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Chapter 1
Introduction

In the thesis the self-approximation of Hurwitz zeta-functions and periodic

Hurwitz zeta-functions is considered.

1.1 Actuality

Zeta-functions are significant objects in analytic number theory. The central
objects are the Riemann zeta function, distribution of its zeros and some issues
of distribution of prime numbers.

In analytic number theory, universality theorems have significant effect on
Dirichlet L-functions and zeta-functions. Almost classical applications of uni-
versality theorems are functional independence and criteria for analogues of the
Riemann hypothesis.

In 1975, Voronin obtained the first most outstanding result of universality.
Later more and more mathematicians started to investigate universality in re-
lation to zeta-functions. New results in universality theory were obtained by
B. Bagchi, R. Garunkstis, S.M. Gonek, J. Kaczorowski, A. Laurinc¢ikas, K. Mat-
sumoto, A. Reich, J. Steuding and other Japanese, Polish, Lithuanian and German
mathematicians.

Approximation is very important in mathematics. Universality theorems play
the crucial role in approximation of analytic functions.

This thesis will deal with the property of self-approximation related to Hurwitz
and periodic Hurwitz zeta-functions. In the proofs of new theorems analytic

methods will be used.



1.2 Aims and results

The main aim of this thesis is to prove the self-approximation property for
Hurwitz zeta-functions and periodic Hurwitz zeta-functions. In this section we
present summary of problems investigated in this thesis.

Let s = o +1it denote a complex variable. For o > 1, the Hurwitz zeta-function
is given by

1
S,wW) = T N
¢(s,w) Z; CEAE
where w is a parameter from the interval (0,1].

Denote by 2 = {c¢,, : m € No},Ng = NU {0} a periodic sequence of complex

numbers with the smallest period k& € N.

For ¢ > 1, the periodic Hurwitz zeta-function is defined by

o0

Cls,w;2) =) ﬁ

m=0
1. In Chapter 3, we will study the self-approximation of Hurwitz zeta-functions

with a transcendental parameter. We will prove the following theorem.

Theorem 3.4.1. Let | < m be positive integers and let w be a transcendental
number from the interval (0,1]. Let dy,...,d; € R be such that the set

A(dy,ds, ..., dj;w) ={d;log(n+w):j=1,....1;n € Ny}

is linearly independent over Q. For m >, let di14,...,d,, € R be such that

each dp, k=14 1,...,m is a linear combination of dy,...,d; over Q.
Then, for any e > 0,

1
lim inf?meas {7‘ €1[0,7] :

T—o00

 Jpax max IC(s +id;T,w) — ((s +idpT,w)| < 6} > 0.

2. In Chapter 4, we will consider the self-approximation of Hurwitz zeta-

functions with a rational parameter. We will prove the following theorem.

Theorem 4.1.1. Let w = § be a rational number satisfying 0 < a < b
and gcd(a,b) = 1. Moreover, suppose that a, 3 are real numbers linearly

independent over Q and IC is any compact subset of the strip 1/2 < o < 1.
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Then, for any e > 0,

1
lim inf —meas {7’ € [0,7] : max
T—oo T sek

g(sﬂm,%)—g(sﬂﬁr,%)( <5} > 0.

3. Chapter 5 deals with the self-approximation of periodic Hurwitz zeta-functions
with transcendental and rational parameters. We will prove the following

theorems.

Theorem 5.1.1. Let 2 = {¢,, : m € Ng} be a periodic sequence of complex
numbers with the smallest period k € N. Let w = ¢, w € (0,1], 0 < a < b,
gcd(a,b) = 1 be a rational number. Moreover, suppose that o, B are real
numbers linearly independent over Q and K is any compact subset of the

strip 1/2 < o < 1. Then, for any e > 0,

1
liminffmeas {7’ €[0,7] :

T—oo

rglealgc‘g (s+iar,%;2l) —C(s—i—i&’,%;?l)) <€} > 0.

The next theorem deals with the case of transcendental parameter.

Theorem 5.1.2. Let A = {¢,, : m € Ny} be a periodic sequence of complex
numbers with the smallest period k € N. Let w be a transcendental number
from the interval (0,1]. Moreover, suppose that o, € R are such that
Ao, B;w) is linearly independent over Q and IKC is any compact subset of
the strip 1/2 < o < 1. Then, for any e > 0,

1
liminffmeas {T €[0,7]: max I¢ (s +iar,w;A) — (s + i1, w; A)| < e,
se

T—o00
[lz=2rkek) <}

Here ||z|| denotes the distance from x € R to the nearest integer.
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We state the schematic diagram of the evolution of the results, concerning the

generalized strong recurrence (Self-approximation).

B. Bagchi

A joint universality theorem for Dirichlet L-functions

T. Nakamura
The joint universality and the generalized strong recurrence
for Dirichlet L-functions

.. Pankowski

Some remarks on the generalized strong recurrence for L-functions

R. Garunkstis
Self-approximation of Dirichlet L-functions

T. Nakamura and L. Pankowski

Self-approximation for Riemann zeta function

Self-approximation of Hurwitz

zeta-functions ((s,w)

R. Garunkstis and E. Karikovas

w-transcendental parameter

E. Karikovas and L. Pankowski

w-rational parameter

l

l

E. Karikovas
Self-approximation of periodic
Hurwitz zeta-functions ((s,w; %),

w-transcendental parameter

E. Karikovas
Self-approximation of periodic
Hurwitz zeta-functions ((s,w; %),

w-rational parameter
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1.3 Methods

In the thesis we used recent methods introduced by Garunkstis [12] and Pankowski
[43], [44]. Also, elements of complex analysis, measure theory and diophantine

methods are used.

1.4 Novelty and originality

All results obtained in this thesis are new and original. The results of this
thesis contribute to the theory of self-approximation and to the theory of Hurwitz

zeta-functions.

1.5 Publications

The results of this thesis are published in three papers.

1. R. GARUNKSTIS, E. KARIKOVAS, Self-approzimation of Hurwitz zeta-functions,
Funct. Approx. Comment. Math., 51(1) (2014), 181-188.

2. E. KARIKOVAS, L. PANKOWSKI, Self-approzimation of Hurwitz zeta-functions
with rational parameter, Lith. Math. J., 54(1) (2014), 74-81.

3. E. KARIKOVAS, Self-approzimation of periodic Hurwitz zeta-functions, to

appear in Nonlinear Anal. Model. Control.

1.6 Conferences and visits

1. E. KARIKOVAS, Self-approximation of Hurwitz zeta-functions, Summer school,
Four faces of number theory, August 7-11 , 2012, Department of Mathemat-

ics Julius-Maximilians-Universitat Wiirzburg, Germany.

2. E. KARIKOVAS, Self-approximation of Hurwitz zeta-functions with rational
parameter, 54" Conference of Lithuanian Mathematical Society, June 19-20,
2013, Vilnius, Lithuania.

3. E. KARIKOVAS, Self-approximation of Hurwitz zeta-functions, 28th Journées
Arithmétiques, July 1-5, 2013, Grenoble, France.

4. E. KARIKOVAS, Self-approximation of periodic Hurwitz zeta-functions, Ele-
mentare und Analytische Zahlentheorie, ELAZ Conference at University of
Hildesheim, July 28-August 1, 2014, Hildesheim, Germany.
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The results of the thesis were presented at the seminars on Number Theory
of the Department of Probability Theory and Number Theory at the Faculty of

Mathematics and Informatics of Vilnius University.
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Chapter 2

Literature review

2.1 History of the problem

In this section, we present universality theorems for the Riemann zeta-function
((s) and Dirichlet L-function L(s,y) and other interesting facts, which lead to
results obtained in the thesis.

Let, as usual, s = o0 + it denote a complex variable. For o > 1, the Riemann

zeta-function is defined by

oo ~1
=5 =T(-5)
1 P p

where p is a prime number. The function ((s) can be analytically continued to
the whole complex plane, except the point s = 1 (simple pole) with residue 1.

This function is a very famous and important object in analytic number theory.
It is known that ((s) = 0if s = —2n, for n = 1,2,... . These zeros are called
trivial-zeros.

The well-known yet unproved Riemann [49] hypothesis states:
Riemann’s hypothesis. All non-trivial zeros of ((s) lie on the critical line
o=1.

Hilbert about this hypothesis declared (see [7]):

“If I were to awaken after having slept for a thousand years, my first question
would be: has the Riemann hypothesis been proven?”

It is known that ((s) has no zeros in the region R(s) > 1. There are known
special values, for example ((2) = %2, C4) = g—g. More about the Riemann
zeta-function can be found in [1], [9], [17], [23], [52], [54].

In 1975, Voronin [55] discovered the universality theorem of the Riemann zeta-
function. In other words, this means that any analytic nonzero function in the

critical strip D = {s € C: 5 < o < 1} can be approximated by shifts (s + i7).

15



The precise statement of the Voronin’s theorem is the following.

Theorem 2.1.1 (Voronin [55]). Let 0 < r < 1. Suppose that f(s) is a continuous
non-vanishing function on the disc |s| < r, and analytic in the interior of this

disc. Then, for any € > 0, there exists a number T = 7(€) € R such that

max
s<r

<<s+z+z‘7) — f(s)

<e. (2.1)

Let meas{A} denote the Lebesgue measure of a measurable set A C R. Recall

that, for Lebesgue measurable set A C (0, 00), we define lower density of A as
li 'f1 (AN (0,7])
im inf - meas JT7).

Moreover, if this limit is positive, then we say that A has a positive lower density.
For measure theory see more in [6], [53] (Chapter 10) and in [50] (Chapter 11).
Now we present the current version of the Voronin theorem. The proof of this

theorem can be found in [29)].

Theorem 2.1.2 (Voronin’s universality theorem). Let K be a compact subset of
the strip D with connected complement, and f(s) be a continuous non-vanishing

function on IC which is analytic in the interior of IC. Then, for any e > 0,

T—o00

liminf%meas {7’ €[0,7]: max IC(s+1im) — f(s)] < 5} > 0. (2.2)

This theorem shows that the set of translations of the Riemann zeta function
which approximate given analytic function f(s) is sufficiently rich: it has a positive

lower density. However we do not know explicitly 7 with the approximation
property.

Next we recall the definition of a Dirichlet character.

A Dirichlet character modulo q > 0, denoted by x(q) is any function
X : Z — C with the properties :

o X is periodic modulo q, i.e., x(n+q) = x(n) for alln € Z.
o If q and n are not relatively prime, then x(n) = 0.
o If q and n are relatively prime, then |x(n)| = 1.

o Ifm and n are any two positive integers, then x(mn) = x(m)x(n).

We present several basic facts of Dirichlet characters. Let G(q) be the set of
characters modulo g. We define the product xix2 of x1, x2 € G(q) by

(x1x2)(n) = x1(n)xz2(n), forn € Z.

16



With this operation, G/(q) becomes a group, with unit element the principal char-

acter modulo ¢ given by

The inverse of y € G(q) is its complex conjugate X : n — W

The values of Dirichlet character xy modulo ¢ are either 0, or ¢(g)th roots
of unity; i.e., for all n we have either x(n) = 0 or x(n) = €2™/¢@ where m =
m(n) € Nand ¢(q) is Euler function. There exist exactly ¢(q) Dirichlet characters
modulo g. Moreover, for any integer a with (a,q) = 1 and a # 1 mod ¢ there exists
a character y with x(a) # 1.

Next we define induced, primitive and equivalent Dirichlet characters. These
definitions will be useful in Chapter 4 and Chapter 5.

Let x be a character mod ¢ and d > 0 be divisor of g. We say that ¢ is induced
by character x'mod d if x(n) = x'(n) for any n € Z with (n,q) = 1. Similarly
stated, x is induced by X' if x = x'x0'?. Notice that if (a,d) = 1 and (a,q) > 1,
then x/(n) # 0, but x(n) = 0.

The character x is called primitive if it is not induced by a character mod d
for any divisor d < q of q.

Two Dirichlet characters x; and yo are equivalent if they are induced by the
same primitive character.

Let us present several examples. Denote by xx(n; ¢) the kth character mod gq.
In the Table 1 below we state all non zero values of all Dirichlet characters mod
8.

n 113 |5 |7

x1(n;8) | 1

x2(n;8) |1 |-1]-1]1

x3(n;8) | 1]-1|1 |-1

Xa(n;8) | 1|1 |-1]-1
Table 1

17



Table 2 below shows all non zero values of all Dirichlet characters mod 4.

n 113

xi(n;4) |11

X2(”§ 4) -1
Table 2.

Adding two columns to Table 2 by periodicity we obtain the following:

n 113 [5]|7

x1(n;4) |1
Xx2(n;4) |1 -1]1]-1

Table 3.

We see that x1(n;8) = x1(n;4) for all n = 1,3,5,7, so x1(n;8) is imprimitive
character; in the other words, x; mod 8 is induced by y; mod 4.
X2(5; 8) # x2(5;4) so x2 mod 8 is primitive character.
X3(n;8) = xa(n;4) for all n =1,3,5,7, so x3(n;8) is imprimitive character.
X4(5;8) # x2(5;4) so x4 mod 8 is primitive character.

In the following table we state all non zero values of all Dirichlet characters
mod 10.

n 113 |7 |9 | primitive

x1(n;10) | 1 No

x2(n;10) | 1|1 |- |-1| No

x3(n;10) | 1] |i [-1| No

x4(n;10) | 1]-1|-1|1 | No
Table 4.

For ¢ > 1, the Dirichlet L-function is defined by

L(s,x) :ixg) ~TI (1_M)_1.

s
n=1 p p

It is easy to see that for ¢ = 1 we get L(s, x) = ((s).

Denote by xo the principal character modulo g. The function L(s, xo) is ana-
lytically continued to the whole complex plane, except for a simple pole at s = 1.
If x # Xo, then L(s, x) is analytically continued to an entire function. Further-
more, just as ((s), the function L(s,x) has infinitely many zeros in the strip
0<o<1.

18



More about Dirichlet characters and Dirichlet L-functions can be found in [1],
191, [17], [39]; [52].

As a generalization of Theorem 2.1.2, S.M. Voronin also proved the joint
universality theorem. This theorem implies that a collection of Dirichlet L-
functions with non-equivalent characters uniformly approximates simultaneously
non-vanishing analytic functions; in slightly different form this was also established
by Gonek [16] and Bagchi [2] (independently; all these sources are unpublished
doctoral theses).

Next we state the strongest version of the joint universality theorem.

Theorem 2.1.3 (Voronin’s joint universality theorem). Let x; mod ¢i,...,X» mod
Gm be pairwise non-equivalent Dirichlet characters, K1, ..., IC,, be compact subsets
of the strip 1/2 < o < 1 with connected complements. Further, for each 1 <1 <m
let fi(s) be a non-vanishing continuous function on K, which is analytic in the

interior of IC;. Then, for any e > 0, we have

1
liminffmeas{T € [0,7] : max max |L(s+i1,x1) — fi(s)| < 5} >0. (2.3)

T—o00 1<Ii<m sek;
This is Theorem 1.10 in [52].

We state the following generalization of the Riemann hypothesis.

Generalized Riemann hypothesis. Let x be a Dirichlet character. All zeros
1
5.
In 1982, Bagchi [3] discovered an interesting equivalent to the generalized

of L(s,x) with 0 < o < 1 lie on the critical line 0 =
Riemann hypothesis. He proved that the generalized Riemann hypothesis is true
if and only if the Dirichlet L-functions can be approximated by itself.

Theorem 2.1.4 (Bagchi [3]). The generalized Riemann hypothesis is true if and

only if, for any compact subset IC of the strip 1/2 < o < 1 and any € > 0,

1
liminffmeas{T €1[0,7]: ma}uédL (s+ir,x) — L(s,x)| < 5} > 0. (2.4)
s€

T—o0

This property is called the strong recurrence (see also Theorem 8.3 in [52]).
Kaczorowski, Laurinc¢ikas and Steuding [27] discovered another property sim-

ilar to strong recurrence (see also Section 10.6 in [52]).

Theorem 2.1.5 (Kaczorowski, Laurinc¢ikas and Steuding [27]). Let K be a com-
pact subset of the strip 1/2 < o < 1 with connected complement and let A € R be
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such that I and KK + i\ .= {s+ i\ : s € K} are disjoint. Then, for any e > 0,

1
liminffmeas {T € 10,77 :

T—o00
mE}éc|L(s+i)\+iT,X)—L(s+i7,x)|<5}>0. (2.5)
se€
We recall that numbers vy, v, ..., v, € R are called linearly independent over

the field of rational numbers Q if

n
E CLjUj =0
j=1

with rational aq,as,...,a, implies that a; =ay =---=a, =0.

Nakamura in [40] considered the joint universality of shifted Dirichlet L-
functions. Assume that 1 = dy,ds,...,d,, are algebraic real numbers linearly
independent over Q and x is an arbitrary Dirichlet character. Then, for every

e > 0, we have

1
lim inffmeas {7’ € 10,77 : (2.6)

T—o0
 Jpax max |L(s +id;T,x) — L(s + idyT, x)| < 5} > 0.
For m = 2, Paiikowski [43] using Six Exponentials Theorem (the proof can be
found in [28] and [47]) showed that (2.6) also holds for every real numbers dy, dy

linearly independent over Q. Now we present Pankowski result.

Theorem 2.1.6 (Pankowski [43]). Let K C D be any compact set with connected
complement, x a Dirichlet character and f,qg be any functions which are non-
vanishing and continuous on K and analytic in the interior. Moreover, let o,
be real numbers linearly independent over Q. Then, for every ¢ > 0, the set of

real numbers T, satisfying the following inequalities :

max [L(s +iaT, x) = f(s)] <,
KIS

max |L(s + 07, x) — 9(s)| <&,
has a positive lower density.

The case where d;/dy € Q in inequality (2.6) was considered by Garunkstis
(see [12]) and Nakamura (see [41]) independently. It is worth mentioning that
the proofs of their results contain gaps. The gaps were filled by Nakamura and
Pankowski in [42], where d; = 1 and dy = a/b € Q satisfies ged(a,b) = 1,
la — b| # 1.

20



Theorem 2.1.7 (Pankowski and Nakamura [42]). For every 0 # d = a/b € Q,
with |a—b| # 1 and ged(a, b) = 1, every compact subset K of the strip 1/2 < 0 < 1

and every € > 0, we have

T—o00

1
liminffmeas{T €[0,7]: mez}éc\f (s+it) —((s+1idr)| < 5} > 0. (2.7)

It should be mentioned that the general case for d; = 1 and for non-zero

rational dy in inequality (2.6) is still open.

2.2 Basic facts of Hurwitz zeta-functions

In this section we present several properties of Hurwitz zeta functions, which

will be useful in this thesis. For ¢ > 1, the Hurwitz zeta-function is given by

= 1
((s,w) = % et w)
where w is a parameter from the interval (0,1]. It is well-known that ((s, 1) = ((s)
and ((s,1/2) = (2° — 1)¢(s), where ((s) is the Riemann zeta-function.

The series for ((s,w) converges absolutely for ¢ > 1. The convergence is
uniform in every half-plane ¢ > 1+, § > 0, so ((s,w) is the analytic function of
s in the half-plane ¢ > 1. The Hurwitz zeta-function can be continued analytically
to the entire complex plane, except for a simple pole at s = 1.

For ¢ > 1, the Hurwitz zeta-function has the integral representation (see
Theorem 12.2 in [1])

1 o] xs—le—wax
((s,w) = m/o T o=

where I'(s) is the gamma function defined by
[(s) = / ¥ e *dx, for o > 0.
0

To extend the Hurwitz zeta-function ((s,w) beyond the line o = 1, we define the

following integral representation.
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V3

V2

71

4
N

Figure 1.

The contour v is composed of three parts v, 2,73 as shown in Figure 1. Part v,
is a positively oriented circle of radius r < 27 about the origin, and parts 1,3
are the lower and upper edges of the “cut” in the s-plane along the negative real
axis, traversed as shown in the figure. This means that we use the parametrization

s = Re ™ on 7, and s = Re™ on 73 where r < R < +00.

Lemma 2.2.1 (Apostol [1]). If 0 < w < 1, then the function defined by the

contour integral
1 s—1 wz
[(s,w):—/z < 4
Y

211 1 —e®

is an entire function of s. Moreover, we have

C(s,w)=T(1—-9)I(s,w), fors#1.

Proof. This is Theorem 12.3 in [1]. O

For rational w = ¢ satisfying 0 < a < b and ged(a,b) = 1 the Hurwitz zeta

function might be expressed as a linear combination of Dirichlet L-functions:

(25) = 2 M@kl

x mod b

We can also express L(s, x) in terms of Hurwitz zeta-functions. If y is a Dirich-
let character mod b, we rearrange the terms in the series for L(s, x) according to
the residue classes mod b. That is, we write n = ¢gb 4+ a, where 1 < a < b and
q=20,1,2,..., and obtain
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In the next lemma, we state the functional equation for Hurwitz zeta-functions.

Lemma 2.2.2 (Apostol [1]). If h and k are integers, 1 < h < k, then for all s

we have
C(1—57 h) (7?3 27Wh>(<s,%).

Proof. This is Theorem 12.8 in [1]. O

If h =k =1, from the last equality we obtain the functional equation for the

Riemann zeta-function.

s

C(1—s)=202m)"°T(s) cos<7>(’(s)
or equivalently
C(s) = 2(2r)~'T(1 — s) sm<7T2 )4(1 —3).
If n is nonnegative integer, then the value of ((—n,w) can be calculated ex-

plicitly. Taking s = —n in the relation ((s,w) = I'(1 — s)I(s,w) we have

((=n,w) =T(1+n)I(=n,w) = nll(—n,w) = n!Res.— (Zln—lewz>

_62

The next lemma gives an approximation of Hurwtz zeta-functions ((s,w) by

a finite sum.

Lemma 2.2.3 (Apostol [1]). For any integer N > 0 and o > 0 we have

N

N+w)13_s/°° T — [7] y

—~ (n+w)’ s—1 Ny (x4 w)st!

The proof of this lemma can be found in [1], see Theorem 12.23.

The distribution of zeros of ((s,w) as a function of s depends drastically on
the parameter w. For instance, the Hurwitz-zeta function (s, 1/2) = (2° — 1)((s)
vanishes for s = 2mik/log2, k € Z, and all other non-real zeros are expected to
lie on the critical line o = 1/2.

It is known that for any 1/2 < 07 < 09 < 1 and any transcendental or rational

number w # 1/2,1 the function ((s,w) has more than ¢T" zeros in the rectangle
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o1 < 0 < 0y, [t| < T, where ¢ is a positive constant depending on oy, 0y and w
(see [16], [23], [15]).

More about Hurwitz zeta-functions see in [1], [23], [52].

2.3 Basic facts of periodic Hurwitz zeta-functions

In this section we present useful results about periodic Hurwitz zeta-functions.
Denote by A = {c, - m € No},Ng = NU {0} a periodic sequence of complex
numbers with the smallest period k£ € N.

For ¢ > 1, the periodic Hurwitz zeta-function is defined by

o0

Swm Zm+w

m:0

This function was introduced by Laurinc¢ikas and Javtokas in [22].

If A = {1}, then ((s,w;2A) is the classical Hurwitz zeta-function. In the
case when 2 = {1} and w = 1, the function ((s,w;®2) becomes the Riemann
zeta-function. If w = 1, then the function ((s,w;®A) reduces to the periodic zeta-

function
o0

It is not difficult to see that, for o > 1,

k—1 oo k—1 00
1
2A) =— 2.8
s ;; mk+l—|—w kslzjclmzjo (m + l+w/k)) (2:8)

k—1
1 [+ w

Therefore equation (2.8) gives the analytic continuation for {(s,w;2l) to the whole

complex plane, except, perhaps, for a simple pole s = 1 with residue

If ¢ =0, then ((s,w; %) is an entire function.

For rational parameter w = ¢ we can write equality (2.8) as follows:

b

k-1

1 b7 ——
(s 5%) == > a— X)L (s,x" (2.9)
( b ) ke 2 DL (57

o(br)

x® mod b,
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Where%kbl:‘;—f,(al,bl)zlforall()glgk—l.

Example. Let 2 = {eﬂTm :m € Ng}. This sequence of complex numbers is a

periodic with the smallest period £ = 4 and

i 7T i .
co=1, ¢ =e2 :cos§—|—zsm§:@,

2mi .. 3mi dm .. 3w .
cp=€2 =cosm+isinm=—1, c3=e¢€2 :(3057—1—281117:—1.

Let w = %, then

ap 1 a 5) Qa9 2 as 11

o 6 b 12 by 3 by 12

From (2.8) we have

(n30) = ()

= (6(og) r el y) (o) el ip)

From (2.9) we obtain

2 1 b; —
C (87 57 Ql) = E Z C l Z X(l)(al)L (87 X(l))

= e X mod by
1 6° — 1 12°
- . ) (1)L (0) — . M (5[ (1)
F o0 > XOWL(s.x) + D) > XOG)L (s, x W)
X(O) mod 6 X(1> mod 12
1 3 — 1 12° —
_—. @) (2)L @y_ .= G)(11)L 3)
500 > XDQ)L (s,x?) ¥ o) > XOA)L (s,xP)
X(2) mod 3 X(3) mod 12
3° — 3% — 1 3° —
=g 2. XML+ Y xOLx) -5 5 X(2)L (s,x)
x mod 6 x mod 12 x mod 3
3% —_—
— > XL
x mod 12

2.4 Universality of Hurwitz zeta-functions and

periodic Hurwitz zeta-functions

In this section we state universality theorems for Hurwitz zeta-functions. First,

we present universality theorem of the classical Hurwitz zeta-functions.
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Theorem 2.4.1 (Universality theorem of Hurwitz zeta-functions). Let the num-
ber w is transcendental or rational # 1, % Let I C D be a compact subset with
connected complement, and let f(s) be a continuous function on KC which is ana-
lytic in the interior of KC. Then, for every e > 0,

T—o0

1
liminffmeas{T €1[0,7]: max IC(s+it,w) — f(s)] < 5} > 0. (2.10)
se

Theorem 2.4.1 has been considered in [2] and [16] by different methods.
Next, we state the joint universality theorem for Hurwitz zeta-functions. First

we define the set
L(wy,...,w,) ={log(m+w;) :m e No,w; € (0;1],j=1,...,7}.

Theorem 2.4.2 (Joint universality theorem for Hurwitz zeta-functions [31], [41]).
Suppose that the set L(wy, ..., w,) is linearly independent over the field of rational
numbers Q. For j = 1,...,r, let K; C D be a compact subset with connected
complement, and let f;(s) be a continuous function on K; which is analytic in the

interior of KC;. Then, for every e > 0,

el .
thil(gf?meas {T €1[0,7]: max rsré%ic IC (s +it,w;) — fi(s)] < 6} >0. (2.11)

We recall that a generalization of the Hurwitz zeta-function is the periodic
Hurwitz zeta-function ((s,w;2). The universality of the function ((s,w;2() with
transcendental parameter w was considered in [20] and [22]. The following state-

ment was proved.

Theorem 2.4.3 (Javtokas and Laurincikas [20]). Let the number w is transcen-
dental. Let IC C D be a compact subset with connected complement, and let f(s)
be a continuous function on K which is analytic in the interior of IC. Then, for

every € > 0,

l%i{gf%meas{T €1[0,7]: max IC(s+im,w;A) — f(s)] < g} > 0. (2.12)

The joint universality theorem for periodic Hurwitz zeta-functions is proved
in [30]. More about universality theorems for Hurwitz zeta-functions and periodic
Hurwitz zeta-functions see in [20], [21], [31], [35], [38].

Moreover, there have been investigated hybrid universality (sometimes called
mized universality), joint hybrid universality (also called joint mized universality)
for Dirichlet L-functions and zeta-functions. More about universality of Dirichlet
L-functions and other zeta-functions see in [33], [34], [37], [44], [45].
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Chapter 3

Self-approximation of Hurwitz
zeta-functions for transcendental

parameter

3.1 Introduction

In this chapter we consider the following problem. Find all real numbers
0 < w < 1 and d such that, for any compact subset K of the strip 1/2 < o < 1
and any € > 0,

T—o0

1
liminffmeas {7‘ €[0,7]: max IC(s +iT,w) — (s +idr,w)| < 5} >0. (3.1
s€

We will prove the case when w is a transcendental number and d is a rational
number. We will also show that for any transcendental number w the inequality
(3.1) is true for almost all numbers d and that for any irrational number d the
inequality (3.1) is true for almost all numbers w.

In Section 3.2 we present several facts about transcendental numbers. In
Section 3.3 we investigate the set A(dy, ..., dy,w) and we prove the main results

of this chapter, namely Theorem 3.4.1 and Propositions 3.4.3, 3.4.4.

3.2 Several facts about transcendental numbers

“God made natural numbers, all else is the work of man.” (Kronecker, cf.
Weber [56].)

We recall that a transcendental number is a number which is not algebraic;
that is, it is not the root of a non-constant polynomial equation with rational

coefficients. For example, numbers e, m, e”, 2V2 are transcendental. Liouville
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showed that number Y °7 10~ is transcendental, and this was one of the first
numbers proven to be transcendental.

Next we present several useful facts of transcendental numbers.

o (Hermite-Lindemann Theorem). For every nonzero algebraic number
a, e” is transcendental.

Equivalently, if « is algebraic, a # 0 and « # 1, then log « is transcendental.

+ (Gelfond-Schneider Theorem, 1934). If a and /8 are algebraic, o # 0,

a # 1, § irrational, then o is transcendental.

The next two statements are equivalent to the Gelfond-Schneider Theorem.

o If o is irrational and 3 # 0 then at least one of the numbers a,e?, e’ is

transcendental.

o If o is irrational and {3,~} is linearly independent over rationals, then at

least one of the numbers f3,, e*?, e* is transcendental.

« (Baker’s Theorem, 1966). If a4, ..., a, are non-zero algebraic numbers,
and log a, ..., log oy, is linearly independent over rationals, and Sy, ..., 3,

are algebraic and not all zero, then fy + Z?zl Bjlog a; is transcendental.

Further results about transcendental numbers can bee found in [4], [5], [51].

3.3 The set A(dy,ds, ..., dy;w)

In this section we define the set A(dy,dy, .. ., dy;w) and show several properties
of this set, which are interesting on their own.
Let dq,ds,...,d;,w be real numbers and let w be a real number from the
interval (0,1] .
Let
A(dy,ds, ..., dg;w) ={d;logn+w):j=1,...,kin € No}

be a multiset. Note that in a multiset elements can appear more than once. For
example, {1,2} and {1, 1,2} are different multisets, but {1,2} and {2, 1} are equal
multisets.

If a multiset A(dy,ds, ..., dy;w) is linearly independent over rational numbers,
then A(dy,ds,...,dy;w) is a set and the numbers dy, ..., d are linearly indepen-
dent over Q. In this thesis we work only with the set A(dy,ds, ..., dg;w).

Consider the case when k = 2. We state some examples which show possible
relation between numbers di, ds and the set A(dy, ds;w).

Example 1. If d; and ds are real numbers linearly dependent over QQ, then the
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set A(dy, do;w) is also linearly dependent over Q.

log w
log(1 + w)
is a transcendental number from the interval (0;1]. It is easy to see that numbers

Example 2. Let d; be a rational and dy = be a real number, where w

d; and dy are linearly independent over Q, but the set A(d;,dy;w) is linearly
dependent over Q.
Next we prove several properties of the set A(dy,ds, ..., d;w) for transcen-

dental, rational and irrational parameter w, respectively.

Property 3.3.1. Let di # 0 be a real number and let w be a transcendental

number. Then the set A(dy;w) is linearly independent over Q.

Proof. Suppose that d; # 0 and there is a finite sequence of rational numbers

ag, a1, ...,ay such that not all of them are equal to 0 and
N
dy Z ap log(n +w) = 0. (3.2)
n=0

From (3.2) we obtain

n=0
and
N
[[(n+w)y=—1=0. (3.3)
n=0
Numbers ay, as, ..., ay are rationals, then it is not difficult to see that the equality

(3.3) can be written in the form P(w) = 0, where P(w) is a polynomial. But w
is a transcendental number, and we obtain contradiction. This gives that the set

A(dy;w) is linearly independent over Q. O

Property 3.3.2. Let dy,ds, ..., dy be real numbers and w, 0 < w < 1 be a rational
number, then the set A(dy,ds, ..., dy;w) is linearly dependent over Q.

Proof. 1t is enough to consider the case when numbers dy, ds, ..., d; are linearly

independent over Q. Let w = ¢, where (a,b) = 1. The set A(di,dy, ..., dy;w)

consists of elements

a a a a
d110g3; dy log (1—1—5) :dy log <2+3); ...... ;dy log <T+Z>
dQIOgg’dﬂOg(lﬂLZ),dQlOg (2—1-3), ------ ; dy log (T—f—g)
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dklog%;dklog(1+%>;dllog(2+%>; ...... ;dklog<r+g>,

where r — 0.

Suppose that there exists a finite sequence of rational numbers a;,,i =1, ..., k,
n =20,..., N such that not all of these numbers are equal to 0 and equality
al a al a
dlnzzoalnlog<n+g>+---+dknzzoaknlog<n+g>:0 (3.4)
is valid.

Counsider the set of numbers

diasolog 35 dhanlog (1+ 7 ) sdianlog (24 7). dianlog ¢+ 7)
daagg log %; daag log (1 + %) ;dy ago log (2 + %) e s daag log (t + %) ;
where ¢t > 2.
Take a9 = Qo0 = A1t = A9t = ]_7 a11 = Q91 = Q12 = A9y = —17 and let other Q5 = O,

and let (3.4) is valid.
Next we prove that there is the integer number ¢ = t(a,b), t > 2 such that the
equality (3.4) is valid. Numbers dy, dy are linearly independent over Q. Thus we

o (3) (5) () (457) =0 53

From the last equation we obtain

have

a(bt+a) = (b+a)(b+a)

and
3a + 2b

a
This implies Property 3.3.2. O

Also for the proof of Property 3.3.2 we can use identity

(t+%><(t+1)(b—l—1)+a+%> - <t+1+%><t(b+1)+a+%>
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(see [10]). Alternatively, one can apply results given by Pélya and Szego (see [46],
Chapter 8, Problems 95 and 109).

Property 3.3.3. Let dy,ds,...,d; be real numbers and w, 0 < w < 1 be an
irrational number of the form w = \/r — q, where r,q € N and r — ¢> = 1. Then
the set A(dy,da, ..., dg;w) is linearly dependent over Q.

Proof. Consider the set
A(dy,dy, ..., dg;w) ={d;log(n+w):j=1,...,k;n € No}.

It is easy to see that this set contains elements d;log(y/r — ¢) and d;log(\/r + ¢),
where j = 1,2, ..., k. This implies Property 3.3.3. O

We recall that w is an algebraic integer of degree 2, if w? = —aw — b, where

a,b € Z. The following property generalizes Property 3.3.3.

Property 3.3.4. Let dy,ds,...,d; be real numbers and w be an algebraic integer

of degree 2. Then the set A(dy,ds, ..., dg;w) is linearly dependent over Q.

Proof. See Theorem 1 in [10]. O

3.4 Main Theorem 3.4.1 and useful propositions
In this chapter we will prove the following theorem, which can be called the self-
approximation theorem of Hurwitz zeta-function with transcendental parameter.

Theorem 3.4.1. Let | < m be positive integers and let w be a transcendental
number from the interval (0,1]. Let dy,...,d; € R be such that the set

A(dy,dy, ..., djw) ={djlog(n+w):j=1,...,l;n € No}

is linearly independent over Q. For m > 1, let di11,...,d,, € R be such that each
dp, k=1+1,...,m is a linear combination of di,...,d; over Q.
Then, for any e > 0,

1
lim inffmeas {T €[0,7] : (3.6)

T—o0
 Jpax max 1C(s 4+ id;T,w) — ((s + idyT,w)| < 6} > 0.
In the inequality (3.6), for almost all £, ‘liminf’ can be replaced by ‘lim’

similarly as in Theorem 2 of [12].

Next we recall the definition of a countable set.
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Definition 3.4.2. A set S is countable if there exists an injective function
f:5—=N

For example, the set of all integer numbers is countable, but the set of all
transcendental numbers is uncountable. More about countable sets can be found
in [50] (see Chapter 2).

The following propositions show that for any positive integer [ ‘most’ collec-
tions of real numbers di,ds,...,d;,w, where 0 < w < 1, are such that the set

A(dy,dy, . .., dj;w) is linearly independent over Q.

Proposition 3.4.3. Let w be a transcendental number and | > 2. If A(dy,ds, . . .,

d;_1;w) is linearly independent over Q, then the set
E={d € R: A(dy,ds,...,d;w) is linearly dependent over Q}

1s countable.

Proposition 3.4.4. Let dy,ds,...,d; be real numbers linearly independent over
Q. Then the set

H={we (0,1]: A(dy,ds, ..., ,d;;w) is linearly dependent over Q}

is countable.

In Section 3.6 we will prove Theorem 3.4.1. Section 3.7 is devoted to proofs
of Propositions 3.4.3 and 3.4.4.

It should be mentioned that it is difficult to construct an example, where
dy,ds, ..., d; are linearly independent over Q and A(dy,ds,...,d;w) is also are

linearly independent over Q.

3.5 Auxiliary lemmas

We start from the lemmas which will be useful in the proof of the main theorem.
We recall some definitions.
Let U be an open bounded rectangle with vertices on the lines ¢ = o7 and

0 = 09, where 1/2 < 01 < g9 < 1.

Lemma 3.5.1. Let IC be a compact subset of the rectangle U and let

d = min min|s — z|.
2€0U sek
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If f(s) is analytic on U and

/ |f(s)]2 dodt < ¢,
U

then
e/m
< .
max | £(s)] < V=
Proof. The lemma above can be found in [16] (see Lemma 2.5). O

Definition 3.5.2. Let T € RY and v C RY. The notation T € v mod 1 means

that there exists an integer vector § in RN such that T — 7 € .

Next we recall the notation of the Jordan volume of the region v C R¥Y.
Consider the sets of parallelepipeds v; and 7., with sides parallel to the axes and
of volume V; and V5, with 4 C v C ~s. If there are 7; and 5 such that lim sup.,, i

coincides with liminf., V5, then v has Jordan volume

V = limsup V; = limsup V5.
71 72
If the Jordan volume exists, it is also defined in the sense of Lebesgue and equal
to it.

Next we state the generalized Kronecker’s theorem.

Lemma 3.5.3. Let aq,...,an be real numbers linearly independent over the ra-
tional numbers. Let v be a region of the N-dimensional unit cube with volume V'
(in the Jordan sense). Let I.(T') be the sum of the intervals between t = 0 and
t =T for which the point (ait,...,axt) is mod 1 inside ~y. Then

L)
S
Proof. This is Theorem 1 in Apendix, Section 8, of [23]. O

For a curve () in RY we introduce the notation

{0} = 0n(t) = @) (®) = hw(®)])

where [x] denotes the integer part of 2 € R.

Definition 3.5.4. Let ~(t) be a continuous function with domain of definition
(0,00] and range RY. We say that the curve ¥(t) is uniformly distributed mod 1
in RN if the following relation holds for every parallelepiped

II=lay,Bi] x- X[an,On], 0<a; <p; <1, forj=1,...,N:
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lim ;meas{t t€[0,7],v(t) € I mod 1} H(ﬁg )

T—00
]_

Lemma 3.5.5. Suppose that the curve y(t) is uniformly distributed mod 1 in RY.
Let D be a closed and Jordan measurable subregion of the unit cube in RY and let Q
be a family of complex-valued continuous functions defined on D. If ) is uniformly

bounded and equicontinuous, then

hm—/ FHy®}) 1p(t)dt = /fxl,..., Ydxy .. .dxy

T—oo 1’

uniformly with respect to f € Q, where 1p(t) is equal to 1 if v(t) € D mod 1,

and 0 otherwise.
Proof. This lemma is Theorem 3 in Appendix, Section 8, of [23]. O

We recall that the Lerch zeta-function L(\, w, s), for o > 1, is defined by

o0 2midm

e
L\ w,s) E
m+w

m=0

Here w, A € R, 0 < w < 1, are fixed parameters. For \ € Z the Lerch zeta-function
L(\, w, s) reduces to the Hurwitz zeta-function ((s,w).

Now we state a mean square value theorem of Lerch zeta-function, see [14].

Lemma 3.5.6. For 0 < \,a <1 we have, as T turns to infinity,
T T 1
/ L\, a,1/2 + if) Pdt = Tlog o - + T(c(a) + () = 1) + O(T4 log T)
1 T

cmdfor%<a<1,

20—1

T
/ L\, o, 0 +it)2dt = ((20, )T + (2m) C(2 =20, \)T* 2
1

2—20
+O(T" % log T + T'%).

For ¢ = 1/2, Rane [48] proved a mean square formula for Hurwitz zeta-
functions with the same error term O(T'~“logT + T'2).
We recall that f(s) is a function of finite order if

f(s) <o [t|A), for o > 1,|t] — oo

Further we state Carlson theorem (see [8] and [53]).
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Lemma 3.5.7. If f(s) =Y 7, % is reqular and of finite order for ¢ > «, and

n=0 ns
1 T

—_— ) 2
o7 | et inf

is bounded as T — oo, then

1 |an|?
Th—{%oﬁ/ |f (o +it)|*dt = ZnQU

for o > a, and uniformly in any strip o < 01 < 0 < 03.

3.6 Proof of Theorem 3.4.1

We follow the proof of Theorem 1 in [12]. As it was already mentioned, the
proof of Theorem 1 in [12] contains a gap; however, here we avoid this gap because
we work directly with ((s,w) instead of log ((s,w). Let us start with a truncated

Hurwitz zeta-function

1
Glsw) =) Tk

q<v
By conditions of the theorem, there are integers a # 0 and ay 1, ag 2, - .., ax,; such
that
1
dp, = _<ak,1d1 + ak,2d2 4+ o+ ak,ldl) for <k <m. (37)
a
Let
A= max {|ap| + |agz| + - + |arl}
I<k<m
If
d,1
HTM‘<5 for ¢<vandl1<n<I (3.8)
Ta

then, by the relation (3.7),

<Ay for g<wvandl<k<m.

Tdk log(q + w)
2m

By this and by the continuity in s of the function (,(s,w), we find that for any
e > 0 there is § > 0 such that for 7 satisfying (3.8)

max max |(,(s + idyT, w) — (u(s +id, T, w)| < €. (3.9)

1<k,n<m seK
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For positive numbers §, v, and T" we define the set Sr = Sr(d,v) by

Tdn log(q + w)
Ta

St = {T:TE 0,77,

<5,q§v,l§n§l}. (3.10)

Let U be an open bounded rectangle with vertices on the lines ¢ = o; and
0 = 09, where 1/2 < 01 < 0y < 1, such that the set K is in U. Let p > v be a

positive integers. We have
1 m
7 / / 371G (s + idyr,w) — Gols + idyr,w) | dodtdr
Sy U k=1

1
/ T / 1Go(s + idyT,w) — Gol(s + idyT, w)|* drdodt.
St

m
k=1 U

To evaluate the inner integrals of the right-hand side of the last equality we

will apply Lemma 3.5.5. By generalized Kronecker’s theorem 3.5.3 and by linear
independence of A(dy,ds, ..., d;;w) the curve

w(r) = GM) 1<kl

2ma 0<q<p

is uniformly distributed mod 1 in R®+Y). Let R’ be a subregion of the I(p + 1)-

dimensional unit cube defined by inequalities
kgl <0 for 1<k <land0<g¢g<w

and
for 1<k<landv+1<qg<p.

N —

_ 1‘ <
Yk,q ol =
Let R be a subregion of the /(v + 1)-dimensional unit cube defined by inequal-
ities
kgl <0 for 1<k <land0<g¢g<w

Clearly meas R’ = meas R = (20)!*1). Let

Coow(s + idyT,w) = (p(s +idpT, ) — (s + idyT, w). (3.11)
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Then in view of the linear dependence (3.7) we get

lim —/ Z|va s+ idyT, w)|* dr

ST =1

1 ) 2
= lim —/ |Cﬂ,(s+zdk7,w)|

>

k=Il+1

2
) dr.

By Lemma 3.5.5 and equality (3.11) we obtain that the last limit is equal to

)
Cp,v (S + a(akyldl + ak72d2 + -+ ak,ldl)T,w>

l

Jo\x

. 2
e—2mayk7q

2 (¢ +w)s

v<g<p

2
m —2mi(ak,1Y1,q 0k 2Y2,q+ +ak,1Y1,q)
e B »q 5 »q 5 »q
+ Z Z 5 dy171 Ce dyl,p
k=I+1 [v<q<p (q T w)
—27rzy;€ .a
= meas R/ /
0 k=1 1)<q<p q +UJ)
2
m e~ 2mi(ak,1y1,q+ak,2Y2,q 7+ +ak,191,q)
+ Z Z - Ay1v41 - - - dYip
k=l+1 [v<q<p (q + w)
1 1
= mmeas R ———— < meas R _—
2 (¢ +w)* 2 (¢ +w)*

v<q<p q>v

Remark 3.6.1. We use notations of a big O and < interchangeably to describe

the limiting behavior of a function when its variable tends towards infinity. We

write

f(x) = O(g(x)) or f(z) < g(x)

if and only if there a positive number ¢ and real number xy such that

|f(x)] < clg(z)], for all x > x.
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Consequently,

lim — //Z (s + idpT,w) — Co(s + idyr, w)|* dodtdr (3.12)

T—oo T
< meas R Z _
(q+w)>
q>v
Again, by Lemma 3.5.3,
lim ~ meas Sy — meas R (3.13)
Aim = meas 57 = meas R. .

By (3.12) and (3.13), for large v, as T' — oo, we have

meas{ T : TGSTa/Zva (s + idyr,w)|* dodt < Z
U

q>v Q+w 201

1
> §T meas R.

Then Lemma 3.5.1 gives

m . m 1 1
meas{ T:T € ST,I?EE}%(Z |G (s +idpT,w)| < NG (Z (q+w)2"1>

k=1 q>v

1
> §T meas R,

where d = min,cppy mingex |s — z|. Therefore, we obtain that for any € > 0 there

is v = v(e) such that for any p > v

meas {T T € ST,ma% E |G (s +idpT,w) — Gu(s + ideT,w)| < 5} (3.14)
s€
k=1

1
> §T meas R.

Now we will prove that for any § > 0 there is p = p(9) such that

meas {T : Iglea%; 1C(s 4+ idT,w) — (p(s + idyT,w)| < 5} (3.15)
> (1—-0)T.

The last formula together with (3.9), (3.10) and (3.14) yields Theorem 3.4.1. We
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return to the proof of (3.15). By Lemma 3.5.6 and by Lemma 3.5.7 we obtain

71520—/|§ s+ ixT,w) — (s + ixT,w)|? dT—Zm,
a>p
where z is fixed. Thus (3.15) follows in view of
T
//Z (s + idyT, w) — Gp(s + iwT,w)|* dodtdr < T; GroE
0

Theorem 3.4.1 is proved.

3.7 Proofs of Propositions 3.4.3 and 3.4.4

Proof of Proposition 3.4.3. Let U be a set of all rational numbers sequences, where
each sequence has only finitely many nonzero elements. Then V¥ is a countable
set. By 0 we denote the sequence all elements of which are zeros. Let d; = 1.
Recall that the set A(1;w) is linearly independent. Then in view of the linear
independence of A(dy,ds, . ..,d;_1;w) we obtain that the set

5o {_d1 Yorto Gnlog(n+w) 4+ -+ dim1 D7 ainlog(n +w)
ano A log(n + w) '
(a10, a1, . - . ; A(1-1)0, A1-1)15 - - - 5 A10, A11 5 - - - )e¥\0,
(alo, aryy ... ) 7& 0}
is a countable. This proves the proposition. O]

Proof of Proposition 3.4.4. We use the same notations as in the proof of Propo-

sition 3.4.3. Similarly as before we put

H= {we]:dlz alnlog(n—irw)—l—---—i—dlz a log(n + w) =0,
n=0 n=0
(@10, @115+ -+ 5 G20, Q21,5 -+, Q10 At - ) 6‘1’\0}-

Recall that V¥ is a countable set. If, for a fixed

(a107a11a"'7a207a21;"'7"'7al0aa'lla"') E\11\07
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the function

flw) =d Z a, log(n +w) + -+ +d Z i, log(n + w)

n=0 n=0

has only finite number of zeros in (0, 1], then the set H is countable. Thus to
prove the proposition it remains to show that f(w) has finitely many zeros in the
interval (0, 1]. In view of the condition that dj, ds, ..., d; are linearly independent
and by the definition of ¥, we have that there is a finite collection of real numbers
bo, b1, . .., by such that b,, # 0 and

f(w) = bolog(w) + by log(1 4+ w) + - - - + by, log(m + w).

Let b,, n < m be the first coefficient not equal to zero. Then we see that f(w) is
unbounded in (—n, 1/2) and is bounded in (1/2,1]. Thus f(w) is not a constant
in (—n, 1]. Moreover, there is a small positive number wy such that f(w) # 0 if
w € (—n,—n 4+ wp). We consider f(w) as an analytic function in the half-plane
Rw > —n of the complex plane. A set of zeros of a non-constant analytic function
is discrete. Thus there are finitely many zeros in the disc |1 —w| < 14 n — wy.
We obtained that the function f(w) has finitely many zeros in (0, 1]. This proves
the proposition. [
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Chapter 4

Self-approximation of Hurwitz
zeta-functions for rational

parameter

4.1 Main Theorem 4.1.1

In this chapter, we show the self-approximation property for Hurwitz zeta-
functions with rational parameters. Namely, we prove that ((s +iaT, §) approxi-
mates uniformly ((s 4+ 437, ) for infinitely many real 7, where «, 3 are arbitrary
real numbers linearly independent over Q, and s is in a compact set lying in the
open right half of the critical strip.

We recall that for rational w = ¢ satisfying 0 < a < b and gcd(a,b) = 1 the
Hurwitz zeta function might be expressed as a linear combination of Dirichlet

L-functions:

a ) striT

¢ (s +ir, g 3 X(@L(s + T ). (4.1)

Qﬁ(b) x mod b

More precisely, we use (4.1) to prove the following theorem, which can be called

the self-approzimation theorem of Hurwitz zeta-function with rational parameter.

Theorem 4.1.1. Let w = ¢ be a rational number satisfying 0 < a < b and
gcd(a,b) = 1. Moreover, suppose that «, 5 are real numbers linearly independent
over Q, and K is any compact subset of the strip 1/2 < o < 1.

Then, for any e > 0,

T—o0 se

1
liminffmeas{T € 10,7 : max‘( (s+z’a7‘, %) —( <s+i57, %)‘ < e} > 0.
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4.2 Preliminaries

In order to prove our main theorem we need some results about linear inde-

{alogp} U{ﬁlogp}
ot peP o pep’

where «, 3 are real numbers linearly independent over Q, and P denotes the set

pendence of the set

of all rational primes.

Lemma 4.2.1. For arbitrary real numbers o, (8 linearly independent over Q, there
exists a finite set of primes A = A(«, 3) containing at most two elements such
that the following set

{alogp}pepia U {Blogp}per (4.2)

is linearly independent over Q.
Proof. This is Lemma 2.4 in [43]. O

Lemma 4.2.2. Suppose that (a,)>2, are real numbers linearly independent over
Q. Moreover, assume that oy, ..., a, € R are linearly independent over Q and
so 01,...,0,, € R. Then there exist finite sets J C {1,2,...,m} and A =
Alaq, ..., qu) C Zy such that the set

{ai}ieAUM U {ai}iEJ

is linearly independent over Q for every finite set of non-negative integers M with
MNA=0.

Moreover, there exist real numbers 65, i € A and a positive integer N such that
max ||[N1a; — 0;]| < ¢,
i¢J

whenever the following inequalities hold

H 0; < £
max||To; — —|| < =
e ||ITY9 TN N’
ma, H a ‘ < -
x||Ta; — =|| < =.
Al TN N
Proof. This is Corollary 2.7 in [43]. O
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The linear independence over Q allows us to apply the following classical Kro-

necker theorem.

Lemma 4.2.3. (Kronecker’s theorem). For x € R, let ||x| denote the distance
from x to the nearest integer. Then for arbitrary real numbers oy, ..., a, linearly
independent over Q, any real numbers 01, ...,0, and any numbers €1, ...,&,, the
set of T such that

|7 — 6i]] < e, foralll <i<n (4.3)

has a positive density, which is equal to 2" H1gz’§n £;.

For the sake of simplicity, let 2 = HpR denote the set of all sequences of
real numbers © = (6,), indexed by prime numbers. Moreover, for any finite set

M C P and any Dirichlet character y, we put
—o)\ !
bt = T (1~ X2
peEM p

and

where o > %

Now, let us recall the property for Dirichlet L-functions associated to pairwise
non-equivalent Dirichlet characters, which plays a crucial role in the proof of our
main result. Following [26], we call an open and bounded subset G of C admissible,

when for every € > 0 the set
G’a:{se(C:|s—w| <5forcertainw€G}

has connected complement.

Lemma 4.2.4. Let x4, ..., Xn be pairwise non-equivalent Dirichlet characters and

admissible domain G be an admissible domain such that
G CcD,D:={seC:1/2<0<1}.

Moreover, assume that fi,..., f, are analytic and non-vanishing functions on the
closure G. Then, for every finite set M of primes, there exists a sequence of finite
sets My C My C ... CIP such that

UMi={p:p¢ M}
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and for certain Oy € 2 as k — oo
L (8, x5,0k) = fi(s) uniformly for s € G,j=1,...,n.

Proof. See Remark 2.1 and the acceptability property in [44]. O

4.3 An important Lemma 4.3.1 and auxiliary

lemmas

In this section we present the following main lemma, which will be useful in
the proof of Theorem 4.1.1.

Lemma 4.3.1. Let x1,...,Xn be pairwise non-equivalent Dirichlet characters, G
be any admissible set such that G C D and functions fivg; (7 =1,...,n) are
analytic and non-vanishing on G. Moreover, suppose that B is a finite set of
primes, a, B are real numbers linearly independent over Q, and the set A has the
same meaning as in Lemma 4.2.1.

Then, for every e > 0 and an arbitrary set Gy C Gy C G, there ewist finite
sets

Ay CcP\(AUB), A, CP\B

and real numbers

0](;1)ap € A1791(72)7p € AZ

such that the set of real numbers T satisfying the following inequalities

[nax max L(s+iat, X;)|(auaUB)
. ' _pW
— f;(s) H (1_X9_(Sm) H (1_ Xj(p)€<s b ) ‘ < g,
pEAUB p pEA; p
A [l
(2)
X;(p) Xj(p)e(=0y")
_gj(s>H(1_J_S)H<1_ J - p ‘<€,
pEB p PpEA2 p
=
max max||vyT <g,
ve{a,B} PEB 2T
1
maXHaT ngH <eg,
peEA 27
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01082 )

max <eg,
peA, 2 P

log p
max||8r—— — 0(2)‘ <e€
pEA2 B 2 p

has a positive lower density.

Next we present several lemmas, which helps to prove main Lemma 4.3.1.
Definition 4.3.2. If M is a finite set of primes, s € C, and 6 € S, then we set
CM(S,g) _ H (1 _ 6—2m‘9p/ps)—1

peEM

Lemma 4.3.3. Let 0 < r < 1. Suppose that g(s) is analytic for |s| < r and

continuous for s < r. Then for any e > 0 and any y > 0 there exists a finite set
M such that

{p:p<y} C M,

3
g(s) —log Car (3+ 1790)‘ <eg,

— 123
90_ (Zviai?)

—271'19
log Car(s,0) Zlog (1— >

peEM

max
s|<r

where

and

The proof of this lemma can be found in [23](see Lemma 1 in Chapter 7 ).

Now we define the class € to consist of functions
s)=[[R@™), o>1,
p

where -
2) =1+ alp™)z
m=1

are rational functions, analytic and non-vanishing on the disk |z| < 1, which

satisfy the following conditions:

1. (Ramanujan conjecture) Veso a(p™) <. p°™ uniformly in p.

2. F has meromorphic continuation to the half-plane o > 1/2. It can have at

most a finite number of poles and all of them lie on the straight line o = 1.
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3. I is a function of finite order, which means that

F(s) <q |t for o > 1, |t| — oo.

4. For any fixed 1/2 < 0 < 1, the square mean-value

—/ F(o +it)|*dt

is bounded as T' — oo.

Remark 4.3.4. The notation A <, B means that A < B holds for fixed y.

Next lemma is Lemma 3.1 in [44].

Lemma 4.3.5. Let G be an admisible domain such that
Gc {sec S<o< 1} and {F1,... . F,} C €

be any acceptable set. Moreover, let (a;)1<i<m be real numbers linearly independent
over Q, (0;)1<i<m any real numbers, and fi,..., f, functions which are analytic
and non-vanishing on G. Then, for every ¢ > 0 and any set Gy C Gy C G, there
exist a finite set B = B(ay,...,qmy) of primes and a sequence (0,")pep of real

numbers such that the set of positive real numbers T satisfying the inequalities

max max |Fj(s +i7)5 — f;(s HR—l —0,"))| <e,
1<j<n seGy
pEB
lo
maXHT 8P _ 6,"
peB 2w
max ‘TO(Z' —0;|| <e
1<i<m

has a positive lower density.

The other auxiliary lemma which will be useful in the proof of Lemma 4.3.1 is

as follows.

Lemma 4.3.6. Let F' € £ be an acceptable function, G any admissible set such
that G C D and functions f,g be analytic and non-vanishing on G. Moreover,
suppose that o, B are real numbers linearly independent over Q and the set A has
the same meaning as in Lemma 4.2.1.

Then, for every e > 0 and any arbitrary set Gy C Gy C G, there exist finite sets
Ay C P\ A, Ay C P and real numbers Qp(l), p € Ay, «9p(2), p € As such that the
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set of real numbers T satisfying the following inequalities

max | F'(s + iaT)|aua,) HR “pe H R,” —0,0))| <,
s€Go pEA pEA]
max (F'(s +i67)a, — g(s H R,” —0,)| < ¢,
s€Go pEAS
HlaXHOéT—H <€
peEA
l
max||at o8P — 0 )H <e
pEA; ™
log p
gé%( pr 27 P c

has a positive lower density.

The proof of this lemma can be found in [43].

4.4 The proof of Lemma 4.3.1

In this section we prove main Lemma 4.3.1

Proof. We closely follow the proof of Lemma 4.3.3, Lemma 4.3.5, and Lemma
4.3.6.

At the beginning let us assume that ¢1,..., ¢, is a basis of the vector space

{alogp} g {Blogp}
2 pE(AUB) 2m pEB

Then there exists an integer N; such that every number algﬂ forpe AU B and

ﬁlogp for p € B can be expressed as a linear combination of ¢;/N; with integer
coefficients.

Therefore,

max ||rei/Ni| <e

implies

log p
max maXHVT—H < g,
ve{a,B} PEB 2

lo
max”om- ng L&
peEA 2
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Now applying Lemma 4.2.2 for ; =0 (1 <i <m), a; = ¢;/N; and

log p log p
{a,} = {a 5 } U {ﬁ 5
T ) pep\(AUB) T ) per\B

we can choose sets

Ay CP\(AUB), Ay, Cc P\ B,JC{l,2,...,m},

real numbers
9](01),]7 € Alaeg()map € A2
and positive integer N such that
maXHN s H <e
2

whenever the following inequalities hold:

TP €
—= — 4.4
I‘Ijlea:]X N1 ]\/v7 ( )
1 1
max||r 2080 H max ﬁ o8pb H (4.5)
pEA] 7T pEAg 7T

Let

F ~ (ove(—pW
o0 152 I (1-22572).

pEAUB pEAL

| Vel
gi(s) = g;(5) ][ (1_%—@) 11 (1_ X](p)p(s & )>'

peEB p pEAg

Fix € > 0. Then Lemma 4.2.4 yields that there exist sequences
Or = (), Ar = (\P) € Q

and an integer ko such that for each k& > kg

~ g
I?eaGX‘LMIgl)(37XJ7@k)_fJ(S)’ < 5’
B €
e A0 -509] <

where M,gl) is a finite set of primes p ¢ AU A; U B and M,§2) is a finite set of
primes p ¢ Ay U B.
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Let k denote a generic integer greater or equal to ky. Then, by continuity, if

1
max ||N7 2282 Ol()k)H < 6, (4.6)
peM () 2w
1
max NTm — )‘ék) ‘ <0 (4.7)
peM® 2
for sufficiently small ¢ > 0, then we have
max ‘LM(l)(S +iNar, x;,0) — E(s)‘ <e, (4.8)
seG k
max ‘LM]Ez)(S + NPT, x;,0) — ﬁj(s)‘ <e. (4.9)

Now, by the choice of numbers ¢; and the sets J, A;, A, and the first part
of Lemma 4.2.2, one can apply Lemma 4.2.3 to obtain that the set A of positive
numbers 7 satisfying inequalities (4.4)—(4.7) has a positive density. Notice that

for these 7 we have

plogp
2

alogp
2

max ||[NT Nt

pe(AUB)

pEB

H < g, max

H <e. (4.10)

Now let us consider I = I, + I3, where

1 , .
I, = 7 / (/ |L(s +iNat, x;)|(ava,uB) — LMS)(S +iNar, Xj,O)‘de> dr,
Ar

e
Ig = % / ( / |L(s + iN BT, X;)|(AsuB) — LM]EQ)(S + iN BT, X, 0)|2db) dr,
At G
with db = dodt and Ar = AN[1,T].
Arguing analogously as in [23] or [44], we prove that I < 2. The modifications
needed are easy and can be left to the reader.
Therefore, there exists a set Y C Agp such that u(Y) > T and for all 7 € Y

the following inequalities hold:

ng( ‘L(s +iNaT, X;)|(ava,uB) — LMS)(S +iNar, x;, 0)} < e,
s€lo

m%TX ‘L<5 + iNﬁTa Xj)|(A2UB) - LM}?)(S + iNﬁTv Xj?o)‘ <g,
seGo

where Gy is an arbitrary set such that Gy C Gy C G. Hence, taking 7/ = N7 and
recalling (4.8),(4.9), and the definition of A complete the proof. O

49



4.5 Auxiliary Theorem 4.5.1

Using the previous Lemma 4.3.1 we prove the following theorem.

Theorem 4.5.1. Let K C D be any compact set with connected complement,
X1, - - -5 Xn be pairwise non-equivalent Dirichlet characters, and f;, g5, (j =1,...,n)
be functions which are non-vanishing and continuous on K and analytic in the in-
terior. Moreover, let a, 8 be real numbers linearly independent over Q and B be
a finite set of prime numbers.

Then, for every e > 0, the set of real numbers T satisfying

Max max |L(s +iart, x;) — fi(s)] <e, (4.11)
max max |L(s +1f7, X;) — 9:(s)] <e, (4.12)
—B)1
maXHTwH <e (4.13)
peEB 21

has a positive lower density.

Particularly, taking f; = g; yields that the set of T € R satisfying

max max |L(s +ia7,x;) = L(s + 87, )| < &,

(o — ) logp

<
27 H c

maXHT
peB

has a positive lower density.

Remark 4.5.2. 1t should be noted that the above theorem can be easily generalized
to more general L-functions which satisfy some natural analytic and arithmetic
conditions, and an analog of Lemma 4.2.4. This wide class of L-functions was
introduced and studied by ¥.. Pantkowski in [44].

In the proof of Theorem 4.5.1 we make use of the following famous Mergelyan
theorem [11].

Lemma 4.5.3. Let K C C be a compact set with connected complement and
f: K — C any function continuous on K and analytic in the interior of IC. Then,

for every € > 0, there exists a polynomial P such that

max|[f(s) — P(s)| <e.

Proof of Theorem 4.5.1. By the Mergelyan theorem, we can assume that K = G

for some admissible set G and f;, g;, (j = 1,...,n) are analytic and non-vanishing
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on some simply connected set G; such that GcG cG,cD.
By continuity, for any € > 0, we find ¢ = §(¢) such that

C_xi@ew) ) xe(-w)
p? p?

max  max
pEAUAIUAUB 5cG
for all j =1,...,n whenever
wa,l) —w:f)z)“ <dforpe AUAUAUB.
Now, using Lemma 4.3.1, we see that the set of 7 satisfying
Imax rsré%)o( L(s +iaT, x;j)|aua,uB)
(1)
X5 (p) X;(p)e(=0p")
0 L4 )
pEAUB pEAL
max max | L(s + 57, Xj)i(aa0)
) ) _9(2)
_MQH(FW@OIIG_%@%p)‘<&
pEB p pEA2 p
logp
maXHaT—H <0,
peA 2
max mavaT—H <9,
v€{a,8} pEB
1
max cwﬂ — oW ‘ <9,
pEA; 21 b
logp 9 :
max BT 5 0,” || < min(d, )

has a positive lower density.
Therefore, by (4.14), we obtain that, for s € G, we have

. (o)e(—oD
) T1 (12 T (1 200)

pEAUB pEAL
e I (-2 <
pEAUA,UB p
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Consequently, we have

. Xi\p
max|L(s +iat, x;)ava,uB) — fi(s) H (1 — SJJF(Z.QZ) ‘ <L e.
s€C peAUA1UB p

Multiplying the last inequality by

II

pEAUAUB

ey’

and noticing that this factor is O(1) gives (4.11).
Arguing analogously, one can prove (4.12). Moreover, (4.13) follows immedi-

ately from

|
max maxH’yT ng” < e. O
ve{a,8} pEB 2T

Remark 4.5.4. Tt should be noted that the condition that X has a connected
complement is needed only to apply the Mergelyan theorem 4.5.3. Thus, the
second part of Theorem 4.5.1 can be proved for any compact set K by following

all steps of the above proof for f; = g; = 1.

4.6 The proof of Theorem 4.1.1
In this section we present the proof of the main theorem in this chapter.

Proof. We know that

¢ (5 +iaT, %) = -0 ) ;Od bWL(S +iaT, x),
) bs+i/57’ .
¢ (5 + 10T, Z) = -0 ) ;Od bx(a)L(s + 0871, X).

Then using Theorem 4.5.1 for all Dirichlet characters xy mod b and the set

B={peP:p|b}

yields
max max |L(s +iat, x) — L(s +i87,x)| < ¢ (4.15)
x mod b seX
and |
maXHTwH “e
plb 21
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The last inequality implies that

HT(a—ﬁ) log b

- H <e. (4.16)

Hence
|bs+iaT . bs+i57'| _ |ba||bi(a—5)7 _ 1| < |bi(a—5)7 _ 1| < e.

Now (4.15), (4.16) and the fact that b° < 1 for s € K and L(s + i57,x) is
bounded, provided f; = g; = 1 in Theorem 4.5.1, yield

rglea’é(‘g <s+ia7, %) —C(s—i—zﬂﬂ %)) < e,

and the theorem follows. O]
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Chapter 5

Self-approximation for periodic

Hurwitz zeta-functions

5.1 Main Theorems 5.1.1 and 5.1.2

Let 2% = {¢,, : m € Ny} be a periodic sequence of complex numbers with the
smallest period k£ € N.
For ¢ > 1, the periodic Hurwitz zeta-function is defined by

o0

50}91 Zm—l—w

m:0

In this chapter, we prove two theorems which are generalizations of Theorem 3.4.1

and Theorem 4.1.1. The same notations as in previous chapters will be used.

Theorem 5.1.1. Let A = {c,, : m € Ny} be a periodic sequence of complex
numbers with the smallest period k € N. Let w = ¢, 0 < a < b and ged(a,b) = 1.
Moreover, suppose that o, 3 are real numbers linearly independent over Q and K

is any compact subset of the strip 1/2 < o < 1. Then, for any € > 0,

1
liminf—meas< 7 € [0,T] : max‘c (s—l—zozT a 2[) —C(s—i—zﬂﬂg;%{)’ <ep>0.
T—oo T b b

In Theorem 5.1.1, we consider the case when the parameter w is a rational
number. In the next theorem, we consider the case when the parameter w is a

transcendental number.

Theorem 5.1.2. Let A = {c¢,, : m € Ng} be a periodic sequence of complex
numbers with the smallest period k € N. Let w be a transcendental number from
the interval (0,1]. Moreover, suppose that o, 3 € R are such that Ao, B;w) is
linearly independent over Q and K is any compact subset of the strip 1/2 < o < 1.
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Then, for any e > 0,

1
liminffmeas{T €0,7]: max IC (s +iar,w;A) — C (s +ifT,w;A)| < &,
ES

T—00
ku _ 5} e
2

In the next section, we prove Theorem 5.1.1. Section 5.3 is devoted to the

proof of Theorem 5.1.2.

5.2 Proof of Theorem 5.1.1

Theorem 5.1.1 will be derived from the following proposition.

Proposition 5.2.1. Let k,n € N and %, cen Z—: be rational numbers satisfying
0 < aj <bj and ged(a;,bj) =1 for j =1,2,...,n. Moreover, suppose that o, 3
are real numbers linearly independent over Q and KC is any compact subset of the

strip 1/2 < o < 1. Then, for any e > 0,

C(s%—iar,%) —C<s+zﬂ¢,%)‘ <e,
J J

1
maxH—Tlong < 5} > 0. (5.1)
27

o]
lim inf —meas {7‘ € [0,7] : max max
T—oo T seK 1<j<n

plk

Note that the inequality

1
max||—7lo H <e€
p|kXH27T &P

implies that

max |[k5T7T — k*| < €.
sekl

Proof. Let us consider the set of the functions {((5, 4y ((s, %), ..., C(s, “—”)}

Since (aj,b;) =1 (j =1,...n), we have

(b,)

s bs . , bs 5 )
C(S,—]> = X9 (a;)L (5,xV) = — X (a;)L (s,x])'
bi) (b)) (].)Zdbv L) = 2o ot *

x7) mod b;
Thus
a 1 &S b - "
C(o5%) = Lagyy 2 @),
=0 x®) mod b;

where 2 = &, (ag, b)) =1forall 0 <1<k —1.
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Two characters, x1 mod ky, x2 mod ks, are equivalent if they are induced by

the same primitive character y* mod k with k|k; and k|ks. Then, for j = 1,2, we

Ls0) = s I (1= 50

pS
plk;

have

Now let us assume that x,(fj) is induced by a primitive character x)*. Let us

observe that every two elements from the set

1)* 1)* 1)* n)* n)* n)x
{Xg) ,Xg) ’7XED()1)1)’7X§) 7X§) 7’X£9(37n)}

are non-equivalent either equal.

Let x1,...xn denote all distinct characters in the set

1)* 1)* 1)% n)x n)x n)%

Moreover, put
1 if x\9) is primitive

P (s,x9) =

1L, (1 - %) if x¥9) is imprimitive character mod gq.

Let us observe that, for any imprimitive character x) mod ¢, we have

|P(s + i1, x7) — P(s,x")| < ¢,

provided

1
‘—TlngH < e.
2m

max
plg

Therefore

S

b- @(bj) i ) )
07 2 0 (@) P(s (s, ).
77 k=1

3)-

We see that, for any € > 0, there are £; > 0 and g9 > 0 such that
c(eemi) < (+5)

|L(s+it,x») — L(s,xr)| < &1 forallr=1,...,N,
‘P(s%—iT,Xg,j)) —P(S,XT(?))‘ <g forallj=1,...,n,r=1,...,¢(b).

<€

forall j=1,...,n,if

The above inequalities (5.2) are implied by Theorem 4.5.1. This proves Propo-
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sition 5.2.1. OJ

Proof of Theorem 5.1.1. Let w = ¢, 0 < a < band ged(a,b) = 1. Then, for o > 1,

we have

SEER VB )y _)S%Zqi 1 i

Obviously, for all [ with 0 <[ < k — 1, we can find a;, b; such that (a;,b;) =1

b+a _ a
and = o Hence

Now we have

max IC(s +iar,w;A) — ((s +i6T,w; A)|

k—1

k—1
ap 1 . ap
ks+zar G (8 +1ar, b, ) Lst+iBT Z as (S +1ip, b_l)

=0 =0

sEIC

(5.3)

1 . ajp 1 . ay
ksHMC (s +iaT, b_l) — WC (s + 10T, b_z> ' .

< max max |kq]
sek 0<I<k—1

Note that |k¢| < 1.

In view of (5.3), it is easy to see that Theorem 5.1.1 follows from Proposition
5.2.1.

]

5.3 Proof of Theorem 5.1.2

Proof of Theorem 5.1.2. Let a be a real number. By Proposition 3.4.3, we can
find a real number § such that the set A(«, §;w) is linearly independent over Q.
We have that

max [C(s -+ i, w; %) = ((s + i, w; )
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k-1 k-1
: 1 :
= max ksﬂw Z o (s +iar,w;) — T Z aC (s+ip1,w)
1=0 1=0

1 , 1 :
WC (S + 0, wl) — WC (S + ZﬁT, wl) . (54)

<max max |k¢]
sek 0<I<h—1

Note that |k¢| < 1.

Inequality : 8 log k
a — ) log H
HT 27 <€

implies that

‘k8+’iaT o keri,B‘r’ _ ‘kaHki(a*B)T _ 1‘ < |ki(a75)7' _ 1‘ < €.

This means that

fstiar 1S near ks—f—iﬁ’r'

Now we consider linear independence of numbers log(n + w;) (n € Ny) and log k

over Q, where w; = < and 1 =0,...,k— 1.

Assume that there exists a finite sequence of rational numbers
i, =0,....k—1,n=0,1,2,..., N and d

such that not all of these numbers are equal to 0 and

Ea

-1 N
Z ap, log(n + wp) + dlogk (5.5)

l n=0

B
I
o

-1

N
Zal” (log(nk + 1+ w) —logk) + dlogk = 0.

=0 n=0
Then
k-1 N
Z ap, log(nk + 1+ w) = log k7,
=0 n=0
where
k-1 N
Y= -
=0 n=0
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and

k—1 N

Tk + 14wy =k, (5.6)

=0 n=0

Numbers a;,,, d and ~ are rationals. Therefore, it is not difficult to see that we can
write (5.6) in the form P(w) = 0, where P(w) is a polynomial. Then w is a root of
this polynomial. But w is a transcendental number and we obtain a contradiction.
This gives that numbers log(n + w;) and log k are linearly independent over Q.
By the linear independence of numbers log(n + w;) and log k over Q, and by

Theorem 3.4.1 (for m = 2) we obtain:
max max | (s+iat,w) —((s+ifr,w)| K¢

s€K 0<I<k—1

and Theorem 5.1.2 follows. O
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Conclusions

The results of our thesis demonstrate that:

o Hurwitz zeta-functions ((s,w) have the self-approximation property if w is

a transcendental or a rational number.

o Periodic Hurwitz zeta-functions ((s,w; ) have the self-approximation prop-

erty if w is a transcendental or a rational number.

o The case of algebraic irrational w is the most difficult case in this context

(there is no approach to treat these questions in this case).
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Santrauka

Sioje disertacijoje nagrinéjamos Hurvico (Hurwitz) dzeta funkcijy ir periodiniy
Hurvico dzeta funkcijy saviaproksimacijos.
Tegu s = o +it yra kompleksinis kintamasis, o w — realusis skaicius is intervalo

(0,1]. Kai o > 1, tai Hurvico dzeta funkcija apibréziama lygybe

= 1
s,w) = —_—
C(s,w) 2:% oy
Tarkime, kad 2 = {c,, : m € Ng},Ng = NU {0} yra periodiné kompleksiniy
skaiciy seka, kurios maziausias teigiamas periodas k € N. Kai o > 1, tai periodiné

Hurvico dzeta funkcija apibréziama eilute

() =3
mz:o (m+ w)

o Mes parodéme, kad galioja saviaproksimacijos savybé Hurvico dzeta funkci-

jai, kai w yra trancendentusis skaicius is intervalo (0,1].

Tarkime, kad [ < m ir dy,...,d; € R tokie, kad aibeé
A(dy,ds, ..., dj;w) ={d;log(n+w):j=1,...,1;n € Ny}

yra tiesiskai neprikalausoma virs Q. Kai m > [, tegu d;11, ..., d,, € R tokie,
kad kiekvienas dy, k = (41, ..., m, yra skaiciy dy, . . . , d; tiesiné kombinacija
virs Q . Mes parodéme, kad yra ‘daug’ skai¢iy 7 € R, su kuriais reikSmeés
((s +id;T,w) ir ((s + idyT,w) yra ‘artimos’, ¢ia 1 < j, k < m. Tai papildo
R. Garunkscio gauta rezultata Dirichlé L funkcijoms.

Be to, parodéme, kad su kiekvienu [ > 0 ‘dauguma’ realiyjy skaiciy rinkiniy
di,ds,...,d,w, kai 0 < w < 1, yra tokie, kad aibé A(dy,dy, ..., d;w) yra

tiesiskai nepriklausoma virs Q.

o Mes taip pat parodéme, kad galioja saviaproksimacijos savybé Hurvico dzeta

funkcijoms, kai parametras yra racionalusis skaicius.
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Primename, kad kai w = § yra racionalusis skaicius, (¢ia 0 < a < b ir
(a,b) = 1), tai Hurvico dzeta funkcija galima iSreiksti Dirichlé L funkeiju

tiesine kombinacija

C<s+i7, %) = % Z x(a)L(s +iT, X).

X mod b

Taigi, pasiréme paskutine lygybe, irodéme, kad ((s+iar, §) tolygiai aproksi-
muoja ((s + 47, %) su be galo daug realiyjy skaiciy 7. Cia a, 3 yra realieji
skaiciai, tiesiskai nepriklausomi virs Q, o s yra i$ kompaktinés aibés KC, kuri
priklauso kritinei juostai 1/2 < ¢ < 1. Sis rezultatas papildo Pankovskio
rezultatg gautg Dirichlé L funkcijoms.

« Pasinaudoje ankstesniais musy gautais rezultatais, taip pat parodéme, kad
saviaproksimacijos savybé galioja ir periodinéms Hurvico dzeta funkcijoms
((s,w;A). Mes isnagrinéjome atvejus, kai w yra racionalusis ir trancenden-

tusis skaiciai.

Sioje disertacijoje gautiems rezultatams jrodyti buvo taikyti metodai, nagrinéti
neseniai gautuose Garunksc¢io [12] ir Pankovskio [43], [44] darbuose. Taip pat
taikyti kompleksinio kintamojo funkcijy elementai, mato teorija ir diofantiniai

metodali.
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Notations

a,b,j, k,l,m,n,r t— positive integer numbers.

Q — the set of all rational numbers.

|s| — the absolute value of a complex number s.

KC — the compact subset of the strip 1/2 < o < 1.

|lz|| — the distance from = € R to the nearest integer.

(a,b) or ged(a, b) — the greatest common divisor of a and b.

2l — the periodic sequence of complex numbers with the smallest period k& € N.
meas { A} — the Lebesgue measure of a measurable set A.

©(n) — the Euler totient function.

< — means that f(z) < g(z) if and only if there a positive number ¢ and a real

number z, such that |f(z)| < c|g(z)], for all z > .
<, — means that A < B holds for fixed y.

g,0 — arbitrarily small positive number.

X — the Dirichlet character.

log x — the natural logarithm of x.
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['(s) — the Euler gamma-function defined by
[(s) = / e “x*dx, for o > 0,
0
and by analytic continuation elsewhere.

((s) — the Riemann zeta-function defined by

oo

1
g(s):ZE, for o > 1,

n=1

and by analytic continuation elsewhere.

((s,w) — the classical Hurwitz zeta-function defined by

= 1
((s,w) = Zm, for o > 1,

n=0

and by analytic continuation elsewhere.

((s,w;A) — the periodic Hurwitz zeta-function defined by

C(s,w;A) = Z ﬁ, for o > 1,
m=0

and by analytic continuation elsewhere.

L(s, x) — the Dirichlet L-function defined by

and by analytic continuation elsewhere.

L(\,w, s) — the Lerch zeta-function defined by

and here w, A € R, 0 < w < 1, are fixed parameters.
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