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1. INTRODUCTION 

The Relevance of the Topic 

Cardiovascular diseases are the leading cause of death in the European Union. 

They cover a broad class of medical problems and disorders affecting the circulatory 

system (the heart and the blood vessels). They commonly stem from atherosclerosis 

(the abnormal build-up of plaque made of, among other materials, cholesterol or fatty 

substances deposited on the inside walls of arteries. Ischaemic heart disease (heart 

attacks) and cerebrovascular diseases (strokes) are considered to be the most common 

diseases affecting the circulatory system in humans [1].  

Currently, more than 6 million new cases of cardiovascular diseases are 

recorded in EU every year, and in Europe as a whole this number is in excess of 11 

million. In total, almost 49 million people live with CVD in the EU, which results in 

high costs to the EU economies – nearly €210 billion a year [2]. Of the total cost of 

CVD in the EU, health care costs account for approximately 53 percent (€111 billion), 

whereas productivity losses contribute 26 percent (€54 billion), and informal care of 

people suffering from CVD costs 21 percent of all the relevant expenses (€45 billion). 

The main risk factors for cardiovascular diseases are as follows: high blood 

pressure (annually, 15 percent more in Western Europe) [3], smoking (16 percent of 

deaths in adults over 30), just to mention a few [4]. Excessive alcohol consumption 

(which has recently been considered a major problem in Lithuania, too), high sugar 

consumption (the cause of 15 percent of deaths due to CVD), obesity (+5 percent in 

Lithuania during the last 5 years) [5], high cholesterol levels (closely linked to 

unhealthy lifestyles, overweight and diabetes), lack of physical activity, frequent 

stress and diabetes (expected to go 165 percent up globally in 2050) [6]. 

Almost half of the individuals who have had their extremity amputated due to 

a vascular disease die within 5 years. This is higher than the five-year mortality rates 

for breast cancer, colon cancer, and prostate cancer [7]. Nearly 55 percent of persons 

suffering from diabetes who have undergone a lower limb amputation will require the 

amputation of the other leg as well within 2–3 years [8]. 

The majority of limb amputations is caused by circulatory disturbances, such 

as vascular occlusions and strictures. Consequently, it is necessary to search for novel 

and more effective methods of eliminating vascular malformations. For this reason, 

various invasive and non-invasive ultrasonic devices are currently being used. 

However, given the depressing statistics, they are far from being sufficiently effective. 

The discovery of a modern and more advanced ultrasonic interventional 

vascular clearing methodology would enable saving not only the limbs of CVD 

patients and their lives but would also contribute to the wealth of the economies of 

Lithuania and Europe as a whole as this would allow saving lots of finances currently 

being spent on treating patients in non-effective ways, as well as nursing and taking 

care of them after they lose their ability to work. 
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Aim and Objectives of the Research 

The aim of the research is to investigate the effect of the active invasive 

ultrasonic vascular clearing systems on live human tissues and to use the relevant 

findings and the results obtained in the course of the research for the further 

improvement of the active members that are currently used in ultrasonic systems. 

In order to achieve the above stated aim, the following objectives were set: 

1. To accomplish comprehensive analysis of literature on the human 

cardiovascular system covering the currently known effects of ultrasound 

on human tissues, to collect data on various waveguides currently being 

used for the purpose of vascular clearing, and to analyze the blood vessel 

cleaning devices currently available on the market. 

2. To develop a multipurpose waveguide capable of operating in three 

directions (along axes x, y, and z) and suitable for restoring the 

functioning of the blood vessels in an interventional way. 

3. To develop a technique for the research of the cavitation process within 

fluids while mathematically modeling the waveguide of a newly designed 

structure operating within the tissue-confined fluid.  

4. To investigate experimentally the newly designed waveguide (operating 

as an active member of the ultrasonic vascular clearing system), to find 

out the effects it has on human tissues and the medium within which it is 

being operated (blood), and to determine the operational characteristics 

of the system under consideration.  

Methods and Means 

This work is carried out by using theoretical and experimental research 

methods. The theoretical studies were performed by using COMSOL 

MULTIPHYSICS computer software packages. The experimental studies for the 

performance of piezoelectric actuators were created in the Institute of Mechatronics, 

Kaunas University of Technology. The experimental results were obtained by using 

the most up-to-date available non-contact laser measuring equipment. 

Research Novelty 

1. A unique waveguide of an innovative shape has been developed; 

2. A dynamic model and a computational methodology of the unique 

waveguide featuring an innovative shape has been created; 

3. The effect of cavitation caused by the ultrasound on human tissues and the 

medium within which it is being operated (namely, blood) has been 

examined. 
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Practical Value 

An innovative waveguide of a unique shape has been designed for invasive 

clearing of blood vessels capable of generating the cavitation flow by means of 

inducing mechanical multidimensional vibrations of ultrasonic frequency. The 

waveguide under consideration is used within the ultrasound system for the 

elimination of vascular disorders in humans. The information gathered while 

preparing the thesis was used for the research in the framework of the joint KTU and 

the Lithuanian University of Health Sciences project “Go-SMART” funded by 

Research Council of Lithuania, Project No. MIP-097/15. 

Work Results Submitted for Evaluation 

1. The experimental trials and the discovered values of the operating 

characteristics of the mechanical ultrasound apparatuses fitted with the 

waveguide of a unique shape; 

2. The calculation of the effect stemming from waves caused within the 

tissue-confined body fluid during the operation of the waveguide;  

3. Experimental trials of the ultrasound effect on live human tissues. 

Work Approval 

The scientific research results and publications focused on the topic of this 

doctoral thesis were presented in 9 international scientific conferences, published in 2 

international journals having an Impact Factor as well as in 6 other publications listed 

in the main journal of the Institute for Scientific Information (ISI). Two different 

scientific inventions were patented in Lithuania.  

Scope of the Dissertation 

The dissertation consists of an introduction, four parts, general conclusions, a 

bibliography of 99 sources and a list of the author’s scientific publications on the 

dissertation topic. The dissertation volume is 116 text pages and 14 pages of annexes. 

Acknowlegements 

The autrhor of the dissertation would like to thank dear friends prof. dr. V. 

Jūrėnas and habil. dr. V. Garalienė, as well as prof. dr. V. Veikutis for scientific advice 

in the course of the preparation of the doctoral dissertation. 
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2. PROBLEM ANALYSIS AND FORMULATION OF THE TASKS 

2.1. The Blood Circulatory System of the Human and Anatomy of the Vessel 

The blood circulatory system (also known as the cardiovascular system) 

delivers nutrients and oxygen to all the cells of the body. It is comprised of the heart 

and the blood vessels that are deployed throughout the entire body. The arteries carry 

blood away from the heart, whereas the veins return it back to the heart [9]. The system 

of blood vessels might be compared to a tree: the main artery (called the aorta) being 

similar to a tree trunk branches into large arteries that further lead to smaller and 

smaller vessels. The smallest arteries end in a network of tiny vessels that comprise 

the so-called capillary network. 

The human body contains two blood circulatory systems that are 

interconnected: the  systemic circulation provides organs, tissues and cells with blood 

that carries oxygen as well as other vital substances. The pulmonary circulation is 

where the fresh oxygen enters the blood as we breathe in, and simultaneously carbon 

dioxide is released from the blood [10]. 

Blood starts circulating when the heart relaxes between two heartbeats: blood 

flows from both atria (the upper two chambers of the heart) into the ventricles (the 

lower two chambers) which then expand. The phase that follows is called the ejection 

period. During the ejection period, both ventricles pump the blood into the large 

arteries. 

In the systemic circulation, the left ventricle pumps oxygen-rich blood into the 

main artery (aorta). The blood flows from the main artery to larger arteries first, then 

to smaller arteries, and, finally, reaches the capillary network [11]. In the capillary 

network, oxygen, nutrients and other vital substances are released from the blood, and 

carbon dioxide as well as waste substances are taken on. The blood, being low in 

oxygen, is now collected in veins and flows to the right atrium and into the right 

ventricle [12]. 

Then, pulmonary circulation starts: the right ventricle pumps the blood low in 

oxygen into the pulmonary artery which branches off into smaller and smaller arteries 

and capillaries. The capillaries form a fine network around the pulmonary vesicles 

(grape-like air sacs at the end of the airways). This is where carbon dioxide is released 

from the blood into the air contained in the pulmonary vesicles, and fresh oxygen is 

supplied to the bloodstream. When we make a breath out, carbon dioxide is removed 

from our body [12]. Oxygen-rich blood flows through the pulmonary vein and the left 

atrium into the left ventricle. With the next heart beat, a new cycle of systemic blood 

circulation starts. 

https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0023062
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0023354
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022310
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022040
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0015637
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022370
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0024676
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0025771
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0024676
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022262
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022018
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0023062
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0023062
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0025740
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022306
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022040
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022310
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0023061
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022309
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022309
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0023062
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0015637
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022263
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022372
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0024676
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0023062
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022310
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022037
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0024676
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022262
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0024676
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0024676
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022018
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022018
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0023354
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022309
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0025771
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0023061
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022037
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022310
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022019
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0024676
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022018
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0024279
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022396
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022309
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022264
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0015637
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0023062
https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0023062
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Fig. 1. The cardiovascular system [13]. 

All the blood vessels can be grouped into three major types as 

follows: arteries, capillaries, and veins. As the heart contracts, it forces blood to leave 

the ventricles and flow into the large arteries. Blood then moves further to smaller 

arteries successively, until it finally reaches the smallest branches, the so-called 

arterioles, which feed into the capillary beds of organs and tissues. Blood drains from 

the capillaries into venules, the smallest veins, and then into larger veins that merge 

and ultimately empty into the heart. If all the blood vessels contained in the human 

body were stretched out, these would be 100,000 km long [14]. 

Arteries carry blood away from the heart while forming smaller and smaller 

divisions, thus arteries are said to ‘branch’. In contrast, veins carry blood towards the 

heart and are said to ‘merge’ into larger and larger vessels approaching the heart. In 

the systemic blood circulation, arteries always carry oxygen-rich blood, and veins 

always carry blood low in oxygen [15]. The opposite is true for the pulmonary 

circulation. The arteries, defined as the vessels leading away from the heart, carry 

blood low in oxygen to the lungs; whereas the veins carry oxygen-rich blood from the 

lungs to the heart. Capillaries are the only blood vessels that have intimate contact 

with the tissue cells in the human body. Consequently, they are responsible for serving 
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cellular needs. Any exchanges between the blood and tissue cells occur primarily 

through the capillary walls that are thin. 

The walls of any blood vessel (except for the smallest ones) have three layers, 

the so-called tunics, that surround a central blood-containing space, which is referred 

to as the vessel lumen [16]. 

The innermost tunic is called the tunica intima. The tunica intima contains the 

endothelium which is the simple squamous epithelium, and it lines the lumen of all 

the vessels. The endothelium is continuous with the endocardial lining of the heart. 

Its flat cells fit closely together thus forming a slippery surface that minimizes friction 

so that blood could move smoothly through the lumen. In vessels larger than 1 mm in 

diameter, a subendothelial layer consisting of a basement membrane and a loose 

connective tissue supports the endothelium [17]. 

The middle tunic, called the tunica media, is mainly circularly arranged smooth 

muscle cells and sheets of elastin. The activity of the smooth muscle is regulated by 

sympathetic vasomotor nerve fibres of the autonomic nervous system and chemicals. 

Depending on the body’s needs at any given moment, regulation causes either 

vasoconstriction (decrease in the lumen diameter) or vasodilatation (increase in the 

lumen diameter). The activities of the tunica media are critical for the regulation of 

the circulatory system because even very small changes in the vessel diameter have a 

huge influence on the blood flow and the blood pressure. Generally, the tunica media 

is the bulkiest layer in arteries, and it bears the chief responsibility for maintaining the 

blood pressure and the proper blood circulation [18]. 

 

Fig. 2. Generalized Structure of Blood Vessels [18]. 

The outer layer of a blood vessel wall is called the tunica externa. It is mainly 

comprised of collagen fibres that protect and reinforce the vessel, and anchor it to the 
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surrounding structures [19]. The tunica externa contains nerve fibres, lymphatic 

vessels, and elastic fibres (in large veins). In large vessels, the tunica externa contains 

a structure known as the vasa vasorum – literally, ‘vessels of vessels’ – that nourish 

the external tissues of the blood vessel wall. The interior layers of blood vessels 

receive nutrients directly from the blood carried in the lumen. 

2.2. Vascular Disease 

Vascular Disease is the term describing blood vessel diseases. When a disease 

occurs in the arteries, it is called an arterial disease. Veins return blood back to the 

heart from all the parts of the body. When a disease occurs in the veins, it is called a 

venous disease.  

Atherosclerosis is a disease, in which, plaque tends to build up on the inside of 

the arteries (Fig. 3). Over time, this plaque build-up hardens around the artery walls 

thus narrowing the blood flow to the organs and various parts of the body. As organs 

do not receive blood rich enough in oxygen, they cannot function properly. 

Furthermore, blood clots often form around plaques. Sometimes, the plaque or a clot 

can break loose and travel to smaller arteries where it blocks the blood flow. In 

addition, a plaque can rupture [20]. Such blood flow blockages and plaque ruptures 

can lead to serious problems including, but not limited to, heart attacks, strokes and, 

in the worst-case scenario, death. There are many factors that contribute to causing 

atherosclerosis, such as smoking, high cholesterol level, diabetes, etc. Atherosclerosis 

can affect almost any artery. In many cases, it involves multiple arteries at the same 

time. It is commonly found in the coronary or heart arteries, the carotid or neck 

arteries, and the leg arteries. Atherosclerosis can also occur in the aorta, the largest 

artery of the body responsible for carrying blood from the heart to the chest, abdomen 

and legs. In a severe case of atherosclerosis, an artery may become fully blocked, 

resulting in ischemia – a restriction in oxygenated blood supply to any muscle group, 

organ or tissue. It is very common for ischemia to result in heart attacks and strokes 

[21]. 

 
Fig. 3. Atherosclerosis [22]. 

Some of the diseases that can stem from atherosclerosis are as follows [23]: 
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• Carotid Artery Disease is diagnosed when the major arteries in the neck, called 

the carotid arteries, become narrowed or blocked. These arteries are responsible 

for the blood supply to the brain. Significant artery narrowing leads to the 

increased risk of plaque or a clot breaking loose and travelling to the brain which 

will ultimately cause a stroke; 

• Coronary Artery Disease (CAD) occurs when plaque builds up inside the 

coronary or heart arteries. Narrowing or full blockage of coronary arteries 

prevents oxygen-rich blood from reaching the heart. Sometimes, this causes chest 

pain which is called angina (pronounced as an-JI-nuh or AN-juh-nuh); however, 

in severe cases, it results in a type of heart attack called myocardial infarction; 

• Mesenteric Artery Disease refers to the condition in which the major arteries 

carrying blood to the intestines become narrowed or blocked. Its symptoms, 

among others, include abdominal pain after eating, blood in the stool, and loss of 

weight.  

• Peripheral Arterial Disease (PAD) is diagnosed when the leg arteries become 

narrowed or blocked. Such a condition is also known as poor circulation or 

peripheral vascular disease. In case of insufficient blood flow to the legs and feet, 

patients diagnosed with PAD can experience leg pain, ulcers or sores. In some 

cases, patients with PAD suffer no symptoms whatsoever. However, in extremely 

severe cases, peripheral arterial disease, also known as a critical limb ischemia, 

can even require an amputation of the limb or at least a part of it.  

• Renovascular Disease is a progressive condition in which renal arteries 

responsible for the blood flow to the kidneys become narrowed or blocked. 

Atherosclerosis of renal arteries can cause high blood pressure or kidney failure.  

• Vertebrobasilar Insufficiency is a disorder characterized by poor blood flow to 

the posterior portion of the brain. Symptoms of narrowed vertebral arteries may 

include blurred or double vision, dizziness, and lack or loss of coordination or 

imbalance. Vertebrobasilar insufficiency can also cause drop attacks, or sudden 

and spontaneous falls while standing or walking. 

Aneurysm is a balloon-like bulge in the artery which occurs due to a weakening 

in the artery wall (Fig. 4). In most of the cases, aneurysms occur in the aorta, the 

largest artery in the body, carrying blood from the heart to the chest, abdomen and 

legs. However, aneurysms can also occur in brain and leg arteries. A ruptured 

aneurysm is an emergency which requires immediate medical attention. Progressive 

weakening of the aortic wall causes the so-called Aortic Aneurysm. This may cause 

bulging or ballooning of the vessel, which, if not treated properly, may continue to 

grow and even rupture. An aneurysm in the abdomen is known as abdominal aortic 

aneurysm (AAA, or triple A), whereas an aneurysm in the chest is called a thoracic 

aortic aneurysm [23]. 
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Fig. 4. An Aneurysm [23]. 

Venous Thrombosis is a blood clot that forms in any of the veins (Fig. 5). 

Venous clots can block the blood flow through the vein, or can also travel to any part 

of the body. There are many factors that are considered to increase the risk of 

developing venous clots including, but not limited to, various leg traumas, injuries to 

the veins, a recent surgery or hospitalization, being overweight, and prolonged body 

immobility, such as a long airplane ride or bed rest [24]. Taking birth control pills, 

having cancer, and even pregnancy can also lead to the increased risk of blood clots 

formation in the veins. Moreover, people who once have had a blood clot face a higher 

chance of having another one. Clots can occur in both the arm and leg veins, however, 

it is more common for blood clots to form in legs. In most severe cases, blood clots 

are treated with blood thinner drugs called anticoagulants. Anticoagulant drugs 

decrease the blood’s ability to clot to a controlled degree. They prevent clots from 

getting bigger, and also prevent the formation of new ones [25]. 

 
Fig. 5. Venous Thrombosis [26]. 
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Deep Vein Thrombosis (DVT) is the condition in which blood clots form within 

the deep veins of the arms or legs (Fig. 6). As for the legs, DVT is diagnosed when a 

clot forms in one of the deep calf or thigh veins while blocking blood flow and causing 

pressure to build up in the vein. Symptoms include pain and swelling in one or both 

legs. DVT is rather rarely found in the arms; however, it occurs most often in the large 

veins called the axillary and subclavian veins. Symptoms of arm DVT include swelled 

and painful arms, prominent veins that can be clearly seen through the skin, and 

changes in the skin color [27]. 

 

 
Fig. 6. Deep Vein Thrombosis [28]. 

DVT can lead to a serious complication called Pulmonary Embolism (PE). It is 

diagnosed when some or all of the DVT breaks loose from its original location in a 

vein and is moved through the heart into the lungs. The most common symptoms of 

PE include chest pain, difficulty breathing, and heart palpitations or a racing heartbeat. 

Again, pulmonary embolism is an emergency and requires immediate medical 

attention [29].  

Superficial Vein Thrombosis (SVT) refers to a blood clot in a surface vein of the 

arm or the leg, close to the skin. Blockages in the superficial veins are not as serious 

as those in the deep veins, but they may still cause swelling and discomfort [30]. 

Veins return blood from the arms and legs back to the heart in order for the 

lungs to resupply it with oxygen. Veins contain special valves that prevent blood from 

flowing in the opposite direction. In case these valves fail to work properly, blood can 

flow backwards down the veins and pool in the lower leg. This may cause veins to 

enlarge and can further result in leg swelling, aching and burning, skin color changes 

as well as leg ulcers [31]. 

Varicose Veins refer to the visibly bulging veins that mildly protrude or do not 

protrude above skin in the thigh or calf. Generally, varicose veins are larger than 3 mm 

in diameter. They develop due to the weakness of the vein wall and because the valves 

no longer function as they are supposed to. Sometimes, varicose veins form entire 
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families. There are two other conditions that are often mistakenly taken for varicose 

veins, namely, spider veins and reticular veins. Spider veins, also called 

teleangiectesia, refer to the tiny veins that can be easily seen but cannot be felt. 

Reticular veins are larger than spider veins but smaller than varicose veins [32]. 

Lymphedema is a disorder of the lymphatic blood vessels which leads to 

Lymphedema is a disorder of the lymphatic blood vessels that leads to severe swelling 

of one or both of the legs or arms. In some cases, lymphedema is caused by some 

damage of the lymphatic vessels, for example, this may happen among women who 

have received surgery in the course of the treatment for breast cancer. Sometimes, 

lymphedema is found to have run in families and is also diagnosed in children or 

young adults [33]. 

Vasculitis is an inflammation of the blood vessels that occurs when the body’s 

immune system mistakenly attacks the blood vessels causing them to become 

inflamed. As a result of such inflammation, the blood vessels can become damaged, 

and this may lead to the narrowing or blockage of blood flow or aneurysms of the 

blood vessels. Vasculitis can affect any of the body’s blood vessels [34]. 

Raynaud’s phenomenon refers to a disorder in which arteries tend to go into 

spasm for brief periods. The contraction or narrowing of the blood vessels (called 

vasospasm) leads to decreased blood flow to the fingers and toes. In some cases, it 

can affect the nose, ears, nipples and lips. Due to the reduced blood flow, the  color 

of the affected area may change. For example, some patients report that their fingers 

turn blue, white and/or red. It is common for a vasospasm to occur in response to cold, 

but it can also be triggered by stress. Mild Raynaud’s phenomenon is commonly found 

among young women. Although severe Raynaud’s phenomenon is rare, it may even 

lead to ischemia of the hands or feet and non-healing sores [35]. 

Compression Syndromes occur when blood vessels are narrowed or compressed 

by bones, muscle, or other body tissues. With Thoracic Outlet Syndrome (TOS), blood 

vessels and nerves of the arms are compressed as they leave the chest cavity by the 

surrounding bones and muscles. If the nerves are affected, TOS may cause pain or 

numbness in the arms with certain movements. If the blood vessels are affected, it 

may cause arm swelling or a blood clot. With Popliteal Entrapment Syndrome, the 

compression of the popliteal artery or the popliteal vein at the back of the knee by the 

calf muscles may cause leg pain with exercise or a blood clot in the leg [36]. 

Some of the diseases listed in Chapter 1.3 are healed while applying ultrasound 

and the process that ultrasound creates, i.e., cavitation. Therefore, it is important to 

understand how ultrasound is applied in the field of modern medicine. 

2.3.  Application of Ultrasound in Medicine  

Ultrasound refers to a high frequency (0.02 to 200 MHz) acoustic wave that 

transfers energy in a gas, liquid or solid medium [37]. In gases and liquids, the 

longitudinal waves of sound mainly propagate, whereas, in solid bodies, both 

transverse and longitudinal sound waves can be transmitted. The speed of ultrasound 

transmission depends on the density and elasticity or the stiffness of the medium. The 

ultrasonic wave occurs due to the rhythmic oscillations of the particles (molecules and 
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atoms) in the medium that cause the medium to get denser and to bend (due to particles 

getting closer and farther from each other, respectively), because of which, the 

pressure tends to increase and decrease, respectively. The vibrations at frequencies 

higher than 20 kHz are called ultrasonic, or the ultrasound. When propagating, the 

sound pressure oscillations transfer kinetic energy [38]. The ultrasound energy 

absorbed by tissues is converted into heat. The ultrasound absorption (conversion into 

heat) is described by means of the Thermal Index (TI). When TI=1, the temperature 

in the medium under consideration rises by 1 degree, when TI = n, by n degrees. TI is 

mainly dependent on the characteristics of the tissue.  

The energy transported in an ultrasound wave is usually characterized by 

acoustic intensity I which is defined as the energy transmitted per time unit (usually, 

1 s) and per area unit (usually, 1 cm2) in the direction normal to the area under 

consideration. In the field of medical ultrasound, the intensity is measured in W · 

cm−2.  

In general, the ultrasound can be either continuous or pulsed. The continuous 

ultrasound is the regime in which the generated ultrasonic waves are propagating at 

the constant amplitude, with no pauses, under constant frequency. On the other hand, 

pulsed ultrasound is the intermittent regime, involving pauses, however a recurrent 

one.  Ultrasound working regimes are shown in Fig. 7. 

 

 
Fig. 7. Continuous and pulsed ultrasound regimes [39]. 

Ultrasonic energy can be a potent means enabling to achieve the desired 

biological effects. Having sufficient knowledge of the etiology and exposimetry, it is 

possible to plan some bioeffects for therapeutic purposes or to avoid other ones in 

diagnostic applications [40]. As for the therapy, ultrasound can induce the desired 

effects not only by the way of heating but also through certain non-thermal 
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mechanisms such as gas body activation, ultrasonic cavitation, mechanical stress, and 

other undetermined non-thermal processes [41]. 

Ultrasound-induced heating stems from the absorption of ultrasonic energy by 

biological tissue. By using ultrasound for diagnostic purposes, the temperature 

elevations and the potential for bioeffects are kept relatively low or negligible [42] by 

carefully following the described indications for use while applying the ALARA (As 

Low As Reasonably Achievable) principle, limited temporal average intensities, and 

generally short exposure times. On the other hand, therapeutic applications of 

ultrasonic heating therefore either involve longer durations of heating with unfocused 

beams or use higher-intensity (than for diagnostic purposes) focused ultrasound. The 

use of unfocused heating, for example, in physical therapy, to treat highly absorbing 

tissues, such as a bone or a tendon, can be moderated to produce enhanced healing 

without an injury [43]. Alternatively, the heat can be concentrated by focused beams 

until the tissue has been coagulated for the purpose of tissue ablation. Ultrasonic 

heating, which can lead to irreversible tissue changes, follows an inverse time-

temperature relationship. Depending on the temperature gradients, the effects of 

ultrasound exposure can include mild heating, coagulative or liquefactive necrosis, 

tissue vaporization, or all the three effects [44]. 

Recently, a series of tests have been undertaken for the purpose of evaluating 

the blood vessel endothelial function because scholarly studies have shown that 

endothelial dysfunction can be considered to be an independent risk factor in patients 

with the suspected coronary insufficiency [45, 46]. A damaged endothelium is no 

longer able to release endothelium-dependent vascular smooth muscle relaxing 

factors. For this reason, it is still necessary to explore various tools that can potentially 

restore the endothelial function. Currently, ultrasound has also been widely applied in 

body’s circular system diagnostics. However, there is lack of researches regarding the 

ultrasound’s effect on the physiological functions of endothelium and the smooth 

muscles associated with the vessel contraction and relaxation. 

2.4. The Process of Cavitation 

Cavitation is defined as the formation of vapor cavities and small liquid-free 

zones (also named as ‘voids’) within a liquid body. There are a number of ways to 

force a cavitation to appear. The aim of this chapter is to describe the most common 

of these techniques. 

2.4.1. Acoustic Cavitation 

Acoustic cavitation refers to the formation (expansion) of bubbles during the 

negative phase of the acoustic cycle when liquid pressure is below the critical limit. 

When acoustic pressure achieves a positive value, the expansion of a bubble is slowed 

down, and, finally, the bubble bursts. 

The term ‘stable cavitation’ refers to the condition in which the speed of bubble 

expansion under negative pressure is equal to the period of collapse in the positive 

portion of the acoustic cycle [47]. It is worth noting that the formation of stable 

http://www.jultrasoundmed.org/content/31/4/623.full#ref-22
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bubbles is not influenced by the process when the vibration-induced pressure field 

increases in volume more than it contracts after bursting.  

2.4.2. Tension 

The simplest way to stretch out a liquid is to pull some portion of it. Such 

tension of a liquid can be influenced by its own weight. When studying the effect of 

the liquid weight, in 1962, Huygens [48] was the first to record the existence of the 

negative pressure in a liquid. On the one side, an open column semi-filled with water 

was placed into a larger tank, and then all the remaining air was sucked out of it. This 

led to the observation that when the air above the larger tank hass been sucked out, 

the water remains ‘pending’ in the smaller container turned upside-down. At the top 

of the water column of height h, Psat – ρgh, where ρ represents the density of water, 

and g is the force of the Earth’s gravity. 

When an air bubble is injected into a water column, the bubble shall rise 

upwards, and the water column falls down, respectively. The experiment was 

afterwards repeated; however, the container was filled with mercury instead of water. 

Other ways to ‘pull’ a liquid also exist, and one of them is to mechanically 

increase the liquid volume by using special bellows or to heat it after compressing, 

and then to remove the pressing element of the apparatus. These two ways were the 

most popular ones for a rather long period of time while making bubble chambers 

where particles were recorded as carrying an extremely high energy and causing 

cavitation.  

2.4.3. The Method of Bertholet 

While using the method of Bertholet, to induce cavitation, it requires a container 

to be filled with water and then sealed. If a bubble of gas (air) persists, the entire 

structure is heated until the gas bubble has dissolved completely. The density of the 

liquid is found based on the temperature of bubble dissolution Td. 

Afterwards, the container is cooled down while decreasing its pressure to the 

negative value (i.e., cooled down to the sufficiently low temperature). At temperature 

Tcav, cavitation occurs, and the fluid restores its original condition (the ambient 

temperature). Bertholet used the cavitation-induced change in volume for measuring 

the size of the cavitation bubble. 

2.4.4. Inclusions 

Water contained in extremely small (10 to 100 micrometers) vessels is also 

found in the nature, often trapped inside various crystals. Roedder used such 

microscopic fluid inclusions for studying the equilibrium of ice crystals and water 

(fluid). His research started from a fluid with vapor inclusion. When freezing 

inclusions, vapor was found to disappear due to the increase in the ice volume. When 

such a specimen was heated, the vapor was observed not to recover, and the negative 

pressure was found to increase with the system approaching the melting point. 

At a later date, the method of Bertholet was applied while using synthetic 

materials as inclusions instead of vapor. Primarily, the experiments involved salt 
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solutions of low concentrations [49]. Crystals of quartz, calcite and fluorite were 

processed in distilled water heated to 300o to 400o. Afterwards, cleft crystals were 

placed into tubes made of a silver and lead compound together with the known amount 

of absolutely pure water. The entire container was then vacuumed. During vacuuming, 

any fractures present in crystals were filled with water depending on the temperature 

and pressure applied during the process. 

Hereafter, the specimens were studied by using the method of Bertholet. The 

water bubbles remaining inside the inclusions were observed to disappear when 

heated to temperature Td. When freezing the specimen, the water parameters changed 

gradually until the occurrence of cavitation. The derivation of Pcav parameter was 

based on the EOS multi-parameter dependent on the pressure of the stable fluid.  

2.4.5. Centrifuging 

For the first time applied by Reynolds, this method involves rotation of the 

water present inside a specific container at a high speed [50]. Negative pressure is 

created on its axis due to eccentric power.  

2 21

2
oP P r        (1.1) 

Where P0 denotes the pressure outside the container; ρ represents the water 

density. 

 

Ultrasonic cavitation and gas body activation are closely related mechanisms 

that depend on the rarefactional pressure amplitude of ultrasonic waves. Ultrasound 

transmitted into a tissue may have rarefactional pressure amplitudes of several 

megapascals (Fig. 8). This tensile stress is supported by the medium. For example, a 

2 MPa rarefactional pressure, which is common even for diagnostic ultrasound, 

represents a negative tension 20 times the atmospheric pressure (i.e., 0.1 MPa) [51]. 

This high rarefactional pressure can act to initiate cavitation activity in a tissue when 

suitable cavitation nuclei are present or directly induce the pulsation of pre-existing 

gas bodies, such as those occurring in lungs and intestines, or with ultrasound contrast 

agents. Cavitation and gas body activation primarily cause local tissue injury in the 

immediate vicinity of the cavitational activity, including cell death and the 

hemorrhage of blood vessels [52]. 
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Fig. 8. Ultrasonic cavitation [51]. 

Other potential mechanisms for biological effects of ultrasound include the 

direct action of the compressive, tensile, and shear stresses. In addition, there are 

second-order phenomena that depend on the transmitted ultrasonic energy. They 

include radiation pressure, forces on particles, and acoustic streaming. What regards 

the high-power or high-amplitude ultrasound which is intended for therapy, several 

different mechanisms may be contributing simultaneously to the total biological effect 

of the treatment. In addition to direct physical mechanisms for bio-effects, there are 

secondary biological, physical, and physiologic mechanisms that cause further effects 

on the organism. Some examples are vasoconstriction, ischemia, extravasation, 

reperfusion injury, and immune responses [53]. In some cases, these secondary effects 

tend to be greater than the direct insult from the ultrasound. 

 

2.5. Dynamics of the Cavitation Bubble 

2.5.1. Dynamics of the Spherical Bubble 

Investigation of spherical cavitation bubbles has no direct implications for the 

attempts to explain the cavitation erosion as bubbles present in sufficient vicinity to 

the walls to cause harm will always collapse aspherically. Despite that, such 

investigation provides a sound basis for interpreting the data obtained for 

asymmetrical collapse of bubbles in the non-Newtonian fluids. Up to date, it is the 

only way available for comparison of the test results and the theory. 

A simple way to generate a single bubble in the fluid is to focus a low-pulsed 

laser light to a specific point on the fluid surface. Depending on the size of the focus 

point, the laser transverse mode, the pulse duration and the intensity of the light, a 

single drop or several small ‘drops’ of the fluid get rapidly heated (in nano-, pico- and 

femto-seconds). 
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Fig. 9.  Dynamics of the cavitation bubble in water and the respective pressure signal 

measured at a distance of 10 mm to the laser focus when laser pulse energy EL = 10mJ. 

Fig. 9 shows a high-speed photography image of the dynamics of a bubble 

generated by a laser in water as well as the respective hydrophonic signals at a distance 

of r = 10 mm to the laser focus when the laser pulse energy equals EL = 10mJ. The 

interval time between shots is 20 µs. The laser light is emitted from below. The 

hydrophonic signal is recorded at the same time as the images showed in the above 

figure. Over a certain period of time, the movement of the laser wave causes the 

formation of a shock wave. The resulting difference between the hydrostatic and the 

dropping internal pressure of the bubble determines a significant increase in the 

volume of the bubble, and finally leads to its burst. During this process, the kinetic 

energy of the fluid is converted into the potential energy of the bursting bubble. 

The energy contained in the bubble is described as follows:  

3

max

4
( )

3
BE p p R


         (1.2) 

It is dependent on the radius and maximum size Rmax of the bubble as well as 

on the difference between the hydrostatic pressure and vapor pressure pv.  

The bubble expanded to its maximum size will collapse again due to the static 

pressure of the surrounding fluid. The volume of the bubble then decreases to a very 

small size; however, at the moment of its collapse, extremely high pressure is created 

that may exceed even 1 GPa [54].  

2.5.2. Dynamics of Aspherical Bubble 

The dynamics of the bubbles being generated is mainly influenced by the 

physical limits of the bubble movement and the features of the fluid within which this 

bubble occurs. When a bubble is generated in the vicinity of a wall (a physical barrier), 

its burst will be asymmetric and linked to the formation of several high-speed water 

streams generated around it where the entire energy of the bubble is concentrated [55]. 

At the moment of the bubble burst, such water streams strike the wall which is 

present in close vicinity. When a bubble happens to burst in between two walls 

standing next to each other, they are struck by two such water streams. 
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2.6. Patented Ultrasound Devices for the Intravascular Thrombus 

Decomposition 

Thrombolysis accelerated by ultrasound involves the breaking down or 

‘melting’ of blood clots that can be found in the leg arteries or veins. In the past, it 

was common practice to treat blood clots by simply giving blood thinners to be 

consumed by the patient either orally or injected intravenously. As a result, over two 

to four months, those blood clots can be expected to disappear. However, recently, 

new methodologies have been under development that use ultrasound energy along 

with thrombolytics to facilitate and accelerate the process of thrombolysis. 

A blood clot is generally made up of different elements, such as fibrin, weaved 

together into a net-like structure. Acoustic energy is known to generate a pressure 

wave that enables the disruption of the cross-linking of the fibrin. The ultrasound 

energy also helps loosening up the fibrin cross-links while creating a way for the 

thrombolytic to get into the clot. The ultrasound energy does not actually break up the 

clot. It only alters the shape of the fibrin network. As a result, the clot becomes more 

porous, which makes it easier for the drug to get inside the clot and have a more 

powerful effect there instead of just being dripped in around it (unfortunately, that is 

is how the old catheter systems function). In medical practice, various catheters have 

been used for delivering the drug for many years, but the only reason they were good 

for was just getting the drug to the leg. Meanwhile, ultrasound-accelerated 

thrombolysis allows the drug to get into the clot directly. 

Ultrasound system with pathfinding guidewire. A system is designed to enable 

the crossing of completely occluded blood vessels. The system is comprised of a 

pathfinding guidewire that is coupled to the distal end of an ultrasound catheter. The 

distal section of the pathfinding guidewire functions as a narrow extension of the distal 

end of the catheter. This way, the ultrasound energy is effectively transmitted, which 

allows to traverse the occlusions [56]. Once the distal section of the guidewire has 

successfully crossed the occlusion, the distal end of the catheter can be advanced over 

the distal section of the guidewire and against the occlusion to remove the occlusion 

(see Fig. 10). 

 
Fig. 10. An ultrasound system with the pathfinding guidewire, where 1 is the guidewire; 2 is 

the waveguide; 3 is an occluded blood vessel [56].. 
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Ultrasonic transmission guidewire. The ultrasonic angioplasty transmission 

guidewire has reduced the cross-sectional diameter at some areas in order to improve 

its flexibility and to compensate for the degradation of the longitudinal displacement 

stemming from acoustic losses along the length of the guidewire. The core of a 

guidewire is made of ultrasonic transmission material. The guidewire also has a non-

metalic outer jacket which surrounds the usable portion of the elongated shaft (see 

Fig. 11). The outer jacket is formed of a shrink tubing. Threads are disposed at the 

proximal end. These threads are configured to be connected to a connecting device 

for an ultrasound transducer. The distal end has a smooth ball tip in order to avoid any 

traumas during the application of ultrasound energy to the biological tissue [57]. In 

one embodiment, the guidewire is formed of stainless steel, whereas, in another one, 

it is formed at least partially of a super-elastic metal alloy, and in one case it is formed 

at least partially of a shape memory alloy that exhibits super-elastic properties when 

in its martensitic state. In one preferred embodiment, the guidewire is formed of a 

nickel and titanium alloy. 

 

Fig. 11. Ultrasonic transmission guide wire, where 1 is the distal head; 2 is the radio opaque 

marker for use in locating the distal tip during in vivo procedures; 3 is the ultrasonic 

transmission wire [57]. 

Guidewire system for RF recanalization of vascular blockages. A system for 

recanalizing an occluded blood vessel is comprised of a centering catheter employed 

to center an ablative guide wire within the blood vessel as the guidewire traverses the 

occlusion. The centering catheter is made of a catheter body with an operative lumen 

through which the ablative guidewire is slidingly disposed. The centering catheter 

further includes a distally disposed centering mechanism that, when activated, centers 

the ablative guidewire within the blood vessel as it traverses the occlusion. The 

centering mechanism can involve various embodiments including a single inflatable 

balloon or a segmented inflatable balloon which is in fluid communication with the 

inflation lumen. An airless preparation lumen may be disposed within the inflation 

lumen to make it easier to center the catheter preparation [58]. The ablative guidewire 

is covered with insulation that is preferably made of heat shrink tubing which is 

stretched prior to or concurrently with the heating process. The ablative guidewire 

includes a distal ablation tip of the atraumatic structure and at least one discontinuous 

feature for creating high current densities to make tissue ablation more efficient (see 

Fig. 12). 
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Fig. 12. A guide wire system for RF recanalization of vascular blockages, where 1 is a blood 

vessel; 2 is a waveguide; 3 is a balloon; 4 is the targeted thrombus [58]. 

Ultrasonic resonator (Fig. 13). An ultrasonic resonator is comprised of a wire 

member with an elongated shaft that has a proximal end and a distal end. The filler 

material is disposed within the proximal end. A crimp screw is used with an annular 

end and a threaded end. Its annular end is adapted to receive and fixedly secure the 

proximal end of the wire member. The annular end being crimped after the proximal 

end of the wire member is inserted within the annular end of the crimp screw. The 

resonator includes an ultrasonic transducer specifically adapted to receive the 

threaded end of the crimp screw. The ultrasonic transducer is operatively connected 

to an ultrasonic generator [59]. 

 
Fig. 13. Ultrasonic resonator, where 1 is the waveguide; 2 is the hole for the waveguide; 3 is 

the crimp screw [59]. 

Apparatus and method for an ultrasonic medical device with improved visibility 

in imaging procedures. The invention under consideration here refers to the apparatus 

and the operation method for an ultrasonic medical device with improved visibility in 

imaging procedures. This medical device has an elongated probe which at 

predetermined location(s) has a material of high radiopacity. The material of high 

radiopacity is able to withstand series of vibrations of the elongated probe [60]. Once 

the probe has been inserted into a body, this material of high radiopacity allows the 

elongated probe to be visualized in imaging procedures (see Fig. 14). The present 

invention covers a method of improved visibility of an ultrasonic medical device 

during a medical procedure by engaging a material of high radiopacity into a small 

diameter elongated probe wherein the material of high radiopacity engages the probe 

in at least one predetermined location. 
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Fig. 14. Apparatus and method for an ultrasonic medical device with improved visibility in 

imaging procedures, where 1 is the coupling; 2 is the wireguide; 3 are the anti-nodes; 4 are 

the nodes [60]. 

Steerable ultrasound catheter. Ultrasound catheter devices and respective 

application methods offer enhanced disruption of blood vessel blockages. Such 

devices usually involve an elongated flexible catheter body with one or more lumens, 

an ultrasound transmission member extending longitudinally through the catheter 

body lumen, and a distal head coupled with the transmission member that is positioned 

adjacent to the distal end of the catheter body for disrupting occlusions (see Fig. 15). 

More advanced ultrasound catheters feature catheter bodies and ultrasound 

transmission members with increased distal flexibility, guidewire tubes allowing 

contact between the guidewire and the ultrasound transmission member, distal heads 

with improved guidewire lumens, and torquable proximal housings to ensure 

enhanced disruption of vascular occlusions [61]. 

 

Fig. 15. Steerable ultrasound catheter, where 1 is the guidewire; 2 is the wall of the 

guidewire; 3 is the waveguide; 4 is the hall for the waveguide [61]. 

Apparatus and method for an ultrasonic medical device operating in torsional 

and transverse modes. This invention offers an apparatus and a method for an 

ultrasonic medical device intended to operate in torsional and transverse modes. An 

ultrasonic medical device has an ultrasonic probe which is placed in communication 

with a biological material. Once the ultrasonic energy source has been activated, it 

produces an electrical signal that drives a transducer to produce a torsional vibration 

of the ultrasonic probe [62]. As a result, the torsional vibration produces a component 

of force in a transverse direction relative to the longitudinal axis of the ultrasonic 

probe, thereby exciting transverse vibration along the longitudinal axis. This vibration 

causes the ultrasonic probe to undergo both torsional vibration and transverse 
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vibration, both of which concurrently cause cavitation in a medium surrounding the 

ultrasonic probe to ablate the biological material (Fig. 16). 

 

Fig. 16. Apparatus and method for an ultrasonic medical device operating in torsional and 

transverse modes, where 1 is the ultrasound waveguide; 2 are torsional vibrations; 3 are 

transverse vibrations [62]. 

Ultrasonic catheter for disrupting vascular occlusions. Ultrasonic catheters 

provide better disruption of vascular occlusions. Usually, an ultrasonic catheter 

consists of the elongated catheter body with one or more lumens. An ultrasonic 

transmission member or a wire extends through the catheter body lumen and, in many 

embodiments, a guidewire tube also extends through the same lumen [63]. A distal 

head is fixed to or otherwise mechanically coupled with the distal end of the ultrasonic 

transmission member or the wire and is positioned adjacent to the distal end of the 

catheter body. Although the distal end of the catheter body overlaps the distal head, 

the distal head is not directly fixed to the distal end of the catheter body (see Fig. 17). 

Thus when ultrasonic energy is applied through the ultrasonic transmission member, 

the distal tip is capable of moving freely with respect to the distal end of the catheter 

body. Such a freely floating distal head enables the ultrasonic catheter to remove 

calcific occlusions more efficiently. Moreover, it increases the life of the ultrasonic 

transmission member and the catheter. 

 
Fig. 17. Ultrasound catheter for disrupting blood vessel obstructions, where 1 is the 

ultrasound transmissiom nember; 2 is the low friction coating or jacket  [63]. 
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Ultrasonic catheter and methods for making and usage thereof. Ultrasound 

catheter devices and their operation methods provide enhanced disruption of blood 

vessel obstructions. Generally, ultrasound catheters include an elongated flexible 

catheter body with one or more lumens, an ultrasonic transmission member extending 

longitudinally through the catheter body lumen and, in some embodiments, a 

guidewire tube extending through the lumen (Fig. 18). A distal head for disrupting 

occlusions is coupled with the distal end of the ultrasonic transmission member and 

is positioned adjacent to the distal end of the catheter body. Some embodiments 

include more advanced features such as a bend in the catheter body for enhancing the 

positioning and/or for the advancement of the catheter [64]. 

 

Fig. 18. Ultrasound catheter and methods of its functioning and use, where 1 is the mandrel 

on which the catheter body is formed; 2 is the bent catheter body; 3 is the stopper member  

[64]. 

Ultrasonic catheter with a protective feature against breakage. An ultrasound 

catheter is comprised of an elongated flexible catheter body having a lumen extending 

longitudinally therethrough, and an ultrasonic transmission member extending 

longitudinally through the lumen of the catheter body [65]. A proximal end of the 

ultrasonic transmission member is coupled to a separate ultrasound generating device. 

Its distal end terminates at the distal end of the catheter body. At least some portion 

of the distal end of the ultrasonic transmission member extends outside the lumen of 

the catheter body and beyond the distal end of the catheter body. The ultrasonic 

transmission member is directly attached to the catheter body via an attachment device 

(see Fig. 19).  
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Fig. 19. Ultrasound catheter featuring a protective feature against breakage, where 1 is the 

catheter; 2 is the waveguide wire; 3 is the distal end of the waveguide [65]. 

Vibrational catheter devices and their applications. This is a vibrational 

catheter designed for disrupting occlusions in lumens such as blood vessels. It 

includes an elongated flexible catheter body that has a proximal end, a distal end and 

at least one lumen extending longitudinally through it. There is a vibrating 

transmission member that extends longitudinally through the lumen of the catheter 

body. It has a proximal end and a distal end, and a transition connector attached to the 

proximal end of the vibrating transmission member for coupling the transmission 

member with a vibrational energy source [66]. The transition connector includes a 

bore into which the proximal end of the vibrating transmission member extends (Fig. 

20). The proximal end of the vibrating transmission member is attached within the 

bore of the transition connector with variable attachment forces in order for the 

transition connector to exert a minimum amount of attachment force on the attached 

distal-most portion of the vibrating transmission member housed within the bore. 

 

Fig. 20. Vibrational catheter devices and methods, where 1 is the intake; 2 is the waveguide 

wire; 3 is the transition connector [66]. 

Ultrasound catheter with an improved distal end. This ultrasound catheter is 

comprised of an elongate flexible catheter body featuring a lumen that extends 

longitudinally through it. There is also an ultrasound transmission member extending 

longitudinally through the lumen of the catheter body. The ultrasound transmission 

member has a proximal end that is coupled to a separate ultrasound generating device. 

Its distal tip is attached to the distal end of the ultrasound transmission member which 

is located at the distal end of the catheter body [67]. The distal tip has at least one-

dimensional step. The ultrasound transmission member is directly attached to the 
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catheter body and/or to a guidewire tube, either directly or via an attachment device 

(Fig. 21). An additional radiopaque marker is positioned on the distal end of the 

catheter. 

 

Fig. 21. Ultrasound catheter having an improved distal end; 1 is the catheter; 2 is the 

ultrasound transmission agent; 3 is the distal end of the ultrasound transmission member 

[67]. 

Ultrasonic catheter for disrupting vascular occlusions. Ultrasonic catheters 

provide better disruption of vascular occlusions. Usually, an ultrasonic catheter 

consists of the elongated catheter body with one or more lumens. An ultrasonic 

transmission member or a wire extends through the catheter body lumen and, in many 

embodiments, a guide wire tube also extends through the same lumen [68]. A distal 

head is fixed to or otherwise mechanically coupled with the distal end of the ultrasonic 

transmission member or the wire and is positioned adjacent to the distal end of the 

catheter body. Although the distal end of the catheter body overlaps the distal head, 

the distal head is not directly fixed to the distal end of the catheter body (Fig. 22). 

Thus the distal tip may move freely relative to the distal end of the catheter body when 

ultrasonic energy is being applied through the ultrasonic transmission member. Such 

a freely floating distal head enhances the efficiency of an ultrasonic catheter thus 

enabling it to remove calcific occlusions and increasing the life of the ultrasonic 

transmission member and the catheter itself. 

 

Fig. 22. Ultrasound catheter for disrupting blood vessel obstructions, where 1 is the catheter; 

2 is the ultrasound transmission member; 3 is the guide wire lumen [68]. 

Treatment of vascular occlusions using ultrasonic energy and microbubbles. 

One method of treating vascular occlusions within a patient’s vasculature requires 

positioning an ultrasonic catheter at the treatment site (Fig. 23). Further, during the 
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first treatment phase, the method requires to deliver the catheter’s microbubble-

therapeutic compound to the vascular occlusion [69]. 

 

Fig. 23. Treatment of vascular occlusions while using ultrasonic energy and microbubbles, 

where 1 is the energy delivery section ; 2 is the cable; 3 is the inner core of the waveguide 

[69]. 

Method and Apparatus for Ablative Recanalization of Occluded Vasculature. 

In this particular case, a technique is offered for treating blood vessel occlusions, 

including chronic total occlusions (CTO) of the coronary arteries, with the capability 

to remove tissue material. This method is based on remotely actuated motion of an 

interventional RF-capable ablation device to the occlusion and controlled application 

of ablative RF energy [70]. The combined use of remote navigation-based precision 

control of the distal end of the device and the application of ablative energy enables 

the device to traverse elongated lesions and CTOs, as well as calcified lesions and 

CTOs, blockages and CTOs located at vessel branches, and in general allows the 

removal of the tissue material at the selected site of the tissue (Fig. 24). 

 

Fig. 24. Method and apparatus for ablative recanalization of blocked vasculature, where  1 is 

the waveguide; 2 is a blood vessel; 3 is a blood vessel occlusion [70]. 
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Ultrasound waveguide wire for internal clearing of blood vessels. The 

domain of medicine can benefit from this particular invention as it may be applied for 

cleaning vascular walls from the inside. 

With the aim to increase the efficiency and reliability of blood vessel 

cleaning, an ultrasound wave guide wire is used consisting of a metal wire with a 

tapered flexible cross-section (denoted 1) and its operational part (denoted 2), which 

is attached to the distal end of the catheter. The wire is made of a flexible material. 

The distal part of the wire equally makes the operational part (denoted 2) of a spiral 

shape. Its length is at least ¼ λ, where λ is the wave length of the waveguide wire 

ultrasonic longitudinal vibration. The strand step is no more than 0.5 mm. The helical 

end makes a closed ring-shaped circuit as the ending of a spiral’s last strand is 

connected to the beginning of the last strand (denoted 3). Then, the ending of the 

spiral’s last strand is connected through the entire internal length of the spiral to the 

beginning of the spiral’s first strand by the general component (denoted 4) and the 

housing. Thereby the spiral runs in the shape of a tube, whose walls are folded in 

zigzag. The ending of the last strand of such a zigzag is attached to the beginning of 

the last zigzag strand [71]. Once the flexible guidewire (denoted 5) has advanced 

through the internal cavity of the operational part and the operational part has 

advanced through arterial vessels, it is capable of flexing into different directions (see 

Fig. 25). Furthermore, all the connections of the spiral part are produced by way of 

mechanical twisting and/or spot welding. 

 
Fig. 25. Ultrasound wave guide wire for internal blood vessel cleaning, where 1 is the 

waveguide; 2 is the spiral end of the waveguide [71]. 

Despite a huge variety of invasive devices for cardiovascular recanalization, 

there is no vascular clearing device with the following capabilities: a) ability to 

operate in an invasive mode, as it is considered to be the most effective one; b) ability 

to deliver the required volume of drugs to the selected site of clearing; c) ability to 

instantly suck away the scurf of the blood clot being dissipated, at the same time; d) 

ability to ensure adequate  advancement of the device forward (along the z axis). 

2.7. Industrial Devices for the Intravascular Thrombus Decomposition 

Endo Wave Infusion Catheter System The EndoWave Infusion Catheter System 

is designed for catheter-directed thrombolysis by accelerating the fibrinolytic process 

via ultrasound (see Fig. 26). The device combines a multiple side-hole drug infusion 

catheter with a guidewire-exchangeable ultrasound core for infusing therapeutic 

substances and delivering high frequency, low power ultrasound energy 

simultaneously [72]. EKOS Endo Wave Infusion Catheter System is different in a way 
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that it has three ultrasound transducers along the core wire. It combines a targeted 

drug delivery cathether with high frequency low-power US energy. Drugs are 

delivered through the catheter, not through the core wires. US accelerated CDT 

(Catheter-directed-thrombolysis) is used to make the blood vessel treatment procedure 

safe and instant; it also eliminates potential side effects. There is very little clinical 

data available concerning the feasiblity, safety and efficiency of additional US-

accelereated CDT, but the current results are very promising [73]. The success rate of 

real-life operations varies between 61% and 85% [74] 

 

 
Fig. 26. Endo Wave Infusion Catheter System (EKOS Corporation) [72]. 

CLEANERXT Rotational Thrombectomy System. This system was presented at 

CIRSE 2016 in Barcelona, Spain (see Fig. 27). It is fitted with dual power cells that 

increase the run time and duration while maintaining the torque through tortuosity. 

The system also involves an improved drive shaft design which further increases the 

efficiency of the power transmission and torque. The device has an FDA clearance. It 

is comprised of a small ‘spiral/helical’ rotating device that extends from the end of 

the guiding catheter. Suction can then be applied manually from a syringe to the side 

port of the catheter aspirating the thrombus. The device has a rather soft end enabling 

it to be used as a guidewire to advance the device. The ‘sinusoidal wire’ is supposed 

to macerate the clot without making any damage to the blood vessel wall. However, 

during device rotation, the vessel wall can be contacted in even large veins and 

aneurysmal sections of dialysis fistulae. The motor and the power supply unit are fitted 

inside the handle of the device. This device is available in the following two versions: 

6F (9 mm sinusoid) and 7F (15 mm sinusoid), and it comes in 65 cm and 135 cm 

lengths. These devices are serious competitors for Angiojet. Although they are by far 

less expensive, their effectiveness is questionable as no trials are available that would 

have attempted to compare them. Thus, so far, the choice among them depends mainly 

on the operator skills and personal preferences [75]. 

http://www.whichmedicaldevice.com/by-manufacturer/233/ekos-corporation
http://www.whichmedicaldevice.com/by-manufacturer/19/509/angiojet-ultra-thrombectomy-system-
http://www.whichmedicaldevice.com/by-manufacturer/19/509/angiojet-ultra-thrombectomy-system-
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Fig. 27. CLEANERXT Rotational Thrombectomy System (Argon Medical Devices) [75]. 

The AngioJet Ultra Thrombectomy System (see Fig. 28) represents a mechanical 

thrombectomy device for PCI patients suffering from large thrombus burden. 

Moreover, this is the ONLY mechanical thrombectomy device approved by FDA for 

the removal of the thrombus in coronary arteries (see Fig. 29). The system is used to 

mechanically restore the blood flow in patients with thrombosed big arteries (more 

than 6 mm in diameter) [76].  AngioJet™ Ultra allows focused and directional 

thrombectomy for stronger thrombus removal capabilities. The catheter is 2.67 mm in 

width and 105 mm in length. The rotation of the inflow window location at the end of 

the catheter is directed with a torquable cylindrical component at the outside part of 

the catheter. AngioJet™ Ultra has a clear shortcoming in not being able to operate 

only in soft-type blood clot environment (no US is used to ease an opening of a 

hardened plaque) and is limited becaue of the fixed dimensions of the catheter. 

  
Fig. 28. Coronary Thrombectomy System (AngioJet™ Ultra) [76]. 

 

Fig. 29. A thrombus is drawn into the catheter where it is fragmented by the jets and 

evacuated from the body [76]. 

http://www.whichmedicaldevice.com/by-manufacturer/361/argon-medical-devices-
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The Trellis Peripheral Infusion System [77] involves an isolated thrombolysis 

catheter fitted with two occluding balloons, drug infusion holes between the balloons 

and mechanical drug dispersion capabilities. As announced by the manufacturer, such 

a combination of the system’s features enables medical practitioners to provide 

focused treatment of thrombus within a particular vessel (Fig. 30). 

 
Fig. 30. The Trellis Peripheral Infusion System (Covidien) [77].  

The Trellis Peripheral Infusion System is unique because of the two-occluding 

balloon system. After the waveguide goes through the damaged part of the blood 

vessel, two ballons – one at the end of the blood clot and the second one at the 

beginning – inflate. It stops the blood flow and isolates the abolished blood clot, so it 

does not go further through the blood vessel system. After the waveguide has been 

sunk through the damaged part of the blood vessel and the balloons have been inflated, 

the waveguide starts to vibrate thus destroying the scurf. The system does not provide 

an adequate displacement of the waveguide in the frontal direction.  

2.8.  Computational Modeling of Commercial Devices Intended for Clearing 

Blood Vessels  

The delivery of high-power ultrasonic energy via small diameter wire 

waveguides represents an innovative alternative therapy suitable for the treatment of 

chronic complete occlusion of arteries. This type of energy is viable in a form of 

mechanical vibration at the distal tip of the waveguide with the amplitudes of vibration 

up to 60 µm and at frequencies of 20–50 kHz [78]. According to various reports, direct 

mechanical ablation, cavitation, pressure components and acoustic streaming result in 

the disruption of the affected tissue. It should also be noted that mechanical ablation 

was only evident in those cases when the cavitation threshold was exceeded. 

Prediction of the pressure profile generated by the distal tip of the wire waveguide 

was required for 140 elements per wavelength (EPW). 

A significant role appears to be played by the acoustic pressures developed at 

the waveguide-fluid/tissue interface. As some authors observed, plaque ablation was 

only evident above the cavitation threshold [79].  

Due to the significance of the pressure amplitude at the waveguide distal tip, 

the subsequent cavitation, and the pressures generated in the surrounding fluids and 

http://www.whichmedicaldevice.com/by-manufacturer/27/covidien
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tissues, a vast number of researchers became involved in studying this phenomenon. 

Some analytical solutions of simplified geometries and conditions were offered, and 

one of them is a solution involving a pulsating sphere within a fluid and a more 

representative oscillating sphere within a fluid. Equation 1.3 shows the Morse solution 

[80] for the pressure field near an oscillating sphere in a fluid. Although this linear 

solution is limited to a simple geometry, it has been suggested by Nyborg [81] as a 

useful approximation for the prediction of pressure amplitudes and the subsequent 

cavitation associated with the frequencies and conditions encountered in the use of 

ultrasound angioplasty. 
2

2 2

max 2

cos
2

R
P Rf d

r


        (1.3)  

where: Pmax = Pressure amplitude at a location in the fluid, a function of θ and 

r;  d = amplitude of the vibration of the sphere;  f = frequency of the vibration of the 

sphere; R = radius of the sphere; ρ = fluid density; r = radial distance from the centre 

of the sphere; θ = the angle between the direction of oscillation and the radius vector 

With regard to medical applications, high power ultrasound basically represents 

a non-linear propagation of sound waves above approximately 20 kHz. It is derived 

from the nonlinear pressure-density relationship, and the variance in the speed of 

sound with the pressure amplitude during the compression/rarefaction cycle, and with 

higher frequencies and greater intensities, a more significant effect is observed. 

For the purpose of solving the finite element acoustic fluid-structure interaction 

models, the NavierStokes equations of the fluid momentum and the flow continuity 

equation must be taken into consideration along with the structural dynamics 

equation. Assuming linear wave propagation for an incompressible fluid with no mean 

flow, neglecting shear stresses and with a uniform mean density and pressure 

throughout the fluid, the lossless acoustic wave equation can be written as follows 

[78]: 
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Where 
k

c


  and: k is the bulk modulus of fluid. 

The equation governing the acoustic wave propagation given in Equation 1.4 

can be discretized by taking into account the coupling of acoustic pressure and the 

structural motion present at the fluid-structure interface. 

Fluid: [ ]( ) [ ]( ) [ ] ( ) 0T

F FM P K P R u       (1.5) 

Structural: [ ]( ) [ ]( ) [ ]( ) ( )S S SM u K u R P F      (1.6) 

Where ( )P  is the 2nd derivative of the nodal pressure vector; ( )P  is the nodal 

pressure vector; ( )u is the 2nd derivative of the nodal displacement vector;  ( )u  is the 

nodal displacement vector [MF] is the Fluid mass matrix; [KF] is the fluid stiffness 
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matrix; MS] is the Fluid mass matrix; [KS] is the Structure stiffness matrix; [R] is the 

coupling matrix that represents the effective surface area associated with each node 

on the fluid structure interface; ( )SF  is the fluid pressure load vector 

Further, Equations 1.5 and 1.6 can be combined into a single relationship 

describing the load quantities at all locations in the fluid and structure as shown below 

in Equation 1.7. 

Combined: 
0

0

0 0

S S S

T

F F

uM K R u F

R M K PP

         
                 

  (1.7) 

Finite element models applied for ultrasound angioplasty to date have mainly 

focused on modeling the way how the wire waveguide transmits the ultrasonic waves 

to the distal tip. Meanwhile, Gavin et al. [82] opted to perform a modal and harmonic 

analysis in order to determine the resonant characteristics, damping and stresses of the 

wire waveguide. The analysis of mesh density revealed that having an adequate mesh 

density is of huge importance in order to make it possible to resolve the wave structure 

accurately. These authors also undertook the modeling of the effect that the presence 

of fluid had on the resonant response of waveguides. It led to the conclusion that the 

effect was negligible due to the low forces encountered at the distal tip. However, the 

hydrodynamic effects, such as the drag on the distal tip, appeared to be capable of 

playing a more critical role. 

From the theoretical point of view, the process of making a computational 

model is comprised of the following steps:  

1) Model verification that involves analysis of mesh density;  

2) Analysis of an acoustic pressure field versus waveguide parameters;  

3) Validation of the model developed: an in vivo model in a peripheral artery. 

The 3-step FEM methodology was used in the following Chapters 2.3 and 2.4. 

2.9. Formulation of Objectives and Tasks  

According to mortality statistics, cardiovascular disease (CVD) remains the 

most common cause of death in Europe, currently accounting for 45 percent of the 

total deaths, to be more precise, 49 percent of deaths among women and 40 percent 

among men. Each year, more than 4 million people die from CVD in Europe with 1.4 

million of these deaths before the age of 75 years. 

According to the findings of various studies, the burden of CVD mortality 

features huge inequalities across Europe and a significant variation in mortality rates 

from these diseases. On average, EU member countries suffer a lesser burden in terms 

of CVD mortality, whereas the lowest burden on the average is borne by EU-15 

countries (the ones that have been members of the EU the longest). Interestingly, the 

12 countries where the burden in terms of mortality from CVD decreased 

significantly, resulting in the number of deaths from CVD being less than that from 

cancer in men, along with the 2 countries where the same is true for women, are all 

located in Western Europe [83]. 
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Endovascular intervention is the most rapidly growing domain of vascular 

medicine. Peripheral vascular interventions have been developed in pursuit of several 

objectives, some of them being as follows: to avoid the need for general or epidural 

anaesthesia, to eliminate the risks related to conventional surgical procedures, to 

minimize discomfort to the patients, to reduce the recovery times, and to lower the 

cost of treatment [84]. 

One of the endovascular interventional techniques covers ultrasound 

enhanced catheter-directed thrombolysis. Generally, it involves high-frequency low-

energy ultrasonic waves, concurrently with the infusion of thrombolytic drugs with 

the general aim of accelerating plasmin-mediated thrombolysis. It is designed to 

reduce the treatment duration, the dose of the infused thrombolytic drug, and 

thrombolysis-related complications when compared to catheter-directed thrombolysis 

alone [85]. 

A comprehensive literature review revealed a need for an innovative ultrasonic 

vascular clearing device with the following capabilities: a) operating in an invasive 

mode, as it is considered to be the most effective one; b) delivering the required 

volume of drugs to the selected site of clearing; c) instantly sucking away the scurf of 

the blood clot being dissipated at the same time; d) ensuring adequate advancement 

of the device forward (along the z axis). 
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3. DESIGN AND MODELING OF THE WAVEGUIDE 

During the process of the research, two different ultrasonic devices were 

designed for vascular clearing. They are intended to operate in the same frequency 

range of (15–30 kHz) and to perform a similar primary function (vascular 

recanalization). However, they are radically different in their structure and principle 

of operation. The structures of these two waveguides are presented in detail below. 

Since the second invention, detailed in Chapter 2.2, is more functional, easier to be 

produced, and in fact represents an improved version of the first one, the ‘Ultrasonic 

device for internal vascular clearing’ discussed in Chapter 2.1 was not experimentally 

investigated. 

In both cases under consideration, the waveguide system is comprised of the 

guiding catheter, a thinner soft wire (to prevent perforation of a blood vessel) fitted 

with the second catheter, also made of a soft material which is used to simultaneously 

pull through the first catheter while introducing the elongated metal waveguide into 

the blood vessel. 

In the further research, discussed in detail in Chapters 3 and 4, the waveguide 

(an innovative device being designed) is investigated without taking into 

consideration the guiding catheter and the second catheter, which, while being larger, 

mainly performs a protective function. 

3.1.  Design of Ultrasonic Device for Internal Vascular Clearing 

3.1.1. Description of the Device 

The invention under consideration here is attributed to the field of medicine as 

it can be applied for the pharmaceutical clearing of blood vessel inner walls as well 

as the suction of the plaque deposited on the surface of these walls. 

The ultrasonic vascular clearing system is comprised of the source of ultrasound 

made of a high frequency ultrasound generator and a piezo transducer, a concentrator 

of mechanical vibrations which is connected in series, a metal wire waveguide with 

its free end being in a shape of a spiral and which is made of a solid and the same 

highly elastic substance, for instance, stainless steel, nickel, titanium or alloys thereof. 

The ultrasonic micropump-dispenser intended for supplying and dispensing 

liquids is comprised of a cylindrical body fitted with the conical spiral member inside 

of it, and the generator inducing vibrations, i.e., a piezoceramic ring is placed on the 

cylindrical body. The cylindrical body is filled with the relevant liquid. 
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Fig. 31. Ultrasonic volumetric dispenser: 1) is the waveguide; 2) is the operational part; 3) 

are the spheres; 4) is the spring; 5) is the ultrasound generator; 6) are spiral threads; 7) is 

confined space. 

The closest possible analogue is presented in European patent application No. 

08478001.4: the ultrasonic device for internal vascular clearing comprised of the 

specifically shaped waveguide with its free end being twisted into the spiral. The 

waveguide is excited from the generator of high frequency vibrations. 

The above mentioned device can be charged with a liquid (drugs) to be 

dispensed from the end of the waveguide of a spiral shape. However, the liquid can 

only be charged if it is in the form of a frozen capsule or powder (drugs) mixed with 

viscous grease that, under the influence of the vibrations induced from the ultrasonic 

generator and transmitted through the waveguide to the spiral, is/are spread at the 

localized site of the blood vessel. The generated scurf is sucked away into the catheter 

through a special exterior suction device. 

The ultrasonic device of the innovative design for the internal vascular clearing 

covered by this invention offers a solution of the shortcomings characteristic to the 

devices discussed above. It also boosts the efficiency of the vascular clearing and 

expands the functional capabilities of an ultrasonic device (including the local dosing 

of drugs and sucking away the scurf). 

The aim of the invention was to increase in efficiency the vascular clearing 

while expanding its functional capabilities (the local dosing of drugs and sucking 

away the scurf) of the ultrasonic device for the internal vascular clearing, which is 

achieved by making the clearing device’s waveguide out of the wire of a variable 

diameter and involving an operational part of a spiral shape which is clamped between 

two spheres by using a spring. This results in a confined cavity which may be charged 

with drug delivery nanosystems, for instance, nanoparticles, nanospheres, 

nanocapsules, and hydrogels. Sucking away the generated scurf into the catheter 

happens in a confined space between the strands of the spiral by means of creating 

vacuum and by inducing deformations of the running wave of the opposite direction 

within the waveguide. 

 

  



 

 

 

42 

 

3.1.2. Structural Layout of the Device  

Fig. 32 shows the vascular clearing device, comprised of the ultrasonic 

waveguide (1) having the operational part of a spiral shape (2) which is confined by 

spheres on its both sides (3’, 3”) attached to each other by the spring (4), inside of 

which, drug delivery nanosystems are to be placed (not shown in the figure), such as 

nanoparticles, nanospheres, nanocapsules, and hydrogels. The above-mentioned 

waveguide is attached to the ultrasonic vibration generator (5) through a thread 

connection.  

 
Fig 32. A schematic view of operation of the ultrasonic volumetric dispenser, where 1) is the 

waveguide; 2) is the operational part; 3) are spheres; 4) is the spring; 5) is the ultrasound 

generator; 6) is the cavitational stream; 7) are spiral threads; 8) is confined space. 

High frequency mechanical vibrations coming from ultrasound generator (4) 

are transmitted to waveguide (1) where they continue to propagate over its entire 

length to the operational part of a spiral shape (2). Due to its specific structure, the 

operational part of the waveguide (2) allows placing a particular limited amount of 

drugs inside of it delivered in a form of nanoparticles (drug carrier nanosystems), 

which in turn enables feeding the drug to the selected site (the point of lesion).  

When the internal vascular clearing device is in operation, the mechanical 

motion of its operational part (2), the increased temperature and the hydrodynamic 

processes occurring in the blood speed up the distribution of drugs in a form of 

nanoparticles in the operational field (at the site of the lesion). Nanoparticles (which 



 

 

 

43 

 

are spread in the fluid) are exposed to the concentrated energy flowing through the 

waveguide (1) and its operational spiral part (2) with spheres (3’, 3”) resulting in 

cavitation processes within the blood vessel. The cavitation process is distributed over 

the entire length of the operational part (2) in the radial direction (6). In the course of 

the cavitation process, microbubbles are formed in the fluid (i.e., blood), and the 

microenergy released during their rupture tends to disrupt the sediments built up on 

the interior walls of the blood vessels thus destroying (removing) blockage from the 

blood vessel. By inducing bending deformations opposite in direction within the 

waveguide (1) and simultaneously within the operational part (2), sucking away the 

generated scurf into the catheter takes place (not shown in the figure) through the 

vacuum created in the confined space (8) available between the strands of the spiral 

(6) and the spheres (3’, 3”). 

In comparison to its closest possible analogue, this ultrasonic device of the 

innovative design for internal vascular clearing with the included drug delivery 

nanosystems helps lowering the cavitational threshold (the amount of the energy 

required to induce cavitation), breaks and dissolves the thrombus present inside of the 

vessel, promotes tissue regeneration processes, minimizes the risk of drug overdosing 

and enables eliminating the scurf generated inside of the blood vessel which in turn 

increases the reliability and efficiency of the vascular clearing. 

3.1.3. Novelty of the Device 

The ultrasonic device for internal vascular clearing offered by this invention is 

different from its predecessors as follows: 

1. The free ending of the ultrasonic device for internal vascular clearing is 

twisted into a spiral thus making an internal cavity inside of the operational part of the 

waveguide additionally limited by two spheres that are interconnected with a spring 

while creating a confined space limited by the strands twisting in a shape of a spiral 

and by two spheres. The spiral end of the ultrasonic device can be used as a drug 

transporter. However, it is necessary to freeze or put into the soluble membrane before 

transporting drugs the required place of the body. 

2. This ultrasonic device for internal vascular clearing is distinguished by the 

vacuum created during its operation in the closed cavity of the operational part of the 

waveguide.  

3.1.4. Technological Challenges  

The ultrasound catheter under consideration contains a metal wire probe with a 

free ending leading to a risk of the spiral part’s fracture under particular frequencies 

of spiral vibrations. 

The volume of the drugs delivered through a catheter is limited due to its 

structural features, i.e., the size of the frozen capsule to be inserted is determined by 

the cavity available between the strands of the spiral that link two spheres in the 

operational part of the waveguide.  

The device described herein possesses no capability to precisely divert and 

target the dispensed-sucked liquid to the localized site of the blood vessel to be treated 



 

 

 

44 

 

through the catheter as the entire catheter has to be filled with the fluid, and the source 

of vibrations is located outside the device, which makes it less efficient than desired. 

Although the ultrasonic volumetric dispenser is sound theoretically, due to clear 

technological challenges described above, the decision to continue developing an 

ultrasound waveguide was made. Therefore, the design of the tube-shaped ultrasound 

waveguide described in Chapter 2.2. was created. 

3.2. Design of the Tube-Shaped Ultrasound Waveguide 

3.2.1. Description of the Device 

The results described/presented in this chapter have been published in the 

following article: Kargaudas, V., Bubulis, A., Navickas, J., Vitkus, L., Venslauskas, 

M. Theoretical and Experimental Investigation of Tube-Shaped Waveguide Wire. 

Journal of Measurements in Engineering 5, 2017, 257-265.  

The tube-shaped ultrasound waveguide wire with orifices at its operational end 

was offered as the alternative to some currently patented interventional thrombosis 

treatment solutions. The principal scheme of an innovative waveguide is presented 

below in Figures 34 and 35. 

  

 

 
Fig. 33. Ultrasonic vascular cleaning device (cross-section). 

 
Fig. 34. Ultrasonic blood vessels cleaning system, where: 1) is the tube-shaped waveguide; 

2) is the waveguide hole; 3) is the fixing screw; 4) is the lug; 5) is the intake; 6) is the 

concentrator; 7) is the transducer. 
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The waveguide wire of 260 mm in length and 1.5 mm in diameter is considered 

to be an interventional medical device. It can be used for cleaning the inner walls of 

arteries. It can also be used as a tool to break down and destroy the thrombus and 

simultaneously suck out the scurf of the blood clot being dissipated. 

Adequate feed of the drugs to the damaged site of the blood vessel is secured 

by the unique design of the wire. The lug that enables the device to get attached to the 

concentrator is separated from the tube intended for drug infusion. Fig. 34 shows its 

construction in detail. The diameter of the intake is 1.1 mm. 

The waveguide wire of such a structure allows impacting the occlusion not only 

mechanically but also by the flow of physiological fluid infused through the intake 

(denoted 5 in Fig. 34). 

To ensure the efficient delivery of a sufficient quantity of drugs to the required 

site of the artery to be treated, a tube-shaped waveguide wire was selected. The 

orifices drilled at the end of it act both as intake and suction holes, if necessary.  

 
Fig. 35. The tip of the waveguide: 1) is the blood vessel wall; 2) is the occlusive derivative; 

3) is the waveguide; 4) is the wall of the waveguide. 

The dimensions of the waveguide were selected based on the standard diameter 

of arteries in lower human limbs. To ensure that the device is capable of operating 

even at the level of popliteal arteries, the diameter of 1.5 mm was specifically chosen 

for the waveguide. The selection of the other dimensions, as well as the length 

optimization of the innovative design system under consideration, are disclosed in the 

upcoming European patent application “Tube-Shaped Ultrasound Wave Guide Wire 

for Internal Blood Vessels Cleaning”. 

As arteries can be totally (meaning that the blood circulation is completely 

blocked) or partially occluded (meaning that a blood clot might be adhered to the wall 

of the blood vessel), waveguide holes can be positioned in the following two 

directions – frontal (for totally occluded arteries) and transverse (for partially 

occluded arteries). As an alternative, holes may only be positioned at the front or only 

on the side of the waveguide; however, in this case, the waveguide under 

consideration would only be useful for very specific situations. 
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3.2.2. Structural Layout of the Device 

The vascular clearing device shown in Fig. 34 involves a tube-shaped 

waveguide (1) with the holes drilled at its tip (2), a trough (3) and an open aperture 

(5) for the infusion of drugs and physiological saline solution to the required site of 

the blood vessel under treatment, and a metal screw (3) used to attach the waveguide 

to the concentrator (6) through a specific lug (5). The system is excited by a high-

frequency vibration generator. 

During the operation of the vascular clearing device, the mechanical work 

accomplished by its operational part (1) not only destroys harmful formulations 

present in its vicinity inside the blood vessel by means of the induced cavitation 

process but also effectively distributes drugs being fed to the site of lesion. The tube-

shaped part (1) of the waveguide while vibrating in its radial and frontal directions 

causes the cavitation process in blood. 

The process of cavitation causes microbubbles to form in the fluid (i.e., in 

blood), and the microenergy released during the rupture of these bubbles disrupts the 

sediments built up on the interior walls of the blood vessels thus destroying 

(removing) blockage from the blood vessel. 

To increase the efficiency of the interior vascular clearing while simultaneously 

expanding the functional capabilities of the ultrasonic device for internal vascular 

clearing, a steel tube (1) was used as one of the parts comprising the waveguide with 

the holes drilled at its tip (2). The open orifice (4) at the tip of the tube-shaped part of 

the waveguide enables feeding an unlimited volume of drugs through the trough to 

the damaged site of the blood vessel under treatment, and at the same time allows 

sucking away scurf of broken harmful formulations generated during the operation of 

the clearing system. 

Smooth feeding of drugs is ensured due to the unique structural solution built-

in in the waveguide – its separate part that is present at the concentrator which is not 

used for the delivery of drugs to the damaged site of the blood vessel – is attached to 

it with the metal screw (3). 

In comparison to its closest possible analogue, this ultrasonic device of the 

innovative design for internal vascular clearing with the included drug feeding system 

breaks, dissolves and removes thrombus present inside of the vessel, promotes tissue 

regeneration processes, ensures the delivery of any required amount of drugs, and, if 

necessary, is capable of operating in a freshly supplied blood substitute (physiological 

saline) instead of blood, which in turn significantly increases the reliability and 

efficiency of vascular clearing. 

3.2.3. Novelty of the Device 

1. The ultrasonic device for internal vascular clearing comprised of the 

waveguide of a specific shape with holes drilled at its tip is distinguished by the 

hollowed operational part which also has an orifice for feeding the required amount 

of the fluid. 
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2. The ultrasonic device for internal vascular clearing makes it possible to 

deliver an unlimited volume of drugs to the selected site of a damaged blood vessel 

through the open part of the waveguide. 

3. High frequency vibrations transmitted by this ultrasonic device for internal 

vascular clearing bypass the site used to feed the drugs or physiological saline. 

Vibrations are transmitted from the concentrator to the required site of the blood 

vessel treated through a separate fixation member including the screw. 

4. The ultrasonic device for internal vascular clearing under consideration here 

offers the possibility of executing the cavitation process (breaking and disrupting 

adjacent tissues and causing high temperatures) in a specific fluid fed from the outside 

instead of the patient’s blood. 

 

3.2.4. Technological Challenges 

The use (or the reliability, to be more precise) of the above-discussed invention 

is mainly limited by the relatively complicated structure of its component (4) in Fig. 

34, i.e., the lug. It requires the highly accurate and precise welding of the tube (1) and 

the lug. Otherwise, not only the reliability of the device operation may be impaired 

but the transmission of the high frequency vibrations from the generator to the 

damaged site in the human body might be impeded as well.  

3.3. Computational Modeling of a Waveguide Wire Operating within a Blood 

Filled Blood Vessel 

Simulation of the tube-shaped ultrasonic waveguide wire under consideration 

was accomplished by using the Finite Element Method (FEM). Eigenfrequency 

analysis was performed for the body of waveguide in addition to time-dependent 

simulation for the entire waveguide wire structure. The waveguide wire was modeled 

by using COMSOL Multiphysics – a finite element analysis, solver and simulation 

software package intended for various engineering and physics applications and 

coupled phenomena. Fig. 36 features a geometry and FEM meshing of the model.  

Interface of Solid Mechanics physics was used to model the behavior of the 

waveguide wire. Structural steel with density ρ = 7,850 kg/m3, Young’s modulus 

E = 200e9 Pa, and Poisson’s ration nu = 0.33 were applied to the body of the tube-

shaped ultrasound waveguide wire and its housing. The main equations governing the 

finite element model for the time-dependent study are as follows: 
2

2

d u
Fv

dt
         

(2.1)
 

0 0( )inelS S C            (2.2) 

1
( )

2

Tu u          
(2.3)

  

Here, u denotes the displacement field; t denotes time; ρ is the density of the 

material; σ is the stress tensor; F represents an external volume force; v denotes the 

velocity, ε is the strain value (ε0 is the initial strain, εirei is the inelastic strain), S 
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represents stress (S0 is the initial stress value), C is a tensor product. The ambient 

temperature condition is T = 293.15, and the absolute pressure is PA = 1 atm. 

Understanding the dynamics of a waveguide vibrating in an elastic fluid-filled 

vessel is important for effective applications of ultrasound in invasive blood-vessel 

cleaning systems. Numerical simulations are performed based on a two-dimensional 

(2D) asymmetric finite element model to investigate the influences of both acoustic 

driving parameters (e.g., pressure and frequency) and material properties (the vessel 

size, visco-elastic parameters, and fluid (blood) viscosity) on the dynamic interactions 

in the waveguide-blood-vessel-muscle system. A simplified model is shown in the 

figure below, and the main parameters of the simplified model are described in Table 

1. 

 
Fig. 36. A simplified model of the waveguide operating inside a blood vessel, where M1 is a 

human muscle; M2 is the wall of the blood vessel; M3 is blood; M4 is stainless steel; Point 1 

is the pressure measuring point within 1 mm distance from the tip of the waveguide; Point 2 

is Pressure measuring point 2 within 2.25 mm distance from the side of the waveguide; P1 is 

the pressure inside the blood vessel; P2 is the pressure inside the wall of the blood vessel. 

 

Table 1. Main parameters of the simplified model 

Diameter of the waveguide 1.5 mm 

Artery diameter 6 mm 

Waveguide length 260 mm 

Waveguide fixing point On the right 
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Fig. 37.  Illustration of the geometry and FEM meshing of the simplified waveguide wire and 

the surrounding tissues. 

FEM analysis showed that the surrounding fluid does not have any notable 

impact on the piezo rings-generated high frequency (~22-24 kHz) longitudinal 

vibrations, although it is significant for the modes of transverse vibrations. Fig. 38 

describes the longitudinal displacement of the vibrating waveguide (cylinder) that was 

fastened on the right. 

 
Fig. 38.  Real vibration forms. The green line shows the longitudinal vibrations, the 

blue line represents the transverse vibrations. 

Fig. 39 shows the resonance frequency of the rod for the best longitudinal 

vibrations. The difference between the resonant frequency in a fluid environment 

(water) or air is insignificant. The rod was actuated by the longitudinal 5 μm 

movement of the piezo ring. Analysis showed that the resonant frequency providing 

the best displacement of the tip of the waveguide is 24.970 kHz.  
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Fig. 39. Amplitude-frequency characteristics at the end of the rod. 

 

A transient analysis of the working system (in 24.970 kHz) is shown in Fig. 40. 

Fig 41 is just an enlarged representation of Fig. 40 for clearer understanding of the 

process and describes vibrations after the process becomes stationary (6×10-4 s after 

the piezo rings start to vibrate). The transient analysis also shows at what point of time 

the excitation is the best and what kind of response to the excitation of the stainless-

steel rod placed in a blood-filled blood vessel it actually provides.  

 
Fig. 40. Transient analysis, where the blue curve denotes excitation; the red curve is 

the longitudinal displacement response to the excitation; the green line is the transverse 

vibrations of the response. 
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Fig. 41. Transient analysis (zoomed), where the blue curve is excitation; the red curve 

shows the longitudinal displacement response to the excitation; the green line demonstrates 

the transverse vibrations of the response. 

 
Fig. 42. Pressure at the point in the middle of the thrombus and rod displacement. The 

blue line is the longitudinal displacement of the tip of the rod; the green line is the pressure at 

the centre point of the thrombus 

The green line in Fig. 42 shows the pressure at the tip of the rod and at the point 

of the middle of the thrombus caused by the longitudinal vibration component. The 

pressure at the tip of the road is ±5.05×105 Pa, and the pressure at the middle point of 

the thrombus is ±2.40×105 Pa. 
Further graphs show the results of the analysis of the vibrational period of the 

rod at four different points of time after the vibration process becomes stationary:  

1562 (A) – stretched in frontal direction; 

1573 (B) – at point 0 between being stretched and shrunken; 

1583 (C) – shrunken in the frontal direction; 

1593 (D) – at period point 0. 
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Fig. 43. The particular analyzed time points of the stationary process. The blue curve 

denotes excitation; the green curve shows the displacement response at the tip point of the 

rod. The numbers above the curves show the time point of the process. 

 

As it is shown in Figure 43, the best displacement of the Y component is 

±2.3×10-5 m. Fig. 44 shows displacements of the wall of the blood vessel throughout 

its length at different time points during the time period.  

 
Fig. 44. Transverse displacement of the wall of the blood vessel. The blue curve is at time 

point A (when the rod is stretched in the frontal direction); the green curve is at time point  B 

(at point 0 between being stretched and shrunken); the red curve is at time point C (the rod is 

shrunken in the frontal direction); the electric curve is at time point  D (at point 0). 

Fig. 45 is related with Fig. 38 (the first figure of Chapter 2.4.). The mode of the 

longitudinal vibration is influenced by longitudinal and transverse vibrations. Fig. 46 

shows an enlarged and more detailed view of Fig. 45. 
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Fig. 45. Pressure to the inner wall of the blood vessel. The blue curve is given at time point 

A (when the rod is stretched in the frontal direction); the green curve is at time point  B (at 

point 0 between being stretched and shrunken); the red curve is at time point  C  (the rod is 

shrunken in the frontal direction); the electric curve is at time point  D (at point 0). 

 
Fig. 46. Pressure to the inner wall of the blood vessel (enlarged). The blue curve is given at 

time point A (when the rod is stretched in the frontal direction); the green curve is at time 

point  B (at point 0 between being stretched and shrunken); the red curve is at time point  C 

(the rod is shrunken in the frontal direction); the electric curve is at time point  D (at point 0). 

Analysis shown in Figures 45–46 show that the optimal pressure (±3.5×105 Pa) 

when the ultrasound vascular clearing system is working in the resonant mode 

happens at the tip of the waveguide. Therefore, it generates the best pressure to the 

inner wall of the blood vessel.  

The following graphs show the variations of the pressure fields and the intensity 

of deformations at the previously described time points (A, B, C and D) of the 

vibration period. The lines describe the pressure fields, while the intensity of the 

colors describes the intensity of deformation.   
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Fig. 47. The pressure fields and intensity of deformation at time point A (1), when the rod is 

stretched in the frontal direction.  The left column shows pressure (Pa), while the right 

column shows displacement (mm).  

 

Fig. 48. The pressure fields and intensity of deformation at point B (0). The left column 

shows pressure (Pa), while the right column shows displacement (mm). 
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Fig. 49. The pressure fields and intensity of deformation at time point C, when the rod is 

shrunken in the frontal direction. The left column shows pressure (Pa), while the right 

column shows displacement (mm). 

 

Fig. 50. The pressure fields and intensity of deformation at time point D, when the rod is at 

the end of the vibrational period. The left column shows pressure (Pa), while the right 

column shows displacement (mm). 

Figures 47–50 graphically show blood velocity and acceleration. The size of 

the arrow varies according to the size of the vectorial field. The same four time points 

during the particular period were analyzed. The analysis shows nodes and antinodes 

that appear during the process. The distance between the nodes is about 10 mm. The 

intensity of deformation is the optimal on the first anti-node (at the tip of the 

waveguide) and gets smaller with each node towards the fixed part of the waveguide. 

The best blood vessel wall displacement appears at time point B and is -9.38 ×10-3 
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mm. The best pressure to the inner wall of the blood vessel appears at time points A 

and C and is ±7.85×105 Pa. 

 
Fig. 51. The vectorial acceleration and blood velocity field at time point A. 

 
Fig. 52. The vectorial acceleration and blood velocity field at time point D.  
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Fig. 53. The vectorial acceleration and blood velocity field at time point C. 

 

Fig. 54. The vectorial acceleration and blood velocity field at time point D.  

The FEM modeling showed that an increased pressure field is generated while 

the ultrasound blood vessel cleaning system is working at its resonant frequency. The 

phenomenon of streaming at different flow rates in the direction of the blood flow 

appears as well. The streaming activates the destruction of the thrombus or another 

occlusive derivative inside the blood vessel. 

3.4. Summary of Chapter 2 

The waveguide of 260 mm in length and 1.5 mm in diameter has been 

developed for clearing blood vessels in the human body that is attached to the 

concentrator (a comprising part of the transducer) through a lug of a specific shape by 

using a screw (as the thread connection).  
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The FEM modeling of the simplified waveguide acting in close to real-life 

conditions (in a muscle-surrounded blood vessel filled with blood) showed that the 

best frequency for the greatest amount of frontal and transverse pressure is 24.970 

kHz. While working in such a resonant mode, the best waveguide tip point 

displacement towards the z axis (forward) is 8.3 μm.  

FEM modeling also allowed to determine the nodes and the anti-node dynamics 

through the length of the waveguide. It was determined that the most intensive (i.e., 

providing the optimal pressure and displacement of the surrounding fluids and tissues) 

value appears at the tip of the waveguide. The nodes and the anti-nodes recur each 10 

milimeters and get lower (within their value) with each next anti-node. The analysis 

also showed that the process becomes stationary after 6×10-4 s after the vibrations of 

the rod start. After the process becomes stationary, the pressure of ±5.05×105 Pa 

(positive and negative at different time points of the period) at the tip of the waveguide 

appears. This pressure is transfered through human blood and becomes lower 

(±2.40×105) at the middle point of the thrombus which is distanced from the tip of the 

waveguide at 1 mm. 

Further analysis of the vectorial acceleration and blood velocity fields at 

different points of time of the period showed that the pressure to the inner wall of the 

blood vessel varies around ±6.91×105 Pa depending on the time point of the period. 

Such a number is a bit lower if compared to the best pressure that appears at the tip of 

the waveguide at ±7.86×105 Pa. 
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4. THEORETICAL INVESTIGATION OF THE TUBE-SHAPED 

WAVEGUIDE WIRE 

The results presented in this chapter have been published in the following 

article: Kargaudas, V., Bubulis, A., Navickas, J., Vitkus, L., Venslauskas, M. 

Theoretical and Experimental Investigation of Tube-Shaped Waveguide Wire. 

Journal of Measurements in Engineering 5, 2017, 257–265.  

The mathematical modeling of the waveguide and its interaction with the 

operational environment involved in the device is detailed in Figures 34 and 35. With 

the aim to gain better understanding of hydrodynamic processes, the modeling did not 

take into consideration the fact that the waveguide is normally operating in the second 

tube-catheter which serves to protect the blood vessel against negative notes 

distributed over the entire waveguide at particular steps of its length (experimentally 

determined nodes and antinodes will be covered in Chapter 4 that follows below). For 

the sake of simplicity of the mathematical model, it was also assumed that, when being 

operated, the tip of the waveguide moves in circles instead of ellipses. The working 

regime of the waveguide tip was selected based on the results obtained from the 

mathematical model described in Chapter 2. 

 
Fig. 55. Input data for the task being solved through modeling: 1) is the wall of the blood 

vessel, 2) is the liquid medium (blood), 3) is the tip of the waveguide moving in circles. 

4.1. Sound Waves in Fluids 

Let us assume that the tube moves slidingly in the plane xy , thus displacements 

of any point in directions of axes ,x y  can be defined as follows [86]: 

cos ,

sin .

x

y

b t

b t

 

 

 



       (3.1) 

The velocities of these points will then be as follows: 

sin ,

cos .

x

y

v b t

v b t

 

 





       (3.2) 
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where b  is the amplitude of displacement,   is the angular frequency in rad/s. 

The radial velocity of surface point B is described as follows: 

 cos sin sin .r x yv v v b t            (3.3) 

Taking into account the fact that the tube is being flexed along the z axis, the 

radial component of the velocity is defined as follows: 

 
2

sin cos ,r

z

z
v b t


  


        (3.4) 

where 
z  is the wave length of the tube deflection in the direction of the z axis. 

The liquid surrounding the tube is considered to be of an/the ideal pressure, 

consequently, the vibrations of the fluid are defined through the following differential 

equation: 
2 2 2 2

2 2 2 2 2 2

1 1 1
.

r r r r z c t

    



    
   

    
     (3.5) 

The individual solution to the potential  , , ,r z t    can be proposed to be 

as follows: 

    2
cos .

i n t

n n

z

z
R r e b

  





       (3.6) 

The incorporation of this into (3.5) results in a differential equation of Bessel 

as follows [86]: 
2 2

2

2 2

1 4
0,n n n

z

n
R R k R

r r






 
      

 
     (3.7) 

where k c  . The velocity of wave propagation in a fluid 

414.7 10 / ,c cm s    with vibration frequency 21.8 ,kHz  thus 

413.7 10 /rad s    and 
10.932 .k cm

  If the wave length equals 

4 5 ,z cm    then 
12

1.26 1.57
z

cm




   resulting in the following: 

2
2 2 2

2

4
0.72 1.59 .

z

k k cm





         (3.8) 

Taking all the above into account makes a differential equation of Bessel (3.7) 

to be rearranged as follows: 

      
(3.9)
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Two independent solutions to this differential equation represent modified 

functions of Bessel, namely  nI kr  and   ,nK kr  thus solution (3.6) can be proposed 

to be formulated as follows: 

        2
cos .

i n t

n n n n n

z

z
D iC I kr iK kr e b

  





    

   (3.10) 

where ,n nD C  are constants. The physical meaning is carried by the real part of 

the complex function (3.6): 

     

      
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2
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

     
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(3.11)

 
Differentiation results in real velocities and pressure within the fluid are as 

follows: 
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(3.13)

 
where   is the fluid density. The real velocity and pressure are obtained by 

summing up in the following way: 

1 1

, .rs rns s ns

n n

v v p p
 

 

         (3.14) 

4.2. Sound Waves in a Tissue 

The fluid is assumed to be confined by the tissue in the form of a concentric 

cylinder with the radius of 
1 ,or r  

or  representing the radius of the tube. To some 

extent, the simplest way to describe the effect of sound waves propagating within the 

fluid on the tissue is to use the hypothesis proposed by E. Winkler ,w rp k    where 

p  is the pressure on the tissue, 
r  is the radial displacement of the tissue, 

wk  is the 

constant. Such a law might be applicable in case p  and 
r  are independent of angle 

 , i.e., if the excitation of vibrations is pulsed. When p  and 
r  are dependent on 

, the determination of the coefficient of proportion 
wk  becomes somewhat difficult 

and complicated, and the very assumption hardly reflects the reality. For this reason, 
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it is assumed that the fluid is confined by a limitless tissue into which sound waves 

are transmitted, and they keep propagating further in a similar fashion as in a fluid. 

The computation of dynamics for the tissue is proposed in the following while taking 

into account only the radial displacements of the particles in the tissue. The wave 

propagation within a tissue is assumed to be of the same density as the wave 

propagation velocity within a fluid. Longitudinal waves are defined through the 

following equation [87, 88]: 
2 2 2 2

2 2 2 2 2 2

1 1 1
.

ir r r r z c t
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   
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    (3.15) 

The wave velocity within a tissue is found as follows: 
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The modulus of elasticity for the tissue 20.6 / ,E N cm  Poisson’s coefficient  

0.45   , density 
31000 /i kg m    [89], thus 477 /ic cm s  and wave number 

1287 .i ik c s    Further, the constant is found: 
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If the solution for the tissue is proposed to be the following: 
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then a differential equation of Bessel is obtained from (3.19) for the determination of 

function  nP r : 
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When taking into consideration totally different 
ik   values than that for fluid 

k , independent solutions  nJ r and  nY r  to Equation (3.19) are obtained [90]. 

The general solution to differential Equation (3.19) can be formulated as follows: 
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(3.20)

 
The real part of potential 

n  is as follows:  
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where 
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The velocities of particles and pressure are proposed to be as follows: 
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sin

,
2

cos cos

n
rna n

n

z

v r n t
r

z
r n t b

  


   




   

   

     (3.23) 

   

   

cos

2
sin cos .

n
na i n

n i

z

p r n t
t

z
r n t b

   


   




   

  

     (3.24) 

Equations (3.11) and (3.23) contain hyphens which denote fluxions of the 

Bessel’s functions with respect to their arguments but not with respect to r . Thus 

Equations (27) must be supplemented as follows: 

     
     

,

.

n n n n n

n n n n n

r A J r B Y r

r B J r A Y r

  

  

    


   
     (3.25) 

Equations (3.22) and (3.23) contain separated solutions when 1,2,...n    The 

general solution for the tissues is obtained by summing up in the way it was done for 

the fluid in (3.14). 

4.3. Conditions for the Existence of the Proposed Solution  

Functions (3.12), (3.13), (3.23) and (3.24) used to define the velocities and 

pressures of the wave flow, in principle, remain unchanged over time t , thus steady-

state flows in a fluid and in a tissue are the same at any moment in time only turned 

at certain angle. For this reason, the solution can be found at any t, for instance, at 

0.t   In this case, by using 
or r  and 

1r r  (i.e., on the surface of the tube and on 

the surface of the fluid-tissue contact), we obtain results in the Fourier series for 

functions   ,rs ov r   1 ,rav r   1ap r . We hereby refer to the sums when 1,2,3...n   

Factors (multipliers) at cos , sinn n   represent the Fourier coefficients for these 

functions. If two    functions in range  ;    are equal, their Fourier coefficients 

are equal as well. And if all the coefficients are equal, all the functions in the function 

space  2L G are equal, too [91]. For the purpose of determining functions constants 

, , , ,n n n nC D A B  1,2,...n   are available. The following are the conditions that must 

be met by these functions: 
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 
2

sin cos ,rs o

z

z
v r b


 


      (3.26) 

   1 1 ,rs rav r v r        (3.27) 

   1 1 .rs rap r p r        (3.28) 

The first condition (3.26) was determined from (3.4). The following is obtained 

from (3.27) and (3.28), when 1,2,3...n  : 

     

     

     

     

1 1 1

1 1 1

1 1 1

1 1 1

,

,

,

.

n n n n n

n n n n n

n n n n n

n n n n n

r C I kr D K kr

r C K kr D I kr

r C I kr D K kr

kr C K kr D I kr









    


   


 
  

     (3.29) 

Here, the incorporation of (3.22) and (3.25) results in a homogenous system of 

4 linear algebraical equations for the calculation of constants , , ,n n n nA B C D . The 

system of Equations (3.29) has nonzero solution only in case if the determinant is as 

follows: 

       

       

       

       

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0.

n n n n

n n n n

n n n n

n n n n

J r Y r I kr K kr

Y r J r K kr I kr

J r Y r I kr K kr

Y r J r K kr I kr

 

 

 

 

   

   






 

This is possible only for certain values of 
1r , and only for a few 1,2,3...n  , 

but not all. Thus, conditions (3.27) and (3.28) cannot be met simultaneously. 

It is assumed that the condition regarding pressure definitely must be met, but 

equations of velocities and displacements when 
or r  and 

1r r  are compulsory not 

for every  . Let us assume that gaps occur in between the fluid and the tube, and 

between the fluid and the tissue. Since the flow is in a steady state, the above-

mentioned gaps that are hereinafter referred to as caverns, represent cavities filled 

with some gas or vapor and acquire the constant shape that remains unchanged over 

time. They tend to rotate jointly with the sliding motion of the tube, and their position 

should follow after the tube or tissue is moved in the opposite direction. Further 

research involves the calculation of caverns at the moment of time 0.t    

 

4.4. Description of Caverns 

The cavern beside the tube is defined as the difference of velocities as follows 

[91]: 

   
2 2

sin cos cos ,rs o

z z

z z
v r b b G

 
   

 

 

   

(3.30)
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when             and   
2

sin cos 0rs o

z

z
v r b


 


   for every 

other .  Let us denote the reduced velocity as follows: 

,
2

cos

rs
rs

z

v
v

z
b






        (3.31) 

then: 

   

 

sin , ,

sin 0, ; .

rs o

rs o

v r G

v r

      

      

     

    

      


     
   (3.32) 

where  
 is the angle to the centre of the tube cavern, 2

 is the angular width 

of the tube cavern. 

The reduced velocity of the tissue is similarly defined: 

2
cos

ra
ra

z

v
v

z
b






        (3.33) 

and the tissue cavern equals: 

  , ,

0, ; .

ra rs

ra rs

v v G

v v

     

     

      


     
     (3.34) 

Definitions (3.32) and (3.34) show that the functions of caverns  G   and 

 G 
 are defined in analogous manner, thus further calculations involve the 

description of tissue cavern  G   only, whereas the tube cavern is offered too, but 

only by writing up an asterisk. 

If  G   represents an integrated periodic function within range [ , ]    

, the following can be formulated: 

   
1

sin cos ,o j j

j

G e g j e j  




        (3.34) 

where ,j jg e  represent real numbers. In order to apply the outside conditions 

(3.26) and (3.27), function (3.35) must be regrouped into the periodic function over 

the entire range [ , ]    as follows: 

  , ,ra rsv v f               (3.36) 

   
1

cos sin ,
2

o
n n

n

a
f a n b n  





       (3.37) 

where coefficients of Fourier series are as follows: 
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   

   

cos cos ,

sin sin .

n

n

a f x nxdx G x nxdx

b f x xdx G x nxdx

  

  

  

  







 



 


 





 



 

 

    (3.38) 

Incorporation of (3.35) into (3.38) results in the following: 

1 1

, 0,1,2,...n j ajn j ajn

j j

a g h e q n
 

 

        (3.39) 

Where: 

       sin sin sin sin

cos sin sin sin
2 , ,

ajn

j n j n j n j n
h

j n j n

n n j j
j n

n j

   

   



   
  

 

  

  

sin sin
sin 2 cos , ,ann

n n
h n n j n

n n

 
 



 
   

 
  

 

       cos sin cos sin

cos sin cos sin
2 , ,

ajn

j n j n j n j n
q

j n j n

n n j j
j n

n j

   

   



   
  

 

  

  

2 2

2

cos 2 sin 2 cos sin
2 , .

2
ann

n n n n
q j n

n n

   



      

The second equation in system (3.39) after function  G x  is incorporated into 

it, allows other Fourier coefficients to be calculated as follows: 

1 1

, 1,2,...n j bjn j bjn

j j

b g h e q n
 

 

        (3.40) 

Here: 

       cos sin cos sin

sin sin sin sin
2 , ,

bjn

j n j n j n j n
h

j n j n

n n j j
j n

n j

   

   



   
  

 

  

 

2 2

2

cos 2 sin 2 sin sin
2 , ,

2
bnn

n n n n
h j n

n n

   



      
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       sin sin sin sin

sin sin cos sin
2 , ,

bjn

j n j n j n j n
q

j n j n

n n j j
j n

n j

   

   



   
  

 

  

  

 

sin sin
sin 2 cos , .bnn

n n
q n n j n

n n

 
 



 
   

 
  

If the position and the length of the cavern, i.e., numbers   and   are the 

selected ones, then all the ,ajn ajnh q  , ,bjn bjnh q are known values. 

The following can be obtained from (3.39), when 0n  : 

1

sin cos
sin .

j j

o o

j

g j e j
a e j

j

 
 








      (3.41) 

All the formulas proposed here can also be applied for the tube cavern by using 

 

 and 


 instead of   and  . 

4.5. The Equations for the Determination of the Caverns  

Next, particles’ velocities (3.12) and pressure (3.13) in a fluid as well as 

particles’ velocities (3.23) and pressure (3.24) in a tissue are to be found. For this 

purpose, constants , , , ,n n n nC D A B  1,2,...n  need to be found. Since the solutions 

must meet Equations (3.26), (3.27) and (3.28) for every t  and  , there are 6 equations 

(factors at sin n  and cos n ) for every n . Taking into account the caverns, Equation 

(3.27) is replaced with Equation (3.36), and Equation (3.26) with the following 

equation [92]  

   sin ,rs ov r f         (3.42) 

where 

   
1

cos sin .
2

o
n n

n

a
f a n b n  

 
  



       (3.43) 

This is a Fourier series analogous to series (3.37) proposed above. This way, 

the equation of velocities when 
or r  is satisfied for every t  and   if 

   

   

,
1,2,3,...

,

n n o n n o n n

n n o n n o n

C I kr D K kr b
n

C K kr D I kr a





    


  
 ,  (3.44) 

and the constant 
1 1   and 0n   if 1.n   The first equation in Formula (3.44) 

represents multipliers at sin n , and the second one represents multipliers  at cos .n  

Moreover, new constants have been incorporated into (3.44) 

n nC C k   ,  .n nD D k    
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The equation of velocities (3.27) for the tissue when 
1r r , while taking into 

account the cavern and Equation (3.36), is formulated with the following system of 

equations: 

       
       

1 1 1 1

1 1 1 1

,

.

n n n n n n n n n

n n n n n n n n n

A J r B Y r C I kr D K kr b

A Y r B J r C K kr D I kr a

 

 

       


       
  (3.45) 

where 1,2,3,...n   and new constants are incorporated, too 

, .n n n nA A B B       

The equation of pressure (3.28) is considered to remain the same when 
1r r , 

thus, taking into account the new constants, it results in the following:  

       
       

1 1 1 1

1 1 1 1

[ ] 0,

[ ] 0.

n n n n n n n n

n n n n n n n n

C K kr D I kr A Y r B J r

C I kr D K kr A J r B Y r

  

  

    


   
  (3.46) 

Here, .
ik





   

The main problem here is the computation of constants , , ,n n n ng e g e 
that are 

used to define caverns. For this reason, it is worth eliminating , , ,n n n nC D A B  from 

the system of 6 equations (3.44), (3.45), (3.46). Formulation (3.46) can be further 

expressed as follows: 

,

,

n n n n n

n n n n n

A M C N D

B N C M D

  


 
       (3.47) 

where 

2 2
;n n n n

n

n n

I J K Y
M

J Y






  

2 2
.n n n n

n

n n

K J I Y
N

J Y






 

Here, arguments for all the Bessel functions ,n nI K  are 
1kr , and for functions 

,n nJ Y  arguments are 
1.r   

The following can be expressed from the system of equations: 

 

 

,

.

n n n n n n

n n n n n n

C M a N b

D N a M b





 

 

   


  

      (3.48) 

Here: 

2 2
,n

n

n n

K
M

I K




 
  

2 2

n
n

n n

I
N

I K




 
 

and arguments for each and every Bessel function are .okr   

Incorporating (3.47) and (3.48) into (3.45) results in the following equations: 



 

 

 

69 

 

 

 

0,

0.

n n n n n n

n n n n n n

X a Y b b

Y a X b a





 

 

    


   

      (3.49) 

Here the following denotations are used: 

,

,

n n n n n

n n n n n

X M R N S

Y N R M S

  


 
       (3.50) 

     
     

1 1 1

1 1 1

,

.

n n n n n n

n n n n n n

R I kr J r M Y r N

S K kr J r N Y r M

 

 

     


    
    (3.51) 

Numbers ,n nX Y  can be calculated, thus only two equations (3.49) are available 

for finding the constants , , ,n n n ng e g e 
 for every 1,2,3,...n  . If 1,2,...,n N  , then 

total 2N  equations and 4N  parameters are obtained apart from four numbers  
 , 

 
,   and  . 

The system of equations (3.49), as a result of incorporation of (3.39) and (3.40), 

turns out to be as follows: 

   

   

1 1

1 1

1 1

1 1

,

.

N N

ajn n bjn n j ajn n bjn n j

j j

N N

bjn j bjn j n n

j j

N N

ajn n bjn n j ajn n bjn n j

j j

N N

ajn j ajn j n n

j j

h X h Y g q X q Y e

h g q e Y

h Y h X g q Y q X e

h g q e X

 

 

     

 

 

     

 

 


   




   


    




  



 

 

 

 

   (3.52) 

Constants 
oe  and 

oe  have been incorporated into the solution to cavern (3.35) 

and tube’s cavern  G 
, having a physical meaning, such as the movement in the 

radial direction at a constant speed. Consequently, these constants must be equal to 

zero. The same is true about constants , .o oa a
 It can be obtained from (3.41) that if 

0oa  , it follows: 

1

sin cos
sin .

N
n n

o

n

g n e n
e n

n

 





       (3.53) 
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4.6. Displacements of the Caverns 

Velocities have been investigated that were described in Equation (3.23) as 

periodic functions of argument  n t  . Such an argument shows that with the 

change in angle  by 2  or change in time by 2T   , all the functions remain 

unchanged. Accordingly, it can be stated that the steady-state solution somewhat turns 

around the z axis without experiencing any changes.  

For the sake of simplicity, the calculation of caverns involved, 0t   which in 

turn resulted in a somewhat instantaneous picture of cavern (3.35) where 0oe  . 

Since the cavern turns at the same angular velocity as the entire steady-state solution, 

the law of the cavern motion (3.35) must be generalized in the following manner: 

     
1 1

, sin cos .r j j

j j

G t g j t e j t    
 

 

        (3.54) 

Here, it is understood that 0oe   was incorporated. When 
1r r  , the velocities 

are  , , .ra rs rv v G t                (3.55) 

The integration of (3.54) and (3.55) by time results in the reduced displacements 

of the tissue and the fluid as follows: 

   
1 1

1 1
sin cos .ra rs n n

n n

c
e n t g n t


     

  

 

 

         (3.56) 

Here, c  represents the constant that generally can be a function of angle  . 

As it can be understood from (3.53), the actual displacements can be assumed to be 

as follows: 

   
1 1

2
sin cos cos .ra rs n n

n n z

z
e n t g n t c b


     



 

 

 
      

 
  (3.57) 

Here, b  represents the amplitude of the sliding displacement of the tube. 

Incorporating 0t   allows obtaining the form of the cavern when          

: 

1 1

2
sin cos cos .as n n

n n z

z
c e n g n b


  



 

 

 
   
 

     (3.58) 

The tube’s cavern is defined in ideally the same manner: 

1 1

2
sin cos cos .sv n n

n n z

z
c e n g n b


  



 
  

 

 
   
 

    (3.59) 

The determination of constants ,c c 


 requires additional physical data that 

should be associated with the pressure and gas flow within the caverns. 

Since 0  , as otherwise it would mean that the cavern simply does not exist, 

and   , as in this case the cavern would be present around the entire perimeter of 
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 , then, as it can be understood from (3.53), in order to have 0,oe   it must be as 

follows: 

sin cos 0, 1,2,3,...n ng n e n n        (3.60) 

If cos 0n   and cos 0n   at every 1,2,3,...,n N , then it can be derived 

from (3.60) that tan ,n ne g n   tann ne g n    and incorporated into (3.52). If 

sin 0n   and sin 0,n   1,2,3,...,n N  , then it can be expressed as ,n ng g
, 

and result in equations with the unknown quantities ,n ne e  . However, there is always 

a good chance that any of the factors tan , tann n   (or 1 tan ,1 tann n  ) can 

turn out to be infinitely huge and impede our computation. The simplest option is 

apparently to write 2N  equations (3.52) and then to supplement them with N  

equations (3.60) and N  following equations: 

sin cos 0, 1,2,3,...n ng n e n n         (3.61) 

This way, the system of 4N  linear equations is obtained with 4N  unknown 

quantities , , , .n n n ng e g e 
  

When making an assumption regarding the existence of caverns, the outside 

conditions (3.26) and (3.27) were modified, but the equation of pressure (3.28) was 

kept the same. This equation, as a matter of fact, must also be slightly modified if the 

solution of the cavern gas dynamics is to be taken into account. This would in turn 

affect the entire system of equations described above in this chapter. 

 
Fig. 56.  Formation of caverns (that of the tube is the solid line, that of the tissue is the dotted 

line) 
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Both caverns, that of a tube and that of a tissue, are described by a general 

system of equations. The movement and the appearance of the caverns is shown in 

Fig. 56. Both caverns are interdependent and cannot be investigated separately one by 

one. 

The calculation of the pressure at the tip of the waveguide, the pressure at the 

beginning of the tissue, and pressure as the function of distance in the infinite fluid 

and environment considering the cavern phenomena are shown in Figures 57, 58 and 

59.  

 

 
Fig. 57. Pressure on the tip of the waveguide. 
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Fig. 58. Pressure at the beginning of the tissue. 

 
Fig. 59.  Pressure as the function of distance. The dotted line is in an infinite (non-limited) 

fluid. 
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4.7. Calculation of the Size of the Cavern 

Solving the task of modeling led us to the observation that during the operation 

of the ultrasonic system, a cavity containing tenuous gas, here referred to as the 

cavern, is formed at the wall of the blood vessel. Section 3.7 offers the calculation of 

its width. 

 
Fig. 60. Formation of the cavern where 1) is the wall of the blood vessel; 2) is a liquid 

environment (blood); 3) is the tip of the waveguide; 4) is the cavern. 

 

The thickness of the outside layer can be calculated when the surface is 

vibrating at 23.185 kHz frequency in its own plane as follows: 

  
2

3

4

0.73 10
0.23 10 2.3

13.7 10
cm


 






    


 

Here, viscosity of water is incorporated 
2

20.73 10 cm
s

    at a temperature of 

35o C . The vibration frequency is 413.7 10 rad
s

   . 

4.8. Summary of Chapter 3 

The mathematical model of the waveguide and its operational environment, in 

this particular case – human blood, confined by biological human tissues (the wall of 

a blood vessel) has been developed.  

In the course of the solution of the mathematical task, a highly important 

phenomenon was revealed: with the waveguide operating under the resonant regime, 

a pocket containing tenuous gas of a size of up to 2.3 µm is formed at the wall of the 

blood cell that keeps sliding along the wall of the blood cell at a speed of the 

waveguide rotation. It can have a significant effect on the energy balance in the 

medium in which the waveguide is operated and may also significantly affect the 

absorption of drugs through the wall of the blood vessel and may exert influence on a 
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large scale thus enhancing the effect that the ultrasonic system has on the occluding 

malformation of the vascular walls. 

This phenomenon has not yet been addressed and requires to be experimentally 

investigated in further research. 
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5. EXPERIMENTAL INVESTIGATION OF THE TUBE-SHAPED 

WAVEGUIDE WIRE WAVEGUIDE SYSTEM 

5.1. Equipment Used for the Research  

The ultrasonic system under consideration has been designed to operate jointly 

with Ultrasound Generator VT-400 and a non-standard transducer constructed in situ. 

The descriptions of the ultrasound generator capable of operating under the pulsed 

regime and of the piezo-transducer are offered below. Unless specified otherwise, all 

the experiments under consideration here involved these two non-standard parts of the 

system. 

5.1.1. Ultrasound Generator VT-400 

 
Fig 61. Ultrasound generator VT-400. 

The main technical characteristics of the ultrasound generator are described in 

Table 2. 

 

Table 2. The technical characteristics of ultrasound generator VT-400 

Supply voltage, V 200-240 

Output power, W Up to 400 

Number of channels 1 

Output frequency, kHz 15-60 

Dimensions, mm 300×425×135 

Capacity, W 500 
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5.1.2. The Ultrasound Transducer 

 

Fig. 62. The construction of an ultrasonic blood vessel cleaning system, where: 1) is the 

conical concentrator 2) is a piezo ceramics ring, 3) is a copper ring, 4) is the pressing 

element. 

 

Fig. 63. Dimensions of the piezo ring used in the transducer of the ultrasonic system.  

The ultrasound transducer is comprised of the conical concentrator (1) and four 

piezo ceramic rings PZT-4 (2) with the diameter of 25 mm and thickness of 5 mm that 

are fitted on the conical concentrator and spaced by copper rings with the diameter of 

0.5 mm and paper insulation. The entire system is reinforced by the fastening 

component made of stainless steel with a thickness of 16 mm which is smaller by 

1 mm in diameter (4). 

5.2.  Effect of Low Intensity Cavitation on Isolated Human Arteries 

The results described/presented in this chapter have been published in the 

following article: Bubulis, A., Garalienė, V., Jurėnas, V., Navickas, J., Giedraitis, S. 

Effect of Low-Intensity Cavitation on the Isolated Human Thoracic Artery in Vitro. 

Ultrasound in Medicine and Biology 43, 2017, 1040–1047. 

The experiments have been conducted on isolated human thoracic artery 

samples. The samples were collected during conventional myocardial 

revascularisations in patients who underwent coronary artery bypass grafting in the 

Department of Cardiothoracic and Vascular Surgery at the Lithuanian University of 

Health Sciences. All the patients chose to sign a letter of informed consent. The study 

was approved by the Regional Ethics Committee of Biomedical Research on the 5th 

of November 2010, licence No. BE-2-64, in Kaunas, Lithuania.  
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Fig. 64. Experimental set-up for the ultrasonic treatment of blood vessel samples, where 1) is 

the EZ-Bath Tissue/Organ Bath System; 2) are tissue baths; 3) is the pre-warming system 

(thermostat); 4) is the L-BRAM4 Bridge Amplifier; 5) is the Ultrasonic processor 

VCX130PB; 6) is the Piezoelectric transducer and its probe; 7) is a PC monitor. 

 
Fig. 55. The experiment scheme, where:  1) is the EZ-Bath Tissue/Organ Bath 

System; 2) is the bath pre-warming system; 3) is the ultrasonic processor VCX130PB; 4) is 

the L-BRAM4 Bridge Amplifier; 5) is the piezoelectric transducer and its probe; 6) is a PC. 
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Fig. 66. The scheme of our experiment, where 1) is the water tank; 2) is the physiological 

fluid; 3) is the ultrasound transducer; 4) is the blood vessel; 5) are blood vessel holders. 

The artery samples were obtained from a total of 152 patients. Their age average 

was 67.3 ± 9.6 years. Women accounted for 30.7 percent of the total number of the 

patients involved. 

Vascular preparation. For the purpose of investigating blood vessel segments 

in vitro, a tissue/organ bath system produced by the Global Town Microtechnology 

Company (Sarasota, FL, USA) was used. The artery samples were collected at the 

ambient temperature from patients undergoing coronary artery bypass grafting. 

Afterwards, the samples were gently cleansed of the connective tissue, then carefully 

cut into 3–4 mm long rings and hung on a vascular holder. The upper hook of the 

vascular holder was attached to an isometric force transducer. The samples were 

dipped into 5 ml tissue baths filled with Tyrode’s solution that was warmed to 37°C 

and continuously bubbled with 100 % oxygen. The composition of the solution was 

as follows (in mM): NaCl, 137; KCl, 5.4; CaCl2, 1.8; MgCl2, 0.9; Tris HCl, 10; and 

glucose, 5; pH = 7.4. Prior to starting the experiments, the blood vessel samples were 

allowed to equilibrate for at least 45–60 min. Throughout the investigation period, the 

preparations were periodically (every 15 min) washed with fresh Tyrode’s solution. 

With the aim to examine the effect of the ultrasound, an irradiation to the side 

and the open end of the blood vessel was performed. For this purpose, the contraction 

and relaxation process was invoked, then, an equilibration period followed, and, 

finally, the isolated vascular samples were exposed to discontinuous ultrasound pulse 

for a period of ten or twenty seconds. The tip of the transducer was positioned at the 

distance of 0.5 cm to the sample surface or along the vessel lumen.  

Protocol. The first series of experiments involved studying the isometric 

contraction and relaxation effects in artery rings when phenylephrine-induced 

contraction was produced by zero, 10 and 20 min after exposing them to 10 s 

ultrasound pulse. Phenylephrine solution at 10-4 M concentration was used in all the 

experiments under consideration. Phenylephrine acts as a vasoconstrictor, i.e., it binds 

to α1-adrenoceptors located at the surface of sarcolemma, and activates the enzyme 

phospholipase C which is responsible for the synthesis of inositol 1,4,5-triphosphate 

(IP3). The latter affects inositol 1,4,5-triphosphate receptors (IP3R) that are localized 
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on the surface of the sarcoplasmic reticulum (SR) in the vascular smooth muscle and 

that prevail there [92, 93]. At the same time, the sarcolemma depolarizes, and external 

calcium enters through L-type Ca2+ channels into the cell. Due to the interaction of 

IP3 with IP3 receptors, the calcium ions entered into cytosol initiate Ca2+ release from 

the SR. Consequently, the more Ca2+ ions accumulate in the SR, the more of them 

should move into the cytoplasm during depolarization. As a result, the isometric 

contraction of the smooth muscle is forced to increase proportionally [94]. 

The effects of ultrasound on the functioning of the endothelium or slow (L-

type) calcium channels within the vessel rings was assessed by examining the 

relaxation response to carbachol, an agonist of muscarinic acetylcholine receptors [95] 

and diltiazem, an inhibitor of the slow calcium channel [96]. Once the phenylephrine-

produced isometric contraction has reached its steady state, the above mentioned 

agents were added to the solution in a cumulative-concentration manner, at doses of 

10-7–10-4 M. The time course of the exerted force was recorded. The relaxation and 

isometric contraction forces were expressed in percentages and in mN (milinewtons), 

respectively, of the vasoconstrictor induced pre-contraction.   

Subsequently, the second series of experiments was undertaken. In order to 

determine whether the blocking of the slow calcium channel alters the effect that 

ultrasound irradiation has on the contraction force of vessel segments, the samples 

were pre-treated with diltiazem in accordance with the following scheme: after 

leaving the rings for 30 min in Tyrode’s solution to achieve their equilibration state, 

diltiazem was added into the bath at a concentration of 50 µM, and ultrasound was 

applied at 20 min after diltiazem had been added.  

In control groups, the vessel samples were taken from the same patients as in 

the experimental groups, and all the measurements were carried out in parallel.  

Drugs and chemicals used. Carbamylcholine chloride (carbachol), 

phenylephrine chloride (phenyleprhine) and diltiazem (CAS No. 42399-41-7) were 

obtained from Sigma-Aldrich Chemie (Taufkirchen, Germany). They were dissolved 

in deionised water to obtain a stock solution of 0.1 mM.  All the stock solutions were 

stored at a low temperature.  

Statistics. The statistical analysis was performed by using SPSS (Statistical 

Package for the Social Sciences) software packed version 10.0. All the values 

obtained were expressed as means ± SEM. The statistical significance was defined as 

P<0.05. 

Results 

The effects of ultrasound irradiation on the contraction force in the isolated 

human thoracic samples are detailed below. 
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Fig. 67. The effect of 10-second US irradiation with and without diltiazem on the response of 

the contraction force in the isolated human a. thoracica rings (n=20) pre-contracted with Ph 

(10-4M) 10 min after the start of the US; n is the number of artery samples. *p < 0.01. The 

results are expressed as means ± SE. 

The results depicted in Fig. 67 show a significant increase in the contraction 

force in the ultrasound group (51.6%, p < 0.01) exposed to 10-second ultrasound 

irradiation pulses and where vasoconstrictor phenylephrine (Ph, 10-4 M) was used 

10 min after applying the pulse.  

Similar data was obtained with the exposure of the artery segments to 20 s 

ultrasound irradiation, leading to the observation that, under the experimental 

conditions, the amount of ultrasound irradiation had no significant effect on the ratio 

of the contraction forces (12.4 ± 1.86 mN and 6.36 ± 1.3 mN, 48.4%, p < 0.01, 

respectively, in the groups exposed and not exposed to ultrasound) when the 

experimental groups were compared to the control groups.  

The time that passed between the ultrasound exposure and vasoconstriction was 

found not to influence the level of the contraction ratio. Phenylephrine used 

immediately after the exposition to ultrasound resulted in an increased contraction 

force to 20.0 ± 2.8 and 9.2 ± 1.6 mN in the control group, respectively (ratio of ~ 2:1, 

54 %, p <0.01). Meanwhile, the increase of the time up to 20 minutes proved the 

assumption to be true that the effects of ultrasound are relatively long-lasting when 

compared to the artery lifespan in vitro. Therefore, in the case under consideration 

here, the isometric contraction of blood vessel samples in response to Ph remained 

significantly increased (16.63 ± 3.0 mN) compared to the ultrasound-free group (8.0 

± 1.66 mN), but were lower (minus 3.34 mN, 16.7 %) than the measurements taken 

immediately after irradiation with ultrasound. 

To determine the influence of the slow calcium channel blocking on the 

isometric contraction of artery samples exposed to ultrasound irradiation, diltiazem, a 

well-known inhibitor of slow calcium channels, was used. For this purpose, blood 

vessel samples in both groups were immersed in a diltiazem solution of 50 µM 

concentration for 30 min. Throughout this period, the experimental group (20 min 
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after the immersion in diltiazem solution) was treated with 10-second ultrasound 

irradiation. The response of isometric contraction is presented in Fig. 67. Thereby, 

pre-treatment with diltiazem resulted in a smaller increase of contraction in both 

groups (12.16 ± 2.2 mN in the experimental group and 5.4 ± 1.04 mN in the US-free 

group, compared to the data presented in Fig. 67, where the experimental results were 

obtained under the same conditions, though the data values did not differ among 

themselves (p > 0.05). It means that the basic amount of calcium involved in the 

contraction mechanism is not from the outside of the cells, but is released from the 

internal resources, such as sarcoplasmic reticulum or mitochondria. Moreover, it 

means that this process is enhanced by ultrasound cavitation. 

The following trials were performed on the same vessel segments of the 

thoracic artery; however, the ultrasound irradiation was used along the vessel lumen. 

The recorded response showed that, under conditions of 10-second internal ultrasound 

irradiation, the augmentation of the contraction force more than doubles (~ 2.3:1) 

compared to the control (US-free; Ph was used 10 min after the exposure of the pulse 

of ultrasound). 

An increase of the external irradiation frequency from 20 kHz to 32.6 kHz 

caused a greater increase of isometric contraction, and the ratio of contraction forces 

under those conditions was 2.46:1 (at 20 kHz, it was ~ 2:1; Fig. 67).  

Consequently, the experimental results suggest that the isometric contraction of 

a smooth muscle in the isolated human a. thoracica segments is sensitive to the 

cavitation induced by the ultrasound pulse, and increases with the increase in 

ultrasonic frequency. 

The effects of ultrasound irradiation on the vascular smooth muscle relaxation 

induced by carbachol and diltiazem are detailed below. 

A hypothesis was raised that the low intensity cavitation induced by low-

frequency ultrasound could restore the endothelial dysfunction stemming from 

systemic atherosclerosis. For the purpose of verifying this hypothesis, carbachol (Ch), 

an agonist of muscarinic M receptors whose effects are realized through the 

endothelial-dependent release of relaxing factors based on nitric oxide, a key 

vasodilator, was used. [97]  

As studies have shown, the relaxation of blood vessels (as a response to Ch) 

treated with ultrasound irradiation is not unequivocal and is independent of the 

ultrasound frequency, irradiation time and the period of time passed since the start of 

exposition to ultrasound. 
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Fig. 68. a) Influence of 10-second US on the relaxation of isolated a. thoracica segments 

(n=15) induced by Ch (10-7 – 10-4M); the segments were pre-contracted with Ph (10-4 M) 

immediately after the start of US. b) Influence of 10-second US on the relaxation of isolated 

a. thoracica segments (n=14) induced by Ch (10-7 – 10-4M); the segments were pre-

contracted with Ph (10-4 M) 20 min after the start of the US pulse; n is the number of artery 

samples. The results are expressed as means ± SE. 

Accordingly, the data presented in Fig. 68a and Fig. 68b clearly shows that the 

time period from the start of irradiation with ultrasound to vasoconstriction has no 

significant effect on the smooth muscle relaxation process. 

Regardless of whether the blood samples were pre-contracted with Ph 

immediately after the start of the exposure to ultrasound or 20 min afterwards, a 

similar relaxation process was observed. Therefore, the relaxation began in all the 

groups at a dose of 10-7 M of Ch, and varied within the range of 3 % to 11 %. An 

increase in the Ch dose caused the relaxation to slightly increase, as well, and at a 

concentration of 10-4 M, the relaxation reached 22.5 % and 21.3 % in the ultrasound-

treated groups (in Fig. 68a and Fig. 68b, respectively). The differences between the 

control and the experimental groups as well as between the control groups in both 

events were not significant (p > 0.05). 

As it was noted above, internal ultrasound irradiation more than doubled (by 

approx. 2.3 times), and the increase in the contraction force compared to the control 

group was observed. Such a significant increase in isometric contraction indicates the 

increased number of free intracellular calcium ions that are generally involved in the 

smooth muscle contraction process [98]. However, a question arises whether the 

smooth muscle cells are able to sequestrate the excess Ca to naturally induce their 

relaxation; otherwise said, the question is whether the smooth muscle cells remain 

viable after their exposure to ultrasound. With the aim to answer this question, the 

relaxation process of segments was recorded in real time when an experimental group 

was treated with internal ultrasound for 10 seconds and 10 min after the 

vasoconstrictor (phenylephrine) was used. The obtained results are presented in 

Fig. 69. 
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Fig. 69. Influence of 10-second internal US irradiation on the relaxation of blood vessel 

segments (n=13) over time; a vasoconstrictor (Ph, 10-4 M) was used 10 min after the start of 

the US pulse; n is the number of artery samples. The results are expressed as means ± SE. 

Thus a single dose of phenylephrine was observed to induce contraction of 

26.16 mN and 11.61 mN, on average, in the ultrasound-treated and control groups, 

respectively (the ratio is approx. 2.25:1, 55.6 %, p <0.01). Given such a difference in 

contraction forces, it was speculated whether or not this increased intercellular 

calcium concentration would slow the relaxation movement to some extent and 

thereby slow the relaxation of segments in the treated group. The taken measurements 

showed the relaxation magnitude to be very similar in both groups. At 40 min, it 

reached 82.5 % and 93 % in the ultrasound group and the control group, respectively. 

This difference was not statistically significant.  

A similar response of the smooth muscle to carbachol was observed while using 

internal as well as higher frequency ultrasound irradiation (32.6 kHz). Accordingly, 

the obtained experimental data showed that low intensity cavitation induced by low 

frequency ultrasound irradiation has no effect on endothelium-dependent relaxation 

in isolated human blood vessels. 

For the the next experimental study, diltiazem was used. Interestingly, diltiazem 

was observed to decrease the isometric contraction of the blood vessel segments by 

approx. 25 percent in the control group, and approx. 17.3 percent in the ultrasound-

treated group in comparison to those without diltiazem.  

Meanwhile, the relaxation dynamics of the vessel segments treated by diltiazem 

was not different from the control group (which included vessel segments not treated 

by diltiazem) (Fig. 70). In other words, ultrasound irradiation has no effect on relaxing 

the properties of diltiazem. Thus using it in a concentration-dependent manner 

gradually relaxed the segments, and its influence did not differ from the control group. 

For instance, at a dose of 10-4 M of diltiazem, the smooth muscles exposed to 

ultrasound were observed to relax to 50.4 percent. In the control group, the results 

were very similar (47.5 percent).  
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Fig. 70. Influence of diltiazem (Dilt.) on the relaxation of artery segments (n=12); a 

vasoconstrictor (Ph, 10-4 M) was used 10 min after the start of 10-second US exposure; n is 

the number of artery samples. The results are expressed as means ± SE. 

It follows from this study that low intensity cavitation induced by low-

frequency ultrasound exposure does not affect the relaxation of smooth muscle 

associated with a slow calcium channel. 

Experiments conducted on isolated human artery thoracic segments in vitro are 

influenced by low-intensity cavitation induced by low-frequency (4–6 W/cm2, 20 kHz 

and 32.6 kHz) ultrasound. The obtained results show that the isometric contraction of 

those segments was increased by the factor of two (in the case of internal and 32.6 kHz 

stimulation) compared to the segments not irradiated with ultrasound. The influence 

of ultrasound treatment on the contraction force was observed to decrease 

insignificantly due to the pre-treatment of the segments with diltiazem (an inhibitor 

of slow calcium channels). When used in a concentration-dependent manner, 

diltiazem was observed not to modify the relaxation dynamics of the smooth muscle 

exposed to ultrasound. The use of ultrasound of the above mentioned parameters did 

not improve the endothelial relaxing properties. 

5.3. Experimental Investigation of Tube-Shaped Wavegude Displacement Using 

Polytec PSV 3D Laser Vibrometer 

With the aim to determine the resonance frequency for the maximum 

displacement toward the z axis, experiments were conducted on the experimental table 

of the Polytec PSV 3D laser vibrometer. The experimental investigation setup is 

shown in Fig. 71. It consists of the following: 1 is the Polytec PSV 3D laser 

vibrometer; 2 is the ultrasound waveguide system; 3 is the magnetic holder of the 

transducer; 4 is the anti-vibration table. To secure the reflection of the laser beam from 

the tip of the waveguide, the reflection film was glued on the tip. The mass of the 
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glued reflection film is insignificant, thus it has no implication for the results of the 

experiment. First of all, the FFT analysis was undertaken to determine the peaks of 

the system within the respective frequency range (15–30 kHz). Afterwards, the 

maximum displacement toward the z axis was determined. To determine the 

displacements when the transducer was excited with operating voltage, the peak was 

investigated in the time scanning mode. 

The experimental investigations were conducted under several sets of different 

conditions and in different points of interest. As Fig. 71 shows, the waveguide was 

investigated under free conditions inserted in tube which was filled with water. In both 

cases, the displacement of the tip of the waveguide was measured. In ANother case, 

the screw of the housing of the waveguide and the housing of the waveguide (the lug) 

was investigated to determine the effect of THE housing (the lug) on the displacement 

of the waveguide.  

 
Fig. 71. The experimental setup. 1) A polytec machine (laser sources); 2) a 

waveguide; 3) a holder; 4) an anti-vibration table, 5) a PC. 
 

 
Fig. 72. Polytec PSV 3D laser vibrometer experimental scheme. 
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Ultrasonic blood vessels cleaning system was excited by a periodic chirp type 

signal with an amplitude of 10 volts to determine the FFT analysis of the tip of the 

waveguide.  

 

 Fig. 73. (FFT analysis of the tip of waveguide in the range of 15–30  kHz ) Determining the 

resonance frequency for the best displacement on the z axis. 

Our analysis of the results revealed the following three resonances of the system 

– at 23.10 kHz, at 20.33 kHz and at 23.04 kHz. The maximum displacements along 

the z axis were recorded at a frequency of 23.10 kHz (with the error of 0.0815 kHz 

when compared to the result of modeling when using the Finite Element Method). 

Since the principal functionality of the ultrasonic system is to trespass the thrombus 

in the frontal direction (along the z axis), this particular frequency is hereinafter 

considered to be the operational frequency of the system.  

Meanwhile, maximum displacements in the directions of x and y axes (meaning 

that the operational end of the waveguide is drawing an ellipse of the maximum radius 

which in turn enables to assume that the cavitation process is the most vigorous at this 

frequency) were observed at 20.5 kHz. This particular frequency is to be used if the 

primary task of the operation is not to trespass the thrombus in the frontal direction 

(the z axis) but rather to clean the walls of the occluded blood vessel.  

As our results showed, the maximum displacements along the z axis occur at a 

resonance frequency of 23.19 kHz with the amplitude of 21 nm.  
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Fig. 74. x, y, and z axis displacement on the resonant frequency at the end point of the 

waveguide. 

When the ultrasonic blood vessel clearing system was induced by the sine type 

signal with an amplitude of 100 V, the resonance frequency of 23.19 kHz was 

recorded. The tip of the waveguide under investigation provided maximum 

displacement towards the z axis amounting up to 7.02 micrometer (see Fig. 74).  

Our computational mathematical analysis and experimental trials revealed that 

elliptical movement is characteristic for the tip of the waveguide. It was determined 

by the imperfections of the steel surface, and the mechanical wave transmission 

through the threaded connection between the screw connecting the waveguide to a 

concentrator and a transducer. In comparison to the results of the computational 

analysis, more significant displacements were observed in the  course of the 

experiment under realistic conditions. 

 

 Fig. 75. x, y, and z axis displacement on the resonant frequency at the fixing element (screw) 

of the ultrasound system. 
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Fig. 76. x, y, and z axis displacement on the resonant frequency at the construction element 

(lug) of the ultrasound system. 

The housing screw and the housing lug were investigated with the aim to 

determine the influence of these components on the displacements of the waveguide. 

The same excitation signal as described in the section above was used. The obtained 

results showed displacements of the screw towards z of 1.4 μm (Fig. 75) and the 

displacement of the housing end towards the z axis of 1.8 μm (see Fig. 76). 

Consequently, the housing can be considered to exert influence on the displacements 

of the tip of the waveguide toward the z axis.  

 
Fig. 77. x, y, and z axis displacement on the resonant frequency at the end point of the 

waveguide filled with water. 
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 Fig. 78. x, y, and z axis displacement on the resonant frequency at the end point of the 

waveguide filled with water, placed in a water-filled catheter. 
 

Fig. 77 illustrates the experiment conducted on the waveguide filled with water. 

In this case, the maximum displacement of 11.02 μm was determined. The results 

obtained through investigation on the waveguide filled with water and placed in a tube 

which was also filled with water are shown in Fig. 78. In this particular case, the 

maximum displacement of 2.1 μm was recorded; the wave period was observed to get 

shorter by more than 1.5 times. The investigation also revealed that the waveguide is 

damped when it is excited under conditions that are very similar to its real operating 

environment (being surrounded by fluid within the blood vessel). As the experiment 

delivered positive results, it makes a sound basis for undertaking further investigation, 

including the computational analysis of a newly designed innovative ultrasound 

system under realistic operating conditions. 

5.4. Amplitude-Frequency Characteristic 

To experimentally confirm the modeling accomplished by means of the Finite 

Element Method and the results of non-contact laser system, the amplitude-frequency 

characteristic was determined. The longitudinal vibration mode in a frequency range 

of 15–26 kHz was measured. The slowed acoustic signal of the suspended tube-

shaped waveguide tip (rested upon the sensor) was measured, or, otherwise, the 

pressure on the unidirectional sensor (accelerometer) RTF KD 91, with its own 

resonance frequency of 50 kHz, and sensitivity of 0.5mv/1m per s2 was investigated. 

The experimental platform and the schematic view is presented below in Figures 79 

and 80 of this Chapter.  
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Fig. 79. The experimental setup, where 1) is a transducer; 2) is the Sensor RTF KD91; 

3) is a sensor holder; 4) is the Osciloscope Picoscope 3424; 5) is a generator; 6) is a PC. 

 

 
Fig. 80. A scheme of the amplitude-frequency characteristic experiment. 
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Findings and Results of the Experiment 

The amplitude frequency of the waveguide while the generator is working at a 

different level of power is shown in Figures 81 and 82. 

 

 

 
Fig. 81. Amplitude-frequency characteristic for 20% of generator power. 

 

 Fig. 82. Amplitude-frequency characteristic for 40% of generator power. 

A piezo transducer produces through the waveguide a certain energy boost in a 

certain range. In this particular case, it is from 19.5 kHz to 22 kHz with the generator 

operating at 20 % of its power. By providing more power to the system, up to 22 kHz, 

displacements in the frequency range were so huge that they even caused impact on 

the acoustic sensor thus making it impossible to record the amplitude-frequency 

characteristic. However, in the range from 22 kHz to 30 kHz, the operation of the 

system was excellent and featured the maximum amplitude (in millivolts) at 23.2 kHz. 

This in principle matches the results obtained through the Finite Element Method with 
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some error which possibly occurred due to deformations suffered by the waveguide 

during measurements.  

Once the amplitude-frequency characteristic was found, the nodes and 

antinodes were determined at the maximum quantity (vibration to the sensor). The 

results of the measurements are presented in Fig. 83. 

 
Fig. 83. Nodes and antinodes at 23.185 kHz frequency, where 1) are nodes; 2) are 

anti-nodes. 

 

In Fig. 83, the standing waves can be seen with the system operating at a 

resonance frequency of 23.185 kHz. Displacements along the z (frontal) axis cause 

flexing vibrations to occur that have their own specific nodes and antinodes. At these 

antinodes, the ceramic rings (distinguished by the generation of extremely low friction 

when in contact with any other surfaces) tend to obtain the steady state. The variation 

in frequency makes them change the position. In general, they are positioned at steps 

of 20 mm. 

The experiment showed three contact points to exist. This serves as a suitable 

visual aid to show how many active contact areas there are that absorb energy due to 

their friction.  

5.5. Experimental Investigation of Waveguide Wire Influence to Surrounding 

Fluids 

The results described/presented in this chapter have been published in the 

following article: Kargaudas, V., Bubulis, A., Navickas, J., Vitkus, L., Venslauskas, 

M. Theoretical and Experimental Investigation of Tube-Shaped Waveguide Wire. 

Journal of Measurements in Engineering 5, 2017, 257–265.  

5.5.1. Mechanical and Thermal Influence on Blood 

During the operation of the device under research, the cavitation process and 

the friction between the waveguide and the surrounding fluids cause temperature to 

rise dramatically. Human body temperature above 42 °C is well known to cause 

fatality as red blood cells undergo in vivo hemolysis [99]. Taking this into 
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consideration, the next series of experiments on human blood were undertaken. For 

this purpose, Thermovisor FLIR SC7000, a generic generator, a PC and the tube-

shaped waveguide system was used. Fig. 84 shows the setup and a schematic view of 

the experiment accomplished. 

 
Fig. 84. The experimental setup where 1) is the waveguide in a tube filled with water;  

2) is the Thermovisor FLIR SC7000; 3) is a generator; 4) is a PC. 
 

 
Fig. 85. A schematic view of the experiment. 

 

The first experiment was carried out while using the operating system inside 

the tube with the diameter of 3 mm, which in its structure was very similar to a human 

artery. The data gathered in the course of the experiment revealed that it takes as little 

as 4 seconds to reach the lethal temperature of 42 °C (with the starting point being 

36 °C).  
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Fig. 86. Fluid temperature per time, °C. 

 

As the next step, a series of figures presented below indicates what happens to 

the red blood cells (erythrocytes) after exposing blood to ultrasound for 30 s. The 

same experiment setup as described in Figs. 84 and 85 was used. 

After blood had been affected with ultrasound, blood samples were gathered, 

and a thin 1-cell layer was spread on a transparent glass plate and checked with an 

electronic microscope. The pictures obtained with a microscope can be seen in Fig. 

87, Fig. 88 and Fig. 89. 

 
Fig. 87. A microscopic photo of erythrocytes exposed to ultrasound,  

the control group. 
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Fig. 88. A microscopic photo of erythrocytes exposed to ultrasound 

after 15 s of influence of the cavitation. 

 
Fig. 89. A microscopic photo of erythrocytes exposed to ultrasound 

after 30 s of influence of the cavitation. 

The microscopic pictures of human blood taken after exposing blood to 

ultrasound generated by the ultrasonic system with a tube-shaped waveguide revealed 

that, after 15 seconds of treatment, blood clots have been formed, and, after 30 seconds 

of treatment, some cells have totally been destroyed. Consequently, it is vital to find 

and establish the safe operating regime for the ultrasonic vascular clearing system of 

the innovative design offered here. Bearing all the above in mind, the experiments 

described above in Chapter 4.4.2 were undertaken. 

5.5.2. Determination of the Safe Operating Regime for the Ultrasound System 

The second experiment (within the same experimental setup as described in 

Chapter 4.4.1) was carried out with the aim to determine the safe (as the human body 

temperature above 42 °C is well known to cause fatality as red blood cells undergo in 

vivo hemolysis [99]) operating regime of the ultrasonic system under research. Figures 

90 and 91 show the results of the experiment.  
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Fig. 90. The temperature inside a tube when operating under pulsed regime with 60 % on, 

40 % off. 

 

Fig. 97. The temperature inside a tube when operating under pulsed regime with 40 % on, 

60 % off. 

It was experimentally found that the safe operating regime, i.e., one which 

enables to avoid heating of the environment to the temperature harmful for the 

medium (blood) and the surrounding tissues, is achieved when the system is 40 % on, 

and 60 % off over the period of 1 second. 
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5.6. Impedance Analysis of the Waveguide in Different Working Regimes 

Electrical impedance represents an electric method of finding the resonance 

frequency. Since the piezo ring is the electric condenser, measuring the impedance 

(reactance) allows finding the resonance frequencies of the system. Our measurements 

used the impedance analyzer Wayne Kerr 6500b. Its main parameters are presented in 

the table below. 

 

Table 3. Technical specifications of the impedance analyzer Wayne Kerr 6500b 

Frequency range, Hz 20 Hz to 20 mHz 

Accuracy of set frequency, % 0.005% 

Measurements per second 20 

 

The experimental platform was comprised of the following two components: 

the transducer and the waveguide attached to it together with the impedance analyzer 

Wayne Kerr 6500b that provided the power supply to the transducer. 

 
Fig. 92. The experimental setup, where 1) is the transducer; 2) are magnet holders; 3) is a 

tube-shaped waveguide; 4) is a plastic tube filled with water; 5) is the Wayne Kerr 6500b 

unit. 

 

 
Fig. 93. A schematic view of the experiment. 
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In the following Figures 94–99, the dotted line shows the impedance resistance 

while the solid line shows the phase.  

 
Fig. 94. Impedance analysis of the ultrasound system with a free waveguide in the air. 

Our impedance analysis showed three main resonance modes – at ~ 20.852 kHz, 

22.085 kHz and 23.807 kHz. These findings prove and (with a small deviation) 

confirm the results gathered during the experiment described in Chapter 4.3. The 

following figures show the results of the experiment that was carried out while using 

the waveguide in different positions: a) inserted in a tube filled with water b) bent 

c) clamped d) variations in between the first 3 positions.  

 

-100

-80

-60

-40

-20

0

20

40

60

80

100

200

400

600

800

1000

1200

1400

1600

1800

2000

15000 17500 20000 22500 25000 27500 30000

A
n

g
le

, 
d

eg

Im
p

ed
a

n
ce

, 
Ω

Frequency, Hz



 

 

 

100 

 

 
Fig. 95. Impedance analysis of the ultrasound system with a clamped-tip waveguide in the 

air. 
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Fig. 96. Impedance analysis of the ultrasound system with a bent waveguide in the air. 
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Fig. 97. Impedance analysis of the ultrasound system while the waveguide is placed in a tube 

filled with water. 
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Fig. 98. Impedance analysis of the ultrasound system while the bent waveguide is placed in a 

tube filled with water. 
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Fig. 99. Impedance analysis of the ultrasound system while the bent waveguide with a 

clamped tip is placed in a tube filled with water.  

Our analysis showed an obvious decrease in impedance under conditions when 

the waveguide is less likely to vibrate, i.e., when the waveguide under research is bent, 

clamped at its tip, inserted in the tube filled with water, etc.  
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Fig. 100. Impedance analysis of the ultrasound system while the waveguide with a 

waveguide is in different positions: 1) the black continuous line – empty and free; 2) the grey 

line – bent; 3) bent, placed into a tube filled with water and clamped. 

Fig. 100 indicates differences among the experimentally measured impedances 

with the waveguide placed in different positions. For instance, when the bent 

waveguide is tested, the first resonance mode is observed to be shifted by approx. 

0.4 kHz (i.e., the required frequency is decreased). Meanwhile, the experimentally 

determined resonance frequency of 23.185 kHz when suppressing the waveguide 

under three different regimes (i.e., bent, immersed in water and with its tip being 

immobilised) does not result in desirable displacements anymore. It means that, in this 

particular case, the drop in impedance requires for the frequency to be changed, i.e., 

the frequency of 21.25 kHz must be used instead as it had featured positive results. In 

general, this particular experiment led to the following observations: 
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1. The position of the waveguide inserted in the blood vessel can be, in 

principle, determined on the grounds of impedance while comparing the 

actually operating waveguide to the experimentally taken measurements of 

the bent and immobilized waveguide. The lower is the impedance (in 

ohms), the greater is the obstacle the waveguide is confronting. In the 

resonance mode, the totally diminished impedance indicates that the tip of 

the waveguide has confronted some hard object, such as plaque lamella. 

2. Certain positions of the waveguide (such as clamped at the tip, curved, etc.) 

cause the resonance frequency of the waveguide to vary. Observation of the 

impedance during the operation enables to work under the resonance 

regime at all times without the need to listen to the operation of the 

waveguide by using some external sensor or without using an X-ray, which 

in turn makes the operation safer and more patient-friendly. 

5.7. Summary of Chapter 4 

The results obtained through the Finite Element Method regarding 

displacements of each individual component of the waveguide – the tip of the tube, 

the lug and the screw – at the moment of operation, were proved experimentally in 

the thesis. The maximum displacement along the frontal z axis (7.02 μm) was found 

to occur at an operational frequency of 23.185 kHz.  

When testing the ultrasonic system in the natural operational medium, namely, 

human blood, the critical temperature of 42 degrees at the tip of the waveguide was 

achieved in less than 3 s with the waveguide being vibrated in a continuous mode. For 

this reason, it is absolutely necessary to ensure the pulsed operating regime, i.e., the 

one that enables to avoid heating of the environment (blood) and the surrounding 

tissues up to the harmful temperature. It was experimentally found that such an 

operating regime is achieved when the system is 40 % on, and 60 % off over the period 

of 1 second. 

The investigation of the ultrasonic system in several different positions (for 

instance, with the clamped tip in the air, in a tube filled with water, etc.) allowed 

finding changes in impedance resistance depending on the position of the tube. 

Although a higher number of similar experiments are required to be carried out while 

using more sensitive equipment, this is nevertheless a highly viable and promising 

data as the technique proposed herein allows for ‘anticipating’ if the waveguide is 

reclined against an occlusive malformation, if it is bent over while in the human artery, 

etc., which reduces the need for using harmful X-rays and the infusion of certain 

reagents into the human body.  
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CONCLUSIONS 

1. Currently, cardiovascular diseases represent the leading cause of death and 

disability among humans before their age of 65 years. Moreover, the World 

Health Organization predicts a further growth of cardiovascular morbidity. 

For this reason, the comprehensive review of the relevant literature and 

patient information was undertaken. As a result, it revealed an obvious need 

for the development of an invasive ultrasonic waveguide enabling to 

trespass the thrombus while operating at both frontal and radial directions, 

allowing to feed and deliver any required amount of drugs to the damaged 

site of the blood vessel, and at the same time enabling to suck away the 

scurf of the broken occluding malformations. 

2. The tube-shaped waveguide of the innovative design with the length of 

260 mm and thickness of 1.5 mm has been developed with the holes drilled 

at its operational tip through which an unlimited amount of drugs can be 

fed to the site of the waveguide operation. The FEM modeling of the 

simplified waveguide acting in close to real-life conditions (in a muscle-

surrounded blood vessel filled with blood) showed that the best frequency 

for the greatest amount of frontal and transverse pressure is 24.970 kHz. 

While working in such a resonant mode, the best waveguide tip point 

displacement towards the z axis (forward) is 8.3 μm. 

3. The mathematical modeling of the waveguide allowed to observe and 

explore the phenomenon of the caverns, i.e., in the course of cavitation at 

the end of the waveguide, the pocket containing tenuous gas is formed that 

lags behind the pocket containing tenuous gas and which formed at the tip 

of the waveguide moving in circles at a certain angle in theta degrees.  

Further calculations enabled us to obtain the width of such a cavern which 

was equal to 2.3 μm. 

4. The ultrasound effect on live human blood vessels was explored 

experimentally. A 2.4 times better response to contraction-inducing 

substances was observed in the case when a blood vessel was pre-treated 

with ultrasound. Measurements of the vibrations taken by a laser non-

contact measurement system at different parts of the ultrasonic system 

under research proved the results of computational modeling using FEM to 

be true. The maximum displacement at the frontal z axis under a resonance 

frequency of 23.815 kHz was found to amount up to 7.9 μm. The safe 

operating regime for the tube-shaped waveguide was established 

experimentally. Blood was found not to heat above the destructive 

temperature of 42 degrees Celsius at the site of the waveguide operation (at 

its tip) when the ultrasound generator was operated in a pulsed mode, i.e., 

40 % on, and 60 % off over its period of activity. 
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Annexes 

Annex 1 

Table 4.  Causes of death — diseases of the circulatory system, EU residents, 

2013 [1] 

GEO/TIME 2011 2012 2013 2014 

European Union (28 countries) 395.33 394.25 383.35 373.62 

Belgium 311.36 308.89 301.2 281.89 

Bulgaria 1,181.53 1,168.03 1,085.8 1,131.02 

Czech Republic 713.31 704.21 670.25 615.18 

Denmark 293.87 286.78 267.68 256.59 

Germany 406.25 404.07 433.08 403.54 

Estonia 752.45 745.41 718.16 699.56 

Ireland 352.8 351.32 343.85 309.91 

Greece 445.51 448.34 404.74 381.41 

Spain 271.78 271.03 253.07 244.99 

France 223.03 221.55 212.87 202.93 

Croatia 759.53 691.12 694.56 678.55 

Italy 343.8 343.58 322.79 310.14 

Cyprus 417.77 402.17 341.57 351.84 

Latvia 891.33 920.61 914.55 882.7 

Lithuania 911.45 900.56 894.09 848.82 

Luxembourg 365.93 332.2 310.76 296.93 

Hungary 778.94 779.4 778.24 761.52 

Malta 484.36 519.43 405.82 372.42 

Netherlands 293.45 288.58 282.75 271.73 

Austria 437.9 450.24 443.8 418.07 

Poland 638.89 652.35 635.34 591.39 

Portugal 315.74 323.6 304.77 305.76 

Romania 1,039.91 1,039.17 968.58 951.3 

Slovenia 463.12 462.42 451.54 451.26 

Slovakia 743.63 712.13 711.63 654.55 

Finland 422.21 411.85 388.22 378.79 

Sweden 376.23 371.39 354.05 338.32 

United Kingdom 284.96 284.6 276.4 264.94 
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Neighbour countries  

Liechtenstein 368.89 325.82 230.49 296.38 

Norway 314.59 311.69 288.5 272.63 

Switzerland 301.07 303.82 294.71 280.04 

Serbia 1,048.48 1,017.68 954.13 931.61 

Turkey 470.66 340.36 375.89 : 

 

Table. 5.  Causes of death — diseases of the circulatory system, EU residents, 

younger than 65 years, 2013 [1] 

GEO/TIME 2011 2012 2013 2014 

European Union (28 countries) 49.42 48.44 47.09 45.67 

Belgium 34.98 33.1 32.34 29.75 

Bulgaria 175.05 161.39 156.25 166.85 

Czech Republic 73.23 69.78 66.51 61.48 

Denmark 31.97 29.7 28.56 28.68 

Germany 41.3 40.49 40.13 38.77 

Estonia 96.69 97.08 97.67 94.3 

Ireland 37.5 37.07 35.37 34.01 

Greece 54.41 54.07 51.31 50.48 

Spain 28.16 27.91 27.67 27.37 

France 26.69 25.92 25.01 24.39 

Croatia 74.75 73.38 68.4 67.24 

Italy 28.7 28.11 26.7 26.15 

Cyprus 36.31 35.88 30.87 34.34 

Latvia 163.98 156.9 153.13 149.38 

Lithuania 145.81 142.2 133.85 127.43 

Luxembourg 35.02 33.19 35.17 28.85 

Hungary 117.15 111.77 105.81 106.87 

Malta 44.74 48.52 35.04 35.07 

Netherlands 30.29 29.9 27.56 25.93 

Austria 36.93 34.63 34.46 31.89 

Poland 91.48 95.17 91.47 84.75 

Portugal 29.68 28.39 28.88 34.25 

Romania 122.78 120.93 115.9 114.95 

Slovenia 42.51 37.75 36.03 35.38 
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Slovakia 87.94 84.78 85.63 80.11 

Finland 50.47 47.38 44.48 43.28 

Sweden 31.93 30.34 30.74 28.96 

United Kingdom 38.47 37.18 37.57 36.82 

Neighbour countries  

Liechtenstein 31.36 28.06 21.62 20.73 

Norway 27.99 29.12 24.85 23.86 

Switzerland 24.6 25.11 23.33 23.15 

Serbia 105.22 102.62 99.86 101.26 

Turkey 60.84 58.58 62.24 n/a 
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Annex 2 

Mathlab program Soundwaves in Tissue Limited Fluid calculations 
 

clc 
% Pradiniai ir Kraujo duomenys 
rn=0.075; % cm 
r1=0.3;  % cm min 
% r1=0.5; % cm max 
fH=21800; % Daznis 
lamdt=4.0;  % lambda cm, duotas atstumas z asyje 
ro=1000; % kraujo tankis kg/m3 
%av=0.0006; % amplitude x asyje cm 
%bv=0.00025; % amplitude y asyje cm 
om=2*pi*fH; %daznis rad/s 
cf=147000; %garso greitis kraujyje cm/s 
kf=om/cf; % 1/cm 
kk=4*pi^2/lamdt^2-kf^2;% bangos skaicius 
k=sqrt(kk); % 1/cm 
cs=om/k;  % redukuotas greitis 
cfssant=cf/cs; % greiciu santykis 

  
% Audinys 
E=0.6; % tamprumo modulis N/cm2 
Em2=E*10000; % tamprumo modulis N/m2 
ni=0.45; 
roi=1050; % audinio tankis kg/m3 
cik=(1-ni)*Em2/((1+ni)*(1-2*ni)*roi); 
cim=sqrt(cik);  % garso greitis m/s 
ci=cim*100 ; % greitis cm/s 
ki=om/ci; 
kap=sqrt(ki^2-(2*pi/lamdt)^2); % bangos skaicius 

  
% Santykiai 
ros=roi/ro; % tankiu santykis audinys/kraujas 
ks=kap/k; % bangu skaiciai 
chi=ks/ros; %  

  
% BESELIO funkcijos 
% argumentai 
krn=k*rn; % k*r0 
kr1=k*r1; % k*r1 
pr1=kap*r1; % kapa*r1 

  
Nma=3; % ! Formato aprasymas 
for nc=1: Nma 
% argumentas k*r0 
Inn=besseli(nc,krn); 
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Knn=besselk(nc,krn); 
Innb=besseli(nc-1,krn)-Inn/krn; % isvestine Pazymejimas b 
Knnb=-besselk(nc-1,krn)-Knn/krn; % isvestine 
% argumentas k*r1 
In=besseli(nc,kr1);% 
Kn=besselk(nc,kr1);%; 
Inb=besseli(nc-1,kr1)-In/kr1; % isvestine 
Knb=-besselk(nc-1,kr1)-Kn/kr1; % isvestine 
% argumentas kapa*r1  Pazymejimas p 
Jn=besselj(nc,pr1); 
Yn=bessely(nc,pr1); 
Jnb=besselj(nc-1,pr1)-Jn/pr1; % isvestine 
Ynb=bessely(nc-1,pr1)-Yn/pr1; % isvestine 

  
Mn=chi*(In*Jn-Kn*Yn)/(Jn^2+Yn^2); 
Nn=chi*(Kn*Jn+In*Yn)/(Jn^2+Yn^2); 
MMn(nc)=Mn; % Masyvas  Mn(n) 
NNn(nc)=Nn; % Masyvas  Nn(n) 
Mvn=Knnb/(Innb^2+Knnb^2); % v reiskia vingis, t.y. arg k*r0 
Nvn=Innb/(Innb^2+Knnb^2); 
Rn=Inb-Jnb*Mn-Ynb*Nn; 
Sn=Knb-Jnb*Nn+Ynb*Mn; 
RRn(nc)=Rn; % Masyvas  Rn(n) 
SSn(nc)=Sn; % Masyvas  Sn(n) 
XXn(nc)=Mvn*Rn-Nvn*Sn; 
YYn(nc)=Nvn*Rn+Mvn*Sn; 
end 
XXn; 
YYn; 
MMn; 
NNn; 
RRn; 
SSn; 

  
% Kavernu padetis ir ilgiai 
tekzL=0;  % teta z  vamzdelio kavernos padetis laipsniais 
tekL=140 ; % teta audinio kavernos padetis laipsniais 
tekz=tekzL*pi/180; % radianais 
tek=tekL*pi/180;  % radianais 

  
lamzL=120; % vamzd. kav. ilgis laipsniais 
lamL=115; % audinio kav. ilgis laipsniais 
lamz=lamzL*pi/180; % radianais 
lam=lamL*pi/180; % radianais 
spau=1; 

if spau==1 
disp(['Maziausios kavernos vertes parinktos']) 
disp(['  ']) 
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end 
disp(['Vamzdelio kavernos padetis tekz=',num2str(tekzL),... 
     ', kavernos ilgis lamz=',num2str(lamzL),' laipsniu']) 
disp(['Audinio   kavernos padetis tek=',num2str(tekL),... 
     ', kavernos ilgis lam=',num2str(lamL),' laipsniu']) 

  
%ha, qa, hb, qb skaiciavimai: teta=tt, lamda=md 
% Vamzdelio kavernos duomenys 
tt=tekz; 
md=lamz; 
for nc=1:Nma 
    for jc=1:Nma 
        if jc==nc 
        ha(jc,nc)=sin(2*nc*tt)*(sin(nc*md)/nc)*(cos(nc*md)-... 
        sin(nc*md)/(nc*md)); 
        else 
        ha(jc,nc)=sin((jc+nc)*tt)*sin((jc+nc)*md)/(jc+nc)+... 
        sin((jc-nc)*tt)*sin((jc-nc)*md)/(jc-nc)-... 
        

2*cos(nc*tt)*sin(nc*md)*sin(jc*tt)*sin(jc*md)/(nc*jc*md); 
        end 
        if jc==nc 
        qa(jc,nc)=md+cos(2*nc*tt)*sin(2*nc*md)/(2*nc)-... 
        2*(cos(nc*tt)*sin(nc*md))^2/(nc*nc*md); 
        else 
        qa(jc,nc)=cos((jc+nc)*tt)*sin((jc+nc)*md)/(jc+nc)+... 
        cos((jc-nc)*tt)*sin((jc-nc)*md)/(jc-nc)-... 
        

2*cos(nc*tt)*sin(nc*md)*cos(jc*tt)*sin(jc*md)/(nc*jc*md); 
        end 

         
        if jc==nc 
        hb(jc,nc)=md-cos(2*nc*tt)*sin(2*nc*md)/(2*nc)-... 
        2*(sin(nc*tt)*sin(nc*md))^2/(nc*nc*md); 
        else 
        hb(jc,nc)=cos((jc-nc)*tt)*sin((jc-nc)*md)/(jc-nc)-... 
        cos((jc+nc)*tt)*sin((jc+nc)*md)/(jc+nc)-... 
        

2*sin(nc*tt)*sin(nc*md)*sin(jc*tt)*sin(jc*md)/(nc*jc*md); 
        end 
        if jc==nc 
        qb(jc,nc)=sin(2*nc*tt)*(sin(nc*md)/nc)*(cos(nc*md)-... 
        sin(nc*md)/(nc*md)); 
        else 
        qb(jc,nc)=sin((jc+nc)*tt)*sin((jc+nc)*md)/(jc+nc)-... 
        sin((jc-nc)*tt)*sin((jc-nc)*md)/(jc-nc)-... 
        

2*sin(nc*tt)*sin(nc*md)*cos(jc*tt)*sin(jc*md)/(nc*jc*md); 
        end 
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    end 
    % Galiniu kavernu verciu koef. 
    hcp(nc)= sin(nc*tt+nc*md)-sin(nc*tt)*sin(nc*md)/(nc*md); 
    hcm(nc)= sin(nc*tt-nc*md)-sin(nc*tt)*sin(nc*md)/(nc*md); 
    qcp(nc)= cos(nc*tt+nc*md)-cos(nc*tt)*sin(nc*md)/(nc*md); 
    qcm(nc)= cos(nc*tt-nc*md)-cos(nc*tt)*sin(nc*md)/(nc*md); 
end 
haz=ha; % vamzdelio kavernos duomenys 
qaz=qa; 
hbz=hb; 
qbz=qb; 
hcpz=hcp; 
hcmz=hcm; 
qcpz=qcp; 
qcmz=qcm; 
% Audinio kavernos duomenys 
tt=tek; 
md=lam; 
for nc=1:Nma 
    for jc=1:Nma 
        if jc==nc 
        ha(jc,nc)=sin(2*nc*tt)*(sin(nc*md)/nc)*(cos(nc*md)-... 
        sin(nc*md)/(nc*md)); 
        else 
        ha(jc,nc)=sin((jc+nc)*tt)*sin((jc+nc)*md)/(jc+nc)+... 
        sin((jc-nc)*tt)*sin((jc-nc)*md)/(jc-nc)-... 
        

2*cos(nc*tt)*sin(nc*md)*sin(jc*tt)*sin(jc*md)/(nc*jc*md); 
        end 
        if jc==nc 
        qa(jc,nc)=md+cos(2*nc*tt)*sin(2*nc*md)/(2*nc)-... 
        2*(cos(nc*tt)*sin(nc*md))^2/(nc*nc*md); 
        else 
        qa(jc,nc)=cos((jc+nc)*tt)*sin((jc+nc)*md)/(jc+nc)+... 
        cos((jc-nc)*tt)*sin((jc-nc)*md)/(jc-nc)-... 
        

2*cos(nc*tt)*sin(nc*md)*cos(jc*tt)*sin(jc*md)/(nc*jc*md); 
        end 

         
        if jc==nc 
        hb(jc,nc)=md-cos(2*nc*tt)*sin(2*nc*md)/(2*nc)-... 
        2*(sin(nc*tt)*sin(nc*md))^2/(nc*nc*md); 
        else 
        hb(jc,nc)=cos((jc-nc)*tt)*sin((jc-nc)*md)/(jc-nc)-... 
        cos((jc+nc)*tt)*sin((jc+nc)*md)/(jc+nc)-... 
        

2*sin(nc*tt)*sin(nc*md)*sin(jc*tt)*sin(jc*md)/(nc*jc*md); 
        end 
        if jc==nc 
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        qb(jc,nc)=sin(2*nc*tt)*(sin(nc*md)/nc)*(cos(nc*md)-... 
        sin(nc*md)/(nc*md)); 
        else 
        qb(jc,nc)=sin((jc+nc)*tt)*sin((jc+nc)*md)/(jc+nc)-... 
        sin((jc-nc)*tt)*sin((jc-nc)*md)/(jc-nc)-... 
        

2*sin(nc*tt)*sin(nc*md)*cos(jc*tt)*sin(jc*md)/(nc*jc*md); 
        end 

        
    end 
    % Galiniu kavernu verciu koef. 
    hcp(nc)= sin(nc*tt+nc*md)-sin(nc*tt)*sin(nc*md)/(nc*md); 
    hcm(nc)= sin(nc*tt-nc*md)-sin(nc*tt)*sin(nc*md)/(nc*md); 
    qcp(nc)= cos(nc*tt+nc*md)-cos(nc*tt)*sin(nc*md)/(nc*md); 
    qcm(nc)= cos(nc*tt-nc*md)-cos(nc*tt)*sin(nc*md)/(nc*md); 
 end 
ha; 
qa; 
hb; 
qb; 

  
% LYGTYS 
a11=haz(1,1)*XXn(1)+hbz(1,1)*YYn(1); 
a12=haz(2,1)*XXn(1)+hbz(2,1)*YYn(1); 
a13=haz(3,1)*XXn(1)+hbz(3,1)*YYn(1); 
a14=qaz(1,1)*XXn(1)+qbz(1,1)*YYn(1); 
a15=qaz(2,1)*XXn(1)+qbz(2,1)*YYn(1); 
a16=qaz(3,1)*XXn(1)+qbz(3,1)*YYn(1); 

  
a21=haz(1,2)*XXn(2)+hbz(1,2)*YYn(2); 
a22=haz(2,2)*XXn(2)+hbz(2,2)*YYn(2); 
a23=haz(3,2)*XXn(2)+hbz(3,2)*YYn(2); 
a24=qaz(1,2)*XXn(2)+qbz(1,2)*YYn(2); 
a25=qaz(2,2)*XXn(2)+qbz(2,2)*YYn(2); 
a26=qaz(3,2)*XXn(2)+qbz(3,2)*YYn(2); 
a31=haz(1,3)*XXn(3)+hbz(1,3)*YYn(3); 
a32=haz(2,3)*XXn(3)+hbz(2,3)*YYn(3); 
a33=haz(3,3)*XXn(3)+hbz(3,3)*YYn(3); 
a34=qaz(1,3)*XXn(3)+qbz(1,3)*YYn(3); 
a35=qaz(2,3)*XXn(3)+qbz(2,3)*YYn(3); 
a36=qaz(3,3)*XXn(3)+qbz(3,3)*YYn(3); 

  
a41=haz(1,1)*YYn(1)-hbz(1,1)*XXn(1);  

a42=haz(2,1)*YYn(1)-hbz(2,1)*XXn(1);  

a43=haz(3,1)*YYn(1)-hbz(3,1)*XXn(1); % Linkėjimai vis dar 

skaitantiems cia 
a44=qaz(1,1)*YYn(1)-qbz(1,1)*XXn(1); 
a45=qaz(2,1)*YYn(1)-qbz(2,1)*XXn(1);  
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a46=qaz(3,1)*YYn(1)-qbz(3,1)*XXn(1); 
a51=haz(1,2)*YYn(2)-hbz(1,2)*XXn(2);  
a52=haz(2,2)*YYn(2)-hbz(2,2)*XXn(2); 
a53=haz(3,2)*YYn(2)-hbz(3,2)*XXn(2); 
a54=qaz(1,2)*YYn(2)-qbz(1,2)*XXn(2); 
a55=qaz(2,2)*YYn(2)-qbz(2,2)*XXn(2); 
a56=qaz(3,2)*YYn(2)-qbz(3,2)*XXn(2); 
a61=haz(1,3)*YYn(3)-hbz(1,3)*XXn(3);  

a62=haz(2,3)*YYn(3)-hbz(2,3)*XXn(3); 
a63=haz(3,3)*YYn(3)-hbz(3,3)*XXn(3);  
a64=qaz(1,3)*YYn(3)-qbz(1,3)*XXn(3); 
a65=qaz(2,3)*YYn(3)-qbz(2,3)*XXn(3); 
a66=qaz(3,3)*YYn(3)-qbz(3,3)*XXn(3); 

  
%    g1z     g2z     e1z     e2z     e3z     g1       g2     

g3      e1      e2     
Ama=[a11     a12     a14     a15     a16   hb(1,1) hb(2,1) 

hb(3,1) qb(1,1) qb(2,1); 
     a21     a22     a24     a25     a26   hb(1,2) hb(2,2) 

hb(3,2) qb(1,2) qb(2,2); 
     a31     a32     a34     a35     a36   hb(1,3) hb(2,3) 

hb(3,3) qb(1,3) qb(2,3); 
     a41     a42     a44     a45     a46   ha(1,1) ha(2,1) 

ha(3,1) qa(1,1) qa(2,1); 
     a51     a52     a54     a55     a56   ha(1,2) ha(2,2) 

ha(3,2) qa(1,2) qa(2,2); 
     a61     a62     a64     a65     a66   ha(1,3) ha(2,3) 

ha(3,3) qa(1,3) qa(2,3); 
   hcpz(1) hcpz(2) qcpz(1) qcpz(2) qcpz(3)  0       0       0        

0      0     ;   % vamzd. kav.virs 
   hcmz(1) hcmz(2) qcmz(1) qcmz(2) qcmz(3)  0       0       0        

0      0     ;  % vamzd. kav. apac 
     0       0       0       0       0     hcp(1) hcp(2) 

hcp(3)    qcp(1) qcp(2)  ; % audinio kav. virs 
     0       0       0       0       0     hcm(1) hcm(2) 

hcm(3)    qcm(1) qcm(2) ]; % audinio kav. apac  

  
e3=-0.096921; 
g3z=-2.2104; 

  
 Bma=[-pi*YYn(1)-g3z*a13-e3*qb(3,1); -g3z*a23-e3*qb(3,2) ; -

g3z*a33-e3*qb(3,3) ; ... 
     pi*XXn(1)-g3z*a43-e3*qa(3,1);-g3z*a53-e3*qa(3,2) ; -

g3z*a63-e3*qa(3,3); ... 
     -g3z*hcpz(3); -g3z*hcmz(3); -e3*qcp(3); -e3*qcm(3) ]; 
egs=Ama\Bma; 
egslin=egs'; 
g1z=egs(1); 
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g2z=egs(2); 
e1z=egs(3); 
e2z=egs(4); 
e3z=egs(5); 
g1=egs(6); 
g2=egs(7); 
g3=egs(8); 
e1=egs(9); 
e2=egs(10); 
% Furje koef. an, bn, anz, bnz pagal ju aprasyma 
for jn=1:3 
    San(jn)=g1*ha(1,jn)+g2*ha(2,jn)+g3*ha(3,jn)+... 
        e1*qa(1,jn)+e2*qa(2,jn)+e3*qa(3,jn); % =pi*an 
    Sbn(jn)=g1*hb(1,jn)+g2*hb(2,jn)+g3*hb(3,jn)+... 
        e1*qb(1,jn)+e2*qb(2,jn)+e3*qb(3,jn);  % =pi*bn 
    Sanz(jn)=g1z*haz(1,jn)+g2z*haz(2,jn)+g3z*haz(3,jn)+... 
        e1z*qaz(1,jn)+e2z*qaz(2,jn)+e3z*qaz(3,jn); % =pi*anz 
    Sbnz(jn)=g1z*hbz(1,jn)+g2z*hbz(2,jn)+g3z*hbz(3,jn)+... 
        e1z*qbz(1,jn)+e2z*qbz(2,jn)+e3z*qbz(3,jn);  % =pi*bnz      

  
end 
Anfu= San/pi; % Furje eilutes koef. an 
Bnfu=Sbn/pi; % Furje eilutes koef. bn 
Anfuz= Sanz/pi; % Furje eilutes koef. anz - su zvaigzdute 
Bnfuz=Sbnz/pi; % Furje eilutes koef. bnz - su zvaigzdute 

  
% KONTROLE 
Delta=[1, 0 ,0]; 
nj=3; 
kontr1=Anfuz(nj)*XXn(nj)+Bnfuz(nj)*YYn(nj)+Bnfu(nj)+Delta(nj)*

YYn(nj); % turi buti 0 
kontr2=Anfuz(nj)*YYn(nj)-Bnfuz(nj)*XXn(nj)+Anfu(nj)-

Delta(nj)*XXn(nj); % turi buti 0 

  
for jn=1:3 
    var=(RRn(jn))^2+(SSn(jn))^2; 
    ccnbr=-(Bnfu(jn)*RRn(jn)+Anfu(jn)*SSn(jn))/var; 
    CCnbr(jn)=ccnbr; 
    ddnbr=(Bnfu(jn)*SSn(jn)-Anfu(jn)*RRn(jn))/var; 
    DDnbr(jn)=ddnbr; 

    AAnbr(jn)=ccnbr*MMn(jn)-ddnbr*NNn(jn); 

    BBnbr(jn)=ccnbr*NNn(jn)+ddnbr*MMn(jn); 
end 
CCnbr;  

DDnbr;  
CCn=CCnbr*cs;  

DDn=DDnbr*cs; 
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disp(['Sprendinio skystyje konst. C1=',num2str(CCn(1)),';  

C2=',num2str(CCn(2)),';  C3=',num2str(CCn(3))]) 
disp(['Sprendinio skystyje konst. D1=',num2str(DDn(1)),';  

D2=',num2str(DDn(2)),';  D3=',num2str(DDn(3))]) 
AAnbr;  
BBnbr;  
omka=om/kap;  
AAn=AAnbr*omka;  
BBn=BBnbr*omka;  
disp(['Sprendinio audinyje konst. A1=',num2str(AAn(1)),';  

A2=',num2str(AAn(2)),';  A3=',num2str(AAn(3))]) 
disp(['Sprendinio audinyje konst. B1=',num2str(BBn(1)),';  

B2=',num2str(BBn(2)),';  B3=',num2str(BBn(3))]) 

  
for nc=1:3 
Ife=besseli(nc,krn);  
Kfe=besselk(nc,krn);  
CIK(nc)=CCn(nc)*Ife-DDn(nc)*Kfe;  
SIK(nc)=CCn(nc)*Kfe+DDn(nc)*Ife;  
Ife1=besseli(nc,kr1);  

Kfe1=besselk(nc,kr1);  
CIK1(nc)=CCn(nc)*Ife1-DDn(nc)*Kfe1;  
SIK1(nc)=CCn(nc)*Kfe1+DDn(nc)*Ife1;  

  
Jfe=besselj(nc,kr1);  
Yfe=bessely(nc,kr1);  
CAB(nc)=ros*(AAn(nc)*Jfe+BBn(nc)*Yfe); 

SAB(nc)=ros*(AAn(nc)*Yfe-BBn(nc)*Jfe);  

  
Jfk=besselj(nc,pr1);  

Yfk=bessely(nc,pr1);  

Alfan(nc)=AAn(nc)*Jfk+BBn(nc)*Yfk;  

Betan(nc)=BBn(nc)*Jfk-AAn(nc)*Yfk; 
end 
CIK; 
SIK; 
CIK1; % Cn*In-Dn*Kn kai r=r1; koef. prie slegio cos(n*teta) 
SIK1; % Cn*Kn+Dn*In kai r=r1; koef. prie slegio sin(n*teta) 
CAB; 
SAB; 
Alfanr=Alfan*ros; % tankiu santykis*alfan; koef. prie slegio 

cos(n*teta) 
Betanr=Betan*ros; % tankiu santykis*betan; koef. prie slegio 

sin(n*teta) 
KnnG=besselk(1,krn); % Beselio funkcija K1 kai r=r0 
KnnbG=-besselk(0,krn)-KnnG/krn;  
dbsk=cs*KnnG/KnnbG; %daugiklis skaciuojant slegi kai r=r0, 

begaliniame sk. 



 

 

 

128 

 

KnnG1=besselk(1,kr1); % Beselio funkcija K1 kai r=r1 
dbsk1=cs*KnnG1/KnnbG; %daugiklis skaciuojant slegi kai r=r1, 

begaliniame sk. 

  
% SLEGIS KAIP KAMPO FUNKCIJA - - - - - - 
Njt=500; 
for jt=1:Njt % slegis kaip kampo funkcija 
    tet=-pi+2*pi*(jt-1)/(Njt-1); 
    TetL(jt)=tet*180/pi; 
    preds=CIK(1)*cos(tet)+CIK(2)*cos(2*tet)+CIK(3)*cos(3*tet)-

... 
    SIK(1)*sin(tet)-SIK(2)*sin(2*tet)-SIK(3)*cos(3*tet); % 

r=r0 
    

preds1=CIK1(1)*cos(tet)+CIK1(2)*cos(2*tet)+CIK1(3)*cos(3*tet)-

... 
    SIK1(1)*sin(tet)-SIK1(2)*sin(2*tet)-SIK1(3)*cos(3*tet); % 

r=r1 
    Preds(jt)=preds; % redukuotas skyscio slegis kai r=r0 
    Preds1(jt)=preds1; % redukuotas skyscio slegis kai r=r1     
    Predbg(jt)=dbsk*cos(tet); % red. slegis kai r=r0 

begaliniame sk. 
    Predbg1(jt)=dbsk1*cos(tet); % red. slegis kai r=r1 

begaliniame sk.     
end 
TetL; 
Preds; 
Predbg; 

  
% SLEGIS KAIP ATSTUMO FUNKCIJA (kampas tecL=const) 
Njr=1000; % Parinkti varsl=3 
rga=0.5; % cm,spindulys  
tecL=0;  % kampas 
tec=pi*tecL/180; % tas pats kampas radianais 
for jr=1:Njr 
    rs=(rn+(rga-rn)*(jr-1)/(Njr-1))/rn; % santykinis spindulys 

r/r0 
    rsa=k*rs*rn; % Beselio funkcijos argumentai kai r<r1 
    rsb=kap*rs*rn; % Beselio funkcijos argumentai, kai r>r1 
    Rs(jr)=rs; 
    if rs<(r1/rn) 
    prsc=(CCn(1)*besseli(1,rsa)-

DDn(1)*besselk(1,rsa))*cos(tec)+... % redukuotas slegis 

skystyje kaip r funkcija 
    (CCn(2)*besseli(2,rsa)-

DDn(2)*besselk(2,rsa))*cos(2*tec)+... 
    (CCn(3)*besseli(3,rsa)-DDn(3)*besselk(3,rsa))*cos(3*tec)-

... 
    (CCn(1)*besselk(1,rsa)+DDn(1)*besseli(1,rsa))*sin(tec)-... 
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    (CCn(2)*besselk(2,rsa)+DDn(2)*besseli(2,rsa))*sin(2*tec)-

... 
    (CCn(3)*besselk(3,rsa)+DDn(3)*besseli(3,rsa))*sin(3*tec); 
    Prsc(jr)=prsc; 
    else 
    

prac=(AAn(1)*besselj(1,rsb)+BBn(1)*bessely(1,rsb))*cos(tec)+..

.      
    

(AAn(2)*besselj(2,rsb)+BBn(2)*bessely(2,rsb))*cos(2*tec)+... 
    

(AAn(3)*besselj(3,rsb)+BBn(3)*bessely(3,rsb))*cos(3*tec)+... 
    (AAn(1)*bessely(1,rsb)-BBn(1)*besselj(1,rsb))*sin(tec)+... 
    (AAn(2)*bessely(2,rsb)-

BBn(2)*besselj(2,rsb))*sin(2*tec)+... 
    (AAn(3)*bessely(3,rsb)-BBn(3)*besselj(3,rsb))*sin(3*tec); 

%red. slegis audinyje kaip r funkcija, nepadaugintas is tankiu 

sant. 
    Prsc(jr)=ros*prac; % red. slegis audinyje kaip r funkcija 
    end 
    KnnF=besselk(1,rsa); % Beselio funkcija K1  
    prbga=cs*KnnF/KnnbG; % red. slegis begaliniame skystyje 
    Prbga(jr)=prbga; 
end 
Rs; 
Prsc; 
% PARINKTI varsl 
varsl=3; 
if varsl==1 
plot(TetL,Preds,TetL,Predbg,'--') 
grid on 
title('SLEGIS ANT VAMZDELIO.') 
xlabel('Kampas teta laipsniais') 
ylabel('Redukuotas slegis') 
text(-120,5000,'begaliniame skystyje') 
text(10,16000,'su kavernomis') 
end 
if varsl==2 
plot(TetL,Preds1,TetL,Predbg1,'--') 
grid on 
title('SLEGIS prie AUDINIO.') 
xlabel('Kampas teta laipsniais') 
ylabel('Redukuotas slegis') 
text(-140,1800,'begaliniame skystyje') 
text(-45,350,'su kavernomis') 
end 
if varsl==3 
plot(Rs,Prsc,Rs,Prbga,'--' ) 
grid on 
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title('SLEGIS. Punktyru - begaliniame skystyje ') 
xlabel('Santykinis atstumas r/r0') 
ylabel('Redukuotas slegis') 
text(-140,1800,'begaliniame skystyje') 
text(-45,350,'su kavernomis') 
end 

  
clear 
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