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Abstract: The user, usage, and usability (3U’s) are three principal constituents for cyber security.
The effective analysis of the 3U data using artificial intelligence (AI) techniques allows to deduce
valuable observations, which allow domain experts to design practical strategies to alleviate cyber-
attacks and ensure decision support. Many internet applications, such as internet advertising and
recommendation systems, rely on click-through rate (CTR) prediction to anticipate the possibility
that a user would click on an ad or product, which is key for understanding human online behaviour.
However, online systems are prone to click on fraud attacks. We propose a Human-Centric Cyber
Security (HCCS) model that additionally includes AI techniques targeted at the key elements of user,
usage, and usability. As a case study, we analyse a CTR prediction task, using deep learning methods
(factorization machines) to predict online fraud through clickbait. The results of experiments on a
real-world benchmark Avazu dataset show that the proposed approach outpaces (AUC is 0.8062)
other CTR forecasting approaches, demonstrating the viability of the proposed framework.

Keywords: human-centric cyber security; CTR prediction; factorization machine; artificial intelligence;
deep learning

1. Introduction

Novel human–computer interaction systems are being continuously developed, and
new communication possibilities are emerging. The digitization of diverse information is
becoming a usual pattern, and with technological advancements, human commands or
statements can be processed in computer systems. Automatic chatbots, question–answer
systems, and other software solutions that facilitate human–machine interactions (HMI)
require adequate methods for ensuring the security of the system [1]. The creation of
user interfaces for mobile devices is difficult because it addresses specialized mobile
device usage—users demand quick replies to their activities while limiting the quantity
of information submitted. Because of their nature, mobile devices are subject to several
limits, such as restricted display size and motoric limitations on information entry. Good
usability is a key need for interface design and is essential for attracting and maintaining
users, particularly in commercial applications such as mobile e-commerce platforms [2].

The greater emphasis on a human-centric design [3] is the spotlight of current cyber
security research. The emphasis is shifting towards integrating human behaviour and
cognitive reasoning to achieve human-centric cyber security that can secure humans and
institutions from the malignant aftereffects of cyberattacks, whilst also being in sync with
human cognitive and behavioural patterns. Human-centric cyber security (HCCS) is a
nebulous notion that is difficult to describe due to the intrinsic link between humans
and technology, as well as individuals and security systems; however, the emphasis is
on the link between online user behaviour and its implications. Therefore, the methods
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for predicting the behaviour of users when interacting with internet systems, expressed
through a variety of quantitative metrics such as click-through rate (CTR), are relevant [4].

Usability means how easily a product or service can be accessed, how user-friendly it
is, how well or efficiently it performs its function, and how prone it is to errors (international
standard ISO 9241-11:2018). A website with a high level of usability produces a positive
attitude and greater satisfaction than one with less usability, information content, customer
service, and perceived security [5]. Usable design must play a part in creating the effective
business use of social media. The popularity of social media posts and materials can be
increased by using relevant keywords, attractive image colours [6], and other search engine
optimization (SEO) techniques. Usability is also related to credibility. It has been shown
that highly credible websites reached a significantly higher CTR on sponsored content, as
their credibility facilitated online visitors to explore the website for longer [7].

Usability and security issues are closely related [8,9]. Usability is also closely related
to the security of the safe use of apps and browsing on the internet. For example, phishing
warnings designed with usability in mind have significantly reduced CTR compared
to other types of warning. This shows that usability-aware warning placement has a
significant impact on phishing warning adherence [10]. The user should also be able to
make security-aware decisions, and assess the intention of the sender and the possible
cyber security implications if they continue with clicking a link on a website or social
media. Moreover, as underscored by Franz et al. [11], any anti-malware or anti-phishing
solution must have high usability to be used by the users effectively. The attractiveness
and usability of apps or websites can be increased by introducing motivation-enhancement
and supporting measures such as gamification [12]. The understanding of user experience
(UX) integrates into real-world usable privacy and security research studies that are aimed
at changing risk-taking behaviour, thus increasing the security of critical applications [13].

Forecasting the likelihood of users selecting (i.e., clicking on) ads or products (also
known as predicting click-through rates) is an important issue for many web applications
such as online advertising and recommendation systems [14]. The effectiveness of the
forecast has a direct impact on the end revenues of service providers. It is generating
an increasing interest in both academia and commercial circles. Machine learning (ML)
plays a defining role in predicting CTR, with item attributes and user profiles, and as input
functions. Understanding human online behaviour based on contextual variables requires
accurate CTR prediction. The purpose of CTR prediction is to estimate the likelihood of
people clicking ads or objects, which is important for many internet applications such as
online advertising and recommendation systems. There are numerous factors that influence
CTR, but because certain factors may have less impact than others, it is crucial to determine
the factors that are important for boosting click-through rate estimation. The success of
CTR prediction is dependent on the modelling of complex feature relationships [15]. It is
challenging to learn the complicated feature relationships that underpin user behaviour.
The experts’ past expertise can be used to develop low-order feature interactions. The
typical CTR prediction approach is heavily reliant on feature design. Data features are arbi-
trarily chosen and analysed. The data have a complicated mapping connection, particularly
for important data, and it is critical to also consider feature interactions. Many effective
techniques rely heavily on manually manufacturing combinatorial features [16], that is,
building new features by mixing numerous predictor variables, often called cross-features.
The importance of such features may incur a great cost because designing effective features
involves extensive technical work and domain understanding [17–19].

In this paper, we follow the vision of Grobler et al. [20] by acknowledging user, usage,
and usability (3U’s) as the three principal elements of cyber security. In the cyber security
domain, the effective analysis of the data using artificial intelligence techniques allows
to deduce high value insights that allow domain experts to design practical strategies to
mitigate cyberattacks and ensure decision support [21,22]. Many internet applications, such
as online advertising and recommendation systems, rely on CTR prediction to anticipate
the possibility that a user would click on an ad or product. This problem is extremely
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difficult because: (1) input functions (e.g., user age and item category, etc.) are typically
sparse; and (2) effective inference relies on high-order functions, which are difficult to
process manually by domain experts and are not enumerable.

In this paper we present a novel artificial intelligence-based model form modelling
security and usability interactions in web applications. The proposed model, called the
Human-Centric Cyber Security (HCCS) model, extends the user, usage, and usability (3U’s)
model [20] with a deep learning methodology that can be used for CTR prediction. The
model is evaluated on real-world CTR data using the Avazu benchmark dataset.

The remaining parts of the paper are outlined in the following. Section 2 discusses the
relevant work. Section 3 introduces and explains our methodology. Section 4 discusses the
results. Finally, Section 5 formulates the conclusions and overviews the future efforts.

2. Related Work
2.1. Machine Learning Techniques for CTR Prediction

Many models have been proposed by researchers for CTR prediction, most of which
employ the ML techniques. A logistic regression (LR) model was adopted to forecast CTR
on Google Ads [23]. The online sparse learning technique was introduced to train the model
using numerous aspects of characteristics such as user data, query keywords, advertising
information, and metadata with ads as the input of the model. Chapelle [24] introduced
an ML framework based on LR with the goal of predicting Yahoo’s CTR. The absence of
data, especially for new ads, is one of the most significant issues in CTR prediction. The
previous display data are insufficient to offer a click-through model with a pre-calculated
benchmark. Graepel et al. [25] analysed the sponsored search application scenario, the
critical importance of CTR prediction in general, and the task-specific limitations, such as
accuracy, calibration, scalability, dynamics, and exploration. They introduced the adPredic-
tor algorithm, a new Bayesian online learning system for binary prediction. The algorithm
uses a generalised linear model and a factorising Gaussian belief distribution on feature
weights to calculate the approximate posterior, resulting in the automatic learning rate
adaptation. Guo et al. [26] proposed a numerical feature embedding learning framework
(AutoDis) for CTR prediction with unique representation attributes retained. Discretization,
meta-embeddings, and aggregation are the three major components of AutoDis. For each
numerical field, they offer meta-embeddings to learn knowledge from the perspective of a
field with a relatively small number of parameters. Then, soft discretization is performed,
capturing the correlations between numerical characteristics and meta-embeddings.

2.2. Deep Neural Networks for CTR Prediction

High-order feature interactions might be harder to grasp. Deep neural networks
(DNNs) can learn these deep-feature connections. Recently, DNNs have gained popularity
because of their ability to learn high-order features. DNNs are promising in user response
prediction because they can investigate high-order hidden patterns and automatically
develop more informative feature representations to deliver higher prediction performance.
Zhang et al., for example, investigated feature mappings and developed the FM-supported
neutral network (FNN) [27]. To choose extremely important features, An et al. [28] em-
ploy extreme gradient boosting (XGBoost) for the feature engineering phase. In actual
mobile advertising circumstances, the selected characteristics are mobile contextual factors
such as time contextual, geographical contextual, and other contextual attributes. The
XGBoost deep FM-supported neutral network (XGBDeepFM) combines the capabilities
of XGBoost for feature selection, FM for cross-feature interaction, and DNN for feature
learning. Zhang et al. [29] developed an embedding approach based on the pre-trained FM.
Multi-layer perceptrons (MLPs) were created to investigate higher-order features based
on the concatenated embedding vectors. The FM, on the other hand, severely limits the
quality of embedding initialization. Product-based neural network (PNN) was introduced
by Qu et al. [30] to capture high-order feature interactions by inserting a product layer
after the embedding layer but before the fully-connected layer. Furthermore, PNN, in the
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same manner as other deep models, captures low-order features, which are critical for CTR
prediction. DeepFM [31] imposed an FM unit in the Wide and Deep architecture [32], with
no pre-training or feature engineering, and highlighted the interplay of low- and high-
order features. The combination of the factor decomposition machine and the deep neural
network is a characteristic of this model. DeepIntent used a word attention technique for
query and ad representations to increase the quality of the learnt semantic match and to
capture query intent [33]. Deep Crossing presented a deep architecture to estimate click
likelihood by learning elements of an impression such as query text, ad text, or keywords
automatically [34]. Deep Character-level Model [35] and Match-Tensor [36] presented very
deep dual architectures for search query, and embeddings with a matching layer to learn
the deep features for CTR forecasting.

Zhou et al. created a unique technique, termed the Deep Interest Network (DIN), by
constructing a local activation unit, which uses the attention mechanism to learn significant
sections of past actions and which uses weighted sum pooling to produce a mapping of a
user’s interest [37]. Higher active weights are assigned to behaviours that are more relevant
to the candidate item in terms of representing a user’s interest. Gligorijevic et al. used
attention models to learn feature mappings that concentrate on important parts of queries
and online ads, and introduce a supervised model that learns semantic embeddings, as
well as their corresponding CTR [38]. Chen et al. [39] offer a deep belief nets (DBN)-based
mobile advertising CTR estimation fusion model. The approach combines the strength
of DBN’s data mapping and feature extraction capabilities with LR models. To tackle the
fundamental difficulty of acquiring the optimal feature expression in ML, our algorithm
discovers deep features instead of basic original characteristics and then feeds them into an
LR model to forecast the CTR.

Gan et al. [40] propose a recent-recurrent neural network (R-RNN), to divide a user’s
click-through (CT) behaviours into the global CT sequence and recent CT sequence, and
then use an RNN to analyse the user’s recent CT sequence, which roughly reflects the
user’s current interests. The RNN model also employs long short-term memory (LSTM) to
address the issue of long-term reliance in the time series data of CT behaviours. In the work
of Jiang et al. [41], the stacked autoencoder (SAE) is constructed using the unsupervised
layer-by-layer pre-training to extract the features of input data, after which the CTR of the
user can be obtained. Li et al. [42] proposed an attentive deep interest-based network model.
The interest sequence is captured in the interest extractor layer, and the auxiliary losses are
used to construct the interest state with deep supervision. They use a bidirectional gated
recurrent unit (Bi-GRU) to describe the reliance between behaviours. Then they extract the
target’s interest evolving process and suggest an interest evolving layer. Simultaneously,
the attention mechanism is incorporated in the sequential structure. The model then learns
very non-linear feature interactions using stack autoencoders for CTR prediction.

Lu et al. [43] present a hybrid model for CTR prediction that combines the deep interest
network (DIN) with the eXtreme Deep FM (xDeepFM). DIN employs an adaptive local
activation unit that integrates an attention unit to learn user interest from past actions
associated with certain adverts. A fundamental component of xDeepFM is a compressed
interactions network (CIN), which aims to automatically produce feature interactions at a
vector-wise level. xDeepFM is formed by combining a CIN, a simple DNN, and a linear
component into a single unified model. The end-to-end hybrid model is an MLP-based
parallel ensemble of models.

To create multi-scale features based on distinct receptive fields, Qiang et al. [44] pro-
pose using multi-scale stacking pooling (MSSP). By creating several observers with diverse
angles and fields of vision, the structure stacks multi-scale characteristics bi-directionally
from depth and breadth angles, assuring the variety of retrieved features. Furthermore,
factorization is used for learning parameters, while the architecture ensures that high-order
features are learnt well in sparse data. The authors next merge the MSSP with a traditional
DNN to create DeepFM, a unified model.
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Qin et al. [45] suggested a framework for user behaviour retrieval for CTR prediction
(UBR4CTR). Using a learnable search strategy, the most informative user behaviours will
be extracted from the whole user history sequence in UBR4CTR. The goal is to anticipate
the CTR between a target user and a target item in a certain environment; all three pieces of
information are merged to generate a prediction target. The prediction target comprises the
target user features, target object, and context. To construct the final forecast, the collected
behaviours are fed into a deep attention-based model.

Song et al. [46] present the dual-view attention network (DVAN), which enhances
both the user-view and the item-view to acquire numerous interaction connections for CTR
prediction. The cross-domain attention module extracts coarse-level correlations, while a
local homogeneous-domain attention module adapts to extract fine-level correlations. A
unique selection technique is developed to connect the cross-domain attention unit with
the locally homogeneous attention unit, gradually building representation from the coarse
to the fine level. To depict the nonlinear related relationship of features, Wang et al. [47]
employ a stack autoencoder for higher-order feature interactions and enhanced FM for
lower-order feature interactions. Xu et al. [48] propose an ideally connected deep belief
net (OCDBN) for click prediction using a rotation code whitening technique based on
optimum mean removal. OCDBN removes optimum mean to increase the accuracy of CTR
prediction. OCDBN can extract global main characteristics from input instances with a
variety of components, which may be used for both single and sequential ad impressions.
Yang et al. [49] propose an embedding approach for learning feature mappings in user CTR
forecasting systems, called operation-aware embedding, and build a new deep learning
model, called operation-aware neural networks (ONN). In contrast to the standard feature
embedding approach, which learns a single mapping for all operations, operation-aware
embedding may learn many mappings for diverse operations.

2.3. Factorization Machines

Two-order feature interactions have been studied using factorization machines (FMs).
Factorization machines (FMs) [50,51] are supervised ML approaches that embed features in
a latent manifold and model feature interactions using the inner product of their embedding
vectors. Factorization machines (FM), combining polynomial regression models with
factorization methods, were designed to model interactions of features, and have proven
their effectiveness for various problems [52,53]. The CTR prediction models based on 2nd
polynomial degree mapping and FMs are commonly employed.

Following that, other variations of factorization machines were proposed. Juan et al.
created the factorization-based prediction field-aware FMs [54]. Zhang et al. [55] use classic
feature combination methods and deep neural networks (DNNs) to automate feature
combinatorics to increase CTR forecast accuracy. They propose the field-aware neural
FM (FNFM), in which a DNN is employed for higher-order feature learning. The model
outperforms existing deep feature learning models such as DCN, DeepFM, and NFM in
terms of expression ability. The importance of diverse interactions of second-order features
was examined by GBFM [56] and AFM [57]. All of these techniques, however, are cantered
on simulating the interactions of low-order objects. Some recent work has been conducted
to imitate higher-order object interactions. Neural factorization machines (NFM) [58], for
example, modelled higher-order objects by stacking DNNs using the output of second-
order object interactions. Higher-order factorization machines (HOFM) [59] have suggested
efficient learning algorithms for higher order FMs. Zhou et al. [60] propose DGRU, a
novel hybrid neural network that combines factorization-machine-based neural network
(DeepFM) with gated recurrent unit neural network (GRUNN). The DeepFM component
oversees combining autonomic features, while GRU oversees modelling user interests and
their evolution. The GRU is given a series of 1 and 0 values that reflect user click activities.
It includes data on what consumers like and hate.

Summarizing, there are some research gaps in the previous studies as follows: the lack
of context (the CTR prediction problem is usually treated out of context as a simple data
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mining problem, thus ignoring the complex relationships with security and usability of web
applications) and feature interaction (the modelling of feature interactions is still under-
researched: when a neural network learns high-order features, it is unable to identify the
importance and association of combined features, limiting the model’s prediction accuracy
even further).

3. Background and Methodology
3.1. Problem Description

Let us assume having n instances and m observations, D = {(xi, yi)|i = 1, . . . , n}, in
which XT =

(
x(1)

T
, . . . , x(m)T

)
and yi ∈ {0, 1} is the label of the i-th instance. For the CTR

problem, 0 is the label of no click, and 1 is the label of click. The task is to find a mapping
f : RI1 × . . .× RIm → {0, 1} . If yi ∈ R, it can be solved as a regression problem.

3.2. Model Description

The term “user-centred security” is used to describe security models, procedures,
systems, and software with usability as a main motivator or goal and was presented in [61].
At first, security was the main aspect of every system, but later, the instrumental approach
has changed, seeking instead to involve the aesthetic elements which are associated with
the quality of the technology. Almost all human–computer interaction (HCI) research
has focused on achieving user behavioural goals [62]. As mentioned earlier, we use
Grobler et al.’s [20] proposed components of cyber security 3Us (user, usage, and usability),
which we have extended with the Artificial Intelligence (AI) elements, as follows:

User. The human who interacts with cyber systems for authorized objectives is
considered by user components. Usually users are defined by demographic, psychographic,
and behavioural characteristics offline. These characteristics are possible to use on-line
as well. When there are not enough demographic characteristics, it is appropriate to use
other characteristics such as user typology, Big Five, or consumer roles based on consumer
actions on social media [63]. The user component of cyber security considers the varied
spectrum of these users, each with varying cyber security awareness because of personal
preferences, social characteristics, and past experiences, and user reaction toward cyber
security hazards. The user characteristics are presented in Table 1.

Usage. The functional features of technological and non-technological safeguards
put in place to secure users against explicit security threats are the focus of usage compo-
nents [64]. Usage focuses on how a cyber-security system and procedures, such as antivirus
products, spamming detection algorithms, business rules, and cyber security regulations,
are intended to be used.

Usability. The usability of a system is determined by how well it can be evaluated
by the end user. It gives an overview of how humans interact with technology. According
to Voorveld et al. [65], the user experience in each internet platform is different because of
the functionality of the differing internet pages and the user interface, etc. The usability
combines technological and non-technological aspects. Gaver and Martin [66] proposed
that technology should be used to serve a variety of non-instrumental demands, such as
surprise, diversion, and closeness.

AI. The intelligence of the system is ensured by machine learning or deep learning
methods such as deep neural networks. AI aids users to secure their systems during use
while ensuring usability is maintained.
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Table 1. Summary of the components of the Human-Centric Cyber Security model.

User Type Definition Reference

Legitimate user
The legitimate users’ goals are to defend or use
the system. [20]

Legitimate users know the system’s files and
where they can be found well. [67]

Malicious user or attacker
Attacker gains access to data by exploiting
legitimate users. [20,68]

Attackers exploit holes in IoT systems for
personal gain. [69]

Expert user

If a cyber danger is detected, it would use a
variety of informative sources to alert legitimate
users and sustain its continuity under attack.

[20]

Experts know a lot about a subject and are
familiar with how the discipline is structured.
This involves the ability to comprehend and
contribute to the discipline’s vocabulary and
technique.

[70]

Non-expert user

A non-expert user is unaware of the underlying
functional, usability, and security principles, and
can use the system only with a set of
instructions given.

[71]

3.3. Click-Through Rate (CTR)

We demonstrate the role of AI techniques in online cyber security in relation to usability
through the CTR prediction task.

Definition (prediction of CTR), let x R n represent the combination of user functions u
and element characteristics v, where categorical attributes are encoded via one-time coding,
and n is the size of the concatenated functions. The task of the likelihood that the user u
will click on the element v is based on the feature vector x.

CTR is the ratio of the number of clicks on a specific link or an element of interface
to the number of times people were exposed to the link or element. Prediction of CTR is
critical in current online personalized services. To create an effective CTR prediction model,
it is crucial to capture users’ drifting interests by modelling successive user activities [45].
The user behaviour, especially for marketing specialists, is an object of careful analysis,
because this issue influences business success, increased incomes, and reached companies
goals. One of the essential user behaviour metrics for advertising revenue is the click-
through rate (CTR). It is a short term, non-financial consumer behaviour measurement [6],
which possibly links to financial results, and is also equally vital for increasing incomes.
Many online applications, such as web search, recommender systems [14], and display
advertising, rely on click-through rate (CTR) prediction. As a result, the ranking method
can be changed to CTRbid across all options, where “bid” refers to the profit received by
the system if a user clicks on an item. It is obvious that the purpose is to accurately estimate
the CTR.

3.4. Factorization Machines

The method starts with a sparse feature vector x, which is then fed to a nesting
layer that maps features (categorical and numeric) into the lower-dimensional manifold.
The nesting of all fields is then introduced into a new interacting layer that is designed
as a multipurpose (multilayer) self-tensioned neural network. Higher-order objects are
combined using the attention mechanism for each interacting layer, and various types of
combinations can be evaluated using multilayer mechanisms that map objects to different
subspaces. We model different orders of combinatorial objects by superimposing multiple
interacting layers (Figure 1). The final layer produces a low-dimensional mapping of the
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input object that models high-order features and is then used to estimate the CTR with a
sigmoidal function.
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First, we present the user profiles and attributes of an element as a sparse vector, which
aggregates all fields. Because the mappings of categorical features are usually very sparse,
the generally accepted method is to map them in low-dimensional manifolds (for example,
word embeddings). Often, categorical features can be multivalued. For compatibility with
multivalued input data, we represent the multivalued feature field as the arithmetic mean
of the feature embedding vectors.

To facilitate interactions between categorical and numeric attributes, we present nu-
meric attributes in the low-dimensional attribute space as categorical attributes. As a result,
the embedding layer’s output will be a concatenation of several embedding vectors. After
transferring categorical and numerical features to the same low-dimensional space, we
proceed to modelling high-order features in this space.

The loss function is a loss log, which is defined as follows: where y are valid data on
user CTR, and N is the count of training samples.

y = w0 + ∑n
i=1 wixi + ∑n

i=1 ∑n
j=i+1

〈
vi, vj

〉
xixj, (1)

This formula has one difference from the previous formula—the weights wij for
multiplicative effects, features i and j are replaced by the dot product of the vectors
corresponding to them. These vectors have dimension k, i.e., vi = (ui1, ui2 . . . uik) and the
larger the dimension is, the deeper the interactions will be learned by the model, but it
will also take more time and is more likely to be retrained. Otherwise, this is the usual
regression model. One question remains to be solved—how to select these vectors in linear
time, because it is unclear from the above equation.

1
2 ∑k

l=1

((
∑d

i=1 vi, l xi

)2
− ∑d

i=1 v2
i, l x2

i

)
, (2)

The parameters are optimized using stochastic gradient descent (SGD) as follows.

∂

∂θ
ŷ(x) =


1, if θ is w0
xi, if θ is wi

xi ∑n
j=1 vj, f xj − vi, f x2

i , if θ is v i, f

, (3)

We use the cross-entropy (a.k.a. LogLoss) metric to calculate the loss per task. When a
network output may be interpreted as an independent hypothesis, the final activation re-
lates to the probability that the hypothesis is correct. It calculates the difference between the
expected and empirical probability distributions. In addition, cross-entropy addresses the
vanishing gradient problem, which is a concern for deep neural networks. It is calculated
as follows for binary classification where the targets are either 0 or 1.

LogLoss = − 1
N ∑N

i=1(yi log(ŷi) + (1− yi) log(1− ŷi)), (4)
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where yi and ŷi are the ground truth and estimated interest of the user (candidate or
corporation), respectively, and N is the total count of training examples.

During training, the model parameters are updated by using gradient descent to
minimize the weighted LogLoss.

3.5. Neural Network Architecture

The neural network architecture used in this study is based on DeepFM [72]. The
neural network model consists of two principal units: the factorization machine (FM),
and the deep neural network (DNN), which share the same input, while the output of the
embedding layer is fed into the DNN. The embedding layer is used to compress the input
vector to a dense real-valued vector that is fed downstream to the first hidden layer. The
FM unit can model both linear (1st order) and 2nd order interactions between features.
The DNN unit is a feed-forward neural network (FFNN), which learns high-order feature
combinations. A small part of the model showing some input, embedding layers, and FM
and DNN units, is visualized in Figure 2. The model has 427,089,562 trainable parameters.
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The working of the model is summarized as Algorithm 1.

Algorithm 1 Pseudocode of factorization neural network

Input: Sparse feature vector.
Output: Predicted CTR value.
1. Input layer to input sparse feature vector into model.
2. Embedding layer to compress the input vector to a dense real-valued vector.
3. Factorization machine to compute hidden (latent) features.
4. A feed-forward neural network that learns high-order feature combinations.
5. Output layer with sigmoid function to predict the CTR value.

3.6. Evaluation

As in many other studies, we randomly partitioned the dataset into three parts:
training (70%), validation (10%), and test (20%). The training set is utilized for model
training, the validation set is used for hyper-parameter tweaking, and the test set is used
for performance reporting. To assess the efficacy of various models, we employed two
prominent measures that have been used in earlier studies.
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LogLoss, also known as binary cross-entropy, measures the divergence of forecast
probabilities from actual labels. LogLoss has a value between 0 and 1, and the label has a
binary value.

Area under curve (AUC) expresses the likelihood that a binary classifier would assign
a higher value to a randomly selected positive test case than to a randomly selected negative
test instance. A higher AUC value denotes superior performance. When the output of the
model is a number reflecting the likelihood of a particular data record belonging to a certain
class, AUC and LogLoss are more useful than accuracy and recall. To compute precision
and recall, probabilities are translated to class labels based on a user-defined threshold, and
the threshold chosen might have a significant impact on the findings. AUC and LogLoss,
on the other hand, can circumvent such thresholds.

4. Results and Discussion
4.1. Dataset and Settings

All methods are implemented in Python language using TensorFlow library on a
desktop computer with Intel® Core i5-8265U 64 bit processor with 8 GB RAM and Windows
10 operating system.

Here we use the Avazu dataset for the experimental validation of the proposed method-
ology. The Avazu dataset is generated from Avazu’s 2015 CTR prediction contest. The
dataset is composed of 24 columns, most of which are categorical variables and a few of
which are numeric identifiers. It has 40,428,967 samples (of which 33,563,901 are positive,
and 6,886,566 are negative), 23 fields, and 1,544,488 features. The dataset is large, and,
therefore, following [72], we use only 10% of the dataset for training and testing.

4.2. Results

The training process is illustrated in Figure 3. For optimization, we use the Adam
optimizer, and for loss function, the binary cross-entropy. We stop training after 10 epochs,
as the loss was decreasing very slowly.
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The confusion matrix of the classification results is presented in Figure 4. The overall
accuracy reached is 88.82%

4.3. Comparison with Related Work

We contrast our method with machine-based factorization methods that consider
second-order features, and methods that can capture interactions of higher-order objects.
The methods and their performance are summarized in Table 2 and explained below.
FM [50] uses factorization methods to model the interaction of second-order functions.
AFM [57] is one of the most modern models that captures interactions of second-order
functions. It extends the FM, using the attention mechanism to categorize the importance of
second-order combinatorial properties. DeepCrossing [16] uses deep, fully connected, resid-



Electronics 2022, 11, 400 11 of 15

ual neural networks to study nonlinear feature relationships in an implicit way. NFM [58]
stacks neural networks on top of the second-order object interaction layer. The interac-
tions of high-order features are indirectly fixed by the nonlinearity of neural networks.
In CrossNet [34], the cross-net, which is the core of the Deep and Cross model, uses the
external product of a concatenated feature vector at the bit level to explicitly model feature
relationships. HOFM [59] offers kernel-based algorithms for learning higher order FMs.
They build a third-order FM using a public implementation. AutoInt [73] maps both numer-
ical and category characteristics into the same low-dimensional space. Then, to explicitly
represent feature interactions in this space, a multi-head self-attentive neural network
(SANN) with residual connections is developed. Multiple orders of feature combinations
of input characteristics may be represented using different layers of multi-head SANNs.
The compressed interaction network (CIN), which is the core of the xDeepFM model [74],
takes the external product of the folded feature matrix at the vector level.
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Table 2. Comparison of performance on the Avazu dataset. Best value is in bold.

Method LogLoss AUC

FM [50] 0.3856 0.7706
AFM [57] 0.3854 0.7718
NFM [58] 0.3864 0.7708

HOFM [59] 0.3854 0.7701
CrossNet [34] 0.3868 0.7667

DeepCrossing [16] 0.3889 0.7643
AutoInt [73] 0.3824 0.7752

Proposed (this paper) 0.3562 0.8062

5. Conclusions

In this study, we suggested applying artificial intelligence (AI) methodologies as an
additional part of a cyber security-oriented user, use, and usability (3U) framework. The
effective analysis of the 3U data using the AI approaches enables domain specialists to
build viable tactics for mitigating cyberattacks and providing decision assistance. Many
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internet applications, such as internet advertising and recommendation systems, rely on
click-through rate (CTR) prediction to forecast the likelihood of a user clicking on an ad
or product, which is critical for understanding human online behaviour. Web systems, on
the other hand, are vulnerable to click fraud attacks. We demonstrate the approach by
a case study in CTR prediction that intends to forecast online fraud using deep learning
approaches such as factorization machines.

The experimental results on a real-world Avazu dataset show that our suggested
approach not only outpaces known modern CTR forecasting approaches, but also demon-
strates the viability of the proposed framework.

The main limitation of the proposed model is as follows: the model does not account
for the concept drift when the underlying features change over time in unpredictable ways.

Future work will involve capturing sequential features of click-throughs during feature
engineering and creating deeper neural network architectures to account for higher-order
feature interactions. Moreover, we will consider the adoption of the model for CTR predic-
tion using streamed data.
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