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Notation

N the set of positive integers

Z the set of integers

R the set of real numbers

P the set of primes

C the set of complex numbers

i a complex number, satisfying i2 = −1

|x| the absolute value of x

[x] the integer part of x

{x} the fractional part of x

f(x) = O (g(x)) there exists a fixed C > 0 such that |f(x)| 6 Cg(x) as x → ∞

f(x) � g(x) same as f(x) = O (g(x))

f(x) = o (g(x)) ∀ε > 0 exists N such that |f(x)| 6 ε |g(x)| for all x > N

(rn) a sequence of numbers rn, n = 1, 2, 3, . . .

Γ the Euler’s gamma function

<s Real part of complex number s

=s Imaginary part of complex number s

vii





1 Introduction

In this work the Lerch zeta-function, its derivative and the periodic Hurwitz zeta-

function will be studied. Both functions are generalizations of the famous Rie-

mann zeta-function [59] given by

ζ(s) =
∞∑
n=1

1

ns
.

Here s = σ+ it denotes a complex number with σ, t ∈ R being real and imaginary

parts respectively. This Dirichlet series converges absolutely for σ > 1. The

Riemann zeta-function has a simple pole with residue 1 at s = 1 and is defined

as the meromorphic continuation into the rest of the complex plane.

Let 0 < λ, α 6 1 and denote by r = (rm)
∞
m=0, rm ∈ C, a periodic sequence

with period k. Then, for σ > 1, the periodic Hurwitz zeta-function and the Lerch

zeta-function are defined by the Dirichlet series

ζ (s, α; r) =
∞∑

m=0

rm
(m+ α)s

and L (λ, α, s) =
∞∑

m=0

e2πiλm

(m+ α)s

respectively.

In this dissertation, we investigate three related topics: the zero and a-value

distribution of the periodic Hurwitz zeta-function; the zero distribution of the

derivative of the Lerch zeta-function; the zero behavior of the Lerch zeta-function

for the special case, when parameters are equal.

Chapter 1 contains major results attained in this study, together with the

bibliographical data of our articles and the list of conferences and visits where

thesis results were presented.

Literature review, found in Chapter 2, contains overview of main advance-

ments related to the distribution of zeta-function zeros, motivation and main

definitions.

Chapter 3 contains auxiliary results, used throughout this dissertation, to-

gether with their classical proofs.
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Chapter 4 is dedicated for the distribution of the zeros of the periodic Hurwitz

zeta-function. We find the asymptotic formula for the number of nontrivial zeros.

Also, we explore nontrivial zeros distribution with respect to the critical line.

Results were published in a joint paper with Ramūnas Garunkštis in [28]. In

Chapter 5 these results were extended to a-values distribution of the periodic

Hurwitz zeta-function.

In Chapter 6 the zero distribution of the derivative of the Lerch zeta-function

is explored. We indicate zero-free regions; locate approximate positions of the

trivial zeros; consider the asymptotic formula for the number of nontrivial zeros;

explore the zero distribution with respect to the critical line. This is a joint work

with Ramūnas Garunkštis and Raivydas Šimėnas, accepted for publication.

Chapter 7 is dedicated to the special case of the Lerch zeta-function when

parameters λ and α are equal. Calculations show that the nontrivial zeros either

lie extremely close to the critical line or are distributed almost symmetrically with

respect to it. We investigate this phenomenon theoretically. These results were

proved in the joint work with thesis adviser Ramūnas Garunkštis and, with the

exception of Theorem 7.4, were published in [18]. Theorem 7.4 will appear in

sepperate paper, which is submitted for publication.

1.1 Actuality and novelty

The results obtained in this dissertation are all original. Most of them are based

on some classical results. Results related to the distribution of the Lerch zeta-

function zeros complement Garunkštis and Steuding [25] findings. Since the Hur-

witz zeta-function is a special case of the Lerch zeta-function, these results are also

useful for a more profound understanding of the zero distribution of the derivative

of the Hurwitz zeta-function.

Study of the zero distribution of the Lerch zeta-function, when the parame-

ters λ and α are equal is motivated by computational findings and is in fact an

interesting phenomenon worth investigating.

Results describing the periodic Hurwitz zeta-function zero and a-point dis-

tribution are generalized versions of similar results obtained for the Riemann

zeta-function by R. J. Backlund, H. V. Mangoldt and N. Levinson.
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1.2 Aims and main results

First aim of the thesis is to investigate zero and a-value distribution of the periodic

Hurwitz zeta-function and zero distribution of the derivative of the Lerch zeta-

function. By distribution here we mean two things: number of nontrivial zeros

till the given size and their distances from the critical line. The second aim of the

thesis is to investigate the special case of the Lerch zeta-function when parameters

λ and α are equal.

The main results are summarized as follows:

1. We have identified zero and a-value free regions of the periodic Hurwitz

zeta-function (see Theorems 4.4 and 5.4 respectively);

2. We have obtained the asymptotic formula for the number of nontrivial zeros

of the periodic Hurwitz zeta-function and a-values (see Theorems 4.2 and

5.2 respectively). Also, we showed, that the periodic Hurwitz zeta-function

zeros and a-values are clustered around the critical line (see Theorems 4.3

and 5.3 respectively);

3. We have identified zero-free regions of the derivative of the Lerch zeta-

function (see Theorems 6.1, 6.2 and 6.3);

4. We have improved the asymptotic formula for the number of nontrivial

Lerch derivative zeros (see Theorem 6.5) and showed that they are clustered

around the critical line (see Theorem 6.6).

5. We showed, that in the upper half-plane nontrivial zeros of the Lerch zeta-

function with equal parameters on average are symmetrically distributed

with a small error term (see Theorem 7.3). We found, the Speiser type

relation between zeros of the Lerch zeta-function and its derivative in the

special case of equal parameters (see Theorem 7.4).

1.3 Methodology

The methods used in this dissertation mostly come from Complex Analysis. For

completeness main classical theorems, lemmas and formulas which are used mul-
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tiple times throughout this work, are discussed separately in Chapter 3. Most

proofs consist of different forms of Dirichlet series and their analytical contin-

uations, obtained using functional equations, together with classical techniques

introduced by G. H. Hardy, J. E. Littlewood and J. Jensen. Even though new

methods will not be introduced into the field, all results obtained in this work are

new and original.

1.4 Dissemination of the thesis results

The results of this thesis will appear in 5 research papers. Two of them have

already been published, one is accepted for publishing and other two are submitted

for peer review.

1. R. Garunkštis and R. Tamošiūnas, Zeros of the periodic Hurwitz zeta-

function, Šiauliai Math. Semin., 8(16):49–62, 2013.

2. R. Tamošiūnas, a-values of the periodic Hurwitz zeta-function, Šiauliai

Math. Semin., 11(19):125-133, 2016.

3. R. Garunkštis and R. Tamošiūnas, Symmetry of zeros of Lerch zeta-function

for equal parameters, Lith. Math. J., 57(4):433–440, 2017.

4. R. Garunkštis and R. Tamošiūnas, Zeros of the Lerch zeta-function and of

its derivative for equal parameters, preprint, 2017.

5. R. Garunkštis, R. Tamošiūnas and R. Šimėnas, Zeros of derivative of Lerch’s

zeta-function, accepted for publication in Proceedings of Conference in Honor

of Kohji Matsumoto’s 60th Birthday, 2018.

All the results were presented in a series of seminars held in Vilnius Uni-

versity at Department of Probability Theory and Number Theory of Faculty of

Mathematics and Informatics. Selected results were presented at the following

conferences and events:

1. Zero distribution of the periodic Hurwitz zeta-function, poster presented at

Diophantine Analysis Summer School, Germany, July 21-26, 2014.
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2. Zero distribution of the periodic Hurwitz zeta-function, The 56th Conference

of the Lithuanian Mathematical Society, Kaunas, Lithuania, June 16-17,

2015.

3. On a-value distribution of the periodic Hurwitz zeta-function, The 57th

Conference of the Lithuanian Mathematical Society, Vilnius, Lithuania,

June 20-21, 2016.

4. Zeros and a-values of the periodic Hurwitz zeta-function, The Sixth Inter-

national Conference Analytic and Probabilistic Methods in Number Theory,

Palanga, Lithuania, September 11-17, 2016.

5. Zero trajectories of the Lerch zeta-function and its derivative, The 58th Con-

ference of the Lithuanian Mathematical Society, Vilnius, Lithuania, June

21–22, 2017.

6. Symmetry of zeros of the Lerch zeta-function for equal parameters, Vilnius

Conference in Combinatorics and Number Theory, Vilnius, Lithuania, July

16-22, 2017.

1.5 Acknowledgments

I would like to thank my advisor, Prof. Ramūnas Garunkštis for his constant

help and support. Special thanks to Prof. Juan Arias-de-Reyna for explaining

how to do an X-ray with Sage and giving useful tips how to improve the Lerch

zeta-function zero computation speed. I am grateful to Prof. Jörn Steuding for

sharing historical results related to X-rays and inspiring to be interested in the

history of mathematics. Last but not least I want to thank my fiancee, relatives,

and friends for constant support.
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2 Literature review

In this chapter the Riemann zeta-function and its generalizations will be presented

together with results, which are either closely connected with thesis problem or

provide motivational background to explore zero distribution. All results and

findings in this chapter are not original and are given there only as a reference

point.

2.1 Number of primes up to a given magnitude

One of the most famous results (prime number theorem) is due to Hadamard [31]

and Poussin [73] who in 1896 independently proved that

π(x) ∼ x

logx
, (2.1)

where π(x) denotes the number of primes up to x. This is the asymptotic law of

distribution of prime numbers which states, that limit of the quotient of those two

functions approach 1. The prime number theorem is equivalent to the statement

that the n-th prime number pn satisfies pn ∼ n logn.

It is believed, that Carl Friedrich Gauss in the year 1792 conjectured, that

π(x) ∼ li(x),

where the logarithmic integral is given by

li(x) = lim
ε→0+

(∫ 1−ε

0

+

∫ x

1+ε

)
du

logu
.

Approximation by logarithmic integral is slightly better than (2.1) and approaches

π(x) faster when x is increasing, see figure 21. Plots suggest that for sufficiently

large x exist upper and lower bounds for π(x). P. Chebyshev in 1850 had proved

that for sufficiently large x

0.921 . . . 6 π(x)
logx
x

6 1.055 . . .
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Figure 21: π(x) approximation given by x/ logx and li(x).

and if the limit

lim
x→∞

π(x)
logx
x

exists, then it is equal to 1.

As we will see in the next section, Riemann [59] introduced the zeta-function

(see Equation (2.4) bellow) and was able to prove an important relationship be-

tween the Riemann zeta-function zeros and the distribution of the prime numbers

using analytical methods. His result was critical to the proof of the prime num-

ber theorem which is equivalent to a statement, that there are no zeros of the

Riemann zeta-function, which have real part equal to 1.

2.2 Short history of zeta-functions

It is well known that Harmonic series

1 +
1

2
+

1

3
+

1

4
+

1

5
+ . . .

is divergent, this fact dates back to 14th century (Nicole Oresme). Euler [16] in

1737 explored alternative series containing prime reciprocals

1 +
1

2
+

1

3
+

1

5
+

1

7
+ . . .

and observed, that using a method similar to the sieve of Eratosthenes, one obtains
∞∑
n=1

1

nx
=
∏
p

(
1− 1

px

)−1

, (2.2)
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where x > 1 and p denotes prime numbers and product is taken over all primes.

This equation (Euler’s product formula) turned out to be a starting point for

numerous number theory results concerning prime distribution. As motivational

example, we give the simple proof of the infinitude of the primes.

Sum on the left hand side of (2.2) can be approximated by∫ ∞

1

dt

tx
=

1

x− 1
. (2.3)

Let x → 1+, then (2.2) together with (2.3) yields∑
p

(
1− 1

p

)
= 0,

thus ∑
p

1

p
= ∞.

Riemann [59] was the first to investigate the Euler product formula as a func-

tion of the complex variable. The Riemann zeta-function is a function of a complex

variable s = σ + it, for σ > 1, given by

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

p−s

)−1

, (2.4)

here, as in (2.2), p denotes prime numbers and product is taken over all primes.

It is easy to see that for σ > 1 the Riemann zeta-function does vanish. As

mentioned in previous section, proof that Riemann zeta-function does not vanish

on σ = 1 is due to Hadamard [31] and Poussin [73] and is equivalent to the prime

number theorem.

The main tool which allowed Riemann to extend the zeta-function to whole

complex plane (except the pole at s = 1) is the functional equation

π− s
2Γ
(s
2

)
ζ(s) = π− 1−s

2 Γ

(
1− s

2

)
ζ(1− s),

where Γ(s) denotes Euler’s gamma function defined as

Γ(s) =

∫ ∞

0

e−xxs−1dx, for s > 0.

For more details about Euler’s gamma function see Artin [3]. Denote

ξ(s) :=
1

2
s(s− 1)

Γ(s/2)

πs/2
ζ(s),

9



Figure 22: ζ function regions and definitions.

then, the functional equation can be expressed in symmetrical form ξ(1−s) = ξ(s).

It follows from the functional equation and the properties of gamma function

that ζ(s) vanishes in σ < 0 at s = −2n, n ∈ N (so-called trivial zeros). Also, the

functional equation of zeta-function reveals symmetrical behavior of the nontrivial

Riemann zeta-function zeros

ζ (s) = ζ (s),

which means that nontrivial zeros are distributed symmetrically with respect to

vertical line σ = 1
2

and real axis (see Figure 22).

Taking the logarithmic derivative of (2.4) yields

−ζ ′(s)

ζ(s)
=
∑
p

log p
ps − 1

=
∑
p

∑
m>1

log p
pms

.

Next we will use discontinuous integral defined by

1

2πi

∫
s:<(s)=c

ys

s
ds =


0 if 0 < y < 1,

1
2

if y = 1,

1 if y > 1.

Notice that when y = x/pm this formula enables to take into account only mem-

10



bers for which pm < x, thus

∑
p,m>1
pm6x

log p =
1

2πi

∑
p,m>1

log p
∫
s:<(s)=c

(
x

pm

)s
ds

s

= − 1

2πi

∫
s:<(s)=c

ζ ′(s)

ζ(s)

xs

s
ds.

Now, using the Cauchy argument principle (see Theorem 3.1 in Chapter 3 bellow),

we easily obtain

∑
p,m>1
pm6x

log p = x−
∑

ρ:ζ(ρ)=0

xρ

ρ
− ζ ′(0)

ζ(0)
. (2.5)

This statement links the number of primes till the given size and zeta-function

zeros, which motivates to explore exact positions of the Riemann zeta-function

zeros and their distribution.

For 0 < t 6 T , denote the number of the Riemann zeta-function nontrivial

zeros as N(T ) and the number of zeros of ζ(1
2
+ it) as N0(T ). It is well known

(see Titchmarsh [69, Theorem 9.2]), that as T → ∞

N(T + 1)−N(T ) = O(logT ). (2.6)

Riemann Hypothesis (RH) states that ζ(s) 6= 0 for σ > 1
2
. This hypothesis

originated from famous Riemann paper [59]. There are numerous alternative

formulations. If RH is true, then it is easy to see that∣∣∣∣xρ

ρ

∣∣∣∣ 6 √
x

|Im(ρ)|
.

Substituting this bound into (2.5) together with (2.6) leads to

∑
p,m>1
pm6x

log p = x+O
(√

x log2 x
)

=⇒ π(x) =

∫ x

2

dt

log t
+O

(√
x logx

)
.

Toward the Riemann Hypothesis we have the following results related to the

number of zeros on the critical line. In 1914 Hardy [32] proved that there exists

an infinity of nontrivial zeros on the critical line (for alternative proofs see Polya,

Landau, Titchmarsh [69]). Later, in 1921 Hardy and Littlewood [33] proved

that there exists such constant c > 0 for which N0(T ) > cT for any T . This

was improved by Selberg [61] in 1942 to N0(T ) > cT logT . Next came multiple

11



attempts to improve proportion bound between N0(T ) and N(T ), for example

Levinson [51] in 1974 showed, that N0(T ) > 1
3
N(T ). This was improved by

Conrey [11] in 1989 up to N0(T ) > 2
5
N(T ) and at the same year together with

Ghosh and Gonek [13] up to N0(T ) > 0.40219N(T ), for T large enough.

2.3 Zero distribution of the Riemann

zeta-function

This section restates results on counting the number of zeros till the given size

obtained by Backlund [4] and Mangoldt [72].

Let

θ(t) = arg
(
π−i t

2Γ

(
1

4
+ i

t

2

))
and

S(t) =
1

π
arg ζ

(
1

2
+ it

)
,

where the arguments are defined on the e shaped contour through points 2 + 0i,

2 + it and 1
2
+ it (if segment from 2 + it to 1

2
+ it contains the Riemann zeta-

function zero, then we take a limit t + ε, ε → ∞). Then the number of the

Riemann zeta-function zeros till T (denoted as N(T )) is

N(T ) = 1 +
θ(T )

π
+ S(T ).

Asymptotic expansion of θ(T ), using Stirling series, yields

θ(t) =
t

2
log t

2π
− t

2
− π

8
+

1

48t
+

7

5760t3
+ . . . ,

thus

N(T ) =
T

2π
log T

2π
− T

2π
+

7

8
+ S(T ) +O

(
1

T

)
. (2.7)

If T → ∞, then S(T ) can be approximated by (see Titchmarsh [69, Theorem 9.4])

S(T ) = O (logT ) ,

or, if we assume Riemann hypothesis, by the stronger bound (see Titchmarsh [69,

Theorem 14.13])

S(T ) = O (logT/ log logT ) .

12
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Figure 23: N(T ) approximation given by T
2π

log T
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− T
2π

+ 7
8
.

Figure 23 reveals how well this approximation works even for small values of T .

Denote the number of zeros β + it in the strip β > α and 0 < t 6 T by

N(α, T ). According to Bohr and Landau [8], for any fixed σ > 1
2
, we have

N(σ, T ) = O(T ).

For improved bound see Ivic [35]. From this and (2.7) we deduce that all but

infinitesimal proportion of the zeros lie in the strip 1
2
− δ < σ < 1

2
+ δ for any

δ > 0.

2.4 a-value distribution of the Riemann

zeta-function

Norman Levinson [52] in 1975 proved the following theorem concerning the a-value

distribution of the Riemann zeta-function.

Let a be a fixed complex number and T 1/2 6 U 6 T . Let N (1)(a;T, U) be the

number of roots of ζ(s) = a in

σ >
1

2
+

(log logT )2

logT
, T < t < T + U ;

let N (2)(a;T, U) be those in

σ <
1

2
− (log logT )2

logT
, T < t < T + U ;

13



and let N (3)(a;T, U) be those in
1

2
− (log logT )2

logT
6 σ 6

1

2
+

(log logT )2

logT
, T < t < T + U.

Theorem 2.1. For large T we have

N (3)(a;T, U) =
U

2π
logT +O

(
U

logT
log logT

)
,

N (1)(a;T, U) +N (2)(a;T, U) = O

(
U

logT
log logT

)
.

This states that almost all roots of ζ(s) = a are arbitrary close to σ = 1
2
.

Similar results to Theorem 2.1 were obtained by Steuding [66], [67] for the

Epstein zeta-function. Results were further extended to the Selberg zeta-function

by Garunkštis and Šimėnas [29]. In recent work Garunkštis and Steuding [27]

extended some of Levinson’s ideas about a-points of the Riemann zeta-function.

2.5 Zero distribution of the derivative of the

Riemann zeta-function

Speiser [63] showed that the Riemann hypothesis is equivalent to the absence of

the nontrivial zeros of the derivative of the Riemann zeta-function ζ (s) left of

the critical line σ = 1
2
. Later on, Levinson and Montgomery [53] proved the

quantitative version of the Speiser result, namely, that the Riemann zeta-function

and its derivative have approximately the same number of zeros left of the critical

line. The results from [53] were important for the Levinson’s [51] proof that at

least one-third of all the nontrivial zeros of ζ (s) are located on the critical line

(see also Selberg [61] and [62]). Therefore, it is important to study the zeros of

the derivatives of zeta-functions.

Speiser’s result was extended to Dirichlet L-functions with primitive Dirichlet

characters by Yıldırım [75] and the Selberg zeta-function on a compact Riemann

surface by Luo [54], (see also Garunkštis [21]). In all these cases, an analog of the

RH is expected or, as in the case of the Selberg zeta-function attached to compact

Riemann surfaces, it is known to be true.

In [30] Speiser’s result was extended to the extended Selberg class. This class

contains zeta-functions for which the Riemann hypothesis is not true. From an-

other side every zeta-function of this class satisfies the functional equation of
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the Riemann type. Thus every zeta-function has a symmetrical distribution of

nontrivial zeros in respect of the critical line. This symmetry is an important

ingredient in the proof of Theorem 1.2 in [30], which relates the nontrivial zeros

of the element of the extended Selberg class with the zeros of its derivative in a

half-plane σ < 1
2
.

Spira [64] explored what regions are free of zeros for each of the Riemann

zeta-function derivative ζ(k)(s) and gave bounds for these regions for the right and

left-half planes. Using the Euler-McLaurin formula, Spira calculated positions of

first and second zeta derivative zeros and found, that there is strange bunching

effect - the imaginary parts of the zeros of ζ ′ fall between imaginary parts of zeros

of ζ. He also conjectured that the number of k-th ζ derivative zeros up to T

satisfies

N(T ) = Nk(T ) +

[
T log 2
2π

]
± 1,

where Nk(T ) is the number of zeros of ζ(k) (σ + it) for 0 < t 6 T . This conjecture

was later explored by Berndt [6]. He proved that

N(T ) = Nk(T ) +
T log 2
2π

+O (logT ) . (2.8)

Conrey and Gosh [12] improved Levinson and Montgomery [53] results related

to the zero positions of the Riemann zeta-function by prooving, that almost all

zeros of the ζ(k)(s) are in the region

σ >
1

2
− φ(t)

log t

for any φ(t) which goes to infinity with t. Also, for any c > 0, a positive proportion

of zeros of ζ(k)(s) are in the region σ > 1
2
+ c

log t
. Assuming the RH, there are

�ε T zeros of ζ(k)(s) in the region

1

2
6 σ <

1

2
+

(1 + ε) log logT
logT

, 0 < t < T

for any ε > 0, when T → ∞.

2.6 The periodic Hurwitz zeta-function

There are multiple generalizations of the Riemann zeta-function, which share some

similarities. Most generalizations have analogs to the functional equation (2.2),
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and some even have analogs to Euler product (2.4). Exploring these generaliza-

tions is important because they are useful in a variety of disciplines and even

applications like fractals and dynamical systems. In this section we will introduce

the Hurwitz zeta-function and the periodic Hurwitz zeta-function, which will be

studied in this thesis.

Adolf Hurwitz [34] in 1881 invented a simple, but important generalization,

the nowadays so-called Hurwitz zeta-function, given by

ζ (s, α) =
∞∑

m=0

1

(m+ α)s
,

where α is a real parameter satisfying 0 < α 6 1. Hurwitz himself considered only

the case of rational α, which is sufficient for most number theory applications (for

more details see [57]). Let 1 6 m 6 n be integers, then the following functional

equation holds (see Hurwitz [34])

ζ
(
1− s,

m

n

)
=

2Γ (s)

(2πn)s

n∑
k=1

cos
(
πs

2
− 2πkm

n

)
ζ

(
s,

k

n

)
. (2.9)

While ζ(s) has no zeros in σ > 1, the Hurwitz zeta-function has infinitely

many zeros if α 6= 1
2

or 1. Even though the analogue of the Riemann hypothesis

for the Hurwitz zeta-function is false (see Davenport and Heilbronn [14]), with

rational parameters Hurwitz zeta-function has self-approximation property (see

Pańkowski [58]).

Denote by r = (rm)
∞
m=0, rm ∈ C, a periodic with period k sequence. To avoid

the trivial case we further assume that rk 6= 0, for some k. The periodic Hurwitz

zeta-function is defined by the Dirichlet series

ζ (s, α; r) =
∞∑

m=0

rm
(m+ α)s

(σ > 1), (2.10)

where 0 < α ≤ 1 is a fixed real number. If k = 1 and rm = 1, then we obtain

the Hurwitz zeta-function ζ (s, α) and, for α = 1, we get the classical Riemann

zeta-function ζ (s).

It is easy to see that, for σ > 1,

ζ (s, α; r) =
1

ks

k−1∑
l=0

rl

∞∑
m=0

1

(m+ (l + α/k))s
=

1

ks

k−1∑
l=0

rlζ

(
s,
α + l

k

)
. (2.11)
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In view of the equation (2.11) and the functional equation (2.9) the function

ζ (s, α; r) has meromorphic continuation to the whole complex plane with possible

simple pole at s = 1 with residue

R =
1

k

k−1∑
l=0

rl.

If R = 0, then ζ (s, α; r) is an entire function.

In the sense of probabilistic limit theorems and the universality theory the

periodic Hurwitz zeta-function were extensively investigated by Laurinčikas and

and his pupils in the papers [36], [38], [37], [39], [41], [40], [46], [48].

2.7 The Lerch zeta-function

Mathias Lerch [50] in 1887 studied the infinite series which is nowadays well-known

as the Lerch zeta-function, namely

L (λ, α, s) =
∞∑

m=0

e2πiλm

(m+ α)s
, (2.12)

for σ > 1 and 0 < λ, α 6 1. Lerch [50] obtained analytic continuation to the whole

complex plane, except a simple pole at s = 1. In this work we will use the following

version of the functional equation formulation (Garunkštis and Steuding [25]):

L (λ, α, 1− s) = (2π)−s Γ (s)

(
exp

(
πis

2
− 2πiαλ

)
L (−α, λ, s) (2.13)

+ exp
(
−πis

2
+ 2πiα (1− {λ})

)
L (α, 1− {λ}, s)

)
,

where 0 < λ, α 6 1. Various proofs of this functional equation can be found in

Lerch [50], Apostol [1], Oberhettinger [56], Mikolás [55], Berndt [7], see also La-

garias and Li [42], [43]. The Lerch zeta-function has a second moment (Garunkštis,

Laurinčikas, and Steuding [23]) and it is a universal function (Laurinčikas [45],

Lee, Nakamura, Pańkowski [49]).

Notice that

L(1, 1, s) = ζ(s), L(1, α, s) = ζ(s, α), L

(
1

2
,
1

2
, s

)
= 2sL(s, χ), (2.14)

L

(
1

2
, 1, s

)
= (1− 21−s)ζ(s), L

(
1,

1

2
, s

)
= (2s − 1)ζ(s),
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where L(s, χ) is the Dirichlet L-function with the character χ mod 4, χ(3) = −1.

For these five cases, certain versions of the Riemann hypothesis (RH) can be

formulated. For all the other cases, it is expected that the real parts of zeros of

the Lerch zeta-function form a dense subset of the interval (1
2
, 1). This is proved

for any λ and transcendental α (see Garunkštis [47, Theorem 4.7 in Chapter 8]).

In general, the Hurwitz zeta-function and the Lerch zeta-function has no Euler

product expansion over the prime numbers and does not have a symmetrical

version of the functional equation (analog to ξ (1− s) = ξ (s)). These are the

main reasons why we need alternative techniques to explore zero-free regions and

zero distributions in both of these cases.

Garunkštis and Laurinčikas [22] proved a theorem which estimates the number

of the Lerch zeta-function zeros up to a fixed height. Let N+(λ, α, T ) denote

nontrivial zeros in 0 < t < T , and N−(λ, α, T ) in −T < t < 0.

Theorem 2.2. When T → ∞, then

N+(λ, α, T ) =
T

2π
log T

2παλ
+O(logT ),

N−(λ, α, T ) = N+(1− λ, α, T ).

In 2000 Garunkštis and Steuding [25] proved that almost all zeros of the Lerch

zeta-function are clustered around the vertical line of the complex plane with the

real part 1
2
. Let s = β + iγ denote the nontrivial zero of L(λ, α, s).

Theorem 2.3. For 0 < λ, α 6 1 we have, as T tends to infinity,∑
|γ|6T

(
β − 1

2

)
=

T

2π
log α√

λ(1− {λ})
+O(logT ).
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3 Methodology

This chapter contains main classical theorems, lemmas and formulas which which

will be used together with classical techniques, introduced by G. H. Hardy, J.

E. Littlewood and J. Jensen, in later chapters. For each theorem and lemma, a

short proof will be given or references provided. All results in this chapter are not

original and are given here only as a reference point.

3.1 Auxiliary results

Theorem 3.1 (Cauchy’s argument principle). If f (z) is a meromorphic

function inside and on some closed contour C, and f has no zeros or poles on C,

then
1

2πi

∮
C

f ′ (z)

f (z)
dz = N − P,

where N and P denote respectively the number of zeros and poles, of f (z) inside

contour C, with each zero and pole counted as many times as its multiplicity and

order, respectively, indicate. Notice that if f (z) is analytic inside C, then the

left-hand side gives the number of zeros of f (z) inside C.

Proof. Since the zeros and poles are isolated, we can deform C into a set of small

disjoint circles, one centered at each zero or pole, and such that the center is the

only such point within the circle. It follows that it is enough to prove the theorem

for each circle separately and then add the results.

In such circle Cε with center at z0, we can write f (z) = (z − z0)
m h (z) where

m > 0 if z0 is a zero and m < 0 if z0 is a pole, and where h (z) 6= 0. Then it is

easy to see that
f ′ (z)

f (z)
=

m

z − z0
+

h′ (z)

h (z)
,

thus
1

2πi

∮
C

f ′ (z)

f (z)
dz =

1

2πi

∮
Cε

m

z − z0
= m,

since h′(z)
h(z)

is analytic inside Cε.
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Rouché’s theorem formulation and the proof are based on Titchmarch [68,

§3.42].

Theorem 3.2 (Rouché’s theorem). If f(z) and g(z) are analytic inside and

on a closed contour C, and |g(z)| < |f(z)| on C, then f(z) and f(z) + g(z) have

the same number of zeros inside C.

Proof. Define

Ψ(t) :=
1

2πi

∫
C

f ′ (z) + tg′ (z)

f (z) + tg (z)
dz,

on the interval 0 6 t 6 1. Notice that since

|f (z) + tg (z)| > ||f (t)| − t |g (t)|| > ||f (t)| − |g (t)|| > 0,

that denominator of the integrand is never zero. Also note that Ψ is continuous

on the interval [0, 1] and is integer-valued, thus constant. Ψ is the number of zeros

of f + tg inside C, thus

Ψ(0) =
1

2πi

∫
C

f ′ (z)

f (z)
dz

is the number of f zeros in C, and

Ψ(1) =
1

2πi

∫
C

f ′ (z) + f ′ (z)

f (z) + g (z)
dz

is the number of zeros of f + g in C. Since Ψ(0) = Ψ (1), this completes the

proof.

Formulation and proof of Littlewood’s lemma is based on Titchmarsh [69,

§9.9].

Theorem 3.3 (Littlewood’s lemma). Let f (s) be analytic and nonzero on the

rectangle C with verices σ0, σ1, σ1+ iT and σ0+ iT , here σ0 < σ1 and T > 0. Also

denote ρ = β + iγ zeros of f belonging to the region enclosed by C, with β, γ ∈ R.

Then

2π
∑
ρ∈C

(β − σ0) =

∫ T

0

log |f (σ0 + it)| dt−
∫ T

0

log |f (σ1 + it)| dt

+

∫ σ1

σ0

arg f (σ + iT ) dσ −
∫ σ1

σ0

arg f (σ) dσ.
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Figure 31: Contour C ′, with loop Lρ around the f zero ρ.

Proof. Let C ′ denote a contour which, with the help of loops Lρ, cuts C in such a

way, that all zeros ρ are lying outside of C ′ (see Figure 31). Then∫
C

log f (s) ds =

∫
C′

log f (s) ds+
∑
ρ∈C

∫
Lρ

log f (s) ds.

Since log f (s) is analytic and single-valued in C ′, the first integral on the right

hand side is zero. It remains to estimate integrals which traverse path Lρ. If

circular path in Lρ has radius r, then∫
Lρ

log f (s) ds =

∫ β−r

σ0

log f
(
σ + iγ+

)
dσ +

∫ −π

π

log f
(
ρ+ reiθ

)
ireiθdθ

−
∫ β−r

σ0

log f
(
σ + iγ−) dσ.

It is easy to see that∫ −π

π

log f
(
ρ+ reiθ

)
ireiθdθ → 0, as r → 0+.

Since traveling around circular part of Lρ we have gained 2π in the argument

along γ, we obtain∫
Lρ

log f (s) ds =

∫ β−r

σ0

log f
(
σ + iγ+

)
dσ −

∫ β−r

σ0

log f
(
σ + iγ+

)
+ 2πidσ

= −2πi

∫ β−r

σ0

dσ.

Hence, as r → 0+, ∫
Lρ

log f (s) ds = −2πi (β − σ0) .
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Now, we can estimate integral along rectangle C in two ways∫
C

log sds =− 2πi
∑
ρ∈C

(β − σ0)

=

∫ T

0

log f (σ1 + it) idt+

∫ σ0

σ1

log f (σ + iT ) dσ

+

∫ 0

T

log f (σ0 + it) idt+

∫ σ1

σ0

log f (σ) dσ.

The theorem follows by expanding principle value of the logarithm and equating

the imaginary parts.

Jensen’s formula and the proof are based on Rudin [60, §15.18].

Theorem 3.4 (Jensen’s formula). Let f be holomorphic inside and on the circle

|z| = R and f(0) 6= 0. Let a1, a2, . . . , am be the zeros of f inside the disk with

multiplicities p1, p2, . . . , pm, and denote poles by b1, b2, . . . , bn with multiplicities

q1, q2, . . . , qn. Then

1

2π

∫ 2π

0

log
∣∣f (Reiθ

)∣∣ dθ = log |f (0)|+
m∑
k=1

pk log
∣∣∣∣Rak
∣∣∣∣− n∑

k=1

qk log
∣∣∣∣Rbk
∣∣∣∣ .

That is, the distribution of zeros of f(z) inside the circle is related to the mean of

log |f(z)| on the circle.

Proof. Since < log z = log |z|

I :=
1

2π

∫ 2π

0

log
∣∣f (Reiθ

)∣∣ dθ
=

1

2π

∫ 2π

0

<
{

log f (0) +

∫ R

0

d

dr
log f

(
reiθ
)
dr

}
dθ

= log |f (0)|+ 1

2π
<
∫ 2π

0

∫ R

0

f ′ (reiθ) eiθ
f (reiθ)

drdθ.

Reversing the order of integration yields

I = log |f (0)|+ <
∫ R

0

1

2πir

∫ 2π

0

f ′ (reiθ) ireiθ
f (reiθ)

dθdr

= log |f (0)|+ <
∫ R

0

1

2πir

∫
Cr

f ′ (z)

f (z)
dzdr,

where Cr is the circle of radius r. Now, by the argument principle

1

2πi

∫
Cr

f ′ (z)

f (z)
dz =

∑
|ak|<r

pk −
∑
|bk|<r

qk := n (r) .
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Since n (r) is a real number, we conclude that

I = log |f (0)|+
∫ R

0

n (r)

r
dr.

Now, let 0 < j1 6 . . . 6 rm+n < R be the ordered magnitudes of the poles and

zeros ak, bk. Then n (r) is constant on the interval (rj, rj+1). Set r0 = 0 and

rm+n+1 = R for simplicity. Denote its value on this interval by nj. Then

I − log |f (0)| =
m+n∑
j=0

∫ rj+1

rj

n (r)

r
dr

=
m+n∑
j=1

∫ rj+1

rj

nj

r
dr

=
m+n∑
j=1

nj (log (rj+1)− log (rj))

= −n1 log j1 + (n1 − n2) log j2 + · · ·+ (nm+n−1 − nm+n) log rm+n + nm+n logR.

Now, nj+1−nj is precisely the multiplicity of the zero and/or pole of radius rj+1,

because that’s how much n (r) changes by when the radius passes from r < rj+1

to r > rj+1. So then

I = log |f (0)| −
m∑
k=1

pk log |ak|+
n∑

k=1

qk log |bk|+ nm+n logR

= log |f (0)|+
m∑
k=1

pk log R

|ak|
−

n∑
k=1

qk log R

|bk|
,

where the last equality holds because of nm+n =
∑

k pk −
∑

k qk.

Following statements are given without proofs.

Minimum value of ζ(s) in certain parts of the critical strip was obtained by

Landau [44] (see Titchmarch [69, §9.7]).

Lemma 3.1. There is a constant A such that each interval (T, T + 1) contains a

value of t for which

|ζ(s)| > t−A (−1 6 σ 6 2).

Similar bound is also true for the Lerch zeta-function (see Garunkštis [22])

and as we will see later, for the derivative of the Lerch zeta-function.

Lemma 3.2. For any σ0, σ > σ0, we have

L(λ, α, s) = Bλ |t|k , k = k (σ0) .
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Considering mean values of ζ(s) powers Titshmarch [69, §7.3] gave following

theorem.

Theorem 3.5. We have∫ T

1

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 dt = O(T logT ).

This result can be improved to asymptotic equality, see Hardy and Littlewood

[33].

Lemma 3.3 (Stirling’s formula). If | arg s| 6 π − ε, then

logΓ (s) =

(
s− 1

2

)
log s− s+

1

2
log 2π +O

(
1

|s|

)
. (3.1)

For the proof see Titchmarsh [68, §4.42].

3.2 X-rays of the Hurwitz zeta-function

Hurwitz zeta-function when α = 1 behaves very differently than with other α

values and thus requires normalization. As a motivation, to use normalized Hur-

witz zeta-function αsζ (s, α) in chapters 4 and 5, we draw several ‘X-ray’ pictures

(cf. Arias-de-Reyna [2]) of the Hurwitz zeta-function for various fixed values of

parameter α near 1.

Let f (s) be a meromorphic function. The real lines of f (s) are defined by the

set

{s ∈ C : <f (s) = 0} .

In figures of this section real lines are denoted by solid lines. Analogously, the

imaginary lines of f (s) are defined by the set

{s ∈ C : =f (s) = 0} .

In figures, imaginary lines are denoted by dotted lines.

In the upper part of Figure 3.2, we see the unstable behavior of real lines of

the Hurwitz zeta-function ζ (s, α) when α tends to 1. In the upper part of Figure

3.2, the network of real and imaginary lines is very different when α is near to 0

and when α is near to 1. It seems that this instability is caused by the first term
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αs of the Dirichlet series of ζ (s, α). The lower parts of Figures 3.2 and 3.2 shows

that the network of real and imaginary lines is more stable for different values of

α if we consider the normalized Hurwitz zeta-function αsζ (s, α). Both functions

ζ (s, α) and αsζ (s, α) have the same zeros. In later chapters similar normalization

will be applied for periodic Hurwitz zeta-function and the Lerch zeta-function to

obtain 1 as a first term in Dirichlet series.
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Figure 32: Real and imaginary lines of the function ζ (s, α) compared to real and
imaginary lines of the normalized function αsζ (s, α), for α = 0.99, 0.9999, 1. In
the graphs the horizontal axis is <s and the vertical axis is =s.
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Figure 33: Real and imaginary lines of the function ζ (s, α) compared to real and
imaginary lines of the normalized function αsζ (s, α), for α = 0.1, 0.9.
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4 Zeros of the periodic Hurwitz

zeta-function

Here we consider the zero distribution of the periodic Hurwitz zeta-function for a

sequence r = (rm)
∞
m=0, rm ∈ C, with period k. In this chapter, we always suppose

that T tends to plus infinity. Let

d = min {n ∈ N0 : rn 6= 0} . (4.1)

The functions ζ (s, α; r) and r−1
d ζ (s, α; r) have the same zeros. Without loss of

generality we further suppose that rd = 1. Let ρ = β + iγ always denote a non-

trivial zero of ζ (s, α; r) (for the definition see Section 4.2 below). Let N (T, k, α)

count the number of nontrivial zeros ρ of ζ (s, α; r) with |γ| 6 T (according to

multiplicities).

By (2.11) and (2.9) the function ζ (s, α; r) satisfies the following functional

equation (for complete proof see Lemma 4.5)

ζ (s, α; r) =
1

ks

Γ (1− s)

(2π)1−s

(
exp

(
−πi(1− s)

2

)
ζ
(
s, 1; q+

)
+ exp

(
πi (1− s)

2

)
ζ
(
s, 1; q−

))
, (4.2)

where

q± (n) = q± (n, α, d; r) =
k−d−1∑
l=0

rl+d exp
(
±2πin

α + l + d

k

)
. (4.3)

Define

j1 = min
{
n ∈ N : q+ (n) 6= 0

}
, j2 = min

{
n ∈ N : q− (n) 6= 0

}
. (4.4)

Later we will show the existence of such j1 and j2 (see Lemma 4.6 in Section 4.3).

Constants j1, j2 and thus also q± (j1) , q
± (j2) are easy to compute for any

periodic sequence. For example, let rm = exp
(
2
3
πim

)
, then to locate j1 we iterate
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through different values of n until q+(n) 6= 0.

q+(1) =
2∑

l=0

exp
(
2πil

1

3

)
exp

(
2πi

α + l

3

)
= 0,

q+(2) =
2∑

l=0

exp
(
2πil

1

3

)
exp

(
4πi

α + l

3

)
= 3 exp

(
4πi

α

3

)
6= 0,

thus j1 = 2. Similarly for q− we have

q−(1) =
2∑

l=0

exp
(
2πil

1

3

)
exp

(
−2πi

α + l

3

)
= 3 exp

(
−2πi

α

3

)
6= 0,

thus j2 = 1.

4.1 Results

The next proposition will be the main tool in the investigation of zeros.

Proposition 4.1. Let 0 < α 6 1. Let d be defined by formula (4.1). For any

sufficiently large real number b, we have∑
|γ|<T

(b+ β) =

(
b+

1

2

)
T

π
log T

2πe
+

T

2π

(
log
∣∣q+ (j1)

∣∣+ log
∣∣q− (j2)

∣∣)
+

T

π
b log k

α + d
+O(logT )

In Proposition 4.1, substracting the case b from b+1, we obtain the following

theorem.

Theorem 4.2. Under the conditions of Proposition 4.1 we have

N (T, k, α) =
T

π
log Tk

2πe (α + d)
+O (logT ) .

The expression∑
τ<γ≤T

(
β − 1

2

)
=
∑

τ<γ≤T

(β + b)−
(
1

2
+ b

) ∑
τ<γ≤T

1,

Theorem 4.2, and Proposition 4.1 with an appropriate b lead to the following

statement.

Theorem 4.3. Under the conditions of Proposition 4.1 we have∑
|γ|<T

(
β − 1

2

)
= − T

2π
log k

(α + d)
+

T

2π

(
log
∣∣q+ (j1)

∣∣+ log
∣∣q− (j2)

∣∣)+O (logT ) .
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The last theorem shows that the zeros of the periodic Hurwitz zeta-function

are clustered around the critical line σ = 1
2
.

If r = (e2πiλm)∞m=0, for rational number λ, then the periodic Hurwitz zeta-

function becomes the Lerch zeta-function. Zeros of this function were investigated

in [22], [17], [25], [47].

In the next section, we define nontrivial zeros of ζ(s, α; r), Section 4.3 is de-

voted to lemmas, in Sections 4.4 and 4.5 we prove the theorem about zero-free

regions and Proposition 4.1.

4.2 Zero-free regions and nontrivial zeros

By the Dirichlet series (2.10) we see that there is a positive σ1 such that ζ (s, α; r) 6=

0 in the right half-plane σ > σ1.

Let l be a line on the complex plane, %(s, l) stands for the distance of s from

l, and let, for ε > 0,

Lε(l) =
{
s ∈ C : %(s, l) < ε

}
.

The next theorem gives zero-free regions on the left-hand side of the complex

plane.

Theorem 4.4. There exist constants σ0 6 0 and ε0 > 0 such that ζ (s, α; r) 6= 0

for σ < σ0 and

s /∈ Lε0

(
(σ − 1) log j1

j2
− πt = log

∣∣∣∣q− (j2)

q+ (j1)

∣∣∣∣) .

In view of above we say that the zero ρ = β + iγ of ζ (s, α; r) is nontrivial if

σ0 ≤ β ≤ σ1. The zero z is called trivial if

z ∈ Lε0

(
(σ − 1) log j1

j2
− πt = log

∣∣∣∣q− (j2)

q+ (j1)

∣∣∣∣) .

Using the Rouché theorem 3.2 and arguing similarly as in the proof of Theorem

3 in [22] one can show that there are infinitely many trivial zeros.

Theorem 4.4 is proved in Section 4.4.
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4.3 Lemmas

We will use the following functional equation.

Lemma 4.5. If σ < 0, then

ζ (s, α; r) =
1

ks

Γ (1− s)

(2π)1−s

(
exp

(
−πi(1− s)

2

) ∞∑
n=1

q+ (n)

n1−s

+ exp
(
πi (1− s)

2

) ∞∑
n=1

q− (n)

n1−s

)
.

Proof. The lemma follows by expression (2.11) in view of the functional equation

for the Hurwitz zeta-function

ζ (1− s, α) =
Γ (s)

(2π)s

(
exp

(
πis

2

) ∞∑
n=1

e−2πiαn

ns
+ exp

(
−πis

2

) ∞∑
n=1

e2πiαn

ns

)
.

Lemma 4.6. There exist

j1 = min
{
n ∈ N : q+ (n) 6= 0

}
and j2 = min

{
n ∈ N : q− (n) 6= 0

}
.

Proof. Easy to see that the sequence (q+ (n))∞n=1 is periodic, with the period k.

Contrary to the statement of Lemma 4.6 let us assume that

q+ (1) =
∑k−1

l=0 rl exp
(
2πiα+l

k

)
= 0

q+ (2) =
∑k−1

l=0 rl exp
(
4πiα+l

k

)
= 0

...

q+ (k) =
∑k−1

l=0 rl exp (2πi (α + l)) = 0.

The matrix

V =


exp

(
2πiα

k

)
exp

(
2πiα+1

k

)
· · · exp

(
2πiα+k−1

k

)
exp

(
2 · 2πiα

k

)
exp

(
2 · 2πiα+1

k

)
· · · exp

(
2 · 2πiα+k−1

k

)
· · · · · · · · · · · ·

exp
(
k · 2πiα

k

)
exp

(
k · 2πiα+1

k

)
· · · exp

(
k · 2πiα+k−1

k

)


is Vandermonde’s matrix. We have

det (V ) =
∏

16j6k

exp
(
2πi

α + j − 1

k

) ∏
16t<j6k

(
exp

(
2πi

α + j − 1

k

)
6= 0.

32



Thus rn = 0, 0 6 n 6 k − 1. This is a contradiction. Hence there exists

j1 = min
{
n ∈ N : q+ (n) . 6= 0

}
.

In a similar way it is shown that there exists

j2 = min
{
n ∈ N : q− (n) 6= 0

}
.

Next two lemmas will be useful in the proof of Proposition 4.1.

Lemma 4.7. For any sufficiently large real number b we have∫ T

−T

log

∣∣∣∣∣exp
(
−πi (1 + b− it)

2

) ∞∑
n=1

q+ (n)

n1+b−it
+ exp

(
πi (1 + b− it)

2

) ∞∑
n=1

q− (n)

n1+b−it

∣∣∣∣∣ dt
=

π |T |2

4
+ T

(
log
∣∣q+ (j1)

∣∣+ log
∣∣q− (j2)

∣∣)+O (1) .

Proof. Let L denote the integrand in the last formula. In view of Lemma 4.6, for

all sufficiently large b and any t, we have
∞∑
n=1

q± (n)

n1+b−it
6= 0.

Thus, for t ≥ 0,

L = log

∣∣∣∣∣exp
(
πi (1 + b− it)

2

) ∞∑
n=1

q− (n)

n1+b−it

∣∣∣∣∣+O (exp (−πt))

=
πt

2
+ log

∣∣∣∣∣
∞∑
n=1

q− (n)

n1+b−it

∣∣∣∣∣+O (exp (−πt)) .

Further∫ T

0

log

∣∣∣∣∣
∞∑
n=1

q− (n)

n1+b−it

∣∣∣∣∣ dt = T log
∣∣q− (j2)

∣∣+ ∫ T

0

log

∣∣∣∣∣
(
1 +

∞∑
n=j1+1

q− (n) /q− (j2)

n1+b−it

)∣∣∣∣∣ dt.
By expanding the logarithm on the right-hand side of the last formula, we get,

for sufficiently large b,∫ T

0

log

∣∣∣∣∣
(
1 +

∞∑
n=j1+1

q− (n) /q− (j2)

n1+b−it

)∣∣∣∣∣ dt
=

∫ T

1

Re

(
∞∑

m=1

(−1)m−1

m

(∑∞
n=j2+1

q−(n)
n1+b−it

q− (j2)

)m)
dt

= Re

(
∞∑

m=1

(−1)m−1

m

(
q− (j2)

)−m

)
∞∑

n1=j2+1

...
∞∑

nm=j2+1

1

(n1...nm)
1+b

×
i
(
(n1...nm)

iT − 1
)

log (n1...nm)

(
q− (j2n1) · ... · q− (j2nm)

)
= O(1).
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Arguing similarly, for the case t ≤ 0, we complete the proof of Lemma 4.7.

Lemma 4.8. For any sufficiently large real number a we have∫ T

−T

log |ζ (a+ it, α; r)| dt = −2Ta log (α + d) +O (1) .

Proof. The lemma is proved analogously to Lemma 4.7.

4.4 Proof of Theorem 4.4

Proof of Theorem 4.4. Let σ < 0. By the functional equation (see Lemma 4.5)

we have ζ (s, α; r) 6= 0 if

exp
(
−πi (1− s)

2

) ∞∑
n=1

q+ (n)

n1−s
+ exp

(
πi (1− s)

2

) ∞∑
n=1

q− (n)

n1−s
6= 0.

Let l be a line

l : (σ − 1) log j1
j2

− πt = log
∣∣∣∣q− (j2)

q+ (j1)

∣∣∣∣ .
Assume a point s1 = σ1 + it1, σ1 < 0 lies over the line l and let j1 < j2. Then

−πt1 6 − log
∣∣∣∣q+ (j1)

q− (j2)

∣∣∣∣+ (1− σ1) log j1
j2

We have ∣∣∣∣∣exp
(
πi (1− s)

2

) ∞∑
n=1

q− (n)

n1−s
+ exp

(
−πi (1− s)

2

) ∞∑
n=1

q+ (n)

n1−s

∣∣∣∣∣
> jσ−1

2 exp
(
πt

2

) ∣∣q− (j2)
∣∣− jσ−1

1 exp
(
−πt

2

) ∣∣q+ (j1)
∣∣

− exp
(
πt

2

) ∞∑
n=j2+1

q− (n)

n1−σ
− exp

(
−πt

2

) ∞∑
n=j1+1

q+ (n)

n1−σ

> jσ−1
2 exp

(
πt

2

) ∣∣q− (j2)
∣∣(1− ∣∣∣∣q+ (j1)

q− (j2)

∣∣∣∣ exp (−πt)

(
j1
j2

)σ−1

− j1−σ
2

|q− (j2)|

(
∞∑

n=j2+1

q− (n)

n1−σ
+ exp (−πt)

∞∑
n=j1+1

q+ (n)

n1−σ

))
.
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Since −πt1 6 − log
∣∣∣ q+(j1)
q−(j2)

∣∣∣+ (1− σ1) log j1
j2

we conclude that

F1 (s1) := exp
(
−πt1 + log

∣∣∣∣q+ (j1)

q− (j2)

∣∣∣∣− (1− σ1) log
(
j1
j2

))
+

j1−σ1
2

|q− (j2)|

(
∞∑

n=j2+1

q− (n)

n1−σ1
+ exp (−πt1)

∞∑
n=j1+1

q+ (n)

n1−σ1

)

6 exp
(
−πt1 + log

∣∣∣∣q+ (j1)

q− (j2)

∣∣∣∣− (1− σ1) log
(
j1
j2

))
+

j1−σ1
2

|q− (j2)|

∞∑
n=j2+1

q− (n)

n1−σ1
+

(
j1−σ1
2

|q+ (j1)|
+

j1−σ1
1

|q− (j2)|

) ∞∑
n=j1+1

q+ (n)

n1−σ1
.

Now, we choose the point s1 such that the inequality

F (s1) < 1

is satisfied. Let

A (s1) =

{
s ∈ C : σ 6 σ1, (σ − σ1) log j1

j2
6 π (t− t1)

}
.

The region A (s1) lies over the line

(σ − σ1) log j1
j2

= π (t− t1)

and on the left of the line σ = σ1. If s = σ + it ∈ A (s1), then

F1 (s) = exp
(
−πt+ log

∣∣∣∣q+ (j1)

q− (j2)

∣∣∣∣− (1− σ) log
(
j1
j2

))
+

j1−σ
2

|q− (j2)|

(
∞∑

n=j2+1

q− (n)

n1−σ
+ exp (−πt)

∞∑
n=j1+1

q+ (n)

n1−σ

)

6 F1 (s1)

Thus ζ (s, α; r) 6= 0, for s ∈ A (s1).

Now, we consider a region beneath the line l and on the left from the imaginary

axis. Let s2 = σ2 + it2, with σ2 < 0 and

−πt2 ≥ − log
∣∣∣∣q+ (j1)

q− (j2)

∣∣∣∣+ (1− σ2) log j1
j2
.

Let

B (s2) =

{
s ∈ C : σ 6 σ2, (σ − σ1) log j1

j2
> π (t− t2)

}
.

Again, we can choose s2 such that ζ (s, α; r) 6= 0, for s ∈ B (s2).
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Let r = (rm)
∞
m=0. If j2 > j1 then the assertion of the theorem follows from the

case j1 > j2 in view of the equality

ζ(s, α; r) = ζ(s, α; r).

If j1 = j2 then the proof is similar as above, only simpler. Theorem 4.4 is

proved.

4.5 Proof of Proposition 4.1

Proof of Proposition 4.1. The proof follows the ideas of Levinson [52]. Let

G (s, α; r) = (α + d)s ζ (s, α; r) ,

where d is defined by equality (4.1). The zeros of G (s, α; r) correspond exactly to

the zeros of ζ (s, α; r). Let a > σ1 and −b < σ0, where σ0 and σ1 are from Theorem

4.4. Applying Littlewood’s lemma 3.3 to the function G(s) on the rectangle with

edges on the lines t = −T , t = T , σ = a, σ = −b (a > −b) we get

2π
∑
|γ|<T

(b+ β) =

∫ T

−T

log |G (−b+ it, α; r)| dt−
∫ T

−T

log |G (a+ it, α; r)| dt

−
∫ a

−b

argG (σ − iT, α; r) dσ +

∫ a

−b

argG (σ + iT, α; r) dσ

=:I1 + I2 + I3 + I4.

Thirst we consider the integral I1. By the functional equation (see Lemma

4.5) we obtain

log |ζ (−b+ it, α; r)| = log

∣∣∣∣∣ 1

k−b+it

Γ (1 + b− it)

(2π)1+b−it

×

(
exp

(
−πi (1 + b− it)

2

) ∞∑
n=1

q+ (n)

n1+b−it
+ exp

(
πi (1 + b− it)

2

) ∞∑
n=1

q− (n)

n1+b−it

)∣∣∣∣∣ .
Stirling’s formula (3.1) gives

log

∣∣∣∣∣ 1

k−b+it

Γ (1 + b− it)

(2π)1+b−it

∣∣∣∣∣ = log
∣∣∣∣ 1

k−b+it

∣∣∣∣+ (b+ 1

2

)
log |t|

2π
− π |t|

2
+O

(
1

|t|

)
.
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Then by Lemma 4.7 we get

I1 = −2Tb log (α + d) + 2Tb log k + (1 + 2b)T log T

2πe

+ T
(
log
∣∣q+ (j1)

∣∣+ log
∣∣q− (j2)

∣∣)+O (1) .

Further Lemma 4.8 gives that

I2 = 2Ta log (α + d)− 2Ta log (α + d) +O (1) = O (1) .

We turn to integrals I3 and I4. By expression (2.11) we have, for σ ≥ −b,

there is a positive constant A such that

ζ (σ ± iT, α; c) = O
(
TA
)
.

Then similarly as in Titchmarsh [69, §9.4] (see also proof of Theorem 1 in [25])

we obtain ∫ a

−b

|argG (σ ± iT, α; r)| dσ = O (logT ) .

Thus I4, I3 = O (logT ). This proves Proposition 4.1.
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5 a-values of the periodic

Hurwitz zeta-function

In this chapter, we obtain results similar to the results in the previous chapter

regarding the zeros of the periodic Hurwitz zeta-function, but we consider a-values

instead of zeros and treat upper and lower half of the complex plane individually.

This section could be viewed as a generalization of the previous one. Quite a

few results overlap, however, there are some significant differences. Roots of

ζ (s, α; r) = a, for a ∈ C, are called a-values of the periodic Hurwitz zeta-function.

Throughout this chapter, we will assume that a 6= 0. We will reuse notations for

q±, j1, j2, d defined by equations (4.2), (4.4) and (4.1).

In 1975, Levinson [52] showed that almost all a-values of the Riemann zeta-

function are arbitrarily close to the line σ = 1
2
. Similar results are obtained by

Steuding [66], [67] for the Epstein zeta-function. Results were further extended to

the Selberg zeta-function by Garunkštis and Šimėnas [29]. Here we extend some

of these results to the periodic Hurwitz zeta-function. The case of the Hurwitz

zeta-function can be easily obtained from our results by taking rm = 1.

Let % = β + iγ denote the nontrivial a-values of ζ (s, α; r). For the definition

of trivial a-values, see Section 5.2. Let N (T, k) count the number of nontrivial

a-values with |γ| 6 T according to multiplicities. In this chapter, always T → ∞.

5.1 Results

From the definition of ζ(s, α; r) by a Dirichlet series, we see that there exists

σ′ (α; r) such that, for all σ > σ′ > 0, the periodic Hurwitz zeta-function has no

a-values.

Theorem 5.1. Let a 6= 0 be a fixed complex number. For sufficiently large
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b, c ∈ R, we have

2π
∑

0<t<T

(b+ β) =− T log
∣∣a− r0α

−c
∣∣+ Tb log k +

(
b+

1

2

)
T log T

2πe

− T (1 + b) log j2 + T log
∣∣q− (j2)

∣∣+O (logT ) ,

and

2π
∑

−T<t<0

(b+ β) =− T log
∣∣a− r0α

−c
∣∣+ Tb log k +

(
b+

1

2

)
T log T

2πe

− T (1 + b) log j1 + T log
∣∣q+ (j1)

∣∣+O (logT ) .

Now, we can use this with b+1 instead of b, and subtract the resulting formula

from the one above. Therefore, denoting by N+ (λ, α, T ) and N− (λ, α, T ) the

number of nontrivial a-values of the function ζ (s, α; r) in the regions 0 < t < T

and −T < t < 0, respectively, we obtain

Theorem 5.2. We have

N+ (T, k) =
T

2π
log Tk

2πej2
+O (logT ) ,

N− (T, k) =
T

2π
log Tk

2πej1
+O (logT ) .

We multiply the last result by b + 1
2

and subtract it from the formula of

Theorem 5.1, to obtain the following corollary.

Theorem 5.3. For sufficiently large c ∈ R, the estimates

2π
∑

0<t<T

(
β − 1

2

)
= T log |q− (j2)|

|a− r0α−c|
√
kj2

+O (logT )

and

2π
∑

−T<t<0

(
β − 1

2

)
= T log |q+ (j1)|

|a− r0α−c|
√
kj1

+O (logT )

are true.

5.2 a-value free regions

In this section, we will find zero-free regions of the function ζ (s, α; r) − a and

define its trivial zeros.

Let % (s, l) be the distance of s from a line l. Let the line l be defined as

σ = 1 +

(
log
∣∣∣∣q− (j2)

q+ (j1)

∣∣∣∣+ πt

)(
log j1

j2

)−1

.

40



Theorem 5.4. There exist ε (a, σ) > 0 and σ0 = σ0 (r) < 0 such that

ζ (s, α; r) 6= a

if σ < σ0 and % (s, l) > ε.

Proof. The following proof is based on the functional equation (4.2). We have,

for σ > 1,

F (s) :=

∣∣∣∣∣exp
(
−πi(1− s)

2

) ∞∑
n=1

q+ (n)

n1−s
+ exp

(
πi (1− s)

2

) ∞∑
n=1

q− (n)

n1−s

∣∣∣∣∣
> exp

(
πt

2

)
|q− (j2)|
j1−σ
2

− exp
(
−πt

2

)
|q+ (j1)|
j1−σ
1

− exp
(
−πt

2

) ∞∑
n=j1+1

|q+ (n)|
n1−σ

− exp
(
πt

2

) ∞∑
n=j2+1

|q− (n)|
n1−σ

= exp
(
πt

2

)
|q− (j2)|
j1−σ
2

(
1− exp (−πt)

|q+ (j1)|
|q− (j2)|

(
j2
j1

)1−σ

− exp (−πt)
j1−σ
2

|q− (j2)|

∞∑
n=j1+1

|q+ (n)|
n1−σ

− j1−σ
2

|q− (j2)|

∞∑
n=j2+1

|q− (n)|
n1−σ

)

=:E (s) (1−B (s)) .

Now, let the point s1 = σ1 + it1 with σ1 < 0 lie below the line

l : σ = 1 +

(
log
∣∣∣∣q− (j2)

q+ (j1)

∣∣∣∣+ πt

)(
log j1

j2

)−1

,

i.e.,

σ1 61 +

(
πt1 − log |q+ (j1)|

|q− (j2)|

)(
log j1

j2

)−1

.

Then

B (s1) = exp (−πt1)
|q+ (j1)|
|q− (j2)|

(
j2
j1

)1−σ1

+ exp (−πt1)
j1−σ1
2

|q− (j2)|

∞∑
n=j1+1

|q+ (n)|
n1−σ1

+
j1−σ1
2

|q− (j2)|

∞∑
n=j2+1

|q− (n)|
n1−σ1

6 exp
(
−πt1 + log |q+ (j1)|

|q− (j2)|
+ (1− σ1) log j2

j1

)
+

j1−σ1
1

|q+ (j1)|

∞∑
n=j1+1

|q+ (n)|
n1−σ1

+
j1−σ1
2

|q− (j2)|

∞∑
n=j2+1

|q− (n)|
n1−σ1

.
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We can choose s0 such that the right-hand side of the last inequality would be

less than 1. This follows from the fact that the sum

j1−σ
1

|q+ (j1)|

∞∑
n=j1+1

|q+ (n)|
n1−σ

+
j1−σ
2

|q− (j2)|

∞∑
n=j2+1

|q− (n)|
n1−σ

is finite. Then F (s1) > E (s1) (1−B (s1)) > 0.

Using the same technique, for s2 = σ2 + it2 lying above the line l, we can

choose ε (a, σ2) > 0 and σ0 (r) < 0 such that, for σ2 < σ0 and % (s2, l) > ε,

ζ (s2, α; r) 6= a.

The theorem is proved.

We say that a zero of ζ (s, α; r)− a is trivial if % (s, l) < ε.

5.3 Proof of Theorem 5.1

Define

G (s, α; r) = ζ (s, α; r)− a.

Obviously, the zeros of G (s, α; r) are exactly the a-values of ζ (s, α; r).

Let b, c > 3 be constants. Then Littlewood’s lemma 3.3 applied to G (s, α; r)

on the rectangle with vertices −b, −b+ iT , c+ iT , c states

2π
∑
|γ|<T

(b+ β) =

∫ T

0

log |G (−b+ it, α; r)| dt−
∫ T

0

log |G (c+ it, α; r)| dt

−
∫ c

−b

argG (σ, α; r) dσ +

∫ c

−b

argG (σ + iT, α; r) dσ

=:I1 − I2 − I3 + I4.

We have

I2 =

T∫
0

log |ζ (c+ it, α; r)− a| dt

=

T∫
0

log

∣∣∣∣∣a− r0
αc+it

−
∞∑
n=1

rn

(α + n)c+it

∣∣∣∣∣ dt.
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It is clear that
∣∣∣∑∞

n=1
rn

(α+n)c+it

∣∣∣ is small when c is sufficiently large, thus, using

the bound log (1 + w) = O (|w|), w → 0, we get

I2 = T log
∣∣a− r0α

−c
∣∣+O (logT ) .

To evaluate I1 note that, by the functional equation (4.2), we have

I1 =

∫ T

0

log |a− ζ (−b+ it, α; r)| dt

=

∫ T

0

log

∣∣∣∣∣a− 1

k−b+it

Γ (1 + b− it)

(2π)1+b−it

(
exp

(
−πi (1 + b− it)

2

) ∞∑
n=1

q+ (n)

n1+b−it

+ exp
(
πi (1 + b− it)

2

) ∞∑
n=1

q− (n)

n1+b−it

)∣∣∣∣∣ dt.
The definition of j1 and j2, in view of (4.4), implies

I1 =

∫ T

0

log

∣∣∣∣∣a− 1

k−b+it

Γ (1 + b− it)

(2π)1+b−it

×

(
exp

(
−πi (1 + b− it)

2

)(
q+ (j1)

j1+b−it
1

+
∞∑

n=j1+1

q+ (n)

n1+b−it

)

+ exp
(
πi (1 + b− it)

2

)(
q− (j2)

j1+b−it
2

+
∞∑

n=j2+1

q− (n)

n1+b−it

))∣∣∣∣∣ dt.
Denote

J0 :=
1

k−b+it

Γ (1 + b− it)

(2π)1+b−it
,

J1 := exp
(
−πi (1 + b− it)

2

)
q+ (j1)

j1+b−it
1

+ exp
(
πi (1 + b− it)

2

)
q− (j2)

j1+b−it
2

and

J2 := exp
(
−πi (1 + b− it)

2

) ∞∑
n=j1+1

q+ (n)

n1+b−it

+ exp
(
πi (1 + b− it)

2

) ∞∑
n=j2+1

q− (n)

n1+b−it
.

Then

I1 =

∫ T

0

log |a− J0J1 − J0J2| dt. (5.1)

Notice that, for any fixed t ∈ R,

lim
b→∞

∣∣∣∣J2J1
∣∣∣∣ = 0. (5.2)
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By (5.1) and (5.2), we find

log
∣∣∣∣1 + J2

J1
− a

J0J1

∣∣∣∣ = O (logT ) .

Thus, we obtain the estimate

I1 =

∫ T

0

log |JoJ1| dt+O (logT ) .

By the Stirling formula (3.1), we get, for |t| > 1, that

log

∣∣∣∣∣ 1

k−b+it

Γ (1 + b− it)

(2π)1+b−it

∣∣∣∣∣ = log
∣∣∣∣ 1

k−b+it

∣∣∣∣+ (b+ 1

2

)
log |t|

2π
− π |t|

2
+O

(
1

|t|

)
.

Thus, for fixed τ > 1,∫ T

τ

log |Jo| dt = Tb log k +

(
b+

1

2

)
T log T

2πe
− πT 2

4
+O (logT ) .

Now, for sufficiently large T , we have

J1 = exp
(
πi (1 + b− it)

2

)
q− (j2)

j1+b−it
2

+O (exp (−πt)) .

From this, we deduce∫ T

0

log |J1| dt =
∫ T

0

log
∣∣∣∣exp

(
πi (1 + b− it)

2

)
q− (j2)

j1+b−it
2

∣∣∣∣ dt+O (logT )

=

∫ T

0

πt

2
+ log

∣∣∣∣q− (j2)

j1+b−it
2

∣∣∣∣ dt+O (logT )

=
πT 2

4
− T (1 + b) log |j2|+ T log

∣∣q− (j2)
∣∣+O (logT ) .

Finally, it follows that

I1 =Tb log k +

(
b+

1

2

)
T log T

2πe

− T (1 + b) log |j2|+ T log
∣∣q− (j2)

∣∣+O (logT ) .

It remains to estimate the horizontal integrals I3, I4. By analogy to [25], see

also [10], in any bounded strip with a certain constant c > 0

ζ (s, α) = O (|t|c) .

Using Theorem 2 from [37] which states that, for σ > 1
2
,

1

T

∫ T

0

|ζ (σ + it, α; r) |2dt � 1
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and Jensen’s inequality, we get that∫ T

0

log |ζ (σ + it, α; r) |dt = O (1) .

Thus, we conclude that, for fixed σ ≥ −b, there exist a positive constant A such

that

ζ (σ ± iT, α; r) = O
(
TA
)
.

By analogy to [69, §9.4], see also the proof of Theorem 1 in [25],∫ a

−b

|argG (σ ± iT, α; r)| dσ = O (logT ) .

Collecting together the above estimates, we obtain the assertions of the theo-

rem.

45





6 Zeros of the derivative of the

Lerch zeta-function

Behavior of the derivate of the Riemann zeta function is well studied (see Section

2.5), as well as the zeros of the Lerch zeta-function (see Section 2.7). In this

chapter we aim to improve the asymptotic formula for the number of nontrivial

Lerch derivative zeros (obtained by Steuding and Garunkštis’s [25]) and show,

that they are clustered around the critical line. Results obtained in this chapter

could be further extended by analyzing k-th derivate. This would provide an

extension of Berndt results about the Riemann zeta-function [6], but will require

more complicated machinery, thus is left for future studies.

In this chapter T always tends to plus infinity, and all implicit constants

depend on parameters 0 < λ, α 6 1. The Lerch zeta-function L (λ, α, s) is defined

by (2.12). Using modified version of the functional equation (2.13), it can be

continued analytically to the whole complex plane, except possibly the point s = 1

where it can have a simple pole.

The distribution of the zeros right of the critical line of L(λ, α, s), say if

α is a transcendental number, is very different from that of ζ(s). Denote by

N(σ′, T ;α, λ) the number of zeros of L(λ, α, s) in the region σ > σ′, 0 ≤ t ≤ T .

It is known (see Titchmarsh [69, §9.15]) that for the Riemann zeta-function

N(σ, T ) := N(σ, T ; 1, 1) = O(T ),

if σ > 1
2

and for the Lerch zeta-function

N(σ, T ;α, λ) � T,

if 1
2
< σ < 1 + 0.6α and α is a transcendental number [47, §8.4].

In general, for the Lerch zeta-function, the RH is not true. Also, the functional

equation is rather asymmetric, so we do not expect that the distribution of the

nontrivial zeros is symmetric with respect to the critical line. However, Garunkštis
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and Steuding [25], using a similar technique as Levinson [52], showed that almost

all nontrivial zeros of the L(λ, α, s) are clustered around the critical line (for other

related results see section 2.7), we will explore this further for the derivative of

the Lerch zeta-function. As mentioned in introduction Berndt (2.8) proved that

N(T ) = Nk(T ) +
T log 2
2π

+O (logT ) .

We will obtain similar bound for the derivative of the Lerch zeta-function.

We state main results and definitions in the following section. Section 6.2

contains proofs of theorems related to zero-free regions of L′(λ, α, s). Next, in

Section 6.3, we explore the number of nontrivial zeros till the given size and their

expected distance from line σ = 1
2
.

6.1 Results

Define

L′ (λ, α, s) =
∂

∂s
L (λ, α, s) .

Theorems 6.1, 6.2 and 6.3 identify the zero-free regions of the derivative of the

Lerch zeta-function and explore the trivial zero locations. First, we locate zero-

free regions on the right half-plane.

Theorem 6.1. If 0 < α < 1, t ∈ R and

σ > max
{
2,

(
log logα−1 − log

(
1

2e
+

3 log 2 + 2

4

))
(logα)−1

}
,

then L′ (λ, α, σ + it) 6= 0. Also, for σ > 3.6, we have L′ (λ, 1, σ + it) 6= 0.

Notice that when α is close to 1, then the bound in Theorem 6.1 tends to

infinity. For empirical evidence, see Figure 61, where we explore the trajectory

of zero of the derivative of the Lerch zeta-function, when λ is fixed to 3
4

and α

varies.

Let l be the line defined by

l : σ = 1− πt

(
log
(

λ

1− λ

))−1

, λ 6= 1

2
, 1.

Let d (s, l) be the distance of s from the line l. On the left half-plane, the zero-free

regions are identified by the following theorems.
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L ′(3/4, , + it) zero trajectory

Figure 61: L′ (3
4
, α, s

)
zero real part tends to ∞ as α → 1.

k Lerch (diff) Lerch derivative (diff)
1 5.026747e-02 0.921093
5 1.068303e-04 0.611752
10 5.704532e-08 0.447896
15 3.002190e-11 0.384430
20 1.432145e-14 0.348708

Table 61: Absolute differences from sk and trivial zeros of L (λ, α, s) and
L′ (λ, α, s).

Let

sk : =

σk + i 1
π
(σk − 1) log 1−λ

λ
, for λ 6= 1

2
, 1

2 (1− α + k) , otherwise

where

σk = 1 +
−2α− 2k + 1

1 + π−2 log2 1−λ
λ

, k ∈ Z.

Notice that the numbers sk lie on the line l. With the help of the Rouché’s

theorem (see Theorem 3.2), we show that the actual zeros lie in the rectangles

which contain sk.

Theorem 6.2. Let λ 6= 1
2
, 1. For any ε > 0 there is σ′ = σ′(ε) < 0 such that there

is one zero in each parallelogram with vertices (sk + sk±1) /2± ε, for σk < σ′, and

there are no other zeros on the half-plane σ < σ′.

An analogous result is valid for λ = 1
2

and λ = 1.
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Theorem 6.3. If λ = 1
2

or 1, then there exists σ′′ such that, for all σ 6 σ′′,

there is exactly one zero in each interval (−2 (n+ α)− 1,−2 (n+ α) + 1) lying

on the real axis, for n > 1
2
− σ′′/2− α, n ∈ N and there are no other zeros on the

half-plane σ 6 σ′′.

Fix ε > 0 and σ′(ε) in Theorem 6.2. Let <s0 6 σ′(ε) and L′ (λ, α, s0) = 0,

then s0 is called trivial if d (s0, l) < ε, for λ 6= 1
2
, 1. In case λ = 1

2
or λ = 1, s0 lies

on the real axis.

Our empirical results (see table 61) show that the trivial zeros of the Lerch

zeta-function and the derivative of the Lerch zera-function approach sk as k in-

creases. Notice that the derivative of the Lerch zeta-function does this much

slower: for k = 100, the absolute difference from sk to the actual zero of the Lerch

zeta-function is still ≈ 0.23. Computations were executed using mpmath1.

Let Ntriv. (λ, α,R) and N
′
triv. (λ, α,R) count the number of the trivial zeros of

the Lerch zeta-function and the derivative of the Lerch zeta-function (according

to multiplicities) which are at a distance 6 R from the origin. From Theorem 6.2

and the proof of Theorem 3 in [22], it is easy to see that the following corollary is

true.

Corollary 6.4. Let 0 < λ, α 6 1. The difference between the number of trivial

zeros of the Lerch zeta-function and those of their derivative is bounded by∣∣∣Ntriv. (λ, α,R)−N
′

triv. (λ, α,R)
∣∣∣� 1 (R → ∞) .

Let N ′ (λ, α, T ) count the number of the nontrivial zeros ρ′ = β′+iγ′ (according

to multiplicities) of the derivative of the Lerch zeta-function with 0 < γ′ 6 T .

Theorem 6.5. Let 0 < λ, α 6 1. We have

N ′ (λ, α, T ) =
T

2π
log T

2πeλ ([α] + α)
+O (logT ) .

This result contains the same leading term as shown in Steuding and Garunk-

štis’s [25] proof sketch, but has an improved error term from o(T ) to O(logT ).

The number of nontrivial zeros at L′ (λ, α, s) in the lower half-plane can be

obtained by the formula L′ (λ, α, s) = L′ (1− {λ}, α, s).
1F. Johansson et. al., mpmath: a Python library for arbitrary-precision floating-point arith-

metic (version 0.18), 2013. http://mpmath.org/.
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The next theorem shows that nontrivial zeros of the derivative of the Lerch

zeta-function are close to critical line σ = 1
2
. Let logarithmic integral be defined

as

li (x) =
∫ x

2

dt

log t
.

Theorem 6.6. If 0 < λ, α 6 1, then∑
0<γ′6T

(
β′ − 1

2

)
=

T

2π
log log T

2πλ
+

T

4π
log [α] + α

λ

− T

2π
log |log ([α] + α)| − λli T

2πλ
+O (logT ) .

This improves the result of Steuding and Garunkštis [25] result∑
|γ′|6T

(
β′ − 1

2

)
=

T

π
log logT +O(T ).

6.2 Proofs of Theorems related to zero-free

regions

In this section, we will prove the theorems concerning the zero-free regions and

the trivial zero positions (see Theorems 6.1, 6.2 and 6.3).

Proof of Theorem 6.1. Let σ > 1 and α 6= 1. Then

− αs

logα
L′ (λ, α, s) =

∞∑
n=0

e2πiλn
log (n+ α)

logα

(
α

n+ α

)s

= 1 +
αs

logα

∞∑
n=1

e2πiλn
log (n+ α)

(n+ α)s

=: 1 +D (λ, α, s) .

If |D (λ, α, s)| < 1, then L′ (λ, α, s) 6= 0.

For x > e1/σ − α,(
log (x+ α)

(x+ α)σ

)′

x

=
1− σ log (x+ α)

(x+ α)σ+1 < 0,

thus we have
∞∑
n=3

log (n+ α)

(n+ α)σ
6
∫ ∞

2

log (x+ α)

(α + x)σ
dx =

1 + (σ − 1) log (α + 2)

(σ − 1)2 (α + 2)σ−1 .
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Then

|D (λ, α, s)| 6 ασ

logα−1

(
log (1 + α)

(1 + α)σ
+

log (2 + α)

(2 + α)σ
+

1 + (σ − 1) log (2 + α)

(σ − 1)2 (2 + α)σ−1

)
.

Now, we will find σ0 = σ0 (λ, α) such that, for all σ > σ0, we have |D (λ, α, σ + it)| <

1.

Let σ > 2. The function f(α) = log(1+α)
(1+α)σ

attains its maximum at α =
√
e− 1.

Therefore,
log (1 + α)

(1 + α)σ
6

1

2e
.

Clearly
log (2 + α)

(2 + α)σ
6

log 2
4

and
1 + (σ − 1) log (2 + α)

(σ − 1)2 (2 + α)σ−1 6
1 + log 2

2
.

Substituting those bounds, we obtain

|D (λ, α, σ + it)| 6 ασ

logα−1

(
1

2e
+

3 log 2 + 2

4

)
.

This gives that |D (λ, α, σ + it)| < 1 if

σ >

(
log logα−1 − log

(
1

2e
+

3 log 2 + 2

4

))
(logα)−1 .

When α = 1, then arguing analogously we can see, that L′(λ, 1, s) has no zeros

for σ > 3.6. This proves Theorem 6.1.

Lemma 6.7. We have

L′ (λ, α, s) = −G (λ, α, s)
Γ (1− s)

(2π)1−s exp (−2πiαλ) log s,

where, for σ < 0,

G (λ, α, s) =

(
exp

(
πi

1− s

2

)
λs−1 + exp

(
−πi

1− s

2
+ 2πiα (1 + [λ])

)
(1− {λ})s−1

)(
1 +O

(
1

log |s|

))
(|s| → ∞) .
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Proof. Differentiation of the functional equation (2.13) yields

L′ (λ, α, s) =− Γ (1− s)

(2π)1−s

(
exp

(
πi

1− s

2
− 2πiαλ

)(
L′ (−α, λ, 1− s)

+L (−α, λ, 1− s)

(
Γ′

Γ
(1− s)− log 2π +

πi

2

))
(6.1)

+ exp
(
−πi

1− s

2
+ 2πiα (1− {λ})

)(
L′ (α, 1− {λ}, 1− s)

+L (α, 1− {λ}, 1− s)

(
Γ′

Γ
(1− s)− log 2π − πi

2

)))
=:−G (λ, α, s)

Γ (1− s)

(2π)1−s exp (−2πiαλ) log s.

Here we define log s by choosing the principal branch on the real axis, as σ → +∞

and using analytic continuation for other values. Notice that Γ (1− s) and log s

has no zeros for σ < 0 and Γ (1− s) has poles only when s ∈ {1, 2, 3, . . . }. Hence,

for σ < 0, L′ (λ, α, s) has zeros if and only if G (λ, α, s) is zero. For σ → −∞, by

the formula (2.12) we have

L (α, λ, 1− s) =
∞∑
n=0

e2πiαn

(n+ λ)1−s = λs−1 +O ((1 + λ)σ) ; (6.2)

L′ (α, λ, 1− s) = −λs−1 logλ+O ((1 + λ)σ) ; (6.3)

uniformly in t. Also from the Stirling formula (3.1) Γ′

Γ
(s) = log s + O (|s|−1), for

<(s) > 0, and relation Γ′

Γ
(s) = Γ′

Γ
(1− s)− π cot (πs), we obtain that, for σ < 0,

t > 0 and |s| → ∞,

Γ′

Γ
(1− s)− log (2π)± πi

2
= log

(
± s

2πi

)
+O

(
1

|s|

)
. (6.4)

In view of (6.2), (6.3) and (6.4) we obtain

G (λ, α, s) = exp
(
πi

1− s

2

)(
−λs−1 logλ

log s
+O

(
(1 + λ)σ

log |s|

)
+
(
λs−1 +O ((1 + λ)σ)

)(
1 +O

(
1

log |s|

)))
+ exp

(
−πi

1− s

2
+ 2πiα (1− {λ}+ λ)

)(
− (1− {λ})s−1 log (1− {λ})

log s

+O

(
(2− {λ})σ

log |s|

)
+
(
(1− {λ})s−1 +O ((2− {λ})σ)

)(
1 +O

(
1

log |s|

)))
= exp

(
πi

1− s

2

)
λs−1

(
1 +O

(
1

log |s|

))
+ exp

(
−πi

1− s

2
+ 2πiα (1 + [λ])

)
(1− {λ})s−1

(
1 +O

(
1

log |s|

))
.
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It is left to consider the case when λ = 1
2

and λ = 1. We will use the Rouché’s

theorem 3.2 to prove Theorems 6.2 and 6.3.

For σ < −1, denote

u (λ, α, s) := exp
(
−πi

1− s

2
+ 2πiα (1 + [λ])

)
(1− {λ})s−1 (6.5)

+ exp
(
πi

1− s

2

)
λs−1;

v (λ, α, s) :=G (λ, α, s)− u (λ, α, s) (6.6)

=O

(
|u (λ, α, s)|

log |s|

)
(|s| → ∞) .

Proof of Theorem 6.2. First, we show that there are zero-free regions above and

below the line l, then we locate the trivial zeros of the derivative of the Lerch

zeta-function more precisely.

Let 0 < λ < 1
2
. Using asymptotic behavior and notations introduced in Lemma

6.7 and factoring out the leading nonzero term, we arrive at

G (λ, α, s) = exp
(
πi

1− s

2

)
λs−1

(
1 + exp (−πi (1− s− 2α))

(
1− λ

λ

)s−1

+O

(
1 + exp (−πt)

(
1−λ
λ

)σ−1

log |s|

))
(|s| → ∞) . (6.7)

Let s = σ + it be a point over the line l, with t > π and σ < 0. Then

0 <

∣∣∣∣∣exp (−πi (1− s− 2α))

(
1− λ

λ

)s−1
∣∣∣∣∣ = exp (−πt)

(
1− λ

λ

)σ−1

< 1

and from the error term in (6.7), it is clear that, for any ε > 0, there exists

such s1 = σ1 + it1, with sufficiently small negative σ1, so that G (λ, α, s1) 6= 0

and d (s1, l) = ε. Define the region to the left of σ1 and above the line, which is

parallel to l and goes through s1, as follows

A (s1) :=

{
s ∈ C : σ 6 σ1, t > t1 +

1

π
(σ − σ1) log 1− λ

λ

}
.

If s ∈ A (s1), then

exp (−πt)

(
1− λ

λ

)σ−1

6 exp (−πt1)

(
1− λ

λ

)σ1−1

and from (6.7) we conclude that G (λ, α, s) 6= 0.
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Next, we consider the zeros from the region below the line l. Similarly, as

above we see that there is a number s2 = s2(ε) such that the region

B (s2) :=

{
s ∈ C : σ 6 σ2, t 6 t2 +

1

π
(σ − σ2) log 1− λ

λ

}
(6.8)

contains no zeros of G (λ, α, s).

When s lies on the line l, then from Lemma 6.7 and formulas (6.5)-(6.8) it is

clear, that, for any ε > 0, we can choose σ′ = σ′(ε) < 0 such that

|u (λ, α, s± ε)| − |v (λ, α, s± ε)| > 0, (6.9)

if σ 6 σ′. Next, we will indicate horizontal segments such that |u| > |v|.

From Lemma 6.7 and definitions (6.5) and (6.6) we see that L′ (λ, α, s) has

the same zeros as u (λ, α, s) + v (λ, α, s), for σ < −1. Let

s′k := 1− 2α + 2k

π + π−1 log2 1−λ
λ

(
π + i log 1− λ

λ

)
= σ′

k + it′k, k ∈ Z,

then

exp
(
πi

1− s′k
2

)
λs′k−1 = exp

(
−πi

1− s′k
2

+ 2πiα

)
(1− λ)s

′
k−1 .

Let δ ∈ [−ε, ε], for ε > 0 small enough. When σ < −1, then u (λ, α, s) zeros

are located at sk and clearly

u (λ, α, s′k − δ) 6= 0. (6.10)

From the definitions (6.5) and (6.6) we have

v (λ, α, s′k − δ)

u (λ, α, s′k − δ)
= O

(
1

log |s′k − δ|

)
(k → ∞) . (6.11)

By (6.10) and (6.11) it is clear that there is σ′′ 6 −1 such that, for all σ′
k 6 σ′′,

we have

|u (λ, α, s′k − δ)| − |v (λ, α, s′k − δ)| > 0. (6.12)

From equations (6.9), (6.12) and the fact that u and v are holomorphic by

Rouché’s theorem 3.2, we find that u (λ, α, s) and u (λ, α, s) + v (λ, α, s) have

the same number of zeros in the parallelograms with vertices σ′
k−1 + ε + it′k−1,

σ′
k + ε+ it′k, σ′

k − ε+ it′k and σ′
k−1 − ε+ it′k−1, where σ′

k < σ′
k−1 6 min (σ′, σ′′).

The case, when 1
2
< λ < 1, is derived using L′ (λ, α, s) = L′ (1− λ, α, s).
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Proof of Theorem 6.3. Let λ = 1
2

or 1. First if s = −2 (m+ α) + i + δ for δ ∈

[−1, 1]. Then by Theorem 6.2 we can choose such m′ > 0 that for all m > m′

|u (λ, α,−2 (m+ α) + i+ δ)| > |v (λ, α,−2 (m+ α) + i+ δ)| .

The case s = −2 (m+ α)− i+ δ is analogous. Next, for k = n and k = n+ 1, we

have ∣∣∣exp
(
πi (n+ α) +

π

2
δ
)∣∣∣ = ∣∣∣exp

(
πi (n+ 1− α) +

π

2
δ
)∣∣∣ = exp πδ

2
,

thus again arguing similarly as in Theorem 6.2 we can choose n′ such that, for all

n > n′, we have

|u (λ, α,−2 (n+ α) + 1 + δi)| > |v (λ, α,−2 (n+ α) + 1 + δi)| .

The Rouché’s theorem is valid for the rectangle with vertices −2 (n+ α)±1±i,

for n > max (m′, n′). Notice that since u (λ, α, s) has only one zero in each

rectangle, that zero has to lie on the real axis.

Now, let |t| > 1 and σ < −1. Then from e−πt < 1 and Lemma 6.7 it is clear

that we can choose σ′ < −1, such that G (λ, α, s′) 6= 0. Finally, for all σ 6 σ′, we

have G (λ, α, s) 6= 0, since∣∣∣∣1 + exp (πi (σ + it))

log (σ + it)

∣∣∣∣ 6 ∣∣∣∣1 + exp (πi (σ′ + it))

log (σ′ + it)

∣∣∣∣ .
From this and proof of Lemma 6.7 the theorem statement follows with

σ′′ 6 min (σ′, 1− 2 (max (m′, n′) + α)) .

6.3 Proofs of Theorems related to the

nontrivial zero distribution

In this section, we will prove Theorems 6.5 and 6.6. For the proofs, we will need

the following proposition.
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Proposition 6.8. Let b > 2 be a constant such that all nontrivial zeros of

L′(λ, α, s) are in <(s) > −b. Then

2π
∑

0<γ′6T

(b+ β′) =bT log T

2πeλ ([α] + α)
+

T

2
log T

2πe

+ T log log T

2πλ
− T log (λ |log ([α] + α)|)

− 2πλli T

2πλ
+Ob (logT ) .

Proof. Define

Z (λ, α, s) = − (α + [α])s

log (α + [α])
L′ (λ, α, s) .

Notice that the zeros of Z (λ, α, s) are exactly the zeros of L′ (λ, α, s). Let b, c > 2

be constants such that all nontrivial zeros have real parts −b < β < c (existence of

such constants follows from Theorems 6.2, 6.3). Let N ′ (σ, T ) denote the number

of nontrivial zeros ρ of L′ (λ, α, s) with β > σ and γ 6 T . Also let T be such

that L′ (λ, α, s) is zero-free on the line joining the points −b + iT and c + iT ,

otherwise we can take T + ε for some small ε. Similarly, if L′ (λ, α, s) has zero

on the segment joining −b and c, then without loss of generality we shift this

segment by some fixed number in the imaginary direction, so that it is zero-free.

Littlewood’s Lemma 3.3 applied to Z (λ, α, s) on the rectangle R with vertices

−b, −b+ iT, r + iT, r states∫
R

logZ (λ, α, s) ds = −2πi

∫ c

−b

N ′ (σ, T ) dσ,

where logZ (λ, α, s) is defined by choosing principal branch of the logarithm on

the real axis, as σ → ∞ and obtaining other values by analytic continuation.

Hence

2π
∑

0<γ′6T

(b+ β′) =

∫ T

0

log |Z (λ, α,−b+ it) |dt−
∫ T

0

log |Z (λ, α, c+ it) |dt

−
∫ c

−b

argZ (λ, α, σ) dσ +

∫ c

−b

argZ (λ, α, σ + iT ) dσ

=:I1 − I2 − I3 + I4.

We start with I2

I2 = <1

i

∫ c+iT

c

logZ (λ, α, s) ds.
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Notice that Z(λ, α, s) 6= 0 for σ > c. Then by Cauchy theorem 3.1∫ c+iT

c

logZ (λ, α, s) ds =

∫ c+∆

c

logZ (λ, α, s) ds

+

∫ c+∆+iT

c+∆

logZ (λ, α, s) ds+

∫ c+iT

c+∆+iT

logZ (λ, α, s) ds.

Now, since

Z(λ, α, s) = 1 +O

((
α

1 + α

)σ)
(σ → +∞) ,

for ∆ → ∞ we obtain ∫ ∞

c

logZ (λ, α, s) dσ � 1,

thus I2 = O (1).

We turn to I1. Using the functional equation (6.1) and asymptotic formulas

(6.2), (6.3), (6.4) similarly as in Lemma 6.7, we obtain

I1 =

∫ T

0

log |Z (λ, α,−b+ it) |dt =
∫ T

0

log

∣∣∣∣∣(α + [α])−b+it

log (α + [α])

Γ (1 + b− it)

(2π)1+b−it

∣∣∣∣∣ dt
+

∫ T

0

log
∣∣∣∣exp

(
πi

1 + b− it

2

)∣∣∣∣ dt+ ∫ T

0

log |1 +O (exp (−πt))| dt

+

∫ T

0

log
∣∣∣(λ−b+it−1 +O

(
(1 + λ)−b+it−1

))
×
(

log −b+ it

2πiλ
+O

(
1

| − b+ it|

))∣∣∣∣ dt
Using Stirling’s formula (3.1) we get, for |t| > 1,

log |Γ(b+ 1− it)| =
(
b+

1

2

)
log |t| − π|t|

2
+

1

2
log 2π +O

(
1

|t|

)
,

thus ∫ T

τ

log

∣∣∣∣∣(α + [α])−b+it

log (α + [α])

Γ (1 + b− it)

(2π)1+b−it

∣∣∣∣∣ dt = −T log |log (α + [α])|

− Tb log (α + [α]) +

(
b+

1

2

)
T log T

2πe
− πT 2

4
+O (logT ) .

For fixed τ > 2, we have∫ T

τ

log
∣∣∣∣log −b+ it

2πiλ

∣∣∣∣ dt =∫ T

τ

log
(

log t

2πλ
+O

(
1

t

))
dt

=T log log T

2πλ
− 2πλli T

2πλ
+O (log logT ) .
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Finally using Cauchy theorem 3.1 the same way as in I2 and collecting everything

together, we obtain

I1 =bT log T

2πeλ ([α] + α)
+

T

2
log T

2πe

+ T log log T

2πλ
− T log (λ |log ([α] + α)|)

− 2πλli T

2πλ
+Ob (logT ) .

It remains to estimate the horizontal integrals I3 and I4. We will use the

same technique as in [25], with some minor changes, so we skip some details and

demonstrate only the main idea. Define

f(z) =
1

2

(
Z (z + it) + Z (z + it)

)
,

then f(σ) = <Z(σ+ it). Now, suppose that f(σ) has q zeros in the interval −b <

σ < c and let T > 2R = 2(c+b). Denote the number of zeros of f(z) in |z−c| 6 r

by n(r). It is known (see Garunkštis [22]) that for any bounded strip there is a

positive number a such that L (λ, α, σ + it) � ta. Thus, by the Cauchy formula

for the derivative 3.1, it is also true that L′ (λ, α, σ + it) � ta. It follows that

f(z) � ta, and using the Jensen formula 3.4 we obtain n(R) = O(logT ). Interval

[−b, c] can be subdivided into at most q + 1 subintervals in which <Z(σ + iT )

is of constant sign, thus |argZ(σ + iT )| 6 (q + 1)π 6 (n(R) + 1)π. Therefore

I4 = O(logT ) and I3 = O(logT ). Finally, collecting estimates of I1, I2, I3 and I4

together we obtain theorem claim.

Notice that results, for the region −T < γ′ < −τ , can be easily obtained from

L′ (λ, α, s) = L′ (1− {λ}, α, s).

Proof of Theorem 6.5. We use proposition 6.8 with b+1 instead of b, and subtract

the resulting formula from the original one thus obtaining theorem claim.

Proof of Theorem 6.6. Multiplying equations from Theorem 6.5 by b + 1
2

and

subtracting them from the equation obtained in proposition 6.8 yields theorem

claim.
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7 The Lerch zeta-function for

equal parameters

For most values of parameters λ and α, the zeros of the Lerch zeta-function

L(λ, α, s) are distributed very chaotically (see section 2.7). In this chapter, we

consider the special case of equal parameters L(λ, λ, s) and show by calculations

that the nontrivial zeros either lie extremely close to the critical line σ = 1
2

or

are distributed almost symmetrically with respect to the critical line. We also

investigate this phenomenon theoretically and show that there is a Speiser type

relation between zeros of the Lerch zeta-function and its derivative.

Let s = σ + it. Denote by {λ} the fractional part of a real number λ. In this

chapter, ε is any positive real number and T always tends to plus infinity. In all

theorems and lemmas, the numbers λ and α are fixed constants.

Let l be a straight line in the complex plane C, and denote by %(s, l) the

distance of s from l. Define, for δ > 0,

Lδ(l) =
{
s ∈ C : %(s, l) < δ

}
.

In Garunkštis and Laurinčikas [22], Garunkštis and Steuding [24], for 0 < λ < 1

and λ 6= 1
2
, it is proved that L(λ, α, s) 6= 0 if σ < −1 and

s 6∈ Llog 4
π

(
σ =

πt

log 1−λ
λ

+ 1

)
.

For λ = 1
2
, 1, from Spira [65] and [22] we see that L(λ, α, s) 6= 0 if σ < −1 and

|t| ≥ 1. Moreover, in [22] it is showed that L(λ, α, s) 6= 0 if σ ≥ 1 + α. We say

that a zero of L(λ, α, s) is nontrivial if it lies in the strip −1 ≤ σ < 1 + α and we

denote a nontrivial zero by ρ = β + iγ.

In this chapter, we investigate the zero distribution of the Lerch zeta-function

L(λ, α, s) when the parameters are equal, i.e. λ = α. The motivation for this

are calculations which show that the first nontrivial zeros of L(λ, λ, s) are often
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located almost on the critical line σ = 1
2
. Next are the first 4 zeros (rounded to

two decimal numbers) for several parameter values.

L(1/3, 1/3, s) : 0.50 + 3.99i, 0.50 + 7.28i, 0.50 + 9.54i, 0.50 + 12.18i.

L(1/3, 2/3, s) : 0.86 + 5.68i, 0.53 + 9.59i, 0.86 + 12.66i, 0.49 + 15.11i.

L(3/4, 3/4, s) : 0.50 + 9.69i, 0.50 + 15.26i, 0.50 + 18.65i, 0.50 + 23.05i.

L(1/4, 3/4, s) : 1.03 + 5.24i, 0.64 + 8.81i, 0.76 + 11.96i, 0.88 + 14.19i.

For a rational number λ 6= 1
2
, 1 it is expected that the function L(λ, λ, s)

has many zeros off the critical line. Our calculations then show that the zeros are

almost symmetrically distributed with respect to the critical line. For example, for

L(3/4, 3/4, s) we have the following zeros: −0.10+120.60i and 1+0.10+120.60i;

0.37 + 202.77i and 1 − 0.37 + 202.77i. Usually, such symmetry of zeros can be

explained by the shape of the functional equation. A typical example is the

Heillbronn Davenport zeta-function. Possibly such symmetry forces zeros to stay

on the critical line more often. More on this see, for example, Bombieri and Hejhal

[9], Balanzario and Sánchez-Ortiz [5], Garunkštis and Šimėnas [30], Vaughan [74].

For λ = α, we can rewrite the functional equation (2.13) as

L(λ, λ, 1− s) =(2π)−sΓ(s)e−πi s
2
+2πiλ2

L(λ, λ, s)

+ (2π)−sΓ(s)eπi
s
2
−2πi(1−λ)λL(1− λ, 1− {λ}, s) (7.1)

=G(s)L(λ, λ, s) + P (s).

By the bound for the Lerch zeta-function and by the Stirling formula (3.1) we

see that, for any vertical strip, |P (s)| < tAe−πt and |G(s)| ≥ tB (see Lemma

7.7 and its proof below). Thus the shape of the formula (7.1) suggests that the

nontrivial zeros of L(λ, λ, s) should be distributed almost symmetrically with the

respect of the critical line. However, calculations in the next section show that

this symmetry is not strict.

Denote by N(λ, α, T ) the number of nontrivial zeros of the function L(λ, α, s)

in the region 0 < t < T . For 0 < λ, α 6 1, we have [22]

N(λ, α, T ) =
T

2π
log T

2πeαλ
+O(logT ). (7.2)
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7.1 Results

Propositions 7.1 and 7.2 will be proved for the parameters 0 < λ, α 6 1. Both

of these propositions, with a special case λ = α, will be used in proofs of main

theorems regarding symmetrical distribution (see 7.3) and Speiser type relation

between zeros of the Lerch zeta-function and its derivative (see 7.4).

Proposition 7.1. For 0 < λ, α 6 1,∑
0<γ6T

(
β − 1

2

)
=

T

4π
log α

λ
+O(logT ).

Note, that if λ = α we are left only with error term, thus we conclude, that

in the upper half-plane nontrivial zeros of the Lerch zeta-function with equal

parameters on average are symmetrically distributed with a small error term.

Now, we consider the symmetry of the individual zeros. Let ρ be a zero of

L(λ, λ, s). In view of (7.1) and Rouché’s theorem 3.2 we see that L(λ, λ, s) has an

almost symmetrical zero in some small disc |s− (1− ρ)| < r if P (s) is small and

L(λ, λ, s) is not very small on the edge of the disc. Thus we need a bound from

below for L(λ, λ, s) when s is close to a zero.

Proposition 7.2. Let 0 < λ, α ≤ 1. Let σ0 ∈ R and <s ≥ σ0. Let L(λ, α, s) 6= 0

and d be the distance from s to the nearest zero of L(λ, α, s). Then

1

|L(λ, α, s)|
< exp(C(| log d|+ 1) log t),

where C = C(λ, α, σ0) is a positive constant.

The proposition will help us to prove the following theorem.

Theorem 7.3. Let 0 < λ ≤ 1 and A > 0 be such that AC < π, where C =

C(λ, α,−1) is from Proposition 7.2. Let ρ = β + iγ be a nontrivial zero of

L(λ, λ, s). If γ is sufficiently large, then there is a radius r,

exp(−Aγ/ log γ) ≤ r ≤ exp(−Aγ/ log γ) log2 γ,

such that the discs

|s− ρ| < r and |s− (1− ρ)| < r

contain the same number of zeros.
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By the formula (7.2) it follows that there is a constant D = D(T0) such that,

for T > T0, ∣∣∣∣N(λ, α, T )− T

2π
log T

2πeαλ

∣∣∣∣ ≤ D logT.

Let f : [T, T+U ] → R be a continuous function. Let N(T, U, f) (resp. N ′(T, U, f))

be the number of nontrivial zeros of L(λ, λ, s) (resp. L′(λ, λ, s)) in T < t < T +U ,

σ < f(t).

Theorem 7.4. Let 0 < λ ≤ 1 and 0 < U ≤ T . Assume that, for some T0 and

0 < ε < 1,

D(T0) <
ε

log 4
. (7.3)

Then, for sufficiently large T , there is a continuous function f : [T, T + U ] → R

such that

1

2
− exp

(
− T 1−ε

logT

)
≤ f(t) ≤ 1

2
,

and

N(T, U, f) = N ′(T, U, f) +O(logT ).

We discuss the condition (7.3). For the Riemann zeta-function (= L(1, 1, s))

it is known that D < 0.12 < 1/ log 4 = 0.72 . . . (Trudgian [70]). If λ = α = 1
2
,

then D < 0.16 (Trudgian [71]). Moreover, for the Riemann zeta-function the

Lindelöf hypothesis implies that the constant D can be chosen as small as we please

(Titchmarsh [69, Theorem 13.6(A)]). We expect the Lindelöf type hypothesis also

for the Lerch zeta-function ( [24], [20]). Similarly as in the case of the Riemann

zeta-function (Titchmarsh [69, Sections 13.6 and 13.7]), it is possible to modify

the proof of Theorem 3.2 in [47, Chapter 8] and to show that the Lindelöf type

hypothesis for L(λ, α, s) implies that, for any 0 < λ, α < 1, the constant D can

be chosen as small as we please.

In the next section we present the computer calculations related to Theorems

7.3 and 7.4. Sections 7.3, 7.4, and 7.5 contain proofs of Theorem 7.1, Proposition

7.2, and Theorem 7.3 respectively.
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7.2 Computations

This section is devoted to the more precise calculations of the first nontrivial

zeros. If a nontrivial zero ρ of L(λ, λ, s) lies on the critical line, then by the

functional equation (7.1) we have L(1 − λ, 1 − λ, ρ) = 0. Similarly, if L(λ, λ, s)

has symmetrical zeros ρ and 1 − ρ then again L(1 − λ, 1 − λ, ρ) = 0. Let ρ1 =

0.50...+9.69...i, ρ2 = 0.50...+15.26...i, ρ3 = 0.50...+18.65...i, ρ4 = 0.50...+23.05...i

be the first four zeros of L(3/4, 3/4, s) indicated in the Introduction. We have

|L(1/4, 1/4, ρ1)| = 2.73...,

|L(1/4, 1/4, ρ2)| = 0.13...,

|L(1/4, 1/4, ρ3)| = 0.48...,

|L(1/4, 1/4, ρ4)| = 1.15....

Thus the zeros ρ1, ρ2, ρ3, ρ4 of L(3/4, 3/4, s) do not lie on the critical line. Using

arbitrary-precision floating-point arithmetic computations, we get that

<ρ1 = 0.5 + 7.16... · 10−14,

<ρ2 = 0.5− 6.08... · 10−23,

<ρ3 = 0.5− 4.53... · 10−27,

<ρ4 = 0.5− 1.11... · 10−32.

The last four lines were computed in the following two ways: one by using findroot

and the other by computing the contour integral which encloses only one zero ρ

of L(3/4, 3/4, s). For more details on computation methodology see the end of

this section.

In the upper half-plane, the first pair of almost symmetrical zeros of L(3/4, 3/4, s)

is −0.10... + 120.59...i and 1.10... + 120.59...i. These zeros are not strictly sym-

metrical, since

|L(1/4, 1/4, 1.10...+ 120.59...i)| = 3.94... 6= 0,

|L(1/4, 1/4,−0.10...+ 120.59...i)| = 23.49... 6= 0.

Further, we give a table (see Table 71) where the number of nontrivial zeros in

0 < t < 300 is calculated for various cases of L(λ, λ, s). For all those zeros, we

have checked that L (λ, λ, ρ) = 0 implies L (1− λ, 1− λ, ρ) 6= 0 if λ 6= 1
2

. Thus,

in Table 71, all zeros, except the case λ = 1
2
, are not strictly symmetrical with

respect to the critical line.
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Table 71: Distribution of the nontrivial zeros of L (λ, λ, σ + it) in 0 < t < 300.
N1 is the total number of the nontrivial zeros; N2 is the number of the nontrivial
zeros satisfying

∣∣<ρ− 1
2

∣∣ > 10−9, these zeros appear in almost symmetrical pairs;
in the last column of the table, we have 100N2/N1.

λ N1 N2 %
1/2 203 0 0.00
5/9 193 28 14.51
4/7 191 24 12.57
3/5 186 14 7.53
5/8 182 22 12.09
2/3 176 18 10.23
7/10 171 28 16.37
5/7 169 30 17.75
3/4 165 20 12.12
7/9 161 26 16.15
4/5 159 22 13.84
5/6 155 22 14.19
6/7 151 28 18.54
7/8 150 30 20.00
8/9 149 22 14.77
9/10 147 24 16.33

We turn to zero trajectories of L(λ, λ, s) and its derivative. The idea to explore

zero trajectories is inspired by Garunkštis and Steuding paper [26]. By L(v)(λ, λ, s)

we denote that vth derivative of L(λ, λ, s) with respect to s:

L(v)(λ, λ, s) =
∂v

∂sv
L(λ, λ, s).

Suppose that ρ = ρ(λ0) is a zero of multiplicity m of L(λ0, λ0, s) (i.e. L(v)(λ0, λ0, ρ(λ0)) =

0, v = 0, 1, . . . ,m− 1, L(m)(λ0, λ0, ρ(λ0)) 6= 0). From the expression of the Lerch

zeta-function by the Dirichlet series and the functional equation (2.13), it follows

that, for any s, the function f(λ) = L(λ, λ, s) is continuous in λ ∈ (0, 1). By

Rouché’s theorem 3.2, we have for every sufficiently small open disc D with cen-

ter at ρ in which the function L(λ0, λ0, s) has no other zeros except for ρ, there

exists δ = δ(D) > 0 such that each function L(λ, λ, s), where λ ∈ (λ0 − δ, λ0 + δ),

has exactly m zeros (counted with multiplicities) in the disc D (c.f. Theorem

1 in Balanzario and Sánchez-Ortiz [5] and Lemma 4.1 in Dubickas, Garunkštis,

J. Steuding and R. Steuding [15]). If zero ρ is of multiplicity m = 1, then there

exists a neighborhood of λ0 and some function ρ = ρ(λ), which is continuous at λ0

and, in addition, satisfies the relation L(λ, λ, ρ(λ)) = 0. This way, we can speak
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about the continuous zero trajectory ρ(λ). Similarly, the trajectories of the zeros

of the derivative L′(λ, λ, s) are understood.

In Figure 71, we see parametric plots of the trajectories of the zeros of L(λ, λ, s)

and its derivative, solid and dotted lines respectively.
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Figure 71: Parametric graphics of the several trajectories of the zeros with
parameter 1

2
≤ λ ≤ 1. Solid and dashed trajectories are the trajectories of the

zeros of L (λ, λ, s) and L′ (λ, λ, s) respectively. By ρ55, . . . , ρ58 we denote 55th,…,
58th zeros of ζ(s) = L(1, 1, s). The trajectories of the zeros of the derivative
correspond to the zeros 1.27 + 152.61i (left), 0.97 + 156.63i (middle), and 0.86 +
158.28i (right) of ζ ′(s) = L′(1, 1, s).

Figure 71 can be compared to Figures 1 and 2 in Garunkštis and Šimėnas [25],

where the trajectories of the zeros of the linear combination f(s, τ) of Dirichlet

L-functions and its derivative f ′
s(s, τ) is calculated. In Figure 71, we see that

the trajectories of zeros approach the (almost) meeting point (after which the

trajectories leave a neighborhood of the critical line) from the same direction,

while the trajectories of the zeros of f(s, τ) approach the meeting point from the

opposite directions. Notice that the nontrivial zeros of this linear combination

of Dirichlet L-functions are distributed strictly symmetrically with the respect of

the critical line. Because of this fact, the meeting point in Figures 1 and 2 in [25]

is always a double zero f(s, τ).
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To find the trajectories of the zeros, ρ(λ) and q(λ), 0 ≤ λ ≤ 1,such that

L(λ, λ, ρ(λ)) = 0 and L′(λ, λ, q(τ)) = 0,

we solve the differential equations numerically

∂ρ(λ)

∂λ
= −

∂`(λ,ρ)
∂λ

∂`(λ,ρ)
∂ρ

and ∂q(λ)

∂λ
= −

∂2`(λ,q)
∂q∂λ

∂2`(λ,q)
∂q2

,

where `(λ, s) = L(λ, λ, s). As the initial conditions, some zeros of L(1, 1, s) = ζ(s)

and L′(λ, λ, s), λ = 0.86, 0.97, 0.74 are used.

Computations were validated with the help of Python with mpmath1 package.

We used the following expression of the Lerch zeta-function for rational parameters

L

(
s,

b

d
,
b

d

)
=

d−1∑
k=0

∞∑
m=0

exp
(
2πi b

d
(dm+ k)

)(
dm+ k + b

d

)s
= d−s

d−1∑
k=0

exp
(
2πi

b

d
k

)
ζ

(
s,
kd+ b

d2

)
,

where ζ(s, α), 0 < α ≤ 1, is the Hurwitz zeta-function. The function ζ(s, α) is

implemented by the command zeta. Zero locations were calculated using findroot

with Muller’s method. Note, that for non rational parameters approximate posi-

tions of the Lerch zeta-function zeros can be evaluated using approximation given

in [19].

In this thesis, all computer computations should be regarded as heuristic be-

cause their accuracy was not controlled explicitly.

7.3 Proof of Proposition 7.1

In [25], it was proved that, for 0 < λ, α 6 1,

∑
|γ|6T

(
β − 1

2

)
=

T

2π
log α√

λ(1− {λ})
+O(logT ). (7.4)

Proposition 7.1 can be derived from the proof of the formula (7.4). Namely, from

the proof of Theorem 1 in [25] we derive the following lemma.
1Fredrik Johansson and others. mpmath: a Python library for arbitrary-precision floating-

point arithmetic (version 0.18), December 2013. http://mpmath.org/.
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Lemma 7.5. Let b > 3 be a constant. For 0 < λ, α 6 1,

∑
0<γ6T

(b+ β) =

(
b+

1

2

)
T

2π
log T

2πeαλ
+

T

4π
log α

λ
+O(logT ).

Then the equality

∑
0<γ6T

(
β − 1

2

)
=
∑

0<γ6T

(b+ β)− (b+
1

2
)
∑

0<γ6T

1

together with the zero counting formula (7.2) gives Proposition 7.1.

7.4 Proof of Proposition 7.2

We start from the following lemma.

Lemma 7.6. If f(s) is regular, and∣∣∣∣ f(s)f(s0)

∣∣∣∣ < eM

in {s : |s− s0| 6 r} with M > 1, then∣∣∣∣∣f(s0)f(s)

∏
ρ

s− ρ

s0
− ρ

∣∣∣∣∣ < eCM

for |s− s0| 6 3
8
r, where C is some constant and ρ runs through the zeros of f(s)

such that |ρ− s0| 6 1
2
r.

Proof. The lemma follows immediately from the proof of Lemma α in Titchmarsh

[69, §3.9].

To apply Lemma 7.6, we need information about the growth of the Lerch zeta-

function. For each σ, we define a number µ(σ) = µ(λ, α, σ) as the lower bound of

numbers ξ such that L(λ, α, σ + iT ) � T ξ.

Lemma 7.7. Let 0 < λ, α ≤ 1 and σ0 < 0. Then

µ(σ) ≤



1
2
− σ if σ0 ≤ σ ≤ 0,

1
2
+
(

64
205

− 1
)
σ if 0 ≤ σ ≤ 1

2
,

64
205

(1− σ) if 1
2
≤ σ ≤ 1,

0 if σ ≥ 1.
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Proof. In [20], it is proved that

L(λ, α,
1

2
+ it) � t

32
205

+ε (t → ∞),

and from the approximation of the Lerch zeta-function by a finite sum (see

Garunkštis [47, Theorem 1.2 in Chapter 3]) we see that L(λ, α, σ + it) � tε,

for σ ≥ 1. Now, the lemma follows by the Phragmén-Lindelöf theorem (see Titch-

marsh [68, §5.65]) and by the functional equation (2.13) given Stirling’s formula

(3.1)

|Γ(1− s)| =
√
2π|t|

1
2
−σe−

π|t|
2 (1 +O(|t|−1)) (|t| → ∞),

uniformly for σ0 < σ ≤ 1
2
.

Proof of Proposition 7.2. To prove the proposition we choose f(s) = L(λ, α, s),

s0 = 3 + it, and a sufficiently large but fixed radius r in Lemma 7.6. In view of

Lemma 7.7 we take M = b logT , where b = b(r). The function 1/L(λ, α, s0) is

bounded. By the formula (7.2) for some nontrivial zeros, we have the number of

zeros in the disc |s− s0| < 1
2
r is < c log=s0. This proves Proposition 7.2.

7.5 Proof of Theorem 7.3

Proof of Theorem 7.3. If λ = 1
2
, 1, then given equalities (2.14) it is well known

that the non-real complex number ρ is a zero of L(λ, λ, s) if and only if 1 − ρ is

also a zero of L(λ, λ, s).

Next we assume that 0 < λ < 1 and λ 6= 1
2
. By the formula (7.2), we see

that the number of zeros in the disc |s − ρ| < exp(−Aγ/ log2 γ) is < c log=ρ.

Let rk = k exp (−Aγ/ log γ), k = 1, . . . , [c log γ] + 1. By Dirichlet’s box principle,

there is 1 ≤ ` ≤ [c log γ] such that L(λ, λ, s) has no zeros for the ring

r` < |s− ρ| ≤ r`+1.

Let

r =
r` + r`+1

2
=

(
`+

1

2

)
exp

(
− Aγ

log γ

)
.
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Suppose G(s) and P (s) are defined by the functional equation (7.1). Let

CR = {s : |s−ρ| = r} and CL = {s : |s− (1−ρ)| = r}. The steps of the proof are

the following. If L(λ, λ, s) has N zeros inside of CR, then by Rouché’s theorem

3.2 we expect that G(s)L(λ, λ, s) + P (s) has N zeros inside CR. Then by the

functional equation (7.1), the function L(1 − λ, λ, 1 − s) has N zeros inside CR,

then by conjugation L(λ, λ, s) has N zeros inside CL. Next, we need to justify

the step involving Rouché’s theorem.

Notice that G(s) has no zeros. By Rouché’s theorem 3.2, the functions

G(s)L(λ, λ, s) and G(s)L(λ, λ, s) + P (s) have the same number of zeros inside

of the circle Cr if on this circle the inequality

|P (s)| < |G(s)L(λ, λ, s)| (7.5)

is valid.

In view of the growth of the Lerch zeta-function (see Lemma 7.7) we get that,

for sufficiently large t and −1.4 ≤ σ ≤ 2,

|P (s)| < |Γ(s)|t2e−πt/2 and |G(s)| ≥ (2π)−2|Γ(s)|eπt/2.

Proposition 7.2 gives, for s ∈ CR,

L(λ, λ, s) � exp (− (AC + o(1)) γ) ,

where AC < π. Thus the inequality (7.5) is valid. By this Theorem 7.3 is proved.

Notice that from this proof we have the quantity log2 γ in the inequality (7.3)

of Theorem 7.3 can be replaced (at the expense of more complicated notations)

by the smaller quantity c log γ + 1, where c is from the proof of Theorem 7.3.

7.6 Proof of Theorem 7.4

The structure of the proof is similar to the proof of the formula (10.28.2) in

Section 10.28 of Titchmarsh [69], see also the original proof in Levinson and

Montgomery [53]. The main difference is Proposition 7.9 below.
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Lemma 7.8. Let 0 < λ ≤ 1, T < t < T + U , and 0 < U ≤ T . If σ2 < −1 then

<L′

L
(λ, λ, σ2 + it) = − log t+Oσ2(1) (T → ∞). (7.6)

Moreover, assume that A > 0 is such that 4AC < π, where C = C(λ, λ, 1
2
) is

a constant from Proposition 7.2. If the distance from 1
2
+ it to the nearest zero of

L(λ, λ, s) is greater than exp (−AT/ logT ), then

<L′

L

(
λ, λ,

1

2
+ it

)
= −1

2
log t+O(1) (T → ∞). (7.7)

Proof. By the functional equation (2.13), we have

L(λ, λ, s) =(2π)s−1Γ(1− s)eπi
1−s
2

−2πiλ2

L(λ, λ, 1− s)

×
(
1 +

e−πi(s−1)+2πiλL(λ, 1− {λ}, 1− s)

L(λ, λ, 1− s)

)
.

The logarithmic derivative gives

L′

L
(λ, λ, s) = log 2π − Γ′

Γ
(1− s)− πi

2
− L′

L
(λ, λ, 1− s) + E(λ, s), (7.8)

where

E(λ, s) =

(
e−πi(1−s)+2πiλL(λ,1−{λ},1−s)

L(1−λ,λ,1−s)

)′

s

1 + e−πi(1−s)+2πiλL(λ,1−λ,1−s)
L(1−λ,λ,1−s)

.

For 0 < λ, α ≤ 1, we know that L(λ, α, 1−s) 6= 0, if σ < −1, moreover, L(λ, α, 1−

s) and its derivative have absolutely convergent Dirichlet series, if σ < 0. Thus

E(λ, σ2 + it) � e−πt (t → ∞).

By Stirling’s formula (3.1), we get that

Γ′

Γ
(s) = log s+O

(
|s|−1

)
(<(s) > 0, |s| → ∞). (7.9)

This proves the formula (7.6).

We turn to the second part of Lemma 7.8. The expression (7.8) together with

the formula (7.9) gives

2<L′

L

(
λ, λ,

1

2
+ it

)
= − log t+ <E

(
λ,

1

2
+ it

)
+O(1) (T → ∞).
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Next we consider the growth of E
(
λ, 1

2
+ it

)
. For 0 < λ, α ≤ 1, by Lemma 7.7

and by Cauchy’s integral formula for the derivative, there is B > 0 such that

L

(
λ, α,

1

2
− iT

)
= O

(
TB
)

and L′
(
λ, α,

1

2
− iT

)
= O

(
TB
)
. (7.10)

In view of the conditions of the lemma and the asymptotic formula (7.2) we have

the distance d from 1
2
+ it to the nearest zero of L(λ, λ, s) satisfies the inequalities

exp (−AT/ logT ) < d � 1.

Then Lemma 7.2 yields

E

(
λ,

1

2
+ it

)
� TB exp((−π + 4CA)T + log(3T )).

This finishes the proof of Lemma 7.8.

The following proposition will be important in the proof of Theorem 7.4.

Proposition 7.9. Let 0 < λ ≤ 1, T < t < T + U , and 0 < U ≤ T . Let A > 0 be

such that AC < π, where the constant C is from Lemma 7.2. Let ρ′ be a zero of

L(λ, λ, s) such that
∣∣<ρ′ − 1

2

∣∣ < exp
(
− AT

logT

)
and T < =ρ′ < T +U . Assume that

there are 0 < ε < 1 and δ > 0 such that the function L(λ, λ, s) has less than

ε

log(4 + δ)
logT (7.11)

zeros in the disc |s − ρ′| ≤ exp(−AT 1−ε/ logT ). Then, for sufficiently large T ,

there is a radius r,

exp(−AT/ logT ) ≤ r ≤ exp(−AT 1−ε/ logT ),

such that L(λ, λ, s) 6= 0 in the ring

r(4+δ)/(2+δ/3) ≤ |s− ρ′| ≤ r1/(2+δ/3) (7.12)

and, for |s− ρ′| = r, σ ≤ 1
2
,

<L′

L
(λ, λ, s) ≤ −1

2
logT +O(1)
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Proof. Let rk = exp
(
−AT/((4 + δ)k logT )

)
, k = 0, 1, . . . , [ ε

log(4+δ)
logT ]. By the

condition (7.11) and Dirichlet’s box principle, there is j ∈ {1, 2, . . . , [ ε
log(4+δ)

logT ]}

such that the ring

rj−1 < |s− ρ′| ≤ rj (7.13)

has no zeros of L(λ, λ, s). Notice that r4+δ
j = rj−1. The function

f(s) =
L′

L
(λ, λ, s)−

∑
ρ : |ρ−ρ′|≤r2+δ

j

1

s− ρ

is analytic in the disc |s− ρ′| ≤ rj and in this disc it has the Taylor expansion

f(s) =
∞∑
n=0

an(s− ρ′)n. (7.14)

We bound the coefficients an. Cauchy’s integral formula for the derivative

yields

an =
1

2πi

∫
|s−ρ′|=rj

f(s)ds

(s− ρ′)n+1
. (7.15)

Lemma 7.7 gives that, for any σ0, there is a positive constant B such that

L(λ, λ, s) = O(tB) if σ ≥ σ0. By the proof of Theorem 1 in [22] we see that,

for any t the modulus |L(λ, λ, 3 + it)| is greater than some positive absolute con-

stant. Therefore by Lemma α from Titchmarsh [69, §3.9] and by the formula (7.2)

we obtain, for |s− ρ′| ≤ rj,

L′

L
(λ, λ, s) =

∑
ρ : |ρ−(3+iγ′)|≤3

1

s− ρ
+O(logT ).

Then, in view of the definition of f(s) using the zero-free region (7.13), it follows

that

f(s) =
∑

ρ : |ρ−(3+iγ′)|≤3
and |ρ−ρ′|>rj

1

s− ρ
+O(logT ).

Thus by the formula (7.15)

an =−
∑

ρ : |ρ−(3+iγ′)|≤1
and |ρ−ρ′|>rj

1

(ρ− ρ′)n+1
+

1

2πi

∫
|s−ρ′|=rj

O(logT )ds
(s− ρ′)n+1

(7.16)

�r−n−1
j logT.
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Now, we choose r = r
2+δ/3
j . Then expressions (7.14) and (7.16) yield, for

|s− ρ′| = r,

f(s)− a0 =
∞∑
n=1

an(s− s0)
n � r−1

j logT
∞∑
n=1

r
n(1+δ/3)
j

�r
δ/3
j logT.

By this we have, for |s− ρ′| = r,

L′

L
(λ, λ, s) = a0 +

∑
ρ : |ρ−ρ′|≤r4+δ

j

1

s− ρ
+O

(
r
δ/3
j logT

)
.

Taking real parts we obtain, for |s− ρ′| = r,

<L′

L
(λ, λ, s) = <a0 +

∑
ρ : |ρ−ρ′|≤r4+δ

j

σ − β

|s− ρ|2
+O

(
r
δ/3
j logT

)
. (7.17)

We will get an asymptotic formula for <a0. We consider the sum over zeros

in the formula (7.17). By inequalities |ρ − ρ′| ≤ r4+δ
j and

∣∣<ρ′ − 1
2

∣∣ < r0 we see

that, for |s− ρ′| = r, 1
2
−
(∣∣<ρ′ − 1

2

∣∣+ r4+δ
j

)
≤ σ ≤ 1

2
, and large T ,

|σ − β| ≤
∣∣∣∣<ρ′ − 1

2

∣∣∣∣+ r4+δ
j < r0 + r4+δ

j ≤ 2r4+δ
j

and

|s− ρ|2 ≥ (|s− ρ′| − |ρ− ρ′|)2 = (r
2+δ/3
j − r4+δ

j )2 > r
4+2δ/3
j /2.

The asymptotic formula (7.2) for the number of nontrivial zeros gives that there

are � logT zeros in the disc |ρ − ρ′| ≤ r4+δ
j . Thus, for |s − ρ′| = r and 1

2
−(∣∣<ρ′ − 1

2

∣∣+ r4+δ
j

)
≤ σ ≤ 1

2
, we get∑

ρ : |ρ−ρ′|≤r4+δ
j

σ − β

|s− ρ|2
� r

δ/3
j logT

and

<L′

L
(λ, λ, s) = <a0 +O

(
r
δ/3
j logT

)
. (7.18)

By (7.13) we have the ring {z : r4+δ
j < |z − ρ′| ≤ rj} has no zeros. Recall that

|s − ρ′| = r = r
2+δ/3
j . In view of this the distance from s = 1

2
+ it to the nearest

zero is

≥ min(rj − r
2+δ/3
j , r

2+δ/3
j − r4+δ

j ) > r0 = exp (−AT/ logT ) .
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Then the equality (7.7) together with (7.18) gives

<a0 = −1

2
logT +O(1). (7.19)

By expressions (7.18) and (7.19) we obtain that, for |s− ρ′| = r and
∣∣<ρ′ − 1

2

∣∣+
r2+δ
j ≤ σ ≤ 1

2
,

<L′

L
(λ, λ, s) = −1

2
logT +O

(
r
δ/3
j logT

)
. (7.20)

If |s− ρ′| = r and σ < 1
2
−
(∣∣<ρ′ − 1

2

∣∣+ r4+δ
j

)
, then we have∑

ρ : |ρ−ρ′|≤r4+δ
j

σ − β

|s− ρ|2
≤ 0

and, in view of formulas (7.17), (7.19),

<L′

L
(λ, λ, s) ≤ −1

2
logT +O

(
r
δ/3
j logT

)
. (7.21)

The expressions (7.20) and (7.21) together with the zero-free region (7.13) prove

Lemma 7.9.

Proof of Theorem 7.4. Let

R =

{
s ∈ C : T < t < T + U,−2 < σ <

1

2

}
.

All the nontrivial zeros of L(λ, λ, s) and L′(λ, λ, s) lie to the right-hand side of the

line σ = −2. To start with, the idea is to consider the change of the argument of

L′/L(λ, λ, s) around the boundary of the region R. However, a problem occurs if
1
2
+ it is near to a zero of L(λ, λ, s). Next, our goal is to exclude the zeros ρ, for

which ∣∣∣∣β − 1

2

∣∣∣∣ < exp
(
− AT

logT

)
and T < γ < T + U (7.22)

from the region R using certain arcs which lie to the left-hand side of the line

σ = 1
2
. We will use Lemma 7.9.

In this proof we always assume that the zero ρ satisfies inequalities (7.22). By

the condition (7.3) of Theorem 7.4 there is δ > 0 such that the function L(λ, λ, s)

has less than

ε

log(2 + δ)
logT
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zeros in the disc |s− ρ| ≤ exp(−AT 1−ε/ logT ). Then, in view of Lemma 7.9, for

each such zero ρ we define an arc of a circle which lies to the left-hand side of the

line σ = 1
2

in the following way:

C(ρ, r) =

{
s : |s− ρ| = r, σ ≤ 1

2

}
,

where the radius r is from Lemma 7.9. Thus, for s ∈ C(ρ, r),

<L′

L
(λ, λ, s) ≤ −1

2
logT +O(1).

Let S be the set of all such arcs, i.e.

S = {C(ρ, r) : ρ satisfies inequalities (7.22)}.

Clearly S is finite. It could be the case that some arcs of S intersect each other or

lie inside of other arcs. We say that an arc C(ρ, r) lie inside of the arc C(ρ′, r′) if

C(ρ, r) is in the disc |s− ρ′| < r′. Similarly, a zero ρ lies inside of the arc C(ρ′, r′)

if ρ is in the disc |s− ρ′| < r′. We will construct a subset S ′ of S such that each

zero ρ, with
∣∣β − 1

2

∣∣ < exp
(
− AT

logT

)
and T < γ < T + U , lies inside of some arc

from S ′ and any two arcs of S ′ do not intersect each other and do not lie inside

of each other.

Let C(ρ0, r0) ∈ S be an arc with the largest radius r0 of all arcs from S. If

C(ρ, r) ∈ S and ρ is not inside of C(ρ0, r0), then by the zero-free region (7.12),

for sufficiently large T , the arcs C(ρ0, r0) and C(ρ, r) do not intersect. Let S1 be

a subset of S defined by

S1 = {C(ρ, r) ∈ S \ C(ρ0, r0) : ρ is not inside of C(ρ0, r0)}.

Let C(ρ1, r1) ∈ S1 be an arc with the largest radius r1 of all arcs from S1. Again,

C(ρ1, r1) does not intersect any C(ρ, r) ∈ S1, if ρ is not inside of C(ρ1, r1). Let

S2 = {C(ρ, r) ∈ S1 \ C(ρ1, r1) : ρ is not inside of C(ρ1, r1)}.

Continuing this way, we construct the desired set of arcs

S ′ = {C(ρ0, r0), C(ρ1, r1), C(ρ2, r2), · · · }.

Without loss of generality, we assume that L(λ, λ, σ+ iT ) 6= 0 and L′(λ, λ, σ+

iT ) 6= 0 for −2 ≤ σ ≤ 1
2
. Further, we consider the change of argL′/L(λ, λ, s)
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along the appropriately indented boundary R′ of the region R. More precisely,

the upper, left, and lower sides of R′ coincide with the upper, left, and lower

boundaries of R. To obtain the right-hand side of the contour R′, we take the

right-hand side boundary of R and deform it by arcs C(ρ, r) from the set S ′.

We define a continuous function f : [T, T + U ] → C, where f(x) is equal to

some complex number at the intersection of the horizontal line t = x with the

right-hand side of the contour R′.

To prove the theorem, we will show that the change of argL′/L(λ, λ, s) along

the the contour R′ is � logT . Let R′
1, R′

2, R′
3 and R′

4 denote the right, upper,

left, and lower sides of the contour R′ accordingly.

We start from argR′
1
L′/L(λ, λ, s), where argR′

1
L′/L(λ, λ, s) denotes the change

of argument of L′/L(λ, λ, s) along the right-hand side R′
1 of the contour R′. The

equality (7.7) from Lemma 7.8 together with Lemma 7.9 gives that∣∣∣∣argR′
1

L′

L
(λ, λ, s)

∣∣∣∣ < π.

By analogy, the equality (7.6) from Lemma 7.8 gives∣∣∣∣argR′
3

L′

L
(λ, λ, s)

∣∣∣∣ < π.

Next we turn to horizontal sides R′
2 and R′

4. By standard arguments using

Jensen’s theorem together with the bounds (7.10) it is possible to show that (cf.

[25, inequality (7) and below] or Titchmarsh [69, Section 9.4]) argR′
2
L(λ, λ, s) �

logT , argR′
2
L′(λ, λ, s) � logT , argR′

4
L(λ, λ, s) � logT , and argR′

4
L′(λ, λ, s) �

logT . This finishes the proof of Theorem 7.4.

7.7 Ending notes

We discuss the function f(t) from Theorem 7.4. Let T < t ≤ T +U . In the proof

of Theorem 7.4, for 0 < λ ≤ 1, we construct the function f(t) in a such way that

the zero ρ of L(λ, λ, s) lying near the critical line, more precisely satisfying the

inequality ∣∣∣∣β − 1

2

∣∣∣∣ < exp
(
− AT

logT

)
,
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must also lie to the right of the point f(γ) + iγ, i.e. β > f(γ). We expect that

the location of the curve f(t) + it, t ∈ [T, T + U ], is not accidental and reflects

interesting properties of the zeros of the Lerch zeta-function. By 7.3 we see that

if ρ is a nontrivial zero of L(λ, λ, s), then there is a radius exp(−Aγ/ log γ) ≤ r ≤

exp(−Aγ/ log γ) log2 γ such that the discs

|s− ρ| < r and |s− (1− ρ)| < r (7.23)

contain the same number of zeros. On the other hand, calculations in Section 7.2

suggest that if 0 < λ < 1, λ 6= 1
2
, and ρ is a nontrivial zero of L(λ, λ, s), then the

symmetry described by the formula (7.23) is not strict, namely, 1−ρ is not a zero

of L(λ, λ, s). Moreover if discs in the expression (7.23) intersect, then both discs

possibly contain the same zero(s). From this we expect that nontrivial zeros of

L(λ, λ, s), for 0 < λ < 1, λ 6= 1
2
, can be classified into two classes, heuristically

described as follows. One class contains zeros which are relatively far from the

critical line. These zeros appear in almost symmetric pairs according to (7.23).

Another class consists of zeros which are relatively near the critical line. They

are almost symmetric to themselves (in view of (7.23)). We expect that the curve

f(t) + it, t ∈ [T, T +U ], (or the appropriate version of this curve lying nearest to

the critical line) from Theorem 7.4 separates these two classes of zeros.

Notice that in Theorem 7.4, for λ = 1
2
, 1, the function f(t) can be constructed

at least in two ways. One way is as described in the proof of Theorem 7.4.

Another way is to choose f(t) = 1
2

(see Levinson and Montgomery [53] for the

Riemann zeta-function L(1, 1, s) and Yıldırım [75] for the Dirichlet L-function

L(1
2
, 1
2
, s)). Clearly, if the generalized Riemann hypothesis is true and λ = 1

2
, 1,

then in Theorem 7.4 for f(t) we can choose any continuous function which is not

greater than 1
2
.
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8 Conclusions

Results obtained in the previous chapters lead to the following conclusions:

1. The zeros and a-values of the periodic Hurwitz zeta-function are mostly

clustered around the critical line σ = 1
2
. The same holds for the zeros of the

derivative of the Lerch zeta-function.

2. The number of the zeros and a-values of the periodic Hurwitz zeta-function

till the given size T does depend only on T , parameter α and properties of

the periodical sequence. Notice, that if a 6= 0, then the number of a-values

of the periodic Hurwitz zeta-function till the given size mainly does not

depend on a itself.

3. The number of trivial zeros till the given size T of the Lerch zeta-function

is approximately the same as the number of trivial zeros of its derivative.

4. Nontrivial zeros of the Lerch zeta-function with equal parameters on average

are symmetrically distributed with a small error term. For this special case,

there is the Speiser type relation between zeros of the Lerch zeta-function

and its derivative.

Thesis results found in Chapter 6 could be extended by analyzing k-th derivate.

This would provide an extension of Berndt results about the Riemann zeta-

function [6], but will require more complicated machinery.
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