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Introduction

Characterization theorems in probability theory and mathematical statis-

tics are such theorems that establish a connection between the type of

the distribution of random variables or random vectors and certain gen-

eral properties of functions in them. For example, according to G. Polya’s

[13] characterization theorem, if X1 and X2 are independent identically

distributed random variables with finite variance, then statistics S1 = X1

and S2 = (X1 + X2) /
√

2 are identically distributed if and only if X1 and

X2 have the normal distribution with zero mean. The assumption that two

linear (or non-linear) statistics are identically distributed (or independent,

or have a constancy regression and so on) can be used to characterize

various populations.

Verification of conditions of this or that characterization theorem in prac-

tice is possible only with some error ε, i.e., only to a certain degree of
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Introduction

accuracy. Such a situation is observed, for instance, in the cases where a

sample of finite size is considered. That is why there arises the following

natural question. Suppose that the conditions of the characterization theo-

rem are fulfilled not exactly but only approximately. May we assert that the

conclusion of the theorem is also fulfilled approximately?

Questions of this kind give rise to a following problem: determine the

degree of realizability of the conclusions of mathematical statements in

the case of approximate validity of conditions. The theorems in which the

problems of this kind are considered are called stability theorems.

The first monograph on stability characterization of distributions was the

book of R. Yanushkevichius [20]. Now in this scientific monograph "Sta-

bility Characterizations of Some Probability Distributions" we continue the

investigation of stability estimations of characterization theorems. This in-

vestigation is based on the works [19] – [29].

6
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Chapter 1

Stability characterization of the Weibull distribution

1.1 Characterization of the Weibull distribution

Let X be a Weibull random variable (r.v.) with the distribution

P (X < x) = 1 − exp (−λxα) , α > 0, λ > 0, x ≥ 0;

P (X < 0) = 0.

An interesting and useful characterization of X is the lack of memory

property (of order α). It can be stated as

P
(
X ≥ α

√
xα + yα | X ≥ y

)
= P (X ≥ x) for all x, y ≥ 0 (1.1)

and was studied by Y. H. Wang (in his paper [17] instead of the inequality

≥ in (1.1) the inequality > is used).

————————————————————————————————————————————————————————–
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Stability characterization of the Weibull distribution

Theorem 1.1 (Y. H. Wang [17]). Let α > 0 and X be non-degenerate r.v.

with P (X ≥ 0) = 1. Then X is a Weibull r.v. if and only if X satisfies

(1.1).

To our mind, three comments are necessary here.

Comment 1. One should probably comprehend the conditional prob-

ability in relation (1) as follows: it has a sense for all y ≥ 0, therefore

P (X ≥ y) > 0 for all y ≥ 0. This suggest that, in this context, condition

(1.1) can be weakened in the following way:

P
(
X ≥ α

√
xα + yα | X ≥ y

)
= P (X ≥ x) for all x ≥ 0 and y ∈ U+,

(1.2)

where U+ = {y ≥ 0 | P (X ≥ y) > 0} .

To found this proposition it suffices to prove that

U+ = [0, ∞) . (1.3)

Indeed, the assumptions of the theorem require that X be a non-degenerate

r.v., therefore P (X = 0) �= 1. But then there exists a number y0 > 0 such

that P (X ≥ y0) > 0, i.e. y0 ∈ U+. We get from (1.2) that

P

(
X ≥ α

√
2y0

)
= P

2 (X ≥ y0) > 0

and, analogously, P (X ≥ α
√

ny0) > 0 for any natural n. But then

P (X ≥ y) > 0 for any real y ≥ 0,

i.e. formula (1.3) holds.

Comment 2. One can relax the condition for the r.v. X to be nonnegative

in Theorem 1.1, i.e. the requirement that P(X ≥ 0) = 1.

Really, since (1.1) is valid for all x ≥ 0, y ≥ 0, it is also valid at the point

x = y = 0. Since a conditional probability has to exist at this point, we

8
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Characterization of the Weibull distribution

have P(X ≥ 0) > 0 and we get from (1.1) that at the same time

P (X ≥ 0) = P (X ≥ 0) P (X ≥ 0) = P
2 (X ≥ 0) .

But this is possible only when P(X ≥ 0) = 1, because P(X ≥ 0) �= 0.

Comment 3. Theorem 1.1 holds even in the case where it is required

to fulfill relation (1) not on the entire semi-axis {y | y ≥ 0} , but only at

two incommensurable points y1 and y2. The points y1 and y2 are called

incommensurable if their ratio y1/y2 is irrational.

In fact this has been already observed by M. Eaton [2], Y. H. Wang [17],

G. Marsaglia and A. Tubilla [10]. The proof of the latter was simplified by

O. Yanushkevichiene [18]. In our case this simplification consists in what

follows.

Assume that (1.1) is satisfied only at two incommensurable positive points

y1 and y2, i.e.

P

(
X ≥ α

√
xα + yα

i

)
= P (X ≥ x) P (X ≥ yi) for all x ≥ 0, i = 1, 2.

(1.4)

Denote

P
(
X ≥ α

√
x
)

= exp (−λix) ϕi (x) , i = 1, 2, (1.5)

where λi = − lnP(X ≥ yi) /yα
i . Then it follows from (1.4) that

ϕi (xα + yα
i ) = ϕi (xα) ϕi (yα

i ) for all x ≥ 0, i = 1, 2. (1.6)

Making use of the definitions of λi, we note that

ϕi (yα
i ) = exp (λiy

α
i ) P (X ≥ yi)

= exp {− ln P (X ≥ yi)} P (X ≥ yi) = 1, i = 1, 2,

therefore it follows from (1.6) that

ϕi (xα + yα
i ) = ϕi (xα) ∀x ≥ 0, i = 1, 2.

————————————————————————————————————————————————————————–
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Stability characterization of the Weibull distribution

Consequently, ϕ1 (x) and ϕ2 (x) are periodic functions with the periods yα
1

and yα
2 respectively.

Let us prove now that λ1 = λ2. Indeed, let, for example, λ1 > λ2. By

virtue of (1.5) we have

ϕ1 (x) = exp ((λ1 − λ2) x) ϕ2 (x) ;

however, due to the periodicity of ϕ1 it is impossible.

Thus, ϕ (x) = ϕ1 (x) = ϕ2 (x) and the function ϕ (x) has two incom-

mensurable periods. That is possible only in the case, when ϕ (x) is a

constant. According to Comment 2, P(X ≥ 0) = 1, therefore from (1.5)

we obtain that this constant is equal to 1 and thus for all x ≥ 0

P (X ≥ x) = exp (−λxα) ,

where λ = − lnP(X ≥ y1) /yα
1 = − lnP(X ≥ y2) /yα

2 .

Taking into consideration all the three comments, we can reformulate

Theorem 1.1 as follows:

Theorem 1.2 (R. Yanuskevichius, O. Yanushkevichiene [27]). Let α > 0.

The random variable has the Weibull distribution

F (x) = 1 − exp (−λxα) for all x ≥ 0 (1.7)

if and only if X satisfies

P

(
X ≥ α

√
xα + yα

i | X ≥ yi

)
= P (X ≥ x) for all x ≥ 0 (1.8)

at least at two incommensurable points y1 and y2.

Besides, if the r.v. X satisfies relation (1.8), then the parameter λ in for-

mula (1.7) is defined as follows:

λ = − ln P (X ≥ y1) /yα
1 = − ln P (X ≥ y2) /yα

2 . (1.9)

10
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Stability problems

The exponential distribution is associated with a very substantial charac-

terizations literature. It is known that if a property characterizes X ∼
Exp(λ) and Y = h(X), then a characterization of Y is available via h(·)
under some additional conditions on h(·) (see, for example, [19] and [6]).

In the Weibull case h(·) is comparatively simple, h(x) = x1/α, therefore

the method of convolution proposed below is, naturally, not a single possi-

ble way of proof.

1.2 Stability problems

It was noted in the Introduction that verification of conditions of this or that

characterization theorem in practice is possible only with some error ε, i.e.,

only to a certain degree of accuracy. But if the assumptions of the char-

acterization theorem are fulfilled not exactly but only approximately, then

may we state that the conclusion of this characterization is also fulfilled

approximately? Theorems, in which this kind of problems are considered,

are called the stability theorems.

It ought to be noted that solution of a characterization problem is fre-

quently reduced to the solution of functional equations of a particular kind.

The majority of these equations and their perturbed analogues turned out

to be transformable into characteristic equations of the convolution type

with the kernels {kj1}, {kj2} :

n∑
j=0

⎧⎨
⎩ γjf

(j) (t) +
∫ ∞
0

f (j) (t − s) dkj1 (s)

+
∫ 0

−∞ f (j) (t − s) dkj2 (s)

⎫⎬
⎭ = r (t) . (1.10)

————————————————————————————————————————————————————————–
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Stability characterization of the Weibull distribution

For example, it is well known that if preliminary use of a device in no way

influences the remaining time of its operation, then this device has an ex-

ponential distribution of the time of first failure.

More precisely, the non-negative r.v. X has the lack of memory property

if for all x ≥ 0 and for y ≥ 0 such that P (X ≥ y) > 0,

P (X ≥ x + y|X ≥ y) = P (X ≥ x) . (1.11)

The lack of memory property (1.11) characterizes the exponential distribu-

tion.

It is not difficult prove that (1.11) can be rewritten for all y ≥ 0 as follows:

P (X ≥ x + y) = P (X ≥ x) P (X ≥ y) , ∀x ≥ 0, ∀y ≥ 0.

By integrating with respect to y we see that

−
F (x) = λ

∫ ∞
0

F (x + y) dy, (1.12)

where

F (x) = P (X ≥ x) , λ−1 =
∫ ∞
0

F (x) dx, (1.13)

i.e. we obtain the convolution equation (1.10).

Equation (1.12) and many other equations, as shown by R.Yanushkevichius

in [20] and [19], represent the Wiener-Hopf equation with the kernel from

L1 (−∞, ∞) . As it is known, such are equations

χr (t) −
∫ ∞
0

χr (s) q (t − s) ds = r (t) , ∀t ≥ 0, (1.14)

χ (t) −
∫ ∞
0

χ (s) q (t − s) ds = 0, ∀t ≥ 0. (1.15)

12
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Stability estimation of the Wang characterization

Finally, we need the following theorem which shows that if we know that

equation (1.15) is fulfilled only with some error r (t), |r (t) | ≤ ε, i.e. equa-

tion (1.14) holds, then there exists a solution χ
0

of a homogeneous equa-

tion (1.15) such that approximates the solution χr of non-homogeneous

equation (1.14) quite well.

Theorem 1.3 (R. Yanuskevichius [19]]). Assume that χr is the solution of

equation (1.14) in the space L∞(0, ∞) and q ∈ L1(−∞, ∞), |r (t) | ≤
ε for t ≥ 0, Q(y) =

∫∞
−∞ exp (ity) q (t) dt �= 1, ∀y ∈ (−∞, ∞) . Let

equation (1.15) have at least one non-trivial solution. Then in the space

L∞ (0, ∞) there exists a solution χ0 of equation (1.15) such that

sup
t≥0

|χr (t) − χ0 (t) | ≤ Cε, (1.16)

where C may depend only on q (·) .

1.3 Stability estimation of the Wang characterization

However, the proximity of χr (t) to χ
0

(t) in the sense of (1.16) does

not mean at all that χr (t) possesses properties that are close in some

sense to the properties of the solution χ
0

(t) of the homogeneous equa-

tion (1.15).

For example, if χ
0

(t) is an exponential distribution that has moments of

all orders, this does not imply anyway that χr (t) satisfying relation (1.16)

bears such a property.

However, as we shall see below, by exactly using the information, con-

tained in the perturbed characterization problem itself, one can discover

additional useful information on the properties of the solution χr (t) of non-

homogeneous equation (1.14).

————————————————————————————————————————————————————————–
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Stability characterization of the Weibull distribution

In the case under consideration, a very favorable circumstance is that,

under the conditions of Theorem 1.4, there exist moments of all orders of

the r.v. X.

The most important result of this theorem, however, is that assuming the

Weibull distribution characterization conditions (i.e. conditions of Theorem

1.1) to be fulfilled only with a certain error ε, we obtain that the conclusions

of this characterization are also valid with the same error ε (accurate to the

constant).

Theorem 1.4 (R. Yanuskevichius, O. Yanushkevichiene [27]). Let X be a

non-negative r.v. If

P
(
X ≥ α

√
xα + yα|X ≥ y

)
= P (X ≥ x) + r (x, y) , |r (x, y) | ≤ ε,

(1.17)

∀x ≥ 0, ∀y ∈ U+ = {y ≥ 0|P (X ≥ y) > 0} , then the r.v. X has the

moments of all orders, U+ = [0, ∞) and there exists λ > 0 such that for

all ε ≥ 0

|P (X ≥ x) − exp (−λxα)| ≤ 2ε, ∀x ≥ 0. (1.18)

Proof. Since ∀x ≥ 0

|P (X ≥ x) − exp (−λxα)| ≤ max {P (X ≥ x) , exp (−λxα)} ≤ 1,

(1.19)

then inequality (1.17) is obvious for ε ≥ 1/2, therefore it suffices to con-

sider the case ε < 1/2.

We shall prove that, either there exists y0 = y0 (ε) > 0 such that

P (X ≥ y0) > ε, or the r.v. X is close (in the sense of (1.17)) to a r.v.

degenerate at a point 0.

14

————————————————————————————————————————————————————————–

STABILITY CHARACTERIZATIONS OF SOME PROBABILITY DISTRIBUTIONS



Stability estimation of the Wang characterization

Indeed, if ∀y0 > 0 P (X ≥ y0) ≤ ε, then

sup
x>0

|P (X ≥ x) − E0 (x)| ≤ ε. (1.20)

Here 1 − E0 (x) is a distribution of degenerate at the point 0 r.v.,

E0 (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0 for x > 0,

1 for x ≤ 0.

But (1.20) implies that formula (1.18) holds for λ = +∞.

Thus, let now exist y0 > 0 such that the relation

P (X ≥ y0) > ε (1.21)

be valid.

On the basis of relation (1.17) we see now that not only for the values of

the set U+, but also for all non-negative y

P
(
X ≥ α

√
xα + yα

)
= P (X ≥ x) P (X ≥ y)

+R (x, y) , ∀x ≥ 0, ∀y ≥ 0, (1.22)

where R (x, y) = r (x, y) P (X ≥ y).

For this let us take x = y = y0 in formula (1.17). Since according to

(1.21) P (X ≥ y0) > 0, hence we derive that

P

(
α
√

2y0

)
= P

2 (X ≥ y0) + P (X ≥ y0) r (y0, y0) .

Making use of (1.21) once more, we obtain:

P

(
X ≥ α

√
2y0

)
≥ P (X ≥ y0) (P (X ≥ y0) − ε) > 0. (1.23)

————————————————————————————————————————————————————————–
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Stability characterization of the Weibull distribution

Analogously, putting x = y0, y = α
√

2 y0 in formula (1.17), we get first from

(1.23) and afterwards from (1.21) and again from (1.23) that

P

(
X ≥ α

√
3y0

)
≥ P (X ≥ y0) P

(
X ≥ α

√
2y0

)

+r
(
y0,

α
√

2y0

)
P

(
X ≥ α

√
2y0

)

≥ P

(
X ≥ α

√
2y0

)
(P (X ≥ y0) − ε) > 0.

Applying the mathematical induction method, we can easily obtain that for

any natural n

P
(
X ≥ α

√
ny0

)
> 0. (1.24)

This means that for any real y ≥ 0

P (X ≥ y) > 0. (1.25)

We conclude from (1.25) that U+ = [0, ∞), and formulas (1.17) and (1.22)

are equivalent.

We verify that the r.v. X has the moments of all orders. Using the

notation F (x) = P (X ≥ x) again and following T.Azlarov, N.Volodin [1],

we choose a point x0 > 0 so that the condition

F (x0) ≤ 1/3 (1.26)

be satisfied. From (1.22), analogously to the formula (1.24) proved above,

we have that

F ( α
√

n x0) ≤ F
(

α
√

n − 1 x0

) (
F (x0) + ε

) ≤ ...

≤ F (x0)
(
F (x0) + ε

)n−1
.

Since F (x) = 1 − F (x) is a non-increasing function, then

F (x) ≤ F
(

α
√

n x0

) ≤ F (x0)
(
F (x0) + ε

)n−1

16
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Stability estimation of the Wang characterization

for all x ∈ [
α
√

nx0,
α
√

n + 1x0

)
. Noting that ε < 1/2, hence and from

(1.26) we obtain that

F (x) <
1

3

⎛
⎝1

3
+

1

2

⎞
⎠n−1

<

⎛
⎝5

6

⎞
⎠n

, x ∈
[

α
√

nx0,
α
√

n + 1x0

)
.

Since n ≥ (x/x0)
α − 1, it follows

F (x) <

⎛
⎝6

5

⎞
⎠
⎛
⎝5

6

⎞
⎠n

=
6

5
hxα

,

where h = (5/6)1/x0 < 1.

Consequently, in our conditions the r.v. X has got finite moments of all

orders. In particular,

EXα = −
∫ ∞
0

xdP (Xα ≥ x) =
∫ ∞
0

P (Xα ≥ x) dx < ∞. (1.27)

Since X is a non-negative r.v. and α > 0, we can rewrite (1.22) as

follows:

P (Xα ≥ xα + yα) = P (Xα ≥ xα) P (Xα ≥ yα)

+R (x, y) , ∀x ≥ 0, ∀y ≥ 0, (1.28)

Denoting

G (x) = P (Xα ≥ x), u = xα, v = yα,

we can easily get from (1.28) that

G (u + v) = G (u) G (v) + R1 (u, v) , ∀u ≥ 0, ∀v ≥ 0, (1.29)

where

R1 (u, v) = r
(
u1/α, v1/α

)
G (v) ,

|R1 (u, v)| ≤ εG (v) , ∀u ≥ 0, ∀v ≥ 0.

————————————————————————————————————————————————————————–
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Stability characterization of the Weibull distribution

Let us denote now

H (δ) = 1/
∫ ∞
0

G (x) exp (−δx) dx.

It follows from (1.27) that H (0) > 0. Let us define E (x) = x. Since

E (0) = 0 and the functions H and E are continuous, there exists δ0 > 0

such that E (δ0) < H (δ0), i.e.

δ0 < H (δ0) . (1.30)

Multiplying (1.29) by exp (−δ0v) and afterwards integrating with respect to

v we obtain that ∀u ≥ 0
∫ ∞
0

G (u + v) e−δ0vdv = G (u)
∫ ∞
0

G (v) e−δ0vdv

+
∫ ∞
0

R1 (u, v) e−δ0vdv. (1.31)

Denote

δ1 = 1/
∫ ∞
0

G (v) e−δ0vdv = H (δ0) ,

q (u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for u > 0,

δ1 exp (δ0u) for u ≤ 0.

Then we can rewrite (1.31) for all u ≥ 0 as follows:

∫ ∞
0

G (v) q (u − v) dv = G (u) + δ1

∫ ∞
0

R1 (u, v) e−δ0vdv, (1.32)

besides q ∈L1 (−∞, ∞) .

In order that we could apply the theorem on convolution (i.e. Theorem

1.3), we need to get convinced that the Fourier transform Q (t) of the ker-

nel q (x) of convolution equation (1.32) does not acquire any value equal

to 1 on the entire real axis. For this note that

Q (t) =
∫ ∞
−∞ eitxq (x) dx = δ1

∫ ∞
0

e−itxe−δ0xdx =
δ1

δ0 + it
.

18
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Stability estimation of the Wang characterization

Since δ1 = H (δ0), we get from (1.30) that δ0 < δ1 and therefore

Q (t) �= 1 ∀t ∈ (−∞, ∞) .

Recall that if the function M (λ) is the boundary value of an analytical

function, excluding only a finite number poles in the upper (lower) half-

plane, then according to the argument principle the equality

ind M (λ) = ± (N − P ) (1.33)

holds, where N is the number of zeros and P is the number of poles in

the respective half-plane (multiple zeros or poles are counted according to

their multiplicity).

We have from (1.33) that the index ν of an equation (1.32) is equal 1,

because

ν = −ind (1 − Q (t)) = − (0 − 1) = 1.

It means that the basis of the set of solutions of a homogeneous equation

corresponding to (1.32) consists of a single function. It is easy to see

directly that this function is exponential. We see from (1.29) (assuming

R1 (x, y) ≡ 0) that this exponential function has no discontinuity at the

initial point. Making use of Theorem 1.3 we obtain from (1.32) that there

exists λ > 0 such that

sup
x≥0

|G (x) − exp (−λx)| ≤ Cε, (1.34)

where C can depend only on the kernel q (·) .

Since G (x) = F ( α
√

x), we get from (1.34) that

∣∣∣F (x) − exp (−λxα)
∣∣∣ ≤ Cε, ∀x ≥ 0. (1.35)

————————————————————————————————————————————————————————–
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Stability characterization of the Weibull distribution

According to [1], the constant C in relation (1.35) admits the estimate C ≤
2. Hence follows (1.18).

The Theorem is proved.

20
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Chapter 2

Stability characterization of the Stable distribution

2.1 Characterization of the symmetric Stable distribution

The assumption that two linear statistics are identically distributed can be

used to characterize various populations.

The first work on the investigation of the stability of characterizations

by the identically distributed linear forms is that of L. D. Meshalkin [12],

devoted to the estimation of stability in the historically first characterization

problem – G. Polya’s theorem [13].

As it was mentioned in Introduction, according to G. Polya’s [13] char-

acterization theorem if X1 and X2 are independent identically distributed

random variables with finite variance, and statistics S1 = X1 and S2 =

(X1 + X2) /
√

2 are identically distributed, then the investigated popula-

tion has normal distribution function with zero mean, and vice versa.
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Throughout this book, we shall write L (W ) = L (Z) to meaning that

the random variables W and Z have the same distribution. So, L (X1) =

L((X1 + X2) /
√

2), if and only if Xi has the normal distribution function

with zero mean.

According to Eaton’s characterization theorem, if under the additional

conditions the two linear statistics S1 = (X1 + ... + Xk1
)/k

1/α
1 and

S2 = (X1 + ... + Xk2
)/k

1/α
2 have the same distribution as the monomial

X1, then this monomial has a symmetric stable distribution of order α.

Theorem 2.1 (M.L. Eaton [2]). Let X, X1, . . . , Xk1
, . . . , Xk2

be indepen-

dent identically distributed (i.i.d.) symmetric random variables. If 0 <

α ≤ 2, and k1 and k2 are integers such that θ = log k1/ log k2 (2 ≤
k1 < k2) is irrational, and

L(X) = L(k
−1/α
1

k1∑
i=1

Xi) = L(k
−1/α
2

k2∑
i=1

Xi), (2.1)

then X has a symmetric stable distribution of order α .

If in (2.1) α = 1, we have such a characterization of Cauchy law without

the symmetry condition:

Theorem 2.2 (B. Ramachandran, C.R. Rao [14]). Let X, X1, X2, . . . , Xn

be i.i.d. random variables. If X and sample mean X(n) = 1
n

(X1 + . . . +

Xn) have the same distribution for two values k1 and k2 of n such that

θ = log k1/ log k2 (2 ≤ k1 < k2 ≤ n) is irrational, then X has a Cauchy

distribution.

However, it is important to emphasize that authors of this theorem suc-

cessfully avoided the condition of symmetry in it only by using the condition

α = 1 essentially.
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But in the general case the way to avoid the condition of symmetry in

Eaton’s theorem is still not found. As one can see from [5], for 0 < α < 1

or 1 < α < 2 the condition of symmetry can be avoided only under

the additional condition on the existence of negative numbers among the

coefficients of linear statistics L1 and L2 (see Theorem 13.7.2 in [5]).

Therefore Eaton’s theorem 1 has preserved its actuality and is of special

interest at present.

Verification of this or that characterization theorem in practice is possible

only with some error ε, i.e., only to a certain degree of accuracy. Such a

situation is observed, for instance, in the cases where a sample of finite

size is considered. That is why there arises a following natural question.

Suppose that the conditions of the theorem are fulfilled not exactly but only

approximately. May we assert, that the conclusion of the theorem is also

fulfilled approximately?

We discuss the conditions in which sense the assumptions of the char-

acterization theorem is fulfilled not exactly but only approximately in the

next section.

2.2 Stability problems

Let now the conditions (2.1) of Eaton’s theorem be fulfilled only approxi-

mately, with some error ε. In the main theorem – Theorem 2.3 – ε is any

positive number. The parameter ε express the proximity of the considered

in formula (2.1) statistics in the λ0-metric defined below.
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Our aim is to get convinced that in a certain sense the characteristic

function f (t) of the random variable X is close to the characteristic func-

tion of a symmetric stable law.

For ’measurements’ of the error of fulfillment of conditions (2.1) we choose

a metric λ0 that is defined in the class of characteristic functions by analogy

with a uniform (Kolmogorov) metric ρ defined in the class of distributions:

λ0 (X, Y ) = λ0 (fX, fY ) = sup
t

|fX (t) − fY (t)| , (2.2)

where fX (t) = E exp (itX) , fY (t) = E exp (itY ) . Analogously as the

uniform metric ρ is invariant with respect to the multiplier, i.e. ρ (cX, cY ) =

ρ (X, Y ) for any real constant c �= 0, the metric λ0 defined by formula (2.2)

is also invariant with respect to the multiplier:

λ0 (cX, cY ) = λ0 (X, Y ) .

The λ0-metric is convenient to express the essence of stability problems

of characterization theorems, since the latter are frequently proved by an-

alyzing the equations considered in the space of characteristic functions.

Some aspects of this problem are analyzed by R. Yanushkevichius [19].

Now we are ready for the statement of our main theorem.

Theorem 2.3 (R. Yanuskevichius [21]). Let X, X1, . . . , Xk1
, . . . , Xk2

be

k2 symmetric i.i.d. random variables, where k1 and k2 are integers such

that θ = log k1/ log k2 (2 ≤ k1 < k2) is irrational. If there exists α ∈ (0, 2]

such that for j = 1, 2 the relations

λ0

⎛
⎜⎜⎝X, k

−1/α
j

kj∑
i=1

Xi

⎞
⎟⎟⎠ ≤ ε (2.3)

are fulfilled, then there exist a random variable Y with the symmetric stable

distribution of order α and constants C1, δ depending only on α and k1, k2
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such that

λ0 (X, Y ) ≤ C1ε
δ. (2.4)

The next lemma, proved together with O.Yanushkevichiene, probably of

independent interest, is generalization of Lemma 3 in [25] and is very use-

ful in the following:

Lemma 2.1 Let k1 and k2 (2 ≤ k1 < k2) be integers such that the

ratio of their logarithms log k1/ log k2 is irrational, and for some α ∈ (0, 2]

there exists a characteristic function f (t) such that for j = 1, 2
∣∣∣∣f (t) − fkj

(
t/k

1/α
j

)∣∣∣∣ ≤ ε, ∀t ∈ [−1, 1] . (2.5)

In addition, if

|f (t)| ≥ 1/2 for ∀t ∈ [−1, 1] , (2.6)

then there exist constants C2 and Δ depending only on α and k1, k2 such

that for |t| ≤ 1

|f (t) − exp {− |D| exp (iQ sign t) |t|α}| ≤ C2ε
Δ, (2.7)

where D = k1 log f
(
k

−1/α
1

)
and Q = arctan(Im D/Re D).

2.3 Proof of the main Theorem

Note that the proof is non-trivial only when ε is a small positive number.

It can be appreciated as follows: there exists a small positive number ε0,

depending only on α, k1 and k2, such that (2.4) is valid for all ε ∈ (0, ε0].

In all the other cases Theorem 2.3 is trivial.

Indeed, according to the definition of λ0-metric, for any X and Y

0 ≤ λ0(X, Y ) ≤ 2. (2.8)
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Hence and from condition (2.3) we obtain that ε ≥ 0. In case ε = 0, we

get Theorem 2.3. Finally, if ε > ε0, then C1 in formula (2.4) is chosen in

such a way: C1 = 2ε−δ
0 . In this case

λ0(X, Y ) ≤ 2 = C1ε
δ
0 < C1ε

δ if ε > ε0, (2.9)

i.e. (2.4) is trivial for ε > ε0.

From condition (2.3) we have that

|f (t) − fkj(t/k
1/α
j )| ≤ ε for |t| ≤ ∞, j = 1, 2. (2.10)

Since f (t) is a continuous function such that f (0) = 1, and, besides,

f (t) is real as a characteristic function of a symmetric random variable,

there exists p0 such that inf{|t| : f (t) = 1/2} = p0(f ) = p0 > 0. Let

p = min(p0, 1).

Instead of the characteristic function f (t), we introduce the characteristic

function fp(t) = f (pt), for which

p0(fp) = inf
{
|t| : fp(t) = 1/2

}
= inf

{
|t| : f (pt) = 1/2

}

=
1

p
inf

{
|u| : f (u) =

1

2

}
=

1

p
· p0 ≥ 1.

If f (t) satisfies (2.10) for |t| ≤ ∞, then fp(t) satisfies (2.10) for |t| ≤ ∞
also.

So, for the characteristic function fp(t) we have that

|fp(t) − f
kj
p (t/k

1/α
j )| ≤ ε ∀t ∈ [−1, 1], (2.11)

inf{|t| : fp(t) = 1/2} ≥ 1, i.e. |fp(t)| ≥ 1/2 ∀t ∈ [1, 1]. (2.12)

Applying Lemma 4 and having in mind that fp(t) is real, we get that

max
|t|≤1

|fp(t) − exp{−|Ap||t|α}| ≤ C2ε
�, (2.13)
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where Ap = k1 log fp(k
−1/α
1 ).

Thus, it remains to consider the domain 1 < |t| ≤ ∞.

Note that the method for extending the estimate of type (2.13) from the

interval | t |≤ 1 to a considerably wider interval was first applied by author

in [25] for a particular case k1 = 2 and k2 = 3.

We denote

rj(t) = fp(t) − f
kj
p (t/k

1/α
j ), (2.14)

h(t) = fp(t) − exp{−|Ap||t|1/α}. (2.15)

According to (2.10), |rj(t)| ≤ ε for |t| ≤ ∞. And according to (2.14),

(2.15) we have that, for |t| ≤ ∞,

h(t) + exp{−|Ap||t|α}

=

⎛
⎝h(t/k

1/α
j ) + exp

{
− |Ap||t|

α

kj

}⎞⎠
kj

+ rj(t)

= hkj
(
t/k

1/α
j

)
+

kj−1∑
i=1

C
i
kj

exp
{

− i|Ap|
kj

|t|α
}
hkj−i(t/k

1/α
j )

+ exp{−|Ap||t|α} + rj(t),

where C
i
k is a binomial coefficient. So,

h(t) = hkj
(
t/k

1/α
j

)
+

kj−1∑
i=1

C
i
kj

exp
{

− i|Ap|
kj

|t|α
}
hkj−i(t/k

1/α
j

)
+ rj(t)

(2.16)

for |t| ≤ ∞, j = 1, 2.

Having assumed that for some t0 ∈ [1, ∞]

sup
|t|<t0

|h(t)|kj ≤ ε�, (2.17)
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we prove that the estimate of the same type is also true in the interval k
1/α
j

times wider, i.e. we prove that

sup
|t|<k

1/α
j t0

|h(t)|kj ≤ ε�. (2.18)

We note at first that kj ≥ 2. If C2ε
� ≤ 1, then we have from (2.13) that

sup
|t|<1

|h(t)|kj ≤ (sup
|t|<1

|h(t)|)kj ≤ (C2ε
�)kj ≤ (C2ε

�)2

≤ (C2
2ε�)ε�. (2.19)

Since, as mentioned at the beginning of this paper, we are interested only

in small enough ε > 0, let us consider only those ε for which C2
2ε� ≤ 1,

i.e. ε ≤ C
−2/�
2 .

Consequently, we obtain from (2.19) that sup|t|<1 |h(t)|kj ≤ ε�, i.e. in

the interval [1, ∞] there exists t0 such that relation (2.17) holds.

Thus, if we have assumption (2.17), we shall prove (2.18).

Since according to the assumption (2.17), |h(t)|kj ≤ ε� in the interval

|t| < t0, for any natural m and n, n ≥ 2,

|h(dm
j t)|n ≤ ε� (2.20)

for |t| < t0/dj, where dj = 1/k
1/α
j . Using (2.16), (2.17) and (2.20), in the

interval |t| < t0/dj we obtain:

∣∣∣h(dm−1
j t)

∣∣∣ ≤
kj−1∑
i=1

C
i
kj

exp
{ − i|Ap||t|α/km

j

}|h(dm
j t)|kj−i + ε� + 2ε.

Since ε� < 1, it is obvious that among all the members of the type

exp{−i|Ap||t|α/km
j }|h(dm

j t)|kj−i
under summation sign, the first member
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is the largest one, therefore

|h(dm−1
j t)| ≤ exp{−|Ap||t|α/km

j }|h(dm
j t)|kj−1

kj−1∑
i=1

C
i
kj

+ ε� + 2ε

= (2kj − 2) exp{−|Ap||t|α/km
j }|h(dm

j t)|kj−1 + ε� + 2ε

≤ (2kj − 2)|h(dm
j t)| exp{−|Ap||t|α/km

j } + ε� + 2ε .

So, if we make s + 1 steps we shall get the next result in the interval

|t| < t0/dj:

|h(t)| ≤ (2kj − 2)|h(djt)| exp{−|Ap|k−1
j |t|α} + ε� + 2ε

≤ (2kj − 2)2|h(d2
jt)| exp{−|Ap|(k−1

j + k−2
j )|t|α)}

+(2kj − 2)(ε� + 2ε) exp{−|Ap|k−1
j |t|α} + ε� + 2ε ≤ . . .

≤ (2kj − 2)s+1|h(ds+1
j t)| exp{−|Ap|k−1

j |t|α}
+ (2kj − 2)s+1(ε� + 2ε) exp{−|Ap|k−1

j |t|α)} + ε� + 2ε.(2.21)

Let us define s as follows: s = 1 + [α logkj
t0]. Note that for |t| < t0/dj,

ds+1
j |t| < 1. (2.22)

Having denoted

F (t) = (2kj − 2)2|t|α/ log
2
kj −2

kj
exp{−|Ap|k−1

j |t|α}
we see that, for |t| ≥ t0,

(2kj − 2)s+1 exp{−|Ap|k−1
j |t|α} ≤ F (t0). (2.23)

Since F (t) is even, it is easy to verify that the maximum F (t) is attained

at the points t∗ and −t∗, where t∗ = kj/(|Ap| log
2
kj −2

kj)
1/α. Hence and

from relations (2.21), (2.23) we obtain for t0 ≤ |t| < t0/dj

|h(t)| ≤ F (t∗)(|h(ds+1
j t)| + ε� + 2ε) + ε� + 2ε.
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This implies that there exists a constant C3 = C3(kj) such that for t0 ≤
|t| < t0k

1/α
j

|h(t)| ≤ C3|Ap|−1/C4(|h(ds+1
j t)| + ε� + 2ε) + ε� + 2ε, (2.24)

where C4 = log
2
kj −2

kj.

If p = p0 (the case p = 1 is trivial) then according to (2.12) fp(1) = 1/2

and from (2.11) we have that f
kj
p (dj) ≤ 1/2 + ε. Recalling the definition

of Ap, we obtain for ε ≤ 1/4, that

|Ap|−1 ≤ | log(1/2 + ε)|−1 ≤ | log(3/4)|−1 ≤ 3.5. (2.25)

From (2.24) and (2.25) we conclude that for t0 ≤ |t| < t0/dj

|h(t)| ≤ C5|h(ds+1
j t)| + (C5 + 1)(ε� + 2ε), (2.26)

where C5 = C5(k1, k2) is a constant. By virtue of (2.22) and (2.13), from

(2.26) we derive that for t0 ≤ |t| < t0/dj

|h(t)| ≤ C2C5ε
� + (C5 + 1)(ε� + 2ε) ≤ C6ε

�, (2.27)

where C6 = C2C5 + 3(C5 + 1).

Consequently, if

ε1−�/kj ≤ C−1
6 ,

we obtain that |h(t)| ≤ ε�/kj for |t| < t0/dj, i.e., assuming that (2.17)

is true in the interval |t| < t0, we have proved that (2.17) is true in the

wider interval |t| < t0/dj, and simultaneously, as mentioned above, in the

whole interval |t| ≤ ∞ , if ε ≤ ε0, where ε0 = C
−1/(1−�/kj)

6 . Thus, by

virtue of (2.26), (2.22) and (2.13), we get (2.27) in the whole t axis:

|fp(t) − exp{−|Ap||t|α} ≤ C6ε
�,
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i.e. if δ = � we have that

|f (u) − exp{−|Ap|p−α|u|α} ≤ C6ε
δ

for any real u.

According to the definition of the λ0-metric, it means that relation (2.4) is

proved.
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Chapter 3

Stability characterization of the Normal distribution

3.1 Characterization of the Normal distribution

We consider a sample X1, X2, ..., Xn of n independent observations drawn

from a population. Let 2 ≤ k1 < k2 ≤ n and log k1/ log k2 be irrational.

According to Eaton’s theorem (see Chapter 2), if, under additional con-

ditions, the two linear statistics S1 = (X1 + X2 + ... + Xk1
)/k

1/α
1 and

S2 = (X1 +X2 + ...+Xk2
)/k

1/α
2 have the same distribution as the mono-

mial X1, then this monomial has a symmetric stable distribution of order

α.

As it was mentioned in Chapter 2, we shall write L(W1) = L(W2)

to mean that the random variables W1 and W2 have the same distribu-

tion. So, Eaton’s theorem describes conditions under which the relations
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L(S1) = L(X1) and L(S2) = L(X1) characterize the class of symmetri-

cal stable distributions (of order α).

The case α = 2 is particular because, instead of fulfilling the two rela-

tions L(S1) = L(X1) and L(S2) = L(X1), it is suffices to require only

one: L(S1) = L(X1). One can read more about this, for example, in [28]

and [24].

Linnik [8] (see [5] also) has obtained a necessary and sufficient condi-

tion for the characterization of the normal distribution by the property of

identically distributed linear statistics

L1 =
k1∑
i=1

aiXi, L2 =
k2∑
i=1

biXi, (3.1)

where X1, X2, ... are non-degenerate independent identically distributed

(i.i.d.) random variables and, for real coefficients a1, a2, ... and b1, b2, ...,

the relation

k1∑
i=1

a2
i =

k2∑
i=1

b2
i (3.2)

is satisfied.

If in (3.1) k2 = 1 and EXi = 0, EX2
i = 1, and in (3.2) ai �= 0 for

i = 1, 2, ..., k1, then, according to Polya’s theorem [13], X1, X2, ... are

normal random variables.

3.2 Stability problems

Let now the assumptions of Polya’s characterization be fulfilled not exactly,

but only approximately, with some error ε, where ε is any positive num-

ber. For measurements of the error, we choose the metric λ0 defined in
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the class of characteristic functions by analogy to a uniform (Kolmogorov)

metric ρ defined in the class of distributions:

λ0 (fX, fY ) = λ0 (X, Y ) = sup
t

|fX (t) − fY (t)| , (3.3)

where fX (t) = E exp (itX) , fY (t) = E exp (itY ) . Analogously as the

uniform metric ρ is invariant with respect to the multiplier, i.e. ρ (cX, cY ) =

ρ (X, Y ) for any real constant c �= 0, the metric λ0, defined by formula

(3.3) , is also invariant with respect to the multiplier:

λ0 (cX, cY ) = λ0 (X, Y ) .

It is convenient to express the essence of stability problems of character-

ization theorems by the λ0-metric, since the latter are frequently proved

by analyzing the equations, considered in the space of characteristic func-

tions. Some aspects of this problem are analyzed by R. Yanushkevichius

[21].

Let a1, a2, ...ak be real coefficients such that

k∑
i=1

a2
i = 1, a = max {|ai| : i = 1, 2, ..., k} < 1. (3.4)

Now we are ready for the statement of our main theorem. Note, that

a distinctive feature of this theorem is the fact that we don’t request any

conditions of symmetry in comparison with [28] and [21] and, in addition,

we weaken the moment conditions in comparison with [24] and [13].

Theorem 3.1 (R. Yanuskevichius [22]). Let X, X1, X2, ..., Xk be inde-

pendent identically distributed random variables and the linear statistic

L =
∑k

i=1 aiXi and monomial X is almost identically distributed in such a

sense

34
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λ0 (X, L) = λ0

⎛
⎝X,

k∑
i=1

aiXi

⎞
⎠ ≤ ε (3.5)

and additionally

∞∫
−∞

xdS(x) =
∞∫

−∞
x2dS(x) = 0, (3.6)

∞∫
−∞

|x|2+δ d |S| (x) ≤ M < ∞, (3.7)

where δ is a constant from the interval (0, 1], S(x) = P (L < x)−P (X <

x) and |S| (x) be the total variation of the function S(x). Then there exist

a normal random variable Z and a constant C = C(M, k, a) such that

λ0 (X, Z) ≤ Cε1/β. (3.8)

Here β = 1 − log k/
(
log

∑k
i=1 |ai|2+δ

)
> 0.

Let us compare this theorem with known Meshalkin’s theorem [12]. In

this theorem in (3.4) there are k = 2, a1 = a2 = 1/
√

2, instead of

(3.6) and (3.7) there are more restrictive conditions EX = 0, EX2 =

1 and E |X|3 ≤ M, correspondingly. So, Meshalkin’s theorem may

be reformulated in the metric λ0 in the following manner. If X1, X2 are

i.i.d. random variables, EXi = 0, EX2
i = 1 and E |Xi|3 ≤ M and

λ0

(
X1, (X1 + X2) /

√
2
)

≤ ε, then

λ0 (Xi, Z) ≤ Cε1/3 for i = 1, 2, (3.9)

where Z is a standard normal random variable. Let us compare estima-

tions (3.8) and (3.9). To this end it suffices to find the value of parameter

β :
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β = 1 − log 2/

⎛
⎜⎝log

⎛
⎜⎝
⎛
⎝ 1√

2

⎞
⎠3

+

⎛
⎝ 1√

2

⎞
⎠3
⎞
⎟⎠
⎞
⎟⎠ = 3,

i.e., the order of stability in formulas (3.8) and (3.9) is the same. Taking

into account that the conditions in our main Theorem 3.1 are essentially

weaker, we may confirm that our result generalizes Meshalkin’s theorem.

3.3 Proof of the main Theorem

Note that the proof of this theorem is nontrivial only when ε is a small

positive number. It can be appreciated as follows: there exists a small

positive number ε0, depending only on M, k and a, such that inequality

(3.8) is valid for all ε ∈ (0, ε0]. In all the other cases Theorem 3.1 is trivial.

Indeed, by definition of λ0 metric, for any random variables X and Y ,

0 ≤ λ0(X, Y ) ≤ 2. Hence and from condition (3.5) we obtain that ε ≥ 0.

In case ε = 0, we get the characterization theorem. Finally, if ε > ε0, then

C in formula (3.8) is chosen in such a way: C = 2ε
−1/β
0 . In this case

λ0(X, Z) ≤ 2 = Cε
1/β
0 < Cε1/β if ε > ε0,

i.e., (3.8) is trivial for ε > ε0.

Let ϕ(t) be the characteristic function of random variable X and let Ψ(t)

be the Fourier-Stieltjes transform of S(x). Since S(x) = P (L < x) −
P (X < x), we have

ϕ(t) =
k∏

i=1
ϕ(ait) + Ψ(t), t ∈ (−∞, ∞). (3.10)

Assumptions (3.6) and (3.7) imply

Ψ(t) = Mω |t|2+δ , (3.11)

36

————————————————————————————————————————————————————————–

STABILITY CHARACTERIZATIONS OF SOME PROBABILITY DISTRIBUTIONS



Proof of the main Theorem

where the symbol ω denotes a quantity bounded by 1.

From (3.10) and (3.11) and relations (7)–(15) in the paper of R. Shimizu

[16], we conclude that there exist the first two moments of X , i.e.

EX = 0, EX2 = σ2 < ∞ (3.12)

and, in addition, for |t| < 1

∣∣∣∣∣∣ϕ(t) − exp

⎛
⎝−σ2t2

2

⎞
⎠
∣∣∣∣∣∣ ≤

M |t|2+δ

1 − a
, (3.13)

where a is defined in (3.4).

If X and Y are i.i.d. random variables and F (x) is the distribution func-

tion of X − Y, then by (3.12)

1 − |ϕ(t)|2 ≤ σ2t2

2
. (3.14)

Since the metric λ0 is invariant with respect to the multiplier, i.e.,

λ0 (cX, cY ) = λ0 (X, Y ) (3.15)

for any real constant c �= 0, without loss of generality we can assert that

σ = 1 in (3.12). Consequently, from (3.10) and (3.14) we get for |t| < 1

that

log ϕ(t) =
k∑

i=1
log ϕ(ait) + Ψ1(t), (3.16)

where

Ψ1(t) = log

⎛
⎝1 + Ψ(t)/

k∏
i=1

ϕ(ait)

⎞
⎠ .
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From (3.5) we derive that |Ψ(t)| ≤ ε for all real t. Let us denote

η(t) =
2

t2
log ϕ(t), Ψ2(t) = 2Ψ1(t)/t2.

Then, from (3.16) we get

η(t) =
k∑

i=1
a2

i η(ait) + Ψ2(t), |t| < 1. (3.17)

Consequently,

η(ait) =
k∑

j=1
a2

jη(ajait) + Ψ2(ait), |t| < 1

and by (3.17) we have:

η(t) =
k∑

i=1
a2

i

⎛
⎜⎝ k∑

j=1
a2

jη(ajait) + Ψ2(ait)

⎞
⎟⎠ + Ψ2(t) =

=
k∑

i=1

k∑
j=1

a2
i a

2
jη(ajait) +

k∑
i=1

a2
i Ψ2(ait) + Ψ2(t), |t| < 1.

By proceeding this procedure, we get convinced that, for |t| < 1,

η(t) =
k∑

i1=1

k∑
i2=1

...
k∑

is=1
a2

i1
a2

i2
...a2

is
η(ai1

ai2
...aist)+ (3.18)

+
s∑

l=2

⎛
⎜⎝ k∑

i1=1
...

k∑
il−1=1

a2
i1

...a2
il−1

Ψ2(ai1
ai2

...ail−1
t)

⎞
⎟⎠ + Ψ2(t).

Since according to (3.4)

k∑
i1=1

k∑
i2=1

...
k∑

is=1
a2

i1
a2

i2
...a2

is
=
(
a2

1 + a2
2 + ... + a2

k

)s
= 1,

we can insert η + 1 in (3.18) instead of η :
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η(t) + 1 =
k∑

i1=1

k∑
i2=1

...
k∑

is=1
a2

i1
a2

i2
...a2

is

(
η(ai1

ai2
...aist) + 1

)
+ (3.19)

+
s∑

l=2

⎛
⎜⎝ k∑

i1=1
...

k∑
il−1=1

a2
i1

...a2
il−1

Ψ2(ai1
ai2

...ail−1
t)

⎞
⎟⎠ + Ψ2(t), |t| < 1.

Let us estimate the first summand on the right-hand side of (3.19). To

this end denote ns = n (i1, ..., is) = a−2
i1

a−2
i2

...a−2
is

. Then, for |t| < 1, it

follows from (3.13) that

∣∣∣η(ai1
ai2

...aist) + 1
∣∣∣ =

∣∣∣∣∣∣∣
2

a2
i1

a2
i2

...a2
ist

2
log ϕ(ai1

ai2
...aist) + 1

∣∣∣∣∣∣∣ =

= 2 |t|−2

∣∣∣∣∣∣∣ns log ϕ(
t√
ns

) +
t2

2

∣∣∣∣∣∣∣ ≤ C |t|δ n−δ/2
s . (3.20)

Since n−δ/2
s =

∣∣∣ai1

∣∣∣δ ∣∣∣ai2

∣∣∣δ ... |ais|δ , we obtain from (3.20) that for |t| < 1

∣∣∣∣∣∣∣
k∑

i1=1

k∑
i2=1

...
k∑

is=1
a2

i1
a2

i2
...a2

is

(
η(ai1

ai2
...aist) + 1

)∣∣∣∣∣∣∣ ≤

≤ C |t|δ
k∑

i1=1

k∑
i2=1

...
k∑

is=1
a2

i1
a2

i2
...a2

is
n−δ/2

s = C |t|δ
⎛
⎝ k∑

i=1
|ai|2+δ

⎞
⎠s

.

(3.21)

Now let us proceed with the estimation of the second and third sum-

mands on the right-hand side of (3.19). By (3.14), |ϕ(t)|2 ≥ 1/2 for

|t| < 1. Therefore

|Ψ1(t)| =

∣∣∣∣∣∣∣∣∣∣
log(1 +

Ψ(t)
k∏

i=1
ϕ(ait)

)

∣∣∣∣∣∣∣∣∣∣
≤ 2 |Ψ(t)|∣∣∣∣∣

k∏
i=1

ϕ(ait)
∣∣∣∣∣

≤ 2k/2+1ε for |t| < 1.
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From this estimation and definition of Ψ2(t) it follows that, for |t| < 1,

∣∣∣∣∣∣∣
s∑

l=2

⎛
⎜⎝ k∑

i1=1
...

k∑
il−1=1

a2
i1

...a2
il−1

Ψ2(ai1
ai2

...ail−1
t)

⎞
⎟⎠
∣∣∣∣∣∣∣ + |Ψ2(t)| ≤

≤ 2

t2

s∑
l=2

⎛
⎜⎝ k∑

i1=1
...

k∑
il−1=1

∣∣∣∣Ψ1(ai1
ai2

...ail−1
t)
∣∣∣∣
⎞
⎟⎠ +

2

t2
|Ψ1(t)| ≤

≤ εt−22k/2+2
s∑

l=1
kl−1 ≤ Cksεt−2. (3.22)

Consequently, from (3.19) - (3.22) we obtain that, for |t| < 1,

|η(t) + 1| ≤ C |t|δ
⎛
⎝ k∑

i=1
|ai|2+δ

⎞
⎠s

+ Cksεt−2. (3.23)

Let us denote Ξ(h) =
k∑

i=1
|ai|h . Since by (3.4) Ξ(2) = 1, note that

|Ξ(h)| < 1 for h > 2. So, choose the parameter s in (3.23) in the following

manner: s = [κ log 1/ε], where κ is defined below. Then, for |t| < 1,

|η(t) + 1| ≤ C |t|δ (Ξ(2 + δ))−1 εκ log(1/Ξ(2+δ)) + Cε1−κ log kt−2.

Now, let us define κ = 1/ log(k/Ξ(2 + δ)). Then, for |t| < 1,

|η(t) + 1| ≤
(
C |t|δ (Ξ(2 + δ))−1 + Ct−2

)
εγ, γ =

log Ξ(2 + δ)

log Ξ(2 + δ)k−1
.

(3.24)

Since ∣∣∣ϕ(t) − exp
(−t2/2

)∣∣∣ ≤ t2 |η(t) + 1| , (3.25)

we derive from (3.24) that for |t| < 1
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∣∣∣ϕ(t) − exp
(−t2/2

)∣∣∣ ≤
(
C |t|2+δ (Ξ(2 + δ))−1 + C

)
εγ. (3.26)

By Lemma 3 in [24] and (3.26) we obtain (3.8). The essence of this

lemma can be expressed in the following words. If in the study of stability

problem there appears equation (3.10), in which the coefficients a1, a2, ...ak

satisfy the condition (3.4), then deterioration of the order of stability can be

only in the interval (−1, 1). Note that Lemma 3 in [24] was generalized in

[21].
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Chapter 4

Stability estimations of a characterization of the

Stable distribution in weak metric

4.1 Introduction and statement of the problem

We consider a population with the distribution function F (x) and a sample

X1, X2, ..., Xn of n independent observations drawn from this population.

According to Feller [3], the distribution function of X1 is called strictly

stable if it is not concentrated at zero and there exist α ∈ (0, 2] such that

for each n L (X1) = L((X1 + ... + Xn) /n1/α), i.e.,

f (t) = fn(t/n1/α), α ∈ (0, 2], n = 2, 3, 4, ... (4.1)

By choosing α = 2 and comparing (1.1) and (4.1) , we see that as

α = 2 for a strict stability it suffices to fulfill (4.1) only for n = 2, i.e.,

the requirement to fulfill (4.1) for n = 3, 4, ... is unnecessary. Maybe, an

analogous conclusion is also true for α ∈ (0, 2)?
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Unfortunately, it is not. According to P. Lévy’s example (Feller [3], Chap.

17), the realization of (4.1) only for n = 2 is not yet sufficient for the

characterization of the class of strictly stable distributions, because the

characteristic function

f (t) = exp

⎧⎨
⎩2

∞∑
k=−∞

(cos 2kt − 1)

⎫⎬
⎭

satisfies (4.1) for n = 2, α = 1, i.e. f (t) = f 2 (t/2) , but f (t) is not strictly

stable.

On the other hand, P. Lévy has proved that f (t) is strictly stable, if (4.1) is

realized at n = 2 and n = 3. The stability of this P. Lévy’s characterization

theorem was investigated by R. Yanushkevichius and O. Yanushkevichiene

[25, 26].

The characterization of symmetric stable laws of order α with the char-

acteristic function f (t) = exp {−λ |t|α} , i.e. a subclass of strictly stable

laws has been considered by Lukacs [9] assuming the identical distribu-

tion of the monomial S1 and the linear form S2. In that paper the following

result is proved:

Theorem 4.1 (E.Lukacs [9] ). Let X, X1, X2, . . . , Xn, . . . be independent

identically distributed (i.i.d.) random variables. For every choice of n and

every choice of (a1, ..., an) from C
n
α = {(a1, . . . , an) : ai ∈ R

1, i =

1, 2, . . . , n,
∑n

i=1 |ai|α = 1}

L(X) = L(
n∑

i=1
aiXi) (4.2)

if and only if the distribution of X is a symmetric stable law of order α ∈
(0, 2].
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Many authors (see A. Kagan, Yu. Linnik, C.R. Rao monograph [5],

R. Yanushkevichius monograph [20] and U. Rösler paper [15]) analyzed

relations (4.2) under different conditions for the coefficients and random

variables considered. U. Rösler [15] considered (4.2) generalizations as

n = ∞ and a1, a2, . . . are random variables. In [15], the relation

L (X) = L
⎛
⎝ n∑

i=1
TiXi + T0

⎞
⎠

is called distributional fixed point equation. Here the joint distribution of T0

and (T1, T2, . . .) is supposed to be known.

Since the point (n−1/α, ..., n−1/α) ∈ C
n
α, from (4.2) we see that equa-

tions (4.1) are satisfied.

The condition "for every choice of n" was omitted in [9], therefore Y.H.

Wang [17] wrote about this result: "The assumption – every choice of n

– is indispensable in the proof of Lukacs because he used the result due

to Lévy ([7], p.95) showing that if ψ is the logarithm of a characteristic

function satisfying nψ (t) = ψ (ant) for all n, where {an} is a sequence of

real numbers, then

ψ (t) =

⎛
⎝−c0 + ic1

t

|t|
⎞
⎠ |t|α (4.3)

with c0 > 0, α > 0”.

Eaton [2] succeeded in avoiding the condition "for every choice of n".

For fixed n, n ≥ 2 he has proven that if X, X1, X2, . . . , Xn are real

valued i.i.d. random variables and condition (4.2), where ai are nonzero

and
∑n

i=1 a2
i ≥ 1 is satisfied, then the distribution of X is infinitely divisible.

It should be stressed that not only n, but also the set of coefficients

a1, . . . , an are fixed here. Condition (4.2), where both – n and the set

a1, . . . , an – are fixed, has been considered in detail in ([5], chapter 13).
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Y.H. Wang [17] also considers condition (4.2) for the fixed sample size

n, but the coefficients a1, . . . , an, however, are not fixed here.

Theorem 4.2 (Y.H. Wang [17]). Let X, X1, X2, . . . , Xn be non-degenerate

i.i.d. random variables. If 0 < α ≤ 2, then X is symmetric stable if

and only if condition (4.2) is satisfied for some fixed n, n ≥ 2 and all

(a1, . . . , an) ∈ C
n
α.

In [17] it has been shown that if g(t) is the characteristic function of

random variables X, X1, X2, . . . , Xn, then in the case n = 2

g
(

α
√

|a1t|α + |a2t|α
)

= g (|a1t|) g (|a2t|) for all t �= 0, (4.4)

|a1|α + |a2|α = 1 (4.5)

(formula (4.7) in [17]). Denoting x = |a1t| , y = |a2t| , it is easy to see that

(4.4) is the Cauchy functional equation:

g( α
√

xα + yα) = g(x)g(y) for all x, y ≥ 0. (4.6)

In Y.H.Wang’s paper [17] the analysis of equation (4.6) is made by ap-

plying pacing y = (m − 1)1/α x, where m = 2, 3, . . . But in such a case,

from (4.5) it follows that

y = |a2t| = (m − 1)1/αx = (m − 1)1/α|a1t|,
|a2|α = (m − 1) |a1|α , 1 − |a1|α = (m − 1) |a1|α .

Consequently, for m = 2, 3, ...

|a1|α = 1/m, |a2|α = 1 − 1/m.

It means that in Wang’s paper [17] variation of the coefficients a1, a2 is

exploited substantially.
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One could avoid this owing to Eaton’s work [2]. True, in this case, it would

be necessary to refuse the symmetry condition present in the Eaton’s pa-

per [2], however, it makes no difficulty if the conditions of Theorem 4.2 are

fulfilled.

Theorem 4.3 (M.L. Eaton [2]). Let X, X1, . . . , Xk1
, . . . , Xk2

be k2 sym-

metric i.i.d. random variables. If 0 < α ≤ 2, and k1 and k2 are integers

such that θ = log k1/ log k2 (2 ≤ k1 < k2) is irrational, and

L(X) = L(k
−1/α
1

k1∑
i=1

Xi) = L(k
−1/α
2

k2∑
i=1

Xi), (4.7)

then X has a symmetric stable distribution of order α .

It is easy to see, that condition (4.7) is equivalent to condition (4.1) if the

latter is satisfied not for all natural n, but only for two n values: n = k1 and

n = k2.

Note that the points y1 and y2 are called incommensurable if their ratio

y1/y2 is irrational.

Condition (4.1) for n = k1 and n = k2 consists of two equations in the

space of characteristic functions. Similar, in some sense, two equations

for incommensurable points in the space of distribution functions and the

related stability problems are analyzed in [27].

If in (4.7) α = 1, we have such a characterization of Cauchy law without

the symmetry condition:

Theorem 4.4 (B. Ramachandran, C.R. Rao [14]). Let X, X1, X2, . . . , Xn

be i.i.d. random variables. If X and sample mean X(n) = 1
n

(X1 + . . . +

Xn) have the same distribution for two values k1 and k2 of n such that
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θ = log k1/ log k2 (2 ≤ k1 < k2 ≤ n) is irrational, then X has a Cauchy

distribution.

However, it is important to emphasize that authors of this theorem suc-

cessfully avoided the condition of symmetry in it only by using the condition

α = 1 essentially. Indeed, from relation (4.7) in the case α = 1 it is easy

to get that the Lévy representation for log f is of the form

log f (t) = iμt − c |t|
⎧⎨
⎩1 +

2

π
ib

t

|t| log |t|
⎫⎬
⎭

for t �= 0 and for some c > 0 and real b (|b| ≤ 1) . By substituting it into

(4.1) as n = k1 and n = k2 we find that b = 0, i.e., the stable law differs

from the symmetric one only by a shift. Therefore f (t) is the Cauchy

characteristic function.

However in the general case the way to avoid the condition of symmetry

in Eaton’s theorem is still not found. As one can see from [5], for 0 < α < 1

or 1 < α < 2 the condition of symmetry can be avoided only under

the additional condition on the existence of negative numbers among the

coefficients a1, ..., an in condition (4.2) (see Theorem 13.7.2 in [5]).

Therefore Eaton’s theorem 4.3 has preserved its actuality and is of spe-

cial interest at present.

Verification of this or that characterization theorem in practice is possible

only with some error ε, i.e., only to a certain degree of accuracy. That is

why there arises a following natural question. Suppose that the conditions

of the theorem are fulfilled not exactly but only approximately. May we

assert, that the conclusion of the theorem is also fulfilled approximately?
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We discuss the conditions in which sense the assumptions of the char-

acterization theorem is fulfilled not exactly but only approximately in the

next section.

4.2 The main Theorem and two auxiliary Lemmas

Let now the conditions (4.7) of Eaton’s theorem be fulfilled only approxi-

mately, with some error ε. In the main theorem - Theorem 4.5 - ε is any

positive number. The parameter ε express the proximity of the considered

in formula (4.7) statistics in the λ-metric defined below. However, it should

be noted that only the case where ε is small positive member is of mathe-

matical interest. Why? We shall discuss that immediately after formulating

Theorem 4.5.

Our aim is to get convinced that in a certain sense the characteristic

function f (t) of the random variable X is close to the characteristic func-

tion of a symmetric stable law.

For ’measurements’ of the error of fulfillment of conditions (4.7) we chose

a weak metric λ, i.e. we investigate the stability of Eaton’s theorem 4.3 in

the metric λ. We remind the definition of this metric.

Let (Ω, F , P) be a probability space. We consider a set X = {X :

Ω −→ R} of real F -measurable functions. In the probability theory the

functions X (ω) are interpreted as random variables, defined on a prob-

ability space (Ω, F , P) . We define a λ-metric between arbitrary random

variables X and Y from X as follows:
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λ
(
X, Y

)
= min

⎧⎨
⎩max

⎧⎨
⎩

1

2
max(|fX(t)−

− fY (t)| : |t| ≤ T ),
1

T

⎫⎬
⎭ : T > 0

⎫⎬
⎭,

where fX, fY denote characteristic functions of the random variables X

and Y , respectively.

The λ-metric is equivalent to the Lévy metric L in the sense that L-

convergence of the sequence {Xn} from X implies the convergence of

this sequence in the λ-metric, and vice versa. Two-sided estimations of

this metric are studied by V. Zolotarev and V. Senatov [32].

The λ-metric is convenient to express the essence of stability problems

of characterization theorems, since the latter are frequently proved by an-

alyzing the equations considered in the space of characteristic functions.

Some aspects of this problem are analyzed by R. Yanushkevichius [19].

Some additional results will be necessary from the Diophantine approxi-

mation theory.

It is known that there exist constants b = b(k1, k2) and b′ = b′(k1, k2)

such that for any natural r and k and any integers k1 and k2 with irrational

log k1/ log k2 the inequality

|r log k1 − k log k2| > b′r−b (4.8)

holds.

Let us take some comments on the constants b and b′.
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From E.M. Matveev [11] it follows a lower estimation of a linear form

r log k1 − k log k2 :

|r log k1 − k log k2| > (3r)(−230 log k1 log k2) .

This estimation may be improved by using Corollary 2.3 from N.Gouillon

[4]:

|r log k1 − k log k2| > (23r)−36821 log k1 log k2 .

It means that in formula (4.8) constants b and b′ can be selected as

follows:

b′ := 23−36821 log k1 log k2, b := 36821 log k1 log k2. (4.9)

We fix these values of b and b′ throughout the paper.

Now we are ready for the statement of the main Theorem.

Theorem 4.5 (R. Yanushkevichius, O. Yanushkevichiene [28]). Let X, X1,

X2, . . . , Xk1
, . . . , Xk2

be k2 symmetric i.i.d. random variables, where

k1 and k2 are integers such that θ = log k1/ log k2 (2 ≤ k1 < k2) is

irrational. If there exists α ∈ (0, 2] such that for j = 1, 2 the relations

λ

⎛
⎜⎜⎝X, k

−1/α
j

kj∑
i=1

Xi

⎞
⎟⎟⎠ ≤ ε (4.10)

are fulfilled, then there exists a random variable Y with the symmetric

stable distribution of order α such that

λ (X, Y ) ≤ C1ε
Δ, (4.11)

where Δ = 1/(b + max(1, α)), C1 is a constant, depending only on

α, k1, k2, and b is a constant, depending only on k1 and k2.
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By taking an equality sign instead of the inequality one in formula (4.10),

we get a simple illustration of the parameter ε, i.e., the distance between

monomial X and the linear statistic k
−1/α
j

kj∑
i=1

Xi in the λ metric.

Note that the proof of this theorem (as well as of Lemma 3.1) is nontrivial

only when ε is a small positive number. It can be appreciated as follows:

there exists a small positive number ε0, depending only on α, k1 and k2,

such that (4.11) is valid for all ε ∈ (0, ε0]. In all the other cases Theorem

4.5 is trivial.

Indeed, according to the definition of λ metric, for any X and Y 0 ≤
λ(X, Y ) ≤ 1. Hence and from condition (4.10) we obtain that ε ≥ 0. In

case ε = 0, we get Theorem 4.3. Finally, if ε > ε0, then C1 in formula

(4.11) is chosen in such a way: C1 = ε−�

0 . In this case λ(X, Y ) ≤ 1 =

C1ε
�

0 < C1ε
� if ε > ε0, i.e., (4.11) is trivial for ε > ε0.

Everything is ready now for the formulation of the first auxiliary lemma.

Lemma 4.1 (O. Yanushkevichiene [18]). Let m be an arbitrary integer and

κ be an arbitrary positive constant. Then there exist an integer m′ and

an integer n′ corresponding to m′ such that for an arbitrary small positive

number ε > 0

|m′α2 − n′α1| < εκ (4.12)

and

0 ≤ m − m′ < Mεκb, (4.13)

where α1 = −α−1 log k1, α2 = −α−1 log k2, M = 2(3b/((21/b − 1)b′)).

The next lemma, proved together with L. Klebanov, probably of indepen-

dent interest, is useful in the following:
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Lemma 4.2 (R. Yanushkevichius, O. Yanushkevichiene [28]). Let L (t) be

a complex-valued function and let there exist positive numbers α, ε∗ and

natural ones k ≥ 2 such that

|L (t)| ≥ k
∣∣∣∣L
(
t/k1/α

)∣∣∣∣ − ε, ∀ε ∈ (0, ε∗], ∀t ∈ [−1, 1].

Then for any δ in the interval (0, 1] and for any ε in the interval (0, ε∗]

sup
|t|≤δ

|L (t)| ≤ kδα sup
|t|≤1

|L (t)| + ε.

Proof of Lemma 4.2. If S(δ) = sup|t|≤δ |L(t)|, then according to the

condition of Lemma 2.3, for any ε in the interval (0, ε∗],

S (δ) ≥ kS
(
δ/k1/α

)
− ε.

Consequently,

S
(
δ/k1/α

)
≤ S (δ) /k + ε/k, S

(
k−1/α

)
≤ S (1) /k + ε/k.

Proceeding in a similar way we get that

S(k−2/α) ≤ S(k−1/α)/k + ε/k ≤ S(1)/k2 + ε/k2 + ε/k,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S(k−j/α) ≤ S(1)/kj + ε/kj + . . . + ε/k2 + ε/k. (4.14)

It is easy to see that for any δ ∈ (0, 1) there exists a nonnegative integer

K = K(δ, α, k) such that k−K/α ≥ δ ≥ k−(K+1)/α. From the monotonic-

ity of the function S(δ) and (4.14) we have that

S(δ) ≤ S(k−K/α) ≤ S(1)/kK + ε ≤ kS(1)δα + ε,

which was to be proved.
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4.3 The main Lemma

Lemma 4.3 (R. Yanushkevichius, O. Yanushkevichiene [28]). Let k1 and

k2 (2 ≤ k1 < k2) be integers such that the ratio of their logarithms

log k1/ log k2 is irrational, and for some α ∈ (0, 2] there exists a char-

acteristic function f (t) such that

∣∣∣∣f (t) − fki
(
t/k

1/α
i

)∣∣∣∣ ≤ ε, ∀t ∈ [−1, 1] . (4.15)

In addition, if

|f (t)| ≥ 1/2 for ∀t ∈ [−1, 1] , (4.16)

then there exists a constant C2 depending only on α and k1, k2 such that

for |t| ≤ 1

|f (t) − exp {− |D| exp (iQ sign t) |t|α}| ≤ C2ε
Δ, (4.17)

where D = k1 log f
(
k

−1/α
1

)
, Δ = 1/ (b + max (1, α)) ,

Q = arctan(Im D/Re D)

and b is a constant, defined by formula (4.9) .

Proof. First we reduce condition (4.15) to the additive form. For that let

us denote

u = log t, H(log t) = log f (t).

From (4.15) we obtain for 0 < t ≤ 1 and i = 1, 2

H (u) = kiH (u + αi) + Ri (eu) , (4.18)

where Ri (t) = log(1 + r(t)f−ki(t/k
1/α
i )), r (t) = f (t) − fki

(
t/k

1/α
i

)
,

αi = − 1
α

log ki.

————————————————————————————————————————————————————————–

STABILITY CHARACTERIZATIONS OF SOME PROBABILITY DISTRIBUTIONS 53



Stability estimations of a characterization of the Stable distribution in weak metric

In further considerations it is useful to avoid the multiplier ki in formula

(4.18). The following notation is helpful for this purpose:

ψ (u) = H (u) exp (−αu) . (4.19)

Using (4.18) from (4.19) for u ∈ R− = (−∞, 0] we obtain:

ψ (u) = ψ (u + αi) + Ri (eu) e−αu, i = 1, 2. (4.20)

The next notation is necessary for the following proof. Let Z be set of

all integers, Z+ be a set of all nonnegative integers and let us consider

the following sets: M = {u : u = nα1 + mα2 ≤ 0; n ∈ Z, m ∈
Z}, N = {u : u = nα1 + mα2; n ∈ Z+, m ∈ Z+}, P = {u : α1 <

u = nα1 + mα2 ≤ 0; n ∈ Z, m ∈ Z}.

Note that we consider the main equation - equation (4.20) - in the interval

R−. The set M is everywhere dense in R−. On the other hand, it is not

difficult (see the authors’ paper [25]) to present any element of M as a

sum of an element from the infinite lattice N in the interval R− and an

element from a ’small’ set P , everywhere dense in the interval (α1, 0]: for

all u ∈ M

u = u1 + u2, u1 ∈ N , u2 ∈ P. (4.21)

Next we prove the following statement, which is very useful in the sequel.

If the function ψ satisfies relation (4.20), then, in a certain sense, it is close

enough to the ’initial point of pacing’ ψ(α1).

To be more precise, both for small and large enough (by absolute value)

u in the pacing lattice N the estimate

|ψ(u) − ψ(α1)| ≤ C3ε exp(−αu), u ∈ N (4.22)
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is valid, where C3 = C3(k1, k2) is a constant.

It is quite the other way if we consider the limited set P , everywhere

dense in the interval (α1, 0]. We shall prove that

|ψ(u) − ψ(α1)| ≤ Cεη for u ∈ P, (4.23)

where C is a constant defined below, and

η =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1/(b + 1) for 0 < α ≤ 1,

1/(b + α) for 1 ≤ α ≤ 2.

Here constant b, as usual, is defined by (4.9).

In view of representation (4.21), according to which it is possible to

present an arbitrary u ∈ M as a sum u1 + u2, where u1 ∈ N and

u2 ∈ P , on the basis of estimates (4.22) and (4.23) we shall prove finally

that

|ψ(u) − ψ(α1)| ≤ C3ε exp(−αu) + Cεη for u ∈ M. (4.24)

Thus, we go over to the proof of relation (4.22). From (4.20) we obtain

that for u = nα1 + mα2 ∈ N
ψ(u) = ψ(nα1 + mα2) = ψ((n − 1)α1 + mα2)

− R1(exp{(n − 1)α1 + mα2}) exp{−α((n − 1)α1 + mα2)} = . . .

= ψ(α1 + mα2)−
−

n−1∑
j=1

R1(exp(jα1 + mα2)) exp(−α(jα1 + mα2)) = . . .

= ψ(α1) −
m−1∑
j=0

R2(exp(α1 + jα2)) exp(−α(α1 + jα2))

−
n−1∑
j=1

R1(exp(jα1 + mα2)) exp(−α(jα1 + mα2)). (4.25)
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Note that by virtue of condition (4.16) for ε ≤ min(2−(k1+1), 2−(k2+1)) =

2−(k2+1)

|Ri (t)| ≤ 2 |r (t)| |f−ki
(
t/k

1/α
i

)
| ≤ 2ki+1ε. (4.26)

We note that it suffices to prove Lemma 3.1 only for ε ≤ ε0 := 2−(k2+1).

Indeed, for ε > ε0 = 2−(k2+1) the statement of Lemma 3.1 is trivial if we

will choose C2 = C2 (α, k1, k2) such that C2ε
Δ
0 = 2, i.e. C2 = 2ε−Δ

0 =

2Δ(k2+1)+1.

So, by virtue of (4.26) for ε ≤ 2−(k2+1)

∣∣∣∣∣∣
n−1∑
j=1

R1(exp(jα1 + mα2)) exp(−α(jα1 + mα2))

∣∣∣∣∣∣
≤ 2k1+1ε(exp(−α(nα1 + mα2)) − exp(−α(α1 + mα2)))

≤ 2k1+1ε exp(−αu). (4.27)

If n ≥ 1, then

∣∣∣∣∣∣
m−1∑
j=0

R2(exp(α1 + jα2)) exp(−α(α1 + jα2))

∣∣∣∣∣∣
≤ 2k2+1ε exp(−α(α1 + mα2)) ≤ 2k2+1ε exp(−α(nα1 + mα2))

= 2k2+1ε exp(−αu). (4.28)

By (4.25), (4.27) and (4.28) we conclude that for ε ≤ 2−(k2+1) relation

(4.22) holds, where C3 = 2k1+1 + 2k2+1.

Let us proceed to the proof of relation (4.23). Let now u ∈ P . Then

u ∈ (α1, 0] and u = nα1 + mα2, where n, m are integers. Both numbers

n, m cannot be negative at the same time because α1 < 0, α2 < 0 and

in that case (i.e., in case of n < 0 and m < 0) nα1 + mα2 > 0, which

contradicts the condition u ∈ (α1, 0].
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Both numbers n, m cannot be positive at the same time as well, because

in that case nα1 + mα2 < α1.

Consequently, either n ≥ 0 and m ≤ 0, or m ≥ 0 and n ≤ 0, i.e., either

u = nα1−mα2 or u = mα2−nα1, where n, m are nonnegative integers.

Both cases are considered in the same manner, therefore assumption

u ∈ P, u = nα1 − mα2, n ≥ 0, m ≥ 0 (4.29)

does not diminish the generality of reasoning. Define

mi = mi−1 − 1 = mi−2 − 2 = ... = m − i; n0 = n, (4.30)

ni = min{n∗ : n∗α1 − miα2 ≤ 0, n∗ − natural}. (4.31)

It is not difficult to prove that ni can be changed within the following

bounds:

[miα2/α1] ≤ ni ≤ [miα2/α1] + 1, (4.32)

where the integer part of A is denoted by [A].

Basing on (4.20) and in view of (4.29), (4.30), after the first step with

respect to the coefficient of α2 we take next steps (their number is equal
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to n0 − n1) with respect to the coefficient of α1, and so on:

ψ(u) = ψ(nα1 − mα2) = ψ(nα1 − (m − 1)α2)

+ R2(exp(nα1 − mα2)) exp(−α(nα1 − mα2))

= ψ(n1α1 − m1α2)+

+ R2(exp(nα1 − mα2)) exp(−α(nα1 − mα2))

−
n0−1∑
j=n1

R1(exp(jα1 − m1α2)) exp(−α(jα1 − m1α2)) = . . .

= ψ(niα1 − miα2)

+
i−1∑
h=0

R2(exp(nhα1 − mhα2)) exp(−α(nhα1 − mhα2))−

−
i∑

h=1

nh−1−1∑
j=nh

R1(exp(jα1 − mhα2)) exp(−α(jα1 − mhα2). (4.33)

On the basis of (4.12) and (4.13) in Lemma 4.1 we note that there exists

i such that

i < Mε−κb, (4.34)

and, in addition,

|miα2 − niα1 − α1| ≤ εκ. (4.35)

By (4.32), in the last expression of the equalities in (4.33) the number

of summands other than ψ(niα1 − miα2) does not exceed the number

(3 + [α2/α1])i.

Recalling (4.32), we find that the exponential multipliers in (4.33) are

bounded: for j = nh, . . . , nh−1 − 1

exp(−α(jα1 − mhα2)) ≤ exp(−α(nh−1 − 1)α1 − mhα2)

≤ exp(−α(α1 + α2)) = k1k2. (4.36)
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It follows from (4.33) and (4.26), (4.34), (4.36) that for u = nα1 −mα2 ∈
P

|ψ(u) − ψ(niα1 − miα2)| = |ψ(nα1 − mα2) − ψ(niα1 − miα2)|
≤ (3 + [α2/α1]k1k2i2ε(2k1 + 2k2)

< C4ε
1−κb, (4.37)

where C4 = 2(3 + [log k2/ log k1])k1k2(2
k1 + 2k2)M.

Now, making use of (4.35), we estimate |ψ(niα1 − miα2) − ψ(α1)|, and

simultaneously |ψ(u) − ψ(α1)| for u ∈ P.

Owing to this note that for 0 < tj ≤ 1 and uj = log tj, j = 1, 2,

|ψ(u1) − ψ(u2)| = |H(u1) exp(−αu1) − H(u2) exp(−αu2)|
= |t−α

1 H(log t1) − t−α
2 H(log t2)|

= |t−α
1 log f (t1) − t−α

1 log f (t2) +

+ t−α
1 log f (t2) − t−α

2 log f (t2)|
≤ t−α

1 | log f (t1) − log f (t2)| +

+ | log f (t2)||t−α
1 − t−α

2 |. (4.38)

Now we need Lemma 4.2. (4.15) implies that ∀t ∈ [−1, 1] the relation

f (t) = fki(t/k
1/α
i ) + r(t), |r(t)| ≤ ε, i = 1, 2

holds. Hence it follows that

log f (t) = ki log f (t/k
1/α
i ) + r∗i(t), (4.39)

where r∗i(t) = log(1 + r(t)/fki(t/k
1/α
i )).

From this and (4.16) we notice that ∀t ∈ [−1, 1]

|r∗i(t)| ≤ 2ki+1ε. (4.40)
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In formula (4.39), by taking first t = t1, afterwards t = t2, and subtracting

from the first relation obtained the second one, we obtain

log f (t2)−log f (t1) = ki(log f (t2/k
1/α
i )−log f (t1/k

1/α
i ))+r∗i(t2)−r∗i(t1).

Denote L(t2 − t1) = log f (t2) − log f (t1). Then

L(t2 − t1) = kiL

⎛
⎝t2 − t1

k
1/α
i

⎞
⎠ + r∗i(t2) − r∗i(t1). (4.41)

Next, let t = t2 − t1, S(δ) = sup|t|≤δ |L(t)|. From (4.41) we see that

the function L(t) satisfies the conditions of Lemma 4.2, therefore S(δ) ≤
kiδ

α sup|t|≤1 |L(t)| + εi, where εi = 2 sup|t|≤1 |r∗i(t)|.
(4.40) yields

εi = 2 sup
|t|≤1

| ln(1 + r(t)/fki(t/k
1/α
i ))| ≤ 2ki+2ε.

Since |f (t)| ≥ 1/2 for |t| ≤ 1, we have

sup
|t|≤1

|L(t)| ≤ sup
|t1|≤1,|t2|≤1|

(| log f (t2)| + | log f (t1)|)
≤ 2 sup

|t|≤1
| log f (t)| ≤ 4 sup

|t|≤1
|1 − f (t)| ≤ 8.

Therefore for any δ from the interval (0, 1]

S(δ) ≤ 8kiδ
α + 2ki+2ε. (4.42)

Choosing t1 = exp α1 = k
−1/α
1 ∈ (0, 1] and a point t2 = exp(niα1 −

miα2), close to it (in the sense of relation (4.35)), we obtain

| ln f (t1) − ln f (t2)| ≤ C5|t1 − t2|α + 2k1+2ε, (4.43)

where C5 = 8k1. It follows from (4.38) and (4.43) that

|ψ(u1)−ψ(u2)| ≤ k1(C5|t1 − t2|α +2k1+2ε)+4k1|eα(u2−u1) −1|. (4.44)
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Since |t1 − t2| = t2|eu1−u2 − 1|, from (4.35) and (4.44) we derive that

|ψ(u1) − ψ(u2)| ≤ C5k1t
α
2 |eu1−u2 − 1|α + 4k1|eα(u1−u2) − 1|+

+2k1+2k1ε ≤ 2αC5k1|u1 − u2|α + 2k1+2k1ε + 8k1α|u1 − u2|
≤ 2αC5k1ε

κα + 9k1αεκ, (4.45)

if, in addition, εκ max(1, α) ≤ 1/2.

Since ψ(u1) = ψ(α1), for u ∈ P (4.37) and (4.45) yield

|ψ(u) − ψ(α1)| ≤ C4ε
1−κb + 2αC5k1ε

κα + 9k1αεκ. (4.46)

We select now the constant κ in Lemma 4.1 so that the summands in

(4.46) have approximately ’the same weight’ with respect to ε, i.e., on the

one hand, that 1 − κb ∼ κα, and on the other hand, that 1 − κb ∼ κ.

Hence and from (4.46) we conclude that

|ψ(u) − ψ(α1)| ≤ Cεη,

where C = C4 + 2αC5k1 + 9k1α, and η = 1/(b + 1) for 0 < α ≤ 1 and

η = 1/(b + α) for 1 ≤ α ≤ 2. Thus, relation (4.23) is completely proved.

Since � in (4.11) is defined by formula � = 1/(b + max(1, α)), it is

obvious that η = � .

Finally, let u ∈ M. Let us go over to the proof of relation (4.24).

Expressing u in the form (4.21), let us repeat (4.25):

ψ(u) = ψ(u1 + u2) = ψ(nα1 + mα2 + u2)

= ψ(u2) −
m−1∑
j=0

R2(exp(α1 + jα2 + u2)) exp(−α(α1 + jα2 + u2))

−
n−1∑
j=0

R1(exp(jα1 + mα2 + u2)) exp(−α(jα1 + mα2 + u2)).
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Consequently, as in (4.22), |ψ(u) − ψ(u2)| ≤ C3ε exp(−αu). Hence,

as in (4.23), we conclude

|ψ(u) − ψ(α1)| ≤ C3ε exp(−αu) + Cεη, u ∈ M. (4.47)

At the end of the proof in the case 0 ≤ t ≤ 1 it remains to note that for

any u ∈ (−∞, 0]

|ψ(u) − ψ(α1)| = lim
j↑∞ |ψ(uj) − ψ(α1)|,

because relation u = limj↑∞ uj, uj ∈ M is valid for any u ∈ (−∞, 0]

and ψ(u) is continuous on (−∞, ∞), i.e., (4.47) is valid for an arbitrary

u ∈ (−∞, 0]. Since ψ(u) = H(u) exp(−αu), H(log t) = log f (t),

(4.47) means that for u ∈ (−∞, 0]

|H(u) exp(−αu) − H(α1) exp(−αα1)| ≤ C3ε exp(−αu) + Cεη,

| log f (t) − k1H(α1)t
α| ≤ C3ε + Cεηtα,

| log f (t) − k1 log f (k
−1/α
1 )tα| ≤ C3ε + Cεηtα (4.48)

for 0 ≤ t ≤ 1.

Now let −1 ≤ t < 0. Letting t = −u, 0 < u ≤ 1, we rewrite (4.48) in

the following form: log f (u) = Auα + R3(u), 0 < u ≤ 1, where

|R3(u)| ≤ C3ε + Cεηuα, A = k1 ln f (k
−1/α
1 ). (4.49)

Note that

f (t) = f (−u) = f (u) = exp(Auα) exp R3(u). (4.50)

If tan Q = Im D/Re D, then, as it is known,

D = −|D| exp(iQ). (4.51)
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Since obviously ImD=-iImD and ReD=Re D, from (4.48)–(4.51) for

|t| ≤ 1 we obtain the following relation:

f (t) = exp{−|D| exp(iQ sign t)|t|α} exp R4(t),

where for |R4(t)| estimation (4.49) holds as it does for |R3(t)|. This means

that for |t| ≤ 1

|f (t) − exp{−|D| exp(iQ sign t)|t|α}| ≤ C3ε + Cεη|t|α. (4.52)

Lemma 3.1 is proved.

4.4 Proof of the main Theorem

Let us consider two functions of the positive variable T :

M1(T ) =
1

2
max
|t|≤T

|fX(t) − fY (t)|, M2(T ) = 1/T,

where fX(t) and fY (t) are characteristic functions of the random variables

X and Y , respectively. Since M1(T ) is a non-increasing function, M2(T )

is a monotonically increasing function, the condition

min
T>0

max(M1(T ), M2(T )) = ε (4.53)

means that there exists T∗ > 0 such that

M1(T∗) ≤ ε, M2(T∗) = ε. (4.54)

The latter in relations (4.54) means that T∗ = 1/ε. Then the former in

relations (4.54) means that

max
|t|≤1/ε

|fX(t) − fY (t)| ≤ 2ε. (4.55)

Note that condition (4.53) is equivalent to the condition λ(X, Y ) = ε.

Thus, from λ(X, Y ) = ε we get (4.55). Analogously from λ(X, Y ) ≤ ε

we obtain the same (4.55).
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It means that from condition (4.10) we have that

|f (t) − fkj(t/k
1/α
j )| ≤ 2ε for |t| ≤ 1/ε, j = 1, 2. (4.56)

Since f (t) is a continuous function such that f (0) = 1, and, besides,

f (t) is real as a characteristic function of a symmetric random variable,

there exists p0 such that min{t : f (t) = 1/2} = p0(f ) = p0 > 0. Only

two cases are possible: p0 ≤ 1/ε or p0 > 1/ε. So, let p = min(p0, 1/ε).

Instead of the characteristic function f (t), we introduce the characteristic

function fp(t) = f (pt), for which

p0(fp) = min
{
|t| : fp(t) = 1/2

}
= min

{
|t| : f (pt) = 1/2

}

=
1

p
min

{
|u| : f (u) =

1

2

}
=

1

p
· p0 ≥ 1.

If f (t) satisfies (4.56) for |t| ≤ 1/ε, then fp(t) satisfies (4.56) for |t| ≤
1/(εp).

Since p ≤ 1/ε, i.e. 1/(εp) ≥ 1, for the characteristic function fp(t) we

have that

|fp(t) − f
kj
p (t/k

1/α
j )| ≤ 2ε ∀t ∈ [−1, 1], (4.57)

min{|t| : fp(t) = 1/2} ≥ 1, i.e. |fp(t)| ≥ 1/2 ∀t ∈ [1, 1]. (4.58)

Applying Lemma 3.1 and having in mind that fp(t) is real, we get that

max
|t|≤1

|fp(t) − exp{−|Ap||t|α}| ≤ C2ε
�, (4.59)

where Ap = k1 log fp(k
−1/α
1 ).

Thus, it remains to consider the domain 1 < |t| ≤ 1/(εp) (of course,

only in the case where p < 1/ε; if p = 1/ε, the proof is completed).
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Note that the method for extending the estimate of type (4.59) from the

interval | t |≤ 1 to a considerably wider interval was first applied by au-

thors in [25] for a particular case k1 = 2 and k2 = 3.

We denote

rj(t) = fp(t) − f
kj
p (t/k

1/α
j ), (4.60)

h(t) = fp(t) − exp{−|Ap||t|1/α}. (4.61)

According to (4.56), |rj(t)| ≤ 2ε for |t| ≤ 1/(pε). And according to

(4.60), (4.61) we have that, for |t| ≤ 1/(pε),

h(t) + exp{−|Ap||t|α}

=

⎛
⎝h(t/k

1/α
j ) + exp

{
− |Ap||t|

α

kj

}⎞⎠
kj

+ rj(t)

= hkj
(
t/k

1/α
j

)
+

kj−1∑
i=1

Ci
kj

exp
{

− i|Ap|
kj

|t|α
}
hkj−i(t/k

1/α
j )

+ exp{−|Ap||t|α} + rj(t),

where Ci
k is a binomial coefficient. So,

h(t) = hkj
(
t/k

1/α
j

)
+

kj−1∑
i=1

Ci
kj

exp
{

− i|Ap|
kj

|t|α
}
hkj−i(t/k

1/α
j

)
+ rj(t)

(4.62)

for |t| ≤ 1/(pε), j = 1, 2.

Having assumed that for some t0 ∈ [1, 1/(pε))

sup
|t|<t0

|h(t)|kj ≤ ε�. (4.63)

We prove that the estimate of the same type is also true in the interval

k
1/α
j times wider, i.e. we prove that

sup
|t|<k

1/α
j t0

|h(t)|kj ≤ ε� (4.64)
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if k
1/α
j t0 ≤ 1/(pε).

We note at first that kj ≥ 2. If C2ε
� ≤ 1, then we have from (4.59) that

sup
|t|<1

|h(t)|kj ≤ (sup
|t|<1

|h(t)|)kj ≤ (C2ε
�)kj ≤ (C2ε

�)2

≤ (C2
2ε�)ε�. (4.65)

Since, as mentioned at the beginning of this paper, we are interested only

in small enough ε > 0, let us consider only those ε for which C2
2ε� ≤

1, i.e. ε ≤ C
−2/�
2 .

Consequently, we obtain from (4.65) that sup|t|<1 |h(t)|kj ≤ ε�, i.e. in

the interval [1, 1/(pε)) there exists t0 such that relation (4.63) holds. In

case we succeed to obtain (4.64) from this, then, because of k
1/α
j > 1, we

would also get thereby that (4.63) is also valid for t0 = 1/(pε).

Thus, if we have assumption (4.63), we shall prove (4.64).

Since according to the assumption (4.63), |h(t)|kj ≤ ε� in the interval

|t| < t0, for any natural m and n, n ≥ 2

|h(dm
j t)|n ≤ ε� (4.66)

for |t| < t0/dj, where dj = 1/k
1/α
j . Using (4.62), (4.63) and (4.66), in the

interval |t| < t0/dj we obtain:

∣∣∣h(dm−1
j t)

∣∣∣ ≤
kj−1∑
i=1

Ci
kj

exp
{ − i|Ap||t|α/km

j

}|h(dm
j t)|kj−i + ε� + 2ε.

Since ε� < 1, it is obvious that among all the members of the type

exp{−i|Ap||t|α/km
j }|h(dm

j t)|kj−i
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under summation sign, the first member is the largest one, therefore

|h(dm−1
j t)| ≤ exp{−|Ap||t|α/km

j }|h(dm
j t)|kj−1

kj−1∑
i=1

Ci
kj

+ ε� + 2ε

= (2kj − 2) exp{−|Ap||t|α/km
j }|h(dm

j t)|kj−1 + ε� + 2ε

≤ (2kj − 2)|h(dm
j t)| exp{−|Ap||t|α/km

j } + ε� + 2ε .

So, if we make s + 1 steps we shall get the next result in the interval

|t| < t0/dj:

|h(t)| ≤ (2kj − 2)|h(djt)| exp{−|Ap|k−1
j |t|α} + ε� + 2ε

≤ (2kj − 2)2|h(d2
jt)| exp{−|Ap|(k−1

j + k−2
j )|t|α)}

+(2kj − 2)(ε� + 2ε) exp{−|Ap|k−1
j |t|α} + ε� + 2ε ≤ . . .

≤ (2kj − 2)s+1|h(ds+1
j t)| exp{−|Ap|k−1

j |t|α}
+ (2kj − 2)s+1(ε� + 2ε) exp{−|Ap|k−1

j |t|α)} + ε� + 2ε.(4.67)

Let us define s as follows: s = 1 + [α logkj
t0]. Note that for |t| < t0/dj,

ds+1
j |t| < 1. (4.68)

Having denoted

F (t) = (2kj − 2)2|t|α/ log
2
kj −2

kj
exp{−|Ap|k−1

j |t|α}
we see that, for |t| ≥ t0,

(2kj − 2)s+1 exp{−|Ap|k−1
j |t|α} ≤ F (t0). (4.69)

Since F (t) is even, it is easy to verify that the maximum F (t) is attained

at the points t∗ and −t∗, where t∗ = kj/(|Ap| log
2
kj −2

kj)
1/α. Hence and

from relations (4.67), (4.69) we obtain for t0 ≤ |t| < t0/dj

|h(t)| ≤ F (t∗)(|h(ds+1
j t)| + ε� + 2ε) + ε� + 2ε.
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This implies that there exists a constant C7 = C7(kj) such that for t0 ≤
|t| < t0k

1/α
j

|h(t)| ≤ C7|Ap|−1/C8(|h(ds+1
j t)| + ε� + 2ε) + ε� + 2ε, (4.70)

where C8 = log
2
kj −2

kj.

If p = p0 (the case p = 1/ε is trivial) then according to (4.58) fp(1) =

1/2 and from (4.57) we have that f
kj
p (dj) ≤ 1/2 + ε. Recalling the defini-

tion of Ap, we obtain for ε ≤ 1/4, that

|Ap|−1 ≤ | log(1/2 + ε)|−1 ≤ | log(3/4)|−1 ≤ 3.5. (4.71)

From (4.70) and (4.71) we conclude that for t0 ≤ |t| < t0/dj

|h(t)| ≤ C9|h(ds+1
j t)| + (C9 + 1)(ε� + 2ε), (4.72)

where C9 = C9(k1, k2) is a constant. By virtue of (4.68) and (4.59), from

(4.72) we derive that for t0 ≤ |t| < t0/dj

|h(t)| ≤ C2C9ε
� + (C9 + 1)(ε� + 2ε) ≤ C10ε

�, (4.73)

where C10 = C2C9 + 3(C9 + 1).

Consequently, if

ε1−�/kj ≤ C−1
10 ,

we obtain that |h(t)| ≤ ε�/kj for |t| < t0/dj, i.e., assuming that (4.63)

is true in the interval |t| < t0, we have proved that (4.63) is true in the

wider interval |t| < t0/dj, and simultaneously, as mentioned above, in the

whole interval |t| < 1/(pε) , if ε ≤ ε0, where ε0 = C
−1/(1−�/kj)

10 . Thus,

by virtue of (4.72), (4.68) and (4.59), we get (4.73) in the whole interval

|t| < 1/(pε):

|fp(t) − exp{−|Ap||t|α} ≤ C10ε
�,
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i.e. for |u| < 1/ε we have that |f (u) − exp{−|Ap|p−α|u|α} ≤ C10ε
�.

According to the definition of the λ-metric, it means that relation (4.11)

is proved.
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Chapter 5

Stability estimations of a characterization of the

Normal distribution in weak metric

5.1 Characterization by the property of identically distributed linear

statistics

The Chapter 5 is devoted to the estimation of the stability of character-

ization of the normal law by the property of identically distributed linear

statistics

X = X1, S =
n∑

i=1
biXi,

where X1, X2, ..., Xn are independent identically distributed (i.i.d.) ran-

dom variables and b1, b2, ...bn are real coefficients.

Such a characterization theorem is well known (see, for example, the

monograph by Kagan, Linnik, Rao [5], Theorem 13.7.2). If X and S are

identically distributed and
∑

b2
j = 1, then X1, X2, ..., Xn is a normal sam-
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ple. It is important to emphasize that in the formulation of this characteri-

zation theorem any moment restrictions are absent.

Only Zinger, Klebanov, Yanushkevichius [30] succeeded to preserve the

absence of moment restrictions in the investigation of the stability of this

characterization but only in the case n = 2, b1 = b2 = 1/
√

2. In the

general case all authors, which investigate this problem, require the mo-

ment or pseudo-moment restrictions (see, for example, the monograph by

Yanushkevichius [20]).

Following V.M. Zolotarev [31], let us introduce metrics μk and νr in the

space of random variables,

μk(X, Y ) =
∞∫

−∞
xkd (FX − FY ) , k = 0, 1, 2, ...

νr(X, Y ) =
∞∫

−∞
|x|r |d (FX − FY )| , r > 0.

Conditions in these metrics are analogous to the corresponding moment

and pseudo-moment conditions, therefore we can reformulate the result of

R. Shimizu [16] (see also [22]) in the following manner:

Theorem 5.1 (R.Shimizu [16]). Let X, X1, X2, ..., Xn be i.i.d. random

variables. Under the assumptions

μ1(X, S) = μ2(X, S) = 0, ν3(X, S) ≤ ε (5.1)

and

b2
1 + b2

2 + ... + b2
n = 1, a = max {|b1| , ..., |bn|} < 1, (5.2)

the random variable X has finite mean θ and variance σ2 and the following

inequality holds:
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ρ
(
X, Zθ,σ2

)
= sup

x

∣∣∣∣P (X < x) − P (Zθ,σ2 < x)
∣∣∣∣ ≤

≤ 1.8(1 − a)−1/4σ−3/4ε1/4, (5.3)

where Zθ,σ2 is a normal random variable with mean θ and variance σ2.

Estimation (5.3) is non-informative in the cases where σ are very small.

In addition, the observation error is estimated in the metric ν3 in assump-

tions of Theorem 5.1, but the closeness with a normal random variable is

estimated in another metric - a uniform metric ρ.

Our purpose is to avoid these imperfections. We attain the aim by choos-

ing Lévy metric L instead of the metrics ν3 and ρ.

5.2 Comparison of metrics

Recall that Lévy metric L is defined by the formula

L(X, Y ) = inf{ε : P (X < x − ε) − ε ≤ P (Y < x) ≤

≤ P (X < x + ε) + ε for all x ∈ R1}.

Since the conditions of our Theorem 5.2 are formulated in Lévy metric L,

it is interesting to compare R. Shimizu conditions (5.1) with their analogue

in Lévy metric L. Of course, we can replace ρ in (3.2) by L, since for

any random variables X, Y always L(X, Y ) ≤ ρ(X, Y ). Unfortunately,

the multiplier σ−3/4 in R. Shimizu estimation (5.3) does not allow us to

conclude that the characterization theorem under consideration is stable

in ρ. Indeed, in the case where the sequence of random variables under
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consideration {X∗
k} satisfies the condition limk→∞ DX∗

k = 0, estimation

(5.3) becomes non-informative.

But, may be, the multiplier of such a kind is not necessary in (5.3)? The

answer is negative in the case of uniform metric ρ, because it is simple to

construct an example, from which we conclude that our characterization

model is not stable in the uniform metric ρ. Indeed, let X∗(ε), X∗
1 (ε),

X∗
2 (ε), ..., X∗

n(ε) be a sequence (by ε) of i.i.d. normal random variables

with zero mean and dispersion ε2. Then

ρ(X∗(ε),
∑

biX
∗
i (ε)) = 0 ≤ ε.

Since the dispersion ε2 ↓ 0, our random variables X∗
i (ε) are degenerating

as ε ↓ 0 but, on the other hand,

ρ(X∗
i (ε), E) = 1/2 for all i = 1, 2, ...n and ε > 0.

Thus,

lim
ε↓0

ρ(X∗
i (ε), E) �= 0, (5.4)

where E is a degenerate in zero normal random variable. According to

(3.4) for sufficiently small σ = ε we indeed have no effect of stability in the

uniform metric ρ. However, in the case of any weak metric (for example, in

the case of Lévy metric L) we have another picture:

limε↓0 L(X∗
i (ε), E) = 0.

We also note that in the case of Lévy metric it is not difficult to correct

the situation by slightly changing the proof of R. Shimizu [16]. Indeed, let

f (t) be the characteristic function of X. Shimizu [16] has proved that, if
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conditions of Theorem 5.1 are satisfied, then

T∫
−T

|f (t) − exp(iθt − σ2t2/2)|
t

dt ≤ ε

3
(1 − a)−1

T∫
0

t2dt =
ε

9
(1 − a)−1 T 3.

(5.5)

According to formula (1.5.18) in V.M. Zolotarev [31],

L
(
X, Zθ,σ2

)
≤ 1

π

T∫
0

|f (t) − exp(iθt − σ2t2/2)|
t

dt + 5.66
log(1 + T )

T
(5.6)

So, choosing T = ε−1/4, we have from (5.5) and (5.6) that, for sufficiently

small ε > 0,

L
(
X, Zθ,σ2

)
≤ 6ε1/4 log

1

ε
. (5.7)

It means, that we successfully avoided the multiplier σ−3/4 in formula

(5.3).

Can we improve the order of stability in (5.7) and avoid a logarithmic

multiplier? The answer is positive. Indeed, note that according to (1.5.44)

in [31],

L4(X, Y ) ≤ 32ζ3(X, Y ), (5.8)

where ζs(X, Y ) = sup {|E(f (X) − f (Y ))| : f ∈ Fs} , s = m + α,

m ≥ 0 is the integer, 0 < α ≤ 1, and Fs is a set of all real bounded

functions on R1 with the derivatives of order m at all the points and

∣∣∣∣f (m)(x) − f (m)(y)
∣∣∣∣ ≤ |x − y|α .

According to Zolotarev’s theorem 1.4.2 in [31], the metric ζs(X, Y ), s ≥
0 is an ideal metric of order s. On the other hand, since μ1(X, S) =

μ2(X, S) = 0, according to formula (1.5.41) in [31],

ζ3(X, S) ≤ ν3(X, S)

Γ(4)
=

ν3(X, S)

6
. (5.9)
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From (5.9) and the relation ν3(X, L) ≤ ε in (5.1) we conclude that

ζ3(X, S) ≤ ε/6. (5.10)

As R. Shimizu [16] has noted, from the condition

μ1(X, S) = μ2(X, S) = 0

we derive that

θ
n∑

j=1
bj = θ. (5.11)

Let now Z1, Z2, ..., Zn be i.i.d. normal random variables with the mean

θ and dispersion σ2 and let Z =
n∑

j=1
bjZj. Then, it follows from (5.11) that

Z is also a normal random variable with the mean θ and dispersion σ2,

i.e. Z and Zθ,σ2 have the same normal distribution with the parameters θ

and σ2. Thus, since ζ3 is an ideal metric of order 3, by virtue of (5.10) we

obtain

ζ3(X, Z) ≤ ζ3(X, S) + ζ3(S, Z) ≤ ε/6 + ζ3

⎛
⎜⎝ n∑

j=1
bjXj,

n∑
j=1

bjZj

⎞
⎟⎠ ≤

≤ ε/6 +
n∑

j=1
|bj|3 ζ3 (Xj, Zj) . (5.12)

Let us denote δ = ζ3 (Xj, Zj) . It is easy to see that δ = ζ3(X, Z) and

under (5.2) and (5.12)

δ ≤ ε/6 + δ
n∑

j=1
|bj|3 ≤ ε/6 + δ max {|b1| , ..., |bn|}

n∑
j=1

|bj|2 = ε/6 + δa.

So, δ(1 − a) ≤ ε/6 and

ζ3(X, Z) ≤ ε/(6(1 − a)).
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By virtue of (5.8) we find that

L(X, Zθ,σ2) ≤ 321/4ζ
1/4
3 (X, Zθ,σ2) ≤ 2 (3(1 − a))−1/4 ε1/4. (5.13)

By comparing (5.7) with (5.13) we see that in (5.13) we have success-

fully avoided the logarithmic multiplier which is in (5.7) and, consequently,

improved the order of stability.

5.3 Main results

It is well known that if X, X1, X2, ..., Xn are i.i.d. random variables, X

and S are identically distributed and assumption (5.2) is satisfied, then

X1, X2, ..., Xn are normal random variables. We investigate the stability

of this characterization theorem in Lévy metric L. It means that, instead of

the condition ν3(X, S) ≤ ε in (5.1), we have only L(X, S) ≤ ε.

The indicator function Iϑ is a function defined as

Iϑ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1, if max{ϑ, 1/4} = ϑ,

0, if max{ϑ, 1/4} �= ϑ.

Let us denote Ξ (M, r) = {X : E |X|r ≤ M} , where r is a constant

from the interval (2, 3].

Theorem 5.2 (R. Yanushkevichius, O. Yanushkevichiene [29]). Let X, X1,

X2, ..., Xn be i.i.d. random variables from the class Ξ (M, r). Under the

assumptions

μ1(X, S) = μ2(X, S) = 0, L(X, S) ≤ ε (5.14)

and (5.2) there exist a constant C = C(M, r, n, b1, ..., bn) and normal

random variable Z such that the following inequality holds:
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L (X, Z) ≤ Cεmax{ϑ,1/4}(1 + Iϑ · log
1

ε
), (5.15)

where ϑ = Δr/(2r + 1),

Δ = 1/(1 − log n/ (log(|b1|r + |b2|r + ... + |bn|r))) > 0. (5.16)

Since our proof is based on the use of characteristic functions, it is also

natural to use the metric defined in the class of characteristic functions. As

in previous chapter, we have chosen the weak metric λ,

λ
(
X, Y

)
= min

⎧⎨
⎩max

⎧⎨
⎩

1

2
max(|fX(t)−

− fY (t)| : |t| ≤ T ),
1

T

⎫⎬
⎭ : T > 0

⎫⎬
⎭,

where fX (t) and fY (t) denote the characteristic functions of the random

variables X and Y , respectively.

Two-sided estimations of this metric are studied by V. Zolotarev and V.

Senatov [32]. If X ∈ Ξ (M, r) , then from [32] we derive that

λ(X, S) ≤ 12kLr/(2r+1)(X, S) = 12kεr/(2r+1). (5.17)

Let f (t) be the characteristic function of a random variable X , i.e. f (t) =

fX (t) . Then, from (5.17) we get for |t| ≤ 1/(12kεr/(2r+1)) that

f (t) = f (b1t)f (b2t)...f (bnt) + h(t), |h(t)| ≤ ε1, (5.18)

where

h(t) =
∞∫

−∞
exp(itx)d(P (X < x) − P (S < x)),

ε1 = 12kεr/(2r+1).

Since f (t) is a characteristic function, f (0) = 1 and f (t) is continuous.

So, if p is a real number from the interval (0, 1), then
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u∗ = u∗(f, p) = inf {|t| : |f (t)| = p} > 0.

Since the case u∗ ≥ 1/ε1 is trivial, let u∗ < 1/ε1.

We will introduce the characteristic function f ∗(t) instead of the charac-

teristic function f (t) into the consideration,

f ∗(t) = f (tu∗). (5.19)

If f (t) satisfies (5.18) for |t| ≤ 1/ε1, then f ∗(t) satisfies (5.18) for

|t| ≤ 1/(u∗ε1), i.e.

f ∗(t) = f ∗(b1t)f
∗(b2t)...f

∗(bnt) + h(u∗t), (5.20)

where |h(u∗t)| ≤ ε1 for |t| ≤ 1/(u∗ε1). Since u∗ < 1/ε1, (5.20) is valid

for |t| ≤ 1 as well.

By (5.19) u∗(f ∗, p) = 1, and for this reason |f ∗(t)| ≥ p for |t| ≤ 1.

Thus,

log f ∗(t) =
n∑

i=1
log f ∗(bit) + R(t), (5.21)

where

R(t) = log

⎛
⎝1 +

h(z∗t)
f ∗(b1t)f ∗(b2t)...f ∗(bnt)

⎞
⎠ , (5.22)

|R(t)| =

∣∣∣∣∣∣∣∣∣
log

⎛
⎜⎜⎜⎝1 +

h(z∗t)
n∏

i=1
f ∗(bit)

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
≤ 2 |h(z∗t)|

n∏
i=1

|f ∗(bit)|
≤ 2ε1p

−n. (5.23)

From (5.20)–(5.23) and relations (3.1.17)–(3.1.27), (3.2.6)–(3.2.13) in

Yanushkevichius [20] (see also relations (58)–(74) in Yanushkevichius and
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Yanushkevichiene [28]), we conclude that

∣∣∣f ∗(t) − exp
(−σ2t2/2

)∣∣∣ ≤ CεΔ for |t| ≤ 1, (5.24)

∣∣∣f ∗(t) − exp
(−σ2t2/2

)∣∣∣ ≤

≤ C(1 + σB) max
|t|≤1

∣∣∣f ∗(t) − exp
(−σ2t2/2

)∣∣∣ for |t| ≤ 1/(u∗ε1), (5.25)

where

B = − loga n, a = 1/ max{|bj| : j = 1, 2, ..., n}.

Formula (5.25) is useful for us only in the case where we can estimate

σB from above. To this end, we note that since |f ∗(1)| = p, from (5.24)

we derive

|1 − exp (−σ2t2/2)| ≤ CεΔ.

Consequently, exp (−σ2/2) ≥ p/2, i.e.,

σ ≤
√√√√√2 log

2

p
. (5.26)

We have used the fact that ε1 is a small positive number, because the

proof of Theorem 5.2 is non-trivial only in this case. It can be appreciated

as follows: there exists a small positive number ε0, depending only on n, r

and b1, b2, ..., bn, such that inequality (5.15) is valid for all ε1 ∈ (0, ε0]. In

all the other cases Theorem 5.2 is trivial.

It follows from (5.24), (5.25) and (5.26) that for |t| ≤ 1/ε1

∣∣∣f (t) − exp
(−σ2t2/(2z∗)

)∣∣∣ ≤ C(b1, b2, ..., bn, n, r)εΔ
1 ,
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Stability estimations of a characterization of the Normal distribution in weak metric

i.e.,

λ (X, Z) ≤ CεΔr/(2r+1). (5.27)

Since by V.M. Zolotarev and V.V. Senatov [32],

L ≤ 8
(
1 + 1

r
log M + log 1

λ

)
λ

in the class Ξ (M, r) = {X : E |X|r ≤ M} , we conclude from (5.27)

that inequality

L (X, Z) ≤ CεΔr/(2r+1) log
1

ε
(5.28)

is proved.

So, on the one hand we have estimate (5.28), on the other hand - the

estimate (5.13). Combining these estimates we get that

L (X, Z) ≤ min{CεΔr/(2r+1) log
1

ε
, 2 (3(1 − a))−1/4 ε1/4} ≤

≤ Cεmax{Δr/(2r+1),1/4}(1 + IΔr/(2r+1) · log
1

ε
),

i.e. inequality (5.15) is proved.
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of my first scientific work from Russian to English in 1978 it was written as R. V. Yanushkyavichius
(see, for example, "On estimates of the stability measure for decompositions of probability distributions

into components", SIAM, 1978, Theory Probab. Appl., 23 (3), 507-520). Later my family name was

written as R. Yanushkevichius.



References

[6] Klebanov, L., (1980) Some results connected with a characterization of

the exponential distribution. Theory Probab. Appl. 25(3), 617-622.

[7] Lévy, P., 1954, Théorie de l’Addition des Variables Aléatoires, Gauthier-

Villars, Paris.

[8] Linnik, Yu.V., Linear forms and statistical criteria, Selected Transl. Math.

Stat. Probability, 3: 1-90, 1962.

[9] Lukacs, E., 1956, Characterization of populations by properties of suit-

able statistics. In: Proceedings Third Berkeley symposium on mathe-

matical statistics and probability, vol. 2, Univ. of California Press, 195-

214.

[10] Marsaglia, G., Tubilla A., (1975) A note on the ”lack of memory” prop-

erty of the exponential distribution. Ann. Prob. 3, 353-354.

[11] Matveev, E.M., 2000, An explicit lower bound for a homogeneous ra-

tional linear form in the logarithms of algebraic numbers. II. Izvestija

RAN (Ser. Matem.), 64 (6), 1217-1269.

[12] Meshalkin, L.D., 1968, On the robustness of some characterizations

of the normal law. Ann. Math. Statist., 39 (5), 1747–1750.

[13] Polya, G., 1923, Herleitung des Gausschen Fehlergesetzes aus einer

Funktionalgleichung, Math. Zeitschrift, 18, 96–108.

[14] Ramachandran, B., Rao, C.R., 1970, Solution of functional equa-

tions arising in some regression problems and a characterization of

the Cauchy law. Sankhya (ser.A), 32 (1), 1–30.

[15] Rösler, U., 1998, A fixed point equation for distributions.

http://www.numerik.uni-kiel.de/reports/1998/98-7.ps.gz .

—————————————————————————————————————————————

82 STABILITY CHARACTERIZATIONS OF SOME PROBABILITY DISTRIBUTIONS



References

[16] Shimizu, R., On the stability of characterizations of the normal distri-

bution, Statistics and Probability: Essays in Honor of C.R. Rao, North-

Holland, Amsterdam, 1982, pp. 661-670.

[17] Wang, Y.H., (1976) A functional equation and its application to the

characterization of the Weibull and stable distribution. J. Appl. Prob.

13, 385-391.

[18] Yanushkevichiene, O. (1985), Estimate of the stability of a characteri-

zation of the exponential law. Theory Probab. Appl., 29 (2), 281-292.

[19] Yanushkevichius, R. (1989), Convolution equations in the stability

problems of characterization of probability laws. Theory Probab. Appl.,

33 (4), 668–681.

[20] Yanushkevichius, R. (1991), Stability Characterizations of Probability

Distributions [in Russian]. Mokslas, Vilnius, 248 p.

[21] Yanushkevichius, R. (2007), On the stability of Eaton’s characteriza-

tion by the properties of linear forms. Acta Appl. Math., 96, 263–269.

[22] Yanushkevichius, R. (2009), On the stability of characterization of the

normal distribution by the properties of linear forms, Lithuanian Math.

Journal, 49 (3), 353–359.

[23] Yanushkevichius, R. (2014), Characterization of populations by iden-

tically distributed linear statistics, Journal of Mathematical Sciences (to

appear)

[24] Yanushkevichius, R., Yanushkevichiene, O. (1983), Limit theorems in

the problems of stability. Lecture Notes in Mathematics, 982, 254-282.

—————————————————————————————————————————————

STABILITY CHARACTERIZATIONS OF SOME PROBABILITY DISTRIBUTIONS 83



References

[25] Yanushkevichius, R., Yanushkevichiene, O. (1985), Stability of P.

Lévy’s characterization theorem. Z.Wahrscheinlichkeitstheorie verw.

Gebiete, 70, 457–472.

[26] Yanushkevichius, R., Yanushkevichiene, O. (2003), On the stability of

one characterization of stable distributions. Acta Applicandae Mathe-

maticae, 79, 137-142.

[27] Yanushkevichius, R., Yanushkevichiene, O. (2005), Stability of char-

acterization of Weibull distribution. Statistical Papers, 46 (3), 459-468.

[28] Yanushkevichius, R., Yanushkevichiene, O. (2007), Stability of charac-

terization by identical distribution of linear forms, Statistics: A Journal

of Theoretical and Applied Statistics, 41, 345-362.

[29] Yanushkevichius, R., Yanushkevichiene, O. (2010), On the stability of

characterizations by the identical distribution property. Lithuanian Math.

Journal, 50 (4), 489-494.

[30] Zinger, A.A., Klebanov, L.B., Yanushkevichius, R., Stability estima-

tions of G. Polya’s theorem, Lietuvos Matem. Rinkinys, 27 (3), 481–488,

1987 (in Russian).

[31] Zolotarev, V.M., 1997, Modern theory of summation of random vari-

ables. VSP BV, Utrecht, Tokyo.

[32] Zolotarev, V.M., Senatov, V.V., 1975, Two-sided estimates of Lévy’s

metric. Theory Probab. Appl., 20 (2), 239-250.

—————————————————————————————————————————————

84 STABILITY CHARACTERIZATIONS OF SOME PROBABILITY DISTRIBUTIONS







Buy your books fast and straightforward online - at one of world’s 

fastest growing online book stores! Environmentally sound due to 

Print-on-Demand technologies.

Buy your books online at

www.get-morebooks.com

Kaufen Sie Ihre Bücher schnell und unkompliziert online – auf einer 

der am schnellsten wachsenden Buchhandelsplattformen weltweit!

Dank Print-On-Demand umwelt- und ressourcenschonend produzi-

ert.

Bücher schneller online kaufen

www.morebooks.de
VDM Verlagsservicegesellschaft mbH

Heinrich-Böcking-Str. 6-8 Telefon: +49 681 3720 174 info@vdm-vsg.de
D - 66121 Saarbrücken Telefax: +49 681 3720 1749 www.vdm-vsg.de




