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Introduction

In the thesis, the value-distribution of periodic Hurwitz zeta-functions ζ(s, α; a), s = σ + it, is

investigated. The main attention is devoted to the universality of ζ(s, α; a), i.e., to the approximation

of a wide class of analytic functions by shifts ζ(s+ iτ, α; a), with τ ∈ R.

First, we recall the de�nition of the periodic zeta-function. Let α, 0 < α ≤ 1, be a �xed parameter,

and a = {am : m ∈ N0},N0 = N ∪ {0}, be a periodic sequence of complex numbers with minimal

period q ∈ N, i.e., am+q = am for all m ∈ N0. The periodic Hurwitz zeta-function ζ(s, α; a) is de�ned,

for σ > 1, by the Dirichlet series

ζ(s, α; a) =

∞∑
m=0

am
(m+ α)s

. (1)

From the periodicity of the sequence, it follows that, for all m ∈ N0,

|am| ≤ max(|a0|, |a1|, ..., |aq−1|).

Thus, we have that the sequence a is bounded. Therefore, the series (1) is convergent absolutely for

σ > 1. Hence, by the well known property of Dirichlet series, the function ζ(s, α; a) is analytic in the

half-plane σ > 1.

For analytic continuation to the remained part of the complex plane, the classical Hurwitz zeta-

function is used. Let α be the same parameter as above. Then the Hurwitz zeta-function ζ(s, α) is

de�ned, for σ > 1, by the Dirichlet series

ζ(s, α) =

∞∑
m=0

1

(m+ α)s
,

and is analytically continued to the whole complex plane, except for a simple pole at the point s = 1

with residue 1. The function ζ(s, α) was introduced by A. Hurwitz in [12]. The periodicity of the

sequence a implies, for σ > 1, the equality

ζ(s, α; a) =
1

qs

q−1∑
l=0

alζ
(
s,
l + α

q

)
. (2)

The latter equality together with mentioned above properties of the Hurwitz zeta-function gives an

analytic continuation for the function ζ(s, α; a) to the whole complex plane, except for a simple pole

at the point s = 1 with residue

â
def
=

1

q

q−1∑
l=0

al.
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If â = 0, then the function ζ(s, α; a) is entire one.

The periodic Hurwitz zeta-function was introduced in [18].

By the de�nitions of the functions ζ(s, α) and ζ(s, α; a), we have that ζ(s, α) = ζ(s, α; a) with

a = {am : am ≡ 1}. Thus, the periodic Hurwitz zeta-function is a generalisation of the classical

Hurwitz zeta-function.

The function ζ(s, α; a) is connected to an another classical zeta-function - the Lerch zeta-function.

Let λ ∈ R, and let α be the same parameter as above. The Lerch zeta-function L(λ, α, s) is de�ned,

for σ > 1, by Dirichlet series

L(λ, α, s) =

∞∑
m=0

e2πiλm

(m+ α)s
.

If λ ∈ R, then L(λ, α, s) becomes the Hurwitz zeta-function. For λ 6∈ R, the function L(λ, α, s)

continues analytically to an entire function. The function L(λ, α, s) was introduced independently in

[38] and [39]. The theory of the Lerch zeta-function is given in [26].

If parameter λ is rational, then the coe�cients e2πiλm are periodic. Therefore, the periodic Hurwitz

zeta-function is a generalization of the classical Lerch zeta-function L(λ, α, s) with rational parameter

λ.

Aims and problems

The aim of the thesis are continuous and discrete universality theorems for periodic Hurwitz zeta-

functions. The problems of the thesis are the following:

1. An extension of a continuous universality theorem for the periodic Hurwitz zeta-function ζ(s, α; a)

with transcendental parameter α.

2. Extensions of a discrete universality theorem for the periodic Hurwitz zeta-function ζ(s, α; a)

with transcendental parameter α.

3. Continuous and discrete universality theorems for composite functions of the periodic Hurwitz

zeta-function.

4. Estimation of the number of zeros of the periodic Hurwitz zeta-function.

Actuality

Universality of zeta-functions has a great in�uence to approximation of analytic functions. Zeta-

functions usually can be approximated with a certain accuracy by Dirichlet polynomials that are

�nite trigonometric sums. Therefore, universality theorems for zeta-functions allow to reduce an

approximation of complicated analytic functions to the approximation by �nite trigonometric sums
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that are comparatively simple functions. The described procedure indicate a way for estimation

of complicated analytic functions. For example, this way was applied by physicists for estimation of

integrals over complicated analytic curves [3]. Therefore, universality theorems for zeta-functions have

a big practical use, and this, of course, requires to extend investigations of universality for new classes

of zeta-functions. Since periodic Hurwitz zeta-functions extend the classes of Hurwitz and Lerch

zeta-functions, their universality theorems are the signi�cant impact to applications of approximation

theory.

Universality theorems for periodic Hurwitz zeta-functions have also a series of theoretical appli-

cations. They are used for the proof of the functional independence of a wide class of zeta-functions

which is closely related to one of Hilbert's hypothesis on the algebraic-di�erential independence of cer-

tain Dirichlet series. Moreover, universality theorems contain an information on the zero-distribution

of zeta-functions without Euler product over primes. Therefore, we are able to obtain estimates for

the number of zeros for periodic Hurwitz zeta-functions.

In general, universality of zeta-functions is one of popular directions of analytic number theory.

Lithuanian school of analytic number theory is the well-known in virtue of universality results. These

facts also support the actuality of the subject of the thesis.

Methods

The proof of universality theorems for periodic Hurwitz zeta-functions is based on probabilistic limit

theorems on weakly convergent probability measures in the space of analytic functions. This approach

includes the Fourier transform method, the Prokhorov theory on tightness and relative compactness of

families of probability measures, as well as some elements of ergodic theory. Moreover, the Mergelyan

theorem on the approximation of analytic functions by polynomials plays an important role in the

proofs. For estimation of the number of zeros of certain analytic functions, the classical Rouché

theorem is applied.

Novelty

All results of the thesis are new. Some of universality theorems for the function ζ(s, α; a) extend the

class of values of parameter α. Theorems on the number of zeros of the function ζ(s, α; a) were not

considered.
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History of the problem and main results

The problem of universality of zeta-functions was opened by S. M. Voronin. In [52], he discovered the

universality of the Riemann zeta-function. We remind that ζ(s) = ζ(s, 1; {1}). The Voronin theorem

has the following form.

Theorem A. Let 0 < r < 1
4 . Suppose that the function f(s) is continuous and non-vanishing in the

disc |s| ≤ r, and analytic in |s| < r. Then, for every ε > 0, there exists a real number τ = τ(ε) such

that

max
|s|≤r

∣∣∣ζ(s+
3

4
+ iτ

)
− f(s)

∣∣∣ < ε.

Thus, by Theorem A, a wide class of analytic functions is approximated with desired accuracy by

shifts of the same function ζ(s). This is the sense of the Voronin universality.

We note that the �rst universal object in analysis was constructed by M. Fekete, see [46], [10]. He

proved that there exists a real power series

∞∑
m=1

amx
m (3)

such that, for every continuous function g(x), g(0) = 0, there exists an increasing sequence {nk} of

positive integers with a property that

lim
k→∞

∑
m≤nk

amx
m = g(x)

uniformly in x ∈ [−1, 1]. However, the series (3) was not given explicitly, only its existence was proved.

After a Fekete's result, various authors, among them G. D. Birkho�, J. Marcinkiewicz, who ob-

tained universal objects in analysis, however, all these objects, as the series (3), were not given

explicitly. Thus, the Riemann zeta-function is the �rst explicitly given universal object in analysis.

Theorem A is a deep result of analytic number theory, therefore, it turned attention of number

theorists. Variuos authors found a more general form for Theorem A. Let D = {s ∈ C : 1
2 < σ < 1}

be the right-hand side of the critical strip. The following notation is convenient for statements of

universality theorems for zeta-functions. Denote by K the class of compact sets of the strip D with

connected complements, and by H0(K) with K ∈ K the class of continuous non-vanishing functions

on K that are analytic in the interior of K. Moreover, let measA be the Lebesgue measure of a

measurable set A ∈ R. Then the modern version of the Voronin theorem has the following form, see,

for example, [17], [51].

Theorem B. Let K ∈ K and f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣ζ(s+ iτ)− f(s)
∣∣∣ < ε

}
> 0.

The inequality of Theorem B means that the set of shifts ζ(s+ iτ) approximating a given function

f(s) ∈ H0(K) with accuracy ε > 0 has a positive lower density. From this, it follows that the latter set
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is in�nite. Moreover, analytic functions are uniformly approximated not only on discs, as in Theorem

A, but on general compact sets with connected complements. For example, a compact ring does not

belong to the class K.

After Voronin's work [52], it was observed that some other zeta and L-functions are also universal

in the Voronin sense. Among them, Dirichlet L-functions [1], [40], [53], [15], [20], [54], [55], [9],

Dedekind zeta-functions of number �elds [47], [48], zeta-functions attached to normalized Hecke-eigen

forms [31], [32], [33], [34], [28], L-functions of the Selberg class [50],[44] and other zeta and L-functions.

The above mentioned zeta and L−functions have a common feature - they have Euler's type product

over primes. For example, the Riemann zeta-function has, for σ > 1, the following Euler product

expansion

ζ(s) =
∏
p

(
1− 1

ps

)−1

over primes p. It is a reason to thing that the existence of Euler's product allows to approximate only

non-vanishing analytic functions.

There is an another group of zeta-functions having no Euler product but universal in a bit di�erent

sense. The object of the thesis, the periodic Hurwitz zeta-function ζ(s, α; a), in general, has no Euler's

product. The simplest zeta-function without Euler's product is the Hurwitz zeta-function ζ(s, α) which

has Euler's product only in the cases ζ(s, 1) = ζ(s) and

ζ
(
s,

1

2

)
= (2s − 1)ζ(s).

In the case of the functions ζ(s, α) and ζ(s, α; a), the class H0(K), K ∈ K, is replaced by the class

H(K),K ∈ K, of continuous functions on K that are analytic in the interior of K. The simplest

case is of transcendental parameter α. We recall that α is a transcendental number if there is no

polynomial p(s) 6≡ 0 with rational coe�cients such that p(α) = 0. The �rst universality result for the

periodic Hurwitz zeta-function was obtained in [14] and is of the following form.

Theorem C. Suppose that the parameter α is transcendental. Let K ∈ K and f(s) ∈ H(K). Then,

for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣ζ(s+ iτ, α; a)− f(s)
∣∣∣ < ε

}
> 0.

In [9], Theorem C was proved for the sequence a with am ≡ 1.

In the thesis, the requirement of Theorem C on the transcendence of the parameter α is replaced

by weaker one. De�ne the set

L(α) = {log(m+ α) : m ∈ N0} .

Theorem 1.1. Suppose that the set L(α) is linearly independent over the �eld of rational numbers

Q. Let K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣ζ(s+ iτ, α; a)− f(s)
∣∣∣ < ε

}
> 0.
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It is easy to see that if α is a transcendental number, then the set L(α) is linearly independent

over Q. Suppose, on the contrary, that there exist k1, ..., kr ∈ Z \ {0} and m1, ...,mr ∈ N such that

k1 log(m1 + α) + ...+ kr log(mr + α) = 0.

Hence, we �nd

(m1 + α)k1 + ...+ (mr + α)kr = 1.

From this, using the Newton expansions, we obtain that there exists a polynomial p(s) with integer

coe�cients such that p(α) = 0. However, this equality contradicts the transcendence of α.

On the other hand, we do not know any non-transcendental α, 0 < α ≤ 1, with a linearly indepen-

dent set L(α), however, by the famous Cassels theorem [4], this is theoretically possible. We remind

that α is an algebraic number if there exists a polynomial p(s) 6≡ 0 with rational coe�cients such that

p(α) = 0. For example, 1√
2
is an algebraic number because it is a root of the polynomial 2s2 = 1. All

rational numbers are also algebraic. The Cassels theorem asserts that at least 51 percent of elements

of the set L(α) with algebraic irrational α are linearly independent over Q. Thus, it can happen that

the set L(α) is linearly independent over Q with algebraic irrational α.

The case of rational α is not easily treated. We recall that rad(m) denotes the product of all

distinct prime divisors of a positive integer m, i.e.,

rad(m) =
∏
p|m

p.

The condition rad(q) divides b means that every prime divisor of q divides b. We note that the latter

condition is equivalent to the requirement that (bl + a, bq) = 1 for all l = 0, ..., q − 1.

Theorem 1.2. Suppose that α = a
b , a, b ∈ N, a < b, (a, b) = 1, b 6= 2 and that rad(q) divides b. Let

K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣ζ(s+ iτ,
a

b
; a)− f(s)

∣∣∣ < ε
}
> 0.

Theorem 1.2 for the Hurwitz zeta-function (in this case am ≡ 1, q = 1 and α 6= 1, 1
2 ) was obtained

in [1], [9], [54].

Theorems B, 1.1 and 1.2 are of continuous type because τ in shifts ζ(s+ iτ) and ζ(s+ iτ, α; a) can

take arbitrary real values. If τ in the above shifts takes values from a certain discrete set, then we

have discrete universality theorems. Discrete universality theorems for zeta-functions were proposed

by A. Reich in [47]. He proved discrete universality theorems for Dedekind zeta-functions ζK(s) of

algebraic number �elds K. For σ > 1, the function ζK(s) is de�ned by the Dirichlet series

ζK(s) =
∑
I⊂OK

1

(N(I))s
,

where I runs over the non-zero ideals of the ring of integers OK of K, and N(I) denotes the norm of

I. Moreover, ζK(s) is meromorphically continued to the whole complex plane with unique simple pole

at the point s = 1.
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Reich considered the case when τ takes values from the arithmetical progressions {kh : k ∈ N0}

with �xed di�erence h > 0. A modern version of the Reich theorem is of the following form. We

denote by #A the cardinality of the set A, and suppose that N ∈ N0.

Theorem D. Let K ∈ K and f(s) ∈ H0(K). Then, for every ε > 0 and h > 0,

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : sup
s∈K

∣∣∣ζK(s+ ikh)− f(s)
∣∣∣ < ε

}
> 0.

We note that in the case K = Q, Theorem D becomes the discrete analogue of Theorem B for

Riemann zeta-function.

The �rst discrete theorem for the Hurwitz zeta-function ζ(s, α) with rational parameter α was

obtained in [1]. The case of transcendental α is more complicated, and it is required that the number

exp
{

2π
h

}
would be rational. A similar situation is known also for the periodic Hurwitz zeta-function

[27].

Theorem E. Suppose that α is a transcendental number, and h > 0 is such that the number exp
{

2π
h

}
is rational. Let K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : sup
s∈K

∣∣∣ζ(s+ ikh, α; a)− f(s)
∣∣∣ < ε

}
> 0.

For example, the assertion of Theorem E is valid with transcendental α = e−1 and h = 2π(log 2)−1.

In the thesis, the following extension of Theorem E is considered. For this, a new hypothesis on

the parameter α and h is applied. Let

L(α, h, π) =

{(
log(m+ α) : m ∈ N0

)
,

2π

h

}
.

Theorem 1.3. Suppose that the set L(α, h, π) is linearly independent over Q. Let K ∈ K and

f(s) ∈ H(K). Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : sup
s∈K

∣∣∣ζ(s+ ikh, α; a)− f(s)
∣∣∣ < ε

}
> 0.

We observe that Theorem 1.3 implies a similar theorem of [27] for the Hurwitz zeta-function.

The linear independence of the sets over Q is related in a certain sense to a very important

but complicated problem of algebraic independence over Q. We remind that the numbers α1, ..., αr

are algebraically independent over Q if there is no any polynomial p(s1, ..., sr) 6≡ 0 with rational

coe�cients such that p(α1, ..., αr) = 0. It is not di�cult to see that if the numbers α and exp
{

2π
h

}
are algebraically independent over Q, then the set L(α, h, π) is linearly independent over Q. Actually,

suppose, on the contrary, that the set L(α, h, π) is linearly independent over Q. Then there exist

k1, ..., kr, k ∈ Z \ {0} and m1, ...,mr ∈ N0 such that

k1 log(m1 + α) + ...+ kr log(mr + k) +
2kπ

h
= 0.

Hence,

(m1 + α)k1 ...(mr + α)kr
(

exp
{2π

h

})k
= 1.
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Therefore, there exists a polynomial p(s1, s2) 6≡ 0 with integer coe�cients such that p
(
α, exp

{
2π
h

})
=

0, and this gives a contradiction to the algebraic independence of the numbers α and exp
{

2π
h

}
. By

the famous Nesterenko theorem [45], the numbers π and eπ are algebraically independent over Q.

Therefore, for example, we can take α = 1
π and rational h in Theorem 1.3.

A discrete analogue of Theorem 1.2 is of the following form.

Theorem 1.4. Suppose that α = a
b , a, b ∈ N, a < b, (a, b) = 1, b 6= 2 and that rad(q) divides b. Let

K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : sup
s∈K

∣∣∣ζ(s+ ikh,
a

b
; a)− f(s)

∣∣∣ < ε
}
> 0.

For the proof of Theorems 1.2 and 1.4, the representation of the function ζ(s, ab ; a) by Dirichlet

L-functions is applied. Let χ be a Dirichlet character modulo k , i.e., χ : N→ C is a periodic function

with period k (χ(m + k) = χ(m) for all m ∈ N), completely multiplicative (χ(mn) = χ(m)χ(n) for

all m,n ∈ N), χ(m) = 0 for (m, k) > 1, and χ(m) 6= 0 for (m,n) = 1. The corresponding Dirichlet

L-function L(s, χ) is de�ned, for σ > 1, by the Dirichlet series

L(s, χ) =

∞∑
m=1

χ(m)

ms
.

There exist φ(k) distinct Dirichlet characters modulo k, where φ(k) is the Euler totient function:

φ(k) = #{1 ≤ m ≤ k : (m, k) = 1}. A character χ0 modulo k is called principal if χ0(m) = 1 for all

(m, k) = 1. The function L(s, χ0) can be analytically continued to the whole complex plane, except

for a simple pole at the point s = 1 with residue∏
p|k

(
1− 1

p

)
,

where p denotes a prime number. If χ 6= χ0, then the function L(s, χ) is analytically continued to an

entire function, i.e., it is analytic in every �nite region of the complex plane. The function L(s, χ), for

σ > 1, has a representation by the Euler product over primes

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

.

Dirichlet L-functions are closely connected to Hurwitz zeta-functions with rational parameter, namely,

L(s, χ) =
1

ks

k∑
l=1

χ(l)ζ
(
s,
l

k

)
,

and, for a, b ∈ N, (a, b) = 1, a < b,

ζ
(
s,
a

b

)
=

bs

φ(b)

∑
χ(mod b)

χ(a)L(s, χ), (4)

where the last sum runs over all Dirichlet characters modulo b. Equality (4) is very useful for investi-

gations of the periodic Hurwitz zeta-function with rational parameter.
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In Chapter 2 of the thesis, the uniform distribution modulo 1 of sequences of real numbers is

applied for the investigation of discrete universality for periodic Hurwitz zeta-function. We recall

that a sequence {xk : k ∈ N} ⊂ R is called uniformly distributed modulo 1 if, for each interval

I = [a, b) ⊂ [0, 1),

lim
n→∞

1

n

n∑
k=1

χI

(
{xk}

)
= b− a,

where {xk} denotes the fractional part of xk and χI is the indicator function of the interval I, i.e.,

χI(x) =

 1 if x ∈ I,

0 if x 6∈ I.

An idea of application of the uniform distribution modulo 1 was proposed in [8], and the following

theorem was proved for Riemann zeta-function.

Theorem F. Let K ∈ K and f(s) ∈ H0(K), and suppose that 0 < β < 1 and h > 0 are �xed numbers.

Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : sup
s∈K

∣∣∣ζ(s+ ikβh)− f(s)
∣∣∣ < ε

}
> 0.

We note that Theorem F is the �rst result in the theory of discrete universality of zeta-functions

that uses, in place of the arithmetical progression {kh : k ∈ N}, h > 0, a more general discrete set

{kβh : k ∈ N0}, h > 0.

In [30], Theorem F was extended for a collection of Dirichlet L-functions. Let P be the set of all

prime numbers, h1 > 0, ..., hr > 0, and

L(h1, ..., hr;P) =
{

(h1 log p : p ∈ P), ..., (hr log p : p ∈ P)
}
.

Theorem G. Suppose that χ1, ..., χr are arbitrary Dirichlet characters, β ∈ (0, 1) is a �xed number,

and the set L(h1, ..., hr;P) is linearly independent over Q. For j = 1, ..., r, let Kj ∈ K and fj(s) ∈

H0(Kj). Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : sup
1≤j≤r

sup
s∈Kj

∣∣∣L(s+ ikβhj , χj)− fj(s)
∣∣∣ < ε

}
> 0.

The proofs of Theorems F and G are based on the fact that the sequence {kβa : k ∈ N0}, with

0 < β < 1 and a ∈ R \ {0} is uniformly distributed modulo 1.

An analogue of Theorem F for the Hurwitz zeta-function was obtained in [25].

Theorem H. Suppose that the set L(α) is linearly independent over Q, and β, 0 < β < 1, is a �xed

number. Let K ∈ K and f(s) ∈ H(K). Then, for every ε > 0 and h > 0,

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : sup
s∈K

∣∣∣ζ(s+ ikβh, α)− f(s)
∣∣∣ < ε

}
> 0.

In the thesis, the following extension of Theorem H is proved.
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Theorem 2.1. Suppose that the set L(α) is linearly independent over Q, and that β1, 0 < β1 < 1,

and β2 > 0 are �xed numbers. Let K ∈ K and f(s) ∈ H(K). Then, for every ε > 0 and h > 0

lim inf
N→∞

1

N − 1
#
{

2 ≤ k ≤ N : sup
s∈K

∣∣∣ζ(s+ ihkβ1 logβ2 k, α; a)− f(s)
∣∣∣ < ε

}
> 0.

For the proof of Theorem 2.1, the uniform distribution modulo 1 of the sequence {akβ1 logβ2 k :

k = 2, 3, ...} with β1, 0 < β1 < 1, β2 > 0 and every a ∈ R \ {0} is applied.

In Chapter 3 of the thesis, generalizations of universality theorems for periodic Hurwitz zeta-

functions are considered. More precisely, universality of composite functions F (ζ(s, α; a)) for some

operators F : H(D)→ H(D), where H(D) is the space of analytic functions on D, is proved.

We note that the �rst universality theorems for composite functions were obtained in [19] and [21].

We remind some of them. We use the notation

S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}.

Theorem I. Suppose that F : H(D) → H(D) is a continuous operator such that, for any open set

G ⊂ H(D), the set (F−1G) ∩ S is not empty. Let K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣F(ζ(s+ iτ)
)
− f(s)

∣∣∣ < ε
}
> 0.

Let a1, ..., ar be a distinct complex numbers, and F : H(D)→ H(D) be an operator. De�ne

Ha1,...,ar;F (D) = {g ∈ H(D) : g(s) 6= aj , j = 1, ..., r} ∪ {F (0)}.

Then the following statement is known [21].

Theorem J. Suppose that F : H(D)→ H(D) is a continuous operator such that F (S) ⊃ Ha1,...,ar;F (D).

If r = 1, let K ∈ K, and f(s) ∈ H(K) and f(s) 6= a1 on K. If r ≥ 2, let K ⊂ D be an arbitrary

compact subset, and f(s) ∈ Ha1,...,ar;F (D). Then the same assertion as in Theorem I is true.

From Theorem J, the universality of some elementary functions, for example, sin(ζ(s)), follows.

The universality of composite functions F (ζ(s, α)) was considered in [23] and [22]. For example,

in [23], the following universality theorem was obtained.

Theorem K. Suppose that the number α is transcendental, and that F : H(D)→ H(D) is a contin-

uous operator such that, for every polynomial p = p(s), the set F−1{p} is non-empty. Let K ∈ K and

f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣F(ζ(s+ iτ, α)
)
− f(s)

∣∣∣ < ε
}
> 0.

A discrete analogue of Theorem K and other discrete universality theorems for F
(
ζ(s, α)

)
were

obtained in [37]. Now, we state universality theorems for composite functions F
(
ζ(s, α; a)

)
obtained

in the thesis. The �rst theorem is an analogue of Theorem I.
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Theorem 3.1. Suppose that the set L(α) is linearly independent over Q, and that F : H(D)→ H(D)

is a continuous operator such that, for every open set G ⊂ H(D), the set F−1G is non-empty. Let

K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣F(ζ(s+ iτ, α; a)
)
− f(s)

∣∣∣ < ε
}
> 0.

We observe that the hypothesis of Theorem 3.1 that the set F−1G is non-empty is very general,

however, on the other hand, it is di�cult to check this hypothesis. In the next theorem, the hypothesis

of Theorem 3.1 on the set F−1G is replaced by a stronger but simpler one. Thus, we have an analogue

of Theorem K for the periodic Hurwitz zeta-function.

Theorem 3.2. Suppose that the set L(α) is linearly independent over Q, and that F : H(D)→ H(D)

is a continuous operator such that, for every polynomial p = p(s), the set F−1{p} is non-empty. Let

K ∈ K and f(s) ∈ H(K). Then the same assertion as in Theorem 3.1 is true.

It is easily seen that, for every polynomial p(s), there exist an another polynomial q(s) such that,

for all r ∈ N and c1, ..., cr ∈ C \ {0}, the equality c1q′(s) + ...+ crq
(r)(s) = p(s) holds. Therefore, by

Theorem 3.2, the function

c1ζ
′(s, α; a) + ...+ crζ

(r)(s, α; a)

is universal in the sense of Theorem 3.2.

The continuity requirement for the operator F is Theorem 3.2 can be replaced by an analogue of

the Lipschitz condition in the space of analytic functions. More precisely, the following theorem is

true.

Theorem 3.3. Suppose that the set L(α) is linearly independent over Q, and that the operator F :

H(D)→ H(D) is such that, for each polynomial p = p(s), the set F−1{p} is not empty, and, for each

K ∈ K, there exists positive constants c and β, and K1 ∈ K that

sup
s∈K
|F (g1(s))− F (g2(s))| ≤ sup

s∈K1

|g1(s)− g2(s)|β

for all g1, g2 ∈ H(D). Let K ∈ K and f(s) ∈ H(K). Then the same assertion as in Theorem 3.1 is

true.

It is not di�cult to see that, in virtue of the Cauchy integral formula, the operator

F (g) = g(r), r ∈ N, g ∈ H(D),

satis�es the hypothesis of Theorem 3.3 with β = 1.

Now we restrict the class of approximated analytic functions, and state an analogue of Theorem

J for the periodic Hurwitz zeta-function obtained in Chapter 3 of the thesis. For di�erent complex

numbers a1, ..., ar, de�ne the set

Ha1,...,ar (D) = {g ∈ H(D) : g(s) 6= aj , j = 1, ..., r}.
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Theorem 3.4. Suppose that the set L(α) is linearly independent over Q, and that F : H(D)→ H(D)

is a continuous operator such that F (H(D)) ⊃ Ha1,...,ar (D). For r = 1, let K ∈ K and f(s) ∈ H(K)

and f(s) 6= a1 on K. For r ≥ 2, let K ⊂ D be an arbitrary compact set, and f(s) ∈ Ha1,...,ar (D).

Then the same assertion as in Theorem 3.1 is true.

We see that the set Ha1,...,ar (D) di�ers a bit from that used in Theorem J. This di�erence arises

from the fact that, in Theorem J, a condition for F (S) is used, while, in Theorem 3.4, this condition

is replaced by that for F (H(D)). More precisely, this is related to the approximation of analytic

functions from the class H0(K),K ∈ K, while, in Theorem 1.1, the approximated functions belong to

the class H(D),K ∈ K.

Solving the equation

sin(g) = f, g ∈ H(D),

we easily �nd that if f ∈ H−1,1(D), then, by Theorem 3.4 with r = 2, the function f(s) can be

approximated by shifts sin(ζ(s+ iτ, α; a)). A similar statement is also true for the shifts

cos(ζ(s+ iτ, α; a)).

In the thesis, the following general theorem is obtained.

Theorem 3.5. Suppose that the set L(α) is linearly independent over Q, and that F : H(D)→ H(D)

is a continuous operator. Let K ⊂ D be an arbitrary compact subset, and f(s) ∈ F (H(D)). Then the

same assertion as in Theorem 3.1 is true.

Theorem 3.5 is the last theorem of Chapter 3.

The results of Chapter 3, under the hypothesis that the parameter α is transcendental, are obtained

in [35]. Thus, the results of the thesis are more general that those of [35].

In Chapter 4, applications of universality theorems from previous chapters for estimates of the

number of zeros of the function ζ(s, α; a) are given.

S. M. Voronin [54] applied the joint universality of Dirichlet L-functions to prove a lower estimate

for the number of zeros of the Hurwitz zeta-function with rational parameter α. His theorem has the

following form.

Theorem L. Suppose that α = a
b , (a, b) = 1, 0 < a < b. Then, for every σ1, σ2,

1
2 < σ1 < σ2 < 1,

there exists a constant c = c(α, σ1, σ2) > 0 such that, for su�ciently large T , the function ζ(s, α) has

more than cT zeros lying in the rectangle
{
s ∈ C : σ1 < σ < σ2, |t| < T

}
.

In the thesis, we obtain generalizations of Theorem L. We say that, for a certain function f(s),

the assertion A(σ1, σ2; c, T ) is valid if, for every σ1, σ2, 1
2 < σ1 < σ2 < 1, there exists a constant c > 0

such that, for su�ciently large T , the function f(s) has more than cT zeros lying in the rectangle{
s ∈ C : σ1 < σ < σ2, 0 < t < T

}
.

Theorem 4.1. Suppose that the set L(α) is linearly independent over Q. Then, for the function

ζ(s, α; a), the assertion A(σ1, σ2; c, T ) is valid.
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If am ≡ 1, Theorem 4.1 extends Theorem L for the Hurwitz zeta-function.

Theorem 4.2. Suppose that α = a
b , a, b ∈ N, a < b, (a, b) = 1, b 6= 2 and that rad(q) divides b. Then,

for the function ζ
(
s, ab ; a

)
, the assertion A(σ1, σ2; c, T ) is valid.

Other theorems of Chapter 4 are of discrete type. We say that, for a certain function f(s), the

assertion B(σ1, σ2; c, ϕ, k0, N) is valid if, for every σ1, σ2, 1
2 < σ1 < σ2 < 1, there exists a constant

c > 0 such that, for su�ciently large N , the function f
(
s+ iϕ(k)

)
has a zero in the disc∣∣∣s− σ1 + σ2

2

∣∣∣ ≤ σ2 − σ1

2

for more than cN integers k, k0 ≤ k ≤ N .

Theorem 4.3. Suppose that the set L(α, h, π) is linearly independent over Q. Then, for the function

ζ(s, α; a), the assertion B(σ1, σ2; c, kh, 0, N) is valid.

The next theorem is a discrete analogue of Theorem 4.2, with rational α.

Theorem 4.4. Suppose that α = a
b , a, b ∈ N, a < b, (a, b) = 1, b 6= 2 and that rad(q) divides b. Then,

for the function ζ
(
s, ab ; a

)
, the assertion B(σ1, σ2; c, kh, 0, N) is valid.

The thesis ends by a generalization of Theorem 4.3.

Theorem 4.5. Suppose that the set L(α) is linearly independent over Q, and that β1, 0 < β1 < 1, and

β2 > 0 are �xed numbers. Then, for the function ζ(s, α; a), the assertion B(σ1, σ2; c, kβ1 logβ2 k, 2, N)

is valid.
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Chapter 1

Various cases of the parameter α

The periodic Hurwitz zeta-function ζ(s, α; a), s = σ + it, depends on the parameter α, 0 < α ≤ 1,

and the arithmetic of this parameter is re�ected in its analytic properties, including the universality.

We divide the set {α ∈ R : α, 0 < α ≤ 1} into three parts: of transcendental, rational and algebraic

irrational numbers. A continuous universality theorem for ζ(s, α; a) with transcendental α was ob-

tained by A. Javtokas and A. Laurin£ikas in [14], therefore, it remains to discuss the case of algebraic

parameter α. Unfortunately, we have no any idea to obtain the universality of ζ(s, α; a) with algebraic

irrational α. In place of this, we prove an universality theorem for ζ(s, α; a) with α such that the set

L(α) = {log(m+ α) : m ∈ N0} .

is linearly independent over Q. As it was mentioned in the introduction, the Cassels theorems suggests

a conjecture that there exist algebraic irrational numbers α with the set L(α) linearly independent

over Q. Moreover, using of the set L(α) extends the case of transcendental α.

In this chapter, we also consider the universality of ζ(s, α; a) with rational parameter α. This case

is based on the joint universality of Dirichlet L-functions.

A discrete universality theorem of this chapter also extends the case of transcendental parameter

α discussed in [27], and uses the linear independence over Q of the set

L(α, h, π) =

{
(log(m+ α) : m ∈ N),

2π

h

}
.

A discrete universality theorem for ζ(s, α; a) with rational parameter α, as a continuous one, also is

based on the joint universality theorem for Dirichlet L-functions.

For all proofs, we apply probabilistic limit theorems in the space of analytic functions.

1.1 A continuous universality theorem involving the set L(α)

In this section, we prove the following theorem. We remind that K is the class of compact subsets of

the strip D = {s ∈ C : 1
2 < σ < 1} with connected complements, and H(K),K ∈ K, is the class of
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continuous functions on K that are analytic in the interior of K.

Theorem 1.1. Suppose that the set L(α) is linearly independent over Q. Let K ∈ K and f(s) ∈

H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣ζ(s+ iτ, α; a)− f(s)
∣∣∣ < ε

}
> 0.

For the proof of Theorem 1.1, we apply a probabilistic approach based on weakly convergent

probability measures in the space of analytic functions.

Let X be a metric space, and let B(X) be its Borel σ-�eld. Suppose that Pn, n ∈ N, and P are

probability measures on (X,B(X)). We recall that Pn as n→∞, converges weakly to P if, for every

real continuous bounded function f on X,

lim
n→∞

∫
X

f dPn =

∫
X

f dP.

We start with the de�nition of one topological structure. Let γ = {s ∈ C : |s| = 1}, i.e., γ is the

unit circle on the complex plane. De�ne the set

Ω =

∞∏
m=0

γm,

where γm = γ for all m ∈ N. The set Ω consists of all functions f : N0 → γ. On Ω, the product

topology and operation of pointwise multiplication can be de�ned. Since γ is a compact set, the set

Ω becomes a compact topological Abelian group. Therefore, the probability Haar measure mH on

(Ω,B(Ω)) can be de�ned, and this gives the probability space (Ω,B(Ω),mH). Denote by ω(m) the

projection of an element ω ∈ Ω to the circle γm,m ∈ N0, and, on the probability space (Ω,B(Ω),mH),

de�ne the H(D)-valued random element ζ(s, α, ω; a) (H(D) is the space of analytic functions on D

endowed with the topology of uniform convergence on compacta) by the formula

ζ(s, α, ω; a) =

∞∑
m=0

amω(m)

(m+ α)s
.

We observe that the latter series is uniformly convergent on compact subsets of the strip D [13].

Let Pζ be the distribution of the random element ζ(s, α, ω; a), i.e., Pζ is a probability measure on(
H(D),B(H(D)

)
de�ned by

Pζ(A) = mH{ω ∈ Ω : ζ(s, α, ω; a) ∈ A},

Then the following proposition is the main ingredient of the proof of Theorem 1.1.

Proposition 1.2. Suppose that the set L(α) is linearly independent over Q. Then

PT (A)
def
=

1

T
meas

{
τ ∈ [0, T ] : ζ(s, α, ω; a) ∈ A

}
, A ∈ B

(
H(D)

)
,

converges weakly to the measure Pζ as T →∞.
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We divide the proof of Proposition 1.2 into several lemmas. First of all, we will prove a limit

theorem on weakly convergent probabilities measures on Ω. For A ∈ B(Ω), de�ne

QT (A) =
1

T
meas

{
τ ∈ [0, T ] :

(
(m+ α)−iτ : m ∈ N0

)
∈ A

}
.

Lemma 1.3. Suppose that the set L(α) is linearly independent over Q. Then QT converges weakly

to the Haar measure mH as T →∞.

Proof. We will apply the Fourier transform method. It is well known that the characters χ of the

group Ω are of the form

χ(ω) =

∞∏
m=0

ωkm(m),

where only a �nite number of integers km are distinct from zero. Therefore, the Fourier transform

gT (k), k = {km ∈ Z : m ∈ N0}, is de�ned by

gT (k) =

∫
Ω

∞∏
m=0

ωkm(m)dQT .

Thus, by the de�nition of QT ,

gT (k) =
1

T

T∫
0

(m+ α)−ikmτdτ,

where only a �nite numbers of integers km are distinct from zero. Hence,

gT (k) =
1

T

T∫
0

exp
{
− iτ

∞∑
m=0

′
km log(m+ α)

}
dτ, (1.1)

where
∑ ′

means that
∞∑
m=0

′
km log(m+ α)

is a �nite sum because only a �nite number of integers are non-zeros. Obviously,

gT (0) = 1. (1.2)

Now suppose that k 6= 0. Since the set L(α) is linearly independent over Q, we have in this case that

∞∑
m=0

′
km log(m+ α) 6= 0.

Therefore, it follows from (1.1) after integration that

gT (k) =

1− exp
{
− iT

∞∑
m=0

′
km log(m+ α)

}
iT

∞∑
m=0

′km log(m+ α)
.

Hence, for k 6= 0,

lim
T→∞

gT (k) = 0,
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and together with (1.2) we have that

lim
T→∞

gT (k) =

 1 if k = 0,

0 if k 6= 0.

Since the right-hand side of this equality is the Fourier transform of the Haar measure mH , we obtain

by a continuity theorem for probability measures on compact groups, see, for example, Theorem 1.4.2

of [11], the assertion of the lemma.

Now, let θ > 1
2 be a �xed number, and, for m ∈ N0, n ∈ N,

vn(m) = exp
{
−
(m+ α

n+ α

)θ}
.

Consider the series

ζ(s, α; a) =

∞∑
m=0

amvn(m,α)

(m+ α)s
.

Lemma 1.4. The series for the function ζn(s, α; a) is absolutely convergent for σ > 1
2 .

Proof. By the Mellin formula [17], for positive a and b,

1

2πi

b+i∞∫
b−i∞

Γ(s)a−1ds = e−a,

where Γ(s) is the Euler gamma-function. Therefore, putting

ln(s, α) =
s

θ
Γ
(s
θ

)
(n+ α)s, n ∈ N,

we �nd that

1

2πi

θ+i∞∫
θ−i∞

ln(s, α)

s(s+ α)s
ds =

1

2πi

θ+i∞∫
θ−i∞

Γ
(s
θ

)(m+ α

n+ α

)−s
d
(s
θ

)
= exp

{
−
(m+ α

n+ α

)θ}
= vn(m,α). (1.3)

Hence,

vn(m,α)� (m+ α)−θ
+∞∫
−∞

∣∣ln(θ + it, α)
∣∣dt� (m+ α)−θ.

Since, by periodicity, the coe�cients am are bounded, and θ > 1
2 , this proves the lemma.

For ω ∈ Ω, de�ne

ζ(s, α, ω; a) =

∞∑
m=0

amω(m)vn(m,α)

(m+ α)s
.

Since
∣∣ω(m)

∣∣ = 1, the latter series is also absolutely convergent for σ > 1
2 .

The next lemma consider the weak convergence for

PT,n(A)
def
=

1

T
meas

{
τ ∈ [0, T ] : ζ(s+ iτ, α; a) ∈ A

}
and

P̂T,n(A)
def
=

1

T
meas

{
τ ∈ [0, T ] : ζ(s+ iτ, α, ω̂; a) ∈ A

}
,
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where A ∈ B
(
H(D)

)
and ω̂ ∈ Ω. For this, the following property of weak convergence of probability

measures will be useful. Let X1 and X2 be two metric (or topological) spaces. The mapping u : X1 →

X2 is called
(
B(X1),B(X2)

)
-measurable if u−1B(X2) ⊂ B(X1). If u is a continuous mapping, then it

is (B(X1),B(X2)
)
-measurable [2]. Suppose that u is (B(X1),B(X2)

)
-measurable. Then, it is known

[2] that every probability measure P on
(
X1,B(X1)

)
induces the unique probability measure Pu−1

on
(
X2,B(X2)

)
which is de�ned, for all A ∈ B(X2), by the equality

Pu−1(A) = P (u−1A).

Here u−1A denotes the preimage of the set A. Also, the following lemma is valid [2].

Lemma 1.5. Let Pn, n ∈ N, and P be probability measures on
(
X1,B(X1)

)
, and let u : X1 → X2 be a

continuous mapping. Suppose that Pn converges weakly to P as n→∞. Then Pnu
−1 also converges

weakly to Pu−1 as n→∞.

Lemma 1.6. Suppose that the set L(α) is linearly independent over Q. Then PT,n and P̂T,n both

converge weakly to the same probability measure Pn on
(
H(D),B

(
H(D)

))
as T →∞.

Proof. De�ne the function un : Ω→ H(D) by the formula

un(ω) = ζn(s, α, ω; a), ω ∈ Ω.

The series for ζn(s, α, ω; a) is absolutely convergent for σ > 1
2 . Therefore, it is uniformly convergent

on compact subsets of the strip D, and uniformly in ω. Hence, we can deal with a partial sum of the

above series. In view of properties of the product topology, we see that this partial sum is a continuous

function. Thus, we obtain that the function un is continuous.

By the de�nition of ζn(s, α, ω; a), we have that

un
(
(m+ α)−iτ : m ∈ N0)

)
= ζn(s, α, ω; a).

Therefore, for all A ∈ B
(
H(D)

)
,

PT,n(A) =
1

T
meas

{
τ ∈ [0, T ] :

(
(m+ α)−iτ : m ∈ N0

)
∈ u−1A

}
= QT (u−1A),

where QT is from Lemma 1.3. This shows that PT,n = QTu
−1. Since, by Lemma 1.3, QT converges

weakly to mH as T → ∞, using of Lemma 1.5 shows that PT,n converges weakly to the probability

measure Pn = mHu
−1
n as T →∞.

Now let the function û : Ω→ H(D) be given by the formula

ûn(ω) = ζn(s, α, ω̂ω; a), ω ∈ Ω.

Then, similarly as above, we �nd that P̂n converges weakly to the probability measure P̂n = mH û
−1
n

as T → ∞. We have to show that Pn = P̂n. For this, we take a function u : Ω → Ω given by
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u(ω) = ω̂ω, ω ∈ Ω. Then we see that ûn = un(u). Since the Haar measure mH is invariant with

respect to translations by point of Ω, we obtain that

P̂n = mH

(
un(u)

)−1
= (mHu

−1)u−1
n = mHu

−1
n = Pn,

and the lemma is proved.

The next part of the proof of Proposition 1.2 consists of the approximation in the mean of the

function ζ(s, α; a) by ζn(s, α; a), and of the function ζ(s, α, ω; a) by ζn(s, α, ω; a). For this, we recall

the metric of the space H(D) which induces its topology of uniform convergence on compacta. It is

well known, see, for example, [5], that there exists a sequence {Kl : l ∈ N} of compact subsets of the

strip D such that

D =

∞⋃
l=1

Kl,

Kl ⊂ Kl+1 for all l ∈ N, and if K ∈ D is a compact subset, then K ⊂ Kl for some l ∈ N. For

f, g ∈ H(D), de�ne

ρ(f, g) =

∞∑
l=1

2−l
sups∈Kl |f(s)− g(s)|

1 + sups∈Kl |f(s)− g(s)|
.

Then ρ is the desired metric on H(D).

Lemma 1.7. The equality

lim
n→∞

lim inf
T→∞

1

T

T∫
0

ρ
(
ζ(s+ iτ, α; a), ζn(s+ iτ, α; a)

)
dτ = 0

holds for all 0 < α ≤ 1 and a.

Proof. In view of (1.3) and the de�nition of ζ(s, α; a), we �nd that, for σ > 1
2 ,

ζ(s, α; a) =
1

2πi

θ+i∞∫
θ−i∞

ζ(s+ z, α; a)ln(z, α)
dz

z
. (1.4)

LetK be arbitrary compact subset of the stripD, and we suppose that s ∈ K. We take σ1, 1
2 < σ1 < 1,

and σ1 < σ. Then, moving the line of integration in (1.4) to the left, we obtain by the residue theorem

that

ζn(s, α; a)− ζ(s, α; a) =
1

2πi

σ1−σ+i∞∫
σ1−σ−i∞

ζ(s+ z, α; a)ln(z, α)
dz

z
+Rn(s, α; a),

where

Rn(s, α; a) = Res
z=1−s

ζ(s+ z, α; a)ln(z, α)z−1. (1.5)

If the function ζ(s, α; a) is entire, then Rn(s, α; a) = 0. Let L be a simple closed contour of length |L|

lying in D and enclosing the set K. Then, denoting by δ the distance of the contour L from the set
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K and applying the Cauchy integral formula, we obtain easily the estimate

sup
s∈K

∣∣∣ζ(s+ iτ, α; a)− ζn(s+ iτ, α; a)
∣∣∣ ≤ 1

2πδ

∫
L

∣∣∣ζ(z + iτ, α; a)− ζn(z + iτ, α; a)
∣∣∣|dz|.

Therefore,

1

T

T∫
0

sup
s∈K

∣∣ζ(s+ iτ, α; a)− ζn(s+ iτ, α; a)
∣∣dτ � 1

Tδ

∫
L

|dz|
( T∫

0

∣∣ζ(z + iτ, α; a)− ζn(z + iτ, α; a)
∣∣dτ)�

|L|
Tδ

sup
s∈L

T∫
0

∣∣ζ(σ + it+ iτ, α; a)− ζn(σ + it+ iτ, α; a)
∣∣dτ. (1.6)

Here and in the sequel a� b, b > 0, means that there exists a constant C > 0 such that |a| ≤ Cb. By

(1.5), we have that

ζ(σ + it+ iτ, α; a)− ζn(σ + it+ iτ, α; a)�
+∞∫
−∞

∣∣ζ(σ1 + it+ iτ + iu, α; a)
∣∣∣∣ln(σ1 − σ + iu, α)

∣∣du+
∣∣Rn(σ + it+ iτ, α; a)

∣∣.
Thus, in view of (1.6),

1

T

T∫
0

∣∣ζ(σ + it+ iτ, α; a)− ζn(σ + it+ iτ, α; a)
∣∣dτ �

+∞∫
−∞

ln
∣∣(σ1 − σ + iu, α)

∣∣( 1

T

T∫
0

∣∣ζ(σ1 + it+ iτ + iu, α; a)
∣∣dτ)du+

1

T

T∫
0

∣∣Rn(σ + it+ iτ, α; a)
∣∣dτ. (1.7)

If s ∈ L, then t is bounded by a constant depending on the set K. Therefore, using the estimate [13]

T∫
0

∣∣ζ(σ + it, α; a)
∣∣2 � T

which is valid for σ > 1
2 , and the Cauchy-Schwarz inequality, we obtain that

1

T

T∫
0

∣∣ζ(σ1 + it+ iτ + iu, α; a)
∣∣du� ( 1

T

T∫
0

∣∣ζ(σ1 + it+ iτ + iu, α; a)
∣∣2dτ) 1

2 � 1 + |u|. (1.8)

Moreover, the well-known estimates for the gamma-function, see, for example, [26], give that

1

T

T∫
0

∣∣Rn(σ + it+ iτ, α; a)|dτ = o(1)

as T →∞. this and estimates (1.6)-(1.8) lead to

1

T

T∫
0

sup
s∈K

∣∣ζ(s+ iτ, α; a))− ζn(s+ iτ, α; a))
∣∣dτ � sup

s∈L

+∞∫
−∞

∣∣ln(σ1 − σ + iu, α)
∣∣(1 + |u|)du+ o(1) (1.9)
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as T →∞. However, by choice of σ1, we have σ1 − σ < 0. Therefore,

lim
n→∞

sup
s∈L

+∞∫
−∞

∣∣ln(σ1 − σ + iu, α)
∣∣(1 + |u|)du = 0,

and, in view of (1.9),

lim
n→∞

lim inf
T→∞

1

T

T∫
0

sup
s∈K

∣∣ζ(s+ iτ, α; a))− ζn(s+ iτ, α; a))
∣∣dτ = 0.

This and the de�nition of the metric ρ prove the lemma.

We also need the analogue of Lemma 1.7 for the functions ζ(s, α, ω; a) and ζn(s, α, ω; a). For the

proof of such lemma, we will apply some elements of the ergodic theory.

For real numbers τ , we put

aτ =
{

(m+ α)−iτ : m ∈ N0

}
,

and de�ne the family of
{
ϕτ : τ ∈ R

}
of transformations on the torus Ω by

ϕτ (ω) = aτω, ω ∈ Ω.

Then
{
ϕτ : τ ∈ R

}
is the one-parameter group of measurable measure preserving transformations on

the probability space
(
Ω,B(Ω),mH

)
. We say that a set A ∈ B(Ω) is invariant with respect to the

group
{
ϕτ : τ ∈ R

}
if the sets A and Aτ = ϕ(A) can di�er one form another at most by a set of zero

mH measure. All invariant sets from a sub-σ-�eld of the �eld B(Ω). The group
{
ϕτ : τ ∈ R

}
is called

ergodic if its σ-�eld of invariant sets consists only from sets of mH -measure 0 or 1.

Lemma 1.8. Suppose that the set L(α) is linearly independent over Q. Then the group
{
ϕτ : τ ∈ R

}
is ergodic.

Proof. The lemma is a one-dimensional case of Lemma 6 from [14]. However, for fullness, we give its

proof.

In the proof of Lemma 1.3, we have seen that the characters χ of the group Ω are of the form

χ(ω) =

∞∏
m=0

ωkm(m), (1.10)

where only a �nite number of integers km are distinct from zero. Suppose that χ is a non-trivial

character
(
χ(ω) 6≡ 1

)
. Clearly, aτ is an element of Ω, thus, in view of (1.10),

χ(aτ ) =

∞∏
m=0

(m+ α)−iτkm = exp
{
− iτ

∞∑
m=0

km log(m+ α)
}
,

where, as above, only a �nite number of integers km are non-zeros. Since the set L(α) is linearly

independent over Q,
∞∑
m=0

km log(m+ α) 6= 0
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for all km 6= 0. Therefore, there exists τ0 ∈ R \ {0} such that

χ(aτ0) 6= 1. (1.11)

Let A be an invariant set of the group
{
ϕτ : τ ∈ R

}
, and let IA be the indicator function of the set

A. Then the invariant property implies, for every and almost all ω ∈ Ω and �xed τ ∈ R, the equality

IA
(
ϕτ (ω)

)
= IA(ω). (1.12)

Haar measure mH is invariant, i.e.,

mH(A) = mH(ωA) = mH(Aω)

for all ω ∈ Ω. Therefore, in view of (1.12), for the Fourier transform ÎA(χ) of the function IA(ω), we

have

ÎA(χ) =

∫
Ω

χ(ω)IA(ω)mH(dω) =

∫
Ω

χ
(
ϕτ0(ω)

)
IA
(
ϕτ0(ω)

)
mH(dω) =

χ(aτ0)

∫
Ω

χ(ω)IA(ω)mH(dω) = χ(aτ0)ÎA(χ).

This together with (1.11) shows that L̂A(χ) = 0 for all non-trivial characters χ of Ω.

Now let χ0 be the trivial character of Ω, i.e. χ0(ω) ≡ 1. Suppose that ÎA(χ0) = u. Then the

equalities ÎA(χ) = 0 for χ 6= χ0 and ÎA(χ0) = u, and the orthogonality of characters∫
Ω

χ(ω)mH(dω) =

 1 if χ = χ0,

0 if χ 6= χ0,

give

ÎA(χ) = u

∫
Ω

χ(ω)mH(dω) = u1̂(χ) = û(χ).

It is well known that the function IA(ω) is uniquely determined by its Fourier transform. Therefore,

IA(ω) = u for almost all ω ∈ Ω. On the other hand, IA(ω) is the indicator function of the set A.

Thus, u = 0 or u = 1. Hence, it follows that IA(ω) = 0 or IA(ω) = 1 for almost all ω ∈ Ω. This means

that mH(A) = 0 or mH(A) = 1, i.e., the group
{
ϕτ : τ ∈ R

}
is ergodic.

For the statement of the classical Birkko�-Klintchine theorem, we remind the de�nition of the

ergodic process. Let X(τ, ω) be a random process de�ned on a certain probability space. The process

X(τ, ω) is called strongly stationary if its �nite-dimensional distributions are invariant with respect

to the translations. The strongly stationary process X(τ, ω) is called ergodic if its σ-�eld of invariant

sets consists only of the sets of Q-measure 0 or 1, where Q is the probability measure de�ned by the

family of �nite-dimensional distributions of X(τ, ω). Denote by EX the expectation of X.

Lemma 1.9. (Birkho�-Klintchine theorem). Suppose that X(τ, ω) is an ergodic process, E|X(τ, ω)| <

∞, with sample paths integrable almost surely in the Riemann sense over every �nite integral. Then,

for almost all ω,

lim
T→∞

1

T

T∫
0

X(τ, ω)dτ = EX(0, ω).
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The proof of the lemma and other elements of the ergodic theory are given, for example, in [6].

We use Lemmas 1.8 and 1.9 for the proof of the following estimate.

Lemma 1.10. Suppose that the set L(α) is linearly independent over Q and σ > 1
2 . Then, for almost

all ω ∈ Ω,
T∫

0

∣∣ζ(σ + it, α, ω; a)
∣∣2dt� T.

Proof. Let

ζ̂(σ, α, ω; a) =
∣∣∣ ∞∑
m=0

amω(m)

(m+ α)σ

∣∣∣2.
The random variables ω(m) are pairwise orthogonal, i.e.,

∫
Ω

ω(m)ω(n)dmH =

 1 if m = n,

0 if m 6= n.

Therefore,

Eζ̂(σ, α, ω; a) =

∞∑
m=0

1

(m+ α)2σ
<∞. (1.13)

On the other hand, the de�nition of ϕt(ω) shows that

ζ̂(σ, α, ϕt(ω); a) =
∣∣ζ(σ, α, ϕt(ω); a)

∣∣2 =
∣∣ζ(σ + it, α, ω; a)

∣∣2.
In view of Lemma 1.8, the random process

∣∣ζ(σ + it, α, ω; a)
∣∣2 is ergodic. Therefore, Lemma 1.9 and

(1.13) give

lim
T→∞

1

T

T∫
0

∣∣ζ(σ + it, α, ω; a)
∣∣2dt = Eζ̂(σ, α, ω; a) <∞

for almost all ω ∈ Ω, and lemma is proved.

Now, we a ready to obtain the analogue of Lemma 1.7 for the functions ζ(s, α, ω; a) and ζn(s, α, ω; a).

Lemma 1.11. Suppose that the set L(α) is linearly independent over Q. Then, for almost all ω ∈ Ω,

lim
n→∞

lim sup
T→∞

1

T

T∫
0

ρ
(
ζ(s+ iτ, α, ω; a), ζn(s+ iτ, α, ω; a)

)
dτ = 0

Proof. We repeat the proof of Lemma 1.7, and use Lemma 1.10 in place of the estimate

T∫
0

∣∣ζ(σ + it, α; a)
∣∣2dt� T,

1

2
< σ < 1.

Lemmas 1.7 and 1.11 allow to obtain limit theorems in the space H(D) for the functions ζ(s, α; a)

and ζ(s, α, ω; a). However, we start with some results of probability theory. The family {P} of

probability measures on
(
X,B(X)

)
is called relatively compact if every sequence of elements {P}
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contains a weakly convergent subsequence. The family {P} is called tight if, for every ε > 0, there

exists a compact set K ⊂ X such that

P (K) > 1− ε

for all P ∈ {P}.

The Prokhorov theorem connects the notions of relative compactness and tightness.

Lemma 1.12. Suppose that the family {P} is tight. Then it is relatively compact.

Proof of the lemma is given in [2], Theorem 6.1.

The following statement will be also useful. Denote by D−→ the convergence in distribution.

Lemma 1.13. Let (X, ρ) be separable metric space, and Yn, X1n, X2n, ... be a X-valued random ele-

ments de�ned on certain probability space with the measure µ. Suppose that, for each k ∈ N,

Xkn
D−→

n→∞
Xk,

and

Xk
D−→

k→∞
X.

If, for every ε > 0,

lim
k→∞

lim sup
n→∞

µ
(
ρ(Xkn, Yn) ≥ ε

)
= 0,

then also

Yn
D−→

n→∞
X.

Proof of the lemma is given in [2], Theorem 4.2.

For A ∈ B
(
H(D)

)
and ω ∈ Ω, de�ne

P̂T (A) =
1

T
meas

{
τ ∈ [0, T ] : ζ(s+ iτ, α, ω; a) ∈ A

}
.

Lemma 1.14. Suppose that the set L(α) is linearly independent over Q. Then PT and P̂T both

converge weakly to the same probability measure P on
(
H(D),B

(
H(D)

))
as T →∞.

Proof. Let Pn be the limit measure in Lemma 1.6. At �rst we will prove that the family of probability

measures {Pn : n ∈ N} is tight. On a certain probability space with probability measure µ, de�ne a

random variable ξ that is uniformly distributed on the interval [0, 1], and set

XT,n = XT,n(s) = ζn(s+ iTξ, α; a).

Let Xn be an H(D)-valued random element with the distribution Pn. Then, by Lemma 1.6, we have

the relation

XT,n
D−→

T→∞
Xn. (1.14)

The series for ζn(s, α; a) is absolutely convergent for σ > 1
2 . Therefore,

lim
T→∞

T∫
0

∣∣ζn(σ + it, α; a)
∣∣2dt =

∞∑
m=0

|am|2v2
n(m,α)

(m+ α)2σ
�

∞∑
m=0

|am|2

(m+ α)2σ
<∞.
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This and a simple application of the Cauchy integral formula show that

sup
n∈N

lim sup
T→∞

1

T

T∫
0

sup
s∈Kl

∣∣ζn(s+ iτ, α; a))
∣∣dτ � Rl <∞,

where Kl is a compact set from the de�nition of the metric ρ, l ∈ N. Let ε > 0 be an arbitrary number,

and Ml = Ml(ε) = Rl2
lε−1. Then we �nd that, for all l ∈ N and n ∈ N,

lim sup
T→∞

µ
(

sup
s∈Kl

|XT,n(s)| > Ml

)
= lim sup

T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈Kl
|ζn(s+ iτ, α; a)| > Ml

}
�

lim sup
T→∞

1

MlT

T∫
0

sup
s∈Kl

|ζn(s+ iτ, α; a)|dτ ≤ Rl
Ml

=
ε

2l
.

Hence, in view of (1.14),

µ
(

sup
s∈Kl

|Xn(s)| > Ml

)
≤ ε

2l
(1.15)

for all l ∈ N and n ∈ N. De�ne the set

Kε =
{
g ∈ H(D) : sup

s∈Kl
|g(s)| ≤Ml(ε), l ∈ N

}
.

Then the set Kε is a compact in the space H(D), and, in virtue of (1.15),

µ(Xn ∈ Kε) ≥ 1−
∞∑
l=1

ε

2l
= 1− ε

for all n ∈ N. Thus, by the de�nition of Xn,

Pn(Kε) ≥ 1− ε

for all n ∈ N, i.e., the family of probability measures {Pn : n ∈ N} is tight.

Now, by Lemma 1.12, the family {Pn : n ∈ N} is relatively compact. Therefore, every sequence of

{Pn} contains a subsequence {Pnr} such that Pnr converges weakly to a certain probability measure

P on
(
H(D),B(H(D)

)
as r →∞. In other words,

Xnr
D−→

r→∞
P. (1.16)

De�ne one more H(D)-valued random element YT = YT (s) by the formula

YT (s) = ζ(s+ iT ξ, α; a).

Then, taking into account Lemma 1.7, �nd that, for every ε > 0,

lim
n→∞

lim sup
T→∞

µ
(
ρ(XT,n, YT ) ≥ ε

)
= lim
n→∞

lim sup
T→∞

1

T
meas

{
τ ∈ [0, T ] : ρ

(
ζ(s+iτ, α; a), ζn(s+iτ, α; a)

)
≥ ε
}
≤

lim
n→∞

lim sup
T→∞

1

Tε

T∫
0

ρ
(
ζ(s+ iτ, α; a), ζn(s+ iτ, α; a)

)
dτ = 0.
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This equality, (1.14) and (1.16) show that all hypotheses of Lemma 1.13 are satis�ed. Therefore, the

relation

YT
D−→

T→∞
P (1.17)

holds. In other words, we have that PT converges weakly to P as T → ∞. Moreover, the relation

(1.17) gives that the limit measure P is independent of the choice of the subsequence {Pnr}. Since

the sequence {Pn} is relatively compact, this remark implies the relation

Xn
D−→

n→∞
P. (1.18)

It remains to prove that P̂T also converges weakly to P as T →∞. For this, we de�ne theH(D)-valued

random elements

X̂T,n(s) = ζn(s+ iT ξ, α, ω; a)

and

X̂T (s) = ζ(s+ iT ξ, α, ω; a),

where ω ∈ Ω, and repeat the above arguments with using Lemma 1.11 in place of Lemma 1.7, and

the relation (1.18). This leads to the assertion that P̂T also converges weakly to the measure P as

T →∞. The lemma is proved.

We will use the following equivalent of weak convergence of probability measures. We remind that

A ∈ B(X) is called a continuity set of the probability measure P on
(
X,B(X)

)
if P (∂A) = 0, where

∂A denotes the boundary of the set A.

Lemma 1.15. Let Pn, n ∈ N, and P be probability measures on
(
X,B(X)

)
. Pn converges weakly toP

as n→∞ if and only if, for every continuity set A of the measure P ,

lim
n→∞

Pn(A) = P (A).

Proof of the lemma is given in [2], Theorem 1.2.

Proof of Proposition 1.2. In view of Lemma 1.14, it su�ces to show that the limit measure P in

Lemma 1.14 coincides with Pζ .

We �x an arbitrary continuity set A of the measure P , and, on the probability space
(
Ω,B(Ω),mH

)
,

de�ne the random variable η by the formula

η(ω) =

 1 if ζ(s, α, ω; a) ∈ A,

0 if ζ(s, α, ω; a) 6∈ A.

Lemmas 1.14 and 1.15 imply the relation

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : ζ(s+ iτ, α, ω; a) ∈ A

}
= P (A). (1.19)
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By de�nition of η, we have

Eη =

∫
Ω

ηdmH = mH

{
ω ∈ Ω : ζ(s, α, ω; a) ∈ A

}
= Pζ(A). (1.20)

In virtue of Lemma 1.8, the process η
(
ϕτ (ω)

)
is ergodic. Therefore, by Lemma 1.9,

lim
T→∞

1

T

T∫
0

η
(
ϕτ (ω)

)
dτ = Eη (1.21)

for almost all ω ∈ Ω. The de�nitions of η and ϕτ show that

1

T

T∫
0

η
(
ϕτ (ω)

)
dτ =

1

T
meas

{
τ ∈ [0, T ] : ζ(s+ iτ, α, ω; a) ∈ A

}
.

From this and (1.20), (1.21), we �nd that

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : ζ(s+ iτ, α, ω; a) ∈ A

}
= Pζ(A).

This and (1.19) prove that P (A) = Pζ(A) for every continuity set A of the measure P . However, all

continuity sets constitute a determining class [2]. Therefore, P (A) = Pζ(A) for all A ∈ B
(
H(D)

)
, i.e.

P = Pζ . The proposition is proved.

The proof of Theorem 1.1 also uses the support of the measure Pζ . Let P be a probability measure

on
(
X,B(X)

)
, and the space X is separable. We recall that the minimal closed set SP ⊂ X such that

P (SP ) = 1 is called the support of P . The set SP consists of all x ∈ X such that, for every open

neighborhood G of x, the inequality P (G) > 0 is satis�ed.

We have mentioned in Introduction (Theorem C) that in [14] the universality of the function

ζ(s, α; a) with transcendental α was obtained. However, the transcendence of the parameter α is

only used for the proof of a limit theorem, while the assertion of the support of the measure Pζ is

independent on the arithmetic of α. Therefore, we have the following statement [14].

Proposition 1.3. The support of the measure Pζ is the whole space H(D).

Theorem 1.1 is a corollary of Propositions 1.2 and 1.3, and of the Mergelyan theorem on the

approximation of analytic functions by polynomials. The Mergelyan theorem is very important in the

theory of universality of zeta-functions, therefore, we state it as a separate lemma.

Lemma 1.16. Let K ⊂ C be a compact set with connected complement, and let f(s) be a continuous

function on K that is analytic in the interior of K. Then, for every ε > 0, there exists a polynomial

p(s) such that

sup
s∈K
|f(s)− p(s)| < ε.

The Mergelyan theorem was obtained in [41], see also [56].

We also remind the equivalent of weak convergence of probability measures in terms of open sets.
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Lemma 1.17. Suppose that Pn, n ∈ N, and P are probability measures on the space
(
X,B(X)

)
. Then

Pn, as n→∞, converges weakly to P if and only if, for every open set G ⊂ X,

lim inf
n→∞

Pn(G) ≥ P (G).

Proof of the lemma is given in [2], Theorem 2.1.

Proof of Theorem 1.1. By Lemma 1.16, there exists a polynomial p(s) such that

sup
s∈K
|f(s)− p(s)| < ε

2
. (1.22)

De�ne the set

Gε =
{
g ∈ H(D) : sup

s∈K
|f(s)− p(s)| < ε

2

}
.

Then Gε is an open neighbourhood of the polynomial p(s) which, in view of Proposition 1.3, is an

element of the support of the measure Pζ . Therefore Pζ(Gε) > 0. This, Proposition 1.2 and Lemma

1.17 show that

lim inf
T→∞

PT (Gε) ≥ Pζ(Gε) > 0.

Hence, by the de�nitions of PT and Gε,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ, α; a)− p(s)| < ε

2

}
> 0. (1.23)

Suppose that τ ∈ R satis�es the inequality

sup
s∈K
|ζ(s+ iτ, α; a)− p(s)| < ε

2
.

Then, for such τ , by inequality (1.22),

sup
s∈K
|ζ(s+ iτ, α; a)− f(s)| < ε.

Thus,{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ, α; a)− p(s)| < ε

2

}
⊂
{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ, α; a)− f(s)| < ε

}
.

This and (1.23) prove the inequality

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ, α; a)− f(s)| < ε

}
> 0.

The theorem is proved.

The result of Section 1.1 is published in [29].
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1.2 Universality of the function ζ(s, α; a) with rational parame-

ter α

Theorem 1.1 is true for all periodic sequences a. However, in the case of rational parameter α, the

sequence a has a certain in�uence for universality of ζ(s, α; a). We need some conditions connecting

the parameter α and the minimal period q of the sequence a. In this section, we prove the following

theorem.

Theorem 1.2. Suppose that α = a
b , a, b ∈ N, a < b, (a, b) = 1, b 6= 2 and that rad(q) divides b. Let

K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣ζ(s+ iτ,
a

b
; a
)
− f(s)

∣∣ < ε
}
> 0.

We note that the condition rad(q)|b is technical and is conditioned by the used method. We believe

that this condition can be removed. The proof of Theorem 1.2 is based on the joint value-distribution

of Dirichlet L-functions.

Let χ be a Dirichlet character modulo d. We remind that χ is a completely multiplicative(
χ(m,n) = χ(m)χ(n) for all m,n ∈ N

)
, periodic with period d

(
χ(m + d) = χ(m), for all m ∈ N

)
function de�ned on N and taking complex values, such that χ(m) = 0 for (m, d) > 1 and χ(m) 6= 0

for (m, d) = 1. The corresponding Dirichlet L-function L(s, χ) is de�ned, for σ > 1, by the Dirichlet

series

L(s, χ) =

∞∑
m=1

χ(m)

ms
,

and can be meromorphically continued to the whole complex plane. The function L(s, χ0) with the

principal character χ0 modulo d has the unique simple pole at the point s = 1 with residue∏
p|d

(
1− 1

p

)
,

where p is a prime number. If χ 6= χ0, then the function L(s, χ) is entire. There are ϕ(d), where ϕ(d)

denotes the Euler totient function, of L-functions L(s, χ) with characters modulo d.

Suppose that (a, b) = 1, a, b ∈ N. Then the connection between the Hurwitz zeta function and

Dirichlet L-functions is well known, namely,

ζ
(
s,
a

b

)
=

bs

ϕ(b)

∑
χmod b

χ(a)L(s, χ), (1.23)

where sum runs over all Dirichlet characters modulo b. Since

ζ(s, α; a) =
1

qs

q−1∑
l=0

alζ
(
s,
α+ l

q

)
,

we have from (1.23) that if rad(q) divides b, thus, (a+ bl, bq) = 1 for all l = 0, 1, ..., q − 1, then

ζ(s,
a

b
; a) =

1

qs

q−1∑
l=0

alζ
(
s,
a+ bl

bq

)
=
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bs

ϕ(bq)

q−1∑
l=0

al
∑

χmod b

χ(a+ bl)L(s, χ). (1.24)

Let, for brevity, r = ϕ(bq). Then equality (1.24) can be written in the form

ζ
(
s,
a

b
; a
)

=
bs

r

(
b1L(s, χ1) + ...+ br(s, χ1)

)
, (1.25)

where

bj =

j−1∑
l=o

alχj(a+ bl), j = 1, ..., r.

If ab 6=
1
2 and a < b, then b ≥ 3. Thus, bq ≥ 3 and r ≥ 2. Moreover, in the right-hand side of (1.25),

at least two coe�cients bj are distinct from zero. Actually, if only one bj 6= 0, say, b1 6= 0, then

ζ
(
s,
a

b
; a
)

=
bsb1
r
L(s, χ1),

and we have that the right-hand side has the Euler product

bsb1
r

∏
p|bq

(
1− χ1(p)

ps

)−1

,

while the function ζ
(
s, ab ; a

)
has no such a product.

As in section 1.1, we need a limit theorem for ζ
(
s, ab ; a

)
in the space of analytic functions. In this

case, it is convinient, in place of the strip D, to use the rectangle DV =
{
s ∈ C : 1

2 < σ < 1, |t| < V
}
,

where V > 0 is an arbitrary �xed number. Thus, H(DV ) is the space of analytic functions on DV

endowed with the topology of uniform convergence on compacta.

De�ne the set

Ω1 =
∏
p

γp,

where γp = γ for all primes p. With the product topology and pointwise multiplication, the in�nite-

dimensional torus Ω1, as Ω, is a compact topological Abelian group, therefore, on
(
Ω1,B(Ω1)

)
,the

probability Haar measure m1H exists. This gives the probability space
(
Ω1,B(Ω1),m1H

)
. Denote

by ω(p) the projection of an element ω1 ∈ Ω1 to the circle γp and extend ω1(p) to the set N by the

formula

ω1(m) =
∏
pl|m
pl+1-m

ωl(p),m ∈ N.

Now, on the probability space
(
Ω1,B(Ω1),m1H

)
, de�ne two H(DV )-valued random elements

f1(s, ω1) =
bsω1(p)

r

and

f2(s, ω1) =

r∑
j=1

bjL(s, ω1, χj),

where

L(s, ω1, χj) =

∞∑
m=1

χj(m)ω1(m)

ms
, j = 1, ..., r.
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Moreover, we put

ζ
(
s,
a

b
, ω1; a

)
= f1(s, ω1)f2(s, ω1). (1.26)

We note that the series L(s, ω1, χj) is uniformly convergent on compact subsets of DV for almost all

ω1 ∈ Ω. Denote by P1ζ the distribution of the random element ζ
(
s, ab , ω1; a

)
, i.e.,

P1ζ(A) = m1H

{
ω1 ∈ Ω1 : ζ

(
s,
a

b
, ω1; a

)
∈ A

}
, A ∈ B

(
H(DV )

)
.

For A ∈ B
(
H(DV )

)
, de�ne

P1T (A) =
1

T
meas

{
τ ∈ [a, b] : ζ

(
s+ iτ,

a

b
; a
)
∈ A

}
.

Proposition 1.4. Under the hypothesis of Theorem 1.2, P1T converges weakly to the measure P1ζ as

T →∞. Moreover, the support of P1ζ is the whole H(DV ).

Proof of Proposition 1.4. The function

f1(s) =
bs

r

is a Dirichlet polynomial. Therefore, it is well known [17] that

1

T
meas

{
τ ∈ [0, T ] : f1(s+ iτ) ∈ A

}
, A ∈ B

(
H(DV )

)
, (1.27)

converges weakly to the distribution of the random element f1(s, ω1), as T → ∞. Moreover, in [20],

Lemma 1, it was proved that

1

T
meas

{
τ ∈ [0, T ] :

(
L(s+ iτ, χ1), ..., L(s+ iτ, χr)

)
∈ A

}
, A ∈ B

(
Hr(DV )

)
, (1.28)

converges weakly to the distribution of the random element

(
L(s, ω1, χ1), ..., L(s, ω1, χr)

)
(1.29)

as T →∞. The function u : Hr(DV )→ H(DV ) given by the formula

u(g1, ..., gr) =

r∑
j=1

bjgj , g1, ..., gr ∈ H(DV ),

is continuous, therefore, Lemma 1.5 and the weak convergence of the measure (1.28) show that

1

T
meas

{
τ ∈ [0, T ] : f2(s+ iτ) ∈ A

}
, A ∈ B

(
H(DV )

)
, (1.30)

converges weakly to the measure PLu−1 as T → ∞, where PL is the distribution of the random

element (1.29). By the de�nitions of PL and u, we �nd that, for A ∈ B
(
H(DV )

)
,

PLu
−1(A) = PL(u−1A) = m1H

{
ω1 ∈ Ω1 :

(
L(s, ω1, χ1), ..., L(s, ω1, χr)

)
∈ u−1A

}
= m1H

{
ω1 ∈ Ω1 : u

(
L(s, ω1, χ1), ..., L(s, ω1, χr)

)
∈ A

}
= m1H

{
f2(s, ω2) ∈ A

}
.
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Now, using the above results on the measures (1.27) and (1.30), and a standard Cramér-Wold method

developed in [26], we obtain that

1

T
meas

{
τ ∈ [0, T ] :

(
f1(s+ iτ), f2(s+ iτ)

)}
, A ∈ B

(
H2(DV )

)
, (1.31)

converges weakly to the distribution of the random element
(
f1(s, ω1), f2(s, ω2)

)
as T →∞. The func-

tion u1 : Hr(DV ) → H(DV ) de�ned by u1(g1, g2) = g1g2, g1, g2 ∈ H(DV ), is continuous. Therefore,

taking into account the weak convergence of (1.31) and Lemma 1.5, we obtain that

1

T
meas

{
τ ∈ [0, T ] : f1(s+ iτ)f2(s+ iτ)

}
, A ∈ B

(
H(DV )

)
,

converges weakly to the distribution of the random element f1(s+ iτ)f2(s+ iτ), as T →∞. In other

words, we have that P1T converges weakly to P1ζ as T →∞.

It remains to �nd the support of the measure P1ζ . By lemma 13 of [20] stated for an arbitrary

collection of non-equivalent Dirichlet characters (non-equivalent characters are not generated by the

same primitive character), the support of the measure PL is the set SrV , where

SV =
{
g ∈ H(DV ) : g(s) 6= 0 or g(s) ≡ 0

}
.

We do not need the equivalence of characters because χ1, ..., χr are di�erent characters modulo qb.

We will prove that the support Sf2 of the distribution Pf2 of the random element is the whole of

H(DV ). Really, let g be any element of H(DV ), and G be its arbitrary open neighbourhood. Since

the function u is continuous, the set u−1G is open as well. Suppose that

(u−1G) ∩ SrV 6= ∅. (1.32)

Then u−1G is an open neighbourhood of a certain element of the support SrV of the measure PL.

Therefore,

PL(u−1G) ≥ 0

by the properties of the support. Hence,

Pf2(G) = PLu
−1(G) = PL(u−1G) > 0.

Since g and G are arbitrary, this shows that the support of Pf2 is the set H(DV ). Thus, it su�ces to

prove (1.32).

It is well known that the approximation in the space H(DV ) reduces to that on compact sets with

connected complements. Therefore, Lemma 1.16 can be applied. By this lemma, fore every ε > 0 and

compact subset K with connected complement, there exists a polynomial p = p(s) such that

sup
s∈K
|g(s)− p(s)| < ε,

since g ∈ H(DV ), thus, it is continuous on K and analytic in the interior of K. If ε is small enough,

then the polynomial p lies in the set G. Thus, the set u−1{p} lies in the set u−1G, and to prove (1.32)

it su�ces to show that (
u−1{p}

)
∩ SrV 6= ∅. (1.33)
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It is well known that the non-vanishing of a polynomial in a bounded region, for example, in DV , can

be controlled by its constant term. Therefore, there exist g1, ..., gr ∈ SV such that

u(g1, ..., gr) = p.

Actually, we have seen that at least two coe�cients bj are distinct from zero. Without loss of generality,

we may suppose that b1 6= 0 and b2 6= 0. Then there exists C ∈ C with su�ciently large |C| such that,

for s ∈ DV ,

g1(s) =
p(s) + C

b1
6= 0

and

g2(s) = −C + b2 + ...+ br
b2

6= 0.

Thus, taking g3(s) = ... = gr(s) = 1, we have that g1, ..., gr ∈ SV and

r∑
j=1

bjgj(s) = p(s).

This shows that (1.32) is true, and we have that the support of Pf2 is the whole of H(DV ).

By the construction,
{
ω1(p)

}
is a sequence of independent random variables. Moreover, in each

L(s, ω1, χj), the characters χj modulo bq occur. Therefore, in

L(s, ω1, χj) =

∞∑
m=1

χj(m)ω1(m)

ms
,

the terms with m, (m, b) > 1, are equal to zero. From this, it follows that ω1(b) and L(s, ω1, χ) are

independent random elements for k = 1, ..., r. These remarks show that the random elements f1(s, ω1)

and f2(s, ω1) are independent. Since the random element f1(s, ω1) is not degenerated at zero, and

the support of the rando element f2(s, ω1) is the whole H(DV ), this shows that the support of the

product f1(s, ω1)f2(s, ω1) is the whole of H(DV ). In other words, the support of the measure P1ζ is

the whole of H(DV ). The proposition is proved.

Proof of Theorem 1.2. The theorem, similarly as Theorem 1.1, follows from Proposition 1.4 and

Lemma 1.16.

Let V > 0 be such that K ⊂ DV . De�ne the set

Gε =
{
g ∈ H(DV ) : sup

s∈K
|g(s)− p(s)| < ε

2

}
,

where, by Lemma 1.16, p(s) is a polynomial such that

sup
s∈K
|f(s)− p(s)| < ε

2
. (1.33)

By the second part of Proposition 1.4, the polynomial p(s) is an element of the support of the measure

P1ζ , therefore, the set Gε is an open neighbourhood of an element of the support P1ζ . Hence,

P1ζ(Gε) > 0. (1.34)
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By the �rst part of Proposition 1.4 and Lemma 1.17, we have that

lim inf
T→∞

P1T (Gε) ≥ P1ζ(Gε).

Therefore, the de�nitions of P1T and Gε together with (1.34) give the inequality

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ,

a

b
; a)− p(s)| < ε

2

}
> 0. (1.35)

Let τ satisfy the inequality

sup
s∈K
|ζ(s+ iτ,

a

b
; a)− p(s)| < ε

2
.

Then, in view of (1.33), for such τ

sup
s∈K
|ζ(s+ iτ,

a

b
; a)− f(s)| < ε.

This, the monotonicity of the Lebesgue measure and (1.35) give the inequality

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ,

a

b
; a)− f(s)| < ε

}
> 0.

The theorem is proved.

1.3 A discrete universality theorem involving the set L(α, h, π)

In this section, we approximate analytic functions from the class H(D), K ∈ K, by discrete shifts

ζ(s+ ikh, α; a), k ∈ N0, where h > 0 is a �xed number.

De�ne the set

L(α, h, π) =
{(

log(m+ α) : m ∈ N0

)
,

2π

h

}
.

The main result of this section is the following theorem.

Theorem 1.3. Suppose that the set L(α, h, π) is linearly independent over Q. Let K ∈ K and

f(s) ∈ H(K). Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : sup
s∈K
|ζ(s+ ikh, α; a)− f(s)| < ε

}
> 0.

As it was noted in Introduction, the algebraic independence of the numbers α and exp
{

2π
h

}
implies

the linear independence over Q of the set L(α, h, π). For example, we can take α = 1
π and rational h

in Theorem 1.3.

Our proof of Theorem 1.3 is based on a limit theorem for

PN (A)
def
=

1

N + 1
#
{

0 ≤ k ≤ N : ζ(s+ ikh, α; a) ∈ A
}
, A ∈

(
H(D),B(H(D)

)
,

as N → ∞. We use the same probability space
(
Ω,B(Ω),mH

)
as in Section 1.1 and the notation of

the random element ζ(s, α, ω; a).
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Proposition 1.5. Suppose that the set L(α, h, π) is linearly independent over Q. Then PN converges

weakly to Pζ as N →∞. Moreover, the support of Pζ is the whole of H(D).

We begin the proof of Proposition 1.5 with a discrete theorem on the torus Ω. Let, for A ∈ B(Ω),

QN (A) =
1

N + 1
#
{

0 ≤ k ≤ N :
(
(m+ α)−ikh : m ∈ N

)
∈ A

}
.

Lemma 1.18. Suppose that the set L(α, h, π) is linearly independent over Q. Then QN converges

weakly to the Haar measure mH as N →∞.

Proof. As in the proof of Lemma 1.3, we will apply the Fourier transform method. Let k = {km :

km ∈ Z,m ∈ N0}. Then

gN (k) =

∫
Ω

∞∏
m=0

ωkm(m)dQN ,

where only a �nite number of integers km are distinct from zero, is the Fourier transform of QN .

Thus, by the de�nition of QN ,

gN (k) =
1

N + 1

N∑
k=0

∞∏
m=0

(m+ α)ikkmh =

1

N + 1

N∑
k=0

exp
{
− ikh

∞∑
m=0

km log(m+ α)
}
. (1.36)

The linear independence of the set L(α, h, π) shows that

∞∑
m=0

km log(m+ α) = 0 (1.37)

if and only if k = 0 (we have in mind that in (1.37) there is only a �nite sum). Moreover, we observe

that, for k 6= 0,

exp
{
− ih

∞∑
m=0

km log(m+ α)
}
6= 1. (1.38)

Indeed, if the latter inequality is not true, then, for some l ∈ R,

∞∑
m=0

km log(m+ α) =
2πl

h
,

and this contradicts the linear independence of the set L(α, h, π). Now, using the formula for the sum

of a geometric progression, we deduce from (1.36) and (1.38) that

gN (k) =


1 if k = 0,

1−exp

{
−i(N+1)

∑∞
m=0 km log(m+α)

}
(N+1)

(
1−exp

{
−ih

∑∞
m=0 km log(m+α)

}) if k 6= 0.

Obviously, this implies

lim
N→∞

gN (k) =

 1 if k = 0,

0 if k 6= 0.
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Since the function

g(k) =

 1 if k = 0,

0 if k 6= 0.

is the Fourier transform of the Haar measure, the lemma is proved.

In the sequel, we use the same function ζn(s, α; a) as in Lemma 1.6. For A ∈
(
BH(D)

)
, de�ne

PN,n(A) =
1

N + 1
#
{

0 ≤ k ≤ N : ζn(s+ ikh, α; a) ∈ A
}
.

Lemma 1.19. Suppose that the set L(α, h, π) is linearly independent over Q. Then PN,n converges

weakly to a certain probability measure P̂n on
(
H(D),B(H(D))

)
as N →∞.

Proof. We repeat the proof of Lemma 1.6 with using Lemma 1.18 in place of Lemma 1.3.

Moreover, if un : Ω→ H(D) is de�ned by the formula

un(ω) = ζ(s, α, ω; a), ω ∈ Ω,

then we have that P̂n = mHu
−1
n .

For the approximation in the mean of the function ζ(s+ikh, α; a) by ζn(s+ikh, α; a), the following

Gallangher lemma is useful.

Lemma 1.20. Suppose that T0, T ≥ δ > 0 are real numbers, and T is a �nite non-empty set in the

interval
[
T0 + δ

2 , T0 + T − δ
2

]
. De�ne

Nδ(x) =
∑
t∈T
|t−x|<δ

1.

Let S(x) be a complex-valued continuous function on [T0, T + T0] having a continuous derivative on

(T0, T + T0). Then

∑
t∈T

N−1
δ (t)|S(t)|2 ≤ 1

δ

T0+T∫
T0

|S(x)|2dx+
( T0+T∫

T0

|S(x)|2dx
T0+T∫
T0

|S′(x)|2dx
) 1

2

.

Proof of the lemma is given in [43, Lemma 1.4].

Let ρ be the metric on H(D) de�ned in Section 1.1.

Lemma 1.21. The equality

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

ρ
(
ζ(s+ ikh, α; a), ζn(s+ ikh, α; a)

)
= 0

holds for all 0 < α ≤ 1 and a.

Proof. We apply similar arguments to those used in the proof of Lemma 1.7, however, with an estimate

for the discrete mean square of the function ζ(s, α; a). For this, we apply Lemma 1.20.
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For 1
2 < σ < 1, the estimates

T∫
0

|ζ(σ + it, α; a)|2dt� T (1.39)

and
T∫

0

|ζ ′(σ + it, α; a)|2dt� T (1.40)

are valid. The �rst of them was already used in Section 1.1 and was obtained in [13], while the second

is implied by the �rst and Cauchy integral formula. By Lemma 1.20, we �nd that

N∑
k=0

|ζ(σ + ikh+ it, α; a)|2 �

1

h

Nh∫
0

|ζ(σ + iτ + it, α; a)|2dτ +

( Nh∫
0

|ζ(σ + iτ + it, α; a)|2dτ
Nk∫
0

|ζ ′(σ + iτ + it, α; a)|2dτ
) 1

2

.

This inequality together with (1.39) and (1.40) shows that, for 1
2 < σ < 1,

N∑
k=0

|ζ(σ + ikh+ it, α; a)|2 � N(1 + |t|). (1.41)

The further part of the proof runs in the same way than that of Lemma 1.7. Let K be an arbitrary

compact set of the strip D. Then, repeating the proof of Lemma 1.7 with obvious changes, we �nd in

the notation of Lemma 1.7 that

1

N + 1

N∑
k=0

sup
s∈K

∣∣ζ(s+ ikh, α; a)− ζn(s+ ikh, α; a)
∣∣�

sup
s∈K

+∞∫
−∞

∣∣ln(σ1 − σ + iu, α)
∣∣( 1

N + 1

N∑
k=0

|ζ(σ1 + ikh+ it+ iu, α; a)|2
) 1

2

du+ o(1)

as N →∞, where t is bounded by a constant depending on K. This and (1.41) give the estimate

1

N + 1

N∑
k=0

sup
s∈K

∣∣ζ(s+ ikh, α; a)− ζn(s+ ikh, α; a)
∣∣�

+∞∫
−∞

∣∣ln(σ2 + it, α)
∣∣(1 + |t|

) 1
2 dt+ o(1)

as N →∞ with σ2 < 0. Hence,

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

sup
s∈K

∣∣ζ(s+ ikh, α; a)− ζn(s+ ikh, α; a) = 0,

and lemma follows from the de�nition of the metric ρ.

Proof of Proposition 1.5. We begin with similar arguments as in proof of Lemma 1.14. On a certain

probability space with probability measure µ, de�ne a random variable ξN with the distribution

µ(ξN = hk) =
1

N + 1
, k = 0, 1, ..., N,
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and put

XN,n = XN,n(s) = ζ(s+ iξN , α; a).

Let Xn be the H(D)-valued random element with the distribution P̂n, where P̂n is the limit measure

in Lemma 1.19. Then Lemma 1.19 implies the relation

XN,n
D→ Xn. (1.42)

Let Kl be a compact set from the de�nition of the metric ρ. Then, for Ml > 0, we �nd that

µ
(

sup
s∈Kl

|XN,n(s)| > Ml

)
≤ 1

(N + 1)Ml

N∑
k=0

sup
s∈Kk

|ζn(s+ ikh, α; a)|. (1.43)

By Lemma 1.20, for σ > 1
2 ,

N∑
k=0

|ζn(σ + ikh, α; a)|2 �

Nh∫
0

|ζn(σ + it, α; a)|2dt+

( Nh∫
0

|ζn(σ + it, α; a)|2dt
Nh∫
0

|ζ ′n(σ + it, α; a)|2dt
) 1

2

. (1.44)

Since the series for ζ(s, α; a) and ζ ′n(s, α; a) are absolutely convergent for σ > 1
2 ,

lim sup
N→∞

1

N

N∫
0

|ζn(σ + it, α; a)|2dt =

∞∑
m=0

|am|2v2
n(m,α)

(m+ α)2σ
≤
∞∑
m=0

|am|2

(m+ α)2σ
≤ C1,α <∞

and

lim sup
N→∞

1

N

N∫
0

|ζ ′n(σ+it, α; a)|2dt =

∞∑
m=0

|am|2 log2(m+ α)v2
n(m,α)

(m+ α)2σ
≤
∞∑
m=0

|am|2 log2(m+ α)

(m+ α)2σ
≤ C2,α <∞.

These estimates and (1.44) show that, for σ > 1
2 ,

sup
n∈N

lim sup
N→∞

1

N + 1

N∑
k=0

|ζ(σ + ikh, α; a)|2 � sup
n∈N

lim sup
N→∞

( 1

N + 1

N∑
k=0

|ζ(σ + ikh, α; a)|2
) 1

2 ≤ Cα <∞.

Now, an application of the Cauchy integral formula implies

sup
n∈N

lim sup
N→∞

1

N + 1

N∑
k=0

sup
s∈Kl

|ζn(s+ ikh, α; a)| ≤ Rl,α <∞.

We �x ε > 0 and put Ml,α = Ml,α(ε) = 2lRl,αε
−1. Then the above inequality and (1.42) show that

lim sup
N→∞

µ
(

sup
s∈Kl

|XN,n(s)| > Ml,α

)
≤ ε

2l
(1.45)

for all n ∈ N and l ∈ N. De�ne the set

Hε =
{
g ∈ H(D) : sup

s∈Kl
|g(s)| ≤Ml,α,l ∈ N

}
.

Then Hε is a compact set in the space H(D), and, in view of (1.45),

µ
(
XN (s) ∈ Hε

)
≥ 1− ε.
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Consequently, by the de�nition of Xn,

P̂n(Hε) ≥ 1− ε

for all n ∈ N. Thus, we proved that the family of probability measures {P̂n : n ∈ N} is tight.

Therefore, by Lemma 1.12, this family is relatively compact. Therefore, every sequence of that family

contains weakly convergent subsequence P̂nr to a certain probability measure P on
(
H(D),B(H(D)

)
as r →∞. Thus,

Xnr
D−→

r→∞
P. (1.46)

Let the H(D)-valued random element YN = YN (s) be given by the formula

YN (s) = ζ(s+ iξN , α; a).

Then, in view of Lemma 1.21, we obtain that, for every ε > 0,

lim
n→∞

lim sup
N→∞

µ
(
ρ(XN,n, YN )

)
=

lim
n→∞

lim sup
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : ρ
(
ζ(s+ ikh, α; a), ζn(s+ ikh, α; a)

)
≥ ε
}
≤

lim
n→∞

lim sup
N→∞

1

(N + 1)ε

N∑
k=0

ρ
(
ζ(s+ ikh, α; a), ζn(s+ ikh, α; a)

)
= 0.

This and (1.42), (1.46) show that the hypothesis of Lemma 1.13 are satis�ed. Therefore, we have that

YN
D−→

N→∞
P, (1.47)

and the de�nition of YN shows that PN converges weakly to P as N → ∞. Moreover, the relation

(1.47) implies that the limit measure P is independent of the choice of the measure {Pnr}. From this

and the relative compactness of {P̂n}, it follows that

Xn
D−→

n→∞
P.

This means that {P̂n} converges weakly to P as n→∞.

For the identi�cation of the measure P , we apply Propositions 1.2 and 1.3. The linear independence

over Q of the set L(α, h, π) implies that of the set L(α). Therefore, under the hypothesis of the

proposition,
1

T
meas

{
τ ∈ [0, T ] : ζ(s+ iτ, α; a) ∈ A

}
, A ∈ B

(
H(D)

)
,

by the proof of Proposition 1.2, converges weakly as T →∞ to the limit measure P of P̂n as n→∞,

and that P coincides with the measure Pζ . Moreover, the support of Pζ is the whole H(D). Since PN

also converges weakly to the same measure P as N →∞, from this the proposition follows.

Proof of Theorem 1.3. We argue similarly to the proof of Theorem 1.1. Let p(s) be a polynomial

satisfying (1.22), and

Gε =
{
g ∈ H(D) : sup

s∈K
|f(s)− p(s)| < ε

2

}
.
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Then, by the second part of Proposition 1.5, the set Gε is an open neighborhood of an element p(s)

of the support of the measure Pζ . Therefore, by the properties of the support,

Pζ(Gε) > 0.

Hence, by the �rst part of Proposition 1.5 and Lemma 1.17, we have

lim inf
N→∞

PN (Gε) ≥ Pζ(Gε) > 0,

or, in view of the de�nitions of PN and Gε,

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : sup
s∈K
|ζ(s+ ikh, α; a)− p(s)| < ε

2

}
> 0. (1.48)

Suppose that k ∈ N0 satis�es the inequality

sup
s∈K
|ζ(s+ ikh, α; a)− p(s)| < ε

2
.

Then, for such k, the inequality (1.22) implies

sup
s∈K
|ζ(s+ ikh, α; a)− f(s)| < ε.

Therefore,{
0 ≤ k ≤ N : sup

s∈K
|ζ(s+ ikh, α; a)− p(s)| < ε

2

}
⊂
{

0 ≤ k ≤ N : sup
s∈K
|ζ(s+ ikh, α; a)− f(s)| < ε

}
.

From this and (1.48), we obtain the inequality

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : sup
s∈K
|ζ(s+ ikh, α; a)− f(s)| < ε

}
> 0.

The theorem is proved.

Theorem 1.3 is published in [42].

1.4 Discrete universality of the function ζ(s, α; a) with rational

parameter α

This section is devoted to a discrete version of Theorem 1.2.

Theorem 1.4. Suppose that α = a
b , a, b ∈ N, a < b, (a, b) = 1, b 6= 2 and that rad(q) divides b. Let

K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : sup
s∈K
|ζ(s+ ikh,

a

b
; a)− f(s)| < ε

}
> 0.
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As in the case of Theorem 1.2, we will apply some elements of the joint value distribution of

Dirichlet L-functions. Also, we will use the notation of Section 1.2.

Let P be the set of all prime numbers. We divide the set of all positive numbers h into two parts.

We say that h is type 1 if numbers exp
{

2πm
h

}
are irrational for all m ∈ Z \ {0}, and h is of type 2 if

it is not of a type 1.

Let Ω1h be a closed subgroup of the group Ω1 generated by the element (p−ih : p ∈ P). If h is of

type 2, then there exists a minimal m0 ∈ N such that the number exp
{

2πm0

h

}
is rational. Suppose

that

exp
{2πm0

h

}
=
m1

m2
,m1,m2 ∈ N, (m1,m2) = 1.

Extend the function ω1(p), p ∈ P, to the set N by the formula

ω1(m) =
∏
pl|m
pl+1-m

ωl1(p),m ∈ N.

Then it is known [1], see also [34], that

Ω1h =

 Ω1 if h is of type 1,{
ω1 ∈ Ω1 : ω1(m1) = ω2(m1)

}
if h is of type 2.

On
(
Ω1h,B(Ω1h)

)
, as on

(
Ω1,B(Ω1)

)
, also the probability Haar measure m1Hh exists. Denote by

ω1h(p) the component of ω1h ∈ Ω1h. Now, on the probability space
(
Ω1h,B(Ω1h)

)
, de�ne the Hr(D)-

valued random element L(s, ω1h, χ), χ = (χ1, ..., χr), by

L(s1, ω1h, χ) =
(
L(s1, ω1h, χ1), ..., L(s1, ω1h, χr)

)
,

where

L(s, ω1h, χj) =
∏
p

(
1− ω1h(p)χj(p)

ps

)−1

, j = 1, ..., r.

We remind that χ1, ..., χr are distinct Dirichlet characters modulo bq. Moreover, for A ∈ B
(
Hr(D)

)
and h > 0, we set

PN,h(A) =
1

N + 1
#
{

0 ≤ k ≤ N :
(
L(s+ ikh, χ1), ..., L(s+ ikh, χr)

)
∈ A

}
and

PL,h(A) = m1Hh

{
ω1h ∈ Ω1h : L(s, ω1h, χ) ∈ A

}
,

i.e., PL,h is the distribution of the random element PL,h. Let

S =
{
g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0

}
.

Lemma 1.21. For every h > 0, PN,h converges weakly to PL,h as N →∞. Moreover, the support of

the measure PL,h is the set Sr.
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Proof. The lemma was obtained in [1], the proof of Theorem 5.3.1. In the case of h of type 1, the

lemma for a more general case of non-equivalent Dirichlet characters was given in [20]. The case of h

of type 2 is considered similarly, see, for example, the paper [34].

Lemma 1.21 is not convenient for the investigation of the function ζ(s, α; a). As in Section 1.2, in

place of H(D), we will consider the space H(DV ) of analytic functions de�ned on a bounded region

DV =
{
s ∈ C : 1

2 < σ < 1, |t| < V
}
. We recall that

SV =
{
g ∈ H(DV ) : g(s) 6= 0 or g(s) ≡ 0

}
.

Let PN,V,h(A) and PL,V,h(A) be the corresponding analogues of PN,h(A) and PL,h(A) de�ned for

A ∈ B
(
Hr(DV )

)
.

By same method as Lemma 1.21, the following statement is obtained.

Lemma 1.22. For every h > 0, PN,V,h converges weakly to PL,V,h as N →∞. Moreover, the support

of the measure PL,V,h is the set SrV .

We note that the weak convergence for PN,V,h follows from Lemma 1.21 by using Lemma 1.5 and

a certain continuous mapping. However, since Hr(DV ) ⊃ Hr(D), Lemma 1.21 does not imply the

explicit form of the support of the measurePL,V,h, and the proof must be repeated.

Now we are in position to prove a discrete limit theorem for the function ζ
(
s, ab ; a

)
. For A ∈

B
(
H(DV )

)
, de�ne

QN,V,h(A) =
1

N + 1
#
{

0 ≤ k ≤ N :
(
ζ
(
s+ ikh,

a

b
; a
))
∈ A

}
.

Moreover, on the probability space
(
Ω1h,B(Ω1h),m1Hh

)
, de�ne two H(DV )-valued random elements

ζ1(s, ω1h) =
bsω1h(b)

r

and

ζ2(s, ω1h) =

r∑
j=1

bjL(s, ω1h, χj),

and set

ζ
(
s,
a

b
, ω1h, ω; a

)
= ζ1(s, ω1h)ζ2(s, ω1h).

Here the coe�cients bj are the same as in Section 1.2. Denote by Pζ,V,h the distribution of the random

element ζ
(
s, ab , ω1h, ω; a

)
, i.e.,

Pζ,V,h(A) = m1Hh

{
ω1h ∈ Ω1h : ζ

(
s,
a

b
, ω1h, ω; a

)
∈ A

}
, A ∈ B

(
H(DV )

)
.

Proposition 1.6. Suppose that a, b and q are as in Theorem 1.4. Then QN,V,h converges weakly to

the measure Pζ,V,h as N →∞. Moreover, the support of the measure Pζ,V,h is the space H(DV ).
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Proof. The function

ζ1(s) =
bs

r

is a Dirichlet polynomial. Therefore, we �nd by a standard method (the case of h of type 2 is discussed

in[34]) that

1

N + 1
#
{

0 ≤ k ≤ N : ζ1(s+ ikh) ∈ A
}
, A ∈ B

(
H(DV )

)
(1.49)

converges weakly to the distribution of the random element ζ1(s, ω1h) as n→∞.

For the proof of a discrete limit theorem for the function

ζ2(s)
def
=

r∑
j=1

bjL(s, χj),

we will apply Lemma 1.22. Let the function u : Hr(DV )→ H(DV ) be given by the formula

u(g1, ..., gr) =

r∑
j=1

bjgj , g1, ..., gr ∈ H(DV ).

Then the function u is continuous. Moreover, for A ∈ B
(
H(DV )

)
,

Q2,N,V,h(A)
def
=

1

N + 1
#
{

0 ≤ k ≤ N : ζ2(s+ ikh) ∈ A
}

=

1

N + 1
#
{

0 ≤ k ≤ N : u
(
L(s+ ikh, χ1), ..., L(s+ ikh, χr)

)
∈ A

}
=

1

N + 1
#
{

0 ≤ k ≤ N :
(
L(s+ ikh, χ1), ..., L(s+ ikh, χr)

)
∈ u−1A

}
=

PN,V,h(u−1A) = PN,V,hu
−1(A).

Therefore, the continuity of the function u, Lemma 1.5 and Lemma 1.22 show that Q2,N,V,h con-

verges weakly to the measure PL,V,hu−1 as N → ∞. We observe that the measure PL,V,hu−1 is the

distribution of the random element ζ2(s, ω1h). Actually, for A ∈ B
(
H(DV )

)
,

PL,V,hu
−1(A) = PL,V,h(u−1A) = m1Hh

{
ω1h ∈ Ω1h : L(s, ω1, χ) ∈ u−1A

}
=

m1Hh

{
ω1h ∈ Ω1h : u

(
L(s, ω1, χ)

)
∈ A

}
=

m1Hh

{
ω1h ∈ Ω1h : ζ2(s, ω1h) ∈ A

}
.

Now, the weak convergence of the measures (1.49) and Q2,N,V,h together with a modi�ed Cramér-Wold

method implies the weak convergence for

1

N + 1
#
{

0 ≤ k ≤ N :
(
ζ1(s+ ikh), ζ2(s+ ikh)

)
∈ A

}
, A ∈ B

(
H2(DV )

)
,

to the distribution of the random element
(
ζ1(s, ω1h), ζ2(s, ω1h)

)
as N → ∞. From this, using the

function u1 : H2(D) → H(DV ) given by u1(g1, g2) = g1g2, g1, g2 ∈ H(DV ), we �nd that, in view of

the equality

ζ
(
s,
a

b
; a
)

= ζ1(s)ζ2(s),
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QN,V,h converges weakly to the distribution of the random element ζ1(s, ω1h)ζ2(s, ω1h) = ζ
(
s, ab , ωh; a

)
as N →∞.

It remains to �nd the support of the measure Pζ,V,h. Let g be an arbitrary element of H(DV ),

and G be its any open neighbourhood. Since the function u is continuous, we have that the set u−1G

is open as well. If K ⊂ DV is a compact subset with connected complement, then, by Lemma 1.16,

for every ε > 0, there exists a polynomial p = p(s) such that,

sup
s∈K

= |g(s)− p(s)| < ε.

It is well known, see, for example, [21], that the approximation in the space H(DV ) can be restricted

to that on compact set with connected complements. Therefore, we can choose the polynomial p(s)

to lie in the set G. The region DV is bounded, thus, the non-vanishing of the polynomial p(s) can be

controlled by its constant form. Hence, there exists g1, ..., gr ∈ SV such that

u(g1, ..., gr) = p.

Really, since α 6= 1
2 , we have that b ≥ 3, hence, r ≥ 2. Therefore, at least two coe�cients bj in (1.25)

are distinct from zero. Thus, without loss of generality, we may suppose that b1 6= 0 and b2 6= 0. Then

we can �nd C ∈ C with su�ciently large |C| such that, for s ∈ DV ,

g1(s) =
p(s) + C

b1
6= 0

and

g2(s) = −C + b3 + ...br
b2

6= 0.

If g3(s) = ... = gr(s) = 1, then g1, ..., gr ∈ SV , and

r∑
j=1

bjgj(s) = p(s).

This shows that (
u−1{p}

)
∩ SrV 6= ∅.

Since p(s) lies in G, hence,

(u−1G) ∩ SrV 6= ∅.

Therefore, there exists g1 ∈ SrV such that g1 ∈ u−1G, i.e., u−1G is an open neighbourhood of an

element of the set SrV . By Lemma 1.22, the set SrV is the support of the measure PL,V,h. Hence,

PL,V,h(u−1G) > 0. Therefore,

PL,V,hu
−1(G) = PL,V,h(u−1G) > 0.

Since g and G are arbitrary, this shows that the support of the measure PL,V,hu−1 is the whole H(DV ).

Hence, the support of the random element ζ2(s, ω1h) is also the whole H(DV ).
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By the construction,
{
ω1h(p) : p ∈ P

}
is a sequence of independent random variables. If p|b, then

p|qb, thus, χj(p) = 0. Hence,

L(s, ω1h, χj) =
∏
p-b

(
1− ω1h(p)χj(p)

ps

)−1

, j = 1, ..., r.

From this, it follows that the random elements ζ1(s, ω1h) and ζ2(s, ω1h) are independent. Since the

random element ζ1(s, ω1h) is not degenerated at zero, and the support of the random element ζ2(s, ω1h)

is the whole H(DV ), we obtain that the support of the random element

ζ
(
s,
a

b
, ω1h; a

)
= ζ1(s, ω1h)ζ2(s, ω1h)

is H(DV ). The proposition is proved.

Proof of Theorem 1.4. By Lemma 1.16, there exits a polynomial p(s) such that

sup
s∈K
|g(s)− p(s)| < ε

2
. (1.50)

We take V > 0 such that K ⊂ DV , and de�ne the set

G =
{
g ∈ H(DV ) : sup

s∈K
|g(s)− p(s)| < ε

2

}
.

In view of Proposition 1.6, the set G is an open neighbourhood of the element p(s) of the support of

the measure Pζ,V,h. Therefore,

Pζ,V,h(G) > 0. (1.51)

By the �rst part of Proposition 1.6 and Lemma 1.17,

lim inf
N→∞

QN,V,h(G) ≥ Pζ,V,h(G),

thus, by the de�nitions of QN,V,h and G, and (1.51)

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : sup
s∈K

∣∣∣ζ(s+ ikh,
a

b
; a)− p(s)

∣∣∣ < ε

2

}
> 0. (1.52)

However, if k ∈ N0 satis�es the equality

sup
s∈K

∣∣∣ζ(s+ ikh,
a

b
; a)− p(s)

∣∣∣ < ε

2
,

then, in view of (1.50), the number k also satis�es the inequality

sup
s∈K

∣∣∣ζ(s+ ikh,
a

b
; a)− f(s)

∣∣∣ < ε

Therefore, inequality (1.52) implies

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : sup
s∈K

∣∣∣ζ(s+ ikh,
a

b
; a)− f(s)

∣∣∣ < ε
}
> 0.

The theorem is proved.
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Chapter 2

Application of uniform distribution

modulo 1

In this chapter, we extend, in a certain sense, Theorem 1.3. In Theorem 1.3, the functions of the

class H(K), K ∈ K, are approximated by discrete shifts ζ(s+ ikh, α; a), s = σ+ it. Thus, for discrete

shifts the arithmetical progression {kh : k ∈ N} with a �xed h > 0 is used. In this chapter, in place

of the latter set, we will use the set {hkβ1 logβ2 k : k ≥ 2}, where h > 0, 0 < β1 < 1 and β2 > 0 are

�xed numbers. For the proof of universality, we apply good properties of sequences that are uniformly

distributed modulo 1.

We remind that a sequence {xm : m ∈ N} is uniformly distributed modulo 1 if, for every interval

I = [a, b) ⊂ [0, 1),

lim
n→∞

1

n

n∑
k=1

χI
(
{xk}

)
= b− a,

where {u} is the fractional part of u ∈ R, and χI is the indicator function of I.

In this chapter, we prove the following theorem.

Theorem 2.1. Suppose that the set L(α) is linearly independent over Q and that β1, 0 < β1 < 1,

and β2 > 0 are �xed numbers. Let K ∈ K and f(s) ∈ H(K). Then, for every ε > 0 and h > 0,

lim inf
N→∞

1

N − 1
#
{

2 ≤ k ≤ N : sup
s∈K

∣∣ζ(s+ ihkβ1 logβ2 k, α; a)− f(s)
∣∣ < ε} > 0.

2.1 A limit theorem

For the proof of Theorem 2.1, as for the proofs of universality theorems of Chapter 1, we apply a limit

theorem for weakly convergent probability measures in the space of analytic functions H(D). The

proof of Theorem 2.1 is based on the weak convergence of

PN (A) =
1

N − 1
#
{

2 ≤ k ≤ N : ζ(s+ ihkβ1 logβ2 k, α; a) ∈ A
}
, A ∈ B

(
H(D)

)
.
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For other objects, we preserve the notation of Section 1.1. Thus,

Ω =

∞∏
m=0

γm,

where γm = γ for all m ∈ N0, and, on the probability space
(
Ω,B(Ω),mH

)
with the measure mH , the

H(D)-valued random element ζ(s, α, ω; a) is de�ned by

ζ(s, α, ω; a) =

∞∑
m=0

amω(m)

(m+ α)s
.

The probability measure Pζ is the distribution of the random element ζ(s, α, ω; a).

The main result of this section is the following proposition.

Proposition 2.1. Suppose that the set L(α) is linearly independent over Q, and β1, β2 and h are as

in Theorem 2.1. Then PN converges weakly to Pζ as N → ∞. Moreover, the support of Pζ is the

whole of H(D).

We start with two lemmas on uniform distribution modulo 1.

Lemma 2.1. A sequence {xk} ⊂ R is uniformly distributed modulo 1 if and only if, for every m ∈

Z \ {0},

lim
n→∞

1

n

n∑
k=1

e2πimxk = 0.

The lemma is called the Weyl criterion. Its proof is given, for example, in [16], Theorem 2.1.

Lemma 2.2. The sequence
{
akβ1 logβ2 k : k ≥ 2

}
with a ∈ R \ {0} and β1, 0 < β1 < 1, and β2 > 0

is uniformly distributed modulo 1.

The lemma is a part of a more general assertion for the sequence of the same type with β1 > 0, β 6∈

Z, and arbitrary β2 ∈ R [16], p.31. For its proof the so-called di�erence theorems are applied.

Lemmas 2.1 and 2.2 are applied for the proof of the weak convergence for

QN (A) =
1

N − 1
#
{

2 ≤ k ≤ N :
(

(m+ α)−ihk
β1 logβ2 k : m ∈ N0

)
∈ A

}
, A ∈ B(Ω).

Lemma 2.3. Suppose that the set L(α) is linearly independent over Q, and that β1, β2 and h are as

in Theorem 2.1. Then QN converges weakly to the Haar measure mH as N →∞.

Proof. As usual, we apply the Fourier transform method. Let gN (k), k = {km : km ∈ Z,m ∈ N0} be

the Fourier transform of QN . Then we have that

gN (k) =

∫
Ω

∞∏
m=0

ωkm(m)dQN ,

where only a �nite number of integers km are distinct from zero. Thus, by the de�nition of QN ,

gN (k) =
1

N − 1

N∑
k=2

∞∏
m=0

(m+ α)−ihkmk
β1 logβ2 k =
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1

N − 1

N∑
k=2

exp
{
− ihkβ1 logβ2 k

∞∑
m=0

′
km log(m+ α)

}
, (2.1)

where
∑′ means that in

∞∑
m=0

km log(m+ α)

only a �nite number of integers km are distinct from zero. Clearly,

gN (0) = 1. (2.2)

Consider the case k 6= 0. The linear independence over Q of the set L(α) ensure that, in this case,

∞∑
m=0

′
km log(m+ α) 6= 0.

Since h > 0, this and Lemma 2.2 shows that the sequence{
− hkβ1 logβ2 k

2π

∞∑
m=0

′
km log(m+ α) : k ≥ 2

}
is uniformly distributed modulo 1. Therefore, in view of Lemma 2.1 and (2.1),

lim
N→∞

gN (k) = 0

for k 6= 0. Thus, by (2.2),

lim
N→∞

gN (k) =

 1 if k = 0,

0 if k 6= 0.

Since the right-hand side of the later equality is the Fourier transform of the Haar measure, this proves

the lemma.

Furthermore, we will deal with a limit theorem for absolutely convergent Dirichlet series

ζn(s, α; a) =

∞∑
m=0

amvn(m,α)

(m+ α)s

and

ζn(s, α, ω; a) =

∞∑
m=0

amω(m)vn(m,α)

(m+ α)s

that are the same as in Section 1.1. From the absolute convergence of the series for ζn(s, α, ω; a), it

follows that the function un : Ω→ H(D) given by the formula

un(ω) = ζn(s, α, ω; a), ω ∈ Ω,

is continuous one. For A ∈ B
(
H(D)

)
, let

PN,n(A) =
1

N − 1
#
{

2 ≤ k ≤ N : ζn(s+ ihkβ1 logβ2 k, α; a)
)
∈ A

}
.

Moreover, we put P̂n = mHu
−1
n , where the measure mHu

−1
n is de�ned by

mHu
−1
n (A) = mH(u−1

n A), A ∈ B
(
H(D)

)
.
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Lemma 2.4. Suppose that the set L(α) is linearly independent over Q, and that β1, β2 and h are as

in Theorem 2.1. Then PN,n converges weakly to P̂n as n→∞.

Proof. By the de�nition of the function un, we have

un
(
(m+ α)−ihk

β1 logβ2 k : m ∈ N0

)
= ζn(s+ ihkβ1 logβ2 k, α; a).

Therefore, for A ∈ B
(
H(D)

)
,

PN,n(A) =
1

N − 1
#
{

2 ≤ k ≤ N : un

(
(m+ α)−ihk

β1 logβ2 k : m ∈ N0

)
∈ A

}
=

1

N − 1
#
{

2 ≤ k ≤ N :
(

(m+ α)−ihk
β1 logβ2 k : m ∈ N0

)
∈ u−1

n A
}

=

QN (u−1
n A) = QNu

−1
n A.

This, the continuity of the function un and Lemma 1.5 show that PN,n converges weakly to P̂ as

N →∞.

Now we will approximate the function ζ(s+ ihkβ1 logβ2 k, α; a) by ζn(s+ ihkβ1 logβ2 k, α; a) in the

mean. Let ρ be the metric in H(D) de�ned in Section 1.1.

Lemma 2.5. For all α and a, the equality

lim
n→∞

lim sup
N→∞

1

N − 1

N∑
k=1

ρ
(
ζ(s+ ihkβ1 logβ2 k, α; a), ζn(s+ ihkβ1 logβ2 k, α; a)

)
= 0.

holds.

Proof. For 2 ≤ k ≤ N with su�ciently large N , we have

(k + 1)β1 logβ2(k + 1)− kβ1 logβ2 k =

kβ1

(
1 +

1

k

)β1
(

log k + log
(

1 +
1

k

))β2

− kβ1 logβ2 k =

kβ1

(
1 +

β1

k
+
β1(β1 − 1)

2k2
+ ...

)(
log k +

1

k
− 1

2k2
+ ...

)β2

− kβ1 logβ2 k =(
kβ1 +

β1

k1−β1
+
β1(β1 − 1)

2k2−β1
+ ...

)
logβ2 k

(
1 +

1

k log k
− 1

2k2 log k
+ ...

)β2

− kβ1 logβ2 k ≥ c logβ2 N

N1−β1

with suitable constant c > 0 not depending on N . Moreover, the estimates (1.39) and (1.40) imply,

for 1
2 < σ < 1, the estimates

T∫
0

∣∣ζ(σ + it+ iτ, α; a)
∣∣2dt� T (1 + |τ |)

and
T∫

0

∣∣ζ ′(σ + it+ iτ, α; a)
∣∣2dt� T (1 + |τ |)

for τ ∈ R. Therefore, taking

δ =
ch logβ2N

N1−β1
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in Lemma 1.20, we �nd that

N∑
k=2

∣∣ζ(σ + ihkβ1 logβ2 k + it, α; a)
∣∣2 �

N1−β1 log−β2 N

hNβ1 logβ2 N∫
1

|ζ(σ + iτ + it, α; a)|2dτ+

( hNβ1 logβ2 N∫
1

|ζ(σ + iτ + it, α; a)|2dτ
hNβ1 logβ2 N∫

1

|ζ ′(σ + iτ + it, α; a)|2dτ
) 1

2

� N(1 + |t|) (2.3)

for 1
2 < σ < 1. Let K be a compact subset of the strip D. Then, repeating the proof of Lemmas 1.7

and 1.21, we obtain that

1

N − 1

N∑
k=2

sup
s∈K

∣∣ζ(s+ ihkβ1 logβ2 k, α; a)− ζn(s+ ihkβ1 logβ2 k, α; a)
∣∣�

+∞∫
−∞

∣∣ln(σ1 + iu, α)
∣∣( 1

N − 1

N∑
k=2

∣∣ζ(σ1 + ihkβ1 logβ2 k + it+ iu, α; a)
∣∣2) 1

2

du+ o(1)

as N →∞, where 1
2 < σ < 1, σ1 < 0, and t is bounded by a constant depending on K. Therefore, by

(2.3),

1

N − 1

N∑
k=2

sup
s∈K

∣∣ζ(s+ ihkβ1 logβ2 k, α; a)− ζn(s+ ihkβ1 logβ2 k, α; a)
∣∣�

∫ +∞

−∞

∣∣ln(σ1 + it, α)
∣∣(1 + |t|

) 1
2 dt+ o(1)

as N →∞ with σ1 < 0. Since, by the de�nition of ln(s, α),

lim
n→∞

ln(σ1 + it, α) = 0,

from this it follows that

lim
n→∞

lim sup
N→∞

1

N − 1

N∑
k=2

sup
s∈K

∣∣ζ(s+ ihkβ1 logβ2 k, α; a)− ζn(s+ ihkβ1 logβ2 k, α; a)
∣∣ = 0,

and the de�nition of the metric ρ proves the lemma.

Proof of Proposition 2.1. On a certain probability space (Ω̂, A,P), de�ne a random variable θN by the

formula

P(θN = hkβ1 logβ2 k) =
1

N − 1
, k = 2, ..., N.

Let H(D)-valued random element XN,n be given by

XN,n = XN,n(s) = ζn(s+ iθN , α; a).

Moreover, let P̂n be the limit measure in Lemma 2.4, and X̂n be a H(D)-valued random element

having the distribution P̂n. Then the assertion of Lemma 2.4 can be rewritten in the form

XN,n
D−→

n→∞
X̂n. (2.4)
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At �rst, we will prove that the family of probability measures {P̂n : n ∈ N} is tight, i.e., that, for

every ε > 0, there exists a compact set K = K(ε) ⊂ H(D) such that

P̂n(K) > 1− ε

for all n ∈ N. Since the series for ζn(s, α; a) is absolutely convergent for σ > 1
2 , we have that

sup
s∈K

lim sup
T→∞

1

T

∫ T

0

|ζ(σ + it, α; a)|2dt = sup
s∈K

∞∑
m=0

|am|2v2
n(m,α)

(m+ α)2σ
≤
∞∑
m=0

|am|2

(m+ α)2σ
≤ C <∞.

Thus, for 1
2 < σ < 1, ∫ T

0

|ζn(σ + it, α; a)|2dt� T,

and, by the Cauchy integral formula,∫ T

0

|ζ ′n(σ + it, α; a)|2dt� T.

Now, an application of Lemma 1.20, as in the proof of Lemma 2.5, gives for 1
2 < σ < 1 and τ ∈ R,

N∑
k=2

∣∣ζn(σ + ihkβ1 logβ2 k, α; a)
∣∣2 �

N1−β1 log−β2 N

hNβ1 logβ2 N∫
1

|ζ(σ + it, α; a)|2dt+

( hNβ1 logβ2 N∫
0

|ζ(σ + it, α; a)|2dt
hNβ1 logβ2 N∫

1

|ζ ′(σ + it, α; a)|2dt
) 1

2

� N.

Hence,

lim sup
N→∞

1

N − 1

N∑
k=2

∣∣ζn(σ + ihkβ1 logβ2 k, α; a)
∣∣2 ≤ C1 <∞

for all n ∈ N. Therefore, by the Cauchy inequality,

lim sup
N→∞

1

N − 1

N∑
k=2

∣∣ζn(σ + ihkβ1 logβ2 k, α; a)
∣∣ ≤ C2 <∞ (2.5)

for all n ∈ N. Let Kl, l ∈ N, be compact sets in the de�nition of the metric ρ. Then (2.5) together

with the Cauchy integral formula shows that

lim sup
N→∞

1

N − 1

N∑
k=2

sup
s∈Kl

∣∣ζn(s+ ihkβ1 logβ2 k, α; a)
∣∣ ≤ Rl <∞ (2.6)

for all n ∈ N. Let ε > 0 be an arbitrary number, and Ml = Ml(ε) = 2εRlε
−1. Then, taking into

account (2.6), we �nd, for all n ∈ N and l ∈ N,

lim sup
N→∞

P
(

sup
s∈Kl

|XN,n(s)| > Ml

)
= lim sup

N→∞

1

N − 1
#
{

2 ≤ k ≤ N : sup
s∈Kl

∣∣ζn(s+ ihkβ1 logβ2 k, α; a)
∣∣ > Ml

}
.
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≤ lim sup
N→∞

1

(N − 1)Ml

N∑
k=2

sup
s∈Kl

∣∣ζn(s+ ihkβ1 logβ2 k, α; a)
∣∣ ≤ ε

2l
.

Hence, by relation (2.4), for all n ∈ N and l ∈ N,

P
(

sup
s∈Kl

|X̂n(s)| > M
)
≤ ε

2l
. (2.7)

Putting

K = K(ε) =
{
g ∈

(
H(D)

)
: sup
S∈Kl

|g(s)| ≤Ml, l ∈ N
}
,

we have that K is a compact subset of H(D) because it is uniformly bounded on compact subsets of

the strip D. Moreover, by (2.7), for all n ∈ N,

P
(
X̂n(s) ∈ K

)
≥ 1− ε,

or, equivalently, for all n ∈ N,

P̂n(K) ≥ 1− ε,

and the tightness of the family {P̂n : n ∈ N} is proved.

Since the family {P̂n : n ∈ N} is tight, by Lemma 1.12, it is relatively compact. Therefore, there

exists a sequence {P̂nk} ⊂ {P̂n} such that P̂nk converges weakly to a certain probability measure P

on
(
H(D),B

(
H(D)

))
as k →∞. Thus,

X̂nk
D−→

k→∞
P. (2.8)

On the probability space (Ω̂,A,P), de�ne one more H(D)-valued random element XN = XN (s) by

the formula

XN (s) = ζ(s+ iθN , α; a).

Then, by Lemma 2.5, we �nd that, for every ε > 0,

lim
n→∞

lim sup
N→∞

P
(
ρ(XN , XN,n) ≥ ε

)
= lim
n→∞

lim sup
N→∞

1

N − 1
#
{

2 ≤ k ≤ N : ρ
(
ζ(s+ ihkβ1 logβ2 k, α; a), ζn(s+ ihkβ1 logβ2 k, α; a)

)
≥ ε
}

≤ lim
n→∞

lim sup
N→∞

1

(N − 1)ε

N∑
k=2

ρ
(
ζ(s+ ihkβ1 logβ2 k, α; a), ζn(s+ ihkβ1 logβ2 k, α; a)

)
= 0.

This equality, (2.4) and (2.8) show that the hypotheses of Lemma 1.13 are satis�ed. Therefore, the

relation

XN
D−→

N→∞
P (2.9)

is true, thus, PN converges weakly to P as n → ∞. Moreover, (2.9) shows that the limit measure P

is independent of the choice of the sequence {P̂nk}. Since the family {P̂n} is relatively compact, this

implies the relation

X̂n
D−→

N→∞
P.
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Thus, we have that {P̂n} converges weakly to P as n→∞.

For the identi�cation of the measure P , we apply the weak convergence of the measure

1

T
meas

{
τ ∈ [0, T ] : ζ(s+ iτ, α; a)

}
, A ∈ B

(
H(D)

)
.

Under hypothesis that the set L(α) is linearly independent over Q, Proposition 1.1 asserts that this

measure converges weakly to Pζ as n → ∞. In the proof of this fact, it was obtained that Pζ is also

the limit measure of P̂n as n→∞. Thus, we have shown that P = Pζ .

Moreover, by Proposition 1.2, the support of the measure Pζ is the whole ofH(D). The proposition

is proved.

2.2 Proof of universality

Proof of Theorem 2.1. As the proofs of universality theorems of Chapter 1, the proof of Theorem 2.1

uses a limit theorem in the space of analytic functions for the function ζ(s, α; a), and the Mergelyan

theorem on the approximation of analytic functions by polynomials.

Using Lemma 1.16, we �nd a polynomial p(s) such that

sup
s∈K
|f(s)− p(s)| < ε

2
, (2.10)

and de�ne the set

G =
{
g ∈ H(D) : sup

s∈K
|g(s)− p(s)| < ε

2

}
.

Then, G is an open set in the space H(D), therefore, by the �rst part of Proposition 2.1 and Lemma

1.17, we have the inequality

lim inf
N→∞

PN (G) ≥ Pζ(G). (2.11)

Moreover, the set G is an open neighbourhood of the polynomial p(s) that, by the second part of

Proposition 2.1, is an element of the support of the measure Pζ . Thus, by a property of the support,

Pζ(G) > 0.

This, (2.11) and the de�nitions of PN and G give the inequality

lim inf
N→∞

1

N − 1
#
{

2 ≤ k ≤ N : sup
s∈K

∣∣∣ζ(s+ ihkβ1 logβ2 k, α; a)− p(s)
∣∣∣ < ε

2

}
> 0. (2.12)

Suppose that k ∈ N satis�es the inequality

sup
s∈K

∣∣∣ζ(s+ ihkβ1 logβ2 k, α; a)− p(s)
∣∣∣ < ε

2
.

Then, for such k in view of (2.10),

sup
s∈K

∣∣∣ζ(s+ ihkβ1 logβ2 k, α; a)− f(s)
∣∣∣ ≤
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sup
s∈K

∣∣∣ζ(s+ ihkβ1 logβ2 k, α; a)− p(s)
∣∣∣+ sup

s∈K
|f(s)− p(s)| < ε

2
+
ε

2
= ε.

This shows that {
2 ≤ k ≤ N : sup

s∈K

∣∣∣ζ(s+ ihkβ1 logβ2 k, α; a)− p(s)
∣∣∣ < ε

2

}
⊂{

2 ≤ k ≤ N : sup
s∈K

∣∣∣ζ(s+ ihkβ1 logβ2 k, α; a)− f(s)
∣∣∣ < ε

}
.

Therefore,

lim inf
N→∞

1

N − 1
#
{

2 ≤ k ≤ N : sup
s∈K

∣∣∣ζ(s+ ihkβ1 logβ2 k, α; a)− f(s)
∣∣∣ < ε

}
≥

lim inf
N→∞

1

N − 1
#
{

2 ≤ k ≤ N : sup
s∈K

∣∣∣ζ(s+ ihkβ1 logβ2 k, α; a)− p(s)
∣∣∣ < ε

2

}
> 0.

This together with (2.12) gives the inequality

lim inf
N→∞

1

N − 1
#
{

2 ≤ k ≤ N : sup
s∈K

∣∣∣ζ(s+ ihkβ1 logβ2 k, α; a)− f(s)
∣∣∣ < ε

}
> 0.

The theorem is proved.

Theorem 2.1 is published in [36].
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Chapter 3

Universality of composite functions of

the periodic Hurwitz zeta-function

As it was noted in Introduction, it is important to extend the class of universal functions in the

Voronin sense. This chapter is devoted to the universality for the functions F
(
ζ(s, α; a)

)
, where

F : H(D)→ H(D) is a certain operator. We recall that H(D), D = {s = σ + it ∈ C : 1
2 < σ < 1}, is

the space of analytic functions on D endowed with topology of uniform convergence on compacta.

3.1 Generalization of continuous universality theorems

In this section, we generalize Theorems 1.1 and 1.2 for composite functions.

Theorem 3.1. Suppose that the set L(α) is linearly independent over Q, and that F : H(D)→ H(D)

is a continuous operator such that, for every open set G ⊂ H(D), the set F−1G is not empty. Let

K ∈ K and f ∈ H(K). Then, for every ε > 0

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣F (ζ(s+ iτ, α; a)
)
− f(s)

∣∣ < ε
}
> 0.

Proof. We will apply elements of the proof of Theorem 1.1 and properties of the operator F .

By Proposition 1.2,

PT (A) =
1

T
meas

{
τ ∈ [0, T ] : ζ(s+ iτ, α; a) ∈ A

}
, A ∈ B

(
H(D)

)
,

converges weakly to Pζ as T →∞, where Pζ is the distribution of the random element

ζ(s, α, ω; a) =

∞∑
m=0

amω(m)

(m+ α)s
.

For A ∈ B
(
H(D)

)
, de�ne

PT,F (A) =
1

T
meas

{
τ ∈ [0, T ] : F

(
ζ(s+ iτ, α; a)

)
∈ A

}
.
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Then we have that, for A ∈ B
(
H(D)

)
,

PT,F (A) =
1

T
meas

{
τ ∈ [0, T ] : ζ(s+ iτ, α; a) ∈ F−1A

}
.

Hence, PT,F = PTF
−1, where

PTF
−1(A) = PT (F−1A), A ∈ B

(
H(D)

)
.

Since PT converges weakly to Pζ as T →∞, and the operator F is continuous, the latter equality and

Lemma 1.5 show that PT,F converges weakly to PζF−1 as T →∞.

It remains to �nd the support of the measure PζF−1. Let g be an arbitrary element of the space

H(D), and G be any open neighbourhood of g. By the hypothesis of the theorem, the set F−1G

is not empty, and because of the continuity of the operator F is open. Hence, F−1G is an open

neighbourhood of a certain element g1 ∈ H(D). Since, by Proposition 1.2, the support of the measure

Pζ is the whole H(D), hence we obtain by properties of the support that

Pζ(F
−1G) > 0.

Therefore,

PζF
−1(G) = Pζ(F

−1G) > 0.

Since the objects g and G are arbitrary, this shows that the support of the measure PζF−1 is the

whole H(D).

The remaining part of the proof is standard. By Lemma 1.16, there exists a polynomial p = p(s)

such that

sup
s∈K
|f(s)− p(s)| < ε

2
. (3.1)

De�ne

G =
{
g ∈ H(D) : sup

s∈K
|g(s)− p(s)| < ε

2

}
.

Then G is an open neighbourhood of p(s) which, in view of the above remark, is an element of the

support of the measure PζF−1. Therefore, PζF−1(G) > 0. Using the weak convergence of PT,F to

PζF
−1 as T →∞, and applying Lemma 1.17, we obtain that

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : F

(
ζ(s+ iτ, α; a)

)
∈ G

}
≥ PζF−1(G) > 0.

Hence, by the de�nition of G,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣F (ζ(s+ iτ, α; a)
)
− p(s)

∣∣∣ < ε

2

}
> 0.

This together with inequality (3.1) proves the theorem.

The hypothesis of Theorem 3.1 that F−1G 6= ∅ for every open set G ⊂ H(D) can be replaced by

a stronger but simpler one. Thus, we have the following theorem. Denote by F−1{p} the preimage of

a polynomial p.
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Theorem 3.2. Suppose that the set L(α) is linearly independent over Q, and that F : H(D)→ H(D)

is a continuous operator such that, for every polynomial p = p(s), the set F−1{p} is non-empty. Let

K ∈ K and f(s) ∈ H(K). Then the same assertion as in Theorem 3.1 is true.

Proof. We observe that the compact sets Kl in the de�nition of the metric ρ can be chosen to be

with connected complements. For example, we can take closed rectangles. Moreover, the quantity

ρ(g1, g2), g1, g2 ∈ H(D), is small if

sup
s∈Kl

|g1(s)− g2(s)|

is small enough for su�ciently large l ∈ N. Thus, the approximation in the space H(D) reduces to

that on compact subsets of the strip D with connected complements.

We will prove that, for every non-empty open set G ⊂ H(D), the set F−1G is non-empty. Let

G ⊂ H(D) 6= ∅ be an arbitrary open set, and g ∈ G. Suppose that K ∈ K. Then, by Lemma 1.16,

for every ε > 0, there exists a polynomial p = p(s) such that

sup
s∈K
|g(s)− p(s)| < ε.

Therefore, if ε is small enough, we may assume that p ∈ G, too. By the hypothesis of the theorem,

this shows that the set F−1G is non-empty. Thus, we obtained the hypothesis of Theorem 3.1, and

the assertion of the theorem follows from Theorem 3.1.

In the next theorem, we replace the hypothesis on the continuity of the operator F by a certain

analogue of the Lipschitz type condition in the space of analytic functions.

Theorem 3.3. Suppose that the set L(α) is linearly independent over Q, and that the operator F :

H(D) → H(D) is a such that, for every polynomial p = p(s), the set F−1{p} is not empty, and for

each K ∈ K, there exist positive constants c and β, and K1 ∈ K such that

sup
s∈K

∣∣F (g1(s)
)
− F

(
g2(s)

)∣∣ ≤ c sup
s∈K1

∣∣g1(s)− g2(s)
∣∣β

for all g1, g2 ∈ H(D). Let K ∈ K and f(s) ∈ H(K). Then the same assertion as in Theorem 3.1 is

true.

Proof. By Lemma 1.16, there exists a polynomial p = p(s) such that inequality (3.1) is valid. Suppose

that τ ∈ R satis�es the inequality

sup
s∈K1

∣∣ζ(s+ iτ, α; a)− g(s)
∣∣ ≤ c− 1

β

(ε
2

) 1
β

, (3.2)

where g ∈ F−1{p}, and K1 ∈ K corresponds the set K in hypothesis of the theorem. Then, for the

same τ , by the inequality of the theorem, we have that

sup
s∈K

∣∣∣F (ζ(s+ iτ, α; a)
)
− p(s)

∣∣∣ ≤ c sup
s∈K1

∣∣∣ζ(s+ iτ, α; a)− g(s)
∣∣∣β ≤ c(c− 1

β

(ε
2

) 1
β
)β

=
ε

2
. (3.3)

By Theorem 1.1, the set of reals τ satisfying inequality (3.2), has a positive lower density, i.e.,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K1

∣∣ζ(s+ iτ, α; a)− g(s)
∣∣ ≤ c− 1

β

(ε
2

) 1
β
}
> 0.
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This shows that

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣F (ζ(s+ iτ, α; a)
)
− p(s)

∣∣ < ε

2

}
> 0.

Combining this with (3.3) proves the theorem.

We will prove that the operator F : H(D)→ H(D) given by

F (g) = cg(n), c 6= 0,

where g(n) denotes the n-th derivative of g, satis�es the hypothesis of Theorem 3.1. For this, we recall

the Cauchy integral formula, see, for example, [49].

Lemma 4.1. Suppose that G is a domain in the complex plane, g(s) is an analytic function in G,

and L is a simple contour with its interior int L in G. Then, for s0 ∈ int L,

g(x)(s0) =
n!

2πi

∫
L

g(s)

(s− s0)n+1
ds.

Obviously, the set F−1{p} is not empty for each polynomial p = p(s) because the equation

cg(n)(s) = p(s) = aks
k + ak−1s

k−1 + ...+ a0

has the solution

g(s) =
1

c

(
aks

k+n

(k + 1)...(k + n)
+ ...+

a0s
n

1...n

)
∈ H(D).

Now, let K,K1 ∈ K and G is an open set such that K ⊂ G ⊂ K1, and let L be a simple closed contour

lying in K1 \G, and containing inside the set K. Then, in view of Lemma 4.1, for g1, g2 ∈ H(D) and

s ∈ K,

F
(
g1(s)

)
− F

(
g2(s)

)
= c

n!

2πi

∫
L

g(z)

(z − s)n+1
dz.

Therefore,

sup
s∈K

∣∣F (g1(s)
)
− F

(
g2(s)

)∣∣ =
cn!

2π

∣∣∣∣ ∫
L

g1(z)− g2(z)

(z − s)n+1
dz

∣∣∣∣ ≤
cn!

2π

∫
L

|g1(z)− g2(z)|
|z − s|n+1

|dz| ≤

cn!

2π
sup
s∈L
|g1(s)− g2(s)| |dz|

(z − s)n+1
≤ C sup

s∈L
|g1(s)− g2(s)| ≤ C sup

s∈K1

|g1(s)− g2(s)|

with a certain positive constant C. Thus, in this case β = 1.

Now, let a1, ..., ar be distinct complex numbers, and

Ha1,...,ar (D) =
{
g ∈ H(D) : g(s) 6= aj , j = 1, ..., r

}
.

Thus, Ha1,...,ar (D) is a subset of the space of analytic functions not taking any value a1, ..., ar. In the

next theorem, we approximate analytic functions from the set Ha1,...,ar (D).
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Theorem 3.4. Suppose that the set L(α) is linearly independent over Q, and that F : H(D)→ H(D)

is a continuous operator such that F
(
H(D)

)
⊃ Ha1,...,ar (D). For r = 1, let K ∈ K and f(s) ∈ H(K)

and f(s) 6= a1 on K. For r ≥ 2, let K ⊂ D be an arbitrary compact set, and f(s) ∈ Ha1,...,ar (D).

Then the same assertion as in Theorem 3.1 is true.

Proof. As in the proof of Theorem 3.1, we have that

PT,F (A)
def
=

1

T
meas

{
τ ∈ [0, T ] : F

(
ζ(s+ iτ, α; a)

)
∈ A

}
, A ∈ B

(
H(D)

)
,

converges weakly to the measure PζF−1 as T → ∞. Thus, it remains to give explicitly the support

of PζF−1. Let g be an arbitrary element of the set F
(
H(D)

)
, and G be any open neighbourhood of

g. Then there exists g1 ∈ H(D) such that F (g1) = g. Hence, by the continuity of F , the set F−1G is

an open neighbourhood of the element g1. Since the support of the measure Pζ , by Proposition 1.2,

is the whole of H(D), this shows that Pζ(F−1G) > 0. Thus,

PζF
−1(G) = Pζ(F

−1G) > 0. (3.4)

Moreover,

PζF
−1
(
F
(
H(D)

))
= Pζ

(
F−1F

(
H(D)

))
= Pζ

(
H(D)

)
= 1.

Since the support is a closed set, this together with (3.4) proves that the support of the measure

PζF
−1 is the closure of the set F

(
H(D)

)
.

The case r=1. By the Lemma 1.16, there exists a polynomial p(s) such that

sup
s∈K
|f(s)− p(s)| < ε

4
. (3.5)

Since f(s) 6= a1 on K, we have that p(s) 6= a1 on K as well if ε is small enough. Therefore, we can

de�ne on K a continuous branch of the logarithm log
(
p(s)−a1

)
which will be analytic in the interior

of K. Applying Lemma 1.16 once more, we �nd a polynomial p1(s) such that

sup
s∈K

∣∣(p(s)− a1

)
− ep1(s)

∣∣ < ε

4
. (3.6)

We put g1(s) = ep1(s) + a1. Then g1(s) ∈ H(D) and g1(s) 6= a1, in other words, g1(s) ∈ Ha1(D).

Since by the hypothesis of the theorem, H1(D) ⊂ F
(
H(D)

)
, and the support of PζF−1 is the closure

of F
(
H(D)

)
, we have that g1 is an element of the support of the measure PζF−1. De�ne

G1 =
{
g ∈ H(D) : sup

s∈K
|f(s)− g1(s)| < ε

2

}
.

Then G1 is an open neighbourhood of the element g1, therefore, we have that PζF−1(G1) > 0. Using

the weak convergence of PT,F to PζF−1 as T →∞, hence we obtain by Lemma 1.17 that

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣F (ζ(s+ iτ, α; a)
)
− p(s)

∣∣ < ε

2

}
≥ PζF−1(G1) > 0. (3.7)
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In view of inequalities (3.5) and (3.6),

sup
s∈K
|f(s)− g1(s)| ≤ sup

s∈K
|f(s)− p(s)|+ sup

s∈K
|p(s)− g1(s)| < ε

2
. (3.8)

Suppose that τ ∈ R satis�es the inequality

sup
s∈K

∣∣F (ζ(s+ iτ, α; a)
)
− g1(s)

∣∣ < ε

2
.

Then, by (3.8),

sup
s∈K

∣∣F (ζ(s+ iτ, α; a)
)
− f(s)

∣∣ ≤ sup
s∈K

∣∣F (ζ(s+ iτ, α; a)
)
− g1(s)

∣∣+ sup
s∈K
|f(s)− g1(s)| < ε.

Therefore,{
τ ∈ [0, T ] : sup

s∈K

∣∣F (ζ(s+ iτ, α; a)
)
− g1(s)

∣∣ < ε

2

}
⊂
{
τ ∈ [0, T ] : sup

s∈K

∣∣F (ζ(s+ iτ, α; a)
)
− f(s)

∣∣ < ε

}
.

This together with (3.7) proves the theorem in case r=1.

The case r ≥ 2. Since f(s) ∈ Ha1,...,ar (D) and Ha1,...,ar (D) ⊂ F
(
H(D)

)
, and the support of

PζF
−1 is the closure of F

(
H(D)

)
, we have that f is an element of the support of the measure PζF−1.

De�ne the set

G2 =
{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)| < ε

}
.

Then PζF−1(G2) > 0, and the de�nition of G2 and Lemma 1.17 give the inequality

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣F (ζ(s+ iτ, α; a)
)
− f(s)

∣∣ < ε
}
≥ PζF−1(G2) > 0.

The theorem is proved.

We give some examples of operators satisfying the hypothesis of Theorem 3.4.

1. Let F (g) = sin g. Then F
(
H(D)

)
⊃ H−1,1(D). Actually, it is well known that

sin s =
eis − e−is

2i
.

We take an arbitrary function g ∈ H−1,1(D) and solve the equation

eif − e−if

2i
= g.

Hence,

eif − e−if − 2ig = 0.

Therefore, taking x = eif , we obtain the equation

x2 − 2ixg − 1 = 0.

Hence,

x = ig ±
√
−g2 + 1.
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Since g ∈ H−1,1(D), g 6= −1, 1 on D. Therefore, ig ±
√
−g2 + 1 6= 0 and lies in H(D), and we �nd

that

f =
1

i
log
(
ig +

√
−g2 + 1

)
is an element ofH(D). This shows that F

(
H(D)

)
⊃ H−1,1(D), and, by Lemma 3.4, the functions from

the set H−1,1(D) can be approximated by shifts sin
(
ζ(s+ iτ, α; a)

)
with, for example, transcendental

α.

2. Let F (g) = coshg. We will prove that F
(
H(D)

)
⊃ H−1,1(D). Similarly as above, we take

arbitrary g ∈ H−1,1(D) and consider the equation

ef − e−f

2
= g.

From this, putting x = ef , we �nd the equation

x2 − 2xg + 1 = 0.

Thus,

x = g ±
√
g2 − 1.

Since g ∈ H−1,1(D), g 6= −1, 1. Therefore,

f = log
(
g +

√
g2 − 1

)
∈ H(D),

and F
(
H(D)

)
⊃ H−1,1(D). Thus, by Theorem 3.4, the functions from the set H−1,1(D) can be

approximated by shifts cosh
(
ζ(s+ iτ, α; a)

)
with transcendental α.

Theorem 3.5. Suppose that the set L(α) is linearly independent over Q, and that F : H(D)→ H(D)

is a continuous operator. Let K ∈ D be an arbitrary compact subset, and f(s) ∈ F
(
H(D)

)
. Then the

same assertion as in Theorem 3.1 is true.

Proof. In the beginning of the proof of Theorem 3.4, it was obtained that the support of the measure

PζF
−1 is the closure of F

(
H(D)

)
. Thus, in Theorem 3.5, we approximate analytic functions from the

support of the measure PζF−1. Therefore, the proof of Theorem 3.5 coincides with that of Theorem

3.4 with r ≥ 2. We note that in the proof we do not use the Mergelyan theorem (Lemma 1.16).

Theorem 1.2 also can be generalized for composite functions.

Theorem 3.6. Suppose that α = a
b , a, b ∈ N, a < b, (a, b) = 1, b 6= 2 and that rad(q) divides b,

and that, for V > 0, F : H(DV ) → H(DV ) is a continuous operator such that, for every open set

G ⊂ H(DV ), the set F−1G is not empty. Let K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣F(ζ(s+ iτ,
a

b
; a)
)
− f(s)

∣∣ < ε
}
> 0.
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Proof. By Proposition 1.4,

P1T (A) =
1

T
meas

{
τ ∈ [0, T ] : ζ

(
s+ iτ,

a

b
; a
)
∈ A

}
, A ∈ B

(
H(D)

)
,

converges weakly to the measure P1ζ as T →∞, where P1ζ is the distribution of the random element

ζ
(
s,
a

b
, ω1; a

)
=
bsω1(p)

r

r∑
j=1

bjL(s, ω1, χj).

For A ∈ B
(
H(DV )

)
, de�ne

P1T,F (A) =
1

T
meas

{
τ ∈ [0, T ] : F

(
ζ(s+ iτ,

a

b
; a)
)
∈ A

}
.

From the de�nitions P1T and P1T,F , it follows that, for A ∈ B
(
H(DV )

)
,

P1T,F (A) =
1

T
meas

{
τ ∈ [0, T ] : ζ

(
s+ iτ,

a

b
; a
)
∈ F−1A

}
.

Therefore, P1T,F = P1TF
−1, thus, the continuity of F , weak convergence of P1T to P1ζ as T → ∞,

and Lemma 1.5 imply the weak convergence of P1T,F to P1ζF
−1 as T →∞.

We will prove that the support of the measure P1ζ is the whole of H(DV ). We take an arbitrary

element g ∈ H(DV ) and its any open neighbourhood G. Since the set F−1G is not empty and

the operator F is continuous, we have that F−1G is an open neighbourhood of a certain element

g1 ∈ H(DV ). By the second part of Proposition 1.4, the support of he measure P1ζ is the whole of

H(DV ). Thus,

P1ζ(F
−1G) > 0.

Hence,

P1ζF
−1(G) = P1ζ(F

−1G) > 0.

Since g and G are arbitrary, this shows that the support of the measure P1ζF
−1 is the whole of

H(DV ).

Now, let V > 0 be such that K ⊂ H(DV ). De�ne the set

G =
{
g ∈ H(DV ) : sup

s∈K
|g(s)− f(s)| < ε

2

}
,

where p(s) is a polynomial satisfying (3.1). Then G is an open neighbourhood of p(s), i.e., is an

open neighbourhood of an element of the support of the measure P1ζF
−1. Hence, P1ζF

−1(G) > 0.

Therefore, in view of weak convergence of P1ζ,F to P1ζF
−1 and Lemma 1.17, we �nd that

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : F

(
ζ(s+ iτ,

a

b
; a)
)
∈ G

}
≥ P1ζF

−1(G) > 0,

or, by the de�nition of G,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣F(ζ(s+ iτ,
a

b
; a)
)
− p(s)

∣∣∣ < ε

2

}
> 0.

Combining this with (3.1) proves the theorem.

Next theorem is an analogue of Theorem 3.2.
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Theorem 3.7. Suppose that α = a
b , a, b ∈ N, a < b, (a, b) = 1, b 6= 2 and that rad(q) divides b, and

that F : H(DV )→ H(DV ) is a continuous operator such that, for every polynomial p = p(s), the set

F−1{p} is not empty. Let K ∈ K and f(s) ∈ H(K). Then the same assertion as in Theorem 3.6 is

true.

Proof. We will prove that the hypotheses of the theorem satisfy those of Theorem 3.6, i.e, that for

every non-empty set G ⊂ H(DV ), its preimage F−1G is also non-empty. Thus, let G ⊂ H(DV ),

G 6= ∅, and let g ∈ G. We take K ∈ K, K ∈ DV . Then, using Lemma 1.16, for every ε > 0, we �nd a

polynomial p = p(s) such that

sup
s∈K
|g(s)− p(s)| < ε.

If ε > 0 is small enough, this shows that the polynomial p(s) lies in G. Therefore, by the hypothesis

of the theorem, the set F−1G is non-empty. Thus, by Theorem 3.6, the assertion of the theorem

follows.

Let

Ha1,...,ar (D) =
{
g ∈ H(DV ) : g(s) = aj , j = 1, ..., r

}
.

Theorem 3.8. Suppose that α = a
b , a, b ∈ N, a < b, (a, b) = 1, b 6= 2 and that rad(q) divides b, and

that F : H(DV ) → H(DV ) is a continuous operator such that, F
(
H(DV )

)
⊂ Ha1,...,ar (DV ). For

r = 1, let K ∈ K, f(s) ∈ H(K) and f(s) 6= a1 on K. For r ≥ 2, let K ⊂ D be an arbitrary compact

set, and f(s) ∈ Ha1,...,ar (DV ). Then the assertion of Theorem 3.6 is true.

Proof. We argue similarly to the proof of Theorem 3.4. We consider the support of the measure

P1ζF
−1. Let g be an arbitrary element of the set Ha1,...,ar (DV ), and G be any open neighbourhood

of g. Then there exists an element g1 ∈ H(D) such that F (g1) = g. Hence, by the continuity of

the operator F , the set F−1G is an open neighbourhood of the element g1. By Proposition 1.4, the

support of the measure P1ζ is the whole of H(DV ), thus, P1ζ(F
−1G) > 0. Hence,

P1ζF
−1(G) = P1ζ(F

−1G) > 0.

This shows that the support of P1ζF
−1 contains the set Ha1,...,ar (DV ). Moreover, the support is

closed set, thus, the support contains the closure of Ha1,...,ar (DV ).

The case r=1. Let V > 0 be such that K ⊂ DV . By Lemma 1.16, there exists a polynomial

p(s) satisfying inequality (3.5), and there exists a polynomial p1(s) satisfying inequality (3.6). Let

g1(s) = ep1(s) + a1. Then g1(s) ∈ H(DV ) and g1(s) 6= a1, hence, g1(s) ∈ Ha1(DV ). Since the support

of the measure P1ζF
−1 contains the closure of Ha1(DV ), we have that g1 is an element of the support

of P1ζF
−1. De�ne the set

G1 =
{
g ∈ H(DV ) : sup

s∈K
|f(s)− g1(s)| < ε

2

}
,

The set G1 is open, thus, it is an open neighbourhood of the element g1, hence, the inequality

P1ζF
−1(G1) > 0 is true. Since P1T,F converges weakly to P1ζF

−1, we obtain that
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lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣F(ζ(s+ iτ,
a

b
; a)
)
− g1(s)

∣∣∣ < ε

2

}
≥ P1ζF

−1(G1) > 0. (3.9)

In view of (3.5) and (3.6),

sup
s∈K
|f(s)− g1(s)| < ε

2
.

Hence, using the inequality

sup
s∈K

∣∣F (ζ(s+ iτ,
a

b
; a)
)
− g1(s)

∣∣ < ε

2
,

we �nd that

sup
s∈K

∣∣F (ζ(s+ iτ,
a

b
; a)
)
− f(s)

∣∣ < ε.

Therefore, it follows from (3.9) that

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣F(ζ(s+ iτ,
a

b
; a)
)
− f(s)

∣∣∣ < ε
}
> 0.

The case r ≥ 2. Since the support of the measure P1ζF
−1 contains the closure of the set

Ha1,...,ar (DV ) (as in the case r = 1, we take V > 0 such that K ⊂ DV ), we have that f(s) is an

element of the support of P1ζF
−1. Let

G2 =
{
g ∈ H(DV ) : sup

s∈K
|g(s)− f(s)| < ε

}
.

Then G2 is an open set of the element f(s), thus, P1ζF
−1(G2) > 0. Therefore, the weak convergence

of P1T,F to P1ζF
−1 as T →∞ implies the inequality

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣F(ζ(s+ iτ,
a

b
; a)
)
− f(s)

∣∣∣ < ε
}
> 0.

The theorem is proved.

We give one example. Let

F
(
g(s)

)
= g2(s) + 4g(s) + 2.

We consider the equation

g2(s) + 4g(s) + 2 = f(s),

where f(s) ∈ H−2(DV ). We �nd that

g(s) = −2±
√

22 − (2− f(s)) = −2±
√

2 + f(s).

Since f(s) 6= −2 on DV , we have that g(s) = −2 +
√

2 + f(s) belongs to F
(
H(DV )

)
. Therefore, by

Theorem 3.8, the functions of the set H−2(DV ) can be approximated by shifts F
(
ζ(s+ iτ, ab ; a)

)
.
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3.2 Generalization of discrete universality theorems

This section is devoted to generalizations of Theorem 1.3, 1.4 and 2.1 for composite functions.

We start with an analogue of Theorem 3.1.

Theorem 3.9. Suppose that the set L(α, h, π) is linearly independent over Q, and that F : H(D)→

H(D) is a continuous operator such that, for every open set G ⊂ H(D), the set F−1G is not empty.

Let K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

N + 1
#
{

0 ≤ k ≤ N : sup
s∈K

∣∣∣F(ζ(s+ ikh, α; a)
)
− f(s)

∣∣∣ < ε
}
> 0.

Proof. We use the probabilistic way as in all theorems of the thesis. Proposition 1.5 asserts that

PN (A) =
1

N + 1
#
{

0 ≤ k ≤ N : ζ(s+ ikh, α; a) ∈ A
}
, A ∈ B

(
H(D)

)
,

converges weakly to the measure Pζ as N →∞, where Pζ is the distribution of H(D)-valued random

element

ζ(s, α, ω; a) =

∞∑
m=0

amω(m)

(m+ α)s
.

We will deal with weak convergence of

PN,F (A)
def
=

1

N + 1
#
{

0 ≤ k ≤ N : F
(
ζ(s+ ikh, α; a)

)
∈ A

}
, A ∈ B

(
H(D)

)
.

The de�nitions of PN and PN,F show that, for A ∈ B
(
H(D)

)
,

PN,F (A) =
1

N + 1
#
{

0 ≤ k ≤ N : ζ(s+ ikh, α; a) ∈ F−1A
}
,

thus, the equality PN,F = PNF
−1 holds. Since, by Proposition 1.5, PN converges weakly to Pζ as

N → ∞, and the operator F is continuous, the above equality together with Lemma 1.5 imply the

weak convergence of PN,F to PζF−1 as N →∞.

Now, we discuss the support of the measure PζF−1. Since, by Proposition 1.5, the support of Pζ is

the whole of H(D), we �nd by repeating the arguments of the proof of Theorem 3.1 that the support

of PζF−1 is the whole of H(D).

Let p(s) and G be the same as in the proof of Theorem 3.1. Then Lemma 1.17 and the weak

convergence of PN,F give the inequality

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : F
(
ζ(s+ ikh, α; a)

)
∈ G

}
=

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : sup
s∈K

∣∣∣F(ζ(s+ ikh, α; a)
)
− p(s)

∣∣∣ < ε

2

}
= PζF

−1(G) > 0.

This inequality and (3.1) give the assertion of the theorem.

The next theorem is a discrete analogue of Theorem 3.2.

Theorem 3.10. Suppose that the set L(α, h, π) is linearly independent over Q, and that F : H(D)→

H(D) is a continuous operator such that, for every polynomial p = p(s), the set F−1{p} is non-empty.

Let K ∈ K and f(s) ∈ H(K). Then the same assertion as in Theorem 3.9 is true.
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Proof. We will prove that the hypothesis of the theorem that the set F−1{p} is non-empty for every

polynomial p implies that of Theorem 3.9 that the set F−1G is non-empty for every open set G ⊂

H(D). This follows from Lemma 1.16. Actually, let g ∈ G. Then, by Lemma 1.16, there exists a

polynomial such that

sup
s∈K
|g(s)− p(s)| < ε

for everyK ∈ K. Hence, if ε > 0 is small enough, we have that p(s) ∈ G. Therefore, since F−1{p} 6= ∅,

we obtain that F−1G 6= ∅ as well. This remark and Theorem 3.9 prove the theorem.

Let the set Ha1,...,ar (D) be the same as in Theorem 3.4.

Theorem 3.11. Suppose that the set L(α, h, π) is linearly independent over Q, and that F : H(D)→

H(D) is a continuous operator such that F
(
H(D)

)
⊃ Ha1,...,ar (D). For r = 1, let K ∈ K, f(s) ∈

H(K) and f(s) 6= a1 on K. For r ≥ 2, let K ⊂ D be an arbitrary compact set, and f(s) ∈ Ha1,...,ar (D).

Then the same assertion as in Theorem 3.9 is true.

Proof. The proof is analogical to that of Theorem 3.4. As it was noted in the proof of Theorem 3.9,

PN,F converges weakly to the measure PζF−1 as N →∞. Moreover, it was obtained that the support

of the measure PζF−1 is the closure of the set F
(
H(D)

)
.

The case r=1. Using the notation of the proof of Theorem 3.4 and the weak convergence of the

measure PT,F , we obtain that

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : sup
s∈K

∣∣∣F(ζ(s+ ikh, α; a)
)
− g1(s)

∣∣∣ < ε

2

}
≥ PζF−1(G1) > 0. (3.10)

Suppose that k ∈ N0 satis�es the inequality

sup
s∈K

∣∣∣F(ζ(s+ ikh, α; a)
)
− g1(s)

∣∣∣ < ε

2
.

Then, in view of (3.8),

sup
s∈K

∣∣∣F(ζ(s+ ikh, α; a)
)
− f(s)

∣∣∣ ≤ sup
s∈K

∣∣∣F(ζ(s+ ikh, α; a)
)
− g1(s)

∣∣∣+ sup
s∈K
|f(s)− g1(s)| < ε.

Therefore,{
0 ≤ k ≤ N : sup

s∈K

∣∣∣F(ζ(s+ikh, α; a)
)
−g1(s)

∣∣∣ < ε

2

}
⊂
{

0 ≤ k ≤ N : sup
s∈K

∣∣∣F(ζ(s+ikh, α; a)
)
−f(s)

∣∣∣ < ε
}
.

This and (3.10) give the inequality of the theorem for r = 1.

The case r ≥ 2. Let the set G2 be from the proof of Theorem 3.4. Then PζF−1(G2) > 0, and

Lemma 1.17 together with the de�nition of G2 gives the inequality

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : sup
s∈K

∣∣∣F(ζ(s+ ikh, α; a)
)
− f(s)

∣∣∣ < ε

2

}
≥ PζF−1(G2) > 0.

The theorem is proved.

Also, generalizations of the discrete universality for ζ(s, α; a) with rational parameter α for com-

posite functions is possible. In virtue of similarity to the above theorems, we present only one theorem.
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Theorem 3.12. Suppose that α = a
b , a, b ∈ N, a < b, (a, b) = 1, α 6= 1

2 and (bl + a, bq) = 1 for all

l = 0, ..., q − 1, and that, for V > 0, F : H(DV ) → H(DV ) is a continuous operator such that, for

every open set G ⊂ H(DV ), the set F−1G is not empty. Let K ∈ K and f(s) ∈ H(K). Then, for

every ε > 0,

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : sup
s∈K

∣∣∣F(ζ(s+ ikh,
a

b
; a)
)
− f(s)

∣∣∣ < ε
}
> 0.

Proof. By Proposition 1.6, we have that, for V > 0 and h > 0,

QN,V,h(A) =
1

N + 1
#
{

0 ≤ k ≤ N : ζ
(
s+ ikh,

a

b
; a
)
∈ A

}
, A ∈ B

(
H(DV )

)
,

converges weakly to the measure Pζ,V,h as N → ∞, where Pζ,V,h is the distribution of the random

element

ζ
(
s,
a

b
, ω1h; a

)
=
bsω1h(b)

r

r∑
j=1

bjL(s, ω1hχj)

in the notation of Section 1.4. For A ∈ B
(
H(DV )

)
, de�ne

QN,V,F,h(A) =
1

N + 1

{
0 ≤ k ≤ N : F

(
ζ(s+ ikh,

a

b
; a)
)
∈ A

}
.

This and the de�nition of QN,V,h show that, for A ∈ B
(
H(DV )

)
,

QN,V,F,h(A) =
1

N + 1

{
0 ≤ k ≤ N : ζ

(
s+ ikh,

a

b
; a
)
∈ F−1A

}
.

Therefore, the equality QN,V,F,h = QN,V,hF
−1 is true. Since QN,V,h converges weakly to Pζ,V,h as

N → ∞, and the operator F is continuous, this equality together with Lemma 1.5 implies the weak

convergence for QN,V,F,h to Pζ,V,hF−1 as N →∞.

Now, consider the support of the measure Pζ,V,hF−1. We take an arbitrary element g ∈ H(DV ),

and an arbitrary open neighbourhood G of g. Since the operator F is continuous, the set F−1G is

open, too, and, by the hypothesis of the theorem, is not empty. This means that F−1G is an open

neighbourhood of a certain element g1 ∈ H(DV ). Therefore, by second part of Proposition 1.6, we

have that Pζ,V,h(F−1G) > 0. Hence,

Pζ,V,hF
−1(G) = Pζ,V,h(F−1G) > 0.

Since g and G are arbitrary, we obtain that the support of the measure Pζ,V,hF−1 is the whole of

H(DV ).

De�ne the set

G =
{
g ∈ H(DV ) : sup

s∈K
|g(s)− p(s)| < ε

2

}
,

where V > 0 is such that K ⊂ DV , and p(s) is a polynomial satisfying the inequality

sup
s∈K
|f(s)− p(s)| < ε

2
. (3.11)
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The polynomial p(s) is an element of the support of the measure Pζ,V,hF−1, therefore, Pζ,V,hF−1(G) >

0. Hence, in view of the weak convergence of QN,V,F,h and Lemma 1.7, we obtain that

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : F
(
ζ(s+ ikh,

a

b
; a)
)
∈ G

}
≥ Pζ,V,hF−1(G) > 0,

or, by the de�nition of G,

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : sup
s∈K

∣∣∣F(ζ(s+ ikh,
a

b
; a)
)
− p(s)

∣∣∣ < ε

2

}
> 0.

This and (3.11) prove the theorem.

Similarly, other versions of the generalization of Theorem 1.4 for composite functions can be

obtained.

Now, we give one generalization of Theorem 2.1 for composite functions.

Theorem 3.13. Suppose that the set L(α) is linearly independent over Q, F : H(D) → H(D) is a

continuous operator such that, for every polynomial p = p(s), the set F−1{p} is non-empty, and β1,

0 < β1 < 1, and β2 > 0 are �xed numbers. Let K ∈ K and f(s) ∈ H(K). Then, for every ε > 0 and

h > 0,

lim inf
N→∞

1

N − 1
#
{

2 ≤ k ≤ N : sup
s∈K

∣∣∣F(ζ(s+ ihkβ1 logβ2 k, α; a)
)
− f(s)

∣∣∣ < ε
}
> 0.

Proof. By the Proposition 2.1,

PN (A) =
1

N − 1
#
{

2 ≤ k ≤ N : ζ(s+ ihkβ1 logβ2 k, α; a) ∈ A
}
, A ∈ B

(
H(D)

)
,

converges weakly to the distribution Pζ of the H(D)-valued random element

ζ(s, α, ω; a) =

∞∑
m=0

amω(m)

(m+ α)s

as N →∞. Moreover, the support of Pζ is the whole of H(D). For A ∈ B
(
H(D)

)
, de�ne

PN,F (A) =
1

N − 1
#
{

2 ≤ k ≤ N : F
(
ζ(s+ ihkβ1 logβ2 k, α; a)

)
∈ A

}
.

Then we have that PN,F = PNF
−1. This, the continuity of the operator F , the weak convergence of

PN to Pζ as N →∞ and Lemma 1.5 show that PN,F converges weakly to PζF−1.

First, we observe that, for every open set G ⊂ H(D), the set F−1G is non-empty. Actually, let

G 6= ∅ be an open set, and g be its arbitrary element. Then, in view of Lemma 1.16, for every δ > 0,

there exists a polynomial p = p(s) such that

sup
s∈K
|g(s)− p(s)| < δ.

for K ∈ K. Hence, with su�ciently small δ, we obtain that the polynomial p(s) also lies in G.

Therefore, by the hypothesis of the theorem, the set F−1G is non-empty.
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Since the operator F is continuous, the set F−1G is open. Thus, there exists an element g1 ∈ H(D)

such that the set F−1G is its open neighbourhood. Hence, it follows that

Pζ(F
−1G) > 0,

and this shows that PζF−1(G) > 0 for every open neighbourhood G of an arbitrary element g ∈ H(D).

This shows that the support of the measure PζF−1 is the whole of H(D).

Now, let

G =
{
g ∈ H(D) : sup

s∈K
|g(s)− p(s)| < ε

2

}
,

where p(s) is arbitrary polynomial. Then, by the above remark on the support of PζF−1, we obtain

the inequality

lim inf
N→∞

1

N − 1
#
{

2 ≤ k ≤ N : F
(
ζ(s+ ihkβ1 logβ2 k, α; a)

)
∈ G

}
≥ PζF−1(G) > 0. (3.12)

Hence,

lim inf
N→∞

1

N − 1
#
{

2 ≤ k ≤ N : sup
s∈K

∣∣∣F(ζ(s+ ihkβ1 logβ2 k, α; a)
)
− p(s)

∣∣∣ < ε

2

}
> 0.

However, by Lemma 1.16, we may choose the polynomial p(s) to satisfy the inequality

sup
s∈K
|f(s)− p(s)| < ε

2
.

This and (3.12) give the assertion of the theorem.
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Chapter 4

Estimations for the number of zeros of

the periodic Hurwitz zeta-functions

We recall that, for a certain function f(s), the assertion A(σ1, σ2; c, T ) is valid if, for every σ1, σ2,
1
2 < σ1 < σ2 < 1, there exists a constant c > 0 such that, for su�ciently large T , the function f(s)

has more than cT zeros lying in the rectangle

{s = σ + it ∈ C : σ1 < σ < σ2, 0 < t < T}.

In this chapter, we prove that, for periodic Hurwitz zeta-functions and some their generalizations, the

assertion A(σ1, σ2; c, T ) and its discrete analogue are true.

4.1 Continuous case

We start with the classical Rouché theorem on the number of zeros of a certain pair of analytic

functions.

Lemma 4.1. Let G be a domain in the complex plane C, K a compact subset of G, and f(s) and

g(s) analytic functions in G such that

|f(s)− g(s)| < |f(s)|

for every point s in the boundary of K. Then the functions f(s) and g(s) have the same number of

zeros in the interior of K, taking into account multiplicities.

Proof of the lemma can be found, for example, in [49], Section X.12.

Theorem 4.1. Suppose, that the set L(α) is linearly independent over Q. Then, for the function

ζ(s, α; a), the assertion A(σ1, σ2; c, T ) is valid.
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Proof. We use the notation

σ0 =
σ1 + σ2

2
and ρ0 =

σ2 − σ1

2
,

and apply Theorem 1.1 with K =
{
s ∈ C : |s− σ0| ≤ ρ0

}
and f(s) = s− σ0. Then the inequality of

Theorem 1.1

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣ζ(s+ iτ, α; a)− f(s)
∣∣ < ε

}
> 0

with ε > 0 means that the Lebegue measure of the set τ ∈ [0, T ] such that

sup
s∈K
|ζ(s, α; a)− f(s)| < ε, (4.1)

for su�ciently large T , is greater than cT , where c = c(σ1, σ2, α; a) is a certain positive constant. We

take ε to satisfy the inequalities

0 < ε <
1

2
inf

|s−σ0|=ρ0
|f(s)| = ρ0

2
.

Then the functions f(s) and ζ(s+iτ, α; a) on the discK satisfy the hypotheses of Lemma 4.1. Actually,

they are analytic in K, and, on the boundary of K,

sup
|s−σ0|=ρ0

|ζ(s+ iτ, α; a)− f(s)| < ε < sup
|s−σ0|=ρ0

|f(s)|.

Therefore, since the function f(s) = s − σ0 has precisely one zero in the interior of K, the function

ζ(s+iτ, α; a) also has one zero in the interior of that disc. However, the number of τ ∈ [0, T ] satisfying

(4.1) is greater than cT . Hence, for the function ζ(s, α; a) the assertion A(σ1, σ2; c, T ) is valid.

We recall that q is the minimal period of the sequence a.

Theorem 4.2. Suppose that α = a
b , a, b ∈ N, a < b, (a, b) = 1, b 6= 2 and that rad(q) divides b. Then,

for the function ζ
(
s, ab ; a

)
, the assertion A(σ1, σ2; c, T ) is valid.

Proof. We use the notation of the proof of Theorem 4.1. By Theorem 1.2, for every ε > 0

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣ζ(s+ iτ,
a

b
; a
)
− f(s)

∣∣ < ε
}
> 0.

This means that the Lebesgue measure of the set τ ∈ [0, T ] such that

sup
s∈K

∣∣ζ(s, a
b

; a
)
− f(s)

∣∣ < ε, (4.2)

for su�ciently large T , is greater than cT , where c = c(σ1, σ2; a, b; a) is a certain positive constant.

The further proof uses Lemma 4.1 and (4.2), and completely coincides with that of Theorem 4.1.
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4.2 Discrete case

We say that, for a certain function f(s), the assertion B(σ1, σ2; c;ϕ, k0, N) is valid if, for every σ1, σ2,
1
2 < σ1 < σ2 < 1, there exists a constant c > 0 such that, for su�ciently large N , the function

f
(
s+ iϕ(k)

)
has a zero in the disc ∣∣∣s− σ1 + σ2

2

∣∣∣ ≤ σ2 − σ1

2

for more than cN integers k, k0 ≤ k ≤ N .

Theorem 4.3. Suppose that the set L(α, h, π) is linearly independent over Q. Then, for the function

ζ(s, α; a), the assertion B(σ1, σ2; c; kh, 0, N) is valid.

Proof. Let σ0, ρ0,K and f(s) be the same as in the proof of Theorem 4.1. Then, by Theorem 1.3, for

every ε > 0, the set of integers k ≥ 0 satisfying the inequality

sup
s∈K

∣∣ζ(s+ ikh, α; a)− f(s)
∣∣ < ε (4.3)

has a positive lower density. We take

0 < ε <
1

2
inf

|s−σ0|=ρ0
|s− σ0| =

ρ0

2
. (4.4)

Then

sup
|s−σ0|=ρ0

∣∣ζ(s+ ikh, α; a)− f(s)
∣∣ < inf

|s−σ0|=ρ0
|f(s)|.

Thus, the functions ζ(s + ikh, α; a) and f(s) on the disc K satisfy the hypothesis of Lemma 4.1.

Since the function s− σ0 has one zero in that disc, the function ζ(s+ ikh, α; a) also has precisely one

zero in that disc. However, there exists a constant c = c(σ1, σ2, α, a, h) > 0 such that the number of

k, 0 ≤ k ≤ N , for which inequality (4.3) holds, for su�ciently large N , is greater than cN .

Theorem 4.4. Suppose that α = a
b , a, b ∈ N, a < b, (a, b) = 1, b 6= 2 and that rad(q) divides b. Then,

for the function ζ
(
s, ab ; a

)
, the assertion B(σ1, σ2; c, kh, 0, N) is valid.

Proof. By Theorem 1.4, we have that, for every ε > 0, the set of integers k ≥ 0 satisfying the inequality

sup
s∈K

∣∣ζ(s+ ikh,
a

b
; a
)
− f(s)

∣∣ < ε (4.5)

has a positive lower density. Here we use the same notation as above. Suppose that the number ε

satis�es inequalities (4.4). Then

sup
|s−σ0|=ρ0

∣∣ζ(s+ ikh,
a

b
; a
)
− f(s)

∣∣ < inf
|s−σ0|=ρ0

|f(s)|.

This shows that the functions ζ
(
s+ ikh, ab ; a

)
and f(s) = s−σ0 on the disc K satis�es the hypotheses

of Lemma 4.1. From this and (4.5), the theorem follows with certain c = c(σ1, σ2, a, b, a, h) > 0.
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Theorem 4.5. Suppose that the set L(α) is linearly independent over Q, and that β1, 0 < β1 < 1, and

β2 > 0 are �xed numbers. Then, for the function ζ(s, α; a), the assertion B(σ1, σ2; c, hkβ1 logβ2 k, 2, N)

is valid.

Proof. We recall that the same notation as above for K and f(s) is used. By Theorem 2.1, we see

that, for every ε > 0, the set of integers k ≥ 2 satisfying the inequality

sup
s∈K

∣∣ζ(s+ ihkβ1 logβ2 k, α; a)− f(s)
∣∣ < ε (4.5)

has a positive lower density. Therefore, choosing the number ε satisfying (4.4), and applying the

properties of inequality (4.6), we obtain analogically as above that there exists a constant

c = c(σ1, σ2, α, a, h, β1, β2) > 0 such that the assertion B(σ1, σ2, c, hk
β1 logβ2 k, 2, N) is valid.

Similarly, it is possible to obtain lower estimates for the number of zeros of composite functions of

ζ(s, α; a).

80



Conclusions

1. The periodic Hurwitz zeta-function with parameter α such that the set {log(m+ α) : m ∈ N0}

is linearly independent over Q has a continuous universality property.

2. The periodic Hurwitz zeta-function with parameter α such that the set{(
log(m + α) : m ∈ N0

)
, 2π
h

}
, h > 0, is linearly independent over Q has a discrete universality

property.

3. The periodic Hurwitz zeta-function has a discrete universality property on the approximation

of analytic functions by shifts ζ(s+ ihkβ1 logβ2 k, α; a), 0 < β1 < 1, β2 > 0.

4. Composite functions F
(
ζ(s, α; a)

)
for some classes of the operator F in the space of analytic

functions have continuous and discrete universality properties.

5. Universality theorems for the periodic Hurwitz zeta-function imply lower estimates for their

number of zeros.
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Notation

p prime number

j, k, l,m, n, r, q non-negative integers

h �xed positive number

i =
√
−1 imaginary unity

P set of all prime numbers

N set of all positive integers

N0 set of all non-negative integers

R set of all real numbers

Q set of all rational numbers

C set of all complex numbers

s = σ + it, σ, t ∈ R complex variable

H(G) space of analytic functions on G

B(X) Borel σ-�eld of the space X

χ Dirichlet character

L(s, χ) Dirichlet L-function de�ned,

for σ > 1, by

L(s, χ) =
∞∑
m=1

χ(m)
ms ,

and by analytic continuation elsewhere

ζ(s, α) Hurwitz zeta-function de�ned, for σ > 1, by

ζ(s, α) =
∞∑
m=0

1
(m+α)s ,

and by analytic continuation elsewhere

ζ(s, α; a) periodic Hurwitz zeta-function de�ned, for σ > 1, by

ζ(s, α; a) =
∞∑
m=0

am
(m+α)s , a = {am},

and by analytic continuation elsewhere

measA Lebesgue measure of A ⊂ R

#A cardinality of A

F−1G preimage of a set G

F−1{p} preimage of a polynomial p
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