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Notations and Abbreviations

N - the set of natural numbers, N = {1,2,...}
Z - the set of natural numbers, Z = {...,—2,-1,0,1,2,...}
R - the set of real numbers

C,C(...) denote generic constants, possibly dependent on the variables into

brackets, which may be different at different locations

EX denotes the mean of random variable X

Var(X) denotes the variance of random variable X
Cov(X,Y’) denotes the covariance of random variables XY
sign(-) is a sign function

1¢y, 1(.) denote the indicator function

x Ay denotes min(z,y) for real numbers x, y

x V y denotes maz(x,y) for real numbers z,y

L is a lag operator, i.e. LX; = X;_4

B(-,-) is a beta function

['(+) is a gamma function

By (t) denotes fractional Brownian motion where H is the Hurst parameter

—plo,] denotes the weak convergence of random processes in the Skorohod
space DI0, 1]



|- |l, :== EY?| - |P,p > 1 denotes L, norm

(>°(R) denotes the space of all bounded functions on R
i.i.d independent identically distributed

r.v random variable

a.s. almost surely

r.h.s right hand side

L.h.s left hand side

w.r.t with respect to



Chapter 1

Introduction

Long memory as an object of research

A discrete-time second-order stationary process {X;,t € Z} is called long memory if
its covariance (k) = Cov(Xy, Xj) decays slowly with the lag in such a way that its

absolute series diverges:

> )] = . (L)

In the converse case when

S hk)l <oo and Yo(k) £0 (12)

k=1

the process {X;} is said to have short memory. Negative memory is defined as

d (k)] <oco and > (k) =0. (1.3)
k=1 k=1
Long memory processes have different properties from short memory (in particular,
i.i.d.) processes. Long memory processes have been found to arise in a variety of
physical and social sciences. See, e.g., the monographs Beran| (1997), |Doukhan et al.
(2003), |Giraitis et al.| (2012), Beran et al.| (2013)) and the references therein.
Conditions — defining long, short and negative memory are very general.
A useful asymptotic theory and statistical inference is possible if one specifies the
rate of decay of (k) at infinity. Particularly, is often specified as

y(k) = [k 7L (K], (k=1 0<d<1/2 (1.4)



or
(k) ~ c kT k= oo, 0<d<1/2, ¢, >0, (1.5)

where L., : [1,00) — R is a slowly varying function at infinity. Parameter d € (0,1/2)
in and is called the long memory parameter of {X,}. It characterizes the
intensity of long memory of the process {X;}: when d > 0 is small the covariance
function decays relatively fast and the intensity of long memory is small, while in
the case when d is close to 1/2 the covariance function decays very slowly since the
exponent —1 4 2d is almost zero, and the corresponding process { X;} has very strong
memory.

Probably, the most important model of long memory processes is the linear, or

moving average process

Xt - th—sCm tEZ, (16)

s<t
where {(s,s € Z} is a standardized i.i.d. sequence, and the moving average co-
efficients b; decay slowly so that >22[b;| = oo, 352,07 < oo. The last con-
dition guarantees that the series in (1.6) converges in mean square and satisfies

EX; = 0, EX7 = ¥52,07 < oco. In the literature it is often assumed that the
coefficients regularly decay as

by ~ ki, j—o oo FK>0,0<d<1/2). (1.7)
Condition (1.7]) guarantees (|1.5)), i.e. that

(k) = > bibey; ~ K*B(d,1 =24k k— oo (1.8)

=0

and hence Y32, |v(k)| = oo. Thus, the parameter d in is the long memory
parameter of {X;} as defined in ({1.5]).

An important property of the linear process in - is the fact that its
(normalized) partial sums process S, (7) = Zgrﬂ X;, 7 > 0 tends to a fractional

Brownian motion (Davydov| (1970)), viz.,
n=2S, (1) = by o(d)Bu(t), (1.9)
where H = d + 3 is the Hurst parameter, o(d)? := x*B(d,1 — 2d)/d(1 + 2d) > 0

and — pjo,1] denotes the weak convergence of random processes in the Skorohod space

DJ0,1]. By definition, fractional Brownian motion is a Gaussian process with zero
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mean and covariance function
1
EBg(s)Bg(t) = §(t2H + s — |t — s|*H), t,s > 0. (1.10)

Note that the normalization in grows faster than the classical normalization
n'/? in Donsker’s invariance principle for weakly dependent summands, and the limit
process By has dependent increments in contrast to the usual Brownian motion with
independent increments. Fractional Brownian motion is H-self-similar and plays a
very important role in many applications of stochastic processes. The above men-
tioned properties of the partial sums limit are characteristic to long memory although
in general the covariance decay as in does not imply a fractional Brownian mo-

tion limit of the partial sums process.

Motivation and aims of the thesis

It is well-known that the linear model has its drawbacks and sometimes is not
capable of incorporating empirical features (“stylized facts”) of some observed time
series. The “stylized facts” may include typical asymmetries, clusterings, and other
nonlinearities which are often observed in financial data, together with long memory.
A very important stylized fact of asset returns is conditional heteroscedasticity, or

the property of the conditional variance
Var[X; 1| F] = E[(Xep — E[Xi41 | F])?|F]

being a random process and not a constant like in linear models. Here, F; is
the “historic” o-field containing “all available information” and E[X,;|F;] is the
best forecast of X;,; given the “information” F;. For the linear process in (1.6))
and F; = o{(s, s < t}, the best forecast is E[X;11|F:] = b1¢; + bo(y—o + ... and
Xi11 — E[Xy 1| F] = boCeyq is independent of F; so that the conditional variance
is constant: Var[X;.1|F] = bZE¢?, meaning that this model is conditionally ho-
moscedastic. Therefore developing nonlinear models with long memory presents con-

siderable interest.

Problems and main results

The principal goal of this thesis is to introduce new nonlinear models with long mem-
ory that could be used for modelling of financial returns and statistical inference.

1. Projective stochastic equations (Chapter @)

11



The main goal is to introduce a new class of nonlinear processes which generalize
the linear model in — and enjoy similar long memory properties to (1.8)
and . For this, we define projective moving averages {X;,t € Z}, where X,
is a Bernoulli shift written as a backward martingale transform of the innovation
sequence. We introduce a new class of nonlinear stochastic equations for projective
moving averages, termed projective equations, involving a (nonlinear) kernel () and a
linear combination of projections of X; on “intermediate” lagged innovation subspaces
with given coefficients o, 3; ;. We obtain conditions for solvability of these equations.
We also show that under certain conditions on kernel and coefficients, the solution
exhibits covariance and distributional long memory, with fractional Brownian motion
as the limit of the corresponding partial sums process. Results are presented in
Chapter [3| and |Grublyté and Surgailis| (2014).

2. A nonlinear model for long memory conditional heteroscedasticity (C’hapter.

The main goal is to introduce a new class of conditionally heteroscedastic processes
that generalize some of the already known models and are able to model long memory
and other stylized facts in certain cases. For this, we discuss a class of conditionally
heteroscedastic time series models satisfying the ARCH-type equation r; = (o,
where (; is a noise sequence and the conditional standard deviation o, is a nonlinear
function ) depending on a linear combination of past values r,, s < t with coefficients
b;. We obtain the conditions for the existence of stationary solution r, with finite
p-th moment, 0 < p < co. Weak dependence properties of r; are studied, including
the invariance principle for partial sums of Lipschitz functions of r;. The case when
@ is the square root of a quadratic polynomial corresponds to a quadratic ARCH
(QARCH) model and is of special interest. We prove that in this case r; can exhibit
a leverage effect and long memory, in the sense that the squared process r? has
long memory autocorrelation and its normalized partial sums process converges to
a fractional Brownian motion. Analogous results are obtained for the generalized
version of the model described above where the conditional variance satisfies an AR(1)
equation, i.e. the volatily form includes the lagged volatilities from the past. We also
obtain a new condition for the existence of higher moments of r; which does not
include the Rosenthal constant. A short simulation study showing the behavior of
processes defined by this model is included. Results are presented in Chapter {4 and
Doukhan et al.| (2016), (Grublyté and Skarnulis (2017).

3. Quasi-MLE for quadratic ARCH model with long memory (Chapter[3).

The goal is to provide the asymptotic results for quasi-maximum likelihood esti-
mators in parametric version of long memory QARCH model introduced in Chapter
(also Doukhan et al.| (2016)), (Grublyté and Skarnulis (2017)). Similarly as in Beran
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and Schiitzner| (2009) we discuss several QML estimators: the estimator involving
exact conditional variance depending on infinite past and its more realistic version
where the volatilities depend only on finite number of returns from past. Under
certain moment conditions we prove consistency and asymptotic normality of the
corresponding QML estimators, including the estimator of long memory parameter
0 < d < 1/2. Results are presented in Chapter |5 and |Grublyté et al. (2017)).

The novelty

New nonlinear models with long memory for modelling of financial returns are de-
veloped in this thesis. These processes are defined as stationary solutions of certain
nonlinear stochastic difference equations involving a given i.i.d. “noise”. Solvabil-
ity of these equations is studied and covariance and distributional long memory is
proved. Finally, for a particularly tractable nonlinear parametric model with long
memory (GQARCH) consistency and asymptotic normality of quasi-ML estimators
are proved.

The processes studied in the thesis are new and have not been investigated in a
scientific literature before.

Methods

Many proofs in the thesis use the idea of projections (discussed in more detail in
Chapter , Section . Besides that, other standard tools from probability theory,

functional analysis, mathematical statistics and time series analysis were used.

Dissemination

The results were presented in the following conferences and seminars:

 54th conference of Lithuanian Mathematical Society, Vilnius (Lithuania), June
19-20, 2013.

« 55th conference of Lithuanian Mathematical Society, Vilnius (Lithuania), June
26-27, 2014.

o 11th International Vilnius Conference on Probability Theory and Mathematical
Statistics, Vilnius (Lithuania), June 30 - July 4, 2014.

e Séminaire SAMM: Statistique, Analyse et Modélisation Multidisciplinaire, Uni-

versité Paris 1 Panthéon-Sorbonne, Paris (France), November 28, 2015.
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« 8th annual SoFiE (The Society for Financial Econmetrics) conference, Aarhus
(Denmark), June 23 - 26, 2015.

 Conference “Stochastic Processes”, Luminy (France), February 15-19, 2016.

 Seminar at “Workshop on Dependence”, Institut Henri Poincaré, Paris (France),
September 27, 2016.

Publications

[. Grublyté, D. Surgailis (2014). Projective stochastic equations and nonlinear
long memory, Adv. in Appl. Probab., 46(4):1-22.

o P. Doukhan, I. Grublyte, D. Surgailis (2016). A nonlinear model for long mem-
ory conditional heteroscedasticity, Lith. Math. J. 56(2):164-188.

« 1. Grublyte, A. Skarnulis (2017). A generalized nonlinear model for long mem-
ory conditional heteroscedasticity, Statistics 51(1):123-140.

o 1. Grublyté, D. Surgailis, A. Skarnulis (2017). QMLE for quadratic ARCH
model with long memory. J. Time Ser. Anal. 38(4):535-551.

Structure of thesis

The thesis consists of Introduction, State of the Art, three Chapters, Conclusions,
two Appendixes and Bibliography. The review of aims and problems is given in
Introduction. State of the Art presents an overview of the scientific work in this
field. Chapter |3|introduces nonlinear processes defined through projective stochastic
equations. Chapter [4] presents a very general class of nonlinear conditionally het-
eroscedastic models. A separate case of (G)QARCH model ((Generalized) Quadratic
ARCH) is studied in more detail. Chapter [5| considers the estimation of parameters
in generalized QARCH models using QML method. The results of the thesis are

summarized in Conclusions.

Acknowledgements

I'm very grateful to my advisors prof. Donatas Surgailis and prof. Paul Doukhan for
their guidance during my PhD thesis.
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Chapter 2

State of the art

In this chapter, firstly we present some of the most commonly used definitions of
long memory. Next, we briefly review the (nonlinear) long memory processes studied
in the literature. Finally, a short overview on the estimation of parameters in these

models is presented at the end of the chapter.

2.1 Long memory

Long memory processes were studied in a literature by numerous authors, see, e.g.,
the monographs |Beran| (1997)), Doukhan et al.| (2003)), (Giraitis et al. (2012) and the
references therein. The problems considered include the detection of long memory,
estimation of long memory parameter, limit theorems for long memory processes,
simulation of processes, etc. According to Samorodnitsky| (2007)), the first attempts
to study long memory start with the papers of Mandelbrot and his coleagues in 1960s
(see Mandelbrot| (1965)), [Mandelbrot and Van Ness| (1968])) where the authors seek
to explain the phenomenon observed by Hurst| (1951) in the empirical data of Nile

flows.
Hurst| (1951) considered the R/S statistic for Nile river data defined as follows.
Given a sequence of n observations Xy, Xo,..., X, define the partial sum sequence

Sm=X1+--+ X, form=0,1,... (with Sy = 0). The R/S statistic (range of

observations/sample standard deviation) takes the following form

R maw0<i<n(5'n - %Sn> - min0<i<n<sn - %Sn)
(X, .., X)) = T Iwn 10 \2\1/2
S (5 X (Xi — ,50)%)
It is known that if X7, Xs,... is a stationary ergodic sequence of random variables

with a common mean p and finite variance, such that the standard central limit
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theorem holds, then growth rate of R/S statistic is the square root of the sample
size. However, Hurst noticed that the growth rate in R/S statistic for the Nile flows
data was closer to n%™. This phenomenon was called Hurst phenomenon and led to
various efforts to explain it.

The fact that the R/S growth rate has unusual behavior suggested that some of the
assumptions are not satisfied in the previous example. Mandelbrot, (1965]) decided
to refuse the assumption of the validity of the central limit theorem for process
{X;} and proposed to consider a finite variance model with very slowly decaying
correlations. This approach appeared to be very succesfull. Fractional Gaussian

Noise (the difference of fractional Brownian motion By, H > 0) defined as

with autocovariances Cov(Xyip,, X;) = 2(|n—|— 12+ n— 127 — 2n2H) is the simplest
example of such model and gives the growth rate nfl in the R/S statistic.

Since then, various other definitions of the long memory were proposed (see eg.
Samorodnitsky| (2007)), where the most popular definitions are summarized). Most
often (due to simplicity and easy estimation from data) the definitions use the second
order properties of stochastic processes, for example, asymptotics of covariances,
spectral density, variance of partial sums.

The following definition of long memory is based on the slow decay of covariances.

Definition 2.1.1 A covariance stationary process {X (t),t € Z} is said to have long
memory if its autocovariances y(k) = Cov(Xy, X;_x) are not absolutely summable,
i.e.

> (k)| = 0. (2.1)

kEZ

The process is said to have short memory if

Y (k)| <oo and D> y(k)#£O0. (2.2)
k=1 k=1

The process is said to have negative memory if
S (k)| <oo and D> y(k)=0. (2.3)
k=1 k=1

The definition above imposes very general conditions for autocovariances. It is
often useful to go a bit further and specify the decay rate of covariances. Let us first

introduce the notion of slowly varying functions.
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Definition 2.1.2 A function L is said to be slowly varying at infinity, if L is positive

on [a;00), for some a > 0, and ¥t > 0:

L(t
lim (t)

=1

Definition 2.1.3 A stationary process { X (t),t € Z} is said to have long memory, if
the autocovariance function (k) = Cov(Xy, Xy_1) decays hyperbolically, as k — oo,

(k) = k* ' L(k), 0<d<1/2 (2.4)

where L(-) is a slowly varying function at infinity. The parameter d is called a long-

memory parameter.

Clearly, if the process {X(t),t € Z} satisfies (2.4), it also satisfies (2.1)), the
converse not necessarily being truth.

Another common definition of long memory considers the limiting distribution
X;,7 > 0 where [z] denotes the

integer part of z. Let us first give some definitions (see eg. |Giraitis et al. (2016])).

[n7]

of normalized partial sums process S,(7) = >:74

Definition 2.1.4 (i) A real valued stochastic process {Z(t),t € R} with Z(0) =0 is
satd to have stationary increments if for any integer k > 0, and for any t; < ty <

<ty t; € R, i =1,...,k and h € R, the joint distributions of {Z(t; + h) —
Z(h),1 <j<k}and {Z(t;) — Z(0),1 < j <k} are the same. In other words, if for
any h € R,

{Z(h+1t)—Z(h),t € R} =40 {Z(t) — Z(0),t € R}.

(ii) A process {Z(t),t € R} is said to be self-similar with index H > 0, if finite
dimensional distributions of {Z(at)} and {a™Z(t)} are the same for all a > 0:

{Z(at),t € R} =49 {a Z(t),t € T}.
In other words, for any a >0, k=1,2,..., and for any t; e R,1 < j <k,
(Z(atl), P Z(atk)) =fdd CLH(Z(tl), ey Z(tk))

The process is said to be H-sssi if it is self-similar and has stationary increments. A
fractional Brownian motion By is an example of a Gaussian H-sssi process and plays

a very important role in many applications of stochastic processes.
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Definition 2.1.5 Let 0 < H < 1 be any number. A Gaussian process By =
{Bu(t),t € R}, with By (0) =0, EBy(t) =0 and covariance function:

1
ri(s,t) == EBy(s)By(t) = §(|5|2H P = ls =), ts >0,

is called a fractional Brownian motion (fBm) with parameter 0 < H < 1.

The following result of |[Lamperti (1962)) gives the basis for the definition of dis-

tributional long memory.

Theorem 2.1.1 (Lamperti). Let {X;} be a strictly stationary process and suppose

there exist nonrandom numbers A,, — oo and b € R such that

[n7]
A;IZ(Xj—b) — fdd. Z(T), T2>0,

Jj=1

where the limit process Z(T), 7 > 0, is not identically zero. Then {Z(7)} is a stochas-
tically continuous H-sssi process with some parameter H > 0 and the normalization

A, = nL(n), where L(-) is a slowly varying function .

The process {X;} is said to have distributional long memory if the limit pro-
cess {Z(7), 7 € [0,1]} has dependent increments. Fractional Brownian motion in
Definition is a typical example of {Z(7), 7 € [0,1]} in the long memory case.

For more details on various long memory definitions see e.g. (Giraitis et al.| (2012),
Samorodnitsky| (2007)).

2.2 Long memory processes

The main model for long memory processes is the linear, or moving average process

Xt = th—SC87 t E Z, (25)

s<t

where {(,,s € Z} is a standardized i.i.d. sequence, and the moving average coef-
ficients b; decay slowly so that 322 |b;] = oo, 332,07 < oo. The last condition
guarantees the mean square convergence of series in (2.5) and the process satisfies
EX; =0, EX? =372,0? < cc.

J=0"%
In the literature the decay rate of coefficients b; is often specified. In particular,

it is often assumed that
by ~ ki, j—o oo (FK>0,0<d<1/2). (2.6)

18



Condition (2.6 guarantees (2.4) and (2.1)), i.e. that

(k) = D bjbry; ~ £*B(d,1 -2k~ k— o0 (2.7)

J=0

and hence Y32, |7(k)| = oco. Thus, {X;} is a long memory process by both Definitions
2.1.3/and [2.1.1] and the parameter d in (1.7)) is the long memory parameter of {X;}.

A very important case of linear processes with is the parametric class
ARFIMA(p, d, q), in which case d € (0,1/2) is the order of fractional integration. The

latter class consists of linear processes with coefficients given by power expansion

>y = (1= W) el el <

where 6(z) = 1+ 612+ -+ 6,27, p(2) = 1 — 12 — - -+ — ppzP are polynomials of
degree p,q > 0 that have no common zeros and v (z) has no zeros in the unit disc
|z] < 1.

Another important property of the linear process in — is the distribu-
tional long memory or the fact that its (normalized) partial sums process S, (7) :=
Zgnjl X;, 7> 0 tends to a fractional Brownian motion (Davydov| (1970)), viz.,

n~4V28, (1) Spy o(d)Br (), (2.8)

where H = d + 3 is the Hurst parameter, o(d)? := x*B(d,1 — 2d)/d(1 + 2d) > 0
and — pjo,1] denotes the weak convergence of random processes in the Skorohod space
DJ0,1].

Nonlinear long memory processes

Despite its success and popularity, the linear model has its drawbacks as it is not
always capable to incorporate the so called “stylized facts” of empirical data, such as
clusterings, asymmetry, and various other nonlinearities observed in financial data,
together with long memory. As a result, various alternative (nonlinear) long memory
models were proposed. We remark that “nonlinear long memory” is a very general
term and the literature on this topic is so vast that we will briefly review only some
of them.
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Subordinated processes

Probably the most studied class of nonlinear long memory processes are subordinated
processes of the form {Q(X:)}, where {X;} is a stationary Gaussian or linear long
memory process and ) : R — R is a nonlinear function (see e.g. [Taqqu| (1979),
Ho and Hsing (1997)), Giraitis et al| (2012)). If function @) : R — R is such that
EQ?%*(X,) < oo, then the process {V; := Q(X;),t € Z} is also stationary. If, in
addition, the process {X;} has long memory, we can expect to observe this property
in a subordinated process Y; in a sense of slowly decaying covariances and/or the
behavior of partial sums process. However, proving the long memory for subordinated
processes is a rather difficult task, mainly because of the nonlinearity of process
{Yi,t € Z}.

The Gaussian process { X;} is probably the only case of subordinated processes for
which a complete solution is known. In particular, under specific moment conditions
the decay of covariances of process {Y;} is determined by the behavior of process
{X:}. If {X;} has short memory, a nonlinear function of it also has short memory.
However, if { X;} has long memory, the subordinated process {Y;} can have either long
or short memory, depending on values of additional parameters. Moreover, central
and noncentral limit theorems are already known for this type of processes. The
proofs use the method of Hermite expansions, for more details on covariance decay

and limit theorems of subordinated Gaussian processes see eg. |Giraitis et al. (2012).

Stochastic volatility

A stochastic volatility process {r;} is usually defined as
Ty = Utcta te Z>

where {(;} is a sequence of standartized ii.d. r.v. and o, is a positive function
independent of {(;}. In contrast to conditionally heteroscedastic models (described
in more detail bellow), o; is an unobserved process which could be interpreted as
volatility but does not represent a conditional variance. The probabilistic properties
(stationarity, ergodicity, covariance structure, etc.) of stochastic volatility processes
are discussed in a review paper by Davis and Mikosch| (2009).

Quite often oy is defined as o, = f(1;) where f is a (nonlinear) function and
{n:} is some stationary process with well known properties, eg. Gaussian or ARMA
(FARIMA) type process. For example, by choosing f(z) = e* and 7; to be an
ARMA(p, q) process we obtain an Exponential GARCH (EGARCH) model proposed
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by Nelson (1991). When 7, is a FARIMA(p,d, q) process we obtain a Fractional
Integrated Exponential GARCH (FIEGARCH) by Bollerslev and Mikkelsen| (1996)).
A related class of long memory stochastic processes was proposed by [Breidt et al.
(1998) and Harvey (1998) almost simultaneously. This class corresponds to 7, =
a + Z;’;l bj&—; where &,t € Z are standard i.i.d r.v. and b; are the coefficients of
FARIMA model. This model is briefly reviewed in [Hurvich and Soulier| (2009).

Conditional heteroscedasticity

A stationary time series {r,t € Z} is said to be conditionally heteroscedastic if its
conditional variance o2 = Var[ry|rs,s < t] is a non-constant random process. In
financial modeling, r; are interpreted as (asset) returns and oy as volatilities. A class
of conditionally heteroscedastic ARCH-type processes is defined from a standardized

i.i.d. sequence {(;,t € Z} as solutions of stochastic equation
re = G0, oy =V(rs, s <), (2.9)

where V(x1, 2, ...) is some function of x1, zs, .. ..
The ARCH(00) model corresponds to V (z1,z9,...) = (a + 3252 bja:?»)l/Q, or

ol =a+ i biri_j, (2.10)
j=1

where a > 0,b; > 0 are coefficients. The ARCH(c0) model includes the well-known
ARCH(p) and GARCH(p, ¢) models of Engle (1982) and Bollerslev| (1986). However,
despite their tremendous success, the GARCH models are not able to capture some
empirical features of asset returns, in particularly, the asymmetric or leverage effect
discovered by Black| (1976), and the long memory decay in autocorrelation of squares
{r?}. |Giraitis and Surgailis (2002 proved that the squared stationary solution of the
ARCH(00) model in (2.10) with a > 0 always has short memory, in the sense that
220 Cov(rg,3) < co. (However, for integrated ARCH(co) models with >52, b; =

1,b; > 0 and a = 0 the situation is different; see |Giraitis et al.| (2016).)

The above shortcomings of the ARCH(oco) model motivated numerous studies
proposing alternative forms of the conditional variance and the function V' (z1, s, ... )
in . In particular, stochastic volatility models can display both long memory and
leverage except that in their case, the conditional variance is not a function of ry, s < ¢
alone and therefore it is more difficult to estimate from real data in comparison with
the ARCH models; see Shephard and Andersen| (2009). |Sentana/ (1995) discussed a
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class of Quadratic ARCH (QARCH) models with ¢? being a general quadratic form
in lagged variables r;_1, ..., r,_,. Sentana’s specification of o7 encompasses a variety
of ARCH models including the asymmetric ARCH model of |[Engle (1990) and the
“linear standard deviation” model of [Robinson| (1991)) corresponding to a case where
a;; =0 for 0 <i,5 <p.

The limiting case (when p = 00) of the “linear standard deviation” (see Robinson
(1991)) is the LARCH model discussed in |Giraitis et al.| (2000) (see also Giraitis and
Surgailis (2002), [Berkes and Horvath (2003)), |Giraitis et al.| (2004), |Giraitis et al.
(2009), Truquet| (2014)) and other papers) and corresponding to V(xy1,xs,...) = a +
> oy bjzj, or

or=a+ Y by, (2.11)

Jj=1

=1
and a # 0. |Giraitis et al.| (2000) showed that a second order strictly stationary

solution {r,} to (2.11)) exists if and only if B < 1, in which case it can be represented
by the convergent orthogonal Volterra series

1/2
where a € R,b; € R are real-valued coefficients satisfying B := {Zoo bz} / < 00

ry=0(y, 0y = a(l +3 > by b Gy gtjl_..jk). (2.12)
k=1 j1,jik=1
Of particular interest is the case when the b;’s in are proportional to
ARFIMA coefficients, in which case the long memory of the volatility and the (squared)
returns can be rigorously proved. In particular, |Giraitis et al.| (2000) showed that the
squared stationary solution {r?} of the LARCH model with b; decaying as in ([1.7)

under certain moment conditions may have long memory autocorrelations, i.e.

Cov(rg,r?) ~ k221 t — 00,

2
where k2 1= (ﬁ“gg) B(d,1—2d)Er2. Moreover, its (normalized) partial sums process
Sp(7) = Zg"zt]l(rf —Er?), 7 > 0 tends to a fractional Brownian motion (Giraitis et al.
(2000)),

nidil/ZSn(T) _>D[O,1] KQBH(t), (213)

where H = d + 1 is the Hurst parameter, 3 := x2/(d(1 + 2d)) > 0.

The leverage effect in the LARCH model was discussed in detail in |Giraitis et al.
(2004)). Given a stationary conditionally heteroscedastic time series {r;} with E|r|* <
o0, leverage (a tendency of o7 to move into the opposite direction as r, for s < t) is

usually measured by the covariance h;_s = Cov(c?,r,). In (Giraitis et al.| (2004)), the
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process {r;} is said to have leverage of order k (1 < k < o00) (denoted by {r;} € ¢(k))
whenever
hj<0, 1<j<Fk (2.14)

Given that E|ro|* < oo, |uls < oo, B> < 1/5 and |u3| < 2(1 —5B?%)/B(1 + 3B?)
holds, |Giraitis et al.| (2004 proved that the second order stationary solution of
{r.} € ¢(k) whenever ab; <0, ab; <0, j =2,...,k, i.o.w. process 7 has leverage of
order k.

Despite being able to capture both the asymmetry and the long memory, LARCH
model has its drawbacks. The volatility o; of the LARCH model may as-
sume negative values, lacking some of the usual volatility interpretation and bringing

difficulties in parameter estimation.

2.3 Estimation

Let us briefly present the problem of parameter estimation in conditionally het-
eroscedastic models. Consider a model in (2.9) where o7 has a parametric form and
depends on a parameter § = (01, ..., 0;). Assume that the observations {ry,7a,...,7,},
n € N come from this model with the true parameter 6y = (6o 1,...,00x). The aim
is to get the best possible estimator én of fy. The consistency (the fact that én — 0y
as m — oo in probability) or strong consistency (én — 0y as n — oo almost surely)
and the asymptotic normality (the convergence of 0,, — 0y to Gaussian distribution
in law under proper norming) are the desired properties of such estimators.

Let us present Quasi-maximum likelihood (QML) method in more detail as it
is the most relevant in this thesis. The idea of QML estimation if to maximize
certain objective function that is obtained from the likelihoods of observations under
assumption of a particular model. When the “noise” sequence in is Gaussian,

the maximum likelihood estimator is defined as
0, = arg max L,(0),

where O is the parameter space and

1 r?
L,(0) = t:l_l1 TWJ? exp ( — —tg)
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is the likelihood function. The estimator above can be equivalently rewriten as

) LN rf 2
Qn—argraréléln;(ag%—logat).

In the case of non-Gaussian “noise”, the same Gaussian likelihood is often used and
the estimator is called Quasi-maximum likelihood estimator.

One of the difficulties that arises in the QML estimation is that the volatilities
o} often depend on infinite past (this is true, for example, for ARCH(c0) in (2.10),
LARCH in , where volatility is written as a linear combination of past returns).
However, in practice only a finite number of observations is known. The simplest
solution to this problem is to truncate the volatilities by assuming that the unknown
returns {r;,7 < 0} are all equal to 0. In this case two estimators are often considered:

one involving exact conditional variance o7 depending on infinite past

A 1 r? 9
en = arg %1688( Ln<9)7 Ln<6) - g ; (O'tQ(@) + log 0y (9))

and its more realistic version obtained by replacing o2 by 57 depending only on finite
past (15,1 < s < t):

n

2—31 (&;529) + log 5?(9)).

0, = arg max L,(0), L,(0) =

1
n

Quasi-maximum likelihood method gives consistent and asymptotically normal
estimators of parameters in strictly stationary GQARCH model under very mild
regularity conditions and does not require any conditions for higher moments (see
Francq and Zakoian (2009), Chapter 7, Theorems 7.1 and 7.2). The latter fact
is particularly relevant from the practical perspective as the requirements of finite
fourth or even higher moments seem to be too strict in real data, for example in
financial time series. |[Robinson and Zaffaroni (2006) proved strong consistency and
asymptotic normality of QML estimator in ARCH(oo) model with a > 0 and
the coeflicients b; = b;(\) written as some functions depending on finite dimensional
parameter A € R™. The estimation of parameters in long memory LARCH model
was studied in Beran et al. (2013). Recall that the main dissadvantage of LARCH
model is the fact that the volatilities might become negative and in general are
not separated from 0. Thus, the standard Quasi-maximum likelihood estimator is
inconsistent. Beran and Schiitzner| (2009) considered a modified Quasi-maximum

likelihood estimator that involves an additional “small” tuning parameter €, also
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other estimation methods for LARCH model were developed in [Francq and Zakoian|
(2010b)), Levine et al| (2009), Truquet, (2014).
Finally, many other methods for estimation were discussed in the literature, for

example in [Straumann| (2005), [Francq and Zakoian| (2009) and we will only mention

some of them. Probably the simplest method for ARCH models is the Least squares
(LS) method that is based on the minimization of squared errors. LS provides the

estimators in ARCH case explicitely, moreover, they are consistent and asymptoti-

cally normal if Er{ < oo and Erf < oo respectively (see Francq and Zakoian| (2009)

for more details). Whittle (1953)) proposed estimator based on spectral densities and

periodograms. It is often used in practice and also covers long memory cases. We
are not going into more details here as in this thesis we are mainly focusing on QML

estimation.



Chapter 3

Projective stochastic equations and

nonlinear long memory

Abstract. A projective moving average { Xy, t € Z} is a Bernoulli shift written as a
backward martingale transform of the innovation sequence. We introduce a new class
of nonlinear stochastic equations for projective moving averages, termed projective
equations, involving a (nonlinear) kernel () and a linear combination of projections of
X, on “intermediate” lagged innovation subspaces with given coefficients «;, 5; ;. The
class of such equations include usual moving-average processes and the Volterra series
of the LARCH model. Solvability of projective equations is obtained using a recursive
equality for projections of the solution X;. We show that under certain conditions
on @, oy, B, this solution exhibits covariance and distributional long memory, with

fractional Brownian motion as the limit of the corresponding partial sums process.

3.1 Introduction

The present chapter introduces a new class of nonlinear processes which generalize the
linear model in — and enjoy similar long memory properties to and .
These processes are defined through solutions of the so-called projective stochastic
equations. Here, the term “projective” refers to the fact that these equations contain
linear combinations of projections, or conditional expectations, of X;’s on lagged

innovation subspaces which enter the equation in a nonlinear way.

Let us explain the main idea of our construction. We call a projective moving

average a random process {X;} of the form

X, = ng,tCéM tGZ, (31>

s<t
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where {(,;} is a sequence of standardized i.i.d. r.v’s as in (1.6)), g:+ = go is a deter-

ministic constant and g, s < t are r.v.’s depending only on (541, ..., (; such that
Gst = Gt—s(Cog1s -, G, s <t, (3.2)
where g; : R - R, j =1,2,... are nonrandom functions satisfying
> Egit = Eg® (Css1, .-+, C0) < oo (3.3)
s<t s<0

It follows easily that under condition the series in (3.1]) converges in mean square
and define a stationary process with zero mean and finite variance EX? = 3", EgZ,.
The next question - how to choose the “coefficients” g, so that they depend on
X; and behave like (2.6) when j =t — s — 007

A particularly simple choice of the g,;’s to achieve the above goals is

gst = bt—sQ(E[s—i-l,t]Xt)) s<t (3-4)

where b; are as in (2.6), @ : R — R is a given deterministic kernel, and Epgq,4X; :=
E[X{|(, s +1 < v < t] is the projection of X; onto the subspace of L? generated by
the innovations (,,s + 1 < v < t (the conditional expectation). The corresponding

projective stochastic equation has the form

Xt = thfsQ(E[s—‘rl,t}Xt)Cs- (35)

s<t

Notice that when s — —oo then Ej,41 4 X; — X; by a general property of a conditional
expectation and then g, ~ b_sQ(X;) if @ is continuous. This means that the gs,’s
in feature both the long memory in and the dependence on the “current”
value X; through Q(X;). In particular, for @Q(x) = max(0,x), the behavior of gs; in
strongly depends on the sign of X; and the trajectory of appears to be
very asymmetric (see Figure , top).

Let us briefly describe the remaining sections. Section contains basic defini-
tions and properties of projective processes. Section [3.3] introduces a general class
of projective stochastic equations, being a particular case. We obtain sufficient
conditions of solvability of these equations, and a recurrent formula for computation
of “coeflicients” g,; (Theorem . Sections and present some examples
and simulated trajectories and histograms of projective equations. It turns out that
the LARCH model studied in |Giraitis et al.| (2000) and elsewhere is a particular case
of projective equations corresponding to linear kernel Q(x) (Section . Some mod-
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ifications of projective equations are discussed in Section [3.6] Section deals with
long memory properties of stationary solutions of stochastic projective equations.
We show that under some additional conditions these solutions have long memory
properties similar to and .

Finally, we remark that “nonlinear long memory” is a general term and that other
time series models different from ours for such behavior were proposed in the liter-
ature. Among them, probably the most studied class are subordinated processes
of the form {Q(X:)}, where {X;} is a Gaussian or linear long memory process and
@ : R — R is a nonlinear function. See Taqqu/ (1979)), Ho and Hsing| (1997) and |Gi-
raitis et al. (2012) for a detailed discussion. A related class of Gaussian subordinated
stochastic volatility models is studied in |Robinson| (2001). [Doukhan et al. (2012)) dis-
cuss a class of long memory Bernoulli shifts. Baillie and Kapetanios| (2008) consider
fractionally integrated process with nonlinear autoregressive innovations. A general
invariance principle for fractionally integrated models with weakly dependent inno-
vations satisfying the projective dependence condition of [Wul (2005)) is established in
Shao and Wu (2006)). See also Wu and Min| (2005) and Remark below.

We expect that the results of this chapter can be extended in several directions,
e.g., projective equations with initial condition, continuous time processes, random
field set-up, infinite variance processes. For applications, a major challenge is esti-

mation of parameters of projective equations.

3.2 Projective processes and their properties

Let {¢;,t € Z} be a sequence of i.i.d. r.v.s with E¢; = 0, E¢? = 1. For any integers
s <t we denote Fs s := 0{(y : u € [s, 1]} the sigma-algebra generated by (., u € [s, 1],
Flooog = 0{Cu 1 u < t}, Fi=0{( :u € Z}. For s > t, we define F,y := {0,Q} as

2
(—o0,t]?

r.v’s { measurable w.r.t. Figy, F(—co,, F, respectively. For any s,t € Z let

the trivial sigma-algebra. Let L[Qs,t], L L? be the spaces of all square integrable

Bglé] =B [¢|Fey), €€’

be the conditional expectation. Then & — Ei, 4[¢] is a bounded linear operator in L2
moreover, Ej, 4, 5,1 € Z is a projection family satisfying Efs, 1,1Es; 6] = Efsy,ta)n[s1,01]
for any intervals [s1, t1], [s2, t2] C Z. From the definition of conditional expectation it
follows that if g, : R — R, u € Z are arbitrary measurable functions with Eg2({,) <

00, [82, 2] C Z is a given interval and § = [],e(s, 1] 9u(Cu) is @ product of independent
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r.v’s, then for any interval [s1,t1] C Z

E[s1,t1] H gu(Cu) = H gu(Cu) H E[gv(gv)]'

UE[SQ,tQ] UE[Shtﬂﬂ[SQ,tg} Ue[527t2]\[81,t1}

In particular, if Eg,((,) = 0, u € Z then

Hu 51, gu(Cu)7 [Sg,tg] C [31’t1]7
B 11 () = ls1 1]

(3.6)
u€[s2,t2] 07 [827t2] gZ [Slvtl]'

Any r.v. Y, € L%ﬁoo’t] can be expanded into orthogonal series Y, = EY; + 3., PV},
where P,,Y; := (Eq — Efs41,)Y:. Note that {P,,Y}, Fy, s <t} is a backward mar-
tingale difference sequence and EY;? = (EY;)? + Yo, E(P;,Y;)%

Definition 3.2.1 A projective process is a random sequence {Y; € L%ﬁoo’t}, teZ} of
the form

Y, = EY; 4+ gsiCss (3.7)

s<t
where gs ¢ are r.v.’s satisfying the following conditions (i) and (ii):
(i) gsy is Flsy1,-measurable, Vs, t € Z, s < t; gi is a deterministic number;
(i) Yot BgZ, < 00, Vit € Z.

In other words, a projective process has the property that the projections Ej, 1Y; =
EY; + 3¢, P.Y, = EY; + S, Gigit, s < t form a backward martingale transform
w.r.t. the nondecreasing family {F ,,s <t} of sigma-algebras, for each t € Z fixed.
A consequence of the last fact is the following moment inequality which is an easy
consequence of Rosenthal’s inequality (Hall and Heyde| (1980)), p.24). See also Giraitis
et al.| (2012), Lemma 2.5.2.

Proposition 3.2.1 Let {Y;} be a projective process in . Assume that p, =
E|GolP < 00 and ¥y (E|gs.|P)?P < oo for some p > 2. Then E|Y;|P < co. Moreover,

there exists a constant C, < oo depending on p alone and such that

/2
BT < G IBYI + (S (Elgea)7)"").

s<t

Definition 3.2.2 A projective moving average is a projective process of such
that the mean EY, = p is constant and there exist a number gy € R and nonrandom

measurable functions g; : R? = R, j =1,2,... such that

Gst = Gi—s(Cot1s-- -, Gt) a.s., forany s<t,s,te.
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By definition, a projective moving average is a stationary Bernoulli shift (Dedecker
et al.| (2007), p.21):

Y;‘, = M + Z ngtfs<Cs+17 s act) (38)

s<t

with mean g and covariance

COV(Y;, }/t) — Z E[gs—u(Cu+17 cee 7Cs)gt—u(Cu+17 s 7Ct)]

u<s

- Z E[Q—u((u—&-l; s 7C0)gt—s—u(Cu+1) s 7<t—s—u)]7 S S t. (39)
u<0
These facts together with the ergodicity of Bernoulli shifts (implied by a general

result in [Stout| (1974), Theorem 3.5.8) are summarized in the following corollary.

Corollary 3.2.1 A projective moving average is a strictly stationary and ergodic

stationary process with finite variance and covariance given in (@

Remark 3.2.1 If the coefficients g5, are nonrandom, a projective moving average is

a linear process Y; = p+ > 25«4 gt—sCs, t € Z.

Proposition 3.2.2 Let {Y;} be a projective process of and {aj,j > 0} a deter-
ministic sequence, 372 |a;| < oo, Y32, |a;||EY; ;| < co. Then {u; = 332,a;Y;j,
t € Z} is a projective process u; = Euy + X< (G with Euy = 352 a;EY; 5 and

coefficients Gy := 3520 0 Gs -
Proof follows easily by the Cauchy-Schwarz inequality and is omitted. U

Proposition 3.2.3 If {Y;} is a projective process of (3.7), then for any s <t

E[s,t}Yi = EY;S+ Z gugu,ta Ps,tY;f = (E[s,t]_E[erl,t])Y;f = gsgs,r (310)

s<u<t

The representation is unique: if and Y; = Y.< g5 ,Cs are two represen-
tations, with g, satisfying conditions (i) and (ii) of Definition then gy, =
gst ¥V s < t.

Proof of is immediate by definition of projective process. From it
follows that (g%, = 0, where g/, := g+ — g, is independent of (,. Relation E(} = 1
implies P(|(s[* > €) > 0 for all € > 0 small enough. Hence, 0 = P(|¢,g7,] > €) >
PG| > Ve lgll > Vo) = PG| > VOP(gll > ve), implying P(lg’,| > v&) = 0
for any € > 0. 0

The following invariance principle is due to Dedecker and Merlevede (Dedecker
and Merlevede| (2003), Cor. 3), see also (Wu, (2005), Theorem 3 (i)).
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Proposition 3.2.4 Let {Y;} be a projective moving average of such that p =0

and -
Q2) = Y llgoell < oo, (3.11)
t=0

where ||€|| = EV2[€2], € € L. Then

[n7]

n2YYe —pp v B(7), (3.12)
=1
where B is a standard Brownian motion and ¢ = || 7% go||* = Sz E[YoYi].

3.3 Projective stochastic equations

Let Qst = Qst(Tun,s < u < v < t),s,t € Z,s < t be some given measurable
deterministic functions depending on (¢t — s)(t — s + 1)/2 real variables z,,, s < t,
and pu, Que, t € Z be some given constants. A projective stochastic equation has the

form

Xi = e+ (Qui(BpyXe, s <u<v <) (3.13)

s<t

Definition 3.3.1 By solution of we mean a projective process {X;,t € Z}
satisfying <, BQ2 (Bl Xv, s <u < v <t)] < oo and for any t € Z.

Proposition 3.3.1 Assume that that p; = i does not depend ont € R, the functions
Qst = Qi—s, s < t in depend only on t — s, and that {X;} is a solution
of . Then {X;} is a projective moving average of (@ with EX; = p and

gn: R* =R, n=0,1,... defined recursively by
Jgo ‘= Qo, (314)

In(T_pi1y. .. ) = Qn<,u—|— Z TGk (Tugts - X)), —n <u < v < O), n > 1.
k=u

Moreover, such solution is unique.

Proof. From (3.13]) and the uniqueness of (3.7)) (Proposition [3.2.3)) we have X; =
P4 Y s<t Gs,tCs, Where gop = Qi s(Ep ) Xy, s <u < v < t). For s =t this yields g,y =

Qo = goVt € Z as in " Similarly, Ji—14 = Ql(E[t,t]Xt> = Ql(ﬁb + goCt) = 91(@),
where ¢g; is defined in (3.14). Assume by induction that

Gi—mit = gm(Ct—m-‘,—la ce 7<t)7 VteZ (315)
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with g, defined in (3.14)), hold for any 0 < m < n and some n > 1; we need to show
that (3.15]) holds for m = n, too. Using (3.15)), (3.10) and (3.14) we obtain

Gt—nt = Qn(E[u,v]XU,t —n<u<lv< t)
= Qa0 G klGurri o Gt —n<u < v 1)
k=u
= Gn(Ctont1s - Ct)-

This proves the induction step n — 1 — n and hence the proposition, too, since the

uniqueness follows trivially. O
Clearly, the choice of possible kernels Qs in (3.13) is very large. In this chapter

we focus on the following class of projective stochastic equations:

Xt = p+ Z CsQ(ats + Z 5t7u,u75 (E[u,t}Xt - E[u—i—l,t}Xt) )7 (316)

s<t s<u<t

where {a;,i > 0}, {B;;,i > 0,5 > 1} are given arrays of real numbers, u € R is a

constant, and Q = @Q(x) is a measurable function of a single variable z € R. Two

modifications of (3.16]) are briefly discussed below, see (3.38) and (3.41)). Particular
cases of (3.16|) are

Xy, = ZCsQ(Oét—s+5t—sE[s+1,t}Xt)7 (3.17)

s<t

and

Xo= 1+ 260+ X e (BugXe—Fuen X)) ). (319
s<t s<u<t
corresponding to 3; ; = B,4; and B;; = [3;, respectively.
Next, we study the solvability of projective equation (3.16]). We assume that @

satisfies the following dominating bound: there exists a constant c¢g > 0 such that

Q(x)] < colz|, VzeR (3.19)
Denote
Kq = Za? Z ngkH Z ﬁz‘%jl o Z 5z‘2+j1+~~+jk_1,jk' (3.20)
i=0 k=0 =1 Jk=1

The main result of this section is the following theorem:
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Theorem 3.3.1 (i) Assume condition and
Ko < oo (3.21)

Then there exists a unique solution {X;} of , which is written as a projective

moving average in with coefficients gi—x recursively defined as

Q « +Ei€:_1ﬁz, 72'C7igfi, ) k:1727"'7
Jt—kt = ( * 0 Pk t> (3'22)
Q(O&k), k? = U.

More explicitly,

Xy = p+Qao)G + Q(Oél + 50,1@@(040))@—1
=+ Q(Oéz + B0,2G:Q () + 51,1@4@(061 + 50,1@@(060)))@2 + ...

(ii) In the case of linear function Q(z) = cox, condition is also necessary for
the existence of a solution of .

Proof. (i) Let us show that the gx_¢¢’s as defined in (3.22)) satisfy 332, Eg; ,, <
oo. From (3.19)) and (3.22)) we have the recurrent inequality:

k—1 2 k—1
ng_m < CéE<04k +> 5i,ki<tigti,t> = ng (04% +> ﬁz?,k—iEgtz—i,t>' (3.23)

=0 i=0

Tterating (3.23)) we obtain

i—1
ng—k,t < CQ (ak +CQ Z/B’Lk z(a? + Zﬁ?’i_ngf_j,t>>
7=0
k—1 k—1—1
2
= CQak—i_CQz%a i,k— 1+CQZaz Z 6’]1 i1, k—i— j1+"‘ (324)

Jj1=1
and hence
ZEQt{k,t < CQZO‘ +CQZO‘ Z /874_]1 +CQZO‘ Z ﬂ,n Z z+Jl,Jz
k=0 Jji=1 J1=1 J2=1

according to (3.21)). Therefore, Xy = p 4+ Y.< 9s¢(s is a well-defined projective

moving-average. The remaining statements about X; follow from Proposition [3.3.1
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(ii) Similarly to (3.23), (3.25) in the case Q(x) = cox we obtain

2 k—1
Eth—k,t = CZQE <ak + Z @,k—i(t—i%—i,t) = C2Q <sz + Z Bz‘Q,k—iEg?—i,t)

i=0 =0

and hence Var(X;) = 3322, Eg; ., = Kq. This proves (ii) and Theorem (3.3.1} too.
U

Remark 3.3.1 From recurrent relation (3.22), the g, ,’s can be expressed as func-
tions of ¢;_g41,...,¢ via the so-called nested Volterra series (see Appendix [B| and
the extented version of Grublyté and Surgailis| (2014) available at arXiv:1312.1938).

In the case of equations (3.17)) and ( , condition (3.21)) can be simplified, see
below. Note that for A% := Zfio a? = 07 equatlons (3.22) admit a trivial solution
Gi—rt = 0 since Q(0) = 0 by (3.19)), leading to the constant process X = p in (3.16]).

Proposition 3.3.2 (i) Let A> > 0, Bi; = Bivj, @ >0, j > 1, and B? := Y22, B2
Then Kg < oo is equivalent to A*> < oo and B? < oo.

(ii) Let A*> > 0, 8;; = B;,1 >0, j > 1 and B* := 3,82, Then Kg < oo is
equivalent to A* < oo and cyB* < 1. Moreover, Kq = cjA*/(1 — ¢ B?).

Proof. (i) By definition,

Kq = ZCQ}HZZO‘ Z i+ Z i-+j1++ie—1+7k

1=0 J1=1 Jr=1

oo
_ 2k+2 2102 2
= ZCQ > @ Py - Py,

k=0 0<i<j1 <+ <J <00

o0

2k+2 412 P2 2

< Y ey TPA’BY ... Bj,

k=0

where Bj := 322, (7. Since B® < oo entails limy_,o By = 0, Ve > 03K > 1 such
that By < e/cg Vk > K. Hence,

K oo
2 42 2)k k
KQgcQA(ZcQB +Ze)
k=0 k=
Therefore, A?> < oo and B? < oo imply Ko < oo. The converse implication is

obvious.
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(ii) Follows by

o o0 2 A2
Zc2k+22a Z Y ij — Zcék+2A2(B2)k = %
k=0 Q

= j1=1 Je=1

O

Remark 3.3.2 It is not difficult to show that conditions on the f; ;’s in Proposition

3.3.2| (i) and (ii) are part of the following more general condition:

lim sup Z CQBEJ <1,

1—00 ] 1

which also guarantees that K¢g < oo.

The following Proposition [3.3.3] obtains a sufficient condition for the existence of
higher moments E|X;|? < oo, p > 2 of the solution of projective equation . The
proof of Proposition [3.3.3]is based on a recurrent use of Rosenthal-type inequality of
Proposition , which contains an absolute constant C),, depending only on p. For
p > 2, denote

KQ’P = CQ/pZO‘ Z C;;/p 1/p 2 Z 5731 Z i+t — 1]k’(3'26)

i=0 k=0 j1=1 Je=1

where (recall) p, = E|(|?. Note Cy = po = 1, hence Kgo = K¢ coincides with
(3.20).

Proposition 3.3.3 Assume conditions of Theorem and Kg, < 0o, for some
p > 2. Then E|X|P < cc.

Proof. The proof is similar to that of Theorem m (i). By Proposition m,

p)2/p>p/2) 2/p

(Bx])" < car(Ex] +m( 3 (

s<t
= PP > (Elgeal?)*”.

s<t

Using condition (3.19)), Proposition and inequality (a+b)? <a?+07, 0 < g <1
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we obtain the following recurrent inequality:

2/ 2/
(E|gs,t p) : S (C%E‘Oft—s + Zs<u§t ﬂt—u,u—sgugu,t p) 3
2/p
< O (ol + (X, (Bl Ble)7)™)
<

GOl + 17 5 B o (Elgual)?).

s<u<t

Iterating the last inequality as in the proof of Theorem we obtain (E|X,|?)¥? <
Kg,p < oo, with Kq, given in (3.26)). U

Finally, let us discuss the question when X; of (3.16|) satisfies the weak dependence
condition in (3.11)) for the invariance principle.

Proposition 3.3.4 Let {X;} satisfy the conditions of Theorem and §2(2) be
defined in . Then

oo o0 o) (e}
Q2) < Dolail D26 D0 1Bl D0 1Bivii il (3.27)
i=0 k=0 ji=1 jr=1

In particular, if the quantity on the r.h.s. of is finite, { X} satisfies the func-
tional central limit theorem in .

Proof follows from (3.24)) and the inequality | 3 z|"/2 < 3 |2 |'/2. O

3.4 Examples

Example 3.4.1 (Finitely dependent projective equations) Consider equation
(3.16)), where o; = f3;; = 0 for all ¢ > m and some m > 0. Since Q(0) = 0, the

corresponding equation writes as

Xoo= ot X 6Qaret X wes (BugXe— BungXe) ), (3:28)

t—m<s<t s<u<t

where the r.h.s. is Fy_,414-measurable. In particular, {X:} of (3.28)) is an m-
dependent process. We may ask if the above process can be represented as a moving-
average of length m w.r.t. to some i.i.d. innovations? In other words, if there exists

an i.i.d. standardized sequence {n;,s € Z} and coefficients ¢;,0 < j < m such that

X, = Z Ci—sMs, teZ. (3.29)

t—m<s<t
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To construct a negative counter-example to the above question, consider the sim-

ple case of (3.28) with m =2, u =0, a; =0,501 = 1,Q(ap) = 1:
Xy = GQ(an) + Go1Q(ar + Lo EpgXe) = G + Go1Q(G)- (3.30)

Assume that EQ((;) = 0. Then EX;X; ; = 0,EX? = 1+ EQ?({s). On the other
hand, from with m = 2 we obtain 0 = EX; X; 1 = ¢ycy, implying that {X,} is
an i.i.d. sequence.

Let us show that the last conclusion contradicts the form of X; in (3.30) under
general assumptions on () and the distribution of ( = (. Assume that ( is symmetric,
oo > E¢* > (E¢?)? =1 and Q is antisymmetric. Then

Cov(X2, X)) = BQUO{(EC* —1) + (BCQ Q) — EQ*(Q) }.

Assume, in addition, that @ is monotone nondecreasing on [0, c0). Then E¢2Q?*(¢) >

ECPEQ?(¢) = EQ?*((), implying Cov(X?, X2 ;) > 0. As a consequence, (3.30) is not
a moving average of length 2 in some standardized i.i.d. sequence.

Example 3.4.2 (Linear kernel ) For linear kernel Q(z) = cqz, the solution of
(3.16|) of Theorem can be written explicitly as X; = p + >3, Xt(k), where
Xt(l) = cQ Yoy i is a linear process and

o0
Xt(kﬂ) = cgrlZozi
i=0

for k > 1 is a Volterra series of order k + 1 (see |Dedecker et al. (2007), p.22), which
are orthogonal in sense that EXt(k)XS(Z) =0,t,s€Z, k,l>1k#L.
Let H(Qfoqt] - L?ﬁoo’t] be the subspace spanned by products 1,(,,...,(s,, 51 <
- < s < t,k > 1. Clearly, the above Volterra series Xt,Xt(k) € H(Q_w’t], vVt € Z
(corresponding to linear Q) constitute a very special class of projective processes. For
example, the process in cannot be expanded in such series unless () is linear.
To show the last fact, decompose as Xy =Y, + Z;, where Y, :== ( + a1 €
HE g o= ECQ(a) and Z; := G 1(Q(G) — ay) is orthogonal to Hf 4, Z; # 0,
hence X; ¢ H(Z_myt].

Example 3.4.3 (The LARCH model) The Linear ARCH (LARCH) model, in-
troduced by Robinson| (1991) (see also |Giraitis et al.| (2000), Giraitis et al. (2004)),
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Giraitis et al.| (2009)), (Giraitis and Surgailis (2002))), is defined by the equations
re =0:G, op=a+ Zﬁjrt—jv (3.31)
j=1

where {(;} is a standardized i.i.d. sequence, and the coefficients j; satisfy B :=

1/2
{Z?L BJQ} / < oo. It is well-known (Giraitis and Surgailis| (2002)) that a second
order strictly stationary solution {r;} to (3.31)) exists if and only if

B < 1, (3.32)

in which case it can be represented by the convergent orthogonal Volterra series

Clearly, the last series is a particular case of the Volterra series of the previous
example. We conclude that under the condition (3.32)), the volatility process {X; =
0.} of the LARCH model satisfies the projective equation (3.18]) with linear function
Q(z) = z and o = af3;. Note that (3.32) coincides with the condition ¢ B* < 1 of

Proposition (ii) for the existence of solution of ([3.18]).

From Proposition the following new result about the existence of higher
order moments of the LARCH model is derived.

Corollary 3.4.1 Assume that
C)Pul/PB < 1, (3.33)

where p, = E|(|P and C, is the absolute constant from Proposition p > 2.
Then E|r P = p,E|oy|P < co. Moreover,

a20;71/pu120/p32

Elo/ff < )
’ t‘ 1_05/PM120/IJB2

(3.34)

Proof follows from Proposition [3.3.3and the easy fact that for the LARCH model,

Kg,p of (3.26) coincides with the r.h.s. of (3.34). O
Condition ({3.33]) can be compared with the sufficient condition for E|r|? < co,p =
2,4, ... in |Giraitis et al.| (2000)), Lemma 3.1:

1/2,1
2r —p—1)"*/PB < 1. (3.35)
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Although the best constant C), in the Rosenthal’s inequality is not known, (3.33)
seems much weaker than (3.35), especially when p is large. See, e.g. |[Hitchenko
(1990), where it is shown that C;/p = O(p/logp), p — 0.

Example 3.4.4 (Projective “threshold” equations) Consider projective equa-

tion
P
X = G+ Z Ct—jQ(E[tfj+1,t]Xt)a (3.36)
=1

where 1 < p < oo and @ is a bounded measurable function with Q(0) = 1. If @
is a step function: Q(z) = Y1_, cx1(x € I), where Uj_, I = R is a partition of R
into disjoint intervals I,1 < k < ¢, the process in follows different “moving-
average regimes” in the regions Ey_; 11 4X; € I, 1 < j < p exhibiting a “projective
threshold effect”. See Figure [3.1] where the top graph shows a trajectory having
a single threshold at x = 0 and the bottom graph a trajectory with two threshold

points at x = 0 and z = 2.
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T T T T T T T
500 1000 1500 2000 2500 3000

o

Figure 3.1: Trajectories of solutions of (3.36), p = 10. Top: Q(x) = 1(z > 0), bottom:
Qlz)=10<z<2).
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3.5 Simulations

Solutions of projective equations can be easily simulated using a truncated expansion
Xt(M) = > m<s<t 9s:Cs instead of infinite series in 1} We chose the truncation
level M equal to the sample size M = n = 3000 in the subsequent simulations. The
coefficients g, of projective equations are computed very fast from recurrent formula
and simulated values (5, —M < s < n. The innovations were taken standard
normal. For better comparisons, we used the same sequence (5, —M < s < n in all
simulations.

Stationary solution of equation was simulated for three different choices
of @ and two choices of coefficients «;, 3;. The first choice of coefficients is a; =
0.5, 8; = ¢0.97 and corresponds to a short memory process {X,}. The second choice
is a; =I'(d+7)/T(d)I'(j + 1), B = caj with d = 0.4 corresponds to a long memory
process {X;} with coefficients as in ARFIMA(0, d,0). The value of ¢ > 0 was chosen
so that 05232 = 0.9 < 1. The latter condition guarantees the existence of a stationary
solution of , see Proposition m

The simulated trajectories and (smoothed) histograms of their marginal densities

strongly depend on the kernel (). We used the following functions:

x, x € [0,1],
Q1(x) =z, Q2(x) = max(0, z), Qs(r)=132—2, z€]ll,2], (3.37)
0, otherwise.

Clearly, Q;,7 = 1,2,3 in satisfy with ¢g = 1 and the Lipschitz condition
(3.45)). Note that Q3 is bounded and supported in the compact interval [0, 2] while
(1, )2 are unbounded, the latter being bounded from below. Also note that for
B; = 0 and the choice of a; as above, the projective process {X;} of agrees
with AR(.5) for a; = 0.5/ and with ARFIMA(0,0.4,0) for a; = T'(d+7)/T(d)T'(j +1)
in all three cases in ([3.37))

A general impression from our simulations is that in all cases of @) in , the
coefficients a; account for the persistence and 3; for the clustering of the process. We
observe that as 3;’s increase, the process becomes more asymmetric and its empirical
density diverges from the normal density (plotted in red in Figures with
parameters equal to the empirical mean and variance of the simulated series). In the
case of unbounded ) = @1, @)> and long memory ARFIMA coefficients, the marginal
distribution seems strongly skewed to the left and having a very light left tail and

a much heavier right tail. On the other hand, in the case of geometric coefficients,
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Figure 3.2: Trajectories and (smoothed) histograms of solutions of projective equation
(3.18) with Q(z) = Q1(z) = z. Top: a;j = (.5)7, 3; = ¢(.9)7, bottom: «; = (.5)7,3; = 0.
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Figure 3.3: Trajectories and (smoothed) histograms of solutions of projective equation
(3.18) with Q(z) = Q2(x) = max(z,0). Top: a; = ARFIMA(0,0.4,0),5; = ca;, bottom:
a; = ARFIMA(O, 0.4, 0), /Bj =0.
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Figure 3.4: Trajectories and (smoothed) histograms of solutions of projective equation
(3.18) with Q(z) = Q3(x) = the “triangle function” in (3.37). Top: a; = (.5)7, 8; = ¢(.9),
bottom: a; = ARFIMA(0,0.4,0), 5; = ca;

the density for () = @1, Q)2 seems rather symmetric although heavy tailed. Case of
@ = Q3 corresponding to bounded @) seems to result in asymmetric distribution with
light tails.

3.6 Modifications

Equation (3.16)) can be modified in several ways. The first modification is obtained
by taking the a;_,’s “outside of Q”:

Xy = p+ Z CsOétsQ( Z Bt u—s (E[u,t}Xt - E[u+1,t]Xt) ), (3.38)

s<t s<u<t

where ay, f; j, Q satisfy similar conditions as in (3.16). However, note that (3.19)
implies Q(0) = 0 in which case (3.38)) has a trivial solution X; = u. To avoid the last
eventuality, condition (3.19)) must be changed. Instead, we shall assume that @) is a

measurable function satisfying

Q(z)* < c+cr®, zeR (3.39)
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for some c¢g, c; > 0. Denote
o (o) o0 o0
> 2 2k 2 2 2 2 2
Kq = cg) ') ai )y, Xty Pi gy > Oy gyt Pttt
k=0 =0  ji1=1 Je=1

Proposition [3.6.1] can be proved similarly to Theorem [3.3.1 and its proof is omitted.

Proposition 3.6.1 (i) Assume condition and
Ko < oo. (3.40)

Then there exists a unique solution {X;} of , which is written as a projective
moving average of with coefficients g, recursively defined as

k—1
Ot—kt = Oék@( Z @',ki(tigti,t), k=1,2,..., git:= apQ(0).
i=0

(i7) In the case of linear function Q(x) = ¢y + 1z, condition is also necessary
for the existence of a solution of .

Remark 3.6.1 Let A7 := Y%, o? and |8;;| < 3. Then

S) oo oo S) oo
KQ < C(2) Z(Clﬁ)Qk Z CY? Z 0%24-]‘1 T Z 04@‘2+j1+.A.+jk < 0(2) Z(Clﬁ)zkAgA% R Az
k=0 =0

j1=1 k=1 k=0

Hence, A? = A2 < oo and B < oo imply IN(Q < o0, for any ¢, ¢1, 3; see the proof of
Proposition |3.3.2]

Projective stochastic equations (3.16)) and (3.38]) can be further modified by in-
cluding projections of lagged variables. Consider the following extension of ([3.16]):

Xy =p+ S;t Cs@(ats + ;28::1 Bi-1-uu—s (E[u,t—uth - E[u+1,t—1]) Xt1>7 (3.41)
where «;, 3, ;, @) are the same as in and the only new feature is that ¢ is
replaced by t — 1 in the inner sum on the r.h.s. of the equation. This fact allows
to study monstationary solutions of with a given projective initial condition
X; = X?,t < 0 and the convergence of X; to the equilibrium as ¢ — oo; however,
we shall not pursue this topic in the present paper. The following proposition is a

simple extension of Theorem and its proof is omitted.
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Proposition 3.6.2 Let «y, 5 ;, Q) satisfy the conditions of Theorem including
and . Then there exists a unique solution {X;} of , which is written

as a projective moving average of with coefficients g, recursively defined as
Gi—rt = Q(ag),k=0,1 and

k-2

Gt—kt = Q(Oék +> @,k—1—z‘§t—1—7;9t—1—z',t—1>, k> 2.

=0

Finally, consider a projective equation (3.13) with p; = 0 and kernels Qs: =

Qi—s(Ts41,4-1,- -, Tsy1,5) depending on t — s real variables, where )y = 1 and

d(@i) d(zz)+1 dws) +2  d(z;)+j -1
1 2 3 ] ’

Qj(x1,...,75) = (3.42)

j > 1, where d(z),x € R is a measurable function taking values in the interval
(—1/2,1/2). More explicitly,

Xe = 3 Qi(BumjrrnXiot, Byojpnaa Xo2r o By jpna Xoj ) Gegy (3.43)
=0

where Ey_ji1,-5X:—; = EX; = 0. Note that when d(x) = d is constant, {X;}

(3.43)) is a stationary ARFIMA(0, d, 0) process. Time-varying fractionally integrated

processes with deterministic coefficients of the form (3.42)) were studied in |Philippe

et al.| (2006), [Philippe et al.| (2008). We expect that feature a “random”

memory intensity depending on the values of the process. A rigorous study of long

memory properties of this model does not seem easy. On the other hand, solvability
of (3.43)) can be established similarly to the previous cases (see below).

Proposition 3.6.3 Let d(z) be a measurable function taking values in (—1/2,1/2)
and such that sup,.pd(r) < d, where d € (0,1/2). Then there exists a unique
stationary solution {X;} of , which is written as a projective moving average
of with coefficients gs; recursively defined as g4 =1 and

gst = Qt—s( Z gugu,t—la Z Cugu,t—% s 70)7 s < t? (344)

s<u<t—1 s<u<t—2

with Qs defined at .

-----

>0 @Z)JQ < 00. Therefore the g,;’s in (3.44)) satisfy >, Egit < oo for any t € Z.
The rest of the proof is analogous as the case of Theorem [3.3.1} O
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3.7 Long memory

In this section we study long memory properties (the decay of covariance and partial

sums’ limits) of projective equations ((3.16)) and (3.38]) in the case when the coefficients

a;’s decay slowly as j71,0 < d < 1/2.

Theorem 3.7.1 Let {X;} be the solution of projective equation satisfying the
conditions of Theorem |3.3.1] and p = EX; = 0. Assume, in addition, that Q) is a

Lipschitz function, viz., there exists a constant c¢;, > 0 such that

Q) —Q(y)| < crlr—yl, z,y e R (3.45)

and that there exist Kk >0 and 0 < d < 1/2 such that

b = Qlay) ~ ki, oo (3.46)
and
B = max |Bij-i| = ofb;),  j—>oo. (3.47)
Then, as t — 0o
EXoX, ~ ibkak ~ KA (3.48)
k=0

where K% := k*B(d,1 — d) and B(d,1 — d) is beta function. Moreover, as n — 0o

[n7]

n_1/2_dZXt —D[0,1] CraBu(T), (3.49)

t=1

where By is a fractional Brownian motion with parameter H = d+(1/2) and variance

k2B(d,1—d
EB%(t) = t*H and cz’d = W.

Proof. Let us note that the statements (3.48]) and are well-known when
Bi; = 0, in which case X; coincides with the linear process Y; := 37 o, b,_(s, see,
e.g., |Giraitis et al.| (2012), Proposition 3.2.1 and Corollary 4.4.1.

The natural idea of the proof is to approximate {X;} by the linear process {Y;}.
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Fort > 0,k > 0, denote

T{fX = EXOXt = ZE[gs,Ogs,t]a 7“2/ = EYE)Y; = Zb—sbt—sy

s<0 s<0
k—1

Ctkt = Gkt —bp = Q(Oék + Z ﬂi,kiCtigti,t> — Qo).
i=0

Then

T;tX - 7"2/ = Z E[<bfs + @s,O)(btfs + (Ps,t) - bfsbtfs]

s<0
3
= Z b—SE[stﬂf] + Z bt—SE[SOS,O] + Z E[SOS,O SOS,t] = Z Pit-
s<0 s<0 s<0 i=1

Using ([3.45)) we obtain
k—1 2
Egr ie? < E@f,k,t < C%E( > ﬁi,kiCtiQti,t)
i=0
k—1
= C%( Z Bzz,k—z’Eg?—i,t>
i=0

Gt (S B,
1=0

Brci Kq.

IN

IN

This and condition (3.47)) imply that
Epird +EY200 ., < &k, Vit k>0,

where 6y — 0 (k — o0). Therefore for any ¢ > 1

el < ORI K)o < O
k=1

2] < CSTETIS(t+K)E < Copttt

k=1
psel < IEVRIEVERR] < CX RNt k)T b < OO,
s<t k=1

where d;, — 0 (k — o0). This proves (3.48]).
To show (3.49)), consider Z; := X; — Y, = Y ; Puilu,t € Z. By stationarity of
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{Z;}, for any s <t we have

Cov(Z;, Zs) = Z E[@u0 Puis] < Z El/Q[SDZ,o] El/Q[‘Pi,t—s] — of(t — )21,

u<0 u<0

2
see above, and therefore E( S Zt) = o(n?¥*1), implying

[n7] [nT]
nm AN X, = 0 WANTY, 4 0,(1).
t=1 t=1

Therefore partial sums of {X;} and {Y;} tend to the same limit ¢, 4Bg(7), in the
sense of weak convergence of finite dimensional distributions. The tightness in D[0, 1]
follows from (|3.48) and the Kolmogorov criterion. Theorem is proved. O

A similar but somewhat different approximation by a linear process applies in the
case of projective equations of (3.38]). Let us discuss a special case of 3; ;:

Bij =1, foralli=0,1,...,7=1,2,.... (3.50)

Note that for such 3;;, Y scu<t Bi—uu—s(Epg — Epg1,9)Xe = Epsp19Xe, s < t and
the corresponding projective equation (3.38) with 4 = 0,a; = b; coincides with

(3.5)). Recall that for bounded f; ;’s as in (3.50]), condition (3.39)) on () together with

S, a2 < oo guarantee the existence of the stationary solution {X;} (see Remark
3.6.1)). We shall also need the following additional condition:

E(Q(EngXo) — Q(X0)" = 0, as s —oo. (3.51)

2
Since E(E[S,O]XO — XO) — 0, s = —o00, so (3.51)) is satisfied if () is Lipschitz, but
otherwise conditions (3.51)) and (3.39) allow @ to be even discontinuous. Denote

0= (EIQ(X0))) B(d,1 - d).

Theorem 3.7.2 Let {X;} be the solution of projective equation with p =
0, Bij as in , Q satisfying and

ap ~ kT k—oo, 3 0<d<l1/2 (3.52)
In addition, let hold. Then

EXo X, ~ & ¥t t — 00 3.53
Q,d
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and

[n7]

nTVEEY X o) caBr(T),  dga = cqa/(d(1+2d)!% (3.54)

t=1
Proof. Similarly as in the proof of the previous theorem, let Y; := > o, b (s,
b := axE[Q(Xo)], ¥ :=EXX;, r} :=EYyY;, t > 0. Relation (3.53) follows from

X —rl = o(t*), t — oo0. (3.55)

We have X; = ngt 9s,tCss Jsit = O‘tfsQ<E[s+1,t]Xt)a EX? = ngt Egg,t < oo and
E[Q(Ep+1,4Xt)?] < 4+AE(Ef41,4X:)? < g+AEX]? < C. Decompose r¥ = rft—i—rgft,

where

riy = > a0 BlQ(E g Xo) | E[QEpgXy)], 75 = D asiyssr,
s<0 s<0
and where
|75,t| = ‘E[Q(E[s—&—LO]XO){Q(E[s—i-l,t]Xt)_Q(E[l,t}Xt)}:H < %1/52%1/3215

Here, 415 := E[Q*(E[s41,0X0)] < C, see above, while

|Fo.5.] = E[(Q(E[SH,QXO _Q<E[1,t}Xt))2]
= E[(QEw1-10X0) ~ QEugXo)) ] = 0,  t—o0 (3.56)

uniformly in s < 0, according to (3.51)). Hence and from (3.52)) it follows that
Ir3el = o(t*1), t — o0. (3.57)

Accordingly, it suffices to prove (3.55)) with X replaced by r{',. We have

X Y
Iy = T D 1+ D QP21 Y Qs 03,50,
s<0 s<0 s<0

where the “remainders” ¢y ¢; := E[Q(XO)]{E[Q(E[HLO]XO)] - E[Q(XO)]}, Post 1=
E[Q(X0>]{E[Q(E[l—t,O]XO)] - E[Q(Xo)]} and @3¢ = (E[Q(E[s+1,0]Xo)] - E[Q(Xo)])

X (E[Q(E[l_t’O}XO)] - E[Q(XO)]) can be estimated similarly to (3.56), leading to the
asymptotics of l) for each of the three sums in the above decomposition of rfft.

This proves (3.53)).
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Let us prove (3.54). Consider the convergence of one-dimensional distributions
for 7 =1, viz.,
n RS 5 N(0,0%), o =cha (3.58)

where SX := "1 | X;. Then (3.58)) follows from
E(SY — SY)2 = o(n'*), (3.59)

where SY := 37 | Y, and Y} is as above. We have

E(Sf—sfff = E(ZCs i at—s@s,t>2

s<n t=1Vs

- Z Z atlfsatzfsE[Qs,tl @S,tg]? (360)

s<ntita=1Vs
where Qs,t = Q(E[sﬂ,t]Xt) — E[Q(X()]. Let us prove that uniformly in s < ¢;
E[QsnQsn] = o(l), as  ty—t; — o0 (3.61)
We have for s < t; <ty that
BlQut Qo) = B[ Qo {Q(Bprea X)) — BlR(X0)]}]

= E[Quu{B[Q(Bp+1.0)X:,)] — EIQ(X0)]]}
+ E _Qs,tl {Q(E[s—o—l,tg}th) - Q(E[t1+1,t2]Xt2) }] = ¢s dite T ws 1,5t

where we used the fact that Qs,tl and Q(E[tﬁl’tQ]Xb) are independent. Here, thanks
~ 2
to (3.51), we see that [¢), , | < EY2[Q?, |EY? [{Q(E[tl_t2+1’0}Xo) — Q(Xo)} } <
2
CE1/2 {{Q(E[tl —to+1 0}X0) — Q(Xo)} :| — 0 uniformly ins<t; < tQ as tg —t1 — 0.
The same is true for |@Z)S t1.4,| since it is completely analogous to . This proves
- Next, with (| in mind, split E(SY — SY)2 = =T, + Tgn, where

=2 Z 1ty —ta| > K)...,  Topi=>, i 1|ty — ts| < K) ...,

s<nti,ta=1Vs s<nti,ta=1Vs

where K is a large number. By (3.61)), for any € > 0 we can find K > 0 such that
SUD <ty <tyityty 5K B[, @str]| < € and therefore

n
Thn| < EZ Z v, —sau,—s| < Ce Z 74—, < Cen!'t?d

s<n ti,to=1Vs t1,t2=1
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holds for all n > 1 large enough, where 7; := 33° || = O(t?*¢71) in view of
(3:52). On the other hand, |T5,| < CKn = o(n'*?d) for any K < oo fixed. Then
follows, implying the finite-dimensional convergence in ([3.54). The tightness
in follows from and the Kolmogorov criterion, similarly as in the proof
of Theorem [3.7.1] Theorem [3.7.2]is proved. O

Remark 3.7.1 Shao and Wu| (2006) discussed partial sums limits of fractionally
integrated nonlinear processes Y; = (1 — L)%y, t € Z, where LX; = X; ; is the
backward shift, (1 — L)? = >%,1;(d)L7, d € (—1,1) is the fractional differentiation

operator, and {u;} is a causal Bernoulli shift:
Ut = F( .. 7Ct—17 Ct)? telZ (362)

in i.i.d. r.v’s {(;,t € Z}. The weak dependence condition on {u;} (3.62), analogous
to (3.11)) and guaranteeing the weak convergence of normalized partial sums of {Y;}

towards a fractional Brownian motion, is written in terms of projections FPyu; =
(Eo,g — Epg)us:

) = > Pl < (3.63)

t=1
where [|£]|, := EY9|¢]? and ¢ = 2 for 0 < d < 1/2; see Theorem. 2.1 in Shao and
Wul (2006), also [Wu and Min| (2005), Wu| (2005). The above mentioned papers verify
(3.63) for several classes of Bernoulli shifts. It is of interest to verify (3.63) for
projective moving averages. For X; of (3.1) and 0 < d < 1/2, u; := (1 — L)X, =

> s<t GGt is a well-defined projective moving average with coefficients

Gs,t = Z ¢t—v(d)gs,va s <t

s<v<t

see Proposition m For concreteness, let gs; = ¥ s(—d)Q(E[s41,9X:) as in Theo-
rem with a; = ¢;(—d). We have Q(2) = >2§%, ||Go |2, where

t 2 t—1 2
[Goally = E| Y- i old)n( ~d)QEp o) =E| X tis(dn(~d)Qua] , (3:60)
v=0 v=0
where Q¢ = Q(En,1X,) — Q(Ep gX:) and we used S o Uio(d)y(—d) =0, t > 1
in the last equality. Note that 1;_,(d)1,(—d) < 0 have the same sign and Q,; ~
Q(X,) — Q(X;) are not negligible in (3.64]). Therefore we conjecture that |[|Go |3 =

o( ¥, |¢t_,,(d)z/;v(—d)|)2 = O(t"20-9) and hence Q(2) = oo for 0 < d < 1/2. The
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above argument suggests that projective moving averages posses a different “memory

mechanism” from fractionally integrated processes in [Shao and Wul (2006)).

o1



Chapter 4

A nonlinear model for long
memory conditional

heteroscedasticity

Abstract. We discuss a class of conditionally heteroscedastic time series models
satisfying the equation r; = (;04, where (; are standardized i.i.d. r.v’s and the
conditional standard deviation o; is a nonlinear function ) of inhomogeneous linear
combination of past values ry, s < ¢ with coefficients b;. The existence of stationary
solution r; with finite pth moment, 0 < p < oo is obtained under some conditions
on ,b; and the pth moment of (5. Weak dependence properties of r, are studied,
including the invariance principle for partial sums of Lipschitz functions of r;. In
the case when () is the square root of a quadratic polynomial, we prove that r; can
exhibit a leverage effect and long memory, in the sense that the squared process r? has
long memory autocorrelation and its normalized partial sums process converges to a
fractional Brownian motion. The results are extended to a generalized model where
the conditional variance satisfies an AR(1) equation o7 = Q* (a—{—Z?il bjrt_j) +vo ;.
We also provide another condition for the existence of higher moments of r; which
does not include the Rosenthal constant. A simulated trajectories and histograms of

marginal density of o; for different values of v are presented.
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4.1 Introduction

A class of conditionally heteroscedastic ARCH-type processes is defined from a stan-

dardized i.i.d. sequence {(;,t € Z} as solutions of stochastic equation
re = (i0t, Ot = V(Tsa s < t)a (4-1)

where V' (z1,x9,...) is some function of z1,xs,.... The present chapter discusses a
class of models (4.1)) with V' of the form

V(Il,ZL’Q,...) :Q(a+ibjxj), (42)

where Q(z),x € R is a (nonlinear) function of a single real variable € R which
may be separated from zero by a positive constant: Q(z) > ¢ > 0, z € R. Linear
Q(z) = x corresponds to the LARCH model . Probably, the most interesting
nonlinear case of () in is

Qz) = V2 + 2?2, (4.3)

where ¢ > 0 is a parameter. In the latter case, the model is described by equations

2
o= Qo o = \ICQ+ <a+zbts7“s) - (4.4)

s<t

Note that o, > ¢ > 0 in (4.4) is nonnegative and separated from 0 if ¢ > 0. Particular

cases of volatility forms in (4.4]) are:

o = \/02 + (a+bri—q)? (|[Engle| (1990) asymmetric ARCH(1)), (4.5)

b p
o = \JC2 -+ ((I + - Zrt,j>2, (46)
pjzl

o= ot b Q@) =) (4.7)
o = &+ (a+b((1— L)1 —1)r)2. (4.8)

In —, a, b, c are real parameters, p > 1 an integer, Lx; = x;_; is the backward
shift, and (1 — L)z, = Y2 g2y, ¢; = D(d+ j)/T(d)T(j + 1), = 1 is the
fractional integration operator, 0 < d < 1/2. The squared volatility (conditional
variance) af in — and is a quadratic form in lagged returns ry_1,7r;_o, ...
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and hence represent particular cases of Sentana; (1995) Quadratic ARCH (QARCH)
model with p = oo. It should be noted, however, that the first two conditional
moments do not determine the unconditional distribution. Particularly, (4.1) with
generally is a different process from Sentana, (1995) QARCH process, the latter
being defined as a solution of a linear random-coefficient equation for {r;} in contrast
to the nonlinear equation in . See also Example below.

The model in — can be generalized by including the lagged volatilities

from the past, in particular

re = G0y, Ut2 = @ <a + Z bjrt—j) + 70152—1a (4.9)
j=1

where 0 < v < 1 is a parameter. The inclusion of lagged o2 ; in helps to reduce
very sharp peaks and clustering of volatility which occur in trajectory of —
with near the threshhold ¢ > 0 (see Figure . The generalization from (4.1))-
to is similar to that from ARCH to GARCH models, see Engle| (1982),
Bollerslev| (1986), particularly, (4.9) with Q(z) of and b; = 0,7 > 2 reduces to

the Asymmetric GARCH(1,1) of [Engle (1990), see Example [4.6.1]
Let us describe the main results of this chapter. Section obtains sufficient
conditions on @, b; and ||, := E|(o[P for the existence of stationary solution of ([4.1])-
(4.2)) with finite moment E|r;|P < oo, p > 0. We use the fact that the above equations

can be reduced to the “nonlinear moving-average” equation

Xy = Z bi—sCsQ(a + Xs)
s<t
for linear form X, := >, b;_srs in , and vice-versa. Section aims at pro-
viding weak dependence properties of model —, in particular, the invariance
principle for Lipschitz functions of {r;} and {X;}, under the assumption that b; are
summable and decay as 777 with v > 1. Section discusses long memory prop-
erty of the quadratic model in ([.4). For b; ~ 5971 j — 00,0 < d < 1/2 as
in , we prove that the squared process {r?} has long memory autocorrelations
and its normalized partial sums process tend to a fractional Brownian motion with
Hurst parameter H = d + 1/2 (Theorem . Section establishes the leverage
effect in spirit of |Giraitis et al.| (2004)), viz., the fact that the “leverage function”
hj := Cov(c},74—;),7 > 1 of model takes negative values provided the coeffi-
cients a and b; have opposite signs. Finally, Section extends the results of previous
sections to a more general class of volatility forms in that include lagged volatil-

o4



ity from the past o2 ;. In addition, another condition for the existence of higher
moments of r; which does not include the Rosenthal constant is obtained in Theorem
[4.6.2] Simulated trajectories and histograms of marginal density for different values
of parameter v are presented in Section [4.7]

Notation. In what follows, C, C(...) denote generic constants, possibly dependent
on the variables in brackets, which may be different at different locations. a; ~ b; (t —

00) is equivalent to limy o, a; /by = 1.

4.2 Stationary solution

This section discusses the existence of a stationary solution of (4.1)-(4.2)), viz.,

re=GQa+ Y bwr,), tEL (4.10)
s<t
Denote
Xt = th—sTs' (4.].1)
s<t

Then 7, in (4.10) can be written as r, = (;Q(a + X;) where (4.11]) formally satisfies

the following equation:

X; = ) b Qa+ X,). (4.12)

s<t

Below we give rigorous definitions of solutions of (4.10) and (4.12)) and a statement

(Proposition [4.2.2)) justifying (4.12)) and the equivalence of (4.10]) and (4.12]).
In this section we consider a general case of (4.10)-(4.12) when the innovations

may have infinite variance. More precisely, we assume that {(;,t € Z} are i.i.d.

r.v’s with finite moment |u|, := E|¢|P < 0o, p > 0. We use the following moment

inequality.

Proposition 4.2.1 Let {Y;,j > 1} be a sequence of r.v.’s such that E|Y;|P < oo for
some p > 0 and the sum on the r.h.s. of converges. If p > 1 we additionally
assume that {Y;} is a martingale difference sequence: E[Y;|Y1,....Y;41] = 0,5 =
2,3,.... Then there exists a constant K, depending only on p and such that

Z;il E|Yj|p7 O < p S 27

N o (4.13)
(=2, By P)>?)", p>2

By v < K
j=1

Remark 4.2.1 In the sequel, we shall refer to K, in (4.13)) as the Rosenthal constant.
For 0 < p <1 and p = 2, inequality (4.13) holds with K, =1, and for 1 < p < 2, it
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is known as von Bahr and Esséen inequality, see von Bahr and Esséen| (1965)), which
holds with K, = 2. For p > 2, inequality is a consequence of the Burkholder
and Rosenthal inequality (see Burkholder| (1973), Rosenthal (1970)), also |Giraitis et al.
(2012), Lemma 2.5.2). Osekowskil (2012) proved that K}/? < 2<3/2>+<1/P>(§+1)1/p(1+

m), in particular, K,’* < 27.083. See also Hitchenko (1990)).

Let us give some formal definitions. Let F; = 0((s, s < t),t € Z be the sigma-field
generated by (s, s < t. A random process {u;,t € Z} is called adapted (respectively,

predictable) if u; is Fi-measurable for each ¢ € Z (respectively, u; is F;_j-measurable
for each t € Z). Define

16517, 0<p<?2,
]—1|]’ / p (414)

(2 )", p>2.
Definition 4.2.1 Let p > 0 be arbitrary.

(i) By LP-solution of we mean an adapted process {ry,t € Z} with E|ry|P < oo
such that for any t € Z the series Y, by_srs converges in LP and holds.

(ii) By LP-solution of we mean a predictable process { X, t € Z} with E| X;|P <
oo such that for any t € 7 the series >, by—s(sQ(a+ X) converges in LP and
holds.

Let Q(z),z € R be a Lipschitz function, i.e., there exists Lip, > 0 such that
|Q(z) — Q(y)| < Lipglz —yl,  z,yeR (4.15)
Note implies the bound
Q*(z) < & + 3P, z € R, (4.16)

where ¢ > 0, ¢y > Lipg and ¢y can be chosen arbitrarily close to Lipg; in particular,
holds with 3 = (1 + €*)Lipg), ¢} = Q*(0)(1 + € 2), where € > 0 is arbitrarily
small.

Proposition 4.2.2 Let ) be a measurable function satisfying with some ¢; >
0,7 = 1,2 and {G;} be an i.i.d. sequence with |u|, = E|{]? < oo and satisfying
E¢o =0 for p > 1. In addition, assume B, < co.

(i) Let {X;} be a stationary LP-solution of (4.12). Then {r; := ¢Q(a+ X;)} is a
stationary LP-solution of (4.10) and

Elrr < C(1+E|X,P). (4.17)
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Moreover, for p > 1, {ry, F;,t € Z} is a martingale difference sequence with

Bl Fioa] =0, Bl 1 Fia] = lub|Qa+ 3 biar) . (4.18)

s<t

(i) Let {ri} be a stationary LP-solution of (4.10). Then {X,} in {4.11) is a stationary
LP-solution of (4.12) such that

E|Xt|p S CE|7"t|p. (4.]_9)
Moreover, for p > 2
E[X,Xo] = Erg>_ byysbs, t=0,1,.... (4.20)
s=1

Remark 4.2.2 Let p > 2 and |pu|, < oo, then by inequality , {r:} being a
stationary LP-solution of is equivalent to {r;} being a stationary L2-solution of
with E|rg|P < co. Similarly, if @ and {(;} satisfy the conditions of Proposition
and p > 2, then {X,} being a stationary LP-solution of is equivalent to
{X;} being a stationary L*-solution of with E| Xo|P < oc.

Proof of Proposition . (i) Since {X;} is predictable and @ satisfies (4.16)) so

Elr? = |ulE|lQ(a+ Xi)[?
< JulpEle + &(a+ X))
< C(1+EX,P) <C < o0,

N

proving (4.17)). Moreover, if p > 1 then E[r;|F;_1] = 0 is a stationary martingale
difference sequence. Hence by Proposition 4.2.1} the series in (4.11)) converges in L?
and satisfies

Z?iﬂbj‘pa 0<p<2

EX, P < C /2
(z2,02)", p>2

} = CB, < oo.

In particular, (;Q(a+ > oy bi—s7s) = (Q(a + X;) = r¢ by the definition of r;. Hence,

{r:} is a LP-solution of (4.10)). Stationarity of {r;} follows from stationarity of {X;}.
Relations (4.18]) follow from E[¢|Fi—1] = 0, E[|G|P|Fi-1] = |plp, p > 1, and the

fact that X, is F;_j;-measurable.

(ii) Since {r;} is a LP-solution of (4.10), so r; = ¢Q(a + X;) with X; defined in
(4.11)), and {X,} satisfy (4.12)), where the series converges in LP. Also note that {X;}
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is predictable. Hence, {X;} is a LP-solution of (4.12)). By (4.16),
Elr? = |ulEQ(a+X)IP < |ul,El] +cla+X,)*P? < CL+EX[) < C.

It also readily follows that, for p > 1, {r,, F;,t € Z} is a martingale difference
sequence. Hence, by the moment inequality in (4.13)),

BIX,P < K

p

271 |0 [PEre— ;P 0<p<2
2
(ZOO b2E2/p|rt7]‘p>p/ R p > 2

j=1"%j

} = CB,E|r,?, (4.21)

proving (4.19). Stationarity of {X;} and (4.20) are easy consequences of the above
facts and stationarity of {r;}. O

The following theorem obtains a sufficient condition in (4.22)) for the existence
of a stationary LP-solution of equations (4.10) and (4.12). Condition (4.22) involves

the pth moment of innovations, the Lipschitz constant Lipg, the sum B, in (4.14)
and the Rosenthal constant K, in (4.13). Part (ii) of Theorem shows that for
p = 2, condition (4.22)) is close to optimal, being necessary in the case of quadratic

@) =&+ e’
Theorem 4.2.1 Let the conditions of Proposition [{.2.9 be satisfied, p > 0 is arbi-
trary. In addition, assume that Q) satisfies the Lipschitz condition in (4.15)).
(i) Let

Ky|plpLipg By < 1. (4.22)
Then there exists a unique stationary LP-solution {X;} of and

E’Xt’p < C(p7 Q)|M|PBP

< Por (4.23
1 - Kp|/i|pL1ngzBp )

where C(p, Q) < oo depends only on p and ¢y, ¢y in (4.16).

(ii) Assume, in addition, that Q*(x) = i + cax?, where ¢; > 0,1 = 1,2, and py =
E¢2 = 1. Then c2By < 1 is a necessary and sufficient condition for the existence of
a stationary L?-solution {X;} of with a # 0.

Remark 4.2.3 Condition (4.22) agrees with the contraction condition for the op-
erator defined by the r.h.s. of (4.12) and acting in a suitable space of predictable

processes with values in LP. For the LARCH model, explicit conditions for finiteness
of the pth moment were obtained in |Giraitis et al.| (2000), Giraitis et al. (2004) using

a specific diagram approach for multiple Volterra series. For larger values of p > 2,
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condition (4. 1s preterable to the corresponding condition
diti 4.22|) is preferabl h ponding diti
o —p— D)V u|PBYP <1, p=2.4.6,..., 4.24
Flp ™ Bp

in |Giraitis et al.| (2000), formula (2.12) for the LARCH model, since the coefficient
(2P —p—1)"/% grows exponentially with p in contrast to the bound on K}/* in Remark
(see also Chapter , Example. On the other hand for p = 4 becomes
VIT|puy*By? < 1 while is satisfied if K}/*|u|s/*By? < 27.083|u|y*By/? < 1,
see Remark , which is worse than (4.24]).

Proof of Theorem|4.2.1]. (i) For n € N define a solution of (4.12)) with zero initial
condition at ¢ < —n as

(n) 07 t S -n,
S b Qe+ X)), t>-—n, tEZ.

Let us show that {Xt(”)} converges in LP to a stationary LP-solution {X;} as n — oo.
First, let 0 < p < 2. Let m > n > 0. Then by inequality (4.13) for any ¢t > —m we
have that

B - XOP = Kolul{ ¥ b ElQa+ X

—m<s<—n

+Y elElQGa+ X0 - Qat X[

—n<ls<t

= KP|N|IJ{S:71,TL + S;;z,n}

Let xp(n) := 332, [b;|P. From the bound |a+ z|* < (2a*/€) 4 (1 + €)2?, valid for any
0<e<1/2, z€Randa>0,it follows that

2
< &t (a+ X

Cler, ) + & (14 €)P?| X MP
C(Cla 62) + C§|Xs(m)|p7

’cf + c3(a+ Xs(m))Q)’

IN A
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with c3 > cp > Lipg arbitrarily close to Lipy. Then using (4.16) we obtain

Shn < 2 bsPPE|} + Bla+ XM

—m<s<—n
< CKulpxp(t+n)+ & D0 [ PEIXI = XP,
—m<s<—n
S < Lo > |boPE[X™ — XM
—n<s<t

Consequently,

m n n m P
BIX( — X[ < CQE ot +n) + Klulyd Y2 hmaPE|X — X

—m<s<t

[terating the above inequality, we obtain
B = X < CQUBlb{xolt + )+ () (1.2

x Y rbt_sl|p|bsl_82|%.rbskl_skrpxp<sk+n>}.

—m<sp < <s1<t

Since K,|plpcs B, < 1 by (4.22) and sup,>; xp(s) < B, < 00, the series on the r.h.s. of
(4.26]) is bounded uniformly in m, n and tends to zero as m,n — oo by the dominated
convergence theorem. Hence, there exist X;,¢ € Z such that

lim E|X, - X"]P =0, VteZ (4.27)

n—oo

Note that {X;} is predictable and

K, B B
E|X,P = lim E|X"]P < CQEslulpBy C<p’Q)|“|.ppp :
e 1 — Kp|plpcs By 1 — Kp|plpLipg By

where the last inequality follows by taking c3 > Lipg, sufficiently close to Lipy,.
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We also have by (4.23) and (4.15]) that

B[S bGQa + X,) th CQa+ XM

s<t s=—n

= E‘ Z bt—sCsQ(a—i‘Xs) + tz_: bt,SCS(Q(G—FXS) —Q(G+XS(”)))‘

s<—n s=—n

p

p
< Kp|ﬁ‘|p{ Z |bt78|pE‘Q(a+XS)

s<—n

£ IelElQGe+ X)) - Qo+ X))

—n<s<t
< c( ) ]btS]”+Z]bts\pE‘Xs—X§")‘p) 50
s<—n s<t

as n — oo. Whence and from it follows that {X;} is a stationary LP-solution
of satisfying .

To show the uniqueness of stationary LP-solution of ([{.12)), let {X/}, {X/'} be two
such solutions of (4.12)), and m,(t) := E|X]— X/'|P. Then sup,; m,(t) < M < oo and
my(t) < Kp|plpLiph et |be—s[Pmyy(s) follows by (4.15). Iterating the last equation we
obtain that m, (t) < (K,|ul,LipgB,)" M holds for all k > 1, where K,|u|,LippB, < 1.
Hence, m,(t) = 0. This proves part (i) for 0 < p < 2.

The proof of part (i) for p > 2 is analogous. Particularly, using as in (4.21]),
we obtain

/2
BIX)P < Kplul( 308 E7|Qa + X)7)

s<t

Kl ( X 8.(C(Q) + SEIX, 7))

s<t

< K luBy(C(p, Q)+ & supELX. )
se

IN

implying (1 — K,|up|B,) supey E| X [P < C(p, Q)|ul,B, and hence the bound in
(4.23) for p > 2, by taking cs sufficiently close to Lipg. This proves part (i).

(i) Note that Q(z) = /¢ + 322 is a Lipschitz function and satisfies (4.15)) with
Lipg = ¢». Hence by K; = 1 and part (i), a unique L?-solution {X;} of (4.12)) under
the condition 3By < 1 exists. To show the necessity of the last condition, let {X;}
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be a stationary L2-solution of (4.12)). Then

EX; = Y b EQ*(a+ X,)

s<t

= > bf_SE<c§ +c3(a+ XS)2>

s<t

= Byl +(a® +EX])) > GBEX]

since a # 0. Hence, ¢3B, < 1 unless EX? = 0, or {X; = 0} is a trivial process.
Clearly, (4.12)) admits a trivial solution if and only if 0 = Q(a) = \/c¢? + c3a? = 0, or
¢1 = ¢o = 0. This proves part (ii) and the theorem. O

Example 4.2.1 (The LARCH model) Let Q(z) = = and {¢;} be a standardized
i.i.d. sequence with zero mean and unit variance. Then becomes the bilinear
equation

Xy = D b-y((a+ X,). (4.28)

s<t
The corresponding conditionally heteroscedastic process {r; = (;(a + X;)} in Propo-
sition [4.2.2[(i) is the LARCH model discussed in [Giraitis et al.| (2000, (Giraitis et al.
(2004) and elsewhere. Asshown in Giraitis et al. (2000), Theorem 2.1, equation (4.28)
admits a covariance stationary predictable solution if and only if By = 772, b? < 1.
Note the last result agrees with Theorem (ii). A crucial role in the study of the
LARCH model is played by the fact that its solution can be written in terms of the

convergent orthogonal Volterra series

X,=a> S babeaCoae G

k=1 sp<---<s1<t

Except for Q(z) = x, in other cases of (4.12)) including the QARCH model in (4.4)),
Volterra series expansions are unknown and their usefulness is doubtful.

Example 4.2.2 (Asymmetric ARCH(1)) Consider the model (4.1) with o, in
(4.9)), viz.
1/2

re=( (62 + (a + brt_1)2) , (4.29)

where {(;} are standardized i.i.d. r.v.s. By Theorem [4.2.1] (i), equation (£.29) has a
unique stationary solution with finite variance Er? = (a* + ¢?)/(1 — b?) if and only if
b < 1.

In parallel, consider the random-coefficient AR(1) equation
7715 = K&t + bnt?t—la (430)
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where {(e;,n;)} are i.i.d. random vectors with zero mean Ee; = En, = 0 and unit
variances E[e?] = E[p?] = 1 and k,b are real coefficients. As shown in [Sentana
(1995) (see also Surgailis| (2008))), equation has a stationary solution with finite
variance under the same condition b® < 1 as . Moreover, if the coefficients x
and p := E[e;n;] € [—1,1] in (4.30) are related to the coefficients a, ¢ in (4.29) as

Kp = a, K> =a’+ ¢, (4.31)

then the processes in (4.29)) and (4.30]) have the same volatility forms since

57 = E[f}|Fs, s <t] = &>+ 2rbp+ b2,
= A+ (a+0bF)

agrees with the corresponding expression o7 = ¢? + (a + bry_;)? in the case of .

A natural question is whether the above stationary solutions {r,} and {r;} of
and , with parameters related as in , have the same (uncondi-
tional) finite-dimensional distributions? As shown in (Surgailis (2008), Corollary
2.1), the answer is positive in the case when {(;} and {(e;,7m:)} are Gaussian se-
quences. However, the conditionally Gaussian case seems to be the only exception
and in general the processes {r;} and {r;} have different distributions. This can be
seen by considering the 3rd conditional moment of

3/2
Elrflri1] = ps (e + (a + bre-1)?) ™, (4.32)

which is an irrational function of r;_; (unless pu3 = E¢3 = 0 or b = 0), while a similar

moment of (4.30))
E[?ﬂ?tfl] == H3V3,[) -+ 3b/€21/2717’:t,1 + 3b2/€V17277t271 + b31/0’377?71 (433)

is a cubic polynomial in 7,_;, where v; ; := E[ein}]. Moreover, has a constant
sign independent of r;_; while the sign of the cubic polynomial in changes with
7; ranging from oo to —oo if the leading coefficient b*v 5 # 0.

Using the last observation we can prove that the bivariate distributions of (74, ;1)
and (74, 7_1) are different under general conditions on the innovations and the pa-
rameters of the two equations. The argument is as follows. Let b > 0,¢ > 0, uz >
0,93 = End > 0. Assume that (y has a bounded strictly positive density function
0 < f(x) < C,z € R and (g9,m0) has a bounded strictly positive density function
0 < g(z,y) < C,(x,y) € R%. The above assumptions imply that the distributions
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of r; and 7; have infinite support. Indeed, by and the above assumptions we
have that P(r; > K) = [ P(c* + (a + bri1)* > (K/y)?)f(y)dy > 0 for any K > 0
since limy o0 P(¢? 4 (a+ bry—1)? > (K /y)?) = 1. Similarly, P(7y > K) = [g2 P(Fi_1 >
(K — kx)/by)g(x,y)dady > 0 and P(r; < —K) > 0,P(7; < —K) > 0 for any K > 0.
Since h(z) := us <02 + (a + bx)2)3/2 > 1 for all |z] > K and any sufficiently large
K > 0, from (4.32)) we obtain that for any K > 0

Eril(r,y > K) = Eh(r,_1)1(r,_1 > K) >0 and
Eril(r,, < —K) = Eh(r;_1)1(r.1 < —K) > 0. (4.34)

On the other hand, since h(z) := k35 + 3bk%1 1 + 302k, 222 + by g2 > 1 for
x> K and E(x) < —1 for x < —K and K large enough, from (4.33) we obtain that
for all sufficiently large K > 0

Er1(f_y > K) = Eh(F_1)1(F_1 > K) >0 and

Ef1(7 < —K) = Eh(7_1)1(7_1 < —K) <0. (4.35)

Clearly, (4.34) and (4.35) imply that the bivariate distributions of (ry,r;_;) and
(74,74—1) are different under the stated assumptions.

For models (4.29) and (4.30), we can explicitly compute covariances p(t) =
Cov(r?,r2), p(t) = Cov(72,72) and some other joint moment functions, as follows.

Let p3 = E¢ = 0,4 = E¢} < oo and my := Erg, my(t) := Erlrg, my(t) =
Er?r3,t > 0. Then

my = (a*+c)/(1—b?), ms(0) = 0,
ms(1) = E[((a®+ ) + 2abrg + b*rd)re] = 2abmsy + b*ms(0) = 2abmy,

ms(t) = B[((a®+ ) 4 2abri_y + 022 )] = Pmg(t—1) = ... = > Ymy(1)
2ab(a? + ¢?)
= R > 4.36
o e (1.36)
Similarly,

my(0) = pB[((a®+ ) + 2abr_y + b*r*,)?]
= wf(a® + *)? + (2ab)*my + b*my(0) + 26*(a® + ¢*)ma},
my(t) = E[((a® + ) + 2abri_y + b*r]_)rg] = (a* + )mg + bPmy(t — 1), t>1

64



resulting in

) = S (G20 ) (437)

2t

1—10?

my(t) = mo(a®+c?)-

+ bztm4(0), t>1

Y

and

p(t) = (ma(0) —m3)b*,  t>0. (4.38)

In a similar way, when the distribution of {y is symmetric one can write recursive
linear equations for joint even moments E[r??(0)r??(t)] of arbitrary order p = 1,2, ...
involving E[r?(0)r*(¢)],1 < 1 < p — 1 and my(0) = E[r*(0)],1 < k < 2p. These
equations can be explicitly solved in terms of a,b,c and pg, 1 < k < 2p.

A similar approach can be applied to find joint moments of the random-coefficient
AR(1) process in (4.30), with the difference that symmetry of (g, 79) is not needed.
Let my := Er?, ms(t) := E[F?ro], ma(t) := E[F2r3] and p(t) := Cov(72,73), vi; =
Eleind]. Then

my = k2/(1—0b%),

) = El(keo +bnor—1)?] = Kvz0 + 3kb*v1 2ma + b1 3m3(0),
ms(1) = B[(k+ 2rpbTy + b*72)7] = 2kpbimsy + b*ms(0),

(t) = E[(k*+ 2rpbFy_1 + b*77_|)70)

= Vmg(t—1) =---= PP Vmg(1), t>2

and

ma(0) = B[(keo + bnor_1)"]

= I{4V470 + GRQbQVQ,QmQ + 4/{1)31/1,3%3(0) + bty 4my4(0),
ma(1) = El(ke; + bni7o)’Ts] = K2y + 2kpbims(0) + b*my(0),
ma(t) = E[(ke; + i 1)°T5] = &g + b*mg(t — 1), t>2,
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leading to

— o /13V37[) + 3/€b21/172m2
m3(0) N 1— IZ0) 3b3 ’

ms(t) = bV (2kpbmy + bPms(0)), t> 1,
/€4V470 -+ 6/1262V272m2 + 4Hb3V173m3(0)

~ _ 4.
1m4(0) " : (4.39)

1 b
1 b2

Fa(t) = mﬁ( ) 4 B (71 (0) + 2rpis(0)/b), > 1,

and

pa(t) = b2(t_1)54<1)7 t>1,
ps(1) = 2prbms(0) + b* (M4 (0) — m3).

Then if 139 = 112 = 0 we have m3(0) = 0 and py(t) = (m4(0) — m3)b*; moreover,
Mo = my in view of (4.31)). Then py(t) = p4(t) is equivalent to m4(0) = my4(0), which
follows from

Ha = Vo4 = V4o and 6V272 - [1,4(4Vil + 2), (440)

see (4.38), (4.37), (4.39). Note that (4.40) hold for centered Gaussian distribution

(€0,m0) with unit variances Ee3 = Eng = 1.

4.3 Weak dependence

Various measures of weak dependence for stationary processes {y:} = {y,t € Z}
have been introduced in the literature, see e.g. |Dedecker et al| (2007). Usually, the
dependence between the present (t > 0) and the past (¢ < —n) values of {y,} is
measured by some dependence coefficients decaying to 0 as n — oo. The decay rate
of these coefficients plays a crucial role in establishing many asymptotic results. The

classical problem is proving Donsker’s invariance principle:

[n7]
1
— > (y — Ey) — oB(7), in the Skorohod space DI0,1], (4.41)

N4

where B = {B(71),7 € [0,1]} is a standard Brownian motion. The above result is
useful in change-point analysis (Csorgé and Horvathl (1997)), financial mathematics
and many other areas. Further applications of weak dependence coefficients include

empirical processes in Dedecker and Prieur| (2007) and the asymptotic behavior of
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various statistics, including the maximum likelihood estimators (see [bragimov and
Linnik| (1971) and the application to GARCH estimation in Lindner| (2009)).

The present section discusses two measures of weak dependence - the projective
weak dependence coefficients of Wu/ (2005) and the 7-dependence coefficients intro-
duced in |Dedecker and Prieur| (2004), Dedecker and Prieur| (2005)) - for stationary
solutions {r;}, {X;} of equations ({.10), ([.12). We show that the decay rate of the
above weak dependence coefficients is determined by the decay rate of the moving

average coefficients b;.

Projective weak dependence coefficients

Let us introduce some notation. For r.v. & write ||€], = EYP|E[P, p > 1. Let
{y;,t € Z} be a stationary causal Bernoulli shift in i.i.d. sequence {(;}, in other

words,
yr = f(Cs,s <), te, (4.42)

where f : RY — R is a measurable function. We also assume Eyo = 0, ||lyoll, =

EYP|yo|P < oo. Introduce the projective weak dependence coefficients
wp(ti {we}) = 1fi(&0) = fil&)llp,  0p(i{me}) = (&) = F(EDlp,  (4:43)

where & = (..., (21,60, G- -5 G)s & o= (-, o1, G0s Gy -+ ), i) := E[f (&)%) =
Elyi|Fo] is the conditional expectation and {(},(;,t € Z} are i.i.d. r.v.s. Note the

i.i.d. sequences ¢ and & coincide except for a single entry. Then w,(i;{y:}) <
dp(i;{y+}),7 > 0 and condition

S nlki () < o0 (4.44)

guarantees the weak invariance principle in (4.41)) with o® := ez Cov(yo, y;), see

Wul (2005). The last series absolutely converges in view of and the bound in Wu

(2005), Theorem 1, implying [Cov(yo, ;)| < 3232 wa(k; {ye})wa(k + j; {ye}), 7 = 0.
Below, we verify Wu'’s condition for {X;}, {r:} in (4.12)), (4.10). We assume

that the coefficients b; decay as j~7 with some v > 1, viz.,
Iy >0, ¢>0: bj| <ecj™, Vj>1 (4.45)

Proposition 4.3.1 Let Q be Lipschitz function as in (¢.15), p > 1, K, |ul,Lipg, B, <
1 (see (4.22) ), and {X;}, {r:} be stationary LP-solutions of (4.12)), (4.10), respectively.
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In addition, assume that b; satisfy (4.45) with v > max{1/2,1/p}.
Then

S,k {X,}) =0k  and &,k {r}) = O(k™). (4.46)

Proof. We will give the proof for p > 2 only as the proof for p € [1,2] is similar.

Following the notation in (4.43)), let {X/},{r,} be the corresponding processes
(Bernoulli shifts) of the i.i.d. sequence &' := (..., (-1, (1, o, .- . ) with (o replaced
by its independent copy (). Note that X] = X, (t < 0), r; = (¢t < 0). We have
05 (ks {X:}) = (B[ Xy — X P)*7 = || Xy, — X; |5, where

Xp— X, = Z be—s(rs — 17%) + (o — Go)Q(a + Xo).
0<s<k

Then with v2 := [|Q(a + Xo)||? using Rosenthal’s inequality (4.13) similarly as in the
proof of Theorem [4.2.1| we obtain

1%0= XelE < K2 (S0 Bl = I+ G — GlE? )

0<s<k

< KE“’( > b JulPlQa + X,) —Q(a+X;>y|;+4m|§/pbzvg)

0<s<k

< K (Linh X BIX, - X2+ 4the2).

0<s<k

Let oy, := Kg/ P| p,|12/ pLipébi. Iterating the last inequality we obtain

é ; ‘it — .2 k E stk—s ce -2 : k>
2 II (;2 ( <S<k 1 Q

where Ay is as in (A.1)) (see Appendix. Since A =Yg = (Kp\u]pLip%Bp)Wp <
1 and o < Ck™, by Lemma we obtain d9(k; {X;}) < Ck™7, proving the first
inequality in . The proof of the second inequality in follows similarly
using 0, (k; {r:}) = ||r. — i[5 < Lipg|uly/PI1 X5 — Xi 5 = Lipg|uly/Pd3(k: {X:}). O

The next corollary follows from the above-mentioned result of Wu/ (2005)), relations
Oz (ki {ye}) < Coaks {re}), 2(k;{ze}) < Coa(k; {Xi}) and (4.46).

Corollary 4.3.1 Let {y, := h(ry)},{z := h(Xy)}, where {X,},{r:} are as in Propo-
sition p=2and h: R — R is a Lipschitz function. In addition, assume that
b; satisfy (4.45) with v > 1. Then

[n7] [n7]
n~1/2 Z(yt_Eyt) —ppoa) ¢ B(T) and n_l/QZ(Zt_EZt) —pjo] c:B(7), (4.47)
t=1 t=1
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where B is a standard Brownian motion and

= ZCov(yo,yt) < 00, = ZCOV(ZO, 2) < 00.

teZ tEL

T-weak dependence coeflicients

Let {y;,t € Z} be a stationary process with [|yo|l, < oco,p € [1,00]. Following
Dedecker and Prieur| (2004), Dedecker and Prieur| (2005)), we define the 7-weak de-

pendence coefficients

E[f(yjn"'ayjk)

sup vt < 0] —E[f(ys, - v3)]]

FEAL(RF)

(Y tii<k) = ‘

p

measuring the dependence between {y;}i<o and {y;, }1<i<k, 0 < j1 < -+ < ji, and

(i {y;}) == supk™"  sup  7,({y; hr1<i<k)-

k>1 n<jr < <Jk

Here, A;(R¥) denotes the class of all Lipschitz functions f : R* — R with

Ed

|f<x17"'7xk>_f<y17'~'7yk Z yl for any (xlw"uxk)? (yhayk)eRk

In the case when {y;} is a causal Bernoulli shift of an i.i.d. sequence {(;} as in (4.42)),
T-coeflicients can be estimated via d-coefficients:

[e.e]

(1, {y:}) Z (7, {we}) (4.48)

The above bound is an easy consequence of the coupling inequality of [Dedecker and
Prieur| (2005):

k
({ys h<ick) < Z; 195, = w5 llp and - 7(n, {y}) < Sup Y5 = vj llp, (4.49)
where {y} has the same distribution as {y;} and is independent of y,, s < 0. Indeed,
let {y;} be the corresponding process (Bernoulli shift) of the i.i.d. sequence &* :=
(.o (o, ¢y, Coy Cay oo ) wWith (s < 0) an independent copy of ({5, s < 0). Introduce
also “intermediate” ii.d. sequence & = (..., (%1, Civtye 5 Coy Clyevn )y @ >
1, & = £* and the corresponding Bernoulli shlft {ym} with the same f as in .

Note the sequences & and &, agree up to single entry. By triangle inequality,

Ny —ynlly < 3520 1950 — Yitanlly = 2521 0p(n +14,{y:}), leading to (4.48) via (4.49).
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The following corollary is immediate from (4.48)) and Proposition 4.3.1}

Corollary 4.3.2 Let Q be Lipschitz function as in (4.15), p > 1, Ky|u|,Lipg B, < 1

(see (4.22)) and let {X},{r:} be stationary LP-solutions of (4.12)), (4.10), respec-
tively. In addition, assume that b; satisfy (4.45)) with v > 1. Then

(i {X;}) =0 ), nni{r;}) =07, (4.50)

Theorem 1 in |Dedecker and Prieur| (2007)) together with Corollary imply the
following CLT for the empirical distribution functions F:X(u) := n™' 37, 1(X; <
u), Fr(u) :=n"' Y, 1(r, < u), u € R of stationary solutions {X;}, {r:} of (4.12),
(@.10). Let F¥(u) := P(Xo < u), F"(u) := P(ro < u) be the corresponding distribu-
tion functions. See|Dedecker and Prieur| (2007)) for the definition of weak convergence

in the space (*°(R) of all bounded functions on R.

Corollary 4.3.3 Let the conditions of Corollary hold with p = 1 and v >
5. Moreover, assume that FX F" have bounded densities. Then {y/n(FX(u) —
FX(u)),u € R} and {/n(F"(u)—F"(u)),u € R} converge weakly in (*(R) asn — oo

towards Gaussian processes on R with zero mean and respective covariance functions

> Cov(1(Xo <u),1(Xp <w)) and > Cov(l(rg < u),1(ry < u)).

keZ kEZ
Remark 4.3.1 Let the noise ¢, have a bounded density f; and inf,cg Q(z) > 0, then
FX,F" have bounded densities fx, f., particularly, f,.(z) = E[fc(z/00)/00],00 =
Q(a + Xp). Thus, the requirement that F F" have bounded densities does not

necessarily impose additional conditions on the coefficients b;.

Remark 4.3.2 In Dedecker and Prieur| (2007) a general tightness condition is pro-
posed in Proposition 6 for alternative classes of functions besides indicators of half-
lines. Conditions are not immediate to check which explains why we restricted to the

case of empirical cumulative distribution functions.

4.4 Strong dependence

The term strong dependence or long memory usually refers to stationary process
{ys,t € Z} whose covariance decays slowly with the lag so that its absolute series
diverges: 72, |Cov(yo, yx)| = 0o. Since the variance of Y-}_; y; usually grows faster
than n under long memory, Donsker’s invariance principle in is no more valid

and the limit of the partial sums process, if exists, might be quite complicated.
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It is natural to expect that the “long memory” asymptotics of b; in (4.51)) induces
some kind of long memory of solutions {r;}, {X;} of (4.1)), , under general
assumptions on (). Concerning the latter process, this is true indeed as shown in the

following theorem.

Theorem 4.4.1 Let {X;} be a stationary L*-solution of (4.12)), where
b, ~ B (30<d<1/2, B>0) (4.51)

and Q) satisfies the Lipschitz condition in (4.15)) with LipéB2 = Lip2Q S b2 < 1.

j=1%j
Then

Cov(Xo, X3) ~ N2t 5 0 and (4.52)
[n7]

n—d—(l/Q)ZXt —plo1] A2Bar/2)(7),

t=1

2d+1

where Byi1/2) is a fractional Brownian motion with Var(Bgia (7)) = T and

A2 = B2B(d, 1 — 2d)EQ*(a + Xo), A2 := X2/d(1 + 2d).

Proof. The first relation in (4.52) follows from (4.20]) and (4.51]). The second relation
in (4.52)) follows from a general result in |Abadir et al. (2014]), Proposition 3.1, using
the fact that {rs} in (4.12) is a stationary ergodic martingale difference sequence. [J

Clearly, properties as in do not hold for {r; = (,Q(a + X;)} which is an
uncorrelated martingale difference sequence. Here, long memory should appear in the
behavior of the volatility o, = Q(a + X;), being “hidden” inside of nonlinear kernel
@. The last fact makes it much harder to prove it rigorously. Further we restrict

ourselves to the quadratic model with Q?(x) = ¢® + 22, or

Ty = w 2+ (a + th_srs>2, teZ (4.53)
s<t
as in ({4.4), where (recall) {¢;} are standardized i.i.d. r.v.s, with zero mean and unit
variance, and b;, j > 1 are real numbers satisfying .

The following theorem shows that under some additional conditions the squared
process {r?} of has similar long memory properties as {X;} in Theorem .
For the LARCH model (see Example above) similar results were obtained in
Giraitis et al.| (2000), Theorems 2.2, 2.3.
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Theorem 4.4.2 Let {r;} be a stationary L*-solution of (4.53) with b; satisfying
and B* = Y32, b7 < 1. Assume in addition that pny = E[(j] < 0o and Er} < occ.
Then

Cov(rg,r?) ~ w2 t — o0, (4.54)

where K3 := (12_“5 ) B(d,1 — 2d)Eri. Moreover,

[n7]

n~ RS (7 —Er]) —ppy keBanip(t),  n— oo, (4.55)

t=1

where Byy1/2) is a fractional Brownian motion as in (£.52)) and 3 = £3/(d(1+2d)).
Proof. The proof of Theorem [.4.2] heavily relies on the decomposition

—Er) =) b} (r? —Er)) = 2aX;+ Z, (4.56)

s<t
where {Z;} on the r.h.s. of (4.56)) is negligible so its memory intensity is less than the
memory intensity of the main term, {X;}. Accordingly, r? —Er? = (1 =25 b?Lj )7L,
behaves like an AR(o0) process with long memory innovations & := 2aX;+7; ~ 2a.X;.

A rigorous meaning to the above heuristic explanation is provided below.
By the definition of r; in (4.53)),

Zy = U+ V,, where
Uy = (Ctz_ )Q2(G+Xt)
V. = EX2 Zb )
s<t
= 2 Z bt_slbt_s27"517"52. (457)
S9<s1<t

Let us first check that the double series in (4.57) converges in mean square and

(4.57)) holds. Let

Xt,N = Z bt—srsa ‘/t,N =2 Z bt—slbt—SQTslrsy

—N<s<t —N<sa<s1<t

then Vin = X7y — EX?y — X neser b7 (17 — Er2) and, for M > N,

E(X?y — X7 )? = E(Xen — Xem)*(Xen + Xean)® < 1 Xen — Xem |31 Xen + Xeaell3-
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By Rosenthal’s inequality in (4.13)),

IXev+Xeml; < C > b, <C and

—M<s<t
I Xen —Xeumli < C > b, =0 (N,M— ).
—M<s<—N
Therefore, limy,a/—00 (X7 — X73)? = 0.
The convergence of EX7y and Y.y o b7 (77 — Er?) in L? as N — oo is easy.
Hence, V, x, N > 1 is a Cauchy sequence in L? and the double series in con-

verges as claimed above, proving (4.57)).
Let us prove that in the decomposition (4.56)), {Z;} is negligible in the sense that

its (cross)covariances decay faster as the covariance of the main term, {X,}, viz.,
E[ZZo) = o(*™ "),  E[XiZo] =o(t* "),  E[Z,Xo] =o(t*) (4.58)

as t — oo. Note, for t > 1, E[UyU;] = E[VoU;] = 0 and E[V,Uy] = 2b,E[o(¢E —
DQ%(a + Xo) Xyeobis,Ts,] = O(by) = o(t**7'). Hence, the first relation in (4.58)

follows from

E[ViVo] = o(t*7Y), ¢t — oo, (4.59)
which is proved below. Since E[V/?] < oo, E[V;] = 0 we can write the orthogonal
expansion

Vi= Z Ps‘/ta
s<t

where P,V; := E[V}|F,] — E[V;|Fs_1] is the projection operator.
By orthogonality of P;,

BV = |SEPV) P < 3 IPVallalPuVilla:
s<0

s<0

Relation (4.59) follows from
1P Voll3 = o(b2,) = o((=5)*™ 1), s = —c0. (4.60)
Indeed, if (4.60) is true then

EVoVi = o Y (=)'t —9)"") = o(*),  t— oo,

s<0

proving (4.59).
Consider (4.60). We have by (4.57) and the martingale difference property of {rs}
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that

PV, = 2rsb_SZb_uru

u<s

and

1PVall3 = 482 B[r2( X bour)] < 48 finall3 | 3 bour

4.
u<s u<s

By Rosenthal’s inequality in (4.13)),

B> bour, t< Ci( Y biu(Erf;)W)? <oy u?(dﬂ)f = O(|s]2DY = o(1).

u<s u<s u>\s|

Therefore,
IPVI3 < It = ofsPeh),

proving (4.60)), (4.59)), and the first relation in (4.58). The remaining two relations
in (4.58]) follow easily, e.g.,

EX:Zo) = bE[ro(¢ —1)Q*(a+ Xo)] +2 > b, by, Ly,

$1<0
where
Ly, = E[r?l Z b_s,Ts,)
s2<81
S E1/2 E1/2|:( Z b_52T52) i|
59<81
1/2
_ 2 — s1]% , 51 — —00.
o(( X 1.,)") = 0,17
s2<81
Therefore

EIX,Z)) = O( )+ 3 (8= s1)" (=) 02 = o),

$1<0

This proves (4.58)).
Next, let us prove (4.54). Recall the decomposition (4.56)). Denote &, := 2a X;+Z;,
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then (4.56) can be rewritten as (r7 — Er?) — Y, ., b7 (12 — Er?) =&, or

ri —Er{ = Y i t€Z, (4.61)
i=0
where ¢; > 0,7 > 0 are the coefficients of the power series
D(z) =Y g = (1= b)), z2€eC, |2 <1
=0 j=1

given by ¢q =1,

p; = b+ Y oo 0, b, =1 (4.62)

0<k<j0<s1< <8 <J

From (4.51) and Lemma (see Appendix |Al) we infer that
o =0, t— oo, (4.63)

in particular, ®(1) = >°,¢; = 1/(1 — B?) < oo and the r.h.s. of (4.61)) is well-
defined. Relation (4.58)) implies that

v, := Cov(&n, &) ~ 4a*Cov(Xo, X;) ~ 4a*k3t%7 1, t — o0 (4.64)

with k% = 82B(d, 1 — 2d)Er2. Let us show that

COV(%?W%) = Z PiPiVt—it; ™~ q)z(l)%, t — oo. (4.65)
i,j=0

With (4.64) in mind, (4.65)) is equivalent to

Jy = Z ©0i0;(Ve—ivs — V) = 0(t2d71)- (4.66)
i,5=0

For a large L > 0, split J; = J; ; + J{;, where

Jt/,L = Z %‘Pj(’)’t—iﬂ - ’Yt), Jt,fL = Z PiP;j (’Yt—i+j - ’Yt)-

1,7>0:]j—i[<L i,j>0:|j—i|>L
Clearly, (4.66|) follows from

', = o(1) YVL>0 and lim limsupt'>J, = 0.  (4.67)

L—oo  t00
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The first relation in (4.67)) is immediate from (4.64)) since the latter implies v, —7; =

o(t?¢=1) for any k fixed.
With (4.63) and (4.64]) in mind, the second relation in (4.67)) follows from

lim limsupt'™2%J,;, = 0, (4.68)
L—oo {00
where Jy = Y oo isr 27222 + |t + j — i)37") and where K397 =

min(1, k?¢Y) k€ Z,.
Split the last sum according to whether |t +j—i| > ¢/2, or [t+j —i| < t/2. Then

T/ L -2d—2 -2d—2/42d—1 . -12d—1
L = > PP g — i)
0,5 0:|j—i|>L,|t+j—i|>t/2
< C«t2d—l Z i2d—2j2d—2 S Ct2d_1L2d_l
i,j>0:]j—i|>L

2d—2 ;2d—2 2d—2 ;2d—-2 2d—-2 ,;2d—-2 __
follows by ZZ]>O lj—il>L J < ZO<1<L/2]>L/27’ J +ZZ>L/2]>OZ J -

O(L*=1"). Therefore, lim; o limsup,_,, t'72*J; | = 0.
Next, since |t + j —i| < t/2 implies i > t/2, so with k :=t 4+ j — i we obtain

< Ct2d_2 Z j2d_2(t2d_1 + |t +j _ iﬁd—l)
1,7 >0:|t+j—1|<t/2
< t2d 22]2d 2 Z t2d 1—|—‘k’|2d 1)

j>0 [k|<t/2
4d—2
< COf'2?

T
t,L

implying limsup,_,, ¢'724J/, = 0 for any L > 0. This proves (£.67), (4.66), and
(4.65)). Clearly, (4.54) follows from (4.65)) and (4.64]).
It remains to show the invariance principle in (4.55). With (4.61]) in mind, de-

compose Sy (7) := S (12 — Br?) = 533, S,(7), where

[n7]

Sp1 (1) = 2a®(1) ZXt,
[nT]
Sn2<7') = (I)(l)ZZt,

[nT]

Sna(T) = ZZ% §mi — &)

t=11i=0
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Here, ES2,(7) = o(n**1) follows from (4.58)). Consider

[n7] [nT]

B0 = 3 Bl — )6 —6) = 3 p

t,s=11,j=0 t,s=1

where py = 3550 0i0; (Veajmi — Vers — YVe—i + ) = o(t**7") follows similarly to
(4.67). Hence, S,;(1) = 0,(n~%"/2), i = 2,3. The convergence n~4""/25,,(7) = pjo1]
k2 Bay(1/2)(7) follows from Theorem [4.4.1]

This completes the proof of Theorem [4.4.2] 0

4.5 Leverage

Given a stationary conditionally heteroscedastic time series {r;} with E|r;*> < oo
and conditional variance o? = Var(r? | r,, s < t), leverage (a tendency of o7 to move
into the opposite direction as r, for s < t) is usually measured by the covariance
hi_s = Cov(o2,r,). Following |Giraitis et al. (2004), we say that {r;} has leverage of
order k (1 < k < o) (denoted by {r;} € ¢(k)) whenever

h; <0, 1<j<k (4.69)

Note that for {r;} in (4.1)),
h; =E[rir],  j=0,1,... (4.70)

is the mixed moment function. Below, we show that in the case of the quadratic o7}

in (4.4) (correspoding to model (4.53)) and pz = E[¢3] = 0, the function h; in ([4.70)
satisfies a linear equation in , below, which can be analyzed and the leverage
effect for {r;} in established in spirit of |Giraitis et al.| (2004]).

Let L?*(Z) be the Hilbert space of all real sequences ¢ = (¢;,j € Z1),Z; =
{1,2,...} with finite norm [|¢| := (332, ¢?)"/? < oco. As in the previous sections,
let B := (Z;‘;l b?) V2 and assume that {¢;} is an i.i.d. sequence with zero mean and
unit variance; p; == E(j, 1 =1,2,....

The following theorem establishes a criterion for the presence or absence of lever-
age in model , analogous to the Theorem 2.4 in |Giraitis et al.| (2004). We also
note that the proof of Theorem [£.5.1] is simpler than that of the above mentioned
theorem, partly because of the assumption p3 = 0 used in the derivation of equation
(4.75)). Particularly, for the Asymmetric ARCH(1) in (4.29) with E|ro|> < oo, us =
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E¢3 = 0 the leverage function is h; = 2mgab® !, see (4.30)), and {r;} € £(k) is equiva-
lent to ab < 0. Apparently, conditions p3 = 0 and B% < 1/5 are not necessary for the
statement of Theorem [4.5.1]although a similar condition |u3| < 2(1-5B%)/B(1+3B?)
appears in the study of the leverage effect in |Giraitis et al.| (2004)), (51).

Theorem 4.5.1 Let {r;} be a stationary L*-solution of (4.53)) with Elr¢|> < oo,
||z < oo. Assume in addition that B> < 1/5 and puz = E¢3 = 0. Then for any fized
k such that 1 < k < o0:

(1) if aby <0, ab; <0, j =2,...,k, then {r:} € ((k),
(ii) if aby >0, ab; >0, j=2,...,k, then h; >0, j=1,.... k.

Proof. Let us first prove that ||| < co. Note that

lim E( Z bt_srs)27’0 = E( Z bt_srs>2ro, (4.71)

n—o00
—n<s<t —oo<s<t

which follows from the definition of L*-solution of (4.53) and Remark [4.2.2] Then
using (4.71), Er, = E[r}] = E[ryr,] = 0,5 < t we obtain

hj — nh—>noloE|:(C2 + CL2 + 2a Z bt—srs + Z bffsrg

—n<s<t —n<s<t

+ 2 Z btslbt82r51T82>th:|

—n<s2<s1<t
= 2amsbj+ Y by hjyee +2b; lim ER,(t, ), (4.72)
t—j<s<t

where Ry (t,7) = 77 ;5 _,csci—j bi—srs. Using Holder’s and Rosenthal’s (4.13)) in-
equalities we obtain

ER.(t.))] < EPlr RSl Y benf

—nls<t—j
< EnPrs( Y #)" <c (4.73)
—n<s<t—j
Hence,
hil < Closl+ D2 bl <C(1bl+ X wialbil), (4.74)
0<i<j 0<i<j

where the first inequality in (4.74]) follows from (4.72) and (4.73)) and the second
inequality in (4.74) by iterating the first one with ¢; as in (4.62). Since 332, p; =
S22, B?* =1/(1—B?), from the second inequality in (4.74)) we obtain ||h]| < CB/(1—
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B?) < co. The last fact implies ER,, (¢, j) = Z?:’Lf_j hibit; — 322 hibitj. From (4.72))

we obtain that the leverage function h € L?(Z") is a solution of the linear equation:

hj = 2abjm2 + Z blzh]_z + Qb] Z bi+jhia ] = 1, 2, e (475)

0<i<j i>0

From Minkowski’s inequality, we get

2
SO Bh)? < BRI D (b bighi) < B

7>0 0<i<y 7>0 >0
and then (4.75) implies that ||h|| < 2|a|myB + 3B?||h]|, or

2|a|sz

h LR R

(4.76)
provided B? < 1/3.

Let us prove the statements (i) and (ii) of Theorem for k = 1. From (4.75)
it follows that

hi = 2amaby +2b1 Y hubipy = 2bi(ama + Y hubity).
u=1 u=1
Since | >0 hubitu| < ||| B, we have sgn(hy) = sgn(bia) provided ||h||B < |a|my
holds. The last relation follows from (4.76)) and B? < 1/5; indeed,

2|almyB? <

h||B <

|a|ms.
This proves (i) and (ii) for k£ = 1.

The general case k > 1 follows similarly by induction on k. Indeed, from (4.75|)
we have that

9] k—1
hk = Qbk(amg + Z hubk+u) + Z bi—jhj-
u=1 j=1
Assume hq,...,hi_1 <0, then the second term Z;?;ll bz_jhj < 0. Moreover,

3 hubesa] < 11]1B < lalm,

u=1

implying that the sign of the first term is the same as sgn(aby).
Theorem is proved. O
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4.6 A generalized nonlinear model for long mem-

ory conditional heteroscedasticity

The present section extends the results of previous sections to a more general class
of volatility forms:

e = oy, UtZ = Q2<a+zbﬂ“tj)+70’f_1, (4.77)

Jj=1

where {(;} are standardized i.i.d. random variables, a,b; are real parameters, Q(z)
is a Lipschitz function of real variable x € R and 0 < v < 1 is a parameter. For
most of the statements below, the proofs are analogous to the proofs of corresponding
statements in previous sections and are omitted. The only exception is the proof of
Theorem where a new condition for the existence of stationary solution that
does not use the Rosenthal constant is obtained.

A general impression from our results is that the GQARCH modification (cor-
responding to with Q in (4.3))) of the QARCH model discussed in previous
sections (see also|Doukhan et al.| (2016)) allows for a more realistic volatility model-
ing as compared to the LARCH and QARCH models, at the same time preserving

the long memory and the leverage properties of the above mentioned models.

Stationary solution

First we consider the existence of stationary solution of (4.77). Since 0 < v < 1,
equations (4.77)) yield

o2 = 3 A'QNa+ Xy and 7y = CtJiVEQQ(a+Xt—f% (4.78)
£=0

=0

where

Xt = th_srs. (479)

s<t

In other words, stationary solution of (4.77)), or

Ty = Ct\l i Q% (a + i bire—e—j) (4.80)
/=0

j=1
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can be defined via (4.79)), or stationary solution of

s<t

X; = Z bt_scs\l i YQ?*(a + Xs_y), (4.81)
=0

and vice versa.

Definition 4.6.1 Let p > 0 be an arbitrary real number.

(i) By LP-solution of or/and we mean an adapted process {ry,t € 7}
with E|r? < 0o such that for any t € Z the series X; = Z;"’:I bjri_; converges in LP,
the series 02 = 32227 Q*(a + X;_¢) converges in LP/? and holds.

(ii) By LP-solution of we mean a predictable process { Xy, t € Z} with E| X P <
oo such that for any t € 7 the series 02 = 32,7 Q*(a + X;_¢) converges in LP/?,
the series Y,y bi—sCs05 converges in LP and holds.

Define

Y22 |b; PP, 0<p<2, B,/(1—~P?) 0<p<2,

B, := B, = (4.82)
oo p/2 Py
(Zj:l b?) ) p Z 27

p

Bp/(l - 7)p/27 p Z 2.

Note B, = B, .

Proposition says that equations (4.80)) and (4.81)) are equivalent in the sense
that by solving one the these equations one readily obtains a solution to the other

one.

Proposition 4.6.1 Let QQ be a measurable function satisfying (4.16|) with some ¢; >
0, i = 1,2 and {¢;} be an i.i.d. sequence with |ul, = E|(|P < oo and satisfying
E¢o =0 for p > 1. In addition, assume B, < 0o and 0 <~y < 1.

(i) Let { X;} be a stationary LP-solution of (4.81) and let oy := \/ZE’;O YQ?*(a + Xi—p).
Then {ry = (;0v} in (4.78) is a stationary LP-solution of (4.80) and

E|r P < C(1+ E|Xy|P). (4.83)
Moreover, forp > 1, {ry, Fi,t € Z} is a martingale difference sequence with
ElrFia] =0, E[lre?|Foea] = |ulpot. (4.84)

(ii) Let {r;} be a stationary LP-solution of (4.80). Then X, in (4.79) is a stationary
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LP-solution of (4.81)) such that
E|Xt|p S CEth|p.

Moreover, for p > 2

E[X; X, = Ergibt+sbs, t=0,1,....
s=1

Remark 4.6.1 Let p > 2 and |u|, < oo, then by inequality ([4.13), {r:} being a
stationary LP-solution of is equivalent to {r;} being a stationary L2-solution of
(4.78]) with E|rg|? < co. Similarly, if @ and {(;} satisfy the conditions of Proposition
and p > 2, then {X;} being a stationary LP-solution of is equivalent to
{X;} being a stationary L*-solution of with E[XP < 0o. See also Section [4.2]
Remark [£.2.2

Theorem [4.6.1] extends Theorem from v =0 to v > 0.

Theorem 4.6.1 Let {(;} satisfy the conditions of Proposition and @ satisfy
the Lipschitz condition in (4.15]).

(i) Let p > 0 and
K)P |ul/? Lipy BYP < 1, (4.85)

where K, is the absolute constant from the moment inequality in (4.13)). Then there

exists a unique stationary LP-solution {X;} of (4.81) and

B
E’Xt’p S C(p7 Q)|/“L|Pp P ,
1 - Kp|/“pL1pQBpﬁ

(4.86)

where C(p, Q) < oo depends only on p and c1, ¢y in (4.16).

(ii) Assume, in addition, that Q*(x) = i + cax?, where ¢; > 0,1 = 1,2, and py =
E¢3 = 1. Then ¢iBs., < 1 is a necessary and sufficient condition for the existence of
a stationary L?-solution {X;} of with a # 0.

A major shortcoming of Theorem m (also Theorem is the presence of
the universal constant K, in the condition . The upper bound of K, given in
Osekowski| (2012) leads to restrictive conditions on B, ., in for the existence of
LP-solution, p > 2. For example, for p = 4 the above mentioned bound in |Osekowski
(2012) gives

KauB2/(1 = 7)? < (27.083) 1 B2 /(1 — 7)? < 1 (4.87)
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requiring By = Y52, b7 to be very small (see also Remarks 4.2.3). Since sta-

tistical inference based of “observable” squares 72,1 < ¢ < n usually requires the
existence of Er} and higher moments of r; (see e.g. |Grublyté et al. (2017), also
Chapter , the question arises to derive less restrictive conditions for the existence
of these moments which do not involve the Rosenthal constant K. This is achieved
in the subsequent Theorem . Particularly, for v = 0,Lipy = 1 the sufficient
condition of Theorem for the existence of Er?, p > 2 even becomes

p 00
> ()l X imp < 1 (4.5%)
=2 \J k=1

Condition coincides with the corresponding condition in the LARCH case in
Giraitis et al.| (2004), Proposition 3. Moreover, and apply to more gen-
eral classes of ARCH models in to which the specific Volterra series techniques
used in |Giraitis et al.| (2000)), Giraitis et al.| (2004)) are not applicable. In the particular
case p = 4 condition becomes

682 + 4| s Y bl + pa Y o]t < 1,
k=1 k=1

which seems to be much better than condition (4.87)) based on Theorem m

Theorem 4.6.2 Let {(;} satisfy the conditions of Proposition and Q) satisfy
the Lipschitz condition in (4.15)).
Letp=2,4,... be even and

P =S A
> (f) i Lipgy D [l < (1 —7)P"2 (4.89)
j=2

k=1

Then there ezists a unique stationary LP-solution {X;} of (4.81)).

Proof. For p = 2, condition (4.89)) agrees with LiszBz,7 < 1 or condition (4.85|)
so we shall assume p > 4 in the subsequent proof. In the latter case (4.89)) implies
Lip;, B2,y < 1 and the existence of a stationary L*-solution {X;} of ([4.81)). It suffices
to show that the above L2-solution satisfies EX? < oc.

Towards this end similarly as in the proof of Theorem m (i) consider the so-
lution {Xt(")} of (4.81) with zero initial condition at ¢ < —n recurently defined as
follows

(n) 0, t < —n,
X" o= (4.90)
S b, t>—n, tel,
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where o(" \/Z”+S YQ2(a+ X)),
Let 0,5 w :=0,t < —n. Since E(X!™ — X,)? = 0 (n — o0), by Fatou’s lemma it

suffices to show that under condition (4.89))
E(X™P < C, (4.91)

where the constant C' < oo does not depend on t,n.

Since p is even for any t > —n we have that

t—1

EXMP = Y BlbgGuol? by, Gol]

Bl S

uUu=—"n

Hence using Holder’s inequality:

[BeinP=i| < TBIP|e e’ BO-Dpr < [p El¢]+ ppf’Emrp] 1<j<p e>0
we obtain
ExXMy < Zp: ol S {4 B+ eip( 3 ()"
¢ = < > ,UJ|C’7 Z |bts|{pcgE(Us )P+ D E< Z bt—uCu0y, > }
- s:n 1 o
= Z Bri—sE C3)p+ Z 52,t—sE(Xt(Z))p7 (4.93)

where Xt(f;) =357 b WG e > Lip, and where
(P - P —J (P, -
BLV% = 2:( ) s”ﬂﬂcé Blbﬂ = §:<~>’%—SHMACQ
=D = p
The last expectation in (4.93)) can be evaluated similarly to (4.92)-(4.93):

B(x) = é@ S o E| (o1 (Z hesteo?)|

u=-n v=—n

< Sil B s—uB( /C3 + Z B t—u (Xtu)) .

u=-n u=-n
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Proceeding recurrently with the above evaluation results in the inequality:

E(xX™My < tf By—sE(a™ [c5)P, (4.94)

S=—n

where

t—s—1

Bt—s = Bii—s (1 + Z Z Bty - - ./827t_uk>.

k=1 s<up<---<u1<t

Let 3; :==>22, Bir, 1 = 1,2, B = Bt. By assumption (4.89)),

p . )
pase = 3 (Mld S e < a -
k=1

Jj=2

whenever (c3 — Lipg) > 0 is small enough, and therefore

R S - o
(L —y)p/ = (1—7)p/2;ﬁl¢(1+§1ﬁ2)

= ! ooy (4.95)

(L=)p21 =B '

Next, let us estimate the expectation on the r.h.s. of (4.94) in terms of the expecta-
tions on the Lh.s. Using (4.16)) and Minkowski’s inequalities we obtain

s+n
BP0y < 3 A Qe+ X
£=0

s+n

< STAEYPE 4 E(a+ X))
=0
n—+s
< O+ AEV(XM,),
=0

where c3 > ¢ > Lipg and c3 — Lipg > 0 can be chosen arbitrarily small. Particularly,
for any fixed T' € Z

62

sup E*P(eM)y < 2 squp EYP(XM)P 4 C.
—n<s<T (1 =7) —n<scr

Substituting the last bound into (4.94)) we obtain

32/p
sup EXP(x{M)y < ki sup EYP(XMY 4 C. (4.96)

—n<t<T o (1 - ")/) —n<s<T
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Relations (4.96) and (4.95)) imply

n C
sup EQ/p(Xt( ))p S ——
—n<t<T 1— B
(1=7)
proving (4.91)) and the theorem, too. O

Example 4.6.1 (Asymmetric GARCH(1,1)) The asymmetric GARCH(1,1) model
of [Engle| (1990) corresponds to

ol =+ (a+briy)? + 707, (4.97)
or
of =0+ Y11 +anr;, + 007, (4.98)

in the parametrization of |Sentana| (1995)), (5), with parameters in (4.97)), (4.98)) re-
lated by
0=c+a* 0=r, ¢ =2ab, a1 =10 (4.99)

Under the conditions that {(; = r;/o;} are standardized i.i.d., a stationary asymmet-
ric GARCH(1,1) (or GQARCH(1,1) in the terminology of [Sentana/ (1995)) process
{r,} with finite variance and a # 0 exists if and only if By, = b?/(1 —7) < 1, or

b+ <1, (4.100)

see Theorem [4.6.1] (ii). Condition (4.100) agrees with condition ai; +d < 1 for co-
variance stationarity in |[Sentana| (1995). Under the assumptions that the distribution
of ¢; is symmetric and yuy = E¢! < oo, [Sentana (1995)) provides a sufficient condition

for finiteness of Er} together with explicit formula

114010(1 + ayy + 0) + 7]

Er} = :
"t (1 — a%l,u4 — 2&115 — 52)(1 — all — (5)

(4.101)

The sufficient condition of [Sentanal (1995)) for Erf < oo is uga?; + 2a116 + 6% < 1,
which translates to
pab + 267y + 4% < 1 (4.102)

in terms of the parameters of (4.97)). Condition (4.102)) seems weaker than the suffi-
cient condition yiub* + 66 < (1 —+)? of Theorem for the existence of L*-solution
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of (4.97)).

Following the approach in Section [4.2] Example below we find explicitly
the covariance function p(t) := Cov(r2,r2), including the expression in ({4.101]), for
stationary solution of the asymmetric GARCH(1,1) in (4.97). We can write the

following moment equations:

my = (" +a")/(1-b"—7), ms(0) =0,

ma(1) = Y AE(c® +a® + 2abr_, + b%r2,)ro = 2abma,
=0

mg(t) = Z nyE(CQ +a® +2abry_g_1 + b%r7_,_ )10

(=0
t—2
= 2abmoy '+ 0> Am(t —0—-1), t>2. (4.103)
=0

From equations above one can show by induction that ms(t) = 2abms(y+b%)"1, ¢ > 1.

Similarly,

ma(0) = pB((* + a?) + 2abrg + b*rf + vo5)?
= u4<(c2 +a?)? + (2ab)*my + b*my(0) + 2(c + a®)(b* + 7)my

28+ 4)ma(0) /M),

ma(t) = SAE(E + a® 4 2abry_ oy + VP2, )
=0

= 276(02 + a2)m2 + b2 Zv£m4(|t )
£=0 =0

+ 2ab> A'ma(l—t+1), t>1.
=t

Using 2ab 302, v'mz(0 — t + 1) = 4a®0?my 302, ¥4 (v + 02) 7 = 4a?b®maryt /(1 — (v +
b?)) and p(t) = my4(t) — m3 we obtain the system of equations
p(0) = ma(0) —my,

o) = 3ol = L= 1)+ 4’ (1= o + 1)

t—2
= U Apt—t—-1)+Cy t>1, (4.104)
£=0

where C' = 0?3020, 7% p(0) + (m4(0) — m3)b* + 4a?b*>mayy/(1 — (v + b?)) is some
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constant independent of ¢t and

a2
1= by — (20%7 +7°)

ma(0) = ((02 L)1+ 0 +7) + (2ab)2). (4.105)

Note that the expression above coincides with (4.101)) given that the relations in

(@-99) hold.

Since the equation in is analogous to , the solution to is
p(t) = C(y +b*)1 ¢t > 1. In order to find C, we combine p(t) = C(y + b?)""! and
the expression for C' to obtain the equation C' = Cb*y/(1 — v(v + b*)) + (m4(0) —
m3)b* + 4a*b*myy/(1 — v(v + b%)). Now C' can be expressed as

(ma(0) — m3)(L — (v + %)) + 4a”may

C =0
1 —y(y+20?)

together with (4.105)) and p(t) = C'(y + %), t > 1 giving explicitly the covariances

of process {r?}.

Model properties

The present section studies long memory and leverage properties of the generalized
quadratic ARCH (GQARCH) model in (4.77) corresponding to @ in (4.3)), viz.,

ry = Ct\l i7£<02 + (a + Z bt—f—srs)Q)a t ez, (4.106)
=0

s<t—¢

where 0 < v < 1,a # 0,c are real parameters, {(;} are standardized i.i.d. random
variables, with zero mean and unit variance, and b;, j > 1 are real numbers.

Theorem [4.6.3]extends the results on long memory in Theorem corresponding
to 7 = 0 to the case v > 0. In Theorem and below, 0 <y <1, By = 372, b?
and B(-,-) is beta function.

Theorem 4.6.3 Let {r;} be a stationary L?-solution of with coefficients b,
decaying reqularly as in . Assume in addition that py = E[(}] < oo, and
E[r{] < co. Then

Cov(r2,r?) ~ wit? 1 t — o0, (4.107)

2
where K2 1= (1727“7532) B(d,1 —2d)Er. Moreover,

[n7]

n Y (]~ Er) —ppay meWaras(r),  n— oo, (4.108)
t=1
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where Wy /2) is a fractional Brownian motion with Hurst parameter H = d+-(1/2) €

(1/2,1) and k3 := k3/(d(1 + 2d)).

Proposition below extends to the GQARCH model the leverage effect dis-
cussed in Theorem and |Giraitis et al. (2004). The study of leverage for model
(4.53)) (corresponding to (4.106]) with v = 0) was based on linear equation for leverage
function in . A similar equation for leverage function can be derived
for model in the general case 0 < v < 1. Namely, using Ery, = 0, Ergrg =
myl(s = 0),Er?rg = 0(s < 0),Ergr,rs, = 1(s1 = 0)h_,, (s2 < s1) as in proof of
Theorem (4.5.1) we have that

hy = ET??”O Z’}/ZE[ c + (Z+ Z by srs) )TO}

s<t—~

— 27 (Zamet et Db, TTO)

s<t—~

+ 2 nye Z btfffslbtfffszE[rslrszro]

= s9<81<t—~

= 2amabiy + Y hibl_ +2> hiwiys, (4.109)

0<i<t 1>0

where by, b7, are defined as follows
t=1 ~ t—1
> by, b, = b, t>1 (4.110)
— =

and w; ¢, = Z 7 b, _ybirs—¢. From now on the proof is analogous to the proof of

Theorem [4.5.1] and is not included.

Proposition 4.6.2 Let {r;} be a stationary L*-solution of (4.106) with E|re|® <
luls < oo. Assume in addition that Bs. < 1/5, us = E¢3 = 0. Then for any
fixed k such that 1 < k < oo:

(i) if aby <0, ab; < 0,5 =2,...,k, then {r;} € ((k),
(ii) if aby >0, ab; > 0,j =2,....k, then h; >0, forj=1,... k.

4.7 A simulation study

The (asymmetric) GQARCH model of (4.106) and the LARCH model of ({2.11)) have

similar long memory and leverage properties and both can be used for modelling of
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financial data with the above properties. The main disadvantage of the latter model
vs. the former one seems to be the fact the volatility o, may take negative values
and is not separated from below by positive constant ¢ > 0 as in the case of .

Consistent QML estimation for 5-parametric long memory GQARCH model in
(4.106) with ¢ > 0 and b; = 35! is discussed in Chapter . The parametric form
b; = 3j%! of the moving-average coefficients in is the same as in Beran and
Schutzner| (2009) for the LARCH model. It is of interest to compare QML estimates
and volatility graphs of the GQARCH and LARCH models based on real data. The
comparisons are extended to the classical GARCH(1,1) model

re =0, 0p = \/w +ar? | + fo? ;. (4.111)

We fit four data generating processes (DGP):

(L):  LARCH of (5.2), (4.112)
(Q1):  QARCH of with v = 0,
(Q2):  QARCH of with v > 0,

(G):  GARCH(1,1) of (#.111),

with b; = 8% to daily returns of GSPC (SP500) from 2010 01 01 till 2015 01 01
with n = 1257 observations in total. The first three models (L), (Q1), (Q2) have long

memory and (G) is short memory. The parameters

(L): (a, ﬁ, d) = (0.0101, —0.1749, 0.3520),

Q1) :  (a,c,B,d) = (0.0058,—0.0101,0.2099, 0.4648),

@Q2): (ac, 5 d,~) = (0.0020, —0.0049, 0.2394, 0.2393, 0.7735),
(G):  (w,a,B) = (0.00001,0.1306, 0.8346),

are obtained by minimizing the corresponding approximate log-likelihood functions
and using the constrains for coefficients to ensure the second order stationarity. The
details of the estimation are presented in Chapter [5

Figure presents estimated trajectories of o, of four DGP in , corre-
sponding to the returns of GSPC (original returns plotted at the bottom graph).
Observe that the variability of volatility decreases from top to bottom, (Q2) resem-
bling (G) (GARCH(1,1)) trajectory more closely than (L) and (Q1). The graph (Q1)
exhibits very sharp peaks and clustering and a tendency to concentrate near the lower

threshold ¢ outside of high volatility regions. This unrealistic “threshold effect” is
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Figure 4.1: Trajectory of DGP: From top to bottom: (L), (Q1), (Q2), (G) and returns of
GSPC. The dashed line in (Q1) and (Q2) indicates the threshold ¢/y/1 —~ > 0 in (4.106)).

much less pronounced in (Q2) (and also in the other two DGP), due to presence of

the autoregressive parameter v > 0 which also prevents sharp changes and excessive
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variability of volatility series. Figure illustrates the effect of v on the marginal
distribution of (Q2): with v increasing, the distribution becomes less skewed and

spreads to the right, indicating a lower degree of volatility clustering.

50 100 150 200 250 300

0
|

0.000 0.005 0.010 0.015

Figure 4.2: Smoothed histograms of DGP (Q2) for different values of ~.
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Chapter 5

Quasi-MLE for quadratic ARCH

model with long memory

Abstract. We discuss parametric quasi-maximum likelihood estimation for quadratic
ARCH (QARCH) process with long memory introduced in Chapter 4| with condi-
tional variance involving the square of inhomogeneous linear combination of observ-
able sequence with square summable weights. The aforementioned model extends the
QARCH model of Sentana (1995) and the Linear ARCH model of Robinson (1991) to
the case of strictly positive conditional variance. We prove consistency and asymp-
totic normality of the corresponding QML estimators, including the estimator of long

memory parameter 0 < d < 1/2. A simulation study of empirical MSE is included.

5.1 Introduction

Chapter (] discussed a class of quadratic ARCH models of the form
e 2
re = (oy, af = w?+ (a + ijrt_j) + 70?_1, (5.1)
j=1

where {(;,t € Z} is a standardized i.i.d sequence, E¢, = 0, E¢? = 1, and v, w, a, b, j >
1 are real parameters satisfying certain conditions presented in Theorem [4.6.2] In
Chapter was called the generalized quadratic ARCH (GQARCH) model. By
iterating the second equation in , the squared volatility in can be written

as a quadratic form

ol = ifyg{uﬂ + (a + ibjrt,g,jf}
£=0 Jj=1
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in lagged variables r;_1,7;_9, ..., and hence it represents a particular case of Quadratic
ARCH model by Sentana; (1995) with p = co. The model includes the classical
Asymmetric GARCH(1,1) process of [Engle| (1990) and the Linear ARCH (LARCH)
model of [Robinson| (1991)):

re = oy, o = a‘i‘zbj'rtfj- (5.2)

=1

The main interest in (5.1]) and ([5.2]) seems the possibility of having slowly decaying
moving-average coefficients b; with Y52, [b;| = oo, 352, b3

memory in volatility, in which case r; and (; must have zero mean in order that the

< oo for modeling long

series 322 bjryj converges. Giraitis et al.[ (2000) proved that the squared stationary
solution {r?} of the LARCH model in (5.2) with b; decaying as j%~!,0 < d < 1/2 may
have long memory autocorrelations. For the GQARCH model in , similar results
were established in Chapter |§| Namely, assume that the parameters v,w,a,b;,7 > 1
in (5.1 satisfy

b, ~ cj™' (30<d<1/2, ¢>0),

v €10,1), a # 0 and

6B, + dljus] 3 by + a3 0E < (1 -7, (53)

j=1 j=1

where p, :=EC, p=1,2,..., By:=32,2. Then (see Chapter [4] Theorems

j=1"j"

and [4.6.3)) there exists a stationary solution of (5.1)) with Er} < oo such that
Cov(rg,r?) ~ k2271 t — o0

and
[n7]

n 412 > (17 = Erd) —ppy w2Wara)(7), n— oo,
t=1

where Wy, (1/2) is a fractional Brownian motion with Hurst parameter H = d+(1/2) €
(1/2,1) and k; > 0,7 = 1,2 are some constants.

As noted in Chapter , the GQARCH model of and the LARCH model of
have similar long memory and leverage properties and both can be used for
modelling of financial data with the above properties. The main disadvantage of the
latter model vs. the former one seems to be the fact that volatility o in (5.2)) may
assume negative values and is not separated from below by positive constant ¢ > 0
as in the case of . The standard quasi-maximum likelihood (QML) approach to
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estimation of LARCH parameters is inconsistent and other estimation methods were
developed in Beran and Schutzner| (2009), Francq and Zakoian (2010b), Levine et al.
(2009), [Truquet| (2014).

The present chapter discusses QML estimation for the 5-parametric GQARCH

model

ZV {w? +(a+CZJ Yry o j) 2 (5.4)

depending on parameter § = (v, w,a,d,c), 0 <y < 1,w>0,a#0,c#0and d €
(0,1/2). The parametric form b; = ¢ 9! of moving-average coefficients in is the
same as in [Beran and Schiitzner (2009) for the LARCH model. Similarly as in Beran
and Schiitzner| (2009) we discuss the QML estimator 0, := arg mingee L,(0), L,(0) :=
Ly ( + log o; (9)) involving exact conditional variance in depending on

infinite past s, —00 < s < t, and its more realistic version 6, := arg mingee En(e),
obtained by replacing the o2(6)’s in by 77(f) depending only 7,1 < s < ¢ (see
Section for the definition). It should be noted that the QML function in Beran and
Schiitzner| (2009) is modified to avoid the degeneracy of o; ' in , by introducing
an additional tuning parameter ¢ > 0 which affects the performance of the estimator
and whose choice is a non-trivial task. For the GQARCH model with w > 0
the above degeneracy problem does not occur and we deal with unmodified QMLE
in contrast to|Beran and Schiitzner| (2009). We also note that our proofs use different
techniques from Beran and Schiitzner| (2009). Particularly, the method of orthogonal
Volterra expansions of the LARCH model used in Beran and Schiitzner| (2009) is not
applicable for model , see Chapter 4, Example .

This chapter is organized as follows. In Section we define several QML esti-
mators of parameter 6 in . Section presents the main results of the paper
devoted to consistency and asymptotic normality of the QML estimators. The proofs
in this section are based on four lemmas presented in Section [5.4] Finite sample

performance of these estimators is investigated in the simulation study in Section

b5l

5.2 QML estimators

Let F; = 0((s, s < t),t € Z be the sigma-field generated by (s, s < t. For real p > 2,
define as in Chapter [4] Section

00 /2
Byi= (Y 12)"", By, i=B,/(1 -7 (5.5)
j=1
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The following assumptions on the parametric GQARCH model in (5.4) are im-
posed.

Assumption (A): {(;} is a standardized i.i.d. sequence with E¢; = 0, E¢? = 1.

Assumption (B): © C R’ is a compact set of parameters = (v, w, a, d, ¢) defined
by

(1) 7 € [v1,72] with 0 <91 <99 < 1;

(i) w € [wy,ws] With 0 < w; < wy < 00;
(iii) a € [ay,as] with —oo < a; < ag < o0
(iv) d € [dy,do] with 0 < dy < dy < 1/2;

(v) ¢ € [e1, o] with 0 < ¢; = ¢;(d,y) < 00, ¢; < ¢ such that By = ¢? >0 gD <
1 —~ for any ¢ € [c1, ¢a], v € [m1,72],d € [d1, ds].

We assume that the observations {r;, 1 <t < n} follow the model in (5.1]) with the
true parameter 6y = (70, wo, ao, do, ¢o) belonging to the interior ©y of © in Assumption
(B). The restriction on parameter ¢ in (v) is due to condition in Theorem [4.6.2]
with p = 2. The QML estimator of § € © is defined as

~

0, = arg reréiél L,(0), (5.6)
where
Lo(0) = 1 fj( " log 0)) (5.7)
W(0) =— o :
n = \oi(0) '

o(0) = g:”ye{w2+(a+thg(d)>2}, where (5.8)
Vid) = 3

Note the definitions in ([5.6)-(5.8) depend on (unobserved) rs, s < 0 and therefore the
estimator in ([5.6) is usually referred to as the QMLE given infinite past (Beran and
Schiitzner| (2009)). A more realistic version of (5.6) is defined as

0, = arg min L,(0), (5.9)
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where

L,(0) = ;é(&;&te)—i—log&f(@)), where (5.10)
20) = YA+ (a4 T}, Td) = Y
£=0 j=1

Note all quantities in ([5.10) depend only on r,, 1 < ¢t < n, hence (5.9) is called the
QMLE given finite past. The QML functions in (5.7) and (5.10) can be written as

lZzt and L,(0) = lZz;(e)
nis )
respectively, where
1(6) == - logo2(8),  1,(0) := " log 52(6). (5.11)
ot (0) e 7 (0) '

Finally, following Beran and Schiitzner| (2009) we define a truncated version of (5.9)
involving the last O(n?) quasi-likelihoods 1;(8),n — [nf] < t < n, as follows:

- - - 1 n ~
0 = in L) (9 LPG) = — }j 1,(6). 12
n arg Talélél n ( )7 n ( ) [nﬁ] T t( ) (5 )

where 0 < § < 1 is a “bandwidth parameter”. Note that for any t € Z and 0y =
(70, Wos g, do, ¢o) € O, the random functions Y;(d) and Y;(d) in and (5.10) are
infinitely differentiable w.r.t. d € (0,1/2) a.s. Hence using the expllclt form of

02(0) and 32(6), it follows that o2(6),52(6),1,(0),1,(0), Ln(0), L,,(0), L) (6) etc. are

n

all infinitely differentiable w.r.t. 6 € O a.s. We use the notation
L(0) := EL,(0) = El,(0) (5.13)
and
A0) = E[VTLOVLO)] and  B() = E[VIVLO)], (5.14)

where V = (0/001,...,0/005) and the superscript T' stands for transposed vector.
Particularly, A(6) and B(0) are 5 x 5-matrices. By Lemma [5.4.1} the expectations in
(5.14) are well-defined for any 6 € © under condition Erj < co. We have

B(0) = Elo;*0)VT02(0)Vo2(0)] and A(6) = x,B(6), (5.15)
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where k4 := E(¢Z — 1)* > 0.

5.3 Main results

Everywhere in this section {r;} is a stationary solution of model (5.4 as defined
in Definition and satisfying Assumptions (A) and (B) of the previous sec-
tion. As usual, all expectations are taken with respect to the true value 6, =

(70, Wo, ag, do, co) € O, where Oy is the interior of the parameter set © C R5.

The asymptotic results in Theorems [5.3.1] and [5.3.2] are similar to the results of
Beran and Schutzner| (2009), Theorems 1-4, pertaining to the 3-parametric LARCH
model in (5.2) with b; = ¢j%!, except that Beran and Schiitzner (2009) deal with
a modified QMLE involving a “tuning parameter” ¢ > 0. As explained in [Beran
and Schiitzner| (2009), Section 3.2, the convergence rate of VL, () and 6, (based
on nonstationary truncated observable series in ) is apparently too slow to

guarantee asymptotic normality, this fact being a consequence of long memory in
volatility and the main reason for introducing the estimators 57(15) in . Theorems
[6.3.1]and [5.3.2]are based on subsequent Lemmas[5.4.1}{5.4.4] which describe properties
of the likelihood processes defined in , and . As noted in Section
, our proofs use different techniques from Beran and Schuitzner| (2009) which rely

on explicit Volterra series representation of stationary solution of the LARCH model.

Theorem 5.3.1 (i) Let E|ry|* < co. Then 0, in (5.6) is a strongly consistent esti-

mator of Oy, i.e.

a.§.

é\n — 90.

(ii) Let Elr,|> < co. Then 0, in (5.6) is asymptotically normal:
n'2(6, — 6o) =¥ N(0,%(60)), (5.16)

where ¥(0y) := B71(0y)A(0y) B™1(0y) = kaB~1(0y) and matrices A(), B(0) are de-
fined in (j5.15)).

Proof. (i) Follows from Lemmas [5.4.2| and |5.4.4] (i) using standard argument.

(ii) By Taylor’s expansion,
0 = VL,(0,) = VL(0)+ VIVL,(0)(6, — ),

where 6 —, 6, since 8, —, p. Then V'V L,(6:) —, VTVL(6y) by Lemma [5.4.4]
(5.57). Next, since {r?/c2(6y) — 1, F;,t € Z} is a square-integrable and ergodic
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martingale difference sequence, the convergence n'/?2V L, (6y) N (0, A(0)) follows
by the martingale central limit theorem in (Billingsley (1968), Therem 23.1). Then

(5.16)) follows by Slutsky’s theorem and ((5.14)). O

The following theorem gives asymptotic properties of “finite past” estimators 0,

and 0% defined in (5.9) and (5.12), respectively.

Theorem 5.3.2 (i) Let E|ry|> < 0o and 0 < 3 < 1. Then
El6, —6y] — 0  and  E[§¥Y) —6)| — 0.
(ii) Let E|ry|> < 0o and 0 < 8 <1 —2dy. Then
nP2(09) — 6y) Y N(0,%(6)), (5.17)

where X(0) is the same as in Theorem[5.3.1]

Proof. Part (i) follows from Lemmas [5.4.2(and |5.4.4] (i) as in the case of Theorem
5.3.1 (1).

To prove part (ii), by Taylor’s expansion

0 = VLP(OP) = VLY (60) + VIVLY () (0 — 0y),

n

where 6 —, 6y since 8%) —, 6,. Then VIVLP)(6%) =, VTVL(6,) by Lemma

(5.57)-(5.58]). From the proof of Theorem (i) we have that n?/2VL(® (6,) Y
N(0, A(6y)), where L9 (0) := ﬁ >t n—n#)+1 l+(0). Hence, the central limit theorem

in follows from
L(B) = E[VL (o) — VLY (6o)] = o(n™"7?). (5.18)
We have I,,(8) < sup,_pe)<i<n E|Vi(6) — Vie(6o)| and follows from
E|Vi(60) — VI,(6))| = o(t™??), t— . (5.19)

Write ||€]|,, := EY?[[P for LP-norm of r.v. &. Using |V (1(60)—1,(60))| < 72|V (07 2(6p)—
5, 2(00))| + |V(log o?(6y) — log52(6p))| and assumption E|ry> < oo, relation (5.19)

follows from

||0t_4(()i0t2 — 5';4815?”5/3 = O(td0_1/2 IOg t) and (520)
o7 20,02 —5;20,52, = O™ 2logt),  i=1,...,5,
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where of = 07(6p), 53 = O't( 0), 007 = 0,0%(6p), 0;5} = 0;57(0y). Below, we
prove the first relation 0) only, the proof of the second one being similar. We
have o; *0;0% — ;10,67 = 0,165,462 + 02) (6% — 02)0i0? + &, *(0;0% — 0;52). Then
using 02 > wi/(1 — ) > 0,67 > w?/(1 — ) > 0, relation the first relation in ([5.20))

follows from

(07 = 37) (D07 [on)llsys = O@©™"?) and (5.21)
|0i07 — 0,52 |53 = O™ Y*logt), i=1,...,5. (5.22)

Consider (5.21). By Holder’s inequality,
(o = &)(0i07 o) llss < Nlof — 67 52110i07 /s,
where ||0;02/0¢||s < C according to (5.32)). Hence, follows from
lo} = 67lls2 = O(t™™/?). (5.23)

To show ([5.23)), similarly as in the proof of (5.43)) split 67 — 62 = Uy + Uy 2, Where
Ui i= Uyi(0),i = 1,2 are defined in [4.57)), ie., Uy = S0t %{(ao + coi/;_g) —
~ N2 2 S
(a0tcoYie) }, Usa = X2 vé{wd+ (a0+coYir) } and ¥, := Yi(do), V; = Yi(dy). We
have |Up1| < O X021 1olYeme = Yoo (14 [Yomel + [Yicel), [Ura < CE275(1+[Yeee?)

and hence

t—1
lof — 6752 < C{ Sl Yo = Yieo) (L4 [Yeeo| 4 [Yeee|)|l5/2
=1

ST A IYedly) )

=t

< {z%un—nem+z%} (5.24)

= =t
where we used the fact that ||| < C, |[Yills < C by ||r|ls < C and Rosenthal’s
inequality in (4.13). In a similar way from (4.13) it follows that

||Yt—6_17;§—€||5 < C{ Z jQ(do—l)}1/2 < C(t—g)do_1/2~ (525)

j>t—¢

Substituting ((5.25)) into ([5.24]) we obtain

lo? — 57|52 < C’{Z% () 1/2+Z%} _ o1/,

(=1 (=t
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proving ((5.23)).
It remains to show (5.22)). Similarly as above, 0,07 — 8,67 = ;U1 + 9;U, 2, where

0;Upj = 0;U; ;(6p),j = 1,2. Then (5.22) follows from
\|8¢Ut,1\|5/3 = O(tdoil/Q IOg t) and HaiUt’2H5/3 = O(tdoil/Q), 1= 1, Ce ,5. (526)

For i = 1, the proof of (5.26) is similar to (5.24)). Consider ([5.26]) for 2 < ¢ < 5.
Denote V;(6) := 2a + c(Yy(d) + Yi(d)), V; := Vi(6o), 0;V; := 9;V;(6,), then

t—1
0Uulsrs < C XA 19:Yime = VocolallVills + 1Yice = icallsllaills |
/=1

where 9;(Y;_y — Yi_y) = 0,0; # 0, and

10a(Y: = Y)lls = 113 5% (log 5)re—lls

>t
S C{ Zj?(d()—l) 10g2j}1/2 _ O(td0_1/2 10gt)

j>t

similarly as in above. Hence, the first relation in follows from and
10:Vills < C(1+ (|10aYi—ells + 10aYi—e]l5) < C < o0 as in the proof of (5.22), and the
proof of the second relation in is analogous. This proves and completes
the proof of Theorem [5.3.2 U

Remark 5.3.1 As noted above, the moment conditions of Theorems [5.3.1] and [5.3.2
are similar to those in Beran and Schiitzner| (2009) for the LARCH model. Particu-
larly, condition (Mf) in Beran and Schiuitzner| (2009), Theorems 2 and 5, for asymp-

totic normality of estimators ensures E|r;|°> < oo. This situation is very different
from GARCH models where strong consistency and asymptotic normality of QML
estimators holds under virtually no moment assumption on the observed process (see
e.g. [Francq and Zakoian| (2010a), Chapter 7). The main reason for this difference
seems to be the fact that differentiation with respect to d of Yy(d) = 352, j"'ri_;
in (5.8) affects all terms of this series and results in “new” long memory processes
Yy (d)/od" = 352, j4 ' (log j)'ri—j,i = 1,2,3 which are not bounded by CY;(d)]
or Co?(). Therefore, derivatives of o, ?(6) in (5.8)) are much more difficult to con-
trol than in the GARCH case, where these quantities are bounded (see Francq and

Zakoian| (2010a)), proof of Theorem 7.2).

Remark 5.3.2 We expect that our results can be extended to more general para-
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metric coefficients, e.g. fractional filters b;(c, d), j > 1 with transfer function
> e hi(c,d) = g(e,d)((1 — ey —1), x¢[-mmn,
j=1

where g(c,d) is a smooth function of (¢,d) € (0,00) x (0,1/2). Particularly,

I'(j+d) N gle,d) 44
TrG+1 —~ T@’ -

bi(c,d) = g(c,d) Jj— 0 (5.27)
and Y52, b3 (c,d) = g*(c,d)(I'(1 — 2d) — T*(1 — d))/T*(1 — d), see e.g. Giraitis et al.
(2012), Chapter 7. See also [Beran and Schiitzner (2009), Section 2.2. The impor-
tant condition used in our proofs and satisfied by b;(c, d) in is that the partial
derivatives 97b;(c,d),i = 1,2, 3 decay at a similar rate 4! (modulus a slowly varying
factor). Particularly, for ARFIMA(0,d,0) coefficients b}(d) := T'(j + d)/T(d)I'(j +
1) = [T, “4=L it easily follows that 99(d) = b(d) Si_y 70— ~ V(d)logj ~
I'(d)~'j*'logj and, similarly, 9ib%(d) ~ 09(d)(logj)" ~ T(d)~'j* '(logj)’, j —

00, i =2,3.

5.4 Lemmas

For multi-index ¢ = (iy,...,15) € N5, 4 # 0 = (0,...,0), |[¢| :== 4y + - -+ + i35, denote
partial derivative 9% := 0I¥l/T[>_, 96 .

Lemma 5.4.1 Let E|ry|*"? < oo, for some integer p > 1. Then for any 1 € N°, 0 <
il <p,

Esup |0%,(0)| < oc. (5.28)
0co

Moreover, if E|r|**PT¢ < oo for some ¢ > 0 and p € N then for anyi € N°, 0 < |¢] <
p

Esup [0*(1,(0) — L,(0))] = 0,  t— oo (5.29)
6cO
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Proof. We use the following (Faa di Bruno) differentiation rule:

2|
81 o72(0) = Z( 1)” ,/;U—2(1+u)<9) Z ...... i Haﬂkgt ), (5.30)
= e
7 2 d 1 2
O'loga;(0) = > (-1 Hv—Dle,(0) > Xj .4, Hajkat (),
= Gyord i

where the sum ) » [T g 4 is taken over decompositions of % into a sum of v multi-
indices 5, # 0,k = 1,...,v, and Xj,
on j,, 1 <k<w.

Let us prove (5.28). We have |8ilt(9)| < Tf|8iat_2( 6)| —|—|3i log 07()|. Hence using
and the fact that o2(0) > w?/(1 — ) > w?/(1 — 42) > 0 we obtain

is a combinatorial factor depending only

) K v )
sup [0*,(0)| < C(r} + Z Z [ sup(|@7=a7(0)]/0:(6)).

Therefore by Holder’s inequality

Esup |08L,(0)] < C(E(? +1)@P/2)2/C+p)
0cO

2|

x> Z HE”%(suplahat()l/cn(@))‘”“, (5.31)

where Y% 1/q; < p/(2 +p). Note |i| = >}_, || and hence the choice q, =
(2 +p)/ldx| satisfies 327, 1/q; = 351 [34]/(2 +p) < p/(2+p). Using (5.31) and
condition E|r;|*? < C, relation (5.28)) follows from
. 2 y
Esup (10962(0)|/0:(6)) " < o (5.32)
bco

for any multi-index 7 € N5, 1 < |j] < p.
Consider first the case |§| = 1, or the partial derivative 9;,07(0) = da?(0)/90;,1 <
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1 < 5. We have

2 N‘l{aﬂ + (a + cYg,g(d))Q}, 0, =,

Zgio ’762("}7 92 = w,
0i0t(0) = {¥27"2(a+ Y (d)), 0 = a, (5.33)
S2072(a+ Yie(d)Yiold),  bi=c,

S50 7 2¢(a + Yig(d))0aYig(d), 0 =d.

We claim that there exist C' > 0,0 < 7 < 1 such that

1)
Ut ‘ < C(1+4+ Jio+ Je1), i=1,...,5, where (5.34)
SE Ut
Jro = Z# sup  [Yio(d)],  Jea = Y4 sup [0aYi-e(d)].
(=0  d€[d1,do] (=0  d€[d1,do]

Consider for §; = . Using (2472 < OF* for all £ > 1,7 € [y1,7] C (0,1)
and some C' > 0,0 < 7 < 1 together with Assumption (B) and Cauchy inequality,
we obtain |0,02(0)]/0.(0) < (Zgﬁl 6276’2{w2 + (a + th_g(d)f})l/Q < C(1+ Jyp)
uniformly in 6 € ©, proving for §; = ~. Similarly, |9.02(0)|/0:(0) < C(1+ Jo)
and |0;,02(0)|/0+(0) < C(1+ J;1). Finally, for §; = w and 6; = a, is immediate
from , proving .

With in mind, for |7 = 1 follows from

2
BJET = B(S4 sw [0 d)))” < 0o i=0,1 (5.35)
=0 dE[dl d2]

Using Minkowski’s inequality and stationarity of {¥;(d)} we obtain EY/+P) J27 <
707" B g, OYead)*7 < C(Bsupy (D)), where Oi(d) =

©, 0179 'r,_;. Hence using Beran and Schiitzner| (2009), Lemma 1 (b) and the
mequahty vy < 29/q+y? /¢, x,y >0,1/q+1/¢ =1 we obtain

1 1
S EJP < CYE sup |95 (d)*?
j i=0 deldi,do]
2
< CY sup E|OYi(d)]*? < o0 (5.36)
i=0 d€[d1,d2]
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since

) o i 2+4p)/2
sup E|0YY;(d)]**? < C sup (Z( Zijdfl)?(EVH’2+p)2/(2+p))( P2 o
de[dth] de[dl,dz] j=1

according to condition E|ry|*"” < C, Rosenthal’s inequality in (4.13) and the fact
that supge g, 4, 2001 (0574 < SUpgeig, ) 2oy 724 (1 +1og? j)? < C,i = 0,1,2.

This proves (5.32)) for |j]| = 1.
The proof of (5.32) for 2 < |j| < p is simpler since it reduces to

Esup |0902(0)|"92 < oo,  2<|j| <p. (5.37)
0cO

Recall 91-: v and j' = j — (41,0,0,0,0) = (0,72,7J3,J4,J5). If 37 = 0O then

Suppeg |07 02(0)] < CJpp follows as in (5.34) implying (5.37) as in (5.36]) above.
Next, let 7' # 0. Denote

Q36) =+ (a+Xi(d)) (5.38)

so that 02(6) = Y%, 7'Q?,(6). We have with m := j; > 0 that |0902(0)| <
S0 (06— m))ym 107 Q2 ,(0)] and (5.32)) follows from

Esup |09 Q2(6)|"2/2 < . (5.39)
0cO

For js # 0 (recall f; = w) the derivative in (5.39) is trivial so that it suffices to check
(5.39) for j; = 0 only. Then applying Faa di Bruno’s rule we get
FQROIPP <0 Y |00 (a+ Vi) TP100 (0 + evi(d)| 7
j1+j2:j
and hence (5.39)) reduces to

Esup|d? (a + cVi(d)? < oo,  0<|j|<p,
e

whose proof is similar to ((5.35) above. This ends the proof of (/5.28]).
The proof of (5.29) is similar. We have |9%(1,(6) — 1,(0))] < r2|0%(072(0) —
5, 2(0))| + |0*(log 02(0) — log 52(0))|. Hence, using Holder’s inequality similarly as in

105



the proof of (5.28) it suffices to show

Esup |0%(072(0) — 572(0))|7 — 0 and
ISS]
p+2

Esup |0% (log 02(8) — log 2(0))|"% — 0. (5.40)
60
Below, we prove the first relation in (5.40|) only, the proof of the second one being
analogous.
Using the differentiation rule in ([5.30]) we have that
. 2| . e
o) g tenl < o X [wdrdee) - Wl de )

V=g g,

where

sup W7 Iy (0) — Wl Idv(9)] =, 0, t— (5.41)
0cO
and . . . .
—~ 2+€
ESUp(|WtJl ..... J”(0)|+|thl ,,,,, ]V(8>|)(P++)/P < C< (542)
USS]

for some constants € > 0 and C' > 0 independent of ¢. In turn, (5.41) and (/5.42))

follow from

sup |09 (02(0) — 52(0))| —» 0, t— o0 (5.43)
0cO
and
Esup (|0962(0)]/0,(0)) " < ¢, (5.44)
0cO
E sup (yajaf(eﬂ/a—t(e))(2”“)/"7‘ < C,
0cO

for any multi-index j such that |j| > 0 and 1 < |j| < p, respectively.
Using condition E|ry[*?*¢ < (' relations in (5.44]) can be proved analogously to
(5.32) and we omit the details. Consider (5.43). Split 07(0)—&7(0) = U;1(0)+ U, 2(6),
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where

~
|
—_

Uni(0) = Y7 {(a+¥iud) ~ (a+Vie(@) ', (5.45)

~
Il
—-

e+ (o via@)

hE

Ui2(6) =

~
Il
-

Then supyeq |8j Ui(0)] =5 0, t = 00, i = 1,2 follows by using Assumption (B) and
considering the bounds on the derivatives as in the proof of . For instance,
let us prove for 99 = Os, |3] = 1. We have |0,U;1(0)] < C XL} 72{(1 +
Voo d)D0a(Yeoeld) — Yioe(d)| + [0aYie(d)] |Yioe(d) — Yiee(d)]}.

Hence, supycg |0aU;1(0)| —p 0 follows from 0 < v <7, < 1 and

E sup ([Yi(d) = Vi(d)? +0a(Yi(d) = Vi(d)[) — 0 and  (5.46)

deldy,d2]

Eds[ctllpd}(lmd)luI?t(d)l2+IadY%(d)l2+I0dl7t(d)lz) < O (547)
€ld1,d2

The proof of mimics that of and therefore is omitted. To show ,
note Y(d) — Y;(d) = 22, j% ri_; and use a similar argument as in to show
that the Lh.s. of does not exceed C'Supeia, 4, 2imo ElO3(Yi(d) — Yi(d))? <
C SUP ey ) gt 7247 (14 log? j) — 0, ¢ — oo. This proves for [j] = 1
and 09 = 04. The remaining cases in follow similarly and we omit the details.
This proves ((5.29) and completes the proof of Lemma . O

Lemma 5.4.2 The function L(0),6 € © in (5.13)) is bounded and continuous. More-

over, it attains its unique minimum at 0 = 6.

Proof. We have |L(6;) — L(6)| < E|l;(61) — 1;(62)| < CE|c?(61) — 02(0s)|, where
the last expectation can be easily shown to vanish as |6, — 02| — 0, 61,0, € ©. This
proves the first statement of the lemma. To show the second statement of the lemma,

write

L(0) — L(6,) = E[‘Zt;f;)) ~log ‘;t;fé’)) ~1].

The function f(z) :=x —1—1logz > 0 for z > 0,z # 1 and f(z) = 0 if and only if
x = 1. Therefore L(0) > L(6,),V 0 € © while L(6) = L(6y) is equivalent to

02(0) = o2(0)  (Pg, — a8.) (5.48)

Thus, it remains to show that ([5.48) implies 6 = 0y = (7o, wo, Go, do, ¢o). Consider the
“projection” P,£ = E[¢|F,] — E[¢|Fs_1] of r.v. &, E[§| < 0o, where F, = o((,, u < )
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(see Section [5.2)). (5.48) implies
0 = Py(07(0)—07(00)) = Pu(Q7(0)— Q7 (00))+(7—70) Peoi_1(6o), Vs < t—1, (5.49)
where Q?(0) = w? + (a + Dt bt_u(H)ru)2 is the same as in (5.38). We have

P.Q*(0) = 2abt_5(0)rs+2bt_s(«9)7’stt_u(9)ru+ Z b2 () P2 (5.50)

— Dab ()G () + 20 (0)C0s (60) 3 biu(B)1
+ > b (0)Poi(00) + b7, (0)(¢2 — 1)a3(6o).

s<u<t

Whence and from (5.49)) for s =t — 1 using P,_102 ,(6y) = 0 we obtain

01(9, 00)@2_1 + 202(9, 90)4}71 - 01(9, 00) - 0 (551)
where
01(9, 90) = (02 — Cg)O'tfl(eo),
Co(0,00) = (ac—apco) + Y. (Pt —w) ' =t —u)® r,.
u<t—1

Since C;(6,60y),7 = 1,2 are F;_s-measurable, implies C1(0,6y) = C5(0,6,) = 0,
particularly, ¢ = ¢q since oy_1(6p) > w > 0. Then 0 = Cy(0,60y) = cola — ap) +
e ((t —u)t — (t —u)® Yy, and Er, = 0 lead to a = ay and next to 0 =
E(X e ((t—u)t = (t —w)® N)ry,)? = BErg Xise(§ — j%71)? = 0, or d = dp.
Consequently, P;(Q?(0) — Q?(fy)) = 0 for any s < ¢ — 1 and hence v = v, in view of
(5.49). Finally, w = wy follows from Ec?(0) = Ec?(6,) and the fact that w > 0,wy > 0.
This proves 6 = 6y and the lemma, too. 0J

Lemma 5.4.3 Let Ery < oco. Then matrices A(6) and B(0) in (5.14)) are well-defined
and strictly positive definite for any 0 € ©.

Proof. From ([5.15)), it suffices to show that
Va2 (A" =0 (5.52)

for some # € © and A € R®> \ # 0 leads to a contradiction. To the last end, we

use a similar projection argument as in the proof of Lemma [5.4.2, First, note that

108



02(0) = Q2(6) + 102, (6) implies
Vo2(0) = (0, V4Q(0)) + vVl ,(6) + (Vy)a2, (0),

where V4 = (9/0,, . ..,005). Hence and using the fact that (5.52)) holds for any ¢ € Z
by stationarity, from (5.52)) we obtain

(07-1(0), VaQ7 (0))\" = 0. (5.53)

Thus,
(Poo? ((0), P.VIQ?(0)\ = 0, Vs<t—1;

cf. (5.49). For s = ¢t — 1 using P,_j07 (0) = 0, P,_1V,Q%(0) = V4P,_1Q?(0) by
differentiating ((5.50)) similarly to (5.51]) we obtain

Di(N) ¢ +2Dy(M\)¢-1 — Di(A\) =0 (5.54)
where Dy (\) := 2X50,-1(0) and

Do(N) = Msc+dsa+2x5¢ > (t—u) "y +A® DD (t—u) P log(t — u)ry,
u<t—1 u<t—1

A= (A, )T As in (5.51), D;i(\),i = 1,2 are F;_o-measurable, im-
plying D;(A) = 0,i = 1,2. Hence, \s = 0 and then Ds(A) = 0 reduces to Aszc +
MY e (t — u)42log(t — u)r, = 0. By taking expectation and using ¢ # 0 we
get A3 = 0 and then \y = 0 since E(X,,_;(t — u)?*2log(t — u)r,)? # 0. The above
facts allow to rewrite as 2wAg + Ajo?_ () = 0. Unless both Aj, Ay vanish, the
last equation means that either A\; # 0 and {c?(6)} is a deterministic process which
contradicts ¢ # 0, or \; = 0, Ay # 0 and w = 0, which contradicts w # 0. Lemma

is proved. O
Write | - | for the Euclidean norm in R® and in R® ® R® (the matrix norm).

Lemma 5.4.4 (i) Let E|ry> < co. Then

sup | L, (0) — L(#)] =3 0 and  Esup|L,(0) — L,(0)] — 0. (5.55)
60 9eo

(ii) Let Er} < oo. Then VL(0) =EVI(0) and

sup [VL,(0) — VL(9)] =3 0 and Esup |VL,(0) — VL,(0)] — 0. (5.56)
90 e
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(iii) Let Elr® < co. Then VIVL(0) = EVIVL(0) = B(6) (see (5.14)) and

suppeo |VIVL,(0) — VIVL(9)| =% 0, (5.57)
Esupgeo |VI'VL,(0) — VIVL,(0) — 0. (5.58)

Proof. Consider the first relation in (5.55). The pointwise convergence L, () %%
L(6) follows by ergodicity of {l;(0)} and the uniform convergence in from
Esupgee |VI:(0)| < 00, c.f. Beran and Schiitzner| (2009), proof of Lemma 3, which in
turn follows from of Lemma with p = 1. The proof of the second relation

in (5.55) is immediate from Lemma (5.29) with p = 0,e¢ = 1. The proof of the
statements (ii) and (iii) using Lemma is similar and is omitted. O

5.5 Simulation study

In this section we present a short simulation study of the performance of the QMLE
for the GQARCH model in . The GQARCH model in ([5.4) with i.i.d. standard
normal innovations {¢;} was simulated for —m + 1 < t < m and two sample sizes
m = 1000 and m = 5000, using the recurrent formula in (5.1) with zero initial
condition o_,, = 0. The numerical optimization procedure minimized the QML

function:

L —li ﬁ—{—lo 2
m = 5 go; |, (5.59)

mi3 [3
with

t+m—1 9
T = G0y, Ut2 =w’+ (a +c Z jdilrt,j) + ”)/0,52,1, t=1,...,m. (5.60)
j=1

The QML function in (5.59) can be viewed as a “realistic proxy” to the QML
function L,(0) in (5.12) with m = n? since (5.59)-(5.60) similarly to use
“auxiliary” observations in addition to ry,...,r,, for computation of m likelihoods
in (5.59). However, the number of “auxiliary” observations in equals m and
does not grow as m'/? =n,0 < f < 1—2d < 1 in the case of and Theorem
5.3.2| (ii), which is completely unrealistic. Despite of the violation of the condition
m = n? of Theorem m (ii) in our simulation study, the differences between the
sample RMSEs and the theoretical standard deviations are not vital (and sometimes
even insignificant), see Table below.

Finite-sample performance of the QML estimator O, minimizing was stud-

ied for fixed values of parameters 79 = 0.7,a9 = —0.2,¢y = 0.2 and different values
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of wy = 0.1,0.01 and the long memory parameter dy = 0.1,0.2,0.3,0.4. The above
choice of 6y = (70, wo, ao, do, ¢y) can be explained by the observation that the QML
estimation of 7y, ag, ¢y appears to be more accurate and stable in comparison with
estimation of wg and dy. The small values of wy in our experiment reflect the fact
that in most real data studied by us, the estimated QML value of wy was less than
0.05.

The numerical QML minimization was performed under the following constraints:
0006 <v<0989, 0<w<2, —-2<a<2, 0<d<0.5,

and the value of ¢ in optimization procedure is chosen in a way to guarantee Assump-
tion (B) (v) with appropriate 0 < ¢;(d,v),i = 1,2.

The results of the simulation experiment are presented in Table below, which
shows the sample R(oot)MSEs of the QML estimates 0,, = (Vims Dy Qs Ay, Cm) With
100 independent replications, for two sample lengths m = 1000 and m = 5000 and
the above choices of 6y = (~0,wo, ag, do, ¢o). The sample RMSEs in Table are
confronted with standard deviations (in brackets) of the infinite past estimator in
(5.6) computed according to Theorem m (ii) with X(6p) obtained by inverting a
simulated matrix B(0y)/kK4.

A general impression from Tableis that theoretical standard deviations (brack-
eted entries) are generally smaller than the sample RMSEs, however, these differ-
ences become less pronounced with increase of m and in some cases (e.g., when
wop = 0.1,m = 5000) they seem to be insignificant. Some tendencies in Table
are quite surprising, particularly, the decrease of the theoretical standard deviations
and most of sample RMSEs as dj increases. Also note a sharp increase of theoretical
standard deviations of &, when wy = 0.01, which can be explained by the fact that
the derivative 9,07(0y) = 2wo/(1 — ) becomes very small with wy, resulting in a
small entry of B(fy) and a large entry of 3(fy). On the other hand, the RMSEs
in Table appear to be more stable and less dependent on 6, compared to the

bracketed entries (particularly, this applies to errors of @,, and Jm)
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wozo.l

m do Ym W, U, A Cm

1000 0.1 0.076 (0.053) 0.046 (0.037) 0.032 (0.023) 0.090 (0.079) 0.027 (0.031)
0.2 0.051 (0.048) 0.043 (0.027) 0.027 (0.020) 0.076 (0.060) 0.030 (0.027)
0.3 0.069 (0.043) 0.033 (0.018) 0.026 (0.017) 0.063 (0.041) 0.030 (0.022)
0.4 0.047 (0.039) 0.028 (0.013) 0.025 (0.015) 0.043 (0.029) 0.022 (0.019)

5000 0.1 0.023 (0.024) 0.018 (0.016) 0.011 (0.010) 0.035 (0.033) 0.014 (0.014)
0.2 0.020 (0.021) 0.011 (0.011) 0.010 (0.009) 0.028 (0.021) 0.012 (0.012)
0.3 0.019 (0.019) 0.010 (0.008) 0.010 (0.008) 0.020 (0.013) 0.010 (0.010)
0.4  0.022 (0.017) 0.007 (0.005) 0.011 (0.007) 0.014 (0.009) 0.010 (0.008)

wp=0.01

m do Ym W Um, dpm, Cm

1000 0.1 0.060 (0.046) 0.040 (0.296) 0.020 (0.019) 0.073 (0.071) 0.022 (0.029)
0.2 0.044 (0.040) 0.035 (0.203) 0.020 (0.016) 0.073 (0.048) 0.022 (0.024)
0.3 0.045 (0.033) 0.028 (0.117) 0.018 (0.012) 0.044 (0.029) 0.020 (0.019)
0.4 0.040 (0.025) 0.038 (0.047) 0.024 (0.009) 0.034 (0.016) 0.020 (0.013)

5000 0.1 0.021 (0.020) 0.032 (0.125) 0.009 (0.008) 0.031 (0.028) 0.013 (0.013)
0.2 0.018 (0.017) 0.024 (0.085) 0.007 (0.007) 0.020 (0.018) 0.010 (0.011)
0.3 0.019 (0.015) 0.021 (0.046) 0.008 (0.006) 0.013 (0.011) 0.008 (0.009)
0.4 0.016 (0.012) 0.013 (0.017) 0.007 (0.004) 0.011 (0.006) 0.009 (0.006)

Table 5.1: Sample RMSE of finite past QML estimates 6,, in (5.59) of 6,

(do, wo, ag, co, o) of the GQARCH process in (5.4)) for ag = —0.2,¢9 = 0.2,7 = 0.7
and different values of wy,do. The number of replications is 100. The quantities
in brackets stand for asymptotic standard deviations of the estimator 8/ n® = m

following Theorem [5.3.1] (ii).
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Conclusions

The principal goal of this thesis was to introduce new nonlinear models with long
memory which can be used for modelling of financial returns and statistical inference.
Apart from long memory, these models are capable to exhibit other stylized facts
such as asymmetry and leverage. The processes studied in the thesis are defined as
stationary solutions of certain nonlinear stochastic difference equations involving a
given i.i.d. “noise”. Apart from solvability issues of these equations which are not
trivial by itself, we proved that their solutions exhibit long memory properties as
in ((1.5) and . Finally, for a particularly tractable nonlinear parametric model
with long memory (GQARCH) we prove consistency and asymptotic normality of

quasi-ML estimators.
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Appendix A

Lemmas

The proofs of Proposition [4.3.1 and Theorems [4.4.2] [£.6.3 use the following lemmas.

Lemma A.1 Fora; > 0,5 =1,2,..., denote

Ak = i+ Z Z QG Qg+ e - aip,ipilak,ip, k= 17 2, e (Al)

0<p<k 0<iy <--<ip<k

Assume that A= 3222, a; <1 and
a; < cj? (Fe>0, vy>1). (A.2)
Then there exists C' > 0 such that for any k > 1
A, < Ck™7. (A.3)
Proof. We have Ay = >2g<, <k Akp, where

Arp = D Qg0 g, (p>1), Ao = ay
0<iy < <ip<k

is the inner sum in (A.1)). W.Lg., assume ¢ > 1 in (A.2)). Let us prove that there
exists A > 0 such that

App < clp+ 20 AP T VO<p<k<oo. (A.4)
Since A < 1, so (A.4) and 3", (p + 2)*AP*! < oo together imply (A.3).

By dividing both sides of (A.4)) by AP*! it suffices to show (A.4) for A = 1. The
proof uses induction on p. Clearly, (A.4]) holds for p = 0. To prove the induction
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stepp—1—p>1, note

Ak,P = Z aiAk—i,p—l = Z aiAk—i,p—1+ Z aiAk—z‘,p—l- (A5)

0<i<k S <i<k kot <k—i<k
Here, a;1(i > Zﬁ) < cim1(i > z%) < ¢(p+ 1)"k~" and, similarly, by the inductive

assumption

. k k p+ 1\~
Apip1llk—i12>2k———) < DMk — ——)7 = DME—) k.
eip Lk =i 2 k= =) Selp+ DMk — =) = elp+ 1) (=)
Assumption A = 1 implies > ;.o Ak, = 1 for any p > 0. Using the above facts from
(A.5)) we obtain

clp+ 1) cp+ 1) p+1
App = 7@ ) Z Apip_1+ (p+1) (p ! Z o

k7 k/(p+1)<i<k kY p k—k/(p+1)<k—i<k

p+1\n, _
< clp+1)+(@+DMN=—/=) k.
(17 + e ()
Hence the proof of the induction step p — 1 — p > 1 amounts to verifying the
inequality (p+1)7 + (p + 1)A(%)W <(p+2)% or

n”—kn’\( n

) < +1)Y =23, (A.6)

n—1

The above inequality holds with A = 3v. Indeed,

n7+n’\< n )7 = n)‘(n_h—f-( " )W)Sn’\(n_Q—l—( n ))“’

n—1 n—1 n—1
1 1 3 3 1
A A _ A
< n(1+m+ﬁ)7§n(14‘54—?—}‘?)7—(”‘1‘1)7
proving (A.6) and the lemma, too. O

Lemma A.2 Assume that 0 < <1 and a; ~¢cj~7 (37 >0, c>0). Then

t—1
. I _

g =Y Fay; ~ 1 7, t — 00.

j=0 - ﬂ

Proof. It suffices to show that the difference D; := oy 3 — /(1 — ) decays faster

than oy, in other words, that

t—1 fe'e)
Dy = Y Flag—apy) =Y Foyj=o(t7).
j=0 Jj=t
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Clearly, 3y /acjcy (0 — cr—j) = O(B?) = o(t™7), 352, Faw—yj = O(B') = o(t™").
Relation Y o< ;<;/o (7 (ar — ay—;) = o(t™7) follows by the dominated convergence the-
orem since SUPg< <o |y — ;317 < C and |y — a;4[t" — 0 for any fixed j > 0.
0J
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Appendix B

Nested Volterra series

First we introduce some notation. Let 7' C Z be a set of integers which is bounded
from above, i.e., sup{s : s € T} < oco. Let Sy be a class of nonempty subsets
S ={s1,...,s,} CT, 8 < - < s, Write |S| for the cardinality of S C Z. For
any S = {s1,...,8.,} € Sr, 8" ={s),...,s,} € Sr, the notation S < S” means that
m=n+1and s, =s},...,5, = s, < s,,, = s,,. In particular, § < 5" implies
S C S and |S"\ S| = 1. Note that < is not a partial order in Sy since S < S, S’ < S”
do not imply S < S”. A set S € S7 is said mazimal if there is no S” € Sy such that

S < 5", Let S denote the class of all maximal elements of Sr.

Definition B.1 Let T C Z be a set bounded from above, and St be a class of subsets
of T. Let Gr = {Gg,S € Sr} be a family of measurable functions Gg = Gy,

R — R indezed by sets S = {s1,...,5m} € St and such that Gs =: ag is a constant
function for any mazimal set S € SF**. A nested Volterra series is a sum
Ve = Y Gs( X GasGs(o
S1€87:|S|=1 51<S>
<.Sp—l\sp—?C:Sp—l( Z CSP\Sp—lGSp>)>7 (Bl)
Sp71-<5p

where the nested summation is taken over all sequences S < S; < --- < 5, €
S p = 1,2,..., with the convention that Gg = ag, S € SF™, and (s := (s for

S ={s},|S|=1.
In particular, when Sy = {S : S C T} is the class of all subsets of T, can
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be rewritten as

Vigr) = X6 ¥ (-

s1€T s1<s2€T
GpiGorir [ X GGas)))s (B2)
Sp—1<sp€T
where the last sum is taken over all maximal sets {s1,...,s,} € SP**.

The following example clarifies the above definition and its relation to the usual
Volterra series (Dedecker et al., 2007, p.22).

Example B.1 Let T(t) = (—o0,t]NZ,t € Z and Sy be the class of all subsets
S ={s1,...,s5:} CT(t) having k points. Let Gruy = {Gs,S € Srw} be a family of
linear functions

T, S e S, S & SEE,
G(x) = 7,5 & T(t)
as = asl ..... Sk S = {Sla s 7Sk} S 8,1151(&5(
Then
V(gT(t)) = Z Qs ... sp C31C32 cee Csk - Z CLSCS> (BB)
§1<-<sp <t SCT,|S|=k

¢% = (,Csy - - Csy» is the (usual) Volterra series of order k. The series in
converges in mean square if and only if

AT(t) = Z ail < 00, (B.4)

51< <8<t
in which case EV(Grw) = Ar@, EV(Gre) = 0.

Proposition B.1 Let T(t) := (—o00,t]| N Z, t € Z as in Ezample [B.1 Assume that
the system Gruy = {Gs,S € Srwuy} in Definition satisfies the following condition

Oz% -+ B§x2, S c ST(t)7 S € Sjrfl(i))(,

Gs(2)]? < (B.5)
od(=a?), SeSH
where ag, Bs are real numbers satisfying
Argy = > > 531532...ﬁ§p_1a§p < 00, (B.6)

p>1 81 <Sa<-<S,
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where the inner sums are taken over all sequences Sy < Sy < --- < S, S; € Sppy, 1 <
i <p with |Si| =1 and S, € Sy}

Then, the nested Volterra series V(Gr)) in converges in mean square and
satisfies EV(Grw)? < Arey, EV(Gre)) = 0. Moreover, X, := V(Grw) is a projective

process with zero mean and coefficients

Gsp = Gsl( > CSQ\SlGSQ(---Csp,l\sp,stp_l( > Csp\sp,le,,))) (B.7)

S1<S2 Sp—1=<Sp

if S1={s} € Srw), gsi := 0 otherwise, where the nested summation is defined as in

.

Proof. Clearly, the coefficients g, in satisfy the measurability condition (i) of
Definition [3.2.1} Condition (ii) for these coefficients follows by recurrent application

of :
Z ng,t

Z EG;( Z CS2\51G52(' ))

s<t S1€ST(t):|Sl|=1 S1<S2
2
< Z (aél + ﬁ§1E< Z CS2\51GS2(' - )) )
S1€ST(t):|S1|=1 S1<S52
2
S1€81):1811=1 S1<S2 S52<S3
< Y (148 X ks X dhed+)

S1€81):1811=1 S1<S2 S51<52<S3

= > > Bglﬁgz...ﬁgpila?gp:AT(t)<oo.

p>151<852<--<Sp

Therefore, X; = Y.<, g5:Cs is a well-defined projective process and X; = V(Gp)).
Proposition is proved. O

Remark B.1 In the case of a usual Volterra series in (B.3)), condition (B.5) is sat-
isfied with ag = 0, 8 = 1 for S € Sy, S € S}na’)‘, and the sums Arp) of (B.6) and
Apq of (B.4) coincide: Azq) = Arp. This fact confirms that condition (B.6) for the

convergence of nested Volterra series cannot be generally improved.
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