∫

−1

s∫
0

f (4)(Ãu) du s ds

+
4a4√
x

1∫
−1

s∫
0

f (4)(Ãu)udus ds+ 4a3
1∫

−1

s∫
0

f (4)(Ãu) dusds

+
4a4√
x

1∫
−1

s∫
0

[
f (4)(A+ x) +

u∫
0

f (5)(Ãv)2a
√
xdv

]
udus ds

= 2a

1∫
−1

f (3)(Ãs) ds

+
2a2√
x

1∫
−1

[
f (3)(A+ x) +

s∫
0

f (4)(Ãu)2a
√
x du

]
s ds

+ 4a3
1∫

−1

s∫
0

f (4)(Ãu) dus ds+
4a4√
x
f (4)(A)

1∫
−1

s∫
0

udusds

+ 8a5
1∫

−1

s∫
0

u∫
0

f (5)(Ãv)dv u du s ds

= 2a

1∫
−1

f (3)(Ãs) ds+ 4a3
1∫

−1

s∫
0

f (4)(Ãu) du s ds

+ 4a3
1∫

−1

s∫
0

f (4)(Ãu) du s ds
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+ 8a5
1∫

−1

s∫
0

u∫
0

f (5)(Ãv)dv u du s ds, x > 0.

(Note that, again, the term at the negative power of x, that is, at 1/
√
x,

vanishes since
∫ 1
−1

∫ s
0 udu s ds = 0.) In particular, again by the Lagrange

theorem, g0 is twice continuously differentiable on the whole half-line R+

since there exists the finite limit

lim
x↓0

g′′0(x; a, b) = lim
x↓0

g′1(x; a, b) + 4a3f (4)(A)

1∫
−1

s∫
0

du s ds

+ 8a5f (5)(A)

1∫
−1

s∫
0

u∫
0

dv u du s ds

= 4af (3)(A) +
16a3f (4)(A)

3
+

16a5f (5)(A)

15
.

If, moreover, f ∈ C5
pol(R+) satisfies estimates (7.0.1), then we have the

corresponding estimate for g′′0 :

|g′′0(x, a, b)| ⩽ 2|a|
1∫

−1

|f (3)(A+ x+ 2a
√
xs)| ds

+ 8|a|3
1∫

−1

s∫
−s

|f (4)(A+ x+ 2a
√
xu)|du |s| ds

+ 8|a|5
1∫

−1

s∫
−s

u∫
−u

|f (5)(A+ x+ 2a
√
xv)|dv |u| du |s| ds

⩽ 2|a|
1∫

−1

C3(1 + (A+ x+ 2|a|
√
xs)k3) ds

+ 8|a|3
1∫

0

s∫
−s

C4(1 + (A+ x+ 2|a|
√
xu)k4) duds

+ 8|a|5
1∫

0

s∫
−s

u∫
−u

C5(1 + (A+ x+ 2|a|
√
xv)k5)dv du ds

⩽ C|a|(1 +Ak + xk), x ≥ 0, (7.0.4)
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where the constants C > 0 and k ∈ N depend only on Ci and ki, i = 3,4,5,

and, in particular, on a good set of the function f ∈ C5
pol(R+).

Now, for l > 2, we can proceed similarly. For f ∈ C2l+1
pol (R+), denote

F 0,q = F 0,q(x, a, b) :=

1∫
−1

f (q)(A+ x+ 2a
√
xs) ds,

F p,q = F p,q(x, a, b)

:=

1∫
−1

s1∫
0

· · ·
sp∫
0

f (q)(A+ x+ 2a
√
xsp+1) dsp+1 . . . s2 ds2 s1 ds1,

p = 1, . . . , l, q = l + 1, . . . , 2l + 1.

Then, in addition to the first two derivatives

g′0(x, a, b) = a(2F 0,2 + 4a2F 1,3) and

g′′0(x, a, b) = a(2F 0,3 + 8a2F 1,4 + 8a4F 2,5),

we get

g′′′0 (x, a, b) = a(2F 0,4 + 12a2F 1,5 + 24a4F 2,6 + 16a6F 3,7),

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

g
(l)
0 (x, a, b) = a

l∑
j=0

cj,la
2jF j,l+j+1(x; a, b), (7.0.5)

where cj,l, 0 ≤ j ≤ l, are some constants. Note that, as before, in

the right-hand side of Eq. (7.0.5), there are no negative powers of x, so

that g0 is l times continuously differentiable on the whole half-line R+,

provided that f ∈ C2l+1
pol (R+). Moreover, as before, from (7.0.5) we get

the following estimates for g
(r)
0 :

|g(r)0 (x, a, b)| ⩽ C|a|(1 +Ak + xk), x ⩾ 0, r = 0, 1, . . . , l,

where the constants C > 0 and k ∈ N depend only on Ci and ki, i =

0, . . . , 2l + 1, that is, only on a good set of the function f ∈ C2l+1
pol (R+).
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Appendix: Proof of equality (5.3.16)

Proof. Let us start by taking l = 1. Then

∂xa(x)x∂xf(x) = a′(x)x∂xf(x) + a(x)∂xf(x) + a(x)x∂2
xf(x)

= a(x)∂xf(x) + x

1∑
i=0

(
1

i

)
a(1−i)(x)∂i+1

x f(x).

When l = 2, we have

∂2
xa(x)x∂xf(x) = (2a′(x) + xa′′(x))∂xf(x) + (2a(x) + 2xa′(x))∂2

xf(x)

+ a(x)x∂3
xf(x)

= 2
1∑

i=0

(
1

i

)
a(1−i)(x)∂i+1

x f(x)

+ x

2∑
i=0

(
2

i

)
a(2−i)(x)∂i+1

x f(x).

Let us assume that for l = k − 1, we have

∂k−1
x a(x)x∂xf(x) = (k − 1)

k−2∑
i=0

(
k − 2

i

)
a(k−2−i)(x)∂i+1

x f(x)

+ x

k−1∑
i=0

(
k − 1

i

)
a(k−1−i)(x)∂i+1

x f(x).

Then

∂k
xa(x)x∂xf(x) = ∂x∂

k−1
x a(x)x∂xf(x)

= (k − 1)
k−2∑
i=0

(
k − 2

i

)
a(k−1−i)(x)∂i+1

x f(x)

+ (k − 1)

k−2∑
i=0

(
k − 2

i

)
a(k−2−i)(x)∂i+2

x f(x)

+

k−1∑
i=0

(
k − 1

i

)
a(k−1−i)(x)∂i+1

x f(x)

+ x
k−1∑
i=0

(
k − 1

i

)
a(k−i)(x)∂i+1

x f(x)

+ x
k−1∑
i=0

(
k − 1

i

)
a(k−1−i)(x)∂i+2

x f(x)
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= (k − 1)a(k−1)(x)∂xf(x)

+ (k − 1)

k−2∑
i=1

(
k − 2

i

)
a(k−1−i)(x)∂i+1

x f(x)

+ (k − 1)

k−2∑
i=1

(
k − 2

i− 1

)
a(k−1−i)(x)∂i+1

x f(x)

+ (k − 1)a(x)∂k
xf(x)

+ a(k−1)(x)∂xf(x) + a(x)∂k
xf(x)

+

k−2∑
i=1

(
k − 1

i

)
a(k−1−i)(x)∂i+1

x f(x)

+ xa(k)(x)∂xf(x)

+ x

k−1∑
i=1

(
k − 1

i

)
a(k−i)(x)∂i+1

x f(x)

+ x
k−1∑
i=1

(
k − 1

i− 1

)
a(k−i)(x)∂i+1

x f(x)

+ xa(x)∂k+1
x f(x)

= k
k−1∑
i=0

(
k − 1

i

)
a(k−1−i)(x)∂i+1

x f(x)

+ x
k∑

i=0

(
k

i

)
a(k−i)(x)∂i+1

x f(x),

because
(
k−1
i

)
+
(
k−1
i−1

)
=
(
k
i

)
.
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