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Notations and Abbreviations

N - the set of natural numbers, N = {1, 2, . . . }

Z - the set of natural numbers, Z = {. . . ,−2,−1, 0, 1, 2, . . . }

R - the set of real numbers

C,C(. . . ) denote generic constants, possibly dependent on the variables into
brackets, which may be different at different locations

EX denotes the mean of random variable X

Var(X) denotes the variance of random variable X

Cov(X, Y ) denotes the covariance of random variables X, Y

sign(·) is a sign function

1(·), 1(.) denote the indicator function

x ∧ y denotes min(x, y) for real numbers x, y

x ∨ y denotes max(x, y) for real numbers x, y

L is a lag operator, i.e. LXt = Xt−1

B(·, ·) is a beta function

Γ(·) is a gamma function

BH(t) denotes fractional Brownian motion where H is the Hurst parameter

→D[0,1] denotes the weak convergence of random processes in the Skorohod
space D[0, 1]
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‖ · ‖p := E1/p| · |p, p ≥ 1 denotes Lp norm

`∞(R) denotes the space of all bounded functions on R

i.i.d independent identically distributed

r.v random variable

a.s. almost surely

r.h.s right hand side

l.h.s left hand side

w.r.t with respect to
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Chapter 1

Introduction

Long memory as an object of research

A discrete-time second-order stationary process {Xt, t ∈ Z} is called long memory if
its covariance γ(k) = Cov(X0, Xk) decays slowly with the lag in such a way that its
absolute series diverges:

∞∑
k=1
|γ(k)| =∞. (1.1)

In the converse case when
∞∑
k=1
|γ(k)| <∞ and

∞∑
k=1

γ(k) 6= 0 (1.2)

the process {Xt} is said to have short memory. Negative memory is defined as

∞∑
k=1
|γ(k)| <∞ and

∞∑
k=1

γ(k) = 0. (1.3)

Long memory processes have different properties from short memory (in particular,
i.i.d.) processes. Long memory processes have been found to arise in a variety of
physical and social sciences. See, e.g., the monographs Beran (1997), Doukhan et al.
(2003), Giraitis et al. (2012), Beran et al. (2013) and the references therein.

Conditions (1.1)-(1.3) defining long, short and negative memory are very general.
A useful asymptotic theory and statistical inference is possible if one specifies the
rate of decay of γ(k) at infinity. Particularly, (1.1) is often specified as

γ(k) = |k|−1+2dLγ(|k|), |k| ≥ 1, 0 < d < 1/2 (1.4)
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or
γ(k) ∼ cγ|k|−1+2d, k →∞, 0 < d < 1/2, cγ > 0, (1.5)

where Lγ : [1,∞)→ R is a slowly varying function at infinity. Parameter d ∈ (0, 1/2)
in (1.4) and (1.5) is called the long memory parameter of {Xt}. It characterizes the
intensity of long memory of the process {Xt}: when d > 0 is small the covariance
function decays relatively fast and the intensity of long memory is small, while in
the case when d is close to 1/2 the covariance function decays very slowly since the
exponent −1+2d is almost zero, and the corresponding process {Xt} has very strong
memory.

Probably, the most important model of long memory processes is the linear, or
moving average process

Xt =
∑
s≤t

bt−sζs, t ∈ Z, (1.6)

where {ζs, s ∈ Z} is a standardized i.i.d. sequence, and the moving average co-
efficients bj decay slowly so that ∑∞j=0 |bj| = ∞, ∑∞j=0 b

2
j < ∞. The last con-

dition guarantees that the series in (1.6) converges in mean square and satisfies
EXt = 0, EX2

t = ∑∞
j=0 b

2
j < ∞. In the literature it is often assumed that the

coefficients regularly decay as

bj ∼ κjd−1, j →∞ (∃ κ > 0, 0 < d < 1/2). (1.7)

Condition (1.7) guarantees (1.5), i.e. that

γ(k) =
∞∑
j=0

bjbk+j ∼ κ2B(d, 1− 2d)k−1+2d, k →∞ (1.8)

and hence ∑∞k=1 |γ(k)| = ∞. Thus, the parameter d in (1.7) is the long memory
parameter of {Xt} as defined in (1.5).

An important property of the linear process in (1.6)-(1.7) is the fact that its
(normalized) partial sums process Sn(τ) := ∑[nt]

j=1Xj, τ ≥ 0 tends to a fractional
Brownian motion (Davydov (1970)), viz.,

n−d−1/2Sn(τ) →D[0,1] σ(d)BH(t), (1.9)

where H = d + 1
2 is the Hurst parameter, σ(d)2 := κ2B(d, 1 − 2d)/d(1 + 2d) > 0

and→D[0,1] denotes the weak convergence of random processes in the Skorohod space
D[0, 1]. By definition, fractional Brownian motion is a Gaussian process with zero
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mean and covariance function

EBH(s)BH(t) = 1
2(t2H + s2H − |t− s|2H), t, s ≥ 0. (1.10)

Note that the normalization in (1.9) grows faster than the classical normalization
n1/2 in Donsker’s invariance principle for weakly dependent summands, and the limit
process BH has dependent increments in contrast to the usual Brownian motion with
independent increments. Fractional Brownian motion is H-self-similar and plays a
very important role in many applications of stochastic processes. The above men-
tioned properties of the partial sums limit are characteristic to long memory although
in general the covariance decay as in (1.5) does not imply a fractional Brownian mo-
tion limit of the partial sums process.

Motivation and aims of the thesis

It is well-known that the linear model (1.6) has its drawbacks and sometimes is not
capable of incorporating empirical features (“stylized facts”) of some observed time
series. The “stylized facts” may include typical asymmetries, clusterings, and other
nonlinearities which are often observed in financial data, together with long memory.
A very important stylized fact of asset returns is conditional heteroscedasticity, or
the property of the conditional variance

Var[Xt+1|Ft] = E[(Xt+1 − E[Xt+1|Ft])2|Ft]

being a random process and not a constant like in linear models. Here, Ft is
the “historic” σ-field containing “all available information” and E[Xt+1|Ft] is the
best forecast of Xt+1 given the “information” Ft. For the linear process in (1.6)
and Ft = σ{ζs, s ≤ t}, the best forecast is E[Xt+1|Ft] = b1ζt + b2ζt−2 + . . . and
Xt+1 − E[Xt+1|Ft] = b0ζt+1 is independent of Ft so that the conditional variance
is constant: Var[Xt+1|Ft] = b2

0Eζ2
t , meaning that this model is conditionally ho-

moscedastic. Therefore developing nonlinear models with long memory presents con-
siderable interest.

Problems and main results

The principal goal of this thesis is to introduce new nonlinear models with long mem-
ory that could be used for modelling of financial returns and statistical inference.

1. Projective stochastic equations (Chapter 3).
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The main goal is to introduce a new class of nonlinear processes which generalize
the linear model in (1.6)-(1.7) and enjoy similar long memory properties to (1.8)
and (1.9). For this, we define projective moving averages {Xt, t ∈ Z}, where Xt

is a Bernoulli shift written as a backward martingale transform of the innovation
sequence. We introduce a new class of nonlinear stochastic equations for projective
moving averages, termed projective equations, involving a (nonlinear) kernel Q and a
linear combination of projections ofXt on “intermediate” lagged innovation subspaces
with given coefficients αi, βi,j. We obtain conditions for solvability of these equations.
We also show that under certain conditions on kernel and coefficients, the solution
exhibits covariance and distributional long memory, with fractional Brownian motion
as the limit of the corresponding partial sums process. Results are presented in
Chapter 3 and Grublytė and Surgailis (2014).

2. A nonlinear model for long memory conditional heteroscedasticity (Chapter 4).
The main goal is to introduce a new class of conditionally heteroscedastic processes

that generalize some of the already known models and are able to model long memory
and other stylized facts in certain cases. For this, we discuss a class of conditionally
heteroscedastic time series models satisfying the ARCH-type equation rt = ζtσt,
where ζt is a noise sequence and the conditional standard deviation σt is a nonlinear
function Q depending on a linear combination of past values rs, s < t with coefficients
bj. We obtain the conditions for the existence of stationary solution rt with finite
p-th moment, 0 < p < ∞. Weak dependence properties of rt are studied, including
the invariance principle for partial sums of Lipschitz functions of rt. The case when
Q is the square root of a quadratic polynomial corresponds to a quadratic ARCH
(QARCH) model and is of special interest. We prove that in this case rt can exhibit
a leverage effect and long memory, in the sense that the squared process r2

t has
long memory autocorrelation and its normalized partial sums process converges to
a fractional Brownian motion. Analogous results are obtained for the generalized
version of the model described above where the conditional variance satisfies an AR(1)
equation, i.e. the volatily form includes the lagged volatilities from the past. We also
obtain a new condition for the existence of higher moments of rt which does not
include the Rosenthal constant. A short simulation study showing the behavior of
processes defined by this model is included. Results are presented in Chapter 4 and
Doukhan et al. (2016), Grublytė and Škarnulis (2017).

3. Quasi-MLE for quadratic ARCH model with long memory (Chapter 5).
The goal is to provide the asymptotic results for quasi-maximum likelihood esti-

mators in parametric version of long memory QARCH model introduced in Chapter
4 (also Doukhan et al. (2016), Grublytė and Škarnulis (2017)). Similarly as in Beran
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and Schützner (2009) we discuss several QML estimators: the estimator involving
exact conditional variance depending on infinite past and its more realistic version
where the volatilities depend only on finite number of returns from past. Under
certain moment conditions we prove consistency and asymptotic normality of the
corresponding QML estimators, including the estimator of long memory parameter
0 < d < 1/2. Results are presented in Chapter 5 and Grublytė et al. (2017).

The novelty

New nonlinear models with long memory for modelling of financial returns are de-
veloped in this thesis. These processes are defined as stationary solutions of certain
nonlinear stochastic difference equations involving a given i.i.d. “noise”. Solvabil-
ity of these equations is studied and covariance and distributional long memory is
proved. Finally, for a particularly tractable nonlinear parametric model with long
memory (GQARCH) consistency and asymptotic normality of quasi-ML estimators
are proved.

The processes studied in the thesis are new and have not been investigated in a
scientific literature before.

Methods

Many proofs in the thesis use the idea of projections (discussed in more detail in
Chapter 3, Section 3.2). Besides that, other standard tools from probability theory,
functional analysis, mathematical statistics and time series analysis were used.

Dissemination

The results were presented in the following conferences and seminars:

• 54th conference of Lithuanian Mathematical Society, Vilnius (Lithuania), June
19-20, 2013.

• 55th conference of Lithuanian Mathematical Society, Vilnius (Lithuania), June
26-27, 2014.

• 11th International Vilnius Conference on Probability Theory and Mathematical
Statistics, Vilnius (Lithuania), June 30 - July 4, 2014.

• Séminaire SAMM: Statistique, Analyse et Modélisation Multidisciplinaire, Uni-
versité Paris 1 Panthéon-Sorbonne, Paris (France), November 28, 2015.
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• 8th annual SoFiE (The Society for Financial Econmetrics) conference, Aarhus
(Denmark), June 23 - 26, 2015.

• Conference “Stochastic Processes”, Luminy (France), February 15-19, 2016.

• Seminar at “Workshop on Dependence”, Institut Henri Poincaré, Paris (France),
September 27, 2016.

Publications

• I. Grublytė, D. Surgailis (2014). Projective stochastic equations and nonlinear
long memory, Adv. in Appl. Probab., 46(4):1-22.

• P. Doukhan, I. Grublytė, D. Surgailis (2016). A nonlinear model for long mem-
ory conditional heteroscedasticity, Lith. Math. J. 56(2):164–188.

• I. Grublytė, A. Škarnulis (2017). A generalized nonlinear model for long mem-
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• I. Grublytė, D. Surgailis, A. Škarnulis (2017). QMLE for quadratic ARCH
model with long memory. J. Time Ser. Anal. 38(4):535–551.

Structure of thesis

The thesis consists of Introduction, State of the Art, three Chapters, Conclusions,
two Appendixes and Bibliography. The review of aims and problems is given in
Introduction. State of the Art presents an overview of the scientific work in this
field. Chapter 3 introduces nonlinear processes defined through projective stochastic
equations. Chapter 4 presents a very general class of nonlinear conditionally het-
eroscedastic models. A separate case of (G)QARCH model ((Generalized) Quadratic
ARCH) is studied in more detail. Chapter 5 considers the estimation of parameters
in generalized QARCH models using QML method. The results of the thesis are
summarized in Conclusions.
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Chapter 2

State of the art

In this chapter, firstly we present some of the most commonly used definitions of
long memory. Next, we briefly review the (nonlinear) long memory processes studied
in the literature. Finally, a short overview on the estimation of parameters in these
models is presented at the end of the chapter.

2.1 Long memory

Long memory processes were studied in a literature by numerous authors, see, e.g.,
the monographs Beran (1997), Doukhan et al. (2003), Giraitis et al. (2012) and the
references therein. The problems considered include the detection of long memory,
estimation of long memory parameter, limit theorems for long memory processes,
simulation of processes, etc. According to Samorodnitsky (2007), the first attempts
to study long memory start with the papers of Mandelbrot and his coleagues in 1960s
(see Mandelbrot (1965), Mandelbrot and Van Ness (1968)) where the authors seek
to explain the phenomenon observed by Hurst (1951) in the empirical data of Nile
flows.

Hurst (1951) considered the R/S statistic for Nile river data defined as follows.
Given a sequence of n observations X1, X2, . . . , Xn, define the partial sum sequence
Sm = X1 + · · · + Xm for m = 0, 1, . . . (with S0 = 0). The R/S statistic (range of
observations/sample standard deviation) takes the following form

R

S
(X1, . . . , Xn) =

max0≤i≤n(Sn − i
n
Sn)−min0≤i≤n(Sn − i

n
Sn)

( 1
n

∑n
i=1(Xi − 1

n
Sn)2)1/2 .

It is known that if X1, X2, . . . is a stationary ergodic sequence of random variables
with a common mean µ and finite variance, such that the standard central limit
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theorem holds, then growth rate of R/S statistic is the square root of the sample
size. However, Hurst noticed that the growth rate in R/S statistic for the Nile flows
data was closer to n0.74. This phenomenon was called Hurst phenomenon and led to
various efforts to explain it.

The fact that the R/S growth rate has unusual behavior suggested that some of the
assumptions are not satisfied in the previous example. Mandelbrot (1965) decided
to refuse the assumption of the validity of the central limit theorem for process
{Xt} and proposed to consider a finite variance model with very slowly decaying
correlations. This approach appeared to be very succesfull. Fractional Gaussian
Noise (the difference of fractional Brownian motion BH , H > 0) defined as

Xt := BH(t)−BH(t− 1),

with autocovariances Cov(Xt+n, Xt) = 2
(
|n+1|2H + |n−1|2H−2n2H

)
is the simplest

example of such model and gives the growth rate nH in the R/S statistic.
Since then, various other definitions of the long memory were proposed (see eg.

Samorodnitsky (2007), where the most popular definitions are summarized). Most
often (due to simplicity and easy estimation from data) the definitions use the second
order properties of stochastic processes, for example, asymptotics of covariances,
spectral density, variance of partial sums.

The following definition of long memory is based on the slow decay of covariances.

Definition 2.1.1 A covariance stationary process {X(t), t ∈ Z} is said to have long
memory if its autocovariances γ(k) = Cov(Xt, Xt−k) are not absolutely summable,
i.e. ∑

k∈Z
|γ(k)| =∞. (2.1)

The process is said to have short memory if

∞∑
k=1
|γ(k)| <∞ and

∞∑
k=1

γ(k) 6= 0. (2.2)

The process is said to have negative memory if

∞∑
k=1
|γ(k)| <∞ and

∞∑
k=1

γ(k) = 0. (2.3)

The definition above imposes very general conditions for autocovariances. It is
often useful to go a bit further and specify the decay rate of covariances. Let us first
introduce the notion of slowly varying functions.
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Definition 2.1.2 A function L is said to be slowly varying at infinity, if L is positive
on [a;∞), for some a > 0, and ∀t > 0:

lim
x→∞

L(tx)
L(x) = 1.

Definition 2.1.3 A stationary process {X(t), t ∈ Z} is said to have long memory, if
the autocovariance function γ(k) = Cov(Xt, Xt−k) decays hyperbolically, as k →∞,

γ(k) = k2d−1L(k), 0 < d < 1/2 (2.4)

where L(·) is a slowly varying function at infinity. The parameter d is called a long-
memory parameter.

Clearly, if the process {X(t), t ∈ Z} satisfies (2.4), it also satisfies (2.1), the
converse not necessarily being truth.

Another common definition of long memory considers the limiting distribution
of normalized partial sums process Sn(τ) := ∑[nτ ]

j=1Xj, τ ≥ 0 where [x] denotes the
integer part of x. Let us first give some definitions (see eg. Giraitis et al. (2016)).

Definition 2.1.4 (i) A real valued stochastic process {Z(t), t ∈ R} with Z(0) = 0 is
said to have stationary increments if for any integer k > 0, and for any t1 < t2 <

· · · < tk, ti ∈ R, i = 1, . . . , k and h ∈ R, the joint distributions of {Z(tj + h) −
Z(h), 1 ≤ j ≤ k} and {Z(tj)− Z(0), 1 ≤ j ≤ k} are the same. In other words, if for
any h ∈ R,

{Z(h+ t)− Z(h), t ∈ R} =fdd {Z(t)− Z(0), t ∈ R}.

(ii) A process {Z(t), t ∈ R} is said to be self-similar with index H > 0, if finite
dimensional distributions of {Z(at)} and {aHZ(t)} are the same for all a > 0:

{Z(at), t ∈ R} =fdd {aHZ(t), t ∈ T}.

In other words, for any a > 0, k = 1, 2, . . . , and for any tj ∈ R, 1 ≤ j ≤ k,

(Z(at1), . . . , Z(atk)) =fdd a
H(Z(t1), . . . , Z(tk)).

The process is said to be H-sssi if it is self-similar and has stationary increments. A
fractional Brownian motion BH is an example of a Gaussian H-sssi process and plays
a very important role in many applications of stochastic processes.
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Definition 2.1.5 Let 0 < H < 1 be any number. A Gaussian process BH =
{BH(t), t ∈ R}, with BH(0) = 0, EBH(t) ≡ 0 and covariance function:

rH(s, t) := EBH(s)BH(t) = 1
2
(
|s|2H + |t|2H − |s− t|2H

)
, t, s ≥ 0,

is called a fractional Brownian motion (fBm) with parameter 0 < H < 1.

The following result of Lamperti (1962) gives the basis for the definition of dis-
tributional long memory.

Theorem 2.1.1 (Lamperti). Let {Xj} be a strictly stationary process and suppose
there exist nonrandom numbers An →∞ and b ∈ R such that

A−1
n

[nτ ]∑
j=1

(Xj − b)→fdd. Z(τ), τ ≥ 0,

where the limit process Z(τ), τ ≥ 0, is not identically zero. Then {Z(τ)} is a stochas-
tically continuous H-sssi process with some parameter H > 0 and the normalization
An = nHL(n), where L(·) is a slowly varying function .

The process {Xt} is said to have distributional long memory if the limit pro-
cess {Z(τ), τ ∈ [0, 1]} has dependent increments. Fractional Brownian motion in
Definition 2.1.5 is a typical example of {Z(τ), τ ∈ [0, 1]} in the long memory case.

For more details on various long memory definitions see e.g. Giraitis et al. (2012),
Samorodnitsky (2007).

2.2 Long memory processes

The main model for long memory processes is the linear, or moving average process

Xt =
∑
s≤t

bt−sζs, t ∈ Z, (2.5)

where {ζs, s ∈ Z} is a standardized i.i.d. sequence, and the moving average coef-
ficients bj decay slowly so that ∑∞j=0 |bj| = ∞, ∑∞j=0 b

2
j < ∞. The last condition

guarantees the mean square convergence of series in (2.5) and the process satisfies
EXt = 0, EX2

t = ∑∞
j=0 b

2
j <∞.

In the literature the decay rate of coefficients bj is often specified. In particular,
it is often assumed that

bj ∼ κjd−1, j →∞ (∃ κ > 0, 0 < d < 1/2). (2.6)
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Condition (2.6) guarantees (2.4) and (2.1), i.e. that

γ(k) =
∞∑
j=0

bjbk+j ∼ κ2B(d, 1− 2d)k−1+2d, k →∞ (2.7)

and hence ∑∞k=1 |γ(k)| =∞. Thus, {Xt} is a long memory process by both Definitions
2.1.3 and 2.1.1 and the parameter d in (1.7) is the long memory parameter of {Xt}.

A very important case of linear processes (2.5) with (2.6) is the parametric class
ARFIMA(p, d, q), in which case d ∈ (0, 1/2) is the order of fractional integration. The
latter class consists of linear processes with coefficients given by power expansion

∞∑
j=0

zjbj = (1− z)−dθ(z)/ϕ(z), |z| < 1

where θ(z) = 1 + θ1z + · · · + θqz
q, ϕ(z) = 1 − ϕ1z − · · · − ϕpzp are polynomials of

degree p, q ≥ 0 that have no common zeros and ψ(z) has no zeros in the unit disc
|z| ≤ 1.

Another important property of the linear process in (2.5)-(2.6) is the distribu-
tional long memory or the fact that its (normalized) partial sums process Sn(τ) :=∑[nt]
j=1Xj, τ ≥ 0 tends to a fractional Brownian motion (Davydov (1970)), viz.,

n−d−1/2Sn(τ) →D[0,1] σ(d)BH(t), (2.8)

where H = d + 1
2 is the Hurst parameter, σ(d)2 := κ2B(d, 1 − 2d)/d(1 + 2d) > 0

and→D[0,1] denotes the weak convergence of random processes in the Skorohod space
D[0, 1].

Nonlinear long memory processes

Despite its success and popularity, the linear model has its drawbacks as it is not
always capable to incorporate the so called “stylized facts” of empirical data, such as
clusterings, asymmetry, and various other nonlinearities observed in financial data,
together with long memory. As a result, various alternative (nonlinear) long memory
models were proposed. We remark that “nonlinear long memory” is a very general
term and the literature on this topic is so vast that we will briefly review only some
of them.
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Subordinated processes

Probably the most studied class of nonlinear long memory processes are subordinated
processes of the form {Q(Xt)}, where {Xt} is a stationary Gaussian or linear long
memory process and Q : R → R is a nonlinear function (see e.g. Taqqu (1979),
Ho and Hsing (1997), Giraitis et al. (2012)). If function Q : R → R is such that
EQ2(X0) < ∞, then the process {Yt := Q(Xt), t ∈ Z} is also stationary. If, in
addition, the process {Xt} has long memory, we can expect to observe this property
in a subordinated process Yt in a sense of slowly decaying covariances and/or the
behavior of partial sums process. However, proving the long memory for subordinated
processes is a rather difficult task, mainly because of the nonlinearity of process
{Yt, t ∈ Z}.

The Gaussian process {Xt} is probably the only case of subordinated processes for
which a complete solution is known. In particular, under specific moment conditions
the decay of covariances of process {Yt} is determined by the behavior of process
{Xt}. If {Xt} has short memory, a nonlinear function of it also has short memory.
However, if {Xt} has long memory, the subordinated process {Yt} can have either long
or short memory, depending on values of additional parameters. Moreover, central
and noncentral limit theorems are already known for this type of processes. The
proofs use the method of Hermite expansions, for more details on covariance decay
and limit theorems of subordinated Gaussian processes see eg. Giraitis et al. (2012).

Stochastic volatility

A stochastic volatility process {rt} is usually defined as

rt = σtζt, t ∈ Z,

where {ζt} is a sequence of standartized i.i.d. r.v. and σt is a positive function
independent of {ζt}. In contrast to conditionally heteroscedastic models (described
in more detail bellow), σt is an unobserved process which could be interpreted as
volatility but does not represent a conditional variance. The probabilistic properties
(stationarity, ergodicity, covariance structure, etc.) of stochastic volatility processes
are discussed in a review paper by Davis and Mikosch (2009).

Quite often σt is defined as σt = f(ηt) where f is a (nonlinear) function and
{ηt} is some stationary process with well known properties, eg. Gaussian or ARMA
(FARIMA) type process. For example, by choosing f(x) = ex and ηt to be an
ARMA(p, q) process we obtain an Exponential GARCH (EGARCH) model proposed
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by Nelson (1991). When ηt is a FARIMA(p, d, q) process we obtain a Fractional
Integrated Exponential GARCH (FIEGARCH) by Bollerslev and Mikkelsen (1996).
A related class of long memory stochastic processes was proposed by Breidt et al.
(1998) and Harvey (1998) almost simultaneously. This class corresponds to ηt =
a + ∑∞

j=1 bjξt−j where ξt, t ∈ Z are standard i.i.d r.v. and bj are the coefficients of
FARIMA model. This model is briefly reviewed in Hurvich and Soulier (2009).

Conditional heteroscedasticity

A stationary time series {rt, t ∈ Z} is said to be conditionally heteroscedastic if its
conditional variance σ2

t = Var[rt|rs, s < t] is a non-constant random process. In
financial modeling, rt are interpreted as (asset) returns and σt as volatilities. A class
of conditionally heteroscedastic ARCH-type processes is defined from a standardized
i.i.d. sequence {ζt, t ∈ Z} as solutions of stochastic equation

rt = ζtσt, σt = V (rs, s < t), (2.9)

where V (x1, x2, . . . ) is some function of x1, x2, . . . .
The ARCH(∞) model corresponds to V (x1, x2, . . . ) =

(
a+∑∞

j=1 bjx
2
j

)1/2
, or

σ2
t = a+

∞∑
j=1

bjr
2
t−j, (2.10)

where a ≥ 0, bj ≥ 0 are coefficients. The ARCH(∞) model includes the well-known
ARCH(p) and GARCH(p, q) models of Engle (1982) and Bollerslev (1986). However,
despite their tremendous success, the GARCH models are not able to capture some
empirical features of asset returns, in particularly, the asymmetric or leverage effect
discovered by Black (1976), and the long memory decay in autocorrelation of squares
{r2

t }. Giraitis and Surgailis (2002) proved that the squared stationary solution of the
ARCH(∞) model in (2.10) with a > 0 always has short memory, in the sense that∑∞
j=0 Cov(r2

0, r
2
j ) < ∞. (However, for integrated ARCH(∞) models with ∑∞

j=1 bj =
1, bj ≥ 0 and a = 0 the situation is different; see Giraitis et al. (2016).)

The above shortcomings of the ARCH(∞) model motivated numerous studies
proposing alternative forms of the conditional variance and the function V (x1, x2, . . . )
in (2.9). In particular, stochastic volatility models can display both long memory and
leverage except that in their case, the conditional variance is not a function of rs, s < t

alone and therefore it is more difficult to estimate from real data in comparison with
the ARCH models; see Shephard and Andersen (2009). Sentana (1995) discussed a
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class of Quadratic ARCH (QARCH) models with σ2
t being a general quadratic form

in lagged variables rt−1, . . . , rt−p. Sentana’s specification of σ2
t encompasses a variety

of ARCH models including the asymmetric ARCH model of Engle (1990) and the
“linear standard deviation” model of Robinson (1991) corresponding to a case where
aij = 0 for 0 < i, j ≤ p.

The limiting case (when p =∞) of the “linear standard deviation” (see Robinson
(1991)) is the LARCH model discussed in Giraitis et al. (2000) (see also Giraitis and
Surgailis (2002), Berkes and Horváth (2003), Giraitis et al. (2004), Giraitis et al.
(2009), Truquet (2014) and other papers) and corresponding to V (x1, x2, . . . ) = a+∑∞
j=1 bjxj, or

σt = a+
∞∑
j=1

bjrt−j, (2.11)

where a ∈ R, bj ∈ R are real-valued coefficients satisfying B :=
{∑∞

j=1 b
2
j

}1/2
< ∞

and a 6= 0. Giraitis et al. (2000) showed that a second order strictly stationary
solution {rt} to (2.11) exists if and only if B < 1, in which case it can be represented
by the convergent orthogonal Volterra series

rt = σtζt, σt = a
(

1 +
∞∑
k=1

∞∑
j1,...,jk=1

bj1 . . . bjkζt−j1 . . . ζt−j1−···−jk

)
. (2.12)

Of particular interest is the case when the bj’s in (2.11) are proportional to
ARFIMA coefficients, in which case the long memory of the volatility and the (squared)
returns can be rigorously proved. In particular, Giraitis et al. (2000) showed that the
squared stationary solution {r2

t } of the LARCH model with bj decaying as in (1.7)
under certain moment conditions may have long memory autocorrelations, i.e.

Cov(r2
0, r

2
t ) ∼ κ2

1t
2d−1, t→∞,

where κ2
1 :=

(
2aκ

1−B2

)2
B(d, 1−2d)Er2

0. Moreover, its (normalized) partial sums process
Sn(τ) := ∑[nt]

j=1(r2
j −Er2

j ), τ ≥ 0 tends to a fractional Brownian motion (Giraitis et al.
(2000)),

n−d−1/2Sn(τ) →D[0,1] κ2BH(t), (2.13)

where H = d+ 1
2 is the Hurst parameter, κ2

2 := κ2
1/(d(1 + 2d)) > 0.

The leverage effect in the LARCH model was discussed in detail in Giraitis et al.
(2004). Given a stationary conditionally heteroscedastic time series {rt} with E|rt|3 <
∞, leverage (a tendency of σ2

t to move into the opposite direction as rs for s < t) is
usually measured by the covariance ht−s = Cov(σ2

t , rs). In Giraitis et al. (2004), the
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process {rt} is said to have leverage of order k (1 ≤ k <∞) (denoted by {rt} ∈ `(k))
whenever

hj < 0, 1 ≤ j ≤ k. (2.14)

Given that E|r0|3 < ∞, |µ|3 < ∞, B2 < 1/5 and |µ3| ≤ 2(1− 5B2)/B(1 + 3B2)
holds, Giraitis et al. (2004) proved that the second order stationary solution of (2.11)
{rt} ∈ `(k) whenever ab1 < 0, abj ≤ 0, j = 2, . . . , k, i.o.w. process rt has leverage of
order k.

Despite being able to capture both the asymmetry and the long memory, LARCH
model has its drawbacks. The volatility σt (2.11) of the LARCH model may as-
sume negative values, lacking some of the usual volatility interpretation and bringing
difficulties in parameter estimation.

2.3 Estimation

Let us briefly present the problem of parameter estimation in conditionally het-
eroscedastic models. Consider a model in (2.9) where σ2

t has a parametric form and
depends on a parameter θ = (θ1, . . . , θk). Assume that the observations {r1, r2, . . . , rn},
n ∈ N come from this model with the true parameter θ0 = (θ0,1, . . . , θ0,k). The aim
is to get the best possible estimator θ̂n of θ0. The consistency (the fact that θ̂n → θ0

as n → ∞ in probability) or strong consistency (θ̂n → θ0 as n → ∞ almost surely)
and the asymptotic normality (the convergence of θ̂n − θ0 to Gaussian distribution
in law under proper norming) are the desired properties of such estimators.

Let us present Quasi-maximum likelihood (QML) method in more detail as it
is the most relevant in this thesis. The idea of QML estimation if to maximize
certain objective function that is obtained from the likelihoods of observations under
assumption of a particular model. When the “noise” sequence in (2.9) is Gaussian,
the maximum likelihood estimator is defined as

θ̂n = arg max
θ∈Θ

Ln(θ),

where Θ is the parameter space and

Ln(θ) =
n∏
t=1

1√
2πσ2

t

exp
(
− r2

t

2σ2
t

)
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is the likelihood function. The estimator above can be equivalently rewriten as

θ̂n = arg min
θ∈Θ

1
n

n∑
t=1

( r2
t

σ2
t

+ log σ2
t

)
.

In the case of non-Gaussian “noise”, the same Gaussian likelihood is often used and
the estimator is called Quasi-maximum likelihood estimator.

One of the difficulties that arises in the QML estimation is that the volatilities
σ2
t often depend on infinite past (this is true, for example, for ARCH(∞) in (2.10),

LARCH in (2.11), where volatility is written as a linear combination of past returns).
However, in practice only a finite number of observations is known. The simplest
solution to this problem is to truncate the volatilities by assuming that the unknown
returns {ri, i < 0} are all equal to 0. In this case two estimators are often considered:
one involving exact conditional variance σ2

t depending on infinite past

θ̂n = arg max
θ∈Θ

Ln(θ), Ln(θ) = 1
n

n∑
t=1

( r2
t

σ2
t (θ)

+ log σ2
t (θ)

)

and its more realistic version obtained by replacing σ2
t by σ̃2

t depending only on finite
past (rs, 1 ≤ s < t):

θ̃n = arg max
θ∈Θ

L̃n(θ), L̃n(θ) = 1
n

n∑
t=1

( r2
t

σ̃2
t (θ)

+ log σ̃2
t (θ)

)
.

Quasi-maximum likelihood method gives consistent and asymptotically normal
estimators of parameters in strictly stationary GQARCH model under very mild
regularity conditions and does not require any conditions for higher moments (see
Francq and Zakoian (2009), Chapter 7, Theorems 7.1 and 7.2). The latter fact
is particularly relevant from the practical perspective as the requirements of finite
fourth or even higher moments seem to be too strict in real data, for example in
financial time series. Robinson and Zaffaroni (2006) proved strong consistency and
asymptotic normality of QML estimator in ARCH(∞) model (2.10) with a > 0 and
the coefficients bj = bj(λ) written as some functions depending on finite dimensional
parameter λ ∈ Rm. The estimation of parameters in long memory LARCH model
was studied in Beran et al. (2013). Recall that the main dissadvantage of LARCH
model is the fact that the volatilities might become negative and in general are
not separated from 0. Thus, the standard Quasi-maximum likelihood estimator is
inconsistent. Beran and Schützner (2009) considered a modified Quasi-maximum
likelihood estimator that involves an additional “small” tuning parameter ε, also
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other estimation methods for LARCH model were developed in Francq and Zakoian
(2010b), Levine et al. (2009), Truquet (2014).

Finally, many other methods for estimation were discussed in the literature, for
example in Straumann (2005), Francq and Zakoian (2009) and we will only mention
some of them. Probably the simplest method for ARCH models is the Least squares
(LS) method that is based on the minimization of squared errors. LS provides the
estimators in ARCH case explicitely, moreover, they are consistent and asymptoti-
cally normal if Er4

t < ∞ and Er8
t < ∞ respectively (see Francq and Zakoian (2009)

for more details). Whittle (1953) proposed estimator based on spectral densities and
periodograms. It is often used in practice and also covers long memory cases. We
are not going into more details here as in this thesis we are mainly focusing on QML
estimation.



Chapter 3

Projective stochastic equations and
nonlinear long memory

Abstract. A projective moving average {Xt, t ∈ Z} is a Bernoulli shift written as a
backward martingale transform of the innovation sequence. We introduce a new class
of nonlinear stochastic equations for projective moving averages, termed projective
equations, involving a (nonlinear) kernel Q and a linear combination of projections of
Xt on “intermediate” lagged innovation subspaces with given coefficients αi, βi,j. The
class of such equations include usual moving-average processes and the Volterra series
of the LARCH model. Solvability of projective equations is obtained using a recursive
equality for projections of the solution Xt. We show that under certain conditions
on Q,αi, βi,j, this solution exhibits covariance and distributional long memory, with
fractional Brownian motion as the limit of the corresponding partial sums process.

3.1 Introduction

The present chapter introduces a new class of nonlinear processes which generalize the
linear model in (2.5)-(2.6) and enjoy similar long memory properties to (2.7) and (2.8).
These processes are defined through solutions of the so-called projective stochastic
equations. Here, the term “projective” refers to the fact that these equations contain
linear combinations of projections, or conditional expectations, of Xt’s on lagged
innovation subspaces which enter the equation in a nonlinear way.

Let us explain the main idea of our construction. We call a projective moving
average a random process {Xt} of the form

Xt =
∑
s≤t

gs,tζs, t ∈ Z, (3.1)

26



where {ζs} is a sequence of standardized i.i.d. r.v.’s as in (1.6), gt,t ≡ g0 is a deter-
ministic constant and gs,t, s < t are r.v.’s depending only on ζs+1, . . . , ζt such that

gs,t = gt−s(ζs+1, . . . , ζt), s < t, (3.2)

where gj : Rj → R, j = 1, 2, . . . are nonrandom functions satisfying

∑
s≤t

Eg2
s,t =

∑
s≤0

Eg2
−s(ζs+1, . . . , ζ0) < ∞. (3.3)

It follows easily that under condition (3.3) the series in (3.1) converges in mean square
and define a stationary process with zero mean and finite variance EX2

t = ∑
s≤t Eg2

s,t.
The next question - how to choose the “coefficients” gs,t (3.2) so that they depend on
Xt and behave like (2.6) when j = t− s→∞?

A particularly simple choice of the gs,t’s to achieve the above goals is

gs,t = bt−sQ(E[s+1,t]Xt), s ≤ t (3.4)

where bj are as in (2.6), Q : R→ R is a given deterministic kernel, and E[s+1,t]Xt :=
E[Xt|ζv, s + 1 ≤ v ≤ t] is the projection of Xt onto the subspace of L2 generated by
the innovations ζv, s + 1 ≤ v ≤ t (the conditional expectation). The corresponding
projective stochastic equation has the form

Xt =
∑
s≤t

bt−sQ(E[s+1,t]Xt)ζs. (3.5)

Notice that when s→ −∞ then E[s+1,t]Xt → Xt by a general property of a conditional
expectation and then gs,t ∼ bt−sQ(Xt) if Q is continuous. This means that the gs,t’s
in (3.4) feature both the long memory in (2.6) and the dependence on the “current”
value Xt through Q(Xt). In particular, for Q(x) = max(0, x), the behavior of gs,t in
(3.4) strongly depends on the sign of Xt and the trajectory of (3.5) appears to be
very asymmetric (see Figure 3.3, top).

Let us briefly describe the remaining sections. Section 3.2 contains basic defini-
tions and properties of projective processes. Section 3.3 introduces a general class
of projective stochastic equations, (3.5) being a particular case. We obtain sufficient
conditions of solvability of these equations, and a recurrent formula for computation
of “coefficients” gs,t (Theorem 3.3.1). Sections 3.4 and 3.5 present some examples
and simulated trajectories and histograms of projective equations. It turns out that
the LARCH model studied in Giraitis et al. (2000) and elsewhere is a particular case
of projective equations corresponding to linear kernel Q(x) (Section 3.4). Some mod-
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ifications of projective equations are discussed in Section 3.6. Section 3.7 deals with
long memory properties of stationary solutions of stochastic projective equations.
We show that under some additional conditions these solutions have long memory
properties similar to (2.7) and (2.8).

Finally, we remark that “nonlinear long memory” is a general term and that other
time series models different from ours for such behavior were proposed in the liter-
ature. Among them, probably the most studied class are subordinated processes
of the form {Q(Xt)}, where {Xt} is a Gaussian or linear long memory process and
Q : R→ R is a nonlinear function. See Taqqu (1979), Ho and Hsing (1997) and Gi-
raitis et al. (2012) for a detailed discussion. A related class of Gaussian subordinated
stochastic volatility models is studied in Robinson (2001). Doukhan et al. (2012) dis-
cuss a class of long memory Bernoulli shifts. Baillie and Kapetanios (2008) consider
fractionally integrated process with nonlinear autoregressive innovations. A general
invariance principle for fractionally integrated models with weakly dependent inno-
vations satisfying the projective dependence condition of Wu (2005) is established in
Shao and Wu (2006). See also Wu and Min (2005) and Remark 3.7.1 below.

We expect that the results of this chapter can be extended in several directions,
e.g., projective equations with initial condition, continuous time processes, random
field set-up, infinite variance processes. For applications, a major challenge is esti-
mation of parameters of projective equations.

3.2 Projective processes and their properties

Let {ζt, t ∈ Z} be a sequence of i.i.d. r.v.’s with Eζ0 = 0, Eζ2
0 = 1. For any integers

s ≤ t we denote F[s,t] := σ{ζu : u ∈ [s, t]} the sigma-algebra generated by ζu, u ∈ [s, t],
F(−∞,t] := σ{ζu : u ≤ t}, F := σ{ζu : u ∈ Z}. For s > t, we define F[s,t] := {∅,Ω} as
the trivial sigma-algebra. Let L2

[s,t], L
2
(−∞,t], L

2 be the spaces of all square integrable
r.v.’s ξ measurable w.r.t. F[s,t], F(−∞,t], F , respectively. For any s, t ∈ Z let

E[s,t][ξ] := E
[
ξ
∣∣∣F[s,t]

]
, ξ ∈ L2

be the conditional expectation. Then ξ 7→ E[s,t][ξ] is a bounded linear operator in L2;
moreover, E[s,t], s, t ∈ Z is a projection family satisfying E[s2,t2]E[s1,t1] = E[s2,t2]∩[s1,t1]

for any intervals [s1, t1], [s2, t2] ⊂ Z. From the definition of conditional expectation it
follows that if gu : R→ R, u ∈ Z are arbitrary measurable functions with Eg2

u(ζu) <
∞, [s2, t2] ⊂ Z is a given interval and ξ = ∏

u∈[s2,t2] gu(ζu) is a product of independent
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r.v.’s, then for any interval [s1, t1] ⊂ Z

E[s1,t1]
∏

u∈[s2,t2]
gu(ζu) =

∏
u∈[s1,t1]∩[s2,t2]

gu(ζu)
∏

v∈[s2,t2]\[s1,t1]
E[gv(ζv)].

In particular, if Egu(ζu) = 0, u ∈ Z then

E[s1,t1]
∏

u∈[s2,t2]
gu(ζu) =


∏
u∈[s1,t1] gu(ζu), [s2, t2] ⊂ [s1, t1],

0, [s2, t2] 6⊂ [s1, t1].
(3.6)

Any r.v. Yt ∈ L2
(−∞,t] can be expanded into orthogonal series Yt = EYt +∑

s≤t Ps,tYt,

where Ps,tYt := (E[s,t] − E[s+1,t])Yt. Note that {Ps,tYt,Fs,t, s ≤ t} is a backward mar-
tingale difference sequence and EY 2

t = (EYt)2 +∑
s≤t E(Ps,tYt)2.

Definition 3.2.1 A projective process is a random sequence {Yt ∈ L2
(−∞,t], t ∈ Z} of

the form
Yt = EYt +

∑
s≤t

gs,tζs, (3.7)

where gs,t are r.v.’s satisfying the following conditions (i) and (ii):
(i) gs,t is F[s+1,t]-measurable, ∀s, t ∈ Z, s < t; gt,t is a deterministic number;
(ii) ∑s≤t Eg2

s,t <∞, ∀ t ∈ Z.

In other words, a projective process has the property that the projections E[s,t]Yt =
EYt + ∑t

i=s Pi,tYt = EYt + ∑t
i=s ζigi,t, s ≤ t form a backward martingale transform

w.r.t. the nondecreasing family {F [s,t], s ≤ t} of sigma-algebras, for each t ∈ Z fixed.
A consequence of the last fact is the following moment inequality which is an easy
consequence of Rosenthal’s inequality (Hall and Heyde (1980), p.24). See also Giraitis
et al. (2012), Lemma 2.5.2.

Proposition 3.2.1 Let {Yt} be a projective process in (3.7). Assume that µp :=
E|ζ0|p <∞ and ∑s≤t(E|gs,t|p)2/p <∞ for some p ≥ 2. Then E|Yt|p <∞. Moreover,
there exists a constant Cp <∞ depending on p alone and such that

E|Yt|p ≤ Cp

(
|EYt|p + µp

(∑
s≤t

(E|gs,t|p)2/p
)p/2)

.

Definition 3.2.2 A projective moving average is a projective process of (3.7) such
that the mean EYt = µ is constant and there exist a number g0 ∈ R and nonrandom
measurable functions gj : Rj → R, j = 1, 2, . . . such that

gs,t = gt−s(ζs+1, . . . , ζt) a.s., for any s ≤ t, s, t ∈ Z.
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By definition, a projective moving average is a stationary Bernoulli shift (Dedecker
et al. (2007), p.21):

Yt = µ+
∑
s≤t

ζsgt−s(ζs+1, . . . , ζt) (3.8)

with mean µ and covariance

Cov(Ys, Yt) =
∑
u≤s

E[gs−u(ζu+1, . . . , ζs)gt−u(ζu+1, . . . , ζt)]

=
∑
u≤0

E[g−u(ζu+1, . . . , ζ0)gt−s−u(ζu+1, . . . , ζt−s−u)], s ≤ t. (3.9)

These facts together with the ergodicity of Bernoulli shifts (implied by a general
result in Stout (1974), Theorem 3.5.8) are summarized in the following corollary.

Corollary 3.2.1 A projective moving average is a strictly stationary and ergodic
stationary process with finite variance and covariance given in (3.9).

Remark 3.2.1 If the coefficients gs,t are nonrandom, a projective moving average is
a linear process Yt = µ+∑

s≤t gt−sζs, t ∈ Z.

Proposition 3.2.2 Let {Yt} be a projective process of (3.7) and {aj, j ≥ 0} a deter-
ministic sequence, ∑∞j=0 |aj| <∞,

∑∞
j=0 |aj||EYt−j| <∞. Then {ut := ∑∞

j=0 ajYt−j,

t ∈ Z} is a projective process ut = Eut + ∑
s≤t ζsGs,t with Eut = ∑∞

j=0 ajEYt−j and
coefficients Gs,t := ∑t−s

j=0 ajgs,t−j.

Proof follows easily by the Cauchy-Schwarz inequality and is omitted. �

Proposition 3.2.3 If {Yt} is a projective process of (3.7), then for any s ≤ t

E[s,t]Yt = EYt +
∑
s≤u≤t

ζugu,t, Ps,tYt = (E[s,t] − E[s+1,t])Yt = ζsgs,t. (3.10)

The representation (3.7) is unique: if (3.7) and Yt = ∑
s≤t g

′
s,tζs are two represen-

tations, with g′s,t satisfying conditions (i) and (ii) of Definition 3.2.1, then g′s,t =
gs,t ∀ s ≤ t.

Proof of (3.10) is immediate by definition of projective process. From (3.10) it
follows that ζsg′′s,t = 0, where g′′s,t := gs,t − g′s,t is independent of ζs. Relation Eζ2

s = 1
implies P(|ζs|2 > ε) > 0 for all ε > 0 small enough. Hence, 0 = P(|ζsg′′s,t| > ε) ≥
P(|ζs| >

√
ε, |g′′s,t| >

√
ε) = P(|ζs| >

√
ε)P(|g′′s,t| >

√
ε), implying P(|g′′s,t| >

√
ε) = 0

for any ε > 0. �

The following invariance principle is due to Dedecker and Merlevède (Dedecker
and Merlevède (2003), Cor. 3), see also (Wu (2005), Theorem 3 (i)).

30



Proposition 3.2.4 Let {Yt} be a projective moving average of (3.7) such that µ = 0
and

Ω(2) :=
∞∑
t=0
‖g0,t‖ <∞, (3.11)

where ‖ξ‖ = E1/2[ξ2], ξ ∈ L2. Then

n−1/2
[nτ ]∑
t=1

Yt −→D[0,1] cYB(τ), (3.12)

where B is a standard Brownian motion and c2
Y := ‖∑∞t=0 g0,t‖2 = ∑

t∈Z E[Y0Yt].

3.3 Projective stochastic equations

Let Qs,t = Qs,t(xu,v, s < u ≤ v ≤ t), s, t ∈ Z, s < t be some given measurable
deterministic functions depending on (t − s)(t − s + 1)/2 real variables xu,v, s < t,

and µt, Qt,t, t ∈ Z be some given constants. A projective stochastic equation has the
form

Xt = µt +
∑
s≤t

ζsQs,t(E[u,v]Xv, s < u ≤ v ≤ t). (3.13)

Definition 3.3.1 By solution of (3.13) we mean a projective process {Xt, t ∈ Z}
satisfying ∑s≤t E[Q2

s,t(E[u,v]Xv, s < u ≤ v ≤ t)] < ∞ and (3.13) for any t ∈ Z.

Proposition 3.3.1 Assume that that µt = µ does not depend on t ∈ R, the functions
Qs,t = Qt−s, s ≤ t in (3.13) depend only on t − s, and that {Xt} is a solution
of (3.13). Then {Xt} is a projective moving average of (3.8) with EXt = µ and
gn : Rn → R, n = 0, 1, . . . defined recursively by

g0 := Q0, (3.14)

gn(x−n+1, . . . , x0) := Qn

(
µ+

v∑
k=u

xkgv−k(xu+1, . . . , xv),−n < u ≤ v ≤ 0
)
, n ≥ 1.

Moreover, such solution is unique.

Proof. From (3.13) and the uniqueness of (3.7) (Proposition 3.2.3) we have Xt =
µ+∑

s≤t gs,tζs, where gs,t = Qt−s(E[u,v]Xv, s < u ≤ v ≤ t). For s = t this yields gt,t =
Q0 = g0 ∀t ∈ Z as in (3.14). Similarly, gt−1,t = Q1(E[t,t]Xt) = Q1(µ + g0ζt) = g1(ζt),
where g1 is defined in (3.14). Assume by induction that

gt−m,t = gm(ζt−m+1, . . . , ζt), ∀ t ∈ Z (3.15)

31



with gm defined in (3.14), hold for any 0 ≤ m < n and some n ≥ 1; we need to show
that (3.15) holds for m = n, too. Using (3.15), (3.10) and (3.14) we obtain

gt−n,t = Qn(E[u,v]Xv, t− n < u ≤ v ≤ t)

= Qn

(
µ+

v∑
k=u

ζkgv−k(ζu+1, . . . , ζv), t− n < u ≤ v ≤ t
)

= gn(ζt−n+1, . . . , ζt).

This proves the induction step n − 1 → n and hence the proposition, too, since the
uniqueness follows trivially. �

Clearly, the choice of possible kernels Qs,t in (3.13) is very large. In this chapter
we focus on the following class of projective stochastic equations:

Xt = µ+
∑
s≤t

ζsQ
(
αt−s +

∑
s<u≤t

βt−u,u−s
(
E[u,t]Xt − E[u+1,t]Xt

))
, (3.16)

where {αi, i ≥ 0}, {βi,j, i ≥ 0, j ≥ 1} are given arrays of real numbers, µ ∈ R is a
constant, and Q = Q(x) is a measurable function of a single variable x ∈ R. Two
modifications of (3.16) are briefly discussed below, see (3.38) and (3.41). Particular
cases of (3.16) are

Xt =
∑
s≤t

ζsQ
(
αt−s + βt−sE[s+1,t]Xt

)
, (3.17)

and

Xt = µ+
∑
s≤t

ζsQ
(
αt−s +

∑
s<u≤t

βu−s
(
E[u,t]Xt − E[u+1,t]Xt

))
, (3.18)

corresponding to βi,j = βi+j and βi,j = βj, respectively.
Next, we study the solvability of projective equation (3.16). We assume that Q

satisfies the following dominating bound: there exists a constant cQ > 0 such that

|Q(x)| ≤ cQ|x|, ∀ x ∈ R. (3.19)

Denote

KQ :=
∞∑
i=0

α2
i

∞∑
k=0

c2k+2
Q

∞∑
j1=1

β2
i,j1 · · ·

∞∑
jk=1

β2
i+j1+···+jk−1,jk

. (3.20)

The main result of this section is the following theorem:
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Theorem 3.3.1 (i) Assume condition (3.19) and

KQ < ∞. (3.21)

Then there exists a unique solution {Xt} of (3.16), which is written as a projective
moving average in (3.7) with coefficients gt−k,t recursively defined as

gt−k,t :=

Q
(
αk +∑k−1

i=0 βi,k−iζt−igt−i,t
)
, k = 1, 2, . . . ,

Q(αk), k = 0.
(3.22)

More explicitly,

Xt = µ+Q(α0)ζt +Q
(
α1 + β0,1ζtQ(α0)

)
ζt−1

+ Q
(
α2 + β0,2ζtQ(α0) + β1,1ζt−1Q

(
α1 + β0,1ζtQ(α0)

))
ζt−2 + . . . .

(ii) In the case of linear function Q(x) = cQx, condition (3.21) is also necessary for
the existence of a solution of (3.16).

Proof. (i) Let us show that the gk−t,t’s as defined in (3.22) satisfy ∑∞k=0 Eg2
t−k,t <

∞. From (3.19) and (3.22) we have the recurrent inequality:

Eg2
t−k,t ≤ c2

QE
(
αk +

k−1∑
i=0

βi,k−iζt−igt−i,t

)2
= c2

Q

(
α2
k +

k−1∑
i=0

β2
i,k−iEg2

t−i,t

)
. (3.23)

Iterating (3.23) we obtain

Eg2
t−k,t ≤ c2

Q

(
α2
k + c2

Q

k−1∑
i=0

β2
i,k−i

(
α2
i +

i−1∑
j=0

β2
j,i−jEg2

t−j,t

))

= c2
Qα

2
k + c4

Q

k−1∑
i=0

α2
iβ

2
i,k−i + c6

Q

k−1∑
i=0

α2
i

k−1−i∑
j1=1

β2
i,j1β

2
i+j1,k−i−j1 + . . . (3.24)

and hence
∞∑
k=0

Eg2
t−k,t ≤ c2

Q

∞∑
i=0

α2
i + c4

Q

∞∑
i=0

α2
i

∞∑
j1=1

β2
i,j1 + c6

Q

∞∑
i=0

α2
i

∞∑
j1=1

β2
i,j1

∞∑
j2=1

β2
i+j1,j2 + . . .

= KQ < ∞ (3.25)

according to (3.21). Therefore, Xt = µ + ∑
s≤t gs,tζs is a well-defined projective

moving-average. The remaining statements about Xt follow from Proposition 3.3.1.
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(ii) Similarly to (3.23), (3.25) in the case Q(x) = cQx we obtain

Eg2
t−k,t = c2

QE
(
αk +

k−1∑
i=0

βi,k−iζt−igt−i,t

)2
= c2

Q

(
α2
k +

k−1∑
i=0

β2
i,k−iEg2

t−i,t

)

and hence Var(Xt) = ∑∞
k=0 Eg2

t−k,t = KQ. This proves (ii) and Theorem 3.3.1, too.
�

Remark 3.3.1 From recurrent relation (3.22), the gt−k,t’s can be expressed as func-
tions of ζt−k+1, . . . , ζt via the so-called nested Volterra series (see Appendix B and
the extented version of Grublytė and Surgailis (2014) available at arXiv:1312.1938).

In the case of equations (3.17) and (3.18), condition (3.21) can be simplified, see
below. Note that for A2 := ∑∞

i=0 α
2
i = 0, equations (3.22) admit a trivial solution

gt−k,t = 0 since Q(0) = 0 by (3.19), leading to the constant process X = µ in (3.16).

Proposition 3.3.2 (i) Let A2 > 0, βi,j = βi+j, i ≥ 0, j ≥ 1, and B2 := ∑∞
i=0 β

2
i .

Then KQ <∞ is equivalent to A2 <∞ and B2 <∞.
(ii) Let A2 > 0, βi,j = βj, i ≥ 0, j ≥ 1 and B2 := ∑∞

i=1 β
2
i . Then KQ < ∞ is

equivalent to A2 <∞ and c2
QB

2 < 1. Moreover, KQ = c2
QA

2/(1− c2
QB

2).

Proof. (i) By definition,

KQ =
∞∑
k=0

c2k+2
Q

∞∑
i=0

α2
i

∞∑
j1=1

β2
i+j1 · · ·

∞∑
jk=1

β2
i+j1+···+jk−1+jk

=
∞∑
k=0

c2k+2
Q

∑
0≤i<j1<···<jk<∞

α2
iβ

2
j1 . . . β

2
jk

≤
∞∑
k=0

c2k+2
Q A2B2

1 . . . B
2
k,

where B2
k := ∑∞

j=k β
2
j . Since B2 < ∞ entails limk→∞B

2
k = 0, ∀ε > 0∃K ≥ 1 such

that B2
k < ε/c2

Q ∀ k > K. Hence,

KQ ≤ c2
QA

2
( K∑
k=0

(c2
QB

2)k +
∞∑
k=K

εk
)
<∞.

Therefore, A2 < ∞ and B2 < ∞ imply KQ < ∞. The converse implication is
obvious.
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(ii) Follows by

KQ =
∞∑
k=0

c2k+2
Q

∞∑
i=0

α2
i

∞∑
j1=1

β2
j1 · · ·

∞∑
jk=1

β2
jk

=
∞∑
k=0

c2k+2
Q A2(B2)k =

c2
QA

2

1− c2
QB

2 .

�

Remark 3.3.2 It is not difficult to show that conditions on the βi,j’s in Proposition
3.3.2 (i) and (ii) are part of the following more general condition:

lim sup
i→∞

∞∑
j=1

c2
Qβ

2
i,j < 1,

which also guarantees that KQ <∞.

The following Proposition 3.3.3 obtains a sufficient condition for the existence of
higher moments E|Xt|p <∞, p > 2 of the solution of projective equation (3.16). The
proof of Proposition 3.3.3 is based on a recurrent use of Rosenthal-type inequality of
Proposition 3.2.1, which contains an absolute constant Cp depending only on p. For
p ≥ 2, denote

KQ,p := C2/p
p

∞∑
i=0

α2
i

∞∑
k=0

(cQC1/p
p µ1/p

p )2k+2
∞∑
j1=1

β2
i,j1 · · ·

∞∑
jk=1

β2
i+j1+···+jk−1,jk

, (3.26)

where (recall) µp = E|ζ0|p. Note C2 = µ2 = 1, hence KQ,2 = KQ coincides with
(3.20).

Proposition 3.3.3 Assume conditions of Theorem 3.3.1 and KQ,p < ∞, for some
p ≥ 2. Then E|Xt|p <∞.

Proof. The proof is similar to that of Theorem 3.3.1 (i). By Proposition 3.2.1,

(
E
∣∣∣Xt

∣∣∣p)2/p
≤ C2/p

p

(∣∣∣EXt

∣∣∣p + µp
(∑
s≤t

(
E|gs,t|p

)2/p)p/2)2/p

= C2/p
p µ2/p

p

∑
s≤t

(E|gs,t|p)2/p.

Using condition (3.19), Proposition 3.2.1 and inequality (a+ b)q ≤ aq + bq, 0 < q ≤ 1
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we obtain the following recurrent inequality:
(
E|gs,t|p

)2/p
≤

(
cpQE

∣∣∣αt−s +
∑

s<u≤t
βt−u,u−sζugu,t

∣∣∣p)2/p

≤ c2
QC

2/p
p

(
|αt−s|p + µp

(∑
s<u≤t

(|βt−u,u−s|p E|gu,t|p)2/p
)p/2)2/p

≤ c2
QC

2/p
p

(
|αt−s|2 + µ2/p

p

∑
s<u≤t

β2
t−u,u−s(E|gu,t|p)2/p

)
.

Iterating the last inequality as in the proof of Theorem 3.3.1 we obtain (E|Xt|p)2/p ≤
KQ,p <∞, with KQ,p given in (3.26). �

Finally, let us discuss the question whenXt of (3.16) satisfies the weak dependence
condition in (3.11) for the invariance principle.

Proposition 3.3.4 Let {Xt} satisfy the conditions of Theorem 3.3.1 and Ω(2) be
defined in (3.11). Then

Ω(2) ≤
∞∑
i=0
|αi|

∞∑
k=0

ck+1
Q

∞∑
j1=1
|βi,j1| · · ·

∞∑
jk=1
|βi+j1+···+jk−1,jk |. (3.27)

In particular, if the quantity on the r.h.s. of (3.27) is finite, {Xt} satisfies the func-
tional central limit theorem in (3.12).

Proof follows from (3.24) and the inequality |∑xi|1/2 ≤
∑ |xi|1/2. �

3.4 Examples

Example 3.4.1 (Finitely dependent projective equations) Consider equation
(3.16), where αi = βi,j = 0 for all i > m and some m ≥ 0. Since Q(0) = 0, the
corresponding equation writes as

Xt = µ+
∑

t−m<s≤t
ζsQ

(
αt−s +

∑
s<u≤t

βt−u,u−s
(
E[u,t]Xt − E[u+1,t]Xt

))
, (3.28)

where the r.h.s. is F[t−m+1,t]-measurable. In particular, {Xt} of (3.28) is an m-
dependent process. We may ask if the above process can be represented as a moving-
average of length m w.r.t. to some i.i.d. innovations? In other words, if there exists
an i.i.d. standardized sequence {ηs, s ∈ Z} and coefficients cj, 0 ≤ j < m such that

Xt =
∑

t−m<s≤t
ct−sηs, t ∈ Z. (3.29)
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To construct a negative counter-example to the above question, consider the sim-
ple case of (3.28) with m = 2, µ = 0, α1 = 0, β0,1 = 1, Q(α0) = 1:

Xt = ζtQ(α0) + ζt−1Q(α1 + β0,1E[t,t]Xt) = ζt + ζt−1Q(ζt). (3.30)

Assume that EQ(ζt) = 0. Then EXtXt−1 = 0,EX2
t = 1 + EQ2(ζ0). On the other

hand, from (3.29) with m = 2 we obtain 0 = EXtXt−1 = c0c1, implying that {Xt} is
an i.i.d. sequence.

Let us show that the last conclusion contradicts the form of Xt in (3.30) under
general assumptions on Q and the distribution of ζ = ζ0. Assume that ζ is symmetric,
∞ > Eζ4 > (Eζ2)2 = 1 and Q is antisymmetric. Then

Cov(X2
t , X

2
t−1) = EQ2(ζ)

{
(Eζ4 − 1) + (Eζ2Q2(ζ)− EQ2(ζ))

}
.

Assume, in addition, that Q is monotone nondecreasing on [0,∞). Then Eζ2Q2(ζ) ≥
Eζ2EQ2(ζ) = EQ2(ζ), implying Cov(X2

t , X
2
t−1) > 0. As a consequence, (3.30) is not

a moving average of length 2 in some standardized i.i.d. sequence.

Example 3.4.2 (Linear kernel Q) For linear kernel Q(x) = cQx, the solution of
(3.16) of Theorem 3.3.1 can be written explicitly as Xt = µ + ∑∞

k=1X
(k)
t , where

X
(1)
t = cQ

∑∞
i=0 αiζt−i is a linear process and

X
(k+1)
t = ck+1

Q

∞∑
i=0

αi
∞∑

j1,...,jk=1
βi,j1 . . . βi+j1+···+jk−1,jkζt−iζt−i−j1 . . . ζt−j1−···−jk

for k ≥ 1 is a Volterra series of order k + 1 (see Dedecker et al. (2007), p.22), which
are orthogonal in sense that EX(k)

t X(`)
s = 0, t, s ∈ Z, k, ` ≥ 1, k 6= `.

Let H2
(−∞,t] ⊂ L2

(−∞,t] be the subspace spanned by products 1, ζs1 , . . . , ζsk , s1 <

· · · < sk ≤ t, k ≥ 1. Clearly, the above Volterra series Xt, X
(k)
t ∈ H2

(−∞,t], ∀t ∈ Z
(corresponding to linear Q) constitute a very special class of projective processes. For
example, the process in (3.30) cannot be expanded in such series unless Q is linear.
To show the last fact, decompose (3.30) as Xt = Yt + Zt, where Yt := ζt + αζt−1ζt ∈
H2

(−∞,t], α := EζQ(α) and Zt := ζt−1(Q(ζt) − αζt) is orthogonal to H2
(−∞,t], Zt 6= 0,

hence Xt 6∈ H2
(−∞,t].

Example 3.4.3 (The LARCH model) The Linear ARCH (LARCH) model, in-
troduced by Robinson (1991) (see also Giraitis et al. (2000), Giraitis et al. (2004),
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Giraitis et al. (2009)), Giraitis and Surgailis (2002)), is defined by the equations

rt = σtζt, σt = α +
∞∑
j=1

βjrt−j, (3.31)

where {ζt} is a standardized i.i.d. sequence, and the coefficients βj satisfy B :={∑∞
j=1 β

2
j

}1/2
< ∞. It is well-known (Giraitis and Surgailis (2002)) that a second

order strictly stationary solution {rt} to (3.31) exists if and only if

B < 1, (3.32)

in which case it can be represented by the convergent orthogonal Volterra series

rt = σtζt, σt = α
(

1 +
∞∑
k=1

∞∑
j1,...,jk=1

βj1 . . . βjkζt−j1 . . . ζt−j1−···−jk

)
.

Clearly, the last series is a particular case of the Volterra series of the previous
example. We conclude that under the condition (3.32), the volatility process {Xt =
σt} of the LARCH model satisfies the projective equation (3.18) with linear function
Q(x) = x and αj = αβj. Note that (3.32) coincides with the condition c2

QB
2 < 1 of

Proposition 3.3.2 (ii) for the existence of solution of (3.18).
From Proposition 3.3.3 the following new result about the existence of higher

order moments of the LARCH model is derived.

Corollary 3.4.1 Assume that

C1/p
p µ1/p

p B < 1, (3.33)

where µp = E|ζ0|p and Cp is the absolute constant from Proposition 3.2.1, p ≥ 2.
Then E|rt|p = µpE|σt|p <∞. Moreover,

E|σt|p ≤
α2C4/p

p µ2/p
p B2

1− C2/p
p µ

2/p
p B2

. (3.34)

Proof follows from Proposition 3.3.3 and the easy fact that for the LARCH model,
KQ,p of (3.26) coincides with the r.h.s. of (3.34). �

Condition (3.33) can be compared with the sufficient condition for E|rt|p <∞, p =
2, 4, . . . in Giraitis et al. (2000), Lemma 3.1:

(2p − p− 1)1/2µ1/p
p B < 1. (3.35)
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Although the best constant Cp in the Rosenthal’s inequality is not known, (3.33)
seems much weaker than (3.35), especially when p is large. See, e.g. Hitchenko
(1990), where it is shown that C1/p

p = O(p/ log p), p→∞.

Example 3.4.4 (Projective “threshold” equations) Consider projective equa-
tion

Xt = ζt +
p∑
j=1

ζt−jQ
(
E[t−j+1,t]Xt

)
, (3.36)

where 1 ≤ p < ∞ and Q is a bounded measurable function with Q(0) = 1. If Q
is a step function: Q(x) = ∑q

k=1 ck1(x ∈ Ik), where ∪qk=1Ik = R is a partition of R
into disjoint intervals Ik, 1 ≤ k ≤ q, the process in (3.36) follows different “moving-
average regimes” in the regions E[t−j+1,t]Xt ∈ Ik, 1 ≤ j ≤ p exhibiting a “projective
threshold effect”. See Figure 3.1, where the top graph shows a trajectory having
a single threshold at x = 0 and the bottom graph a trajectory with two threshold
points at x = 0 and x = 2.
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Figure 3.1: Trajectories of solutions of (3.36), p = 10. Top: Q(x) = 1(x > 0), bottom:
Q(x) = 1(0 < x < 2).
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3.5 Simulations

Solutions of projective equations can be easily simulated using a truncated expansion
X

(M)
t = ∑

t−M≤s≤t gs,tζs instead of infinite series in (3.1). We chose the truncation
level M equal to the sample size M = n = 3000 in the subsequent simulations. The
coefficients gs,t of projective equations are computed very fast from recurrent formula
(3.22) and simulated values ζs,−M ≤ s ≤ n. The innovations were taken standard
normal. For better comparisons, we used the same sequence ζs,−M ≤ s ≤ n in all
simulations.

Stationary solution of equation (3.18) was simulated for three different choices
of Q and two choices of coefficients αj, βj. The first choice of coefficients is αj =
0.5j, βj = c 0.9j and corresponds to a short memory process {Xt}. The second choice
is αj = Γ(d+ j)/Γ(d)Γ(j + 1), βj = cαj with d = 0.4 corresponds to a long memory
process {Xt} with coefficients as in ARFIMA(0, d, 0). The value of c > 0 was chosen
so that c2

QB
2 = 0.9 < 1. The latter condition guarantees the existence of a stationary

solution of (3.18), see Proposition 3.3.2.
The simulated trajectories and (smoothed) histograms of their marginal densities

strongly depend on the kernel Q. We used the following functions:

Q1(x) = x, Q2(x) = max(0, x), Q3(x) =


x, x ∈ [0, 1],
2− x, x ∈ [1, 2],
0, otherwise.

(3.37)

Clearly, Qi, i = 1, 2, 3 in (3.37) satisfy (3.19) with cQ = 1 and the Lipschitz condition
(3.45). Note that Q3 is bounded and supported in the compact interval [0, 2] while
Q1, Q2 are unbounded, the latter being bounded from below. Also note that for
βj ≡ 0 and the choice of αj as above, the projective process {Xt} of (3.18) agrees
with AR(.5) for αj = 0.5j and with ARFIMA(0, 0.4, 0) for αj = Γ(d+j)/Γ(d)Γ(j+1)
in all three cases in (3.37)

A general impression from our simulations is that in all cases of Q in (3.37), the
coefficients αj account for the persistence and βj for the clustering of the process. We
observe that as βj’s increase, the process becomes more asymmetric and its empirical
density diverges from the normal density (plotted in red in Figures 3.2-3.4 with
parameters equal to the empirical mean and variance of the simulated series). In the
case of unbounded Q = Q1, Q2 and long memory ARFIMA coefficients, the marginal
distribution seems strongly skewed to the left and having a very light left tail and
a much heavier right tail. On the other hand, in the case of geometric coefficients,
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Figure 3.2: Trajectories and (smoothed) histograms of solutions of projective equation
(3.18) with Q(x) = Q1(x) = x. Top: αj = (.5)j , βj = c(.9)j , bottom: αj = (.5)j , βj = 0.
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Figure 3.3: Trajectories and (smoothed) histograms of solutions of projective equation
(3.18) with Q(x) = Q2(x) = max(x, 0). Top: αj = ARFIMA(0, 0.4, 0), βj = c αj , bottom:
αj = ARFIMA(0, 0.4, 0), βj = 0.
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Figure 3.4: Trajectories and (smoothed) histograms of solutions of projective equation
(3.18) with Q(x) = Q3(x) = the “triangle function” in (3.37). Top: αj = (.5)j , βj = c(.9)j ,
bottom: αj = ARFIMA(0, 0.4, 0), βj = c αj

the density for Q = Q1, Q2 seems rather symmetric although heavy tailed. Case of
Q = Q3 corresponding to bounded Q seems to result in asymmetric distribution with
light tails.

3.6 Modifications

Equation (3.16) can be modified in several ways. The first modification is obtained
by taking the αt−s’s “outside of Q”:

Xt = µ+
∑
s≤t

ζsαt−sQ
( ∑
s<u≤t

βt−u,u−s
(
E[u,t]Xt − E[u+1,t]Xt

))
, (3.38)

where αi, βi,j, Q satisfy similar conditions as in (3.16). However, note that (3.19)
implies Q(0) = 0 in which case (3.38) has a trivial solution Xt ≡ µ. To avoid the last
eventuality, condition (3.19) must be changed. Instead, we shall assume that Q is a
measurable function satisfying

Q(x)2 ≤ c2
0 + c2

1x
2, x ∈ R (3.39)
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for some c0, c1 ≥ 0. Denote

K̃Q := c2
0

∞∑
k=0

c2k
1

∞∑
i=0

α2
i

∞∑
j1=1

α2
i+j1β

2
i,j1 · · ·

∞∑
jk=1

α2
i+j1+···+jkβ

2
i+j1+···+jk−1,jk

.

Proposition 3.6.1 can be proved similarly to Theorem 3.3.1 and its proof is omitted.

Proposition 3.6.1 (i) Assume condition (3.39) and

K̃Q < ∞. (3.40)

Then there exists a unique solution {Xt} of (3.38), which is written as a projective
moving average of (3.7) with coefficients gt−k,t recursively defined as

gt−k,t := αkQ
( k−1∑
i=0

βi,k−iζt−igt−i,t

)
, k = 1, 2, . . . , gt,t := α0Q(0).

(ii) In the case of linear function Q(x) = c0 + c1x, condition (3.40) is also necessary
for the existence of a solution of (3.38).

Remark 3.6.1 Let A2
k := ∑∞

i=k α
2
i and |βi,j| ≤ β̄. Then

K̃Q ≤ c2
0

∞∑
k=0

(c1β̄)2k
∞∑
i=0

α2
i

∞∑
j1=1

α2
i+j1 · · ·

∞∑
jk=1

α2
i+j1+···+jk ≤ c2

0

∞∑
k=0

(c1β̄)2kA2
0A

2
1 . . . A

2
k.

Hence, A2 = A2
0 < ∞ and β̄ < ∞ imply K̃Q < ∞, for any c0, c1, β̄; see the proof of

Proposition 3.3.2.

Projective stochastic equations (3.16) and (3.38) can be further modified by in-
cluding projections of lagged variables. Consider the following extension of (3.16):

Xt = µ+ ∑
s≤t

ζsQ
(
αt−s +

t−1∑
u=s+1

βt−1−u,u−s
(
E[u,t−1]Xt−1 − E[u+1,t−1]

)
Xt−1

)
, (3.41)

where αi, βi,j, Q are the same as in (3.16) and the only new feature is that t is
replaced by t − 1 in the inner sum on the r.h.s. of the equation. This fact allows
to study nonstationary solutions of (3.41) with a given projective initial condition
Xt = X0

t , t ≤ 0 and the convergence of Xt to the equilibrium as t → ∞; however,
we shall not pursue this topic in the present paper. The following proposition is a
simple extension of Theorem 3.3.1 and its proof is omitted.
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Proposition 3.6.2 Let αi, βi,j, Q satisfy the conditions of Theorem 3.3.1, including
(3.19) and (3.21). Then there exists a unique solution {Xt} of (3.41), which is written
as a projective moving average of (3.7) with coefficients gt−k,t recursively defined as
gt−k,t := Q(αk), k = 0, 1 and

gt−k,t := Q
(
αk +

k−2∑
i=0

βi,k−1−iζt−1−igt−1−i,t−1
)
, k ≥ 2.

Finally, consider a projective equation (3.13) with µt ≡ 0 and kernels Qs,t =
Qt−s(xs+1,t−1, . . . , xs+1,s) depending on t− s real variables, where Q0 = 1 and

Qj(x1, . . . , xj) = d(x1)
1 · d(x2) + 1

2 · d(x3) + 2
3 . . .

d(xj) + j − 1
j

, (3.42)

j ≥ 1, where d(x), x ∈ R is a measurable function taking values in the interval
(−1/2, 1/2). More explicitly,

Xt =
∞∑
j=0

Qj

(
E[t−j+1,t−1]Xt−1,E[t−j+1,t−2]Xt−2, . . . ,E[t−j+1,t−j]Xt−j

)
ζt−j, (3.43)

where E[t−j+1,t−j]Xt−j = EXt = 0. Note that when d(x) = d is constant, {Xt}
(3.43) is a stationary ARFIMA(0, d, 0) process. Time-varying fractionally integrated
processes with deterministic coefficients of the form (3.42) were studied in Philippe
et al. (2006), Philippe et al. (2008). We expect that (3.43) feature a “random”
memory intensity depending on the values of the process. A rigorous study of long
memory properties of this model does not seem easy. On the other hand, solvability
of (3.43) can be established similarly to the previous cases (see below).

Proposition 3.6.3 Let d(x) be a measurable function taking values in (−1/2, 1/2)
and such that supx∈R d(x) ≤ d̄, where d̄ ∈ (0, 1/2). Then there exists a unique
stationary solution {Xt} of (3.43), which is written as a projective moving average
of (3.7) with coefficients gs,t recursively defined as gt,t := 1 and

gs,t := Qt−s
( ∑
s<u≤t−1

ζugu,t−1,
∑

s<u≤t−2
ζugu,t−2, . . . , 0

)
, s < t, (3.44)

with Qt−s defined at (3.42).

Proof. Note that supx1,...,xj∈R |Qj(x1, . . . , xj)| ≤ Γ(d̄ + j)/Γ(d̄)Γ(j) =: ψj and∑∞
j=0 ψ

2
j < ∞. Therefore the gs,t’s in (3.44) satisfy ∑

s≤t Eg2
s,t < ∞ for any t ∈ Z.

The rest of the proof is analogous as the case of Theorem 3.3.1. �
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3.7 Long memory

In this section we study long memory properties (the decay of covariance and partial
sums’ limits) of projective equations (3.16) and (3.38) in the case when the coefficients
αj’s decay slowly as jd−1, 0 < d < 1/2.

Theorem 3.7.1 Let {Xt} be the solution of projective equation (3.16) satisfying the
conditions of Theorem 3.3.1 and µ = EXt = 0. Assume, in addition, that Q is a
Lipschitz function, viz., there exists a constant cL > 0 such that

|Q(x)−Q(y)| < cL|x− y|, x, y ∈ R (3.45)

and that there exist κ > 0 and 0 < d < 1/2 such that

bj := Q(αj) ∼ κ jd−1, j →∞ (3.46)

and

β̄j := max
0≤i<j

|βi,j−i| = o(bj), j →∞. (3.47)

Then, as t→∞

EX0Xt ∼
∞∑
k=0

bkbt+k ∼ κ2
dt

2d−1, (3.48)

where κ2
d := κ2B(d, 1− d) and B(d, 1− d) is beta function. Moreover, as n→∞

n−1/2−d
[nτ ]∑
t=1

Xt −→D[0,1] cκ,dBH(τ), (3.49)

where BH is a fractional Brownian motion with parameter H = d+(1/2) and variance
EB2

H(t) = t2H and c2
κ,d := κ2B(d,1−d)

d(1+2d) .

Proof. Let us note that the statements (3.48) and (3.49) are well-known when
βi,j ≡ 0, in which case Xt coincides with the linear process Yt := ∑

s≤t bt−sζs, see,
e.g., Giraitis et al. (2012), Proposition 3.2.1 and Corollary 4.4.1.

The natural idea of the proof is to approximate {Xt} by the linear process {Yt}.
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For t ≥ 0, k ≥ 0, denote

rXt := EX0Xt =
∑
s≤0

E[gs,0 gs,t], rYt := EY0Yt =
∑
s≤0

b−sbt−s,

ϕt−k,t := gt−k,t − bk = Q
(
αk +

k−1∑
i=0

βi,k−iζt−igt−i,t

)
−Q(αk).

Then

rXt − rYt =
∑
s≤0

E[(b−s + ϕs,0)(bt−s + ϕs,t)− b−sbt−s]

=
∑
s≤0

b−sE[ϕs,t] +
∑
s≤0

bt−sE[ϕs,0] +
∑
s≤0

E[ϕs,0 ϕs,t] =:
3∑
i=1

ρi,t.

Using (3.45) we obtain

|Eϕt−k,t|2 ≤ Eϕ2
t−k,t ≤ c2

LE
( k−1∑
i=0

βi,k−iζt−igt−i,t

)2

= c2
L

( k−1∑
i=0

β2
i,k−iEg2

t−i,t

)

≤ β̄2
kc

2
L

( ∞∑
i=0

Eg2
t−i,t

)
≤ β̄2

kc
2
LKQ.

This and condition (3.47) imply that

|Eϕt−k,t|+ E1/2ϕ2
t−k,t ≤ δkk

d−1, ∀ t, k ≥ 0,

where δk → 0 (k →∞). Therefore for any t ≥ 1

|ρ1,t| ≤ C
∞∑
k=1

kd−1(t+ k)d−1δt+k ≤ Cδ′tt
2d−1,

|ρ2,t| ≤ C
∞∑
k=1

kd−1δk(t+ k)d−1 ≤ Cδ′tt
2d−1,

|ρ3,t| ≤
∑
s≤t

E1/2[ϕ2
s,0] E1/2[ϕ2

s,t] ≤ C
∞∑
k=1

kd−1(t+ k)d−1δkδt+k ≤ Cδ′tt
2d−1,

where δ′k → 0 (k →∞). This proves (3.48).
To show (3.49), consider Zt := Xt − Yt = ∑

u≤t ϕu,tζu, t ∈ Z. By stationarity of
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{Zt}, for any s ≤ t we have

Cov(Zt, Zs) =
∑
u≤0

E[ϕu,0 ϕu,t−s] ≤
∑
u≤0

E1/2[ϕ2
u,0] E1/2[ϕ2

u,t−s] = o((t− s)2d−1),

see above, and therefore E
(∑n

t=1 Zt
)2

= o(n2d+1), implying

n−d−(1/2)
[nτ ]∑
t=1

Xt = n−d−(1/2)
[nτ ]∑
t=1

Yt + op(1).

Therefore partial sums of {Xt} and {Yt} tend to the same limit cκ,dBH(τ), in the
sense of weak convergence of finite dimensional distributions. The tightness in D[0, 1]
follows from (3.48) and the Kolmogorov criterion. Theorem 3.7.1 is proved. �

A similar but somewhat different approximation by a linear process applies in the
case of projective equations of (3.38). Let us discuss a special case of βi,j:

βi,j = 1, for all i = 0, 1, . . . , j = 1, 2, . . . . (3.50)

Note that for such βi,j,
∑
s<u≤t βt−u,u−s(E[u,t] − E[u+1,t])Xt = E[s+1,t]Xt, s < t and

the corresponding projective equation (3.38) with µ = 0, αi = bi coincides with
(3.5). Recall that for bounded βi,j’s as in (3.50), condition (3.39) on Q together with∑∞
i=0 α

2
i < ∞ guarantee the existence of the stationary solution {Xt} (see Remark

3.6.1). We shall also need the following additional condition:

E
(
Q(E[s,0]X0)−Q(X0)

)2
→ 0, as s→ −∞. (3.51)

Since E
(
E[s,0]X0 − X0

)2
→ 0, s → −∞, so (3.51) is satisfied if Q is Lipschitz, but

otherwise conditions (3.51) and (3.39) allow Q to be even discontinuous. Denote

c2
Q,d :=

(
E[Q(X0)]

)2
B(d, 1− d).

Theorem 3.7.2 Let {Xt} be the solution of projective equation (3.38) with µ =
0, βi,j as in (3.50), Q satisfying (3.39) and

αk ∼ kd−1, k →∞, ∃ 0 < d < 1/2. (3.52)

In addition, let (3.51) hold. Then

EX0Xt ∼ c2
Q,dt

2d−1, t→∞ (3.53)
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and

n−1/2−d
[nτ ]∑
t=1

Xt −→D[0,1] c′Q,dBH(τ), c′Q,d := cQ,d/(d(1 + 2d)1/2. (3.54)

Proof. Similarly as in the proof of the previous theorem, let Yt := ∑
s≤t bt−sζs,

bk := αkE[Q(X0)], rXt := EX0Xt, r
Y
t := EY0Yt, t ≥ 0. Relation (3.53) follows from

rXt − rYt = o(t2d−1), t→∞. (3.55)

We have Xt = ∑
s≤t gs,tζs, gs,t = αt−sQ(E[s+1,t]Xt), EX2

t = ∑
s≤t Eg2

s,t < ∞ and
E[Q(E[s+1,t]Xt)2] ≤ c2

0+c2
1E(E[s+1,t]Xt)2 ≤ c2

0+c2
1EX2

t < C. Decompose rXt = rX1,t+rX2,t,
where

rX1,t :=
∑
s≤0

αsαt+sE[Q(E[s+1,0]X0)] E[Q(E[1,t]Xt)], rX2,t :=
∑
s≤0

αsαt+sγs,t,

and where

|γs,t| :=
∣∣∣E[Q(E[s+1,0]X0)

{
Q(E[s+1,t]Xt)−Q(E[1,t]Xt)

}]∣∣∣ ≤ γ̃
1/2
1,s γ̃

1/2
2,s,t.

Here, γ̃1,s := E[Q2(E[s+1,0]X0)] ≤ C, see above, while

|γ̃2,s,t| := E
[(
Q(E[s+1,t]Xt)−Q(E[1,t]Xt)

)2]
= E

[(
Q(E[s+1−t,0]X0)−Q(E[1−t,0]X0)

)2]
→ 0, t→∞ (3.56)

uniformly in s ≤ 0, according to (3.51). Hence and from (3.52) it follows that

|rX2,t| = o(t2d−1), t→∞. (3.57)

Accordingly, it suffices to prove (3.55) with rXt replaced by rX1,t. We have

rX1,t = rYt +
∑
s≤0

αsαt+sϕ1,s,t +
∑
s≤0

αsαt+sϕ2,s,t +
∑
s≤0

αsαt+sϕ3,s,t,

where the “remainders” ϕ1,s,t := E[Q(X0)]
{

E[Q(E[s+1,0]X0)] − E[Q(X0)]
}
, ϕ2,s,t :=

E[Q(X0)]
{

E[Q(E[1−t,0]X0)]− E[Q(X0)]
}

and ϕ3,s,t :=
(
E[Q(E[s+1,0]X0)]− E[Q(X0)]

)
×
(
E[Q(E[1−t,0]X0)]− E[Q(X0)]

)
can be estimated similarly to (3.56), leading to the

asymptotics of (3.57) for each of the three sums in the above decomposition of rX1,t.
This proves (3.53).
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Let us prove (3.54). Consider the convergence of one-dimensional distributions
for τ = 1, viz.,

n−d−1/2SXn → N (0, σ2), σ = c′Q,d, (3.58)

where SXn := ∑n
t=1Xt. Then (3.58) follows from

E(SXn − SYn )2 = o(n1+2d), (3.59)

where SYn := ∑n
t=1 Yt and Yt is as above. We have

E(SXn − SYn )2 = E
(∑
s≤n

ζs
n∑

t=1∨s
αt−sQ̃s,t

)2

=
∑
s≤n

n∑
t1,t2=1∨s

αt1−sαt2−sE[Q̃s,t1Q̃s,t2 ], (3.60)

where Q̃s,t := Q
(
E[s+1,t]Xt

)
− E[Q(X0)]. Let us prove that uniformly in s ≤ t1

E[Q̃s,t1Q̃s,t2 ] = o(1), as t2 − t1 →∞. (3.61)

We have for s ≤ t1 ≤ t2 that

E[Q̃s,t1Q̃s,t2 ] = E
[
Q̃s,t1

{
Q
(
E[s+1,t2]Xt2

)
− E[Q(X0)]

}]
= E[Q̃s,t1 ]

{
E
[
Q
(
E[t1+1,t2]Xt2

)]
− E[Q(X0)]

}
+ E

[
Q̃s,t1

{
Q
(
E[s+1,t2]Xt2

)
−Q

(
E[t1+1,t2]Xt2

)}]
=: ψ′s,t1,t2 + ψ′′s,t1,t2 ,

where we used the fact that Q̃s,t1 and Q
(
E[t1+1,t2]Xt2

)
are independent. Here, thanks

to (3.51), we see that |ψ′s,t1,t2| ≤ E1/2[Q̃2
s,t1 ] E1/2

[{
Q
(
E[t1−t2+1,0]X0

)
− Q(X0)

}2]
≤

CE1/2
[{
Q
(
E[t1−t2+1,0]X0

)
−Q(X0)

}2]
→ 0 uniformly in s ≤ t1 ≤ t2 as t2 − t1 →∞.

The same is true for |ψ′′s,t1,t2| since it is completely analogous to (3.56). This proves
(3.61). Next, with (3.60) in mind, split E(SXn − SYn )2 =: Tn = T1,n + T2,n, where

T1,n :=
∑
s≤n

n∑
t1,t2=1∨s

1(|t1 − t2| > K) . . . , T2,n :=
∑
s≤n

n∑
t1,t2=1∨s

1(|t1 − t2| ≤ K) . . . ,

where K is a large number. By (3.61), for any ε > 0 we can find K > 0 such that
sups≤t1<t2:t2−t1>K |E[Q̃s,t1Q̃s,t2 ]| < ε and therefore

|T1,n| < ε
∑
s≤n

n∑
t1,t2=1∨s

|αt1−sαt2−s| ≤ Cε
n∑

t1,t2=1
|r̄t1−t2| ≤ Cεn1+2d
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holds for all n > 1 large enough, where r̄t := ∑∞
i=0 |αiαt+i| = O(t2d−1) in view of

(3.52). On the other hand, |T2,n| ≤ CKn = o(n1+2d) for any K < ∞ fixed. Then
(3.59) follows, implying the finite-dimensional convergence in (3.54). The tightness
in (3.54) follows from (3.53) and the Kolmogorov criterion, similarly as in the proof
of Theorem 3.7.1. Theorem 3.7.2 is proved. �

Remark 3.7.1 Shao and Wu (2006) discussed partial sums limits of fractionally
integrated nonlinear processes Yt = (1 − L)−dut, t ∈ Z, where LXt = Xt−1 is the
backward shift, (1− L)d = ∑∞

j=0 ψj(d)Lj, d ∈ (−1, 1) is the fractional differentiation
operator, and {ut} is a causal Bernoulli shift:

ut = F (. . . , ζt−1, ζt), t ∈ Z (3.62)

in i.i.d. r.v.’s {ζt, t ∈ Z}. The weak dependence condition on {ut} (3.62), analogous
to (3.11) and guaranteeing the weak convergence of normalized partial sums of {Yt}
towards a fractional Brownian motion, is written in terms of projections P0ut =
(E[0,t] − E[1,t])ut:

Ω(q) :=
∞∑
t=1
‖P0ut‖q < ∞, (3.63)

where ‖ξ‖q := E1/q|ξ|q and q = 2 for 0 < d < 1/2; see Theorem. 2.1 in Shao and
Wu (2006), also Wu and Min (2005), Wu (2005). The above mentioned papers verify
(3.63) for several classes of Bernoulli shifts. It is of interest to verify (3.63) for
projective moving averages. For Xt of (3.1) and 0 < d < 1/2, ut := (1 − L)dXt =∑
s≤t ζsGs,t is a well-defined projective moving average with coefficients

Gs,t :=
∑
s≤v≤t

ψt−v(d)gs,v, s ≤ t,

see Proposition 3.2.2. For concreteness, let gs,t = ψt−s(−d)Q(E[s+1,t]Xt) as in Theo-
rem 3.7.2 with αj = ψj(−d). We have Ω(2) = ∑∞

t=1 ‖G0,t‖2, where

‖G0,t‖2
2 = E

[ t∑
v=0

ψt−v(d)ψv(−d)Q(E[1,v]Xv)
]2

= E
[ t−1∑
v=0

ψt−v(d)ψv(−d)Qv,t

]2
, (3.64)

where Qv,t := Q(E[1,v]Xv) − Q(E[1,t]Xt) and we used ∑t
v=0 ψt−v(d)ψv(−d) = 0, t ≥ 1

in the last equality. Note that ψt−v(d)ψv(−d) < 0 have the same sign and Qv,t ≈
Q(Xv)−Q(Xt) are not negligible in (3.64). Therefore we conjecture that ‖G0,t‖2

2 =
O
(∑t−1

v=0 |ψt−v(d)ψv(−d)|
)2

= O(t−2(1−d)) and hence Ω(2) =∞ for 0 < d < 1/2. The
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above argument suggests that projective moving averages posses a different “memory
mechanism” from fractionally integrated processes in Shao and Wu (2006).
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Chapter 4

A nonlinear model for long
memory conditional
heteroscedasticity

Abstract. We discuss a class of conditionally heteroscedastic time series models
satisfying the equation rt = ζtσt, where ζt are standardized i.i.d. r.v.’s and the
conditional standard deviation σt is a nonlinear function Q of inhomogeneous linear
combination of past values rs, s < t with coefficients bj. The existence of stationary
solution rt with finite pth moment, 0 < p < ∞ is obtained under some conditions
on Q, bj and the pth moment of ζ0. Weak dependence properties of rt are studied,
including the invariance principle for partial sums of Lipschitz functions of rt. In
the case when Q is the square root of a quadratic polynomial, we prove that rt can
exhibit a leverage effect and long memory, in the sense that the squared process r2

t has
long memory autocorrelation and its normalized partial sums process converges to a
fractional Brownian motion. The results are extended to a generalized model where
the conditional variance satisfies an AR(1) equation σ2

t = Q2
(
a+∑∞j=1 bjrt−j

)
+γσ2

t−1.
We also provide another condition for the existence of higher moments of rt which
does not include the Rosenthal constant. A simulated trajectories and histograms of
marginal density of σt for different values of γ are presented.
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4.1 Introduction

A class of conditionally heteroscedastic ARCH-type processes is defined from a stan-
dardized i.i.d. sequence {ζt, t ∈ Z} as solutions of stochastic equation

rt = ζtσt, σt = V (rs, s < t), (4.1)

where V (x1, x2, . . . ) is some function of x1, x2, . . . . The present chapter discusses a
class of models (4.1) with V of the form

V (x1, x2, . . . ) = Q(a+
∞∑
j=1

bjxj), (4.2)

where Q(x), x ∈ R is a (nonlinear) function of a single real variable x ∈ R which
may be separated from zero by a positive constant: Q(x) ≥ c > 0, x ∈ R. Linear
Q(x) = x corresponds to the LARCH model (2.11). Probably, the most interesting
nonlinear case of Q in (4.2) is

Q(x) =
√
c2 + x2, (4.3)

where c ≥ 0 is a parameter. In the latter case, the model is described by equations

rt = ζtσt, σt =
√√√√c2 +

(
a+

∑
s<t

bt−srs

)2
. (4.4)

Note that σt ≥ c ≥ 0 in (4.4) is nonnegative and separated from 0 if c > 0. Particular
cases of volatility forms in (4.4) are:

σt =
√
c2 + (a+ brt−1)2 ( Engle (1990) asymmetric ARCH(1)), (4.5)

σt =
√√√√c2 +

(
a+ b

p

p∑
j=1

rt−j
)2
, (4.6)

σt =
∣∣∣a+

∞∑
j=1

bjrt−j
∣∣∣ (Q(x) = |x|), (4.7)

σt =
√
c2 + (a+ b((1− L)−d − 1)rt)2. (4.8)

In (4.5)-(4.8), a, b, c are real parameters, p ≥ 1 an integer, Lxt = xt−1 is the backward
shift, and (1 − L)−dxt = ∑∞

j=0 ϕjxt−j, ϕj = Γ(d + j)/Γ(d)Γ(j + 1), ϕ0 = 1 is the
fractional integration operator, 0 < d < 1/2. The squared volatility (conditional
variance) σ2

t in (4.5)-(4.8) and (4.4) is a quadratic form in lagged returns rt−1, rt−2, . . .

53



and hence represent particular cases of Sentana (1995) Quadratic ARCH (QARCH)
model with p = ∞. It should be noted, however, that the first two conditional
moments do not determine the unconditional distribution. Particularly, (4.1) with
(4.4) generally is a different process from Sentana (1995) QARCH process, the latter
being defined as a solution of a linear random-coefficient equation for {rt} in contrast
to the nonlinear equation in (4.1). See also Example 4.2.2 below.

The model in (4.1)-(4.2) can be generalized by including the lagged volatilities
from the past, in particular

rt = ζtσt, σ2
t = Q2

(
a+

∞∑
j=1

bjrt−j

)
+ γσ2

t−1, (4.9)

where 0 ≤ γ < 1 is a parameter. The inclusion of lagged σ2
t−1 in (4.9) helps to reduce

very sharp peaks and clustering of volatility which occur in trajectory of (4.1)-(4.2)
with (4.3) near the threshhold c > 0 (see Figure 4.1). The generalization from (4.1)-
(4.2) to (4.9) is similar to that from ARCH to GARCH models, see Engle (1982),
Bollerslev (1986), particularly, (4.9) with Q(x) of (4.3) and bj = 0, j ≥ 2 reduces to
the Asymmetric GARCH(1,1) of Engle (1990), see Example 4.6.1.

Let us describe the main results of this chapter. Section 4.2 obtains sufficient
conditions on Q, bj and |µ|p := E|ζ0|p for the existence of stationary solution of (4.1)-
(4.2) with finite moment E|rt|p <∞, p > 0. We use the fact that the above equations
can be reduced to the “nonlinear moving-average” equation

Xt =
∑
s<t

bt−sζsQ(a+Xs)

for linear form Xt := ∑
s<t bt−srs in (4.2), and vice-versa. Section 4.3 aims at pro-

viding weak dependence properties of model (4.1)-(4.2), in particular, the invariance
principle for Lipschitz functions of {rt} and {Xt}, under the assumption that bj are
summable and decay as j−γ with γ > 1. Section 4.4 discusses long memory prop-
erty of the quadratic model in (4.4). For bj ∼ βjd−1, j → ∞, 0 < d < 1/2 as
in (4.8), we prove that the squared process {r2

t } has long memory autocorrelations
and its normalized partial sums process tend to a fractional Brownian motion with
Hurst parameter H = d + 1/2 (Theorem 4.4.2). Section 4.5 establishes the leverage
effect in spirit of Giraitis et al. (2004), viz., the fact that the “leverage function”
hj := Cov(σ2

t , rt−j), j ≥ 1 of model (4.4) takes negative values provided the coeffi-
cients a and bj have opposite signs. Finally, Section 4.6 extends the results of previous
sections to a more general class of volatility forms in (4.9) that include lagged volatil-
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ity from the past σ2
t−1. In addition, another condition for the existence of higher

moments of rt which does not include the Rosenthal constant is obtained in Theorem
4.6.2. Simulated trajectories and histograms of marginal density for different values
of parameter γ are presented in Section 4.7.

Notation. In what follows, C,C(. . . ) denote generic constants, possibly dependent
on the variables in brackets, which may be different at different locations. at ∼ bt (t→
∞) is equivalent to limt→∞ at/bt = 1.

4.2 Stationary solution

This section discusses the existence of a stationary solution of (4.1)-(4.2), viz.,

rt = ζtQ
(
a+

∑
s<t

bt−srs
)
, t ∈ Z. (4.10)

Denote
Xt :=

∑
s<t

bt−srs. (4.11)

Then rt in (4.10) can be written as rt = ζtQ(a + Xt) where (4.11) formally satisfies
the following equation:

Xt =
∑
s<t

bt−sζsQ(a+Xs). (4.12)

Below we give rigorous definitions of solutions of (4.10) and (4.12) and a statement
(Proposition 4.2.2) justifying (4.12) and the equivalence of (4.10) and (4.12).

In this section we consider a general case of (4.10)-(4.12) when the innovations
may have infinite variance. More precisely, we assume that {ζt, t ∈ Z} are i.i.d.
r.v.’s with finite moment |µ|p := E|ζt|p < ∞, p > 0. We use the following moment
inequality.

Proposition 4.2.1 Let {Yj, j ≥ 1} be a sequence of r.v.’s such that E|Yj|p < ∞ for
some p > 0 and the sum on the r.h.s. of (4.13) converges. If p > 1 we additionally
assume that {Yj} is a martingale difference sequence: E[Yj|Y1, . . . , Yj−1] = 0, j =
2, 3, . . . . Then there exists a constant Kp depending only on p and such that

E
∣∣∣ ∞∑
j=1

Yj
∣∣∣p ≤ Kp


∑∞
j=1 E|Yj|p, 0 < p ≤ 2,(∑∞
j=1(E|Yj|p)2/p

)p/2
, p > 2.

(4.13)

Remark 4.2.1 In the sequel, we shall refer toKp in (4.13) as the Rosenthal constant.
For 0 < p ≤ 1 and p = 2, inequality (4.13) holds with Kp = 1, and for 1 < p < 2, it
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is known as von Bahr and Esséen inequality, see von Bahr and Esséen (1965), which
holds with Kp = 2. For p > 2, inequality (4.13) is a consequence of the Burkholder
and Rosenthal inequality (see Burkholder (1973), Rosenthal (1970), also Giraitis et al.
(2012), Lemma 2.5.2). Osȩkowski (2012) proved that K1/p

p ≤ 2(3/2)+(1/p)(p4 +1)1/p
(
1+

p
log(p/2)

)
, in particular, K1/4

4 ≤ 27.083. See also Hitchenko (1990).

Let us give some formal definitions. Let Ft = σ(ζs, s ≤ t), t ∈ Z be the sigma-field
generated by ζs, s ≤ t. A random process {ut, t ∈ Z} is called adapted (respectively,
predictable) if ut is Ft-measurable for each t ∈ Z (respectively, ut is Ft−1-measurable
for each t ∈ Z). Define

Bp :=


∑∞
j=1 |bj|p, 0 < p < 2,(∑∞
j=1 b

2
j

)p/2
, p ≥ 2.

(4.14)

Definition 4.2.1 Let p > 0 be arbitrary.
(i) By Lp-solution of (4.10) we mean an adapted process {rt, t ∈ Z} with E|rt|p <∞
such that for any t ∈ Z the series ∑s<t bt−srs converges in Lp and (4.10) holds.
(ii) By Lp-solution of (4.12) we mean a predictable process {Xt, t ∈ Z} with E|Xt|p <
∞ such that for any t ∈ Z the series ∑s<t bt−sζsQ(a+Xs) converges in Lp and (4.12)
holds.

Let Q(x), x ∈ R be a Lipschitz function, i.e., there exists LipQ > 0 such that

|Q(x)−Q(y)| ≤ LipQ|x− y|, x, y ∈ R. (4.15)

Note (4.15) implies the bound

Q2(x) ≤ c2
1 + c2

2x
2, x ∈ R, (4.16)

where c1 ≥ 0, c2 ≥ LipQ and c2 can be chosen arbitrarily close to LipQ; in particular,
(4.16) holds with c2

2 = (1 + ε2)Lip2
Q, c

2
1 = Q2(0)(1 + ε−2), where ε > 0 is arbitrarily

small.

Proposition 4.2.2 Let Q be a measurable function satisfying (4.16) with some ci ≥
0, i = 1, 2 and {ζt} be an i.i.d. sequence with |µ|p = E|ζ0|p < ∞ and satisfying
Eζ0 = 0 for p > 1. In addition, assume Bp <∞.
(i) Let {Xt} be a stationary Lp-solution of (4.12). Then {rt := ζtQ(a + Xt)} is a
stationary Lp-solution of (4.10) and

E|rt|p ≤ C(1 + E|Xt|p). (4.17)
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Moreover, for p > 1, {rt,Ft, t ∈ Z} is a martingale difference sequence with

E[rt|Ft−1] = 0, E[|rt|p|Ft−1] = |µ|p
∣∣∣Q(a+

∑
s<t

bt−srs)|p. (4.18)

(ii) Let {rt} be a stationary Lp-solution of (4.10). Then {Xt} in (4.11) is a stationary
Lp-solution of (4.12) such that

E|Xt|p ≤ CE|rt|p. (4.19)

Moreover, for p ≥ 2

E[XtX0] = Er2
0

∞∑
s=1

bt+sbs, t = 0, 1, . . . . (4.20)

Remark 4.2.2 Let p ≥ 2 and |µ|p < ∞, then by inequality (4.13), {rt} being a
stationary Lp-solution of (4.10) is equivalent to {rt} being a stationary L2-solution of
(4.10) with E|r0|p <∞. Similarly, if Q and {ζt} satisfy the conditions of Proposition
4.2.2 and p ≥ 2, then {Xt} being a stationary Lp-solution of (4.12) is equivalent to
{Xt} being a stationary L2-solution of (4.12) with E|X0|p <∞.

Proof of Proposition 4.2.2. (i) Since {Xt} is predictable and Q satisfies (4.16) so

E|rt|p = |µ|pE|Q(a+Xt)|p

≤ |µ|pE|c2
1 + c2

2(a+Xt)2|p/2

≤ C(1 + E|Xt|p) < C <∞,

proving (4.17). Moreover, if p > 1 then E[rt|Ft−1] = 0 is a stationary martingale
difference sequence. Hence by Proposition 4.2.1, the series in (4.11) converges in Lp

and satisfies

E|Xt|p ≤ C


∑∞
j=1 |bj|p, 0 < p ≤ 2(∑∞
j=1 b

2
j

)p/2
, p > 2

 = CBp < ∞.

In particular, ζtQ(a+∑
s<t bt−srs) = ζtQ(a+Xt) = rt by the definition of rt. Hence,

{rt} is a Lp-solution of (4.10). Stationarity of {rt} follows from stationarity of {Xt}.
Relations (4.18) follow from E[ζt|Ft−1] = 0, E[|ζt|p|Ft−1] = |µ|p, p > 1, and the

fact that Xt is Ft−1-measurable.
(ii) Since {rt} is a Lp-solution of (4.10), so rt = ζtQ(a + Xt) with Xt defined in
(4.11), and {Xt} satisfy (4.12), where the series converges in Lp. Also note that {Xt}
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is predictable. Hence, {Xt} is a Lp-solution of (4.12). By (4.16),

E|rt|p = |µ|pE|Q(a+Xt)|p ≤ |µ|pE|c2
1 + c2

2(a+Xt)2|p/2 ≤ C(1 + E|Xt|p) < C.

It also readily follows that, for p > 1, {rt,Ft, t ∈ Z} is a martingale difference
sequence. Hence, by the moment inequality in (4.13),

E|Xt|p ≤ Kp


∑∞
j=1 |bj|pE|rt−j|p, 0 < p ≤ 2(∑∞
j=1 b

2
jE2/p|rt−j|p

)p/2
, p > 2

 = CBpE|rt|p, (4.21)

proving (4.19). Stationarity of {Xt} and (4.20) are easy consequences of the above
facts and stationarity of {rt}. �

The following theorem obtains a sufficient condition in (4.22) for the existence
of a stationary Lp-solution of equations (4.10) and (4.12). Condition (4.22) involves
the pth moment of innovations, the Lipschitz constant LipQ, the sum Bp in (4.14)
and the Rosenthal constant Kp in (4.13). Part (ii) of Theorem 4.2.1 shows that for
p = 2, condition (4.22) is close to optimal, being necessary in the case of quadratic
Q2(x) = c2

1 + c2
2x

2.

Theorem 4.2.1 Let the conditions of Proposition 4.2.2 be satisfied, p > 0 is arbi-
trary. In addition, assume that Q satisfies the Lipschitz condition in (4.15).

(i) Let
Kp|µ|pLippQBp < 1. (4.22)

Then there exists a unique stationary Lp-solution {Xt} of (4.12) and

E|Xt|p ≤
C(p,Q)|µ|pBp

1−Kp|µ|pLippQBp

, (4.23)

where C(p,Q) <∞ depends only on p and c1, c2 in (4.16).
(ii) Assume, in addition, that Q2(x) = c2

1 + c2
2x

2, where ci ≥ 0, i = 1, 2, and µ2 =
Eζ2

0 = 1. Then c2
2B2 < 1 is a necessary and sufficient condition for the existence of

a stationary L2-solution {Xt} of (4.12) with a 6= 0.

Remark 4.2.3 Condition (4.22) agrees with the contraction condition for the op-
erator defined by the r.h.s. of (4.12) and acting in a suitable space of predictable
processes with values in Lp. For the LARCH model, explicit conditions for finiteness
of the pth moment were obtained in Giraitis et al. (2000), Giraitis et al. (2004) using
a specific diagram approach for multiple Volterra series. For larger values of p > 2,
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condition (4.22) is preferable to the corresponding condition

(2p − p− 1)1/2|µ|1/pp B1/p
p < 1, p = 2, 4, 6, . . . , (4.24)

in Giraitis et al. (2000), formula (2.12) for the LARCH model, since the coefficient
(2p−p−1)1/2 grows exponentially with p in contrast to the bound on K1/p

p in Remark
4.2.1 (see also Chapter 3, Example 3.4.3). On the other hand for p = 4 (4.24) becomes√

11|µ|1/44 B
1/2
2 < 1 while (4.22) is satisfied if K1/4

4 |µ|
1/4
4 B

1/2
2 ≤ 27.083|µ|1/44 B

1/2
2 < 1,

see Remark 4.2.1, which is worse than (4.24).

Proof of Theorem 4.2.1. (i) For n ∈ N define a solution of (4.12) with zero initial
condition at t ≤ −n as

X
(n)
t :=

0, t ≤ −n,∑t−1
s=−n bt−sζsQ(a+X(n)

s ), t > −n, t ∈ Z.
(4.25)

Let us show that {X(n)
t } converges in Lp to a stationary Lp-solution {Xt} as n→∞.

First, let 0 < p ≤ 2. Let m > n ≥ 0. Then by inequality (4.13) for any t > −m we
have that

E|X(m)
t −X(n)

t |p = Kp|µ|p
{ ∑
−m≤s<−n

|bt−s|pE|Q(a+X(m)
s )|p

+
∑

−n≤s<t
|bt−s|pE

∣∣∣Q(a+X(n)
s )−Q(a+X(m)

s )
∣∣∣p}

=: Kp|µ|p{S ′m,n + S ′′m,n}.

Let χp(n) := ∑∞
j=n |bj|p. From the bound |a+ x|2 ≤ (2a2/ε) + (1 + ε)x2, valid for any

0 < ε < 1/2, x ∈ R and a ≥ 0, it follows that

∣∣∣c2
1 + c2

2(a+X(m)
s )2)

∣∣∣p/2 ≤ cp1 + cp2|(a+X(m)
s )2|p/2

≤ C(c1, c2) + cp2 (1 + ε)p/2|X(m)
s |p

≤ C(c1, c2) + cp3|X(m)
s |p,
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with c3 > c2 > LipQ arbitrarily close to LipQ. Then using (4.16) we obtain

S ′m,n ≤
∑

−m≤s<−n
|bt−s|pE

∣∣∣c2
1 + c2

2(a+X(m)
s )2

∣∣∣p
≤ C(Q)Kp|µ|pχp(t+ n) + cp3

∑
−m≤s<−n

|bt−s|pE|X(m)
s −X(n)

s |p,

S ′′m,n ≤ LippQ
∑

−n≤s<t
|bt−s|pE

∣∣∣X(n)
s −X(m)

s

∣∣∣p.
Consequently,

E|X(m)
t −X(n)

t |p ≤ C(Q)Kp|µ|pχp(t+ n) +Kp|µ|pcp3
∑

−m≤s<t
|bt−s|pE

∣∣∣X(n)
s −X(m)

s

∣∣∣p.
Iterating the above inequality, we obtain

E|X(m)
t −X(n)

t |p ≤ C(Q)Kp|µ|p
{
χp(t+ n) +

∞∑
k=1

(Kp|µ|kcp3)k (4.26)

×
∑

−m≤sk<···<s1<t

|bt−s1|p|bs1−s2|p . . . |bsk−1−sk |pχp(sk + n)
}
.

Since Kp|µ|pcp3Bp < 1 by (4.22) and sups≥1 χp(s) ≤ Bp <∞, the series on the r.h.s. of
(4.26) is bounded uniformly in m,n and tends to zero as m,n→∞ by the dominated
convergence theorem. Hence, there exist Xt, t ∈ Z such that

lim
n→∞

E|Xt −X(n)
t |p = 0, ∀ t ∈ Z. (4.27)

Note that {Xt} is predictable and

E|Xt|p = lim
n→∞

E|X(n)
t |p ≤

C(Q)Kp|µ|pBp

1−Kp|µ|pcp3Bp

≤ C(p,Q)|µ|pBp

1−Kp|µ|pLippQBp

,

where the last inequality follows by taking c3 > LipQ sufficiently close to LipQ.
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We also have by (4.23) and (4.15) that

E
∣∣∣∑
s<t

bt−sζsQ(a+Xs)−
t−1∑
s=−n

bt−sζsQ(a+X(n)
s )

∣∣∣p
= E

∣∣∣ ∑
s<−n

bt−sζsQ(a+Xs) +
t−1∑
s=−n

bt−sζs(Q(a+Xs)−Q(a+X(n)
s ))

∣∣∣p
≤ Kp|µ|p

{ ∑
s<−n

|bt−s|pE
∣∣∣Q(a+Xs)

∣∣∣p
+

∑
−n≤s<t

|bt−s|pE
∣∣∣Q(a+Xs)−Q(a+X(n)

s )
∣∣∣p}

≤ C
( ∑
s<−n

|bt−s|p +
∑
s<t

|bt−s|pE
∣∣∣Xs −X(n)

s

∣∣∣p) → 0

as n→∞. Whence and from (4.25) it follows that {Xt} is a stationary Lp-solution
of (4.12) satisfying (4.23).

To show the uniqueness of stationary Lp-solution of (4.12), let {X ′t}, {X ′′t } be two
such solutions of (4.12), and mp(t) := E|X ′t−X ′′t |p. Then supt∈Zmp(t) ≤M <∞ and
mp(t) ≤ Kp|µ|pLippQ

∑
s<t |bt−s|pmp(s) follows by (4.15). Iterating the last equation we

obtain that mp(t) ≤ (Kp|µ|pLippQBp)kM holds for all k ≥ 1, where Kp|µ|pLippQBp < 1.
Hence, mp(t) = 0. This proves part (i) for 0 < p ≤ 2.

The proof of part (i) for p > 2 is analogous. Particularly, using (4.13) as in (4.21),
we obtain

E|Xt|p ≤ Kp|µ|p
(∑
s<t

b2
t−sE2/p|Q(a+Xs)|p

)p/2
≤ Kp|µ|p

(∑
s<t

b2
t−s(C(Q) + cp3E|Xs|p)2/p

)p/2
≤ Kp|µ|pBp(C(p,Q) + cp3 sup

s∈Z
E|Xs|p)

implying (1 − Kp|µp|cp3Bp) supt∈Z E|Xt|p ≤ C(p,Q)|µ|pBp and hence the bound in
(4.23) for p > 2, by taking c3 sufficiently close to LipQ. This proves part (i).

(ii) Note that Q(x) =
√
c2

1 + c2
2x

2 is a Lipschitz function and satisfies (4.15) with
LipQ = c2. Hence by K2 = 1 and part (i), a unique L2-solution {Xt} of (4.12) under
the condition c2

2B2 < 1 exists. To show the necessity of the last condition, let {Xt}
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be a stationary L2-solution of (4.12). Then

EX2
t =

∑
s<t

b2
t−sEQ2(a+Xs)

=
∑
s<t

b2
t−sE

(
c2

1 + c2
2(a+Xs)2

)
= B2

(
c2

1 + c2
2(a2 + EX2

t )
)
> c2

2B2EX2
t

since a 6= 0. Hence, c2
2B2 < 1 unless EX2

t = 0, or {Xt = 0} is a trivial process.
Clearly, (4.12) admits a trivial solution if and only if 0 = Q(a) =

√
c2

1 + c2
2a

2 = 0, or
c1 = c2 = 0. This proves part (ii) and the theorem. �

Example 4.2.1 (The LARCH model) Let Q(x) = x and {ζt} be a standardized
i.i.d. sequence with zero mean and unit variance. Then (4.12) becomes the bilinear
equation

Xt =
∑
s<t

bt−sζs(a+Xs). (4.28)

The corresponding conditionally heteroscedastic process {rt = ζt(a+Xt)} in Propo-
sition 4.2.2(i) is the LARCH model discussed in Giraitis et al. (2000), Giraitis et al.
(2004) and elsewhere. As shown in Giraitis et al. (2000), Theorem 2.1, equation (4.28)
admits a covariance stationary predictable solution if and only if B2 = ∑∞

j=1 b
2
j < 1.

Note the last result agrees with Theorem 4.2.1 (ii). A crucial role in the study of the
LARCH model is played by the fact that its solution can be written in terms of the
convergent orthogonal Volterra series

Xt = a
∞∑
k=1

∑
sk<···<s1<t

bt−s1 . . . bsk−1−skζs1 . . . ζsk .

Except for Q(x) = x, in other cases of (4.12) including the QARCH model in (4.4),
Volterra series expansions are unknown and their usefulness is doubtful.

Example 4.2.2 (Asymmetric ARCH(1)) Consider the model (4.1) with σt in
(4.5), viz.

rt = ζt
(
c2 + (a+ brt−1)2

)1/2
, (4.29)

where {ζt} are standardized i.i.d. r.v.’s. By Theorem 4.2.1 (ii), equation (4.29) has a
unique stationary solution with finite variance Er2

t = (a2 + c2)/(1− b2) if and only if
b2 < 1.

In parallel, consider the random-coefficient AR(1) equation

r̃t = κεt + bηtr̃t−1, (4.30)

62



where {(εt, ηt)} are i.i.d. random vectors with zero mean Eεt = Eηt = 0 and unit
variances E[ε2

t ] = E[η2
t ] = 1 and κ, b are real coefficients. As shown in Sentana

(1995) (see also Surgailis (2008)), equation (4.30) has a stationary solution with finite
variance under the same condition b2 < 1 as (4.29). Moreover, if the coefficients κ
and ρ := E[εtηt] ∈ [−1, 1] in (4.30) are related to the coefficients a, c in (4.29) as

κρ = a, κ2 = a2 + c2, (4.31)

then the processes in (4.29) and (4.30) have the same volatility forms since

σ̃2
t := E[r̃2

t |r̃s, s < t] = κ2 + 2κbρ+ b2r̃2
t−1

= c2 + (a+ br̃t−1)2

agrees with the corresponding expression σ2
t = c2 + (a+ brt−1)2 in the case of (4.5).

A natural question is whether the above stationary solutions {rt} and {r̃t} of
(4.29) and (4.30), with parameters related as in (4.31), have the same (uncondi-
tional) finite-dimensional distributions? As shown in (Surgailis (2008), Corollary
2.1), the answer is positive in the case when {ζt} and {(εt, ηt)} are Gaussian se-
quences. However, the conditionally Gaussian case seems to be the only exception
and in general the processes {rt} and {r̃t} have different distributions. This can be
seen by considering the 3rd conditional moment of (4.29)

E[r3
t |rt−1] = µ3

(
c2 + (a+ brt−1)2

)3/2
, (4.32)

which is an irrational function of rt−1 (unless µ3 = Eζ3
0 = 0 or b = 0), while a similar

moment of (4.30)

E[r̃3
t |r̃t−1] = κ3ν3,0 + 3bκ2ν2,1r̃t−1 + 3b2κν1,2r̃

2
t−1 + b3ν0,3r̃

3
t−1 (4.33)

is a cubic polynomial in r̃t−1, where νi,j := E[εi0η
j
0]. Moreover, (4.32) has a constant

sign independent of rt−1 while the sign of the cubic polynomial in (4.33) changes with
r̃t ranging from ∞ to −∞ if the leading coefficient b3ν0,3 6= 0.

Using the last observation we can prove that the bivariate distributions of (rt, rt−1)
and (r̃t, r̃t−1) are different under general conditions on the innovations and the pa-
rameters of the two equations. The argument is as follows. Let b > 0, c > 0, µ3 >

0, ν0,3 = Eη3
0 > 0. Assume that ζ0 has a bounded strictly positive density function

0 < f(x) < C, x ∈ R and (ε0, η0) has a bounded strictly positive density function
0 < g(x, y) < C, (x, y) ∈ R2. The above assumptions imply that the distributions
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of rt and r̃t have infinite support. Indeed, by (4.29) and the above assumptions we
have that P(rt > K) =

∫
R P(c2 + (a + brt−1)2 > (K/y)2)f(y)dy > 0 for any K > 0

since limy→∞ P(c2 + (a+ brt−1)2 > (K/y)2) = 1. Similarly, P(r̃t > K) =
∫
R2 P(r̃t−1 >

(K − κx)/by)g(x, y)dxdy > 0 and P(rt < −K) > 0,P(r̃t < −K) > 0 for any K > 0.
Since h(x) := µ3

(
c2 + (a + bx)2

)3/2
≥ 1 for all |x| > K and any sufficiently large

K > 0, from (4.32) we obtain that for any K > 0

Er3
t1(rt−1 > K) = Eh(rt−1)1(rt−1 > K) > 0 and

Er3
t1(rt−1 < −K) = Eh(rt−1)1(rt−1 < −K) > 0. (4.34)

On the other hand, since h̃(x) := κ3ν3,0 + 3bκ2ν2,1x + 3b2κν1,2x
2 + b3ν0,3x

3 ≥ 1 for
x > K and h̃(x) ≤ −1 for x < −K and K large enough, from (4.33) we obtain that
for all sufficiently large K > 0

Er̃3
t1(r̃t−1 > K) = Eh̃(r̃t−1)1(r̃t−1 > K) > 0 and

Er̃3
t1(r̃t−1 < −K) = Eh̃(r̃t−1)1(r̃t−1 < −K) < 0. (4.35)

Clearly, (4.34) and (4.35) imply that the bivariate distributions of (rt, rt−1) and
(r̃t, r̃t−1) are different under the stated assumptions.

For models (4.29) and (4.30), we can explicitly compute covariances ρ(t) =
Cov(r2

t , r
2
0), ρ̃(t) = Cov(r̃2

t , r̃
2
0) and some other joint moment functions, as follows.

Let µ3 = Eζ3
0 = 0, µ4 = Eζ4

0 < ∞ and m2 := Er2
0, m3(t) := Er2

t r0, m4(t) :=
Er2

t r
2
0, t ≥ 0. Then

m2 = (a2 + c2)/(1− b2), m3(0) = 0,
m3(1) = E[((a2 + c2) + 2abr0 + b2r2

0)r0] = 2abm2 + b2m3(0) = 2abm2,

m3(t) = E[((a2 + c2) + 2abrt−1 + b2r2
t−1)r0] = b2m3(t− 1) = . . . = b2(t−1)m3(1)

= 2ab(a2 + c2)
1− b2 b2(t−1), t ≥ 1. (4.36)

Similarly,

m4(0) = µ4E[((a2 + c2) + 2abr−1 + b2r2
−1)2]

= µ4{(a2 + c2)2 + (2ab)2m2 + b4m4(0) + 2b2(a2 + c2)m2},
m4(t) = E[((a2 + c2) + 2abrt−1 + b2r2

t−1)r2
0] = (a2 + c2)m2 + b2m4(t− 1), t ≥ 1
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resulting in

m4(0) = µ4((a2 + c2)2 + ((2ab)2 + 2(a2 + c2)b2)m2)
1− µ4b4 , (4.37)

m4(t) = m2(a2 + c2) · 1− b2t

1− b2 + b2tm4(0), t ≥ 1,

and

ρ(t) = (m4(0)−m2
2)b2t, t ≥ 0. (4.38)

In a similar way, when the distribution of ζ0 is symmetric one can write recursive
linear equations for joint even moments E[r2p(0)r2p(t)] of arbitrary order p = 1, 2, . . .
involving E[r2l(0)r2p(t)], 1 ≤ l ≤ p − 1 and m2k(0) = E[r2k(0)], 1 ≤ k ≤ 2p. These
equations can be explicitly solved in terms of a, b, c and µ2k, 1 ≤ k ≤ 2p.

A similar approach can be applied to find joint moments of the random-coefficient
AR(1) process in (4.30), with the difference that symmetry of (ε0, η0) is not needed.
Let m̃2 := Er̃2

t , m̃3(t) := E[r̃2
t r̃0], m̃4(t) := E[r̃2

t r̃
2
0] and ρ̃(t) := Cov(r̃2

t , r̃
2
0), νi,i :=

E[εi0η
j
0]. Then

m̃2 = κ2/(1− b2),
m̃3(0) = E[(κε0 + bη0r̃−1)3] = κ3ν3,0 + 3κb2ν1,2m̃2 + b3ν0,3m̃3(0),
m̃3(1) = E[(κ+ 2κρbr̃0 + b2r̃2

0)r̃0] = 2κρbm̃2 + b2m̃3(0),
m̃3(t) = E[(κ2 + 2κρbr̃t−1 + b2r̃2

t−1)r̃0]
= b2m̃3(t− 1) = · · · = b2(t−1)m̃3(1), t ≥ 2

and

m̃4(0) = E[(κε0 + bη0r̃−1)4]
= κ4ν4,0 + 6κ2b2ν2,2m̃2 + 4κb3ν1,3m̃3(0) + b4ν0,4m̃4(0),

m̃4(1) = E[(κεt + bηtr̃0)2r̃2
0] = κ2m̃2 + 2κρbm̃3(0) + b2m̃4(0),

m̃4(t) = E[(κεt + bηtr̃t−1)2r̃2
0] = κ2m̃2 + b2m̃4(t− 1), t ≥ 2,
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leading to

m̃3(0) = κ3ν3,0 + 3κb2ν1,2m̃2

1− ν0,3b3 ,

m̃3(t) = b2(t−1)(2κρbm̃2 + b2m̃3(0)), t ≥ 1,

m̃4(0) = κ4ν4,0 + 6κ2b2ν2,2m̃2 + 4κb3ν1,3m̃3(0)
1− ν0,4b4 , (4.39)

m̃4(t) = m̃2κ
2
(1− b2t

1− b2

)
+ b2t(m̃4(0) + 2κρm̃3(0)/b), t ≥ 1,

and

ρ̃4(t) = b2(t−1)ρ̃4(1), t ≥ 1,
ρ̃4(1) = 2ρκbm̃3(0) + b2(m̃4(0)− m̃2

2).

Then if ν3,0 = ν1,2 = 0 we have m̃3(0) = 0 and ρ̃4(t) = (m̃4(0) − m̃2
2)b2t; moreover,

m̃2 = m2 in view of (4.31). Then ρ̃4(t) = ρ4(t) is equivalent to m̃4(0) = m4(0), which
follows from

µ4 = ν0,4 = ν4,0 and 6ν2,2 = µ4(4ν2
1,1 + 2), (4.40)

see (4.38), (4.37), (4.39). Note that (4.40) hold for centered Gaussian distribution
(ε0, η0) with unit variances Eε2

0 = Eη2
0 = 1.

4.3 Weak dependence

Various measures of weak dependence for stationary processes {yt} = {yt, t ∈ Z}
have been introduced in the literature, see e.g. Dedecker et al. (2007). Usually, the
dependence between the present (t ≥ 0) and the past (t ≤ −n) values of {yt} is
measured by some dependence coefficients decaying to 0 as n→∞. The decay rate
of these coefficients plays a crucial role in establishing many asymptotic results. The
classical problem is proving Donsker’s invariance principle:

1√
n

[nτ ]∑
t=1

(y − Eyt)→ σB(τ), in the Skorohod space D[0, 1], (4.41)

where B = {B(τ), τ ∈ [0, 1]} is a standard Brownian motion. The above result is
useful in change-point analysis (Csörgő and Horváth (1997)), financial mathematics
and many other areas. Further applications of weak dependence coefficients include
empirical processes in Dedecker and Prieur (2007) and the asymptotic behavior of
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various statistics, including the maximum likelihood estimators (see Ibragimov and
Linnik (1971) and the application to GARCH estimation in Lindner (2009)).

The present section discusses two measures of weak dependence - the projective
weak dependence coefficients of Wu (2005) and the τ -dependence coefficients intro-
duced in Dedecker and Prieur (2004), Dedecker and Prieur (2005) - for stationary
solutions {rt}, {Xt} of equations (4.10), (4.12). We show that the decay rate of the
above weak dependence coefficients is determined by the decay rate of the moving
average coefficients bj.

Projective weak dependence coefficients

Let us introduce some notation. For r.v. ξ, write ‖ξ‖p := E1/p|ξ|p, p ≥ 1. Let
{yt, t ∈ Z} be a stationary causal Bernoulli shift in i.i.d. sequence {ζt}, in other
words,

yt = f(ζs, s ≤ t), t ∈ Z, (4.42)

where f : RN → R is a measurable function. We also assume Ey0 = 0, ‖y0‖p =
E1/p|y0|p <∞. Introduce the projective weak dependence coefficients

ωp(i; {yt}) := ‖fi(ξ0)− fi(ξ′0)‖p, δp(i; {yt}) := ‖f(ξi)− f(ξ′i)‖p, (4.43)

where ξi := (. . . , ζ−1, ζ0, ζ1, . . . , ζi), ξ′i := (. . . , ζ−1, ζ
′
0, ζ1, . . . , ζi), fi(ξ0) := E[f(ξi)|ξ0] =

E[yi|F0] is the conditional expectation and {ζ ′0, ζt, t ∈ Z} are i.i.d. r.v.s. Note the
i.i.d. sequences ξ and ξ′i coincide except for a single entry. Then ωp(i; {yt}) ≤
δp(i; {yt}), i ≥ 0 and condition

∞∑
k=0

ω2(k; {yt}) <∞ (4.44)

guarantees the weak invariance principle in (4.41) with σ2 := ∑
j∈Z Cov(y0, yj), see

Wu (2005). The last series absolutely converges in view of (4.44) and the bound in Wu
(2005), Theorem 1, implying |Cov(y0, yj)| ≤

∑∞
k=0 ω2(k; {yt})ω2(k + j; {yt}), j ≥ 0.

Below, we verify Wu’s condition (4.44) for {Xt}, {rt} in (4.12), (4.10). We assume
that the coefficients bj decay as j−γ with some γ > 1, viz.,

∃γ > 0, c > 0 : |bj| < cj−γ, ∀ j ≥ 1. (4.45)

Proposition 4.3.1 Let Q be Lipschitz function as in (4.15), p ≥ 1, Kp|µ|pLippQBp <

1 (see (4.22)), and {Xt}, {rt} be stationary Lp-solutions of (4.12), (4.10), respectively.
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In addition, assume that bj satisfy (4.45) with γ > max{1/2, 1/p}.
Then

δp(k; {Xt}) = O(k−γ) and δp(k; {rt}) = O(k−γ). (4.46)

Proof. We will give the proof for p ≥ 2 only as the proof for p ∈ [1, 2] is similar.
Following the notation in (4.43), let {X ′t}, {r′t} be the corresponding processes

(Bernoulli shifts) of the i.i.d. sequence ξ′ := (. . . , ζ−1, ζ
′
0, ζ1, ζ2, . . . ) with ζ0 replaced

by its independent copy ζ ′0. Note that X ′t = Xt (t ≤ 0), r′t = rt (t < 0). We have
δ2

2(k; {Xt}) = (E|Xk −X ′k|p)2/p = ‖Xk −X ′k‖2
p, where

Xk −X ′k =
∑

0<s<k
bt−s(rs − r′s) + bk(ζ0 − ζ ′0)Q(a+X0).

Then with v2
p := ‖Q(a+X0)‖2

p using Rosenthal’s inequality (4.13) similarly as in the
proof of Theorem 4.2.1 we obtain

‖Xk −X ′k‖2
p ≤ K2/p

p

( ∑
0<s<k

b2
k−s‖rs − r′s‖2

p + ‖ζ0 − ζ ′0‖2
pb

2
kv

2
p

)

≤ K2/p
p

( ∑
0<s<k

b2
k−s|µ|2/pp ‖Q(a+Xs)−Q(a+X ′s)‖2

p + 4|µ|2/pp b2
kv

2
p

)

≤ K2/p
p |µ|2/pp

(
Lip2

Q

∑
0<s<k

b2
k−s‖Xs −X ′s‖2

p + 4b2
kv

2
p

)
.

Let αk := K2/p
p |µ|2/pp Lip2

Qb
2
k. Iterating the last inequality we obtain

δ2
2(k; {Xt}) ≤

4v2
p

Lip2
Q

(
αk +

∑
0<s<k

αsαk−s + . . .
)

=
4v2

p

Lip2
Q

· Ak,

where Ak is as in (A.1) (see Appendix A). Since A = ∑
k>0 αk = (Kp|µ|pLippQBp)2/p <

1 and αk ≤ Ck−2γ, by Lemma A.1 we obtain δ2(k; {Xt}) ≤ Ck−γ, proving the first
inequality in (4.46). The proof of the second inequality in (4.46) follows similarly
using δ2

p(k; {rt}) = ‖rk − r′k‖2
p ≤ Lip2

Q|µ|2/pp ‖Xk −X ′k‖2
p = Lip2

Q|µ|2/pp δ2
2(k; {Xt}). �

The next corollary follows from the above-mentioned result of Wu (2005), relations
δ2(k; {yt}) ≤ Cδ2(k; {rt}), δ2(k; {zt}) ≤ Cδ2(k; {Xt}) and (4.46).

Corollary 4.3.1 Let {yt := h(rt)}, {zt := h(Xt)}, where {Xt}, {rt} are as in Propo-
sition 4.3.1, p = 2 and h : R → R is a Lipschitz function. In addition, assume that
bj satisfy (4.45) with γ > 1. Then

n−1/2
[nτ ]∑
t=1

(yt−Eyt) →D[0,1] cyB(τ) and n−1/2
[nτ ]∑
t=1

(zt−Ezt) →D[0,1] czB(τ), (4.47)
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where B is a standard Brownian motion and

c2
y :=

∑
t∈Z

Cov(y0, yt) <∞, c2
z :=

∑
t∈Z

Cov(z0, zt) <∞.

τ-weak dependence coefficients

Let {yt, t ∈ Z} be a stationary process with ‖y0‖p < ∞, p ∈ [1,∞]. Following
Dedecker and Prieur (2004), Dedecker and Prieur (2005), we define the τ -weak de-
pendence coefficients

τp({yji}1≤i≤k) :=
∥∥∥∥ sup
f∈Λ1(Rk)

∣∣∣E[f(yj1 , . . . , yjk)
∣∣∣yt, t ≤ 0

]
− E[f(yj1 , . . . , yjk)]

∣∣∣∥∥∥∥
p

measuring the dependence between {yt}t≤0 and {yji}1≤i≤k, 0 < j1 < · · · < jk, and

τp(n; {yj}) := sup
k≥1

k−1 sup
n≤j1<···<jk

τp({yji}1≤i≤k).

Here, Λ1(Rk) denotes the class of all Lipschitz functions f : Rk → R with

|f(x1, . . . , xk)−f(y1, . . . , yk)| ≤
k∑
i=1
|xi−yi| for any (x1, . . . , xk), (y1, . . . , yk) ∈ Rk.

In the case when {yt} is a causal Bernoulli shift of an i.i.d. sequence {ζt} as in (4.42),
τ -coefficients can be estimated via δ-coefficients:

τp(n, {yt}) ≤
∞∑
j=n

δp(j, {yt}). (4.48)

The above bound is an easy consequence of the coupling inequality of Dedecker and
Prieur (2005):

τp({yji}1≤i≤k) ≤
k∑
i=1
‖yji − y∗ji‖p and τp(n, {yt}) ≤ sup

j≥n
‖yj − y∗j‖p, (4.49)

where {y∗j} has the same distribution as {yt} and is independent of ys, s ≤ 0. Indeed,
let {y∗t } be the corresponding process (Bernoulli shift) of the i.i.d. sequence ξ∗ :=
(. . . , ζ∗−2, ζ

∗
−1, ζ0, ζ1, . . . ) with (ζ∗s , s < 0) an independent copy of (ζs, s < 0). Introduce

also “intermediate” i.i.d. sequence ξ∗i := (. . . , ζ∗−i−1, ζ
∗
−i, ζ−i+1, . . . , ζ0, ζ1, . . . ), i ≥

1, ξ∗1 := ξ∗ and the corresponding Bernoulli shift {y∗i,t} with the same f as in (4.42).
Note the sequences ξ∗i and ξ∗i+1 agree up to single entry. By triangle inequality,
‖yn − y∗n‖p ≤

∑∞
i=1 ‖y∗i,n − y∗i+1,n‖p = ∑∞

i=1 δp(n+ i, {yt}), leading to (4.48) via (4.49).

69



The following corollary is immediate from (4.48) and Proposition 4.3.1.

Corollary 4.3.2 Let Q be Lipschitz function as in (4.15), p ≥ 1, Kp|µ|pLippQBp < 1
(see (4.22)) and let {Xt}, {rt} be stationary Lp-solutions of (4.12), (4.10), respec-
tively. In addition, assume that bj satisfy (4.45) with γ > 1. Then

τp(n; {Xj}) = O(n−γ+1), τp(n; {rj}) = O(n−γ+1). (4.50)

Theorem 1 in Dedecker and Prieur (2007) together with Corollary 4.3.2 imply the
following CLT for the empirical distribution functions FX

n (u) := n−1∑n
t=1 1(Xt ≤

u), F r
n(u) := n−1∑n

t=1 1(rt ≤ u), u ∈ R of stationary solutions {Xt}, {rt} of (4.12),
(4.10). Let FX(u) := P(X0 ≤ u), F r(u) := P(r0 ≤ u) be the corresponding distribu-
tion functions. See Dedecker and Prieur (2007) for the definition of weak convergence
in the space `∞(R) of all bounded functions on R.

Corollary 4.3.3 Let the conditions of Corollary 4.3.2 hold with p = 1 and γ >

5. Moreover, assume that FX , F r have bounded densities. Then {
√
n(FX

n (u) −
FX(u)), u ∈ R} and {

√
n(F r

n(u)−F r(u)), u ∈ R} converge weakly in `∞(R) as n→∞
towards Gaussian processes on R with zero mean and respective covariance functions

∑
k∈Z

Cov(1(X0 ≤ u),1(Xk ≤ u)) and
∑
k∈Z

Cov(1(r0 ≤ u),1(rk ≤ u)).

Remark 4.3.1 Let the noise ζ0 have a bounded density fζ and infx∈RQ(x) > 0, then
FX , F r have bounded densities fX , fr, particularly, fr(x) = E[fζ(x/σ0)/σ0], σ0 =
Q(a + X0). Thus, the requirement that FX , F r have bounded densities does not
necessarily impose additional conditions on the coefficients bj.

Remark 4.3.2 In Dedecker and Prieur (2007) a general tightness condition is pro-
posed in Proposition 6 for alternative classes of functions besides indicators of half-
lines. Conditions are not immediate to check which explains why we restricted to the
case of empirical cumulative distribution functions.

4.4 Strong dependence

The term strong dependence or long memory usually refers to stationary process
{yt, t ∈ Z} whose covariance decays slowly with the lag so that its absolute series
diverges: ∑∞k=1 |Cov(y0, yk)| =∞. Since the variance of ∑n

k=1 yt usually grows faster
than n under long memory, Donsker’s invariance principle in (4.41) is no more valid
and the limit of the partial sums process, if exists, might be quite complicated.
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It is natural to expect that the “long memory” asymptotics of bj in (4.51) induces
some kind of long memory of solutions {rt}, {Xt} of (4.1), (4.12), under general
assumptions on Q. Concerning the latter process, this is true indeed as shown in the
following theorem.

Theorem 4.4.1 Let {Xt} be a stationary L2-solution of (4.12), where

bj ∼ β jd−1 (∃ 0 < d < 1/2, β > 0) (4.51)

and Q satisfies the Lipschitz condition in (4.15) with Lip2
QB

2 = Lip2
Q

∑∞
j=1 b

2
j < 1.

Then

Cov(X0, Xt) ∼ λ2
1t

2d−1, t→∞ and (4.52)

n−d−(1/2)
[nτ ]∑
t=1

Xt →D[0,1] λ2Bd+(1/2)(τ),

where Bd+(1/2) is a fractional Brownian motion with Var(Bd+(1/2)(τ)) = τ 2d+1 and
λ2

1 := β2B(d, 1− 2d)EQ2(a+X0), λ2
2 := λ2

1/d(1 + 2d).

Proof. The first relation in (4.52) follows from (4.20) and (4.51). The second relation
in (4.52) follows from a general result in Abadir et al. (2014), Proposition 3.1, using
the fact that {rs} in (4.12) is a stationary ergodic martingale difference sequence. �

Clearly, properties as in (4.52) do not hold for {rt = ζtQ(a + Xt)} which is an
uncorrelated martingale difference sequence. Here, long memory should appear in the
behavior of the volatility σt = Q(a + Xt), being “hidden” inside of nonlinear kernel
Q. The last fact makes it much harder to prove it rigorously. Further we restrict
ourselves to the quadratic model with Q2(x) = c2 + x2, or

rt = ζt

√√√√c2 +
(
a+

∑
s<t

bt−srs

)2
, t ∈ Z (4.53)

as in (4.4), where (recall) {ζt} are standardized i.i.d. r.v.s, with zero mean and unit
variance, and bj, j ≥ 1 are real numbers satisfying (4.51).

The following theorem shows that under some additional conditions the squared
process {r2

t } of (4.53) has similar long memory properties as {Xt} in Theorem 4.4.1.
For the LARCH model (see Example 4.2.1 above) similar results were obtained in
Giraitis et al. (2000), Theorems 2.2, 2.3.
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Theorem 4.4.2 Let {rt} be a stationary L2-solution of (4.53) with bj satisfying
(4.51) and B2 = ∑∞

j=1 b
2
j < 1. Assume in addition that µ4 = E[ζ4

0 ] <∞ and Er4
t <∞.

Then
Cov(r2

0, r
2
t ) ∼ κ2

1t
2d−1, t→∞, (4.54)

where κ2
1 :=

(
2aβ

1−B2

)2
B(d, 1− 2d)Er2

0. Moreover,

n−d−1/2
[nτ ]∑
t=1

(r2
t − Er2

t ) →D[0,1] κ2Bd+1/2(τ), n→∞, (4.55)

where Bd+(1/2) is a fractional Brownian motion as in (4.52) and κ2
2 := κ2

1/(d(1+2d)).

Proof. The proof of Theorem 4.4.2 heavily relies on the decomposition

(r2
t − Er2

t )−
∑
s<t

b2
t−s(r2

s − Er2
s) = 2aXt + Zt, (4.56)

where {Zt} on the r.h.s. of (4.56) is negligible so its memory intensity is less than the
memory intensity of the main term, {Xt}. Accordingly, r2

t−Er2
t = (1−∑∞j=1 b

2
jL

j)−1ξt

behaves like an AR(∞) process with long memory innovations ξt := 2aXt+Zt ≈ 2aXt.
A rigorous meaning to the above heuristic explanation is provided below.

By the definition of rt in (4.53),

Zt := Ut + Vt, where
Ut := (ζ2

t − 1)Q2(a+Xt),
Vt := X2

t − EX2
t −

∑
s<t

b2
t−s(r2

s − Er2
s)

= 2
∑

s2<s1<t

bt−s1bt−s2rs1rs2 . (4.57)

Let us first check that the double series in (4.57) converges in mean square and
(4.57) holds. Let

Xt,N :=
∑

−N<s<t
bt−srs, Vt,N := 2

∑
−N<s2<s1<t

bt−s1bt−s2rs1rs2 ,

then Vt,N = X2
t,N − EX2

t,N −
∑
−N<s<t b

2
t−s(r2

s − Er2
s) and, for M > N ,

E(X2
t,N −X2

t,M)2 = E(Xt,N −Xt,M)2(Xt,N +Xt,M)2 ≤ ‖Xt,N −Xt,M‖2
4‖Xt,N +Xt,M‖2

4.
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By Rosenthal’s inequality in (4.13),

‖Xt,N +Xt,M‖2
4 ≤ C

∑
−M<s<t

b2
t−s ≤ C and

‖Xt,N −Xt,M‖2
4 ≤ C

∑
−M<s≤−N

b2
t−s → 0 (N,M →∞).

Therefore, limN,M→∞ E(X2
t,N −X2

t,M)2 = 0.
The convergence of EX2

t,N and ∑−N<s<t b2
t−s(r2

s − Er2
s) in L2 as N → ∞ is easy.

Hence, Vt,N , N ≥ 1 is a Cauchy sequence in L2 and the double series in (4.57) con-
verges as claimed above, proving (4.57).

Let us prove that in the decomposition (4.56), {Zt} is negligible in the sense that
its (cross)covariances decay faster as the covariance of the main term, {Xt}, viz.,

E[ZtZ0] = o(t2d−1), E[XtZ0] = o(t2d−1), E[ZtX0] = o(t2d−1) (4.58)

as t → ∞. Note, for t ≥ 1, E[U0Ut] = E[V0Ut] = 0 and E[VtU0] = 2btE[ζ0(ζ2
0 −

1)Q2(a + X0)∑s2<0 bt−s2rs2 ] = O(bt) = o(t2d−1). Hence, the first relation in (4.58)
follows from

E[VtV0] = o(t2d−1), t→∞, (4.59)

which is proved below. Since E[V 2
t ] < ∞,E[Vt] = 0 we can write the orthogonal

expansion
Vt =

∑
s<t

PsVt,

where PsVt := E[Vt|Fs]− E[Vt|Fs−1] is the projection operator.
By orthogonality of Ps,∣∣∣EV0Vt

∣∣∣ =
∣∣∣∑
s<0

E[(PsV0)(PsVt)]
∣∣∣ ≤ ∑

s<0
‖PsV0‖2‖PsVt‖2.

Relation (4.59) follows from

‖PsV0‖2
2 = o(b2

−s) = o((−s)2(d−1)), s→ −∞. (4.60)

Indeed, if (4.60) is true then

EV0Vt = o
(∑
s<0

(−s)d−1(t− s)d−1
)

= o(t2d−1), t→∞,

proving (4.59).
Consider (4.60). We have by (4.57) and the martingale difference property of {rs}
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that

PsV0 = 2rsb−s
∑
u<s

b−uru

and

‖PsV0‖2
2 = 4b2

−sE
[
r2
s

(∑
u<s

b−uru
)2]
≤ 4b2

−s‖rs‖2
4

∥∥∥∑
u<s

b−uru
∥∥∥2

4
.

By Rosenthal’s inequality in (4.13),

E
∣∣∣∑
u<s

b−uru
∣∣∣4 ≤ C4

(∑
u<s

b2
−u(Er4

u)1/2
)2
≤ C

( ∑
u>|s|

u2(d−1)
)2

= O(|s|2(2d−1)) = o(1).

Therefore,

‖PsV0‖2
2 ≤ C|s|2(d−1)+2d−1 = o(|s|2(d−1)),

proving (4.60), (4.59), and the first relation in (4.58). The remaining two relations
in (4.58) follow easily, e.g.,

E[XtZ0] = btE[r0(ζ2
0 − 1)Q2(a+X0)] + 2

∑
s1<0

bt−s1b−s1Ls1 ,

where

Ls1 := E[r2
s1

∑
s2<s1

b−s2rs2 ]

≤ E1/2[r4
s1 ]E1/2

[( ∑
s2<s1

b−s2rs2

)2]
= O

(( ∑
s2<s1

b2
−s2

)1/2)
= O(|s1|d−(1/2)), s1 → −∞.

Therefore

E[XtZ0] = O(td−1) +
∑
s1<0

(t− s1)d−1(−s1)2d−(3/2) = o(t2d−1).

This proves (4.58).
Next, let us prove (4.54). Recall the decomposition (4.56). Denote ξt := 2aXt+Zt,
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then (4.56) can be rewritten as (r2
t − Er2

t )−
∑
s<t b

2
t−s(r2

s − Er2
s) = ξt, or

r2
t − Er2

t =
∞∑
i=0

ϕiξt−i, t ∈ Z, (4.61)

where ϕj ≥ 0, j ≥ 0 are the coefficients of the power series

Φ(z) :=
∞∑
j=0

ϕjz
j = (1−

∞∑
j=1

b2
jz
j)−1, z ∈ C, |z| < 1

given by ϕ0 := 1,

ϕj := b2
j +

∑
0<k<j

∑
0<s1<···<sk<j

b2
s1b

2
s2−s1 . . . b

2
sk−sk−1

b2
j−sk , j ≥ 1. (4.62)

From (4.51) and Lemma A.1 (see Appendix A) we infer that

ϕt = O(t2d−2), t→∞, (4.63)

in particular, Φ(1) = ∑∞
t=0 ϕt = 1/(1 − B2) < ∞ and the r.h.s. of (4.61) is well-

defined. Relation (4.58) implies that

γt := Cov(ξ0, ξt) ∼ 4a2Cov(X0, Xt) ∼ 4a2κ2
3t

2d−1, t→∞ (4.64)

with κ2
3 = β2B(d, 1− 2d)Er2

0. Let us show that

Cov(r2
t , r

2
0) =

∞∑
i,j=0

ϕiϕjγt−i+j ∼ Φ2(1)γt, t→∞. (4.65)

With (4.64) in mind, (4.65) is equivalent to

Jt :=
∞∑

i,j=0
ϕiϕj(γt−i+j − γt) = o(t2d−1). (4.66)

For a large L > 0, split Jt = J ′t,L + J ′′t,L, where

J ′t,L :=
∑

i,j>0:|j−i|≤L
ϕiϕj(γt−i+j − γt), J ′′t,L :=

∑
i,j>0:|j−i|>L

ϕiϕj(γt−i+j − γt).

Clearly, (4.66) follows from

t1−2dJ ′t,L = o(1) ∀ L > 0 and lim
L→∞

lim sup
t→∞

t1−2dJ ′′t,L = 0. (4.67)
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The first relation in (4.67) is immediate from (4.64) since the latter implies γt+k−γt =
o(t2d−1) for any k fixed.

With (4.63) and (4.64) in mind, the second relation in (4.67) follows from

lim
L→∞

lim sup
t→∞

t1−2dJ̄t,L = 0, (4.68)

where J̄t,L := ∑
i,j>0:|j−i|>L i

2d−2j2d−2(t2d−1 + |t + j − i|2d−1
+ ) and where k2d−1

+ :=
min(1, k2d−1), k ∈ Z+.

Split the last sum according to whether |t+ j− i| ≥ t/2, or |t+ j− i| < t/2. Then

J̄ ′t,L :=
∑

i,j>0:|j−i|>L,|t+j−i|≥t/2
i2d−2j2d−2(t2d−1 + |t+ j − i|2d−1)

≤ Ct2d−1 ∑
i,j>0:|j−i|>L

i2d−2j2d−2 ≤ Ct2d−1L2d−1

follows by∑i,j>0:|j−i|>L i
2d−2j2d−2 ≤ ∑0<i<L/2,j>L/2 i

2d−2j2d−2+∑i>L/2,j>0 i
2d−2j2d−2 =

O(L2d−1). Therefore, limL→∞ lim supt→∞ t1−2dJ̄ ′t,L = 0.
Next, since |t+ j − i| < t/2 implies i > t/2, so with k := t+ j − i we obtain

J̄ ′′t,L ≤ Ct2d−2 ∑
i,j>0:|t+j−i|<t/2

j2d−2(t2d−1 + |t+ j − i|2d−1
+ )

≤ Ct2d−2 ∑
j>0

j2d−2 ∑
|k|<t/2

(t2d−1 + |k|2d−1
+ )

≤ Ct4d−2,

implying lim supt→∞ t1−2dJ̄ ′′t,L = 0 for any L > 0. This proves (4.67), (4.66), and
(4.65). Clearly, (4.54) follows from (4.65) and (4.64).

It remains to show the invariance principle in (4.55). With (4.61) in mind, de-
compose Sn(τ) := ∑[nτ ]

t=1(r2
t − Er2

t ) = ∑3
i=1 Sni(τ), where

Sn1(τ) := 2aΦ(1)
[nτ ]∑
t=1

Xt,

Sn2(τ) := Φ(1)
[nτ ]∑
t=1

Zt,

Sn3(τ) :=
[nτ ]∑
t=1

∞∑
i=0

ϕi(ξt−i − ξt).
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Here, ES2
n2(τ) = o(n2d+1) follows from (4.58). Consider

ES2
n3(τ) :=

[nτ ]∑
t,s=1

∞∑
i,j=0

ϕiϕjE(ξt−i − ξt)(ξs−j − ξs) =
[nτ ]∑
t,s=1

ρt−s,

where ρt := ∑∞
i,j=0 ϕiϕj(γt+j−i − γt+j − γt−i + γt) = o(t2d−1) follows similarly to

(4.67). Hence, Sni(τ) = op(n−d−1/2), i = 2, 3. The convergence n−d−1/2Sn1(τ)→D[0,1]

κ2Bd+(1/2)(τ) follows from Theorem 4.4.1.
This completes the proof of Theorem 4.4.2. �

4.5 Leverage

Given a stationary conditionally heteroscedastic time series {rt} with E|rt|3 < ∞
and conditional variance σ2

t = Var(r2
t | rs, s < t), leverage (a tendency of σ2

t to move
into the opposite direction as rs for s < t) is usually measured by the covariance
ht−s = Cov(σ2

t , rs). Following Giraitis et al. (2004), we say that {rt} has leverage of
order k (1 ≤ k <∞) (denoted by {rt} ∈ `(k)) whenever

hj < 0, 1 ≤ j ≤ k. (4.69)

Note that for {rt} in (4.1),

hj = E[r2
j r0], j = 0, 1, . . . (4.70)

is the mixed moment function. Below, we show that in the case of the quadratic σ2
t

in (4.4) (correspoding to model (4.53)) and µ3 = E[ζ3
0 ] = 0, the function hj in (4.70)

satisfies a linear equation in (4.75), below, which can be analyzed and the leverage
effect for {rt} in (4.53) established in spirit of Giraitis et al. (2004).

Let L2(Z+) be the Hilbert space of all real sequences ψ = (ψj, j ∈ Z+),Z+ :=
{1, 2, . . . } with finite norm ‖ψ‖ := (∑∞j=1 ψ

2
j )1/2 < ∞. As in the previous sections,

let B :=
(∑∞

j=1 b
2
j

)1/2
and assume that {ζt} is an i.i.d. sequence with zero mean and

unit variance; µi := Eζ i0, i = 1, 2, . . . .
The following theorem establishes a criterion for the presence or absence of lever-

age in model (4.53), analogous to the Theorem 2.4 in Giraitis et al. (2004). We also
note that the proof of Theorem 4.5.1 is simpler than that of the above mentioned
theorem, partly because of the assumption µ3 = 0 used in the derivation of equation
(4.75). Particularly, for the Asymmetric ARCH(1) in (4.29) with E|r0|3 < ∞, µ3 =
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Eζ3
0 = 0 the leverage function is hj = 2m2ab

2j−1, see (4.36), and {rt} ∈ `(k) is equiva-
lent to ab < 0. Apparently, conditions µ3 = 0 and B2 < 1/5 are not necessary for the
statement of Theorem 4.5.1 although a similar condition |µ3| ≤ 2(1−5B2)/B(1+3B2)
appears in the study of the leverage effect in Giraitis et al. (2004), (51).

Theorem 4.5.1 Let {rt} be a stationary L2-solution of (4.53) with E|r0|3 < ∞,
|µ|3 < ∞. Assume in addition that B2 < 1/5 and µ3 = Eζ3

0 = 0. Then for any fixed
k such that 1 ≤ k ≤ ∞:
(i) if ab1 < 0, abj ≤ 0, j = 2, . . . , k, then {rt} ∈ `(k),
(ii) if ab1 > 0, abj ≥ 0, j = 2, . . . , k, then hj > 0, j = 1, . . . , k.

Proof. Let us first prove that ‖h‖ <∞. Note that

lim
n→∞

E
( ∑
−n<s<t

bt−srs
)2
r0 = E

( ∑
−∞<s<t

bt−srs
)2
r0, (4.71)

which follows from the definition of L3-solution of (4.53) and Remark 4.2.2. Then
using (4.71), Ert = E[r3

t ] = E[rtrs] = 0, s < t we obtain

hj = lim
n→∞

E
[(
c2 + a2 + 2a

∑
−n<s<t

bt−srs +
∑

−n<s<t
b2
t−sr

2
s

+ 2
∑

−n<s2<s1<t

bt−s1bt−s2rs1rs2

)
rt−j

]
= 2am2bj +

∑
t−j<s<t

b2
t−shj+s−t + 2bj lim

n→∞
ERn(t, j), (4.72)

where Rn(t, j) := r2
t−j

∑
−n<s<t−j bt−srs. Using Hölder’s and Rosenthal’s (4.13) in-

equalities we obtain

|ERn(t, j)| ≤ E2/3|rt−j|3E1/3
∣∣∣ ∑
−n<s<t−j

bt−srs
∣∣∣3

≤ E|r0|3K3
( ∑
−n<s<t−j

b2
t−s

)3/2
≤ C. (4.73)

Hence,

|hj| ≤ C|bj|+
∑

0<i<j
b2
j−i|hi| ≤ C

(
|bj|+

∑
0<i<j

ϕj−i|bi|
)
, (4.74)

where the first inequality in (4.74) follows from (4.72) and (4.73) and the second
inequality in (4.74) by iterating the first one with ϕj as in (4.62). Since ∑∞j=1 ϕj =∑∞
k=1B

2k = 1/(1−B2), from the second inequality in (4.74) we obtain ‖h‖ ≤ CB/(1−
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B2) <∞. The last fact implies ERn(t, j) = ∑n+t−j
i=1 hibi+j →

∑∞
i=1 hibi+j. From (4.72)

we obtain that the leverage function h ∈ L2(Z+) is a solution of the linear equation:

hj = 2abjm2 +
∑

0<i<j
b2
ihj−i + 2bj

∑
i>0

bi+jhi, j = 1, 2, . . . . (4.75)

From Minkowski’s inequality, we get

∑
j>0

(
∑

0<i<j
b2
ihj−i)2 ≤ B4‖h‖2,

∑
j>0

(
bj
∑
i>0

bi+jhi
)2
≤ B4‖h‖2

and then (4.75) implies that ‖h‖ ≤ 2|a|m2B + 3B2‖h‖, or

‖h‖ ≤ 2|a|m2B

1− 3B2 (4.76)

provided B2 < 1/3.
Let us prove the statements (i) and (ii) of Theorem 4.5.1 for k = 1. From (4.75)

it follows that

h1 = 2am2b1 + 2b1

∞∑
u=1

hub1+u = 2b1(am2 +
∞∑
u=1

hub1+u).

Since |∑∞u=1 hub1+u| ≤ ‖h‖B, we have sgn(h1) = sgn(b1a) provided ‖h‖B < |a|m2

holds. The last relation follows from (4.76) and B2 < 1/5; indeed,

‖h‖B ≤ 2|a|m2B
2

1− 3B2 ≤ |a|m2.

This proves (i) and (ii) for k = 1.
The general case k ≥ 1 follows similarly by induction on k. Indeed, from (4.75)

we have that

hk = 2bk(am2 +
∞∑
u=1

hubk+u) +
k−1∑
j=1

b2
k−jhj.

Assume h1, . . . , hk−1 < 0, then the second term ∑k−1
j=1 b

2
k−jhj < 0. Moreover,

|
∞∑
u=1

hubk+u| ≤ ‖h‖B < |a|m2

implying that the sign of the first term is the same as sgn(abk).
Theorem 4.5.1 is proved. �
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4.6 A generalized nonlinear model for long mem-
ory conditional heteroscedasticity

The present section extends the results of previous sections to a more general class
of volatility forms:

rt = ζtσt, σ2
t = Q2

(
a+

∞∑
j=1

bjrt−j

)
+ γσ2

t−1, (4.77)

where {ζt} are standardized i.i.d. random variables, a, bj are real parameters, Q(x)
is a Lipschitz function of real variable x ∈ R and 0 ≤ γ < 1 is a parameter. For
most of the statements below, the proofs are analogous to the proofs of corresponding
statements in previous sections and are omitted. The only exception is the proof of
Theorem 4.6.2 where a new condition for the existence of stationary solution that
does not use the Rosenthal constant is obtained.

A general impression from our results is that the GQARCH modification (cor-
responding to (4.77) with Q in (4.3)) of the QARCH model discussed in previous
sections (see also Doukhan et al. (2016)) allows for a more realistic volatility model-
ing as compared to the LARCH and QARCH models, at the same time preserving
the long memory and the leverage properties of the above mentioned models.

Stationary solution

First we consider the existence of stationary solution of (4.77). Since 0 ≤ γ < 1,
equations (4.77) yield

σ2
t =

∞∑
`=0

γ`Q2(a+Xt−`) and rt = ζt

√√√√ ∞∑
`=0

γ`Q2(a+Xt−`), (4.78)

where
Xt :=

∑
s<t

bt−srs. (4.79)

In other words, stationary solution of (4.77), or

rt = ζt

√√√√ ∞∑
`=0

γ`Q2(a+
∞∑
j=1

bjrt−`−j) (4.80)
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can be defined via (4.79), or stationary solution of

Xt :=
∑
s<t

bt−sζs

√√√√ ∞∑
`=0

γ`Q2(a+Xs−`), (4.81)

and vice versa.

Definition 4.6.1 Let p > 0 be an arbitrary real number.
(i) By Lp-solution of (4.78) or/and (4.80) we mean an adapted process {rt, t ∈ Z}
with E|rt|p <∞ such that for any t ∈ Z the series Xt = ∑∞

j=1 bjrt−j converges in Lp,
the series σ2

t = ∑∞
`=0 γ

`Q2(a+Xt−`) converges in Lp/2 and (4.80) holds.
(ii) By Lp-solution of (4.81) we mean a predictable process {Xt, t ∈ Z} with E|Xt|p <
∞ such that for any t ∈ Z the series σ2

t = ∑∞
`=0 γ

`Q2(a + Xt−`) converges in Lp/2,
the series ∑s<t bt−sζsσs converges in Lp and (4.81) holds.

Define

Bp :=


∑∞
j=1 |bj|p, 0 < p < 2,(∑∞
j=1 b

2
j

)p/2
, p ≥ 2,

Bp,γ :=

Bp/(1− γp/2), 0 < p < 2,
Bp/(1− γ)p/2, p ≥ 2.

(4.82)

Note Bp = Bp,0.
Proposition 4.6.1 says that equations (4.80) and (4.81) are equivalent in the sense

that by solving one the these equations one readily obtains a solution to the other
one.

Proposition 4.6.1 Let Q be a measurable function satisfying (4.16) with some ci ≥
0, i = 1, 2 and {ζt} be an i.i.d. sequence with |µ|p = E|ζ0|p < ∞ and satisfying
Eζ0 = 0 for p > 1. In addition, assume Bp <∞ and 0 ≤ γ < 1.
(i) Let {Xt} be a stationary Lp-solution of (4.81) and let σt :=

√∑∞
`=0 γ

`Q2(a+Xt−`).
Then {rt = ζtσt} in (4.78) is a stationary Lp-solution of (4.80) and

E|rt|p ≤ C(1 + E|Xt|p). (4.83)

Moreover, for p > 1, {rt,Ft, t ∈ Z} is a martingale difference sequence with

E[rt|Ft−1] = 0, E[|rt|p|Ft−1] = |µ|pσpt . (4.84)

(ii) Let {rt} be a stationary Lp-solution of (4.80). Then Xt in (4.79) is a stationary
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Lp-solution of (4.81) such that

E|Xt|p ≤ CE|rt|p.

Moreover, for p ≥ 2

E[XtX0] = Er2
0

∞∑
s=1

bt+sbs, t = 0, 1, . . . .

Remark 4.6.1 Let p ≥ 2 and |µ|p < ∞, then by inequality (4.13), {rt} being a
stationary Lp-solution of (4.78) is equivalent to {rt} being a stationary L2-solution of
(4.78) with E|r0|p <∞. Similarly, if Q and {ζt} satisfy the conditions of Proposition
4.6.1 and p ≥ 2, then {Xt} being a stationary Lp-solution of (4.79) is equivalent to
{Xt} being a stationary L2-solution of (4.79) with E|X0|p <∞. See also Section 4.2,
Remark 4.2.2.

Theorem 4.6.1 extends Theorem 4.2.1 from γ = 0 to γ > 0.

Theorem 4.6.1 Let {ζt} satisfy the conditions of Proposition 4.6.1 and Q satisfy
the Lipschitz condition in (4.15).

(i) Let p > 0 and
K1/p
p |µ|1/pp LipQB1/p

p,γ < 1, (4.85)

where Kp is the absolute constant from the moment inequality in (4.13). Then there
exists a unique stationary Lp-solution {Xt} of (4.81) and

E|Xt|p ≤
C(p,Q)|µ|pBp

1−Kp|µ|pLippQBp,γ

, (4.86)

where C(p,Q) <∞ depends only on p and c1, c2 in (4.16).
(ii) Assume, in addition, that Q2(x) = c2

1 + c2
2x

2, where ci ≥ 0, i = 1, 2, and µ2 =
Eζ2

0 = 1. Then c2
2B2,γ < 1 is a necessary and sufficient condition for the existence of

a stationary L2-solution {Xt} of (4.81) with a 6= 0.

A major shortcoming of Theorem 4.6.1 (also Theorem 4.2.1) is the presence of
the universal constant Kp in the condition (4.85). The upper bound of Kp given in
Osȩkowski (2012) leads to restrictive conditions on Bp,γ in (4.85) for the existence of
Lp-solution, p > 2. For example, for p = 4 the above mentioned bound in Osȩkowski
(2012) gives

K4µ4B
2
2/(1− γ)2 ≤ (27.083)4µ4B

2
2/(1− γ)2 < 1 (4.87)
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requiring B2 = ∑∞
j=1 b

2
j to be very small (see also Remarks 4.2.1, 4.2.3). Since sta-

tistical inference based of “observable” squares r2
t , 1 ≤ t ≤ n usually requires the

existence of Er4
t and higher moments of rt (see e.g. Grublytė et al. (2017), also

Chapter 5), the question arises to derive less restrictive conditions for the existence
of these moments which do not involve the Rosenthal constant Kp. This is achieved
in the subsequent Theorem 4.6.2. Particularly, for γ = 0,LipQ = 1 the sufficient
condition (4.89) of Theorem 4.6.2 for the existence of Erpt , p ≥ 2 even becomes

p∑
j=2

(
p

j

)
|µj|

∞∑
k=1
|bk|j < 1. (4.88)

Condition (4.88) coincides with the corresponding condition in the LARCH case in
Giraitis et al. (2004), Proposition 3. Moreover, (4.88) and (4.89) apply to more gen-
eral classes of ARCH models in (4.77) to which the specific Volterra series techniques
used in Giraitis et al. (2000), Giraitis et al. (2004) are not applicable. In the particular
case p = 4 condition (4.88) becomes

6B2 + 4|µ3|
∞∑
k=1
|bk|3 + µ4

∞∑
k=1
|bk|4 < 1,

which seems to be much better than condition (4.87) based on Theorem 4.6.1.

Theorem 4.6.2 Let {ζt} satisfy the conditions of Proposition 4.6.1 and Q satisfy
the Lipschitz condition in (4.15).
Let p = 2, 4, . . . be even and

p∑
j=2

(
p

j

)
|µj|LipjQ

∞∑
k=1
|bk|j < (1− γ)p/2. (4.89)

Then there exists a unique stationary Lp-solution {Xt} of (4.81).

Proof. For p = 2, condition (4.89) agrees with Lip2
QB2,γ < 1 or condition (4.85)

so we shall assume p ≥ 4 in the subsequent proof. In the latter case (4.89) implies
Lip2

QB2,γ < 1 and the existence of a stationary L2-solution {Xt} of (4.81). It suffices
to show that the above L2-solution satisfies EXp

t <∞.
Towards this end similarly as in the proof of Theorem 4.6.1 (i) consider the so-

lution {X(n)
t } of (4.81) with zero initial condition at t ≤ −n recurently defined as

follows

X
(n)
t :=

0, t ≤ −n,∑t−1
s=−n bt−sζsσ

(n)
s , t > −n, t ∈ Z,

(4.90)
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where σ(n)
s :=

√∑n+s
`=0 γ

`Q2(a+X
(n)
s−`).

Let σ(n)
t := 0, t < −n. Since E(X(n)

t − Xt)2 → 0 (n → ∞), by Fatou’s lemma it
suffices to show that under condition (4.89)

E(X(n)
t )p < C, (4.91)

where the constant C <∞ does not depend on t, n.
Since p is even for any t > −n we have that

E(X(n)
t )p =

t−1∑
s1,...,sp=−n

E
[
bt−s1ζs1σ

(n)
s1 . . . bt−spζspσ

(n)
sp

]

=
p∑
j=2

(
p

j

)
t−1∑
s=−n

bjt−sµjE
[
(σ(n)

s )j
( s−1∑
u=−n

bt−uζuσ
(n)
u

)p−j]
. (4.92)

Hence using Hölder’s inequality:

|Eξjηp−j| ≤ cjEj/p|ξ/c|pE(p−j)/p|η|p ≤ cj
[ j
pcp

E|ξ|p+p− j
p

E|η|p
]
, 1 ≤ j ≤ p, c > 0

we obtain

E(X(n)
t )p ≤

p∑
j=2

(
p

j

)
|µj|cj3

t−1∑
s=−n

|bjt−s|
{

j
pcp3

E(σ(n)
s )p + p−j

p
E
( s−1∑
u=−n

bt−uζuσ
(n)
u

)p}

=
t−1∑
s=−n

β1,t−sE(σ(n)
s /c3)p +

t−1∑
s=−n

β2,t−sE
(
X

(n)
t,s

)p
, (4.93)

where X(n)
t,s := ∑s−1

u=−n bt−uζuσ
(n)
u , c3 > LipQ and where

β1,t−s :=
p∑
j=2

j

p

(
p

j

)
|bjt−s||µj|cj3, β2,t−s :=

p∑
j=2

p− j
p

(
p

j

)
|bjt−s||µj|cj3.

The last expectation in (4.93) can be evaluated similarly to (4.92)-(4.93):

E
(
X

(n)
t,s

)p
=

p∑
j=2

(
p

j

)
s−1∑
u=−n

bjt−uµjE
[
(σ(n)

u )j
( u−1∑
v=−n

bt−vζvσ
(n)
v

)p−j]

≤
s−1∑
u=−n

β1,t−uE(σ(n)
u /c3)p +

s−1∑
u=−n

β2,t−uE
(
X

(n)
t,u

)p
.
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Proceeding recurrently with the above evaluation results in the inequality:

E(X(n)
t )p ≤

t−1∑
s=−n

β̃t−sE(σ(n)
s /c3)p, (4.94)

where

β̃t−s := β1,t−s

(
1 +

t−s−1∑
k=1

∑
s<uk<···<u1<t

β2,t−u1 . . . β2,t−uk

)
.

Let βi := ∑∞
t=1 βi,t, i = 1, 2, β̃ := ∑∞

t=1 β̃t. By assumption (4.89),

β1 + β2 =
p∑
j=2

(
p

j

)
|µj|cj3

∞∑
k=1
|bk|j < (1− γ)p/2

whenever (c3 − LipQ) > 0 is small enough, and therefore

β̃

(1− γ)p/2 ≤ 1
(1− γ)p/2

∞∑
t=1

β1,t
(
1 +

∞∑
k=1

βk2 )

= 1
(1− γ)p/2

β1

1− β2
< 1. (4.95)

Next, let us estimate the expectation on the r.h.s. of (4.94) in terms of the expecta-
tions on the l.h.s. Using (4.16) and Minkowski’s inequalities we obtain

E2/p(σ(n)
s )p ≤

s+n∑
`=0

γ`E2/p|Q(a+X
(n)
s−`|p

≤
s+n∑
`=0

γ`E2/p|c2
1 + c2

2(a+X
(n)
s−`)2|p/2

≤ C + c2
3

n+s∑
`=0

γ`E2/p(X(n)
s−`)p,

where c3 > c2 > LipQ and c3−LipQ > 0 can be chosen arbitrarily small. Particularly,
for any fixed T ∈ Z

sup
−n≤s<T

E2/p(σ(n)
s )p ≤ c2

3
(1− γ) sup

−n≤s<T
E2/p(X(n)

s )p + C.

Substituting the last bound into (4.94) we obtain

sup
−n≤t<T

E2/p(X(n)
t )p ≤ β̃2/p

(1− γ) sup
−n≤s<T

E2/p(X(n)
s )p + C. (4.96)
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Relations (4.96) and (4.95) imply

sup
−n≤t<T

E2/p(X(n)
t )p ≤ C

1− β̃2/p

(1−γ)

< ∞

proving (4.91) and the theorem, too. �

Example 4.6.1 (Asymmetric GARCH(1,1)) The asymmetric GARCH(1,1) model
of Engle (1990) corresponds to

σ2
t = c2 + (a+ brt−1)2 + γσ2

t−1, (4.97)

or

σ2
t = θ + ψrt−1 + a11r

2
t−1 + δσ2

t−1 (4.98)

in the parametrization of Sentana (1995), (5), with parameters in (4.97), (4.98) re-
lated by

θ = c2 + a2, δ = γ, ψ = 2ab, a11 = b2. (4.99)

Under the conditions that {ζt = rt/σt} are standardized i.i.d., a stationary asymmet-
ric GARCH(1,1) (or GQARCH(1,1) in the terminology of Sentana (1995)) process
{rt} with finite variance and a 6= 0 exists if and only if B2,γ = b2/(1− γ) < 1, or

b2 + γ < 1, (4.100)

see Theorem 4.6.1 (ii). Condition (4.100) agrees with condition a11 + δ < 1 for co-
variance stationarity in Sentana (1995). Under the assumptions that the distribution
of ζt is symmetric and µ4 = Eζ4

t <∞, Sentana (1995) provides a sufficient condition
for finiteness of Er4

t together with explicit formula

Er4
t = µ4θ[θ(1 + a11 + δ) + ψ2]

(1− a2
11µ4 − 2a11δ − δ2)(1− a11 − δ)

. (4.101)

The sufficient condition of Sentana (1995) for Er4
t < ∞ is µ4a

2
11 + 2a11δ + δ2 < 1,

which translates to
µ4b

4 + 2b2γ + γ2 < 1 (4.102)

in terms of the parameters of (4.97). Condition (4.102) seems weaker than the suffi-
cient condition µ4b

4 +6b2 < (1−γ)2 of Theorem 4.6.2 for the existence of L4-solution
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of (4.97).
Following the approach in Section 4.2, Example 4.2.2, below we find explicitly

the covariance function ρ(t) := Cov(r2
0, r

2
t ), including the expression in (4.101), for

stationary solution of the asymmetric GARCH(1,1) in (4.97). We can write the
following moment equations:

m2 = (c2 + a2)/(1− b2 − γ), m3(0) = 0,

m3(1) =
∞∑
`=0

γ`E(c2 + a2 + 2abr−` + b2r2
−`)r0 = 2abm2,

m3(t) =
∞∑
`=0

γ`E(c2 + a2 + 2abrt−`−1 + b2r2
t−`−1)r0

= 2abm2γ
t−1 + b2

t−2∑
`=0

γ`m3(t− `− 1), t ≥ 2. (4.103)

From equations above one can show by induction thatm3(t) = 2abm2(γ+b2)t−1, t ≥ 1.
Similarly,

m4(0) = µ4E((c2 + a2) + 2abr0 + b2r2
0 + γσ2

0)2

= µ4

(
(c2 + a2)2 + (2ab)2m2 + b4m4(0) + 2(c2 + a2)(b2 + γ)m2

+ (2b2γ + γ2)m4(0)/µ4

)
,

m4(t) =
∞∑
`=0

γ`E(c2 + a2 + 2abrt−`−1 + b2r2
t−`−1)r2

0

=
∞∑
`=0

γ`(c2 + a2)m2 + b2
∞∑
`=0

γ`m4(|t− `− 1|)

+ 2ab
∞∑
`=t

γ`m3(`− t+ 1), t ≥ 1.

Using 2ab∑∞`=t γ`m3(`− t+ 1) = 4a2b2m2
∑∞
`=t γ

`(γ+ b2)`−t = 4a2b2m2γ
t/(1− γ(γ+

b2)) and ρ(t) = m4(t)−m2
2 we obtain the system of equations

ρ(0) = m4(0)−m2
2,

ρ(t) = b2
∞∑
`=0

γ`ρ(|t− `− 1|) + 4a2b2m2γ
t/(1− γ(γ + b2))

= b2
t−2∑
`=0

γ`ρ(t− `− 1) + Cγt−1, t ≥ 1, (4.104)

where C := b2∑∞
`=1 γ

`ρ(`) + (m4(0) − m2
2)b2 + 4a2b2m2γ/(1 − γ(γ + b2)) is some
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constant independent of t and

m4(0) = µ4m2

1− b4µ4 − (2b2γ + γ2)

(
(c2 + a2)(1 + b2 + γ) + (2ab)2

)
. (4.105)

Note that the expression above coincides with (4.101) given that the relations in
(4.99) hold.

Since the equation in (4.104) is analogous to (4.103), the solution to (4.104) is
ρ(t) = C(γ + b2)t−1, t ≥ 1. In order to find C, we combine ρ(t) = C(γ + b2)t−1 and
the expression for C to obtain the equation C = Cb2γ/(1 − γ(γ + b2)) + (m4(0) −
m2

2)b2 + 4a2b2m2γ/(1− γ(γ + b2)). Now C can be expressed as

C = b2 (m4(0)−m2
2)(1− γ(γ + b2)) + 4a2m2γ

1− γ(γ + 2b2)

together with (4.105) and ρ(t) = C(γ + b2)t−1, t ≥ 1 giving explicitly the covariances
of process {r2

t }.

Model properties

The present section studies long memory and leverage properties of the generalized
quadratic ARCH (GQARCH) model in (4.77) corresponding to Q in (4.3), viz.,

rt = ζt

√√√√ ∞∑
`=0

γ`
(
c2 +

(
a+

∑
s<t−`

bt−`−srs
)2)

, t ∈ Z, (4.106)

where 0 ≤ γ < 1, a 6= 0, c are real parameters, {ζt} are standardized i.i.d. random
variables, with zero mean and unit variance, and bj, j ≥ 1 are real numbers.

Theorem 4.6.3 extends the results on long memory in Theorem 4.4.2 corresponding
to γ = 0 to the case γ > 0. In Theorem 4.6.3 and below, 0 ≤ γ < 1, B2 = ∑∞

j=1 b
2
j

and B(·, ·) is beta function.

Theorem 4.6.3 Let {rt} be a stationary L2-solution of (4.106) with coefficients bj
decaying regularly as in (4.51). Assume in addition that µ4 = E[ζ4

0 ] < ∞, and
E[r4

t ] <∞. Then
Cov(r2

0, r
2
t ) ∼ κ2

1t
2d−1, t→∞, (4.107)

where κ2
1 :=

(
2aβ

1−γ−B2

)2
B(d, 1− 2d)Er2

0. Moreover,

n−d−1/2
[nτ ]∑
t=1

(r2
t − Er2

t ) →D[0,1] κ2Wd+(1/2)(τ), n→∞, (4.108)
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where Wd+(1/2) is a fractional Brownian motion with Hurst parameter H = d+(1/2) ∈
(1/2, 1) and κ2

2 := κ2
1/(d(1 + 2d)).

Proposition 4.6.2 below extends to the GQARCH model the leverage effect dis-
cussed in Theorem 4.5.1 and Giraitis et al. (2004). The study of leverage for model
(4.53) (corresponding to (4.106) with γ = 0) was based on linear equation for leverage
function in (4.75). A similar equation (4.109) for leverage function can be derived
for model (4.106) in the general case 0 ≤ γ < 1. Namely, using Ers = 0, Ersr0 =
m21(s = 0),Er2

sr0 = 0 (s ≤ 0),Er0rs1rs2 = 1(s1 = 0)h−s2 (s2 < s1) as in proof of
Theorem (4.5.1) we have that

ht = Er2
t r0 =

t−1∑
`=0

γ`E
[
(c2 + (a+

∑
s<t−`

bt−`−srs)2)r0
]

=
t−1∑
`=0

γ`
(
2am2bt−` +

∑
s<t−`

b2
t−`−sE[r2

sr0]
)

+ 2
t−1∑
`=0

γ`
∑

s2<s1<t−`
bt−`−s1bt−`−s2E[rs1rs2r0]

= 2am2bt,γ +
∑

0<i<t
hib̃

2
t−i,γ + 2

∑
i>0

hiwi,t,γ, (4.109)

where bt,γ, b̃2
t,γ are defined as follows

bt,γ :=
t−1∑
j=0

γjbt−j, b̃2
t,γ :=

t−1∑
j=0

γjb2
t−j, t ≥ 1 (4.110)

and wi,t,γ := ∑t−1
`=0 γ

`bt−`bi+t−`. From now on the proof is analogous to the proof of
Theorem 4.5.1 and is not included.

Proposition 4.6.2 Let {rt} be a stationary L2-solution of (4.106) with E|r0|3 <

∞, |µ|3 < ∞. Assume in addition that B2,γ < 1/5, µ3 = Eζ3
0 = 0. Then for any

fixed k such that 1 ≤ k ≤ ∞:
(i) if ab1 < 0, abj ≤ 0, j = 2, . . . , k, then {rt} ∈ `(k),
(ii) if ab1 > 0, abj ≥ 0, j = 2, . . . , k, then hj > 0, for j = 1, . . . , k.

4.7 A simulation study

The (asymmetric) GQARCH model of (4.106) and the LARCH model of (2.11) have
similar long memory and leverage properties and both can be used for modelling of
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financial data with the above properties. The main disadvantage of the latter model
vs. the former one seems to be the fact the volatility σt may take negative values
and is not separated from below by positive constant c > 0 as in the case of (4.106).

Consistent QML estimation for 5-parametric long memory GQARCH model in
(4.106) with c > 0 and bj = βjd−1 is discussed in Chapter 5. The parametric form
bj = βjd−1 of the moving-average coefficients in (4.106) is the same as in Beran and
Schützner (2009) for the LARCH model. It is of interest to compare QML estimates
and volatility graphs of the GQARCH and LARCH models based on real data. The
comparisons are extended to the classical GARCH(1,1) model

rt = σtζt, σt =
√
ω + αr2

t−1 + βσ2
t−1. (4.111)

We fit four data generating processes (DGP):

(L) : LARCH of (5.2), (4.112)
(Q1) : QARCH of (4.106) with γ = 0,
(Q2) : QARCH of (4.106) with γ > 0,
(G) : GARCH(1,1) of (4.111),

with bj = βjd−1 to daily returns of GSPC (SP500) from 2010 01 01 till 2015 01 01
with n = 1257 observations in total. The first three models (L), (Q1), (Q2) have long
memory and (G) is short memory. The parameters

(L) : (a, β, d) = (0.0101,−0.1749, 0.3520),
(Q1) : (a, c, β, d) = (0.0058,−0.0101, 0.2099, 0.4648),
(Q2) : (a, c, β, d, γ) = (0.0020,−0.0049, 0.2394, 0.2393, 0.7735),
(G) : (ω, α, β) = (0.00001, 0.1306, 0.8346),

are obtained by minimizing the corresponding approximate log-likelihood functions
and using the constrains for coefficients to ensure the second order stationarity. The
details of the estimation are presented in Chapter 5.

Figure 4.1 presents estimated trajectories of σt of four DGP in (4.112), corre-
sponding to the returns of GSPC (original returns plotted at the bottom graph).
Observe that the variability of volatility decreases from top to bottom, (Q2) resem-
bling (G) (GARCH(1,1)) trajectory more closely than (L) and (Q1). The graph (Q1)
exhibits very sharp peaks and clustering and a tendency to concentrate near the lower
threshold c outside of high volatility regions. This unrealistic “threshold effect” is
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Figure 4.1: Trajectory of DGP: From top to bottom: (L), (Q1), (Q2), (G) and returns of
GSPC. The dashed line in (Q1) and (Q2) indicates the threshold c/

√
1− γ > 0 in (4.106).

much less pronounced in (Q2) (and also in the other two DGP), due to presence of
the autoregressive parameter γ > 0 which also prevents sharp changes and excessive
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variability of volatility series. Figure 4.2 illustrates the effect of γ on the marginal
distribution of (Q2): with γ increasing, the distribution becomes less skewed and
spreads to the right, indicating a lower degree of volatility clustering.

0.000 0.005 0.010 0.015

0
50

10
0

15
0

20
0

25
0

30
0

γ=0
γ=0.6
γ=0.75
γ=0.85

Figure 4.2: Smoothed histograms of DGP (Q2) for different values of γ.
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Chapter 5

Quasi-MLE for quadratic ARCH
model with long memory

Abstract. We discuss parametric quasi-maximum likelihood estimation for quadratic
ARCH (QARCH) process with long memory introduced in Chapter 4 with condi-
tional variance involving the square of inhomogeneous linear combination of observ-
able sequence with square summable weights. The aforementioned model extends the
QARCH model of Sentana (1995) and the Linear ARCH model of Robinson (1991) to
the case of strictly positive conditional variance. We prove consistency and asymp-
totic normality of the corresponding QML estimators, including the estimator of long
memory parameter 0 < d < 1/2. A simulation study of empirical MSE is included.

5.1 Introduction

Chapter 4 discussed a class of quadratic ARCH models of the form

rt = ζtσt, σ2
t = ω2 +

(
a+

∞∑
j=1

bjrt−j
)2

+ γσ2
t−1, (5.1)

where {ζt, t ∈ Z} is a standardized i.i.d sequence, Eζt = 0, Eζ2
t = 1, and γ, ω, a, bj, j ≥

1 are real parameters satisfying certain conditions presented in Theorem 4.6.2. In
Chapter 4, (5.1) was called the generalized quadratic ARCH (GQARCH) model. By
iterating the second equation in (5.1), the squared volatility in (5.1) can be written
as a quadratic form

σ2
t =

∞∑
`=0

γ`
{
ω2 +

(
a+

∞∑
j=1

bjrt−`−j
)2}
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in lagged variables rt−1, rt−2, . . . , and hence it represents a particular case of Quadratic
ARCH model by Sentana (1995) with p =∞. The model (5.1) includes the classical
Asymmetric GARCH(1,1) process of Engle (1990) and the Linear ARCH (LARCH)
model of Robinson (1991):

rt = ζtσt, σt = a+
∞∑
j=1

bjrt−j. (5.2)

The main interest in (5.1) and (5.2) seems the possibility of having slowly decaying
moving-average coefficients bj with ∑∞

j=1 |bj| = ∞, ∑∞j=1 b
2
j < ∞ for modeling long

memory in volatility, in which case rt and ζt must have zero mean in order that the
series ∑∞j=1 bjrt−j converges. Giraitis et al. (2000) proved that the squared stationary
solution {r2

t } of the LARCH model in (5.2) with bj decaying as jd−1, 0 < d < 1/2 may
have long memory autocorrelations. For the GQARCH model in (5.1), similar results
were established in Chapter 4. Namely, assume that the parameters γ, ω, a, bj, j ≥ 1
in (5.1) satisfy

bj ∼ c jd−1 (∃ 0 < d < 1/2, c > 0),

γ ∈ [0, 1), a 6= 0 and

6B2 + 4|µ3|
∞∑
j=1
|bj|3 + µ4

∞∑
j=1

b4
j < (1− γ)2, (5.3)

where µp := Eζp0 , p = 1, 2, . . . , B2 := ∑∞
j=1 b

2
j . Then (see Chapter 4, Theorems 4.6.2

and 4.6.3) there exists a stationary solution of (5.1) with Er4
t <∞ such that

Cov(r2
0, r

2
t ) ∼ κ2

1t
2d−1, t→∞

and

n−d−1/2
[nτ ]∑
t=1

(r2
t − Er2

t ) →D[0,1] κ2Wd+(1/2)(τ), n→∞,

whereWd+(1/2) is a fractional Brownian motion with Hurst parameterH = d+(1/2) ∈
(1/2, 1) and κi > 0, i = 1, 2 are some constants.

As noted in Chapter 4, the GQARCH model of (5.1) and the LARCH model of
(5.2) have similar long memory and leverage properties and both can be used for
modelling of financial data with the above properties. The main disadvantage of the
latter model vs. the former one seems to be the fact that volatility σt in (5.2) may
assume negative values and is not separated from below by positive constant c > 0
as in the case of (5.1). The standard quasi-maximum likelihood (QML) approach to
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estimation of LARCH parameters is inconsistent and other estimation methods were
developed in Beran and Schützner (2009), Francq and Zakoian (2010b), Levine et al.
(2009), Truquet (2014).

The present chapter discusses QML estimation for the 5-parametric GQARCH
model

σ2
t (θ) =

∞∑
`=0

γ`
{
ω2 +

(
a+ c

∞∑
j=1

jd−1rt−`−j
)2}

, (5.4)

depending on parameter θ = (γ, ω, a, d, c), 0 < γ < 1, ω > 0, a 6= 0, c 6= 0 and d ∈
(0, 1/2). The parametric form bj = c jd−1 of moving-average coefficients in (5.4) is the
same as in Beran and Schützner (2009) for the LARCH model. Similarly as in Beran
and Schützner (2009) we discuss the QML estimator θ̂n := arg minθ∈Θ Ln(θ), Ln(θ) :=
1
n

∑n
t=1

(
r2
t

σ2
t (θ) + log σ2

t (θ)
)

involving exact conditional variance in (5.4) depending on

infinite past rs,−∞ < s < t, and its more realistic version θ̃n := arg minθ∈Θ L̃n(θ),
obtained by replacing the σ2

t (θ)’s in (5.4) by σ̃2
t (θ) depending only rs, 1 ≤ s < t (see

Section 5.2 for the definition). It should be noted that the QML function in Beran and
Schützner (2009) is modified to avoid the degeneracy of σ−1

t in (5.2), by introducing
an additional tuning parameter ε > 0 which affects the performance of the estimator
and whose choice is a non-trivial task. For the GQARCH model (5.4) with ω > 0
the above degeneracy problem does not occur and we deal with unmodified QMLE
in contrast to Beran and Schützner (2009). We also note that our proofs use different
techniques from Beran and Schützner (2009). Particularly, the method of orthogonal
Volterra expansions of the LARCH model used in Beran and Schützner (2009) is not
applicable for model (5.4), see Chapter 4, Example 4.2.1.

This chapter is organized as follows. In Section 5.2 we define several QML esti-
mators of parameter θ in (5.4). Section 5.3 presents the main results of the paper
devoted to consistency and asymptotic normality of the QML estimators. The proofs
in this section are based on four lemmas presented in Section 5.4. Finite sample
performance of these estimators is investigated in the simulation study in Section
5.5.

5.2 QML estimators

Let Ft = σ(ζs, s ≤ t), t ∈ Z be the sigma-field generated by ζs, s ≤ t. For real p ≥ 2,
define as in Chapter 4 Section 4.6

Bp :=
( ∞∑
j=1

b2
j

)p/2
, Bp,γ := Bp/(1− γ)p/2. (5.5)
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The following assumptions on the parametric GQARCH model in (5.4) are im-
posed.

Assumption (A): {ζt} is a standardized i.i.d. sequence with Eζt = 0,Eζ2
t = 1.

Assumption (B): Θ ⊂ R5 is a compact set of parameters θ = (γ, ω, a, d, c) defined
by

(i) γ ∈ [γ1, γ2] with 0 < γ1 < γ2 < 1;

(ii) ω ∈ [ω1, ω2] with 0 < ω1 < ω2 <∞;

(iii) a ∈ [a1, a2] with −∞ < a1 < a2 <∞;

(iv) d ∈ [d1, d2] with 0 < d1 < d2 < 1/2;

(v) c ∈ [c1, c2] with 0 < ci = ci(d, γ) <∞, c1 < c2 such that B2 = c2∑∞
j=1 j

2(d−1) <

1− γ for any c ∈ [c1, c2], γ ∈ [γ1, γ2], d ∈ [d1, d2].

We assume that the observations {rt, 1 ≤ t ≤ n} follow the model in (5.1) with the
true parameter θ0 = (γ0, ω0, a0, d0, c0) belonging to the interior Θ0 of Θ in Assumption
(B). The restriction on parameter c in (v) is due to condition (4.89) in Theorem 4.6.2
with p = 2. The QML estimator of θ ∈ Θ is defined as

θ̂n := arg min
θ∈Θ

Ln(θ), (5.6)

where
Ln(θ) = 1

n

n∑
t=1

(
r2
t

σ2
t (θ)

+ log σ2
t (θ)

)
(5.7)

and σ2
t (θ) is defined in (5.4), viz.,

σ2
t (θ) =

∞∑
`=0

γ`
{
ω2 +

(
a+ cYt−`(d)

)2}
, where (5.8)

Yt(d) :=
∞∑
j=1

jd−1rt−j.

Note the definitions in (5.6)-(5.8) depend on (unobserved) rs, s ≤ 0 and therefore the
estimator in (5.6) is usually referred to as the QMLE given infinite past (Beran and
Schützner (2009)). A more realistic version of (5.6) is defined as

θ̃n := arg min
θ∈Θ

L̃n(θ), (5.9)
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where

L̃n(θ) := 1
n

n∑
t=1

(
r2
t

σ̃2
t (θ)

+ log σ̃2
t (θ)

)
, where (5.10)

σ̃2
t (θ) :=

t−1∑
`=0

γ`
{
ω2 +

(
a+ cỸt−`(d)

)2}
, Ỹt(d) :=

t−1∑
j=1

jd−1rt−j.

Note all quantities in (5.10) depend only on rs, 1 ≤ t ≤ n, hence (5.9) is called the
QMLE given finite past. The QML functions in (5.7) and (5.10) can be written as

Ln(θ) = 1
n

n∑
t=1

lt(θ) and L̃n(θ) = 1
n

n∑
t=1

l̃t(θ)

respectively, where

lt(θ) := r2
t

σ2
t (θ)

+ log σ2
t (θ), l̃t(θ) := r2

t

σ̃2
t (θ)

+ log σ̃2
t (θ). (5.11)

Finally, following Beran and Schützner (2009) we define a truncated version of (5.9)
involving the last O(nβ) quasi-likelihoods l̃t(θ), n− [nβ] < t ≤ n, as follows:

θ̃(β)
n := arg min

θ∈Θ
L̃(β)
n (θ), L̃(β)

n (θ) := 1
[nβ]

n∑
t=n−[nβ ]+1

l̃t(θ). (5.12)

where 0 < β < 1 is a “bandwidth parameter”. Note that for any t ∈ Z and θ0 =
(γ0, ω0, a0, d0, c0) ∈ Θ, the random functions Yt(d) and Ỹt(d) in (5.8) and (5.10) are
infinitely differentiable w.r.t. d ∈ (0, 1/2) a.s. Hence using the explicit form of
σ2
t (θ) and σ̃2

t (θ), it follows that σ2
t (θ), σ̃2

t (θ), lt(θ), l̃t(θ), Ln(θ), L̃n(θ), L̃(β)
n (θ) etc. are

all infinitely differentiable w.r.t. θ ∈ Θ0 a.s. We use the notation

L(θ) := ELn(θ) = Elt(θ) (5.13)

and

A(θ) := E
[
∇T lt(θ)∇lt(θ)

]
and B(θ) := E

[
∇T∇lt(θ)

]
, (5.14)

where ∇ = (∂/∂θ1, . . . , ∂/∂θ5) and the superscript T stands for transposed vector.
Particularly, A(θ) and B(θ) are 5× 5-matrices. By Lemma 5.4.1, the expectations in
(5.14) are well-defined for any θ ∈ Θ under condition Er4

0 <∞. We have

B(θ) = E[σ−4
t (θ)∇Tσ2

t (θ)∇σ2
t (θ)] and A(θ) = κ4B(θ), (5.15)
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where κ4 := E(ζ2
0 − 1)2 > 0.

5.3 Main results

Everywhere in this section {rt} is a stationary solution of model (5.4) as defined
in Definition 4.6.1 and satisfying Assumptions (A) and (B) of the previous sec-
tion. As usual, all expectations are taken with respect to the true value θ0 =
(γ0, ω0, a0, d0, c0) ∈ Θ0, where Θ0 is the interior of the parameter set Θ ⊂ R5.

The asymptotic results in Theorems 5.3.1 and 5.3.2 are similar to the results of
Beran and Schützner (2009), Theorems 1-4, pertaining to the 3-parametric LARCH
model in (5.2) with bj = cjd−1, except that Beran and Schützner (2009) deal with
a modified QMLE involving a “tuning parameter” ε > 0. As explained in Beran
and Schützner (2009), Section 3.2, the convergence rate of ∇L̃n(θ0) and θ̃n (based
on nonstationary truncated observable series in (5.10)) is apparently too slow to
guarantee asymptotic normality, this fact being a consequence of long memory in
volatility and the main reason for introducing the estimators θ̃(β)

n in (5.12). Theorems
5.3.1 and 5.3.2 are based on subsequent Lemmas 5.4.1-5.4.4 which describe properties
of the likelihood processes defined in (5.7), (5.10) and (5.11). As noted in Section
5.1, our proofs use different techniques from Beran and Schützner (2009) which rely
on explicit Volterra series representation of stationary solution of the LARCH model.

Theorem 5.3.1 (i) Let E|rt|3 < ∞. Then θ̂n in (5.6) is a strongly consistent esti-
mator of θ0, i.e.

θ̂n
a.s.→ θ0.

(ii) Let E|rt|5 <∞. Then θ̂n in (5.6) is asymptotically normal:

n1/2
(
θ̂n − θ0

)
law→ N(0,Σ(θ0)), (5.16)

where Σ(θ0) := B−1(θ0)A(θ0)B−1(θ0) = κ4B
−1(θ0) and matrices A(θ), B(θ) are de-

fined in (5.15).

Proof. (i) Follows from Lemmas 5.4.2 and 5.4.4 (i) using standard argument.
(ii) By Taylor’s expansion,

0 = ∇Ln(θ̂n) = ∇Ln(θ0) +∇T∇Ln(θ∗n)(θ̂n − θ0),

where θ∗n →p θ0 since θ̂n →p θ0. Then ∇T∇Ln(θ∗n) →p ∇T∇L(θ0) by Lemma 5.4.4
(5.57). Next, since {r2

t /σ
2
t (θ0) − 1,Ft, t ∈ Z} is a square-integrable and ergodic
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martingale difference sequence, the convergence n1/2∇Ln(θ0) law→ N(0, A(θ0)) follows
by the martingale central limit theorem in (Billingsley (1968), Therem 23.1). Then
(5.16) follows by Slutsky’s theorem and (5.14). �

The following theorem gives asymptotic properties of “finite past” estimators θ̃n
and θ̃(β)

n defined in (5.9) and (5.12), respectively.

Theorem 5.3.2 (i) Let E|rt|3 <∞ and 0 < β < 1. Then

E|θ̃n − θ0| → 0 and E|θ̃(β)
n − θ0| → 0.

(ii) Let E|rt|5 <∞ and 0 < β < 1− 2d0. Then

nβ/2(θ̃(β)
n − θ0) law→ N(0,Σ(θ0)), (5.17)

where Σ(θ0) is the same as in Theorem 5.3.1.

Proof. Part (i) follows from Lemmas 5.4.2 and 5.4.4 (i) as in the case of Theorem
5.3.1 (i).

To prove part (ii), by Taylor’s expansion

0 = ∇L̃(β)
n (θ̃(β)

n ) = ∇L̃(β)
n (θ0) +∇T∇L̃(β)

n (θ̃∗n)(θ̃(β)
n − θ0),

where θ̃∗n →p θ0 since θ̃(β)
n →p θ0. Then ∇T∇L̃(β)

n (θ∗n)→p ∇T∇L(θ0) by Lemma 5.4.4
(5.57)-(5.58). From the proof of Theorem 5.3.1 (ii) we have that nβ/2∇L(β)

n (θ0) law→
N(0, A(θ0)), where L(β)

n (θ) := 1
[nβ ]

∑n
t=n−[nβ ]+1 lt(θ). Hence, the central limit theorem

in (5.17) follows from

In(β) := E|∇L̃(β)
n (θ0)−∇L(β)

n (θ0)| = o(n−β/2). (5.18)

We have In(β) ≤ supn−[nβ ]≤t≤n E|∇lt(θ0)−∇l̃t(θ0)| and (5.18) follows from

E|∇lt(θ0)−∇l̃t(θ0)| = o(t−β/2), t→∞. (5.19)

Write ‖ξ‖p := E1/p|ξ|p for Lp-norm of r.v. ξ. Using |∇(lt(θ0)−l̃t(θ0))| ≤ r2
t |∇(σ−2

t (θ0)−
σ̃−2
t (θ0))| + |∇(log σ2

t (θ0) − log σ̃2
t (θ0))| and assumption E|rt|5 < ∞, relation (5.19)

follows from

‖σ−4
t ∂iσ

2
t − σ̃−4

t ∂iσ̃
2
t ‖5/3 = O(td0−1/2 log t) and (5.20)

‖σ−2
t ∂iσ

2
t − σ̃−2

t ∂iσ̃
2
t ‖1 = O(td0−1/2 log t), i = 1, . . . , 5,
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where σ2
t := σ2

t (θ0), σ̃2
t := σ̃2

t (θ0), ∂iσ2
t := ∂iσ

2
t (θ0), ∂iσ̃2

t := ∂iσ̃
2
t (θ0). Below, we

prove the first relation (5.20) only, the proof of the second one being similar. We
have σ−4

t ∂iσ
2
t − σ̃−4

t ∂iσ̃
2
t = σ−4

t σ̃−4
t (σ̃2

t + σ2
t )(σ̃2

t − σ2
t )∂iσ2

t + σ̃−4
t (∂iσ2 − ∂iσ̃2

t ). Then
using σ2

t ≥ ω2
1/(1− γ2) > 0, σ̃2

t ≥ ω2
1/(1− γ2) > 0, relation the first relation in (5.20)

follows from

‖(σ2
t − σ̃2

t )(∂iσ2
t /σt)‖5/3 = O(td0−1/2) and (5.21)

‖∂iσ2
t − ∂iσ̃2

t ‖5/3 = O(td0−1/2 log t), i = 1, . . . , 5. (5.22)

Consider (5.21). By Hölder’s inequality,

‖(σ2
t − σ̃2

t )(∂iσ2
t /σt)‖5/3 ≤ ‖σ2

t − σ̃2
t ‖5/2‖∂iσ2

t /σt‖5,

where ‖∂iσ2
t /σt‖5 < C according to (5.32). Hence, (5.21) follows from

‖σ2
t − σ̃2

t ‖5/2 = O(td0−1/2). (5.23)

To show (5.23), similarly as in the proof of (5.43) split σ2
t − σ̃2

t = Ut,1 + Ut,2, where
Ut,i := Ut,i(θ0), i = 1, 2 are defined in (4.57), i.e., Ut,1 = ∑t−1

`=1 γ
`
0

{(
a0 + c0Yt−`

)2
−(

a0 +c0Ỹt−`
)2}

, Ut,2 = ∑∞
`=t γ

`
0

{
ω2

0 +
(
a0 +c0Yt−`

)2}
and Yt := Yt(d0), Ỹt := Ỹt(d0). We

have |Ut,1| ≤ C
∑t−1
`=1 γ

`
0|Yt−`− Ỹt−`|(1+ |Yt−`|+ |Ỹt−`|), |Ut,2| ≤ C

∑∞
`=t γ

`
0(1+ |Yt−`|2)

and hence

‖σ2
t − σ̃2

t ‖5/2 ≤ C
{ t−1∑
`=1

γ`0‖(Yt−` − Ỹt−`)(1 + |Yt−`|+ |Ỹt−`|)‖5/2

+
∞∑
`=t

γ`0(1 + ‖Yt−`‖5)
}

≤ C
{ t−1∑
`=1

γ`0‖Yt−` − Ỹt−`‖5 +
∞∑
`=t

γ`0

}
, (5.24)

where we used the fact that ‖Yt‖5 < C, ‖Ỹt‖5 < C by ‖rt‖5 < C and Rosenthal’s
inequality in (4.13). In a similar way from (4.13) it follows that

‖Yt−` − Ỹt−`‖5 ≤ C
{ ∑
j>t−`

j2(d0−1)
}1/2

≤ C(t− `)d0−1/2. (5.25)

Substituting (5.25) into (5.24) we obtain

‖σ2
t − σ̃2

t ‖5/2 ≤ C
{ t−1∑
`=1

γ`0(t− `)d0−1/2 +
∞∑
`=t

γ`0

}
= O(td0−1/2),
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proving (5.23).
It remains to show (5.22). Similarly as above, ∂iσ2

t − ∂iσ̃2
t = ∂iUt,1 + ∂iUt,2, where

∂iUt,j := ∂iUt,j(θ0), j = 1, 2. Then (5.22) follows from

‖∂iUt,1‖5/3 = O(td0−1/2 log t) and ‖∂iUt,2‖5/3 = o(td0−1/2), i = 1, . . . , 5. (5.26)

For i = 1, the proof of (5.26) is similar to (5.24). Consider (5.26) for 2 ≤ i ≤ 5.
Denote Vt(θ) := 2a+ c(Yt(d) + Ỹt(d)), Vt := Vt(θ0), ∂iVt := ∂iVt(θ0), then

‖∂iUt,1‖5/3 ≤ C
t−1∑
`=1

γ`0

{
‖∂i(Yt−` − Ỹt−`)‖5‖Vt‖5 + ‖Yt−` − Ỹt−`‖5‖∂iVt‖5

}
,

where ∂i(Yt−` − Ỹt−`) = 0, ∂i 6= ∂d and

‖∂d(Yt − Ỹt)‖5 = ‖
∑
j>t

jd0−1(log j)rt−j‖5

≤ C
{∑
j>t

j2(d0−1) log2 j
}1/2

= O(td0−1/2 log t)

similarly as in (5.25) above. Hence, the first relation in (5.26) follows from (5.25) and
‖∂iVt‖5 ≤ C(1 + ‖∂dYt−`‖5 + ‖∂dỸt−`‖5) ≤ C <∞ as in the proof of (5.22), and the
proof of the second relation in (5.26) is analogous. This proves (5.19) and completes
the proof of Theorem 5.3.2. �

Remark 5.3.1 As noted above, the moment conditions of Theorems 5.3.1 and 5.3.2
are similar to those in Beran and Schützner (2009) for the LARCH model. Particu-
larly, condition (M′5) in Beran and Schützner (2009), Theorems 2 and 5, for asymp-
totic normality of estimators ensures E|rt|5 < ∞. This situation is very different
from GARCH models where strong consistency and asymptotic normality of QML
estimators holds under virtually no moment assumption on the observed process (see
e.g. Francq and Zakoian (2010a), Chapter 7). The main reason for this difference
seems to be the fact that differentiation with respect to d of Yt(d) = ∑∞

j=1 j
d−1rt−j

in (5.8) affects all terms of this series and results in “new” long memory processes
∂iYt(d)/∂di = ∑∞

j=1 j
d−1(log j)irt−j, i = 1, 2, 3 which are not bounded by C|Yt(d)|

or Cσ2
t (θ). Therefore, derivatives of σ−2

t (θ) in (5.8) are much more difficult to con-
trol than in the GARCH case, where these quantities are bounded (see Francq and
Zakoian (2010a), proof of Theorem 7.2).

Remark 5.3.2 We expect that our results can be extended to more general para-
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metric coefficients, e.g. fractional filters bj(c, d), j ≥ 1 with transfer function

∞∑
j=1

e−ijxbj(c, d) = g(c, d)((1− eix)−d − 1), x ∈ [−π, π],

where g(c, d) is a smooth function of (c, d) ∈ (0,∞)× (0, 1/2). Particularly,

bj(c, d) := g(c, d) Γ(j + d)
Γ(d)Γ(j + 1) ∼

g(c, d)
Γ(d) j

d−1, j →∞ (5.27)

and ∑∞j=1 b
2
j(c, d) = g2(c, d)(Γ(1− 2d)− Γ2(1− d))/Γ2(1− d), see e.g. Giraitis et al.

(2012), Chapter 7. See also Beran and Schützner (2009), Section 2.2. The impor-
tant condition used in our proofs and satisfied by bj(c, d) in (5.27) is that the partial
derivatives ∂idbj(c, d), i = 1, 2, 3 decay at a similar rate jd−1 (modulus a slowly varying
factor). Particularly, for ARFIMA(0, d, 0) coefficients b0

j(d) := Γ(j + d)/Γ(d)Γ(j +
1) = ∏j

k=1
d+k−1
k

it easily follows that ∂db0
j(d) = b0

j(d)∑j
k=1

1
d+k−1 ∼ b0

j(d) log j ∼
Γ(d)−1jd−1 log j and, similarly, ∂idb0

j(d) ∼ b0
j(d)(log j)i ∼ Γ(d)−1jd−1(log j)i, j →

∞, i = 2, 3.

5.4 Lemmas

For multi-index i = (i1, . . . , i5) ∈ N5, i 6= 0 = (0, . . . , 0), |i| := i1 + · · · + i5, denote
partial derivative ∂i := ∂|i|/

∏5
j=1 ∂

ijθij .

Lemma 5.4.1 Let E|rt|2+p <∞, for some integer p ≥ 1. Then for any i ∈ N5, 0 <
|i| ≤ p,

E sup
θ∈Θ
|∂ilt(θ)| <∞. (5.28)

Moreover, if E|rt|2+p+ε <∞ for some ε > 0 and p ∈ N then for any i ∈ N5, 0 ≤ |i| ≤
p

E sup
θ∈Θ
|∂i(lt(θ)− l̃t(θ))| → 0, t→∞. (5.29)
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Proof. We use the following (Faà di Bruno) differentiation rule:

∂iσ−2
t (θ) =

|i|∑
ν=1

(−1)νν!σ−2(1+ν)
t (θ)

∑
j1+···+jν=i

χj1,...,jν

ν∏
k=1

∂jkσ2
t (θ), (5.30)

∂i log σ2
t (θ) =

|i|∑
ν=1

(−1)ν−1(ν − 1)!σ−2ν
t (θ)

∑
j1+···+jν=i

χj1,...,jν

ν∏
k=1

∂jkσ2
t (θ),

where the sum ∑
j1+···+jν=i is taken over decompositions of i into a sum of ν multi-

indices jk 6= 0, k = 1, . . . , ν, and χj1,...,jν
is a combinatorial factor depending only

on jk, 1 ≤ k ≤ ν.
Let us prove (5.28). We have |∂ilt(θ)| ≤ r2

t |∂iσ−2
t (θ)|+ |∂i log σ2

t (θ)|. Hence using
(5.30) and the fact that σ2

t (θ) ≥ ω2/(1− γ) ≥ ω2
1/(1− γ2) > 0 we obtain

sup
θ∈Θ
|∂ilt(θ)| ≤ C(r2

t + 1)
|i|∑
ν=1

∑
j1+···+jν=i

ν∏
k=1

sup
θ∈Θ

(|∂jkσ2
t (θ)|/σt(θ)).

Therefore by Hölder’s inequality

E sup
θ∈Θ
|∂ilt(θ)| ≤ C(E(r2

t + 1)(2+p)/2)2/(2+p)

×
|i|∑
ν=1

∑
j1+···+jν=i

ν∏
k=1

E1/qk
(

sup
θ∈Θ
|∂jkσ2

t (θ)|/σt(θ)
)qk
, (5.31)

where ∑ν
j=1 1/qj ≤ p/(2 + p). Note |i| = ∑ν

k=1 |jk| and hence the choice qk =
(2 + p)/|jk| satisfies ∑ν

j=1 1/qj = ∑ν
k=1 |jk|/(2 + p) ≤ p/(2 + p). Using (5.31) and

condition E|rt|2+p ≤ C, relation (5.28) follows from

E sup
θ∈Θ

(
|∂jσ2

t (θ)|/σt(θ)
)(2+p)/|j |

< ∞ (5.32)

for any multi-index j ∈ N5, 1 ≤ |j| ≤ p.
Consider first the case |j| = 1, or the partial derivative ∂iσ2

t (θ) = ∂σ2
t (θ)/∂θi, 1 ≤
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i ≤ 5. We have

∂iσ
2
t (θ) =



∑∞
`=1 `γ

`−1
{
ω2 +

(
a+ cYt−`(d)

)2}
, θi = γ,∑∞

`=0 γ
`2ω, θi = ω,∑∞

`=0 γ
`2
(
a+ cYt−`(d)

)
, θi = a,∑∞

`=0 γ
`2
(
a+ cYt−`(d)

)
Yt−`(d), θi = c,∑∞

`=0 γ
`2c
(
a+ cYt−`(d)

)
∂dYt−`(d), θi = d.

(5.33)

We claim that there exist C > 0, 0 < γ̄ < 1 such that

sup
θ∈Θ

∣∣∣∂iσ2
t (θ)

σt(θ)
∣∣∣ ≤ C(1 + Jt,0 + Jt,1), i = 1, . . . , 5, where (5.34)

Jt,0 :=
∞∑
`=0

γ̄` sup
d∈[d1,d2]

|Yt−`(d)|, Jt,1 :=
∞∑
`=0

γ̄` sup
d∈[d1,d2]

|∂dYt−`(d)|.

Consider (5.34) for θi = γ. Using `2γ`−2 ≤ Cγ̄` for all ` ≥ 1, γ ∈ [γ1, γ2] ⊂ (0, 1)
and some C > 0, 0 < γ̄ < 1 together with Assumption (B) and Cauchy inequality,
we obtain |∂γσ2

t (θ)|/σt(θ) ≤
(∑∞

`=1 `
2γ`−2

{
ω2 +

(
a + cYt−`(d)

)2})1/2
≤ C(1 + Jt,0)

uniformly in θ ∈ Θ, proving (5.34) for θi = γ. Similarly, |∂cσ2
t (θ)|/σt(θ) ≤ C(1 +Jt,0)

and |∂dσ2
t (θ)|/σt(θ) ≤ C(1 + Jt,1). Finally, for θi = ω and θi = a, (5.34) is immediate

from (5.33), proving (5.34).
With (5.34) in mind, (5.32) for |j| = 1 follows from

EJ2+p
t,i = E

( ∞∑
`=0

γ̄` sup
d∈[d1,d2]

|∂idYt−`(d)|
)2+p

< ∞, i = 0, 1. (5.35)

Using Minkowski’s inequality and stationarity of {Yt(d)} we obtain E1/(2+p)J2+p
t,i ≤∑∞

`=0 γ̄
` E1/(2+p) supd |∂idYt−`(d)|2+p ≤ C(E supd |∂idYt(d)|2+p)1/(2+p), where ∂idYt(d) =∑∞

j=1 ∂
i
dj
d−1rt−j. Hence using Beran and Schützner (2009), Lemma 1 (b) and the

inequality xy ≤ xq/q + yq
′
/q′, x, y > 0, 1/q + 1/q′ = 1 we obtain

1∑
i=0

EJ2+p
t,i ≤ C

1∑
i=0

E sup
d∈[d1,d2]

|∂idYt(d)|2+p

≤ C
2∑
i=0

sup
d∈[d1,d2]

E|∂idYt(d)|2+p < ∞ (5.36)
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since

sup
d∈[d1,d2]

E|∂idYt(d)|2+p ≤ C sup
d∈[d1,d2]

( ∞∑
j=1

(∂idjd−1)2(E|rt−j|2+p)2/(2+p)
)(2+p)/2

<∞

according to condition E|rt|2+p < C, Rosenthal’s inequality in (4.13) and the fact
that supd∈[d1,d2]

∑∞
j=1(∂idjd−1)2 ≤ supd∈[d1,d2]

∑∞
j=1 j

2(d−1)(1 + log2 j)2 < C, i = 0, 1, 2.
This proves (5.32) for |j| = 1.

The proof of (5.32) for 2 ≤ |j| ≤ p is simpler since it reduces to

E sup
θ∈Θ
|∂jσ2

t (θ)|(p+2)/2 < ∞, 2 ≤ |j| ≤ p. (5.37)

Recall θ1 = γ and j ′ := j − (j1, 0, 0, 0, 0) = (0, j2, j3, j4, j5). If j ′ = 0 then
supθ∈Θ |∂jσ2

t (θ)| ≤ CJt,0 follows as in (5.34) implying (5.37) as in (5.36) above.
Next, let j ′ 6= 0. Denote

Q2
t (θ) := ω2 +

(
a+ cYt(d)

)2
(5.38)

so that σ2
t (θ) = ∑∞

`=0 γ
`Q2

t−`(θ). We have with m := j1 ≥ 0 that |∂jσ2
t (θ)| ≤∑∞

`=m(`!/(`−m)!)γ`−m |∂j ′Q2
t−`(θ)| and (5.32) follows from

E sup
θ∈Θ
|∂jQ2

t (θ)|(p+2)/2 < ∞. (5.39)

For j2 6= 0 (recall θ2 = ω) the derivative in (5.39) is trivial so that it suffices to check
(5.39) for j1 = 0 only. Then applying Faà di Bruno’s rule we get

|∂jQ2
t (θ)|(p+2)/2 ≤ C

∑
j1+j2=j

|∂j1(a+ cYt(d))|(p+2)/2|∂j2(a+ cYt(d))|(p+2)/2

and hence (5.39) reduces to

E sup
θ∈Θ
|∂j(a+ cYt(d))|p+2 < ∞, 0 ≤ |j| ≤ p,

whose proof is similar to (5.35) above. This ends the proof of (5.28).
The proof of (5.29) is similar. We have |∂i(lt(θ) − l̃t(θ))| ≤ r2

t |∂i(σ−2
t (θ) −

σ̃−2
t (θ))|+ |∂i(log σ2

t (θ)− log σ̃2
t (θ))|. Hence, using Hölder’s inequality similarly as in
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the proof of (5.28) it suffices to show

E sup
θ∈Θ
|∂i(σ−2

t (θ)− σ̃−2
t (θ))|

p+2
p → 0 and

E sup
θ∈Θ
|∂i(log σ2

t (θ)− log σ̃2
t (θ))|

p+2
p → 0. (5.40)

Below, we prove the first relation in (5.40) only, the proof of the second one being
analogous.

Using the differentiation rule in (5.30) we have that

|∂i(σ−2
t (θ)− σ̃−2

t (θ))| ≤ C
|i|∑
ν=1

∑
j1+···+jν=i

∣∣∣Wj1,...,jν
t (θ)− W̃j1,...,jν

t (θ)
∣∣∣,

where

W
j1,...,jν
t (θ) := σ

−2(1+ν)
t (θ)∏ν

k=1 ∂
jkσ2

t (θ),

W̃
j1,...,jν
t (θ) := σ̃

−2(1+ν)
t (θ)∏ν

k=1 ∂
jk σ̃2

t (θ).

Whence, (5.40) follows from

sup
θ∈Θ
|Wj1,...,jν

t (θ)− W̃j1,...,jν
t (θ)| →p 0, t→∞ (5.41)

and
E sup
θ∈Θ

(
|Wj1,...,jν

t (θ)|+ |W̃j1,...,jν
t (θ)|

)(p+2+ε)/p
≤ C <∞ (5.42)

for some constants ε > 0 and C > 0 independent of t. In turn, (5.41) and (5.42)
follow from

sup
θ∈Θ
|∂j(σ2

t (θ)− σ̃2
t (θ))| →p 0, t→∞ (5.43)

and

E sup
θ∈Θ

(
|∂jσ2

t (θ)|/σt(θ)
)(2+p+ε)/|j |

< C, (5.44)

E sup
θ∈Θ

(
|∂j σ̃2

t (θ)|/σ̃t(θ)
)(2+p+ε)/|j |

< C,

for any multi-index j such that |j| ≥ 0 and 1 ≤ |j| ≤ p, respectively.
Using condition E|rt|2+p+ε < C, relations in (5.44) can be proved analogously to

(5.32) and we omit the details. Consider (5.43). Split σ2
t (θ)−σ̃2

t (θ) = Ut,1(θ)+Ut,2(θ),
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where

Ut,1(θ) :=
t−1∑
`=1

γ`
{(
a+ cYt−`(d)

)2
−
(
a+ cỸt−`(d)

)2}
, (5.45)

Ut,2(θ) :=
∞∑
`=t

γ`
{
ω2 +

(
a+ cYt−`(d)

)2}
.

Then supθ∈Θ |∂jUt,i(θ)| →p 0, t→∞, i = 1, 2 follows by using Assumption (B) and
considering the bounds on the derivatives as in the proof of (5.32). For instance,
let us prove (5.43) for ∂j = ∂d, |j| = 1. We have |∂dUt,1(θ)| ≤ C

∑t−1
`=1 γ

`
{

(1 +
|Ȳt−`(d)|)|∂d(Yt−`(d) − Ỹt−`(d))| + |∂dYt−`(d)| |Yt−`(d) − Ỹt−`(d)|

}
.

Hence, supθ∈Θ |∂dUt,1(θ)| →p 0 follows from 0 ≤ γ ≤ γ2 < 1 and

E sup
d∈[d1,d2]

(|Yt(d)− Ỹt(d)|2 + |∂d(Yt(d)− Ỹt(d))|2) → 0 and (5.46)

E sup
d∈[d1,d2]

(|Yt(d)|2 + |Ỹt(d)|2 + |∂dYt(d)|2 + |∂dỸt(d)|2) ≤ C. (5.47)

The proof of (5.47) mimics that of (5.36) and therefore is omitted. To show (5.46),
note Yt(d) − Ỹt(d) = ∑∞

j=t j
d−1rt−j and use a similar argument as in (5.36) to show

that the l.h.s. of (5.47) does not exceed C supd∈[d1,d2]
∑2
i=0 E|∂id(Yt(d) − Ỹt(d))|2 ≤

C supd∈[d1,d2]
∑∞
j=t j

2(d−1) (1 + log2 j) → 0, t → ∞. This proves (5.43) for |j| = 1
and ∂j = ∂d. The remaining cases in (5.43) follow similarly and we omit the details.
This proves (5.29) and completes the proof of Lemma 5.4.1. �

Lemma 5.4.2 The function L(θ), θ ∈ Θ in (5.13) is bounded and continuous. More-
over, it attains its unique minimum at θ = θ0.

Proof. We have |L(θ1) − L(θ2)| ≤ E|lt(θ1) − lt(θ2)| ≤ CE|σ2
t (θ1) − σ2

t (θ2)|, where
the last expectation can be easily shown to vanish as |θ1 − θ2| → 0, θ1, θ2 ∈ Θ. This
proves the first statement of the lemma. To show the second statement of the lemma,
write

L(θ)− L(θ0) = E
[σ2

t (θ0)
σ2
t (θ)

− log σ
2
t (θ0)
σ2
t (θ)

− 1
]
.

The function f(x) := x − 1 − log x > 0 for x > 0, x 6= 1 and f(x) = 0 if and only if
x = 1. Therefore L(θ) ≥ L(θ0),∀ θ ∈ Θ while L(θ) = L(θ0) is equivalent to

σ2
t (θ) = σ2

t (θ0) (Pθ0 − a.s.) (5.48)

Thus, it remains to show that (5.48) implies θ = θ0 = (γ0, ω0, a0, d0, c0). Consider the
“projection” Psξ = E[ξ|Fs]− E[ξ|Fs−1] of r.v. ξ, E|ξ| <∞, where Fs = σ(ζu, u ≤ s)
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(see Section 5.2). (5.48) implies

0 = Ps(σ2
t (θ)−σ2

t (θ0)) = Ps(Q2
t (θ)−Q2

t (θ0))+(γ−γ0)Psσ2
t−1(θ0), ∀ s ≤ t−1, (5.49)

where Q2
t (θ) = ω2 +

(
a+∑

u<t bt−u(θ)ru
)2

is the same as in (5.38). We have

PsQ
2
t (θ) = 2abt−s(θ)rs + 2bt−s(θ)rs

∑
u<s

bt−u(θ)ru +
∑
s≤u<t

b2
t−u(θ)Psr2

u (5.50)

= 2abt−s(θ)ζsσs(θ0) + 2bt−s(θ)ζsσs(θ0)
∑
u<s

bt−u(θ)ru

+
∑
s<u<t

b2
t−u(θ)Psσ2

u(θ0) + b2
t−s(θ)(ζ2

s − 1)σ2
s(θ0).

Whence and from (5.49) for s = t− 1 using Pt−1σ
2
t−1(θ0) = 0 we obtain

C1(θ, θ0)ζ2
t−1 + 2C2(θ, θ0)ζt−1 − C1(θ, θ0) = 0 (5.51)

where

C1(θ, θ0) := (c2 − c2
0)σt−1(θ0),

C2(θ, θ0) := (ac− a0c0) +
∑
u<t−1

(c2(t− u)d−1 − c2
0(t− u)d0−1)ru.

Since Ci(θ, θ0), i = 1, 2 are Ft−2-measurable, (5.51) implies C1(θ, θ0) = C2(θ, θ0) = 0,
particularly, c = c0 since σt−1(θ0) ≥ ω > 0. Then 0 = C2(θ, θ0) = c0(a − a0) +
c2

0
∑
u<t−1((t − u)d−1 − (t − u)d0−1)ru and Eru = 0 lead to a = a0 and next to 0 =

E(∑u<t−1((t − u)d−1 − (t − u)d0−1)ru)2 = Er2
0
∑
j≥2(jd−1 − jd0−1)2 = 0, or d = d0.

Consequently, Ps(Q2
t (θ)−Q2

t (θ0)) = 0 for any s ≤ t− 1 and hence γ = γ0 in view of
(5.49). Finally, ω = ω0 follows from Eσ2

t (θ) = Eσ2
t (θ0) and the fact that ω > 0, ω0 > 0.

This proves θ = θ0 and the lemma, too. �

Lemma 5.4.3 Let Er4
0 <∞. Then matrices A(θ) and B(θ) in (5.14) are well-defined

and strictly positive definite for any θ ∈ Θ.

Proof. From (5.15), it suffices to show that

∇σ2
t (θ)λT = 0 (5.52)

for some θ ∈ Θ and λ ∈ R5, λ 6= 0 leads to a contradiction. To the last end, we
use a similar projection argument as in the proof of Lemma 5.4.2. First, note that
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σ2
t (θ) = Q2

t (θ) + γσ2
t−1(θ) implies

∇σ2
t (θ) = (0,∇4Q

2
t (θ)) + γ∇σ2

t−1(θ) + (∇γ)σ2
t−1(θ),

where ∇4 = (∂/θ2, . . . , ∂θ5). Hence and using the fact that (5.52) holds for any t ∈ Z
by stationarity, from (5.52) we obtain

(σ2
t−1(θ),∇4Q

2
t (θ))λT = 0. (5.53)

Thus,
(Psσ2

t−1(θ), Ps∇T
4Q

2
t (θ))λ = 0, ∀ s ≤ t− 1;

c.f. (5.49). For s = t − 1 using Pt−1σ
2
t−1(θ) = 0, Pt−1∇4Q

2
t (θ) = ∇4Pt−1Q

2
t (θ) by

differentiating (5.50) similarly to (5.51) we obtain

D1(λ)ζ2
t−1 + 2D2(λ)ζt−1 −D1(λ) = 0 (5.54)

where D1(λ) := 2λ5σt−1(θ) and

D2(λ) := λ3c+ λ5a+ 2λ5c
∑
u<t−1

(t− u)d−1ru + λ4c
2 ∑
u<t−1

(t− u)d−2 log(t− u)ru,

λ = (λ1, . . . , λ5)T . As in (5.51), Di(λ), i = 1, 2 are Ft−2-measurable, (5.54) im-
plying Di(λ) = 0, i = 1, 2. Hence, λ5 = 0 and then D2(λ) = 0 reduces to λ3c +
λ4c

2∑
u<t−1(t − u)d−2 log(t − u)ru = 0. By taking expectation and using c 6= 0 we

get λ3 = 0 and then λ4 = 0 since E(∑u<t−1(t − u)d−2 log(t − u)ru)2 6= 0. The above
facts allow to rewrite (5.53) as 2ωλ2 + λ1σ

2
t−1(θ) = 0. Unless both λ1, λ2 vanish, the

last equation means that either λ1 6= 0 and {σ2
t (θ)} is a deterministic process which

contradicts c 6= 0, or λ1 = 0, λ2 6= 0 and ω = 0, which contradicts ω 6= 0. Lemma
5.4.3 is proved. �

Write | · | for the Euclidean norm in R5 and in R5 ⊗ R5 (the matrix norm).

Lemma 5.4.4 (i) Let E|rt|3 <∞. Then

sup
θ∈Θ
|Ln(θ)− L(θ)| a.s.→ 0 and E sup

θ∈Θ
|Ln(θ)− L̃n(θ)| → 0. (5.55)

(ii) Let Er4
t <∞. Then ∇L(θ) = E∇lt(θ) and

sup
θ∈Θ
|∇Ln(θ)−∇L(θ)| a.s.→ 0 and E sup

θ∈Θ
|∇Ln(θ)−∇L̃n(θ)| → 0. (5.56)
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(iii) Let E|rt|5 <∞. Then ∇T∇L(θ) = E∇T∇`t(θ) = B(θ) (see (5.14)) and

supθ∈Θ |∇T∇Ln(θ)−∇T∇L(θ)| a.s.→ 0, (5.57)
E supθ∈Θ |∇T∇Ln(θ)−∇T∇L̃n(θ)| → 0. (5.58)

Proof. Consider the first relation in (5.55). The pointwise convergence Ln(θ) a.s.→
L(θ) follows by ergodicity of {lt(θ)} and the uniform convergence in (5.55) from
E supθ∈Θ |∇lt(θ)| <∞, c.f. Beran and Schützner (2009), proof of Lemma 3, which in
turn follows from of Lemma 5.4.1 (5.28) with p = 1. The proof of the second relation
in (5.55) is immediate from Lemma 5.4.1 (5.29) with p = 0, ε = 1. The proof of the
statements (ii) and (iii) using Lemma 5.4.1 is similar and is omitted. �

5.5 Simulation study

In this section we present a short simulation study of the performance of the QMLE
for the GQARCH model in (5.4). The GQARCH model in (5.4) with i.i.d. standard
normal innovations {ζt} was simulated for −m + 1 ≤ t ≤ m and two sample sizes
m = 1000 and m = 5000, using the recurrent formula in (5.1) with zero initial
condition σ−m = 0. The numerical optimization procedure minimized the QML
function:

L̃m = 1
m

m∑
t=1

(
r2
t

σ2
t

+ log σ2
t

)
, (5.59)

with

rt = ζtσt, σ2
t = ω2 +

(
a+ c

t+m−1∑
j=1

jd−1rt−j
)2

+ γσ2
t−1, t = 1, . . . ,m. (5.60)

The QML function in (5.59) can be viewed as a “realistic proxy” to the QML
function L̃n(θ) in (5.12) with m = nβ since (5.59)-(5.60) similarly to (5.12) use
“auxiliary” observations in addition to r1, . . . , rm for computation of m likelihoods
in (5.59). However, the number of “auxiliary” observations in (5.59) equals m and
does not grow as m1/β = n, 0 < β < 1 − 2d < 1 in the case of (5.60) and Theorem
5.3.2 (ii), which is completely unrealistic. Despite of the violation of the condition
m = nβ of Theorem 5.3.2 (ii) in our simulation study, the differences between the
sample RMSEs and the theoretical standard deviations are not vital (and sometimes
even insignificant), see Table 5.1 below.

Finite-sample performance of the QML estimator θ̃m minimizing (5.59) was stud-
ied for fixed values of parameters γ0 = 0.7, a0 = −0.2, c0 = 0.2 and different values
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of ω0 = 0.1, 0.01 and the long memory parameter d0 = 0.1, 0.2, 0.3, 0.4. The above
choice of θ0 = (γ0, ω0, a0, d0, c0) can be explained by the observation that the QML
estimation of γ0, a0, c0 appears to be more accurate and stable in comparison with
estimation of ω0 and d0. The small values of ω0 in our experiment reflect the fact
that in most real data studied by us, the estimated QML value of ω0 was less than
0.05.

The numerical QML minimization was performed under the following constraints:

0.005 ≤ γ ≤ 0.989, 0 ≤ ω ≤ 2, −2 ≤ a ≤ 2, 0 ≤ d ≤ 0.5,

and the value of c in optimization procedure is chosen in a way to guarantee Assump-
tion (B) (v) with appropriate 0 < ci(d, γ), i = 1, 2.

The results of the simulation experiment are presented in Table 5.1 below, which
shows the sample R(oot)MSEs of the QML estimates θ̃m = (γ̃m, ω̃m, ãm, d̃m, c̃m) with
100 independent replications, for two sample lengths m = 1000 and m = 5000 and
the above choices of θ0 = (γ0, ω0, a0, d0, c0). The sample RMSEs in Table 5.1 are
confronted with standard deviations (in brackets) of the infinite past estimator in
(5.6) computed according to Theorem 5.3.1 (ii) with Σ(θ0) obtained by inverting a
simulated matrix B(θ0)/κ4.

A general impression from Table 5.1 is that theoretical standard deviations (brack-
eted entries) are generally smaller than the sample RMSEs, however, these differ-
ences become less pronounced with increase of m and in some cases (e.g., when
ω0 = 0.1,m = 5000) they seem to be insignificant. Some tendencies in Table 5.1
are quite surprising, particularly, the decrease of the theoretical standard deviations
and most of sample RMSEs as d0 increases. Also note a sharp increase of theoretical
standard deviations of ω̂n when ω0 = 0.01, which can be explained by the fact that
the derivative ∂ωσ2

t (θ0) = 2ω0/(1 − γ0) becomes very small with ω0, resulting in a
small entry of B(θ0) and a large entry of Σ(θ0). On the other hand, the RMSEs
in Table 5.1 appear to be more stable and less dependent on θ0 compared to the
bracketed entries (particularly, this applies to errors of ω̃m and d̃m).
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ω0=0.1
m d0 γ̃m ω̃m ãm d̃m c̃m
1000 0.1 0.076 (0.053) 0.046 (0.037) 0.032 (0.023) 0.090 (0.079) 0.027 (0.031)

0.2 0.051 (0.048) 0.043 (0.027) 0.027 (0.020) 0.076 (0.060) 0.030 (0.027)
0.3 0.069 (0.043) 0.033 (0.018) 0.026 (0.017) 0.063 (0.041) 0.030 (0.022)
0.4 0.047 (0.039) 0.028 (0.013) 0.025 (0.015) 0.043 (0.029) 0.022 (0.019)

5000 0.1 0.023 (0.024) 0.018 (0.016) 0.011 (0.010) 0.035 (0.033) 0.014 (0.014)
0.2 0.020 (0.021) 0.011 (0.011) 0.010 (0.009) 0.028 (0.021) 0.012 (0.012)
0.3 0.019 (0.019) 0.010 (0.008) 0.010 (0.008) 0.020 (0.013) 0.010 (0.010)
0.4 0.022 (0.017) 0.007 (0.005) 0.011 (0.007) 0.014 (0.009) 0.010 (0.008)

ω0=0.01
m d0 γ̃m ω̃m ãm d̃m c̃m
1000 0.1 0.060 (0.046) 0.040 (0.296) 0.020 (0.019) 0.073 (0.071) 0.022 (0.029)

0.2 0.044 (0.040) 0.035 (0.203) 0.020 (0.016) 0.073 (0.048) 0.022 (0.024)
0.3 0.045 (0.033) 0.028 (0.117) 0.018 (0.012) 0.044 (0.029) 0.020 (0.019)
0.4 0.040 (0.025) 0.038 (0.047) 0.024 (0.009) 0.034 (0.016) 0.020 (0.013)

5000 0.1 0.021 (0.020) 0.032 (0.125) 0.009 (0.008) 0.031 (0.028) 0.013 (0.013)
0.2 0.018 (0.017) 0.024 (0.085) 0.007 (0.007) 0.020 (0.018) 0.010 (0.011)
0.3 0.019 (0.015) 0.021 (0.046) 0.008 (0.006) 0.013 (0.011) 0.008 (0.009)
0.4 0.016 (0.012) 0.013 (0.017) 0.007 (0.004) 0.011 (0.006) 0.009 (0.006)

Table 5.1: Sample RMSE of finite past QML estimates θ̃m in (5.59) of θ0 =
(d0, ω0, a0, c0, γ0) of the GQARCH process in (5.4) for a0 = −0.2, c0 = 0.2, γ0 = 0.7
and different values of ω0, d0. The number of replications is 100. The quantities
in brackets stand for asymptotic standard deviations of the estimator θ̃(β)

n , nβ = m
following Theorem 5.3.1 (ii).
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Conclusions

The principal goal of this thesis was to introduce new nonlinear models with long
memory which can be used for modelling of financial returns and statistical inference.
Apart from long memory, these models are capable to exhibit other stylized facts
such as asymmetry and leverage. The processes studied in the thesis are defined as
stationary solutions of certain nonlinear stochastic difference equations involving a
given i.i.d. “noise”. Apart from solvability issues of these equations which are not
trivial by itself, we proved that their solutions exhibit long memory properties as
in (1.5) and (1.9). Finally, for a particularly tractable nonlinear parametric model
with long memory (GQARCH) we prove consistency and asymptotic normality of
quasi-ML estimators.
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Appendix A

Lemmas

The proofs of Proposition 4.3.1 and Theorems 4.4.2, 4.6.3 use the following lemmas.

Lemma A.1 For αj ≥ 0, j = 1, 2, . . . , denote

Ak := αk +
∑

0<p<k

∑
0<i1<···<ip<k

αi1αi2−i1 . . . αip−ip−1αk−ip , k = 1, 2, . . . . (A.1)

Assume that A := ∑∞
j=1 αj < 1 and

αj ≤ c j−γ (∃ c > 0, γ > 1). (A.2)

Then there exists C > 0 such that for any k ≥ 1

Ak ≤ Ck−γ. (A.3)

Proof. We have Ak = ∑
0≤p<k Ak,p, where

Ak,p :=
∑

0<i1<···<ip<k
αi1αi2−i1 . . . αip−ip−1αk−ip (p ≥ 1), Ak,0 := αk

is the inner sum in (A.1). W.l.g., assume c ≥ 1 in (A.2). Let us prove that there
exists λ > 0 such that

Ak,p ≤ c(p+ 2)λAp+1k−γ, ∀ 0 ≤ p < k <∞. (A.4)

Since A < 1, so (A.4) and ∑p>0(p+ 2)λAp+1 <∞ together imply (A.3).
By dividing both sides of (A.4) by Ap+1, it suffices to show (A.4) for A = 1. The

proof uses induction on p. Clearly, (A.4) holds for p = 0. To prove the induction
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step p− 1→ p ≥ 1, note

Ak,p =
∑

0<i<k
αiAk−i,p−1 =

∑
k
p+1<i<k

αiAk−i,p−1 +
∑

k− k
p+1≤k−i<k

αiAk−i,p−1. (A.5)

Here, αi1(i > k
p+1) ≤ ci−γ1(i > k

p+1) ≤ c(p + 1)γk−γ and, similarly, by the inductive
assumption

Ak−i,p−11(k − i ≥ k − k

p+ 1) ≤ c(p+ 1)λ(k − k

p+ 1)−γ = c(p+ 1)λ
(p+ 1

p

)γ
k−γ.

Assumption A = 1 implies ∑k>0Ak,p = 1 for any p ≥ 0. Using the above facts from
(A.5) we obtain

Ak,p = c(p+ 1)γ
kγ

∑
k/(p+1)<i<k

Ak−i,p−1 + c(p+ 1)λ
kγ

(p+ 1
p

)γ ∑
k−k/(p+1)≤k−i<k

αi

≤ c
(
(p+ 1)γ + (p+ 1)λ

(p+ 1
p

)γ)
k−γ.

Hence the proof of the induction step p − 1 → p ≥ 1 amounts to verifying the
inequality (p+ 1)γ + (p+ 1)λ

(
p+1
p

)γ
≤ (p+ 2)λ, or

nγ + nλ
( n

n− 1
)γ
≤ (n+ 1)λ, n = 2, 3, . . . . (A.6)

The above inequality holds with λ = 3γ. Indeed,

nγ + nλ
( n

n− 1
)γ

= nλ(n−2γ +
( n

n− 1
)γ

) ≤ nλ(n−2 +
( n

n− 1
)
)γ

≤ nλ(1 + 1
n− 1 + 1

n2 )γ ≤ nλ(1 + 3
n

+ 3
n2 + 1

n3 )γ = (n+ 1)λ,

proving (A.6) and the lemma, too. �

Lemma A.2 Assume that 0 ≤ β < 1 and αj ∼ cj−γ (∃ γ > 0, c > 0). Then

αt,β :=
t−1∑
j=0

βjαt−j ∼
c

1− β t
−γ, t→∞.

Proof. It suffices to show that the difference Dt := αt,β − αt/(1 − β) decays faster
than αt, in other words, that

Dt =
t−1∑
j=0

βj(αt − αt−j)−
∞∑
j=t

βjαt−j = o(t−γ).
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Clearly, ∑t/2<j<t β
j(αt − αt−j) = O(βt/2) = o(t−γ), ∑∞j=t βjαt−j = O(βt) = o(t−γ).

Relation ∑0≤j≤t/2 β
j(αt − αt−j) = o(t−γ) follows by the dominated convergence the-

orem since sup0≤j≤t/2 |αt − αt−j|tγ ≤ C and |αt − αt−j|tγ → 0 for any fixed j ≥ 0.
�
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Appendix B

Nested Volterra series

First we introduce some notation. Let T ⊂ Z be a set of integers which is bounded
from above, i.e., sup{s : s ∈ T} < ∞. Let ST be a class of nonempty subsets
S = {s1, . . . , sn} ⊂ T, s1 < · · · < sn. Write |S| for the cardinality of S ⊂ Z. For
any S = {s1, . . . , sn} ∈ ST , S ′ = {s′1, . . . , s′m} ∈ ST , the notation S ≺ S ′ means that
m = n + 1 and s1 = s′1, . . . , sn = s′n < s′n+1 = s′m. In particular, S ≺ S ′ implies
S ⊂ S ′ and |S ′\S| = 1. Note that ≺ is not a partial order in ST since S ≺ S ′, S ′ ≺ S ′′

do not imply S ≺ S ′′. A set S ∈ ST is said maximal if there is no S ′ ∈ ST such that
S ≺ S ′. Let Smax

T denote the class of all maximal elements of ST .

Definition B.1 Let T ⊂ Z be a set bounded from above, and ST be a class of subsets
of T . Let GT := {GS, S ∈ ST} be a family of measurable functions GS = Gs1,...,sm :
R→ R indexed by sets S = {s1, . . . , sm} ∈ ST and such that GS =: aS is a constant
function for any maximal set S ∈ Smax

T . A nested Volterra series is a sum

V (GT ) =
∑

S1∈ST :|S|=1
ζS1GS1

( ∑
S1≺S2

ζS2\S1GS2

(
. . .

ζSp−1\Sp−2GSp−1

( ∑
Sp−1≺Sp

ζSp\Sp−1GSp

)))
, (B.1)

where the nested summation is taken over all sequences S1 ≺ S1 ≺ · · · ≺ Sp ∈
Smax
T , p = 1, 2, . . . , with the convention that GS = aS, S ∈ Smax

T , and ζS := ζs for
S = {s}, |S| = 1.

In particular, when ST = {S : S ⊂ T} is the class of all subsets of T , (B.1) can
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be rewritten as

V (GT ) =
∑
s1∈T

ζs1Gs1

( ∑
s1<s2∈T

ζs2Gs1,s2

(
. . .

ζsp−1Gs1,...,sp−1

( ∑
sp−1<sp∈T

ζspGs1,...,sp

)))
, (B.2)

where the last sum is taken over all maximal sets {s1, . . . , sp} ∈ Smax
T .

The following example clarifies the above definition and its relation to the usual
Volterra series (Dedecker et al., 2007, p.22).

Example B.1 Let T (t) = (−∞, t] ∩ Z, t ∈ Z and ST (t) be the class of all subsets
S = {s1, . . . , sk} ⊂ T (t) having k points. Let GT (t) = {GS, S ∈ ST (t)} be a family of
linear functions

GS(x) :=

x, S ∈ ST , S 6∈ Smax
T (t) ,

aS = as1,...,sk , S = {s1, . . . , sk} ∈ Smax
T (t) .

Then

V (GT (t)) =
∑

s1<···<sk≤t
as1,...,skζs1ζs2 . . . ζsk =

∑
S⊂T,|S|=k

aSζ
S, (B.3)

ζS := ζs1ζs2 . . . ζsk , is the (usual) Volterra series of order k. The series in (B.3)
converges in mean square if and only if

AT (t) :=
∑

s1<···<sk≤t
a2
s1,...,sk

<∞, (B.4)

in which case EV 2(GT (t)) = AT (t), EV (GT (t)) = 0.

Proposition B.1 Let T (t) := (−∞, t] ∩ Z, t ∈ Z as in Example B.1. Assume that
the system GT (t) = {GS, S ∈ ST (t)} in Definition B.1 satisfies the following condition

|GS(x)|2 ≤

α
2
S + β2

Sx
2, S ∈ ST (t), S 6∈ Smax

T (t) ,

α2
S(= a2

S), S ∈ Smax
T (t) ,

(B.5)

where αS, βS are real numbers satisfying

AT (t) :=
∑
p≥1

∑
S1≺S2≺···≺Sp

β2
S1β

2
S2 . . . β

2
Sp−1α

2
Sp < ∞, (B.6)
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where the inner sums are taken over all sequences S1 ≺ S2 ≺ · · · ≺ Sp, Si ∈ ST (t), 1 ≤
i ≤ p with |S1| = 1 and Sp ∈ Smax

T (t) .
Then, the nested Volterra series V (GT (t)) in (B.2) converges in mean square and

satisfies EV (GT (t))2 ≤ AT (t), EV (GT (t)) = 0. Moreover, Xt := V (GT (t)) is a projective
process with zero mean and coefficients

gs,t := GS1

( ∑
S1≺S2

ζS2\S1GS2

(
. . . ζSp−1\Sp−2GSp−1

( ∑
Sp−1≺Sp

ζSp\Sp−1GSp

)))
(B.7)

if S1 = {s} ∈ ST (t), gs,t := 0 otherwise, where the nested summation is defined as in
(B.1).

Proof. Clearly, the coefficients gs,t in (B.7) satisfy the measurability condition (i) of
Definition 3.2.1. Condition (ii) for these coefficients follows by recurrent application
of (B.5):

∑
s≤t

Eg2
s,t =

∑
S1∈ST (t):|S1|=1

EG2
S1

( ∑
S1≺S2

ζS2\S1GS2(. . . )
)

≤
∑

S1∈ST (t):|S1|=1

(
α2
S1 + β2

S1E
( ∑
S1≺S2

ζS2\S1GS2(. . . )
)2)

≤
∑

S1∈ST (t):|S1|=1

(
α2
S1 + β2

S1

∑
S1≺S2

(
α2
S2 + β2

S2E
( ∑
S2≺S3

ζS3\S2GS3(. . . )
)2))

≤
∑

S1∈ST (t):|S1|=1
α2
S1

(
1 + β2

S1

∑
S1≺S2

α2
S2 + β2

S1

∑
S1≺S2≺S3

β2
S2α

2
S3 + . . .

)
=

∑
p≥1

∑
S1≺S2≺···≺Sp

β2
S1β

2
S2 . . . β

2
Sp−1α

2
Sp = AT (t) <∞.

Therefore, Xt = ∑
s≤t gs,tζs is a well-defined projective process and Xt = V (GT (t)).

Proposition B.1 is proved. �

Remark B.1 In the case of a usual Volterra series in (B.3), condition (B.5) is sat-
isfied with αS = 0, βS = 1 for S ∈ ST (t), S 6∈ Smax

T (t) , and the sums AT (t) of (B.6) and
AT (t) of (B.4) coincide: AT (t) = AT (t). This fact confirms that condition (B.6) for the
convergence of nested Volterra series cannot be generally improved.
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Dedecker, J. and Merlevède, F. (2003). The conditional central limit theorem in
Hilbert spaces. Stoch. Process. Appl., 108:229–262.

Dedecker, J. and Prieur, C. (2004). Coupling for τ−dependent sequences and appli-
cations. J. Theoretical Probab., 17:861–885.

Dedecker, J. and Prieur, C. (2005). New dependence coefficients. Examples and
applications to statistics. Probab. Th. Relat. Fields., 132:203–236.

Dedecker, J. and Prieur, C. (2007). An empirical central limit theorem for dependent
sequences. Stoch. Process. Appl., 117:121–142.

Doukhan, P., Grublytė, I., and Surgailis, D. (2016). A nonlinear model for long
memory conditional heteroscedasticity. Lithuanian Math. J., 56(2):164–188.

Doukhan, P., Lang, G., and Surgailis, D. (2012). A class of Bernoulli shifts with long
memory: asymptotics of the partial sums process. Preprint.

Doukhan, P., Oppenheim, G., and Taqqu, M. (2003). Theory and Applications of
Long-Range Dependence. Birkhäuser, Boston.

Engle, R. F. (1982). Autoregressive conditional heterosckedasticity with estimates of
the variance of United Kingdom inflation. Econometrica, 50:987–1008.

Engle, R. F. (1990). Stock volatility and the crash of ’87. Discussion. Rev. Financial
Studies, 3:103–106.

121



Francq, C. and Zakoian, J.-M. (2009). A tour in the asymptotic theory of GARCH
estimation. In Andersen, T., Davis, R., Kreiss, J.-P., and Mikosch, T., editors,
Handbook of Financial Time Series, pages 85–111. Springer-Verlag.

Francq, C. and Zakoian, J.-M. (2010a). GARCH Models: Structure, Statistical Infer-
ence and Financial Applications. Wiley, New York.

Francq, C. and Zakoian, J.-M. (2010b). Inconsistency of the MLE and inference based
on weighted LS for LARCH models. J. Econometrics, 159:151–165.

Giraitis, L., Koul, H. L., and Surgailis, D. (2012). Large Sample Inference for Long
Memory Processes. Imperial College Press, London.

Giraitis, L., Leipus, R., Robinson, P. M., and Surgailis, D. (2004). LARCH, leverage
and long memory. J. Financial Econometrics, 2:177–210.

Giraitis, L., Leipus, R., and Surgailis, D. (2009). ARCH(∞) models and long memory
properties. In Andersen, T., Davis, R., Kreiss, J.-P., and Mikosch, T., editors,
Handbook of Financial Time Series, pages 71–84. Springer-Verlag.

Giraitis, L., Robinson, P. M., and Surgailis, D. (2000). A model for long memory
conditional heteroskedasticity. Ann. Appl. Probab., 10:1002–1024.

Giraitis, L. and Surgailis, D. (2002). ARCH-type bilinear models with double long
memory. Stoch. Process. Appl., 100:275–300.

Giraitis, L., Surgailis, D., and Škarnulis, A. (2016). Integrated ARCH(∞) processes
with finite variance. preprint.

Grublytė, I. and Škarnulis, A. (2017). A generalized nonlinear model for long memory
conditional heteroscedasticity. Statistics, 51(1):123–140.

Grublytė, I. and Surgailis, D. (2014). Projective stochastic equations and nonlinear
long memory. Adv. Appl. Probab., 46(4):1–22.

Grublytė, I., Surgailis, D., and Škarnulis, A. (2017). QMLE for quadratic ARCH
model with long memory. Journal of Time Series Analysis, 38(4):535–551.

Hall, P. and Heyde, C. (1980). Martingale Limit Theory and Applications. Academic
Press, New York.

Harvey, A. (1998). Long memory in stochastic volatility. In Knight, J. and Satchell,
S., editors, Forecasting Volatility in the Financial Markets, pages 307–320. Butter-
worth and Heineman.

122



Hitchenko, P. (1990). Best constants in martingale version of Rosenthal’s inequality.
Ann. Probab., 18:1656–1668.

Ho, H.-C. and Hsing, T. (1997). Limit theorems for functionals of moving averages.
Ann. Probab., 25:1636–1669.

Hurst, H. (1951). Long-term storage capacity of reservoirs. Transactions of the
American Society of Civil Engineers, 116:770–808.

Hurvich, C. M. and Soulier, P. (2009). Stochastic Volatility Models with Long Mem-
ory. In Andersen, T., Davis, R., Kreiss, J.-P., and Mikosch, T., editors, Handbook
of Financial Time Series, pages 345–354. Springer-Verlag.

Ibragimov, I. A. and Linnik, Y. V. (1971). Independent and Stationary Sequences of
Random Variables. Wolters-Noordhoff, Groningen.

Lamperti, J. W. (1962). Semi-stable stochastic processes. Trans. Amer. Math. Soc.,
104:62–78.

Levine, M., Torres, S., and Viens, F. (2009). Estimation for the long-memory param-
eter in LARCH models, and fractional Brownian motion. Stat. Inf. Stoch. Process.,
12:221–250.

Lindner, A. M. (2009). Stationarity, mixing, distributional properties and moments
of GARCH(p, q)−processes. In Andersen, T., Davis, R., Kreiss, J.-P., and Mikosch,
T., editors, Handbook of Financial Time Series, pages 43–69. Springer-Verlag.

Mandelbrot, B. (1965). Une classe de processus stochastiques homothetiques a soi;
application a loi climatologique de H. E. Hurst. Comptes Rendus Academic Sciences
Paris, 240:3274–3277.

Mandelbrot, B. and Van Ness, J. (1968). Fractional Brownian motions, fractional
noises and applications. SIAM Review, 10:422–437.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: a new approach.
Econometrica, 59:347–370.
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