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Chapter 1

Introduction

In the thesis the self-approximation of Hurwitz zeta-functions and periodic
Hurwitz zeta-functions is considered.

1.1 Actuality

Zeta-functions are significant objects in analytic number theory. The central
objects are the Riemann zeta function, distribution of its zeros and some issues
of distribution of prime numbers.

In analytic number theory, universality theorems have significant effect on
Dirichlet L-functions and zeta-functions. Almost classical applications of uni-
versality theorems are functional independence and criteria for analogues of the
Riemann hypothesis.

In 1975, Voronin obtained the first most outstanding result of universality.
Later more and more mathematicians started to investigate universality in re-
lation to zeta-functions. New results in universality theory were obtained by
B. Bagchi, R. Garunkštis, S.M. Gonek, J. Kaczorowski, A. Laurinčikas, K. Mat-
sumoto, A. Reich, J. Steuding and other Japanese, Polish, Lithuanian and German
mathematicians.

Approximation is very important in mathematics. Universality theorems play
the crucial role in approximation of analytic functions.

This thesis will deal with the property of self-approximation related to Hurwitz
and periodic Hurwitz zeta-functions. In the proofs of new theorems analytic
methods will be used.
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1.2 Aims and results

The main aim of this thesis is to prove the self-approximation property for
Hurwitz zeta-functions and periodic Hurwitz zeta-functions. In this section we
present summary of problems investigated in this thesis.

Let s = σ+it denote a complex variable. For σ > 1, the Hurwitz zeta-function
is given by

ζ(s, ω) =
∞∑
n=0

1

(n+ ω)s
,

where ω is a parameter from the interval (0,1].
Denote by A = {cm : m ∈ N0},N0 = N ∪ {0} a periodic sequence of complex

numbers with the smallest period k ∈ N.
For σ > 1, the periodic Hurwitz zeta-function is defined by

ζ(s, ω;A) =
∞∑
m=0

cm
(m+ ω)s

.

1. In Chapter 3, we will study the self-approximation of Hurwitz zeta-functions
with a transcendental parameter. We will prove the following theorem.

Theorem 3.4.1. Let l ≤ m be positive integers and let ω be a transcendental
number from the interval (0,1]. Let d1, . . . , dl ∈ R be such that the set

A(d1, d2, . . . , dl;ω) = {dj log(n+ ω) : j = 1, . . . , l;n ∈ N0}

is linearly independent over Q. For m > l, let dl+1, . . . , dm ∈ R be such that
each dk, k = l + 1, . . . ,m is a linear combination of d1, . . . , dl over Q.

Then, for any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] :

max
1≤j,k≤m

max
s∈K
|ζ(s+ idjτ, ω)− ζ(s+ idkτ, ω)| < ε

}
> 0.

2. In Chapter 4, we will consider the self-approximation of Hurwitz zeta-
functions with a rational parameter. We will prove the following theorem.

Theorem 4.1.1. Let ω = a
b

be a rational number satisfying 0 < a < b

and gcd(a, b) = 1. Moreover, suppose that α, β are real numbers linearly
independent over Q and K is any compact subset of the strip 1/2 < σ < 1.
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Then, for any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

s∈K

∣∣∣ζ (s+ iατ,
a

b

)
− ζ

(
s+ iβτ,

a

b

)∣∣∣ < ε

}
> 0.

3. Chapter 5 deals with the self-approximation of periodic Hurwitz zeta-functions
with transcendental and rational parameters. We will prove the following
theorems.

Theorem 5.1.1. Let A = {cm : m ∈ N0} be a periodic sequence of complex
numbers with the smallest period k ∈ N. Let ω = a

b
, ω ∈ (0, 1], 0 < a < b,

gcd(a, b) = 1 be a rational number. Moreover, suppose that α, β are real
numbers linearly independent over Q and K is any compact subset of the
strip 1/2 < σ < 1. Then, for any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] :

max
s∈K

∣∣∣ζ (s+ iατ,
a

b
;A
)
− ζ

(
s+ iβτ,

a

b
;A
)∣∣∣ < ε

}
> 0.

The next theorem deals with the case of transcendental parameter.

Theorem 5.1.2. Let A = {cm : m ∈ N0} be a periodic sequence of complex
numbers with the smallest period k ∈ N. Let ω be a transcendental number
from the interval (0, 1]. Moreover, suppose that α, β ∈ R are such that
A(α, β;ω) is linearly independent over Q and K is any compact subset of
the strip 1/2 < σ < 1. Then, for any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

s∈K
|ζ (s+ iατ, ω;A)− ζ (s+ iβτ, ω;A)| < ε,∣∣∣∣∣∣(α− β)τ log k

2π

∣∣∣∣∣∣ < ε

}
> 0.

Here ‖x‖ denotes the distance from x ∈ R to the nearest integer.
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We state the schematic diagram of the evolution of the results, concerning the
generalized strong recurrence (Self-approximation).

B. Bagchi
A joint universality theorem for Dirichlet L-functions

T. Nakamura
The joint universality and the generalized strong recurrence

for Dirichlet L-functions

Ł. Pańkowski
Some remarks on the generalized strong recurrence for L-functions

R. Garunkštis
Self-approximation of Dirichlet L-functions

T. Nakamura and Ł. Pańkowski
Self-approximation for Riemann zeta function

Self-approximation of Hurwitz
zeta-functions ζ(s, ω)

R. Garunkštis and E. Karikovas
ω-transcendental parameter

E. Karikovas and Ł. Pańkowski
ω-rational parameter

E. Karikovas
Self-approximation of periodic

Hurwitz zeta-functions ζ(s, ω;A),
ω-transcendental parameter

E. Karikovas
Self-approximation of periodic

Hurwitz zeta-functions ζ(s, ω;A),
ω-rational parameter
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1.3 Methods

In the thesis we used recent methods introduced by Garunkštis [12] and Pańkowski
[43], [44]. Also, elements of complex analysis, measure theory and diophantine
methods are used.

1.4 Novelty and originality

All results obtained in this thesis are new and original. The results of this
thesis contribute to the theory of self-approximation and to the theory of Hurwitz
zeta-functions.

1.5 Publications

The results of this thesis are published in three papers.

1. R. Garunkštis, E. Karikovas, Self-approximation of Hurwitz zeta-functions,
Funct. Approx. Comment. Math., 51(1) (2014), 181–188.

2. E. Karikovas, Ł. Pańkowski, Self-approximation of Hurwitz zeta-functions
with rational parameter, Lith. Math. J., 54(1) (2014), 74–81.

3. E. Karikovas, Self-approximation of periodic Hurwitz zeta-functions, to
appear in Nonlinear Anal. Model. Control.

1.6 Conferences and visits

1. E. Karikovas, Self-approximation of Hurwitz zeta-functions, Summer school,
Four faces of number theory, August 7–11 , 2012, Department of Mathemat-
ics Julius-Maximilians-Universität Würzburg, Germany.

2. E. Karikovas, Self-approximation of Hurwitz zeta-functions with rational
parameter, 54th Conference of Lithuanian Mathematical Society, June 19–20,
2013, Vilnius, Lithuania.

3. E. Karikovas, Self-approximation of Hurwitz zeta-functions, 28th Journées
Arithmétiques, July 1–5, 2013, Grenoble, France.

4. E. Karikovas, Self-approximation of periodic Hurwitz zeta-functions, Ele-
mentare und Analytische Zahlentheorie, ELAZ Conference at University of
Hildesheim, July 28–August 1, 2014, Hildesheim, Germany.
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The results of the thesis were presented at the seminars on Number Theory
of the Department of Probability Theory and Number Theory at the Faculty of
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Chapter 2

Literature review

2.1 History of the problem

In this section, we present universality theorems for the Riemann zeta-function
ζ(s) and Dirichlet L-function L(s, χ) and other interesting facts, which lead to
results obtained in the thesis.

Let, as usual, s = σ + it denote a complex variable. For σ > 1, the Riemann
zeta-function is defined by

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1
,

where p is a prime number. The function ζ(s) can be analytically continued to
the whole complex plane, except the point s = 1 (simple pole) with residue 1.

This function is a very famous and important object in analytic number theory.
It is known that ζ(s) = 0 if s = −2n, for n = 1, 2, . . . . These zeros are called
trivial-zeros.

The well-known yet unproved Riemann [49] hypothesis states:
Riemann’s hypothesis. All non-trivial zeros of ζ(s) lie on the critical line
σ = 1

2
.

Hilbert about this hypothesis declared (see [7]):
“If I were to awaken after having slept for a thousand years, my first question

would be: has the Riemann hypothesis been proven?”
It is known that ζ(s) has no zeros in the region <(s) ≥ 1. There are known

special values, for example ζ(2) = π2

6
, ζ(4) = π4

90
. More about the Riemann

zeta-function can be found in [1], [9], [17], [23], [52], [54].
In 1975, Voronin [55] discovered the universality theorem of the Riemann zeta-

function. In other words, this means that any analytic nonzero function in the
critical strip D = {s ∈ C : 1

2
< σ < 1} can be approximated by shifts ζ(s + iτ).
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The precise statement of the Voronin’s theorem is the following.

Theorem 2.1.1 (Voronin [55]). Let 0 < r < 1
4
. Suppose that f(s) is a continuous

non-vanishing function on the disc |s| ≤ r, and analytic in the interior of this
disc. Then, for any ε > 0, there exists a number τ = τ(ε) ∈ R such that

max
s≤r

∣∣∣∣ζ (s+
3

4
+ iτ

)
− f(s)

∣∣∣∣ < ε. (2.1)

Let meas{A} denote the Lebesgue measure of a measurable set A ⊂ R. Recall
that, for Lebesgue measurable set A ⊂ (0,∞), we define lower density of A as

lim inf
T→∞

1

T
meas(A ∩ (0, T ]).

Moreover, if this limit is positive, then we say that A has a positive lower density.
For measure theory see more in [6], [53] (Chapter 10) and in [50] (Chapter 11).

Now we present the current version of the Voronin theorem. The proof of this
theorem can be found in [29].

Theorem 2.1.2 (Voronin’s universality theorem). Let K be a compact subset of
the strip D with connected complement, and f(s) be a continuous non-vanishing
function on K which is analytic in the interior of K. Then, for any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

s∈K
|ζ (s+ iτ)− f (s)| < ε

}
> 0. (2.2)

This theorem shows that the set of translations of the Riemann zeta function
which approximate given analytic function f(s) is sufficiently rich: it has a positive
lower density. However we do not know explicitly τ with the approximation
property.

Next we recall the definition of a Dirichlet character.
A Dirichlet character modulo q > 0, denoted by χ(q) is any function

χ : Z −→ C with the properties :

• χ is periodic modulo q, i.e., χ(n+ q) = χ(n) for all n ∈ Z.

• If q and n are not relatively prime, then χ(n) = 0.

• If q and n are relatively prime, then |χ(n)| = 1.

• If m and n are any two positive integers, then χ(mn) = χ(m)χ(n).

We present several basic facts of Dirichlet characters. Let G(q) be the set of
characters modulo q. We define the product χ1χ2 of χ1, χ2 ∈ G(q) by

(χ1χ2)(n) = χ1(n)χ2(n), for n ∈ Z.

16



With this operation, G(q) becomes a group, with unit element the principal char-
acter modulo q given by

χ0
(q)(n) =

1, if (n, q) = 1

0, if (n, q) > 1.

The inverse of χ ∈ G(q) is its complex conjugate χ : n→ χ(n).
The values of Dirichlet character χ modulo q are either 0, or ϕ(q)th roots

of unity; i.e., for all n we have either χ(n) = 0 or χ(n) = e2πm/ϕ(q), where m =

m(n) ∈ N and ϕ(q) is Euler function. There exist exactly ϕ(q) Dirichlet characters
modulo q. Moreover, for any integer a with (a, q) = 1 and a 6≡ 1 mod q there exists
a character χ with χ(a) 6= 1.

Next we define induced, primitive and equivalent Dirichlet characters. These
definitions will be useful in Chapter 4 and Chapter 5.

Let χ be a character mod q and d > 0 be divisor of q. We say that q is induced
by character χ′mod d if χ(n) = χ′(n) for any n ∈ Z with (n, q) = 1. Similarly
stated, χ is induced by χ′ if χ = χ′χ0

(q). Notice that if (a, d) = 1 and (a, q) > 1,
then χ′(n) 6= 0, but χ(n) = 0.

The character χ is called primitive if it is not induced by a character mod d

for any divisor d < q of q.
Two Dirichlet characters χ1 and χ2 are equivalent if they are induced by the

same primitive character.
Let us present several examples. Denote by χk(n; q) the kth character mod q.

In the Table 1 below we state all non zero values of all Dirichlet characters mod

8.

n 1 3 5 7
χ1(n; 8) 1 1 1 1
χ2(n; 8) 1 -1 -1 1
χ3(n; 8) 1 -1 1 -1
χ4(n; 8) 1 1 -1 -1

Table 1.
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Table 2 below shows all non zero values of all Dirichlet characters mod 4.

n 1 3
χ1(n; 4) 1 1
χ2(n; 4) 1 -1

Table 2.

Adding two columns to Table 2 by periodicity we obtain the following:

n 1 3 5 7
χ1(n; 4) 1 1 1 1
χ2(n; 4) 1 -1 1 -1

Table 3.

We see that χ1(n; 8) = χ1(n; 4) for all n = 1, 3, 5, 7, so χ1(n; 8) is imprimitive
character; in the other words, χ1 mod 8 is induced by χ1 mod 4.
χ2(5; 8) 6= χ2(5; 4) so χ2 mod 8 is primitive character.
χ3(n; 8) = χ2(n; 4) for all n = 1, 3, 5, 7, so χ3(n; 8) is imprimitive character.
χ4(5; 8) 6= χ2(5; 4) so χ4 mod 8 is primitive character.

In the following table we state all non zero values of all Dirichlet characters
mod 10.

n 1 3 7 9 primitive
χ1(n; 10) 1 1 1 1 No
χ2(n; 10) 1 i -i -1 No
χ3(n; 10) 1 -i i -1 No
χ4(n; 10) 1 -1 -1 1 No

Table 4.

For σ > 1, the Dirichlet L-function is defined by

L(s, χ) =
∞∑
n=1

χ(n)

ns
=
∏
p

(
1− χ(p)

ps

)−1
.

It is easy to see that for q = 1 we get L(s, χ) = ζ(s).
Denote by χ0 the principal character modulo q. The function L(s, χ0) is ana-

lytically continued to the whole complex plane, except for a simple pole at s = 1.
If χ 6= χ0, then L(s, χ) is analytically continued to an entire function. Further-
more, just as ζ(s), the function L(s, χ) has infinitely many zeros in the strip
0 < σ < 1.
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More about Dirichlet characters and Dirichlet L-functions can be found in [1],
[9], [17], [39], [52].

As a generalization of Theorem 2.1.2, S.M. Voronin also proved the joint
universality theorem. This theorem implies that a collection of Dirichlet L-
functions with non-equivalent characters uniformly approximates simultaneously
non-vanishing analytic functions; in slightly different form this was also established
by Gonek [16] and Bagchi [2] (independently; all these sources are unpublished
doctoral theses).

Next we state the strongest version of the joint universality theorem.

Theorem 2.1.3 (Voronin’s joint universality theorem). Let χ1 mod q1,…,χm mod

qm be pairwise non-equivalent Dirichlet characters, K1, . . . ,Km be compact subsets
of the strip 1/2 < σ < 1 with connected complements. Further, for each 1 ≤ l ≤ m

let fl(s) be a non-vanishing continuous function on Kl which is analytic in the
interior of Kl. Then, for any ε > 0, we have

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

1≤l≤m
max
s∈Kl
|L (s+ iτ, χl)− fl (s)| < ε

}
> 0. (2.3)

This is Theorem 1.10 in [52].
We state the following generalization of the Riemann hypothesis.

Generalized Riemann hypothesis. Let χ be a Dirichlet character. All zeros
of L(s, χ) with 0 < σ < 1 lie on the critical line σ = 1

2
.

In 1982, Bagchi [3] discovered an interesting equivalent to the generalized
Riemann hypothesis. He proved that the generalized Riemann hypothesis is true
if and only if the Dirichlet L-functions can be approximated by itself.

Theorem 2.1.4 (Bagchi [3]). The generalized Riemann hypothesis is true if and
only if, for any compact subset K of the strip 1/2 < σ < 1 and any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

s∈K
|L (s+ iτ, χ)− L (s, χ)| < ε

}
> 0. (2.4)

This property is called the strong recurrence (see also Theorem 8.3 in [52]).
Kaczorowski, Laurinčikas and Steuding [27] discovered another property sim-

ilar to strong recurrence (see also Section 10.6 in [52]).

Theorem 2.1.5 (Kaczorowski, Laurinčikas and Steuding [27]). Let K be a com-
pact subset of the strip 1/2 < σ < 1 with connected complement and let λ ∈ R be
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such that K and K + iλ := {s+ iλ : s ∈ K} are disjoint. Then, for any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] :

max
s∈K
|L (s+ iλ+ iτ, χ)− L (s+ iτ, χ)| < ε

}
> 0. (2.5)

We recall that numbers v1, v2, . . . , vn ∈ R are called linearly independent over
the field of rational numbers Q if

n∑
j=1

ajvj = 0

with rational a1, a2, . . . , an implies that a1 = a2 = · · · = an = 0.
Nakamura in [40] considered the joint universality of shifted Dirichlet L-

functions. Assume that 1 = d1, d2, . . . , dm are algebraic real numbers linearly
independent over Q and χ is an arbitrary Dirichlet character. Then, for every
ε > 0, we have

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : (2.6)

max
1≤j,k≤m

max
s∈K
|L(s+ idjτ, χ)− L(s+ idkτ, χ)| < ε

}
> 0.

For m = 2, Pańkowski [43] using Six Exponentials Theorem (the proof can be
found in [28] and [47]) showed that (2.6) also holds for every real numbers d1, d2
linearly independent over Q. Now we present Pańkowski result.

Theorem 2.1.6 (Pańkowski [43]). Let K ⊂ D be any compact set with connected
complement, χ a Dirichlet character and f, g be any functions which are non-
vanishing and continuous on K and analytic in the interior. Moreover, let α, β
be real numbers linearly independent over Q. Then, for every ε > 0, the set of
real numbers τ , satisfying the following inequalities :

max
s∈K
|L(s+ iατ, χ)− f(s)| < ε,

max
s∈K
|L(s+ iβτ, χ)− g(s)| < ε,

has a positive lower density.

The case where d1/d2 ∈ Q in inequality (2.6) was considered by Garunkštis
(see [12]) and Nakamura (see [41]) independently. It is worth mentioning that
the proofs of their results contain gaps. The gaps were filled by Nakamura and
Pańkowski in [42], where d1 = 1 and d2 = a/b ∈ Q satisfies gcd(a, b) = 1,
|a− b| 6= 1.
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Theorem 2.1.7 (Pańkowski and Nakamura [42]). For every 0 6= d = a/b ∈ Q,
with |a−b| 6= 1 and gcd(a, b) = 1, every compact subset K of the strip 1/2 < σ < 1

and every ε > 0, we have

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

s∈K
|ζ (s+ iτ)− ζ (s+ idτ)| < ε

}
> 0. (2.7)

It should be mentioned that the general case for d1 = 1 and for non-zero
rational d2 in inequality (2.6) is still open.

2.2 Basic facts of Hurwitz zeta-functions

In this section we present several properties of Hurwitz zeta functions, which
will be useful in this thesis. For σ > 1, the Hurwitz zeta-function is given by

ζ(s, ω) =
∞∑
n=0

1

(n+ ω)s
,

where ω is a parameter from the interval (0,1]. It is well-known that ζ(s, 1) = ζ(s)

and ζ(s, 1/2) =
(
2s − 1

)
ζ(s), where ζ(s) is the Riemann zeta-function.

The series for ζ(s, ω) converges absolutely for σ > 1. The convergence is
uniform in every half-plane σ ≥ 1 + δ, δ > 0, so ζ(s, ω) is the analytic function of
s in the half-plane σ > 1. The Hurwitz zeta-function can be continued analytically
to the entire complex plane, except for a simple pole at s = 1.

For σ > 1, the Hurwitz zeta-function has the integral representation (see
Theorem 12.2 in [1])

ζ(s, ω) =
1

Γ(s)

∫ ∞
0

xs−1e−ωx

1− e−x
dx,

where Γ(s) is the gamma function defined by

Γ(s) =

∫ ∞
0

xs−1e−xdx, for σ > 0.

To extend the Hurwitz zeta-function ζ(s, ω) beyond the line σ = 1, we define the
following integral representation.
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The contour γ is composed of three parts γ1, γ2, γ3 as shown in Figure 1. Part γ2
is a positively oriented circle of radius r < 2π about the origin, and parts γ1, γ3
are the lower and upper edges of the “cut” in the s-plane along the negative real
axis, traversed as shown in the figure. This means that we use the parametrization
s = Re−πi on γ1 and s = Reπi on γ3 where r < R < +∞.

Lemma 2.2.1 (Apostol [1]). If 0 < ω ≤ 1, then the function defined by the
contour integral

I(s, ω) =
1

2πi

∫
γ

zs−1eωz

1− ez
dz

is an entire function of s. Moreover, we have

ζ(s, ω) = Γ(1− s)I(s, ω), for s 6= 1.

Proof. This is Theorem 12.3 in [1].

For rational ω = a
b

satisfying 0 < a < b and gcd(a, b) = 1 the Hurwitz zeta
function might be expressed as a linear combination of Dirichlet L-functions:

ζ
(
s,
a

b

)
=

bs

ϕ(b)

∑
χ mod b

χ(a)L(s, χ).

We can also express L(s, χ) in terms of Hurwitz zeta-functions. If χ is a Dirich-
let character mod b, we rearrange the terms in the series for L(s, χ) according to
the residue classes mod b. That is, we write n = qb + a, where 1 ≤ a ≤ b and
q = 0, 1, 2, . . . , and obtain
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L(s, χ) =
∞∑
n=1

χ(n)

ns
=

b∑
a=1

∞∑
q=0

χ(qb+ a)

(qb+ a)s
=

1

bs

b∑
a=1

χ(a)
∞∑
q=0

1

(q + a
b
)s

=
1

bs

b∑
a=1

χ(a)ζ
(
s,
a

b

)
.

In the next lemma, we state the functional equation for Hurwitz zeta-functions.

Lemma 2.2.2 (Apostol [1]). If h and k are integers, 1 ≤ h ≤ k, then for all s
we have

ζ

(
1− s, h

k

)
=

2Γ(s)

(2πk)s

k∑
r=1

cos

(
πs

2
− 2πrh

k

)
ζ
(
s,
r

k

)
.

Proof. This is Theorem 12.8 in [1].

If h = k = 1, from the last equality we obtain the functional equation for the
Riemann zeta-function.

ζ(1− s) = 2(2π)−sΓ(s) cos
(πs

2

)
ζ(s)

or equivalently
ζ(s) = 2(2π)s−1Γ(1− s) sin

(πs
2

)
ζ(1− s).

If n is nonnegative integer, then the value of ζ(−n, ω) can be calculated ex-
plicitly. Taking s = −n in the relation ζ(s, ω) = Γ(1− s)I(s, ω) we have

ζ(−n, ω) = Γ(1 + n)I(−n, ω) = n!I(−n, ω) = n!Resz=0

(z−n−1eωz
1− ez

)
.

The next lemma gives an approximation of Hurwtz zeta-functions ζ(s, ω) by
a finite sum.

Lemma 2.2.3 (Apostol [1]). For any integer N ≥ 0 and σ > 0 we have

ζ(s, ω) =
N∑
n=0

1

(n+ ω)s
+

(N + ω)1−s

s− 1
− s

∫ ∞
N

x− [x]

(x+ ω)s+1
dx.

The proof of this lemma can be found in [1], see Theorem 12.23.
The distribution of zeros of ζ(s, ω) as a function of s depends drastically on

the parameter ω. For instance, the Hurwitz-zeta function ζ(s, 1/2) = (2s− 1)ζ(s)

vanishes for s = 2πik/ log 2, k ∈ Z, and all other non-real zeros are expected to
lie on the critical line σ = 1/2.

It is known that for any 1/2 < σ1 < σ2 < 1 and any transcendental or rational
number ω 6= 1/2, 1 the function ζ(s, ω) has more than cT zeros in the rectangle
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σ1 ≤ σ ≤ σ2, |t| ≤ T , where c is a positive constant depending on σ1, σ2 and ω

(see [16], [23], [15]).
More about Hurwitz zeta-functions see in [1], [23], [52].

2.3 Basic facts of periodic Hurwitz zeta-functions

In this section we present useful results about periodic Hurwitz zeta-functions.
Denote by A = {cm : m ∈ N0},N0 = N ∪ {0} a periodic sequence of complex
numbers with the smallest period k ∈ N.
For σ > 1, the periodic Hurwitz zeta-function is defined by

ζ(s, ω;A) =
∞∑
m=0

cm
(m+ ω)s

.

This function was introduced by Laurinčikas and Javtokas in [22].
If A = {1}, then ζ(s, ω;A) is the classical Hurwitz zeta-function. In the

case when A = {1} and ω = 1, the function ζ(s, ω;A) becomes the Riemann
zeta-function. If ω = 1, then the function ζ(s, ω;A) reduces to the periodic zeta-
function

ζ(s;A) =
∞∑
m=1

cm−1
ms

, σ > 1.

It is not difficult to see that, for σ > 1,

ζ(s, ω;A) =
k−1∑
l=0

∞∑
m=0

cl
(mk + l + ω)s

=
1

ks

k−1∑
l=0

cl

∞∑
m=0

1

(m+ (l + ω/k))s
(2.8)

=
1

ks

k−1∑
l=0

clζ

(
s,
l + ω

k

)
.

Therefore equation (2.8) gives the analytic continuation for ζ(s, ω;A) to the whole
complex plane, except, perhaps, for a simple pole s = 1 with residue

c =
1

k

k−1∑
l=0

cl.

If c = 0, then ζ(s, ω;A) is an entire function.
For rational parameter ω = a

b
we can write equality (2.8) as follows:

ζ
(
s,
a

b
,A
)

=
1

ks

k−1∑
l=0

cl
bsl

ϕ(bl)

∑
χ(l) mod bl

χ(l)(al)L
(
s, χ(l)

)
, (2.9)
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where a+bl
bk

= al
bl

, (al, bl) = 1 for all 0 ≤ l ≤ k − 1.

Example. Let A = {eπim2 : m ∈ N0}. This sequence of complex numbers is a
periodic with the smallest period k = 4 and

c0 = 1, c1 = e
πi
2 = cos

π

2
+ i sin

π

2
= i,

c2 = e
2πi
2 = cosπ + i sin π = −1, c3 = e

3πi
2 = cos

3π

2
+ i sin

3π

2
= −i.

Let ω = 2
3
, then

a0
b0

=
1

6
,
a1
b1

=
5

12
,
a2
b2

=
2

3
,
a3
b3

=
11

12
.

From (2.8) we have

ζ

(
s,

2

3
,A

)
=

1

4s

3∑
l=0

clζ
(
s,

2

3

)

=
1

4s

(
ζ
(
s,

1

6

)
+ iζ

(
s,

5

12

)
− ζ
(
s,

2

3

)
− iζ

(
s,

11

12

))
.

From (2.9) we obtain

ζ

(
s,

2

3
,A

)
=

1

4s

3∑
l=0

cl
bsl

ϕ(bl)

∑
χ(l) mod bl

χ(l)(al)L
(
s, χ(l)

)

=
1

4s
· 6s

ϕ(6)

∑
χ(0) mod 6

χ(0)(1)L
(
s, χ(0)

)
+

i

4s
· 12s

ϕ(12)

∑
χ(1) mod 12

χ(1)(5)L
(
s, χ(1)

)
− 1

4s
· 3s

ϕ(3)

∑
χ(2) mod 3

χ(2)(2)L
(
s, χ(2)

)
− i

4s
· 12s

ϕ(12)

∑
χ(3) mod 12

χ(3)(11)L
(
s, χ(3)

)
=

3s

2s+1

∑
χ mod 6

χ(1)L (s, χ) +
3si

4

∑
χ mod 12

χ(5)L (s, χ)− 1

2
· 3s

4s

∑
χ mod 3

χ(2)L (s, χ)

−3si

4

∑
χ mod 12

χ(11)L (s, χ) .

2.4 Universality of Hurwitz zeta-functions and
periodic Hurwitz zeta-functions

In this section we state universality theorems for Hurwitz zeta-functions. First,
we present universality theorem of the classical Hurwitz zeta-functions.
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Theorem 2.4.1 (Universality theorem of Hurwitz zeta-functions). Let the num-
ber ω is transcendental or rational 6= 1, 1

2
. Let K ⊂ D be a compact subset with

connected complement, and let f(s) be a continuous function on K which is ana-
lytic in the interior of K. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

s∈K
|ζ (s+ iτ, ω)− f (s)| < ε

}
> 0. (2.10)

Theorem 2.4.1 has been considered in [2] and [16] by different methods.
Next, we state the joint universality theorem for Hurwitz zeta-functions. First

we define the set

L(ω1, . . . , ωr) = {log(m+ ωj) : m ∈ N0, ωj ∈ (0; 1], j = 1, . . . , r}.

Theorem 2.4.2 (Joint universality theorem for Hurwitz zeta-functions [31], [41]).
Suppose that the set L(ω1, . . . , ωr) is linearly independent over the field of rational
numbers Q. For j = 1, . . . , r, let Kj ⊂ D be a compact subset with connected
complement, and let fj(s) be a continuous function on Kj which is analytic in the
interior of Kj. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

1≤j≤r
max
s∈Kj
|ζ (s+ iτ, ωj)− fj (s)| < ε

}
> 0. (2.11)

We recall that a generalization of the Hurwitz zeta-function is the periodic
Hurwitz zeta-function ζ(s, ω;A). The universality of the function ζ(s, ω;A) with
transcendental parameter ω was considered in [20] and [22]. The following state-
ment was proved.

Theorem 2.4.3 (Javtokas and Laurinčikas [20]). Let the number ω is transcen-
dental. Let K ⊂ D be a compact subset with connected complement, and let f(s)

be a continuous function on K which is analytic in the interior of K. Then, for
every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

s∈K
|ζ (s+ iτ, ω;A)− f (s)| < ε

}
> 0. (2.12)

The joint universality theorem for periodic Hurwitz zeta-functions is proved
in [30]. More about universality theorems for Hurwitz zeta-functions and periodic
Hurwitz zeta-functions see in [20], [21], [31], [35], [38].

Moreover, there have been investigated hybrid universality (sometimes called
mixed universality), joint hybrid universality (also called joint mixed universality)
for Dirichlet L-functions and zeta-functions. More about universality of Dirichlet
L-functions and other zeta-functions see in [33], [34], [37], [44], [45].
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Chapter 3

Self-approximation of Hurwitz
zeta-functions for transcendental
parameter

3.1 Introduction

In this chapter we consider the following problem. Find all real numbers
0 < ω ≤ 1 and d such that, for any compact subset K of the strip 1/2 < σ < 1

and any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

s∈K
|ζ(s+ iτ, ω)− ζ(s+ idτ, ω)| < ε

}
> 0. (3.1)

We will prove the case when ω is a transcendental number and d is a rational
number. We will also show that for any transcendental number ω the inequality
(3.1) is true for almost all numbers d and that for any irrational number d the
inequality (3.1) is true for almost all numbers ω.

In Section 3.2 we present several facts about transcendental numbers. In
Section 3.3 we investigate the set A(d1, . . . , dk, ω) and we prove the main results
of this chapter, namely Theorem 3.4.1 and Propositions 3.4.3, 3.4.4.

3.2 Several facts about transcendental numbers

“God made natural numbers, all else is the work of man.” (Kronecker, cf.
Weber [56].)

We recall that a transcendental number is a number which is not algebraic;
that is, it is not the root of a non-constant polynomial equation with rational
coefficients. For example, numbers e, π, eπ, 2

√
2 are transcendental. Liouville

27



showed that number
∑∞

n=1 10−n! is transcendental, and this was one of the first
numbers proven to be transcendental.

Next we present several useful facts of transcendental numbers.

• (Hermite-Lindemann Theorem). For every nonzero algebraic number
α, eα is transcendental.
Equivalently, if α is algebraic, α 6= 0 and α 6= 1, then logα is transcendental.

• (Gelfond-Schneider Theorem, 1934). If α and β are algebraic, α 6= 0,
α 6= 1, β irrational, then αβ is transcendental.

The next two statements are equivalent to the Gelfond-Schneider Theorem.

• If α is irrational and β 6= 0 then at least one of the numbers α, eβ, eαβ is
transcendental.

• If α is irrational and {β, γ} is linearly independent over rationals, then at
least one of the numbers β, γ, eαβ, eαγ is transcendental.

• (Baker’s Theorem, 1966). If α1, . . . , αn are non-zero algebraic numbers,
and logα1, . . . , logαn is linearly independent over rationals, and β0, . . . , βn

are algebraic and not all zero, then β0 +
∑n

j=1 βj logαj is transcendental.

Further results about transcendental numbers can bee found in [4], [5], [51].

3.3 The set A(d1, d2, . . . , dk;ω)

In this section we define the set A(d1, d2, . . . , dk;ω) and show several properties
of this set, which are interesting on their own.

Let d1, d2, . . . , dk, ω be real numbers and let ω be a real number from the
interval (0,1] .
Let

A(d1, d2, . . . , dk;ω) = {dj log(n+ ω) : j = 1, . . . , k;n ∈ N0}

be a multiset. Note that in a multiset elements can appear more than once. For
example, {1, 2} and {1, 1, 2} are different multisets, but {1, 2} and {2, 1} are equal
multisets.

If a multiset A(d1, d2, . . . , dk;ω) is linearly independent over rational numbers,
then A(d1, d2, . . . , dk;ω) is a set and the numbers d1, . . . , dk are linearly indepen-
dent over Q. In this thesis we work only with the set A(d1, d2, . . . , dk;ω).

Consider the case when k = 2. We state some examples which show possible
relation between numbers d1, d2 and the set A(d1, d2;ω).
Example 1. If d1 and d2 are real numbers linearly dependent over Q, then the
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set A(d1, d2;ω) is also linearly dependent over Q.
Example 2. Let d1 be a rational and d2 =

logω

log(1 + ω)
be a real number, where ω

is a transcendental number from the interval (0; 1]. It is easy to see that numbers
d1 and d2 are linearly independent over Q, but the set A(d1, d2;ω) is linearly
dependent over Q.

Next we prove several properties of the set A(d1, d2, . . . , dk;ω) for transcen-
dental, rational and irrational parameter ω, respectively.

Property 3.3.1. Let d1 6= 0 be a real number and let ω be a transcendental
number. Then the set A(d1;ω) is linearly independent over Q.

Proof. Suppose that d1 6= 0 and there is a finite sequence of rational numbers
a0, a1, . . . , aN such that not all of them are equal to 0 and

d1

N∑
n=0

an log(n+ ω) = 0. (3.2)

From (3.2) we obtain

d1 log

(
N∏
n=0

(n+ ω)an

)
= 0

and

N∏
n=0

(n+ ω)an − 1 = 0. (3.3)

Numbers a1, a2, . . . , aN are rationals, then it is not difficult to see that the equality
(3.3) can be written in the form P (ω) = 0, where P (ω) is a polynomial. But ω
is a transcendental number, and we obtain contradiction. This gives that the set
A(d1;ω) is linearly independent over Q.

Property 3.3.2. Let d1, d2, . . . , dk be real numbers and ω, 0 < ω ≤ 1 be a rational
number, then the set A(d1, d2, . . . , dk;ω) is linearly dependent over Q.

Proof. It is enough to consider the case when numbers d1, d2, . . . , dk are linearly
independent over Q. Let ω = a

b
, where (a, b) = 1. The set A(d1, d2, . . . , dk;ω)

consists of elements

d1 log
a

b
; d1 log

(
1 +

a

b

)
; d1 log

(
2 +

a

b

)
; . . . . . . ; d1 log

(
r +

a

b

)

d2 log
a

b
; d2 log

(
1 +

a

b

)
; d2 log

(
2 +

a

b

)
; . . . . . . ; d2 log

(
r +

a

b

)
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dk log
a

b
; dk log

(
1 +

a

b

)
; d1 log

(
2 +

a

b

)
; . . . . . . ; dk log

(
r +

a

b

)
,

where r →∞.
Suppose that there exists a finite sequence of rational numbers ain, i = 1, . . . , k,

n = 0, . . . , N such that not all of these numbers are equal to 0 and equality

d1

N∑
n=0

a1n log
(
n+

a

b

)
+ · · ·+ dk

N∑
n=0

akn log
(
n+

a

b

)
= 0 (3.4)

is valid.
Consider the set of numbers

d1a10 log
a

b
; d1a11 log

(
1 +

a

b

)
; d1a12 log

(
2 +

a

b

)
; . . . . . . ; d1a1t log

(
t+

a

b

)

d2a20 log
a

b
; d2a21 log

(
1 +

a

b

)
; d2 a22 log

(
2 +

a

b

)
; . . . . . . ; d2a2t log

(
t+

a

b

)
,

where t > 2.
Take a10 = a20 = a1t = a2t = 1, a11 = a21 = a12 = a22 = −1, and let other aij = 0,
and let (3.4) is valid.

Next we prove that there is the integer number t = t(a, b), t > 2 such that the
equality (3.4) is valid. Numbers d1, d2 are linearly independent over Q. Thus we
have

log
(a
b

)( b

a+ b

)(
b

a+ 2b

)(
a+ tb

b

)
= 0. (3.5)

From the last equation we obtain

a(bt+ a) = (b+ a)(b+ a)

and
t =

3a+ 2b

a
.

This implies Property 3.3.2.

Also for the proof of Property 3.3.2 we can use identity(
t+

a

b

)(
(t+ 1)(b+ 1) + a+

a

b

)
=
(
t+ 1 +

a

b

)(
t(b+ 1) + a+

a

b

)
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(see [10]). Alternatively, one can apply results given by Pólya and Szegö (see [46],
Chapter 8, Problems 95 and 109).

Property 3.3.3. Let d1, d2, . . . , dk be real numbers and ω, 0 < ω ≤ 1 be an
irrational number of the form ω =

√
r − q, where r, q ∈ N and r − q2 = 1. Then

the set A(d1, d2, . . . , dk;ω) is linearly dependent over Q.

Proof. Consider the set

A(d1, d2, . . . , dk;ω) = {dj log(n+ ω) : j = 1, . . . , k;n ∈ N0}.

It is easy to see that this set contains elements dj log(
√
r− q) and dj log(

√
r+ q),

where j = 1, 2, . . . , k. This implies Property 3.3.3.

We recall that ω is an algebraic integer of degree 2, if ω2 = −aω − b, where
a, b ∈ Z. The following property generalizes Property 3.3.3.

Property 3.3.4. Let d1, d2, . . . , dk be real numbers and ω be an algebraic integer
of degree 2. Then the set A(d1, d2, . . . , dk;ω) is linearly dependent over Q.

Proof. See Theorem 1 in [10].

3.4 Main Theorem 3.4.1 and useful propositions

In this chapter we will prove the following theorem, which can be called the self-
approximation theorem of Hurwitz zeta-function with transcendental parameter.

Theorem 3.4.1. Let l ≤ m be positive integers and let ω be a transcendental
number from the interval (0,1]. Let d1, . . . , dl ∈ R be such that the set

A(d1, d2, . . . , dl;ω) = {dj log(n+ ω) : j = 1, . . . , l;n ∈ N0}

is linearly independent over Q. For m > l, let dl+1, . . . , dm ∈ R be such that each
dk, k = l + 1, . . . ,m is a linear combination of d1, . . . , dl over Q.

Then, for any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : (3.6)

max
1≤j,k≤m

max
s∈K
|ζ(s+ idjτ, ω)− ζ(s+ idkτ, ω)| < ε

}
> 0.

In the inequality (3.6), for almost all ε, ‘lim inf’ can be replaced by ‘lim’
similarly as in Theorem 2 of [12].

Next we recall the definition of a countable set.
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Definition 3.4.2. A set S is countable if there exists an injective function

f : S → N.

For example, the set of all integer numbers is countable, but the set of all
transcendental numbers is uncountable. More about countable sets can be found
in [50] (see Chapter 2).

The following propositions show that for any positive integer l ‘most’ collec-
tions of real numbers d1, d2, . . . , dl, ω, where 0 < ω ≤ 1, are such that the set
A(d1, d2, . . . , dl;ω) is linearly independent over Q.

Proposition 3.4.3. Let ω be a transcendental number and l ≥ 2. If A(d1, d2, . . . ,

dl−1;ω) is linearly independent over Q, then the set

E = {dl ∈ R : A(d1, d2, . . . , dl;ω) is linearly dependent over Q}

is countable.

Proposition 3.4.4. Let d1, d2, . . . , dl be real numbers linearly independent over
Q. Then the set

H = {ω ∈ (0, 1] : A(d1, d2, . . . , dl;ω) is linearly dependent over Q}

is countable.

In Section 3.6 we will prove Theorem 3.4.1. Section 3.7 is devoted to proofs
of Propositions 3.4.3 and 3.4.4.

It should be mentioned that it is difficult to construct an example, where
d1, d2, . . . , dl are linearly independent over Q and A(d1, d2, . . . , dl;ω) is also are
linearly independent over Q.

3.5 Auxiliary lemmas

We start from the lemmas which will be useful in the proof of the main theorem.
We recall some definitions.

Let U be an open bounded rectangle with vertices on the lines σ = σ1 and
σ = σ2, where 1/2 < σ1 < σ2 < 1.

Lemma 3.5.1. Let K be a compact subset of the rectangle U and let

d = min
z∈∂ U

min
s∈K
|s− z|.
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If f(s) is analytic on U and ∫
U

|f(s)|2 dσdt ≤ ε,

then
max
s∈K
|f(s)| ≤

√
ε/π

d
.

Proof. The lemma above can be found in [16] (see Lemma 2.5).

Definition 3.5.2. Let x ∈ RN and γ ⊂ RN . The notation x ∈ γ mod 1 means
that there exists an integer vector y in RN such that x− y ∈ γ.

Next we recall the notation of the Jordan volume of the region γ ⊂ RN .
Consider the sets of parallelepipeds γ1 and γ2, with sides parallel to the axes and
of volume V1 and V2 with γ1 ⊂ γ ⊂ γ2. If there are γ1 and γ2 such that lim supγ1 V1

coincides with lim infγ2 V2, then γ has Jordan volume

V = lim sup
γ1

V1 = lim sup
γ2

V2.

If the Jordan volume exists, it is also defined in the sense of Lebesgue and equal
to it.

Next we state the generalized Kronecker’s theorem.

Lemma 3.5.3. Let a1, . . . , aN be real numbers linearly independent over the ra-
tional numbers. Let γ be a region of the N-dimensional unit cube with volume V
(in the Jordan sense). Let Iγ(T ) be the sum of the intervals between t = 0 and
t = T for which the point (a1t, . . . , aN t) is mod 1 inside γ. Then

lim
T→∞

Iγ(T )

T
= V.

Proof. This is Theorem 1 in Apendix, Section 8, of [23].

For a curve γ(t) in RN we introduce the notation

{γ(t)} = (γ1(t)− [γ1(t)], . . . , γN(t)− [γN(t)]) ,

where [x] denotes the integer part of x ∈ R.

Definition 3.5.4. Let γ(t) be a continuous function with domain of definition
(0,∞] and range RN . We say that the curve γ(t) is uniformly distributed mod 1

in RN if the following relation holds for every parallelepiped

Π = [α1, β1]× · · · × [αN , βN ], 0 ≤ αj < βj ≤ 1, for j = 1, . . . , N :
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lim
T→∞

1

T
meas

{
t : t ∈ [0, T ], γ(t) ∈ Π mod 1

}
=

N∏
j=1

(
βj − αj

)
.

Lemma 3.5.5. Suppose that the curve γ(t) is uniformly distributed mod 1 in RN .
Let D be a closed and Jordan measurable subregion of the unit cube in RNand let Ω

be a family of complex-valued continuous functions defined on D. If Ω is uniformly
bounded and equicontinuous, then

lim
T→∞

1

T

∫ T

0

f ({γ(t)}) 1D(t)dt =

∫
D

f(x1, . . . , xN)dx1 . . . dxN

uniformly with respect to f ∈ Ω, where 1D(t) is equal to 1 if γ(t) ∈ D mod 1,
and 0 otherwise.

Proof. This lemma is Theorem 3 in Appendix, Section 8, of [23].

We recall that the Lerch zeta-function L(λ, ω, s), for σ > 1, is defined by

L(λ, ω, s) =
∞∑
m=0

e2πiλm

(m+ ω)s
.

Here ω, λ ∈ R, 0 < ω ≤ 1, are fixed parameters. For λ ∈ Z the Lerch zeta-function
L(λ, ω, s) reduces to the Hurwitz zeta-function ζ(s, ω).

Now we state a mean square value theorem of Lerch zeta-function, see [14].

Lemma 3.5.6. For 0 < λ, α ≤ 1 we have, as T turns to infinity,∫ T

1

|L(λ, α, 1/2 + it)|2dt = T log
T

2π
+ T (c(α) + c(λ)− 1) +O(T

1
2 log T )

and for 1
2
< σ < 1,∫ T

1

|L(λ, α, σ + it)|2dt = ζ(2σ, α)T +
(2π)2σ−1

2− 2σ
ζ(2− 2σ, λ)T 2−2σ

+O(T 1−σ log T + T
σ
2 ).

For σ = 1/2, Rane [48] proved a mean square formula for Hurwitz zeta-
functions with the same error term O(T 1−σ log T + T

σ
2 ).

We recall that f(s) is a function of finite order if

f(s)�σ |t|A(σ), for σ > 1, |t| → ∞.

Further we state Carlson theorem (see [8] and [53]).
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Lemma 3.5.7. If f(s) =
∑∞

n=0
an
ns

is regular and of finite order for σ ≥ α, and

1

2T

∫ T

−T
|f(α + it)|2dt

is bounded as T →∞, then

lim
T→∞

1

2T

∫ T

−T
|f(α + it)|2dt =

∞∑
n=1

|an|2

n2σ

for σ > α, and uniformly in any strip α < σ1 ≤ σ ≤ σ2.

3.6 Proof of Theorem 3.4.1

We follow the proof of Theorem 1 in [12]. As it was already mentioned, the
proof of Theorem 1 in [12] contains a gap; however, here we avoid this gap because
we work directly with ζ(s, ω) instead of log ζ(s, ω). Let us start with a truncated
Hurwitz zeta-function

ζv(s, ω) =
∑
q≤v

1

(q + ω)s
.

By conditions of the theorem, there are integers a 6= 0 and ak,1, ak,2, . . . , ak,l such
that

dk =
1

a
(ak,1d1 + ak,2d2 + · · ·+ ak,ldl) for l < k ≤ m. (3.7)

Let
A = max

l<k≤m
{|ak,1|+ |ak,2|+ · · ·+ |ak,l|}.

If ∥∥∥∥τ dn log(q + ω)

2πa

∥∥∥∥ < δ for q ≤ v and 1 ≤ n ≤ l (3.8)

then, by the relation (3.7),∥∥∥∥τ dk log(q + ω)

2π

∥∥∥∥ < Aδ for q ≤ v and l < k ≤ m.

By this and by the continuity in s of the function ζv(s, ω), we find that for any
ε > 0 there is δ > 0 such that for τ satisfying (3.8)

max
1≤k,n≤m

max
s∈K
|ζv(s+ idkτ, ω)− ζv(s+ idnτ, ω)| < ε. (3.9)
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For positive numbers δ, v, and T we define the set ST = ST (δ, v) by

ST =

{
τ : τ ∈ [0, T ],

∥∥∥∥τ dn log(q + ω)

2πa

∥∥∥∥ < δ, q ≤ v, 1 ≤ n ≤ l

}
. (3.10)

Let U be an open bounded rectangle with vertices on the lines σ = σ1 and
σ = σ2, where 1/2 < σ1 < σ2 < 1, such that the set K is in U . Let p > v be a
positive integers. We have

1

T

∫
ST

∫
U

m∑
k=1

|ζp(s+ idkτ, ω)− ζv(s+ idkτ, ω)|2 dσdtdτ

=
m∑
k=1

∫
U

1

T

∫
ST

|ζp(s+ idkτ, ω)− ζv(s+ idkτ, ω)|2 dτdσdt.

To evaluate the inner integrals of the right-hand side of the last equality we
will apply Lemma 3.5.5. By generalized Kronecker’s theorem 3.5.3 and by linear
independence of A(d1, d2, . . . , dl;ω) the curve

ω(τ) =

(
τ
dk log(q + ω)

2πa

)1≤k≤l

0≤q≤p

is uniformly distributed mod 1 in Rl(p+1). Let R′ be a subregion of the l(p + 1)-
dimensional unit cube defined by inequalities

‖yk,q‖ ≤ δ for 1 ≤ k ≤ l and 0 ≤ q ≤ v

and ∣∣∣∣yk,q − 1

2

∣∣∣∣ ≤ 1

2
for 1 ≤ k ≤ l and v + 1 ≤ q ≤ p.

Let R be a subregion of the l(v+ 1)-dimensional unit cube defined by inequal-
ities

‖yk,q‖ ≤ δ for 1 ≤ k ≤ l and 0 ≤ q ≤ v

Clearly measR′ = measR = (2δ)l(v+1). Let

ζp,v(s+ idkτ, ω) = ζp(s+ idkτ, α)− ζv(s+ idkτ, ω). (3.11)
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Then in view of the linear dependence (3.7) we get

lim
T→∞

1

T

∫
ST

m∑
k=1

|ζp,v(s+ idkτ, ω)|2 dτ

= lim
T→∞

1

T

∫
ST

(
l∑

k=1

|ζp,v(s+ idkτ, ω)|2

+
m∑

k=l+1

∣∣∣∣ζp,v (s+
i

a
(ak,1d1 + ak,2d2 + · · ·+ ak,ldl)τ, ω

)∣∣∣∣2
)
dτ.

By Lemma 3.5.5 and equality (3.11) we obtain that the last limit is equal to

∫
R′

 l∑
k=1

∣∣∣∣∣ ∑
v<q≤p

e−2πiayk,q

(q + ω)s

∣∣∣∣∣
2

+
m∑

k=l+1

∣∣∣∣∣ ∑
v<q≤p

e−2πi(ak,1y1,q+ak,2y2,q+···+ak,lyl,q)

(q + ω)s

∣∣∣∣∣
2
 dy1,1 . . . dyl,p

= measR

1∫
0

. . .

1∫
0

 l∑
k=1

∣∣∣∣∣ ∑
v<q≤p

e−2πiyk,q

(q + ω)s

∣∣∣∣∣
2

+
m∑

k=l+1

∣∣∣∣∣ ∑
v<q≤p

e−2πi(ak,1y1,q+ak,2y2,q+···+ak,lyl,q)

(q + ω)s

∣∣∣∣∣
2
 dy1,v+1 . . . dyl,p

= mmeasR
∑
v<q≤p

1

(q + ω)2σ
� measR

∑
q>v

1

(q + ω)2σ
.

Remark 3.6.1. We use notations of a big O and � interchangeably to describe
the limiting behavior of a function when its variable tends towards infinity. We
write

f(x) = O(g(x)) or f(x)� g(x)

if and only if there a positive number c and real number x0 such that

|f(x)| ≤ c|g(x)|, for all x > x0.
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Consequently,

lim
T→∞

1

T

∫
ST

∫
U

m∑
k=1

|ζp(s+ idkτ, ω)− ζv(s+ idkτ, ω)|2 dσdtdτ (3.12)

� measR
∑
q>v

1

(q + ω)2σ1
.

Again, by Lemma 3.5.3,

lim
T→∞

1

T
measST = measR. (3.13)

By (3.12) and (3.13), for large v, as T →∞, we have

meas

τ : τ ∈ ST ,
∫
U

m∑
k=1

|ζp,v(s+ idkτ, ω)|2 dσdt <
√∑

q>v

1

(q + ω)2σ1


>

1

2
T measR.

Then Lemma 3.5.1 gives

meas

τ : τ ∈ ST ,max
s∈K

m∑
k=1

|ζp,v(s+ idkτ, ω)| ≤ m

d
√
π

(∑
q>v

1

(q + ω)2σ1

) 1
4


>

1

2
T measR,

where d = minz∈∂ U mins∈K |s− z|. Therefore, we obtain that for any ε > 0 there
is v = v(ε) such that for any p > v

meas

{
τ : τ ∈ ST ,max

s∈K

m∑
k=1

|ζp(s+ idkτ, ω)− ζv(s+ idkτ, ω)| < ε

}
(3.14)

>
1

2
T measR.

Now we will prove that for any δ > 0 there is p = p(δ) such that

meas

{
τ : max

s∈K

m∑
k=1

|ζ(s+ idkτ, ω)− ζp(s+ idkτ, ω)| < δ

}
(3.15)

> (1− δ)T.

The last formula together with (3.9), (3.10) and (3.14) yields Theorem 3.4.1. We

38



return to the proof of (3.15). By Lemma 3.5.6 and by Lemma 3.5.7 we obtain

lim
T→∞

1

T

T∫
0

|ζ(s+ ixτ, ω)− ζp(s+ ixτ, ω)|2 dτ =
∑
q>p

1

(q + ω)2σ
,

where x is fixed. Thus (3.15) follows in view of

T∫
0

∫
U

m∑
k=1

|ζ(s+ idkτ, ω)− ζp(s+ ixτ, ω)|2 dσdtdτ � T
∑
q>p

1

(q + ω)2σ1
.

Theorem 3.4.1 is proved.

3.7 Proofs of Propositions 3.4.3 and 3.4.4

Proof of Proposition 3.4.3. Let Ψ be a set of all rational numbers sequences, where
each sequence has only finitely many nonzero elements. Then Ψ is a countable
set. By 0 we denote the sequence all elements of which are zeros. Let d1 = 1.
Recall that the set A(1;ω) is linearly independent. Then in view of the linear
independence of A(d1, d2, . . . , dl−1;ω) we obtain that the set

E =

{
−d1

∑∞
n=0 a1n log(n+ ω) + · · ·+ dl−1

∑∞
n=0 al−1n log(n+ ω)∑∞

n=0 aln log(n+ ω)
:

(a10, a11, . . . , a(l−1)0, a(l−1)1, . . . , al0, al1, . . . ) ∈ Ψ \ 0,

(al0, al1, . . . ) 6= 0
}

is a countable. This proves the proposition.

Proof of Proposition 3.4.4. We use the same notations as in the proof of Propo-
sition 3.4.3. Similarly as before we put

H =

{
ω ∈ I : d1

∞∑
n=0

a1n log(n+ ω) + · · ·+ dl

∞∑
n=0

aln log(n+ ω) = 0,

(a10, a11, . . . , a20, a21, . . . , . . . , al0, al1, . . . ) ∈ Ψ \ 0
}
.

Recall that Ψ is a countable set. If, for a fixed

(a10, a11, . . . , a20, a21, . . . , . . . , al0, al1, . . . ) ∈ Ψ \ 0,
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the function

f(ω) = d1

∞∑
n=0

a1n log(n+ ω) + · · ·+ dl

∞∑
n=0

aln log(n+ ω)

has only finite number of zeros in (0, 1], then the set H is countable. Thus to
prove the proposition it remains to show that f(ω) has finitely many zeros in the
interval (0, 1]. In view of the condition that d1, d2, . . . , dl are linearly independent
and by the definition of Ψ, we have that there is a finite collection of real numbers
b0, b1, . . . , bm such that bm 6= 0 and

f(ω) = b0 log(ω) + b1 log(1 + ω) + · · ·+ bm log(m+ ω).

Let bn, n ≤ m be the first coefficient not equal to zero. Then we see that f(ω) is
unbounded in (−n, 1/2) and is bounded in (1/2, 1]. Thus f(ω) is not a constant
in (−n, 1]. Moreover, there is a small positive number ω0 such that f(ω) 6= 0 if
ω ∈ (−n,−n + ω0). We consider f(ω) as an analytic function in the half-plane
<ω > −n of the complex plane. A set of zeros of a non-constant analytic function
is discrete. Thus there are finitely many zeros in the disc |1 − ω| ≤ 1 + n − ω0.
We obtained that the function f(ω) has finitely many zeros in (0, 1]. This proves
the proposition.

40



Chapter 4

Self-approximation of Hurwitz
zeta-functions for rational
parameter

4.1 Main Theorem 4.1.1

In this chapter, we show the self-approximation property for Hurwitz zeta-
functions with rational parameters. Namely, we prove that ζ(s+ iατ, a

b
) approxi-

mates uniformly ζ(s+ iβτ, a
b
) for infinitely many real τ , where α, β are arbitrary

real numbers linearly independent over Q, and s is in a compact set lying in the
open right half of the critical strip.

We recall that for rational ω = a
b

satisfying 0 < a < b and gcd(a, b) = 1 the
Hurwitz zeta function might be expressed as a linear combination of Dirichlet
L-functions:

ζ
(
s+ iτ,

a

b

)
=
bs+iτ

ϕ(b)

∑
χ mod b

χ(a)L(s+ iτ, χ). (4.1)

More precisely, we use (4.1) to prove the following theorem, which can be called
the self-approximation theorem of Hurwitz zeta-function with rational parameter.

Theorem 4.1.1. Let ω = a
b

be a rational number satisfying 0 < a < b and
gcd(a, b) = 1. Moreover, suppose that α, β are real numbers linearly independent
over Q, and K is any compact subset of the strip 1/2 < σ < 1.

Then, for any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

s∈K

∣∣∣ζ (s+ iατ,
a

b

)
− ζ

(
s+ iβτ,

a

b

)∣∣∣ < ε

}
> 0.
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4.2 Preliminaries

In order to prove our main theorem we need some results about linear inde-
pendence of the set {

α
log p

2π

}
p∈P
∪
{
β

log p

2π

}
p∈P

,

where α, β are real numbers linearly independent over Q, and P denotes the set
of all rational primes.

Lemma 4.2.1. For arbitrary real numbers α, β linearly independent over Q, there
exists a finite set of primes A = A(α, β) containing at most two elements such
that the following set

{α log p}p∈P\A ∪ {β log p}p∈P (4.2)

is linearly independent over Q.

Proof. This is Lemma 2.4 in [43].

Lemma 4.2.2. Suppose that (an)∞n=1 are real numbers linearly independent over
Q. Moreover, assume that α1, . . . , αm ∈ R are linearly independent over Q and
so θ1, . . . , θm ∈ R. Then there exist finite sets J ⊂ {1, 2, . . . ,m} and A =

A(α1, . . . , αm) ⊂ Z+ such that the set

{ai}i∈A∪M ∪ {αi}i∈J

is linearly independent over Q for every finite set of non-negative integers M with
M ∩ A = ∅.
Moreover, there exist real numbers θ∗i , i ∈ A and a positive integer N such that

max
i/∈J
‖Nταi − θi‖ < ε,

whenever the following inequalities hold

max
i∈J

∥∥∥ταi − θi
N

∥∥∥ < ε

N
,

max
i∈A

∥∥∥τai − θ∗i
N

∥∥∥ < ε

N
.

Proof. This is Corollary 2.7 in [43].
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The linear independence over Q allows us to apply the following classical Kro-
necker theorem.

Lemma 4.2.3. (Kronecker’s theorem). For x ∈ R, let ‖x‖ denote the distance
from x to the nearest integer. Then for arbitrary real numbers α1, . . . , αn linearly
independent over Q, any real numbers θ1, . . . , θn and any numbers ε1, . . . , εn, the
set of τ such that

‖ταi − θi‖ < εi, for all 1 ≤ i ≤ n (4.3)

has a positive density, which is equal to 2n
∏

1≤i≤n εi.

For the sake of simplicity, let Ω =
∏

pR denote the set of all sequences of
real numbers Θ = (θp)p indexed by prime numbers. Moreover, for any finite set
M ⊂ P and any Dirichlet character χ, we put

LM(s, χ,Θ) =
∏
p∈M

(
1− χ(p)e(−θp)

ps

)−1
and

L(s, χ)|M = L(s, χ)
∏
p∈M

(
1− χ(p)

ps

)
,

where σ > 1
2
.

Now, let us recall the property for Dirichlet L-functions associated to pairwise
non-equivalent Dirichlet characters, which plays a crucial role in the proof of our
main result. Following [26], we call an open and bounded subset G of C admissible,
when for every ε > 0 the set

Gε =
{
s ∈ C : |s− w| < ε for certain w ∈ G

}
has connected complement.

Lemma 4.2.4. Let χ1, . . . , χn be pairwise non-equivalent Dirichlet characters and
admissible domain G be an admissible domain such that

G ⊂ D,D := {s ∈ C : 1/2 < σ < 1}.

Moreover, assume that f1, . . . , fn are analytic and non-vanishing functions on the
closure G. Then, for every finite set M of primes, there exists a sequence of finite
sets M1 ⊂M2 ⊂ ... ⊂ P such that

∞⋃
k=1

Mk = {p : p /∈M}
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and for certain Θk ∈ Ω as k →∞

LMk
(s, χj,Θk)→ fj(s) uniformly for s ∈ G, j = 1, . . . , n.

Proof. See Remark 2.1 and the acceptability property in [44].

4.3 An important Lemma 4.3.1 and auxiliary
lemmas

In this section we present the following main lemma, which will be useful in
the proof of Theorem 4.1.1.

Lemma 4.3.1. Let χ1, . . . , χn be pairwise non-equivalent Dirichlet characters, G
be any admissible set such that G ⊂ D and functions fj, gj (j = 1, . . . , n) are
analytic and non-vanishing on G. Moreover, suppose that B is a finite set of
primes, α, β are real numbers linearly independent over Q, and the set A has the
same meaning as in Lemma 4.2.1.

Then, for every ε > 0 and an arbitrary set G0 ⊂ G0 ⊂ G, there exist finite
sets

A1 ⊂ P \ (A ∪B), A2 ⊂ P \B

and real numbers
θ(1)p , p ∈ A1, θ

(2)
p , p ∈ A2

such that the set of real numbers τ satisfying the following inequalities

max
1≤j≤n

max
s∈G0

∣∣∣L(s+ iατ, χj)|(A∪A1∪B)

− fj(s)
∏

p∈A∪B

(
1− χj(p)

ps

) ∏
p∈A1

(
1− χj(p)e(−θ(1)p )

ps

)∣∣∣ < ε,

max
1≤j≤n

max
s∈G0

∣∣∣L(s+ iβτ, χj)|(A2∪B)

− gj(s)
∏
p∈B

(
1− χj(p)

ps

) ∏
p∈A2

(
1− χj(p)e(−θ(2)p )

ps

)∣∣∣ < ε,

max
γ∈{α,β}

max
p∈B

∥∥∥γτ log p

2π

∥∥∥ < ε,

max
p∈A

∥∥∥ατ log p

2π

∥∥∥ < ε,
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max
p∈A1

∥∥∥ατ log p

2π
− θ(1)p

∥∥∥ < ε,

max
p∈A2

∥∥∥βτ log p

2π
− θ(2)p

∥∥∥ < ε

has a positive lower density.

Next we present several lemmas, which helps to prove main Lemma 4.3.1.

Definition 4.3.2. If M is a finite set of primes, s ∈ C, and θ ∈ Ω, then we set

ζM(s, θ) =
∏
p∈M

(1− e−2πiθp/ps)−1.

Lemma 4.3.3. Let 0 < r < 1
4
. Suppose that g(s) is analytic for |s| < r and

continuous for s ≤ r. Then for any ε > 0 and any y > 0 there exists a finite set
M such that

{p : p ≤ y} ⊂M ;

max
|s|≤r

∣∣∣∣g(s)− log ζM

(
s+

3

4
, θ0

)∣∣∣∣ < ε,

where
θ0 =

(
1

4
,
2

4
,
3

4
, . . .

)
and

log ζM(s, θ) = −
∑
p∈M

log

(
1− e−2πiθp

ps

)
.

The proof of this lemma can be found in [23](see Lemma 1 in Chapter 7 ).
Now we define the class E to consist of functions

F (s) =
∏
p

Rp(p
−s), σ > 1,

where
Rp(z) = 1 +

∞∑
m=1

a(pm)zm

are rational functions, analytic and non-vanishing on the disk |z| < 1, which
satisfy the following conditions:

1. (Ramanujan conjecture) ∀ε>0 a(pm)�ε p
εm uniformly in p.

2. F has meromorphic continuation to the half-plane σ > 1/2. It can have at
most a finite number of poles and all of them lie on the straight line σ = 1.
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3. F is a function of finite order, which means that

F (s)�σ |t|A(σ), for σ > 1, |t| → ∞.

4. For any fixed 1/2 < σ < 1, the square mean-value

1

T

∫ T

−T
|F (σ + it)|2dt

is bounded as T →∞.

Remark 4.3.4. The notation A�y B means that A� B holds for fixed y.

Next lemma is Lemma 3.1 in [44].

Lemma 4.3.5. Let G be an admisible domain such that

G ⊂
{
s ∈ C :

1

2
< σ < 1

}
and {F1, . . . , Fn} ⊂ E

be any acceptable set. Moreover, let (αi)1≤i≤m be real numbers linearly independent
over Q, (θi)1≤i≤m any real numbers, and f1, . . . , fn functions which are analytic
and non-vanishing on G. Then, for every ε > 0 and any set G0 ⊂ G0 ⊂ G, there
exist a finite set B = B(α1, . . . , αm) of primes and a sequence (θp

∗)p∈B of real
numbers such that the set of positive real numbers τ satisfying the inequalities

max
1≤j≤n

max
s∈G0

∣∣∣∣∣Fj(s+ iτ)|B − fj(s)
∏
p∈B

Rp
−1(p−se(−θp∗))

∣∣∣∣∣ < ε,

max
p∈B

∥∥∥τ log p

2π
− θp∗

∥∥∥ < ε,

max
1≤i≤m

∥∥∥ταi − θi∥∥∥ < ε

has a positive lower density.

The other auxiliary lemma which will be useful in the proof of Lemma 4.3.1 is
as follows.

Lemma 4.3.6. Let F ∈ E be an acceptable function, G any admissible set such
that G ⊂ D and functions f, g be analytic and non-vanishing on G. Moreover,
suppose that α, β are real numbers linearly independent over Q and the set A has
the same meaning as in Lemma 4.2.1.
Then, for every ε > 0 and any arbitrary set G0 ⊂ G0 ⊂ G, there exist finite sets
A1 ⊂ P \ A, A2 ⊂ P and real numbers θp(1), p ∈ A1, θp(2), p ∈ A2 such that the
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set of real numbers τ satisfying the following inequalities

max
s∈G0

∣∣∣∣∣F (s+ iατ)|(A∪A1) − f(s)
∏
p∈A

Rp
−1(p−s)

∏
p∈A1

Rp
−1(p−se(−θp(1)))

∣∣∣∣∣ < ε,

max
s∈G0

∣∣∣∣∣F (s+ iβτ)|A2 − g(s)
∏
p∈A2

Rp
−1(p−se(−θp(2)))

∣∣∣∣∣ < ε,

max
p∈A

∥∥∥ατ log p

2π

∥∥∥ < ε,

max
p∈A1

∥∥∥ατ log p

2π
− θp(1)

∥∥∥ < ε,

max
p∈A2

∥∥∥βτ log p

2π
− θp(2)

∥∥∥ < ε

has a positive lower density.

The proof of this lemma can be found in [43].

4.4 The proof of Lemma 4.3.1

In this section we prove main Lemma 4.3.1

Proof. We closely follow the proof of Lemma 4.3.3, Lemma 4.3.5, and Lemma
4.3.6.

At the beginning let us assume that ϕ1, . . . , ϕm is a basis of the vector space{
α

log p

2π

}
p∈(A∪B)

∪
{
β

log p

2π

}
p∈B

.

Then there exists an integer N1 such that every number α log p
2π

for p ∈ A ∪B and
β log p

2π
for p ∈ B can be expressed as a linear combination of ϕi/N1 with integer

coefficients.
Therefore,

max
1≤i≤m

||τϕi/N1|| < ε

implies
max
γ∈{α,β}

max
p∈B

∥∥∥γτ log p

2π

∥∥∥� ε,

max
p∈A

∥∥∥ατ log p

2π

∥∥∥� ε.
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Now applying Lemma 4.2.2 for θi = 0 (1 ≤ i ≤ m), αi = ϕi/N1 and

{an} =

{
α

log p

2π

}
p∈P\(A∪B)

∪
{
β

log p

2π

}
p∈P\B

we can choose sets

A1 ⊂ P \ (A ∪B), A2 ⊂ P \B, J ⊂ {1, 2, . . . ,m},

real numbers
θ(1)p , p ∈ A1, θ

(2)
p , p ∈ A2

and positive integer N such that

max
j /∈J

∥∥∥N τϕj
N1

∥∥∥ < ε

whenever the following inequalities hold:

max
j∈J

∥∥∥∥τϕjN1

∥∥∥∥ < ε

N
, (4.4)

max
p∈A1

∥∥∥τ α log p

2π
− θ

(1)
p

N

∥∥∥ < ε

N
, max

p∈A2

∥∥∥τ β log p

2π
− θ

(2)
p

N

∥∥∥ < ε

N
. (4.5)

Let

f̃j(s) = fj(s)
∏

p∈A∪B

(
1− χj(p)

ps

) ∏
p∈A1

(
1− χj(p)e(−θ(1)p )

ps

)
,

g̃j(s) = gj(s)
∏
p∈B

(
1− χj(p)

ps

) ∏
p∈A2

(
1− χj(p)e(−θ(2)p )

ps

)
.

Fix ε > 0. Then Lemma 4.2.4 yields that there exist sequences

Θk = (θ(k)p ), Λk = (λ(k)p ) ∈ Ω

and an integer k0 such that for each k ≥ k0

max
s∈G

∣∣∣L
M

(1)
k

(s, χj,Θk)− f̃j(s)
∣∣∣ < ε

2
,

max
s∈G

∣∣∣L
M

(2)
k

(s, χj,Λk)− g̃j(s)
∣∣∣ < ε

2
,

where M (1)
k is a finite set of primes p /∈ A ∪ A1 ∪ B and M

(2)
k is a finite set of

primes p /∈ A2 ∪B.
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Let k denote a generic integer greater or equal to k0. Then, by continuity, if

max
p∈M(1)

k

∥∥∥Nτ α log p

2π
− θ(k)p

∥∥∥ < δ, (4.6)

max
p∈M(2)

k

∥∥∥Nτ β log p

2π
− λ(k)p

∥∥∥ < δ (4.7)

for sufficiently small δ > 0, then we have

max
s∈G

∣∣∣L
M

(1)
k

(s+ iNατ, χj, 0)− f̃j(s)
∣∣∣ < ε, (4.8)

max
s∈G

∣∣∣L
M

(2)
k

(s+ iNβτ, χj, 0)− g̃j(s)
∣∣∣ < ε. (4.9)

Now, by the choice of numbers ϕj and the sets J , A1, A2 and the first part
of Lemma 4.2.2, one can apply Lemma 4.2.3 to obtain that the set A of positive
numbers τ satisfying inequalities (4.4)–(4.7) has a positive density. Notice that
for these τ we have

max
p∈(A∪B)

∥∥∥∥Nτ α log p

2π

∥∥∥∥� ε, max
p∈B

∥∥∥∥Nτ β log p

2π

∥∥∥∥� ε. (4.10)

Now let us consider I = Iα + Iβ, where

Iα =
1

T

∫
AT

(∫∫
G

∣∣L(s+ iNατ, χj)|(A∪A1∪B) − LM(1)
k

(s+ iNατ, χj, 0)
∣∣2db)dτ,

Iβ =
1

T

∫
AT

(∫∫
G

∣∣L(s+ iNβτ, χj)|(A2∪B) − LM(2)
k

(s+ iNβτ, χj, 0)
∣∣2db)dτ,

with db = dσdt and AT = A ∩ [1, T ].
Arguing analogously as in [23] or [44], we prove that I � ε2. The modifications

needed are easy and can be left to the reader.
Therefore, there exists a set Y ⊂ AT such that µ(Y ) � T and for all τ ∈ Y

the following inequalities hold:

max
s∈G0

∣∣L(s+ iNατ, χj)|(A∪A1∪B) − LM(1)
k

(s+ iNατ, χj, 0)
∣∣� ε,

max
s∈G0

∣∣L(s+ iNβτ, χj)|(A2∪B) − LM(2)
k

(s+ iNβτ, χj, 0)
∣∣� ε,

where G0 is an arbitrary set such that G0 ⊂ G0 ⊂ G. Hence, taking τ ′ = Nτ and
recalling (4.8),(4.9), and the definition of A complete the proof.
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4.5 Auxiliary Theorem 4.5.1

Using the previous Lemma 4.3.1 we prove the following theorem.

Theorem 4.5.1. Let K ⊂ D be any compact set with connected complement,
χ1, . . . , χn be pairwise non-equivalent Dirichlet characters, and fj, gj, (j = 1, . . . , n)

be functions which are non-vanishing and continuous on K and analytic in the in-
terior. Moreover, let α, β be real numbers linearly independent over Q and B be
a finite set of prime numbers.

Then, for every ε > 0, the set of real numbers τ satisfying

max
1≤j≤n

max
s∈K
|L(s+ iατ, χj)− fj(s)| < ε, (4.11)

max
1≤j≤n

max
s∈K
|L(s+ iβτ, χj)− gj(s)| < ε, (4.12)

max
p∈B

∥∥∥τ (α− β) log p

2π

∥∥∥ < ε (4.13)

has a positive lower density.
Particularly, taking fj = gj yields that the set of τ ∈ R satisfying

max
1≤j≤n

max
s∈K
|L(s+ iατ, χj)− L(s+ iβτ, χj)| < ε,

max
p∈B

∥∥∥τ (α− β) log p

2π

∥∥∥ < ε

has a positive lower density.

Remark 4.5.2. It should be noted that the above theorem can be easily generalized
to more general L-functions which satisfy some natural analytic and arithmetic
conditions, and an analog of Lemma 4.2.4. This wide class of L-functions was
introduced and studied by Ł. Pańkowski in [44].

In the proof of Theorem 4.5.1 we make use of the following famous Mergelyan
theorem [11].

Lemma 4.5.3. Let K ⊂ C be a compact set with connected complement and
f : K → C any function continuous on K and analytic in the interior of K. Then,
for every ε > 0, there exists a polynomial P such that

max
s∈K
|f(s)− P (s)| < ε.

Proof of Theorem 4.5.1. By the Mergelyan theorem, we can assume that K = G

for some admissible set G and fj, gj, (j = 1, . . . , n) are analytic and non-vanishing
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on some simply connected set G1 such that G ⊂ G1 ⊂ G1 ⊂ D.
By continuity, for any ε > 0, we find δ = δ(ε) such that

max
p∈A∪A1∪A2∪B

max
s∈G

∣∣∣∣∣
(

1−
χj(p)e

(
−ω(1)

p

)
ps

)
−

(
1−

χj(p)e
(
−ω(2)

p

)
ps

)∣∣∣∣∣ < ε, (4.14)

for all j = 1, . . . , n whenever

∥∥ω(1)
p − ω(2)

p

∥∥ ≤ δ for p ∈ A ∪ A1 ∪ A2 ∪B.

Now, using Lemma 4.3.1, we see that the set of τ satisfying

max
1≤j≤n

max
s∈G0

∣∣∣L(s+ iατ, χj)|(A∪A1∪B)

− fj(s)
∏

p∈A∪B

(
1− χj(p)

ps

) ∏
p∈A1

(
1− χj(p)e(−θ(1)p )

ps

)∣∣∣ < ε,

max
1≤j≤n

max
s∈G0

∣∣∣L(s+ iβτ, χj)|(A2∪B)

− gj(s)
∏
p∈B

(
1− χj(p)

ps

) ∏
p∈A2

(
1− χj(p)e(−θ(2)p )

ps

)∣∣∣ < ε,

max
p∈A

∥∥∥ατ log p

2π

∥∥∥ < δ,

max
γ∈{α,β}

max
p∈B

∥∥∥γτ log p

2π

∥∥∥ < δ,

max
p∈A1

∥∥∥ατ log p

2π
− θ(1)p

∥∥∥ < δ,

max
p∈A2

∥∥∥βτ log p

2π
− θ(2)p

∥∥∥ < min(δ, ε)

has a positive lower density.
Therefore, by (4.14), we obtain that, for s ∈ G, we have

∣∣∣fj(s) ∏
p∈A∪B

(
1− χj(p)

ps

) ∏
p∈A1

(
1− χj(p)e(−θ(1)p )

ps

)

− fj(s)
∏

p∈A∪A1∪B

(
1− χj(p)

ps+iατ

)∣∣∣� ε.
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Consequently, we have

max
s∈G

∣∣∣L(s+ iατ, χj)|(A∪A1∪B) − fj(s)
∏

p∈A∪A1∪B

(
1− χj(p)

ps+iατ

)∣∣∣� ε.

Multiplying the last inequality by

∏
p∈A∪A1∪B

∣∣∣∣∣
(

1− χj(p)

ps+iατ

)−1∣∣∣∣∣
and noticing that this factor is O(1) gives (4.11).

Arguing analogously, one can prove (4.12). Moreover, (4.13) follows immedi-
ately from

max
γ∈{α,β}

max
p∈B

∥∥∥γτ log p

2π

∥∥∥ < ε.

Remark 4.5.4. It should be noted that the condition that K has a connected
complement is needed only to apply the Mergelyan theorem 4.5.3. Thus, the
second part of Theorem 4.5.1 can be proved for any compact set K by following
all steps of the above proof for fj = gj ≡ 1.

4.6 The proof of Theorem 4.1.1

In this section we present the proof of the main theorem in this chapter.

Proof. We know that

ζ
(
s+ iατ,

a

b

)
=
bs+iατ

ϕ(b)

∑
χ mod b

χ(a)L(s+ iατ, χ),

ζ
(
s+ iβτ,

a

b

)
=
bs+iβτ

ϕ(b)

∑
χ mod b

χ(a)L(s+ iβτ, χ).

Then using Theorem 4.5.1 for all Dirichlet characters χ mod b and the set

B = {p ∈ P : p|b}

yields
max
χ mod b

max
s∈K
|L(s+ iατ, χ)− L(s+ iβτ, χ)| < ε (4.15)

and
max
p|b

∥∥∥τ (α− β) log p

2π

∥∥∥ < ε.
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The last inequality implies that∥∥∥τ (α− β) log b

2π

∥∥∥� ε. (4.16)

Hence
|bs+iατ − bs+iβτ | = |bσ||bi(α−β)τ − 1| � |bi(α−β)τ − 1| � ε.

Now (4.15), (4.16) and the fact that bs � 1 for s ∈ K and L(s + iβτ, χ) is
bounded, provided fj = gj ≡ 1 in Theorem 4.5.1, yield

max
s∈K

∣∣∣ζ (s+ iατ,
a

b

)
− ζ

(
s+ iβτ,

a

b

)∣∣∣� ε,

and the theorem follows.
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Chapter 5

Self-approximation for periodic
Hurwitz zeta-functions

5.1 Main Theorems 5.1.1 and 5.1.2

Let A = {cm : m ∈ N0} be a periodic sequence of complex numbers with the
smallest period k ∈ N.
For σ > 1, the periodic Hurwitz zeta-function is defined by

ζ(s, ω;A) =
∞∑
m=0

cm
(m+ ω)s

.

In this chapter, we prove two theorems which are generalizations of Theorem 3.4.1
and Theorem 4.1.1. The same notations as in previous chapters will be used.

Theorem 5.1.1. Let A = {cm : m ∈ N0} be a periodic sequence of complex
numbers with the smallest period k ∈ N. Let ω = a

b
, 0 < a < b and gcd(a, b) = 1.

Moreover, suppose that α, β are real numbers linearly independent over Q and K
is any compact subset of the strip 1/2 < σ < 1. Then, for any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

s∈K

∣∣∣ζ (s+ iατ,
a

b
;A
)
− ζ

(
s+ iβτ,

a

b
;A
)∣∣∣ < ε

}
> 0.

In Theorem 5.1.1, we consider the case when the parameter ω is a rational
number. In the next theorem, we consider the case when the parameter ω is a
transcendental number.

Theorem 5.1.2. Let A = {cm : m ∈ N0} be a periodic sequence of complex
numbers with the smallest period k ∈ N. Let ω be a transcendental number from
the interval (0, 1]. Moreover, suppose that α, β ∈ R are such that A(α, β;ω) is
linearly independent over Q and K is any compact subset of the strip 1/2 < σ < 1.
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Then, for any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

s∈K
|ζ (s+ iατ, ω;A)− ζ (s+ iβτ, ω;A)| < ε,∣∣∣∣∣∣(α− β)τ log k

2π

∣∣∣∣∣∣ < ε

}
> 0.

In the next section, we prove Theorem 5.1.1. Section 5.3 is devoted to the
proof of Theorem 5.1.2.

5.2 Proof of Theorem 5.1.1

Theorem 5.1.1 will be derived from the following proposition.

Proposition 5.2.1. Let k, n ∈ N and a1
b1
, . . . , an

bn
be rational numbers satisfying

0 < aj < bj and gcd(aj, bj) = 1 for j = 1, 2, . . . , n. Moreover, suppose that α, β
are real numbers linearly independent over Q and K is any compact subset of the
strip 1/2 < σ < 1. Then, for any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

s∈K
max
1≤j≤n

∣∣∣∣ζ (s+ iατ,
aj
bj

)
− ζ

(
s+ iβτ,

aj
bj

)∣∣∣∣ < ε,

max
p|k

∣∣∣∣∣∣ 1

2π
τ log p

∣∣∣∣∣∣ < ε

}
> 0. (5.1)

Note that the inequality

max
p|k

∥∥∥ 1

2π
τ log p

∥∥∥ < ε

implies that
max
s∈K
|ks+iτ − ks| � ε.

Proof. Let us consider the set of the functions
{
ζ(s, a1

b1
), ζ(s, a2

b2
), . . . , ζ(s, an

bn
)
}

.
Since (aj, bj) = 1 (j = 1, . . . n), we have

ζ

(
s,
aj
bj

)
=

bsj
ϕ(bj)

∑
χ(j) mod bj

χ(j)(aj)L
(
s, χ(j)

)
=

bsj
ϕ(bj)

ϕ(bj)∑
k=1

χ
(j)
k (aj)L

(
s, χ

(j)
k

)
.

Thus

ζ
(
s,
a

b
,A
)

=
1

ks

k−1∑
l=0

cl
bsl

ϕ(bl)

∑
χ(l) mod bl

χ(l)(al)L
(
s, χ(l)

)
,

where a+bl
bk

= al
bl

, (al, bl) = 1 for all 0 ≤ l ≤ k − 1.
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Two characters, χ1 mod k1, χ2 mod k2, are equivalent if they are induced by
the same primitive character χ∗ mod k with k|k1 and k|k2. Then, for j = 1, 2, we
have

L(s, χj) = L(s, χ∗)
∏
p|kj

(
1− χ∗(p)

ps

)
.

Now let us assume that χ(j)
k is induced by a primitive character χ(j)∗. Let us

observe that every two elements from the set

{
χ
(1)∗
1 , χ

(1)∗
2 , . . . , χ

(1)∗
ϕ(b1)

, . . . , χ
(n)∗
1 , χ

(n)∗
2 , . . . , χ

(n)∗
ϕ(bn)

}
are non-equivalent either equal.
Let χ1, . . . χN denote all distinct characters in the set

{
χ
(1)∗
1 , χ

(1)∗
2 , . . . , χ

(1)∗
ϕ(b1)

, . . . , χ
(n)∗
1 , χ

(n)∗
2 , . . . , χ

(n)∗
ϕ(bn)

}
.

Moreover, put

P
(
s, χ(j)

)
=

1 if χ(j) is primitive∏
p|q

(
1− χ(j)∗(p)

ps

)
if χ(j) is imprimitive character mod q.

Let us observe that, for any imprimitive character χ(j) mod q, we have

|P (s+ iτ, χ(j))− P (s, χ(j))| � ε,

provided
max
p|q

∥∥∥ 1

2π
τ log p

∥∥∥� ε.

Therefore

ζ

(
s,
aj
bj

)
=

bsj
ϕ(bj)

ϕ(bj)∑
k=1

χ
(j)
k (aj)P (s, χ

(j)
k )L(s, χ

(j)
k ).

We see that, for any ε > 0, there are ε1 > 0 and ε2 > 0 such that∣∣∣∣ζ (s+ iτ,
aj
bj

)
− ζ

(
s,
aj
bj

)∣∣∣∣ < ε

for all j = 1, . . . , n, if

|L(s+ iτ, χr)− L(s, χr)| < ε1 for all r = 1, . . . , N,∣∣P (s+ iτ, χ(j)
r

)
− P

(
s, χ(j)

r

)∣∣ < ε2 for all j = 1, . . . , n, r = 1, . . . , ϕ(bj).
(5.2)

The above inequalities (5.2) are implied by Theorem 4.5.1. This proves Propo-
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sition 5.2.1.

Proof of Theorem 5.1.1. Let ω = a
b
, 0 < a < b and gcd(a, b) = 1. Then, for σ > 1,

we have

ζ
(
s,
a

b
;A
)

=
k−1∑
l=0

∞∑
m=0

cl(
mk + l + a

b

)s =
1

ks

k−1∑
l=0

cl

∞∑
m=0

1(
m+

(
l + a

bk

))s
=

1

ks

k−1∑
l=0

clζ

(
s,
l + a

b

k

)
=

1

ks

k−1∑
l=0

clζ

(
s,
lb+ a

bk

)
.

Obviously, for all l with 0 ≤ l ≤ k − 1, we can find al, bl such that (al, bl) = 1

and lb+a
bk

= al
bl

. Hence

ζ
(
s,
a

b
,A
)

=
1

ks

k−1∑
l=0

clζ

(
s,
al
bl

)
.

Now we have

max
s∈K
|ζ(s+ iατ, ω;A)− ζ(s+ iβτ, ω;A)|

= max
s∈K

∣∣∣∣∣ 1

ks+iατ

k−1∑
l=0

clζ

(
s+ iατ,

al
bl

)
− 1

ks+iβτ

k−1∑
l=0

clζ

(
s+ iβτ,

al
bl

)∣∣∣∣∣
(5.3)

≤ max
s∈K

max
0≤l≤k−1

|kcl|
∣∣∣∣ 1

ks+iατ
ζ

(
s+ iατ,

al
bl

)
− 1

ks+iβτ
ζ

(
s+ iβτ,

al
bl

)∣∣∣∣ .
Note that |kcl| � 1.
In view of (5.3), it is easy to see that Theorem 5.1.1 follows from Proposition
5.2.1.

5.3 Proof of Theorem 5.1.2

Proof of Theorem 5.1.2. Let α be a real number. By Proposition 3.4.3, we can
find a real number β such that the set A(α, β;ω) is linearly independent over Q.

We have that

max
s∈K
|ζ(s+ iατ, ω;A)− ζ(s+ iβτ, ω;A)|
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= max
s∈K

∣∣∣∣∣ 1

ks+iατ

k−1∑
l=0

clζ (s+ iατ, ωl)−
1

ks+iβτ

k−1∑
l=0

clζ (s+ iβτ, ωl)

∣∣∣∣∣
≤ max

s∈K
max

0≤l≤k−1
|kcl|

∣∣∣∣ 1

ks+iατ
ζ (s+ iατ, ωl)−

1

ks+iβτ
ζ (s+ iβτ, ωl)

∣∣∣∣ . (5.4)

Note that |kcl| � 1.
Inequality ∥∥∥τ (α− β) log k

2π

∥∥∥ < ε

implies that

|ks+iατ − ks+iβτ | = |kσ||ki(α−β)τ − 1| � |ki(α−β)τ − 1| � ε.

This means that
1

ks+iατ
is near 1

ks+iβτ
.

Now we consider linear independence of numbers log(n + ωl) (n ∈ N0) and log k

over Q, where ωl = l+ω
k

and l = 0, . . . , k − 1.
Assume that there exists a finite sequence of rational numbers

aln, l = 0, . . . , k − 1, n = 0, 1, 2, . . . , N and d

such that not all of these numbers are equal to 0 and

k−1∑
l=0

N∑
n=0

aln log(n+ ωl) + d log k (5.5)

=
k−1∑
l=0

N∑
n=0

aln(log(nk + l + ω)− log k) + d log k = 0.

Then

k−1∑
l=0

N∑
n=0

aln log(nk + l + ω) = log kγ,

where

γ =
k−1∑
l=0

N∑
n=0

aln − d

59



and

k−1∏
l=0

N∏
n=0

(nk + l + ω)aln = kγ. (5.6)

Numbers aln, d and γ are rationals. Therefore, it is not difficult to see that we can
write (5.6) in the form P (ω) = 0, where P (ω) is a polynomial. Then ω is a root of
this polynomial. But ω is a transcendental number and we obtain a contradiction.
This gives that numbers log(n+ ωl) and log k are linearly independent over Q.

By the linear independence of numbers log(n + ωl) and log k over Q, and by
Theorem 3.4.1 (for m = 2) we obtain:

max
s∈K

max
0≤l≤k−1

|ζ (s+ iατ, ωl)− ζ (s+ iβτ, ωl)| � ε

and Theorem 5.1.2 follows.
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Conclusions

The results of our thesis demonstrate that:

• Hurwitz zeta-functions ζ(s, ω) have the self-approximation property if ω is
a transcendental or a rational number.

• Periodic Hurwitz zeta-functions ζ(s, ω;A) have the self-approximation prop-
erty if ω is a transcendental or a rational number.

• The case of algebraic irrational ω is the most difficult case in this context
(there is no approach to treat these questions in this case).
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Santrauka

Šioje disertacijoje nagrinėjamos Hurvico (Hurwitz) dzeta funkcijų ir periodinių
Hurvico dzeta funkcijų saviaproksimacijos.

Tegu s = σ+ it yra kompleksinis kintamasis, o ω – realusis skaičius iš intervalo
(0,1]. Kai σ > 1, tai Hurvico dzeta funkcija apibrėžiama lygybe

ζ(s, ω) =
∞∑
n=0

1

(n+ ω)s
.

Tarkime, kad A = {cm : m ∈ N0},N0 = N ∪ {0} yra periodinė kompleksinių
skaičių seka, kurios mažiausias teigiamas periodas k ∈ N. Kai σ > 1, tai periodinė
Hurvico dzeta funkcija apibrėžiama eilute

ζ(s, ω;A) =
∞∑
m=0

cm
(m+ ω)s

.

• Mes parodėme, kad galioja saviaproksimacijos savybė Hurvico dzeta funkci-
jai, kai ω yra trancendentusis skaičius iš intervalo (0,1].

Tarkime, kad l ≤ m ir d1, . . . , dl ∈ R tokie, kad aibė

A(d1, d2, . . . , dl;ω) = {dj log(n+ ω) : j = 1, . . . , l;n ∈ N0}

yra tiesiškai neprikalausoma virš Q. Kai m > l, tegu dl+1, . . . , dm ∈ R tokie,
kad kiekvienas dk, k = l+1, . . . ,m, yra skaičių d1, . . . , dl tiesinė kombinacija
virš Q . Mes parodėme, kad yra ‘daug’ skaičių τ ∈ R, su kuriais reikšmės
ζ(s + idjτ, ω) ir ζ(s + idkτ, ω) yra ‘artimos’, čia 1 ≤ j, k ≤ m. Tai papildo
R. Garunkščio gautą rezultatą Dirichlė L funkcijoms.

Be to, parodėme, kad su kiekvienu l > 0 ‘dauguma’ realiųjų skaičių rinkinių
d1, d2, . . . , dl, ω, kai 0 < ω ≤ 1, yra tokie, kad aibė A(d1, d2, . . . , dl;ω) yra
tiesiškai nepriklausoma virš Q.

• Mes taip pat parodėme, kad galioja saviaproksimacijos savybė Hurvico dzeta
funkcijoms, kai parametras yra racionalusis skaičius.
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Primename, kad kai ω = a
b

yra racionalusis skaičius, (čia 0 < a < b ir
(a, b) = 1), tai Hurvico dzeta funkciją galima išreikšti Dirichlė L funkcijų
tiesine kombinacija

ζ
(
s+ iτ,

a

b

)
=
bs+iτ

ϕ(b)

∑
χ mod b

χ(a)L(s+ iτ, χ).

Taigi, pasirėmę paskutine lygybe, įrodėme, kad ζ(s+iατ, a
b
) tolygiai aproksi-

muoja ζ(s+ iβτ, a
b
) su be galo daug realiųjų skaičių τ . Čia α, β yra realieji

skaičiai, tiesiškai nepriklausomi virš Q, o s yra iš kompaktinės aibės K, kuri
priklauso kritinei juostai 1/2 < σ < 1. Šis rezultatas papildo Pankovskio
rezultatą gautą Dirichlė L funkcijoms.

• Pasinaudoję ankstesniais mūsų gautais rezultatais, taip pat parodėme, kad
saviaproksimacijos savybė galioja ir periodinėms Hurvico dzeta funkcijoms
ζ(s, ω;A). Mes išnagrinėjome atvejus, kai ω yra racionalusis ir trancenden-
tusis skaičiai.

Šioje disertacijoje gautiems rezultatams įrodyti buvo taikyti metodai, nagrinėti
neseniai gautuose Garunkščio [12] ir Pankovskio [43], [44] darbuose. Taip pat
taikyti kompleksinio kintamojo funkcijų elementai, mato teorija ir diofantiniai
metodai.
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Notations

a, b, j, k, l,m, n, r, t – positive integer numbers.

Q – the set of all rational numbers.

|s| – the absolute value of a complex number s.

K – the compact subset of the strip 1/2 < σ < 1.

‖x‖ – the distance from x ∈ R to the nearest integer.

(a, b) or gcd(a, b) – the greatest common divisor of a and b.

A – the periodic sequence of complex numbers with the smallest period k ∈ N.

meas {A} – the Lebesgue measure of a measurable set A.

ϕ(n) – the Euler totient function.

� – means that f(x) � g(x) if and only if there a positive number c and a real
number x0 such that |f(x)| ≤ c|g(x)|, for all x > x0.

�y – means that A� B holds for fixed y.

ε, δ – arbitrarily small positive number.

χ – the Dirichlet character.

log x – the natural logarithm of x.
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Γ(s) – the Euler gamma-function defined by

Γ(s) =

∫ ∞
0

e−xxs−1dx, for σ > 0,

and by analytic continuation elsewhere.

ζ(s) – the Riemann zeta-function defined by

ζ(s) =
∞∑
n=1

1

ns
, for σ > 1,

and by analytic continuation elsewhere.

ζ(s, ω) – the classical Hurwitz zeta-function defined by

ζ(s, ω) =
∞∑
n=0

1

(n+ ω)s
, for σ > 1,

and by analytic continuation elsewhere.

ζ(s, ω;A) – the periodic Hurwitz zeta-function defined by

ζ(s, ω;A) =
∞∑
m=0

cm
(m+ ω)s

, for σ > 1,

and by analytic continuation elsewhere.

L(s, χ) – the Dirichlet L-function defined by

L(s, χ) =
∞∑
n=1

χ(n)

ns
, for σ > 1,

and by analytic continuation elsewhere.

L(λ, ω, s) – the Lerch zeta-function defined by

L(λ, ω, s) =
∞∑
m=0

e2πiλm

(m+ ω)s
, for σ > 1,

and here ω, λ ∈ R, 0 < ω ≤ 1, are fixed parameters.
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