
VILNIAUS UNIVERSITETAS
MATEMATIKOS IR INFORMATIKOS FAKULTETAS

INFORMATIKOS KATEDRA

Bakalaurinis darbas

Beserverinių funkcijų šalto paleidimo laiko optimizavimas
(Optimizing Serverless Functions Cold Start Time)

Atliko: 4 kurso 4 grupės studentas
Darius Andzevičius (parašas)

Darbo vadovas:
Gediminas Rimša (parašas)

Vilnius
2021

1

Turinys

Sąvokų apibrėžimai . 2
Įvadas . 3
1. Debesų kompiuterijos pradmenys . 5

1.1. FaaS paslaugų modelis . 6
1.2. FaaS kitų debesų kompiuterijos paslaugų kontekste . 7
1.3. FaaS trūkumai. 10

2. Veiksniai, darantys įtaką „šaltam“ funkcijos paleidimui . 13
2.1. Funkcijos kodo paketo atsiuntimas iš duomenų saugyklos . 14
2.2. Programinio kodo paketo pateikimas AWS Lambda platformai . 14
2.3. Funkcijai suteikiamos atminties dydis . 15
2.4. Programavimo kalbai specifiniai veiksniai . 15

3. Tyrimo metodika . 17
3.1. Jlink įrankiu sukurta vykdymo aplinka . 18
3.2. Native image vykdomasis failas . 18
3.3. Matavimams atlikti naudojamos programos aprašymas . 18

4. Skirtingais būdais pateikiamų kodo paketų inicijavimo laiko tyrimas . 22
4.1. Konteinerio atvaizdu pateikiamo kodo paketo tyrimas . 22
4.2. Archyvu pateikiamo kodo paketo tyrimas. 24
4.3. Rezultatų apibendrinimas. 29
4.4. Veiksnių „šaltam“ funkcijos paleidimui daromos įtakos minimizavimas 30

Gauti rezultatai ir išvados . 31
Literatūra . 34

2

Sąvokų apibrėžimai

IaaS ‑ Infrastruktūra kaip paslauga (angl. Infrastructure as a Service)
PaaS ‑ Platforma kaip paslauga (angl. Platform as a Service)
SaaS ‑ Programinė įranga kaip paslauga (angl. Software as a Service)
FaaS ‑ Funkcija kaip paslauga (angl. Function as a Service)
CaaS ‑ Konteineriai kaip paslauga (angl. Container as a Service)
IoT ‑ Daiktų internetas (angl. Internete of Things)
AWS ‑ kompanijos Amazon debesų kompiuterijos platforma Amazon Web Services
IT ‑ informacinės technologijos
VM ‑ virtuali mašina
AOT (angl. Ahead of Time compilation) ‑ išankstinis kompiliavimas

3

Įvadas

Debesų kompiuterija suteikia informacinių technologijų sistemoms priemones, kurios elimi‑
nuoja poreikį turėti fizinę techninę įrangą, kurioje ši sistema veiks, taip optimizuojant sistemos
pradinius paleidimo bei vėlesnius palaikymo kaštus. Jos principas ‑ egzistuojančios techninės
įrangos ir virtualizacijos panaudojimas formuojant bendrai naudojamą infrastruktūrą [GRE+12].
Perėjimas prie šios paradigmos (angl. paradigm shift) padarė didelę įtaką naujų informacinių siste‑
mų atsiradimui bei esamų sistemų palaikymui. Tai ‑ perėjimas nuo kompiuterijos, kaip produkto
turėjimo, į kompiuteriją kaip paslaugą, kuri suteikiama varotojams internetu iš didelės apimties
duomenų centrų ‑ „debesų“ [KSS10].

Iki 2014 m. vyravo trys pagrindiniai debesų kompiuterijos paslaugų modeliai ‑ Infrastruktūra
kaip paslauga (IaaS), Platforma kaip paslauga (PaaS) ir Programinė įranga kaip paslauga (SaaS). Šie
modeliai suteikia naujas galimybes informacinių technologijų sistemoms, tačiau tuo pačiu kelia
neįprastus tradicinei kompiuterijai iššūkius, į kuriuos turėtų būti atsižvelgta prieš naudojantis de‑
besų kompiuterijos paslaugomis [GRE+12]. 2014 m. kompanija Amazon pristatė savo valdomoje
debesų kompiuterijos platformoje Amazon Web Services (toliau ‑ AWS) veikiantį naują paslaugų
modelį ‑ funkcija kaip paslauga (FaaS), kurį realizuoja AWS Lambda platforma. FaaS tikslas ‑
panaikinti vartotojo poreikį rūpintis infrastruktūra, kurioje veikia jo aplikacija. Amazon buvo
pirmoji įmonė, siūlanti šio tipo paslaugas [Lin14].

Pastarasis paslaugų modelis įgyvendina vadinamąją skaičiavimų be serverių (angl. serverless
computing) sistemos architektūrą, kurios pagrindinis principas ‑ vykdyti programas ‑ išskaidytas
aplikacijos dalis virtualiuose konteineriuose ‑ kurios kiekviena individualiai gali būti skaliuojamos
pagal poreikį. FaaS paslaugų tiekėjai siūlo sumažintus aplikacijos išlaikymo kaštus (angl. hosting
costs), aukštą pasiekiamumą (angl. high availability), toleranciją klaidoms (angl. fault toleran‑
ce) bei dinaminį elastingumą (angl. dynamic elasticity) automatiškai prižiūrimoje ir valdomoje
infrastruktūroje, kurioje šie konteineriai veikia [LRC+18]. Vienintelė vartotojo atsakomybė ‑ pa‑
teikti programinį kodą, FaaS paslaugų modelio kontekste vadinamą funkcija, paslaugos tiekėjo
platformai tinkamu formatu.

Terminas „beserverinių skaičiavimų“ sistema jokiu būdu nereiškia, kaip gali pasirodyti, jog
fiziniai serveriai neegzistuoja. Tai terminas, apibūdinantis programavimo modelį ir sistemos ar‑
chitektūrą, kurioje programinio kodo dalys yra patalpinamos ir vykdomos debesyje, nereikalaujant
vartotojui rūpintis aplikacijos infrastruktūra ‑ vartotojas palieka šią atsakomybę debesų kompiu‑
terijos tiekėjui.

FaaS paslaugų modelyje, tiekėjas rūpinasi vartotojo programinio kodo ir jo naudojamų bib‑
liotekų konteinerizavimu (angl. containerization) debesyje, šių konteinerių išplečiamumu (angl.
scalability), apkrovos paskirtymu (angl. load balancing) tarp jų. Vartotojas platfomos tiekėjui turi
mokėti tik už patalpintos funkcijos iškvietimų skaičių ir veikimo laiką debesyje. Tokį modelį pui‑
kiai išnaudoja įvairios multimedijos apdorojimo, IoT duomenų agregavimo, srautų apdorojimo
(angl. stream processing), pokalbių robotų (angl. chatbot), planuotų darbų (angl. scheduled job),

4

REST API, nuolatinės integracijos (angl. continuous integration), nuolatinio diegimo (angl. con‑
tinuous deployment) bei nuolatinio pristatymo (angl. continuous delivery) aplikacijos [IBM20].

Nors savo savybėmis FaaS yra naudingas ir patrauklus paslaugų modelis, informacinių tech‑
nologijų sistemos pritaikymas šiam modeliui yra ganėtinai sudėtingas ir turintis nemažai neapi‑
brėžtumų. Iš pirmo žvilgsnio, beserverinių skaičiavimų platformos gali pritraukti dėmesį bet
kokios aplikacijos migravimui į šią platfomą, tačiau yra sunku nuspėti, kokią įtaką aplikacijos
migravimas į beserverinių skaičiavimų platformą turės aplikacijos greitaveikai, atsako laikui bei
kaip gerai platforma sugebės paskirstyti apkrovą. Todėl prieš perkeliant aplikaciją į beserverinių
skaičiavimų platfomą, būtina suprasti jos trūkumus, kad vartotojas galėtų įvertinti, ar šis paslaugų
modelis tinka panaudos atvejui.

Darbo tikslas: nustatyti būdus optimizuoti JVM funkcijos šalto paleidimo laiką ir ištirti jų
veiksmingumą.

Siekiant šio darbo tikslo, iškelti tokie uždaviniai:

1. Nustatyti būdus optimizuoti JVM funkcijos šalto paleidimo laiką.

2. Praplėsti [And21a] sukurtą įrankį beserverinių funkcijų šalto paleidimo trukmės matavimui
atlikti kodo paketo archyvu pateikiamoms funkcijoms.

3. Ištirti nustatytus funkcijos šalto paleidimo laiką optimizuojančius būdus sukurtu matavimo
įrankiu AWS Lambda platformoje JVM programavimo kalbos funkcijai.

4. Įvertinti ištirtų optimizavimo būdų pritaikymo galimybes.

5

1. Debesų kompiuterijos pradmenys

Iki debesų kompiuterijos atsiradimo, įmonės, norėdamos plėtoti IT sistemą, susidurdavo su
įvairiomis, sunkiai sprendžiamomis techninėmis problemomis. Apsunkinančios aplinkybės, no‑
rint paleisti IT sistemą, buvo fizinių serverių pirkimas, jų išlaikymas ir palaikymas, įvairių tech‑
ninių problemų sprendimas, tokių kaip defektuotos dalys, elektros srovės praradimas ar interneto
ryšio trikdžiai. Didžioji dalis įmonių buvo pačios atsakingos už fizinių serverių palaikymą ‑ nuo
įvairių programų rašymo, kurios valdydavo įvykusias klaidas, ugniasienių (angl. firewall) bei
interneto tinklo komutatorių konfigūravimo, iki serverių elektros sanaudų skaičiavimo. Toks inf‑
rastruktūros modelis buvo neefektyvus norint greitai ir kokybiškai vystyti elastingą ir sparčiai
plečiamą IT sistemą.

2006‑ųjų metų rūgpjūčio mėnesį įvyko tai, kas fundamentaliai pakeitė požiūrį į IT siste‑
mų infrastruktūrą. Amazon Web Services pristatė pirmąją viešai prieinamą debesų kompiuterijos
paslaugą Elastic Compute Cloud (EC2). Ši IaaS tipo paslauga, pasitelkiant techninės įrangos vir‑
tualizaciją, suteikė galimybę IT sistemas laikyti AWS serveriuose nuomojantis jų dalis. Tai leido
įmonėms, programuotojų grupėms ar įvairiems startuoliams, neturintiems didelio pradinio kapi‑
talo serverių pirkimui, išsinuomoti serverius ir juos pasiekti per kelias minutes, o kaštai, reikalingi
IT sistemos infrastruktūrai, sumažėjo dešimtimis kartų.

Šią paslaugą galime vadinti infrastruktūros ranga (angl. outsourcing) ‑ tai yra visos IT sis‑
temos kūrimo proceso dalies, kuri yra bendra ir visiems kitiems, kuriantiems IT sistemas ‑ nuo
fizinių patalpų, skirtų serveriams laikyti, iki bendrų aplikacijų savybių, tokių kaip autentifikacija ‑
perkėlimas į bendrai naudojamą platformą. Tai turi kelis didelius pranašumus, lyginant šią paslau‑
gą su tradicine IT infrastruktūra, kuri pasižymi tuo, jog vartotojo kompiuterinė įranga priklauso
jam pačiam:

• Masto ekonomija (angl. economy of scale) ‑ principas, leidžiantis debesų kompiuterijos
tiekėjui, diegiančiam fizinę infrastruktūrą didelėmis apimtimis, įsigyti ir prižiūrėti šią įranga
mažesne kaina, nei individualūs asmenys ar įmonės atskirai.

• Rizika. Mažesnė dalis specialistų turi turėti tam tikrų infrastruktūros žinių, reikalingų ser‑
verių priežiūrai. Specialistai susiduria su pasikartojančiomis problemomis, todėl gali grei‑
čiau spręsti įvykusias infrastruktūrines klaidas.

• Sistemos plečiamumas. Debesų kompiuterijos tiekėjas siūlo milžiniškas apimtis kompiu‑
terinės įrangos išteklių, kas leidžia vartotojui lengvai prisitaikyti prie kuriamos sistemos
reikalaujamų išteklių.

• Laikas nuo idėjos iki jos IT sistemos realizizavimo. Idėjos autoriui nėra būtina galvoti
apie jo sistemos infrastruktūros pusę, nes ja jau pasirūpino debesų kompiuterijos tiekėjas ‑
vartotojui belieka prisitaikyti prie paslaugų tiekėjo siūlomų paslaugų.

6

Šie pranašumai leidžia debesų kompiuterijos tiekėjui siūlyti kompetetingas paslaugų kainas, o
vartotojui pirkti šias paslaugas apsimoka labiau, nei turėti savo fizinę infrastuktūrą. Todėl debesų
kompiuterijos panaudojimas pastaruosius metus sparčiai populiarėjo, o gautos pajamos paslaugų
tiekėjams leido efektyviai vystyti savo platformas ir siūlyti pastoviai tobulėjančias paslaugas (1
pav.).

1 pav. Debesų kompiuterijos pajamos (pagal [Mli21])

1.1. FaaS paslaugų modelis

Debesų kompiuterijos paslaugų tiekėjai turi dideles apimtis kopiuterinės įrangos, kurios vir‑
tualias dalis nuomoja vartotojams teikdami įvairias debesų kompiuterijos paslaugas. Dalis šios
įrangos nėra nuolat išnaudojama, todėl jos išlaikymas nėra pelningas. Šią, pastoviai vienų ar kitų
paslaugų neišnaudojamą įrangos dalį, galima panaudoti užsakomųjų skaičiavimų paslaugų (angl.
on‑demand service) infrastruktūrai realizuoti. Paprastai tariant, tai yra FaaS paslaugos principas ‑
funkcija yra talpinama tuo metu nenaudojamoje kompiuterinės įrangos dalyje, o vėliau funkcijos
naudojama įrangos dalis yra atlaisvinama, kai ši funkcija tampa nebenaudojama tam tikrą laiko
tarpą.

Tokiu būdu paslaugos tiekėjas leidžia vartotojui paleisti ir laikyti savo aplikaciją ar jos dalis
kaip atskiras, lengvai plečiamas, neturinčias būsenos (angl. stateless), laikinas (angl. ephemeral)
funkcijas, talpinamas virtualiuose konteineriuose. Šių funkcijų gyvavimo ciklu (angl. lifecycle)
rūpinasi pats paslaugų tiekėjas, sukurdamas jas, kai to prireikia, arba sunaikindamas jas, kai funk‑
cijos tampa nebenaudojamos tam tikrą laiko tarpą. Toks principas vartotojui suteikia galimybę

7

nesirūpinti infrakstruktūra, kurioje ši funkcija atliks darbą ‑ vienintelis jo tikslas lieka sukurti bei
sukonfiguruoti šią programą paslaugų tiekėjo platformai.

Nuomojamos įrangos dalies dydis yra konfiguruojamas vartotojo, priklausomai nuo to, kiek
jo talpinama funkcija reikalauja išteklių, tačiau verta paminėti, kad ši konfiguracija yra ribojama ‑
FaaS paslaugų tiekėjai leidžia skirtingus išskiriamų išteklių funkcijai dydžius, pvz. AWS Lambda
platforma leidžia funkcijai išskirti net iki 10GB atminties [AWS20], kai tuo tarpu Google Cloud
FaaS platforma Cloud Functions ‑ iki 4GB [Goo20]. Priklausomai nuo išskiriamo atminties dy‑
džio, funkcijai suteikiamas tam tikras kiekis procesoriaus galios, kuri daugelyje FaaS platformų
apibrėžiama skirtingai. Vartotojas moka už šios atminties panaudojimą per laiką, pvz. AWSLamb‑
da platformos 1GB atminties panaudojimas sekundei daugelyje regionų kainuoja 0.0000166667
dolerio, apvalinant funkcijos veikimo laiką 1 ms tikslumu [AWS21c].

Toks granuliarus FaaS paslaugos apmokestinimo modelis yra labai patrauklus vartotojui, nes
jam netenka mokėti už jo aplikacijos neišnaudojamus kompiuterinius išteklius, o programinio
kodo optimizavimas greitaveikai tiesiogiai konvertuojasi į mažesnę infrastruktūros kainą.

1.2. FaaS kitų debesų kompiuterijos paslaugų kontekste

Kiekvienas debesų kompiuterijos paslaugų modelis abstrahuoja tam tikras atsakomybes nuo
vartotojo perleisdamas atsakomybę paslaugos tiekėjui (2 pav.), taip įgalindamas greitesnį aplikaci‑
jos funkcionalumo plėtojimą ir paleidimą bei mažindamas išlaikymo kaštus ir reikalingas vartotojo
žinias apie skirtingus aplikacijos sluoksnius. FaaS modelio atveju, vartotojas rūpinasi tik progra‑
minio kodo aplikacijos sluoksniu, kuris yra talpinamas debesų kompiuterijos tiekėjo debesyje.

8

2 pav. Debesų kompiuterijos paslaugų lyginimas (pagal [McK16])

FaaS modelis iš esmės įgyvendina beserverinių skaičiavimų architektūrą, todėl šiuos du ter‑
minus galime laikyti sinonimais. Kad galėtumėme geriau suprasti pagrindines šios architektūros
savybes, galime lyginti ją su kitais debesų kompiuterijos paslaugų modeliais IaaS ir SaaS. Vienas
iš būdų paaiškinti beserverinių skaičiavimų architektūrą yra galvoti apie tai, kokią atsakomybę
turi vartotojas, naudodamasis minėtais debesų kompiuterijos paslaugų modeliais (3 pav.). Inf‑
rastruktūros kaip paslaugosmodelyje vartotojas turi daugiausia atsakomybės rūpintis kaip jo paties
aplikacija bus paleista, plečiama bei kaip bus skirstoma apkrova. Priešingai, programinės įrangos
kaip paslaugos modelyje, vartotojui naudojasi paslaugos tiekėjo sukurta programine įranga ir tuo
pačiu neturi žinoti, kokia infrastruktūra supa šią įrangą. Galvodami apie beserverinių skaičiavimų
architektūrą, galime įsivaizduoti, kad FaaS paslaugos modelis yra kažkur tarp IaaS ir SaaS ‑ var‑
totojui pakanka savo sukurtą aplikaciją paleisti paslaugų tiekėjo, kuris pasirūpins infrastruktūra,
debesyje.

9

3 pav. FaaS lyginant su IaaS ir SaaS (pagal [BCC+17])

Pagrindinis beserverinių skaičiavimų architektūros principas ‑ galimybė išplėsti ir sutraukti
aplikacijos dalių kopijų skaičių tiek, kiek tuo metu to reikalauja apkrova. Tokiu būdu esant nuli‑
nei apkrovai, vartotojas neturi mokėti debesų kompiuterijos tiekėjui už tuo metu nenaudojamus
kompiuterinius išteklius, o esant didelei apkrovai, aplikacijos veikimas nestringa ir ši reaguoja ir
vykdo užklausas taip pat efektyviai.

Šį principą įgyvendina FaaS paslaugų tiekėjas ‑ vartotojui, kreipiantis į beserverinių skaičiavi‑
mų aplikaciją, debesų kompiuterijos platformos tiekėjo tarpinė programinė įranga (angl. middle‑
ware) nusprendžia, kuriai funkcijai priklauso ši užklausa, suranda konteinerį, kurioje ji yra patal‑
pinta, ir nukreipia užklausą į ją. Jei šis konteineris neegzistuoja, arba egzistuoja, bet yra apkrautas
vykdydamas kitą užklausą, platforma turi sukurti naują konteinerį, į kurį bus nukreipta varto‑
tojo užklausa. Dažnu atveju, paslaugų tiekėjo FaaS platforma yra sukurta taip, jog būtų lengva
naudotis šio tiekėjo kitomis debesų kompiuterijos paslaugomis, tokiomis kaip duomenų bazės ar
duomenų saugyklos. Dažnu atveju, paslaugų tiekėjas savo platformoje siūlo pranešimų perdavi‑
mo sistemos funkcionalumą, kuriuo yra įgyvendinamas funkcijų komunikavimas bei duomenų
perdavimas tarp jų, sukuriantis tam tikrą procesą (4 pav.). Funkcijai baigus darbą, platformos
tikslas grąžinti atsakymą į vartotojo užklausą, surinkti jos vykdymo matus ir sustabdyti funkciją
[BCC+17].

Šios architektūros funkcionalumo įgyvendinimo sunkumas yra toks, jog reikia atsižvelgti į
sistemos kainą, plečiamumą, toleranciją klaidoms bei funkcijų orkestravimą. FaaS platforma tu‑
ri užtektinai greitai sukurti ir paleisti naują funkcijos konteinerį, kai to prireikia, perduoti jam
užklausą ir grąžinti atsakymą. Taip pat platforma turi sugebėti dėti užklausas ar atskirų funkci‑
jų rezultatus į pranešimų eiles, iš kurių šie pranešimai turi būti vykdomi nepažeidžiant tvarkos.
Platforma turi gebėti dorotis su dideliais kiekiais užklausų ir efektyviai išplėsti sistemą. Taip pat
efektyviai turi ją ir sutraukti tam, kad vartotojas neturėtų mokėti papildomai [BCC+17].

10

4 pav. Beserverinių skaičiavimų architektūra (pagal [Mic21])

Didelė FaaS platformos funkcijų plečiamumo problema yra „šalti“ funkcijos pasileidimai.
FaaS platforma, neradusi funkcijos, tuo metu neapdorojančio užklausos, turi sukurti naują ir
perduodi užklausą jai. Šios funkcijos sukūrimas užima šiek tiek laiko, kurio metu, aplikacijos
vartotojas laukia atsakymo iš sistemos. Paprastai, funkcijos sukūrimas bei paleidimas atliekamas
keliais žingsniais. Pirmiausia, FaaS platforma į virtualia mašiną, kurioje bus sukurtas konteine‑
ris, talpinantis funkcijos kodą, turi atsisiųsti vykdomo kodo paketą iš paslaugos tiekėjo duomenų
saugyklos, kurioje yra saugomas šis kodo paketas. Po šio žingsnio, sistema turi sukurti patį kon‑
teinerį ir į jo atmintį užkrauti atsisiųstą kodo paketą. Galiausiai konteineris turi paleisti kodo
paketą esantį atmintyje, įvykdyti vartotojo užklausą ir grąžinti rezultatą. Kaip vėlesniame darbo
skyrelyje matysime, šis laiko tarpas priklauso nuo įvairių veiksnių.

1.3. FaaS trūkumai

Tam, kad visi FaaS platformos privalumai būtų pilnai išnaudoti, vartotojas turi iš anksto gerai
apgalvoti kokiomis dalimis bus skaidoma jo aplikacija, kaip vyks komunikacija tarp funkcijų ir jų
orkestravimu, užtikrinti, kad aplikacijos greitaveika bei atsako laikas nenukentėtų tose dalyse, kur
tai yra svarbu ‑ talpinamos funkcijos turi būti atitinkamai optimizuotos, o kai kurios aplikacijos
dalys galbūt išvis neturėtų būti talpinamos į FaaS platformą.

11

Dėl šių priežasčių, FaaS platformos turi ir neigiamų savybių ‑ kadangi FaaS debesų kompiute‑
rijos paslaugų modelis yra ganėtinai naujas, šie aplikacijos talpinimo procesai ir gerosios praktikos
nėra standartizuoti, todėl yra sunku optimaliai pritaikyti aplikaciją FaaS platformai.

Kai kurie FaaS platformų trūkumai kyla iš pačio sistemos principo ‑ jie niekada nebus visiš‑
kai pašalinti, o tobulėjant FaaS plaformoms, bus išmokstama kaip su jais tvarkytis. Įvardinsime
ryškiausius FaaS platformų trūkumus.

Gaišties laikas

Įprastoje ‑ ne beserverinių skaičiavmų sistemos architektūroje ‑ ar tai būtų monolitinė, ar
mikroservisų architektūros stiliumi paremta sistema, tam tikri sistemos procesai yra įgyvendina‑
mi izoliuotos programos kontekste. Tokiu atveju įgyvendinamo proceso sritis (angl. scope) yra
klasių ar modulių rinkinys, kuriuo naudojantis proceso įgyvendinimas vyksta metodų, naudo‑
jančių bendrus kompiuterinius išteklius, kvietimų pagalba. Šiuo būdu yra ganėtinai efektyviai
išnaudojami kompiuteriniai ištekliai ir tai nedaro didelės įtakos sistemos greitaveikai. Kadangi
beserverinių skaičiavimų sistemos architektūra yra paremta funkcijų skaidymu ir jų izoliavimu
tam, kad ši būtų efektyviai skaliuojama, tie patys procesai beserverinių skaičiavimų plaftomo‑
je gali būti įgyvendinti keliomis funkcijomis, kurios tarpusavyje komunikuoja ne naudodamosis
bendrais kompiuteriniais ištekliais, o tinklu taip sukurdamos papildomą gaišties laiką.

Būsena

Kadangi kiekviena FaaS platformos funkcija gali būti išplečiama iki daugelio identiškų kopijų,
veikiančių nepriklausomai viena nuo kitos, arba sutraukiama iki nei vienos, funkcijos neišlaiko
savo būsenos (angl. state). Norint, kad funkcija turėtų tam tikrą būseną, ji privalo komunikuoti
su komponentais, kurie laiko būseną ir gali šią būseną perduoti funkcijai. Dėl šios priežasties,
atsiranda gaišties laikas, kurį FaaS platformoje norime sumažinti kiek galima labiau.

Aplikacijos lokalus testavimas

Beserverinių skaičiavimų architektūros programinį kodą yra sunku testuoti lokalioje aplinko‑
je, nes vartotojai nežino ir dėl to negali atkartoti FaaS platformos implementacijos detalių. Taip
pat, dažnu atveju funkcijos turi bendrauti su kitomis debesų kompiuterijos teikiamomis paslaugo‑
mis, kaip žinučių perdavimo sistemos, duomenų bazės ar duomenų saugyklos. Šią komunikaciją
yra sunku tiksliai atkartoti iš lokalios aplinkos.

Konfigūravimo kontrolės praradimas

Debesų kompiuterijos tiekėjai riboja konfigūracines FaaS platformos galimybes tam, kad iš‑
vengtų nekontroliuojamo sistemos išnaudojimo. Funkcijos kopijų skaičius, išskiriami kompiu‑
teriniai ištekliai, maksimalus funkcijos veikimo laikas ar užklausos dydis ir kitos panašios konfi‑

12

gūracijos ‑ parametrai, kuriuos kiekvienas debesų kompiuterijos tiekėjas yra nustatęs pagal savo
infrastruktūros galimybes.

„Šalti“ funkcijų paleidimai

Tai turbūt didžiausias FaaS platformos trūkumas, kuris neretai atgraso vartotojus nuo nau‑
dojimosi šia platforma. Jo problematiškumas prikaluso nuo įvairių veiksnių, kuriuos stengiamasi
sušvelninti tam, kad „šalti“ funckijų paleidimai užimtų kuo mažiau laiko. Būtent dėl šios FaaS
platformų charakteristikos, ne visos aplikacijos turėtų būti talpinamos FaaS platformoje ‑ ypatin‑
gai tos, kurios pateikia daug įvairios informacijos vartotojui, kuri grąžinama iš skirtingų serverio
punktų (angl. endpoints), ar tos, kurios reikalauja sulaukti atsako tam tikram veiksmui, po kurio
yra tęsiamas tam tikras procesas.

Taigi, norint laikyti savo aplikaciją FaaS platformoje, reikia atsižvelgti į daugelį veiksnių ir
nuspręsti, ar tikrai tai bus naudinga ir sistemos vartotojui, ir sistemos savininkui. Dažniau FaaS
platformoje turėtų būti talpinamos staigių, didelio kiekio duomenų apdorojimo, asincrhoniškos,
pvz., paveikslėlių ar vaizdo įrašų apdirbimo, IoT duomenų agregavimo ar planuotų darbų vyk‑
dymo aplikacijos, nes tai nereikalauja kiek įmanoma greitesnio atsako laiko ir yra vykdomos ga‑
nėtinai retai, todėl ir kaštai vartotojui yra mažesni, nei šias aplikacijas talpinant IaaS platformoje.
Tačiau FaaS platformų technologija spačiai tobulėja, minėtos problemos yra identifikuojamos ir
šalinamos debesų kompiuterijos tiekėjų, ar švelninama jų daroma įtaka vartotojui.

13

2. Veiksniai, darantys įtaką „šaltam“ funkcijos paleidimui

Kaip ir buvo minėta praeitame skyriuje, beserverinių skaičiavimų platforma, norėdama įvyk‑
dyti sistemos vartotojo užklausą, turi atlikti keletą žingsnių iki užklausos rezultatas grąžinamas
vartotojui (5 pav.).

5 pav. Beserverinių skaičiavimų vykdymo modelis (pagal [Hai18])

„Šaltas“ funkcijos paleidimas reiškia tai, jog vykdydama vartotojo užklausą beserverinių skai‑
čiavimų platforma turi sukurti vienoje iš serverių virtualioje mašinoje konteinerį, į kurį atsiųs
funckijos kodo paketą, kartu su vykdančiosios aplinkos priklausomybėmis, jį paleis ir perduos
užklausos vykdymą. Funkcijos paleidimo procesą orkestruoja paslaugų tiekėjo platforma. Tiesa,
funkcijos kodo paketo atsiuntimas ir paleidimas vadinamas „tiekėjo šaltu“ (angl. provider cold)
paleidimu, kuris nutinka, kai funkcijos duomenys po tam tikro nebenaudojimo laiko yra ištrinami
iš VM FaaS platformos tiekėjo, kurioje ši veikia, dėl ko kitu funkcijos kvietimu funkcijos kodo
paketas turi būti atsiųstas iš naujo. Šiame darbe yra nagrinėjamas funkcijos „konteinerio šaltas“
(angl. container cold) paleidimas ‑ programinis kodas, ar tai būtų konteinerio atvaizdas, ar ar‑
chyvas, jau egzistuoja virtualioje mašinoje, kurioje funkcija bus paleista, FaaS platformai lieka jį
inicijuoti ir paleisti funkciją. Panagrinėkime šio proceso dalis, kad galėtumėme suprasti kritinius
jo taškus, dėl kurių atsiranda pridėtinis (angl. overhead) laikas vykdant vartotojo užklausą.

14

2.1. Funkcijos kodo paketo atsiuntimas iš duomenų saugyklos

Pirmasis žingnis, kurį atlieka beserverinių skaičiavimų platforma, gavusi sistemos vartotojo
užklausą ‑ randa patalpintą funkcijos kodo paketą duomenų saugykloje ‑ funkcijų registre. Šis
registras yra paprasčiausia paslaugų tiekėjo duomenų saugykla, pvz. AWS paslaugų tiekėjo at‑
veju tai AWS Elastic Container Services atvaizdų saugykla ar AWS S3 objektų saugykla [Hai18].
Beserverinių skaičiavimų platformai radus funkcijos kodo paketą yra sukuriamas konteineris, į
kurį šį funkcijos kodą platforma perduos tinklu kartu su jo vykdančiąja aplinka, sudiegs jame ir
perduos užklausą vykdymui. Šis žingsnis apibūdina „tiekėjo šalto“ funkcijos paleidimo sąvoką
ir dėl jo gaunamas didžiausias pridėtinis laikas nuo užklausos gavimo iki atsakymo grąžinimo,
todėl norima šį laiką kiek įmanoma sumažinti. Šio žingsnio sparta priklauso nuo keletos veiksnių.
Kadangi funkcijos po tam tikro laiko tarpo nenaudojimo yra ištrinamos ir jų naudojami kompiu‑
teriniai ištekliai atlaisvinami, vėliau kiekviena naujai kuriama funkcija gali atsidurti vis kitame
serveryje ar kitoje anksčiau naudojamo serverio virtualioje mašinoje, todėl kiekvieną kartą ku‑
riant naują funkcijos konteinerį yra iš naujo atsiunčiamas funkcijos kodo paketas ir patalpinamas
jame. AWS Lambda platformai perpanaudojus ankstesniu funkcijos kvietimu sukurtą konteinerį
funkcijos iškvietimas yra laikomas „šiltu“, tačiau tai nėra šio darbo tyrimo objektas. Kodo atsiun‑
timas į konteinerį vyksta tinklu, todėl funkcijos kodo paketo dydis tiesiogiai daro įtaką konteinerio
paleidimo laikui. Funkcijos inicijavimo laikas yra glaudžiai susijęs su atvaizdo, kuriuo pateikia‑
mas funkcijos programinis kodas, dydžiu, todėl yra itin svarbu šį dydį minimizuoti [And21a].
Funkcijos programinį kodą pateikiant archyvu yra tikimasi gauti panašius matavimų rezultatus.

2.2. Programinio kodo paketo pateikimas AWS Lambda platformai

Funkcijos programinio kodo pateikimas AWS Lambda platformai galimas dviem būdais:

• Programinio kodo archyvu (.zip arba .jar)

• Virtaualaus konteinerio atvaizdu

Iš esmės šie du programinio kodo pateikimo būdai beveik nesiskiria ‑ abejais įmanoma pasiekti tą
patį funkcionalumą, tačiau pateikiant programinį kodą archyvu yra įmanomas platesnis funkcijos
išorinis konfigūravimas ‑ prie platformai pateikiamo funkcijos programinio kodo galima prijungti
įvairias išplėstis (angl. extensions), kitus programinio kodo sluoksnius (angl. layers) netalpinant
šių komponentų į archyvą, kai tuo tarpu funkcija ir jos programinis kodas, pateikiamas virtaualaus
konteinerio atvaizdu, nėra konfigūruojamas ‑ atvaizdai yra nekintami (angl. immutable) ir tik
skaitomi (angl. read‑only), todėl sluoksniai bei išplėstys turi būti talpinami pačiuose funkcijos
virtaualių konteinerių atvaizduose [Woo20].

Kodo pateikimas archyvu leidžia minimizuoti AWS Lambda platformai pateikiamo funkcijos
programinio kodo paketo dydį, o taip pat perpanaudoti programinį kodą tarp daugelio funkcijų šį
prijungiant sluoknsiu ar išplėstimi.

15

Didelis privalumas pateikiant funkcijos kodą virtaualaus konteinerio atvaizdu yra šio atvaizdo
dydžio riba. Virtaualaus konteinerio atvaizdą AWS Lambda platformai galima pateikti iki 10 GB,
kai tuo tarpu archyvu tiesiai iš vartotojo kompiuterinės įrangos ‑ iki 50 MB, o archyvą patalpinus
AWS S3 objektų saugykloje ir naudojant ją ‑ iki 250 MB [AWS21e]. Tai leidžia didesnės apimties
programoms išnaudoti AWS Lambda siūlomus privalumus.

2.3. Funkcijai suteikiamos atminties dydis

Nurodydami funkcijai jai reikalingą atminties dydį, beserverinių skaičiavimų platfoma funk‑
cijai proporcingai suteikia tam tikrą procesoriaus galios dydį, pvz. AWS Lambda paslaugų tiekėjo
atveju, funkcijai suteikus 3538 MB atminties, ji gauna apytiksliai du kartus daugiau procesoriaus
galios, nei tai pačiai funkcijai suteikus 1769 MB atminties [AWS21b]. Šiuos kompiuterinius iš‑
teklius galima panaudoti paspartinti funkcijos inicijavimą, ypatingai JVM kalbų atveju, kurios
inicializuotis užtrunka ganėtinai ilgai, lyginant su interpretuojamomis programavimo kalbomis
[Rob20]. Oficialioje AWS Lambda dokumentacijoje rašoma, jog Lambda funkcija, gaunanti 1769
MB atminties, atitinkamai gauna 1 vCPU (1 vCPU sekundės kreditą per sekundę) [AWS21d].
Tai reiškia, jog funkcija skaičiavimams atlikti per sekundę gali pilnai išnaudoti vieną virtualaus
procesoriaus galios dydį. Atitinkamai, funkcijai suteikiant dvigubai tiek atminties ‑ 3538 MB, ši
galės naudoti vieno virtualaus procesoriaus galios dydį dvi sekundes per sekundę. Tai daro įtaką
tiek funkcijos veikimo metu, tiek funkcijos inicijavimo fazėje, kurios metu vykdomas kodas už
funkcijos valdiklio. Taip pat funkcijai suteikiant daugiau atminties, ši atitinkamai gauna daugiau
procesoriaus loginių gijų, pvz., funkcija, turinti 1769 MB atminties gauna 2 procesoriaus logines
gijas, kai tuo tarpu 3538 MB atminties funkcija gauna 3 procesoriaus logines gijas [And21a]. Šias
gijas galima išnaudoti efektyvinant funkcijos inicializacijos metu vykdomą kodą ‑ lygiagretinant
procesus, tokius kaip ryšio užmezgimas su išoriniais servisais ar statinių duomenų, naudojamų
programos, užkrovimas. Tačiau tai nepaspartina funkcijos konteinerio, kuriame veikia vartotojo
pateikta funkcija, sukūrimo laiko, už kurį atsakinga AWS Lambda platforma ‑ šis laikas ganėtinai
pastovus visų atminties dydžiu funkcijoms [And21a; EUG+21], todėl inicijavimo metu veikiantį
programinį kodą verta optimizuoti išnaudojant funkcijai suteikiamos atminties kiekį kiek įmano‑
ma efektyviau.

2.4. Programavimo kalbai specifiniai veiksniai

Verta panagrinėti alternatyvius būdus specifinės programavimo kalbos funkcijos inicijavimui
paspartinti ‑ naudoti optimizuotą vykdymo aplinką, efektyvinančią programos veikimo bei palei‑
dimo spartą, panaudoti iš anksto sukompiliuoto (AOT, angl. ahead‑of‑time) programinio kodo
kompiliavimo principą, kuris leidžia išvengti kodo interpretavimo programos veikimo metu. JVM
programavimo kalbų atveju programinis kodas yra vykdomas Java virtualios mašinos, kurios pa‑
leidimas užima nemažą laiko dalį. Šių kalbų atveju yra įmanoma sukurti programos vykdomąją
aplinką į ją įtraukiant tik tuos modulius, kurie bus naudojami programos vykdymo metu, taip su‑

16

mažinant Java virtualios mašinos į atmintį užkraunamų klasių kiekį bei sumažinant vykdomosios
aplinkos dydį. Tai galima atlikti įrankiu jlink, pristatytu Java 9 versijoje kartu su kitomis Java
moduliarumo galimybėmis. AOT JVM funkcijos kodo kompiliavimą galima pasiekti pasinaudo‑
jant GraalVM vykdymo aplinka, kuria programinį kodą yra įmanoma sukompiliuoti į vykdomąjį
failą, vadinamą native image. Šis programinis failas yra kuriamas GraalVM kompiliatoriaus pagal‑
ba statinės programinio kodo analizės būdu, peržvelgiant kiekvieną galimą programos veikimo
kelią, nekompiliuojant nepasiekiamo kodo, pritaikant įvairius kodo optimizavimo principus, pro‑
ceso rezultate sukuriant minimalaus dydžio mašininio kodo rinkinį [WSH+19]. Tai, be abejo, yra
neįprastas būdas kompiliuojamoms programavimo kalboms, tokioms kaip Java, pasižyminčiomis
dinamiškumu, programinio kodo generavimu veikimo metu, todėl šis įrankis turi savų trūkumų
bei sunkumų ‑ GraalVM veikia „uždaro pasaulio“ principu, dėl ko visos klasės turi būti žinomos
kompiliavimo metu. Java ypatybės, tokios, kaip dinaminis klasių užkrovimas, JNI (angl. Java
Native Interface), reflekcija, dinaminis įgaliojimas (angl. Dynamic Proxy) suteikia lankstumo
programuotojui, o kartu ir neužtikrintumo AOT kompiliatoriui [Wan21], tačiau šiuos aspektus
yra įmanoma sukonfigūruoti rankiniu būdu taip leidžiant GraalVM žinoti apie galimus kintamųjų
tipus bei kitus dinaminius aspektus programos veikimo metu.

17

3. Tyrimo metodika

Kiekvienam funckijos kvietimui AWS Lambda grąžina standartinį atsakymą, kuriame galime
rasti informaciją apie funkcijos veikimo laiką bei kitus matavimus:

Duration: 54.27 ms Billed Duration: 6131 ms Memory Size: 512 MB
Max Memory Used: 85 MB Init Duration: 6076.61 ms

AWS Lambda vartotojui praneša kiek funkcijai buvo išskirta atminties (Memory Size), kiek ši
funkcija naudojo daugiausiai atminties (Max Memory Used), kiek laiko buvo vykdyta užklausa
(Duration), kiek laiko truko funkcijos inicijavimas Lambda platformoje (Init Duration) bei už
kokį laiko tarpą yra apmokestinamas vartotojas (Billed Duration), kuris susideda iš vykdymo bei
inicijavimo laiko ir yra apvalinamas 1 ms tikslumu. Funkcijos inicijavimas yra viena iš Lambda
funkcijos gyvavimo ciklo fazių, kuri vykdoma pirmojo šios funkcijos kvietimo metu. Jos me‑
tu yra sukuriama arba „atšildoma“ vykdymo aplinka, atsiunčiamas funkcijos kodo paketas kar‑
tu su kitais jam priklausančiais funkcijos sluoksniais, inicijuojamos išplėstys (angl. extensions),
jei funkcija tokias naudoja ir įvykdomas kodas, esantis už funkcijos valdiklio (angl. handler)
[AWS21a]. Tai iš esmės apibūdina funkcijos „konteinerio šaltą“ paleidimą, todėl matavimuose
remsimės Init Duration laiku. Šis laikas AWS Lambda platformos įrašomas tik tuo atveju, kai
funkcija paleidžiama šaltai.

Už funkcijos valdiklio sukursime boolean tipo kintamąjį isCold, kuris inicijuojamas reikšme
true. Funkcija, iškviesta pirmąjį kartą ‑ paleista šaltai, pakeis šio kintamojo reikšmę į false ir
įrašys žinutę, jog funkcija buvo paleista šaltai. Ne pirmąjį kartą kviečiama funkcija šios žinutės
neįrašinės ir tai veiks kaip saugiklis tuo atveju, jei dėl tam tikrų priežaščių funkcija bus paleidžiama
šiltai.

Java programavimo kalbos Lambda funkcijų inicijavimo laikas pasižymi nemažu standartiniu
nuokrypiu, todėl kiekvieną funkciją matuosime po 100 kartų ir pavaizduosime kaip varijuoja
tiriamas laikas su tam tikra funkcijos konfigūracija.

Visoms matuojamoms funkcijos suteiksime 4096 MB atminties ‑ šiame tyrime nenagrinėsime
matuojamų funkcijų inicijavimo laiko priklausomybės nuo joms suteiktos atminties dydžio, nes
funkcijai skiriamos atminties bei procesoriaus galingumo panaudojimo galimybės optimizuojant
šalto paleidimo laiką priklauso nuo pačios funkcijos ir jos atliekamų veiksmų šioje fazėje, todėl
kiekviena funkcija šiuos kompiuterinius išteklius gali panaudoti skirtingai.

Lygindami skirtingais įrankiais sukurtus funkcijos kodo paketus, pateikiamus AWS Lambda
platformai, pavaizduosime geriausius gautus rezultatus funkcijos kodo paketo dydžio atžvilgiu, o
taip pat sulyginsime šių paketų dydžius pridėję į juos nenaudojamų failų taip sulygindami mata‑
vimo pagrindą tam, kad galėtumėme pamatyti naudojamų kodo pakavimo būdų pranušumus bei
trūkumus.

18

3.1. Jlink įrankiu sukurta vykdymo aplinka

Savo testuojamai funkcijai jlink įrankio pagalba sukursime Java vykdomąją aplinką, į kuria
įtrauksime tik tuos Java modulius, kuriuos naudoja mūsų funkcija, taip sumažindami vykdymo
aplinkos dydį bei neužkraudami nenaudojamų modulių JVM startavimo metu.

Pateikdami funkcijos programinį kodą kaip virtaualaus konteinerio atvaizdą, šią sukurtą vyk‑
domąją aplinką pateiksime kartu su alpine:latest baziniu atvaizdu taip minimizuodami atvaiz‑
do dydį. Šiuos matavimus lyginsime su identiško programinio kodo funkcija, naudojančia įprastą
AWS vykdymo aplinkos bazinį atvaizdą amazoncorretto:11-alpine bei leidžiančią mūsų prog‑
raminį kodą kaip vykdomąjį .jar archyvą.

Kodą pateikdami .zip archyvu jlink įrankiu sukurta vykdomosios aplinkos daromą įtaką iš‑
matuosime dviem būdais. Pirmuoju ‑ vykdomąją aplinką pateikdami vienu archyvu kartu su
programiniu kodu, o antruoju ‑ prijungdami šią aplinką atskiru sluoksniu po funkcijos sukūrimo.
Abu šių funkcijų inicijavimo laikus lyginsime su funkcijos, kurios programinį kodą sudaro sukom‑
piliuotų klasės failų archyvas, o Java 11 vykdymo aplinka pateikiama AWS Lambda platformos,
inicijavimo laiku.

3.2. Native image vykdomasis failas

GraalVM vykdomosios aplinkos pagalbiniu įrankiu native‑image sukompiliuosime savo funk‑
cijos programinį kodą į vykdomąjį failą, kurį sudaro programinio kodo klasės, priklausomybių
klasės, vykdomojo laiko priklausomybių klasės bei statiškai surišti JDK moduliai. Šis failas susi‑
deda iš mašininio kodo, skirto Linux operacinei sistemai AMD64 instrukcijų aibės architektūrai.

Kurdami virtaualaus konteinerio atvaizdą savo testuojamai funkcijai pasinaudosime GraalVM
baziniu atvaizdu ghcr.io/graalvm/graalvm-ce:latest. Kūrimo metu pasinaudosime kelių
fazių atvaizdo kūrimo procesu, kurio primoje fazėje sugeneruosime native image vykdomajį failą,
o antroje fazėje pateiksime šį vykdomajį failą kartu su debian:buster-slim baziniu atvaizdu
taip minimizuodami atvaizdo dydį.

Jau sukompiliuotą native image vykdomajį failą rankiniu būdu išimsime iš prieš tai sukurto vir‑
taualaus konteinerio atvaizdo paleisdami šį konteinerį ir išeksportuodami jo turinį. Šį vykdomąjį
failą archyvuosime ir pateiksime AWS Lambda platformai .zip archyvu.

3.3. Matavimams atlikti naudojamos programos aprašymas

Matavimams atlikti Python programavimo kalba buvo suprogramuota aplikacija, automati‑
zuojanti funkcijos sukūrimo, iškvietimo bei sunaikinimo veiksmus ‑ programinis kodas pateikia‑
mas Git repozitorijoje [And21b]. Šiems veiksmams atlikti naudojami bash skriptai, kurie vykdo
AWS tekstinės sąsajos įrankio (angl. AWS Command line interface) komandas. Iš AWS Lambda
platformos funkcijos iškvietimo rezultatai išsaugomi ir kaupiami atitinkamoje funkcijos versijos
direktorijoje, iš kurios vėliau šie rezultatai yra nuskaitomi, transformuojami ir gaunami matuojami
duomenys. Šiam procesui įgyvendinti suprogramuotas matavimų modulis (6 pav.).

19

6 pav. Matavimų modulis

AWS Lambda platformai funkcijas pateiksime Docker atvaizdo forma, kuri iš jų sukurs virtu‑
alius konteinerius ir juose patalpins mūsų programinį kodą. Kiekviena matuojama funkcija patal‑
pinta atskiroje direktorijoje, kurioje egzistuoja Dockerfile failas, iš kurio bus kuriamas konteinerio
atvaizdas. Šie atvaizdai bus talpinami AWS ECR (angl. Elastic Container Registry) platformoje,
iš kurios AWS Lambda, kurdama funkcijų konteinerius, atsisiųs ir panaudos šiuos atvaizdus. At‑
vaizdų generavimui ir patalpinimui Amazon ECR platformoje suprogramuotas Docker modulis (7

20

pav.).

7 pav. Docker modulis

Prieš naudojantis AWS ECR platforma, vartotojas joje turi sukurti atvaizdų repozitoriją. Tam
automaziuoti sukurtas aplinkos modulis, kuris bash skriptų pagalba AWS platformoje sukuria
vartotojo rolę, kuri bus naudojama atlikti veiksmus platformoje, o taip pat inicializuoja naują
AWS ECR repozitoriją. Duomenis, kurie bus reikalingi darbui su Lambda funkcijomis, išsisaugo
konfigūraciniame .env faile (8 pav.).

21

8 pav. Aplinkos konfigūracijos modulis

22

4. Skirtingais būdais pateikiamų kodo paketų inicijavimo
laiko tyrimas

Matavimai buvo atlikti AWS eu-west-1 regione. Verta paminėti, kad gauti rezultatai gali
priklausyti nuo paros laiko, kurio metu buvo atlikti funkcijų matavimai ‑ esant didesnei AWS
serverių apkrovai, funkcijos inicijavimo laikas gali prailgėti, tačiau tai šiame darbe nebus tiriama.
Taip pat FaaS paslaugų tiekėjai, tarp jų ir AWS, suvokia apie šaltų funkcijos paleidimų sukeliamas
problemas ir stengiasi švelninti jų daromą įtaką, todėl atliekant tuos pačius matavimus po tam
tikro laiko tarpo rezultatai gali skirtis.

4.1. Konteinerio atvaizdu pateikiamo kodo paketo tyrimas

Konteinerio atvaizdu pateikiamo kodo paketo matavimų rezultatus pavaizduosime sklaidos
diagrama. Šalia sklaidos taškų pavaizduosime reikšmes, esančias tarp 30 ir 70 procentilių.

9 pav. Skirtingais būdais pateikiamo funkcijos programinio kodo atvaizdu matavimai

23

Iš (9 pav.) matavimų rezultatų matome, jog native image vykdomoji programa, nors neturinti
mažiausio atvaizdo dydžio, sugebėjo inicijuotis sparčiausiai ‑ vidutiniškai per 318 ms. Nors jlink
įrankiu sukurtos vykdomosios aplinkos virtaualaus konteinerio atvaizdas užėmė mažiausiai vietos,
tačiau jo inicijavimo greitis panašus į atvaizdo, užimančio 195,1MB. Taip pat galime pastebėti, jog
atvaizdu pateikiamo funkcijos programinio kodo inicijavimo laikai pasižymi didele variacija ‑ tam
galimai turi įtakos tam tikri platformos atliekami optimizacijos veiksmai. Taip pat yra tikėtina, jog
mūsų matavimuose naudojamos funkcijos AWS Lambda platformos yra talpinamos skirtinguose
daugiau ar mažiau apkrautuose serveriuose, kas irgi gali turėti įtakos šiai variacijai paaiškinti,
tačiau norint pagrįsti šias mintis reikėtų detalesnių matavimų, tiriančių aplinkos, kurioje mūsų
funkcijos veikia, savybes.

Šiuos funkcijų atvaizdus išplėsime ir sulyginsime jų dydžius tam, jog suvienodintume ma‑
tavimų salygas ir galėtume atsižvelgti į būdo, kuriuo pateikiamas funkcijos programinis kodas,
daromą įtaką šaltam paleidimui. Bus tikimasi pamatyti padidėjimą tarp visų funkcijų inicijavimų
laikų.

10 pav. Skirtingais būdais pateikiamo funkcijos programinio kodo atvaizdu matavimai

Iš (10 pav.) rezultatų pastebime, jog inicijavimo laikas įprastu Docker atvaizdu pateikiamos
funkcijos atvaizdui padidėjus nuo 195,1 MB iki 220,33 MB išaugo apie 42 %. Netikėta, jog jlink
vykdomają aplinka bei native image vykdomojo failo būdais pateiktos funkcijos padidėjus at‑
vaizdo dydžiui ilgiau inicijuotis neužtruko, nors atvaizdai buvo išplėsti tokiu pat būdu ‑ pripildant
juos įvairiais .jar archyvais.

24

Įsitikinsime, jog jlink vykdomąja aplinka pateikiamo programinio kodo atvaizdo dydis ne‑
turi įtakos „konteinerio šaltam“ paleidimui matuodami skirtingų atvaizdų dydžių funkcijas, pa‑
teikiamas šiuo būdu.

11 pav. Skirtingų atvaizdų dydžių jlink vykdymo aplinka pateikiamo programinio kodo matavi‑
mai

Iš (11 pav.) matavimų duomenų galime matyti, jog funkcijos programinį kodą pateikiant
jlink vykdomąja aplinka funkcijos inicijavimo laikas beveik nekinta. Galime manyti, jog
native image vykdomojo failo atvaizdu pateiko programinio kodo atvaizdo dydis taip pat neda‑
ro įtakos funkcijos inicijavimo laikui. Sunku paaiškinti kodėl gaunami tokie rezultatai, tačiau tam
gali turėti įtakos AWS Lambda platformos optimizacijos bei naudojama firecracker microvm
virtualizacijos technologiją [ABI+20], tačiau tam reikėtų detalesnio tyrimo ir šios technologijos
analizės.

Gauti matavimų rezultatai parodo, jog native image vykdomuoju failu pateikiamas funk‑
cijos programinis kodas inicijuojasi žymiai greičiau nei kitais būdais. Taip pat konteinerio inici‑
javimo laikas išlieka ganėtinai pastovus, kitant atvaizdo dydžiui, ko negalima teigti apie įprastu
Docker atvaizdu kartu su .jar vykdomuoju archyvu pateikiamo programinio kodo.

4.2. Archyvu pateikiamo kodo paketo tyrimas

Archyvu pateikiamo kodo paketo tyrimo rezultatus pavaizduosime tokiu pačiu būdu, kaip ir
praeito būdo matavime.

25

12 pav. Skirtingais būdais pateikiamo funkcijos programinio kodo archyvo matavimai

Gauti (12 pav.) duomenys parodo, jog sparčiausiai inicijavosi taip pat, kaip ir funkcijos kodo
paketo atvaizdo tyrimo dalyje ‑ native image vykdomoji programa. Tačiau pateikiama archyvu ji
sugebėjo tai atlikti vidutiniškai vos per 6,8 ms, kai tuo tarpu antroji greičiausiai inicijavusi funkcija
buvo ta, kurios programinis kodas pateikiamas archyve kartu su jlink įrankiu sukurta vykdomaja
aplinka. Ši tai sugebėjo padaryti vidutiniškai per 150 ms ‑ 22 kartus lėčiau (arba 2205%), nei native
image vykdomoji programa. Įdomu, jog ta pati vykdomoji aplinka, kurta jlink įrankiu ir pateikta
atskiru sluoksniu inicijuotis užtruko ilgiausiai. Tai leidžia manyti, jog sluoksnio prijungimas prie
funkcijos vyksta jos inicijavimo metu, dėl ko atsiranda papildomas gaišties laikas.

26

Palyginome šiais būdais pateikiamų kodo paketų inicijavimo laiką sulygindami archyvų dy‑
džius, norėdami patikrinti kokią įtaką archyvo dydis daro funkcijos inicijavimo laikui.

13 pav. Skirtingais būdais pateikiamo funkcijos kodo archyvo matavimai

Gauti (13 pav.) rezultatai nustebino ‑ archyvu pateikiamas funkcijos kodo paketo dydis nedaro
reikšmingos įtakos funkcijos inicijavimo laikui, kurį fiksuoja AWS Lambda funkcijos iškvietimo
atsakyme. Šie rezultatai yra labai panašūs į auksčiau pateiktus rezultatus, kur tiriamų funkci‑
jų archyvų dydžiai buvo minimalūs. Tačiau atliekant šiuos matavimus buvo pastebėta, jog nuo
funkcijos patalpinimo bei išvietimo iki funkcijos grąžinamo rezultato praeidavo nemažas laiko
tarpas, kurį taip pat galime laikyti šalto funkcijos paleidimo inicijavimo laiku. Šį laiko tarpą iš‑
matuosime trijų skirtingų kodo paketo archyvo dydžių funkcijoms, naudojančioms AWS Java 11
vykdomąją aplinką ir pavaizduosime kaip šis laikas kinta priklausomai nuo kodo paketo archy‑
vo dydžio. Kadangi ankstesniame matavime šį reiškinį pastebėjome visoms funkcijoms, galime
manyti, jog šis laikas nepriklauso nuo archyvo turinio ir jam daro įtaką tik archyvo dydis.

27

14 pav. Skirtingų funkcijos kodo paketų archyvų dydžių atsakymo laiko palyginimas

Kaip matome grafike (14 pav.), funkcija, kurios kodo paketas užima 11,58 MB, vidutiniškai
nuo jos kvietimo iki atsakymo grąžinimo trunka 1614,5 ms. Funkcijos kodo paketui išaugus
maždaug 100‑tu MB, to paties laiko matavimas trunka 13110,2 ms ‑ apie 8,1 karto ilgiau (arba
812%). Padidėjus apytiksliai dar 100‑tu MB, šis laikas auga vidutiniškai iki 26821 ms ‑ lyginant
su 11,58 MB dydžio kodo paketo funkcija augimas yra 1661%. Panašūs funkcijos šalto paleidimo
kodo paketo archyvo dydžio matavimų rezultatai pastebimi ir [MEH+18] bei [PS17]. Matome
tiesinę priklausomybę tarp funkcijos kodo paketo archyvo dydžio bei inicijavimo laiko, kuris
susideda iš kodo paketo atsiuntimo ir išarchyvavimo.

Panagrinėjus šį reiškinį atidžiau, tai įvyksta, kai funkcijos kodas yra pirmą kartą pateikiamas
AWS Lambda platformai ‑ ši tas pačias paleidžiamas funkcijas talpina toje pačioje virtualioje ma‑
šinoje tam, jog skaliuojamos funkcijos kopijos galėtų perpanaudoti tą patį ‑ jau atsisiųsta į VM
ir išarchyvuotą ‑ programinį kodą. Šį reiškinį galime laikyti „tiekėjo šaltu“ funkcijos paleidimu
[LRC+18]. Kadangi mūsų matavimo būdu kiekviena funkcija po iškvietimo yra ištrinama, kartu
yra ištrinamas ir jos programinis kodas, kuris naujo funkcijos matavimo metu yra iš naujo at‑
siunčiamas į tam tikrą VM, todėl tokiu būdu kiekvieną kartą gauname „tiekėjo šaltą“ paleidimą,
kuris realiu FaaS panaudos atveju turėtų pasitaikyti itin retai ‑ tik tada, kai programinis kodas
yra keičiamas arba funkcija yra ištrinama AWS Lambda platformos po ilgo laiko nepanaudojimo.

28

Šis kodo paketo atsiuntimo laikas nėra apmokestinamas ir į Init Duration matavimą neįtrau‑
kiamas, todėl tai mūsų matavimams įtakos nedaro. Mūsų matuojamą laiką galime įvardinti kaip
„konteinerio šaltą“ paleidimo laiką [LRC+18]. Vadinasi, galime daryti išvadą, kad kodo paketo
archyvo dydis funkcijų „konteinerio šaltiems” paleidimams įtakos nedaro ‑ šis veiksnys pasireiškia
tik „tiekėjo šaltiems“ funkcijų inicijavimams, kurie būdingi ir konteinerio atvaizdu pateikiamoms
funkcijoms ‑ įdomu pastebėti, jog matuojant funkcijas, pateikiamas konteinerio atvaizdu, nebuvo
leidžiama kviesti funkcijos, kol jos atvaizdas nebuvo atsiųstas į VM ‑ funkcijos kvietimai grąžino
klaidos pranešimą ir pranešė, jog funckija kol kas yra būsenos „laukianti“ (angl. pending), kai
tuo tarpu funkciją, pateikiamą archyvu ‑ galima kviesti vos tik ją sukūrus.

Jeigu atsižvelgtumėme į šią „tiekėjo šaltą“ sąvoką, ankstensius duomenis ‑ minimalaus kodo
paketo archyvų dydžių matavimus ‑ galėtume pavaizduoti prie funkcijos Init Duration laiko
pridedami laiką, užtrukusį atsisiųsti ir išpakuoti archyvo failus.

15 pav. „Tiekėjo šalto“ funkcijos paleidimo laiko palyginimas

Iš (15 pav.) rezultatų galime matyti, jog jlink įrankiu sukurta vykdomoji aplinka, pateikiama
kartu su programiniu kodu, praranda savo pranašumą, nes jos kodo paketo archyvo dydis yra
išplėčiamas, dėl ko „tiekėjo šalti“ funkcijų paleidimai užtrunka ilgiau, nei, naudojantAWSLambda
Java 11 vykdomąją aplinką. Todėl norint išvengti ilgų „tiekėjo šaltų“ funkcijų incijavimų, reikia
kiek įmanoma labiau sumažinti funkcijos kodo paketo archyvo dydį.

Matavimai parodė, jog lyginant funkcijos programinio kodo pateikimą .zip archyvu su prog‑

29

raminio kodo pateikimu konteinerio atvaizdu, archyvu pateikiamas kodas yra pranašesnis ir funk‑
cijos geba inicijuotis greičiau. Geriausi rezultatai gaunami programinį kodą sukompiliuojant į
native image vykdomąjį failą ir pateikiant šį archyvu. Jlink vykdomąja aplinka pateikia‑
mas programinis kodas taip pat paspartina funkcijos inicijavimąsi, tačiau ne taip žymiai, kaip
native image būdu. Taip pat pamatėme, kad „tiekėjo šalti“ paleidimai stipriai priklauso nuo
funkcijos kodo paketo dydžio.

4.3. Rezultatų apibendrinimas

Palyginsime abu funkcijos programinio kodo pateikimo būdus keliais aspektais. Atvaizdu, ku‑
riuo yra pateikiama funkcija AWS Lambda platformai, iš esmės yra įmanoma funkciją įgyvendinti
bet kokia pasirinkta programavimo kalba, pateikiant šios programavimo kalbos vykdomąją aplin‑
ką kartu su programiniu kodu, kai tuo tarpu funkcijos pateiktos archyvu programavimo kalba yra
ribojama tomis kalbomis, kurias palaiko AWS Lambda paltforma. Dėl šios priežasties programinis
kodas, supakuotos į konteinerio atvaizdą, yra lankstenis aplinkai, kurioje jis veikia, ir nepriklauso
nuo platformos. FaaS paslaugų tiekėjų funkcijos kodo paketų dydžiai nėra vienodi, tačiau AWS
Lambda platformos atveju, atvaizdu pateikiamos funkcijos kodo paketo dydis gali siekti iki 10 GB,
kai tuo tarpu pateikiamas archyvu ‑ iki 250 MB. Tačiau archyvu pateikiamos funkcijos inicija‑
vimo laikas gaunamas spartesnis, o šio archyvo paruošimas reikalauja mažiau žinių ‑ konteinerio
atvaizdo paruošimas reikalauja papildomų žinių, pvz., Docker konteinerizacijos variklio atveju šis
yra paruošiamas pagal aprašytą Dockerfile, kurį programuotojas turi sukonfigūruoti pats.

Savybė Atvaizdas Archyvas
Programavimo kalbos palaikymas Neribojamas Ribotas
Lankstumas ir priklausomumas nuo platformos Lankstus, mažas Ribotas, mažai

lankstus
Leidžiamas maksimalus kodo paketo dydis 10 GB 50 MB lokalus,

250 MB S3 objektų
saugyklos

Inicijavimo laikas Lėtesnis Spartesnis
Kodo paketo paruošimo sudėtingumas Sudėtingesnis Paprastesnis

1 lentelė. Programinio kodo paketo pateikiamo archyvu bei atvaizdu palyginimas

Prieš naudojantis FaaS platforma verta apsvarstyti funkcijos programinio kodo pateikimo bū‑
dus. Archyvu pateikiama funkcija yra labiau ribota ir pateikiama paprasčiau, gaunamas greitesnis
inicijavimo laikas, tačiau konteinerio atvaizdu pateikiama funkcija yra lankstenė ir ši gali veikti
nepriklausomai nuo platformos kurioje ji leidžiama.

Palyginsime ir JVM programinio kodo optimizavimo būdus, pritaikytus mūsų matuojamoms
beserverinėms funkcijoms. Jlink įrankiu sukurta vykdomoji aplinka yra kuriama įtraukiant Java
modulius, naudojamus pateikiamos funkcijos programinio kodo, tačiau Java moduliarumas nė‑
ra visiškai trivialus ir reikalauja žinių. Native image vykdomojo failo sukūrimas, lyginant su

30

jlink įrankiu kuriama vykdomaja aplinka, reikalauja daugiau žinių, kai kuriais atvejais progra‑
minio kodo pakeitimų, papildomos konfigūracijos, o kartais išvis nėra įmanomas dėl savo „uždaro
pasaulio“ savybių, todėl yra sudėtingesnis jo panaudojimas. Native image yra mašininio kodo
rinkinys, todėl natūralu, kad šis kodas yra priklausomas nuo procesoriaus architektūros, kai jlink
yra vykdomoji aplinka, vykdanti Java baitinę programa (angl. bytecode). Tačiau mašininiam ko‑
dui interpretuoti nėra reikalinga Java virtuali mašina, todėl native image vykdomoji programa
veikia daug efektyviau ir beserverinė funkcija geba inicijuotis daug sparčiau.

Savybė Jlink Native image
Panaudojimo galimybė Lanksti Ribota, kartais ne‑

įmanoma
Panaudojimo sudėtingumas Vidutinis Sudėtingas
Priklausomumas nuo platformos Vidutinis Didelis
Inicijavimo laikas Lėtesnis Spartesnis

2 lentelė. Jlink įrankio bei native image vykdomosios programos sukūrimo palyginimas

Jeigu beserverinei funkcijai yra ypatingai svarbus inicijavimo laikas, verta panagrinėti galimy‑
bes sukompiliuoti programinį kodą į native image vykdomąją programą, tačiau yra galimybė,
kad to padaryti nepavyks be didesnių kodo ar pasirinktų bibliotekų pakeitimų. Jlink įrankiu
sukurta vykdomoji aplinka, kaip matėme matavimuose, rodo spartesnius inicijavimo laiko rezul‑
tatus, nei įprasta FaaS platfomos siūloma vykdomoji aplinka, tad šiuo būdu lengviau sutrumpinti
funkcijos inicijavimo laiką.

4.4. Veiksnių „šaltam“ funkcijos paleidimui daromos įtakos minimiza‑
vimas

Funkcijos inicijavimo laikas yra glaudžiai susijęs su atvaizdo, kuriuo pateikiamas funkcijos
programinis kodas, dydžiu, todėl yra itin svarbu šį dydį minimizuoti [And21a] ‑ atvaizdo kūri‑
mui rinktis minimalaus dydžio bazinį paketą, į funkcijos atvaizdą nepakuoti nenaudojamų failų,
eliminuoti nenaudojamą programinį kodą, rinktis mažiau vietos užimančias funkcijos naudoja‑
mas išorines bibliotekas. Taip pat pateikiant kodą virtualaus konteinerio atvaizdo būdu, funkcijos
vykdomoji aplinka turi būti supakuojama kartu su programiniu kodu, kas stipriai išplėčia atvaizdo
dydį, ypatingai JVM programavimo kalbų atveju ‑ Java vykdomoji aplinka gali sudaryti didžiają
dalį atvaizdo dydžio, priklausomai nuo to, kiek ir kokių išorinių bibliotekų platformos vartotojo
funkcija naudoja. Kuriant funkcijos konteinerio atvazidą, verta naudoti kelių fazių kūrimo proce‑
są, kurio metu pradinėje fazėje funkcijos programinis kodas yra paruošiamas paleisti ir naudojami
kūrimo įrankiai, o sekančioje fazėje šis paruoštas paleidimui programinis kodas yra nukopijuoja‑
mas ir naudojamos tik vykdomosios aplinkos priklausomybės taip sumažinant atvaizdo dydį. Java
įrankio jlink bei GraalVM vykdomosios aplinkos pagalba yra įmanoma minimizuoti konteinerio
atvaizdo dydį o taip pat paspartinti funkcijos inicijavimo laiką, tačiau tam reikalingos papildomos
žinios.

31

Gauti rezultatai ir išvados

Rezultatai

1. Praplėstas įrankis, naudojamas funkcijų matavimams atlikti.

2. Išmatuota funkcijos šalto paleidimo laiko priklausomybė nuo programinio kodo pateikimo
būdo:

• kodo paketo pateikiamo archyvu;

• kodo paketo pateikiamo konteinerio atvaizdu.

3. Nustatyi du būdai, optimizuojantys JVM funkcijos šalto paleidimo laiką, ir išmatuota jų
įtaka:

• jlink įrankiu sukuriama vykdomoji aplinka;

• native image vykdomasis failas, sukuriamas išankstinio programinio kodo kompi‑
liavimo pagalba.

Išvados

1. Funkcijos, kurios programinis kodas pateikiamas archyvu, šalto paleidimo laikas yra ma‑
žesnis nei funkcijos, pateikiamos konteinerio atvaizdu.

2. JVM programavimo kalbos beserverinės funkcijos inicijavimo laiką galima sumažinti de‑
šimtimis kartų panaudojus sukompiliuotą native image vykdomąjį failą ir šį pateikus ar‑
chyvu. Šis optimizavimo būdas ne visada yra įmanomas, galintis reikalauti programinio
kodo pakeitimų.

3. Jlink įrankiu sukurta vykdomoji aplinka paspartina funkcijos šaltą paleidimą maždaug
dvigubai, šis įrankis nereikalauja programinio kodo pakeitimų, tačiau šiuo būdu nėra gau‑
namas sparčiausias funkcijos šalto paleidimo laikas ir jį verta rinktis tada, kai native image
funkcijos kompiliavimo būdas nėra optimalus.

4. „Tiekėjo šaltam“ paleidimui ypatingai didelę įtaką daro funkcijos programinio kodo paketo
dydis, kai tuo tarpu „konteinerio šaltam“ paleidimui didesnę įtaką turi funkcijos vykdomoji
aplinka ir vykdymo būdas

32

Galimos tolesnių tyrimų kryptys

Gauti rezultatai parodė, kad JVM funkcijos šalta paleidimą galima sumažinti dešimtimis kartų
naudojant native image vykdomąjį failą, todėl verta panagrinėti GraalVM vykdomosios aplin‑
kos galimybes bei ribas kuriant šį vykdomąjį failą tam, jog būtų galima lengviau nuspręsti ar
funkciją, kurią norima optimizuoti šiuo būdu, yra įmanoma sukompiliuoti į native image ir
jeigu taip, tai kiek daug pastangų ‑ programinio kodo pakeitimų, konfigūracijos, skirtingų bi‑
bliotekų panaudojimo ‑ tam prireiktų. Taip pat naudinga paanalizuoti firecracker microvm
virtualizacijos technologiją, naudojamą AWS Lambda platformos įgyvendinant funkcijų kontei‑
nerizaciją [ABI+20], atsižvelgti į šios technologijos veikimo principus siekiant sumažinti funkcijos
šaltą paleidimo laiką. Verta patyrinėti AppCDS (angl. Application Class Data Sharing) principą,
kuris leidžia dalintis tomis pačiomis į atmintį užkrautomis Java klasėmis skirtingoms Java vir‑
tualioms mašinoms, esančioms toje pačioje VM, daromą įtaką didėsnės apimties JVM funkcijų
šaltiems paleidimams. Taip pat aktualu patyrinėti alternatyvių įprastiems JVM funkcijų karkasų,
labiau pritaikytų debesų kompiuterijos infrastruktūrai, pasižyminčių greitu programos paleidimu
bei mažu atminties suvartojimu, tokių kaip Quarkus ar Micronaut, kuriais naudojantis prog‑
ramos taip pat turi palaikymą būti sukompiliuotos į native image vykdomąjį failą, daromą įtaką
funkcijos šaltiems paleidimams.

Summary

This paper overviews FaaS execution principles, shortcomings and advantages of such platforms, raises
and describes the problem of function cold start and identifies factors for which this problem occurs. By
measuring functions in Amazon Web Services Lambda FaaS platform and collecting results it suggests ways
to optimize JVM function cold start time.

34

Literatūra

[ABI+20] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf Ne‑
ugebauer, Phil Piwonka ir Diana‑Maria Popa. Firecracker: Lightweight Virtualization
for Serverless Applications. 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), p.p. 419–434, Santa Clara, CA. USENIX Associa‑
tion, 2020‑02. ISBN: 978‑1‑939133‑13‑7. URL: https://www.usenix.org/
conference/nsdi20/presentation/agache.

[And21a] Darius Andzevičius. Beserverinių funkcijų šalto paleidimo laiko tyrimas. Projektinis
darbas, 2021‑05.

[And21b] Darius Andzevičius. Serverless Benchmark. https://github.com/dariusandz/
serverless-benchmark, 2021.

[AWS20] AWS. AWS Lambda now supports up to 10 GB of memory and 6 vCPU cores for
Lambda Functions. https://aws.amazon.com/about-aws/whats-new/2020/
12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions,
2020. Tikrintas 2021‑03‑27.

[AWS21a] AWS. AWS Lambda execution environment. https://docs.aws.amazon.com/
lambda/latest/dg/runtimes-context.html, 2021. Tikrintas 2021‑04‑28.

[AWS21b] AWS. AWS Lambda FAQs. https://aws.amazon.com/lambda/faqs/, 2021.
Tikrintas 2021‑04‑05.

[AWS21c] AWS. AWS Lambda Pricing. https://aws.amazon.com/lambda/pricing/,
2021. Tikrintas 2021‑03‑27.

[AWS21d] AWS. Configuring Lambda function memory. https://docs.aws.amazon.com/
lambda/latest/dg/configuration-memory.html, 2021. Tikrinta 2021‑05‑04.

[AWS21e] AWS. Lambda quotas. https://docs.aws.amazon.com/lambda/latest/dg/
gettingstarted-limits.html, 2021. Tikrinta 2021‑05‑07.

[BCC+17] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, et al. Research Advances in
Cloud Computing. Springer, Singapore, 2017. 1‑20.

[EUG+21] Unai Elordi, Luis Unzueta, Jon Goenetxea, Estı́baliz Loyo, Ignacio Arganda‑
Carreras ir Oihana Otaegui. On‑demand Serverless Video Surveillance with Optimal
Deployment of Deep Neural Networks, 2021.

[Goo20] Google. Quotas. https://cloud.google.com/functions/quotas, 2020. Tik‑
rintas 2021‑03‑28.

[GRE+12] Joel Gibson, Robin Rondeau, Darren Eveleigh, and Qing Tan. Benefits and chal‑
lenges of three cloud computing service models. In International Conference on Com‑
putational Aspects of Social Networks, CASON, pp. 198–205, Sao Carlos, Brazil.
IEEE, 2012.

35

[Hai18] Steven Haines. Serverless computing with AWS Lambda, Part 1. https://www.
infoworld . com / article / 3210726 / serverless - computing - with - aws -
lambda.html, 2018. Tikrinta 2021‑04‑05.

[IBM20] IBM. OpenWhisk common use cases. https : / / cloud . ibm . com / docs /
openwhisk?topic=openwhisk-use_cases, 2020. Tikrintas 2021‑03‑13.

[KSS10] Ali Khajeh‑Hosseini, Ian Sommerville, and Ilango Sriram. Research challenges for
enterprise cloud computing, 2010.

[Lin14] Jeremy Lindblom. AWS re:Invent 2014. https : / / aws . amazon . com / blogs /
developer/aws-reinvent-2014/, 2014. Tikrintas 2021‑03‑13.

[LRC+18] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara. Serverless com‑
puting: an investigation of factors influencing microservice performance. In IEEE
International Conference on Cloud Engineering (IC2E), pp. 159–169, Orlando, FL,
USA. IEEE, 2018.

[McK16] John McKim. Abstracting the Back‑end with FaaS. https://serverless.zone/
abstracting-the-back-end-with-faas-e5e80e837362, 2016. Tikrinta 2021‑
04‑03.

[MEH+18] Johannes Manner, Martin Endreß, Tobias Heckel ir Guido Wirtz. Cold Start Inf‑
luencing Factors in Function as a Service. 2018 IEEE/ACM International Conference
on Utility and Cloud Computing Companion (UCC Companion), p.p. 181–188, 2018.
DOI: 10.1109/UCC-Companion.2018.00054.

[Mic21] Microsoft. Multicloud solutions with the Serverless Framework. https://docs.
microsoft . com / en - us / azure / architecture / example - scenario /
serverless/serverless-multicloud, 2021. Tikrinta 2021‑04‑05.

[Mli21] Kimberly Mlitz. Cloud services market spending by segment worldwide from 2015
to 2020 (in billion U.S. dollars). https://www.statista.com/statistics/
540499/worldwide-cloud-computing-revenue-by-segment/, 2021. Tikrintas
2021‑03‑13.

[PS17] Hussachai Puripunpinyo ir M.H. Samadzadeh. Effect of optimizing Java deploy‑
ment artifacts on AWS Lambda. 2017 IEEEConference on Computer Communications
Workshops (INFOCOMWKSHPS), p.p. 438–443, 2017. DOI: 10.1109/INFCOMW.
2017.8116416.

[Rob20] Mike Roberts. Analyzing Cold Start latency of AWS Lambda. https://blog.
symphonia.io/posts/2020-06-30_analyzing_cold_start_latency_of_
aws_lambda, 2020. Tikrinta 2021‑05‑07.

[Wan21] Sutao Wang. Thin Serverless Functions with GraalVM Native Image. Magistrinis dar‑
bas, ETH Zurich, 2021‑04‑22.

36

[Woo20] Julian Wood. Working with Lambda layers and extensions in container images.
https://aws.amazon.com/blogs/compute/working-with-lambda-layers-
and-extensions-in-container-images/, 2020. Tikrinta 2021‑05‑17.

[WSH+19] Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul Wögerer,
Peter B. Kessler, Oleg Pliss, and Thomas Würthinger. Initialize once, start fast: ap‑
plication initialization at build time. In Proc. ACM Program. Lang. P. 29, New York,
NY, USA. Association for Computing Machinery, 2019.

