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Disertaciją galima peržiūrėti Vilniaus universiteto bibliotekoje ir Vil-
niaus universiteto interneto svetainėje adresu: www.vu.lt/lt/naujienos/
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Introduction

Research area

The study is focused on computer modelling of complex chemical and
biophysical systems, which are described by partial differential equa-
tions (PDEs) with nonlinear boundary conditions and PDEs in various
complex (non-rectangular) domains. These differential problems are
solved using numerical methods.

Problems of solving PDEs with nonlinear boundary conditions arise
from mathematical modelling of complex chemical and biological pro-
cesses in scanning electrochemical microscopy (SECM). The study of
PDE in non-rectangular domains is motivated by the demand to estim-
ate measurement errors due to deviations of SECM equipment geometry
from the standard. Nonlinear systems of PDE are applied in the study
of chemotherapeutic drugs uptake into tissues.

Actuality

Scanning electrochemical microscopy is an emerging sensoring tech-
nique, proposed by Bard et al. in 1989 [12]. SECM is based on electro-
chemical measurements with the ultramicroelectrode (UME), which is
scanning 3D space close to catalytic or electrochemically active surfaces.
SECM is applied for high-resolution imaging of the chemical reactivity
[144], investigation of electron transfer kinetics [110], biosensors and
biochips surfaces [149], etc.

Despite wide and varied applications, practical and theoretical dif-
ficulties of SECM-based experiments persist. Common problems are
a deviation from idealized geometries of real equipment, poor spatial
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resolution, the uncontrolled distance between the UME and surface of
interest, expensive experiments, difficulties in manufacturing of equip-
ment, etc. SECM theory such as analytical tools and mathematical
modelling methods is applied for dealing with or at least reducing these
problems. Computer simulations of SECM are also used for the determ-
ination of reaction kinetics [13] and the improvement of experiment
techniques [40].

The SECM technique is applied in several modes such as feedback
[13] and substrate generation [117], which have also been extensively
analyzed by mathematical modelling methods [37, 94]. The novel redox-
competition (RC-SECM) mode, which has been proposed by the Schuh-
mann group in 2006 [45], has been used for the evaluation of enzymatic
kinetics in several research papers [82, 99] or combined with other modes
[64]. However, the theory of the RC-SECM mode has not been thor-
oughly investigated. A mathematical model, which simulates both
enzymatic reactions on active surface and diffusion processes in the
solution, is presented for the first time in this research.

The second part of the thesis is committed to the study of UME
geometry and, in particular, the kind of UMEs with non-ideal (non-
standard) geometries. The importance of UME geometry has been
reported from the early days of SECM research. In one of the earliest
paper concerning geometry analysis, published by Kwak and Bard in
1989, the ratio between diameters of an electrode and insulator has
been studied and the influence on electric signal has been established
using computer simulations [86]. In later studies, various cases of non-
ideal electrodes have been modelled: recessed-UME [20], conical UME
[150], off-centered-UME [39], nonsymmetrical UME [123]. However, the
general method to determine the measurement errors of most frequent
non-ideal UMEs is still not well established and will be the focus of this
research.

In the third Chapter of the thesis, mathematical models of the reaction-
diffusion process of fluorescent dyes are presented. These models are
applied in the study of chemotherapeutic drugs uptake into 3D cellular
spheroids [46], which has important applications in cancer treatment
research. Some authors have published their attempts to simulate how
various nanoparticles accumulate and distribute in cellular spheroids
[58, 66]. Analytical methods have been applied to analyze fluorescent
dye uptake in 3D spheroids [1] and 2D cell cultures [115]. Mathematical
models, which would predict diffusion and accumulation of organic
molecules (e.g. drugs or dyes) in 3D cell cultures, are presented in this
study for the first time.
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Aim

The aim of the research falls into two main categories. The first goal
was to develop mathematical models of scanning electrochemical micro-
scope and software tools necessary to model reaction-diffusion processes
and SECM geometric properties. The second aim was to provide a com-
putational model for the analysis of fluorescent dyes uptake into the
spheroidal cell structure. The following tasks were identified:

1. Develop mathematical and numerical models of i) SECM, working
in redox-competition mode, ii) SECM with various non-standard
ultramicroelectrodes (UME) and iii) fluorescent dye uptake into
cell spheroids.

2. Create efficient computer programs for high-precision computa-
tions.

3. Achieve the agreement between model and experimental data by
calculating model parameters.

4. Calculate reaction kinetic constants and oxygen diffusion coeffi-
cients for SECM experiments

5. Develop algorithms to evaluate difference (measurement error) in
electric current measured by a standard perfect electrode and by
nonideal shaped UMEs.

6. Investigate the properties of fluorescent dyes penetration into cell
spheroids depending on cell concentration, the number of binding
sites and others.

Methodology

SECM in the redox-competition (RC-SECM) mode is modelled by a sys-
tem of non-stationary reaction-diffusion equations with nonlinear third
type boundary conditions related to the kinetics of enzymatic reactions.
SECM geometry is modelled by diffusion equation in non-rectangular
geometries. Cellular spheroids are modelled by non-stationary reaction-
diffusion equations containing nonlinear terms responsible for reactions
between cells and fluorescent dyes.
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PDEs in analysed models were solved using numerical methods.
Implicit methods were applied in order to achieve lower computational
error and higher stability. Alternating direction implicit finite difference
method (ADIFDM) was the key algorithm in solving diffusion equations.

Several computer experiments were carried out to achieve goals
and compared with real physical experiments. Computer models were
developed in Python and MATLAB by the author. Computations were
performed using a supercomputer.

Scientific novelty

The main novelties of the thesis are formulated:

1. A novel mathematical model is proposed for SECM acting in the
redox-competition mode. The main originality of this model is
the combination of diffusion-based models of SECM with reaction
equations using nonlinear third type boundary conditions.

2. The study of nonstandard electrodes in SECM-based experiments
has allowed to evaluate measurement errors between experiments
performed by nonideal UMEs compared to standard perfect UME.
Research into the impact of equipment for SECM measurements
is an emerging field, but for the first time a comprehensive study
of the effects of most common geometry deviations has been
provided.

3. The efficient non-uniform meshing method is proposed for SECM
models in rectangular and non-rectangular geometries.

4. The uptake of fluorescent dyes into cellular spheroids is modelled
for the first time. The main novelties are computation of unknown
dye parameters and successful validation of models by physical
experiment.

Defended propositions

1. Proposed computer models are effective tools for simulating the
behaviour of analyzed systems, i.e. RC-SECM mode, SECM with
different UME geometries and the uptake of fluorescent dies.

4



2. The correctness of each model is confirmed by

(a) achieving high correspondence between modelling and ex-
perimental data;

(b) verifying implementations of numerical algorithms, which
are used for solving models, by various verification methods.

3. Implemented numerical algorithms are highly accurate (2nd or-
der), unconditionally stable and reduce the problem into linear
systems, which is solved by efficient linear time solver (Thomas
algorithm).

4. In the RC-SECM mode oxygen diffusion coefficient is inversely
proportional to the concentration of medium components such as
glucose.

5. The largest measurement errors compared to standard UME are
made by an outwarded electrode and the difference is lower for
recessed and cone-shaped electrodes. Additionally, these errors
decrease as the ratio between isolator and electrode radiuses in-
creases.

Approbation

Periodic Publications

The results were published in periodic journals with a citation index. The
contribution of the author of the thesis is the development of numerical
models and the software for the modelling task, calculations for the
models, a validation, analysis and written description of the results.

1. Ivanauskas, F., Morkvenaite-Vilkonciene, I., Astrauskas, R. and
Ramanavicius, A. (2016). Modelling of scanning electrochemical
microscopy at redox competition mode using diffusion and re-
action equations. Electrochimica Acta, 222, p. 347-354. DOI:
10.1016/j.electacta.2016.10.179.

2. Astrauskas, R., Ivanauskas, F., Morkvenaite-Vilkonciene, I., and
Ramanavicius, A. (2019). Mathematical Modelling of the Influ-
ence of Ultra-micro Electrode Geometry on Approach Curves Re-
gistered by Scanning Electrochemical Microscopy. Electroanalysis,
31(11), p. 2214-2223. DOI: 10.1002/elan.201900313.
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3. Astrauskas, R., Ivanauskas, F., Jarockytė, G., Karabanovas, V., and
Rotomskis, R. (2019). Modeling the uptake of fluorescent mo-
lecules into 3D cellular spheroids. Nonlinear Analysis: Modelling
and Control, 24(5), p. 838-852. DOI: 10.15388/NA.2019.5.9.

Conferences

1. 22nd International Conference Mathematical Modelling and Ana-
lysis (MMA2017), 30 May -– 2 June 2017, Druskininkai, Lithuania:
Modelling of Scanning Electrochemical Microscopy Using Diffu-
sion and Reaction Equations.

2. 10th Conference on Applied Mathematics and Scientific Com-
puting (ApplMath20), 14 – 18 September 2020, Brijuni, Croatia
(online): Modelling of Scanning Electrochemical Microscope and
the Influence of Electrode Geometry.

3. Lietuvos matematikų draugijos 57-oji konferencija, 2016 m. birželio
mėn. 20–21 d., Vilnius: Mathematical Modelling of Diffusion and
Reaction Processes in Scanning Electrochemical Microscopy.

4. Lietuvos matematikų draugijos 59-oji konferencija, 2018 m. birželio
mėn. 18–19 d., Kaunas: Analysis of Electrode Geometry effects on
Approach Curves Registered by Scanning Electrochemical Micro-
scopy.

5. Lietuvos matematikų draugijos 60-oji konferencija, 2019 m. birželio
mėn. 19–20 d., Vilnius: Modelling of Fluorescence Dyes Uptake
into Cellular Spheroids.

6. 6-oji LMA jaunųjų mokslininkų konferencija „Fizinių ir technolo-
gijos mokslų tarpdalykiniai tyrimai“, 2016 m. vasario mėn. 10 d.,
Vilnius: Mathematical Modelling of Diffusion-Reaction Equations
in Scanning Electrochemical Microscopy.

Structure of Thesis

The thesis consists of the following parts: general introduction, four
chapters, conclusions and a list of references.

In Chapter 1, the SECM model, governed by the system of 8 nonlinear
reaction-diffusion equations, is presented. The system is solved by

6



implicit finite difference methods. The numerical solution is compared
with the results of a physical experiment, and by fitting modelling data
to the experiment, reaction coefficients and diffusion parameters are
calculated.

SECM models in 4 geometries (1 standard from Chapter 1 and 3
non-standard) are proposed in Chapter 2. PDEs, representing UMEs
in these geometries, are solved and numerical experiment results of
one non-standard geometry are compared with a physical experiment
to show good correspondence. Then, the difference between standard
geometry and non-standard geometries is calculated and the influence
of other SECM geometry parameters on approach curves is investigated.

In Chapter 3, the uptake of fluorescent dyes into 3D cell cultures is
modelled by reaction-diffusion equations which are solved numeric-
ally. Models are applied to analyse two types of dyes and geometrical
properties of cell spheroids. Comparison between a numerical and bio-
logical experiment is provided. The diffusion coefficient in intercellular
medium and time of saturation by dyes are calculated using provided
models.

Various methods of model verification are analyzed in the final
Chapter 4 in order to test the implementation of numerical algorithms.
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Chapter 1

Modelling of Scanning
Electrochemical Microscopy
at Redox Competition Mode
Using Diffusion and Reaction
Equations

1.1 Introduction

In the first chapter, the mathematical model of scanning electrochemical
microscopy (SECM) redox-competition (RC-SECM) mode is presented
for the first time in scientific research. The study is focused on solving
systems of partial differential equations (PDEs) with nonlinear boundary
conditions using numerical methods. Using this model, it is possible to
calculate oxygen consumption rate, evaluate enzymatic reaction kinetics
and determine oxygen diffusion coefficients in the medium of varying
composition. Oxygen concentration measurement, which is important
for SECM-based investigations of all biological systems, was success-
fully applied for the evaluation of enzymatic reaction performed by an
immobilized enzyme.
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Scanning electrochemical microscopy

Scanning electrochemical microscopy is an advanced electrochemical
method, which is based on electrochemical measurements with the
scanning ultramicroelectrode (UME). In this approach, the UME, which
has the diameter of conducting part in the range of several tenths of
micrometres and insulator part of few hundreds of micrometres, is scan-
ning 3D space close to catalytic or electrochemically active surfaces
[12]. In such an experiment the UME is connected as a working elec-
trode in an electrochemical cell, and the current, which is measured by
the UME, depends on the local concentration of electroactive species.
Electron transfer kinetics of surfaces modified by enzymes is mostly in-
vestigated using feedback (FB) or generation-collection modes of SECM
[49, 100, 110, 143]. In addition, SECM was applied for high-resolution
imaging of the chemical reactivity [131, 144], electrocatalytic activity
[54, 68, 147], and topography of enzyme-based interfaces formed in
enzyme immunoassays [146], biosensors and biochips [149].

The redox-competition (RC-SECM) mode, which has been developed
by the Schuhmann group [45], has been used for the evaluation of
enzymatic kinetics in several studies. According to the described mode,
dissolved oxygen is consumed in two competing ways: one is based
on the electrochemical reaction running on the UME and the other on
the reaction catalyzed by an immobilized enzyme, e.g. glucose oxidase
(GOx), which is utilizing O2 as an electron acceptor. In this mode,
both (i) GOx immobilized on the non-conducting surface and (ii) the
UME acting at a negative potential are competing for dissolved oxygen
[99], differently to the previously addressed bi-potentiostatic RC-SECM
mode, in which conductive surface has been connected as a second
working electrode [68, 82]. At higher glucose concentrations low oxygen
concentration region was formed close to the enzyme-modified surface
due to the fast enzymatic reaction. Additionally to RC-SECM-based 3D
visualization of concentrations of redox-active materials, which are close
to the electroactive surface, in the RC-SECM mode current vs distance
dependencies can be used to determine enzymatic kinetics [99].

However, according to the of best of our knowledge, analytical ex-
pressions for the determination of enzymatic kinetics in the RC-SECM
mode are still not well established.

9



Modelling of biosensors

SECM is a versatile technique, which can be used as a tool in the broader
area of biosensor research and development. Mathematical modelling
of biosensors is motivated by the complexity of physical, chemical or
biological experiments, high measurement errors of these experiments,
theoretical interests, etc. Various types of biosensors was modelled in
recent scientific literature: amperometric [7, 16, 17, 92, 119, 148], mag-
netic [97, 102, 103] , electrochemical [24, 41, 80, 111], bioluminescent
bacteria-based [114, 122], etc. In the majority of those studies, mod-
els were described by PDEs or systems of PDEs, which were typically
solved numerically by finite difference methods [7, 122] or finite element
methods with specialized software such as COMSOL [80, 129]. Extens-
ive studies of biosensors and their computer simulations were presented
in monographs/books by Baronas et al. [19], Bartlett et al. [21].

Mathematical models of biosensors, in which the enzyme had been
immobilized on the electrode, was widely investigated in various stud-
ies. A 2D mathematical model of amperometric biosensors with per-
forated and selective membranes, based on the diffusion equations
containing a nonlinear case of the Michaelis–Menten enzymatic reaction
was developed [14, 15, 18, 28]. The numerical simulations were carried
out by solving PDEs using finite difference methods [19]. It was also
determined, that the modelling of a reaction-diffusion system within
a thin layer of an enzyme and containing a nonlinear term of the Mi-
chaelis–Menten enzymatic reaction, requires iterative methods such as
Newton iteration to solve nonlinear PDEs [28].

Mathematical modelling of SECM

Computer simulations were performed for different modes of SECM: (i)
negative/positive feedback [3, 13, 86, 120], (ii) substrate generation/tip
collection [93, 117], (iii) disk generation/ring collection [90]. Different
purposes can be identified: (i) the determination of reaction kinetics,
such as reaction rate constants [13, 110, 123], (ii) the investigation of the
influence of UME geometry to the SECM response [3], (iii) the improve-
ment of experiment techniques [40]. Furthermore, simulations can solve
important problems, such as poor spatial resolution, the negative effect
of uncontrolled distance between the UME and surface of interest during
SECM investigations, and the effects of deviations from mathematically
idealized SECM geometries [123, 125]. An in-depth overview of SECM
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experimental and theoretical topics, including models and numerical
solutions, was provided in the book by Bard and Mirkin [11].

Mathematical models of SECM were calculated by: (i) the finite
difference method (FDM) [3, 13, 93]; (ii) the finite element method, which
was used by [105, 106]; (iii) the boundary element method (BEM) [112,
124, 125]. The influence of electrode geometry for SECM simulations
was shown by various authors [3, 37, 124]. The first comprehensive
paper concerning the application of the alternating-direction implicit
(ADI) FDM (the main method used in the Thesis) to microelectrodes
was published by Heinze et al. [70].

Comparison with other studies of reaction kinetics

The first research paper concerning the modelling of SECM reaction
kinetics was published by Bard et al. [13]. The SECM feedback mode and
finite electron-transfer kinetics with a single reaction, which occurred at
the conducting surface, was used in simulations. In another study by
Bard et al. [110] a full reaction system was considered, but the model
was reduced to a single dimension and the mechanism of reactions was
simplified by employing Michaelis–Mentens kinetics. However, both
these papers established methods for the calculation of reaction kinetics
in the SECM feedback mode.

In more recent papers by Cornut and Lefrou [37, 38] reactions kinet-
ics in the SECM feedback mode were modelled using simplified single
reaction based on irreversible or Michaelis–Mentens kinetics mechanism.
Analytical expressions for electric current iT was established depend-
ing on UME parameters and reactions kinetics, but the kinetics was
simplified and rather theoretical.

However, none of these research papers has taken into account the
full reaction-diffusion system, which consists of at least 8 equations
in oxygen and glucose oxidase-based experiments. Moreover, these
studies deal with the modelling of the type of biosensors in which the
enzyme is immobilized on the electrode surface, and the response of the
biosensor has been measured by registration of amperometric response
with the same electrode. Unlike all mentioned studies, in this research,
the enzyme is immobilized on a non-conducting surface in the RC-SECM
mode evaluation, and the SECM electrode is always at a distance from
an immobilized enzyme-based layer. Therefore, diffusion in confined
space, which is limited by edges of the insulating part of the UME, has
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to be modelled and a new model is proposed in this research to take into
account these conditions.

Outline of the chapter

In section 1.2, a physical model is presented including chemical reactions
on enzyme-modified surface and determination of coefficients. A math-
ematical model is provided in section 1.3 and a numerical algorithm
is presented in section 1.4. The results of the research are analysed in
section 1.5 and the chapter is summarized in section 1.6.

1.2 Physical model

SECM in redox-competition mode

Figure 1.1: Schematics of SECM measurement in reduction-oxidation
(redox) competition mode. Oxygen is consumed in two ways: (i) by
glucose oxidase (GOx) catalyzed reaction and (ii) in electrochemical
reaction on the UME surface as the oxygen in the presence of H+ is
converted to H2O2. Glc — glucose, Gll — gluconolactone.

During a SECM-based experiment, Oxygen (O2) and glucose (Glc)
are dissolved in water solution (Fig. 1.1). Fixed concentrations of O2
and Glc are provided from external solution, called the bulk, which is
usually a petri plate. The process of Glc oxidation starts in the presence
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of dissolved O2 then catalyzed by glucose oxidase (GOx), which is im-
mobilized on the surface. During this process O2 and Glc are consumed,
hydrogen peroxide (H2O2) and gluconolactone (Gll) are produced ac-
cording to equations

GOxox + Glc
k1−−→←−−
k−1

GOx ·Glc
k2−−→ GOxre + Gll (1.1)

GOxre + O2

k3−−→←−−
k−3

GOx ·O2 (1.2)

GOx ·O2

k4−−→←−−
k−4

GOxox + H2O2 (1.3)

The value of UME current depends on the concentration of dissolved
oxygen and presence of all other electrochemically active species in the
close proximity to the UME surface and on the electric potential applied
to the UME. In the evaluated RC-SECM measurement system (Fig. 1.1),
oxygen is consumed in two ways: (i) in the redox reaction occurring on
the UME surface

O2 + 4 e− + 4 H+ −−→ 2 H2O (1.4)

and (ii) in enzymatic reaction, where oxygen serves as an electron ac-
ceptor, which is taking electrons from GOx in the way presented by (1.1)
and is passing them to oxygen in (1.2)–(1.3).

The redox-competition mode was used in order to register O2 reduc-
tion current at negative UME potential. Under such conditions O2 is
reduced into the water on the UME surface according to the reaction
(1.4). The mathematical model, which describes the SECM acting in
redox-competition mode, was created taking into account conditions
presented in Fig. 1.1. The diffusion layer was formed in a confined space
between the UME and the surface with immobilized GOx. Both oxygen
and glucose diffuse from the bulk to the diffusion layer, as it is shown
in Fig. 1.1. Reaction products H2O2 and gluconolactone (Gll), formed
during catalytic action of GOx, diffuse from the diffusion layer to the
external solution.

At the UME surface electrons are transferred to oxygen, which is
reduced in the presence of H+. Oxygen is also consumed on the surface
modified by GOx. Electric current, registered by SECM, decreases due to
the competing consumption of oxygen by both UME and GOx-modified
surface. Oxygen concentration in the bulk, i.e. external solution, of the
electrochemical cell is 253 µmol/L and it is considered that this amount
does not change during the experiment due to the large size of the bulk.
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Reaction rate constants

Proper selection of reaction rate constants is an important issue for the
modelling of enzymatic reactions-based processes. Mathematical mod-
els of bioreactors, where reactions kinetics had to be calculated, were
presented in 1D [42, 81] and 2D [79, 133] geometries. Mathematical mod-
els in 3D, which are incorporating convection, diffusion and enzymatic
reactions were developed to simulate the concentration of dissolved
oxygen inside the microchannels [137].

In this research, the kinetic constants for reactions (1.1)–(1.3) were
gathered from references [27, 61, 89] and adjusted to better fit experi-
mental results (Table 1.1). Kinetic constants k−1, k−3, k−4 for reactions
(1.1)–(1.3) were determined from the model and were set to the follow-
ing values: k−1 = 10 s−1, k−3 = 2000 M−1s−1. The constant k−4 was set
to zero, because the backward reaction (1.3) is much slower than other
reactions in diffusion-related processes.

Table 1.1: Kinetic constants and thermodynamic parameters for the GOx
catalyzed reaction with β-D-glucose and oxygen at pH 5.5.

Sugar substrate or
thermodynamic
parameter

k1,
M−1s−1

k2, s−1
k3,

M−1s−1
k4, s−1 ref.

β-D-glucose-1-1H
at 25 ◦C

∼200 ∼6000 1.8× 106 1440 [89]

β-D-glucose-1-1H
at 25 ◦C

13 158 1.8× 106 1440 [27]

β-D-glucose-1-1H
at 27 ◦C

10 000 2.1× 106 1150 [61]

Used in the model 3000 6000 1.5× 106 1500

Diffusion coefficients

The determination of O2 diffusion coefficient is especially important
in SECM-based physical experiments and mathematical modelling of
SECM, because electric current, formed by O2 reduction process in (1.4),
is used as a measurement for SECM experiment and many analytical for-
mulas, applied for SECM response calculations by researchers, depend
on O2 diffusion coefficient. It was shown that O2 diffusion is strongly
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influenced by the presence of salts, glucose, etc. in solution [75]. This
dependency for SECM experiments was established in this research (see
section 1.5).

Table 1.2: Diffusion coefficients in water at 25 ◦C.

Diffusing reagent D, m2s−1 ref.

Oxygen Calculated experimentally

Glucose 5× 10−10 [127]

Hydrogen peroxide 2.1× 10−9 [134, 139]

Gluconolactone 5× 10−10 [127]

Other diffusion coefficients were taken from scientific literature (Table
1.2). Diffusivity rates of Glc and Gll were considered the same due to
very similar physico-chemical properties.

1.3 Mathematical model

Figure 1.2: Scheme of simulation domain. All 8 reagents, boundary
conditions for Cdiff and the direction of outside flux are displayed.
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Measurements of SECM acting in the redox-competition mode (Fig.
1.1) are changed into the scheme (1.2) due to the radial symmetry around
the central axis of the electrode. Radial symmetry is a standard assump-
tion in SECM modelling, though the case of off-centered UME was also
investigated [39].

According to the second Fick’s law [87], diffusion processes are ex-
pressed by the system of partial differential equations (PDE):

∂CO2

∂t
= DO2 ∆CO2 ,

∂CGlc
∂t

= DGlc ∆CGlc,

∂CH2O2

∂t
= DH2O2 ∆CH2O2 ,

∂CGll
∂t

= DGll ∆CGll, for 0 < t ≤ T, 0 < z < d, 0 < r < rglass,

(1.5)
where:

CO2 , CGlc, CH2O2 and CGll are concentrations of diffusing reagents
and expressed as functions of time t and spatial coordinates z and
r. Notation Cdiff = Cdiff (t, z, r) = (CO2 , CGlc, CH2O2 , CGll) was
used when 4 diffusing reagents were considered together.

DO2 , DGlc, DH2O2 and DGll are diffusion coefficients of O2, Glc,
H2O2 and Gll.

d is the distance between the enzyme-modified surface and the
electrode, which is varying from 1 µm to 120 µm as shown in Fig.
1.2.

rglass = 80 µm is the radius of insulated area, rel = 5 µm is the
radius of electrode.

T is the duration of a computational experiment measured in
seconds (the evaluation of this parameter is further explained in
the next section).

The Laplace operator ∆ for concentration function C in cylindrical
coordinates with radial symmetry is

∆C =
1

r

∂

∂r

(
r
∂C

∂r

)
+
∂2C

∂z2
.
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Chemical reactions, which are represented by chemical equations
(1.1)–(1.3), for non-diffusing reagents on the surface z = 0 are expressed
by the system of ordinary differential equations (ODE):

∂CGOxox

∂t
= −k1CGOxoxCGlc + k−1CGOx ·Glc + k4CGOx ·O2−

− k−4CGOxoxCH2O2 ,

∂CGOx ·Glc
∂t

= k1CGOxoxCGlc − (k−1 + k2)CGOx ·Glc,

∂CGOxre

∂t
= k2CGOx ·Glc − k3CGOxredCO2 + k−3CGOx ·O2 ,

∂CGOx ·O2

∂t
= k3CGOxreCO2 − k−3CGOx ·O2 − k4CGOx ·O2+

+ k−4CGOxoxCH2O2 ,

for 0 < t ≤ T, 0 ≤ r ≤ rglass,

(1.6)

where CGOxox , CGOx ·Glc, CGOxre and CGOx ·O2 are concentrations of
surface-immobilized reagents depending on time t and radius r. Nota-
tionCsurf = Csurf (t, r) = (CGOxox , CGOx ·Glc, CGOxre , CGOx ·O2) was used
when all 4 surface reagents were considered.

Rate laws for diffusing substances on the base z = 0 are also de-
duced from chemical equations (1.1)–(1.3) and are used as the boundary
conditions of third type on z = 0:

DO2

∂CO2

∂z
= k3CGOxreCO2 − k−3CGOx ·O2 ,

DGlc
∂CGlc
∂z

= k1CGOxoxCGlc − k−1CGOx ·Glc,

DH2O2

∂CH2O2

∂z
= −k4CGOx ·O2 + k−4CGOxoxCH2O2 ,

DGll
∂CGll
∂z

= k2CGOx ·Glc, for 0 < t ≤ T, z = 0, 0 ≤ r < rglass.

(1.7)

At the start of an enzymatic reaction oxygen concentration in the dif-
fusion layer is 253 µM (M = mol/L is a unit of molar concentration), sur-
face concentration of active glucose oxidase GOx is 2.114× 10−8 mol/m2

and all other reagents are considered absent. Therefore, initial conditions
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for (1.5)–(1.6):

CO2 = 253 µM, CGlc = CH2O2 = CGll = 0,

for t = 0, 0 ≤ z ≤ d, 0 ≤ r ≤ rglass,
CGOxox = 2.114× 10−8 mol/m2,

CGOx ·Glc = CGOxre = CGOx ·O2 = 0, for t = 0, 0 ≤ r ≤ rglass.

(1.8)

Boundary conditions have to be provided for diffusing materials
in the system of equations (1.5). The Boundary condition on z = 0 is
already given by (1.7) and others are formulated as follows. Due to the
symmetry, in the center r = 0 there is no flow:

∂CO2

∂r
=
∂CGlc
∂r

=
∂CH2O2

∂r
=
∂CGll
∂r

= 0,

for 0 < t ≤ T, 0 ≤ z ≤ d, r = 0. (1.9)

On the border r = rglass, i.e. on the edge of the insulating surface,
there is fixed concentration of O2 and Glc

CO2 = 253 µM, CGlc = Glcout,

for 0 < t ≤ T, 0 ≤ z ≤ d, r = rglass. (1.10)

The amount does not change during a single experiment as there is an
unlimited source of O2 and Glc outside of the modelled area in other
parts of a Petri plate or air. However, an exterior glucose concentration
Glcout is varying from 0 mM to 0.6 mM in different experiments, where
the value of 0 means that no glucose is present in the solution and
surface reactions do not start.

All H2O2 and Gll are considered to be diffusing away on the border
r = rglass, hence

CH2O2 = CGll = 0, for 0 < t ≤ T, 0 ≤ z ≤ d, r = rglass. (1.11)

Finally, for the border z = d on the insulator r > rel (rel = 5 µm is the
radius of electrode) there is no flow:
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∂CO2

∂z
=
∂CGlc
∂z

=
∂CH2O2

∂z
=
∂CGll
∂z

= 0,

for 0 < t ≤ T, z = d, rel < r < rglass. (1.12)

On the electrode (r < rel) all O2 is consumed due to the speed of the
chemical reaction (1.4):

CO2 = 0, for 0 < t ≤ T, z = d, 0 ≤ r ≤ rel. (1.13)

The other 3 materials are blocked by electrode, therefore:

∂CGlc
∂z

=
∂CH2O2

∂z
=
∂CGll
∂z

= 0,

for 0 < t ≤ T, z = d, 0 ≤ r ≤ rel. (1.14)

1.4 Numerical solution

1.4.1 Discrete grid and notations

Non-uniform mesh

In order to solve initial-boundary value problem (1.5)–(1.14), first of all,
a rectangular domain ΩT = {(t, z, r) ∈ R3 : 0 < t ≤ T, 0 < z < d, 0 <
r < rglass} had to be discretised.

Non-uniform meshing techniques are commonly employed for a
numerical solution of ODEs and PDE and is motivated by: (i) higher
accuracy [136], (ii) reduction of computation time [22, 76], (iii) dealing
with infinities [52, 62], etc. Non-uniform meshes are used with finite
difference schemes ([2, 53, 56, 78]), but mesh generation techniques
are essential for finite element methods, where a domain is typically
discretised by triangles, tetrahedrons, etc. [8, 30, 60, 63].

Another method is adaptive meshing, which allows dynamical mesh
refinement during calculations according to the behaviour of the solu-
tion, i.e. some a posteriori error estimator like the gradient. This method
has been used in research [25, 76, 140] and detailed in textbooks [10, 113].

The non-uniform mesh was used in SECM modelling for several
reasons:
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1. Area around the UME (ultramicroelectrode) provides essential
information about the system but is also much smaller (by a factor
Rg ' 10) than the rest of the system so naturally more mesh points
have to be assigned there.

2. Special care must be taken around junction point between the UME
and insulator as both the largest flow of oxygen, i.e. ∂CO2/∂z, and
the largest computational errors are registered there.

3. At the start of the process gradients are very sharp and a very
small timestep τ is necessary, but as the solutions come closer to
steady-state, much larger τ is sufficient.

Methods of mesh generation

Figure 1.3: (A) Distance of length L is divided into n non-uniform
intervals of lengths l1, . . . , ln. (B) Distance is divided into n non-uniform
intervals and m uniform intervals of length ln.

Non-uniform mesh is generated by exponential method, which is
defined by the ratio q between lengths of two adjacent intervals

li = qli−1, q < 1−mesh with decreasing lengths,
q > 1− increasing lenghts.

Two methods have been proposed and used for spatial grid generation
as shown in Fig. 1.3.

Method 1. The distance L has to be divided into n decreasing (if
necessary, increasing) intervals, where l1 and q are unknown (Fig. 1.3A).
An additional condition is necessary and ln = lα1 , α > 1 (0 < α < 1)
has been used, which guarantees that for l1 � 1 (which is the case in
SECM model) ln is several orders of magnitude smaller (larger) than l1.
Consequently, the grid is strongly contracted at the end of full interval L,
which is what is required for the grid at r = rel. The rate of contraction
is determined by parameter α.

20



By adding lengths li, the following system is provided for l1 and q:{
l1 + ql1 + q2l1 + . . .+ qn−1l1 = L,

qn−1l = lα1 .
(1.15)

The sum of geometric series is applied to derive nonlinear equation from
(1.15) l1 = 1−q

1−qnL,

q = l
α−1
n−1

1 ,
(1.16)

which has been solved by fixed point iterations, which converge for (1.16)
[113]. Approximately 10− 20 iterations are enough to reach computer
precision.

Method 2. The distance L is divided into 2 types of intervals: n
intervals are of decreasing (increasing) length and m intervals are of the
fixed length according to Fig. 1.3B. This mixed method is employed
then very large (compared to l1) distance L has to be discretised and it
becomes undesirable to have a too narrow (too wide) interval.

In this case, l1 is known i.e. given as a parameter or calculated by
method 1, q is unknown. By using the exponential growth condition
ln = qn−1l1, series have been derived

l1 + ql1 + q2l1 + . . .+ qn−1l1 + mqn−1l1 = L.

As in the case of (1.16), the sum of series is calculated and fixed point
iterations for unknown q are obtained

q = n−1

√
1

m

(
L

l1
− 1− qn

1− q

)
. (1.17)

Iterations (1.17) converge for both q > 1 and q < 1 with all realistic
values of parameters.

Grid construction

The mesh ω (Fig. 1.4) was defined with non-uniform steps:

ωh = {zi : zi = zi−1 + hi, i = 1, . . . , N1, z0 = 0, zN1 = d} ,
ωl =

{
rj : rj = rj−1 + lj , j = 1, . . . , jjunc, . . . , N2,

r0 = 0, rjjunc = rel, rN2 = rglass
}
,

ωτ =
{
tk : tk = tk−1 + τk, k = 1, . . . ,K, t0 = 0, tK = T

}
,

ω = ωτ × ωh × ωl.
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Figure 1.4: Mesh ωh × ωl of size 100× 100. The majority of mesh points
cannot be seen as they are too close to the domains of compression. The
red line shows the junction between the electrode and isolator at 4 µm.
(A) full mesh, (B) Part of mesh zoomed near the electrode.

The junction point between the UME and insulator, i.e. r = rel,
was always at fixed index jjunc = 0.5N2. 50 % of mesh ωl points were
allocated for computations at the electrode, because this part of domain
was used for calculation of SECM response and high accuracy was
necessary.

The spatial grid was constructed in 3 steps:

1. ωh was discretised by method 2 starting from the last interval hN1

and calculating backwards. Parameters were set: n = 0.6N1, m =
0.4N1, hN1 = 10−8/N1, and q > 1 was calculated by (1.17). Method
2 was chosen, because the length hN1 , which is the interval near
the electrode, had to be fixed in order to prevent additional errors
in SECM response curve, then the full distance d was changed.

2. ωl with r ≤ rel, i.e. indexes j ≤ jjunc, was discretised into decreas-
ing intervals using method 1, parameters n = 0.5N2, α = 1.5 and
q < 1 calculated by (1.16).

3. The rest of rglass was divided into increasing intervals by method
2 with parameters n = 0.6N2, m = 0.4N2. The starting length l1
was taken from division of interval rel.

An advantage of non-uniform mesh was demonstrated in Fig. 1.5A,
where electric current i was plotted depending on the mesh size. Even
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Figure 1.5: Advantages of non-uniform vs uniform mesh (A) Size of
spatial mesh was analysed, (B) Size of timestep mesh.

small 50 × 50 non-uniform mesh performed better than the uniform
grid of the same size and was already comparatively close to the result
computed with much more dense mesh (N = 400). A high precision
result can still be reached with uniform mesh as current curves converge,
but the computing power requirement would be very large.

For the purpose of model testing, ωh × ωl mesh size N1 = 100, N2 =
100 was sufficient, but final computations were carried with 400× 400
grid. The size was set after carefully examining the errors between
calculations with chosen mesh and one 2 times larger and evaluating
that the error is not larger than 1.0 %, which was considered sufficient.

For the construction of timestep grid, parameter T had to be de-
termined, where T is the time necessary to reach steady-state. It was
estimated experimentally (see section 1.4.4) that T = ∼6−8 s. Timestep
size τk was set to

τk = 0.0001, for t < 1 s,

τk = 0.001, for 1 s ≤ t < 2 s,

τk = 0.01, for 2 s ≤ t < T

and the derived size of timestep grid ωτ was approximately 12 000
depending on T . At the beginning of process, a very small value of τk
was chosen, because concentrations altered very rapidly. Afterwards,
the process levelled off and τk was gradually decreased.

Computational tests were provided in Fig. 1.5B, which demonstrate,
that current I calculated by 12 000-sized mesh is reasonably close to
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high precision calculations (K ≈ 100 000). Besides, it is evident that the
construction of timestep mesh has less influence on the error compared
to spatial mesh.

Notations for numerical solution

Equations for concentrations Cdiff of diffusing reagents differ by initial-
boundary conditions (1.7)–(1.14) and diffusion coefficient D. In order to
prevent repetition of difference formulas, the notation

Uki,j ≈ Cdiff(t
k, zi, rj)

will be applied to indicate that all four Cdiff are approximated by the
same formula and the appropriate diffusion coefficient D. In case the
concentration of particular reagent is necessary, then notation

U = (UO2 , UGlc, UH2O2 , UGll) ,

UkO2,i,j ≈ CO2(tk, zi, rj), . . .
(1.18)

will be used. The similar notation is used for surface-bound reagents

V k
j ≈ Csurf(t

k, rj),

V = (VGOxox , VGOx ·Glc, VGOxre , VGOx ·O2) ,

V k
GOxox, j ≈ CGOxox(tk, rj), . . .

(1.19)

1.4.2 ADI Finite difference schemes

The system of 8 differential equations (1.5)–(1.6) with initial conditions
(1.8) and boundary conditions (1.7), (1.9)–(1.14) has to be solved. The
alternating-direction implicit finite difference method (ADIFDM) was
used for 4 diffusion equations (1.5).

ADIFDM is a classical method for solving diffusion equations in 2D
space. The effectiveness of this method was shown by various research
groups [19, 94, 116, 120]. There are significant advantages of ADIFDM
over a simpler explicit FDM scheme. First of all, approximation error for
the ADI scheme isO(τ2+h2), where τ = maxk(τk) and h = maxi,j(hi, lj),
i.e. it is second order for all variables with an assumption that sufficient
continuity conditions are satisfied:∣∣∣∣∂3Cdiff

∂t3

∣∣∣∣ < M,

∣∣∣∣∂4Cdiff

∂r4

∣∣∣∣ < M,

∣∣∣∣∂4Cdiff

∂z4

∣∣∣∣ < M,

∣∣∣∣ ∂5Cdiff

∂r2∂z2∂t

∣∣∣∣ < M
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for some constant M . In addition, it is unconditionally stable, which
is an important feature, because hi and lj are very small. Moreover, a
tridiagonal system of linear equations is constructed, which is solved
very efficiently with Thomas algorithm. Additional details and proofs
of these properties are presented in Samarskii [116], Morton et al. [101]
or original paper by Peaceman and Rachford [108].

r-direction finite difference schemes

At each timestep tk and fixed i = 1, . . . , N1 − 1, equations (1.5) were
solved in the direction of r axis using a scheme:

U i,j − Uki,j
0.5τk

=
D

rjlj+0.5

(
rj+0.5

U i,j+1 − U i,j
lj+1

− rj−0.5
U i,j − U i,j−1

lj

)
+

D

hi+0.5

(
Uki+1,j − Uki,j

hi+1
−
Uki,j − Uki−1,j

hi

)
,

j = 1, . . . , N2 − 1, (1.20)

where
rj+0.5 =

rj + rj+1

2
, rj−0.5 =

rj−1 + rj
2

,

hi+0.5 =
hi + hi+1

2
, lj+0.5 =

lj + lj+1

2
,

U i,j ≈ Cdiff(t
k + 0.5τk, zi, rj).

U i,j is an unknown value in the middle of timestep, which has to be
computed while solving in the r-direction.

Boundary value U i,N2 was simply taken from boundary condition
(1.9):

U i,N2 = Cdiff
∣∣
r=rel

, i = 0, . . . , N1. (1.21)

but to keep second order of approximation special care was taken for
axis symmetry r = 0. Equations (1.5), written in their general form
Ct = D

(
Crr + 1

rCr + Czz
)
, were transformed at point r = 0 into

Ct = 2DCrr +DCzz. (1.22)

Here, Taylor series expansionCr = Cr
∣∣
r=0

+rCrr
∣∣
r=0

+O(l2j ) and bound-
ary condition Cr

∣∣
r=0

= 0 (1.9) were used to get rid of division by 0 in
1
r .
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Afterwards, the so-called ghost point U i,−1 was introduced to ap-
proximate derivative (1.9) with the symmetric second order difference
scheme

(
U i,1 − U i,−1

)
/2l1 = 0. Using equation (1.22), approximation at

j = 0 was obtained

U i,0 − Uki,0
0.5τk

= 4D

(
U i,1 − U i,0

l21

)
+

+
D

hi+0.5

(
Uki+1,0 − Uki,0

hi+1
−
Uki,0 − Uki−1,0

hi

)
, i = 1, . . . , N1 − 1. (1.23)

The boundary layer z = h, i.e. the layer at the electrode and fixed
index i = N1, was approximated using differential equations (1.5) and
boundary conditions (1.12)–(1.14). Diffusion of reagents Glc,H2O2,Gll
is not interfered by the electrode so the same scheme could be used for
all j = 1, . . . , N2 − 1. Equations for functions CGlc, CH2O2 and CGll were
approximated with the ghost point UkN1+1,j technique as in (1.23) and
difference equation was calculated for i = N1:

UN1,j − UkN1,j

0.5τk
=

=
D

rjlj+0.5

(
rj+0.5

UN1,j+1 − UN1,j

lj+1
−rj−0.5

UN1,j − UN1,j−1
lj

)
+

+ 2D
UkN1−1,j − U

k
N1,j

h2N1

, j = 1, . . . , N2 − 1. (1.24)

Considering O2, distinct boundary condition (1.13) was provided for
r ≤ rel, i.e. until the junction between the electrode and isolator, so the
boundary value for function CO2 was set to

UN1,j = 0, j = 0, . . . , jjunc, (1.25)

where jjunc is the index at r = rel. For points r > rel, the same difference
equation (1.24) was used with the exception that indexes j = jjunc +
1, . . . , N2 − 1 were provided.

The boundary layer z = 0, i.e. layer at the substrate, fixed index
i = 0, was approximated using differential equations (1.5) and non-
linear boundary conditions (1.7). In order to simplify the approximation
formula, conditions (1.7) were rewritten in general form
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D
∂Cdiff

∂z
= Fboundary(Cdiff, Csurf),

for 0 < t ≤ T, z = 0, 0 < r < rglass, (1.26)

where Fboundary are nonlinear functions from the right-hand side of
boundary condition (1.7). Using notations (1.18) and (1.19), functions
Fboundary were expressed in numerical values:

Fboundary(Cdiff, Csurf) ≈ Fboundary(Uk
0,j , Vk

j ) =

=


k3V

k
GOxre, jU

k
O2, 0, j

− k−3V k
GOx ·O2, j

k1V
k
GOxox, jUGlc, 0, j − k−1V k

GOx ·Glc, j
−k4V k

GOx ·O2, j
+ k−4V

k
GOxox, jU

k
H2O2, 0, j

k2V
k
GOx ·Glc, j

 .

Approximations of boundary conditions (1.26) were calculated using
ghost point for value Uk−1,j technique:

U0,j − Uk0,j
0.5τk

=
D

rjlj+0.5

(
rj+0.5

U0,j+1 − U0,j

lj+1
−rj−0.5

U0,j − U0,j−1
lj

)
+ 2D

Uk1,j − Uk0,j
h21

− 2

h1
Fboundary(Uk

0,j , Vk
j ), j = 1, . . . , N2 − 1. (1.27)

Finally, it must be noted that for corner value U0,0 both methods
(1.23) and (1.27) were applied. Methods (1.23) and (1.24) were used
to approximate UN1,0 for all diffusing materials except O2, because
UO2,N1,0 = 0 according to (1.13).

z-direction finite difference schemes

Approximation formulas in the direction of z-axis were calculated using
the same methods as in (1.20)–(1.27). At each fixed j = 1, . . . , N2 − 1,
equations (1.5) were solved in z-direction:

Uk+1
i,j − U i,j

0.5τk
=

D

rjlj+0.5

(
rj+0.5

U i,j+1 − U i,j
lj+1

− rj−0.5
U i,j − U i,j−1

lj

)
+

D

hi+0.5

(
Uk+1
i+1,j − U

k+1
i,j

hi+1
−
Uk+1
i,j − U

k+1
i−1,j

hi

)
,

i = 1, . . . , N1 − 1, (1.28)
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where Uk+1
i,j is an unknown value for z-direction.

The boundary layer z = h (i.e. i = N1) for fixed index j was approx-
imated by:

Uk+1
N1,j
− UN1,j

0.5τk
=

=
D

rjlj+0.5

(
rj+0.5

UN1,j+1 − UN1,j

lj+1
− rj−0.5

UN1,j − UN1,j−1
lj

)
+

+ 2D
Uk+1
N1−1,j − U

k+1
N1,j

h2N1

, j = 1, . . . , N2 − 1 considering Glc,H2O2,Gll,

j = jjunc + 1, . . . , N2 − 1 considering O2, (1.29)

where jjunc is the index of the junction between the electrode and isolator.
The values of O2 at the UME, i.e. r ≤ rel, were set to

Uk+1
N1,j

= 0, j = 0, . . . , jjunc. (1.30)

The boundary layer z = 0 (i.e. i = 0) for fixed index j = 1, . . . , N2− 1
was approximated by the same method as in (1.26)–(1.27). Values of
Uk

0,j and Vk
j from the previous timestep were taken for the purpose of

linearization:

Uk+1
0,j − U0,j

0.5τk
=

D

rjlj+0.5

(
rj+0.5

U0,j+1 − U0,j

lj+1
−rj−0.5

U0,j − U0,j−1
lj

)
+ 2D

Uk+1
1,j − U

k+1
0,j

h21
− 2

h1
Fboundary(Uk

0,j , Vk
j ). (1.31)

It should be noted, that the expression Fboundary(Uk+1
0,j , Vk+1

j ) had to be
chosen according to the method used. The system of nonlinear algebraic
equations would be formulated, which could be solved by some iterative
method. However, according to a couple of performed testing computer
simulations, the second iteration was already very close to the first one
and running the iteration process was determined unnecessary.

Special approximation of equations (1.5) was used at the boundary
r = 0 as explained in (1.22)–(1.23). For fixed index j = 0

Uk+1
i,0 − U i,0

0.5τk
= 4D

(
U i,1 − U i,0

l21

)
+

+
D

hi+0.5

(
Uk+1
i+1,0 − U

k+1
i,0

hi+1
−
Uk+1
i,0 − U

k+1
i−1,0

hi

)
, i = 1, . . . , N1 − 1.

(1.32)
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Value for j = N2 was taken from boundary condition at r = rel (1.9)

Uk+1
i,N2

= Cdiff
∣∣
r=rel

, i = 0, . . . , N1.

Approximation at corners Uk+1
0,0 and Uk+1

N1,0
were set in the same manner

as with r-direction.

1.4.3 Numerical algorithms

Reduction of schemes to systems of linear equations

In this section, matrices of systems of linear equations are calculated
from finite difference schemes. It is shown that these systems are tridi-
agonal and their right-hand sides are also derived.

First of all, matrices were calculated for each fixed row i = 1, . . . , N1−
1 (i = 0 and i = N1 are separate cases) in order to find unknown middle-
step values U i,j . Schemes (1.20) were converted into N2 − 2 equations
for j = 1, . . . , N2 − 2

ajU i,j−1 + bjU i,j + cjU i,j+1 = Ri,j , (1.33)

where
aj =

D rj−0.5
ljlj−0.5rj

, cj =
D rj+0.5

lj+1lj−0.5rj
,

bj = − 2

τk
− aj − cj , j = 1, . . . , N2 − 2.

The right-hand side Ri,j in (1.33) was calculated by

Ri,j = αiU
k
i−1,j + βiU

k
i,j + γiU

k
i+1,j , j = 1, . . . , N2 − 2, (1.34)

where
αi = − D

hi+0.5hi
, βi = − 2

τk
+

2D

hihi+1
,

γi = − D

hi+0.5hi+1
.

In the case of j = 0, the equation was derived from the scheme (1.23):

b0U i,0 + c0U i,1 = Ri,0, (1.35)
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where
b0 = − 2

τk
− c0, c0 =

4D

l21
,

Ri,0 = αiU
k
i−1,0 + βiU

k
i,0 + γiU

k
i+1,0.

The final equation was obtained from (1.20) and the boundary value
(1.21) for j = N2 − 1:

ajU i,j−1 + bjU i,j = Ri,j ,

Ri,j = −cjCdiff
∣∣
r=rel

+ αiU
k
i−1,j + βiU

k
i,j + γiU

k
i+1,j ,

(1.36)

where aj , bj and other coefficients are the same as in (1.33)–(1.34) with
j = N2 − 1.

Finally, tridiagonal N2-sized matrix was formed from (1.33)–(1.36)
b0 c0 0 . . . 0 0
a1 b1 c1 . . . 0 0
0 a2 b2 . . . 0 0
...
0 0 0 . . . aN2−1 bN2−1


and the right-hand side of the system of linear equations was set to

Ri = (Ri,0, Ri,1, . . . , Ri,N2−1) .

Two more systems were derived for special cases of boundary rows.
For the case of i = N1, i.e. for values at the UME, schemes (1.24) were
used for CGlc, CH2O2 and CGll to form N2-sized matrix and (1.24)–(1.25)
were reduced to smaller (N2 − jjunc)-sized system for CO2 which was
due to its special boundary condition.

For the solution in z-direction, i.e. the calculation of Uk+1
0,j , schemes

(1.28)–(1.32) were reduced into linear systems in the same manner as
previously explained. It is easy to observe that these systems have
tridiagonal matrices of size N1 + 1 or N1 in the case of CO2 at j ≤ jjunc.

Solution of a linear system

N2 − 1 tridiagonal systems of linear equations were obtained for each
4 diffusing reagents, i.e. 4N2 + 4 systems in total, while solving in
the direction of r axis. Additionally, 4N1 tridiagonal systems were
constructed for z-direction. All these tridiagonal systems were solved
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using the Thomas algorithm (Tridiagonal matrix algorithm, TDMA)
[113] which is known to be highly efficient for this type of systems as it
requires only O(N) operations.

The stability of TDMA is not always guaranteed as it may become
unstable in case, for example, of singular matrix. Several conditions of
the stability exist and can be refered to numerical methods textbooks
such as Quarteroni et al. [113] and Higham [71]. In the case of matrices
presented in the Thesis, diagonal dominance is sufficient criteria:

|bj | > |aj |+ |cj | j = 1, . . . , N,

where bj is the element in j-th row of the main diagonal, aj and cj – in
the other diagonals.

It is evident that the matrix formed from (1.33), (1.35) and (1.36) is
diagonally dominant and straightforward to prove that all other matrices
are as well.

Algorithm for the system of ordinary differential equations

The system of ODEs (1.6) for non-diffusing reagents was solved by
the trapezoidal (also known as symmetrical Euler or Crank-Nicolson)
method, which has O(τ2) truncation error with the assumption that
Csurf ∈ C3(0, T ) [113]. Inserting already calculated Uk+1

0,j , the formula
was derived:

V k+1
GOxox, j − V k

GOxox, j

τ
= −k1V̂GOxox, jÛGlc, 0, j + k−1V̂GOx ·Glc, j+

+ k4V̂GOx ·O2 − k−4V̂GOxox, jÛH2O2, 0, j ,

V k+1
GOx ·Glc, j − V

k
GOx ·Glc, j

τ
= k1V̂GOxox, jÛGlc, 0, j−(k−1+k2)V̂GOx ·Glc, j ,

V k+1
GOxre, j − V k

GOxre, j

τ
= k2V̂GOx ·Glc, j − k3V̂GOxre, jÛO2, 0, j+

+ k−3V̂GOx ·O2, j ,

V k+1
GOx ·O2, j

− V k
GOx ·O2, j

τ
= k3V̂GOxre, jÛO2, 0, j − k−3V̂GOx ·O2, j−

− k4V̂GOx ·O2, j + k−4V̂GOxox, jÛH2O2, 0, j ,

j = 0, . . . , N2 − 1,
(1.37)
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where

Û0,j =
Uk0,j + Uk+1

0,j

2
and V̂j =

V k
j + V k+1

j

2
.

(1.37) was then rewritten in an easily solvable system of 4 linear equa-
tions

AVk+1
j = B,

as A and B depends only on V k
j , Û0,j and coefficients.

The trapezoid method can become unstable if the derivatives of right-
hand side functions are too large, which is caused by too large reactions
rate constants compared to timestep τ . It was necessary to have varying
reactions coefficients to able to model their influence on SECM response
(electric current) and for fine-tuning them (see subsection 1.2).

In order to solve this problem, the algorithm was adjusted by dividing
current time interval (tk, tk+1) into n parts so timestep in (1.37) was
reduced to τn = τ/n. Û0,j was changed into Û (p)

0,j , p = 1, . . . n by linear
interpolation at timestep k + pτn between Uk0,j and Uk+1

0,j , and V k
j was

changed

V
k,(1)
j = V k

j ,

V
k,(p)
j = V

k+1,(p−1)
j , p = 2, . . . n.

1.4.4 Computation of SECM response

The model allows to calculate the concentration of diffusing materials
O2, Glc, H2O2, Gll and non-diffusing reagents GOxox, GOx·Gll, GOxred,
GOx ·O2 at any time t and position z and r. The main parameter, known
as the response of ultramicroelectrode (SECM response), is an electric
current, which is measured by an electrode at position z = 0, 0 < r < rel
and formed by the flux of O2. The graph of SECM response (electric
current, measured by SECM) is also called the approach curve, because
physical experiments are conducted by moving the UME closer to the
enzyme-modified surface, i.e. approaching the surface, and registering
electric signal at each stop.

The current through the electrode is calculated as a function of time
[11, 13, 138]:

i(t) = 2πnFDO2

rel∫
0

∂CO2

∂z

∣∣∣
z=d

r dr, (1.38)
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where n = 4 is number of electrons exchanged and the Faraday constant
F = 9.6485× 104 A s mol−1.

In order to calculate derivative ∂CO2
∂z

∣∣∣
z=d

in (1.38), CO2 was approx-
imated by fourth order Newton interpolating polynomial [113] at each
node tk, i = N1, j = 0, . . . , jjunc

P (tk, z, rj) = Uk+1
N1,j

+ f [zN1 , zN1−1](z − zN1) + . . .+

+f [zN1 , zN1−1, . . . , zN1−4](z−zN1) · . . . · (z−zN1−4), j = 1, . . . , jjunc.
(1.39)

Divided differences f [zN1 , . . .] were calculated by iterative formulas

f [zN1 , zN1−1] =
Uk+1
N1,j
− Uk+1

N1−1,j
zN1 − zN1−1

,

. . .

f [zN1 , zN1−1, . . . , zN1−4] =
f [zN1−1 . . . , zN1−4]− f [zN1 . . . , zN1−3]

zN1 − zN1−4
.

(1.40)
Using (1.39), derivative was approximated ∂CO2

∂z

∣∣∣
z=d
≈ ∂P (tk,z,rj)

∂z

∣∣∣
z=d

with error O(h4). Such high accuracy was necessary, because the gradi-
ent of CO2 at the UME is large and it guaranteed that error was minim-
ized even for small N1.

The integral (1.38) was approximated by second order Newton-Cotes
quadrature formulae (trapezoid rule, [113]):

i(t)
∣∣∣
t=tk
≈ 2πnFDO2

( jjunc−1∑
j=1

lj+0.5rj
∂P (tk, z, rj)

∂z

∣∣∣
z=d

+

+ 0.5ljuncrjunc
∂P (tk, z, rjunc)

∂z

∣∣∣
z=d

)
. (1.41)

For comparison with experimental data, steady-state current

i = lim
t→∞

i(t)

was calculated. Because of computational reasons, it was enough to
take modelling parameter T large enough to ensure that relative error
for current i is smaller than 0.001 % between two following timesteps.
Modelling results show that depending on the model parameters (dis-
tance d and Glc concentration) it takes T = ∼6−8 s to achieve necessary
accuracy.
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1.4.5 Implementation details and algorithm analysis

The program code including mesh generation, finite difference schemes,
linear solver and other numerical methods was implemented by the
author using Python (Anaconda distribution). Additional libraries were
employed:

• NumPy – efficient calculations of operations with vectors and
matrices. Inner loops were vectorised according to NumPy stand-
ard.

• Numba – @jit decorator for optimized compiler, which greatly
increases execution time.

MATLAB was also used for:

• The prototype of the program,

• Data analysis and plotting.

A single iteration of the ADI algorithm takes O(N1N2) operations
or simple O(N2) by taking N = N1 = N2. A single iteration of the
algorithm for the system of ODE takes O(N2) operations as the number
of calculations at each j = 0, . . . , N2−1 is independent on N. Therefore,
the complexity of the full algorithm is O(KN2).

Table 1.3: Execution time of the full algorithm depending on the size of
spatial mesh N = N1 = N2 and timestep mesh K. θ is the ratio between
time of different grids. Tests were run on Intel Core i5-5200U CPU @
2.20 GHz (2 cores), 8 GB RAM, 64-bit Windows OS machine.

Spatial mesh test Timestep mesh test

N CPU time, min θN K CPU time, min θK

50 3.67 3500 3.85

100 7.20 1.96 7000 7.44 1.93

200 14.93 2.07 14 000 15.16 2.04

400 33.64 2.25 28 000 29.75 1.96

800 78.49 2.33 56 000 59.96 2.02
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However, computer simulations had shown, that actual computation
time was almost linear according toN . According to Table 1.3, execution
time increased only about 2 times (θN ≈ 2) while doubling the size of
spatial grid in each simulation. It can be explained by efficient vector
operations in NumPy, which may no longer work for some unrealistic-
ally large N . As expected, calculation time was linear according to K as
θK ≈ 2.

1.5 Modelling and experimental results

1.5.1 Comparison of computer simulations and experimental
results

Figure 1.6: Current vs. distance dependencies, when different concen-
trations of glucose were added to the buffer solution.

The results of computer simulations were compared with real RC-
SECM experiments (Fig. 1.6), which were conducted with 6 fixed val-
ues of glucose concentration: 0 mM (no enzymatic reaction), 0.05 mM,
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0.1 mM, 0.2 mM, 0.4 mM and 0.6 mM. As expected, approach curves for
higher concentrations of Glc were below curves of lower concentrations.
This feature is the essence of the RC-SECM mode as O2 consumption
at the UME is slowed due to competition with O2 consumption during
the enzymatic reaction, which is faster for higher concentrations of Glc.
Moreover, the adjustment of O2 diffusion coefficientDO2 also influenced
the positions of approach curves and, in particular, the positioning of
steady-state currents, i.e. the current, which is registered at the greatest
distances from an active surface (d & 80 µm). Because DO2 decreased
in the presence of a higher amount of Glc, the steady-state current,
computed both by simulations and the experiment, was also lower.

As presented in Fig. 1.6, the modelling data coincided very well with
the real physical experiment at steady-state distances, which was due to
the calibration of experimental curves using the diffusion coefficient, ad-
justed to Glc concentration. It should be mentioned, that the calibration
of experimental results is the typical procedure in post-experimental
calculations because of high measurement errors and overall volatility
of SECM experiments. However, the distance, at which steady-state
current was reached in the model, was consistent with experimental
data, which is attributed solely to good correspondence between the
model and experiment.

At smaller distances d, where a sharp upturn of the electric signal
is observed, the correspondence between the model and experimental
data was slightly lower. It can be explained by measurement errors, the
dependence on successful calibration for experimental results and the
deviation of model assumptions at smallest distances (d . 1 µm) as new
physical factors had to be contributed. In fact, the perfect electrode is
represented by the mathematical model and the current would reach
0 at d = 0 (the UME touching the enzyme-modified surface), but that
would not be the case with the imperfect real UME.

Overall, the results of computer and chemical experiments were
considered coinciding very well.

1.5.2 Calculation of oxygen diffusion coefficient

According to the experimental data, displayed in Fig. 1.6, the diffusion-
limiting current changed together with varying glucose concentrations.
The concentration of oxygen (and UME current) in a zone, which was
not affected by diffusion, was considered to be the same at all evaluated
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glucose concentrations. However, the current is proportional not only
to oxygen concentration but also significantly depends on the diffusion
rate of oxygen through the solution. The oxygen diffusion coefficient
depends on the presence and concentration of compounds, which are
present in a buffer solution: salts (e.g. NaCl, KH2PO4, K2HPO4), gluc-
ose, etc. as demonstrated by Hébrard et al. [75]. Additionally, the same
research has shown that the diffusion coefficient significantly depends
on the glucose concentration in the solution, and it decreases at lower
glucose concentration. Therefore, during the comparison of real ex-
perimental data with that generated using the proposed mathematical
model, the diffusion coefficient was adapted for each evaluated glucose
concentration.

We have tested the influence of diffusion on the current of the UME by
the SECM experiment, which was performed on a bare surface without
any immobilized enzyme at different glucose concentrations in the buf-
fer solutions. The steady-state diffusion-controlled current is related
to oxygen concentration when the UME-based probe is far from the
surface [11], therefore the diffusion coefficient was calculated using the
following formula:

D =
iexp

4nFO2, outrel
,

where iexp is an experimentally measured steady-state current, O2, out =
253 µM – O2 concentration in an exterior solution.

This experiment showed a noticeable decrease in observed diffu-
sion coefficients compared to that observed in a buffer solution (Fig.
1.7A). The diffusion coefficient is one of the most significant paramet-
ers which is affecting UME current and the effect has to be taken into
account in order to appropriately fit absolute current values, which
were registered during the experiment. In the experiments, the buffer
solution with 0.1 M of KCl with a particular concentration of glucose
was used. DO2 = 2.29× 10−9 m2 s−1 is the oxygen diffusion coefficient
[126]. Other researchers found that the diffusion coefficient of oxygen
separately depends on the concentration of glucose and NaCl in water
[75]. Therefore, in this case, when glucose was added to a buffer solution
containing several salts, it is obvious, that in this solution the diffusion
coefficient of oxygen is more significantly affected by the composition
of the solution. To determine the influence of glucose concentration
on the diffusion coefficient in a buffer solution, the experiment was
performed under the same conditions, but on the surface where the GOx
was inactivated and oxygen was not consumed (Fig. 1.7A).
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Figure 1.7: (A) Diffusion rate dependence on the concentration of gluc-
ose, which was added to the buffer solution. Measurements were per-
formed at 0.5 cm distance from non-modified surface, i.e. without en-
zymatic reaction. (B) Diffusion rate dependence on the concentration of
glucose, when chemical reactions on enzyme-modified surface happen.
The oxygen diffusion coefficientDO2 was calculated by fitting modelling
results to the experiment.

The SECM-based evaluation of O2 diffusion coefficient was per-
formed on an enzyme-modified surface when enzymatic reaction was
taking place. This experiment demonstrated that the diffusion coeffi-
cient of oxygen is almost the same in glucose concentration range of 0.4
– 0.6 mM (Fig. 1.7B), while measurements without enzymatic reaction
show linear dependence of diffusion coefficient on glucose concentra-
tion in the range of 0.4 – 1.8 mM in Fig. 1.7A. According to the data,
provided in Fig. 1.7B, it was determined that the O2 diffusion coefficient
is inversely proportional to the glucose concentration in the exterior
solution, denoted Glcout. The following formula was derived by fit-
ting simulations data to the physical experiment and then by using the
least-squares method to calculate coefficients:

DO2 = 4.7× 10−10 +
2.7× 10−10

Glcout + 0.4
, (1.42)

when the glucose concentration is measured in mM. Formula (1.42) was
used in computer simulations of SECM, which were given in Fig. 1.6.

Mathematical models usually are fitted to experimental curves, which
are representing normalized current vs. normalized distance. How-
ever, the diffusion of measured materials is not evaluated in such a
case. The diffusion coefficients could be measured using the SECM
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technique, therefore, in the mathematical model, different diffusion
coefficients could be applied for different glucose concentrations using
(1.42). Additionally, the research of different redox couples, such as
oxidized/reduced ferrocene (Fc+/Fc) or benzoquinone (BQ/BQ−•), and
ferrocyanide/ferricyanide, showed that the UME current response in
the SECM generation-collection mode is particularly sensitive to subtle
differences in the diffusion coefficients of a redox couple [94]. In partic-
ular, the diffusion coefficient ratio of the oxidized and reduced forms
of a couple can readily be determined by three methods: (i) by fitting
the chronoamperometric UME current at a known distance between the
UME and substrate; (ii) by combining measurements of the steady-state
UME amperometric response at a known distance between the UME
and substrate with that registered when the UME is positioned far from
the substrate; (iii) by measuring the ratio of the steady-state feedback
and UME current response at the generation-collection mode registered
at the same distance between the UME and substrate [94]. Therefore,
fitting unnormalized data to the model using different oxygen diffusion
coefficient are also meaningful, because they demonstrated real UME
currents.

1.6 Summary and conclusions

The mathematical model of SECM acting in the reduction-oxidation
competition mode was presented for the first time in the literature.
Using this model, it is possible to calculate oxygen consumption rate,
evaluate enzymatic reaction kinetics, and determine oxygen diffusion
coefficients in the medium of varying composition. It was shown that
the data of computer simulations and real physical experiment agreed
well after adjusting these parameters according to the model.

The modelling of the RC-SECM mode by taking into account diffusion-
reaction kinetics showed that the main parameter influencing a steady-
state diffusion-limited current signal is the diffusion coefficient. The
diffusion coefficient is known to be different in solutions of different
composition. Therefore, in biological systems varying salt and gluc-
ose concentrations are significantly affecting the diffusion coefficient
of oxygen and other materials. For this reason, the UME signal can
be significantly decreased due to this effect. The influence of varying
diffusion coefficient could be evaluated by the proposed mathematical
model.
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SECM-based evaluations of enzyme-modified surfaces are very valu-
able for the development of enzymatic biosensors and biofuel cells. For
example, the developed mathematical model can be further applied for
the evaluation of the Michaelis constant calculated when the UME is loc-
ated at different distances from the surface modified by an immobilised
enzyme.

40



Chapter 2

Mathematical Modelling of
the Influence of
Ultramicroelectrode
Geometry on Approach
Curves Registered by
Scanning Electrochemical
Microscopy

2.1 Introduction

The goal of this research is to develop computational models to study the
precision of SECM measurements with three different and most frequent
types of defected UMEs: (i) recessed-UME, (ii) outwarded-UME, (iii)
cone-UME. These electrodes are mathematically modelled by diffusion
equation in various non-standard (non-rectangular) domains. Computer
simulations of defected UMEs are compared with data obtained with
not defected standard-UME to calculate measurement errors of SECM
experiments performed with non-standard UMEs.
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Measurement errors in SECM-based experiments

Scanning electrochemical microscopy (SECM) is a powerful tool for loc-
alized investigations and mapping of electrochemically active surfaces
by scanning them with the ultramicroelectrode (UME) [74]. Electric
signal (current), measured by SECM, is registered by an approach curve,
which is obtained by the downward placement of the UME towards a
substrate, i.e. by approaching a substrate.

However, SECM-based experiments are prone to high measurement
errors. Approach curves should be adjusted because of the background
current [44, 47, 54], electrode positioning challenges [96], variations
in electrode geometry [3, 39], etc. UME should be carefully prepared
and the geometry of the electrode should be determined before the
measurement.

Variations in UME geometry, which is the main focus of the chapter,
are caused by 2 major factors. Firstly, the fabrication of UMEs is still
a very sophisticated and hand-crafted procedure, therefore, it is very
hard to avoid significant deviation from an ideal shape of the UME.
Secondly, the geometry of the UME changes every time, when the UME
is polished or accidentally damaged by touching the surface of interest.
These changes in UME geometry induce significant variations in electric
current, measured by the UME. The simple and time-saving procedure to
determine UME geometry and its deviation from the standard would be
the comparison of experimental data with curves of a current, generated
using a particular mathematical model.

Modelling the influence of UME geometry

Digital simulations were performed [3, 13, 86, 90, 98, 105, 120, 123, 138]
to evaluate the influence of UME geometry on experimental results.
Such simulations can solve some SECM measurement-related problems
such as poor spatial resolution, the uncontrolled distance between the
UME and surface of interest during SECM investigations and the ef-
fects of deviations from mathematically idealized SECM geometries on
experimental data [123, 125].

The influence of UME geometry was theoretically investigated as-
suming that approach curves are registered in electrolyte with redox-
mediators [3, 20, 39, 123, 124]. Simulations were performed for recessed-
UME, which showed that the deviation of the amperometric response
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can be significant depending on the recess depth [20]. Responses of
both recessed and protruding (outwarded) electrodes were evaluated
demonstrating especially for outwarded-UME that even small protru-
sion height can lead to a substantial deviation from a standard inlaid
electrode [55]. The influence of tip geometry defects for steady-state
currents at conical nanoelectrodes was investigated [88]. Approach
curves were analysed over both electrically conducting and insulating
substrates for conical electrodes [150, 151].

Some less frequent types of UME geometries were analyzed. Sphere-
capped SECM tip formed by electrodepositing mercury drop onto UMEs
were modelled and compared with experimental data [91]. It was de-
termined that the diffusion around the edge of the insulating layer has a
pronounced effect on the approach curves if SECM is acting in hindered
diffusion or the positive feedback mode [3]. The positive feedback mode
is mostly used for the calculation of kinetics by fitting mathematical
models to experimentally obtained approach curves. The experiments
have to be performed with electrodes with ideal geometry, otherwise,
the fitting parameters, such as reaction rate constant, is not accurate.

Nonsymmetrical UMEs were simulated using the finite boundary
method and the effects on approach curves in negative and positive
feedback SECM were investigated [123]. The same authors investigated
the multi-electrode based UME and simulations were performed in
various generation-collection modes of SECM [124]. Several types of
UME geometries, such as tilting, recessed-UME, off-centered UME and
the UME with an elliptical conducting part were investigated [39]. In the
same research, the influence of some UME parameters such as the radius
of the conducting part of the probe and the relative size of the insulator
surrounding the conducting part have been evaluated. During the
monitoring of electrochemical activity of surfaces modified by biological
materials the determination of consumed oxygen is often applied[47].
Therefore, for the investigation of biological materials, a general model
that will improve the determination of UME geometry is required. This
model should account for various unevenness of the conducting part
of the UME and calculate the difference in measured approach curves
from the ideal electrode.

Outline of the chapter

In this chapter, a mathematical model is developed to investigate several
UME geometries: standard-UME, recessed-UME with a conducting part
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recessed into the isolator, outwarded-UME with a sticking out conduct-
ing part and cone-UME with an outwarded cone-shaped conducting
part. This research is targeted towards the study of biological systems
without redox mediators and the advantage of the method is that it
allows the simple detection of the geometry of the UME by registering
oxygen in buffer solution by the negative feedback mode SECM.

In section 2.2, a short summary of an electrochemical experiment,
which is used for validation of numerical experiments in section 2.5,
is provided. Details of mathematical models are given in section 2.3
and their numerical solutions are explained in section 2.4. In section
2.5, results of numerical experiments are discussed. Conclusions of the
chapter are made in section 2.6.

2.2 Experimental details

SECM and the disk-shaped Pt UME-based probe with radius rel =
114 µm from Sensolytics Ltd (Bochum, Germany) were used for experi-
ments. The RG factor, which represents the ratio of the insulating part
radius with the conducting part radius, i.e. RG = rglass/rel, was meas-
ured by an optical microscope and it was determined as 5.35 indicating
that the radius of an insulator is rglass = 610 µm. The active part of the
UME is drawn inside by depth Hin = 165 µm and this probe will be
referred to as real recessed-UME used for SECM experiments in future
references.

Before all measurements, the real recessed-UME was washed with
95 % ethanol solution and it was polished with polishing paper with a
grain size of 0.3 µm and then the real recessed-UME was washed with
buffer. The real recessed-UME quality was checked by cyclic voltam-
mograms. A three electrode electrochemical setup was applied and,
in this setup, the UME-based scanning probe was switched as a work-
ing electrode, Pt wire as a counter electrode and Ag/AgCl in 3M KCl
(Ag/AgCl(3M KCl)) – as a reference electrode. Approach curves (Cur-
rent vs distance dependencies) were registered at potential of −500 mV
vs Ag/AgCl(3M KCl). The registration of approach curves was per-
formed by moving the UME at 1 µm/s speed in a vertical direction.
Then the UME-based probe was retracted to the distance, where the
steady-state current is achieved. Approach curves were registered from
that point while approaching the insulating surface in the negative feed-
back mode. Measurements were performed in phosphate-acetate buffer
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with pH 6.6 and repeated three times. The mean value was used for
further calculations.

2.3 Description of UME geometries and mathema-
tical models

In subsequent sections, four different UME geometries are analysed:
ideal standard plane UME which will be referred to as standard-UME;
UME with a recessed conducting part (ref. as recessed-UME); UME
with an outwarded conducting part (ref. as outwarded-UME); and UME
with an outwarded cone-shaped conducting part (ref. as cone-UME).
Mathematical models are provided for each type of the UME in separate
sections alongside necessary formulas for the current computation.

2.3.1 Mathematical model for standard-UME

Figure 2.1: Schematic representations of simulation domains considered
with boundary conditions, important parameters of UME geometry, etc.
are given. (A) standard-UME, (B) recessed-UME with insertion depth
Hin, (C) outwarded-UME with protrusion height Hout, (D) cone-UME
with side angle α and normal direction derivative ~n.
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A simple rectangular domain in Fig. 2.1A is used to represent the
geometry of standard-UME. Diffusion of oxygen is expressed by the
second Fick’s law in cylindrical coordinates system:

∂C

∂t
= DO2

(
∂2C

∂r2
+

1

r

∂C

∂r
+
∂2C

∂z2

)
,

for 0 < t ≤ T, 0 < z < d, 0 < r < rglass, (2.1)

where C is the O2 concentration expressed as a function of time t and
2 spatial coordinates r and z. T is the duration of a computational
experiment, d – distance from the surface to the tip, rel = 5 µm is the
radius of the conducting part and rglass = 80 µm is the radius of the
insulated part of the UME. The diffusion coefficient of oxygen in water
DO2 is 1.105× 10−9 m2/s [74].

At the beginning of the process the diffusion layer is fully saturated
with oxygen and initial condition is

C = C0 = 253 µM for t = 0, 0 ≤ z ≤ d, 0 ≤ r ≤ rglass. (2.2)

All necessary boundary conditions are shown in Fig. 2.1A and are
explained below. We consider the case without substrate hence there is
no flow of oxygen on the surface z = 0:

∂C

∂z
= 0, for t > 0, z = 0, 0 ≤ r < rglass. (2.3)

(2.4) is due to the assumption of radial symmetry to the central axis.

∂C

∂r
= 0, for t > 0, 0 ≤ z ≤ d, r = 0. (2.4)

Constant intake of oxygen is assumed at the outer side of domain:

C = 253 µM, for t > 0, 0 ≤ z ≤ d, r = rglass. (2.5)

There is no current flow on the insulator:
∂C

∂z
= 0, for t > 0, z = d, rel < r < rglass. (2.6)

According to the applied model, all oxygen, which is reaches the in-
terphase between the solution and conducting part is reduced:

C = 0, for t > 0, z = d, 0 ≤ r ≤ rel. (2.7)

Finally, the current through the standard-UME is calculated using the
formula

i(t) = 2πnFDO2

∫ rel

0

∂C

∂z

∣∣∣
z=d

rdr, (2.8)

where n = 4 is the number of electrons exchanged and the Faraday
constant F = 9.648× 104 A s mol−1.
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2.3.2 Mathematical model for the UME with a recessed con-
ducting part

We have analysed the situation when the active (conducting) part is
recessed by depth Hin into the insulating part of the electrode. The
distance from the surface to the insulating part of recessed-UME is still
d, but the distance between the surface of interest and the conducting
part is din = d+Hin. This distance is always larger than d and thus in
this situation the conducting part of recessed-UME is further away from
the surface comparing to that when the conducting part and insulating
part form an ideally shaped plane. The simulation domain in Fig. 2.1B
consists of 2 connected rectangles: a larger one of height d is the same
as for standard-UME in Fig. 2.1A and a smaller one of height Hin

corresponds to the recessed part.

The diffusion equation (2.1), initial condition and boundary condi-
tions (2.2)–(2.6) remain the same, but they are presented in the new
domain as shown in Fig. 2.1B. The boundary condition for recessed-
UME is

C = 0, for t > 0, z = din, 0 ≤ r ≤ rel. (2.9)

On the recessed part at the insulator there is new no-flow condition:

∂C

∂r
= 0, for t > 0, d ≤ z ≤ din, r = rel. (2.10)

In order to compute the current, the equation similar to (2.8) is used

i(t) = 2πnFDO2

∫ rel

0

∂C

∂z

∣∣∣
z=din

rdr. (2.11)

2.3.3 Mathematical model for the UME with an outwarded
conducting part

Outwarded-UME is modelled as conducting cylinder bulging out of the
insulating part of the UME into the diffusion layer. There are 2 active
parts of the conducting cylinder of outwarded-UME: the disc at the UME
tip and the side of the cylinder, which is also in contact with the diffusion
layer. It means that the active part of outwarded-UME has a larger
surface area in comparison to the standard-UME, and this area depends
on protrusion height Hout. In this situation, the distance between the
surface of interest and outwarded-UME active surface remains d as for
the standard-UME, but the distance from the surface to the insulating
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part of outwarded-UME is increased to dout = d + Hout. Again, it is
always larger than d and even when d approaches 0 the diffusion to
the outwarded-UME is not blocked because there is a flow of oxygen
through the sides of outwarded-UME cylinder. The simulation domain
is represented in Fig. 2.1C and consists of 2 connected rectangles.

Diffusion equation (2.1) and initial-boundary conditions (2.2)–(2.4),
(2.6) remain the same as in the standard-UME with exceptions of new
boundary condition for the side of the conducting part of outwarded-
UME cylinder:

C = 0, for t > 0, d ≤ z ≤ dout, r = rel (2.12)

and for the insulator and outer side of domain which are by distance
dout from the surface

∂C

∂z
= 0, for t > 0, z = dout, rel < r < rglass,

C = C0 = 253 µM, for t > 0, 0 ≤ z ≤ dout, r = rglass.
(2.13)

The sum of two integrals is used for calculation of the tip current

i(t) = 2πnFDO2

∫ rel

0

∂C

∂z

∣∣∣
z=d

rdr + 2πnFDO2rel

∫ dout

d

∂C

∂r

∣∣∣
r=rel

dz.

(2.14)
The first integral represents the current flowing through the disc of the
outwarded-UME tip, the same as in (2.8), while the second part is the
current flowing through the side of the conducting cylinder and thus
the integral is calculated as the current flow through the side area. It
should be noted that even if the distance d approaches 0, the diffusion
is still not blocked, and the current has a non-zero value close to the
surface because the side of the conducting part is still contacting with
the diffusion layer.

2.3.4 Mathematical model for the UME with an outwarded co-
ne-shaped conducting part

The cone shape represents the situation when the UME is damaged
and the conducting part of the electrode is brushing out. The UME
containing sharp sticking parts is modelled by a single outwarded cone
with one sharp tip, i.e. the apex of the cone. This single sticking part
gives an idea about the properties of UMEs with a rough conducting
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surface. This model is more complicated than the outwarded-UME
model because an outwarded part is no longer rectangular.

The simulation domain in Fig. 2.1D is a rectangle with one cut-out
corner representing the conducting part of the cone-UME. The side of
the cone-UME makes angle α with its base. The distance between the
surface and the apex of the cone is d and the distance from the surface
to the insulator is dcone = d + Hcone, where the height of the cone is
Hcone = rel/tan(α). Clearly, an area of the conducting part is larger
than for standard-UME and the surface does not reach the isolator even
for d = 0, thus the cone-UME is expected to behave similarly to the
outwarded-UME.

The same diffusion equation (2.1) and similar initial-boundary condi-
tions (2.2)–(2.6) have been used as for the standard-UME. The boundary
condition on the side of the conducting cone is

C = 0, for t > 0, 0 ≤ r ≤ rel, z = r tanα+ d. (2.15)

The direction of the current through the cone-UME is perpendicular
to the side of the cone and thus normal direction derivative ~n making
angle α with r axis is used to compute direction of the current flow as
shown in Fig. 2.1D. In this case, the current of cone-UME response is
calculated by

i(t) =
2πnFDO2

cosα

∫ rel

0

∂C

∂~n
rdr, (2.16)

where division by cosα is necessary, because πr2el
cosα is the lateral area (i.e.

side area) of the UME cone.

2.4 Numerical solution

2.4.1 Discrete grid

The boundary value problem, which describes the standard-UME model,
had to be solved in a rectangular domain (Fig. 2.1A)

Ωstd = {(z, r) ∈ R2 : 0 < r < rglass, 0 < z < d}.

The differential equation, governing cone-UME, had to be solved in a
trapezoid-shaped domain (Fig. 2.1D)

Ωcone = {(z, r) : 0 < r ≤ rel, 0 < z < r tanα+ d} ∪
∪ {(z, r) : rel ≤ r < rglass, 0 < z < dcone}.
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Figure 2.2: Mesh ωh × ωl of size 100× 100. The majority of mesh points
cannot be seen as they are too close to the domains of compression. The
red lines shows the electrode. (A) recessed-UME, (B) outwarded-UME,
(C) cone-UME, (D) zoomed in part of cone-UME mesh. Inner points of
the mesh are marked by blue circles, boundary points by blue crosses.

Both domains Ωstd and Ωcone were discretised using non-uniform
spatial mesh (Fig. 1.4 for standard-UME mesh, Fig. 2.2C for cone-UME)
of size N1 ×N2:

ωh =
{
zi : zi = zi−1 + hi, i = 1, . . . , N1, z0 = 0, zN1 = d

}
,

ωl =
{
rj : rj = rj−1 + lj , j = 1, . . . , jjunc, . . . , N2,

r0 = 0, rjjunc = rel, rN2 = rglass
}
,

ω = ωh × ωl,

where hi is a step size in z-direction, lj – in r-direction, hi and rj – spatial
coordinates at indexes i and j. In order to achieve higher accuracy at
the UME, 50 % of mesh points were allocated at the area below the
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electrode, i.e. r < rel, and, thus, junction point between the UME and
insulator was always at fixed index jjunc = 0.5N2. As shown in Fig. 2.2C,
the mesh was exponentially compressed around the point z = dcone
(z = d for standard-UME) in z-direction and around the point r = rel in
r-direction. Parameters of mesh growth/contraction were calculated by
(1.16) and (1.17).

It should be noted that the precise location of boundary points of
cone-UME mesh depends on UME geometry and mesh parameters (Fig.
2.2D) and had to be determined for each separate case.

In the case of recessed-UME, the boundary value problem had to be
solved in cutout rectangular domain (Fig. 2.1B)

Ωrec = {(z, r) : 0 < r ≤ rel, 0 < z < din}∪
∪ {(z, r) : rel ≤ r < rglass, 0 < z < d}.

The mesh of domain Ωrec was constructed using a similar method as
in the previous case. It was assured that mesh point was placed at the
height z = d and index i = iin with the same goal as it was done at
radius r = rel and index jjunc. The main difference from standard-UME
was that the mesh ωh was exponentially compressed around 2 points
(Fig. 2.2A): z = din for greater accuracy at the UME and z = d for
greater accuracy at the bending point of domain Ωrec, where larger flux
(i.e. gradient) of oxygen was administered by SECM. Thirty percent of
mesh points were allocated between d and din for robust calculations at
the UME. ωh mesh was generated using method 2 (1.16) three times: (i)
by growing mesh from din with parameters n = 0.15N1, m = 0; (ii) then
by contracting from the middle line between din and d and (iii) growing
again from d downto 0 with parameters n = 0.35N1, m = 0.35N1.

In the case of outwarded-UME, the differential equation has to be
solved in different cutout domain (Fig. 2.1C)

Ωout = {(z, r) : 0 < r ≤ rel, 0 < z < d}∪
∪ {(z, r) : rel ≤ r < rglass, 0 < z < dout}.

The mesh of domain Ωout (Fig. 2.2B) was chosen like in the case of
recessed-UME by compressing the mesh around 2 points in z-direction.
The mesh point was always assigned at the height z = d with index
i = iout and 50 % of mesh points were allocated between d and dout so
that always iout = 0.5N1. Such a large number of points was necessary
because in this case part of the UME was placed at the vertical border at
r = rel and higher accuracy was required compared to recessed-UME
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(the isolator was located there in the case of recessed-UME). Similarly
to the case of recessed-UME, ωh mesh was generated using (1.16) three
times with appropriate parameters n and m.

The initial-boundary value problem (2.1) had to be solved in domain
ΩT = [0, T ] × Ω, where T is modelling time, Ω is spatial domain in
analysed geometries. It was determined that T = 6 s was enough to
reach stable state in all geometries with observed parameters. Time
interval [0, T ] was discretised by non-uniform time mesh

ωτ =
{
tk : tk = tk−1 + τk, k = 1, . . . ,K, t0 = 0, tK = T

}
and full mesh ωτ × ω was constructed. In the case of standard-UME
and cone-UME, timestep parameter τ was set to 0.0001 for some start-
ing points and later gradually increased to create time mesh of size
∼1.3× 104. In the case of recessed-UME and outwarded-UME models,
the size of ωτ had to be substantially increased up to ∼2.6× 105, be-
cause the stability of the solution was much lower. Spatial mesh of size
200× 200 was used for all models.

The approximate solution at a mesh point
(
tk, zi, rj

)
was denoted by

Uki,j . The approximation of (2.1) and initial-boundary conditions will be
detailed in the following sections.

2.4.2 Approximation of the boundary condition on the cone

The boundary condition (2.15) on the electrode of cone-UME has to be
dealt with separately due to cone-UME difference from other geometries.

The cone-UME is represented by irregular curved domain Fig. 2.1D,
which has to be approximated because the boundary line does not
intersect with mesh points as shown in Fig. 2.2D. Inner points of the
mesh (blue circles in Fig. 2.2D) are calculated by the regular formula.
Boundary points (blue crosses in Fig. 2.2D), which are defined as having
in their neighbourhood at least one point outside the mesh, have to
be approximated using the boundary condition. While it is evidently
possible to construct non-uniform mesh so all mesh points lie on the
boundary line for fixed UME geometry, it is not preferable due to a
couple of reasons:

1. Cone-UME geometry and notably its base angle α is the charac-
teristic to be tested in this research. Different meshes for each
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geometry would provide an additional computational error and
potentially increase computational time.

2. Very small or large angles α may be tested by the model and
automatically generated meshes would produce too small or too
large space step.

The finite difference approximation of curved boundary condition is
studied in literature for the Dirichlet type condition [50, 69, 73, 101] and
Neumann type [107]. It should be noted that FD methods with irregular
domains can still be used and stability properties persist, but the finite
volume and finite element methods are necessary and more efficient
when the domain becomes even more complex [84].

Value Uk+1
i,j at boundary point (i, j) was calculated by the linear in-

terpolation formula. When solving in z-direction, the following formula
was used for each boundary points (i0, j) (index i0 is distinct for each
column j):

Uk+1
i,j − U

k+1
i−1,j

hi−1
=
µi,j − Uk+1

i,j

σj
, i = i0, j = 0, . . . , jjunc. (2.17)

Here, σj ∈ [0, hi] is vertical distance between boundary point (i, j)
and boundary line z = r tanα+ d and is calculated for each column j.
Boundary condition µi,j is always equal to 0 according to (2.16). More
than one boundary point is included into some columns (see the middle
column in Fig. 2.2D). In this case the first point (i0, j) above inner points
is approximated by (2.17) and interpolation in r-direction is applied for
the rest of them:

Uk+1
i,j+1 − U

k+1
i,j

lj
=
Uk+1
i,j − µi,j
σi,j

, i = i1, . . . , im, j = 0, . . . , jjunc, (2.18)

where i0, i1 . . . , im are indexes of boundary points in a single column
with fixed j, (m+ 1) is the number of boundary points in column j, and
σi,j ∈ [0, lj−1] is the distance to the boundary line and boundary point
(i, j).

Formulas in r-direction are very similar:

Uk+1
i,j+1 − U

k+1
i,j

lj
=
Uk+1
i,j − µi,j

σi
, i = icone, . . . , N1 − 1, j = j0, (2.19)

where j0 is the index of the first boundary point in each line, σi ∈
[0, lj−1] is horizontal distance (distinct for each column i) between
boundary point (i, j) and boundary line. In the case of multiple bound-
ary points in the line, formulas similar to (2.18) are used.
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2.4.3 Finite difference schemes

The initial-boundary value problem in all 4 different geometries was
solved numerically using ADIFDM and similar techniques regarding
discretization of the differential equation (2.1) and boundary conditions
were used as in Chapter 1. The major difference is that non-standard
geometries must be taken into account for models of recessed-UME,
outwarded-UME and cone-UME.

Schemes of the standard-UME model

In the case of standard geometry, equation (2.1) and boundary conditions
(2.3)–(2.7) are the same as analysed in Chapter 1 with CGlc set to 0, i.e.
without reaction processes. Approximation formulas (1.20), (1.21), (1.23)–
(1.25), (1.28)–(1.32) were used to solve equations in the standard-UME
model. Specifically, (2.1) was approximated in the direction of r-axis at
each fixed i = 1, . . . , N1 − 1 by:

U i,j − Uki,j
0.5τk

=
D

rjlj+0.5

(
rj+0.5

U i,j+1 − U i,j
lj+1

−rj−0.5
U i,j − U i,j−1

lj

)
+

+
D

hi+0.5

(
Uki+1,j − Uki,j

hi+1
−
Uki,j − Uki−1,j

hi

)
,

j = 1, . . . , N2 − 1, (2.20)

where
rj+0.5 =

rj + rj+1

2
, rj−0.5 =

rj−1 + rj
2

,

hi+0.5 =
hi + hi+1

2
, lj+0.5 =

lj + lj+1

2
.

Unknown value is U i,j in (2.20) for r-direction. In the direction of z-axis
at each fixed j = 1, . . . , N2 − 1 equations were used:

Uk+1
i,j − U i,j

0.5τk
=

D

rjlj+0.5

(
rj+0.5

U i,j+1 − U i,j
lj+1

− rj−0.5
U i,j − U i,j−1

lj

)
+

D

hi+0.5

(
Uk+1
i+1,j − U

k+1
i,j

hi+1
−
Uk+1
i,j − U

k+1
i−1,j

hi

)
,

i = 1, . . . , N1 − 1, (2.21)

where Uk+1
i,j is an unknown value for z-direction.
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Boundary conditions were approximated by separately devised meth-
ods as explained in (1.21)–(1.25), (1.32). At each timestep tk+1 difference
equations were first solved in r-direction and then in z-direction using
the Thomas algorithm [113].

Schemes of the recessed-UME model

Considering the recessed-UME model, the upper-right part of analyzed
rectangular domain (Fig. 2.1B) does not belong to the domain of solution.
The cutout rectangle starts at height z = d, index iin and radius r = rel,
index jjunc. Approximation formulas had to adjusted as explained in
this subsection.

While solving in the direction of r-axis, (2.1) was approximated at
each fixed i = 1, . . . , iin − 1 by (2.20) and at each i = iin + 1, . . . , N1 − 1
by

U i,j − Uki,j
0.5τk

=
D

rjlj+0.5

(
rj+0.5

U i,j+1 − U i,j
lj+1

−rj−0.5
U i,j − U i,j−1

lj

)
+

+
D

hi+0.5

(
Uki+1,j − Uki,j

hi+1
−
Uki,j − Uki−1,j

hi

)
,

j = 1, . . . , jjunc − 1. (2.22)

Additionally, the boundary condition (2.10) was approximated by for-
mula similar to (1.23) in order to derive difference equation at each
here considered i and j = jjunc. Finally, at index i = iin, i.e. at the
junction point between the main domain and the recessed part of the
UME, approximation (2.22) was used until j = jjunc and from index jjunc
boundary condition (2.6) had to be incorporated using (1.24).

While solving in the direction of z-axis, (2.1) was approximated at
each fixed j = i, . . . , jjunc−1 by (2.21) and at each j = jjunc +1, . . . , N2−1
by

Uk+1
i,j − U i,j

0.5τk
=

D

rjlj+0.5

(
rj+0.5

U i,j+1 − U i,j
lj+1

− rj−0.5
U i,j − U i,j−1

lj

)
+

D

hi+0.5

(
Uk+1
i+1,j − U

k+1
i,j

hi+1
−
Uk+1
i,j − U

k+1
i−1,j

hi

)
,

i = 1, . . . , iin − 1. (2.23)
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At index j = jjunc, i.e. at the junction of the UME and the insulator, ap-
proximation (2.22) was used until i = iin and approximation of boundary
condition (2.10) was used from i = iin upwards. All other boundary-
initial conditions were approximated as usual.

Schemes of the outwarded-UME model

In the case of outwarded-UME, the upper-left corner is removed from the
modelled domain (2.1C). The additional rectangular domain is added
from height z = d, index iout and radius r = rel, index jjunc. Approxima-
tion formulas had to be adjusted in the similar manner as in the case of
recessed-UME.

In the direction of r-axis, (2.20) was applied at each fixed i = 1, . . . ,
iout − 1. Meanwhile, at each fixed i = iout, . . . , N1−1, (2.20) was adjusted
to calculate unknown U i,j from index j = jjunc + 1 to j = N2 − 1, i.e.
only for necessary indexes, and boundary condition (2.12) was used to
set U i,jjunc = 0.

In the direction of z-axis, at each fixed j = 1, . . . , jjunc, (2.21) was
adjusted to calculate unknown Uk+1

i,j for indexes i = 1, . . . , iout − 1 and
at index j = 0 approximation (1.32) of boundary condition (2.4) was
adjusted accordingly. Finally, at each fixed j = jjunc +1, . . . , N2−1, (2.21)
was used.

Schemes of the cone-UME model

After approximating the boundary condition on the electrode (2.15)
in section (2.4.2), deriving finite difference schemes for cone-UME is
relatively straightforward and similar to the case of outwarded-UME. An
additional trapezoid-shaped domain is added from height z = d, index
icone and diagonal side of trapezoid is described by line z = r tanα+ d.

While solving in the direction of r-axis, (2.20) was applied at each
fixed i = 1, . . . , icone and (2.20) was adjusted to start calculations from
j = jn + 1 at each row i = icone + 1, . . . , N1 − 1, where jn is the index of
the rightmost boundary point in each row i.

While solving in the direction of z-axis, at each fixed j = 1, . . . , jjunc−
1, (2.21) was adjusted to calculate from index i = 1 to i = im − 1, where
im is the index of the lowest boundary point in each column j and at
each fixed j = jjunc, . . . , N2 − 1, (2.21) was used.
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Calculation of SECM response

After solving difference equations for each geometry, SECM response
(2.8), (2.11), (2.14) and (2.16) had to be calculated in order to compare
with experimental data and to present modelling results. Derivatives
in these formulas were approximated using polynomial interpolation
as in (1.39) and (1.40). Additionally, partial derivatives in r-direction
were calculated for (2.14) and (2.16). The trapezoid rule was used to
approximate integrals and formulas similar to (1.41) were derived.

For comparison with experimental data, only the steady-state cur-
rent was important and it was determined that modelling time T = 6 s
was sufficient time to reach the stable current in all geometries. Then,
approach curve iapproach(d) was obtained by calculating the steady-state
current at varying height d, i.e. by approaching surface at d = 0. Ap-
proach curves are the output of SECM related experiments and, there-
fore, are the key result in SECM modelling.

2.4.4 Implementation details

The program code was implemented in Python with NumPy library
using

• Libraries and techniques as explained in the previous chapter
(section 1.4.5).

• Multiprocessing library for parallelizing computations using the
HPC resources provided by the Faculty of Mathematics and In-
formatics of Vilnius University. Multiple processes were spawned
for sets of model parameters, which include the distance d, the size
of defect (Hin, Hout or Hcone) and RG factor (ratio rglass/rel). Due
to the perfectly parallel nature of independent computer simula-
tions, a lock synchronization mechanism was sufficient to ensure
that processes do not override results while returning the output.

Data analysis and plotting were performed in MATLAB.
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2.5 Results and Discussion

2.5.1 Comparison of experimental data and mathematical mod-
elling results

Figure 2.3: (A) Real recessed-UME image. No.1 denotes active part of
the UME and No.2 is isolator. The size parameters of the UME and recess
depth are shown on the image. (B) Comparison of steady state currents
for experimental and modelling data using the UME shown in Fig.
2.3A (rel = 114 µm, rglass = 610 µm, Hin = 165 µm, applied potential
−500 mV). Error bars show standard deviation for each experimental
data point, which on average is ±0.067.

The approach curve for recessed-UME was computed using a math-
ematical model and compared with the experimentally obtained data
using real recessed-UME represented in Fig. 2.3A. Data shows good
correspondence for lower d values as shown in Fig. 2.3B. Difference
increases for larger d values, this effect can be related to larger exper-
imental errors (see error bars in Fig. 2.3B). Higher error bars at larger
d values are attributed to the difficulty of achieving stable currents
for the real recessed-UME for which the recess depth Hin = 165 µm is
considerably large compared to the radius rel = 114 µm. Thus, these
experimental difficulties are expected for such significant deviations
from standard-UME.

A successful comparison shows that models of different geometries
are compatible with real UMEs, which motivates the application of other
models. Therefore, UME radius rel = 5 µm and RG factor 16 was used
for further modelling.
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2.5.2 Influence of UME geometry on approach curves

Approach curves in the negative feedback mode were modelled for UME
with different geometries: recessed-UME (Fig. 2.4A,D,G), outwarded-
UME (Fig. 2.4B,E,H), cone-UME (Fig. 2.4C,F,I) and compared with
standard-UME. For each electrode, approach curves are presented with
three different depths/heights/cone angles of conducting parts, when
the current is: (i) absolute (Fig. 2.4A,B,C); (ii) normalised by diffusion-
limited currents (Fig. 2.4D,E,F); (iii) normalised with subtracted back-
ground currents (Fig. 2.4G,H,I).

For recessed-UME, the absolute current decreases compared to the
current of standard-UME (Fig. 2.4A). This can be explained by the
fact that it is more difficult for oxygen to reach the conducting part of
recessed-UME than in standard-UME case because the turning point
of the isolator reduces the diffusion of all materials including oxygen.
This effect has a more significant influence on the absolute current
when the recession Hin is increasing. According to modelling results, a
concentration gradient is greatest at the turning point (see section 2.5.4
Analysis of isolines) and with increasing recess depth Hin the gradient
flattens further near the conducting part and then a lower current is
observed. For example, the absolute current is 1.8 nA in recessed-UME
case with 1 µm depth, and 0.8 nA with 5 µm depth.

On the other hand, approach curves for the outwarded-UME in Fig.
2.4B grow rapidly with increasing Hout. This is due to oxygen diffusion
both to the side and the bottom of the conducting part of outwarded-
UME. Thus, the conducting area of outwarded-UME is much larger than
for standard-UME. In fact, the actual conducting part of outwarded-
UME at the bottom of UMEs tip plays a less important role in oxygen
consumption than the side of UMEs tip as further explained in the
section 2.5.4.

In the case of cone-UME, absolute currents increase with a higher side
angle as shown in Fig. 2.4C. The conducting area of the cone-UME is
larger for higher angles, which results in a greater total current. Though
the increase is not expected to be linear because the direction of normal
derivative ~n (depicted in Fig. 2.1D) also changes, i.e. approach curve
Fig. 2.4C is influenced both by increasing active area of the UME and
changing the direction of oxygen flow.

The diffusion-limited current depends proportionally on the surface
area of the UME conducting part. Therefore, by increasing the surface
area, the diffusion-limited current also increases, as it is shown in Fig.
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Figure 2.4: Left column: recessed-UME; middle column: outwarded-
UME; right column: cone-UME. Top row: the steady state current de-
pendency on d for varying levels of UME geometrical shapes compared
with the current for standard-UME. Schemes in the corners of each
Fig. (A), (B), (C) show which parameter is changed and the red ar-
rows demonstrate direction of the change. Middle row: normalised
currents i/i∞, where i∞ is the steady state current with maximum dis-
tance concerned. Bottom row: normalised currents (i− i0)/i∞, with the
starting point of all curves moved to point 0 and then normalised. UME
parameters are rel = 5 µm, rglass = 80 µm in all figures.

2.4B,C. The decrease in the diffusion-limited current was observed in
the case of recessed-UME. In this case, the diffusion to the conducting
part of recessed-UME is more complicated. Therefore, the diffusion-
limited current decreases when the conducting part of recessed-UME is
deeper recessed within an insulating layer of the UME. Fitting mathem-
atical models to experimental data is usually performed by comparing
normalised currents, which are shown in Fig. 2.4D,E,F. In this case,
recessed-UME generates 0 current at d = 0, because the diffusion is
entirely blocked by the insulating part of recessed-UME. The depth
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Hin of the recessed conducting part of the UME determines the beha-
viour of approach curves, which is similar to that registered during the
electrochemical processes, where the kinetic constant of electrochem-
ical reaction at the surface of interest is increased. It means that in the
case of recessed-UME this difference will provide incorrect information
about reaction kinetics. Therefore, the tendency of the approach curve
in Fig. 2.4D, which represents the normalised recessed-UME current
vs distance, is very similar to that obtained by standard-UME, only sig-
nal saturation rate is much higher in the case of recessed-UME. Fitting
such experimental data should be made by taking into account this
phenomenon.

On the contrary, the tendency of approach curve in Fig. 2.4E, which
represents the normalised outwarded-UME current vs distance, is very
different from that obtained by standard-UME, because the line starts
at a certain current which is predetermined by protrusion height Hout

and in addition the slope of the curve is lower in comparison with that
of standard-UME. The last effect is determined by the absence of an
insulating layer close to the surface of interest. When the conducting part
of the UME is outwarded by height Hout less than 1 µm, the difference
from the current from that of standard-UME is not significant. The
situation changes when the conducting part is outwarded more than
5 µm. When approaching the surface with such outwarded-UME, the
current will be not equal to zero even if the conducting part of the UME
touches the surface of interest. Therefore, by attempting to approach the
surface in such a way that the outwarded-UME current will decrease
to zero, which is the standard procedure to determine the distance
from approach curves, the probe and/or the surface of the sample can
be damaged. Such dimensions of UME defect are not observable by
optical microscopy and can be determined only by fitting the model to
experimentally obtained approach curves. The proposed mathematical
model can help to determine UME geometry and to calculate the actual
zero distance which is crucial in SECM experiments.

The cone-UME (Fig. 2.4C,F) simulates the case when the UME has a
defect on the conducting part which is sticking out from the UME. In
some cases, the damage of the insulating and conducting parts of the
electrode can induce an effect very similar to that of outwarded-UME. In
such a case the decrease of the steady-state current down to 0, when the
distance is 0 is not possible even if the conducting part of the conic-UME
is touching the surface of interest. At the distances very close to the
surface of interest the currents simulated with cone-UME are higher
comparing to those registered by outwarded-UME.
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The normalised approach curves can be additionally corrected by the
elimination of the background current (Fig. 2.4G,H,I). This correction
provides some additional insights: approach curves of recessed-UME
are identical to that obtained without correction because in this case,
background currents of recessed-UME and standard-UME are similar.
When the background current is eliminated from approach curves simu-
lated for outwarded-UME, the slopes of curves decrease by the increase
of height Hout as shown in Fig. 2.4H. For conic-UME, the slopes of
curves also decrease by the increased height Hcone of the conducting
part (Fig. 2.4I). This elimination allows us to distinguish recessed-UMEs
from outwarded-UMEs and conic-UMEs.

The shape of approach curves can be indicated by the SECM user as
the variation of diameters ratio of the insulating and conducting parts of
the UME (RG factor), but this interpretation could be wrong if the UME
is of non-ideal shape. For example, if the conducting part of the elec-
trode is recessed, the user evaluates the approach curve and decides that
RG of an electrode is lower, but actually the depth Hin = 5 µm is higher,
and RG factor stays the same as in standard-UME case (Fig. 2.4D,G).
This leads to an incorrect interpretation of measured results. Such mis-
calculations are possible because the behaviour of recessed-UME, which
is recessed by depth Hin = 5 µm, shows lower imaginary RG factor
than that for standard-UME. E and F parts of Fig. 2.4 do not show any
influence on imaginary RG factor. H and I parts show lower imaginary
RG if the conducting part of the electrode is recessed more deeply. In
most cases, the RG factor is determined by an optical microscope before
measuring. However, small recess depths, outwards heights and/or
some other irregularities cannot be easily determined experimentally
from approach curves and well-observed by optical microscopy. There-
fore, the proposed fitting of the mathematical model with the results of
approach curves will provide a tool for the determination and correction
of inaccuracies of the RG factor, determined by optical microscopy.

Maximum difference for approach curves between non-standard
UMEs and standard-UME were calculated using the formula:

Difference =
max
d

(
I(d)− Iplane(d)

)
max
d

(
Iplane(d)

) · 100 %, (2.24)

where I is approach curves of non-standard UME with varying para-
meter Hin, Hout or angle α and Iplane is the curve of standard-UME.

By comparing the difference in a current response between non-
standard UMEs and standard-UME (Fig. 2.5), we conclude that the
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Figure 2.5: Differences between non-standard UMEs and standard-UME.
The variable parameter for each type of the UME is shown in the scheme
for each Fig. (A) recessed-UME, (B) outwarded-UME, (C) cone-UME.

highest difference is for outwarded-UME and reaches almost 100 %.
Maximal difference for recessed-UME is 60 % with retraction depth
Hin = 5 µm for 5 µm radius UME. For cone-UME it is 50 % at cone angle
45°, which corresponds to the same cone’s protrusion height Hcone =
5 µm. In practice, if the UME is partly damaged, in most of the cases
the insulating part contains cracks and cavities. If this break is very
small, it cannot be seen by optical microscopy and thus the evaluation
using the model becomes necessary. Even if the protrusion height Hout

is only 2 − 5 µm for electrode radius rel = 5 µm used for modelling,
this already provides 40 % – 100 % difference from standard-UME for
registered signal.

Table 2.1: Dimensionless parameters of non-standard UME geometries
that provide following differences from standard-UME approach curve.
The UME with rel = 5 µm, rglass = 80 µm was used to calculate data.

Difference from standard-UME 5 % 10 % 25 % 50 %

Recess depth Hin/rel 0.034 0.075 0.225 0.745

Protrusion height Hout/rel 0.027 0.064 0.186 0.438

Cone height Hcone/rel 0.090 0.184 0.488 1.042

Fig. 2.5 can be used to calculate insertion depths and protrusion
heights of non-standard UME that provides difference of 5 %, 10 %, 25 %
and 50 % from standard-UME. This information is useful to determine
UME suitability for SECM-based experiments by testing when the meas-
urement error becomes bigger than desired. Dimensionless parameters
of UME geometries were calculated by cubic approximation of data
in Fig. 2.5 and presented in Table 2.1. Dimensionless parameters rep-
resenting ratio with UME radius rel were chosen so data can be used
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for various sizes of the UME active part and it is standard procedure
in SECM modelling [93]. Protrusion height for outwarded-UME is the
smallest parameter to achieve given difference from standard-UME
indicating that SECM with outwarded-UME is the most sensitive for
measurement errors.

2.5.3 Influence of the RG factor on approach curves

Recessed-UMEs were modelled with different RG factors by changing
the insulating part of electrodes. The conducting part of UME remains
the same, therefore, the results did not change for all modelled RGs as
was expected (Fig. 2.6A,B,C). By comparing normalized results (Fig.
2.6D,E,F) it was observed that at higher RG the behaviour of approach
curves changes more significantly: the same value of the diffusion-
limited current for RG=32 is achieved at 30 µm distance using standard-
UME, and at 15 µm distance using electrode recessed by 5 µm (Fig. 2.6F).
The same effect is observed in Fig. 2.6G,H,I where the background
current is eliminated. To determine the effect of RG, we plotted approach
curves for varying RG factors when geometry in each scheme is fixed
(Fig. 2.7). Significant difference between standard-UME and recessed-
UME approach curves can be seen: the diffusion-limited current for
standard-UME at RG=4 is 2.5 nA; while for recessed-UME it is 1.3 nA
and 1 nA at 3 µm and 5 µm, respectively.
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Figure 2.6: Approach curves for recessed-UME and varying RG factors
in different columns. Top row: Steady state current dependency on d
for varying recess depth. Schemes in the corners of each Fig.(A), (B),
(C) show an approximate size of the electrode for the particular RG
factor and red arrows demonstrate direction of angle change. Middle
and bottom row: currents normalised with different methods. In all
cases, electrodes radius rel = 5 µm. Left column rglass = 20 µm, middle
column rglass = 80 µm (the value used everywhere else in the thesis),
right column rglass = 160 µm.

Figure 2.7: Approach curves for varying RG factors when the geometry,
i.e. recess depth, is fixed in each figure: (A) standard-UME, (B) Recessed-
UME with depth 3 µm, (C) Recessed-UME with depth 5 µm. Schemes in
the corners of each figure show an approximate size of the electrode.

65



Figure 2.8: Approach curves for outwarded-UME and varying RG
factors in different columns. Top row: Steady state current depend-
ency on d for varying outward height. Middle and bottom row: currents
normalised with different methods. Left column rglass = 20 µm, middle
column rglass = 80 µm, right column rglass = 160 µm.

Figure 2.9: Approach curves for varying RG factors and different out-
ward height: (A) standard-UME, (B) Outward-UME with height 3 µm,
(C) Ouwarded-UME with height 5 µm.

Outwarded-UME have high influence on RG factor: the diffusion-
limited current was 5.5 nA, 4.4 nA and 4 nA for RG = 4, RG = 16 and
RG = 32, respectively, when outward height was 5 µm (Fig. 2.8A,B,C).
The normalised current at zero distance for RG = 4 is 0.44, while for
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RG = 16 and RG = 32 the normalised current reaches 0.3. By compar-
ing approach curves for varying RG factors then the geometry in each
scheme is fixed, it was observed that the diffusion-limited current is
increasing together with outward height: the current is 2.5 nA, 4.5 nA
and 5.5 nA with standard, 3 µm and 5 µm outwarded-UME, respectively,
when RG is 4 (Fig. 2.9).

Concerning cone-UME, the results (Fig. 2.10A,B,C) show that the
diffusion-limited current is the highest on cone-UME with the lowest
RG = 4 factor. Moreover, it changes by increasing the cone a little bit
more than using RG = 16 and RG = 32. RG = 4 current changed from
2.4 nA for standard-UME to 3.4 nA for cone angle 45°; while at RG=16
current values are 2 nA and 2.9 nA; for RG = 32 current values are
2.1 nA and 2.8 nA. Thus, if we use cone-UME with RG=4 the absolute
difference is 1 nA, for RG = 16 it is 0.9 nA, and for RG = 32 – 0.7 nA.
When the current was normalized (Fig. 2.10D,E,F), we obtained that
at zero distance the normalized current is not equal to zero: at RG =4
and cone angle 45° the current is 0.6 nA, while at RG = 16 it is 0.4 nA,
and at RG = 32 – 0.35 nA. The current at zero distance did not reach
zero because diffusion was not blocked as in the case of standard-UME.
If the conducting part of the UME is outwarded, the diffusion should
be blocked only by surface of interest when the UME is close to the
surface. However, from data gathered using the mathematical model it
was observed that the geometry of the insulating part is also important.
When RG=4, at 10 µm distance the increase of the current was observed.

The approach curves at three different cones were shown in Fig. 2.11.
The RG factor’s influence on cone-UME show low difference between
RG factors in the case of standard-UME (Fig. 2.11A): i = 2 nA for RG=32
and i = 2.5 nA for RG=4. Increase in RG show higher differences (Fig.
2.11B,C) when cone angle is 30°: i = 2.4 nA for RG=32, and i = 2.9 nA
for RG = 4. For cone angle 45° currents are i = 2.6 nA for RG = 32
and i = 3.4 nA for RG = 4. So, the absolute difference is 0.5 nA for
standard-UME and with cone angle 30° and 0.8 nA with cone angle 45°.

The differences from standard-UME were calculated depending on
RG factor. (2.24) was used for calculations as in Fig. 2.5 where only RG=
8 was considered. Almost no dependency was observed for outwarded-
UME (Fig. 2.12A). Considering recessed-UME (Fig. 2.12B), the difference
from standard-UME is greater with small RG factors such as RG = 4,
but for bigger RG factors such as RG = 16 and RG = 32 dependency
on RG is still limited. Finally, the most substantial dependency was
observed for cone-UME (Fig. 2.12C): differences are rapidly increasing
with decreasing RG factor.

67



Figure 2.10: Approach curves for cone-UME and varying RG factors
in different columns. Top row: Steady state current dependency on d
for varying cone angle. Left column rglass = 20 µm, middle column
rglass = 80 µm, right column rglass = 160 µm.

Figure 2.11: Approach curves for varying RG factors and different base
angle of a cone: (A) standard-UME, (B) cone-UME with base angle 30°,
(C) cone-UME with base angle 45°.
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Figure 2.12: Differences between non-standard UMEs and standard-
UME for varying RG factors. Geometry parameter for each type of the
UME and RG factor are shown in the smaller schemes. (A) recessed-
UME, (B) outward-UME, (C) cone-UME.

2.5.4 Analysis of isolines

Figure 2.13: Isolines for various geometries of the UME. Conducting
parts of UMEs are highlighted by red lines. (A) standard-UME, (B)
recessed-UME, (C) outwarded-UME, (D) cone-UME.

Oxygen concentration isolines, presented in Fig. 2.13, display oxy-
gen concentration levels in four environments close to analysed UMEs.
We use this information to explain the differences in approach curves
observed in modelled data. In general, oxygen concentration cannot
be directly observed during an SECM experiment and the analysis of
modelled oxygen concentration using isolines graphs is a valuable tool
for a deeper understanding of SECM behaviour.
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Isolines for standard-UME in Fig. 2.13A are interpreted as standard
for comparison with that of other UMEs. As it is expected, the largest
concentration of isolines is at r = rel, i.e. the joint point between the
UME tip and isolator. The highest rate of the current is also observed on
this point using here presented experimental methods.

For outwarded-UME Fig. 2.13C, fewer isolines in z-direction than for
standard-UME were observed, which is indicating that outwarded-UME
would be less sensitive to the variation of oxygen concentration close to
the surface of interest. Moreover, isolines are concentrated on the side
of outwarded-UME, which is indicating that the greatest rate of oxygen
diffusion is through this boundary edge. This effect will induce some
discrepancy from the signal registered using standard-UME.

On the contrary, a greater number of isolines in z-direction for recess-
ed-UME in Fig. 2.13B show increased sensitivity of this UME. But due to
the large concentration of isolines on the turning point (r = rel, z = H),
lower concentrations of oxygen reach the conducting part of recessed-
UME. In fact, if recess depth Hin is large enough or the distance from
the surface is low, almost no oxygen reaches the tip and this kind of
UME would be very inefficient.

Isolines of the cone-UME conducting part in Fig. 2.13D indicate
greater sensibility compared to the standard-UME with the greatest
concentration of isolines at the interphase of the conducting part of
cone-UME with isolating part and at the sharp end of the cone. This
may result in an undesirable effect of the increased current compared to
that registered with the standard-UME.

2.5.5 Comparison with data of other studies

Ferrignio et al. [55] modelled recessed-UME and outwarded-UME and
used the finite element method (FEM) to solve PDE. Analytical expres-
sion was established for the steady state current with maximum distance
d:

i∞ = 4nFDO2C0

(
rel +

πHout

4nHinDO2t/r
2
el

)
, (2.25)

which according to their research could be used in case of both UME
types. In the study by Bartlett et al. [20] a model and simulations of
recessed-UME using FEM were provided. Simulations were compared
with analytical expressions derived by Bond et al. [26]:

i∞, norm =
π

4Hin/rel + π
. (2.26)
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The formula is highly simplified and dimensionless (normalized), but it
was shown that modelling data fits well.

Table 2.2: Differences between recessed-UME and standard-UME as
calculated in the thesis, other models and by analytical expressions.
Dimensionless distances were calculated and difference formula (2.24)
was used for unified comparison. Data of the model of the thesis was
taken from Fig. 2.5.

Hin/rel
Thesis
model

Ferrignio
[55]

Analytical
exp. (2.25)

Bartlett
[20]

Analytical
exp. (2.26)

0.04 9 % 1 % 5 % 9 % 6 %

0.08 18 % 7 % 13 % 12 % 9 %

0.4 38 % 36 % 34 % 36 % 34 %

0.8 52 % 52 % 50 % 52 % 50 %

1 58 % 57 % 56 %

Differences of the recessed-UME current (Fig. 2.5A) were compared
with differences calculated from data of other models and analytical
expressions in Table 2.2. It is evident that the model proposed in the
thesis agreed well with data from other sources for larger values of
recession depth Hin. Correspondence was worse for small Hin, but it
can be seen that all models did not match so well.. Possible reasons are
difficulties with FEM calculations with small depth, normalization and
approximation procedures, etc.

In the case of outwarded-UME (Fig. 2.5B), the agreement was some-
what worse as shown in Table 2.3. The discrepancy was particularly
high for small values of protrusion height Hout. However, it was repor-
ted in Ferrignio et al. that they had some difficulties in applying finite
elements for calculations of standard-UME current. Furthermore, their
own analytical function (2.26) approximates data very weakly at a small
protrusion height, so it can be concluded that these calculations are
unreliable. Meanwhile, the agreement between the model of the thesis
and Ferrignio et al. was high for very larger and somewhat unrealistic
values of Hout.
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Table 2.3: Differences between outwarded-UME and standard-UME in
simulations and analytical expression.

Hout/rel
Thesis
model

Ferrignio
[55]

Analytical
exp. (2.25)

0.04 12 % 17 % 3 %

0.4 46 % 62 % 30 %

1.6 147 % 120 % 171 %

3.2 254 % 241 % 297 %

2.6 Conclusions

The mathematical model, which describes three different non-standard
geometries, was used to evaluate the difference from standard-UME
in the current measured by broken UMEs. It was observed that the
highest difference from standard-UME is obtained by outwarded-UME
and the maximal difference reaches 100 % when the conducting part of
the electrode is outwarded by 5 µm which cannot be clearly identified by
optical microscopy. Differences for recessed-UME and outwarded-cone-
UME are lower - 60 % and 50 % for 5 µm recess and 45° cone, respectively.
These results were summed up in Table 2.1 showing which UME defects
do not exceed the difference of 5 %, 10 %, 25 % and 50 % from standard-
UME.

The advantage of the analysed mathematical model is that it can
be used for the determination of defects in a simple buffer solution by
comparing the simulated standard-UME response with experimental
data. This method can be applied in various directions. In this study,
buffer solutions were analysed, but the model can be extended with
oxygen-reduction reactions to investigate the influence on reaction kin-
etics.
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Chapter 3

Modelling of Fluorescence
Dyes Uptake into 3D Cellular
Spheroids

3.1 Introduction

In the Chapter 3 of the thesis, a novel mathematical and numerical
model is proposed for the analysis of the accumulation of 2 types of
fluorescent dyes – wheat germ agglutinin (WGA) and rhodamine – into
cellular spheroids. A nonlinear system of reaction-diffusion equations
was used for modelling the diffusion of WGA and rhodamine as well
as the binding of WGA to the cells. Three different cases of the system
were presented to describe the diffusion into cellular spheroids of these
dyes. The Laplace operator of the nonlinear system was written in
spherical coordinates because the modelled area is a sphere. The system
was solved using a finite difference method and the resulting nonlinear
system of algebraic equations was solved with an iterative method.

The computational results and the physical experiment were com-
pared and close correspondence between them was achieved. Diffusion
coefficients in the extracellular matrix for both dyes were calculated
using model and experiment comparison. Moreover, the ratio between
the dye concentration and the fluorescence intensity was evaluated. The
influence of reaction parameters on dye penetration was analyzed. Dy-
namics of dyes uptake were estimated for spheroids of different size
and cell/matrix density.
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The mathematical modelling of 3D cellular spheroids is motivated by
the recent emergency of 3D cell cultures in various biomedical studies.
It is agreed that this method is more relevant to native tissues than
the former gold standard – cell monolayers [46]. 3D cell cultures are
usually used as a platform for primary drug testing, however, due to
some limitations, not all drugs can be investigated. In that case, it
would be useful to have mathematical models, which would predict
drug accumulation and distribution in 3D cell cultures by using the
data of similar already investigated molecules. The fluorescent dyes,
whose physico-chemical characteristics such as structure and molecular
mass are very similar to chemotherapeutic agents, could be used for
modelling and quantification of drug penetration in 3D cell cultures.

One of the most commonly used 3D cell cultures is cellular spheroids.
Cellular spheroids are self-assembled clusters of cell colonies cultured in
environments where cell-cell interactions dominate over cell-substrate
interactions. Some authors have published their attempts to simulate
how various nanoparticles (NPs) accumulate and distribute in cellular
spheroids. Gao et al. have established and studied a computational
model to predict the time- and concentration-dependent diffusion of NPs
in tumour cellular spheroids [58]. The mathematical model of antibody
penetration into tumour spheroids was developed to gain an improved
understanding of the quantitative interplay among the rate processes of
diffusion, binding, degradation, and plasma clearance [66]. The same
model was used to describe the diffusion of NPs into multicellular spher-
oids in the presence of the extracellular matrix modulator collagenase
[65]. The results from the proposed model, in combination with the
experimental results, suggested that particle size, particle binding, and
porosity of biological tissue are the key parameters that need to be con-
sidered when designing NP drug carriers for cancer treatment. Our
previous experimental study and modelling results also demonstrated
that penetration of carboxylated nanoparticles was strongly limited and
dependent on the size and porosity of cellular spheroids [77].

Chariou et al. provided the model to quantify diffusion and uptake
of tobacco mosaic virus (TMV) in a spheroid system approximating a
capillary-free segment of a solid tumour [33]. Model simulations pre-
dicted TMV concentration distribution over time in a tumour spheroid
for different sizes and cell densities.

Oxygen consumption and diffusion in cellular spheroids were ana-
lyzed and a method was presented for estimating the rates of oxygen
consumption and diffusion limit, the extents of the necrotic core, hypoxic
region and proliferating rim [67].
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Uptake and inward diffusion of a fluorescent dye calcein via gap
junction intercellular communication were studied using a 3D multilayer
spheroid model [1]. Quantitative studies about the kinetic parameters
for efflux of various rhodamine dyes were performed [115] but only for
2D cell cultures. To the best of our knowledge, there are no mathematical
models which would predict diffusion and accumulation of organic
molecules (e.g. drugs or dyes) in 3D cell cultures.

Two types of fluorescent dyes were considered in the study – rhod-
amine 6G (R6G) and wheat germ agglutinin (WGA). R6G is a fluorescent
positively charged lipophilic dye, which specifically stains and select-
ively accumulates in mitochondria. It was also reported that at higher
concentrations, R6G also stained the endoplasmic reticulum and other
membrane organelles. Due to its lipophilic nature R6G is also known as
a specific stain for the detection of lipids. This allows R6G to be used
as a universal lipid marker for both qualitative [43] and quantitative
research [32]. Masuda and Oguma study showed that R6G dye could be
used not only for in vitro cell studies but also for visualizing the vascular
networks of the liver and to examine the intrahepatic flow distribution
under various conditions [95].

WGA is a lectin that protects wheat (Triticum) from insects, yeast
and bacteria. Wheat germ agglutinin selectively binds to N-acetylglu-
cosamine and N-acetylneuraminic acid (sialic acid) residues which are
predominantly found on the plasma membrane [145]. WGA conjugated
to Alexa Fluor fluorophores (WGA-Alexa488) is used as a fluorescent
marker to stain the plasma membrane of various mammalian cells.

In section 3.2 of the chapter, details about 3 mathematical models
were presented alongside calculation of equations parameters and nu-
merical solution. In section 3.3, computational and physical experiments
were compared and results of the study were discussed. Finally, the
results of the Chapter were summarized in conclusions 3.4.

3.2 Mathematical models

3.2.1 WGA migration modelled with reaction-diffusion
equations

Diffusion is the driver of biological processes in cells and 3D spheroids.
The diverse temporal scales of intracellular and intercellular processes
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are determined by vastly diverse spatial and temporal scales in most
biological and biophysical processes. The latter is due to small binding
sites inside or on the cell membrane or to narrow passages between
large cellular and intercellular compartments.

Figure 3.1: (A) WGA model, (B) R6G model, (C) Rings model.

WGA molecules diffusion and binding in 3D cell spheroids is ex-
pressed by the equation:

∂Cout
∂t

= D
1

r2
∂

∂r

(
r2
∂Cout
∂r

)
− kbind

(
Bmax − Cbind

)
Cout

for 0 < t ≤ T, 0 < r < R, (3.1)

where Cout(t, r) is the concentration of WGA molecules in spheroid as a
function on time and coordinate, D – the diffusion coefficient, kbind is a
rate constant of binding of WGA to the cell membrane, R is the radius of
a spheroid, t – time variable, r – the distance from the centre of sphere,
T – modelling duration.

The diffusion equation was written in spherical coordinates and the
assumption was made that spheroids are approximately homogeneous
in all directions.

As shown in Fig. 3.1A, there is a limited number of sites on cell
membranes for molecules to bind, which is denoted by the constant
Bmax [57]. When this number is reached, no molecules can bind on
the cell membrane. The process of binding to cells is modelled by the
equation:

∂Cbind
∂t

= kbind
(
Bmax − Cbind

)
Cout, 0 < t ≤ T, 0 < r < R, (3.2)

where Cbind(t, r) is the concentration of WGA molecules which are
bound to the cells membrane.
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The following boundary conditions are used:

Cout
∣∣
r=R

= Coutside,

∂Cout
∂r

∣∣∣∣
r=0

= 0, t > 0,
(3.3)

which show that in the exterior of a spheroid there is a constant con-
centration of WGA molecules Coutside = 5µg/mL

38 643 g/mol = 0.13 µM and that
there is symmetry to the centre of a spheroid.

Initial conditions for both functions of concentrations are

Cout
∣∣
t=0

= 0,

Cbind
∣∣
t=0

= 0, 0 ≤ r ≤ R,
(3.4)

indicating that there is no WGA molecules at the start of experiment
and all binding sites are free.

3.2.2 Rhodamine migration modelled with diffusion equation

Rhodamine R6G diffuses both through cells and cellular matrix (Fig.
3.1B) and thus diffusion of R6G molecules in spheroids is modelled
using the diffusion equation:

∂C

∂t
= D

1

r2
∂

∂r

(
r2
∂C

∂r

)
, for 0 < t ≤ T, 0 < r < R, (3.5)

where C(t, r) is R6G concentration and it is a version of (3.1) without
the reaction element.

The same boundary conditions are used for the R6G model as in (3.3):

C
∣∣
r=R

= Coutside,

∂C

∂r

∣∣∣∣
r=0

= 0, t > 0.
(3.6)

Molar concentration Coutside = 5µg/mL
493 g/mol = 10.4 µM is greater for R6G

due to a smaller molar mass than WGA-Alexa488.

Initially, there are no Rhodamine molecules in spheroid, so we have

C
∣∣
t=0

= 0, 0 ≤ r ≤ R. (3.7)
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It should be noted that the R6G model is separate linearized version
of the WGA model given by (3.1)–(3.4), but with kbind set to 0 and
different coefficients.

3.2.3 Rhodamine migration using the rings of cells and matrix
layers model

Spheroids were modelled as concentric rings of cells and matrix layers
as in Fig. 3.1C, where cell rings represent averaged cells and cellular
matrix layer – material between the cells. The process is expressed by
the following equation:

∂C

∂t
=

1

r2
∂

∂r

(
r2D(r)

∂C

∂r

)
, for 0 < t ≤ T, 0 < r < R, (3.8)

where D(r) is a function representing the diffusion coefficient

D(r) =

{
Dcell, if r ∈ cell layer,
Dmatrix, if r ∈ matrix layer.

(3.9)

Dcell is the diffusion coefficient in cells and Dmatrix is the diffusion
coefficient in cellular matrix, dcell = 10 µm is an average diameter of
cells and dm is an average distance between cells, which was calculated
in such a way that a known number of cells N of size dcell would fit into
the spheroid of radius R.

Boundary and initial conditions remain the same as in section 3.2.2:

C
∣∣
r=R

= Coutside, t > 0,

∂C

∂r

∣∣∣∣
r=0

= 0, t > 0,

C
∣∣
t=0

= 0, 0 ≤ r ≤ R.

(3.10)

3.2.4 Calculation of coefficients

Diffusion coefficient

The R6G dye diffuses both through the cells at diffusion rate Dcell and
the extracellular matrix at the rate Dmatrix. In the study, the diffusion
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coefficient for the R6G model in (3.5) was averaged in the whole spher-
oid:

D = φDcell + (1− φ)Dmatrix,

where φ = Ncell Vcell
Vsphere

is the proportion of total cell volume to spheroid
volume, (1 − φ) – the proportion of extracellular matrix volume to
spheroid volume, Vcell is the volume of a cell, which is considered to be
spherical, Vsphere – the volume of cellular spheroid. Ncell is the number
of cells in particular spheroid ranging from 6000 to 14 000.

The diffusion coefficient of R6G or similar Rhodamine dyes was in-
vestigated theoretically and experimentally by many authors. It was
observed that the coefficient varies from 4.0× 10−10 m2/s in water solu-
tions [59] to 1.5× 10−18 m2/s in high concentration sucrose-water solu-
tions [35]. Dcell = 3× 10−13 m2/s in stratum corneum [6], i.e. the out-
ermost layer of the skin, was chosen as it resembles the cells used in
the experiment most closely. The diffusion coefficient in cellular matrix
Dmatrix was obtained by fitting experimental data to the R6G model
data (see section 3.3.2).

For the Ring model, the same coefficient Dmatrix was used, but the
diffusion coefficient in cells was adjusted taking into account that cells
would not be fully squeezed into a uniform cell ring and there would
be some gaps at least between the sides of cells as shown in the scheme
Fig. 3.1C. In the analyzed model the formula for Dcell, ring was derived
by calculating the ratio between the volume of sphere and cube:

Dcell, ring =
π

6
Dcell +

(
1− π

6

)
Dmatrix.

WGA molecules diffuse only through cellular matrix with cells acting
as immobilized barriers. The diffusion through porous media model
was used to calculate the diffusion coefficient [58, 141]:

D = (1− φ)2Dmatrix,

where (1−φ) accounts for porosity. It was demonstrated [109] that diffu-
sion rates of R6G and WGA-Alexa488 dyes differ only by approximately
2.1 % and the same R6G diffusion coefficient in matrix Dmatrix was used.

Binding coefficients

Maximal concentration of binding sites per unit volume depends on
a particular spheroid size and cell density. It was calculated using the
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formula
Bmax =

NcellBmax, cell
NA Vsphere

, (3.11)

whereNA = 6× 1023 is Avogadro constant,Bmax, cell = 5× 105 sites/cell
is the number of binding sites in a single cell [57].

The binding rate constant (association constant) for WGA was de-
terminant to vary from 102 to 106 in studies [9, 57, 104]. During compu-
tational experiment several values of the binding constant were used.
These calculations showed that at rates kbind = 103 − 104 M−1s−1 re-
action speed is maximal possible, because the diffusion rate becomes
a limiting factor. Therefore, kbind = 103 M−1s−1 was chosen for other
computations.

Accumulative concentration

For comparison with experimental data, accumulative concentration
Cacc per volume, i.e. the total concentration in a spheroid divided by its
volume, was calculated as an integral

Cacc(t) =
4π

Vsphere

∫ R

0
C(t, r)r2 dr. (3.12)

3.2.5 Numerical solution

First of all, a rectangular domain {(t, r) ∈ R2 : 0 < t ≤ T, 0 < r < R}
had to be discretised for all models: WGA model (3.1)–(3.4), R6G model
(3.5)–(3.7) and Ring model (3.8)–(3.10). The discrete 2D grid ω was
defined

ωh = {ri : ri = ih, i = 0, . . . , N, r0 = 0, zN = R} ,

ωτ =
{
tk : tk = kτ, k = 0, . . . ,K, t0 = 0, tK = T

}
,

ω = ωτ × ωh.

2D discrete grid was chosen consisting of 100 points in r direction and
240 000 points in t direction. Such a large number of points was neces-
sary because modelling time T = 24 h was long and high accuracy had
to be achieved.
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The numerical solutions on grid ω were denoted by Uki ≈ Cout(tk, ri)
and V k

i ≈ Cbind(t
k, ri). Only solution Uki ≈ C(tk, ri) was used for R6G

and Ring models.

Then, (3.1) was discretised using the Crank-Nicolson implicit scheme

Uk+1
i − Uki

τ
= D

(
U i−1 − 2U i + U i+1

h2
+

1

ri

U i+1 − U i−1
h

)
−

− kbind
(
Bmax − V i

)
U i, i = 1, . . . , N − 1, (3.13)

where U i =
(
Uk+1
i + Uki

)
/2 and V i =

(
V k+1
i + V k

i

)
/2. It is a well

known stable scheme and the approximation error is second order, i.e.
O(τ2 + h2) in case continuity conditions are satisfied [101, 113]:

Cout ∈ C3
4

(
(0, T ]× (0, R)

)
, Cbind ∈ C3

(
(0, T ]

)
.

Reaction equation (3.2) was discretised by

V k+1
i − V k

i

τ
= kbind

(
Bmax − V i

)
U i, i = 1, . . . , N − 1, (3.14)

which is again the second order scheme withO(τ2) error. Finally, bound-
ary condition (3.3) for r = 0 was discretised by the second order finite
difference formula

3Uk+1
0 − 4Uk+1

1 + 2Uk+1
2 = 0. (3.15)

These approximations guarantee that the entire system (3.1)–(3.4) was
approximated by the stable second order scheme.

V k+1
i was expressed from (3.14)

V k+1
i =

4V k
i + τkbind

(
2Bmax − V k

i

) (
Uk+1
i + Uki

)
4 + τkbind

(
Uk+1
i + Uki

) . (3.16)

By substituting (3.16) into (3.13), the nonlinear system of algebraic equa-
tions was derived

AUk+1 = ÂUk + F (Uk+1,Uk), (3.17)

where Uk = (Uk0 , . . . , U
k
N ), A and Â are (N − 1)-size matrices with

coefficients from the diffusion term in (3.13), F is nonlinear part of the
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system from the reaction term. (3.17) was linearized by Picard’s iterative
process [36]:

AU(j+1) = ÂUk + F (U(j),Uk), j = 0, . . .

U(0) = Uk.
(3.18)

The system (3.18) is tridiagonal and was solved using the Thomas al-
gorithm at each iteration step. The iterative process was repeated until
condition between 2 iterations was no larger than ε = 10−10. The process
converged rapidly and no more than 4 iterations were required.

Because the R6G model is linear, (3.5) was discretized by the version
of (3.13) without the reaction term and solved with a single application
of the Thomas algorithm. In the case of the Ring model, the diffusion
coefficient (3.9) is step function and, because of that, separate version of
the Crank-Nicolson scheme was applied to approximate (3.8)

Uk+1
i − Uki

τ
=

1

r2i

Di+0.5r
2
i+0.5

(
U i+1−U i

)
−Di−0.5r

2
i−0.5

(
U i−U i−1

)
h2

i = 1, . . . , N − 1, (3.19)

where ri±0.5 = ri ± 0.5h, the diffusion coefficient Di±0.5 = D(ri ± 0.5h)
from (3.9). The tridiagonal system of linear equations was derived from
(3.19) and (3.15), which approximates boundary condition (3.10) at r = 0,
and was solved by the Thomas algorithm.

Necessary integrals such as (3.12) on the discrete grid were calcu-
lated with the first order Newton-Cotes formula. All algorithms were
implemented by the author in Python with the NumPy library.

3.3 Results

3.3.1 Analysis of experimental results

The accumulation of R6G in NIH3T3 spheroids was investigated using
2 methods: confocal microscopy (Fig. 3.2) and flow cytometry. In Fig.
3.2A, it was shown, that after 1 h of incubation, R6G accumulated only
in the top layer of the spheroid and the intensity of it was relatively
low compared with the images after longer incubation times. The accu-
mulation of R6G increased after longer incubation times. After 4 h of
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Figure 3.2: (A) Combined confocal microscopy and bright field images
of R6G (green color, λex = 488 nm) distribution in NIH3T3 cellular
spheroids (8000 cells/drop, R ≈ 134 µm), after different incubation
times t. (B) Combined confocal microscopy and bright field images
of WGA-Alexa488 (green color, λex = 488 nm) distribution in NIH3T3
cellular spheroids, after different incubation times t. Representative
images are shown. Scale bar 150 µm. (C) Quantitative evaluation of
R6G accumulation in NIH3T3 spheroids. Percentage of cells with R6G
molecules (upper) and florescence (FL) intensity per spheroid volume
(lower) are presented in separate graphs. Every value is an average of
3 samples. Error bars represent standard deviation. Dotted line is an
approximation.

incubation R6G fluorescence was observed through the whole spheroid
and fluorescence intensity increased after 8 h and 24 h of incubation.

The accumulation of WGA-Alexa488 dye in NIH3T3 spheroids was
demonstrated in Fig. 3.2B. The penetration of WGA-Alexa488 dye in
the NIH3T3 cellular spheroid was slower than R6G dye. After 4 h fluor-
escence of R6G dye was detected through the whole cellular spheroid
optical section, while WGA-Alexa488 was detected only on the external
part of the spheroid. Even after 24 h of incubation, only low fluorescence
of WGA-Alexa488 was measured from internal parts of the spheroid,
suggesting that a small amount of WGA-Alexa488 molecules penetrated
into the centre of a cellular spheroid.
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For quantitative evaluation of R6G accumulation in cellular spheroids
measurements with flow cytometry were made. The obtained results
were demonstrated in Fig. 3.2C and used for the comparison with math-
ematical modelling results as presented in Fig. 3.3A. The quantitative
evaluation showed that after short times of incubations only cells, which
were close to the spheroid surface, had accumulated R6G, thus the mean
fluorescence intensity was low. It was observed (Fig. 3.2C, lower part)
that fluorescence intensity was growing from 5 min to 4 h of incubation,
but not as rapidly as the number of the cells which had R6G inside
(Fig. 3.2C, upper part). After 2 h of incubation, 95 ± 1 % of cells had
accumulated R6G, but fluorescence intensity reached only 75± 5 % of its
maximum value. It can be concluded that some cells had accumulated
only a small amount of R6G molecules. The peak of fluorescence intens-
ity was observed after 4 h of incubation. Later fluorescence intensity
stabilized and did not change during measurements. This means that
after 4 h of incubation with R6G, spheroids of radius R ≈ 150 µm had
fully accumulated R6G molecules. For comparison, in experiments with
a single layer of cells the maximum fluorescence intensity is reached
after 2 h of incubation.

3.3.2 Comparison between experimental and simulations da-
ta for R6G accumulation models

The diffusion coefficient in the cellular matrix was calculated by fit-
ting model data to physical experimental data by the least squares
method. Accumulative R6G concentration, which was calculated using
the model (3.5)–(3.7) and integrated by (3.12), and fluorescence intensity
from the experiment were normalized into non-dimensionless values
in order to compare them. Linear dependence between fluorescence
intensity and concentration of the source is well known and the device
constant can be calculated by normalizing, i.e. by dividing by max-
imal concentration and fluorescence intensity. It was determined that
Dmatrix = 4.2× 10−13 m2/s fits the experiment best (Fig. 3.3A) and the
device constant for this particular experiment is 6.4× 1010.

Another experimental data set was used for the confirmation of the
R6G model. Fluorescence intensities were calculated at 2 h time for
spheroids with different radius and number of cells (Fig. 3.3B). Accumu-
lated R6G concentrations were multiplied by the device constant and
plotted for comparison with experimental data (Fig. 3.3B). Intensities
calculated per cell decrease for larger spheroids which are expected
because it is increasingly difficult for the dye to reach inner layers. The
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Figure 3.3: (A) R6G model curve (red line) was fitted to experimental
data (dashed line) in order to find the diffusion coefficient in cellular
matrix; 8000 cells, radius 134 µm. Black squares are experimental data
and their standard deviation is represented by error bars. (B) Accumu-
lated fluorescence intensity compared to intensities from experimental
data; different spheroid size and number of cells, time t = 2 h.

very close correspondence between the experiment and model was ob-
served up until the largest numbers of cells. The size of the cellular
spheroid depends on the initial cell number until the critical number
of cells is reached. It was observed that, while growing spheroids from
6000 up to 10 000 cells, the size of spheroid increased linearly, but spher-
oids with a large number of cells (Ncell = 14 000 and Ncell = 6000) were
similar in size and their radius did not depend on cell number. Thus our
model showed that spheroids from 6000 up to 10 000 cells are suitable
for dyes penetration studies, whereas larger spheroids should not be
used because of inaccuracies.

Figure 3.4: R6G concentration from centre to the sides of the spheroid
at various time intervals and different spheroids (A) Ncells = 8000,
R = 134 µm, (B) Ncells = 10 000, R = 169 µm, (C) Ncells = 12 000, R =
212 µm.

Using the R6G migration model (section 3.2.2) R6G dye accumulation
inside the spheroid was calculated. Fig. 3.4 shows R6G concentration
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Figure 3.5: (A) Ring model results compared with spheroid penetration
by time. Diffusion coefficients are taken from the R6G model. Spheroid
with 8000 cells, radius 134 µm. (B) Accumulated fluorescence intensity
from the Ring model data, R6G model and experiment, time t = 2 h.

dependency from distance r to the centre at various time intervals.
Three spheroids were modelled with a different number of cells, i.e.
cell/matrix density, and spheroid radius R. These parameters were
taken from experimental data.

It can be observed that the first few layers (∼20−30 µm) were almost
fully accumulated after about 15 min in all spheroids. The centre of the
smallest analyzed spheroid was filled after less than 8 h (Fig. 3.4A) but
the centre of the larger spheroid in Fig. 3.4C was reached much slower.
After 24 h all spheroids were completely filled with R6G molecules.

An alternative Ring model was proposed in order to better under-
stand R6G penetration into spheroids as explained in section 3.2.3. The
penetration curve in Fig. 3.5A was calculated with R6G cell and matrix
diffusion coefficients which were used in the previously analyzed R6G
model. The curve is very close to approximated experimental data as the
mean squared error is only 0.04 %. For comparison, penetration curve
calculated with the R6G model (Fig. 3.3A) has an error of 0.05 % from
experimental data. It can be concluded that the error is very small in
both cases.

In Fig. 3.5B the fluorescence intensity of the Ring model was plotted
against experimental and R6G model data. While both models agree
fairly well with experimental data, the Ring model is slightly more
accurate with 4.9 % error compared to 5.2 % error for the R6G model.
From these results, we conclude that both models are successful and can
be used for further analysis of dyes penetration. The Ring model can
be applied to determine the effects of cells diameter and cellular matrix
layer size, i.e. the average distance between cells, on dye penetration.
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3.3.3 Nonlinear WGA model analysis

The WGA model was proposed in section 3.2.1 to analyze WGA mo-
lecules diffusion and binding to cells. This process is experimentally
difficult to conduct and modelling has to be employed. It is expected
that the WGA model would be accurate because WGA diffusion in
3D spheroids is closely related to R6G diffusion which agrees with the
experiment well as shown in section 3.3.2. Comparing with the R6G
model, the reaction term was added to account for binding to cells and
binding rate kbind and the concentration of binding sitesBmax was evalu-
ated. Diffusion was calculated only in the cellular matrix because WGA
molecules do not diffuse through the cell membrane.

Using the WGA model concentration in cellular matrix Cout and con-
centration of bound WGA molecules Cbind were computed and shown
in the upper and middle rows of Fig. 3.6 for 3 different spheroids. It
was observed that the penetration rate for the smaller spheroid (Fig.
3.6A) was faster than for the larger one (Fig. 3.6B). The spheroid formed
from 8000 cells was denser than 6000 cells spheroid and thus there was
a greater amount of binding sites (compare Fig. 3.6E with Fig. 3.6D).
Because of that WGA penetration into the centre of 8000 cell spheroid
was slowed down not only by greater size but also by a faster binding
process.

In the case of the largest spheroids (Fig. 3.6C), it was observed in the
experiment that they were much sparser (see x axis in Fig. 3.3B). As it
was mentioned before, some changes in spheroid formation occurred
due to a large number of cells. It was demonstrated that the spheroid’s
porosity depends on the size and cell type [77]. 3D spheroids formed
from cancer cells are sparser because cancer cells tend to migrate and
metastasize. As shown in Fig. 3.6F, the number of binding sites per
unit volume was much smaller and almost all sites were taken in 24 h.
Therefore, diffusion was not slowed so much by the reaction term and
the spheroid centre was almost completely penetrated by WGA in 24 h
even though the spheroid was larger than the others.
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Figure 3.6: WGA dye concentration Cout in cellular matrix (upper row)
and Cbind in cells (middle row). Bottom row: accumulative WGA con-
centration Cacc in matrix and cell together. Cmax shows maximum
concentration for each spheroid. Left column: spheroid with 6000 cells
and radius 127 µm, middle column: Spheroid with 8000 cells and radius
134 µm, right column: Spheroid with 12 000 cells and radius 212 µm.

Figure 3.7: Accumulative WGA concentration in 8000 cells spheroid
with (A) different binding constant kbind and fixed Bmax, cell = 5× 10−5

unit/cell binding sites; (B) different number of binding sites Bmax, cell
and fixed kbind = 103 M−1 s−1. The red line marks results with same
binding parameters.

These nonlinear effects were further explained in Fig. 3.6G, H, I.
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Accumulated concentration per volume

Cacc(t) = (1− φ)Cout, acc(t) + φCbind, acc(t), φ =
Ncell Vcell
Vsphere

was calculated and compared with maximum concentration per volume

Cmax = (1− φ)Coutside + φBmax,

which can accumulate into cellular matrix and cell membranes of spher-
oids. Accumulated concentrations in matrixCout, acc and in cellsCbind, acc
were calculated by (3.12). The spheroid with 8000 cells (Fig. 3.6H) was
the densest and, therefore, it accumulated more WGA molecules on
average than the smaller spheroid (Fig. 3.6G). It was observed that
the accumulative concentration of 8000 cell spheroid was greater even
though the centre was almost not incubated at all at 24 h. It can be
explained by spherical geometry, because outer layers of a sphere ac-
count for a much greater volume than inner layers. On the other hand,
for 12 000 cell spheroid Cmax and Cacc are much smaller due to lesser
density (Bmax is 2− 3 times smaller than Bmax for 6000 and 8000 cells
spheroids) and its matrix layer was penetrated more rapidly (Fig. 3.6C)
than for smaller spheroids.

The effect of reaction parameters to accumulative WGA dye concen-
tration was investigated for the spheroid of radius 134 µm and formed
from 8000 cells. Various values (Fig. 3.7A) of the binding constant kbind
were tested. It was observed that with kbind = 104 M−1 s−1 accumula-
tion speed no longer increased which means that diffusion process is
a limiting factor and this binding rate is so rapid that all available dye
molecules bind almost instantly. However, at lower binding rations
(< 102 M−1 s−1) accumulation speed was almost linear. Then the con-
stant was set to zero, the binding process stopped and concentration
reached its balance at about 4 h, which is compatible with R6G models.

In Fig. 3.7B the effects of the number of binding sites per cellBmax, cell,
which was used to calculate binding site concentration Bmax by (3.11),
can be seen. As expected, a greater number of sites resulted in increased
accumulative concentration. Fig. 3.7A, B showed, that WGA dye accu-
mulation dynamics strongly depend on the binding constant and the
number of receptors (binding sites) in the cells. From modelling results
at a fixed binding rate constant kbind = 103 M−1 s−1 it could be predicted
that 3.4 times more WGA dye molecules accumulated after 24 h for cells
with 10 times more receptors on their plasma membranes.
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3.4 Conclusions

The reaction-diffusion model was presented for analysis of dyes penet-
ration into cellular spheroids. Both cases of the model for R6G dye, i.e.
linear diffusion model and Ring model, showed a close correspondence
with experimental results. Using the model, it was calculated that the dif-
fusion coefficient in the cellular matrix is D = 4.2× 10−13 m2/s, which
is about 4 times higher than the diffusion coefficient in cells used in
calculations. Accumulation dynamics were analyzed and it was shown
that about 4 h are necessary to reach a balance, but the central zone is not
fully incubated until about 10 h. These dynamics also strongly depend
on the spheroid size and density.

The dynamics of WGA-Alexa488 dye penetration into the spheroid
was analyzed using a nonlinear case of the model. The effect of the
binding rate and binding sites number on penetration dynamics was
researched. Our experimental and modelling results showed that the
dynamic of WGA-Alexa488 dye accumulation in cells is non-linear,
because of several biological processes, such as the rate of endocytosis,
the density of cells and extracellular matrix, type and concentration of
receptors in the cells plasma membrane and other factors.
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Chapter 4

Verification of Model
Implementation

The final chapter is dedicated to the verification of numerical algorithms
which are applied for solving PDEs of proposed models.

Model verification and validation (V&V) is an important concept
in computer simulations [132]. Verification is defined as the process
of determining that a model and its solution is accurately implemen-
ted. Validation is the process of determining if a model is an accurate
representation of the real-world data/experiment.

Numerous techniques and frameworks have been proposed for V&V
in literature [83, 118, 142]. The correctness of differential equations-
based computer models, which are solved by finite difference or finite
element methods, was analysed using various testing methods: (i) com-
parison with known test solutions [29, 85], (ii) analysis of model beha-
viour under test conditions [23], (iii) comparison between model and
experimental data [34, 51].

Various techniques were applied to determine if the implementation
of the models, presented in the thesis, was correct. Model validation
was carried in each particular chapter by comparing simulations with
physical experiment data.
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4.1 Theoretical properties of solutions of differen-
tial equations

Maximum and minimum values

It is well established that PDEs and systems of PDEs of parabolic type
satisfy the maximum principle [48, 128]. The strong version of the
principle states that the maximum (and minimum) of the solution is
attained only on the boundary of the domain ΩT , i.e. at initial values
Ω× {0} or at the border of ΩT , and all values in the interior points must
be smaller (or greater than the minimum). The numerical solution must
follow the same principle: maximum (and minimum) is attained at the
boundary point of grid and values at inner points are smaller (greater)
[116].

Naturally, these conditions also follow from chemical/biological
applications of models. The maximum principle guarantees that concen-
trations of reagents cannot be greater than the amount provided in an
exterior solution. The minimum principle ensures that concentrations
do not become negative because in all models some boundary or initial
condition is 0.

Graphically the maximum principle for UME geometry models was
demonstrated by isolines in Fig. 2.13 which show that 0 ≤ CO2 ≤
0.253 mol/m3 for t = T .

Table 4.1: Maximum and minimum is compared between inner and
boundary points showing that the maximum principle is attained.
Model parameters: d = 100 µm, Glcoutside = 0.6 mol/m3.

Max in
inner points

Max at
boundary

Min in
inner points

Min at
boundary

CO2 0.252 95 0.253 3.340× 10−6 0

CGlc 0.590 66 0.6 7.081× 10−18 0

CH2O2 0.005 94 0.006 14 4.069× 10−28 0

CGll 0.021 15 0.021 99 4.240× 10−47 0

Computational tests of the maximum principle for the RC-SECM
model were provided in Table 4.1. As expected, the maximum and
minimum of numerical solutions UO2 , UGlc, UH2O2 , UGll was attained in
the boundary of the domain. In particular, UO2 ≤ 0.253 mol/m3 and

92



UGlc ≤ 0.6 mol/m3, which is due to boundary conditions, while the
upper limit of UH2O2 and UGll is computed by the model as it depends
on reaction rate, i.e. reaction rate constants, Glcoutside.

The maximum principle was tested for other models in in Table 4.2.
For SECM geometry models minimum values of 0 were attained at
the boundary according to the theory, while the maximum value was
slightly larger than expected 0.253 mol/m3 which can be attributed to
computational error and approximation error for the Neumann type
boundary condition.

In the case of fluorescence dyes models, only the nonlinear WGA
migration model was tested as the others are its simplified versions.
The maximum value of 0.13 µM was attained at the outer boundary of
the sphere according to (3.3). The minimum was attained at the inner
boundary r = 0 and it was slightly negative for some initial iterations
(k < 500) due to approximation errors for condition (3.3). Correct
minimum of 0 was attained at the initial time k = 0 as expected.

Table 4.2: Maximum principle is attained for other models presented in
the thesis.

Max in

inner points

Max at

boundary

Min in

inner points

Min at

boundary

CO2 from the recessed-UME model, recessed by Hin = 2 µm

0.253 + 8.6×10−10 0.253 + 8.7×10−10 3.597×10−5 0

CO2 from the outwarded-UME model, protrusion Hout = 2 µm

0.253 + 2.5×10−10 0.253 + 2.7×10−10 2.817×10−5 0

CO2 from the cone-UME model, cone height Hcone = 2 µm

0.253 + 6.8×10−10 0.253 + 6.8×10−10 3.632×10−4 0

Cout from the WGA model. Spheroid radius R = 134 µm

1.290×10−7 1.300×10−7 3.253×10−189 −1.075×10−64

Conservation of mass

Physical systems and their respective differential equations typically
follow some law of conservation of mass, energy, etc. [4, 121, 128, 135].
Conservation laws state that physical quantities, such as total mass,
energy, the net charge, etc., remain constant as the system evolves,
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i.e. differential equations, which govern the system, conserve those
quantities.

In the case of SECM at redox competition mode, concentrations of
surface-immobilized reagents CGOxox , CGOx ·Glc, CGOxre and CGOx ·O2

conserve the mass. The physical reason for the property is that molecules
of glucose oxidase GOxox and other 3 forms of it are immobilized, i.e.
fixed, on the surface, act as a catalyst for Glc/O2 reaction and can not be
consumed or moved.

Conservation of mass principle is formally derived as follows. Reac-
tion equations (1.6) are summed, which cancels right-hand side terms:

∂CGOxox

∂t
+
∂CGOx ·Glc

∂t
+
∂CGOxre

∂t
+
∂CGOx ·O2

∂t
= 0

for 0 < t ≤ T, 0 < r < rglass. (4.1)

(4.1) is integrated by
∫ t̃
0 dt, where t̃ – any fixed time. Initial conditions

(1.8), which sets CGOxox = 2.114× 10−8 mol/m2 and others to 0, are
inserted to obtain the conservation principle:

CGOxox + CGOx ·Glc + CGOxre + CGOx ·O2 = 2.114× 10−8 mol/m2

for t = t̃, 0 < r < rglass, (4.2)

which states that at any spatial point r and at time t̃ the total concentra-
tion of surface-immobilized reagents remains constant and is equal to
initial concentration of GOxox, i.e. 2.114× 10−8 mol/m2.

Obviously, the numerical solution Vk
j has to retain conservation prin-

ciple for all k > 0, 0 ≤ j < N2. A numerical version of the principle
follows from (4.2), but can be separately derived from approximation
formulas (1.37) by summing them and rewriting

V k+1
GOxox, j + V k+1

GOx ·Glc, j + V k+1
GOxre, j + V k+1

GOx ·O2, j
=

= V k
GOxox, j + V k

GOx ·Glc, j + V k
GOxre, j + V k

GOx ·O2, j ,

for k = 0, . . . ,K − 1, j = 0, . . . , N2 − 1. (4.3)

We repeatedly insert into (4.3) values at k, k − 1, . . . , 1 and then initial
condition (1.8) to derive conservation principle for numerical solution

V k+1
sum, j = V k+1

GOxox, j + V k+1
GOx ·Glc, j + V k+1

GOxre, j + V k+1
GOx ·O2, j

=

= 2.114× 10−8 mol/m2, for k = 0, . . . ,K, j = 0, . . . , N2 − 1. (4.4)
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Figure 4.1: Concentrations of surface-immobilized reagents and their
sum, which is always at 2.114× 10−8 mol/m2. (A)(B) fixed radius, (C)(D)
fixed time. Simulations were performed with Glcout = 0.6 mM, reaction
rate k1 = 100 M−1s−1.

Simulations have been performed to test if the numerical conser-
vation law is upheld. According to the calculations, for exterior Glc
concentration Glcout = 0.6 mM (fast reaction):

min
0≤k≤K
0≤j<N2

V k
sum, j = 2.113 999 999 999 77× 10−8,

max
0≤k≤K
0≤j<N2

V k
sum, j = 2.114 000 000 000 21× 10−8

and Glcout = 0.2 mM (slow reaction):

min
0≤k≤K
0≤j<N2

V k
sum, j = 2.113 999 999 999 66× 10−8,

max
0≤k≤K
0≤j<N2

V k
sum, j = 2.114 000 000 000 15× 10−8,

which show that at each (k, j) the sum differs from 2.114× 10−8 only
by computational error.
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Conservation law is visually demonstrated in Fig. 4.1, where a
dashed line represents V k

sum and is always at 2.114× 10−8 mol/m2. There-
fore, the law of conservation of mass is upheld.

4.2 Convergence of numerical solution

Convergence to exact solution

It is proven (see e.g. [72, 108, 116]), that numerical solutions of PDEs,
which are solved in the thesis, converge to exact solutions as the step
size approaches 0. In the case of the RC-SECM model,

Uki,j → Cdiff(t
k, zi, rj), V

k
j → Csurf(t

k, rj) as K, N1, N2 →∞.

Obviously, arbitrary large values cannot be chosen in practical com-
putations. The convergence is tested numerically by increasing the
number of mesh nodes (i.e. decreasing step size) and analyzing the in-
fluence on numerical solution. Typically, mesh size is increased 2 times
and then a higher-accuracy solution is compared with a lower-accuracy
one in some norm (maximum or Lp).

However, two numerical solutions of SECM models can not be dir-
ectly compared, because points of non-uniform grids ωh and ωh/2 do
not intersect. Therefore, Solution Uki,j has to be summed (integrated)
by some method. The most natural approach is to use the formula of
electric current (1.38):

i(t) = 2πnFDO2

rel∫
0

∂CO2

∂z

∣∣∣
z=d

r dr,

because it is the response of SECM experiment and the goal of numerical
computations is to calculate it accurately. The norm is defined for the
numerical equivalent Ik ≈ i(tk) in order to measure the error

‖I‖ = max
0≤k≤K

Ik. (4.5)

The convergence to the exact solution is illustrated in Fig. 4.2 by
increasing the size of spatial grid ωh. Curves of Electric current are
moving upwards in both tested cases (Fig. 4.2A,C) and the difference
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Figure 4.2: Left column: Convergence of current I as size of spatial
grid increases, right column: convergence of errors. (A)(B) d = 100 µm,
i.e. UME is positioned further from the substrate, (C)(D) d = 10 µm,
i.e. UME is positioned close to the substrate. Ihigh acc – the current,
calculated with the highest accuracy grid.

Figure 4.3: (A) convergence of current I as the size of temporal grid
increases. (B) convergence of errors. Ihigh acc is the current, calculated
with the highest accuracy grid.

between them decreases as N grows. Absolute errors are calculated in
Fig. 4.2B,D using the maximum norm (4.5). It can be concluded that the
error approaches 0 as N increases for the spatial grid.
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The analysis of the size of temporal grid ωτ demonstrated conver-
gence by temporal variable (Fig. 4.3).

Convergence of non-standard geometry models to the standard-
UME model

The numerical solution can be compared with the analytical solution
in order to validate the correctness of numerical schemes and test their
properties as shown in literature [5, 31, 130]. In more difficult cases, a
model can be simplified to the version with a known analytical solution.

According to our knowledge, even a simplified version of UME
geometry models, e.g. the standard-UME model, does not have an ana-
lytical solution. However, the numerical solution of different models of
UME geometries can be compared with the numerical solution of the
standard-UME model. It is expected that as the level of imperfectness in
the non-standard model approaches 0, measured electric current should
coincide with the current of the standard-UME model. It should be
noted, that only convergence can be tested because neither 0 imperfect-
ness can be plugged into the model, nor its arbitrary small value due
to computational limitations, e.g. all numbers are limited by computer
precision. The convergence between models is also not trivial as the dis-
crete grid, numerical schemes and even formula for current calculations
are different.

Computer simulations have been performed to test convergence of
the cone-UME model to standard-UME at the distance d = 100 µm.
It is shown in Fig. 4.4A, that electric current, calculated by the cone-
UME model, quickly approaches the current of standard-UME if hcone
is sufficiently small. In particular, the error of 0.1 %, measured by the
norm (4.5), is reached at hcone = 0.01 µm, which is about 0.01 % of full
distance between the electrode and surface (Fig. 4.4B).

Furthermore, the convergence of the outwarded-UME model has
also been tested at the same distance d = 100 µm (Fig. 4.5A). The
electric current of the outwarded-UME model approaches standard-
UME current much slower and hout = 10−5 µm (about 10−5 % of full
distance) is necessary to reach just 1 % error between models (Fig. 4.5B).
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Figure 4.4: Convergence of cone-UME current Icone to the case of
standard-UME Istand-UME. (A) electric currents, (B) errors.

Figure 4.5: Convergence of outwarded-UME current Iout to the case of
standard-UME Istand-UME. (A) electric currents, (B) errors.

However, the convergence is registered and we conclude that this
property holds. The recessed-UME case is not presented, but the model
converges quickly due to better numerical properties.

4.3 Method of a test solution

A numerical algorithm, which solves a differential equation, can be
verified by inserting some freely chosen function into the differential
equation, calculating derivatives and subtracting the error in order for
the function to satisfy the equation. Possibly, initial-boundary condi-
tions have to be also modified, but the chosen function should satisfy
these conditions to preserve the behaviour and properties of a real solu-
tion. Because of complicated boundary conditions and non-rectangular
domains, the construction of a test solution is complicated for SECM
models, but it can be done for dye penetration models.
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In order to test the solution of the WGA model (3.1)–(3.4), equations
with their initial-boundary conditions have been modified:

∂Cout
∂t

= D
1

r2
∂

∂r

(
r2
∂Cout
∂r

)
− kbind

(
Bmax−Cbind

)
Cout + f(t, r)

∂Cbind
∂t

= kbind
(
Bmax − Cbind

)
Cout for 0 < t ≤ T, 0 < r < R,

Cout
∣∣
r=R

= µ(t), t > 0,

∂Cout
∂r

∣∣∣∣
r=0

= 0, t > 0,

Cout
∣∣
t=0

= 0, 0 ≤ r ≤ R,
Cbind

∣∣
t=0

= 0, 0 ≤ r ≤ R.
(4.6)

The test solution Cout = tr2, which satisfies initial-boundary condi-
tions (µ(t) has to be computed), has been chosen. By plugging it into the
2nd equation of system (4.6), ordinary differential equation is derived
as r is considered a parameter:

∂Cbind
∂t

= kbindtr
2
(
Bmax − Cbind

)
,

which is solved by separation of variables method to obtain

Cbind = Bmax

(
1− e−0.5kbindt2r2

)
.

In order for the chosen Cout to satisfy (4.6), functions have to be taken

f(t, r) = r2 − 6Dt+ kbindBmaxtr
2e−0.5kbindt

2r2 ,

µ(t) = R2t.

The numerical scheme (3.13) have been adjusted according to the
changes made. The diffusion equation (4.6) is discretised by

Uk+1
i − Uki

τ
= D

(
U i−1 − 2U i + U i+1

h2
+

1

ri

U i+1 − U i−1
h

)
−

− kbind
(
Bmax − V i

)
U i + f(tk+1, ri), i = 1, . . . , N − 1,

and at the boundary r = R approximation UkN = µ(tk) for k = 0, . . . , K
is used. However, these modifications do not change the algorithm and
the approximation error of second order is retained.
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In order to compare numerical solutions U and V with exact solutions
Cout and Cbind, relative error in the maximum norm is calculated by

||εU || = max
0≤k≤K
0≤i≤N

|Uki − Cout(tk, ri)|

||εV || = max
0≤k≤K
0≤i≤N

|V k
i − Cbind(tk, ri)|.

The ratio between errors of grids of different size is used to evaluate
order of the method

θ =
||ε||K×N
||ε||2K×2N

,

where ||ε||K×N denotes the error of (K ×N)-sized grid.

Simulations have been performed using increasingly larger grids and
results are shown in Table 4.3. It is evident that the errors ||εU || and
||εV || for both solutions Cout and Cbind are small and tend to 0 as the size
of grid increases. Moreover, the ratio between errors θ is ∼4, then the
size of the grid is increased by 2 in both directions. It shows that the
order of approximation error is second, i.e. the error is O(τ2 + h2) as
theoretically predicted.

Table 4.3: Errors between the numerical and exact solution depending
on the grid size for functions Cout and Cbind.

K N ||εU || θU ||εV || θV

1000 100 8.94× 10−14 1.11× 10−12

2000 200 2.23× 10−14 4.009 2.78× 10−13 3.993

4000 400 5.59× 10−15 3.989 6.94× 10−14 4.006

8000 800 1.40× 10−15 3.993 1.74× 10−14 3.989
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General conclusions

Three mathematical and numerical models were presented in the thesis:
(i) SECM acting in the redox-competition mode (RC-SECM mode), (ii)
geometry of SECM electrodes and (iii) the uptake of dies into cell spher-
oids. The models were written using reaction-diffusion equations, which
were solved by numerical methods. In all cases, computer simulations
were compared with real physical experiments and good agreement was
achieved to demonstrate the credibility of the models. Finally, a number
of numerical experiments were provided to analyse the properties of
the modelled systems. Following general conclusions were made:

• The novel computer model of SECM is an appropriate tool for
investigation of RC-SECM mode behaviour and determination of
reaction and diffusion coefficients. In particular, the diffusion coef-
ficient of oxygen is inversely proportional to the concentration of
glucose in the medium and the formula to calculate this coefficient
has been proposed for the RC-SECM mode. Calculations show
that electric signal, measured by SECM electrode, significantly
decreases due to the presence of glucose or other materials.

• Mathematical models, which describe three most common non-
standard geometries of ultramicroelectrode (UME), is an applic-
able technique to evaluate the difference from standard-UME in
electric current measured by SECM electrodes. It was determined,
that outwarded-UME provides the highest measurement errors,
whereas errors of recessed-UME and cone-UME experiments are
approximately 2 times lower with the same level of deviation from
standard UME.

• Using the model of R6G dye uptake into cellular spheroids, the
diffusion coefficient in the cellular matrix has been calculated and
it is about 4 times higher than the diffusion coefficient of cells,
used in the experiment. By analysing accumulation dynamics into
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spheroids, time necessary to incubate the centre zone of the spher-
oid is calculated, which is relevant for the practical application of
fluorescent dyes in chemotherapeutic drug research. It is shown
that the dynamics also strongly depend on the size and density of
the spheroid.

• The dynamics of WGA-Alexa488 dye penetration into the spheroid
is analysed using a nonlinear case of the model. The effect of bind-
ing rate and the number if binding sites on penetration dynamics
is shown to be nonlinear because of the process of binding to the
cells.
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Santrauka (Summary in
Lithuanian)

Tyrimų sritis

Pasitelkus kompiuterinį modeliavimą disertacijoje tiriamos sudėtin-
gos cheminės ir biofizikinės sistemos, kurios yra aprašomos dalinių
išvestinių lygtimis (DIL) su netiesinėmis kraštinėmis sąlygomis ir DIL
sudėtingos geometrijos (nestačiakampėse) srityse. Šios DIL sprendžia-
mos baigtinių skirtumų metodu ir kitais skaitiniais algoritmais.

DIL sprendimo su netiesinėmis kraštinėmis sąlygomis problemos
kyla dėl cheminių ir biologinių procesų matematinio modeliavimo. Ty-
rimai nestačiakampėse srityse yra aktualūs dėl poreikio įvertinti ma-
tavimo prietaisų paklaidas, atsirandančias dėl geometrijos nukrypi-
mo nuo standarto. DIL netiesinės sistemos yra pritaikytos tyrinėti
chemoterapinių vaistų patekimą į audinius.

Tikslas

Tyrime buvo suformuluoti du pagrindiniai tikslai:

1. Sukurti skenuojančio elektrocheminio mikroskopo (SECM) ma-
tematinius modelius ir reikalingas kompiuterines programas re-
akcijos-difuzijos procesams ir SECM elektrodo geometrinėms sa-
vybėms modeliuoti.

2. Sudaryti kompiuterinį modelį fluorescencinių dažų prasiskverbi-
mui į sferoido formos ląstelių struktūrą.
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Tikslams pasiekti buvo iškeltos šios užduotys:

• Sukurti matematinius ir skaitinius modelius (i) SECM, veikiančio
oksidacijos-redukcijos konkurencijos režimu, (ii) SECM su įvairiais
nestandartiniais ultramikroelektrodais (UME) ir (iii) dažų prasi-
skverbimui į ląstelių sferoidus.

• Parašyti kompiuterines programas, atliekančias skaičiavimus di-
deliu tikslumu.

• Pasiekti modelio ir eksperimentinių duomenų suderinamumą ap-
skaičiuojant nežinomus modelių parametrus.

• Apskaičiuoti reakcijos kinetines konstantas ir deguonies difuzijos
koeficientus SECM eksperimentams.

• Sukurti algoritmus, kuriais įvertinamas elektros srovės skirtumas
(paklaidos), matuojant standartiniu elektrodu ir neidealios formos
elektrodais.

• Ištirti fluorescencinių dažų, įsiskverbiančių į ląstelių sferoidus,
savybes priklausomai nuo ląstelių koncentracijos, prisijungimo
taškų kiekio ir kt.

Metodai

SECM oksidacijos-redukcijos konkurencijos (RC-SECM) režimu mo-
deliuojamas nestacionarių reakcijos-difuzijos lygčių sistema su netie-
sinėmis 3-iojo tipo kraštinėmis sąlygomis. SECM geometrija modeliuo-
jama difuzijos lygtimis nestačiakampėse geometrijose. Ląstelių sferoidai
modeliuojami nestacionariomis reakcijos-difuzijos lygtimis, kuriose yra
netiesiniai nariai, atsakingi už reakcijas tarp ląstelių ir fluorescencinių
dažų. Šiems procesams buvo atlikti skaitiniai eksperimentai. Autorius
sukūrė kompiuterinius modelius MATLAB ir Python programavimo
kalbomis. Skaičiavimai buvo atlikti naudojant Vilniaus universiteto
Matematikos ir informatikos fakulteto superkompiuterį.

Naujumas

• Disertacijoje pasiūlytas naujas matematinis modelis SECM, vei-
kiančio oksidacijos-redukcijos konkurencijos režimu. Pagrindinis
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šio modelio naujumas yra SECM modelių, aprašančių difuziją,
sujungimas su reakcijų lygtimis naudojant netiesinę 3-iojo tipo
kraštinę sąlygą.

• Nestandartinės geometrijos elektrodų tyrimas leidžia įvertinti
matavimų paklaidas tarp eksperimentų, atliktų su neidealios for-
mos elektrodu ir standartiniu tobulu elektrodu. SECM įrangos
tyrimai yra populiarėjanti sritis, bet šiame darbe pirmą kartą buvo
išsamiai išnagrinėtas dažniausių geometrijos nukrypimų poveikis
matavimams.

• Pasiūlytas efektyvus netolygaus diskretaus tinklo sudarymo meto-
das, skirtas SECM modeliams stačiakampėse ir nestačiakampėse
elektrodo geometrijose.

• Pirmą kartą šiame tyrime modeliuotas fluorescencinių dažų prasi-
skverbimas ir kaupimasis ląstelių sferoiduose. Pagrindinis nauju-
mas yra nežinomų parametrų dažų molekulėms apskaičiavimas ir
sėkmingas modelių validavimas fiziniu eksperimentu.

Ginami teiginiai

• Pasiūlyti kompiuteriniai modeliai yra tinkamos priemonės simu-
liuoti analizuotas sistemas, t. y. RC-SECM režimą,
SECM su skirtingomis elektrodo geometrijomis ir fluorescencinių
dažų skverbimąsi.

• Kiekvieno modelio korektiškumas patvirtinas (i) parodant gerą
atitikimą tarp modeliavimo ir fizinio eksperimento duomenų ir
(ii) patikrinant skaitinių algoritmų įgyvendinimą tam skirtais veri-
fikavimo metodais.

• Realizuoti skaitiniai algoritmai yra tikslūs (antros eilės), besąly-
giškai stabilūs ir leidžia DIL uždavinį suvesti į tiesinių lygčių
sistemas, kurios efektyviai sprendžiamos perkelties metodu.

• RC-SECM režime deguonies difuzijos koeficientas yra atvirkščiai
proporcingas ištirpusių medžiagų, tokių kaip gliukozė, koncentra-
cijoms.

• Didžiausios matavimų paklaidos lyginant su standartiniu elekt-
rodu padaromos su išlindusiu elektrodu. Įtrauktam ir kūginiam
elektrodui šis skirtumas mažesnis. Be to, šios paklaidos mažėja,
kai didėja santykis tarp izoliatoriaus ir elektrodo spindulių.
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Disertacijos struktūra

Disertaciją sudaro šios dalys: įvadas, keturi skyriai, išvados ir literatūros
sąrašas.

S.1 skyriuje analizuojamas SECM modelis, aprašytas 8 netiesinių
reakcijos-difuzijos lygčių sistema. Ji sprendžiama neišreikštiniu baigti-
nių skirtumų metodu. Skaitinis sprendinys lyginamas su fizinio eksperi-
mento rezultatais ir, priderinus modeliavimo duomenis su eksperimento
rezultatais, apskaičiuojami reakcijos koeficientai ir difuzijos parametrai.

S.2 skyriuje pristatyti 4 SECM modeliai: 1 standartinės geometri-
jos (iš S.1 skyriaus) ir 3 nestandartinės. DIL, aprašančios UME šiose
geometrijose, yra išsprendžiamos skaitiškai ir skaitinio eksperimento
rezultatai įtrauktam elektrodui palyginami su fiziniu eksperimentu pa-
rodant gerą atitikimą. Tada apskaičiuojamas paklaidos tarp rodmenų
standartinėje ir nestandartinėse geometrijose bei tiriama kitų SECM
geometrijos parametrų įtaka matuojamai elektros srovei.

S.3 skyriuje fluorescencinių dažų įsisavinimas 3D ląstelių kultūrose
modeliuojamas reakcijos-difuzijos lygtimis, kurios sprendžiamos skaiti-
niais metodais. Pateikiami modeliai yra skirti išanalizuoti dviejų tipų
dažus ir geometrines ląstelių sferoidų savybes. Skaitinio tyrimo rezul-
tatai palyginami su biologiniu eksperimentu. Difuzijos koeficientas
tarpląstelinėje terpėje ir sferoidų prisotinimo dažais laikas apskaičiuoja-
mi naudojant pateiktus modelius.

Siekiant pagrįsti algoritmų įgyvendinimo korektiškumą, įvairūs mo-
delio verifikavimo būdai buvo išanalizuoti ir pritaikyti ketvirtame diser-
tacijos skyriuje.

S.1 SECM modeliavimas oksidacijos-redukcijos
konkurencijos režime naudojant reakcijos-difu-
zijos lygtis

S.1.1 Fizinis modelis

Skenuojanti elektrocheminė mikroskopija (SECM) yra pažangus elektro-
cheminis metodas, pagrįstas matavimais naudojant ultramikroelektrodą
(UME). Naudojantis šiuo prietaisu UME, kurio laidžioji dalis yra kelių
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S.1 pav.: SECM matavimo schema oksidacijos-redukcijos konkurencijos
režime.

dešimtųjų mikrometrų intervale, o izoliatoriaus dalis yra kelių šimtų
mikrometrų diapazone, nuskaito 3D erdvę arti katalitinių ar elektroche-
miškai aktyvių paviršių [12].

Šiame skyriuje nagrinėjamas oksidacijos-redukcijos konkurencijos
režimas (RC-SECM), kuris naudojamas tyrimuose fermentinei kinetikai
įvertinti bei vizualizuoti [68, 82]. Pagal šį režimą ištirpęs deguonis
sunaudojamas dviem konkuruojančiais būdais (S.1 pav.): vienas yra
pagrįstas UME vykstančia elektrochemine reakcija, o kitas – reakcija
ant nelaidaus paviršiaus, katalizuojama imobilizuoto fermento, pvz.,
gliukozės oksidazės (GOx), kuri naudoja O2 kaip elektronų akceptorių.
Šiuo režimu tiek (i) GOx, imobilizuoti ant nelaidžiojo paviršiaus, tiek (ii)
UME, veikiantys esant neigiamam potencialui, konkuruoja dėl ištirpusio
deguonies ([99]).

Kai vandenyje yra ištirpusio deguonies O2, gliukozė Glc yra katali-
zuojama GOx. Šio proceso metu sunaudojamas O2 ir Glc, o gaminami
vandenilio peroksidas H2O2 ir gliukonolaktonas Gll pagal lygtis:

GOxox + Glc
k1−−→←−−
k−1

GOx ·Glc
k2−−→ GOxre + Gll (S.1)

GOxre + O2

k3−−→←−−
k−3

GOx ·O2 (S.2)

GOx ·O2

k4−−→←−−
k−4

GOxox + H2O2 (S.3)

UME srovės vertė priklauso nuo ištirpusio deguonies koncentracijos
ir visų kitų elektrochemiškai aktyvių medžiagų buvimo šalia UME pa-
viršiaus bei nuo elektrinio potencialo, veikiančio UME. Naudojamoje
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RC-SECM sistemoje (S.1 pav.) deguonis sunaudojamas dviem būdais:
(i) vykdant redukcijos reakciją UME paviršiuje

O2 + 4 e− + 4 H+ −−→ 2 H2O (S.4)

ir (ii) fermentinių reakcijų metu, kai deguonis veikia kaip elektronų
akceptorius, kuris prisijungia elektronus iš GOx pagal (S.1), ir perduoda
juos deguoniui pagal reakcijas (S.2)–(S.3). Reakcijų greičių konstantos k
buvo paimtos iš tyrimų [27, 89] ir koreguotos pagal cheminio eksperi-
mento duomenis.

S.1.2 Matematinis modelis

Dėl simetrijos aplink centrinę elektrodo ašį modelis užrašomas cilind-
rinėse koordinatėse. Cilindro formos srityje atliekami SECM matavimai
(S.1 pav.) yra pakeisti į 2D sritį S.2 pav.

S.2 pav.: Modeliavimo srities schema. Pavaizduotos 8 modeliuotos
medžiagos - 4 difunduojantys reagentai bei 4 fermento GOx formos,
kraštinės sąlygos 4-ioms difunduojančioms medžiagoms ir išorinis srau-
tas.

Difuzijos procesai išreiškiami antruoju Fiko dėsniu [87]:

∂CO2

∂t
= DO2 ∆CO2 ,

∂CGlc
∂t

= DGlc ∆CGlc,

∂CH2O2

∂t
= DH2O2 ∆CH2O2 ,

∂CGll
∂t

= DGll ∆CGll, 0 < t ≤ T, 0 < z < d, 0 < r < rglass.

(S.5)
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Šiose lygtyse:

CO2 , CGlc, CH2O2 ir CGll yra atitinkamų difunduojančių reagentų
koncentracijos, kurios išreiškiamos kaip laiko t, erdvinių koordi-
načių z ir r funkcijos.

DO2 , DGlc, DH2O2 ir DGll yra difuzijos koeficientai.

d yra atstumas tarp fermentu modifikuoto paviršiaus ir elektrodo.
Skaitinio eksperimento metu d keičiamas nuo 1 µm iki 120 µm. Tai
atitinka elektrodo stumdymą aukštyn ir žemyn cheminio eksperi-
mento metu.

rglass = 80 µm yra izoliuotos srities spindulys.

T yra skaičiavimo eksperimento trukmė, matuojama sekundėmis.

Laplaso operatorius ∆ cilindrinėse koordinatėse su centrine simet-
rija yra

∆C =
1

r

∂C

∂r

(
r
∂C

∂r

)
+
∂2C

∂z2
.

Cheminės reakcijos (S.1)–(S.3) paviršiuje z = 0 yra išreiškiamos
reakcijų lygtimis fermentams:

∂CGOxox

∂t
= −k1CGOxoxCGlc + k−1CGOx ·Glc + k4CGOx ·O2−

− k−4CGOxoxCH2O2 ,

∂CGOx ·Glc
∂t

= k1CGOxoxCGlc − (k−1 + k2)CGOx ·Glc,

∂CGOxre

∂t
= k2CGOx ·Glc − k3CGOxreCO2 + k−3CGOx ·O2 ,

∂CGOx ·O2

∂t
= k3CGOxreCO2 − k−3CGOx ·O2 − k4CGOx ·O2+

+ k−4CGOxoxCH2O2 ,

0 < t ≤ T, 0 ≤ r < rglass,

(S.6)

kur CGOxox , CGOx ·Glc, CGOxre ir CGOx ·O2 yra paviršiuje imobilizuotų
fermentų koncentracijos, priklausančios nuo laiko t ir spindulio r.

Difunduojančioms medžiagoms reakcijos greičio dėsniai ant pagrin-
do z = 0 yra išvedami iš cheminių lygčių (S.1)–(S.3) taip pat kaip (S.6).
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Jie yra naudojami kaip 3-ojo tipo kraštinės sąlygos kraštui z = 0:

DO2

∂CO2

∂z
= k3CGOxreCO2 − k−3CGOx ·O2 ,

DGlc
∂CGlc
∂z

= k1CGOxoxCGlc − k−1CGOx ·Glc,

DH2O2

∂CH2O2

∂z
= −k4CGOx ·O2 + k−4CGOxoxCH2O2 ,

DGll
∂CGll
∂z

= k2CGOx ·Glc, 0 < t ≤ T, z = 0, 0 ≤ r < rglass.

(S.7)

Fermentinės reakcijos pradžioje deguonies koncentracija difuzijos
sluoksnyje yra 253 µM (M = mol/L), aktyviosios gliukozės oksidazės
GOx paviršiaus koncentracija yra 2,114 · 10−8 mol/m2. Laikoma, kad
visų kitų reagentų pradžioje nėra, todėl CGOx ·Glc = CGOxre = CGOx ·O2

= 0, t = 0, 0 < r < rglass:

Likusios kraštinės sąlygos sistemai (S.5) yra nurodytos S.2 pav.

S.1.3 Skaitinis sprendimas ir SECM atsakas

Turi būti išspręsta 8 diferencialinių lygčių sistema (S.5)–(S.6) su pra-
dinėmis-kraštinėmis sąlygomis. 4 difuzijos lygtims (S.5) buvo nau-
dojamas kintamos krypties neišreikštinis baigtinių skirtumų metodas
(ADIFDM), kuris yra klasikinis difuzijos lygčių 2D erdvėje sprendimo
metodas. Šio metodo efektyvumą demonstravo įvairios tyrimų grupės
[19, 120]. Nedifunduojančių reagentų paprastųjų diferencialinių lygčių
sistema (S.6) buvo išspręsta simetriniu Eulerio metodu.

Pagrindinis parametras, žinomas kaip ultramikroelektrodo atsakas,
yra elektros srovė, kuri matuojama elektrodu ties z = 0, 0 < r < rel
ir susidaro iš O2 srauto, t. y. lemiama CO2 gradiento dydžio. Su SECM
pamatuotos srovės grafikas dar vadinamas artėjimo kreive, nes fiziniai
eksperimentai yra atliekami artinant UME arčiau fermentu modifikuoto
paviršiaus, t. y. artėjama prie paviršiaus ir kiekvieną kartą sustojus
registruojamas elektrinis signalas. Srovė per elektrodą apskaičiuojama
kaip laiko funkcija [11]:

i(t) = 2πnFDO2

rel∫
0

∂CO2

∂z

∣∣∣
z=d

r dr, (S.8)
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kur n = 4 yra pasikeistų elektronų skaičius ir F – Faradėjaus konstan-
ta. Integralas (S.8) buvo apytiksliai apskaičiuotas pagal antrosios eilės
Niutono-Koteso kvadratūros formules.

S.1.4 Modeliavimo ir eksperimento rezultatai

Kompiuterinio modeliavimo rezultatai buvo palyginti su realiais RC-
SECM eksperimentais (S.3 pav.), kurie buvo atlikti su 6 fiksuotomis
gliukozės koncentracijos vertėmis: tarp 0 mM (be fermentinės reakcijos)
ir 0,6 mM. Kaip ir tikėtasi, artėjimo kreivės su didesne Glc koncentra-
cija buvo žemiau nei mažesnės koncentracijos kreivės. Ši savybė yra
RC-SECM režimo esmė, nes O2 vartojimas ant elektrodo yra sulėtėjęs
dėl konkurencijos su O2 vartojimu fermentinės reakcijos metu, kuri yra
greitesnė esant didesnei Glc koncentracijai. Be to, artėjimo kreivių pozi-
cijoms taip pat turėjo įtakos O2 difuzijos koeficiento DO2 skaičiavimas
pagal formulę:

DO2 = 4,7 · 10−10 +
2,7 · 10−10

Glcout + 0.4
, (S.9)

kur Glcout – Glc koncentracija išoriniame tirpale. (S.9) buvo išvesta pri-
derinus skaitinio eksperimento duomenis prie cheminio eksperimento
ir koeficientus suskaičiavus mažiausių kvadratų metodu. Kadangi DO2

mažėja esant didesniam Glc kiekiui, pastoviosios būsenos srovė, ap-
skaičiuota tiek modeliuojant, tiek eksperimentu, taip pat buvo mažesnė.

S.3 pav.: Srovės ir atstumo d priklausomybė modelio bei eksperimento
duomenims, kai skirtingos gliukozės koncentracijos įpiltos į buferinį
tirpalą.
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Ties mažesniais atstumais d, kur stebimas staigus elektrinio signalo
pakilimas, modelio ir eksperimentinių duomenų atitikimas buvo šiek
tiek prastesnis. Tai galima paaiškinti matavimo paklaidomis, priklau-
somybe nuo eksperimento rezultatų kalibravimo ir modelio prielaidų
neatitikimu mažiausiais atstumais (d . 1 µm) dėl naujų fizinių veiksnių.
Galima laikyti, kad kompiuterinių ir cheminių eksperimentų rezultatai
labai gerai sutapo.

S.1.5 Išvados

Šiame skyriuje pirmą kartą literatūroje pateiktas SECM, veikiančio
oksidacijos-redukcijos konkurencijos režimu, modelis, kuris buvo užrašy-
tas 8 reakcijos-difuzijos lygčių sistema. Naudojant šį modelį buvo
apskaičiuotas deguonies sunaudojimo greitis fermentinėje reakcijoje,
įvertinta fermentinių reakcijų kinetika ir nustatytas deguonies difuzijos
koeficientas skirtingos sudėties terpėse. Apskaičiavus šiuos parametrus
buvo pasiektas geras atitikimas su cheminio eksperimento duomenimis.

S.2 Elektrodo geometrijos įtakos su SECM matuo-
jamai srovei matematinis modeliavimas

S.2.1 Įžanga

SECM yra galingas įrankis lokalizuotiems elektrochemiškai aktyvių
paviršių tyrimams nuskaitant juos ultramikroelektrodu [74]. Siekiant
tikslių matavimo rezultatų, UME turėtų būti kruopščiai paruoštas ir
prieš matuojant nustatyta elektrodo geometrija – RG faktorius (santykis
tarp elektrodo ir izoliatoriaus spindulio), elektrodo paviršiaus savybės.
UME gamyba vis dar yra labai sudėtinga ir atliekama rankiniu būdu,
todėl gamyboje sunku išvengti UME geometrijos pokyčių nuo idea-
liai lygios formos. Be to, UME geometrija keičiasi kiekvieną kartą, kai
UME yra šlifuojamas ar netyčia pažeidžiamas eksperimento metu pa-
lietus tiriamąjį paviršių. Šie UME geometrijos pokyčiai sukelia didelius
UME srovės svyravimus. Paprastas ir laiką taupantis būdas UME geo-
metrijai nustatyti būtų eksperimentu gautų srovės kreivių palyginimas
su kreivėmis, gautomis pagal konkretų matematinį modelį. Siekiant
įvertinti UME geometrijos įtaką eksperimento rezultatams, atlikti skait-
meniniai modeliavimai [13, 39, 120, 123], bet vis dar reikalingas bendras
metodas padedantis nustatyti UME geometriją.
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Šiame skyriuje aprašyti matematiniai modeliai, skirti ištirti keletą
UME geometrijų: standartinį UME, įtrauktą UME su laidžia dalimi,
įtraukta į izoliatoriaus vidų, išlindusį UME su laidžia dalimi, išlindusia
iš izoliatoriaus, ir kūginį UME kūgio formos laidžia dalimi, išlindusia iš
izoliatoriaus. Šis tyrimas yra skirtas biologinių sistemų be oksidacijos-
redukcijos mediatorių tyrimui, o pateikto metodo pranašumas yra tas,
kad galima atpažinti UME geometriją, registruojant deguonį buferinia-
me tirpale neigiamo grįžtamojo ryšio režimu SECM.

S.2.2 Elektrodo geometrijos ir jų matematiniai modeliai

S.4 pav.: Modeliavimo sričių schemos su kraštinėmis sąlygomis, svar-
biais UME geometrijos parametrais ir kt. (A) Standartinis UME, (B)
įtrauktas UME, kurio įtraukimo gylis Hin, (C) išlindęs UME su išsikiši-
mo aukščiu Hout, (D) kūginis UME su pagrindo kampu α.

Standartinio elektrodo matematinis modelis

Stačiakampė sritis S.4A pav. naudojama standartinio UME geometrijai
pavaizduoti. Deguonies difuzija užrašoma:

∂C

∂t
= DO2

(
∂2C

∂r2
+

1

r

∂C

∂r
+
∂2C

∂z2

)
,

0 < t ≤ T, 0 < z < d, 0 < r < rglass, (S.10)
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kur C yra O2 koncentracija, išreikšta kaip laiko t ir 2 erdvinių koordina-
čių r ir z funkcija. T yra skaičiavimo eksperimento trukmė, d – atstumas
nuo paviršiaus iki aktyvios elektrodo dalies, rel = 5µm yra laidžiosios
dalies spindulys ir rglass = 80 µm – UME izoliuotos dalies spindulys.
Deguonies difuzijos koeficientas vandenyje DO2 yra 1,105 · 10−9 m2/s
[74].

Pradinė sąlyga yra C = 253 µM už t = 0, 0 < z < d, 0 < r < rglass.
Visos reikalingos kraštinės sąlygos parodytos S.4A pav.

UME srovės stipris apskaičiuojamas pagal (S.8).

Elektrodo su įtraukta laidžia dalimi matematinis modelis

Analizavome situaciją, kai aktyvioji (laidžioji) UME dalis yra įtraukta
gyliu Hin į izoliatoriaus dalį. Atstumas nuo paviršiaus iki įtraukto
UME izoliacinės dalies vis dar yra d, tačiau atstumas tarp paviršiaus
z = 0 (eksperimente tai – aktyvus paviršius) ir UME laidžios dalies
yra din = d + Hin. Šis atstumas visada yra didesnis nei d, taigi šioje
geometrijoje laidžioji UME dalis yra toliau nuo paviršiaus lyginant su
idealios formos plokštumą turinčiu UME. Modeliavimo sritis S.4B pav.
susideda iš 2 sujungtų stačiakampių: didesnio aukštis d yra toks pat
kaip standartiniame UME S.4A pav., o aukščio Hin mažesnysis atitinka
įtrauktą dalį.

Difuzijos lygtis (S.10), pradinė sąlyga ir didžioji dalis kraštinių sąlygų
išlieka tos pačios, tačiau pateikiamos naujoje srityje, kaip parodyta S.4B
pav. Pasikeičia šios sąlygos: kraštinė sąlyga ant elektrodo yra C =
0, t > 0, z = din, 0 < r ≤ rel, o įtrauktoje dalyje prie izoliatoriaus
yra nauja deguonies srauto blokavimo sąlyga ∂C

∂r = 0, t > 0, d < z <
din, r = rel.

Norint apskaičiuoti srovę, naudojama lygtis, panaši į (S.8):

i(t) = 2πnFDO2

∫ rel

0

∂C

∂z

∣∣∣
z=din

rdr. (S.11)

Elektrodo su išlindusia laidžia dalimi matematinis modelis

Išlindęs UME modeliuojamas kaip laidaus paviršiaus cilindras, išlindęs
iš UME izoliacinės dalies į difuzijos sritį. Yra 2 UME laidžiosios cilindro
dalys: disko formos elektrodo galas kaip standartiniame UME ir cilindro
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šonas (S.4C pav.). Tai reiškia, kad aktyviosios UME dalies paviršiaus
plotas yra didesnis nei standartinio UME ir ši sritis priklauso nuo išsi-
kišimo aukščio Hout. Atstumas tarp tyrimų paviršiaus (z = 0) ir UME
laidžiojo paviršiaus išlieka d, tačiau atstumas nuo tyrimų paviršiaus iki
izoliuotosios išorinės UME dalies padidėja iki dout = d + Hout. Taigi,
net kai d priartėja prie 0, deguonies difuzija į išlindusį UME nėra užblo-
kuota, nes pro UME cilindro šonus patenka deguonis. Tai yra esminis
skirtumas nuo ankstesnių modelių.

Difuzijos lygtis (S.10) ir pradinės-kraštinės sąlygos išlieka tokios
pačios kaip standartiniame UME, išskyrus naują kraštinę sąlygą cilindro
šone C = 0, t > 0, d ≤ z ≤ dout, r = rel ir sąlygą izoliatoriui, kuris
šiuo atveju yra dout atstumu nuo paviršiaus: ∂C

∂z = 0, t > 0, z =
dout, rel < r < rglass.

Srovė per elektrodo aktyvią dalį skaičiuojama kaip dviejų integralų
suma:

i(t) = 2πnFDO2

∫ rel

0

∂C

∂z

∣∣∣
z=d

rdr + 2πnFDO2rel

∫ dout

d

∂C

∂r

∣∣∣
r=rel

dz.

(S.12)

Elektrodo su kūgine laidžia dalimi matematinis modelis

Valant elektrodus, o tai dažniausiai daroma švitriniu popieriumi, gali at-
sirasti smulkių, bet aštrių pažeidimų laidžiojoje dalyje. Nagrinėjamame
kūginiame UME šie nelygumai modeliuojami vienu suvidurkintu išlin-
dusiu kūgiu. Tikimasi, kad iš modelio su šia viena išlindusia dalimi
galima geriau suprasti veikimą elektrodo su nelygiais aktyviais pavi-
ršiais.

Lygties (S.10) sprendimo sritis yra stačiakampis su vienu iškirptu
kampu, reiškiančiu kūginę laidžiąją dalį. Kūgio kraštas sudaro kampą α
su kūgio pagrindu. Atstumas tarp tyrimų paviršiaus ir kūgio viršūnės
yra d, o atstumas nuo šio paviršiaus iki izoliatoriaus yra dcone = d+Hcone,
kur kūgio aukštis Hcone = rel/tan(α). Akivaizdu, kad laidžiosios dalies
plotas yra didesnis nei standartinio UME, o tyrimų paviršius nepasiekia
izoliatoriaus net su d = 0 panašiai kaip išlindusio UME atveju. Pradinės-
kraštinės sąlygos yra įprastos, išskyrus sąlygą ant kūgio šono UME
aktyviai daliai:

C = 0, t > 0, 0 ≤ r ≤ rel, z = r tanα+ d.
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Srovės kryptis per kūginį UME yra statmena kūgio šonui, todėl nor-
malinė išvestinė ~n, sudaranti kampą α su r ašimi (pagal S.4D pav.),
naudojama apskaičiuoti srovės stipriui:

i(t) =
2πnFDO2

cosα

∫ rel

0

∂C

∂~n
rdr. (S.13)

S.2.3 Skaitinis sprendimas

Lygtis (S.10) visose 4 skirtingose geometrijose su atitinkamomis pra-
dinėmis-kraštinėmis sąlygomis buvo išspręsta skaitiniu būdu, naudo-
jant kintamos krypties neišreikštinį baigtinių skirtumų metodą [3, 93].
Algoritmai, sprendžiantys uždavinį, buvo realizuoti naudojant Python
su Numpy biblioteka. Buvo pasirinktas netolygus tinklas, sudarytas iš
200× 200 taškų, ypač sutirštinant tinklo taškus, esančius šalia elektrodo,
ir prie aštrių nestandartinės geometrijos kampų. Laiko parametras T
buvo paimtas pakankamai didelis, kad būtų užtikrintas stabilus sprendi-
nys. Atliekant skaitinį eksperimentą nustatyta, kad analizuotų elektrodų
srovės kreivėms stabilizuotis pakanka T = 6 s ir tam reikia maždaug
10 · 103 − 250 · 103 laiko žingsnių, priklausomai nuo UME geometrijos.

S.2.4 Modeliavimo rezultatai

Eksperimento duomenų ir matematinio modeliavimo rezultatų paly-
ginimas

Įtraukto UME srovės stiprio kreivė buvo apskaičiuota naudojant mate-
matinį modelį ir palyginta su eksperimento būdu gautais duomenimis,
naudojant realų įtrauktą UME, pavaizduotą S.5A pav. Duomenys rodo
gerą atitikimą mažesnėms d reikšmėms, kaip parodyta S.5B pav., bet
skirtumas padidėja esant didesnėms d reikšmėms. Šis poveikis gali būti
susijęs su didesnėmis eksperimentinėmis paklaidomis (žr. paklaidų
juostas S.5B pav.). Aukštesnės paklaidų juostos esant didesnėms d rei-
kšmėms atsiranda dėl to, kad sudėtinga pasiekti stabilias sroves realiam
įtrauktam UME, kurio įtraukimo gylisHin = 165 µm yra gana didelis pa-
lyginti su spinduliu rel = 114 µm. Taigi, šie eksperimentiniai sunkumai
buvo tikėtini dėl tokių reikšmingų nukrypimų nuo standartinio UME.
Dėl geros atitikties su cheminio eksperimento duomenimis prasminga
naudoti modelius UME geometrijos įtakos tyrimams.
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S.5 pav.: A) Realaus įtraukto UME vaizdas. (B) Nusistovėjusios srovės
eksperimento ir modeliavimo duomenų palyginimas naudojant UME,
pavaizduotą A dalyje.

UME geometrijos įtaka srovės stiprio kreivėms

S.6 pav.: Pastovios būsenos srovės priklausomybė nuo d, atsižvelgiant į
nestandartinių UME geometrines formas. Paveikslėlių kampuose rodo-
ma, kuris parametras yra keičiamas, o raudonos rodyklės žymi pokyčio
kryptį. (A) Išlindęs UME; (B) įtrauktas UME; (C) kūginis UME.

Įtraukto UME atveju absoliutinė srovė mažėja palyginti su standar-
tinio UME srove (pav. S.6A). Tai galima paaiškinti tuo, kad deguoniui
yra sunkiau pasiekti laidžiąją UME dalį nei standartiniame UME, nes
izoliatoriaus posūkio taškas sumažina visų medžiagų, įskaitant deguonį,
difuziją. Kita vertus, srovės kreivės išlindusiam elektrodui (S.6B pav.)
sparčiai auga, didėjant Hout. Taip yra dėl deguonies difuzijos į elektrodo
laidžiosios dalies dvi dalis (vietoje įprastos vienos) – šoninę ir apati-
nę. Taigi, UME laidus plotas yra daug didesnis nei standartinio UME.
Kūginio UME atveju absoliutinė srovė didėja esant didesniam šoniniam
kampui, kaip parodyta S.6C pav. Kūginio UME laidus plotas yra di-
desnis didesniems kampams, todėl kyla bendra srovė, tačiau tikimasi,
kad padidėjimas nebus tiesinis, nes kinta ir normalinės išvestinės ~n
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(pavaizduota S.4D pav.) kryptis. Taigi, srovės kreivėms S.6C pav. įtakos
turi tiek didėjantis aktyvusis UME plotas, tiek kintanti deguonies srauto
kryptis.

Norėdami tiksliau ištirti geometrijos nukrypimo nuo standarto įtaką,
suskaičiavome skirtumus (paklaidas) tarp nestandartinių UME ir stan-
dartinio UME srovės imdami maksimalią skirtumo reikšmę tarp srovės
grafikų. Pagal S.7 pav., darome išvadą, kad didžiausias skirtumas yra
išlindusiam UME ir siekia beveik 100 % su 5 µm išlindimu ir 5 µm spin-
dulio elektrodu. Maksimalus įtraukto UME skirtumas yra 60 % su
įtraukimo gyliu Hin = 5 µm, o kūginio UME atveju – 50 % su kūgio
kampu 45°, kuris atitinka to paties kūgio išsikišimo aukštį Hcone = 5 µm.
Naudojant šiuos duomenis galima sužinoti, kiek stipriai pažeistas UME.

S.7 pav.: Srovės skirtumai tarp nestandartinių UME ir standartinio
UME priklausomai nuo geometrijos nukrypimo nuo standarto.

Naudojantis S.7 pav. duomenimis apskaičiuojama, su kokiu nestan-
dartinio UME įtraukimo gyliu / išsikišimo aukščiu gaunama tam tikra
paklaida nuo standartinio UME. Ši informacija yra naudinga norint
nustatyti UME tinkamumą SECM atliekamais eksperimentams – tikri-
nama, kada matavimo paklaida tampa didesnė nei norėta. Tuo tikslu
buvo apskaičiuoti UME geometrijų parametrai, su kuriais gaunamos
5 %, 10 %, 25 % ir 50 % paklaidos nuo standarto naudojant kubinį aprok-
simavimą S.7 pav. duomenims ir pateikti S.1 lentelėje. Buvo parinkti
bedimensiniai parametrai, atspindintys santykį su UME spinduliu rel,
kad duomenis būtų galima naudoti įvairaus dydžio UME aktyviajai
daliai. Tai yra standartinė procedūra SECM modeliuojant [93]. Iš S.1
lentelės matosi, kad išlindusio UME išsikišimo aukštis yra parametras,
su kuriuo greičiausiai pasiekiami pasirinkti skirtumai nuo standartinio
UME, o tai rodo, kad SECM su išlindusiu UME yra jautriausias mata-
vimo paklaidoms. Išlindusio UME atvejis yra itin aktualus, nes tokio
tipo pažeidimai labai paplitę ir atsiranda poliruojant arba per greitai
priartėjant prie tiriamo paviršiaus ar su juo susilietus.
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S.1 lentelė: Bedimensiniai UME geometrijų parametrai, su kuriais atsi-
randa 5 %, 10 %, 25 % ir 50 % skirtumai nuo standartinio UME srovės
stiprio kreivių.

Skirtumas nuo standartinio UME 5 % 10 % 25 % 50 %

Įtraukimo gylis Hin/rel 0,034 0,075 0,225 0,745

Išlindimo aukštis Hout/rel 0,027 0,064 0,186 0,438

Kūgio aukštis Hcone/rel 0,090 0,184 0,488 1,042

S.2.5 Išvados

Matematinis modelis, apibūdinantis tris skirtingas nestandartines UME
geometrijas (įtrauktos, išlindusios ir kūgio formos aktyvios dalies), bu-
vo naudojamas įvertinant matavimų paklaidą nuo standartinio UME
srovės matuojant apgadintais ar neidealios formos UME. Pastebėta, kad
didžiausias skirtumas nuo standarto gaunamas išlindusiam UME ir
maksimalus skirtumas siekia 100 %, kai laidžioji elektrodo dalis yra
išlindusi tokiu pat dydžiu, koks yra elektrodo spindulys. Skirtumai tarp
įtraukto UME ir kūginio UME yra mažesni – atitinkamai 60 % ir 50 %
įtraukimui / kūgio aukščiui lygiam elektrodo spinduliui.

Išnagrinėto matematinio modelio privalumas yra tas, kad jis gali būti
panaudotas defektams nustatyti paprastame tirpale palyginant mode-
liuotą UME reakciją su eksperimentiniais duomenimis. Šis metodas
gali būti taikomas įvairiomis kryptimis. Šioje darbo dalyje buvo anali-
zuojami buferiniai tirpalai, tačiau, norint ištirti įtaką reakcijos kinetikai,
modelį galima išplėsti deguonies redukcijos reakcijomis.

S.3 Fluorescencinių dažų prasiskverbimo į ląstelių
sferoidus modeliaviams

Šioje dalyje naudojant netiesinę reakcijos-difuzijos lygčių sistemą buvo
modeliuojama kviečių gemalų agliutinino (WGA-Alexa488) ir rodami-
no (R6G) dažų difuzija, o taip pat WGA-Alexa488 prisijungimas prie
ląstelių. Šių dažų difuzijai į ląstelių sferoidus (suspaustos sferos formos
ląstelių darinius) apibūdinti buvo pateikti trys skirtingi modeliai – R6G
modelis, užrašytas difuzijos lygtimi, žiedų modelis su kintamu difuzijos
koeficientu ir WGA modelis, užrašytas reakcijos-difuzijos lygtimis.
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S.3.1 Modelių taikymai fiziniuose eksperimentuose

Dažų patekimo į ląstelių sferoidus modeliavimas motyvuojamas 3D
ląstelių kultūrų pritaikymu įvairiuose biomedicinos tyrimuose. Suta-
riama, kad 3D kultūrų metodas yra artimesnis natūraliems audiniams
nei buvęs standartas – vienasluoksnės ląstelių kultūros [46]. 3D ląstelių
kultūros paprastai naudojamos kaip pirminio vaistų, skirtų vėžio gy-
dimui, tyrimo platforma, tačiau dėl įvairių apribojimų ne visus vaistus
galima ištirti. Tokiu atveju būtų naudinga turėti matematinius modelius,
kurie, panaudojus panašių jau ištirtų molekulių duomenis, numatytų
vaistų kaupimąsi ir pasiskirstymą 3D ląstelių kultūrose. Fluorescenci-
niai dažai, kurių fizikinės ir cheminės savybės, tokios kaip struktūra ir
molekulinė masė, yra labai panašūs į chemoterapinius agentus, galėtų
būti naudojami modeliuojant ir kiekybiškai įvertinant vaistų įsiskverbi-
mą į 3D ląstelių kultūras. Viena iš dažniausiai naudojamų 3D ląstelių
kultūrų yra ląstelių sferoidai, kurie yra sferoido formos savarankiškai
susiformavusios ląstelių grupės [1, 66].

Šiame tyrime naudotas rodaminas 6G (R6G) yra fluorescenciniai lipo-
filiniai dažai, kurie specialiai nusidažo ir kaupiasi mitochondrijose. Dėl
savo lipofilinės prigimties R6G taip pat žinomas kaip specifinė lipidų ap-
tikimo dėmė, leidžianti R6G naudoti kaip fluorescencinį lipidų žymeklį
[32, 43]. Taip pat buvo parodyta [95], kad R6G dažai gali būti naudojami
in vitro (t. y. stikle, mėgintuvėlyje) ląstelių studijoms, vizualizuojant
kepenų kraujagyslių tinklus ir tiriant kraujo tekėjimo pasiskirstymą
kepenyse įvairiomis sąlygomis.

Taip pat modeliavime naudotas kviečių gemalų agliutininas (WGA) –
lektinas, apsaugantis kviečius nuo vabzdžių, mielių ir bakterijų. WGA
selektyviai jungiasi su sialio rūgšties liekanomis, kurių daugiausiai
randama plazminėje membranoje [145]. WGA-Alexa488, kuris yra WGA
ir Alexa Fluor fluoroforų junginys, naudojamas kaip fluorescencinis
žymeklis dažyti įvairių žinduolių ląstelių plazminę membraną.

S.3.2 Matematiniai modeliai

WGA judėjimas, modeliuojamas reakcijos-difuzijos lygtimis

WGA molekulės juda tarpląstelinėje terpėje difuzijos būdu, o į ląsteles
patenka prisijungdamos prie specialių prisikabinimo vietų membranoje
kaip parodyta S.8A pav. WGA molekulių difuzija ir prisikabinimas prie
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S.8 pav.: (A) WGA modelis, (B) R6G modelis, (C) žiedų modelis.

ląstelių sferoiduose išreiškiamas lygtimi sferinėse koordinatėse:

∂Cout
∂t

= D
1

r2
∂

∂r

(
r2
∂Cout
∂r

)
− kbind

(
Bmax − Cbind

)
Cout,

0 < t ≤ T, 0 < r < R, (S.14)

kur kbind yra WGA prisikabinimo prie ląstelių membranos greičio kons-
tanta, R yra sferos spindulys, D – difuzijos koeficientas, Cout(t, r) yra
difunduojančių WGA molekulių koncentracija sferoje, T – modeliavimo
trukmė. Padaryta prielaida, kad sferoidai yra homogeniški visomis
kryptimis.

Ląstelių membranose yra ribotas molekulių prisikabinimo vietų skai-
čius, žymimas konstanta Bmax [57]. Kai šis skaičius pasiekiamas, mole-
kulės nebegali prisijungti prie ląstelės membranos. Prisikabinimo prie
ląstelių procesas modeliuojamas pagal lygtį:

∂Cbind
∂t

= kbind
(
Bmax − Cbind

)
Cout, 0 < t ≤ T, (S.15)

kur Cbind(t, r) yra koncentracija WGA molekulių, prisikabinusių prie
ląstelių membranos.

Naudojamos pradinės-kraštinės sąlygos:

Cout
∣∣
t=0

= 0, 0 ≤ r ≤ R,
Cbind

∣∣
t=0

= 0, 0 ≤ r ≤ R,
Cout

∣∣
r=R

= 0,13 µM, t > 0,

∂Cout
∂r

∣∣∣∣
r=0

= 0, t > 0.

(S.16)
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Rodamino judėjimas, modeliuojamas difuzijos lygtimi

Rodaminas R6G difunduoja tiek per ląsteles, tiek tarpląstelinę medžiagą
(S.8B pav.), todėl R6G molekulių judėjimas sferoiduose modeliuojama
naudojant difuzijos lygtį:

∂C

∂t
= D

1

r2
∂

∂r

(
r2
∂C

∂r

)
, 0 < t ≤ T, 0 < r < R, (S.17)

kur C(t, r) yra R6G koncentracija, o lygtis yra versija (S.14) be reakcijos
nario.

Pradinės-kraštinės sąlygos yra panašios kaip (S.16):

C
∣∣
t=0

= 0, 0 ≤ r ≤ R,
C
∣∣
r=R

= 10,4 µM, t > 0,

∂C

∂t

∣∣∣∣
r=0

= 0, t > 0.

(S.18)

Rodamino judėjimas naudojant ląstelių ir tarpląstelinės medžiagos
žiedų modelį

Sferoidai buvo modeliuojami kaip koncentriniai ląstelių ir tarpląstelinės
medžiagos žiedai, kaip parodyta S.8C pav., kur ląstelių žiedai žymi
suvidurkintas ląsteles, o tarpląstelinis sluoksnis – medžiagą tarp ląstelių.
R6G difuzijos procesas išreiškiamas lygtimi:

∂C

∂t
=

1

r2
∂

∂r

(
r2D(r)

∂C

∂r

)
, 0 < t ≤ T, 0 < r < R, (S.19)

kur D(r) yra funkcija, rodanti difuzijos koeficientą:

D(r) =

{
Dcell, jei r ∈ ląstelių sluoksniui,
Dmatrix, jei r ∈ tarpląsteliniam sluoksniui.

Formulėse Dcell yra difuzijos koeficientas ląstelėse, o Dmatrix yra difuzi-
jos koeficientas tarpląstelinėje medžiagoje, dcell = 12 µm yra vidutinis
ląstelių skersmuo. dm yra vidutinis atstumas tarp ląstelių, apskaičiuo-
tas taip, kad žinomas ląstelių skaičius N tilptų į R spindulio sferoidą.
Pradinės-kraštinės sąlygos tokios pačios kaip R6G modelyje (S.18).
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Koeficientų skaičiavimas ir skaitinis sprendimas

R6G dažai sklinda per ląsteles difuzijos greičiu Dcell ir per tarpląs-
telinę medžiagą greičiu Dmatrix. R6G modelio (S.17) difuzijos koefi-
cientas buvo apskaičiuotas visoje sferoje vidurkinant pagal formulę
D = φDcell + (1 − φ)Dmatrix, kur φ yra bendro ląstelių tūrio ir rutulio
tūrio santykis. Ląstelėms buvo pasirinktas stratum corneum (išorinio
odos sluoksnio) ląstelių difuzijos koeficientas Dcell = 3 · 10−13 m2/s [6],
nes jos labiausiai primena naudojamas ląsteles eksperimente. Difuzijos
koeficientas tarpląstelinėje medžiagoje Dmatrix buvo gautas priderinant
eksperimentinius duomenis prie R6G modelio duomenų. WGA dažų
difuzijos koeficientui apskaičiuoti buvo naudojamas porėtos terpės mo-
delis [141].

Palyginimui su eksperimentiniais duomenimis buvo apskaičiuota
sukauptinė koncentracija Cacc į tūrio vienetą, t. y. bendra koncentracija
sferoje padalyta iš jos tūrio:

Cacc(t) =
4π

Vsphere

∫ R

0
C(t, r)r2 dr. (S.20)

Pateiktos lygtys (S.14)–(S.19) buvo išspręstos skaitiniu būdu. Pir-
miausia buvo pasirinkta 2D diskretus tinklelis, susidedantis iš 100 taškų
r kryptimi ir 240 000 taškų t kryptimi. Toks didelis taškų skaičius bu-
vo būtinas, nes modeliavimo laikas T = 24 h buvo ilgas ir reikėjo pa-
siekti aukštą tikslumą. Naudojant baigtinių skirtumo metodą Kranko-
Nikolsono neišreikštinį algoritmą buvo išvestos skirtuminės lygtys [116],
kurios buvo linearizuotos Pikardo iteraciniu metodu. Kiekvienoje itera-
cijoje gauta tiesinių lygčių sistema buvo sprendžiama naudojant Tomaso
algoritmą. Procesas greitai konvergavo į apytikslį sprendinį ir nereikėjo
daugiau nei 4 iteracijų.

Reikalingi integralai, tokie kaip (S.20), diskrečiame tinklelyje buvo
apskaičiuoti pagal 1 eilės Niutono-Koteso formulę. Visi algoritmai buvo
įgyvendinti Python programavimo kalba.

S.3.3 Modeliavimo rezultatai

Difuzijos koeficientas tarpląstelinėje medžiagoje buvo apskaičiuotas
pritaikant modelio duomenis prie fizinio eksperimento duomenų ma-
žiausių kvadratų metodu. Sukaupta R6G koncentracija, apskaičiuota
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naudojant modelį (S.17)–(S.18) bei integralą (S.20), ir fluorescencijos
intensyvumas iš eksperimento duomenų buvo normalizuoti į bedimen-
sinius dydžius, kad juos būtų galima palyginti. Tiesinė priklausomybė
tarp fluorescencijos intensyvumo ir šaltinio koncentracijos yra gerai ži-
noma, todėl prietaiso konstantą galima apskaičiuoti normalizuojant, t. y.,
padalijant iš maksimalios koncentracijos ir fluorescencijos intensyvumo.
Nustatyta, kad Dmatrix = 4,2 · 10−13 m2/s labiausiai atitinka eksperi-
mento duomenis (S.9A pav.), o prietaiso konstanta šiam eksperimentui
yra 6,4 · 1010.

S.9 pav.: (A) R6G modelio dažų patekimo kreivė (raudona linija) pri-
derinta prie eksperimento duomenų (punktyrinė linija) difuzijos koe-
ficientui tarpląstelinėje medžiagoje rasti; (B) Sukauptas fluorescencijos
intensyvumas palygintas su eksperimento duomenų intensyvumu.

S.10 pav.: (A) Dažų prasiskverbimas į sferoidą pagal laiką žiedų mode-
lio ir eksperimento duomenims. Difuzijos koeficientas – iš R6G modelio.
(B) Sukauptas fluorescencijos intensyvumas pagal žiedų modelio duo-
menis, R6G modelį ir eksperimentą.

R6G modelio patvirtinimui buvo naudojamas kitas eksperimento
duomenų rinkinys. Sferoidams su skirtingais spinduliais ir ląstelių
skaičiumi buvo apskaičiuotas fluorescencijos intensyvumas per 2 va-
landas (S.9B pav.). Sukauptos R6G koncentracijos buvo padaugintos iš
prietaiso konstantos ir nubraižytos palyginimui su eksperimentiniais
duomenimis. Vienai ląstelei apskaičiuotas intensyvumas mažėja dides-
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niems sferoidams, ko ir buvo tikimasi, nes dažams vis sunkiau pasiekti
vidinius sluoksnius. Buvo stebimas labai glaudus eksperimento ir mo-
delio atitikimas, išskyrus didžiausio ląstelių skaičiaus sferoidus. Tai
aiškinama taip: ląstelių sferoido dydis priklauso nuo pradinio ląstelių
skaičiaus, kol pasiekiamas kritinis ląstelių kiekis. Pastebėta, kad au-
ginant sferoidus nuo 6000 iki 10 000 ląstelių, rutulio dydis padidėjo
tiesiškai, tačiau sferoidai su dideliu ląstelių skaičiumi (Ncell = 14 000
ir Ncell = 16 000) buvo panašaus dydžio, t. y. jų spindulys nepriklausė
nuo ląstelių skaičiaus. Taigi, mūsų modelis parodė, kad sferoidai nuo
6000 iki 10 000 ląstelių yra tinkami dažų įsiskverbimo tyrimams, tačiau
didesnių sferoidų negalima naudoti dėl netikslumų.

Siekiant geriau suprasti R6G įsiskverbimą į sferoidus buvo pasiūlytas
alternatyvus žiedų modelis. Prasiskverbimo į sferoidą kreivė S.10A pav.
buvo apskaičiuota naudojant R6G ląstelių ir tarpląstelinės medžiagos
difuzijos koeficientus iš anksčiau analizuoto R6G modelio. Kreivė la-
bai artima aproksimuotiems eksperimentiniams duomenims, vidutinė
kvadratinė paklaida yra tik 0,04 %. Palyginimui, prasiskverbimo kreivės,
apskaičiuotos naudojant R6G modelį (S.9A pav.), paklaida yra 0,05 %.
Žiedų modelio fluorescencijos intensyvumo grafikas buvo nubraižytas
(S.10B pav.) pagal eksperimentinius ir R6G modelio duomenis. Nors abu
modeliai gana gerai atitinka eksperimento duomenimis, žiedų modelis
yra šiek tiek tikslesnis su 4,9 % paklaida palyginti su 5,2 % R6G modeliu.
Iš šių rezultatų darome išvadą, kad abu modeliai yra sėkmingi ir gali
būti naudojami tolesnei dažų įsiskverbimo analizei.

S.3.4 Išvados

Abu R6G dažų modelio atvejai, t. y. tiesinės difuzijos modelis ir žiedų
modelis, parodė gerą atitikimą eksperimento rezultatams. Naudojant
R6G modelį buvo apskaičiuota, kad difuzijos koeficientas tarpląstelinėje
medžiagoje yra D = 4,2 · 10−13 m2/s, o tai yra maždaug 4 kartus dau-
giau nei difuzijos koeficientas ląstelėse. Buvo išanalizuota kaupimosi
dinamika ir parodyta, kad nusistovėjimui pasiekti reikia maždaug 4 h,
tačiau centrinė zona nėra pilnai inkubuojama iki maždaug 10 h. Ši dina-
mika taip pat priklauso nuo rutulio dydžio ir tankio.

Naudojant WGA modelį buvo ištirtas prisikabinimo greičio ir prisi-
kabinimo vietų skaičiaus poveikis WGA-Alexa488 dažų skverbimosi
dinamikai. Modeliavimo rezultatai parodė, kad WGA-Alexa488 dažų
kaupimasis ląstelėse yra netiesinis. Tai galima paaiškinti tokiais biolo-
giniais veiksniais kaip endocitozės (medžiagos pernešimas į ląstelę per
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pūslelę membranoje) dažnis, ląstelių ir tarpląstelinė medžiagos tankis,
receptorių ląstelių membranoje tipas, jų koncentracija ir kt.

Bendros disertacijos išvados

• Naujas kompiuterinis SECM modelis yra tinkama priemonė tiriant
RC-SECM režimą ir nustatant reakcijos bei difuzijos koeficientus.
Nustatyta, kad deguonies difuzijos koeficientas yra atvirkščiai
proporcingas gliukozės koncentracijai terpėje. Buvo pasiūlyta
formulė šiam koeficientui apskaičiuoti dirbant RC-SECM režimu.

• Matematinis modelis, apibūdinantis tris dažniausiai pasitaikančias
nestandartines ultramikroelektrodo (UME) geometrijas, yra tin-
kamas būdas įvertinti paklaidai nuo elektros srovės, matuojamos
standartiniu UME. Modeliuojant atrasta, kad išlindęs UME duoda
didžiausias matavimo paklaidas, o įtraukto UME ir kūginio UME
paklaidos yra apytiksliai 2 kartus mažesnės.

• Naudojant R6G dažų įsisavinimo į ląstelių sferoidus modelį, buvo
apskaičiuotas difuzijos koeficientas tarpląstelinėje terpėje ir nu-
statyta, kad jis yra maždaug 4 kartus didesnis už eksperimente
naudojamų ląstelių difuzijos koeficientą.

• Tiriant WGA-Alexa488 dažų modelį buvo parodyta, kad prisika-
binimo greitis ir prisikabinimo vietų skaičius daro netiesinę įtaką
skverbimosi dinamikai.
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