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1 Introduction

Suppose that {Xk} = {Xk : k ∈ Z} is a linear process with values in a separable

Hilbert space H, i.e. {Xk} is a sequence of H-valued random elements such that

Xk =
∞∑
j=0

aj(εk−j)

for each k ∈ Z, where {aj} = {aj : j ≥ 0} ⊂ L(H) are bounded linear operators

from H to H and {εk} = {εk : k ∈ Z} are independent and identically distributed

H-valued random elements. The interesting question is whether the asymptotic

behaviour of the linear process {Xk} differs from the asymptotic behaviour of

independent and identically distributed random elements.

By asymptotic behaviour we mean the convergence in some sense of the normalised

partial sums and the normalised random polygonal lines. The partial sums {Sn} =

{Sn : n ≥ 1} are defined by

Sn =
n∑
k=1

Xk

for each n ≥ 1 and the random polygonal lines {ζn} = {ζn : n ≥ 1} = {ζn(t) : t ∈

[0, 1]}n≥1 are defined by

ζn(t) = Sbntc + {nt}Xbntc+1

for each n ≥ 1 and each t ∈ [0, 1], where b·c is the floor function given by

bxc = max{m ∈ Z | m ≤ x} for each x ∈ R and {x} = x − bxc is the fractional

part of x ∈ R.

The asymptotic behaviour of the linear process {Xk} depends on the convergence

of the series
∞∑
j=0

‖aj‖, (1.1)

where ‖ · ‖ is the operator norm. If series (1.1) converges, then the asymptotic

behaviour of linear processes is essentially the same as that of independent and
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identically distributed random elements. For example, suppose that series (1.1)

converges, E ε0 = 0 and E ‖ε0‖2 < ∞, where ‖ · ‖ is the norm of the space H.

Then n−1/2
∑n

k=1Xk converges in distribution to an H-valued Gaussian random

element with zero mean (see Merlevède, Peligrad, and Utev [42], Račkauskas and

Suquet [47]). However, if series (1.1) fails to converge, the asymptotic behaviour

of the linear process {Xk} might be different than that of independent and identi-

cally distributed random elements (see Louhichi and Soulier [37], Račkauskas and

Suquet [48], Characiejus and Račkauskas [6, 7]).

The main objective of this thesis is to investigate the asymptotic behaviour of the

linear process {Xk} when the series of the operator norms of {aj} diverges, i.e.
∞∑
j=0

‖aj‖ =∞.

We establish sufficient conditions for the central limit theorem and the func-

tional central limit theorem for a particular linear process and the Marcinkiewicz-

Zygmund type weak and strong laws of large numbers for a general linear process.

Central limit theorem and functional central limit theorem

Let (S,S, µ) be a σ-finite measure space and L2(µ) = L2(S,S, µ) be the real

separable Hilbert space of equivalence classes of µ-almost everywhere equal square-

integrable functions. In Chapter 3, we study an L2(µ)-valued linear process {Xk}

with the operators {aj} given by

aj = (j + 1)−D

for each j ≥ 0, where D : L2(µ) → L2(µ) is a multiplication operator such

that Df = {d(s)f(s) : s ∈ S} for each f ∈ L2(µ) with a measurable function

d : S → R and {εj} are independent and identically distributed L2(µ)-valued

random elements with E ε0 = 0 and either E ‖ε0‖2 < ∞ or E ‖ε0‖p < ∞ for

some p > 2. This linear process could serve as a model of a sequence of random

functions with space varying memory and such models might be interesting in

functional data analysis.

We establish sufficient conditions for the central limit theorem and the functional

central limit theorem in the two cases: either 1/2 < d(s) < 1 for each s ∈ S
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(Theorem 3.2 and Theorem 3.5) or d(s) = 1 for each s ∈ S (Theorem 3.3 and

Theorem 3.6). The novelty of our results is that the normalising sequence when

1/2 < d(s) < 1 for each s ∈ S is a sequence of operators {n−H} = {n−H : n ≥ 1},

where H : L2(µ)→ L2(µ) is a multiplication operator given by

Hf = {[3/2− d(s)]f(s) : s ∈ S}

for each f ∈ L2(µ). The Gaussian process obtained in the functional central limit

theorem when 1/2 < d(s) < 1 for each s ∈ S generates an operator self-similar

process.

Marcinkiewicz-Zygmund type laws of large numbers

In Chapter 4 we investigate an H-valued linear process {Xk}, where {εj} are

independent and identically distributed H-valued random elements with E ε0 = 0

and either limx→∞ x
p Pr{‖ε0‖ > x} = 0, E ‖ε0‖p <∞ or E[‖ε0‖p log(1 + ‖ε0‖)] <

∞ for some 1 < p < 2. We establish sufficient conditions for the Marcinkiewicz-

Zygmund type weak law of large numbers (Theorem 4.1 and Theorem 4.3) and

the Marcinkiewicz-Zygmund type strong law of large numbers (Theorem 4.2 and

Theorem 4.4). When the series
∑∞

j=0 ‖aj‖ converges, we show that the linear

process {Xk} inherits the Marcinkiewicz-Zygmund type laws of large numbers

with the same normalising sequence {n1/p} = {n1/p : n ≥ 1} from the random

elements {εk}. However, if the series
∑∞

j=0 ‖aj‖ diverges, the Marcinkiewicz-

Zygmund type laws of large numbers hold with a different normalisation as we

illustrate with an example in Section 4.1. We generalize the results of Louhichi

and Soulier [37] in the sense that we do not assume that the distributions of {εk}

are α-stable.

The rest of the thesis is divided into four chapters. The purpose of Chapter 2

is to present known results about the asymptotic behaviour of linear processes

and give some background on the notions of long memory and self-similarity. The

central limit theorem and the functional central limit theorem is investigated in

Chapter 3. In Chapter 4 we study the Marcinkiewicz-Zygmund type laws of large

numbers. Finally, we give conclusions in Chapter 5.
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2 Background

2.1 Linear processes

Let E be a separable Banach space and L(E) be the space of bounded linear

operators from E to E.

Definition 2.1. A linear process is a sequence {Xk} = {Xk : k ∈ Z} of E-valued

random elements given by

Xk =
∞∑
k=0

aj(εk−j)

for each k ∈ Z, where {aj} = {aj : j ≥ 0} ⊂ L(H) is a sequence of bounded linear

operators and {εk} = {εk : k ∈ Z} is a sequence of independent and identically

distributed H-valued random elements.

We only investigate linear processes with independent and identically distributed

random elements {εk}. We review some results about linear processes with values

in a separable Banach space E, but the linear processes that we investigate have

values in a separable Hilbert space H.

2.2 Asymptotic behaviour of linear processes

Our target in this section is to review some known results about asymptotic be-

haviour of linear processes. We are interested in the convergence in distribution,

almost surely and in probability of the normalised partial sums

b−1
n Sn (2.1)

and the convergence in distribution of the normalised random polygonal functions

b−1
n ζn, (2.2)

where {bn} = {bn : n ≥ 1} is a normalising sequence.

13



2.2.1 Central limit theorem

Real linear processes

Consider a real linear process {Xk} with
∑∞

j=0 a
2
j < ∞, E ε0 = 0 and E ε2

0 <∞.

Denote σ2 = E ε2
0. Intuitively, we might expect sequence (2.1) to converge in

distribution to a normally distributed random variable with the normalising se-

quence {bn} given by b2
n = E |Sn|2 for each n ≥ 1. It is indeed the case, as the

following theorem shows (see Theorem 18.6.5 of Ibragimov and Linnik [27] for the

proof of Theorem 2.1).

Theorem 2.1. Suppose that {Xk} is a real linear process with
∑∞

j=0 a
2
j < ∞,

E ε0 = 0 and E ε2
0 <∞. If E |Sn|2 →∞ as n→∞, then

Sn√
E |Sn|2

D−→ N (0, 1) as n→∞.

However, it is not possible to establish the asymptotic behaviour of E |Sn|2 without

any additional assumptions on the sequence {aj}.

The asymptotic behaviour of E |Sn|2 depends on the convergence of the series

∞∑
j=0

|aj|. (2.3)

If series (2.3) converges and the series

A =
∞∑
j=0

aj (2.4)

converges to a non-zero limit, then E |Sn|2 grows linearly.

Proposition 2.1. Suppose that {Xk} is a real linear process with
∑∞

j=0 |aj| <∞,

A 6= 0, E ε0 = 0 and E ε2
0 <∞. Then

ES2
n ∼ σ2A2 · n as n→∞.

Proof. Using the stationarity of {Xk},

ES2
n = n

[
EX2

0 + 2
n−1∑
k=1

(1− k/n) E[X0Xk]
]

14



= nσ2
[ ∞∑
j=0

a2
j + 2

n−1∑
k=1

(1− k/n)
∞∑
j=0

ajaj+k

]
.

We have that

A2 =
∞∑
j=0

a2
j + 2

∞∑
k=1

∞∑
j=0

ajaj+k

and

lim
n→∞

n−1∑
k=1

(1− k/n)
∞∑
j=0

ajaj+k =
∞∑
k=1

∞∑
j=0

ajaj+k

since any convergent series is Cesàro summable, and the sum of the series agrees

with its Cesàro sum. The proof is complete.

If series (2.3) converges and series (2.4) converges to a non-zero limit, then se-

quence (2.1) converges in distribution to a normally distributed random variable

with the normalising sequence {bn} given by bn =
√
n for each n ≥ 1 (see also

Theorem 3.11 of Phillips and Solo [46] and Theorem 4.5 of Beran, Ghosh, Feng,

and Kulik [2].).

Corollary 2.1. Suppose that {Xk} is a real linear process with
∑∞

j=0 |aj| < ∞,

A 6= 0, E ε0 = 0 and E ε2
0 <∞. Then

Sn√
n

D−→ N (0, σ2A2) as n→∞.

If series (2.3) diverges, then ES2
n might even grow faster than linearly. A simple

example would be {aj} given by

aj = (j + 1)−ϕ (2.5)

for each j ≥ 0 with 1/2 < ϕ < 1.

Proposition 2.2. Suppose that {Xk} is a real linear process with {aj} given

by (2.5), E ε0 = 0 and E ε2
0 <∞. Then

ES2
n ∼

σ2c(ϕ)

(1− ϕ)(3− 2ϕ)
· n3−2ϕ as n→∞,

where

c(ϕ) =

∫ ∞
0

[x(x+ 1)]−ϕdx. (2.6)

See Giraitis, Koul, and Surgailis [19] for the proof of Proposition 2.2.

If {aj} is given by (2.5), then sequence (2.1) converges to a normally distributed

random variable with the normalisation {bn} given by bn = n3/2−ϕ for each n ≥ 1.
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Corollary 2.2. Suppose that {Xk} is a real linear process with {aj} given by (2.5),

E ε0 = 0 and E ε2
0 <∞. Then

Sn
n3/2−ϕ

D−→ N (0, v) as n→∞,

where v is given by

v =
σ2c(ϕ)

(1− ϕ)(3− 2ϕ)

with c(ϕ) given by (2.6).

Linear processes with values in abstract spaces

Let us recall the definition of a Gaussian random element with values in a real

separable Banach space E. E∗ denotes the topological dual space of E. For details

about Gaussian random elements with values in Banach spaces, see Ledoux and

Talagrand [35].

Definition 2.2. An E-valued random element X is Gaussian if the real random

variable f(X) is Gaussian for each f ∈ E∗.

Consider a linear process {Xk} with values in a separable Hilbert space H, E ε0 = 0

and E ‖ε0‖2 < ∞, where ‖ · ‖ is the norm of the Hilbert space H. It seems that

there is no simple generalisation of Theorem 2.1 for linear processes with values in

abstract spaces. Merlevède et al. [42] show that, without any additional assump-

tions on the operators {aj} or on the covariance operator of ε0, the tightness of

both {Sn/
√
n : n ≥ 1} and {Sn/

√
E ‖Sn‖2 : n ≥ 1} may fail and no analogue of

Theorem 2.1 is possible.

However, if we assume that the series
∞∑
j=0

‖aj‖ (2.7)

converges, essentially an analogue of Corollary 2.1 is true (see Merlevède et al. [42]

for the proof of Theorem 2.2).

Theorem 2.2. Suppose that {Xk} is an H-valued linear process with
∑∞

j=0 ‖aj‖ <

∞, E ε0 = 0 and E ‖ε0‖2 <∞. Then

Sn√
n

D−→ N (0, ACε0A
∗) as n→∞,
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where N is an H-valued Gaussian random element, Cε0 denotes the covariance

operator of ε0, A =
∑∞

j=0 aj and A∗ is the adjoint operator of A.

Račkauskas and Suquet [47] extend the result of Merlevède et al. [42] to linear

processes with values in a separable Banach space E. They establish that the linear

process inherits its asymptotic behaviour from {εk} if series (2.7) converges.

Theorem 2.3. Suppose that {Xk} is an E-valued linear process with
∑∞

j=0 ‖aj‖ <

∞. If
ε1 + . . .+ εn√

n

D−→ N (0, Cε0) as n→∞,

then
Sn√
n

D−→ N (0, ACε0A
∗) as n→∞,

where N is an E-valued Gaussian random element, Cε0 denotes the covariance

operator of ε0, A =
∑∞

j=0 aj and A∗ is the adjoint operator of A.

Remark 2.1. If {εk} are independent and identically distributed random elements

with values in the separable Hilbert space H, then E ε0 = 0 and E ‖ε0‖2 < ∞

implies that {εk} satisfies the central limit theorem in H. However, in some sep-

arable Banach spaces no integrability condition ensures that {εk} satisfies the

central limit theorem. For this reason, the assumptions of Theorem 2.2 and The-

orem 2.3 are different (for more details, see Ledoux and Talagrand [35]).

In Chapter 3 we investigate the central limit theorem for a functional linear process

with values in a particular Hilbert space when series (2.7) diverges. The case we

investigate shows that the normalizing sequence might be a sequence of operators

when series (2.7) diverges.

2.2.2 Functional central limit theorem

Real linear process

Consider a real linear process {Xk} with
∑∞

j=0 a
2
j < ∞, E ε0 = 0 and 0 < E ε2

0 <

∞. As in the case of the central limit theorem, the asymptotic behaviour of

sequence (2.2) depends on the convergence of the series (2.3). Depending on the

17



asymptotic behaviour of the variance of the partial sums, the limit can be the

Wiener process or the fractional Brownian motion.

Let us recall the definitions of the Wiener process and the fractional Brownian

motion.

Definition 2.3. The Wiener process {W (t) : t ≥ 0} is a real-valued Gaussian

random process such that

(i) EW (t) = 0 for each t ≥ 0;

(ii) E[W (s)W (t)] = min{s, t} for s ≥ 0 and t ≥ 0;

(iii) Pr{W ∈ C[0,∞)} = 1.

Definition 2.4. The fractional Brownian motion {BH(t) : t ≥ 0} with the self-

similarity parameter H ∈ (0, 1) (or the Hurst parameter) is a real-valued Gaussian

process such that

(i) EBH(t) = 0 for each t ≥ 0;

(ii) E[BH(s)BH(t)] = 1
2
(|s|2H + |t|2H − |s− t|2H) for s ≥ 0 and t ≥ 0;

(iii) Pr{BH ∈ C[0,∞)} = 1.

Although the fractional Brownian motion was introduced by Kolmogorov [30], it

was Mandelbrot and Van Ness [39] who recognized the relevance of this random

process and gave this process the name by which it is known today. Let us observe

that the fractional Brownian motion with H = 1/2 is the Wiener process. See

Chapter 6 of Resnick [50] for more details about the Wiener process and see

Chapter 3 of Beran et al. [2] or Chapter 7 of Samorodnitsky and Taqqu [53] for

more details about the fractional Brownian.

We begin with the case when series (2.3) converges and the series A given by (2.4)

converges to a non-zero limit (see Wang, Lin, and Gulati [57] or Merlevède,

Peligrad, and Utev [43] for the proof of Theorem 2.4).

Theorem 2.4. Suppose that {Xk} is a real linear process with
∑∞

j=0 |aj| < ∞,

A 6= 0, E ε0 = 0 and E ε2
0 <∞. Then

b−1
n ζn

D−→ W

18



in C[0, 1] as n→∞ with {bn} given by

bn = A ·
√
n.

As we have already seen in Proposition 2.2, if series (2.3) diverges, the variance

of the partial sums can grow faster than linearly. This changes not only the

normalizing sequence {bn}, but also the limit of sequence (2.2). The following

result was first proven by Davydov [13] under the assumption of E ε2k
0 < ∞ for

k ≥ 2. It is possible to prove the following result under the assumption of E ε2
0 <

∞ (see Theorem 4.6 of Beran et al. [2] or Theorem 1 of Konstantopoulos and

Sakhanenko [31] for the proof of Theorem 2.5).

Theorem 2.5. Suppose that {Xk} is a real linear process with {aj} given by (2.5),

E ε0 = 0 and E ε2
0 <∞. Then

b−1
n ζn

D−→ B3/2−ϕ

in C[0, 1] as n→∞ with

b2
n =

σ2c(ϕ)

(1− ϕ)(3− 2ϕ)
· n3−2ϕ,

where c(ϕ) is given by (2.6) and B3/2−ϕ is the fractional Brownian motion with

the self-similarity paramter equal to 3/2− ϕ.

Linear processes with values in abstract spaces

Before we review the functional central limit theorems for linear processes with

values in abstract spaces, we need to introduce more general definitions of a Gaus-

sian random process and the Wiener process.

Definition 2.5. An E-valued random process {ξ(t) : t ∈ T}, indexed by some set

T , is Gaussian if
n∑
i=1

αiξ(ti)

is an E-valued Gaussian random element for any n ≥ 1, α1, . . . , αn ∈ R and

t1, . . . , tn ∈ T .

For details about Gaussian random processes with values in Banach spaces, see

Ledoux and Talagrand [35].
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Definition 2.6. An E-valued Wiener process {WQ(t) : t ≥ 0} is an E-valued

centred Gaussian random process with independent increments such that WQ(t)−

WQ(s) has the same distribution as |t − s|1/2G for t > s ≥ 0, where G is an E-

valued centred Gaussian random element with the covariance operator Q.

See Van Thu [55] for alternative definitions of an E-valued Wiener process.

Račkauskas and Suquet [47] prove that the E-valued linear process inherits its

asymptotic behaviour from {εk} if series (2.7) converges.

Theorem 2.6. Suppose that {Xk} is an E-valued linear process with
∑∞

j=0 ‖aj‖ <

∞ and
ε1 + . . .+ εn√

n

D−→ N (0, Cε0) as n→∞.

Then
ζn√
n

D−→ WACε0A
∗

in C([0, 1];E) as n → ∞, where WACε0A
∗ is an E-valued Wiener process, Cε0

denotes the covariance operator of ε0, A =
∑∞

j=0 aj and A∗ is the adjoint operator

of A.

Duncan, Pasik-Duncan, and Maslowski [15] generalize the definition the fractional

Brownian motion. They establish the existence of the fractional Brownian mo-

tion with values in a separable Hilbert space H. Suppose that Q ∈ L(H) is a

non-negative, self-adjoint and trace class operator. Let Cov[X, Y ] denote the co-

variance operator of two H-valued random elements X and Y . Duncan et al. [15]

give the following definition of the fractional Q-Brownian motion.

Definition 2.7. The H-valued fractional Q-Brownian motion {BH,Q(t) : t ≥ 0}

with the Hurst parameter 1/2 < H < 1 is an H-valued Gaussian random process

such that

(i) EBH,Q(t) = 0 for each t ≥ 0;

(ii) Cov[BH,Q(s), BH,Q(t)] = 2−1(|s|2H + |t|2H − |s− t|2H)Q for all 0 ≤ s < t;

(iii) Pr{BH,Q ∈ C([0,∞);H)} = 1.

Račkauskas and Suquet [47] define the H-valued fractional Brownian motion with

the Hurst parameter H ∈ L(H). Let H ∈ L(H) and Q ∈ L(H) be non-negative
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operators and suppose that Q is trace class.

Definition 2.8. The H-valued operator fractional Q-Brownian motion with the

Hurst parameter H is an H-valued Gaussian random process such that

(i) EBH,Q(t) = 0 for each t ≥ 0;

(ii) Cov[BH,Q(s), BH,Q(t)] = 2−1(|s|2H + |t|2H − |s − t|2H)Q for all s ≥ 0 and

t ≥ 0.

Račkauskas and Suquet [48] prove the existence of an H-valued operator fractional

Q-Brownian motion only under additional assumptions on the operators H and

Q (they assume that H is a self-adjoint operator such that 1
2
I < H < I and

the operator H commutes with the operator Q). They also establish that the

H-valued operator fractional Q-Brownian motion has a continuous version.

Consider an H-valued linear process {Xk} with {aj} given by

a0 = I, aj = j−T for j ≥ 1, (2.8)

where T ∈ L(H) satisfies 1/2I < T < I, E ε0 = 0 and E ‖ε0‖2 < ∞. Let Q be

a covariance operator of ε0. Assume that T commutes with Q. Račkauskas and

Suquet [48] show that the series

∞∑
j=0

‖aj‖ =∞

and sequence (2.2) converges in distribution to an H-valued operator fractional

Q-Brownian motion with the Hurst parameter H = 3/2I − T .

Theorem 2.7. Suppose that {Xk} is an H-valued linear process with {aj} given

by (2.8), E ε0 = 0, E ‖ε0‖2 <∞ and the covariance operator Q commutes with T .

Then

c(T )n−Hζn
D−→ BH,Q

in C([0, 1];H) as n→∞, where BH,Q is an operator fractional Q-Brownian mo-

tion with the operator Hurst parameter H = 3/2I−T and bounded linear operator

c(T ).

See Račkauskas and Suquet [48] for the expression of the operator c(T ).
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In Chapter 3 we investigate the case when the series of operator norms of {aj}

diverges and T not necessarily commutes with Q. When T does not commute

withQ, the random polygonal lines converge in distribution to a different Gaussian

process than the operator fractional Q-Brownian motion.

2.2.3 Law of large numbers

The law of large numbers is a well-know result in the probability theory, but we

state both the strong and weak law of large numbers here in order to emphasize

different assumptions of the weak and the strong law of large numbers.

Theorem 2.8 (Weak law of large numbers). Suppose that {ξn : n ≥ 1} are

independent and identically distributed random variables and set Sn =
∑n

k=1 ξk.

There exists a real sequence {µn : n ≥ 1} such that
Sn
n
− µn → 0 (2.9)

in probability as n → ∞ if and only if xPr{|ξ0| > x} → 0 as x → ∞. In this

case (2.9) holds with µn = E[ξ0I{|ξ0|≤n}].

See Feller [17] and Resnick [51] for the proof of Theorem 2.8.

Theorem 2.9 (Strong law of large numbers). Suppose that {ξn : n ≥ 1} are

independent and identically distributed random variables and set Sn =
∑n

k=1 ξk.

There exists c ∈ R such that
Sn
n
→ c

almost surely as n→∞ if and only if E |ξ0| <∞ in which case c = E ξ0.

See Resnick [51] for the proof of Theorem 2.9.

Phillips and Solo [46] established the strong law of large numbers for real linear

processes. They proved the following two theorems.

Theorem 2.10. Suppose that
∞∑
j=1

|jaj|2 <∞,

{εk} are independent and identically distributed with E ε2
0 < ∞ and zero means.

Then
Sn
n
→ 0
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almost surely as n→∞.

Theorem 2.11. Suppose that
∞∑
j=1

j|aj| <∞,

{εk} are independent and identically distributed with E |ε0| < ∞ and zero mean.

Then
Sn
n
→ 0

almost surely as n→∞.

There are generalizations of both the weak law of large numbers and the strong

law of large numbers.

Theorem 2.12 (Marcinkiewicz-Zygmund type weak law of large numbers). Sup-

pose that {ξn : n ≥ 1} are independent and identically distributed random variables

and set Sn =
∑n

k=1 ξk. Fix any p ∈ (0, 2) and c ∈ R. Then

Sn
n1/p

→ c

in probability as n → ∞ if and only if the following conditions hold as r → ∞,

depending on the value of p:

p < 1: rp Pr{|ξ1| > r} → 0 and c = 0;

p = 1: rPr{|ξ1| > r} → 0 and E[ξ1I{|ξ1|≤r}]→ c;

p > 1: rp Pr{|ξ1| > r} → 0 and E ξ1 = c = 0.

Theorem 2.13 (Marcinkiewicz-Zygmund strong law of large numbers). Suppose

that {ξn : n ≥ 1} are independent and identically distributed random variables

and set Sn =
∑n

k=1 ξk. Fix any p ∈ (0, 2). Then

Sn
n1/p

converges almost surely as n→∞ if and only if E |ξ1|p <∞ and either p ≤ 1 or

E ξ1 = 0. In that case the limit equals E ξ1 for p = 1 and is otherwise 0.

See Kallenberg [29] for the proofs of Theorem 2.12 and Theorem 2.13.

Louhichi and Soulier [37] investigate the Marcinkiewicz-Zygmund type strong law

of large numbers for real linear processes when the series
∑∞

j=0 |aj| not necessarily
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converges. Suppose that {εk} are independent and identically distributed sym-

metric α-stable variables with 1 < α < 2 or uncorrelated with finite variance. The

latter case is refered to as the case α = 2 for convenience. Let {aj} be a sequence

of real numbers such that
∑∞

j=0 |aj|α < ∞. Louhichi and Soulier [37] prove the

following theorem.

Theorem 2.14. Assume that there exists a real s ∈ [1, α) such that
∑∞

j=0 |aj|s <

∞. Then for all p such that 1/p > 1− 1/s+ 1/α,

Sn
n1/p

→ 0

almost surely as n→∞.

In Chapter 4 we investigate the Marcinkiewicz-Zygmund type weak and strong

laws of large numbers for general linear processes with values the space H. We

make assumptions of E ε0 = 0 and either limx→∞ x
p Pr{‖ε0‖ > x} = 0, E ‖ε0‖p <

∞ or E[‖ε0‖p log(1 + ‖ε0‖)] < ∞ for some 1 < p < 2. So we generalize Theo-

rem 2.14 in the sense that we do not assume that the distributions of {εk} are

α-stable.

The following two theorems are generalizations of the Marcinkiewicz-Zygmund

type laws of large numbers to separable Hilbert spaces.

Theorem 2.15. Let 1 ≤ p < 2. Suppose that {ξn : n ≥ 1} are independent

and identically distributed symmetric random elements with values in a separable

Hilbert space H. Then ∑n
k=1 ξk
n1/p

→ 0

in probability as n→∞ if and only if limx→∞ x
p Pr{‖ξ0‖ > x} = 0.

Theorem 2.16. Let 0 < p < 2. Suppose that {ξn : n ≥ 1} are independent and

identically distributed random elements with values in a separable Hilbert space H.

Then ∑n
k=1 ξk
n1/p

→ 0

almost surely as n→∞ if and only if E ‖ξ1‖p <∞ and E ξ1 = 0 if p ≥ 1.

See Ledoux and Talagrand [35] for the proofs of Theorem 2.15 and Theorem 2.16.
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2.3 Memory

There is evidence that long memory processes occur quite frequently in various

fields, such as finance, econometrics, internet modeling, hydrology, climates stud-

ies, linguistics, DNA sequencing (we refer to Samorodnitsky [52] for a review of

the notion of long memory; for probabilistic foundations, statistical methods, and

applications, see Giraitis et al. [19], Beran [1] and Palma [45]).

There are many definitions of the memory of a random process and, unfortunately,

the definitions are not equivalent (Guégan [21] mentions 11 different definitions).

We restrict our attention to stationary and strictly stationary sequences of random

variables.

Definition 2.9. A sequence {Xk} = {Xk : k ∈ Z} of random variables is station-

ary if

(i) EX2
k <∞ for each k ∈ Z;

(ii) EXk = m for each k ∈ Z, where m ∈ R;

(iii) Cov[Xr, Xs] = Cov[Xr+t, Xs+t] for all r, s, t ∈ Z.

Remark 2.2. If {Xk} is stationary, then Cov[Xr, Xs] = Cov[X0Xs−r] for all s, t ∈ Z

and it makes sense to investigate Cov[X0Xh] for h ≥ 0 instead of Cov[Xr, Xs] for

r, s ∈ Z.

Definition 2.10. A sequence of random variables {Xk : k ∈ Z} is said to be

strictly stationary if the joint distributions of (Xt1 , . . . , Xtk) and (Xt1+h, . . . , Xtk +

h) are the same for all k ≥ 1 and for all t1, . . . , tk, h ∈ Z.

If we are considering stationary sequences of random variables, we can define the

memory of a random process in terms of the asymptotic behaviour of the sequence

of covariances.

Definition 2.11. A stationary sequence of random variables {Xk} has long mem-

ory if the series
∞∑
j=0

|Cov[X0Xj]| (2.10)

diverges. If series (2.10) converges, then the sequence {Xk} has short memory.

25



Clearly, a sequence of independent and identically distributed random variables

has short memory. An example of a sequence of random variables that has long

memory is not straightforward. Two well-known examples are the fractional Gaus-

sian noise and the fractional ARIMA process.

Definition 2.12. The fractional Gaussian noise is a sequence {ξk} = {ξk : k ≥ 0}

of the increments of the fractional Brownian motion {BH(t) : t ≥ 0} given by

ξk = BH(k)−BH(k − 1)

for k ≥ 0, where H ∈ (0, 1) is the self-similarity parameter.

The fractional Gaussian noise has the following properties:

(i) Corr[ξj+h, ξj] ∼ H(2H − 1)h−2(1−H) as h→∞ for H ∈ (0, 1) and H 6= 1/2;

(ii) Var
[∑n

k=1 ξk

]
= E[B2

H(1)] · n2H for H ∈ (0, 1).

If 1/2 < H < 1, the fractional Gaussian noise has long memory.

Definition 2.13. Let −1/2 < ψ < 1/2. The fractional ARIMA(0, ψ, 0) process

with the parameter ψ is a real linear process with {aj} given by

aj =
Γ(j + ψ)

Γ(j + 1)Γ(ψ)
=
∏

0<k≤j

k − 1 + ψ

k

for each j ≥ 0, where Γ is the gamma function.

The fractional ARIMA(0, ψ, 0) process was introduced independently by Granger

and Joyeux [20] and Hosking [25]. We have that (see Chapter 13 of Brockwell and

Davis [5])

Corr[X0, Xh] ∼
Γ(1− ψ)

Γ(ψ)
· h2ψ−1 as h→∞,

where {Xk} is the fractional ARIMA(0, ψ, 0) process with −1/2 < ψ < 1/2. Thus

the fractional ARIMA(0, ψ, 0) with 0 < ψ < 1/2 has long memory.

The idea behind Definition 2.11 is that the absolute summability of the autoco-

variances {Cov[X0, Xj] : j ≥ 0} implies at most linear growth of the variance of

the partial sums.

Proposition 2.3. Suppose that {Xk} is a stationary sequence that has short mem-

ory. Then VarSn = O(n) as n→∞. Furthermore, if

lim
n→∞

n−1∑
k=1

(1− k/n) Cov[X0, Xk] 6= −
1

2
VarX0,

26



then VarSn ∼ c · n as n→∞, where c is a positive constant.

Proof. . Using the stationarity of the sequence {Xk},

1

n
VarSn = VarX0 + 2

n−1∑
k=1

(1− k/n) Cov[X0, Xk].

Similarly, as in the proof of Proposition 2.1, we have that

lim
n→∞

n−1∑
k=1

(1− k/n) Cov[X0, Xk] =
∞∑
k=1

Cov[X0, Xk]

since any convergent series is Cesàro summable, and the sum of the series agrees

with its Cesàro sum.

The following definition of the memory of a random process was proposed by

Cox [10] and it is relevant to this thesis since we are investigating the functional

central limit theorem.

Definition 2.14. Let {an : n ≥ 1} and {bn : n ≥ 1} be real sequences such

that bn → ∞ as n → ∞. A strictly stationary sequence of random variables

{ξk : k ∈ Z} has long memory if the finite-dimensional distributions of the random

processes {
b−1
n

bntc∑
k=1

(ξk − an) : t ≥ 0

}
converge weakly to the finite-dimensional distributions of the random process with

dependent increments. If the increments of the limit process are independent, the

sequence {ξk : k ∈ Z} has short memory.

The long memory (short memory) defined in Definition 2.11 is sometimes called

covariance long memory (covariance short memory) and the long memory defined

in Definition 2.14 is sometimes called distributional long memory (distributional

short memory) to make a distinction between these two definitions.

Definition 2.11 and Definition 2.14 are not equivalent. Consider, for example, a

real linear process with {aj} given by aj = (j + 1)−1 for each j ≥ 0, E ε0 = 0 and

E ε2
0 <∞. Then it has covariance long memory since

∞∑
h=0

|Cov[X0, Xh]| =∞,
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but distributional short memory since the finite-dimensional distributions of the

processes {
(σ ·
√
n log n)−1

bntc∑
k=1

Xk : t ≥ 0

}
converge weakly to the finite dimensional distributions of the Wiener process, i.e.

a process with independent increments.

Louhichi and Soulier [37] proposed a definition of long memory based on the rate

of convergence in the Marcinkiewicz-Zygmund type strong law of large numbers.

Definition 2.15. Let {ξk : k ∈ Z} be a strictly stationary sequence of random

variables with zero means and E |ξ0|q < ∞ for some q ∈ [1, 2]. The sequence

{ξk : k ∈ Z} has short memory if ∑n
k=1 ξk
n1/p

→ 0

almost surely as n→∞ for all 0 < p ≤ q and p < 2. The sequence {ξk} has long

memory otherwise.

2.4 Self-similarity

Self-similar processes are random processes that are invariant in distribution under

suitable scaling of time and space. More precisely, let ξ = {ξ(t) : t ≥ 0} be an

Rq-valued stochastic process defined on some probability space (Ω,F , P ). The

process ξ is said to be self-similar if for any a > 0 there exists b > 0 such that

{ξ(at) : t ≥ 0} fdd= {bξ(t) : t ≥ 0},

where fdd
= denotes the equality of the finite-dimensional distributions.

Self-similar processes were first studied rigorously by Lamperti [33]. Well-known

examples are the Wiener process and the fractional Brownian motion with the

self-similarity parameter 0 < H < 1 (in these cases b is equal to a1/2 and aH

respectively). We refer to Embrechts and Maejima [16] for the current state of

knowledge about self-similar processes and their applications.

Laha and Rohatgi [32] introduced operator self-similar processes taking values

in Rq. They extended the notion of self-similarity to allow scaling by a class of
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matrices. Such processes were later studied by Hudson and Mason [26], Maejima

and Mason [38], Lavancier, Philippe, and Surgailis [34] and Didier and Pipiras [14]

among others.

Matache and Matache [41] consider and study operator self-similar processes val-

ued in (possibly infinite-dimensional) Banach spaces. Recall that E denotes a

Banach space and L(E) is the algebra of all bounded linear operators from E to

E. Matache and Matache [41] give the following definition.

Definition 2.16. An operator self-similar process is a random process ξ = {ξ(t) :

t ≥ 0} on E such that there is a family {T (a) : a > 0} in L(E) with the property

that for each a > 0,

{ξ(at) : t ≥ 0} fdd= {T (a)ξ(t) : t ≥ 0}.

The family {T (a) : a > 0} is called the scaling family of operators. If operators

{T (a) : a > 0} have the particular form T (a) = aGI, where G is some fixed scalar

and I is an identity operator, then a random process is called self-similar instead

of operator self-similar.
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3 Central limit theorem and functional

central limit theorem

In this chapter we investigate a linear process {Xk} = {Xk : k ∈ Z} with values

in a separable Hilbert space L2(µ) defined by

Xk =
∞∑
j=0

aj(εk−j) (3.1)

for each k ∈ Z with {aj} given by

aj = (j + 1)−D (3.2)

for j ≥ 0, where D : L2(µ) → L2(µ) is a multiplication operator such that

Df = {d(s)f(s) : s ∈ S} for each f ∈ L2(µ) and d : S → R is a measurable

function. We assume that {εk} = {εk : k ∈ Z} are independent and identically

distributed L2(µ)-valued random elements with E ε0 = 0 and either E ‖ε0‖2 <∞

or E ‖ε0‖p <∞ for some p > 2. We establish sufficient conditions for the central

limit theorem and the functional central limit theorem for {Xk}.

3.1 Preliminaries

3.1.1 Construction of linear processes

There are two approaches to construct {Xk} with values in L2(µ). The first

approach is to define {Xk} as random processes with space varying memory and

square µ-integrable sample paths. The second approach is to define L2(µ)-valued

linear process with {aj} given by (3.2) and to investigate the convergence of

series (3.1). We present both of these two approaches.
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First approach

Let {εk} = {εk(s) : s ∈ S}k∈Z be independent and identically distributed mea-

surable random processes defined on the probability space (Ω,F , P ), i.e. {εk} are

F ⊗ S-measurable functions εk : Ω × S → R. We require that E ε0(s) = 0 and

E ε2
0(s) <∞ for each s ∈ S and denote

σ(r, s) = E[ε0(r)ε0(s)], σ2(s) = E ε2
0(s), r, s ∈ S.

Define stochastic processes {Xk} = {Xk(s) : s ∈ S}k∈Z by setting

Xk(s) =
∞∑
j=0

(j + 1)−d(s)εk−j(s) (3.3)

for each s ∈ S and each k ∈ Z. It follows from Kolmogorov’s three-series theorem

that d(s) > 1/2 is a necessary and sufficient condition for the almost sure conver-

gence of series (3.3) (see Chapter 2 of Shiryaev [54] for Kolmogorov’s three-series

theorem).

If E ε0(s) 6= 0, then the sequence {Xk(s)} for s ∈ S can only have short memory,

since then the series (3.3) converges almost surely if and only if d(s) > 1 and

absolute summability of {aj} implies absolute summability of the autocovariances

of a linear process (see, for example, Hamilton [23], p. 70).

The sequence {Xk(s)} for each s ∈ S is essentially similar to the fractional

ARIMA(0, 1− d(s), 0) process (see Definition 2.13). {Xk(s)} is a real linear pro-

cesses

Xk(s) =
∞∑
j=0

aj(s)εk−j(s)

with the sequence {aj(s)} given by aj(s) = (j + 1)−d(s). The application of

Stirling’s formula to the coefficients of the fractional ARIMA(0, 1− d(s), 0) yields

the following relation:
Γ(j + 1− d(s))

Γ(j + 1)Γ(1− d(s))
∼ j−d(s)

Γ(1− d(s))

as j →∞.

It is possible to consider more general case of a linear process {Xk(s)}. For

example, aj(s) ∼ j−d(s) as j → ∞. But our aim is to investigate space varying

memory and we want to avoid any unnecessary technical difficulties.
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The growth rate of the partial sums {
∑n

k=1 Xk(s)} depends on d(s). Viewing S as

the set of space indexes and Z as the set of time indexes, we thus have a functional

process {Xk} with space varying memory. Such sequences of random processes

could serve as a model in functional data analysis (we refer to Ramsay and Silver-

man [49] and Horváth and Kokoszka [24] for an introduction to functional data

analysis, for the theory of linear processes in function spaces, see Bosq [4] and

Mas and Pumo [40]).
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Figure 3.1: Simulated sample paths of the random processes {Xk}

Figure 3.1 shows simulated sample paths of the random processes of the sequence

{Xk}. The sequence {εk} = {εk(t) : t ∈ [0, 1]} was assumed to be a sequence of

independent and identically distributed standard Wiener processes on the interval

[0, 1] and the function d : [0, 1] → (1/2,+∞) was assumed to be a step function

d(t) = d1χ[0,1/2)(t) + d2χ[1/2,1](t), where χA is the indicator function of A. The

simulated sample paths for 5 consecutive elements of the sequence {Xk} were

plotted. The procedure was completed for two different sets of the values of d1

and d2 (d1 = 0.6, d2 = 2 and d1 = 0.6, d2 = 0.7).

We denote

γh(r, s) = E[X0(r)Xh(s)] and γh(s) = E[X0(s)Xh(s)]

for r, s ∈ S and h ≥ 1. For fixed r, s ∈ S, the sequences {Xk(r)} and {Xk(s)} are
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stationary sequences of random variables with zero means and cross-covariance

γh(r, s) = σ(r, s)
∞∑
j=0

(j + 1)−d(r)(j + h+ 1)−d(s) (3.4)

for h ≥ 0 and r, s ∈ S. Observe that γh(r, s) ≥ 0 for each h ≥ 0 and each r, s ∈ S.

Let us denote

c(r, s) =

∫ ∞
0

x−d(r)(x+ 1)−d(s)dx, c(s) = c(s, s) (3.5)

and

d(r, s) = d(r) + d(s) (3.6)

for r, s ∈ S provided that 1/2 < d(r) < 1, d(s) > 1/2. Let us observe that

c(r, s) = B(1−d(r), d(r, s)−1), where B is the beta function. c(s) can be estimated

from above with the following inequality

c(s) ≤ 1

1− d(s)
+

1

2d(s)− 1
. (3.7)

Proposition 3.1 gives the asymptotic behaviour of γh(r, s) and Proposition 3.2

provides a necessary and sufficient condition for the summability of the series∑∞
k=0 γk(r, s). The notation an ∼ bn indicates that the ratio of the two sequences

tends to 1 as n→∞.

Proposition 3.1. If 1/2 < d(r) < 1 and d(s) > 1/2, then

γh(r, s) ∼ c(r, s)σ(r, s) · h1−d(r,s) as h→∞,

where c(r, s) is given by (3.5) and d(r, s) is given by (3.6). If d(r) = d(s) = 1,

then

γh(r, s) ∼ σ(r, s) · h−1 log h as h→∞.

Proof. We approximate series (3.4) by integrals to obtain the following inequali-

ties: if 1/2 < d(r) < 1 and d(s) > 1/2, then we obtain
∞∑
j=0

(j + 1)−d(r)(j + h+ 1)−d(s) ≥ h1−d(r,s)

∫ ∞
1
h

x−d(r)(x+ 1)−d(s)dx, (3.8)

∞∑
j=0

(j + 1)−d(r)(j + h+ 1)−d(s) ≤ h1−d(r,s)

∫ ∞
0

x−d(r)(x+ 1)−d(s) dx;
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if d(r) = d(s) = 1, then we have that

∞∑
j=0

[(j + 1)(j + h+ 1)]−1 ≥ h−1
[
log
(h+ 1

2

)
+

∫ ∞
1

[y(y + 1)]−1 dy
]

∞∑
j=0

[(j + 1)(j + h+ 1)]−1 ≤ (h+ 1)−1 + h−1
[
log
(h+ 1

2

)
+

∫ ∞
1

[y(y + 1)]−1 dy
]
.

The proof is complete.

Proposition 3.2. The series
∞∑
h=0

γh(r, s) (3.9)

converges if and only if d(s) > 1 and d(r, s) > 2.

Proof. Series (3.9) has the following expression

∞∑
h=0

γk(r, s) = σ(r, s)
[ ∞∑
h=0

(h+ 1)−d(s) +
∞∑
h=0

∞∑
j=1

(j + 1)−d(r)(j + h+ 1)−d(s)
]
.

The first series of the right-hand side of the equation above converges if and only

if d(s) > 1. Thus, we only need to investigate the convergence of the series

∞∑
h=0

∞∑
j=1

(j + 1)−d(r)(j + h+ 1)−d(s). (3.10)

A slight modification of inequality (3.8) shows that series (3.10) diverges if d(r, s) ≤

2. By choosing δ > 0 such that 1 < 1 + δ < d(s) and d(r, s)− δ > 2, we obtain

∞∑
h=0

∞∑
j=1

(j+1)−d(r)(j+h+1)−d(s) =
∞∑
h=0

∞∑
j=1

(j+1)−d(r)(j+h+1)−d(s)+(1+δ)−(1+δ)

≤
∞∑
h=0

(h+ 1)−(1+δ)

∞∑
j=1

(j + 1)−d(r,s)+(1+δ)

so that series (3.10) converges if d(s) > 1 and d(r, s) > 2.

Remark 3.1. The series
∑∞

k=0 γk(s) converges if and only if d(s) > 1.

Let L2(µ) = L2(S,S, µ) be a separable space of real-valued square µ-integrable

functions with a seminorm

‖f‖ =
[∫

S
|f(v)|2µ(dv)

]1/2

, f ∈ L2(µ),
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and let L2(µ) = L2(S,S, µ) be the corresponding Hilbert space of equivalence

classes of µ-almost everywhere equal functions with an inner product

〈f, g〉 =

∫
S
f(v)g(v)µ(dv), f, g ∈ L2(µ).

With an abuse of notation, we denote by f both a function and its equivalence

class to avoid cumbersome notation. The intended meaning should be clear from

the context.

Proposition 3.3 establishes a necessary and sufficient condition for the sample

paths of the stochastic process {Xk(s) : s ∈ S} to be almost surely square µ-

integrable with E ‖Xk‖2 <∞ for each k ≥ 1.

Proposition 3.3. The sample paths of the stochastic process {Xk(s) : s ∈ S}

almost surely belong to the space L2(µ) and E ‖Xk‖2 < ∞ for each k ∈ Z if and

only if both of the integrals

E ‖ε0‖2 =

∫
S
σ2(v)µ(dv) and

∫
S

σ2(v)

2d(v)− 1
µ(dv) (3.11)

are finite.

Proof. We show that the expected value

E

[∫
S
X2

0 (v)µ(dv)

]
is finite if and only if integrals (3.11) are finite. First, using Fubini’s theorem we

obtain

E

[∫
S
X2

0 (v)µ(dv)

]
=

∫
S

EX2
0 (v)µ(dv).

Secondly, setting h = 0 and r = s in equation (3.4) gives the expression for the

variance

EX2
0 (s) = σ2(s)

∞∑
j=0

(j + 1)−2d(s)

for s ∈ S. Approximation of the series above by integrals leads to the following

inequalities

2

∫
S

EX2
0 (v)µ(dv) ≥

∫
S
σ2(v)µdv +

∫
S

σ2(v)

2d(v)− 1
µ(dv),∫

S
EX2

0 (v)µ(dv) ≤
∫
S
σ2(v)µ(dv) +

∫
S

σ2(v)

2d(v)− 1
µ(dv).

The proof is complete.
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A stochastic process {ξ(s) : s ∈ S} defined on a probability space (Ω,F , P )

with sample paths in L2(µ) induces the F − B(L2(µ))-measurable function ω →

{ξ(s)(ω) : s ∈ S} : Ω → L2(µ), where B(L2(µ)) is the Borel σ-algebra of L2(µ)

(for more details, see Cremers and Kadelka [11]). Therefore we shall frequently

consider each stochastic process {ξ(s) : s ∈ S} with sample paths in L2(µ) as a

random element with values in L2(µ) and denote it by {ξ(s) : s ∈ S} or simply

by ξ.

Second approach

Now we establish a necessary and sufficient condition for the mean square con-

vergence of series (3.1) with {aj} given by (3.2). Recall that (j + 1)−Df =

{(j + 1)−d(s)f(s) : s ∈ S} for each j ≥ 0 and f ∈ L2(µ) since eT =
∑∞

j=0 T
j/j!

and λT = eT log λ for T ∈ L(E) and λ > 0.

Proposition 3.4. Series (3.1) with aj given by (3.2) and independent and iden-

tically distributed L2(µ)-valued random elements {εk} such that E ε0 = 0 and

E ‖ε0‖2 <∞ converges in mean square if and only if there exists a measurable set

S0 ⊂ S such that µ(S \ S0) = 0, d(s) > 1/2 for all s ∈ S0 and the integral∫
S

σ2(v)

2d(v)− 1
µ(dv)

is finite.

Proof. Let N > M , σ2(s) = E ε2
0(s) for s ∈ S and observe that

E

∥∥∥∥ N∑
j=M+1

(j + 1)−Dεj−k

∥∥∥∥2

=
N∑

j=M+1

∫
S
(j + 1)−2d(v)σ2(v)µ(dv).

Since
∞∑
j=0

∫
S
(j + 1)−2d(v)σ2(v)µ(dv) =

∫
S

∞∑
j=1

j−2d(v)σ2(v)µ(dv)

and
1

2d(v)− 1
≤

∞∑
j=1

j−2d(v) ≤ 1 +
1

2d(v)− 1

we have that∫
S

σ2(v)

2d(v)− 1
µ(dv) ≤

∫
S
σ2(v)

∞∑
j=1

j−2d(v)µ(dv) ≤ E ‖ε0‖2 +

∫
S

σ2(v)

2dv)− 1
µ(dv)

and the proof is complete.
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Remark 3.2. Since {εk} are independent, it follows from Lévy-Itô-Nisio theorem

(see Ledoux and Talagrand [35], Theorem 6.1, p. 151) and Proposition 3.4 that

series (3.1) also converges almost surely. Hence, Xk for each k ∈ Z is an L2(µ)-

valued random element and Proposition 3.4 is consistent with Proposition 3.3.

Remark 3.3. Since {aj} given by (3.2) are multiplication operators from L2(µ)

to L2(µ), we have that the operator norm ‖(j + 1)−D‖ = inf{c > 0 : µ(s ∈ S :

|(j + 1)−d(s)| > c) = 0} (see Theorem 1.5 of Conway [9]). If d = ess inf d = 1/2,

then we have that
∑∞

j=0 ‖uj‖2 =
∑∞

j=1 j
−1 = ∞, but series (3.1) might still

converge. The square summability of the operator norms of {aj} is not a necessary

condition for the almost sure convergence of series (3.1).

3.1.2 Asymptotic behaviour of cross-covariances

ζn(t) can be expressed as a series

ζn(t) =

bntc+1∑
j=−∞

anj(t)εj

for each t ∈ [0, 1], where

anj(t) =

bntc∑
k=1

vk−j + {nt}vbntc+1−j (3.12)

and

vj =

uj, if j ≥ 0;

0, if j < 0.

(3.13)

We adopt the usual convention that an empty sum equals 0.

Denote

Sn(s) =
n∑
k=1

Xk(s)

for each s ∈ S and

ζn(s, t) = Sbntc(s) + {nt}Xbntc+1(s)

for each s ∈ S and each t ∈ [0, 1]. Each random variable ζn(s, t) can be expressed

as a series

ζn(s, t) =

bntc+1∑
j=−∞

anj(s, t)εj(s),
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where

anj(s, t) =

bntc∑
k=1

vk−j(s) + {nt}vbntc+1−j(s)

and

vj(s) =

(j + 1)−d(s), if j ≥ 0;

0, if j < 0.

(3.14)

Observe that vj = vj(s) if d(s) = 1 for each s ∈ S since uj = (j + 1)−1 if d(s) = 1

for each s ∈ S. Notice that the upper bounds of summation of the series in the

expressions of ζn(t) and ζn(s, t) can be extended up to ∞ since anj(s, t) = 0 and

anj(t) = 0 if j > bntc+ 1.

The growth rate of the cross-covariance of the partial sums of the sequences

{Xk(s)} and {Xk(t)} for s, t ∈ S is established in Proposition 3.5.

Proposition 3.5. If 1/2 < d(s) < 1 and 1/2 < d(t) < 1, then

E
[
Sn(r)Sn(s)

]
∼ [c(r, s) + c(s, r)]σ(r, s)

[2− d(r, s)][3− d(r, s)]
· n3−d(r,s) as n→∞, (3.15)

where c(r, s) is given by (3.5) and d(r, s) is given by (3.6).

If d(r) = d(s) = 1, then

E
[
Sn(r)Sn(s)

]
∼ σ(r, s) · n log2 n as n→∞. (3.16)

Proof. The cross-covariance of the partial sums of the sequences {Xk(s)} and

{Xk(t)} has the following expression

E[Sn(r)Sn(s)] = nγ0(r, s)

+
n−1∑
k=1

n∑
l=k+1

E[Xk(r)Xl(s)] +
n−1∑
k=1

n∑
l=k+1

E[Xk(s)Xl(r)]. (3.17)

Since
n−1∑
k=1

n∑
l=k+1

E[Xk(r)Xl(s)] = n
n−1∑
k=1

γk(r, s)−
n−1∑
k=1

kγk(r, s),

we can use the results of Proposition 3.1 to obtain the following asymptotic rela-

tions: if 1/2 < d(r) < 1 and 1/2 < d(s) < 1, then

n−1∑
k=1

γk(r, s) ∼
c(r, s)σ(r, s)

2− d(r, s)
·n2−d(r,s) and

n−1∑
k=1

kγk(r, s) ∼
c(r, s)σ(r, s)

3− d(r, s)
·n3−d(r,s)
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as n→∞; if d(s) = 1 and d(t) = 1, then
n−1∑
k=1

γk(r, s) ∼
σ(r, s)

2
· ln2 n and

n−1∑
k=1

kγk(r, s) ∼ σ(r, s) · n lnn

as n→∞.

Remark 3.4. The asymptotic behaviour of the variance of the partial sums of the

sequence {Xk(s)} is the following: if 1/2 < d(s) < 1, then

ES2
n(s) ∼ c(s)σ2(s)

[1− d(s)][3− 2d(s)]
· n3−2d(s);

if d(s) = 1, then

ES2
n(s) ∼ σ2(s) · n ln2 n.

Set T = S× [0,∞) and define the function V : T2 → R by

V ((r, t), (s, u)) =
σ(r, s)

[2− d(r, s)][3− d(r, s)]

[
c(s, r)t3−d(r,s) + c(r, s)u3−d(r,s)

− C(r, s; t− u)|t− u|3−d(r,s)
]
, (3.18)

where d(r, s) is given by (3.6), c(r, s) is given by (3.5) and

C(r, s; t) =

c(r, s) if t < 0;

c(s, r) if t > 0.

Now we are prepared to derive the asymptotic behavior of the sequence of cross-

covariances of ζn.

Proposition 3.6. Suppose either 1/2 < d(r) < 1 and 1/2 < d(s) < 1 or d(r) =

d(s) = 1. In both cases, the following asymptotic relation holds

E[ζn(r, t)ζn(s, u)] ∼ E[Sbntc(r)Sbnuc(s)].

Proposition 3.7. If 1/2 < d(r) < 1 and 1/2 < d(s) < 1, then

E[Sbntc(r)Sbnuc(s)] ∼ V ((r, t), (s, u)) · n3−d(r,s)

for (r, t), (s, u) ∈ S× [0, 1], where V is given by (3.18).

If d(r) = d(s) = 1, then

E[Sbntc(r)Sbnuc(s)] ∼ σ(r, s) ·min(t, u) · n log2 n.
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Remark 3.5. Let us assume that r = s and 1/2 < d(s) < 1. By setting r = s in

Proposition 3.7 and using Proposition 3.6, we obtain that

E[ζn(s, t)ζn(s, u)] ∼ σ2(s)c(s)

[1− d(s)][3− 2d(s)]
· E[B3/2−d(s)(t)B3/2−d(s)(u)] · n3−2d(s),

where

E[B3/2−d(s)(t)B3/2−d(s)(u)] =
1

2
[t3−2d(s) + u3−2d(s) − |t− u|3−2d(s)]

is the covariance function of the fractional Brownian motion

B3/2−d(s) = {B3/2−d(s)(t) : t ∈ [0, 1]}

with the Hurst parameter 3/2− d(s) and c(s) is given by (3.5).

Remark 3.6. The asymptotic behaviour of the variance E ζ2
n(s, t) follows from

Proposition 3.6 and Proposition 3.7 by setting r = s and t = u: if 1/2 < d(s) < 1,

then

E ζ2
n(s, t) ∼ c(s)σ2(s)

[1− d(s)][3− 2d(s)]
· t3−2d(s) · n3−2d(s);

if d(s) = 1, then

E ζ2
n(s, t) ∼ σ2(s) · t · n log2 n.

Proof of Proposition 3.7. Suppose t < u and split the cross-covariance of the par-

tial sums into two terms

E
[
Sbntc(r)Sbnuc(s)

]
= E

[
Sbntc(r)Sbntc(s)

]
+ E

[
Sbntc(r)

[
Sbnuc(s)− Sbntc(s)

]]
. (3.19)

The asymptotic behaviour of the first term of sum (3.19) is established using

(3.15) and (3.16): if 1/2 < d(r) < 1 and 1/2 < d(s) < 1, then

E[Sbntc(r)Sbntc(s)] ∼
[c(r, s) + c(s, r)]σ(r, s)

[2− d(r, s)][3− d(r, s)]
· t3−d(r,s) · n3−d(r,s); (3.20)

if d(r) = d(s) = 1, then

E[Sbntc(r)Sbntc(s)] ∼ σ(r, s) · t · n log2 n. (3.21)

In order to establish the asymptotic behaviour of the second term of sum (3.19),

we express it in the following way
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E
[
Sbntc(r)[Sbnuc(s)− Sbntc(s)]

]
=

mn−1∑
k=1

k[γk(r, s) + γbnuc−k(r, s)]

+mn

|bnuc−2bntc|∑
k=0

γmn+k(r, s), (3.22)

where mn := min(bntc, bnuc−bntc) (we also use the notation m := min(t, u− t)).

For simplicity, denote

κ(a, b) =
b∑

k=a+1

γk(r, s) and ν(a, b) =
b∑

k=a+1

kγk(r, s).

Then we have that
mn−1∑
k=1

kγbnuc−k(r, s) = bnucκ(bnuc−mn, bnuc−1)−ν(bnuc−mn, bnuc−1). (3.23)

Let us a recall a few facts about sequences. We use these facts to establish

asymptotic behaviour of the sums in (3.22) and (3.23). Suppose {an} and {bn} are

sequences of positive real numbers such that an ∼ bn. Then
∑n

k=1 ak ∼
∑n

k=1 bk

provided either of these partial sums diverges. Let f be a continuous strictly

increasing or strictly decreasing function such that f(x)/f(x+ 1)→ 1 as x→∞

and
∫ n

1
f(x)dx→∞ as n→∞. Then

∑n
k=1 f(k) ∼

∫ n
1
f(x)dx.

Since γk(r, s) ∼ c(r, s)σ(r, s) · k1−d(r,s) if 1/2 < d(r) < 1 and d(s) > 1/2 (see

Proposition 3.1), we obtain the following asymptotic relations using the facts

about sequences mentioned above:

ν(0,mn − 1) ∼ c(r, s)σ(r, s)m3−d(r,s)

3− d(r, s)
· n3−d(r,s) (3.24)

bnucκ(bnuc −mn, bnuc − 1) ∼

∼ c(r, s)σ(r, s)u[u2−d(r,s) − (u−m)2−d(r,s)]

2− d(r, s)
· n3−d(r,s);

(3.25)

ν(bnuc −mn, bnuc − 1) ∼

∼ c(r, s)σ(r, s)[u3−d(r,s) − (u−m)3−d(r,s)]

3− d(r, s)
· n3−d(r,s);

(3.26)

mnκ(mn − 1,mn + |bnuc − 2bntc|) ∼

∼ c(r, s)σ(r, s)m[(m+ |u− 2t|)2−d(r,s) −m2−d(r,s)]

2− d(r, s)
· n3−d(r,s).

(3.27)

We have that
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E
[
Sbntc(r)[Sbnuc(s)− Sbntc(s)]

]
∼

∼ c(r, s)σ(r, s)

[2− d(r, s)][3− d(r, s)]

[
−t3−d(r,s) + u3−d(r,s) − (u− t)3−d(r,s)

]
· n3−d(r,s) (3.28)

using asymptotic relations (3.24)-(3.27). Combining (3.20) with (3.28), we obtain

E[Sbntc(r)Sbnuc(s)] ∼
σ(r, s)

[2− d(r, s)][3− d(r, s)]

[
c(s, r)t3−d(r,s)

+ c(r, s)[u3−d(r,s) − (u− t)3−d(r,s)]
]
·n3−d(r,s).

Similarly, if d(r) = d(s) = 1, then γk(r, s) ∼ σ(r, s) ·k−1 log k (see Proposition 3.1)

and the following asymptotic relations are true

ν(0,mn − 1) ∼ σ(r, s)m · n log n; (3.29)

bnucκ(bnuc −mn, bnuc − 1) ∼ σ(r, s)[log u− log(u−m)]u · n log n; (3.30)

ν(bnuc −mn, bnuc − 1) ∼ σ(r, s)m · n log n; (3.31)

mnκ(mn − 1,mn + |bnuc − 2bntc|) ∼

∼ σ(r, s)[log(m+ |u− 2t|)− logm]m · n log n. (3.32)

Since sequences (3.29)-(3.32) grow slower than sequence (3.21), we conclude that

E
[
Sbntc(r)Sbnuc(s)

]
∼ σ(r, s) · t · n log2 n.

If t > u, the proof is exactly the same as in the case of t < u. If t = u, then we

just use asymptotic relations (3.20) and (3.21). The proof of Proposition 3.7 is

complete.

Proof of Proposition 3.6. We have that

E[ζn(r, t)ζn(s, u)] = E[Sbntc(r)Sbnuc(s)]

+ {nu}E[Sbntc(r)Xbnuc+1(s)]

+ {nt}E[Sbnuc(s)Xbntc+1(r)]

+ {nt}{nu}E[Xbntc+1(r)Xbnuc+1(s)]

and

E[Sbntc(r)Xbnuc+1(s)] ≤ bntcγ0(r, s).

The result follows from Proposition 3.7 since E[Sbntc(r)Sbnuc(s)] is the only term

in the expression of E[ζn(r, t)ζn(s, u)] that grows faster than linearly.
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3.1.3 Operator self-similar process

In this section, we show that there exists a Gaussian stochastic process X =

{X (s, t) : (s, t) ∈ T} with zero mean and covariance function V given by (3.18).

The stochastic process {X (·, t) : t ∈ [0,∞)} is an operator self-similar process

with values in L2(µ).

We begin by showing that the function V is a covariance function.

Proposition 3.8. The function V : T×T→ R, given by (3.18), with d ∈ (1/2, 1)

is a covariance function of a stochastic process indexed by the set T.

Proof. It follows from equation (3.18) that the function V is symmetric, i.e.

V (τ, τ ′) = V (τ ′, τ), τ, τ ′ ∈ T.

So we need to prove that the function V is positive definite. Let N ∈ N, τi =

(si, ti) ∈ T and wi ∈ R, where i ∈ {1, . . . , N}. Denote M = max{t1, . . . , tN} and

w̃i = wiM
3/2−d(si), i ∈ {1, . . . , N}. Using equation (3.18) and Propositions 3.6

and 3.7, we obtain that

N∑
i=1

N∑
j=1

wiwjV (τi, τj) =

=
N∑
i=1

N∑
j=1

wiwjM
3−[d(si)+d(sj)]V ((si, ti/M), (sj, tj/M))

=
N∑
i=1

N∑
j=1

w̃iw̃j lim
n→∞

1

n3−[d(si)+d(sj)]
E[ζn(si, ti/M)ζn(sj, tj/M)] ≥ 0

since
1

n3−d(r,s)
E[ζn(r, t)ζn(s, u)]

is a covariance function for all (r, t), (s, u) ∈ S× [0, 1] and for all n ∈ N.

Let us recall that a random element ξ with values in a separable Banach space

E is Gaussian if for any continuous linear functional f on E, f(ξ) is real valued

Gaussian random variable. A stochastic process {ξt : t ∈ T} with values in E is

Gaussian if each finite linear combination
∑

i αiξti , αi ∈ R, ti ∈ T , is Gaussian

random element in E (for more details about Gaussian random elements and
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Gaussian stochastic processes with values in Banach spaces, see the textbook by

Ledoux and Talagrand [35]).

We have the following corollary of Proposition 3.8.

Corollary. There exists a zero mean Gaussian stochastic process X = {X (s, t) :

(s, t) ∈ T} with the covariance function V given by (3.18).

Next we describe the sample path properties of the stochastic process X . First

we consider for each t ∈ [0,∞) the stochastic process {X (s, t) : s ∈ S}.

Proposition 3.9. If d ∈ (1/2, 1) and the integrals∫
S

σ2(v)

[1− d(v)]2
µ(dv) and

∫
S

σ2(v)

[1− d(v)][2d(v)− 1]
µ(dv)

are finite, then for each t ∈ [0,∞) the stochastic process {X (s, t) : s ∈ S} has

sample paths in L2(µ) and induces a Gaussian random element with values in

L2(µ) which is denoted by X (·, t). Moreover, the process {X (·, t) : t ∈ [0,∞)}

with values in L2(µ) is Gaussian.

Proof. Since we have that

E

∫
S
X 2(v, t)µ(dv) =

∫
S

σ2(v)c(v)

[1− d(v)][3− 2d(v)]
· t3−2d(v)µ(dv)

≤ max{t, t2}
[∫

S

σ2(v)

[1− d(v)]2
µ(dv)

+

∫
S

σ2(v)

[1− d(v)][2d(v)− 1]
µ(dv)

]
using inequality (3.7) to estimate c(s) from above, the sample paths of the stochas-

tic process {X (s, t) : s ∈ S} almost surely belong to the space L2(µ) for each

t ∈ [0,∞). Hence X (·, t) is a random element in L2(µ). Clearly it is a Gaussian

one.

Finally, we show that the stochastic process {X (·, t) : t ∈ [0,∞)} is operator

self-similar.

Proposition 3.10. The stochastic process {X (·, t) : t ∈ [0,∞)} is operator self-

similar with scaling family of operators {aH : a > 0} where aH , a > 0, is a

multiplication operator defined by aHf = {a3/2−d(s)f(s) : s ∈ S} for f ∈ L2(µ).
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Proof. We need to show that

{X (·, at) : t ∈ [0,∞)} fdd= {aHX (·, t) : t ∈ [0,∞)}. (3.33)

Since stochastic processes on both sides of equality (3.33) are zero-mean Gaussian

stochastic processes, we only need to show that their covariance structure is the

same. Using the fact that two operators A and B are equal if and only if 〈Af, g〉 =

〈Bf, g〉 for all f, g ∈ L2(µ) and the fact that

E[a3/2−d(r)X (r, t)a3/2−d(s)X (s, u)] = E[X (r, at)X (s, au)] (3.34)

for all r, s ∈ S and t, u ∈ [0,∞) (equality (3.34) follows from equation (3.18)), we

conclude the proof by showing that

〈E[〈aHX (·, t), f〉aHX (·, u)], g〉 =

=

∫
S

E

[(∫
S
a3/2−d(u)X (u, t)f(u)µ(du)

)
a3/2−d(r)X (r, u)

]
g(r)µ(dr)

=

∫
S

(∫
S

E[a3/2−d(u)X (u, t)a3/2−d(r)X (r, u)]f(u)µ(du)

)
g(r)µ(dr)

= 〈E[〈X (·, at), f〉X (·, au)], g〉

for all f, g ∈ L2(µ).

3.1.4 Main tools

We use three auxiliary results in the proofs of the central limit theorem and the

functional central limit theorem. The first result gives sufficient conditions for the

convergence in distribution of random processes with sample paths in L2(µ;E).

The second result is used to establish convergence in distribution random elements

with specific structure and values in a separable Hilbert space. The last result gives

sufficient conditions for tightness of random elements with values in C([0, 1];H),

where H is a separable Hilbert space.

Convergence of random processes with sample paths in L2(µ;E)

Let E be a separable Banach space with Borel σ-algebra B(E). Suppose that

L2(µ;E) = L2(S,S, µ;E) is a separable space of square µ-integrable E-valued
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functions with a seminorm

‖f‖ =

[∫
S
‖f(v)‖2µ(dv)

]1/2

for f ∈ L2(µ;E). Let L2(µ;E) = L2(S,S, µ;E) be the corresponding Banach space

of equivalence classes of µ-almost everywhere equal functions.

Let {ξn} = {ξn : n ≥ 0} be a sequence of F ⊗ S − BE-measurable functions ξn :

Ω×S → E with ξn(ω, ·) ∈ L2(µ;E) for all ω ∈ Ω and for all n ≥ 0, i.e. a sequence

of measurable random process with values in E and sample paths in L2(µ;E).

Then the maps ξ̂n : Ω → L2(µ;E), ω 7→ ξ̂n(ω) = ξn(ω, ·) for each n ≥ 0 are

F−B(L2(µ;E)) measurable (see Cremers and Kadelka [11]) and the distributions

of ξ̂n are well-defined probability measures on (L2(µ;E),B(L2(µ;E))). It is said

that ξn converges in distribution to ξ0 and written ξn
D−→ ξ0 if and only if the

distributions of ξ̂n converge weakly to the distribution of ξ̂0, i.e. E f(ξ̂n)→ E f(ξ̂0)

for all bounded continuous functions f : L2(µ;E)→ R.

Now we are ready to state theorem which is proved by Cremers and Kadelka [12].

Theorem 3.1. Let {ξn} be a sequence of random processes with sample paths in

L2(µ;E). Then ξn
D−→ ξ0 as n → ∞ provided that the following three conditions

are satisfied:

(I) the finite-dimensional distributions of ξn converge weakly to those of ξ0

almost everywhere;

(II) (a) for each s ∈ S, E ‖ξn(s)‖2 → E ‖ξ0(s)‖2 as n→∞;

(b) there exists a µ-integrable function f : S→ [0,∞) such that

E ‖ξn(s)‖2 ≤ f(s)

for each s ∈ S and each n ≥ 1.

Convergence in distribution of random elements with values in a sepa-

rable Hilbert space

Let E and F be two separable Hilbert spaces and let L(E,F) be the space of

bounded linear operators from E to F. Suppose that a sequence {Zn} of F-valued
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random elements can be expressed as

Zn =
∞∑

j=−∞

Bnjξj,

where {Bnj} is a sequence in L(E,F) for each n ∈ N and {ξj} is a sequence of

independent and identically distributed E-valued random elements with E ξ0 = 0

and E ‖ξ0‖2 <∞. Using the same linear bounded operators {Bnj}, we construct

another sequence {Z̃n} of F-valued random elements that can be represented as

Z̃n =
∞∑

j=−∞

Bnj ξ̃j,

where {ξ̃j} is a sequence of independent and identically distributed E-valued Gaus-

sian random elements with E ξ̃0 = 0 and the same covariance operator as that of

ξ0.

Under the conditions of Lemma 3.1 below, the sequences {Zn} and {Z̃n} have

the same limiting behaviour, i.e. if one converges in distribution then so does the

other and their limits coincide. Before we state Lemma 3.1, we define the distance

function ρk.

Definition 3.1. Let U and V be random elements with values in a separable

Hilbert space H. The distance function ρk is given by

ρk(U, V ) = sup
f∈Fk

|E f(U)− E f(V )|,

where Fk is the set of k times Frechet differentiable functions f : H → R such

that

sup
x∈H

∣∣f (j)(x)
∣∣ ≤ 1, j = 0, 1, . . . , k.

It is proved by Giné and León [18] that the distance function ρk metrizes the

convergence in distribution of sequences of random elements with values in H for

every k > 0.

Lemma 3.1. If both of the conditions

lim
n→∞

sup
j∈Z
‖Bnj‖ = 0 (3.35)

and

lim sup
n→∞

∞∑
j=−∞

‖Bnj‖2 <∞ (3.36)

are satisfied, then limn→∞ ρ3(Zn, Z̃n) = 0.
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Proof. The proof follows from the proof of Proposition 4.1 of Račkauskas and

Suquet [48]. The only difference is that E = F in Račkauskas and Suquet [48],

but the proof remains valid as long as

‖Bnkf‖ ≤ ‖Bnk‖‖f‖

for each n ∈ N, each k ∈ Z and each f ∈ E.

Tightness of random elements with values in C([0, 1];H)

Suppose that {Zn} = {Zn : n ≥ 1} are random elements with values in C([0, 1] :

H), where H is a separable Hilbert space. The following theorem is an adaptation

of Theorem 12.3 of Billinglsey [3] (see also Proposition 4.2 of Račkauskas and

Suquet [48]).

Proposition 3.11. Let H be a separable Hilbert space. The sequence {Zn} of

random elements of the space C([0, 1];H) is tight if

(i) {Zn(t)} is tight on H for every t ∈ [0, 1];

(ii) there exists γ ≥ 0, a > 1 and a continuous increasing function F : [0, 1]→ R

such that

P (‖Zn(t)− Zn(u)‖ > λ) ≤ λ−γ|F (t)− F (u)|a.

3.2 Central limit theorem

Suppose that {Xk} = {Xk : k ∈ Z} is an L2(µ)-valued linear process such that

{aj} is given by aj = (j + 1)−D for each j ≥ 0, where D : L2(µ) → L2(µ) is a

multiplication operator defined by Df = {d(s)f(s) : s ∈ S} for each f ∈ L2(µ)

with a measurable function d : S→ R. Suppose that E ε0 = 0 and E ‖ε0‖2 <∞.

Theorem 3.2. Suppose that 1/2 < d(s) < 1 for each s ∈ S , E ε2
0(s) < ∞ for

each s ∈ S and both of the integrals∫
S

σ2(v)

[1− d(v)]2
µ(dv) and

∫
S

σ2(v)

[1− d(v)][2d(v)− 1]
µ(dv) (3.37)

are finite. Then

n−HSn
D−→ G as n→∞,
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where {n−H} = {n−H : n ≥ 1} are multiplication operators given by n−Hf =

{n−[3/2−d(s)]f(s) : s ∈ S} for each f ∈ L2(µ), G = {G(s) : s ∈ S} is a zero mean

Gaussian random process with the autocovariance function

E[G(r)G(s)] =
[c(r, s) + c(s, r)]σ(r, s)

[2− d(r, s)][3− d(r, s)]
,

where c(r, s) is given by (3.5), d(r, s) is given by (3.6) and σ(r, s) = E[ε0(r)ε0(s)]

for each r ∈ S and each s ∈ S.

Theorem 3.3. Suppose that d(s) = 1 for each s ∈ S, E ε2
0(s) <∞ for each s ∈ S

and ∫
S
σ2(v)µ(dv) <∞.

Then

(
√
n lnn)−1Sn

D−→ G′ as n→∞,

where G′ = {G′(s) : s ∈ } is a zero mean Gaussian random process with the

autocovariance function E[G′(r)G′(s)] = σ(r, s), where σ(r, s) = E[ε0(r)ε0(s)] for

each r ∈ S and s ∈ S.

Theorem 3.4. Suppose that ess inf d > 1 and E ε2
0(s) <∞ for each s ∈ S. Then

(
√
n)−1Sn

D−→ G′′,

where G′′ = {G′(s) : s ∈ S} is a zero mean Gaussian random process.

Proof of Theorem 3.2 and Theorem 3.3. The proof is based on Theorem 3.1. We

begin by proving the convergence of the finite-dimensional distributions.

In order to prove the convergence of finite dimensional distributions, we investigate

a sequence of random vectors(
b−1
n (s1)Sn(s1) . . . b−1

n (sq)Sn(sq)
)T

, (3.38)

where xT denotes the transpose of the vector x ∈ Rq, s1, . . . , sq ∈ S and

bn(s) =

n
3/2−d(s), 1/2 < d(s) < 1;

√
n lnn, d(s) = 1.

The sum of dependent random variables Sn(s) =
∑n

k=1Xk(s) can be expressed

as a series of independent random variables: if n ≥ 2, then we have the following
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identity

Sn(s) =
n∑
k=1

Xk(s) =
n∑

j=−∞

zn,j(s)εj(s),

where

zn,j(s) =


∑n−j+1

k=1 k−d(s), 2 ≤ j ≤ n;∑n
k=1(k − j + 1)−d(s), j < 2.

By denoting

ε
(q)
j =

(
εj(s1) . . . εj(sq)

)T

and

Bn,j = diag
(
b−1
n (s1)zn,j(s1) . . . b−1

n (sq)zn,j(sq)
)
,

we can express the sequence of random vectors (3.38) compactly as

n∑
j=−∞

Bn,jε
(q)
j =


∑n

j=−∞[b−1
n (s1)zn,j(s1)]εj(s1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . .∑n
j=−∞[b−1

n (sq)zn,j(sq)]εj(sq)

 .

Using the fact that the operator norm of a diagonal matrix is the largest entry in

absolute value, we obtain the operator norm of the matrix Bn,j

‖Bn,j‖ = max
1≤i≤q

|b−1
n (ti)zn,j(ti)|.

Now suppose that

γ
(q)
j :=

(
γj(t1) . . . γj(tq)

)T

is a zero mean normal random vector with the same covariance matrix as the

vector ε(q)
j . The sequence

∑n
j=−∞Bn,jγ

(q)
j converges in distribution as n→∞ to a

normal random vector if and only if the sequence of covariance matrices converges.

It follows from Proposition 3.5 that the sequence of covariance matrices converges.

We use Lemma 3.1 to show that the sequences{ n∑
j=−∞

Bn,jε
(q)
j

}
and

{ n∑
j=−∞

Bn,jγ
(q)
j

}
have the same limiting behaviour in the sense that if one converges in distribution

then so does the other and their limits coincide. Propositon 3.12 establishes that

the sequence of operator norms of the matrices Bn,j satisfies two properties that

are needed to apply Lemma 3.1.
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Proposition 3.12. If 1/2 < d ≤ 1, then both of conditions (3.35) and (3.36) are

satisfied.

Proof. To prove that condition (3.35) holds, we first notice that

sup
j∈Z
‖Bn,j‖ = max

1≤i≤q
‖b−1
n (ti)zn,1(ti)‖

and then we use the following asymptotic relations: if 1/2 < d < 1, then we obtain

n∑
k=1

k−d(t) ∼ n1−d(t)

1− d(t)
;

if d(s) = 1 for each s ∈ S, then we have that

n∑
k=1

k−1 ∼ lnn.

We use the following expression to prove that condition (3.36) holds

n∑
j=−∞

z2
n,j(t) =

n∑
j=2

[ n−j+1∑
k=1

k−d(t)

]2

+
∞∑
j=0

[ n∑
k=1

(k + j)−d(t)

]2

.

Routine approximations of sums by integrals from above lead to the following

inequalities: if 1/2 < d(t) < 1, then we have that

n∑
j=2

[n−j+1∑
k=1

k−d(t)

]2

≤ 1

[1− d(t)]2[3− 2d(t)]
[n3−2d(t) − 1];

if d(t) = 1, then we obtain

n∑
j=2

[n−j+1∑
k=1

k−1

]2

≤ (n− 1) + n ln2 n.

To prove that

lim
n→∞

1

n3−2d(t)

∞∑
j=0

[ n∑
k=1

(k + j)−d(t)

]2

<∞

for 1/2 < d(t) ≤ 1, we first divide the series in the expression above into two

summands
∞∑
j=0

[ n∑
k=1

(k + j)−d(t)

]2

=

[ n∑
k=1

k−d(t)

]2

+
∞∑
j=1

[ n∑
k=1

(k + j)−d(t)

]2

(3.39)
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and approximate the first summand on the right-hand side of the equation (3.39)

by integral from above

n∑
k=1

k−d(t) ≤


n1−d(t)

1−d(t)
if 1/2 < d(t) < 1;

1 + lnn if d(t) = 1.

We express the second summand on the right-hand side of equation (3.39) in the

following way

1

n3−2d(t)

∞∑
j=1

[ n∑
k=1

(k + j)−d(t)

]2

=
∞∑
i=1

1

n

in∑
j=(i−1)n+1

[
1

n

n∑
k=1

(
k

n
+
j

n

)−d(t)]2

and the interchange of limits leads to the result

lim
n→∞

1

n3−2d(t)

∞∑
j=1

[ n∑
k=1

(k + j)−d(t)

]2

=

∫ ∞
0

[∫ 1

0

(s+ u)−d(t)ds

]2

du <∞.

The proof of Proposition 3.12 is complete.

The proof of the convergence of the finite-dimensional distributions is complete.

It follows from Remark 3.4 that

n−[3−2d(s)] ES2
n(s)→ EG2(s) as n→∞

for each s ∈ S if 1/2 < d(s) < 1 for each s ∈ S and

(
√
n log n)−1 ES2

n(s)→ EG′2(s) as n→∞

for each s ∈ S if d(s) = 1 for each s ∈ S.

Finally, we establish the existence of non-negative µ-integrable functions that

dominate the sequence of the variance of the partial sums.

Proposition 3.13. Let s ∈ S. If 1/2 < d(s) < 1, then

E[n−[3/2−d(s)]Sn(s)]2 ≤ σ2(s)

[
1 +

1

2d(s)− 1

]
+

σ2(s)c(s)

[1− d(s)][3− 2d(s)]
, (3.40)

where c(s) is given by (3.5). If d(s) = 1, then

E[(
√
n lnn)−1Sn(s)]2 ≤ C · σ2(s), (3.41)

where C is a positive constant.
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Proof. To establish the first inequality in Proposition 3.13, we set r = s in ex-

pression (3.17) and approximate the sums in expression (3.17) by integrals from

above.

The following reasoning leads to inequality (3.41). We set r = s in expression

(3.17) to obtain an expression for the left-hand side of inequality (3.41). Since

d(s) = 1 for each s ∈ S, by setting r = s in expression (3.4), we see that the only

term in the expression of the left-hand side of inequality (3.41) that depends on

s is σ2(s). It follows that the sequence

1

σ2(s)
· E[(
√
n log n)−1Sn(s)]2

is a convergent sequence (see Remark 3.4) which does not depend on s. So it is

bounded by some positive constant, say C.

Remark 3.7. Using inequality (3.7), we obtain

σ2(s)c(s)

[1− d(s)][3− 2d(s)]
≤ σ2(s)

[1− d(s)]2
+

σ2(s)

[1− d(s)][2d(s)− 1]
.

If integrals (3.37) are finite, then the right-hand side of the inequality (3.40) is a

µ-integrable function.

The proof of Theorem 3.2 and Theorem 3.3 is complete.

3.3 Functional central limit theorem

We shall consider {ζn} as random elements with values in a separable Banach

space C([0, 1];L2(µ)) of continuous functions f : [0, 1]→ L2(µ) endowed with the

norm

‖f‖ = sup
t∈[0,1]

[∫
S
f 2(v, t)µ(dv)

]1/2

, f ∈ C([0, 1];L2(µ)).

Before stating sufficient conditions for the functional central limit theorem, we

define the limit Gaussian processes

G = {G(s, t) : (s, t) ∈ S× [0, 1]} and G ′ = {G ′(s, t) : (s, t) ∈ S× [0, 1]}.

Let the stochastic process G be a restriction to S × [0, 1] of the stochastic pro-

cess X = {X (s, t) : (s, t) ∈ S × [0,∞)} defined in Subsection 3.1.3. Let the
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stochastic process G ′ be Gaussian with the covariance function E[G ′(r, t)G ′(s, u)] =

σ(r, s) min(t, u), (r, t), (s, u) ∈ S × [0, 1]. If the integral
∫
S σ

2(v)µ(dv) is finite,

then for each t ∈ [0, 1] the sample paths of the stochastic process {G ′(s, t) : s ∈ S}

belong to the space L2(µ) (the proof is basically the same as the proof of Propo-

sition 3.9).

The following proposition establishes conditions under which both of the stochas-

tic processes {G(·, t) : t ∈ [0, 1]} and {G ′(·, t) : t ∈ [0, 1]} with values in the space

L2(µ) have continuous versions.

Proposition 3.14. If the integrals∫
S

σ2(v)

[1− d(v)]2
µ(dv) and

∫
S

σ2(v)

[1− d(v)][2d(v)− 1]
µ(dv)

are finite, then the L2(µ)-valued stochastic process {G(·, t) : t ∈ [0, 1]} has a

continuous version.

If the integral ∫
S
σ2(v)µ(dv)

is finite, then the L2(µ)-valued stochastic process {G ′(·, t) : t ∈ [0, 1]} has a con-

tinuous version.

Proof. We use the following inequality for the moments of a Gaussian random

element ξ with values in a separable Banach space:

(E ‖ξ‖p)1/p ≤ Kp,q(E ‖ξ‖q)1/q, (3.42)

where 0 < p, q < ∞ and Kp,q is a constant depending on p and q only (for the

proof, see Ledoux and Talagrand [35], p. 59, Corollary 3.2).

Using Kolmogorov’s continuity theorem (see Kallenberg [29], p. 35, Theorem 2.23),

inequality (3.7) to estimate c(s) from above, inequalities

E ‖G(·, t)− G(·, u)‖4 ≤

≤ K4
4,2(E ‖G(·, t)− G(·, u)‖2)2

< K4
4,2

[∫
S

σ2(v)

[1− d(v)]2
µ(dv) +

∫
S

σ2(v)

[1− d(v)][2d(v)− 1]
µ(dv)

]2

· |t− u|2
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and

E ‖G ′(·, t)− G ′(·, u)‖4 ≤ K4
4,2

[∫
S
σ2(v)µ(dv)

]2

|t− u|2,

we conclude that the processes {G(·, t), t ∈ [0, 1]} and{G ′(·, t), t ∈ [0, 1]} have

continuous versions.

Passing to continuous versions, we thus consider Gaussian stochastic processes G

and G ′ as Gaussian random elements in the space C([0, 1];L2(µ)). Clearly G ′ is

an L2(µ)-valued Wiener process.

Now we are ready to state our main results. As usual, D−→ denotes the convergence

in distribution.

Theorem 3.5. Suppose that 1/2 < d(s) < 1 for each s ∈ S , the integrals

E
[∫

S

ε2
0(v)

[1− d(v)]2
µ(dv)

]p/2
and

∫
S

σ2(v)

[1− d(v)][2d(v)− 1]
µ(dv)

are finite and either p = 2 and d̄ = ess sup d < 1 or p > 2. Then we have that

n−Hζn
D−→ G as n→∞

in the space C([0, 1];L2(µ)), where {n−H} is a sequence of multiplication operators

given by n−Hf = {n−[3/2−d(s)]f(s) : s ∈ S} for f ∈ L2(µ).

Remark 3.8. We have that if 1/2 < d(s) < 1 for each s ∈ S and p > 0, then

E ‖ε0‖p < 2−p E
[∫

S

ε2
0(v)

[1− d(v)]2
µ(dv)

]p/2
since 1− d(v) < 1/2.

Theorem 3.6. Suppose that d(s) = 1 for each s ∈ S and E ‖ε0‖p < ∞ for some

p > 2. Then we have that

(
√
n log n)−1ζn

D−→ G ′ as n→∞

in the space C([0, 1];L2(µ)).

Theorem 3.7. Suppose that d = ess inf d > 1 and E ‖ε0‖2 < ∞. Then we have

that

(
√
n)−1ζn

D−→ G ′ as n→∞

in the space C([0, 1];L2(µ)).
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Proof of Theorem 3.7. The convergence of Theorem 3.7 follows from Theorem 5

of Račkauskas and Suquet [47] since
∑∞

j=0 ‖uj‖ =
∑∞

j=1 j
−d <∞.

Proof of Theorem 3.5 and Theorem 3.6. The proof contains two major parts. We

prove the convergence of the finite-dimensional distributions of the sequences

{n−Hζn} and {(
√
n log n)−1ζn} in the first part and we prove the tightness of

these sequences in the second part.

To avoid considerations of two separate but similar cases, we denote b−1
n = n−H

and ζ = G in the proof of Theorem 3.5, whereas bn =
√
n log n and ζ = G ′ in the

proof of Theorem 3.6.

Convergence of the finite-dimensional distributions

The convergence of the finite-dimensional distributions means that the conver-

gence (
b−1
n ζn(t1) . . . b−1

n ζn(tq)
)
D−→
(
ζ(t1) . . . ζ(tq)

)
(3.43)

holds in the space Lq2(µ) for all q ∈ N and for all t1, . . . , tq ∈ [0, 1]. Note that the

space Lq2(µ) is isomorphic to L2(µ;Rq), the space of Rq-valued square µ-integrable

functions with the norm

‖f‖ =
[∫

S
‖f(v)‖2µ(dv)

]1/2

for f ∈ L2(µ;Rq), where ||f(v)|| denotes the Euclidean norm in Rq.

Fix t1, . . . , tq ∈ [0, 1] and denote, for s ∈ S,

ζ(q)
n (s) = (ζn(t1, s), . . . , ζn(tq, s))

T and ζ(q)(s) = (ζ(t1, s), . . . , ζ(tq, s))
T,

where xT denotes transpose of a vector x.

Let ζ(q)
n = {ζ(q)

n (s) : s ∈ S} and ζ(q) = {ζ(q)(s) : s ∈ S}. We need to prove that

b−1
n ζ(q)

n
D−→ ζ(q) (3.44)

in the space L2(µ;Rq) to establish (3.43).

According to Theorem 3.1, it suffices to prove the following:
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(I) there exists a measurable set S0 ⊂ S such that µ(S \ S0) = 0 and for any

p ∈ N and s1, . . . , sp ∈ S0 we have that

(
b−1
n ζ

(q)
n (s1) . . . b−1

n ζ
(q)
n (sp)

) D−→ (
ζ(q)(s1) . . . ζ(q)(sp)

)
;

(II) (a) for each s ∈ S,

E
∥∥b−1

n ζ(q)
n (s)

∥∥2 → E
∥∥ζ(q)(s)

∥∥2
;

(b) there exists a µ-integrable function f : S → [0,∞) such that for each

s ∈ S and each n ∈ N

E
∥∥b−1

n ζ(q)
n (s)

∥∥2 ≤ f(s).

We use Lemma 3.1 to prove (I). Let s1, . . . , sp ∈ S. We express the sequence

{(
b−1
n ζqn(s1) . . . b−1

n ζqn(sp)
)}

of random matrices as

( b−1
n ζqn(s1) . . . b−1

n ζqn(sp) ) =

=
∞∑

j=−∞


z−1
n (s1)anj(s1, t1)εj(s1) · · · z−1

n (sp)anj(sp, t1)εj(sp)
... . . . ...

z−1
n (s1)anj(s1, tq)εj(s1) · · · z−1

n (sp)anj(sp, tq)εj(sp)


=

∞∑
j=−∞

AnjEj,

where

Anj =


z−1
n (s1)anj(s1, t1) · · · z−1

n (sp)anj(sp, t1)
... . . . ...

z−1
n (s1)anj(s1, tq) · · · z−1

n (sp)anj(sp, tq)

 ,

Ej = diag( εj(s1) . . . εj(sp) )

and

zn(s) =

n
3/2−d(s), if 1/2 < d(s) < 1;

√
n log n, if d(s) = 1.
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If d ∈ (1/2, 1], then the matrices {Anj} satisfy both of conditions (3.35) and

(3.36). Indeed, since

sup
j∈Z

anj(s, t) = an1(s, t) =

bntc∑
k=1

k−d(s) + {nt}(bntc+ 1)−d(s),

we have the following asymptotic relations

sup
j∈Z

anj(s, t) ∼


t1−d(s)

1−d(s)
· n1−d(s), if d(s) < 1;

log n, if d(s) = 1.

We have that

E ζ2
n(s, t) = σ2(s)

bntc+1∑
j=−∞

a2
nj(s, t)

and we use the asymptotic behaviour of the variance E ζ2
n(s, t) (see Remark 3.4)

to obtain the following asymptotic relations

bntc+1∑
j=−∞

a2
nj(s, t) ∼


c(s)

[1−d(s)][3−2d(s)]
· t3−2d(s) · n3−2d(s), if 1/2 < d(s) < 1;

t · n log2 n, if d(s) = 1.

Now we investigate the sequence
{(

b−1
n ζ̃qn(s1) . . . b−1

n ζ̃qn(sp)
)}

, which is ex-

pressed as (
b−1
n ζ̃qn(s1) . . . b−1

n ζ̃qn(sp)
)

=
∞∑

j=−∞

Anj Ẽj, (3.45)

where {Ẽj} is a sequence of independent and identically distributed Gaussian

random matrices with zero mean and the same covariance operator as that of E0.

Since {
(
ζ̃qn(r) . . . ζ̃qn(sp)

)
} is a sequence of finite-dimensional Gaussian random

elements, we only need to check for each i = 1, . . . , p and each j = 1, . . . , q the

convergence

z−1
n (si) E ζn(si, tj)→ E ζ(si, tj).

But this easily follows from Proposition 3.6 and Proposition 3.7. The proof of (I)

is complete.

Next we prove (II). We prove (IIa) using equalities

E ‖b−1
n ζqn(s)‖2 =

q∑
i=1

E[z−1
n (s)ζn(s, ti)]

2 and E ‖ζq(s)‖2 =

q∑
i=1

E ζ2(s, ti)

and Remark 3.4.

An auxiliary result is needed to prove part (IIb).
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Proposition 3.15. If 1/2 < d(s) < 1, then

E[n−[3/2−d(s)]ζn(s, t)]2 ≤ g(s) = 2[g1(s) + g2(s) + g3(s)], (3.46)

for each n ∈ N, where

g1(s) = σ2(s)
[
1 +

1

2d(s)− 1

]
, g2(s) =

σ2(s)

[1− d(s)]2
,

g3(s) =
σ2(s)

[1− d(s)][2d(s)− 1]

and c(s) is given by (3.5).

If d(s) = 1 for each s ∈ S, then

E[(
√
n log n)−1ζn(s, ti)]

2 ≤M · σ2(s), (3.47)

where M is a positive constant.

Proof. Expanding E ζ2
n(s, t) gives

E ζ2
n(s, t) = bntcγ0(s)+2

bntc∑
k=1

(bntc−k)γk(s)+2{nt}
bntc∑
k=1

γk(s)+{nt}2γ0(s). (3.48)

Using expression (3.4) for cross-covariance, bounding series with integrals from

above and using inequality (3.7) leads to the following inequalities that complete

the proof of inequality (3.46):

γ0(s) ≤ σ2(s)
[
1 +

1

2d(s)− 1

]
,

bntc∑
k=1

(bntc − k)γk(s) ≤
1

2

[ σ2(s)

[1− d(s)]2
+

σ2(s)

[1− d(s)][2d(s)− 1]

]
bntc3−2d(s)

and
bntc∑
k=1

γk(s) ≤
1

2

[ σ2(s)

[1− d(s)]2
+

σ2(s)

[1− d(s)][2d(s)− 1]

]
bntc2[1−d(s)].

We argue as follows to prove inequality (3.47). By setting r = s in expression (3.4),

we see that the only term in expression (3.48) that depends on s is σ2(s) since

d(s) = 1 for each s ∈ S. It follows that the sequence

1

σ2(s)
· E[(
√
n log n)−1ζn(s, t)]2

does not depend on s and it is a convergent sequence (see Remark 3.4). So it is

bounded by some positive constant, say M .
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Now we can obtain the required function f using Proposition 3.15, the fact that

E ‖ζq(s)‖2 =
∑q

i=1 E ζ2(s, ti) and setting

f(s) =

q · g(s), if d(s) < 1;

qM · σ2(s), if d(s) = 1.

The proof of (II) is complete. This completes the proof of the convergence of the

finite dimensional distributions of the sequence {b−1
n ζn}.

Tightness

To establish tightness of the sequence {b−1
n ζn}, we use Proposition 3.11. It follows

from Theorem 3.2 and Theorem 3.3 that the sequence {b−1
n Sn} converges in dis-

tribution in L2(µ). Hence the sequence {b−1
n ζn(t)} also converges in distribution

in L2(µ) and the sequence {b−1
n ζn(t)} is tight on L2(µ) for every t ∈ [0, 1] and

condition (i) of Proposition 3.11 holds.

Now we show that condition (ii) of Proposition 3.11 holds for the sequence {b−1
n ζn}.

By C we denote a generic positive constant, not necessarily the same at different

occurrences. We also denote

∆p
n(t, u) = E ‖b−1

n [ζn(t)− ζn(u)]‖p,

where p ≥ 2, t, u ∈ [0, 1] and n ≥ 1.

Proposition 3.16. Suppose that 1/2 < d(s) < 1 for each s ∈ S and the integrals∫
S

σ2(r)

2d(r)− 1
µ(dr) and E

[∫
S

ε2
0(r)

[1− d(r)]2
µ(dr)

]p/2
, p ≥ 2,

are finite. Let d̄ = ess sup d. Then

∆p
n(t, u) ≤ C · |t− u|(3−2d̄)p/2, n ≥ 1. (3.49)

Suppose that d(s) = 1 for each s ∈ S and E ‖ε0‖p <∞ for p ≥ 2. Then

∆p
n(t, u) ≤ C · |t− u|p/2, n ≥ 2. (3.50)
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We recall that b·c is the floor function defined by bxc = max{m ∈ Z | m ≤ x} for

x ∈ R, d·e is the ceiling function defined by dxe = min{m ∈ Z | m ≥ x} for x ∈ R

and {x} = x−bxc is a fractional part of x ∈ R. Observe that {x} = 0 if and only

if x ∈ Z and

dxe − bxc =

0, if x ∈ Z;

1, if x ∈ R \ Z.

We need an auxiliary lemma to prove Proposition 3.16.

Lemma 3.2. Let 0 ≤ u < t ≤ 1, n ≥ 1 and {nt} = {nu} = 0.

If 1/2 < d(s) < 1 for each s ∈ S , then

n−[3−2d(s)]

nt∑
j=−∞

[ nt∑
k=nu+1

vk−j(s)
]2

≤
[ 2

[1− d(s)]2
+

1

2d(s)− 1

]
· |t−u|3−2d(s) (3.51)

for n ≥ 1, where vj(s) is given by (3.14).

If d(s) = 1 for each s ∈ S, then

(
√
n log n)−p

nt∑
j=−∞

[ nt∑
k=nu+1

vk−j

]p
≤ C · |t− u|p/2, (3.52)

for n ≥ 2 and p ≥ 2, where vj is given by (3.13).

Proof. We investigate the series

nt∑
j=−∞

[ nt∑
k=nu+1

vk−j(s)
]p

(3.53)

with p = 2 in the case of 1/2 < d(s) < 1 for each s ∈ S and p ≥ 2 in the case of

d(s) = 1 for each s ∈ S. Let us split series (3.53) into two terms

nt∑
j=−∞

[ nt∑
k=nu+1

vk−j(s)
]p

=
∞∑

j=−nu+1

[ nt∑
k=nu+1

(k + j)−d(s)
]p

+
nt∑

j=nu+1

[nt−j+1∑
k=1

k−d(s)
]p

(3.54)

and then split the first term on the right-hand side of (3.54) again into two terms

∞∑
j=−nu+1

[ nt∑
k=nu+1

(k + j)−d(s)
]p

=

n(t−2u)∑
j=−nu+1

[ nt∑
k=nu+1

(k + j)−d(s)
]p
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+
∞∑

j=n(t−2u)+1

[ nt∑
k=nu+1

(k + j)−d(s)
]p
. (3.55)

The first term on the right-hand side of (3.55) is estimated from above in the

following way:

n−[3−2d(s)]

n(t−2u)∑
j=−nu+1

[ nt∑
k=nu+1

(k + j)−d(s)
]2

≤ n|t− u|
n3−2d(s)

[ nt∑
k=nu+1

(k − nu)−d(s)
]2

≤ |t− u|
3−2d(s)

[1− d(s)]2

if 1/2 < d(s) < 1 for each s ∈ S;

(
√
n log n)−p

n(t−2u)∑
j=−nu+1

[ nt∑
k=nu+1

(k + j)−1
]p
≤
[ 1

log n

nt∑
k=nu+1

(k − nu)−1
]p
· |t− u|p/2

≤
[1 + log(n|t− u|)

log n

]p
· |t− u|p/2

if d(s) = 1 for each s ∈ S since 1/n ≤ |t− u| (otherwise t = u because we assume

that {nt} = {nu} = 0). The second term on the right-hand side of (3.55) is

estimated from above using the inequality

∞∑
j=n(t−2u)+1

[ nt∑
k=nu+1

(k + j)−d(s)
]p
≤ (n|t− u|)p

∞∑
j=n(t−2u)+1

(nu+ j)−pd(s)

≤ (n|t− u|)p+1−pd(s)

pd(s)− 1

and observing that

n−[3−2d(s)](n|t− u|)p+1−pd(s) = |t− u|3−2d(s)

if 1/2 < d(s) < 1 for each s ∈ S and p = 2 and

(
√
n log n)−p(n|t− u|)p+1−pd(s) ≤ |t− u|

p/2

logp 2

if d(s) = 1 for each s ∈ S and p ≥ 2 since 1/n ≤ |t− u|.

The second term on the right-hand side of (3.54) is estimated in the following

way:

n−[3−2d(s)]

nt∑
j=nu+1

[nt−j+1∑
k=1

k−d(s)
]2

≤ 1

[1− d(s)]2[3− 2d(s)]
· |t− u|3−2d(s)
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if 1/2 < d(s) < 1 for each s ∈ S and

(
√
n log n)−p

nt∑
j=nu+1

[nt−j+1∑
k=1

k−1
]p
≤ 1

np/2 logp n

nt∑
j=nu+1

[1 + log(nt− j + 1)]p

≤ 2
[ 1

log 2
+

log(n|t− u|)
log n

]p
· |t− u|p/2

if d(s) = 1 for each s ∈ S. The proof of Lemma 3.2 is complete.

Now we are ready to prove Proposition 3.16.

Proof of Proposition 3.16. Let t, u ∈ [0, 1]. There is no loss of generality by as-

suming that t > u. Set t′ = bntc/n and u′ = dnue/n, so that t, t′ ∈ [bntc/n, dnte/n],

u, u′ ∈ [bnuc/n, dnue/n], {nt′} = {nu′} = 0 and |t′ − u′| ≤ |t− u|. Since

∆p
n(t, u) ≤ C[∆p

n(t, t′) + ∆p
n(t′, u′) + ∆p

n(u′, u)],

we can establish inequalities (3.49) and (3.50) by investigating two cases: either

t, u ∈ [κ/n, (κ+ 1)/n] for some κ ∈ {0, . . . , n− 1} or {nt} = {nu} = 0.

First, suppose that t, u ∈ [κ/n, (κ + 1)/n] for some κ ∈ {0, . . . , n − 1}. Then

|t− u| ≤ 1/n and

ζn(t)− ζn(u) = n|t− u|Xκ+1,

so that

∆p
n(t, u) ≤ [n|t− u|]p‖n−H‖p E ‖X0‖p ≤ E ‖X0‖p · |t− u|(3−2d̄)p/2

if 1/2 < d(s) < 1 for each s ∈ S and

∆p
n(t, u) = [n|t− u|]p(

√
n log n)−p E ‖X0‖p ≤

E ‖X0‖p

logp 2
· |t− u|p/2

if d(s) = 1 for each s ∈ S and n ≥ 2.

We have that

E ‖X0‖p ≤ 2p−1
(
C

p

log p

)p[
(E ‖X0‖2)p/2 +

∞∑
j=0

E ‖ujεk−j‖p
]

(3.56)

by using a slight modification of the inequality stated in Theorem 6.20 of Ledoux

and Talagrand [35]. Since

E ‖X0‖2 ≤ E ‖ε0‖2 +

∫
S

σ2(r)

2d(r)− 1
µ(dr)
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and
∑∞

j=0 E ‖ujεk−j‖p ≤ E ‖ε0‖p
∑∞

j=1 j
−p/2, we have that E ‖X0‖p <∞.

Secondly, suppose that {nt} = {nu} = 0. Then |t − u| ≥ 1/n (∆p
n(t, u) = 0 if

{nt} = {nu} = 0 and |t − u| < 1/n). The increment b−1
n [ζn(t) − ζn(u)] may be

expressed as a series of independent L2(µ)-valued random elements

b−1
n [ζn(t)− ζn(u)] =

nt∑
j=−∞

b−1
n

nt∑
k=nu+1

vk−jεj

where vj is given by (3.14). Using the same inequality as in (3.56), we have that

∆p
n(t, u) ≤ 2p−1

(
C

p

log p

)p[
∆p
n2p/2(t, u) +

nt∑
j=−∞

E
∥∥∥b−1

n

nt∑
k=nu+1

vk−jεj

∥∥∥p ].
If 1/2 < d(s) < 1 for each s ∈ S , then we have that

∆2
n(t, u) =

∫
S
σ2(r)n−[3−2d(r)]

nt∑
j=−∞

[ nt∑
k=nu+1

vk−j(r)
]2

µ(dr) (3.57)

and

nt∑
j=−∞

E
∥∥∥b−1

n

nt∑
k=nu+1

vk−jεj

∥∥∥p =

=
nt∑

j=−∞

E
[∫

S
n−[3−2d(r)]

∣∣ nt∑
k=nu+1

vk−j(r)
∣∣2ε2

j(r)µ(dr)
]p/2

. (3.58)

If d(s) = 1 for each s ∈ S , then we obtain

∆2
n(t, u) = E ‖ε0‖2(

√
n log n)−2

nt∑
j=−∞

[ nt∑
k=nu+1

vk−j

]2

(3.59)

and
nt∑

j=−∞

E
∥∥∥b−1

n

nt∑
k=nu+1

vk−jεj

∥∥∥pt = E ‖ε0‖p(
√
n log n)−p

nt∑
j=−∞

[ nt∑
k=nu+1

vk−j

]p
. (3.60)

We estimate (3.57), (3.59) and (3.60) using Lemma 3.2 and we need to estimate

series (3.58) for p > 2 when 1/2 < d(s) < 1 for each s ∈ S . As in (3.54)

and (3.55), we split series (3.58) into three parts and estimate them from above

separately. The estimation is essentially similar to the estimation of series (3.53).

Let us recall that we assume that 1/n ≤ |t−u| if {nt} = {nu} = 0. The following

inequalities are obtained:
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n(t−2u)∑
j=−nu+1

E
[∫

S

|
∑nt

k=nu+1(k + j)−d(r)|2ε2
j(r)

n3−2d(r)
µ(dr)

]p/2
≤

≤ E
[∫

S

ε2
0(r)

[1− d(r)]2
µ(dr)

]p/2
|t− u|(3−2d̄)p/2

since ∑nt
k=nu+1(k − nu)−d(r)

n1−d(r)
≤ |t− u|

1−d(r)

1− d(r)
;

∞∑
j=n(t−2u)+1

E
[∫

S

|
∑nt

k=nu+1(k + j)−d(r)|2ε2
j(r)

n3−2d(r)
µ(dr)

]p/2
≤ E ‖ε0‖p

p/2− 1
|t− u|(3−2d̄)p/2

since( n

nu+ j

)2d(r)

=
( n

n|t− u|

)2d(r)(n|t− u|
nu+ j

)2d(r)

≤ n|t− u|1−2d̄(nu+ j)−1

for j ≥ n(t− 2u) + 1;

nt∑
j=nu+1

E
[∫

S

|
∑nt−j+1

k=1 k−d(r)|2ε2
j(r)

n3−2d(r)
µ(dr)

]p/2
≤ 21+p(1−d̄)

1 + p(1− d̄)
E
[∫

S

ε2
0(r)

[1− d(r)]2
µ(dr)

]p/2
|t− u|(3−d̄)p/2 (3.61)

since∑nt−j+1
k=1 k−d(r)

n1−d(r)
≤ 1

1− d(r)

[nt− j + 1

n

]1−d(r)

≤ 1

1− d(r)

[nt− j + 1

n

]1−d̄

for nu+ 1 ≤ j ≤ nt.

The proof of Proposition 3.16 is complete.

We established the convergence of the finite-dimensional distributions and the

tightness of the sequence {b−1
n ζn}. The proof of Theorem 3.5 and Theorem 3.6 is

complete.
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4 Law of large numbers

Suppose that H is a separable Hilbert space. We investigate the law of large

numbers for an H-valued linear process {Xk} = {Xk : k ∈ Z} defined by

Xk =
∞∑
j=0

aj(εk−j) (4.1)

for each k ∈ Z, where {aj} = {aj : j ≥ 0} are bounded linear operators from H to

H and {εk} = {εk : k ∈ Z} are independent and identically distributed H-valued

random elements.

Let us define the normalizing sequence {bn(p)} = {bn(p) : n ≥ 1} for p ≥ 1 before

we state our results. For j ∈ Z, denote

ãj =

aj if j ≥ 0,

0 if j < 0.

Then we have that

Sn =
n∑
k=1

Xk =
n∑
k=1

k∑
j=−∞

ak−jεj =
n∑
k=1

n∑
j=−∞

ãk−jεj =
n∑

j=−∞

wnjεj

for n ≥ 1, where

wnj =
n∑
k=1

ãk−j (4.2)

for n ≥ 1 and j ∈ Z. Let us observe that sum (4.2) contains at most min{n− j +

1, n} non-zero terms for j ≤ n.

Denote

bn(p) =

( n∑
j=−∞

‖wnj‖p
)1/p

(4.3)

for n ≥ 1 and p > 0. We have that

bn(p) =

( n∑
j=−∞

‖wnj‖p
)1/p

= lim
N→∞

( n∑
j=−N

∥∥∥∥ n∑
k=1

ãk−j

∥∥∥∥p)1/p
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and

lim
N→∞

( n∑
j=−N

∥∥∥∥ n∑
k=1

ãk−j

∥∥∥∥p)1/p

≤ lim
N→∞

n∑
k=1

( n∑
j=−N

‖ãk−j‖p
)1/p

= n

( ∞∑
j=0

‖aj‖p
)1/p

using the triangle inequality for the norm

‖K‖ =

( d∑
i=1

‖Ki‖p
)1/p

for p ≥ 1 and K ∈ Ld(H). Hence, bn(p) is finite for each n ≥ 1 and each p ≥ 1 if∑∞
j=0 ‖aj‖p <∞.

Now we are ready to state our main results. We begin with the case when∑∞
j=0 ‖aj‖ is finite.

Theorem 4.1. Let 1 < p < 2. Suppose that
∑∞

j=0 ‖aj‖ <∞, xp Pr{‖ε0‖ > x} →

0 as x→∞ and E ε0 = 0. Then

Sn
n1/p

→ 0

in probability as n→∞.

Theorem 4.2. Let 1 < p < 2. Suppose that
∑∞

j=0 ‖aj‖ < ∞, E ‖ε0‖p < ∞ and

E ε0 = 0. Then
Sn
n1/p

→ 0

almost surely as n→∞.

Let us turn to the case when
∑∞

j=0 ‖aj‖ is not necessarily finite.

Theorem 4.3. Let 1 < p < 2. Suppose that
∑∞

j=0 ‖aj‖p < ∞, xp Pr{‖ε0‖ >

x} → 0 as x→∞ and E ε0 = 0. If

lim
n→∞

supj≤n ‖wnj‖
bn(p)

= 0,

then
Sn
bn(p)

→ 0

in probability as n→∞.

Since supj≤n ‖wnj‖ ≤ bn(q) for q ≥ 1, we have the following corollary of Theo-

rem 4.3.
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Corollary 4.1. Let 1 < p < 2. Suppose that
∑∞

j=0 ‖aj‖p < ∞, xp Pr{‖ε0‖ >

x} → 0 as x→∞ and E ε0 = 0. If

lim
n→∞

bn(q)

bn(p)
= 0

for some q > p, then
Sn
bn(p)

→ 0

in probability as n→∞.

Theorem 4.4. Let 1 ≤ p < 2. Suppose that
∑∞

j=0 ‖aj‖p < ∞, E[‖ε0‖p log(1 +

‖ε0‖)] <∞ and E ε0 = 0. If

bn(q)

bn(p)
= O(n1/q−1/p) (4.4)

as n→∞ for some p < q ≤ 2, then

Sn
bn(p)

→ 0

almost surely as n→∞.

4.1 Examples

We give two examples of particular operators {aj} and establish asymptotic be-

haviour of the normalizing sequences {bn(p)} when the series
∑∞

j=0 ‖aj‖ diverges.

Let us observe that the normalizing sequence {bn(p)} can be expressed explicitly

in terms of the operators {aj}

bpn(p) =
0∑

j=−∞

∥∥∥∥ n∑
k=1

ãk−j

∥∥∥∥p +
n∑
j=1

∥∥∥∥ n∑
k=1

ãk−j

∥∥∥∥p

=
0∑

j=−∞

∥∥∥∥ n∑
k=1

ak−j

∥∥∥∥p +
n∑
j=1

∥∥∥∥n−j∑
k=0

ak

∥∥∥∥p. (4.5)

Proposition 4.1. Let p > 1 and 1/p < d < 1. Suppose that H = R and

aj = (j + 1)−d for each j ≥ 0. Then

bn(p) ∼ c · n1/p+1−d

as n→∞, where c is a positive constant.
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Let us compare our results with the results of Louhichi and Soulier [37] (see

Theorem 2.14 in Chapter 2). Suppose that 1 ≤ s < α < 2, aj = (j + 1)−d for

each j ≥ 0 with some 1/s < d < 1, E ε0 = 0 and E[|ε0|p log(1 + |ε0|)] <∞ for all

s ≤ p < α. Then it follows from our results (Theorem 4.3 and Proposition 4.1)

that
Sn

n1/p+1−1/s
→ 0

almost surely as n → ∞ for all p ≤ α since 1/s < d. The advantage of our

result is that we do not need to assume that {εk} are symmetric α-stable random

variables. The advantage of the results of Louhichi and Soulier [37] is that they do

not need to assume that aj = (j + 1)−d for each j ≥ 0, they only need to assume

that
∑∞

j=0 |aj|s <∞ for some 1 ≤ s < α.

Proof of Proposition 4.1. We have that

bpn(p) =
0∑

j=−∞

∣∣∣∣ n∑
k=1

(k − j + 1)−d
∣∣∣∣p +

n∑
j=1

∣∣∣∣n−j∑
k=0

(k + 1)−d
∣∣∣∣p

=
∞∑
j=1

∣∣∣∣ n∑
k=1

(k + j)−d
∣∣∣∣p +

n∑
j=1

∣∣∣∣n−j+1∑
k=1

k−d
∣∣∣∣p

using expression (4.5).

We obtain that the limit

lim
n→∞

1

n1+p(1−d)

∞∑
j=1

∣∣∣∣ n∑
k=1

(k + j)−d
∣∣∣∣p = lim

n→∞

∞∑
j=1

1

n

jn∑
l=(j−1)n+1

∣∣∣∣ 1n
n∑
k=1

(
k

n
+
l

n

)−d∣∣∣∣p

=
∞∑
j=1

lim
n→∞

1

n

jn∑
l=(j−1)n+1

∣∣∣∣ 1n
n∑
k=1

(
k

n
+
l

n

)−d∣∣∣∣p
=
∞∑
j=1

∫ j

j−1

∣∣∣∣∫ 1

0

(x+ y)−ddx

∣∣∣∣pdy
=

∫ ∞
0

∣∣∣∣∫ 1

0

(x+ y)−ddx

∣∣∣∣pdy (4.6)

is finite since both of the integrals∫ 1

0

∣∣∣∣∫ 1

0

(x+ y)−ddx

∣∣∣∣pdy ≤ ∣∣∣∣∫ 1

0

x−dds

∣∣∣∣p
and ∫ ∞

1

∣∣∣∣∫ 1

0

(x+ y)−ddx

∣∣∣∣pdy ≤ ∫ ∞
1

y−pddy
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are finite. Also, the limit is positive since integral (4.6) is positive.

By approximating sums with definite integrals, we have that

n−j+1∑
k=1

k−d ≤ (n− j + 1)1−d

1− d

and
n∑
j=1

∣∣∣∣(n− j + 1)1−d

1− d

∣∣∣∣p ≤ ∫ n

0

(n− x+ 1)p(1−d)

[1− d]p
dx =

(n+ 1)1+p(1−d) − 1

[1 + p(1− d)][1− d]p
.

Hence,

lim
n→∞

1

n1+p(1−d)

n∑
j=1

∣∣∣∣n−j+1∑
k=1

k−d
∣∣∣∣p <∞.

The proof is complete.

Now we establish asymptotic behaviour of the normalizing sequence {bn(p)} when

the operators {aj} are given by (3.2).

Proposition 4.2. Let H = L2(µ) and {aj} defined by

aj = (j + 1)−D

for each j ≥ 0, where D is a multiplication operator such that Df = {d(s)f(s) :

s ∈ S} for each f ∈ L2(µ) and d : S → R is a measurable function. Denote

d = ess infs∈S d(s). If 1/p < d < 1, then

bn(p) ∼ c · n1/p+1−d

as n→∞, where c is a positive constant.

Proof. By equation (4.5), we have that

bpn(p) =
0∑

j=−∞

∥∥∥∥ n∑
k=1

(k − j + 1)−D
∥∥∥∥p +

n∑
j=1

∥∥∥∥n−j∑
k=0

(k + 1)−D
∥∥∥∥p

=
∞∑
j=1

∥∥∥∥ n∑
k=1

(k + j)−D
∥∥∥∥p +

n∑
j=1

∥∥∥∥n−j+1∑
k=1

k−D
∥∥∥∥p.

Since ∥∥∥∥ n∑
k=1

(k + j)−D
∥∥∥∥ = ess sup

s∈S

[ n∑
k=1

(k + j)−d(s)

]
=

n∑
k=1

(k + j)−d
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and ∥∥∥∥n−j+1∑
k=1

k−D
∥∥∥∥ = ess sup

s∈S

[ n−j+1∑
k=1

k−d(s)

]
=

n−j+1∑
k=1

k−d

(see Conway [9], p. 28), we have that

bpn(p) =
∞∑
j=1

∣∣∣∣ n∑
k=1

(k + j)−d
∣∣∣∣p +

n∑
j=1

∣∣∣∣n−j+1∑
k=1

k−d
∣∣∣∣p.

Hence,

bn(p) ∼ c · n1/p+1−d

using Proposition 4.1, where c is a positive constant. The proof is complete.

It seems that bn(p) = O(n1/p) as n→∞ if the series
∑∞

j=0 ‖aj‖ converges, but we

cannot prove this statement for all p ≥ 1. However, we can prove this statement

for p = 2 and H = R.

Lemma 4.1. Suppose that
∑∞

j=0 |aj| < ∞. Then bn(2) = O(n1/2) as n → ∞,

where bn(2) is given by (4.3).

Proof. Suppose that E ε0 = 0 and 0 < E ε2
0 <∞. Using the stationarity of {Xk},

E

∣∣∣∣ n∑
k=1

Xk

∣∣∣∣2 = n

[
− EX2

0 + 2
n−1∑
k=0

(1− k/n) E[X0Xk]

]

= nE ε2
0

[
−
∞∑
j=0

a2
j + 2

n−1∑
k=0

(1− k/n)
∞∑
j=0

ajaj+k

]
.

Using the fact that

E

∣∣∣∣ n∑
k=1

Xk

∣∣∣∣2 = E

∣∣∣∣ n∑
j=−∞

wnjεj

∣∣∣∣2 = E ε2
0

n∑
j=−∞

w2
nj,

we obtain

b2
n(2) =

n∑
j=−∞

w2
nj = n

[
−
∞∑
j=0

a2
j + 2

n−1∑
k=0

(1− k/n)
∞∑
j=0

ajaj+k

]
.

If
∑∞

j=0 |aj| <∞, then
∑∞

k=0 |
∑∞

j=0 ajaj+k| <∞ (see Hamilton [23], p. 70). Also,

lim
n→∞

n−1∑
k=0

(1− k/n)
∞∑
j=0

ajaj+k =
∞∑
k=0

∞∑
j=0

ajaj+k

since any convergent series is Cesàro summable, and the sum of the series agrees

with its Cesàro sum. Hence, bn(2) = O(n1/2) as n→∞.
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4.2 Preliminaries

4.2.1 Moments of random elements

For 0 < p < ∞, Lp = Lp(Ω,F ,Pr;H) denotes the space of all H-valued random

elements ξ on (Ω,F ,Pr) such that

‖ξ‖p = (E ‖ξ‖p)1/p <∞

and Lp,∞ = Lp,∞(Ω,F ,Pr;H) denotes the space of all H-valued random variables

ξ on (Ω,F ,Pr) such that

‖ξ‖p,∞ =
(
sup
x>0

(xp Pr{‖ξ‖ > x})
)1/p

<∞.

The functional ‖·‖p,∞ is only a quasi-norm, i.e. it satisfies the norm axioms, except

that the triangle inequality is replaced by

‖ζ + ξ‖p,∞ ≤ max{2, 21/p}(‖ζ‖p,∞ + ‖ξ‖p,∞) (4.7)

for ζ, ξ ∈ Lp,∞.

We have, when r > p > 0,

‖ξ‖p,∞ ≤ ‖ξ‖p ≤
( r

r − p

)1/p

‖ξ‖r,∞, (4.8)

hence Lr,∞ ⊂ Lp ⊂ Lp,∞ (actually, if ξ is in Lp, then limx→∞ x
p Pr{‖ξ‖ > x} = 0).

There exists a constant C > 0 with 1 ≤ p < 2 such that∥∥∥ n∑
i=1

ξi

∥∥∥p
p,∞
≤ C

n∑
i=1

‖ξi‖pp,∞ (4.9)

for independent and symmetric H-valued random elements ξ1, . . . , ξn ∈ Lp,∞ (see

Section 5.6 in Lin and Bai [36] and Proposition 9.13 of Ledoux and Talagrand [35]).

We need an auxiliary lemma.

Lemma 4.2. Let ξ be a non-negative random variable. For any q > 0 and c > 0,

E[ξqI{ξ≤c}] = q

∫ c

0

sq−1 Pr{ξ > s}ds− cq Pr{ξ > c}.
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Similar result to Lemma 4.2 is used in the proof of Feller’s weak law of large

numbers without a first moment assumption (see Section VII.7 of Feller [17] and

Theorem 7.2.1 of Resnick [51] for details).

Proof of Lemma 4.2. We have that

E[ξqI{ξ≤c}] =

∫
{x:x≤c}

xqdF (x) =

∫
x≤c

[∫ x

0

qsq−1ds

]
dF (x)

= q

∫ c

0

sq−1

[ ∫
s<x≤a

dF (x)

]
ds

= q

∫ c

0

sq−1 Pr{ξ > s}ds− cq Pr{ξ > c}

by applying Fubini’s theorem.

4.2.2 Convergence of the series of random elements

We investigate two separate cases: real-valued case and H-valued case. The real-

valued case might be of independent interest since we establish almost sure con-

vergence of series (4.1) under the assumption of finite ‖ε0‖p,∞ for all p > 0. Of

particular interest is the case when p = 1 and the case when p = 2. The proof

of the real-valued case uses the fact that |ajε0| = |aj||ε0| for each j ≥ 0, which

is not true for general Hilbert spaces, i.e. ‖aj(ε0)‖ 6= ‖aj‖‖ε0‖, we only have that

‖aj(ε0)‖ ≤ ‖aj‖‖ε0‖.

Real-valued case

Proposition 4.3. Let p > 0. Suppose that ‖ε0‖p,∞ < ∞ and E ε0 = 0 if p > 1.

Series (4.1) converges almost surely if:

(a) p 6= 1, p 6= 2 and
∑∞

j=0 |aj|q <∞, where q = min{p, 2};

(b) p = 1 and
∑∞

j=0 |aj| log |aj|−1 <∞;

(c) p = 2 and
∑∞

j=0 |aj|2 log |aj|−1 <∞.

Proof. We use Kolmogorov’s three-series theorem to establish the almost sure

convergence. Assume without loss of generality that aj 6= 0 for each j ≥ 0. We
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establish the convergence of the following series:
∞∑
j=0

Pr{|ε0| > |aj|−1}; (4.10)

∞∑
j=0

aj E[ε0I{|ε0|≤|aj |−1}]; (4.11)

∞∑
j=0

a2
j Var[ε0I{|ε0|≤|aj |−1}]. (4.12)

First, we establish convergence of series (4.10). We have that
∞∑
j=0

|aj|p|aj|−p Pr{|ε0| > |aj|−1} ≤ ‖ε0‖pp,∞
∞∑
j=0

|aj|p. (4.13)

Secondly, we investigate the convergence of series (4.11).

Suppose that 0 < p < 1. Then
∞∑
j=0

|aj|E[|ε0|I{|ε0|≤|aj |−1}] ≤
∞∑
j=0

|aj|‖ε0‖pp,∞
|aj|p−1

1− p
=
‖ε0‖pp,∞
1− p

∞∑
j=0

|aj|p

using Lemma 4.2.

Suppose that p = 1. Then∫ |aj |−1

0

Pr{|ε0| > s}ds ≤ 1 + ‖ε0‖1,∞ log |aj|−1

for j ≥ J , where J ≥ 0 is such that |aj|−1 ≥ 1 when j ≥ J . By Lemma 4.2,
∞∑
j=J

|aj|E[|ε0|I{|ε0|≤|aj |−1}] ≤
∞∑
j=J

|aj|+ ‖ε0‖1,∞

∞∑
j=J

|aj| log |aj|−1.

Suppose that p > 1. We have that

E[ε0I{|ε0|≤|aj |−1}] = E[ε0I{|ε0|≤|aj |−1}]− E ε0 = −E[ε0I{|ε0|>|aj |−1}] (4.14)

and

E[|ε0|I{|ε0|>|aj |−1}] =

∫ |aj |−1

0

Pr{|ε0|I{|ε0|>|aj |−1} > x}dx

+

∫ ∞
|aj |−1

Pr{|ε0|I{|ε0|>|aj |−1} > x}dx

= |aj|−1 Pr{|ε0| > |aj|−1}+

∫ ∞
|aj |−1

Pr{|ε0| > x}dx
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since Pr{|ε0|I{|ε0|>|aj |−1} > x} = Pr{|ε0| > |aj|−1} for 0 ≤ x ≤ |aj|−1. Hence,
∞∑
j=0

|aj|E[|ε0|I{|ε0|>|aj |−1}] ≤
∞∑
j=0

|aj|‖ε0‖pp,∞
[
1 +

1

p− 1

]
|aj|p−1

= ‖ε0‖pp,∞
[
1 +

1

p− 1

] ∞∑
j=0

|aj|p.

Finally, we complete the proof by establishing the convergence of series (4.12).

Suppose that 0 < p < 2. Then
∞∑
j=0

|aj|2 E[|ε0|2I{|ε0|≤|aj |−1}] ≤
∞∑
j=0

|aj|22‖ε0‖pp,∞
|aj|p−2

2− p
=

2‖ε0‖pp,∞
2− p

∞∑
j=0

|aj|p

using Lemma 4.2.

Suppose that p = 2. Then∫ |aj |−1

0

2sPr{|ε0| > s}ds ≤ 1 + 2‖ε0‖2
2,∞ log |aj|−1

for j ≥ J , where J ≥ 0 is such that |aj|−1 ≥ 1 when j ≥ J . By Lemma 4.2,
∞∑
j=J

|aj|2 E[|ε0|2I{|ε0|≤|aj |−1}] ≤
∞∑
j=J

|aj|2 + 2‖ε0‖2
2,∞

∞∑
j=J

|aj|2 log |aj|−1.

Suppose that p > 2. Then Var[ε0I{|ε0|≤|aj |−1}]→ Var ε0 as j →∞ and the series
∞∑
j=0

a2
j Var[ε0I{|ε0|≤|aj |−1}]

converges if
∑∞

j=0 a
2
j <∞.

Remark 4.1. Suppose that aj > 0 for each j ≥ 0 and that ε0 has the density

function

f(x) =


2
π

1
1+x2

if x ≥ 0,

0 if x < 0.

Then ε0 ∈ L1,∞ and

E[ε0I{ε0≤a−1
j }

] =
2

π

∫ a−1
j

0

x

1 + x2
dx =

1

π
log(a−2

j + 1)

so that the series
∞∑
j=0

E[ajεk−jI{|ajεk−j |≤1}]
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converges if and only if
∑∞

j=0 aj log a−1
j <∞ since log(a−2

j +1) ∼ 2 log a−1
j . Hence,

the condition in Proposition 4.3 when p = 1 is sharp. Similarly, we can construct

an example to show that the condition in Proposition 4.3 when p = 2 is also sharp.

Proposition 4.4. Suppose that E |ε0|p < ∞ for p > 0 and E ε0 = 0 if p ≥ 1.

Series (4.1) converges almost surely if
∑∞

j=0 |aj|q <∞, where q = min{p, 2}.

Proof. We use Proposition 4.3 to establish the almost sure convergence of se-

ries (4.1) when p 6= 1 and p 6= 2 since Lp ⊂ Lp,∞. In order to show that series (4.1)

converges when p = 1 and p = 2, we again use Kolmogorov’s three-series theorem

as in the proof of Proposition 4.3.

The convergence of series (4.10) follows from inequality (4.13) in both cases.

Series (4.11) converges since

∞∑
j=0

|aj|E[|ε0|I{|ε0|≤|aj |−1}] ≤ E |ε0|
∞∑
j=0

|aj|

when p = 1 and, using equation (4.14),

∞∑
j=0

|aj|E[|ε0|I{|ε0|>|aj |−1}] =
∞∑
j=0

|aj|E[|ε0|
|aj|−1

|aj|−1
I{|ε0|>|aj |−1}] ≤ E ε2

0

∞∑
j=0

a2
j

when p = 2.

Series (4.12) converges since

∞∑
j=0

a2
j E[|ε0|2I{|ε0|≤|aj |−1}] ≤

∞∑
j=0

|aj|E[|ε0|I{|ε0|≤|aj |−1}] ≤ E |ε0|
∞∑
j=0

|aj|.

when p = 1 and Var[ε0I{|ε0|≤|aj |−1}]→ Var ε0 as j →∞ when p = 2.

Remark 4.2. If E ε0 6= 0 and aj ≥ 0 for each j ≥ 0, then series (4.1) converges if

and only if
∑∞

j=0 aj < ∞. If E ε0 = 0, E ε2
0 < ∞ and E ε2

0 6= 0, then series (4.1)

converges if and only if
∑∞

j=0 a
2
j <∞.

H-valued case

Proposition 4.5. Suppose that ‖ε0‖p,∞ < ∞ for 1 < p < 2 and E ε0 = 0. Then

series (4.1) converges almost surely if
∑∞

j=0 ‖aj‖p <∞.
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Proof. Let N > M and let {ε̃j} = {ε̃j : j ∈ Z} be an independent copy of {εj}

so that {εj − ε̃j} = {εj − ε̃j : j ∈ Z} are independent and identically distributed

symmetric random elements. Then

E

∥∥∥∥ N∑
j=M+1

aj(εk−j)

∥∥∥∥ ≤ E

∥∥∥∥ N∑
j=M+1

aj(εk−j − ε̃k−j)
∥∥∥∥

using the fact that E ε̃0 = 0.

We obtain that

E

∥∥∥∥ N∑
j=M+1

aj(εk−j − ε̃k−j)
∥∥∥∥ ≤ ( p

p− 1

)∥∥∥∥ N∑
j=M+1

aj(εk−j − ε̃k−j)
∥∥∥∥
p,∞

≤ C1/p

(
p

p− 1

)( N∑
j=M+1

‖aj(ε0 − ε̃0)‖pp,∞
)1/p

≤ C1/p

(
p

p− 1

)( N∑
j=M+1

‖‖aj‖(ε0 − ε̃0)‖pp,∞
)1/p

≤ 4C1/p

(
p

p− 1

)
‖ε0‖p,∞

( N∑
j=M+1

‖aj‖p
)1/p

using the fact that 1 < p < 2, inequalities (4.8) and (4.9), the inequality

‖aj(ε0 − ε̃0)‖ ≤ ‖aj‖‖ε0 − ε̃0‖

for each j ≥ 0 and inequality (4.7).

The convergence in mean of series (4.1) implies that it converges in probability

and since the random elements {εk : k ∈ Z} are independent for each k ≥ 1, it

also follows that the series converges almost surely (see Theorem 6.1 of Ledoux

and Talagrand [35]). The proof is complete.

Using the fact that Lp ⊂ Lp,∞, we obtain the following corollary of Proposition 4.5.

Corollary 4.2. Suppose that ‖ε0‖p < ∞ for 1 < p < 2 and E ε0 = 0. Then

series (4.1) converges almost surely if
∑∞

j=0 ‖aj‖p <∞.

4.2.3 Symmetrization

Some lemmas and inequalities that we use require symmetric random elements

(for example, inequality (4.9) above and Lemma 4.5 below). We need to use sym-

metrization to establish results for not necessarily symmetric random elements.
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Suppose that {ξk} = {ξk : k ∈ Z} are independent H-valued random elements. We

construct an associated sequence of independent and symmetric random elements

by setting, for each k ∈ Z, ξk − ξ̃k, where {ξ̃k : k ∈ Z} is an independent copy of

a sequence {ξk}. If E ξ0 = 0, then we have the following inequality

E ‖ξ0‖ = E ‖ξ0 − E ξ̃0‖ ≤ E ‖ξ0 − ξ̃0‖

since E ξ̃0 = 0. Hence, we can estimate from above the first moment of a not

necessarily symmetric random element with the first moment of a symmetrized

random element.

The following lemma ensures that we can deduce the strong law of large numbers

for not necessarily symmetric random elemnents from the strong law of large num-

bers for the symmetrized sequence (see Lemma 7.1 of Ledoux and Talagrand [35]).

Lemma 4.3. Let {ξn} = {ξn : n ≥ 1} and {ξ′n} = {ξ′n : n ≥ 1} be independent

sequences of H-valued random elements such that the sequence {ξn− ξ′n} is almost

surely convergent to 0 as n → ∞ and {ξn} is convergent to 0 in probability as

n→∞. Then {ξn} is almost surely convergent to 0.

So we assume without loss of generality that {εk} are symmetric random variables

in the proofs of Theorem 4.2 and Theorem 4.4.

4.2.4 Auxiliary lemmas

Suppose that E is a separable Banach space and {aj} = {aj : j ≥ 0} are bounded

linear operators from E to E and suppose that {Unj} = {Unj : n ≥ 1, j ≥ 0} are

random elements with values in E.

Lemma 4.4. Suppose that
∑∞

j=0 ‖aj‖ < ∞. Then A =
∑∞

j=0 aj is a bounded

linear operator from E to E. If

sup
n≥1,j≥0

E ‖Unj‖ <∞,

then the series
∞∑
j=0

aj(Unj)

converges almost surely for each n ≥ 1 and if, in addition,

‖Uni − Unj‖ → 0
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in probability as n→∞ for each i ≥ 0 and j ≥ 0, then∥∥∥∥ ∞∑
j=0

aj(Unj)− A(Uni)

∥∥∥∥→ 0

in probability as n→∞ for each i ≥ 0.

See Račkauskas and Suquet [47], for the proof of Lemma 4.4.

Lemma 4.5. Suppose that {ξk} = {ξk : k ≥ 1} are independent and symmetric

random elements of a separable Banach space E and {bn} = {bn : n ≥ 1} is a

sequence of positive numbers. Let Sk =
∑k

j=1 ξj for each k ≥ 1. Then

Pr
{

sup
k≥n
‖b−1
k Sk‖ > δ

}
≤ 8

∞∑
k=n

k−1 Pr{‖b−1
k Sk‖ > δ}

for each n ≥ 1 and for each δ > 0.

The proof of Lemma 4.5 is similar to the part of the proof of Theorem 1.5 of

Norvaiša and Račkauskas [44].

Proof. Let i ≥ 1 be such that 2i−1 ≤ n < 2i. We have that

Pr
{

sup
k≥n
‖b−1
k Sk‖ > δ

}
≤ Pr

{
sup
k≥2i−1

‖b−1
k Sk‖ > δ

}
= Pr

{
sup
j≥i

max
2j−1≤k<2j

‖b−1
k Sk‖ > δ

}
= Pr

(⋃
j≥i

{
max

2j−1≤k<2j
‖b−1
k Sk‖ > δ

})

≤
∞∑
j=i

Pr
{

max
2j−1≤k<2j

‖b−1
k Sk‖ > δ

}
using the fact that{

sup
j≥i

max
2j−1≤k<2j

‖b−1
k Sk‖ > δ

}
=
⋃
j≥i

{
max

2j−1≤k<2j
‖b−1
k Sk‖ > δ

}
and subadditivity of the probability measure. By Lévy’s inequality (see Ka-

hane [28], p. 14),

Pr
{

max
2j−1≤k<2j

‖b−1
k Sk‖ > δ

}
≤ 2 Pr{‖b−1

2j
S2j‖ > δ}.

We obtain the following inequalities

Pr
{

sup
k≥n
‖b−1
k Sk‖ > δ

}
≤ 2

∞∑
j=i

Pr{‖b−1
2j
S2j‖ > δ}
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= 4
∞∑
j=i

2−j−1

2j+1−1∑
k=2j

Pr{‖b−1
2j
S2j‖ > δ}

≤ 4
∞∑
j=i

2j+1−1∑
k=2j

k−1 Pr{ max
2j≤l≤k

‖b−1
l Sl‖ > δ}

≤ 8
∞∑
k=2j

k−1 Pr{‖b−1
k Sk‖ > δ}

≤ 8
∞∑
k=n

k−1 Pr{‖b−1
k Sk‖ > δ}.

The proof is complete.

Lemma 4.6. Let q > p and c > 0. Then
∞∑
k=1

1

kq/p
E[‖ε0‖qI{‖ε0‖≤ck1/p}] ≤ C · cq−p E ‖ε0‖p,

where C is a positive constant.

The proof of Lemma 4.6 is essentially similar to the proof of Lemma 6.1 of Section

6.6 of Gut [22].

Proof. We have that
∞∑
k=1

1

kq/p
E[‖ε0‖qI{‖ε0‖≤ck1/p}] =

=
∞∑
k=1

1

kq/p

k∑
l=1

E[‖ε0‖qI{c(l−1)1/p<‖ε0‖≤cl1/p}]

=
∞∑
l=1

∞∑
k=l

1

kq/p
E[‖ε0‖qI{c(l−1)1/p<‖ε0‖≤cl1/p}]

=

( ∞∑
k=1

1

kq/p

)
E[‖ε0‖qI{‖ε0‖≤c}] +

∞∑
l=2

( ∞∑
k=l

1

kq/p

)
E[‖ε0‖qI{c(l−1)1/p<‖ε0‖≤cl1/p}].

We obtain

E[‖ε0‖qI{‖ε0‖≤c}] ≤ cq−p E[‖ε0‖pI{‖ε0‖≤c}] ≤ cq−p E ‖ε0‖p

and
∞∑
l=2

( ∞∑
k=l

1

kq/p

)
E[‖ε0‖qI{c(l−1)1/p<‖ε0‖≤cl1/p}] ≤

≤ 2q/p−1

q/p− 1

∞∑
l=2

1

lq/p−1
E[‖ε0‖qI{c(l−1)1/p<‖ε0‖≤cl1/p}]
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≤ 2q/p−1cq−p

q/p− 1

∞∑
l=2

E[‖ε0‖pI{c(l−1)1/p<‖ε0‖≤cl1/p}]

≤ 2q/p−1cq−p

q/p− 1
E ‖ε0‖p.

The proof is complete.

4.3 Proofs

We make use of the technique of truncation. Let us introduce several notations.

Suppose that {rnj} = {rnj : n ≥ 1, j ∈ Z} are positive real numbers. Denote

µ′nj = E
[
ε0I{‖ε0‖≤rnj}

]
and µ′′nj = E

[
ε0I{‖ε0‖>rnj}

]
, (4.15)

for n ≥ 1 and j ∈ Z. Set εj = ε′nj + ε′′nj, where

ε′nj = εjI{‖εj‖≤rnj} − µ′nj and ε′′nj = εjI{‖εj‖>rnj} − µ′′nj

so that E ε0 = E ε′nj = E ε′′nj = 0 for n ≥ 1 and j ∈ Z. Denote

S ′n =
n∑

j=−∞

wnjε
′
nj and S ′′n =

n∑
j=−∞

wnjε
′′
nj (4.16)

for n ≥ 1.

We have that

E ‖ε′nj‖2 = E
[
‖ε0‖2I{‖ε0‖≤rnj}

]
− ‖µ′nj‖2 (4.17)

using the fact that ‖x‖ =
√
〈x, x〉 for x ∈ H and the fact that the expectation

commutes with the bounded operators.

By Lemma 4.2,

E
[
‖ε0‖qI{‖ε0‖≤rnj}

]
≤
∫ rnj

0

qsq−1 Pr{‖ε0‖ > s}ds ≤ q

q − p
‖ε0‖pp,∞ · r

q−p
nj (4.18)

for q > p > 0.

4.3.1 Summable linear filter

We have that

Sn =
n∑
k=1

Xk =
n∑
k=1

∞∑
j=0

aj(εk−j) =
∞∑
j=0

aj(snj)
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using additivity of the bounded linear operators {aj}, where

snj =
n∑
k=1

εk−j. (4.19)

Notice that {snj : j ≥ 0} are not independent for any n > 1. Denote

A =
∞∑
j=0

‖aj‖.

Using the monotone convergence theorem, the inequality ‖aj(snj)‖ ≤ ‖aj‖‖snj‖

for each n ≥ 1 and each j ≥ 0 and the triangle inequality, we obtain

E

[ ∞∑
j=0

‖aj(snj)‖
]

=
∞∑
j=0

E ‖aj(snj)‖ ≤ AE ‖sn0‖ ≤ AnE ‖ε0‖

for n ≥ 1. Hence

E

∥∥∥∥ ∞∑
j=0

aj(snj)

∥∥∥∥ = lim
m→∞

E

∥∥∥∥ m∑
j=0

aj(snj)

∥∥∥∥ (4.20)

using the dominated convergence theorem.

Using (4.20), the triangle inequality, Hölder’s inequality and the von Bahr-Esseen

inequality (see von Bahr and Esseen [56]), we obtain

E ‖Sn‖ ≤ AE ‖sn0‖ ≤ A(E ‖sn0‖p)1/p ≤ 21/pA(E ‖ε0‖p)1/p · n1/p (4.21)

for 1 ≤ p ≤ 2. If p = 2, 21/p = 21/2 can by replaced by 1 in inequality (4.21).

Weak law of large numbers

We have that

Pr{‖n−1/pSn‖ > δ} ≤ Pr{‖n−1/pS ′n‖ > δ/2}+ Pr{‖n−1/pS ′′n‖ > δ/2} (4.22)

for each δ > 0.

Lemma 4.7. Suppose that xp Pr{‖ε0‖ > x} → 0 as x → ∞ for some p > 1 and

rn →∞ as n→∞, where rn = infj≤n rnj. Then

sup
j≤n
‖ε′′nj‖p,∞ → 0 as n→∞.

83



Proof. Denote

M ′′
n = E[‖ε0‖I{‖ε0‖>rn}]

and observe that

‖µ′′nj‖ ≤ E
[
‖ε0‖I{‖ε0‖>rnj}

]
≤M ′′

n (4.23)

since rnj ≥ rn.

Using triangle inequality and inequality (4.23),

sup
j≤n
‖ε′′nj‖pp,∞ = sup

j≤n
sup
x>0

(xp Pr{‖ε0I{‖ε0‖>rnj} − µ′′nj‖ > x})

≤ sup
j≤n

sup
x>0

(xp Pr{‖ε0‖I{‖ε0‖>rnj} + ‖µ′′nj‖ > x})

≤ sup
x>0

(xp Pr{‖ε0‖I{‖ε0‖>rn} > x−M ′′
n}).

Observe that

Pr{‖ε0‖I{‖ε0‖>rn} > x−M ′′
n} =


1, if 0 < x < M ′′

n ,

Pr{‖ε0‖ > rn}, if M ′′
n ≤ x ≤M ′′

n + rn,

Pr{‖ε0‖ > x}, if x > M ′′
n + rn.

We obtain

sup
x>0

(xp Pr{‖ε0‖I{‖ε0‖>rn} > x−M ′′
n}) ≤

≤ max{(M ′′
n)p, (M ′′

n + rn)p Pr{‖ε0‖ > rn}, sup
x>M ′′n+rn

(xp Pr{‖ε0‖ > x})} → 0

as n→∞ since xp Pr{‖ε0‖ > x} → 0 as x→∞ and rn →∞ as n→∞, so that

limn→∞M
′′
n = 0. The proof is complete.

Proof of Theorem 4.1. For j ≥ 0, n ≥ 1 and τ > 0, set

rnj =

[
τ 2 ·

(
δ

2A

)2

· 2− p
2‖ε0‖pp,∞

] 1
2−p

n1/p.

Using Markov’s inequality, inequalities (4.21), (4.17) and (4.18),

Pr{‖n−1/pS ′n‖ > δ/2} ≤ 2

δ

E ‖S ′n‖
n1/p

≤ 2

δ
A(E ‖ε′n0‖2)1/2

n1/p−1/2
≤ τ.

Hence, the first term on the right side of (4.22) goes to 0 as n → ∞ for each

δ > 0.
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Let {ε̃′′nj : n ≥ 1, j ∈ Z} be an idependent copy of {ε′′nj : n ≥ 1, j ∈ Z} so

that {ε′′nj − ε̃′′nj : n ≥ 1, j ∈ Z} are independent and symmetric H-valued random

elements. Let us observe that

E ‖s′′n0‖ = E

∥∥∥∥ n∑
k=1

ε′′nk

∥∥∥∥ = E

∥∥∥∥ n∑
k=1

(ε′′nk − E ε̃′′nk)

∥∥∥∥ ≤ E

∥∥∥∥ n∑
k=1

(ε′′nk − ε̃′′nk)
∥∥∥∥ (4.24)

since E ε̃′′nj = 0 for each n ≥ 1 and for each j ∈ Z.

Using Markov’s inequality, inequalities (4.21), (4.24), (4.8), (4.9) and (4.7), we

obtain the following inequalities

Pr{‖n−1/pS ′′n‖ > δ/2} ≤ 2

δ
n−1/p E ‖S ′′n‖

≤ 2

δ
An−1/p E ‖s′′n0‖

≤ 2

δ
An−1/p E

∥∥∥∥ n∑
k=1

(ε′′nk − ε̃′′nk)
∥∥∥∥

≤ 2

δ
An−1/p

(
p

p− 1

)∥∥∥∥ n∑
k=1

(ε′′nk − ε̃′′nk)
∥∥∥∥
p,∞

≤ 2

δ
An−1/p

(
p

p− 1

)
C1/p

( n∑
k=1

‖ε′′n0 − ε̃′′n0‖pp,∞
)1/p

≤ 8

δ
A
(

p

p− 1

)
C1/p‖ε′′n0‖p,∞

‖ε′′n0‖p,∞ → 0 as n → ∞ using Lemma 4.7 since xp Pr{|ε0| > x} → 0 as x → ∞

and rn →∞ as n→∞. The proof is complete.

Theorem 4.1 can also be proved using Lemma 4.4.

Proof of Theorem 4.1. Set

Unj = n−1/psnj,

where {snj} = {snj : n ≥ 1, j ≥ 0} is defined by (4.19) for each n ≥ 1 and j ≥ 0.

First, we have that

sup
n≥1,j≥0

E ‖n−1/psnj‖ ≤ sup
n≥1,j≥0

E

∥∥∥∥n−1/p

n∑
k=1

(εk−j − ε̃k−j)
∥∥∥∥

≤
(

p

p− 1

)
sup

n≥1,j≥0

∥∥∥∥n−1/p

n∑
k=1

(εk−j − ε̃k−j)
∥∥∥∥
p,∞

≤
(

p

p− 1

)
sup

n≥1,j≥0

(
n−1

∥∥∥∥ n∑
k=1

(εk−j − ε̃k−j)
∥∥∥∥p
p,∞

)1/p
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≤ 4

(
p

p− 1

)
C1/p‖ε0‖p,∞

using inequalities (4.8) and (4.9) since p > 1, where {ε̃k : k ∈ Z} is an idependent

copy of {εk : k ∈ Z} so that {εk − ε̃k : k ∈ Z} are independent and identically

distributed symmetric H-valued random elements such that

E ‖snj‖ = E

∥∥∥∥ n∑
k=1

εk−j

∥∥∥∥ = E

∥∥∥∥ n∑
k=1

(εk−j − E ε̃k−j)

∥∥∥∥ ≤ E

∥∥∥∥ n∑
k=1

(εk−j − ε̃k−j)
∥∥∥∥

since E ε̃k = 0 for each k ∈ Z.

Secondly,

‖Uni − Unj‖ = ‖n−1/psni − n−1/psnj‖ → 0

in probability as n→∞ for each i ≥ 0 and for each j ≥ 0 using the Marcinkiewicz-

Zygmund weak law of large numbers.

Finally, we have that∥∥∥∥ ∞∑
j=0

aj(n
−1/psnj)− A(n−1/psn0)

∥∥∥∥ = ‖n−1/pSn − A(n−1/psn0)‖ → 0

in probability as n→∞ using Lemma 4.4. Hence, n−1/pSn → 0 in probability as

n→∞ and the proof is complete.

Srong law of large numbers

Proof of Theorem 4.2. The proof is based on Lemma 4.4 and the fact that

n−1/pSn → 0

almost surely as n→∞ if and only if

sup
k≥n
‖k−1/pSk‖ → 0

in probability as n→∞.

Let c0(H) be a separable Banach space of H-valued sequences that converge to 0

with the norm given by

‖x‖ = sup
n≥1
‖xn‖
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for each x ∈ c0(H).

Let {uj} = {uj : j ≥ 0} be bounded linear operators from c0(H) to c0(H) defined

by

uj(x) = {ajxk : k ≥ 1}

for each x ∈ c0(H), where {aj} = {aj : j ≥ 0} are bounded linear operators from

H to H. Then we have that

‖uj‖ = sup
‖x‖≤1

‖uj(x)‖ = sup
‖x‖≤1

sup
n≥1
‖ajxn‖ ≤ sup

‖x‖≤1

sup
n≥1
‖aj‖‖xn‖ = ‖aj‖.

Hence,
∑∞

j=0 ‖uj‖ <∞ since
∑∞

j=0 ‖aj‖ <∞.

Set

Unj = {0, . . . , 0, n−1/psnj, (n+ 1)−1/ps(n+1)j, . . .}

for each n ≥ 1 and for each j ≥ 0. Since n1/psnj → 0 almost surely as n → ∞

for each j ≥ 0 using the Marcinkiewicz–Zygmund strong law of large numbers, we

have that Unj almost surely belongs to c0(H) for each n ≥ 1 and j ≥ 0.

Now we show that supn≥1,j≥0 E ‖Unj‖ is finite.

Lemma 4.8. If E ‖ε0‖p <∞ for some p > 1, then

sup
n≥1,j≥0

E ‖Unj‖ <∞.

Proof. We will use the inequality
∞∑
i=1

Pr{‖ξ‖ ≥ i1/r} ≤ E ‖ξ‖r ≤
∞∑
i=0

Pr{‖ξ‖ > i1/r}, (4.25)

where ξ is a random element and r > 0 (see Chow and Teicher [8], p. 90).

Using Lemma 4.5,

Pr
{

sup
k≥n
‖k−1/pskj‖ > i

}
≤ 8

∞∑
k=n

k−1 Pr{‖k−1/pskj‖ > i}

for each n ≥ 1 and i ≥ 1.

Set rkj = ik1/p for each k ≥ 1, each j ≥ 0 and each i ≥ 1. Using the truncated

Chebyshev inequality (see Gut [22], p. 121), we obtain

Pr{‖k−1/pskj‖ > i} ≤ k Pr{‖ε0‖ > ik1/p}+ i−2k1−2/p E ‖ε′k0‖2.
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We have that
∞∑
k=n

Pr{‖ε0‖ > ik1/p} ≤ E ‖ε0‖p · i−p

and

i−2

∞∑
k=n

k−2/p E ‖ε′k0‖2 ≤ C E ‖ε0‖p · i−p

using Lemma 4.6, where C is a positive constant.

Thus
∞∑
i=1

Pr
{

sup
k≥n
‖k−1/pskj‖ > i

}
≤ 8

∞∑
i=1

∞∑
k=n

k−1 Pr{‖k−1/pskj‖ > i}

≤ 8
∞∑
i=1

∞∑
k=n

[Pr{‖ε0‖ > ik1/p}+ i−2k−2/p E ‖ε′k0‖2]

≤ 8(1 + C) E ‖ε0‖p
∞∑
i=1

i−p

and

sup
n≥1,j≥0

E ‖Unj‖ = sup
n≥1,j≥0

E sup
k≥n
‖k−1/pskj‖ <∞

since p > 1 and E ‖ε0‖p <∞. The proof is complete.

We also have that

‖Uni − Unj‖ → 0

in probability as n→∞ for each i ≥ 0 and each j ≥ 0 since

sup
k≥n
‖k−1/pskj‖ → 0

in probability as n→∞ as a consequence of the Marcinkiewicz-Zygmund strong

law of large numbers. Hence, Lemma 4.4 implies that∥∥∥∥ ∞∑
j=0

uj(Unj)−
∞∑
j=0

uj(Un0)

∥∥∥∥→ 0

in probability as n→∞ and it follows using the reverse triangle inequality that∥∥∥∥ ∞∑
j=0

uj(Unj)

∥∥∥∥ = sup
k≥n
‖k−1/pSk‖ → 0

in probability as n→∞. The proof of Theorem 4.2 is complete.
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4.3.2 Non-summable linear filter

Weak law of large numbers

We have that

Pr{‖b−1
n (p)Sn‖ > δ} ≤ Pr{‖b−1

n (p)S ′n‖ > δ/2}+ Pr{‖b−1
n (p)S ′′n‖ > δ/2} (4.26)

for each δ > 0.

Proposition 4.6. Let 1 < p < 2. If xp Pr{‖ε0‖ > x} → 0 as n → ∞ and

limn→∞ rn =∞, where rn = infj≤n rnj, then

b−1
n (p)S ′′n → 0

in probability as n→∞, where bn(p) is given by (4.3) and S ′′n is given by (4.16).

Proof. Let δ > 0. For N < n, we have that

Pr{‖b−1
n (p)S ′′n‖ > δ/2} ≤ Pr

{∥∥∥∥b−1
n (p)

N∑
j=−∞

wnjε
′′
j

∥∥∥∥ > δ/4

}

+ Pr

{∥∥∥∥b−1
n (p)

n∑
j=N+1

wnjε
′′
j

∥∥∥∥ > δ/4

}
. (4.27)

The series
∑n

j=−∞wnjε
′′
j converges almost surely for each n ≥ 1. Therefore

b−1
n (p)

N∑
j=−∞

wnjε
′′
j → 0

almost surely as N → −∞ for each n ≥ 1, so that there exists N(n) < n for each

n ≥ 1 and each δ > 0 such that

∥∥∥∥b−1
n (p)

N(n)∑
j=−∞

wnjε
′′
j

∥∥∥∥ ≤ δ/4

almost surely and the first term on the right side of (4.27) is 0.

Let {ε̃′′nj : n ≥ 1, j ∈ Z} be an idependent copy of {ε′′nj : n ≥ 1, j ∈ Z} so that

{ε′′j − ε̃′′j : n ≥ 1, j ∈ Z} are independent and symmetric random variables.
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Using Markov’s inequality and the fact that E ε̃′′nj = 0 for each n ≥ 1 and each j ∈

Z, we obtain

Pr

{∥∥∥∥b−1
n (p)

n∑
j=N(n)+1

wnjε
′′
j

∥∥∥∥ > δ/4

}
<

4

δ
E

∥∥∥∥b−1
n (p)

n∑
j=N(n)+1

wnj(ε
′′
j − E ε̃′′nj)

∥∥∥∥
≤ 4

δ
E

∥∥∥∥b−1
n (p)

n∑
j=N(n)+1

wnj(ε
′′
j − ε̃′′nj)

∥∥∥∥
By inequalities (4.8),(4.9) and (4.7),

Pr

{∥∥∥∥b−1
n (p)

n∑
j=N(n)+1

wnjε
′′
nj

∥∥∥∥ > δ/2

}
≤

≤ 4

δ

( p

p− 1

)∥∥∥∥b−1
n (p)

n∑
j=N(n)+1

wnj(ε
′′
nj − ε̃′′nj)

∥∥∥∥
p,∞

≤ 4C1/p

δ

( p

p− 1

)
· b−1
n (p)

( n∑
j=N(n)+1

‖wnj(ε′′nj − ε̃′′nj)‖pp,∞
)1/p

≤ 16C1/p

δ

( p

p− 1

)
· b−1
n (p)

( n∑
j=N(n)+1

‖wnj‖p‖ε′′nj‖pp,∞
)1/p

.

Since ( n∑
j=N(n)+1

‖wnj‖p
)1/p

≤ bn(p),

we have that

Pr

{∥∥∥∥b−1
n

n∑
j=N(n)+1

wnjε
′′
nj

∥∥∥∥ > δ/2

}
≤ 16C1/p

δ

( p

p− 1

)(
sup
j≤n
‖ε′′nj‖pp,∞

)1/p

.

supj≤n ‖ε′′nj‖p,∞ → 0 as n → ∞ using Lemma 4.7 since xp Pr{‖ε0‖ > x} → 0 as

x→∞ and rn →∞ as n→∞. The proof is complete.

Proof of Theorem 4.3. For τ > 0, set

rnj =
[τδ2(2− p)

8‖ε0‖pp,∞

] 1
2−p · bn(p)

‖wnj‖
.

Using Chebyshev’s inequality, (4.17) and (4.18), we obtain

Pr{‖b−1
n (p)S ′n‖ > δ/2} ≤ 4

δ2
b−2
n (p)

n∑
j=−∞

‖wnj‖2 E ‖ε′nj‖2 ≤ τ.

Hence, the first term on the right side of (4.26) goes to 0 as n → ∞ for each

δ > 0.
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By Proposition 4.6, the second term on the right side of (4.26) goes to 0 as n→∞

for each δ > 0 since

rn =
[τδ2(2− p)

8‖ε0‖pp,∞

] 1
2−p · bn(p)

supj≤n ‖wnj‖
→ ∞ as n→∞.

The proof is complete.

Strong law of large numbers

Proof of Theorem 4.4. Assume without loss of generality that {εk} are symmetric

random elements. We use the fact that random elements b−1
n (p)Sn converge to 0

almost surely as n→∞ if and only if

sup
k≥n
‖b−1
k (p)Sk‖ → 0

in probability as n→∞ (see §10 of Chapter II of Shiryaev [54] for the proof).

Set rnj = n1/p for each n ≥ 1 and each j ∈ Z. µ′n0 and µ′′n0 given by (4.15) are

both equal to 0 for each n ≥ 1 since {εk} are assumed to be symmetric.

We have that
∞∑
k=1

k−1 Pr{‖b−1
k (p)Sk‖ > δ} ≤

∞∑
k=1

k−1 Pr{‖b−1
k (p)S ′k‖ > δ/2}

+
∞∑
k=1

k−1 Pr{‖b−1
k (p)S ′′k‖ > δ/2}

(4.28)

for each δ > 0.

Using Markov’s inequality, the von Bahr-Esseen inequality and (4.4), we obtain

∞∑
k=N

k−1 Pr{‖b−1
k (p)S ′k‖ > δ/2} ≤ 2q+1

δq

∞∑
k=N

k−1

(
bk(q)

bk(p)

)q
E ‖ε′k0‖q

≤M
2q+1

δq

∞∑
k=N

E ‖ε′k0‖q

kq/p
(4.29)

for N ≥ 1 such that
bk(q)

bk(p)
≤Mk1/q−1/p

for k ≥ N , where M is a positive constant. We use Lemma 4.6 to show that

series (4.29) converges. Hence, the first series on the right side of (4.28) converges.
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Using Markov’s inequality and the von Bahr-Esseen inequality, we have that
∞∑
k=1

k−1 Pr{‖b−1
k (p)S ′′k‖ > δ/2} ≤ 2p+1

δp

∞∑
k=1

k−1 E ‖ε′′k0‖p

and
∞∑
k=1

k−1 E ‖ε′′k0‖p =
∞∑
k=1

k−1

∞∑
l=k

E[‖ε0‖pI{l1/p<‖ε0‖≤(l+1)1/p}]

=
∞∑
l=1

l∑
k=1

k−1 E[‖ε0‖pI{l1/p<‖ε0‖≤(l+1)1/p}]

≤ E ‖ε0‖p +
∞∑
l=1

log lE[‖ε0‖pI{l1/p<‖ε0‖≤(l+1)1/p}]

≤ E ‖ε0‖p + pE[‖ε0‖p log ‖ε0‖I{‖ε0‖>1}].

The second series on the right side of (4.28) also converges. The proof is complete.
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5 Conclusions

The constructed example of a linear process {Xk} with the divergent series of

the operator norms of {aj} shows that such models might not only be interesting

theoretically but also useful in the functional data analysis as a sequence of random

functions with space varying memory.

The main novelty of the central limit theorem for the L2(µ)-valued linear process

{Xk} with the operators {aj} given by (3.2) is that the normalising sequence is

not a sequence of real numbers but a sequence of multiplication operators. So

when the series of the operator norms of {aj} diverges, we might need a different

type of normalisation for the central limit theorem for the linear process with

values in the separable Hilbert space H.

The established functional central limit theorem shows that if we do not assume

that the operator D commutes with the covariance operator of ε0, we obtain a dif-

ferent Gaussian random process than the operator fractional Q-Brownian motion

defined in Račkauskas and Suquet [48]. Thus the assumption of commutativity

in Račkauskas and Suquet [48] is essential.

The normalising sequence in the functional central limit is also a sequence of

multiplication operators and the limit process generates an operator self-similar

process.

The established sufficient conditions for the Marcinkiewicz-Zygmund type weak

and strong laws of large numbers are similar to Theorem 2.1 proven by Ibragimov

and Linnik [27] in the case of the central limit theorem: we establish sufficient

conditions for the Marcinkiewicz-Zygmund type weak and strong laws of large

numbers for an abstract linear process with values in the separable Hilbert space H

and the normalising sequence {bn(p) : n ≥ 1} with 1 < p < 2 just under the

assumption of the convergece of
∑∞

j=0 ‖aj‖p.

If the series of the operator norms of {aj} converges, we show that the Marcinkiewicz-
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Zygmund type weak and strong laws of large numbers for a linear process with

values in the space H hold with the standard normalising sequence {n1/p : n ≥ 1}.

If the series of operator norms of {aj} converges, the linear process have the same

asymptotic behaviour as a sequence of independent and identically distributed

random elements. However, if the series of operator norms of {aj} fails to con-

verge, the normalising sequence might grow faster than {n1/p : n ≥ 1} as we

illustrate with an example in Section 4.1. We do not make assumptions about

particular distribution of {εk} so in this sense we generalise the results of Louhichi

and Soulier [37].
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