
KAUNAS UNIVERSITY OF TECHNOLOGY

DARIUS AŠERIŠKIS

MODELLING AND EVALUATION OF SOFTWARE

SYSTEM GAMIFICATION ELEMENTS

Doctoral Dissertation

Technological Sciences, Informatics Engineering (07T)

2017 Kaunas

This dissertation was prepared in years 2013 – 2017 in Department of Software

Engineering of Faculty of Informatics of Kaunas University of Technology.

Scientific Supervisor:

Prof. Dr. Robertas DAMAŠEVIČIUS (Kaunas University of Technology,

Technological Sciences, Informatics Engineering – 07T).

Doctoral dissertation has been published in:

http://ktu.edu

Editor:

Bronius Broniauskas (Publishing Office “Technologija”)

© D. Ašeriškis, 2017

ISBN 978-609-02-1375-9

The bibliographic information about the publication is available in the National

Bibliographic Data Bank (NBDB) of the Martynas Mažvydas National Library of

Lithuania

http://ktu.edu/

KAUNO TECHNOLOGIJOS UNIVERSITETAS

DARIUS AŠERIŠKIS

PROGRAMŲ SISTEMŲ ŽAIDYBINIMO ELEMENTŲ

MODELIAVIMAS IR VERTINIMAS

Daktaro disertacija

Technologijos mokslai, Informatikos inžinerija (07T)

2017 Kaunas

Disertacija rengta 2013-2017 metais Kauno technologijos universitete, Informatikos
fakultete, Programų sistemų katedroje.

Mokslinis vadovas:
Prof. dr. Robertas DAMAŠEVIČIUS (Kauno technologijos universitetas,
technologijos mokslai, informatikos inžinerija – 07T)

Interneto svetainės, kurioje skelbiama disertacija, adresas:

http://ktu.edu

Redagavo:

Bronius Broniauskas (leidykla “Technologija”)

© D. Ašeriškis, 2017

ISBN 978-609-02-1375-9

Leidinio bibliografinė informacija pateikiama Lietuvos nacionalinės Martyno
Mažvydo bibliotekos Nacionalinės bibliografijos duomenų banke (NBDB)

http://ktu.edu/

ACKNOWLEDGMENT

The author would like to thank Prof. Dr. Robertas Damaševičius for traveling

through this six-year journey together. The author is grateful to Robertas for the
opportunity to work side by side and to reach the desired goals.

The author would also like to thank his wife Andžela and daughter Deimantė for
support and understanding. The Author is grateful to his parents Laima and Antanas
and sisters Dovilė and Daiva for believing in him. Also, the author thanks his wife’s
family for moral support.

6

TABLE OF CONTENTS

TERMS AND ABBREVIATIONS .. 9

FIGURES ... 11

TABLES ... 13

1. INTRODUCTION ... 14

1.1. Motivation... 14

1.2. Object and scope of the research .. 15

1.3. Problem statement and research questions ... 15

1.4. Aim and objectives ... 15

1.5. Defended propositions .. 16

1.6. Major contributions and novelty of the research .. 16

1.7. Practical significance .. 17

1.8. Scientific approval .. 17

1.9. Structure of the dissertation .. 17

2. THE ANALYSIS OF GAMIFICATION ... 18

2.1. Background of gamification ... 18

2.2. Psychological and social aspects of gamification ... 19

2.3. Modeling of Gamification .. 25

2.3.1. Overview of gamification analysis methods .. 25

2.3.2. Introduction to Machinations modeling framework 29

2.3.3. Formal models of game design and gamification 30

2.4. Agent-based simulation and social gaming .. 33

2.5. Software generation from models ... 34

2.6. Gamification architectural design ... 35

2.7. Related research by Lithuanian authors .. 35

2.8. Summary ... 36

3. SPECIFICATION OF GAMIFIED SYSTEMS... 37

3.1. Methodology for the gamified system analysis .. 37

3.2. Formal model of the gamified system .. 38

3.3. Pattern description scheme ... 39

7

3.4. Gamification patterns .. 39

3.5. Example of pattern application .. 43

3.6. Abstract formal model ... 44

3.7. Graphical notation of the UAREI model ... 46

3.8. Summary .. 46

4. IMPLEMENTATION OF THE GAMIFIED SYSTEM ANALYSIS TOOL 47

4.1. The Method for Gamified System Development ... 47

4.2. Transformation of the UAREI to UAREI JSON ... 48

4.3. UAREI JSON transformation and simulation ... 53

4.4. GMOD UAREI modelling and simulation tool ... 55

4.5. Summary .. 57

5. CASE STUDIES ... 57

5.1. Trogon PMS .. 57

5.2. eLearning model for programming contest .. 59

5.3. Minority Game .. 61

5.4. OilTrader ... 65

6. EVALUATION OF THE GAMIFIED SYSTEMS .. 67

6.1. Gamified system evaluation .. 67

6.1.1. Visual evaluation of the gamified systems ... 67

6.1.2. Evaluating gamified systems using SUS .. 70

6.2. Modelling gamification of Trogon PMS ... 71

6.2.1. Modelled system description .. 71

6.2.2. Trogon UAREI model .. 72

6.2.3. UML model of Trogon ... 73

6.2.4. Trogon in Machinations .. 74

6.2.5. Model comparison .. 75

6.2.6. Evaluation ... 75

6.3. Gamification model of eLearning system .. 78

6.3.1. UAREI model of eLearning system .. 78

6.3.2. Simulation of a Hybrid Gamification Model .. 79

6.3.3. Experimental evaluation of gamification model of eLearning system ... 80

8

6.3.4. Experiment results .. 81

6.4. Modelling Minority Games in UAREI .. 83

6.4.1. Extending UAREI for MG support ... 83

6.4.2. Simulation and results ... 86

6.4.3. Summary & the reinforcement model... 89

6.5. OilTrader Game experiment .. 90

6.5.1. Experiment setup .. 90

6.5.2. Purpose of the Game Experiment ... 91

6.5.3. Experimental Subjects .. 91

6.5.4. Research Tool ... 91

6.5.5. Results ... 92

6.5.6. Extending UAREI MG with motivation ... 97

6.5.7. Modelling OilTrader ... 98

6.5.8. Simulation and results ... 99

6.6. Discussion of the Results & Conclusions .. 102

7. CONCLUSIONS ... 106

REFERENCES .. 107

LIST OF PUBLICATIONS OF DARIUS AŠERIŠKIS ON DISSERTATION

THEME ... 123

APPENDIXES ... 125

APPENDIX A ... 125

9

TERMS AND ABBREVIATIONS

Agent based model is one of a class of computational models for simulating the actions and interactions

of autonomous agents (both individual or collective entities such as organizations

or groups) with a view to assessing their effects on the system as a whole.
Artificial intelligence

(AI)

is intelligence exhibited by machines. In computer science, an ideal "intelligent"

machine is a flexible rational agent that perceives its environment and takes actions

that maximize its chance of success at some goal.
API a set of functions and procedures that allow the creation of applications which

access the features or data of an operating system, application, or other service.

ARCS attention, relevance, confidence, and satisfaction.
CLG characteristics of a Learning Game.

Cyclomatic

Complexity

is a software metric (measurement), used to indicate the complexity of a program.

It is a quantitative measure of the number of linearly independent paths through a
program's source code.

Game Engine the basic software of a computer game or video game.
Gamification the application of typical elements of game playing to other areas of activity,

typically as an online marketing technique to encourage engagement with a product

or service.
GaML is an XML based format for storing and archiving data from a wide range of

analytical instrumentation.

GMOD gamification modeling and simulation tool.
GWAP a human-based computation game or game with a purpose is a human-based

computation technique of outsourcing steps within a computational process to

humans in an entertaining way.
HEXAD questionnaire evaluating Human Engagement, eXperience and Activity Design.

HTTP(s) HTTPS is a protocol for secure communication over a computer network which is

widely used on the Internet. HTTPS consists of communication over Hypertext.
Hypergraph is a generalization of a graph in which an edge can connect any number of vertices.

Formally, a hypergraph is a pair where is a set of elements called nodes or vertices,

and is a set of non-empty subsets of called hyperedges or edges.
Information

Technology (IT)

the study or use of systems (especially computers and telecommunications) for

storing, retrieving, and sending information.

Information System

(IS)

is any organized system for the collection, organization, storage and
communication of information.

JPG is a commonly used method of lossy compression for digital images, particularly

for those images produced by digital photography. The degree of compression can
be adjusted, allowing a selectable tradeoff between storage size and image quality.

JavaScript Object

Notation (JSON)

is a lightweight data-interchange format. It is easy for humans to read and write. It

is easy for machines to parse and generate.
Machinations is a theoretical framework and an interactive, dynamic, graphical representation that

describes games as dynamic systems and focuses on closed feedback loops within

them.
Mechanics-Dynamics-

Aesthetics (MDA)

in game design the framework is a tool used to analyze games. It formalizes the

consumption of games by breaking them down into three components - Mechanics,

Dynamics and Aesthetics.
Meta-language a form of language or set of terms used for the description or analysis of another

language.

Minority Game (MG) a simple model for the collective behavior of agents in an idealized situation where
they have to compete through adaptation for a finite resource.

Pattern a regular and intelligible form or sequence discernible in the way in which

something happens or is done.
Petri Nets is one of several mathematical modeling languages for the description of distributed

systems.

SQL is a special-purpose domain-specific language used in programming and designed
for managing data held in a relational database management system (RDBMS).

Stack is an abstract data type that serves as a collection of elements, with two principal

operations: push, which adds an element to the collection, and pop, which removes
the most recently added element that was not yet removed.

Serious game a serious game or applied game is a game designed for a primary purpose other than

pure entertainment. The "serious" adjective is generally prepended to refer to video

10

games used by industries like defense, education, scientific exploration, health care,

emergency management, city planning, engineering, and politics.

System Usability

Scale (SUS)

in systems engineering, is a simple, ten-item attitude Likert scale giving a global
view of subjective assessments of usability.

Systems Modeling

Language (SysML)

a general-purpose modeling language for systems engineering applications. It

supports the specification, analysis, design, verification and validation of a broad
range of systems and systems-of-systems.

UAREI common formal model composed from Users, Actions, Rules, Entities and

Interfaces.
Unified modeling

language (UML)

a general-purpose, developmental, modeling language in the field of software

engineering, that is intended to provide a standard way to visualize the design of a

system.
WCAG the WCAG technical documents are developed by the Web Content Accessibility

Guidelines Working Group (WCAG WG), which is part of the World Wide Web

Consortium (W3C) Web Accessibility Initiative (WAI).
XML a metalanguage which allows users to define their own customized markup

languages, especially in order to display documents on the Internet.

11

FIGURES

Figure 1. Screenshots of Togon PMS ... 38
Figure 2. (a) Infinite quantity source and (b) limited quantity source. 40
Figure 3. (a) Time limit and (b) dynamic limit patterns. .. 40
Figure 4. (a) Random result pattern and (b) drain pattern. 41
Figure 5. (a) Constrain pattern and (b) extension pattern. .. 42
Figure 6. (a) Property and chance pattern; and (b) solver pattern. 42
Figure 7. Trogon PMS rule model .. 44
Figure 8. UAREI activity diagram ... 47
Figure 9. UAREI metamodel represented in UML Class Diagram 48
Figure 10. UAREI JSON format UML Class Diagram .. 49
Figure 11. CodeBlock UML Class Diagram .. 50
Figure 12. Query UML Class Diagram .. 50
Figure 13. Entity Scheme UML Class Diagram ... 51
Figure 14. UAREI to UAREI JSON transformation rules 52
Figure 15. Application action execution .. 54
Figure 16. Simulation execution UML Activity diagram ... 54
Figure 17. GMOD UAREI modelling and simulation tool 55
Figure 18. Game badges and badge levels. .. 58
Figure 19. Elements of project forest. .. 58
Figure 20. Project forest ... 58
Figure 21. Gamification solution class diagram ... 58
Figure 22. Informik Environment ... 60
Figure 23. The levels of game-based education. .. 60
Figure 24. The gamified eLearning hybrid model activity diagram 61
Figure 25. Algorithm of the coalition-based Minority Game 64
Figure 26. Schematic diagram of the game. ... 65
Figure 27. Flow diagram for game steps. ... 66
Figure 28. Trogon PMS monthly badge board page .. 68
Figure 29. Trogon PMS monthly leaderboard page ... 68
Figure 30. Trogon PMS employee task page ... 68
Figure 31. Trogon PMS project forest page ... 69
Figure 32. Trogon PMS dashboard page .. 69
Figure 33. Trogon PMS task page .. 69
Figure 36. Visual model of Trogon PMS gamification. ... 72
Figure 37. Gamification model of Trogon PMS specified using UML activity

diagram ... 73
Figure 38. Gamification model of Trogon PMS specified using Machinations. 74
Figure 39. The gamified eLearning hybrid model for increasing participant’s

engagement. .. 78
Figure 40. Simulation results. ... 79

12

Figure 41. Probabilities assuming normal distribution ... 80
Figure 42. Box plot of hybrid eLearning model contestant results. 81
Figure 43. Probability distribution of gamified and control groups 82
Figure 44. Learning results of enjoyment groups. .. 82
Figure 45. Probability distribution engagement groups ... 83
Figure 46. Minority Game model in UAREI .. 85
Figure 47. Model of coalition (a) and ternary voting (b) variants of Minority Game

in UAREI .. 85
Figure 48. Histogram of wins in simulated classic Minority Game 86
Figure 49. Histogram of wins in simulated variable payoff Minority Game 87
Figure 50. Histogram of wins in simulated coalition-based Minority Game 87
Figure 51. Histogram of wins in ternary voting Minority Game 88
Figure 52. OilTrader leaderboard of (a) control group, and (b) experiment group

(with streak, win and loss incentives) ... 90
Figure 53. Distribution of players between player types .. 93
Figure 54. Median gameplay duration for main group and control group 94
Figure 55. Probability of playing longer (permutation test) 94
Figure 56. Duration of gameplay (in rounds) ... 95
Figure 57. Analysis of questions from HeXAD questionnaire 96
Figure 58. Duration of gameplay for each player type ... 96
Figure 59. Results of permutation test for different player types 97
Figure 60. OilTrader UAREI model ... 99
Figure 61. XP and Control group simulation results .. 101
Figure 67. Differences between groups by player types ... 102

13

TABLES

Table 1. Machinations modelling framework (J Dormans, 2013) 30
Table 2. Gamification modelling framework comparison criteria. 31
Table 3. Comparison of formal description, timed automata, Petri nets modelling

frameworks ... 32
Table 4. Comparison of GaML, UML and Machinations modelling frameworks ... 32
Table 5. Description of the limited quantity source and infinite quantity source

patterns. .. 40
Table 6. Description of time limit and dynamic limit patterns. 40
Table 7. Description of random result pattern and drain pattern. 41
Table 8. Description of constrain pattern and extension pattern. 42
Table 9. Description of the property and chance pattern and solver pattern. 43
Table 10. Graphical notation of the UAREI modelling language 46
Table 11. UAREI to UAREI JSON model transformation 51
Table 12. Variants of Minority Game .. 63
Table 13. Visual complexity of Trogon PMS models. ... 75
Table 14. Graphical notation of UAREI modelling language 76
Table 15. Cognitive dimensions of UAREI and Machinations. 77
Table 16. Modelling variants of Minority Game in UAREI 86
Table 17. Statistical evaluation of variants of Minority Game 88
Table 18. The HeXAD Questionnaire (L. Diamond G. F. Tondello & Tscheligi,

2015) ... 92
Table 19. User classification by motivation weights. ... 101

14

1. INTRODUCTION

1.1. Motivation

Recently, gamification has gained popularity in the development of enterprise
information and e-commerce systems (McGonigal, 2011). Gamification is the use of
elements of game design (game rules, game techniques, gamified interfaces) in non-
game contexts (Deterding, Dixon, Khaled, & Nacke, 2011), such as marketing,
employee performance and training, and innovation management.

Game domain is the closest domain to the Gamification domain. Gamified
systems can be viewed as simpler versions of games. According to the Webster
Dictionary, a game is a physical or mental competition conducted according to rules.
In many cases, gamification can be easily applied to games and vice versa.

In a survey by Pew Research Center, 53% of people surveyed said that, by 2020,
the use of gamification will be widespread (Anderson & Rainie, 2012). A well-known
study of Gartner claimed that by 2015, more than 50% of organizations that manage
innovation processes will gamify those processes (Gartner Research, 2012). Over 70%
of Forbes Global 2000 companies plan to use at least some elements of gamification
for product marketing and customer retention (Van Grove, 2011). While some of the
expectations of the spread of gamification may be overhyped, there are several
examples of successful gamification, which include Idea Street (Burke & Mesaglio,
2010), a social collaboration platform that uses game mechanics, Badgeville (Sims,
n.d.), a platform that enables businesses to apply gamification across their web and
mobile experiences; and RedCritter Tracker (RedCritter Corp, 2011), an Agile Project
Management service with badges, rewards, leaderboards, and real-time Twitter-style
feeds. These gamified systems have some aspects in common: an attractive graphical
user interface, strong emphasis on social competition, and an engaging award system.

According to Gartner Inc. (Gartner Research, 2012), the widespread interest that
gamification has been attracting recently lies in its potential to strengthen engagement,
change user behaviors and support innovation. Game theory-based models are being
widely adopted now in different contexts and used as a driver for solving problems in
a wide variety of domains, including disaster management (Vásquez, Sepulveda,
Alfaro, & Osorio-Valenzuela, 2013), education (Botra, Rerselman, & Ford, 2014;
Caponetto, Earp, & Ott, 2014), e-learning (Gené, Núñez, & Blanco, 2014), workplace
improvement (Sammut, Seychell, & Attard, 2014), marketing (Freudmann &
Bakamitsos, 2014), healthcare management (Wilson & McDonagh, 2014; Wortley,
2014), IT service management (da Conceicao, da Silva, de Oliveira Filho, & Silva
Filho, 2014), social policy (Hall, Kimbrough, Haas, Weinhardt, & Caton, 2012), sports
and fitness (Stålnacke Larsson, 2013), tourism business (Wells et al., 2014), customer
engagement (Harwood & Garry, 2015), social missions (Hamari & Koivisto, 2013),
fostering creativity (Barata, Gama, Fonseca, & Gonçalves, 2013), employee
engagement and training (Narayanan, 2014), etc.

The modelling of gamification is important for the design of systems based on
the principles of serious games, in order to quantify and validate the impact of
gamification and to better understand why and how gamification works. Existing
evaluations of gamification usually focus on the application of user questionnaires and
other methods of qualitative evaluation. There is still a lack of modelling methods and

15

tools to aid the design and development of gamification in serious systems (Herzig,
Jugel, Momm, Ameling, & Schill, 2013; Mora, Riera, Gonzalez, & Arnedo-Moreno,
2015).

This dissertation aims to introduce modeling and simulation methods which
would allow us to build a bridge between the formal modeling of gamification and
quantitative simulation of games, analysis and evaluation of game rules and processes.

1.2. Object and scope of the research

The object of the research is methods and tools for simulation, analysis, and
evaluation of gamified software systems. These methods and tools are necessary if we
want to employ more powerful game patterns, elements and mechanics into our
systems at the same time as understanding how the system will impact user behavior.

The scope of the research involves:

• Methods for game modeling, analysis, prototyping.

• Formal mathematical modelling of gamified systems.

• Multi-user system user behavior modeling and model behavior analysis.

• Gamified system analysis and evaluation.

1.3. Problem statement and research questions

The problem of this work focuses on the lack of methods and tools for
quantitative analysis and understanding of gamification patterns, elements and
mechanics. The same problem is observed in the related game domain. Currently, there
is no single integrated process which would lead game designers from the idea of
gamification to the final implementation of a gamified system.

This dissertation gives answers the following research questions:

• What is state-of-the-art in the domain of gamification modelling?

• How can gamified systems be evaluated?

• How can gamified systems and elements of gamification be modeled
abstractly?

• How can user behavior in gamified systems be predicted?

1.4. Aim and objectives

The aim of the research is providing the gamification domain with a tool and
methods for modeling, analyzing, simulating and generating gamified systems,
isolating patterns, and understanding gamification pattern impact on user behavior.

For the aim of the thesis to be achieved, the following objectives have been set
out:

1. To conduct static and dynamic analyses of gamified systems to identify
methods for evaluation of the system gamification.

2. To consider gamified systems for patterns and identify commonalities in
gamified systems, and create a gamification modelling method.

3. To examine known solutions for evaluation of usability and efficiency of
gamification solutions, and create a method for analyzing and
computationally modeling the impact of gamification on the behavior of
users with respect to gamified systems.

16

1.5. Defended propositions

1. The proposed gamification evaluation methods can be used for quantitative
and qualitative evaluations of gamified systems.

2. The proposed visual gamification modelling method allows for creating
gamified system models, extracting gamification patterns, simulating user
behavior, analyzing simulated user behavior, comparing gamified systems
and generating gamified applications.

3. The UAREI model simulation in the GMOD tool reproduces similar
behavior of other tools and enables to predict how an implemented prototype
gamified system will act in a real-world environment. The efficiency of the
gamification solutions can be modelled by analyzing the behavior of users
using a game player type evaluation based on the HEXAD questionnaire.

1.6. Major contributions and novelty of the research

Major contributions of this work:

• Formal abstract gamification modeling method as a common method for
analyzing gamified systems has been created. This method allows us to
model, examine and evaluate gamified systems has been developed, which
has similar or better capabilities versus current industry methods.

• A new method for evaluating gamified system attraction was created by
comparing player winning distribution to normal distribution. Method tested
by analysis of minority game variation.

• A new method for evaluating gamification reinforcement models by
psychological player types was proposed. Method tested by analysis of
OilTrader game experiment.

• Proposed methods for gamified system user interface evaluations using Web
Content Accessibility Guidelines and System Usability Scale, tested with
Trogon project management system.

• The proposed methods and gamified system modelling method allows game
designers and scientists to develop gamification models, simulate gamified
systems, improve models to achieve desired outcomes and generate systems
from models has been created. This increases the development speed of
gamified systems.

The novelty of the method:

• UAREI is a new formal modeling method dedicated for gamified system
modeling with visualization and simulation capabilities.

• The created method allows different ways to simulate gamified applications.
For simulation UAREI utilizes custom selection functions, agent based
modelling and Minority Game engine.

• Simulating gamified systems allows to evaluate gamified system
performance in new ways like: increase of motivation, results or game
interestingness.

• Created gamified system evaluation methods based on usability, visual
attractiveness (contrast ratios), and player motivation by player types.

17

1.7. Practical significance

• The proposed formal abstract model enables scientists to formally model
gamified systems. Using the same formal notation extraction of common
gamification patterns and pattern composition into new systems (UAREI is
mathematically expressed through sets which allows easy mathematical
manipulation using algebra of sets) becomes easier.

• Simulation of the gamified system model gives valuable insights on how the
gamified system affects user behavior to game designer and scientists.
Simulation provides faster feedback and predicts what kind of behavior
might be expected from users interacting with the gamified systems.

• Software generation from UAREI creates the shortest path from gamified
system models to a prototype system ensuring fast iteration over the
gamified system solution which allows for better results.

• The analysis of the gamified systems using the UAREI modeling method
helps to better understand how gamified system patterns effect end-user
behavior, how patterns interact with each other and how to achieve best
gamified systems performance, before deploying ready-to-use gamified
software systems.

1.8. Scientific approval

The results of the research have been presented in two international conferences,
and two articles have been published in journals indexed in Web of Science Journal
List. One article is still in review in the journal included in Web of Science Journal
List. One paper is published in a peer-reviewed journal. Three topic-related papers
have been presented in Lithuanian conferences. Two papers have been presented in
international conferences in Spain and France. The full list of publications can be found
in chapter titled “LIST OF PUBLICATIONS OF DARIUS AŠERIŠKIS ON
DISSERTATION THEME”. A list of conferences:

• The 22th International Master and PHD Students Conference “Information
Society and University Studies”, 2017 April 28, Kaunas;

• The Seventh International Conference on Advances in Computer-Human
Interactions ACHI 2014 March 23 - 27, Barcelona, Spain;

• The Sixth International Conference on Intelligent Human Computer
Interaction IHCI 2014 December 8-10, Envy, France;

• The 18th International Master and PHD Students Conference “Information
Society and University Studies”, 2013 April 25, Kaunas;

• The 17th Master and PHD Students Conference “Information Society and
University Studies”, 2012, Kaunas.

1.9. Structure of the dissertation

In Chapter 2, related works from various areas of gamification like motivation
and psychological foundation, modeling, software architecture and agent-based
simulation have been analyzed. When analysis of gamification is conducted, patterns
from gamified system models are extracted. Also, the UAREI abstract formal model is
identified, which is the basis for further research. GMOD is presented as an UAREI

18

modeling tool which is used for system model analysis and simulation. In Chapter 5,
case studies used for research are described.

Chapter 6 covers methods for gamified system quantitative and qualitative
evaluation. Furthermore, the UAREI modeling method is evaluated against UML and
Machinations. Furthermore, hybrid eLearning UAREI model simulation is evaluated
against real system user behavior. UAREI is extended to support a market-based
simulation adapted from Minority Game engine and evaluation of gamified system by
player types, which is presented thusly. In Chapter 7, conclusions of the work are
presented. Finally, references and a list of publications by the thesis author is given.

2. THE ANALYSIS OF GAMIFICATION

2.1. Background of gamification

According to Eric Zimmerman, a game is an activity with some rules engaged in
for an outcome (Salen & Zimmerman, 2004). Chris Crawford defines games in this
way (Crawford, 2003):

1. Creative expression is art if made for its own beauty and entertainment if
made for money;

2. A piece of entertainment is a plaything if it is interactive.
3. If no goals are associated with a plaything, it is a toy. If it has goals, a

plaything is a challenge.
4. If a challenge has no active agent against whom you compete, it is a puzzle;

if there is one, it is a conflict.
5. Finally, if the player can only outperform the opponent, but not attack them

to interfere with their performance, the conflict is a competition. However,
if attacks are allowed, then the conflict qualifies as a game.

Games and game-like experiences can by split by design attempts. A game
combines game thinking, game elements, virtual world, game play and non-
purposefulness (A. C. Marczewski, 2015).

Gamification (Deterding, Dixon, et al., 2011) has been employed to enable
attitude change and increase user motivation. It refers to adding ‘gamefulness’ to
existing systems in non-game contexts, usually aiming to increase the value of a service
or business product beyond its face value, as well as to boost user engagement, loyalty,
and satisfaction or otherwise affect user behavior (Huotari & Hamari, 2012). Concepts
related to gamification are “gameful design” or “gameful work”.

Gamification is applied to enhance the value of a service or business product
beyond its face value, as well as to boost user engagement, loyalty, and satisfaction.
Gamification is usually implemented using game elements, such as badges and
scoreboards, combined with meaningful game rules (or game mechanics) that
encourage competition between game players trying to reach some objectives or
quantifiable outcome (Deterding, 2012). Gamification that encourages competition
between game players may help to achieve positive outcomes such as higher sales of a
product, drive marketing or increase job performance.

However, gamification still poses great challenges to software designers: 1) how
to design meaningful and engaging game rules as well as integrate them with business
rules, 2) how to create an attractive game interface, which integrates smoothly with a

19

user interface of a serious system, 3) how to evaluate success of gamification both in
terms of its usability (aesthetic aspect) and customer retainment (pragmatic aspect).

Several cases of gamification application are described in literature in the context
of enterprise information systems (IS) such as a generic platform for enterprise
gamification (Herzig, Ameling, & Schill, 2012), implemented using service oriented
and event-driven principles and best practices; authentication games (Kroeze &
Olivier, 2012) for improving user behavior regarding security; and the demand
dispatch system (Gnauk, Dannecker, & Hahmann, 2012) with a special scoring system,
leaderboards and social competition aspects embedded into user interface.

Gamification is widely adapted in the field of eLearning technology. Various
approaches are often used to improve the virtual learning environment. One of the main
goals is to improve motivation of teachers and students via innovative learning tools
and gamification techniques. The practice shows that the technological solutions for
gamification implementation bring more innovations to the educational process.
Game-based activities improve users’ logical deductive thinking (Yuizono, Xing, &
Furukawa, 2014) reaction even by applying existing technologies and creating new
knowledge management. Gamification items can serve as efficient catalysts
determining the ideas of fluency, flexibility and originality, while the use of game
mechanics can contribute to promoting involvement (Witt, Scheiner, & Robra-
Bissantz, 2011). Six main elements of gaming (Barata, Gama, Jorge, & Gonçalves,
2013; O’Donovan, Gain, & Marais, 2013) have been identified as being particularly
effective in education (Meece, Anderman, & Anderman, 2006; Smith-Robbins, 2011):
Choice (Freedom to Fail), Rapid Feedback, Collaborative Processes, Evidence of
Progression and Competition, as well as Evidence of Storytelling in some of the studies
(Kapp, 2016). The greatest noticeable difference between a typical game model and
gamification model (especially in eLearning context) lies in the sustainability (often
perceived as knowledge) after "Engagement" and "Reward" activities (Salen &
Zimmerman, 2004).

Gamification is defined as a process which shapes the world (achieves
goals/objectives) by influencing the actions, behaviors, characteristics and state of
entities within the world through the use of games strategies and enabling technologies
(Wortley, 2014). The concept is relatively new, but it has gained considerable interest
in the software development and user interface design community over the last few
years. The roots of gamification are in game design, with some elements from
psychology, so there is still little academic research on how to design and develop
software systems with and for gamification.

2.2. Psychological and social aspects of gamification

Playing can be a powerful motivating factor, facilitating learning and supporting
the physical and intellectual development of a person (Deci & Ryan, 2000). In 2012,
there were more than one billion computer game players (Kuss, 2013) leading to a
boom in the online gaming market. There have been many efforts to exploit games for
more serious use such as gamification. Gamification is the use of game thinking and
game mechanics in non-game contexts (Werbach & Hunter, 2012) in order to engage
users and solve serious problems (Zichermann & Cunningham, 2011) such as to
promote or assess sustainability of complex intelligent physical environments (Silva,
Analide, Rosa, Felgueiras, & Pimenta, 2013).

20

Using gamified systems and applications, the engagement, interaction,
collaboration, awareness, participation, productivity and learning motivation of users
can be increased in various domains such as team organization (J. T. Kim & Lee, 2015),
project management (Ašeriškis & Damaševičius, 2014a), e-learning (Luo, Yang, &
Meinel, n.d.), healthy lifestyles (Berger & Schrader, 2016), tourism applications
(Negruşa, Toader, Sofică, Tutunea, & Rus, 2015), etc. Such mechanisms can be
applied to reinforce player motivation to play as they contribute to initiation,
development, and maintenance of gaming behavior (King, Delfabbro, & Griffiths,
2010). Games can evoke a lot of different affective states, and can to some extent be
utilized to keep the player involved in the game (Chanel, Rebetez, Bétrancourt, & Pun,
2008). The aim of the gamification designer should be to increase and retain a number
of game players as well as to prolong game lifetime by maximizing user involvement
and satisfaction, while minimizing negative emotional episodes caused by frustration,
for example, which can lead the player to stop playing the game.

The primary motivation for gamification is a psychology-based one, namely to
enhance user or customer motivation to do a job or to increase and retain addiction to
a service or product using a game as a tool.

Gamification can be explained by Fogg Behavior Model (FBM) (Fogg, 2009),
which claims that both, motivation to perform and ability to perform, must converge
at the same moment for behavior to occur. Motivation must be supported by positive
feedback from game mechanics that continuously triggers a user to perform specific
actions and keeps him interested in the game.

Psychological foundation of gamification has been elaborated further by Wu
(Wu, 2011), who analyzes why and how gamification is able to drive actions, and by
Gnauk et al. (Gnauk et al., 2012), who studied extrinsic and intrinsic motivation and
analyzed its relationship with external incentives and rewards.

Another motivation for gamification is social competition. Here, gamification is
driven by the need to interact with other players and compare one’s results. Thus,
gamification requires the introduction of real-time multi-user games with complex
rules of a game that have some similarity to social networking platforms.

The underlying concept of gamification is motivation. Gamification is driven
primarily by external motivation, i.e., the users strive to compete against other playing
users and to get recognized by the game community (Stålnacke Larsson, 2013). As
motivation tends to decay over time, it, however, must be supported by the increasing
complexity and evolving dynamics of game mechanics (Bauckhage et al., 2012).
Meaningful gamification (otherwise known as “serious game”) is the use of game
design elements to help users find meaning in a non-game context. Rather than just
using game mechanics to give points or badges to users as external rewards,
meaningful gamification focuses on the playing process (aka game mechanics) itself
to engage players to perform meaningful tasks in the real world.

Developing motivation enhancement and reinforcement models and methods is
important for many areas where active and sustainable participation of agents is key
for the success of the entire process, e.g., in digital game-based learning (S. Kim, 2015;
Rico, Agudo, & Sánchez, 2015), to foster entrepreneurship education (Fonseca et al.,
2012), or to facilitate management of software development processes (Herranz,
Palacios, de Amescua Seco, & Yilmaz, 2014).

Many gamified systems encourage user participation using virtual forms of
incentive like points, badges, leaderboards (Nah, Zeng, Telaprolu, Ayyappa, &

21

Eschenbrenner, 2014), progress bars, performance graphs or avatars (Sailer, Hense,
Mandl, & Klevers, 2013). These incentives translate a player’s time and effort
investments into a form that is quantifiable, comparable and communicable to his peer
(Gou, 2006). As such, they indicate player status and in-game progress, as well as
motivate them to continue engaging in gameplay. For example, several of the most
popular user-contribution based sites such as StackOverflow, TripAdvisor and Quora,
provide some form of recognition to their users for their overall contributions to the
site such as “Highest scoring answer that outscored an accepted answer with score of
more than 10 by more than 2x” (Populist Badge)
(http://stackoverflow.com/help/badges). Such badges are meaningful incentives for
their users contributing to the success of an entire community as well.

Incentives usually reflect various site-level accomplishments based on players’
performance. Badges primarily have a social-psychological meaning, and usually have
only a symbolic value within a virtual community (Immorlica, Stoddard, & Syrgkanis,
2015). Different players may value winning a badge differently. The value of
incentives depends upon the number of incentives already given to the player and other
players, and tends to decay over time (Easley & Ghosh, 2013). Therefore, badges have
a diminishing utility, where the value of each badge decreases over time as the number
of players who have earned that badge, increases.

Playing games is not always enjoyable. If the challenges presented in a game
repeatedly exceed player’s skills, they can cause frustration (Breuer, Scharkow, &
Quandt, 2015). In zero-sum games, the success of one competitor leads to the failure
of another, which is likely to cause negative emotional reactions. While competition in
itself can also be fun and rewarding, the possibility of losing to a competitor introduces
the risk of adverse emotional experiences. An unfavorable outcome (i.e., losing) can
increase negative emotions such as aggression. Players that get frustrated have a higher
chance of quitting the game (Canossa, Drachen, & Sørensen, 2011). Therefore, the
game (or gamification) designer should design (or adopt) a player reinforcement model
that can help to alleviate player frustration by providing awards and recognizing player
effort aiming to sustain long-term users’ motivation.

On the other hand, if there is a player that is significantly better in playing the
game and is constantly (and predictably) winning, it introduces the elements of
boredom in the game both for the constant winner as well as to other players and game
spectators. Boredom encourages the pursuit of alternative goals outside of the game
(Bench & Lench, 2013), thus reducing the number of players staying in the game.

As the emotional impact of the game is mainly based on success and failure, the
properly constructed reinforcement model must assure and increase positive emotions
of players by incentives, which provide immediate recognition of players’ success, or
keep encouraging players when they fail, but still show good results. Incentives can be
awarded for meeting absolute targets or relative targets. However, if the reinforcement
model is connected only to the absolute achievements, the model may work against
itself as the lesser performing players are likely to be disincentivized and may give up
and leave the game (‘discouragement effect’) (Minor, 2013). Special incentives should
be made for successful comebacks after failures to reinforce such behavior rather than
game quitting.

To avoid that, the motivation reinforcement model should be carefully designed
to fit differences in player skills and promote continuation of the game. If the
motivation reinforcement model is properly balanced, it can drive the players to a

22

highly motivating emotional flow-state (Csikszentmihalyi & Bose, n.d.). Deeper
knowledge in this area can help researchers to understand the behavior of a gamer
better, while game designers can promote serious games better.

The following section provides an overview of different psychological theories
on gamification and models of reinforcement as well as factors affecting the player
during the game.

Until now the concept of reinforcement models has been mainly studied in the
fields of artificial intelligence, machine learning and control theory (for a review, see
(Kaelbling, Littman, & Moore, 1996)). A wide variety of physical notions are
employed in the models of socio-technical systems involving elements of human
behavior as cooperation, willingness, and morale (Meyers, 2009). In the domain of
game design, the game designer creates various player emotions in a game to generate
player enjoyment. Various affective states of players such as engagement, anxiety,
frustration, and distress have been studied before (Kokil, 2013; Sharek & Wiebe,
2014).

Several researchers have been motivated to identify the reasons of people’s
engagement in computer games. Psychological approaches include Malone’s
principles of intrinsic qualitative factors (challenge, curiosity and fantasy) for engaging
game play (Malone, 1981).

Modern psychological theories of emotion such as Flow Theory
(Csikszentmihalyi & Bose, n.d.) are based on the concept of flow. It is argued that an
individual becomes strongly involved in a task when his skills match the challenge of
a task. Too difficult a challenge raises anxiety but prevents boredom. The state of the
player can change because of the player’s progression through the game levels leading
to increased complexity of the game and potentially giving rise to anxiety, or because
of the increased competence of the player while the game stays at the same level of
difficulty, which potentially can lead to boredom. In both cases, the game designer
should develop the scenario of the game to maintain a player’s state of pleasure and
involvement, while keep gradually increasing difficulty of the game in relation to the
competence and emotions of the player.

Under the Festinger’s (Festinger, 1957) theory of dissonance, the state of the
consumer depends upon the perceived performance of a product as compared to his/her
expectations regarding the product. Discrepancy between expectations and perceived
performance is likely to cause the dissonance. In the case of a game, the player raises
expectations based on his/her own performance results and projects these expectations
to the future. The assimilation-contrast theory claims that satisfaction is a function of
the magnitude of the discrepancy between expected and perceived performance
(Hovland, Harvey, & Sherif, 1957). For example, if the player had expected to perform
poorly, he/she would not be as upset about losing as a player who originally had
expected to perform well.

The self-determination theory (Ryan, Rigby, & Przybylski, 2006) addresses both
intrinsic and extrinsic motives for action. The player has psychological needs for
autonomy, competence and relatedness, which can be addressed by introducing
changes to the game scenario (Przybylski, Rigby, & Ryan, 2010). Competence can be
fostered by feedback and rewards for tasks. Self-efficacy can be positively stimulated
by recognizing player accomplishments (Reeves & Read, 2013). Players with high
self-efficacy can be kept at a task by rewarding their competence as well as ensuring
their autonomy to maintain or enhance intrinsic motivation (Berger & Schrader, 2016).

23

The Oliver’s Expectancy disconfirmation theory (Oliver, 1980) claims that user
satisfaction is caused by the difference between the expected and perceived product
performance. A product or a process (in our case, the results of a game) satisfying
higher initial expectations are predicted to produce greater satisfaction than the one
that meets low expectations. Expectations originate from user beliefs about the level
of performance that he/she will achieve. Satisfaction arises when a product or service
is better than expected. When performance is worse than the expected, it causes
dissatisfaction.

The Yield Shift Theory of Satisfaction (Briggs, Reinig, & de Vreede, 2014)
defines satisfaction as an emotional (affective) response with respect to some object
that has reference to some state or outcome desired by an individual. Satisfaction can
manifest itself through many phenomena (Briggs (Briggs et al., 2014) provides a list
of 10 phenomena for the IT domain), some of which are also relevant for the gaming
domain. These are: goal attainment effect, when users feel satisfied on attainment of a
desired state or outcome; confirmation effect, when users feel satisfied when outcomes
match expectations or desires, and feel dissatisfied when outcomes are less than
expectations or desires; nostalgia effect, when users feel satisfied or dissatisfied when
thinking about past achievements or failures; attenuation effect, when users’
satisfaction responses diminish over time.

Based on Flow Theory (Csikszentmihalyi & Bose, n.d.), Chanel et al. (Chanel et
al., 2008) defines three different emotional states: boredom (negative-calm),
engagement (positive-excited) and anxiety (negative-excited). Flow includes many
elements such as engagement, immersion, enjoyment, interestingness, impressiveness
and surprise. Enjoyment appears at the boundary between boredom and anxiety, when
the challenges are just balanced with the person’s capacity to act in a game
(Csikszentmihalyi & Bose, n.d.). Engagement and immersion have been defined
mainly in terms of how cognitive and psychological states such as participation,
presence, and arousal contribute to engagement (Martey et al., 2014). Immersion
makes the player to focus his/her attention into the game world resulting in a lack of
awareness of time and the real world (Nylund & Landfors, 2015). The immersion can
be maintained by keeping proper complexity and interestingness of gameplay and its
results.

Boredom arises due to unchanging environment, or monotonous, predictable or
repetitive changes. Boredom is also related to the sense of the lack of novelty and
interestingness. Hill and Perkins (Hill & Perkins, 1985) states that “boredom occurs
when stimuli is construed as subjectively monotonous”. Boredom can be defined as
low entropy of the game results. The experience of boredom is negative and aversive,
creating desire to change from the current state and avoid future states of boredom.
Boredom can be recognized by the lower cognitive load of a player during the game
(Sharek & Wiebe, 2014) as well as by the change of the physiological parameters of
the player registered using facial electromyography (EMG) or electrodermal activity
(EDA) (Kivikangas et al., 2011).

Boredom is also related to fatigue. Fatigue has been defined as “decline in
ability” or “decline in performance” in the presence of cyclical load (in materials
science) or intense load (sports medicine). As with boredom, fatigue also leads to
negative emotional responses such as a decrease of interest and reduced performance.
The fatigue models proposed in the domain of sports medicine such as the Banister
model (Banister, Calvert, Savage, & Bach, 1975) and its various elaborations (Busso,

24

Benoit, Bonnefoy, Feasson, & Lacour, 2002; Calvert, Banister, Savage, & Bach, 1976;
Morton, Fitz-Clarke, & Banister, 1990) are based on the exponential decay function
that is widely used to describe natural phenomena such as heat transfer between the
object and its medium, rate of enzyme-catalysed chemical reactions, fluid dynamics,
metabolization of drugs in patients. These examples provide a logical foundation for
application of exponential decay functions to boredom modeling. The models of
boredom have also been developed in the domain of the intelligent controllers design
(Yamamoto & Ishikawa, 2010) and human learning process (Zgonnikov &
Lubashevsky, 2012).

From a psychological point of view, frustration is the feeling that occurs when a
person is stopped in his or her progress while pursuing a goal (Nylund & Landfors,
2015). In multi-agent systems, frustration has been defined as the failure to achieve an
optimal state of the system, in which all agents would win. The need to compete
between players inevitably leads to wins and losses, which create local minima in the
energy landscape of the system (Burgos, Ceva, & Perazzo, 2004). The frustration of
the system can be reduced by minimizing the number of losers in the game as much as
possible. While frustration in some cases can serve for motivating players to overcome
the presented challenge, frustration still should be avoided. While engagement tends to
decay over time, boredom and frustration tend to increase with time if the conditions
remain the same. Furthermore, frustration can worsen if the game or the reward system
is considered by the player as not fair or transparent.

Flow also can be defined as the state of user satisfaction. Models of user
satisfaction models have been proposed mainly in the domain of economics and
marketing, but also in the IT domain. Satisfaction can be seen both as an outcome of
some activity or experience and a process. Parker and Mathews (Parker & Mathews,
2001) define satisfaction as a process of evaluation between received and expected
outcomes.

Feedback is the central functional subsystem of human communication
(Allwood, Nivre, & Ahlsén, 1992). It consists of methods that allow providing, without
interrupting the dialog, information about quality of communication such as ability and
willingness to have contact, the ability to understand communicated information as
well as the emotions and attitudes triggered by the information in the recipient.
According to Kotzé (Kotzé, Renaud, & Van Dyk, 2002), feedback has three main
elements: 1) response, which serves to confirm that the recipient has received
information, 2) modification of behavior, which ensures the user that his input is
relevant and has the power to change, and 3) intelligence (or “wisdom of crowds”
(Surowiecki, 2005)) that the opinion or understanding of the community can lead to
improved quality of work or a product.

In gamification, feedback can be used to engage individuals in performing
serious activities, and implemented by designing a proper reinforcement system that
provides immediate feedback on player performance (Richter, Raban, & Rafaeli,
2015). However, feedback does not have a direct positive effect on performance
(Kluger & DeNisi, 1996). The implementation of feedback (e.g., the level of detail, the
timing of feedback) directly influences the results of feedback (Weiser, Bucher,
Cellina, & De Luca, 2015). Positive feedback (agreement) reinforces the change in the
same direction; while negative feedback (disagreement) causes a change in the
opposite direction, and homeostatic feedback maintains equilibrium (Spink &
Saracevic, 1998).

25

The role of feedback is especially important in social networks and other
collaboration-based practices that underline the importance of effective
communication in virtual communities. The strength of relationships that bind a
member to a community can be influenced by the impact a member can make as well
as feedback that a member can receive from a community. The success of a virtual
community relies on the voluntary contribution of valuable intellectual property of
individuals to a community without explicit compensation (Roberts, Hann, &
Slaughter, 2006). Even if an individual does not receive any explicit reward for his/her
contribution, he/she often wants his/her contribution to make an impact or at least be
seen. Capturing and understanding feedback received from users is also critical for
understanding user motivation and engagement.

According to (Heller, Lichtschlag, Wittenhagen, Karrer, & Borchers, 2011) and
(Muñoz, Mendoza, Álavarez, Martin, & Ochoa, 2007), in order to be effective,
feedback must be 1) persuasive (i.e. influencing future state of the community and
behavior of the community members), 2) contextual (i.e. include context information
by default), and 3) informative (i.e. convey useful information), 4) contributive (i.e.
contribute towards benefit of the community as a whole), 5) continual (i.e. to support
conversation as narrative of the community), 6) expressive (i.e. demonstrate polarity
using affective means such as emotions), and 7) effortless (easy to use).

The concept of interestingness has been mainly analyzed before in the data
mining domain. In association rule mining, interestingness is used as an objective
criterion to select certain patterns or rules over others (Geng & Hamilton, 2006). In
knowledge discovery algorithms, interestingness is used as a measure of
unexpectedness (Hidi & Baird, 1986; Padmanabhan & Tuzhilin, 1999). In machine
learning, interestingness is one of the criteria used to rank media content such as
photographs on the content sharing websites. Impressiveness (which is synonymous
with interestingness) has been defined as a rarity (Lehman & Stanley, 2012).
Impressiveness can be estimated as the difficulty to re-create an observed property
(state or results) of a game, i.e. if the future state of the game is uncertain and is not
replicating the past states, the game is considered as interesting.

2.3. Modeling of Gamification

2.3.1. Overview of gamification analysis methods

Several efforts exist at classifying and codifying recurring gamification practices
and common techniques such as 1) Mechanics-Dynamics-Aesthetics (MDA)
framework (Hunicke, LeBlanc, & Zubek, 2004), a conceptual model of game elements;
2) game design atoms (Brathwaite & Schreiber, 2008); 3) game design patterns
(Adams & Dormans, 2012), commonly reoccurring parts of game design; 4) game
mechanics (Neeli, 2012); and 5) game interface design patterns, common successful
game design components and solutions such as badges, levels, or leader boards
(Deterding, Dixon, et al., 2011). Each game element can be described using the Frang
(Kristoffer & Robin, 2012) scheme: summary (visualization of an element with a
proper description), purpose, ability, motivation, Radoff's type(s) of fun (such as
competition or exploration) (Hunicke et al., 2004), dependencies with other game
elements, and importance.

26

According to Salen and Zimmerman (Salen & Zimmerman, 2004), a game must
have 1) rules, 2) players, 3) struggle (artificial conflict), and 4) goals (quantifiable
outcomes). While the general goal of each game is a win, where can be multiple ways
or elements of a game to reflect the player’s path towards victory such as badges, which
represent player achievements; leader-boards, which allow comparing one’s
achievements among multiple players; and levels, which reflect the growth of player’s
skill.

Most games have certain common aspects. Defining and formalizing structural
solutions to commonly recurring problems is the main idea behind patterns. A pattern
usually consists of a name, definition, general description, description on how the
pattern can be used, description of consequences of using the pattern, and relations to
other patterns (Gamma, 1995). Solutions to these aspects may vary system to system
but have many commonalities. The concept of design patterns (Gamma, 1995), which
so far have proven successful in object-oriented design and software engineering, seeks
to communicate these solutions in an easy to understand manner. Similar concepts exist
in the games domain too, e.g., gameplay design patterns (Bjork & Holopainen, 2004),
game patterns (Kelle, Klemke, & Specht, 2011), game design patterns (Kiili, 2010),
viral and collaborative patterns (Wendeus, 2013), etc. For standardization of serious
game design patterns, a serious game design pattern canvas which combines business
model canvas has been proposed by Žavcer et al. (Žavcer, Mayr, & Petta, 2014).

Kreimeier (Kreimeier, 2002) suggests using game design patterns as a way to
formalize and codify knowledge about game design. Bjork and Holopainen (Bjork &
Holopainen, 2004) propose gameplay design patterns as semiformal interdependent
descriptions of commonly reoccurring parts of the design of a game that concerns
gameplay. Game-patterns encapsulate common design problems and solutions for
those and game designers typically combine several patterns for good gameplay (Kelle
et al., 2011).

The design of serious games is a complex process. Two opposing principles must
be united: achievement of serious objectives and meaningful gameplay. This can be
achieved by detailed technical modeling and implementation (Kelle et al., 2011).
However, the only way to really understand gamification is to identify its basic
elements and model structural relationships between them. Adams and Rollings
discern four basic economic functions for games: sources, drains, converters and
traders (Rollings & Adams, 2006). Sources create resources, drains destroy resources.
Converters replace one type of resource for another, whereas traders allow the
exchange of resources between players or game elements. These economic functions
set up a network of economic transactions that determine the flow of a game. A game
also can be modelled as a flow of resources, and abstract aspects of games, such as
player skill level and strategic position, can be modelled through the use of resources;
as well as a state machine: an initial state or condition and actions of the player can
bring about new states until the end state is reached (Grünvogel, 2005).

Gamification can be specified and modelled in many ways, e.g., with formal
description (Bista, Nepal, Colineau, & Paris, 2012), using textual descriptions and
modelling methods, e.g., with UML diagrams (Joris Dormans, 2008; Taylor, Gresty,
& Baskett, 2006), Petri Nets (M. Araújo & Roque, 2009), or other standard or custom
tools (Grünvogel, 2005; R Koster, 2005). MDA (Hunicke et al., 2004) is a formal
approach, which attempts to bridge the gap between game design and development,
game criticism, and technical game research. Mechanics describes the particular

27

components of the game, at the level of data representation and algorithms. Dynamics
describes the run-time behavior of the mechanics acting on player inputs and each
other’s outputs over time. Aesthetics describes the desirable emotional responses
evoked in the player, when he interacts with the game system.

Gamification models define game design elements which should be used in non-
game contexts, leaving a lot of wiggle space about how these game design elements
should behave and look like (Groh, 2012). The majority of tried and tested design
principles have already been established by multiple researchers, e.g. (Iosup & Epema,
2014; Lee & Hammer, 2011; Morrison & DiSalvo, 2014; Nah et al., 2014; Pirker,
Riffnaller-Schiefer, & Gütl, 2014; Salen & Zimmerman, 2004; Simões, Redondo, &
Vilas, 2013) specifying goals, challenges, progress, feedback and other components.

Gamification systems can be classified into these categories as suggested by
(Werbach & Hunter, 2012):

• Internal Gamification, aiming to improve productivity and reduce resource
costs internally within the organization.

• External Gamification, aiming to involve external people (students) to
produce increased engagement, identification and results.

• Behavior-changing gamification, aims to encourage people to make better
choices thus increasing motivation.

Most modern gamification systems for education often combine all three
categories, especially focusing on the behavior-changing capabilities (Charles,
Bustard, & Black, 2011; Deterding, Dixon, et al., 2011). On these assumptions,
dynamic models (J. T. Kim & Lee, 2013) capable of simulating some main factors on
effective learning, can be established. Practical Implementations of educational
gamification (Gené et al., 2014; Kapp, 2016) can be classified into 4 main model
categories, none of which is optimal only by itself, often factoring and explaining
resulting learning behaviors:

• Non-systemic model (Pedreira, García, Brisaboa, & Piattini, 2015). The
model designers add mostly elements of the game design, but not additional
system features allowing dynamic interaction of users with all system
components.

• reward-oriented model (Dichev, Dicheva, Angelova, & Agre, 2014). This
model mostly focuses on motivating, often though some perceivable
rewards, instead of the intrinsic motivations characteristic to games.

• Non-user-centric model (Zuckerman & Gal-Oz, 2014). This type
emphasizes the ideas of the running organization or the owner of educational
resources, often neglecting or even being detrimental to users’ goals.

• pattern-bound model (Zuckerman & Gal-Oz, 2014). This model is a
feedback feature-based implementation, often gathering results of some
surveys and design (points, badges, leader boards, etc.), rather than focusing
structural qualities of games that inspire gamified experiences.

A gamification process itself can be defined upon 4 theories (J. T. Kim & Lee,
2013):

• A theory of Game Design Features (Raph Koster, 2013) (GDF)

• A theory of Key Characteristics of a Learning Game (Van Eck, 2006) (CLG)

• A theory of attention, relevance, confidence, and satisfaction (J. T. Kim &
Lee, 2013) (ARCS)

28

• A theory of game mechanics, dynamics and aesthetics (Salen &
Zimmerman, 2004) (MDA).

It is difficult to compare GDF to others (in the sense of e-learning) as it was
mostly created for building entertaining computer games. Nonetheless, it does closely
correlate with CLG, thus introducing fun, motivation and attractive challenges to e-
learning based on better gameplay type experience (Carron, Marty, & Heraud, 2008;
ChanLin, 2009). ARCS applies to CLG as well, directly benefiting from the included
characteristics, higher curiosity, attention span, confidence and finally satisfaction in
the learning process by achieving goals (Park, 2012). Classic gaming MDA, however,
applies only for a few aspects of CLG, such as challenge in dynamics and level of
difficulty, and curiosity (Kapp, 2016).

In game research, there is a strong separation between design methodologies and
usability evaluation tools, which are rarely employed in the early stages of the design
process. Although in the majority of cases, the game developers use heuristically
designed tools to assist the design, there are still few existing methods employed to
connect design practices with gamification and game design (Rao & Pandas, 2014).
Currently game and gamification development is strongly related to the qualifications
and skills of game designers. This limitation drives the need for better and faster game
building. Recently, several new tools have been developed or adapted to help game
designers to model, build and analyze games.

Unified Modelling Language (UML) is a de-facto standard modelling language
used in multiple domains. Tenzer (Tenzer, 2004) argues that UML modelling tools
could also be used to build games and proposes a framework for building games using
UML. The advantage of UML is that it is well known in the software engineering
community. SysML is a general-purpose modeling language for system engineering
applications that supports specification, analysis, design and verification of various
systems. SysML has been used for building a training game (Hetherinton, 2014).

The most notable examples of domain-specific game description languages are
GaML (Herzig et al., 2013; Matallaoui, Herzig, & Zarnekow, 2015) and ATTAC-L
(Janssens, Samyny, Van de Walle, & Van Hoecke, 2014). GaML is a formalized
language for specifying and automatically generating gamification solutions. This
allows to free the IT expert from the development of gamification solutions. ATTAC-
L is a domain-specific language which allows the user to specify the game scenario in
XML and to build a game using a code generator.

Serious Game Logic and Structure Modeling Language (GLiSMo)
(Thillainathan, 2013) proposed by Thillainathan offers a modeling framework
consisting of two models: structure and logic. The proposed language is targeted
towards non-technical educators who would be empowered to build serious games.
The modeling framework uses model-driven development techniques enclosing
modeling language, visual editor, transformation engine and generator.

Another approach to gamification modeling is based on using formal (or
mathematical) models (Nummenmaa, Berki, & Mikkonen, 2009). Kim and Lee (J. T.
Kim & Lee, 2013) model the effectiveness of gamification effectiveness using a
mathematical model based on a sigmoidal equation. They argue that gamification
effectiveness can be represented applying curiosity, challenge, fantasy and control
factors. Bista et al. (Bista et al., 2012) have proposed the first formal gamification
model. Chan et al. (Chan, King, & Yuen, 2009) offer a similar approach on social game
modeling, which also allows for verification of the built model. Oliveira et al. (de

29

Oliveira, Julia, & Passos, 2011) model games using Petri nets. The disadvantage of this
approach is the lack of domain specificity which is preventing its adoption by game
designers.

More abstractly, game elements can be specified using a XML-based
Gamification Modelling Language (GaML) (Herzig et al., 2013), which provides a
mechanism for a precise definition of gamification concepts that is suitable for
exchange on game mechanics. Finally, game rules connect game elements into a game
layer. Such game rules can be modeled using a Petri Net based Machinations visual
modeling notation (Joris Dormans, 2012).

The third category of gamification modeling approaches is visual languages for
fast prototyping in gamification domain. The best known examples are Sketch-It-Up
(Agustin et al., 2007), Ludocore (Smith, Nelson, & Mateas, 2010), and Machinations
(Joris Dormans, 2009). Sketch-It-Up is a tool for creating sketches of possible games.
Ludocore is a logical “game engine”, which employs formal logic used by automated
reasoning tools in the AI domain to enable automated design and prototyping of game
systems and providing fast feedback to the designer. Machinations is a conceptual
framework and diagram tool that focusses on structural qualities of game mechanics.
Graphical diagrams of machinations are an abstraction of Petri nets for modeling and
simulating games and game-like systems on a varying level of abstraction. Micro-
Machinations (Van Rozen & Dormans, 2014) have been proposed for reusing
Machinations models in software development.

2.3.2. Introduction to Machinations modeling framework

To represent the patterns graphically, we use Machinations, a visual modeling
framework for game mechanics (J Dormans, 2013) that facilitates the design,
simulation and testing of the internal economy of a game at various levels of
abstraction. At the heart of the framework is a graphical notation designed to capture
the dynamics of games. Machinations diagrams are a class of Petri Nets, wrapped in a
formalism that makes them more palatable to game designers. The logic behind
Machinations is what gameplay is ultimately determined by the flow of resources.
Resource flows allow to visualize how the system is constructed and what feedback
structures exist within the game structure. The Machinations diagram has four parts:
nodes, connections, other elements and other concepts. There are several different
types of the nodes: Sources provide the flow of resources, Drains remove resources
from the system, Pools allow to store resources, and Converters destroy resources to
create new resources. Trader allows the exchange of resources between players or
game elements. Gates control (randomly or deterministically) resource flow. Delays
delay the resource flow. Resource connections determine how the resource flows
between the nodes. State connections determine how the node state changes affect
other elements. Label types are a part of the state and resource connections passing
specific control information. The full description of Machinations is given in Table 1.

30

Table 1. Machinations modelling framework (J Dormans, 2013)

Name Visualization Description

Pool

A node which collects resources

Gate

A Gate is a node that controls resource flow. Gates can be used to create

random or deterministic distribution, or limit the number of resources

passing through it.

Source

A node which creates resources

Drain

A node which destroys resources.

Converter

A Converter is a node that destroys resources to produce new resources.

Trader

A Trader is a node that controls the exchange of resources between two
players (or rather, locations in the diagram).

Flow connection

Flow Connections determine how resources flow through a diagram.
The Label of a Resource Connection determines the number of

resources that are produced, exchanged or consumed by various nodes.

State connection

State Connections represent how the state changes of a node affect

another node or the Label. A node’s state is a numeric value that is equal
to the number of resources currently on the element.

Trigger

Triggers are State Connections that connect two nodes or connects a
node to the label of a resource connection.

Activator

An activator is a state connection that has a condition assists label.

This condition can be written down as a simple expression.

Resource

The main data which flows through the model.

2.3.3. Formal models of game design and gamification

Games are kinds of systems and the design of games is the creation of models
for games (Grünvogel, 2005). In computer science, games can be considered as certain
information systems consisting of modelled use of objects (or entities, concepts),
attributes (properties), their relationships and the environment (or context) (Salen &
Zimmerman, 2004). A similar approach has been adopted by ontology engineering
(Devedzić, 2002) for building ontologies, i.e., formal representations of concepts
within a domain and the relationships between those concepts.

Formally, games can be modelled as abstract control systems (Tabuada, Pappas,
& Lima, 2004) consisting of a set of states and a definition of the evolution of the state
of a game under different actions of a player. The game can be represented by a set of
states, for which transition functions define when to move from one state to another.

Formally, gamified systems can be described using a theory of multi-games.
Multi-Games is a class of games when each player can allocate its resources in varying
proportions to play in a number of different environments, each representing a basic
game in its own right (Edalat, Ghoroghi, & Sakellariou, 2012). Each player can have
different sets of strategies for different basic games. The actors are permitted to play
multiple games simultaneously. This multiplicity means that the actor must take
interactions among relevant games and other players into account (Sallach, North, &

3

3

*

>0

31

Tatara, 2010). Gamified IS can be interpreted as a multi-game, i.e. a system of two
games, where one game is a serious game (i.e., target IS) and another game is an
entertainment game (i.e., gamification layer in target IS), where an action in the serious
game leads to a reward in the entertainment game.

Following Grunvogel (Grünvogel, 2005), each game G is a triple FMS ,, ,

where S is a set that represents the states of the different game objects, M is a monoid

that represents the input of the players, and F is the action of the monoid M on set S
as follows: SMSF : .

Then gamification can be described as a product of two games 1G and 2G as

follows: 21212121 ,, FFMMSSGG , where 1G is a serious (economical)

game with tangible external actions and rewards, and 2G is a non-serious game based

on top of 1G with virtual actions and rewards.

Another game modeling framework presented in (Narayanasamy, Wong, Rai, &
Chiou, 2010) incorporates structural, temporal and boundary frameworks
(subsystems). The structural subsystem consists of Game Elements, Game Time,
Players, Interface and the Facilitator, the arbitrating entity between the players and the
game system, which takes care of setting up the game, synchronizes the game state and
maintains the game time. The temporal subsystem represents the flow and causality of
the game by defining the actions that are provided and the actions that can be taken at
the particular states in the game. The boundary subsystem defines the constraints in the
game that limit the activities performed in a game by establishing social contracts
between the players which must be satisfied through a set of limitations while playing.

In (Salazar, 2004), another kind of formal model (Petri Nets and Hypergraphs)
is investigated and methods and tools for the integration of formal modelling into the
game design and production process are proposed.

Martin Mazanec and Ondrej Macek identify criteria for the evaluation of
modeling languages (Mazanec & Macek, 2012): design whole software, describe
various levels of abstraction, readability and simplicity, unambiguity, supportability
and integrability. Lethbridge (Lethbridge, 2013) distinguishes four key properties for
identifying modeling languages: usability, completeness and scalability. In the article
describing how to gamify applications (Morschheuser, Hamari, Werder, & Abe, 2017)
the requirements for gamification project are described. Seungkeun Song and
Joohyeon Lee identify key factors of heuristic evaluation for game design (Song &
Lee, 2007) and Eric Sanchez (Sanchez, 2011) single out key criteria for game design.
Using these sources criteria for gamification modelling frameworks are formulated and
summarized in Table 2.

Table 2. Gamification modelling framework comparison criteria.

Index Criteria Description Literature

C1 Modelling features Modelling features supported for the

whole software design.

(Lethbridge, 2013; Mazanec &

Macek, 2012)

C2 Levels of abstraction Describes how framework supports
multiple levels of abstraction allowing

users to decide the level of the details

exposed.

(Lethbridge, 2013; Mazanec &
Macek, 2012)

C3 Readability and
simplicity

System models modelled with the
framework readability and simplicity.

(Lethbridge, 2013; Mazanec &
Macek, 2012)

32

C4 Unambiguity System model dependency on user

specification.

(Mazanec & Macek, 2012)

C5 Supportability and

integrability

Modeling framework tools which allow

working with the modeling framework
and tooling integrability with other tools

and processes.

(Lethbridge, 2013; Mazanec &

Macek, 2012)

C6 Iterative gamification

development (design,
creation, analysis,

simulation,

transformation and
optimization)

Framework capabilities of quick

iterations over build models, painfulness
of changes to the system model in case of

adding, removing and updating

functionality. Modeling framework
support for simulation and

transformation into executable

applications.

(Morschheuser et al., 2017;

Sanchez, 2011; Song & Lee, 2007)

C7 User centric feedback

support

Modeling framework has a concept of

users and incorporates user feedback

loops.

(Morschheuser et al., 2017;

Sanchez, 2011; Song & Lee, 2007)

C8 User motivation and
behavior evaluation

Modeling framework gives insights into
user behavior and motivation. System

accounts for user psychologic factors.

(Morschheuser et al., 2017;
Sanchez, 2011; Song & Lee, 2007)

Industry provides a lot of different modeling frameworks which serve different
purposes. Table 3 and Table 4 compare different modeling frameworks under criteria
described in Table 2.

Table 3. Comparison of formal description, timed automata, Petri nets modelling frameworks

 Custom formal description Timed automata Petri nets

C1 Supports mathematical model

specifications and verification.

Primary focus lies on system

modeling.

Models described in

mathematical model, supports

simulation, verification and

visualization.

Supports mathematical

modeling, simulation,

verification, visualization and

basic model transformation.

C2 The syntax depends on domain and

application. Generally, supports a
necessary level of abstraction.

Gives highly verbose models

of the timed system. Lacks
flexibility of controlling system

abstraction levels.

Produces a highly verbose

system models, unable to
control abstraction.

C3 Mathematical models tend to be

readable until a certain level of
complexity. It is difficult to

explain complex logical operations

and data manipulations.

At its core language is very

readable, complexity comes
from application complexity.

At its core language is very

readable. The more nodes and
edges the graph has, the more

complex the model is.

C4 Specification by different users is

very likely to be different.

Language is well defined

which makes models similar.

Language is well defined

which makes models similar.

C5 There are no tools designed

specifically for formal

descriptions.

Has multiple tools, i.e.

UPPAAL, TART, Synthia, etc.

Multiple tools by multiple

researchers (“Petri net Java

applets,” 2017)

C6 Not suitable for quick development

and iteration.

Tools enable quick design,

simulation and iteration.

Tools enable quick design,

simulation, and iteration.

C7 Takes system centric approach. Takes system centric approach
from time perspective.

Takes system centric approach
from the resource flow

perspective.

C8 The approach does not focus on
simulation from user perspective.

Approach does not focus on
simulation from user

perspective

Approach does not focus on
simulation from user

perspective

Table 4. Comparison of GaML, UML and Machinations modeling frameworks

 GaML UML Machinations

C1 Supports textual description of

gamification models and
model transformation.

Supports visual description, model

validation and transformation.
Focuses on the whole application

from different aspects.

Supports visual models of

games through four economic
functions. Supports simulation

and software transformation.

33

C2 Highly verbose because

requires the whole system

description. The model is

targeting real systems.

Allows the whole system

modeling from different levels and

aspects of abstraction.

Allows single level of

abstraction, controlled by the

user.

C3 Very readable, simple and is

very well-structured modeling

language, but verbose.

UML allows higher and lower

level views which ensure model

readability and simplicity.

Simple and readable models at

the right level of abstraction

depending on system
complexity.

C4 Models are similar. Models are different due to their

visual nature.

Models are different due to

their visual nature.

C5 MatLab and other
mathematical languages.

StarUML, Draw.io, UMLet,
Magic Draw and many more.

Machinations tool has been
developed by Joris Dormans.

C6 Theoretically allows software

generation and simulation.

Quick and iterative design, no

features for simulation and

software generation.

Supports visual design,

simulation and iteration.

C7 Takes software as a service

approach.

Covers user centric and system

centric approaches

Takes user centric approach.

C8 Does not support simulation. No support of simulation from

user perspective.

Models can be built in user

behavior.

Using any of the modeling frameworks, users can model gamified systems.
Modeling frameworks help building consistent models that can be analyzed for
commonalities and patterns.

2.4. Agent-based simulation and social gaming

A complex system is a system which is made up of many interrelated agents. In
such systems, the individual agents and the complex interactions between them often
lead to behaviors which are not easily predicted from knowledge of the behavior of
individual agents. The concepts of complex systems such as self-organization,
emergence and level hierarchies (Mayer, Bekebrede, & van Bilsen, 2010), and
methodologies such as multi-agent modeling and simulation gaming, are applicable to
a wide range of natural and social phenomena such as ecosystems (Balbi & Giupponi,
2010), social interactions (Shapiro et al., 2015), the economy and financial markets (Z.
Zhang, Wang, & Gao, 2008), road traffic (Sur, Sharma, & Shukla, 2012), cloud
computing (Wozniak, n.d.), the Internet (H.-F. Zhang, Yang, Wu, Wang, & Zhou,
2013), disease epidemic modelling , cybersecurity (Casey et al., 2014) and even entire
human societies (Kohler & Gumerman, 2000).

Agent-based models are computational models, which simulate interactions
among agents in order to understand the emerging behavior of the overall system based
on the microscopic behavior dynamics of each agent (Marsan, 2009). Agent-based
modeling and simulation enables the researcher to create, analyze, and experiment with
models composed of agents that interact within an artificial environment (Gilbert,
2008). This approach combines elements of game theory, multi-agent systems and
stochastic methods.

Game theory recently has become widely used in social sciences and economics
(Roth, 2002). A game can be described as any social situation involving two or more
players. A game is a system in which players are drawn in an artificially made-up
conflict, which is defined by rules, and the outcome can be measured (Salen &
Zimmerman, 2004). Game theory aims to find and describe players’ behavior, which
provides best responses to other players’ individual decision choices. The rules
governing interaction between the two players are defined as a part of the description
of the game. In a game, the rewards as points, badges, etc. are defined by the rules of

34

the game. The player is free to make a move or to make an action as defined by the
rules of the game aiming to increase his outcome of the game (reward). A social game
is a game defined over the elements of social state, social motivations, and social
moves (Shapiro et al., 2015). Social gaming is directly related to games with a purpose
(GWAP). GWAP are games, in which some useful computation is performed by
humans as an element of a game (Von Ahn & Dabbish, 2008). GWAP have been
applied in areas of computer vision (Galli, Fraternali, Martinenghi, Tagliasacchi, &
Novak, 2012), content management (Giouvanakis, Kotropoulos, Theodoridis, & Pitas,
2013), semantic search (Lux, Guggenberger, & Riegler, 2014), and education (Muratet,
Torguet, Jessel, & Viallet, 2009). Humans, however, require some incentive (reward
or engagement) to become and remain a part of a social game of GWAP, which is
defined as the reinforcement model.

Designing social games or GWAP requires gamification, i.e. turning humans’
everyday interactions or work into games that allow to enhance productivity and
engagement of a user for business purposes or achieving other meaningful results.
Gamification (Deterding, Sicart, Nacke, O’Hara, & Dixon, 2011) involves the use of
game mechanics to non-game activities to influence people‘s behavior, engage
audiences and solve problems. Gamification and serious games are related, because
their common aim is to achieve some value beyond plain entertainment. Serious games
offer an enjoyable way to solve real-world problems (Richter et al., 2015). However,
the design of engaging games that can keep their players interested in continuing
playing games for a long time is still a major problem in gamification research. To
understand gamification and its effects the use of effective game modeling and
simulation methods and tools are required. Recently, game mechanics of GWAPs have
begun to be modelled formally (Chan et al., 2009), aiming to standardize the design of
GWAP.

2.5. Software generation from models

The idea of code generation from models is not new and has been discussed for
years. Model driven engineering is an approach where tools enable developers to
generate software codes automatically and achieve very high productivity (Klein,
2015). It is very natural for us to expect any models representing a software system to
allow some level of code generation. Code generation is researched in many domains
like embedded systems (Kwon, Yi, Kim, & Ha, 2005; Yu, Dömer, & Gajski, 2004),
test generation (Vock, Schmid, & Von Staudt, 2006), robot control software
(Bruccoleri, D’onofrio, & La Commare, 2007), antivirus software (Koike, Nakaya, &
Koi, 2007) and many more.

There are attempts to allow code generation from models built with UML,
SysML and other methods. González and his team offered a description method for
SysML that allows making a better design than using UML standard tools by using
XSD-Schema inferences (Alonso, Fuente, & Brugos, 2009).

Some attempts were made to propose software generation methods from UML
models using automatic mapping finite state machines or other models (Brisolara,
Oliveira, Redin, Lamb, & Wagner, 2008). Another approach of adding meta
information into UML sequence and activity models was explored by Viswanathan
and Samuel (Viswanathan & Samuel, 2016). Alternative use case for UML code
generation is automating test case generation (Yongfeng, Bin, Minyan, & Zhen, 2009).

35

Finite state machines are part of a formal model class. Formal models are often
chosen for software generation for their well-defined format. In many cases, formal
models are used for critical software generation (Oz, Sener, Kaymakci, Ustoglu, &
Cansever, 2015) or test generation (Rayadurgam, 2001).

The holy grail of software generation form models is converting natural language
into executable programs (Eder, Filieri, Kurz, Heistracher, & Pezzuto, 2008).
Furthermore, scientists attempted natural language transformation into other models
like UML (Gulia & Choudhury, 2016). To summarize, the idea behind model
transformation into executable code is to take a higher abstraction language and
transform it to lower abstraction language.

2.6. Gamification architectural design

Gamification can be implemented using several architectural design methods
such as:

1. service: a separate gamification system is developed in a way which provides
elements of gamification to other systems as a service (e.g., Mozilla
Foundation OpenBadges (Jovanovic & Devedzic, 2014));

2. module: a separate gamification module is developed in a way which is
integrated into a target system at a later stage of design (e.g., EcoDriving
(Barkenbus, 2010));

3. plugin: full implementation of gamification is developed in a way which is
later added to a target system without any additional effort (e.g., Jira
(Hoarau, 2012));

4. separate system: a gamification system and a target system are implemented
separately and communicate with each other via messages (e.g., TaskVille
(Nikkila, Linn, Sundaram, & Kelliher, 2011));

5. integrated system: an integrated system is developed in a way which
combines both target functionality as well as game behavior/mechanics (e.g.,
RedCritter Tracker (RedCritter Corp, 2011)).

According to Neeli (Neeli, 2012), gamification of a business IS can be performed
at different levels with respect to business activities: 1) at a superficial level, the game
mechanics are used independently of business activity being performed, 2) at
integrated level, the game mechanics are integrated into the business activity being
performed, and 3) at embedded level, the business activity is designed based on game
mechanics.

2.7. Related research by Lithuanian authors

Lithuanian researchers have adapted gamification to various applications. To
name a few domains: employee motivation (Gatautis, Vitkauskaite, Gadeikiene, &
Piligrimiene, 2016), education (Dagienė, Pelikis, & Stupurienė, 2015; Dagiene &
Stupuriene, 2016; Stupurienė, Vinikienė, & Dagienė, 2016), social problems
(Bieliūnaitė-Jankauskienė & Auruškevičienė, 2016; Pitrenaite-Zileniene &
Skarzauskiene, 2013), and others. Multiple authors argue about the necessity of
applying gamification for ensuring user engagement and motivation (Barisas, Duracz,
& Taha, 2014; Gatautis & Vitkauskaite, 2014).

36

Kalinauskas focuses on theoretical foundation behind player types increasing
user creativity and how to apply gamification to creativity flow (Kalinauskas, 2014a,
2014b). Skaržauskienė and Kalinauskas analyze how gamification can be applied to
increase collective creativity, they have formulated the main premises on which
gamification should work (Skaržauskienė & Kalinauskas, 2014). Dagienė examines
gamification application in Lithuanian schools and focuses gamification application in
their custom educational software solution (Dagiene & Stupuriene, 2016). In addition,
Stupurienė and her team summarize a 6-year study of observed pupils in the Bebras
computing challenge, which has shown the importance of long term participation in
such contests (Stupurienė et al., 2016).

Piligrimienė and her team discuss the value that consumer engagement brings to
the company and how can gamification help (Piligrimiene, Dovaliene, & Virvilaite,
2015). Bieliūnaitė-Jankauskienė in her theses (Bieliūnaitė-Jankauskienė &
Auruškevičienė, 2016) analyses how gamification can help financing social causes.
She has found that carefully tailored gamification elements have a direct, positive
impact on individual donation intentions.

Kostecka and Davidavičienė analyze gamification effects of employee
motivation in gamified information systems (Kostecka & Davidavičienė, 2015). They
describe their gamification model to improve accountant monotonic activities.

Rimantas Gatautis and his team study impact of gamification on consumer brand
engagement, and they have found that gamification is positively related with brand
engagement, but the relation is quite weak (Gatautis, Banyte, Piligrimiene,
Vitkauskaite, & Tarute, 2016). Furthermore, Gatautis et al. analyze online consumer
behavior from a perspective of stimulus-organism-reaction models and propose a
topology of game components and consumer interpretation (Gatautis, Vitkauskaite, et
al., 2016).

2.8. Summary

Gamification is a methodology that is applied to improve software systems via
game mechanics and game elements. Gamification is becoming adapted worldwide
and in different industries. Literature suggests that the number of gamified systems will
continue to increase. The main gamification solutions take points, leaderboards and
badges, which indicates that evaluation and understanding of gamified systems are still
in their early stages and prevent more complex gamification solutions to evolve.

The greatest motivation behind the adaption of gamification is altering user
behavior. Gamification is used for different goals, for example, increasing user
engagement, employee motivation, reinforcing desired user behavior, driving social
change, retaining users, increasing brand loyalty, and many more. Psychological
models and theories have been defined to explain why and how gamification alters user
behavior in desired ways. Gamification effects tend to decay and require reinforcement
models to slow down decay. The main emotional factors and states which need to be
incorporated into reinforcement models are: boredom, fatigue, frustration, satisfaction,
feedback and interestingness.

Modeling gamification can be done in different ways, for example, UML, MDA,
GaML, Machinations, Petri nets, etc. These approaches have their pros and cons. The
criteria for gamification modeling framework comparison such as: modeling features
for software design, levels of abstraction, readability and simplicity, unambiguity,

37

supportability and integrability, iterative development, user centric feedback, user
motivation and behavior evaluation have been identified. None of the modeling
frameworks combine simulation, user centric feedback, code generation and formal
modeling into one modeling method, but multiple methods include several of these
criteria.

Gamification can be expressed as a multi-game where one part is the IT system
and the other part is the game, and this allows gamification to be analyzed separately.
Agent-based simulation is perfect for simulating user behavior in gamified systems.
Gamification can be implemented as a service, plugin, module, separate or integrated
system. There are many Lithuanian researchers working on gamification in various
areas. Lithuanian researchers’ findings show positive impact of gamification which
aligns with international findings.

The gamification domain lacks domain-oriented approaches for solving domain
specific problems such as:

• the analysis of game and gamification patterns, extraction and understanding
how patterns effect different applications;

• abstract methods to model gamification of the systems and to perform
simulation of gamification;

• quantitative evaluation of gamification solutions;

• tools to model, simulate, analyze and generate gamified solutions for further
deeper understanding of the gamified system;

• simulation of gamification from a user-centric and behavior-focused
perspective based on a solid psychological foundation.

3. SPECIFICATION OF GAMIFIED SYSTEMS

3.1. Methodology for the gamified system analysis

For the analysis and identification of gamification patterns, seven different
gamified applications have been selected (Emo-bin (Berengueres, Alsuwairi, Zaki, &
Ng, 2013), Meeco (Vara, Macias, Gracia, Torrents, & Lee, 2011), Teamfeed (Singer
& Schneider, 2012), CAPTCHINO (Saha, Manna, & Geetha, 2012), Taskville (Nikkila
et al., 2011), Power House (Reeves, Cummings, Scarborough, Flora, & Anderson,
2012), Trogon (Ašeriškis & Damaševičius, 2014a)). All analyzed applications have
common attributes: user-centric, which means that all of them have the underlying
concept of player; user interaction with the system which triggers the basic gameplay;
game rules in one or other form; game-oriented interface elements such as badges and
leaderboards. For each application we have created two types of models using the
Machinations game modeling framework (Adams & Dormans, 2012): 1) Simple model
– the highest level of abstraction of the system. This view shows the core system
concepts. 2) The advanced model is made up of two parts: a) static model which models
as many details of the system as possible, and b) dynamic model, which is modeling
interaction between players. All Machinations models are given in Appendix A. In
addition, for each model formal model description and textual description have been
built. Based on the result of model comparison and analysis we have identified
common patterns of gamified systems.

In this chapter, gamification patterns are presented and their textual and visual
descriptions are provided. The novelty of the proposed gamification patterns lies in

38

visual specification of patterns using domain-specific Machinations modelling
language and framework (Adams & Dormans, 2012).

3.2. Formal model of the gamified system

For each system, formal models have been built to analyze what kind of common
elements each of them has. Let us analyze gamification of Project Management System
(PMS) Trogon (see Figure 1), as an example of a business IS (Information System).
Following Bista et al. (Bista et al., 2012), gamification of a Project Management
System is a tuple:

, , , , , , , ,G J B R F P W T I D (1)

here J – jobs which were entered into the PMS; B – badges defined in the PMS;
R – ratings based on the number of finished jobs; W – registered workers; F – trees
which represent jobs in the project forest; P – worker points received; I – month or
week time interval; T – time represented in 15-minute time intervals; and D – a function
to determine difficulty of jobs.

Figure 1. Screenshots of Togon PMS

The value of points that a worker receives is a function:

()

0

,

0.1

count j r n n n

n

n r n p n

T j b j y j j
P j D j

T j T j

(2)

Here, P j is the number of points a worker receives in a time interval, nb j is

a badge that a worker receives, ,ny j j is a function that maps badges to points; r nT j

- time to complete the job nj , p nT j - planned time to complete the job, and nD j –

difficulty of a the job. 0.1 constant represents 10%.
The game rules are as follows: (1) Every job can have badge b and planned work

time p nT j . (2) Every worker has real work time r nT j . (3) Every job has its

difficulty nD j . (4) Badge b is awarded if it is not withdrawn until the job status

39

becomes “done”. The badge can be withdrawn by a project manager if the job quality
is low or it has taken too long to finish. Quality assurance team members can remove
the badge if there are many quality defects. The player ratings are computed as follows:

• A set of points is computed including all employee points for a considered
time interval.

𝑃 =< 𝑝1, 𝑝2, … , 𝑝𝑛 > (3)

• Set P is sorted by descending point count.

𝑅 = 𝑠𝑜𝑟𝑡_𝑑𝑒𝑠𝑐(𝑃) (4)

• Badge board sort order is computed as:

𝑠𝑜𝑟𝑡_𝑑𝑒𝑠𝑐(𝑐𝑜𝑢𝑛𝑡(𝑏)) (5)

Project forests are sorted by total forest size, which represents the time it has
taken to complete all jobs.

3.3. Pattern description scheme

The following pattern description scheme adopted from UML pattern description
(Gamma, 1995) is used:

• Intent: a short statement that describes what the pattern does, and what
problem it addresses.

• Motivation: a more detailed discussion of the pattern and how it works.

• Applicability: the situations where the pattern can be applied to.

• Structure: graphical representation of the pattern using visual modelling
language.

• Participants: the elements, mechanics and compound structures that are
identifiable parts of the pattern.

• Collaborations: how participants collaborate.

• Consequences: the results of using the pattern, including trade-offs and
possible risks.

• Implementation: a more detailed discussion on different techniques to
implement the pattern.

• Examples: at least two existing examples of the pattern in games are
discussed. Preferably, the examples of all patterns from a large variety of
different games are drawn.

• Related Patterns: patterns are related to this pattern. Opportunities for
pattern combination.

• Discussion: any discussion about the pattern itself, its viability, suggestions,
alternative constructions, etc.

3.4. Gamification patterns

Every gamified system model should have a source to drive the whole system.
We have discovered several main source patterns for modelling gamified systems as
follows:

40

Figure 2. (a) Infinite quantity source and (b) limited quantity source.

Infinite quantity source (see Figure 2.a & Table 5)– in this case it is chosen to
believe that maximum number of points is never reachable, for example, it is
impossible to determine the number of user actions.

Limited quantity source (see Figure 2.b & Table 5) – it imposes a system
constrain that the maximum number of points received is limited at every moment of
the gameplay. The limit can be either physical or virtual. For example, in Emo-bin
there is a limited number of bottles which is limited by local vending machine.

Table 5. Description of the limited quantity source and infinite quantity source patterns.

Property Limited quantity source Infinite quantity source

Intent Enforce limit on a resource Models unlimited resource economy

Motivation This allows us to model limited economies Sometimes resources can be viewed as

unlimited. This allows us to model unlimited
economies

Applicability Modeling an economy with a limited

number of resources

Modeling economy or part of economy with

no economic restriction

Structure Uses a pool with automatic push Source node

Participants Pool node Source node

Consequences Limits economic growth Allows unlimited growth

Examples Trogon, TaskVille, Emo-bin, Captchino Teamfeed, Meeco, PowerHouse

Related Patterns All All

In addition to these two qualities we can add additional limitation or more
realistic conditions:

Figure 3. (a) Time limit and (b) dynamic limit patterns.

Time limit (see Figure 3.a & Table 6) – adds time limit to the system. Such limit
imposed over infinite quantity source will make it bounded by time limit.

Dynamic limit (see Figure 3.b & Table 6) – it is limit which is imposed by model
implication. For example, in a software company we have a project manager checking
all tickets before development and there is a chance that a ticket might not be added to
the pool of tickets.

Table 6. Description of time limit and dynamic limit patterns.

Property Time limit Dynamic limit

Intent Stop the game after some time has passed Control source growth

Motivation Using such pattern allows to limit a game in

time.

Such a pattern allows to add dynamic

qualities to resources

a) b)

a) b)

41

Applicability To impose time restrictions or rounds, for

example, in Trogon there is limit for each

round.

Normally the growth of resources is not

linear and depends on different properties

Structure A pushing pool of limited quantity
connected to a drain and end condition node.

End condition is connected with the pool

labeled “<1”.

A composition of a random gate with
drain and source node connected with a

pool from a limited source.

Participants Pool, end condition, drain Pool, gate, drain and source

Collaborations The pool acts as a counter and is connected
to a drain for decreasing the counter value.

When the counter value is equal to zero, the

end condition is triggered.

The pool connects with a gate. Then
follows multiple connections to drains or

pools which creates the desired logic

model

Consequences Changes the economy by setting up limitations to resources

Examples Trogon, Emo-bin Trogon, TaskVille

Related Patterns Limited quantity, property and chance

pattern

-

Figure 4. (a) Random result pattern and (b) drain pattern.

Random result (see Figure 4.a & Table 7) – a connection with dice label is used.
This type of pattern models an abstract connection. For example, “An executed action
is worth X points”. This allows to change a part of the gamified system model with a
high level of abstraction.

Drain pattern (see Figure 4.b & Table 7) – allows to decrease the score or
counter under certain conditions. Drain pattern is useful to model penalty rules in the
gamification systems.

Table 7. Description of random result pattern and drain pattern.

Property Random result Drain pattern

Intent Aggregate logic Invert logic

Motivation Sometimes rules are too complex to model so

it is easier to aggregate the whole logic into
a single path

Economy grows and falls over time. This is

a pattern to simulate economic falls

Applicability Any case when a rule can be replaced by

random number

Convert or model negative aspects of a

game

Structure Two nodes connected with random

connections

Manual drain, gate and pool.

Participants Connection and any two nodes Drain, gate and pool

Collaborations Connection passes random amount of points When the gate triggers the drain the pool

loses elements

Consequences Aggregates the logic into one abstraction Allows to destroy resources

Examples All cases Emo-bin, Captchino, TaskVille,

PowerHouse

Related Patterns - Solver pattern

a) b)

42

Figure 5. (a) Constrain pattern and (b) extension pattern.

Constrain pattern (see Figure 5.a & Table 8) allows to block certain paths in
the model based on certain conditions.

Extension pattern (see Figure 5.b & Table 8) is a pattern of adding an additional
random path under certain conditions. This allows to extend normal behavior with
additional random bonuses.

Table 8. Description of constrain pattern and extension pattern.

Property Constrain pattern Extension pattern

Intent Control flow on certain conditions Introduce concurrent paths

Motivation Considering the system state, it is useful to

limit or open a path in relation to the state.

Sometimes we need to create an extension to

default behavior.

Applicability Any system which contains multiple paths
under certain conditions

Any case when the default path is extended
with a concurrent path.

Structure Manual source and pool connected with a

normal and state connection

Node having at least two paths and ending

with one node.

Participants Manual source, pool Source, gate, converter, and pool

Collaborations The path is turned off then counter reaches
its target

Once a source is triggered multiple paths
activate simultaneously

Consequences Paths can be open or closed Extend a path with additional concurrent path

Examples Captchino, Trogon, Meeco Trogon, Captchino.

Related Patterns - Property and chance pattern

Figure 6. (a) Property and chance pattern; and (b) solver pattern.

Property and chance pattern (Figure 6.a & Table 9) is a pattern for creating
multiple paths or modeling a certain user property. For example, we need to model

a) b)

a)

b)

43

multiple actions in a single model, like “Buy” and “Attack”. In this case, we leverage
the economic and aggressive user properties; the higher “Attack” percentage, the more
aggressive the user’s strategy is and vice versa.

Solver pattern (see Figure 6.b & Table 9) allows to model user solving a
problem. Solver pattern enables to create a delay in the system.

Table 9. Description of the property and chance pattern and solver pattern.

Property Property and chance pattern Solver pattern

Intent To model a property or random chance Models problem solving

Motivation To model simple user or entity behavior. In real world, actions do not occur instantly.

Normally it takes time for the problem to be
solved

Applicability Any place we want to model a chance of

occurring action or user behavior

When we want to randomize the amount of

time it takes to accomplish a task

Structure Random gate and multiple manual sources This combines the pattern of the drain and
chance pattern

Participants Random gate and manual sources Random gate, sources, gate and drain

Collaborations Gate triggers a source randomly This pattern combines property chance

pattern with a source which models a

problem-solving skill. The source is also
connected with a drain pattern to model

negative consequences of incorrect

solutions. This is optional for this pattern

Consequences One of multiple paths is chosen Random time is spent to solve a problem

Examples All Captchino, TaskVille, Trogon

Related Patterns Solver pattern Drain pattern, property and chance pattern

3.5. Example of pattern application

Trogon Project Management System (PMS) (Ašeriškis & Damaševičius, 2014a)
is an example of enterprise Information System. The gamified PMS has a leaderboard,
badge board and project forest as the main elements of gamification. Every element
has its purpose. 1) The leaderboard creates competition between individual employees
and allows to determine a game winner, who should be awarded additionally. 2) The
badge board enables observing the skills of employees. In the badge board, the
employees are sorted by the total number of badges collected. Each badge represents a
skill and has its personal level. Progress between levels is displayed as a progress bar.
3) The project forest provides the element of scalability to represent the size of different
projects.

44

Figure 7. Trogon PMS rule model

The gamification model (Figure 7) simulates a Trogon game rule: “For every
task solved a user gets X points. If a badge is earned for the solved task then a user gets
Y points bonus. A user gets 2Y bonus for each task if he receives more than four
badges”. To simplify real live computations for finishing tasks, a user receives five
points. A bonus adds a single additional point.

This model has two pattern applications: 1) Constrain pattern (red) helps to
control flow depending on how many badges are received. 2) Extension pattern (green)
provides the necessary paths to model earning. Every time a badge is received, a source
is triggered and user points increase by five points. In parallel, the counter is increased
by one. For the received badge, a bonus point is rewarded. As you can see, there are
three sources connected to the counter. The first counter to source connection has label
“<5” which means while the user has less than five badges he gets only one point. After
five badges are received new “==5” path opens and the user gets a reward of 6 points.
Also, previous path “<5” is closed. When the next badge is received, path “>5” opens
and the user is awarded with two points. All other paths are closed. This workflow
models the behavior of the rules described in a previous paragraph.

3.6. Abstract formal model

Using the analysis of gamified systems, it has been found that all analyzed
gamified systems share a common structure. Every gamified system is a collision of
users, rules and data. Users execute rules through actions. Rules interact with data
generating content which is stored in entities. Interface allows for data display to the
user. It can be claimed that gamified systems can be modeled using the proposed
abstract gamification model, which we call the UAREI (User-Action-Rule-Entities-
Interface) model. We can use UAREI model for formal specification of gamification,
and the UAREI visual modeling language for graphical representation of game
mechanics. The whole UAREI system can be used for full gamification development
process. Using the analysis of patterns

45

The gamified systems can be described as a tuple

𝐺 = { 𝑈, 𝐴, 𝑅, 𝐸, 𝐼 } (6)

here: U – users interacting with the system; A – actions, which trigger system
behavior; R – rules, which encapsulate logic in the system; E – data entities; and I –
interfaces which define data format.

The users are defined as tuple 𝑈 = { 𝐿𝑈, 𝑆𝑈 }, here: 𝐿𝑈 – a set of all outgoing
links to other elements in the model; and 𝑆𝑈 – a selection function which defines how
a user is selected from a collection in a simulation mode.

Actions are denoted as collection 𝐴 = { 𝐴1, 𝐴2, … , 𝐴𝑖 , … , 𝐴𝑛}, here 𝐴𝑖 is a single
action, 𝑛 is the total number of actions. A single action is defined as 𝐴𝑖 = { 𝐿𝐴, 𝑆𝐴 },
here: 𝐿𝐴 – a set of all outgoing links to other elements in the model, and 𝑆𝐴 – a selection
function, which defines the way an action related data entity is selected from the
collection.

Rules are noted as collection 𝑅 = { 𝑅1, 𝑅2, … , 𝑅𝑖, … , 𝑅𝑚}, where 𝑅𝑖 is a single
rule, 𝑚 is the total number of rules. A single rule is defined as 𝑅𝑖 = {𝐿𝑅 , 𝑟𝑖(𝐶,𝑀)},
where: 𝐿𝑅 – a set of all outgoing links to other elements in the model, and 𝑟𝑖(𝐶,𝑀) is
a rule function defined as:

𝑟𝑖(𝐶,𝑀) = {
𝑁𝑈𝐿𝐿 − 𝑖𝑓 𝑛𝑜 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑
𝑦 − 𝑖𝑓 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑏𝑦 𝑟𝑢𝑙𝑒

 (7)

where: C – the context of a current execution path; M – a system model; y is a
computed result value, and NULL is returned if rule doesn’t apply.

After rule execution, the returned value is stored inside C. Also, a rule can
manipulate the context. Rules are used to control context flow in the system. If a rule
execution evaluates to an empty result, a current execution path is continued. We can
define “else” path by using inversion “! 𝑅𝑖”. No data will be stored in storage and no
other rules will execute if a previous rule failed or an empty value is returned, but the
system flow will continue giving feedback to the user node. Rules can update the
context in anyway needed for the application.

Entity collection is a collection of all data entities in the system 𝐸 =
{𝐸1, 𝐸2, … , 𝐸𝑖 , … , 𝐸𝑘}, where 𝐸𝑖 is a single storage entity and k is the total number of
storage entities. A single entity is defined as 𝐸𝑖 = {𝐷, 𝑂, 𝐿𝐸} , where: 𝐷 – entity scheme
definition, 𝑂 – data objects, and 𝐿𝐸 – a set of all outgoing links to other elements in the
model. A triggered Entity can store any value from the execution context, which value
to store is defined in entity scheme definition.

Interface is a collection 𝐼 = {𝐼1, 𝐼2, … , 𝐼𝑖, … , 𝐼𝑙}, where 𝐼𝑖 is a single interface and
l is the total number of interfaces. A single interface is defined as 𝐼𝑖 = {𝐿𝐼 , 𝑄},
where: 𝐿𝐼 –a set of all outgoing links to other elements in the model, Q – data query,
on which data for the interface is selected.

During simulation or program execution, before an action is triggered, a key-
value map is created, which we call execution context C. This context is used to passed
data between nodes through links. Also, the model flow works like this: a triggered
action triggers all outbound linked nodes. Each other node will trigger all its outbound
lined nodes. During triggering Rules execute their functions, Entities store values
depending on scheme description, and Interfaces compute query results.

46

3.7. Graphical notation of the UAREI model

The UAREI model is visualized as a directed graph consisting of nodes (vertices)
and links (edges) between nodes as follows: 𝐺 = {𝐿,𝑁}, where N is a set all nodes 𝑁 =
{𝑁1, 𝑁2, … , 𝑁𝑖 , … , 𝑁𝑚} = 𝑈 ∪ 𝐴 ∪ 𝑅 ∪ 𝐸 ∪ 𝐼; L is a set of links between nodes 𝐿 =
𝐿𝑈 ∪ 𝐿𝐴 ∪ 𝐿𝑅 ∪ 𝐿𝐸 ∪ 𝐿𝐼, and 𝐿𝑈, 𝐿𝐴, 𝐿𝑅 , 𝐿𝐸 , 𝐿𝐼 are collections of corresponding types
of nodes 𝐿𝑋 = {𝐿𝑋1 , 𝐿𝑋2 , … , 𝐿𝑋𝑖 , … , 𝐿𝑋𝑛𝑋

}, 𝐿𝑖 is the list of links, 𝐿𝑖 = (𝑁𝑜𝑢𝑡; 𝑁𝑖𝑛),

where 𝑁𝑖𝑛, 𝑁𝑜𝑢𝑡 ∈ 𝑁, 𝐿𝑁𝑖 are links which start 𝑁𝑖 node.

In Table 10 we present a list of graphical symbols (graphemes) used in the
UAREI model diagrams.

Table 10. Graphical notation of the UAREI modelling language

Type Grapheme Description

User node

Visualizes system user group. Normally a single action is triggered

from this node.

Action node

Visualizes an action. The action triggers its outgoing connections.
Normally actions are connected to rules and other actions

Rule node

Visualizes a rule node. Rule encloses all logic of a model. Rule

triggers other rules, entities and interfaces.

Entity node

Visualizes data entity. On triggering the node stores the data is
received with the current context.

Interface node

Visualizes user interfaces, triggers user nodes finishing the

feedback loop.

Connection

Visualizes relationships in the model. The direction of the arrow
points from the outgoing node to the incoming node.

3.8. Summary

In this chapter, we have analyzed seven gamified systems and have identified
gamification patterns common for two or more gamified applications. Ten
gamification patterns: infinite source, limited source, time limit, dynamic limit, random
result, drain patterns, constrain, extension, property and change, have been identified
and solved. Each pattern has its own motivation, structure, applicability and
consequences. The patterns are modelled using the Machinations framework (Adams
& Dormans, 2012; J Dormans, 2013). This modeling tool allows prototyping ideas
rapidly and testing them before implementation. A case study on applications of a
gamification pattern combination has been demonstrated using Machinations in the
context of a gamified project management system.

An abstract formal model gives an advantage of extracting gamification patterns
from multiple formal definitions written for different gamification applications. The
abstract model is constructed from users, actions, rules, data and interfaces which are
common to analyzed systems. This model connected with a graph-based modeling
language allows simple yet powerful visualization. Learnings from gamification
modeling methods analysis were incorporated into UAREI.

U[i]

A[i]

A[i]

E[i]

I[i]

47

4. IMPLEMENTATION OF THE GAMIFIED SYSTEM ANALYSIS TOOL

4.1. The Method for Gamified System Development

Now let us see how the UAREI model integrates into the whole UAREI
development method for gamified systems.

Figure 8 presents the UAREI activity diagram which represents how
development with UAREI formal method works. We start from building a formal
UAREI model and decide if we want to analyze the model. If the answer is “no”, we
are done; if “yes”, we transform the model into the UAREI model. If we do not want
to improve the model we are done; if we want to improve the model we choose between
generating the model or running simulations. If we decide to generate the model, we
export a working application and evaluate it. If we are happy with system, we are done;
if we want to improve the system, we transform it back to the UAREI model. If we do
not want to generate the application, we run simulation on the model. After evaluating
data, we decide whether we want to update the model or not. If we want to update the
model, we make changes and rerun simulations. If we do not wish to update the model,
we check whether it satisfies our requirements, and if so, we transform the model back
to the UAREI JSON format; further on, we rerun the simulations.

Figure 8. UAREI activity diagram

48

A formal UAREI model forms the basis of our system. Normally we should start
by describing a new gamification solution in this formal model. Using JSON as a meta-
language is not new (Giurca & Pascalau, 2008), a different JSON meta-language has
been developed for UAREI purposes. Internally, the JSON model is a bridge between
software, design and simulation tools, and a formal model. It is possible to transform
between formal and JSON formats. Currently it is a manual process of transcribing
formal model definition to the JSON notation, but this transformation could be semi-
automated with limitations fully automated. The biggest problem for such a
transformation is the mathematical language or textual description transcription to the
JSON format. This can be solved by using structured languages. The JSON format can
be applied in other systems for simulating and designing gamification solution.

Finally, JSON model can be converted into a working application. The generator
discards unnecessary parts of the model and builds a working application. Running the
real application can produce data which can be used in further refining the gamification
solution.

4.2. Transformation of the UAREI to UAREI JSON

Mathematical and natural language computational processing is a complex
problem, and to simplify it, a simpler UAREI JSON model has been adapted. In MDA
Meta Object Facility (MOF) enables the definition of modeling languages and
transformation rules and due to this MDA Processing Process (MDAPP), which allows
meta model transformation from one model to another model (Kriouile, Addamssiri,
& Gadi, 2015), can be defined. Using customized version of MDAPP the UAREI to
UAREI JSON transformation is defined.

Figure 9. UAREI metamodel represented in UML Class Diagram

Figure 9 shows how the UAREI model can be represented by UML Class
diagram. A mathematical definition of UAREI model matches the UML diagram. Each
instance of User, Action, Rule, Entity and Interface nodes has one-to-one relation with

49

Link class. User motivation and user selection function classes can be defined for user
nodes. Each User has action selection function class which defines how an action is
picked. Each action has a data selection function which resolves data entity required
for processing the action.

Figure 10. UAREI JSON format UML Class Diagram

Certain user selection functions and action selection functions are built into the
model. They are used for model simulation. Any required selection function can be
defined. It is worth noting that rule function, entity scheme and interface query are
defined using string data format (textual description). We will assume mathematical
formulas and text are in string data format which is easily transformed into computer
analyzable form.

Javascript Object Notation (JSON) is a universal data scheme language used
widely in a computer science domain. Figure 10 shows the UAREI JSON format as an
UML class diagram. The major change is that all User, Action, Rule, Entity, and
Interface nodes are joined into a single collection of nodes. UAREI model has a name,
a list of nodes and a list of simulations. Simulations are used to run simulations on a
defined model. Simulations are included only in the design phase and otherwise
dropped form the model during transformations.

The three most important model changes refer to Rule, Entity and Interface
nodes. Rules may have CodeBlock instances which can compose many CodeBlocks.
CodeBlocks help us to define rule function in pseudo language constructs which can
be transformed into executable functions. Entity has an array of objects which contains
initial data set. Entity has a Scheme with Fields which define data entity structure.
Interface node integrates Query which is used to select data on transform into necessary
format.

50

Figure 11. CodeBlock UML Class Diagram

In Figure 11, CodeBlock class relation to concrete programming language
elements can be seen. It is worth noting that the model does not define any concrete
programming language and its syntax can be extended to match specific needs, current
composition matches the needs of the experiments analyzed in this thesis. CodeBlock
has two important part operations and structures. CodeOperations is the abstract entity
for all operations used in our pseudo language. The structure defines the main
programming language structures such as variables, functions, etc. These classes can
be implemented to generate code for any programming language.

Figure 12. Query UML Class Diagram

Each interface has a Query which defines what data need to be selected and how
manipulated before returning it to users (Figure 12). Query has options which are used
during simulation for defining data visualization mode. Also, Query implements an
execution function which generates the data query, runs query and returns the data.
Query internally generates the required data query from a pseudo query language.
Language could be expressed in any industry standard language, for example, SQL,
MongoDB, etc.

51

Figure 13. Entity Scheme UML Class Diagram

Figure 13 provides with Entity scheme structure. A Scheme is made up from a
list of Fields. Each Field has a concrete type, optional default value, isStore flag and a
name. If a field has a isStore flag, it will be populated during runtime with Rule
generated result if it is not null.

Table 11. UAREI to UAREI JSON model transformation

Input - UAREI Output – UAREI JSON Rule

Class Attribute Class Attribute

UAREI name UAREI JSON name Rule 1

User name Node name Rule 1

UserMotivation - UserMotivation - Rule 1

UserSelectionFunction - UserSelectionFunction - Rule 1

ActionSelectionFunction - ActionSelectionFunction - Rule 1

Link names Link Names Rule 1

Action name Action name Rule 1

DataSelectionFunction - DataSelectionFunction - Rule 1

Rule name Node name Rule 1

Rule function CodeBlock - Rule 2

Rule inverse Rule inverse Rule 1

Entity name Node name Rule 1

Entity scheme Scheme - Rule 3

Entity objects Entity objects Rule 4

Interface name Node name Rule 1

Interface query Query - Rule 5

- - Node position.x Rule 6

- - Node position.y Rule 6

- - Simulation * Rule 6

- - Interface options Rule 6

Table 11 describes how UAREI and UAREI JSON both way transformation
works. The six rules for this transformation:

• Rule 1: copy value from target to source without any changes.

• Rule 2: rule logic transformation. If the source model is UAREI, then
transform a rule to pseudo code, else transcribe code into textual format.
This transformation does not always match, because the input can be of any
format and backward transformation always generates result in a textual
format, which means UAREI -> UAREI JSON -> UAREI will not match
unless textual format matches output formatting of the transcription.

• Rule 3: textual or mathematical text is transformed into Scheme class. If the
source model is UAREI, then transform a text to Scheme class, else
transcribe Scheme into a textual format. This rule has the same limitation as
Rule 2.

52

• Rule 4: if the source model is UAREI, then transform a text to Object class,
else transcribe Object text into a textual format. This rule has the same
limitation as Rule 2.

• Rule 5: if the source model is UAREI, then transform a text to Query class,
else transcribe Query text into a textual format. This rule has the same
limitation as Rule 2.

• Rule 6: if the source mode is UAREI JSON, then remove an attribute or a
class, else do nothing.

In the rules, transcription and transformation operations have been applied. Both
these operations are conducted manually so the transformation limitation is not
relevant. The rules described can be expressed in a pseudo code in Figure 14. In the
rules textToCode, textToScheme, textToObjects and textToQuery methods describe
how the transformation from mathematical expression and free text form are
transcribed to the UAREI JSON structures. Currently this part is done manually. In the
rules codeToText, schemeToText, objectsToText and queryToText there are methods
which transcribe the UAREI JSON structures to free text or mathematical expressions.
In the spoken situation, this part is done manually.

Figure 14. UAREI to UAREI JSON transformation rules

function RULE1(source, target) {
 target = source;
}
function Rule2(source, target) {
 if(source typeof UAREI) {
 target = textToCode(source)
 } else {
 target = codeToText(source)
 }
}
function Rule3(source, target) {
 if(source typeof UAREI) {
 target = textToScheme(source)
 } else {
 target = schemeToText(source)
 }
}
function Rule4(source, target) {
 if(source typeof UAREI) {
 target = textToObjects(source)
 } else {
 target = objectsToText(source)
 }
}
function Rule5(source, target) {
 if(source typeof UAREI) {
 target = textToQuery(source)
 } else {
 target = queryToText(source)
 }
}
function Rule6(source, target) {
 if(source typeof UAREI-JSON) {
 target = null
 }
}

53

4.3. UAREI JSON transformation and simulation

A process for UAREI JSON transformation to an executable application can be
defined in such abstract steps:

1. Transformation setup – define settings for the target application.
2. Model registration with ModelExecutor
3. For each node do appropriate transformation:

a. entity transformation
b. rule transformation
c. interface transformation
d. action transformation

4. Export application – the process of building a final runnable application.
Let’s start from step one. We need to choose the initial parameters for our

application:

• target language: we need to load all CodeBlock instances implemented in a
target programming language, in the analyzed situation the system supports
only Javascript.

• target database: we need to define what kind of the database we will use and
load the appropriate database manager. Currently the simulator supports
only virtual database.

• target environment: we need to define in which environment the application
will work in and to generate the appropriate scripts.

Once we have the set-up ready, we start model path extraction. Path extraction is
a very simple process: we should get a list of actions for each user and build an array
of paths for the action.

Now iterating over all the nodes, we can take necessary actions for each node
based on its type. First, we have entity transformation. Entity transformation performs
two tasks: it generates database creation scripts (for example, SQL) and registers each
entity with the Database manager runtime.

Furthermore, we create a writer (buffer) which will hold our code, next we go
through each block and call its write method, presumably block call renders ourselves
and children blocks. Then we define rule execute method to be a new function having
context, model and runtime parameters, function body (generated code), new the rule
can be carried out calling execute.

Interface transformation registers each interface with the Database manager
runtime. As these steps are completed, the output server implements executable file,
database scripts and execution scripts.

54

Figure 15. Application action execution

Figure 16. Simulation execution UML Activity diagram

In Figure 15 we have a sequence diagram of one simple action chain
implemented as an API. Action links to one rule, the rule is combined with one entity,
and one entity joins the interface. A user calls an action endpoint where the action
manager passes a request to a model executor. Model executor sets up action context
and executes a call to a rule manager that computes a rule result, updates the context

55

and sends a response to the model executor. Furthermore, the model executor sends a
store request to database manager. The database manager takes data from the context
and saves it. Next, the model executor calls the interface manager to render interface
response which is added to a context. The model executor returns the context to the
action manager that returns serialized version back to user.

The simulation activity diagram is illustrated in Figure 16. Each simulation cycle
starts with selecting a user, applying user specific behavior to pick an action.
Afterwards we set up the execution context which will be shared, and load action
context (data entities needed for the action execution). Next, we run action and add all
links to the execution stack. If the stack is not empty, we load a node from the stack
and on the basis of that we type execute activities. If a node is a rule, we run the rule
and update the context. If a node is an interface, we render the interface and update the
context. If a node is an entity, we save context data to the entity. If the node is none of
those types, we load the next node from the stack. After running node specific
activities, we add all node links to the stack. If the stack is empty, we run user feedback
and check if the simulation is performed; if simulation is not executed, we pick the
next user and run the simulation cycle. If the simulation is done, we stop the simulation
and exit.

4.4. GMOD UAREI modeling and simulation tool

For scientific research, a tool has been built to formally model and simulate
gamified systems described using the UAREI modeling method. System screenshot is
shown in Figure 17. The system will be referred to as GMOD tool or Gamification
Modeling tool or simply GMOD.

Figure 17. GMOD UAREI modelling and simulation tool

The system has five main parts. Firstly, the main menu which is responsible for
main application operations like opening files, saving files, graph and simulation
controls. The left rail controls model editing and viewing data entities. In the center,
there is a graph visualizer which gives visual representation of the model. It also has

56

a function to move nodes and connections into a more visually attractive form. The
right rail has the JSON UAREI model editor. It also allows to edit the model in a textual
form. In the bottom, there is a console, which prints out data about the system state.

The editor has a second tab called interfaces. In this tab, there is user feedback
information rendered into different graphs or other data representable formats. The data
are updated in real time during the simulation. Interface and data entity values can be
exported into csv format.

During the simulation, GMOD builds an executable application of the system,
generates users and runs their actions through the system returning feedback
information back to them. The JSON UAREI model is extended with additional meta
information necessary for configuration of simulations, storing graph visual
information. Also, the model can include initial data. The JSON notation also contains
additional meta information necessary for building an executable application.

Possible user actions in the GMOD tool and their descriptions:

• Pick a file – pick which file you want to open in the simulator.

• Load a file – load a model from the file.

• Save a file – save a current model to a JSON file.

• View a graph – view visual model representation as a graph.

• Start the simulation – build an executable program and start the simulation.

• Stop the simulation – stop the simulation execution.

• View entities – view current data structures stored in memory.

• View interfaces – inspect the data returned from the application interfaces
in an appropriate format.

• Manage nodes – add, edit and remove model nodes.

• Manage links – add, edit and remove model links.
The gamification modeling tool is a web application. NodeJS is used for model

management and application resource loading. The server side is responsible for data
management processes, everything else is running in the web browser. The application
is implemented in Javascript programing language. A model is executed by building
an in-memory runtime and dynamically evaluating a generated code.

To support the UAREI models, a framework has been built. The framework has
three layers of abstraction of each type of the nodes (user, action, rule, entity and
interface). The abstractions are:

• Basic – represents the core aspects of a node. Each node has its own concrete
fields.

• Editor – the entity is extended by editor specific information about like node
position and other.

• Simulation – simulation or execution abstraction level is the base for a real
application.

A common runtime is used to provide necessary services to a model application.
Runtime provides the application executor, global context, database management,
memory management and other API’s to the application. Exporting the application to
a working system requires two steps.

First, the final particular entities of the UAREI model nodes should be exported.
This step requires rule and data query transformation into real, executable code. The
transformation is performed by using a writer framework which writes JSON notation

57

to an executable code into a buffer step by step. The buffer is written during executable
node generation.

Further, a NodeJS server application with declared action endpoints should be
generated. For each action, an HTTP(s) endpoint is generated. Any external application
can call these endpoints and get system results back. The calling application is
responsible for generating user interfaces to communicate the feedback information to
the user.

4.5. Summary

The UAREI modeling framework and its graphical visualization were described
based on abstract formal model. UAREI gamification development method was
defined. Formal UAREI model can be transformed into UAREI JSON format, which
is a more suitable format for machine analysis. The UAREI JSON can be transformed
into an executable application.

The gamification Modeling tool (GMOD), which is an application for the
gamified system design, modeling and simulation using models expressed in formal
UAREI modeling framework, has been presented. GMOD is using the UAREI JSON
format. UAREI models can be transformed into executable Javascript applications. The
tool allows for gamified system modeling, simulation and generation.

5. CASE STUDIES

5.1. Trogon PMS

For this case study, a simple Project Management System has been created with
the system gamification in mind. A gamification layer of Trogon PMS has been
encapsulated into a module. This gamification solution has been chosen for several
reasons: integration into an existing Project Management System is too complex a
problem and can affect the quality of gamification; a full system implementation is
necessary for the gamification module to be practically useful.

Gamification of the system has been done like this: 1) Defined game rules. 2)
Allowed players to see all employee ratings. 3) Introduced badge system, which
consists of several types of badges and a badge board. 4) The badge system is coupled
with a level system. Every badge defines a skill and the more badges of the same type
are collected, the higher the skill level received. 5) Special awards and bonuses are
presented to the most skilled employees as defined by the game rules.

The gamified Trogon PMS has a leaderboard, badge board and the project forest
as the main elements of gamification. Every element has its purpose. 1) The
leaderboard creates competition between individual employees and allows to
determine a game winner, which should be additionally awarded. 2) The badge board
allows observing the skills of employees. In the badge board, the employees are
ordered by the total number of badges collected. Each badge (see Figure 18) represents
a skill and has its own level. The progress between skill levels is displayed as a progress
bar. 3) The project forest provides the element of scalability to represent the size of
different projects.

The project forest (see Figure 19) is a visualization of teamwork, which has three
distinct areas: an unoccupied plot means unfinished tasks, and areas with trees

58

represent finished jobs. Every tree shows a different time interval it took to finish the
job, while different type and complexity of a tree (Figure 20) shows that the job
required more time to complete it. This creates a forest view, which a project manager
can use to visually evaluate and compare the complexity of jobs performed as well as
the skill of the employee.

Figure 18. Game badges and badge levels.

Figure 19. Elements of project forest.

Figure 20. Project forest

Figure 21. Gamification solution class diagram

The abstract architecture of Trogon PMS has three layers: 1) Website layer – this
layer combines all visual elements into a single system. Every website is composed of

Combined skills Creative skill CSS skill Design skill Javascript skill Optimization

skill
Backend

development skill
skill

Configuration
skill

HTML skill Testing skill

Beginner Novice Regular Experienced Professional Ninja

New Job Time [0; 4] Time [5; 8] Time [9; 16] Time [17; 22] Time [23; 30] Time [31; 38] Time [39; 64] Time [65; 100] Time [101; ∞] Decoration

59

one or more solutions from the solution layer. 2) Solution layer – includes business
level logic consolidated into specific solutions. Every solution targets a specific
problem. 3) Database layer – this layer is shared by all solutions. Database maps data
objects to specific tables in the relational database schema.

Gamification is one specific solution in the solution layer, and elements of
gamification are applied in multiple website pages. The class diagram (Figure 21)
shows the division of the solution into visual and logical parts. Visual and logical parts
are connected by IGamificationDC (gamification data contract) and data object
interfaces (IUser, IProject, IUnit and IBadge). Gamification data contract allows us to
map any system, which implements gamification data contract. In implementation:
IProject defines all project descriptive data; IUser describes all user descriptive data;
IUnit denotes a unit of work, which connects the project, user and badge into a single
system; and IBadge defines all badge descriptive data. IProjectExtensions and
IUserExtensions introduce computational logic to IProject and IUser data objects.
Computational logic is implemented as described in a formal gamification description.
BadgeBoard, LeaderBoard and ProjectBoard are visual elements, which generate a
graphical user interface for the end user to interact.

Game rules are formulated as follows. Tasks are registered and rewards for the
task fulfillment are assigned. Tasks are split into atomic jobs for which a project
manager can easily assign planned work time. Every job can hold a special skill badge.
Employees enter information about their work results. A quality engineer/project
manager checks completed jobs for defects, and awards badges. Employee points and
badges become visible to all other employees. Every week the best employee is
selected to be awarded.

The game flow is as follows: a software company employee receives a random
stream of tasks appointed by the project manager. There are two main types of tasks:
normal tasks and tasks with badges. There are nine distinct types of the badges
rewarded regarding ticket specificity. Everything is translated into points. A certain
number of points is awarded per task done. Based on the number of badges of the same
type, a bonus is awarded. For every task completed with a badge, a user gets a 20%
bonus. When five or more badges of the same type are collected, the user is awarded
with an additional 20% bonus. There is a quality element for the tasks completed. If
the task fails to pass Quality Assurance, a badge can be removed.

5.2. eLearning model for programming contest

Like it or not, traditional methods of teaching are out of favor. People are bored
of lectures, textbooks, and the things called eLearning are passive electronic versions
of more or less the same typology. Those of us who teach must provide goal-oriented
and engaging tools.

Lithuanian pupils are invited to participate in an online programming learning
contest and thus, an eLearning environment set-up. Environment offered students
access to tutorials and exams. Tutorials are not mandatory if the user wanted to
participate in the contest. Exams were required to be done for students to get a
certificate issued by a university.

60

Figure 22. Informik Environment

Finishing exams and tutorials gives user points (0-50 for tutorial and 0-100 for
exam). The top 10 are displayed on the leaderboard and ratings, which show user points
and badges, are seen for everyone. Students have been awarded with multiple types of
badges as ladders to the next group.

Figure 23. The levels of game-based education.

This approach in using gamification for eLearning has introduced a hybrid model
by taking a non-user-centric model of the learning environment and adding a reward-
oriented and pattern-bound model features to improve learning engagement,
sustainability, intrinsic motivation and, as a result, academic performance. To test the
effectiveness of this approach, the eLearning environment has been set up, and pupils
from Lithuanian schools have been invited to participate in an online programming
learning contest.

61

Figure 24. The gamified eLearning hybrid model activity diagram

Our hybrid model takes a non-user-centric programming contest, and adds a
points and badges flow aiming at changing user motivation and academic performance.

Figure 24 explains how users interact with our system. The academic system of
the contest is divided into two parts: contest and gamification layer. As mentioned
before, the gamification layer is not mandatory for student participation in the
organized contest. Every interaction with a course starts a flow where a user decides if
he has learnt enough to take the exam or he needs to study more. Passing an exam or
taking a tutorial leads to a decision about whether he is done interacting with the system
or not. The described flow shows how the system normally works. To improve the
system, a gamification layer has been added. Points received from taking exam or
tutorial are converted to overall points. An updated score is announced in the
leaderboard and ratings board, which help pupils about deciding whether to continue
interaction with the system or not. The change of tutorial points triggers verification if
a badge should be rewarded; if so, the badge is awarded.

The proposed gamified eLearning system will be tested with real users as well as
using UAREI the system will be modelled and simulation will be run by GMOD tool.

5.3. Minority Game

The minority Game (MG) is a kind of social game with active coordination and
competition mechanisms (Linde, Sonnemans, & Tuinstra, 2014). The MG has become
a paradigm to study social phenomena with many competing agents. In the case of
limited resources, agents taking the minority strategy are the guaranteed winners. MG
has been extensively studied in the domain of statistical physics (Sherrington, 2006)
and in various social and economic systems (Wawrzyniak, 2011). To analyze games,
mathematical models are developed to predict and understand players in a game as
well as for understanding and selecting strategies that will lead them towards a better
pay-off in the future (Mazur, 2006).

The Minority Game has been studied previously as a model of market behavior
(Ma, Li, Dong, & Qin, 2010). Another very popular application is in gambling theory.

62

Minority Game (MG) serves as a class of simple models which are able to produce
some macroscopic features being observed in real financial markets (Ma et al., 2010).
The MG is based on the idea that the decision of the majority is always wrong.
Minority-like games occur frequently in everyday life, when an action taken by more
people becomes less attractive. This occurs, e.g., in the selection of candidates in the
university admission system, or when selecting a route in urban traffic systems. The
MG is also related to congestion games, which can model diverse phenomena such as
processor scheduling, routing, and network design (Nudelman, Wortman, Shoham, &
Leyton-Brown, 2004). In these games, each agent can choose a subset from a set of
resources, and agents’ costs depend on the number of the other agents using the same
resources. A congestion problem arises whenever there is a competition for a limited
resource and the lack of coordination among users how to exploit it (Bottazzi, Devetag,
& Dosi, 2002). The solution of many problems provided by the MG model is important
to the sustainable development of many aspects of the society such as sustainable
exploitation of resources, sustainable development of infrastructure and transportation
(Ancel & Gheorghe, 2015), environmental efficiency and sustainable development of
financial markets (Tanaka-Yamawaki & Tokuoka, 2006; Yuizono et al., 2014).

The classical MG is defined as follows (Challet & Zhang, 1997). The MG is
played with an odd number of agents N. Each agent i can choose between two possible
actions: to use the resource – represented by 1 – or not to use it – represented by 0. The
payoff is +1 if the agent is in the minority and −1 if it is in the majority. To succeed in
the game, the players must consider the behavior of other players when taking
decisions.

Consider a population of N agents playing game G. Game G consists of many
game rounds gj. Each agent has state S assigned to it. An agent is assumed to repeatedly
choose between a finite number of alternatives (or actions, or options) xi, i = 1, …, N.
Each alternative is associated with the result of a game round described by the win
function and reward ri > 0.

The principles of MG have been formulated in (Challet & Zhang, 1997) as
follows: 1) Competition for limited resources: not all agents can win at the same time.
2) Behavior is good only with respect to other agents’ behavior. 3) Good behavior may
become bad when other agents change their behavior. 4) Agents try to predict the next
winning choice, which is defined only by their own choices.

We begin by first introducing the notation and the terminology used:

• Agent: A player of the game that makes decisions based on its strategy. The
number of agents that participate in the MG is N. The agent is indexed by
integer i.

• Choice: An action of the agent. Choice C has two possible values: -1 or +1.
The total number of choices are N. In the game, the choices can be seen as a
sequence of choices where Cn is the choice of n-th agent.

• Game: Every run of the MG is a “game”. The total number of games is
specified as G.

• Minority Choice: The winning outcome of the game in the MG. Formally,
the minority choice in a game is defined by:

(8) 𝑜 = {

1, 𝐶𝑖 <
𝑛

2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

63

• Strategy: A set of rules of a player, which take the previous minority choices
as inputs, and governs the choice of future individual actions of a player
(Walsh, Das, Tesauro, & Kephart, 2002). Strategy S maps each possible
combination of previous winning actions to action ai to be taken next by
agent i.

The following extensions (variants) of the MG have been defined (see Table 12).

Table 12. Variants of Minority Game

Variant of MG Description Ref.

Variable payoff The payoff is N-k if the agent is in the minority and k-N if it is in the

majority

(Li, VanDeemen, &

Savit, 2000)

Extended
memory

The agents can store the last m actions of all their opponents (R. M. Araújo &
Lamb, 2005)

Coalition-based The agents can organize coalitions (cartels) to share their payoffs. For

example, two agents can guess oppositely and share they payoff +0.5
each.

(Sysi-Aho,

Saramäki, & Kaski,
2005)

Limited resources Each agent has only limited resources to make a bet. If it loses all

resources, it loses life. If bet = B, then payoff is +B in a minority group,

and –B if in a majority group

(Xie, Wang, Hu, &

Zhou, 2005)

Ternary voting Each can choose between three possible actions: either to use the

resource – represented by 1 – or not to use it – represented by -1, or

abstain, represented by 0. In the case of abstention, the payoff is 0
disregarding the results of voting

(Chakraborti et al.,

2015)

Traitor Agents can choose to sell their votes or to buy the votes from another

agent prior to each voting step

(Greenwood, 2009)

Local Minority
Game

Each agent plays the MG only with his immediate neighbors (Moelbert & De
Los Rios, 2002)

Super agents There is a small number of agents above the rules, who always win (de Almeida &

Menche, 2003)

Three game Only three agents participate in the MG (Chmura & Güth,
2011)

Mix Game There are two groups of agents: one group plays the minority game and

the other plays the MG

(Gou, 2006)

Grand Canonical
Minority Game

A variable number of active traders at each time step (Johnson, Jefferies,
& Hui, 2003)

Hereinafter, we focus on the variable pay-off, coalition-based, and ternary
variants of the MG. In multi-agent systems, coalitions allow to promote cooperation of
agents aiming to improve their performance, or increase their benefits, with
applications in e-business (He & Ioerger, 2006).

Variable payoff MG (VPMG) is important in studying emergent behavior in
complex systems in real-world social and biological systems, which depend upon
resources which increase or decrease in various ways as the size of the minority group
changes (Li et al., 2000). In general cases, there may be various kinds of rewards and
the pay-off may depend on the size of the minority group.

In ternary voting MG (TVMG), a third option is added for the decision of each
agent: abstention. TVMG is important in decision theory with applications in political
science (Felsenthal & Machover, 1997). Choosing a third option prevents a player from
winning, but also from losing the game. Ternary voting introduces more options for
bargaining (therefore, cooperation) in search of common agreement over a set of
feasible alternatives.

In the coalition-based MG (CBMG), when a group of players agree to cooperate,
they gain an advantage over other players. We consider the advantage obtained in
CBMG by a coalition sharing their state. There can be two types of coalition: equal
and unequal. In the case of equal coalition, the prize is shared into equal parts by the

64

members of the coalition. In the case of unequal coalition, the prize is shared into
unequal parts using the ration defined by the coalition agreement. The winning strategy
is to enter the most advantageous coalition agreement that guarantees the most
generous pay-off. The game is transformed to the auction game, where players bid to
each other for the most advantageous offer.

Figure 25. Algorithm of the coalition-based Minority Game

The coalition game algorithm is defined in Figure 25.
What is common to the analyzed extensions of the MG is the influence of

cooperation factors on the results of the game. To succeed in the game, the players
must cooperate with other players or at least to consider the behavior of other players
when taking the decisions. So the game moves to the meta-strategy level (Kiekintveld
& Wellman, 2008).

The reinforcement model in the MG is defined as follows. For each player,
satisfaction points are awarded in each step for:

• Winning (the player has won in the previous round of the game);

• Leadership (the player has been listed in one of the top positions of the
leaderboard);

• Advancement (the player overtook competitors in the previous move);

• Achievement (the players has achieved the best result in some record, e.g.,
was in the smallest minority group);

• Power (the player, whose decision more often has decided the outcome of
the game round).

Hereinafter, consider winning as the simplest variant of the reinforcement. The
aim is to define a reinforcement system such that the agents would continue playing
the game for a longer period. We assume that an agent takes the decision to continue
playing or to exit the game based on his inner state. To be precise, let’s assume that the
agent can be in either the positive state (engagement) or negative state (frustration). If
the agent is engaged after the previous round of the game, he takes the decision to

ALGORITHM: CoalitionGameRound
BEGIN

FOREACH player from players
IF player is in coalition

Select best offer
IF offer is better than current coalition

Leave current coalition
Join player with best offer

ELSE if player is alone
Bid other players for coalition
Accept best offer and enter the coalition

ENDIF
ELSE

IF player wants to join a coalition
Join player with best offer

ENDIF
ENDIF

ENDFOREACH
Play canonical Minority Game
Share rewards
Generate leaderboard

END

65

continue playing the game. Assume that an agent is in the state of engagement if it is
not in the state of frustration, i.e., the states are mutually exclusive. An agent is in a
state of frustration if he feels that he is not rewarded enough for his efforts. Being in
the state of frustration increases the chance of leaving the game.

5.4. OilTrader

OilTrader is a game developed to model the influence of the reinforcement model
on player’s decision to continue or leave the game. OilTrader is a market simulation
game which allows to trade shares of oil for money or to buy oil shares. The game
serves as an example how real-world markets would behave if there were no external
influences. The interface of the game is presented in Figure 26.

OilTrader is a simulator which allows for users to experience simplified market
conditions while trading the digital shares of the fantasy company OilFund. It involves
seeing historical game outcomes and trying to predict outcome of the next round. The
game consists of rounds, each thereof takes 15 seconds. Each player starts with 500
shares and 500 dollars. In each round, a player decides to sell or buy the OilFund
shares, or not to do any trades in that round. Only a single trade can be done in a single
round. The user sees four sections in the game. At the top, he sees his money and the
OilFund shares. In the left column, the user sees trading controls and a round timer.
Below that, he sees trade history data and the impact on his money or shares the trade
had.

Figure 26. Schematic diagram of the game.

66

The physical aspects of the game (Figure 26) are comprised of tokens. Tokens
are divided into the following three types:

• Oil tokens: cylindrical markers representing player’s ownership of oil.

• Money tokens: sack-shaped markers representing player’s ownership of
money.

Figure 27. Flow diagram for game steps.

Each player starts by entering the game website. Next, he registers/logs in to the
game. From the beginning, the player needs to pick an action for the current round. He
can sustain, sell or buy oil. The player chooses an action and how many oil shares he
wants to sell or how much money he is willing to spend to buy oil shares. After
deciding, he waits for the round to end. The trade is evaluated determining the seller to
buyer ratio. Using this ratio, player resources are redistributed based on the Minority
Game logic. Finally, the player can decide to leave the game or continue to play the
next round. Figure 27 shows the steps of the game as follows:

• Pick an action;

• See the results of the game round;

• Take a decision to play or not to play the next round.

67

6. EVALUATION OF THE GAMIFIED SYSTEMS

6.1. Gamified system evaluation

6.1.1. Visual evaluation of the gamified systems

WCAG 2.0 (Reid & Snow-Weaver, 2008) is a standard method for determining
accessibility of a web interface. There are two ratings described in WCAG 2.0: the AA
rating is assigned when contrast is >4.5, and AAA is assigned when contrast is >7.
Usually the WCAG 2.0 requirements are used for text only, but in this case, most of
the information is presented in images, therefore, we extend these rules on graphical
images. WCAG 2.0 evaluation scheme:

1. If the number of colors conforming to WCAG 2.0 contrast requirements is
larger than the number of non-conforming colors, the interface is WCAG 2.0
compliant.

2. Else if the number of colors conforming to WCAG 2.0 contrast requirements
is smaller than the number of non-conforming colors, but not by more than
50%, then the interface has small problems, which, if resolved, would make
the interface WCAG 2.0 compliant.

3. Else the interface is non-compliant with WCAG 2.0.
If interface is compliant with WCAG 2.0 then:
1. If the AAA rating colors dominate, then interface is WCAG 2.0 compliant.
2. If the AA rating colors dominate, then interface is WCAG 2.0 compliant.
The following notation can be used to describe the interface compliance:

WCAG 2.0 <X% AAA, Y% AA-, Z% AA> (9)

where, X, Y and Z are percentage value of the AAA, AA-, and AA rating
complying colors.

Let’s take the previously discussed Trogon PMS System and illustrate gamified
user interface evaluation using WCAG 2.0. In the part of the study on color analysis,
six images of the Trogon PMS interface have been analyzed:

• Dashboard page, which shows all unfinished tasks, system events and inner
office communications.

• Tasks page, which displays all tasks registered in the system.

• Employee task page, which displays all tasks assigned to the employee in a
Gantt graph.

• Monthly ratings page, which displays the employee’s ratings for the current
month.

• Monthly badge page, which displays a sorted list of all employees and their
badges with skill levels.

• Monthly project forest page, which displays all project forests, which had
activity under this month.

Screenshots (JPG images) of the game layer interfaces have been analyzed. For
this analysis, ImageMagick has been used to manipulate images, Lea Verou color
contrast tool (Verau, n.d.) to compute color contrast and define WCAG 2.0 rating, and
custom script to automate the experiment.

68

The experiment consists of such steps: 1) We register the image of interface. 2)
Using ImageMagick we generate image color histogram. 3) Using Lea Verou tool we
check the contrast of all colors against the background color. The tool returns one
possible ratings:

• None is received when a color pair is not WCAG 2.0 compatible.

• AA- is received when a color pair is WCAG 2.0 AA compatible only for
large elements.

• AA is received when a color pair is WCAG 2.0 AA compatible.

• AAA is received when a color pair is WCAG 2.0 AAA compatible.

Figure 28. Trogon PMS monthly badge board page

Figure 29. Trogon PMS monthly leaderboard page

Figure 30. Trogon PMS employee task page

69

Figure 31. Trogon PMS project forest page

Figure 32. Trogon PMS dashboard page

Figure 33. Trogon PMS task page

The results of WCAG 2.0 evaluations are as follows.

• Monthly badge board (Figure 28) is WCAG 2.0 compliant.

WCAG 2.0 <AAA(48%), AA(23%), AA-(29%)> (10)

• Monthly leaderboard (Figure 29) is not WCAG 2.0 compliant but with small
changes compliance could be achieved.

• Employee’s task page (Figure 30) is not WCAG 2.0.

• Monthly project forest (Figure 31Figure 29) is WCAG 2.0 compliant.

70

WCAG 2.0 <AAA(20%), AA(36%), AA-(44%)> (11)

• Dashboard page (Figure 32) is not WCAG 2.0.

• Task page (Figure 33) is WCAG 2.0 compliant.

WCAG 2.0 <AAA(69%), AA(13%), AA-(19%)> (12)

6.1.2. Evaluating gamified systems using SUS

To rate the usability of gamification System Usability Scale (SUS) (Brooke,
1996) methodology can be used. SUS already could be considered an industry standard
for rating system or product usability. The main benefits of applying SUS are as
follows. 1) A very small number of respondents. Even if the number of respondents is
low, accurate results can be obtained. 2) A small number of questions allows a fast and
efficient way to gather opinions. 3) A questionnaire can be used for the system, product
or module usability assessment. A drawback of using SUS is that it focuses on
pragmatic quality.

Normally SUS consists of ten questions (statements), which are divided into five
question (statement) pairs. In a pair, both questions ask the same question, but one from
a positive side and the other from a negative side. The SUS score is computed using
such a methodology: every answer scores from 0 to 4 points. Point scale is from 1 to
5. Every question points are computed by subtracting 1 from the chosen scale value.
Score scale of odd questions 1, 3, 5, 7 and 9 is from 0 to 4. Score scale of even questions
2, 4, 6, 8 and 10 is from 4 to 0. The final score is obtained by multiplying score by 2.5.
The total SUS score is from 0 to 100.

SUS can be used to evaluate usability of Trogon PMS, a questionnaire consists
of the evaluation of game elements in Project Management System; data tables; first
and second round views (ratings, badges and project forest).

The respondents are asked to answer these statements:
1. I think what most people easily would learn game rules.
2. For me the game rules looked too difficult.
3. For me gameplay elements looked easy to understand.
4. I think what I would need some expert help to fully understand gameplay

elements.
5. I would like to have a possibility to always view the leaderboard.
6. The leaderboard looks too complex for me.
7. I can easily understand the role of a badge board in this system.
8. I would need a lot of learning before I fully understand the badge board role

in this system.
9. I think that project forest is easy to understand.
10. I think that project forest is highly imprecise.
Every pair of questions evaluates a part of system gamification and the whole

questionnaire evaluates usability of the entire system. Every pair of questions has
evaluated different parts of game elements: statements 1-2 ask in relation to usability
evaluation for game rules. Statements 3-4 ask for evaluating gameplay elements.
Statements 5-6 ask for evaluating leaderboards. Statements 7-8 ask for evaluating
badge board. Statements 9-10 ask for evaluating project forest.

In the questionnaire, additional questions have been asked to provide information
about the respondent for better data analysis:

71

• Your gender.

• Your age.

• Do you specialize in IT sector?

• Comments.
Let’s look at the sample analysis of Trogon PMS with SUS questionnaire. 60

participants were asked to participate in the survey, and 30 participants filled the
questionnaire form. The main group of the respondents were aged from 18 to 35 years.
This age interval is the best suited for a gamification questionnaire, because this age
group constitutes the largest player group. 22 men and 8 women participated in the
survey. Work of 23 out of 30 participants is directly related with Information
Technology (IT) systems.

Every SUS question is evaluated from 0 to 10 points and every element is
covered by two questions. Therefore, every gamification element can receive from 0
to 20 points. The gamification of the entire system can receive from 0 to 100 points.
To evaluate gamification qualitatively, we introduce the following intervals:

0-30 points – gamification is unusable.
31-50 points – gamification usability is poor.
51-70 points – gamification usability is average.
71-90 points – gamification usability is good.
91-100 points – gamification usability is excellent.
The results of SUS evaluation by gender shows that usability score average for

men is 72.27±20.97 and 69.06±28.53 for women. Gamification usability by gender
only has a small difference between male and female. The average difference is 3.5
points. This indicates that sex has almost no effect on gamification usability. Therefore,
gamification of Trogon PMS is understood and evaluated pretty much without any
differences between women and men. There is not enough data to claim statistical
significance.

The difference between the evaluation of gamification usability based on the
experience of users working with IT systems shows that IT group average 75.33±19.92
versus 58.57±28.17 for non-IT group. The difference in this case is equal to 17 points.
The IT professionals rated the gamification of Trogon PMS at 75 points, which is 3.9
% higher than the average rating. Students test shows that the result is not statistically
significant.

The entire gamified Trogon PMS was rated at 71 out of 100 points. Therefore,
gamification usability is evaluated as “good”. When analyzing usability evaluations of
specific elements, leaderboards were evaluated as the easiest to understand, while
game elements were found as the most difficult to understand.

6.2. Modelling gamification of Trogon PMS

6.2.1. Modelled system description

To illustrate gamification modeling, Trogon Project Management System
(PMS), which has already been discussed in our previous work (Ašeriškis &
Damaševičius, 2014a, 2014b), was selected. Here we demonstrate how gamification
rules can be described and modelled using the proposed UAREI model as well as
depicted graphically using the proposed graphical notation.

72

6.2.2. Trogon UAREI model

Figure 34. Visual model of Trogon PMS gamification.

The Trogon PMS gamification is defined using the UAREI model as follows:
𝐺𝑇𝑅𝑂𝐺𝑂𝑁 = {{𝑈𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒}, {𝐴𝑓𝑖𝑛𝑖𝑠ℎ 𝑡𝑎𝑠𝑘}, {𝑅𝑟𝑒𝑐𝑖𝑒𝑣𝑒 𝑝𝑜𝑖𝑛𝑡𝑠, 𝑅𝑟𝑒𝑐𝑖𝑒𝑣𝑒 𝑏𝑎𝑑𝑔𝑒},

{𝐸𝑢𝑠𝑒𝑟, 𝐸𝑏𝑎𝑑𝑔𝑒𝑠, 𝐸𝑡𝑎𝑠𝑘𝑠, 𝐸𝑝𝑜𝑖𝑛𝑡𝑠}, {𝐼𝑙𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑}}
here:

• 𝑈𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒 = { {𝐿f𝑖𝑛𝑖𝑠ℎ 𝑡𝑎𝑠𝑘}, 𝑆𝑟𝑎𝑛𝑑𝑜𝑚}

• 𝐴𝑓𝑖𝑛𝑖𝑠ℎ 𝑡𝑎𝑠𝑘 = {{𝐿𝑟𝑒𝑐𝑖𝑒𝑣𝑒 𝑝𝑜𝑖𝑛𝑡𝑠, 𝐿𝑟𝑒𝑐𝑖𝑒𝑣𝑒 𝑏𝑎𝑑𝑔𝑒}, 𝑆𝑟𝑎𝑛𝑑𝑜𝑚}

• 𝑅𝑟𝑒𝑐𝑖𝑒𝑣𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 = {{𝐿𝑝𝑜𝑖𝑛𝑡𝑠}, 𝑟𝑟𝑒𝑐𝑖𝑒𝑣𝑒 𝑝o𝑖𝑛𝑡𝑠(𝐶,𝑀) = 5}

• 𝑅𝑟𝑒𝑐𝑖𝑒𝑣𝑒 𝑏𝑎𝑑𝑔𝑒 = {{𝐿𝑝𝑜𝑖𝑛𝑡𝑠}, 𝑟𝑟𝑒𝑐𝑖𝑒𝑣𝑒 𝑏𝑎𝑑𝑔𝑒(𝐶,𝑀) =

{

∑ (𝐸𝑝𝑜𝑖𝑛𝑡𝑠𝑖 ∙ 1.2) + 𝑟𝑟𝑒𝑐𝑖𝑒𝑣𝑒 𝑝𝑜𝑖𝑛𝑡𝑠(𝐶,𝑀) ∙ 1.4

𝐸𝑝𝑜𝑖𝑛𝑡𝑠𝐵𝑖

𝑖

, 𝑖𝑓 𝐸𝑡𝑎𝑠𝑘𝑖
𝑏𝑎𝑑g𝑒
→ 𝐵𝑖 𝑎𝑛𝑑 𝑐o𝑢𝑛𝑡(𝐸𝑝𝑜𝑖𝑛𝑡𝑠𝐵𝑖

) = 5

𝑟𝑟𝑒𝑐𝑖𝑒𝑣𝑒 𝑝𝑜𝑖𝑛𝑡𝑠(𝐶,𝑀) ∙ 1.4, 𝑖𝑓 𝐸𝑡𝑎𝑠𝑘𝑖
𝑏𝑎𝑑𝑔𝑒
→ 𝐵𝑖 𝑎𝑛𝑑 𝑐𝑜𝑢𝑛𝑡(𝐸𝑝𝑜𝑖𝑛𝑡𝑠𝐵𝑖

) > 5

𝑟𝑟𝑒𝑐𝑖𝑒𝑣𝑒 𝑝𝑜𝑖𝑛𝑡𝑠(𝐶,𝑀) ∙ 1.2, 𝑖𝑓 𝐸𝑡𝑎𝑠𝑘𝑖
𝑏𝑎𝑑𝑔𝑒
→ 𝐵𝑖 𝑎𝑛𝑑 𝑐𝑜𝑢𝑛𝑡(𝐸𝑝𝑜𝑖𝑛𝑡𝑠𝐵𝑖

) < 5

0, 𝑖𝑓 𝐸𝑡𝑎𝑠𝑘𝑖
𝑏𝑎𝑑𝑔𝑒
→ ∅

}

• 𝐸𝑢𝑠𝑒𝑟 = {𝑆𝑢𝑠𝑒𝑟 , {𝐷𝐽𝑜ℎ𝑛}, {𝐿𝑈𝑠𝑒𝑟𝑠}}

• 𝐸𝐵𝑎𝑑𝑔𝑒𝑠 = {𝑆𝐵𝑎𝑑𝑔𝑒𝑠, {𝐷1, … , 𝐷9}, {𝐿𝑇𝑎𝑠𝑘𝑠}}

• E𝑇𝑎𝑠𝑘𝑠 = {𝑆𝑇𝑎𝑠𝑘𝑠, {𝐷𝐵1 , … , 𝐷𝐵9 , 𝐷1, …𝐷4}, {𝐿𝑓𝑖𝑛𝑖𝑠ℎ 𝑡𝑎𝑠𝑘}}

• 𝐸𝑃𝑜𝑖𝑛𝑡𝑠 = {𝑆𝑃𝑜𝑖𝑛𝑡𝑠, {∅}, {𝐿𝑙𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑}}
• 𝐼𝑙𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑 = {{𝐿𝑢𝑠𝑒𝑟𝑠}, 𝑄𝑙𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟d}

(13)

Here 𝑆𝑢𝑠𝑒𝑟, 𝑆𝐵𝑎𝑑𝑔𝑒𝑠, 𝑆𝑇𝑎𝑠𝑘𝑠, 𝑆𝑃𝑜𝑖𝑛𝑡𝑠 define data schema.

The model of gamification of Trogon PMS using the UAREI modelling language
is given in Figure 34. The model contains:

• Entities: 𝐸𝑢𝑠𝑒𝑟 – all system employee, 𝐸𝐵𝑎𝑑𝑔𝑒𝑠 – types of badges, 𝐸𝑇𝑎𝑠𝑘𝑠
– the tasks which can be completed by employees, 𝐸𝑃𝑜𝑖𝑛𝑡𝑠 – points gained
by users.

• Users (𝑈𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒) node which is a starting point for interaction with the

system.

73

• System has only a single action (𝐴𝑓𝑖𝑛𝑖𝑠ℎ 𝑡𝑎𝑠𝑘) which is triggered by system

users when a task is completed.

• System has two main rules: Points rule (𝑅𝑟𝑒𝑐𝑖𝑒𝑣𝑒 𝑝𝑜𝑖𝑛𝑡𝑠) describes normal

behavior how a user receives the points for a completed task, and Badge rule

(𝑅𝑟𝑒𝑐𝑖𝑒𝑣𝑒 𝑏𝑎𝑑𝑔𝑒) describes how a user gets points for finished tasks which

have badges associated with them.

• User feedback loop is finished by leader board interface (𝐼𝑙𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑),
which gives relevant feedback to the user.

6.2.3. UML model of Trogon

Figure 35. Gamification model of Trogon PMS specified using UML activity diagram

For comparison, the UML diagram, which represents the same logical flow, is
given (see Figure 35)

UML model works as follows. Each round starts and the user is able to complete
a task with an associated badge. If the employee has been successful in receiving
points, he gets a badge awarded to the task. Results are stored in the database. If the

74

employee is not successful in finishing the task, he does not deserve a badge after
finishing the cycle.

6.2.4. Trogon in Machinations

Figure 36. Gamification model of Trogon PMS specified using Machinations.

For comparison, the same model has been described by Machinations visual
notation (Figure 36).

Machinations model consists of three parts: jobs and badge generators, badge
counters and points pool. The most complex parts of the model are:

• Badge to point counter is implemented in a complex node configuration,
which indicates it is difficult to generate rules with complex logic in
machinations.

75

• The same badge to point counter must be repeated for each of the nine badge
types which indicates that the model cannot use real-life data.

6.2.5. Model comparison

As the UAREI model is described using the elements of the graph theory, it is
possible to use graph metrics to evaluate its visual complexity: number of nodes N,
number of links E, and McCabe Cyclomatic Complexity defined as

𝑀 = 𝐸 − 𝑁 + 2𝑃 (14)

where P is the number of independent paths in a graph.

Table 13. Visual complexity of Trogon PMS models.

Complexity metric UAREI model Machinations model UML activity model

Number of nodes 9 90 11

Number of links 10 153 13

McCabe Cyclomatic
complexity

3 65 4

The complexity of the UAREI and Machinations gamification models of Trogon
PMS is summarized in Table 13. The comparison results show that the UAREI model
is significantly less complex than its Machinations counterpart.

6.2.6. Evaluation

For comparative evaluation, we use the Machinations visual language (Joris
Dormans, 2009). As comparison criteria, we use the most important problems /
attributes in gamification modeling as criteria for the comparison.

The game rules are supported in both UAREI and Machinations. The main
difference is that Machinations only allow to build a logical structure to imitate the
“rule” concept. UAREI natively supports the rule concept. A rule in the model holds
the logic inside it and does not disclose logic in model visualization. This is the main
difference between these two modeling tools. The largest problem in Machinations is
that model become too complex if one tries to model real-world systems. In UAREI,
most of the game logic is encapsulated in rules which decreases model complexity.

Both modeling frameworks support user-centric modeling. However, in
Machinations, every user behavior model has a separate copy of the model. UAREI
supports multiple users working with the same model in parallel. Machinations
currently support logical attributes which describe user behavior. UAREI as part of its
UAREI JSON description contains user behavior descriptions for simulations.

Machinations is based on the economic functions and the resource concept.
UAREI intrinsically focuses on the real data entities which carry more information.
UAREI has the “context” concept which is carried through the model execution flow.
From an abstraction point of view, the context concept of UAREI is like Machinations
resource concept, only carrying more complex information.

UAREI supports real world data entities that allow mapping into software
domain. UAREI separates actual data from the actual model. Usually in software
engineering this is a common way to ensure data-program separation, the same concept
is encapsulated into UAREI. Machinations does not have a concept of data.

Machinations does not have any model transformation capabilities and it was
never designed for this aim. On the other hand, UAREI is designed for transformation

76

into an executable code. The rule logic is written in a meta-language which is processed
into an executable Javascript code. Other parts of the model are executed using a
simulator.

Both UAREI and Machinations have minimal analysis tools which allow to view
model data. In Machinations, one can view “pool” changes over time. In UAREI one
can see interface data change over time.

UAREI has a native feedback loop in the system. The modeling framework is
designed to ensure feedback to model users. In Machinations, it is up to the designer
to set up such a loop to model user behavior during simulation.

Both modeling frameworks do not support reusability. However, Machinations
has support for importing parts of models from separate files. UAREI tools have not
been developed yet.

UAREI has been designed for specifying gamification of the systems at a high
level of abstraction. Machinations is more a tool to demonstrate game mechanics in
action. In Machinations, the level of abstraction depends on designers’ choice. In
UAREI abstraction of a visual model is high, but the formal model part provides the
designer with flexibility.

We summarize the comparison of the UAREI and Machination modelling
approaches in Table 14.

Table 14. Graphical notation of UAREI modelling language

Property UAREI Machinations UML

Game rules Native support Logical support Native and Logical

support

Visual model complexity Medium High Medium

User based simulation Able to simulate any number
of users

Every simulation is a copy
of the model

No simulation

Real data support Able to use real data entities Resources are the only data

used

Able to define real

entities

Data-Model separation Data are separated from the
model, so it is possible to use

any dataset

Data are directly
encapsulated in the model

Data are not a part of
the model

Model transformation Future work Model has no functionality
to generate an executable

code

Possible to convert to
code

Feedback loop Has native support feedback

loops

It is possible to simulate

feedback loops directly into
the model

No feedback loops

Model reusability Does not support yet Importing is the only

functions which allows

incorporating other models.

Full support

Abstraction level Higher Designer-dependent Designer-dependent

Cognitive Dimensions Framework (CDF) is a common approach for evaluating
visual languages (Green & Petre, 1996). The evaluation of the analyzed languages
under CDF is presented in Table 15.

77

Table 15. Cognitive dimensions of UAREI and Machinations.

Property UAREI Machinations UML

Abstraction
gradient

Model itself has a single level
of abstraction, but a level of

details needed to specify is

chosen by user. Rules and
interfaces encapsulate logic.

User chooses the level of
abstraction. The more details

are represented, the more

complex model is build. One
can build reusable parts of the

model.

User customizes the level
of abstraction by choosing

which modeling tools to

incorporate.

Closeness of

mapping

Straightforward model.

Problems appear while
transcribing form formal to

JSON model.

One needs to learn how to

build complex logic. It works
very well if you exchange

parts of logic with
simplifications. Also, one

needs to understand four

economic function
paradigms.

Straightforward modeling

language which allows
different levels of

abstraction.

Consistency The whole language is built

on top of 6 elements. After

learning these constructs, you
can build any system. The

hardest part is query and rule

logic function writing, which
need to be learnt separately.

The language itself is quite

extensive. It consists of 15

different elements and a lot of
settings. The hardest part is

implementing out complex

logic, because the model
lacks programmable logic

nodes.

The language of UML

activity diagram used in

this case of study is
composed of over 20

different types of elements

that allow building many
concepts into the model.

Diffuseness Six graphic elements make up
the language.

17 constructs allow building
almost anything one needs for

game modeling.

Over 20 elements and
multiple types of

connections.

Error-proneness Errors originated from the

rule and query specification.

We did not find error

possibilities in small models.
Problems would arise with

big and complex models.

Low error-proneness. The

model supports
aggregation difficulty can

be divided.

Difficult mental
operations

Writing in JSON notations at
some point would build too

difficult structures to follow

easily.

If a model has many
asynchronous operations or

high number of nodes, it can

be difficult to follow.

Easy language with real
natural meaning. Tracing

the model requires hard

mental operations.

Hidden
dependencies

Dependencies are clearly
visible because you see all

incoming and outgoing
connections.

Dependencies are clearly
visible, but can be more

difficult to understand due to
specified logic on

connections

Dependencies are clearly
visible.

Premature

commitment

No premature commitment No premature commitment Need to be committed to

UML to optimize benefits.

Progressive

evaluation

At any point, the model can

be executed if is in a valid

form.

At any point, the model can

be evaluated.

The model has no

automated evaluation.

Role
expressiveness

The system dependencies are
clearly visible.

The system dependencies are
clearly visible, but can be

difficult to interpret.

System dependencies can
be difficult to deduct.

Secondary
notation

Allows only label notation. Allows label, color notations. Allows labels and
comments.

Viscosity Any change is not more

difficult to do as initially.

Can be more difficult to

restructure complex rules.

Changes might be more

difficult to introduce,

depends on complexity.

Visibility It is possible to view a model

until it fits on the screen.

Problems occur when the
model is too big to fit on the

screen. JSON notation of a

complex rule can be difficult

to follow.

Until the model is simple

enough there are no

problems. Problems arise
with large models which

don’t fit in the screen and

after some point zooming out

doesn’t help.

Complexity is decreased

by decomposition into

smaller parts. In large
systems, it can be quite

difficult to follow the

whole system model.

78

6.3. Gamification model of eLearning system

6.3.1. UAREI model of eLearning system

Figure 37. The gamified eLearning hybrid model for increasing participant’s engagement.

Programing contest case study can be modelled using UAREI (Ašeriškis &
Damaševičius, 2014b) (Users, Actions, Rules, Entities, and Interfaces) common
modeling scheme for defining gamification, we can define the current study as follows:

𝐺 = {𝑈, 𝐴, 𝑅, 𝐸, 𝐼} (15)

Where: 𝑈 = {𝐿𝑢𝑠𝑒𝑟𝑠, 𝑆𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦}; 𝐿𝑢𝑠𝑒𝑟𝑠 = {𝐴𝑡𝑎𝑘𝑒 𝑡𝑢𝑡𝑜𝑟𝑖𝑎𝑙 , 𝐴𝑡𝑎𝑘𝑒 𝑒𝑥𝑎𝑚},
𝑆𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 - choose a random strategy. 𝐴 = {𝐴𝑡𝑎𝑘𝑒 𝑡𝑢𝑡𝑜𝑟𝑖𝑎𝑙 , 𝐴𝑡𝑎𝑘𝑒 𝑒𝑥𝑎𝑚},
𝐴𝑡𝑎𝑘𝑒 𝑡𝑢𝑡𝑜𝑟𝑖𝑎𝑙 = {𝐿𝑡𝑎𝑘𝑒 𝑡𝑢𝑡𝑜𝑟𝑖𝑎𝑙 , 𝑆𝑟𝑎𝑛𝑑𝑜𝑚} 𝐴𝑡𝑎𝑘𝑒 𝑒𝑥𝑎𝑚 = {𝐿𝑡𝑎𝑘𝑒 𝑒𝑥𝑎𝑚, 𝑆𝑟𝑎𝑛𝑑𝑜𝑚}.
𝐿𝑡𝑎𝑘𝑒 𝑡𝑢𝑡𝑜𝑟𝑖𝑎𝑙 = {𝑅𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑡𝑢𝑡𝑜𝑟𝑖𝑎𝑙}, 𝐿𝑡𝑎𝑘𝑒 𝑒𝑥𝑎𝑚 = {𝑅𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑒𝑥𝑎𝑚}. 𝑆𝑟𝑎𝑛𝑑𝑜𝑚- a

random picking function. 𝑅 =
{𝑅𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑡𝑢𝑡𝑜𝑟𝑖𝑎𝑙 , 𝑅𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑒𝑥𝑎𝑚, 𝑅𝑔𝑒𝑡 𝑏𝑎𝑑𝑔𝑒 , 𝑅𝑙𝑒𝑎𝑟𝑛}. 𝑅𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑡𝑢𝑡𝑜𝑟𝑖𝑎𝑙 =

{𝐿𝑐𝑜𝑚𝑝𝑙e𝑡𝑒 𝑡𝑢𝑡𝑜𝑟𝑖𝑎𝑙 , 𝑟𝑡𝑢𝑡𝑜𝑟𝑖𝑎𝑙 𝑝𝑜𝑖𝑛𝑡𝑠}, 𝑅𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑒𝑥𝑎𝑚 =

{𝐿𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑒𝑥𝑎𝑚, 𝑟𝑒𝑥𝑎𝑚 𝑝𝑜𝑖𝑛𝑡𝑠}. 𝑅𝑔𝑒𝑡 𝑏𝑎𝑑𝑔𝑒 = {𝐿𝑔𝑒𝑡 𝑏𝑎𝑑𝑔𝑒, 𝑟𝑔𝑒𝑡 𝑏𝑎𝑑𝑔𝑒} 𝑅𝑙𝑒𝑎𝑟𝑛 =
{𝐿𝑙𝑒𝑎𝑟𝑛, 𝑟𝑙𝑒𝑎𝑟𝑛} 𝐿𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑡𝑢𝑡𝑜𝑟𝑖𝑎𝑙 = {𝐸𝑝𝑜𝑖𝑛𝑡𝑠, 𝑅𝑙𝑒𝑎𝑟𝑛}, 𝐿𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑒𝑥𝑎𝑚 = {𝐸𝑝𝑜𝑖𝑛𝑡𝑠},
𝐿𝑔𝑒𝑡 𝑏𝑎𝑑𝑔𝑒 = {𝐸𝑢𝑠𝑒𝑟}, 𝐿𝑙𝑒𝑎𝑟𝑛 = {𝐸𝑢𝑠𝑒𝑟}, 𝑟𝑡𝑢𝑡𝑜𝑟𝑖𝑎𝑙 𝑝𝑜𝑖𝑛𝑡𝑠- random score from 0-50,

accounts to user skill level. 𝑟𝑒𝑥𝑎𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 – random score from 0 to 100, accounts to

user skill level. 𝑟𝑙𝑒𝑎𝑟𝑛 – generates an increment for user skill level. 𝑟𝑔𝑒𝑡 𝑏𝑎𝑑𝑔𝑒 – updates

user badge based on his point count.

𝐸 = {𝐸𝑢𝑠𝑒𝑟, 𝐸𝑡𝑢𝑡𝑜𝑡𝑟𝑖𝑎𝑙, 𝐸𝑒𝑥𝑎𝑚, 𝐸𝑝𝑜𝑖𝑛𝑡𝑠} =
{{𝐷𝑢𝑠𝑒𝑟, 𝐿𝑢𝑠𝑒𝑟}, {𝐷𝑡𝑢𝑡𝑜𝑟𝑖𝑎𝑙 , 𝑂𝑡𝑢𝑡𝑜𝑟𝑖𝑎𝑙 , 𝐿𝑡𝑢𝑡𝑜𝑟𝑖𝑎𝑙},
{𝐷𝑒𝑥𝑎𝑚, 𝑂𝑒𝑥𝑎𝑚, 𝐿𝑒𝑥𝑎𝑚}, {𝐷p𝑜𝑖𝑛𝑡𝑠, 𝐿𝑝𝑜𝑖𝑛𝑡𝑠}}, 𝐸𝑢𝑠𝑒𝑟 – user entity with skill level, badge,

Users

exam

take exam complete exam

points

tutorial

complete tutorial

learn

user

ratings

leaderboard

get badge

take tutorial

79

and ID. 𝐸𝑡𝑢𝑡𝑜𝑡𝑟𝑖𝑎𝑙 – list of tutorials user can learn from. 𝐸𝑒𝑥𝑎𝑚 – list of exams the user
can take. 𝐸𝑝𝑜𝑖𝑛𝑡𝑠 – list of all user points. 𝐿𝑢𝑠𝑒𝑟 = {𝑈, 𝐼𝑟𝑎𝑡𝑖𝑛𝑔𝑠}, 𝐿𝑡𝑢𝑡𝑜𝑟𝑖𝑎𝑙 =
{𝐴𝑡𝑎𝑘𝑒 𝑡𝑢𝑡𝑜𝑟𝑖𝑎𝑙}, 𝐿𝑒𝑥𝑎𝑚 = {𝐴𝑡𝑎𝑘𝑒 𝑒𝑥𝑎𝑚}, 𝐿𝑝𝑜𝑖𝑛𝑡𝑠 = {𝐼𝑙𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑 , 𝐼𝑟𝑎𝑡𝑖𝑛𝑔𝑠}. 𝐼 =

{𝐼𝑙𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑 , 𝐼𝑟𝑎𝑡𝑖𝑛𝑔𝑠} = {{𝐿𝑙𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑 , 𝑄𝑙𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑}, {𝐿𝑟𝑎𝑡𝑖𝑛𝑔𝑠, 𝑄𝑟𝑎𝑡𝑖𝑛𝑔𝑠}}.
𝐼𝑙𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑 – display a leaderboard, 𝐼𝑟𝑎𝑡𝑖𝑛𝑔𝑠 – display leaderboard with

badges. 𝑄𝑙𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑 – queries top ten students with highest scores. 𝑄𝑟𝑎𝑡𝑖𝑛𝑔𝑠 – queries

all users sorted by scores including badge field.
Visually the following model is represented in Figure 37.
The formal description matches the model. Any user at random chooses to take

the exam or take a tutorial randomly. More active users refer to more activity with the
system. Learning is limited only to tutorials.

Therefore, user skill will increase over time. A feedback loop is closed by a user
who receives feedback from the system via leaderboard and ratings.

6.3.2. Simulation of a Hybrid Gamification Model

Assumptions. Let us assume there are 100 students which have dispersed a set of
programming knowledge from 0% to 15% (higher percentage means better knowledge
of programming). If a user completes a tutorial, his knowledge will grow randomly by
1-5%. This skill value increases student’s chance to receive a higher result from
tutorials and exams. Student engagement with the system is represented by points, the
higher number of points is, the more engaged the student is. It is assumed that
gamification increases user engagement based on measured results in other systems
(Hamari, Koivisto, & Sarsa, 2014). The higher a student engagement is, the higher
impact gamification has on him. Each exam will give the user 0-100 points and tutorial
respectively 0-50 points.

Hypothesis. More engaged students outperform less engaged students in the
average result of exams.

Figure 38. Simulation results.

80

Figure 38 illustrates one sample of simulation results. There are two groups:
users who are more and less engaged with the gamification. Let us consider more
engaged users who have gathered more than average points from tutorials. Simulation
results are statistically significant and show the less engaged group has average exam
scores 55.9 ± 15.7% and more engaged group 65.2 ± 13.6%. Permutation test shows
what results as statistically significant (p = 0.727). In Figure 39 we see that
probabilities of the more interactive group are lower than less interactive groups, but
shifted towards higher scores, which indicates that gamification does not work the
same for everybody, but increases student performance.

Figure 39. Probabilities assuming normal distribution

So, if a gamification of the described programming contest increases - student
engagement success rate of active users will be higher. If a gamification creates enough
competitiveness and increases student engagement - their results will be better. It’s
worth noting that different random seeding might lead to different results as it is known
that different people chosen in any gamification system might produce different results.

6.3.3. Experimental evaluation of gamification model of eLearning system

The experiments were carried out online by delivering programming course
system for HE students (Technology, n.d.). The system provides an online course on
introduction in C++ programing language. The course is free online, but requires
registration. Each month the system provides a set of problems, which must be solved
by the following month, and solutions have to be uploaded to the system. Solutions are
evaluated by real teachers, who are also registered users of the same programming
course system. The evaluation range is from 0 to 100, where 0 is the lowest score and
100 is the highest score. Moreover, each student is assigned to a personal tutor, who
guides the student through the whole learning process. Both tutor and student interact
with each other remotely via web forum. Some of the students have an opportunity to
solve additional problems. Students can use an integrated programming environment

81

with an online compiler and online test system. The solutions of additional problems
are executed on online test system. The test system checks whether a solution passes
all tests. If all tests are passed, the system considers that the problem is solved. Each
solved problem is rewarded with 1 point. Points are summed up for each user. The
scoreboard of the best students is announced on the homepage of the online course
system. The system has a badge system to distinguish between the students with
different amount of points. Students can earn up to 30 points for additional solutions.

Students were divided in two groups: the control and the experiment group,
which has an opportunity to solve additional problems. 95 students were selected to
participate in the experiment. A gamification group (students, who have solved
additional problems) consisted of 48 students. A control group has had 47 students.
Score averages of gamification and the control group were compared. Average points
for an additional task and the average score of the gamification group were evaluated
to determine the number of students, who were engaged by the gamification system.

6.3.4. Experiment results

Figure 40. Box plot of hybrid eLearning model contestant results.

In Figure 40 we see the average score of the gamification group is 83,13 ± 23.26.
The average score of the control group is 66,83 ±29.89. The gamification group has
shown the average score higher by 16,3. Random permutation probability is 56%
which indicates that the results are statistically significant.

82

Figure 41. Probability distribution of gamified and control groups

Figure 42. Learning results of enjoyment groups.

83

Figure 43. Probability distribution engagement groups

Probability distribution in Figure 41 indicates that gamification group
probabilities are lower, which means that it does not work better for everyone. Note
bimodal distribution of the control group.

In Figure 42 we see the results for less and more engaged groups. The less
engaged group has an average exam result equal to 79.7 ± 24.7 and the more engaged
group has the average 90 ± 18.97. The results are not statistically significant based on
permutation test results (p=0.455). Even if the results are not statistically significant,
they still indicate similar results observed during the simulation. Figure 43 on
probability distribution indicates that higher engagement does not suggest better exam
results.

6.4. Modelling Minority Games in UAREI

6.4.1. Extending UAREI for MG support

In general, user behavior can be supplemented by agent behavior. An agent first
picks an action using 𝑎𝑝𝑖𝑐𝑘 function (in case of original MG definition as El Farol Bar

problem (Arthur, 1994), the agent picks “go to bar” or “stay at home” based on his
strategy). To map the strategy to the current model state we define a 𝑎𝑘𝑒𝑦 function,

which generates a memory key to reference the current situation. After the cycle ends
the agent receives a call-back to 𝑎𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 function to evaluate his choice. 𝐸𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒
entity stores all data relevant to agents.

In case of the classic MG, we can specify such agent description as:

𝛼𝑖 = {𝑎𝑝𝑖𝑐𝑘(𝑚𝑜𝑑𝑒𝑙), 𝑎𝑘𝑒𝑦 (𝑚𝑜𝑑𝑒𝑙),

𝑎𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑚𝑜𝑑𝑒𝑙), 𝐸𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒 }
(16)

here 𝑎𝑝𝑖𝑐𝑘:

84

• On first call
o Generate S random strategies for all possible keys.
o Initialize strategy quality so one would be better.

• On all calls
o Generate key using 𝑎𝑘𝑒𝑦(𝑚𝑜𝑑𝑒𝑙) function for a current model state.

o Return best quality strategy and take from it action for the generated
key.

𝑎𝑘𝑒𝑦(𝑚𝑜𝑑𝑒𝑙): return M records from game win history entity;

𝑎𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑚𝑜𝑑𝑒𝑙): if the action of the previously chosen strategy has won, then

increase strategy quality by one. The function is executed in every round of the game.
𝐸𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒 has a collection of strategies and a vector of strategy quality. The

user (player) behavior is defined as follows:

𝑈 = {𝐿𝑢𝑠𝑒𝑟, 𝑆𝑈, 𝛼} (17)

The MG agent model has a problem because it is bound by 𝑁𝑢𝑠𝑒𝑟 × 𝑁𝑎𝑐𝑡𝑖𝑜𝑛𝑠
𝑆𝑀

which causes performance issues when modeling large numbers of the agent in a model
with large number actions where agents use large number of strategies and can
remember large history. To avoid this problem by offering an alternative MG agent:

𝛼𝑖,𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑔𝑎𝑚𝑒 = {𝑎𝑝𝑖𝑐𝑘(𝑚𝑜𝑑𝑒𝑙),
𝑎𝑘𝑒𝑦(𝑚𝑜𝑑𝑒𝑙), 𝑎𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑚𝑜𝑑𝑒𝑙), 𝐸𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒 }

(18)

here 𝑎𝑝𝑖𝑐𝑘 generates a key using 𝑎𝑘𝑒𝑦(𝑚𝑜𝑑𝑒𝑙) function for a current model state,

which returns a random action, if it is called for the first time, and the best action, if
called subsequently.

Formally, MG is defined as 𝐺𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑔𝑎𝑚𝑒 = {𝑈, 𝐴, 𝑅, 𝐸, 𝐼}, here 𝑈 =

{𝐿𝑢𝑠𝑒𝑟𝑠, 𝑆𝑜𝑟𝑑𝑒𝑟, 𝛼𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑔𝑎𝑚𝑒 }; 𝐿𝑢𝑠𝑒𝑟𝑠 = {𝐴𝐺𝑜 𝑡𝑜 𝑏𝑎𝑟, 𝐴𝑆𝑡𝑎𝑦 𝑎𝑡 ℎ𝑜𝑚𝑒}; 𝑆𝑜𝑟𝑑𝑒𝑟- pick

user from order for each round; 𝛼𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑔𝑎𝑚𝑒 Minority Game agent list of N players

with S strategies and M memory size; 𝐴 = {𝐴𝐺𝑜 𝑡𝑜 𝑏𝑎𝑟, 𝐴𝑆𝑡𝑎𝑦 𝑎𝑡 ℎ𝑜𝑚𝑒}; 𝐴𝐺𝑜 𝑡𝑜 𝑏𝑎𝑟 =

{𝑆𝑟𝑎𝑛𝑑𝑜𝑚, 𝐿𝐺𝑜 𝑡𝑜 𝑏𝑎𝑟}; 𝐴𝑆𝑡𝑎𝑦 𝑎𝑡 ℎ𝑜𝑚𝑒 = {𝑆𝑟𝑎𝑛𝑑𝑜𝑚, 𝐿𝑆𝑡𝑎𝑦 𝑎𝑡 ℎ𝑜𝑚𝑒}; 𝑆𝑟𝑎𝑛𝑑𝑜𝑚 –

randomly generated action data; 𝐿𝐺𝑜 𝑡𝑜 𝑏𝑎𝑟 = {𝑅𝑅𝑒𝑐𝑜𝑟𝑑 𝑂𝑝𝑡𝑖𝑜𝑛}; 𝐿𝑆𝑡𝑎𝑦 𝑎𝑡 ℎ𝑜𝑚𝑒 =

{𝑅𝑅𝑒𝑐𝑜𝑟𝑑 𝑂𝑝𝑡𝑖𝑜𝑛}. 𝑅𝑅𝑒𝑐𝑜𝑟𝑑 𝑂𝑝𝑡𝑖𝑜𝑛 = {𝑟𝑅𝑒𝑐𝑜𝑟𝑑 𝑂𝑝𝑡𝑖𝑜𝑛 , 𝐿𝑅𝑒𝑐𝑜𝑟𝑑 𝑂𝑝𝑡𝑖𝑜𝑛}

𝑟𝑅𝑒𝑐𝑜𝑟𝑑 𝑂𝑝𝑡𝑖𝑜𝑛 {
”G𝑜 𝑡𝑜 𝑏𝑎𝑟”, 𝑖𝑓 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑐𝑡𝑖𝑜𝑛 𝑤𝑎𝑠 𝐴𝐺𝑜 𝑡𝑜 𝑏𝑎𝑟

 “Stay at home”, 𝑖𝑓 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑐𝑡𝑖𝑜𝑛 𝑤𝑎𝑠 𝐴𝑆𝑡𝑎𝑦 𝑎𝑡 ℎ𝑜𝑚𝑒
; 𝐿𝑅𝑒𝑐𝑜𝑟𝑑 𝑂𝑝𝑡𝑖𝑜𝑛 =

{𝐸𝐶ℎ𝑜𝑖𝑐𝑒𝑠}; 𝐸𝐶ℎ𝑜𝑖𝑐𝑒𝑠 = {𝐿𝐶ℎ𝑜𝑖𝑠𝑒𝑠, 𝐷𝐶ℎ𝑜𝑖𝑠𝑒𝑠 } is the entity collecting all user choices,
here 𝐿𝐶ℎ𝑜𝑖𝑠𝑒𝑠 = {𝐼𝐴, 𝑅𝑊𝑖𝑛}; 𝐷𝐶ℎ𝑜𝑖𝑠𝑒𝑠 has three fields: user ID, chosen action, and game

round; 𝐼𝐴 – defines a view which groups users by choices; 𝐼𝐴 = {𝐿𝐴, 𝑄𝐴} = {{𝑈}, 𝑄𝐴};
𝑄𝐴- groups data from 𝐸𝐶ℎ𝑜𝑖𝑠𝑒𝑠 by round and chosen action and counts all users in a

group; 𝑅𝑊𝑖𝑛 = {𝐿𝑊𝑖𝑛, 𝑟𝑤𝑖𝑛} = {{𝐸𝐻𝑖𝑠𝑡𝑜𝑟𝑦 , 𝑈}, 𝑟𝑤𝑖𝑛 }, here 𝑟𝑤𝑖𝑛- defines the winner for

each round. The rule is executed once at the end of every round and returns the action

which has been opted by the minority group 𝐸𝐻𝑖𝑠𝑡𝑜𝑟𝑦 = {𝐿𝐻𝑖𝑠𝑡𝑜𝑟𝑦 , 𝐷𝐻𝑖𝑠𝑡𝑜𝑟𝑦} =

{{𝑈, 𝐼𝐿𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑}, 𝐷𝐻𝑖𝑠𝑡𝑜𝑟𝑦} ; 𝐷𝐻i𝑠𝑡𝑜𝑟𝑦 – has two fields: round number and winning

action; 𝐼𝐿𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑 = {𝐿𝐿𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑 , 𝑄𝐿𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑} = {{𝑈}, 𝑄𝐿𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑}; here
𝑄𝐿𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑 –computes user success rate.

In Figure 44, we can see the classic MG model represented visually in UAREI.

85

Using UAREI, we also can analyze different variants of the MG model. For
variable pay-off MG, the visual representation of the model is the same as is given in
Figure 44. The model for cooperation-based MG is presented in Figure 45.a. A new
entity “Bank” has been introduced with a specialized interface to visualize the
monetary situation of agents in the model. Figure 45.b represents the ternary-voting
MG model. This model has all the attributes from cooperation-based MG model and
action “Sustain” in addition.

Figure 44. Minority Game model in UAREI

Figure 45. Model of coalition (a) and ternary voting (b) variants of Minority Game in UAREI

The modifications of classic MG model are summarized in Table 16.

a) b)

Leaderboard
Leaderboard

Users Users
Go to bar

Go to bar

Record Option
Record

Option
Stay at home Stay at home

Sustain

A
A

Choices

Choices

History

BankInterface BankInterface
Bank

Bank

Win Win

History

86

Table 16. Modelling variants of Minority Game in UAREI

6.4.2. Simulation and results

The simulation uses N = 101 agents with S = 2 number strategies with M = 4
memory size. Agent actions are represented as +1 and -1. The simulation results show
the number of agents, who have taken a decision to “go to bar” or to “stay at home”. If
the value of the sum of agents’ functions in a game round is equal to or below 50, then
the group is the minority and has won the round.

Figure 46. Histogram of wins in simulated classic Minority Game

The simulations were run with different variants of minority models defined in
Table 16, including the classic MG. Observed model behavior is expressed as the
winning function and defined as the ratio of wins to the number of played games in
percentages. In Figure 46 we can see the histogram of winning functions after 100
game rounds in different simulations of the classic MG. We can see that the number of
winning agents follows the Gaussian probability distribution (see the values of mean,
std and Kolmogorov-Smirnov (KS) normality test in Table 17).

0

2

4

6

8

10

12

14

16

18

20

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

A
ge

n
ts

Wins

Variant of MG Change in classic MG model

Variable payoff In this model 𝑎𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑚𝑜𝑑𝑒𝑙) gives N-k if the user wins and k-N to the strategy.

Coalition-based 𝛼 = {𝛼𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑔𝑎𝑚𝑒 , 𝛼𝑐𝑎𝑟𝑡𝑒𝑙}

𝑁𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑔𝑎𝑚𝑒 and 𝑁𝑐𝑎𝑟𝑡𝑒𝑙

Ternary voting 𝐴 = {𝐴𝐺𝑜 𝑡𝑜 𝑏𝑎𝑟, 𝐴𝑆𝑡𝑎𝑦 𝑎𝑡 ℎ𝑜𝑚𝑒, 𝐴𝑆𝑢𝑠𝑡𝑎𝑖𝑛}

87

Figure 47. Histogram of wins in simulated variable payoff Minority Game

Distribution of wins for the variable payoff MG is presented in Figure 47 The
size of reward is proportional to the size of a minority group, which favors the
formation of small minority groups as well as allows for more rapid changes in the
leaderboard of players during the game.

Figure 48. Histogram of wins in simulated coalition-based Minority Game

In the coalition-based MG, simulation introduces a 20-member coalition into the
system. Members of the coalitions are divided into two equal groups which bid on
different actions and split the reward between the members of the coalition. Each agent
bids 1 point per round. Rewards are distributed equally to all players. The histogram
of wins (Figure 48) shows a small shift over the random change success rate (see Table
17). Therefore, one can conclude that the introduction of coalition as a meta-game
strategy into a classic MG model allows to improve the results of the game for some
players.

0

5

10

15

20

25

30

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

A
ge

n
ts

Wins

0

5

10

15

20

25

30

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

A
ge

n
ts

Wins

88

Figure 49. Histogram of wins in ternary voting Minority Game

In the simulation of the ternary voting MG (TVMG), the model introduces a third
option for players to sustain from playing in their strategies. All players who choose to
sustain do not participate in the current round of the game. All agents initially have 10
points each. In every round, each participating agent must bid 1 point. A player who
has lost all his points must leave the game. In the histogram of wins in TVMG (Figure
49), we can see two peaks, which correspond to low performing agents and high
performing agents, which is also confirmed by the results of the KS normality test (see
Table 17).

To evaluate the interestingness of each variant of MG, we use the negentropy
value of win function. In information theory and statistics, negentropy is used as a
measure of distance to normality. The results of a coin tossing game, the simplest and
the least interesting game without any strategy of playing, would have the Gaussian
distribution. On the other hand, the games with uniform or constant probability of wins
are equally uninteresting. Thus, the game, which differs more in terms of negentropy
from the Gaussian distribution with the same mean and variance, can be considered
more interesting. Such entropy-based measures have already been used for defining
the concepts of interestingness and surprise of data, including that of algorithmic zero
sum games (Schmidhuber, 2009). The results of the statistical analysis of win results
in the analyzed variants of MG are presented in Table 17.

Table 17. Statistical evaluation of variants of Minority Game

The win values for classic, variable payoff and coalition-based variants of MG
are normally distributed and has acceptable asymmetry (skewness between -2 and 2).
The ternary voting model departs from the normality due to the rules of the game,
which throw players with poor performance out of the game. The value of negentropy,
which is used to evaluate the interestingness of the game, shows that the classic MG,
which has the simplest set of game rules, as the least interesting, whereas the ternary

0

5

10

15

20

25

30

35

40

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

A
ge

n
ts

Wins

Variant of MG Mean Std. Skew-ness KS test Entropy Negen-tropy

Classic 49.95 10.78 -0.04 1 0.932 0.02

Variable payoff 48.02 8.87 -0.41 1 0.838 0.03

Coalition-based 49.75 6.50 -0.29 1 0.710 0.03

Ternary voting 20.74 14.82 0.32 0 0.844 0.16

89

voting variant of MG, which allows the users to abstain as well as to go bankrupt and
leave the game, is the most interesting.

6.4.3. Summary & the reinforcement model

The main tools of keeping the player in the state of flow during the game are
various types of rewards. The reward systems are usually multilevel systems, i.e., they
are usually based on a hierarchy of different levels to attain (Dubina & Oskorbin,
2015). According to Wang et al. (Wang & Sun, 2011), there can be eight forms of
reward in games:

1. Score systems such as leaderboards use numbers to mark player
performance.

2. Experience point reward systems reflect player effort rather than skill.
3. Virtual item rewards have collecting and social comparison value.
4. Resources are virtual items that can be collected and used to affect gameplay.
5. Achievement systems encourage players to complete specific tasks of a

game.
6. Feedback messages are used to create positive emotions and provide instant

rewards in response to successful actions.
7. Animations and pictures are used as to provide a sense of fun and mark

player achievement.
8. Unlocking mechanisms give players access to game content once some

requirements are met.
The goals of the reinforcement systems have been summarized by the Corners of

Reward model (James, Fletcher, & Wearn, 2013) as intrinsic (achieving own goals),
extrinsic (succeeding in leaderboards) and social (competing with other players).

Hereinafter, the reinforcement model for games with the following elements is
proposed:

• Winning: reward is provided if the player has won in the previous round of
the game;

• Ranking: reward is provided if the player has excelled over his/her
competitors over time and has been listed in one of the top positions of the
leaderboard of winners;

• Advancement: reward is provided if the player has overtaken a significant
number of his/her competitors in the previous round of the game;

• Achievement: reward is provided if the player has achieved the best result
in some interesting nominations, e. g., has won over the largest number of
his/her competitors;

• Luck: reward is provided on a random basis to some of the poor performing
players just to increase persistence and total effort of players and incentivize
them to keep playing.

These elements provide both static (momentous) and dynamic (continuous)
views to the effort and contribution of players in time as well as introduce the element
of randomness to allow a certain degree of uncertainty in the system. Each of these
elements of reward is supported by a set of the desired characteristics as follows:

• Visibility: the rewards should be seen for other players to increase
competition, gain social value and increase overall interestingness of a
game.

90

• Fairness: the reward system is open to all players.

• Chance: the rewards should be awarded at random intervals to keep interest
in the game.

• Scarcity: reward should not be a common thing in a game.

• Stability: there are agents awarded during each round.

6.5. OilTrader Game experiment

6.5.1. Experiment set-up

For simplification, it is assumed that a player can only be affected by the elements
of the user interface of the game which he/she can see. A hypothesis of the experiment
is that it is possible to evaluate the influence of the reward mechanism (visually
represented as a leaderboard table) by using game play duration, which is different for
each psychological player type.

(a) (b)

Figure 50. OilTrader leaderboard of (a) control group, and (b) experiment group (with streak, win and

loss incentives)

Users will be divided randomly into two groups: the main (experiment) group
and the control group. User interface of the game for the control group has the
leaderboard which represents player achievement, and shows player position, net worth
(shares + money) and win or lose state in the latest round of the game. User interface
of the game for the experiment group has three additional metrics (streak, biggest win,
and biggest loss), which represent player progress, and are aimed to incentivize the
internal player reward (see Figure 50).

91

6.5.2. Purpose of the Game Experiment

This experiment has three main objectives:

• to validate the playing motivation of experimental subjects using the
proposed motivation model and the HEXAD player typology (Tondello et
al., 2016) & questionnaire (L. Diamond G. F. Tondello & Tscheligi, 2015);

• to identify any difference in the effectiveness of motivation-enhanced game
interface between the experimental group (which was presented with used a
motivation-enhancing leaderboard) and the control group (with used a basic
leaderboard);

• to discuss the relationship between the HEXAD player types and player
motivation to play the game longer.

6.5.3. Experimental Subjects

The experiment was carried out in June 2016. Using crowdsourced workers from
microworkers.com (a web-based crowdsourcing platform to access the crowd which
enables employers to submit individually designed tasks (Hirth, Hoßfeld, & Tran-Gia,
2011)), we set up a task to play the game and afterwards to fill in the player type
questionnaire. We randomly assigned players to control and experiment groups once
they created an account. In total, we enrolled 114 players who played the game.
Participants in the study were mostly male (88.6%). 70.2% of the participants were
between 20-30 years old. 17.5% of the participants were 30+ years old. 12.3% were
younger than 20 years old. The majority of the participants play games up to 3 hours a
day (67.5%) and 23.7% play more than 3 hours. Only 8.8 % of the participants do not
play computer games regularly. 69.2% of the participants enjoyed the activity versus
31.8%, who said they took the task only for money.

All the participants received introductory information about the task they were
asked to perform (to play a game). Then all players could start playing the game and
exit from it at any time they wanted. After finishing the game, the participants were
asked to complete the HEXAD questionnaire (L. Diamond G. F. Tondello & Tscheligi,
2015). The questionnaire was not mandatory, but only the results of players who
completed the questionnaire voluntarily, were analyzed in this study (99 players,
86.8%).

6.5.4. Research Tool

To assess the motivation reinforcing aspects of the game interface, we use the
HEXAD player type classification (L. Diamond G. F. Tondello & Tscheligi, 2015)
which distinguishes 6 player types:

• Socializers are motivated by being closer to other people. They seek to create
new social connections and relationships.

• Free spirits are motivated by autonomy and self-expression. They like to
explore.

• Achievers are motivated by mastery and overcoming game challenges. They
continuously need to improve themselves.

• Philanthropists are driven by altruism helping others without any reward for
themselves.

92

• Players are motivated by extrinsic rewards. They are playing the game only
if they expect to be rewarded.

• Disruptors are motivated by changes. They are willing to ‘disrupt’ the game
rather by playing by its rules.

First, let us assign a player type to each player and then we evaluate the length
of gameplay for each player type. To assess a player type, we employ the HEXAD
questionnaire (see Table 18) (L. Diamond G. F. Tondello & Tscheligi, 2015; Tondello
et al., 2016).

Table 18. The HeXAD Questionnaire (L. Diamond G. F. Tondello & Tscheligi, 2015)

Player type No. Items

Achiever

Q6

Q15
Q20

Q24

Q27

I am very ambitious.

I like overcoming obstacles.
It is important to me to always carry out my tasks completely.

It is difficult for me to let go of a problem before I have found a solution.

I like mastering difficult tasks.

Disruptor

Q5

Q11

Q18
Q22

Q29

I like to provoke.

I like to question the status quo.

I see myself as a rebel.
I dislike following rules.

I like to take changing things into my own hands.

Free Spirit

Q3

Q9
Q14

Q21

Q26

It is important to me to follow my own path.

I often let my curiosity guide me.
I like trying new things.

I prefer setting my own goals.

Being independent is important to me.

Philanthropist

Q2

Q10

Q17
Q23

Q28

It makes me happy if I am able to help others.

I feel good taking on the role of a mentor.

I like helping others to orient themselves in new situations.
I like sharing my knowledge.

The well-being of others is important to me.

Player

Q7

Q13
Q16

Q25

Q30

I like competitions where a prize can be won.

Rewards are a great way to motivate me.
I look out for my own interests.

Return of investment is important to me.

If the reward is sufficient I will put in the effort.

Socializer

Q1

Q4

Q8
Q12

Q19

Interacting with others is important to me.

I like being a part of a team.

It is important to me to feel like I am part of a community.
It is more fun to be with others than by myself.

I enjoy group activities.

6.5.5. Results

In this experiment, our hypothesis is that different player types are impacted
differently by different reinforcement models of the OilTrader game. The motivation
to keep playing is evaluated as the number of the game rounds played by the player.
When analyzing the answers of the questionnaire, we noticed that some players filled
it randomly. Following the recommendations presented in (Hoßfeld et al., 2014), we
conducted the two-stage statistical analysis. The first stage tests the reliability of the
players. This stage aims at creating a pseudo-reliable group of players, who are
analyzed in the second stage. The unreliable player ratings are determined based on the
results obtained from the HEXAD questionnaire. Only the results of the reliable
players are used in further analysis. This approach is also known as pilot task and main

93

task (Soleymani & Larson, 2010). The number of players disqualified in the pilot stage
can be as high as 60% (Soleymani & Larson, 2010).

The reliability of players’ answers might be evaluated following certain steps.
First, assuming that if some players belong to the same player types, their answers to
questions defining this player type would be similar, while the answers to other
questions would be scattered. Based on this assumption, players have been filtered out
(10%, by rank), for which there was the smallest difference between standard
deviations of answers to questions representing different player types. The second
assumption was made that a player would choose the highest score for the answers
which correspond to his player type, while for all other answers the scores would be
scattered. In this case, we have removed players (10%, by rank), for whom there was
the largest difference between the mean score of all answers and the largest mean score
of answers for questions representing different player types.

We have assigned player types to the remaining players using the following rule:
a player is assigned to a player group if the sum of answer scores to the player type
questions exceeds the median of the sum of the answer scores for that player group by
its Median Absolute Deviation (MAD) as follows:

t t t

t t i

Q Q Q Q Q Q

S Q median S Q mad S Q

(19)

here Qt – a subset of questions for a player type t, and S – score.
Similarity of the obtained player groups has been evaluated using the Jaccard

similarity metric as follows:

 1 2

1 2

1 2

,
G G

J G G
G G

(20)

here G1 and G2 are player type groups.

Figure 51. Distribution of players between player types

94

The results are presented in Figure 51. The number of unreliable players removed
in the pilot stage of statistical analysis is 34 out of 99 (34.3%). It was allowed for the
same player to be assigned to different player types. Mean overlap between player
groups is 20.5%. In the best case, there is only 9.1% similarity (between Achievers and
Philanthropists), and in the worst case there is ~44.4% similarity between two different
player type groups (Disruptors and Socializers).

To evaluate the duration of gameplay, a median has been selected as a statistical
measure that is more robust to outliers than an arithmetic mean. The median results

show that the players of the experiment group played 12.2 2.9 rounds, while the

players of the control group played 10.3 2.4 rounds (see Figure 52). The paired-
sample t-test rejects the hypothesis that both data sets have equal means (p = 10-48).

Figure 52. Median gameplay duration for main group and control group

The results of the permutation test (Figure 52) shows that players from the main

group have higher probability (p = 0.671 0.008) of playing longer than players from

the control group (p = 0.329 0.008).

Figure 53. Probability of playing longer (permutation test)

95

The limits in which the experiment group outperformed the control group were
evaluated. This is based on the assumption that the gameplay results (medians of
rounds played) follow the Weilbull probability distribution, which is often used to
model time-to-failure in reliability engineering. Note that we can interpret the decision
of a player to exit the game as game failure.

The number of players leaving at an early stage of the game is larger for the
control group than for the main group. Two methods were used to evaluate the limits
when there is a larger number of players from the main group exiting the game (see
Figure 53).

First, using the bootstrapping method (bootstrap data sample is 1000) we
calculated standard deviations for each round of the game and selected the limits where
confidence intervals do not overlap. The results show that the players from the main
group are more likely to exit the game starting from the 17th round up to the 25th
round.

Second, the Students t-test was used to determine the limits where the test
rejected the hypothesis that both datasets have the same mean. The results show that
the players from the main group are more likely to exit the game starting from the 7th
round up to the 44th round.

Figure 54. Duration of gameplay (in rounds)

The answers to questions of the HEXAD questionnaire which indicate the most
important statistical differences between the main and the control groups in terms of
median of played game rounds were identified (see Figure 54 & Table 18). For
identification of the statistical importance of these questions, the bootstrapping method

96

and Student’s t-test were applied. The results show that the most significant questions
focus on competitiveness (Q7, p = 0.003), curiosity (Q9, p = 0.003), novelty (Q14, p =
0.004), selfishness (Q16, p = 10-33; Q25, p = 10-44; Q30, p = 0.02), autonomy (Q18, p
= 10-94; Q22, p = 10-88), self-efficacy (Q20, p = 10-25), mastery (Q27, p = 10-79), empathy
(Q28, p = 10-52). All these factors had a positive effect on the duration of gameplay.
These results are consistent with the claims of the self-determination theory (Calvert
et al., 1976), which emphasizes the role of autonomy and competence in the game play
motivation.

Figure 55. Analysis of questions from HeXAD questionnaire

Figure 56. Duration of gameplay for each player type

97

The duration of gameplay (median number of game rounds play) for different
player types is given in Figure 56. The game interface modified with additional
incentives results in a longer gameplay for Free spirits, Disruptors and Players, while
it is not effective for Socializers, Philanthropists, and Achievers.

Figure 57. Results of permutation test for different player types

Figure 57 presents the results of a permutation test which shows the probability
that the main group will have better result (longer gameplay) than the control group by

player type. The most significant effects have been observed for Players (p = 0.6906

0.008), Free spirits (p = 0.6267 0.008), and Disruptors (p = 0.5688 0.008).

6.5.6. Extending UAREI MG with motivation

There is a need to incorporate user psychological decision-making process
modelled behavior. To accomplish this, Minority Game decision making framework
needs to integrate user motivation. We do this by extending Minority Game agent with
an extra component which defines if a player wants to continue playing.

𝛼𝑖 = {𝑎𝑝𝑖𝑐𝑘(𝑚𝑜𝑑𝑒𝑙), 𝑎𝑘𝑒𝑦 (𝑚𝑜𝑑𝑒𝑙), 𝑎𝑝𝑙𝑎𝑦𝑖𝑛𝑔(𝑚𝑜𝑑𝑒𝑙),

𝑎𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑚𝑜𝑑𝑒𝑙), 𝐸𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒 }
(21)

The new member 𝑎𝑝𝑙𝑎𝑦𝑖𝑛𝑔(𝑚𝑜𝑑𝑒𝑙) = {
𝑡𝑟𝑢𝑒, 𝑖𝑓 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑝𝑙𝑎𝑦𝑖𝑛𝑔
𝑓𝑎𝑙𝑠𝑒, 𝑖𝑓 𝑑o𝑛𝑒 𝑝𝑙𝑎𝑦𝑖𝑛𝑔

, to abstract

the decision making process we include a function 𝑚𝑖(𝑚𝑜𝑑𝑒𝑙) and redefine

𝑎𝑝𝑙𝑎𝑦𝑖𝑛𝑔(𝑚𝑜𝑑𝑒𝑙) {
𝑡𝑟𝑢𝑒, 𝑖𝑓 𝑚𝑖(𝑚𝑜𝑑𝑒𝑙) > 0

𝑓𝑎𝑙𝑠𝑒, 𝑖𝑓 𝑚𝑖(𝑚𝑜𝑑𝑒𝑙) ≤ 0
. Now we have a numerical function

98

𝑚𝑖(𝑚𝑜𝑑𝑒𝑙) which numerically represents user motivation. 𝑚(𝑚𝑜𝑑𝑒𝑙) function can be
chosen freely, but for our modeling we will use such form:

𝑚𝑖(𝑚𝑜𝑑𝑒𝑙) = 𝑚𝑖−1(𝑚𝑜𝑑𝑒𝑙) +∑𝑂𝑖,𝑛𝑆𝑛𝑊𝑛𝑒
−
𝑖−𝑠𝑛
𝜏𝑛

𝑁

𝑛

− 𝑆 (22)

Here each next motivation score depends on the previous motivation state.
𝑂𝑖,𝑛 ∈ {−1,0,1}- factor outcome based on model execution 𝑆𝑛- scalar value

representing factor weight based on the game. 𝑊𝑛 ∈ [−1,1]- scalar value representing

factor weight based on the player. 𝑖 is the round index. 𝑒
−
𝑖−𝑠𝑛
𝜏𝑛 defines how each factor

impact decreases over time, 𝑠𝑛 and 𝜏𝑛 values defining how fast the impact of the
exponent factor decreases. 𝑆 defines how fast a user loses interest in the game. Constant
𝑆 can be chosen freely, but it is recommended to use the following formula:

𝑆 =
∑ 𝑒

−
−s𝑛
𝜏𝑛𝑁

𝑛

𝐾

(23)

here the sum of maximum factors is divided by constant 𝐾.

6.5.7. Modelling OilTrader

𝐺𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 = {𝑈, 𝐴, 𝑅, 𝐸, 𝐼} (24)

𝐺𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 =

{

{𝑈𝑢𝑠𝑒𝑟𝑠},

 {𝐴𝑠u𝑠𝑡𝑎𝑖𝑛, 𝐴𝑏𝑢𝑦, 𝐴𝑠𝑒𝑙𝑙},

{𝑅𝑢𝑝𝑑𝑎𝑡𝑒 𝑠𝑡𝑎𝑡𝑠, 𝑅𝑟𝑒𝑐𝑜𝑟𝑑 𝑐ℎ𝑜𝑖𝑐𝑒 , 𝑅𝑤𝑖𝑛},

 {𝐸ℎ𝑖𝑠𝑡𝑜𝑟𝑦 , 𝐸𝑡𝑟𝑎𝑑𝑒𝑠, 𝐸𝑢𝑠𝑒𝑟𝑠},

{𝐼𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝐵𝑜𝑎𝑟𝑑 , 𝐼𝐿𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑}
}

 (25)

𝑈𝑢𝑠𝑒𝑟𝑠 = {{𝐴𝑠𝑒𝑙𝑙, 𝐴𝑏𝑢𝑦, 𝐴𝑠𝑢𝑠𝑡𝑎𝑖𝑛}, 𝑆𝑜𝑟𝑑𝑒𝑟, 𝛼𝑖} – users are chosen one by one

under 𝑆𝑜𝑟𝑑𝑒𝑟, users can pick one of three actions: 𝐴𝑠𝑒𝑙𝑙 , 𝐴𝑏𝑢𝑦, 𝐴𝑠𝑢𝑠𝑡𝑎𝑖𝑛 and

𝛼𝑖 = {𝑎𝑝𝑖𝑐𝑘(𝑚𝑜𝑑𝑒𝑙), 𝑎𝑘𝑒𝑦(𝑚𝑜𝑑𝑒𝑙),

𝑎𝑝𝑙𝑎𝑦𝑖𝑛𝑔(𝑚𝑜𝑑𝑒𝑙), 𝑎𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑚𝑜𝑑𝑒𝑙), 𝐸𝑢𝑠𝑒𝑟,𝑖 }
(26)

here 𝛼𝑖 describes an agent who combines the Minority Game and user type
motivation. 𝑎𝑝𝑖𝑐𝑘(𝑚𝑜𝑑𝑒𝑙) chooses which action to pick on the basis of game history.

𝑎𝑘𝑒𝑦(𝑚𝑜𝑑𝑒𝑙) – it is a function which generates current state key; in this case players

last 5 game outcomes. 𝑎𝑝𝑙𝑎𝑦𝑖𝑛𝑔(𝑚𝑜𝑑𝑒𝑙) defines if a player is still playing considering

his player type motivation. 𝑎𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑚𝑜𝑑𝑒𝑙) updates agent state based on a current

model state. 𝐸𝑢𝑠𝑒𝑟,𝑖 refers to current user entity.

{𝐴𝑠𝑢𝑠𝑡𝑎𝑖𝑛 , 𝐴𝑏𝑢𝑦, 𝐴𝑠𝑒𝑙𝑙} = {{{𝑅𝑢𝑝𝑑𝑎𝑡𝑒 𝑠𝑡𝑎𝑡𝑠}, 𝑆𝑛𝑢𝑙𝑙}, (27)

99

{{𝑅𝑢𝑝𝑑𝑎𝑡𝑒 𝑠𝑡𝑎𝑡𝑠}, 𝑆𝑛𝑢𝑙𝑙} , {{𝑅𝑢𝑝𝑑𝑎𝑡𝑒 𝑠𝑡𝑎𝑡𝑠}, 𝑆𝑛𝑢𝑙𝑙}}

– here 𝑅𝑢𝑝𝑑𝑎𝑡𝑒 𝑠𝑡𝑎𝑡𝑠 is the rule which is triggered after the action. 𝑆𝑛𝑢𝑙𝑙 – returns

null, as no entity is associated with the action in this case.

Figure 58. OilTrader UAREI model

𝑅𝑢𝑝𝑑𝑎𝑡𝑒 𝑠𝑡𝑎𝑡𝑠 = {{𝑅𝑟𝑒𝑐𝑜𝑟𝑑 𝑐ℎ𝑜𝑖𝑐𝑒 , 𝐸𝑢𝑠𝑒𝑟}, 𝑟𝑢𝑝𝑑𝑎𝑡𝑒 𝑠𝑡𝑎𝑡𝑠}, 𝑅𝑟𝑒𝑐𝑜𝑟𝑑 𝑐ℎ𝑜𝑖𝑐𝑒 – records

which action has been chosen. 𝐸𝑢𝑠𝑒𝑟 means user entity. 𝑟𝑢𝑝𝑑𝑎𝑡𝑒 𝑠𝑡𝑎𝑡𝑠 records current

game state for the current user. It captures user money, oil, biggest win or loss,
networth, last game outcome and streak.

𝑅𝑟𝑒𝑐𝑜𝑟𝑑 𝑐ℎ𝑜𝑖𝑐𝑒 = {{𝐸𝑡𝑟𝑎𝑑𝑒𝑠}, 𝑟𝑟𝑒𝑐𝑜𝑟𝑑 𝑐ℎ𝑜𝑖𝑐𝑒}, 𝐸𝑡𝑟𝑎𝑑𝑒𝑠 means entity which stores
all trades, 𝑟𝑟𝑒𝑐𝑜𝑟𝑑 𝑐ℎ𝑜𝑖𝑠𝑒 saves which type of action has been chosen by the user and
saves the amount which is traded, in case of sustain – 0, else random value from 0 to
amount of money / oil is currently owned by user.

𝐸𝑢𝑠𝑒𝑟 = {{𝑈𝑢𝑠𝑒𝑟𝑠}, 𝐷𝑢𝑠𝑒𝑟}, here 𝐷𝑢𝑠𝑒𝑟 is defined by such fields: Money, Oil,
Networth, Win (did the user win last round), Streak (how many times in a row a player
has won), BWin and BLoss (biggest win and loss), Round, name, and motivation seed
(m_networth, m_position, m_win, m_streak, m_bwin, m_bloss).

𝐸𝑡𝑟𝑎𝑑𝑒𝑠 = {{𝑅w𝑖𝑛}, 𝐷𝑡𝑟𝑎𝑑𝑒𝑠} here 𝐷𝑡𝑟𝑎𝑑𝑒𝑠 scheme is defined: UserID, Round,

Action and Amount.

𝑅𝑤𝑖𝑛 = {{𝑈𝑢𝑠𝑒𝑟𝑠, 𝐸ℎ𝑖𝑠𝑡𝑜𝑟𝑦}, 𝑟𝑤𝑖𝑛} - 𝑟𝑤𝑖𝑛 computes which group won and buy-to-

sell and sell-to-buy ratios.

𝐸ℎ𝑖𝑠𝑡𝑜𝑟𝑦 = {{𝑈𝑢𝑠𝑒𝑟𝑠, 𝐼L𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑 , 𝐼𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝐵𝑜𝑎𝑟𝑑}, 𝐷ℎ𝑖𝑠𝑡𝑜𝑟𝑦}- 𝐷ℎ𝑖𝑠𝑡𝑜𝑟𝑦 has such

fields: Round, Sell-to-buy, Buy-to-sell and outcome.
𝐼𝐿𝑒𝑎𝑑𝑒𝑟𝑏𝑜a𝑟𝑑 = {{𝑈𝑢𝑠𝑒𝑟𝑠}, 𝑄𝐿𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑} - , 𝑄𝐿𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑 selects all users and

sorts by networth.
𝐼𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝐵𝑜𝑎𝑟𝑑 = {{𝑈𝑢𝑠𝑒𝑟𝑠}, 𝑄𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝐵𝑜𝑎𝑟𝑑} - 𝑄𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝐵𝑜𝑎𝑟𝑑 - displays last 5

outcomes from user perspective.

6.5.8. Simulation and results

100

The hypothesis of this experiment is that it is possible to simulate synthetically
random user behavior and analyze the results by player types based on classification.
The result of such a simulation and analysis is that it was numerically evaluated how
new factors introduced into the whole system affect user types.

The simulation was conducted in two groups: experimental and control. The
experimental group sees additional UI elements during game play. We will assume that
users are only affected by elements which they can see. Simulation with the following
models were run on the basis of this configuration:

𝑚𝑖(𝑚𝑜𝑑𝑒𝑙) = 𝑚𝑖−1(𝑚𝑜𝑑𝑒𝑙) +∑𝑂𝑖,𝑛𝑆𝑛𝑊𝑛𝑒
−
𝑖−𝑠𝑛
𝜏n

𝑁

𝑛

− 𝑆 (28)

It is stated that there are 3 (𝑁 = 3) factors in the control group and 6 (𝑁 = 6)
factors in the experimental group impacting how the user behavior will change. 3
shared factors are networth, winning and position. Additional factors introduced in the
experiment group are the biggest win, the biggest loss and streak. 𝑊𝑛 defines that each
player’s factor is a random number between -1 and 1. 𝑂𝑖,𝑛 can be -1 if the impact of

this factor is negative (losing money) and positive if 1 (gaining money). 𝑂𝑖,𝑛 is equal

to zero if there is no change. In this model 𝑠𝑛 and 𝜏𝑛 are equal to 4 for all factors. For
modeling, we assume the factor scale is 𝑆𝑛 is equal to 1 for all factors. 𝑆 will be chosen
to be the same for control and experiment based on experiment group.

𝑆 =
∑ 𝑒

−
−𝑠𝑛
𝜏𝑛𝑁

𝑛

𝐾
=
6𝑒−

−4
4

3
= 2𝑒

(29)

𝑚0(𝑚𝑜𝑑𝑒𝑙) is a random value between 30 and 60. The simulation is run until all
players decide to stop playing. Using Marczewski’s (A. Marczewski, 2015) player
types, we will classify simulated players into the closest player type. Marczewski in
his article identifies 6 player types:

• Socializers are motivated by being closer creating to other people.

• Free spirits are motivated by autonomy and self-expression.

• Achievers are motivated by mastery and overcoming challenges in the game.

• Philanthropists are driven by altruism helping others without any reward for
themselves.

• Players are motivated by rewards, they are in the game for their own benefit.

• Disruptors are motivated by changes.
In this model, there are six elements in gamified version which effect player

behavior. logical reasoning for picking each weight, which will be used for evaluating
simulation of this system, is picked by reasoning logically. Three points are picked
from -100 to 100 percent range, which are weight - -75, 0 ,75. Being closer to 0
represents what factor has almost no impact on user behavior. The closer user factor
weight is -75 more negative an outcome than the factor has to user motivation. The
closer you are to 75 the more positive impact the factor has on the user’s behavior.
Table 19 shows how different factors should affect user motivation for different player
types. It is worth noting that real experiment results should be used to justify the
classification weights.

101

Using Table 19 we are going to classify player based motivation factor weights
to the closest player category.

If we have player motivation factor weights as a vector 𝑊𝑝𝑙𝑎𝑦𝑒𝑟 =
(𝑊𝑛𝑒𝑡𝑤𝑜𝑟𝑡ℎ,𝑊𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ,𝑊𝑤𝑖𝑛,𝑊𝑠𝑡𝑟𝑒𝑎𝑘 ,𝑊𝑏𝑖𝑔𝑔𝑒𝑠𝑡 𝑤𝑖𝑛,𝑊𝑏𝑖𝑔𝑔𝑒𝑠𝑡 𝑙𝑜𝑠𝑠), and classification

weight 𝑊𝑝𝑙𝑎𝑦𝑒𝑟 𝑡𝑦𝑝𝑒 =
(𝑊𝑛𝑒𝑡𝑤𝑜𝑟𝑡ℎ,𝑊𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ,𝑊𝑤𝑖𝑛,𝑊𝑠𝑡𝑟𝑒𝑎𝑘 ,𝑊𝑏𝑖𝑔𝑔𝑒𝑠𝑡 𝑤𝑖𝑛,𝑊𝑏𝑖𝑔𝑔𝑒𝑠𝑡 𝑙𝑜𝑠𝑠). Here

𝐷𝑝𝑙𝑎𝑦𝑒𝑟 𝑡𝑦𝑝𝑒 = √∑(𝑊𝑝𝑙𝑎𝑦𝑒𝑟 𝑡𝑦𝑝𝑒 −𝑊𝑝𝑙𝑎𝑦𝑒𝑟)
2
. 𝐷𝑝𝑙𝑎𝑦𝑒𝑟 =

{𝐷𝑑𝑒𝑠𝑟𝑢𝑝𝑡𝑜𝑟, 𝐷𝑝𝑙𝑎𝑦𝑒𝑟, 𝐷𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑟, 𝐷𝑝ℎ𝑖𝑙𝑎𝑛𝑡𝑟𝑜𝑝𝑖𝑠𝑡 , 𝐷𝐹𝑟𝑒𝑒𝑠𝑝𝑖𝑟𝑖𝑡 , 𝐷𝑠𝑜𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑟} is a set of

distances from each player type. The player’s type is the player type which is closest
(min (𝐷𝑝𝑙𝑎𝑦𝑒𝑟)) to the player type in Table 19.

Table 19. User classification by motivation weights.

Type \ Factor Disruptors Players Achiever Philanthropists Free Spirit Socializer

Net worth -75 75 -75 75 75 -75

Position 75 75 75 -75 75 0

Win 0 75 -75 0 0 -75

Streak 0 75 -75 0 0 0

Biggest Win 75 75 75 -75 75 -75

Biggest Loss 75 0 75 75 75 0

Figure 59. XP and Control group simulation results

102

In Figure 59 we see the simulation results. The experimental group and control
group took part in the experiment. Looking at averages without classification between
player types, there is no difference between round counts of control and experimental
groups. Looking at the distinguished player types we see that there are differences for
each player type behavior caused by the introduced changes to the experimental group.

Figure 60. Differences between groups by player types

Figure 60 shows changes in the behavior of each player type. The experiment
changes increased motivation for disruptors, players, achievers and free spirits, and
decreased motivation for philanthropists and socializers. The results are not statistically
significant per test, which indicates that the model is not calibrated correctly. To
calibrate the model properly we need to adjust factor weights and S constant to achieve
statistical significance. Also, a better classification could be used to achieve more
accurate results.

6.6. Discussion of the Results & Conclusions

We have proposed two ways for evaluating gamified systems. The first method
of evaluating gamified systems is using WCAG 2.0 color ratio analysis, which can
indicate the visual attraction of gamified user interfaces. The second method of
adapting the System Usability Scale (SUS) is through a questionnaire to gather user
feedback and evaluate usability of the gamified system.

A case of study in modeling the Trogon PMS gamified application using UAREI
has been demonstrated. The same gamified application has been modelled using the
Machinations framework and UML activity diagrams. All modeling frameworks are
proper tools for modeling gamification of software systems.

All analyzed models have been used to compare their visual complexity and it is
found that UAREI has lower visual complexity score than Machinations model and
UML activity diagram. A sample simulation of two players using the system under
UAREI and Machinations has been done. The comparison shows that there are almost
no differences between simulation results.

The advantages of the UAREI modeling method are: a high level of abstraction,
native support for feedback loops, model transformation to executable code, explicit
separation of data and code, user centric approach.

The analysis of the Hybrid Gamification Model has shown that despite minor
differences between the theoretical model and real life model implementation, similar
outcomes are observed. The case study results indicate that gamification increases

1.50

0.34
0.58

-0.58

0.78

-0.82

0.02

-1

-0.5

0

0.5

1

1.5

2

103

engagement, which leads to better results. The biggest difference is how many points
are rewarded to the users, which has no impact on modeling results, which just creates
larger user value distribution. In the real-life experiment points are attributed in discrete
quantities. In the theoretical model, a user gets awarded with 0-50 points.

The hybrid eLearning model shows that gamification interaction improves
students’ exam results. Regarding engagement model simulation predicts better
statistically significant results.

The model prediction of the increased academic performance is true. The same
hypothesis is verified with real users. Gamification of a programing contest using the
hybrid gamification model creates a positive impact on the contest results by increasing
user engagement. Experiment results do not show statistically significant correlation
between score and engagement.

Efficient and effective satisfaction of human needs is the key to success in many
areas of activity. Gamification has been proposed as one of solutions aimed at
increasing human motivation in various areas. However, it is not always clear how to
design and implement gamification as there are many tools and mechanisms available
for promoting motivation (such as points, badges, leaderboards), but their effectiveness
with regards to different psychological types of players has not been studied before.

The proposed reinforcement model was developed for single player, turn-based
games with infinite teleology according to the multi-dimensional typology of games
(Aarseth, Smedstad, & Sunnanå, 2003), and targets the needs from beginners to
intermediate players.

We have developed the visual modeling language and simulation framework
UAREI, which is intended for visualizing and modeling game rules and game
mechanics in the gamified systems. Four variants of Minority Game (MG) have been
analyzed and computationally evaluated. The results of agents in each game are
analyzed and compared using a simple win function, which registers the number of
wins for each agent. The results of the classical MG model are like a random coin toss
game, meaning that the game most likely would not be interesting for its players if
played for a long time. The extensions of the classical MG introduce a layer of meta-
game to the game, thus introducing new opportunities for the players to cooperate or
compete among themselves. The variable pay-off MG provides an opportunity for an
agent to earn more points in one game round and makes the game more interesting.
The ternary voting MG model introduces a third option as well as bankruptcy of the
player as one of the outcomes of the game. Such a model allows the analysis player
behavior, which is more like real-world games. The coalition-based MG model
enriches the rules of the game by an opportunity of bargaining between players, thus
introducing a market-like behavior in the meta-game scenario.

The analysis and computation modeling of different MG models provide new
insights into player behavior and allow to compare models based on their
interestingness (evaluated in terms of negentropy of probability distribution of the win
function). Such evaluations can help to develop the sustainable game mechanics, which
can keep game players motivated in continuing playing the games on purpose.

The effectiveness of enhanced leaderboard has been evaluated with respect to
standard leaderboard for different game player types using a simple game based on the
game-theoretic framework of Minority Game set in the context of market trading. The
results of the experiment show that there is a statistically significant difference between
various types of players in accepting the motivation-enhancing mechanisms of

104

gamification. The analyzed user interface solution (progress leaderboard) has been
effective in prolonging the time of gameplay for several types of players, i.e.,
FreeSpirits, Disruptors and Players (according to HEXAD typology (Tondello et al.,
2016)), whereas for Socializers, Philanthropists and Achievers the motivation
enhancing effect has not been achieved.

In this case, Players are known to be motivated by rewards, so presenting them
more different types of rewards through the enhanced leaderboard has allowed them to
keep more interested in the game. FreeSpirits want to explore the game and find
different and new ways to gain rewards. Disruptors, on the other hand, are interested
in breaking the system, so they keep playing longer just to observe the other players
failing. The unexpected result is that Achievers, who are motivated by challenge and
mastery, have been found to be not interested in the introduced motivational incentives.
Perhaps the game itself has been too simplistic for them to keep them playing longer.

The achieved results can be explained by the inherent psychological differences
of attitude towards playing: some types of players play because they like to compete
with other players, therefore, different leaderboard-based solutions demonstrating
different views on many aspects of competition are perfect for them, whereas other
types of players play because of an opportunity to socialize without the need to
compete, or just because there are fully immersed and enjoy the process of gameplay
itself without considering the scores, or only for their own personal scores without the
need to compare them with other players’ results.

The HEXAD player questionnaire (L. Diamond G. F. Tondello & Tscheligi,
2015) method for determining psychological player types lacks protection from people
entering random answers. Following the recommendations presented in (Hoßfeld et
al., 2014), it has been possible to apply the two-stage statistical analysis to filter out
unreliable players and to minimize the risk of error.

These results underscore the need for game and gamification designers to
perform surveys and in-field studies of the user interface solutions to evaluate their
effectiveness. These results also set the limits of gamification as for some player types
motivation-based gamification mechanisms are not likely to be working due to their
psychological attitude towards game playing.

The method described uses psychological HEXAD questionnaire results as basis
for player type classification, which makes the evaluation method highly dependent of
HEXAD reproducibility. Recent studies have shown problems with the reproducibility
of psychological studies (Collaboration, 2015). It indicates the need for a HEXAD
reproducibility study.

A method for simulating motivation of the user of the gamified systems has been
offered. The method has been built on top of the UAREI modeling framework by
introducing agent motivation. The results have been analyzed on the basis of the
suggested player type classification. It has been found that motivation of gamified
systems might be predictable if each system gamification element had a known impact
on each player type.

Proposed evaluation methods target these gamified system problems: (a) system
usability scale and Web Content Accessibility Guidelines target measuring usability of
the gamified system; (b) player winning distribution analysis allows to evaluate the
interestingness of the gamified solution and (c) gamified system analysis method by
psychological player types allows to understand how the system effects different player
types motivation over time and build a predictable models for computational analysis.

105

Deeper research is needed for analyzing different psychological player types as
the result of an experiment performed here show that it is difficult to clearly assign
player types to real subject, as the qualities of different psychological types maybe
mixed for the same person. Rather than defining crisp player types, a fuzzy-like
approach to player typology is required. These conclusions may spur the development
of novel player classification taxonomies and motivation enhancing gamification
mechanisms in the future.

106

7. CONCLUSIONS

Main results of dissertation:
1. It is important to evaluate gamified systems both qualitatively and

quantitatively. Visual interfaces of gamification solutions can be evaluated
quantitatively using the proposed method based on the Web Accessibility
Guidelines (WCAG 2.0), and qualitatively using the modified SUS
questionnaire (both validated in the Trogon PMS system). Statistical
methods should be applied to validate any observed change in user behavior
due to the effects of gamification (such as the improvement of students’
exam results for gamification solutions applied in the programming contest).

2. Ten gamification patterns have been identified: infinite source, limited
source, time limit, dynamic limit, random result, drain patterns, constrain,
extension, property and change, and solver. The components of the abstract
gamification model (User-Action-Rule-Entity-Interface formal model
(UAREI)) have been identified: users, actions, rules, entities and interfaces.
The model can be used for the visual specification of the gamified systems,
abstract description of gamification patterns, executable modeling of
gamification solutions, and generation of gamification applications. For
executable modeling, the Gamification modeling (GMOD) tool, which
allows for the transformation method from UAREI model to executable
application, has been developed.

3. UAREI has similar or better capabilities than other industry solutions for
simulating gamified systems and providing similar simulation feedback
versus other known solutions. UAREI can be used to specify, model and
predict randomized user behavior with respect to a real application of the
gamified system and evaluate the effects of gamification. A method for
simulating and evaluating gamified system impact on user motivation by
psychological player types using motivation reinforcement model has been
developed and demonstrated. The proposed models and methods have been
tested by simulating behavior of market agents applying the Minority Game
model (OilTrader game).

107

REFERENCES

Aarseth, E., Smedstad, S. M., & Sunnanå, L. (2003). A multidimensional typology

of games. In DIGRA Conf.

Adams, E., & Dormans, J. (2012). Game mechanics: advanced game design. New

Riders.

Agustin, M., Chuang, G., Delgado, A., Ortega, A., Seaver, J., & Buchanan, J. W.

(2007). Game sketching. In Proceedings of the 2nd international conference

on Digital interactive media in entertainment and arts (pp. 36–43). ACM.

Allwood, J., Nivre, J., & Ahlsén, E. (1992). On the semantics and pragmatics of

linguistic feedback. Journal of Semantics, 9(1), 1–26.

Alonso, I. G., Fuente, M. P. A. G., & Brugos, J. A. L. (2009). Using sysml to

describe a new methodology for semiautomatic software generation from

inferred behavioral and data models. In Systems, 2009. ICONS’09. Fourth

International Conference on (pp. 210–215). IEEE.

Ancel, E., & Gheorghe, A. (2015). A Simulation Game Application for Improving

the United States’ Next Generation Air Transportation System NextGen. In

Game Theoretic Analysis of Congestion, Safety and Security (pp. 219–253).

Springer.

Anderson, J., & Rainie, L. (2012). The future of Gamification. Pew Research

Center. Washington, DC Retrieved from Http://www. Pewinternet.

org/2012/05/18/the-Future-of-Gamification.

Araújo, M., & Roque, L. (2009). Modeling games with petri nets. Breaking New

Ground: Innovation in Games, Play, Practice and Theory. DIGRA2009.

Londres, Royaume Uni.

Araújo, R. M., & Lamb, L. C. (2005). On the evolution of memory size in the

minority game. In INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL

INTELLIGENCE (Vol. 19, p. 1651). Citeseer.

Arthur, W. B. (1994). Inductive reasoning and bounded rationality. The American

Economic Review, 84(2), 406–411.

Ašeriškis, D., & Damaševičius, R. (2014a). Gamification of a Project Management

System. The Seventh International Conference on Advances in Computer-

Human Interactions Gamification, (c), 200–207.

Ašeriškis, D., & Damaševičius, R. (2014b). Gamification Pattern for Gamification

Applications. Procedia Computer Science, 39, 83–90.

https://doi.org/10.1016/j.procs.2014.11.013

Balbi, S., & Giupponi, C. (2010). Agent-based modelling of socio-ecosystems: a

methodology for the analysis of adaptation to climate change. International

Journal of Agent Technologies and Systems, 2(4), 17–38.

Banister, E. W., Calvert, T. W., Savage, M. V, & Bach, T. (1975). A systems model

of training for athletic performance. Aust J Sports Med, 7(3), 57–61.

Barata, G., Gama, S., Fonseca, M. J., & Gonçalves, D. (2013). Improving student

creativity with gamification and virtual worlds. In Proceedings of the First

International Conference on Gameful Design, Research, and Applications (pp.

95–98). ACM.

108

Barata, G., Gama, S., Jorge, J., & Gonçalves, D. (2013). Engaging engineering

students with gamification. In Games and Virtual Worlds for Serious

Applications (VS-GAMES), 2013 5th International Conference on (pp. 1–8).

IEEE.

Barisas, D., Duracz, A., & Taha, W. (2014). DSLs Should be Online Applications.

In 2014 Joint International Conference on Engineering Education &

International Conference on Information Technology, 2-6 June 2014, Riga,

Latvia (pp. 314–319).

Barkenbus, J. N. (2010). Eco-driving: An overlooked climate change initiative.

Energy Policy, 38(2), 762–769.

Bauckhage, C., Kersting, K., Sifa, R., Thurau, C., Drachen, A., & Canossa, A.

(2012). How players lose interest in playing a game: An empirical study based

on distributions of total playing times. In 2012 IEEE Conference on

Computational Intelligence and Games (CIG) (pp. 139–146). IEEE.

Bench, S. W., & Lench, H. C. (2013). On the function of boredom. Behavioral

Sciences, 3(3), 459–472.

Berengueres, J., Alsuwairi, F., Zaki, N., & Ng, T. (2013). Emo-bin: How to recycle

more by using emoticons. In Proceedings of the 8th ACM/IEEE international

conference on Human-robot interaction (pp. 397–398). IEEE Press.

Berger, V., & Schrader, U. (2016). Fostering Sustainable Nutrition Behavior through

Gamification. Sustainability, 8(1), 67.

Bieliūnaitė-Jankauskienė, I., & Auruškevičienė, V. (2016). A study of the

application of gamification elements for individual donations. ISM University

of Management and Economics.

Bista, S. K., Nepal, S., Colineau, N., & Paris, C. (2012). Using gamification in an

online community. In Collaborative Computing: Networking, Applications and

Worksharing (CollaborateCom), 2012 8th International Conference on (pp.

611–618). IEEE.

Bjork, S., & Holopainen, J. (2004). Patterns in game design (game development

series).

Botra, A., Rerselman, M., & Ford, M. (2014). Gamification beyond badges. In IST-

Africa Conference Proceedings, 2014 (pp. 1–10). IEEE.

Bottazzi, G., Devetag, G., & Dosi, G. (2002). Adaptive learning and emergent

coordination in minority games. Simulation Modelling Practice and Theory,

10(5), 321–347.

Brathwaite, B., & Schreiber, I. (2008). Challenges for Game Designers, Charles

River Media. Inc., Rockland, MA.

Breuer, J., Scharkow, M., & Quandt, T. (2015). Sore losers? A reexamination of the

frustration–aggression hypothesis for colocated video game play. Psychology

of Popular Media Culture, 4(2), 126.

Briggs, R. O., Reinig, B. A., & de Vreede, G.-J. (2014). An Empirical Field Study of

the Yield Shift Theory of Satisfaction. In 2014 47th Hawaii International

Conference on System Sciences (pp. 492–499). IEEE.

Brisolara, L. B., Oliveira, M. F. da S., Redin, R., Lamb, L. C., & Wagner, F. (2008).

Using UML as front-end for heterogeneous software code generation

109

strategies. In Design, Automation and Test in Europe, 2008. DATE’08 (pp.

504–509). IEEE.

Brooke, J. (1996). SUS-A quick and dirty usability scale. Usability Evaluation in

Industry, 189(194), 4–7.

Bruccoleri, M., D’onofrio, C., & La Commare, U. (2007). Off-line programming

and simulation for automatic robot control software generation. In Industrial

Informatics, 2007 5th IEEE International Conference on (Vol. 1, pp. 491–

496). IEEE.

Burgos, E., Ceva, H., & Perazzo, R. P. J. (2004). The evolutionary minority game

with local coordination. Physica A: Statistical Mechanics and Its Applications,

337(3), 635–644.

Burke, B., & Mesaglio, M. (2010). Case study: Innovation squared: The department

for work and pensions turns innovation into a game. Gartner Research.

Busso, T., Benoit, H., Bonnefoy, R., Feasson, L., & Lacour, J.-R. (2002). Effects of

training frequency on the dynamics of performance response to a single

training bout. Journal of Applied Physiology, 92(2), 572–580.

Calvert, T. W., Banister, E. W., Savage, M. V, & Bach, T. (1976). A systems model

of the effects of training on physical performance. IEEE Transactions on

Systems, Man, and Cybernetics, (2), 94–102.

Canossa, A., Drachen, A., & Sørensen, J. R. M. (2011). Arrrgghh!!!: blending

quantitative and qualitative methods to detect player frustration. In

Proceedings of the 6th international conference on foundations of digital

games (pp. 61–68). ACM.

Caponetto, I., Earp, J., & Ott, M. (2014). Gamification and education: A literature

review. In ECGBL 2014: Eighth European Conference on Games Based

Learning (pp. 50–57).

Carron, T., Marty, J.-C., & Heraud, J.-M. (2008). Teaching with game-based

learning management systems: Exploring a pedagogical dungeon. Simulation

& Gaming, 39(3), 353–378.

Casey, W., Weaver, R., Metcalf, L., Morales, J. A., Wright, E., & Mishra, B. (2014).

Cyber Security via Minority Games with Epistatic Signaling. In BICT.

Chakraborti, A., Challet, D., Chatterjee, A., Marsili, M., Zhang, Y.-C., &

Chakrabarti, B. K. (2015). Statistical mechanics of competitive resource

allocation using agent-based models. Physics Reports, 552, 1–25.

Challet, D., & Zhang, Y.-C. (1997). Emergence of cooperation and organization in

an evolutionary game. arXiv Preprint Adap-org/9708006.

Chan, K. T., King, I., & Yuen, M.-C. (2009). Mathematical modeling of social

games. In Computational Science and Engineering, 2009. CSE’09.

International Conference on (Vol. 4, pp. 1205–1210). IEEE.

Chanel, G., Rebetez, C., Bétrancourt, M., & Pun, T. (2008). Boredom, engagement

and anxiety as indicators for adaptation to difficulty in games. In Proceedings

of the 12th international conference on Entertainment and media in the

ubiquitous era (pp. 13–17). ACM.

ChanLin, L. (2009). Applying motivational analysis in a Web‐based course.

Innovations in Education and Teaching International, 46(1), 91–103.

110

Charles, T., Bustard, D., & Black, M. (2011). Experiences of promoting student

engagement through game-enhanced learning. In Serious games and

edutainment applications (pp. 425–445). Springer.

Chmura, T., & Güth, W. (2011). The minority of three-game: An experimental and

theoretical analysis. Games, 2(3), 333–354.

Collaboration, O. S. (2015). Estimating the reproducibility of psychological science.

Science, 349(6251), aac4716.

Crawford, C. (2003). Chris Crawford on game design. New Riders.

Csikszentmihalyi, M., & Bose, D. K. (n.d.). Flow: e Psychology of Optimal

Experience.

da Conceicao, F. S., da Silva, A. P., de Oliveira Filho, A. Q., & Silva Filho, R. C.

(2014). Toward a gamification model to improve IT service management

quality on service desk. In Quality of Information and Communications

Technology (QUATIC), 2014 9th International Conference on the (pp. 255–

260). IEEE.

Dagienė, V., Pelikis, E., & Stupurienė, G. (2015). Introducing Computational

Thinking through a Contest on Informatics: Problem-solving and Gender

Issues. Informacijos Mokslai/Information Sciences, 73.

Dagiene, V., & Stupuriene, G. (2016). Informatics Concepts and Computational

Thinking in K-12 Education: A Lithuanian Perspective. Journal of Information

Processing, 24(4), 732–739.

de Almeida, J. R. L., & Menche, J. (2003). Quantifying a certain’’advantage law’’:

minority game with above the rules agents. Brazilian Journal of Physics,

33(4), 895–898.

de Oliveira, G. W., Julia, S., & Passos, L. M. S. (2011). Game modeling using

workflow nets. In Systems, Man, and Cybernetics (SMC), 2011 IEEE

International Conference on (pp. 838–843). IEEE.

Deci, E. L., & Ryan, R. M. (2000). The“ what” and“ why” of goal pursuits: Human

needs and the self-determination of behavior. Psychological Inquiry, 11(4),

227–268.

Deterding, S. (2012). Gamification: Designing for Motivation. interactions, 19 (4),

14–17. July.

Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design

elements to gamefulness: defining gamification. In Proceedings of the 15th

international academic MindTrek conference: Envisioning future media

environments (pp. 9–15). ACM.

Deterding, S., Sicart, M., Nacke, L., O’Hara, K., & Dixon, D. (2011). Gamification.

using game-design elements in non-gaming contexts. In CHI’11 Extended

Abstracts on Human Factors in Computing Systems (pp. 2425–2428). ACM.

Devedzić, V. (2002). Understanding ontological engineering. Communications of

the ACM, 45(4), 136–144.

Dichev, C., Dicheva, D., Angelova, G., & Agre, G. (2014). From gamification to

gameful design and gameful experience in learning. Cybernetics and

Information Technologies, 14(4), 80–100.

Dormans, J. (2008). Visualizing Game Dynamics and Emergent Gameplay. In

111

Proceedings of the Meaningful Play conference.

Dormans, J. (2009). Machinations: Elemental feedback structures for game design.

In Proceedings of the GAMEON-NA Conference (pp. 33–40).

Dormans, J. (2012). Engineering emergence: applied theory for game design.

Creative Commons.

Dormans, J. (2013). Machinations Diagram Tutorial. Portfolio of Joris Dormans.

Dubina, I. N., & Oskorbin, N. M. (2015). Game-Theoretic Models of Incentive and

Control Strategies in Social and Economic Systems. Cybernetics and Systems,

46(5), 303–319.

Easley, D., & Ghosh, A. (2013). Incentives, gamification, and game theory: an

economic approach to badge design. In Proceedings of the fourteenth ACM

conference on Electronic commerce (pp. 359–376). ACM.

Edalat, A., Ghoroghi, A., & Sakellariou, G. (2012). Multi-games and a double game

extension of the Prisoner’s Dilemma. arXiv Preprint arXiv:1205.4973.

Eder, R., Filieri, A., Kurz, T., Heistracher, T. J., & Pezzuto, M. (2008). Model-

transformation-based Software Generation utilizing Natural language

notations. In Digital Ecosystems and Technologies, 2008. DEST 2008. 2nd

IEEE International Conference on (pp. 306–312). IEEE.

Felsenthal, D. S., & Machover, M. (1997). Ternary voting games. International

Journal of Game Theory, 26(3), 335–351.

Festinger, L. (1957). A Theory of Cognitive Dissonance: Stanford University.

Fogg, B. J. (2009). A behavior model for persuasive design. In Proceedings of the

4th international Conference on Persuasive Technology (p. 40). ACM.

Fonseca, B., Pereira, Â., Sanders, R., Barracho, V., Lapajne, U., Rus, M., …

Bojovic, V. (2012). PLAYER-a European Project and a Game to Foster

Entrepreneurship Education for Young People. J. UCS, 18(1), 86–105.

Freudmann, E. A., & Bakamitsos, Y. (2014). The Role of Gamification in Non-

profit Marketing: An Information Processing Account. Procedia-Social and

Behavioral Sciences, 148, 567–572.

Galli, L., Fraternali, P., Martinenghi, D., Tagliasacchi, M., & Novak, J. (2012). A

draw-and-guess game to segment images. In Privacy, Security, Risk and Trust

(PASSAT), 2012 International Conference on and 2012 International

Confernece on Social Computing (SocialCom) (pp. 914–917). IEEE.

Gamma, E. (1995). Design patterns: elements of reusable object-oriented software.

Pearson Education India.

Gartner Research. (2012). Gartner Says By 2015, More Than 50 Percent of

Organizations That Manage Innovation Processes Will Gamify Those

Processes. Gartner Inc, 2015. Retrieved from

http://www.gartner.com/newsroom/id/1629214

Gatautis, R., Banyte, J., Piligrimiene, Z., Vitkauskaite, E., & Tarute, A. (2016). THE

IMPACT OF GAMIFICATION ON CONSUMER BRAND ENGAGEMENT.

Transformation in Business & Economics, 15(1).

Gatautis, R., & Vitkauskaite, E. (2014). Crowdsourcing application in marketing

activities. Procedia-Social and Behavioral Sciences, 110, 1243–1250.

Gatautis, R., Vitkauskaite, E., Gadeikiene, A., & Piligrimiene, Z. (2016).

112

Gamification as a Mean of Driving Online Consumer Behaviour: SOR Model

Perspective. Engineering Economics, 27(1), 90–97.

Gené, O. B., Núñez, M. M., & Blanco, Á. F. (2014). Gamification in MOOC:

challenges, opportunities and proposals for advancing MOOC model. In

Proceedings of the Second International Conference on Technological

Ecosystems for Enhancing Multiculturality (pp. 215–220). ACM.

Geng, L., & Hamilton, H. J. (2006). Interestingness measures for data mining: A

survey. ACM Computing Surveys (CSUR), 38(3), 9.

Gilbert, G. N. (2008). Agent-based models. Sage.

Giouvanakis, E., Kotropoulos, C., Theodoridis, A., & Pitas, I. (2013). A game with a

purpose for annotating Greek folk music in a web content management system.

In Digital Signal Processing (DSP), 2013 18th International Conference on

(pp. 1–6). IEEE.

Giurca, A., & Pascalau, E. (2008). JSON Rules. In KESE.

Gnauk, B., Dannecker, L., & Hahmann, M. (2012). Leveraging gamification in

demand dispatch systems. In Proceedings of the 2012 Joint EDBT/ICDT

Workshops (pp. 103–110). ACM.

Gou, C. (2006). Agents play mix-game. In Econophysics of Stock and other Markets

(pp. 123–132). Springer.

Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming

environments: a “cognitive dimensions” framework. Journal of Visual

Languages & Computing, 7(2), 131–174.

Greenwood, G. W. (2009). Deceptive strategies for the evolutionary minority game.

In 2009 IEEE Symposium on Computational Intelligence and Games (pp. 25–

31). IEEE.

Groh, F. (2012). Gamification: State of the art definition and utilization. Institute of

Media Informatics Ulm University, 39.

Grünvogel, S. M. (2005). Formal models and game design. Game Studies, 5(1), 1–9.

Gulia, S., & Choudhury, T. (2016). An efficient automated design to generate UML

diagram from Natural Language Specifications. In Cloud System and Big Data

Engineering (Confluence), 2016 6th International Conference (pp. 641–648).

IEEE.

Hall, M., Kimbrough, S. O., Haas, C., Weinhardt, C., & Caton, S. (2012). Towards

the gamification of well-being measures. In E-Science (e-Science), 2012 IEEE

8th International Conference on (pp. 1–8). IEEE.

Hamari, J., & Koivisto, J. (2013). Social Motivations To Use Gamification: An

Empirical Study Of Gamifying Exercise. In ECIS (p. 105).

Hamari, J., Koivisto, J., & Sarsa, H. (2014). Does gamification work?--a literature

review of empirical studies on gamification. In 2014 47th Hawaii International

Conference on System Sciences (pp. 3025–3034). IEEE.

Harwood, T., & Garry, T. (2015). An investigation into gamification as a customer

engagement experience environment. Journal of Services Marketing, 29(6/7),

533–546.

He, L., & Ioerger, T. R. (2006). Combining bundle search with buyer coalition

formation in electronic markets: A distributed approach through explicit

113

negotiation. Electronic Commerce Research and Applications, 4(4), 329–344.

Heller, F., Lichtschlag, L., Wittenhagen, M., Karrer, T., & Borchers, J. (2011). Me

hates this: exploring different levels of user feedback for (usability) bug

reporting. In CHI’11 Extended Abstracts on Human Factors in Computing

Systems (pp. 1357–1362). ACM.

Herranz, E., Palacios, R. C., de Amescua Seco, A., & Yilmaz, M. (2014).

Gamification as a Disruptive Factor in Software Process Improvement

Initiatives. J. UCS, 20(6), 885–906.

Herzig, P., Ameling, M., & Schill, A. (2012). A generic platform for enterprise

gamification. In Software Architecture (WICSA) and European Conference on

Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP Conference on

(pp. 219–223). IEEE.

Herzig, P., Jugel, K., Momm, C., Ameling, M., & Schill, A. (2013). GaML-A

modeling language for gamification. In Proceedings of the 2013 IEEE/ACM

6th International Conference on Utility and Cloud Computing (pp. 494–499).

IEEE Computer Society.

Hetherinton, D. (2014). SysML requirements for training game design. In 17th

International IEEE Conference on Intelligent Transportation Systems (ITSC)

(pp. 162–167). IEEE.

Hidi, S., & Baird, W. (1986). Interestingness—A neglected variable in discourse

processing. Cognitive Science, 10(2), 179–194.

Hill, A. B., & Perkins, R. E. (1985). Towards a model of boredom. British Journal

of Psychology, 76(2), 235–240.

Hirth, M., Hoßfeld, T., & Tran-Gia, P. (2011). Anatomy of a crowdsourcing

platform-using the example of microworkers. com. In Innovative Mobile and

Internet Services in Ubiquitous Computing (IMIS), 2011 Fifth International

Conference on (pp. 322–329). IEEE.

Hoarau, J. (2012). JIRA Hero. Retrieved January 11, 2017, from

https://marketplace.atlassian.com/archive/com.madgnome.jira.plugins.jirachiev

ements

Hoßfeld, T., Keimel, C., Hirth, M., Gardlo, B., Habigt, J., Diepold, K., & Tran-Gia,

P. (2014). Best practices for QoE crowdtesting: QoE assessment with

crowdsourcing. IEEE Transactions on Multimedia, 16(2), 541–558.

Hovland, C. I., Harvey, O. J., & Sherif, M. (1957). Assimilation and contrast effects

in reactions to communication and attitude change. The Journal of Abnormal

and Social Psychology, 55(2), 244.

Hunicke, R., LeBlanc, M., & Zubek, R. (2004). MDA: A formal approach to game

design and game research. In Proceedings of the AAAI Workshop on

Challenges in Game AI (Vol. 4, p. 1).

Huotari, K., & Hamari, J. (2012). Defining gamification: a service marketing

perspective. In Proceeding of the 16th International Academic MindTrek

Conference (pp. 17–22). ACM.

Immorlica, N., Stoddard, G., & Syrgkanis, V. (2015). Social status and badge

design. In Proceedings of the 24th International Conference on World Wide

Web (pp. 473–483). ACM.

114

Iosup, A., & Epema, D. (2014). An experience report on using gamification in

technical higher education. In Proceedings of the 45th ACM technical

symposium on Computer science education (pp. 27–32). ACM.

James, B., Fletcher, B., & Wearn, N. (2013). Three corners of reward in computer

games.

Janssens, O., Samyny, K., Van de Walle, R., & Van Hoecke, S. (2014). Educational

virtual game scenario generation for serious games. In Serious Games and

Applications for Health (SeGAH), 2014 IEEE 3rd International Conference on

(pp. 1–8). IEEE.

Johnson, N. F., Jefferies, P., & Hui, P. M. (2003). Financial market complexity.

OUP Catalogue.

Jovanovic, J., & Devedzic, V. (2014). Open badges: Challenges and opportunities.

In International Conference on Web-Based Learning (pp. 56–65). Springer.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning:

A survey. Journal of Artificial Intelligence Research, 4, 237–285.

Kalinauskas, M. (2014a). Gamification in fostering creativity. Socialnės

Technologijos, (1), 62–75.

Kalinauskas, M. (2014b). Gamification in Fostering Creativity: Player Type

Approach. Socialines Technologijos, 4(2).

Kapp, K. M. (2016). Gamification Designs for Instruction. Instructional-Design

Theories and Models, Volume IV: The Learner-Centered Paradigm of

Education, 351.

Kelle, S., Klemke, R., & Specht, M. (2011). Design patterns for learning games.

International Journal of Technology Enhanced Learning, 3(6), 555–569.

Kiekintveld, C., & Wellman, M. P. (2008). Selecting strategies using empirical

game models: an experimental analysis of meta-strategies. In Proceedings of

the 7th international joint conference on Autonomous agents and multiagent

systems-Volume 2 (pp. 1095–1101). International Foundation for Autonomous

Agents and Multiagent Systems.

Kiili, K. (2010). Call for learning-game design patterns. Educational Games:

Design, Learning, and Applications. Nova Publishers.

Kim, J. T., & Lee, W.-H. (2013). Dynamical Model and Simulations for

Gamification of Learning. International Journal of Multimedia and Ubiquitous

Engineering, 8(4), 179–190.

Kim, J. T., & Lee, W.-H. (2015). Dynamical model for gamification of learning

(DMGL). Multimedia Tools and Applications, 74(19), 8483–8493.

Kim, S. (2015). Team Organization Method Using Salary Auction Game for

Sustainable Motivation. Sustainability, 7(10), 14358–14370.

King, D., Delfabbro, P., & Griffiths, M. (2010). Video game structural

characteristics: A new psychological taxonomy. International Journal of

Mental Health and Addiction, 8(1), 90–106.

Kivikangas, J. M., Chanel, G., Cowley, B., Ekman, I., Salminen, M., Järvelä, S., &

Ravaja, N. (2011). A review of the use of psychophysiological methods in

game research. Journal of Gaming & Virtual Worlds, 3(3), 181–199.

Klein, J. (2015). Model Driven Engineering: Automatic Code Generation and

115

Beyond. Retrieved from https://insights.sei.cmu.edu/sei_blog/2015/05/model-

driven-engineering-automatic-code-generation-and-beyond.html

Kluger, A. N., & DeNisi, A. (1996). The effects of feedback interventions on

performance: a historical review, a meta-analysis, and a preliminary feedback

intervention theory. Psychological Bulletin, 119(2), 254.

Kohler, T. A., & Gumerman, G. G. (2000). Dynamics in human and primate

societies: Agent-based modeling of social and spatial processes. Oxford

University Press.

Koike, R., Nakaya, N., & Koi, Y. (2007). Development of system for the automatic

generation of unknown virus extermination software. In Applications and the

Internet, 2007. SAINT 2007. International Symposium on (p. 8). IEEE.

Kokil, U. (2013). Investigating Players’ Affective States in an Interactive

Environment. ThinkMind//ACHI.

Kostecka, J., & Davidavičienė, V. (2015). Darbuotojų motyvavimo žaidybinimo

priemonėmis informacinėje sistemoje modelis. Science: Future of Lithuania,

7(2).

Koster, R. (2005). A grammar of gameplay: game atoms: can games be

diagrammed. In Presentation at the Game Developers conference.

Koster, R. (2013). Theory of fun for game design. “ O’Reilly Media, Inc.”

Kotzé, P., Renaud, K., & Van Dyk, T. (2002). Feedback And Task Analysis For E-

Commerce Sites. In ISSA (pp. 1–17). Citeseer.

Kreimeier, B. (2002). The case for game design patterns.

Kriouile, A., Addamssiri, N., & Gadi, T. (2015). An MDA method for automatic

transformation of models from CIM to PIM. American Journal of Software

Engineering and Applications, 4(1), 1–14.

Kristoffer, F., & Robin, M. (2012). Enterprise gamification of the employee

development process at an infocom consultancy company.

Kroeze, C., & Olivier, M. S. (2012). Gamifying authentication. In 2012 Information

Security for South Africa (pp. 1–8). IEEE.

Kuss, D. J. (2013). Internet gaming addiction: current perspectives. Psychol Res

Behav Manag, 6, 125–137.

Kwon, K., Yi, Y., Kim, D., & Ha, S. (2005). Embedded software generation from

system level specification for multi-tasking embedded systems. In Proceedings

of the 2005 Asia and South Pacific Design Automation Conference (pp. 145–

150). ACM.

L. Diamond G. F. Tondello, A. M. L. E. N., & Tscheligi, M. (2015). The HEXAD

Gamification User Types Questionnaire : Background and Development

Process. In Workshop on Personalization in Serious and Persuasive Games

and Gamified Interactions. London, UK. Retrieved from

https://hcigames.com/download/the-hexad-gamification-user-types-

questionnaire-background-and-development-process

Lee, J. J., & Hammer, J. (2011). Gamification in education: What, how, why bother?

Academic Exchange Quarterly, 15(2), 146.

Lehman, J., & Stanley, K. O. (2012). Beyond open-endedness: Quantifying

impressiveness. Artificial Life, 13, 75–82.

116

Lethbridge, T. C. (2013). Key Properties for Comparing Modeling Languages and

Tools: Usability, Completeness and Scalability.

Li, Y., VanDeemen, A., & Savit, R. (2000). The minority game with variable

payoffs. Physica A: Statistical Mechanics and Its Applications, 284(1), 461–

477.

Linde, J., Sonnemans, J., & Tuinstra, J. (2014). Strategies and evolution in the

minority game: A multi-round strategy experiment. Games and Economic

Behavior, 86, 77–95.

Luo, S., Yang, H., & Meinel, C. (n.d.). Reward-based Intermittent Reinforcement in

Gamification for E-learning.

Lux, M., Guggenberger, M., & Riegler, M. (2014). PictureSort: gamification of

image ranking. In Proceedings of the First International Workshop on

Gamification for Information Retrieval (pp. 57–60). ACM.

Ma, Y., Li, G., Dong, Y., & Qin, Z. (2010). Minority game data mining for stock

market predictions. In International Workshop on Agents and Data Mining

Interaction (pp. 178–189). Springer.

Malone, T. (1981). What makes computer games fun? (Vol. 13). ACM.

Marczewski, A. (2015). User types. Even Ninja Monkeys Like to Play: Gamification,

Game Thinking and Motivational Design, 1, 65–80.

Marczewski, A. C. (2015). Even Ninja Monkeys Like to Play: Gamification, Game

Thinking and Motivational Design. CreateSpace Independent Publishing

Platform.

Marsan, G. A. (2009). New paradigms towards the modelling of complex systems in

behavioral economics. Mathematical and Computer Modelling, 50(3), 584–

597.

Martey, R. M., Kenski, K., Folkestad, J., Feldman, L., Gordis, E., Shaw, A., …

Kaufman, N. (2014). Measuring game engagement multiple methods and

construct complexity. Simulation & Gaming, 1046878114553575.

Matallaoui, A., Herzig, P., & Zarnekow, R. (2015). Model-Driven Serious Game

Development Integration of the Gamification Modeling Language GaML with

Unity. In System Sciences (HICSS), 2015 48th Hawaii International

Conference on (pp. 643–651). IEEE.

Mayer, I., Bekebrede, G., & van Bilsen, A. (2010). Understanding complex adaptive

systems by playing games. Informatics in Education-An International Journal,

(Vol 9_1), 1–18.

Mazanec, M., & Macek, O. (2012). On General-purpose Textual Modeling

Languages. In DATESO (Vol. 12, pp. 1–12). Citeseer.

Mazur, J. E. (2006). Mathematical models and the experimental analysis of

behavior. Journal of the Experimental Analysis of Behavior, 85(2), 275–291.

McGonigal, J. (2011). Reality is broken: Why games make us better and how they

can change the world. Penguin.

Meece, J. L., Anderman, E. M., & Anderman, L. H. (2006). Classroom goal

structure, student motivation, and academic achievement. Annu. Rev. Psychol.,

57, 487–503.

Meyers, R. A. (2009). Encyclopedia of complexity and systems science. Springer.

117

Minor, D. B. (2013). Increasing revenue through rewarding the best less (or not at

all). Northwestern University Typescript.

Moelbert, S., & De Los Rios, P. (2002). The local minority game. Physica A:

Statistical Mechanics and Its Applications, 303(1), 217–225.

Mora, A., Riera, D., Gonzalez, C., & Arnedo-Moreno, J. (2015). A literature review

of gamification design frameworks. In Games and Virtual Worlds for Serious

Applications (VS-Games), 2015 7th International Conference on (pp. 1–8).

IEEE.

Morrison, B. B., & DiSalvo, B. (2014). Khan academy gamifies computer science.

In Proceedings of the 45th ACM technical symposium on Computer science

education (pp. 39–44). ACM.

Morschheuser, B., Hamari, J., Werder, K., & Abe, J. (2017). How to gamify? A

method for designing gamification. In Proceedings of the 50th Hawaii

International Conference on System Sciences.

Morton, R. H., Fitz-Clarke, J. R., & Banister, E. W. (1990). Modeling human

performance in running. Journal of Applied Physiology, 69(3), 1171–1177.

Muñoz, J., Mendoza, R., Álavarez, F., Martin, M. V., & Ochoa, A. (2007).

Integration of Auditive and Visual Feedback in the Design of Interfaces for

Security Applications. CLIHC 2007.

Muratet, M., Torguet, P., Jessel, J.-P., & Viallet, F. (2009). Towards a serious game

to help students learn computer programming. International Journal of

Computer Games Technology, 2009, 3.

Nah, F. F.-H., Zeng, Q., Telaprolu, V. R., Ayyappa, A. P., & Eschenbrenner, B.

(2014). Gamification of education: a review of literature. In International

Conference on HCI in Business (pp. 401–409). Springer.

Narayanan, A. (2014). Gamification for Employee Engagement. Packt Publishing

Ltd.

Narayanasamy, V., Wong, K. W., Rai, S., & Chiou, A. (2010). Complex game

design modeling. In Cultural Computing (pp. 65–74). Springer.

Neeli, B. K. (2012). A method to engage employees using gamification in BPO

industry. In Services in Emerging Markets (ICSEM), 2012 Third International

Conference On (pp. 142–146). IEEE.

Negruşa, A. L., Toader, V., Sofică, A., Tutunea, M. F., & Rus, R. V. (2015).

Exploring gamification techniques and applications for sustainable tourism.

Sustainability, 7(8), 11160–11189.

Nikkila, S., Linn, S., Sundaram, H., & Kelliher, A. (2011). Playing in taskville:

Designing a social game for the workplace. In Workshop on Gamification:

Using Game Design Elements in Non-Gaming Contexts (pp. 1–4).

Nudelman, E., Wortman, J., Shoham, Y., & Leyton-Brown, K. (2004). Run the

GAMUT: A comprehensive approach to evaluating game-theoretic algorithms.

In Proceedings of the Third International Joint Conference on Autonomous

Agents and Multiagent Systems-Volume 2 (pp. 880–887). IEEE Computer

Society.

Nummenmaa, T., Berki, E., & Mikkonen, T. (2009). Exploring games as formal

models. In Formal Methods (SEEFM), 2009 Fourth South-East European

118

Workshop on (pp. 60–65). IEEE.

Nylund, A., & Landfors, O. (2015). Frustration and its effect on immersion in

games: A developer viewpoint on the good and bad aspects of frustration.

O’Donovan, S., Gain, J., & Marais, P. (2013). A case study in the gamification of a

university-level games development course. In Proceedings of the South

African Institute for Computer Scientists and Information Technologists

Conference (pp. 242–251). ACM.

Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of

satisfaction decisions. Journal of Marketing Research, 460–469.

Oz, M. A. N., Sener, I., Kaymakci, O. T., Ustoglu, I., & Cansever, G. (2015). A tool

for automatic formal modeling of railway interlocking systems. In EUROCON

2015-International Conference on Computer as a Tool (EUROCON), IEEE

(pp. 1–4). IEEE.

Padmanabhan, B., & Tuzhilin, A. (1999). Unexpectedness as a measure of

interestingness in knowledge discovery. Decision Support Systems, 27(3), 303–

318.

Park, H. (2012). Relationship between motivation and student’s activity on

educational game. International Journal of Grid and Distributed Computing,

5(1), 101–114.

Parker, C., & Mathews, B. P. (2001). Customer satisfaction: contrasting academic

and consumers’ interpretations. Marketing Intelligence & Planning, 19(1), 38–

44.

Pedreira, O., García, F., Brisaboa, N., & Piattini, M. (2015). Gamification in

software engineering–A systematic mapping. Information and Software

Technology, 57, 157–168.

Petri net Java applets. (2017). Retrieved from https://www.informatik.uni-

hamburg.de/TGI/PetriNets/tools/java/

Piligrimiene, Z., Dovaliene, A., & Virvilaite, R. (2015). Consumer Engagement in

Value Co-Creation: what Kind of Value it creates for Company? Engineering

Economics, 26(4), 452–460.

Pirker, J., Riffnaller-Schiefer, M., & Gütl, C. (2014). Motivational active learning:

Engaging university students in computer science education. In Proceedings of

the 2014 conference on Innovation & technology in computer science

education (pp. 297–302). ACM.

Pitrenaite-Zileniene, B., & Skarzauskiene, A. (2013). Potential and Challenges of

Web-based Collective Intelligence to Tackle Societal Problems. Socialines

Technologijos, 3(2).

Przybylski, A. K., Rigby, C. S., & Ryan, R. M. (2010). A motivational model of

video game engagement. Review of General Psychology, 14(2), 154.

Rao, V., & Pandas, P. (2014). Heuristic Evaluation of Persuasive Game Systems in a

Behavior Change Support Systems Perspective: Elements for Discussion. In

Proceedings of the Second International Workshop on Behavior Change

Support Systems (BCSS2014), Padova, Italy.

Rayadurgam, S. (2001). Automated test-data generation from formal models of

software. In Automated Software Engineering, 2001.(ASE 2001). Proceedings.

119

16th Annual International Conference on (p. 438). IEEE.

RedCritter Corp. (2011). RedCritter Tracker. Retrieved from

http://www.redcrittertracker.com/

Reeves, B., Cummings, J. J., Scarborough, J. K., Flora, J., & Anderson, D. (2012).

Leveraging the engagement of games to change energy behavior. In

Collaboration Technologies and Systems (CTS), 2012 International

Conference on (pp. 354–358). IEEE.

Reeves, B., & Read, J. L. (2013). Total engagement: How games and virtual worlds

are changing the way people work and businesses compete. Harvard Business

Press.

Reid, L. G., & Snow-Weaver, A. (2008). WCAG 2.0: a web accessibility standard

for the evolving web. In Proceedings of the 2008 international cross-

disciplinary conference on Web accessibility (W4A) (pp. 109–115). ACM.

Richter, G., Raban, D. R., & Rafaeli, S. (2015). Studying gamification: the effect of

rewards and incentives on motivation. In Gamification in education and

business (pp. 21–46). Springer.

Rico, M., Agudo, J. E., & Sánchez, H. (2015). Language Learning through

Handheld Gaming: a Case Study of an English Course with Engineering

Students. Journal of Universal Computer Science, 21(10), 1362–1378.

Roberts, J. A., Hann, I.-H., & Slaughter, S. A. (2006). Understanding the

motivations, participation, and performance of open source software

developers: A longitudinal study of the Apache projects. Management Science,

52(7), 984–999.

Rollings, A., & Adams, E. (2006). Fundamentals of game design. New Challenges

for Character-Based AI for Games. Chapter 20: Artificial Life and Puzzle

Games. Prentice Hall, 573–590.

Roth, A. E. (2002). The economist as engineer: Game theory, experimentation, and

computation as tools for design economics. Econometrica, 70(4), 1341–1378.

Ryan, R. M., Rigby, C. S., & Przybylski, A. (2006). The motivational pull of video

games: A self-determination theory approach. Motivation and Emotion, 30(4),

344–360.

Saha, R., Manna, R., & Geetha, G. (2012). CAPTCHINO-A Gamification of Image-

Based CAPTCHAs to Evaluate Usability Issues. In Computing Sciences

(ICCS), 2012 International Conference on (pp. 95–99). IEEE.

Sailer, M., Hense, J., Mandl, H., & Klevers, M. (2013). Psychological Perspectives

on Motivation through Gamification. IxD&A, 19, 28–37.

Salazar, L. (2004). Modélisation et analyse spatiale et temporelle des jeux vidéo

basées sur les réseaux de Pétri. CNAM.

Salen, K., & Zimmerman, E. (2004). Rules of play: Game design fundamentals. MIT

press.

Sallach, D. L., North, M. J., & Tatara, E. (2010). Multigame dynamics: Structures

and strategies. In International Workshop on Multi-Agent Systems and Agent-

Based Simulation (pp. 108–120). Springer.

Sammut, R., Seychell, D., & Attard, N. (2014). Gamification of Project

Management within a Corporate Environment: An Exploratory Study. In

120

Games and Virtual Worlds for Serious Applications (VS-GAMES), 2014 6th

International Conference on (pp. 1–2). IEEE.

Sanchez, E. (2011). Key criteria for game design. A framework.

Schmidhuber, J. (2009). Driven by compression progress: A simple principle

explains essential aspects of subjective beauty, novelty, surprise,

interestingness, attention, curiosity, creativity, art, science, music, jokes. In

Anticipatory Behavior in Adaptive Learning Systems (pp. 48–76). Springer.

Shapiro, D., Tanenbaum, K., McCoy, J., LeBron, L., Reynolds, C., Stern, A., …

Moffitt, K. (2015). Composing Social Interactions via Social Games. In

Proceedings of the 2015 International Conference on Autonomous Agents and

Multiagent Systems (pp. 573–580). International Foundation for Autonomous

Agents and Multiagent Systems.

Sharek, D., & Wiebe, E. (2014). Measuring video game engagement through the

cognitive and affective dimensions. Simulation & Gaming, 45(4–5), 569–592.

Sherrington, D. (2006). The minority game: A statistical physics perspective.

Physica A: Statistical Mechanics and Its Applications, 370(1), 7–11.

Silva, F., Analide, C., Rosa, L., Felgueiras, G., & Pimenta, C. (2013). Social

networks gamification for sustainability recommendation systems. In

Distributed Computing and Artificial Intelligence (pp. 307–315). Springer.

Simões, J., Redondo, R. D., & Vilas, A. F. (2013). A social gamification framework

for a K-6 learning platform. Computers in Human Behavior, 29(2), 345–353.

Sims, S. (n.d.). Badgeville et al.,“Intrinsic and Extrinsic Motivations.”

Singer, L., & Schneider, K. (2012). It was a bit of a race: Gamification of version

control. In Games and Software Engineering (GAS), 2012 2nd International

Workshop on (pp. 5–8). IEEE.

Skaržauskienė, A., & Kalinauskas, M. (2014). Fostering collective creativity

through gamification. In The proceedings of the ISPIM Americas Innovation

Forum (October 2014): Montreal, Canada on 5-8 October 2014.

Smith-Robbins, S. (2011). This game sucks”: How to improve the gamification of

education. EDUCAUSE Review, 46(1), 58–59.

Smith, A. M., Nelson, M. J., & Mateas, M. (2010). Ludocore: A logical game engine

for modeling videogames. In Proceedings of the 2010 IEEE Conference on

Computational Intelligence and Games (pp. 91–98). IEEE.

Soleymani, M., & Larson, M. (2010). Crowdsourcing for affective annotation of

video: Development of a viewer-reported boredom corpus.

Song, S., & Lee, J. (2007). RETRACTED: Key factors of heuristic evaluation for

game design: Towards massively multi-player online role-playing game.

Elsevier.

Spink, A., & Saracevic, T. (1998). Human-computer interaction in information

retrieval: nature and manifestations of feedback. Interacting with Computers,

10(3), 249–267.

Stålnacke Larsson, R. (2013). Motivations in Sports and Fitness Gamification: A

study to understand what motivates the users of sports and fitness gamification

services.

Stupurienė, G., Vinikienė, L., & Dagienė, V. (2016). Students’ Success in the

121

Bebras Challenge in Lithuania: Focus on a Long-Term Participation. In

International Conference on Informatics in Schools: Situation, Evolution, and

Perspectives (pp. 78–89). Springer.

Sur, C., Sharma, S., & Shukla, A. (2012). Analysis & modeling multi-breeded

Mean-Minded ant colony optimization of agent based Road Vehicle Routing

Management. In Internet Technology and Secured Transactions, 2012

International Conference For (pp. 634–641). IEEE.

Surowiecki, J. (2005). The wisdom of crowds. Anchor.

Sysi-Aho, M., Saramäki, J., & Kaski, K. (2005). Invisible hand effect in an

evolutionary minority game model. Physica A: Statistical Mechanics and Its

Applications, 347, 639–652.

Tabuada, P., Pappas, G. J., & Lima, P. (2004). Compositional abstractions of hybrid

control systems. Discrete Event Dynamic Systems, 14(2), 203–238.

Tanaka-Yamawaki, M., & Tokuoka, S. (2006). Minority game as a model for the

artificial financial markets. In 2006 IEEE International Conference on

Evolutionary Computation (pp. 2157–2162). IEEE.

Taylor, M. J., Gresty, D., & Baskett, M. (2006). Computer game-flow design.

Computers in Entertainment (CIE), 4(1), 5.

Technology, K. U. of. (n.d.). Informiko Akademija. Retrieved January 14, 2017,

from http://konkursai.if.ktu.lt/

Tenzer, J. (2004). Improving UML design tools by formal games. In Software

Engineering, 2004. ICSE 2004. Proceedings. 26th International Conference on

(pp. 75–77). IEEE.

Thillainathan, N. (2013). A Model Driven Development Framework for Serious

Games.

Tondello, G. F., Wehbe, R. R., Diamond, L., Busch, M., Marczewski, A., & Nacke,

L. E. (2016). The Gamification User Types Hexad Scale. In Proceedings of the

2016 Annual Symposium on Computer-Human Interaction in Play (pp. 229–

243). ACM.

Van Eck, R. (2006). Digital game-based learning: It’s not just the digital natives

who are restless. EDUCAUSE Review, 41(2), 16.

Van Grove, J. (2011). Gamification: How competition is reinventing business,

marketing & everyday life. Электронный ресурс].–2011. Режим Доступа:

Http://mashable. com/2011/07/28/gamification.

Van Rozen, R., & Dormans, J. (2014). Adapting game mechanics with micro-

machinations. In Foundations of Digital Games. Society for the Advancement

of the Science of Digital Games.

Vara, D., Macias, E., Gracia, S., Torrents, A., & Lee, S. (2011). Meeco: Gamifying

ecology through a social networking platform. In 2011 IEEE International

Conference on Multimedia and Expo (pp. 1–6). IEEE.

Vásquez, Ó. C., Sepulveda, J. M., Alfaro, M. D., & Osorio-Valenzuela, L. (2013).

Disaster response project scheduling problem: A resolution method based on a

game-theoretical model. International Journal of Computers Communications

& Control, 8(2), 334–345.

Verau, L. (n.d.). Contrast Ratio tool. Retrieved January 1, 2017, from

122

http://leaverou.github.io/contrast-ratio/

Viswanathan, S. E., & Samuel, P. (2016). Automatic code generation using unified

modeling language activity and sequence models. IET Software, 10(6), 164–

172.

Vock, S., Schmid, M., & Von Staudt, H. M. (2006). Test Software Generation

Productivity and Code Quality Improvement by applying Software

Engineering Techniques. In Test Conference, 2006. ITC’06. IEEE

International (pp. 1–8). IEEE.

Von Ahn, L., & Dabbish, L. (2008). Designing games with a purpose.

Communications of the ACM, 51(8), 58–67.

Walsh, W. E., Das, R., Tesauro, G., & Kephart, J. O. (2002). Analyzing complex

strategic interactions in multi-agent systems. In AAAI-02 Workshop on Game-

Theoretic and Decision-Theoretic Agents (pp. 109–118).

Wang, H., & Sun, C.-T. (2011). Game reward systems: gaming experiences and

social meanings. In Proceedings of DiGRA 2011 Conference: Think Design

Play (pp. 1–12).

Wawrzyniak, K. (2011). On Phenomenology, Dynamics and some Applications of

the Minority Game. University of Warsaw.

Weiser, P., Bucher, D., Cellina, F., & De Luca, V. (2015). A taxonomy of

motivational affordances for meaningful gamified and persuasive technologies.

Wells, S., Kotkanen, H., Schlafli, M., Gabrielli, S., Masthoff, J., Jylha, A., &

Forbes, P. (2014). Towards an applied gamification model for tracking,

managing, & encouraging sustainable travel behaviours.

Wendeus, J. (2013). Designing a Viral Collaborative Tool: Patterns and Guidelines

for Virality-Driven Design. MSc Thesis. Gothenburg, Sweden.

Werbach, K., & Hunter, D. (2012). For the win: How game thinking can

revolutionize your business. Wharton Digital Press.

Wilson, A. S., & McDonagh, J. E. (2014). A Gamification Model to Encourage

Positive Healthcare Behaviours in Young People with Long Term Conditions.

EAI Endorsed Trans. Serious Games, 2, e3.

Witt, M., Scheiner, C., & Robra-Bissantz, S. (2011). Gamification of online idea

competitions: Insights from an explorative case. Informatik Schafft

Communities, 192.

Wortley, D. (2014). Gamification and geospatial health management. In IOP

Conference Series: Earth and Environmental Science (Vol. 20, p. 12039). IOP

Publishing.

Wozniak, M. (n.d.). Recent Possibilities of Intelligent Agents in Distributed

Systems.

Wu, M. (2011). Gamification from a company of pro gamers. Lithosphere

Community.

Xie, Y.-B., Wang, B.-H., Hu, C.-K., & Zhou, T. (2005). Global optimization of

minority game by intelligent agents. The European Physical Journal B-

Condensed Matter and Complex Systems, 47(4), 587–593.

Yamamoto, N., & Ishikawa, M. (2010). Curiosity and boredom based on prediction

error as novel internal rewards. In Brain-Inspired Information Technology (pp.

123

51–55). Springer.

Yongfeng, Y., Bin, L., Minyan, L., & Zhen, L. (2009). Test cases generation for

embedded real-time software based on extended UML. In Information

Technology and Computer Science, 2009. ITCS 2009. International

Conference on (Vol. 1, pp. 69–74). IEEE.

Yu, H., Dömer, R., & Gajski, D. (2004). Embedded software generation from

system level design languages. In Proceedings of the 2004 Asia and South

Pacific Design Automation Conference (pp. 463–468). IEEE Press.

Yuizono, T., Xing, Q., & Furukawa, H. (2014). Effects of Gamification on

Electronic Brainstorming Systems. In International Conference on

Collaboration Technologies (pp. 54–61). Springer.

Žavcer, G., Mayr, S., & Petta, P. (2014). Design pattern canvas: An introduction to

unified serious game design patterns. Interdisciplinary Description of Complex

Systems, 12(4), 280–292.

Zgonnikov, A., & Lubashevsky, I. (2012). Choice oscillations caused by boredom

effect in human learning model. In 2012 IEEE International Conference on

Systems, Man, and Cybernetics (SMC) (pp. 1785–1787). IEEE.

Zhang, H.-F., Yang, Z., Wu, Z.-X., Wang, B.-H., & Zhou, T. (2013). Braess’s

paradox in epidemic game: Better condition results in less payoff. arXiv

Preprint arXiv:1305.0361.

Zhang, Z., Wang, R., & Gao, S. (2008). Modelling financial investment planning

from agent perspectives. International Journal of Modelling, Identification and

Control, 3(1), 41–49.

Zichermann, G., & Cunningham, C. (2011). Gamification by design: Implementing

game mechanics in web and mobile apps. “ O’Reilly Media, Inc.”

Zuckerman, O., & Gal-Oz, A. (2014). Deconstructing gamification: evaluating the

effectiveness of continuous measurement, virtual rewards, and social

comparison for promoting physical activity. Personal and Ubiquitous

Computing, 18(7), 1705–1719.

LIST OF PUBLICATIONS OF DARIUS AŠERIŠKIS ON DISSERTATION

THEME

Articles in Journals referenced in Web of Science Journal

1. Ašeriškis, D., & Damaševičius, R. (2017). Computational Evaluation of
Effects of Motivation Reinforcement on Player Retention, Journal for
Universal Computer Science. Graz: Technische Universitaet Graz. ISSN
0948-695X. 2017, vol. 23, iss. 5, p. 432-453.

2. Damaševičius, R., & Ašeriškis, D. (2017). Visual and Computational
Modelling of Minority Games. TEM JOURNAL, 6(1), 108-116.

Articles in Journals referenced in other reviewed scientific publications
[proceedings]

1. Ašeriškis, D., Blažauskas T., & Damaševičius, R. (2017). UAREI: a model
for formal description and visual representation of software gamification.

124

Journal of the Facultad de Minas, Universidad Nacional de Colombia-
Medellin Campus, Vol. 84, Issue 200, 326-334.

2. Ašeriškis, D., & Damaševičius, R. (2014). Gamification patterns for
gamification applications. Procedia Computer Science, 39, 83-90.

3. Ašeriškis, D., & Damaševičius, R. (2014). Gamification of a project
management system. In ACHI 2014: The Seventh International Conference
on Advances in Computer–Human Interactions (pp. 200-207).

4. Ašeriškis D., & Damaševičius, R. (2017). Player type simulation in gamified
applications, Proceedings of the IVUS International Conference on
Information Technology. CEUR Workshop Proceedings, Vol. 1856, 1-7.

5. Ašeriškis D., Tamošaitis J. Kitokia PĮ kompanija, Mag&Doc IT2012:
Kaunas, 2012, p. 49-52.

6. Ašeriškis D., Projektų valdymo sistemos žaidimizavimas, IVUS 2013:
Kaunas, 2013, p. 13-16.

Articles published in other reviewed scientific publications

1. Maskeliūnas, R., Gudonienė, D., Ašeriškis, D., Blažauskas, T., Vasiljevas,
M., & Drėgvaitė, G. (2016). Hybrid eLearning Model for Increasing
Learner’s Engagement. Transylvanian Review, (1).

SL344. 2017-08-29, 21,25 leidyb. apsk. l. Tiražas 12 egz. Užsakymas 262 .

Išleido Kauno technologijos universitetas, K. Donelaičio g. 73, 44249 Kaunas

Spausdino leidyklos „Technologija“ spaustuvė, Studentų g. 54, 51424 Kaunas

125

APPENDIXES

APPENDIX A

Simple models

Captchino:

Description At its highest level Captchino is a creative approach to

improve captcha user experience.

Model description Model contains a pool with a fixed number of captchas

each captcha is given one of three players, user gets a

random amount of points for each captcha answered.

Patterns Identified Limited quantity source, Random Result

Emo-bin:

Description Emo-bin represents a gamified recycling bin which

thanks users for recycling. Emo-bin is bounded by timer

which represents a day in which the results are counted.

Model description Model contains a pool with a fixed number of bottles

each bottle is given to one player. Player gets thanked

for each recycled bottle.

Patterns Identified Limited quantity source, Time limit

126

PowerHouse:

Description Each player in PowerHouse consumes energy the one

who consumes less has a better score.

Model description Model contains a source and pool connected with

random amount connection.

Patterns Identified Infinite quantity source

Meeco:

127

Description Anybody in Meeco can post ecology tasks and players

can solve them and other players can rate how the task

was carried out.

Model description Model contains a source connected to converters which

are connected to a pool, where the connection is a

random amount connection.

Patterns Identified Infinite quantity source, Random Result

TeamFeed:

Description In TeamFeed tracker user collects points for commits.

Model description Model contains a infinite source connected with random

amount connection to a pool.

Patterns Identified Infinite quantity source, Random Result

TaskVille:

Description In TaskVille user collects points for various solved task

which are added and removed by manager.

Model description Model contains a infinite source connected with random

amount connection to a pool.

Patterns Identified Infinite quantity source, Limited quantity source,

Random Result, Dynamic limit, Drain pattern

128

Trogon:

Description In Trogon user collects points for various solved task

which can be represented in a pool of points.

Model description Model contains a finite pool connected with converters.

The points are randomly distributed to each player.

Trogon has a time limit exposed. Total points can be

replaced with dynamic limit pattern.

Patterns Identified Limited quantity source, Time limit

Gamified authentication:

129

Description Gamified version control takes commits and represents

them as points.

Model description The model contains an infinite source of triggering

converters which generate random points.

Patterns Identified Infinite quantity source, Random Result

RedCritter:

Description RedCritter is a gamified bug tracking service.

Model description The model contains an infinite source of triggering

converters which generate random points. Infinite

source could be changed to limited source if the amount

of issues is limited.

Patterns Identified Infinite quantity source, Random Result, Finite quantity

source

Advanced:

TaskVille:

130

Description In TaskVille user collects points for various solved task

which are added and removed by manager. Model

contains complex logic representing user specific

behavior.

Model description Model contains an infinite source connected with

random amount connection to a pool.

Patterns Identified Infinite quantity source, Limited quantity source,

Random Result, Dynamic limit, Drain pattern, Property

and Chance pattern

PowerHouse:

Description Each player in PowerHouse consumes energy the one

who consumes less has a better score.

Model description Model contains a source and pool connected with

random amount connection.

Patterns Identified Infinite quantity source, Property and chance, Drain

Pattern

Meeco:

131

Description Anybody in Meeco can post ecology tasks and players

can solve them and other players can rate how the task

was carried out.

Model description Model contains a source connected to converters which

are connected to a pool, where the connection is a

random amount connection.

Patterns Identified Infinite quantity source, Constrain Pattern, Property and

chance

Emo-Bin:

132

Description Emo-bin represents a gamified recycling bin which

thanks users for recycling. Emo-bin is bounded by timer

which represents a day in which the results are counted.

Model description Model contains a pool with a fixed number of bottles

each bottle is given to one player. Player gets thanked

for each recycled bottle.

Patterns Identified Limited quantity source, Time limit, Random Result,

Property and change

Capchino:

Description At its highest level Captchino is a creative approach to

improve captcha user experience.

Model description Model contains a pool with a fixed number of captchas

each captcha is given one of three players, user gets a

random amount of points for each captcha answered.

Patterns Identified Limited quantity source, Solver pattern, Property and

chance, Drain Pattern, Extension pattern, Constrain

pattern

133

Trogon PMS:

134

Description In Trogon user collects points for various solved task

which can be represented in a pool of points.

Model description Model contains a finite pool connected with converters.

The points are randomly distributed to each player.

Trogon has a time limit exposed

Patterns Identified Infinite quantity source, Property and chance, Extension

pattern, Constrain pattern

TeamFeed:

Description In TeamFeed tracker user collects points for commits.

Model

description

Model contains a infinite source connected with random

amount connection to a pool.

Patterns

Identified

Infinite quantity source, Property and chance pattern

Gamified Authentication:

Description Gamified version control takes commits and represents

them as points.

Model description The model contains an infinite source triggering

converters which generate random points.

Patterns Identified Limited quantity source, Property and chance, Drain

pattern

RedCritter:

135

Description RedCritter is a gamified bug tracking service.

Model description The model contains an infinite source of triggering

converters which generate random points. Infinite

source could be changed to limited source if the amount

of issues is limited.

Patterns Identified Infinite quantity source, Property and chance

