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prof. habil. dr. Antanas Laurinčikas (Vilniaus universitetas, gamtos mokslai,
matematika – N 001) – nuo 2016-10-01 iki 2018-03-14



TABLE OF CONTENTS

Introduction 1
Aims and problems . . . . . . . . . . . . . . . . . . . . . . . 3
Actuality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
About the object . . . . . . . . . . . . . . . . . . . . . . . . . 5
History of the problem . . . . . . . . . . . . . . . . . . . . . 9
Defended results of the dissertation . . . . . . . . . . . . . . . 20
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Novelty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Approbation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Principal publications of the author . . . . . . . . . . . . . . . 22
Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . 23
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 24

1 Continuous Universality Theorems 25
1.1 Statements of the Theorems . . . . . . . . . . . . . . . . . . . 25
1.2 Probabilistic Model . . . . . . . . . . . . . . . . . . . . . . . 26

1.2.1 Auxiliary Lemmas . . . . . . . . . . . . . . . . . . . 27
1.2.2 Limit Theorems . . . . . . . . . . . . . . . . . . . . . 29
1.2.3 Approximation in the Mean . . . . . . . . . . . . . . 33
1.2.4 Proof of the Weak Convergence Theorem . . . . . . . 36

1.3 Proof of the Universality Theorems . . . . . . . . . . . . . . . 39

2 Discrete Universality Theorems 41
2.1 Statements of the Theorems . . . . . . . . . . . . . . . . . . . 41
2.2 Probabilistic Model . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.1 Limit Theorems . . . . . . . . . . . . . . . . . . . . . 44
2.2.2 Discrete Mean Square Estimates . . . . . . . . . . . . 46
2.2.3 Approximation in the mean . . . . . . . . . . . . . . 50
2.2.4 Proof of the Weak Convergence Theorem . . . . . . . 51

2.3 Proof of the Universality Theorems . . . . . . . . . . . . . . . 53

v



3 Joint Universality Theorems 55
3.1 Statements of the Theorems . . . . . . . . . . . . . . . . . . . 55
3.2 Probabilistic Model . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Limit Theorems . . . . . . . . . . . . . . . . . . . . . 57
3.2.2 Approximation in the Mean . . . . . . . . . . . . . . 61
3.2.3 Proof of the Weak Convergence Theorem . . . . . . . 64

3.3 Proofs of the Universality Theorems . . . . . . . . . . . . . . 67

Conclusions 69

Bibliography 71

Notation 77

vi



INTRODUCTION

The approximation of the analytic functions by simpler or more general
functions is one of the more challenging tasks for mathematicians. One
of the famous approaches proposed by S. Mergelyan states that every
function f(s) of a complex variable s = σ + it ∈ C which is continuous
on a compact subset K ⊂ C and analytic in the interior of K can be
approximated uniformly on K by polynomials in s. This and similar
findings enabled the spread of computational methods and also further
research in the field of approximation.
The last quarter of the 20th century was marked by the spread of the
notion of universality. It was noticed that there exist the so-called uni-
versal functions whose shifts can approximate any analytic function in
a given area. In 1975, S. M. Voronin proved a wondrous property of
universality for the Riemann zeta function ζ(s), which is defined, for
σ > 1, by the Dirichlet series

ζ(s) =
∞∑
m=1

1
ms

,

and is analytically continued for the whole complex plane except for
the simple pole at s = 1. He showed that any analytic function in the
complex plane can be approximated with a given accuracy by the shifts
ζ(s+ iτ), τ ∈ R. Voronin’s discovery inspired further investigations in
the field. It turned out that some other zeta and L-functions, as well
as certain classes of the Dirichlet series, such as Dirichlet L-functions,
Dedekind, Hurwitz, Lerch zeta-functions and others, are universal in
the Voronin sense.
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During several decades of research, it was shown that there exist differ-
ent types of universality, such as continuous, discrete, weighted, joint
and others, when the composition or different combinations of functions
are taken for the approximation of analytic functions. In some cases,
shifts can be taken from different types of sets, such as subsets of the
real numbers, arithmetic progressions or non-linear sequences. In each
case, there still are numerous limitations that prevent the extension of
the universality property for more general function classes. For instance,
in case of the discrete version of universality, it is still difficult to extend
the set of shifts for other than linear sets, while for the continuous cases,
the growth rate of the shifts is problematic. In case of joint universality,
the dependence of functions becomes a limitation.

In 2001, A. Laurinčikas and K.Matsumoto [28] obtained the universality
for zeta-functions ζ(s, F ) attached to certain cusp forms F . Let F (z) be
the Hecke-eigen cusp form, i.e., F is a holomorphic cusp form of weight
κ ∈ 2N and it is a simultaneous Hecke-eigen form. Let c(m),m ∈ N, be
the Fourier series coefficients of F . Then ζ(s, F ) is defined by the series

ζ(s, F ) =
∞∑
m=1

c(m)
ms

, σ > (κ+ 1)/2,

and by the analytic continuation elsewhere. The Laurinčikas-Matsumoto
theorem states that for ζ(s, F ), the continuous universality property
holds.

This thesis is devoted to an extension of the Laurinčikas-Matsumoto
theorem and different modifications of the universality theorems for
the approximation of analytic functions, taking non-linear shifts ζ(s+
iϕ(τ), F ), where function ϕ satisfies some natural growth conditions.
In particular, continuous universality, discrete universality, and joint
discrete universality cases are considered.
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Aims and problems

The aim of the thesis is to provide a generalization of the universality
theorem for the zeta function of certain cusp forms ζ(s, F ). This thesis
will address the following problems:

1. Define the set of non-linear shifts and identify conditions forwhich
continuous universality holds.

2. Define the set of non-linear shifts and identify conditions forwhich
discrete universality holds.

3. Define the set of non-linear shifts and identify conditions forwhich
joint discrete universality hods.

Actuality

Intensity and diversity in the investigation of the universality property
in recent decades prove the importance and actuality of the problem.
As the universality property is an interesting investigation topic in itself,
and as research in the field opens new methods and techniques in the
analytic number theory, it also supports the solution of other problems
in the number theory and even mathematical physics. As an example,
the universality theorem of the Voronin type can be applied in the value
distribution problems for zeta functions. Another issue associated with
universality is the hypertranscendence of the zeta function: the uni-
versality property could be used to support the statement that there is
no non-trivial algebraic differential equations having ζ(s) as a solution.
Also, some strong statements come with the functional independence
and universality properties of zeta functions: if F0, F1, ..., FN are con-
tinuous functions defined on CN+1 and at least some of them are not
identically zero, then

N∑
k=0

skFk(ζ(s), ζ ′(s), ..., ζ(n)(s)) 6= 0
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for some s ∈ C (see [53], [51]). The Riemann hypothesis, one of the
Millennium Prize Problems, must not be forgotten here, stating that
ζ(s) 6= 0 for σ > 1/2, which was found equivalent to the statement that
ζ(s) can approximate itself inside the strip 1/2 < σ < 1 in the sense of
the Voronin theorem.
From the object point of view, the zeta function of the cusp forms was
chosen as a recent object with a variety of applications. Interest in the
exploration of ζ(s, F ) (in some sources also referred as L(s, F )) was
inspired by its success in the solution of the last Fermat theorem in 1995
by A. Wiles [55], [52]. Also, it is an important object in the number
theory, as E. Hecke has shown a bijection between the modular forms
and the Dirichlet series that satisfy a functional equation of the Riemann
type [12]. In addition to that, ζ(s, F ) also plays an important role in
algebra and group theory.

Finally, the case of non-linear shifts was chosen as problematic and
requiring further investments in the investigations. A similar case of
non-linear shifts was originally proposed by Ł. Pánkowski in 2016 [47],
for the dependent L-functions, and now it is seen as one of the more
promising approaches to the generalization of universality sets and the
search for new types of universal shift sets.
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About the object

The roots of zeta functions were developed in the 19th century with the
first results of B. Riemann, inspired by L. Euler’s research in the 18th
century.

In 1737, L. Euler proved [8] that the set of prime numbers is infinite and
dense. In particular, he showed that a series

∑
p∈P

1
p

= 1
2 + 1

3 + 1
5 + ...,

where P denote the set of prime numbers, diverge. This means that the
set of prime numbers is denser than, for instance, the set of squares.
Evenmore, he assumed that prime numbers have the asymptotic density

1
log u,

where log u denote the natural logarithm. Although Euler’s results were
not strict in the sense of formulation or proof, a hundred years later
K. Gauss supported this observation. In his letter to a colleague dated
around 1849, Gauss stated that the set of prime numbers P has the
asymptotic density equal to 1/log x, i.e., if π(x) denotes the number of
prime numbers no greater than x, then the following asymptotic formula
holds

π(x)
x
∼ 1

log x, x→∞.

According to Gauss, this conjecture was also approved by the observa-
tion of the prime numbers compiled until that time by John Lambert
[19], [6]. This statement was an inspiration for further research of the
relation between π(x) and the integral of 1/log xwith numerous results
by A. M. Legendre, P. Chebyshev and others.

A completely new approach to the solution of this problem was pro-
posed by B. Riemann. In 1859, he proposed the so-called Riemann zeta
function ζ(s) as a function of a complex variable for the analysis of the
distribution of the prime numbers. In his article "Über die Anzahl der
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Primzahlen unter einer gegebenen Grösse" [50], he expressed π(x) as
a sum of infinite series with

x∫
2

du
log u as the main element. Moreover, he

proposed the function ζ(s) as an object to analyze the prime numbers.

The Riemann zeta function ζ(s) is defined, for σ > 1, by the Dirichlet
series

ζ(s) =
∞∑
m=1

1
ms

,

and by analytic continuation elsewhere, except a simple pole at s = 1
with the residue equal to 1. In Riemann’s article the functional equation
for ζ(s) was also derived by linking the Riemann zeta function with the
Euler gamma function Γ(s):

π−
s
2 Γ
(
s

2

)
ζ(s) = π−

1−s
2 Γ

(1− s
2

)
ζ(1− s).

It was also shown that ζ(s) has the so-called Euler product over primes,
i.e.,

ζ(s) =
∏
p∈P

(
1− 1

ps

)−1
.

These facts about ζ(s) were later used both for the analysis of the prime
numbers and the investigation of other properties of ζ(s), such as its
universality.

The most remarkable fact is that Riemann associated the distribution
of zeroes of the function ζ(s) with the distribution of prime numbers.
Together with that, he stated the famous Riemann hypothesis: that the
only non trivial zeroes of ζ(s) lie in the line σ = 1/2 or

ζ(s) 6= 0, σ > 1/2.

The Riemann hypothesis is still an open question. However, invest-
igations of ζ(s) have shown other interesting properties of zeta and
L-functions, some of which are discussed in this thesis. An extensive
overview of the Riemann zeta function and its relation to the distribution
of the prime numbers can be found, for instance, in [19].
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Now we will define the zeta functions of cusp forms. Let

SL(2,Z) :=
{
M =

(
a b

c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}

be the full modular group. We say that the function F (z), z ∈ C, is
a holomorphic cusp form of weight κ ∈ 2N for SL(2,Z) if F is holo-
morphic (or analytic) for Im(z) > 0, for allM ∈ SL(2,Z) satisfies the
functional equation

F (Mz) := F

(
az + b

cz + d

)
= (cz + d)κF (z), (1)

and at infinity has the Fourier series expansion

F (z) =
∞∑
m=1

c(m)e2πimz.

It is important to mention that the transformationMz on the left side of
the equality (1) allows us to narrow the domain of the function F (z) for
the analysis, as it keeps the function argument in the same domain (it
translates the elements from the upper halfplane of the complex plane
to the same halfplane).

Cusp forms are a subset of modular forms, vanishing in the infinity
(or having the Fourier series expansion with coefficient c(0) = 0). A
classical example of modular forms is the discriminant function

∆(z) = (2π)12e2πiz
∞∏
n=1

(1− e2πinz)24,

which is a cusp form of weight 12. Indeed, in the definition of the cusp
forms, we may take any natural κ, but in cases when κ is odd, modular
forms of weight κ are equal to zero. Even more, for cusp forms, it is
true that there are no cusp forms with weight less than 12 which are
not equal to zero. A good overview of the properties and role of the
modular forms can be found in [1] and [9].

The zeta-function ζ(s, F ) associated with the cusp form F (z) of weight
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κ is defined, for σ > (κ+ 1)/2, by absolutely convergent Dirichlet series

ζ(s, F ) =
∞∑
m=1

c(m)
ms

.

We assume additionally that F (z) is an eigen form of all Hecke operators

TmF (z) = mκ−1 ∑
a,d>0
ad=m

1
dκ

∑
b (mod d)

F

(
az + b

d

)
, m ∈ N.

We remind that function F is called an eigen form of an operator Tm, if
there exists λ(m) ∈ C such that TmF = λ(m)F . If F is an eigen form of
all operators Tm,m ∈ N, then it is called a simultaneous Hecke-eigen
form.

With these assumptions, we get that c(m) 6= 0, m ∈ N; therefore, F (z)
can be normalized to have the Fourier coefficient c(1) = 1.

It is proved [13] that ζ(s, F ) attached to a cusp form is analytically
continued to an entire function in the whole complex plane and also
has a Riemann-type functional equation

(2π)−sΓ(s)ζ(s, F ) = (−1)k(2π)s−2kΓ(2k − s)ζ(2k − s, F ).

Moreover, taking the simultaneous Hecke-eigen forms, we get that the
Fourier coefficients c(m) are multiplicative; therefore, for σ > (κ+ 1)/2,
the function ζ(s, F ) has the Euler product expansion over primes

ζ(s, F ) =
∏
p∈P

(
1− α(p)

ps

)−1 (
1− β(p)

ps

)−1
,

where α(p) and β(p) are conjugate complex numbers satisfying α(p) +
β(p) = c(p).

In this thesis, all the results are proved for ζ(s, F ) where F means a
normalized simultaneous Hecke-eigen cusp form.
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History of the problem

Notion of the universality

Researchers have noticed [25], [46] that the first results in the area of
universality already appeared in the beginning of the 20th century. In
1914, M. Fekete demonstrated a real power series

∞∑
k=1

akx
k

such that for every continuous function f(x) in the interval x ∈ [−1, 1]
with f(0) = 0, there exists an increasing sequence {λn, n ∈ N} ⊂ N such
that

sup
x∈[−1,1]

∣∣∣∣∣∣
λn∑
k=1

akx
k − h(x)

∣∣∣∣∣∣→ 0, n→∞.

In other words, it was demonstrated that a single object can approximate
a wide class of different objects.

The first results on universal functions belong to G. D. Birkhoff [5]. In
1929, he proved the existence of an entire function g(s) such that, for
every entire function f(s), a compact subset K ⊂ C, and an arbitrary
ε > 0, there exists a number a ∈ C such that

sup
s∈K
|g(s+ a)− f(s)|< ε.

This was the first attempt to approximate a class of analytic functions
with the shifts of one and the same function g. However, Birkhoff proved
only the existence of such a universal function, and neither an example
of such a function g nor the evaluation of the constant awas given.

The notion of universality itself is attributed to J. Marcinkiewicz (see
[38]). In 1935, he proved that there exists a continuous function g ∈
C[a, b] which can approximate every finite Lebesgue measurable func-
tion f . Let [a, b] ⊂ R and let {hn} be a fixed sequence of non-zero real
numbers converging to zero. Marcinkiewicz proved that under such
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conditions there exists a continuous function g : [a, b]→ R such that for
any Lebesgue measurable function f : [a, b]→ R, there is a subsequence
{hnk

} ⊂ {hn} for which

lim
k→∞

g(x+ hnk
)− g(x)

hnk

= f(x)

almost everywhere on [a, b]. He stated that such functions g constitute a
residual set inC[a, b]. Marcinkiewicz named the function g the universal
primitive.

In the field of functions of a complex variable, one of the most important
results is the famous S. Mergelyan theorem of 1952. It asserts [41] that
every function f(s) of a complex variable s, continuous on a compact
subset K ⊂ C and analytic in the interior of K, can be approximated
uniformly onK by a polynomial p(s) such that, for every ε > 0,

sup
s∈K
|f(s)− p(s)|< ε.

Itwas also shown that the hypotheses on f(s) andK cannot beweakened.
Therefore, the Mergelyan theorem gives necessary and sufficient condi-
tions for the approximation of analytic functions by polynomials. The
Mergelyan theoremwill be strictly formulated in Chapter 1 since it plays
a significant role in the proof of the defended results.

The first example of a universal function was only found in 1975. S. M.
Voronin proved [53] that shifts ζ(s + iτ), τ ∈ R, of the Riemann zeta
function ζ(s) can uniformly approximate any analytic function on some
compact subsets. Later, a similar property was proved for other types
of zeta and L-functions. Due to the importance of these results, the
next subsection will be dedicated to the findings of Voronin and the
evolution of the universality theorem for the zeta functions.

It is worth mentioning that the abstract definition of universality was
finally given by K.-G. Grosse-Erdmann in 1999 (see [11]). Let X and
Y be two topological spaces and Tj : X → Y , j ∈ I , be continuous
mappings. Then an element x ∈ X is called universal with respect to
the family Tj , j ∈ I , if the set Tj(X) = {Tj(x) : j ∈ I}, is dense in Y .

10



Universality of zeta-functions

By analyzing the Riemann zeta function ζ(s), Voronin noticed that with
certain shifts of one and the same function ζ(s) a whole class of analytic
functions can be approximated. He proved the following statement.

Theorem A (Original Voronin’s universality theorem). Let 0 < r < 1
4 .

Suppose that f(s) is a continuous non-vanishing function on the disc |s|6 r,
and analytic for |s|< r. Then, for every ε > 0, there exists a real number
τ = τ(ε) such that

max
|s|6r

∣∣∣∣ζ(s+ 3
4 + iτ)− f(s)

∣∣∣∣ < ε.

Roughly speaking, Voronin proved that any non-vanishing holomorphic
function can be approximated uniformly by a certain shift of ζ(s) with
a given accuracy.

Voronin’s proof non-explicitly included an even stronger fact: that the
set of τ for a given function has positive lower density, i.e., that there
are infinitely many such τ by which f(s) can be approximated. Further
analysis also generalized the disk to a more general set in which the
function is approximated. We will formulate the most recent version of
Voronin’s statement. Let D(a, b) = {s ∈ C : a < σ < b}, for a < b, a, b ∈
R, K be the class of compact subsets in the strip D(a, b) with connected
complements, andH0(K),K ∈ K, stand for the class of continuous non-
vanishing functions on K that are analytic in the interior of K. The
Lebesgue measure of a measurable set A ⊂ R is denoted by measA.

Theorem B (Modern Voronin’s universality theorem). Suppose thatK ⊂
D(1

2 , 1),K ∈ K, f(s) ∈ H0(K). Then, for every ε > 0, the inequality

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− f(s)|< ε

}
> 0

holds.

Voronin’s important discovery gained attention from the number theor-
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ists. In over four decades, various generalizations, analogies and refine-
ments of Voronin’s theorem were discussed. Already in the first decade
of the research (1975-1987), two alternative proofs for the Voronin the-
orem were constructed. In addition to the original proof proposed by S.
M. Voronin, the second was given by A. Good [10] and a third, more
probabilistic one, by B. Bagchi [2]. These three proofs are still considered
the key approaches to this theorem. At the same time, generalizations
to other classes of functions, such as Dirichlet L-functions and Dede-
kind zeta functions, as well as new types of universality were studied,
such as joint universality, strong universality, discrete universality, χ-
universality and hybrid universality. It was also proved that some zeta
functionswithout the Euler product are universal. In this case, the target
functions f(s) can be taken from a wider class, removing the require-
ment that f(s) is non-vanishing. We call this type of approximation
the strong universality property. Although many results of this initial
period remain unpublished, they laid the basis for the development of
the universality theory.

Lithuania also has a strong record in the research of universality. The
history of the research is primarily associated with Professor A. Laur-
inčikas and the appearance of his first textbook [20] in 1996, devoted to
universality and related topics. This book broke a decade of silence in
the field and not only made available the unpublished results of Bagchi,
but also paved the way for the new generation of mathematicians who
started to work in the area. This is also seen as the beginning of the
Lithuanian school.

Recently, the theory of universality for zeta and L-functions has been ex-
pansively developed by B. Bagchi, R. Garunkštis, J. Genys, S. M. Gonek,
R. Kačinskaitė, J. Kaczorowski, A. Laurinčikas, Y. Lee, R. Macaitienė,
K. Matsumoto, H. Mishou, H. Nagoshi, T. Nakamura, Ł. Pánkowski, A.
Reich, J. Sander, W. Schwarz, J. Steuding, R. Steuding, D. Šiaučiūnas and
others. Current research topics include such issues as mixed universal-
ity (simultaneous approximation by zeta functions with and without
the Euler product), composite universality (universality given by com-
position of functions), ergodic universality, weighted universality, and
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others. In addition, sets of universal shifts and other extensions of the
universality inequality are studied. An extensive overview of the results
in the analysis of universality of the zeta functions was presented by K.
Matsumoto in [39]. Some more in-depth analysis in the topic can also
be found in [51] or [25].

We will now present the universality theorems which gave ground for
the results of this thesis.

Voronin’s theorem provided the basis for research in the continuous case.
The discrete version of universality for zeta-functions was proposed by
A. Reich. Discrete universality in particular proposes the approximation
of the analytic functions with shifts from a discrete set. In [49], Reich
obtained a discrete universality theorem for Dedekind zeta-functions.
In his theorem, τ takes values from the arithmetic progression {kh : k ∈
N0}.

Let #A denote the cardinality of a set A. LetM be the number field,
ζM (s) be the associated Dedekind zeta function and dM = [M : Q].

Theorem C (Discrete universality). SupposeK is a compact subset of the
region D(1 − (max{2, dM})−1, 1) with connected complement and f(s) ∈
H0(K). Then for any real h 6= 0 and any ε > 0,

lim inf
N→∞

1
N

#
{

0 6 k 6 N : sup
s∈K
|ζM (s+ ikh)− f(s)|< ε

}
> 0.

The results of discrete universality are strongly dependent on the arith-
metic nature of the parameter h. We give several examples. R. Kačin-
skaitė proved discrete universality for the Matsumoto zeta functions
under the condition that exp(2πk/h) is irrational for any k ∈ N [16].
For the Lerch zeta function, the condition that exp(2π/h) is rational was
used [14]. The case of the periodic Hurwitz zeta function is often stud-
ied under the condition that {log(m+ α),m ∈ N0} ∪

{
2π
h

}
is linearly

independent over Q [43].

There exists a problem to prove analogues of Theorem C for the sets
different from the progression {kh : k ∈ N0}. The first attempt in this
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direction, in the case of the Riemann zeta-function, was made in [7],
where the arithmetical progression was replaced by the set {kαh : k ∈
N0}with a fixed α, 0 < α < 1. An analogue of the theorem from [7]
for the function ζ(s, F ) was given in [23]. While investigating the joint
universality of Dirichlet L-functions, Ł. Pánkowski extended [47] the
theorem of [7] for all non-integers α > 0 and more general sets of the
type {hkα logβ k : k = 2, 3, . . .}, where

β ∈

R if α /∈ Z,

(−∞, 0] ∪ (1,∞) if α ∈ N.

The thesis results are some type of generalization of shifts proposed by
Ł. Pánkowski.

Some collections of zeta and L-functions have a joint universality prop-
erty. In this case, a collection of analytic functions is simultaneously
approximated by a collection consisting of shifts of zeta or L-functions.
The first joint universality theorem was obtained also by S. M. Voronin.
In [54], he proved a joint universality theorem for Dirichlet L-functions
L(s, χ1), ..., L(s, χr) with pairwise non-equivalent Dirichlet characters
(also see [2], [17], [22]). We will formulate a modified version of this
theorem.

Theorem D (Joint universality theorem). LetK1, ...,Kr be compact sub-
sets of D(1/2, 1), and fj ∈ H0(Kj), j = 1, ..., r. Let χ1, ..., χr be pairwise
non-equivalent Dirichlet characters, and L(s, χ1), ..., L(s, χr) the correspond-
ing Dirichlet L-functions. Then, for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : sup

16j6r
sup
s∈Kj

|L(s+ iτ, χj)− fj(s)|< ε

}
> 0.

A discrete version of the joint universality theorem by using the shifts
from the arithmetic progression was proposed by B. Bagchi [2]. Later,
many results on the joint universality of zeta and L-functions were
obtained, see, for example, [21], [27], [29] and a survey paper [39].

In joint universality theorems, the zeta-functions approximating a col-
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lection of analytic functions must be independent in a certain sense. For
example, in case of DirichletL-functions, this independence is described
by the non-equivalence of characters. In case of periodic zeta-functions,
some rank conditions are applied. However, if the coefficients of Dirich-
let series defining zeta-functions are non-periodic, then the problem of
joint universality for those zeta-functions becomes very complicated.
This remark also concerns the zeta-functions of cusp forms.

Universality of ζ(s, F )

The very first results on the universality of ζ(s, F ) were discussed by
A. Kačėnas and A. Laurinčikas in 1998 [15]. However, since classical
approaches required an asymptotic formula for the sum

∑
p6x|c(p)|p−1

which is not known, the universality was proved under a very strong
assumption.

Therefore, the proof of the universality of ζ(s, F ) is often associated
with the work of A. Laurinčikas and K. Matsumoto in 2001 [28]. For
the proof of this theorem, Laurinčikas and Matsumoto invented a new
method called the positive density method, where the original estimate
for the series of primes with the known estimates for the coefficients
ĉ(p) = c(p)p−(κ−1)/2 is combined. This method was later applied to
prove the universality of other L-functions and certain Dirichlet series
with multiplicative coefficients.

A formulation of the Laurinčikas-Matsumoto universality theorem re-
quires several notations. Let K = KF be the class of compact subsets in
the strip D

(
κ
2 ,

κ+1
2

)
with connected complements, and H0(K),K ∈ K,

stand for the class of continuous non-vanishing functions onK that are
analytic in the interior ofK.

Theorem E (Laurinčikas-Matsumoto universality theorem). Suppose
thatK ∈ K, f(s) ∈ H0(K). Then, for every ε > 0, the following inequality

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ, F )− f(s)|< ε

}
> 0
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holds.

In this case, shifts τ were uniformly distributed in the interval. However,
it was shown thatmore general shifts can be considered. Generalizations
of Theorem E were given in [32] and [26]. In [32], A. Laurinčikas, K.
Matsumoto and J. Steuding considered the universality for zeta functions
of the so-called new Forms. We will revisit the definition of a new form.
Let SL(2,Z) be the full modular group, and, for q ∈ Z,

Γ0(q) :=
{
M =

(
a b

c d

)
∈ SL(2,Z) : c ≡ 0 (mod q)

}

be the Hecke subgroup. Suppose that F̂ (z) is a holomorphic function

on the upper half plane Im z > 0, for all
(
a b

c d

)
∈ Γ0(q) satisfies the

functional equation

F̂

(
az + b

cz + d

)
= (cz + d)κF̂ (z), κ ∈ 2N,

and is holomorphic and vanishing at cusps. Then F̂ (z) is called a cusp
form of weight κ and level q, and has the Fourier series expansion at
infinity. Denote the space of all cusp forms of weight κ and level q by
Sκ(Γ0(q)). For every d|q, the element of the space Sκ(Γ0(d)) can be also
considered as an element of the spaceSκ(Γ0(q)). The form F̂ ∈ Sκ(Γ0(q))
is called a new form if it is not a cusp form of level less than q, and if
it is an eigen-function of all Hecke operators. Zeta (or L-) function of
new forms is defined for the new form F̂ in the same way as the zeta
function for the cusp forms using the Fourier series coefficients. In other
words, it is a specific subset of the analyzed zeta functions.

The first discrete universality theorem for ζ(s, F̂ ) attached to a new
form F̂ (z) under a certain arithmetical hypothesis for the number hwas
proven in [33]. In the article, step hwas taken to satisfy the condition
exp(2πk/h) is irrational for any k 6= 0. In [35], this hypothesis was
removed, and the following statement was obtained.
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Theorem F. Suppose thatK ∈ K, f(s) ∈ H0(K), and h > 0 is an arbitrary
fixed number. Then, for every ε > 0,

lim inf
N→∞

1
N + 1#

{
0 6 k 6 N : sup

s∈K
|ζ(s+ ikh, F̂ )− f(s)|< ε

}
> 0.

The first result for a pair of zeta-functions of cusp forms belongs to H.
Mishou [44]. Let F1 and F2 be two different normalized Hecke-eigen
cusp forms for the full modular group SL(2,Z), of weights κ1 and κ2

and Fourier coefficients c1(m) and c2(m), respectively. Define

ĉj(m) = cj(m)m−(κj−1)/2, j = 1, 2,

and
ζ̂(s, Fj) =

∞∑
m=1

ĉj(m)
ms

, σ > 1, j = 1, 2.

Then the Mishou theorem is the following statement.

Theorem G. For j = 1, 2, letKj be a compact subset of D
(

1
2 , 1
)
, and fj(s)

be a continuous non-vanishing function onKj that is analytic in the interior
ofKj . Then, for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : sup

16j62
sup
s∈Kj

|ζ̂(s+ iτ, Fj)− fj(s)|< ε

}
> 0.

Theorem G also remains valid for pairs consisting of the Riemann
zeta-function, Rankin-Selberg L-functions and symmetric square L-
functions [44]. In [37], Y. Lee, T. Nakamura and Ł. Pánkowski proved
the joint universality theorem for an arbitrary number of automorphic
zeta-functions.

In [24], joint discrete universality theorems for zeta-functions of cusp
forms were obtained. Let F1, ..., Fr be different normalized Hecke-eigen
cusp forms of weight κ1, ..., κr, with Fourier coefficients c1(m), ..., cr(m),
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respectively, and let

ζ(s, Fj) =
∞∑
m=1

cj(m)
ms

, σ > (κj + 1)/2, j = 1, ..., r,

be the corresponding zeta-functions. For positive numbers hj , j =
1, ..., r, define

L(P;h1, ..., hr;π) = {(h1 log p : p ∈ P), ..., (hr log p : p ∈ P), 2π} .

Let Dj = D
(
κj

2 ,
κj+1

2

)
, Kj be the class of compact subset of the strip

Dj with connected complements, and let H0(Kj),Kj ∈ Kj , denote the
class of continuous non-vanishing functions onKj that are analytic in
the interior ofKj , j = 1, ..., r. Thus, the following theorem is proven in
[24].

Theorem H. Suppose that the set L(P;h1, ..., hr;π) is linearly independent
over the field of rational numbers Q. For j = 1, ..., r, let Kj ∈ Kj and
fj(s) ∈ H0(Kj). Then, for any ε > 0, the following inequality holds

lim inf
N →∞

1
N + 1#

{
0 6 k 6N : sup

16j6r
sup
s∈Kj

|ζ(s+ ikhj , Fj)−fj(s)|< ε

}
> 0.

The set L(P;h1, ..., hr;π) here is used for the definition of a certain inde-
pendence of the functions ζ(s, F1), ..., ζ(s, Fr).

In recent years, also other types of universality for the zeta functions
of cusp forms were analyzed. S. Račkauskienė in her PhD thesis [48]
obtained the mixed joint universality theorem for a zeta-function of nor-
malized Hecke-eigen cusp forms and periodic Hurwitz zeta-functions.
A. Laurinčikas, K. Matsumoto and J. Steuding in [34] introduced several
wide classes of operators Φ, including the operators from the Lipchitz
class, for which composition Φ(ζ(s, F )) is universal. A. Balčiūnas, V.
Franckevič, V. Garbaliauskienė, R. Macaitienė and A. Rimkevičienė in
[3] have proven, under a weak form of the Montgomery pair correla-
tion conjecture, that the shifts ζ(s + iykh, F ), where y1 < y2 < ... is a
sequence of imaginary parts of non-trivial zeros of the Riemann zeta
function and h > 0, can approximate a wide class of analytic functions.
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Modification of the universality theorem

Traditionally, formulations of universality theorems are stated using
the lower limit. This statement is strong enough as it already implies
that the set of the shifts of the specific zeta or L-function, used for the
approximation of the analytic functions, has a positive lower density.
The question whether the set of shifts also has a positive density, i.e.
can the lower limit be replaced with the limit, remained unsolved for
some time. In 2012, S. M. Voronin mentioned that such a replacement is
possible for almost all ε > 0 (see [30]). Just after this claim, A. Meška
and A. Laurinčikas have demonstrated the relevant results [30]. In
particular, they have shown that the following assertion for the Riemann
zeta-function is valid.

Theorem I. Suppose that K ⊂ D(1
2 , 1), K ∈ K, f(s) ∈ H0(K). Then the

limit

lim
T→∞

1
T

meas
{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− f(s)|< ε

}
> 0

exists for all but at most countably many ε > 0.

In the traditional proof of universality, Meška and Laurinčikas replaced
the equivalent of the weak convergence of probability measures in terms
of open sets with the equivalent in terms of the continuity sets which
gave the desired result. Although there are limitations of the probabil-
istic nature to prove the universality for all ε > 0, they showed that this
approach can be applied for all zeta-functions defined by the Dirichlet
series and satisfying some natural growth conditions [31], [42].

As the results demonstrated in the abovementioned papers and the PhD
thesis are claimed to be one of the first in this direction, similar results
were independently confirmed by the research of J.-L. Mauclaire [40].

In this thesis, the modified versions of the universality theorems similar
to Theorem I are proven.
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Defended results of the dissertation

This thesis is devoted to the extensions of Theorems E, F and H. In
particular, the following results are proven:

1. The continuous universality theorem of the Voronin type and its
modification for the approximation of analytic functions by the
shifts ζ(s+ iϕ(τ), F ) of zeta function attached to the normalized
simultaneous Hecke-eigen cusp form and certain functions ϕ are
true.

2. The discrete universality theorem of the Voronin type and its
modification for the approximation of analytic functions by the
shifts ζ(s+ iϕ(k), F ) of zeta function attached to the normalized
simultaneous Hecke-eigen cusp form and certain functions ϕ are
true.

3. The joint discrete universality theorem of the Voronin type and
its modification for the approximation of analytic functions by
the set of shifts ζ(s+ iϕj(k), Fj) of zeta functions attached to the
normalized simultaneous Hecke-eigen cusp forms and certain
functions ϕj are true.

Methods

The results of the thesis are theoretical. Proof of main results is based
on probabilistic methods of the analytic number theory. Similarly to
the classical cases, proof contains two main steps: limit theorem for the
function ζ(s, F ) and properties of the support of the probabilitymeasure.
The general approach combines the Euler product for ζ(s, F ), a weak
convergence of probability measures, and approximation in the mean
and the Mergelyan theorem. In discrete cases, the Weyl criterion and
Gallagher’s lemma, connecting continuous and discrete mean square
results, are applied. For proof of the modified theorems, the method
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introduced by A. Meška and A. Laurinčikas with the equivalent of weak
convergence in terms of continuity sets is applied.

Novelty

All results of the thesis are new. They were primarily presented in
publications and conferences related to this research. The results are
theoretical and can be applied for further investigation of zeta functions
of certain cusp forms as well as for other zeta functions.

Approbation

Results of this thesis were presented in the following seminar and con-
ferences:

1. A. Vaiginytė. About the universality of the zeta functions of certain
cusp forms, Seminar of the Department of Probability Theory and
Number Theory at Vilnius University, Vilnius, 2018-05-28.

2. A. Vaiginytė. On the extension of universality for zeta-function of
certain cusp forms, The 23th International Conference on Math-
ematical Modelling and Analysis (MMA2018), Sigulda, Latvia,
2018-05-31.

3. A. Vaiginytė. A class of sequences in the theory of the cusp forms,
The 59th conference of Lithuanian Mathematical Society, Kaunas,
2018-06-18.

4. A. Vaiginytė. On some properties of zeta-function of certain cusp
forms, International conference on Number Theory dedicated
to the 70th birthdays of professors Antanas Laurinčikas and Eu-
genijus Manstavičius, Palanga, 2018-09-13.
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5. A. Vaiginytė. A short review on the universality for zeta-function
of certain cusp forms, The Sixth International Conference on Ana-
lytic Number Theory and Spatial Tessellations, Kiev, Ukraine, 2018-
09-25.

6. A. Vaiginytė, A. Laurinčikas, D. Šiaučiūnas. On joint universality
of zeta-functions of certain cusp forms, conference "Value distri-
bution of zeta and L-functions and related topics", Tokyo, Japan,
2019-03-21 – 2019-03-27.
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Outline of the thesis

This thesis consists of an Introduction, three Chapters, Conclusions,
Bibliography and Notations. The Introduction contains a short review
of the actuality of the research, the aims and problems of the thesis,
and a brief overview of the methods used. Also, the history and issues
associated with the study of the universality property and the recent
results for ζ(s, F ) are presented. Themain defended results of the thesis,
supported by the novelty aspect and an overview of the introduction of
the results to the scientific community, concludes the Introduction. In
Chapter 1, theorems about continuous approximation of the analytic
functions by nonlinear shifts of ζ(s+ iϕ, F ) are stated and proven. In
Chapter 2, the discrete universality cases are presented and proven.
Chapter 3 contains the statements and proofs of the simultaneous ap-
proximation of functions by a set of functions ζ(s, Fj). The Conclusions
summarize the main results of the thesis and present open research
areas for the future.
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1 CONTINUOUS UNIVERSALITY THEOREMS

Research has shown [28] that ζ(s + iτ, F ) can approximate a given
analytic function when shifts τ are taken from a linear set. However,
it was shown that more general shifts can be considered. The aim of
this Chapter is the generalization of Laurinčikas-Matsumoto theorem
(Theorem E) while taking shifts for the universality theorem from a
certain class of functions U(τ0).

1.1 Statements of the Theorems

We say that function ϕ(τ) belongs to the class U(τ0), τ0 > 0, if the
following conditions are satisfied:

1. ϕ(τ) is a differentiable real-valued positive increasing function on
[τ0,∞);

2. ϕ′(τ) is monotonic and positive on [τ0,∞), satisfying 1
ϕ′(τ)

= o(τ),
τ →∞;

3. ϕ(2τ) max
τ6t62τ

1
ϕ′(t)

� τ, τ →∞.

LetD = D
(
κ
2 ,

κ+1
2

)
,K = KF be the class of compact subsets in the strip

D with connected complements, and H0(K),K ∈ K, stand for the class
of continuous non-vanishing functions on K that are analytic in the
interior ofK.

25



Under such conditions, the results of this Chapter are the following
statements:

Theorem 1.1.1. Suppose that ϕ(τ) ∈ U(τ0),K ∈ K, f(s) ∈ H0(K). Then,
for every ε > 0,

lim inf
T→∞

1
T − τ0

meas
{
τ ∈ [τ0, T ] : sup

s∈K
|ζ(s+ iϕ(τ), F )− f(s)|< ε

}
> 0.

As we already know from [30], [31] and [42], the lower density in
universality theorems can in some cases be replaced by the density. In
particular, Theorem 1.1.1 has the following modification, which will be
proved in this Chapter.

Theorem 1.1.2. Suppose that ϕ(τ) ∈ U(τ0),K ∈ K, f(s) ∈ H0(K). Then
the limit

lim
T→∞

1
T − τ0

meas
{
τ ∈ [τ0, T ] : sup

s∈K
|ζ(s+ iϕ(τ), F )− f(s)|< ε

}
> 0

exists for all but at most countably many ε > 0.

In the following section, the probabilistic model used for the proof of
Theorems 1.1.1 and 1.1.2 will be introduced.

1.2 Probabilistic Model

Denote by B(X) the Borel σ-field of the spaceX , and by γ the unit circle
on the complex plane. Define

Ω =
∞∏
p∈P

γp,

where γp = γ for all primes p ∈ P.

By the Tikhonov theorem with product topology and pointwise mul-
tiplication, the infinite-dimensional torus Ω is a compact topological
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Abelian group. Therefore, the probabilityHaarmeasuremH on (Ω,B(Ω))
can be defined, and so we have a probability space (Ω,B(Ω),mH). De-
note by ω(p) the projection of an element ω ∈ Ω to the coordinate space
γp, p ∈ P, and on probability space (Ω,B(Ω),mH) define the H(D)-
valued random element ζ(s, ω, F ) by the formula

ζ(s, ω, F ) =
∏
p∈P

(
1− α(p)ω(p)

ps

)−1 (
1− β(p)ω(p)

ps

)−1
.

Denote by Pζ,F the distribution of ζ(s, ω, F ), i.e.,

Pζ,F (A) = mH{ω ∈ Ω : ζ(s, ω, F ) ∈ A}, A ∈ B(H(D)),

where H(D) means the space of analytic functions on D endowed with
the topology of uniform convergence on compacta.

Proof of the universality theorem is based on the weak convergence for

PT,F (A) = 1
T − τ0

meas
{
τ ∈ [τ0, T ] : ζ(s+ iϕ(τ), F ) ∈ A

}
,

where A ∈ B(H(D)).

1.2.1 Auxiliary Lemmas

For convenience, we remind the definition of weak convergence and
some related theorems from the measure theory.

Let Pn, n ∈ N, and P be the probability measures on the probability
space (X,B(X)). We say that Pn, n→∞, converges weakly to P if, for
every real continuous bounded function g on X ,

lim
n→∞

∫
X

gdPn =
∫
X

gdP.

It is known that several equivalents of weak convergence exist. Here we
state part of Theorem 2.1 from [4] that will be used for the proofs.
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Lemma 1.2.1 (Equivalents of the weak convergence). Let Pn, n ∈ N, and
P be the probability measures on (X,B(X)). The following statements are
then equivalent:

1. Pn converges weakly to P as n→∞;

2. For every open set G ⊂ X ,

lim inf
n→∞

Pn(G) > P (G);

3. For every continuity set A of the measure P (A is a continuity set of P
if P (∂A) = 0, where ∂A is the boundary of A),

lim
n→∞

Pn(A) = P (A).

Let S denote a metric space. Subclass A ⊂ S is called a separating class
if two probability measures that agree on A necessarily agree also on
the whole S. In such case, the values of P (A) for A ∈ A are enough to
separate measure P from all the other probability measures on S. A is a
separating class if it is a π-system (closed under the formation of finite
intersections), generating the σ-field of S.

Lemma 1.2.2 (Theorem 2.3 of [4]). Suppose that AP is a π-system and
S is a separable space and such that for every x ∈ S and ε > 0, there is
A ∈ AP which is contained in a ball with center in x and radius equal to ε. If
Pn(A) −−−→

n→∞
P (A) for every A ∈ AP , then Pn weakly converges to P .

Now letP be the family of probability measures in space (S,B(S)); then,
the following statement is true.

Lemma 1.2.3 (Prokhorov theorem). IfP is tight then it is relatively compact
(has a weakly convergent subsequence).

The proof can be found in, for instance, Theorem 5.1 [4].

Let S0 denote the ball σ-field of S, i.e., the one generated by the open
balls. Then the following statement is true.
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Lemma 1.2.4 (Theorem 6.1 in [4]). Suppose P is a probability measure
on (S, S0), A ∈ S0 is an open set, and ε > 0. Then there exists a closed set
H ∈ S0 and an open set G ∈ S0 such that H ⊂ A ⊂ G and P (G \H) < ε.

We will also use this property of the continuous functions.

Lemma 1.2.5. Suppose that function g : S1 → S2 is continuous. Then g
is also (B(S1),B(S2))-measurable (preimage of any set in B(S2) belong to
B(S1)).

Before the proof of the main theorems, here we remind the famous
Mergelyan theorem on the approximation of analytic functions by poly-
nomials.

Lemma 1.2.6 (Mergelyan theorem). LetK be a compact subset of the com-
plex plane C with a connected complement, and f is a function continuous on
K and holomorphic at the interior ofK. Then, for every ε > 0, there exists a
polynomial p = p(s) such that

sup
s∈K
|f(s)− p(s)|< ε.

In other words, every f can be approximated uniformly onK by poly-
nomials. Proof of the lemma can be found in [41].

1.2.2 Limit Theorems

Now we state the main theorem that will lead to the proof of Theorem
1.1.1.

Theorem 1.2.7. Suppose ϕ(τ) ∈ U(τ0). Then PT,F converges weakly to Pζ,F
as T →∞.Moreover, the support of Pζ,F is the set

SF = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}.
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We divide the proof of Theorem 1.2.7 to several lemmas. The first of
them is a limit theorem on the torus Ω. For the proof of this lemma,
properties of the function ϕ(τ) are needed.

For A ∈ B(Ω), define

QT (A) = 1
T − τ0

meas
{
τ ∈ [τ0, T ] : (p−iϕ(τ) : p ∈ P) ∈ A

}
.

Lemma 1.2.8. Suppose ϕ(τ) ∈ U(τ0). ThenQT converges weakly to the Haar
measuremH as T →∞.

Proof. For the proof, we will apply the Fourier transform method.

It is known that the dual group of Ω is isomorphic to the group

D = ⊕
p∈P

Zp,

where Zp = Z for all p ∈ P. An element k = {kp : kp ∈ Z, p ∈ P} of D,
where only a finite number of integers kp are distinct from zero, acts on
Ω by

ω → ωk =
∏′

p∈P
ωkp(p)

where the sign " ′ " means that only a finite number of integers kp are
distinct from zero.

Let gT (k), k = (kp : kp ∈ Z, p ∈ P), be the Fourier transform of QT ,
i.e.,

gT (k) =
∫
Ω

∏′

p∈P
ωkp(p)

 dQT .
Thus, from the definition of QT ,we have
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(1.1)
gT (k) = 1

T − τ0

T∫
τ0

∏′

p∈P
p−ikpϕ(τ)

 dτ
= 1
T − τ0

T∫
τ0

exp

−iϕ(τ)
∑′

p∈P
kp log p

 dτ.
Obviously,

gT (0) = 1. (1.2)

Since the elements of the set {log p : p ∈ P} are linearly independent
over the field of rational numbers Q,we have that

a :=
∑′

p∈P
kp log p 6= 0

for all k 6= 0.

Suppose that ϕ′(τ) is decreasing. Then, 1
ϕ′(τ)

is increasing, and, there-
fore,

T∫
τ0

exp {−iaϕ(τ)} dτ =
T∫
τ0

cos(aϕ(τ))dτ − i
T∫
τ0

sin(aϕ(τ))dτ. (1.3)

Thus, by the mean value theorem,

T∫
τ0

cos(aϕ(τ))dτ = 1
a

T∫
τ0

aϕ′(τ) cos(aϕ(τ))
ϕ′(τ)

dτ

= 1
aϕ′(T )

T∫
ξ

aϕ′(τ) cos(aϕ(τ))dτ = 1
aϕ′(T )

T∫
ξ

d sin(aϕ(τ)) = o(T ),

as T → ∞ and τ0 6 ξ 6 T, is true for the second integral in (1.3).
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Therefore, by (1.3),

T∫
τ0

exp {−iaϕ(τ)} dτ = o(T ), as T →∞. (1.4)

Similarly, if ϕ′(τ) is increasing, then

T∫
τ0

exp {−iaϕ(τ)} dτ � 1
|a|ϕ(τ0) . (1.5)

From (1.4) and (1.5) together with (1.1), we get that

lim
T→∞

gT (k) = 0,

whenever k 6= 0. Therefore, with respect to (1.2),

lim
T→∞

gT (k) =

1 if k = 0,
0 if k 6= 0.

(1.6)

On the right-hand side of the equality we see the Fourier transformation
of the Haar measure mH . Therefore, the lemma is proved using the
continuity theorem for probability measures on compact groups.

Lemma 1.2.8 implies a limit theorem for probability measures on the
space of analytic functions defined by means of absolutely convergent
Dirichlet series. This theorem is quite standard but plays an important
role in further proof.

Now, some absolutely convergent Dirichlet series will be analysed. Let
θ > 1

2 be a fixed number, andm,n ∈ N.We define series

ζn(s, F ) =
∞∑
m=1

c(m)vn(m)
ms

and
ζn(s, ω, F ) =

∞∑
m=1

c(m)ω(m)vn(m)
ms

,
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where

vn(m) = exp
{
−
(
m

n

)θ}
and ω(m) =

∏
pl|m
pl+1-m

ωl(p), m ∈ N.

The latter series are absolutely convergent for σ > κ/2 [28]. Define the
function un,F : Ω→ H(D) by the formula un,F (ω) = ζn(s, ω, F ). Due
to the absolute convergence of ζn(s, ω, F ), we have that the function
un,F (ω) is continuous and (B(Ω),B(H(D)))-measurable. Therefore, the
Haar measuremH on (Ω,B(Ω)) induces the unique probability measure
P̂n,F on (H(D),B(H(D))) defined by

P̂n,F (A) = mHu
−1
n,F (A) = mH(u−1

n,FA), A ∈ B(H(D)).

Lemma 1.2.9. Suppose ϕ(τ) ∈ U(τ0). Then

PT,n,F := 1
T − τ0

meas
{
τ ∈ [τ0, T ] : ζn(s+iϕ(τ), F ) ∈ A

}
, A ∈ B(H(D))),

converges weakly to P̂n,F as T →∞.

Proof of Lemma 1.2.9 comes with standard arguments from Lemma
1.2.8 and the continuity of the function un,F .

1.2.3 Approximation in the Mean

Our aim is to prove that PT,F converges weakly to the limit measure
PF of the measure P̂n,F , as n → ∞. For the proof of Theorem 1.2.7,
approximation in the mean of ζ(s, F ) by ζn(s, F ) is used.

Lemma 1.2.10. Suppose that ϕ(τ) ∈ U(τ0), and σ, κ/2 < σ < (κ + 1)/2,
is fixed. Then for all t ∈ R

T∫
τ0

|ζ(σ + it+ iϕ(τ), F )|2dτ � T (1 + |t|).
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Proof. It is known that, for fixed σ, κ/2 < σ < (κ+ 1)/2,we have

T∫
τ0

|ζ(σ + it, F )|2dt� T. (1.7)

For X > τ0,we get

2X∫
X

|ζ(σ + it+ iϕ(τ), F )|2dτ =
2X∫
X

1
ϕ′(τ)

|ζ(σ + it+ iϕ(τ), F )|2dϕ(τ)

� max
X6τ62X

1
ϕ′(τ)

2X∫
X

d

 |t|+ϕ(τ)∫
0

|ζ(σ + iu, F )|2du


= max

X6τ62X

1
ϕ′(τ)

 |t|+ϕ(τ)∫
0

|ζ(σ + iu, F )|2du

 ∣∣∣∣∣
2X

X

.

Consequently,

|t|+ϕ(τ)∫
0

|ζ(σ + iu, F )|2du
∣∣∣2X
X
�σ |t|+ϕ(2X),

and thus,

2X∫
X

|ζ(σ + it+ iϕ(τ), F )|2dτ � (|t|+ϕ(2X)) max
X6τ62X

1
ϕ′(τ)

� X + |t| max
X6τ62X

1
ϕ′(τ)

� X(1 + |t|).

TakingX = 2−k−1T and summing over k = 0, 1, .. prove the lemma.

Now we can approximate ζ(s, F ) by ζn(s, F ) in the mean. For g1, g2 ∈
H(D), take

ρ(g1, g2) =
∞∑
l=1

2−l
sups∈Kl

|g1(s)− g2(s)|
1 + sups∈Kl

|g1(s)− g2(s)| , (1.8)
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where {Kl : l ∈ N} ⊂ D is a sequence of compact subsets such that

D =
∞⋃
l=1

Kl,

Kl ⊂ Kl+1 for all l ∈ N, and ifK ⊂ D is a compact subset, thenK ⊂ Kl

for some l ∈ N. Then ρ is the metric in H(D), inducing its topology of
uniform convergence on compacta.

Lemma 1.2.11. Suppose that ϕ(τ) ∈ U(τ0). Then

lim
n→∞

lim sup
T→∞

1
T − τ0

T∫
τ0

ρ
(
ζ(s+ iϕ(τ), F ), ζn(s+ iϕ(τ), F )

)
dτ = 0.

Proof. Let θ be as in the definition of vn(m), and

ln(s) = s

θ
Γ
(s
θ

)
ns, n ∈ N,

where Γ(s) denotes the Euler gamma-function. Then, as we know from
[28], the function ζn(s, F ) has the representation

ζn(s, F ) = 1
2πi

θ+i∞∫
θ−i∞

ζ(s+ z, F )ln(z)dz
z
, σ > κ/2. (1.9)

Let K be an arbitrary compact subset of D. Then, from the residue
theorem and the above equality, we get

1
T − τ0

T∫
τ0

sup
s∈K

(
ζ(s+ iϕ(τ), F ), ζn(s+ iϕ(τ), F )

)
dτ

�
∞∫
−∞

|ln(σ̂ + iu)|
(

1
T − τ0

T∫
τ0

|ζ(s+ it+ iu+ iϕ(τ), F )|dτ
)
du,

as T → ∞, where σ̂ < 0, κ
2 < σ < κ+1

2 , and t is bounded by a
constant depending on K. Lemma 1.2.10 implies that, with t ∈ R, for
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κ
2 < σ < κ+1

2 ,

T∫
τ0

|ζ(s+ it+ iϕ(τ), F )|dτ �
(
T

T∫
τ0

|ζ(s+ iϕ(τ), F )|dτ
)1/2

�σ T (1 + |t|).

Therefore,

1
T − τ0

T∫
τ0

sup
s ∈K

(
ζ(s+ iϕ(τ), F ), ζn(s+ iϕ(τ), F )

)
dτ

�σ,K

∞∫
−∞

|ln(σ̂ + iu)|(1 + |t|),

as T →∞. Hence,

lim
n→∞

lim sup
T→∞

1
T − τ0

T∫
τ0

sup
s∈K

(
ζ(s+ iϕ(τ), F ), ζn(s+ iϕ(τ), F )

)
dτ = 0.

So, the lemma follows from the definition of the metric ρ.

1.2.4 Proof of the Weak Convergence Theorem

Proof of Theorem 1.2.7. Let θ be a random variable uniformly distributed
on [0, 1] and defined on a certain probability space with measure µ.
Define the H(D)-valued random element XT,n,F by the formula

XT,n,F = XT,n,F (s) = ζn(s+ iϕ(θT ), F ).

Then the assertion of Lemma 1.2.9 can be written as

XT,n,F
D−−−→

T→∞
X̂n,F , (1.10)

where D−→means the convergence in distribution, and X̂n,F is theH(D)-
valued random element with the distribution P̂n,F . Here P̂n,F is the
same limit probability measure as in Lemma 1.2.9.
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Now we will prove that the family {P̂n,F : n ∈ N} is tight, i.e., for
every ε > 0, there exists a compact set K = K(ε) ⊂ H(D) such that
X̂n,F (K) > 1− ε for all n ∈ N.We will apply the method used in [20].

LetK ⊂ D be a compact set. Then, by the integral Cauchy formula,

sup
s∈K
|ζ(s+ iϕ(τ), F )|� 1

δK

∫
LK

|ζ(z + iϕ(τ), F )||dz|,

where LK is a simple closed contour lying in D and enclosing the setK,
and δK is the distance of LK from the setK. Hence,

T∫
τ0

sup
s ∈K
|ζ(s+ iϕ(τ), F )|dτ

� 1
δK

∫
LK

|dz|
T∫
τ0

|ζ(Re(z) + Im(z) + iϕ(τ), F )|dτ �K T.

This with Lemma 1.2.11 show that

sup
n∈N

lim sup
T→∞

1
T − τ0

T∫
τ0

sup
s∈Kl

|ζn(s+ iϕ(τ), F )|dτ 6 Cl <∞, (1.11)

where {Kl : l ∈ N} is the sequence of compact subsets of D from the
definition of metric ρ.

Now let ε be an arbitrary positive number, andMl = Ml(ε) = Cl2lε−1.

Then, from (1.11), we have

sup
n ∈N

lim sup
T →∞

µ{ sup
s∈Kl

|XT,n,F (s)|> ε}

6 sup
n∈N

lim sup
T→∞

1
T − τ0

T∫
τ0

sup
s∈Kl

|ζn(s+ iϕ(τ), F )|dτ 6
ε

2 ,

and, by (1.10),
µ{ sup

s∈Kl

|Xn,F (s)|> ε} 6 ε

2l (1.12)
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for all n ∈ N. Define the set

K = K(ε) = {g ∈ H(D) : sup
s∈Kl

|g(s)|6Ml, l ∈ N}.

ThenK is a compact set in H(D), and, by (1.12),

µ{Xn,F ∈ K} > 1− ε

for all n ∈ N, or, by definition of Xn,F ,

P̂n,F (K) > 1− ε

for all n ∈ N; thus, the family {P̂n,F : n ∈ N} is tight. Therefore, by
the Prokhorov theorem (see Lemma 1.2.3), it is relatively compact, i.e.,
every sequence of {P̂n,F } contains a weakly convergent subsequence.
Thus, there exists {P̂nr,F } ⊂ {P̂n,F } such that {P̂nr,F } converges weakly
to a certain probability measure PF on (H(D),B(H(D))), as r →∞. In
terms of convergence in distribution, we say

X̂nr,F
D−−−→

r→∞
PF . (1.13)

Define one more H(D)-valued random element

XT,F = XT,F (s) = ζ(s+ ϕ(θT ), F ).

Then, in view of Lemma 1.2.11, for every ε > 0,

lim
n→∞

lim sup
T →∞

µ{ρ(XT,F , XT,n,F |> ε}

= lim
n→∞

lim sup
T→∞

1
T − τ0

meas
{
τ ∈ [τ0, T ] : ρ(ζ(s+ iϕ(τ), F ),

ζn(s+ iϕ(τ), F )) > ε
}

6 lim
n→∞

lim sup
T→∞

1
(T − τ0)ε

T∫
τ0

ρ(ζ(s+ iϕ(τ), F ), ζn(s+ iϕ(τ), F ))dτ = 0.

This, together with (1.10) and (1.13), show that all hypotheses of The-
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orem 4.2 of [4] are fulfilled, and therefore,

XT,F
D−−−→

T→∞
PF ,

or PT,F converges weakly to the limit measure PF of P̂n,F , as T →∞.

The final step is to identify the measure PF . For this, we will use simple
observation. It is known [7], [20] that

1
T

meas
{
τ ∈ [0, T ] : ζ(s+ iτ, F ) ∈ A

}
, A ∈ B(H(D))),

as T →∞, converges weakly to the limit measure PF of P̂n,F , and that
PF = Pζ,F .Moreover, the support of Pζ,F is the set SF . Therefore, PT,F
also converges weakly to Pζ,F as T →∞.

1.3 Proof of the Universality Theorems

Proof of Theorem 1.1.1. Define the set

Gε =
{
g ∈ H(D) : sup

s∈K
|g(s)− ep(s)|< ε

2

}
,

where p(s) is a polynomial satisfying

sup
s∈K
|f(s)− ep(s)|< ε

2 . (1.14)

The existence of p(s) follows from the Mergelyan theorem (Lemma
1.2.6).

By the second part of Theorem 1.2.7, the function ep(s) belongs to the
support of the measure Pζ,F . Therefore,

Pζ,F (Gε) > 0. (1.15)

Since Gε is an open set, by the first part of Theorem 1.2.7 and the equi-
valent of weak convergence of probability measures in terms of open
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sets (Lemma 1.2.1), we have that

lim inf
T→∞

PT,F (Gε) > Pζ,F (Gε).

This, the definition of PT,F and inequality (1.15) give

lim inf
T→∞

1
T − τ0

meas
{
τ ∈ [τ0, T ] : sup

s∈K
|ζ(s+ iϕ(τ), F )− ep(s)| < ε

2
}
> 0.

This together with (1.14) proves the theorem.

Proof of Theorem 1.1.2. Define the set

Ĝε =
{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)|< ε

}
.

Then the boundary ∂Ĝε of Ĝε lies in the set{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)|= ε

}
.

Therefore, ∂Ĝε1 ∩ ∂Ĝε2 = ∅ for ε1 6= ε2, ε1, ε2 > 0. Hence, for at most
countably many ε > 0, the sets ∂Ĝε have a positive Pζ,F measure. Using
Theorem 1.2.7 and the equivalent of the weak convergence of probability
measures in terms of continuity sets (Lemma 1.2.1), we obtain that

lim
T→∞

PT,F (Ĝε) = Pζ,F (Ĝε) (1.16)

for all but at most countably many ε > 0. Let Gε be from the proof of
Theorem 1.1.1. Then, in view of (1.14), we obtain that Gε ⊂ Ĝε, and
thus, by (1.15), Pζ,F (Ĝε) > 0. This, the definition of PT,F , and (1.16)
prove the theorem.
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2 DISCRETE UNIVERSALITY THEOREMS

From Theorem F we have seen that discrete shifts of zeta functions can
also be used for the approximation of analytic functions. The aim of
this Chapter is to prove a discrete universality theorem for the function
ζ(s, F ) when τ in ζ(s+ iτ, F ) runs over some general discrete sequence
of real numbers. The statement of this Chapter contain the corrected
results presented in [36].

2.1 Statements of the Theorems

For the definition of a class of sequences for τ , we will use similar
conditions as inChapter 1 and the notion of uniformdistributionmodulo
1. Let {u} denote the fractional part of u ∈ R, and let χI be the indicator
function of the set I . We remind that the sequence {xk : k ∈ N} ⊂ R is
called uniformly distributed modulo 1 if, for every interval I = [a, b) ⊂
[0, 1),

lim
n→∞

1
n

n∑
k=1

χI({xk}) = b− a.

Let k0 ∈ N. We say that a function ϕ ∈ U(k0), k0 > 0, if the following
conditions are satisfied:

1. ϕ(τ) is a differentiable real-valued positive increasing function on
[k0 − 1

2 ,∞);
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2. ϕ′(τ) satisfy the estimate

ϕ(2τ)
(

max
τ6t62τ

1
ϕ′(t)

+ max
τ6t62τ

ϕ′(t)
)
� τ, τ →∞;

3. The sequence {aϕ(k) : k > k0} ⊂ R with every a ∈ R \ {0} is
uniformly distributed modulo 1.

Let D = DF = D
(
κ
2 ,

κ+1
2

)
, K = KF be the class of compact subsets in

the strip D with connected complements, and H0(K),K ∈ K, stand for
the class of continuous non-vanishing functions onK that are analytic
in the interior ofK.

Under these conditions, the main results of this Chapter are the follow-
ing two theorems.

Theorem 2.1.1. Suppose that ϕ ∈ U(k0), K ∈ KF , ∈ H0(K). Then, for
every ε > 0,

lim inf
N→∞

1
N − k0 + 1#

{
k0 6 k 6 N : sup

s∈K
|ζ(s+ iϕ(k), F )−f(s)|< ε

}
> 0.

Similarly to the continuous case, Theorem 2.1.1 has the following modi-
fication which will be proved in this Chapter.

Theorem 2.1.2. Suppose that ϕ ∈ U(k0), K ∈ KF , ∈ H0(K). Then the
limit

lim
N→∞

1
N − k0 + 1#

{
k0 6 k 6 N : sup

s∈K
|ζ(s+ iϕ(k), F )− f(s)|< ε

}
> 0

exists for all but at most countably many ε > 0.
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2.2 Probabilistic Model

We will follow a similar approach as in the continuous case. As in
Chapter 1,

Ω =
∞∏
p∈P

γp

stands for a torus defined by the product of complex unit circles γp,
B(Ω) is the Borel σ-field of the space Ω, and (Ω,B(Ω),mH) stands for a
probability space with the Haar measuremH .

Again, denote by ω(p) the projection of an element ω ∈ Ω to the coordin-
ate space γp, p ∈ P, and on the probability space (Ω,B(Ω),mH) define
the H(D)-valued random element ζ(s, ω, F ) by the formula

ζ(s, ω, F ) =
∏
p∈P

(
1− α(p)ω(p)

ps

)−1 (
1− β(p)ω(p)

ps

)−1
.

Denote by Pζ,F , the distribution of ζ(s, ω, F ), i.e.,

Pζ,F (A) = mH{ω ∈ Ω : ζ(s, ω, F ) ∈ A}, A ∈ B(H(D)),

where H(D) means the space of analytic functions on D endowed with
the topology of uniform convergence on compacta. As we know from
Theorem 1.2.7, the support of Pζ,F is the set

SF = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}.

The main result of this section is the weak convergence for the following
measure, as N →∞:

PN,F (A) = 1
N − k0 + 1#

{
k0 6 k 6 N : ζ(s+ iϕ(k), F ) ∈ A

}
,

where A ∈ B(H(D)).

Theorem 2.2.1. Suppose that ϕ(k) ∈ U(k0). Then PN,F converges weakly to
Pζ,F , as N →∞.
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We separate the proof of Theorem 2.2.1 into several lemmas. We start
with the Weyl criterion on distribution modulo 1 that will noticeably
facilitate our proof.

2.2.1 Limit Theorems

Lemma 2.2.2 (Weyl criterion). A sequence {xk : k ∈ N} ⊂ R is uniformly
distributed modulo 1 if, and only if, for allm ∈ Z \ {0} ,

lim
n→∞

1
n

n∑
k=1

e2πimxk = 0.

Proof of the lemma can be found, for example, in [18].

For A ∈ B(Ω), define

QN (A) = 1
N − k0 + 1#

{
k0 6 k 6 N : (p−iϕ(k) : p ∈ P) ∈ A

}
.

Lemma 2.2.3. Suppose ϕ ∈ U(k0). Then QN converges weakly to the Haar
measuremH as N →∞.

Proof. For the proof, we will apply the Fourier transform method. The
Fourier transform gN (k) of QN with k = {kp : kp ∈ Z, p ∈ P} is given by
the formula

gN (k) =
∫
Ω

∏′

p∈P
ωkp(p)

 dQN ,
where the sign " ′ " means that only a finite number of kp are distinct
from zero. Thus, from the definition of QN ,we have

(2.1)
gN (k) = 1

N − k0 + 1

N∑
k=k0

∏′

p∈P
p−ikpϕ(k)

= 1
N − k0 + 1

N∑
k=k0

exp

−iϕ(k)
∑′

p∈P
kp log p

.
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Obviously,
gN (0) = 1. (2.2)

Since the set {log p : p ∈ P} is linearly independent over the field of
rational numbers Q, we have that

∑′
p∈P

kp log p 6= 0 for all k 6= 0.
Therefore, since ϕ ∈ U(k0), in the case k 6= 0, the sequenceϕ(k)

2π
∑′

p∈P
kp log p : k > k0


is uniformly distributed modulo 1. Thus, by the Weyl criterion (Lemma
2.2.2), withm = −1 and (2.1), we find that, for k 6= 0,

lim
N→∞

gN (k) = 0.

This and (2.2) show that gN (k), as N → ∞, converges to the Fourier
transform of theHaarmeasuremH (see equality (1.6) in Chapter 1), and
the lemma is the consequence of a continuity theorem for probability
measures on compact groups.

Lemma 2.2.3 implies a limit theorem in the space of analytic functions
for a certain absolutely convergent Dirichlet series. This theorem is very
important to proving Theorem 2.2.1.

Similarly to the continuous case, we extend the functions ω(p), p ∈ P, to
the set N by

ω(m) =
∏
pl|m
pl+1-m

ωl(p), m ∈ N.

Let θ > 1
2 be a fixed number, andm,n ∈ N.We define the series

ζn(s, F ) =
∞∑
m=1

c(m)vn(m)
ms

and ζn(s, ω, F ) =
∞∑
m=1

c(m)ω(m)vn(m)
ms

,

where

vn(m) = exp
{
−
(
m

n

)θ}
.
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The latter series are absolutely convergent for σ > κ/2. Define the
function un,F : Ω→ H(D) by the formula un,F (ω) = ζn(s, ω, F ). Due to
the absolute convergence of ζn(s, ω, F ),wehave that the functionun,F (ω)
is continuous and (B(Ω),B(H(D)))-measurable (see Lemma 1.2.5 in
Chapter 1). Therefore, the Haar measuremH on (Ω,B(Ω)) induces the
unique probability measure P̂n,F on (H(D),B(H(D))) defined by

P̂n,F (A) = mHu
−1
n,F (A) = mH(u−1

n,FA), A ∈ B(H(D)).

For A ∈ B(H(D)), define

PN,n,F (A) = 1
N − k0 + 1#

{
k0 6 k 6 N : ζn(s+ iϕ(k), F )) ∈ A

}
.

The Prokhorov theorem (see Lemma 1.2.3), Lemma 2.2.3 and the above
remarks lead to the following.

Lemma 2.2.4. Suppose ϕ ∈ U(k0). Then PN,n,F converges weakly to P̂n,F
as N →∞.

2.2.2 Discrete Mean Square Estimates

Our next aim is to prove thatPN,F converges weakly to the limit measure
PF of the measure P̂n,F , as n→∞. For this, approximation in the mean
of ζ(s, F ) by ζn(s, F ) is used. Thus, the following estimate of the mean
square is needed.

Lemma 2.2.5. Suppose ϕ ∈ U(k0), and σ, κ/2 < σ < (κ + 1)/2, is fixed.
Then, for all t ∈ R,

T∫
k0−1/2

|ζ(σ + it+ iϕ(τ), F )|2dτ � T (1 + |t|).

Proof. It is known (see (1.7)) that, for fixed σ, κ/2 < σ < (κ+ 1)/2, we
have

T∫
τ0

|ζ(σ + it, F )|2dt� T.
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Let X > 1. Since the function ϕ is increasing and continuously differen-
tiable, we have that

2X∫
X

|ζ(σ + it+ iϕ(τ), F )|2dτ =
2X∫
X

1
ϕ′(τ)

|ζ(σ + it+ iϕ(τ), F )|2dϕ(τ)

� max
X6τ62X

1
ϕ′(τ)

2X∫
X

d

 |t|+ϕ(τ)∫
0

|ζ(σ + iu, F )|2du


= max

X6τ62X

1
ϕ′(τ)

 |t|+ϕ(τ)∫
0

|ζ(σ + iu, F )|2du

 ∣∣∣∣∣
2X

X

.

By estimate (1.7), we have

|t|+ϕ(τ)∫
0

|ζ(σ + iu, F )|2du
∣∣∣2X
X
�σ |t|+ϕ(2X),

and thus,

2X∫
X

|ζ(σ + it+ iϕ(τ), F )|2dτ � (|t|+ϕ(2X)) max
X6τ62X

1
ϕ′(τ)

� X + |t| max
X6τ62X

1
ϕ′(τ)

� X(1 + |t|).

Taking X = 2−k−1T and summing over k = 0, 1, .. proves the lemma.

For the estimate of the discrete mean square

IN (σ, t, F ) =
N∑

k=k0

|ζ(σ + it+ iϕ(k), F )|2,

we need to apply both Lemma 2.2.5 and Gallagher’s lemma, which
connects the continuous and discrete mean squares of some functions.

For convenience, we state the Gallagher’s lemma (see Lemma 1.4 in
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[45]).

Lemma 2.2.6 (Gallagher’s lemma). Suppose that T0, T > δ > 0 are real
numbers and T 6= ∅ is a finite set in the interval [T0 + δ/2, T0 + T − δ/2].
Define

Nδ(x) =
∑
t∈T
|t−x|<δ

1.

Let S(x) be a complex-valued continuous function on [T0, T0 + T ] with a
continuous derivative on (T0, T0 + T ). Then

∑
t∈T

N−1
δ (t)|S(t)|26 1

δ

T0+T∫
T0

|S(x)|2dx+

 T0+T∫
T0

|S(x)|2dx
T0+T∫
T0

|S′(x)|2dx


1/2

.

Lemma 2.2.7. Suppose ϕ ∈ U(k0), and σ, κ/2 < σ < (κ + 1)/2, is fixed.
Then for all t ∈ R

IN (σ, t, F )� N(1 + |t|).

Proof. For proof of the lemma, we will apply Lemma 2.2.5 together with
the Cauchy integral formula for the derivative of ζ(s, F ).

We take a circle L ⊂ D with a center σ. In view of the Cauchy integral
formula,

ζ ′(σ + it+ iϕ(τ), F ) = 1
2πi

∫
L

ζ(z + it+ iϕ(τ), F )
(z − σ)2 dz.

Accordingly,

| ζ ′(σ + it+ iϕ(τ), F )|2 = 1
4π2

∣∣∣∣∣∣
∫
L

ζ(z + it+ iϕ(τ), F )
(z − σ)2 dz

∣∣∣∣∣∣
2

�
∫
L

|dz|
|z − σ|4

∫
L

|ζ(z+ it+ iϕ(τ), F )|2|dz|�
∫
L

|ζ(z+ it+ iϕ(τ), F )|2|dz|.
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With respect to the Lemma 2.2.5, we have

N+1/2∫
k0−1/2

| ζ ′(σ + it+ iϕ(τ), F )|2dτ

�
∫
L

|dz|
N+1/2∫
k0−1/2

ζ(Re z + i Im z + it+ iϕ(τ), F )|2dτ � N(1 + |t|).

(2.3)

Similarly, we obtain

2X∫
X

(ϕ′(τ))2| ζ ′(σ + it+ iϕ(τ), F )|2dτ

=
2X∫
X

ϕ′(τ)| ζ ′(σ + it+ iϕ(τ), F )|2dϕ(τ)

� max
X6τ62X

ϕ′(τ)
2X∫
X

d

 |t|+ϕ(τ)∫
0

|ζ(σ + iu, F )|2du


� (|t|+ϕ(2X)) max

X6τ62X
ϕ′(τ)� X(1 + |t|).

Therefore, for κ/2 < σ < (κ+ 1)/2, and t ∈ R, we have

T∫
k0−1/2

(ϕ′(τ))2|ζ(σ + it+ iϕ(τ), F )|2dτ � T (1 + |t|) (2.4)

Further, we apply Gallagher’s lemma with T = {k : k ∈ N, k0 6 k 6

N}, T0 = k0−1/2, T = N−k0+1, and δ = 1. Thenwe getNδ(x) = 1.
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Taking S(τ) = ζ(σ + it+ iϕ(τ), F ), we have

IN (σ, t, F ) �
N+1/2∫
k0−1/2

|ζ(σ + it+ iϕ(τ), F )|2dτ

+

 N+1/2∫
k0−1/2

|ζ(σ + it+ iϕ(τ), F )|2dτ

×
N+1/2∫
k0−1/2

(ϕ′(τ))2| ζ ′(σ + it+ iϕ(τ), F )|2dτ


1/2

.

This, Lemma 2.2.5, and estimates (2.3), (2.4) prove the lemma.

2.2.3 Approximation in the mean

Now we will approximate ζ(s, F ) by ζn(s, F ) in the mean. Let metric ρ
be defined and satisfy the same conditions as in (1.8) in Chapter 1.

Lemma 2.2.8. Suppose ϕ ∈ U(k0). Then

lim
n→∞

lim sup
N→∞

1
N − k0 + 1

N∑
k=k0

ρ
(
ζ(s+ iϕ(k), F ), ζn(s+ iϕ(k), F )

)
= 0.

Proof. Let θ > 1/2 as in the definition of vn(m), and

ln(s) = s

θ
Γ
(s
θ

)
ns, n ∈ N.

Then, the function ζn(s, F ) has the representation (1.9).

Let K be an arbitrary compact subset of D. Then, from the residue
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theorem and the above equality, we get

1
N − k0 + 1

N∑
k =k0

sup
s ∈K

(
ζ(s+ iϕ(k), F ), ζn(s+ iϕ(k), F )

)

�
∞∫
−∞

|ln(σ̂ + iu)|
(

1
N − k0 + 1

N∑
k=k0

|ζ(s+ it+ iu+ iϕ(k), F )|
)
du,

(2.5)

where σ̂ < 0, κ/2 < σ < (κ + 1)/2, and t is bounded by a constant
depending onK. Lemma 2.2.7 and (2.5) implies that

lim
n→∞

lim sup
N→∞

1
N − k0 + 1

N∑
k=k0

sup
s∈K

(
ζ(s+iϕ(k), F ), ζn(s+iϕ(k), F )

)
= 0.

This and the definition of the metric ρ prove the lemma.

2.2.4 Proof of the Weak Convergence Theorem

Proof of Theorem 2.2.1. Let θN be a random variable defined on a certain
probability space with measure µ and distribution

µ{θN = ϕ(k)} = 1
N − k0 + 1 , k = k0, ..., N.

Consider the H(D)-valued random element XN,n,F defined by the for-
mula

XN,n,F = XN,n,F (s) = ζn(s+ iθN ), F ).

Then, the assertion of Lemma 2.2.4 can be written as

XN,n,F
D−−−−→

N→∞
X̂n,F , (2.6)

where D−→means the convergence in distribution, and X̂n,F is theH(D)-
valued random element with the distribution P̂n,F . Here P̂n,F is the
same limit probability measure as in Lemma 2.2.4.
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As we have shown in Chapter 1 subsection 1.2.4, the family {P̂n,F : n ∈
N} is tight, i.e., for every ε > 0, there exists a compact setK = K(ε) ⊂
H(D) such that X̂n,F (K) > 1− ε for all n ∈ N.

Therefore, by the Prokhorov theorem (Lemma 1.2.3 in Chapter 1), it
is relatively compact, i.e., every sequence of {P̂n,F } contains a weakly
convergent subsequence. Thus, there exists {P̂nr,F } ⊂ {P̂n,F } such
that {P̂nr,F } converges weakly to a certain probability measure PF on
(H(D),B(H(D))), as r →∞. Thus,

X̂nr,F
D−−−→

r→∞
PF . (2.7)

On the probability space of the random variable θN , define one more
H(D)-valued random element

XN,F = XN,F (s) = ζ(s+ iθN , F ).

Then, in view of Lemma 2.2.8, for every ε > 0,

lim
n→∞

lim sup
N→∞

µ{ρ(XN,F , XN,n,F ) > ε}

= lim
n→∞

lim sup
N→∞

1
N − k0 + 1#

{
k0 6 k 6 N :

ρ(ζ(s+ iϕ(k), F ), ζn(s+ iϕ(k), F )) > ε
}

6 lim
n→∞

lim sup
N→∞

1
(N − k0 + 1)ε

N∑
k=k0

ρ(ζ(s+ iϕ(k), F ), ζn(s+ iϕ(k), F ))

= 0.

This together with (2.6) and (2.7) show that all hypotheses of Theorem
4.2 of [4] are fulfilled. Therefore,

(2.8)XN,F
D−−−−→

N →∞
PF ,

or PN,F converges weakly to the limit measure PF of P̂n,F , as N →∞.
On the other hand, (2.8) shows that the measure PF is independent
of the sequence {P̂nr,F }. Since the family {P̂n,F } is relatively compact,
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hence we have, by Theorem 2.3 of [4] (see Lemma 1.2.2 in Chapter 1),
that

X̂n,F
D−−−→

n→∞
PF ,

or equivalently, {P̂n,F } converges weakly to PF as n→∞.

Finally, we identify the measure PF . For this, we will use some elements
of the ergodic theory. We remind (see Chapter 1) that

1
T

meas
{
τ ∈ [0, T ] : ζ(s+ iτ, F ) ∈ A

}
, A ∈ B(H(D))),

as T →∞, converges weakly to the limit measure PF of P̂n,F , and that
PF = Pζ,F .Moreover, the support of Pζ,F is the set SF . Therefore, PN,F
also converges weakly to Pζ,F as N →∞.

2.3 Proof of the Universality Theorems

Proof of Theorem 2.1.1. Define the set

Gε =
{
g ∈ H(D) : sup

s∈K
|g(s)− ep(s)|< ε

2

}
,

where p(s) is a polynomial. By Theorem 2.2.1, the function ep(s) is an
element of the support of the measure Pζ,F . Therefore,

(2.9)Pζ,F (Gε) > 0.

Based on Theorem 2.2.1 and the equivalent of the weak convergence of
probability measures in terms of open sets (see Lemma 1.2.1 or Theorem
2.1 in [4]),

lim inf
N→∞

PN,F (Gε) > Pζ,F (Gε).
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This, the definitions of PN,F and Gε, and inequality (2.9) give

(2.10)lim inf
N →∞

1
N − k0 + 1#

{
k0 6 k 6 N : sup

s∈K
|ζ(s+ iϕ(k), F )

−ep(s)| < ε

2
}
> 0.

Based on the Mergelyan theorem (Lemma 1.2.6), we can choose the
polynomial p(s) to satisfy the inequality

sup
s∈K
|f(s)− ep(s)|< ε

2 . (2.11)

This, together with (2.10), prove the theorem.

Proof of Theorem 2.1.2. Define the set

Ĝε =
{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)|< ε

}
.

Then the boundary ∂Ĝε of Ĝε lies in the set{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)|= ε

}
.

Therefore, ∂Ĝε1 ∩ ∂Ĝε2 = ∅ for ε1 6= ε2, ε1, ε2 > 0. Hence, for at most
countably many ε > 0, the sets ∂Ĝε have a positive Pζ,F measure. Using
Theorem 2.2.1 and the equivalent of weak convergence of probability
measures in terms of continuity sets (Lemma 1.2.1), we obtain that

lim
N→∞

PN,F (Ĝε) = Pζ,F (Ĝε) (2.12)

or, in other words, Ĝε is a continuity set of the measure Pζ,F for all but
at most countably many ε > 0. Let Gε be from the proof of Theorem
2.1.1. Then, in view of (2.11), we obtain that Gε ⊂ Ĝε, and thus by
(2.9), Pζ,F (Ĝε) > 0. This, the definition of PN,F , and (2.12) prove the
theorem.
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3 JOINT UNIVERSALITY THEOREMS

In TheoremH, the shits ζ(s+ikhj , Fj) for the joint approximation of ana-
lytic functions were taken from the linear sets {khj}, j = 1, . . . , r. The
aim of this Chapter is to obtain a version of Theorem H by using more
complicated nonlinear sets in place of {khj}. Theorems of this Chapter
can also be seen as a generalization of the theorems from Chapter 2.

3.1 Statements of the Theorems

Let k0 ∈ N. We say that functions ϕ1(τ), . . . , ϕr(τ) belong to class Ur(k0)
if the following conditions are satisfied:

1. (ϕ1, . . . , ϕr) are real-valued positive increasing continuously dif-
ferentiable functions on [k0 − 1

2 ,∞);

2. Derivatives ϕ′1(τ), . . . , ϕ′r(τ), on [k0− 1
2 ,∞), satisfy the estimate

ϕj(2τ)
(

max
τ6t62τ

1
ϕ′j(t)

+ max
τ6t62τ

ϕ′j(t)
)
� τ, τ →∞, j = 1, . . . , r;

(3.1)

3. The sequence {a1ϕ1(k) + . . .+ arϕr(k) : k > k0} ⊂ R is uniformly
distributed modulo 1 with every a1, . . . , ar ∈ R, where aj , j =
1, . . . , r, are not all zeroes.

We remind that the definition of uniform distribution modulo 1 can be
found in Chapter 2.
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Let Dj = D(κj/2, (κj + 1)/2), Kj be the class of compact subset of the
strip Dj with connected complements, and let H0(Kj),Kj ∈ Kj denote
the class of continuous non-vanishing functions onKj that are analytic
in the interior ofKj , j = 1, . . . , r.

Under such conditions, the results of this Chapter are the following two
theorems.

Theorem 3.1.1. Suppose that (ϕ1, . . . , ϕr) ∈ Ur(k0). For j = 1, . . . , r, let
Kj ∈ Kj and fj(s) ∈ H0(Kj). Then, for every ε > 0, the following inequality
is true

lim inf
N →∞

1
N − k0 + 1#

{
k0 6 k 6 N :

sup
16j6r

sup
s ∈Kj

|ζ(s+ iϕj(k), Fj)− fj(s)|< ε
}
> 0.

An important note is that the cusp forms F1, . . . , Fr used for simultan-
eous approximation are not necessarily different.

Theorem 3.1.1 has the following modification, which will also be proved
in this Chapter.

Theorem 3.1.2. Suppose that (ϕ1, . . . , ϕr) ∈ Ur(k0). For j = 1, . . . , r, let
Kj ∈ Kj and fj(s) ∈ H0(Kj). Then the limit

lim
N →∞

1
N − k0 + 1#

{
k0 6 k 6 N :

sup
16j6r

sup
s ∈Kj

|ζ(s+ iϕj(k), Fj)− fj(s)|< ε
}
> 0

exists for all but at most countably many ε > 0.

Theorems 3.1.1 and 3.1.2 in some sense are joint generalizations of the
corresponding one-dimensional theorems from Chapter 2.
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3.2 Probabilistic Model

We will start the proof with the definition of the probability space. Let
again γ be the unit circle on the complex plane, and

Ω =
∞∏
p∈P

γp,

where γp = γ for all primes p ∈ P. The torus Ω, with the product
topology and pointwise multiplication, is a compact topological Abelian
group. Define

Ω = Ω1 × . . .× Ωr,

where Ωj = Ω for j = 1, . . . , r. Then again, Ω is a compact topological
Abelian group. Therefore, on space (Ω,B(Ω)) where B(Ω) is the Borel
σ-field of the space Ω, the probability Haar measuremH exists; thus, we
obtain the probability space (Ω,B(Ω),mH). Denote the elements of Ω
by ω = (ω1, . . . , ωr), where ωj ∈ Ωj , j = 1, . . . , r. We start with a limit
theorem for probability measures on(Ω,B(Ω)). The main result of this
section is the weak convergence theorem (Theorem 3.2.4). However, we
will first prove some auxiliary lemmas.

3.2.1 Limit Theorems

For A ∈ B(Ω), define

QN (A) = 1
N − k0 + 1#

{
k0 6 k 6 N :

((p−iϕ1(k) : p ∈ P), . . . , (p−iϕr(k) : p ∈ P)) ∈ A
}
.

Lemma 3.2.1. Suppose that the sequence {a1ϕ1(k)+. . .+arϕr(k) : k > k0}
is uniformly distributed modulo 1 with a1, . . . , ar ∈ R where aj , j = 1, . . . , r,
are not all zeroes. Then, QN converges weakly to the Haar measure mH as
N →∞.
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Proof. We apply the uniform distribution modulo 1 for the investigation
of the Fourier transformation gN (k1, . . . , kr), kj = (kjp : kjp ∈ Z, p ∈ P),
j = 1, . . . , r, of QN . We have that the dual group of Ω is isomorphic to
the group

r
⊕
j=1
⊕
p∈P

Zjp,

where Zjp = Z for all j = 1, . . . , r, p ∈ P. Therefore,

gN (k1, . . . , kr) =
∫
Ω

 r∏
j=1

∏′

p∈P
ωkjp(p)

 dQN ,
where the sign " ′ " means that only a finite number of integers kjp are
distinct from zero. Thus, from the definition of QN ,we have

gN (k1, . . . , kr) = 1
N − k0 + 1

N∑
k=k0

r∏
j=1

∏′

p∈P
p−ikjpϕj(k)

= 1
N − k0 + 1

N∑
k=k0

exp

−i
r∑
j=1

ϕj(k)
∑′

p∈P
kjp log p

 .
(3.2)

If (k1, . . . , kr) = (0, . . . , 0), then, clearly,

gN (k1, . . . , kr) = 1. (3.3)

Since the set {log p : p ∈ P} is linearly independent over the field of
rational numbers Q,we have that∑′

p∈P
kjp log p 6= 0 for all kj 6= 0, j = 1, . . . , r.

Therefore, by hypothesis of the lemma on the uniform distribution, the
Weyl criterion (Lemma 2.2.2 in Chapter 2), and (3.2), we find that for
(k1, . . . , kr) 6= (0, . . . , 0),

lim
N→∞

gN (k1, . . . , kr) = 0.
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This and (3.3) give

lim
N→∞

gN (k1, . . . , kr) =

1 if (k1, . . . , kr) = (0, . . . , 0),
0 if (k1, . . . , kr) 6= (0, . . . , 0).

This, together with the continuity theorem for the probability measures
on compact groups, shows that gN (k), as N → ∞, converges to the
Fourier transformation of the Haar measuremH (see equality (1.6) in
Chapter 1).

Denote by H(Dj) the space of analytic functions on Dj endowed with
the topology of uniform convergence on compacta, j = 1, . . . , r, and let
H(D1, . . . , Dr) = H(D1) × . . . ×H(Dr). Let θ > 1

2 be a fixed number,
andm,n ∈ N.We define, for j = 1, . . . , r, the series

ζn(s, Fj) =
∞∑
m=1

cj(m)vn(m)
ms

and
ζn(s, ωj , Fj) =

∞∑
m=1

cj(m)ωj(m)vn(m)
ms

,

where

vn(m) = exp
{
−
(
m

n

)θ}
,

and
ωj(m) =

∏
pl|m
pl+1-m

ωlj(p), m ∈ N.

The latter series are absolutely convergent for σ > κj/2 (see [28]).
For brevity, we will denote s = (s1, . . . , sr), F = (F1, . . . , Fr), ϕ(k) =
(ϕ1(k), . . . , ϕr(k)), and

ζ
n
(s+ iϕ(k), F ) = (ζn(s1 + iϕ1(k), F1), . . . , ζn(sr + iϕr(k), Fr))

and
ζ
n
(s, ω, F ) = (ζn(s1, ω1, F1), . . . , ζn(sr, ωrFr)).
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For A ∈ B(H(D1, . . . , Dr)), define

PN,n(A) = 1
N − k0 + 1#

{
k0 6 k 6 N : ζ

n
(s+ iϕ(k), F ) ∈ A

}
.

Lemma 3.2.2. Suppose that the sequence {a1ϕ1(k)+. . .+arϕr(k) : k > k0}
is uniformly distributed modulo 1 with a1, . . . , ar ∈ R where aj , j = 1, . . . , r,
are not all zeroes. Then, on (H(D1, . . . , Dr),B(H(D1, . . . , Dr))), there exists
a probability measure P̂n such that PN,n converges weakly to P̂n as N →∞.

Proof. Define the function un : Ω→ H(D1, . . . , Dr) by the formula

un(ω) = ζ
n
(s, ω, F ).

Due to absolute convergence of ζn(sj , ωj , Fj) for σj > κj/2, j = 1, . . . , r,
we have that the function un is continuous.

Moreover, for A ∈ B(H(D1, . . . , Dr)),

PN,n(A) = 1
N − k0 + 1#

{
k0 6 k 6 N :((p−iϕ1(k) : p ∈ P), . . . ,

(p−iϕr(k) : p ∈ P)) ∈ u−1
n A

}
= QN (u−1

n A)

because

un((p−iϕ1(k) : p ∈ P), . . . , (p−iϕr(k) : p ∈ P)) = ζ
n
(s+ iϕ(k), ω, F ).

Therefore, we have PN,n = QNu
−1
n , where

QNu
−1
n (A) = QN (u−1

n A), A ∈ B(H(D1, . . . , Dr)).

The above equality, Lemma 3.2.1, the continuity of un, and Lemma 1.2.3
imply the weak convergence of PN,n to P̂n = mHu

−1
n as N →∞.
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3.2.2 Approximation in the Mean

Now we define the metric in H(D1, . . . , Dr). As in previous cases, for
j = 1, . . . , r and g1, g2 ∈ H(Dj), let

ρj(g1, g2) =
∞∑
l=1

2−l
sups∈Kjl

|g1(s)− g2(s)|
1 + sups∈Kjl

|g1(s)− g2(s)| ,

where {Kjl : l ∈ N} ⊂ Dj is a sequence of compact subsets such that

Dj =
∞⋃
l=1

Kjl,

Kjl ⊂ Kj(l+1) for all l ∈ N, and ifK ⊂ Dj is a compact subset, thenK ⊂
Kjl for some l ∈ N. Then ρj is themetric inH(Dj), inducing its topology
of uniform convergence on compacta. Taking g1 = (g11, . . . , g1r), g2 =
(g21, . . . , g2r) ∈ H(D1, . . . , Dr) and

ρ(g1, g2) = max
16j6r

ρj(g1j , g2j),

we get the metric in the space H(D1, . . . , Dr) that induces the product
topology.

Now, we are able to approximate the collection

ζ(s+ iϕ(k), F ) = (ζ(s1 + iϕ1(k), F1), . . . , ζ(sr + iϕr(k), Fr))

by ζ
n
(s+ iϕ(k), F ).

Lemma 3.2.3. The following equality is true

lim
n→∞

lim sup
N→∞

1
N − k0 + 1

N∑
k=k0

ρ
(
ζ(s+ iϕ(k), F ), ζ

n
(s+ iϕ(k), F )

)
= 0.

Proof. From the definition of themetrics ρj and ρ it follows that it suffices
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to prove that, for every compact setsKj ⊂ Dj ,

lim
n→∞

lim sup
N →∞

1
N − k0 + 1

N∑
k =k0

sup
sj ∈Kj

|ζ(sj + iϕj(k), Fj)

− ζn(sj + iϕj(k), Fj)| = 0,

j = 1, . . . , r. Thus, let F be a normalized Hecke-eigen cusp form of
weight κ, ζ(s, F ) be the corresponding zeta-function, and let ϕ have the
properties of the class Ur(k0).

From Lemma 2.2.7 in Chapter 2 we have

(3.4)

N∑
k =k0

|ζ(σ + it+ iϕ(k), F )|2 �
N+1/2∫
k0−1/2

|ζ(σ + it+ iϕ(τ), F )|2dτ

+

 N+1/2∫
k0−1/2

|ζ(σ + it+ iϕ(τ), F )|2dτ

×
N+1/2∫
k0−1/2

(ϕ′(τ))2| ζ ′(σ + it+ iϕ(τ), F )|2dτ


1/2

� N(1 + |t|),

for a fixed σ, κ/2 < σ < (κ+ 1)/2, and t ∈ R.

Let θ > 1/2 be as in the definition of vn(m). Then, as we know from
(1.9), the function ζn(s, F ) for σ > κ/2, has the representation

ζn(s, F ) = 1
2πi

θ+i∞∫
θ−i∞

ζ(s+ z, F )ln(z)dz
z
,

where
ln(s) = s

θ
Γ
(s
θ

)
ns, n ∈ N.

LetK be an arbitrary compact subset of the strip {κ/2 < σ < (κ+ 1)/2}.
We take ε > 0 such that

κ

2 + 2ε 6 σ 6
κ+ 1

2 − ε
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for point s ∈ K. In (1.9), replace θ by −θ̂, where θ̂ > 0. This gives

ζn(s, F )− ζ(s, F ) = 1
2πi

−θ̂+i∞∫
−θ̂−i∞

ζ(s+ z, F )ln(z)dz
z
. (3.5)

Denote points of the setK by s = σ + iv and take

θ̂ = σ − ε− κ

2 , θ = 1
2 + ε.

In view of (3.5), we get

|ζn(s+ iϕ(k), F )− ζ(s+ iϕ(k), F )|

6
1

2π

∞∫
−∞

ζ(s+ iϕ(k)− θ̂ + it), F ) |ln(−θ̂ + it)|
|−θ̂ + it|

dt

Now, taking the shift t+ v 7→ t, we get

|ζn(s+ iϕ(k), F )− ζ(s+ iϕ(k), F )|

6
1

2π

∞∫
−∞

ζ(κ2 + ε+ i(t+ ϕ(k)), F )
|ln(κ2 + ε− s+ it)|
|κ2 + ε− s+ it|

dt.

Therefore,

(3.6)

1
N − k0 + 1

N∑
k =k0

sup
s ∈K
|ζ(s+ iϕ(k), F )− ζn(s+ iϕ(k), F )|

6
1

2π(N − k0 + 1)

∞∫
−∞

 N∑
k=k0

∣∣∣∣ζ(κ2 + ε+ i(t+ ϕ(k)), F )
∣∣∣∣


× sup
s ∈K

|ln(κ2 + ε− s+ it)|
|κ2 + ε− s+ it|

dt =: J.

It is known that

Γ(σ + it)� exp{−c|t|}, c > 0,
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uniformly in σ1 6 σ 6 σ2. Thus, from definition of ln(s),

|ln(κ2 + ε− s+ it)|
|κ2 + ε− s+ it|

6
nκ/2+ε−σ

θ
exp

{
− c
θ
|t− v|

}
6K n−ε exp{−c|t|}.

With respect to (3.4),

J �K n−ε
∞∫
−∞

(1 + |t|)1/2 exp{−c|t|}dt�K n−ε.

This and (3.6) show that

lim
n→∞

lim sup
N→∞

1
N − k0 + 1

N∑
k=k0

sup
s∈K

(
ζ(s+iϕ(k), F ), ζn(s+iϕ(k), F )

)
= 0,

and the lemma is thus proven.

3.2.3 Proof of the Weak Convergence Theorem

Now we will prove the discrete limit theorem for the collection ζ(s +
iϕ(k), F ). For A ∈ B(H(D1, . . . , Dr)), define

PN (A) = 1
N − k0 + 1#

{
k0 6 k 6 N : ζ(s+ iϕ(k), F ) ∈ A

}
.

On the probability space (Ω,B(Ω),mH)define theH(D1, . . . , Dr)-valued
random element ζ(s, ω, F ) by the formula

ζ(s, ω, F ) = (ζ(s1, ω1, F1), . . . , ζ(sr, ωr, Fr)) ,

where
ζ(sj , ωj , Fj) =

∞∑
m=1

cj(m)ωj(m)
ms
j

, j = 1, . . . , r.

Denote by Pζ the distribution of ζ(s, ω, F ), i.e.,

Pζ(A) = mH{ω ∈ Ω : ζ(s, ω, F ) ∈ A}, A ∈ B(H(D1, . . . , Dr)).
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Under such conditions, the following statement is true.

Theorem 3.2.4. Suppose that (ϕ1, . . . , ϕr) ∈ Ur(k0). Then PN converges
weakly to Pζ , as N →∞. Moreover, the support of the measure Pζ is the set
S = S1 × . . .× Sr, where

Sj = {g ∈ H(Dj) : g(s) 6= 0 or g(s) ≡ 0}, j = 1, . . . , r.

Proof. Let P̂n be the same limit probability measure as in Lemma 3.2.2.
We may show that the family {P̂n : n ∈ N} is tight, i.e., for every ε > 0,
there exists a compact setK = K(ε) ⊂ H(D1, . . . , Dr) such that

P̂n(K) > 1− ε

for all n ∈ N. Indeed, let P̂nj , j = 1, . . . , r, be the marginal measures
of P̂n. Then it is known that the sequences {P̂nj : n ∈ N} are tight,
j = 1, . . . , r (see [51], [28] or [35] for reference). Therefore, for every
ε > 0, there exists a compact setKj ⊂ H(Dj) such that

P̂nj(Kj) > 1− ε

r
, j = 1, . . . , r, (3.7)

for all n ∈ N. The set K = K1 × . . . × Kr is compact in the space
H(D1, . . . , Dr) and, by (3.7),

P̂n(H(D1, . . . , Dr) \K) 6
r∑
j=1

P̂nj(H(Dj) \Kj) < ε

for all n ∈ N. Therefore, {P̂n : n ∈ N} is tight.

By the Prokhorov theorem (Lemma 1.2.3 in Chapter 1), {P̂n} is relat-
ively compact, i.e., every sequence of {P̂n} contains a weakly convergent
subsequence {P̂nl

} ⊂ {P̂n} such that {P̂nl
} converges weakly to a cer-

tain probability measure P on (H(D1, . . . , Dr),B(H(D1, . . . , Dr))), as
l→∞.

Let θN be a discrete random variable defined on a certain probability
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space with measure µ and distribution

µ{θN = ϕ(k)} = 1
N − k0 + 1 , k = k0, ..., N.

Consider the H(D1, . . . , Dr)-valued random element XN,n defined by
the formula

XN,n = XN,n(s) = ζ
n
(s+ iθN ), F ).

Then, the assertion of Lemma 3.2.2 can be written as

XN,n
D−−−−→

N→∞
X̂n, (3.8)

where X̂n = X̂n(s) is the H(D1, . . . , Dr)-valued random element with
the distribution P̂n. Respectively,

X̂nl

D−−−→
r→∞

P. (3.9)

On the probability space of the random variable θN , define one more
H(D1, . . . , Dr)-valued random element

XN = XN (s) = ζ(s+ iθN , F ).

Then, with respect to Lemma 3.2.3, for every ε > 0,

lim
n→∞

lim sup
N →∞

µ{ρ(XN , XN,n) > ε}

6 lim
n→∞

lim sup
N →∞

1
(N − k0 + 1)ε

N∑
k =k0

ρ(ζ(s+ iϕ(k), F ), ζ
n
(s

+ iϕ(k), F )) = 0.

This, together with (3.8) and (3.9), show that all hypotheses of Theorem
4.2 of [4] are fulfilled, and therefore,

(3.10)XN
D−−−−→

N →∞
P,

or PN converges weakly to the limit measure P of P̂n, as N →∞. On
the other hand, (3.10) shows that the measure P is independent of the
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sequence {P̂nl
}. Since the family {P̂n} is relatively compact, we have,

by Theorem 2.3 of [4] (see Lemma 1.2.2 in Chapter 1), that

X̂n
D−−−→

n→∞
P,

or equivalently, {P̂n} converges weakly to P as n→∞.

Finally, we identify the measure P . In [24] it was obtained that the
measure P coincides with Pζ . Moreover, the support of Pζ is the set
S. In [24], the observation that B(H(D1, . . . , Dr)) = B(H(D1) × . . . ×
B(H(Dr)) is used. In such case, the Haar measuremH is the product of
the Haar measures on (Ωj ,B(Ωj)), j = 1, . . . , r.

3.3 Proofs of the Universality Theorems

With all the auxiliary results and the Mergelyan theorem, we can prove
the main statements of the Chapter.

Proof of Theorem 3.1.1. Define the set

Gε =
{

(g1, . . . , gr) ∈ H(D1, . . . , Dr) : sup
16j6r

sup
s∈Kj

|gj(s)− epj(s)|< ε

2

}
,

where pj(s) is a polynomial, j = 1, . . . , r. By Theorem 3.2.4, the collec-
tion (ep1(s), . . . , epr(s)) is an element of the support of the measure Pζ .
Therefore, the set Gε is an open neighbourhood of an element of the
support of Pζ and

(3.11)Pζ(Gε) > 0.

By Theorem 3.2.4 and the equivalent of the weak convergence of prob-
ability measures in terms of open sets (see Lemma 1.2.1 in Chapter
1),

lim inf
N→∞

PN (Gε) > Pζ(Gε) > 0.
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This, the definitions of PN and Gε, and inequality (3.11) give

(3.12)lim inf
N →∞

1
N − k0 + 1#

{
k0 6 k 6 N :

sup
16j6r

sup
s ∈Kj

|ζ(sj + iϕj(k), Fj)− epj(s)| < ε

2
}
> 0.

Based on the Mergelyan theorem (Lemma 1.2.6 in Chapter 1), we can
choose the polynomials p1(s), . . . , pr(s) such that

sup
16j6r

sup
s∈Kj

|fj(s)− epj(s)|< ε

2 . (3.13)

This, together with (3.12), proves the theorem.

Proof of Theorem 3.1.2. Define the set

Ĝε =
{

(g1, . . . , gr) ∈ H(D1, . . . , Dr) : sup
16j6r

sup
s∈Kj

|gj(s)− fj(s)|< ε

}
.

Then the boundary ∂Ĝε of Ĝε lies in the set{
(g1, . . . , gr) ∈ H(D1, . . . , Dr) : sup

16j6r
sup
s∈Kj

|gj(s)− fj(s)|= ε

}
.

Therefore, ∂Ĝε1 ∩ ∂Ĝε2 = ∅ for ε1 6= ε2, ε1, ε2 > 0. Hence, for at most
countably many ε > 0, the sets ∂Ĝε have a positive Pζ measure. There-
fore, by Theorem 3.2.4 and the equivalent of the weak convergence of
probability measures in terms of continuity sets (Lemma 1.2.1), we
obtain that

lim
N→∞

PN (Ĝε) = Pζ(Ĝε) (3.14)

or, in other words, Ĝε is a continuity set of the measure Pζ,F for all but
at most countably many ε > 0. On the other hand, the definitions of
Gε and Ĝε, together with (3.13), imply that Gε ⊂ Ĝε. Thus, by (3.11),
Pζ(Ĝε) > 0. This, the definition of PN , and (3.14) prove the theorem.
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CONCLUSIONS

In this thesis, three different universality theorems for zeta-function
ζ(s, F ) associated with the normalized simultaneous Hecke-eigen cusp
form F (z) of weight κ and their modifications were proven. Let ζ(s, F )
be defined for σ > (κ+ 1)/2, by absolutely convergent Dirichlet series

ζ(s, F ) =
∞∑
m=1

c(m)
ms

,

and analytically continued to the whole complex plain. Then the follow-
ing statements are true:

1. If ϕ ∈ U(τ0) is real-valued function with certain growth condi-
tions, then holomorphic non-vanishing functions f(s) can be uni-
formly approximated with given accuracy by continuous shifts
ζ(s + iϕ(τ), F ), and the lower density of such shifts is positive,
i.e.,

lim inf
T →∞

1
T − τ0

meas
{
τ ∈ [τ0, T ] :

sup
s ∈K
|ζ(s+ iϕ(τ), F )− f(s)|< ε

}
> 0.

The density of such shifts is positive for all but at most countably
many ε > 0.

2. If ϕ ∈ U(k0) is a real-valued function with certain growth con-
ditions, which is a uniformly distributed modulo 1, then holo-
morphic non-vanishing functions f(s) can be uniformly approx-
imatedwith given accuracy by discrete shifts ζ(s+iϕ(k), F ), while
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the lower density of such shifts is positive, i.e.,

lim inf
N →∞

1
N − k0 + 1#

{
k0 6 k 6 N :

sup
s ∈K
|ζ(s+ iϕ(k), F )− f(s)|< ε

}
> 0.

The density of such shifts is positive for all but at most countably
many ε > 0.

3. If (ϕ1, . . . , ϕr) ∈ Ur(k0) are real-valued functions with certain
growth conditions, which are uniformly distributed modulo 1,
then a set of holomorphic non-vanishing functions f1(s), . . . , fr(s)
can be simultaneously uniformly approximated with given ac-
curacy by discrete shifts ζ(s+ iϕj(k), Fj), where the cusp forms
F1, . . . , Fr are not necessarily different. The lower density of such
shifts is positive, i.e.,

lim inf
N →∞

1
N − k0 + 1#

{
k0 6 k 6 N :

sup
16j6r

sup
s ∈Kj

|ζ(s+ iϕj(k), Fj)− fj(s)|< ε
}
> 0.

The density of such shifts is positive for all but at most countably
many ε > 0.

As universality of ζ(s, F ) is already analyzed quite well, there are some
certain open areas that could be addressed in future research. Firstly,
the extension of the class of functions ϕ to more general or more com-
plicated cases would be valuable. Secondly, an exploration of other
subgroups of the full modular group for the definition of ζ(s, F ) could
be conducted. Thirdly, a solution for the effectivization problem of the
given universality theorems, i.e., since the universality theorems in the
thesis are non-effective in the sense that we cannot indicate any specific
shifts for the approximation of a given function, research enabling the
choice of such shifts is needed.
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NOTATION

s = σ + it ∈ C the complex plane
N,N0 set of natural numbers, N0

⋃
0

Z set of integers
R set of real numbers
Q set of rational numbers
P set of prime numbers
k,m, n natural numbers
meas. the Lebesgue measure
#{.} cardinality of a set
B(.) Borel σ-algebra
mH Haar measure
γ complex unit circle
Ω space defined by product of γ by primes
ω, ωj elements of Ω
ε small positive number
U(τ0), U(k0), Ur(k0) class of functions with specified conditions
SL(2,Z) full modular group
F cusp form
κ, κj weight of the cusp form
ζ(s, F ) zeta function attached to a certain cusp form
P, Pn, ... probability measures
x vectors
ρ(g1, g2) metric in a given space
Γ(s) Euler gamma-function⊕
m
Zm direct sum of sets Zm
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