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Notation and abbreviations

:= by definition
Z := {0,±1,±2, . . . } the set of integers
N := {1, 2, . . . } the set of positive integers
R := (−∞,∞) the set of real numbers

R+ := (0,∞)

C(A) the space of continuous functions defined on a set A
C positive constant, which may change from line to line
i :=

√
−1

1(A) indicator function of a set A
x ∧ y := min(x, y)

x ∨ y := max(x, y)

x+ := max(x, 0)

[x] the greatest integer less than or equal to x (floor)
dxe the least integer greater than or equal to x (ceiling)

Γ(x) the gamma function
B(x, y) the beta function

EX mean of a random variable X
N (µ, σ2) normal distribution with mean µ and variance σ2

d
= equality in distribution

fdd
= equality of finite-dimensional distributions
p→ convergence in probability
d→ convergence in distribution

fdd→ weak convergence of finite-dimensional distibutions
(fdd) lim limit of finite-dimensional distributions

a.s. almost surely
d.f. (cumulative) distribution function

i.i.d. independent identically distributed
r.v. random variable

ix



Notation and abbreviations

w.r.t. with respect to
w.l.g. without loss of generality

AR(1) autoregressive process of order 1
LRD long-range dependence
SRD short-range dependence

RF random field

x



Chapter 1

Introduction

Long-range dependence (also called long memory) is a well-established empirical
fact observed in diverse scientific disciplines and applied fields, including hydrol-
ogy, astronomy, environmental sciences, economics and finance, communication
networks, see [7,8,29] for data examples and numerous references on the subject.
It refers to the persistence of dependence between observations that are far apart
in time or space. In mathematical framework, long-range dependence usually
means the property of a stationary process, when its covariance series is not ab-
solutely convergent. To develop statistical methodology for long-range dependent
data is of great importance. Given the difficulty to specify the law of sample
statistics, a significant part of statistical procedures relies on limit theorems for
sums of observations or their functions. However, asymptotic results and thus
statistical inference under long-range dependence may differ very much from the
classical case of i.i.d. random variables. This thesis is devoted to limit theorems
for spatio-temporal models with long-range dependence.

Aims and problems. We summarize briefly the problems studied in this doc-
toral thesis.

In Chapter 3 we discuss a joint temporal and contemporaneous aggregation of
N independent copies X1, . . . , XN of AR(1) process X with random autoregressive
coefficient a. Given the point-wise sum of X1, . . . , XN , we look for the limit
distribution of its normalized partial sums process as both N and time scale n
tend to infinity. Under assumption that a has a density, regularly varying near the
unit root a = 1 with index β ∈ (−1, 1), we show that different limit processes exist
if N1/(1+β)/n tends to (i) ∞, (ii) 0, (iii) µ ∈ (0,∞). We compare our results to
those obtained by [35,70], where three distinct limit regimes appear for cumulative
network traffic generated by N independent sources at time scale n.
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Introduction

Chapter 4 complements Chapter 3 as we solve the identical problem for AR(1)
processes with i.i.d. random autoregressive coefficients, but all driven by com-
mon innovations. Under the same assumption on the density of autoregressive
coefficient, for β ∈ (−1/2, 0) we obtain different limit distribution of normal-
ized aggregated partial sums process if N1/(1+β)/n tends to (i) ∞, (ii) 0, (iii)
µ ∈ (0,∞).

In Chapter 5 we discuss estimation of the distribution function G of the au-
toregressive coefficient from N random-coefficient AR(1) series each of length n.
And contrary to [9, 92], we take a nonparametric approach to the problem. We
estimate G by the empirical distribution function of lag 1 sample autocorrelations
of individual AR(1) processes, which are themselves estimates of unobservable au-
toregressive coefficients. We study the limit of the corresponding empirical process
under some conditions on regularity of G and on the relative rate how fast N and
n tend to infinity. We apply the obtained result to testing with Kolmogorov–
Smirnov statistic both simple and composite hypotheses that G equals the beta
distribution function. We perform a simulation study to compare the finite-sample
performance of our test and its parametric analogue due to [9].

In Chapter 6 we consider a random field X defined as a nonlinear function
(Appell polynomial) of a Z2-indexed random field Y . Let Y itself be linear, more
precisely, a moving average of Z2-indexed standardized i.i.d. r.v.s with determin-
istic coefficients decaying slowly (so as to induce long-range dependence in Y ) and
possibly at different rate along horizontal and vertical directions. For a nonlinear
random field X, we study the limiting distribution of its normalized partial sums
over rectangles with sides growing at rates O(λ) and O(λγ) as λ → ∞ for arbi-
trary γ > 0. We aim to find the limiting random fields for all γ > 0. The main
question is if there exists a change-point γ0 > 0 such that the limiting random
fields do not depend on γ but differ for γ > γ0 and γ < γ0 and if so under what
conditions. We extend the results of [89, 90], where this phenomenon, referred to
as scaling transition, appears for some linear long-range dependent random fields.

In Chapter 7 we consider a R2-indexed random field X, the so-called random
grain model, that counts sets, which are uniformly scattered on the plane and
of infinite variance in area so that to induce long-range dependence in X. Our
aim is to obtain the limiting random field of normalized partial integrals of the
centered X over rectangles with sides growing at rates O(λ) and O(λγ) as λ→∞
for arbitrary γ > 0. We thus extend results on isotropic scaling (γ = 1 case)
due to [53]. Moreover, we investigate the total accumulated workload from a
generalized M/G/∞ model and relate its asymptotics to the results obtained for

2
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X.

The novelty of the results in the thesis:

• three different limit regimes identified in the scheme of joint temporal-
contemporaneous aggregation for random-coefficient AR(1) processes; new
limit process in the ‘intermediate’ regime and its properties;

• proof that the empirical process, based on lag 1 sample autocorrelations of
individual random-coefficient AR(1) processes, converges weakly to a gen-
eralized Brownian bridge;

• proof that nonlinear random fields may exhibit scaling transition;

• proof that two change-points may exist in the family of scaling limits (for a
random grain model).

Publications. This doctoral thesis contains the following research articles, which
have been co-authored:

1. V. Pilipauskaitė, D. Surgailis. Joint temporal and contemporaneous ag-
gregation of random-coefficient AR(1) processes. Stochastic Process. Appl.
124(2):1011–1035, 2014.

2. V. Pilipauskaitė, D. Surgailis. Joint aggregation of random-coefficient AR(1)
processes with common innovations. Statist. Probab. Lett. 101:73–82, 2015.

3. V. Pilipauskaitė, D. Surgailis. Anisotropic scaling of the random grain model
with application to network traffic. J. Appl. Probab. 53(3):857–879, 2016.

4. R. Leipus, A. Philippe, V. Pilipauskaitė, D. Surgailis. Nonparametric es-
timation of the distribution of the autoregressive coefficient from panel
random-coefficient AR(1) data. J. Multivar. Anal. 153:121–135, 2017.

5. V. Pilipauskaitė, D. Surgailis. Scaling transition for nonlinear random fields
with long-range dependence. Stochastic Process. Appl. 127(8):2751–2779,
2017.

Talks and posters. The main results of the thesis were presented at the following
conferences and seminars:

• 55th Conference of Lithuanian Mathematical Society, Vilnius, Lithuania,
June 26–27, 2014.
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• 11th International Vilnius Conference on Probability Theory and Mathe-
matical Statistics, Vilnius, Lithuania, June 30–July 4, 2014.

• Zürich Spring School on Lévy Processes, Zürich, Switzerland, March 29–
April 2, 2015.

• Journée des Doctorants de l’ED STIM, Nantes, France, April 21, 2016.

• 57th Conference of Lithuanian Mathematical Society, Vilnius, Lithuania,
June 20–21, 2016.

• Conference on Ambit Fields and Related Topics, Aarhus, Denmark, Au-
gust 15–18, 2016.

• Séminaire de Mathématiques Appliquées, Université de Nantes, France,
November 10, 2016.

• Séminaire Probabilités, Statistique et Applications, Université de Poitiers,
France, November 17, 2016.

• 9th International Conference of the ERCIM WG on Computational and
Methodological Statistics, Seville, Spain, December 9–11, 2016.

• Thiele Seminar, Aarhus University, Denmark, January 19, 2017.

• 2nd Conference on Ambit Fields and Related Topics, Aarhus, Denmark,
August 14–16, 2017.

• 34th International Seminar on Stability Problems for Stochastic Models,
Debrecen, Hungary, August 25–29, 2017.

The results of the thesis were also presented at the seminar on Probability Theory
and Statistics held at the Institute of Mathematics and Informatics of Vilnius
University, and at the seminar on Econometrics held at the Faculty of Mathematics
and Informatics of Vilnius University.
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Chapter 2

Literature review

In this chapter we review the most important concepts and some results related
to the later parts of the thesis and give references for their in-depth coverage.

2.1 Long-range dependence

A T -indexed stochastic processX is a collection {X(t), t ∈ T} of random variables
(r.v.s), where T ⊆ Rd is the set of indices with d = 1 or 2 in the thesis. If
d ≥ 2, X is usually called a random field (RF) on T . The law (distribution)
of X is completely determined by its finite-dimensional distributions P(X(t1) ∈
A1, . . . , X(tm) ∈ Am) for all Borel sets Ai ⊂ R, ti ∈ T , i = 1, . . . ,m and m ∈ N.
A stochastic process X indexed by T = Zd or Rd is called stationary if X and
{X(t + t0), t ∈ T} have the same law for any t0 ∈ T . In case of stationary X

with EX2(0) < ∞, its mean function t 7→ EX(t) is constant and its covariance
function (t, s) 7→ Cov(X(t), X(s)) depends only on the difference t − s, since
Cov(X(t), X(s)) = Cov(X(0), X(t− s)) for any t, s ∈ T .

In the thesis, we study several examples of stationary X that may have long-
range dependence. We also refer to this property as long memory, which is a more
common term for processes indexed by Z in literature for time series analysis.

Definition 2.1. A stationary stochastic process {X(t), t ∈ Zd} with EX2(0) <∞
and covariance function r(t) := Cov(X(0), X(t)), t ∈ Zd, is said to be long-range
dependent (LRD) if ∑

t∈Zd
|r(t)| =∞,

and short-range dependent (SRD) if
∑

t∈Zd
|r(t)| <∞ and

∑

t∈Zd
r(t) 6= 0.

5



Chapter 2. Literature review

The case when ∑

t∈Zd
|r(t)| <∞ and

∑

t∈Zd
r(t) = 0

is referred to as negative dependence.

This definition easily extends to the Rd-indexed X.
By Bochner’s theorem, the covariance function of a stationary RF X on Zd

with EX2(0) <∞ has the following spectral representation:

r(t) =

∫

[−π,π)d
ei<t,x>F (dx), t ∈ Zd,

where F (dx) is a nonnegative finite measure on [−π, π)d called the spectral mea-
sure of X and < t, x > is the scalar product of t and x. In most cases of interest,
the spectral measure is absolutely continuous w.r.t. the Lebesgue measure and is
determined by its density function f(x), x ∈ [−π, π)d called the spectral density
of X, which can also describe the dependence of X. In particular, the fact that
the spectral density f is unbounded implies that X has LRD, since the absolute
convergence of the covariance series results in bounded f .

Definition 2.1 being limited to stationary processes with finite second moment,
there are other notions of LRD, see e.g. [22,44,94,95] and [77,86] with references
therein. In the thesis we refer to LRD in the sense of Definition 2.1, unless stated
otherwise. In case d = 2, the dependence of X may vary when quantified along
different directions. This leads to a more detailed classification of LRD/SRD
properties by Definition 7.1 on page 128.

2.2 Random-coefficient AR(1) process

In Chapters 3–5 of the thesis, the following stochastic model plays an important
role. The process X = {X(t), t ∈ Z} is said to be an autoregressive process
of order 1 (or AR(1)) with random coefficient if it is stationary and for every t

satisfies
X(t) = aX(t− 1) + ζ(t), (2.1)

where innovations {ζ(t), t ∈ Z} are i.i.d. r.v.s with Eζ(0) = 0, Eζ2(0) = 1 and
AR coefficient a ∈ (−1, 1) is a r.v., independent of {ζ(t), t ∈ Z}. There exists a
unique stationary solution to this equation, given by the series

X(t) =
∑

s≤t

at−sζ(s), (2.2)

6



2.2. Random-coefficient AR(1) process

see [87, Proposition 1]. The series converges conditionally a.s. and in L2 for almost
every a ∈ (−1, 1). Moreover, if

E
[ 1

1− a2

]
<∞,

then the series in (2.2) converges unconditionally in L2 and X has zero-mean and
covariance function

r(t) := EX(0)X(t) = E
[ a|t|

1− a2

]
, t ∈ Z.

See [92] for spectral properties of r(t) and some other properties of X.
Next, we discuss two types of aggregation considered in the thesis jointly

for copies of the process X in (2.2) and a related problem of estimating the
underlying distribution of the AR coefficient. Recent developments in aggregation
and statistical inference for AR models with focus on the long memory property
can be found in the review [64] and the thesis [86].

2.2.1 Aggregation

Contemporaneous (or cross-sectional) aggregation refers to the point-wise summa-
tion of processes Xi = {Xi(t), t ∈ Z}, i = 1, 2, . . . . The limit aggregated process
X , if exists, is defined as

{X (t), t ∈ Z} := (fdd) lim
N→∞

{
A−1
N

N∑

t=1

Xi(t), t ∈ Z
}
, (2.3)

where AN is some normalization. Granger [40] originated the idea that contempo-
raneous aggregation may be a reason for the long memory phenomenon observed
in macro-level economic time series X .

To be specific, consider a huge population of heterogeneous ‘micro-agents’
(such as households or firms), each of which evolves according to a short memory
AR(1) process Xi with its own deterministic coefficient ai. Drawing a random
sample from this population leads to the assumption that AR coefficients ai are
i.i.d. r.v.s. Following Granger [40], assume that the common distribution of ai is
continuous with the following density function of beta type

g(x) =
2

B(α, β)
x2α−1(1− x2)β−1, x ∈ (0, 1), (2.4)

where α > 0, β > 0. To rephrase this, the squared AR coefficient ai is beta
distributed with parameters (α, β).

Let Xi, i = 1, 2, . . . be independent copies of a random-coefficient AR(1)
processX in (2.2) under assumption (2.4) with β > 1, which guarantees EX2(0) <

7



Chapter 2. Literature review

∞. Then by the classical CLT, the limit in (2.3) exists for AN =
√
N with X

being a stationary Gaussian process with the same second-order characteristics as
those of the individual ‘micro-agent’, i.e. X has zero-mean and covariance function
EX (0)X (t) = EX(0)X(t) = r(t). If β ∈ (1, 2) in (2.4), then r(t) ∼ const t1−β

as t → ∞, implying that X has long memory. (Note that long memory of single
X is not observable since X is indistinguishable from AR(1) series with the same
deterministic AR coefficient.)

Another limit arises in aggregation of dependent time series. Let Xi, i =

1, 2, . . . , be random-coefficient AR(1) processes as X in (2.1), that have i.i.d.
AR coefficients ai, but are all driven by the same innovations {ζi(t), t ∈ Z} ≡
{ζ(t), t ∈ Z}. Assume (2.4) with β > 1/2. In this case, under normalization
AN = N the limit (in probability) aggregated process X exists and can be written
as X (t) :=

∑
s≤t E[at−s]ζ(s), t ∈ Z, see [87, 111]. If β ∈ (1/2, 1), the limit X has

long memory, since EX (0)X (t) ∼ const t−2β+1 as t→∞.
Following Granger [40], many authors took up the topic of contemporaneous

aggregation, extending it to more general processes. We refer to [37,39,74,87,88,
111,112], for instance.

Let us now introduce another type of aggregation. Temporal aggregation oc-
curs when the frequency at which we observe a variable is lower than the frequency
of its generating model. For a process Y = {Y (t), t ∈ Z} accumulating over time,
we define its ‘stock’ as a partial sums process

Sn(τ) :=

[nτ ]∑

t=1

Y (t), τ ≥ 0,

with Sn(0) := 0, whereas

Sn(τ)− Sn(τ − 1) =
nτ∑

t=n(τ−1)+1

Y (t), τ = 1, 2, . . . ,

represents a ‘flow’, measured per unit of time. Note that evolution of the partial
sum process Sn during a time interval [0, τ ] corresponds to an interval [0, nτ ] on
the original finer time scale for Y .

We may wonder which processes may occur as limits in temporal aggregation
of Y as n→∞. Under reasonably weak assumptions, Lamperti [58] showed that
all possible limiting processes of suitably normalized Sn are self-similar. Recall
that a process V = {V (τ), τ ≥ 0} is called self-similar, if for some H > 0,

{V (λτ), τ ≥ 0} fdd
= {λHV (τ), τ ≥ 0} for all λ > 0.

In other words, V is invariant in distribution under certain simultaneous scaling
of time and space.

8



2.2. Random-coefficient AR(1) process

Theorem 2.1 (Lamperti [58]). Let {Y (t), t ∈ Z} be a stationary process and
assume there exist a sequence of positive numbers An →∞ such that

A−1
n

[nτ ]∑

t=1

Y (t)
fdd→ V (τ), τ ≥ 0,

as n→∞, where the limit process V := {V (τ), τ ≥ 0} is not identically zero and
is stochastically continuous. Then V is a H-self-similar process having stationary
increments, where H > 0 and the normalization An = nH`(n) for some slowly
varying function ` at infinity.

The only H-self-similar Gaussian process with stationary increments is a frac-
tional Brownian motion. Let H ∈ (0, 1]. A Gaussian process {BH(τ), τ ≥ 0}
with EBH(τ) ≡ 0 and covariance function given by

EBH(τ1)BH(τ2) =
1

2
(τ 2H

1 + τ 2H
2 − |τ1 − τ2|2H), τ1 ≥ 0, τ2 ≥ 0,

is called a standard fractional Brownian motion with (Hurst) index H.
Recall the limit X in (2.3) for independent copies of random-coefficient AR(1)

process under assumption (2.4) with β ∈ (1, 2). By [88, Theorem 3.1],

n−H
[nτ ]∑

t=1

X (t)
fdd→ σBH(τ), τ ≥ 0,

where σ > 0 is a certain constant and BH is a standard fractional Brownian
motion with index H = (3 − β)/2 ∈ (1/2, 1). A similar fact holds for random-
coefficient AR(1) processes driven by common innovations under assumption (2.4)
with β ∈ (1/2, 1), see e.g. [87].

There are other classes of long memory processes Y . Limit theory for their
partial sums {Sn(τ), τ ≥ 0} can be found in books [8, Chapter 4], [36, Chap-
ter 4]. The methods and results differ significantly from the case when Y has
short memory.

In the thesis temporal and contemporaneous aggregation are treated jointly.
We look for the limit distribution of the normalized joint aggregate (contempora-
neously aggregated partial sums) of random-coefficient AR(1) copies X1, . . . , XN

as N and the time scale n tend to infinity simultaneously.

2.2.2 Estimation of the distribution of the AR coefficient

A statistical problem naturally arises, such as recovering the distribution function
G(x), x ∈ [−1, 1], of the random AR coefficient. Estimation of G from the limit

9



Chapter 2. Literature review

aggregated series {X (0), . . . ,X (n)} was treated in [20,61] and some related results
were obtained in [19, 48, 50]. However, we may expect a much more accurate
estimate if individual series (panel data) are available.

Consider N random-coefficient AR(1) series, each of length n+ 1: {Xi(0), . . . ,

Xi(n)}, i = 1, . . . , N , which are independent copies of X in (2.1). Robinson [92]
suggested to estimate the parameters characterizing G by the method of moments.
[92] identified moments of G in terms of autocovariances of individual random-
coefficient AR(1) processes:

µ(u) :=

∫ 1

−1

xudG(x) =
r(u)− r(u+ 2)

r(0)− r(2)

where r(u) := EX(0)X(u), u = 0, . . . , n, can be estimated by

1

(n− u+ 1)N

n−u∑

t=0

N∑

i=1

Xi(t)Xi(t+ u),

and proved the asymptotic normality of the corresponding estimators of µ(u),
u = 1, . . . , n− 2, as N →∞, whereas n remains fixed, under assumption

∫ 1

−1

dG(x)

(1− x2)2
<∞,

which does not allow for long memory in X and the limit aggregated process X .
Beran et al. [9] considered independent copies Xi, i = 1, 2, . . . , of the process

X = {X(t), t = 0, 1, . . . }, satisfying the AR(1) equation (2.1) for all t ∈ N with
initial value |X(0)| ≤ C, EX(0) = 0, independent of the AR coefficient a and i.i.d.
standard normal innovations {ζ(t), t ∈ N}. Assume that a has a density function
g given by (2.4) with (α, β) ∈ (1,∞)2. (Recall X and the limit aggregated process
X in (2.3) have long memory if β ∈ (1, 2).) Given the panel random-coefficient
AR(1) data {Xi(t), t = 0, . . . , n, i = 1, . . . , N}, [9] estimated (α, β) by the method
of maximum likelihood. The idea of [9] about the likelihood is to replace each
unobservable ai, i = 1, . . . , N , by its estimate, which in turn is a truncated version
of lag 1 sample autocorrelation of the individual AR(1) process:

âi,n,κ := min(max(âi,n, κ), 1− κ), where

âi,n :=

∑n−1
i=0 Xi(t)Xi(t+ 1)∑n

i=0X
2
i (t)

, κ > 0.

[9] proved the consistency of the corresponding maximum likelihood estimator
of (α, β) and its asymptotic normality with the convergence rate

√
N under the

following conditions on the length of series n and the truncation parameter κ:
(log κ)2N−1/2 → 0,

√
Nκmin(α,β) → 0 and

√
Nκ−2n−1 → 0 as N, n→∞, κ→ 0.

10



2.3. Aggregation of network traffic models

[9] is the closest in spirit to Chapter 5, where we discuss nonparametric
estimation of the distribution function G of the AR coefficient from panel random-
coefficient AR(1) data. Furthermore, employing the idea of [9], we consider a
different estimator for moments ofG and prove its asymptotic normality asN, n→
∞ under less restrictive condition on G in contrast to [92].

2.3 Aggregation of network traffic models

To explain the observed self-similarity and LRD in network traffic measurements,
the following model has been proposed. Consider cumulative network traffic as
an aggregate of data streams from a large number of independent sources, where
each source alternates between ON and OFF states depending if it transmits data
(at a constant rate 1) or not. Then it is natural to analyze the total workload
of high-speed network accumulated over time and study the distribution of its
fluctuations around cumulative average.

But firstly, let us introduce the ON/OFF process in a mathematical framework.
Assume the lengths of ON-periods {Xon, X1, X2, . . . } are i.i.d. non-negative r.v.s
and the lengths of OFF-periods {Yoff , Y1, Y2, . . . } are i.i.d. non-negative r.v.s with
the Pareto distribution functions:

Fon(x) := P(Xon ≤ x) = 1− Conx
−αon , αon ∈ (1, 2), (2.5)

Foff(y) := P(Yoff ≤ y) = 1− Coffy
−αoff , αoff ∈ (1, 2),

where Con, Coff are finite positive constants (which can be replaced by arbitrary
slowly varying functions at infinity). Note that Xon, Yoff have finite means µon,
µoff respectively, but their variances are infinite so that to induce LRD in the
ON/OFF process. We define the renewal sequence {Tk, k = 0, 1, . . . } by

Tk :=
k∑

j=0

(Xj + Yj),

X0 := BX̃on, Y0 := BYoff + (1−B)Ỹoff ,

where B is a Bernoulli r.v. with P(B = 1) = 1−P(B = 0) = µon/(µon + µoff) and
X̃on, Ỹoff have distribution functions

P(X̃on ≤ x) =
1

µon

∫ x

0

(1− Fon(u))du, P(Ỹoff ≤ y) =
1

µoff

∫ y

0

(1− Foff(u))du,

respectively. Assume all B, X̃on, Ỹoff , {Xon, X1, X2, . . . }, {Yoff , Y1, Y2, . . . } are
mutually independent. Finally, we define a stationary ON/OFF process W =

11
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{W (t), t ≥ 0} as

W (t) := 1(0 ≤ t < X0) +
∞∑

k=0

1(Tk ≤ t < Tk +Xk+1). (2.6)

In other words, W (t) = 1 if time t is in the ON-period, W (t) = 0 if time t is in the
OFF-period. For αon < αoff , we have r(t) := Cov(W (0),W (t)) ∼ const t−(αon−1)

as t→∞, see [43]. With the covariance function being absolutely nonintegrable,
W exhibits LRD.

Now consider N independent copies Wi, i = 1, . . . , N , of the ON/OFF proces
W = {W (t), t ≥ 0} in (2.6). Let

SN,n(τ) :=

∫ nτ

0

N∑

i=1

Wi(t)dt, τ ≥ 0, (2.7)

be the total accumulated workload from N i.i.d. ON/OFF sources by time τ at
scale n. Taqqu et al. [105] studied the asymptotic behavior of SN,n = {SN,n(τ), τ ≥
0} in the sequential scheme. More precisely, [105] proved that finite-dimensional
distributions of properly normalized and centered SN,n converge weakly to those of
a fractional Brownian motion as first the number N of sources goes to infinity and
then the time scale n converges to infinity. If limits are taken in reversed order,
the limit distribution of properly normalized and centered SN,n corresponds to
an infinite variance αon-stable Lévy motion. The increment process of fractional
Brownian motion, fractional Gaussian noise, exhibits LRD. This is in contrast
to stable Lévy motion, which while self-similar too, has independent increments.
In Mikosch et al. [70], the double limits are replaced by a single scheme as N
and n go to infinity simultaneously. Two limit regimes of fast connection rate
and slow connection rate (see Theorem 2.2(i) and (ii) below, respectively) are
identified. In these two regimes fractional Brownian motion and αon-stable Lévy
motion reappear as limit processes of the scaled centered total ON/OFF workload
accumulated over time. [27] complemented the results of [70] by showing that a
third limit process arises at intermediate connection rate (see Theorem 2.2(iii)).

Theorem 2.2 (Mikosch et al. [70], Dombry, Kaj [27]). Let α := αon < αoff in
(2.5). If N →∞ and n→∞ so that

(i) N/nα−1 →∞, then
SN,n(τ)− ESN,n(τ)

N1/2n(3−α)/2

fdd→ σ∞BH(τ), τ ≥ 0,

where BH = {BH(τ), τ ≥ 0} is a standard fractional Brownian motion with
index H = (3− α)/2 and

σ2
∞ := Con

2µ2
offΓ(2− α)/(α− 1)

(µon + µoff)3Γ(4− α)
;

12
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(ii) N/nα−1 → 0, then

SN,n(τ)− ESN,n(τ)

N1/αn1/α

fdd→ σ0L(τ), τ ≥ 0,

where L = {L(τ), τ ≥ 0} is an α-stable Lévy motion with EeiθL(1) =

exp{−|θ|α(1− i sgn θ tan(πα/2))}, θ ∈ R, and

σ0 :=
µoff(Con/Cα)1/α

(µon + µoff)1+1/α
, Cα :=

1− α
Γ(2− α) cos(πα/2)

;

(iii) N/nα−1 → cα−1(µon + µoff)/Con, then

SN,n(τ)− ESN,n(τ)

n

fdd→ µoff

µon + µoff

cZ(τ/c), τ ≥ 0,

where Z = {Z(τ), τ ≥ 0} is characterized by the cumulant generating func-
tion of its finite-dimensional distributions.

The ‘intermediate’ process Z = {Z(τ), τ ≥ 0} is zero-mean, non-Gaussian
and non-stable with stationary increments. It is not self-similar and has a repre-
sentation as

Z(τ) =

∫

R×R+

{∫ τ

0

1(u ≤ t < u+ x)dt
}
M̃(dx, du),

where M̃(dx, du) := M(dx, du)−αx−α−1dxdu and M(dx, du) is a Poisson random
measure on R+ × R with intensity αx−α−1dxdu. Other properties of Z are dis-
cussed in [34, 35]. In particular, employing the stochastic-integral representation
of Z, Gaigalas [34] showed that the process is locally and globally asymptotically
self-similar with BH and L as its tangent limits. So Z can be viewed as a bridge
between the limiting processes in cases (i) and (ii).

Similar limit theorems as for the ON/OFF hold for other network traffic mod-
els, e.g. renewal-reward process, M/G/∞ queue (or infinite source Poisson pro-
cess), see [54, 55, 68, 70, 83], with Gaigalas, Kaj [35] being the first to obtain the
limit Z at intermediate connection rate for the sum of independent scaled renewal
processes.

In Chapters 3, 4 of the thesis we discuss joint aggregation of type (2.7) for
copies of random-coefficient AR(1) process, which has a very different dependence
structure from the above-mentioned models.

Finally, let us introduce another popular network traffic model related to the
thesis. M/G/∞ queue Wλ = {Wλ(t), t ≥ 0} describes a system where the arrivals
are Markovian, the service times follow some general distribution and there are
infinitely many servers, so jobs do not need to wait. More precisely, letWλ(t) count

13
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the number of active sessions (or sources in the network system) at time t. The
sessions start at times {Tk, k ∈ Z}, which are the points of a rate λ homogeneous
Poisson process on R, and throughout each session data are transmitted at rate
1. Assume the transmission durations (session lengths) {Xk, k ∈ Z} are i.i.d.
r.v.s with the distribution function Fon given by (2.5), independent of the starting
points of sessions. Then we define the workload process Wλ by

Wλ(t) :=
∞∑

k=−∞

1(Tk ≤ t < Tk +Xk), t ≥ 0. (2.8)

Similarly to the ON/OFF case, high variability in transmission durations causes
LRD in the rate at which work is offered: Cov(Wλ(0),Wλ(t)) ∼ const t−(αon−1) as
t→∞. The so-called infinite source Poisson process

Sλ,n(τ) =

∫ nτ

0

Wλ(t)dt, τ ≥ 0,

represents the total accumulated workload by time τ at scale n. Note, as the
session intensity λ → ∞ and n → ∞ simultaneously, normalized and centered
Sλ,n admits the same limits as the total accumulated ON/OFF workload.

In Chapter 7 of the thesis we generalize the network traffic model Wλ in (2.8)
for the situation when the transmission rate is random and bound with its duration
and then study asymptotic behavior of the corresponding aggregated workload.
Moreover, Chapter 7 of the thesis treats a random grain model, whose analogue
in dimension 1 the M/G/∞ queue is.

2.4 Anisotropic scaling of random fields

Let X = {X(t, s), (t, s) ∈ Z2} be a stationary random field (RF). For arbitrary
γ > 0 we study the limit

A−1
λ,γ

[λx]∑

t=1

[λγy]∑

s=1

X(t, s)
fdd→ Vγ(x, y), (x, y) ∈ R2

+, (2.9)

of the partial sums of X over increasing rectangles (0, λx]×(0, λγy]∩Z2 as λ→∞,
where Aλ,γ → ∞ is a normalization. Provided γ 6= 1, the sides of the rectangles
grow at different rates O(λ) and O(λγ) as λ → ∞, thus γ > 0 characterizes the
anisotropy of scaling procedure. Next, let us introduce some general properties of
scaling limits in (2.9).

Proposition 2.3 (Puplinskaitė, Surgailis [90]). Let X = {X(t, s), (t, s) ∈ Z2} be
a stationary RF satisfying (2.9) for some γ > 0 and Aλ,γ = λH`(λ), where H > 0

14
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and ` : [1,∞) → R+ is a slowly varying function at infinity. Then the limit RF
Vγ = {Vγ(x, y), (x, y) ∈ R2

+} in (2.9) satisfies the operator-scaling property:

{Vγ(λx, λγy), (x, y) ∈ R2
+}

fdd
= {λHVγ(x, y), (x, y) ∈ R2

+} for all λ > 0. (2.10)

Moreover, Vγ has stationary rectangular increments: for any fixed (x0, y0) ∈ R2
+,

{Vγ((x0, x]× (y0, y]), x > x0, y > y0}
fdd
= {Vγ((0, x− x0]× (0, y − y0]), x > x0, y > y0}
≡ {Vγ(x− x0, y − y0), x > x0, y > y0},

where the increment of Vγ on a rectangle (x0, x] × (y0, y] ⊂ R2
+ is defined as

Vγ((x0, x]× (y0, y]) := Vγ(x, y)− Vγ(x0, y)− Vγ(x, y0) + Vγ(x0, y0).

Note (2.10) is a particular case of the operator-scaling RF property introduced
in Biermé et al. [12].

For many RFs, nontrivial Vγ in (2.9) exists for any γ > 0. In that case, with
a given RF X we can associate a one-parameter family {Vγ, γ > 0} of scaling
limits, which characterizes the dependence structure and large-scale properties of
the underlying X. If {X(t, s), (t, s) ∈ Z2} are i.i.d. standardized r.v.s, the scaling
limit Vγ coincides with a standard Brownian sheet for all γ > 0, i.e. {Vγ, γ > 0}
consists of a single element. A similar fact holds for SRD RFs, see e.g. [15, 31]
and the references therein. Actually, limit theorems for SRD RFs often assume
a general shape of summation domain, the limit distribution being independent
of the way in which this region tends to Z2. However, a surprising phenomenon
appears for many LRD RFs X, which exhibit a dramatic change of their scaling
behavior at some point γ0 > 0 in the following sense.

Definition 2.2 (Puplinskaitė, Surgailis [90]). We say that the RF X = {X(t, s),

(t, s) ∈ Z2} exhibits a scaling transition at γ0 > 0 such that

Vγ
fdd
= V+ for all γ > γ0, Vγ

fdd
= V− for all 0 < γ < γ0, (2.11)

V+

fdd
6= aV− for any a > 0.

If Vγ is the same for all γ > 0, then X does not exhibit scaling transition.

In other words, (2.11) says that scaling limits Vγ do not depend on γ for γ > γ+

and γ < γ− and are different up to a multiplicative constant (the last condition
is needed to exclude a trivial change of the scaling limit by a linear change of
normalization).
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Scaling transition arises under joint temporal and contemporaneous aggrega-
tion of independent LRD processes in communication networks and economics, see
[27,35,55,70,79], also [90, Remark 2.3]. E.g., let {Xi(t) := Wi(t)−EWi(t), t ≥ 0},
i = 1, 2, . . . , be independent copies of a centered ON/OFF process given by (2.6)
with αon < αoff . Align them vertically to define a RF X = {Xi(t), t ≥ 0, i =

1, 2, . . . } with ‘one-dimensional dependence’, exhibiting scaling transition, since
the limit distribution in

A−1
λ,γ

∫ λτ

0

[λγy]∑

i=1

Xi(t)dt
fdd→ Vγ(τ, y), (τ, y) ∈ R2

+, as λ→∞,

changes from a stable Lévy sheet for 0 < γ < γ0 to a fractional Brownian sheet for
γ > γ0 := αon − 1. Indeed, since Vγ has stationary rectangular increments, which
are independent in the vertical direction, the limit process {Vγ(τ, 1), τ ≥ 0} arising
in Theorem 2.2(i)–(iii) determines the distribution of Vγ for γ > γ0, 0 < γ < γ0

and γ = γ0, respectively. We observe that for the individual ON/OFF process W ,
its properly normalized and centered partial sums process tends to a stable Lévy
motion, though W itself has a finite second moment and exhibits LRD. We can
expect to obtain scaling transition for independent copies of other LRD processes
if asymptotic behaviour of their partial sums differs from fractional Brownian
motion.

Recently, scaling transition has been observed for some classes of LRD Gaus-
sian and aggregated nearest-neighbor autoregressive RFs on Z2 in [89, 90]. In a
more general way, the phenomenon has appeared for some RF on Zd with d ≥ 2

in [10]. We summarize briefly the results of [89].
LetX = {X(t, s), (t, s) ∈ Z2} be a real-valued stationary Gaussian RF, having

the spectral representation

X(t, s) :=

∫

[−π,π]2
ei(tu+sv)

√
f(u, v)Z(du, dv), (2.12)

where Z(du, dv) is a complex-valued Gaussian random measure on [−π, π]2 with
zero mean and variance E|Z(du, dv)|2 = dudv and the spectral density is given
by

f(u, v) =
g(u, v)

(|u|2 + |v|2h2/h1)h1/2
, (u, v) ∈ [−π, π]2,

where 0 < h1 ≤ h2 < ∞, hi 6= 1, i = 1, 2,
∑2

i=1 1/hi > 1 and g ≥ 0 is bounded
and continuous at the origin with g(0, 0) > 0.

Recall that a zero-mean Gaussian RF BH1,H2 = {BH1,H2(x, y), (x, y) ∈ R2
+} is
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a standard fractional Brownian sheet with Hurst index (H1, H2) ∈ (0, 1]2 if

EBH1,H2(x1, x2)BH1,H2(y1, y2) =
1

22

2∏

i=1

(x2Hi
i + y2Hi

i − |xi − yi|2Hi).

Theorem 2.4 (Puplinskaitė, Surgailis [89]). Assume X = {X(t, s), (t, s) ∈ Z2}
in (2.12) and set γ0 := h1/h2. Then for any γ > 0 the limit in (2.9) exists with

Vγ :=





V+, γ > γ0,

V−, γ < γ0,

Vγ0 , γ = γ0,

H(γ) :=





H+
1 + γ/2, h1 < 1, γ ≥ γ0,

1 + γH+
2 , h1 > 1, γ ≥ γ0,

1/2 + γH−2 , h2 < 1, γ ≤ γ0,

H−1 + γ, h2 > 1, γ ≤ γ0;

where H+
1 = (1 + h1)/2, H+

2 = (1 + h2 − h2/h1)/2, H−2 = (1 + h2)/2, H−1 =

(1 + h1 − h1/h2)/2 and

V+ := σ+
h1,h2




BH+

1 ,1/2
, h1 < 1,

B1,H+
2
, h1 > 1;

V− := σ−h1,h2




B1/2,H−2

, h2 < 1,

BH−1 ,1
, h2 > 1;

and σ±h1,h2
are some positive constants and Vγ0 is a Gaussian RF given by its

spectral representation. As a consequence, the RF X exhibits scaling transition at
γ0 = h1/h2.

In Theorem 2.4 the RFs V+ and V− have either independent, or invariant
(completely dependent) rectangular increments along one of the coordinate axes,
whereas Vγ0 inherits the dependence structure of the underlying X. This property
of increments is characteristic of limits V± in the presence of scaling transition.

However, for another class of LRD Gaussian RFs, [89] proved the absence of
scaling transition. To be precise, if X is defined by (2.12) with a spectral density
given by

f(u, v) =
g(u, v)

|u|2d1|v|2d2
, (u, v) ∈ [−π, π]2,

where 0 < di < 1/2, i = 1, 2, and g ≥ 0 is bounded and continuous at the origin
with g(0, 0) > 0, then, for all γ > 0, the scaling limit of X in (2.9) coincides with
a fractional Brownian sheet with Hurst index (d1 + 1/2, d2 + 1/2).

Results of this type contribute to the large-sample theory of strongly dependent
spatial data by showing that the limit distribution of simple statistics such as the
sample mean may depend on the relation between γ and γ0. And if so, these
quantities need to be estimated or decided in advance before applying the limit
theorem.
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Although general properties of {Vγ, γ > 0} are of interest, in the thesis we
focus on describing the anisotropic scaling limits for specific classes of RFs, see
Chapters 6, 7.
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Chapter 3

Aggregation of independent
AR(1) processes

This chapter contains the article [79]. We discuss joint temporal and contem-
poraneous aggregation of N independent copies of AR(1) process with random-
coefficient a ∈ [0, 1) when N and time scale n increase at different rate. Assuming
that a has a density, regularly varying at a = 1 with exponent −1 < β < 1, dif-
ferent joint limits of normalized aggregated partial sums are shown to exist when
N1/(1+β)/n tends to (i)∞, (ii) 0, (iii) 0 < µ <∞. The limit process arising under
(iii) admits a Poisson integral representation on (0,∞)×C(R) and enjoys ‘inter-
mediate’ properties between fractional Brownian motion or random line limit in
(i) and sub-Gaussian limit in (ii).

3.1 Introduction

Since macroeconomic time series are obtained by aggregation of microeconomic
variables, an important issue in econometrics is establishing the relationship be-
tween individual (micro) and aggregate (macro) models. One of the simplest
aggregation schemes deals with contemporaneous aggregation of N independent
copies Xi := {Xi(t), t ∈ Z}, i = 1, . . . , N , of stationary random-coefficient AR(1)
process

X(t) = aX(t− 1) + ε(t), t ∈ Z, (3.1)

with standardized i.i.d. innovations {ε(t), t ∈ Z} and a random coefficient a ∈
[0, 1), independent of {ε(t), t ∈ Z} and such that E(1 − a)−1 < ∞. The limit
aggregated process

N−1/2

N∑

i=1

Xi(t)
fdd→ X (t), t ∈ Z, (3.2)
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exists in the sense of weak convergence of finite-dimensional distributions, and is
a Gaussian process with zero mean and covariance function

E[X (0)X (t)] = E[X(0)X(t)] = E
[ a|t|

1− a2

]
, t ∈ Z. (3.3)

Granger [40] observed that for a particular type of beta-distributed random co-
efficient a, the processes X and X may have slowly decaying autocovariance
functions similarly as in the case of ARFIMA models while normalized partial
sums of X tend to a fractional Brownian motion. Further results on aggrega-
tion of autoregressive models with finite variance were obtained in Gonçalves and
Gouriéroux [39], Zaffaroni [111], Oppenheim and Viano [74], Celov et al. [19] and
other papers. In economic interpretation, individual processes Xi, i = 1, . . . , N ,
in (3.2) are obtained by random sampling from a huge and heterogeneous ‘popu-
lation’ of independent ‘microagents’, each evolving according to a short memory
AR(1) process with its own deterministic parameter a ∈ [0, 1), the population be-
ing characterized by the distribution (frequency) of a across the population. Thus,
aggregation of (randomly sampled) short memory processes may provide an ex-
planation of long memory in observed macroeconomic time series. See also [8,
page 85], [111], [112, page 238].

In this chapter we consider the limit behavior of sums

SN,n(τ) :=
N∑

i=1

[nτ ]∑

t=1

Xi(t), τ ≥ 0, (3.4)

where Xi, i = 1, . . . , N , are the same as in (3.2). The sum in (3.4) represents
joint temporal and contemporaneous aggregate of N individual AR(1) evolu-
tions (3.1) at time scale n. Our main object is the joint aggregation limit of
{A−1

N,nSN,n(τ), τ ≥ 0} in distribution, where AN,n are some normalizing constants
and both N and n increase to infinity, possibly at different rate. We also discuss
the iterated limits of {A−1

N,nSN,n(τ), τ ≥ 0} when first n→∞ and then N →∞,
and vice-versa. Related problems for some network traffic models were studied
in Willinger et al. [110], Taqqu et al. [105], Mikosch et al. [70], Gaigalas and
Kaj [35], Pipiras et al. [83], Dombry and Kaj [27] and other papers. In these pa-
pers, the role of AR(1) processes Xi in (3.4) is played by independent and centered
ON/OFF processes, renewal or renewal-reward processes, or M/G/∞ queues with
heavy-tailed activity periods.

Let us describe the main results of this chapter. Similarly to [88, 111], we
assume that the r.v. a ∈ [0, 1) in (3.1), or the mixing distribution, has a probability
density function φ such that

φ(x) = ψ(x)(1− x)β, x ∈ [0, 1), (3.5)
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where β > −1 and ψ is an integrable function on [0, 1) having a limit limx→1 ψ(x)

= ψ1 > 0. Under the above condition with 0 < β < 1, it immediately follows from
the Tauberian theorem [33, Chapter 13, §5, Theorem 3] that the covariance in (3.3)
decays as ct−β, t → ∞, with c = (ψ1/2)Γ(β), implying that partial sums of the
Gaussian process X in (3.2) normalized by nH withH := 1−(β/2) ∈ (1/2, 1), tend
to a fractional Brownian motion BH with Hurst parameter H (see [103]). Hence
it follows that BH coincides with the iterated limit of {n−HN−1/2SN,n(τ), τ ≥ 0}
when N → ∞ first, followed by n → ∞. However, when the order of the above
limits is reversed, the limit is a sub-Gaussian (1 + β)-stable process defined in
(3.11). See Theorem 3.1 for rigorous formulations.

Let now N, n increase simultaneously so as

N1/(1+β)

n
→ µ ∈ [0,∞], (3.6)

leading to the three cases (i)–(iii):

Case (i): µ =∞, Case (ii): µ = 0, Case (iii): 0 < µ <∞. (3.7)

Our main result is Theorem 3.2 which says that under (3.5) and (3.6), the ‘si-
multaneous limit’ of {A−1

N,nSN,n(τ), τ ≥ 0} exists and is different in all three
Cases (i)–(iii), namely, it agrees with the above iterated limits in the extreme
Cases (i) and (ii), while in Case (iii) it is written as {µ1/2Z(τ/µ), τ ≥ 0}, where
the process Z corresponding to ‘intermediate scaling’ in (iii) is defined in (3.31)
as a stochastic integral w.r.t. a Poisson random measure on the product space
R+ × C(R) with mean ψ1x

βdx× PB, where PB is the Wiener measure on C(R).
This process enjoys several ‘intermediate’ properties between the limits in (i) and
(ii) and is discussed in Section 3.3 in detail.

Theorems 3.1 and 3.2 can be compared to the results in [27, 35, 55, 70, 83]
and other papers, with [55] probably being the closest in spirit to the present
work. In particular, Mikosch et al. [70] discuss the ‘total accumulated input’
AN,n := {∑N

i=1

∫ nτ
0
Wi(t)dt, τ ≥ 0} from N independent ‘sources’ at time scale

n. The aggregated inputs Wi, i = 1, . . . , N , are i.i.d. copies of ON/OFF process
W := {W (t), t ≥ 0}, alternating between 1 and 0 and taking value 1 if t is in
an ON-period and 0 if t is in an OFF-period, the ON- and OFF-periods forming
a stationary renewal process having heavy-tailed lengths with respective tail pa-
rameters αon, αoff ∈ (1, 2), αon < αoff , see [70] for details. The role of condition
(3.6) is played in the above papers by

N

nαon−1
→ µ ∈ [0,∞],
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Chapter 3. Aggregation of independent AR(1) processes

leading to the three cases analogous to (3.7):

Case (i’): µ =∞, Case (ii’): µ = 0, Case (iii’): 0 < µ <∞,

known as the ‘fast growth condition’, the ‘slow growth condition’ and the ‘inter-
mediate growth condition’, respectively. The limit of (normalized) ‘accumulated
input’ AN,n in Cases (i’) and (ii’) was obtained in [70], as fractional Brownian
motion and αon-stable Lévy process, respectively. The ‘intermediate’ limit in
Case (iii’) was identified in [34, 35] and [27] who showed that this process can be
regarded as a ‘bridge’ between the limiting processes in Cases (i’) and (ii’), and
can be represented as a stochastic integral w.r.t. a Poisson random measure on
R+×R, see (3.49), although distinctly different from the corresponding process Z
arising in Case (iii). Related results for some other heavy-tailed duration-based
models were obtained in [52,55,68,83] and elsewhere.

The differences between the respective limiting processes in this chapter and
the above mentioned works can be partially explained by the fact that the ‘memory
mechanism’, or dependence structure, of the AR(1) model is very different from
that of telecommunication models. Contrary to the latter models, the random-
coefficient AR(1) process is non-ergodic (each individual Xi picks a random value
a and sticks to it forever), the long memory being a consequence of a sufficiently
high concentration of a’s near the unit root 1. This ‘memory mechanism’ is
very different from the M/G/∞ model where each session gets its own duration
and the long memory is essentially due to the occurrence of a few very long
durations. The above differences are reflected in different limit behaviors of the
partial sums of the individual processes (a discontinuous stable Lévy process with
independent increments in the latter case and a continuous sub-Gaussian process
with conditionally independent and unconditionally dependent increments in the
former case), extending also to the ‘slow growth’ limits in (ii) and (ii’). On the
other hand, the ‘fast growth’ limits in (i) and (i’) coincide up to a choice of
parameters, since in both cases Gaussian fluctuations play a dominating role.

In the above context, an interesting open problem concerns possible existence
and description of an ‘intermediate limit regime’ for double sums (3.4), where
Xi, i = 1, 2, . . . , are general independent and identically distributed processes
such that the iterated limits of (3.4) exist and are different. A particular case
of such Xi is the regime-switching AR(1) process with covariance long memory
and Lévy stable partial sums behavior studied in [62, 65]. This process is of par-
ticular interest since it combines the dependence structures of random-coefficient
AR(1) and duration models. Other possible generalizations of our results con-
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cern random-coefficient AR(1) process with infinite variance [88] and/or common
innovations [87,111], autoregressive random fields [90]. See also Remark 3.5.

3.2 Main results

Let {ε, ε(t), t ∈ Z} be i.i.d. r.v.s with Eε = 0, Eε2 = 1, and a ∈ [0, 1) be a r.v.
independent of {ε(t), t ∈ Z}. It is easy to show [88, Proposition 2.1] that there
exists a unique stationary solution to the AR(1) equation (3.1) given by

X(t) =
∞∑

k=0

akε(t− k), t ∈ Z. (3.8)

The series in (3.8) converges conditionally almost surely and in L2 given a ∈ [0, 1).
Moreover, if

E
[ 1

1− a
]
<∞,

then the series in (3.8) converges in L2 and defines a stationary process with zero
mean and covariance in (3.3).

Consider the following stochastic integral representation of a fractional Brow-
nian motion B1−(β/2) := {B1−(β/2)(τ), τ ≥ 0}:

B1−(β/2)(τ) :=

∫

R+×R
(f(x, τ − s)− f(x,−s))Z(dx, ds), where (3.9)

f(x, t) :=





(1− e−xt)/x, if x > 0 and t > 0,

0, otherwise,

w.r.t. a Gaussian random measure Z(dx, ds) on R+ × R with zero mean, vari-
ance ν(dx, ds) := ψ1x

βdxds and the characteristic function E exp{iθZ(A)} =

exp{−θ2ν(A)/2} for each Borel set A ⊂ R+ ×R with ν(A) <∞. Here 0 < β < 1

and ψ1 is the asymptotic constant from (3.5). The representation (3.9) appeared
in Puplinskaitė and Surgailis [88, equation (1.5)], as a particular case of a new
class of stable self-similar processes. It is related to the superposition of Ornstein-
Uhlenbeck processes discussed in Barndorff-Nielsen [6, Section 6], see also Sec-
tion 3.3. It easily follows that

EB1−(β/2)(u)B1−(β/2)(v)

=

∫

R+×R
(f(x, u− s)− f(x,−s))(f(x, v − s)− f(x,−s))ν(dx, ds)

=
Γ(β)ψ1

2(2− β)(1− β)
(u2−β + v2−β − |u− v|2−β), u, v ≥ 0. (3.10)
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Chapter 3. Aggregation of independent AR(1) processes

When−1 < β < 0, let Vβ be a symmetric 2(1+β)-stable r.v. with characteristic
function given in Proposition 3.5(ii). Let V0

d
= N (0, ψ1/2) be a normal r.v. Thus,

the process {Vβτ, τ ≥ 0} is a random 2(1 + β)-stable line for any −1 < β ≤ 0.
Next, let Wβ > 0, −1 < β < 1, be a (1 + β)/2-stable r.v. with Laplace

transform Ee−θWβ = exp{−kβθ(1+β)/2}, θ ≥ 0, and kβ > 0 defined at (3.60). Let
{B(τ), τ ≥ 0} be a standard Brownian motion, EB2(τ) = τ , independent of r.v.
Wβ. The process

Wβ(τ) := W
1/2
β B(τ), τ ≥ 0, (3.11)

has (1 +β)-stable finite-dimensional distributions and stationary increments. Ac-
cording to the terminology in [96, Section 3.8], Wβ is called a sub-Gaussian pro-
cess.

Finally, we define a random process Zβ := {Zβ(τ), τ ≥ 0} depending on
parameter −1 < β < 1, through its finite-dimensional characteristic function:

E exp
{

i
m∑

j=1

θjZβ(τj)
}

= exp
{
ψ1

∫

R+

(
e−

1
2

∫
R(

∑m
j=1 θj(f(x,τj−s)−f(x,−s)))2ds − 1

)
xβdx

}
, (3.12)

where θj ∈ R, τj ∈ R+, j = 1, . . . ,m, m ∈ N, and f is given in (3.9). A Poisson
stochastic integral representation and various properties of Zβ are discussed in
Section 3.3.

In Theorems 3.1 and 3.2, SN,n(τ) is the double sum in (3.4) of independent
copies of the random-coefficient AR(1) process X (3.8) and the mixing density
satisfies (3.5).

Theorem 3.1. The iterated limits of the normalized aggregated partial sums pro-
cess SN,n are given by

(fdd) lim
n→∞

lim
N→∞

n(β/2)−1N−1/2SN,n(τ) = B1−(β/2)(τ) if β ∈ (0, 1),(3.13)

(fdd) lim
n→∞

lim
N→∞

n−1N−1/2(1+β)SN,n(τ) = Vβτ if β ∈ (−1, 0), (3.14)

(fdd) lim
n→∞

lim
N→∞

n−1(N logN)−1/2SN,n(τ) = V0τ if β = 0, (3.15)

(fdd) lim
N→∞

lim
n→∞

N−1/(1+β)n−1/2SN,n(τ) = Wβ(τ) if β ∈ (−1, 1). (3.16)

Theorem 3.2. The simultaneous limits of the normalized aggregated partial sums
process SN,n when N, n→∞ as in (3.6) are given in respective Cases (i)–(iii) of
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(3.7) by

N−1/2n−1+(β/2)SN,n(τ)
fdd→ B1−(β/2)(τ) in Case (i) if β ∈ (0, 1), (3.17)

N−1/2(1+β)n−1SN,n(τ)
fdd→ Vβτ in Case (i) if β ∈ (−1, 0), (3.18)

(N log(N/n))−1/2n−1SN,n(τ)
fdd→ V0τ in Case (i) if β = 0, (3.19)

N−1/(1+β)n−1/2SN,n(τ)
fdd→Wβ(τ) in Case (ii) if β ∈ (−1, 1), (3.20)

N−1/(1+β)n−1/2SN,n(τ)
fdd→ µ1/2Zβ(τ/µ) in Case (iii) if β ∈ (−1, 1). (3.21)

Since higher β means smaller chances for the individual AR(1) process being
close to the unit root a = 1, hence having less memory, it is natural to expect
that this tendency should be reflected in the limit behavior of the partial sums
SN,n. It is most clearly seen in (3.17), as the ‘memory’ of the fractional Brownian
motion B1−(β/2) decreases with β increasing. On the other hand, in (3.18) and
(3.20), a change of β does not alter the dependence structure of the limit processes
Vβτ and Wβ but rather affects their variability since β is directly related to the
stability index of these processes. These tendencies can be also observed although
less clearly in the ‘intermediate’ limit of (3.21). However, when β > 1 these
differences disappear and the joint limit of the partial sums process is a usual
Brownian motion independent of β and the mutual increase rate of N and n; see
below.

Theorem 3.3. Let β > 1. Then, as N, n→∞ in arbitrary way,

N−1/2n−1/2SN,n(τ)
fdd→ σB(τ) with σ2 := E(1− a)−2 <∞.

Remark 3.1. The question about weak convergence in the Skorohod spaceD[0, 1]

in Theorems 3.1–3.3 remains generally open, although in some cases ((3.13),
(3.17)) the weak convergence follows rather easily by the Kolmogorov criterion.

3.3 The ‘intermediate’ process

This section discusses the definition and various properties of the process Zβ
arising in the ‘intermediate’ limit (iii) of Theorem 3.2. Let X be a measur-
able space with a σ-finite measure µ defined on a σ-algebra F(X) of measur-
able subsets of X. Let M be a Poisson random measure on X with mean µ

and M̃ = M− µ be the centered Poisson random measure. The stochastic in-
tegrals

∫
X
f(x)M(dx) ≡

∫
f(x)M(dx) and

∫
X
f(x)M̃(dx) ≡

∫
f(x)M̃(dx) are

defined for any measurable function f : X → R with
∫

1 ∧ |f(x)|µ(dx) < ∞
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and
∫
|f(x)| ∧ |f(x)|2µ(dx) <∞, respectively, as limits in probability of suitable

integral sums, and their characteristic functions are given by

Eeiθ
∫
f(x)M(dx) = exp

{∫
(eiθf(x) − 1)µ(dx)

}
,

Eeiθ
∫
f(x)M̃(dx) = exp

{∫
(eiθf(x) − 1− iθf(x))µ(dx)

}
, θ ∈ R. (3.22)

We have E
∫
f(x)M̃(dx) = 0, f ∈ L1(X), and E[

∫
f(x)M̃(dx)]2 =

∫
f 2(x)µ(dx),

f ∈ L2(X). Moreover,

E
∣∣∣
∫
f(x)M̃(dx)

∣∣∣
p

<∞⇐⇒





∫
(|f(x)|2 ∧ |f(x)|p)µ(dx) <∞, 1 ≤ p ≤ 2,

∫
(|f(x)|2 ∨ |f(x)|p)µ(dx) <∞, p ≥ 2;

(3.23)
see Rajput and Rosinski [91], while

E
∣∣∣
∫
f(x)M(dx)

∣∣∣
p

≤ C(p)‖f‖pp, 0 < p ≤ 1,

E
∣∣∣
∫
f(x)M̃(dx)

∣∣∣
p

≤ C(p)‖f‖pp, 1 ≤ p ≤ 2, (3.24)

where ‖f‖pp :=
∫
X
|f(x)|pµ(dx) and the constant C(p) <∞ depends only on p. For

step functions f =
∑∞

j=1 fj1(· ∈ Aj) ∈ Lp(X) taking values fj ∈ R on Aj ∈ F(X)

with µ(Aj) < ∞, the first inequality of (3.24) with C(p) = 1 follows from
|∑∞j=1 fjM(Aj)|p ≤

∑∞
j=1 |fj|p|M(Aj)|p and E|M(Aj)|p ≤ EM(Aj) = µ(Aj).

The second inequality of (3.24) with C(p) = 22−p ≤ 2 is obtained in [99, Theo-
rem 3.1], by interpolation between L1(X) and L2(X).

Consider a family of ‘elementary’ integrated Ornstein-Uhlenbeck processes

z(τ ;x) :=

∫ τ

0

du

∫

R
e−x(u−s)1(u > s)dB(s)

=

∫

R

(
f(x, τ − s)− f(x,−s)

)
dB(s), τ ∈ R, x > 0, (3.25)

where B := {B(s), s ∈ R} is a standard Brownian motion and f is defined in (3.9).
For each x > 0 the process {z(τ ;x), τ ∈ R} is a.s. continuously differentiable on
R and its derivative z′(τ ;x) = dz(τ ;x)/dτ satisfies the Langevin equation

dz′(τ ;x) = −xz′(τ ;x)dτ + dB(τ). (3.26)

Accordingly, the joint characteristic function of z(τj;xj), τj ∈ R, xj ∈ R, j =

1, . . . ,m, m ∈ N, is given by

E exp
{

i
m∑

j=1

θjz(τj;xj)
}

= exp
{
− 1

2

∫

R

( m∑

j=1

θj
(
f(xj, τj − s)− f(xj,−s)

))2

ds
}
. (3.27)
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3.3. The ‘intermediate’ process

W.l.g., we may assume that the process {z(τ ;x), τ ∈ R, x > 0} is defined on
the space C(R) equipped with the Wiener measure PB induced by the Brownian
motion B. In other words, for any cylinder set A = {ζ(·) ∈ C(R) : ζ(τj) ∈ Ij, j =

1, . . . ,m}, τj ∈ R, and intervals Ij ⊂ R, j = 1, . . . ,m, we have

PB(A) = P(B(τj) ∈ Ij, j = 1, . . . ,m). (3.28)

Let M(dx, dB) be a Poisson random measure on the product space R+ × C(R)

with the mean

µ(dx, dB) = EM(dx, dB) = ψ1x
βdx× PB(dB(·)), (3.29)

where PB is defined at (3.28), and let

M̃(dx, dB) :=M(dx, dB)− µ(dx, dB)

be the centered Poisson measure. Then, Zβ is defined as a stochastic integral with
respect to the above Poisson measure:

Zβ(τ) :=

∫

(0,1)×C(R)

z(τ ;x)M(dx, dB) +

∫

[1,∞)×C(R)

z(τ ;x)M̃(dx, dB), τ ≥ 0,

(3.30)
As shown below, for −1/2 < β < 1 the two integrals can be combined into a single
one:

Zβ(τ) =

∫

R+×C(R)

z(τ ;x)M̃(dx, dB) (3.31)

=

∫

R+×C(R)

{∫

R

(
f(x, τ − s)− f(x,−s)

)
dB(s)

}
M̃(dx, dB).

Proposition 3.4. (i) The process Zβ in (3.30) is well-defined for any −1 < β < 1.
It has stationary increments, infinitely divisible finite-dimensional distributions
and the joint characteristic function is given in (3.12).
(ii) E|Zβ(τ)|p < ∞ for any p < 2(1 + β), 0 < p < 4, and EZβ(τ) = 0 for
−1/2 < β < 1.
(iii) If 0 < β < 1 then EZ2

β(τ) <∞ and

E[Zβ(τ1)Zβ(τ2)] =
Γ(β)ψ1

2(2− β)(1− β)
(τ 2−β

1 +τ 2−β
2 −|τ1−τ2|2−β), τ1, τ2 ≥ 0. (3.32)

(iv) For −1/2 < β < 1, the process Zβ in (3.31) has a.s. continuous trajectories.

Proof. (i) It suffices to check that I1 :=
∫

(0,1)×C(R)
µ(dx, dB) = C

∫ 1

0
xβdx < ∞

and I2 :=
∫

[1,∞)×C(R)
|z(τ ;x)|2 µ(dx, dB) = C

∫∞
1

EB|z(τ ;x)|2xβdx <∞. We have
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EB|z(τ ;x)|2 = σ2(τ ;x), where

σ2(τ ;x) :=

∫ τ

−∞

(
f(x, τ − s)− f(x,−s)

)2
ds ≤ C

((xτ) ∧ (xτ)3

x3
+

(1− e−xτ )2

x3

)

≤ C
((xτ) ∧ (xτ)3

x3
+

1 ∧ (xτ)2

x3

)
≤ Cτ

x2
(1 ∧ (τx)). (3.33)

Thus, I2 < ∞ when β < 1. (3.12) follows from (3.22), (3.27) and Ez(τ ;x) = 0.

The stationarity of increments is immediate from (3.12).

(ii) Obviously, it suffices to show E|Zβ(τ)|p <∞ for p < 2(1+β) sufficiently close
to 2(1 +β) such that 1 +β < p < 2(1 +β). Let first 0 < p ≤ 2. Then using (3.24)
we have E|Zβ(τ)|p ≤ C

∫∞
0

EB|z(τ ;x)|pxβdx. Since z(τ ;x)
d
= N (0, σ2(τ ;x)), we

have EB|z(τ ;x)|p ≤ C|σ(τ ;x)|p and hence from (3.33) we obtain

E|Zβ(τ)|p ≤ Cτ p/2
∫ ∞

0

[1 ∧ (xτ)

x2

]p/2
xβdx = Cτ (3p/2)−1−β <∞. (3.34)

Next, let p > 2. Then E|Zβ(τ)|p <∞ follows from (3.23) and
∫ ∞

0

xβdxEB

[
|z(τ ;x)|p ∨ |z(τ ;x)|2

]
≤ C

∫ ∞

0

(
|σ(τ ;x)|p + |σ(τ ;x)|2

)
xβdx <∞

according to (3.34). The fact that (3.34) holds for p = 1 < 2(1 + β) implies
EZβ(τ) = 0 for −1/2 < β < 1.

(iii) From (3.31), (3.25) and (3.10) we have that for any τ ≥ 0

EZ2
β(τ) =

∫

R+×R
(f(x, τ − s)− f(x,−s))2ν(dx, ds)

= EB2
1−β/2(τ) =

Γ(β)ψ1

(2− β)(1− β)
τ 2−β,

hence (3.32) follows from (3.10).

(iv) From (3.34) and stationarity of increments, for −1/2 < β < 1 and 1 < p <

2(1 + β) sufficiently close to 2(1 + β), we have that E|Zβ(τ + h) − Zβ(τ)|p ≤
Ch(3p/2)−1−β for any τ, h ≥ 0. Since (3p/2)− 1− β > 1, the Kolmogorov criterion
applies, yielding the a.s. continuity of (3.31). Proposition 3.4 is proved.

Remark 3.2. Let M2(dx, dB) be a Gaussian random measure on R+ × C(R)

with zero mean and variance µ(dx, dB) in (3.29). From Proposition 3.4(iii) it
follows that for 0 < β < 1 the corresponding Gaussian integral of (3.31) is a
representation of fractional Brownian motion:

B1−β/2(τ)
fdd
=

∫

R+×C(R)

z(τ ;x)M2(dx, dB).

28



3.3. The ‘intermediate’ process

Remark 3.3. As noted in [96], the sub-Gaussian process Wβ (3.11) admits a
stochastic integral representation

Wβ(τ)
fdd
=

∫

C(R+)

B(τ)N (dB)

w.r.t. symmetric (1+β)-stable random measureN on C(R+) with control measure
ν := cβPB, where PB is the Wiener measure, see (3.28), and cβ := ψ1π/2 sin(π(1+

β)/2)Γ(2+β). The processWβ can be further represented as a stochastic integral
w.r.t. the Poisson random measureM(dx, dB) on R+ × C(R+) in (3.29), viz.,

Wβ(τ)
fdd
=

∫

(0,1)×C(R+)

B(τ)

x
M(dx, dB) +

∫

[1,∞)×C(R+)

B(τ)

x
M̃(dx, dB).

Remark 3.4. Curiously enough, the 2(1 + β)-stable r.v. Vβ in Theorem 3.1(ii)
(see Proposition 3.5(ii) below) can be also represented as a stochastic integral
w.r.t. the Poisson measureM(dx, dB):

Vβ
d
=

∫

(0,1)×C(R)

z′(1;x)M(dx, dB) +

∫

[1,∞)×C(R)

z′(1;x)M̃(dx, dB),

where {z′(τ ;x)} is the stationary Ornstein-Uhlenbeck process in (3.26).

The following proposition describes local and global scaling behavior of the
process Zβ.

Proposition 3.5. Let Zβ be defined as in (3.31).
(i) Let 0 < β < 1. Then

b−1+β/2(Zβ(τ + bu)−Zβ(τ))
fdd→ B1−β/2(u) as b→ 0.

(ii) Let −1 < β < 0. Then

b−1(Zβ(τ + bu)−Zβ(τ))
fdd→ uVβ as b→ 0,

where Vβ is a 2(1 + β)-stable r.v. with characteristic function

EeiθVβ = e−Kβ |θ|
2(1+β)

, Kβ :=
ψ1Γ(−β)

41+β(1 + β)
.

(iii) Let β = 0. Then

(b log1/2(1/b))−1(Zβ(τ + bu)−Zβ(τ))
fdd→ uV0 as b→ 0,

where V0
d
= N (0, ψ1/2) is a Gaussian r.v. with variance ψ1/2.

(iv) Let −1 < β < 1. Then

b−1/2Zβ(bτ)
fdd→Wβ(τ) as b→∞.
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Proof. (i) By stationarity of increments, it suffices to prove the convergence for
τ = 0, or E exp{i∑m

j=1 θjb
−1+β/2Zβ(buj)} → E exp{i∑m

j=1 θjB1−β/2(uj)} for any
uj ∈ R+, θj ∈ R, m ∈ N. Using (3.12) and (3.9), the last convergence follows
from

∫ ∞

0

(
1− exp

{
− bβ−2

2

∫

R

∣∣∣
m∑

j=1

θj(f(x, buj − s)− f(x,−s))
∣∣∣
2

ds
})
xβdx

→ 1

2

∫

R+×R

∣∣∣
m∑

j=1

θj(f(x, uj − s)− f(x,−s))
∣∣∣
2

xβdxds. (3.35)

Using the scaling property f(x/b, bs) = bf(x, s) of f in (3.9), the l.h.s. of (3.35) can
be rewritten as

b−1−β
∫ ∞

0

(
1− exp

{
− b1+β

2

∫

R

∣∣∣
m∑

j=1

θj(f(x, uj − s)− f(x,−s))
∣∣∣
2

ds
})
xβdx

and the convergence in (3.35) follows from b−1−β(1 − e−b
1+βI) → I (b → 0) and

the dominated convergence theorem, since 0 ≤ 1− e−x ≤ x for any x ≥ 0 and the
integral on the r.h.s. of (3.35) converges. This proves part (i).

(ii) Using the notation in (3.35), it suffices to show that
∫ ∞

0

(
1− exp

{
− b−2

2

∫

R

∣∣∣
m∑

j=1

θj(f(x, buj − s)− f(x,−s))
∣∣∣
2

ds
})
ψ1x

βdx

→
∫ ∞

0

(
1− exp

{
− 1

4x

∣∣∣
m∑

j=1

θjuj

∣∣∣
2})

ψ1x
βdx = Kβ

∣∣∣
m∑

j=1

θjuj

∣∣∣
2(1+β)

.(3.36)

Towards this end, consider

Ψ(x; b) :=

∫

R

1

2b2

∣∣∣
m∑

j=1

θj(f(x, buj − s)− f(x,−s))
∣∣∣
2

ds =
(∫ 0

−∞
+

∫ ∞

0

)
. . .

=: Ψ1(x; b) + Ψ2(x; b). (3.37)

Then for any x > 0,

Ψ1(x; b) =
1

4x3

∣∣∣
m∑

j=1

θj
b

(1− e−bxuj)
∣∣∣
2

→ 1

4x

∣∣∣
m∑

j=1

θjuj

∣∣∣
2

=: Ψ(x), b→ 0, (3.38)

and

Ψ2(x; b) =
1

2x2b2

∫ bum

0

∣∣∣
m∑

j=1

θj(1− e−x(buj−s))1(s < buj)
∣∣∣
2

ds

≤ C

x2b2

∫ bum

0

(xs)2ds ≤ Cb→ 0. (3.39)
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3.3. The ‘intermediate’ process

Hence, Ψ(x; b) → Ψ(x). From the inequality 1− e−x ≤ x, x ≥ 0, it easily follows
the dominating bound 0 ≤ Ψ(x; b) ≤ C min(1, 1/x), ∀b, x > 0. The convergence
in (3.36), or

∫∞
0

(1 − e−Ψ(x;b))xβdx →
∫∞

0
(1 − e−Ψ(x))xβdx now easily follows by

the dominating convergence theorem.

(iii) As in (3.36), it suffices to show that

I(b) := ψ1

∫ ∞

0

(1− e−Ψ(x,b)/ log(1/b))dx→ ψ1

4

∣∣∣
m∑

j=1

θjuj

∣∣∣
2

, (3.40)

where Ψ(x, b) is defined in (3.37). Split the integral

I(b) = ψ1

(∫ 1/b

0

+

∫ ∞

1/b

)
(1− e−Ψ(x,b)/ log(1/b))dx =: ψ1(I1(b) + I2(b)).

Then using (3.38) and (3.39) we infer that

I1(b) ∼
∫ 1/b

0

(
1− exp

{
− 1

4x log(1/b)

∣∣∣
m∑

j=1

θjuj

∣∣∣
2})

dx

∼ O
( 1

log(1/b)

)
+
|∑m

j=1 θjuj|2
4 log(1/b)

∫ 1/b

1/ log(1/b)

dx

x

∼ 1

4

∣∣∣
m∑

j=1

θjuj

∣∣∣
2

.

On the other hand, using |Ψ(x; b)| ≤ C/(b2x3 + bx2), see (3.38), (3.39), with C

independent of x, b > 0 we obtain that

I2(b) ≤ C

∫ ∞

1/b

dx

(b2x3 + bx2) log(1/b)
= O

( 1

log(1/b)

)
= o(1),

proving (3.40) and part (iii).

(iv) Similarly as above, it suffices to prove that
∫ ∞

0

(
1− exp

{
− 1

2b

∫

R

∣∣∣
m∑

j=1

θj(f(x, buj − s)− f(x, buj−1 − s))
∣∣∣
2

ds
})
ψ1x

βdx

→
∫ ∞

0

(
1− exp

{
− 1

2x2

m∑

j=1

θ2
j (uj − uj−1)

})
ψ1x

βdx

=
kβ

2(1+β)/2

∣∣∣
m∑

j=1

θ2
j (uj − uj−1)

∣∣∣
(1+β)/2

, (3.41)

where 0 =: u0 < u1 < · · · < um. The l.h.s. of (3.41) can be rewritten as
∫∞

0
(1 −

e−x
−2J(x;b))ψ1x

βdx, where for any x > 0,

J(x; b) :=
x2

2

∫

R

∣∣∣
m∑

j=1

θj
(
f(x, b(uj − s))− f(x, b(uj−1 − s))

)∣∣∣
2

ds

→ J :=
1

2

m∑

j=1

θ2
j (uj − uj−1)
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Chapter 3. Aggregation of independent AR(1) processes

as b → ∞ follows easily by substituting f (3.9) into the integral above. The
dominating bound 0 ≤ J(x; b) ≤ C min(1, 1/x) is elementary and allows to use
the dominating convergence theorem, yielding the convergence in (3.41). Propo-
sition 3.5 is proved.

Proposition 3.5 entails the convergences

µ1/2Zβ(τ/µ)
fdd→Wβ(τ) and




µ1−(β/2)Zβ(τ/µ)
fdd→ B1−β/2(τ), 0 < β < 1,

µZβ(τ/µ)
fdd→ τVβ, −1 < β < 0,

µ(log µ)−1/2Zβ(τ/µ)
fdd→ τV0, β = 0,

(3.42)

as µ → 0 and µ → ∞, respectively. In other words, the ‘intermediate’ limit in
Theorem 3.2(iii) plays the role of a ‘bridge’ between the limits in Cases (i) and
(ii). Since Wβ, B1−(β/2) and τVβ are distinct processes, (3.42) imply that Zβ is
not self-similar and not stable.

The definition of Zβ in (3.31) naturally extends to a two-parameter random
field {Zβ(τ, x), (τ, x) ∈ R2

+} defined as a stochastic integral

Zβ(τ, x) :=

∫

(0,x]×(0,1)×C(R)

z(τ ; v)M(dy, dv, dB)

+

∫

(0,x]×[1,∞)×C(R)

z(τ ; v)M̃(dy, dv, dB), τ, x ≥ 0,(3.43)

with respect to a Poisson random measure on R+ × R+ × C(R) with inten-
sity EM(dy, dv, dB) = dyµ(dv, dB) = ψ1dyvβdv PB(dB(·)), see (3.29), where
M̃(dy, dv, dB) := M(dy, dv, dB) − EM(dy, dv, dB). Then Zβ(τ) = Zβ(τ, 1).
Note that for each τ > 0, {Zβ(τ, x), x ≥ 0} is a homogeneous Lévy process with
independent increments. The two-parameter process Zβ in (3.43) satisfies the
following properties:
for any (τ0, x0) ∈ R2

+,

{Zβ(τ + τ0, x+ x0)−Zβ(τ + τ0, x0)−Zβ(τ0, x+ x0) + Zβ(τ0, x0)} fdd
= {Zβ(τ, x)};

(3.44)
for any c > 0, {

Zβ(cτ, c1+βx)
} fdd

=
{
c3/2Zβ(τ, x)

}
. (3.45)

Property (3.44) is stationarity of increments and (3.45) is an anisotropic two-
parameter scaling (self-similarity) property. Note that (3.45) implies

{
(cµ)−1c−1/2Zβ(cτ, (cµ)1+β), τ ∈ R+

}

fdd
=
{
µ1/2Zβ(τ/µ, 1), τ ∈ R+

}
for all c > 0, (3.46)
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3.3. The ‘intermediate’ process

which resembles the limit in Theorem 3.2(iii) for N = (cµ)1+β, n = c growing as
in (3.6). The two-parameter process {Yβ(τ, µ) := µ1/2Zβ(τ/µ, 1)} on the r.h.s. of
(3.46) satisfies {Yβ(cτ, cµ), τ ∈ R+} fdd

= {c1/2Yβ(τ, µ), τ ∈ R+}. A related notion
of self-similarity was introduced in Jørgensen et al. [51], who call a two-parameter
process Y = {Y (τ, µ), (τ, µ) ∈ R2

+} self-similar with Hurst exponent H and rate
parameter µ if for all c > 0,

{Y (cτ, cH−1µ), τ ∈ R+} fdd
= {cHY (τ, µ), τ ∈ R+}. (3.47)

Note that the two-parameter process {Ỹβ(τ, x) := Zβ(τ, x2(1+β))} satisfies the
self-similarity property (3.47) with H = 3/2.

Another self-similarity property was introduced in Kaj [52]. Accordingly, a
process U = {U(τ), τ ∈ R+} is called aggregate-similar with rigidity index ρ if for
any integer m ≥ 1,

{ m∑

i=1

U (i)(τ), τ ∈ R+

}
fdd
= {mρU(τ/mρ), τ ∈ R+}, (3.48)

where U (i), i ≥ 1, are independent copies of U . Let {Uβ(τ) := Zβ(τ 2/3, 1)},
then Uβ satisfies (3.48) with ρ := 3

2(1+β)
, which again follows from (3.45) with

c = m1/(1+β), x = 1 and the fact that {∑m
i=1Z

(i)
β (τ 2/3, 1)} fdd

= {Zβ(τ 2/3,m)}.

Remark 3.5. Kaj [52], Gaigalas [34] discussed the ‘intermediate process’

Zβ(τ) :=

∫

R+×R

{∫ τ

0

1(s− v < u < s)du
}
M̃(dv, ds), τ ≥ 0, (3.49)

where M̃(dv, ds) = M(dv, ds) − EM(dv, ds) is a centered Poisson random mea-
sure on R+ × R with mean EM(dv, ds) = Cv−β−2dvds and 0 < β < 1 is a
parameter. The process Zβ in (3.49) arises in the ‘intermediate’ aggregation
regime of ON/OFF and infinite source Poisson models in network traffic. See
also [54, 55, 68, 83]. Similarly to (3.43), Zβ extends to a two-parameter random
field

Zβ(τ, x) :=

∫

(0,x]×R+×R

{∫ τ

0

1(s− v < u < s)du
}
M̃(dy, dv, ds), τ, x ≥ 0,

(3.50)
where M̃(dy, dv, ds) = M(dy, dv, ds) − dyEM(dv, ds) is a centered Poisson ran-
dom measure on R+ × R+ × R with mean EM(dy, dv, ds) = dyEM(dv, ds). The
random field in (3.50) satisfies the stationary increment property (3.44) and a scal-
ing property similar to (3.45): {Zβ(cτ, cβx)} fdd

= {cZβ(τ, x)} for every c > 0. These
properties might be typical to random fields arising in the ‘intermediate regime’
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Chapter 3. Aggregation of independent AR(1) processes

of joint temporal and contemporaneous aggregation of independent copies of ran-
dom processes with long-range dependence. We conjecture that (3.50) and (3.43)
can be linked into a general class of Poisson stochastic integrals on the product
space R+ × S ′(R), where S ′(R) is the Schwartz space of tempered distributions
equipped with a σ-finite shift and scaling invariant product measure, which in-
cludes the above mentioned ‘intermediate’ limits as particular cases and enjoys
similar local and global scaling properties.

3.4 Proofs of Theorems 3.1–3.3

Proof of Theorem 3.1. Statement (3.13) follows from Theorems 2.1 and 3.1 in
Puplinskaitė and Surgailis [88]. Next, consider (3.14). From [88, Proposition 2.3]
we have that for any −1 < β < 0 and any n ≥ 1 fixed,

N−1/2(1+β)SN,n(τ)
fdd→ [nτ ]Vβ

as N → ∞. Hence, (3.14) immediately follows. In a similar way, (3.15) is a
consequence of (N logN)−1/2SN,n(τ)

fdd→ [nτ ]V0, or

(N logN)−1/2SN(t)
fdd→ V0, SN(t) :=

N∑

i=1

Xi(t), (3.51)

which is proved below.
Similarly to the rest of this chapter, we use the method of characteristic func-

tions. We shall use the fact that the characteristic function of a standardized r.v.
ε has the following representation in a neighborhood of the origin: there exists an
ε > 0 such that

χ(θ) := Eeiθε = e−θ
2h(θ)/2 for each |θ| < ε, (3.52)

where h is a positive function tending to 1 as θ → 0 (see, e.g., Ibragimov and
Linnik [49, Theorem 2.6.5]). Fix m ∈ N and θ = (θ1, . . . , θm) ∈ Rm, then
∑m

t=1 θtX(t) =
∑

s∈Z ϑ(s, a)ε(s), where ϑ(s, a) :=
∑m

t=1 θta
t−s1(s ≤ t). Using

(3.52) similarly as in [88, pages 519, 521], the convergence (3.51) follows from

ΨN(θ) := NE
[
1− exp

{
− 1

2N logN

∑

s∈Z

(ϑ(s, a))2h
( ϑ(s, a)

(N logN)1/2

)}]

→ Ψ(θ) :=
ψ1

4

∣∣∣
m∑

t=1

θt

∣∣∣
2

. (3.53)
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3.4. Proofs of Theorems 3.1–3.3

Arguing further as in [88, page 521], we reduce the proof of (3.53) to ΨN1(θ) →
Ψ(θ), where

ΨN1(θ) := ψ1N

∫ 1

1−ε

(
1− exp

{
− 1

2N logN

∑

s≤0

(ϑ(s, a))2h
( ϑ(s, a)

(N logN)1/2

)})
da

∼ ψ1

∫ εN

0

(
1− exp

{
− |
∑m

t=1 θt|2
4y logN

})
dy

∼ ψ1

(
O
( K

logN

)
+

∫ εN

K/ logN

(
1− exp

{
− |
∑m

t=1 θt|2
4y logN

})
dy
)

∼ ψ1|
∑m

t=1 θt|2
4 logN

∫ εN

K/ logN

dy

y

∼ ψ1|
∑m

t=1 θt|2
4

since 1
logN

∫ εN
K/ logN

y−1dy → 1 when ε → 0 and K → ∞ together with N → ∞
but slowly enough (so that log(1/ε) = o(logN), logK = o(logN)). This proves
(3.51) and (3.15).

It remains to prove (3.16). Let us first show that

n−1/2S1,n(τ) = n−1/2

[nτ ]∑

t=1

X(t)
fdd→ (1− a)−1B(τ) as n→∞, (3.54)

where B is a Brownian motion as in (3.11) and a ∈ [0, 1) is independent of B and
has the same (mixing) distribution in (3.5). Accordingly, it suffices to show that
for any fixed m ∈ N and any 0 = τ0 < τ1 < · · · < τm, θ = (θ1, . . . , θm) ∈ Rm,

Un(θ) := E exp
{

in−1/2

m∑

j=1

θj (S1,n(τj)− S1,n(τj−1))
}

→ E exp
{

i (1− a)−1

m∑

j=1

θj (B(τj)−B(τj−1))
}

= E exp
{
− (1/2)(1− a)−2

m∑

j=1

θ2
j (τj − τj−1)

}
=: U(θ) (3.55)

as n→∞, where S1,n(0) := 0. Denote

ϑ̃n(s, a) :=
m∑

j=1

θj

[nτj ]∑

t=[nτj−1]+1

at−s1(s ≤ t).

Then
∑m

j=1 θj(S1,n(τj) − S1,n(τj−1)) =
∑

s≤[nτm] ϑ̃n(s, a)ε(s). Let An := {a : 0 ≤
a < 1 − log n/

√
n}, Acn := [0, 1) \ An. Note that sups∈Z, a∈An |ϑ̃n(s, a)|/√n =

O(1/ log n) → 0, implying sups∈Z, a∈An |h(ϑ̃n(s, a)/
√
n)− 1| = o(1). Using this
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Chapter 3. Aggregation of independent AR(1) processes

and (3.52), for n large enough, split Un(θ) = Un1(θ) + Un2(θ), where

Un1(θ) := E
[

exp
{
− 1

2n

∑

s≤[nτm]

(ϑ̃n(s, a))2h
( ϑ̃n(s, a)

n1/2

)}
1(a ∈ An)

]
(3.56)

and Un2(θ) := E
[

exp{in−1/2
∑m

j=1 θj(S1,n(τj) − S1,n(τj−1))}1(a ∈ Acn)
]
. Then

(3.55) follows from Un1(θ) → U(θ) and Un2(θ) = o(1), where the last relation
is immediate from |Un2(θ)| ≤ P(a ∈ Acn) = o(1). Using (3.56) and the argument
above, the convergence Un1(θ)→ U(θ) reduces to

lim
n→∞

n−1
∑

s≤[nτm]

(ϑ̃n(s, a))2 = (1− a)−2

m∑

j=1

(τj − τj−1) θ2
j (3.57)

for each a ∈ [0, 1). Relation (3.57) follows by splitting the sum on the l.h.s. of
(3.57) as

∑
s≤[nτm] =

∑m
k=0

∑
[nτk−1]<s≤[nτk], [nτ−1] := −∞, and noting that

n−1
∑

[nτk−1]<s≤[nτk]

(ϑ̃n(s, a))2 → (1− a)−2θ2
k(τk − τk−1)

for 1 ≤ k ≤ m and n−1
∑

s≤0(ϑ̃n(s, a))2 ≤ Cn−1
∑

s≤0(
∑∞

t=1 a
t−s)2 ≤ Cn−1(1 −

a2)−1(1− a)−2 → 0, for each a ∈ [0, 1). This proves (3.57) and (3.54), too.
Let W := {(1 − a)−1B(τ), τ ≥ 0} and Wi, i = 1, 2, . . . , be its independent

copies. With (3.54) in mind, it remains to prove that

N−1/(1+β)

N∑

i=1

Wi(τ)
fdd→Wβ(τ). (3.58)

For notational simplicity, we restrict the proof of (3.58) to two-dimensional con-
vergence at 0 ≤ τ1 < τ2, viz.,

UN(θ1, θ2) := E exp
{
N−1/(1+β)

(
i θ1

N∑

i=1

Wi(τ1) + i θ2

N∑

i=1

(
Wi(τ2)−Wi(τ1)

))}

→ E exp
{

iθ1Wβ(τ1) + iθ2

(
Wβ(τ2)−Wβ(τ1)

)}
(3.59)

= E exp
{
−Wβ

(
τ1θ

2
1 + (τ2 − τ1)θ2

2/2
)}

= exp
{
− kβ

(
(τ1θ

2
1 + (τ2 − τ1)θ2

2)/2
)(1+β)/2}

.

We have UN(θ1, θ2) = (1− ΨN (θ1,θ2)
N

)N , where

ΨN(θ1, θ2) := N

∫ 1

0

(
1− exp

{
− ω(θ1, θ2)

N2/(1+β)(1− a)2

})
ψ(a)(1− a)βda,

where ω(θ1, θ2) := (1/2)(τ1θ
2
1 + (τ2 − τ1)θ2

2) ≥ 0. From the above expression and
assumption (3.5), it easily follows that for any ε > 0,

ΨN(θ1, θ2) ∼ ψ1N

∫ 1

1−ε

(
1− exp

{
− ω(θ1, θ2)

N2/(1+β)(1− a)2

})
(1− a)βda

→ kβ(ω(θ1, θ2))(1+β)/2,
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3.4. Proofs of Theorems 3.1–3.3

where
kβ :=

ψ1

2

∫ ∞

0

(1− e−y)
dy

y(β+3)/2
=

ψ1

1 + β
Γ
(1− β

2

)
. (3.60)

This proves (3.59) and Theorem 3.1, too.

Proof of Theorem 3.2. As in the proof of the previous theorem, we use the method
of characteristic functions. For notational convenience we assume that ε d

= N (0, 1)

or h(θ) ≡ 1 in (3.52), and that ψ(a) ≡ ψ1 > 0, a ∈ [0, 1), in the mixing density
(3.5). For the general case, the proof of Theorem 3.2 does not require essential
changes.

Case (i), 0 < β < 1 (proof of (3.17)). It suffices to prove that for any fixed
m ∈ N, 0 < τ1 < · · · < τm, and any θ = (θ1, . . . , θm) ∈ Rm,

UN,n(θ) := E exp
{

iN−1/2n−1+β/2

m∑

j=1

θjSN,n(τj)
}

→ E exp
{

i
m∑

j=1

θjB1−(β/2)(τj)
}

=: U(θ), (3.61)

as N, n,N/n1+β →∞. By definition,

U(θ) = exp
{
− ψ1

2

∫ ∞

0

K(x)xβdx
}
, where (3.62)

K(x) :=

∫

R

( m∑

j=1

θj
(
f(x, τj − s)− f(x,−s)

))2

ds

and f is given by (3.9). We also have

UN,n(θ) =
(

E
∏

s∈Z

exp
{
− 1

2

( ϑn(s, a)

N1/2n1−β/2

)2})N
with (3.63)

ϑn(s, a) :=
m∑

j=1

θj

[nτj ]∑

t=1

at−s1(s ≤ t).

Then UN,n(θ) = (1− ΨN,n(θ)

N
)N , where

ΨN,n(θ) := N
[
1− E exp

{
− 1

2

∑

s∈Z

(ϑn(s, a))2

Nn2−β

}]
.

Thus (3.61) will be proved once we show that

ΨN,n(θ)→ ψ1

2

∫ ∞

0

K(x)xβdx as N, n,N/n1+β →∞, for all θ ∈ Rm. (3.64)

After a change of variable we obtain

ΨN,n(θ) =
ψ1N

n1+β

∫ n

0

(
1− exp

{
−n

1+β

2N
KN,n(x)

})
xβdx,
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where

KN,n(x) :=
1

n3

∑

s∈Z

(
ϑn

(
s, 1− x

n

))2

=

∫

R

( m∑

j=1

θj

∫ [nτj ]/n

0

(
1− x

n

)dnte−dnse
1(dnse ≤ dnte)dt

)2

ds

is written as a Riemann sum. By the dominated convergence theorem it follows
that

KN,n(x)→
∫

R

( m∑

j=1

θj

∫ τj

0

e−x(t−s)1(s ≤ t)dt
)2

ds = K(x) for each x > 0,(3.65)

where K(x) is the same as in (3.62). Moreover, the inequality 1− z ≤ e−z, z ≥ 0,
yields (1− x/n)dnte−dnse ≤ e−x(dnte−dnse)/n ≤ Ce−x(t−s), x ≥ 0, t ≥ s, and then

|KN,n(x)| ≤ C

m∑

j=1

∫

R

(∫ τj

0

e−x(t−s)1(s ≤ t)dt
)2

ds =: K̄(x) (3.66)

with K̄(x) independent of N and n. We conclude by (3.65) and (3.66) that

JN,n(x) :=
N

n1+β

(
1− exp

{
− n1+β

2N
KN,n(x)

})
→ K(x)

2

for each x > 0, and that |JN,n(x)| is dominated by the function K̄(x) ≥ 0 satisfying∫∞
0
K̄(x)xβdx <∞. Hence the dominated convergence theorem applies and leads

to (3.64) and (3.61). This completes the proof of Case (i) of Theorem 3.2 for
0 < β < 1.

Case (i), −1 < β < 0 (proof of (3.18)). Using the notation in (3.61) it suffices to
show that

UN,n(θ) := E exp
{

iN−1/2(1+β)n−1

m∑

j=1

θjSN,n(τj)
}

→ E exp
{

i
( m∑

j=1

θjτj

)
Vβ

}
=: U(θ) as N, n,N/n1+β →∞.(3.67)

Here, U(θ) = exp{−Kβ|
∑m

j=1 θjτj|2(1+β)} and UN,n(θ) = (1− ΨN,n(θ)

N
)N , where

ΨN,n(θ) := ψ1N

∫ 1

0

(
1− exp

{
− 1

2N1/(1+β)n2

∑

s∈Z

(ϑn(s, a))2
})

(1− a)βda.

Hence to prove (3.67), it is enough to verify that for any θ ∈ Rm

ΨN,n(θ)→ Kβ

∣∣∣
m∑

j=1

θjτj

∣∣∣
2(1+β)

as N, n,N/n1+β →∞. (3.68)
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We have
∑

s∈Z(ϑn(s, a))2 = R0(a) +R1(a), where

R0(a) := (1− a2)−1
( m∑

j=1

θj

[nτj ]∑

t=1

at
)2

,

R1(a) :=

[nτm]∑

s=1

( m∑

j=1

θj1(s ≤ [nτj])

[nτj ]∑

t=s

at−s
)2

. (3.69)

Clearly, R1(a) ≤ C min{n3, n/(1 − a)2} for any 0 ≤ a < 1. After a change of
variable 1− a = N−1/(1+β)x, we get

ΨN,n(θ) = ψ1

∫ N1/(1+β)

0

(
1− exp

{
− 1

2

(
R̃0(x) + R̃1(x)

)})
xβdx, (3.70)

where

R̃0(x) :=
1

x(2−N−1/(1+β)x)

∣∣∣
m∑

j=1

θj

( 1

n

[nτj ]∑

t=1

(
1−N−1/(1+β)x

)t)∣∣∣
2

→ 1

2x

∣∣∣
m∑

j=1

θjτj

∣∣∣
2

=: R̃(x) (3.71)

and

R̃1(x) :=
R1(1−N−1/(1+β)x)

N1/(1+β)n2
≤ C min

{ n

N1/(1+β)
,
N1/(1+β)

x2n

}
→ 0. (3.72)

Write ΨN,n(θ) =
∑3

i=1 Ψ̃i(θ), where

Ψ̃1(θ) := ψ1

∫ N1/(1+β)

0

(
1− e−R̃(x)/2

)
xβdx,

Ψ̃2(θ) = ψ1

∫ N1/(1+β)

0

(
e−R̃(x)/2 − e−R̃0(x)/2

)
xβdx,

Ψ̃3(θ) = ψ1

∫ N1/(1+β)

0

(
e−R̃0(x)/2 − e−(R̃0(x)+R̃1(x))/2

)
xβdx.

Now, relation Ψ̃1(θ) → ψ1

∫∞
0

(1 − e−R̃(x)/2)xβdx = Kβ|
∑m

j=1 θjτj|2(1+β) follows
by the dominated convergence theorem. Relation Ψ̃2(θ) → 0 follows in a sim-
ilar way, since H(x) := e−R̃(x)/2 − e−R̃0(x)/2 → 0 (see (3.71)) and |H(x)| ≤
|1 − e−R̃(x)/2| + |1 − e−R̃0(x)/2| ≤ C(|R̃(x)| + |R̃0(x)|) ≤ C min(1, 1/x) =: H̄(x),

with
∫∞

0
H̄(x) xβdx < ∞. Finally, Ψ̃3(θ) → 0 follows from the bound (3.72)

since |Ψ̃3(θ)| ≤ ψ1

∫ N1/(1+β)

0
|1 − e−R̃1(x)/2|xβdx ≤ C

∫ N1/(1+β)

0
|R̃1(x)|xβdx ≤ C ×

(
∫ N1/(1+β)/n

0
+
∫∞
N1/(1+β)/n

)|R̃1(x)|xβdx = O((N1/(1+β)/n)β) = o(1). This proves
(3.68) and (3.18).

Case (i), β = 0 (proof of (3.19)). Following (3.67), (3.68), it suffices to show that

ΨN,n(θ)→ ψ1

4

( m∑

j=1

θjτj

)2

as N, n,N/n→∞, (3.73)
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where

ΨN,n(θ) := ψ1N

∫ 1

0

(
1− exp

{
− 1

2n2N log(N/n)

∑

s∈Z

(ϑn(s, a))2
})

da,

ϑn(s, a) being defined in (3.63). By change of variable 1− a = x/N arguing as in
the proof of (3.68), relation (3.73) follows from

Ψ̂0(θ) :=

∫ N

0

(
1− exp

{
− R̃0(x)

2 log(N/n)

})
dx→ 1

4

( m∑

j=1

θjτj

)2

, (3.74)

Ψ̂1(θ) :=

∫ N

0

(
1− exp

{
− R̃1(x)

2 log(N/n)

})
dx→ 0, (3.75)

where R̃0(x), R̃1(x) are the same as in (3.70) with β = 0.
In order to simplify the exposition and notation, we restrict the subsequent

proof of (3.74) to the one-dimensional casem = τ = 1, θ = θ ∈ R. From definition
in (3.71) we have R̃0(x) = Q1(x) +Q2(x), where

Q1(x) :=
θ2

2x

( 1

n

n∑

t=1

(
1− x

N

)t)2

,

Q2(x) :=
θ2

2N(2− (x/N))

( 1

n

n∑

t=1

(
1− x

N

)t)2

≤ C

N
.

Since
∫ N

0
(1−exp{−Q2(x)/(2 log(N/n))})dx ≤ C

log(N/n)

∫ N
0
|Q2(x)|dx = O( 1

log(N/n)
)

= o(1), it suffices to show (3.74) with R̃0(x) replaced by Q1(x), viz.,

Φ(θ) :=

∫ N

0

(
1− exp

{
− θ2

4x log(N/n)

( 1

n

n∑

t=1

(
1− x

N

)t)2})
dx→ θ2

4
. (3.76)

Rewrite Φ(θ) = 1
log(N/n)

∫∞
(N log(N/n))−1 ΓN,n(y)dy

y
=
∑3

i=1 Φi(θ), where

ΓN,n(y) :=
1

y

(
1− e−θ

2yΛN,n(y)/4
)
, ΛN,n(y) :=

( 1

n

n∑

t=1

(
1− 1

yN log(N/n)

)t)2

and Φ1(θ) := 1
log(N/n)

∫ n/N
1/(N log(N/n))

ΓN,n(y)dy
y

, Φ2(θ) := 1
log(N/n)

∫ 1

n/N
ΓN,n(y)dy

y
,

Φ3(θ) := 1
log(N/n)

∫∞
1

ΓN,n(y)dy
y

. We have

Φ1(θ) ≤ C

log(N/n)

∫ n/N

1/(N log(N/n))

ΛN,n(y)
dy

y

=
C

log(N/n)

∫ n/N

1/(N log(N/n))

( 1

n

n∑

t=1

(
1− 1

yN log(N/n)

)t)2 dy

y

=
C

n2 log(N/n)

n∑

t,s=1

`N,n(t+ s), with

`N,n(k) :=

∫ n/N

1/(N log(N/n))

(
1− 1

yN log(N/n)

)kdy

y
.
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Using 1− x ≤ e−x, x ≥ 0, we obtain

`N,n(k) ≤
∫ n/N

1/(N log(N/n))

exp
{
− k

yN log(N/n)

}dy

y

≤ C log
(n log(N/n)

k

)
, 1 ≤ k ≤ 2n. (3.77)

Indeed, by change of variable z := k
yN log(N/n)

, z−1dz = −y−1dy the integral in
(3.77) for N log(N/n) > k can be rewritten as

∫ k
k/n log(N/n)

e−zz−1dz = J1 + J2,

where J1 :=
∫ k

1
e−zz−1dz ≤ C, J2 :=

∫ 1

k/n log(N/n)
e−zz−1dz ≤

∫ 1

k/n log(N/n)
z−1dz =

log(n log(N/n)
k

), proving (3.77). Using (3.77) we obtain

Φ1(θ) ≤ C

n2 log(N/n)

n∑

t,s=1

log
(n log(N/n)

t+ s

)

≤ C

n2 log(N/n)

2n∑

k=1

k log
(2n log(N/n)

k

)

=
C

n2 log(N/n)

2n∑

k=1

k log
(2n

k

)
+
C log log(N/n)

log(N/n)
n−2

2n∑

k=1

k

= O
( log log(N/n)

log(N/n)

)
= o(1),

since
∑2n

k=1 k log(2n
k

) ≤
∫ 2n

1
x log(2n

x
)dx ≤ Cn2. Clearly, ΓN,n(y) ≤ y−1, implying

Φ3(θ) = O( 1
log(N/n)

) = o(1). Hence, (3.76) follows from Φ2(θ) → θ2/4. To show
the last relation, split Φ2(θ) = Φ21(θ) + Φ22(θ), where

Φ21(θ) :=
1

log(N/n)

∫ 1

n/N

G(y)
dy

y
, Φ22(θ) :=

1

log(N/n)

∫ 1

n/N

[ΓN,n −G(y)]
dy

y

and G(y) := 1
y
(1−e−(θ2/4)y). Using the facts that G(n/N)−θ2/4 = o(1),

∫ 1

n/N
dy
y

=

log(N/n) and supy∈(0,1] |G′(y)| < C, we obtain

|Φ21(θ)− θ2/4| ≤ |G(n/N)− θ2/4|+ 1

log(N/n)

∣∣∣
∫ 1

n/N

(G(y)−G(n/N))
dy

y

∣∣∣

= o(1) +
1

log(N/n)

∣∣∣
∫ 1

n/N

G′(y)(log y)dy
∣∣∣ = o(1).

Next, consider Φ22(θ). Note that ΛN,n(y) is monotone in y ∈ (0, 1], hence
ΛN,n(n/N) ≤ ΛN,n(y) ≤ ΛN,n(1) ≤ 1, n/N ≤ y ≤ 1. Moreover, ΛN,n(n/N) =

( 1
n

∑n
t=1(1− 1

n log(N/n)
)t)2 → 1 follows from (1− 1

n log(N/n)
)t → 1, 1 ≤ t ≤ n. Using

these facts, we obtain

Φ22(θ) =
1

log(N/n)

∫ 1

n/N

{1

y
e−(θ2/4)yΛN,n(y)

[
1− e−(θ2/4)y(1−ΛN,n(y))

]}dy

y

≤ C

log(N/n)

∫ 1

n/N

(1− ΛN,n(y))
dy

y

≤ C(1− ΛN,n(n/N)) = o(1).
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It remains to show (3.75). Using 0 ≤ R̃1(x) ≤ C min(n/N,N/nx2), see (3.72),
it follows that Ψ̂1(θ) ≤ C

log(N/n)

∫ N
0
R̃1(x)dx, where the last integral is bounded by

a finite constant independent of N, n. This proves (3.75) and completes the proof
of (3.19), too.

Case (ii), −1 < β < 1 (proof of (3.20)). Because of similarities with the proofs
of (3.17) and (3.18), we restrict the proof to the one-dimensional convergence at
τ = 1. We have E exp{iθN−1/(1+β)n−1/2SN,n(1)} = (1− ΨN,n(θ)

N
)N , where

ΨN,n(θ) := ψ1N

∫ 1

0

(
1− exp

{
− θ2(R0(a) +R1(a))

2N2/(1+β)n

})
(1− a)βda

and where R0(a) :=
∑

s≤0(ϑn(s, a))2 ≤ (1 − a)−3, R1(a) :=
∑n

s=1(ϑn(s, a))2 =

(1− a)−2
∑n

k=1(1− ak)2. By the change of variables 1− a = N−1/(1+β)x, ΨN,n(θ)

can be rewritten as

ΨN,n(θ) = ψ1

∫ N1/(1+β)

0

(
1− exp

{
− θ2

2

(
R̃0(x) +

R̃1(x)

x2

)})
xβdx,

where

R̃0(x) :=
1

N2/(1+β)n
R0

(
1− x

N1/(1+β)

)
≤ N3/(1+β)

x3N2/(1+β)n
≤ N1/(1+β)

x3n
→ 0,

R̃1(x) :=
1

n

n∑

k=1

(
1−

(
1− x

N1/(1+β)

)k)2

→ 1.

The above facts entail

ΨN,n(θ)→ ψ1

∫ ∞

0

(1− e−θ
2/2x2

)xβdx =
kβ|θ|1+β

2(1+β)/2
= − log EeiθWβ ,

hence also the proof of (3.20).

Case (iii), −1 < β < 1 (proof of (3.21)). Similarly as above, it suffices to prove
that for any θ ∈ Rm,

ΨN,n(θ)→ Ψµ(θ) as N, n→∞, N1/(1+β)/n→ µ ∈ (0,∞), (3.78)

where

Ψµ(θ) := − log E exp
{

i
m∑

j=1

θjµ
1/2Zβ(τj/µ)

}

= ψ1

∫ ∞

0

(
1− exp

{
− 1

2µ2

∫

R

( m∑

j=1

θj
(
f(x/µ, τj − s)− f(x/µ,−s)

))2

ds
})
xβdx,

see (3.12), and

ΨN,n(θ) := ψ1N

∫ 1

0

(
1− exp

{
− R0(a) +R1(a)

2N2/(1+β)n

})
(1− a)βda,
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with R0(a), R1(a) defined in (3.69). By change of variable 1− a = N−1/(1+β)x we
obtain

ΨN,n(θ) = ψ1

∫ N1/(1+β)

0

(
1− exp

{
− (1/2)

(
R̃0(x) + R̃1(x)

)})
xβdx,

where

R̃0(x) :=
N1/(1+β)(1−N−1/(1+β)x)2

nx3(2−N−1/(1+β)x)

( m∑

j=1

θj

(
1−

(
1− x

N1/(1+β)

)[nτj ]))2

,

R̃1(x) :=
1

x2n

[nτm]∑

s=1

( m∑

j=1

θj

(
1−

(
1− x

N1/(1+β)

)[nτj ]−s+1)
1(s ≤ [nτj])

)2

.

It is easy to verify that for each x > 0, R̃0(x)→ K0(x), R̃1(x)→ K1(x), where

K0(x) :=
µ

2x3

( m∑

j=1

θj(1− e−(x/µ)τj)
)2

= µ−2

∫ 0

−∞

( m∑

j=1

θj
(
f(x/µ, τj − s)− f(x/µ,−s)

))2

ds,

K1(x) := x−2

∫ τm

0

( m∑

j=1

θj(1− e−(x/µ)(τj−s))1(s ≤ τj)
)2

ds

= µ−2

∫ τm

0

( m∑

j=1

θjf(x/µ, τj − s)
)2

ds.

Note Ψµ(θ) = ψ1

∫∞
0

[1 − exp{−(1/2)(K0(x) + K1(x))}]xβdx. The convergence
(3.78) now follows by the dominated convergence theorem using a similar argu-
ment as in the proof of Theorem 3.1 in [88]. This proves (3.21) and thereby
completes the proof of Theorem 3.2.

Proof of Theorem 3.3. The proof is analogous to that of the previous theorem.
Let SN,n := SN,n(1). We prove only one-dimensional convergence at τ = 1, or

UN,n(θ) := EeiθSN,n/(Nn)1/2

=
(

1− ΨN,n(θ)

N

)N
→ e−θ

2σ2/2, (3.79)

where

ΨN,n(θ) := NE
[
1− eiθS1,n/(Nn)1/2

]
= NE

[
1−

∏

s≤n

χ
(
θ
ϑn(s, a)

(Nn)1/2

)]
,

ϑn(s, a) :=
n∑

t=1

at−s1(s ≤ t),

χ being the characteristic function of i.i.d. innovations {ε(s)}, see (3.52). Let
An := {a : 0 ≤ a < 1 − log n/

√
n}, Acn := [0, 1) \ An similarly to the proof of
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Theorem 3.1. Accordingly, split ΨN,n(θ) = Ψ′N,n(θ) + Ψ′′N,n(θ), where

Ψ′N,n(θ) := NE
[
1− eiθS1,n/(Nn)1/2

]
1(a ∈ An),

Ψ′′N,n(θ) := NE
[
1− eiθS1,n/(Nn)1/2

]
1(a ∈ Acn).

Since |Ψ′′N,n(θ)| = N |EE[1−eiθS1,n/(Nn)1/2|a]1(a ∈ Acn)| and E[S1,n|a] = 0, E[S2
1,n|a]

=
∑

s≤n(ϑn(s, a))2 satisfies
∑

s≤n(ϑn(s, a))2 ≤ 2n/(1− a)2, we obtain
∣∣Ψ′′N,n(θ)

∣∣ ≤ N(θ2/2)E
[
N−1n−1

∑

s≤n

(ϑn(s, a))21(a ∈ Acn)
]

≤ θ2E
[
(1− a)−21(a ∈ Acn)

]
= O

(
(log n/

√
n)β−1

)
= o(1)

due to β > 1. Finally, (3.79) follows from

Ψ′N,n(θ) = NE
[
1− exp

{
− θ2

2Nn

∑

s≤n

(ϑn(s, a))2h
(θϑn(s, a)

(Nn)1/2

)}]
1(a ∈ AN)

→ θ2σ2

2
,

by (3.55) and by Taylor expansion of the exponent in a standard way. This both
proves (3.79) and Theorem 3.3.

As a final remark, let us note that the above proof does not require (3.5) and
the conclusion of Theorem 3.3 remains valid under the more general condition
E(1− a)−2 <∞.
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Chapter 4

Aggregation of AR(1) processes
with common innovations

This chapter contains the article [80]. We discuss joint temporal and contempo-
raneous aggregation of N copies of stationary random-coefficient AR(1) processes
with common i.i.d. standardized innovations, when N and time scale n increase
at different rate. Assuming that the random coefficient a has a density, regularly
varying at a = 1 with exponent −1/2 < β < 0, different joint limits of normalized
aggregated partial sums are shown to exist when N1/(1+β)/n tends to (i)∞, (ii) 0,
(iii) 0 < µ <∞. We extend the results of Chapter 3 from the case of idiosyncratic
innovations to the case of common innovations.

4.1 Introduction

Let Xi := {Xi(t), t ∈ Z}, i = 1, . . . , N, be stationary random-coefficient AR(1)
processes

Xi(t) = aiXi(t− 1) + ε(t), t ∈ Z, (4.1)

with common standardized i.i.d. innovations {ε(t), t ∈ Z} and i.i.d. random co-
efficients ai ∈ (−1, 1), i = 1, . . . , N , independent of {ε(t), t ∈ Z}. Consider the
double sum

SN,n(τ) :=
N∑

i=1

[nτ ]∑

t=1

Xi(t), τ ≥ 0, (4.2)

representing joint temporal and contemporaneous aggregate ofN individual AR(1)
evolutions (4.1) at time scale n. We discuss the limit distribution of appropriately
normalized double sums SN,n in (4.2) as N , n jointly increase to infinity, possibly
at a different rate. Throughout this chapter we suppose that the distribution of
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generic coefficient a ∈ (−1, 1) in (4.1), or the mixing distribution, satisfies the
following two assumptions.

Assumption (A1). There exist β > −1 and ε ∈ (0, 1) such that P(a ≤ x) is
differentiable on (1− ε, 1) with derivative

dP(a ≤ x)/dx = (1− x)βψ(x), x ∈ (1− ε, 1), (4.3)

where ψ is bounded on (1−ε, 1) and continuous at x = 1 with ψ1 := limx→1 ψ(x) >

0.

Assumption (A2). E(1 + a)−1/2 <∞.

Assumptions (A1) and (A2) refer to the behavior of the mixing distribution
in the vicinity of a = 1 and a = −1, respectively (the positive and negative unit
roots of generic AR(1) process X = Xi in (4.1)). Because of oscillation of the
moving-average coefficients of X when a < 0, the behavior of the mixing distri-
bution near a = −1 is generally less important for partial sums processes than
its behavior near a = 1, the crucial role being played by the parameter β in
(4.3). Assumption (A1) is similar to (3.5) on page 20 and [87, 88, 111], although
the ‘typical’ range of β is different in the aggregation schemes with common and
idiosyncratic innovations. The random-coefficient AR(1) process X has finite vari-
ance if and only if EX2(t) = E

∑
s≤t a

2(t−s) = E(1 − a2)−1 < ∞, which implies
β > 0 in (4.3). It is well-known that under the condition (4.3) with 0 < β < 1

(and a ∈ [0, 1) a.s.), X has long memory in the sense that its covariance decays
as Cov(X(0), X(t)) = O(t−β), t → ∞, so that

∑∞
t=0 |Cov(X(0), X(t))| = ∞.

Zaffaroni [111], Puplinskaitė and Surgailis [87] discussed the existence and long
memory properties of the limit (in probability) X (t) := limN→∞N

−1
∑N

i=1Xi(t),
t ∈ Z, of aggregated AR(1) processes Xi in (4.1), written as a moving-average
X (t) =

∑∞
j=0 g(j)ε(t − j) with (deterministic) coefficients g(j) := E[aj], j ≥ 0.

For −1/2 < β < 0 in (4.3) and under similar condition on the mixing distribution
near a = −1, the coefficients g(j) ∼ Γ(1 + β)j−β−1, j →∞, and the (normalized)
partial sum process of X tends to a fractional Brownian motion with parame-
ter H = (1/2) − β ∈ (1/2, 1), see [87, Propositions 2 and 4]. We recall that
Granger [40] proposed the scheme of contemporaneous aggregation of heteroge-
neous random-coefficient AR(1) processes as a possible explanation of the long
memory phenomenon in macroeconomic time series. Subsequently, large-scale
contemporaneous aggregation of linear and heteroscedastic heterogeneous time
series models was studied in [19,37,39,74,79,87,88,111,112] and other papers.

Let us describe the main results of the present chapter. Assume that the
mixing density satisfies Assumptions (A1) and (A2) with −1/2 < β < 0 and N, n
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increase simultaneously so as

N1/(1+β)

n
→ µ ∈ [0,∞], (4.4)

leading to the three cases (i)–(iii):

Case (i): µ =∞, Case (ii): µ = 0, Case (iii): 0 < µ <∞. (4.5)

Our main result is Theorem 4.3 of Section 4.2 which states that the ‘simultaneous
limit’ of SN,n(τ) exists in the sense of weak convergence of finite-dimensional
distributions, and is different in all three Cases (i)–(iii), namely,

N−1nβ−(1/2)SN,n(τ)
fdd→ σβB(1/2)−β(τ) in Case (i), (4.6)

N−1/(1+β)n−1/2SN,n(τ)
fdd→ WβB(τ) in Case (ii), (4.7)

N−1/(1+β)n−1/2SN,n(τ)
fdd→ µ1/2Zβ(τ/µ) in Case (iii). (4.8)

Here, B(1/2)−β is a standard fractional Brownian motion with Hurst parameter
H = (1/2) − β, σβ is a constant defined in Proposition 4.2(ii), Wβ > 0 is a
(1 + β)-stable r.v. independent of a standard Brownian motion B, and Zβ is an
‘intermediate process’ defined as the double stochastic integral

Zβ(τ) :=

∫

R×R+

{∫ τ

0

e−x(u−s)1(s ≤ u)du
}

dB(s)N(dx), τ ≥ 0, (4.9)

where N = {N(dx), x ∈ R+} is a Poisson random measure on R+ := (0,∞) with
intensity ν(dx) := EN(dx) := ψ1x

βdx, independent of standard Brownian motion
B. The existence of the process Zβ in (4.9) and its properties are discussed in
Section 4.2. In particular, we show that Zβ can be regarded as a ‘bridge’ between
the limit processes in Cases (i) and (ii), in the sense that Zβ behaves as B(1/2)−β

at ‘small scales’ and as WβB at ‘large scales’. See Proposition 4.2 for rigorous
formulation.

This chapter extends the previous one (based on [79]), where a similar problem
was discussed for stationary random-coefficient AR(1) processes Yi = {Yi(t), t ∈
Z}, i = 1, . . . , N , with independent (or idiosyncratic) innovations:

Yi(t) = aiYi(t− 1) + εi(t), t ∈ Z,

where {εi(t), t ∈ Z} are independent copies of {ε(t), t ∈ Z} in (4.1), indepen-
dent of ai ∈ [0, 1), i = 1, . . . , N . Let SN,n(τ) :=

∑N
i=1

∑[nτ ]
t=1 Yi(t), τ ≥ 0, be

the analogue of SN,n(τ) in (4.2). In Theorem 3.2 on page 24 under Assump-
tion (A1) with −1 < β < 1 and N, n increasing as in (4.4), we obtained joint
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limits of SN,n(τ) in the respective Cases (i)–(iii) of (4.5). Namely, the limit pro-
cess of SN,n(τ) in Case (i) is a fractional Brownian motion similarly to (4.6),
but the limits of SN,n(τ) in Cases (ii) and (iii) differ from (4.7) and (4.8). In
particular, the ‘intermediate process’ Zβ in Chapter 3 arising under Case (iii) is
written as a ‘Poisson mixture’ of integrated Ornstein-Uhlenbeck (O-U) processes∫ τ
−∞{

∫ τ
0

e−x(u−s)1(s ≤ u)du}dB(s) on the product space R+×C(R) equipped with
the measure ν(dx)×PB, with PB being the Wiener measure on C(R), while in the
representation (4.9) of Zβ, these O-U processes are ‘mixed’ w.r.t. x only. These
differences are due to different dependence structure between summands Xi and
Yi in the common and idiosyncratic aggregation schemes: the Yi’s are mutually
independent processes while the Xi’s are strongly interdependent due to common
innovations.

The results of Chapter 3 and the present chapter are related to the study of
joint limits of the aggregated input in network traffic models, see [27,34,35,55,70,
105] and references therein. See Chapter 3 for a discussion of the relation between
AR(1) and network traffic aggregation schemes and their limit processes.

4.2 Main results

For −1/2 < β < 0, define a standard fractional Brownian motion B(1/2)−β with
Hurst index H = (1/2)− β ∈ (1/2, 1) as stochastic integral

B(1/2)−β(τ) := C−1
β

∫ τ

−∞

(
(τ − s)−β − (−s)−β+

)
dB(s), τ ≥ 0, (4.10)

w.r.t. a standard Brownian motion B, where C2
β := −βB(−β, 1 + 2β)/(1− 2β) =∫ 1

−∞((1− s)−β − (−s)−β+ )2ds. Note that EB2
(1/2)−β(τ) = τ 1−2β. See [36, page 545].

Next, let WβB := {WβB(τ), τ ≥ 0}, −1/2 < β < 0, where Wβ > 0 is
a completely asymmetric (1 + β)-stable r.v., independent of standard Brownian
motion B = {B(τ), τ ≥ 0} and having the log-Laplace transform log Ee−θWβ =

ψ1

∫∞
0

(e−θ/x− 1)xβdx = −ψ1(Γ(−β)/(1 +β))θ1+β, θ ≥ 0. Note, the process WβB

has stationary increments and is self-similar with index 1/2.
Proposition 4.2 details the third limit process arising under (4.4)–(4.5). Before

that, we discuss the double stochastic integral w.r.t. Gaussian and Poisson random
measures.

Let N = {N(dx), x ∈ R+} be a Poisson random measure on R+ with intensity
ν(dx) := EN(dx) := ψ1x

βdx, −1/2 < β < 0, independent of a standard Brownian
motion B = {B(s), s ∈ R}. Let Ñ(dx) = N(dx)− ν(dx) be the centered Poisson
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random measure. Let Lp (p ≥ 1) be the space of all r.v.s ξ measurable w.r.t. the σ-
field generated by N and B and such that E|ξ|p <∞. Write E = EN ×EB, where
EN ,EB refer to expectation w.r.t. N,B only. For 1 ≤ p ≤ 2, let Lp(R+ × R)

denote the Banach space of all measurable real-valued functions h = h(x, s),
(x, s) ∈ R+ × R such that

‖h‖Lp :=
(∫

R+

{∫

R
h2(x, s)ds

}p/2
ν(dx)

)1/p

+

∫

R+

{∫

R
h2(x, s)ds

}1/2

ν(dx) <∞.

Let L0(R+ × R) consist of all (step) functions h = h(x, s) taking a finite number
of non-zero values hn(k, j) on squares (k/n, (k+1)/n]×(j/n, (j+1)/n] ⊂ R+×R,
k = 0, 1, . . . , j = 0,±1,±2, . . . for some n = 1, 2, . . . . For such h ∈ L0(R+ × R),
define the double stochastic integral I(h) ≡

∫
R+×R h(x, s)N(dx)dB(s) as a sum

I(h) :=
∑

k,j

hn(k, j)N((k/n, (k + 1)/n])B((j/n, (j + 1)/n]), (4.11)

where B((j/n, (j + 1)/n]) := B((j + 1)/n)−B(j/n).

Proposition 4.1. For any 1 ≤ p ≤ 2, the double stochastic integral I(h) =∫
R+×R h(x, s)N(dx)dB(s) in (4.11) extends to any h ∈ Lp(R+×R), by continuity

in Lp, and satisfies the inequality

E|I(h)|p ≤ C‖h‖pLp (4.12)

with C > 0 independent of h ∈ Lp(R+ × R). Moreover, for any h ∈ Lp(R+ × R)

and any θ ∈ R,

EeiθI(h) = EB exp
{∫

R+

(
exp

{
iθ

∫

R
h(x, s)dB(s)

}
− 1
)
ν(dx)

}

= EN exp
{
− θ2

2

∫

R

(∫

R+

h(x, s)N(dx)
)2

ds
}
. (4.13)

In particular, I(h) has a mixed Gaussian distribution with ‘random variance’∫
R(
∫
R+
h(x, s)N(dx))2ds.

Proposition 4.2. (i) The process Zβ = {Zβ(τ), τ ≥ 0} in (4.9) is well-defined
for any β ∈ (−1/2, 0), as a stochastic integral of Proposition 4.1, and satisfies
E|Zβ(τ)|p < ∞ for any p ∈ [1, 2(1 + β)) ⊂ [1, 2). Moreover, Zβ has stationary
increments and a.s. continuous paths on R+.
(ii) (Asymptotic self-similarity.) For any −1/2 < β < 0,

bβ−(1/2)Zβ(bτ)
fdd→ σβB(1/2)−β(τ) as b→ 0, (4.14)

b−1/2Zβ(bτ)
fdd→ WβB(τ) as b→∞, (4.15)

where σβ := −ψ1Γ(β)Cβ.
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In Theorems 4.3 and 4.4, SN,n(τ) is the aggregated sum (4.2), where Xi are
stationary random-coefficient AR(1) processes

Xi(t) =
∞∑

s=0

asiε(t− s), t ∈ Z, i = 1, . . . , N, (4.16)

with common i.i.d. innovations {ε(t), t ∈ Z} such that Eε(t) = 0, Eε2(t) = 1, and
i.i.d. random coefficients ai ∈ (−1, 1), i = 1, . . . , N , independent of {ε(t), t ∈ Z}.
Note that the series in (4.16) converges conditionally a.s. and in L2 for any fixed
ai ∈ (−1, 1).

Theorem 4.3. Let Assumptions (A1) and (A2) be satisfied, where −1/2 < β < 0.
Then the simultaneous limits of the normalized partial sums SN,n as N, n → ∞
under (4.4) are given in (4.6)–(4.8) in respective Cases (i)–(iii) of (4.5).

Theorem 4.4. Let Assumptions (A1) and (A2) be satisfied, where β > 0. Then,
as N, n→∞ in arbitrary way,

N−1n−1/2SN,n(τ)
fdd→ σB(τ), (4.17)

where {B(τ), τ ≥ 0} is a standard Brownian motion and σ := E(1− a)−1.

4.3 Proofs

Proof of Proposition 4.1. Rewrite I(h) in (4.11) as I(h) = I1(h) + I2(h), where
I1(h) :=

∑
k,j hn(k, j)ν((k/n, (k+1)/n])B((j/n, (j+1)/n]), I2(h) :=

∑
k,j hn(k, j)

× Ñ((k/n, (k+ 1)/n])B((j/n, (j+ 1)/n]). By inequality (3.24) on page 26 for pth
moment of Poisson stochastic integrals, it follows that for any 1 ≤ p ≤ 2,

E|I2(h)|p = EE
[
|I2(h)|p|B

]

≤ 2E
∑

k

∣∣∣
∑

j

hn(k, j)B((j/n, (j + 1)/n])
∣∣∣
p

ν((k/n, (k + 1)/n])

≤ 2
∑

k

{
E
∣∣∣
∑

j

hn(k, j)B((j/n, (j + 1)/n])
∣∣∣
2}p/2

ν((k/n, (k + 1)/n])

= 2
∑

k

{∑

j

h2
n(k, j)(1/n)

}p/2
ν((k/n, (k + 1)/n])

= 2

∫

R+

{∫

R
h2(x, s)ds

}p/2
ν(dx),
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while

E|I1(h)|p ≤ {E|I1(h)|2}p/2

=
{∑

j

(∑

k

hn(k, j)ν((k/n, (k + 1)/n])
)2

(1/n)
}p/2

≤
{∑

k

(∣∣∣
∑

j

h2
n(k, j)(1/n)

∣∣∣
2)1/2

ν((k/n, (k + 1)/n])
}p

=
{∫

R+

(∫

R
h2(x, s)ds

)1/2

ν(dx)
}p

by Minkowski’s inequality. Hence, I(h) in (4.11) satisfies (4.12). The set L0(R+×
R) being dense in Lp(R+ × R), the linear map I : L0(R+ × R) → Lp in (4.11)
extends by continuity in Lp to Lp(R+×R) and satisfies (4.12). The second equality
in (4.13) is obvious. Consider the first equality in (4.13), which obviously holds for
h ∈ L0(R+ × R). Note that L(h) :=

∫
R+

(eiθ
∫
R h(x,s)dB(s) − 1)ν(dx) is well-defined

and satisfies EB|L(h)| ≤ |θ|
∫
R+

EB|
∫
R h(x, s)dB(s)|ν(dx) ≤ |θ|

∫
R+

E
1/2
B |
∫
R h(x, s)

dB(s)|2ν(dx) = |θ|
∫
R+
ν(dx){

∫
R+
h2(x, s)ds}1/2 ≤ |θ|‖h‖Lp and Re(L(h)) ≤ 0.

Due to these facts, the first equality in (4.13) easily extends to h ∈ Lp(R+ × R).
Proposition 4.1 is proved.

The proof of Proposition 4.2 uses Lemma 4.5. For (x, t) ∈ R+ × R define

f(x, t) :=





(1− e−xt)/x, if x > 0 and t > 0,

0, otherwise.
(4.18)

Lemma 4.5. (i) Let L(τ, x) :=
∫ τ
−∞(f(x, τ − s) − f(x,−s))dB(s); Λb(τ, x) :=

b−(1+β)(exp{iθb1+βL(τ, x)} − 1); Λ0(τ, x) := iθL(τ, x) for τ > 0, x > 0, b > 0,
θ ∈ R. Then

∫ ∞

0

Λb(τ, x)ν(dx)
p→
∫ ∞

0

Λ0(τ, x)ν(dx), b→ 0. (4.19)

(ii) LetMb(τ, x) := exp{iθx−1
∫ τ

0
(1−e−bx(τ−s))dB(s)}−1;M∞(τ, x) := exp{iθx−1

∫ τ
0

dB(s)} − 1 for τ > 0, x > 0, b > 0, θ ∈ R. Then
∫ ∞

0

Mb(τ, x)ν(dx)
p→
∫ ∞

0

M∞(τ, x)ν(dx), b→∞. (4.20)

Proof. (i) Let 1 < p < 2(1 + β) < 2. Using |eix − 1− x| ≤ min(2|x|, x2/2), x ∈ R,
we obtain

|Λb(τ, x)− Λ0(τ, x)| ≤ C min
(
b1+βL2(τ, x), |L(τ, x)|

)

= C
{
b1+β|L(τ, x)|1(1 ≤ b1+β|L(τ, x)|)

+b1+β|L(τ, x)|21(1 ≥ b1+β|L(τ, x)|)
}

≤ Cb(1+β)(p−1)|L(τ, x)|p,
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which tends to 0 with probability 1 as b→ 0 for any x > 0. Hence

EB

∣∣∣
∫ ∞

0

(Λb(τ, x)− Λ0(τ, x))ν(dx)
∣∣∣ ≤ Cb(1+β)(p−1)

∫ ∞

0

EB|L(τ, x)|pν(dx)

= O(b(1+β)(p−1)) = o(1),

since
∫∞

0
EB|L(τ, x)|pν(dx) ≤ C

∫∞
0
|σ(τ, x)|pν(dx) <∞ by (4.22) with σ2(τ, x) =

EBL
2(τ, x) evaluated in (4.21). This proves (4.19).

(ii) Since|Mb(τ, x) −M∞(τ, x)| ≤ C min(1, |θx−1
∫ τ

0
e−bx(τ−s)dB(s)|) =: Lb(τ, x),

we have

EB

∫ ∞

0

|Mb(τ, x)−M∞(τ, x)|ν(dx)

≤
∫ ε

0

EB|Lb(τ, x)|ν(dx) +

∫ ∞

ε

EB|Lb(τ, x)|ν(dx) =: I1 + I2.

Since β > −1/2 > −1 and Lb is bounded, the integral I1 can be made arbitrary
small by choosing ε > 0 small enough. The proof is completed by showing that

I2 ≤ C

∫ ∞

ε

EB

∣∣∣x−1

∫ τ

0

e−bx(τ−s)dB(s)
∣∣∣xβdx

≤ C

∫ ∞

ε

E
1/2
B

∣∣∣
∫ τ

0

e−bx(τ−s)dB(s)
∣∣∣
2

xβ−1dx

≤ C

∫ ∞

ε

∣∣∣
∫ τ

0

e−2bxsds
∣∣∣
1/2

xβ−1dx

≤ C

∫ ∞

ε

(xb)−1/2xβ−1dx→ 0, b→∞.

This proves (4.20) and the lemma, too.

Proof of Proposition 4.2. (i) We have hτ (x, s) :=
∫ τ

0
e−x(u−s)1(s ≤ u)du = f(x, τ−

s) − f(x,−s), (x, s) ∈ R+ × R, where f(τ, x) is defined in (4.18). By Proposi-
tion 4.1, Zβ(τ) = I(hτ ) is well-defined provided ‖hτ‖Lp <∞ for some 1 ≤ p ≤ 2.
From (3.33), (3.34) on page 28 we have

σ2(τ, x) :=

∫

R
h2
τ (x, s)ds ≤ C

τ

x2
(1 ∧ (τx)) (4.21)

and hence
∫

R+

{∫

R
h2
τ (x, s)ds

}p/2
ν(dx) ≤ Cτ p/2

∫ ∞

0

{ 1

x2
(1 ∧ (τx))

}p/2
xβdx

≤ Cτ (3p/2)−1−β <∞ (4.22)

for 1 + β < 1 ≤ p < 2(1 + β). Therefore

E|Zβ(τ)|p ≤ C‖hτ‖pLp ≤ C(τ (3p/2)−1−β + τ (1−2β)(p/2)) <∞ (4.23)
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for τ > 0, 1 ≤ p < 2(1 + β). Zβ(τ) =
∫
R+×R hτ (x, s)N(dx)dB(s) has stationary

increments because the invariance properties hτ+u(x, s)− hu(x, s) = hτ (x, s− u),
{dB(s + u), s ∈ R} fdd

= {dB(s), s ∈ R}, τ, u ≥ 0, hold for the integrand and the
white noise dB. The fact that Zβ(τ) has a.s. continuous paths follows from (4.23)
and stationarity of increments, and the Kolmogorov criterion [73, Theorem 2.2.3],
by noting that both exponents of τ on the r.h.s. of (4.23) are strictly greater than
1 for p < 2(1 + β) sufficiently close to 2(1 + β). This proves part (i).

(ii) We use the method of characteristic functions and restrict the proof to the
one-dimensional convergence at fixed τ > 0; the proof of finite-dimensional con-
vergence follows similarly.

Proof of (4.14). Using (4.13) and the scaling property f(x, bt) = bf(bx, t) we
obtain

Ub(θ) := EB exp
{∫ ∞

0

(
exp

{
iθbβ−1/2

∫ bτ

−∞
(f(x, bτ − s)

−f(x,−s))dB(s)
}
− 1
)
ν(dx)

}

= EB exp
{∫ ∞

0

(
exp

{
iθb1+β

∫ τ

−∞
(f(bx, τ − s)

−f(bx,−s))dB(s)
}
− 1
)
ν(dx)

}

= EB exp
{∫ ∞

0

Λb(τ, y)ν(dy)
}
,

where we changed a variable to get the last equality with Λb(τ, y) defined in
Lemma 4.5(i). Since Re{

∫∞
0

Λb(τ, y)ν(dy)} ≤ 0, Lemma 4.5(i) implies the con-
vergence Ub(θ) → U0(θ) := EB exp{

∫∞
0

Λ0(τ, y)ν(dy)} for any θ ∈ R. It remains
to show that U0(θ) = E exp{iθσβB(1/2)−β(τ)}. Using the definitions of B(1/2)−β(τ)

in (4.10) and f(x, τ) in (4.18) and the identity
∫∞

0
f(x, τ)ν(dx) = −ψ1Γ(β)τ−β,

β ∈ (−1, 0), τ > 0, we obtain

∫ ∞

0

Λ0(τ, x)ν(dx) = iθ

∫ τ

−∞

∫ ∞

0

(f(x, τ − s)− f(x,−s))ν(dx)dB(s)

= iθσβB(1/2)−β(τ), (4.24)

where the interchange of the order of integration in the first equality of (4.24) can
be justified by the stochastic Fubini theorem, see [85, Chapter 6, Theorem 65].
The proof of (4.14) is complete.

Proof of (4.15). It is well-known (see, e.g., [96, Theorem 3.12.2]) that the (1 +β)-
stable r.v. Wβ in (4.15) can be written as stochastic integral w.r.t. Poisson random
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measure N : Wβ
d
=
∫∞

0
x−1N(dx). Let us prove that as b→∞,

Vb(θ) := E exp
{

iθb−1/2

∫ ∞

0

∫ bτ

0

f(x, bτ − s)N(dx)dB(s)
}

→ E exp
{

iθ

∫ ∞

0

x−1N(dx)B(τ)
}

= EeiθWβB(τ) =: V∞(θ).

Indeed, using (4.13) and scaling properties of f(x, t) and B, we have Vb(θ) =

EB exp{
∫∞

0
Mb(τ, x)ν(dx)}, where Mb(τ, x) is defined in Lemma 4.5(ii). Since

Re{
∫∞

0
Mb(τ, x)ν(dx)} ≤ 0, relation Vb(θ) → V∞(θ) = EB exp{

∫∞
0
M∞(τ, x)

ν(dx)}, b→∞, follows from Lemma 4.5(ii). It remains to prove that

I(b, p) := b−p/2E
∣∣∣
∫ ∞

0

∫ 0

−∞

(
f(x, bτ − s)− f(x,−s)

)
N(dx)dB(s)

∣∣∣
p

→ 0, (4.25)

b → ∞, for some p > 0. Using
∫ 0

−∞(f(x, bτ − s) − f(x,−s))dB(s) = x−1(1 −
e−xbτ )

∫∞
0

e−xsdB(s) and the inequality in (3.24) on page 26 with 0 < p < 1 +β <

1, 3p/2 > 1 + β we obtain

bp/2I(b, p) ≤
∫ ∞

0

|(1− e−xbτ )/x|pEB

∣∣∣
∫ ∞

0

e−xsdB(s)
∣∣∣
p

ν(dx)

≤ C

∫ ∞

0

|(1− e−xbτ )/x|p
(∫ ∞

0

e−2xsds
)p/2

ν(dx)

≤ C

∫ ∞

0

|(1− e−xbτ )/x|px−p/2ν(dx) = O(b(p/2)+p−1−β) = o(bp/2),

which yields (4.25) and completes the proof of (4.15). Proposition 4.2 is proved.

To prove Theorem 4.3 we need the following lemma.

Lemma 4.6. Let ηn(a, s) :=
∑[nτ ]

t=1 a
t−s1(s ≤ t), s ∈ Z, a ∈ (−1, 1). Then as

N, n→∞ and N1/(1+β)/n→ µ ∈ {1,∞},

N−2n2β−1
∑

s∈Z

( N∑

i=1

ηn(ai, s)
)2

d→





∫

R

(∫ ∞

0

∫ τ

0

e−x(t−s)1(s ≤ t)dtN(dx)
)2

ds, µ = 1,

(−ψ1Γ(β))2

∫

R
((τ − s)−β+ − (−s)−β+ )2ds, µ =∞.

(4.26)

Proof. We use the criterion in Cremers and Kadelka [23]. Rewrite (4.26) as IN,n
d→

I, where IN,n :=
∫
RA

2
N,n(s)ds, I :=

∫
RA

2(s)ds and

AN,n(s) :=
nβ

N

N∑

i=1

ηn(ai, dnse),

A(s) :=





∫ ∞

0

∫ τ

0

e−x(t−s)1(s ≤ t)dtN(dx), µ = 1,

κ((τ − s)−β+ − (−s)−β+ ), µ =∞,
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with κ := −ψ1Γ(β). Accordingly (see [23], the second Corollory to Theorem 3),
it suffices to verify two conditions:

AN,n(s)
fdd→ A(s) (4.27)

and
E
[ ∫

R
A2
N,n(s)ds

]1/2

< C. (4.28)

Relation (4.27) follows from the convergence of the joint characteristic functions:

Eei
∑m
j=1 θjAN,n(sj) =

(
1 +

ΘN,n

N

)N
→ eΘ = Eei

∑m
j=1 θjA(sj) (4.29)

for any (θ1, . . . , θm) ∈ Rm, −∞ < s1 < · · · < sm <∞, m ∈ N, where

ΘN,n := NE
[

exp
{

i
nβ

N

m∑

j=1

θjηn(a, dnsje)
}
− 1
]

and

Θ :=





ψ1

∫ ∞

0

(
exp

{
i
m∑

j=1

θj

∫ τ

0

e−x(t−sj)1(sj ≤ t)dt
}
− 1
)
xβdx, µ = 1,

i
m∑

j=1

θjA(sj) = iκ
m∑

j=1

θj((τ − sj)−β+ − (−sj)−β+ ), µ =∞.

Observe that A(s) = ψ1

∫∞
0

(
∫ τ

0
e−x(t−s)1(s ≤ t)dt)xβdx if µ = ∞. Split ΘN,n =

ΘN,n,1 + ΘN,n,2, where

ΘN,n,1 := NE
[

exp
{

i
nβ

N

m∑

j=1

θjηn(a, dnsje)
}
− 1
]
1(1− ε < a < 1),

ΘN,n,2 := NE
[

exp
{

i
nβ

N

m∑

j=1

θjηn(a, dnsje)
}
− 1
]
1(−1 < a ≤ 1− ε),

with the same ε > 0 as in Assumption (A1). From ηn(a, s) ≤ 2/(1 − a) and
|eiz − 1| ≤ |z| (z ∈ R), we obtain |ΘN,n,2| ≤ CnβE[(1− a)−11(−1 < a < 1− ε)] =

o(1) as β < 0. Next, with hn(x, s) :=
∫ [nτ ]/n

0
(1 − x

n
)dnte−dnse1(dnse ≤ dnte)dt by

change of variable a = 1− x/n we obtain

ΘN,n,1 = N

∫ 1

1−ε

(
exp

{
i
n1+β

N

m∑

j=1

θj

∫ [nτ ]/n

0

adnte−dnsje1(dnsje ≤ dnte)dt
}
− 1
)

×ψ(a)(1− a)βda

=
N

n1+β

∫ εn

0

(
exp

{
i
n1+β

N

m∑

j=1

θjhn(x, sj)
}
− 1
)
ψ
(

1− x

n

)
xβdx

→ Θ (4.30)
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in both cases µ = 1 and µ = ∞. This follows from the pointwise convergence
hn(x, s)→

∫ τ
0

e−x(t−s)1(s ≤ t)dt, (x, s) ∈ R+ × R, and the dominating bound

N

n1+β

∣∣∣ exp
{

i
n1+β

N

m∑

j=1

θjhn(x, sj)
}
− 1
∣∣∣1(0 < x < εn) ≤ C min(1, (1/x)),

which is a consequence of the inequalities |eiz − 1| ≤ |z| (z ∈ R), |1 − u| ≤ e−u

(u ∈ [0, 1]). This proves (4.29) and (4.27).
Consider (4.28). Write JN,n for the l.h.s. of (4.28). By Minkowski’s inequality,

JN,n = nβ−(1/2)N−1E
[∑

s∈Z

( N∑

i=1

ηn(ai, s)
)2]1/2

≤ nβ−(1/2)E
[∑

s∈Z

η2
n(a, s)

]1/2

= nβ−(1/2)
{

E
[∑

s∈Z

η2
n(a, s)

]1/2

1(1− ε < a < 1)

+E
[∑

s∈Z

η2
n(a, s)

]1/2

1(−1 < a ≤ 1− ε)
}

=: JN,n,1 + JN,n,2

for the same ε > 0 as in Assumption (A1). Since
∑

s≤0 η
2
n(a, s) +

∑[nτ ]
s=1 η

2
n(a, s) ≤

C((1+a)−1 +n) for −1 < a ≤ 1− ε, we therefore get JN,n,2 = O(nβ) = o(1) under
Assumption (A2). Next, similarly to (4.30), by change a = 1 − x/n of variable
and with the same hn(x, s) as in (4.30), we obtain

JN,n,1 ≤ C

∫ εn

0

xβdx
[ ∫ τ

−∞
h2
n(x, s)ds

]1/2

< C.

This proves (4.28) and completes the proof of Lemma 4.6.

Proof of Theorem 4.3. We use the method of characteristic functions as in Chap-
ter 3. For notational convenience, we restrict the proof to one-dimensional con-
vergence at τ > 0. The case of general finite-dimensional distributions does not
require essential changes.

Case (iii) (proof of (4.8)). Let µ = 1. As in the proof of Theorem 3.2, we first
assume ε to be a standard normal r.v., i.e. ε d

= N (0, 1). It suffices to show that
for each θ ∈ R,

E exp{iθN−1/(1+β)n−1/2SN,n(τ)} (4.31)

→ EeiθZβ(τ) = EN exp
{
− θ2

2

∫

R

(∫

R+

∫ τ

0

e−x(t−s)1(s ≤ t)dtN(dx)
)2

ds
}
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as N, n→∞, N1/(1+β)/n→ 1, where the characteristic function of Zβ(τ) follows
from (4.9), (4.13). Use Xi(t) =

∑
s≤t a

t−s
i ε(s) and Eeiθε = e−θ

2/2 to write the l.h.s.
of (4.31) as

EE
[

exp
{

iθN−1/(1+β)n−1/2
∑

s∈Z

( N∑

i=1

ηn(ai, s)
)
ε(s)

}∣∣∣a1, . . . , aN
]

= E exp
{
− (θ2/2)N−2/(1+β)n−1

∑

s∈Z

( N∑

i=1

ηn(ai, s)
)2}

, (4.32)

with the same ηn(a, s) as in Lemma 4.6. Whence, (4.31) immediately follows from
the above-mentioned lemma.

In a general case of ε, the above argument needs some modification, see the
proof of Theorem 3.1. Namely, we use the fact (see, e.g., Ibragimov and Lin-
nik [49, Theorem 2.6.5]) that the characteristic function of ε has the following
representation in a neighborhood of the origin: there exists δ > 0 such that

Eeiθε := e−(1/2)θ2h(θ) for each |θ| < δ, (4.33)

where h(θ) is a positive function tending to 1 as θ → 0. For 0 < p < 1/2 consider
the set ΩN,n := {a = (a1, a2, . . . ) ∈ [0, 1)N :

∑N
i=1(1 − ai)−1 < N1/(1+β)np}. Then

supa∈ΩN,n, s∈Z |
∑N

i=1 ηn(ai, s)| ≤ 2N1/(1+β)np implies

sup
a∈ΩN,n, s∈Z

∣∣h
(
θN−1/(1+β)n−1/2

N∑

i=1

ηn(ai, s)
)
− 1
∣∣ = o(1). (4.34)

For N and n large enough, split UN,n(θ) := E exp{iθN−1/(1+β)n−1/2SN,n(τ)} =

UN,n,1(θ) + UN,n,2(θ), where UN,n,1(θ) := E[exp{iθN−1/(1+β)n−1/2SN,n(τ)}1(a ∈
ΩN,n)],
UN,n,2(θ) := E[exp{iθN−1/(1+β)n−1/2SN,n(τ)}1(a 6∈ ΩN,n)]. By Markov’s inequal-
ity, for (1 + β)/(1 + p) < q < 1 + β < 1, we get

|UN,n,2(θ)| ≤ P
( N∑

i=1

(1− ai)−1 ≥ N1/(1+β)np
)
≤ E

(∑N
i=1(1− ai)−1

)q
(
N1/(1+β)np

)q

≤ E
[ 1

(1− a)q

](N1/(1+β)

n

)pq
N1−q(1+p)/(1+β) → 0.

Using (4.33), (4.34), P(a 6∈ ΩN,n)→ 0 and (4.31), we obtain

UN,n,1(θ) = E
[

exp
{
− (θ2/2)N−2/(1+β)n−1

∑

s≤[nτ ]

( N∑

i=1

ηn(ai, s)
)2

×h
(
θN−1/(1+β)n−1/2

N∑

i=1

ηn(ai, s)
)}

1(a ∈ ΩN,n)
]
→ EeiθZβ(τ),

57



Chapter 4. Aggregation of AR(1) processes with common innovations

and finish the proof of UN,n(θ)→ EeiθZβ(τ) in the general case of ε. Finally, the gen-
eral case of 0 < µ <∞ reduces to µ = 1, since n−1/2SN,n(τ) = µ1/2ñ−1/2SN,ñ(τ/µ)

with ñ = nµ satisfying N1/(1+β)/ñ→ 1.

Case (i) (proof of (4.6)). Follows similarly to Case (iii) by using (4.32) and
Lemma 4.6 with µ =∞.

Case (ii) (proof of (4.7)). Split

SN,n(τ) = ΣN,n,1(τ)− ΣN,n,2(τ) + ΣN,n,3(τ), (4.35)

where

ΣN,n,1(τ) :=

[nτ ]∑

s=1

ε(s)
N∑

i=1

1

1− ai
,

ΣN,n,2(τ) :=

[nτ ]∑

s=1

( N∑

i=1

a
[nτ ]−s+1
i

1− ai

)
ε(s),

ΣN,n,3(τ) :=
∑

s≤0

( N∑

i=1

a1−s
i (1− a[nτ ]

i )

1− ai

)
ε(s).

It suffices to prove that

N−1/(1+β)n−1/2ΣN,n,1(τ)
fdd→ WβB(τ), (4.36)

ΣN,n,i(τ) = op(N1/(1+β)n1/2), i = 2, 3,

as N, n→∞, N1/(1+β)/n→ 0. The first relation in (4.36) follows from

n−1/2

[nτ ]∑

s=1

ε(s)
d→ B(τ) and N−1/(1+β)

N∑

i=1

(1− ai)−1 d→ Wβ, (4.37)

by independence of {ε(s)} and {ai} and the continuous mapping theorem. In
turn, the first relation in (4.37) follows by the classical central limit theorem for
i.i.d. r.v.s with finite variance. A similar statement for sums of i.i.d. r.v.s in the
domain of attraction of stable law (see [49, Theorem 2.6.7]) implies the second
limit in (4.37), because the distribution of (1 − a)−1 belongs to the domain of
attraction of the (1 + β)-stable law Wβ: P((1 − a)−1 > x) = P(a > 1 − x−1) ∼
(ψ1/(1 + β))x−(1+β), x → ∞, according to (4.3). The remaining relations in
(4.36) are established in Lemma 4.7. This proves (4.7) and completes the proof
of Theorem 4.3.

Lemma 4.7. ΣN,n,i(τ) = op(n1/2N1/(1+β)), i = 2, 3, as N, n→∞ and N1/(1+β)/n

→ 0.
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Proof. W.l.g., let τ = 1 and ΣN,n,i := ΣN,n,i(1), i = 2, 3. We shall prove that for
2
3
(1 + β) < p < 1 + β,

E|ΣN,n,i|p = o(np/2Np/(1+β)), i = 2, 3. (4.38)

We have E|ΣN,n,2|p ≤ EV p
2 , where

V2 := E1/2
[
|ΣN,n,2|2

∣∣a1, . . . , aN
]

=
{ n∑

s=1

( N∑

i=1

an−s+1
i

1− ai

)2}1/2

≤
N∑

i=1

{ n∑

s=1

a2s
i

(1− ai)2

}1/2

=
N∑

i=1

(1− a2n
i )1/2

(1− ai)(1− a2
i )

1/2

by Minkowski’s inequality. Hence,

E|ΣN,n,2|p ≤ NEAp2, where A2 :=
(1− a2n)1/2

(1− a)(1− a2)1/2
, (4.39)

as p < 1. Split EAp2 = E[Ap21(a ≤ 1 − ε)] + E[Ap21(a > 1 − ε)] =: Λ′2 + Λ′′2 for
the same ε > 0 as in Assumption (A1). Then Λ′2 ≤ CE(1 + a)−p/2 < C under
Assumption (A2). Next, by change of variable 1− a = x/n we obtain

Λ′′2 ≤ C

∫ 1

1−ε

(1− a2n)p/2

(1− a)3p/2
(1− a)βda

= Cn(3p/2)−(1+β)

∫ εn

0

(
1−

(
1− x

n

)2n)p/2
xβ−(3p/2)dx,

where the last integral tends to
∫∞

0
(1− e−2x)p/2xβ−(3p/2)dx <∞ for 2(1 + β)/3 <

p < 1 + β by the dominated convergence theorem. Therefore, E|ΣN,n,2|p ≤
CNn(3p/2)−(1+β), proving (4.38) for i = 2.

The proof of (4.38) for i = 3 is similar. Namely, E|ΣN,n,3|p ≤ EV p
3 , where

V3 := E1/2
[
|ΣN,n,2|2

∣∣a1, . . . , aN
]

=
{∑

s≤0

( N∑

i=1

a1−s
i (1− ani )

1− ai

)2}1/2

≤
N∑

i=1

{ n∑

s≤0

a
2(1−s)
i (1− ani )2

(1− ai)2

}1/2

≤
N∑

i=1

1− ani
(1− ai)(1− a2

i )
1/2
.

Hence

E|ΣN,n,3|p ≤ NEAp3, where A3 :=
1− an

(1− a)(1− a2)1/2

similarly to (4.39). Next, EAp3 = E[Ap31(a ≤ 1−ε)]+E[Ap31(a > 1−ε)] =: Λ′3 +Λ′′3,
where Λ′3 ≤ CE(1 + a)−p/2 < C and

Λ′′3 ≤ C

∫ 1

1−ε

(1− an)p

(1− a)3p/2
(1− a)βda

= Cn(3p/2)−(1+β)

∫ εn

0

(
1−

(
1− x

n

)n)p
xβ−(3p/2)dx,
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where the last integral tends to
∫∞

0
(1 − e−x)pxβ−(3p/2)dx < ∞. Lemma 4.7 is

proved.

Proof of Theorem 4.4. We restrict the proof of (4.17) to one-dimensional conver-
gence at τ > 0. Split SN,n(τ) as in (4.35). Then, by the central limit theorem
and the law of large numbers, n−1/2N−1ΣN,n,1(τ)

d→ σB(τ) as N, n → ∞ in an
arbitrary way. It remains to show that ΣN,n,i(τ) = op(Nn1/2), i = 2, 3. W.l.g.,
let τ = 1. According to (4.39), E|ΣN,n,2(1)| ≤ E{E[|ΣN,n,2(1)|2 | a1, . . . , aN ]}1/2 ≤
NEA2. Split EA2 = E[A21(a ≤ 1 − ε)] + E[A21(a > 1 − ε)] as in the proof of
Lemma 4.7. Then E[A21(a ≤ 1 − ε)] ≤ CE(1 + a)−1/2 < C. Using 1 − un ≤
min(1, n(1 − u)), u ∈ (0, 1), for max(0, 1/2 − β) < q < 1/2 we get E[A21(a >

1 − ε)] ≤ CnqE[(1 − a)q−3/2] < Cnq and thus E|ΣN,n,2(1)| ≤ CNnq = o(Nn1/2).
The proof of E|ΣN,n,3(τ)| = o(Nn1/2) is analogous. Theorem 4.4 is proved.
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Chapter 5

Statistical inference from
panel AR(1) data

This chapter contains the article [63]. We discuss nonparametric estimation of the
distribution function G of the autoregressive coefficient a ∈ (−1, 1) from a panel of
N random-coefficient AR(1) series, each of length n, by the empirical distribution
function of lag 1 sample autocorrelations of individual AR(1) processes. Consis-
tency and asymptotic normality of the empirical distribution function and a class
of kernel density estimators is established under some regularity conditions on G
as N and n increase to infinity. The Kolmogorov–Smirnov goodness-of-fit test for
simple and composite hypotheses of beta distributed a is discussed. A simulation
study for goodness-of-fit testing compares the finite-sample performance of our
nonparametric estimator to the performance of its parametric analogue discussed
in [9].

5.1 Introduction

Panel data can describe a large population of heterogeneous units/agents which
evolve over time, e.g., households, firms, industries, countries, stock market in-
dices. In this chapter we consider a panel where each individual unit evolves over
time according to order-one random coefficient autoregressive model (RCAR(1)).
It is well known that aggregation of specific RCAR(1) models can explain long
memory phenomenon, which is often empirically observed in economic time series
(see [40] for instance). More precisely, consider a panel {Xi(t), t = 1, . . . , n, i =

1, . . . , N}, where each Xi = {Xi(t), t ∈ Z} is an RCAR(1) process with (0, σ2)
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noise and random coefficient ai ∈ (−1, 1), whose autocovariance

EXi(0)Xi(t) = σ2

∫ 1

−1

x|t|

1− x2
dG(x)

is determined by the distribution function G(x) = P(a ≤ x), x ∈ [−1, 1], of the
AR coefficient. Granger [40] showed, for a specific beta-type distribution G, that
the contemporaneous aggregation of independent processes X1, . . . , XN results in
a stationary Gaussian long memory process {X (t), t ∈ Z}, i.e.,

N−1/2

N∑

i=1

Xi(t)
fdd→ X (t) as N →∞, (5.1)

where the autocovariance EX (0)X (t) = EX1(0)X1(t) decays slowly as t → ∞ so
that

∑
t∈Z |EX (0)X (t)| =∞.

A natural statistical problem is recovering the distribution G (the frequency
of a across the population of individual AR(1) ‘microagents’) from the aggre-
gated sample {X (1), . . . ,X (n)}. This problem was treated in [20, 21, 61]. Some
related results were obtained in [19,48,50]. Albeit nonparametric, the estimators
in [20,61] involve an expansion of the density g = G′ in an orthogonal polynomial
basis and are sensitive to the choice of the tuning parameter (the number of poly-
nomials), being limited in practice to very smooth densities g. The last difficulty
in estimation of G from aggregated data is not surprising due to the fact that
aggregation per se inflicts a considerable loss of information about the evolution
of individual ‘micro-agents’.

Clearly, if the available data comprises evolutions {Xi(1), . . . , Xi(n)}, i =

1, . . . , N , of all N individual ‘micro-agents’ (the panel data), we may expect a
much more accurate estimate of G. Robinson [92] constructed an estimator for
the moments of G using sample autocovariances of Xi and derived its asymptotic
properties asN →∞, whereas the length n of each sample remains fixed. Beran et
al. [9] discussed estimation of two-parameter beta densities g from panel RCAR(1)
data using maximum likelihood estimators with unobservable ai replaced by sam-
ple lag 1 autocorrelation coefficient of Xi(1), . . . , Xi(n) (see Section 5.6), and
derived the asymptotic normality together with some other properties of the es-
timators as N and n tend to infinity.

The present chapter studies nonparametric estimation ofG from panel RCAR(1)
data using the empirical distribution function:

ĜN,n(x) :=
1

N

N∑

i=1

1(âi,n ≤ x), x ∈ [−1, 1], (5.2)
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where âi,n is the lag 1 sample autocorrelation coefficient of Xi, i = 1, . . . , N (see
(5.12)). We also discuss kernel estimation of the density g = G′ based on smoothed
version of (5.2). We assume that individual AR(1) processes Xi are driven by
identically distributed shocks containing both common and idiosyncratic (inde-
pendent) components. Consistency and asymptotic normality as N, n → ∞ of
the above estimators are derived under some regularity conditions on G. Our
results can be applied to test goodness-of-fit of the distribution G to a given hy-
pothesized distribution (e.g., a beta distribution) using the Kolmogorov–Smirnov
statistic, and to construct confidence intervals for G(x) or g(x).

The chapter is organized as follows. In Section 5.2 we obtain the rate of
convergence of the lag 1 sample autocorrelation coefficient âi,n to ai in probability,
the result of independent interest. In Section 5.3 we prove the weak convergence of
the empirical process in (5.2) to a generalized Brownian bridge. Section 5.4 treats
the Kolmogorov–Smirnov goodness-of-fit test for simple and composite hypotheses
of beta distributed a. In Section 5.5 we show that kernel density estimators of
g(x) are asymptotically normally distributed and their mean integrated squared
error tends to zero. In Section 5.6 a simulation study compares the empirical
performance of (5.2) and the parametric estimator of [9] when testing the equality
of G to a given beta distribution. The proofs of auxiliary statements can be found
in Section 5.7.

5.2 Estimation of random AR coefficient

Consider an RCAR(1) process

X(t) = aX(t− 1) + ζ(t), t ∈ Z, (5.3)

where innovations {ζ(t)} admit the following decomposition:

ζ(t) = bη(t) + cξ(t), t ∈ Z, (5.4)

where random sequences {η(t)}, {ξ(t)} and random coefficients a, b, c satisfy the
following conditions:

Assumption (A1). {η(t)} are i.i.d. r.v.s with Eη(0) = 0, Eη2(0) = 1, E|η(0)|2p <
∞ for some p > 1.

Assumption (A2). {ξ(t)} are i.i.d. r.v.s with Eξ(0) = 0, Eξ2(0) = 1, E|ξ(0)|2p <
∞ for the same p as in (A1).

Assumption (A3). b and c are possibly dependent r.v.s such that P(b2 + c2 >

0) = 1 and Eb2 <∞, Ec2 <∞.
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Assumption (A4). a ∈ (−1, 1) is a r.v. with a distribution function (d.f.)
G(x) := P(a ≤ x) supported on [−1, 1] and satisfying

E
( 1

1− |a|
)

=

∫ 1

−1

dG(x)

1− |x| <∞. (5.5)

Assumption (A5). a, {η(t)}, {ξ(t)} and the vector (b, c)> are mutually inde-
pendent.

Remark 5.1. In the context of panel observations (see (5.10)), {η(t)} is the
common component and {ξ(t)} is the idiosyncratic component of shocks. The
innovation process {ζ(t)} in (5.4) is i.i.d. if the coefficients b and c are nonrandom.
In the general case {ζ(t)} is a dependent and uncorrelated stationary process with
Eζ(0) = 0, Eζ2(0) = Eb2 + Ec2, Eζ(0)ζ(t) = 0, t 6= 0.

Under conditions (A1)–(A5), a unique strictly stationary solution of (5.3) with
finite variance exists and is written as

X(t) =
∑

s≤t

at−sζ(s), t ∈ Z. (5.6)

Clearly, EX(t) = 0 and EX2(t) = Eζ2(0)E(1 − a2)−1 < ∞. Note that (5.5) is
equivalent to

E
( 1

1− |a|p
)
<∞, 1 < p ≤ 2,

since 1− |a| ≤ 1− |a|p ≤ 2(1− |a|) for a ∈ (−1, 1).
For an observed sample X(1), . . . , X(n) from the stationary process in (5.6),

define the sample mean X̄n := n−1
∑n

t=1 X(t) and the sample lag 1 autocorrelation
coefficient

ân :=

∑n−1
t=1 (X(t)− X̄n)(X(t+ 1)− X̄n)∑n

t=1(X(t)− X̄n)2
. (5.7)

Note the estimator ân in (5.7) does not exceed 1 a.s. in absolute value by the
Cauchy–Schwarz inequality. Moreover, it is invariant to shift and scale transfor-
mations of {X(t)} in (5.3), i.e., we can replace {X(t)} by {ρX(t) +µ} with some
(unknown) µ ∈ R and ρ > 0.

Proposition 5.1. Under Assumptions (A1)–(A5), for any 0 < γ < 1 and n ≥ 1,
it holds

P(|ân − a| > γ) ≤ C(n−( p
2
∧(p−1))γ−p + n−1),

with C > 0 independent of n, γ.

Proof. See Section 5.7.
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Assume now that the d.f. G of a satisfies the following Hölder condition:

Assumption (A6). There exist constants LG > 0 and % ∈ (0, 1] such that

|G(x)−G(y)| ≤ LG|x− y|%, x, y ∈ [−1, 1]. (5.8)

Consider the d.f. of ân:

Gn(x) := P(ân ≤ x), x ∈ [−1, 1]. (5.9)

Corollary 5.2. Let Assumptions (A1)–(A6) hold. Then, as n→∞,

sup
x∈[−1,1]

|Gn(x)−G(x)| = O(n−
%
%+p

( p
2
∧(p−1))).

Proof. Denote δn := ân − a. For any (nonrandom) γ > 0 from (5.8) we have

sup
x∈[−1,1]

|Gn(x)−G(x)| = sup
x∈[−1,1]

|P(a+ δn ≤ x)− P(a ≤ x)|

≤ LGγ
% + P(|δn| > γ),

implying

sup
x∈[−1,1]

|Gn(x)−G(x)| ≤ LGγ
% + C(n−1 + n−( p

2
∧(p−1))γ−p)

with C > 0 independent of n, γ. Then the corollary follows from Proposition 5.1
by taking γ = γn = o(1) such that γ%n ∼ n−( p

2
∧(p−1))γ−pn and noting that the

exponent %
%+p

(p
2
∧ (p− 1)) < 1.

5.3 Asymptotics of the empirical
distribution function

Consider RCAR(1) processes {Xi(t)}, i = 1, 2, . . . , which are stationary solutions
to

Xi(t) = aiXi(t− 1) + ζi(t), t ∈ Z, (5.10)

with innovations {ζi(t)} having the same structure as in (5.4):

ζi(t) = biη(t) + ciξi(t), t ∈ Z. (5.11)

More precisely, we make the following assumption:

Assumption (B). {η(t)} satisfies (A1); {ξi(t)}, (bi, ci)
>, ai, i = 1, 2, . . . , are inde-

pendent copies of {ξ(t)}, (b, c)>, a, respectively, which satisfy Assumptions (A2)–
(A6). (Note that we assume (A5) for every i = 1, 2, . . ..)
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Remark 5.2. The individual processes {Xi(t)} have covariance long memory if
conditions (5.5) and

∫ 1

−1
|1 − x2|−2dG(x) = ∞ hold, which is compatible with

Assumption (B). The same is true about the limit aggregated process in (5.1)
arising when the common component of shocks is absent (i.e. in case P(b =

0) = 1). On the other hand, in the presence of the common component, the
limit aggregated process has long memory if the individual processes have infinite
variance and condition (5.5) fails, see [87].

Define the sample mean X̄i,n := n−1
∑n

t=1Xi(t), the corresponding lag 1 sam-
ple autocorrelation coefficient

âi,n :=

∑n−1
t=1 (Xi(t)− X̄i,n)(Xi(t+ 1)− X̄i,n)∑n

t=1(Xi(t)− X̄i,n)2
, 1 ≤ i ≤ N, (5.12)

and the empirical d.f.

ĜN,n(x) :=
1

N

N∑

i=1

1(âi,n ≤ x), x ∈ [−1, 1]. (5.13)

Recall that (5.13) is a nonparametric estimate of the d.f. G(x) = P(ai ≤ x) from
the observed panel data {Xi(t), t = 1, . . . , n, i = 1, . . . , N}. In the following the-
orem we show that ĜN,n(x) is an asymptotically unbiased estimator of G(x) as n
and N both tend to infinity, and prove the weak convergence of the corresponding
empirical process.

Theorem 5.3. Let the panel data model in (5.10)–(5.11) satisfy Assumption (B).
Then, as N, n→∞,

sup
x∈[−1,1]

|EĜN,n(x)−G(x)| = O(n−
%
%+p

( p
2
∧(p−1))). (5.14)

If, in addition,
N = o(n

2%
%+p

( p
2
∧(p−1))), (5.15)

then
N1/2(ĜN,n(x)−G(x))⇒ W (x), x ∈ [−1, 1], (5.16)

where {W (x), x ∈ [−1, 1]} is a continuous Gaussian process with zero mean and
Cov(W (x),W (y)) = G(x∧y)−G(x)G(y), x, y ∈ [−1, 1], and ⇒ denotes the weak
convergence in the space D[−1, 1] with the supremum (uniform) metric.

Proof. Note â1,n, . . . , âN,n are identically distributed, in particular, EĜN,n(x) =

Gn(x) with Gn(x) defined in (5.9). Hence, (5.14) follows immediately from Corol-
lary 5.2.
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To prove the second statement of the theorem, we approximate ĜN,n(x) by
the empirical d.f.

ĜN(x) :=
1

N

N∑

i=1

1(ai ≤ x), x ∈ [−1, 1],

of i.i.d. r.v.s a1, . . . , aN . We have N1/2(ĜN,n(x)−G(x)) = N1/2(ĜN(x)−G(x)) +

DN,n(x) with DN,n(x) := N1/2(ĜN,n(x) − ĜN(x)). Since (A6) guarantees the
continuity of G, it holds

N1/2(ĜN(x)−G(x))⇒ W (x), x ∈ [−1, 1],

by the classical Donsker theorem. Then (5.16) follows once we prove

sup
x∈[−1,1]

|DN,n(x)| p→ 0.

By definition,

DN,n(x) = N−1/2

N∑

i=1

(1(ai + δi,n ≤ x)− 1(ai ≤ x)) = D′N,n(x)−D′′N,n(x),

where δi,n := âi,n − ai, i = 1, . . . , N , and

D′N,n(x) := N−1/2

N∑

i=1

1(x < ai ≤ x− δi,n, δi,n ≤ 0),

D′′N,n(x) := N−1/2

N∑

i=1

1(x− δi,n < ai ≤ x, δi,n > 0).

For γ > 0 we have

D′N,n(x) ≤ N−1/2

N∑

i=1

1(x < ai ≤ x+ γ) +N−1/2

N∑

i=1

1(|δi,n| > γ)

=: V ′N(x) + V ′′N,n.

(Note that V ′′N,n does not depend on x.) By Proposition 5.1, we obtain

EV ′′N,n = N−1/2

N∑

i=1

P(|δi,n| > γ) ≤ CN1/2(n−((p/2)∧(p−1))γ−p + n−1),

which tends to 0 when γ is chosen as γ%+p = n−((p/2)∧(p−1)) → 0. Next,

V ′N(x) = N1/2(ĜN(x+ γ)− ĜN(x))

= N1/2(G(x+ γ)−G(x)) + UN(x, x+ γ],

UN(x, x+ γ] := N1/2(ĜN(x+ γ)−G(x+ γ))−N1/2(ĜN(x)−G(x)).
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The above choice of γ%+p = n−((p/2)∧(p−1)) implies supx∈[−1,1]N
1/2|G(x + γ) −

G(x)| = O(N1/2γ%) = o(1), whereas UN(x, x + γ] vanishes in the uniform metric
in probability (see Lemma 5.11 in Section 5.7). Since D′′N,n(x) is analogous to
D′N,n(x), this proves the theorem.

Remark 5.3. (5.15) implies that n � N (%+p)/%p asymptotically for p ≥ 2. Note
that (% + p)/%p > 1 and limp→∞(% + p)/%p = 1/% for any % ∈ (0, 1]. We may
conclude that Theorem 5.3 as well as other results of this chapter apply to long
panels with n increasing much faster than N , except maybe for the limiting case
p =∞ for % = 1. The main reason for this conclusion is that ai need to be accu-
rately estimated by (5.12) in order that ĜN,n behaves similarly to the empirical
d.f. ĜN based on unobserved autocorrelation coefficients a1, . . . , aN .

5.4 Goodness-of-fit testing

Theorem 5.3 can be used for testing goodness-of-fit. In the case of simple hy-
pothesis, we test the null H0 : G = G0 vs. H1 : G 6= G0 with G0 being a certain
hypothetical distribution satisfying the Hölder condition in (5.8). Accordingly,
the corresponding Kolmogorov–Smirnov (KS) test rejecting H0 whenever

N1/2 sup
x∈[−1,1]

|ĜN,n(x)−G0(x)| > c(ω) (5.17)

has asymptotic size ω ∈ (0, 1) provided N, n,G0 satisfy the assumptions for (5.16)
in Theorem 5.3. (Here, c(ω) is the upper ω-quantile of the Kolmogorov distribu-
tion.) However, the goodness-of-fit test in (5.17) requires the knowledge of pa-
rameters of the model considered, which is not typically a very realistic situation.
Below, we consider testing composite hypothesis using the Kolmogov–Smirnov
statistic with estimated parameters. The parameters will be estimated by the
method of moments.

Write µ = (µ(1), . . . , µ(m))> and µ̂N,n = (µ̂
(1)
N,n, . . . , µ̂

(m)
N,n)>, where

µ(u) := Eau =

∫ 1

−1

xudG(x), µ̂
(u)
N,n :=

1

N

N∑

i=1

(âi,n)u, 1 ≤ u ≤ m.

Proposition 5.4. Let the panel data model in (5.10)–(5.11) satisfy Assump-
tion (B) with exception of Assumption (A6). If N = o(n

2
1+p

( p
2
∧(p−1))) as N, n →

∞, then

N1/2(µ̂N,n − µ)
d→ N (0,Σ), where Σ :=

(
Cov(au, av)

)
1≤u,v≤m. (5.18)
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5.4. Goodness-of-fit testing

Proof. Write

N1/2(µ̂N,n − µ) = N1/2(µ̂N,n − µ̂N) +N1/2(µ̂N − µ),

where µ̂N := 1
N

∑N
i=1(ai, . . . , a

m
i )>. We have N1/2(µ̂N − µ)

d→ N (0,Σ) as N →∞
by the multivariate central limit theorem. On the other hand, N1/2(µ̂N,n−µ̂N)

p→ 0

follows from E|âun−au| ≤ CE|ân−a| ≤ C(γ+P(|ân−a| > γ)) and Proposition 5.1
with γ1+p = n−((p/2)∧(p−1)), proving the proposition.

Remark 5.4. Robinson [92, Theorem 7] discussed a different estimator of µ and
proved it to be asymptotically normally distributed for fixed n as N → ∞ in
contrast to ours. However, his result holds in the case of idiosyncratic innovations
only and under stronger assumption on G than in Proposition 5.4, which does not
allow for long memory.

Consider testing the composite null hypothesis that G belongs to the family
G = {Gθ, θ = (α, β)> ∈ (1,∞)2} of beta d.f.s versus an alternative G 6∈ G, where

Gθ(x) =
1

B(α, β)

∫ x

0

tα−1(1− t)β−1dt, x ∈ [0, 1], (5.19)

and B(α, β) = Γ(α)Γ(β)/Γ(α+ β) is the beta function. The uth moment of Gθ is
given by

µ(u) =

∫ 1

0

xudGθ(x) =
u−1∏

r=0

α + r

α + β + r
.

Parameters α, β can be found from the first two moments µ = (µ(1), µ(2))> as

α =
µ(1)(µ(1) − µ(2))

µ(2) − (µ(1))2
, β =

(1− µ(1))(µ(1) − µ(2))

µ(2) − (µ(1))2
. (5.20)

The moment-based estimator θ̂N,n := (α̂N,n, β̂N,n)> of θ = (α, β)> is obtained
by replacing µ in (5.20) by its estimator µ̂N,n. The consistency and asymptotic
normality of this estimator follows by the delta method from Proposition 5.4, see
Corollary 5.5, where we need condition α > 1, β > 1 to satisfy Assumptions (A4)
and (A6).

Corollary 5.5. Let the panel data model in (5.10)–(5.11) satisfy Assumption (B).
Let G = Gθ, θ = (α, β)>, be a beta d.f. in (5.19), where α > 1, β > 1. Let N, n
increase as in (5.15) where % = 1. Then

N1/2(θ̂N,n − θ) d→ N (0,Λθ), Λθ := ∆−1Σ(∆−1)′, (5.21)

where Σ is the 2× 2 matrix in (5.18) and

∆ := ∂µ/∂θ =

(
∂µ(1)/∂α ∂µ(1)/∂β

∂µ(2)/∂α ∂µ(2)/∂β

)
.
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Moreover, θ̂N,n is asymptotically linear:

N1/2(θ̂N,n − θ) = N−1/2

N∑

i=1

lθ(ai) + op(1), (5.22)

lθ(x) := ∆−1(x− µ(1), x2 − µ(2))>,

where Elθ(a) =
∫ 1

0
lθ(x)dGθ(x) = 0 and Elθ(a)lθ(a)> =

∫ 1

0
lθ(x)lθ(x)>dGθ(x) =

Λθ.

Corollary 5.6. Let assumptions of Corollary 5.5 hold. Then

N1/2(ĜN,n(x)−Gθ̂N,n
(x))⇒ Vθ(x), x ∈ [0, 1],

where {Vθ(x), x ∈ [0, 1]} is a continuous Gaussian process with zero mean and
covariance

Cov(Vθ(x), Vθ(y)) = Gθ(x ∧ y)−Gθ(x)Gθ(y) + ∂θGθ(x)>Λθ∂θGθ(y)

−
∫ x

0

lθ(u)>dGθ(u)∂θGθ(y)−
∫ y

0

lθ(u)>dGθ(u)∂θGθ(x),

where ∂θGθ(x) := ∂Gθ(x)/∂θ = (∂Gθ(x)/∂α, ∂Gθ(x)/∂β)>, x, y ∈ [0, 1], and Λθ

is defined in (5.21).

Proof. The d.f. Gθ with α > 1, β > 1 satisfies Assumptions (A4) and (A6) with
% = 1. Recall ĜN(x) := N−1

∑N
i=1 1(ai ≤ x), x ∈ [0, 1]. Since condition (5.15)

is satisfied, so N1/2 supx∈[0,1] |ĜN,n(x) − ĜN(x)| vanishes in probability by Theo-
rem 5.3, whereas the convergence N1/2(ĜN(x) − Gθ̂N,n

(x)) ⇒ Vθ(x), x ∈ [0, 1],
follows from (5.22) using the fact that ∂θGθ(x), x ∈ [0, 1], is continuous in θ,
see [30] or [106, Theorem 19.23].

With Corollary 5.6 in mind, the Kolmogorov–Smirnov test for the composite
hypothesis G ∈ G can be defined as

sup
x∈[0,1]

N1/2|ĜN,n(x)−Gθ̂N,n
(x)| > cθ̂N,n(ω), (5.23)

where cθ(ω) is the upper ω-quantile of the distribution of supx∈[0,1] |Vθ(x)|:

P
(

sup
x∈[0,1]

|Vθ(x)| > cθ(ω)
)

= ω, ω ∈ (0, 1).

The test in (5.23) has correct asymptotic size for any ω ∈ (0, 1), which follows
from Corollary 5.6 and the continuity of the quantile function cθ(ω) in θ, see [102,
page 69], [106]. By writing N1/2(ĜN,n(x)− Gθ̂N,n

(x)) = N1/2(ĜN,n(x)− G(x)) +

N1/2(G(x) − Gθ̂N,n
(x)), it follows that the Kolmogorov–Smirnov statistic on the
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l.h.s. of (5.23) tends to infinity (in probability) under any fixed alternative G 6∈ G
which cannot be approximated by a beta d.f. Gθ in the uniform metric, i.e., such
that infθ supx∈[0,1] |G(x) − Gθ(x)| > 0. Moreover, even under the alternative, we
preserve the consistency of µ̂N,n, hence cθ̂N,n(ω) being a continuous function of
sample moments, converges in probability to some finite limit. Therefore the test
(5.23) is consistent.

In practice, the evaluation of cθ(ω) requires Monte Carlo approximation which
is time-consuming. Alternatively, [98, 102] discussed parametric bootstrap proce-
dures to produce asymptotically correct critical values. We note that the assump-
tions of [102, Theorem 1] are valid for the family of beta d.f.s and the moment-
based estimator of θ in Corollary 5.6. The consistency of the test when using
bootstrap critical values follows by a similar argument as in (5.23).

5.5 Kernel density estimation

In this section we assume G has a bounded probability density function g(x) =

G′(x), x ∈ [−1, 1], implying Assumption (A6) with Hölder exponent % = 1 in
(5.8). It is of interest to estimate g in a nonparametric way from â1,n, . . . , âN,n

(5.12).
Consider the kernel density estimator

ĝN,n(x) :=
1

Nh

N∑

i=1

K
(x− âi,n

h

)
, x ∈ R,

where K is a kernel, satisfying Assumption (A7) and h = hN,n is a bandwidth
which tends to zero as N and n tend to infinity.

Assumption (A7). K : [−1, 1] → R is a continuous function of bounded vari-
ation that satisfies

∫ 1

−1
K(x)dx = 1. Set ‖K‖2

2 :=
∫ 1

−1
K(x)2dx and µ2(K) :=∫ 1

−1
x2K(x)dx and K(x) := 0, x ∈ R \ [−1, 1].

We consider two cases separately.

Case (i): P(b1 = 0) = 1, meaning that the coefficient bi = 0 for the common
shock in (5.11) is zero and that the individual processes {Xi(t)}, i = 1, 2, . . ., are
independent and satisfy

Xi(t) = aiXi(t− 1) + ciξi(t), t ∈ Z.

Case (ii): P(b1 6= 0) > 0, meaning that {Xi(t)}, i = 1, 2, . . . , are mutually
dependent processes.
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Proposition 5.7. Let the panel data model in (5.10)–(5.11) satisfy Assump-
tion (B) and let Assumption (A7) hold. If n(p/2)∧(p−1)h1+p →∞, then

EĝN,n(x)→ g(x) (5.24)

at every continuity point x ∈ R of g. Moreover, if



n(p/2)∧(p−1)h1+p →∞ in Case (i),

n(p/2)∧(p−1)(h/N)1+p →∞ in Case (ii),
(5.25)

then

NhCov(ĝN,n(x1), ĝN,n(x2))→




g(x1)‖K‖2

2 if x1 = x2,

0 if x1 6= x2

(5.26)

at any continuity points x1, x2 ∈ R of g. If Nh→∞ holds in addition to (5.25),
then the estimator ĝN,n(x) is consistent at every continuity point x ∈ R:

E|ĝN,n(x)− g(x)|2 → 0. (5.27)

Proof. Throughout the proof, let Kh(x) := K(x/h), x ∈ R. Consider (5.24). Note
EĝN,n(x) = h−1EKh(x− ân), because â1,n, . . . , âN,n are identically distributed. Let
us approximate ĝN,n(x) by

ĝN(x) :=
1

Nh

N∑

i=1

Kh(x− ai), x ∈ R, (5.28)

which satisfies EĝN(x) = h−1EKh(x − a) → g(x) as h → 0 at a continuity point
x of g, see [76]. Integration by parts and Corollary 5.2 yield

h|EĝN,n(x)− EĝN(x)| =
∣∣∣
∫

R
(Gn(y)−G(y))dKh(x− y)

∣∣∣ (5.29)

≤ V (K) sup
y∈[−1,1]

|Gn(y)−G(y)|

= O(n−((p/2)∧(p−1))/(1+p)),

uniformly in x ∈ R, where V (K) denotes the total variation of K and V (K) =

V (Kh). This proves (5.24).

Next, let us prove (5.26). We have

NhCov(ĝN(x1), ĝN(x2)) =
1

h
EKh(x1 − a)Kh(x2 − a)

→




g(x1)‖K‖2

2 if x1 = x2,

0 if x1 6= x2,
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as h→ 0 at any points x1, x2 of continuity of g, see [76]. Split Nh{Cov(ĝN,n(x1),

ĝN,n(x2))− Cov(ĝN(x1), ĝN(x2))} =
∑3

i=1 Qi(x1, x2), where

Q1(x1, x2) := h−1{EKh(x1 − ân)Kh(x2 − ân)− EKh(x1 − a)Kh(x2 − a)},
Q2(x1, x2) := h−1{EKh(x1 − ân)EKh(x2 − ân)− EKh(x1 − a)EKh(x2 − a)},
Q3(x1, x2) := (N − 1)h−1 Cov(Kh(x1 − â1,n), Kh(x2 − â2,n)).

Note Q3(x1, x2) = 0 in Case (i). Similarly to (5.29),

|Q1(x1, x2)| = h−1
∣∣∣
∫

R
(Gn(y)−G(y))dKh(x1 − y)Kh(x2 − y)

∣∣∣

≤ Ch−1n−((p/2)∧(p−1))/(1+p) → 0,

since V (Kh(x1− ·)Kh(x2− ·)) ≤ C and |Q2(x1, x2)| ≤ Ch−1n−((p/2)∧(p−1))/(1+p) →
0 uniformly in x1, x2. Finally, by Lemma 5.12,

|Q3(x1, x2)| =
N − 1

h

∣∣∣
∫

R

∫

R
(P(â1,n ≤ y1, â2,n ≤ y2)

−P(â1,n ≤ y1)P(â2,n ≤ y2))dKh(x1 − y1)dKh(x2 − y2)
∣∣∣

≤ CN

h
sup

y1,y2∈[−1,1]

|P(â1,n ≤ y1, â2,n ≤ y2)− P(â1,n ≤ y1)P(â2,n ≤ y2)|

= O(Nh−1n−((p/2)∧(p−1))/(1+p)) = o(1),

proving (5.26) and the proposition.

Remark 5.5. It follows from the proof of the above proposition that in the case
of a (uniformly) continuous density g(x), x ∈ [−1, 1], relations (5.24), (5.27) and
the first relation in (5.26) hold uniformly in x ∈ R, implying the convergence of
the mean integrated squared error:

∫ ∞

−∞
E|ĝN,n(x)− g(x)|2dx→ 0.

Proposition 5.8. (Asymptotic normality) Let the panel data model in (5.10)–
(5.11) satisfy Assumption (B) and let Assumption (A7) hold. Moreover, let K
be a Lipschitz function in Case (ii) and assume Nh → ∞ in addition to (5.25).
Then

ĝN,n(x)− EĝN,n(x)√
Var(ĝN,n(x))

d→ N (0, 1) (5.30)

at every continuity point x ∈ (−1, 1) of g such that g(x) 6= 0.

Proof. First, consider Case (i). Since ĝN,n(x) = (Nh)−1
∑N

i=1 Vi,N is a (normal-
ized) sum of i.i.d. r.v.s Vi,N := Kh(x− âi,n) with common distribution VN := V1,N ,
it suffices to verify Lyapunov’s condition

E|VN − EVN |2+δ

N δ/2 {Var(VN)}(2+δ)/2
→ 0, (5.31)
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for some δ > 0. This follows by the same arguments as in [76]. Analogously to
Proposition 5.7, we have E|VN |2+δ = E|Kh(x− ân)|2+δ ∼ hg(x)

∫ 1

−1
|K(y)|2+δdy =

O(h) while Var(VN) = Nh2 Var(ĝN,n(x)) ∼ hg(x)‖K‖2
2 according to (5.26). Hence

the l.h.s. of (5.31) is O((Nh)−δ/2) = o(1), proving (5.30) in Case (i).
Let us turn to Case (ii). It suffices to prove that

√
Nh(ĝN,n(x)− ĝN(x))

p→ 0,
for ĝN(x) given in (5.28). By |K(x)−K(y)| ≤ LK |x− y|, x, y ∈ R, for ε > 0,

P
(√

Nh|ĝN,n(x)− ĝN(x)| > ε
)
≤ P

( LK√
Nh

N∑

i=1

|âi,n − ai|
h

> ε
)

≤ NP
(
|ân − a| >

√
Nh
( h
N

) ε

LK

)

≤ C
(
h(Nh)−p/2

(N
h

)1+p

n−((p/2)∧(p−1)) +
N

n

)

= o(1)

from Proposition 5.1 and (5.25) with Nh→∞.

Corollary 5.9. Let assumptions of Proposition 5.8 hold with h ∼ cN−1/5 for
some c > 0, i.e.,

N =




o(n

5
3

1
1+p

( p
2
∧(p−1))) in Case (i),

o(n
5
6

1
1+p

( p
2
∧(p−1))) in Case (ii).

Moreover, let g ∈ C2[−1, 1] and
∫ 1

−1
yK(y)dy = 0. Then

N2/5(ĝN,n(x)− g(x))
d→ N (µ(x), σ2(x)),

where µ(x) := (c2/2)g′′(x)µ2(K) and σ2(x) := (1/c)g(x)‖K‖2
2.

Proof. This follows from Proposition 5.8, by noting that EĝN(x)−g(x) ∼ h2g′′(x)

µ2(K)/2 as h→ 0 and EĝN,n(x)− EĝN(x) = O(h−1n−((p/2)∧(p−1))/(1+p)) by (5.29).

5.6 Simulations

In this section we compare our nonparametric goodness-of-fit test in (5.17) for
testing the null hypothesis G = G0 with its parametric analogue studied in [9].
In accordance with the last paper, we assume {Xi(t)} in (5.10) to be independent
RCAR(1) processes with standard normal i.i.d. innovations {ζi(t)}, ζ(0)

d
= N (0, 1)

and the random AR coefficient ai ∈ (0, 1) having a beta-type density g with
unknown parameters θ := (α, β)>:

g(x) =
2

B(α, β)
x2α−1(1− x2)β−1, x ∈ (0, 1), α > 1, β > 1. (5.32)
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Note that β ∈ (1, 2) implies the long memory property in {Xi(t)}. Beran et
al. [9] discuss a maximum likelihood estimator θ̂N,n,κ = (α̂N,n,κ, β̂N,n,κ)

> of θ =

(α, β)> when each unobservable coefficient ai is replaced by its estimate âi,n,κ :=

min{max{âi,n, κ}, 1 − κ} with âi,n given in (5.12) and 0 < κ = κN,n → 0 is a
truncation parameter. Under certain conditions on N, n→∞ and κ→ 0, Beran
et al. [9, Theorem 2] showed that

N1/2(θ̂N,n,κ − θ0)
d→ N (0, A−1(θ0)), (5.33)

where θ0 is the true parameter vector,

A(θ) :=

(
ψ1(α)− ψ1(α + β) −ψ1(α + β)

−ψ1(α + β) ψ1(β)− ψ1(α + β)

)
,

and ψ1(x) := d2 ln Γ(x)/dx2 is the trigamma function. Based on (5.17) and (5.33),
we consider testing both ways (nonparametrically and parametrically) the hypoth-
esis that the unobserved AR coefficients a1, . . . , aN are drawn from the reference
distribution G0 having density function in (5.32) with a specific θ0, i.e., the null
G = G0 vs. the alternative G 6= G0. The respective test statistics are

T1 := N1/2 sup
x∈[0,1]

|ĜN,n(x)−G0(x)|; T2 := N(θ̂N,n,κ − θ0)>A(θ0)(θ̂N,n,κ − θ0).(5.34)

Under the null hypothesis, the distributions of statistics T1 and T2 converge to
the Kolmogorov distribution and the chi-square distribution with 2 degrees of
freedom, respectively, see (5.17), (5.33).

To compare the performance of the above testing procedures, we compute the
empirical d.f.s of the p-values of T1 and T2 under null and alternative hypotheses.
The p-value of observed Ti is defined as p(Ti) = 1−Ki(Ti), i = 1, 2, where Ki(y),
i = 1, 2, denote the limit d.f.s of (5.34). Recall that when the significance level
of the test is correct, the (asymptotic) distribution of the p-value is uniform on
[0, 1]. The simulation procedure to compare the performance of T1 and T2 is the
following:

Step (S0). We fix the parameter under the null hypothesis H0 : θ = θ0 with
θ0 = (2, 1.4)>.

Step (S1). We simulate 5000 panels with N = 250, n = 817 for five chosen
values θ = (2, 1.2)>, (2, 1.3)>, (2, 1.4)>, (2, 1.5)>, (2, 1.6)> of beta parameters.

Step (S2). For each simulated panel we compute the p-value of statistics T1 and
T2.

Step (S3). The empirical d.f.s of computed p-values of statistics T1 and T2 are
plotted.
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The values of beta parameters θ0 = (2, 1.4)>, N , n were chosen in accordance
with the simulation study in [9].

Figure 5.1 presents the simulation results under the true hypothesis θ = θ0

with zoom-in on small p-values. We see that both d.f.s in the left graph are
approximately linear. Somewhat surprisingly, it appears that the empirical size
of T1 (the nonparametric test) is better than the size of T2 (the parametric test).
Particularly, for significance levels 0.05 and 0.1 we provide the empirical size values
in Table 5.1.

Figure 5.2 gives the graphs of the empirical d.f.s of p-values of T1 and T2 for
several alternatives θ 6= θ0. It appears that for β > β0 = 1.4 the parametric test
T2 is more powerful than the nonparametric test T1 but for β < β0 the power
differences are less significant. Table 5.1 illustrates the empirical power for the
significance levels 0.05, 0.1.

Figure 5.1: [left] Empirical d.f. of p-values of T1 and T2 under H0 : θ = (2, 1.4)>;
5000 replications with N = 250, n = 817. [right] Zoom-in on the region of interest:
p-values smaller than 0.1.

The above simulations (Figures 5.1 and 5.2, Table 5.1) refer to the case of
independent individual processes {Xi(t)}. There are no theoretical results for the
parametric test T2, when RCAR(1) series are dependent. Although the nonpara-
metric test T1 is valid for the latter case, one may expect that the presence of the
common shock component in the panel data in (5.11) has a negative effect on the
test performance for short series. To illustrate this effect, we simulate 5000 panels
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ω 5% 10%
β 1.2 1.3 1.4 1.5 1.6 1.2 1.3 1.4 1.5 1.6
T1 .532 .137 .049 .208 .576 .653 .223 .103 .315 .702
T2 .500 .104 .077 .313 .735 .634 .184 .134 .421 .827

Table 5.1: Numerical results of the comparison for testing procedure H0 : θ =

(2, 1.4)> at the significance level ω = 5% and ω = 10%. The column for β = 1.4

provides the empirical size.

with RCAR(1) processes {Xi(t)} driven by dependent shocks in (5.11) with bi = b,
ci = (1 − b2)1/2. As previously, we choose θ0 = (2, 1.4)>, N = 250, n = 817 and
we fix θ = (2, 1.4)> to evaluate the empirical size of T1. Figure 5.3[left] presents
the graphs of the empirical d.f.s of the p-values of T1 for b = 1, b = 0.6 and b = 0,
the latter corresponding to independent individual processes as in Figure 5.1. We
see that the size of the test worsens as b increases, particularly for b = 1 when
{Xi(t)} are all driven by the same shocks. To overcome the last effect, the sam-
ple length n of each series in the panel may be increased as in Figure 5.3[right],
where the choice of n = 5500 and b = 1 shows a much better performance of T1

under the null hypothesis θ = θ0 = (2, 1.4)> and the alternative (θ = (2, 1.5)>

and θ = (2, 1.6)>) scenarios.
In conclusion,

1. We do not observe an important loss of the power for the nonparametric KS
test T1 compared to the parametric approach.

2. The KS test T1 does not require to choose any tuning parameter contrary
to the test T2.

3. One can use the KS test T1 under weaker assumptions on RCAR(1) inno-
vations. We only impose moment conditions. The dependence between the
series is allowed by (5.11).
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Figure 5.2: Empirical d.f. of p-values of T1 and T2 for testing H0 : θ = (2, 1.4)>

under several alternatives of the form θ = (2, β)>; 5000 replications with N = 250,
n = 817.

78



5.6. Simulations

Figure 5.3: [left] Empirical d.f. of p-values of T1 under H0 : θ = (2, 1.4)> for
different dependence structure between RCAR(1) series : bi = b and ci = (1−b2)1/2

and N = 250, n = 817. [right] Empirical d.f. of p-values of T1 for testing H0 : θ =

(2, 1.4)>. RCAR(1) series are driven by common innovations, i.e., bi = 1, ci = 0,
for θ = (2, β)>; 5000 replications with N = 250, n = 5500.
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5.7 Some proofs and auxiliary lemmas

We use the following martingale moment inequality.

Lemma 5.10. Let p > 1 and {ξj, j ≥ 1} be a martingale difference sequence:
E[ξj|ξ1, . . . , ξj−1] = 0, j = 2, 3, . . ., with E|ξj|p <∞. Then there exists a constant
Cp <∞ depending only on p and such that

E
∣∣∣
∞∑

j=1

ξj

∣∣∣
p

≤ Cp





∑∞
j=1 E|ξj|p, 1 < p ≤ 2,

(∑∞
j=1(E|ξj|p)2/p

)p/2
, p > 2.

(5.35)

For 1 < p ≤ 2, inequality (5.35) is known as von Bahr and Esséen inequality,
see [107], and for p > 2, it is a consequence of the Burkholder and Rosenthal
inequality ( [18, 93], see also [36, Lemma 2.5.2]).

Proof of Proposition 5.1. Since ân in (5.7) is invariant w.r.t. a scale factor of in-
novations {ζ(t)}, w.l.g. we can assume b2 + c2 = 1 and Eζ2(0) = 1, E|ζ(0)|2p <∞.
Then ân − a =

∑3
i=1 δni, where

δn1 := − aX2(n)∑n
t=1X

2(t)− n(X̄n)2
, δn2 :=

∑n−1
t=1 X(t)ζ(t+ 1)∑n

t=1X
2(t)− n(X̄n)2

,

δn3 :=
X̄n(X(1) +X(n))− (X̄n)2(1 + n(1− a))∑n

t=1 X
2(t)− n(X̄n)2

.

The statement of the proposition follows from

P(|δni| > γ) ≤ C(n−1 + n−((p/2)∧(p−1))γ−p) (0 < γ < 1, i = 1, 2, 3). (5.36)

To show (5.36) for i = 1, note that δn1 = Ln/(n + Dn), where Ln := −a(1 −
a2)X2(n) and Dn = Dn1 − Dn2, Dn1 :=

∑n
t=1((1 − a2)X2(t) − 1), Dn2 := n(1 −

a2)(X̄n)2. We have P(|δn1| > γ) ≤ P(|Dn| > n/2) + P(|Ln| > nγ/2). Thus, (5.36)
for i = 1 follows from

E|Dn1|p∧2 ≤ Cn, E|Dn2| ≤ C and E|Ln|p ≤ C. (5.37)

Consider the first relation in (5.37). Clearly, it suffices to prove it for 1 < p ≤ 2

only. We have Dn1 = 2D′n1 +D′′n1, where

D′n1 := (1− a2)
∑

s2<s1≤n

n∑

t=1∨s1

a2(t−s1)as1−s2ζ(s1)ζ(s2),

D′′n1 := (1− a2)
∑

s≤n

n∑

t=1∨s

a2(t−s)(ζ2(s)− 1).
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We will use the following elementary inequality: for any −1 ≤ a ≤ 1, n ≥ 1,
s ≤ n,

αn(s) := (1− a2)
n∑

t=1∨s

a2(t−s) =




a2(1−s)(1− a2n), s ≤ 0,

1− a2(n+1−s), 1 ≤ s ≤ n

≤ C




a−2s min(1, 2n(1− |a|)), s ≤ 0,

1, 1 ≤ s ≤ n.
(5.38)

Using the independence of {ζ(s)} and a and inequality (5.35) (twice) for 1 < p ≤ 2

we obtain

E|D′n1|p = E
∣∣∣
∑

s1≤n

αn(s1)ζ(s1)
∑

s2<s1

as1−s2ζ(s2)
∣∣∣
p

≤ CE
∑

s1≤n

∣∣∣αn(s1)ζ(s1)
∑

s2<s1

as1−s2ζ(s2)
∣∣∣
p

≤ CE
∑

s1≤n

|αn(s1)|p
∑

s2<s1

|a|p(s1−s2)

≤ CE(1− |a|)−1
∑

s≤n

|αn(s)|p ≤ Cn

since E(1 − |a|)−1 < ∞ (see (5.5)) and
∑

s≤n |αn(s)|p ≤ Cn follows from (5.38).
Similarly, since {ζ2(s)− 1, s ≤ n} form a martingale difference sequence,

E|D′′n1|p ≤ CE
∑

s≤n

|αn(s)|p ≤ Cn,

proving the first inequality (5.37). The second inequality in (5.37) follows by
noting that nX̄n =

∑
s≤n(

∑n
t=1∨s a

t−s)ζ(s) and

(1− a2)E[(nX̄n)2|a] = a2
(1− an

1− a
)2

+ (1− a2)
n∑

s=1

(1− as
1− a

)2

≤ Cn

1− a.

Consider the last inequality in (5.37). We have |Ln| ≤ |2L′n + L′′n + 1|, where

L′n := (1− a2)
∑

s2<s1≤n

a2(n−s1)as1−s2ζ(s1)ζ(s2),

L′′n := (1− a2)
∑

s≤n

a2(n−s)(ζ2(s)− 1).

We use Lemma 5.10, as above. Let 1 ≤ p ≤ 2. Then E|L′′n|p ≤ CE
∑

s≤n{(1 −
a2)a2(n−s)}p ≤ C and E|L′n|p ≤ CE

∑
s2<s1≤n{(1−a2)|a|2(n−s1)|a|s1−s2}p ≤ CE(1−

|a|)p−2 ≤ C. Next, let p ≥ 2. Then E|L′′n|p ≤ CE{∑s≤n |(1− a2)a2(n−s)|2}p/2 ≤ C

and E|L′n|p ≤ CE(1− a2)p{∑s2<s1≤n a
4(n−s1)a2(s1−s2)}p/2 ≤ C, proving (5.37) and

hence (5.36) for i = 1.
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Consider (5.36) for i = 2. We have δn2 = Rn/(n + Dn), where Rn := (1 −
a2)
∑n−1

t=1 X(t)ζ(t + 1) and Dn is the same as in (5.37). Then P(|δn2| > γ) ≤
P(|Rn| > nγ/2) + P(|Dn| > n/2), where

P(|Dn| > n/2) ≤ (n/4)−(p∧2)E|Dn1|p∧2 + (n/4)−1E|Dn2|

≤ C




n−(p−1), 1 < p ≤ 2,

n−1, p > 2,
(5.39)

according to (5.37). Therefore (5.36) for i = 2 follows from

E|Rn|p ≤ C




n, 1 < p ≤ 2,

np/2, p > 2.
(5.40)

Since Rn = (1− a2)
∑

s≤n−1 ζ(s)
∑n−1

t=1∨s a
t−sζ(t+ 1) is a sum of martingale differ-

ences, by inequality (5.35) with 1 < p ≤ 2 we obtain

E|Rn|p ≤ CE
∑

s≤n−1

∣∣∣(1− a2)ζ(s)
n−1∑

t=1∨s

at−sζ(t+ 1)
∣∣∣
p

≤ CE|1− a2|p
∑

s≤n−1

n−1∑

t=1∨s

|a|p(t−s)

≤ CE|1− a2|p
(∑

s≤0

|a|−ps
n−1∑

t=1

|a|pt +
n−1∑

s=1

n−1∑

t=s

|a|p(t−s)
)

≤ CE|1− a2|p{(1− |a|p)−2 + n(1− |a|p)−1} ≤ Cn,

proving (5.40) for p ≤ 2. Similarly, using (5.35) with p > 2 we get

E|Rn|p = E
[
|1− a2|pE

[∣∣∣
∑

s≤n−1

ζ(s)
n−1∑

t=1∨s

at−sζ(t+ 1)|p
∣∣∣a
]]

≤ CE
[
|1− a2|p

{ ∑

s≤n−1

(
E
[∣∣∣ζ(s)

n−1∑

t=1∨s

at−sζ(t+ 1)|p
∣∣∣a
])2/p}p/2]

≤ CE|1− a2|p
{ ∑

s≤n−1

n−1∑

t=1∨s

a2(t−s)
}p/2

≤ CE|1− a2|p
{∑

s≤0

a−2s

n−1∑

t=1

a2t +
n−1∑

s=1

n−1∑

t=s

a2(t−s)
}p/2

≤ CE|1− a2|p{(1− a2)−2 + n(1− a2)−1}p/2 ≤ Cnp/2,

proving (5.40) and (5.36) for i = 2.
It remains to prove (5.36) for i = 3. Similarly as above, P(|δn3| > γ) ≤

P(|Qn| > nγ/2) + P(|Dn| > n/2), where Qn := (1 − a2){X̄n(X(1) + X(n)) −
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(X̄n)2(1 + n(1− a))} and Dn is evaluated in (5.39). Thus, (5.36) for i = 3 follows
from (5.39) and

E|Qn|p ≤ C{E|(1− a2)X2(n)|p + E|(1− a2)(X̄n)2|p (5.41)

+npE|(1− a)(1− a2)(X̄n)2|p} ≤ C.

Since nX̄n =
∑

s≤n(
∑n

t=1∨s a
t−s)ζ(s), an application of the second inequality of

(5.35) yields

E[|nX̄n|2p|a] ≤ C
( (1− an)2

(1− a2)(1− a)2
+

n∑

s=1

(1− as
1− a

)2)p
.

Using 1 − an ≤ 1 ∧ (n(1 − a)) we obtain E|(1 − a)(1 − a2)(X̄n)2|p ≤ Cn−p and
E|(1 − a2)(X̄n)2|p ≤ CE(1 − a)−1n−1. Finally, E|(1 − a2)X2(n)|p ≤ C follows
by the same arguments as E|Ln|p ≤ C (see (5.37)). This proves (5.41), thereby
completing the proof of (5.36) and of the proposition, too.

Let a, a1, . . . , aN be i.i.d. r.v.s with d.f. G(x) = P(a ≤ x) supported on [−1, 1].
Define ĜN(x) := N−1

∑N
i=1 1(ai ≤ x), UN(x) := N1/2(ĜN(x)−G(x)), x ∈ [−1, 1],

and ωN(δ) (= the modulus of continuity of UN) by

ωN(δ) := sup
0≤y−x≤δ

|UN(y)− UN(x)|, δ > 0.

Lemma 5.11. Assume that G satisfies Assumption (A6). Then for all ε > 0,

ε4P(ωN(δ) > 6ε) ≤ (3 + 3C)LGδ
% +N−1,

where C is a constant independent of ε, δ, N .

Proof. As in [13, page 106, equation (13.17)] we have that

E|UN(y)− UN(x)|2|UN(z)− UN(y)|2 ≤ 3P(a ∈ (x, y])P(a ∈ (y, z]),

E|UN(y)− UN(x)|4 ≤ 3P(a ∈ (x, y])2 +N−1P(a ∈ (x, y])

for −1 ≤ x ≤ y ≤ z ≤ 1, where the second inequality treats the 4th central
moment of a binomial variable. Now fix δ > 0 and split [−1, 1] = ∪i∆i, where
∆i = [−1 + iδ,−1 + (i + 1)δ], i = 0, 1, . . . , b2/δc − 1, ∆b2/δc = [−1 + b2/δcδ, 1].
According to [109, page 49, Lemma 1], for all ε > 0,

ε4P(ωN(δ) > 6ε) ≤ (3 + 3C) max
i

P(a ∈ ∆i) +N−1,

where C is a constant independent of ε, δ, N . Lemma follows from Assump-
tion (A6) on the d.f. G of the r.v. a.
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Note that if we take δ = δN = o(1), we then get P(ωN(δ) > ε)→ 0 as N →∞.

Lemma 5.12. Let â1,n, â2,n be given in (5.12) under Assumptions (A1)–(A6)
with % = 1. Then for all γ ∈ (0, 1) and n ≥ 1, it holds

sup
x,y∈[−1,1]

|P(â1,n ≤ x, â2,n ≤ y)−P(â1,n ≤ x)P(â2,n ≤ y)| = O(n−((p/2)∧(p−1))/(1+p)).

Proof. Define δi,n := âi,n − ai, i = 1, 2. For γ ∈ (0, 1), we have

P(|δ1,n| > γ or |δ2,n| > γ) ≤ P(|δ1,n| > γ) + P(|δ2,n| > γ)

≤ C(n−((p/2)∧(p−1))γ−p + n−1)

by Proposition (5.1). Consider now

P(â1,n ≤ x, â2,n ≤ y) = P(a1 + δ1,n ≤ x, a2 + δ2,n ≤ y)

≤ P(a1 + δ1,n ≤ x, a2 + δ2,n ≤ y, |δ1,n| ≤ γ, |δ2,n| ≤ γ)

+P(|δ1,n| > γ or |δ2,n| > γ).

Then

P(a1 + δ1,n ≤ x, a2 + δ2,n ≤ y, |δ1,n| ≤ γ, |δ2,n| ≤ γ)

≤ P(a1 ≤ x+ γ, a2 ≤ y + γ, |δ1,n| ≤ γ, |δ2,n| ≤ γ)

≤ G(x+ γ)G(y + γ)

and

P(a1 + δ1,n ≤ x, a2 + δ2,n ≤ y, |δ1,n| ≤ γ, |δ2,n| ≤ γ)

≥ P(a1 ≤ x− γ, a2 ≤ y − γ, |δ1,n| ≤ γ, |δ2,n| ≤ γ)

≥ G(x− γ)G(y − γ)− P(|δ1,n| > γ or |δ2,n| > γ).

From (5.8) we obtain

|G(x± γ)G(y ± γ)−G(x)G(y)|
= |(G(x) +O(γ))(G(y) +O(γ))−G(x)G(y)| ≤ Cγ.

Hence,

|P(a1 ≤ x, a2 ≤ y)−G(x)G(y)| ≤ C(γ + n−1 + n−((p/2)∧(p−1))γ−p). (5.42)

In a similar way,

|P(a1 ≤ x)P(a2 ≤ y)−G(x)G(y)| ≤ C(γ + n−1 + n−((p/2)∧(p−1))γ−p). (5.43)

By (5.42), (5.43), the proof of the lemma is complete with γ = γn = o(1), which
satisfies γn ∼ n−((p/2)∧(p−1))γ−pn .

84



Chapter 6

Scaling transition for
nonlinear random fields

This chapter contains the article [82]. We obtain a complete description of
anisotropic scaling limits and the existence of scaling transition for nonlinear func-
tions (Appell polynomials) of stationary linear random fields on Z2 with moving
average coefficients decaying at possibly different rate in the horizontal and verti-
cal direction. This chapter extends recent results on scaling transition for linear
random fields in [89,90].

6.1 Introduction

[90] introduced the notion of scaling transition for stationary random field (RF)
X = {X(t, s), (t, s) ∈ Z2} in terms of partial sums limits

D−1
λ,γ

∑

(t,s)∈K[λx,λγy]

X(t, s)
fdd→ Vγ(x, y), (x, y) ∈ R2

+, λ→∞, γ > 0, (6.1)

where Dλ,γ → ∞ is normalization and K[λx,λγy] := {(t, s) ∈ Z2 : 1 ≤ t ≤ λx, 1 ≤
s ≤ λγy} is a family of rectangles whose sides grow at possibly different rate O(λ)

and O(λγ) and γ > 0 is arbitrary. RF X is said to exhibit scaling transition at
γ0 > 0 if the limit RFs Vγ ≡ V X

γ in (6.1) do not depend on γ for γ > γ0 and
γ < γ0 and are different up to a multiplicative constant, viz.,

V X
γ

fdd
= V X

+ (∀γ > γ0), V X
γ

fdd
= V X

− (∀γ < γ0), V X
+

fdd
6= aV X

− (∀a > 0).

In such case, RF V X
γ0

is called the well-balanced while RFs V X
+ and V X

− the unbal-
anced scaling limits of X.

It appears that scaling transition is a new and general feature of spatial depen-
dence which occurs for many isotropic and anisotropic RFs on Z2 with long-range
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dependence (LRD). It was established for a class of aggregated α-stable autore-
gressive models [90], a class of Gaussian LRD RFs [89], and some RFs arising
by aggregation of network traffic and random-coefficient time series models in
telecommunications and economics; see [35,70,79,80], also [90, Remark 2.3]. The
unbalanced limits V X

± in these studies have a very special dependence structure
(either independent or invariant rectangular increments along one of the coordi-
nate axes) and coincide in the Gaussian case with a fractional Brownian sheet
(FBS) BH1,H2 with one of the two parameters H1, H2 ∈ (0, 1] equal to 1/2 or 1.

The above mentioned works deal with linear RF models written as sums
(stochastic integrals) w.r.t. i.i.d. ‘noise’. It is well-known that nonlinear RFs can
display quite complicated nongaussian scaling behavior. See Dobrushin and Ma-
jor [26], also [2, 4, 36,38,45,59,66,100,104] and the references therein.

The present chapter establishes the existence of scaling transition for a class
of nonlinear subordinated RFs:

X(t, s) = G(Y (t, s)), (t, s) ∈ Z2, (6.2)

where Y = {Y (t, s), (t, s) ∈ Z2} is a stationary linear LRD RF in (6.3) and
G(x) = Ak(x), x ∈ R, is the Appell polynomial of degree k ≥ 1 (see Section 6.2
for the definition) with EG(Y (0, 0))2 < ∞, EG(Y (0, 0)) = 0. The (underlying)
RF Y is written as a moving-average

Y (t, s) =
∑

(u,v)∈Z2

a(t− u, s− v)ε(u, v), (t, s) ∈ Z2, (6.3)

in a standardized i.i.d. sequence {ε(u, v), (u, v) ∈ Z2} with deterministic moving-
average coefficients such that

a(t, s) ∼ const(|t|2 + |s|2q2/q1)−q1/2, |t|+ |s| → ∞, (6.4)

where parameters q1, q2 > 0 satisfy

1 < Q :=
1

q1

+
1

q2

< 2. (6.5)

In Theorems 6.1–6.5, the moving-average coefficients a(t, s) may take a more
general form in (6.10) including an ‘angular function’. Condition Q < 2 guarantees
that

∑
(t,s)∈Z a(t, s)2 < ∞ or Y in (6.3) is well-defined, while Q > 1 implies

that
∑

(t,s)∈Z |a(t, s)| = ∞ (in other words, that RF Y is LRD). Note a(t, 0) =

O(|t|−q1), a(0, s) = O(|s|−q2) decay at a different rate when q1 6= q2 in which case
Y exhibits strong anisotropy. The form of moving-average coefficients in (6.4)
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implies a similar behavior of the covariance function rY (t, s) := EY (0, 0)Y (t, s) =
∑

(u,v)∈Z2 a(u, v)a(t+ u, s+ v), namely,

C1(|t|2 + |s|2p2/p1)−p1/2 ≤ rY (t, s) ≤ C2(|t|2 + |s|2p2/p1)−p1/2, |t|+ |s| → ∞,(6.6)

for some positive constants C1, C2 > 0, where

pi := qi(2−Q), i = 1, 2. (6.7)

Note p1/p2 = q1/q2 and the 1-1 correspondence between (q1, q2) and (p1, p2):

qi :=
pi
2

(1 + P ), i = 1, 2, where P :=
1

p1

+
1

p2

. (6.8)

(6.6) implies that for any integer k ≥ 1 and P 6∈ N,
∑

(t,s)∈Z2

|rY (t, s)|k =∞⇐⇒ 1 ≤ k < P. (6.9)

See Propositions 6.8 and 6.10. In the case when Y in (6.3) is a (standardized)
Gaussian RF, rY (t, s)kk! coincides with the covariance of the kth Hermite polyno-
mial Hk(Y (t, s)) of Y and the (nonlinear) subordinated RF X = Hk(Y ) is LRD
if condition (6.9) holds. A similar result is true for nongaussian moving-average
RF Y in (6.3) and Hermite polynomial Hk replaced by Appell polynomial Ak.

The following summary describes the main results of this chapter.

(R1) Subordinated RFs X = Ak(Y ), 1 ≤ k < P , exhibit scaling transition at the
same point γ0 := p1/p2 = q1/q2 independent of k.

(R2) The well-balanced scaling limit V X
γ0

of X = Ak(Y ) is nongaussian unless
k = 1 and is given by a k-tuple Itô–Wiener integral.

(R3) Unbalanced scaling limits V X
+ = V X

γ , γ > γ0, of X = Ak(Y ) agree with
FBS BH+

1k,1/2
with Hurst parameter H+

1k ∈ (1/2, 1) if kp2 > 1, and with a
‘generalized Hermite slide’ V X

+ (x, y) = xZ+
k (y) if kp2 < 1, where Z+

k is a
self-similar process written as a k-tuple Itô–Wiener integral. A similar fact
holds for unbalanced limits V X

− = V X
γ , γ < γ0.

(R4) For k > P , RF X = Ak(Y ) does not exhibit scaling transition and all scaling
limits V X

γ , γ > 0, agree with Brownian sheet B1/2,1/2.

(R5) In the case of Gaussian underlying RF Y in (6.3), the above conclusions
hold for general nonlinear function G in (6.2) and k equal to the Hermite
rank of G.
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The above list contains several new noncentral and central limit results. (R2),
(R4) and (R5) are new in the ‘anisotropic’ case p1 6= p2 while (R3) is new even
for linear RF X = A1(Y ) = Y (see Remark 6.1 concerning the terminology in
(R3)). Similarly as in the case of linear models (see [89, 90]), unbalanced limits
in (R3) have either independent or completely dependent increments along one
of the coordinate axes. According to (R3), the sample mean of nonlinear LRD
RF X = Ak(Y ), 1 < k < P , on rectangles K[λ,λγ ], γ 6= γ0, may have Gaussian or
nongaussian limit distribution depending on k, γ and parameters p1, p2, moreover,
in both cases the variance of the sum

∑
(t,s)∈K[λ,λγ ]

X(t, s) grows faster than λ1+γ,
or the number of summands. The dichotomy of the limit distribution in (R3)
is related to the presence or absence of the vertical/horizontal LRD property of
X, see Remark 6.4. We also note that our proofs of the central limit results in
(R3) and (R4) use rather simple approximation by m-dependent r.v.s and do not
require a combinatorial argument or Malliavin’s calculus as in [16, 72] and other
papers.

It is well-known that Appell polynomials play a similar role to Hermite poly-
nomials in limit theorems for nonlinear functions of linear nongaussian LRD pro-
cesses, except that they lack the orthogonality property of the latter and therefore
expansions in Appell polynomials are of limited use. See [4,36,101]. Particularly,
the results in (R1)–(R4) hold for arbitrary polynomial G(x) =

∑m
j=k cjAj(x) with

ck 6= 0 under suitable moment assumptions on the innovations. However, except
for the Gaussian case, dealing with non-polynomial functions of LRD processes
requires different techniques, see e.g. [45, 101], and is much harder in the case of
noncausal spatial models, c.f. [28].

The results of this chapter have direct relevance for statistics of strongly de-
pendent spatial data by showing that the (asymptotic) shape of the spatial region
may have a drastic effect on the limit distribution of linear and nonlinear statistics.
See Section 6.8 (Final comment) at the end of the chapter.

The rest of the chapter is organized as follows. Section 6.2 provides the precise
assumptions on RFs Y and X and some known properties of Appell polynomi-
als. Section 6.3 contains formulations of the main results (Theorems 6.1–6.5) as
described in (R1)–(R5) above. Section 6.4 provides two examples of linear frac-
tionally integrated RFs satisfying the assumptions in Section 6.2. Section 6.5
discusses some properties of generalized homogeneous functions and their convo-
lutions used to prove the results. Section 6.6 discusses the asymptotic form of
the covariance function and the asymptotics of the variance of anisotropic partial
sums of subordinated RF X = Ak(Y ). All proofs are collected in Section 6.7.
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6.2. Assumptions and preliminaries

In this chapter, we denote R+ := (0,∞), R2
+ := (0,∞)2, R2

0 := R2 \ {(0, 0)},
Z+ := {0, 1, . . . }, N := {1, 2, . . . }, Z•2k := {((u1, v1), . . . , (uk, vk)) ∈ Z2k : (ui, vi) 6=
(uj, vj), 1 ≤ i < j ≤ k}, k ∈ N.

6.2 Assumptions and preliminaries

Assumption (A1). {ε, ε(t, s), (t, s) ∈ Z2} is an i.i.d. sequence with Eε = 0,
Eε2 = 1.

Assumption (A2). Y = {Y (t, s), (t, s) ∈ Z2} is a moving-average RF in (6.3)
with coefficients

a(t, s) =
1

(|t|2 + |s|2q2/q1)q1/2

(
L0

( t

(|t|2 + |s|2q2/q1)1/2

)
+ o(1)

)
, |t|+ |s| → ∞,

(6.10)
(t, s) 6= (0, 0), where qi > 0, i = 1, 2, satisfy Q =

∑2
i=1 q

−1
i ∈ (1, 2) (see (6.5)) and

L0(u) ≥ 0, u ∈ [−1, 1], is a bounded piece-wise continuous function on [−1, 1].

We refer to L0 in (6.10) as angular function. Assumptions (A1)–(A2) imply
EY (0, 0)2 =

∑
(t,s)∈Z2 a(t, s)2 <∞ and hence RF Y in (6.3) is well-defined and sta-

tionary, with zero mean EY (0, 0) = 0. Moreover, if E|ε|α <∞ for some α > 2 then
E|Y (0, 0)|α <∞ follows by Rosenthal’s inequality; see e.g. [36, Corollary 2.5.1].

Given a r.v. ξ with E|ξ|k < ∞, k ∈ Z+, the kth Appell polynomial Ak(x)

relative to the distribution of ξ is defined by Ak(x) := (−i)kdk(eiux/Eeiuξ)/duk
∣∣
u=0

.
See [4, 36] for various properties of Appell polynomials. In what follows, Ak(ξ)
stands for the r.v. obtained by substituting x = ξ in the Appell polynomial Ak(x)

relative to the distribution of ξ. Particularly, if Eξ = 0 then A1(ξ) = ξ, A2(ξ) =

ξ2 − Eξ2, A3(ξ) = ξ3 − 3ξEξ2 − Eξ3 etc. For standard normal ξ d
= N (0, 1) the

Appell polynomials Ak(ξ) = Hk(ξ) = (−i)kdkeiuξ+u2/2/duk
∣∣
u=0

agree with the
Hermite polynomials.

Assumption (A3)k. For k ∈ N, E|ε|2k <∞ and

X = {X(t, s) := Ak(Y (t, s)), (t, s) ∈ Z2}, (6.11)

where Ak is the kth Appell polynomial relative to the (marginal) distribution of
Y (t, s) in (6.3).

We also use the representation of (6.11) via Wick products of noise variables
(see [36, Chapter 14]):

Ak(Y (t, s)) =
∑

(u,v)k∈Z2k

a(t− u1, s− v1) · · · a(t− uk, s− vk) :ε(u1, v1) · · · ε(uk, vk) : .

(6.12)
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By definition, for mutually distinct points (uj, vj) 6= (uj′ , vj′) (j 6= j′, 1 ≤ j, j′ ≤ i)

the Wick product :ε(u1, v1)k1 · · · ε(ui, vi)ki : =
∏i

j=1Akj(ε(uj, vj)) equals the prod-
uct of independent r.v.s Akj(ε(uj, vj)), 1 ≤ j ≤ i. (6.12) leads to the decomposition
of (6.11) into the ‘off-diagonal’ and ‘diagonal’ parts:

Ak(Y (t, s)) = Y •k(t, s) + Z(t, s), (6.13)

where

Y •k(t, s) :=
∑

(u,v)k

•
a(t− u1, s− v1) · · · a(t− uk, s− vk)ε(u1, v1) · · · ε(uk, vk) (6.14)

and the sum
∑•

(u,v)k
is taken over all (u, v)k = ((u1, v1), · · · , (uk, vk)) ∈ Z2k such

that (ui, vi) 6= (uj, vj) (i 6= j) (the set of such (u, v)k ∈ Z2k will be denoted by
Z•2k). By definition, the ‘diagonal’ part Z(t, s) in (6.13) is given by the r.h.s. of
(6.12) with (u, v)k ∈ Z2k replaced by (u, v)k ∈ Z2k \ Z•2k. In most of our limit
results, Z(t, s) is negligible and Y •k(t, s) is the main term which is easier to handle
compared to Ak(Y (t, s)) in (6.13). We also note that limit distributions of partial
sums of ‘off-diagonal’ polynomial forms in i.i.d. r.v.s were studied in [5, 36, 100]
and other works.

Assumption (A4)k. ε(0, 0)
d
= Z and Y (0, 0)

d
= Z have standard normal dis-

tribution Z
d
= N (0, 1) and X(t, s) = G(Y (t, s)), where G = G(x), x ∈ R, is a

measurable function with EG(Z)2 <∞, EG(Z) = 0 and Hermite rank k ≥ 1.

Assumptions (A1), (A2) and (A4)k imply that Y in (6.3) is a Gaussian RF.
As noted above, under Assumption (A4)k Appell polynomials Ak(x) coincide with
Hermite polynomials Hk(x). Recall that the Hermite rank of a measurable func-
tion G : R→ R with EG(Z)2 <∞ is defined as the index k of the lowest nonzero
coefficient cj in the Hermite expansion of G, viz., G(x) =

∑∞
j=k cjHj(x)/j! where

ck 6= 0.

Let L2(R2k) denote the Hilbert space of real-valued functions h = h((u, v)k),
(u, v)k = (u1, v1, . . . , uk, vk) ∈ R2k with finite norm ‖h‖k := {

∫
R2k h((u, v)k)

2

d(u, v)k}1/2, d(u, v)k = du1dv1 · · · dukdvk. Let W = {W (du, dv), (u, v) ∈ R2} de-
note a real-valued Gaussian white noise with zero mean and variance EW (du, dv)2

= dudv. For any h ∈ L2(R2k) the k-tuple Itô–Wiener integral
∫
R2k h((u, v)k)d

kW =∫
R2k h(u1, v1, . . . , uk, vk)W (du1, dv1) · · ·W (duk, dvk) is well-defined and satisfies

E
∫
R2k h((u, v)k)d

kW = 0, E(
∫
R2k h((u, v)k)d

kW )2 ≤ k!‖h‖2
k; see e.g. [36].
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6.3 Main results

Recall the definitions of pi, P in (6.7), (6.8); γ0 = q1/q2 = p1/p2. Denote

SXλ,γ(x, y) :=
∑

(t,s)∈K[λx,λγy]

X(t, s), SXλ,γ := SXλ,γ(1, 1).

Consider a RF

V X
k,γ0

(x, y) :=

∫

R2k

h(x, y; (u, v)k)d
kW, (x, y) ∈ R2

+, (6.15)

where

h(x, y; (u, v)k) :=

∫

(0,x]×(0,y]

k∏

i=1

a∞(t− ui, s− vi)dtds, (6.16)

a∞(t, s) := (|t|2 + |s|2q2/q1)−q1/2L0

(
t/(|t|2 + |s|2q2/q1)1/2

)
, (t, s) ∈ R2.

Theorem 6.1. (i) The RF V X
k,γ0

in (6.15)–(6.16) is well-defined for 1 ≤ k < P

as an Itô–Wiener stochastic integral and has zero mean EV X
k,γ0

(x, y) = 0 and
finite variance EV X

k,γ0
(x, y)2 = k!‖h(x, y; ·)‖2

k. Moreover, RF V X
k,γ0

has stationary
rectangular increments and satisfies the operator-scaling property (see [12])

{V X
k,γ0

(λx, λγ0y), (x, y) ∈ R2
+}

fdd
= {λH(γ0)V X

k,γ0
(x, y), (x, y) ∈ R2

+}, ∀λ > 0,

(6.17)
where H(γ0) := 1 + γ0 − kp1/2.

(ii) Let RFs Y and X = Ak(Y ) satisfy Assumptions (A1), (A2) and (A3)k, 1 ≤
k < P . Then as λ→∞,

Var(SXλ,γ0
) ∼ c(γ0)λ2H(γ0), c(γ0) := k!‖h(1, 1; ·)‖2

k (6.18)

and
λ−H(γ0)SXλ,γ0

(x, y)
fdd→ V X

k,γ0
(x, y). (6.19)

Next, we discuss the case 1 ≤ k < P , γ 6= γ0. This case is split into four
subcases: (c1): γ > γ0, k > 1/p2, (c2): γ > γ0, k < 1/p2, (c3): γ < γ0, k > 1/p1,
and (c4): γ < γ0, k < 1/p1 (the ‘boundary’ cases k = 1/pi, i = 1, 2, are more
delicate and omitted, see Remark 6.2). Cases (c3) and (c4) are symmetric to (c1)
and (c2) and essentially follow by exchanging the coordinates t and s. Introduce
random processes Z+

k and Z−k with one-dimensional time:

Z+
k (y) :=

∫

R2k

h+(y; (u, v)k)d
kW, Z−k (x) :=

∫

R2k

h−(x; (u, v)k)d
kW, x, y ∈ R+,

(6.20)
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where

h+(y; (u, v)k) :=

∫ y

0

k∏

i=1

a∞(ui, s−vi)ds, h−(x; (u, v)k) :=

∫ x

0

k∏

i=1

a∞(t−ui, vi)dt,

(6.21)
and a∞(t, s) is defined in (6.16). In Theorem 6.3, ? stands for convolution of
functions indexed by R2 (see Section 6.5 for definition).

Theorem 6.2. (i) Processes Z+
k and Z−k in (6.20) are well-defined for 1 ≤ k <

1/p2 and 1 ≤ k < 1/p1, respectively, as Itô–Wiener stochastic integrals. They
have zero mean, finite variance, stationary increments and are self-similar with
respective indices H+

2k := 1− kp2/2 ∈ (1/2, 1) and H−1k := 1− kp1/2 ∈ (1/2, 1).
(ii) Let RFs Y and X = Ak(Y ) satisfy Assumptions (A1), (A2) and (A3)k, 1 ≤
k < 1/p2. Then for any γ > γ0, as λ→∞,

Var(SXλ,γ) ∼ c(γ)λ2H(γ), (6.22)

where H(γ) := 1 + γH+
2k and c(γ) := k!‖h+(1; ·)‖2

k > 0. Moreover,

λ−H(γ)SXλ,γ(x, y)
fdd→ xZ+

k (y), λ→∞. (6.23)

(iii) Let RFs Y and X = Ak(Y ) satisfy Assumptions (A1), (A2) and (A3)k,
1 ≤ k < 1/p1. Then for any γ < γ0, as λ→∞,

Var(SXλ,γ) ∼ c(γ)λ2H(γ),

where H(γ) := γ +H−1k and c(γ) := k!‖h−(1; ·)‖2
k > 0. Moreover,

λ−H(γ)SXλ,γ(x, y)
fdd→ yZ−k (x), λ→∞.

Remark 6.1. Processes Z±k in (6.20) have a similar structure and properties
to generalized Hermite processes discussed in [5] except that (6.20) are defined
as k-tuple Itô–Wiener integrals with respect to white noise in R2 and not in R
as in [5]. Following the terminology in [81], RFs xZ+

k (y) and yZ−k (x) may be
called a generalized Hermite slide since they represent a random surface ‘slid-
ing linearly to 0’ along one of the coordinate on the plane from a generalized
Hermite process indexed by the other coordinate. In the Gaussian case k = 1,
a generalized Hermite slide agrees with a FBS BH1,H2 where one of the two
parameters H1, H2 equals 1. Recall that a fractional Brownian sheet (FBS)
BH1,H2 = {BH1,H2(x, y), (x, y) ∈ R2

+} with parameters 0 < H1, H2 ≤ 1 is a
Gaussian process with zero mean and covariance function

EBH1,H2(x1, y1)BH1,H2(x2, y2) = (1/4)(x2H1
1 + x2H1

2 − |x1 − x2|2H1)

×(y2H2
1 + y2H2

2 − |y1 − y2|2H2).(6.24)
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Theorem 6.3. (i) Let RFs Y and X = Ak(Y ) satisfy Assumptions (A1), (A2)
and (A3)k, 1/p2 < k < P . Then for any γ > γ0, as λ→∞,

Var(SXλ,γ) ∼ c(γ)λ2H(γ), (6.25)

where H(γ) := H+
1k + γ/2, H+

1k := 1 + γ0/2 − kp1/2 ∈ (1/2, 1) and c(γ) :=

k!
∫

(0,1]2×R((a∞ ? a∞)(t1 − t2, s))kdt1dt2ds > 0. Moreover,

λ−H(γ)SXλ,γ(x, y)
fdd→ c(γ)1/2BH+

1k,1/2
(x, y), λ→∞. (6.26)

(ii) Let RFs Y and X = Ak(Y ) satisfy Assumptions (A1), (A2) and (A3)k, 1/p1 <

k < P . Then for any γ < γ0, as λ→∞,

Var(SXλ,γ) ∼ c(γ)λ2H(γ), (6.27)

where H(γ) := γH−2k + 1/2, H−2k := 1 + 1/(2γ0) − kp2/2 ∈ (1/2, 1) and c(γ) :=

k!
∫
R×(0,1]2

((a∞ ? a∞)(t, s1 − s2))kdtds1ds2 > 0. Moreover,

λ−H(γ)SXλ,γ(x, y)
fdd→ c(γ)1/2B1/2,H−2k

(x, y), λ→∞. (6.28)

Remark 6.2. Note H+
1k = 1 (kp2 = 1) and H−2k = 1 (kp1 = 1). We expect that the

convergences (6.26) and (6.28) remain true (modulo a logarithmic correction of
normalization) in the ‘boundary’ cases kp2 = 1 and kp1 = 1 of Theorem 6.3(i) and
(ii) and the limit RFs in these cases agree with FBS B1,1/2 or B1/2,1, respectively,
having both parameters equal to 1 or 1/2.

The next theorem discusses the case k > P .

Theorem 6.4. Let RFs Y and X = Ak(Y ) satisfy Assumptions (A1), (A2) and
(A3)k and k > P . Then for any γ > 0, as λ→∞,

λ−(1+γ) Var(SXλ,γ)→ σ2
X ,

where σ2
X :=

∑
(t,s)∈Z2 Cov(X(0, 0), X(t, s)) ∈ [0,∞). Moreover, if σ2

X > 0 then

λ−(1+γ)/2SXλ,γ(x, y)
fdd→ σXB1/2,1/2(x, y), λ→∞.

Our last theorem extends the above results to general function G having Hermite
rank k and Gaussian underlying RF Y .

Theorem 6.5. Let X = G(Y ) satisfy Assumptions (A1), (A2) and (A4)k. As-
sume w.l.g. that G has Hermite expansion G(x) = Hk(x) +

∑∞
j=k+1 cjHj(x)/j!.

(i) Let 1 ≤ k < P . Then RF X satisfies all statements of Theorems 6.1–6.3.
(ii) Let k > P . Then RF X satisfies the statements of Theorem 6.4.
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According to Theorems 6.2–6.3, the unbalanced scaling limits V X
± of RF X =

Ak(Y ) satisfying Assumptions (A1)–(A3)k are given by

V X
+ (x, y) =




xZ+

k (y), kp2 < 1,

c
1/2
+ BH+

1k,1/2
(x, y), kp2 > 1,

V X
− (x, y) =




yZ−k (x), kp1 < 1,

c
1/2
− B1/2,H−2k

(x, y), kp1 > 1,
(6.29)

where c± ≡ c(γ) > 0 are constants given in Theorem 6.3. The covariance func-
tions of RFs V X

± in (6.29) agree (modulo a constant) with the covariance of FBS
BH1,H2 where at least one of the two parameters H1, H2 equals 1 or 1/2, namely
(H1, H2) = (1, H+

2k) if kp2 < 1, = (H+
1k, 1/2) if kp2 > 1 in the case of V X

+ ,
and (H1, H2) = (H−1k, 1) if kp1 < 1, = (1/2, H−2k) if kp1 > 1 in the case of V X

− .
These facts and the explicit form of the covariance of FBS, see (6.24), imply that

V X
+

fdd
6= aV X

− (∀a > 0), for any k, p1, p2 in Theorems 6.2–6.3, yielding the following
corollary.

Corollary 6.6. Let RF X = Ak(Y ) satisfy Assumptions (A1), (A2) and (A3)k,
1 ≤ k < P , kpi 6= 1, i = 1, 2. Then X exhibits scaling transition at γ0 = p1/p2.

6.4 Examples: fractionally integrated RFs

In this section we present two examples of linear fractionally integrated RFs Y on
Z2 satisfying Assumptions (A1) and (A2).

Example 1. Isotropic fractionally integrated random field. Introduce the
(discrete) Laplace operator ∆Y (t, s) := (1/4)

∑
|u|+|v|=1(Y (t+ u, s+ v)− Y (t, s))

and a lattice isotropic fractionally integrated RF {Y (t, s), (t, s) ∈ Z2} satisfying
the equation:

(−∆)dY (t, s) = ε(t, s), (6.30)

where {ε(t, s), (t, s) ∈ Z2} are standard i.i.d. r.v.s, 0 < d < 1/2 is the order of
fractional integration, (1− z)d =

∑∞
j=0 ψj(d)zj, ψj(d) := Γ(j − d)/Γ(j + 1)Γ(−d).

More explicitly,

(−∆)dY (t, s) =
∞∑

j=0

ψj(d)(1 + ∆)jY (t, s) =
∑

(u,v)∈Z2

b(u, v)Y (t− u, s− v), (6.31)

where b(u, v) :=
∑∞

j=0 ψj(d)pj(u, v) and pj(u, v) are j-step transition probabilities
of a symmetric nearest-neighbor random walk {Wj, j = 0, 1, . . . } on Z2 with
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equal 1-step probabilities P(W1 = (u, v)|W0 = (0, 0)) = 1/4, |u| + |v| = 1. Note
∑

(u,v)∈Z2 |b(u, v)| =
∑∞

j=0 |ψj(d)| < ∞, d > 0, and therefore the l.h.s. of (6.31)
is well-defined for any stationary RF Y with E|Y (0, 0)| < ∞. As shown in [56],
for 0 < d < 1/2 a stationary solution of (6.30) with zero-mean and finite variance
can be defined as a moving-average RF:

Y (t, s) = (−∆)−dε(t, s) =
∑

(u,v)∈Z2

a(u, v)ε(t− u, s− v), (6.32)

with coefficients
a(u, v) =

∞∑

j=0

ψj(−d)pj(u, v) (6.33)

satisfying
∑

(u,v)∈Z2 a(u, v)2 <∞. Moreover, RF Y in (6.32) has an explicit spec-
tral density f(x, y) = (2π)−22−2d|(1 − cosx) + (1 − cos y)|−2d, (x, y) ∈ [−π, π]2,
which behaves as const(x2 + y2)−2d as x2 + y2 → 0. According to [56, Propo-
sition 5.1], the moving-average coefficients in (6.33) satisfy the isotropic asymp-
totics:

a(t, s) = (A+ o(1))(t2 + s2)−(1−d), t2 + s2 →∞,

where A := π−1Γ(1 − d)/Γ(d) and hence Assumption (A2) with q1 = q2 = 2(1 −
d) ∈ (1, 2), Q = 1/(1 − d) ∈ (1, 2) and a constant angular function L0(z) = A,
z ∈ [−1, 1].

Example 2. Anisotropic fractionally integrated random field. Consider
the ‘discrete heat operator’ ∆1,2Y (t, s) = Y (t, s)− θY (t− 1, s)− 1−θ

2
(Y (t− 1, s+

1) + Y (t− 1, s− 1)), 0 < θ < 1, and a fractionally integrated RF satisfying

∆d
1,2Y (t, s) = ε(t, s), (6.34)

where {ε(t, s)} are as in (6.30). Similarly to (6.32), a stationary solution of (6.34)
can be written as a moving-average RF:

Y (t, s) = ∆−d1,2ε(t, s) =
∑

(u,v)∈Z+×Z

a(u, v)ε(t− u, s− v), (6.35)

with coefficients
a(u, v) = ψu(−d)qu(v), (6.36)

where qu(v) are u-step transition probabilities of a random walk {Wu, u = 0, 1, . . . }
on Z with 1-step probabilities P(W1 = v|W0 = 0) = θ if v = 0, = (1 − θ)/2 if
v = ±1. As shown in [60],

∑
(u,v)∈Z2 a(u, v)2 < ∞ and the RF in (6.35) is well-

defined for any 0 < d < 3/4, θ ∈ [0, 1); moreover, the spectral density f(x, y) of
(6.35) is singular at the origin: f(x, y) ∼ const(x2+(1−θ)2y4/4)−d, (x, y)→ (0, 0).
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Proposition 6.7. For any 0 < d < 3/4, 0 < θ < 1, the coefficients in (6.36)
satisfy Assumption (A2) with q1 = 3/2 − d, q2 = 2q1 and a continuous angular
function L0(z), z ∈ [−1, 1], given by

L0(z) =





zd−3/2

Γ(d)
√

2π(1− θ)
exp

{
−
√

(1/z)2 − 1

2(1− θ)
}
, 0 < z ≤ 1,

0, −1 ≤ z ≤ 0.

(6.37)

Remark 6.3. [14,41] discussed fractionally integrated RFs satisfying the equation

∆d1
1 ∆d2

2 Y (t, s) = ε(t, s), (6.38)

where ∆1Y (t, s) := Y (t, s) − Y (t − 1, s), ∆2Y (t, s) := Y (t, s) − Y (t, s − 1) are
difference operators and 0 < d1, d2 < 1/2 are parameters. Stationary solution
of (6.38) is a moving-average RF Y (t, s) =

∑
(u,v)∈Z2

+
a(u, v)ε(t − u, v − s) with

coefficients a(u, v) := ψu(−d1)ψv(−d2). Following the proof of Theorem 6.1 one
can show that for any γ > 0 the (normalized) partial sums process of RF Y

in (6.38) tends to a FBS depending on d1, d2 only, viz., λ−H1−γH2SYλ,γ(x, y)
fdd→

c(d1)c(d2)BH1,H2(x, y), where Hi = di + 1/2 and c(di) > 0 are some constants.
See [89, Proposition 3.2] for related result. We conclude that the fractionally
integrated RF in (6.38) featuring a ‘separation of LRD along coordinate axes’
does not exhibit scaling transition in contrast to models in (6.30) and (6.34).

6.5 Properties of convolutions of
generalized homogeneous functions

For a given $ > 0 denote

ρ(t, s) := (|t|2 + |s|2/$)1/2, ρ+(t, s) := 1 ∨ ρ(t, s), (t, s) ∈ R2.

Let f(t, s) = ρ(t, s)−hL(t/ρ(t, s)), where h ∈ R and L = L(z), z ∈ [−1, 1],
is an arbitrary measurable function, then f(t, s) satisfies the scaling property:
f(λt, λ$s) = λ−hf(t, s), (t, s) ∈ R2

0, for each λ > 0. Such functions are called
generalized homogeneous functions (see [42]).
We use the notation (a1?a2)(t, s) =

∫
R2 a1(u, v)a2(t+u, s+v)dudv for convolution

of functions ai, i = 1, 2, defined on R2. Similarly, we write [a1 ? a2](t, s) =
∑

(u,v)∈Z2 a1(u, v)a2(t+u, s+ v) for ‘discrete’ convolution of sequences ai, i = 1, 2,
defined on Z2. Note the symmetry ai(t, s) = ai(t,−s), i = 1, 2, implies the
symmetry [a1 ? a2](t, s) = [a1 ? a2](t,−s), (a1 ? a2)(t, s) = (a1 ? a2)(t,−s) of
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convolutions.
Let Bδ(t, s) := {(u, v) ∈ R2 : |t− u|+ |s− v| ≤ δ}, Bc

δ(t, s) := R2 \Bδ(t, s).

Proposition 6.8. (i) For any δ > 0, h > 0,
∫

Bδ(0,0)

ρ(t, s)−hdtds <∞⇐⇒ h < 1 +$ (6.39)

and
∫

Bcδ(0,0)

ρ(t, s)−hdtds <∞
∑

(t,s)∈Z2

ρ+(t, s)−h <∞




⇐⇒ h > 1 +$. (6.40)

(ii) Let hi > 0, i = 1, 2, h1 + h2 > 1 + $. Then there exists C > 0 such that for
any (t, s) ∈ R2

0,

(ρ−h1 ? ρ−h2)(t, s) ≤ Cρ(t, s)1+$−h1−h2 , hi < 1 +$, i = 1, 2, (6.41)

(ρ−h1
+ ? ρ−h2)(t, s) ≤ Cρ+(t, s)−h2 , h2 < 1 +$ < h1, (6.42)

(ρ−h1
+ ? ρ−h2

+ )(t, s) ≤ Cρ+(t, s)−h1∧h2 , hi > 1 +$, i = 1, 2. (6.43)

Moreover, inequalities (6.41)–(6.43) are also valid for ‘discrete’ convolution [ρ−h1
+ ?

ρ−h2
+ ](t, s), (t, s) ∈ Z2 with ρ(t, s) on the r.h.s. of (6.41) replaced by ρ+(t, s).

(iii) Let ai = ai(t, s), (t, s) ∈ Z2, satisfy ai(t, s) = ρ+(t, s)−hi(Li(t/ρ+(t, s)) +

o(1)), |t| + |s| → ∞, where 0 < hi < 1 + $ < h1 + h2, and Li(u) 6≡ 0, u ∈
[−1, 1], are bounded piecewise continuous functions, i = 1, 2. Let ai∞(t, s) :=

ρ(t, s)−hiLi(t/ρ(t, s)), (t, s) ∈ R2, i = 1, 2. Then

(a1∞ ? a2∞)(t, s) = ρ(t, s)1+$−h1−h2L12(t/ρ(t, s)), (t, s) ∈ R2, (6.44)

and

[a1 ? a2](t, s) = ρ+(t, s)1+$−h1−h2
(
L12(t/ρ+(t, s)) + o(1)

)
, |t|+ |s| → ∞,(6.45)

where

L12(z) := (a1∞?a2∞)(z, (1−z2)$/2) =

∫

R2

a1∞(u, v)a2∞(u+z, v+(1−z2)$/2)dudv

(6.46)
is a bounded continuous function on the interval z ∈ [−1, 1]. Moreover, if L1(z) =

L2(z) ≥ 0 then L12(z) in (6.46) is strictly positive on [−1, 1].
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Proposition 6.9. Let b(t, s) := ρ+(t, s)−h(L(t/ρ+(t, s)) + o(1)), |t| + |s| → ∞,
(t, s) ∈ Z2, b∞(t, s) := ρ(t, s)−hL(t/ρ(t, s)), (t, s) ∈ R2, where 0 < h < 1 +$ and
L(u) ≥ 0, u ∈ [−1, 1], is a continuous function. Then for any γ > 0,

Bλ(γ) :=
∑

(ti,si)∈K[λ,λγ ],i=1,2

b(t1 − t2, s1 − s2) ∼ C(γ)λ2H(γ), λ→∞, (6.47)

where

H(γ) :=





1 +$ − h
2
, (I)

1 + γ − γh
2$
, (II)

1 + γ
2
− h−$

2
, (III)

1 + γ − h
2
, (IV)

1
2

+ γ − γ(h−1)
2$

, (V)

C(γ) :=





∫

(0,1]4
b∞(t1 − t2, s1 − s2)dt1dt2ds1ds2, (I)

∫

(0,1]2
b∞(0, s1 − s2)ds1ds2, (II)

∫

(0,1]2×R
b∞(t1 − t2, s)dt1dt2ds, (III)

∫

(0,1]2
b∞(t1 − t2, 0)dt1dt2, (IV)

∫

R×(0,1]2
b∞(t, s1 − s2)dtds1ds2, (V)

(6.48)

in respective cases (I): γ = $, (II): γ > $, h < $, (III): γ > $, h > $, (IV):
γ < $, h < 1 and (V): γ < $, h > 1.

6.6 Covariance structure of
subordinated anisotropic RFs

In this section from Propositions 6.8 and 6.9 with $ = γ0, ρ(t, s) = (|t|2 +

|s|2/γ0)1/2 we obtain the asymptotic form of the covariance function of rX(t, s) :=

EX(0, 0)X(t, s) and the asymptotics of the variance of anisotropic partial sums
SXλ,γ of subordinated RF X = Ak(Y ).

Proposition 6.10. Let RF X = Ak(Y ) satisfy assumptions (A1), (A2) and
(A3)k.
(i) Let k ≥ 1. Then X(t, s) = Y •k(t, s)+Z(t, s), where Z(t, s) is defined in (6.14)
and

rZ(t, s) = O(ρ(t, s)−2q1), |t|+ |s| → ∞. (6.49)
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(ii) Let 1 ≤ k < P . Then

rX(t, s) = k!ρ(t, s)−kp1
(
LX(t/ρ(t, s)) + o(1)

)
, |t|+ |s| → ∞, (6.50)

where LX(z) := ((a∞ ?a∞)(z, (1− z2)γ0/2))k, z ∈ [−1, 1], is a strictly positive con-
tinuous function and a∞ is defined in (6.16). Moreover, rZ(t, s) = o(ρ(t, s)−kp1),
|t|+ |s| → ∞.
(iii) Let k > P . Then

rX(t, s) = O(ρ(t, s)−(kp1)∧(2q1)), |t|+ |s| → ∞. (6.51)

Clearly, (6.50) implies C1ρ(t, s)−kp1 ≤ rX(t, s) ≤ C2ρ(t, s)−kp1 for all |t|+ |s| >
C3 and some 0 < Ci <∞, i = 1, 2, 3. The last fact together with Proposition 6.8(i)
implies the following corollary.

Corollary 6.11. Let X = Ak(Y ), k ≥ 1, be the subordinated RF defined in
Proposition 6.10 and satisfying the conditions therein.
(i) Let 1 ≤ k < P . Then

∑
(t,s)∈Z2 |rX(t, s)| = ∞. Moreover,

∑
s∈Z |rX(0, s)| =

∞⇐⇒ kp2 ≤ 1 and
∑

t∈Z |rX(t, 0)| =∞⇐⇒ kp1 ≤ 1.
(ii) Let k > P . Then

∑
(t,s)∈Z2 |rX(t, s)| <∞.

Remark 6.4. Following the terminology in [81], we say that a stationary RF X =

{X(t, s), (t, s) ∈ Z2} with finite variance has vertical LRD property (respectively,
horizontal LRD property) if

∑
s∈Z |rX(0, s)| = ∞ (respectively,

∑
t∈Z |rX(t, 0)| =

∞). From Corollary 6.11 we see the dichotomy of the limit distribution in The-
orems 6.2–6.3 at points kp2 = 1 and kp1 = 1 is related to the change of vertical
and horizontal LRD properties of the subordinated RF X = Ak(Y ).

Corollary 6.12. Let X(t, s) = Ak(Y (t, s)) = Y •k(t, s) + Z(t, s), 1 ≤ k < P ,
kpi 6= 1, i = 1, 2, be the subordinated RF defined in Proposition 6.10 and satisfying
the conditions therein. Then for any γ > 0, as λ→∞,

Var(SXλ,γ) ∼ Var(SY
•k

λ,γ ) ∼ c(γ)λ2H(γ) (6.52)

and

Var(SZλ,γ) = O(λ1+γ), (6.53)

where H(γ) ∈ ((1 + γ)/2, 1 + γ) and c(γ) are defined in Theorems 6.1–6.3.
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6.7 Proofs

6.7.1 Proofs of Propositions 6.8–6.10 and Corollary 6.12

Proof of Proposition 6.8. With the notation % := ρ(t, s) we have that (t, s) 7→
(%, t/%) is a 1-1 mapping from R× [0,∞) to [0,∞)× [−1, 1]. Particularly, if $ = 1

then (%, arccos(t/%)) are the polar coordinates of (t, s) ∈ R× [0,∞). We use the
inequality:

ρ(t1 + t2, s1 + s2) ≤ C$

2∑

i=1

ρ(ti, si), (6.54)

with C$ := 1 ∨ 21/$−1, which follows from

ρ(t1 + t2, s1 + s2)1∧$ ≤
2∑

i=1

ρ(ti, si)
1∧$, (ti, si) ∈ R2, i = 1, 2. (6.55)

(i) W.l.g., let δ = 1. Then
∫
B1(0,0)

ρ(t, s)−hdtds ≤ 4
∫ 1

0
t$−hdt

∫ 1/t$

0
(1+u2/$)−h/2du,

where the inner integral = O(1) if h > $, = O(th−$) if h < $, = O(| log t|) if
h = $, as u→ 0. This proves (6.39) and (6.40) follows analogously.

(ii) After the change of variables: u→ %u, v → %$v, % := ρ(t, s), we get

(ρ−h1 ? ρ−h2)(t, s) = %1+$−h1−h2

∫

R2

ρ(u, v)−h1ρ((t/%) + u, (s/%$) + v)−h2dudv,

= %1+$−h1−h2(I1 + I2 + I12), (6.56)

where

I1 :=

∫

Bδ(0,0)

ρ(u, v)−h1ρ((t/%) + u, (s/%$) + v)−h2dudv,

I2 :=

∫

Bδ(−t/%,−s/%$)

. . . dudv, I12 :=

∫

Bcδ(0,0)∩Bcδ(−t/%,−s/%$)

. . . dudv

with δ > 0 such that Bδ(0, 0) ∩ Bδ(−t/%,−s/%$) = ∅ for any (t, s) 6= (0, 0). The
integrals Ii ≤ C, i = 1, 2 by (6.39) and 0 < hi < 1+$, i = 1, 2. Next, by Hölder’s
inequality with h := h1 + h2,

I12 ≤
∫

Bcδ(0,0)

ρ(u, v)−hdudv ≤ C,

in view of (6.40) and
∫

Bcδ(−t/%,−s/%$)

ρ((t/%) + u, (s/%$) + v)−hdudv =

∫

Bcδ(0,0)

ρ(u, v)−hdudv.

This proves (6.41).
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Next, consider (6.42), or the case 0 < h2 < 1 + $ < h1. By changing the
variables as in (6.56), we get (ρ−h1

+ ? ρ−h2)(t, s) ≤ %1+$−h1−h2(I ′1 + I2 + I12), where
I2 < C, I12 < C are the same as in (6.56), whereas

I ′1 :=

∫

Bδ(0,0)

(%−1 ∨ ρ(u, v))−h1ρ((t/%) + u, (s/%$) + v)−h2dudv.

Note that if given small enough δ > 0, then (6.55) implies ρ((t/%) + u, (s/%$) +

v)1∧$ ≥ 1 − ρ(u, v)1∧$ ≥ 1/2 for all (u, v) ∈ Bδ(0, 0), and hence I ′1 ≤ C%h1−1−$
∫
R2 ρ+(u, v)−h1dudv ≤ C%h1−1−$ according to (6.40). Since ρ(t, s)1+$−h1−h2 =

o(ρ(t, s)−h2) as |t|+ |s| → ∞, the proof of (6.42) is complete.
Finally, consider (6.43). We follow the proof of (6.42) and get (ρ−h1

+ ?ρ−h2
+ )(t, s)

≤ %1+$−h1−h2(I ′1 + I ′2 + I12) with the same I ′1 < C%h1−1−$, I12 < C, whereas

I ′2 :=

∫

Bδ(−t/%,−s/%$)

ρ(u, v)−h1(%−1 ∨ ρ((t/%) + u, (s/%$) + v))−h2dudv.

For small enough δ > 0, we have ρ(u, v)1∧$ ≥ 1−ρ((t/%)+u, (s/%$)+v)1∧$ ≥ 1/2

for all (u, v) ∈ Bδ(−t/%,−s/%$), and hence I ′2 ≤ C%h2−1−$ ∫
R2 ρ+(t + u, s +

v)−h2dudv ≤ C%h2−1−$ by (6.40). Using ρ(t, s)1+$−h1−h2 = o(ρ(t, s)−h1∧h2) as |t|+
|s| → ∞, we conclude (6.43). Extension of (6.41)–(6.43) to ‘discrete’ convolution
[ρ−h1

+ ? ρ−h2
+ ](t, s) requires minor changes and we omit the details. This proves

part (ii).

(iii) It suffices to show (6.45) for (t, s) ∈ Z × Z+, (t, s) 6= (0, 0), in which case
ρ+(t, s) = ρ(t, s). We have [a1 ? a2](t, s) =

∑1
i,j=0[ai1 ? a

j
2](t, s), where a0

i (t, s) :=

ρ+(t, s)−hiLi(t/ρ+(t, s)), a1
i (t, s) := ai(t, s) − a0

i (t, s) = o(ρ+(t, s)−hi), i = 1, 2.
Clearly, (6.45) follows from

lim
|t|+|s|→∞

∣∣ρ(t, s)h1+h2−1−$[a0
1 ? a

0
2](t, s)− L12(t/ρ(t, s))

∣∣ = 0 (6.57)

and

[ai1 ? a
j
2](t, s) = o(ρ(t, s)1+$−h1−h2), (i, j) 6= (0, 0), i, j = 0, 1, |t|+ |s| → ∞.

(6.58)
The proof of (6.58) mimics the proof of (6.57) and is omitted. To prove (6.57),
write [a0

1 ? a
0
2](t, s) as the integral: [a0

1 ? a
0
2](t, s) =

∫
R2 a

0
1([u], [v])a0

2([u] + t, [v] +

s)dudv. After the same change of variables u → %u, v → %$v, % := ρ(t, s) as in
the proof of (ii) we obtain [a0

1 ? a
0
2](t, s) = %1+$−h1−h2L%(t/%), where

L%(z) :=

∫

R2

g%(u, v; z)dudv, z ∈ [−1, 1]

and where

g%(u, v; z) := a1%

(
ũ, ṽ
)
a2%

(
ũ+ z, ṽ + (1− z2)$/2

)
,
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with ũ := [%u]/%, ṽ := [%$v]/%$ and

ai%(u, v) :=
(
%−1 ∨ ρ(u, v)

)−hiLi
(
u/
(
%−1 ∨ ρ(u, v)

))
, i = 1, 2, (6.59)

since s/%$ = (1 − z2)$/2 for z = t/% ∈ [−1, 1], s ≥ 0. Then with ai∞(u, v),
i = 1, 2, defined by the statement of Proposition 6.8(iii) we get that

g%(u, v; z)→ g∞(u, v; z) := a1∞(u, v)a2∞(u+ z, v + (1− z2)$/2) (6.60)

as % = ρ(t, s)→∞ (|t|+ |s| → ∞) for any fixed (u, v; z) ∈ R2 × [−1, 1] such that
(u, v) 6∈ {(0, 0), (−z,−(1−z2)$/2)} and u/ρ(u, v), (u+z)/ρ(u+z, v+(1−z2)$/2)

being continuity points of L1 and L2 respectively. Let us prove that

L%(z)→ L12(z) as %→∞ (6.61)

uniformly in z ∈ [−1, 1], which implies (6.57), viz., |L%(t/%)−L12(t/%)| ≤ supz∈[−1,1]

|L%(z) − L12(z)| = o(1) as % → ∞. The uniform convergence in (6.61) fol-
lows if lim%→∞ L%(z%) = L12(z) holds for any z ∈ [−1, 1] and every sequence
{z%} ⊂ [−1, 1] tending to z: lim%→∞ z% = z. Choose δ > 0 and split the difference
L%(z%)− L12(z) = I1 + I2 + I12, where

I1 :=

∫

Bδ(0,0)

(g%(u, v; z%)− g∞(u, v; z))dudv,

I2 :=

∫

Bδ(−z,−z′)
. . . dudv, I12 :=

∫

Bcδ(0,0)∩Bcδ(−z,−z′)
. . . dudv

with the notation z′ := (1 − z2)$/2. Note that ρ(z, z′) = 1 and δ > 0 is chosen
small enough so that Bδ(0, 0) ∩ Bδ(−z,−z′) = ∅. Let us first check that |Ii|,
i = 1, 2, can be made arbitrary small by taking sufficiently small δ. Towards this
end, we need the bound

|ai%(ũ, ṽ)| ≤ Cρ(u, v)−hi , (u, v) ∈ R2, i = 1, 2. (6.62)

Indeed, by (6.54), ρ(u, v) ≤ C$(ρ(ũ, ṽ) + ρ(u − ũ, v − ṽ)), where |u − ũ| ≤ %−1,
|v − ṽ| ≤ %−$ and hence ρ(u − ũ, v − ṽ) ≤

√
2%−1, with C$ > 0 dependent only

on $ > 0. Therefore, ρ(u, v) ≤
√

2C$(ρ(ũ, ṽ) + %−1) ≤ 2
√

2C$(ρ(ũ, ṽ) ∨ %−1)

implying
ρ(ũ, ṽ) ∨ %−1 ≥ (2

√
2C$)−1ρ(u, v), (6.63)

or (6.62) in view of the definition of ai% in (6.59). Using (6.62) it follows that

|g%(u, v; z%)− g∞(u, v; z)| ≤ Cρ(u, v)−h1
(
ρ(u+ z%, v+ z′%)

−h2 + ρ(u+ z, v+ z′)−h2
)
.

(6.64)
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From (6.64) we obtain |I1| ≤ C
∫
Bδ(0,0)

ρ(u, v)−h1dudv ≤ Cδ1+$−h1 = o(1) and
similarly, |I2| ≤ Cδ1+$−h2 = o(1). Hence it suffices to show that I12 → 0 (z% → z),
viz., that for each δ > 0

∫

Bcδ(0,0)∩Bcδ(−z,−z′)
|g%(u, v; z%)− g∞(u, v; z)|dudv → 0 as %→∞. (6.65)

From (6.55), ρ(u+ z%, v+ z′%)
1∧$ ≥ ρ(u+ z, v+ z′)1∧$ − (δ/2)1∧$/2 ≥ (1/2)ρ(u+

z, v + z′)1∧$ for all (u, v) ∈ Bc
δ(−z,−z′) and % large enough that ρ(z − z%, z′ −

z′%)
1∧$ ≤ (δ/2)1∧$/2 (in view of z% → z). Hence and from (6.64) we obtain that

the integrand in (6.65) is dominated on Bc
δ(0, 0) ∩ Bc

δ(−z,−z′) by an integrable
function independent of %, viz., |g%(u, v; z%)−g∞(u, v; z)| ≤ Cρ(u, v)−h1ρ(u+z, v+

z′)−h2 . Since this integrand vanishes a.e. on Bc
δ(0, 0) ∩ Bc

δ(−z,−z′) as % → ∞,
see (6.60), relation (6.65) follows by the dominated convergence theorem, proving
(6.61). The continuity of L12 (6.46) follows similarly by the dominated convergence
theorem.

It remains to prove the strict positivity of L12 in the case where L1(z) ≡
L2(z) =: L(z) ≥ 0. Under assumption of piecewise continuity of L and L 6≡ 0

a.e., we can find 0 < |z0| < 1 and δ > 0 such that L(z) > δ for any |z − z0| <
δ. We also have |u/ρ(u, v) − (u + z)/ρ(u + z, v + z′)| ≤ ρ(u, v)−1 + |1 − ρ(u +

z, v + z′)/ρ(u, v)| = O(ρ(u, v)−1∧$) uniformly in z ∈ [−1, 1] for ρ(u, v) ≥ 1.
Indeed, this follows from |1 − (ρ(u + z, v + z′)/ρ(u, v))1∧$| ≤ ρ(u, v)−1∧$ by
(6.55), when combined with 1 − x ≤ $−1(1 − x$), 0 < x < 1, if 0 < $ < 1 and
ρ(u + z, v + z′)/ρ(u, v) ≤ 2C$ for ρ(u, v) ≥ 1 by (6.54). Hence, given K large
enough |u/ρ(u, v)−(u+z)/ρ(u+z, v+z′)| < δ/2 for all (u, v) ∈ Bc

K(0, 0). Next, we
choose the interior point (u0, v0) of Bc

K(0, 0) such that u0/ρ(u0, v0) = z0. In view
of continuity of u/ρ(u, v), there exists ε > 0 such that |z0−u/ρ(u, v)| < δ/2 holds
for all (u, v) ∈ Bε(u0, v0) ⊂ Bc

K(0, 0). Consequently, L(u/ρ(u, v))L((u+ z)/ρ(u+

z, v+z′)) > δ2 > 0 for any z ∈ [−1, 1] and all (u, v) ∈ Bε(u0, v0). Finally, L12(z) >

δ2(2C$)−h2
∫
Bε(u0,v0)

ρ(u, v)−h1−h2dudv > 0, proving L12(z) > 0, z ∈ [−1, 1], and
part (iii). Proposition 6.8 is proved.

Proof of Proposition 6.9. Rewrite the l.h.s. of (6.47) as

Bλ(γ) =

∫

K̃2
[λ,λγ ]

b([t1]− [t2], [s1]− [s2])dt1dt2ds1ds2, (6.66)

where K̃[λ,λγ ] := {(t, s) ∈ R2 : ([t], [s]) ∈ K[λ,λγ ]}.

Case (I): γ = $. By changing the variables in (6.66) as ti → λti, si → λ$si,
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i = 1, 2, we obtain λ−2H($)Bλ($) =
∫
R4 b̃λ(t1, t2, s1, s2)dt1dt2ds1ds2, where

b̃λ(t1, t2, s1, s2) := bλ(([λt1]− [λt2])/λ, ([λ$s1]− [λ$s2])/λ$) (6.67)

×1(([λti], [λ
$si]) ∈ (0, λ]× (0, λ$], i = 1, 2)

with bλ(t, s) := (λ−1 ∨ ρ(t, s))−h(L(t/(λ−1 ∨ ρ(t, s))) + o(1)) as λ→∞. Then

b̃λ(t1, t2, s1, s2)→ b∞(t1 − t2, s1 − s2)1((ti, si) ∈ (0, 1]2, i = 1, 2), λ→∞,

point-wise for any (t1, t2, s1, s2) ∈ R4, (t1, s1) 6= (t2, s2) fixed. The dominating
bound

λ−1 ∨ ρ
(
([λt1]− [λt2])/λ, ([λ$s1]− [λ$s2])/λ$

)
≥ Cρ(t1 − t2, s1 − s2),

follows by the same arguments as (6.63). These facts and the dominated conver-
gence theorem justify the limit limλ→∞ λ

−2H($)Bλ($) = C($) since the integral
C($) ≤ C

∫
(−1,1]2

ρ(t, s)−hdtds <∞ in (6.48) converges by Proposition 6.8(i).

Case (II): γ > $, h < $. By changing the variables in (6.66) as ti → λti,
si → λγsi, i = 1, 2, we obtain λ−2H(γ)Bλ(γ) =

∫
R4 b̃λ(t1, t2, s1, s2)dt1dt2ds1ds2,

where

b̃λ(t1, t2, s1, s2) := bλ(([λt1]− [λt2])/λγ/$, ([λγs1]− [λγs2])/λγ)

×1(([λti], [λ
γsi]) ∈ (0, λ]× (0, λγ], i = 1, 2)

with bλ(t, s) := (λ−γ/$∨ρ(t, s))−h(L(t/(λ−γ/$∨ρ(t, s)))+o(1)) as λ→∞. Hence
since γ/$ > 1 it follows that

b̃λ(t1, t2, s1, s2)→ b∞(0, s1 − s2)1((ti, si) ∈ (0, 1]2, i = 1, 2), λ→∞,

point-wise for any (t1, t2, s1, s2) ∈ R4, s1 6= s2 fixed. Note b∞(0, s) = L(0)|s|−h/$
is integrable on [−1, 1] due to h < $. The limit limλ→∞ λ

−2H($)Bλ($) = C($)

can be justified by the dominated convergence theorem using the bound

λ−γ/$ ∨ ρ
(
([λt1]− [λt2])/λγ/$, ([λγs1]− [λγs2])/λγ

)

≥ λ−γ/$ ∨ ρ(0, ([λγs1]− [λγs2])/λγ)

≥ Cρ(0, s1 − s2),

which follows by the same arguments as (6.63).

Case (III): γ > $, h > $. By changing the variables in (6.66) as ti → λti, i = 1, 2,
s1 − s2 → λ$s1, s2 → λγs2, we obtain λ−2H(γ)Bλ(γ) =

∫
R4 b̃λ(t1, t2, s1, s2)dt1dt2
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ds1ds2, where

b̃λ(t1, t2, s1, s2) := bλ(([λt1]− [λt2])/λ, ([λ$s1 + λγs2]− [λγs2])/λ$)

×1([λti] ∈ (0, λ], i = 1, 2,

[λ$s1 + λγs2] ∈ (0, λγ], [λγs2] ∈ (0, λγ])

with bλ(t, s) := (λ−1 ∨ ρ(t, s))−h(L(t/(λ−1 ∨ ρ(t, s)) + o(1)) as λ→∞. Then

b̃λ(t1, t2, s1, s2)→ b∞(t1 − t2, s1)1((t1, t2, s2) ∈ (0, 1]3), λ→∞,

for any t1 6= t2, s1 ∈ R \ {0}, s2 ∈ R \ {0, 1} fixed since γ > $ implies 1(0 <

[λ$s1 + λγs2] ≤ λγ)→ 1(0 < s2 < 1). The dominating bound

λ−1 ∨ ρ
(
([λt1]− [λt2])/λ, ([λ$s1 + λγs2]− [λγs2])/λ$

)
≥ Cρ(t1 − t2, s1)

follows in the same way as (6.63), because |([λ$s1 + λγs2] − [λγs2])/λ$ − s1| ≤
2λ−$. Then the dominated convergence in (6.47) is proved in view of C(γ) ≤
C
∫ 1

−1

∫
R ρ(t, s)−hdtds <∞.

Cases (IV) and (V) can be treated similarly to Cases (II) and (III) and we omit
the details. Proposition 6.9 is proved.

In the rest of the chapter, we apply Propositions 6.8 and 6.9 with $ = γ0 and
use the notation ρ(t, s) = (|t|2 + |s|2/γ0)1/2, (t, s) ∈ R2.

Proof of Proposition 6.10. (i) Since Z(t, s) ≡ 0 for k = 1, let k ≥ 2 in what
follows. According to (6.12),

Z(t, s) =
k−1∑

i=1

∑

(D)i

∑

(u,v)i

•
a(t− u1, s− v1)|D1| · · · a(t− ui, s− vi)|Di| (6.68)

×A|D1|(ε(u1, v1)) · · ·A|Di|(ε(ui, vi)),

where the sum
∑

(D)i
is taken over all partitions of {1, 2, · · · , k} into i nonempty

sets D1, . . . , Di having cardinality |D1| ≥ 1, . . . , |Di| ≥ 1, |D1| + · · · + |Di| =

k. Thus, (6.68) is a decomposition of Z(t, s) = Ak(Y (t, s)) − Y •k(t, s) into a
sum of stationary ‘off-diagonal’ polynomial forms of order i < k in i.i.d. r.v.
A|D`|(ε(u`, v`)), 1 ≤ ` ≤ i, with max(|D1|, · · · , |Di|) ≥ 2. From (6.68) it follows
that

|EZ(0, 0)Z(t, s)| ≤ C

k−1∑

i=1

∑

(d)i,(d′)i

i∏

`=1

[|a|d` ? |a|d′` ](t, s), (6.69)

where the second sum is taken over all collections (d)i = (d1, . . . , di), (d′)i =

(d′1, . . . , d
′
i) of integers d` ≥ 1, d′` ≥ 1 with

∑i
`=1 d` =

∑i
`=1 d

′
` = k. See [36], proof
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of Theorem 14.2.1. Then a(t, s)d` ≤ Cρ(t, s)−β` , a(t, s)d
′
` ≤ Cρ(t, s)−β

′
` , where

β` := d`q1, β′` := d′`q1. By Proposition 6.8(ii),

|EZ(0, 0)Z(t, s)| ≤ C
k−1∑

i=1

∑

(d)i,(d′)i

i∏

`=1

ρ(t, s)−w` , (6.70)

where

w` :=





2q1 − 1− γ0 = p1, if d` = d′` = 1,

q1, if d` ≥ 2, d′` = 1 or d` = 1, d′` ≥ 2,

2q1, if d` ≥ 2, d′` ≥ 2.

(6.71)

Relations (6.71) and max1≤`≤i d` ≥ 2, max1≤`≤i d
′
` ≥ 2 imply

∑i
`=1w` ≥ 2q1 and

hence (6.49).

(ii) Since RFs {Y •k(t, s)} and {Z(t, s)} are uncorrelated: Cov(Y •k(t, s),Z(u, v))

= 0 for any (t, s), (u, v) ∈ Z2, relation (6.50) follows from (6.49) and

Cov(Y •k(t, s), Y •k(0, 0)) = k!rY (t, s)k(1 + o(1)), |t|+ |s| → ∞. (6.72)

To show (6.72), note that the difference |rY (t, s)kk!−Cov(Y •k(t, s), Y •k(0, 0))| =
|([a ? a](t, s))k −∑•(u,v)k

∏k
i=1 a(t + ui, s + vi)a(ui, vi)|k! satisfies the same bound

as in (6.70) and therefore this difference is O(ρ(t, s)−2q1) = o(rY (t, s)k) according
to (6.49). This proves (6.72) and part (ii).

(iii) follows similarly to (ii) using (6.49) and |Cov(Y •k(t, s), Y •k(0, 0))| ≤ k!([|a| ?
|a|](t, s))k ≤ Cρ+(t, s)−kp1 . Proposition 6.10 is proved.

Proof of Corollary 6.12. Relation (6.53) follows from (6.49) and Proposition 6.8(i)
since the l.h.s. of (6.53) does not exceed

∑
(t1,s1),(t2,s2)∈K[λ,λγ ]

|rZ(t1− t2, s1−s2)| ≤
λ1+γ

∑
(t,s)∈Z2 |rZ(t, s)| ≤ Cλ1+γ

∑
(t,s)∈Z2 ρ+(t, s)−2q1 and the last sum converges

by Proposition 6.8(i) due to 2q1 > 1 + γ0.
Relations (6.52) follow from (6.53), the orthogonality of {Y •k(t, s)} and {Z(t, s)}
and

V•λ,γ := Var
(∑

(t,s)∈K[λ,λγ ]

Y •k(t, s)
)
∼ c(γ)λ2H(γ). (6.73)

In turn, (6.73) follows from

Vλ,γ := k!
∑

(t1,s1),(t2,s2)∈K[λ,λγ ]

rY (t1 − t2, s1 − s2)k ∼ c(γ)λ2H(γ) (6.74)

and
V•λ,γ − Vλ,γ = o(λ2H(γ)). (6.75)
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Relation (6.74) follows from rY (t, s) = [a ? a](t, s), Propositions 6.8(iii), 6.9 and
the fact that the asymptotic constants C(γ) in (6.47) coincide with c(γ) in Theo-
rems 6.1–6.3. (The last fact follows by exchanging the order of integration in these
integrals, e.g. c(γ0) in (6.18) writes as c(γ0) = k!

∫
R2k

( ∫
(0,1]2

∏k
i=1 a∞(t − ui, s −

vi)dtds
)2∏k

i=1 duidvi = k!
∫

(0,1]4
b∞(t1 − t2, s1 − s2)dt1dt2ds1ds2 = C(γ0), where

b∞(t, s) = ((a∞ ? a∞)(t, s))k, see (6.44).) Finally, the difference in (6.75) can be
estimated as in (6.69)–(6.70) and therefore this difference is O(λ1+γ) = o(λ2H(γ))

as shown in (6.53). This proves (6.73) and the proposition.

6.7.2 Proofs of Theorems 6.1–6.5 and Proposition 6.7

We use the criterion in Proposition 6.13 for the convergence in distribution of off-
diagonal polygonal forms towards Itô–Wiener integral which is a straightforward
extension of [36, Proposition 14.3.2].

Let L2(Z2k) be the class of all real functions g = g((u, v)k), (u, v)k ∈ Z2k, with
∑

(u,v)k∈Z2k g((u, v)k)
2 < ∞ and Qk(g) :=

∑•
(u,v)k

g((u, v)k)ε(u1, v1) · · · ε(uk, vk),
g ∈ L2(Z2k) be a k-tuple off-diagonal form in i.i.d. r.v.s {ε(u, v)} satisfying
Assumption (A1). For gλ,γ ∈ L2(Z2k) (λ > 0, γ > 0) define a step function
g̃λ,γ ∈ L2(R2k) by

g̃λ,γ((u, v)k) := λkγ(1+γ−1
0 )/2gλ,γ([λ

γ/γ0u1], [λγv1], . . . , [λγ/γ0uk], [λ
γvk]),

(u, v)k ∈ R2k. (6.76)

Proposition 6.13. Assume there exists hγ ∈ L2(R2k) such that limλ→∞ ‖g̃λ,γ −
hγ‖k → 0. Then Qk(gλ,γ)

d→
∫
R2k hγ((u, v)k)d

kW (λ→∞).

Proof of Theorem 6.1. (i) Let us show that the stochastic integral V X
k,γ0

(x, y) is
well-defined or ‖h(x, y; ·)‖k < ∞, where h(x, y; (u, v)k) is defined in (6.16). It
suffices to consider the case x = y = 1. By (6.41), (6.39) of Proposition 6.8,
‖h(1, 1; ·)‖2

k =
∫

(0,1]4
((a∞ ? a∞)(t1 − t2, s1 − s2))kdt1dt2ds1ds2 ≤ C

∫
(0,1]4

ρ(t1 −
t2, s1 − s2)−kp1dt1dt2ds1ds2 < ∞ since kp1 < 1 + γ0 = 1 + p1/p2 or k < P holds.
The self-similarity property in (6.17) follows by scaling properties a∞(λt, λγ0s) =

λ−q1a∞(t, s), {W (dλu, dλγ0v)} fdd
= {λ(1+γ0)/2W (du, dv)} of the integrand and the

white noise, and the change of variables rules for multiple Itô–Wiener integral,
see [25], also [36, Proposition 14.3.5].

(ii) Relation (6.18) is proved in Corollary 6.12. Let us prove (6.19). Recall the de-
composition X(t, s) = Y •k(t, s)+Z(t, s) in (6.13). Using Var(SZλ,γ0

) = O(λ1+γ0) =
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o(λ2H(γ0)), see (6.53), relation (6.19) follows from

Qk(gλ,γ0(x, y; ·)) = λ−H(γ0)
∑

(t,s)∈K[λx,λγ0y]

Y •k(t, s)
fdd→ V X

k,γ0
(x, y), (6.77)

where

gλ,γ0(x, y; (u, v)k) := λ−H(γ0)
∑

(t,s)∈K[λx,λγ0y]

a(t− u1, s− v1) · · · a(t− uk, s− vk),

(u, v)k ∈ Z2k. (6.78)

Using Proposition 6.13 and Cramér–Wold device, relation (6.77) follows from

lim
λ→∞

∥∥∥
∑m

i=1
θi(g̃λ,γ0(xi, yi; ·)− h(xi, yi; ·))

∥∥∥
k

= 0, (6.79)

for any m ≥ 1 and any θi ∈ R, (xi, yi) ∈ R2
+, 1 ≤ i ≤ m, where the limit

function h(x, y; (u, v)k) is given in (6.16). We restrict the subsequent proof of
(6.79) to the case m = θ1 = 1, (x1, y1) = (x, y) since the general case of (6.79)
follows analogously. Using (6.10), (6.78), (6.76) and notation aλ(t, s) := (λ−1 ∨
ρ(t, s))−q1(L0(t/(λ−1 ∨ ρ(t, s))) + o(1)), λ → ∞, and λ′ := λγ0 similarly to (6.67)
we get

g̃λ,γ0(x, y; (u, v)k) =

∫

R2

k∏

i=1

aλ
( [λt]−[λui]

λ
, [λ′s]−[λ′vi]

λ′

)

×1
(
([λt], [λ′s]) ∈ (0, λx]× (0, λ′y]

)
dtds

→ h(x, y; (u, v)k) (6.80)

point-wise for any (u, v)k ∈ R2k, (ui, vi) 6= (uj, vj) (i 6= j) fixed. A similar
inequality to (6.63), viz.,

1
λ
∨ ρ
( [λt]−[λu]

λ
, [λ′s]−[λ′v]

λ′

)
≥ cρ(t− u, s− v), ∀t, u, s, v ∈ R, (6.81)

holds with some constant c > 0 independent of t, u, s, v ∈ R, implying the domi-
nating bound

|g̃λ,γ0(x, y; (u, v)k)| ≤ C

∫

(0,2x]×(0,2y]

k∏

i=1

ρ(t− ui, s− vi)−q1dtds =: ḡ(x, y : (u, v)k),

where ‖ḡ(x, y; ·)‖k <∞ by (6.41), (6.39) of Proposition 6.8, so that (6.79) follows
by the dominated convergence theorem in view of (6.80). Theorem 6.1 is proved.

Proof of Theorem 6.2. As noted in Section 6.3, part (iii) follows by the same ar-
gument as part (ii) by exchanging the coordinates t and s and we omit the details.
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(i) Let us show that the stochastic integral in (6.20) is well-defined or ‖h+(y; ·)‖k <
∞, where h+(y; (u, v)k) is defined in (6.21). Indeed by (6.41) of Proposition 6.8
‖h+(y; ·)‖2

k =
∫

(0,1]2
((a∞ ?a∞)(0, s1−s2))kds1ds2 ≤ C

∫
(0,1]2

ρ(0, s1−s2)−kp1ds1ds2

≤ C
∫

[−1,1]
|s|−kp2ds <∞ since kp2 < 1. The remaining facts in (i) follow similarly

as in the proof of Theorem 6.1(i).

(ii) Relation (6.22) is proved in Corollary 6.12. Similarly to the proof of (6.19),
the weak convergence in (6.23) follows from

Qk(gλ,γ(x, y; ·)) = λ−H(γ)
∑

(t,s)∈K[λx,λγy]

Y •k(t, s)
fdd→ xZ+

k (y), (6.82)

where

gλ,γ(x, y; (u, v)k) := λ−H(γ)
∑

(t,s)∈K[λx,λγy]

a(t− u1, s− v1) · · · a(t− uk, s− vk),

(u, v)k ∈ Z2k.

Again, we restrict the proof of (6.82) to one-dimensional convergence at (x, y) ∈
R2

+. By Proposition 6.13 this follows from

lim
λ→∞
‖g̃λ,γ(x, y; ·)− xh+(y; ·)‖k = 0, (6.83)

where, with λ′ := λγ, λ′′ := λγ/γ0 , λ = o(λ′′), aλ′′(t, s) := ((λ′′)−1∨ρ(t, s))−q1(L0(t/

((λ′′)−1 ∨ ρ(t, s))) + o(1)),

g̃λ,γ(x, y; (u, v)k) =

∫

R2

k∏

i=1

aλ′′
( [λt]−[λ′′ui]

λ′′
, [λ′s]−[λ′vi]

λ′

)

×1
(
([λt], [λ′s]) ∈ (0, λx]× (0, λ′y]

)
dtds

→ xh+(y; (−u, v)k) (6.84)

point-wise for any (u, v)k ∈ R2k, (ui, vi) 6= (uj, vj) (i 6= j) fixed.
The dominating convergence argument to prove (6.83) from (6.84) uses Pratt’s

lemma [84], as follows. Similarly to (6.81) note that

1
λ′′
∨ ρ
( [λt]−[λ′′u]

λ′′
, [λ′s]−[λ′v]

λ′

)
≥ cρ((λt/λ′′)− u, s− v),

with c > 0 independent of t, u, s, v ∈ R and hence

|g̃λ,γ(x, y; (u, v)k)| ≤ C

∫

(0,2x]×(0,2y]

k∏

i=1

ρ((λt/λ′′)− ui, s− vi)−q1dtds

=: CGλ((u, v)k)
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with C > 0 independent of λ > 0, (u, v)k ∈ R2k. Clearly, limλ→∞Gλ((u, v)k) =

G((u, v)k) := 2x
∫

(0,2y]

∏k
i=1 ρ(ui, s− vi)−q1ds point-wise in R2k and

‖Gλ‖2
k =

∫

(0,2x]2×(0,2y]2

(
(ρ−q1 ? ρ−q1)((λ/λ′′)(t1 − t2), s1 − s2)

)k
dt1dt2ds1ds2

→
∫

(0,2x]2×(0,2y]2

(
(ρ−q1 ? ρ−q1)(0, s1 − s2)

)k
dt1dt2ds1ds2 = ‖G‖2

k <∞

by (6.41) of Proposition 6.8 and condition 1 ≤ k < 1/p2, or p2 = q2(2−Q) < 1/k.
Thus, application of [84] proves (6.83). Theorem 6.2 is proved.

To prove Theorem 6.3 we use approximation by m-dependent variables and
the following CLT for triangular array of m-dependent r.v.s.

Lemma 6.14. Let {ξni, 1 ≤ i ≤ Nn}, n ≥ 1, be a triangular array of m-dependent
r.v.s with zero mean and finite variance. Assume that: (L1) ξni, 1 ≤ i ≤ Nn, are
identically distributed for any n ≥ 1, (L2) ξn := ξn1

d→ ξ, Eξ2
n → Eξ2 < ∞ for

some r.v. ξ and (L3) Var(
∑Nn

i=1 ξni) ∼ σ2Nn, σ2 > 0. Then N
−1/2
n

∑Nn
i=1 ξni

d→
N(0, σ2).

Proof. W.l.g., we can assume Nn = n in the subsequent proof. We use the CLT
due to Orey [75]. Accordingly, let ξτni := ξni1(|ξni| ≤ τn1/2), ατni := Eξτni, στnij :=

Cov(ξτni, ξ
τ
nj). It suffices to show that for any τ > 0 the following conditions

in [75] are satisfied: (O1) n−1/2
∑n

i=1 α
τ
ni → 0, (O2) n−1

∑n
i,j=1 σ

τ
nij → σ2, (O3)

n−1
∑n

i=1 σ
τ
nii = O(1), and (O4)

∑n
i=1 P(|ξni| > τn1/2)→ 0.

Consider (O1), or n1/2ατn → 0, ατn := ατn1. We have 0 = n1/2Eξn = n1/2ατn + κn,
where |κn| := n1/2|Eξn1(|ξn| > τn1/2)| ≤ τ−1Eξ2

n1(|ξn| > τn1/2). Therefore, (O1)
follows from

Eξ2
n1(|ξn| > τn1/2)→ 0. (6.85)

Using the Skorohod representation theorem [97] w.l.g. we can assume that r.v.s
ξ, ξn, n ≥ 1, are defined on the same probability space and ξn → ξ almost
surely. The latter fact together with (L2) and Pratt’s lemma [84] implies that
E|ξ2

n − ξ2| → 0 and hence (6.85) follows due to P(|ξn| > τn1/2) → 0, see [71,
Chapter 2, Proposition 5.3]. The above argument also implies (O4) since P(|ξn| >
τn1/2) ≤ τ−2n−1Eξ2

n1(|ξn| > τn1/2) by Markov’s inequality. (O3) is immediate
from (L1) and (L2). Finally, (O2) follows from (L3), (O1) and

n−1
∑

1≤i,j≤n,|i−j|≤m

E(ξniξnj − ξτniξτnj)→ 0. (6.86)

Let ξ̃τni := ξni − ξτni. Since |E(ξniξnj − ξτniξ
τ
nj)| ≤ |E(ξ̃τniξ

τ
nj + ξτniξ̃

τ
nj + ξ̃τniξ̃

τ
nj)| ≤

CE1/2ξ2
n1(|ξn| > τn1/2), relation (6.86) follows from (6.85). Lemma 6.14 is proved.
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Proof of Theorem 6.3. Again, we prove part (i) only since part (ii) follows simi-
larly by exchanging the coordinates t and s.
Relation (6.25) is proved in Corollary 6.12. Let us prove (6.26). Similarly as in
the case of the previous theorems, we shall restrict ourselves with the proof of
one-dimensional convergence at (x, y) ∈ R2

+. For m ≥ 1, λ > 0, define stationary
RFs

Xm(t, s) := Ak(Ym(t, s)), where

Ym(t, s) :=
∑

(u,v)∈Z2:|s−v|≤[λγ0 ]m

a(t− u, s− v)ε(u, v), (6.87)

and where Ak stands for the Appell polynomial of degree k relative to the distri-
bution of Ym(t, s). Note Xm(t1, s1) and Xm(t2, s2) are independent if |s1 − s2| >
2[λγ0 ]m. Then

SXmλ,γ (x, y) :=
∑

(t,s)∈K[λx,λγy]

Xm(t, s) =

Nλ+1∑

i=1

Uλ,m(i), (6.88)

where Nλ := [[λγy]/[λγ0 ]] = O(λγ−γ0) and

Uλ,m(i) :=
∑

1≤t≤[λx]

∑

(i−1)[λγ0 ]<s≤i[λγ0 ]

Xm(t, s). (6.89)

Note Uλ,m(i) and Uλ,m(j) are independent provided |i − j| > 2m hence (6.88) is
a sum of 2m-dependent r.v.s. The one-dimensional convergence in (6.26) follows
from standard Slutsky’s argument (see e.g. [36, Lemma 4.2.1]) and the following
lemma. Theorem 6.3 is proved.

Lemma 6.15. Under the conditions and notation of Theorem 6.3(i), for any
γ > γ0 and any m = 1, 2, . . . ,

Var(SXmλ,γ (x, y)) ∼ σ2
m(x, y)λ2H(γ) and (6.90)

λ−H(γ)SXmλ,γ (x, y)
d→ N(0, σ2

m(x, y)) as λ→∞, (6.91)

where σ2
m(x, y) is defined in (6.93). Moreover,

lim
m→∞

lim sup
λ→∞

λ−2H(γ) Var(SXλ,γ(x, y)− SXmλ,γ (x, y)) = 0. (6.92)

Proof. By adapting the argument in the proof of (6.25) and Proposition 6.9 Case
(III), we can show the limits

λ−2H(γ) Var(SXmλ,γ (x, y)) → k!y

∫

(0,x]2×R

(
(a∞,m ? a∞,m)(t1 − t2, s)

)k
dt1dt2ds

=: σ2
m(x, y) (6.93)
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and

λ−2H(γ) Var(SXλ,γ(x, y)− SXmλ,γ (x, y))

= λ−2H(γ)
∑

(ti,si)∈K[λx,λγy],i=1,2

{
Cov(X(t1, s1), X(t2, s2))

−Cov(X(t1, s1), Xm(t2, s2))− Cov(Xm(t1, s1), X(t2, s2))

+ Cov(Xm(t1, s1), Xm(t2, s2))
}

→ k!y

∫

(0,x]2×R
Gm(t1 − t2, s)dt1dt2ds, λ→∞, (6.94)

where Gm(t, s) := ((a∞ ? a∞)(t, s))k− ((a∞,m ? a∞)(t, s))k− ((a∞ ? a∞,m)(t, s))k +

((a∞,m ? a∞,m)(t, s))k and

a∞,m(t, s) := L0(t/ρ(t, s))ρ(t, s)−q11(|s| ≤ m), (t, s) ∈ R2, (6.95)

is a ‘truncated’ version of a∞(t, s) in (6.15). Since |Gm(t, s)| ≤ 4((a∞ ? a∞)(t, s))k

and Gm(t, s) vanishes with m → ∞ for any fixed (t, s) 6= (0, 0), (6.92) follows
from (6.94) by the dominated convergence theorem.

The proof of (6.91) uses Lemma 6.14. Accordingly, let Nλ := [[λγy]/[λγ0 ]] and
ξλi := λ−H(γ0)Uλ,m(i), where H(γ0) = 1+γ0−kp1/2 is the same as in Theorem 6.1
and Uλ,m(i) are 2m-dependent r.v.s defined in (6.89). Note Uλ,m(i), 1 ≤ i ≤ Nλ,
are identically distributed and λH(γ0)N

1/2
λ ∼ λH(γ)y1/2. Thus, condition (L1) of

Lemma 6.14 for ξλi, 1 ≤ i ≤ Nλ, is satisfied and (L3) follows from Var(
∑Nλ

i=1 ξλi) ∼
λ−2H(γ0) Var(SXmλ,γ (x, y)) ∼ λγ−γ0σ2

m(x, y), see (6.90). Finally, condition (L2), or

ξλ,1 = λ−H(γ0)Uλ,m(1)
d→ ξ, Eξ2

λ,1 → Eξ2

follows similarly as in Theorem 6.1 with the limit r.v. ξ given by the k-tuple
Itô–Wiener integral:

ξ :=

∫

R2k

{∫ x

0

∫ 1

0

k∏

`=1

a∞,m(t− u`, s− v`) dtds
}

dkW

and a∞,m(t, s) defined in (6.95). This proves (6.91) and Lemma 6.15, too.

Proof of Theorem 6.4. The proof is an adaptation of the proof of CLT in [36,
Theorem 4.8.1] for sums of ‘off-diagonal’ polynomial forms with one-dimensional
‘time’ parameter. Define

Xm(t, s) := Ak(Ym(t, s)),

Ym(t, s) :=
∑

(u,v)∈Z2:|t−u|+|s−v|≤m

a(t− u, s− v)ε(u, v), (6.96)
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where Ak stands for the Appell polynomial of degree k relative to the distribution
of Ym(t, s). Note the truncation level m in (6.96) does not depend on λ in contrast
to the truncation level m[λγ0 ] in (6.87). Similarly to Lemma 6.15 it suffices to
prove for any γ > 0, m = 1, 2, . . . ,

Var(SXmλ,γ (x, y)) ∼ xyσ2
Xmλ

1+γ, λ−(1+γ)/2SXmλ,γ (x, y)
d→ N(0, xyσ2

Xm) (6.97)

lim
m→∞

lim sup
λ→∞

λ−(1+γ) Var(SXλ,γ(x, y)− SXmλ,γ (x, y)) = 0, (6.98)

where σ2
Xm

:=
∑

(t,s)∈Z2 rXm(t, s) and rXm(t, s) := Cov(Xm(0, 0), Xm(t, s)). Note
Xm(t1, s1) and Xm(t2, s2) are independent if |t1 − t2| + |s1 − s2| > 2m. There-
fore

∑
(t,s)∈Z2 |rXm(t, s)| < ∞ and (6.97) follows from the CLT for m-dependent

RFs, see [15]. Consider (6.98), where we can put x = y = 1 w.l.g. We have
λ−(1+γ) Var(SXλ,γ − SXmλ,γ ) ≤ ∑(t,s)∈Z2 |φm(t, s)|, where φm(t, s) := Cov(X(0, 0) −
Xm(0, 0), X(t, s)−Xm(t, s)). From (6.69), (6.70) and (6.72) we conclude that

|Cov(X(0, 0), X(t, s))|+ |Cov(X(0, 0), Xm(t, s))|+ |Cov(Xm(0, 0), Xm(t, s))|
≤ Cρ+(t, s)−(kp1)∧(2q1)

as in (6.51), with C > 0 independent of m. Hence |φm(t, s)| ≤ Cρ+(t, s)−(kp1)∧(2q1)

=: φ(t, s), where
∑

(t,s)∈Z2 φ(t, s) < ∞, see Proposition 6.8(i), also Corollary
6.11(ii). Thus, (6.98) follows by the dominated convergence theorem and the
fact that limm→∞ φm(t, s) = 0 for any (t, s) ∈ Z2. Theorem 6.4 is proved.

Proof of Theorem 6.5. (i) Split X = Xk + X ′k, where X ′k :=
∑∞

j=k+1 cjXj/j!,
Xj(t, s) := Hj(Y (t, s)). Since all statements of Theorems 6.1–6.3 hold for RF
Xk = Hk(Y ) and Cov(Xk(t1, s1), X ′k(t2, s2)) = 0, ∀(ti, si) ∈ Z2, i = 1, 2, it suffices
to show that

Var(S
X′k
λ,γ) = o(λ2H(γ)), λ→∞, (6.99)

for H(γ) defined in Theorems 6.1–6.3. By well-known properties of Hermite poly-
nomials, Var(S

X′k
λ,γ) =

∑∞
j=k+1 c

2
j Var(S

Xj
λ,γ)/(j!)

2, Var(S
Xj
λ,γ) = j!

∑
(ti,si)∈K[λ,λγ ],i=1,2

rY (t1 − t2, s1 − s2)j ≤ j!Σk+1(λ), where Σk+1(λ) :=
∑

(ti,si)∈K[λ,λγ ],i=1,2 |rY (t1 −
t2, s1 − s2)|k+1 for j ≥ k + 1 since |rY (t, s)| ≤ 1 according to Assumption (A4)k.
Therefore, Var(S

X′k
λ,γ) ≤ (

∑∞
j=k+1 c

2
j/j!)Σk+1(λ) ≤ EG(Y (0, 0))2Σk+1(λ), where

Σk+1(λ) = o(λ2H(γ)) follows by Proposition 6.9. This proves (6.99) and part (i).

(ii) For large K ∈ N, K > k, split X = X̂K + X ′K , where X̂K(t, s) :=
∑K

j=k

cjHj(Y (t, s))/j! and X ′K(t, s) :=
∑∞

j=K+1 cjHj(Y (t, s))/j!. Then Var(S
X′K
λ,γ ) ≤

(
∑∞

j=K+1 c
2
j/j!)ΣK+1(λ) as in the proof of part (i), implying Var(S

X′K
λ,γ ) ≤ CεKλ

1+γ,
where εK :=

∑∞
j=K+1 c

2
j/j! can be made arbitrary small by choosing K large
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enough. On the other hand, by Theorem 6.4, λ−(1+γ)/2S
Xj
λ,γ(x, y)

fdd→ σXjB1/2,1/2(x,

y) for any j ≥ k and the last result extends to finite sums of Hermite polynomials,
viz., λ−(1+γ)/2SX̂Kλ,γ (x, y)

fdd→ σX̂KB1/2,1/2(x, y), where σ2
X̂K

=
∑

(t,s)∈Z2 Cov(X̂K(0,

0), X̂K(t, s)) → σ2
X , K → ∞. See e.g. [36, proof of Theorem 4.6.1]. The remain-

ing details are easy. Theorem 6.4 is proved.

Proof of Proposition 6.7. The transition probabilities qu(v) in (6.36) can be ex-
plicitly written in terms of binomial probabilities bin(j, k; p) :=

(
k
j

)
pj(1 − p)k−j,

k = 0, 1, . . . , j = 0, 1, . . . , k, 0 ≤ p ≤ 1:

qu(v) =
u∑

j=0

bin(u− j, u; θ) bin((v + j)/2, j; 1/2), u ∈ N, |v| ≤ u. (6.100)

Similarly to [56, proof of Proposition 4.1], we shall use the following version of the
Moivre–Laplace theorem (Feller [32, Chapter 7, §3, Theorem 1]): There exists a
constant C such when j →∞ and k →∞ vary in such a way that

(j − kp)3

k2
→ 0,

then
∣∣∣ bin(j, k; p)

1√
2πkp(1−p)

exp{− (j−kp)2

2kp(1−p)}
− 1
∣∣∣ < C

k
+
C|j − kp|3

k2
. (6.101)

Let us first explain the idea of the proof. Using (6.100) and replacing the binomial
probabilities by Gaussian densities according to (6.101) leads to

a(u, v) ∼ 1

2

u∑

j=0

1

Γ(d)u1−d
1√

2πθ(1− θ)u
exp

{
− (j − (1− θ)u)2

2θ(1− θ)u
}

× 1√
jπ/2

exp
{
− v2

2j

}

=
ud−3/2

Γ(d)
√

2π

u∑

j=0

1

u
√

2πθ(1− θ)/u
exp

{
− ((j/u)− (1− θ))2

2θ(1− θ)/u
}

× 1√
j/u

exp
{
− v2/u

2j/u

}

∼ ud−3/2

Γ(d)
√

2π

∫ 1

0

1√
2πθ(1− θ)/u

exp
{
− (x− (1− θ))2

2θ(1− θ)/u
}

× 1√
x

exp
{
− v2/u

2x

}
dx

∼ ud−3/2

Γ(d)
√

2π(1− θ)
exp

{
− v2/u

2(1− θ)
}

= ρ(u, v)d−3/2L0(u/ρ(u, v))
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with L0(z), z ∈ [−1, 1], defined in (6.37). Here, factor 1/2 in front of the sum
in the first line appears since bin((v + j)/2, j; 1/2) = 0 whenever v + j is odd, in
other words, by using Gaussian approximation for all (even and odd) j we double
the sum and therefore must divide it by 2. Note also that in the third line, the
Gaussian kernel 1√

2πθ(1−θ)/u
exp{− (x−(1−θ))2

2θ(1−θ)/u } acts as a δ-function at x = 1 − θ

when u→∞.
Let us turn to a rigorous proof of the above asymptotics. For (u, v) ∈ Z2,

(u, v) 6= (0, 0), denote % := (u2 + v4)1/2, z := u/% ∈ [−1, 1], then u = z%,
v2 = %

√
1− z2. It suffices to prove

%3/2−da(u, v)− L0(z)→ 0 as |u|+ |v| → ∞. (6.102)

By definition (see (6.36), (6.37)), (6.102) holds for u ≥ 0, z ≥ 0 hence we can
assume u ≥ 1, z > 0 in what follows. Moreover, for any ε > 0 there exists K > 0

such that

%3/2−da(u, v) < ε and L0(z) < ε (∀1 ≤ u < v9/5, % > K). (6.103)

The second relation in (6.103) is immediate by limz→0 L0(z) = L0(0) = 0 and
z = u/% ≤ %9/10/% → 0 (% → ∞). To prove the first relation we use Hoeffding’s
inequality [46]. Let bin(j, k; p) be the binomial distribution. Then for any τ > 0,

∑

0≤j≤k:|j−kp|≥τ
√
k

bin(j, k; p) ≤ 2e−2τ2

. (6.104)

(6.104) implies bin((v + j)/2, j; 1/2) ≤ 2e−v
2/2j ≤ 2e−v

2/2u for any |v| ≤ u, 0 ≤
j ≤ u. Also note that 1 ≤ u < v9/5 implies 2v2 ≥ u%1/10. Using these facts and
(6.100) with

∑u
j=0 bin(u− j, u; θ) = 1 for any 1 ≤ u < v9/5 we obtain

%3/2−da(u, v) ≤ C%3/2−dqu(v) ≤ C%3/2−de−v
2/2u ≤ C%3/2−de−%

1/10/4 → 0, %→∞,

proving (6.103). Hence, it suffices to prove (6.102) for u → ∞, 0 ≤ v ≤ u5/9.
Next, we give the proof for v even, the proof for v odd being similar. Denote

D+(u, v) := {0 ≤ j ≤ u/2 : |2j − u(1− θ)| < u3/5 and |v| < j3/5},
D−(u, v) := {0 ≤ j ≤ u/2 : |2j − u(1− θ)| ≥ u3/5 or |v| ≥ j3/5}.

Split a(u, v) = ψu(−d)
∑

0≤j≤u/2 bin(u− 2j, u; θ) bin(v/2 + j, 2j; 1/2) = a+(u, v) +

a−(u, v), where a±(u, v) := ψu(−d)
∑

j∈D±(u,v) . . . . It suffices to prove that

%3/2−da+(u, v)− L0(z)→ 0 and %3/2−da−(u, v)→ 0 (6.105)
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as u→∞, 0 ≤ v ≤ u5/9. To show the first relation in (6.105), let j∗u := [u(1−θ)/2]

and

a∗(u, v) := bin(v/2 + j∗u, 2j
∗
u; 1/2)ψu(−d)

∑

j∈D+(u,v)

bin(u− 2j, u; θ),

then

a∗(u, v)− a+(u, v) = ψu(−d)
∑

j∈D+(u,v)

bin(u− 2j, u; θ)

×
(

bin(v/2 + j∗u, 2j
∗
u; 1/2)− bin(v/2 + j, 2j; 1/2)

)
.

According to (6.101), for j ∈ D+(u, v), j∗u ∈ D+(u, v),

bin(v/2 + j, 2j; 1/2) =
1√
πj

e−v
2/4j
(
1 +O(j−1/5)

)

=
1√
πj

e−v
2/4j
(
1 +O(u−1/5)

)
,

bin(v/2 + j∗u, 2j
∗
u; 1/2) =

1√
πj∗u

e−v
2/4j∗u

(
1 +O(u−1/5)

)
.

Using c−u < j < c+u, j ∈ D+(u, v) for some c± > 0, and elementary inequalities
we obtain that | 1√

πj
e−v

2/4j− 1√
πj∗u

e−v
2/4j∗u| ≤ Cu−7/10e−cv

2/u for some C, c > 0 and
hence the bound

| bin(v/2 + j∗u, 2j
∗
u; 1/2)− bin(v/2 + j, 2j; 1/2)| ≤ Cu−7/10e−cv

2/u

for all j ∈ D+(u, v) and all u > 0 large enough. Therefore since
∑

j∈D+(u,v) bin(u−
2j, u; θ) ≤ 1 we obtain

%3/2−d|a∗(u, v)− a+(u, v)| ≤ C%3/2−du−7/10+d−1e−cv
2/u = %−1/5L∗(z) ≤ C%−1/5,

where L∗(z) := Czd−17/10e−c
√

(1/z)2−1, z ∈ (0, 1], is a bounded function. As a con-
sequence, it suffices to prove the first relation in (6.105) with a+(u, v) replaced by
a∗(u, v). This in turn follows from relations 1√

πj∗u
e−v

2/4j∗u ∼ 1√
πu(1−θ)/2

e−v
2/2u(1−θ),

ψu(−d) ∼ Γ(d)−1ud−1, and
∑

j∈D+(u,v)

bin(u− 2j, u; θ)→ 1/2 as u→∞, (6.106)

each of which hold uniformly in 0 ≤ v ≤ u5/9. Let us check (6.106) for instance.
Since c−u < j < c+u, j ∈ D+(u, v) for some c± > 0, see above, so u5/9 = o(j3/5)

and (6.106) follows from

B′(u)→ 1/2 and B′′(u)→ 0, (6.107)
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where B′(u) :=
∑u

j=0 bin(u − j, u; θ)1(j is even), B′′(u) :=
∑u

j=0 bin(u − j, u; θ)

1(|j − u(1 − θ)| ≥ u3/5). Here, the first relation in (6.107) is obvious by well-
known properties of binomial coefficients while the second one follows from (6.104)
according to which B′′(u) ≤ Ce−2u1/5 → 0. This proves the first relation in (6.105).

The proof of the second relation in (6.105) uses Hoeffding’s inequality in (6.104)
in a similar way. We have a−(u, v) ≤ a−1 (u, v) + a−2 (u, v), where a−1 (u, v) :=

ψu(−d)
∑

0≤j≤u:|j−u(1−θ)|≥u3/5 bin(u− j, u; θ) ≤ Cud−1e−2u1/5 implying %3/2−da−1 (u,

v) ≤ Cu(10/9)(3/2−d)+(d−1)e−2u1/5 → 0 (u→∞) uniformly in |v| ≤ u5/9. Finally,

a−2 (u, v) := ψu(−d)
∑

0≤j≤u:|j−u(1−θ)|≤u3/5,v≥(j/2)3/5

bin(u− j, u; θ)

× bin((v + j)/2, j; 1/2)

≤ Cud−1
∑

c1u≤j≤u,v≥(j/2)3/5

e−v
2/2j ≤ Cude−c2u

1/5

for some positive constants c1, c2 > 0, implying %3/2−da−2 (u, v) ≤ Cu(10/9)(3/2−d)+d

e−c2u
1/5 → 0 (u → ∞) uniformly in |v| ≤ u5/9 as above. This proves (6.105) and

Proposition 6.7, too.

6.8 Final comment

Limit theorems for weakly dependent RFs usually assume very general shape of
summation domains (spatial regions), the limit distribution being independent of
the way in which these regions tend to infinity. Particularly, van Hove’s condition
(see e.g. [17]) roughly says that the volume (cardinality) of spatial region grows
faster than that of its boundary. For rectangular domains, van Hove’s condition
means that all sides of rectangles grow to infinity in an arbitrary way.

The situation is very different for LRD RFs. We prove that for a class of
nonlinear LRD RF X on Z2 and rectangular domains with sides increasing as
O(n) and O(nγ), the limit distribution of sums of X depends on γ in a crucial
way. Specifically, there exists γ0 > 0 such that the limit distribution is different
whenever γ < γ0, γ = γ0 or γ > γ0. For partial sums of Gaussian or stable LRD
RFs, a similar trichotomy (termed scaling transition) was observed [90], [89].

The above facts have important implications for statistics of strongly depen-
dent spatial data. The quantity γ > 0 can be broadly interpreted as the ratio of
the vertical and horizontal dimensions of the sampling region (an ‘external scale
ratio’) while γ0 = p1/p2 can be defined as the ratio of the ‘vertical and horizontal
Hurst exponents’ of the RF (an ‘internal scale ratio’). Since the limit distribution
of simple statistics such as the sample mean or the sample variance may depend

117



Chapter 6. Scaling transition for nonlinear random fields

on the relation between γ and γ0, these quantities need to be estimated or decided
in advance before applying the limit theorem. Particularly, deciding on the value
of γ in a concrete situation might be difficult. For panel data, this is a question of
dealing with either long, or short panel which is not easy to answer and then the
natural limit theory leads to models where the limit is independent of how the
numbers of horizontal (time series) and vertical (cross section) panel observations
tend to infinity [78]. Nevertheless, for some panels with LRD, a ‘scaling transition’
occurs, see [79], and the above question must be answered in a practical situation.

Let us also mention some open problems related to the present chapter. It
is of interest to extend our results for nonlocal functions or vector-valued RFs,
particularly for covariance estimates, c.f. [3,47]. Several works note that in many
practical applications, sampling regions are non-rectangular, and possibly of a
nonstandard shape, see [24, 57]. Extending scaling transition to such domains
seems possible but is open at present. Using the terminology in [57], our results
are limited to positively dependent RFs while the case of negatively dependent
RFs is completely open. Finally, a complete description of anisotropic scaling
limits of LRD RFs on Zν , ν ≥ 3, remains a challenging task, see [89].
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Chapter 7

Anisotropic scaling of
the random grain model

This is an extended version of the article [81]. We obtain a complete description
of anisotropic scaling limits of random grain model on the plane with heavy tailed
grain area distribution. The scaling limits have either independent or completely
dependent increments along one or both coordinate axes and include stable, Gaus-
sian and ‘intermediate’ infinitely divisible random fields. Asymptotic form of the
covariance function of the random grain model is obtained. Application to super-
posed network traffic is included.

7.1 Introduction

It is well-known that many random fields (RFs) exhibit different scaling behavior
in different directions. Important examples of RFs with such behavior is frac-
tional Brownian sheet (FBS) and various classes of stochastic partial differential
equations driven by FBS, see e.g. [2] and the references therein. For stationary
RF Y = {Y (t, s), (t, s) ∈ R2} the simplest form of anisotropic scaling is obtained
by taking partial integrals Sλ,γ(x, y) =

∫
(0,λx]×(0,λγy]

Y (t, s)dtds over rectangles
(0, λx]× (0, λγy] ⊂ R2

+ whose sides grow with λ→∞ at different rate O(λ) and
O(λγ) (provided γ 6= 1). The (large-scale) behavior of Y is reflected in the scaling
limit

a−1
λ,γSλ,γ(x, y)

fdd→ Vγ(x, y) as λ→∞, (7.1)

where aλ,γ →∞ is a normalization. Moreover, if aλ,γ is regularly varying at infin-
ity with exponent H(γ) > 0, the limit RF Vγ in (7.1) has stationary rectangular
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Chapter 7. Anisotropic scaling of the random grain model

increments and satisfies the self-similarity property:

{Vγ(λx, λγy)} fdd
= {λH(γ)Vγ(x, y)} for each λ > 0;

see [90], which is a particular case of the operator-scaling RF property introduced
in Biermé et al. [12].

[90] observed that for many RFs Y on Z2 or R2, (nontrivial) scaling limits
in (7.1) exist for any γ > 0, resulting in a one-dimensional family {Vγ, γ > 0}
of scaling limits termed the scaling diagram of Y below. Since scaling limits
characterize the dependence structure and large-scale properties of the underly-
ing random process, the scaling diagram provides a more complete ‘large-scale
summary of Y ’ compared to the (isotropic or anisotropic) scaling with fixed γ > 0

discussed in [1, 2, 16, 26, 59, 67, 100, 108] and elsewhere. Scaling diagrams of some
classes of long-range dependent (LRD) Gaussian and aggregated nearest-neighbor
autoregressive RFs on Z2 were identified in [89, 90]. It turned out that for these
RFs, there exists a unique point γ0 > 0 such that the scaling limits Vγ

fdd
= V± do not

depend on γ for γ < γ0 and γ > γ0 and V+

fdd
6= V−. [90] termed this phenomenon

scaling transition (at γ = γ0). Scaling transition also arises under joint temporal
and contemporaneous aggregation of independent LRD processes in telecommu-
nication and economics, see [35, 55, 70, 79, 80], see also [90, Remark 2.3]. In this
chapter we obtain a different kind of scaling diagram (see Figure 7.1) with two
change-points γ− < γ+ of scaling limits which shows that this concept might be
more complex and needs further studies.

The present chapter studies scaling limits (scaling diagram) of random grain
model:

X(t, s) :=
∑

i

1
((

(t− xi)/Rp
i , (s− yi)/R1−p

i

)
∈ B

)
, (t, s) ∈ R2, (7.2)

where B ⊂ R2 (‘generic grain’) is a measurable bounded set of finite Lebesgue
measure leb(B) < ∞, 0 < p < 1 is a shape parameter, {(xi, yi), Ri} is a Poisson
point process on R2 × R+ with intensity dxdyF (dr). We assume that F is a
probability distribution on R+ having a density function f such that

f(r) ∼ cfr
−1−α as r →∞, for some 1 < α < 2, cf > 0. (7.3)

The sum in (7.2) counts the number of uniformly scattered and randomly dilated
grains (xi, yi) + RP

i B containing (t, s), where RPB := {(Rpx,R1−py) : (x, y) ∈
B} ⊂ R2 is the dilation of B by factors Rp and R1−p in the horizontal and vertical
directions, respectively. The case p = 1/2 corresponds to uniform or isotropic di-
lation. Note that the area leb(RPB) = leb(B)R of generic randomly dilated grain
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7.1. Introduction

is proportional to R and does not depend on p and has a heavy-tailed distribution
with finite mean E leb(RPB) <∞ and infinite second moment E leb(RPB)2 =∞
according to (7.3). Condition (7.3) also guarantees that covariance of the ran-
dom grain model is not integrable:

∫
R2 |Cov(X(0, 0), X(t, s))|dtds = ∞, see

Section 7.3, hence (7.2) is a LRD RF. Examples of the grain set B are the
unit ball and the unit square, leading respectively to the random ellipses model
X(t, s) =

∑
i 1((t − xi)2/R2p

i + (s − yi)2/R
2(1−p)
i ≤ 1) and the random rectangles

model: X(t, s) =
∑

i 1(xi < t ≤ xi + Rp
i , yi < s ≤ yi + R1−p

i ). Note that for
p 6= 1/2 the ratio Rp/R1−p = R2p−1 of sides of a generic rectangle tends to 0 or∞
as R→∞ implying that large rectangles are ‘elongated’ or ‘flat’ and resulting in
a strong anisotropy of the random rectangles model. A similar observation applies
to the general random grain model in (7.2).

b̀aaà̀̀̀̀
0 ∞

b̀aaà̀̀̀̀
γ−

b̀aaà̀̀̀̀
γ+

α−-stable Lévy slide,
1 < α < 1 + p︷ ︸︸ ︷

︸ ︷︷ ︸
FBSheet(1/2, H−),

1 + p ≤ α < 2

︷ ︸︸ ︷
α-stable Lévy sheet,

1 < α < 2 ︷ ︸︸ ︷
α+-stable Lévy slide,

1 < α < 2− p

︸ ︷︷ ︸
FBSheet(H+, 1/2),

2− p ≤ α < 2

?

‘intermediate Poisson−’

?

‘intermediate Poisson+’

Figure 7.1: Scaling diagram of a random grain model.

Our main results are summarized in Figure 7.1 which shows a panorama of
scaling limits Vγ in (7.1) as γ changes between 0 and ∞. Precise formulations
pertaining to Figure 7.1 and the terminology therein are given in Section 7.2.
Below we explain the most important facts about this diagram. First of all note
that, due to the symmetry of the random grain model in (7.2), the scaling limits
in (7.1) are symmetric under simultaneous exchange x↔ y, γ ↔ 1/γ, p↔ 1− p
and a reflection transformation of B. This symmetry is reflected in Figure 7.1,
where the left region 0 < γ ≤ γ− and the right region γ+ ≤ γ <∞ including the
change points of the scaling limits

γ− :=
1− p

α− (1− p) , γ+ :=
α

p
− 1, (7.4)

are symmetric with respect to the above transformations. The middle region
γ− < γ < γ+ in Figure 7.1 corresponds to an α-stable Lévy sheet defined as a
stochastic integral over (0, x]× (0, y] with respect to (w.r.t.) an α-stable random
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Chapter 7. Anisotropic scaling of the random grain model

measure on R2
+. According to Figure 7.1, for γ > γ+ the scaling limits in (7.1) ex-

hibit a dichotomy depending on parameters α, p, featuring a Gaussian (fractional
Brownian sheet) limit for 2− p ≤ α < 2, and an α+-stable limit for 1 < α < 2− p
with stability parameter

α+ :=
α− p
1− p > α (7.5)

larger than the parameter α. The terminology α±-stable Lévy slide refers to a RF
of the form xL+(y) or yL−(x) ‘sliding’ linearly to zero along one of the coordi-
nate axes, where L± are α±-stable Lévy processes (see Section 7.2 for definition).
Finally, the ‘intermediate Poisson’ limits in Figure 7.1 at γ = γ± are not stable al-
though infinitely divisible RFs given by stochastic integrals w.r.t. Poisson random
measure on R2 × R+ with intensity measure cfdudvr−1−αdr.

The results of this chapter are related to those in, e.g. [11,27,35,53,55,70,79,80,
89,90] in which different scaling regimes occur for various classes of LRD models,
in particular, heavy-tailed duration models. Isotropic scaling limits (case γ = 1)
of random grain and random balls models in arbitrary dimension were discussed
in Kaj et al. [53] and Biermé et al. [11]. The monograph [69] provides a nice
discussion of limit behavior of heavy-tailed duration models whose spatial version
is the random grain model in (7.2). From an application viewpoint, probably the
most interesting is the study of different scaling regimes of superposed network
traffic models [27,35,55,70]. In these studies, it is assumed that traffic is generated
by independent sources and the problem concerns the limit distribution of the
aggregated traffic as the time scale T and the number of sources M both tend
to infinity, possibly at different rate. The present chapter extends the above-
mentioned work, by considering the limit behavior of the aggregated workload
process:

AM,K(Tx) :=

∫ Tx

0

WM,K(t)dt, where (7.6)

WM,K(t) :=
∑

i

(R1−p
i ∧K)1(xi < t ≤ xi +Rp

i , 0 < yi < M), t ≥ 0,

and where {(xi, yi), Ri} is the same Poisson point process as in (7.2). The quantity
WM,K(t) in (7.6) can be interpreted as the active workload at time t from sources
arriving at xi with 0 < yi < M and transmitting at rate R1−p

i ∧ K during time
interval (xi, xi + Rp]. Thus, the transmission rate in (7.6) is a (deterministic)
function (Rp)(1−p)/p ∧K of the transmission duration Rp depending on parameter
0 < p ≤ 1, with 0 < K ≤ ∞ playing the role of the maximal rate bound.
The limiting case p = 1 in (7.6) corresponds to a constant rate workload from
stationary M/G/∞ queue. Theorems 7.9–7.11 obtain the limit distributions of the
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centered and properly normalized process {AM,K(Tx), x ≥ 0} with heavy-tailed
distribution of R in (7.3) when the time scale T , the source intensity M and the
maximal source rate K tend jointly to infinity so as M = T γ, K = T β for some
0 < γ < ∞, 0 < β ≤ ∞. The results of Theorems 7.9 and 7.10 are summarized
in Table 7.1. The workload process in (7.6) featuring a power-law dependence
between transmission rate and duration is closely related to the random rectangles
model with B = (0, 1]2, the last fact being reflected in Table 7.1, where most (but
not all) of the limit processes can be linked to the scaling limits in Figure 7.1 and
where γ+, α+ are the same as in (7.4), (7.5).

Parameter region Limit process

(1 + γ)(1− p) < αβ ≤ ∞ 1 < α < 2 α-stable Lévy process

0 < αβ < (1 + γ)(1− p)
1 < α < 2p (α/p)-stable Lévy process
1 ∨ 2p < α < 2 Brownian motion

a) Slow connection rate: 0 < γ < γ+.

Parameter region Limit process

0 < α+β < γ+

1 < α < 2p FBMotion, H = (3− (α/p))/2

1 ∨ 2p < α < 2 Brownian motion
γ+ < α+β < γ

1 < α < 2− p
Gaussian line

γ < α+β ≤ ∞ α+-stable line
γ+ < α+β ≤ ∞ 2− p < α < 2 FBMotion, H = (2− α + p)/2p

b) Fast connection rate: γ+ < γ <∞.

Table 7.1: Limit distribution of the workload process in (7.6) with M = T γ,
K = T β.

The rest of the chapter is organized as follows. Section 7.2 contains rigor-
ous formulations (Theorems 7.1–7.6) of the asymptotic results pertaining to Fig-
ure 7.1. Section 7.3 discusses LRD properties and asymptotics of the covariance
function of the random grain model. Section 7.4 obtains limit distributions of the
aggregated workload process in (7.6). All proofs are relegated to Section 7.5.
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7.2 Scaling limits of random grain model

We can rewrite the sum (7.2) as the stochastic integral

X(t, s) =

∫

R2×R+

1
((t− u

rp
,
s− v
r1−p

)
∈ B

)
N(du, dv, dr), (t, s) ∈ R2, (7.7)

w.r.t. a Poisson random measure N(du, dv, dr) on R2×R+ with intensity measure
EN(du, dv, dr) = dudvF (dr). The integral (7.7) is well-defined and follows a
Poisson distribution with mean EX(t, s) = leb(B)

∫∞
0
rF (dr). The RF X in (7.7)

is stationary with finite variance and the covariance function

Cov(X(0, 0), X(t, s))

=

∫

R2×R+

1
(( u

rp
,
v

r1−p

)
∈ B,

(u− t
rp

,
v − s
r1−p

)
∈ B

)
dudvF (dr). (7.8)

Let

Sλ,γ(x, y) :=

∫ λx

0

∫ λγy

0

(X(t, s)− EX(t, s))dtds (7.9)

=

∫

R2×R+

{∫ λx

0

∫ λγy

0

1
((t− u

rp
,
s− v
r1−p

)
∈ B

)
dtds

}
Ñ(du, dv, dr)

for (x, y) ∈ R2
+, where Ñ(du, dv, dr) = N(du, dv, dr) − EN(du, dv, dr) is the

centered Poisson random measure in (7.7). Recall the definition of γ±:

γ− :=
1− p

α− (1− p) , γ+ :=
α

p
− 1.

In Theorems 7.1–7.6 we specify limit RFs Vγ and normalizations aλ,γ in (7.1) for
all γ > 0 and α ∈ (1, 2), p ∈ (0, 1) as in Figure 7.1. Throughout the chapter
we assume that B is a bounded Borel set whose boundary ∂B has zero Lebesgue
measure: leb(∂B) = 0.

7.2.1 Case γ− < γ < γ+

For 1 < α < 2, we introduce an α-stable Lévy sheet

Lα(x, y) := Zα((0, x]× (0, y]), (x, y) ∈ R2
+, (7.10)

as a stochastic integral w.r.t. an α-stable random measure Zα(du, dv) on R2 with
control measure σαdudv and skewness parameter 1, where the constant σα is given
in (7.31). Thus, E exp{iθZα(A)} = exp{− leb(A)σα|θ|α(1 − i sgn(θ) tan(πα/2))},
θ ∈ R, for any Borel set A ⊂ R2 of finite Lebesgue measure leb(A) < ∞. Note
EZα(A) = 0.
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Theorem 7.1. Let γ− < γ < γ+, 1 < α < 2. Then

λ−H(γ)Sλ,γ(x, y)
fdd→ Lα(x, y) as λ→∞, (7.11)

where H(γ) := (1 + γ)/α and Lα is an α-stable Lévy sheet defined in (7.10).

7.2.2 Cases γ > γ+, 1 < α < 2− p and γ < γ−, 1 < α < 1 + p

For 1 < α < 2 − p and 1 < α < 1 + p introduce totally skewed stable Lévy
processes {L+(y), y ≥ 0} and {L−(x), x ≥ 0} with respective stability indices
α± ∈ (1, 2) defined as

α+ :=
α− p
1− p , α− :=

α− 1 + p

p

and characteristic functions

E exp{iθL±(1)} := exp{−σα±|θ|α±(1− i sgn(θ) tan(πα±/2))}, θ ∈ R, (7.12)

where σα+ is given in (7.36) and σα− can be found by symmetry, see (7.27).

Theorem 7.2. (i) Let γ > γ+, 1 < α < 2− p. Then

λ−H(γ)Sλ,γ(x, y)
fdd→ xL+(y) as λ→∞, (7.13)

where H(γ) := 1 + γ/α+ and L+ is the α+-stable Lévy process defined by (7.12).

(ii) Let 0 < γ < γ−, 1 < α < 1 + p. Then

λ−H(γ)Sλ,γ(x, y)
fdd→ yL−(x) as λ→∞,

where H(γ) := γ + 1/α− and L− is the α−-stable Lévy process defined by (7.12).

7.2.3 Cases γ > γ+, 2− p ≤ α < 2 and γ < γ−, 1 + p ≤ α < 2

A standard FBS BH1,H2 with Hurst indices 0 < H1, H2 ≤ 1 is defined as a Gaussian
process with zero mean and covariance

EBH1,H2(x1, y1)BH1,H2(x2, y2) =
1

4
(x2H1

1 + x2H1
2 − |x1 − x2|2H1)

×(y2H2
1 + y2H2

2 − |y1 − y2|2H2),

(xi, yi) ∈ R2
+, i = 1, 2. The constants σ+ and σ̃+ appearing in Theorems 7.3(i) and

7.4(i) are defined in (7.40) and (7.42), respectively. The corresponding constants
σ− and σ̃− in parts (ii) of these theorems can be found by symmetry (see (7.27)).
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Theorem 7.3. (i) Let γ > γ+, 2− p < α < 2. Then

λ−H(γ)Sλ,γ(x, y)
fdd→ σ+BH+,1/2(x, y) as λ→∞, (7.14)

where H(γ) := H+ + γ/2, H+ := 1/p − γ+/2 = (2 − α + p)/2p ∈ (1/2, 1) and
BH+,1/2 is an FBS with parameters (H+, 1/2).

(ii) Let γ < γ−, 1 + p < α < 2. Then

λ−H(γ)Sλ,γ(x, y)
fdd→ σ−B1/2,H−(x, y) as λ→∞,

where H(γ) := γH− + 1/2, H− := 1/(1− p) + (1− p− α)/2(1− p) ∈ (1/2, 1) and
B1/2,H− is an FBS with parameters (1/2, H−).

Theorem 7.4. (i) Let γ > γ+, α = 2− p. Then

λ−H(γ)(log λ)−1/2Sλ,γ(x, y)
fdd→ σ̃+B1,1/2(x, y) as λ→∞, (7.15)

where H(γ) := 1 + γ/2, B1,1/2 is an FBS with parameters (1, 1/2).

(ii) Let γ < γ−, α = 1 + p. Then

λ−H(γ)(log λ)−1/2Sλ,γ(x, y)
fdd→ σ̃−B1/2,1(x, y) as λ→∞,

where H(γ) := γ + 1/2 and B1/2,1 is an FBS with parameters (1/2, 1).

7.2.4 Cases γ = γ±

Define ‘intermediate Poisson’ RFs I± = {I±(x, y), (x, y) ∈ R2
+} as stochastic

integrals

I+(x, y) :=

∫

R×(0,y]×R+

∫

(0,x]×R
1
((t− u

rp
,
s

r1−p

)
∈ B

)
dtdsM̃(du, dv, dr),(7.16)

I−(x, y) :=

∫

(0,x]×R×R+

∫

R×(0,y]

1
(( t

rp
,
s− v
r1−p

)
∈ B

)
dtdsM̃(du, dv, dr)

w.r.t. the centered Poisson random measure M̃(du, dv, dr) = M(du, dv, dr) −
EM(du, dv, dr) on R2 × R+ with intensity measure EM(du, dv, dr) = cfdudv

r−(1+α)dr.

Proposition 7.5. (i) The RF I+ in (7.16) is well-defined for 1 < α < 2, 0 < p <

1 and E|I+(x, y)|q <∞ for any 0 < q < α+ ∧ 2. Moreover, if 2− p < α < 2 then
E|I+(x, y)|2 <∞ and

EI+(x1, y1)I+(x2, y2) = σ2
+EBH+,1/2(x1, y1)BH+,1/2(x2, y2), (7.17)

(xi, yi) ∈ R2
+, i = 1, 2,
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7.3. LRD properties of random grain model

where σ+, H+ are the same as in Theorem 7.3(i).

(ii) The RF I− in (7.16) is well-defined for 1 < α < 2, 0 < p < 1 and
E|I−(x, y)|q < ∞ for any 0 < q < α− ∧ 2. Moreover, if 1 + p < α < 2 then
E|I−(x, y)|2 <∞ and

EI−(x1, y1)I−(x2, y2) = σ2
−EB1/2,H−(x1, y1)B1/2,H−(x2, y2),

(xi, yi) ∈ R2
+, i = 1, 2,

where σ−, H− are the same as in Theorem 7.3(ii).

Theorem 7.6. (i) Let γ = γ+, 1 < α < 2. Then

λ−H(γ)Sλ,γ(x, y)
fdd→ I+(x, y) as λ→∞, (7.18)

where H(γ) := 1/p and RF I+ is defined in (7.16).
(ii) Let γ = γ−, 1 < α < 2. Then

λ−H(γ)Sλ,γ(x, y)
fdd→ I−(x, y) as λ→∞,

where H(γ) := γ−/(1− p) and RF I− is defined in (7.16).

Remark 7.1. The normalizing exponent H(γ) ≡ H(γ, α, p) in Theorems 7.1–7.6
is a jointly continuous (albeit non-analytic) function of (γ, α, p) ∈ (0,∞)×(1, 2)×
(0, 1).

Remark 7.2. Restriction α < 2 is crucial for our results. Indeed, if α > 2 then
for any γ > 0, p ∈ (0, 1) the normalized integrals tend

λ−(1+γ)/2Sλ,γ(x, y)
fdd→ σB1/2,1/2(x, y) as λ→∞,

to a classical Brownian sheet B1/2,1/2 with variance σ2 = leb(B)2
∫∞

0
r2F (dr). We

omit the proof of the last result which follows a general scheme of the proofs in
Section 7.5.

7.3 LRD properties of random grain model

One of the most common definitions of LRD property pertains to stationary ran-
dom processes with non-summable (non-integrable) autocovariance function. In
the case of anisotropic RFs, the autocovariance function may decay at different
rates in different directions, motivating a more detailed classification of LRD as in
Definition 7.1. In this section we also verify these LRD properties for the random
grain model in (7.2)–(7.3) and relate them to the change of the scaling limits or
the dichotomies in Figure 7.1; see Remark 7.3.
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Chapter 7. Anisotropic scaling of the random grain model

Definition 7.1. Let Y = {Y (t, s), (t, s) ∈ R2} be a stationary RF with finite
variance and nonnegative covariance function ρY (t, s) := Cov(Y (0, 0), Y (t, s)) ≥
0. We say that:
(i) Y has short-range dependence (SRD) property if

∫
R2 ρY (t, s)dtds <∞; other-

wise we say that Y has long-range dependence (LRD) property;
(ii) Y has vertical SRD property if

∫
[−Q,Q]×R ρY (t, s)dtds <∞ for any 0 < Q <∞;

otherwise we say that Y has vertical LRD property;
(iii) Y has horizontal SRD property if

∫
R×[−Q,Q]

ρY (t, s)dtds <∞ for any 0 < Q <

∞; otherwise we say that Y has horizontal LRD property.

The main result of this section is Theorem 7.7 providing the asymptotics of
the covariance function of the random grain model in (7.2)–(7.3) as |t|+ |s| → ∞
and enabling the verification of its integrability properties in Definition 7.1. Let

w := (|t|1/p + |s|1/(1−p))p, for (t, s) ∈ R2.

For p = 1/2, w is the Euclidean norm and (w, arccos(t/w)) are the polar coordi-
nates of (t, s) ∈ R2, s ≥ 0. Introduce a function b(z), z ∈ [−1, 1], by

b(z) := cf

∫ ∞

0

leb
(
B ∩

(
B +

(
z/rp, (1− |z|1/p)1−p/r1−p)))r−αdr, (7.19)

playing the role of the ‘angular function’ in the asymptotics (7.20). For the random
balls model with p = 1/2 and B = {x2 + y2 ≤ 1}, b(z) is a constant function
independent on z.

Theorem 7.7. Let 1 < α < 2, 0 < p < 1.
(i) The function b(z) in (7.19) is bounded, continuous and strictly positive on
[−1, 1].
(ii) The covariance function ρ(t, s) := Cov(X(0, 0), X(t, s)) in (7.8) has the fol-
lowing asymptotics:

ρ(t, s) ∼ b(sgn(s)t/w)w−(α−1)/p as |t|+ |s| → ∞. (7.20)

Theorem 7.7 implies the following bound for covariance function ρ(t, s) =

Cov(X(0, 0), X(t, s)) of the random grain model: there exist Q > 0 and strictly
positive constants 0 < C− < C+ <∞ such that for any |t|+ |s| > Q,

C−(|t|1/p + |s|1/(1−p))1−α ≤ ρ(t, s) ≤ C+(|t|1/p + |s|1/(1−p))1−α. (7.21)

The bounds in (7.21) together with easy integrability properties of the function
(|t|1/p + |s|1/(1−p))1−α on {|t|+ |s| > Q} imply the following corollary.
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7.3. LRD properties of random grain model

Corollary 7.8. The random grain model in (7.2)–(7.3) has:
(i) LRD property for any 1 < α < 2, 0 < p < 1;
(ii) vertical LRD property for 1 < α ≤ 2 − p and vertical SRD property for
2− p < α < 2 and any 0 < p < 1;
(iii) horizontal LRD property for 1 < α ≤ 1 + p and horizontal SRD property for
1 + p < α < 2 and any 0 < p < 1.

Remark 7.3. The above corollary indicates that the dichotomy at α = 2− p in
Figure 7.1, region γ > γ+ is related to the change from the vertical LRD to the
vertical SRD property in the random grain model. Similarly, the dichotomy at
α = 1+p in Figure 7.1, region γ < γ+ is related to the change from the horizontal
LRD to the horizontal SRD property.

[90] introduced Type I distributional LRD property for RF Y with two-
dimensional ‘time’ in terms of dependence properties of rectangular increments
of Vγ, γ > 0. The increment of a RF V = {V (x, y), (x, y) ∈ R2

+} on rect-
angle K = (u, x] × (v, y] ⊂ R2

+ is defined as the double difference V (K) =

V (x, y)− V (u, y)− V (x, v) + V (u, v). Let ` ⊂ R2 be a line, (0, 0) ∈ `. According
to [90, Definition 2.2], a RF V = {V (x, y), (x, y) ∈ R2

+} is said to have:

• independent rectangular increments in direction ` if V (K) and V (K ′) are
independent for any two rectangles K,K ′ ⊂ R2

+ which are separated by an
orthogonal line `′ ⊥ `;

• invariant rectangular increments in direction ` if V (K) = V (K ′) for any
two rectangles K,K ′ such that K ′ = (x, y) +K for some (x, y) ∈ `;

• properly dependent rectangular increments if V has neither independent nor
invariant increments in arbitrary direction `.

Further on, a stationary RF Y on Z2 is said to have Type I distributional
LRD [90, Definition 2.4] if there exists a unique point γ0 > 0 such that its scaling
limit Vγ0 has properly dependent rectangular increments while all other scaling
limits Vγ, γ 6= γ0, have either independent or invariant rectangular increments in
some direction ` = `(γ). The above definition trivially extends to RF Y on R2.

We end this section with the observation that all scaling limits of the random
grain model in (7.2)–(7.3) in Theorems 7.1–7.6 have either independent or in-
variant rectangular increments in direction of one or both coordinate axes. The
last fact is immediate from stochastic integral representations in (7.10), (7.16),
the covariance function of FBS with Hurst indices H1, H2 equal to 1 or 1/2 (see
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Chapter 7. Anisotropic scaling of the random grain model

also [90, Example 2.3]) and the limit RFs in (7.13). We conclude that the random
grain model in (7.2)–(7.3) does not have Type I distributional LRD in contrast to
Gaussian and other classes of LRD RFs discussed in [89, 90]. The last conclusion
is not surprising since similar facts about scaling limits of heavy-tailed duration
models with one-dimensional time are well-known; see e.g. [62].

7.4 Limit distributions of
aggregated workload process

We rewrite the accumulated workload in (7.6) as the integral

AM,K(Tx)

=

∫

R×(0,M ]×R+

{
(r1−p ∧K)

∫ Tx

0

1(u < t ≤ u+ rp)dt
}
N(du, dv, dr), (7.22)

whereN(du, dv, dr) is the same Poisson random measure on R2×R+ with intensity
EN(du, dv, dr) = dudvF (dr) as in (7.2). We assume that F (dr) has a density
f(r) satisfying (7.3) with 1 < α < 2 as in Section 7.2. We let p ∈ (0, 1] in (7.22)
and thus the parameter may take value p = 1 as well. We assume that K and M
grow with T in such a way that

M = T γ, K = T β for some 0 < γ <∞, 0 < β ≤ ∞.

We are interested in the limit distribution

b−1
T (AM,K(Tx)− EAM,K(Tx))

fdd→ A(x) as T →∞, (7.23)

where bT ≡ bT,γ,β →∞ is a normalization.
Recall from (7.4) and (7.5) the definitions

γ+ =
α

p
− 1, α+ =

α− p
1− p .

For p = 1, let α+ := ∞. By assumption (7.3), transmission durations Rp
i , i ∈ Z,

have a heavy-tailed distribution with tail parameter α/p > 1. Following the ter-
minology in [27, 35, 53, 70], the regions γ < γ+, γ > γ+ and γ = γ+ will be
respectively referred to as slow connection rate, fast connection rate and interme-
diate connection rate. For each of these ‘regimes’, Theorems 7.9, 7.10 and 7.11
detail the limit processes and normalizations in (7.23) depending on parameters
β, α, p.
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7.4. Limit distributions of aggregated workload process

Apart from the classical Gaussian and stable processes listed in Table 7.1,
some ‘intermediate’ infinitely divisible processes arise. Let us introduce

I(x) :=

∫

R×R+

{∫ x

0

1(u < t ≤ u+ rp)dt
}
M̃(du, dr), x ≥ 0, (7.24)

where M̃(du, dr) is a centered Poisson random measure with intensity measure
cfdur

−(1+α)dr. The process in (7.24) essentially depends on the ratio α/p only and
is well-defined for 1 < α < 2p and 1/2 < p ≤ 1. Under the ‘intermediate’ regime
this process arises for many heavy-tailed duration models (see e.g. [27,35,55]). It
was studied in detail in [34]. We introduce a ‘truncated’ version of (7.24):

Î(x) :=

∫

R×R+

{
(r1−p ∧ 1)

∫ x

0

1(u < t ≤ u+ rp)dt
}
M̃(du, dr), x ≥ 0, (7.25)

and its Gaussian counterpart

Ẑ(x) :=

∫

R×R+

{
(r1−p ∧ 1)

∫ x

0

1(u < t ≤ u+ rp)dt
}
Z(du, dr), x ≥ 0, (7.26)

where Z(du, dr) is a Gaussian random measure on R×R+ with the same variance
cfdur

−(1+α)dr as the centered Poisson random measure M̃(du, dr). The processes
in (7.25) and (7.26) are well-defined for any 1 < α < 2, 0 < p ≤ 1 and have the
same covariance functions.

The RFs defined in Section 7.2 reappear in Theorems 7.9–7.11 for the certain
grain set, namely the unit square B = (0, 1]2. Recall that a homogeneous Lévy
process {L(x), x ≥ 0} is completely specified by its characteristic function EeiθL(1),
θ ∈ R. A standard fractional Brownian motion with Hurst parameter H ∈ (0, 1]

is a Gaussian process {BH(x), x ≥ 0} with zero mean and covariance function
(1/2)(x2H + y2H − |x− y|2H), x, y ≥ 0.

Theorem 7.9 (Slow connection rate). Let 0 < γ < γ+. The convergence in (7.23)
holds with the limit A and normalization bT = TH specified in (i)–(v) below.
(i) Let (1+γ)(1−p) < αβ ≤ ∞. Then H := (1+γ)/α and A := {Lα(x, 1), x ≥ 0}
is an α-stable Lévy process defined by (7.10).
(ii) Let 0 < αβ < (1 + γ)(1− p) and 1 < α < 2p. Then H := β + (1 + γ)p/α and
A := {Lα/p(x), x ≥ 0} is an (α/p)-stable Lévy process with characteristic function
given by (7.48).
(iii) Let 0 < αβ < (1 + γ)(1− p) and 1 ∨ 2p < α < 2. Then H := (1/2)(1 + γ +

β(2−α)/(1− p)) and A := {σ1B(x), x ≥ 0} is a Brownian motion with variance
σ2

1 given by (7.49).
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(iv) Let 0 < αβ < (1 + γ)(1 − p) and α = 2p. Then bT := TH(log T )1/2 with
H := β + (1 + γ)/2 and A := {σ̂1B(x), x ≥ 0} is a Brownian motion with
variance σ̂2

1 given by (7.50).
(v) Let αβ = (1 + γ)(1− p). Then H := (1 + γ)/α and A := {L̂(x), x ≥ 0} is a
Lévy process with characteristic function in (7.51).

Theorem 7.10. (Fast connection rate.) Let γ+ < γ < ∞. The convergence in
(7.23) holds with the limit A and normalization bT := TH specified in (i)–(ix)
below.
(i) Let 0 < α+β < γ+ and 1 < α < 2p. Then H := H + β + γ/2 and A :=

{σ2BH(x), x ≥ 0} is a fractional Brownian motion with H = (3 − α/p)/2 and
variance σ2

2 given by (7.52).
(ii) Let 0 < α+β < γ+ and 1 ∨ 2p < α < 2. Then H and A are the same as in
Theorem 7.9(iii).
(iii) Let γ+ < α+β < γ and 1 < α < 2 − p. Then H := 1 + (1/2)(γ + β(2 −
α − p)/(1 − p)) and A := {xZ, x ≥ 0} is a Gaussian line with random slope
Z ∼ N (0, σ2

3) and σ2
3 given in (7.53).

(iv) Let γ < α+β ≤ ∞ and 1 < α < 2 − p. Then H := 1 + γ/α+ and A :=

{xL+(1), x ≥ 0} is an α+-stable line with random slope L+(1) having α+-stable
distribution defined by (7.12).
(v) Let γ+ < α+β ≤ ∞ and 2 − p < α < 2. Then H := H+ + γ/2 and A :=

{σ+BH+,1/2(x, 1), x ≥ 0} is a fractional Brownian motion with H = H+ = (2 −
α + p)/2p and variance σ2

+ given by (7.40).
(vi) Let 0 < α+β < γ+ and α = 2p. Then bT := TH(log T )1/2 with H :=

β + (1 + γ)/2 and A := {σ̂2B(x), x ≥ 0} is a Brownian motion with variance σ̂2
2

in (7.54).
(vii) Let α+β = γ+. Then H := (1/2)(1 + γ+ (2−α)/p) and A := {Ẑ(x), x ≥ 0}
in an intermediate Gaussian process defined by (7.26).
(viii) Let α+β = γ and 1 < α < 2− p. Then H = 1 + β and A := {xẐ, x ≥ 0},
where a slope Ẑ is a r.v. defined by (7.55).
(ix) If γ+ < α+β ≤ ∞ and α = 2 − p. Then bT := TH(log T )1/2, H := 1 + γ/2

and A := {σ̃+B1,1/2(x, 1), x ≥ 0} = {xZ̃, x ≥ 0} is a Gaussian line with random
slope Z̃ ∼ N (0, σ̃2

+) and σ̃2
+ given by (7.42).

Theorem 7.11. (Intermediate connection rate.) Let γ = γ+. The convergence
in (7.23) holds with the limit A and normalization bT := TH specified in (i)–(v)
below.
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(i) Let 0 < α+β < γ+ and 1 < α < 2p. Then H := 1 + β and A := {I(x), x ≥ 0}
is defined by (7.24).
(ii) Let 0 < α+β < γ+ and 1 ∨ 2p < α < 2. Then H and A are the same as in
Theorem 7.9(iii).
(iii) Let 0 < α+β < γ+ and α = 2p. Then H and A are the same as in Theorem
7.9(iv).
(iv) Let α+β = γ+. Then H := 1/p and A := {Î(x), x ≥ 0} is defined by (7.25).
(v) Let γ+ < α+β ≤ ∞. Then H := 1/p and A := {I+(x, 1), x ≥ 0} is defined by
(7.16).

Remark 7.4. Note that p = 1 implies γ+ = α − 1. In this case, Theorem 7.9
reduces to the α-stable limit in (i), whereas Theorem 7.10 reduces to the frac-
tional Brownian motion limit in (v) discussed in [70] and other papers. A similar
dichotomy appears for β close to zero and 1 < α < 2p with the difference that
α is now replaced by α/p. Intuitively, it can be explained as follows. For small
β > 0, the workload process WM,K(t) in (7.6) behaves like a constant rate process
K
∑

i 1(xi < t ≤ xi + Rp
i , 0 < yi < M) with transmission lengths Rp

i that are
i.i.d. and follow the same distribution P(Rp

i > r) = P(Ri > r1/p) ∼ (cf/α)r−(α/p),
r →∞, with tail parameter 1 < α/p < 2. Therefore, for small β our results agree
with [70], including the Gaussian limit in Theorems 7.9(iii) and 7.10(ii) arising
when the Rp

i ’s have finite variance.

Remark 7.5. As it follows from the proof, the random line limits in Theo-
rem 7.10(iv) and (iii) are caused by extremely long sessions starting in the past
at times xi < 0 and lasting Rp

i = O(T γ/γ+), γ+ < γ < α+β or Rp
i = O(Tα+β/γ+),

γ+ < α+β < γ, respectively, so that typically these sessions end at times xi+Rp
i �

T .

7.5 Proofs

7.5.1 Proofs of Sections 7.2 and 7.3

Let

X∗(t, s) :=

∫

R2×R+

1
((t− u

r1−p ,
s− v
rp

)
∈ B∗

)
N(du, dv, dr), (t, s) ∈ R2,

be a ‘reflected’ version of (7.7), with B replaced by B∗ := {(u, v) ∈ R2 : (v, u) ∈
B}, p replaced by 1 − p and the same Poisson random measure N(du, dv, dr) as
in (7.7). Let S∗λ∗,γ∗(y, x) :=

∫ λ∗y
0

∫ λγ∗∗ x
0

(X∗(t, s) − EX∗(t, s))dtds, (y, x) ∈ R2
+,
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be the corresponding partial integral in (7.9). If λ∗, γ∗ are related to λ, γ as
λ∗ = λγ, γ∗ = 1/γ then

S∗λ∗,γ∗(y, x)
fdd
= Sλ,γ(x, y) (7.27)

holds by symmetry property of the Poisson random measure. As noted in the
Introduction, relation (7.27) allows to reduce the limits of Sλ,γ(x, y) as λ → ∞
and γ ≤ γ− to the limits of S∗λ∗,γ∗(y, x) as λ∗ →∞ and γ∗ ≥ γ∗+ := α/(1− p)− 1.
As a consequence, the proofs of parts (ii) of Theorems 7.2–7.6 can be omitted
since they can be deduced from parts (i) of the corresponding statements.

The convergence of normalized partial integrals in (7.1) is equivalent to the
convergence of characteristic functions:

E exp
{

ia−1
λ,γ

m∑

i=1

θiSλ,γ(xi, yi)
}
→ E exp

{
i
m∑

i=1

θiVγ(xi, yi)
}

as λ→∞, (7.28)

for all m = 1, 2, . . . , (xi, yi) ∈ R2
+, θi ∈ R, i = 1, . . . ,m. We restrict the proof of

(7.28) to one-dimensional convergence for m = 1, (x, y) ∈ R2
+ only. The general

case of (7.28) follows analogously. We have

Wλ,γ(θ) := log E exp{iθa−1
λ,γSλ,γ(x, y)} (7.29)

=

∫

R2×R+

Ψ
( θ

aλ,γ

∫ λx

0

∫ λγy

0

1
((t− u

rp
,
s− v
r1−p

)
∈ B

)
dtds

)
dudvf(r)dr,

where Ψ(z) := eiz − 1− iz, z ∈ R. We shall use the following inequality:

|Ψ(z)| ≤ min(2|z|, z2/2), z ∈ R. (7.30)

Proof of Theorem 7.1. In the integrals on the r.h.s. of (7.29) we change the vari-
ables:

t− u
rp
→ t,

s− v
r1−p → s, u→ λu, v → λγv, r → λH(γ)r.

This yields Wλ,γ(θ) =
∫∞

0
gλ(r)fλ(r)dr, where

fλ(r) := λ(1+α)H(γ)f(λH(γ)r)→ cfr
−(1+α), λ→∞

according to (7.3), and

gλ(r) :=

∫

R2

Ψ(θhλ(u, v, r))dudv,

hλ(u, v, r) := r

∫

B

1(0 < u+ λ−δ1rpt ≤ x, 0 < v + λ−δ2r1−ps ≤ y)dtds,

where the exponents δ1 := 1−H(γ)p = (γ+−γ)/(1+γ+) > 0, δ2 := γ−H(γ)(1−
p) = (γ − γ−)/(1 + γ−) > 0. Clearly,

hλ(u, v, r)→ leb(B)r 1(0 < u ≤ x, 0 < v ≤ y), λ→∞,
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for any fixed (u, v, r) ∈ R2 × R+, u 6∈ {0, x}, v 6∈ {0, y}, implying

gλ(r)→ xyΨ(θ leb(B)r)

for any r > 0. Since
∫
R2 hλ(u, v, r)dudv = xyr leb(B) and hλ(u, v, r) ≤ Cr, the

dominating bound |gλ(r)| ≤ C min(r, r2) follows by (7.30). Whence and from
Lemma 7.12 we conclude that

Wλ,γ(θ)→ Wγ(θ) := xycf

∫ ∞

0

(eiθ leb(B)r − 1− iθ leb(B)r)r−(1+α)dr.

It remains to verify that

Wγ(θ) = −xyσα|θ|α(1− i sgn(θ) tan(πα/2)) = log E exp{iθLα(x, y)},

where
σα := cf leb(B)α cos(πα/2)Γ(2− α)/α(1− α). (7.31)

This proves the one-dimensional convergence in (7.11) and Theorem 7.1, too.

Proof of Theorem 7.2. In (7.29), change the variables as follows:

t→ λt, s− v → λ(1−p)γ/(α−p)s,

u→ λpγ/(α−p)u, v → λγv, r → λγ/(α−p)r. (7.32)

This yields Wλ,γ(θ) =
∫∞

0
gλ(r)fλ(r)dr, where

fλ(r) := λ(1+α)γ/(α−p)f(λγ/(α−p)r)→ cfr
−(1+α), λ→∞, (7.33)

and gλ(r) :=
∫
R2 Ψ(θhλ(u, v, r))dudv with

hλ(u, v, r) :=

∫ x

0

dt

∫

R
1
((λ−δ1t− u

rp
,
s

r1−p

)
∈ B

)
1(0 < v + λ−δ2s < y)ds,(7.34)

where δ1 := pγ/(α − p)− 1 = (γ − γ+)/γ+ > 0, δ2 := γ(α − 1)/(α − p) > 0. Let
B(u) := {v ∈ R : (u, v) ∈ B} and write leb1(A) for the Lebesgue measure of a set
A ⊂ R. By the dominated convergence theorem,

hλ(u, v, r)→ h(u, v, r) := x1(0 < v < y)

∫

R
1
((−u

rp
,
s

r1−p

)
∈ B

)
ds(7.35)

= x1(0 < v < y)r1−p leb1(B(−u/rp))

for any (u, v, r) ∈ R2 × R+, v 6∈ {0, y}, implying

gλ(r)→ g(r) :=

∫

R2

Ψ(θh(u, v, r))dudv = yrp
∫

R
Ψ
(
θxr1−p leb1(B(u))

)
du
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for any r > 0. Indeed, since B is bounded, for fixed r > 0 the function (u, v) 7→
hλ(u, v, r) has a bounded support uniformly in λ ≥ 1. Therefore it is easy to verify
domination criterion for the above convergence. Combining hλ(u, v, r) ≤ Cr1−p

with
∫
R2 hλ(u, v, r)dudv = xyr leb(B) gives |gλ(r)| ≤ C min(r, r2−p) by (7.30).

Hence and by Lemma 7.12, Wλ,γ(θ)→ Wγ(θ) := cf
∫∞

0
g(r)r−(1+α)dr. By change

of variable, the last integral can be rewritten as

Wγ(θ) = cf y x
α+(1− p)−1

∫

R
leb1(B(u))α+du

∫ ∞

0

(eiθw − 1− iθw)w−(1+α+)dw

= −(y xα+)σα+|θ|α+(1− i sgn(θ) tan(πα+/2)) = log E exp{iθxL+(y)},

where

σα+ :=
cfΓ(2− α+) cos(πα+/2)

(1− p)α+(1− α+)

∫

R
leb1(B(u))α+du, (7.36)

thus completing the proof of one-dimensional convergence in (7.13). Theorem 7.2
is proved.

Proof of Theorem 7.3. In (7.29), change the variables as follows:

t→ λt, s− v → λ(1/p)−1s, u→ λu, v → λγv, r → λ1/pr. (7.37)

We get Wλ,γ(θ) =
∫∞

0
gλ(r)fλ(r)dr, where

fλ(r) := λ(1+α)/pf(λ1/pr),

gλ(r) :=

∫

R2

λ2(H(γ)−1/p)Ψ(θλ(1/p)−H(γ)hλ(u, v, r))dudv, (7.38)

with

hλ(u, v, r) :=

∫ x

0

dt

∫

R
1(0 < v + λ−δs < y)1

((t− u
rp

,
s

r1−p

)
∈ B

)
ds

→ 1(0 < v < y)

∫ x

0

dt

∫

R
1
((t− u

rp
,
s

r1−p

)
∈ B

)
ds

= 1(0 < v < y) r1−p
∫ x

0

leb1(B((t− u)/rp))dt

=: h(u, v, r) (7.39)

as λ → ∞, for all (u, v, r) ∈ R2 × R+, v 6∈ {0, y}, since δ := 1 + γ − (1/p) > 0.
Note that 2(H(γ)− 1/p) = γ − γ+ > 0 and hence

λ2(H(γ)−1/p)Ψ(θλ(1/p)−H(γ)hλ(u, v, r))→ −(θ2/2)h2(u, v, r), λ→∞.

Next, by the dominated convergence theorem

gλ(r)→ g(r) := −θ
2

2

∫

R2

h2(u, v, r)dudv
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for any r > 0. Using
∫
R2 hλ(u, v, r)dudv = xy leb(B)r and hλ(u, v, r) ≤ C min(r1−p,

r) similarly as in the proof of Theorem 7.2 we obtain |gλ(r)| ≤ C
∫
R2 h

2
λ(u, v, r)dudv

≤ C min(r2−p, r2). Then by Lemma 7.12,

Wλ,γ(θ)→ Wγ(θ) := cf

∫ ∞

0

g(r)r−(1+α)dr = −(θ2/2)σ2
+x

2H+y,

where

σ2
+ := cf

∫

R
du

∫ ∞

0

(∫ 1

0

leb1(B((t− u)/rp))dt
)2

r1−α−2pdr, (7.40)

where the last integral converges. (Indeed, since u 7→ leb1(B(u)) =
∫
1((u, v) ∈

B)dv is a bounded function with compact support, the inner integral in (7.40)
does not exceed C(1 ∧ rp)1(|u| < K(1 + rp)) for some C,K > 0 implying σ2

+ ≤
C
∫∞

0
(1∧ rp)2(1 + rp)r1−α−2pdr <∞ since 2− p < α < 2.) This ends the proof of

one-dimensional convergence in (7.14). Theorem 7.3 is proved.

Proof of Theorem 7.4. After the same change of variables as in (7.32), viz.,

t→ λt, s− v → λγ/2s, u→ λpγ/2(1−p)u, v → λγv, r → λγ/2(1−p)r,

we obtain Wλ,γ(θ) =
∫∞

0
gλ(r)fλ(r)dr with fλ(r) as in (7.33) and gλ(r) :=

∫
R2 Ψ(θ

(log λ)−1/2hλ(u, v, r))dudv, where

hλ(u, v, r) :=

∫ x

0

dt

∫

R
1
((λ−δ1t− u

rp
,
s

r1−p

)
∈ B

)
1(0 < v + λ−δ2s < y)ds,

δ1 := pγ/2(1− p)− 1 = (γ − γ+)/γ+ > 0, δ2 := γ/2 > 0 are the same as in (7.34)
and

hλ(u, v, r)→ h(u, v, r) := x1(0 < v < y)

∫

R
1
((−u

rp
,
s

r1−p

)
∈ B

)
ds

c.f. (7.35). Below we prove that the main contribution to the limit of Wλ,γ(θ)

comes from the interval λ−δ1/p < r < 1, namely, that Wλ,γ(θ) − W 0
λ,γ(θ) → 0,

where

W 0
λ,γ(θ) :=

∫ 1

λ−δ1/p
gλ(r)fλ(r)dr (7.41)

∼ −θ
2

2

cf
log λ

∫ 1

λ−δ1/p

dr

r3−p

∫

R2

h2(u, v, r)dudv

= −θ
2

2
x2ycf

∫

R
(leb1(B(u)))2du

1

log λ

∫ 1

λ−δ1/p

dr

r

= −θ
2

2
σ̃2

+x
2y =: Wγ(θ),

137



Chapter 7. Anisotropic scaling of the random grain model

where
σ̃2

+ :=
cf (γ − γ+)

2(1− p)

∫

R
leb(B ∩ (B + (0, u)))du (7.42)

and where we used the fact that
∫
R2 h

2(u, v, r)dudv = x2yr2−p ∫
R leb1(B(u))2du =

x2yr2−p ∫
R leb(B ∩ (B + (0, u)))du.

Accordingly, write Wλ,γ(θ) = W 0
λ,γ(θ) + W−

λ,γ(θ) + W+
λ,γ(θ), where W−

λ,γ(θ) :=∫ λ−δ1/p
0

gλ(r)fλ(r)dr andW+
λ,γ(θ) :=

∫∞
1
gλ(r)fλ(r)dr are remainder terms. Indeed,

using (7.30) and
∫

R2

hλ(u, v, r)dudv = xyr leb(B), hλ(u, v, r) ≤ C(λδ1r) ∧ r1−p. (7.43)

it follows that

|W+
λ,γ(θ)| ≤

C

(log λ)1/2

∫ ∞

1

dr

r3−p

∫

R2

hλ(u, v, r)dudv = O((log λ)−1/2) = o(1).

Similarly,

|W−
λ,γ(θ)| ≤

Cλδ1

log λ

∫ λ−δ1/p

0

rfλ(r)dr

∫

R2

hλ(u, v, r)dudv

≤ Cλδ1

log λ

∫ λ−δ1/p

0

r2fλ(r)dr =
C

λ log λ

∫ λ1/p

0

r2f(r)dr

= O((log λ)−1) = o(1),

since δ1 = pγ/2(1− p)− 1.
Consider the main termW 0

λ,γ(θ) in (7.41). Let W̃λ,γ(θ) := − θ2

2 log λ

∫ 1

λ−δ1/p
fλ(r)dr∫

R2 h
2
λ(u, v, r)dudv. Then using (7.43) and |Ψ(z) + z2/2| ≤ |z|3/6 we obtain

|W 0
λ,γ(θ)− W̃λ,γ(θ)| ≤

C

(log λ)3/2

∫ 1

λ−δ1/p
r2−2pfλ(r)dr

∫

R2

hλ(u, v, r)dudv

≤ C

(log λ)3/2

∫ 1

λ−δ1/p
r3−2pfλ(r)dr

≤ C

(log λ)3/2

∫ 1

0

r−pdr = O((log λ)−3/2) = o(1).

Finally, it remains to estimate the difference |W̃λ,γ(θ) − Wγ(θ)| ≤ C(J ′λ + J ′′λ),
where

J ′λ :=
1

log λ

∫ 1

λ−δ1/p
fλ(r)dr

∫

R2

|h2
λ(u, v, r)− h2(u, v, r)|dudv,

J ′′λ :=
1

log λ

∫ 1

λ−δ1/p
r2−p|fλ(r)− cfrp−3|dr.

Let

h̃λ(u, v, r) := x

∫

R
1
((−u

rp
,
s

r1−p

)
∈ B

)
1(0 < v + λ−δ2s < y)ds.
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Then J ′λ ≤ J ′λ1 + J ′λ2, where J ′λ1 := (log λ)−1
∫ 1

λ−δ1/p
fλ(r)dr

∫
R2 |h2

λ(u, v, r) −
h̃2
λ(u, v, r)|dudv, J ′λ2 := (log λ)−1

∫ 1

λ−δ1/p
fλ(r)dr

∫
R2 |h̃2

λ(u, v, r) − h2(u, v, r)|dudv.
Using the fact that B is a bounded set with leb(∂B) = 0 we get that
∫

R2

|hλ(u, v, r)− h̃λ(u, v, r)|dudv

≤ yr

∫ x

0

dt

∫

R2

∣∣∣1
((λ−δ1t

rp
− u, s

)
∈ B

)
− 1((−u, s) ∈ B)

∣∣∣duds

≤ rε(λ−δ1r−p),

where ε(z), z ≥ 0, is a bounded function with limz→0 ε(z) = 0. We also have
hλ(u, v, r) + h̃λ(u, v, r) ≤ Cr1−p as in (7.43). Using these bounds together with
fλ(r) ≤ Crp−3, r > λ−δ1/p we obtain

J ′λ1 log λ ≤ C

∫ 1

λ−δ1/p
ε(λ−δ1r−p)r−1dr = C

∫ 1

λ−δ1
ε(z)z−1dz = o(log λ),

proving J ′λ1 → 0 as λ→∞. In a similar way, using
∫
R2 |h̃λ(u, v, r)−h(u, v, r)|dudv

≤ xr
∫
R3 1((−u, s) ∈ B)|1(0 < v + λ−δ2r1−ps < y) − 1(0 < v < y)|dudvds ≤

Cr2−pλ−δ2 we obtain J ′λ2 log λ ≤ Cλ−δ2
∫ 1

0
r−pdr = O(λ−δ2), proving J ′λ2 → 0 and

hence J ′λ → 0. Finally, J ′′λ = (log λ)−1
∫∞
λ1/p r

2−p|f(r)− cfrp−3|dr → 0 follows from
(7.3). This proves the limit limλ→∞Wλ,γ(θ) = Wγ(θ) = −(θ2/2)σ̃2

+x
2y for any

θ ∈ R, or one-dimensional convergence in (7.15). Theorem 7.4 is proved.

Proof of Proposition 7.5. We use well-known properties of Poisson stochastic inte-
grals and inequality (3.3) in [79]. Accordingly, I+(x, y) is well-defined and satisfies
E|I+(x, y)|q ≤ 2Jq(x, y) (1 ≤ q ≤ 2) provided

Jq(x, y) := cf

∫ ∞

0

r−(1+α)dr

∫

R×(0,y]

dudv
∣∣∣
∫

(0,x]×R
1
((t− u

rp
,
s

r1−p

)
∈ B

)
dtds

∣∣∣
q

= cfy

∫ ∞

0

rq(1−p)−(1+α)dr

∫

R
du
∣∣∣
∫ x

0

leb1

(
B
(t− u

rp

))
dt
∣∣∣
q

<∞.

Split Jq(x, y) = cfy[
∫ 1

0
dr +

∫∞
1

] . . . dr =: cfy[J ′ + J ′′]. Then J ′′ ≤ C
∫∞

1
rq(1−p)

r−(1+α)dr
∫
1(|u| ≤ Crp)du ≤ C

∫∞
1
rq(1−p)−(1+α)+pdr < ∞ provided q < (α −

p)/(1 − p). Similarly, J ′ ≤ C
∫ 1

0
rq(1−p)−(1+α)dr|

∫
1(|t| ≤ Crp)dt|q ≤ C

∫ 1

0
rq(1−p)

r−(1+α)+qpdr < ∞ provided α < q. Note that α < (α − p)/(1 − p) ≤ 2 for
1 < α ≤ 2− p and (α− p)/(1− p) > 2 for 2− p < α < 2. Relation (7.17) follows
from (7.14) and J2(x, y) = σ2

+yx
2H+ by a change of variables. This proves part

(i). The proof of part (ii) is analogous.

Proof of Theorem 7.6. Using the change of variables as in (7.37) we get Wλ,γ(θ) =∫∞
0
gλ(r)fλ(r)dr with the same fλ(r), gλ(r) as in (7.38) and hλ(u, v, r) satisfying
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(7.39). (Note H(γ) = H(γ+) = 1/p hence λH(γ+)−(1/p) = 1 in the definition of
gλ(r) in (7.38).) Particularly, Ψ(θhλ(u, v, r)) → Ψ(θh(u, v, r)) for any (u, v, r) ∈
R2 × R+, v 6∈ {0, y}. Then gλ(r) → g(r) :=

∫
R2 Ψ(θh(u, v, r))dudv follows by

the dominated convergence theorem. Using
∫
R2 hλ(u, v, r)dudv = xyr leb(B)

and hλ(u, v, r) ≤ Cr we obtain |gλ(r)| ≤ C min(r, r2) and hence Wλ,γ(θ) →∫∞
0
g(r)r−(1+α)dr = log E exp{iθI+(x, y)}, proving the one-dimensional conver-

gence in (7.18). The proof of Theorem 7.6 is complete.

Proof of Theorem 7.7. (i) Write Dr(x, y) := {(u, v) ∈ R2 : (u−x)2+(v−y)2 ≤ r2}
for a ball in R2 centered at (x, y) and having radius r. Recall that B is bounded.
Note that infz∈[−1,1](|z|/rp + (1 − |z|1/(p−1))1−p/r1−p) ≥ c0 min(r−p, r−(1−p)) for
some constant c0 > 0. Therefore, there exists r0 > 0 such that for all 0 < r < r0

the intersection Bz,r := B∩
(
B+

(
z/rp, (1−|z|1/p)1−p/r1−p)) = ∅ in (7.19). Hence

b(z) ≤ C <∞ uniformly in z ∈ [−1, 1].
Let (x, y) ∈ B \ ∂B. Then D2r(x, y) ⊂ B for all r < r0 and some r0 > 0. If

we translate B by distance r0 at most, the translated set still contains the ball
Dr0(x, y). Since supz∈[−1,1](|z|/rp + (1 − |z|1/p)1−p/r1−p) ≤ 2 max(r−p, r−(1−p)),
there exists r1 > 0 for which infr>r1 leb(Bz,r) ≥ πr2

0, proving infz∈[−1,1] b(z) > 0.
The continuity of b(z) follows from the above argument and the continuity of the
mapping z 7→ leb(Bz,r) : [−1, 1]→ R+, for each r > 0.

(ii) Let s ≥ 0. In the integral (7.8) we change the variables: u→ rpu, v → r1−pv,
r → w1/pr. Then

ρ(t, s) = w−(α−1)/p

∫ ∞

0

leb(Bt/w,r)fw(r)rdr,

where fw(r) := w(1+α)/pf(w1/pr) → cf r
−(1+α), w → ∞. Then (7.20) follows by

Lemma 7.12 and the afore-mentioned properties of leb(Bt/w,r). Theorem 7.7 is
proved.

In this chapter we often use the following lemma which is a version of Lemma 2
in [53] or Lemma 2.4 in [11].

Lemma 7.12. Let F be a probability distribution that has a density function
f satisfying (7.3). Set fλ(r) := λ1+αf(λr) for λ ≥ 1. Assume that g, gλ are
measurable functions on R+ such that gλ(r) → g(r) as λ → ∞ for all r > 0 and
such that the inequality

|gλ(r)| ≤ C(rβ1 ∧ rβ2) (7.44)

holds for all r > 0 and some 0 < β1 < α < β2, where C does not depend on r, λ.
Then ∫ ∞

0

gλ(r)fλ(r)dr → cf

∫ ∞

0

g(r)r−(1+α)dr as λ→∞.
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Proof. Split
∫∞

0
gλ(r)fλ(r)dr = (

∫ ε
0

+
∫∞
ε

)gλ(r)fλ(r)dr =: I1(λ) + I2(λ), where
ε > 0. It suffices to prove

lim
λ→∞

I2(λ) = cf

∫ ∞

ε

g(r)r−(1+α)dr and lim
ε→0

lim sup
λ→∞

I1(λ) = 0. (7.45)

The first relation in (7.45) follows by the dominated convergence theorem, us-
ing (7.44) and the bound fλ(r) ≤ Cr−(1+α) which holds for all r > ρ/λ and
a sufficiently large ρ > 0 by virtue of (7.3). The second relation in (7.45)
follows from |I1(λ)| ≤ C

∫ ε
0
rβ2fλ(r)dr = Cλα−β2

∫ λε
0
xβ2f(x)dx ≤ Cλα−β2 +

Cλα−β2
∫ λε

1
xβ2−(1+α)dx ≤ C(λα−β2 + εβ2−α).

7.5.2 Proofs of Section 7.4

Proof of Theorem 7.9. We have

WT,γ,β(θ) := log E exp
{

iθb−1
T

(
AM,K(Tx)− EAM,K(Tx)

)}
(7.46)

= T γ
∫

R×R+

Ψ
(
θT−H(r1−p ∧ T β)

∫ Tx

0

1(u < t < u+ rp)dt
)

duf(r)dr,

where Ψ(z) = eiz − 1− iz, z ∈ R, as in Section 7.5.1.

(i) Let 0 < p < 1, δ1 := β − (1 + γ)(1− p)/α > 0, δ2 := 1 − (1 + γ)p/α =

(γ+ − γ)p/α > 0. Using the change of variables (t − u)/rp → t, u → Tu,
r → T (1+γ)/αr in (7.46), we obtain

WT,γ,β(θ) =

∫ ∞

0

gT (r)fT (r)dr, (7.47)

where fT (r) := T (1+α)(1+γ)/αf(T (1+γ)/αr) and

gT (r) :=

∫

R
Ψ
(
θ(r1−p ∧ T δ1)rphT (u, r))

)
du

and where hT (u, r) :=
∫ 1

0
1(0 < u + T−δ2rpt < x)dt → 1(0 < u < x) for

fixed (u, r) ∈ R × R+, u 6∈ {0, x}. Hence gT (r) → g(r) := xΨ(θr) follows by
the dominated convergence theorem. The bound |gT (r)| ≤ C min(r, r2) follows
from (7.30) and

∫
R hT (u, r)du = x with hT (u, r) ≤ 1. Finally, by Lemma 7.12,

WT,γ,β(θ) → xcf
∫∞

0
Ψ(θr)r−(1+α)dr = log E exp{iθLα(x, 1)}, proving part (i) for

0 < p < 1. The case p = 1 follows similarly.

(ii) By the same change of variables as in part (i) we get WT,γ,β(θ) as in (7.47),
where

gT (r) :=

∫

R
Ψ
(
θ((T−δ1r1−p) ∧ 1)rphT (u, r)

)
du,
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where δ1, fT (r), hT (u, r) are the same as in (7.47) except that now δ1 < 0. Next,
gT (r)→ xΨ(θrp) by the dominated convergence theorem while |gT (r)| ≤ C min(rp,

r2p) follows by (7.30) and
∫
R min(hT (u, r), h2

T (u, r))du ≤ C. Then WT,γ,β(θ) →
Wγ,β(θ) := xcf

∫∞
0

Ψ(θrp)r−(1+α)dr follows by Lemma 7.12. To finish the proof of
part (ii) it suffices to check that

Wγ,β(θ) = −xcfΓ(2− α/p)
α(1− α/p) cos

(πα
2p

)
|θ|α/p

(
1− i sgn(θ) tan

(πα
2p

))
(7.48)

=: log E exp{iθLα/p(x)}.

(iii) Denote δ1 := 1 + γ − αβ/(1 − p) > 0, δ2 := 1 − pβ/(1 − p) > 0. Then by
change of variables: (t− u)/rp → t, u→ Tu, r → T β/(1−p)r we rewrite WT,γ,β(θ)

as in (7.47), where fT (r) := T (1+α)β/(1−p)f(T β/(1−p)r) and

gT (r) :=

∫

R
T δ1Ψ

(
θT−δ1/2(r1−p ∧ 1)rphT (u, r)

)
du

with hT (u, r) :=
∫ 1

0
1(0 < u + T−δ2rpt < x)dt → 1(0 < u < x). Then gT (r) →

−(θ2/2)(r1−p ∧ 1)2r2px by the dominated convergence theorem using the bounds
|Ψ(z)| ≤ z2/2, z ∈ R and hT (u, r) ≤ 1(−rp < u < x). Moreover, |gT (r)| ≤
C min(r2p, r2) holds in view of

∫
R h

2
T (u, r)du ≤ C. Using Lemma 7.12 we get

WT,γ,β(θ)→ −(θ2/2)xcf
∫∞

0
(r1−p ∧ 1)2r2p−(1+α)dr = −(θ2/2)σ2

1x, where

σ2
1 :=

2cf (1− p)
(2− α)(α− 2p)

<∞ (7.49)

since max(1, 2p) < α < 2. This proves part (iii).

(iv) By the same change of variables as in part (iii), we rewrite WT,γ,β(θ) as in
(7.47), where

gT (r) :=

∫

R
T δ1Ψ

(
θT−δ1/2(log T )−1/2(r1−p ∧ 1)rphT (u, r)

)
du

and fT (r) and δ1, δ2 > 0 and hT (u, r) :=
∫ 1

0
1(0 < u + T−δ2rpt < x)dt → 1(0 <

u < x) are the same as in (iii). We split WT,γ,β(θ) = W−
T,γ,β(θ) + W 0

T,γ,β(θ) +

W+
T,γ,β(θ) and next prove that W−

T,γ,β(θ) :=
∫ 1

0
gT (r)fT (r)dr and W+

T,γ,β(θ) :=∫∞
T δ1/2p

gT (r)fT (r)dr are the remainder terms, whereas

W 0
T,γ,β(θ) :=

∫ T δ1/2p

1

gT (r)fT (r)dr ∼ −θ
2

2

xcf
log T

∫ T δ1/2p

1

r2p−(1+2p)dr

= −θ
2

2
σ̂2

1x =: Wγ,β(θ),

where
σ̂2

1 := cf
δ1

2p
=

cf
2p(1− p)((1 + γ)(1− p)− 2pβ). (7.50)
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By (7.3), there exists ρ > 0 such that fT (r) ≤ Cr−(1+2p) for all r > ρ/T β/(1−p).
Using this bound along with

∫
R hT (u, r)du = x, hT (u, r) ≤ 1 and (7.30), we get

|W−
T,γ,β(θ)| ≤ C

log T

∫ 1

0

r2fT (r)dr = O((log T )−1) = o(1),

|W+
T,γ,β(θ)| ≤ C

T δ1/2

(log T )1/2

∫ ∞

T δ1/2p
rp−(1+2p)dr = O((log T )−1/2) = o(1).

We now consider the main term W 0
T,γ,β(θ). Let W̃T,γ,β(θ) := − θ2

2 log T

∫ T δ1/2p
1

r2p

fT (r)dr
∫
R h

2
T (u, r)du. Then, by |Ψ(z) + z2/2| ≤ |z|3/6, z ∈ R, it follows that

|W 0
T,γ,β(θ)− W̃T,γ,β(θ)| ≤ C

(log T )3/2T δ1/2

∫ T δ1/2p

1

r3pfT (r)dr

∫

R
h3
T (u, r)du

≤ C

(log T )3/2T δ1/2

∫ T δ1/2p

1

rp−1dr

= O((log T )−3/2) = o(1).

Finally, we estimate |W̃T,γ,β(θ)−Wγ,β(θ)| ≤ C(J ′T + J ′′T ), where

J ′T :=
1

log T

∫ T δ1/2p

1

r2pfT (r)dr

∫

R
|h2
T (u, r)− 1(0 < u < x)|du,

J ′′T :=
1

log T

∫ T δ1/2p

1

r2p|fT (r)− cfr−(1+2p)|dr.

Using
∫

R
|h2
T (u, r)− 1(0 < u < x)|du

≤ 2

∫ 1

0

dt

∫

R
|1(0 < u+ T−δ2rpt < x)− 1(0 < u < x)|du ≤ CrpT−δ2 ,

we obtain J ′T ≤ C(log T )−1T−δ2
∫ T δ1/2p

1
rp−1dr = o(1), since δ1/2 ≤ δ2 for γ ≤ γ+.

Then J ′′T = o(1) follows from (7.3), since |fT (r)− cfr−(1+2p)| ≤ εcfr
−(1+2p) for all

r > ρ/T β/(1−p) and some ρ > 0 if given any ε > 0. This completes the proof of
WT,γ,β(θ)→ −(θ2/2)σ̂2

1x = log E exp{iθσ̂1B(x)} as T →∞ for any θ ∈ R.

(v) After the same change of variables as in part (iii) we get WT,γ,β(θ) in (7.47),
where

gT (r) :=

∫

R
Ψ
(
θ(r1−p ∧ 1)rphT (u, r)

)
du

with the same fT (r) and hT (u, t) → 1(0 < u < x) as in (iii). By dominated
convergence theorem, gT (r) → xΨ(θ(r1−p ∧ 1)rp), where we justify its use by
(7.30), and hT (u, r) ≤ 1(−rp < u < x). The bound |gT (r)| ≤ C min(rp, r2)
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follows from (7.30) and
∫
R hT (u, r)du = x with hT (u, r) ≤ 1. Finally, by Lemma

7.12,

WT,γ,β(θ)→ xcf

∫ ∞

0

Ψ
(
θ(r1−p ∧ 1)rp

)
r−(1+α)dr =: log E exp{iθL̂(x)}. (7.51)

The proof of Theorem 7.9 is complete.

Proof of Theorem 7.10. (i) Denote δ1 := 1 + γ − α/p = γ − γ+ > 0 and δ2 :=

(1−p)/p−β > 0. By changing the variables in (7.29): t→ Tt, u→ Tu, r → T 1/pr

we rewrite WT,γ,β(θ) as in (7.47), where fT (r) := T (1+α)/pf(T 1/pr) and

gT (r) :=

∫

R
T δ1Ψ

(
θT−δ1/2((T δ2r1−p) ∧ 1)h(u, r)

)
du

with h(u, r) :=
∫ x

0
1(u < t < u + rp)dt. The dominated convergence gT (r) →

g(r) := −(θ2/2)
∫
R h

2(u, r)du follows by (7.30). The latter combined with
∫
R h

2(u,

r)du ≤ C min(1, rp)
∫
R h(u, r)du ≤ C min(rp, r2p) gives the bound |gT (r)| ≤

C min(rp, r2p). Finally, by Lemma 7.12, WT,γ,β(θ)→ −(θ2/2)σ2
2x

2H , where

σ2
2 := cf

∫

R×R

(∫ 1

0

1(u < t < u+ rp)dt
)2 dudr

r1+α

=
2cf

α(2− α/p)(3− α/p)(α/p− 1)
, (7.52)

proving part (i).

(ii) The proof is the same as that of Theorem 7.9(iii).

(iii) Let δ1 := γ − α+β > 0, δ2 := α+β/γ+ − 1 > 0. By change of vari-
ables: t → Tt, u → T βp/(1−p)u, r → T β/(1−p)r we get (7.47) with fT (r) :=

T (1+α)β/(1−p)f(T β/(1−p)r) and

gT (r) :=

∫

R
T δ1Ψ(θT−δ1/2(r1−p ∧ 1)hT (u, r))du,

with hT (u, r) :=
∫ x

0
1(0 < (T−δ2t − u)/rp < 1)dt → h(u, r) := x1(−rp < u < 0).

Then (7.30) and h2
T (u, r) ≤ x1(−rp < u < 1) justify the dominated convergence

gT (r)→ −(θ2/2)(r1−p∧1)2rpx2. By (7.30) and
∫
R h

2
T (u, r)du ≤ C

∫
R hT (u, r)du ≤

Crp, we have |gT (r)| ≤ C min(rp, r2−p). Finally, by Lemma 7.12 WT,γ,β(θ) →
−(θ2/2)x2cf

∫∞
0

(r1−p ∧ 1)2rp−(1+α)dr = −(θ2/2)x2σ2
3 with

σ2
3 :=

2cf (1− p)
(2− p− α)(α− p) , (7.53)

proving part (iii).
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(iv) Denote δ1 := β − γ/α+ > 0, δ2 := γ/γ+ − 1 > 0. By the change of
variables: t → Tt, u → T γ/γ+u, r → T γ/γ+pr we get (7.47) with fT (r) :=

T (1+α)γ/γ+pf(T γ/γ+pr) and

gT (r) :=

∫

R
Ψ(θ(r1−p ∧ T δ1)hT (u, r))du,

where hT (u, r) :=
∫ x

0
1(u < T−δ2t < u + rp)dt → h(u, r) := x1(−rp < u <

0). Then gT (r) → g(r) :=
∫
R Ψ(θxr1−p1(−rp < u < 0))du and WT,γ,β(θ) →

cf
∫∞

0
g(r)r−(1+α)dr = log E exp{iθxL+(1)} similarly to the proof of Theorem

7.2(ii).

(v) Set δ1 := γ − γ+ > 0, δ2 := β − (1 − p)/p > 0. After a change of variables:
t→ Tt, u→ Tu, r → T 1/pr, we get (7.47) with fT (r) := T (1+α)/pf(T 1/pr) and

gT (r) :=

∫

R
T δ1Ψ(θT−δ1/2(r1−p ∧ T δ2)h(u, r))du,

where h(u, r) :=
∫ x

0
1(u < t < u+ rp)dt. Then gT (r)→ g(r) := −(θ2/2)

∫
R r

2(1−p)

h2(u, r)du and WT,γ,β(θ) → cf
∫∞

0
g(r)r−(1+α)dr = −(θ2/2)σ2

+x
2H+ similarly to

the proof of Theorem 7.3(i).

(vi) We follow the proof of Theorem 7.9(iv). By the same change of variables,
we rewrite WT,γ,β(θ) as in (7.47). We split WT,γ,β(θ) = W−

T,γ,β(θ) + W 0
T,γ,β(θ) +

W+
T,γ,β(θ) with the same W±

T,γ,β(θ) being the remainder terms. Note that now
δ2 < δ1/2, since γ > γ+. Next, we split W 0

T,γ,β(θ) = W ′
T,γ,β(θ) +W ′′

T,γ,β(θ), where

W ′
T,γ,β(θ) :=

∫ T δ2/p

1

gT (r)fT (r)dr, W ′′
T,γ,β(θ) :=

∫ T δ1/2p

T δ2/p
gT (r)fT (r)dr.

Analogously to the proof of Theorem 7.9(iv), we show the convergenceW ′
T,γ,β(θ)→

−(θ2/2)σ̂2
2x, where

σ̂2
2 := cf

δ2

p
= cf

(1

p
− β

1− p
)
. (7.54)

Using (7.30) and
∫
R hT (r, u)du = x with hT (r, u) ≤ x(T δ2/rp), we get

|W ′′
T,γ,β(θ)| ≤ C

log T

∫ T δ1/2p

T δ2/p

dr

r

∫

R
h2
T (r, u)du

≤ CT δ2

log T

∫ T δ1/2p

T δ2/p

dr

r1+p
= O((log T )−1) = o(1),

which completes the proof of WT,γ,β(θ) → −(θ2/2)σ̂2
2x = log E exp{iθσ̂2B(x)} as

T →∞ for any θ ∈ R.

(vii) By the same change of variables as in part (i), we rewrite WT,γ,β(θ) as in
(7.47), where

gT (r) :=

∫

R
T δ1Ψ

(
θT−δ1/2(r1−p ∧ 1)h(u, r)

)
du
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and where δ1, h(u, r), fT (r) are the same as in (i). Then gT (r)→ −(θ2/2)
∫
R h

2(u,

r)du along with
∫
R
h2(u, r)du ≤ C min(rp, r2p) and (7.30) imply WT,γ,β(θ) →

−(θ2/2)cf
∫∞

0

∫
R(r1−p ∧ 1)2h2(u, r)r−(1+α)drdu =: log E exp{iθẐ(x)} as T → ∞

for any θ ∈ R, by Lemma 7.12.

(viii) By the same change of variables as in part (iii) we obtain WT,γ,β(θ) as in
(7.47), where gT (r) :=

∫
R Ψ(θ(r1−p ∧ 1)hT (u, r))du with fT (r), δ2 = γ/γ+ − 1 > 0

and hT (u, r) :=
∫ x

0
1(u < T−δ2t < u + rp)dt → x1(−rp < u < 0) the same as in

(iii). Using
∫
R hT (u, r)du = xrp and hT (u, r) ≤ x yields |gT (r)| ≤ C min(rp, r2−p)

from (7.30). Hence, by Lemma 7.12, it follows that

WT,γ,β(θ)→ cf

∫ ∞

0

Ψ(θx(r1−p ∧ 1))rp−(1+α)dr =: log E exp{iθxẐ}. (7.55)

(ix) By the same change of variables as in the proof of part (iv), we rewrite
WT,γ,β(θ) as in (7.47), where

gT (r) :=

∫

R
Ψ
(
θ(log T )−1/2(r1−p ∧ T δ1)hT (u, r)

)
du

with δ1, δ2 := γ/γ+ − 1 > 0 and hT (u, r) :=
∫ x

0
1(u < T−δ2t < u + rp)dt →

x1(−rp < u < 0) =: h(u, r) and fT (r) being the same as in (iv). We split
WT,γ,β(θ) = W−

T,γ,β(θ) + W 0
T,γ,β(θ) + W+

T,γ,β(θ) and next prove that W−
T,γ,β(θ) :=∫ T−δ2/p

0
gT (r)fT (r) and W+

T,γ,β(θ) :=
∫∞

1
gT (r)fT (r)dr are the remainder terms,

whereas

W 0
T,γ,β(θ) :=

∫ 1

T−δ2/p
gT (r)fT (r)dr ∼ −θ

2

2

cf
log T

∫ 1

T−δ2/p

dr

r1+p

∫

R
h2(u, r)du

= −θ
2

2
σ̃2

+x
2 =: Wγ,β(θ),

where the constant σ̃2
+ is given in (7.42). Using

∫
R hT (u, r)du = xrp and hT (u, r) ≤

x ∧ (T δ2rp) along with (7.30), we show that

|W+
T,γ,β(θ)| ≤ C

(log T )1/2

∫ ∞

1

rfT (r)dr = O((log T )−1/2) = o(1),

|W−
T,γ,β(θ)| ≤ CT δ2

log T

∫ T−δ2/p

0

r2fT (r) =
C

T log T

∫ T 1/p

0

r2f(r)dr

= O((log T )−1) = o(1).

To deal with the main termW 0
T,γ,β(θ), set W̃T,γ,β(θ) := − θ2

2 log T

∫ 1

T−δ2/p
r2(1−p)fT (r)dr
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∫
R h

2
T (u, r)du. From |Ψ(z) + z2/2| ≤ |z|3/6, we obtain

|WT,γ,β(θ)− W̃T,γ,β(θ)| ≤ C

(log T )3/2

∫ 1

T−δ2/p
r3(1−p)fT (r)dr

∫

R
h3
T (u, r)du

≤ C

(log T )3/2

∫ 1

T−δ2/p
r3−2pfT (r)dr

= O((log T )−3/2) = o(1).

Finally, we consider |W̃T,γ,β(θ)−Wγ,β(θ)| ≤ C(J ′T + J ′′T ), where

J ′T :=
1

log T

∫ 1

T−δ2/p
r2(1−p)fT (r)dr

∫

R
|h2
T (u, r)− h2(u, r)|du,

J ′′T :=
1

log T

∫ 1

T−δ2/p
r2−p|fT (r)− cfrp−3|dr.

Using
∫

R
|h2
T (u, r)− h2(u, r)|du

≤ C

∫ x

0

dt

∫

R
|1(u < T−δ2t < u+ rp)− 1(−rp < u < 0))|du ≤ CT−δ2

we obtain J ′T ≤ C(log T )−1T−δ2
∫ 1

T−δ2/p
r−(1+p)dr = O((log T )−1) = o(1). Then

J ′′T = o(1) follows from (7.3), since |fT (r)−cfrp−3| ≤ εcfr
p−3 for all r > ρ/T γ/2(1−p)

and some ρ > 0 if given any ε > 0. This finishes the proof of WT,γ,β(θ) →
−(θ2/2)σ̃2

+x
2 = log E exp{iθσ̃2

+B1,1/2(x, 1)} as T →∞ for any θ ∈ R.
The proof of Theorem 7.10 is complete.

Proof of Theorem 7.11. (i) By the same change of variables as in Theorem 7.10(i),
we rewrite WT,γ,β(θ) as in (7.47), where

gT (r) :=

∫

R
Ψ
(
θ((T δ2r1−p) ∧ 1)h(u, r)

)
du→

∫

R
Ψ(θh(u, r))du =: g(r),

since δ2 := (1−p)/p−β = γ+/α+−β > 0 with h(u, r), fT (r) being the same as in
Theorem 7.10(i). Using (7.30) along with

∫
R h(u, r)du = xrp and h(u, r) ≤ rp, we

get |gT (r)| ≤ C min(rp, r2p). Hence WT,γ,β(θ) → cf
∫∞

0

∫
R Ψ(θh(u, r))r−(1+α)drdu

=: log E exp{iθI(x)} by Lemma 7.12.

(ii), (iii) The proof is the same as that of Theorem 7.9(iii), (iv) respectively.

(iv) By the same change of variables as in Theorem 7.10(i), we rewrite WT,γ,β(θ)

as in (7.47), where g(r) :=
∫
R Ψ(θ(r1−p ∧ 1)h(u, r))du with h(u, r), fT (r) being

the same as in Theorem 7.10(i). Then |g(r)| ≤ C min(rp, r2) follows from (7.30).
By Lemma 7.12, we get WT,γ,β(θ)→ cf

∫∞
0
g(r)r−(1+α)dr =: log E exp{iθÎ(x)}.

(v) By the same change of variables as in Theorem 7.10(v), we rewrite WT,γ,β(θ)

as in (7.47), where fT (r), gT (r) are the same as in Theorem 7.10(v) except for

147



Chapter 7. Anisotropic scaling of the random grain model

δ1 = 0. Then gT (r) → g(r) :=
∫
R Ψ(θr1−ph(u, r))du and |gT (r)| ≤ C min(r, r2)

from (7.30) lead to WT,γ,β(θ) → cf
∫∞

0
g(r)r−(1+α)dr = log E exp{iθI+(x, 1)} by

Lemma 7.12, similarly to the proof of Theorem 7.6.
The proof of Theorem 7.11 is complete.
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Chapter 8

Conclusions

In this last chapter, we review the main research contributions of this thesis.

• We identified three distinct limit regimes in the scheme of joint temporal-
contemporaneous aggregation for independent copies of random-coefficient
AR(1) process. We obtained three limit processes respectively. We showed
that the process, arising in the ‘intermediate’ regime, admits a Poisson in-
tegral representation and can be regarded as a ‘bridge’ between the other
two limit processes. The ‘intermediate’ limit of cumulative network traffic
studied in [27,34,35,55], though different, but has similar properties.

• We identified three different limit regimes in the scheme of joint temporal-
contemporaneous aggregation for copies of random-coefficient AR(1) pro-
cess, all driven by common innovations. We showed that a new process
arising under ‘intermediate’ scaling can be regarded as a ‘bridge’ between
the other two limit processes.

• We proved that the empirical process based on lag 1 sample autocorrela-
tions of individual random-coefficient AR(1) series weakly converges to a
generalized Brownian bridge under certain conditions. Applications of the
obtained result arise in statistical inference from multiple random-coefficient
AR(1) series, which are long enough so that lag 1 sample autocorrelations
accurately estimate the unobservable AR coefficients. In particular, we jus-
tified testing with Kolmogorov–Smirnov statistic both simple and composite
hypotheses, that AR coefficient is beta distributed.

• We proved that a nonlinear RF, defined as the Appell polynomial of some
stationary linear LRD RF on Z2, may exhibit scaling transition. Such be-
ing the case, scaling transition occurs at the point γ0 > 0, independent
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of the degree of the Appell polynomial even if the underlying linear RF is
anisotropic.

• For the random grain model on R2 with LRD, we obtain two change-points
0 < γ− < γ+ (distinct even in the p = 1/2 case) in its scaling limits,
which shows that the concept of scaling transition requires further study.
We showed that for γ > γ+, the random grain model can have two different
scaling limits, depending on α, p. We relate this dichotomy to the change
from the vertical LRD to the vertical SRD property in the random grain
model. A similar result holds for 0 < γ < γ−.

The following are some directions for future research.

• An interesting open problem concerns joint temporal-contemporaneous ag-
gregation of independent copies of regime-switching AR(1) process, which
combines the dependence structures of both random-coefficient AR(1) and
network traffic models, see [62,65].

• Another possible generalization concerns joint temporal-contemporaneous
aggregation of random-coefficient AR(1) processes driven by innovations of
infinite variance.

• If random AR coefficient a has a regularly varying density near the unit root,
then 1/(1−a) is heavy-tailed distributed with the same index. We will adapt
some Hill-type estimator of a tail index to the context of panel random-
coefficient AR(1) data and study asymptotic properties of this estimator.

• One may ask if some random field model can have more than two change-
points in the family of its scaling limits.

• It is of interest to obtain scaling transition for RFs on R2 as λ→ 0.

• For all models considered, it would be useful to strengthen the weak con-
vergence of finite-dimensional distributions to the weak convergence in the
space of functions.
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[39] E. Gonçalves and C. Gouriéroux. Agrégation de processus autorégressifs
d’ordre 1. Ann. Econ. Statistique, 12:127–149, 1988.

[40] C. W. J. Granger. Long memory relationships and the aggregation of dy-
namic models. J. Econometrics, 14(2):227–238, 1980.

[41] H. Guo, C. Y. Lim, and M. M. Meerschaert. Local Whittle estimator for
anisotropic random fields. J. Multiv. Anal., 100(5):993–1028, 2009.

[42] A. Hankey and H. E. Stanley. Systematic application of generalized homo-
geneous functions to static scaling, dynamic scaling, and universality. Phys.
Rev. B, 6:3515–3542, 1972.

[43] D. Heath, S. Resnick, and G. Samorodnitsky. Heavy tails and long range
dependence in on/off processes and associated fluid models. Math. Oper.
Res., 23:145–165, 1998.

[44] C. C. Heyde and Y. Yang. On defining long-range dependence. J. Appl.
Probab., 34(4):939–944, 1997.

[45] H.-C. Ho and T. Hsing. Limit theorems for functionals of moving averages.
Ann. Probab., 25(4):1636–1669, 1997.

[46] W. Hoeffding. Probability inequalities for sums of bounded random vari-
ables. J. Amer. Statist. Assoc., 58(301):13–30, 1963.
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