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Abstract

In this thesis, D (DIviding RECTangles) type algorithms based on Lips-
chitz objective function models with unknown Lipschitz constant, which are
often applied for practical black-box optimization problems, are considered.
The main goal of this thesis is set - to propose a global optimization algo-
rithm for Lipschitz functions with unknown Lipschitz constants in order to ef-
ficiently spend potentially expensive function evaluations. For the considered
class of algorithms, a new simplicial optimization algorithm L (LIpschitz
Bound Rough Estimation) is proposed, which is based on D (DIviding
SIMPLices) algorithms. The novelty of the proposed algorithm is that a single
estimate of the Lipschitz constant is used instead of a set to select potential sim-
plices for division. Experimental analysis is conducted and the competitiveness
of the proposed algorithm to other best algorithms from this algorithm class is
shown. In addition, various modifications of the L algorithm are proposed
and experimentally investigated; the impact of the tightness of the surogate Lip-
schitz bounds on the efficiency of the L algorithm is demonstrated. More-
over, a strategy to generalize Lipschitzian global optimization algorithms for
multi-objective problems is proposed. L algorithm is generalized for multi-
objective problems by applying the proposed strategy and then experimentally
investigated.
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Santrauka

Disertacijoje nagrinėjami D (DIviding RECTangles) tipo Lipšico tikslo
funkcijos modeliais su nežinoma Lipšico konstanta pagrįsti optimizavimo al-
goritmai, kurie yra dažnai taikomi praktinių „juodosios dėžės“ tipo uždavinių
sprendimui. To pagrindu išsikeltas pagrindinis disertacijos tikslas - pasiūlyti
globaliojo optimizavimo Lipšico klasės su nežinoma Lipšico konstanta algo-
ritmą, efektyviai išnaudojantį potencialiai brangius funkcijų skaičiavimus. Na-
grinėjamai algoritmų klasei yra pasiūlytas naujas simpleksinis algoritmas L
(LIpschitz Bound Rough Estimation), paremtas ankstesniais D (DIviding
SIMPLices) algoritmais. Pasiūlytojo algoritmo naujumas tame, kad naudoja-
mas vienas Lipšico konstantos įvertis vietoje aibės Lipšico konstantų, parenkant
potencialiuosius simpleksus dalinimui. Atlikta eksperimentinė analizė parodė
pasiūlytojo algoritmo konkurencingumą su kitais geriausiais šios klasės algorit-
mais. Taip pat, yra eksperimentiškai ištiriamos įvairios L algoritmo modi-
fikacijos; parodoma surogatinių Lipšico rėžių griežtumo įtaka pasiūlytojo algo-
ritmo efektyvumui. Be to, yra pasiūlyta strategija, kaip Lipšico globaliojo opti-
mizavimo algoritmus apibendrinti daugelio kriterijų optimizavimo uždavinių
sprendimui. L algoritmas apibendrintas daugiakriteriniams uždaviniams,
pritaikius pasiūlytąją strategiją, ir eksperimentiškai ištirtas.
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Notation

D feasible region
X a set of trial points
Y a set of objective function values obtained
YPareto discrete approximation of the Pareto front
D unit-hypercube got from scaling D
d number of dimensions in feasible region, i.e. D P Rd

n number of objectives
m number of trials performed in an arbitrary iteration of an algorithm
x vector
f p¨q objective function
f a vector of objective functions
f m
min lowest observed function value after m trials

gp¨q function of Lipschitz lower bounds over objective function
g a vector of Lipschitzian minorants (one for each objective function)
x˚ global minimizer
f ˚ global minimum
R set of real numbers
Lp the Lipschitz constant with respect to p-norm distance
L the Lipschitz constant with respect to Euclidean distance (same as L2)
rL any kind of estimate of the Lipschitz constant L2

S a set of simplices
Vp¨q a set of vertices
∆p¨q a diameter
|S| size of a set S, i.e. number of elements in a set S

} ¨ }p distance with respect to p-norm, i.e. }x}p “

´

řd
i“1 |xi|

p
¯1{p

} ¨ } Euclidean distance, also denoted as } ¨ }2
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Chapter 1

Introduction

1.1 Research Context

There are many engineering problems that pose the need to obtain a global opti-
mum of a certain objective function with respect to a combination of parameters
in the search space. Using the globally optimal solution instead of locally opti-
mal ones has recongnized advantages, although obtaining such a solution is a
much harder task, and, consequently, requires additional effort and resources.
The field of global optimization deals with this complicated task and covers the
related theory and implementation of algorithms. In many practical problems
the analytical expression of the objective function is unavailable and evaluating
such black-box objective function involves executing an expensive numerical
experiment. Therefore in general not much can be assumed about the objective
function, especially as the potential presence of multiple local minima must be
taken into account. Due to the high cost of trials it is important to obtain a good
approximation of the best possible objective function value within a minimal
possible budget of trials. This goal justifies the effort to develop new global
optimization algorithms of higher efficiency.

One of the natural assumptions to be made is that a limited change in input vari-
ables leads to a limited change in the objective function value. This is the central
assumption in the Lipschitz global optimization formalized mathematically as
the Lipschitz condition for the objective function. This assumption greatly fa-
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1. Introduction

cilitates the investigation and development of algorithms, e. g. proofs of con-
vergence properties can be derived and guarantees of solution accuracy become
possible. Moreover, the Lipschitz condition is usually exploited by determinis-
tic algorithms, which have an advantage in comparison to stochastic ones that
require multiple runs. However, the acknowledged problem of the algorithms
in this class is the absence of the Lipschitz constant in realistic scenarios, which
is either ignored or tackled by different estimation techniques. The univariate
case of Lipschitzian global optimization is very well covered in the literature
both from the theoretical and practical point of view. However, the multivari-
ate case continues to pose challenges. The ongoing research in this direction
exploits the branch-and-bound techniques in combination with a set of Lips-
chitz constants considered simultaneously.

1.2 Relevance of the Study

In many applied optimization problems the objective function evaluations are
expensive due to the involved time-consuming numerical simulations. It is
therefore important to increase the efficiency of the optimization algorithms in
terms of the consumed trials. Among the Lipschitzian optimization algorithms
those using an adaptive estimate of the Lipschitz constant have proved to be
competitive. However, using any given estimate of the Lipschitz constant in-
stead of the true one does not provide any guarantees regarding the precision
of the obtained solution. On the other hand, a class of Lipschitzian optimization
methods that considers a set of admissible Lipschitz constants at once instead of
a single estimate allows to guarantee that the global optimum will be approx-
imated with the required precision in a finite number of trials. It is therefore
worth considering a combination of both approaches to create the algorithms
that both guarantee a satisfactory solution and save expensive trials.

It seems natural that using tighter Lipschitz bounds translates into a more pre-
cise objective function model. The more appropriate to the actual situation the
model is, the more informed decision about the next trial location the optimiza-
tion algorithm can make. Consequently, it is important to investigate the effect
that the tightness of the Lipschitz bounds has on the effectiveness of considered

2



1.3. Objectives and Tasks of the Thesis

optimization algorithms.

The multi-objective optimization problems are usually approached using meta-
heuristic algorithms. Algorithms in this category are randomized, therefore
they require repeated runs and provide no guarantee that the obtained solu-
tions are truly Pareto-optimal with a certain precision. On the other hand, it was
demonstrated in the literature that deterministic algorithms are more efficient
for simple optimization problems than the metaheuristic ones. This motivates
to further explore the potential of the deterministic methods to expand the set
of problems they can be applied to in order to obtain algorithms with perfor-
mance similar to their metaheuristic counterparts and at the same time avoid
their drawbacks.

1.3 Objectives and Tasks of the Thesis

The most general goal of this thesis is to propose Lipschitzian optimization al-
gorithms without the Lipschitz constant, ensuring efficient usage of objective
function evaluations.

The following specific objectives were raised:

1. Propose an algorithm combining the strengths of D-type Lipschitzian
optimization algorithms with algorithms using estimates of the Lipschitz
constant in order to ensure more efficient performance in terms of the
number of objective function evaluations.

2. Investigate the effect that increasing the tightness of the surrogate Lip-
schitz bounds has on the optimization process of complex multi-modal
objective functions.

3. Propose a way to adapt Lipschitz optimization algorithms for multi-objective
problems in order to approach the efficiency of the state-of-the-art genetic
algorithms.

The following tasks were identified:

3



1. Introduction

1. Identify the strengths of D-type simplicial Lipschitz optimization al-
gorithms and suggest an algorithm modification which would preserve
these strengths and would use adaptively estimated Lipschitz constant
estimate to obtain an improved optimization algorithm.

2. Test the performance of the suggested and popular algorithms using com-
plex objective function classes generated artificially.

3. Experimentally compare the effect that strategies of defining the objective
function surrogate Lipschitz bounds of different tightness within a sim-
plex have on the performance of optimization algorithms.

4. Generalize the suggested algorithm to the multi-objective problems and
experimentally evaluate the efficiency of the obtained algorithm in com-
parison to the state-of-the-art genetic algorithm.

1.4 Scientific Novelty and Results

In the context of single-objective simplicial optimization of hard multi-modal
global optimization problems it was suggested to combine two criteria to select
subregions for further partitioning. The first criterion is the minimum value of
the surrogate Lipschitz bound for the simplex and the second one is the sim-
plex diameter. An algorithm based on the proposed idea was experimentally
demonstrated to outperform other considered algorithms in the worst-case sce-
nario for hard global optimization problems.

For the implementation of the proposed algorithm several strategies regarding
the computing of the surrogate Lipschitz bound for the simplex were consid-
ered. The main differences between them lie in the tightness of the reduced
surrogate Lipschitz bounds for the simplex and the associated computational
complexity. It was experimentally determined that increasing the surrogate
Lipschitz bound tightness does not necessarily result in the improved algorithm
efficiency in terms of the number of objective function evaluations.

A generalization strategy transforming a single-objective partition-based Lip-
schitzian global optimization algorithm into a multi-objective optimization al-
gorithm was suggested, based on the ideas considered previously in one-step

4



1.5. Statements Defended

worst-case optimal bi-objective Lipschitzian optimization algorithm. The sug-
gested strategy was applied to generalize the proposed algorithm to the multi-
objective case. The resulting multi-objective optimization algorithm was shown
to compare similarly to the popular genetic algorithm for low-dimensional prob-
lems.

1.5 Statements Defended

The statements defended in this thesis are:

1. The proposed global optimization algorithm L is more efficient with
respect to the number of objective function evaluations than other popu-
lar alternatives in the worst-case scenario for complex global optimization
problems.

2. Using stricter surogate Lipschitz bounds does not necessarily improve the
efficiency of D-type global optimization algorithms with respect to
the number of objective function evaluations.

3. The multi-objective version of the proposed algorithm performs similarly
to a popular genetic algorithm NSGA-II with respect to the number of
function evaluations for low-dimensional multi-objective optimization prob-
lems.

1.6 Approbation of the Thesis Results

The main findings of this thesis are published in peer reviewed periodicals
Jaunųjų mokslininkų darbai, Journal of global optimization and in peer reviewed pro-
ceedings of the international conferences Numerical Computations: Theory and
Algorithms and International Workshop on Optimization and Learning: Challenges
and Applications. In addition, the results of the thesis were presented in 9 inter-
national and national conferences. Full references of the publications and titles
of the presentations are provided in the Chapter Publications by the Author.
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Chapter 2

A Review of Global Optimization of
Lipschitz-Continuous Functions

This chapter presents a review of the origins and recent advancements in the
field of global optimization of functions complying with the Lipschitz objective
function model. The fundamental assumption of this model is the bounded
slope of the objective function with respect to the decision variables. The func-
tion might be given either as a black-box computer code computing values at
the given points, or explicitly. This mathematical model has attracted a lot of at-
tention due to its suitability for theoretical investigation as well as applicability
to practical problems.

2.1 General Global Optimization Problem

Let a continuous function f pxq : D Ă Rd Ñ R be defined, such that D is a
bounded, robust set. Then the general global optimization problem is to find

min
xPD

f pxq, (2.1)

D “ rl, us “ tx P Rd : li ď xi ď ui, i “ 1, ..., du. (2.2)

The set D is called the feasible region (feasible set). The function f pxq is called
the objective function. It is customary to refer to f pxq as a black-box if its val-

6



2.2. Lipschitz Global Optimization Problem

ues can be retrieved at arbitrary points of D, but explicit functional form of the
function is unknown. The source of difficulty in the general problem statement
(2.1) is the potential presence of multiple local minima of f pxq in D, and the
consequence is that local optimization techniques are not adequate for solving
it.

The set of solutions to (2.1) is denoted X˚ “ tx˚ : f px˚q “ minxPD f pxqu. Each
point x˚ P X˚ is called a global minimizer and value f ˚ “ f px˚q, x˚ P X˚ is
called the global minimum.

The problem (2.1) is generally difficult to solve precisely, therefore numerical
approximations are employed. For example, it might be sufficient to find a point
located close enough to one of the points in X˚. Alternatively, the approxima-
tion of f ˚ might be sought within some predefined tolerance ϵ:

px˚
P D : f ppx˚

q ď f ˚ ` ϵ, ϵ ą 0. (2.3)

An ϵ-convergent algorithm will find an ϵ-optimal point px˚ in a finite number of
trials.

Various specific cases of the general problem (2.1) have been addressed in the
literature [69]. They differ in the assumptions concerning D and f , allowing to
propose case-specific algorithms.

2.2 Lipschitz Global Optimization Problem

When the objective function f pxq is assumed to be Lipschitz-continuous on D,
i. e.

| f px1q ´ f px2q| ď L}x1 ´ x2}, @x1, x2 P D, (2.4)

the specification of the general global optimization problem (2.1) is obtained.
(2.4) is called the Lipschitz condition and function f pxq is said to satisfy it. In
this case constant L is called the Lipschitz constant. Usually the Euclidean norm
is used for } ¨ }, but different ones have also been found in the literature [64].

7



2. A Review of Global Optimization of Lipschitz-Continuous Functions

The model (2.4) is very general. Condition (2.4) is fundamental in order to ob-
tain deterministic estimates of the global minimum in a finite number of trials.
Without it the global optimum could only be estimated using probabilistic tools
or an infinite everywhere dense sequence of trial points [69]. It is important to
note that for applied black-box optimization problems where close to none ana-
lytical information is available about the objective function, the assumption (2.4)
is often useful and plausible. On the other hand, this assumption is attractive
from the theoretical point of view and a solid volume of research has been de-
voted to investigation of theoretical properties of the Lipschitzian optimization
algorithms.

Lipschitzian optimization algorithms often take advantage of the fact that lower
bound on the objective function value might be established using condition
(2.4):

gpzq “ max
xPX

t f pxq ´ L}x, z}u, z P D, (2.5)

where X is the set of already performed trial points. The bound allows to design
stopping conditions and eliminate regions of D as unpromising.

It was proved in [64] that when an analytical expression for a function is known,
it is possible to obtain the Lipschitz constant using this equation:

Lp “ supt}∇ f pxq}p : x P Du, (2.6)

∇ f pxq “

ˆ

B f
Bx1

, . . . ,
B f
Bxd

˙

, (2.7)

∇ f pxq is the gradient of f p¨q and 1{p ` 1{q “ 1, 1 ď p, q ď 8. Varying the value
of p, constants for various norms can be obtained.

However, the main disadvantageous aspect of the Lipschitz model is the ab-
sence of the constant L in practice. The minimal suitable constant L is usually
not known, although its valid overestimates can often be obtained. Imprecise
values of L mean that the lower bound (2.5) is unreliable. In addition, L might
vary considerably over D and a fixed value would decrease the efficiency of al-
gorithms or increase the risk of missing the global minimizer entirely. Besides
using a fixed value of L, provided in advance, the literature suggests approaches
to estimate it dynamically as the algorithm progresses or to consider at the same
time a set of possible values for L.
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2.3. Lipschitz Global Optimization Algorithms

2.3 Lipschitz Global Optimization Algorithms

In this section various algorithms for solving the global optimization problem
specified for Lipschitz-continuous functions are discussed. For an in-depth pre-
sentation of the field, books [29, 36, 69, 75, 83] are recommended.

2.3.1 Global Optimization Algorithm

Let us consider a sequence of points xi, i “ 1, . . . , m, xi P D, and define the
record value as

f m
min “ min

i“1,...,m
f pxiq. (2.8)

A global optimization algorithm could be defined as a generator of this se-
quence, ensuring that

f m
min Ñ f ˚, m Ñ 8. (2.9)

Value f m
min is accepted as an approximation of the global minimum and a point

xj, j P t1, . . . , mu, such that f pxjq “ f m
min, is accepted as an approximation of the

global minimizer.

The points in the sequence xi, yi “ f pxiq, i “ 1, . . . , m are referred to as trials or
objective function evaluations. When D Ă R, additional indexing of the trial
points is useful. When the points xi, i “ 1, . . . , m, are arranged in the increasing
order, they are denoted xm

i and satisfy xm
1 ď xm

2 ď ¨ ¨ ¨ ď xm
m.

The sequence xi, i “ 1, . . . , m, might either be fixed even before the global op-
timization algorithm starts to run, or determined dynamically when the algo-
rithm executes. In the first case such a global optimization algorithm is called
passive, while in the second case it is called adaptive.

9



2. A Review of Global Optimization of Lipschitz-Continuous Functions

2.3.2 The Source of the Lipschitz Constant

Global optimization algorithms targeting Lipschitz-continuous objective func-
tions can be categorized on the basis of the adapted approach of retrieving the
Lipschitz constant [76]. Algorithms relying on a straightforward assumption of
an a priori known Lipschitz constant are considered first. Then, some important
cases in which the Lipschitz constant is estimated dynamically are examined.
Finally, algorithms considering a set of all feasible Lipchitz constants are pre-
sented.

2.3.3 The Lipschitz Constant is Known

Let us start with the algorithms making the assumption that the Lipschitz con-
stant L is known in advance. It should be noted that these algorithms are more
of a theoretical interest, as the constant is usually unknown in practical situa-
tions.

2.3.3.1 Univariate Algorithms

Suppose that D Ă R and a global optimization algorithm has already produced
trials xm

i , f pxm
i q “ ym

i , i “ 1, . . . , m, xm
1 ď xm

2 ď ¨ ¨ ¨ ď xm
m. Suppose further that

a fixed value of L is provided. Then a Lipschitzian minorant of f pxq, x P D is
equal to

gmpxq “ max
i“1,...,m

pym
i ´ L|x ´ xm

i |q. (2.10)

Figure 2.1 provides an illustration for (2.10).

Alternative names for (2.10) appear in the literature, like the lower Lipschitz
bound for f pxq or the saw-tooth cover of f pxq. The endpoints of each subinterval
rxm

i , xm
i`1s are referred to as the basis points of a particular tooth of the Lipschitz

bound. Each tooth is characterized by its height, achieved at the peak point pxi.
The teeth of the lower bound gpxq provide information regarding the regions
of D, where it is still possible for x˚ to exist, called the region of indeterminacy.

10
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Figure 2.1: The objective function and its Lipschitzian minorant over a closed
interval.

Intervals where the tooth is completely above the current best value f m
min can

safely be discarded from analysis.

A lot of univariate Lipschitzian optimization algorithms estimating the global
minimum with accuracy ϵ have been reported in the literature. The most trivial,
but also the least efficient one, is the uniform grid search. For D “ rl, us, the
points xm

i are equally spaced: xm
i “ l `

ipu´lq
m , i “ 1, . . . , m. Their locations do

not depend on the algorithm progress, so this is a passive strategy. It provides
a guarantee that ϵ-convergence is reached in m “

Lpu´lq
2ϵ steps. The performance

of the uniform grid search algorithm is considered as a benchmark for the worst-
case situation.

At the other end of the spectrum, exclusively in the univariate case there ex-
ists an ideal benchmark algorithm, which was called the best possible algo-
rithm, proposed by Danilin [13, 14]. Since this algorithm uses a global mini-
mum value f ˚ as an input parameter, it is practically not applicable. The algo-
rithm produces a saw-tooth cover gmpxq where each tooth has a height equal to
f ˚ ´ ϵ and requires the minimum possible number of trials for an estimate of
f ˚ with ϵ precision. The algorithm is not designed to solve new optimization
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2. A Review of Global Optimization of Lipschitz-Continuous Functions

problems, but helps to evaluate other algorithms with respect to trials required
for ϵ-convergence.

It was established in [38, 84] that in case f pxq “ c, x P D, both uniform grid
search and the best possible algorithms make the same number of function eval-
uations before ϵ-convergence is guaranteed. This is considered the worst-case
scenario and for it there does not exist a sequential algorithm better than the
passive one. However, sequential algorithms perform better than the passive
ones on average.

Among globally ϵ-convergent sequential optimization algorithms, the Pijavskij-
Shubert algorithm [67, 81] has been the most widely studied. The central idea
of the algorithm is that at every iteration a point minimizing the current Lips-
chitzian minorant is found and the new objective function evaluation is made
there. The pseudocode of the Pijavskij-Shubert algorithm is provided in Algo-
rithm 1. The first step of the algorithm is to evaluate objective function values
at the bounds of the feasible region:

x1 “ l, x2 “ u, y1 “ f px1q, y2 “ f px2q. (2.11)

Further the main loop of the algorithm begins, which is terminated when the
condition f m

min ď f ˚ ` ϵ is satisfied. In each iteration a point xk`1 is selected to
assess the objective function value

gpxq “ max
iPt1,...,ku

pyi ´ L|x ´ xi|q, (2.12)

xk`1 “ arg min
xPrl,us

gpxq. (2.13)

The lower Lipschitz bound (2.12) gets stricter with each evaluation of the objec-
tive function. Value of (2.12) for the first six iterations of the Pijavskij-Shubert
algorithm is shown in Figure 2.2 .

The one-step worst-case optimality of the Pijavskij-Shubert algorithm was demon-
strated in [37, 38, 84], in the sense that the next function evaluation maximally
decreases the height of the saw-tooth cover. It is known that this algorithm
could require 4 times the number of trials used by the best-possible algorithm
to ensure ϵ-convergence [31]. For the worst-case function, the Pijavskij-Shubert

12



2.3. Lipschitz Global Optimization Algorithms

Algorithm 1: Pijavskij-Shubert
1 Input l - lower bound of the feasible region, u - upper bound of the

feasible region, f p¨q - objective function, L - Lipschitz constant of the
objective function, ϵ - precision of the solution.

2 Function PS( l, u, f , L, ϵ ):
3 x1 “ l, x2 “ u
4 y1 “ f px1q, y2 “ f px2q, m “ 2
5 f m

min “ min
iPt1,...,mu

yi

6 gpxq “ max
iPt1,...,mu

tyi ´ L|x ´ xi|u

7 while f m
min ´ min

xPrl,us
gpxq ą ϵ do

8 m “ m ` 1
9 xm “ arg min

xPrl,us
gpxq

10 ym “ f pxmq

11 f m
min “ miniPt1,...,mu yi

12 return f m
min

algorithm takes twice the number of trials required for a uniform grid search.
The algorithm becomes similar to the uniform grid search when L is very large
[40]. The underlying assumption of a fixed constant L does not allow to adap-
tively decrease it and speed up the convergence when the basin of the global
minimum is found.

Attempts have been made to improve the efficiency of the Pijavskij-Shubert al-
gorithm in the cases similar to the constant-function scenario. For example,
approaches in [71, 85] allow for a mixture of a passive search strategy with the
Pijavskij-Shubert algorithm. The passive strategy predetermines a set of po-
tential trial locations and then the sequence xi, i “ 1, . . . , m, generated by the
Pijavskij-Shubert algorithm, is replaced with a sequence of the closest points on
the predermined grid. Another successful modification [30] suggested using
the Pijavskij-Shubert algorithm to discard sugregions of D where improvement
was not possible and exploring the rest of the search space via an approximated
version of the best possible algorithm. It was demonstrated in [29] that for small
ϵ the algorithm was close to the best possible in terms of efficiency.
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Figure 2.2: Illustration of the first six iterations of the Pijavskij-Shubert algo-
rithm.

2.3.3.2 Multivariate Algorithms

In the considerably harder case D Ă Rd, d ą 1 there have been several directions
of development.

The seminal paper by Pijavskij [67] proposed an approach where a multivariate
optimization problem is replaced by a large series of univariate optimization
problems. The variables are ordered and optimization is constructed as a set of
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nested univariate problems corresponding to the ordered variables. The prob-
lem is solved at the innermost level using the univariate Pijavskij algorithm,
when the values of higher-level variables are held fixed. This approach is mainly
of a theoretical interest and has not received much attention after its introduc-
tion as the number of problems to be solved grows multiplicatively with prob-
lem dimension d.

Another approach to cast the multivariate problem as a univariate one was with
the help of Peano curves [7, 82]. The feasible region D is covered by a one-
dimensional curve of a desired granularity and the univariate optimization al-
gorithm is executed over this curve. The downside of the approach is the in-
creased number of local minima, arising because the Peano curve crosses the
region of attraction of a particular optimum several times.

Besides the ideas of reusing single-objective optimization algorithms, there have
been a number of solutions to generalize the original univariate Pijavskij algo-
rithm for higher dimensions [3, 39, 56, 58, 67, 86]. All these algorithms sug-
gested a way to construct a Lipschitzian minorant of f pxq, analogous to the
saw-tooth cover in the univariate case. The teeth in this case are cones, and non-
linear systems of equations have to be solved at each iteration of an optimiza-
tion algorithm in order to find their intersections and locations of all possible
local minima of the minorant. Various simplifications of this complex process
were the subject of research in this category. Algorithms in this category grow
markedly slower with the increase of trials.

In comparison to other approaches in the multivariate case, the most promising
one was based on the divide-and-conquer principle, embodied by the branch-
and-bound framework [33, 36]. Algorithms defined within this framework share
the same general outline: the optimization problem over the feasible region is
partitioned into a set of subproblems over smaller subregions, for each sub-
region a lower bound of f pxq is computed based on the bounds the next sub-
problem to be solved is selected and further divided. However, the particular
definition of these steps differs [23, 27, 57, 68]. This approach is faster and eas-
ier to implement than the previous ones that use a single Lipschitzian minorant
covering the whole feasible region [29].

The subproblems in the branch-and-bound framework might be defined over
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subregions of different shape, for example, both rectangular [69, 74] and simpli-
cial [11, 65] subsets were used. The simplicial subsets are preferable for certain
types of problems, where the feasible region may be expressed as a moderate
number of simplices, e. g. when f pxq has symmetries or in case of linear con-
straints [9, 34, 35, 61, 92].

2.3.4 The Lipschitz Constant is Estimated

Having an accurately known Lipschitz constant in advance is questionably a
realistic scenario. A far more practically justified approach would be to obtain
a dynamic estimate of the Lipschitz constant L in the course of execution of
the optimization algorithm, e. g. [48, 80]. Some algorithms maintain a single
global estimate of L pertaining to the whole feasible region D, e. g. [36, 69, 83].
Although this is a more reasonable approach than to expect an a priori known
constant L, it has a disadvantage that the obtained estimate is too general and is
likely to misrepresent the rate of change of f pxq over some of the subregions of
D. This can occur when the objective function has a great slope in certain areas,
while in others it is relatively flat. Such inaccuracy in estamation of L might lead
to severe problems for an optimization process. When the estimate is too low,
it is possible to miss the global minimum entirely. On the contrary, a too high
estimate of L implies a complex structure of f pxq, characterized by marked os-
cillations and narrow regions of attraction of the minima. In such a situation the
optimization algorithm would converge towards the global minimum slowly.
To improve the correspondence of an estimate of L to the actual rate of change
of the function over a certain region, approaches using local estimates of L were
suggested [45, 55, 60, 73, 83]. In particular an approach called local tuning [45,
73, 79, 83] allows to adaptively estimate L over D, balancing local and global
information during the search.
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2.3.5 The Lipschitz Constant Varies over a Set

2.3.5.1 The D Algorithm

An original idea of simultaneously considering a set of Lipschitz constants in-
stead of a single one first appeared in the D algorithm [40]. The rationale
behind D was to provide a generalization of the Pijavskij-Shubert algo-
rithm to the multivariate case, with the advantage of removing the limitation
of using a fixed Lipschitz constant. The specific way in which a set of possi-
ble Lipschitz constants could be considered proved very successful in ensuring
adaptive balance between local and global search, and sparked a lot of scien-
tific interest. As its further advantages the applicability to black-box problems,
a low number of parameters and satisfactory performance could be mentioned
all of which enabled to use D to address modern engineering problems [2,
4, 8, 12, 32, 72].

The algorithm follows the general outline of the branch-and-bound techniques
so that the original global optimization problem is divided into smaller sub-
problems, which are iteratively divided further until the maximum allowed
number of function evaluations is reached. Initially the optimization problem
is defined over a unit hyper-rectangle. After each iteration a number of new
hyper-rectangles appear by dividing those from the previous iteration. An ar-
rangement of all hyper-rectangles on a two-dimensional plane is proposed, al-
lowing to spot the ones with the lowest Lipschitz bound with respect to at least
one possible Lipschitz constant. This is achieved when the x coordinate of the
plane corresponds to the half-diagonal of the hyper-rectangle and the y coor-
dinate corresponds to the f pxq value at the center of the hyper-rectangle (Fig-
ure 2.3).

The selection of the next set of hyper-rectangles to be divided takes place based
on their lower Lipschitz bound, expressed in terms of potential optimality. That
is, a hyper-rectangle Sj is called potentially optimal if there exists a constant
rL ą 0 and some ϵ ą 0 satisfying
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Figure 2.3: Illustration of the selection of hyper-rectangles in D.

f pcpSjqq ´ rL dpSjq ď f pcpSjqq ´ rLdpSiq, @Si P S, (2.14)

f pcpSjqq ´ rL dpSjq ď fmin ´ ϵ| fmin|, (2.15)

where cp¨q is the center point of the respective hyper-rectangle, dp¨q is the dis-
tance from the center point to one of hyper-rectangle's vertices, fmin is the best
observed objective function value and ϵ is a positive constant (usually ϵ “ 0.0001
value is used). The first condition ensures that with at least one constant rL the
lower bound of f pxq over hyper-rectangle Sj is the lowest with respect to all
other hyper-rectangles. The second condition requires a non-trivial improve-
ment over the current record value. When a line with slope rL is extended from
a point j in Figure 2.3 towards the y axis, the intersection occurs at a height equal
to the lower Lipschitz bound of f pxq over hyper-rectangle Sj. For a potentially-
optimal hyper-rectangle the rest of the points happen to be located above this
line. All potentially optimal hyper-rectangles could be collected by identifying
the points on the lower-right side of the convex hull of the point set in Figure 2.3.
The selected potentially-optimal hyper-rectangles are divided employing a par-
ticular trisection scheme that ensures the grouping of points along the x axis in
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the illustration. For more detailed description of the D algorithm refer to
[6, 40, 65].

A great advantage of D is the dynamic balancing of local and global search
as hyper-rectangles of various sizes are selected and divided at each iteration.
This way refinement takes place both on a large and small scale. Furthermore,
there is no need to have an analytical objective function definition for the algo-
rithm to operate. On the other hand, the notable disadvantage is that the quick
identification of the approximate location of the global solution is followed by a
very slow refinement of its neighbourhood. The smallest hyper-rectangles that
are near the global minimum are massively selected by conditions (2.14) and
(2.15) which makes the algorithm inefficient as it progresses.

2.3.5.2 Modifications of the D Algorithm

The main weaknesses of the algorithm were pointed out in various subsequent
modifications, e. g. [10, 19, 52]. Some of them suggested certain structural
changes within the D itself. For example, in the version of D called
aggressive [2] the requirement of potential optimality was loosened and at each
iteration hyper-rectangles characterized by the lowest objective function value
were selected. That way the number of divided hyper-rectangles could be in-
creased. Another version, called locally-biased D [22], suggested reducing
the number of horizontal groups in Figure 2.3 by applying a coarser group-
ing mechanism as well as limiting the number of selected hyper-rectangles per
group. Thus the number of divided hyper-rectangles was decreased and more
focus was given to refinement on a smaller scale.

As an alternative approach, an idea to combine a D-like base solver with an
external mechanism for filtering the hyper-rectangles by size according to im-
provement monitored during the operation of the solver was initially raised in
[77]. Instead of the original D as a base solver, its certain modification was
used, employing an adaptive diagonal partitioning strategy. It was suggested
to define two modes of operation - local and global - and allow the solver to
work only with larger hyper-rectangles in the global mode and smaller ones
in the local mode. Switching to the global mode happened when no consider-
able improvement occurred for some iterations, ensuring that the partitioning
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of small hyper-rectangles does not consume too many resources. Similar dual-
mode ideas were then extended to the case of Lipschitz simplicial optimization
in [63].

Further developments in the direction of applying a level-based approach in
combination with D appeared for two [50] and more levels [49]. The hyper-
rectangles are taken into consideration based on the current level or scale of the
algorithm. Starting from the coarsest scale, where all hyper-rectangles are visi-
ble to the algorithm, on finer scales a percentage of the larger hyper-rectangles
is hidden, while on the finest scale only the very smallest hyper-rectangles can
be divided. In such manner certain regions can be explored very accurately.

It was noticed that when a high precision of the global minimum approximation
is required, D might be unable to reach it because the computer memory
is overfilled with definitions of numerous hyper-rectangles and the algorithm
cannot proceed. Therefore in [51, 53] it was suggested to apply a local optimiza-
tion algorithm in combination with D as a global search algorithm to speed
up convergence. At each iteration of D a local optimization algorithm is ex-
ecuted starting from the centers of all potentially optimal hyper-rectangles. In
addition, repeated runs of the whole combined algorithm are made after the fea-
sible region D has been transformed according to the results of previous runs.
The achieved gain in precision is counterbalanced by this extremely expensive
optimization process.

Further interesting extensions for D resulted from adapting it for objec-
tive functions with Lipschitz-continuous derivatives [46, 47] and exploiting the
symmetry of the Lipschitz-continuous objective function [28].

An alternative interpretation of points in Figure 2.3 is presented in [59], where it
was suggested to treat the selection of hyper-rectangles for partitioning as a bi-
objective optimization problem. The objectives correspond to the half-diagonal
of a hyper-rectangle and function value at its center location.

2.3.5.3 The D- Algorithm

Among the various modifications of D, the one called D- [66] is of
special interest for the purposes of this thesis.
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The D algorithm [66] is based on D, but simplicial partitioning is used
instead of rectangular. D- and D- versions are provided by the
authors. The middle point of the simplex is used in D- to characterise the
subregion, while the vertex with the smallest objective function value is used
in the D- algorithm. The performance of the D- algorithm was
shown to be better, therefore only D- is described in this section. The
pseudocode of the D- algorithm is provided in Algorithm 3.

Initially, the feasible region is rescaled to the unit hyper-cube

D “

!

x P Rd : 0 ď xi ď 1, i “ 1, ..., d
)

. (2.16)

Then the feasible region is covered by face-to-face simplicial partition, which
is obtained by applying the combinatorial vertex triangulation algorithm [65]
(pseudocode provided in Algorithm 2). The initial partition produces d! equal
simplices which share 2d vertices vi, i “ 1, . . . , 2d, of the hyper-cube. The objec-
tive function values are computed at the vertices of the unit hyper-cube.

The main loop of the algorithm begins and at each iteration potentially opti-
mal simplices are selected and divided. At the first iteration, all simplices are
selected and bisected along their longest edges. In the following iterations, po-
tentially optimal simplices are selected and each of them is bisected along its
longest edge. The arbitrary simplex Sj is potentially optimal if there exists some
rate-of-change constant rL such that:

min
vPVpSjq

f pvq ´ rL∆pSjq ď min
vPVpSiq

f pvq ´ rL∆pSiq, @Si P S, (2.17)

min
vPVpSjq

f pvq ´ rL∆pSjq ď fmin ´ ϵ| fmin|, (2.18)

where ∆pSjq denotes the length of Sj longest edge (i. e. diameter of the simplex),
VpSjq is a set of vertices of simplex Sj, fmin is the best observed objective function
value in an arbitrary iteration and ϵ is a positive constant (usually ϵ “ 0.0001
value is used). The iterative process is repeated until the stopping criteria are
satisfied, for example, stopping criterion can be exhausting the budget Mmax of
trials.

It was shown in [63] that D- method, which uses simplicial partition-
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Algorithm 2: Combinatorial vertex triangulation algorithm for d-
dimensional unit-cube
1 Input d - dimension of the unit hyper-cube.
2 Function T( d ):
3 Initialize a set of simplices S “ H.
4 for t = one of all permutations of {1, ..., d} do
5 for j = 1, ..., d do
6 v1,j “ 0

7 for i = 1, ..., d do
8 for j = 1,..., d do
9 vpi`1q,j “ vi,j

10 vpi`1q,ti
“ 1

11 S “ S Y tvu

12 return S

Algorithm 3: D-
1 Input l - vector containing lower bounds of the feasible region, u - vector

containing upper bounds of the feasible region, f p¨q - objective function,
Mmax - number of maximum function evaluations.

2 Function DV( l, u, f , Mmax):
3 Normalize the feasible region D to be the unit hyper-cube D.
4 Cover D by face-to-face simplices S “

␣

Si : D “ YSi, i “ 1, ..., d!
(

using combinatorial vertex triangulation algorithm.
5 Evaluate t f pviq : vi unique vertex of S, i “ 1, ..., 2du. Find fmin, m “ 2d.
6 while m ă Mmax do
7 Select a set of potentially optimal simplices for division. foreach

Sl P P do
8 Divide Sl into two new simplices S1

l , S2
l , by adding a vertex v in

the middle of the longest edge of Sl.
9 Update S “ Sz

␣

Sl
(

Y
␣

S1
l , S2

l
(

. If v is a new vertex, evaluate
f pvq, set m “ m ` 1 and update fmin.

10 return fmin.

ing, outperforms D and locally-biased D methods, which use hyper-
rectangular partitioning strategies. Basically, the only difference between D-
 and D- algorithms is the partitioning strategy. It was also demon-
strated, that the methods using simplicial partitioning strategies perform partic-
ularly well when symmetries of the objective function may be taken into account
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to reduce the search space. In this thesis, we have decided to design algorithms
using simplicial partitioning in order to benefit from its advantages.

As a further development of D- algorithm, using it as a base solver in a
dual-mode, algorithm G-D- [63] was proposed. The G-D- algo-
rithm is a modification of D- achieved by adding a globally biased opti-
mization phase. Therefore, G-D- consists of the following two-phases:
a usual phase (as in the original D- method) and a global one. The usual
phase is performed until a sufficient number of subdivisions of simplices near
the current best point has taken place. Once these subdivisions around the cur-
rent best point have been executed, its neighborhood contains only small sim-
plices and all the larger ones are located far away from it. Thus the two-phase
approach forces the G-D- algorithm to explore larger simplices and to
return to the usual phase only when an improved minimal function value is
obtained. Each of these phases can consist of several iterations.

In particular, during the usual phase the G-D- algorithm tries to explore
better the subregion around the current best point. This phase finishes when a
relative (with a coefficient τ) improvement of the minimal function value is not
reached in imax

u iterations.

After the end of the usual phase the method is switched to the global phase. The
global phase consists of subdividing mainly large simplices, located possibly
far away from the current best point. It is performed until a function value
improving the current minimal value by at least 1% is obtained. When this
happens, the algorithm again switches to the usual phase during which the
obtained new solution is improved. During its work the G-D- algorithm
can switch many times from the usual phase to the global one.

2.4 Deterministic versus Metaheuristic Approaches

To better understand the position of Lipschitzian optimization with respect to
other algorithms, it is worth considering a distinction between deterministic
and stochastic algorithms. Deterministic algorithms are characterized by the
fact that for a given input they produce the same result irrespectively of the
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number of times such algorithms are run. On the contrary, stochastic algo-
rithms use some random elements during their execution and therefore mul-
tiple runs of such algorithms produce different results given the same initial
input. Expectations regarding the solution that these two classes of algorithms
can produce differ in the following way. The stochastic methods provide a guar-
antee that in infinite number of trials the exact global minimum will be found
with probability 1, whereas the deterministic methods guarantee to find an ap-
proximation of the global minimum to be found with required precision in a
finite sufficiently large number of trials. The large number of trials required by
the deterministic approaches is compensated by the advantage of there being no
need for repeated runs, which are necessary in the case of stochastic algorithms.
Lipschitzian algorithms are usually deterministic.

Various classes of stochastic algorithms are known [5, 20, 62], among which the
metaheuristic nature-inspired algorithms have gained great popularity, espe-
cially in the context of multi-objective optimization. These include evolution-
ary algorithms [15, 70], simulated annealing [1, 54], swarm intelligence algo-
rithms [17, 41, 42, 87, 88]. All of these algorithms are widely used for solving
applied large-scale optimization problems. However, it is important to note that
the choice between metaheuristic and deterministic approaches to a particular
practical problem should be made often careful consideration of the related im-
plications. For example, the user of the algorithm has to keep in mind that the
solution produced by a metaheuristic algorithm does not guarantee to be a glob-
ally optimal one. The only thing known is that the generated solutions do not
dominate each other. Moreover, the metaheuristic approaches might be costly
as the repeated runs consume a great amount of generally expensive objective
function evaluations. To aid the user in making this choice, a systematic ex-
perimental comparison of algorithms in both categories is provided in a recent
study [44]. Among the evolution-based algorithms, SPEA 2[95] and NSGA-II
[15] have become de facto standard approaches.
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Chapter 3

Proposed Algorithms and Their
Experimental Investigation

3.1 Global Optimization Algorithm Using a Global
Estimate of the Lipschitz Constant

In practice, the Lipschitz constant is usually not known for global optimization
problems. Among the most commonly used Lipschitzian optimization algo-
rithms to solve this problem is D algorithm (described in section 2.3.5.1.)
and its modifications.

The first advantage of the D algorithm is that it combines both the global
and local search by dividing subregions of different sizes in each iteration, and
the global minimum point is guaranteed to be found when the number of tri-
als tends to infinity. The second advantage is that simple Lipschitzian bounds,
constructed only from the center points of subregions, are used. Hence, numer-
ical computations to find the minimum of the lower Lipschitz bounds are very
low, because it can be found analytically.

However, D algorithm has several disadvantages as well. For example,
Lipschitz constant estimates are selected from a very large set (r0, 8q). Hence,
more accurate estimates may be used. Secondly, D-type algorithms often
spend an excessive number of function evaluations on problems with many lo-
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cal optima exploring suboptimal local minima, thereby delaying the discovery
of the global minimum.

In this section, a Lipschitzian optimization algorithm for constrained global op-
timization problems (2.1),(2.4) with unknown Lipschitz constant is proposed.
The idea to select and divide several subregions of different sizes is borrowed
from D-type algorithms. The main differences between the proposed and
D-type algorithms are:

1. a single Lipschitz constant estimate instead of a set of Lipschitz constants
is used in each iteration;

2. simplicial instead of rectangular partition is used for decomposition, just
like in D- and G-D-;

3. the proposed algorithm has a single parameter α P r0, 1s, which allows to
select the globality of the search. The higher α value, the more global the
search is.

In addition, several modifications of the proposed algorithm are numerically
compared. Firstly, different types of Lipschitz bounds are experimentally com-
pared. Secondly, different strategies for selecting subregions for division are
experimentally compared. Finally, different strategies to evaluate the Lipschitz
constant estimate are compared.

3.1.1 Description of the L Algorithm

Initially, the feasible region is rescaled to the unit-hypercube; consequently it is
assumed that partition of the feasible region is a standard face-to-face simpli-
cial partition of the unit-hypercube by the combinatorial vertex triangulation
[65] (pseudocode provided in Algorithm 2). The initial partition produces d!
equal simplices which share 2d vertices vi, i “ 1, . . . , 2d, of the hypercube. The
objective function values are computed at the vertices of the hypercube. Next,
using the computed objective function values and the mutual distances between
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the corresponding vertices, the initial estimate of the Lipschitz constant rL is ob-
tained as maximum of

| f pviq ´ f pvjq|{||vi ´ vj||, i ‰ j. (3.1)

At the current iteration, rL is updated in case the approximation of directional
derivative (3.1), based on the newly computed function values and the corre-
sponding edges of new simplices produced at that iteration, is larger than the
current rL.

To select simplices for subdivision, two criteria are applied. The first criterion is
the approximation of minimum of the surrogate Lipschitz lower bound found
over the simplex in question. A surrogate Lipschitz lower bound for the sim-
plex Si is defined using the smallest of the function values at the vertices of the
considered simplex and the current estimate of the Lipschitz constant rLk:

GpSi, rLkq “ min
vjPVpSiq

f pvjq ´ rLk∆pSiqα, (3.2)

where VpSiq is the set of vertices of Si, ∆pSiq is the diameter of Si and α ě 0 is a
parameter of the proposed algorithm by which the globality of the search can
be regulated. The larger values of α lead to a more global search, while α “ 0
leads to a global optimization algorithm D- [66], which tends to perform
an excessively local search.

The second selection criterion is the diameter of the simplex: ∆pSiq.

An algorithm of simplicial partition with the criterion of selection for subdivi-
sion Gp¨q can be seen as a modification of the multi variable P-S
algorithm where the feasible region is partitioned by simplices, the validated
Lipschitz constant is replaced by its estimate, and a computationally simple ver-
sion of the Lipschitz lower bound is used.

The definition of the estimate of the Lipschitz constant is complicated since even
the smallest true Lipschitz constant of the function in question does not neces-
sarily adequately represent its overall behaviour. For example, in the case of
steep growth of function values close to the boarder of the feasible region and
relatively flat hyper surface of the function elsewhere, the Lipschitz constant
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might not be an appropriate characteristic of the function over the majority of
the feasible region.

However, normally the directional derivatives close to minimizers are consid-
erably smaller than finite differences based estimate of the Lipschitz constant,
despite the latter itself being smaller than a validated Lipschitz constant. Such a
discrepancy can cause too frequent computation of the objective function in the
relatively close neighborhood of the currently found best points. The density
of sites for computation can be controlled heuristically adapting the estimate
of the Lipschitz constant to different subregions of the feasible region. In this
section a different method is proposed: in order to increase the density of com-
puting sites in relatively sparse subregions the second selection criterion ∆p¨q is
introduced strengthening the priority of selection of large simplices. As a result,
the selection of a set of simplices for partitioning at the current iteration can be
viewed as a two-criteria optimization problem, where the criteria are expressed
by Gp¨q and ∆p¨q, and one seeks to minimize Gp¨q and maximize ∆p¨q:

min
SiPS

pGpSiq, ´∆pSiqq. (3.3)

A set of simplices that correspond to the supported Pareto optimal solutions
to this problem is selected for division to ensure that the best compromises be-
tween (3.2) and ∆p¨q are captured and that the selected set is of a moderate size.
The set of Pareto optimal solutions to (3.3) problem might be found using Al-
gorithm by applying it to each simplex in partition. The selected simplices are
subdivided by bisection of the longest edge of the selected simplices. The ob-
jective function values are computed at the middle points of the bisected edges.
The function values are stored in a balanced tree data structure and are not com-
puted repeatedly but read from the structure if computed at previous iterations.

The convergence of the proposed algorithm is implied by the fact that a simplex
with the longest diameter is subdivided at each iteration. Such a simplex is se-
lected at each iteration since it inevitably belongs to the set of supported Pareto
optimal solutions: its two dimensional vector of objectives Gp¨q and ∆p¨q obvi-
ously belongs to the Pareto front as a vector with the maximum value of one
of the objectives. The investigation of the rate of convergence is more difficult.
Meanwhile the performance of the algorithm is assessed by testing experiments
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presented in the next section.

Algorithm 4: L - the proposed algorithm
1 Input l - vector containing lower bounds of the feasible region, u - vector

containing upper bounds of the feasible region, f p¨q - vector containing
objective functions, Mmax - number of maximum function evaluations.

2 Function L( l, u, f, Mmax):
3 Normalize the feasible region D to be the unit-hypercube D.
4 Cover D by face-to-face simplices S “

␣

Si : D “ YSi, i “ 1, ..., d!
(

using combinatorial vertex triangulation algorithm.
5 Evaluate t f pviq : vi unique vertice of S, i “ 1, ..., 2du. Set m “ 2d, rL “ 0.
6 while stopping condition not satisfied and m ă Mmax do
7 foreach Sl P S do
8 Find rLl “ max

!

| f pviq´ f pvjq|

||vi´vj||
: vi, vj P VpSlq, vi ‰ vj

)

.

9 Update rL “ max
␣

rL
(

Y

!

rLl : Sl P S
)

.
10 foreach Sl P S do
11 find GpSl, rLq “ minviPVpSlq

f pviq ´ rL∆pSlqα

12 Identify a set of simplices for division:
13

P “ tSi : Si P S, Si is supported Pareto optimal solution to p3.3qu

14 foreach Sl P P do
15 Divide Sl into two new simplices S1

l , S2
l , by adding a vertex v in

the middle of the longest edge of Sl.
16 Update S “ Sz

␣

Sl
(

Y
␣

S1
l , S2

l
(

. If v is a new vertex, evaluate
f pvq and set m “ m ` 1.

17 return fmin

We have entitled the proposed algorithm L (LIpschitz Bounds Rough Esti-
mation), since the approximation of the Lipschitz bounds (3.2) is constructed
using only one vertex with the smallest function value and, in addition, it is de-
fined using an estimate of the Lipschitz constant. The pseudocode of the pro-
posed algorithm is presented in Algorithm 4. It has been implemented in C++,
avoiding repetitive calculations, e.g. approximations (3.2) were updated only
if the lower bound of the Lipschitz constant has changed. Only unique func-
tion evaluations were calculated. The source code of this algorithm is provided
under Affero GPL v3 (or greater) licence in the Appendix B.

To illustrate the main properties of the proposed algorithm, some intermediate
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Figure 3.1: The values of the objective function presented by the level lines
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Figure 3.2: The subdivision of the feasible region by triangles. The triangles se-
lected for the subdivision at the current iteration are indicated by thicker edges
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Figure 3.3: The two dimensional vectors of criteria computed for the triangles
shown in Figure 3.2
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Figure 3.4: The distribution of points where the values of the objective functions
were computed
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and final results of the minimization are presented graphically. In this example,
the objective function was generated using GKLS [24] test function generator;
the problem class 2 and function ID 1 were selected. In Figure 3.1, the consid-
ered test function is presented by the level lines; the global minimizer is indi-
cated by a star. The triangular (simplicial) partition of the feasible region after
35 iteration (101 objective function values are computed) is shown in Figure 3.2
where 7 non-dominated triangles are indicated by the thicker edges. These tri-
angles correspond to three points which compose the Pareto front; see Figure
3.3. One of the points represents four largest triangles which share the vertex
with the smallest (among the computed at vertices of these triangles) objective
function value. Similarly, one point represents two smallest non-dominated
triangles. A single triangle of the intermediate size is also represented in the
Pareto front.

The optimization process was terminated according to the (3.4) rule which is
used in testing experiments in Sect. 3.1.2 and described there. 97 iterations
were performed, and 276 values of the objective function were computed. The
distribution of points, where the function values were computed, is shown in
Figure 3.4. The higher density is seen in the vicinity of the global minimizer.

3.1.2 Experimental Investigation

The algorithm was developed aiming at difficult optimization problems where
the local minima are like spikes in a slowly changing landscape. Therefore its
performance was tested using the GKLS-generator [24] which generates test
functions with desirable characteristics. In our experiments, the same classes of
test functions as in [63, 66, 78] were used, i.e. the randomly generated differen-
tiable test functions with the parameters presented in Table 3.1. These functions
are constructed as a (relatively flat) background hyper paraboloid with added
“spikes” defined by polynomials. The complexity of problems depends on the
extent of the region of attraction of the global minimizer and its distance from
the minimum point of the background paraboloid.

The following parameters are common to all test functions: the number of lo-
cal minima is equal to 10, and the global minimum is equal to ´1. The specific
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Table 3.1: Description of the GKLS test function classes

Class Difficulty d Number of minima f ˚ ρ r δ

1 Simple 2 10 -1 0.90 0.2 10´4

2 Hard 2 10 -1 0.90 0.1 10´4

3 Simple 3 10 -1 0.66 0.2 10´6

4 Hard 3 10 -1 0.90 0.2 10´6

5 Simple 4 10 -1 0.66 0.2 10´6

6 Hard 4 10 -1 0.90 0.2 10´6

7 Simple 5 10 -1 0.66 0.3 10´7

8 Hard 5 10 -1 0.66 0.2 10´7

parameters of different classes of test functions are presented in Table 3.1. The
following notation is used: ρ - the distance of global minimizer from the mini-
mum point of the background paraboloid, r - the radius of the attraction region
of global minimizer. Let us recall that d denotes the dimensionality of the prob-
lem. Experiments were performed using 8 different classes of the test functions.
The classes are named “hard” in case their ρ is relatively large, and r is relatively
small.

First, we aimed to evaluate an appropriate value of the parameter α. The ex-
periments were planned using the testing methodology identical with that in
[63, 66, 78]. The minimization process is stopped after m-th computation of the
objective function value if the distance between the global minimizer and xm,
the closest site, where an objective function value was computed, falls below a
predefined threshold ϵ “

d
?

δ. The algorithm also was supposed to stop after
106 function evaluations in case the previous stopping condition has not been
satisfied. However, during our experiments such a termination, meaning that
the global minimizer is lost, did not take place.

To implement such a stopping condition, the global minimizer of the considered
objective function should be known; let it be denoted by x˚; let us note that
x˚ P D. The stopping condition is satisfied, when a point x P D is found, which
satisfies the following condition:

|xi ´ x˚
i | ď

d
?

δpui ´ liq, i “ 1, ..., d, (3.4)

the δ value is provided in Table 3.1.
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Table 3.2: The influence of α on the performance of the proposed algorithm, i.e.
on the numbers of function evaluations (average, median, largest) made before
stopping; a hundred randomly generated test functions from every GKLS class
were minimized

# L α Average Median Largest # L α Average Median Largest

1

0.01 185.94 140 810

4

0.01 2322.49 2042 6960
0.2 136.18 116 428 0.2 1142.39 949 3337
0.4 151.92 145 371 0.4 1448.94 1386 3484
0.6 217.16 216 425 0.6 2976.24 2865 7554
0.8 280.92 274 505 0.8 4788.87 4528 12745
1.0 330.93 323 616 1.0 6796.57 6292 16722

2

0.01 940.08 909 2765

5

0.01 9994.97 6486 63849
0.2 513.26 483 1459 0.2 4793.12 3437 25048
0.4 431.53 397 1117 0.4 5339.45 4572 16968
0.6 475.18 453 935 0.6 8033.69 7228 19282
0.8 531.93 495 966 0.8 10415.30 9469 26604
1.0 581.62 579 1060 1.0 12593.80 10595 33889

3

0.01 975.21 737 4738

6

0.01 27599.00 23961 98295
0.2 621.48 523 2393 0.2 11188.10 9153 39736
0.4 1009.82 957 2113 0.4 8965.54 8422 23348
0.6 2071.96 2030 4360 0.6 10431.40 9606 25871
0.8 3461.76 3191 7285 0.8 12421.80 10856 31172
1.0 5021.94 4638 11517 1.0 14581.50 11764 38221

The impact of α parameter value on the efficiency of the proposed algorithm
was experimentally evaluated. The proposed algorithm was executed with a
set of different α values α P 0.01, 0.2, 0.4, 0.6, 0.8, 1.0 on randomly generated test
functions from six GKLS function classes. The results are presented in Table 3.2.
The comparison of the average and worst case performance of the algorithm for
different classes of test functions shows that the value α “ 0.4 is appropriate for
the objective functions of various complexity.

To compare the performance of the proposed algorithm (where α “ 0.4) with
the performance of other algorithms aimed at similar problems, the respective
results from Table 3.2 are also presented in Table 3.3 together with the corre-
sponding results from [63, 66] concerning the algorithms D- and G-
D-; the best results are presented in bold.

The experimental results indicate that the proposed algorithm is advantageous
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Table 3.3: Results obtained by solving 100 optimization problems from each
of the GKLS test function classes, using the stopping condition with a known
global minimizer

Class Difficulty Algorithm Average Median Largest

1 Simple
D- 192.93 151.0 773

G-D- 174.25 151.0 472
L α=0.4 151.97 146.5 371

2 Hard
D- 1003.56 1021.0 2683

G-D- 518.11 511.0 1547
L α=0.4 431.55 515.0 1117

3 Simple
D- 1061.83 787.0 4740

G-D- 751.25 720.0 2694
L α=0.4 1009.72 959 2113

4 Hard
D- 2598.91 2594.0 7354

G-D- 1364.40 1283.0 3723
L α=0.4 1449.18 1390 3484

5 Simple
D- 10618.00 7334.0 58764

G-D- 4579.24 4615.0 13825
L α=0.4 5340.43 4575 16968

6 Hard
D- 33985.20 29807.0 118482

G-D- 10700.20 10033.0 30759
L α=0.4 8965.73 8436 23348

7 Simple
D- 11200.4 7252 48590

G-D- 5997.37 4524 23126
L α=0.4 17305.2 13343 65622

8 Hard
D- 64751 42680 382593

G-D- 28946 22416 168067
L α=0.4 44000.4 36306 154277

for the most inappropriate test functions of "hard" classes; see column "Largest"
in Table 3.3.

3.1.3 Stopping Condition for Problems in Practice

In the previous 3.1.2 section stopping condition was associated with a global
minimizer which is known in advance for the test problems. In other cases
different stopping condition has to be used. In this section, a new stopping
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condition, which is associated with the estimated potential improvement of the
objective function, is proposed.

Worst-case one-step optimal algorithms [89–91] use a Lipschitz constant which
is known in advance. However, this is usually not the case in practice and find-
ing an accurate Lipschitz constant can be as hard as solving an optimization
problem itself.

To overcome this problem, we suggest using a lower Lipschitz bound rL on the
objective function values as an estimate of the Lipschitz constant. This estimate
tends to the true Lipschitz constant, as the number of function evaluations m
tends to infinity, i. e. rL Ñ L, when m Ñ 8. As a result, when the number of
evaluations is relatively high, we can estimate L accurately enough. Moreover,
in such a case the estimate of the potential improvement over the best known
objective function value, obtained using rL, is practically sufficiently accurate as
well.

Suppose that a global optimization algorithm has generated a simplicial decom-
position of the feasible region S. Then the estimate of the Lipschitz constant in
an arbitrary iteration can be defined as follows:

rL “ max

##

| f pviq ´ f pvjq|

||vi ´ vj||
: vi, vj P VpSzq, vi ‰ vj, Sz P S

+

Y

!

rL
)

+

. (3.5)

The focal idea of the present section is that an estimated potential improve-
ment, obtained using Lipschitz constant estimation technique (3.5), can be used
in constructing a stopping criterion for a wide range of algorithms.

To compute a stopping condition, an algorithm needs to rely on a decompo-
sition of the feasible region. Moreover, a method for estimating a Lipschitz
lower bound over any part of the decomposition has to be chosen. We defined
the stopping condition for the case when the decomposition is simplicial, but
it could also be extended to the case of other possible decomposition types. In
order for the results of several different algorithms to be comparable to each
other they all have to use the same method for estimating the Lipschitz lower
bound.

A method to estimate the Lipschitz lower bound over a simplex Si has been
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Table 3.4: Results obtained by solving 100 optimization problems from first four
GKLS test function classes, using a proposed stopping condition

Class Algorithm Average Median Largest

1
D- 3569.93 3574 5766

G-D- 1283.23 1292.5 1839
Proposed 170.46 181 393

2
D- 8756.84 9488 16286

G-D- 3246.03 3484.5 5464
Proposed 252.71 163 690

3
D- 58113.4 58963 97345

G-D- 18435.9 18248 31296
Proposed 1185.68 1115.5 2989

4
D- 100773 99300 174902

G-D- 32417.4 32660.5 58126
Proposed 1868.05 1899 3149

taken from algorithm D- [66]. Namely, for a Lipschitz constant estimate
rL,

GpSi, rLq “ min
vjPVpSiq

f pvjq ´ rL∆pSiq. (3.6)

This criterion has the advantage that it is easy to compute for simplicial sub-
regions of the feasible region in any dimension.

The stopping condition is associated with an estimated potential improvement
and is defined as:

max
!

fmin ´ GpSi, rLq : Si P S
)

ď ϵ, (3.7)

where fmin “ minvPVpSjq,SjPS f pvq.

We have implemented the stopping criterion (3.7) in three algorithms: the pro-
posed algorithm (described in Section 3.1.1, α “ 0.4), D- and GB-D-
. All the algorithms track the Lipschitz constant estimate (3.5), moreover, com-
pute (3.6) for simplices in the current decomposition and determine whether the
maximum estimated potential improvement is smaller than chosen ϵ (3.7).

The comparison of the number of objective function evaluations before the con-
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dition (3.4) is satisfied with ϵ “ 0.5 by the considered algorithms is presented
in Table 3.4 for the test function classes with parameters in Table 3.1.

As can be observed from Table 3.4, the proposed algorithm performs consider-
ably better than the alternatives, when estimated improvement (3.7) stopping
condition is used. One of the explanations of this difference in performance
could be that the stopping condition (3.7) is exclusively convenient for the L
algorithm. This is because the same definition of the estimate of the Lipschitz
constant is used both in stopping condition and in the L algorithm. In addi-
tion, the (3.6) expression used in stopping condition is very similar to the (3.2),
which is used in the L algorithm to select simplices for the subdivision.

3.1.4 Modifications

In this section several modifications of the proposed algorithm are numerically
compared. Firstly, different types of Lipschitz bounds are experimentally com-
pared. Secondly, different strategies for selecting subregions for division are
compared. Finally, a comparison is made between different strategies applied
to evaluate the Lipschitz constant estimate. The execution of the experiments
was automated by means of the utility tool described in Appendix Automation
of Experiment Execution and Result Aggregation.

3.1.4.1 Lipschitz Bounds Estimation Strategies

A hypothesis was made that the more strict Lipschitz bounds are used, the bet-
ter performance the algorithm demonstrates. To check this hypothesis in the
context of the proposed algorithm (section 3.1.1), four different strategies to es-
timate lower Lipschitz bounds over subregions are described and compared.

In the proposed algorithm (section 3.1.1), lower Lipschitz bounds over subre-
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gion are estimated using only one vertex with the lowest function value:

pL “ αrL, (3.8)

vminpSiq “ arg min
viPVpSiq

f pviq, (3.9)

gpx, Si, pLq “ f pvminpSiqq ´ pL||x ´ vminpSiq||, (3.10)

GpSi, pLq “ min
xPSi

gpx, Si, pLq “ f pvminpSiqq ´ pL∆pSlq. (3.11)

This strategy was selected, because it was successfully used in D- and
G-D- [63, 66] algorithms. It requires a small number of computations,
because the solution (3.11) is found analytically. In Table 3.5 the strategy (3.9-
3.11) is denoted by vmin.

The second chosen strategy (3.12-3.14) which was chosen is the same as (3.9-
3.11), except that the vertex with the maximum function value is used:

vmaxpSiq “ arg max
viPVpSiq

f pviq, (3.12)

gpx, Si, pLq “ f pvmaxpSiqq ´ pL||x ´ vmaxpSiq||, (3.13)

GpSi, pLq “ min
xPSi

gpx, Si, pLq “ f pvmaxpSiqq ´ pL∆pSlq. (3.14)

In Table 3.5 the strategy (3.12-3.14) is denoted by vmax.

In this case, the number of computations persists the same as in the previous
strategy, but stricter Lipschitz bounds are constructed. An example for univari-
ate case is shown in Figure 3.5, where the green line shows the Lipschitz bound
constructed using strategy vmin and the black line shows the Lipschitz bound
constructed using strategy vmax. As can be seen, the bounds over interval of
the latter strategy are stricter. Hence, the maximum improvement of the best
known objective function value is adequately smaller.

The third strategy implies the usage of all the vertices to construct Lipschitz
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Figure 3.5: Visual comparison of strategy vmin (green line) and strategy vmax
(black line) for univariate case

bounds, disregarding the additional computations:

gstrictpx, Si, pLq “ max
vPVpSiq

t f pvq ´ pL||v ´ x||u, x P Si, (3.15)

GstrictpSi, pLq “ min
xPSi

gstrictpx, Si, pLq. (3.16)

To find a solution for (3.16), an inner level optimization problem has to be solved.
This strategy guarantees that the value of the strictest Lipschitz bounds is as-
sessed with a bounded error. In our experiments, a grid-search strategy was
employed. City block distance between the covering points was set to be less
than 10% of simplex's diameter. This strategy is denoted by all_verts.

The final strategy makes an attempt to find a compromise between the number
of computations and the accuracy of the Lipschitz bounds. The suggestion is to
use Lipschitz bounds over the edges of a simplex as an approximation to (3.16)
over the simplex

GstrictpSi, pLq « min
vi,vjPVpSiq,i‰j

Gedgepvi, vj, Si, pLq “ rGstrictpSi, pLq. (3.17)

The minimum of the Lipschitz bounds over an edge pvi, vjq can be found ana-
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Table 3.5: Comparison of different Lipschitz bound estimation strategies using
first six problem classes from GKLS test function generator

Class Strategy Calls average Calls median Calls largest Avg. seconds per trial

1

vmin 151.92 145 371 0.000039
vmax 283.92 247 1002 0.000063

all_verts 280.74 222 952 0.000349
edges 204.58 162 512 0.000156

2

vmin 431.53 397 1117 0.000071
vmax 1085.13 947 2757 0.00024

all_verts 1297.6 1196 3133 0.000512
edges 911.78 764 2361 0.000284

3

vmin 1009.82 957 2113 0.000323
vmax 2205.68 1886 8156 0.001023

all_verts 1942.33 1324 11803 0.004319
edges 1371.71 989 4238 0.001714

4

vmin 1448.94 1386 3484 0.000517
vmax 4771.85 4157 17699 0.002511

all_verts 4605.42 3699 18843 0.007346
edges 3133.99 2632 10821 0.004411

5

vmin 5339.45 4572 16968 0.012432
vmax 11855.8 9490 52130 0.061572

all_verts 11385 8784 61363 0.155959
edges 10435.2 7701 58035 0.173710

6

vmin 8965.54 8422 23348 0.035610
vmax 26246.3 16769 113266 0.156995

all_verts 36930.1 28451 159262 0.582037
edges 35082.5 28524 113353 0.522561

lytically if they are constructed using only two vertices vi, vj forming the edge

Gedgepvi, vj, pLq “
f pviq ` f pvjq ´ pL||vi ´ vj||

2
, (3.18)

Xedgepvi, vj, pLq “ vit ` vjp1 ´ tq, t “ 0.5 `
f pvjq ´ f pviq

2pL||vj ´ vi||
, (3.19)

where Xedgepvi, vj, pLq is a point where Gedgepvi, vj, pLq value can be observed. If
Gedgepvi, vj, pLq ““ gpXedgepvi, vj, pLq, pLq, then Gedgepvi, vj, Si, pLq “ Gedgepvi, vj, pLq.
Otherwise, a one dimensional optimization problem has to be solved to approxi-
mately find Gedgepvi, vj, Si, pLq. We used P-S algorithm [67, 81] with
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the Lipschitz constant equal to pL and considered the problem solved when the
maximum expected improvement was ď ϵ “ 10´4. In Table 3.5 this strategy is
denoted by edges.

The performance of these four strategies was experimentally evaluated by solv-
ing 600 test problems from 6 classes generated by the GKLS-generator [24] (see
section 3.1.2). The same stopping condition as in [63, 78] was used. To measure
the performance, the average, median and largest number of trials needed to
satisfy the (3.4) stopping condition was evaluated. To measure the computa-
tional complexity of the strategies, the average CPU time per trial was evalu-
ated. The numerical results are provided in Table 3.5.

The α “ 0.4 was used for the experiments (just like in section 3.1.1). However,
experiments with different α values are provided in Table 3.2.

Numerical results (Table 3.5) show that the usage of stricter lower Lipschitz
bounds did not improve the performance of the proposed algorithm (section
3.1.1) for GKLS test problem set. Constructing lower Lipschitz bounds from
only the vertex with the best function value is the best strategy (heuristic) both
in respect of performance and the number of computations.

3.1.4.2 Selecting Potentially Optimal Simplices

In the proposed algorithm, two criteria (3.3) are used to characterise simplices
and to select potentially optimal ones for the division. In this section the strate-
gies on how to find the best compromises between these two criteria are com-
pared.

The first strategy is to select simplices which represent Pareto optimal solutions
in the two criteria (3.3) space

Y “ tpGpSiq, ´∆pSiqq : Si P Su , (3.20)

YPareto “
␣

y P Y : ty1 P Y : y1 ą y, y1 ‰ yu “ H
(

, (3.21)

P “

!

Si : Si P S, pGpSiq, ´∆pSiqq P YPareto
)

, (3.22)

where P is a set of potentially optimal simplices. This strategy is denoted by
Pareto.
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Table 3.6: Comparison of different strategies to select potentially optimal sim-
plices using first six problem classes from GKLS test function

Class Strategy Calls average Calls median Calls largest Avg. seconds per trial

1 Pareto 153.42 149 421 0.000039
Supported 151.92 145 371 0.000039

2 Pareto 464.42 408 1453 0.000086
Supported 431.53 397 1117 0.000071

3 Pareto 1004 953 2200 0.000348
Supported 1009.82 957 2113 0.000323

4 Pareto 1454.22 1380 3571 0.00055
Supported 1448.94 1386 3484 0.000517

5 Pareto 5826.71 4994 16870 0.016318
Supported 5339.45 4572 16968 0.012432

6 Pareto 9409.04 8947 26536 0.029641
Supported 8965.54 8422 23348 0.035610

The second strategy is to select simplices which represent supported Pareto op-
timal solutions in the two criteria (3.3) space

Y “ tpGpSiq, ´∆pSiqq : Si P Su , (3.23)

YSupported “ Y X ty P ConvpYq : ty1 P ConvpYq : y1 ą y, y1 ‰ yu “ Hu, (3.24)

P “

!

Si : Si P S, pGpSiq, ´∆pSiqq P YSupported
)

, (3.25)

where ConvpYq is a convex hull of a set Y. This strategy is denoted by Supported.

The numerical results (Table 3.6) show, that the performance is better for hard
problems when supported Pareto optimal solutions are used, i.e. strategy Supported.

3.1.4.3 Globality of the Lipschitz Constant Estimate

If a whole partition of the feasible region is used to estimate the Lipschitz con-
stant, a global Lipschitz constant estimate is obtained. Otherwise, if a subset of
the partition is used, a local Lipschitz constant estimate is obtained. When the
Lipschitz constant is estimated locally, it might represent the local region more
accurately than a global Lipschitz constant estimate. For example, if the func-
tion values are shallow in a region, the local Lipschitz constant would be small.
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Table 3.7: Comparison of different strategies to estimate Lipschitz constant us-
ing first six problem classes from GKLS test function

Class Strategy Calls average Calls median Calls largest Avg. seconds per trial

1
global 151.92 145 371 0.000039
local 122.04 116 265 0.000049

mixed 126.87 121 257 0.000047

2
global 431.53 397 1117 0.000071
local 290.16 261 888 0.000086

mixed 292.25 269 1011 0.000089

3
global 1009.82 957 2113 0.000323
local 1153.69 1087 2587 0.000693

mixed 1093.65 1066 2304 0.000713

4
global 1448.94 1386 3484 0.000517
local 1181.18 1158 2439 0.000753

mixed 1186.78 1156 2163 0.000834

5
global 5339.45 4572 16968 0.012432
local 12715.1 12599 31046 0.083735

mixed 11023.1 10797 24078 0.075724

6
global 8965.54 8422 23348 0.035610
local 11594.5 11198 27905 0.078067

mixed 10989.4 10771 23630 0.066359

Hence, this would lead to reduced priority of this region's investigation and
might reduce the number of unnecessary trials. In this section a hypothesis is
made that the usage of the local Lipschitz constant should improve the perfor-
mance of the proposed algorithm (section 3.1.1). In order to verify this hypoth-
esis, two additional strategies how to evaluate and use the Lipschitz constant
were suggested.

In the proposed algorithm (section 3.1.1), only a global Lipschitz constant is
used, which is defined as:

rLglobal “ max

#

| f pviq ´ f pvjq|

||vi ´ vj||
: vi, vj P VpSlq, vi ‰ vj, Sl P S

+

(3.26)

where S is a set of simplices in current partition and VpSlq is a set vertices of Sl.
In Table 3.7 this strategy is denoted by global.

The second strategy is to use only the local Lipschitz constant estimate. When
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Lipschitz bounds are calculated for an arbitrary simplex Si, its local Lipschitz
constant is used

rLlocalpSiq “ max
"

| f pvkq ´ f pvlq|

||vk ´ vl||
: vk, vl P VpSjq, VpSjq X VpSiq ‰ H, Sj P S

*

.

(3.27)
The region in which the local Lipschitz constant is estimated consists of a sim-
plex and its neighbouring simplices. In this case, simplices are considered to be
neighbours if they have at least one common vertex. In Table 3.7 this strategy is
denoted by local.

The third strategy is to combine the global and local Lipschitz constant esti-
mates. The same way was chosen to combine the estimates as in the Information
global optimization algorithm with local tuning [73]:

rLmixedpSiq “ maxtrLlocal, rLglobal
∆pSiq

∆max
u, (3.28)

∆max “ max
SjPS

∆pSjq. (3.29)

In this case, the globality of the Lipschitz constant estimate used is associated
with the relative size of the simplex. rLglobal is always used for the biggest sim-
plices of the partition (because their relative size is 1 and rLlocal ď rLglobal). And
for smaller simplices the value ě rLlocal and ă rLglobal is used. In Table 3.7 this
strategy is denoted by mixed.

To compare the strategies, the same experimental methodology as in the previ-
ous section was applied. I.e. 600 test problems generated with GKLS-generator
[24] were solved; the average, median, largest number of trials and the average
CPU time per trial were measured. The numerical results are provided in Table
3.7. The α “ 0.4 was used for the experiments. Experiments with different α

values are provided in Table 3.2.

The numerical results (Table 3.7) demonstrate, that none of these three strate-
gies stood out as more efficient for all the test problem classes. However, the
performance of the strategy global proved to be better for both 5'th and 6'th
classes, which have the highest number of variables among the problems ex-
amined. Furthermore, it can be observed, that the usage of the local Lipschitz
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constant increased the number of computations, since the average duration per
trial increased.

3.2 Global Optimization Algorithm Using A Local
Estimate of Lipschitz Constant

Independently of L algorithm, another similar algorithm [26], which uses
local Lipschitz constant estimate, instead of global one, was proposed. These
are the main differences between this algorithm and a modification of L
algorithm denoted as local and described in Section 3.1.4.3:

1. An estimate of the Lipschitz constant used is a maximum of these values:
(3.1) values calculated for pairs of vertices of neighbouring simplices and
simplicial gradient [43] norm value at the vertex with the lowest function
value. Simplicial gradient norm L1 can be found for a vertex v1 of a simplex
Sk as follows:

BpSkq “ pv2 ´ v1, v3 ´ v1, ..., vd`1 ´ v1q, (3.30)

FpSk, f q “ p f pv2q ´ f pv1q, f pv3q ´ f pv1q, ..., f pvd`1q ´ f pv1qqT, (3.31)

vi P VpSkq, i “ 1, ..., d ` 1, (3.32)

L1 “ ||BpSlq
´TFpSl, f q||. (3.33)

2. Surrogate Lipschitz bounds are constructed using all vertices of a simplex:

gpxq “ max
vPVpSq

t f pvq ´ L||v ´ x||, x P Su (3.34)

(just like in (3.15)). An inner optimization problem is solved in order to
minimize these bounds.

3. Simplices are considered neighbouring if no more than two vertices are
different.

4. Neither α, nor any other similar parameter is used in order to reduce the
value of the Lipschitz constant estimate.
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Algorithm 5: Description of the proposed global optimization algorithm
using local Lipschitz constant estimate
1 Cover feasible region D by face-to-face simplicial partition

S “ tSi : D “ YSi, i “ 1, ..., d!u using combinatorial vertex triangulation
algorithm.

2 Evaluate t f pviq : vi unique vertices of S, i “ 1, ..., 2du.
3 while stopping condition is not satisfied do
4 foreach Sl P S do
5 Find pLl “ max

!

| f pviq´ f pvjq|

||vi´vj||
: vi, vj P VpSlq, vi ‰ vj

)

.

6 foreach Sl P S do
7 Find BpSlq “ pv2 ´ v1, v3 ´ v1, ..., vd`1 ´ v1q, v1 “ vmin, vi P VpSlq,
8 FpSl, f q “ p f pv2q ´ f pv1q, f pv3q ´ f pv1q, ..., f pvd`1q ´ f pv1qqT,
9 rLl “

max
!

pLj : Sj, Sl has ď 2 di f f erent vertices
)

Y
␣

||BpSlq
´TFpSl, f q||

(

.
10 Find Gl “ GpSl, rLq by solving inner optimization problem.
11 Select a set of simplices for partitioning: P “ tSi : Si P S, Si is a
12 supported Pareto optimal solution to minpGl, ´∆pSlqqu

13 foreach Sl P P do
14 Divide Sl into two new simplices S1

l , S2
l , add a new vertex v in the

middle of the longest edge of Sl.
15 Update S “ Sz

␣

Sl
(

Y
␣

S1
l , S2

l
(

. If v is a new vertex, evaluate f pvq.
Update fmin.

16 return fmin

The pseudocode of the proposed algorithm is provided in Algorithm 5. The
inner level optimization problem was chosen to be solved using Algorithm 6,
because the feasible region of the inner level optimization problem is a simplex
and (3.34) function evaluations are computationally cheap.

In order to investigate the efficiency of the proposed algorithm, the same ex-
perimental methodology as described in Section 3.1.2 was chosen. Results for
the first four GKLS test problem classes are provided in Table 3.8. As can be
observed from this table, the performance of the algorithm proposed in this
section is better than L with respect to average and median number of ob-
jective function evaluations for all four GKLS test problem classes. However,
this is not true for problems with higher dimension than 3. It can be concluded
that the performance of the algorithms using local Lipschitz constant estimate
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Algorithm 6: Optimization algorithm of the inner level optimization prob-
lem
1 Input Sk - simplex over which Lipschitz bounds are minimized, rL -

Lipschitz constant estimate, g - function of surrogate Lipschitz bounds,
Mmax - maximum number of iterations (default value is 10).

2 Function I(Sk, rL, g Mmax “ 10)
3 S “ tSku

4 gmin “ mintgpvq : v P VpSkqu

5 m “ 1
6 while m ă Mmax do
7 foreach Sl P S do
8 Find GpSlq “ maxtgpl1q ´ L∆pSlq, gpl2q ´ L∆pSlqu, where l1, l2 -

vertices of the longest edge of S.
9 Select a simplex for bisection: Sp “ arg minSlPS GpSlq.

10 Bisect Sp into two new simplices S1
p, S2

p, by adding a vertex v in the
middle of the longest edge of Sp.

11 Update S “ Sz
␣

Sp
(

Y

!

S1
p, S2

p

)

. If v is a new vertex, evaluate gpvq

and update gmin.
12 m “ m ` 1

13 return gmin.

is impacted by the definition of the neighbouring simplices. Hence, more dif-
ferent strategies to define neighbouring simplices should be investigated.

3.3 Strategy for Generalizing Single-Objective Lips-
chitzian Optimization Algorithms to Multi-Objective
Case

In this section, a general strategy for generalizing single-objective Lipschitzian
global optimization algorithms to the multi-objective case is described. This
strategy is applicable to Lipschitzian global optimization algorithms, which main-
tain an iteratively updated partition S of the feasible region D:

S “ tSi : D “ YSi, i “ 1, ..., ku , (3.35)
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Table 3.8: Results obtained by solving 100 optimization problems from four
GKLS test function classes, using the stopping condition with a known global
minimizer

Class Difficulty Algorithm Average Median Largest

1 Simple

D- 192.93 151.0 773
G-D- 174.25 151.0 472
L α=0.4 151.97 146.5 371
P 103.68 91 277

2 Hard

D- 1003.56 1021.0 2683
G-D- 518.11 511.0 1547
L α=0.4 431.55 515.0 1117
P 384.02 298.5 1714

3 Simple

D- 1061.83 787.0 4740
G-D- 751.25 720.0 2694
L α=0.4 1009.72 959 2113
P 963.21 866.5 2162

4 Hard

D- 2598.91 2594.0 7354
G-D- 1364.40 1283.0 3723
L α=0.4 1449.18 1390 3484
P 1079.56 1029.5 2859

such that one or more subregions are selected for partitioning in each iteration
based on the minimum value of the lower Lipschitz bound over the subregion
(see Figure 3.6 for general scheme). The lower the Lipschitz bound, the lower
(better) function values can be obtained by partitioning that subregion. In this
study, the following notation is used for the lower Lipschitz bounds and its
minimum value over an arbitrary subregion Si:

gpx, Siq, x P Si, (3.36)

GpSiq “ min
xPSi

gpx, Siq. (3.37)

An example of gpx, Siq and the respective underestimate of GpSiq are used in [63,
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Figure 3.6: General Lipschitzian global optimization algorithm scheme

66] and in the proposed algorithm:

gsinglepx, Siq “ min
vPVpSiq

f pvq ´ L||x ´ arg min
vPVpSiq

f pvq||, x P Si. (3.38)

GsinglepSiq « min
vPVpSiq

f pvq ´ L∆pSiq ď min
xPSi

gsinglepx, Siq. (3.39)

The largest possible improvement of the best currently known objective function
value fmin by dividing the Si is equal to fmin ´ GpSiq. The largest possible im-
provement has to be maximized and if we want to minimize, ´p fmin ´ GpSiqq “

GpSiq ´ fmin criterion is obtained. It is sufficient to use only ´GpSiq or GpSiq to
compare the subregions to each other, because fmin is fixed during the compar-
ison in each iteration.

In the multi-objective case, the criterion defining the suitability of a subregion
for further partitioning is not so trivial, because several contradicting objectives
have to be considered at once. A vector of Lipschitz lower bounds for each of
the objectives is defined as follows:

gpx, Siq “ pg1px, Siq, ..., gnpx, Siqq. (3.40)
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Figure 3.7: General Lipschitzian multi-objective optimization algorithm scheme
after applying the suggested strategy to generalize Lipschitzian global opti-
mization algorithm for multi-objective case

There have been some attempts to define the subregion selection (for division)
criterion as the tightness of the multi-objective Lipschitz bounds over that sub-
region [89, 90]. In order to tighten the Lipschitz bounds, the subregions with
maximum tightness values have to be selected for the division, i.e. tightness
criterion has to be maximized. In the univariate case, when Si is a line segment
and VpSiq are its endpoints, the definition of the tightness in question using our
notation is expressed as:

TpSiq “ max

#

min
ξPGstrictpSiq

||ξ ´ f pvq|| : v P VpSiq

+

, (3.41)

GstrictpSiq “ min
xPSi

gstrictpx, Siq, (3.42)

gstrictpx, Siq “ pgstrict,1px, Siq, . . . , gstrict,npx, Siqq, (3.43)

gstrictpx, Siq “ max
vPVpSiq

t f pvq ´ L||v ´ x||u, x P Si, (3.44)

where } ¨ } is the Euclidean norm. An illustration of this definition for the uni-
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(a) (b)

(c) (d)

Figure 3.8: The local lower Lipschitz bounds over a univariate bi-objective sub-
region Si visualized in objective space; v1, v2 are vertices of Si

variate bi-objective case is provided in Figure 3.8a, where VpSiq “ tv1, v2u. In
this particular case the set of points in the objective space (3.42) is a line seg-
ment. The bound tightness is then understood as the largest distance between
this line segment and the objective space points corresponding to VpSiq. How-
ever, for a higher number of objectives the set (3.42) is a hyper-surface and its
complexity makes it hard to use criterion (3.41).
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In order to overcome this limitation, a single point can be used to underesti-
mate the local Lipschitz bounds. Specifically, the minimum of the lower Lips-
chitz bound can be found for each objective separately, so the bounding point
is defined as:

RpSiq “ pG1pSiq, ..., GnpSiqq “ pmin g1pSiq, ..., min gnpSiqq. (3.45)

The updated definition of the tightness for this case is:

TpSiq “ max
vPVpSiq

||f pvq ´ RpSiq||. (3.46)

See Figure 3.8b for an illustration of the univariate bi-objective case, where the
discrete approximation of the Pareto front is YPareto “ tfpv1q, fpv2q, z1u and
VpSiq “ tv1, v2u. The tightness TpSiq is equal to the largest distance between the
bounding point RpSiq and the objective space points corresponding to VpSiq.

Definitions (3.41) and (3.46) reflect the largest possible improvement over the
objective values at VpSiq that could result from partitioning subregion Si. How-
ever, the definitions do not account for the circumstance that the improvement
over some of the points in the whole YPareto could be considerably smaller. For
example, in Figure 3.8b it can be observed that TpSiq ă TParetopSi, YParetoq. To
address this issue, we propose to express the tightness in terms of the largest
possible improvement of YPareto:

TParetopSi, YParetoq “ min
yPYPareto

||y ´ RpSiq||. (3.47)

The minimization in (3.47) reflects the fact that the partitioning of Si is supposed
to improve upon the point in the Pareto front approximation that is closest to
RpSiq. Figure 3.8b presents an illustration of definition (3.47), where the tight-
ness TParetopSi, YParetoq is equal to the distance between the bounding point RpSiq

and z1 P YPareto.

Further, we suggest two improvements of definition (3.47). First, let us consider
the case, when there exists x2 P YPareto that dominates RpSiq (see Figure 3.8c).
Expression (3.47) is positive in this case, implying that an improvement over the
Pareto front approximation is possible by dividing Si, which is not true. An up-
dated definition (3.47) uses negative values to indicate that RpSiq is dominated:
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T1pSi, YParetoq “

$

’

’

&

’

’

%

min
yPYPareto

}y ´ GpSiq}, if Ey1 ą GpSiq, y1 P YPareto,

´ min
yPYPareto

}y ´ GpSiq}, if Dy1 ą GpSiq, y1 P YPareto.
(3.48)

Second, let us consider the case, when two different points z3, z4 P YPareto are
equidistant to RpSiq (see Figure 3.8d). The value of (3.48) for Si is the same for
both z3 and z4. However, RpSiq is better in all objectives than z3, whereas only
a single objective value is better in RpSiq than in z4. This example shows, that
(3.48) should be further modified to account for the improvements of the objec-
tive values offered by RpSiq. Moreover, if at least one of the objective values is
improved by RpSiq, the deterioration in other objective values should not be pe-
nalized. The required effect could be ensured by replacing the Euclidean norm
in (3.48) by an asymmetric norm ||| ¨ ||| which would ignore the deterioration of
a value. We propose several variants of the considered asymmetric norm:

|||a ´ b|||1 “

k
ÿ

j“1

ppaj, bjq, a, b P Rk, (3.49)

|||a ´ b|||2 “

g

f

f

e

k
ÿ

j“1

ppaj, bjq
2, a, b P Rk, (3.50)

|||a ´ b|||8 “ max
j“1,...,k

ppaj, bjq, a, b P Rk, (3.51)

ppa, bq “ maxp0, a ´ bq, a, b P R. (3.52)

An updated version of the definition (3.48) follows:

TpSi, YParetoq “

$

’

’

&

’

’

%

min
yPYPareto

|||y ´ RpSiq|||2, if Ey1 ą RpSiq, y1 P YPareto,

´ min
yPYPareto

|||RpSiq ´ y|||2, if Dy1 ą RpSiq, y1 P YPareto,
(3.53)

which might be interpreted as a minimal distance of RpSiq from YPareto.

To generalize a Lipschitzian global optimization algorithm to the multi-objective
case, the Pareto front approximation YPareto has to be updated in each itera-
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tion. Furthermore, subregions for further partitioning should be selected using
TpSi, YParetoq (3.53) criterion, instead of GpSiq, estimating the largest possible
improvement of the currently known best solution, which could result from di-
viding subregion Si. It can be observed, that if only one objective function is
used after applying this strategy to an algorithm, the result persists the same
as before applying it. This is because for one objective YPareto “ t fminu and
TpSi, YParetoq “ fmin ´ GpSiq. TpSi, YParetoq has to be maximized and if we want
to minimize ´TpSi, YParetoq “ GpSiq ´ fmin the same criterion as before apply-
ing the generalization strategy is obtained. As it was mentioned before, fmin is
constant in each iteration of an algorithm, so GpSiq ´ fmin is GpSiq value shifted
by a constant, which does not make any impact on the result of comparing two
values of the criterion.

3.4 Multi-Objective Version of the L Algorithm

3.4.1 Differences Between Single-Objective and Multi-Objective
Versions of the L Algorithm

The strategy (described in the previous section 3.3) to generalize a single-objective
algorithm for the multi-objective case was applied to the proposed Lipschitzian
global optimization algorithm L (see section 3.1.1). The algorithm does not
change for global optimization problems, after generalization, however, it gains
the ability to solve multi-objective problems. Bearing this in mind, we pre-
serve the same title L for multi-objective version of the algorithm. The pseu-
docode of the resulting multi-objective algorithm is provided in Algorithm 8.
The remaining part of this section is devoted to highlighting some of the aspects
of the multi-objective version of the algorithm.

The lower bounds of the Lipschitz constants have to be updated for each objec-
tive function separately. Lipschitz bounds are constructed only from a vertex
with the best function value (see (3.38)) and overestimate (3.39) is used in order
to find Rp¨q (3.45) analytically.

The globality of the search can be chosen by setting the value of the L pa-
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Algorithm 7: Algorithm to update Pareto front approximation
1 Input y - new solution, YPareto - Pareto front approximation.
2 Function UPFA( y, YPareto ):
3 foreach p P YPareto do
4 if p ą y then
5 return YPareto

6 foreach p P YPareto do
7 if y ą p then
8 YPareto “ YPareto z p

9 YPareto “ YPareto Y tyu

10 return YPareto

rameter α P r0, 8q. Two criteria (3.3) are used to select a set of simplices for
division in a single-objective version of the algorithm. The first criterion is the
largest expected improvement of the currently known best solution, which for
a single-objective case is the lowest observed function value fmin and for multi-
objective case it is a Pareto set approximation YPareto. The second criterion is the
diameter of the simplex ∆p¨q. If for multi-objective case, the (3.53) definition of
the largest expected improvement of the currently known best solution is used
and αrL is used instead of L, then a set of simplices for division can be identified
by solving:

max
SiPS

pTpSi, YPareto, αrLq, ∆pSiqq, (3.54)

where rL is a vector of Lipschitz constant estimates. It was shown in [25], that
for a single-objective version of the algorithm the higher the α value is the more
globally biased the search gets. Higher α value causes only the simplices with
higher diameter values to be selected for the division. The same effect of α per-
sists also for multi-objective case.

Multi-objective version of the L algorithm has to track and constantly up-
date Pareto front approximation YPareto. It can be achieved by firstly initializing
YPareto “ H and then applying Algorithm 7 for each new trial to update the
YPareto with nondominated solutions.

The stopping condition might be associated with the maximum expected im-
provement of the Pareto front approximation (as an alternative to the stopping
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Algorithm 8: Description of multi-objective version of the L algorithm
1 Normalize the feasible region D to be the unit-hypercube D.
2 Cover D by face-to-face simplices S “

␣

Si : D “ YSi, i “ 1, ..., d!
(

using
combinatorial vertex triangulation algorithm.

3 Evaluate tf pviq : vi unique vertice of S, i “ 1, ..., 2du. Set m “ 2d, rL “ 0.
4 Find Pareto front approximation YPareto.
5 while stopping condition not satisfied and m ă Mmax do
6 for k “ 1 to |S| do
7 find rLk “ prL1

k, ..., rLn
k q,

rLi
k “ max

"

| f ipviq´ f ipvjq|

||vi´vj||
: vi, vj P VpSkq, vi ‰ vj

*

.

8 Update rL “

´

maxkPt1,...,|S|u
rL1

k, ..., maxkPt1,...,|S|u
rLn

k

¯

.
9 for k “ 1 to |S| do

10 find Tk “ TpSk, YPareto, rLαq based on (3.53), where (3.38), (3.39) are
used to find Lipschitz bounds in (3.45) and rLα is used instead of L.

11 Identify a set of simplices for division:
12 P “ tSi : Si P S, Si - supported Pareto optimal solution to p3.54qu.
13 foreach Sk P P do
14 Divide Sk into two new simplices S1

k , S2
k , by adding a vertex v in

the middle of the longest edge of Sk.
15 Update S “ Sz

␣

Sk
(

Y
␣

S1
k , S2

k
(

. If v is a new vertex, evaluate f pvq,
set m “ m ` 1 and update Pareto front approximation YPareto.

condition (3.7) for global optimization problems):

max
SiPS

TpSi, YParetoq ď ϵ. (3.55)

3.4.2 Experimental Investigation

3.4.2.1 Performance Comparison to the NSGA-II

The resulting multi-objective L algorithm was numerically evaluated em-
ploying two popular multi-objective test problem sets ZDT [93] and DTLZ [16].
The results were compared with one of the most popular genetic algorithms
NSGA-II [15].
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An implementation of the NSGA-II algorithm from DEAP framework [21] with
default parameter values was used. L algorithm with α “ 0.1 was used as
well. Dimension of the problems was set to 4 (the same as in GKLS test prob-
lem generator [24] 5'th and 6'th classes). The budget of 15000 trials was used.
Change of the hyper volume was measured (see Figures 3.9a-3.9l), where the X
and Y axes indicate the number of trials and the hyper volume, respectively. The
blue line denotes the results of the L algorithm and the green area denotes
the results (from minimum to maximum) obtained from 10 different NSGA-II
runs.

The results show that the proposed multi-objective L algorithm performs
better (reaches best observed hyper volume value faster) than NSGA-II in 7 cases
out of 12. The conclusion to be drawn is that the algorithm obtained by apply-
ing the suggested strategy demonstrated the performance comparable to that
of the NSGA-II, so both the suggested strategy and the L algorithm should
be further investigated.

3.4.2.2 Performance Comparison to Lipschitzian Optimization Algorithms

The L algorithm was compared with OSWCO (One-Step Worst-Case Opti-
mal) [91] and NUC (Nonuniform Covering Method) [18] algorithms. The same
two bi-objective test problems and the same two quantitative characteristics as
in [18, 91] were used for experimentation. The characteristics are Hyper volume
and Uniformity of YPareto points distribution which were proposed in [94].

The definition of the first bi-objective test problem (PE1) is:

min
xPr0,2s2

f pxq, f 1pxq “ x1, f 2pxq “ minp|x1 ´ 1|, 1.5 ´ x1q ` x2 ` 1. (3.56)

Pareto front of PE1 is disconnected and according to [18] Uniformity character-
istic is not suitable for this problem. Nevertheless, we have calculated it for
PE1, having ensured the covering of Pareto front to be dense enough, i. e.
@y P YPareto, @y1 P YPareto if y and y1 are nearest neighbours ùñ the nearest
points from Pareto front to y, y1 belong to the same disconnected part of Pareto
front.
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Table 3.9: Algorithm performance comparison on two bi-objective problems

Problem Algorithm Calls |YPareto| Hyper volume Uniformity Nadir

PE1
L α “ 0.1 438 163 3.61328 -

(2,3)OSWCO 435 92 3.60519 -
NUC 490 36 3.42 -

PE2
L α “ 0.1 484 221 0.325086 0.086283

(1,1)OSWCO 498 68 0.308484 0.174558
NUC 515 29 0.306 0.210

The definition of the second bi-objective test problem (PE2) is:

min
xPr0,1s2

f pxq, f 1pxq “ px1 ´ 1qx2
2 ` 1, f 2pxq “ x2. (3.57)

The numerical results are provided in Table 3.9. α “ 0.1 was used in L
algorithm for the experimental comparison. As can be seen from the Table 3.9,
the performance of the L algorithm is better than the performance of the
alternatives.

3.4.2.3 Insights about L Algorithm Parameter α

As mentioned previously, it was shown in [25], that higher α value causes only
the simplices with higher diameter values to be selected for the division. A
hypothesis can be made that in multi-objective case α parameter regulates the
ration between Pareto front approximation's hyper volume and its covering uni-
formity. The impact of α value on the result was examined for a multi-objective
L algorithm. Results with a set of different α values are provided in Table
3.10.

As can be observed from Table 3.10, the hypothesis about α value's impact on
the results is not always true. It is obvious that when α value is increased, the
Hyper volume decreases and Uniformity of YPareto increases only for PE1 and
only up to α “ 0.8.
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Table 3.10: L algorithm results with different α values for two bi-objective
optimization problems

PE1 PE2

α Calls |YPareto| Hyper vol Uniformity Calls |YPareto| Hyper vol Uniformity

0.01 463 181 3.61328 0.408823 483 221 0.325200 0.084739
0.1 486 195 3.61328 0.410380 484 221 0.325086 0.086283
0.2 492 178 3.60156 0.240059 487 202 0.324590 0.091654
0.3 487 139 3.60156 0.188248 482 191 0.319475 0.111888
0.4 474 130 3.60156 0.153485 481 186 0.317870 0.112702
0.5 476 130 3.60156 0.153485 482 184 0.317862 0.112672
0.6 482 120 3.60156 0.151383 481 176 0.317862 0.111554
0.7 480 106 3.60156 0.147161 481 173 0.317862 0.106292
0.8 499 106 3.60156 0.147161 481 173 0.317862 0.105668
0.9 475 101 3.60156 0.325707 482 173 0.317862 0.105668
1.0 474 92 3.60156 0.322507 482 169 0.317862 0.113096
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Figure 3.9: Comparison of L and NSGA-II [15] algorithms using continuous
test from problems from ZDT and DTLZ test problem sets
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Chapter 4

General Conclusions

An algorithm that combines the elements of the D- algorithm with an
adaptive Lipschitz constant estimation strategy was proposed. Specifically, the
simplicial decomposition, the sub-region selection strategy and the Lipschitz
bounds computation were reused from the original D- algorithm. The
proposed algorithm was experimentally compared to other D-type Lips-
chitz optimization algorithms using 800 objective functions produced by the
GKLS test function generator. The experimental analysis of the algorithm's sin-
gle parameter α, which regulates the globality of the search, was conducted.

Four strategies to estimate the Lipschitz lower bound within a simplex were
considered in this thesis. They were applied to the proposed algorithm, and
experiments were conducted to select the best one.

A strategy generalizing a single-objective Lipschitzian optimization algorithm
to the multi-objective case was proposed. It is based on estimating the potential
improvement over the current approximation of the Pareto front that might be
obtained after dividing any simplex in the current decomposition. The strategy
was applied to the L algorithm and the resulting multi-objective algorithm
was experimentally compared to the NSGA-II algorithm.

Conclusions:

1. It was experimentally demonstrated that the proposed L algorithm
performs the best among other investigated alternatives for complex test
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function classes in the worst-case scenario. The worst-case results for the
proposed algorithm were not the best only for 2 classes of simple functions
out of the considered 8. Moreover, the L algorithm improves upon the
original D- algorithm in 7 classes out of 8 both in worst and average
cases.

2. The experiments showed that the most efficient strategy to estimate the
Lipschitz bounds within a simplex in terms of the number of function
evaluations is vmin, corresponding to using a single vertex with the best
function value. The application of this strategy results in the best average
function evaluation time and the lowest number of function evaluations
across all test function classes considered. The bounds obtained with this
strategy are the least tight ones among the considered alternatives, there-
fore it can be concluded that tighter surogate Lipschitz bounds do not
necessarily lead to increased efficiency of the D-type optimization
methods.

3. The comparative experiments revealed that the generalized multi-objective
version of the proposed L algorithm performs similarly to the NSGA-
II algorithm for low-dimensional optimization problems. For 7 out of
12 functions in the ZDT and DTLZ test suites, the proposed algorithm
reached not worse hyper-volume values after any given number of func-
tion evaluations.
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Appendix A

Automation of Experiment
Execution and Result Aggregation

A utility tool was designed and implemented to automate the execution of ex-
periments and aggregation of the numerical results. This tool was extensively
used during preparation of this work. The tool was really very helpful and
saved a lot of time.

The main use case of this tool is:

1. A user implements global/multi-objective optimization algorithm and stores
its source code in a version control system's repository, which is reachable
over the internet.

2. The user goes to the GUI of the tool (which is a website) and creates an
experiment by specifying a) a link to the source code repository, b) param-
eter sets with which the algorithm has to be executed and c) how results
have to be aggregated.

3. The user starts the execution of the experiment and waits till it is com-
pleted. A user can reduce the waiting time by increasing a number of
parallelly running threads of the experiment.

4. The user sees already aggregated results of the experiment on the exper-
iment's web page. In addition, the user can see the results of each task in
a separate web page.
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A. Automation of Experiment Execution and Result Aggregation

Figure A.1: Interaction diagram showing steps done by the tool during experi-
ment's execution

In order to use the tool, the user has to create a profile in the website of the
tool and specify a way to connect (via Secure Shell) to his profile of a computer
cluster.

The consecutive steps of the experiment's execution are shown in Figure A.1.
After the user starts the experiment, individual tasks are formulated, which
have to be executed in order to obtain full results of the experiment. The task
consists of the experiment's ID, link to source code repository and parameters,
which have to be passed for the executable of the source code. Each task is sent
to the computer cluster and executed using Open MPI interface. After execu-
tion, the results of the task are sent back to the web server and saved in the
database. The user can see the aggregated results of all the tasks of the experi-
ment by refreshing the web page of the experiment.
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Appendix B

L Source Code

The source code of the proposed algorithm L is provided under Affero GPL
v3 (or greater) licence is provided below and can be accessed online
https://github.com/librealgorithm/libre.

Libre.h
#ifndef LIBRE_H
#define LIBRE_H
#include <math.h>
#include "utils.h"
#include <iostream>
#include <stdio.h>
#include <fstream>
#include <sstream>
using namespace std;

class Libre {
Libre(const Libre& other) {};
Libre& operator=(const Libre& other) {};

public:
Libre(int max_calls=15000, double alpha=0.4) {

_iteration = 0;
Simplex::glob_L = numeric_limits<double >::max(); // Reset glob_L value
Simplex::alpha = alpha; // Reset glob_L value
_max_calls = max_calls;

};
vector<Simplex*> _partition;
Function* _func;
int _iteration;
string _status;
int _max_calls;
vector<Simplex*> partition_unit_cube_into_simplices_combinatoricly(int n) {

// Partitions n-unit-cube into simplices using combinatoric vertex triangulation algorithm
vector<Simplex*> partition;
int number_of_simpleces = 1;
for (int i = 1; i <= n; i++) {

number_of_simpleces *= i;
};
int teta[n];
for (int i=0; i < n; i++){

teta[i] = i;
};
do {
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int triangle[n+1][n];
for (int k = 0; k < n; k++) {

triangle[0][k] = 0;
};
for (int vertex=0; vertex < n; vertex++) {

for (int j = 0; j < n + 1; j++) {
triangle[vertex + 1][j] = triangle[vertex][j];

};
triangle[vertex + 1][teta[vertex]] = 1;

}
Simplex* simpl = new Simplex();
for (int i=0; i < n + 1; i++){

Point* tmp_point = new Point(triangle[i], n);
Point* point = _func->get(tmp_point);
if (tmp_point != point) {

delete tmp_point;
};
simpl->add_vertex(point);

};
simpl->init_parameters(_func);
partition.push_back(simpl);

} while (next_permutation(teta, teta+n));
return partition;

};

vector<Simplex*> convex_hull(vector<Simplex*> simplices) {
int m = simplices.size() - 1;
if (m <= 1) { return simplices; };
int START = 0;
int v = START;
int w = m;
bool flag = false;
bool leftturn = false;
int a, b, c;
double det_val;
while ((nextv(v, m) != START) or (flag == false)) {

if (nextv(v, m) == w) {
flag = true;

}
a = v;
b = nextv(v, m);
c = nextv(nextv(v, m), m);
double* matrix[3];
double line1[3] = {simplices[a]->_diameter, simplices[a]->_min_lb, 1.};
double line2[3] = {simplices[b]->_diameter, simplices[b]->_min_lb, 1.};
double line3[3] = {simplices[c]->_diameter, simplices[c]->_min_lb, 1.};
matrix[0] = line1;
matrix[1] = line2;
matrix[2] = line3;
det_val = Determinant(matrix, 3);
if (det_val >= 0){

leftturn = 1;
} else {

leftturn = 0;
};
if (leftturn) {

v = nextv(v, m);
} else {

simplices.erase(simplices.begin() + nextv(v, m));
m -= 1;
w -= 1;
v = predv(v, m);

};
};
return simplices;

};
int nextv(int v, int m) {

if (v == m) {
return 0;

};
return v + 1;

};
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int predv(int v, int m) {
if (v == 0) {

return m;
};
return v - 1;

};
vector<Simplex*> select_simplices_to_divide() {

vector<Simplex*> selected_simplices;
// Sort simplices by their diameter
vector<Simplex*> sorted_partition = _partition;
sort(sorted_partition.begin(), sorted_partition.end(), Simplex::ascending_diameter);
double f_min = _func->_f_min;
// Find simplices with best lb_min values and unique diameters
Simplex* min_lb_min_simplex = sorted_partition[0]; // Initial value
vector<double> diameters;
vector<Simplex*> best_for_size;
bool unique_diameter;
bool found_with_same_size;
for (int i=0; i < sorted_partition.size(); i++) {

if (sorted_partition[i]->_min_lb < min_lb_min_simplex->_min_lb) {
min_lb_min_simplex = sorted_partition[i];

};
// Saves unique diameters
unique_diameter = true;
for (int j=0; j < diameters.size(); j++) {

if (diameters[j] == sorted_partition[i]->_diameter) {
unique_diameter = false; break;

};
};
if (unique_diameter) {

diameters.push_back(sorted_partition[i]->_diameter);
};
// If this simplex is better then previous with same size swap them
found_with_same_size = false;
for (int j=0; j < best_for_size.size(); j++) {

if (best_for_size[j]->_diameter == sorted_partition[i]->_diameter){
found_with_same_size = true;
if (best_for_size[j]->_min_lb > sorted_partition[i]->_min_lb) {

best_for_size.erase(best_for_size.begin()+j);
best_for_size.push_back(sorted_partition[i]);

};
};

};
if (!found_with_same_size) {

best_for_size.push_back(sorted_partition[i]);
};

};
// Find strict pareto optimal solutions using convex-hull strategy
vector<Simplex*> selected;
if (min_lb_min_simplex == best_for_size[best_for_size.size()-1]) {

selected.push_back(min_lb_min_simplex);
} else {

if ((best_for_size.size() > 2) && (min_lb_min_simplex != best_for_size[best_for_size.size()-1])) {
vector<Simplex*> simplices_below_line;
double a1 = min_lb_min_simplex->_diameter; // Should be like this based on Direct Matlab implementation
double b1 = min_lb_min_simplex->_min_lb;
double a2 = best_for_size[best_for_size.size()-1]->_diameter;
double b2 = best_for_size[best_for_size.size()-1]->_min_lb;
double slope = (b2 - b1)/(a2 - a1);
double bias = b1 - slope * a1;
for (int i=0; i < best_for_size.size(); i++) {

if (best_for_size[i]->_diameter >= a1) { // Dont take into consideration smallel diameter simplices
if (best_for_size[i]->_min_lb < slope*best_for_size[i]->_diameter + bias +1e-12) {

simplices_below_line.push_back(best_for_size[i]);
};

};
};
selected = convex_hull(simplices_below_line);

} else {
selected = best_for_size;

};
};
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for (int i=0; i < selected.size(); i++) {
selected[i]->_should_be_divided = true;

};
// Remove simplices which were not selected and should not be divided
selected.erase(remove_if(selected.begin(), selected.end(), Simplex::wont_be_divided), selected.end());
// Select all simplices which have best min_lb for its size
for (int i=0; i < sorted_partition.size(); i++) {

for (int j=0; j < selected.size(); j++) {
if ((sorted_partition[i]->_diameter == selected[j]->_diameter) &&

(sorted_partition[i]->_min_lb == selected[j]->_min_lb)) {
selected_simplices.push_back(sorted_partition[i]);

};
};

};
return selected_simplices;

};
vector<Simplex*> divide_simplex(Simplex* simplex) {

vector<Simplex*> divided_simplices;
// Find longest edge middle point
int n = _func->_D;
double c[n];
for (int i=0; i < n; i++) {

c[i] = (simplex->_le_v1->_X[i] + simplex->_le_v2->_X[i]) / 2.;
};
Point* tmp_point = new Point(c, n);
Point* middle_point = _func->get(tmp_point);
if (tmp_point != middle_point) {

delete tmp_point;
};
// Construct two new simplices using this middle point.
Simplex* left_simplex = new Simplex();
Simplex* right_simplex = new Simplex();
for (int i=0; i < simplex->size(); i++){

if (simplex->_verts[i] != simplex->_le_v1){
right_simplex->add_vertex(simplex->_verts[i]);

} else {
right_simplex->add_vertex(middle_point);

};
if (simplex->_verts[i] != simplex->_le_v2) {

left_simplex->add_vertex(simplex->_verts[i]);
} else {

left_simplex->add_vertex(middle_point);
};

};
left_simplex->init_parameters(_func);
right_simplex->init_parameters(_func);
simplex->_is_in_partition = false;
divided_simplices.push_back(left_simplex);
divided_simplices.push_back(right_simplex);
return divided_simplices;

};
vector<Simplex*> divide_simplices(vector<Simplex*> simplices) {

vector<Simplex*> new_simplices;
for (int i=0; i < simplices.size(); i++) {

vector<Simplex*> divided_simplices = divide_simplex(simplices[i]);
for (int j=0; j < divided_simplices.size(); j++) {

new_simplices.push_back(divided_simplices[j]);
};

};
return new_simplices;

};
void minimize(Function* func){

_func = func;
_partition = partition_unit_cube_into_simplices_combinatoricly(_func->_D);
sort(_partition.begin(), _partition.end(), Simplex::ascending_diameter);
Simplex::update_min_lb_values(_partition, _func);
while (!_func->is_accurate_enough()) {

// Select simplices to divide
vector<Simplex*> simplices_to_divide;
if (_iteration == 0) {

simplices_to_divide = _partition;
} else {
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simplices_to_divide = select_simplices_to_divide();
};
// Divide seletected simplices
vector<Simplex*> new_simplices = divide_simplices(simplices_to_divide);
// Remove partitioned simplices
_partition.erase(remove_if(_partition.begin(), _partition.end(), Simplex::not_in_partition), _partition.end());
for (int i=0; i < simplices_to_divide.size(); i++) {

delete simplices_to_divide[i];
};
simplices_to_divide.clear();
// Add new simplices to _partition
for (int i=0; i < new_simplices.size(); i++) {

_partition.push_back(new_simplices[i]);
};
sort(_partition.begin(), _partition.end(), Simplex::ascending_diameter);
Simplex::update_min_lb_values(_partition, _func);
_iteration += 1;

};
if (_func->_evaluations <= _max_calls) {

_status = "D";
} else {

_status = "S";
};

};
virtual ~Libre(){

for (int i=0; i < _partition.size(); i++) {
delete _partition[i];

};
_partition.clear();

};
};
#endif

FuncUC.h
#ifndef FUNCTIONS_H
#define FUNCTIONS_H
#include <vector>
#include <iostream>
#include <algorithm>
#include <limits>
#include <cassert>
using namespace std;

class Simplex;
class Point {

Point(const Point& other){}
Point& operator=(const Point& other){};

public:
Point(int D){

_D = D;
_X = (double*) malloc((D)*sizeof(double));

};
Point(int *c, int D){

_D = D;
_X = (double*) malloc((D)*sizeof(double));
for (int i=0; i<D; i++){

_X[i] = double(c[i]);
};

};
Point(double *c, int D){

_D = D;
_X = (double*) malloc((D)*sizeof(double));
for (int i=0; i<D; i++){

_X[i] = c[i];
};

};
int _D; // Dimension of variable space
double* _X; // Coordinates in normalised [0,1]^n space
double _value; // Objective function value
vector<Simplex*> _simplices; // Simplices , which have this point as vertex
void add_value(double value) {
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_value = value;
};
int size(){

return _D;
};
static bool ascending_value(Point* p1, Point* p2) {

return p1->_value < p2->_value;
};
virtual ~Point(){

free(_X);
};

};
// Binary balancing tree (or simply linked list) for storing points
// It returns cached point if a point with the same coordinates is added
class PointTree;
class PointTreeNode {

PointTreeNode(const PointTreeNode& other){}
PointTreeNode& operator=(const PointTreeNode& other){}

public:
PointTreeNode(double value=numeric_limits<double >::max()){

_height = 1;
_value = value;
_parent = 0;
_left = 0;
_right = 0;
_subtree = 0;
_point = 0;

};
int _height;
double _value;
PointTreeNode* _parent;
PointTreeNode* _left;
PointTreeNode* _right;
PointTree* _subtree; // Next dimension head
Point* _point; // Only last dimension node will have _point != 0;
virtual ~PointTreeNode();

};
class PointTree { // Head of the tree

PointTree(const PointTree& other){}
PointTree& operator=(const PointTree& other){}

public:
PointTree(){

_tree_root = 0;
_dim = 1;

};
PointTree(int dim){

_tree_root = 0;
_dim = dim;

};
PointTreeNode* _tree_root;
int _dim;

void update_height(PointTreeNode* node) {
int lh = 0;
int rh = 0;
if (node->_left != 0) { lh = node->_left->_height; };
if (node->_right != 0) { rh = node->_right->_height; };
if (lh > rh) {

node->_height = lh + 1;
} else {

node->_height = rh + 1;
};
// Also update all ancestors heights
if (node->_parent != 0) {

update_height(node->_parent);
};

};

void left_right_rebalance(PointTreeNode* node) {
PointTreeNode* diatteched_node;
// node left right <- node left right left
diatteched_node = node->_left->_right;

82



node->_left->_right = node->_left->_right->_left;
if (node->_left->_right != 0) { node->_left->_right->_parent = node->_left; };
// Diatteched left = node->_left
diatteched_node->_left = node->_left;
node->_left->_parent = diatteched_node;
// node left <- node left right
node->_left = diatteched_node;
diatteched_node->_parent = node;
// Update heights
update_height(node);
update_height(diatteched_node);
update_height(diatteched_node->_left);

};
void left_left_rebalance(PointTreeNode* node) {

PointTreeNode* diatteched;
diatteched = node->_left;
node->_left = node->_left->_right;
if (node->_left != 0) { node->_left->_parent = node; };
diatteched->_parent = node->_parent;
if (node->_parent != 0) {

if (node->_parent->_left == node) {
node->_parent->_left = diatteched;

} else {
node->_parent->_right = diatteched;

};
} else {

_tree_root = diatteched;
};
diatteched->_right = node;
node->_parent = diatteched;
// Update heights
update_height(node);
update_height(diatteched);

};
void right_left_rebalance(PointTreeNode* node) {

PointTreeNode* diatteched_node;
// node left right <- node left right left
diatteched_node = node->_right->_left;
node->_right->_left = node->_right->_left->_right;
if (node->_right->_left != 0) { node->_right->_left->_parent = node->_right; };
// Diatteched left = node->_left
diatteched_node->_right = node->_right;
node->_right->_parent = diatteched_node;
// node left <- node left right
node->_right = diatteched_node;
diatteched_node->_parent = node;
// Update heights
update_height(node);
update_height(diatteched_node);
update_height(diatteched_node->_right);

};
void right_right_rebalance(PointTreeNode* node) {

PointTreeNode* diatteched;
diatteched = node->_right;
node->_right = node->_right->_left;
if (node->_right != 0) { node->_right->_parent = node; };
diatteched->_parent = node->_parent;
if (node->_parent != 0) {

if (node->_parent->_left == node) {
node->_parent->_left = diatteched;

} else {
node->_parent->_right = diatteched;

};
} else {

_tree_root = diatteched;
};
diatteched->_left = node;
node->_parent = diatteched;
// Update heights
update_height(node);
update_height(diatteched);

};
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void check_if_balanced(PointTreeNode* node) {
int lh = 0;
int rh = 0;
int llh = 0;
int lrh = 0;
int rlh = 0;
int rrh = 0;
if (node->_left != 0) {

lh = node->_left->_height;
if (node->_left->_left != 0) { llh = node->_left->_left->_height; };
if (node->_left->_right != 0) { lrh = node->_left->_right->_height; };

};
if (node->_right != 0) {

rh = node->_right->_height;
if (node->_right->_left != 0) { rlh = node->_right->_left->_height; };
if (node->_right->_right != 0) { rrh = node->_right->_right->_height; };

};
if (abs(rh - lh) > 1) {

// Not balanced , so rebalance
if (rh > lh) {

if (rrh > rlh) {
right_right_rebalance(node);

} else {
right_left_rebalance(node);
right_right_rebalance(node);

};
};
if (rh < lh) {

if (llh > lrh) {
left_left_rebalance(node);

} else {
left_right_rebalance(node);
left_left_rebalance(node);

};
};

};
if (node->_parent != 0) {

check_if_balanced(node->_parent);
};

};
Point* process_next_dimension(PointTreeNode* node, Point* point) {

// Creates next dimension tree if needed and adds point to it its last dimension
if (point->_D == _dim) { // Don't need next dimension

if (node->_point == 0) { // Save or return the point
node->_point = point;
return 0;

} else {
return node->_point;

};
};
// Its not last dimension
if (node->_subtree == 0) { // Create subtree if it doesn't already exist

node->_subtree = new PointTree(_dim + 1);
};
Point* found_point = node->_subtree->add(point); // Get or insert point to the subtree
if (found_point != 0) { // We got point so return it

return found_point;
} else {

return 0; // We inserted point
};

};
Point* add(Point* point){

// Get same point or insert given (if inserted returns 0)
PointTreeNode* node = _tree_root;
double value = point->_X[_dim -1];
if (_tree_root == 0) { // Create first tree node

_tree_root = new PointTreeNode(value);
node = _tree_root;
process_next_dimension(node, point);

} else {
while (true) { // Walk through tree

if (value > node->_value) {
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if (node->_right == 0) {
node->_right = new PointTreeNode(value);
node->_right->_parent = node;
update_height(node->_right);
process_next_dimension(node->_right, point);
check_if_balanced(node->_right);
return 0;

};
node = node->_right;

} else if (value < node->_value) {
if (node->_left == 0) {

node->_left = new PointTreeNode(value);
node->_left->_parent = node;
update_height(node->_left);
process_next_dimension(node->_left, point);
check_if_balanced(node->_left);
return 0;

};
node = node->_left;

} else {
// Node value matches given point value, move to next dimension.
return process_next_dimension(node, point);

};
};

};
};
virtual ~PointTree(){

delete _tree_root;
};

};
PointTreeNode::~PointTreeNode() {

if (_left != 0) { delete _left; };
if (_right != 0) { delete _right; };
if (_point != 0) { delete _point; };
if (_subtree != 0) { delete _subtree; };

};
class Function { // Abstract function class

Function(const Function& other){};
Function& operator=(const Function& other){};

public:
Function(){

_f_min = numeric_limits<int>::max();
_points = new PointTree();
_evaluations = 0;

};
int _evaluations;
int _D; // Dimension
double _f_min; // Best known function value
PointTree* _points; // Binary balancing tree to store points where objective function was evaluated
vector<Point*> _new_points; // Points for which stopping condition was not checked yet
void add_value(Point* p) {

double val = value(p);
_evaluations += 1;
p->add_value(val);
if (_f_min > val) {

_f_min = val;
};

};
Point* get(double *c, int D){

// Returns a point with objective function value (the point may be from cache)
Point* p = new Point(c, D);
Point* cached_point = _points->add(p);
if (cached_point) { // Value at this point is already known

delete p;
return cached_point;

} else { // Value at this point is unknown, evaluate it
add_value(p);
_new_points.push_back(p);
return p;

};
};
Point* get(Point* p) {
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// Returns a point with objective function value (the point may be from cache)
Point* cached_point = _points->add(p);
if (cached_point) { // Value at this point is already known

return cached_point;
} else { // Value at this point is unknown, evaluate it

add_value(p);
_new_points.push_back(p);
return p;

};
};
virtual bool is_accurate_enough() = 0;
virtual double value(Point* point) = 0;
virtual ~Function(){

delete _points;
};

};

class FuncUC: public Function { // Function which is define over a unit-cube
FuncUC(const FuncUC& other){};
FuncUC& operator=(const FuncUC& other){};

public:
FuncUC(int D, double (*get_value_uc)(vector<double>), bool (*should_stop_uc)(vector<double >)){

_D = D;
get_value = get_value_uc;
should_stop = should_stop_uc;

};
double (*get_value) (vector<double >); // Objective function evaluation method provided as an argument
bool (*should_stop) (vector<double >); // Stopping criterion method provided as an argument
double value(Point* point) {

// Converts a point object to a vector and evaluates objective value at it
vector<double> point_vector;
for (int i=0; i < point->_D; i++) {

point_vector.push_back(point->_X[i]);
};
return get_value(point_vector);

};
bool is_accurate_enough() {

// Checks stopping criterion for all new points
int nr_of_new_points = _new_points.size();
for (int j=0; j < nr_of_new_points; j++) {

// Pop one of the new points
Point* p = _new_points.back();
_new_points.pop_back();
// Convert that point object to a vector
vector<double> point_vector;
for (int i=0; i < p->_D; i++) {

point_vector.push_back(p->_X[i]);
};
// Check stopping condition
if (should_stop(point_vector) == true) {

return true;
};

};
return false;

};
};
#endif

utils.h
#ifndef UTILS_H
#define UTILS_H
#include <fstream>
#include <sstream>
using namespace std;

double l2norm(Point* p1, Point* p2) {
// Finds Euclidean distance between two points
double squared_sum = 0;
for (int i=0; i < p1->size(); i++){

squared_sum += pow(p1->_X[i] - p2->_X[i], 2);
};

86



return sqrt(squared_sum);
};
class Simplex {

Simplex(const Simplex& other){}
Simplex& operator=(const Simplex& other){}

public:
Simplex() {

_D = 0;
_le_v1 = 0;
_le_v2 = 0;
_diameter = 0;
_min_lb = numeric_limits<double >::max();
_is_in_partition = true;
_should_be_divided = false;
_should_lb_mins_be_updated = true;

};
int _D; // Dimension of variable space
Point* _le_v1; // First vertex of the longest edge
Point* _le_v2; // Second vertex of the longest edge
double _diameter; // Longest edge length
double _min_L; // Minimum L for this simplex
double _min_lb; // Minimum of the lower bound over simplex found using vertex with the lowest value
static double alpha; // Coeficient of search globality
static double glob_L; // Globally known biggest min L
static bool glob_L_was_updated;
vector<Point*> _verts; // Vertices of this simplex (points with coordinates and values)
bool _is_in_partition; // Is this simplex in the current partition
bool _should_be_divided; // Should this simplex be divided in next iteration
bool _should_lb_mins_be_updated; // Should the minimums of Lipschitz lower bound be updated
Point* _min_vert; // Vertex with lowest function value
void init_parameters(Function* func) { // Called when all verts have been added

_D = _verts.size() - 1;
// Sorts vertexes ascending by their function value
sort(_verts.begin(), _verts.end(), Point::ascending_value);
// Find longest edge length (simplex diameter) and its vertices
double edge_length; // Temporary variable
for (int a=0; a < _verts.size(); a++) {

for (int b=0; b < _verts.size(); b++){
if (b > a) {

edge_length = l2norm(_verts[a], _verts[b]);
if (edge_length > _diameter) {

_diameter = edge_length;
_le_v1 = _verts[a];
_le_v2 = _verts[b];

};
};

};
};
// Find minimum L for ths simplex
_min_L = find_simplex_min_L();
// Initialize or update global L if needed
if (Simplex::glob_L == numeric_limits<double >::max()) {

Simplex::glob_L = Simplex::alpha * _min_L;
} else {

if (Simplex::glob_L < Simplex::alpha * _min_L) {
Simplex::glob_L = Simplex::alpha * _min_L;
Simplex::glob_L_was_updated = true;

};
};
// Find vertex with minimum function value
_min_vert = _verts[0];
for (int i=0; i < _verts.size(); i++) {

if (_verts[i]->_value < _min_vert->_value) {
_min_vert = _verts[i];

};
};

};
double find_min_vert_lb_min(Simplex* simpl, double L) {

// Finds minimum of lower bound, which is constructed from the vertex with lowest function value
return _min_vert->_value - L * simpl->_diameter;

};
double find_simplex_min_L() {
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// Finds minimum L for this simplex by finding min L for each simplex edge
double dist;
double f_diff;
double edge_L;
double max_edge_L = -numeric_limits<double >::max();
for (int i=0; i < _verts.size(); i++) {

for (int j=i+1; j < _verts.size(); j++) {
f_diff = fabs(_verts[i]->_value - _verts[j]->_value);
dist = l2norm(_verts[i], _verts[j]);
edge_L = f_diff / dist; // Note: maybe dist (division by zero) protection is needed?
if (edge_L > max_edge_L) { // Practically this case does not occur.

max_edge_L = edge_L;
};

};
};
return max_edge_L;

};
void add_vertex(Point* vertex){

_verts.push_back(vertex);
vertex->_simplices.push_back(this);

};
int size() {

return _verts.size();
};
static void update_min_lb_values(vector<Simplex*> simpls, Function* func);
static bool wont_be_divided(Simplex* s) {

return !s->_should_be_divided;
};
static bool not_in_partition(Simplex* s) {

return !s->_is_in_partition;
};
static double ascending_diameter(Simplex* s1, Simplex* s2) {

return s1->_diameter < s2->_diameter;
};
virtual ~Simplex(){

for (int i=0; i < _verts.size(); i++) {
_verts[i]->_simplices.erase(remove(_verts[i]->_simplices.begin(), _verts[i]->_simplices.end(), this),

_verts[i]->_simplices.end());
};
_verts.clear();

};
};
bool Simplex::glob_L_was_updated = false;
double Simplex::glob_L = numeric_limits<double >::max();
double Simplex::alpha = numeric_limits<double >::max();
void Simplex::update_min_lb_values(vector<Simplex*> simpls, Function* func) {

for (int sid=0; sid < simpls.size(); sid++) {
if (simpls[sid]->_should_lb_mins_be_updated or Simplex::glob_L_was_updated) {

simpls[sid]->_min_lb = simpls[sid]->find_min_vert_lb_min(simpls[sid], Simplex::glob_L);
simpls[sid]->_should_lb_mins_be_updated = false;

};
};
Simplex::glob_L_was_updated = false;

};
double Determinant(double **a, int n) { // Based on http://paulbourke.net/miscellaneous/determinant/

int i, j, j1, j2;
double det = 0;
double **m = NULL;

if (n < 1) { /* Error */ cout << "Determinant␣cannot␣be␣calculated␣for␣empty␣matrix" << endl;
} else if (n == 1) { /* Shouldn't get used */

det = a[0][0];
} else if (n == 2) {

det = a[0][0] * a[1][1] - a[1][0] * a[0][1];
} else {

det = 0;
for (j1=0;j1<n;j1++) {

m = (double**) malloc((n-1)*sizeof(double *));
for (i=0;i<n-1;i++)

m[i] = (double*) malloc((n-1)*sizeof(double));
for (i=1; i<n; i++) {

j2 = 0;
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for (j=0; j<n; j++) {
if (j == j1) continue;
m[i-1][j2] = a[i][j];
j2++;

}
}
det += pow(-1.0,1.0+j1+1.0) * a[0][j1] * Determinant(m,n-1);
for (i=0;i<n-1;i++) free(m[i]);
free(m);

}
}
return(det);

};
#endif

main.cpp
#include <iostream>
#include <malloc.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "FuncUC.h"
#include "Libre.h"
using namespace std;

int d; // Dimension of the optimization problem
vector<double> lb; // Lower bound of feasible region
vector<double> ub; // Upper bound of feasible region
vector< vector<double> > points; // Points where objective value was evaluated
double get_value(vector<double> point) { // Evaluates objective function at given point in [lb, ub]^d feasible region

points.push_back(point); // And memorizes the point where the evaluation was made
return func(&point[0]); // Make funtion evaluation

};
bool should_stop(vector<double> point) { // Checks if stopping condition is satisfied by a given point in [lb, ub]^d

for (int i=0; i < d; i++) {
if (true) { // Check stopping condition

return false;
};

};
return true;

};
// Transforms point's coordinates from [0, 1]^d unit-cube to [lb, ub]^d feasible region
vector<double> transform_from_uc(vector<double> point_uc, vector<double> _lb, vector<double> _ub) {

vector<double> point;
for (int i=0; i < _lb.size(); i++){

point.push_back(point_uc[i] * (_ub[i] - _lb[i]) + _lb[i]);
};
return point;

};
double get_value_uc(vector<double> point_uc) { // Evaluates objective function at a given point in [0, 1]^d feasible region

return get_value(transform_from_uc(point_uc, lb, ub));
};
bool should_stop_uc(vector<double> point_uc) { // Checks if stopping condition is satisfied by a given point in [0, 1]^d

return should_stop(transform_from_uc(point_uc, lb, ub));
};
int main(int argc, char* argv[]) { // Minimizes 100 functions from one GKLS class; prints intermediate and summarised results

int max_calls = 1000000;
double glob_L = numeric_limits<double >::max();
double alpha = 0.4;
Function* func_uc = new FuncUC(d, get_value_uc, should_stop_uc);
// Minimize the function using Libre algorithm (it has alpha parameter set to 0.4)
Asimpl* alg;
alg = new Asimpl(max_calls, max_duration, alpha);
alg->minimize(func_uc);
cout << "calls=" << points.size() << "␣f_min=" << func_uc->_f_min << endl;
delete func_uc; // Clear allocated memory
delete alg;
points.clear();
GKLS_free();
return 0;

};
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