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Introduction

Research area

The study is focused on computer modelling of complex chemical and
biophysical systems, which are described by partial differential equa-
tions (PDEs) with nonlinear boundary conditions and PDEs in various
complex (non-rectangular) domains. These differential problems are
solved using numerical methods.

Problems of solving PDEs with nonlinear boundary conditions arise
from mathematical modelling of complex chemical and biological pro-
cesses in scanning electrochemical microscopy (SECM). The study of
PDE in non-rectangular domains is motivated by the demand to estim-
ate measurement errors due to deviations of SECM equipment geometry
from the standard. Nonlinear systems of PDE are applied in the study
of chemotherapeutic drugs uptake into tissues.

Actuality

Scanning electrochemical microscopy is an emerging sensoring tech-
nique, proposed by Bard et al. in 1989 [12]. SECM is based on electro-
chemical measurements with the ultramicroelectrode (UME), which is
scanning 3D space close to catalytic or electrochemically active surfaces.
SECM is applied for high-resolution imaging of the chemical reactivity
[144], investigation of electron transfer kinetics [110], biosensors and
biochips surfaces [149], etc.

Despite wide and varied applications, practical and theoretical dif-
ficulties of SECM-based experiments persist. Common problems are
a deviation from idealized geometries of real equipment, poor spatial



resolution, the uncontrolled distance between the UME and surface of
interest, expensive experiments, difficulties in manufacturing of equip-
ment, etc. SECM theory such as analytical tools and mathematical
modelling methods is applied for dealing with or at least reducing these
problems. Computer simulations of SECM are also used for the determ-
ination of reaction kinetics [13] and the improvement of experiment
techniques [40].

The SECM technique is applied in several modes such as feedback
[13] and substrate generation [117], which have also been extensively
analyzed by mathematical modelling methods [37, 94]. The novel redox-
competition (RC-SECM) mode, which has been proposed by the Schuh-
mann group in 2006 [45], has been used for the evaluation of enzymatic
kinetics in several research papers [52, 99] or combined with other modes
[64]. However, the theory of the RC-SECM mode has not been thor-
oughly investigated. A mathematical model, which simulates both
enzymatic reactions on active surface and diffusion processes in the
solution, is presented for the first time in this research.

The second part of the thesis is committed to the study of UME
geometry and, in particular, the kind of UMEs with non-ideal (non-
standard) geometries. The importance of UME geometry has been
reported from the early days of SECM research. In one of the earliest
paper concerning geometry analysis, published by Kwak and Bard in
1989, the ratio between diameters of an electrode and insulator has
been studied and the influence on electric signal has been established
using computer simulations [86]. In later studies, various cases of non-
ideal electrodes have been modelled: recessed-UME [20], conical UME
[150], off-centered-UME [39], nonsymmetrical UME [123]. However, the
general method to determine the measurement errors of most frequent
non-ideal UMEs is still not well established and will be the focus of this
research.

In the third Chapter of the thesis, mathematical models of the reaction-
diffusion process of fluorescent dyes are presented. These models are
applied in the study of chemotherapeutic drugs uptake into 3D cellular
spheroids [46], which has important applications in cancer treatment
research. Some authors have published their attempts to simulate how
various nanoparticles accumulate and distribute in cellular spheroids
[58, 66]. Analytical methods have been applied to analyze fluorescent
dye uptake in 3D spheroids [1] and 2D cell cultures [115]. Mathematical
models, which would predict diffusion and accumulation of organic
molecules (e.g. drugs or dyes) in 3D cell cultures, are presented in this
study for the first time.



Aim

The aim of the research falls into two main categories. The first goal
was to develop mathematical models of scanning electrochemical micro-
scope and software tools necessary to model reaction-diffusion processes
and SECM geometric properties. The second aim was to provide a com-
putational model for the analysis of fluorescent dyes uptake into the
spheroidal cell structure. The following tasks were identified:

1. Develop mathematical and numerical models of i) SECM, working
in redox-competition mode, ii) SECM with various non-standard
ultramicroelectrodes (UME) and iii) fluorescent dye uptake into
cell spheroids.

2. Create efficient computer programs for high-precision computa-
tions.

3. Achieve the agreement between model and experimental data by
calculating model parameters.

4. Calculate reaction kinetic constants and oxygen diffusion coeffi-
cients for SECM experiments

5. Develop algorithms to evaluate difference (measurement error) in
electric current measured by a standard perfect electrode and by
nonideal shaped UMEs.

6. Investigate the properties of fluorescent dyes penetration into cell
spheroids depending on cell concentration, the number of binding
sites and others.

Methodology

SECM in the redox-competition (RC-SECM) mode is modelled by a sys-
tem of non-stationary reaction-diffusion equations with nonlinear third
type boundary conditions related to the kinetics of enzymatic reactions.
SECM geometry is modelled by diffusion equation in non-rectangular
geometries. Cellular spheroids are modelled by non-stationary reaction-
diffusion equations containing nonlinear terms responsible for reactions
between cells and fluorescent dyes.



PDEs in analysed models were solved using numerical methods.
Implicit methods were applied in order to achieve lower computational
error and higher stability. Alternating direction implicit finite difference
method (ADIFDM) was the key algorithm in solving diffusion equations.

Several computer experiments were carried out to achieve goals
and compared with real physical experiments. Computer models were
developed in Python and MATLAB by the author. Computations were
performed using a supercomputer.

Scientific novelty

The main novelties of the thesis are formulated:

1. A novel mathematical model is proposed for SECM acting in the
redox-competition mode. The main originality of this model is
the combination of diffusion-based models of SECM with reaction
equations using nonlinear third type boundary conditions.

2. The study of nonstandard electrodes in SECM-based experiments
has allowed to evaluate measurement errors between experiments
performed by nonideal UMEs compared to standard perfect UME.
Research into the impact of equipment for SECM measurements
is an emerging field, but for the first time a comprehensive study
of the effects of most common geometry deviations has been
provided.

3. The efficient non-uniform meshing method is proposed for SECM
models in rectangular and non-rectangular geometries.

4. The uptake of fluorescent dyes into cellular spheroids is modelled
for the first time. The main novelties are computation of unknown
dye parameters and successful validation of models by physical
experiment.

Defended propositions

1. Proposed computer models are effective tools for simulating the
behaviour of analyzed systems, i.e. RC-SECM mode, SECM with
different UME geometries and the uptake of fluorescent dies.
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2. The correctness of each model is confirmed by

(a) achieving high correspondence between modelling and ex-
perimental data;

(b) verifying implementations of numerical algorithms, which
are used for solving models, by various verification methods.

3. Implemented numerical algorithms are highly accurate (2nd or-
der), unconditionally stable and reduce the problem into linear
systems, which is solved by efficient linear time solver (Thomas
algorithm).

4. In the RC-SECM mode oxygen diffusion coefficient is inversely
proportional to the concentration of medium components such as
glucose.

5. The largest measurement errors compared to standard UME are
made by an outwarded electrode and the difference is lower for
recessed and cone-shaped electrodes. Additionally, these errors
decrease as the ratio between isolator and electrode radiuses in-
creases.

Approbation

Periodic Publications

The results were published in periodic journals with a citation index. The
contribution of the author of the thesis is the development of numerical
models and the software for the modelling task, calculations for the
models, a validation, analysis and written description of the results.

1. Ivanauskas, F., Morkvenaite-Vilkonciene, I., Astrauskas, R. and
Ramanavicius, A. (2016). Modelling of scanning electrochemical
microscopy at redox competition mode using diffusion and re-
action equations. Electrochimica Acta, 222, p. 347-354. DOL
10.1016/j.electacta.2016.10.179.

2. Astrauskas, R., Ivanauskas, F., Morkvenaite-Vilkonciene, 1., and
Ramanavicius, A. (2019). Mathematical Modelling of the Influ-
ence of Ultra-micro Electrode Geometry on Approach Curves Re-
gistered by Scanning Electrochemical Microscopy. Electroanalysis,
31(11), p. 2214-2223. DOI: 10.1002/elan.201900313.
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3.

Astrauskas, R., Ivanauskas, F., Jarockyté, G., Karabanovas, V., and
Rotomskis, R. (2019). Modeling the uptake of fluorescent mo-
lecules into 3D cellular spheroids. Nonlinear Analysis: Modelling
and Control, 24(5), p. 838-852. DOI: 10.15388 /NA.2019.5.9.

Conferences

1.

22nd International Conference Mathematical Modelling and Ana-
lysis (MMA2017), 30 May -— 2 June 2017, Druskininkai, Lithuania:
Modelling of Scanning Electrochemical Microscopy Using Diffu-
sion and Reaction Equations.

10th Conference on Applied Mathematics and Scientific Com-
puting (ApplMath20), 14 — 18 September 2020, Brijuni, Croatia
(online): Modelling of Scanning Electrochemical Microscope and
the Influence of Electrode Geometry.

Lietuvos matematiky draugijos 57-0ji konferencija, 2016 m. birZelio
mén. 20-21 d., Vilnius: Mathematical Modelling of Diffusion and
Reaction Processes in Scanning Electrochemical Microscopy.

Lietuvos matematiky draugijos 59-0ji konferencija, 2018 m. birZelio
mén. 18-19 d., Kaunas: Analysis of Electrode Geometry effects on
Approach Curves Registered by Scanning Electrochemical Micro-

scopy.

Lietuvos matematiky draugijos 60-0ji konferencija, 2019 m. birZelio
mén. 19-20 d., Vilnius: Modelling of Fluorescence Dyes Uptake
into Cellular Spheroids.

6-0ji LMA jaunuyju mokslininky konferencija ,,Fiziniu ir technolo-
gijos moksly tarpdalykiniai tyrimai”, 2016 m. vasario mén. 10 d.,
Vilnius: Mathematical Modelling of Diffusion-Reaction Equations
in Scanning Electrochemical Microscopy:.

Structure of Thesis

The thesis consists of the following parts: general introduction, four
chapters, conclusions and a list of references.

In Chapter 1, the SECM model, governed by the system of 8 nonlinear
reaction-diffusion equations, is presented. The system is solved by
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implicit finite difference methods. The numerical solution is compared
with the results of a physical experiment, and by fitting modelling data
to the experiment, reaction coefficients and diffusion parameters are
calculated.

SECM models in 4 geometries (1 standard from Chapter 1 and 3
non-standard) are proposed in Chapter 2. PDEs, representing UMEs
in these geometries, are solved and numerical experiment results of
one non-standard geometry are compared with a physical experiment
to show good correspondence. Then, the difference between standard
geometry and non-standard geometries is calculated and the influence
of other SECM geometry parameters on approach curves is investigated.

In Chapter 3, the uptake of fluorescent dyes into 3D cell cultures is
modelled by reaction-diffusion equations which are solved numeric-
ally. Models are applied to analyse two types of dyes and geometrical
properties of cell spheroids. Comparison between a numerical and bio-
logical experiment is provided. The diffusion coefficient in intercellular
medium and time of saturation by dyes are calculated using provided
models.

Various methods of model verification are analyzed in the final
Chapter 4 in order to test the implementation of numerical algorithms.



Chapter 1

Modelling of Scanning
Electrochemical Microscopy
at Redox Competition Mode
Using Diffusion and Reaction
Equations

1.1 Introduction

In the first chapter, the mathematical model of scanning electrochemical
microscopy (SECM) redox-competition (RC-SECM) mode is presented
for the first time in scientific research. The study is focused on solving
systems of partial differential equations (PDEs) with nonlinear boundary
conditions using numerical methods. Using this model, it is possible to
calculate oxygen consumption rate, evaluate enzymatic reaction kinetics
and determine oxygen diffusion coefficients in the medium of varying
composition. Oxygen concentration measurement, which is important
for SECM-based investigations of all biological systems, was success-
fully applied for the evaluation of enzymatic reaction performed by an
immobilized enzyme.



Scanning electrochemical microscopy

Scanning electrochemical microscopy is an advanced electrochemical
method, which is based on electrochemical measurements with the
scanning ultramicroelectrode (UME). In this approach, the UME, which
has the diameter of conducting part in the range of several tenths of
micrometres and insulator part of few hundreds of micrometres, is scan-
ning 3D space close to catalytic or electrochemically active surfaces
[12]. In such an experiment the UME is connected as a working elec-
trode in an electrochemical cell, and the current, which is measured by
the UME, depends on the local concentration of electroactive species.
Electron transfer kinetics of surfaces modified by enzymes is mostly in-
vestigated using feedback (FB) or generation-collection modes of SECM
[49, 100, 110, ]. In addition, SECM was applied for high-resolution
imaging of the chemical reactivity [131, 144], electrocatalytic activity
[54, 68, ], and topography of enzyme-based interfaces formed in
enzyme immunoassays [146], biosensors and biochips [149].

The redox-competition (RC-SECM) mode, which has been developed
by the Schuhmann group [45], has been used for the evaluation of
enzymatic kinetics in several studies. According to the described mode,
dissolved oxygen is consumed in two competing ways: one is based
on the electrochemical reaction running on the UME and the other on
the reaction catalyzed by an immobilized enzyme, e.g. glucose oxidase
(GOx), which is utilizing O, as an electron acceptor. In this mode,
both (i) GOx immobilized on the non-conducting surface and (ii) the
UME acting at a negative potential are competing for dissolved oxygen
[99], differently to the previously addressed bi-potentiostatic RC-SECM
mode, in which conductive surface has been connected as a second
working electrode [68, 82]. At higher glucose concentrations low oxygen
concentration region was formed close to the enzyme-modified surface
due to the fast enzymatic reaction. Additionally to RC-SECM-based 3D
visualization of concentrations of redox-active materials, which are close
to the electroactive surface, in the RC-SECM mode current vs distance
dependencies can be used to determine enzymatic kinetics [99].

However, according to the of best of our knowledge, analytical ex-
pressions for the determination of enzymatic kinetics in the RC-SECM
mode are still not well established.



Modelling of biosensors

SECM is a versatile technique, which can be used as a tool in the broader
area of biosensor research and development. Mathematical modelling
of biosensors is motivated by the complexity of physical, chemical or
biological experiments, high measurement errors of these experiments,
theoretical interests, etc. Various types of biosensors was modelled in
recent scientific literature: amperometric [7, 16, 17, 92, 119, 148], mag-
netic [97, , ], electrochemical [24, 41, 80, ], bioluminescent
bacteria-based [114, ], etc. In the majority of those studies, mod-
els were described by PDEs or systems of PDEs, which were typically
solved numerically by finite difference methods [7, 122] or finite element
methods with specialized software such as COMSOL [80, 129]. Extens-
ive studies of biosensors and their computer simulations were presented
in monographs/books by Baronas et al. [19], Bartlett et al. [21].

Mathematical models of biosensors, in which the enzyme had been
immobilized on the electrode, was widely investigated in various stud-
ies. A 2D mathematical model of amperometric biosensors with per-
forated and selective membranes, based on the diffusion equations
containing a nonlinear case of the Michaelis-Menten enzymatic reaction
was developed [14, 15, 18, 28]. The numerical simulations were carried
out by solving PDEs using finite difference methods [19]. It was also
determined, that the modelling of a reaction-diffusion system within
a thin layer of an enzyme and containing a nonlinear term of the Mi-
chaelis—-Menten enzymatic reaction, requires iterative methods such as
Newton iteration to solve nonlinear PDEs [28].

Mathematical modelling of SECM

Computer simulations were performed for different modes of SECM: (i)
negative/positive feedback [3, 13, 56, ], (ii) substrate generation/tip
collection [93, 117], (iii) disk generation/ring collection [90]. Different
purposes can be identified: (i) the determination of reaction kinetics,
such as reaction rate constants [13, , ], (ii) the investigation of the
influence of UME geometry to the SECM response [3], (iii) the improve-
ment of experiment techniques [40]. Furthermore, simulations can solve
important problems, such as poor spatial resolution, the negative effect
of uncontrolled distance between the UME and surface of interest during
SECM investigations, and the effects of deviations from mathematically
idealized SECM geometries [123, ]. An in-depth overview of SECM
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experimental and theoretical topics, including models and numerical
solutions, was provided in the book by Bard and Mirkin [11].

Mathematical models of SECM were calculated by: (i) the finite
difference method (FDM) [3, 13, 93]; (ii) the finite element method, which
was used by [105, 106]; (iii) the boundary element method (BEM) [112,

, 125]. The influence of electrode geometry for SECM simulations
was shown by various authors [3, 37, ]. The first comprehensive
paper concerning the application of the alternating-direction implicit
(ADI) FDM (the main method used in the Thesis) to microelectrodes
was published by Heinze et al. [70].

Comparison with other studies of reaction kinetics

The first research paper concerning the modelling of SECM reaction
kinetics was published by Bard et al. [13]. The SECM feedback mode and
finite electron-transfer kinetics with a single reaction, which occurred at
the conducting surface, was used in simulations. In another study by
Bard et al. [110] a full reaction system was considered, but the model
was reduced to a single dimension and the mechanism of reactions was
simplified by employing Michaelis-Mentens kinetics. However, both
these papers established methods for the calculation of reaction kinetics
in the SECM feedback mode.

In more recent papers by Cornut and Lefrou [37, 38] reactions kinet-
ics in the SECM feedback mode were modelled using simplified single
reaction based on irreversible or Michaelis-Mentens kinetics mechanism.
Analytical expressions for electric current it was established depend-
ing on UME parameters and reactions kinetics, but the kinetics was
simplified and rather theoretical.

However, none of these research papers has taken into account the
full reaction-diffusion system, which consists of at least 8 equations
in oxygen and glucose oxidase-based experiments. Moreover, these
studies deal with the modelling of the type of biosensors in which the
enzyme is immobilized on the electrode surface, and the response of the
biosensor has been measured by registration of amperometric response
with the same electrode. Unlike all mentioned studies, in this research,
the enzyme is immobilized on a non-conducting surface in the RC-SECM
mode evaluation, and the SECM electrode is always at a distance from
an immobilized enzyme-based layer. Therefore, diffusion in confined
space, which is limited by edges of the insulating part of the UME, has
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to be modelled and a new model is proposed in this research to take into
account these conditions.

Outline of the chapter

In section 1.2, a physical model is presented including chemical reactions
on enzyme-modified surface and determination of coefficients. A math-
ematical model is provided in section 1.3 and a numerical algorithm
is presented in section 1.4. The results of the research are analysed in
section 1.5 and the chapter is summarized in section 1.6.

1.2 Physical model

SECM in redox-competition mode

Diffusion layer

Figure 1.1: Schematics of SECM measurement in reduction-oxidation
(redox) competition mode. Oxygen is consumed in two ways: (i) by
glucose oxidase (GOx) catalyzed reaction and (ii) in electrochemical
reaction on the UME surface as the oxygen in the presence of H is
converted to HyO,. Glc — glucose, Gll — gluconolactone.

During a SECM-based experiment, Oxygen (O) and glucose (Glc)
are dissolved in water solution (Fig. 1.1). Fixed concentrations of O,
and Glc are provided from external solution, called the bulk, which is
usually a petri plate. The process of Glc oxidation starts in the presence

12



of dissolved O; then catalyzed by glucose oxidase (GOx), which is im-
mobilized on the surface. During this process O, and Glc are consumed,
hydrogen peroxide (H,O,) and gluconolactone (Gll) are produced ac-
cording to equations

k
GOx™ + Gle <_k—1> GOx - Gle 225 GOx™ + GlI (1.1)
-1
k.
GOxX™ 4+ Oy == GOx - Oy (1.2)
k
GOx - Oy <_k—4> GOx* + Hy0, (1.3)
—4

The value of UME current depends on the concentration of dissolved
oxygen and presence of all other electrochemically active species in the
close proximity to the UME surface and on the electric potential applied
to the UME. In the evaluated RC-SECM measurement system (Fig. 1.1),
oxygen is consumed in two ways: (i) in the redox reaction occurring on
the UME surface

Oy +4e” +4HT — 2H,0 (1.4)

and (ii) in enzymatic reaction, where oxygen serves as an electron ac-
ceptor, which is taking electrons from GOx in the way presented by (1.1)
and is passing them to oxygen in (1.2)—(1.3).

The redox-competition mode was used in order to register O, reduc-
tion current at negative UME potential. Under such conditions O, is
reduced into the water on the UME surface according to the reaction
(1.4). The mathematical model, which describes the SECM acting in
redox-competition mode, was created taking into account conditions
presented in Fig. 1.1. The diffusion layer was formed in a confined space
between the UME and the surface with immobilized GOx. Both oxygen
and glucose diffuse from the bulk to the diffusion layer, as it is shown
in Fig. 1.1. Reaction products H,O, and gluconolactone (Gll), formed
during catalytic action of GOx, diffuse from the diffusion layer to the
external solution.

At the UME surface electrons are transferred to oxygen, which is
reduced in the presence of H*. Oxygen is also consumed on the surface
modified by GOx. Electric current, registered by SECM, decreases due to
the competing consumption of oxygen by both UME and GOx-modified
surface. Oxygen concentration in the bulk, i.e. external solution, of the
electrochemical cell is 253 pmol/L and it is considered that this amount
does not change during the experiment due to the large size of the bulk.

13



Reaction rate constants

Proper selection of reaction rate constants is an important issue for the
modelling of enzymatic reactions-based processes. Mathematical mod-
els of bioreactors, where reactions kinetics had to be calculated, were
presented in 1D [42, 81] and 2D [79, 133] geometries. Mathematical mod-
els in 3D, which are incorporating convection, diffusion and enzymatic
reactions were developed to simulate the concentration of dissolved
oxygen inside the microchannels [137].

In this research, the kinetic constants for reactions (1.1)—(1.3) were
gathered from references [27, 61, 89] and adjusted to better fit experi-
mental results (Table 1.1). Kinetic constants k_1, k_3, k_4 for reactions
(1.1)—(1.3) were determined from the model and were set to the follow-
ing values: k_; = 105!, k_3 = 2000 M~!s~!. The constant k_, was set
to zero, because the backward reaction (1.3) is much slower than other
reactions in diffusion-related processes.

Table 1.1: Kinetic constants and thermodynamic parameters for the GOx
catalyzed reaction with 3-D-glucose and oxygen at pH 5.5.

Sugar substrate or

hermod i L ks, kq, s71 | ref
thermodynamic M-lg—1 2,8 M-lg-1 4, S ref.
parameter

B-D-glucose-1-'H 6

at 25 °C ~200 ~6000 | 1.8 x 10 1440 | [89]
B-D-glucose-1-'H 6

£ 950 13158 1.8x 10% | 1440 | [27]
B-D-glucose-1-'H 6

9750 10000 2.1 x 108 | 1150 | [61]
Used in the model 3000 6000 | 1.5 x 10% | 1500

Diffusion coefficients

The determination of O, diffusion coefficient is especially important
in SECM-based physical experiments and mathematical modelling of
SECM, because electric current, formed by O, reduction process in (1.4),
is used as a measurement for SECM experiment and many analytical for-
mulas, applied for SECM response calculations by researchers, depend
on O, diffusion coefficient. It was shown that O, diffusion is strongly
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influenced by the presence of salts, glucose, etc. in solution [75]. This
dependency for SECM experiments was established in this research (see
section 1.5).

Table 1.2: Diffusion coefficients in water at 25 °C.

Diffusing reagent D, m?%s7! ref.
Oxygen Calculated experimentally

Glucose 5 x 10710 [127]
Hydrogen peroxide 2.1 %1079 [134, 139]
Gluconolactone 5 x 10710 [127]

Other diffusion coefficients were taken from scientific literature (Table
1.2). Diffusivity rates of Glc and Gll were considered the same due to
very similar physico-chemical properties.

1.3 Mathematical model

z Cor=0 Co, Cai 2Ca0, 2Ca
a 2 @ C_ 2 22 _ a
gosga a5 L oge G
d Electrode Insulator Co,=253 M
BCQZ -0 CGk:*GlC
er
—O
aCqi . .
ar " Diffusion of 0,, Glc, H,0,, GlI *_@
aCHzOz =9 O
ar -
ECGn:O
a
’ 0 Reaction between dif‘fusing reagents and substrate @—>
ox d Telass T
Substrate: GOx , GOx-Gll, GOx"™, GOx-0,

Figure 1.2: Scheme of simulation domain. All 8 reagents, boundary
conditions for Cyi¢ and the direction of outside flux are displayed.
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Measurements of SECM acting in the redox-competition mode (Fig.
1.1) are changed into the scheme (1.2) due to the radial symmetry around
the central axis of the electrode. Radial symmetry is a standard assump-
tion in SECM modelling, though the case of off-centered UME was also
investigated [39].

According to the second Fick’s law [87], diffusion processes are ex-
pressed by the system of partial differential equations (PDE):

9Co,

Tl Do, ACop,,
8CGZC
=D c AC cs
ot Gl Gl
aCHQOQ — DH2O2 ACH2027
ot
oC,
8tG” = DeuACqu, for0<t<T,0<z<d, 0<r<7gass,
(1.5)
where:

Co,, Cagic, CH,0, and Cgy are concentrations of diffusing reagents
and expressed as functions of time ¢ and spatial coordinates z and
r. Notation Cyist = Caitt (¢, 2,7) = (Coy, Caic, Cry04, Can) was
used when 4 diffusing reagents were considered together.

Do,, Dgic, Du,0, and D¢y are diffusion coefficients of O, Glc,
HzOz and GII.

d is the distance between the enzyme-modified surface and the
electrode, which is varying from 1 pm to 120 um as shown in Fig.
1.2.

Tglass = 80pm is the radius of insulated area, 7, = 5pum is the
radius of electrode.

T is the duration of a computational experiment measured in
seconds (the evaluation of this parameter is further explained in
the next section).

The Laplace operator A for concentration function C' in cylindrical
coordinates with radial symmetry is

2
AC_l&(&C) 9*C

“ror\or) T2

022"
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Chemical reactions, which are represented by chemical equations
(1.1)—(1.3), for non-diffusing reagents on the surface z = 0 are expressed
by the system of ordinary differential equations (ODE):

acfg;)m” = —k1Cc0xo=Caic + k-1Cc0z - Gic + k4Ccow-0,—
— k_4CG0z0:CH,0,,
% — £1Ca0aor Cate — (k-1 + k2)Ccow - Gles
% = k2C60s-ale — k3CgoureaCo, + k-3CG0z -0, (16)
% = k3CcoereCo, — k—3CG0w. 00 — k4CGox- 0o+

+ k_4Cgogo= CH2027
f07“0<t§T, OSTSTglassa

where Cgozor, Ccos-cier Ccozre and Cgoz .0, are concentrations of
surface-immobilized reagents depending on time ¢ and radius r. Nota-
tion Court = Court (t,7) = (Caowor, Caor - Gie; Caoare, Caoe - 0,) Was used
when all 4 surface reagents were considered.

Rate laws for diffusing substances on the base z = 0 are also de-
duced from chemical equations (1.1)—(1.3) and are used as the boundary
conditions of third type on z = 0:

Do, 88052 = k3C6027eCo, — k—3CG0z - 0
DGzcagflc = k1060202 Cgle — k-1CGox - Gles
D0, 8052202 = ~k4C60z -0y + k-1CG0z0vCh,0,,
Gl agjll = k2Cgozx Gle, for0 <t <T,2=0,0<7 <Tgqss

(1.7)

At the start of an enzymatic reaction oxygen concentration in the dif-
fusion layer is 253 pM (M = mol/L is a unit of molar concentration), sur-
face concentration of active glucose oxidase GOx is 2.114 x 10~ mol/m?
and all other reagents are considered absent. Therefore, initial conditions
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for (1.5)—(1.6):

Co, = 253uM, Cgie = Chy0, = Cau =0,
fort=0,0<2z<d, 0<7r < rggss,
CGogor = 2.114 x 1078 mol /m?,
Ccoz-cie = Cqozre = Cgoz-0, =0, fort=0,0<1 < rggss-

(1.8)

Boundary conditions have to be provided for diffusing materials
in the system of equations (1.5). The Boundary condition on z = 0 is
already given by (1.7) and others are formulated as follows. Due to the
symmetry, in the center r = 0 there is no flow:

0Co, _ 0Cq1e _ 0CH,0, _ 0Cau _0
or or or or ’

for0o<t<T 0<2<d, r=0. (1.9)

On the border r = 74455, i.e. on the edge of the insulating surface,
there is fixed concentration of Oy and Glc

COQ =253 pMa CGlC = Glcouh
for0<t<T,0<2<d, r="rges- (1.10)

The amount does not change during a single experiment as there is an
unlimited source of Oy and Glc outside of the modelled area in other
parts of a Petri plate or air. However, an exterior glucose concentration
Glcoyt is varying from 0 mM to 0.6 mM in different experiments, where
the value of 0 means that no glucose is present in the solution and
surface reactions do not start.

All H,O; and GlII are considered to be diffusing away on the border
T = Tglass, hence

C,0, =Cau =0, for0<t<T,0<z<d, r="ggss (1.11)

Finally, for the border z = d on the insulator r > r¢; (re; = 5um is the
radius of electrode) there is no flow:
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0Co, 0Cg,. 9Cm,0, 9Cau 0
oz 0z 0z 0z

forO<t<T, z=d, re <1 <Tglass- (1.12)

On the electrode (r < r¢;) all Oz is consumed due to the speed of the
chemical reaction (1.4):

Co, =0, for0<t<T, z=d, 0<r <rg. (1.13)

The other 3 materials are blocked by electrode, therefore:

9Caic _ 9Ch0, _ 9Can _ 0
0z 0z 0z ’

forO0<t<T, z=d, 0<r<ryg (1.14)

1.4 Numerical solution

1.4.1 Discrete grid and notations
Non-uniform mesh

In order to solve initial-boundary value problem (1.5)—(1.14), first of all,
a rectangular domain Qr = {(t,2,7) e R : 0 <t <T,0< 2<d, 0 <
T < Tg4lass } had to be discretised.

Non-uniform meshing techniques are commonly employed for a
numerical solution of ODEs and PDE and is motivated by: (i) higher
accuracy [136], (ii) reduction of computation time [22, 76], (iii) dealing
with infinities [52, 62], etc. Non-uniform meshes are used with finite
difference schemes ([2, 53, 56, 78]), but mesh generation techniques
are essential for finite element methods, where a domain is typically
discretised by triangles, tetrahedrons, etc. [5, 30, 60, 63].

Another method is adaptive meshing, which allows dynamical mesh
refinement during calculations according to the behaviour of the solu-
tion, i.e. some a posteriori error estimator like the gradient. This method
has been used in research [25, 76, ] and detailed in textbooks [10, ].

The non-uniform mesh was used in SECM modelling for several
reasons:

19



1. Area around the UME (ultramicroelectrode) provides essential
information about the system but is also much smaller (by a factor
R, ~ 10) than the rest of the system so naturally more mesh points
have to be assigned there.

2. Special care must be taken around junction point between the UME
and insulator as both the largest flow of oxygen, i.e. 9Cp, /0z, and
the largest computational errors are registered there.

3. At the start of the process gradients are very sharp and a very
small timestep 7 is necessary, but as the solutions come closer to
steady-state, much larger 7 is sufficient.

Methods of mesh generation

(A) n non-uniform intervals (B) nnon-uniform m uniform
AR AR A AR RS PSR

>

L L

Figure 1.3: (A) Distance of length L is divided into n non-uniform
intervals of lengths [, .. ., [,,. (B) Distance is divided into n non-uniform
intervals and m uniform intervals of length [,,.

Non-uniform mesh is generated by exponential method, which is
defined by the ratio g between lengths of two adjacent intervals

li = qli—1, ¢ < 1 — mesh with decreasing lengths,
g > 1 — increasing lenghts.

Two methods have been proposed and used for spatial grid generation
as shown in Fig. 1.3.

Method 1. The distance L has to be divided into n decreasing (if
necessary, increasing) intervals, where [; and ¢ are unknown (Fig. 1.3A).
An additional condition is necessary and I, = I, @ > 1 (0 < a < 1)
has been used, which guarantees that for Iy < 1 (which is the case in
SECM model) [,, is several orders of magnitude smaller (larger) than [;.
Consequently, the grid is strongly contracted at the end of full interval L,
which is what is required for the grid at r = r;. The rate of contraction
is determined by parameter a.
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By adding lengths /;, the following system is provided for /; and ¢:

Lt ali+ 2l + .+ = L
{1+q1+q1+ +ql = I (115)

¢l =15,

The sum of geometric series is applied to derive nonlinear equation from
(1.15)

ll - 1:q€LL7
ZL_i (1.16)
qg=1",

which has been solved by fixed point iterations, which converge for (1.16)
[113]. Approximately 10 — 20 iterations are enough to reach computer
precision.

Method 2. The distance L is divided into 2 types of intervals: n
intervals are of decreasing (increasing) length and m intervals are of the
fixed length according to Fig. 1.3B. This mixed method is employed
then very large (compared to /1) distance L has to be discretised and it
becomes undesirable to have a too narrow (too wide) interval.

In this case, [; is known i.e. given as a parameter or calculated by
method 1, ¢ is unknown. By using the exponential growth condition
I, = ¢" !, series have been derived

l1+ qly + q2l1 + ...+ qn_lll + mqn_lll = L.

As in the case of (1.16), the sum of series is calculated and fixed point
iterations for unknown ¢ are obtained

q:"\1/1<L—1_q>. 1.17)
m \ [y 1—¢q

Iterations (1.17) converge for both ¢ > 1 and ¢ < 1 with all realistic
values of parameters.

Grid construction

The mesh @ (Fig. 1.4) was defined with non-uniform steps:
Wp=Azitzi=zi—1+hi,, i=1,...,N1, 20 =0, zn, =d},
W = {rj cry=rj—1+1l, 7=1,..., jjunc, - - -, N2,
70 =0, Tjne = Tels TNy = Tglass |
o = {tk:tk:tk_1+7k, k=1,... K, {*=0, tK:T},

wW=w XWwp X w.
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60 80

40
- um

0 20

Figure 1.4: Mesh @), x w; of size 100 x 100. The majority of mesh points
cannot be seen as they are too close to the domains of compression. The
red line shows the junction between the electrode and isolator at 4 pm.
(A) full mesh, (B) Part of mesh zoomed near the electrode.

The junction point between the UME and insulator, i.e. r = 7,
was always at fixed index jjunc = 0.5N2. 50 % of mesh @; points were
allocated for computations at the electrode, because this part of domain
was used for calculation of SECM response and high accuracy was
necessary.

The spatial grid was constructed in 3 steps:

1. @y, was discretised by method 2 starting from the last interval Ay,
and calculating backwards. Parameters were set: n = 0.6 /Ny, m =
0.4Ny, hy, = 1078 /Ny, and ¢ > 1 was calculated by (1.17). Method
2 was chosen, because the length hy,, which is the interval near
the electrode, had to be fixed in order to prevent additional errors
in SECM response curve, then the full distance d was changed.

2. wywithr <rg, i.e. indexes j < jjunc, was discretised into decreas-
ing intervals using method 1, parameters n = 0.5N3, a = 1.5 and
q < 1 calculated by (1.16).

3. The rest of 74,.s was divided into increasing intervals by method
2 with parameters n = 0.6/N, m = 0.4N». The starting length [;
was taken from division of interval r;.

An advantage of non-uniform mesh was demonstrated in Fig. 1.5A,
where electric current 7 was plotted depending on the mesh size. Even
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(A), 2 (B) »

Spatial N1 x N2 mesh Timestep K-sized mesh
21 50 = 50 uniform = K = 12000 uniform
2 100 x 100 uniform 1.96¢ == [ = 12000 non-uniform
19 =50 x 50 non-uniform ===High precision non-uniform
: ===High precision non-uniform 192}
<18 <
j =) o
=7 1.8}
16
15 1.84}
1.4
13 I I L I 1 18
0 0.2 0.4 0.6 0.8 1 0 1 2 3 4 5
ts t.s

Figure 1.5: Advantages of non-uniform vs uniform mesh (A) Size of
spatial mesh was analysed, (B) Size of timestep mesh.

small 50 x 50 non-uniform mesh performed better than the uniform
grid of the same size and was already comparatively close to the result
computed with much more dense mesh (N = 400). A high precision
result can still be reached with uniform mesh as current curves converge,
but the computing power requirement would be very large.

For the purpose of model testing, @y, x w; mesh size N; = 100, Ny =
100 was sufficient, but final computations were carried with 400 x 400
grid. The size was set after carefully examining the errors between
calculations with chosen mesh and one 2 times larger and evaluating
that the error is not larger than 1.0 %, which was considered sufficient.

For the construction of timestep grid, parameter 7" had to be de-
termined, where T is the time necessary to reach steady-state. It was
estimated experimentally (see section 1.4.4) that 7" = ~6—8s. Timestep
size 15, was set to

7. = 0.0001, fort < 1s,

7, = 0.001, forls <t < 2s,
7, =0.01, for2s<t<T

and the derived size of timestep grid w” was approximately 12000
depending on T'. At the beginning of process, a very small value of 7
was chosen, because concentrations altered very rapidly. Afterwards,
the process levelled off and 7, was gradually decreased.

Computational tests were provided in Fig. 1.5B, which demonstrate,
that current I calculated by 12 000-sized mesh is reasonably close to
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high precision calculations (K ~ 100 000). Besides, it is evident that the
construction of timestep mesh has less influence on the error compared
to spatial mesh.

Notations for numerical solution

Equations for concentrations Cyis of diffusing reagents differ by initial-
boundary conditions (1.7)—(1.14) and diffusion coefficient D. In order to
prevent repetition of difference formulas, the notation

UF: ~ Caige(t*, 21, 75)

=~
Z?]

will be applied to indicate that all four Cy;s are approximated by the
same formula and the appropriate diffusion coefficient D. In case the
concentration of particular reagent is necessary, then notation

U = (Uo,, Ucic, Uns0,, Ucu),

(1.18)
U£27i7j ~ COQ(tk,Zi,Tj), e

will be used. The similar notation is used for surface-bound reagents

‘/jk ~ C’surf(tka 7“]'),
V = (Vgozor, Vaos-cies Vaowre, Vaoz-0,), (1.19)
Vng"m,j =~ CGOxocc (tk, T'j), [

1.4.2 ADI Finite difference schemes

The system of 8 differential equations (1.5)—(1.6) with initial conditions
(1.8) and boundary conditions (1.7), (1.9)—(1.14) has to be solved. The
alternating-direction implicit finite difference method (ADIFDM) was
used for 4 diffusion equations (1.5).

ADIFDM is a classical method for solving diffusion equations in 2D
space. The effectiveness of this method was shown by various research
groups [19, 94, , ]. There are significant advantages of ADIFDM
over a simpler explicit FDM scheme. First of all, approximation error for
the ADI scheme is O(72+h?), where 7 = max(7;) and h = max; j(h;,[;),
i.e. it is second order for all variables with an assumption that sufficient
continuity conditions are satisfied:

' Cuige
ort

O*Caige
0z

9° Caif
Or20220t

< M, <M

9 I

PP Caige
o3
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for some constant M. In addition, it is unconditionally stable, which
is an important feature, because h; and [; are very small. Moreover, a
tridiagonal system of linear equations is constructed, which is solved
very efficiently with Thomas algorithm. Additional details and proofs
of these properties are presented in Samarskii [116], Morton et al. [101]
or original paper by Peaceman and Rachford [105].

r-direction finite difference schemes

At each timestep tF and fixed i = 1,...,N; — 1, equations (1.5) were
solved in the direction of r axis using a scheme:

U”L,j Uy,k] _ D (7"‘ 05 2,5+1 71,; o 05Uz',j_U7,,]—l)
0 5Tk T’jl]+0 5 I+0- lj+1 I lj
k k k k
D (Uh, — Uy Uiy —Uly,
hitos hit1 hi ’
j=1,...,No—1, (1.20)
where

_ it _ Tty
TiH05 = T Tj-05 = T

L hit+hi ! it
+05 = T 5 s 05 = T

Uijj ~ Cdiff(tk + 0.57, z;, Tj).

U, ; is an unknown value in the middle of timestep, which has to be
computed while solving in the r-direction.

Boundary value U; y, was simply taken from boundary condition
(1.9):

Ui,Ng :Cdiff‘ 1=0,...,Ny. (1.21)

r=re;’

but to keep second order of approximation special care was taken for
axis symmetry » = 0. Equations (1.5), written in their general form
C, = D(Cyy + 2C, + C...), were transformed at point r = 0 into

C,=2DC, + DC,.. (1.22)

Here, Taylor series expansion C, = C,. ‘7‘:0 +7rChry ‘r:(] + O(ljz) and bound-
ary condition C,| _, = 0 (1.9) were used to get rid of division by 0 in

;.
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Afterwards, the so-called ghost point ULA was introduced to ap-
proximate derivative (1.9) with the symmetric second order difference
scheme (U;;; — U;—1) /2l = 0. Using equation (1.22), approximation at
j = 0 was obtained

Uio—U»kO Uiri—U;o
) i, — 4D i, i,
0.57 ( 13 )+

k k k k
D (Uz‘+1,0 - U B Uio—Uilip

* hit1 hi

), i=1,... Ny —1. (1.23)
hitos

The boundary layer z = h, i.e. the layer at the electrode and fixed
index i = N1, was approximated using differential equations (1.5) and
boundary conditions (1.12)—(1.14). Diffusion of reagents Glc, HoO2, GlI
is not interfered by the electrode so the same scheme could be used for
allj =1,..., Ny — 1. Equations for functions Cg;., CH,0, and Cgy were
approximated with the ghost point U, +1,; technique as in (1.23) and
difference equation was calculated for i = Ny:

77 L _JTk
UNlJ UN17j

0.57

D Unyj+1 = Unyyj Unij —Unijm1

= o\ Tt I —Tj-0.5 I +
Tjt5+40.5 j+1 J

j=1,...,No—1. (1.24)

Considering O, distinct boundary condition (1.13) was provided for
r < re, ie. until the junction between the electrode and isolator, so the
boundary value for function Cp, was set to

UNl,j =0, 7=0,... ajjunCa (1.25)

where jijunc is the index at r = r¢;. For points r > r,;, the same difference
equation (1.24) was used with the exception that indexes j = jjunc +
1,...,Na — 1 were provided.

The boundary layer z = 0, i.e. layer at the substrate, fixed index
i = 0, was approximated using differential equations (1.5) and non-
linear boundary conditions (1.7). In order to simplify the approximation
formula, conditions (1.7) were rewritten in general form
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ICif
D 821 = K boundary(Cdifﬁ Csurf)y

forO0<t<T, 2=0,0<7r <7rgass, (1.26)

where Fyoundary are nonlinear functions from the right-hand side of
boundary condition (1.7). Using notations (1.18) and (1.19), functions
Fboundary Were expressed in numerical values:

~ k ky —
F boundary(cdiffa Csurf) ~ K boundary(UO,ja Vj) -
k k k
ksVéoure, iU, 0,5 = k-3Voz. 0,5
k k
i leGoxOZ,jUGlc,O,j - k’flvcom-Glc,j

k k k
—k4VGos. 0,5 T k-4VGower, jUR,04,0,5

k
k2 VGOm -Gle, g

Approximations of boundary conditions (1.26) were calculated using
ghost point for value U* 1; technique:

Uoj—Us; _ D <r4 o —Uoy OSUOJUOM)
0.57 lej+0.5 I+ lj+1 T lj
uf.—uk. 2 4
+ QD% — HFboundary(Ug,j7 V;?), j=1,...,No—1. (1.27)
1

Finally, it must be noted that for corner value ﬁo,o both methods
(1.23) and (1.27) were applied. Methods (1.23) and (1.24) were used
to approximate UNl,O for all diffusing materials except O,, because
Uo, Ny 0 = 0 according to (1.13).

z-direction finite difference schemes

Approximation formulas in the direction of z-axis were calculated using
the same methods as in (1.20)—(1.27). At each fixed j = 1,...,Ns — 1,
equations (1.5) were solved in z-direction:

k+1 77 = = = =
Uij " —Uij D Uij1 —Uij Uij —Uij

= Tj+05———— T Tj=05 I

0.57 7ilj+0.5 1 j
k+1 k+1 k+1 k+1
D (Uyy; —Uy Ul — Uiy

b
hitos hit1 h;

i=1,...,Ny—1, (1.28)
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where Uik;-rl is an unknown value for z-direction.

The boundary layer z = h (i.e. i = N;) for fixed index j was approx-
imated by:

kE+1 77
Uniy = Umi _
0.57%
D Unigr = Unig Tnrj— Unpje
=7 <7°j+0.5 Nl’]ﬂ N1 — i os Ni,j Ni,j 1) n
Tilj+0.5 L l;
k+1 _ prk4l
+ 2D Nl—l}i2 ]\717-7 s j = 1, ey NQ — ]_ Considering GlC, :[_12027 GH,
Ny

J = Jjunc + 1,..., No — 1 considering Oy, (1.29)

where jjunc is the index of the junction between the electrode and isolator.
The values of O, at the UME, i.e. r < r,;, were set to

U]’:f—fj =0, j=0,... >jjunc- (1.30)

The boundary layer z = 0 (i.e. ¢ = 0) for fixed index j =1,...,No — 1
was approximated by the same method as in (1.26)—(1.27). Values of
U’g’ ;and V;? from the previous timestep were taken for the purpose of
linearization:

k+1 77 — — — _
Yoy U0y _ D ( Uosn=Uny_ Toj~Unjr
0.5Tk lej+0.5 J+0. lj-i-l J—V. l]
{f—i—l _yrk+1 9
J 0,

T QD% - 7Fboundary(U’87j7 V;g) (1.31)

hy hy
It should be noted, that the expression Fi,oun dary(Ug’J;l, V?-H) had to be

chosen according to the method used. The system of nonlinear algebraic
equations would be formulated, which could be solved by some iterative
method. However, according to a couple of performed testing computer
simulations, the second iteration was already very close to the first one
and running the iteration process was determined unnecessary.

Special approximation of equations (1.5) was used at the boundary
r = 0 as explained in (1.22)—(1.23). For fixed index j = 0

Ui’“o“ _Ui,o Ui 1 _UiO
- —=4D <7l%7) +

0.57,
k+1 k+1 k+1 k+1
+ D Uir1o = Uip B Uio —Uitig i=1 N —1
hz+05 hz—‘rl hl ) g ey .

(1.32)
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Value for j = Ny was taken from boundary condition at » = r¢; (1.9)

k+1 _ .

Uin, = C'diff’qn:?,el7 1=0,...,N;.

i ; k+1 k41 .
Approximation at corners Uy~ and Uy, o were set in the same manner

as with r-direction.

1.4.3 Numerical algorithms
Reduction of schemes to systems of linear equations

In this section, matrices of systems of linear equations are calculated
from finite difference schemes. It is shown that these systems are tridi-
agonal and their right-hand sides are also derived.

First of all, matrices were calculated for each fixedrow ¢ =1,..., Ny —
1 (¢ = 0 and 7« = NN; are separate cases) in order to find unknown middle-
step values U, ;. Schemes (1.20) were converted into N, — 2 equations
forj=1,...,Ny—2

ajUiyj_l + bij’ + CjUi,j—i—l =R;;, (1.33)
where
0 — Drj_os _ _Dritos
T Lli—osryt 7 Lyalj—osry]
2
bj:—T—k—aj—Cj7 j:17,N2—2

The right-hand side R; ; in (1.33) was calculated by

Rij= Ul + BUE + Uk, j=1,...,Na—2,  (134)
where
D 3 2 . 2D
o = — ) P = )
’ hivo.5hi ! Tk hihit1
o D
i hitoshit1

In the case of j = 0, the equation was derived from the scheme (1.23):

boUio + coUia = Rip, (1.35)
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where
2 4D

bg = —— — =
0 ™ €, ¢Co l% )
Rip = iUl o + BiUfo + iUk o-
The final equation was obtained from (1.20) and the boundary value
(1.21) for j = Ny — 1:
a;Uij-1 +bUij = Rij,

. L (136)
Ri; = _Cdeiff‘,,:rel + Uiy + BiUs; + iU,

where a;, b; and other coefficients are the same as in (1.33)—(1.34) with
j=Ny—1.

Finally, tridiagonal N»-sized matrix was formed from (1.33)—(1.36)

bo Co 0o ... 0 0
al b1 c1 ... 0 0
0 a9 b2 N 0 0
0 0 0o ... ANy—1 bN2_1

and the right-hand side of the system of linear equations was set to

R, = (Rio, Ri1y -y Rinyg—1).

Two more systems were derived for special cases of boundary rows.
For the case of i = Ny, i.e. for values at the UME, schemes (1.24) were
used for Cgic, Cr,0, and Cgy; to form Na-sized matrix and (1.24)—(1.25)
were reduced to smaller (N2 — jjunc)-sized system for Cp, which was
due to its special boundary condition.

For the solution in z-direction, i.e. the calculation of Ué‘i;“l, schemes
(1.28)—(1.32) were reduced into linear systems in the same manner as
previously explained. It is easy to observe that these systems have
tridiagonal matrices of size N1 + 1 or Ny in the case of Co, at j < jjunc-

Solution of a linear system

N3 — 1 tridiagonal systems of linear equations were obtained for each
4 diffusing reagents, i.e. 4Ny + 4 systems in total, while solving in
the direction of r axis. Additionally, 4N; tridiagonal systems were
constructed for z-direction. All these tridiagonal systems were solved

30



using the Thomas algorithm (Tridiagonal matrix algorithm, TDMA)
[113] which is known to be highly efficient for this type of systems as it
requires only O(NN) operations.

The stability of TDMA is not always guaranteed as it may become
unstable in case, for example, of singular matrix. Several conditions of
the stability exist and can be refered to numerical methods textbooks
such as Quarteroni et al. [113] and Higham [71]. In the case of matrices
presented in the Thesis, diagonal dominance is sufficient criteria:

bj] > laj| + ;| j=1,..., N,

where b; is the element in j-th row of the main diagonal, a; and ¢; —in
the other diagonals.

It is evident that the matrix formed from (1.33), (1.35) and (1.36) is
diagonally dominant and straightforward to prove that all other matrices
are as well.

Algorithm for the system of ordinary differential equations

The system of ODEs (1.6) for non-diffusing reagents was solved by
the trapezoidal (also known as symmetrical Euler or Crank-Nicolson)
method, which has O(7?) truncation error with the assumption that
Courf € C3(0,T) [113]. Inserting already calculated U(]fjl, the formula
was derived:

Vk+1 o Vk‘ ) N
GOzo®, GOzoe, = ~
zd i ! = —k1 VGOzom,jUGlc, 0,7 + k—IVGOm . Glc,j+
+ kaVaoz .0, — k—aVGozor, jUH,0,,0, 55
yhtl _ vk ,
GOx -Gle, j GOx-Gle, j = = =
- = k1VGozor, jUctc,0,;— (k—1+k2)Vaoz - Gie, i,
|7/ R S v . . .
GOzxre, GOzxre,j =5
J - = kaVaou - Gie,j — k3VGoare, jU0,,0, i+
+k_3VGoz- 0.,
k+1 k
VGO 04,5 = VGoe.0s5 o = . = ‘
- = k3VGOz’"e,jUOg,O,] - k*3VGOZB-OQ,j7

— k4Vaor-0,,5 + k—4Vaower, jUn,0,,0,

j=0,...,Ny—1,
(1.37)
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Where Uk Uk+1 Vk Vk+1
b 205t Y%, s VitV
0= T o andVi= T

(1.37) was then rewritten in an easily solvable system of 4 linear equa-
tions
AVt =B
7 Y

as A and B depends only on ij, ﬁ07 ; and coefficients.

The trapezoid method can become unstable if the derivatives of right-
hand side functions are too large, which is caused by too large reactions
rate constants compared to timestep 7. It was necessary to have varying
reactions coefficients to able to model their influence on SECM response
(electric current) and for fine-tuning them (see subsection 1.2).

In order to solve this problem, the algorithm was adjusted by dividing
current time interval (t*, t**1) into n parts so timestep in (1.37) was
’;), p=1, ... nby linear

interpolation at timestep k + p7,, between U(’i j and U(]fjl , and V]k was
changed

reduced to 7, = 7/n. ﬁo,j was changed into ﬁo(

k(1) _ vk
v = v
ijv(p) — ‘/}k+1z(P*1)7 p= 27 .n.

1.44 Computation of SECM response

The model allows to calculate the concentration of diffusing materials
O3y, Glc, HO3, Gll and non-diffusing reagents GOx°*, GOx-Gll, GOx"e?,
GOx - O3 at any time ¢ and position z and r. The main parameter, known
as the response of ultramicroelectrode (SECM response), is an electric
current, which is measured by an electrode at position z = 0, 0 < r < r¢
and formed by the flux of O;. The graph of SECM response (electric
current, measured by SECM) is also called the approach curve, because
physical experiments are conducted by moving the UME closer to the
enzyme-modified surface, i.e. approaching the surface, and registering
electric signal at each stop.

The current through the electrode is calculated as a function of time

[11,13, 138]:

Tel
i(t) = 27nF Do, / 8202
z

0

7d7’ dr, (1.38)

32



where n = 4 is number of electrons exchanged and the Faraday constant
F =9.6485 x 10* A smol .

In order to calculate derivative ag 2 Ly in (1.38), Cp, was approx-

imated by fourth order Newton interpolating polynomial [113] at each
node t, i = N1,j =0, ..., jjunc

P(tkazar]) Uﬁffi—%—f[ZNl,ZNl 1](Z_ZN1)+ N

+f[ZN1a ZNj—1s-- 7ZN1—4](Z_ZN1) et (Z_ZN1—4)7 .7 = 13 cee >jjur1c-
(1.39)
Divided differences f[zn,, ...] were calculated by iterative formulas

k+1 k+1
Unyj =~ Unic1y
f[ZNpZNl—ﬂ )
ZNl ZNl—l

fleni=1-- -y 2Ny —a] — flzng -+ -5 2Ny —3)
f[ZN172N1—17--~7ZN1—4} = ! ’ ! ! : ! .
ZN1 - ZN174
(1.40)
~ ap(tk7Z7T])
0z —d 0z —d

with error O(h*). Such high accuracy was necessary, because the gradi-
ent of Cp, at the UME is large and it guaranteed that error was minim-
ized even for small Nj.

The integral (1.38) was approximated by second order Newton-Cotes
quadrature formulae (trapezoid rule, [113]):

]]unc

. P(tg, z,r
i(t) ~ 2mnF Do, ( Z Lito. 51"j )

_|_
t=t), 0z

z=d

ap(tlm 2y rjunc)

+ 0~5ljunc7"junc 02

Zd) . (141)

For comparison with experimental data, steady-state current

= fm i)
was calculated. Because of computational reasons, it was enough to
take modelling parameter 7" large enough to ensure that relative error
for current i is smaller than 0.001 % between two following timesteps.
Modelling results show that depending on the model parameters (dis-
tance d and Glc concentration) it takes 7' = ~6—8s to achieve necessary
accuracy.
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1.4.5 Implementation details and algorithm analysis

The program code including mesh generation, finite difference schemes,
linear solver and other numerical methods was implemented by the
author using Python (Anaconda distribution). Additional libraries were
employed:

* NumPy - efficient calculations of operations with vectors and

matrices. Inner loops were vectorised according to NumPy stand-
ard.

e Numba - @jit decorator for optimized compiler, which greatly
increases execution time.

MATLAB was also used for:

* The prototype of the program,

* Data analysis and plotting.

A single iteration of the ADI algorithm takes O(NN;N2) operations
or simple O(N?) by taking N = N; = Na. A single iteration of the
algorithm for the system of ODE takes O(/N3) operations as the number
of calculations ateach j = 0, ..., Ny —1is independent on N. Therefore,
the complexity of the full algorithm is O(K N?).

Table 1.3: Execution time of the full algorithm depending on the size of
spatial mesh N = N; = N, and timestep mesh K. 6 is the ratio between
time of different grids. Tests were run on Intel Core i5-5200U CPU @
2.20 GHz (2 cores), 8 GB RAM, 64-bit Windows OS machine.

Spatial mesh test Timestep mesh test
N CPU time, min | Oy K CPU time, min | O
50 3.67 3500 3.85
100 7.20 1.96 || 7000 7.44 1.93
200 14.93 2.07 || 14000 15.16 2.04
400 33.64 2.25 || 28000 29.75 1.96
800 78.49 2.33 || 56000 59.96 2.02
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However, computer simulations had shown, that actual computation
time was almost linear according to V. According to Table 1.3, execution
time increased only about 2 times (fy ~ 2) while doubling the size of
spatial grid in each simulation. It can be explained by efficient vector
operations in NumPy, which may no longer work for some unrealistic-
ally large N. As expected, calculation time was linear according to K as
0 K~ 2.

1.5 Modelling and experimental results

1.5.1 Comparison of computer simulations and experimental

results

2 o Y o fo W W5 I S 0 mM Glc
YR B < 0.05 mM Glc
' 0.1 mM Glc
0.2 mM Glc

15}
0.4 mM Glc
< 0.6 mM Glc

1F

............. Mode|||ng data
: oxaop#A Experimental data
0.5} ¢

0 20 40 60 80 100 120 140 160
d, um

Figure 1.6: Current vs. distance dependencies, when different concen-
trations of glucose were added to the buffer solution.

The results of computer simulations were compared with real RC-
SECM experiments (Fig. 1.6), which were conducted with 6 fixed val-
ues of glucose concentration: 0 mM (no enzymatic reaction), 0.05 mM,
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0.1mM, 0.2mM, 0.4 mM and 0.6 mM. As expected, approach curves for
higher concentrations of Glc were below curves of lower concentrations.
This feature is the essence of the RC-SECM mode as O, consumption
at the UME is slowed due to competition with O, consumption during
the enzymatic reaction, which is faster for higher concentrations of Glc.
Moreover, the adjustment of O, diffusion coefficient Do, also influenced
the positions of approach curves and, in particular, the positioning of
steady-state currents, i.e. the current, which is registered at the greatest
distances from an active surface (d 2 80 um). Because Do, decreased
in the presence of a higher amount of Glc, the steady-state current,
computed both by simulations and the experiment, was also lower.

As presented in Fig. 1.6, the modelling data coincided very well with
the real physical experiment at steady-state distances, which was due to
the calibration of experimental curves using the diffusion coefficient, ad-
justed to Glc concentration. It should be mentioned, that the calibration
of experimental results is the typical procedure in post-experimental
calculations because of high measurement errors and overall volatility
of SECM experiments. However, the distance, at which steady-state
current was reached in the model, was consistent with experimental
data, which is attributed solely to good correspondence between the
model and experiment.

At smaller distances d, where a sharp upturn of the electric signal
is observed, the correspondence between the model and experimental
data was slightly lower. It can be explained by measurement errors, the
dependence on successful calibration for experimental results and the
deviation of model assumptions at smallest distances (d < 1 pum) as new
physical factors had to be contributed. In fact, the perfect electrode is
represented by the mathematical model and the current would reach
0 at d = 0 (the UME touching the enzyme-modified surface), but that
would not be the case with the imperfect real UME.

Overall, the results of computer and chemical experiments were
considered coinciding very well.

1.5.2 Calculation of oxygen diffusion coefficient

According to the experimental data, displayed in Fig. 1.6, the diffusion-
limiting current changed together with varying glucose concentrations.
The concentration of oxygen (and UME current) in a zone, which was
not affected by diffusion, was considered to be the same at all evaluated
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glucose concentrations. However, the current is proportional not only
to oxygen concentration but also significantly depends on the diffusion
rate of oxygen through the solution. The oxygen diffusion coefficient
depends on the presence and concentration of compounds, which are
present in a buffer solution: salts (e.g. NaCl, KH,PO4, KoHPOy), gluc-
ose, etc. as demonstrated by Hébrard et al. [75]. Additionally, the same
research has shown that the diffusion coefficient significantly depends
on the glucose concentration in the solution, and it decreases at lower
glucose concentration. Therefore, during the comparison of real ex-
perimental data with that generated using the proposed mathematical
model, the diffusion coefficient was adapted for each evaluated glucose
concentration.

We have tested the influence of diffusion on the current of the UME by
the SECM experiment, which was performed on a bare surface without
any immobilized enzyme at different glucose concentrations in the buf-
fer solutions. The steady-state diffusion-controlled current is related
to oxygen concentration when the UME-based probe is far from the
surface [11], therefore the diffusion coefficient was calculated using the
following formula:

Lexp
b 4nF027outrel ’
where ieyp is an experimentally measured steady-state current, Oz out =
253 uM — Oy concentration in an exterior solution.

This experiment showed a noticeable decrease in observed diffu-
sion coefficients compared to that observed in a buffer solution (Fig.
1.7A). The diffusion coefficient is one of the most significant paramet-
ers which is affecting UME current and the effect has to be taken into
account in order to appropriately fit absolute current values, which
were registered during the experiment. In the experiments, the buffer
solution with 0.1 M of KCI with a particular concentration of glucose
was used. Do, = 2.29 x 1079 m? s~ is the oxygen diffusion coefficient
[126]. Other researchers found that the diffusion coefficient of oxygen
separately depends on the concentration of glucose and NaCl in water
[75]. Therefore, in this case, when glucose was added to a buffer solution
containing several salts, it is obvious, that in this solution the diffusion
coefficient of oxygen is more significantly affected by the composition
of the solution. To determine the influence of glucose concentration
on the diffusion coefficient in a buffer solution, the experiment was
performed under the same conditions, but on the surface where the GOx
was inactivated and oxygen was not consumed (Fig. 1.7A).
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Figure 1.7: (A) Diffusion rate dependence on the concentration of gluc-
ose, which was added to the buffer solution. Measurements were per-
formed at 0.5 cm distance from non-modified surface, i.e. without en-
zymatic reaction. (B) Diffusion rate dependence on the concentration of
glucose, when chemical reactions on enzyme-modified surface happen.
The oxygen diffusion coefficient Do, was calculated by fitting modelling
results to the experiment.

The SECM-based evaluation of O, diffusion coefficient was per-
formed on an enzyme-modified surface when enzymatic reaction was
taking place. This experiment demonstrated that the diffusion coeffi-
cient of oxygen is almost the same in glucose concentration range of 0.4
— 0.6 mM (Fig. 1.7B), while measurements without enzymatic reaction
show linear dependence of diffusion coefficient on glucose concentra-
tion in the range of 0.4 — 1.8 mM in Fig. 1.7A. According to the data,
provided in Fig. 1.7B, it was determined that the O, diffusion coefficient
is inversely proportional to the glucose concentration in the exterior
solution, denoted Glc,,:. The following formula was derived by fit-
ting simulations data to the physical experiment and then by using the
least-squares method to calculate coefficients:

2.7 x 10710
Glcout + 04,

when the glucose concentration is measured in mM. Formula (1.42) was
used in computer simulations of SECM, which were given in Fig. 1.6.

Do, = 4.7 x 10710 4 (1.42)

Mathematical models usually are fitted to experimental curves, which
are representing normalized current vs. normalized distance. How-
ever, the diffusion of measured materials is not evaluated in such a
case. The diffusion coefficients could be measured using the SECM
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technique, therefore, in the mathematical model, different diffusion
coefficients could be applied for different glucose concentrations using
(1.42). Additionally, the research of different redox couples, such as
oxidized /reduced ferrocene (Fc* /Fc) or benzoquinone (BQ/BQ~*), and
ferrocyanide/ferricyanide, showed that the UME current response in
the SECM generation-collection mode is particularly sensitive to subtle
differences in the diffusion coefficients of a redox couple [94]. In partic-
ular, the diffusion coefficient ratio of the oxidized and reduced forms
of a couple can readily be determined by three methods: (i) by fitting
the chronoamperometric UME current at a known distance between the
UME and substrate; (ii) by combining measurements of the steady-state
UME amperometric response at a known distance between the UME
and substrate with that registered when the UME is positioned far from
the substrate; (iii) by measuring the ratio of the steady-state feedback
and UME current response at the generation-collection mode registered
at the same distance between the UME and substrate [94]. Therefore,
fitting unnormalized data to the model using different oxygen diffusion
coefficient are also meaningful, because they demonstrated real UME
currents.

1.6 Summary and conclusions

The mathematical model of SECM acting in the reduction-oxidation
competition mode was presented for the first time in the literature.
Using this model, it is possible to calculate oxygen consumption rate,
evaluate enzymatic reaction kinetics, and determine oxygen diffusion
coefficients in the medium of varying composition. It was shown that
the data of computer simulations and real physical experiment agreed
well after adjusting these parameters according to the model.

The modelling of the RC-SECM mode by taking into account diffusion-
reaction kinetics showed that the main parameter influencing a steady-
state diffusion-limited current signal is the diffusion coefficient. The
diffusion coefficient is known to be different in solutions of different
composition. Therefore, in biological systems varying salt and gluc-
ose concentrations are significantly affecting the diffusion coefficient
of oxygen and other materials. For this reason, the UME signal can
be significantly decreased due to this effect. The influence of varying
diffusion coefficient could be evaluated by the proposed mathematical
model.
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SECM-based evaluations of enzyme-modified surfaces are very valu-
able for the development of enzymatic biosensors and biofuel cells. For
example, the developed mathematical model can be further applied for
the evaluation of the Michaelis constant calculated when the UME is loc-
ated at different distances from the surface modified by an immobilised

enzyme.
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Chapter 2

Mathematical Modelling of
the Influence of
Ultramicroelectrode
Geometry on Approach
Curves Registered by
Scanning Electrochemical
Microscopy

2.1 Introduction

The goal of this research is to develop computational models to study the
precision of SECM measurements with three different and most frequent
types of defected UMEs: (i) recessed-UME, (ii) outwarded-UME, (iii)
cone-UME. These electrodes are mathematically modelled by diffusion
equation in various non-standard (non-rectangular) domains. Computer
simulations of defected UMEs are compared with data obtained with
not defected standard-UME to calculate measurement errors of SECM
experiments performed with non-standard UMEs.
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Measurement errors in SECM-based experiments

Scanning electrochemical microscopy (SECM) is a powerful tool for loc-
alized investigations and mapping of electrochemically active surfaces
by scanning them with the ultramicroelectrode (UME) [74]. Electric
signal (current), measured by SECM, is registered by an approach curve,
which is obtained by the downward placement of the UME towards a
substrate, i.e. by approaching a substrate.

However, SECM-based experiments are prone to high measurement
errors. Approach curves should be adjusted because of the background
current [44, 47, 54], electrode positioning challenges [96], variations
in electrode geometry [3, 39], etc. UME should be carefully prepared
and the geometry of the electrode should be determined before the
measurement.

Variations in UME geometry, which is the main focus of the chapter,
are caused by 2 major factors. Firstly, the fabrication of UMEs is still
a very sophisticated and hand-crafted procedure, therefore, it is very
hard to avoid significant deviation from an ideal shape of the UME.
Secondly, the geometry of the UME changes every time, when the UME
is polished or accidentally damaged by touching the surface of interest.
These changes in UME geometry induce significant variations in electric
current, measured by the UME. The simple and time-saving procedure to
determine UME geometry and its deviation from the standard would be
the comparison of experimental data with curves of a current, generated
using a particular mathematical model.

Modelling the influence of UME geometry

Digital simulations were performed [3, 13, 86, 90, 95, , , , ]
to evaluate the influence of UME geometry on experimental results.
Such simulations can solve some SECM measurement-related problems
such as poor spatial resolution, the uncontrolled distance between the
UME and surface of interest during SECM investigations and the ef-
fects of deviations from mathematically idealized SECM geometries on
experimental data [123, 125].

The influence of UME geometry was theoretically investigated as-
suming that approach curves are registered in electrolyte with redox-
mediators [3, 20, 39, 123, ]. Simulations were performed for recessed-
UME, which showed that the deviation of the amperometric response
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can be significant depending on the recess depth [20]. Responses of
both recessed and protruding (outwarded) electrodes were evaluated
demonstrating especially for outwarded-UME that even small protru-
sion height can lead to a substantial deviation from a standard inlaid
electrode [55]. The influence of tip geometry defects for steady-state
currents at conical nanoelectrodes was investigated [85]. Approach
curves were analysed over both electrically conducting and insulating
substrates for conical electrodes [150, 151].

Some less frequent types of UME geometries were analyzed. Sphere-
capped SECM tip formed by electrodepositing mercury drop onto UMEs
were modelled and compared with experimental data [91]. It was de-
termined that the diffusion around the edge of the insulating layer has a
pronounced effect on the approach curves if SECM is acting in hindered
diffusion or the positive feedback mode [3]. The positive feedback mode
is mostly used for the calculation of kinetics by fitting mathematical
models to experimentally obtained approach curves. The experiments
have to be performed with electrodes with ideal geometry, otherwise,
the fitting parameters, such as reaction rate constant, is not accurate.

Nonsymmetrical UMEs were simulated using the finite boundary
method and the effects on approach curves in negative and positive
feedback SECM were investigated [123]. The same authors investigated
the multi-electrode based UME and simulations were performed in
various generation-collection modes of SECM [124]. Several types of
UME geometries, such as tilting, recessed-UME, off-centered UME and
the UME with an elliptical conducting part were investigated [39]. In the
same research, the influence of some UME parameters such as the radius
of the conducting part of the probe and the relative size of the insulator
surrounding the conducting part have been evaluated. During the
monitoring of electrochemical activity of surfaces modified by biological
materials the determination of consumed oxygen is often applied[47].
Therefore, for the investigation of biological materials, a general model
that will improve the determination of UME geometry is required. This
model should account for various unevenness of the conducting part
of the UME and calculate the difference in measured approach curves
from the ideal electrode.

Outline of the chapter

In this chapter, a mathematical model is developed to investigate several
UME geometries: standard-UME, recessed-UME with a conducting part
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recessed into the isolator, outwarded-UME with a sticking out conduct-
ing part and cone-UME with an outwarded cone-shaped conducting
part. This research is targeted towards the study of biological systems
without redox mediators and the advantage of the method is that it
allows the simple detection of the geometry of the UME by registering
oxygen in buffer solution by the negative feedback mode SECM.

In section 2.2, a short summary of an electrochemical experiment,
which is used for validation of numerical experiments in section 2.5,
is provided. Details of mathematical models are given in section 2.3
and their numerical solutions are explained in section 2.4. In section
2.5, results of numerical experiments are discussed. Conclusions of the
chapter are made in section 2.6.

2.2 Experimental details

SECM and the disk-shaped Pt UME-based probe with radius r; =
114 pm from Sensolytics Ltd (Bochum, Germany) were used for experi-
ments. The RG factor, which represents the ratio of the insulating part
radius with the conducting part radius, i.e. RG = 74455 /71, Was meas-
ured by an optical microscope and it was determined as 5.35 indicating
that the radius of an insulator is r¢;,ss = 610 um. The active part of the
UME is drawn inside by depth H;,, = 165um and this probe will be
referred to as real recessed-UME used for SECM experiments in future
references.

Before all measurements, the real recessed-UME was washed with
95 % ethanol solution and it was polished with polishing paper with a
grain size of 0.3 um and then the real recessed-UME was washed with
buffer. The real recessed-UME quality was checked by cyclic voltam-
mograms. A three electrode electrochemical setup was applied and,
in this setup, the UME-based scanning probe was switched as a work-
ing electrode, Pt wire as a counter electrode and Ag/AgCl in 3M KCl
(Ag/AgCl(BM KCl)) — as a reference electrode. Approach curves (Cur-
rent vs distance dependencies) were registered at potential of —500 mV
vs Ag/AgCl(BM KCl). The registration of approach curves was per-
formed by moving the UME at 1 um/s speed in a vertical direction.
Then the UME-based probe was retracted to the distance, where the
steady-state current is achieved. Approach curves were registered from
that point while approaching the insulating surface in the negative feed-
back mode. Measurements were performed in phosphate-acetate buffer
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with pH 6.6 and repeated three times. The mean value was used for
further calculations.

2.3 Description of UME geometries and mathema-
tical models

In subsequent sections, four different UME geometries are analysed:
ideal standard plane UME which will be referred to as standard-UME;
UME with a recessed conducting part (ref. as recessed-UME); UME
with an outwarded conducting part (ref. as outwarded-UME); and UME
with an outwarded cone-shaped conducting part (ref. as cone-UME).
Mathematical models are provided for each type of the UME in separate
sections alongside necessary formulas for the current computation.

2.3.1 Mathematical model for standard-UME

(A); e (B) =
%" dy|  C=0_oc_ = 4
—] B — V.a, — —_—
d c=0 Tnsulator H. I Electrode é 3 0z ¢ |
| Electrode = 7 ~fisilaisr 7
d
C=Cp o ~
ac ar = C—C{)
=’ Diffusion of O, Diffusion of O, o)
ac ac
57 =0 o
0 * 0
Tel Vglass T Vel Tglass i
c D
(© (D) .
e 7Y
N deone ! 2 “Tnsilaior Y
Hout Q& —
= Cc=C, Heone S C=Cy
d| Electrode Diffusion of O, o) Diffusion of O,
%x_y d
ar w_y x _, ax_,
0 9z ar o
Fel Vglass r Tel rglass 7

Figure 2.1: Schematic representations of simulation domains considered
with boundary conditions, important parameters of UME geometry, etc.
are given. (A) standard-UME, (B) recessed-UME with insertion depth
H;,, (C) outwarded-UME with protrusion height H,,;, (D) cone-UME
with side angle o and normal direction derivative fi.
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A simple rectangular domain in Fig. 2.1A is used to represent the
geometry of standard-UME. Diffusion of oxygen is expressed by the
second Fick’s law in cylindrical coordinates system:

oC 0’C 10C 9*C
= <a2 Y or a2> ,
for0<t<T, 0<z<d, 0<r <rgus, (2.1)
where C'is the O3 concentration expressed as a function of time ¢ and
2 spatial coordinates r and z. T is the duration of a computational
experiment, d — distance from the surface to the tip, r,; = 5pm is the
radius of the conducting part and rg,.s = 80 pm is the radius of the

insulated part of the UME. The diffusion coefficient of oxygen in water
Do, is 1.105 x 102 m? /s [74].

At the beginning of the process the diffusion layer is fully saturated
with oxygen and initial condition is

C=Cy=253pM fort=0,0<2z<d, 0<7r < rgges (2.2)

All necessary boundary conditions are shown in Fig. 2.1A and are
explained below. We consider the case without substrate hence there is
no flow of oxygen on the surface z = 0:

‘?E =0, fort>0,2=0,0<7 < Tgass (2.3)
(2.4) is due to the assumption of radial symmetry to the central axis.
%:0, fort>00<2z2<d, r=0. (2.4)
Constant intake of oxygen is assumed at the outer side of domain:
C=253puM, fort>0,0<z<d, r="rggss- (2.5)
There is no current flow on the insulator:
% =0, fort>0,z=d, rg <71 <Tgass- (2.6)

According to the applied model, all oxygen, which is reaches the in-
terphase between the solution and conducting part is reduced:

C=0, fort>0,z=d, 0<r<rg. (2.7)

Finally, the current through the standard-UME is calculated using the

formula i 90
1(t) = 2mnF' D —
i(t) = 2mnF Do, /0 P

where n = 4 is the number of electrons exchanged and the Faraday
constant F' = 9.648 x 10* A smol L.

dr, (2.8)

T
z=d
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2.3.2 Mathematical model for the UME with a recessed con-
ducting part

We have analysed the situation when the active (conducting) part is
recessed by depth H;, into the insulating part of the electrode. The
distance from the surface to the insulating part of recessed-UME is still
d, but the distance between the surface of interest and the conducting
partis d;, = d + H;y,. This distance is always larger than d and thus in
this situation the conducting part of recessed-UME is further away from
the surface comparing to that when the conducting part and insulating
part form an ideally shaped plane. The simulation domain in Fig. 2.1B
consists of 2 connected rectangles: a larger one of height d is the same
as for standard-UME in Fig. 2.1A and a smaller one of height Hj,
corresponds to the recessed part.

The diffusion equation (2.1), initial condition and boundary condi-
tions (2.2)—(2.6) remain the same, but they are presented in the new
domain as shown in Fig. 2.1B. The boundary condition for recessed-
UME is

C=0, fort>0, z=di, 0<r <r,. (2.9)

On the recessed part at the insulator there is new no-flow condition:

88£ =0, fort>0,d<z<dy, r=ry. (2.10)
r

In order to compute the current, the equation similar to (2.8) is used

Tet 9C'
(1) = 27nF -
i(t) = 2mnF Do, /0 3

rdr. (2.11)

Z:din

2.3.3 Mathematical model for the UME with an outwarded
conducting part

Outwarded-UME is modelled as conducting cylinder bulging out of the
insulating part of the UME into the diffusion layer. There are 2 active
parts of the conducting cylinder of outwarded-UME: the disc at the UME
tip and the side of the cylinder, which is also in contact with the diffusion
layer. It means that the active part of outwarded-UME has a larger
surface area in comparison to the standard-UME, and this area depends
on protrusion height H,,;. In this situation, the distance between the
surface of interest and outwarded-UME active surface remains d as for
the standard-UME, but the distance from the surface to the insulating
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part of outwarded-UME is increased to dyy: = d + Hyy. Again, it is
always larger than d and even when d approaches 0 the diffusion to
the outwarded-UME is not blocked because there is a flow of oxygen
through the sides of outwarded-UME cylinder. The simulation domain
is represented in Fig. 2.1C and consists of 2 connected rectangles.

Diffusion equation (2.1) and initial-boundary conditions (2.2)—(2.4),
(2.6) remain the same as in the standard-UME with exceptions of new
boundary condition for the side of the conducting part of outwarded-
UME cylinder:

C=0, fort>0,d<z<doy, r="re (2.12)

and for the insulator and outer side of domain which are by distance

doyt from the surface
oC
E =0, fort>0,z=dout Te <7 < Tglass;
C=0Cop=253puM, fort>0,0<z<dout, ™= Tglass-

(2.13)

The sum of two integrals is used for calculation of the tip current

Tel
i(t) = 2mnF Do, / oc
o O

z

dout 8£

5 dz.

“(2.14)
The first integral represents the current flowing through the disc of the
outwarded-UME tip, the same as in (2.8), while the second part is the
current flowing through the side of the conducting cylinder and thus
the integral is calculated as the current flow through the side area. It
should be noted that even if the distance d approaches 0, the diffusion
is still not blocked, and the current has a non-zero value close to the
surface because the side of the conducting part is still contacting with
the diffusion layer.

rdr + 2mnFDo,re /
d

z=d

2.3.4 Mathematical model for the UME with an outwarded co-
ne-shaped conducting part

The cone shape represents the situation when the UME is damaged
and the conducting part of the electrode is brushing out. The UME
containing sharp sticking parts is modelled by a single outwarded cone
with one sharp tip, i.e. the apex of the cone. This single sticking part
gives an idea about the properties of UMEs with a rough conducting
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surface. This model is more complicated than the outwarded-UME
model because an outwarded part is no longer rectangular.

The simulation domain in Fig. 2.1D is a rectangle with one cut-out
corner representing the conducting part of the cone-UME. The side of
the cone-UME makes angle a with its base. The distance between the
surface and the apex of the cone is d and the distance from the surface
to the insulator is deone = d + Heone, Where the height of the cone is
Hcone = re/tan(a). Clearly, an area of the conducting part is larger
than for standard-UME and the surface does not reach the isolator even
for d = 0, thus the cone-UME is expected to behave similarly to the
outwarded-UME.

The same diffusion equation (2.1) and similar initial-boundary condi-
tions (2.2)—(2.6) have been used as for the standard-UME. The boundary
condition on the side of the conducting cone is

C=0, fort>0,0<r<ryg, z=rtana+d. (2.15)

The direction of the current through the cone-UME is perpendicular
to the side of the cone and thus normal direction derivative n making
angle a with r axis is used to compute direction of the current flow as
shown in Fig. 2.1D. In this case, the current of cone-UME response is

calculated by

2mnF D Tel
_ 2mFDo, [0C 4 (2.16)
cos v o On

i(t)

2

where division by cos « is necessary, because % is the lateral area (i.e.
side area) of the UME cone.

2.4 Numerical solution

2.4.1 Discrete grid

The boundary value problem, which describes the standard-UME model,
had to be solved in a rectangular domain (Fig. 2.1A)

Qs = {(2,7) eR?:0<r< Tglass, 0 < z < d}.

The differential equation, governing cone-UME, had to be solved in a
trapezoid-shaped domain (Fig. 2.1D)

Qeone ={(2,7) :0<r <rg,0<z<rtana+d}U
U {(z,7) 1 et <7 < Tglasss 0 < 2 < deone -
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Figure 2.2: Mesh W), x w; of size 100 x 100. The majority of mesh points
cannot be seen as they are too close to the domains of compression. The
red lines shows the electrode. (A) recessed-UME, (B) outwarded-UME,
(C) cone-UME, (D) zoomed in part of cone-UME mesh. Inner points of
the mesh are marked by blue circles, boundary points by blue crosses.

Both domains Qg4 and .., were discretised using non-uniform
spatial mesh (Fig. 1.4 for standard-UME mesh, Fig. 2.2C for cone-UME)
of size N1 x Na:

wp = {zi:zizzi_1+hi, iIl,...,Nl, Z():O, ZN, :d},
w) = {T'j vy =i+, J= 17---;jjunc;---7N2,
o = 0, rjjunc =Tely, TNy = rglass}y
W = W X Wy,
where h; is a step size in z-direction, /; — in r-direction, h; and r; — spatial

coordinates at indexes 7 and j. In order to achieve higher accuracy at
the UME, 50 % of mesh points were allocated at the area below the
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electrode, i.e. r < r;, and, thus, junction point between the UME and
insulator was always at fixed index jjunc = 0.5N2. As shown in Fig. 2.2C,
the mesh was exponentially compressed around the point z = deone
(2 = d for standard-UME) in z-direction and around the point r = r; in
r-direction. Parameters of mesh growth/contraction were calculated by
(1.16) and (1.17).

It should be noted that the precise location of boundary points of
cone-UME mesh depends on UME geometry and mesh parameters (Fig.
2.2D) and had to be determined for each separate case.

In the case of recessed-UME, the boundary value problem had to be
solved in cutout rectangular domain (Fig. 2.1B)

Qree ={(2,7):0<r <rg, 0< 2 <dip}VU
U {(2,7) 17t <7 < Tglass, 0 < 2z < d}.

The mesh of domain §2,.. was constructed using a similar method as
in the previous case. It was assured that mesh point was placed at the
height z = d and index i = i;, with the same goal as it was done at
radius r = 7 and index jjunc. The main difference from standard-UME
was that the mesh @), was exponentially compressed around 2 points
(Fig. 2.2A): z = d;y for greater accuracy at the UME and z = d for
greater accuracy at the bending point of domain €., where larger flux
(i.e. gradient) of oxygen was administered by SECM. Thirty percent of
mesh points were allocated between d and d;,, for robust calculations at
the UME. W}, mesh was generated using method 2 (1.16) three times: (i)
by growing mesh from d;,, with parameters n = 0.15N1, m = 0; (ii) then
by contracting from the middle line between d;,, and d and (iii) growing
again from d downto 0 with parameters n = 0.35N;, m = 0.35N.

In the case of outwarded-UME, the differential equation has to be
solved in different cutout domain (Fig. 2.1C)

Qout = {(2,7): 0<r <7y, 0<z<d}U
U {(z,7) : 7t <7 < 7Tglass, 0 < 2 < dout }-

The mesh of domain Q,,; (Fig. 2.2B) was chosen like in the case of
recessed-UME by compressing the mesh around 2 points in z-direction.
The mesh point was always assigned at the height z = d with index
i = iout and 50 % of mesh points were allocated between d and dy; so
that always iyt = 0.5N;. Such a large number of points was necessary
because in this case part of the UME was placed at the vertical border at
r = r¢ and higher accuracy was required compared to recessed-UME
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(the isolator was located there in the case of recessed-UME). Similarly
to the case of recessed-UME, W}, mesh was generated using (1.16) three
times with appropriate parameters n and m.

The initial-boundary value problem (2.1) had to be solved in domain
Qpr = [0, T] x 2, where T is modelling time, €2 is spatial domain in
analysed geometries. It was determined that ' = 6 s was enough to
reach stable state in all geometries with observed parameters. Time
interval [0, T'] was discretised by non-uniform time mesh

wfz{t’“:t’“:t’HJrrk, k=1,...,K, t°=0, tK:T}

and full mesh @™ x w was constructed. In the case of standard-UME
and cone-UME, timestep parameter 7 was set to 0.0001 for some start-
ing points and later gradually increased to create time mesh of size
~1.3 x 10%. In the case of recessed-UME and outwarded-UME models,
the size of @™ had to be substantially increased up to ~2.6 x 105, be-
cause the stability of the solution was much lower. Spatial mesh of size
200 x 200 was used for all models.

The approximate solution at a mesh point (t*, z;, r;) was denoted by
Ui’fj. The approximation of (2.1) and initial-boundary conditions will be
detailed in the following sections.

2.4.2 Approximation of the boundary condition on the cone

The boundary condition (2.15) on the electrode of cone-UME has to be
dealt with separately due to cone-UME difference from other geometries.

The cone-UME is represented by irregular curved domain Fig. 2.1D,
which has to be approximated because the boundary line does not
intersect with mesh points as shown in Fig. 2.2D. Inner points of the
mesh (blue circles in Fig. 2.2D) are calculated by the regular formula.
Boundary points (blue crosses in Fig. 2.2D), which are defined as having
in their neighbourhood at least one point outside the mesh, have to
be approximated using the boundary condition. While it is evidently
possible to construct non-uniform mesh so all mesh points lie on the
boundary line for fixed UME geometry, it is not preferable due to a
couple of reasons:

1. Cone-UME geometry and notably its base angle « is the charac-
teristic to be tested in this research. Different meshes for each
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geometry would provide an additional computational error and
potentially increase computational time.

2. Very small or large angles o may be tested by the model and
automatically generated meshes would produce too small or too
large space step.

The finite difference approximation of curved boundary condition is
studied in literature for the Dirichlet type condition [50, 69, 73, ]and
Neumann type [107]. It should be noted that FD methods with irregular
domains can still be used and stability properties persist, but the finite
volume and finite element methods are necessary and more efficient
when the domain becomes even more complex [54].

Value U;; 1 at boundary point (i, j) was calculated by the linear in-
terpolation formula When solving in z-direction, the following formula
was used for each boundary points (i, j) (index iy is distinct for each
column j):

k+1 k+1 k41
v - “ Vi _ g~ Ui , di=do, j=0, . dune (217)
i—1 aj

Here, 0 € [0, h4] is vertical distance between boundary point (4, j)
and boundary line z = r tan a 4+ d and is calculated for each column j.
Boundary condition y; ; is always equal to 0 according to (2.16). More
than one boundary point is included into some columns (see the middle
column in Fig. 2.2D). In this case the first point (i9, j) above inner points
is approximated by (2.17) and interpolation in r-direction is applied for
the rest of them:

k41 k41 k1 o
Upjs1 = Ui U — iy

b
L i

L=101,..ylm, J= 07-"7.jjunC7 (218)

where ig, i ..., i, are indexes of boundary points in a single column
with fixed j, (m + 1) is the number of boundary points in column j, and
oij € [0, 1j_1] is the distance to the boundary line and boundary point

(i, 4)-
Formulas in r-direction are very similar:

Uk+1 Uk+1 U]cji—l —
it ; ,] . . . ;
1,7 l 2,] — _ % , Z:Zconea"'?Nl_L J = Jo, (219)
j i

where jj is the index of the first boundary point in each line, o; €
[0, l;_1] is horizontal distance (distinct for each column ¢) between
boundary point (i, j) and boundary line. In the case of multiple bound-
ary points in the line, formulas similar to (2.18) are used.
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2.4.3 Finite difference schemes

The initial-boundary value problem in all 4 different geometries was
solved numerically using ADIFDM and similar techniques regarding
discretization of the differential equation (2.1) and boundary conditions
were used as in Chapter 1. The major difference is that non-standard
geometries must be taken into account for models of recessed-UME,
outwarded-UME and cone-UME.

Schemes of the standard-UME model

In the case of standard geometry, equation (2.1) and boundary conditions
(2.3)-(2.7) are the same as analysed in Chapter 1 with Cg;. set to 0, i.e.
without reaction processes. Approximation formulas (1.20), (1.21), (1.23)-
(1.25), (1.28)—(1.32) were used to solve equations in the standard-UME
model. Specifically, (2.1) was approximated in the direction of r-axis at
each fixedi =1,..., Ny — 1 by:

U =Uy _ D (r, Tt = Ui Uij = Uz',j1>+
0-5Tk lej+0.5 0. lj+1 I lj
k k k k
D (Uh,; — Uy Ui — Ul
hitos hit1 hi ’
j=1,...,Ny—1, (2.20)
where
T+ rit1 rji—1+7;
Tj4+0.5 = 9 rj—0.5 = 9
hi + i b+l
hivos = ——F—, liros=-"—F7"—.
2 2
Unknown value is U; ; in (2.20) for r-direction. In the direction of z-axis
ateach fixed j = 1,..., Ny — 1 equations were used:
Uit Uiy _ D <T, . SUi,j-H ~Uij . 5Um' - Ui,j_1>
0-5Tk T‘jlj+0.5 7+0- lj+1 I lj
k+1 k+1 k+1 k+1
D (Ui, —Uy Uy — Uiy,
hitos hit1 hi ’

i=1,...,Ny—1, (2.21)

where Uik;-Ll is an unknown value for z-direction.
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Boundary conditions were approximated by separately devised meth-
ods as explained in (1.21)~(1.25), (1.32). At each timestep t**! difference
equations were first solved in r-direction and then in z-direction using
the Thomas algorithm [113].

Schemes of the recessed-UME model

Considering the recessed-UME model, the upper-right part of analyzed
rectangular domain (Fig. 2.1B) does not belong to the domain of solution.
The cutout rectangle starts at height z = d, index i;, and radius r = 7,
index jiunc. Approximation formulas had to adjusted as explained in
this subsection.

While solving in the direction of r-axis, (2.1) was approximated at
each fixedi =1,...,iin — 1 by (2.20) and ateach ¢ = ¢jn +1,..., N3 — 1

by

Uy —Ul D (T, . 5Ui,j+1 ~Uij . BUm’ - Um‘—1>+
0.57 rilivos \ 0 lj+1 i Lj
LD Ul —UY UL —URy
hivos hit h; ’

=1, . junc — 1. (222)

Additionally, the boundary condition (2.10) was approximated by for-
mula similar to (1.23) in order to derive difference equation at each
here considered i and j = jjunc. Finally, at index i = ij,, i.e. at the
junction point between the main domain and the recessed part of the
UME, approximation (2.22) was used until j = jjunc and from index jjunc
boundary condition (2.6) had to be incorporated using (1.24).

While solving in the direction of z-axis, (2.1) was approximated at
each fixed j =4, ..., jjunc — 1 by (2.21) and at each j = jijunc+1,..., Na—1
by

k+1 _ 77 = = = =
Upj —Uij D Uijr1 — Ui Uij—Uij
= Tj40.5 = — Tj_05——F——
0.57‘]€ lej+o_5 lj_|_1 l]’
k+1 k+1 k+1 k+1
D (Ui, —Ui Uy — Uy
+ - 9
hitos hit1 h;

i=1,... im—1. (2.23)
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Atindex j = jjunc, i-e. at the junction of the UME and the insulator, ap-
proximation (2.22) was used until ¢ = ij, and approximation of boundary
condition (2.10) was used from ¢ = %, upwards. All other boundary-
initial conditions were approximated as usual.

Schemes of the outwarded-UME model

In the case of outwarded-UME, the upper-left corner is removed from the
modelled domain (2.1C). The additional rectangular domain is added
from height z = d, index iout and radius r = r¢;, index jjunc. Approxima-
tion formulas had to be adjusted in the similar manner as in the case of
recessed-UME.

In the direction of r-axis, (2.20) was applied at each fixed i = 1,
iout — 1. Meanwhile, at each fixed i = igyt, . . ., N1 —1, (2.20) was adjusted
to calculate unknown U ; from index j = Jjunc + 1toj = Na — 1, ie.
only for necessary indexes, and boundary condition (2.12) was used to
set U; =0.

(% junc

In the direction of z-axis, at each fixed j = 1,..., jjunc, (2.21) was
adjusted to calculate unknown Uk;rl forindexesi =1,...,iout — 1 and
at index j = 0 approximation (1.32) of boundary condltlon (2 4) was
adjusted accordingly. Finally, at each fixed j = jjunc+1, - —1,(2.21)
was used.

Schemes of the cone-UME model

After approximating the boundary condition on the electrode (2.15)
in section (2.4.2), deriving finite difference schemes for cone-UME is
relatively straightforward and similar to the case of outwarded-UME. An
additional trapezoid-shaped domain is added from height z = d, index
icone and diagonal side of trapezoid is described by line z = r tan a + d.

While solving in the direction of r-axis, (2.20) was applied at each
fixedi =1,...,7cne and (2.20) was adjusted to start calculations from
j = jn+ lateachrow i = icone + 1, ..., N1 — 1, where j, is the index of
the rightmost boundary point in each row i.

While solving in the direction of z-axis, at each fixed j = 1, ..., jjunc —
1, (2.21) was adjusted to calculate from index ¢ = 1 to ¢ = 4,, — 1, where
im is the index of the lowest boundary point in each column j and at
each fixed j = jiunc, - - -, N2 — 1, (2.21) was used.
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Calculation of SECM response

After solving difference equations for each geometry, SECM response
(2.8), (2.11), (2.14) and (2.16) had to be calculated in order to compare
with experimental data and to present modelling results. Derivatives
in these formulas were approximated using polynomial interpolation
as in (1.39) and (1.40). Additionally, partial derivatives in r-direction
were calculated for (2.14) and (2.16). The trapezoid rule was used to
approximate integrals and formulas similar to (1.41) were derived.

For comparison with experimental data, only the steady-state cur-
rent was important and it was determined that modelling time 7" = 6 s
was sufficient time to reach the stable current in all geometries. Then,
approach curve ippr0ach (d) Was obtained by calculating the steady-state
current at varying height d, i.e. by approaching surface at d = 0. Ap-
proach curves are the output of SECM related experiments and, there-
fore, are the key result in SECM modelling.

2.4.4 Implementation details

The program code was implemented in Python with NumPy library
using

* Libraries and techniques as explained in the previous chapter
(section 1.4.5).

* Multiprocessing library for parallelizing computations using the
HPC resources provided by the Faculty of Mathematics and In-
formatics of Vilnius University. Multiple processes were spawned
for sets of model parameters, which include the distance d, the size
of defect (H;y,, Hout 0F Heone) and RG factor (ratio 7gjqss/7er). Due
to the perfectly parallel nature of independent computer simula-
tions, a lock synchronization mechanism was sufficient to ensure
that processes do not override results while returning the output.

Data analysis and plotting were performed in MATLAB.
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2.5 Results and Discussion

2.5.1 Comparison of experimental data and mathematical mod-
elling results

(B)
<o ; }}}igﬁ%ﬁ%‘ﬁﬂﬁ --------

g, f
228um = 0.4 4
i

. B

£ .
t/ 165um 5 92}/ ---Modelling data
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Figure 2.3: (A) Real recessed-UME image. No.1 denotes active part of
the UME and No.2 is isolator. The size parameters of the UME and recess
depth are shown on the image. (B) Comparison of steady state currents
for experimental and modelling data using the UME shown in Fig.
2.3A (re = 114pm, rg4es = 610um, Hy, = 1651m, applied potential
—500mYV). Error bars show standard deviation for each experimental
data point, which on average is +0.067.

The approach curve for recessed-UME was computed using a math-
ematical model and compared with the experimentally obtained data
using real recessed-UME represented in Fig. 2.3A. Data shows good
correspondence for lower d values as shown in Fig. 2.3B. Difference
increases for larger d values, this effect can be related to larger exper-
imental errors (see error bars in Fig. 2.3B). Higher error bars at larger
d values are attributed to the difficulty of achieving stable currents
for the real recessed-UME for which the recess depth H;,, = 165 um is
considerably large compared to the radius r.,; = 114 um. Thus, these
experimental difficulties are expected for such significant deviations
from standard-UME.

A successful comparison shows that models of different geometries
are compatible with real UMEs, which motivates the application of other
models. Therefore, UME radius r.; = 5 um and RG factor 16 was used
for further modelling.
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2.5.2 Influence of UME geometry on approach curves

Approach curves in the negative feedback mode were modelled for UME
with different geometries: recessed-UME (Fig. 2.4A,D,G), outwarded-
UME (Fig. 2.4B,E,H), cone-UME (Fig. 2.4C,EI) and compared with
standard-UME. For each electrode, approach curves are presented with
three different depths/heights/cone angles of conducting parts, when
the current is: (i) absolute (Fig. 2.4A,B,C); (ii) normalised by diffusion-
limited currents (Fig. 2.4D,E,F); (iii) normalised with subtracted back-
ground currents (Fig. 2.4G,H,I).

For recessed-UME, the absolute current decreases compared to the
current of standard-UME (Fig. 2.4A). This can be explained by the
fact that it is more difficult for oxygen to reach the conducting part of
recessed-UME than in standard-UME case because the turning point
of the isolator reduces the diffusion of all materials including oxygen.
This effect has a more significant influence on the absolute current
when the recession H;), is increasing. According to modelling results, a
concentration gradient is greatest at the turning point (see section 2.5.4
Analysis of isolines) and with increasing recess depth H;,, the gradient
flattens further near the conducting part and then a lower current is
observed. For example, the absolute current is 1.8 nA in recessed-UME
case with 1 pm depth, and 0.8 nA with 5 pm depth.

On the other hand, approach curves for the outwarded-UME in Fig.
2.4B grow rapidly with increasing H,,,;. This is due to oxygen diffusion
both to the side and the bottom of the conducting part of outwarded-
UME. Thus, the conducting area of outwarded-UME is much larger than
for standard-UME. In fact, the actual conducting part of outwarded-
UME at the bottom of UMEs tip plays a less important role in oxygen
consumption than the side of UMEs tip as further explained in the
section 2.5.4.

In the case of cone-UME, absolute currents increase with a higher side
angle as shown in Fig. 2.4C. The conducting area of the cone-UME is
larger for higher angles, which results in a greater total current. Though
the increase is not expected to be linear because the direction of normal
derivative n (depicted in Fig. 2.1D) also changes, i.e. approach curve
Fig. 2.4C is influenced both by increasing active area of the UME and
changing the direction of oxygen flow.

The diffusion-limited current depends proportionally on the surface
area of the UME conducting part. Therefore, by increasing the surface
area, the diffusion-limited current also increases, as it is shown in Fig.
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Figure 2.4: Left column: recessed-UME; middle column: outwarded-
UME; right column: cone-UME. Top row: the steady state current de-
pendency on d for varying levels of UME geometrical shapes compared
with the current for standard-UME. Schemes in the corners of each
Fig. (A), (B), (C) show which parameter is changed and the red ar-
rows demonstrate direction of the change. Middle row: normalised
currents /i, where i is the steady state current with maximum dis-
tance concerned. Bottom row: normalised currents (i — ig)/ic0, with the
starting point of all curves moved to point 0 and then normalised. UME
parameters are 7¢; = 5 m, 71455 = S0 pm in all figures.

2.4B,C. The decrease in the diffusion-limited current was observed in
the case of recessed-UME. In this case, the diffusion to the conducting
part of recessed-UME is more complicated. Therefore, the diffusion-
limited current decreases when the conducting part of recessed-UME is
deeper recessed within an insulating layer of the UME. Fitting mathem-
atical models to experimental data is usually performed by comparing
normalised currents, which are shown in Fig. 2.4D,E,F. In this case,
recessed-UME generates 0 current at d = 0, because the diffusion is
entirely blocked by the insulating part of recessed-UME. The depth
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Hj,, of the recessed conducting part of the UME determines the beha-
viour of approach curves, which is similar to that registered during the
electrochemical processes, where the kinetic constant of electrochem-
ical reaction at the surface of interest is increased. It means that in the
case of recessed-UME this difference will provide incorrect information
about reaction kinetics. Therefore, the tendency of the approach curve
in Fig. 2.4D, which represents the normalised recessed-UME current
vs distance, is very similar to that obtained by standard-UME, only sig-
nal saturation rate is much higher in the case of recessed-UME. Fitting
such experimental data should be made by taking into account this
phenomenon.

On the contrary, the tendency of approach curve in Fig. 2.4E, which
represents the normalised outwarded-UME current vs distance, is very
different from that obtained by standard-UME, because the line starts
at a certain current which is predetermined by protrusion height H,,;
and in addition the slope of the curve is lower in comparison with that
of standard-UME. The last effect is determined by the absence of an
insulating layer close to the surface of interest. When the conducting part
of the UME is outwarded by height H,,; less than 1 um, the difference
from the current from that of standard-UME is not significant. The
situation changes when the conducting part is outwarded more than
5 pm. When approaching the surface with such outwarded-UME, the
current will be not equal to zero even if the conducting part of the UME
touches the surface of interest. Therefore, by attempting to approach the
surface in such a way that the outwarded-UME current will decrease
to zero, which is the standard procedure to determine the distance
from approach curves, the probe and/or the surface of the sample can
be damaged. Such dimensions of UME defect are not observable by
optical microscopy and can be determined only by fitting the model to
experimentally obtained approach curves. The proposed mathematical
model can help to determine UME geometry and to calculate the actual
zero distance which is crucial in SECM experiments.

The cone-UME (Fig. 2.4C,F) simulates the case when the UME has a
defect on the conducting part which is sticking out from the UME. In
some cases, the damage of the insulating and conducting parts of the
electrode can induce an effect very similar to that of outwarded-UME. In
such a case the decrease of the steady-state current down to 0, when the
distance is 0 is not possible even if the conducting part of the conic-UME
is touching the surface of interest. At the distances very close to the
surface of interest the currents simulated with cone-UME are higher
comparing to those registered by outwarded-UME.
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The normalised approach curves can be additionally corrected by the
elimination of the background current (Fig. 2.4G,H,I). This correction
provides some additional insights: approach curves of recessed-UME
are identical to that obtained without correction because in this case,
background currents of recessed-UME and standard-UME are similar.
When the background current is eliminated from approach curves simu-
lated for outwarded-UME, the slopes of curves decrease by the increase
of height H,,; as shown in Fig. 2.4H. For conic-UME, the slopes of
curves also decrease by the increased height H..,. of the conducting
part (Fig. 2.4I). This elimination allows us to distinguish recessed-UMEs
from outwarded-UMEs and conic-UMEs.

The shape of approach curves can be indicated by the SECM user as
the variation of diameters ratio of the insulating and conducting parts of
the UME (RG factor), but this interpretation could be wrong if the UME
is of non-ideal shape. For example, if the conducting part of the elec-
trode is recessed, the user evaluates the approach curve and decides that
RG of an electrode is lower, but actually the depth H;,, = 5 pm is higher,
and RG factor stays the same as in standard-UME case (Fig. 2.4D,G).
This leads to an incorrect interpretation of measured results. Such mis-
calculations are possible because the behaviour of recessed-UME, which
is recessed by depth H;,, = 5um, shows lower imaginary RG factor
than that for standard-UME. E and F parts of Fig. 2.4 do not show any
influence on imaginary RG factor. H and I parts show lower imaginary
RG if the conducting part of the electrode is recessed more deeply. In
most cases, the RG factor is determined by an optical microscope before
measuring. However, small recess depths, outwards heights and/or
some other irregularities cannot be easily determined experimentally
from approach curves and well-observed by optical microscopy. There-
fore, the proposed fitting of the mathematical model with the results of
approach curves will provide a tool for the determination and correction
of inaccuracies of the RG factor, determined by optical microscopy.

Maximum difference for approach curves between non-standard
UMEs and standard-UME were calculated using the formula:

max <I(d) — Iplane(d))

s (e @)

where [ is approach curves of non-standard UME with varying para-
meter H;,, Hyy or angle o and Ipqp. is the curve of standard-UME.

Difference = -100 %, (2.24)

By comparing the difference in a current response between non-
standard UMEs and standard-UME (Fig. 2.5), we conclude that the
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Figure 2.5: Differences between non-standard UMEs and standard-UME.
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for each Fig. (A) recessed-UME, (B) outwarded-UME, (C) cone-UME.

highest difference is for outwarded-UME and reaches almost 100 %.
Maximal difference for recessed-UME is 60 % with retraction depth
Hjy, = 51m for 5 um radius UME. For cone-UME it is 50 % at cone angle
45°, which corresponds to the same cone’s protrusion height H..,e =
5pum. In practice, if the UME is partly damaged, in most of the cases
the insulating part contains cracks and cavities. If this break is very
small, it cannot be seen by optical microscopy and thus the evaluation
using the model becomes necessary. Even if the protrusion height H,,;
is only 2 — 5pm for electrode radius r,; = 5pm used for modelling,
this already provides 40 % — 100 % difference from standard-UME for
registered signal.

Table 2.1: Dimensionless parameters of non-standard UME geometries
that provide following differences from standard-UME approach curve.
The UME with r¢; = 5pm, 74455 = 80 nm was used to calculate data.

Difference from standard-UME | 5% | 10% | 256% | 50%
Recess depth H;y, /1 0.034 | 0.075 | 0.225 | 0.745
Protrusion height Hyt /7 0.027 | 0.064 | 0.186 | 0.438
Cone height Heone /el 0.090 | 0.184 | 0.488 | 1.042

Fig. 2.5 can be used to calculate insertion depths and protrusion
heights of non-standard UME that provides difference of 5 %, 10 %, 25 %
and 50 % from standard-UME. This information is useful to determine
UME suitability for SECM-based experiments by testing when the meas-
urement error becomes bigger than desired. Dimensionless parameters
of UME geometries were calculated by cubic approximation of data
in Fig. 2.5 and presented in Table 2.1. Dimensionless parameters rep-
resenting ratio with UME radius r.; were chosen so data can be used
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for various sizes of the UME active part and it is standard procedure
in SECM modelling [93]. Protrusion height for outwarded-UME is the
smallest parameter to achieve given difference from standard-UME
indicating that SECM with outwarded-UME is the most sensitive for
measurement errors.

2.5.3 Influence of the RG factor on approach curves

Recessed-UMEs were modelled with different RG factors by changing
the insulating part of electrodes. The conducting part of UME remains
the same, therefore, the results did not change for all modelled RGs as
was expected (Fig. 2.6A,B,C). By comparing normalized results (Fig.
2.6D,E F) it was observed that at higher RG the behaviour of approach
curves changes more significantly: the same value of the diffusion-
limited current for RG=32 is achieved at 30 pm distance using standard-
UME, and at 15 pm distance using electrode recessed by 5 um (Fig. 2.6F).
The same effect is observed in Fig. 2.6G,H,I where the background
current is eliminated. To determine the effect of RG, we plotted approach
curves for varying RG factors when geometry in each scheme is fixed
(Fig. 2.7). Significant difference between standard-UME and recessed-
UME approach curves can be seen: the diffusion-limited current for
standard-UME at RG=4is 2.5 nA; while for recessed-UME it is 1.3nA
and 1nA at 3pum and 5 pm, respectively.
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Outwarded-UME have high influence on RG factor: the diffusion-
limited current was 5.5nA, 4.4nA and 4nA for RG =4, RG =16 and
RG = 32, respectively, when outward height was 5 pm (Fig. 2.8A,B,C).
The normalised current at zero distance for RG = 4 is 0.44, while for
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RG =16 and RG = 32 the normalised current reaches 0.3. By compar-
ing approach curves for varying RG factors then the geometry in each
scheme is fixed, it was observed that the diffusion-limited current is
increasing together with outward height: the current is 2.5nA, 4.5nA
and 5.5 nA with standard, 3 ym and 5 pm outwarded-UME, respectively,
when RG is 4 (Fig. 2.9).

Concerning cone-UME, the results (Fig. 2.10A,B,C) show that the
diffusion-limited current is the highest on cone-UME with the lowest
RG = 4 factor. Moreover, it changes by increasing the cone a little bit
more than using RG = 16 and RG = 32. RG =4 current changed from
2.4 nA for standard-UME to 3.4 nA for cone angle 45°; while at RG=16
current values are 2nA and 2.9nA; for RG = 32 current values are
2.1nA and 2.8nA. Thus, if we use cone-UME with RG =4 the absolute
difference is 1 nA, for RG = 16 it is 0.9nA, and for RG = 32 — 0.7nA.
When the current was normalized (Fig. 2.10D,E,F), we obtained that
at zero distance the normalized current is not equal to zero: at RG=4
and cone angle 45° the current is 0.6 nA, while at RG =16 it is 0.4nA,
and at RG =32 - 0.35nA. The current at zero distance did not reach
zero because diffusion was not blocked as in the case of standard-UME.
If the conducting part of the UME is outwarded, the diffusion should
be blocked only by surface of interest when the UME is close to the
surface. However, from data gathered using the mathematical model it
was observed that the geometry of the insulating part is also important.
When RG =4, at 10 pm distance the increase of the current was observed.

The approach curves at three different cones were shown in Fig. 2.11.
The RG factor’s influence on cone-UME show low difference between
RG factors in the case of standard-UME (Fig. 2.11A): i = 2nA for RG=32
and i = 2.5 nA for RG=4. Increase in RG show higher differences (Fig.
2.11B,C) when cone angle is 30°: i = 2.4nA for RG=32,and i = 2.9nA
for RG = 4. For cone angle 45° currents are i = 2.6nA for RG = 32
and 7 = 3.4nA for RG = 4. So, the absolute difference is 0.5nA for
standard-UME and with cone angle 30° and 0.8 nA with cone angle 45°.

The differences from standard-UME were calculated depending on
RG factor. (2.24) was used for calculations as in Fig. 2.5 where only RG=
8 was considered. Almost no dependency was observed for outwarded-
UME (Fig. 2.12A). Considering recessed-UME (Fig. 2.12B), the difference
from standard-UME is greater with small RG factors such as RG =4,
but for bigger RG factors such as RG = 16 and RG = 32 dependency
on RG is still limited. Finally, the most substantial dependency was
observed for cone-UME (Fig. 2.12C): differences are rapidly increasing
with decreasing RG factor.
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2.5.4 Analysis of isolines
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Figure 2.13: Isolines for various geometries of the UME. Conducting
parts of UMEs are highlighted by red lines. (A) standard-UME, (B)
recessed-UME, (C) outwarded-UME, (D) cone-UME.

Oxygen concentration isolines, presented in Fig. 2.13, display oxy-
gen concentration levels in four environments close to analysed UMEs.
We use this information to explain the differences in approach curves
observed in modelled data. In general, oxygen concentration cannot
be directly observed during an SECM experiment and the analysis of
modelled oxygen concentration using isolines graphs is a valuable tool
for a deeper understanding of SECM behaviour.
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Isolines for standard-UME in Fig. 2.13A are interpreted as standard
for comparison with that of other UMEs. As it is expected, the largest
concentration of isolines is at r = 7, i.e. the joint point between the
UME tip and isolator. The highest rate of the current is also observed on
this point using here presented experimental methods.

For outwarded-UME Fig. 2.13C, fewer isolines in z-direction than for
standard-UME were observed, which is indicating that outwarded-UME
would be less sensitive to the variation of oxygen concentration close to
the surface of interest. Moreover, isolines are concentrated on the side
of outwarded-UME, which is indicating that the greatest rate of oxygen
diffusion is through this boundary edge. This effect will induce some
discrepancy from the signal registered using standard-UME.

On the contrary, a greater number of isolines in z-direction for recess-
ed-UME in Fig. 2.13B show increased sensitivity of this UME. But due to
the large concentration of isolines on the turning point (r = ¢, z = H),
lower concentrations of oxygen reach the conducting part of recessed-
UME. In fact, if recess depth Hj, is large enough or the distance from
the surface is low, almost no oxygen reaches the tip and this kind of
UME would be very inefficient.

Isolines of the cone-UME conducting part in Fig. 2.13D indicate
greater sensibility compared to the standard-UME with the greatest
concentration of isolines at the interphase of the conducting part of
cone-UME with isolating part and at the sharp end of the cone. This
may result in an undesirable effect of the increased current compared to
that registered with the standard-UME.

2.5.5 Comparison with data of other studies

Ferrignio et al. [55] modelled recessed-UME and outwarded-UME and
used the finite element method (FEM) to solve PDE. Analytical expres-
sion was established for the steady state current with maximum distance
d:

| 7THout
CerD o _ mHow 2.25
oo = 4nF Do, Cy (Tel + dnHinDo,t/r 31> ’ .

which according to their research could be used in case of both UME
types. In the study by Bartlett et al. [20] a model and simulations of
recessed-UME using FEM were provided. Simulations were compared
with analytical expressions derived by Bond et al. [26]:

T

_ 2.2
4Hin/Tel + 7 ( 6)

100, norm =
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The formula is highly simplified and dimensionless (normalized), but it
was shown that modelling data fits well.

Table 2.2: Differences between recessed-UME and standard-UME as
calculated in the thesis, other models and by analytical expressions.
Dimensionless distances were calculated and difference formula (2.24)
was used for unified comparison. Data of the model of the thesis was
taken from Fig. 2.5.

Thesis | Ferrignio | Analytical | Bartlett | Analytical
Hin/rel

model [55] exp. (2.25) [20] exp. (2.26)
0.04 9% 1% 5% 9% 6 %
0.08 18 % 7% 13 % 12% 9%
0.4 38 % 36 % 34 % 36 % 34 %
0.8 52% 52 % 50 % 52 % 50 %
1 58 % 57 % 56 %

Differences of the recessed-UME current (Fig. 2.5A) were compared
with differences calculated from data of other models and analytical
expressions in Table 2.2. It is evident that the model proposed in the
thesis agreed well with data from other sources for larger values of
recession depth H;,. Correspondence was worse for small H;,, but it
can be seen that all models did not match so well.. Possible reasons are
difficulties with FEM calculations with small depth, normalization and
approximation procedures, etc.

In the case of outwarded-UME (Fig. 2.5B), the agreement was some-
what worse as shown in Table 2.3. The discrepancy was particularly
high for small values of protrusion height H,,;. However, it was repor-
ted in Ferrignio et al. that they had some difficulties in applying finite
elements for calculations of standard-UME current. Furthermore, their
own analytical function (2.26) approximates data very weakly at a small
protrusion height, so it can be concluded that these calculations are
unreliable. Meanwhile, the agreement between the model of the thesis
and Ferrignio et al. was high for very larger and somewhat unrealistic
values of H,,;.
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Table 2.3: Differences between outwarded-UME and standard-UME in
simulations and analytical expression.

Thesis | Ferrignio | Analytical
Hout/rel

model [55] exp. (2.25)
0.04 12% 17% 3%
0.4 46 % 62 % 30%
1.6 147 % 120 % 171 %
3.2 254 % 241 % 297 %

2.6 Conclusions

The mathematical model, which describes three different non-standard
geometries, was used to evaluate the difference from standard-UME
in the current measured by broken UMEs. It was observed that the
highest difference from standard-UME is obtained by outwarded-UME
and the maximal difference reaches 100 % when the conducting part of
the electrode is outwarded by 5 pm which cannot be clearly identified by
optical microscopy. Differences for recessed-UME and outwarded-cone-
UME are lower - 60 % and 50 % for 5 pm recess and 45° cone, respectively.
These results were summed up in Table 2.1 showing which UME defects
do not exceed the difference of 5%, 10 %, 25 % and 50 % from standard-
UME.

The advantage of the analysed mathematical model is that it can
be used for the determination of defects in a simple buffer solution by
comparing the simulated standard-UME response with experimental
data. This method can be applied in various directions. In this study,
buffer solutions were analysed, but the model can be extended with
oxygen-reduction reactions to investigate the influence on reaction kin-
etics.
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Chapter 3

Modelling of Fluorescence
Dyes Uptake into 3D Cellular
Spheroids

3.1 Introduction

In the Chapter 3 of the thesis, a novel mathematical and numerical
model is proposed for the analysis of the accumulation of 2 types of
fluorescent dyes — wheat germ agglutinin (WGA) and rhodamine — into
cellular spheroids. A nonlinear system of reaction-diffusion equations
was used for modelling the diffusion of WGA and rhodamine as well
as the binding of WGA to the cells. Three different cases of the system
were presented to describe the diffusion into cellular spheroids of these
dyes. The Laplace operator of the nonlinear system was written in
spherical coordinates because the modelled area is a sphere. The system
was solved using a finite difference method and the resulting nonlinear
system of algebraic equations was solved with an iterative method.

The computational results and the physical experiment were com-
pared and close correspondence between them was achieved. Diffusion
coefficients in the extracellular matrix for both dyes were calculated
using model and experiment comparison. Moreover, the ratio between
the dye concentration and the fluorescence intensity was evaluated. The
influence of reaction parameters on dye penetration was analyzed. Dy-
namics of dyes uptake were estimated for spheroids of different size
and cell/matrix density.
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The mathematical modelling of 3D cellular spheroids is motivated by
the recent emergency of 3D cell cultures in various biomedical studies.
It is agreed that this method is more relevant to native tissues than
the former gold standard — cell monolayers [46]. 3D cell cultures are
usually used as a platform for primary drug testing, however, due to
some limitations, not all drugs can be investigated. In that case, it
would be useful to have mathematical models, which would predict
drug accumulation and distribution in 3D cell cultures by using the
data of similar already investigated molecules. The fluorescent dyes,
whose physico-chemical characteristics such as structure and molecular
mass are very similar to chemotherapeutic agents, could be used for
modelling and quantification of drug penetration in 3D cell cultures.

One of the most commonly used 3D cell cultures is cellular spheroids.
Cellular spheroids are self-assembled clusters of cell colonies cultured in
environments where cell-cell interactions dominate over cell-substrate
interactions. Some authors have published their attempts to simulate
how various nanoparticles (NPs) accumulate and distribute in cellular
spheroids. Gao et al. have established and studied a computational
model to predict the time- and concentration-dependent diffusion of NPs
in tumour cellular spheroids [55]. The mathematical model of antibody
penetration into tumour spheroids was developed to gain an improved
understanding of the quantitative interplay among the rate processes of
diffusion, binding, degradation, and plasma clearance [66]. The same
model was used to describe the diffusion of NPs into multicellular spher-
oids in the presence of the extracellular matrix modulator collagenase
[65]. The results from the proposed model, in combination with the
experimental results, suggested that particle size, particle binding, and
porosity of biological tissue are the key parameters that need to be con-
sidered when designing NP drug carriers for cancer treatment. Our
previous experimental study and modelling results also demonstrated
that penetration of carboxylated nanoparticles was strongly limited and
dependent on the size and porosity of cellular spheroids [77].

Chariou et al. provided the model to quantify diffusion and uptake
of tobacco mosaic virus (TMV) in a spheroid system approximating a
capillary-free segment of a solid tumour [33]. Model simulations pre-
dicted TMV concentration distribution over time in a tumour spheroid
for different sizes and cell densities.

Oxygen consumption and diffusion in cellular spheroids were ana-
lyzed and a method was presented for estimating the rates of oxygen
consumption and diffusion limit, the extents of the necrotic core, hypoxic
region and proliferating rim [67].
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Uptake and inward diffusion of a fluorescent dye calcein via gap
junction intercellular communication were studied using a 3D multilayer
spheroid model [1]. Quantitative studies about the kinetic parameters
for efflux of various rhodamine dyes were performed [115] but only for
2D cell cultures. To the best of our knowledge, there are no mathematical
models which would predict diffusion and accumulation of organic
molecules (e.g. drugs or dyes) in 3D cell cultures.

Two types of fluorescent dyes were considered in the study — rhod-
amine 6G (R6G) and wheat germ agglutinin (WGA). R6G is a fluorescent
positively charged lipophilic dye, which specifically stains and select-
ively accumulates in mitochondria. It was also reported that at higher
concentrations, R6G also stained the endoplasmic reticulum and other
membrane organelles. Due to its lipophilic nature R6G is also known as
a specific stain for the detection of lipids. This allows R6G to be used
as a universal lipid marker for both qualitative [43] and quantitative
research [32]. Masuda and Oguma study showed that R6G dye could be
used not only for in vitro cell studies but also for visualizing the vascular
networks of the liver and to examine the intrahepatic flow distribution
under various conditions [95].

WGA is a lectin that protects wheat (Triticum) from insects, yeast
and bacteria. Wheat germ agglutinin selectively binds to N-acetylglu-
cosamine and N-acetylneuraminic acid (sialic acid) residues which are
predominantly found on the plasma membrane [145]. WGA conjugated
to Alexa Fluor fluorophores (WGA-Alexa488) is used as a fluorescent
marker to stain the plasma membrane of various mammalian cells.

In section 3.2 of the chapter, details about 3 mathematical models
were presented alongside calculation of equations parameters and nu-
merical solution. In section 3.3, computational and physical experiments
were compared and results of the study were discussed. Finally, the
results of the Chapter were summarized in conclusions 3.4.

3.2 Mathematical models

3.21 WGA migration modelled with reaction-diffusion
equations

Diffusion is the driver of biological processes in cells and 3D spheroids.
The diverse temporal scales of intracellular and intercellular processes

75



are determined by vastly diverse spatial and temporal scales in most
biological and biophysical processes. The latter is due to small binding
sites inside or on the cell membrane or to narrow passages between
large cellular and intercellular compartments.

(A)

Cell 7 J Matrix

WGA Binding Cell
Cells layer layer

molecule site spheroid

Figure 3.1: (A) WGA model, (B) R6G model, (C) Rings model.

WGA molecules diffusion and binding in 3D cell spheroids is ex-
pressed by the equation:

0Cout D 10 <r2 0Cout

ot r2or or > — kpina(Bmaz — Chind) Cout

forO<t<T, 0<r<R, (31

where Cyt (2, 7) is the concentration of WGA molecules in spheroid as a
function on time and coordinate, D — the diffusion coefficient, k;,q is a
rate constant of binding of WGA to the cell membrane, R is the radius of
a spheroid, ¢ — time variable, r — the distance from the centre of sphere,
T — modelling duration.

The diffusion equation was written in spherical coordinates and the
assumption was made that spheroids are approximately homogeneous
in all directions.

As shown in Fig. 3.1A, there is a limited number of sites on cell
membranes for molecules to bind, which is denoted by the constant
Byaz [57]. When this number is reached, no molecules can bind on
the cell membrane. The process of binding to cells is modelled by the
equation:

0Chind
ot

= Kpind (Bmaaz - Cbmd) Cout, 0<t<T, 0<r<R, (32)

where Cyinq(t,r) is the concentration of WGA molecules which are
bound to the cells membrane.
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The following boundary conditions are used:

Cout’T:R = Loutsides
3.3
T (33)
or r=0

which show that in the exterior of a spheroid there is a constant con-

centration of WGA molecules C\yi5iqe = % = 0.13uM and that

there is symmetry to the centre of a spheroid.

Initial conditions for both functions of concentrations are

Cout|t:0 =0,

(3.4)
Cbindlt:() = 07 0<r< R7

indicating that there is no WGA molecules at the start of experiment
and all binding sites are free.

3.2.2 Rhodamine migration modelled with diffusion equation

Rhodamine R6G diffuses both through cells and cellular matrix (Fig.
3.1B) and thus diffusion of R6G molecules in spheroids is modelled
using the diffusion equation:

oC 10 oC
=~ _p—_Z (2=

ot r2 or <T or
where C(t,r) is R6G concentration and it is a version of (3.1) without
the reaction element.

>, for0<t<T, 0<r<R, (35)

The same boundary conditions are used for the R6G model as in (3.3):

C‘T:R: outside

3.6
9¢l _o, ¢ (36)
or |,

Molar concentration Cyyiside = gggg//f;l = 10.4nM is greater for R6G

due to a smaller molar mass than WGA-Alexa488.

Initially, there are no Rhodamine molecules in spheroid, so we have

Cl,_,=0, 0<r<R (3.7)
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It should be noted that the R6G model is separate linearized version
of the WGA model given by (3.1)—(3.4), but with kg set to 0 and
different coefficients.

3.2.3 Rhodamine migration using the rings of cells and matrix
layers model

Spheroids were modelled as concentric rings of cells and matrix layers
as in Fig. 3.1C, where cell rings represent averaged cells and cellular
matrix layer — material between the cells. The process is expressed by
the following equation:

oC 10 ( 2pn 2

oy T 29, t<T .
ot r2or\ 57“)’ forO<t<T, O<r<£R, 3.8)

where D(r) is a function representing the diffusion coefficient

D(r) = {Dcell, if r € cell layer, (3.9)

Datrizs if r € matrix layer.

Do is the diffusion coefficient in cells and D44, is the diffusion
coefficient in cellular matrix, d..; = 10 pum is an average diameter of
cells and d,, is an average distance between cells, which was calculated
in such a way that a known number of cells N of size d..; would fit into
the spheroid of radius R.

Boundary and initial conditions remain the same as in section 3.2.2:

C’T:R = Loutside) t> Oa

oCl o iso, (3.10)

3.2.4 Calculation of coefficients
Diffusion coefficient

The R6G dye diffuses both through the cells at diffusion rate D..; and
the extracellular matrix at the rate D;q¢riz. In the study, the diffusion
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coefficient for the R6G model in (3.5) was averaged in the whole spher-
oid:

D = ¢Dcell + (1 - ¢)Dmatrixa
where ¢ = ]\%,6”7‘/6

<Ll js the proportion of total cell volume to spheroid

sphere

volume, (1 — ¢) — the proportion of extracellular matrix volume to
spheroid volume, V. is the volume of a cell, which is considered to be
spherical, Viphere — the volume of cellular spheroid. N, is the number
of cells in particular spheroid ranging from 6000 to 14 000.

The diffusion coefficient of R6G or similar Rhodamine dyes was in-
vestigated theoretically and experimentally by many authors. It was
observed that the coefficient varies from 4.0 x 10719 m? /s in water solu-
tions [59] to 1.5 x 1078 m? /s in high concentration sucrose-water solu-
tions [35]. Dy = 3 x 10713 m? /s in stratum corneum [6], i.e. the out-
ermost layer of the skin, was chosen as it resembles the cells used in
the experiment most closely. The diffusion coefficient in cellular matrix
Dnatriz Was obtained by fitting experimental data to the R6G model
data (see section 3.3.2).

For the Ring model, the same coefficient D,,qriz Was used, but the
diffusion coefficient in cells was adjusted taking into account that cells
would not be fully squeezed into a uniform cell ring and there would
be some gaps at least between the sides of cells as shown in the scheme
Fig. 3.1C. In the analyzed model the formula for Dl ring was derived
by calculating the ratio between the volume of sphere and cube:

™ s
Dee, ring = gDcell + (1 - 6> Dinatriz-

WGA molecules diffuse only through cellular matrix with cells acting
as immobilized barriers. The diffusion through porous media model
was used to calculate the diffusion coefficient [58, 141]:

D= (1 - ¢)2Dmatrixa

where (1 — ¢) accounts for porosity. It was demonstrated [109] that diffu-
sion rates of R6G and WGA-Alexa488 dyes differ only by approximately
2.1 % and the same R6G diffusion coefficient in matrix D47 Was used.

Binding coefficients

Maximal concentration of binding sites per unit volume depends on
a particular spheroid size and cell density. It was calculated using the
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formula N B
cell Pmax, cell (311)

)
NA Vsphere

Bmaa} =

where N4 = 6 x 10% is Avogadro constant, Bz, ceir = 5 x 107 sites/cell
is the number of binding sites in a single cell [57].

The binding rate constant (association constant) for WGA was de-
terminant to vary from 102 to 10 in studies [9, 57, ]. During compu-
tational experiment several values of the binding constant were used.
These calculations showed that at rates kp;,g = 10> — 10* M~ 1s™! re-
action speed is maximal possible, because the diffusion rate becomes
a limiting factor. Therefore, kp;,g = 103 M~1s~! was chosen for other
computations.

Accumulative concentration

For comparison with experimental data, accumulative concentration
Clacc per volume, i.e. the total concentration in a spheroid divided by its
volume, was calculated as an integral

R
Celt) = —27 /0 C(t,r)r2 dr. (3.12)

Vsph

3.2.5 Numerical solution

First of all, a rectangular domain {(t,r) e R2: 0 <t < T,0 < r < R}
had to be discretised for all models: WGA model (3.1)-(3.4), R6G model
(3.5)—(3.7) and Ring model (3.8)—(3.10). The discrete 2D grid w was
defined

wp=A{r;:ri=1th,1=0,...,N, 10 =0, zy = R},
wT:{tk:tk:kr, k=0,... K, {°=0, tK:T},
Ww=w X W

2D discrete grid was chosen consisting of 100 points in r direction and
240000 points in ¢ direction. Such a large number of points was neces-
sary because modelling time 7" = 24 h was long and high accuracy had
to be achieved.
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The numerical solutions on grid w were denoted by Uik R out(tk, ;)
and V¥ = Cpina(t*, r;). Only solution UF ~ C(t¥,r;) was used for R6G
and Ring models.

Then, (3.1) was discretised using the Crank-Nicolson implicit scheme

UZ.IH'1 — Uik D <Ui_1 — 2Ui +U¢+1 I lﬁi-&-l - Ui—l) .
a h? r; h
— kpind(Bmaz — Vi)U;, i=1,...,N—1, (3.13)

T

where U; = (UZ€Jr1 +UF)/2and V; = (V;’C+1 + VF)/2. Ttis a well
known stable scheme and the approximation error is second order, i.e.
O(7% + h?) in case continuity conditions are satisfied [101, 113]:

Cout € C3((0, T] X (0, R)),  China € C*((0, T1).

Reaction equation (3.2) was discretised by

Vk+1 _ Vk’

“ = kpind(Bmas — Vi)Ui, i=1,...,N —1, (3.14)

T

which is again the second order scheme with O(72) error. Finally, bound-
ary condition (3.3) for r = 0 was discretised by the second order finite
difference formula

UL — UMt 42U = 0. (3.15)

These approximations guarantee that the entire system (3.1)-(3.4) was
approximated by the stable second order scheme.

VA1 was expressed from (3.14)

AVE 4 Thying (2Ba — V) (UF + UF)

Vit = (3.16)

4+ Thyina (U} + UF)

By substituting (3.16) into (3.13), the nonlinear system of algebraic equa-
tions was derived

AUM = AUY + F(URT UP), (3.17)

where U* = (Uk,... ,Uk), A and A are (N — 1)-size matrices with
coefficients from the diffusion term in (3.13), F' is nonlinear part of the
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system from the reaction term. (3.17) was linearized by Picard’s iterative
process [36]:

AUUHD = AUF + F(U(j),Uk), ji=0,...

4O _ ok (3.18)

The system (3.18) is tridiagonal and was solved using the Thomas al-
gorithm at each iteration step. The iterative process was repeated until
condition between 2 iterations was no larger than ¢ = 1071. The process
converged rapidly and no more than 4 iterations were required.

Because the R6G model is linear, (3.5) was discretized by the version
of (3.13) without the reaction term and solved with a single application
of the Thomas algorithm. In the case of the Ring model, the diffusion
coefficient (3.9) is step function and, because of that, separate version of
the Crank-Nicolson scheme was applied to approximate (3.8)

U —UF 1 DivosriiosUin1—Ui) = Dicosrio5U0i—Uiny)
T N r2 h?

i=1,...,N—1, (3.19)

where 7,105 = r; £ 0.5h, the diffusion coefficient D;1o5 = D(r; £ 0.5h)
from (3.9). The tridiagonal system of linear equations was derived from
(3.19) and (3.15), which approximates boundary condition (3.10) at = 0,
and was solved by the Thomas algorithm.

Necessary integrals such as (3.12) on the discrete grid were calcu-
lated with the first order Newton-Cotes formula. All algorithms were
implemented by the author in Python with the NumPy library.

3.3 Results

3.3.1 Analysis of experimental results

The accumulation of R6G in NIH3T3 spheroids was investigated using
2 methods: confocal microscopy (Fig. 3.2) and flow cytometry. In Fig.
3.2A, it was shown, that after 1 h of incubation, R6G accumulated only
in the top layer of the spheroid and the intensity of it was relatively
low compared with the images after longer incubation times. The accu-
mulation of R6G increased after longer incubation times. After 4h of
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Figure 3.2: (A) Combined confocal microscopy and bright field images
of R6G (green color, ., = 488nm) distribution in NIH3T3 cellular
spheroids (8000 cells/drop, R ~ 134um), after different incubation
times ¢. (B) Combined confocal microscopy and bright field images
of WGA-Alexa488 (green color, A\, = 488 nm) distribution in NIH3T3
cellular spheroids, after different incubation times ¢. Representative
images are shown. Scale bar 150 um. (C) Quantitative evaluation of
R6G accumulation in NIH3T3 spheroids. Percentage of cells with R6G
molecules (upper) and florescence (FL) intensity per spheroid volume
(lower) are presented in separate graphs. Every value is an average of
3 samples. Error bars represent standard deviation. Dotted line is an
approximation.

incubation R6G fluorescence was observed through the whole spheroid
and fluorescence intensity increased after 8 h and 24 h of incubation.

The accumulation of WGA-Alexa488 dye in NIH3T3 spheroids was
demonstrated in Fig. 3.2B. The penetration of WGA-Alexa488 dye in
the NIH3T3 cellular spheroid was slower than R6G dye. After 4h fluor-
escence of R6G dye was detected through the whole cellular spheroid
optical section, while WGA-Alexa488 was detected only on the external
part of the spheroid. Even after 24 h of incubation, only low fluorescence
of WGA-Alexa488 was measured from internal parts of the spheroid,
suggesting that a small amount of WGA-Alexa488 molecules penetrated
into the centre of a cellular spheroid.
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For quantitative evaluation of R6G accumulation in cellular spheroids
measurements with flow cytometry were made. The obtained results
were demonstrated in Fig. 3.2C and used for the comparison with math-
ematical modelling results as presented in Fig. 3.3A. The quantitative
evaluation showed that after short times of incubations only cells, which
were close to the spheroid surface, had accumulated R6G, thus the mean
fluorescence intensity was low. It was observed (Fig. 3.2C, lower part)
that fluorescence intensity was growing from 5 min to 4 h of incubation,
but not as rapidly as the number of the cells which had R6G inside
(Fig. 3.2C, upper part). After 2h of incubation, 95 £+ 1 % of cells had
accumulated R6G, but fluorescence intensity reached only 75+ 5 % of its
maximum value. It can be concluded that some cells had accumulated
only a small amount of R6G molecules. The peak of fluorescence intens-
ity was observed after 4 h of incubation. Later fluorescence intensity
stabilized and did not change during measurements. This means that
after 4h of incubation with R6G, spheroids of radius R ~ 150 pm had
fully accumulated R6G molecules. For comparison, in experiments with
a single layer of cells the maximum fluorescence intensity is reached
after 2h of incubation.

3.3.2 Comparison between experimental and simulations da-
ta for R6G accumulation models

The diffusion coefficient in the cellular matrix was calculated by fit-
ting model data to physical experimental data by the least squares
method. Accumulative R6G concentration, which was calculated using
the model (3.5)=(3.7) and integrated by (3.12), and fluorescence intensity
from the experiment were normalized into non-dimensionless values
in order to compare them. Linear dependence between fluorescence
intensity and concentration of the source is well known and the device
constant can be calculated by normalizing, i.e. by dividing by max-
imal concentration and fluorescence intensity. It was determined that
Dinatriz = 4.2 x 10713 m? /s fits the experiment best (Fig. 3.3A) and the
device constant for this particular experiment is 6.4 x 10'°.

Another experimental data set was used for the confirmation of the
R6G model. Fluorescence intensities were calculated at 2h time for
spheroids with different radius and number of cells (Fig. 3.3B). Accumu-
lated R6G concentrations were multiplied by the device constant and
plotted for comparison with experimental data (Fig. 3.3B). Intensities
calculated per cell decrease for larger spheroids which are expected
because it is increasingly difficult for the dye to reach inner layers. The
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Figure 3.3: (A) R6G model curve (red line) was fitted to experimental
data (dashed line) in order to find the diffusion coefficient in cellular
matrix; 8000 cells, radius 134 ym. Black squares are experimental data
and their standard deviation is represented by error bars. (B) Accumu-
lated fluorescence intensity compared to intensities from experimental
data; different spheroid size and number of cells, time ¢ = 2 h.

very close correspondence between the experiment and model was ob-
served up until the largest numbers of cells. The size of the cellular
spheroid depends on the initial cell number until the critical number
of cells is reached. It was observed that, while growing spheroids from
6000 up to 10 000 cells, the size of spheroid increased linearly, but spher-
oids with a large number of cells (V..; = 14000 and N.;; = 6000) were
similar in size and their radius did not depend on cell number. Thus our
model showed that spheroids from 6000 up to 10 000 cells are suitable
for dyes penetration studies, whereas larger spheroids should not be
used because of inaccuracies.
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Figure 3.4: R6G concentration from centre to the sides of the spheroid
at various time intervals and different spheroids (A) Nes = 8000,
R = 134pm, (B) Neeygs = 10000, R = 169 1um, (C) Neeys = 12000, R =
212 pm.

Using the R6G migration model (section 3.2.2) R6G dye accumulation
inside the spheroid was calculated. Fig. 3.4 shows R6G concentration
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Figure 3.5: (A) Ring model results compared with spheroid penetration
by time. Diffusion coefficients are taken from the R6G model. Spheroid
with 8000 cells, radius 134 pm. (B) Accumulated fluorescence intensity
from the Ring model data, R6G model and experiment, time ¢ = 2 h.

dependency from distance r to the centre at various time intervals.
Three spheroids were modelled with a different number of cells, i.e.
cell/matrix density, and spheroid radius R. These parameters were
taken from experimental data.

It can be observed that the first few layers (~20—30 pm) were almost
fully accumulated after about 15 min in all spheroids. The centre of the
smallest analyzed spheroid was filled after less than 8 h (Fig. 3.4A) but
the centre of the larger spheroid in Fig. 3.4C was reached much slower.
After 24 h all spheroids were completely filled with R6G molecules.

An alternative Ring model was proposed in order to better under-
stand R6G penetration into spheroids as explained in section 3.2.3. The
penetration curve in Fig. 3.5A was calculated with R6G cell and matrix
diffusion coefficients which were used in the previously analyzed R6G
model. The curve is very close to approximated experimental data as the
mean squared error is only 0.04 %. For comparison, penetration curve
calculated with the R6G model (Fig. 3.3A) has an error of 0.05 % from
experimental data. It can be concluded that the error is very small in
both cases.

In Fig. 3.5B the fluorescence intensity of the Ring model was plotted
against experimental and R6G model data. While both models agree
fairly well with experimental data, the Ring model is slightly more
accurate with 4.9 % error compared to 5.2 % error for the R6G model.
From these results, we conclude that both models are successful and can
be used for further analysis of dyes penetration. The Ring model can
be applied to determine the effects of cells diameter and cellular matrix
layer size, i.e. the average distance between cells, on dye penetration.
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3.3.3 Nonlinear WGA model analysis

The WGA model was proposed in section 3.2.1 to analyze WGA mo-
lecules diffusion and binding to cells. This process is experimentally
difficult to conduct and modelling has to be employed. It is expected
that the WGA model would be accurate because WGA diffusion in
3D spheroids is closely related to R6G diffusion which agrees with the
experiment well as shown in section 3.3.2. Comparing with the R6G
model, the reaction term was added to account for binding to cells and
binding rate kp;,q and the concentration of binding sites B,;,q, was evalu-
ated. Diffusion was calculated only in the cellular matrix because WGA
molecules do not diffuse through the cell membrane.

Using the WGA model concentration in cellular matrix Cy,; and con-
centration of bound WGA molecules Cy;,, g were computed and shown
in the upper and middle rows of Fig. 3.6 for 3 different spheroids. It
was observed that the penetration rate for the smaller spheroid (Fig.
3.6A) was faster than for the larger one (Fig. 3.6B). The spheroid formed
from 8000 cells was denser than 6000 cells spheroid and thus there was
a greater amount of binding sites (compare Fig. 3.6E with Fig. 3.6D).
Because of that WGA penetration into the centre of 8000 cell spheroid
was slowed down not only by greater size but also by a faster binding
process.

In the case of the largest spheroids (Fig. 3.6C), it was observed in the
experiment that they were much sparser (see z axis in Fig. 3.3B). As it
was mentioned before, some changes in spheroid formation occurred
due to a large number of cells. It was demonstrated that the spheroid’s
porosity depends on the size and cell type [77]. 3D spheroids formed
from cancer cells are sparser because cancer cells tend to migrate and
metastasize. As shown in Fig. 3.6F, the number of binding sites per
unit volume was much smaller and almost all sites were taken in 24 h.
Therefore, diffusion was not slowed so much by the reaction term and
the spheroid centre was almost completely penetrated by WGA in 24 h
even though the spheroid was larger than the others.
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Figure 3.6: WGA dye concentration C,,; in cellular matrix (upper row)
and Cp;pgq in cells (middle row). Bottom row: accumulative WGA con-
centration Cy.. in matrix and cell together. C,; shows maximum
concentration for each spheroid. Left column: spheroid with 6000 cells
and radius 127 pm, middle column: Spheroid with 8000 cells and radius
134 pm, right column: Spheroid with 12 000 cells and radius 212 ym.
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Figure 3.7: Accumulative WGA concentration in 8000 cells spheroid
with (A) different binding constant kp;,q and fixed Byaz, cenn = 5 x 107°
unit/ cell binding sites; (B) different number of binding sites B,y,4z, celi
and fixed kping = 103M~1s~1. The red line marks results with same
binding parameters.

These nonlinear effects were further explained in Fig. 3.6G, H, L
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Accumulated concentration per volume

Neet Veenr

Cacc<t) = (1 - (b) Cout, acc(t) + ¢Cbind, acc(t)a ¢ = V. i
sphere

was calculated and compared with maximum concentration per volume

Cmax = (1 - (Z)) Coutside + ¢ Bmam

which can accumulate into cellular matrix and cell membranes of spher-
oids. Accumulated concentrations in matrix Coyt, qcc and in cells Ching, ace
were calculated by (3.12). The spheroid with 8000 cells (Fig. 3.6H) was
the densest and, therefore, it accumulated more WGA molecules on
average than the smaller spheroid (Fig. 3.6G). It was observed that
the accumulative concentration of 8000 cell spheroid was greater even
though the centre was almost not incubated at all at 24h. It can be
explained by spherical geometry, because outer layers of a sphere ac-
count for a much greater volume than inner layers. On the other hand,
for 12000 cell spheroid Cy,,4, and Cg.. are much smaller due to lesser
density (Bpqz is 2 — 3 times smaller than By, for 6000 and 8000 cells
spheroids) and its matrix layer was penetrated more rapidly (Fig. 3.6C)
than for smaller spheroids.

The effect of reaction parameters to accumulative WGA dye concen-
tration was investigated for the spheroid of radius 134 pm and formed
from 8000 cells. Various values (Fig. 3.7A) of the binding constant ky;,,4
were tested. It was observed that with kp;g = 10* M~!s~! accumula-
tion speed no longer increased which means that diffusion process is
a limiting factor and this binding rate is so rapid that all available dye
molecules bind almost instantly. However, at lower binding rations
(< 102 M~1s7!) accumulation speed was almost linear. Then the con-
stant was set to zero, the binding process stopped and concentration
reached its balance at about 4 h, which is compatible with R6G models.

In Fig. 3.7B the effects of the number of binding sites per cell B,,,4z, ceil,
which was used to calculate binding site concentration B4, by (3.11),
can be seen. As expected, a greater number of sites resulted in increased
accumulative concentration. Fig. 3.7A, B showed, that WGA dye accu-
mulation dynamics strongly depend on the binding constant and the
number of receptors (binding sites) in the cells. From modelling results
at a fixed binding rate constant ky;,,g = 10> M~* s~ it could be predicted
that 3.4 times more WGA dye molecules accumulated after 24 h for cells
with 10 times more receptors on their plasma membranes.
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3.4 Conclusions

The reaction-diffusion model was presented for analysis of dyes penet-
ration into cellular spheroids. Both cases of the model for R6G dye, i.e.
linear diffusion model and Ring model, showed a close correspondence
with experimental results. Using the model, it was calculated that the dif-
fusion coefficient in the cellular matrix is D = 4.2 x 10~ m? /s, which
is about 4 times higher than the diffusion coefficient in cells used in
calculations. Accumulation dynamics were analyzed and it was shown
that about 4 h are necessary to reach a balance, but the central zone is not
fully incubated until about 10 h. These dynamics also strongly depend
on the spheroid size and density.

The dynamics of WGA-Alexa488 dye penetration into the spheroid
was analyzed using a nonlinear case of the model. The effect of the
binding rate and binding sites number on penetration dynamics was
researched. Our experimental and modelling results showed that the
dynamic of WGA-Alexa488 dye accumulation in cells is non-linear,
because of several biological processes, such as the rate of endocytosis,
the density of cells and extracellular matrix, type and concentration of
receptors in the cells plasma membrane and other factors.
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Chapter 4

Verification of Model
Implementation

The final chapter is dedicated to the verification of numerical algorithms
which are applied for solving PDEs of proposed models.

Model verification and validation (V&V) is an important concept
in computer simulations [132]. Verification is defined as the process
of determining that a model and its solution is accurately implemen-
ted. Validation is the process of determining if a model is an accurate
representation of the real-world data/experiment.

Numerous techniques and frameworks have been proposed for V&V
in literature [83, , ]. The correctness of differential equations-
based computer models, which are solved by finite difference or finite
element methods, was analysed using various testing methods: (i) com-
parison with known test solutions [29, 85], (ii) analysis of model beha-
viour under test conditions [23], (iii) comparison between model and
experimental data [34, 51].

Various techniques were applied to determine if the implementation
of the models, presented in the thesis, was correct. Model validation
was carried in each particular chapter by comparing simulations with
physical experiment data.
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4.1 Theoretical properties of solutions of differen-
tial equations

Maximum and minimum values

It is well established that PDEs and systems of PDEs of parabolic type
satisfy the maximum principle [45, ]. The strong version of the
principle states that the maximum (and minimum) of the solution is
attained only on the boundary of the domain Qr, i.e. at initial values
2 x {0} or at the border of Q7, and all values in the interior points must
be smaller (or greater than the minimum). The numerical solution must
follow the same principle: maximum (and minimum) is attained at the
boundary point of grid and values at inner points are smaller (greater)

[116].

Naturally, these conditions also follow from chemical/biological
applications of models. The maximum principle guarantees that concen-
trations of reagents cannot be greater than the amount provided in an
exterior solution. The minimum principle ensures that concentrations
do not become negative because in all models some boundary or initial
condition is 0.

Graphically the maximum principle for UME geometry models was
demonstrated by isolines in Fig. 2.13 which show that 0 < Cp, <
0.253mol/m? for t = T.

Table 4.1: Maximum and minimum is compared between inner and
boundary points showing that the maximum principle is attained.
Model parameters: d = 100 um, Glcoysige = 0.6 mol/m3.

Max in Max at Min in Min at
inner points | boundary || inner points | boundary
Co, 0.252 95 0.253 3.340 x 1076 0
Caic 0.590 66 0.6 7.081 x 10718 0
CH,0, 0.00594 0.00614 || 4.069 x 1028 0
Cau 0.02115 0.02199 || 4.240 x 1047 0

Computational tests of the maximum principle for the RC-SECM
model were provided in Table 4.1. As expected, the maximum and
minimum of numerical solutions Uo,, Ugic, Un,0,, Ugy was attained in
the boundary of the domain. In particular, Up, < 0.253 mol/m? and
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Ugie < 0.6mol/m?3, which is due to boundary conditions, while the
upper limit of Uy, 0, and Ugy is computed by the model as it depends
on reaction rate, i.e. reaction rate constants, Glcgytside-

The maximum principle was tested for other models in in Table 4.2.
For SECM geometry models minimum values of 0 were attained at
the boundary according to the theory, while the maximum value was
slightly larger than expected 0.253 mol/m?® which can be attributed to
computational error and approximation error for the Neumann type
boundary condition.

In the case of fluorescence dyes models, only the nonlinear WGA
migration model was tested as the others are its simplified versions.
The maximum value of 0.13 uM was attained at the outer boundary of
the sphere according to (3.3). The minimum was attained at the inner
boundary r = 0 and it was slightly negative for some initial iterations
(k < 500) due to approximation errors for condition (3.3). Correct
minimum of 0 was attained at the initial time k£ = 0 as expected.

Table 4.2: Maximum principle is attained for other models presented in
the thesis.

Max in Max at Min in Min at

inner points boundary inner points boundary

Co, from the recessed-UME model, recessed by H;,, = 2pum
0.253 +8.6x 1070 | 0.253 +8.7x1071° || 3.597x 10~ 0
Co, from the outwarded-UME model, protrusion H,; = 2 um

0.253 +25x 10710 | 0.253 + 2.7x 10710 || 2.817x10° | 0
Co, from the cone-UME model, cone height H.ope = 2 pm

0.253 +6.8x1071 | 0.253 + 6.8x 1070 | 3.632x10~* 0
Cout from the WGA model. Spheroid radius R = 134 pm

1200x10°7 | 1.300x107 | 3.253x10°1% | ~1.075x10-%*

Conservation of mass

Physical systems and their respective differential equations typically
follow some law of conservation of mass, energy, etc. [4, 121, 128, ].
Conservation laws state that physical quantities, such as total mass,
energy, the net charge, etc.,, remain constant as the system evolves,
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i.e. differential equations, which govern the system, conserve those
quantities.

In the case of SECM at redox competition mode, concentrations of
surface-immobilized reagents Ccozor, Ccog - Gler Caozre and Cgog - 0,
conserve the mass. The physical reason for the property is that molecules
of glucose oxidase GOx°* and other 3 forms of it are immobilized, i.e.
fixed, on the surface, act as a catalyst for Glc/ O3 reaction and can not be
consumed or moved.

Conservation of mass principle is formally derived as follows. Reac-
tion equations (1.6) are summed, which cancels right-hand side terms:

=0

0CGozor  0Cqosz.cic . 0Cgozre = 0CGoOz- 0,
o o o T o
for0<t<T, 0<7r<rguss (4.1)

(4.1) is integrated by f(f dt, where t — any fixed time. Initial conditions
(1.8), which sets Cgogor = 2.114 x 1078 mol/m? and others to 0, are
inserted to obtain the conservation principle:

CGowor + Cgow-cie + Caowre + Caow.0, = 2.114 x 1078 mol /m?
fort= t,o<r< Tglassy (4.2)

which states that at any spatial point  and at time ¢ the total concentra-
tion of surface-immobilized reagents remains constant and is equal to
initial concentration of GOx°%, i.e. 2.114 x 10~® mol/m?.

Obviously, the numerical solution V;? has to retain conservation prin-
ciple for all £ > 0, 0 < j < Na. A numerical version of the principle
follows from (4.2), but can be separately derived from approximation
formulas (1.37) by summing them and rewriting

k1 ket 1 k1 k1 B
Veoser,; ¥ Vaow . cie,j T Vaowre, j T Vaow. 00,5 =
_ vk k k k
= Veoger, j + VGoz - cie,j + VGozre, j + VGoz. 04, 4

for k=0,..., K—1,j=0,...,No — 1. (4.3)

We repeatedly insert into (4.3) values at k, k — 1, ..., 1 and then initial
condition (1.8) to derive conservation principle for numerical solution

kE+1 k+1 k+1 k+1 k+1 o
Veum,; = VGowor j T Vaos . cie,j + Vaowre, i ¥ Veow. 0., =

=2.114 x 10 ®mol/m?, for k=0,...,K, j=0,...,Ny —1. (4.4)
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Figure 4.1: Concentrations of surface-immobilized reagents and their
sum, which is always at 2.114 x 1078 mol/m?. (A)(B) fixed radius, (C)(D)

fixed time. Simulations were performed with Glcoy: = 0.6 mM, reaction
rate k; = 100M s~ 1,

Simulations have been performed to test if the numerical conser-
vation law is upheld. According to the calculations, for exterior Glc
concentration Glcoy = 0.6 mM (fast reaction):

min Vi, ;= 2.113999999999 77 x 10%,
0<k<K ’
0<j<N2

Jmax Viim, j = 2.11400000000021 x 107%
0<j<N2

and Glcoys = 0.2 mM (slow reaction):

[min Vi, ; = 2113999999999 66 x 10~%,
0<j<N2
max Vi, ; = 2.114000 000000 15 x 10~%,
0<j<N2

which show that at each (k, j) the sum differs from 2.114 x 10~% only
by computational error.
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Conservation law is visually demonstrated in Fig. 4.1, where a
dashed line represents VX, and is always at2.114 x 1078 mol/m?. There-
fore, the law of conservation of mass is upheld.

4.2 Convergence of numerical solution

Convergence to exact solution

It is proven (see e.g. [72, 108, 116]), that numerical solutions of PDEs,
which are solved in the thesis, converge to exact solutions as the step
size approaches 0. In the case of the RC-SECM model,

Ui]fj — Cdiff(tk,ziﬂ‘j), V}k — Csurf(tk,Tj) as K, Nl, NQ — Q0.

Obviously, arbitrary large values cannot be chosen in practical com-
putations. The convergence is tested numerically by increasing the
number of mesh nodes (i.e. decreasing step size) and analyzing the in-
fluence on numerical solution. Typically, mesh size is increased 2 times
and then a higher-accuracy solution is compared with a lower-accuracy
one in some norm (maximum or L,).

However, two numerical solutions of SECM models can not be dir-
ectly compared, because points of non-uniform grids wy, and wy,/, do
not intersect. Therefore, Solution Ufj has to be summed (integrated)
by some method. The most natural approach is to use the formula of
electric current (1.38):

9Co,
0z

rdr,
z=d

Tel
i(t) = 2mnF Do, /
0

because it is the response of SECM experiment and the goal of numerical
computations is to calculate it accurately. The norm is defined for the
numerical equivalent 7¥ = i(t*) in order to measure the error

||| = max I*. (4.5)
0<k<K

The convergence to the exact solution is illustrated in Fig. 4.2 by
increasing the size of spatial grid w;,. Curves of Electric current are
moving upwards in both tested cases (Fig. 4.2A,C) and the difference

96



K=11000, d= 100 um

(A)1ss (B) oo
0.009
154
—12]2; 1123 0.008
153 x —
200 » 200 g 0007
<« 152 ——400 x 400 ® 0.006
c ——800 x 800 S 0.005
-1 ---16001600| &
~ 151 ; 1 0000
15 = 0.003
149 0.002
0.001
148
0
! 2 8 4 8 6 100 200 300 400 500 600 700 800
s N
K=11000, d= 10 um
(c)1.o7 (D) oot
Y 0009
1.06 Nyx N,
—100x100| 0008
1.05 200200 T, 0.007
108 ——400x400 € 0.006
<t ---800 800 S 0005
108 = 0.004
<
1.02 5 0003
0002
1.01
0.001
1 ol . . . . ! n
0 1 2 3 4 5 5 100 200 300 400 500 600 700 800

Figure 4.2: Left column: Convergence of current I as size of spatial
grid increases, right column: convergence of errors. (A)(B) d = 100 pm,
i.e. UME is positioned further from the substrate, (C)(D) d = 10 pm,
i.e. UME is positioned close to the substrate. Ipjghacc — the current,
calculated with the highest accuracy grid.
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Figure 4.3: (A) convergence of current I as the size of temporal grid
increases. (B) convergence of errors. Ihigh acc is the current, calculated
with the highest accuracy grid.

between them decreases as /N grows. Absolute errors are calculated in
Fig. 4.2B,D using the maximum norm (4.5). It can be concluded that the
error approaches 0 as N increases for the spatial grid.
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The analysis of the size of temporal grid w™ demonstrated conver-
gence by temporal variable (Fig. 4.3).

Convergence of non-standard geometry models to the standard-
UME model

The numerical solution can be compared with the analytical solution
in order to validate the correctness of numerical schemes and test their
properties as shown in literature [5, 31, ]. In more difficult cases, a
model can be simplified to the version with a known analytical solution.

According to our knowledge, even a simplified version of UME
geometry models, e.g. the standard-UME model, does not have an ana-
lytical solution. However, the numerical solution of different models of
UME geometries can be compared with the numerical solution of the
standard-UME model. It is expected that as the level of imperfectness in
the non-standard model approaches 0, measured electric current should
coincide with the current of the standard-UME model. It should be
noted, that only convergence can be tested because neither 0 imperfect-
ness can be plugged into the model, nor its arbitrary small value due
to computational limitations, e.g. all numbers are limited by computer
precision. The convergence between models is also not trivial as the dis-
crete grid, numerical schemes and even formula for current calculations
are different.

Computer simulations have been performed to test convergence of
the cone-UME model to standard-UME at the distance d = 100 pm.
It is shown in Fig. 4.4A, that electric current, calculated by the cone-
UME model, quickly approaches the current of standard-UME if hcpe
is sufficiently small. In particular, the error of 0.1 %, measured by the
norm (4.5), is reached at hcone = 0.01 pm, which is about 0.01 % of full
distance between the electrode and surface (Fig. 4.4B).

Furthermore, the convergence of the outwarded-UME model has
also been tested at the same distance d = 100 pm (Fig. 4.5A). The
electric current of the outwarded-UME model approaches standard-
UME current much slower and h,,; = 107 pm (about 1075 % of full
distance) is necessary to reach just 1 % error between models (Fig. 4.5B).
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However, the convergence is registered and we conclude that this
property holds. The recessed-UME case is not presented, but the model
converges quickly due to better numerical properties.

4.3 Method of a test solution

A numerical algorithm, which solves a differential equation, can be
verified by inserting some freely chosen function into the differential
equation, calculating derivatives and subtracting the error in order for
the function to satisfy the equation. Possibly, initial-boundary condi-
tions have to be also modified, but the chosen function should satisfy
these conditions to preserve the behaviour and properties of a real solu-
tion. Because of complicated boundary conditions and non-rectangular
domains, the construction of a test solution is complicated for SECM
models, but it can be done for dye penetration models.
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In order to test the solution of the WGA model (3.1)—(3.4), equations
with their initial-boundary conditions have been modified:

0Cout 1 0 [ 50Cou
p—2
ot r2 or <T

= or > - kbind (Bmaa:*cbind) Cout + f(tv T’)

(;t d - kbind(Bmax - Cbind)Cout fOT‘ 0<t < T? 0<r< R’
Cout}T:R = M(ﬂ’ t> 0’
8Cout — 07 t > 0’
ar |,—o

Cout‘tzo =0, 0<r<R,

Cbmd‘t:O =0, 0<r<R.
(4.6)

The test solution C,,; = tr?, which satisfies initial-boundary condi-
tions (u(t) has to be computed), has been chosen. By plugging it into the
2nd equation of system (4.6), ordinary differential equation is derived
as r is considered a parameter:

O0Chind
ot

= kbmdtr2 (Bmaar - Cbmd)’
which is solved by separation of variables method to obtain
Cbind = Bma:c (1 - eio.5kbmdt2r2> .
In order for the chosen C,,; to satisfy (4.6), functions have to be taken
F(t,r) = 12 — 6Dt + kpinaBmagtre 05kvinat’r®,

u(t) = R*t.

The numerical scheme (3.13) have been adjusted according to the
changes made. The diffusion equation (4.6) is discretised by

Uz,k‘f‘l _ Uik _D U;_1 —2U; +U¢+1 " lU1+1 —U;_4 7

T h? T h
_kbind(Bma$_Vi)Ui+f(tk+17ri)7 1= 17"‘7N_17

and at the boundary 7 = R approximation U% = pu(t*) fork =0, ..., K

is used. However, these modifications do not change the algorithm and
the approximation error of second order is retained.
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In order to compare numerical solutions U and V" with exact solutions
Cout and Ch;pg, relative error in the maximum norm is calculated by

k k
HgUH = Og}cagXK |U7, - Cout(t ,Ti)|
0<i<N
k k
levll = v V= Chinalt", 7).
0<i<N
The ratio between errors of grids of different size is used to evaluate
order of the method
_ lellxxn

EI

where |||k x v denotes the error of (K x N)-sized grid.

Simulations have been performed using increasingly larger grids and
results are shown in Table 4.3. It is evident that the errors ||cy|| and
||lev || for both solutions C,,,; and Cl;,,4 are small and tend to 0 as the size
of grid increases. Moreover, the ratio between errors ¢ is ~ 4, then the
size of the grid is increased by 2 in both directions. It shows that the
order of approximation error is second, i.e. the error is O(7% + h?) as
theoretically predicted.

Table 4.3: Errors between the numerical and exact solution depending
on the grid size for functions Coy: and Chjpg.

K N leul] 0u llev || Ov
1000 | 100 || 8.94 x 10~ 1.11 x 10712
2000 | 200 || 2.23 x 107 | 4.009 || 2.78 x 10713 | 3.993
4000 | 400 || 5.59 x 10715 | 3.989 || 6.94 x 10~1* | 4.006
8000 | 800 || 1.40 x 10715 | 3.993 || 1.74 x 10~ | 3.989
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General conclusions

Three mathematical and numerical models were presented in the thesis:
(i) SECM acting in the redox-competition mode (RC-SECM mode), (ii)
geometry of SECM electrodes and (iii) the uptake of dies into cell spher-
oids. The models were written using reaction-diffusion equations, which
were solved by numerical methods. In all cases, computer simulations
were compared with real physical experiments and good agreement was
achieved to demonstrate the credibility of the models. Finally, a number
of numerical experiments were provided to analyse the properties of
the modelled systems. Following general conclusions were made:

* The novel computer model of SECM is an appropriate tool for
investigation of RC-SECM mode behaviour and determination of
reaction and diffusion coefficients. In particular, the diffusion coef-
ficient of oxygen is inversely proportional to the concentration of
glucose in the medium and the formula to calculate this coefficient
has been proposed for the RC-SECM mode. Calculations show
that electric signal, measured by SECM electrode, significantly
decreases due to the presence of glucose or other materials.

e Mathematical models, which describe three most common non-
standard geometries of ultramicroelectrode (UME), is an applic-
able technique to evaluate the difference from standard-UME in
electric current measured by SECM electrodes. It was determined,
that outwarded-UME provides the highest measurement errors,
whereas errors of recessed-UME and cone-UME experiments are
approximately 2 times lower with the same level of deviation from
standard UME.

¢ Using the model of R6G dye uptake into cellular spheroids, the
diffusion coefficient in the cellular matrix has been calculated and
it is about 4 times higher than the diffusion coefficient of cells,
used in the experiment. By analysing accumulation dynamics into
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spheroids, time necessary to incubate the centre zone of the spher-
oid is calculated, which is relevant for the practical application of
fluorescent dyes in chemotherapeutic drug research. It is shown
that the dynamics also strongly depend on the size and density of
the spheroid.

The dynamics of WGA-Alexa488 dye penetration into the spheroid
is analysed using a nonlinear case of the model. The effect of bind-
ing rate and the number if binding sites on penetration dynamics
is shown to be nonlinear because of the process of binding to the
cells.
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Santrauka (Summary in
Lithuanian)

Tyrimy sritis

Pasitelkus kompiuterinj modeliavima disertacijoje tiriamos sudétin-
gos cheminés ir biofizikinés sistemos, kurios yra aprasomos daliniuy
iSvestiniu lygtimis (DIL) su netiesinémis krastinémis salygomis ir DIL
sudétingos geometrijos (nestatiakampeése) srityse. Sios DIL sprendZia-
mos baigtiniy skirtumuy metodu ir kitais skaitiniais algoritmais.

DIL sprendimo su netiesinémis krastinemis salygomis problemos
kyla dél cheminiy ir biologiniu procesu matematinio modeliavimo. Ty-
rimai nestaciakampése srityse yra aktualtis del poreikio ivertinti ma-
tavimo prietaisy paklaidas, atsirandancias dél geometrijos nukrypi-
mo nuo standarto. DIL netiesinés sistemos yra pritaikytos tyrineti
chemoterapiniu vaistu patekima i audinius.

Tikslas

Tyrime buvo suformuluoti du pagrindiniai tikslai:

1. Sukurti skenuojancio elektrocheminio mikroskopo (SECM) ma-
tematinius modelius ir reikalingas kompiuterines programas re-
akcijos-difuzijos procesams ir SECM elektrodo geometrinéms sa-
vybéms modeliuoti.

2. Sudaryti kompiuterinj modelj fluorescenciniu dazy prasiskverbi-
mui j sferoido formos lasteliy struktara.
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Tikslams pasiekti buvo iskeltos Sios uzduotys:

e Sukurti matematinius ir skaitinius modelius (i) SECM, veikiancio
oksidacijos-redukcijos konkurencijos rezimu, (ii) SECM su jvairiais
nestandartiniais ultramikroelektrodais (UME) ir (iii) daZuy prasi-
skverbimui j lasteliu sferoidus.

¢ Parasyti kompiuterines programas, atliekancias skai¢iavimus di-
deliu tikslumu.

* Pasiekti modelio ir eksperimentiniu duomeny suderinamuma ap-
skai¢iuojant nezinomus modeliy parametrus.

¢ Apskaiciuoti reakcijos kinetines konstantas ir deguonies difuzijos
koeficientus SECM eksperimentams.

¢ Sukurti algoritmus, kuriais ivertinamas elektros srovés skirtumas
(paklaidos), matuojant standartiniu elektrodu ir neidealios formos
elektrodais.

e I3tirti fluorescenciniu dazy, isiskverbianciu i lasteliy sferoidus,
savybes priklausomai nuo lasteliu koncentracijos, prisijungimo
taskuy kiekio ir kt.

Metodai

SECM oksidacijos-redukcijos konkurencijos (RC-SECM) reZimu mo-
deliuojamas nestacionariu reakcijos-difuzijos lyg¢iu sistema su netie-
sinémis 3-iojo tipo krastinémis salygomis. SECM geometrija modeliuo-
jama difuzijos lygtimis nestat¢iakampése geometrijose. Lasteliuy sferoidai
modeliuojami nestacionariomis reakcijos-difuzijos lygtimis, kuriose yra
netiesiniai nariai, atsakingi uZ reakcijas tarp lasteliy ir fluorescenciniu
dazu. Siems procesams buvo atlikti skaitiniai eksperimentai. Autorius
sukiiré kompiuterinius modelius MATLAB ir Python programavimo
kalbomis. Skai¢iavimai buvo atlikti naudojant Vilniaus universiteto
Matematikos ir informatikos fakulteto superkompiuteri.

Naujumas

* Disertacijoje pasitilytas naujas matematinis modelis SECM, vei-
kiancio oksidacijos-redukcijos konkurencijos reZimu. Pagrindinis

118



$io modelio naujumas yra SECM modeliy, aprasanciu difuzija,
sujungimas su reakciju lygtimis naudojant netiesine 3-iojo tipo
krastine salyga.

* Nestandartinés geometrijos elektrodu tyrimas leidZia jvertinti
matavimuy paklaidas tarp eksperimentuy, atlikty su neidealios for-
mos elektrodu ir standartiniu tobulu elektrodu. SECM jrangos
tyrimai yra populiaréjanti sritis, bet Siame darbe pirma karta buvo
iSsamiai iSnagrinétas dazniausiu geometrijos nukrypimu poveikis
matavimames.

* Pasiiilytas efektyvus netolygaus diskretaus tinklo sudarymo meto-
das, skirtas SECM modeliams sta¢iakampése ir nesta¢iakampése
elektrodo geometrijose.

¢ Pirma karta $iame tyrime modeliuotas fluorescenciniuy dazu prasi-
skverbimas ir kaupimasis lasteliu sferoiduose. Pagrindinis nauju-
mas yra nezinomy parametru dazy molekuléms apskaic¢iavimas ir
sékmingas modeliu validavimas fiziniu eksperimentu.

Ginami teiginiai

* Pasitilyti kompiuteriniai modeliai yra tinkamos priemonés simu-
livoti analizuotas sistemas, t. y. RC-SECM reZima,
SECM su skirtingomis elektrodo geometrijomis ir fluorescenciniuy
dazy skverbimasi.

* Kiekvieno modelio korektiSkumas patvirtinas (i) parodant gera
atitikima tarp modeliavimo ir fizinio eksperimento duomenuy ir
(ii) patikrinant skaitiniy algoritmy jgyvendinima tam skirtais veri-
fikavimo metodais.

* Realizuoti skaitiniai algoritmai yra tiksliis (antros eilés), besaly-
giskai stabilts ir leidzia DIL uzdavinj suvesti i tiesiniu lygciu
sistemas, kurios efektyviai sprendziamos perkelties metodu.

¢ RC-SECM rezime deguonies difuzijos koeficientas yra atvirks¢iai
proporcingas istirpusiu medZziagu, tokiu kaip gliukozé, koncentra-
cijoms.

* DidZiausios matavimu paklaidos lyginant su standartiniu elekt-
rodu padaromos su islindusiu elektrodu. Jtrauktam ir kiiginiam
elektrodui 8is skirtumas maZesnis. Be to, Sios paklaidos maZzéja,
kai didéja santykis tarp izoliatoriaus ir elektrodo spinduliu.
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Disertacijos struktiira

Disertacija sudaro $ios dalys: jvadas, keturi skyriai, iSvados ir literattiros
sarasas.

S.1 skyriuje analizuojamas SECM modelis, apraSytas 8 netiesiniu
reakcijos-difuzijos lygciu sistema. Ji sprendZiama neiSreikstiniu baigti-
niy skirtumuy metodu. Skaitinis sprendinys lyginamas su fizinio eksperi-
mento rezultatais ir, priderinus modeliavimo duomenis su eksperimento
rezultatais, apskai¢iuojami reakcijos koeficientai ir difuzijos parametrai.

S.2 skyriuje pristatyti 4 SECM modeliai: 1 standartinés geometri-
jos (i8 S.1 skyriaus) ir 3 nestandartines. DIL, aprasanc¢ios UME Siose
geometrijose, yra iSsprendziamos skaitiskai ir skaitinio eksperimento
rezultatai jtrauktam elektrodui palyginami su fiziniu eksperimentu pa-
rodant gera atitikima. Tada apskai¢iuojamas paklaidos tarp rodmenu
standartinéje ir nestandartinése geometrijose bei tiriama kitu SECM
geometrijos parametry itaka matuojamai elektros srovei.

S.3 skyriuje fluorescenciniy dazy isisavinimas 3D lasteliu kultirose
modeliuojamas reakcijos-difuzijos lygtimis, kurios sprendziamos skaiti-
niais metodais. Pateikiami modeliai yra skirti iSanalizuoti dvieju tipu
daZus ir geometrines lasteliu sferoidu savybes. Skaitinio tyrimo rezul-
tatai palyginami su biologiniu eksperimentu. Difuzijos koeficientas
tarplastelinéje terpéje ir sferoidu prisotinimo dazais laikas apskai¢iuoja-
mi naudojant pateiktus modelius.

Siekiant pagristi algoritmu igyvendinimo korektiskuma, ivairtis mo-
delio verifikavimo btidai buvo iSanalizuoti ir pritaikyti ketvirtame diser-
tacijos skyriuje.

S.1 SECM modeliavimas oksidacijos-redukcijos
konkurencijos rezZime naudojant reakcijos-difu-
zijos lygtis

S.1.1 Fizinis modelis

Skenuojanti elektrocheminé mikroskopija (SECM) yra paZzangus elektro-
cheminis metodas, pagristas matavimais naudojant ultramikroelektroda
(UME). Naudojantis $iuo prietaisu UME, kurio laidZioji dalis yra keliu
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1 1
j«—— Difuzijos sluoksnis ———}
h

)

S.1 pav.: SECM matavimo schema oksidacijos-redukcijos konkurencijos
reZime.

desimtyju mikrometry intervale, o izoliatoriaus dalis yra keliy Simty
mikrometry diapazone, nuskaito 3D erdve arti katalitiniy ar elektroche-
miskai aktyviu pavirsiu [12].

Siame skyriuje nagrinéjamas oksidacijos-redukcijos konkurencijos
rezimas (RC-SECM), kuris naudojamas tyrimuose fermentinei kinetikai
ivertinti bei vizualizuoti [68, 82]. Pagal §j reZima istirpes deguonis
sunaudojamas dviem konkuruojanciais btidais (S.1 pav.): vienas yra
pagristas UME vykstancia elektrochemine reakcija, o kitas — reakcija
ant nelaidaus pavirsiaus, katalizuojama imobilizuoto fermento, pvz.,
gliukozés oksidazés (GOx), kuri naudoja O, kaip elektronu akceptoriu.
Siuo rezimu tiek (i) GOx, imobilizuoti ant nelaidZiojo pavirsiaus, tiek (ii)
UME, veikiantys esant neigiamam potencialui, konkuruoja dél istirpusio
deguonies ([99]).

Kai vandenyje yra istirpusio deguonies O, gliukozé Glc yra katali-
zuojama GOXx. Sio proceso metu sunaudojamas O; ir Glc, o gaminami
vandenilio peroksidas H,O; ir gliukonolaktonas Gll pagal lygtis:

k
GOx* + Gle <_k—1> GOx - Gle 25 GOx™ + GlI (S.1)
-1
k.
GOX™ + O <_k—‘°’> GOx - Oy (S.2)
-3
k.
GOx - Oy <_k—> GOx™ + Hy0, (S.3)
—4

UME srovés verté priklauso nuo istirpusio deguonies koncentracijos
ir visu kity elektrochemiskai aktyviu medZziagu buvimo salia UME pa-
vir$iaus bei nuo elektrinio potencialo, veikian¢io UME. Naudojamoje
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RC-SECM sistemoje (S.1 pav.) deguonis sunaudojamas dviem buidais:
(i) vykdant redukcijos reakcija UME pavirsiuje

Oy +4e +4H" — 2H,0 (S.4)

ir (ii) fermentiniy reakciju metu, kai deguonis veikia kaip elektronu
akceptorius, kuris prisijungia elektronus i§ GOx pagal (S.1), ir perduoda
juos deguoniui pagal reakcijas (5.2)—(S.3). Reakciju grei¢iu konstantos k
buvo paimtos i$ tyrimu [27, 89] ir koreguotos pagal cheminio eksperi-
mento duomenis.

S.1.2 Matematinis modelis

Dél simetrijos aplink centrine elektrodo asi modelis uzrasomas cilind-
rinése koordinatése. Cilindro formos srityje atliekami SECM matavimai
(5.1 pav.) yra pakeisti i 2D sriti S.2 pav.

z CO2:0
oCor. oCr0._ oCan g 200, _2Cae_2Cmo,_2Can,
e S
d Elektrodas % Izoliatorius 7/ Co=253 uM
aCo, =0 C'GI(:: Glcout
ar
. . .. +—
oCoi _, Difunduojancios medzZiagos: 4+—G1)
ar
ECHIOz 02, G|C, H202 Ir G” CH202:0
or CGIc:0
2Can _
280 @p—
Reakcija tarp difunduojanciy medziagy ir fermento (}—’
0
Yol ok d Folass T
Fermentai: GOx®*, GOx-Gll, GOx"™*, GOx-0,

S.2 pav.: Modeliavimo srities schema. Pavaizduotos 8 modeliuotos
medziagos - 4 difunduojantys reagentai bei 4 fermento GOx formos,
krastinés salygos 4-ioms difunduojanc¢ioms medZiagoms ir iSorinis srau-
tas.

Difuzijos procesai isreiSkiami antruoju Fiko désniu [37]:

0Co
T 2 = Do, ACo,,
Lgflc = Dgic ACGgie,
o0 (5.5)
%02 = D0, ACH,0,,
oC,
af” =DeuACqy, 0<t<T, 0<z<d 0<r< Tglass-
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Siose lygtyse:

Co,, Caic, CH,0, ir Cgy yra atitinkamuy difunduojanciu reagentu
koncentracijos, kurios iSreiSkiamos kaip laiko ¢, erdviniu koordi-
nadiy z ir r funkcijos.

Do,, Dgic, DH,0, it Dgy yra difuzijos koeficientai.

d yra atstumas tarp fermentu modifikuoto pavirsiaus ir elektrodo.
Skaitinio eksperimento metu d kei¢iamas nuo 1 pm iki 120 ym. Tai
atitinka elektrodo stumdyma aukstyn ir Zemyn cheminio eksperi-
mento metu.

Tglass = 80 um yra izoliuotos srities spindulys.
T yra skaic¢iavimo eksperimento trukmé, matuojama sekundémis.

Laplaso operatorius A cilindrinése koordinatése su centrine simet-
rija yra

AC

e a0y o
o or T@r 022"

Chemineés reakcijos (5.1)—=(5.3) pavirSiuje z = 0 yra iSreiSkiamos
reakciju lygtimis fermentams:

803?9:% = —k1C60zoxCiic + k-1Cc0z - Gie + kaCGox - 0,—
— k_4Cc0zoCH,0,,
806‘8;-% = k1Cqozo Cate — (k—1 + k2)CGow - Gies
acg;)w = k2Ccoq - cie — k3CG02Co, + k-3C60z- 0, (5.6)
acGaOt"”’O? = k3CgozeCo, — k—3CG0z-0, — k1Ccoz.0,+

+ k‘74CGOCE°ICH2027
0<t<T, 0< 71 <rggss

kur Cgozor, Ccoz-Gier Caoare it Caoz -0, Yra pavirsiuje imobilizuoty
fermenty koncentracijos, priklausancios nuo laiko ¢ ir spindulio .

Difunduojan¢ioms medZziagoms reakcijos grei¢io désniai ant pagrin-
do z = 0 yra iSvedami i§ cheminiu lyg¢iu (5.1)—(S.3) taip pat kaip (S.6).
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Jie yra naudojami kaip 3-ojo tipo krastinés salygos krastui z = 0:

Do, 8352 = k3C02r<Coy — k—3CG0x- 0,5
DGZC% = k1Cc0zo=Caic — k-1CG0oz - Gies
DHQOQ% = —k4Cgoz. 0, + k-1Cc0z02CH,0,,
Gl agju = koCqos-Gle, 0<t<T, 2=0,0=<7 <7rggss.

(5.7)

Fermentineés reakcijos pradzioje deguonies koncentracija difuzijos
sluoksnyje yra 253 uM (M = mol/L), aktyviosios gliukozés oksidazés
GOx pavirsiaus koncentracija yra 2,114 - 1078 mol/m?. Laikoma, kad
visy kity reagentuy pradzioje néra, todél Ccoz.cic = Cgozre = Cgow- 0,
=0,t=0, 0<7r <Tgass:

Likusios krastinés salygos sistemai (5.5) yra nurodytos S.2 pav.

S.1.3 Skaitinis sprendimas ir SECM atsakas

Turi bati iSspresta 8 diferencialiniuy lygciu sistema (5.5)—(5.6) su pra-
dinémis-krastinémis salygomis. 4 difuzijos lygtims (S.5) buvo nau-
dojamas kintamos krypties neisreikstinis baigtiniu skirtumu metodas
(ADIFDM), kuris yra klasikinis difuzijos lyg¢iu 2D erdvéje sprendimo
metodas. Sio metodo efektyvuma demonstravo jvairios tyrimu grupés
[19, 120]. Nedifunduojanciu reagenty paprastyju diferencialiniu lygc¢iu
sistema (5.6) buvo iSspresta simetriniu Eulerio metodu.

Pagrindinis parametras, Zinomas kaip ultramikroelektrodo atsakas,
yra elektros srové, kuri matuojama elektrodu ties z = 0, 0 < 7 < 7y
ir susidaro i O, srauto, t.y. lemiama Cp, gradiento dydZzio. Su SECM
pamatuotos sroves grafikas dar vadinamas artéjimo kreive, nes fiziniai
eksperimentai yra atliekami artinant UME arc¢iau fermentu modifikuoto
pavirSiaus, t.y. artéjama prie pavirSiaus ir kiekviena karta sustojus
registruojamas elektrinis signalas. Srové per elektroda apskaic¢iuojama
kaip laiko funkcija [11]:

Tel

i(t) = 2mnF Do, / 8302
z

0

d .
Z:dr r, (5.8)
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kur n = 4 yra pasikeistu elektrony skaicius ir ' — Faradéjaus konstan-
ta. Integralas (5.8) buvo apytiksliai apskai¢iuotas pagal antrosios eilés
Niutono-Koteso kvadratiiros formules.

S.1.4 Modeliavimo ir eksperimento rezultatai

Kompiuterinio modeliavimo rezultatai buvo palyginti su realiais RC-
SECM eksperimentais (S.3 pav.), kurie buvo atlikti su 6 fiksuotomis
gliukozés koncentracijos vertémis: tarp 0 mM (be fermentinés reakcijos)
ir 0,6 mM. Kaip ir tikétasi, artéjimo kreivés su didesne Glc koncentra-
cija buvo Zemiau nei maZesnés koncentracijos kreivés. Si savybé yra
RC-SECM rezimo esmé, nes O, vartojimas ant elektrodo yra sulétéjes
dél konkurencijos su O, vartojimu fermentinés reakcijos metu, kuri yra
greitesné esant didesnei Glc koncentracijai. Be to, artéjimo kreiviuy pozi-
cijoms taip pat turéjo jitakos O, difuzijos koeficiento Do, skai¢iavimas
pagal formule:

2,7-10710

Do, =4,7-10710 4 2 —
O2 =% t Gleon +04°

(5.9)
kur Glcyy: — Gle koncentracija iSoriniame tirpale. (5.9) buvo iSvesta pri-
derinus skaitinio eksperimento duomenis prie cheminio eksperimento
ir koeficientus suskai¢iavus maziausiu kvadratu metodu. Kadangi Do,
mazéja esant didesniam Glc kiekiui, pastoviosios biisenos srové, ap-
skaic¢iuota tiek modeliuojant, tiek eksperimentu, taip pat buvo mazesné.

0 mM Glc
0.05 mM Glc
0.1 mM Glc
0.2 mM Glc

0.4 mM Glc
0.6 mM Glc

------------- Modeliavimo duomenys
oxobxa Eksperimento duomenys

05} |

0 20 40 60 80 100 120 140 160
d, um

S.3 pav.: Srovés ir atstumo d priklausomybé modelio bei eksperimento
duomenims, kai skirtingos gliukozés koncentracijos jpiltos i buferinj
tirpala.
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Ties maZesniais atstumais d, kur stebimas staigus elektrinio signalo
pakilimas, modelio ir eksperimentiniu duomenu atitikimas buvo Siek
tiek prastesnis. Tai galima paaiskinti matavimo paklaidomis, priklau-
somybe nuo eksperimento rezultaty kalibravimo ir modelio prielaidu
neatitikimu maZiausiais atstumais (d < 1um) dél nauju fiziniy veiksniu.
Galima laikyti, kad kompiuteriniu ir cheminiy eksperimenty rezultatai
labai gerai sutapo.

S.1.5 IsSvados

Siame skyriuje pirma karta literatiiroje pateiktas SECM, veikiantio
oksidacijos-redukcijos konkurencijos reZimu, modelis, kuris buvo uzrasy-
tas 8 reakcijos-difuzijos lyg¢iu sistema. Naudojant $i modelj buvo
apskaiciuotas deguonies sunaudojimo greitis fermentinéje reakcijoje,
ivertinta fermentiniy reakciju kinetika ir nustatytas deguonies difuzijos
koeficientas skirtingos sudéties terpése. Apskai¢iavus Siuos parametrus
buvo pasiektas geras atitikimas su cheminio eksperimento duomenimis.

S.2 Elektrodo geometrijos jtakos su SECM matuo-
jamai srovei matematinis modeliavimas

S.21 Izanga

SECM yra galingas jrankis lokalizuotiems elektrochemiskai aktyviu
pavirsiy tyrimams nuskaitant juos ultramikroelektrodu [74]. Siekiant
tiksliu matavimo rezultaty, UME turéty bati kruops¢iai paruostas ir
prie$ matuojant nustatyta elektrodo geometrija — RG faktorius (santykis
tarp elektrodo ir izoliatoriaus spindulio), elektrodo pavirSiaus savybés.
UME gamyba vis dar yra labai sudétinga ir atliekama rankiniu btidu,
todél gamyboje sunku iSvengti UME geometrijos poky¢iu nuo idea-
liai lygios formos. Be to, UME geometrija keiciasi kiekviena karta, kai
UME yra slifuojamas ar netycia pazeidZiamas eksperimento metu pa-
lietus tiriamaji pavirsiu. Sie UME geometrijos poky¢iai sukelia didelius
UME srovés svyravimus. Paprastas ir laika taupantis biidas UME geo-
metrijai nustatyti biity eksperimentu gautu srovés kreiviu palyginimas
su kreivémis, gautomis pagal konkrety matematinj modelj. Siekiant
ivertinti UME geometrijos jtaka eksperimento rezultatams, atlikti skait-
meniniai modeliavimai [13, 39, 3 ], bet vis dar reikalingas bendras
metodas padedantis nustatyti UME geometrija.
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Siame skyriuje aprasyti matematiniai modeliai, skirti istirti keleta
UME geometriju: standartini UME, jtraukta UME su laidZia dalimi,
itraukta j izoliatoriaus viduy, islindusj UME su laidZia dalimi, iSlindusia
i§ izoliatoriaus, ir kiigini UME kiigio formos laidZia dalimi, iSlindusia i$
izoliatoriaus. Sis tyrimas yra skirtas biologiniu sistemu be oksidacijos-
redukcijos mediatoriy tyrimui, o pateikto metodo pranasumas yra tas,
kad galima atpazinti UME geometrija, registruojant deguonij buferinia-
me tirpale neigiamo griZtamojo rysio rezimu SECM.

S.2.2 Elektrodo geometrijos ir jyu matematiniai modeliai

(A) (B) =

g %L_y n C=0 ac_ ac

- | oo (30
Elektrodas '"d st
C=C
o L ¢ ¥, C=C,
=0 0, difuzija r 0, difuzija o)
ac ac
—=0 —=
" Jz o dz
Vel T'glass r Fel Vglass r
© , o (D)
d 7 d 1 ” 5:07

out ﬁ cone ’g 0‘\/////%Izohatonus////////

H, o -
out C= (] CZC(} Hccnel (J//“?}“o&’ C—C{)

d| Elektrodas 0, difuzija S 0, difuzija
a d
Fr c_, L _y a

] 3= or 50

Vel rglass r Vel rglass r

S.4 pav.: Modeliavimo sri¢iu schemos su krastinémis salygomis, svar-
biais UME geometrijos parametrais ir kt. (A) Standartinis UME, (B)
itrauktas UME, kurio jtraukimo gylis H;;,, (C) islindes UME su i8sikisi-

mo auks¢iu Hyy, (D) kiiginis UME su pagrindo kampu a.

Standartinio elektrodo matematinis modelis

Statiakampé sritis S.4A pav. naudojama standartinio UME geometrijai
pavaizduoti. Deguonies difuzija uzraSoma:

0?C
= D02 < + 822> 5

0<t<T, 0<z2<d, 0<7 <Tgass

9*C n
Or?

oC

oc 19C
ot

r Or

(S.10)
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kur C yra O, koncentracija, iSreiksta kaip laiko ¢ ir 2 erdviniu koordina-
¢iu r ir z funkcija. 7" yra skai¢iavimo eksperimento trukmé, d — atstumas
nuo pavirsiaus iki aktyvios elektrodo dalies, r.; = 5 um yra laidZiosios
dalies spindulys ir 74,55 = 80 um — UME izoliuotos dalies spindulys.
Deguonies difuzijos koeficientas vandenyje Do, yra 1,105 - 1079 m?/s

[74].

Pradine salygayra C =253 pMuzt =0, 0 < 2z < d, 0 <7 < rggss-
Visos reikalingos krastinés salygos parodytos S.4A pav.

UME sroveés stipris apskaiciuojamas pagal (S.8).

Elektrodo su jtraukta laidzia dalimi matematinis modelis

Analizavome situacija, kai aktyvioji (laidZioji) UME dalis yra itraukta
gyliu H;, i izoliatoriaus dali. Atstumas nuo pavirsiaus iki itraukto
UME izoliacinés dalies vis dar yra d, ta¢iau atstumas tarp pavirsiaus
z = 0 (eksperimente tai — aktyvus pavirsius) ir UME laidZios dalies
yra dip, = d + Hjy. Sis atstumas visada yra didesnis nei d, taigi Sioje
geometrijoje laidZioji UME dalis yra toliau nuo pavirsiaus lyginant su
idealios formos plokstuma turin¢iu UME. Modeliavimo sritis 5.4B pav.
susideda i8 2 sujungtu staciakampiu: didesnio aukstis d yra toks pat
kaip standartiniame UME S.4A pav., o auks¢io H;, maZesnysis atitinka
itraukta dalj.

Difuzijos lygtis (5.10), pradiné salyga ir didZioji dalis krastiniu salygu
islieka tos pacios, taciau pateikiamos naujoje srityje, kaip parodyta S.4B
pav. Pasikeicia Sios salygos: krastiné salyga ant elektrodo yra C' =
0, t>0, z=din, 0 <r <rg, o itrauktoje dalyje prie izoliatoriaus
yra nauja deguonies srauto blokavimo salyga %—f =0, t>0,d<z<

di?% T =Tel-
Norint apskaic¢iuoti srove, naudojama lygtis, panasi i (S.8):

et 9C
i(t) = 2mnF'D —
i(t) = 2mnF Do, /0 P

rdr. (S.11)

z=din

Elektrodo su islindusia laidZia dalimi matematinis modelis

Islindes UME modeliuojamas kaip laidaus pavirSiaus cilindras, iSlindes
i8 UME izoliacineés dalies i difuzijos sriti. Yra 2 UME laidZiosios cilindro
dalys: disko formos elektrodo galas kaip standartiniame UME ir cilindro
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Sonas (5.4C pav.). Tai reiskia, kad aktyviosios UME dalies pavirsiaus
plotas yra didesnis nei standartinio UME ir §i sritis priklauso nuo i$si-
kisimo auks¢io H,,;. Atstumas tarp tyrimuy pavirsiaus (z = 0) ir UME
laidZiojo pavirsiaus islieka d, ta¢iau atstumas nuo tyrimu pavirsiaus iki
izoliuotosios iSorinés UME dalies padidéja iki doy: = d + Hoye. Taigi,
net kai d priartéja prie 0, deguonies difuzija i islindusi UME néra uZzblo-
kuota, nes pro UME cilindro Sonus patenka deguonis. Tai yra esminis
skirtumas nuo ankstesniy modeliy.

Difuzijos lygtis (5.10) ir pradinés-krastines salygos isSlieka tokios
pacios kaip standartiniame UME, iSskyrus nauja krastine salyga cilindro
SoneC'=0, t>0,d<z<dyu, r=regirsalyga izoliatoriui, kuris
$iuo atveju yra dyy¢ atstumu nuo pavirsiaus: % =0, t>0, z =
douts Tel <T < Tglass-

Srové per elektrodo aktyvia dalj skai¢iuojama kaip dvieju integraly
suma:

dout 60

— dz.
or “

T=Tel

(S.12)

e
i(t) = 2mnF Do, / 5 rdr + 2mnE'Do,Te /
0 Z lz=d d

Elektrodo su kiigine laidZia dalimi matematinis modelis

Valant elektrodus, o tai daZniausiai daroma $vitriniu popieriumi, gali at-
sirasti smulkiy, bet astriu paZeidimu laidZiojoje dalyje. Nagrinéjamame
kiiginiame UME Sie nelygumai modeliuojami vienu suvidurkintu islin-
dusiu kaigiu. Tikimasi, kad i$§ modelio su $ia viena islindusia dalimi
galima geriau suprasti veikima elektrodo su nelygiais aktyviais pavi-
rSiais.

Lygties (5.10) sprendimo sritis yra sta¢iakampis su vienu iskirptu
kampu, reiskianciu kiigine laidZiaja dali. Ktigio krastas sudaro kampa «
su kiigio pagrindu. Atstumas tarp tyrimu pavirsiaus ir kiigio vir§tinés
yra d, o atstumas nuo $io pavirsiaus iki izoliatoriaus yra dcone = d+Hcone,
kur kiigio aukstis Heope = 7e;/tan(a). Akivaizdu, kad laidZiosios dalies
plotas yra didesnis nei standartinio UME, o tyrimu pavirsius nepasiekia
izoliatoriaus net su d = 0 panasiai kaip iSlindusio UME atveju. Pradinés-
krastinés salygos yra jprastos, iSskyrus salyga ant kiigio Sono UME
aktyviai daliai:

C=0, t>0,0<r<rg,z=rtana+d.
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Sroveés kryptis per kiigini UME yra statmena kiigio Sonui, todél nor-
malineé i$vestiné n, sudaranti kampa « su r asimi (pagal S.4D pav.),
naudojama apskaiciuoti sroves stipriui:

2mnF Do, (" 0C
= 7_’7‘
cos o o On

i(t) dr. (S.13)

S.2.3 Skaitinis sprendimas

Lygtis (5.10) visose 4 skirtingose geometrijose su atitinkamomis pra-
dinémis-krastinémis salygomis buvo iSspresta skaitiniu btidu, naudo-
jant kintamos krypties neiSreikstinj baigtiniu skirtumu metoda [3, 93].
Algoritmai, sprendZiantys uzdavinj, buvo realizuoti naudojant Python
su Numpy biblioteka. Buvo pasirinktas netolygus tinklas, sudarytas i§
200 x 200 taskuy, ypac sutirstinant tinklo taskus, esancius $alia elektrodo,
ir prie astriy nestandartinés geometrijos kampu. Laiko parametras T’
buvo paimtas pakankamai didelis, kad biitu uZtikrintas stabilus sprendi-
nys. Atliekant skaitinj eksperimenta nustatyta, kad analizuoty elektrodu
sroves kreivems stabilizuotis pakanka 7" = 6s ir tam reikia maZdaug
10 - 10® — 250 - 10? laiko Zingsniy, priklausomai nuo UME geometrijos.

S.2.4 Modeliavimo rezultatai

Eksperimento duomeny ir matematinio modeliavimo rezultaty paly-
ginimas

Itraukto UME sroveés stiprio kreivé buvo apskaic¢iuota naudojant mate-
matinj model; ir palyginta su eksperimento btidu gautais duomenimis,
naudojant realu jtraukta UME, pavaizduota S.5A pav. Duomenys rodo
gera atitikimq mazesnéms d reikSmeéms, kaip parodyta S.5B pav., bet
skirtumas padidéja esant didesnéms d reik§méms. Sis poveikis gali biiti
susijes su didesnémis eksperimentinémis paklaidomis (Zr. paklaidu
juostas S.5B pav.). Aukstesnés paklaidu juostos esant didesnéms d rei-
ksmeéms atsiranda dél to, kad sudétinga pasiekti stabilias sroves realiam
itrauktam UME, kurio jtraukimo gylis H;,, = 165 pm yra gana didelis pa-
lyginti su spinduliu r.; = 114 um. Taigi, Sie eksperimentiniai sunkumai
buvo tikétini dél tokiy reik§mingu nukrypimu nuo standartinio UME.
Dél geros atitikties su cheminio eksperimento duomenimis prasminga
naudoti modelius UME geometrijos itakos tyrimames.
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(A) (B) 1
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206
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=04 I}
© i
g 0.2 ’:'} === Modeliavimo duomenys
g h o Eksperimento duomenys

A— | 165um
1220 um l 0 50 100 150 200 250 300 350
d, um
S.5 pav.: A) Realaus itraukto UME vaizdas. (B) Nusistovéjusios srovés
eksperimento ir modeliavimo duomenu palyginimas naudojant UME,
pavaizduota A dalyje.

UME geometrijos jtaka srovés stiprio kreivéms

il =
(A) — (B) 5 @Zﬁ t (C) 35 k |
— Standartinis 45 ar‘qpas
35/|H. 'r Jtrauktas 1 um '4 Sum 3| 45°
3 n —— [trauktas 3 um 35 25
— Jtrauktas 5 pm
<25 ! < 3 < 2 (3
=— 2 O C.zg Opm .:._1 5 — Standartinis
15 = 15 — Standartinis = 1 Kugio kampas 10°
1 : 13lindes 1 um — Kiioi o
05 Spm 1 — Rlindes 3 im 05 K\_Jg!o kampas 30
0 05 — 13lindgs 5 um o — Kagio kampas 45°
0 10 20 30 40 50 60 70 80 0D 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
d, um d, um d, um

S.6 pav.: Pastovios biisenos srovés priklausomybeé nuo d, atsizvelgiant i
nestandartiniu UME geometrines formas. Paveiksléliy kampuose rodo-
ma, kuris parametras yra keic¢iamas, o raudonos rodyklés zymi poky¢io
krypti. (A) Islindes UME; (B) itrauktas UME; (C) kiiginis UME.

Itraukto UME atveju absoliutiné srové maZzéja palyginti su standar-
tinio UME srove (pav. 5.6A). Tai galima paaiskinti tuo, kad deguoniui
yra sunkiau pasiekti laidZiaja UME dalij nei standartiniame UME, nes
izoliatoriaus posiikio taSkas sumazina visy medZiaguy, iskaitant deguoni,
difuzija. Kita vertus, srovés kreivés islindusiam elektrodui (S.6B pav.)
sparciai auga, didéjant H,,;. Taip yra dél deguonies difuzijos i elektrodo
laidZiosios dalies dvi dalis (vietoje iprastos vienos) — Sonine ir apati-
ne. Taigi, UME laidus plotas yra daug didesnis nei standartinio UME.
Kiginio UME atveju absoliutiné srové didéja esant didesniam Soniniam
kampui, kaip parodyta S.6C pav. Kaginio UME laidus plotas yra di-
desnis didesniems kampams, todél kyla bendra srové, taciau tikimasi,
kad padidéjimas nebus tiesinis, nes kinta ir normalinés i$vestinés il
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(pavaizduota S.4D pav.) kryptis. Taigi, srovés kreivéms S.6C pav. jtakos
turi tiek didéjantis aktyvusis UME plotas, tiek kintanti deguonies srauto
kryptis.

Norédami tiksliau istirti geometrijos nukrypimo nuo standarto jtaka,
suskai¢iavome skirtumus (paklaidas) tarp nestandartiniy UME ir stan-
dartinio UME srovés imdami maksimalia skirtumo reikSme tarp srovés
grafikuy. Pagal S.7 pav., darome i§vada, kad didZiausias skirtumas yra
iSlindusiam UME ir siekia beveik 100 % su 5 pm islindimu ir 5 pm spin-
dulio elektrodu. Maksimalus jtraukto UME skirtumas yra 60 % su
itraukimo gyliu H;, = 5pm, o kiiginio UME atveju — 50 % su kagio
kampu 45°, kuris atitinka to paties kiigio isikisimo auksti H.one = 5 pm.
Naudojant Siuos duomenis galima suZzinoti, kiek stipriai paZeistas UME.

(A)100 (B)100 (C) 10
< 80 Hian\ < 8 © 80
& 60 g 60 & 60
€ £ £
g 40 é 40| é 40
Y 20 v 20 v 20

0 0 0

o 1 2 3 4 5 o 1 2 3 4 5 0 5 10 15 20 25 30 35 40 45
Hip, pm Hout, pm kampas, deg

S.7 pav.: Sroveés skirtumai tarp nestandartiniu UME ir standartinio
UME priklausomai nuo geometrijos nukrypimo nuo standarto.

Naudojantis S.7 pav. duomenimis apskai¢iuojama, su kokiu nestan-
dartinio UME jtraukimo gyliu / i8sikiS§imo auk3¢iu gaunama tam tikra
paklaida nuo standartinio UME. Si informacija yra naudinga norint
nustatyti UME tinkamuma SECM atliekamais eksperimentams — tikri-
nama, kada matavimo paklaida tampa didesné nei noréta. Tuo tikslu
buvo apskaic¢iuoti UME geometriju parametrai, su kuriais gaunamos
5%, 10 %, 25 % ir 50 % paklaidos nuo standarto naudojant kubinj aprok-
simavima S.7 pav. duomenims ir pateikti S.1 lenteléje. Buvo parinkti
bedimensiniai parametrai, atspindintys santyki su UME spinduliu 7,
kad duomenis bity galima naudoti jivairaus dydzio UME aktyviajai
daliai. Tai yra standartiné procediira SECM modeliuojant [93]. I$ S.1
lentelés matosi, kad islindusio UME i$siki§imo aukstis yra parametras,
su kuriuo greiciausiai pasiekiami pasirinkti skirtumai nuo standartinio
UME, o tai rodo, kad SECM su islindusiu UME yra jautriausias mata-
vimo paklaidoms. Islindusio UME atvejis yra itin aktualus, nes tokio
tipo pazeidimai labai paplite ir atsiranda poliruojant arba per greitai
priartéjant prie tiriamo pavirSiaus ar su juo susilietus.
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S.1 lentelé: Bedimensiniai UME geometriju parametrai, su kuriais atsi-
randa 5%, 10 %, 25 % ir 50 % skirtumai nuo standartinio UME srovés
stiprio kreiviu.

Skirtumas nuo standartinio UME | 5% | 10% | 256% | 50%
Itraukimo gylis Hjy, /7 0,034 | 0,075 | 0,225 | 0,745
I8lindimo aukstis Hoyt /7 0,027 | 0,064 | 0,186 | 0,438
Kagio aukstis Hoone/Ter 0,090 | 0,184 | 0,488 | 1,042

S.2.5 Isvados

Matematinis modelis, apibtidinantis tris skirtingas nestandartines UME
geometrijas (jitrauktos, islindusios ir kiigio formos aktyvios dalies), bu-
vo naudojamas jvertinant matavimu paklaidaq nuo standartinio UME
srovés matuojant apgadintais ar neidealios formos UME. Pastebéta, kad
didziausias skirtumas nuo standarto gaunamas islindusiam UME ir
maksimalus skirtumas siekia 100 %, kai laidZioji elektrodo dalis yra
iSlindusi tokiu pat dydziu, koks yra elektrodo spindulys. Skirtumai tarp
itraukto UME ir kaginio UME yra mazesni — atitinkamai 60 % ir 50 %
itraukimui / kiigio auksciui lygiam elektrodo spinduliui.

ISnagrinéto matematinio modelio privalumas yra tas, kad jis gali btiti
panaudotas defektams nustatyti paprastame tirpale palyginant mode-
liuota UME reakcija su eksperimentiniais duomenimis. Sis metodas
gali biiti taikomas jvairiomis kryptimis. Sioje darbo dalyje buvo anali-
zuojami buferiniai tirpalai, ta¢iau, norint istirti itaka reakcijos kinetikai,
modelj galima iSplésti deguonies redukcijos reakcijomis.

S.3 Fluorescenciniy dazy prasiskverbimo j lasteliy
sferoidus modeliaviams

Sioje dalyje naudojant netiesine reakcijos-difuzijos lygt¢iu sistema buvo
modeliuojama kvie¢iy gemaluy agliutinino (WGA-Alexa488) ir rodami-
no (R6G) dazu difuzija, o taip pat WGA-Alexa488 prisijungimas prie
lasteliy. Siu dazu difuzijai i lasteliu sferoidus (suspaustos sferos formos
lasteliy darinius) apibtidinti buvo pateikti trys skirtingi modeliai - R6G
modelis, uzrasytas difuzijos lygtimi, Ziedu modelis su kintamu difuzijos
koeficientu ir WGA modelis, uzrasytas reakcijos-difuzijos lygtimis.
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S.3.1 Modeliy taikymai fiziniuose eksperimentuose

Dazu patekimo i lasteliu sferoidus modeliavimas motyvuojamas 3D
lasteliy kulttry pritaikymu jvairiuose biomedicinos tyrimuose. Suta-
riama, kad 3D kultiry metodas yra artimesnis nattiraliems audiniams
nei buves standartas — vienasluoksneés lasteliu kultaros [46]. 3D lasteliu
kulttiros paprastai naudojamos kaip pirminio vaisty, skirty vézio gy-
dimui, tyrimo platforma, tac¢iau dél jvairiu apribojimu ne visus vaistus
galima istirti. Tokiu atveju biity naudinga turéti matematinius modelius,
kurie, panaudojus panasiu jau istirtu molekuliu duomenis, numatytu
vaistu kaupimasi ir pasiskirstyma 3D lasteliu kulttirose. Fluorescenci-
niai daZai, kuriy fizikinés ir chemineés savybeés, tokios kaip struktiira ir
molekuliné masé, yra labai panasis i chemoterapinius agentus, galétu
btiti naudojami modeliuojant ir kiekybiSkai jvertinant vaistu isiskverbi-
ma i 3D lasteliu kulttiras. Viena i§ daZniausiai naudojamu 3D lasteliu
kultiiry yra lasteliu sferoidai, kurie yra sferoido formos savarankiskai
susiformavusios lasteliu grupés [1, 66].

Siame tyrime naudotas rodaminas 6G (R6G) yra fluorescenciniai lipo-
filiniai dazai, kurie specialiai nusidaZo ir kaupiasi mitochondrijose. Dél
savo lipofilinés prigimties R6G taip pat Zinomas kaip specifineé lipidu ap-
tikimo démé, leidZianti R6G naudoti kaip fluorescencinj lipidu Zymeklj
[32, 43]. Taip pat buvo parodyta [95], kad R6G dazai gali biiti naudojami
in vitro (t.y. stikle, mégintuvélyje) lasteliu studijoms, vizualizuojant
kepenu kraujagysliu tinklus ir tiriant kraujo tekéjimo pasiskirstyma
kepenyse jvairiomis salygomis.

Taip pat modeliavime naudotas kvie¢iu gemaly agliutininas (WGA) —
lektinas, apsaugantis kvie¢ius nuo vabzdziy, mieliy ir bakteriju. WGA
selektyviai jungiasi su sialio rigsties liekanomis, kuriu daugiausiai
randama plazminéje membranoje [145]. WGA-Alexa488, kuris yra WGA
ir Alexa Fluor fluorofory junginys, naudojamas kaip fluorescencinis
zymeklis dazyti ivairiu Zinduoliy lasteliu plazmine membrana.

S.3.2 Matematiniai modeliai
WGA judéjimas, modeliuojamas reakcijos-difuzijos lygtimis

WGA molekulés juda tarplastelinéje terpéje difuzijos btidu, o i lasteles
patenka prisijungdamos prie specialiu prisikabinimo viety membranoje
kaip parodyta S.8A pav. WGA molekuliu difuzija ir prisikabinimas prie

134



A Prisikabinimo -
Prisikabings—" vieta Lastelig— Lastelés Lasteliy
WGA sferoidas sluoksnis

Tarplastelinis
sluoksnis

S.8 pav.: (A) WGA modelis, (B) R6G modelis, (C) Ziedu modelis.

lasteliu sferoiduose isreiskiamas lygtimi sferinése koordinatése:

8Cout 1 a 8C'out
T DT—ZE (r2m> — kpind(Bmaz — Chind) Cout

0<t<T, 0<r<R, (514)

kur kping yra WGA prisikabinimo prie lasteliu membranos greicio kons-
tanta, R yra sferos spindulys, D — difuzijos koeficientas, Co,:(t,7) yra
difunduojan¢iu WGA molekuliuy koncentracija sferoje, 7' — modeliavimo
trukmé. Padaryta prielaida, kad sferoidai yra homogeniski visomis
kryptimis.

Lasteliu membranose yra ribotas molekuliu prisikabinimo vietu skai-
¢ius, Zymimas konstanta B, [57]. Kai 8is skai¢ius pasiekiamas, mole-
kulés nebegali prisijungti prie lastelés membranos. Prisikabinimo prie
lasteliu procesas modeliuojamas pagal lygti:

IChind
ot
kur Cnq(t,r) yra koncentracija WGA molekuliy, prisikabinusiu prie
lasteliu membranos.

= kbind (Bmax - Cbind) Cout, 0<t<T, (815)

Naudojamos pradinés-krastinés salygos:

Cout’tzo =0, 0<r<R,
Cbind’tzo = 07 0 <r< Rv

Cout|,_p = 0,131M, >0, (S.16)
86’out
=0, t>0
or ’ >

r=0
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Rodamino judéjimas, modeliuojamas difuzijos lygtimi

Rodaminas R6G difunduoja tiek per lasteles, tiek tarplasteline medziaga
(5.8B pav.), todél R6G molekuliy judéjimas sferoiduose modeliuojama
naudojant difuzijos lygti:

ot r2or
kur C(t,r) yra R6G koncentracija, o lygtis yra versija (S.14) be reakcijos
nario.

ot rar

1
80—4) 8<280) 0<t<T, 0<r<R, (S.17)

Pradineés-krastinés salygos yra panasios kaip (S.16):

Cl,_o=0, 0<r<R
C|,_p=104pM, t>0,
oc
ot r=0

(S.18)
=0, t>0.

Rodamino judéjimas naudojant lasteliy ir tarplastelinés medziagos
Ziedy modelj

Sferoidai buvo modeliuojami kaip koncentriniai lasteliy ir tarplastelinés
medZiagos zZiedai, kaip parodyta S.8C pav., kur lasteliy Ziedai Zymi
suvidurkintas lasteles, o tarplastelinis sluoksnis — medZiaga tarp lasteliu.
R6G difuzijos procesas iSreiskiamas lygtimi:

%f::gi<ﬂDwﬁg) 0<t<T, 0<r<R, (5.19)

kur D(r) yra funkcija, rodanti difuzijos koeficienta:

r) Doy, jei r € lasteliu sluoksniui,
1 ) )=
Doatriz, jei r € tarplasteliniam sluoksniui.

Formulése D, yra difuzijos koeficientas lastelése, 0 Dy, q1rir yra difuzi-
jos koeficientas tarplastelinéje medziagoje, d.e;; = 12 pm yra vidutinis
lasteliy skersmuo. d,, yra vidutinis atstumas tarp lasteliy, apskaiciuo-
tas taip, kad Zinomas lasteliy skai¢ius N tilptu i R spindulio sferoida.
Pradinés-krastinés salygos tokios pacios kaip R6G modelyje (5.18).
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Koeficienty skai¢iavimas ir skaitinis sprendimas

R6G dazai sklinda per lasteles difuzijos greic¢iu D ir per tarplas-
teline medziaga grei¢iu Dy,qiriz. R6G modelio (S.17) difuzijos koefi-
cientas buvo apskaiciuotas visoje sferoje vidurkinant pagal formule
D = ¢Deeiy + (1 — ¢) Dppatria, kur ¢ yra bendro lasteliu tario ir rutulio
tario santykis. Lasteléms buvo pasirinktas stratum corneum (iSorinio
odos sluoksnio) lasteliu difuzijos koeficientas Dy = 3 - 10713 m? /s [6],
nes jos labiausiai primena naudojamas lasteles eksperimente. Difuzijos
koeficientas tarplastelinéje medZiagoje D, qiri buvo gautas priderinant
eksperimentinius duomenis prie R6G modelio duomenu. WGA dazu
difuzijos koeficientui apskaic¢iuoti buvo naudojamas porétos terpés mo-
delis [141].

Palyginimui su eksperimentiniais duomenimis buvo apskaiciuota
sukauptiné koncentracija C.. i tiirio vieneta, t. y. bendra koncentracija
sferoje padalyta i$ jos ttirio:

47

Cacc t) =
( ) Vsphere

/ * C(t,r)r*dr. (S.20)
0

Pateiktos lygtys (5.14)—(5.19) buvo iSsprestos skaitiniu btidu. Pir-
miausia buvo pasirinkta 2D diskretus tinklelis, susidedantis i$ 100 tasku
r kryptimi ir 240 000 taskuy ¢ kryptimi. Toks didelis tasku skaicius bu-
vo biitinas, nes modeliavimo laikas 7' = 24 h buvo ilgas ir reikéjo pa-
siekti auksta tiksluma. Naudojant baigtiniu skirtumo metoda Kranko-
Nikolsono neisreikstinj algoritma buvo iSvestos skirtuminés lygtys [116],
kurios buvo linearizuotos Pikardo iteraciniu metodu. Kiekvienoje itera-
cijoje gauta tiesiniy lyg¢iu sistema buvo sprendziama naudojant Tomaso
algoritma. Procesas greitai konvergavo i apytiksli sprendinj ir nereikéjo
daugiau nei 4 iteraciju.

Reikalingi integralai, tokie kaip (S.20), diskrec¢iame tinklelyje buvo
apskaiciuoti pagal 1 eilés Niutono-Koteso formule. Visi algoritmai buvo
igyvendinti Python programavimo kalba.

S.3.3 Modeliavimo rezultatai

Difuzijos koeficientas tarplastelinéje medZiagoje buvo apskaiciuotas
pritaikant modelio duomenis prie fizinio eksperimento duomenu ma-
ziausiy kvadraty metodu. Sukaupta R6G koncentracija, apskai¢iuota
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naudojant modelj (5.17)—(5.18) bei integrala (5.20), ir fluorescencijos
intensyvumas i$ eksperimento duomenu buvo normalizuoti j bedimen-
sinius dydzius, kad juos biity galima palyginti. Tiesiné priklausomybé
tarp fluorescencijos intensyvumo ir 8altinio koncentracijos yra gerai Zi-
noma, todeél prietaiso konstanta galima apskaiciuoti normalizuojant, t.y.,
padalijant i§ maksimalios koncentracijos ir fluorescencijos intensyvumo.
Nustatyta, kad Dpatriz = 4,2 - 10713 m? /s labiausiai atitinka eksperi-
mento duomenis (S.9A pav.), o prietaiso konstanta Siam eksperimentui
yra 6,4 - 10%0.

(A) (B) 6.0x10°
1.2 5 Eksperimento

£ & 5.5x10° duomenys

® L0 3 .

£ LA — R6G modelis

% 08 S 5.0x10°

QM 2

c =

s &

w 06 g 4.5x10°

© - .

5 u = R6G eksperimento E

S04 duomenys g 5

5 . . 3 4.0x10

E o2 - - Aproksimuoti duomenys 5

5% . 2

E — R6G modelis T 35,105

0.0 6000 8000 10000 12000 14000 16000
o 5 10 15 20 25 Lasteliy skaitius
th 127 134 169 212 190 202

Rsphere , um

S.9 pav.: (A) R6G modelio daZzu patekimo kreivé (raudona linija) pri-
derinta prie eksperimento duomenu (punktyriné linija) difuzijos koe-
ficientui tarplastelinéje medziagoje rasti; (B) Sukauptas fluorescencijos
intensyvumas palygintas su eksperimento duomenuy intensyvumu.

(A) (B)s.om“ . =

12 ; Eksperimento
= + 3 5\ " duomenys
210 L % 5.5x10 o )
= e a [ g Ziedy modelis
gosl M g 500 2\ | —R6G modelis
o 1 @
= 0608 - R .
5 « REG eksperimento £ 4.5x10 —
204 duomenys 5 .
g 0.2 - - Aproksimuoti duomenys ‘g 4.0x10
El Ziedy modelis SR

0.0 -*106000 8000 10000 12000 14000 16000

0 5 10 15 20 25 Lasteliy skaitius
th 127 134 169 212 190 202

R sphere » HM

S.10 pav.: (A) Dazy prasiskverbimas i sferoida pagal laika Ziedu mode-
lio ir eksperimento duomenims. Difuzijos koeficientas — i§ R6G modelio.
(B) Sukauptas fluorescencijos intensyvumas pagal Ziedu modelio duo-
menis, R6G model;j ir eksperimenta.

R6G modelio patvirtinimui buvo naudojamas kitas eksperimento
duomenu rinkinys. Sferoidams su skirtingais spinduliais ir lasteliu
skai¢iumi buvo apskaiciuotas fluorescencijos intensyvumas per 2 va-
landas (S.9B pav.). Sukauptos R6G koncentracijos buvo padaugintos i3
prietaiso konstantos ir nubraizytos palyginimui su eksperimentiniais
duomenimis. Vienai lastelei apskai¢iuotas intensyvumas mazéja dides-
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niems sferoidams, ko ir buvo tikimasi, nes dazams vis sunkiau pasiekti
vidinius sluoksnius. Buvo stebimas labai glaudus eksperimento ir mo-
delio atitikimas, iSskyrus didZiausio lasteliu skaiciaus sferoidus. Tai
aiSkinama taip: lasteliy sferoido dydis priklauso nuo pradinio lasteliu
skaiciaus, kol pasiekiamas kritinis lasteliu kiekis. Pastebeéta, kad au-
ginant sferoidus nuo 6000 iki 10000 lasteliy, rutulio dydis padidéjo
tiesiskai, taciau sferoidai su dideliu lasteliu skai¢iumi (N..;; = 14 000
ir Neeyp = 16 000) buvo panasaus dydzio, t. y. ju spindulys nepriklause
nuo lasteliy skai¢iaus. Taigi, mtisu modelis parodé, kad sferoidai nuo
6000 iki 10 000 lasteliu yra tinkami daZu isiskverbimo tyrimams, tac¢iau
didesniy sferoidy negalima naudoti dél netikslumu.

Siekiant geriau suprasti R6G isiskverbima i sferoidus buvo pasitilytas
alternatyvus Ziedu modelis. Prasiskverbimo i sferoida kreive S.10A pav.
buvo apskai¢iuota naudojant R6G lasteliu ir tarplastelinés medZziagos
difuzijos koeficientus i$ anksc¢iau analizuoto R6G modelio. Kreivé la-
bai artima aproksimuotiems eksperimentiniams duomenims, vidutiné
kvadratiné paklaida yra tik 0,04 %. Palyginimui, prasiskverbimo kreivés,
apskai¢iuotos naudojant R6G modeli (S.9A pav.), paklaida yra 0,05 %.
Zieduy modelio fluorescencijos intensyvumo grafikas buvo nubraiZytas
(5.10B pav.) pagal eksperimentinius ir R6G modelio duomenis. Nors abu
modeliai gana gerai atitinka eksperimento duomenimis, Ziedu modelis
yra Siek tiek tikslesnis su 4,9 % paklaida palyginti su 5,2 % R6G modeliu.
I8 Siy rezultaty darome iSvada, kad abu modeliai yra sékmingi ir gali
btiti naudojami tolesnei daZu isiskverbimo analizei.

S.3.4 I3vados

Abu R6G dazuy modelio atvejai, t. y. tiesinés difuzijos modelis ir Ziedu
modelis, parodé gera atitikima eksperimento rezultatams. Naudojant
R6G modeli buvo apskaiciuota, kad difuzijos koeficientas tarplastelinéje
medZiagoje yra D = 4,2 - 10713 m?/s, o tai yra mazdaug 4 kartus dau-
giau nei difuzijos koeficientas lastelése. Buvo iSanalizuota kaupimosi
dinamika ir parodyta, kad nusistovéjimui pasiekti reikia mazdaug 4 h,
tatiau centriné zona néra pilnai inkubuojama iki mazdaug 10 h. Si dina-
mika taip pat priklauso nuo rutulio dydZio ir tankio.

Naudojant WGA modelj buvo istirtas prisikabinimo greicio ir prisi-
kabinimo vietu skai¢iaus poveikis WGA-Alexa488 dazu skverbimosi
dinamikai. Modeliavimo rezultatai parodé, kad WGA-Alexa488 dazu
kaupimasis lastelése yra netiesinis. Tai galima paaiSkinti tokiais biolo-
giniais veiksniais kaip endocitozés (medZiagos pernesimas i lastele per
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puslele membranoje) daZnis, lasteliy ir tarplasteliné medZiagos tankis,
receptoriu lasteliu membranoje tipas, ju koncentracija ir kt.

Bendros disertacijos iSvados

* Naujas kompiuterinis SECM modelis yra tinkama priemoné tiriant
RC-SECM rezima ir nustatant reakcijos bei difuzijos koeficientus.
Nustatyta, kad deguonies difuzijos koeficientas yra atvirksciai
proporcingas gliukozés koncentracijai terpéje. Buvo pasitlyta
formulé Siam koeficientui apskai¢iuoti dirbant RC-SECM rezimu.

¢ Matematinis modelis, apibfidinantis tris daZniausiai pasitaikancias
nestandartines ultramikroelektrodo (UME) geometrijas, yra tin-
kamas btidas jvertinti paklaidai nuo elektros srovés, matuojamos
standartiniu UME. Modeliuojant atrasta, kad islindes UME duoda
didZiausias matavimo paklaidas, o itraukto UME ir kiiginio UME
paklaidos yra apytiksliai 2 kartus mazesnés.

¢ Naudojant R6G dazuy jsisavinimo i lasteliu sferoidus modelij, buvo
apskaiciuotas difuzijos koeficientas tarplastelingje terpéje ir nu-
statyta, kad jis yra mazdaug 4 kartus didesnis uz eksperimente
naudojamu lasteliu difuzijos koeficienta.

¢ Tiriant WGA-Alexa488 dazy modelj buvo parodyta, kad prisika-
binimo greitis ir prisikabinimo viety skai¢ius daro netiesine jtaka
skverbimosi dinamikai.
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