VILNIAUS UNIVERSITETAS
MATEMATIKOS IR INFORMATIKOS FAKULTETAS
INFORMATIKOS KATEDRA

Bakalaurinis darbas

Beserveriniy funkcijy salto paleidimo laiko optimizavimas

(Optimizing Serverless Functions Cold Start Time)

Vilnius
2021

Atliko: 4 kurso 4 grupés studentas

Darius Andzevicius (paratas)

Darbo vadovas:

Gediminas Rimsa (paraas)

Turinys
Savoky apibrézimalo.. oo 2
7 e 3
1. Debesy kompiuterijos pradmenyscouueeuniiite it 5
1.1. FaaS paslaugy modelisot 6
1.2. FaaS kity debesy kompiuterijos paslaugy kontekste ..., 7
1.3, FaaS trakumai. ... 10
2. Veiksniai, darantys jtaka ,Saltam® funkcijos paleidimuico 13
2.1. Funkcijos kodo paketo atsiuntimas i§ duomeny saugyklos ..., 14
2.2. Programinio kodo paketo pateikimas AWS Lambda platformai 14
2.3. Funkcijai suteikiamos atminties dydiS...........ooouieiiiiiiiiiii i 15
2.4. Programavimo kalbai specifiniai veiksniai oo i 15
3. Tyrimo metodika ... oo 17
3.1. Jlink jrankiu sukurta vykdymo aplinka......... ... 18
3.2. Native image vykdomasis failas ... 18
3.3. Matavimams atlikti naudojamos programos apraSymas.............eeuueeenneenneennenn. 18
4. Skirtingais buidais pateikiamy kodo pakety inicijavimo laiko tyrimas 22
4.1. Konteinerio atvaizdu pateikiamo kodo paketo tyrimasoo 22
4.2. Archyvu pateikiamo kodo paketo tyrimas.............cooiiiiiiiiiiiiiiii 24
4.3. Rezultaty apibendrinimas.oouiiii i e 29
4.4. Veiksniy ,8altam* funkcijos paleidimui daromos jtakos minimizavimas................. 30
Gauti rezultatai ir iISVAdOS . ..oooun it 31

I = o = 34

Savoku apibrézimai

[aaS - Infrastruktura kaip paslauga (angl. Infrastructure as a Service)

PaaS - Platforma kaip paslauga (angl. Platform as a Service)

SaaS - Programiné jranga kaip paslauga (angl. Software as a Service)

FaaS - Funkcija kaip paslauga (angl. Function as a Service)

CaaS - Konteineriai kaip paslauga (angl. Container as a Service)

IoT - Daikty internetas (angl. Internete of Things)

AWS - kompanijos Amazon debesy kompiuterijos platforma Amazon Web Services
IT - informacinés technologijos

VM - virtuali masina

AOT (angl. Ahead of Time compilation) - iSankstinis kompiliavimas

Ivadas

Debesy kompiuterija suteikia informaciniy technologijy sistemoms priemones, kurios elimi-
nuoja poreikj turéti fizine technine jranga, kurioje §i sistema veiks, taip optimizuojant sistemos
pradinius paleidimo bei vélesnius palaikymo kastus. Jos principas - egzistuojancios techninés
jrangos ir virtualizacijos panaudojimas formuojant bendrai naudojama infrastruktara [GRE"12].
Peréjimas prie Sios paradigmos (angl. paradigm shift) padaré didele jtaka naujy informaciniy siste-
my atsiradimui bei esamy sistemy palaikymui. Tai - peréjimas nuo kompiuterijos, kaip produkto
turéjimo, j kompiuterija kaip paslauga, kuri suteikiama varotojams internetu i$ didelés apimties
duomeny centry - ,,debesy” [KSS10].

Iki 2014 m. vyravo trys pagrindiniai debesy kompiuterijos paslaugy modeliai - Infrastruktira
kaip paslauga (1aaS), Platforma kaip paslauga (PaaS) ir Programiné jranga kaip paslauga (SaaS). Sie
modeliai suteikia naujas galimybes informaciniy technologijy sistemoms, taCiau tuo paciu kelia
nejprastus tradicinei kompiuterijai isstikius, j kuriuos turéty biti atsizvelgta pries naudojantis de-
besy kompiuterijos paslaugomis [GRE*12]. 2014 m. kompanija Amazon pristaté savo valdomoje
debesy kompiuterijos platformoje Amazon Web Services (toliau - AWS) veikiantj nauja paslaugy
modelj - funkcija kaip paslauga (FaaS), kurj realizuoja AWS Lambda platforma. FaaS tikslas -
panaikinti vartotojo poreikj rupintis infrastruktira, kurioje veikia jo aplikacija. Amazon buvo
pirmoji imoné, sitlanti Sio tipo paslaugas [Lin14].

Pastarasis paslaugy modelis jgyvendina vadinamaja skai¢iavimy be serveriy (angl. serverless
computing) sistemos architekttra, kurios pagrindinis principas - vykdyti programas - iSskaidytas
aplikacijos dalis virtualiuose konteineriuose - kurios kiekviena individualiai gali bati skaliuojamos
pagal poreikj. FaaS paslaugy tiekéjai silo sumazintus aplikacijos islaikymo kastus (angl. hosting
costs), auksta pasiekiamuma (angl. high availability), tolerancija klaidoms (angl. fault toleran-
ce) bei dinaminj elastinguma (angl. dynamic elasticity) automatiskai prizitrimoje ir valdomoje
infrastruktaroje, kurioje $ie konteineriai veikia [LRC*18]. Vienintelé vartotojo atsakomybé - pa-
teikti programinj koda, FaaS paslaugy modelio kontekste vadinama funkcija, paslaugos tiekéjo
platformai tinkamu formatu.

Terminas ,,beserveriniy skaiciavimy® sistema jokiu buidu nereiskia, kaip gali pasirodyti, jog
fiziniai serveriai neegzistuoja. Tai terminas, apibtidinantis programavimo modelj ir sistemos ar-
chitektiirg, kurioje programinio kodo dalys yra patalpinamos ir vykdomos debesyje, nereikalaujant
vartotojui rapintis aplikacijos infrastruktiira - vartotojas palieka $ig atsakomybe debesy kompiu-
terijos tiekéjui.

FaaS paslaugy modelyje, tiekéjas rtipinasi vartotojo programinio kodo ir jo naudojamy bib-
lioteky konteinerizavimu (angl. containerization) debesyje, Siy konteineriy iSple¢iamumu (angl.
scalability), apkrovos paskirtymu (angl. load balancing) tarp jy. Vartotojas platfomos tiekéjui turi
mokeéti tik uz patalpintos funkcijos iskvietimy skaiciy ir veikimo laika debesyje. Tokj modelj pui-
kiai iSnaudoja jvairios multimedijos apdorojimo, IoT duomeny agregavimo, srauty apdorojimo

(angl. stream processing), pokalbiy roboty (angl. chatbot), planuoty darby (angl. scheduled job),

REST API, nuolatinés integracijos (angl. continuous integration), nuolatinio diegimo (angl. con-
tinuous deployment) bei nuolatinio pristatymo (angl. continuous delivery) aplikacijos [IBM20].

Nors savo savybémis FaaS yra naudingas ir patrauklus paslaugy modelis, informaciniy tech-
nologijy sistemos pritaikymas Siam modeliui yra ganétinai sudétingas ir turintis nemazai neapi-
bréztumy. IS pirmo zvilgsnio, beserveriniy skaiCiavimy platformos gali pritraukti démesj bet
kokios aplikacijos migravimui j Sia platfoma, taCiau yra sunku nuspéti, kokia jtaka aplikacijos
migravimas | beserveriniy skaiCiavimy platforma turés aplikacijos greitaveikai, atsako laikui bei
kaip gerai platforma sugebés paskirstyti apkrova. Todél pries perkeliant aplikacija j beserveriniy
skaiciavimy platfoma, buitina suprasti jos trukumus, kad vartotojas galéty jvertinti, ar Sis paslaugy
modelis tinka panaudos atvejui.

Darbo tikslas: nustatyti budus optimizuoti JVM funkcijos $alto paleidimo laika ir istirti jy
veiksminguma.

Siekiant Sio darbo tikslo, iskelti tokie uzdaviniai:

—_

. Nustatyti budus optimizuoti JVM funkcijos salto paleidimo laika.

2. Praplésti [And21a] sukurta jrankj beserveriniy funkcijy $alto paleidimo trukmés matavimui

atlikti kodo paketo archyvu pateikiamoms funkcijoms.

3. Istirti nustatytus funkcijos salto paleidimo laika optimizuojanc¢ius biidus sukurtu matavimo

jrankiu AWS Lambda platformoje JVM programavimo kalbos funkcijai.

4. Ivertinti istirty optimizavimo budy pritaikymo galimybes.

1. Debesy kompiuterijos pradmenys

Iki debesy kompiuterijos atsiradimo, jmonés, norédamos plétoti IT sistema, susidurdavo su
jvairiomis, sunkiai sprendziamomis techninémis problemomis. Apsunkinancios aplinkybés, no-
rint paleisti IT sistema, buvo fiziniy serveriy pirkimas, jy islaikymas ir palaikymas, jvairiy tech-
niniy problemy sprendimas, tokiy kaip defektuotos dalys, elektros srovés praradimas ar interneto
rysio trikdziai. Didzioji dalis jmoniy buvo pacios atsakingos uz fiziniy serveriy palaikyma - nuo
jvairiy programy rasymo, kurios valdydavo jvykusias klaidas, ugniasieniy (angl. firewall) bei
interneto tinklo komutatoriy konfigtiravimo, iki serveriy elektros sanaudy skai¢iavimo. Toks inf-
rastruktiros modelis buvo neefektyvus norint greitai ir kokybiskai vystyti elastinga ir sparciai
pleciama IT sistema.

2006-yjy mety rugpjucio ménesj jvyko tai, kas fundamentaliai pakeité pozitarj j IT siste-
my infrastruktiira. Amazon Web Services pristaté pirmaja viesai prieinama debesy kompiuterijos
paslauga Elastic Compute Cloud (EC2). Si IaaS tipo paslauga, pasitelkiant techninés jrangos vir-
tualizacija, suteiké galimybe IT sistemas laikyti AWS serveriuose nuomojantis jy dalis. Tai leido
imonéms, programuotojy grupéms ar jvairiems startuoliams, neturintiems didelio pradinio kapi-
talo serveriy pirkimui, iSsinuomoti serverius ir juos pasiekti per kelias minutes, o kastai, reikalingi
IT sistemos infrastrukttrai, sumazéjo deSimtimis karty.

Sig paslaugg galime vadinti infrastruktiiros ranga (angl. outsourcing) - tai yra visos IT sis-
temos kiirimo proceso dalies, kuri yra bendra ir visiems kitiems, kuriantiems IT sistemas - nuo
fiziniy patalpy, skirty serveriams laikyti, iki bendry aplikacijy savybiy, tokiy kaip autentifikacija -
perkélimas j bendrai naudojama platforma. Tai turi kelis didelius pranasumus, lyginant $ia paslau-
ga su tradicine IT infrastruktiira, kuri pasizymi tuo, jog vartotojo kompiuteriné jranga priklauso

jam paciam:

* Masto ekonomija (angl. economy of scale) - principas, leidziantis debesy kompiuterijos
tiekéjui, diegianciam fizine infrastruktiira didelémis apimtimis, jsigyti ir prizitréti $ia jranga

mazesne kaina, nei individualts asmenys ar jmonés atskirai.

* Rizika. Mazesné dalis specialisty turi turéti tam tikry infrastruktaros ziniy, reikalingy ser-
veriy priezitirai. Specialistai susiduria su pasikartojanc¢iomis problemomis, todél gali grei-

Ciau spresti jvykusias infrastruktarines klaidas.

* Sistemos pleCiamumas. Debesy kompiuterijos tiekéjas sitilo milziniskas apimtis kompiu-
terinés jrangos iStekliy, kas leidzia vartotojui lengvai prisitaikyti prie kuriamos sistemos

reikalaujamy istekliy.

» Laikas nuo idéjos iki jos IT sistemos realizizavimo. Idéjos autoriui néra bitina galvoti
apie jo sistemos infrastruktiiros puse, nes ja jau pasirtipino debesy kompiuterijos tiekéjas -

vartotojui belieka prisitaikyti prie paslaugy tiekéjo sitilomy paslaugy.

6

Sie prana§umai leidZia debesy kompiuterijos tiekéjui sitilyti kompetetingas paslaugy kainas, o
vartotojui pirkti Sias paslaugas apsimoka labiau, nei turéti savo fizine infrastuktiira. Todél debesy
kompiuterijos panaudojimas pastaruosius metus sparciai populiaréjo, o gautos pajamos paslaugy

tiekéjams leido efektyviai vystyti savo platformas ir sitlyti pastoviai tobuléjancias paslaugas (1

pav.).

300

150

100

@ Programiné jranga kaip paslauga (Saas) @ Infrastruktdra kaip paslauga (Iaas) Platforma kaip paslauga (PaaS)

1 pav. Debesy kompiuterijos pajamos (pagal [MIi21])

1.1. FaaS paslaugy modelis

Debesy kompiuterijos paslaugy tiekéjai turi dideles apimtis kopiuterinés jrangos, kurios vir-
tualias dalis nuomoja vartotojams teikdami jvairias debesy kompiuterijos paslaugas. Dalis Sios
jrangos néra nuolat i¥naudojama, todél jos i¥laikymas néra pelningas. Sig, pastoviai vieny ar kity
paslaugy neiSnaudojama jrangos dalj, galima panaudoti uzsakomuyjy skaiciavimy paslaugy (angl.
on-demand service) infrastruktarai realizuoti. Paprastai tariant, tai yra FaaS paslaugos principas -
funkcija yra talpinama tuo metu nenaudojamoje kompiuterinés jrangos dalyje, o véliau funkcijos
naudojama jrangos dalis yra atlaisvinama, kai $i funkcija tampa nebenaudojama tam tikra laiko
tarpa.

Tokiu budu paslaugos tiekéjas leidzia vartotojui paleisti ir laikyti savo aplikacija ar jos dalis
kaip atskiras, lengvai ple¢iamas, neturincias busenos (angl. stateless), laikinas (angl. ephemeral)
funkcijas, talpinamas virtualiuose konteineriuose. Siy funkcijy gyvavimo ciklu (angl. lifecycle)
rupinasi pats paslaugy tiekéjas, sukurdamas jas, kai to prireikia, arba sunaikindamas jas, kai funk-

cijos tampa nebenaudojamos tam tikra laiko tarpa. Toks principas vartotojui suteikia galimybe

nesirtpinti infrakstruktiira, kurioje $i funkcija atliks darba - vienintelis jo tikslas lieka sukurti bei
sukonfiguruoti §ia programa paslaugy tiekéjo platformai.

Nuomojamos jrangos dalies dydis yra konfiguruojamas vartotojo, priklausomai nuo to, kiek
jo talpinama funkcija reikalauja istekliy, taciau verta paminéti, kad si konfiguracija yra ribojama -
FaaS paslaugy tiekéjai leidzia skirtingus iSskiriamy istekliy funkcijai dydzius, pvz. AWS Lambda
platforma leidzia funkcijai iSskirti net iki 10GB atminties [AWS20], kai tuo tarpu Google Cloud
FaaS platforma Cloud Functions - iki 4GB [G0020]. Priklausomai nuo i$skiriamo atminties dy-
dzio, funkcijai suteikiamas tam tikras kiekis procesoriaus galios, kuri daugelyje FaaS platformy
apibréziama skirtingai. Vartotojas moka uz sios atminties panaudojima per laika, pvz. AWS Lamb-
da platformos 1GB atminties panaudojimas sekundei daugelyje regiony kainuoja 0.0000166667
dolerio, apvalinant funkcijos veikimo laika 1 ms tikslumu [AWS21c].

Toks granuliarus FaaS paslaugos apmokestinimo modelis yra labai patrauklus vartotojui, nes
jam netenka mokéti uz jo aplikacijos neisSnaudojamus kompiuterinius isteklius, o programinio

kodo optimizavimas greitaveikai tiesiogiai konvertuojasi j mazesne infrastruktiiros kaina.

1.2. FaaS kity debesy kompiuterijos paslaugy kontekste

Kiekvienas debesy kompiuterijos paslaugy modelis abstrahuoja tam tikras atsakomybes nuo
vartotojo perleisdamas atsakomybe paslaugos tiekéjui (2 pav.), taip jgalindamas greitesnj aplikaci-
jos funkcionalumo plétojima ir paleidima bei mazindamas islaikymo kastus ir reikalingas vartotojo
zinias apie skirtingus aplikacijos sluoksnius. FaaS modelio atveju, vartotojas ripinasi tik progra-

minio kodo aplikacijos sluoksniu, kuris yra talpinamas debesy kompiuterijos tiekéjo debesyje.

laaS CaaS PaaS Faa$S
r e r e
[} Funkcijos
ra T ra T
Aplikacija
he - b -
- Vykdangioji " Vykdanéioji
aplinka aplinka
L) L) __{angl. runllme}__ ,_{angl. runtlme}__
S g §
Konteineriai Konteineriai Konteineriai
.
Operacine Operacine Operacine Operacine
sistema sistema sistema sistema
Virtualizacija Virtualizacija Virtualizacija Virtualizacija

Kompiuteriné

Kompiuterine

jranga

jranga

Kompiuterine

jranga

Kompiuterine

jranga

Varototojo
valdoma
Vartotojo valdomas

skaliuojamumo
vienetas

Abstrahuota
paslaugy tiekéjo

2 pav. Debesy kompiuterijos paslaugy lyginimas (pagal [McK16])

FaaS modelis i$ esmés jgyvendina beserveriniy skaiciavimy architektira, todél siuos du ter-

minus galime laikyti sinonimais. Kad galétuméme geriau suprasti pagrindines Sios architektiiros

savybes, galime lyginti ja su kitais debesy kompiuterijos paslaugy modeliais [aaS ir SaaS. Vienas

is budy paaiskinti beserveriniy skaiCiavimy architekttira yra galvoti apie tai, kokiag atsakomybe

turi vartotojas, naudodamasis minétais debesy kompiuterijos paslaugy modeliais (3 pav.). Inf-

rastrukturos kaip paslaugos modelyje vartotojas turi daugiausia atsakomybés rupintis kaip jo paties

aplikacija bus paleista, pleciama bei kaip bus skirstoma apkrova. Priesingai, programinés jrangos

kaip paslaugos modelyje, vartotojui naudojasi paslaugos tiekéjo sukurta programine jranga ir tuo

paciu neturi zinoti, kokia infrastrukttra supa sia jranga. Galvodami apie beserveriniy skai¢iavimy

architektiira, galime jsivaizduoti, kad FaaS paslaugos modelis yra kazkur tarp IaaS ir SaaS - var-

totojui pakanka savo sukurta aplikacija paleisti paslaugy tiekéjo, kuris pasirtipins infrastruktira,

debesyje.

Beserveriniy skal&iavimy
platforma
individuali vartciojo nfrastrukiira| bendrai naudojama indrastrukiira bendrai naudojama infrastrukion
Kompiutarings jrangos konfighracija ¢ individisali variotoje aplikacija individuali vartatojo aplikarija bendrai nasdejama apikscja
| - [Pilcs aplikasijcs
Wirtualiy mading kinmas = e
‘ — - {Sant)
{laas)] -
Didasna Mazesna

.::: wartodajo karéralé ::-_:.

3 pav. FaaS lyginant su IaaS ir SaaS (pagal [BCC"17])

Pagrindinis beserveriniy skai¢iavimy architekttros principas - galimybé iSplésti ir sutraukti
aplikacijos daliy kopijy skaiciy tiek, kiek tuo metu to reikalauja apkrova. Tokiu buidu esant nuli-
nei apkrovai, vartotojas neturi mokéti debesy kompiuterijos tiekéjui uz tuo metu nenaudojamus
kompiuterinius iSteklius, o esant didelei apkrovai, aplikacijos veikimas nestringa ir $i reaguoja ir
vykdo uzklausas taip pat efektyviai.

Sj principa jgyvendina FaaS paslaugy tiekéjas - vartotojui, kreipiantis j beserveriniy skai¢iavi-
my aplikacija, debesy kompiuterijos platformos tiekéjo tarpiné programiné jranga (angl. middle-
ware) nusprendzia, kuriai funkcijai priklauso $i uzklausa, suranda konteinerj, kurioje ji yra patal-
pinta, ir nukreipia uzklausa j ja. Jei Sis konteineris neegzistuoja, arba egzistuoja, bet yra apkrautas
vykdydamas kita uzklausa, platforma turi sukurti nauja konteinerj, j kurj bus nukreipta varto-
tojo uzklausa. Daznu atveju, paslaugy tiekéjo FaaS platforma yra sukurta taip, jog buty lengva
naudotis Sio tiekéjo kitomis debesy kompiuterijos paslaugomis, tokiomis kaip duomeny bazés ar
duomeny saugyklos. Daznu atveju, paslaugy tiekéjas savo platformoje sitilo pranesimy perdavi-
mo sistemos funkcionaluma, kuriuo yra jgyvendinamas funkcijy komunikavimas bei duomeny
perdavimas tarp jy, sukuriantis tam tikra procesa (4 pav.). Funkcijai baigus darba, platformos
tikslas grazinti atsakyma j vartotojo uzklausa, surinkti jos vykdymo matus ir sustabdyti funkcija
[BCC*17].

Sios architektiiros funkcionalumo jgyvendinimo sunkumas yra toks, jog reikia atsizvelgti j
sistemos kaina, pleCiamuma, tolerancija klaidoms bei funkcijy orkestravima. FaaS platforma tu-
ri uztektinai greitai sukurti ir paleisti nauja funkcijos konteinerj, kai to prireikia, perduoti jam
uzklausa ir grazinti atsakyma. Taip pat platforma turi sugebéti déti uzklausas ar atskiry funkci-
jy rezultatus j pranesimy eiles, i$ kuriy Sie pranesimai turi buti vykdomi nepazeidziant tvarkos.
Platforma turi gebéti dorotis su dideliais kiekiais uzklausy ir efektyviai iSplésti sistema. Taip pat

efektyviai turi ja ir sutraukti tam, kad vartotojas neturéty mokéti papildomai [BCC*17].

10

".I':l.r‘h:ih:ui.:is
@ aik.
% o+
Faa5 dobaosy Tirklo
s shirsiybuvas
plaficema {AP| Gateway}

Pranadimy
s iy)
pardavima
bazé)
sistoma

4 pav. Beserveriniy skai¢iavimy architekttra (pagal [Mic21])

Didelé FaaS platformos funkcijy ple¢iamumo problema yra ,sSalti funkcijos pasileidimai.
FaaS platforma, neradusi funkcijos, tuo metu neapdorojancio uzklausos, turi sukurti nauja ir
perduodi uzklausa jai. Sios funkcijos sukiirimas uZima $iek tiek laiko, kurio metu, aplikacijos
vartotojas laukia atsakymo iS sistemos. Paprastai, funkcijos suktirimas bei paleidimas atliekamas
keliais zingsniais. Pirmiausia, FaaS platforma j virtualia masina, kurioje bus sukurtas konteine-
ris, talpinantis funkcijos koda, turi atsisiysti vykdomo kodo paketa i$ paslaugos tiekéjo duomeny
saugyklos, kurioje yra saugomas Sis kodo paketas. Po Sio zingsnio, sistema turi sukurti patj kon-
teinerj ir j jo atmintj uzkrauti atsisiysta kodo paketg. Galiausiai konteineris turi paleisti kodo
paketa esantj atmintyje, jvykdyti vartotojo uzklausa ir grazinti rezultata. Kaip vélesniame darbo

skyrelyje matysime, $is laiko tarpas priklauso nuo jvairiy veiksniy.

1.3. FaaS trukumai

Tam, kad visi FaaS platformos privalumai biity pilnai iSnaudoti, vartotojas turi i§ anksto gerai
apgalvoti kokiomis dalimis bus skaidoma jo aplikacija, kaip vyks komunikacija tarp funkcijy ir jy
orkestravimu, uztikrinti, kad aplikacijos greitaveika bei atsako laikas nenukentéty tose dalyse, kur
tai yra svarbu - talpinamos funkcijos turi baiti atitinkamai optimizuotos, o kai kurios aplikacijos

dalys galbut i8vis neturéty buti talpinamos j FaaS platforma.

11

Dél siy priezasciy, FaaS platformos turi ir neigiamy savybiy - kadangi FaaS debesy kompiute-
rijos paslaugy modelis yra ganétinai naujas, Sie aplikacijos talpinimo procesai ir gerosios praktikos
néra standartizuoti, todél yra sunku optimaliai pritaikyti aplikacija FaaS platformai.

Kai kurie FaaS platformy triukumai kyla i$ pacio sistemos principo - jie niekada nebus visis-
kai pasalinti, o tobuléjant FaaS plaformoms, bus iSmokstama kaip su jais tvarkytis. Jvardinsime

rySkiausius FaaS platformy trakumus.

Gaisties laikas

Iprastoje - ne beserveriniy skai¢iavmy sistemos architekttiroje - ar tai bty monolitiné, ar
mikroservisy architektiros stiliumi paremta sistema, tam tikri sistemos procesai yra jgyvendina-
mi izoliuotos programos kontekste. Tokiu atveju jgyvendinamo proceso sritis (angl. scope) yra
klasiy ar moduliy rinkinys, kuriuo naudojantis proceso jgyvendinimas vyksta metody, naudo-
jan¢iy bendrus kompiuterinius iSteklius, kvietimy pagalba. Siuo biidu yra ganétinai efektyviai
iSnaudojami kompiuteriniai iStekliai ir tai nedaro didelés jtakos sistemos greitaveikai. Kadangi
beserveriniy skaiCiavimy sistemos architekttura yra paremta funkcijy skaidymu ir jy izoliavimu
tam, kad $i buty efektyviai skaliuojama, tie patys procesai beserveriniy skaiCiavimy plaftomo-
je gali buti jgyvendinti keliomis funkcijomis, kurios tarpusavyje komunikuoja ne naudodamosis

bendrais kompiuteriniais istekliais, o tinklu taip sukurdamos papildoma gaisties laika.

Busena

Kadangi kiekviena FaaS platformos funkcija gali buti iSple¢iama iki daugelio identisky kopijy,
veikianciy nepriklausomai viena nuo kitos, arba sutraukiama iki nei vienos, funkcijos neislaiko
savo busenos (angl. state). Norint, kad funkcija turéty tam tikra busena, ji privalo komunikuoti
su komponentais, kurie laiko busena ir gali Sia busena perduoti funkcijai. Dél Sios priezasties,

atsiranda gaisties laikas, kurj FaaS platformoje norime sumazinti kiek galima labiau.

Aplikacijos lokalus testavimas

Beserveriniy skaic¢iavimy architektiiros programinj koda yra sunku testuoti lokalioje aplinko-
je, nes vartotojai nezino ir dél to negali atkartoti FaaS platformos implementacijos detaliy. Taip
pat, daznu atveju funkcijos turi bendrauti su kitomis debesy kompiuterijos teikiamomis paslaugo-
mis, kaip Zinu¢iy perdavimo sistemos, duomeny bazés ar duomeny saugyklos. Sia komunikacija

yra sunku tiksliai atkartoti iS lokalios aplinkos.

Konfiguravimo kontrolés praradimas

Debesy kompiuterijos tiekéjai riboja konfigtiracines FaaS platformos galimybes tam, kad is-
vengty nekontroliuojamo sistemos iSnaudojimo. Funkcijos kopijy skaicius, isskiriami kompiu-

teriniai iStekliai, maksimalus funkcijos veikimo laikas ar uzklausos dydis ir kitos panasios konfi-

12

glracijos - parametrai, kuriuos kiekvienas debesy kompiuterijos tiekéjas yra nustates pagal savo

infrastruktiiros galimybes.

,Salti“ funkcijy paleidimai

Tai turbut didziausias FaaS platformos triukumas, kuris neretai atgraso vartotojus nuo nau-
dojimosi Sia platforma. Jo problematiskumas prikaluso nuo jvairiy veiksniy, kuriuos stengiamasi
susvelninti tam, kad ,8alti“ funckijy paleidimai uzimty kuo maziau laiko. Bitent dél Sios FaaS
platformy charakteristikos, ne visos aplikacijos turéty biti talpinamos FaaS platformoje - ypatin-
gai tos, kurios pateikia daug jvairios informacijos vartotojui, kuri grazinama i$ skirtingy serverio
punkty (angl. endpoints), ar tos, kurios reikalauja sulaukti atsako tam tikram veiksmui, po kurio
yra tesiamas tam tikras procesas.

Taigi, norint laikyti savo aplikacija FaaS platformoje, reikia atsizvelgti j daugelj veiksniy ir
nuspresti, ar tikrai tai bus naudinga ir sistemos vartotojui, ir sistemos savininkui. Dazniau FaaS
platformoje turéty buti talpinamos staigiy, didelio kiekio duomeny apdorojimo, asincrhoniskos,
pvz., paveiksléliy ar vaizdo jrasy apdirbimo, IoT duomeny agregavimo ar planuoty darby vyk-
dymo aplikacijos, nes tai nereikalauja kiek jmanoma greitesnio atsako laiko ir yra vykdomos ga-
nétinai retai, todél ir kastai vartotojui yra mazesni, nei Sias aplikacijas talpinant IaaS platformoje.
Taciau FaaS platformy technologija spaciai tobuléja, minétos problemos yra identifikuojamos ir

salinamos debesy kompiuterijos tiekéjy, ar $velninama jy daroma jtaka vartotojui.

13
2. Veiksniai, darantys jtakg ,saltam® funkcijos paleidimui

Kaip ir buvo minéta praeitame skyriuje, beserveriniy skaiciavimy platforma, norédama jvyk-
dyti sistemos vartotojo uzklausa, turi atlikti keleta zingsniy iki uzklausos rezultatas grazinamas

vartotojui (5 pav.).

Sistemos vartotojas
- T, 2 Atsiaiyst funkeijos kodo 1. Wysdyti funlzijg 1 5. Graginti jwykdytos
| pakatg I8 duomeny saugyklos funicijoa rezultatg
- T
Funkcijal = [o

Funkcija 2 Beserveriniy skaifiavimy platforma

e - 3. Patalipinti funkcijg 4. |Exwiest funkcyg
sarvenye

Funkcija 1
Viykdancioji Viykdan&iaji Viykdan&iaji Vykdanciofji Vykdanciofji
aplinka aplinka aplinka aplinka aplinka
Serveris Serveris Serveris Serveris Serveris

5 pav. Beserveriniy skai¢iavimy vykdymo modelis (pagal [Hail8])

,Saltas* funkcijos paleidimas reiskia tai, jog vykdydama vartotojo uzklausa beserveriniy skai-
ciavimy platforma turi sukurti vienoje i$ serveriy virtualioje masinoje konteinerj, j kurj atsiys
funckijos kodo paketa, kartu su vykdanciosios aplinkos priklausomybémis, ji paleis ir perduos
uzklausos vykdyma. Funkcijos paleidimo procesa orkestruoja paslaugy tiekéjo platforma. Tiesa,
funkcijos kodo paketo atsiuntimas ir paleidimas vadinamas ,,tiekéjo saltu” (angl. provider cold)
paleidimu, kuris nutinka, kai funkcijos duomenys po tam tikro nebenaudojimo laiko yra iStrinami
iS VM FaaS platformos tiekéjo, kurioje $i veikia, dél ko kitu funkcijos kvietimu funkcijos kodo
paketas turi biiti atsiystas i naujo. Siame darbe yra nagrinéjamas funkcijos ,,konteinerio ¥altas*
(angl. container cold) paleidimas - programinis kodas, ar tai buty konteinerio atvaizdas, ar ar-
chyvas, jau egzistuoja virtualioje masinoje, kurioje funkcija bus paleista, FaaS platformai lieka jj
inicijuoti ir paleisti funkcija. Panagrinékime $io proceso dalis, kad galétuméme suprasti kritinius

jo taskus, dél kuriy atsiranda pridétinis (angl. overhead) laikas vykdant vartotojo uzklausa.

14

2.1. Funkcijos kodo paketo atsiuntimas i duomenuy saugyklos

Pirmasis zingnis, kurj atlieka beserveriniy skai¢iavimy platforma, gavusi sistemos vartotojo
uzklausg - randa patalpintg funkcijos kodo paketa duomeny saugykloje - funkcijy registre. Sis
registras yra paprasCiausia paslaugy tiekéjo duomeny saugykla, pvz. AWS paslaugy tiekéjo at-
veju tai AWS Elastic Container Services atvaizdy saugykla ar AWS S3 objekty saugykla [Hail§].
Beserveriniy skai¢iavimy platformai radus funkcijos kodo paketa yra sukuriamas konteineris, j
kurj $j funkcijos koda platforma perduos tinklu kartu su jo vykdanciaja aplinka, sudiegs jame ir
perduos uzklausa vykdymui. Sis Zingsnis apibiidina ,tiekéjo %alto® funkcijos paleidimo savoka
ir dél jo gaunamas didziausias pridétinis laikas nuo uzklausos gavimo iki atsakymo grazinimo,
todél norima §j laikg kiek jmanoma sumazinti. Sio Zzingsnio sparta priklauso nuo keletos veiksniy.
Kadangi funkcijos po tam tikro laiko tarpo nenaudojimo yra iStrinamos ir jy naudojami kompiu-
teriniai iStekliai atlaisvinami, véliau kiekviena naujai kuriama funkcija gali atsidurti vis kitame
serveryje ar kitoje anksc¢iau naudojamo serverio virtualioje masinoje, todél kiekvieng kartg ku-
riant nauja funkcijos konteinerj yra i$ naujo atsiunc¢iamas funkcijos kodo paketas ir patalpinamas
jame. AWS Lambda platformai perpanaudojus ankstesniu funkcijos kvietimu sukurta konteinerj
funkcijos iskvietimas yra laikomas ,,8iltu®, taCiau tai néra sio darbo tyrimo objektas. Kodo atsiun-
timas j konteinerj vyksta tinklu, todél funkcijos kodo paketo dydis tiesiogiai daro jtaka konteinerio
paleidimo laikui. Funkcijos inicijavimo laikas yra glaudziai susijes su atvaizdo, kuriuo pateikia-
mas funkcijos programinis kodas, dydziu, todél yra itin svarbu §j dydj minimizuoti [And21a].

Funkcijos programinj koda pateikiant archyvu yra tikimasi gauti panasius matavimy rezultatus.

2.2. Programinio kodo paketo pateikimas AWS Lambda platformai

Funkcijos programinio kodo pateikimas AWS Lambda platformai galimas dviem budais:

* Programinio kodo archyvu (.zip arba . jar)

e Virtaualaus konteinerio atvaizdu

IS esmés Sie du programinio kodo pateikimo biidai beveik nesiskiria - abejais jmanoma pasiekti ta
patj funkcionaluma, ta¢iau pateikiant programinj koda archyvu yra jmanomas platesnis funkcijos
iSorinis konfigiravimas - prie platformai pateikiamo funkcijos programinio kodo galima prijungti
jvairias iSpléstis (angl. extensions), kitus programinio kodo sluoksnius (angl. layers) netalpinant
$iy komponenty j archyva, kai tuo tarpu funkcija ir jos programinis kodas, pateikiamas virtaualaus
konteinerio atvaizdu, néra konfigiiruojamas - atvaizdai yra nekintami (angl. immutable) ir tik
skaitomi (angl. read-only), todél sluoksniai bei iSpléstys turi buti talpinami paciuose funkcijos
virtaualiy konteineriy atvaizduose [Wo0020].

Kodo pateikimas archyvu leidzia minimizuoti AWS Lambda platformai pateikiamo funkcijos
programinio kodo paketo dydj, o taip pat perpanaudoti programinj koda tarp daugelio funkcijy $j

prijungiant sluoknsiu ar iSpléstimi.

15

Didelis privalumas pateikiant funkcijos koda virtaualaus konteinerio atvaizdu yra Sio atvaizdo
dydzio riba. Virtaualaus konteinerio atvaizda AWS Lambda platformai galima pateikti iki 10 GB,
kai tuo tarpu archyvu tiesiai i$ vartotojo kompiuterinés jrangos - iki 50 MB, o archyva patalpinus
AWS S3 objekty saugykloje ir naudojant ja - iki 250 MB [AWS21e]. Tai leidzia didesnés apimties

programoms iSnaudoti AWS Lambda sitlomus privalumus.

2.3. Funkcijai suteikiamos atminties dydis

Nurodydami funkcijai jai reikalingg atminties dydj, beserveriniy skai¢iavimy platfoma funk-
cijai proporcingai suteikia tam tikra procesoriaus galios dydj, pvz. AWS Lambda paslaugy tiekéjo
atveju, funkcijai suteikus 3538 MB atminties, ji gauna apytiksliai du kartus daugiau procesoriaus
galios, nei tai paciai funkcijai suteikus 1769 MB atminties [AWS21b]. Siuos kompiuterinius i§-
teklius galima panaudoti paspartinti funkcijos inicijavima, ypatingai JVM kalby atveju, kurios
inicializuotis uztrunka ganétinai ilgai, lyginant su interpretuojamomis programavimo kalbomis
[Rob20]. Oficialioje AWS Lambda dokumentacijoje raSoma, jog Lambda funkcija, gaunanti 1769
MB atminties, atitinkamai gauna 1 vCPU (1 vCPU sekundés kredita per sekunde) [AWS21d].
Tai reiskia, jog funkcija skaiCiavimams atlikti per sekunde gali pilnai iSnaudoti viena virtualaus
procesoriaus galios dydj. Atitinkamai, funkcijai suteikiant dvigubai tiek atminties - 3538 MB, si
galés naudoti vieno virtualaus procesoriaus galios dydj dvi sekundes per sekunde. Tai daro jtaka
tiek funkcijos veikimo metu, tiek funkcijos inicijavimo fazéje, kurios metu vykdomas kodas uz
funkcijos valdiklio. Taip pat funkcijai suteikiant daugiau atminties, $i atitinkamai gauna daugiau
procesoriaus loginiy gijy, pvz., funkcija, turinti 1769 MB atminties gauna 2 procesoriaus logines
gijas, kai tuo tarpu 3538 MB atminties funkcija gauna 3 procesoriaus logines gijas [And21a]. Sias
gijas galima iSnaudoti efektyvinant funkcijos inicializacijos metu vykdoma koda - lygiagretinant
procesus, tokius kaip rySio uzmezgimas su iSoriniais servisais ar statiniy duomeny, naudojamy
programos, uzkrovimas. Taciau tai nepaspartina funkcijos konteinerio, kuriame veikia vartotojo
pateikta funkcija, suktirimo laiko, uz kurj atsakinga AWS Lambda platforma - Sis laikas ganétinai
pastovus visy atminties dydziu funkcijoms [And21a; EUG"21], todél inicijavimo metu veikiantj
programinj koda verta optimizuoti iSnaudojant funkcijai suteikiamos atminties kiekj kiek jmano-

ma efektyviau.

2.4. Programavimo kalbai specifiniai veiksniai

Verta panagrinéti alternatyvius btuidus specifinés programavimo kalbos funkcijos inicijavimui
paspartinti - naudoti optimizuota vykdymo aplinka, efektyvinancia programos veikimo bei palei-
dimo sparta, panaudoti i$ anksto sukompiliuoto (AOT, angl. ahead-of-time) programinio kodo
kompiliavimo principa, kuris leidzia iSvengti kodo interpretavimo programos veikimo metu. JVM
programavimo kalby atveju programinis kodas yra vykdomas Java virtualios masinos, kurios pa-
leidimas uZima nemaza laiko dalj. Siy kalby atveju yra jmanoma sukurti programos vykdomaja

aplinka | ja jtraukiant tik tuos modulius, kurie bus naudojami programos vykdymo metu, taip su-

16

mazinant Java virtualios masinos j atmintj uzkraunamy klasiy kiekj bei sumazinant vykdomosios
aplinkos dydj. Tai galima atlikti jrankiu jlink, pristatytu Java 9 versijoje kartu su kitomis Java
moduliarumo galimybémis. AOT JVM funkcijos kodo kompiliavima galima pasiekti pasinaudo-
jant GraalVM vykdymo aplinka, kuria programinj koda yra jmanoma sukompiliuoti j vykdomaijj
faila, vadinama native image. Sis programinis failas yra kuriamas GraalVM kompiliatoriaus pagal-
ba statinés programinio kodo analizés budu, perzvelgiant kiekvieng galima programos veikimo
kelia, nekompiliuojant nepasiekiamo kodo, pritaikant jvairius kodo optimizavimo principus, pro-
ceso rezultate sukuriant minimalaus dydzio masininio kodo rinkinj [WSH"19]. Tai, be abejo, yra
nejprastas buidas kompiliuojamoms programavimo kalboms, tokioms kaip Java, pasizyminciomis
dinamiskumu, programinio kodo generavimu veikimo metu, todél $is jrankis turi savy trukumy
bei sunkumy - GraalVM veikia ,,uzdaro pasaulio® principu, dél ko visos klasés turi baiti zinomos
kompiliavimo metu. Java ypatybés, tokios, kaip dinaminis klasiy uzkrovimas, JNI (angl. Java
Native Interface), reflekcija, dinaminis jgaliojimas (angl. Dynamic Proxy) suteikia lankstumo
programuotojui, o kartu ir neuztikrintumo AOT kompiliatoriui [Wan21], taCiau Siuos aspektus
yra jmanoma sukonfigtiruoti rankiniu budu taip leidziant GraalVM zinoti apie galimus kintamyjy

tipus bei kitus dinaminius aspektus programos veikimo metu.

17

3. Tyrimo metodika

Kiekvienam funckijos kvietimui AWS Lambda grazina standartinj atsakyma, kuriame galime

rasti informacija apie funkcijos veikimo laika bei kitus matavimus:

Duration: 54.27 ms Billed Duration: 6131 ms Memory Size: 512 MB
Max Memory Used: 85 MB Init Duration: 6076.61 ms

AWS Lambda vartotojui pranesa kiek funkcijai buvo isskirta atminties (Memory Size), kiek si
funkcija naudojo daugiausiai atminties (Max Memory Used), kiek laiko buvo vykdyta uzklausa
(Duration), kiek laiko truko funkcijos inicijavimas Lambda platformoje (Init Duration) bei uz
kokj laiko tarpa yra apmokestinamas vartotojas (Billed Duration), kuris susideda i vykdymo bei
inicijavimo laiko ir yra apvalinamas 1 ms tikslumu. Funkcijos inicijavimas yra viena i§ Lambda
funkcijos gyvavimo ciklo faziy, kuri vykdoma pirmojo Sios funkcijos kvietimo metu. Jos me-
tu yra sukuriama arba ,atsildoma® vykdymo aplinka, atsiunciamas funkcijos kodo paketas kar-
tu su kitais jam priklausanciais funkcijos sluoksniais, inicijuojamos iSpléstys (angl. extensions),
jei funkcija tokias naudoja ir jvykdomas kodas, esantis uz funkcijos valdiklio (angl. handler)
[AWS21a]. Tai i esmés apibtidina funkcijos ,konteinerio Salta” paleidima, todél matavimuose
remsimés Init Duration laiku. Sis laikas AWS Lambda platformos jra$omas tik tuo atveju, kai
funkcija paleidziama saltai.

Uz funkcijos valdiklio sukursime boolean tipo kintamajj isCold, kuris inicijuojamas reiksme
true. Funkcija, iSkviesta pirmajj karta - paleista Saltai, pakeis Sio kintamojo reikSme j false ir
jrasys zinute, jog funkcija buvo paleista Saltai. Ne pirmajj karta kvieCiama funkcija Sios zinutés
nejrasinés ir tai veiks kaip saugiklis tuo atveju, jei dél tam tikry priezasciy funkcija bus paleidziama
siltai.

Java programavimo kalbos Lambda funkcijy inicijavimo laikas pasizymi nemazu standartiniu
nuokrypiu, todél kiekviena funkcija matuosime po 100 karty ir pavaizduosime kaip varijuoja
tiriamas laikas su tam tikra funkcijos konfigiiracija.

Visoms matuojamoms funkcijos suteiksime 4096 MB atminties - Siame tyrime nenagrinésime
matuojamy funkcijy inicijavimo laiko priklausomybés nuo joms suteiktos atminties dydzio, nes
funkcijai skiriamos atminties bei procesoriaus galingumo panaudojimo galimybés optimizuojant
Salto paleidimo laika priklauso nuo pacios funkcijos ir jos atliekamy veiksmy Sioje fazéje, todél
kiekviena funkcija Siuos kompiuterinius isteklius gali panaudoti skirtingai.

Lygindami skirtingais jrankiais sukurtus funkcijos kodo paketus, pateikiamus AWS Lambda
platformai, pavaizduosime geriausius gautus rezultatus funkcijos kodo paketo dydzio atzvilgiu, o
taip pat sulyginsime $iy pakety dydzius pridéje i juos nenaudojamy faily taip sulygindami mata-
vimo pagrinda tam, kad galétuméme pamatyti naudojamy kodo pakavimo buidy pranusumus bei

trukumus.

18

3.1. Jlink jrankiu sukurta vykdymo aplinka

Savo testuojamai funkcijai jlink jrankio pagalba sukursime Java vykdomaja aplinka, j kuria
jtrauksime tik tuos Java modulius, kuriuos naudoja miisy funkcija, taip sumazindami vykdymo
aplinkos dydj bei neuzkraudami nenaudojamy moduliy JVM startavimo metu.

Pateikdami funkcijos programinj koda kaip virtaualaus konteinerio atvaizda, sia sukurta vyk-
domaja aplinka pateiksime kartu su alpine:latest baziniu atvaizdu taip minimizuodami atvaiz-
do dydj. Siuos matavimus lyginsime su identiko programinio kodo funkcija, naudojanéia jprasta
AWS vykdymo aplinkos bazinj atvaizda amazoncorretto:11-alpine beileidzian¢ia misy prog-
raminj koda kaip vykdomajj . jar archyva.

Koda pateikdami .zip archyvu jlink jrankiu sukurta vykdomosios aplinkos daroma jtaka is-
matuosime dviem budais. Pirmuoju - vykdomaja aplinka pateikdami vienu archyvu kartu su
programiniu kodu, o antruoju - prijungdami 8ig aplinka atskiru sluoksniu po funkcijos suktrimo.
Abu siy funkcijy inicijavimo laikus lyginsime su funkcijos, kurios programinj koda sudaro sukom-
piliuoty klasés faily archyvas, o Java 11 vykdymo aplinka pateikiama AWS Lambda platformos,

inicijavimo laiku.

3.2. Native image vykdomasis failas

GraalVM vykdomosios aplinkos pagalbiniu jrankiu native-image sukompiliuosime savo funk-
cijos programinj koda j vykdomajj failg, kurj sudaro programinio kodo klasés, priklausomybiy
klasés, vykdomojo laiko priklausomybiy klasés bei statiskai suristi JDK moduliai. Sis failas susi-
deda i$ masininio kodo, skirto Linux operacinei sistemai AMDG64 instrukcijy aibés architektarai.

Kurdami virtaualaus konteinerio atvaizda savo testuojamai funkcijai pasinaudosime GraalVM
baziniu atvaizdu ghcr.io/graalvm/graalvm-ce:latest. Kiarimo metu pasinaudosime keliy
faziy atvaizdo karimo procesu, kurio primoje fazéje sugeneruosime native image vykdomaijj faila,
o antroje fazéje pateiksime §j vykdomajj failg kartu su debian:buster-slim baziniu atvaizdu
taip minimizuodami atvaizdo dydj.

Jau sukompiliuota native image vykdomajj faila rankiniu budu iSimsime i8 pries tai sukurto vir-
taualaus konteinerio atvaizdo paleisdami §j konteinerj ir iSeksportuodami jo turinj. Sj vykdomajj

failg archyvuosime ir pateiksime AWS Lambda platformai .zip archyvu.

3.3. Matavimams atlikti naudojamos programos aprasymas

Matavimams atlikti Python programavimo kalba buvo suprogramuota aplikacija, automati-
zuojanti funkcijos sukiirimo, iSkvietimo bei sunaikinimo veiksmus - programinis kodas pateikia-
mas Git repozitorijoje [And21b]. Siems veiksmams atlikti naudojami bash skriptai, kurie vykdo
AWS tekstinés sasajos jrankio (angl. AWS Command line interface) komandas. I§ AWS Lambda
platformos funkcijos iSkvietimo rezultatai iSsaugomi ir kaupiami atitinkamoje funkcijos versijos
direktorijoje, i§ kurios véliau Sie rezultatai yra nuskaitomi, transformuojami ir gaunami matuojami

duomenys. Siam procesui jgyvendinti suprogramuotas matavimy modulis (6 pav.).

19

weecn) wstane
P } platforma

Matavimy modulis |

i v —— [Pwmm
Sukuria, ifkvicdia, panaikina Lambda funkcijg I
qeardiga
|
'I.I"E.F[ﬂtﬂjaﬂ Henrdoga
l_ Rezultaty jrasymo modulis
[Python]
ifsaugo Lambda funkojos kvislima rexuliabus
bash skripty
direktorla

Rezultaty transformavimo modulis
Hﬂ.ldql_} [Pwmn]

Transformuoja rezultatus, juos iSsaugo boi

penanuaja dingramas

rezultaty
Vartotojas . | direktorjos
‘Bu.l:-

L.—
trangtormuaoty rezultaty

diagrami) direktorijos
direkiorija

>
g

6 pav. Matavimy modulis

AWS Lambda platformai funkcijas pateiksime Docker atvaizdo forma, kuri i$ jy sukurs virtu-
alius konteinerius ir juose patalpins miuisy programinj koda. Kiekviena matuojama funkcija patal-
pinta atskiroje direktorijoje, kurioje egzistuoja Dockerfile failas, is kurio bus kuriamas konteinerio
atvaizdas. Sie atvaizdai bus talpinami AWS ECR (angl. Elastic Container Registry) platformoje,
is kurios AWS Lambda, kurdama funkcijy konteinerius, atsisiys ir panaudos Siuos atvaizdus. At-

vaizdy generavimui ir patalpinimui Amazon ECR platformoje suprogramuotas Docker modulis (7

20

pav.).
AWS ECRH
platforma
Docker modulis
i [Python]
Sukuria funkeipy atvaizdus ir palalpina AWS ECR
platformoje - 1
e
T
Senrioga
Vartotojas l
- -
Dash sKripty SV TNk
direktorija direktor|a

7 pav. Docker modulis

Prie§ naudojantis AWS ECR platforma, vartotojas joje turi sukurti atvaizdy repozitorija. Tam
automaziuoti sukurtas aplinkos modulis, kuris bash skripty pagalba AWS platformoje sukuria
vartotojo role, kuri bus naudojama atlikti veiksmus platformoje, o taip pat inicializuoja nauja
AWS ECR repozitorija. Duomenis, kurie bus reikalingi darbui su Lambda funkcijomis, iSsisaugo

konfigtiraciniame .env faile (8 pav.).

Aplinkos modulis
e — [Python]
Subounia nawdotajo rolg, inicializeaja AWS
ECH abtvairdy diraktonija
|

™ i oja

i
bash skripty Parametry
direktorija fallas

Vartotojas

LM

8 pav. Aplinkos konfigiiracijos modulis

22
4. Skirtingais budais pateikiamuy kodo pakety inicijavimo
laiko tyrimas

Matavimai buvo atlikti AWS eu-west-1 regione. Verta paminéti, kad gauti rezultatai gali
priklausyti nuo paros laiko, kurio metu buvo atlikti funkcijy matavimai - esant didesnei AWS
serveriy apkrovai, funkcijos inicijavimo laikas gali prailgéti, taciau tai Siame darbe nebus tiriama.
Taip pat FaaS paslaugy tiekéjai, tarp jy ir AWS, suvokia apie Salty funkcijos paleidimy sukeliamas
problemas ir stengiasi Svelninti jy daroma jtaka, todél atliekant tuos paCius matavimus po tam

tikro laiko tarpo rezultatai gali skirtis.

4.1. Konteinerio atvaizdu pateikiamo kodo paketo tyrimas

Konteinerio atvaizdu pateikiamo kodo paketo matavimy rezultatus pavaizduosime sklaidos

diagrama. Salia sklaidos taiky pavaizduosime reik¥mes, esantias tarp 30 ir 70 procentiliy.

. llink frankiu sukurta
1600 ~ vykdomoji aplinka
native image vykdomoji
1 programa
1400 A i iprastas Docker atvaizdas
1200 ~ s
W
£ :
o '
2 1000 - !
[.
a L
E 1
= 4 76823
= 800 730,51 l
k=
= B
I t £51.87
600 - | !
579.65
§
400 #7981 !
20229 I
200 -
T T T
2 & -
H - Ty
S 3

Kodo paketo dydis (MB)

9 pav. Skirtingais buidais pateikiamo funkcijos programinio kodo atvaizdu matavimai

23

IS (9 pav.) matavimy rezultaty matome, jog native image vykdomoji programa, nors neturinti
maziausio atvaizdo dydzio, sugebéjo inicijuotis sparcCiausiai - vidutiniskai per 318 ms. Nors jlink
jrankiu sukurtos vykdomosios aplinkos virtaualaus konteinerio atvaizdas uzémé maziausiai vietos,
taciau jo inicijavimo greitis panasus j atvaizdo, uzimancio 195,1 MB. Taip pat galime pastebéti, jog
atvaizdu pateikiamo funkcijos programinio kodo inicijavimo laikai pasizymi didele variacija - tam
galimai turi jtakos tam tikri platformos atliekami optimizacijos veiksmai. Taip pat yra tikétina, jog
misy matavimuose naudojamos funkcijos AWS Lambda platformos yra talpinamos skirtinguose
daugiau ar maziau apkrautuose serveriuose, kas irgi gali turéti jtakos Siai variacijai paaiskinti,
taCiau norint pagrjsti sias mintis reikéty detalesniy matavimy, tirianciy aplinkos, kurioje miisy
funkcijos veikia, savybes.

Siuos funkcijy atvaizdus i§plésime ir sulyginsime jy dydZius tam, jog suvienodintume ma-
tavimy salygas ir galétume atsizvelgti i budo, kuriuo pateikiamas funkcijos programinis kodas,
daroma jtaka Saltam paleidimui. Bus tikimasi pamatyti padidéjima tarp visy funkcijy inicijavimy

laiky.

1600
1400 :
:
—_ H :
:E'i 1200 1158:34
7]
® L
= 1000 - .
o t '
= !
E 800 E78.37] l
E 7523 i |
C
£ 6001 . : . i
iprastas Docker atvaizdas 580.45 !
jlink jrankiu sukurta w28 |
400+ " wykdomoji aplinka .
native image vykdomoji
287.92
200 4 programa
T T T
220.33 222.86 223.74

Kodo paketo dydis (MB)

10 pav. Skirtingais btidais pateikiamo funkcijos programinio kodo atvaizdu matavimai

I5 (10 pav.) rezultaty pastebime, jog inicijavimo laikas jprastu Docker atvaizdu pateikiamos
funkcijos atvaizdui padidéjus nuo 195,1 MB iki 220,33 MB iSaugo apie 42 %. Netikéta, jog jlink
vykdomaja aplinka bei native image vykdomojo failo budais pateiktos funkcijos padidéjus at-
vaizdo dydziui ilgiau inicijuotis neuztruko, nors atvaizdai buvo iSplésti tokiu pat bidu - pripildant

juos jvairiais . jar archyvais.

24

[sitikinsime, jog jlink vykdomaja aplinka pateikiamo programinio kodo atvaizdo dydis ne-
turi jtakos ,konteinerio Saltam® paleidimui matuodami skirtingy atvaizdy dydziy funkcijas, pa-

teikiamas Siuo budu.

jlink jrankiu sukurta
1800 ~ vykdomaoji aplinka
1600 -
@ 1400 A
£
0 H
£ 1200 T
© .
o |
£ 1000 A
£ |
:g] $ i
2 800 1 $ i !
- 658.14 634.46 652.4
600 - u m I |
585.46 56977 * 576.74
400 A
23.61 89.06 276.28

Kodo paketo dydis (MB)

11 pav. Skirtingy atvaizdy dydziy jlink vykdymo aplinka pateikiamo programinio kodo matavi-
mai

IS (11 pav.) matavimy duomeny galime matyti, jog funkcijos programinj koda pateikiant
jlink vykdomagja aplinka funkcijos inicijavimo laikas beveik nekinta. Galime manyti, jog
native image vykdomojo failo atvaizdu pateiko programinio kodo atvaizdo dydis taip pat neda-
ro jtakos funkcijos inicijavimo laikui. Sunku paaiskinti kodél gaunami tokie rezultatai, taciau tam
gali turéti jtakos AWS Lambda platformos optimizacijos bei naudojama firecracker microvm
virtualizacijos technologija [ABI"20], taCiau tam reikéty detalesnio tyrimo ir Sios technologijos
analizés.

Gauti matavimy rezultatai parodo, jog native image vykdomuoju failu pateikiamas funk-
cijos programinis kodas inicijuojasi zymiai grei¢iau nei kitais baidais. Taip pat konteinerio inici-
javimo laikas islieka ganétinai pastovus, kitant atvaizdo dydziui, ko negalima teigti apie jprastu

Docker atvaizdu kartu su . jar vykdomuoju archyvu pateikiamo programinio kodo.

4.2. Archyvu pateikiamo kodo paketo tyrimas

Archyvu pateikiamo kodo paketo tyrimo rezultatus pavaizduosime tokiu paciu budu, kaip ir

praeito biido matavime.

25

600 4 Jlink vykdomaoji aplinka
pateikiama sluoksniu
AWS javall vykdomoji aplinka
500 - native image vykdomoji
" programa
ey 42273 Jlink jrankiu sukurta
E * kdomoji aplink
£ 400 - vykdomoji aplinka
i 306.08
[is]
]
i} P
o 300 A '
E
'S 276.38
2
S 200 1
= 153 58
14629
100 +
15 .
01 £.35
T T T T
1.04 3246.7 6939.82 17524.23

Kodo paketo dydis (KB)

12 pav. Skirtingais budais pateikiamo funkcijos programinio kodo archyvo matavimai

Gauti (12 pav.) duomenys parodo, jog sparCiausiai inicijavosi taip pat, kaip ir funkcijos kodo
paketo atvaizdo tyrimo dalyje - native image vykdomoji programa. Taciau pateikiama archyvu ji
sugebéjo tai atlikti vidutiniskai vos per 6,8 ms, kai tuo tarpu antroji grei¢iausiai inicijavusi funkcija
buvo ta, kurios programinis kodas pateikiamas archyve kartu su jlink jrankiu sukurta vykdomaja
aplinka. Si tai sugebéjo padaryti vidutiniskai per 150 ms - 22 kartus lé¢iau (arba 2205%), nei native
image vykdomoji programa. Jdomu, jog ta pati vykdomoji aplinka, kurta jlink jrankiu ir pateikta
atskiru sluoksniu inicijuotis uztruko ilgiausiai. Tai leidzia manyti, jog sluoksnio prijungimas prie

funkcijos vyksta jos inicijavimo metu, dél ko atsiranda papildomas gaisties laikas.

26

Palyginome Siais budais pateikiamy kodo pakety inicijavimo laikg sulygindami archyvy dy-

dzius, norédami patikrinti kokia jtaka archyvo dydis daro funkcijos inicijavimo laikui.

600 4 Jlink vykdomaoji aplinka
pateikiama sluoksniu
AWS javall vykdomoji aplinka
500 - native image vykdomoji
44599 _p_rogr_’ama_
w Jlink jrankiu sukurta
E _ " * vykdomoji aplinka
. TyTh) 418 64 ¥ jl ap
g .
o H
o 300 0233 l
o 7 |
E 282.26
-
=,
= 200 1 169.09 l
=]
161.24
100 +
48 .
01 £.36
T T T T
180.44 183.6 190.38 197.55

Kodo paketo dydis (MB)

13 pav. Skirtingais budais pateikiamo funkcijos kodo archyvo matavimai

Gauti (13 pav.) rezultatai nustebino - archyvu pateikiamas funkcijos kodo paketo dydis nedaro
reiks$mingos jtakos funkcijos inicijavimo laikui, kurj fiksuoja AWS Lambda funkcijos iskvietimo
atsakyme. Sie rezultatai yra labai panaSis j auks¢iau pateiktus rezultatus, kur tiriamy funkci-
jy archyvy dydziai buvo minimalts. Taciau atliekant Siuos matavimus buvo pastebéta, jog nuo
funkcijos patalpinimo bei iSvietimo iki funkcijos grazinamo rezultato praeidavo nemazas laiko
tarpas, kurj taip pat galime laikyti $alto funkcijos paleidimo inicijavimo laiku. Sj laiko tarp i$-
matuosime trijy skirtingy kodo paketo archyvo dydziy funkcijoms, naudojanc¢ioms AWS Java 11
vykdomaja aplinka ir pavaizduosime kaip Sis laikas kinta priklausomai nuo kodo paketo archy-
vo dydzio. Kadangi ankstesniame matavime §j reiskinj pastebéjome visoms funkcijoms, galime

manyti, jog Sis laikas nepriklauso nuo archyvo turinio ir jam daro jtaka tik archyvo dydis.

27

Laiko nuo funkcijos kvietimo iki atsakymo gavimo
priklausomybé nuo kodo paketo dydzio

30000

26925.07 '
26717.02

25000 A
20000 A

15000 -

13203.44
13017.04

Laikas (ms)

10000 A

5000 ~

1699.69 l
1529.5

11.58 112.1 205.4
Kodo paketo dydis (MB)

14 pav. Skirtingy funkcijos kodo pakety archyvy dydziy atsakymo laiko palyginimas

Kaip matome grafike (14 pav.), funkcija, kurios kodo paketas uzima 11,58 MB, vidutiniskai
nuo jos kvietimo iki atsakymo grazinimo trunka 1614,5 ms. Funkcijos kodo paketui iSaugus
mazdaug 100-tu MB, to paties laiko matavimas trunka 13110,2 ms - apie 8,1 karto ilgiau (arba
812%). Padidéjus apytiksliai dar 100-tu MB, $is laikas auga vidutiniSkai iki 26821 ms - lyginant
su 11,58 MB dydzio kodo paketo funkcija augimas yra 1661%. Panasas funkcijos salto paleidimo
kodo paketo archyvo dydzio matavimy rezultatai pastebimi ir [MEH" 18] bei [PS17]. Matome
tiesing priklausomybe tarp funkcijos kodo paketo archyvo dydzio bei inicijavimo laiko, kuris
susideda i$ kodo paketo atsiuntimo ir iSarchyvavimo.

Panagrinéjus §j reiskinj atidziau, tai jvyksta, kai funkcijos kodas yra pirma kartg pateikiamas
AWS Lambda platformai - $i tas pacias paleidziamas funkcijas talpina toje pacioje virtualioje ma-
Sinoje tam, jog skaliuojamos funkcijos kopijos galéty perpanaudoti ta patj - jau atsisiysta j VM
ir iSarchyvuota - programinj koda. Sj reitkinj galime laikyti ,tickéjo Saltu™ funkcijos paleidimu
[LRC"18]. Kadangi musy matavimo budu kiekviena funkcija po iSkvietimo yra iStrinama, kartu
yra iStrinamas ir jos programinis kodas, kuris naujo funkcijos matavimo metu yra i$ naujo at-
siunciamas j tam tikra VM, todél tokiu budu kiekviena karta gauname ,,tiekéjo Salta“ paleidima,
kuris realiu FaaS panaudos atveju turéty pasitaikyti itin retai - tik tada, kai programinis kodas

yra keiCiamas arba funkcija yra iStrinama AWS Lambda platformos po ilgo laiko nepanaudojimo.

28

Sis kodo paketo atsiuntimo laikas néra apmokestinamas ir j Init Duration matavima nejtrau-
kiamas, todél tai miisy matavimams jtakos nedaro. Miisy matuojama laika galime jvardinti kaip
,konteinerio $alta” paleidimo laikg [LRC*18]. Vadinasi, galime daryti i$vada, kad kodo paketo
archyvo dydis funkcijy ,.konteinerio Saltiems” paleidimams jtakos nedaro - $is veiksnys pasireiskia
tik ,,tiekéjo Saltiems® funkcijy inicijavimams, kurie budingi ir konteinerio atvaizdu pateikiamoms
funkcijoms - jdomu pastebéti, jog matuojant funkcijas, pateikiamas konteinerio atvaizdu, nebuvo
leidziama kviesti funkcijos, kol jos atvaizdas nebuvo atsiystas j VM - funkcijos kvietimai grazino
klaidos pranesima ir pranesé, jog funckija kol kas yra busenos ,laukianti” (angl. pending), kai
tuo tarpu funkcija, pateikiama archyvu - galima kviesti vos tik ja suktrus.

Jeigu atsizvelgtuméme j Sig ,tiekéjo salta™ savoka, ankstensius duomenis - minimalaus kodo
paketo archyvy dydziy matavimus - galétume pavaizduoti prie funkcijos Init Duration laiko

pridedami laika, uztrukusj atsisiysti ir iSpakuoti archyvo failus.

2600 H
L]
-
2400
L]
2200 ~ 712068 '
—_ : . 013,83
£ 2000 i - I
— 183E.38 b
o 1881.02 i 196832
% 1800 - I i o
m
— -
1717.84 1634.67
1600 i jlink vykdomoji aplinka
pateikiama sluoksniu
1400 4 14?313. AWT.S jaf..rall vykdomoji.;plin ka
i native image vykdomoji
i programa
1200 1 jlink jrankiu sukurta
- . .
vykdomoji aplinka
1000 T

T T T
1.04 3246.7 6939.82 1752423
Kodo paketo dydis (KB)

15 pav. ,, Tiekéjo salto* funkcijos paleidimo laiko palyginimas

I3 (15 pav.) rezultaty galime matyti, jog jlink jrankiu sukurta vykdomoji aplinka, pateikiama
kartu su programiniu kodu, praranda savo pranasuma, nes jos kodo paketo archyvo dydis yra
iSpléciamas, dél ko ,tiekéjo salti” funkcijy paleidimai uztrunka ilgiau, nei, naudojant AWS Lambda
Java 11 vykdomaja aplinka. Todél norint iSvengti ilgy ,,tiekéjo Salty” funkcijy incijavimy, reikia
kiek jmanoma labiau sumazinti funkcijos kodo paketo archyvo dydj.

Matavimai parodé, jog lyginant funkcijos programinio kodo pateikimg .zip archyvu su prog-

29

raminio kodo pateikimu konteinerio atvaizdu, archyvu pateikiamas kodas yra pranasesnis ir funk-
cijos geba inicijuotis greiCiau. Geriausi rezultatai gaunami programinj koda sukompiliuojant j
native image vykdomajj failg ir pateikiant §j archyvu. Jlink vykdomaja aplinka pateikia-
mas programinis kodas taip pat paspartina funkcijos inicijavimasi, taCiau ne taip zymiai, kaip
native image btudu. Taip pat pamatéme, kad ,tiekéjo Salti* paleidimai stipriai priklauso nuo

funkcijos kodo paketo dydzio.

4.3. Rezultaty apibendrinimas

Palyginsime abu funkcijos programinio kodo pateikimo btidus keliais aspektais. Atvaizdu, ku-
riuo yra pateikiama funkcija AWS Lambda platformai, i esmés yra jmanoma funkcija jgyvendinti
bet kokia pasirinkta programavimo kalba, pateikiant Sios programavimo kalbos vykdomaja aplin-
ka kartu su programiniu kodu, kai tuo tarpu funkcijos pateiktos archyvu programavimo kalba yra
ribojama tomis kalbomis, kurias palaiko AWS Lambda paltforma. Dél Sios priezasties programinis
kodas, supakuotos j konteinerio atvaizda, yra lankstenis aplinkai, kurioje jis veikia, ir nepriklauso
nuo platformos. FaaS paslaugy tiekéjy funkcijos kodo pakety dydziai néra vienodi, taciau AWS
Lambda platformos atveju, atvaizdu pateikiamos funkcijos kodo paketo dydis gali siekti iki 10 GB,
kai tuo tarpu pateikiamas archyvu - iki 250 MB. Tac¢iau archyvu pateikiamos funkcijos inicija-
vimo laikas gaunamas spartesnis, o Sio archyvo paruosimas reikalauja maziau ziniy - konteinerio
atvaizdo paruosimas reikalauja papildomy ziniy, pvz., Docker konteinerizacijos variklio atveju sis

yra paruosiamas pagal aprasyta Dockerfile, kurj programuotojas turi sukonfigtiruoti pats.

Savybé Atvaizdas Archyvas

Programavimo kalbos palaikymas Neribojamas Ribotas

Lankstumas ir priklausomumas nuo platformos Lankstus, mazas Ribotas, mazai
lankstus

Leidziamas maksimalus kodo paketo dydis 10 GB 50 MB lokalus,
250 MB S3 objekty
saugyklos

Inicijavimo laikas Létesnis Spartesnis

Kodo paketo paruosimo sudétingumas Sudétingesnis Paprastesnis

1 lentelé. Programinio kodo paketo pateikiamo archyvu bei atvaizdu palyginimas

Prie$ naudojantis FaaS platforma verta apsvarstyti funkcijos programinio kodo pateikimo bii-
dus. Archyvu pateikiama funkcija yra labiau ribota ir pateikiama papras¢iau, gaunamas greitesnis
inicijavimo laikas, tac¢iau konteinerio atvaizdu pateikiama funkcija yra lankstené ir §i gali veikti
nepriklausomai nuo platformos kurioje ji leidziama.

Palyginsime ir JVM programinio kodo optimizavimo btdus, pritaikytus mtsy matuojamoms
beserverinéms funkcijoms. J1link jrankiu sukurta vykdomoji aplinka yra kuriama jtraukiant Java
modulius, naudojamus pateikiamos funkcijos programinio kodo, taciau Java moduliarumas né-

ra visiSkai trivialus ir reikalauja ziniy. Native image vykdomojo failo sukiirimas, lyginant su

30

jlink jrankiu kuriama vykdomaja aplinka, reikalauja daugiau ziniy, kai kuriais atvejais progra-
minio kodo pakeitimy, papildomos konfigtiracijos, o kartais iSvis néra jmanomas dél savo ,,uzdaro
pasaulio® savybiy, todél yra sudétingesnis jo panaudojimas. Native image yra masininio kodo
rinkinys, todél nattralu, kad 8is kodas yra priklausomas nuo procesoriaus architektaros, kai jlink
yra vykdomoiji aplinka, vykdanti Java baiting programa (angl. bytecode). Ta¢iau masininiam ko-
dui interpretuoti néra reikalinga Java virtuali masina, todél native image vykdomoji programa

veikia daug efektyviau ir beserveriné funkcija geba inicijuotis daug sparciau.

Savybé Jlink Native image

Panaudojimo galimybé Lanksti Ribota, kartais ne-
jmanoma

Panaudojimo sudétingumas Vidutinis Sudétingas

Priklausomumas nuo platformos Vidutinis Didelis

Inicijavimo laikas Létesnis Spartesnis

2 lentelé. Jlink jrankio bei native image vykdomosios programos sukiirimo palyginimas

Jeigu beserverinei funkcijai yra ypatingai svarbus inicijavimo laikas, verta panagrinéti galimy-
bes sukompiliuoti programinj koda j native image vykdomaja programa, taciau yra galimybeé,
kad to padaryti nepavyks be didesniy kodo ar pasirinkty biblioteky pakeitimy. Jlink jrankiu
sukurta vykdomoji aplinka, kaip matéme matavimuose, rodo spartesnius inicijavimo laiko rezul-
tatus, nei jprasta FaaS platfomos siiloma vykdomoji aplinka, tad $iuo budu lengviau sutrumpinti

funkcijos inicijavimo laika.

4.4. Veiksniy ,saltam® funkcijos paleidimui daromos jtakos minimiza-

vimas

Funkcijos inicijavimo laikas yra glaudziai susijes su atvaizdo, kuriuo pateikiamas funkcijos
programinis kodas, dydziu, todél yra itin svarbu §j dydj minimizuoti [And21a] - atvaizdo kuari-
mui rinktis minimalaus dydzio bazinj paketa, j funkcijos atvaizda nepakuoti nenaudojamy faily,
eliminuoti nenaudojama programinj koda, rinktis maziau vietos uzimancias funkcijos naudoja-
mas iSorines bibliotekas. Taip pat pateikiant koda virtualaus konteinerio atvaizdo btidu, funkcijos
vykdomoiji aplinka turi buti supakuojama kartu su programiniu kodu, kas stipriai iSplécia atvaizdo
dydj, ypatingai JVM programavimo kalby atveju - Java vykdomoiji aplinka gali sudaryti didziaja
dalj atvaizdo dydzio, priklausomai nuo to, kiek ir kokiy iSoriniy biblioteky platformos vartotojo
funkcija naudoja. Kuriant funkcijos konteinerio atvazida, verta naudoti keliy faziy karimo proce-
sg, kurio metu pradinéje fazéje funkcijos programinis kodas yra paruosiamas paleisti ir naudojami
kiirimo jrankiai, o sekancioje fazéje Sis paruostas paleidimui programinis kodas yra nukopijuoja-
mas ir naudojamos tik vykdomosios aplinkos priklausomybeés taip sumazinant atvaizdo dydj. Java
jrankio jlink bei GraalVM vykdomosios aplinkos pagalba yra jmanoma minimizuoti konteinerio
atvaizdo dydj o taip pat paspartinti funkcijos inicijavimo laika, ta¢iau tam reikalingos papildomos

zinios.

31

Gauti rezultatai ir isvados

Rezultatai

1. Prapléstas jrankis, naudojamas funkcijy matavimams atlikti.

2. ISmatuota funkcijos Salto paleidimo laiko priklausomybé nuo programinio kodo pateikimo
btdo:

* kodo paketo pateikiamo archyvu;
* kodo paketo pateikiamo konteinerio atvaizdu.

3. Nustatyi du budai, optimizuojantys JVM funkcijos Salto paleidimo laika, ir iSmatuota jy
jtaka:

* jlink jrankiu sukuriama vykdomoji aplinka;
* native image vykdomasis failas, sukuriamas iSankstinio programinio kodo kompi-
liavimo pagalba.
Isvados

1. Funkcijos, kurios programinis kodas pateikiamas archyvu, Salto paleidimo laikas yra ma-
zesnis nei funkcijos, pateikiamos konteinerio atvaizdu.

2. JVM programavimo kalbos beserverinés funkcijos inicijavimo laika galima sumazinti de-
Simtimis karty panaudojus sukompiliuota native image vykdomajj faila ir §j pateikus ar-
chyvu. Sis optimizavimo biidas ne visada yra jmanomas, galintis reikalauti programinio
kodo pakeitimy.

3. Jlink jrankiu sukurta vykdomoiji aplinka paspartina funkcijos Salta paleidima mazdaug
dvigubai, $is jrankis nereikalauja programinio kodo pakeitimy, taCiau $iuo budu néra gau-
namas sparciausias funkcijos salto paleidimo laikas ir jj verta rinktis tada, kai native image
funkcijos kompiliavimo btidas néra optimalus.

4. ,Tiekéjo saltam* paleidimui ypatingai didele jtaka daro funkcijos programinio kodo paketo

dydis, kai tuo tarpu ,,.konteinerio Saltam® paleidimui didesne jtaka turi funkcijos vykdomoiji

aplinka ir vykdymo budas

32

Galimos tolesniy tyrimy kryptys

Gauti rezultatai parodé, kad JVM funkcijos salta paleidima galima sumazinti desimtimis karty
naudojant native image vykdomajj faila, todél verta panagrinéti GraalVM vykdomosios aplin-
kos galimybes bei ribas kuriant §j vykdomajj faila tam, jog buty galima lengviau nuspresti ar
funkcija, kurig norima optimizuoti Siuo budu, yra jmanoma sukompiliuoti j native image ir
jeigu taip, tai kiek daug pastangy - programinio kodo pakeitimy, konfigtiracijos, skirtingy bi-
blioteky panaudojimo - tam prireikty. Taip pat naudinga paanalizuoti firecracker microvm
virtualizacijos technologija, naudojama AWS Lambda platformos jgyvendinant funkcijy kontei-
nerizacija [ABI"20], atsizvelgti j Sios technologijos veikimo principus siekiant sumazinti funkcijos
Saltg paleidimo laika. Verta patyrinéti AppCDS (angl. Application Class Data Sharing) principa,
kuris leidzia dalintis tomis paCiomis j atmintj uzkrautomis Java klasémis skirtingoms Java vir-
tualioms masinoms, esancioms toje pacioje VM, daroma jtaka didésnés apimties JVM funkcijy
saltiems paleidimams. Taip pat aktualu patyrinéti alternatyviy jprastiems JVM funkcijy karkasy,
labiau pritaikyty debesy kompiuterijos infrastruktiirai, pasizyminciy greitu programos paleidimu
bei mazu atminties suvartojimu, tokiy kaip Quarkus ar Micronaut, kuriais naudojantis prog-
ramos taip pat turi palaikyma buti sukompiliuotos j native image vykdomajj faila, daroma jtaka

funkcijos Saltiems paleidimams.

Summary

This paper overviews FaaS execution principles, shortcomings and advantages of such platforms, raises
and describes the problem of function cold start and identifies factors for which this problem occurs. By
measuring functions in Amazon Web Services Lambda FaaS platform and collecting results it suggests ways

to optimize JVM function cold start time.

34

Literatura

[ABI*20]

[And21a]

[And21b]

[AWS20]

[AWS21a]

[AWS21b]

[AWS21¢]

[AWS21d]

[AWS21e]

[BCC*17]

[EUG™21]

[G0020]

[GRE"12]

Alexandru Agache, Marc Brooker, Alexandra lordache, Anthony Liguori, Rolf Ne-
ugebauer, Phil Piwonka ir Diana-Maria Popa. Firecracker: Lightweight Virtualization
for Serverless Applications. 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), p.p. 419—434, Santa Clara, CA. USENIX Associa-
tion, 2020-02. ISBN: 978-1-939133-13-7. URL: https://www . usenix . org/

conference/nsdi20/presentation/agache.

Darius Andzevicius. Beserveriniy funkcijy $alto paleidimo laiko tyrimas. Projektinis
darbas, 2021-05.

Darius Andzevicius. Serverless Benchmark. https://github.com/dariusandz/

serverless-benchmark, 2021.

AWS. AWS Lambda now supports up to 10 GB of memory and 6 vCPU cores for
Lambda Functions. https://aws.amazon. com/about-aws/whats-new/2020/

12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions,
2020. Tikrintas 2021-03-27.

AWS. AWS Lambda execution environment. https://docs.aws.amazon.com/
lambda/latest/dg/runtimes-context.html, 2021. Tikrintas 2021-04-28.

AWS. AWS Lambda FAQs. https://aws . amazon.com/lambda/faqs/, 2021.
Tikrintas 2021-04-05.

AWS. AWS Lambda Pricing. https://aws . amazon . com/lambda/pricing/,
2021. Tikrintas 2021-03-27.

AWS. Configuring Lambda function memory. https://docs.aws.amazon. com/
lambda/latest/dg/configuration-memory.html, 2021. Tikrinta 2021-05-04.

AWS. Lambda quotas. https://docs.aws.amazon.com/lambda/latest/dg/
gettingstarted-limits.html, 2021. Tikrinta 2021-05-07.

loana Baldini, Paul Castro, Kerry Chang, Perry Cheng, et al. Research Advances in
Cloud Computing. Springer, Singapore, 2017. 1-20.

Unai Elordi, Luis Unzueta, Jon Goenetxea, Estibaliz Loyo, Ignacio Arganda-
Carreras ir Oihana Otaegui. On-demand Serverless Video Surveillance with Optimal

Deployment of Deep Neural Networks, 2021.

Google. Quotas. https://cloud. google.com/functions/quotas, 2020. Tik-
rintas 2021-03-28.

Joel Gibson, Robin Rondeau, Darren Eveleigh, and Qing Tan. Benefits and chal-
lenges of three cloud computing service models. In International Conference on Com-
putational Aspects of Social Networks, CASON, pp. 198-205, Sao Carlos, Brazil.
IEEE, 2012.

[Hail8]

[IBM20]

[KSS10]

[Lin14]

[LRC*"18]

[McK16]

[MEH"18]

[Mic21]

[M1i21]

[PS17]

[Rob20]

[Wan21]

35

Steven Haines. Serverless computing with AWS Lambda, Part 1. https://www.
infoworld . com/article /3210726 / serverless - computing - with - aws -
lambda.html, 2018. Tikrinta 2021-04-05.

IBM. OpenWhisk common use cases. https : / / cloud . ibm . com / docs /
openwhisk?topic=openwhisk-use_cases, 2020. Tikrintas 2021-03-13.

Ali Khajeh-Hosseini, lan Sommerville, and Ilango Sriram. Research challenges for

enterprise cloud computing, 2010.

Jeremy Lindblom. AWS re:Invent 2014. https: //aws . amazon . com/blogs/
developer/aws-reinvent-2014/, 2014. Tikrintas 2021-03-13.

W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara. Serverless com-
puting: an investigation of factors influencing microservice performance. In IEEFE
International Conference on Cloud Engineering (IC2E), pp. 159-169, Orlando, FL,
USA. IEEE, 2018.

John McKim. Abstracting the Back-end with FaaS. https://serverless.zone/
abstracting-the-back-end-with-faas-e5e80e837362, 2016. Tikrinta 2021-
04-03.

Johannes Manner, Martin Endref3, Tobias Heckel ir Guido Wirtz. Cold Start Inf-
luencing Factors in Function as a Service. 2018 IEEE/ACM International Conference
on Utility and Cloud Computing Companion (UCC Companion), p.p. 181-188, 2018.
DOI: 10.1109/UCC-Companion.2018.00054.

Microsoft. Multicloud solutions with the Serverless Framework. https://docs.
microsoft . com / en - us / azure / architecture / example - scenario /

serverless/serverless-multicloud, 2021. Tikrinta 2021-04-05.

Kimberly Mlitz. Cloud services market spending by segment worldwide from 2015
to 2020 (in billion U.S. dollars). https://www . statista. com/statistics/
540499/worldwide-cloud-computing-revenue-by-segment/, 2021. Tikrintas
2021-03-13.

Hussachai Puripunpinyo ir M.H. Samadzadeh. Effect of optimizing Java deploy-
ment artifacts on AWS Lambda. 2017 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), p.p. 438—443, 2017. DOI: 10.1109/INFCOMW.
2017.8116416.

Mike Roberts. Analyzing Cold Start latency of AWS Lambda. https://blog.
symphonia.io/posts/2020-06-30_analyzing cold_start_latency_of _
aws_lambda, 2020. Tikrinta 2021-05-07.

Sutao Wang. Thin Serverless Functions with Graal VM Native Image. Magistrinis dar-
bas, ETH Zurich, 2021-04-22.

[Wo020]

[WSH'19]

36

Julian Wood. Working with Lambda layers and extensions in container images.
https://aws.amazon.com/blogs/compute/working-with-lambda-layers-

and-extensions-in-container-images/, 2020. Tikrinta 2021-05-17.

Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul Wogerer,
Peter B. Kessler, Oleg Pliss, and Thomas Wiirthinger. Initialize once, start fast: ap-
plication initialization at build time. In Proc. ACM Program. Lang. P. 29, New York,
NY, USA. Association for Computing Machinery, 2019.

