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Notation

k(o)

#{-}
1{-}

the set of positive integers

the set of nonnegative integers

the set of real numbers

the set of complex numbers

some positive integer

generic vector (sq, sy, ...,5,) € Np

the sum 1sy + - - - +nsy

the symmetric group of permutations of order n

the class of assemblies

the set of assemblies of order n,G,, C G

the cardinality of the set G,

generic element of the G,

the number of components of size jino,1 < j < n;k]-(a) >0
the component vector (k1(0), ..., k(7))

the number-of-component function kq (¢) + - - - + ky (o)
the cardinality of a set

the indicator function

the Euler gamma function

the analog of the symbol O(+)

means a(x) < b(x) and b(x) < a(x)

means J}iilgo(a(x)/b(x)) =1






Introduction

The dissertation work is devoted to random decomposable combinatorial structures. The
highly developed probabilistic number theory dealing with product decomposition of a
random natural number into primes served as a great pattern for our research. In particular,
we concentrate on additive statistics, therefore it is worth to recall corresponding results
from number theory.

We call a function f : N — C additive if f(nm) = f(n)+ f(m) whenever n,m are
coprime integers. Established by P. Turdn ([54]) and generalized by ]. Kubilius in 1956 (see
[30] for an historical account) the famous Turdn-Kubilius inequality states that

Y If(n) — A(x)]* < xB(x)?

n<x
uniformly for all real x > 2 and additive functions f. Here, the estimates of the "expecta-
tion" A(x) and the "variance" B(x)? are defined as

k
kax p

B<x)2 = Z |f(pk>|2

k
kax p

7

where p are prime numbers.

The system of events {n : n = 0mod p}, p < x, when n is taken uniformly from the
set {1,2,...,[x]} is dependent; however, the inequality demonstrates that the variance of
f(n) can be estimated via a sum of variances of the summands. In this regard, the result
has a form close to that for the sums of independent random variables. In fact, the absolute
constant in the symbol < absorbed influence of dependency. This phenomenon repeated
itself in the subsequent generalizations of the above inequality. We gained a lot studying
the paper by A. Biré and T. Szamuely [7] exploring the case when a natural number # is
taken with a weighted probability.
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A higher power analogue of the Turan-Kubilius inequality was established by P.D.T.A. El-
liott in [12]. It has the following form:

Let « be a real number. Then there is a constant c, depending at most upon w«, so that the

inequality

LY If(n) = A" < c (1)

n<x

B + Eyeey p HFGII =2,
B(x)* ifo<a<2,

holds uniformly for all additive functions f and real x > 2.

Furthermore, Elliott established an inequality, dual to (1), in [13]. The method of dual-
ization is explained in [11], and the whole monograph [13] is about duality and its appli-
cations. That also gave us an impulse to obtain some combinatorial analogs of this type.
Various generalizations of the power moment estimates (1) followed. We mention papers
by I.Z. Ruzsa [51] and K.-H. Indlekofer [20] to list but few.

The Turan-Kubilius inequality was also extended to additive functions defined on arith-
metical semigroups (for definitions and motivation, we refer to books [28], [29]). A lot of
work has been done by, for example, Z. Juskys ([25]) and J.-L. Mauclaire ([45], [46]). Ele-
ments of an additive semigroups can be interpreted as weighted multisets laying within
the frames of combinatorics. Taking them at random, one can raise and solve problems
analogues to that cultivated in probabilistic number theory. The variance of an additive
function defined in such semigroups was examined by W.-B. Zhang ([65]). The result was
considerably extended by K.-H. Indlekofer’s student S. Wehmeier in the dissertation [56]
and in paper [57] a result of which we now present.

An additive arithmetic semigroup G is a monoid with a countable generating set P of "primes”
which admits a degree mapping 0 : G — INo such that d(ab) = 9d(a) + () for all a,b € G,
d(p) > 1forany p € P and that G(n) := #{a € §|o(a) = n} is finite for all n. Let a function
f+§ — Rbesuch that f(a) = Y, f(p) forall a € G. Assume that G(n) = Agq"(1+ R(n))
with constants A > 0, ¢ > 1. Suppose Chebyshev bound condition P(n) < G(n)/n, where
P(n) :=#{p € P|9(p) = n}, and the condition R(n) = O(log(n)~') holds. Let

1
A i= gy, T fPIG(=a(p)
and
Bn? = 5o L wren=a()
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Then we have

In this research, the main goal was finding the most general conditions assumed for the
semigroup under which an analogue of the Turdn-Kubilius still holds. Similar task but for
another class of combinatorial structures is raised in the present thesis.

The success, importance and great scale of applications of the Turan-Kubilius inequality
and it’s generalizations in number theory gives us a believe that analogues established for
additive functions defined on various combinatorial structures will be of great value. The
first such appearance has been made by E. Manstavic¢ius in paper [31] devoted to random
permutations. To display the result, we introduce some notation and definitions.

Let S;, be the symmetric group of permutations ¢ acting on # letters. If the canonical
representation of o € S into a product of independent cycles has k;(c) € INg cycles of
length 1 < j < n, then the so-called cycle vector

k(o) := (ki(0), ... kn(0))

satisfies a relation £(k(c)) = n for each ¢ € S,. Here £(5) := 1s; + -+ + ns, if § =
(s1,-.-,8n) € INjj. Further, given a real two-dimensional array {/;(s)}, where 1 < j < n
and s > 0, such that /;(0) := 0 for all j < n, we define an additive function  : S, — R by

setting

h(o) ==Y hj(ki(0)). ()

j<n

One can easily see resemblance to a number-theoretic additive function if cycles of dif-
ferent lengths are understood as analogy of coprime numbers.

Now, Corollary 5.3 in [31] can be perceived as the following result.

For an additive function h : S, - R, A € R and a > 0 we have

% Y [h(o) — AI* < E| Y hi(g) — Al 3)

‘€S, j<n

uniformly for all n € N, where §j, j < n, are independent Poisson random variables with parame-
ters 1/, E denotes the expectation and constant in < depends only on a.

As noted in [31] and showed in [35], the inequality (3), using well known results re-
garding moments of sums of independent random variables (see, for example, [48]), leads
to:
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For an additive function h : S;, — R, and a > 0 we have

}—Z|M®—AM“< B+ B,(a) ifa>2,
|

mscs, BX if0<a<2,

uniformly for all n € IN. Here the constant in < depends only on «,

[ (k)|
F

h]k(lj)’ Bu(a) := Z

jk<n

A, = Z

jk<n

and By, := (Bn(z))l/z.

The latter result is nothing less but an analogue of Elliott’s result (1) for additive func-
tions defined on random permutations. Subsequently, an inequality on random permuta-
tions, taken according to the Ewens measure, was established by G.J. Babu and E. Manstavi¢ius
[3]. Later an inequality on mappings of a finite set into itself was proved by Manstavicius
[41]. We proceed the work by obtaining moment estimates, not yet known, for the class of
combinatorial structures, called assemblies.

By the definition given in Section 2.2 of the book [2], an assembly is a construction
defined on a finite set by its partition into blocks and some combinatorial structure intro-
duced in all these blocks, afterwards called components of the assembly. In permutations
components are cycles, in labeled graphs they are connected components and so on. More
examples are given in the Chapter 2 of the present thesis. The notion of an additive func-
tion on assemblies remains the same as in the case of permutations; it suffice to substitute
the cycle vector by a corresponding component vector. Taking an assembly from a given
class at random we go ahead in obtaining moment estimates.

The dissertation is organized as follows:

Chapter 1 deals with additive functions defined on the symmetric group, where a per-
mutation is taken according to a generalized Ewens probability. Here we establish an upper
bound of its variance via a sum of variances of the summands. The idea of our approach
goes back to the above mentioned paper by Biré and Szamuely [7].

Chapter 2 presents an analogue of Turdn-Kubilius inequality for an additive function
defined on random assemblies. The result generalizes estimates obtained earlier in the
cases of permutations and mappings of a finite set into itself, but is also slightly different
from the results obtained in Chapter 1.

Chapter 3 manages the additive semigroup of vectors with non-negative integer co-
ordinates endowed with the Ewens Probability Measure, which plays an important role
as a probabilistic space for many statistical models. In them, additive and multiplicative
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statistics defined on the semigroup having decompositions via dependent random vari-
ables raise an interest from many points of view. We obtain upper estimates of the power
moments of additive statistics defined on the semigroup. Our result is an analogue of the
result obtained by Elliott in [12].
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Actuality

Random discrete structures appear modelling various objects in biology, computer science,
physics, etc. As witnessed by H. Crane in the survey paper [10], the only Ewens Sam-
pling Formula and distributions defined via it contribute to the foundations of evolutionary
molecular genetics, the neutral theory of biodiversity, Bayesian nonparametrics, combina-
torial stochastic processes. They also emerge from fundamental concepts in probability
theory, algebra, and number theory. Value distribution of additive statistics defined on de-
composable combinatorial structures is a fairly important and complex problem. Moment
estimates of the statistics become very desirable dealing with it. One can observe that the
latter line is less developed in probabilistic combinatorics than that in probabilistic number
theory (papers by P. Turan, ]. Kubilius, PD.T.A. Elliott, I.Z. Ruzsa, I. Kétai, K.-H. Indlekofer,
etc.) and that in the parallel theory of additive arithmetical semigroups (W.-B. Zhang,
S. Wehmeier, etc.). A few papers by E. Manstavicius devoted for random mappings do
not fill up this gap. It is our main purpose to extend the results of the mentioned authors.

Methods

We use combinatorial, probabilistic and analytical methods. The technical approaches ap-
plied in probabilistic number theory are adopted and further enriched.

Novelty

All the results stated in this dissertation are new.
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Chapter 1

Variance of additive functions
with respect to a generalized

Ewens probability

1.1 Basics and motivation

Let S, be the symmetric group of permutations ¢ acting on 7 letters. If the canonical rep-
resentation of o € S, into a product of independent cycles has k;(c) € Ny cycles of length
1 < j < n, then the so-called cycle vector

k(o) := (k1(0), ..., ka(0))

satisfies a relation ¢(k(c)) = n for each ¢ € S,. Here £(5) := 1sy+ -+ ns, if § =
(s1,...,51) € IN§. As in (2), an additive function h : S, — R is defined by a real two-
dimensional array {h]-(k)}, where j,k € N, jk < n, and hj(O) :=0forall j < n, by setting

Apart from the most popular example of the number-of-cycles function w(c) := k(o) +
-+ +ky(0), they appear in many algebraic and combinatorial problems. In the so-called
Erd&s-Turédn problem they are used to approximate the logarithm of group theoretical order
of o € Sy (see [63], [18] and the references therein). Particular additive functions appear
in physical models as a part of Hamiltonians in the Bose gas theory (see, for example, [5]).

11



Chapter 1. Variance of additive functions with respect to a generalized Ewens probability

Moreover, one may mention additive functions related to a permutation matrix
M(o) := (mjj(0)), 1<ij<n, ceS,.

Here m;;(c) := 1if i = ¢(j) and m;;(0) := 0 otherwise. It is known (see, for example, [64])
that the characteristic polynomial is

Zn(x;0) = det(I — xM(0)) = [J(1 — »/)N).

j<n

Let e2™%(%) where ¢j(c) € [0,1) and j < n, be its eigenvalues. A lot of work has been
done on log |Z,(x; )|, imaginary part of log Z, (x; ) or the trace-related mappings

Y f(oj(0) = Thi@) © £(5).

j<n j<n 0<s<j—1

where f : [0,1] — R is an arbitrary function. We just mention [1], [58], [64], and [14] to
name but a few. The papers confirm a need to examine the value distribution of general
additive functions (separable statistics, as the authors of [18] propose) as n — oo if ¢ is taken
at random. One can also observe the recent trend to do this with respect to a generalized
Ewens probability measure endowed in S, (see, for example, [6], [47], [44], [14], [8]). The
measure has been introduced in 2002 [32] where some limit theorems for additive functions
have been proved. Later this line of research was continued in a few of E. Manstavicius
papers.

Let0; >0,1<j<mn, be an arbitrary, maybe, dependent on 7, and not identical to zero
(9

sequence, then the generalized Ewens probability measure v, ’ is defined by

Oen = mom) ' TT67,  am= ¥ ()L ces,

j<n L(5)=nj<n J ]

provided that Q(n) > 0 ]
If 6; = 6 > 0, some fixed constant, then 1/,59) =: v,(lg) is the classical Ewens measure on

S,. In this case

. 1.1)

Q)=o) = (1)

and the cycle vector has a distribution

W (ko) = 5) = 1{4(5) = m(m) " T] - (]) B({s)), (12)

j<n ]

12



1.1. Basics and motivation

where 5 € ), := {5 € N} : £(5) = n}. The expression of probabilities P, ({5}) ascribed to
§ € )y is well known as the Ewens Sampling Formula (see [15]). i

In the present chapter, we focus on the estimates of the variance V,(qg)h(a) with respect
to 1/,(,6). This seemingly simple problem concerns a variance of a sum of dependent random
variables, thus, an estimate of V,(f)h((r) in terms of a sum of variances of the summands
is not that easy if general weights 6;, j < n, are involved. Even for the Ewens measure, if
t; = 0 <1, we had no decent result so far. Asitisshown in Lemma 3.2 in [4], we can expose
explicit formulas for factorial moments of additive function #, but no estimates follow. The
more simple case with 6 > 1 has been dealt with in [27]. The second moment estimates
are very useful for proving the law of large numbers (see, for example, [27]). Together with
the total variation approximation of the distribution of the first cycle vector coordinates by
independent random variables (see [38]), they comprise an instrument allowing to estimate

the error appearing by truncating sums over long cycles (see, for example, [9]).

13



Chapter 1. Variance of additive functions with respect to a generalized Ewens probability

1.2 Results

Our first theorem is for simplicity stated for a completely additive function defined via
hi(s) = sa; with arbitrary a; € R, where j < nand s > 0, and for the Ewens probability. Let
E{) g(o) and v g(0) be the expectation and the variance with respect to v of a random

variable g : S, — R and

7 O(n - j)
B2:=B3(h):=0Y L ]
n 1’!( ) ]Sn ] @(n)
We will establish in the next section that
R = B2 — Y V¥ (aik;(0)) = O(n~min{10} 2) (1.3)

jsn

if n — co. This motivates the inequalities proved below and a fairly frequent use of B, as
a scaling sequence in limit theorems for /(o) as well. As it has been shown in [1], for a
particular class of additive functions h(c), the relation V,(f)h(a) ~ B2(h) as n — oo holds
but this is not the case in general. A complete characterization of the additive functions
h(o) satisfying the latter relation for variances seems to be an uneasy problem.

Theorem 1.1. There exists an absolute constant C > 1 such that, for any completely additive
function h(c), 6 > 0, and forany n > 1,

vPnh(e) < CB2. (1.4)

If 6 > 1, one can take C = 2. For large n, even smaller constants can be obtained.
Indeed, if
7,(6) = sup {V,(f)h(a)Bn(h)*z h £ o},

then 7,(1) =3/2+O(n~ 1) and 7,(2) = 4/3 + O(n~1) (see [33] and [37]).
To simplify B2, one can apply the asymptotic formula

O(n—j)/O(n) = (1—j/n)’" (1 +0((n —j)—l)), 1<j<n-1, (15)

14



1.2. Results

following from the well known (see [17]) estimate

0—1

O(m) = [z")(1—2)"0 = % <1 + o(i)) (1.6)

where 0 < 8§ < T, m > 1 and constant in O(+) depends on T only. This is implemented in
the next inequality valid in a more general case. However, now the dependence on 0 of the

appearing constant is more involved.

Theorem 1.2. For an arbitrary real additive function given in (2) and all n > 1, there exists a
constant C(0) > 0 depending on 6 only and such that

(@) 0\ khj(k)? jk !
v h(a)<C(9)ﬂ§n(j) i (1_n+1) .

The variance ngé)h((f) with respect to the generalized Ewens probability measure will
be estimated in terms of the quantity

_ 0;\khi(k)> Q(n — jk)
i= Y () T Q)

jk<n J

The next result generalizes Theorem 1.2.

Theorem 1.3. Assume that 0 < a < 6; < B < oo for all j < n. Then there exist a positive
constant Cq depending only on « and B such that

v@n(o) < ¢ D2. (1.7)

As it has been shown in Lemma 1 of [32], under conditions of Theorem 1.3, we have

Q(n) =< exp{ Y bi Z_ } (1.8)

i<n

where the constants in < depending on « and B. This allows to change the ratio Q(n — jk)/Q(n)
in D2 by other quantities.

15



Chapter 1. Variance of additive functions with respect to a generalized Ewens probability

A proof of Theorem 1.1 is presented in the next section. The similar argument, refined
by some ideas going back to a number-theoretical paper by A.Bir6é and T. Szamuely [7], is
exploited in the proof of Theorem 1.3 which is exposed in the last section of the chapter.

16



1.3. Proof of Theorem 1.1

1.3 Proof of Theorem 1.1

We will use the following particular cases of Watterson’s formula [55]:

O (o) = 200 )
]Ei’l k]((T)—] @(Vl) ’ =n,
_ 20(n—2j)

EYki(0) (ki(0) 1) = o 1< n/2;

and
©), N A ?0n—i—j) .. ..
E; ki(0)kj(c) = 1{i+j < n} i em i#jij<n

Now, to verify the already mentioned relation (1.3), we have

A “?{@(”—2]')_@(”—]')2}_92 y e

j<n/2 ]72 Q(n) O(n)? n/2<j<n ]'2 O(n)?

Applying a rough form of (1.5), we can evaluate the last sum by

1 GOm—j) N ey
n"/2;j<nj O(n) (1 n+1> =0O(n By)-

The same estimate holds for the partial sum in R, over n/4 < j < n/2. Finally, com-
bining (1 — x)* = 1 — ux + O(x?) where 0 < x < 1/2and u = 0 — 1, with the asymptotical

formula (1.5), we obtain

(O —-2) ©(n—j? _
L7 em ~ ewr | o)

j<n/4

Collecting the above estimates we obtain (1.3) as well as

) 2 ®(n —j)
E, h(c) =6 -,
@) =025 6m
and
2i8; ©(n —i — j)

EVn(0)? = B2+6% Y

i+j<n

ij B(n)

17



Chapter 1. Variance of additive functions with respect to a generalized Ewens probability

Hence

Vi) = EPn0) - (B ()

;i O(n —i)O(n — j)
= B2-¢0* )y —/
I M T
i+j>n
Lo y 28j [@(n —i—j) O —i)O(n—j) . (19)

itien U O(n) ©(n)?

It is worth to point out that an analysis of the maximal eigenvalues of matrices of the
last two quadratic forms with respect to a;, j < 1, as n — oo yielded the above mentioned
asymptotical formulas for 7, () if 6 = 1 or 2.

Proving upper estimates we firstly observe that it suffices to deal with a; > 0, j < n,
only and later apply the result for positive and negative parts of /1(c) separately. Secondly,
we may omit the non-positive terms on the right-hand side of (1.9). Such a property has the
last sum if 6 > 1. This yields the desired inequality in this case as has been also observed
in [27].

Let us examine the more delicate case 6 < 1. We now have

Vi) < B4+6* ¥

ﬂiﬂj|:®(1’li]') @(ni)@nj)y”
i+j<n ij

©(n) O(n)?

a7 1[@m—i—j) On-i)0m—j)]1"
Bee D T Mo oor )

IN

j<n i<n—j

by the inequality xy < (x? +y?)/2 for x,y € R. Here the positive part x* of x € R is

defined by
x ifx>0,

0 otherwise.
We now see that an inequality

1 +

A(m) = (Z + ) )J@(n)@(m—i)—@(n—i)@(m)

i<m/2 m/2<i<m

=i Aq(m) +Bz(m) < (C2/60)0(n)O(m), (1.10)

where m :=n —j > 1 and C; > 0is absolute constant, suffices to complete the proof.

18



1.3. Proof of Theorem 1.1

We have

08 (m) < ==Y ok = = (U

200(n) & 200(n) (9+m> _2(0+m)

k=0
The sum A;(m) over i < m/2 can be estimated by the use of asymptotic formula (1.5)

which is valid with an absolute constant in the symbol O(-) if # < 1. Indeed, applying it

twice, we have

1 +
A (m) = ‘<Z:/2 - {@(n)@(m —i)—0(n— 1)®(m)]
1 i\0-1 1 iy0-1 1 +
< ®<”>®(’”>i§/zi{(1fm) (”O(m)) -(1-3) (”O(nm
= ome() | /zio(;) < GO(mO(m),

where C3 > 0 is an absolute constant. In the step we have applied the inequality (1 —
x)7*—1<2xif0 <a <land 0 < x < 1/2. Adding the estimates of Aj(m) and A, (m)
we obtain (1.10) with C, = 4 + Cj.

Theorem 1.1 is proved.
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Chapter 1. Variance of additive functions with respect to a generalized Ewens probability

1.4 Proof of Theorem 1.3

For an idea of the proof, we owe much to A. Bir6 and T. Szamuely [7] who established an
inequality for the weighted variance of an additive number-theoretic function.

Let
. 0,
ot (n =, ol (n) = /
2ng( )s' a;ng(r)s'
/=0 5i=sj=0
where i # j.
We begin with the weighted expectation

H 9}],(,((7)

(6)
E; h(o) =
! Q ! c€Sy r<n

There are n![,<,, (r°rs;!) ! permutations in a class corresponding to the vector 5 € ().

Therefore grouping over the classes, we obtain

Bh0) = oo ¥ DmEIT(E)7 S

(”) 0(3)=nj<n r<n re
1 0%h; (k)
Q(n) ﬂgn j*K! ()Zn: ji r<1n—[]k( ) srt

ER

i~
B;th(k) Qiit (n —jk)‘

jzgn j*K! Q(n) (1.11)

Here we have changed the order of summation taking sums firstly over natural num-

bers jand s; =: k and used the property js; = jk < n.
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1.4. Proof of Theorem 1.3

Similarly,
f 0:\5 1
QmEH (@) = ¥ Lhi(s) L) [1(F) o
0(5)=nj<n i<n r<n "
k1,2
oy thj(k) 8 (&)sri
jk<n ]kk' (E)=n—jk r<n—jk r Sy!
Sj:
3 056ih; (k) (1) 3 1 (&)sri
jil<n jkk!ill! (5)=n—il—jk r<n—il—jk r sr!
i#] si:sj:(]
O n2(k) 056! (k)hi(1) ..
jk<n Jkt;]ﬁ”

As in the proof of Theorem 1.1, it suffices to deal with the nonnegative /() only. Omit-
ting a part of summands we have

k ; ‘ . )
@0 )2 0ihi (k) QUY (n — jk) 61 (1) QU (n — i)
(")) szl.lSn k! Qm) i Qm)
Hence
] 0%n;(k)0lh; (1)
0 2 j i
V,h(c) < D; +jk§§n Pl
X (Q{i'f}(n —il—jk) QU (n — jk) Q1 (n —il)>+
Q(n) Q(n)? '

By virtue of ab < (1/2)(a* + b?), this implies

V(o) < D}

6512 (k) 6, (QUN(n—il—jk) QU (n—jk) Q! (n—il)\"
ki l j n—j n 1
P T (e G

i1<n—jk*

jk<n
It remains to estimate the inner sum, namely, we have to prove that

6! o ) . ) N
Y (@@l (m ity — QU m) QP n— i) < Ch@(mQ(m),  (112)

P
ilgmll'

where 1 < m:=n— jk < nand C4 = C4(x, ) > 01is a constant.
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Chapter 1. Variance of additive functions with respect to a generalized Ewens probability

It is easy to get rid of the sum over m/2 < il < m on the left-hand side. Indeed,

0] (i} : W ol — )
Y (QumQ ) (m— ity — QU (m) QU (n — 1))
m/2<il<m :
91 1 . 61 er tr 1
< om Y ogolm-n=om Yy 5 ¥ II (7))
m/2<ll§ml : m/2<zl§ml : é’(f)t_::m*il r<m—il r r
< Q(n)Q(m).

In the last step, we observed that the double summation is over the vectors 3 satisfying
£(5) = m and having a unique decomposition § = f + lg; € INj' with f L ¢;, where ¢; :=
(0,...,1,...,0) € N with the only 1 at the ith place and m /2 < il < m, while Q(m) sums
up the summands over all 5§ € N[}’ satisfying the condition £(5) = m.

Observe that Q/} (m — il) < Q(m — il) =< Q(m) for il < m/2 by estimate (1.8). Conse-
quently, if 0 < § < 1/2 be an arbitrary fixed number,

6! o . ) +
IZ: ﬁ (Q(n)Q{l']}(m —il) — QU m) QU (n — il))
om<il<m/2 "~ "'
6!
< GQMQMm) Y < Ce(9)Q(m)Q(m),
om<il<m/2 " °*

where Cs = Cs(a, ) and Cg(0) = C4(9, «, B) are positive constants.
To estimate the remaining sum in (1.12) over il < dm, it suffices to insert an appropriate
asymptotic formula for the quantity

Q(m)QU (m — i) — QU (m)QU (n — i1).

Theorem 1.1, equation (1.9) in [40] gives us the estimate

U (m — il Ul (m — il il \ ¢
QQ{(i}(m) = QQ{i,(j}(m) L= +O<(m) )
where € > 0 is a constant depending at most on « and . Let us note that equation (1.9) in
[40] requires il /m = o(1) in its statement, but by inspecting the proof we see that il /m < ¢
is enough for sufficiently small J, depending at most on « and S.
Further, Proposition 2.1 in [32] asserts that

Qo —er{ =1} (00()
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1.4. Proof of Theorem 1.3

Sy (120(1))

where € > 0 is a constant depending at most on « and .

and

Collecting the last three equations, we have the following key relations:

QU (1) = exp { _ ?}Q(m) <1+o<n1€>),
QU (n —il) = exp { = ?}Q(n)(lJrO((inl)g)),
QUi (m — 1) = exp{ - 97 - 6;,f}Q(m)<1 +o<(i)e>>,

where ¢ > 0 is a constant depending at most on a and §, provided that il < dm and éis a

and

sufficiently small constant depending at most on « and p. Fixing so J, we obtain also the
previous estimate with C¢(6) depending only on « and B.
Theorem 1.3 is proved.
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Chapter 2

Variance of additive functions

defined on random assemblies

2.1 Basics and motivation

In this chapter, we deal with additive functions defined on decomposable combinatorial
structures called assemblies (see the Meta-example 2.1 in [2]). If a structure is taken at ran-
dom, the additive functions are sums of dependent random variables; sometimes, they are
called separable statistics. Their value distribution is a complex problem in which estimates
of the variance is a fairly useful tool.

Throughout this chapter, i,7,k, € IN and m,s, sj € INp. Let us recall the definition of
an assembly. Suppose an n set ¢ of labelled points is partitioned into subsets so that, amog
them, there are kj of size j,1 < j < n, with 1k; + - - - 4+ nk, = n. In each such subset of
size j, independent of the choice of elements, let a structure be defined. Let the number
of different structures that can be defined on a subset of size j be g;, where 1 < g; < co.
A subset with a given structure is called a component of 0. Suppose the number g; does
not depend on the possibility of other subsets forming components. The set o with a fixed
component structure satisfying the aforementioned properties is called an assembly. The
sequence gj, j > 1, characterizes the class of assemblies which we will denote by G. Let
Gn C G be the set of assemblies spanned over an 7 set (assemblies of the order ). Now,

sil

G(n) == #Gy =nl ¥ ﬁ(&) i = e,

L(5)=nj=1 j!
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Chapter 2. Variance of additive functions defined on random assemblies

Setting also G(0) = Q(0) := 1, we have the following formal relation of the correspond-

ing exponential generating series

= i Q(n)z" = exp { i ‘;g,{zj}. 2.1
n=0 :

j=1

All quantitative information about the class is encoded in (2.1). We assume that G(n) >
1 for all n € Ny. The latter can fail as the example with g; = 0 for all odd j shows.
Examples of assemblies and their properties can be found in books [2] and [17]. Let us

name some of them:

Example 2.1. Permutations whose components are cycles. Then

G(n) =n!, gi=0G-1DL

Example 2.2. Labelled graphs having connected graphs as components. For them
G(m) =25, g ~G(j),

where the latter expression is true because random graphs are connected with high probability.

Example 2.3. Labeled 2-reqular graphs comprised from cycles of length j > 3. Now,

o~ 3n(8). =5

e3/4 2

Example 2.4. Mappings of a finite set into itself, interpreted as functional digraphs, where the
components are the connected components of the underlying undirected graph. For them,

G(n) =n", =(G-1)! 2 Nlefj—l)
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2.1. Basics and motivation

Example 2.5. Set partitions. Here,

where re” = n.

Example 2.6. Forests of labelled unrooted trees. For them,

G(n) ~ Ven" 2, gi=j"2

Example 2.7. Forests of labelled rooted trees. For them,

Gm)=(n+1)"",  g=j"

Example 2.8. Cyclations. For the definition of cyclations, we follow [49]. Consider n unit intervals,
say [1,2],[3,4], ..., [2n — 1,2n]. Identify their endpoints in pairs at random, with all (2n — 1)!! =
(2n —1)(2n — 3) - - -3 - 1 pairings being equally likely. The result, which we call a random n-

cyclation, is a collection of cycles, which may be looked upon as components of an assembly, of

various lengths. For example, if n = 3, so that we start with the three intervals [1,2], [3,4] and
[5,6], and if we identify the pairs 1,5, 2,6 and 3,4, then we end with two cycles: a cycle of length
one formed from [3,4], and a cycle of length two formed from [1,2] and [5,6]. One may easily check,

that in this case
G(n)=@n—-1)1, g =211
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Chapter 2. Variance of additive functions defined on random assemblies

Example 2.9. Let us discuss permutations with restricted cycle lengths. For the definition, we
follow [60]. We fix A C IN and take only such permutations, again denoted by o, whose cycle
lengths ki(c) € A for all j < n. We call them A-permutations. Then

ol (=D ifjeA
G(n) =n! e Qi =
/(s;n ]11 j7s)! ! {0 otherwise.
5;=0ifj¢A

Note that G(n) can be equal to 0 for some A, but we can avoid that if, for example, 1 € A.

Example 2.10. It is worth to add that permutations, taken from the symmetric group S, according
to the generalized Ewens probabilities

({0} = 6o 16, 6 >0,

j<n

where the nonnegative numbers 0;, j < n, are arbitrary also follow the described scheme. Now,
0;(j — 1)! substitute for g; but are not necessarily integers. It is natural to consider such per-
mutations as a particular class of assemblies calling them weighted permutations. They have been
introduced in the paper by E. Manstavicius [32]. Later they started to play an important role re-
lated to phenomena of statistical physics (see, for example, [5]). So in this case, if we ignored the

requirements that g; and G(n) be integers, we may write

Gy =nt ¥ T1(4)" < &=6G-1

n g 5 1
(5=nj=1 17 5j°

Example 2.11. The weighted permutations in the case 6; = 6 > 0 are well known since the seminal
paper by |. Ewens [15]. In this case, recalling (1.1), we have

n

Gn)=T1G+6-1), g=06(G-1"

j=1
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2.1. Basics and motivation

If v, denotes the uniform probability measure on the subsets of G, then the distribution
of the component vector is

v (ko) = 5) = - ‘n (gi)sfi' 2.2)

where § runs through the set of vectors such that ¢(5) = n. Observe that, if gipj <m,
is a family of independent Poisson random variables defined on some probability space
(Q), F, P) with the parameters A;(x) := Ef; = xfgj/j!, where x > 0 is arbitrary, and ¢ :=
(&1,...,En), then

vy (k(0) =35) = P(& =5]4() =n). (2.3)

Let us discuss the working conditions assumed for a class of assemblies under which
our probabilistic problem will be explored. For brevity, introduce the notation A; := A;(1) :=
g]-/j!, 1<j<mn,and

a(z,n) = exp { Y )tjz]}.
jsn
Check that [z"]a(z;n) = [2"]Zg(z) = Q(m) if m < n.

In the past decades much attention was paid to the logarithmic class defined by the
asymptotic condition p/ JjA;j ~ 0 for some fixed constants 6 > 0 and p > 0 as j — oo (see [2]).
Logarithmic class includes the Examples 2.1, 2.3, 2.4, 2.8, 2.10 and 2.11. Extensions were

initiated by E. Manstavi¢ius in the paper [32], where a condition
0<0<piji; <O, j>1, (2.4)

was used. The lower bound excluded, for example, the class of 2-regular graphs, however.
Further generalizations were proposed in papers [36] and [38], where the total variation
approximation of the distribution of a vector (ki(¢),...,k(¢)) by that of (&y,...,¢,) if
r=r(n) = o(n) as n — oo was examined.

General classes of assemblies appear in papers by K.-H. Indlekofer [21], [22] and [23]
where some specialized Tauberian theorems are proved.

We confine ourselves to a class of assemblies introduced in [38]. It is characterized by a
few positive constants p, ©, 0, ¢, and ny > 1.
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Chapter 2. Variance of additive functions defined on random assemblies

Definition 2.1. We say that a class of assemblies is weakly logarithmic if the following conditions
are satisfied:

Piri<e, j>1; (2.5)

Y 0ljAj =00, n>ng; (2.6)
j<n

nQ(n)p" = 0'a(o;n), n=1. 2.7)

It is worth to stress that the listed conditions assure a lower bound of the probability of
the condition present in (2.3). Indeed, in our notation, taking x = p, we have

P(£(Z) = n) = a(o;n) " [2"|a(pzin) = a(pin) p"Q(n) = 6'/n.

Moreover, Lemma 2.3 below shows that n~! < p"Q(n) < n®~! for n > 1. No approx-
imation, like p"Q(n) ~ n%~1 holding for logarithmic assemblies, may be expected when
only conditions (2.5 —2.7) are assumed. To give an example, we follow [60]. Let us fix

A C NN such that
lim #lk:k<nke A}

n—sco n

x>0 (2.8)

and #kk<nke Am—ke A
lim { <nkKkeAm-—KEc }:KZ

n—»00 n

(2.9)

holds uniformly in m € [n,0(n)]. Now, weakly logarithmic class includes random .A-
permutations, satisfying 2.8-2.9 and the condition Q(n) > 0 for all n € IN, and many other
of such type of structures, while logarithmic class does not. Indeed, our condition (2.6)
requires lower bound #{k : k < n,k € A}/n > 6 > 0 rather than limit (2.8) and are in this
sense weaker. Futhermore, Theorem 3.3.1 in [60], page 126, yields

Q(n)NCn_lexp{ ) 1}, c>0,

j<njeA

under the conditions (2.8) and (2.9). Our condition (2.7) requires only an inequality for
n > 1. Random A-permutations have been studied by a number of authors in recent decades,
including V. N. Sachkov (see, for example, monographs [52], [53]) and A. L. Yakymiv (see,
for example, [60], [59], [61], [62]).

Now, let us turn to an additive function h : G, — R. Similarly to (2), it is defined by a
real two-dimensional array {4;(k)}, where j,k € N, jk < n,and h;(0) := 0 for all j < n, by
setting

h(o) == f hj(ki(c)). (2.10)



2.1. Basics and motivation

Let E, 1 and V1 denote the expectation and the variance of additive function i := h(c)

with respect to the uniform measure v;,. The problem is to estimate

1
G(n)

Vuh = Y. (h(0) — Euh)? = Buh? — (Bqh)?

0€Gy

in terms of the values (k) where jk < n. By (2.3), the problem is equivalent to estimation
of the conditional variance

n
Var ( Y hi(E) ‘6(5) - n> — V,h. 2.11)
j=1
In the sequel, let Q/ (m), 0 < m < n, be defined by

i Q/(m)z™ := exp { ) Aiz’} =/ (z,n), (2.12)

m=0 i<n

i¢]

where | C {1,2,...,n}. In particular, we have

In the estimates below, dependence on the parameters p, ©, 6, 6’ and ng > 1, indicated in
the Definition 2.1, is allowed. However, we will add an extra index, say, ¢ if dependence on
the latter will occur. We now list the results.
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Chapter 2. Variance of additive functions defined on random assemblies

2.2 Results

Theorem 2.1. Assume that G is weakly logarithmic and h : G, — R is an arbitrary additive

function. Then

L | o Mot m—jk) i
Vi s ¥ [2 1o (1150 =8 - G

ceGy | jk<n

(k)2 ol (1 —
j QUitn—jk) _
< jgﬁn k! G B2 (2.13)

forn > 1.

Inequality (2.13) sharpens a bit Theorem 1.3 proved for an arbitrary additive function
defined on weighted permutations under condition (2.4).
A completely additive function h is defined by the array h;(k) = ajk, where a; € R and

jk < n. For such functions, inequality (2.13) takes a simpler form.

Theorem 2.2. Assume that G is weakly logarithmic and h : G, — R is a completely additive
function. Then

2
_ 1 k(o) — 1. 20 =)
Vit = 0y & LZ CCRs )1
qu(”_]')
<<j§2n)x]] o) (2.14)

Asymptotically optimal constants in < have been found for permutations taken with
respect to the Ewens probability if 8 = 1 or 2 (see [37] and the references therein). For
all mappings of a finite set into itself, inequality (2.14) was established in the paper by
E. Manstavicius [41].

As PD.T.A. Elliott has convinced us by a book [13], both of the inequalities (2.13) and
(2.14) has a useful dual form. To present it, we have firstly to exclude the summands with
A; = 0 as a factor in all the sums occurring in inequalities (2.13) and (2.14). This makes no
harm to their validity because of the relation

va (kj(0) = k) = (AF/K1)(n!/G(n)) =0
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following from (2.2) if A; = 0 and k > 1. Afterwards, we put an asterisk to denote that only
j for which A; # 0 are taken into account.

Theorem 2.3. We have

K Qn Q{f}<n—]k>
Z AkQ{/}( —]k [Z y(o <1{kj( =k} - Q(n) )]

jk<n reg
<G(n) ¥ (o) (2.15)
0€Gy
and
- ot -\’
n—]

A G(n 2.16
];l ]Q(n—] Lén]/ ( 7 Q(n) ﬂ < Uezgny (210

forall y(o) € R where o € G,

It takes just one step to derive a weak law of large numbers for a sequence of real-valued
additive functions h, (o) defined via hnj(k), where k > 0 and j < n, using Chebyshev’s
inequality and (2.13). Combined with the earlier mentioned total variation approximation
result from [38], inequality (2.13), assures a short path in proving general limit theorems
for the distribution functions vy (h,(0) — a(n) < x) as n — oo. Here a(n) is a centralizing
sequence. The idea originated in [30], and already exploited in Section 8.5 of [2], lays in an
appropriate splitting a(n) = a/(n) + a” (n) and

7) = ) j(ki(0)) + ) hujkj(0)) =2 hy (@) + hy ().

j<r r<j<n

Now firstly, the total variation approximation reduces the problem concerning vy (h},(c) —
«/(n) < x) to a problem for sums of independent random variables /,(¢;), j < r = o(n).
Secondly, under general conditions one can assure the weak law of large numbers for
h'(o) — a” (n) and so make the contribution of this part negligible. In this way, we suc-
ceed in generalizing many results obtained so far.

Not so straightforward applications of our results include investigations of the asymp-
totic expectations as n — oo of multiplicative functions f : G, — C defined by

)i f{ﬁ(k](a)
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Chapter 2. Variance of additive functions defined on random assemblies

where f;(0) := 1 for every j > 1. Number-theoretical ideas proposed by A. Rényi [50],
P.D.T.A. Elliott and others (see [11]) can be adopted to prove an analog of the Delange
theorem. The inequalities (2.13) and (2.15) are indispensable in proving sufficiency and
necessity of the conditions.
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2.3. Expressions for the Moments

2.3 Expressions for the Moments
We will use the sums QU (1) and Q1¥/} (1) defined above in (2.12). Let us begin with the

expectations.

Lemma 2.1. For an arbitrary additive function defined on G, we have

Afhi(k) Ut (n — ji)
_ v j
Edh= Y~ o (2.17)

jk<n

Moreover, ifh]-(s) = ajs for js < n, then

Q(n—j)
E,h = Aag; ——2, 2.18
j; Q) 219

Proof. By the definition and (2.2), we have

Y, o) =3 Y hi(sp)va(k(o) =3)

) 0’€gn E(s‘):n]ﬁn
S/
h
- QM )Z(;”J; ]<H” 5t

Let us change the order of summation by taking at first the sums over natural numbers j

and s; =: k and using the property js; = jk < n. So we obtain

Bi= gt T T T
8 Q(Tl) jk<n k! (o5 n0]k1<n ]k

§.=

]

This is the desired formula (2.17).
If hj(k) = ajk for jk < n, then

k-1

Edh=Qm) ' LNy Y 2 QU (n— k).

j<n 1<k<n/j (k—1)!
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Now, to establish (2.18), the following identity

k-1

Z 'Q{/} (Tl — ]k) — [z”fj] exp {/\jzj} exp { Z )\l’Z]}

1<k<n/j (k—1)! i>1,i#]

= Q(n—j) (2.19)

suffices.
The lemma is proved.

O
Similarly, we obtain the formulas for the second moment.
Lemma 2.2. For an arbitrary additive function defined on G, we have
AR () Ri(D) QUidY (n — jk — i

=B+ Yy L QM (n —jk—il) (2.20)

T k! Q(n)

i
Moreover, ifhj(k) = ajk for jk < n, then
—J) Qn —i—Jj)
Aa? + Ahaa; =—————=. (2.21)
2 % n) H]Eén AT )

]<n

Proof. Interchanging the summation, we obtain

SJ'

Qm)E* = 3 Y hi(s) Yo hi(si) [T 25

05)=nj<n i<n i<n it
AR2 (k)
=Y S X I %
jk<n k! 0(5)=n—jk i<n— ]k
5j=0
kil
A]Alh](k)h (1 Z H Ay
jk+il<n k! ((5)=n—il—jk r<n—il—jk sr!
i#j sl-:s]-:0

which coincides with (2.20).
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Afterwards, let i be completely additive. To simplify the first sum on the right-hand
side of (2.20), we use the identities

k
Q{f} n— jk
1§1§n/j (k—1)! ( )
N ow o
j : . ; 4 .
= ——QU (n —jk) + —L_olit(n—jk
13&”” (k=1 ( ) 2§l§n/]‘ (k—2)! ( )

= AQ(n —j) + A7Q(n — 2j)

with an agreement that Q(—m) = 0if m € IN. In the last step, we also applied the argument

used in deriving (2.19). If hj(k) = a;k for jk < n, this gives

=y /\]a + Y Ata: Q %), (2.22)

j<n j<n )

Dealing with the second sum on the right-hand side of (2.20), we firstly observe that

1-1
D : )3 LU} (n — jk — il)
Ak1
= X LU} (n — jk —i)
1<k<miysj K= D!
=Q(n—i—j)

ifi+j <nandi # j. Now, the examined sum in (2.20) equals

Qn—i—j)
l;ﬂ)t/\aa Q(n)

i#f

Adding the latter to (2.22), from (2.20), we obtain (2.21).
The lemma is proved.

O

The formulas of moments show that neither the quantity B2 nor V,h changes if we
substitute /\]-p_j for A; where j < n.

37



Chapter 2. Variance of additive functions defined on random assemblies

24 Comparative Analysis

By the last remark, without loss of generality, we may focus on a class of weakly logarith-
mic structures satisfying conditions (2.5 — 2.7) with p = 1. Proof of Theorem 2.1 is based

upon the following proposition.

Key Lemma. Forj<nand1 <m < n—1, we have

y A (Q(n)Q{i'f}(m —il) — QU (m)Qt (n — il))+ < Q(n)QY! (m). (2.23)

|
il_gr_n l
i#j

In a few lemmas, we firstly examine the coefficients Q/(m) for various m and | C
{1,2,...,n}. Set, for brevity, a(n) := a(1,1) and &/ (n) := &/ (1,n).

Lemma 2.3. Forn > 1, we have
n® < nQn) =< a(n) < n®.

Proof. Actually, the estimates have been established in [40]. For reader’s convenience we
present the details. Differentiating (2.1) and comparing the coefficients, we obtain

nQ(n) = Y jAQn—j) <@ Y. Q(k) < Oua(n) (2.24)

j<n 0<k<n-—1

by condition (2.5). On the other hand, summation by parts yields

S(xy) =), Aj
x<j<y
y . du 1 ) 1 .
= ]/\-)+ JA = =) A
> QIOg% ye) (2.25)

by virtue of conditions (2.5) and (2.6) if ny < x < y < n. Hence, by (2.7) and the definitions,
nQ(n) > a(n) > exp {Z(ng,n)} > n’.

If n < ny, the estimates are trivial.
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2.4. Comparative Analysis

Paper [40] provides tools needed comparing Q/ (m) with Q(n). We slightly reformulate
aresult from it. Let d;, j < N, be arbitrary nonnegative numbers, maybe, dependent on N

or other parameters,

di . o
D/(z,N) := exp{ Y ,]z]} =) D)z,
j<N ] n=0
jé]

where ] C {1,2,...,N};r:=max{j: j€ Jtandr = 0if ] = @; D(z,N) := D?(z,N),
D, :=D?,and n € N.

Lemma 2.4. Assume that there exist positive constants C,c,c’, and n’ € IN such that, for n’ <
n <N,
di<C, 1<j<N;

) dj > cn;

j<n

nD, > c'D(1,n).

There exist sufficiently small positive constants § > 0 and vy such that

ne-er{-L 3} (re(6+5)))

provided that r < ynand (1 —y)n’ < (1—5)N <n <N.

Proof. See Theorem 1.1 in [40].
O

Applied to the weakly logarithmic class of assemblies the last lemma yields the desired

asymptotical formulas.

Lemma 2.5. There exist sufficiently small positive constants e1 and 61 such that

Qn—s) = Q(n)(l—kO((Z)el)) (2.26)

Q{j}(n—s) —e_)‘fQ(n)<1+O<(sj1_j>£1)> (2.27)

forall0 <s < dmnandl1 <j<én.

and
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Chapter 2. Variance of additive functions defined on random assemblies

Moreover, there exist further constants ny > ng and 6" > 0 such that
nQ{j}(n) > 9//a{j}(n) (2.28)

forallj < nifn > ny.

Proof. Relations (2.26) and (2.27) for n > n' are just the corollaries of Lemma 2.4. If 1 < n <
n’, the estimates are trivial because of Q(n) > 0.

To prove (2.28), it suffices to show that QU/} (1) > Q(n) for sufficiently large  and to
use the fact that a(n) = al/}(n). Thus, if j < 6,1, estimate (2.28) follows from (2.27) and
condition (2.7).

If 61n < j < n, equality (2.12) and a convolution argument gives

W) = (A :
QU (n)=Q(m)+ ), -~ 7—Qn—jk)
1<k<n/j :
@k
2Q(m) = ), 5 Qn—jk) (229)
1<k<n/j "%

by condition (2.5).
If K > 1is arbitrary, inequality (2.24) allows us to estimate the part of sum in (2.29) over
k such that jk < n — K. Indeed, it can be majorized

e* a(n) oy
Ou(n) , — <0 (97 - 1)
1<k (mei) K (1 = jK) K
CQ(n)
< 02 o a(n) <
O o = T K
by condition (2.5) again.
If
R SR
then (2.29) yields
o
i > . CQ(TI) . Oe

Fixing K sufficiently large and applying the lower bound Q(n) >> n?~! from Lemma 2.3, we
obtain the desired estimate Q/} (1) >> Q(n) provided that n > 11, where 1, is sufficiently
large.

O
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2.4. Comparative Analysis

Lemma 2.6. Let i # j. There exist sufficiently small positive constants ey and & such that

QU (m —s) = QU (m) (1 +o<(;))> (2.30)
and ,
(i} (g — ) = e~ MO} LA
QUi (m —s) = e Q/(m)(1+o<( — ) )) (2.31)
forall0 <s < dym,1<i<ébm andm > max{n',n}.
Moreover,
QUi (m —s) =, QU (m) < Q(m) (2.32)

for0 <'s < (1—¢)m, where 0 < e < 1is arbitrary, m > ny, and ny is sufficiently large.

Proof. By virtue of (2.27), (2.5), and (2.6), we see that Q{j}(n) also satisfies conditions of
Lemma 2.4. The latter implies the presented asymptotical formulas.
The inequalities

QU (m) < QU (m) < Q(m)

are evident. Repeating the same argument as proving (2.28), we obtain
QU (1) > QU (m) > Q(m)

for sufficiently large m. The estimate in (2.32) with a shifted argument follows from the
relation

o7t (m — s) = alY (m) =< a(m)
valid in the indicated range of s.

O

Proof of Key Lemma. We start with an observation that Q(n) > 0 does not assure that
Q{f } (m) > 0 for all m < ny, where n; has been introduced in Lemma 2.5. Nevertheless,
(2.23) holds even if QU} (m) = 0. Indeed, in such a case, an identity

I
Y /\f'iQ{i/J'} (m—il) = [2"] exp {Aiz'} exp { Y )\rzr}
0<i<m/i °° r2lr#ij

= ot (m),

valid for each i < m, i # j, shows that also Q{//} (m—il) =0foreach0 <[ <m/i.
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Chapter 2. Variance of additive functions defined on random assemblies

1f QU (m) > 0, then it suffices to prove (2.23) for m > n3, where n3 is an arbitrary large
natural number. Firstly, we observe that

Y ) - )
Z T,l (Q(n)Q{I,]}(m —il) = QU (m)QB (n — il))
’"/Ziiljlgm
AL
<Q(n) ) T,ZQ{”]}(m il
m/2<il<m ~°
i

SN DN )

m/24<i[§m
i#j

< Q(m)QU} (m). (2.33)

In the last step, we used the fact that the double summation is over the vectors 5 satisfying
¢(5) = m and having a unique decomposition § = f + l¢; with a vector f = (ty,...,t,) € IN{
suchthatt; = t; = t, = 0forallm/2 <u < mande¢; = 0,...,1,...,0) € N with the
only 1 at the ith place. On the other hand, QU/} (m) sums up the summands over all § € INJ!
satisfying £(5) = m and s; = 0.

Secondly, applying (2.32) with e = 1/2, for every 0 < 6 < 1, we obtain

1
Y (@@t (m—in) ~ QW (mQ (n — 1))
om<il<m/2 ~°
i
1
<omattm ¥ 2« omitm). (2.34)

I

om<il<m/2

Afterwards we choose § = min{4,d;}. Then the asymptotical formulas obtained in
Lemmas 2.5 and 2.6 yield

R(i,j) :=Q(n) QY (m — i1) — QU (m) Q1 (n — i)

=amatome ((1+0((5)")) - (1+0((5)")))

< QmQV (m) (LY’

m
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2.4. Comparative Analysis

with e = min{e, &1 }. Hence

1 L
)y ?. R(i,j) < Q(n)QUH (m) Y /l\'i(ﬁ)

i1<om il<ém °* m
i#]
< QmQYm) Y

< Q(n)QU} (m).

Collecting estimates (2.33-2.35), we complete the proof of Key Lemma.
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Chapter 2. Variance of additive functions defined on random assemblies

2.5 Proof of Theorem 2.1

Observe that it suffices to establish the desired inequality for a nonnegative /(o) only. The
general result follows from an inequality x? = (x* — x7)? < 2(x*)? +2(x7)?, where the
positive and negative parts of x € R are defined by

x ifx>0, B —x ifx <0,
xt = L, oxT =
0 otherwise 0 otherwise

respectively, and then to apply the result to a decomposed additive function i(c) = h(o)™ —
h(o)~.
Omitting a part of summands we have from (2.17) that

2 AT (k) QU) (n — ji) Abhi(1) QW) (n — i)
(Enh(0))" 2 ]HZ[ ¥ o) 1I' Q)

i

Hence and from (2.20)

k1, . 11,.
Vi <B4+ Y Ayt Aiha(l)

jk+il<n k!t
i
x (Q(m(n —il—jk) QW (n—jkQ(n— il))*
Q(n) Q(n)? ‘

By virtue of ab < (1/2)(a? + b?), this implies

V,h < B2
i i ] n— jk)Q\W (n —il)
+jl;n k! ilgrtz/k “( Q(n) - Q(n)? ) '

i

By Key Lemma with m = n — jk, the second sum is < B2.
Theorem 2.1 is proved.
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2.6 Proof of Theorem 2.2

If hj(s) = ajs for every j < n and s € Ny, then applying Theorem 2.1 and (2.22) we arrive
at

VI Y 2Q(n —J) 22 zQ(”_z]').
CLATTGm TN o)

The second sum can be majorized by the first one. Indeed, if j < d;(n — j), one can apply
estimate Q(n —2j) < Q(n — j) following from (2.26). Otherwise, if 611/ (14 61) < j < n/2,
by (2.25), we have

Qn - 2) < aln —2)) <t - (2]

<a(n—j) <nQn—j).

Using also condition (2.5), we complete estimation of the second sum.
Theorem 2.2 is proved.
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Chapter 2. Variance of additive functions defined on random assemblies

2.7 Proof of Theorem 2.3

The proof of Theorem 2.3 is based upon P. Elliott’s idea to apply the following inversion.
Lemma 2.7. Let C = (cl-j), 1<i<mand1 < j< nbeareal matrix and A > 0. If the inequality
2
L (Team) <ar
j<n Ni<m i<m
holds for all vectors X = (x1,...,Xy,) € R™, then so does
2
)3 (Zciﬂ/f) <A Y
i<m \j<n j<n
forallY = (y1,...,yn) € R™.

Proof. See Lemma 4.3 on page 150 in [13].

Proof of Theorem 2.3. Denote

K Q) AT QU (n — ji)

70, k,0) = 1{kj(0) = k}J )T]km SV ke Q)

and

Mol —i
L QI (n — jk)
500 =100 g0

ifj,keN,jk < n,and)tj # 0.
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2.7. Proof of Theorem 2.3

Applying Theorem 2.1 for arbitrary h;(k) € R, jk < n, we have
2
L ( Y %K) (ik, 0))
c€Gn \ jk<n

:z(zhjacnw k- Y hk Q”(f"))

L\ E =, Q(n)
Ol — )\
_ h( 1 QU k)
_ (h((f)—]Enh)zz G(m)Vuh < G(n) ) x;(k
r=re® jk<n

for all xj(k) € R, jk < n. Now, by Lemma 2.7, we obtain the desired dual inequality (2.15).
The proof of (2.16) goes by inversion of (2.14) by repeating the argument.

Denote
(s 1 Q(n) \/,Q(ﬂ—j)
o) =kl )VA o -5 M Q)
and
At [ Q=)

g7

" Q(n)
ifjeN,j<n,and A; # 0.

Applying Theorem 2.2, we have

2
> (Zx” DY, a))

oeGy \j<n
. 2
= Z (Za]k] Za] j n))>
c€Gy \ j<n j<n
= Y (h(0) —Euh)* = G(n)Vuh < G(n) Y, (xI))
o€y jsn

for all x]{C} € R, j < n. Now, by Lemma 2.7, we obtain the desired dual inequality (2.16).
Theorem 2.3 is proved.
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Chapter 3

Moments of additive functions
with respect to the Ewens

Sampling Formula

3.1 Basics and motivation

Let us denote by Q) := INj the additive semigroup of vectors 5, where 0 = (0, ...,0) is the
zero vector. The partial order defined by 5§ = (s1,...,s,) < F = (t1,...,t,) meaning that
sj < tjforeach 1 < j < n will be essential. Moreover, we introduce the orthogonality of
5,f € O, denoted by 5§ L f, meaning that s1t; + - - - + sut, = 0. Afterwards we shall use the
notation f || 5 to express that  exactly enters 5. Formally, thenf < Sand f L § — . Using the
notation when dealing with functions defined on (), we come closer to probabilistic number
theory which has been carried out on the multiplicative semigroup IN (see [30] and [11]), in
which the partial order is defined by division and the orthogonality of m,n € IN means that
their greatest common divisor equals 1. The semigroup structures and the partial orders in
Q) and IN could have played a greater role in developing parallel theories. Advantage of
applying this approach has been discussed in [26] and in some papers referred to in it. We
further demonstrate the number-theoretic ideas adopted estimating moments of functions
defined on Q).

For a probability measure, we take that proposed by Ewens [15] in the mathematical
genetic theory. It continuous to serve in various statistical models and probabilistic combi-
natorics (see, for example, [24], [2] or [16]). To present it, denote (), := (~Y(n) = {§ e

((5) = n}. Setalso
0+n—1 1
O(n) = ( +n ) =g
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Chapter 3. Moments of additive functions with respect to the Ewens Sampling Formula

where 6 > 0is a parameter and, as usual, [z"]g(z) stands for the nth coefficient of the power
series g(z) if n € INg. Then the celebrated Ewens Sampling Formula defines the probability

S]i .

- =:0(n)"'P(3) (3.1)
S]'.

L,
Pu({sh) == 0(m) T (%)
=1/
ascribed for each 5§ € (). For convenience we extend the probability measure to the whole
Q by setting P,({5}) = 0if 5 € O\ Q,. Now every mapping G : 3 — C becomes a
complex-valued random variable, and

E.(G) :=0(n)"' Y G(5)P(5) (3.2)

5€Q)y,

is its expectation. Let Eg(G) := 1 for every G : Q3 — C.

It is worthy to recall the following property of (3.1). If ¢;, 1 < j < n, are mutually
independent Poisson random variables with parameters 6/ given on some probability
space and ¢ := (&3, ...,&y), then

P,({s})=Pr(=5| (&) =n), 5€Q.

This clearly shows the dependence of coordinates Si, 1 < j < n, under the probability
measure P,. Despite to it, some recent results on the asymptotic behavior as n — oo of
distributions of the linear statistics a,151 + - - - + @S, Where Ayj € Rand 1l <j <mn,give
general conditions for weak convergence or sharp estimates of the convergence rates. They
are mainly formulated in the terminology of the theory of random permutations; therefore,
we now present the connections to the latter.

Once again, let us notice that if we define the Ewens Probability Measure 1/519) on S, by

1/729)({0}) — 6w(ﬂ)/(9(9+1) . (9+n _ 1)), oS,

where 6 > 0 is a parameter and w(c) is the number-of-cycles function, an easy combinato-
rial argument (see [2]) gives the distribution of the cycle vector and the coincidence:

v (k(o) = 5) = Pa({5))

if 5 € ). Thus, dealing with statistics of random permutations expressed via k(c), we
may examine corresponding statistics of random vectors 5 € (), taken with probabilities
(3.1).

The linear statistics a1,k1(0) + - - - + anpnky (o) and, in particular, w(c) have attracted
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much attention in the recent investigations. However, so far, the advance in probabilistic
number theory has not been adequately followed by the corresponding results in proba-
bilistic combinatorics. For instance, the results exposed in Section 8.5 of book [2] did not
reach the level of their analogs in IN (compare with [11]). In the recent papers [36] and [4]
(see also the references therein), E. Manstavic¢ius did some attempt to fill up this gap.

Let us continue by introducing more definitions. A mapping F : QO — C, F(0) := 1,
is called a multiplicative function if F(5 +t) = F(5)F(f) holds for every pair 5,f € INjj such
that 5§ L f. Denote a generic vector gj = (0,...,1,...,0), where the only 1 stands at the jth

place. Then the multiplicative function F has the decomposition

j<n j<n

Conversely, given a complex two-dimensional array {fj(k)}, 1 < j,k < n, satisfying the
condition f;(0) = 1, by the last equality, we can define a multiplicative function. If f;(k) =
fi(1) =: fjforallk > 1and j < n, the function F is called strongly multiplicative and,
similarly, if f;(k) = fjk and 0° := 1, then F is called completely multiplicative. Denote,
respectively, by 9, M5, and M. the sets of just introduced multiplicative functions. Stress
that P(5) € M and P(ke;) = (6/j)*/k! =: p;(k) if k € Ngand j € N.

Similarly, the condition H(5 + f) = H(5) + H(f) holding for every pair 5, € INjj such
that 5 L f defines an additive function H : O — C. Let us set also h;(k) := H(ke;) where
hi(0) := 0. Now, condition h;(k) = kh;(1), j € N, reckons completely additive functions.

The purpose of the present chapter is to establish power moment inequalities for a
complex-valued additive function H(5). The number-theoretic analogue of desired result
is Elliott’s high-power analogue (1) of Turdn-Kubilius inequality. The tail probability esti-
mates for additive functions proposed in [31] and refined in [3], together with a subsequent
use of relevant results for sums of independent random variables, provide an indirect ap-
proach to deal with the problem if § > 1. One may expect (see [35] and [34]) that the
direct proof, as exposed below, gives sharper results. This has been evidenced in Chapter
1 and Chapter 2, dealing with the second moment of additive functions defined on general
decomposable structures including permutations sampled according to the Ewens proba-
bility.
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3.2 Result
Denote on— i)
A=A, = ﬂgn hj(k)p]-(k)i@(n) ,
I . o, ®(n — ]k)
BMMv—%;WAH|mW%7iB—v

and B := (Bn(Z))l/z, where a > 0.

Let the constant in < depend at most on 6 and a.
Theorem 3.1. If H is an additive function and 0 > 1, then

B*+ By(a) ifa>2,

E,(|H(G) - A) < { .
B® ifo<a<2

uniformly for all n > 1.

In the proof, we adopt Elliott’s [12] argument. The main task is analysis of the expecta-
tion of e#(5)/B, which is a multiplicative function depending on complex parameter z. The
needed technique is developed in the next section. The theorem will be proved at the end

of the chapter.
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3.3. Expectations of multiplicative functions

3.3 Expectations of multiplicative functions

This section is devoted to estimates of the expectations E,(F) of mappings F : 3 — R™
belonging to more specialized classes. If F € 9, then (3.2) and (3.3) give the following

expressions

O(ME.F)= ), [Iri(s)fi(s)

L(3)=nj<n
= "T] (1 + Z pj(k ) (3.4)
j>1
=: X" [ xj(x; F) =: [x"]Z(x; F).
j21

Actually, the values f;(k) if jk > n, which do not appear in the quantity on the left-hand
side, can be chosen in a convenient way, say, equal to zeros or ones. Here and in the sequel,
j,k € N. On the other hand, if F € 9, that is, for f](k) = f]-(l)k, j, k > 1, there is no need
to do so.

Set I1y(F) := 1, and

I, (F) := H(—i—ZpJ ) 1<m<n.

j<m

From the definitions, one directly obtains the inequality

= ). En(F)O(m) <TI, 1(F) (3.5)

0<m<n

if F is a non-negative multiplicative function and n € INy.
We begin with a convenient identity. Introduce a function PU) € 9% such that pl(] ) (k) =

pi(k)ifi # jand p! (k) = 0if i = jand k € N. Let

) = [2"]e %/i(1 — z)~°.

Q
=
=
N~—

i
p=N
=
2

L(3)=n

Define the following conditional expectation

() (py — 0)(3)F(3).
E,/ (F) = 57 ()[(gngp, = 600 az PY(5)E (%)
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Lemma 3.1. Let F : 3 — C be a multiplicative function, then

n®(n)En(F) = Y jkf;(k)p; (k)0 (n — jl)E , (F).

jk<n

In particular, if F € 9, then

nO(n)En(F) = 0 Y £;(1)@(n — ) E,j(F)
jsn
Proof. This is just the identity

W] (xZ/ (x:F)) = [+"] ( Y X T1 Xi(x;F)>;

j>1 i>1,i#j

nevertheless, we provide an elementary proof exposing the idea used in the sequel.
Lete = kejif 1 <k <n/jand 1 < j < n. Then £(¢;) = jk, F(e) = fi(k), P(e) = pj(k),
and

Y 0(e) = 6(F)

et

for an arbitrary f € ). Hence

The lemma is proved.

Corollary 3.1. If 0 > 0 and F > 0 is a multiplicative function, then

n®(n)Ey(F) < ) jkfi(k)p;(k)O(n — jk)E,_j(F).

jk<n
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3.3. Expectations of multiplicative functions

Proof. By the definitions above, @() (m)]E%) (F) < ©(m)E(F) foreach1 <j<m<n.

O
Lemma 3.2. If0 > 0and F € M is such that 0 < f](k) < Kfork,j <mandn > 1, then
1O (n)Ey (F) < 0Ky (F) (1 n O(Kk)g(”nw)).
Proof. By Corollary 3.1,
n®(n)E,(F) < 0KZ,(F)
HKE OES(E)|0-m) T i)
0<m<n jk=n—m
=: K=, (F) + KR. (3.6)
Observe that, for m > 2,
0" 62 ONk—2 K
m (k) —0 = + = e
jk;mP]( ) (m—1)0 " m j;;,, (]) (k—1)!
jk>2
o™ 202 Ok\k-2 1
< + — — _—
(m=1)!  m 2§k§m/2(m) (k—2)!
m 2
< 02 e GC(G),
(m-=1)! m m

where C(f) > 0 is a constant depending only upon 6. Plugging this into the previous

inequality, we obtain

n@(n)E(F) < 0K Y. ©(m)E,(F)(1+ C(0) ). 3.7)

0<m<n

This also yields a rough estimate m®(m)E,,(F) < KZ,,(F), 1 < m < n, needed below.
Now

ke L o+ p )oumEan

1<m<n/2 n/2<m<n n—m
2u(F 1
1 B N
n n/2<m<n m(n B m)

< 1—|—Klo;cl;(n—0—1)

=, (F).
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Inserting the estimate into (3.6), we complete the proof.

In the sequel, we will apply the just proved result in a more convenient form.
Corollary 3.2. If6 > 0and F € 9 is such that 0 < f](k) <1fork,j<nandn > 1, then
i(1)—1
E,(F) < exp {9 ) f]()}
j<n ]
Proof. Applying well-known (see [17]) asymptotic formula

o= i)

and (3.5), we obtain from Lemma 3.2 that

E,(F) < F(9+1)exp{97+9 Y fj(lj-_l}(l—l—O(log(nndFl)))

j<n

« T/ (1 4 ; (?)kffg{)). (3.8)

j<n

Here ¥ and I' denotes the Euler-Masheroni constant and the Gamma function respectively.
Applying the inequality

le¥ —1—x| < |x]%ell if xeR, (3.9)

we further obtain

TTe 0 (1 + ijj(l) * ki (?)kf]lg‘k))

jsn

< [T (14 00y of 1)
J

j<n J

0f;(1) 0 2,
"+ (5) )
)

<TI e /i (e

j<n
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Observing that ng;; ) <1iff > 1forall j <n,wealso have
fi) =10 —))
E,(F) < ex {9 - } (3.10)
B A L e AT

Remarks. We firstly stress the parallelism with the Hall’s [19] paper exploring number-
theoretic submultiplicative functions. Inequality (3.8) also holds for a submultiplicative func-
tion G : ) — R which by definition satisfies the inequality G(5 + f) < G(5)G(¥f) for all
5, € Qif5 L . For example, such is the statistics G(5) = l.c.m.{j : s; > 1}, related to the
group theoretical order of a permutation in the group S;. Here the letters I.c.m. stand for
the least common multiplier of the indicated natural numbers. This, more general case can
be dealt with by a repetition of the used argument or by a direct application of Lemma 3.2.
Indeed, given a submultiplicative function G : Q — [0, 1], we have

jsn j=n
Further, one can define F € 9 so that f;(k) = gj(k) to obtain G(k) < F(k) and a subsequent
ability to apply the Corollary for the function F.

Secondly, if 6 = 1 and F is a multiplicative function satisfying the conditions in Corol-
lary 3.2 and the values f](l) foren < j < n, where 0 < ¢ < 1, are close to 1, one can
substitute e7 in (3.8) by a smaller quantity (see [43]). Constructing appropriate indicator
functions and using Lemma 3.2 or (3.8), one can obtain sharp estimates of the probabilities
of vectors with a forbidden pattern. Note, that the lower estimates have been discussed in
[26]. This ends our remarks.

In the next step, we will need some knowledge about the algebraic structure (8,%),
where & := {G : ) — C} and * is the convolution defined as follows

FxG(f) := Z_F(s:)G(f— ), 5feq.

Let I(f) = 1 and E(f) = 1{f = 0} be the indicator function of the subset {0}. It is straight-
forward to check that (&, x) is an Abelian group in which E serves for the neutral element.
The inverse of I in the group is an analogue of the Mobius function. Let us leave the nota-
tion y for it. The latter is a multiplicative function such that y(¢;) = —1, and u(re;) = 0 if
r > 2, where 1 < j < n. Itis easy to check that the relations F = [ * G and G = p * F are
equivalent. Finally, we stress that 9t is a subgroup in &.
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Lemma 3.3. Let @ > 1 and F € 9 be such thatfj(l) > 1 for each j < n, then
O(n — jk) O(n —j)
< (k) (k) —— 2 (1)) ,
EvF) < ep { L 5000 2G50 - T O @)
Jrk=n j<n
foralln > 1.

Proof. Let F be as in the lemma. Define a function G = F * u. Then g;(1) = fj(1) =1 >0
and hence G(F)u?(F) > 0. Moreover, if u?(F+3) # 0, then f L 5. If 5 € Q, we have

En(Fu?) =©(m)~" 3 F(R)u?(k)P(k)
L(k)y=m

In the last step, we used the inequality

O(n — ((3)) O(n — js;)
o =L e

j<n

valid foralln > 1, £(5) < nand 6 > 1. The latter implies
o~ )

2y < (1) _ ,
Mﬁm_mﬂggm Dy 2 |

if0<m<n.
In the general case, we reorganize the expression of [E,(F). We firstly split uniquely
k =F+5swithf L 5 wheres € (Np\ {1})", F € {0,1}", and t; = 1if and only if k; = 1.
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3.3. Expectations of multiplicative functions

Then, keeping this agreement in summation carried out in the next few lines, we proceed

The inner sum was just estimated. Since

pey @) o 0@ )
IRICLOR §j<r<1+ ICTICE Seiy

L(3)<r

for 0 < r < n, we further obtain
Eu(F) < exp { L05(1) - D0 2l + 1 s 250}
J=n P

— exp { y ij(k)pj(k)(a((;(;)jk) - Pj(l)@g(;)f) }

jk<n

The lemma is proved.
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Chapter 3. Moments of additive functions with respect to the Ewens Sampling Formula

3.4 Moments of an additive function

We now embark on the power moments of a complex-valued additive function H(5). Let
A and B be the quantities defined in Section 3.2. Define the multiplicative function F(5) =
e?HE)/B where z € C, and set ¢(z) = e 24/BE, (F). Afterwards, we adopt Elliott’s [12]
argument.

Lemma 3.4. Assume that 0 < h;(k) < 6B holds for some 6 > 0 and all products jk < n. Then
there is a constant cq depending on 6 such that |¢(z)| < ¢1 uniformly in z if |z| < 1.

Proof. The inequality (3.9) gives us

. 0(n—jk) i 6" 1
P(kej) ————+—= < Y P(ke;) < () =
jkzgn J @(1’1) j;n ! ]'SZHkZZ J k!
k>2 k>2
_ (ee/f - 9,) <c (3.12)
j<n J

Applying this and the Cauchy-Schwarz inequality, we have

g 2t o(grom ) <

]<n jk<n
k>2

In the case z = r < 0, we have 0 < F(5) < 1. Thus, by Corollary 3.2, the inequality (3.9)
and the inequality above,

) < Crexp { Z 1)P( ])®gl(;)]) - rf;}
<6 eXP{,gn ( - rh]é”)l’@ﬁ@&%”}
< Czexp {r e"s}
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3.4. Moments of an additive function

In the case z = r > 0, we have F(5) > 1. Argueing with Lemma 3.3, we obtain

= exp {ﬂ;ﬂp ke;) (n)]k) (e”‘f(k)/B 11— rth(k)>
t L Pt - OR Enp >j)}
<C5exp{rzBe2nsﬂ§nhj(k)2P(k 2=t = HEP (n>]k)}

k>2

< Cgexp {rzer‘s} < Cy.
In general case when r = Re(z), z € C, we have

o?(H(5)—A)/B

lp(z) <@Mm)" ) PG) < ¢(r) < max(Cy, C7).

O

Lemma 3.5. Assume H(3) is complex-valued additive function such that |h;(k)| < 6B holds for
some & > 0 and all products jk < n. Then for each « > 0 there is a constant cy, depending on «
and 6, so that the inequality

E,(|H(5) — A|*) < cB* (3.13)
holds for all n > 1.

Proof. Since the weighted power means
- 1/
(En(H(5) — A]%)

do not decrease as « increases, it will suffice to prove the inequality (3.13) for integer values
of a.

By considering real and imaginary parts separately we see that there is no loss in gen-
erality in assuming that H(5) takes only real values, and, indeed, only non-negative real
values. For example, we can define additive functions H;(5),i = 1,2, by

o F) = {hj(k) 0 >0 {;hj(k) if (k) < 0

7
0 otherwise otherwise
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Chapter 3. Moments of additive functions with respect to the Ewens Sampling Formula

and

Then )
[H(5) — A[* < 2% ) [Hi(3) — Ail".
i=1
Summing over vectors § such that £(5) = n justifies our last assertion.
For every positive integer k we calculate the kth derivative of ¢(z) evaluated at z = 0.

Namely,
¢ Eal(HG) ~ AF)

oM (0) =

By Cauchy’s integral representation theorem

k!
®) 0y — K- k-1
o0 =5z [, o)
and by Lemma 3.4
!
ph)(0)] < Z’j;znrgm; 2% p(2)] < Kier.
O
Let us remark that those j, k, jk < 1, for which |h;(k)| > 6B holds satisfy
_\O(n — jk) _ NG T
P(kéj)————= < P(ke;) < P(kéj)|——| =67, (3.14)
/‘sz:n 17 e(n) ijs:n ! ijg:n 7| oB
i (k)| >08 (k) >0B

and are in this sense few in number.
Lemma 3.6. Suppose | C {1,2,...,n} and define
. On—j
Li=L(n)= Y p(ej)é(n)]).

j<nje]

Let w(3) denote the number of non-zero coordinates s; such that j € J or s; > 2. Then there is a
constant c3 depending on « such that the inequality

By (w(5)%) < c3(a)(L+1) (3.15)
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3.4. Moments of an additive function

holds uniformly for all n,m,1 <m <, and « > 0.

Proof. Since the weighted power means
(En(w(s)) """

do not decrease as & increases, it will suffice to prove the inequality (3.15) for all integers
k>0.

We argue inductively on k.

For k = 0 the inequality (3.15) is trivially valid. Assume that it holds for k = 0,1, ...,,v —
1,v > 1. Then

((5)=m kel
=0(m) " Y}, Y PEw(E”!
]kgm £(§)Z:km

Here and further on, the asterisk means that in the case k = 1 the summation is taken only
overj € J.Ifs; = k,say 5§ = kej + t where ke; L t, then ((f) = £(5) — jkand w(5) < 1+ w(f).
According to our induction hypothesis the inner sum

Y PFt+ke)w(F+ke) < P(ke) Y. P(H(1+w(F)”!

z(zl)@:j;ﬁ;jk L(f)=m—jk
) _ v—1 v—1 i
= P(ke;) Y. P(F) ; w(f)
((F)=m—jk i=0

v—1 _ .
< O~ j0r(ie) T (7 e+

< @(m — jk)P(ke;) [ max c3(i)(L+1+1)071

< Cg(v)®(m — jk)P(ke;)(L+ 1) L.

Hence, by (3.12),
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Setting c3(a) = C9 we complete the proof of Lemma 3.6.
O

Lemma 3.7. Let complex-valued additive function H(3) and 6 > 0 be such that either |hj(k)| > 6B
or hi(k) = 0 is true for each of the products jk < n. Then for each « > 1 there is a constant cy,
depending on « and 6, so that the inequality
E, (|H(5) ) <es Y |hik M (3.16)
! (1) |

jk<n
holds for all n > 1.

Proof. Let ] be the set of indexes j < n such that (1) # 0and L, w(3) be as in the statement
of Lemma 3.6.
By Holder’s inequality we see that

H(s Y |n
kej| |5
Hence
2 @IHE)* < Y 1] Y, P(E)w(s) (3.17)
jk<n 0(5)=n
s]-:k
Since o( X
~ n—j -2
L< P(k )
= L PR Ten) =
Inj (k)| >6B

from our remark (3.14), the inner sum on the right hand side of (3.17) is by Lemma 3.6 no
more than
C100(n — jk)P(ke;) (L +1)* < C11O(n — jk)P(ke)) (3.18)

where C1; is a constant depending on «, J.
The inequalities (3.17) and (3.18) show that

On) ' Y PE)HE)<Cy Y |hj<k>|“P<"Ef>®g(;>]k>'

£(3)=n jk<n
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3.4. Moments of an additive function

Moreover, Holder’s inequality and our remark (3.14) show that

. a—1 .
A< (5 P OG) i) g
=y =
o = @(Tl—jk)
< Clzﬂgn | (k)| P(kej)W'

Collecting the last two inequalities and using Holder’s inequality once again we finish the

proof of Lemma 3.7.
O
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3.5 Proof of Theorem 3.1

We define additive functions H;(5),i = 1,2, by

7

0 otherwise 0 otherwise

) o= {hj(k) if 1K) < B, o) = {hj(k) if (k)| > B,

and

Since )
[H(S) — Al <2° ) |Hi(5) — Al
i=1

the upper of the desired inequalities of Theorem 3.1 follows from Lemma 3.5 applied to
the function H; (5) with § = 1, together with Lemma 3.7 applied to the function H;(5) with
0=1

The lower of the desired inequalities of Theorem 3.1 follows from the fact that the value
of the expression

E,(|H(5) — A%

is no larger than that of the similar expression with « replaced by 2.
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Conclusions

o The results, obtained in probabilistic number theory, transfers well into probabilistic
combinatorics promising further results to be done.

o The thesis shows once more that probabilistic theories developed on additive arith-

metic semigroups and assemblies have many parallel lines.

o Moment estimates obtained for additive functions have shapes close to that appear-
ing for independent random variables; this supports a thought that, apart of the con-

stants, the inequalities are sharp.

o Itis natural to expect that lower estimates for the moments of additive functions can
be obtained.

67






Bibliography

[1] G. B. Arous and K. Dang, On fluctuations of eigenvalues of random permutation matrices.
arXiv:1106.2108v1 (2011).

[2] R. Arratia, A. D. Barbour and S. Tavaré, Logarithmic combinatorial structures: a prob-
abilistic approach. EMS Monographs in Mathematics. European Mathematical Society
(EMS), Ziirich, 2003.

[3] G.]. Babu and E. Manstavicius, Brownian motion for random permutations. Sankhya Ser.
A 61 (1999), no. 3, 312-327.

[4] T. Bakshajeva and E. Manstavicius, On statistics of permutations chosen from the Ewens
distribution. Combin. Probab. Comput. 23 (2014), no. 6, 889-913.

[5] V. Betz and D. Ueltschi, Spatial random permutations with small cycle weights. Probab.
Theory Related Fields 149 (2011), no. 1-2, 191-222.

[6] V. Betz, D. Ueltschi and Y. Velenik, Random permutations with cycle weights. Ann. Appl.
Probab. 21 (2011), no. 1, 312-331.

[7] A. Bir6 and T. Szamuely, A Turdn-Kubilius inequality with multiplicative weights. Acta
Math. Hungar. 70 (1996), no. 1-2, 39-56.

[8] L. V. Bogachev and D. Zeindler, Asymptotic statistics of cycles in surrogate-spatial permu-
tations. arXiv:1309.9786v1 (2013).

[9] K. Bogdanas and E. Manstavicius, Stochastic processes on weakly logarithmic assemblies.
Analytic and probabilistic methods in number theory, 69-80, TEV, Vilnius, 2012.

[10] H. Crane, The ubiquitous Ewens sampling formula. Statist. Sci. 31 (2016), no. 1, 1-19.

[11] P. D. T. A. Elliott, Probabilistic number theory. I. Mean-value theorems. Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science],
239. Springer-Verlag, New York-Berlin, 1979.

69



BIBLIOGRAPHY

[12] P.D. T. A. Elliott, High-power analogues of the Turdn-Kubilius inequality, and an application
to number theory. Canad. J. Math. 32 (1980), no. 4, 893-907.

[13] P. D. T. A. Elliott, Duality in analytic number theory. Cambridge Tracts in Mathematics,
122. Cambridge University Press, Cambridge, 1997.

[14] N. M. Ercolani and D. Ueltschi, Cycle structure of random permutations with cycle weights.
arXiv:1102.4796v2 (2012).

[15] W.]. Ewens, The sampling theory of selectively neutral alleles. Theoret. Population Biology
3 (1972), 87-112; erratum, ibid. 3 (1972), 240; erratum, ibid. 3 (1972), 376.

[16] S. Feng, The Poisson-Dirichlet distribution and related topics. Models and asymptotic behav-
iors. Probability and its Applications (New York). Springer, Heidelberg, 2010.

[17] P.Flajolet and R. Sedgewick, Analytic combinatorics. Cambridge University Press, Cam-
bridge, 2009.

[18] A. Gnedin, A. Iksanov and A. Marynych, A generalization of the Erd6s-Turdn law for the
order of random permutation. Combin. Probab. Comput. 21 (2012), no. 5, 715-733.

[19] R.R. Hall, Halving an estimate obtained from Selberg’s upper bound method. Acta Arith. 25
(1973/74), 347-351.

[20] K.-H. Indlekofer, Uber Verallgemeinerungen der Turdn-Kubilius Ungleichung. (German)
[On generalizations of the Turdn-Kubilius inequality] Acta Arith. 52 (1989), no. 1,
67-73.

[21] K.-H. Indlekofer, Tauberian theorems with applications to arithmetical semigroups and prob-
abilistic combinatorics. Ann. Univ. Sci. Budapest. Sect. Comput. 34 (2011), 135-177.

[22] K.-H. Indlekofer, On labeled and unlabeled combinatorial structures. Comm. Statist. The-
ory Methods 40 (2011), no. 19-20, 3641-3653.

[23] K.-H. Indlekofer, Remarks on Tauberian theorems for exp-log functions. Siauliai Math.
Semin. 8(16) (2013), 83-93.

[24] N. L. Johnson, S. Kotz and N. Balakrishnan, Discrete Multivariate Distributions. Wi-
ley Series in Probability and Statistics: Applied Probability and Statistics. A Wiley-
Interscience Publication. John Wiley & Sons, Inc., New York, 1997.

[25] Z.]Juskys, Limit theorems for additive functions defined on ordered semigroups with a regular
norm. (Russian) Litovsk. Mat. Sb. 4 1964 565-603.

70



BIBLIOGRAPHY

[26] T. Kargina and E. Manstavicius, Multiplicative functions on Z! and the Ewens sampling
formula. Functions in number theory and their probabilistic aspects, 137-151, RIMS
Kokytiroku Bessatsu, B34, Res. Inst. Math. Sci. (RIMS), Kyoto, 2012.

[27] T.Kargina and E. Manstavicius, The law of large numbers with respect to Ewens probability.
Ann. Univ. Sci. Budapest. Sect. Comput. 39 (2013), 227-238.

[28] J. Knopfmacher, Abstract analytic number theory. Second edition. Dover Books on Ad-

vanced Mathematics. Dover Publications, Inc., New York, 1990.

[29] J. Knopfmacher and W.-B. Zhang, Number theory arising from finite fields. Analytic and
probabilistic theory. Monographs and Textbooks in Pure and Applied Mathematics, 241.
Marcel Dekker, Inc., New York, 2001.

[30] J. Kubilius, Probabilistic methods in the theory of numbers. Translations of Mathematical
Monographs, Vol. 11 American Mathematical Society, Providence, R.I. 1964 xviii+182

pp-

[31] E. Manstavicius, The law of the iterated logarithm for random permutations. (Russian) Liet.
Mat. Rink. 38 (1998), no. 2, 205-220; translation in Lithuanian Math. J. 38 (1998), no. 2,
160-171 (1999).

[32] E. Manstavicius, Mappings on decomposable combinatorial structures: analytic approach.
Combin. Probab. Comput. 11 (2002), no. 1, 61-78.

[33] E. Manstavicius, Conditional probabilities in combinatorics. The cost of dependence. Prague
Stochastics 2006. Proc. of the Joint Session of 7th Prague Symposium on Asymptotic
Statistics and 15th Prague Conference on Information Theory, Statistical Decison Func-
tions and Random Processes, 523-532. Charles University, Prague, 2006.

[34] E. Manstavicius, Summability of additive functions on permutations. Analytic and proba-
bilistic methods in number theory, 99-108, TEV, Vilnius, 2007.

[35] E.Manstavicius, Moments of additive functions on random permutations. Acta Appl. Math.
97 (2007), no. 1-3, 119-127.

[36] E. Manstavicius, Total variation approximation for random assemblies and a functional limit
theorem. Monatsh. Math. 161 (2010), no. 3, 313-334.

[37] E. Manstavitius and Z. Zilinskas, On a variance related to the Ewens sampling formula.
Nonlinear Anal. Model. Control 16 (2011), no. 4, 453-466.

71



BIBLIOGRAPHY

[38] E. Manstavicius, On total variation approximations for random assemblies. 23rd Intern.
Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of
Algorithms (AofA’12), 97-108, Discrete Math. Theor. Comput. Sci. Proc., AQ, Assoc.
Discrete Math. Theor. Comput. Sci., Nancy, 2012.

[39] E. Manstavic¢ius and V. Stepanauskas, On variance of an additive function with respect
to a generalized Ewens probability. Proceedings of the 25th International Conference on
Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms,
301-312, Discrete Math. Theor. Comput. Sci. Proc., BA, Assoc. Discrete Math. Theor.
Comput. Sci., Nancy, 2014.

[40] E. Manstavicius, Restrictive patterns of combinatorial structures via comparative analysis.
Ann. Comb. 19 (2015), no. 3, 545-555.

[41] E. Manstavicius, A Turdn-Kubilius inequality on mappings of a finite set. From arithmetic
to zeta-functions, 295-307, Springer, [Cham], 2016.

[42] E.Manstavicius and V. Stepas, Variance of additive functions defined on random assemblies.
Lith. Math. J. 57 (2017), no. 2, 222-235.

[43] E. Manstavicius, On mean values of multiplicative functions on the symmetric group.
Monatsh. Math. 182 (2017), no. 2, 359-376.

[44] K. Maples, A. Nikeghbali and D. Zeindler, On the number of cycles in a random permuta-
tion. Electron. Commun. Probab. 17 (2012), no. 20, 13 pp.

[45] J.-L. Mauclaire, Sur une inégalité de la théorie probabiliste des nombres. (French) [On an in-
equality in probabilistic number theory] Proc. Japan Acad. Ser. A Math. Sci. 63 (1987),
no. 4, 134-137.

[46] ].-L. Mauclaire, Deux résultats de théorie probabiliste des nombres. (French. English sum-
mary) [Two results in probabilistic number theory] C. R. Acad. Sci. Paris Sér. I Math.
311 (1990), no. 2, 69-72.

[47] A. Nikeghbali and D. Zeindler, The generalized weighted probability measure on the sym-
metric group and the asymptotic behavior of the cycles. arXiv:1105.2315 (2011).

[48] V. V. Petrov, Sums of independent random variables. (Russian) Izdat. "Nauka”, Moscow,
1972. 414 pp.

[49] N. Pippenger, Random cyclations. Electron. J. Combin. 20 (2013), no. 4, Paper 9, 18 pp.

[50] A. Rényi, A new proof of a theorem of Delange. Publ. Math. Debrecen 12 (1965), 323-329.

72



BIBLIOGRAPHY

[51] L. Z. Ruzsa, Generalized moments of additive functions. ]. Number Theory 18 (1984), no. 1,
27-33.

[52] V. N. Sachkov, Combinatorial methods in discrete mathematics. Translated from the 1977
Russian original by V. Kolchin and revised by the author. Encyclopedia of Mathemat-
ics and its Applications, 55. Cambridge University Press, Cambridge, 1996

[53] V. N. Sachkov, Probabilistic methods in combinatorial analysis. Translated from the Rus-
sian. Revised by the author. Encyclopedia of Mathematics and its Applications, 56.
Cambridge University Press, Cambridge, 1997.

[54] P. Turan, On a Theorem of Hardy and Ramanujan. J. London Math. Soc. S1-9 (1934), no. 4,
274.

[55] G. A. Watterson, The sampling theory of selectively neutral alleles. Advances in Appl.
Probability 6 (1974), 463—488.

[56] S. Wehmeier, Arithmetical semigroups. Dissertation Univ. Paderborn, Verlag Dr. Hut,
Miinchen, 2005.

[57] S. Wehmeier, Die Turan-Kubilius-Ungleichung fiir additive arithmetische Halbgruppen.
[The Turan-Kubilius inequality for additive arithmetic semigroups] (German) Liet.
Mat. Rink. 46 (2006), no. 3, 457-471; translation in Lithuanian Math. J. 46 (2006), no. 3,
371-383.

[58] K. Wieand, Permutation matrices, wreath products, and the distribution of eigenvalues. J.
Theoret. Probab. 16 (2003), no. 3, 599-623.

[59] A. L. Yakymiv, Permutations with cycle lengths in a given set. (Russian) Diskret. Mat. 1
(1989), no. 1, 125-134; translation in Discrete Math. Appl. 1 (1991), no. 1, 105-116.

[60] A. L. Yakymiv, Probabilistic applications of Tauberian theorems. Translated from the Rus-
sian original by Andrei V. Kolchin. Modern Probability and Statistics. VSP, Leiden,
2005.

[61] A. L. Yakymiv, Asymptotics of the moments of the number of cycles of a random A-
permutation. (Russian) Mat. Zametki 88 (2010), no. 5, 792-800; translation in Math.
Notes 88 (2010), no. 5-6, 759-766.

[62] A. L. Yakymiv, Random A-permutations and Brownian motion. (Russian) Tr. Mat. Inst.
Steklova 282 (2013), 315-335; translation in Proc. Steklov Inst. Math. 282 (2013), no. 1,
298-318.

73



BIBLIOGRAPHY

[63] V. Zacharovas, Distribution of the logarithm of the order of a random permutation. (Russian)
Liet. Mat. Rink. 44 (2004), no. 3, 372-406; translation in Lithuanian Math. J. 44 (2004),
no. 3, 296-327.

[64] D. Zeindler, Permutation matrices and the moments of their characteristic polynomial. Elec-
tron. J. Probab. 15 (2010), no. 34, 1092-1118.

[65] W.-B. Zhang, Probabilistic number theory in additive arithmetic semigroups. I. Analytic
number theory, Vol. 2 (Allerton Park, IL, 1995), 839-885, Progr. Math., 139, Birkhduser
Boston, Boston, MA, 1996.

74



	Notation
	Introduction
	Actuality
	Methods
	Novelty
	Dissemination of the results
	Acknowledgements

	Variance of additive functions with respect to a generalized Ewens probability
	Basics and motivation
	Results
	Proof of Theorem 1.1
	Proof of Theorem 1.3

	Variance of additive functions defined on random assemblies
	Basics and motivation
	Results
	Expressions for the Moments
	Comparative Analysis
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Theorem 2.3

	Moments of additive functions with respect to the Ewens Sampling Formula
	Basics and motivation
	Result
	Expectations of multiplicative functions
	Moments of an additive function
	Proof of Theorem 3.1

	Conclusions
	Bibliography

