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NOTATION

C, Cf , Cα,β, Cθ copulas
C∗ dual function of a copula
Ĉ survival copula
C survival function corresponding to C

C the set of (2-dimensional) copulas

∂2
xy mixed partial derivative operator

∂x, ∂y partial derivative operators

F, G, FX , GX distribution functions
φ[−1] pseudo-inverse of φ

F (−1) quasi-inverse of F

x+ positive part of x, x+ := max{x, 0}
x ∨ y maximum of x and y

x ∧ y minimum of x and y

τ, τC , τX,Y Kendall’s tau corresponding to copula C or
random variables X and Y

ρ, ρC , ρX,Y Spearman’s rho corresponding to copula C or
random variables X and Y

λU , λL upper, lower tail dependence coefficients

R real line (−∞, ∞)
R extended real line [−∞, ∞]
Ran range

VC , VH C-volume, H-volume (or measure) of a set

◦ composition of functions
≺ point-wise or concordance ordering
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1 | INTRODUCTION

1.1 Research topic and relevance

It is well known that copulas play a central role in modelling
multivariate dependence and linking univariate marginal distributions
together to form a multivariate distribution. This is the essence of the
famous Sklar’s theorem (see Theorem 1). Having many choices for
bivariate or, more generally, multivariate copulas is hence of
fundamental importance in describing probabilistic models of natural
phenomena. Interest in copulas, or more generally quasi-copulas, and
their construction methods is growing also among researchers working
on fuzzy set theory, when modelling preferences and similarities as well
as describing aggregation processes, on expert and decision support
systems, multicriteria and group decision making. For more in these
directions we refer to [13, 26, 25, 34, 1, 14], and references therein.

Over the years, many different methods have been suggested to
construct various copulas; one can consult the books by Nelsen [36],
Joe [23], Durante and Sempi [12]. Sometimes several new construction
methods can be unified under one umbrella, giving rise to unifying
characterization results. In this thesis we describe one such case and
offer an even wider range of new copulas, parametrized not by one or
several parameters, as is often the case, but rather by a family of
general univariate functions satisfying predefined criteria. As
particular cases we recover several known results given in, for example,
[10, 13, 9, 17]. For a more precise definition of a bivariate copula see
Definition 1.

Let C denote the class of bivariate copulas and G be the set of all
continuous functions f : [0, 1] → R+. Consider ∅ 6= C′ ⊂ C and ∅ 6=
G′ ⊂ G. In our work we consider the map H defined on C′ × G′ by
(C, f) 7→ Hf (C) : [0, 1]2 → [0, 1], where

Hf (C)(u, v) := C(u, v)f(C(u, v)),

1



C denotes the survival function1 corresponding to copula C (see
Definition 2). First, we characterize the subset G′ so that

H(C′ × G′) ⊂ C

whenever C′ = C (see Theorem 3 in Section 3.1), which, together with
known examples from the literature, suggests a classification of
functions f used to construct Hf into eligible, conditionally-eligible and
non-eligible; see Definition 6. Having described eligible functions, in
Section 3.3 we study the properties of the transformation C 7→ Hf (C).
In Theorem 4 we show that it preserves concordance order on the set
of copulas, yielding integral bounds for the Kendall’s τ , Spearman’s ρ,
and Gini’s γ; moreover, Hf (C) has simple expressions for the tail
behaviour indices, provided they exist for the chosen C ∈ C. Among
the properties of a copula C that are not necessarily preserved by the
transformation, we mention the TP2 property and that of being
Archimedean (see Proposition 1). Further, the iterations of the map
C 7→ Hf (C) converge in the supremum norm to the unique fixed point
of this transformation, namely the countermonotonicity copula W (u, v)
(see Theorem 6) for any initial C ∈ C.

As we see in Chapter 3 for Hf (C) to be a copula for any bivariate
copula C, quite restrictive conditions on f must be imposed. On the
other hand, for a particular copula C, these requirements on f can be
substantially loosened, yielding a much bigger set of allowable functions
f ; this set contains many conditionally eligible functions, i.e. those that
depend on the choice of the initial copula C and are not eligible. This
problem, for the case of comonotonicity copula M(u, v) (see Theorem 6),
was solved by Durante and coworkers [10, 13].

Motivated by their nice results, we have decided to investigate the
case of the independence copula Π(u, v) = uv since, together with an
appropriate function f , it defines several well known families of copulas
(see Examples 9, 10 and 11 below). The class of eligible functions
unfortunately halves the allowable parameter ranges for the
well-known families of Farlie–Gumbel–Morgenstern, Ali–Mikhal–Haq
(henceforth denoted as FGM and AMH; see, e.g. [36] for definitions

1The function C(u, v) is not a copula and should not be confused with the survival
copula Ĉ(u, v).
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and properties) and Çelebioǧlu–Cuadras (see [4, 7]) copulas, yielding
at the same time many examples of conditionally eligible functions f .

Therefore, in Chapter 4 we focus on the problem of finding functions
f for which

Cf (u, v) = uvf((1 − u)(1 − v)), u, v ∈ [0, 1],

is a bivariate copula. In fact, this question is also related to an open
problem raised in a short note by Cuadras [6] where the author considers
“canonical” copulas of the form

CFθ(u, v) = uvHθ(Q(u, v)), Hθ(ρ) =
∫ 1

ρ

fθ(t)
t2 dt + 1, u, v, ρ ∈ [0, 1],

where fθ is the so-called “canonical” correlation function depending on
a parameter θ and discussed in [5], and Q is an appropriate bivariate
function on the unit square to be characterized. In [6, Examples 4,6 and
8],

Q(u, v) = 1 − (1 − u)(1 − v) = Π∗(u, v),

i.e. the dual of independence copula Π, is taken, in which case our
function f has the form

f(t) = Hθ(1 − t), t ∈ [0, 1). (1.1)

Therefore, our results could be used to shed some light on the properties
of a certain subclass of canonical correlation functions and corresponding
copulas.

An interesting relation between copulas of the considered form with
the TP2 property and geometric Jensen convexity of the function f is
discovered in this chapter. Also we consider the case of twice
continuously differentiable functions f for which a much more
complicated sufficient condition appears, indicating possible difficulties
with a complete solution for the problem under consideration.

1.2 Novelty

The obtained results are new. Most of the results are included in the
following publications:
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2 | PRELIMINARIES

In this chapter we collect necessary definitions and facts from copula
theory that will be used later on. We start by defining copula as a
bivariate function and mentioning Sklar’s theorem which is considered
to be the foundation of copula theory. This theorem first appeared in
[40]. The name “copula” was chosen to emphasize the manner in which a
copula “couples” a joint distribution function to its univariate margins.

Definition 1. A bivariate copula1 (a copula, for short) is a function C

defined on [0, 1]2 with values in [0, 1] such that

• C(u, 0) = C(0, u) = 0 for any u ∈ [0, 1],

• C(u, 1) = C(1, u) = u for any u ∈ [0, 1], and

• (2-increasingness) for all u1, u2, v1, v2 ∈ [0, 1] with u1 ≤ u2 and
v1 ≤ v2, denoting � := [u1, u2] × [v1, v2],

VC(�) = C(u2, v2) − C(u1, v2) − C(u2, v1) + C(u1, v1) ≥ 0.

The first two conditions for C are also known as the boundary conditions.
We denote the class of bivariate copulas by C.

Theorem 1. Let H be a joint distribution function with margins F and
G. Then there exists a copula C such that for all x, y ∈ R,

H(x, y) = C(F (x), G(y)). (2.1)

If F and G are continuous, then C is unique; otherwise, C is uniquely
determined on Ran F × Ran G. Conversely, if C is a copula and F and
G are distribution functions, then the function H defined by (2.1) is a
joint distribution function with margins F and G.

Now let us define popular functions involving bivariate copulas.

Definition 2. Let C ∈ C and (u, v) ∈ [0, 1]2. Then
1One can also consider n-variate copulas for any n ≥ 2 (see, e.g. [36], [23], or [12]),

but we mostly will be concerned with bivariate copulas in this thesis.
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• C(u, v) = 1 − u − v + C(u, v) is called survival function (of the
copula C);

• C∗(u, v) = u + v − C(u, v) is called dual function (of the copula
C);

• Ĉ(u, v) = u + v − 1 + C(1 − u, 1 − v) is called survival copula;

Further we mention the well-known Fréchet–Hoeffding bounds
satisfied by all copulas. The bounds are true in the n-dimensional
setting, but as we consider only bivariate copulas in this thesis, the
formulation is adapted to the case n = 2 (see Figures 2.1 and 2.2 for
visual representation).

Theorem 2 ([36, Theorem 2.2.3]). For any copula C ∈ C and any
(u, v) ∈ [0, 1]2,

W (u, v) := (u + v − 1)+ ≤ C(u, v) ≤ M(u, v) := min{u, v}.
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Figure 2.1: Copulas W (u, v), Π(u, v) and M(u, v)
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Concordance order and implied dependence properties

In this subsection we mention the (partial) concordance order on the set
of copulas C and popular dependence properties.

Definition 3 ([36, Definition 2.8.1]). For any C1, C2 ∈ C, we say that
C1 is smaller (resp. larger) than C2 and denote it by C1 ≺ C2 (resp.
C1 � C2) if C1(u, v) ≤ C2(u, v) (resp. C1(u, v) ≥ C2(u, v)) for any
(u, v) ∈ [0, 1]2.

Then the Fréchet–Hoeffding bounds can be written succinctly as
W ≺ C ≺ M for any C ∈ C.

A parametric family {Ca} is said to be positively (negatively)
ordered if Ca � Cb when a ≤ b (a ≥ b). For the class under
consideration, this translates to partial ordering of functions {fa}, i.e.
{Cf } is positively (negatively) ordered iff fa(t) ≤ fb(t), t ∈ [0, 1] when
a ≤ b (a ≥ b). Families of copulas in Examples 9, 10, 11 and 15 are all
positively ordered.

We now recall some dependence properties.

Definition 4. Let X and Y be random variables. It is said that (see
[36, Definitions 5.2.1 and 5.2.3])

• X and Y are positively quadrant dependent (PQD) if

P(X ≤ x, Y ≤ y) ≥ P(X ≤ x)P(Y ≤ y), ∀(x, y) ∈ R2.

• Y is left tail decreasing in X (denoted LTD(Y |X)) if
P(Y ≤ y|X ≤ x) is a nonincreasing function of x for all y.

• Y is right tail increasing in X (denoted RTI(Y |X)) if
P(Y > y|X > x) is a nondecreasing function of x for all y.

• Y is stochastically increasing in X (denoted SI(Y |X)) if
P(Y > y|X = x) is a nondecreasing function of x for all y.

It is often desirable to quantify the strength of an association
(dependence) of a pair of random variables (X, Y ) whose copula is C.
Just by looking at the copula C, which provides the dependence, is
often not clear if X and Y are strongly/weakly associated (dependent).
Many measures of association are known in the literature, and we will
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mention several of them below. One way to quantify association might
be through concordance of random variables. Informally, we say that a
random variable X is concordant with Y if “large” values of one of
them tend to be associated with “large” values of the other, and
likewise “small” values of one with “small” values of the other (see [36,
Chap. 5.1]). More precisely, if we have two observations (xi, yi) and
(xj , yj) of continuous random variables (X, Y ), then these observations
are concordant if

(xi − xj)(yi − yj) > 0

and discordant if
(xi − xj)(yi − yj) < 0.

In nonparametric statistics, the sample version of Kendall’s τ is
extensively used (e.g. to test for independence of X and Y ; see [21,
Chap. 8]), which is simply the difference between the number of
concordant pairs among the sample observations {(xi, yi), i = 1, . . . , n}
(observations are assumed distinct, and each pair is either concordant
or discordant2) and the number discordant pairs, normalized by the
number of all pairs. Among other measures of association, we mention
also Spearman’s ρ and Gini’s γ. On the population level, for a random
vector (X, Y ) whose copula is C, the three measures are defined as
(see, e.g. [36, Chap. 5.1]):

τX,Y = P((X1 − X2)(Y1 − Y2) > 0) − P((X1 − X2)(Y1 − Y2) < 0);
ρX,Y = 3(P((X1 − X2)(Y1 − Y3) > 0) − P((X1 − X2)(Y1 − Y3) < 0));

γX,Y = 2
∫ 1

0

∫ 1

0
(|u + v − 1| − |u − v|)dC(u, v),

where (Xi, Yi), i = 1, 2, 3 are independent copies of (X, Y ). In terms
of the copula C, they are given by the following expressions (see [36,

2If ties among xis or yis are observed in the data, there are several statistically
meaningful ways to extend the definition of concordant/discorcdant pairs to such a
case, leading to appropriate modifications of the statistical tests; see [21, Chap. 8].
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Theorems 5.1.3, 5.1.6; Corollary 5.1.14]):

τX,Y = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v) − 1, (2.2)

ρX,Y = 12
∫ 1

0

∫ 1

0
C(u, v)dudv − 3, (2.3)

γX,Y = 4
(∫ 1

0
C(u, 1 − u)du −

∫ 1

0
(u − C(u, u))du

)
. (2.4)

For any reasonable concordance measure κX,Y in the sense of Scarsini
(Kendall’s τ , Spearman’s ρ and Gini’s γ are examples; see [36,
Definition 5.1.7]), measuring association between continuous random
variables X and Y whose copula is C, an increase of C in concordance
order means an increase in κX,Y , which justifies the name of the order.

Tail dependence coefficients

Apart from concordance measures which quantify how large/small values
of one variable appear with large/small values of the other, one might
also be interested in measuring dependence in the upper right and/or
lower left corner of [0, 1]2. This dependence can be measured in several
ways, for example, by upper and lower dependence coefficients, whenever
they exist and belong to (0, 1], which are given by the following limits:

λU = lim
t↑1

P(Y > G(−1)(t)|X > F (−1)(t)),

λL = lim
t↓0

P(Y ≤ G(−1)(t)|X ≤ F (−1)(t)),

where F (−1)(t) := inf{x|F (x) ≥ t} is the quasi-inverse distribution
(quantile) function of a continuous random variable X (see [36,
Def. 2.3.6]), and likewise G(−1) is the quasi-inverse distribution
function of a continuous random variable Y . By [36, Teorem 5.4.2], in
terms of the copula C of the variables X and Y , the tail dependence
coefficients can be computed as

λU = 2 − lim
t↑1

1 − δC(t)
1 − t

= 2 − δ′
C(1−); (2.5)

λL = lim
t↓0

δC(t)
t

= δ′
C(0+), (2.6)

where δC(t) = C(t, t) is the diagonal section of copula C.

11



In order to measure (left-tail) dependence among two continuous
random variables, one can use the notion of left corner set
decreasingness, which has a tight connection to the so-called TP2

property of the joint distribution function of those variables, as well as
that of the corresponding copula. To be more precise, given a pair of
continuous random variables X and Y and following [36,
Definition 5.2.13], variables X and Y are said to be left corner set
decreasing (denoted LCSD(X, Y )) if

P(X ≤ x, Y ≤ y|X ≤ x′, Y ≤ y′)

is non-increasing in x′ and y′ for any fixed x and y. By [36,
Corollaries 5.2.16 and 5.2.17], the LCSD(X, Y ) property is equivalent
to the joint distribution H (and also corresponding copula C) of X

and Y having the TP2 property, namely,

H(x1, y1)H(x2, y2) − H(x1, y2)H(x2, y1) ≥ 0, (2.7)

for all 0 ≤ x1 ≤ x2 ≤ 1, 0 ≤ y1 ≤ y2 ≤ 1. Copulas with TP2 property
are sometimes called “TP2 copulas”’.

Symmetry properties

A pair of random variables (X, Y ) can also exhibit various symmetries.
Recall (see [36, Definition 2.7.1]) that, given a random pair (X, Y ) and
a point (a, b) ∈ R2,

• (X, Y ) is radially symmetric about (a, b) if and only if (X−a, Y −b)
and (a − X, y − Y ) have the same joint distribution function;

• (X, Y ) is jointly symmetric about (a, b) if and only if (X−a, Y −b),
(X − a, b − Y ), (a − X, Y − b) and (a − X, b − Y ) have the same
joint distribution function.

It is well known (see [36, Theorem 2.7.3]) that if X and Y are
continuous random variables with distributions symmetric about a and
b, respectively, and joined by copula C, then radial symmetry of the
joint distribution of (X, Y ) about (a, b) is equivalent to having C ≡ Ĉ.

Also note that Cf (x, y) = Cf (y, x), i.e. if X and Y are identically
distributed with associated copula Cf , then X and Y are exchangeable
(see [36, Theorem 2.7.4]).

12



Archimedean copulas

We close this chapter by mentioning one special family of copulas,
namely Archimedean copulas. Such copulas are very popular among
practitioners, due to the easy way to compute them, excellent
properties and wide range of dependence structures that can be
modelled through this family. To be precise, a copula C is called
Archimedean if it can be written as

C(u, v) = φ[−1](φ(u) + φ(v)), (u, v) ∈ [0, 1]2

for some continuous, strictly decreasing, and convex function φ : [0, 1] →
[0, +∞], called generator, such that φ(1) = 0, where φ[−1] denotes any
appropriately defined pseudo-inverse of φ. For example,

Definition 5 ([36, Def. 4.1.1.]). Let φ : I → [0, +∞] be a continuous,
strictly decreasing function such that φ(1) = 0. The pseudo-inverse of
φ is the function φ[−1] : [0, +∞] → I given by

φ[−1](t) =
{

φ−1(t) 0 ≤t ≤φ(0),
0, φ(0) ≤t ≤∞.

Clearly, any Archimedean copula is symmetric, i.e. C(u, v) = C(v, u)
for any (u, v) ∈ [0, 1]2. For more about Archimedean copulas; see, e.g.
[36, Chap. 4].

Some popular families of copulas, which will be used in examples
in following chapters, are Archimedean, for example, Ali-Mikhail-Haq
and Gumbel–Hougaard. Unfortunately, in general, proposed mapping
Hf does not preserve Archimedean property, i.e. if C is Archimedian,
Hf (C) need not be Archimedian (see Proposition 1).
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3 | CHARACTERIZATION OF
ELIGIBLE FUNCTIONS

In this chapter we try to specify the set of eligible functions, i.e. find
functions f for which

Hf (C)(u, v) := C(u, v)f(C(u, v)), (u, v) ∈ [0, 1]2

is a bivariate copula for any C ∈ C. The rest of the chapter is organized
as follows. In Sect. 3.1 we provide necessary and sufficient conditions for
the problem. Then, in Sect. 3.2, we provide some examples of function
f and corresponding mappings. Section 3.3 constains some properties
of the mapping. Finally, in Sect. 3.4, we discuss some extensions to
n-dimensional case and in Sect. 3.5 provide some possible extensions of
the considered transformation.

3.1 Main results

This section contains the statement and proof of our main result of
this chapter (Theorem 3), as well as describes many known examples
of transformations which have inspired our work. To distinguish three
possible situations, we suggest the following classification of
transformation functions:

Definition 6. A function f : [0, 1] → R+ is said to be

• eligible if Hf (C) ∈ C for any C ∈ C; the set of eligible functions
will be denoted by G0;

• conditionally eligible if there are C1, C2 ∈ C such that Hf (C1) ∈
C but Hf (C2) 6∈ C;

• non-eligible if Hf (C) 6∈ C for any C ∈ C.

For example, any function f : [0, 1] → R+, for which f(0) 6= 1, is
non-eligible. Also note that f cannot assume negative values if Hf (C)
is to be a copula for all copulas C. Furthermore, any function f such
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that f(0) = 1 is a candidate to be eligible/conditionally-eligible since
Hf (W ) = Wf(W ) = W as W (u, v) = 0 on

{(u, v) ∈ [0, 1]2 : u + v ≤ 1}

while W = 0 on
{(u, v) ∈ [0, 1]2 : u + v ≥ 1}.

Many examples of eligible/conditionally-eligible functions are also
known. Given the setup described in the Introduction, they can be
described as follows:

• F. Durante and coworkers (see [10, Theorem 1] or [13, Theorem 3]
where an extension to n-variate copulas is given) characterized G′

when C′ = {M}, where M(u, v) = min{u, v} is the comonotonicity
copula (upper Fréchet–Hoeffding bound). Indeed,1

Hf (M)(u, v) = min{u, v}f(1 − max{u, v})

is a copula for a continuous2 f : [0, 1] → [0, 1] iff

(a) f(0) = 1,

(b) f is non-increasing on [0, 1], and

(c) t 7→ f(t)/(1 − t) is non-decreasing on [0, 1).

This result will prove the necessity of several conditions for a
function f to be eligible. Combined with our characterization of
eligible functions, it will also give an indication why certain
functions f are only conditionally-eligible.

• A. Dolati and M. Úbeda-Flores [9] and A. Kolesárová et al. [26, 27]
considered C′ = C and

G′ = {δα(u) = 1 − αu : u ∈ [0, 1], α ∈ [0, 1]}.

This transformation provides a rare (in this context) example of
known probabilistic characterization on the level of random
variables. Indeed, if X and Y are random variables distributed

1To fit current setting, Durante’s f(t) is our f(1 − t) for t ∈ [0, 1].
2Theorem 1 in [10] contained additional differentiability assumption on f which

was subsequently removed in [13, Theorem 5].
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uniformly on [0, 1] whose copula is C, then Hδα(C) is the copula
of the pair

(Z1, Z2) :=


(min{X1, X2}, max{Y1, Y2}) with prob. α/2;
(max{X1, X2}, min{Y1, Y2}), with prob. α/2;
(X1, Y1), with prob. 1 − α,

where (Xi, Yi), i = 1, 2 are independent copies of (X, Y ). Note that
Hδα(Π) for α ∈ [0, 1] gives part of the FGM copula family, the other
part corresponding to α ∈ [−1, 0). This fact, combined with our
results, implies that δα is eligible iff α ∈ [0, 1] and conditionally-
eligible if α ∈ [−1, 0). Whether δα is conditionally-eligible or non-
eligible for α < −1 remains to be seen; the values α > 1 lead to
negative values of δα so are clearly unacceptable.

• A. Dolati and M. Úbeda-Flores [9] also suggested C′ = {Π},
Π(x, y) = xy, or C′ = {M} and

G′ = {gδ(u) = exp{δu} : u ∈ [0, 1], δ ∈ R}.

The authors have shown that Hgδ
(Π) is a copula iff δ ∈ [−1, 1],

whereas no conditions on δ have been provided for the Hgδ
(C) to be

a copula for a general C. Our main results (Theorem 3) shows that
gδ is eligible iff δ ∈ [−1, 0]. Moreover, gδ is conditionally-eligible
if δ ∈ (0, 1], while it is not known if gδ is conditionally-eligible or
non-eligible for δ 6∈ [−1, 1].

• F. Durante et al. [17] considered C′ = C and

G′ = {fλ(u) = (1 + λu)−1 : u ∈ [0, 1], λ ∈ [0, 1]}.

Our results imply that fλ is eligible iff λ ∈ [0, 1]. It is also known
that for λ ∈ [−1, 0), Hfλ

(Π) is a member of the Ali–Mikhail–Haq
family of copulas, hence fλ is conditionally-eligible for λ ∈ [−1, 0).
For λ < −1, fλ is clearly non-eligible as it can attain negative
when u is close to 1, while it is not known, to the best of our
knowledge, if fλ is conditionally-eligible or non-eligible for λ > 1.

Now we state our main result of this chapter:

Theorem 3. A function f : [0, 1] → R+ is eligible if and only if
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(i) f is non-increasing,

(ii) f(0) = 1,

(iii) f(x) ≥ 1 − x for any x ∈ [0, 1], and

(iv) f is convex.

Remark 1. Note that conditions (i)–(iii) restrict the range of eligible
functions to the interval [0, 1]. If one were to replace R+ with [0, 1], then
condition (ii) would become superfluous due to (iii) used with x = 0. As
condition (ii) is explicitly referred to in the proofs, we chose to keep it
in the formulation. Also note that in [10, Theorem 1] condition (c) does
not imply condition (a), even if f takes [0, 1] to [0, 1].

To prove the 2-increasingness property of Hf (C) the following result
will be crucial.

Lemma 1. Let C ∈ C and let f satisfy conditions (i)–(iv) of Theorem 3.
Then for any (ui, vi) ∈ [0, 1]2, i = 1, 2 and such that u1 ≤ u2 and v1 ≤ v2,

Vf◦C([u1, u2] × [v1, v2]) ≥ −VC([u1, u2] × [v1, v2]),

where for any bivariate function g : [0, 1]2 → R,

Vg([u1, u2] × [v1, v2]) = g(u2, v2) − g(u1, v2) − g(u2, v1) + g(u1, v1).

Remark 2. The bound of Lemma 1 is sharp, as for f(x) = 1 − x the
lower bound is attained.

Proof of Lemma 1. Denote

z1 := C(u2, v2), z4 := C(u1, v1),
z2 := C(u2, v1) ∧ C(u1, v2), z3 := C(u2, v1) ∨ C(u1, v2).

Here for a, b ∈ R, a ∧ b = min{a, b} and a ∨ b = max{a, b}. Since any
copula C is 1-Lipschitz, C is non-increasing in each of its arguments and
so z1 ≤ z2 ≤ z3 ≤ z4. Thus, since f is also non-increasing (by (i) of
Theorem 3),

f(z4) ≤ f(z3) ≤ f(z2) ≤ f(z1)
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and

Vf◦C([x1, x2] × [y1, y2]) = f(z1) − f(z2) − f(z3) + f(z4) =: ∆.

Now consider several cases:

Case 1. 0 ≤ z1 < z2 ≤ z3 < z4 ≤ 1. Then

∆ = −f(z2) − f(z1)
z2 − z1

(z2 − z1) + f(z4) − f(z3)
z4 − z3

(z4 − z3),

and for the considered f we have

− 1
(iii)
≤ f(z2) − 1

z2

(ii),(iv)
≤ f(z2) − f(z1)

z2 − z1

(iv)
≤ f(z4) − f(z3)

z4 − z3

(i)
≤ 0,

(3.1)
yielding

∆ ≥ f(z4) − f(z3)
z4 − z3

(z4 − z3 − z2 + z1)

= f(z4) − f(z3)
z4 − z3

VC([u1, u2] × [v1, v2])

= f(z4) − f(z3)
z4 − z3

VC([u1, u2] × [v1, v2])

(3.1)
≥ −VC([u1, u2] × [v1, v2]).

Case 2. 0 ≤ z1 = z2 ≤ z3 < z4. Similar to Case 1, we get

∆ = f(z4) − f(z3)
z4 − z3

(z4 − z3 − z2 + z1)
(3.1)
≥ −VC([u1, u2] × [v1, v2]).

Case 3. 0 ≤ z1 < z2 ≤ z3 = z4. Analogous to Case 2.

Case 4. 0 ≤ z1 = z2 ≤ z3 = z4. In this case, ∆ = 0 trivially, and likewise

VC([u1, u2] × [v1, v2]) = VC([u1, u2] × [v1, v2]) = 0.

Now we can prove our main theorem of this chapter.

Proof of Theorem 3. (Sufficiency) Using condition (ii) and the fact that
C ∈ C is a copula, we easily verify that Hf (C) satisfies the boundary
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conditions of a copula:

Hf (C)(u, 1) = uf(0) = u, Hf (C)(1, v) = vf(0) = v,

Hf (C)(u, 0) = Hf (0, v) = 0, ∀u, v ∈ [0, 1].

It remains to show that Hf (C) is 2-increasing for any C ∈ C and f

satisfying (i)–(iv), that is,

0 ≤ VHf (C)(�) = Hf (C)(u1, v1) − Hf (C)(u1, v2)

− Hf (C)(u2, v1) + Hf (C)(u2, v2),

where we denote � := [u1, u2]× [v1, v2] for u1, u2, v1, V2 ∈ [0, 1] such that
u1 ≤ u2 and v1 ≤ v2. Observe that

VHf (C)(�) = C(u1, v1)Vf◦C(�) + VC(�)f ◦ C(u2, v2)

+ (C(u1, v2) − C(u1, v1))(f ◦ C(u2, v2) − f ◦ C(u1, v2))
+ (C(u2, v1) − C(u1, v1))(f ◦ C(u2, v2) − f ◦ C(u2, v1))

≥ C(u1, v1)Vf◦C(�) + VC(�)f ◦ C(u2, v2),

since C and f ◦ C are non-decreasing in each argument (here we used
condition (i)). Now by Lemma 1 and condition (iii),

VHf (C)(�) ≥ VC(�)(f ◦ C(u2, v2) − C(u1, v1))

≥ VC(�)(1 − C(u2, v2) − C(u1, v1))
= VC(�)(u2 + v2 − C(u2, v2) − C(u1, v1))
≥ VC(�)(C(u2, 1) − C(u2, v2) + C(1, v1) − C(u1, v1)) ≥ 0,

since being a copula C is non-decreasing in each argument.
(Necessity) Conditions (i)–(iii) are necessary for f to be eligible.

This follows from Theorem 1 in [10]. As for condition (iv), assume that
f is eligible and suppose on the contrary that f is not convex. We will
construct a (diagonal) copula Cδ such that Hf (Cδ) is not a copula.

To this end, first observe that, being continuous, such f cannot be
convex in the Jensen sense (see [35, Section 1.4.3]), i.e. there are points
x0, y0 ∈ [0, 1] such that x0 < y0 and

f

(
x0 + y0

2

)
>

f(x0) + f(y0)
2 . (3.2)
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Without loss of generality, we may assume that y0 < 1. If this were not
the case, we could consider y′

0 < y0 such that (3.2) holds with y′
0 in place

of y0 as the function

g(y) := f

(
x0 + y

2

)
− f(x0) + f(y)

2

is continuous and g(y0) > 0.
Now for y0 < 1 we can find n0 ∈ N such that y0 < 1 − 2−n0 . Next

define the function

δ(t) :=


αt, if 0 ≤ t ≤ v1 := (1 + 2−n0 − y0)/2;
2−n0 , if v1 < t ≤ v2 := (1 + 2−n0 − x0)/2;
1 + β(t − 1), if v2 < t ≤ 1,

where 2−n0 < v1 < v2 ≤ (1 + 2−n0)/2 and

α = 2−n0/v1 < 1, and β = (1 − 2−n0)/(1 − v2) ≤ 2.

Clearly, such a function δ(t) ≤ t is continuous (piecewise linear), non-
decreasing, β-Lipschitz, and, moreover, δ(0) = 0, δ(1) = 1. By [36,
Theorem 3.2.12], there is a diagonal copula, namely

Cδ(u, v) = min
{

u, v,
δ(u) + δ(v)

2

}
, (3.3)

with δ(t) as its diagonal section. Now if � = [v1, v2] × [v1, v2], then

VHf (Cδ)(�) = Cδ(v2, v2)f(Cδ(v2, v2)) − Cδ(v1, v2)f(Cδ(v1, v2))

− Cδ(v2, v1)f(Cδ(v2, v1)) + Cδ(v1, v1)f(Cδ(v1, v1))

= δ(v2)f(x0) − 2Cδ(v1, v2)f
(

x0 + y0
2

)
+ δ(v1)f(y0)

= 2−n0

(
f(x0) − 2f

(
x0 + y0

2

)
+ f(y0)

)
< 0,

since

Cδ(v1, v1) = 1 − 2v1 + δ(v1) = y0, Cδ(v2, v2) = 1 − 2v2 + δ(v2) = x0,

Cδ(v1, v2) = Cδ(v2, v1) = 1 − v1 − v2 + Cδ(v1, v2) = x0 + y0
2 .

This shows that Hf (Cδ) is not a copula, contrary to our assumption,
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and completes the proof of the theorem.

Remark 3. Comparing our Theorem 3 with Durante’s [10, Theorem 1],
we note the following:

• Condition (iii) follows from a stronger condition (c) by using t = 0
and condition (a), which is also condition (ii).

• Conditions (i), (iii), and (iv) together imply condition (c). Indeed,
to show (c), by [10, Lemma 1] (see also [13, Lemma 2]), it is enough
to show that for 0 ≤ v < u ≤ 1 one has

(1 − u)f(u) + (1 − v)f(v) − 2(1 − u)f(v) ≥ 0,

which can be equivalently written as

(1 − u)f(u) − f(v)
u − v

+ f(v) ≥ 0.

But the latter follows from the following inequalities which are
implied by conditions (i), (iii) and (iv):

−1 ≤ f(u) − 1
u

≤ f(u) − f(v)
u − v

≤ 0.

• Some concave functions satisfy condition (c). For example,
consider simple concave functions fθ(x) = 1 ∧ 1−x

1−θ for
θ ∈ [(5 −

√
13)/8, 1/4) ≈ [0.1743, 0.25), satisfying (i)–(iii) and

even condition (c), which produce a “ripple” in the graph of
Hfθ

(Π) making it a non-copula, since

VHfθ
(Π)([1/2, 1/2] × [1 − 2θ, 1 − 2θ]) = 3

16(1 − θ) − 2θ(1 − 2θ) < 0.

3.2 Additional examples

In this section we present a few more examples of the copulas Hf (C) for
different f and C. We begin with an illustration of the counterexample
constructed in the proof of Theorem 3.
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Figure 3.1: Copula Hf (M) whith f(t) = sin(π(1 − t)/2)

Example 1. Let f(t) = sin(π(1 − t)/2) (see [10, Example 5]). It was
shown that Hf (M) is a copula (see Figure 3.1). Yet, f is concave, so
our construction from the necessity part proof of Theorem 3 applies.
Indeed, take x0 = 1/4, y0 = 3/4, n0 = 3, v1 = 3/16, v2 = 7/16, α = 2/3,
β = 14/9, and

δ(t) =


2t/3, if 0 ≤ t ≤ 3/16;
1/8, if 3/16 < t ≤ 7/16;
1 + 14(t − 1)/9, if 7/16 < t ≤ 1.

Then for � = [3/16, 3/16] × [7/16, 7/16] and Cδ given in (3.3),

VHf (Cδ)(�) = 1
16

(√
2 +

√
2 − 2

√
2 +

√
2 −

√
2
)

≈ −0.01346.

A couple of known copula families that fit our setting are the
following:

Example 2. • Let fθ,φ(t) = 1 + θt + 1
2θφt2, θ, φ ∈ [−1, 0]. Then

Hfθ,φ
(Π) is known as part of Lin’s iterated FGM copula family

Hfθ,φ
(Π)(u, v) = uv

[
1 + θ(1 − u)(1 − v)

{
1 + φ

2 (1 − u)(1 − v)
}]

.

For more on Lin’s iterated FGM copulas, see [30].

• Let fα(t) = exp{((1 − t)α − 1)/α} for α > 0 (see [10,
Example 4]). Again, Hfα(M) was shown to be a copula. Yet fα
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satisfies conditions (i)–(iv) of Theorem 3 if and only if α ≥ 1. For
α ∈ (0, 1), fα is only conditionally eligible.

Here are a couple of additional examples:

Example 3. Let (a, b) ∈ {(s, t) ∈ [0, 1]2 : t ≥ 1 − s} and f(a,b)(x) :=
b ∨

(
1 − 1−b

a x
)
. Then setting Ca,b := Hf(a,b)(Π) we have

Ca,b(u, v) = uv

[
b ∨

(
1 − 1 − b

a
(1 − u)(1 − v)

)]

=

 uv
(
1 − 1−b

a (1 − u)(1 − v)
)

, 0 ≤ (1 − u)(1 − v) ≤ a;
buv, a < (1 − u)(1 − v) ≤ 1,

which, by setting a = 1, recovers part of FGM copula family with
parameter θ = 1 − b ≥ 0.

Notice that Hf (Π) is a function of Π(u, v) = uv and

Π(u, v) = (1 − u)(1 − v).

One can get new copulas from Π by composing Hf with Hg for different
f, g ∈ G0:

Example 4. • Let fαi(t) = 1 − αit, i = 1, 2 and αi ∈ [0, 1]. Then

Cα1,α2(u, v) :=
(
Hfα1

◦ Hfα2

)
(Π)(u, v)

= [Hfα2
(Π)(1 − α1Hfα2

(Π))](u, v)
= uv(1 − α2(1 − u)(1 − v))

× [1 − α1(1 − u)(1 − v)(1 − α2uv)] ,

which differs from iterated FGM copulas of (a) Kotz and Johnson
[28] and (b) Lin [30]:

(a) Cθ,φ(u, v) = uv {1 + θ(1 − u)(1 − v)[1 + φuv]};

(b) Cθ,φ(u, v) = uv {1 + θ(1 − u)(1 − v)[1 + φ(1 − u)(1 − v)]};

where θ, φ ∈ [−1, 1].

• For fα(x) = 1 − αx and gλ(x) = (1 + λx)−1 with α, λ ∈ [0, 1] as
considered by Dolati and Úbeda-Flores [9], composing in different
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order one respectively gets:

Cλ,α(u, v) := (Hgλ
◦ Hfα) (Π)(u, v) = Hfα(Π)

(1 + λHfα(Π))
(u, v)

= uv(1 − α(1 − u)(1 − v))
1 + λ(1 − u)(1 − v)[1 − αuv]

and

Cα,λ(u, v) := (Hfα ◦ Hgλ
) (Π)(u, v)

= [Hgλ
(Π)(1 − αHgλ

(Π))](u, v)

= uv

(1 + λ(1 − u)(1 − v))

[
1 − α(1 − u)(1 − v)[1 + λ(1 − u − v)]

1 + λ(1 − u)(1 − v)

]
= uv [1 + (1 − u)(1 − v)[λ − α − λα(1 − u − v)]

(1 + λ(1 − u)(1 − v))2 .

Also by considering fα(x) we get

Hfα(C)(u, v) = −αC2(u, v)+αuC(u, v)+αvC(u, v)+(1−α)C(u, v)

which partially recovers copula mapping suggested in [27] (with
parameter d = 0 in their setting).

• If fλi
(x) = (1 + λix)−1, λ ∈ [0, 1] and i = 1, 2, then

Cλ1,λ2(u, v) :=
(
Hgλ1

◦ Hgλ2

)
(Π)(u, v)

= uv

(1 + λ1(1 − u − v))(1 + λ2(1 − u)(1 − v)) + λ1uv
.

Note that in this example, all listed two-parameter copulas are
polynomial or rational functions of Π and Π since

1 − u − v = Π(u, v) − Π(u, v).

3.3 Properties of transformation H

The mapping H possesses several nice properties. Recall that
W (u, v) = (u + v − 1)+ is the lower Fréchet–Hoeffding bound, i.e. for
any C ∈ C, C � W . Then we have:
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Theorem 4. For any f ∈ G0 and any C, C1, C2 ∈ C, the mapping
C 7→ Hf (C)

(i) has a unique fixed point, W , for all f 6≡ 1, i.e. Hf (C) = C if and
only if C = W ;

(ii) is injective, i.e. Hf (C1) = Hf (C2) if and only if C1 = C2;

(iii) preserves concordance order, i.e. if C1 ≺ C2 then Hf (C1) ≺
Hf (C2) (see Definition 3);

(iv) decreases upper and lower tail dependence indices, whenever they
exist, i.e. if a copula C has upper and lower tail indices, λU =
λU (C) and λL = λL(C), respectively, then

λU (Hf (C)) = (1+f ′(0+))λU (C) and λL(Hf (C)) = f(1)λL(C).

Moreover,

(v) if C ∈ C is symmetric (that is, C(u, v) = C(v, u) for any (u, v) ∈
[0, 1]2), then Hf (C) is also symmetric; and

(vi) if C is radially symmetric (that is, C = Ĉ) and C > 0 on (0, 1]2

then Hf (C) = Ĥf (C) iff f(t) = 1 − αt, α ∈ [0, 1].

Proof. (i) Having Hf (C) = Cf(C) = C is equivalent to having C = 0
on the set

A := {(u, v) ∈ [0, 1]2 : C(u, v) > 0},

since f(0) = 1, f 6≡ 1, f is non-increasing and convex (see (i), (ii) and
(iv) of Theorem 3). So for any (x, y) ∈ A,

C(u, v) = 0 = 1 − u − v + C(u, v)

implies that
0 < C(u, v) = u + v − 1 = W (u, v).

On the complement [0, 1]2 \ A, both C and W are zero, so also equal.
(ii) Sufficiency is trivial. To prove necessity, omitting arguments to

simplify notation, observe that having Hf (C1) = Hf (C2) is equivalent
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to

0 = C1f(C1) − C2f(C2)
= C1(f(C1) − f(C2)) + (C1 − C2)f(C2) := B

(3.4)

on the whole square [0, 1]2. Suppose there exists a point (u0, v0) ∈ [0, 1]
such that C1(u0, v0) > C2(u0, v0). Then also

z2 := C1(u0, v0) > z1 := C2(u0, v0)

and
0 ≤ f(z1) − f(z2) ≤ z2 − z1, (3.5)

by the first two inequalities in (3.1). Now using (iii) of Theorem 3,

f(z1) ≥ u0 + v0 − C2(u0, v0) > u0 + v0 − C1(u0, v0) ≥ C1(u0, v0),

where the last inequality follows from the upper Fréchet–Hoeffding
bound (see Theorem 2):

C1(u0, v0) ≤ M(u0, v0) = x0 ∧ y0 ≤ u0 + v0
2 .

Putting together the obtained inequalities yields

B(u0, v0) = C1(u0, v0)(f(z2) − f(z1)) + (C1(u0, v0) − C2(u0, v0))f(z1)
≥ (C1(u0, v0) − C2(u0, v0))(f(z1) − C1(u0, v0)) > 0,

which contradicts (3.4).
(iii) Suppose C1 ≥ C2 on the whole [0, 1]2. Then also C1 ≥ C2

on the same square and so f(C1) ≤ f(C2) for any eligible f by (i) of
Theorem 3. Using (3.5), on I2 then

0 ≤ f(C2) − f(C1) ≤ C1 − C2 = C1 − C2.
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Therefore we can write

Hf (C1) − Hf (C2) = C1f(C1) − C2f(C2)
= f(C1)(C1 − C2) − (f(C2) − f(C1))C2

≥ f(C1)(C1 − C2) − (C1 − C2)C2

= (C1 − C2)(f(C1) − C2)
≥ (C1 − C2)(1 − C1 − C2)
≥ 0,

since for any (u, v) ∈ [0, 1]2,

1−C1(u, v) = u+v −C1(u, v) ≥ u+v −u∧v = u∨v ≥ u∧v ≥ C2(u, v).

(iv) Using (2.5), together with the facts that

δHf (C)(t) = δC(t)f(1 − 2t + δC(t)),

f is convex and f(0) = 1 (by Theorem 3), yields

λU (Hf (C)) = 2 − lim
t↑1

1 − δHf (C)(t)
1 − t

= 2 − lim
t↑1

[1 − δC(t)
1 − t

− δC(t)1 − f(1 − 2t + δC(t))
0 − (1 − 2t + δC(t))

1 − 2t + δC(t)
1 − t

]
= λU (C) + δC(1)f ′(0+)λU (C),

proving the first formula since δC(1) = 1. To get the second, we use
(2.6) and obtain

λL(Hf (C)) = lim
t↓0

δHf (C)(t)
t

= lim
t↓0

δC(t)f(1 − 2t + δC(t))
t

= λL(C)f(1),

since δC(0) = 0.
(v) Obvious from the definition of Hf (C).
(vi) If C = Ĉ and f(t) = 1 − αt for α ∈ [0, 1], then Hf (C) = Ĥf (C)

by [9, Theorem 3.9].
The proof of necessity mimics the proof of Theorem 3(b) in [10].

Indeed, consider an f ∈ G0, let C = Ĉ be such that C > 0 on (0, 1]2,
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and suppose that Hf (C) = Ĥf (C). Then

C(u, v) = C(1 − u, 1 − v), ∀(u, v) ∈ [0, 1]2

and

0 = Hf (C)(u, v) − Hf (C)(1 − u, 1 − v)
= 1 − u − v + C(u, v)f(C(u, v)) − C(1 − u, 1 − v)f(C(1 − u, 1 − v))
= (C(u, v) − C(u, v)) + C(u, v)f(C(1 − u, 1 − v))

− C(1 − u, 1 − v)f(C(u, v)),

which after rearrangement for (u, v) ∈ (0, 1)2 becomes

1 − f(C(u, v))
C(u, v) = 1 − f(C(1 − u, 1 − v))

C(1 − u, 1 − v) .

Letting v ↑ 1 for a fixed u ∈ (0, 1), we get (1 − f(u))/u on the left-hand
side, while the right-hand side tends to −f ′(0+). Hence,

f(u) = 1 + f ′(0+)u, ∀u ∈ (0, 1).

By being eligible, f is continuous on [0, 1], hence f(x) = 1 − αx for
any x ∈ [0, 1] with α = −f ′(0+) ∈ (0, 1]. The case f ≡ 1 corresponds
to α = f ′(0+) = 0, in which case Hf (C) = C and there’s nothing to
prove.

Remark 4. Condition C > 0 on (0, 1]2 of Theorem 4(v) is satisfied, e.g.
by Frank, Gauss and Student copulas which are known to be radially
symmetric. This condition eliminates the trivial case C = W = Hf (C)
for any eligible f and also helps avoid situations where the function f

can be uniquely specified only on a subinterval of [0, 1]. To illustrate this
possibility, consider the diagonal copula corresponding to W , namely

C(u, v) = CδW
(u, v) = min{u, v, (u − 1/2)+ + (v − 1/2)+}

and consider f̃α(t) = f(1/2,1−α/2)(t) = (1 − αt) ∨ (1 − α/2), α ∈ (0, 1],
t ∈ [0, 1] (see Example 3). It is straightforward to check that both C
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and Hf̃α
(C) are symmetric and radially symmetric. Indeed,

C(u, v) = C(1 − u, 1 − v) =



0, 0 ≤ u, v ≤ 1
2 ;

u ∧
(
v − 1

2

)
, 0 ≤ u ≤ 1

2 < v ≤ 1;
v ∧

(
u − 1

2

)
, 0 ≤ v ≤ 1

2 < u ≤ 1;
u + v − 1, 1

2 < u, v ≤ 1,

and

Hf̃α
(C)(u, v) = Hf̃α

(C)(1 − u, 1 − v)

=



1 − u − v, 0 ≤ u, v ≤ 1
2 ;(

1 − α
(
u ∧

(
v − 1

2

))) (
1
2 − u ∨

(
v − 1

2

))
, 0 ≤ u ≤ 1

2 < y ≤ 1;(
1 − α

(
v ∧

(
u − 1

2

))) (
1
2 − v ∨

(
u − 1

2

))
, 0 ≤ v ≤ 1

2 < u ≤ 1;
0, 1

2 < u, v ≤ 1.

As a corollary of Theorem 4 we immediately obtain the following
result.

Corollary 5. For any f ∈ G0, C ∈ C, and any continuous random
variables X and Y , having copula Hf (C), we have the following
inequalities:

−1 ≤τX,Y (Hf (C)) ≤ 4
∫ 1

0
(1 − x)f2(x)dx − 1, (3.6)

−1 ≤ρX,Y (Hf (C)) ≤ 12
∫ 1

0
(1 − x)2f(x)dx − 3, (3.7)

−1 ≤γX,Y (Hf (C)) ≤ 4
∫ 1/2

0
(x(f(x) + f(1 − x)) + f(x)) dx − 2. (3.8)

Proof. By Theorem 4 (i) and (iii), W = Hf (W ) ≺ Hf (C) ≺ Hf (M) for
any C ∈ C and any f ∈ G, and due to [36, Theorems 5.1.9 and 5.1.13],
for Kendall’s τ , Spearman’s ρ, and Gini’s γ, we have

−1 = τX,Y (W ) ≤ τX,Y (Hf (C)) ≤ τX,Y (Hf (M)), (3.9)
−1 = ρX,Y (W ) ≤ ρX,Y (Hf (C)) ≤ ρX,Y (Hf (M)), (3.10)
−1 = γX,Y (W ) ≤ γX,Y (Hf (C)) ≤ γX,Y (Hf (M)). (3.11)

Now using [10, Theorem 4], the fact that our f(t) is Durante’s
f(1 − t), and a simple change of variables, we immediately get the
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claimed inequalities.

The next proposition contains some negative facts about the
mapping Hf , including a few important properties of a copula that are
not preserved, in general.

Proposition 1. The following is true about Hf :

(a) Given a general f ∈ G0, the mapping Hf : C → C is not necessarily
surjective.

(b) Given a general f ∈ G0 and a copula C ∈ C that has the TP2

property, i.e. for all 0 ≤ u1 ≤ u2 ≤ 1, 0 ≤ v1 ≤ v2 ≤ 1,

C(u1, v1)C(u2, v2) − C(u1, v2)C(u2, v1) ≥ 0,

the image Hf (C) does not necessarily have this property.

(c) Given a general f ∈ G0 and an Archimedean copula C ∈ C, the
image Hf (C) need not be Archimedean.

Proof. (a) Let f(t) = 1 − t and see [26, Example 2] where a Bertino
copula Bδ for a specific function δ is constructed, which has no
preimage under the map Hf taking C to C(1 − C).

(b) Both M and Hf (M) are known to be TP2 [15, Example 3.7]. On
the other hand, Hf (Π) belongs to the Farlie–Gumbel–Morgenstern
(FGM) copula family when

f(t) = 1 − αt, α ∈ (0, 1],

which is easily checked to be RR2 (reverse regular of order two,
i.e. the inequality of TP2 property is reversed), so TP2 property
of Π is not preserved.

(c) The independence copula Π is clearly Archimedean with generator
φ(t) = − ln t. Then, on the one hand, the members of the FGM
copula family, Hf (Π) for

f(t) = 1 − αt, α ∈ (0, 1],
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are not Archimedean; see [36, Example 4.7]. On the other hand,
the members of the Ali–Mikhail–Haq (AMH) family, namely
Hf (Π) for

f(t) = (1 + αt)−1, α ∈ (0, 1]

are Archimedean; see [36, Example 4.8].

Let

H0
f := id (identity mapping on C), Hk

f := Hf ◦ Hk−1
f , k ≥ 1.

Excluding the trivial case f ≡ 1 which implies Hk
f = id for any k ≥ 0,

we have

Theorem 6. If f is eligible and f 6≡ 1, then for each C ∈ C,

lim
k→∞

∥∥∥Hk
f (C) − W

∥∥∥
∞

= 0.

Proof. As pointwise convergence of copulas to a copula implies uniform
convergence (due to equicontinuity of the family of copulas), it suffices
to show for any (u, v) ∈ [0, 1]2 that

lim
k→∞

Hk
f (C)(u, v) − W (u, v) = 0. (3.12)

Now observe that for any (u, v) ∈ [0, 1]2, since f(t) ≤ 1 for all
t ∈ [0, 1] and k ≥ 1

Hk
f (C)(u, v) = Hk−1

f (C)(u, v)f(Hk−1
f (C)(u, v)) ≤ Hk−1

f (C)(u, v).

Therefore the sequence of copulas Hk(C), k ≥ 0 is point-wise monotonic
and hence it converges to some copula which must be Hf -invariant. By
using Theorem 4 we get that the limit equals W .

We close this section by considering another function that is often
encountered in applications, namely that of a copula density. It is
required when trying to fit various copula models to given data using
maximum likelihood or Bayesian approach. So a question of how a
density of an absolutely continuous copula is transformed under the
map C 7→ Hf (C) arises. The answer is provided by the following
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simple proposition where to simplify notation we let ∂u = ∂
∂u , ∂v = ∂

∂v

and ∂2
uv = ∂2

∂u∂v .

Proposition 2. If f is eligible and such that f ′′ exists on (0, 1) and C is
an absolutely continuous bivariate copula, then (dropping the arguments
on both sides) the density of Hf (C) is given by

∂2
uvHf (C) = f ′(C) · [∂uC · (∂vC − 1) + ∂vC · (∂uC − 1)]

+ C · f ′′(C) · (∂uC − 1) · (∂vC − 1)

+ ∂2
uvC ·

[
f(C) + C · f ′(C)

]
.

Proof. Differentiating with respect to u yields

∂uHf (C) = ∂uC · f(C) + C · f ′(C) · (∂uC − 1) .

Now differentiating with respect to v, we get

∂2
uvHf (C) = ∂2

uvC · f(C) + ∂uC · f ′(C) · (∂vC − 1)
+ ∂vC · f ′(C) · (∂uC − 1)

+ C ·
[
f ′′(C) · (∂uC − 1) · (∂vC − 1) + f ′(C) · ∂2

uvC
]

= ∂uC · f ′(C) · (∂vC − 1) + ∂vC · f ′(C) · (∂uC − 1)
+ C · f ′′(C) · (∂uC − 1) · (∂vC − 1)

+ ∂2
uvC ·

[
f(C) + C · f ′(C)

]
,

which after rearrangement yields the claim.

3.4 Possible extensions to the multivariate case

While working with binary copulas, one is always inclined to extend
his/her work to higher-dimensional copulas. In this case, however, this
proves to be a difficult task. Following one possible n-dimensional
extension of FGM copula (see [12, Section 6.3.], [24]), i.e.

Cθ(u1, . . . , un) =
n∏

i=1
ui

(
1 + θ

n∏
i=1

(1 − ui)
)

,

let us define

Hn
f (C)(u1, . . . , un) := C(u1, ..., un)f(C(u1, ..., un)). (3.13)
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Here C is n-dimensional survival function, i.e. suppose (X1, . . . , Xn)
is random vector with copula C and marginal distribution functions
{Fi : i = 1, . . . , n}, then

C(u1, . . . , un) = P(X1 > F
(−1)
1 (x1), . . . , Xn > F (−1)

n (xn)).

One could hope that similar conditions on f exist for it to be eligible.
However, it is not the case. Let us take

C(u1, . . . , un) = M(u1, . . . , un) = min{u1, . . . , un},

M(u1, . . . , un) = 1 − max{u1, . . . , un}

and hypercubes

B1 := [a, 1] × [a, 1] × [0, a] × · · · × [0, a]︸ ︷︷ ︸
n−2

,

B2 := [a, 1] × [0, a] × · · · × [0, a]︸ ︷︷ ︸
n−1

,

where a ∈ [0, 1]. Then, after simple calculations, for n ≥ 3, we have that

VHn
f

(M)(B1) = a(f(1 − a) − 1), VHn
f

(M)(B2) = a(1 − f(1 − a)).

Since, for Hn
f (M) to be a copula, VHn

f
(M)(B1) and VHn

f
(M)(B2) must

be greater than or equal to zero, we get that function f must be equal
to 1 on the interval [0, 1]. Of course, this case is not interesting since
Hn

f (C) = C, when f(u) = 1.
This shows that for the mapping Hn

f (C) defined by (3.13) the set of
eligible functions is trivial. However, if one considers conditional
eligibilty, it may well be possible to find some useful results. In
particular, the case of independence copula, i.e. C = Π is of special
interest since it would generalize multivariate AMH and FGM families
of copulas. Altough it looks promising, no results in this regard, have
been proven as of yet.

Another aproach would be to define Hn
f (C) differently. One example

would be

Hn
f (C)(u1, . . . , un) = C(u1, . . . , un)f

(
n − 1 −

n∑
i=1

ui + C(u1, . . . , un)
)

,
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which for n = 2, also recovers mapping Hf and, given f(0) = 1, also
satisfies boundary conditions.

3.5 Some generalizations and related work

In [38] an interesting extension to the results of this chapter is suggested.
Consider a function g : [0, 1] → [0, 1], some binary copula D ∈ C and
mapping D(C, g(C∗)) : [0, 1]2 → [0, 1] given by

D(C, g(C∗))(u, v) = D(C(u, v), g(C∗(u, v))).

This clearly extends our construction, since if we take D = Π and
g(t) = f(1 − t), we recover mapping Hf (C). In [38], the sufficient
conditions on “outer” copula D (ultramodularity and Schur concavity)
and f such that, for each copula C ∈ C, D(C, f(C∗)) is also a copula,
are provided. However these conditions are not necessary (contrary to
our results in Theorem 3). More information on this topic can be
found in [38].
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4 | CONDITIONAL ELIGIBILITY

In this chapter we focus our attention to conditional eligibility for the
case of independence copula Π(u, v), i.e. to finding functions f for which

Cf (u, v) = uvf((1 − u)(1 − v)), u, v ∈ [0, 1], (4.1)

is a bivariate copula. As mentioned in introduction, this construction
allows us to recover the well-known families of FGM, AMH and
Çelebioǧlu–Cuadras copulas.

The rest of the chapter is organized as follows. In Sect. 4.1, we give
several necessary conditions on f for Cf in Eq. (4.1) to be a copula.
Then, in Sect. 4.2, we state and prove our main results of this chapter
giving sufficient conditions on the function f . Section 4.3 contains
applications and further examples of copulas which show how our
results can be applied in copula constructions.

4.1 Necessary conditions

In this section we present necessary conditions for a function f so that
Cf in (4.1) is a bivariate copula. In what follows, ∂u, ∂v, . . . will denote
the partial derivative with respect to u, v, . . . , respectively.

Proposition 3. Suppose Cf given in (4.1) is a bivariate copula on
[0, 1]2. Then

(i) f is nonnegative, continuous on [0, 1) and f(0) = 1;

(ii) For Lebesgue-almost all t ∈ (0, 1), f ′(t) and f ′′(t) exist;

(iii) The function t 7→ (1 − t)f(t) is nonincreasing on [0, 1). Moreover,
f must satisfy the following inequalities:

max{1 − 2
√

t, 0}
(1 −

√
t)2 ≤ f(t) ≤ 1

1 − t
, t ∈ [0, 1).

The upper bound is achievable.
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(iv) The following limit is true:

lim
t↓0

1 − (1 + t)f(t)√
t

= 0; (4.2)

(v) For any t ∈ [0, 1), denoting the diagonal of Cf by δ, i.e. δ(t) =
Cf (t, t), we have

f(t2) = δ(1 − t)
(1 − t)2 =

∂vCf (1 − t2, v)
∣∣
v=0

1 − t2 ; (4.3)

(vi) For any t ∈ [0, 1/4],

tf(t) = Cf

(1
2 +

√
1
4 − t,

1
2 −

√
1
4 − t

)
.

Proof. (i) Since Cf (1, v) = v for any v ∈ [0, 1], we must have f(0) = 1.
Also for any u, v ∈ [0, 1), we can write

f(uv) = Cf (1 − u, 1 − v)
(1 − u)(1 − v) , (4.4)

which is a ratio of two nonnegative continuous functions. In particular,
setting u = v =

√
z, we get

f(z) = Cf (1 −
√

z, 1 −
√

z)
(1 −

√
z)2 = δ(1 −

√
z)

(1 −
√

z)2 , ∀z ∈ [0, 1).

Hence, f is continuous on [0, 1).
(ii) Since Cf is assumed to be a copula, partial derivatives ∂uCf (u, v)

exist (see, e.g. [36, Theorem 2.2.7]) for almost all u ∈ [0, 1] and any
v ∈ [0, 1] (similarly for ∂vCf (u, v)), and we get that f(uv) in (4.4) is
differentiable for almost all u ∈ (0, 1) and all v ∈ (0, 1) so that

f(t) = Cf (1 − t/v, 1 − v)
(1 − t/v)(1 − v)

is differentiable for almost all t ∈ (0, v) for any fixed v ∈ (0, 1).
Now given any v ∈ (0, 1), let

Ev := {t ∈ (0, v) : f ′(t) does not exist}
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and consider
E :=

∞⋃
i=2

E1−1/i = lim
i→∞

E1−1/i.

Since E1−1/i ⊂ E1−1/(i+1) for all i ≥ 2, and each Ev has zero Lebesgue
measure, so does set E by the continuity of Lebesgue measure.
Therefore, on the set Ec = (0, 1) \ E, which has Lebesgue measure of 1,
f ′ exists, proving the first part of this claim.

Then for any v ∈ (0, 1) such that uv ∈ Ec, differentiating both sides
of (4.4) with respect to u, using the chain rule, and then rearranging
gives

f ′(t)
∣∣
t=uv

=
Cf (1 − u, 1 − v) − (1 − u)∂zCf (z, 1 − v)

∣∣
z=1−u

v(1 − v)(1 − u)2 .

The right-hand side of the latter equality is differentiable with respect
to v for Lebesgue almost all v ∈ (0, 1) (let this set be Dc) since Cf is
assumed to be a copula. And so f ′(uv) is differentiable with respect to
v for almost all v ∈ (0, 1) such that uv ∈ Ec. Mapping each t = uv ∈ Ec

onto a point on the main diagonal of the unit square, namely (
√

t,
√

t)
and considering a part of hyperbola uv = t for (u, v) ∈ [0, 1]2, we can
discard those points (u, v) on it where v ∈ D, still leaving a set of
positive one-dimensional Lebesgue measure of points (u, v) such that
uv = t. Hence

{t : f ′′(t) exists} ⊃ Ec,

so that f ′′ exists Lebesgue almost everywhere on (0, 1).
(iii) Since a copula must be nondecreasing with respect to each

argument, we get

0 ≤ Cf (u2, v)−Cf (u1, v) = v(u2f((1−u2)(1−v))−u1f((1−u1)(1−v))),

for all 0 ≤ u1 ≤ u2 ≤ 1 and all v ∈ [0, 1]. So if v 6= 0, the function

t 7→ tf((1 − t)(1 − u))

must be nondecreasing for t ∈ [0, 1] and any v ∈ (0, 1]. The limit of such
functions as v ↓ 0 must also be nondecreasing, i.e. t 7→ tf(1 − t) is
nondecreasing. The first claim of part (iii) follows by a simple change
of variable.
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Furthermore, since the aforementioned function is nondecreasing, we
get that the upper bound is tf(1 − t) ≤ f(0) = 1, so (1 − s)f(s) ≤ 1
where s = 1 − t, and the stated upper bound follows for all t ∈ [0, 1).
Also note that for f(t) = 1/(1 − t),

Cf (u, v) = uv

1 − (1 − u)(1 − v) = AMH(1)(u, v), u, v ∈ [0, 1], (4.5)

is the Ali–Mikhail–Haq copula with λ = 1 (see Example 11) and
therefore the stated upper bound on f is achievable.

For the lower bound, apply the lower Fréchet–Hoeffding bound to
the expression in (4.4) and substitute t = uv and s = u + v. Then

f(t) ≥ max{1 − s, 0}
1 − s + t

, ∀t ∈ [0, 1], ∀s ∈ [2
√

t, 1 + t).

Observe that if t ≥ 1/4, then s ≥ 1, so the right-hand side of the above
inequality is trivially zero, hence we need only to consider 0 ≤ t < 1/4.
In this case, taking the maximum with respect to s ∈ [2

√
t, 1] of the

right-hand side of this inequality, we get

f(t) ≥ max{1 − 2
√

t, 0}
1 − 2

√
t + t

= max{1 − 2
√

t, 0}
(1 −

√
t)2 =: f̂(t).

Unfortunately, the lower bound f̂ does not yield a copula. Indeed, by
considering S1 = [0.5, 0.85] × [0.5, 0.85], one gets

VC
f̂
(S1) = C

f̂
(0.85, 0.85) − 2C

f̂
(0.85, 0.5) + C

f̂
(0.5, 0.5) ≈ −0.0291 < 0.

Even more can be said: C
f̂

does satisfy the boundary conditions, but it
is not even a proper quasi-copula. Indeed, for S2 = [0.5, 1] × [0.5, 0.85],

VC
f̂
(S2) = 0.35 − C

f̂
(0.5, 0.85) ≈ −0.0145 < 0,

so that the condition of [19, Proposition 3] fails.
(iv) Suppose on the contrary that (4.2) is not true. Then there is an

ε ∈ (0, 1) such that

lim
t↓0

1 − (1 + t)f(t)√
t

≥ ε.

The latter implies the existence of a sequence {tn}∞
n=1 ⊂ [0, 1] such that
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tn → 0 as n → ∞ and

1 − (1 + t2
n)f(t2

n)
tn

≥ ε, ∀n ∈ N.

Now consider a square � := [u1, u2] × [v1, v2] = [1 − tn, 1] × [1 − tn, 1]
and estimate the Cf -volume of it.

VCf
(�) := Cf (u2, v2) − Cf (u1, v2) − Cf (u2, v1) + Cf (u1, v1)

= 1 − 2(1 − tn) + (1 − tn)2f
(
t2
n

)
≤ 1 − 2(1 − tn) + (1 − tn)2 1 − εtn

1 + t2
n

≤ 1 − 2(1 − tn) + (1 − tn)2 1 − εtn

1 − t2
n

= tn

1 + tn

(
tn(2 + ε) − ε

)
< 0,

as soon as tn < ε/(2 + ε) which happens eventually since tn → 0,
contradicting the fact that Cf is a copula.

(v) The first equality follows easily from (4.4) by taking u = v = t.
To get the second, observe that for any u ∈ [0, 1),

f(u) = lim
v↑1

f(uv) = lim
v↑1

Cf (1 − u, 1 − v)
(1 − u)(1 − v) =

∂vCf (1 − u, v)
∣∣
v=0

1 − u
.

Hence, taking u = t2 we obtain the desired expression. Note that the
limit exists as f is continuous on [0, 1) by part (i).

(vi) Taking v = 1 − u in the expression for Cf , we get

Cf (u, 1 − u) = u(1 − u)f(u(1 − u)), ∀x ∈ [0, 1].

Thus after substituting t = u(1−u) ∈ [0, 1/4], we obtain u = 1
2 ±

√
1
4 − t

which, due to the symmetry of Cf , gives

tf(t) = Cf

(1
2 +

√
1
4 − t,

1
2 −

√
1
4 − t

)
,

completing the proof.

Remark 5. From the second equality in (4.3) with 1 − t2 = s, one has

sf(1 − s) = ∂vCf (s, v)
∣∣
v=0,
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that is, the requirement in (ii) restricts only the behaviour of partial
derivatives of Cf on a part of the boundary of the unit square. Since
partial derivatives (or Dini derivatives, in general; see [11, Theorem 2.3])
of a copula must be nondecreasing also for other points v, not just v = 0,
this implies that (ii) of Proposition 3 cannot be sufficient to always make
Cf a copula.

Even though (4.3) seems to be a rather restrictive condition on f , it
is still not a sufficient condition for Cf to be a copula. To illustrate we
provide two examples:

Example 5. Suppose that f 6≡ 1 and δ(t) = tβ for β ∈ [1, 2). Then
there is an Archimedean copula with such a diagonal, namely a member
of the Gumbel–Hougaard family (see [36, family (4.2.4)]) with generator
φ(s) = (− ln s)θ where s ∈ [0, 1] and θ = ln 2/ ln β:

C(u, v) = exp
{

− ((− ln u)θ + (− ln v)θ)1/θ
}

.

Yet, for such a diagonal, the function f as given by (4.3) does not yield
a copula, that is,

Cf (u, v) = xy
(
1 −

√
(1 − u)(1 − v)

)β−2

fails to be a copula as ∂2
uvCf (u, v) < 0 for (u, v) near (1, 0) or (0, 1).

Indeed, by taking any 0 < ε < 1 and u = ε, v = 1 − ε, we can show that

∂2
uvCf (ε, 1 − ε) = (1 − z)β−4

4z

[
β2z3 + (2 − 5β)z2 + (8 − 2β)z + (2β − 4)

]
,

where z =
√

ε(1 − ε), which, clearly, becomes negative as z ↓ 0 as β < 2.

Including the partial derivative on the boundary into consideration
allows for the following example:

Example 6. Consider f(t) = 1 + µt2. It is known that (see [2]; or
Example 15 below)

Cf (u, v) = uv(1 + µ(1 − u)2(1 − v)2), u, v ∈ [0, 1],

is a bivariate copula for any µ ∈ [−1, 3]. Here we consider only µ ∈ (0, 3].
Then the diagonal δµ(t) = Cf (t, t) = t2(1+µ(1− t)4) satisfies Condition
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(3.4) of [14, Corollary 5], i.e.

δ(t) ≤ tδ′(t) ≤ 2δ(t)

and so the function

Sδµ(u, v) = min{u, v} max
{δµ(u)

u
,
δµ(v)

v

}
= uv

(
1 + µ(1 − max(u, v))4

)
is also a (semilinear) copula, different from Cf , which satisfies (4.3).
This shows that even if (4.3) holds, a copula need not be of the form
given by (4.1).

4.2 Sufficient conditions – main results

We begin with a known result showing the implications of geometric
Jensen convexity. A similar fact was stated without proof in [33,
Remark 3.1, p. 629], but with the domain of f being (0, +∞).
Equivalence of parts (i) and (ii) was also mentioned in [37]. For part
(iii) with slightly different notation, see [18, Theorem 1(iv)].

Lemma 2. Let 0 ≤ a < b < ∞ and J = (a, b). Consider a continuous
function f : J → (0, +∞). Then the following statements are equivalent:

(i) The function f is geometrically Jensen convex on J , i.e.

f(√xy) ≤
√

f(x)f(y), x, y ∈ J. (4.6)

(ii) The function g := ln ◦f ◦ exp : (ln a, ln b) → [0, +∞) is convex
(assuming ln a = −∞ if a = 0).

(iii) For any λ ∈ (1, b/a) (taking b
0 := +∞), the function

h(t) = f(λt)/f(t) is nondecreasing for t ∈
(
a, b

λ

)
.

Proof. (The proof is presented for the reader’s convenience.) “(i) =⇒
(ii)” Consider any x, y ∈ (ln a, ln b). Then, by (i),

g

(
x + y

2

)
= ln

(
f
(
ex/2ey/2)) ≤ ln

(√
f(ex)f(ey)

)
= g(x) + g(y)

2 ,

hence, g is Jensen convex and, by construction, also continuous.
Therefore, g is convex (see, e.g., [35, Section 1.4.2, p. 14]).
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“(ii) =⇒ (i)” If g is convex, then, for any x, y ∈ (ln a, ln b) and
t ∈ [0, 1],

f
(
exte(1−t)y

)
≤ f(ex)tf(ey)1−t,

i.e. f ◦ exp is geometrically convex, and hence geometrically Jensen
convex (by taking t = 1/2). After the transformation of the domain
(ln a, ln b) into (a, b), we get that f is geometrically Jensen convex.

“(ii) ⇐⇒ (iii)” Consider any ln a ≤ z1 < z2 < ln b and any ξ ∈
(0, ln b − z2). Let t1 = ez1 < t2 = ez2 and λ = eξ ∈ (1, b/t2). Then

h(t1) = f(λt1)
f(t1) ≤ f(λt2)

f(t2) = h(t2)

if and only if

g(ξ + z1) − g(z1) ≤ g(ξ + z2) − g(z2).

The latter is equivalent to the convexity of g on (ln a, ln b).

Remark 6. As the pointwise supremum of any family of proper convex
functions defined on the same domain is also convex and since ln(x) is
continuous and increasing, from Lemma 2(ii) we easily get that the
pointwise supremum of any family of geometrically Jensen convex
functions defined on the same domain is also geometrically Jensen
convex. This fact will be useful when considering maxima or suprema
of certain copulas.

Example 7. Consider f : [0, 1] → [1, 1+ln 2] given by f(x) = 1+ln(1+
x) and let g := ln ◦f ◦ exp : [−∞, 0] → [0, ln(1 + ln 2)]. Then it is easy
to check that for all x ∈ [−∞, 0]

g′(x) = ex

(1 + ex)(1 + ln(1 + ex)) ,

g′′(x) = ex(1 − ex + ln(1 + ex))
(1 + ex)2(1 + ln(1 + ex))2 ≥ 0.

Thus, by Lemma 2(ii), the function f is geometrically Jensen convex.
Checking this property by definition would be rather cumbersome. Also
note that f is concave!

Theorem 7. Let f : [0, 1] → [1, +∞] be continuous on [0, 1), with
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f(0) = 1, and let

Cf (u, v) := uvf((1 − u)(1 − v)), u, v ∈ [0, 1].

The following statements are equivalent:

(a) The function Cf is a bivariate copula, with the TP2 property (see
Eq. (2.7)),

(b) The function f has the following two properties:

(i) t 7→ tf(1 − t) is nondecreasing on (0, 1),

(ii) f is geometrically Jensen convex on [0, 1) (see Eq. (4.6)).

Proof. “(b) =⇒ (a)” Since f(0) = 1, Cf clearly satisfies the boundary
conditions of a copula:

Cf (0, v) = Cf (u, 0) = 0,

Cf (1, v) = v, Cf (u, 1) = u, u, v ∈ [0, 1]. (4.7)

First, we show that Cf is nondecreasing in each argument. Indeed, due
to obvious symmetry, it is enough to check nondecreasingness in the first
argument. So consider any 0 ≤ u1 < u2 ≤ 1 and v ∈ (0, 1). Then

∆1 := Cf (u2, v)−Cf (u1, v) = y[u2f((1−v)(1−u2))−u1f((1−v)(1−u1))],
(4.8)

where letting ui := 1 − (1 − zi)/(1 − v), i = 1, 2, we get 0 ≤ 1 − z2 <

1 − z1 ≤ 1 − v and

∆1 = v

[(
1 − 1 − z2

1 − v

)
f(1 − z2) −

(
1 − 1 − z1

1 − v

)
f(1 − z1)

]
= v

1 − v

[(
1 − v

z2

)
z2f(1 − z2) −

(
1 − v

z1

)
z1f(1 − z1)

]
>

v(1 − v/z1)
1 − v

(z2f(1 − z2) − z1f(1 − z1)] ≥ 0,

(4.9)

due to condition (i). Furthermore, if v = 0 or 1, then ∆1 = 0 or
∆1 = u2 − u1 ≥ 0, respectively.

Now we check that Cf satisfies the TP2 property, which by [15,
Lemma 3.1] will imply that Cf is 2-nondecreasing, and hence a copula.
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First, consider any 0 < u1 < u2 < 1 and 0 < v1 < v2 < 1 and compute

D := Cf (u2, v2)Cf (u1, v1) − Cf (u2, v1)Cf (u1, v2)
= u1v1u2v2[f(s)f(λt) − f(s)f(λt)]
= u1v1u2v2∆2,

(4.10)

where
λ := (1 − v1)/(1 − v2) > 1,

s = (1 − u2)(1 − v2), t = (1 − u1)(1 − v2).

Observe that 0 < s < t < 1 and for fixed v1 and v2 (and hence fixed λ),

∆2 = f(s)f(λt) − f(t)f(λs) ≥ 0,

by condition (ii) and Lemma 2(iii).
If u1 = 0 or v1 = 0, both sides of Eq. (4.10) are zero. And if u2 = 1

or v2 = 1, then the expression in Eq. (4.10) is nonnegative since Cf is
nondecreasing in each argument as already shown above. Thus in all
cases D ≥ 0 as required.

“(a) =⇒ (b)” If Cf is a TP2 copula, then D in Eq. (4.10) is
nonnegative for any 0 ≤ u1 < u2 ≤ 1 and 0 ≤ y1 < y2 ≤ 1, which
implies that ∆2 ≥ 0 for any 0 < u1 < u2 < 1 and 0 < v1 < v2 < 1. This
means that t 7→ f(λt)/f(t) is nondecreasing for any λ ∈ (0, 1 − v1). So
by Lemma 2(iii), f is geometrically Jensen convex on (0, 1 − v1), for
any v1 ∈ (0, 1), and hence on (0, 1). So f satisfies property (ii) on (0, 1)
and trivially at 0.

To check that f also satisfies property (i), observe that ∆1 in
Eq. (4.8) is nonnegative for any 0 ≤ u1 < u2 ≤ 1 and any v ∈ [0, 1],
since any copula is nondecreasing in each argument. Thus for any
0 < u1 < u2 ≤ 1 and v ∈ (0, 1), we obtain

u2f((1 − v)(1 − u2)) − u1f((1 − v)(1 − u1)) ≥ 0.

Rearranging gives
u1
u2

≤ f((1 − v)(1 − u2))
f((1 − v)(1 − u1)) .

Treating u1 and u2 as fixed, letting v ↓ 0, and using continuity of f , we
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have

u1
u2

≤ lim
v↓0

f((1 − v)(1 − u2))
f((1 − v)(1 − u1)) = f(1 − u2)

f(1 − u1) , 0 < u1 < u2 < 1.

The latter shows property (i) for function f , completing the proof.

Combining with [15, Corollary 3.5], we get the following corollary:

Corollary 8. Let f : [0, 1] → R+ be a continuous, geometrically
Jensen convex function such that f(0) = 1. Let γ > 0 be such that
t 7→ t1/γf(1 − t) is nondecreasing on (0, 1]. Then for any α > 0 the
function

Cα,γ(u, v) = uv
(
f
(
(1 − u1/α)(1 − v1/α)

))γα
, u, v ∈ [0, 1], (4.11)

is a bivariate copula with the TP2 property.

Proof. As geometric (Jensen) convexity is preserved when taking
positive powers of functions, under the stated assumptions, the
function fγ(t) satisfies conditions of Theorem 7(b), and so the function
C1,γ (see Eq. (4.11)) is a bivariate copula with the TP2 property. Now
an application of [15, Corollary 3.5] gives, for φ(t) = tα, α > 0, that

Cα,γ(u, v) = Cα
1,γ(u1/α, v1/α)

is again a TP2 copula, finishing the proof.

It is known that the maximum of two bivariate copulas C1 and C2,
i.e. C3(u, v) := max{C1(u, v), C2(u, v)}, need not be a copula (it must
only be a quasi-copula; see [36, Example 6.3 and Theorem 6.2.5]), but
if C1 and C2 are of the form (4.1) and have the TP2 property, then C3

will always be a TP2 copula. Indeed, we have

Corollary 9. Let C = {Cf , f ∈ F} be a family of bivariate copulas as
in Theorem 7. Then

Csup(u, v) = sup
C∈C

C(u, v) = uv sup
f∈F

f((1 − u)(1 − v))

is also a TP2 copula.
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Proof. Let fsup(t) := supf∈F f(t), t ∈ [0, 1). Since each f ∈ F is
continuous on [0, 1), f(0) = 1, and conditions (i) and (ii) of Theorem
7(b) hold, the same conditions hold also for fsup (recall Remark 6) so
then Csup is a copula by Theorem 7(a).

Example 8. To illustrate Corollary 9, consider

Cα,β(u, v) := max{AMH(β)(u, v), FGM(α)(u, v)}
= uvfα,β((1 − u)(1 − v)),

where

fα,β(t) := max{(1 − βt)−1, 1 + αt}, β ∈ (0, 1), α ∈ (β, β/(1 − β)).

Such α is taken to make the graphs of the two functions, whose maximum
is considered, cross inside the unit interval (another crossing point t = 0
is not interesting). Then such Cα,β form a family of TP2 copulas.

To present the second main result of this chapter, for any twice
differentiable function g : [0, 1) → R+ let

A1(g) := {t ∈ (0, 1) : (tg(t))′′ ≥ 0, g(t) + (t − 1)g′(t) ≥ 0},

A2(g) := {t ∈ (0, 1) : (tg(t))′′ < 0,

g(t) + (1 −
√

t)
(
(1 − 3

√
t)g′(t) + t(1 −

√
t)g′′(t)

)
≥ 0}.

Observe that A1(g) ∩ A2(g) = ∅.
The following theorem provides a different set of conditions

characterizing suitable twice continuously differentiable functions f for
Cf to be a copula.

Theorem 10. Let f : [0, 1] → [0, +∞] be twice differentiable, with f ′

absolutely continuous, on (0, 1) such that

f(0) = 1, lim
t↓0

tf ′(t) = 0, and (1 − t)f(t) ≤ 1 for all t ∈ [0, 1).

(4.12)
Then Cf (u, v) = uvf((1−u)(1−v)) defined for u, v ∈ [0, 1] is a bivariate
absolutely continuous copula if A1(f) ∪ A2(f) = (0, 1). If, in addition,
f ′′ is assumed continuous, then the above conditions are also necessary.

Proof. For convenience, we make a change of variables. Recall that a
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function C(u, v) on [0, 1]2 is a bivariate copula iff such is

Ĉ(u, v) = u + v − 1 + C(1 − u, 1 − v).

Hence, it suffices to check if

Ĉf (u, v) = u + v − 1 + (1 − u)(1 − v)f(uv)

is a copula under specified conditions. Since f(0) = 1, both Cf and Ĉf

satisfy boundary conditions (see Eq. (4.7)). So we only need to check
the 2-nondecreasingness of Ĉf . Since f is twice differentiable, it suffices
to show that ∂2

uvĈf ≥ 0 on (0, 1)2. Then a straightforward application
of [8, Theorem 3.2] (for its formulation and application details, see the
Appendix) will yield that Ĉf is an absolutely continuous bivariate
copula. See also Remark 9 for additional comments about the necessity
of the restrictions on f .

A simple computation gives

∂2
uvĈf (u, v) = f(uv) + [1 − 2u − 2v + 3uv]f ′(uv)

+ uv(1 − u)(1 − v)f ′′(uv).
(4.13)

Now consider another change of coordinates:

t = uv, s = u + v,

so that the right-hand side of (4.13) becomes

K(s, t) := f(t) + [1 − 2s + 3t]f ′(t) + t(1 − s + t)f ′′(t)
=
{
f(t) + (1 + 3t)f ′(t) + t(1 + t)f ′′(t)

}
− s

{
2f ′(t) + tf ′′(t)

}
,

where t ∈ [0, 1], 2
√

t ≤ s ≤ t + 1. Here we consider 2 cases:

(i) If t ∈ A1(f), then

K(s, t) ≥
[
f(t) + (1 + 3t)f ′(t) + t(1 + t)f ′′(t)

]
− (t + 1)

[
2f ′(t) + tf ′′(t)

]
= f(t) + (t − 1)f ′(t) ≥ 0,

that is, the mixed derivative in (4.13) is nonnegative as needed.
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(ii) If, on the other hand, t ∈ A2(f), then

K(s, t) ≥
{
f(t) + (1 + 3t)f ′(t) + t(1 + t)f ′′(t)

}
− 2

√
t
{
2f ′(t) + tf ′′(t)

}
= f(t) + (1 −

√
t)
(
(1 − 3

√
t)f ′(t) + t(1 −

√
t)f ′′(t)

)
≥ 0,

i.e. we again have a nonnegative mixed-derivative in (4.13).

Since A1(f) ∪ A2(f) = (0, 1), we have shown that Cf is a bivariate
absolutely continuous copula.

On the other hand, if t ∈ (0, 1) is such that

(tf(t))′′ = 2f ′(t) + tf ′′(t) ≥ 0, f(t) + (t − 1)f ′(t) < 0,

then K(t + 1, t) < 0, which, due to continuity of K, implies that in
some neighbourhood of points (u, v) = (t, 1) and (u, v) = (1, t),
∂2

uvĈf (u, v) < 0, which cannot happen if Cf is an absolutely
continuous bivariate copula, since by picking a rectangle inside such a
neighbourhood, we would get a negative Ĉf -volume of it.

Similarly, if t ∈ (0, 1) is such that

(tf(t))′′ < 0, f(t) + (1 −
√

t)
(
(1 − 3

√
t)f ′(t) + t(1 −

√
t)f ′′(t)

)
< 0,

then K(2
√

t, t) < 0, which implies that in a neighbourhood of the point
(u, v) = (

√
t,

√
t), ∂2

uvĈf (u, v) < 0, which is again a contradiction if Cf

is an absolutely continuous bivariate copula.

Proposition 4. Let f : [0, 1] → [0, +∞] be twice differentiable on (0, 1)
such that

f(0) = 1 and lim
t↓0

tf ′(t) = 0. (4.14)

Then

(i) if A1(f) = (0, 1) then the function f is nondecreasing;

(ii) if A2(f) = (0, 1) then the function f is decreasing.

Proof. (i) Since (tf(t))′′ ≥ 0 on (0, 1), the function g(t) := tf(t) is
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convex, hence the slopes of secant lines are nondecreasing and so we get

f(t1) = t1f(t1) − 0f(0)
t1 − 0 ≤ t2f(t2) − t1f(t1)

t2 − t1
, ∀0 < t1 < t2 < 1,

(4.15)
which after rearrangement gives f(t2)−f(t1) ≥ 0 for all 0 < t1 < t2 < 1,
i.e. f(t) is nondecreasing.

Part (ii) follows in the same way by a change of appropriate
inequality signs.

Note that the function f needs not be convex or satisfy the lower
bound f(t) ≥ 1 − t as is required in Theorem 3 (see Examples 15 and
16, respectively).

4.3 Applications and more examples

Example 9. Let fδ(t) = eδt where δ > 0. Then, due to the arithmetic–
geometric mean inequality, fδ is geometrically Jensen convex, and being
continuous also geometrically convex. Condition (i) of Theorem 7(b) is
satisfied for 0 < δ ≤ 1. Hence we recover the known fact that

Cfδ
(u, v) = uveδ(1−u)(1−v), u, v ∈ [0, 1]

is a bivariate copula, which is also known as Çelebioǧlu–Cuadras copula
[4, 7]. Moreover, we have proved that this copula, in particular, has the
TP2 property.

Example 10. Let fα(t) = 1 + αt, where α ∈ [0, 1]. Again, by the
arithmetic–geometric mean inequality, fα can be easily shown to be
geometrically Jensen convex, and so it is geometrically convex, too.
Condition (i) of Theorem 7(b) holds also for any α ∈ (0, 1]. So by
Theorem 7,

Cfα(u, v) = xy(1 + α(1 − u)(1 − v)),

is a bivariate copula, also known as Farlie–Gumbel–Morgenstern
FGM(α) copula, with the TP2 property.

If γ ∈ (0, 1/α], then t1/γ(1 + α(1 − t)) is nondecreasing on (0, 1), so
by Corollary 8,

Cα,β,γ(u, v) = uv
(
1 + α

(
1 − u1/β)(1 − v1/β))βγ

, u, v ∈ [0, 1]; β > 0
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is a TP2 copula. In particular, taking γ = 1, we recover a result of
Durante et al. [15, Example 3.6], while if γ = 1/α ≥ 1/β, we have a
copula family considered by Huang and Kotz [22]. When βγ ∈ N, we
get a family of copulas considered by Bekrizadeh et al. [3].

Example 11. Let fλ(t) = (1 − λt)−1, where λ ∈ [0, 1]. Once more,
by the arithmetic–geometric mean inequality, fλ can be easily shown to
be geometrically Jensen convex, and so it is geometrically convex, too.
Condition (i) of Theorem 7(b) is easily checked to hold for any λ ∈ (0, 1].
So once more by Theorem 7,

Cfλ
(u, v) = uv

1 − λ(1 − u)(1 − v) ,

is a bivariate copula, also known as Ali–Mikhail–Haq AMH(λ) copula,
with the TP2 property.

If γ ∈ (0, 1/λ], then t1/γ/(1 − λ(1 − t)) is nondecreasing on (0, 1), so
by Corollary 8,

Cλ,β,γ(u, v) = uv(
1 − λ

(
1 − u1/β

)(
1 − v1/β

))βγ
, u, v ∈ [0, 1]; β > 0

is a TP2 copula. So we have a generalized AMH copula family.

Example 12. Consider the function f from Example 7, namely

f(x) = 1 + ln(1 + x).

We already know that it is geometrically Jensen convex. As for
Condition (i) of Theorem 7(b), we have

tf(1 − t) = t(1 + ln(2 − t)) and (tf(1 − t))′ = 2(1 − t)
2 − t

+ ln(2 − t) ≥ 0,

for all t ∈ [0, 1], whence this condition is satisfied as well. Therefore,
applying Theorem 7, we obtain that

Cf (u, v) = uv
(
1 + ln(1 + (1 − u)(1 − v))

)
(4.16)

is a bivariate copula with the TP2 property (see Figure 4.1).
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Figure 4.1: Copula Cf whith f(x) = 1 + ln(1 + x)

To illustrate Theorem 10, we present the following example:

Example 13. Recall the function f from Example 7, namely

f(t) = 1 + ln(1 + t).

It is straightforward to check that for all t ∈ [0, 1],

2f ′(t) + tf ′′(t) = 2 + t

(1 + t)2 > 0,

f(t) + (t − 1)f ′(t) = 2t

1 + t
+ ln(1 + t) ≥ 0,

that is, A1(f) = (0, 1), so by Theorem 10, Cf (u, v) given in (4.16) is a
bivariate copula, in agreement with the result of Example 12.

On the other hand, if we take f(t) = 1 + sin(πt/4), then for all
t ∈ [0, 1],

2f ′(t) + tf ′′(t) = π

4 cos
(πt

4
)(

2 − πt

4 tan
(πt

4
))

≥ π
√

2
8
(
2 − π

4
)

> 0

and

f(t) + (t − 1)f ′(t) = 1 + sin
(πt

4
)

+ (t − 1)π

4 cos
(πt

4
)

> sin
(πt

4
)

+ πt

4 cos
(πt

4
)

≥ 0.
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So again A1(f) = (0, 1) and, by Theorem 10,

Cf (u, v) = uv
(
1 + sin

(π

4 (1 − u)(1 − v)
))

is a bivariate copula. Note also that in this case Theorem 7 is not
applicable as

g(t) = (ln ◦f ◦ exp)(t) = ln
(
1 + sin

(
πet/4

))
is concave at least for t ∈ [−0.05, 0], i.e. f is not geometrically Jensen
convex by Lemma 2.

Example 14. Recall the function from Example 10, i.e. fα(t) = 1+αt,
but now take α ∈ [−1, 0). Then

2f ′(t) + tf ′′(t) = 2α < 0

and

f(t) + (1 −
√

t)
(
(1 − 3

√
t)f ′(t) + t(1 −

√
t)f ′′(t)

)
= 1 + αt + (1 −

√
t)(1 − 3

√
t)α

= 1 + α − 4α(
√

t − t) ≥ 0.

Therefore, A2(f) = (0, 1) and, by Theorem 10,

Cf (u, v) = uv
(
1 + α(1 − u)(1 − v)

)
is a bivariate copula. Together with Example 10, this fully covers the
case of the Farlie–Gumbel–Morgenstern copula family.

Similarly, it can be shown that fδ(t) = eδt from Example 9, where
δ ∈ [−1, 0), and fλ(t) = (1 − λt)−1 from Example 11, where λ ∈ [−1, 0),
are such that A2(f) = (0, 1).

Example 15. Consider f(t) := fµ(t) = 1 + µt2, t ∈ [0, 1], µ ∈ R. We
will apply Theorem 10 to find µ, such that Ĉfµ (and hence also Cfµ) is
a bivariate absolutely continuous copula. It is clear that

2f ′(t) + tf ′′(t) = 6µt

{
≥ 0, if µ ≥ 0;
< 0, if µ < 0.
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In the case µ ≥ 0, to have t ∈ A1(f), we also need to check

f(t) + (t − 1)f ′(t) = 1 − 2µt + 3µt2 ≥ 0,

which is true for all t ∈ [0, 1] iff µ ≤ 3.
On the other hand, if µ < 0, then to have t ∈ A2(f), we check that

f(t) − (1 −
√

t)((1 − 3
√

t)f ′(t) + t(1 −
√

t)f ′′(t))
= 1 + µt2 + 4µt(1 − 3

√
t + 2t) ≥ 0,

which is true for all t ∈ [0, 1] iff µ ≥ −1.
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Figure 4.2: Copula Cf whith f(t) = 1 − t/2 + t2/2

Combining both cases, we get that if µ ∈ [−1, 3], then Cfµ is a
bivariate absolutely continuous copula. On the other hand, if we take
µ > 3 or µ < −1, then there exist at least one point t ∈ (0, 1) \ (A1(f) ∪
A2(f)) (and hence even a small interval of such points). Since f ′′(t) = 2µ

is continuous, by Theorem 10, we get that Cf is not a copula. Therefore
Cfµ is a bivariate absolutely continuous copula iff µ ∈ [−1, 3], which is
in agreement with the findings of [2].

To get an example of a function f for which Ai(f) 6= (0, 1) for i = 1, 2,
consider

f(t) = 1 − t/2 + t2/2 = (1 − t)/2 + (1 + t2)/2,

i.e. a convex combination of two admissible functions. For such f(t),
2f ′(t) + tf ′′(t) is nonnegative for 0 ≤ t ≤ a and negative for a < t ≤ 1
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where a ≈ 0.33. See Figure 4.2 for illustration.

Example 16. Let f(t) = 1 − t − t2

4 + t3

4 . Then

f(t) < 1 − t, x ∈ (0, 1),

so, in particular, it fails Condition (iii) of Theorem 3, yet after some
calculation it could be shown that A2(f) = (0, 1). Therefore, by
Theorem 10,

Cf (u, v) = uv
(
1− (1−u)(1−v)− 1

4(1−u)2(1−v)2 + 1
4(1−u)3(1−v)3

)
,

is a bivariate copula (see Figure 4.3).
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Figure 4.3: Copula Cf whith f(t) = 1 − t − t2

4 + t3

4

4.4 Properties of the considered copulas

We now investigate some properties of copulas Cf given in (4.1). We
start with a partial order relation, then describe tail dependence
coefficients, and finally discuss symmetry properties.

Concordance order and implied dependence properties

It is well known that given two copulas C and D, D is said to be more
concordant (or more positively quadrant dependent) than C (see [36,
p. 223]), we write C � D, if C(u, v) ≤ D(u, v) for all (u, v) ∈ [0, 1]2.
The following result is easily proved.
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Proposition 5. Let Cf and Cg be two copulas as in (4.1). Then Cf �
Cg if and only if f(t) ≤ g(t) for all t ∈ [0, 1].

In particular, for f(t) ≥ 1, t ∈ [0, 1] (for example, if A1(f) = (0, 1))
we get Cf � Π and similarly, for g(t) ≤ 1, t ∈ [0, 1] we get Cg � Π.

Now recall dependence properties defined in Chapter 2. Then we
can prove the follwing proposition.

Proposition 6. Let (X, Y ) be a pair of continuous random variables
with copula Cf . Then we have:

(i) LTD(Y |X) if and only if f(t) is nondecreasing in t ∈ [0, 1);

(ii) RTI(Y |X) if and only if

f(t) ≥ 1 + t(1 − t) max{f ′(t), 0}, for a.e. t ∈ (0, 1);

(iii) SI(Y |X) if and only if for any a ∈ [0, 1], the function

t 7→ tf(a(1 − t))

is concave on [0, 1].

Proof. (i) It suffices to observe that

P(Y ≤ y|X ≤ x) = Cf (x, y)
x

= yf((1 − x)(1 − y))

is nonincreasing in x on (0, 1] for all y ∈ [0, 1] if and only if
f(1 − x) is nonincreasing in x (since f is continuous on [0, 1) due
to Proposition 3(i)), or equivalently, f(t) is nondecreasing in t.

(ii) By [36, Corollary 5.2.6], RTI(Y |X) holds if and only if for any
v ∈ [0, 1]

∂uCf (u, v) ≥ v − Cf (u, v)
1 − u

for all u ∈ A ⊂ [0, 1] where A has Lebesgue measure of 1.
Rearranging, for all y ∈ (0, 1], we get

f((1−u)(1−v))−u(1−u)(1−v)f ′((1−u)(1−v))−1 ≥ 0. (4.17)

Now let t = (1 − u)(1 − v) and note that 0 ≤ t < 1 − u. Then
for (4.17) to hold it is necessary (and sufficient) that for Lebesgue
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almost all t ∈ [0, 1],{
f ′(t) ≥ 0,

f(t) − (1 − t)tf ′(t) − 1 ≥ 0 (taking y ↓ 0);

or
{

f ′(t) < 0,

f(t) ≥ 1 (letting u ↓ 0 along a sequence from A).

Combining both cases and rearranging, we get that for almost all
t ∈ [0, 1],

f(t) ≥ max{1, 1 + t(1 − t)f ′(t)} = 1 + t(1 − t) max{f ′(t), 0}.

(iii) By [36, Corollary 5.2.11], SI(Y |X) holds if and only if Cf (u, v) is
concave in u. This is equivalent to having secant slopes of Cf (·, v)
nonincreasing for any v ∈ [0, 1], that is,

Cf (u2, v) − Cf (u1, v)
u2 − u1

≥ Cf (u3, v) − Cf (u2, v)
u3 − u2

,

for any 0 ≤ u1 < u2 < u3 ≤ 1 and any v ∈ [0, 1]. For v = 0 the
above inequality is trivial, so consider only v ∈ (0, 1]. Then after
rearrangement, the above inequality is equivalent to

u2f((1 − u2)(1 − v)) − u1f((1 − u1)(1 − v))
u2 − u1

≥ u3f((1 − u3)(1 − v)) − u2f((1 − u2)(1 − v))
u3 − u2

,

(4.18)

which is to say that for any a ∈ [0, 1), the function

t 7→ tf(a(1 − t)), t ∈ [0, 1]

is concave. Letting y ↓ 0 in (4.18) also yields that t 7→ tf(1 − t) is
concave (also nondecreasing by Proposition 3(iii)), so we can allow
even a = 1.

Remark 7. Observe that if X and Y are continuous random variables
with copula Cf , then by [36, Corollary 5.2.16] we have that LCSD(X, Y )
holds if and only if Cf is TP2, and therefore necessary and sufficient
conditions on f for LCSD(X, Y ) to hold are already given by Theorem 7.
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Let us now recall some popular measures of association, namely
Kendall’s tau and Spearman’s rho. Using Proposition 3(iii) and τ and
ρ integral representations for copulas, one can show the following
result.

Proposition 7. Let (X, Y ) be a pair of continuous random variables
with copula Cf . Then

−0.8636 ≈ C1 ≤ ρ ≤ 4π2 − 39 ≈ 0.4784

and
2π2 − 21

3 + 4(J2 − J1) ≤ τ ≤ 1
3 ,

where

J1 :=
∫ 1

0

∫ 1

0
u2v2(1 − u)(1 − v)(f ′((1 − u)(1 − v)))2dudv

J2 :=
∫ 1

0

∫ 1

0
Cf (u, v)[u + v − 2uv]f ′((1 − u)(1 − v))dudv.

Proof. Due to (4.5), the upper bounds for τ and ρ follow from the known
values of the AMH(1) copula (see, e.g. [36, Exercise 5.10]), as required.

To obtain the stated lower bound for τ , we observe that by
Proposition 3(ii), f ′(t) exists for almost all t ∈ (0, 1) and hence

∂uCf (u, v) = vf((1 − u)(1 − v)) − uv(1 − v)f ′((1 − u)(1 − v)),
for all v ∈ (0, 1) and almost all u ∈ (0, 1);

∂vCf (u, v) = uf((1 − u)(1 − v)) − uv(1 − u)f ′((1 − u)(1 − v)),
for all u ∈ (0, 1) and almost all v ∈ (0, 1).

Thus for almost all (u, v) ∈ (0, 1)2,

∂uCf (u, v)∂vCf (u, v)
= uvf2((1 − u)(1 − v)) + u2v2(1 − u)(1 − v)(f ′((1 − u)(1 − v)))2

− uv[y(1 − u) + u(1 − v)]f((1 − u)(1 − v))f ′((1 − u)(1 − v)).

Now using [36, Eq. (5.1.12)], we get

τ = 1 − 4
∫ 1

0

∫ 1

0
∂uCf (u, v)∂vCf (u, v)dudv = 1 − 4(I1 + I2 + I3),
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where

I1 :=
∫ 1

0

∫ 1

0
uvf2((1 − u)(1 − v))dudv

≤
∫ 1

0

∫ 1

0

uv

(1 − (1 − u)(1 − v))2 dudv = 2 − π2

6 ,

I2 :=
∫ 1

0

∫ 1

0
u2v2(1 − u)(1 − v)(f ′((1 − u)(1 − v)))2dudv = J1,

and

I3 := −
∫ 1

0

∫ 1

0
uv[u + v − 2uv]f((1 − u)(1 − v))f ′((1 − u)(1 − v))dudv

= −
∫ 1

0

∫ 1

0
Cf (u, v)[u + v − 2uv]f ′((1 − u)(1 − v))dudv = −J2.

Thus,

τ ≥ 2π2 − 21
3 + 4(J2 − J1).

As for Spearman’s ρ lower bound, we simply use [36, Eq. (5.1.15c)] and
Proposition 3(iii) to get

ρ = 12
∫ 1

0

∫ 1

0
Cf (u, v)dudv − 3

≥ 12
∫ 1

0

∫ 1

0

uv max{1 − 2
√

(1 − u)(1 − v), 0}
(1 −

√
(1 − u)(1 − v))2 dudv − 3 ≈ −0.8636,

where the approximation was obtained by Maple 2018.1 software.

Remark 8. As can be observed from the proof of Proposition 7, the
computation of the lower bound for Kendall’s τ requires information on
the bounds of f ′. If one knows, for example, that f is increasing so
that f ′ > 0, then J2 can be dropped while J1 can be bounded above
by 5

3 − π2

6 since f ′(t) ≤ 1/(1 − t)2 due to the fact that (1 − t)f(t) is
nonincreasing on (0, 1) and f(t) ≤ 1/(1 − t). On the other hand, if
f ′ can be negative, we have no tight lower bound. Trying to exploit
the fact that δ(1 − t) = (1 − t)2f(t2) where δ(t) = Cf (t, t) and that
δ is nondecreasing and 2-Lipschitz (so that δ′(t) ∈ [0, 2] for almost all
t ∈ [0, 1]), unfortunately, gives a looser lower bound for f ′, resulting in
a worse estimate for J1 than in the case of f ′ > 0.

Also Proposition 7 shows the limitations of the copula construction
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method under investigation. Indeed, a very strong (positive) association
cannot be modelled using the considered copulas.

Tail dependence coefficients

Another interesting property of copulas is tail dependence. This
dependence can be measured in several ways, for example, by upper
and lower tail dependence parameters, which are calculated in the
following proposition.

Proposition 8. Let Cf be a copula as in (4.1). Then the upper tail
dependence coefficient of Cf is zero, i.e. λU = 0, while for the lower tail
coefficient we have

λL = lim
t↑1

(1 −
√

t)f(t) = 1
2 lim

t↑1
(1 − t)f(t) ∈ [0, 1/2],

where both limits always exist.

Proof. Notice that δCf
(s) = s2f((1 − s)2) and, therefore, using

t = (1 − s)2,

λU = 2 − lim
s↑1

1 − s2f((1 − s)2)
1 − s

= 2 − lim
t↓0

1 − (1 + t)f(t) + 2
√

tf(t)√
t

= 0,

due to (4.2). Similarly, and denoting t = (1 − s)2, we get

0 ≤ 2Cf (s, s)
s

= 2s2f((1 − s)2)
s

= 2(1 −
√

t)f(t) = 2(1 − t)f(t)
1 +

√
t

.

Now letting s ↓ 0, or equivalently, t ↑ 1, and using Proposition 3, (i) and
(iii), we see that the limit on the right-hand side exists and is equal to
limt↑1(1 − t)f(t) ∈ [0, 1], while the limit of the left-hand side is 2λL.

Example 17. In this example we show that the full range of λL, namely
[0, 1/2], can be attained. To see this, consider

fβ(t) = 1 − βt

1 − t
, t ∈ [0, 1), β ∈ [0, 1].

To check that Cfβ
(u, v) = uvfβ((1 − u)(1 − v)) is a bivariate copula

for any β ∈ [0, 1], we use Theorem 7 and show that fβ is geometrically
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Jensen convex. For this we only need to show that for any u, v ∈ [0, 1)
and β ∈ [0, 1],

(1 − β
√

uv

1 −
√

uv

)2
≤ (1 − βu)(1 − βv)

(1 − u)(1 − v) .

This amounts to checking that

0 ≤ (1 −
√

uv)2(1 − βu)(1 − βv) − (1 − β
√

uv)2(1 − u)(1 − v)
= (1 − β)(

√
u −

√
v)2(1 − βuv),

which is true for all u, v ∈ [0, 1) provided β ∈ [0, 1].
Now by Proposition 8, the lower tail dependence coefficient of Cfβ

is

λL = 1
2 lim

t↑1
(1 − t)fβ(t) = 1 − β

2 ,

which fills the whole interval [0, 1/2] as β changes in [0, 1].

Symmetry properties

The following proposition provides a characterization of symmetry of a
pair of random variables with associated copula Cf .

Proposition 9. Let (X, Y ) be a pair of random variables with associated
copula Cf .

(i) If X is symmetric about a and Y is symmetric about b, then (X, Y )
is radially symmetric about (a, b) if and only if

f(t) = 1 − αt, α ∈ [−1, 1].

(ii) If X is symmetric about a and Y is symmetric about b, then (X, Y )
is jointly symmetric about (a, b) if and only if f(t) = 1, i.e. Cf =
Π.

Proof. (i) Using [36, Theorem 2.7.3] (X, Y ) is radially symmetric if
and only if Cf satisfies

Cf (u, v) = u + v − 1 + Cf (1 − u, 1 − v), ∀x, y ∈ [0, 1].
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Recalling (4.1) and denoting t = uv and s = u + v, we get for
s 6= 1,

tf(1 − s + t) = s − 1 + (1 − s + t)f(t),

or equivalently,

f(1 − s + t) − f(t)
1 − s

= f(t) − 1
t

,

which implies that both sides must be constant in u, say, α. Hence
f(t) = 1 + αt. From Examples 10 and 14, we get that α ∈ [−1, 1].

(ii) By [36, Eq. (2.8.1)], (X, Y ) is jointly symmetric about (a, b) if and
only if, for all x, y ∈ [0, 1]

Cf (u, v) = u − Cf (u, 1 − v) and Cf (u, v) = v − Cf (1 − u, v).

Due to the symmetry of Cf , it is enough to verify the first equality,
which is equivalent to (for x 6= 0)

vf((1 − u)(1 − v)) = 1 − (1 − v)f((1 − u)v). (4.19)

Since it must be valid for all v ∈ [0, 1], take v = 1/2. Then

1
2f
(1 − u

2
)

+ 1
2f
(1 − u

2
)

= 1

and, therefore, f(t) = 1, t ∈ [0, 1/2). On the other hand, if we let
u ↓ 0 in (4.19) then

vf(1 − v) = 1 − (1 − v)f(v),

which for v = 1/2 implies f(1/2) = 1 and for v > 1/2, we get

v + (1 − v)f(v) = 1,

and therefore f(t) = 1, t ∈ [0, 1].
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5 | CONCLUSIONS

In Chapter 3 we have provided a characterization of eligible functions f

so that
Hf (C)(u, v) = C(u, v)f(C(u, v))

is a copula for any C ∈ C. Many considered examples in that chapter,
especially involving C = Π, have shown that Hf (C0) can be a copula
for a specific C0 ∈ C even if f is not eligible, i.e. f is conditionally
eligible. Therefore in Chapter 4 we focused on this particular case, i.e.
we have attempted to characterize all functions f such that Cf in Eq.
(4.1) is a bivariate copula. This class contains not only eligible
functions, but also many more conditionally eligible functions, and has
proved to be more difficult to characterize succinctly as accomplished
by Durante and coworkers in [10, 13] in the case of transformations of
the comonotonicity copula M instead of the independence copula Π
considered in this chapter. So far we have succeeded in fully
characterizing a subclass of such copulas, namely those which have the
so-called TP2 property, as well as those where the function f is twice
continuously differentiable. In general, the function f is only twice
differentiable Lebesgue almost everywhere on (0, 1), so there is a little
gap to be filled between necessary and sufficient conditions for Cf to
be a copula. An example of such a case is provided in Example 8
which contains only a piecewise smooth function f . This example can
be generalized by taking the maximum of a bigger number of
appropriate functions, thus potentially distorting differentiability at
various points on the unit interval.

Directions for further research

As mentioned in Section 3.4, extensions of the obtained results to
multivariate case is still an open problem.

Another direction for further research includes investigation of the
relationship between the function f and the “generator” function in
Cuadras terminology, given in Eq. (1.1). It would be interesting to see
what our necessary and sufficient conditions say about the canonical
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correlation function in the definition of Hθ. Also what if Q(u, v) = Π∗ is
replaced by some other function in Cuadras’ construction? This would
further enrich our knowledge about many popular copula families.

Yet another interesting direction for future investigation is the
question of finding examples and, possibly, a characterization of all
functions f such that

Cf (u, v) = uvf((1 − u)(1 − v)), (u, v) ∈ [0, 1]2

is a (proper) quasi-copula. We have tried our best to find at least one
proper quasi-copula among the functions we have considered or those in
the literature, but so far failed to find at least one of the required form.
Many examples that we tried do satisfy the boundary conditions for a
copula/quasi-copula, but failed the other defining condition for a quasi-
copula (2-increasingness on special rectangles, or 1-Lipschitz condition).
So in our opinion, the posed question deserves a deeper investigation,
and a likely separate paper, provided one succeeds in finding at least
one proper quasi-copula of the considered form. Many examples from
the literature involve, for example, a separable (wavy) perturbation of
the independence copula (i.e., uv + g1(u)g2(v) for some functions g1 and
g2, see, e.g. [19, Eq. (5)], [16, Example 3.5]), but not of the form
uvg((1 − u)(1 − v)).

Furthermore, in view of several examples considered in this thesis,
one can wonder if there is any relationship between the copulas under
investigation and copulas with quadratic or cubic sections. Do our
results generalise or are particular cases of the known results?

Indeed, many examples with polynomial sections can be obtained
from the considered construction by taking a polynomial function f , but
the list cannot be exhausted by such construction due to the necessarily
symmetric form of

Cf (u, v) = uvf((1 − u)(1 − v)).

Moreover, this construction can only give copulas with polynomial
sections that have a factor Π(x, y) = xy. Some other examples can be
obtained from other copulas C with polynomial sections and an eligible
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polynomial f as in

Hf (C)(u, v) = C(u, v)f(C(u, v))

that we considered in in Chapter 3. Again, such an Hf (C) has a special
factor in its expression.

As copulas of the form Cf are always symmetric, putting additional
restrictions of having polynomial sections would drastically reduce their
form. For example, the only copulas of the form Cf with quadratic
sections are those of the FGM family, while [36, Theorem 3.2.4] allows
for more freedom. On the other hand, if we look for copulas of the form
Cf having cubic sections, then due to symmetry, form of the copula and
degree restrictions, the only such copulas are easily seen to be of the
form considered in Example 2, namely

Cµ(u, v) = uv(1 + µ(1 − u)2(1 − v)2), µ ∈ [−1, 3].

Again, we clearly do not obtain all copulas with cubic sections as
described, e.g. in [36, Theorem 3.2.6].
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APPENDIX

For the reader’s convenience, in this appendix we recall a
characterization of absolutely continuous n-variate copulas and also
give technical details how it is applied in the setting of Theorem 10.

Let V1, . . . , Vn, n = 2, 3, . . . , denote independent random variables,
uniformly distributed on [0, 1].

Theorem 11 (Theorem 3.2, [8]). A function C : [0, 1]n → [0, 1] is an
absolutely continuous n-dimensional copula if and only if there exist
functions g̃i1,...,ic : Rc → R, 1 ≤ i1 < · · · < ic ≤ n, c = 2, . . . , n,
satisfying the conditions:

• (integrability) For any 1 ≤ i1 < · · · < ic ≤ n, c = 2, . . . , n,∫ 1

0
· · ·
∫ 1

0

∣∣g̃i1,...,ic(ti1 , . . . , tic)
∣∣dti1 · · · dtic < ∞;

• (degeneracy) For any 1 ≤ i1 < · · · < ic ≤ n, k = 1, 2, . . . , c,
c = 2, . . . , n,

E
(
g̃i1,...,ic(Vi1 , . . . , Vic) | Vi1 , . . . , Vik−1 , Vik+1 , . . . , Vic

)
=
∫ 1

0
g̃i1,...,ic(Vi1 , . . . , Vik−1 , tik

, Vik+1 , . . . , Vic)dtik
= 0 (a.s.);

• (positive definiteness)

Ũn(V1, . . . , Vn) :=
n∑

c=2

∑
1≤i1<···<ic≤n

g̃(Vi1 , . . . , Vic) ≥ −1 (a.s.)

and such that

C(u1, . . . , un) =
∫ u1

0
· · ·
∫ un

0

(
1 + Ũn(t1, . . . , tn)

)
dt1 · · · dtn.

As an application of Theorem 11 in the case n = 2, we have the
following technical, but rather straightforward result.

Lemma 3. Under the conditions of Theorem 10, that is, if f : [0, 1] →
[0, +∞] is twice differentiable, with f ′ absolutely continuous, on (0, 1)

73



such that

f(0) = 1, lim
t↓0

tf ′(t) = 0, and (1−t)f(t) ≤ 1 for all t ∈ [0, 1), (5.1)

and, in addition, for

Ĉf (x, y) = x + y − 1 + (1 − x)(1 − y)f(xy), (x, y) ∈ [0, 1]2,

one has ∂2Ĉf

∂x∂y ≥ 0 on (0, 1)2, then Ĉf is an absolutely continuous bivariate
copula.

Proof. We simply check the conditions of Theorem 11. Indeed, when
n = 2, we have c = 2 and can take

g̃1,2(x, y) = Ũ2(x, y) = ∂2Ĉf

∂x∂y
(x, y) − 1, (x, y) ∈ (0, 1)2.

Observe that

∂Ĉf

∂x
(x, y) = 1 − (1 − y)f(xy) + y(1 − x)(1 − y)f ′(t)

∣∣
t=xy

,

∂2Ĉf

∂x∂y
(x, y) = f(xy) + [1 − 2x − 2y + 3xy]f ′(t)

∣∣
t=xy

+ xy(1 − x)(1 − y)f ′′(t)
∣∣
t=xy

.

Since f is assumed twice differentiable on (0, 1), the function (x, y) 7→
∂Ĉf

∂x (x, y) is jointly continuous (hence Lebesgue measurable) on (0, 1)2,

therefore its partial derivative with respect to y, namely ∂2Ĉf

∂x∂y , is also
Lebesgue measurable on (0, 1)2 as the limit of measurable functions.

As the function f , together with its derivatives, might explode at the
boundary of the unit square (e.g. for AMH(1) copula, f(t) = 1/(1 − t),
so it and its derivatives tend to +∞ as t ↑ 1), we consider any integer
m ≥ 1 and a sequence of nonnegative restrictions

g(m)(x, y) :=

 ∂2Ĉf

∂x∂y (x, y), if (x, y) ∈ [1/m, 1 − 1/m]2;
0, if (x, y) ∈ [0, 1]2 \ [1/m, 1 − 1/m]2,

which clearly monotonically increases to ∂2Ĉf

∂x∂y pointwise on (0, 1)2.
Now to establish Lebesgue integrability of g̃1,2 on [0, 1]2, we need
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to prove Lebesgue integrability of g(m) for any m ≥ 1, then apply the
monotone convergence theorem to get the integrability of ∂2Ĉf

∂x∂y , and
finally use the triangle inequality.

As f ′ is assumed absolutely continuous on (0, 1) and since y 7→ xy is
strictly increasing for any fixed x ∈ (0, 1), one gets that y 7→ ∂Ĉf

∂x (x, y)
is also absolutely continuous on any interval [1/m, 1 − 1/m], m ≥ 1, for
any fixed x ∈ (0, 1) as compositions of absolutely continuous functions
with strictly increasing ones, as well as products and sums are again
absolutely continuous. Thus, by the fundamental theorem of calculus
for Lebesgue integrals, we have that for all 0 < 1/m ≤ y ≤ 1 − 1/m < 1

∂Ĉf

∂x
(x, y) = ∂Ĉf

∂x
(x, 1/m) +

∫ y

1/m

∂2Ĉf

∂x∂t
(x, t)dt.

Moreover, by the same theorem y 7→ ∂2Ĉf

∂x∂y (x, y) is Lebesgue integrable on
[1/m, 1−1/m] for any x ∈ (0, 1) and m ≥ 1. By Tonelli theorem then the
function (x, y) 7→ ∂2Ĉf

∂x∂y (x, y) is Lebesgue integrable on [1/m, 1 − 1/m]2

for any m ≥ 1.
Therefore, for any m ≥ 1, we obtain∫ 1

0

∫ 1

0
g(m)(x, y)dxdy

=
∫ 1−1/m

1/m

∫ 1−1/m

1/m

∂2Ĉf

∂x∂y
(x, y)dxdy

= Ĉf (1 − 1/m, 1 − 1/m) − 2Ĉf (1/m, 1 − 1/m) + Ĉf (1/m, 1/m)

=
( 1

m

)2
f
((

1 − 1
m

)2)
− 2 1

m

(
1 − 1

m

)
f
( 1

m

(
1 − 1

m

))
+
(
1 − 1

m

)2
f
(( 1

m

)2)
≤ 1

2m − 1 +
(
1 − 1

m

)2
f
(( 1

m

)2)
,

(5.2)

where to obtain the last inequality we have used the bound (see (5.1))

(1 − z)f(z) ≤ 1, z ∈ [0, 1).

Therefore, using the monotone convergence theorem, (5.2) and the
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assumption f(0) = 1,∫ 1

0

∫ 1

0
|g̃1,2(x, y)|dxdy = lim

m→∞

∫ 1

0

∫ 1

0
|g(m) − 1|(x, y)dxdy

≤ lim
m→∞

(
1 + 1

2m − 1 +
(
1 − 1

m

)2
f
(( 1

m

)2))
= 2 < ∞.

Hence g̃1,2 is Lebesgue-integrable on [0, 1]2.
As for the degeneracy condition of Theorem 11, by Lebesgue

dominated convergence theorem, for any y ∈ (0, 1), we get

∫ 1

0
g̃1,2(x, y)dx = lim

m→∞

∫ 1−1/m

1/m
g̃1,2(x, y)dx

= lim
m→∞

[∂Ĉf

∂y

(
1 − 1

m
, y
)

− ∂Ĉf

∂y

( 1
m

, y
)]

− 1

= lim
m→∞

[
− 1

m
f
(
y
(
1 − 1

m

))
+ 1

m

(
1 − 1

m

)
(1 − y)f ′

(
y
(
1 − 1

m

))
+
(
1 − 1

m

)
f
( y

m

)
− 1

m

(
1 − 1

m

)
(1 − y)f ′

( y

m

)]
− 1

= 0 + 0 + 1 − 1 − y

y
lim

m→∞

( y

m

)
f ′
( y

m

)
− 1 = 0,

(5.3)

due to condition (5.1). Plugging-in y = V2, where V2 is a uniformly
on [0, 1] distributed random variable, we check that the first of the two
required degeneracy conditions hold. The other (with y replaced by x)
holds by symmetry.

Finally, the choice of g̃1,2 clearly fulfills the required positive
definiteness condition of Theorem 11 and provides the needed
expression of Ĉf via its density.

Remark 9. Note that if Ĉf is an absolutely continuous bivariate
copula, then the second condition in (5.1) is also necessary as seen
from equation (5.3). The other two requirements of (5.1) are necessary
by Proposition 3, parts (i) and (iii).
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