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Notation

f.d.d.
i.i.d.
s.v.f.

SaS

the set of positive integers

the set NU {0}

the set of integers

unit sphere in R¢

the complement of the set A

the largest integer not larger than x (floor)

the smallest integer not smaller that x (ceiling)

the indicator function of A

the function |z|” sign(x)

convergence in distribution

convergence in finite dimensional distributions

equality in distribution

the vector (z1,...,xq)

inequalities between two vectors are to be understood
component-wise

the vector (nquq, ..., nguq)

g(x) = o(f(x)) as © — a if there exists a function € such
that e(x) — 0 as * — a and g(x) = f(z)e(x)

g(x) = O(f(z)) as x — a if there exists M > 0 such that
lg(x)] < M |f(x)| in the neighbourhood of a

finite dimensional distributions

independent identically distributed

slowly varying function

symmetric a-stable

vii



p(X,Y) spectral covariance between X and Y, see (2.7) on

page 8
p(X,Y) spectral correlation coefficient of (X,Y), see (2.8) on

page 8
(X, Yo covariation of X on Y, see (2.9) on page 8

T(X,Y) codifference between X and Y, see (2.10) on page 8
I1(61,09; X,Y) generalized codifference between X and Y, see (2.11) on

page 8

Pa(X,Y) a-spectral covariance between X and Y, see (4.1) on

page 37

Viil



1 Introduction

1.1 Aims and problems

One of the main aims of this work is to develop theory of spectral co-
variances. We derive some properties of spectral covariances, investi-
gate asymptotics of the spectral covariance for some infinite-variance lin-
ear processes and fields. Namely, we investigate linear process X, =
Yrco ckén—k with asymptotically regularly varying filter ¢, k£ € N, and
i.i.d. a-stable innovations &, k£ € 7Z, we also study the asymptotic
dependence between one-step increments of linear fractional stable mo-
tion and log-fractional stable motion. In addition, we investigate lin-
ear field Xy, = Y2052 wi (1 + A1+ §) P28, where 3; >
l/a, 1 =1,2,&,, i,j € Z, are i.i.d. a-stable random variables, and coef-
ficients w(; j) have limits lim; 0 w(; j) = W(so,j), 1M 00 W(; j) = W(i00) and
lim; j oo w(; 5y = 1. Faced with a complicated picture when investigating
the asymptotic behaviour of spectral covariance for this linear field, we in-
troduce another measure of dependence — a-spectral covariance — which we
use to investigate the asymptotic dependence structure of d-dimensional
linear field Xx = >0 (Hle(l + jl)_ﬂl) €k—j, where f; > 1/a, I =1,....d,
and &, j € 74 are i.i.d. a-stable random variables.

The results obtained in [17], relating the asymptotic behaviour of de-
pendence measures to the limit theorems, are generalized to the linear

fields.

We answer a question, originally proposed in [52], concerning limit

theorems in the case of negative memory. Consider a partial sum process



Sn(t) = Z,EZ% X of linear processes X, = Y22 ¢;&,—; with independent
identically distributed innovations {;} belonging to the normal domain
of attraction of a-stable law, 0 < o < 2. If || = k77, k € N, v >
max(1,1/«), and 332, cr = 0 (the case of negative memory for the sta-
tionary sequence { X, }), it is known that the normalizing sequence of .S,,(1)
can grow as n'/*~ 7+ or remain bounded, if the signs of the coefficients
are constant or alternate, respectively. It is of interest to know whether
it is possible, given A € (0,1/a — v + 1), to change the signs of ¢j so that
the rate of growth of the normalizing sequence would be n*. The positive
answer is given: we propose a way of choosing the signs and investigate the
finite-dimensional convergence of appropriately normalized S,,(t) to linear
fractional Lévy motion.

We also generalize (with an additional condition) Theorem 1 in [3] to
the case of d-dimensional linear fields. Namely, we investigate convergence
in the sense of f.d.d. of appropriately normalized partial sum processes

Su(t) = > Xk
o<k<nt
when Xy = Yizo ¢iék—i, coefficients ¢; have form ¢ = 1%, a;,(vi,1) with
asymptotically regularly varying with index —v;, 7, > 1/«, sequences
a;,(,1), and & —1i.i.d. copies of random variable £ belonging to the domain

of attraction of a-stable law.

1.2 Methods

To prove asymptotic behaviour of dependence measures we use well known
results from mathematical analysis. We mostly apply the dominated con-
vergence theorem.

Some known results about slowly varying functions are employed.

To derive Theorems 5.1 and 5.3 we extend the proofs provided in [17]

to linear fields. In [17] the proof of Newman’s central limit theorem was
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adapted to the case of infinite variance.
In order to prove the convergence in the sense of f.d.d. of appropri-
ately normalized partial sum processes we use the method of characteristic

functions.

1.3 Novelty

The obtained results are new. Most of the results are included in the
following publications:

J. Damarackas, V. Paulauskas: Properties of spectral covariance for
linear processes with infinite variance, Lithuanian Mathematical Journal,
54 (2014) 252-276.

J. Damarackas, V. Paulauskas: On spectral covariance for random
fields with infinite variance, Journal of Multivariate Analysis, 153 (2017)
156-175.

J. Damarackas: A note on the normalizing sequences for sums of linear
processes in the case of negative memory. Accepted for publication in

Lithuanian Mathematical Journal.

1.4 Acknowledgements

I would like to express my sincere gratitude to my supervisor prof.

Vygantas Paulauskas for the priceless advice and encouragement.






2 Preliminaries

We begin by recalling some definitions and results about regularly vary-
ing functions from [9], which is a standard reference on regularly varying
functions. We also prove some lemmas, which will be used in our proofs.

A measurable function U : (0,00) — (0, 00) is called regularly varying
with index n (or n-varying), if for any A > 0

lim Uz)

=\, (2.1)

If n = 0, the function U is called slowly varying. Every n-varying function
U can be written as U(x) = 2"L(x), where L is a slowly varying function.
In order to prove some of the results, we will use the following Potter’s

theorem (see [9], Theorem 1.5.6, part iii))

Theorem 2.1. If f is a reqularly varying function with an index p, then for

any A > 1, § > 0 there exists B = B(A, ) such that foranyx > B, y > B

F@) (@) < Amax (g )™ (127)")

Suppose L is a s.v.f. It follows from de Bruijn’s theorem (see [9],
Theorem 1.5.13, for the complete formulation) that there exists a s.v.f.

L# unique up to asymptotic equivalence, such that
L#(x)L(z L7 (x)) = 1, 2 — oo.

If this result is applied to the s.v.f. L(x) = (h(a:l/a))_l the existence of a

s.v.f. hyq satisfying

h (;Ul/o‘h%z(a:)) ~ hijo(x), T — 00, (2.2)



is obtained.

The following three lemmas will be useful in our considerations:

Lemma 2.2. If U is a reqularly varying function with index —~, v = 0,
and ¢, ~ U(k), as k — oo, then for any n > 0 there exists a constant E
such that

x| S E(14+ k)T (2.3)
forall k > 0.
Proof. Since ¢ ~ U(k), there exists Ny such that |cx| < 2U (k) for k > Nj.
As U is regularly varying with index —v, we have U(k)/k~7t" — 0, as

k — oo. Also, k/(k+1) — 1, as k — o0, therefore there exists Ny > Ny
such that U(k) < (14 k)" for k > Ny. Let us denote

_ |
Setting F = max(2, Fy) we obtain (2.3). O

Lemma 2.3. Suppose h is a s.v.f., ¢, — o0, and f, : U — R is a sequence
of functions such that g, |fn(u)| — oo uniformly for u € U. For every

0 > 0 there exists N1 € N such that

|h(qn | fu(w)])
h(qn)

Proof of Lemma 2.3. This result follows directly from Theorem 2.1. [

’ < 2max{| fu(w)|”, | fa(uw)| "'} u € Un = Ny,

Lemma 2.4. Suppose h is a s.v.f., f(x) = |z|* or f(z) = =%, a > 0,

and @, Yyn are sequences of real numbers such that g, — 0o, y, — y. Then

"Bt

If y #0, (2.4) holds with o < 0 as well.

— f(y), n — oo. (2.4)

Proof of Lemma 2.4. We begin by assuming y = 0. Lemma 2.3 implies
that for large n

h(qn |y ™)
h(gn)

< |yn|a2max{|yn]5 , |yn’_§} < 2[ynl? = 0.

f(yn)




Now suppose y # 0. Since ¥y, — y holds, there exist a,b > 0 and ng € N
such that a < |yn|_1 < b for all n > ng. S.v.f. h has a property that
h(At)/h(t) 222 1 uniformly for 0 < a < A < b < oo (see, for instance, [9),
Theorem 1.5.2). We obtain h(gy [yn| ) /h(g,) — 1. As f is continuous at
Yy, (2.4) holds. O

Next we move to a-stable random vectors. Let
S {s € RY . Is|| = 1}

be the unit sphere in R?, where || - || is the Euclidean norm in R?. Letters
in bold will be used to denote vectors in R?. A random vector X =
(X1,...,Xy) is a-stable with parameter 0 < o < 2, o # 1, if there exist a
finite measure I" on S¢~! and a vector b € R? such that the characteristic

function (ch.f.) of X is given by

Eexp {i(t, X)}
— exp {— L s (1 _ sign(t, s) tan 7"20‘) D(ds) + i(t, b>} . (2.5)

For oo = 1, we only consider symmetric measures I'. In such a case, we get
the so-called symmetric a-stable (SaS) distributions with ch.f. of a very

simple form:

Eexp {i(t, X)} = exp {— L |<t,s>|ar(ds>}. (2.6)

The measure I' in (2.5) is called the spectral measure of an a-stable ran-
dom vector X, and the pair (I',b) is unique. The Gaussian case a = 2
is excluded from this definition since, in the Gaussian case, there is no
uniqueness of the spectral measure I': different measures I' may give the
same ch.f. Taking d =2 and b =0 in (2.5), we have an a-stable random
vector X = (X7, X5) with spectral measure I' on S! = {s = (s1,57) € R?:

st +s2=1}.



The spectral covariance of X (or the spectral covariance between the

coordinates X7 and Xjy) is defined as
p(X1, Xo) = /S s1500(ds). (2.7)

Also, in analogy with the usual correlation coefficient, the spectral corre-

lation coefficient (s.c.c.) for an a-stable random vector X is defined as

pX1, X5) = [ 51T (ds) ( [, siras) | sgr(ds))1/2 . (2.8)

Suppose X7 and X» are jointly Sa.S random variables. The covariation

of X7 on X5 is defined for 1 < a < 2 and equals
(X1, Xo]a = /S Cs1s5 T (ds). (2.9)

Another measure of dependence, the codifference, was defined for all

SaS random vectors as
T(Xl,XQ) = /Sl (’81|a + ’82|a - |81 - SQ’a) F(dS) (210)

In the literature one can find two measures of dependence closely related
to the codifference. The first is sometimes referred to as the generalized
codifference, and is defined as

E exp{i@le}E eXp{iQQXQ}
E exp{i(91X1 + QQXQ)}

1(91,92;X1,X2) = 1In (211)

Another measure is the difference between the joint characteristic function

of (X1, X3) and the product of their marginal characteristic functions:

U(eb 027 X17 X?)
= Eexp{i(91X1 + 02X2)} — Eexp{i&le}E eXp{iQQXQ}. (212)

The relation between those measures of dependence is as follows

T(X1, X2) = —1(1, -1; X3, Xs),
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U(91,92;X1,X2)
= ]Eexp{lele}E exp{iQQXg} (exp(—[(@l, ‘92; Xl, Xz)) — 1) .

If the process X (t) is stationary and (61, 62; X (0), X (¢)) — 0, we have
U(6:,02; X1, Xo) ~ —E exp{i61 X (0) }E exp{i62X (0) } 1 (61, 62; X1, X2),

i.e., the quantities U(0y,0; X1, X5) and (01, 6,; X1, X5) are asymptoti-
cally proportional.

In this work we will investigate linear processes and fields with inno-
vations belonging to the domain of attraction of some a-stable random
variable. Random variable ¢ belongs to the domain of attraction of a-
stable random variable if in the neighbourhood of zero it has characteristic

function

Eexp(isf) = (—va(@)(1 — ifsign() tan &) +ixp) if o # 1,

exp (—Ua($)(1 + iB2sign(z) In(|z])) + ia:,u) if =1,
where v, (z) = 0%h (\x]_1> |z|*(140(1)), h-asv.tf, a e (0,2],0 >0,|8] <
1, € R. The standard reference on this is [29].
For simplicity let us assume that o = 1. We will be working under the

assumption that g = 0 in the case a = 1, therefore we can write
. . . —1 a . <a> .
Eexp (ix§) = exp ( h (|:c| ) (|z|” —ifx'Y 1) (1 + r(x)) + 1:Cu) , (2.13)

where 7(z) — 0, as  — 0, 2{% = |z|"sign(x), 7o = tan (7a/2) if o # 1,
and 7 = 0.

Now we shall recall the notion of linear stable processes of continuous
time. It is well-known what important role a-stable stochastic integrals
play in the theory of stable random vectors and processes, that is, integrals
of non-random functions with respect to a-stable random measures. The
large part of the monograph [58] is devoted to these integrals, therefore

we do not provide all definitions of notions, we shall remind the main of
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them only. We will try to keep the same notation as in [58], referring the
reader to this monograph. Let (E,&,m) be a measurable space with a
measure m, and let & = {A € £ : m(A) < oo} and §: F — [—1,1] be
a measurable function. Let us denote by (€2, F, P) the probability space
and by L°(2) the set of all real random variables defined on it.

An independently scattered o-additive set function M : & — LY(Q) is
called an a-stable random measure with control measure m and skewness
intensity [, if for each A € & a random variable M (A) is stable with
scale, skewness and shift parameters m(A)Y®, m(A)~" [, (z)m(dx), and
0, respectively, see Definition 3.3.1 in [58]. Taking f € L*(E,&E,m), we

get an a-stable random variable

X = [ fla)M(dw),

while taking a collection f; € L*(E,E,m), 1 =1,...,k, we get an a-stable

random vector

(X1,.... X3, Xi:/Efi(x)M(dx).

Taking a family of functions {f;,t € T} C LY(E, &, m) we get an a-stable

random process

X(t) = /E fila)M(dz), t e T. (2.14)

It follows from Property 3.2.1 in [58] that the joint characteristic func-
tion of X (¢1),...,X(tq) is

¢t17...,td($17 e xd)
«

X

d

Z xjftj(u)

= exp —/
( Fli=1

d T
X (1 — i8(u)sign (Z :cjftj(u)) tan 2) m(du))

J=1

10



if « # 1, and

Gtr,ty(T1, .. Tg)

( d
= exp —/
E |

2 d
X (1 + i;ﬁ(u)sign (Z z;fi,(u ) In

j=1

Z 'rjftj

o)

Important linear stable process of continuous time is linear fractional

if a = 1.

Lévy motion (LFLM). It is the stochastic process given by

Zo11(a,b;t) / ot (a, b;t,u) M(du), (2.15)

with

(o) = a (=) — (-0 ) +
+b (((t —w) ) ((_u))H;> |

M — a stable random measure on R with Lebesgue control measure, skew-
ness intensity 5(u) satisfying two additional conditions (we refer the reader
to Definition 7.4.1 in [58] for details), a®> +6* > 0,0 < H < 1,0 < o < 2
and H # 1/a.

An extension of LFLM to the case H = 1/a, 1 < a < 2, is log-
fractional stable motion. Suppose M is a stable random measure on R
with Lebesgue control measure and a constant skewness intensity. Log-

fractional stable motion is the stochastic process defined as
Ao(t) = [ (nft— 2| —Infa) M(d), t€R

The increment process of LEFSM is known as linear fractional stable

noise, it equals

Yi(t) = Zagr(a,bit + 1) — Zogla, b;t). (2.16)

11



and forms a stationary sequence. It can be expressed as

Vi) = [ fila)M(da). (217)

where M is a stable random measure on R with Lebesgue control measure,

and
filx)=a((t+1—2)L —(t—2)D)+0(t+1—2). —(t—2)T), (2.18)
with n = H — 1/a. Similarly, the log-fractional stable noise equals
Ya(t) = Au(t + 1) — Au(2), (2.19)

and can be expressed as (2.17) with

t+1—=x

filz)=In|t+1—z| —In|t — x| =In ;
-

(2.20)

Fractional noise processes described above are examples of moving av-

erage processes — processes X (f) that can be represented as

X(t) = /Z F(t — 2)M(dz), (2.21)

where M is a stable random measure with the Lebesgue control measure
and f € L.
An important SaS moving average process is the Ornstein-Uhlenbeck

process, which is defined as

X(t)= [ exp(=A(t — 2))M(d),

where M is SaS stable random measure with Lebesgue control measure.

Next, we recall the notion of association, which has origins in several
papers, see [21,22,27,40] and, for more information on association and
related notions (positive and negative association, association of measures,

etc.), see monograph [12]. Random variables X7, ..., X,, are associated if

Cov(f(X1,..., Xn),9(X1,..., X)) >0

12



for each pair of functions f,g : R® — R that are non-decreasing in each
coordinate and for which this covariance exists. An infinite collection of
random variables is associated if every its finite subset consists of associ-
ated random variables. In [39], it was proved that a jointly stable random
vector (X7i,...,X,) is associated if and only if its spectral measure I,

satisfies the relation
l“n(S”_1 N {[0,00)" U (—o0,0]"}) = 0.

In the proof of Theorem 5.1, we will use the following multivariate

Fekete lemma from [15].

Lemma 2.5 ( [15]). Let f: Z% — [0,00) satisfy the conditions

[, 2+ Y5, rq) < fle, .o 2,0 xq) + f(e, .0,y -0, 2a)
(2.22)
forall zy,...,2q,y; € Z4 and j € {1,...,d}. Then

lim f(ni,...,nq)
n—oo nlnd

(2.23)

exists and equals
. ny,...,Nyqg
inf fu, - )
nEZﬁf_ ny---ng

Remark 2.6. As in the original Fekete lemma (d = 1), if instead of subad-

ditivity in each argument (2.22), we have superadditivity in each argument

fler, ..o x4y, zq) > fer, ..oz, zq) + f(on, -,y -0, Za),

then again the limit (2.23) exists, but now it equals

sup f(nla"'and)‘

neZi nl..-nd

13






3 Literature review

3.1 Measures of dependence of processes

with infinite variance

Spectral correlation coefficient and spectral covariance

In the paper [53] an attempt was made by Press to introduce a measure
of dependence between coordinates of Sa.S bivariate vector sharing some
properties with the usual correlation coefficient. A mistake, later pointed
out by Paulauskas in [50], led the author of [53] to believe that all such

vectors have ch.f.

E exp (i((X1, X2), (01, 02)))

= exp (_ i (w1 (467 + 2wi2(i)6162 + w22(i)9§)a/2) , (3.1)

i=1

where
wi (i) wi(i) |
ai=1,....m
wgl(i) U)gg(i)
are symmetric positive semi-definite matrices. Press suggested to define
the association parameter (a.p.) of (X7, X2) as
>oiey wia(4)

VE wn (@) (S7 wa (i)

Having shown that there are Sa.S distributions with ch.f. that can not

p<X1> XQ) =

be expressed as (3.1), Paulauskas in [50] has suggested another measure of
dependence — the spectral correlation coefficient (s.c.c.) defined in (2.8),

originally called the generalized association parameter — which could be

15



applied to any bivariate SaS vector. The paper highlighted some good
features of this dependence measure, namely, it was shown that the s.c.c.

p has the following properties:
Proposition 3.1.
1. |p| <1, and if the coordinates of X are independent then p = 0;

2. if |p| = 1, then the distribution of X is concentrated on a line, i.e.,

coordinates X1 and Xy are linearly dependent;

3. if a = 2, p coincides with a correlation coefficient of a Gaussian

random vector with characteristic function (2.6);

4. p is independent of o and depends only on the spectral measure I' of

X.

5. if a random vector X is sub-Gaussian with ch.f.

exp {—(U%t% + 2royootity + a%t%)a/2} :

where o2, 03 are variances and r is the correlation coefficient of

underlying Gaussian vector, then the spectral correlation coefficient

equals r.

For a long time, except for a brief mention in [58], there was almost no
literature dealing with this measure of dependence.

The interest in the spectral correlation coefficient was revived in [24],
where it was compared to a newly introduced measure of dependence.

An unpublished paper [51] by Paulauskas followed, first part of which
can be considered as a program for developing theory of spectral covari-
ances. In the paper Paulauskas introduced another measure of dependence
— the spectral covariance — an analogue of the usual covariance defined by
(2.7). The spectral covariance and s.c.c. in [51] were referred to as a-

covariance and a-correlation coefficient. It was shown that the notion of

16



spectral covariance and s.c.c. can be extended to general bivariate a-stable
random vectors. Also, it was shown how those measures of dependence
could be used to measure dependence between coordinates of a vector be-
longing to the normal domain of attraction of a-stable random vector.
Later, in [18], it was noticed that the same approach can be used to vec-
tors belonging to the domain of attraction of a-stable random vector: let
¢ = (&,&) be a random vector satisfying the following condition: there
exist a number 0 < o < 2, a s.v.f. L, and a finite measure I" on S!' such

that

«

P ([|¢] > =, €€~ € A) =T(4) (3.2)

lim —
11m

for any Borel set A on S' with ['(QA) = 0. It is well known (see [56])
that this condition is necessary and sufficient for (£1,&2) to belong to the
domain of attraction of an a-stable random vector X = (X3, X3) with
exponent « and spectral measure I'. The spectral covariance and s.c.c. of
(&1, &) were defined by means of the measure I' in the same way as these

quantities are defined for an a-stable random vector X = (X1, X»):

pl€1,€) = p(X1, Xz) = [ s1520(ds),

and similarly for (&, &); see [18] for motivation of such a definition.

Also, it was demonstrated in [51] that the notion of spectral covariance
can be naturally extended to a-stable random vectors with values in R?
or even in separable Banach space.

The spectral covariance and s.c.c. for stochastic integrals (and linear
processes, which can be considered as a particular case of stochastic in-
tegrals) does not depend on the skewness intensity 5(x). To see this, let
(X1, X2) be a bivariate Sa.S random vector, defined by means of stochastic

integrals, i.e.,

(X1, Xa) £ ([ A@)M(do), [ fol@)M(dr)),

17



where < stands for equality in distribution. In Chapter 3.2 in [58] one
can find the following expression of the spectral measure I' of the random

vector (X1, X2) via control measure m, skewness intensity 5 and functions

f17f2:

1+ B(x)

T(A) :/g 5 ml(dsc)+/g

~H(4)

where A is a Borel set in S',

g (A) ={z € By : (1(w), g2()) € A},

Ey={z € E: fi(x) + f;(x) > 0},

/2

mi(da) = (f7(x) + f3(x)) " m(dz),
and
(z) = filx) i=12.
T

From this expression it is easy to see that in the calculation of spec-
tral covariance the expression sysol'(ds) + (—s1)(—s2)I'(—ds) is equal to
5159m1(d2) |(g,(2),g2(x))=+(s1,50), Where the last expression means that the
differential is calculated at points where vector (g1, g2) is equal to (s, s2)
or —(s1, $2). Therefore, we get the following expressions of spectral covari-
ance and spectral correlation coefficient:

p(X1, X) = [ — fl(x)fz(x) —m(dz), (3.3)

(fi(z) + fi(z)) 2

" <f2(f;f;§?(§ig?“ )
ﬁ(XlaXQ) = e

Ji(z)? fa(x)? 12
J. L2 —m(dx) [, 22 2_amdx>
( g (fi(@)+f3(x) 2 ( ) g (fi(@)+f3(x) 2 ( )

Formally in the above written formulae one should integrate over E, =

{x € E: fi(x) + f3(x) > 0}, but for convenience of writing we agree that
the integrand is equal to zero if fZ(z) + f2(x) = 0.
Another interesting topic, especially for practitioners, is the estimation

of spectral covariances, for which we must have estimates of the spectral
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measure ' and (in the case of estimation of other measures of dependence)
of the parameter a. Whereas for univariate heavy-tailed distributions,
estimation of the tail index is developed quite well, this cannot be said
about the multivariate case. Here we restrict ourselves to giving references
[16, 20,49, 55], where estimation of the parameters of multivariate heavy-
tailed distributions is considered. In [33], the first estimate of the spectral
covariance (where as in [50], the term "generalized association parameter"

is used) is constructed.

Other measures of dependence

In this section we present an overview of research involving measures of
dependence for random variables with infinite variance. This overview is
in no way complete, but is sufficient to illustrate the field of research and

to survey some recent results.

The covariation was introduced by Miller in [46] and since then was
widely investigated. Together with its generalization to pth order random
variables, it naturally appears in many settings. We refer the reader to the
paper [14], or [13], where a connection between the covariation, conditional
moments, and James orthogonality was established.

In [2,4], the quantity U(0y, 62; X1, X2), defined in (2.12), as a measure
of dependence between the coordinates of an a-stable vector (Xi, Xs),
was considered. Later on (see [36,37]), it was noted that, instead of this
difference, it is more convenient to consider the generalized codifference
1(61,09; X1, X5), defined in (2.11).

Many properties of codifference and covariation are presented in [58].

For example,

Theorem 3.2. For a SaS, 0 < a < 2, stationary moving average process
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tlilglo T(Xt, X()) = 0.

For the proof see Theorem 4.7.3 in [58]. The exact asymptotic rate of
decay of dependence measures is of interest — in some papers it is used
to classify long memory, long-range dependence. There are many papers
dealing with asymptotic behaviour of dependence measures.

In [36] ARMA time series with Sa.S innovations were investigated and
the codifference was used as a substitute for the usual covariance. It was
shown that 7(X,,, Xy) is bounded above by exponentially decaying function
and exact asymptotics of 7(X,,, Xo) were evaluated in some cases.

In [37] the asymptotic dependence structure of time series X (n) satis-
fying FARIMA equation was studied. To be precise, the codifference and
covariation were used to investigate dependence between X (0) and X (n)

as n — oo. X(n) is the unique solution of
®(B)X(n) = ©(B)(1 — B) %y,

where ® and © are polynomials with real coefficients and no common
roots, © has no roots in the closed unit disk, B is the backshift operator,
and €, is a sequence of i.i.d. SaS random variables.

Solutions of FARIMA equation investigated in [37] are a particular case

of processes
X(n) =) cjen (3-4)
j=0

where €; are i.i.d. SaS random variables with ch.f. exp(—|¢|¥), and ¢; are
asymptotically equivalent to some regularly varying with index p < —1/«
function U(j). In [38] such more general linear processes were investigated

and the following theorems were proved:

Theorem 3.3 ( [38]). Suppose 0 < o < 2, p < —1/a, and consider the

moving average process (3.4).
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I Ifa>1, pla —1) < =1 and ¢; ~ U(j) for some reqularly varying
with index p function U, then

. T(Xna XO)
lim ———— j
n—00 U(n) 20

2. Ifa>1, pla —1) > —1 and

yduory e

for some non-increasing reqularly varying with index p function U,

then
. T(XTH XO) o & Jole’ po p P&
nh—>nolonUa(n)_/0 Yy y+ 1) = (v = (y+ 1)) dy. (3.6)

3. If a < 1, then (3.6) holds, provided (3.5) holds for some non-
increasing convex regularly varying with index p function U whose

derivative U’ satisfies

Uz +n)

() =0(x7") a.e., as T — oo. (3.7)

1

Theorem 3.4 ( [38]). Suppose 1 < a < 2, p < —1/a, and consider the

moving average process (3.4).

1. If pla—1) < =1 and ¢; ~ U(j) for some regularly varying with index
p function U, then
. [Xn XO]oz > —1
lim 2ol $s cam1s
i, U(n) JZ_%)CJ
2. If plae — 1) > —1 and (3.5) holds for some non-increasing regularly

varying with index p function U, then

[XnaXO]a o

lim -/ Ty + 1)PyPeDdy. (3.8)

n=00 nU*(n)

In [4] the asymptotic dependence structure of linear fractional stable
noise and log-fractional stable noise with a constant skewness function
f(x) = B was investigated. We state the results for the symmetric pro-

cesses, as it was done in [58].
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Theorem 3.5. Consider linear fractional stable noise Y1(t) defined by

(2.16) and suppose it is symmetric.

Ifo<a<l,0<H<lorl<a<2 1-1/(ala—1)) < H <1,
H # 1/a, then

](91,92;Yi<t),Yi<O)) ~ B(Ql,eg)taH_a, (39)

as t — oo.

If a =1, 0 < H < 1, then (3.9) holds if either sign(ab) = 1 or
sign(610:) = —1. If a« = 1, sign(ab) # 1 and sign(010y) # —1 then
B(64,02) =0 and

1(61, 653 Y1(1), Y1(0)) ~ =2(1 = H)(Jab1| + [b6a])¢"

ast — oo.

Ifl<a<2, 0<H<1-—1/(a(la—1)), then
101,02, Y:1(t),Y1(0)) ~ F(6y,0,)t /271

ast — oo.

The constants B(6y,02) and F(61,02) are as follows

1
B(6:,6,) = |H— -
(0

O‘ ( al” /_0 Y e A N G L

—|on (1 — )7 (=) Y dat
+ /01 ‘a&l(l — g)fI=lemt b@ng_l/o‘_l‘a -
- ‘aﬁl(l — x)H_l/O‘_lla — ’b&ng_l/o‘_l‘a dz+

+ |b|* /OOO 02(1 + @)1/t gy =t/emt "

. ‘92(1 + x)H—l/a—l‘a . ‘leH—l/a—l‘adx),
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F(01,05) = (Ha —1)x
X (a91</000 (at92 ((1 — )=l (—x)H_l/a))<a_1> dz+

+/ 92 )= la _ be—1/a))<a*1> dut
+/1 b@g (:1: — e fol/a))<a—1> dx)—i—
+ 692(/0 (b@l ((1 _ w)H—l/a o (_aj)H—l/a)><a*1> n

—I—/ 91 )= 1a _ axH—l/a)><O‘_> dz+

+ /1 (a@l <(£C D :UH_l/“))<a_1> dx))

Theorem 3.6. Consider log-fractional stable noise Y5(t) defined by (2.19)

and suppose it is symmetric. Then

[(817 927 YYQ(t); YVQ(O)) ~ G<917 62)t1_a7

where
o 0, 0o |* 0, |¢ 92
G(ghgz)_/—oo(‘l%—x_x _‘1+x x )dx+
o) 02 9105 92 @ 01
- —| - d
+/0 (‘14—:6 T ‘1+x x > o

Remark 3.7. For comparison, without the assumption of symmetry the
rate of decay in Theorem 3.6 would be the same, but the expression of

G (64, 6,) would be different. It follows from Theorem 2.4 in [4] that

G = [ (e(12+ ) —e(12) e () ars
o <£<1i2x+il) _5(1%:) _€<9x1>>dx'

E(u) = |ul® (1 — ifsign(u) tan ﬂ;) :

where

and £(u) denotes the complex conjugate of &(u).

23



Another paper that deals with codifference for non-symmetric processes
is [54], where the asymptotic behaviour of codifference was investigated for
a-stable random process, expressed as a sum of stochastic integrals with
respect to non-symmetric a-stable random measure.

In the paper [41] the decay rates of the codifference and covariation for
increments of infinite-variance renewal-reward process were examined.

In [42] the codifference and covariation were used to investigate the
dependence structure of linear log-fractional stable motion — a process

defined for 1 < o« < 2 as

Y (t)

_ /_O:O a (Ing(t — z)4 — Ing(—z)4) + b (Ing(t — z)_ — Ing(—2z)_) M(dz),

where |a| + |b] > 0, M is a SaS random measure with Lebesgue control
measure, and

Inz if x > 0,
111032':

0 otherwise.
It was shown that codifference of this process decays faster than covariation
if a # b and ab # 0.

In [43] linear fractional stable noise in the previously uninvestigated
boundary case 1 < a <2, H=1-—1/(a(a — 1)) was examined. In the
paper the asymptotic behaviour of (2.12) was studied.

The paper [44] deals with symmetric log-fractional stable noise. It was
shown that as t — oo, the codifference satisfies 7(Ya(t), Y2(0)) ~ Cytt=
and covariation [Y3(t),Y2(0)]q ~ Cot!™®, where C; and Cy are positive
constants.

A symmetrized and normalized version of the covariation for Sa.S ran-
dom variables was introduced in [23]. Later, in [24] a new measure of
dependence, called the signed symmetric covariation coefficient, was intro-

duced. A modified version of this measure was defined in [33]. For details
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and properties of these measures of dependence we refer the reader to the
original papers.

It seems that there were almost no attempts to investigate the asymp-
totic dependence structure of linear fields with infinite variance. As an
exception we can mention the papers [34,35]. In the first paper Chentsov
type random fields, introduced by Takenaka in [62], are considered, and

in the second — linear fields
X(t) = / (p(x — t)f=me — p(x) /) M(dx), t € R,

where M is SaS random measure with Lebesgue control measure, p is
arbitrary norm on R", and H € (0,1), 0 < o < 2. Both papers investigate
the asymptotic dependence structure as u — oo of one-step increment of

projection processes
Xe(u) = X((u+1)e) — X(ue),u € R,

where e € R".

We do not discuss the relation of the measures of dependence, based
on the spectral measure of a-stable or regularly varying random vectors,
with measures of dependence of different nature, which can be defined for
random vectors with infinite variance, such as Spearman’s p, Kendal’s 7,
or the distance covariance. The last mentioned measure has some similar-
ity with the codifference since, as a measure of dependence between the
coordinates of a vector (X7, Xs3), the weighted (with some specific weight)
Lo-norm of the difference E exp{i(sX; 4+ tX3)} — E exp{isX; }E exp{it X, }
is taken; see [60,61]. Recently, another distance based measure of de-
pendence for stable random variables was introduced, its properties were

studied and compared with codifference and covariation, see [1].
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3.2 Limit theorems and memory

Relation between the spectral covariance and limit

theorems

The classical central limit theorem is well known — if we have a sequence
of i.i.d. random variables X}, k € N, with finite variance ¢? and mean p,

then
Zzzl(Xk - N) d
Vn

where N'(0,0?) is the normal distribution.

» N(0,0%), (3.10)

It turned out that (3.10) also holds for sequences of dependent random
variables, provided the dependence is not too strong. The well known
central limit theorem of Newman (see [47], where this theorem was proved
for fields on Z¢, or [48], where functional CLT was proved in the case
d = 1) states that if for a stationary and associated sequence Xy, X, ...
with EX; = 0 and EX? < oo, the series of covariances converges, that is,

if

Y EX X} < oo, (3.11)
k=2
then
n_ X
Lh=1k _d, p\r(g) 52, (3.12)

vn
where 0% = EX? + 2322, EX X}

The condition (3.11) is equivalent to convergence of the sequence

n
K, =Y EX|Xj,
k=1

and is optimal in a sense that it can not be weakened — an example of
stationary associated sequence was provided in [28] with K, ~ Inn for
which Y7, Xi/v/nK, does not have any non-degenerate limit distribu-
tion. In [59] a strictly stationary associated random sequence is con-
structed which does not satisfy the central limit theorem and such that

K, is an arbitrary s.v.f.
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In earlier papers devoted to limit theorems with stable law limits (see,
e.g., [30-32]), some conditions on weak dependence or mixing were used;
for the latest results in limit theorems with stable limits, we refer the
reader to [7], where a large list of references can be found. A different
approach is used in [17], where the spectral covariance (of course, without
using this name) was used in limit theorems for associated sequences with
infinite variance.

Before stating the results from [17], we recall some notions. A se-
quence Xi, Xo,... is jointly a-stable if for any n € N there exist a spec-
tral measure I, on S"!, and a vector b, € R” such that the vector
(X1,...,X,) has ch.f. (2.5) with b = b, and I' = T',,. If, additionally,
the sequence is stationary, then b,, = (b,...,b) for some b € R. A stable
vector (Xq,...,X,) is strictly a-stable if either 5, = 0 in the case a # 1
or Jgn18,(ds) =0, ¢ =1,...,n, in the case a = 1,

Let us denote S,, = >-}_; Xy and by p(k), k > 2, the spectral covariance
of a two-dimensional stable vector (X7, Xj). If this vector is associated,

then p(k) > 0. We are now ready to state the following result from [17]:

Theorem 3.8 ( [17]). Let X1, Xo,... be a stationary, associated, and
jointly a-stable sequence.
If0 <a< 1, then
Sn

d

where [ s a strictly a-stable distribution.
If « = 1, then there exist constants A,, such that S, /n — Anin.
Ifl1<a<2and
S plk) < o, (3.14)
k=2
then

S,—ES, S,—nb 4
Ao = i > I, (3.15)

where 1 is a non-degenerate strictly a-stable distribution.
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It was noted in [17] that the limit law p in (3.13) may be degenerate,
which can be seen from the following example given in [17]. Let X be a
strictly a-stable random variable, 0 < a < 2, and define X; = X for all
1 € N. Then this sequence is stationary, associated, and jointly a-stable,
and

n—l/aSn — nl—l/aX'

This equality shows that, for such a sequence and 0 < a < 1, the limit
p is degenerate. The same example shows that, without condition (3.14),
relation (3.15) may fail since, in the case 1 < a < 2, the sequence n~/%S,,
diverges. Also, condition (3.14) suggests that, when considering random
variables with infinite variance, the spectral covariance is a natural candi-
date to substitute the usual covariance.

If we were able in Theorem 3.8 to change stationary, associated, and
jointly a-stable sequence X7, Xs,... by a stationary and associated se-
quence that belongs to the domain of attraction of X7, Xs,..., then we
would get a complete generalization of Newman’s theorem for associated
sequences with infinite variance. Unfortunately, in attempt to do this
in [17], a condition stronger than (3.14) is assumed. In order to state this
result, we need more notation from [17]. Let {X;, ¢ € N} be an arbi-
trary stationary sequence, and let {Y;, i € N} be a stationary and jointly
strictly a-stable sequence. We say that {X;, i € N} belongs to the domain
of strict normal attraction of {Y;, ¢ € N} and write {X;} € D, ({Y:}) if,
for each m € N, the distribution of the vector &,, = (X1, ..., X,,) belongs
to the domain of strict normal attraction of the a-stable random vector

Nm = (Y1,...,Yy). This means that, for each m > 1,

n
n~ ey, Em.;j 4, Nm &S N — 00,
j=1
where &, ;, 7 > 1, are independent copies of ;. The subscript "sn'

stands for "strict normal" and points out that the convergence is required
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—1/a s used for normalization, whereas in

without centering and that n
the general definition of the domain of attraction, centering and general
regularly varying functions are allowed for normalization.

For an associated and stationary sequence {X;, i € N} for fixed A > 0

and 0 < a < 2, the following quantity is introduced

b b
A ) ) — a—2
15 (X3, X;) gg}zb Lbﬁb Hx, x;)(z,y)dzdy, (3.16)

where
Hx, x)(2,y) =P(X; <2, X; <y) - P(X; <2)P(X; <y).
Let, as before, S, = >5_; Xk, and let Z,, = >}, Yk.

Theorem 3.9 ( [17]). Let {X;, i € N} be a stationary associated sequence
such that {X;} € Den,({Y:}), where {Y;, i € N} is a stationary and jointly
strictly a-stable sequence, 0 < a < 2, and I',, is symmetric for all n, if
a=1.If

3 I(X, X)) < o0 (3.17)
k=2
for some A > 0, then there exists a strictly a-stable distribution p such

that
Sn d
nl/a — M
and
Zn d
e M (3.18)

Remark 3.10. Tt is appropriate to mention the paper [45], where the result
similar to Theorem 3.9 is proved under conditions allowing the divergence

of the series in (3.17).

Memory

The notion of (long) memory is of interest both in theory and practice,
there are many papers that mention this concept. However, different au-

thors can understand this notion differently — there is no one universally
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accepted definition. For example, in the literature one can encounter the

following definitions of memory for processes with finite variance:

Definition 1. A stationary process (X;, t € Z) is called a long memory

: : e oo B
process in the covariance sense, if 3222 |Cov (X}, Xo)| = oo,

Definition 2. A stationary process (X;, t € Z) with a spectral density
function fx is called a long memory process in the spectral density sense
if
sup fx ()
inf fx(\) =00

Definition 3. A stationary process (X;, t € Z) is called a long memory

process in the covariance sense with a speed of convergence of order 2d, 0 <

d < 1/2, if there exists a constant C' (dependent on d) such that
Cov(Xy, Xo) ~ Ct?4 1,

as t — o0.

Definition 4. A stationary process (X, t € Z) is said to have Allen vari-

ance long memory if

Var (37, Xp) s
n

as n — o0.

We refer the reader to the papers [26] and [57] for a extensive overview.

The definitions of memory above use concepts that require the process
to have finite variance. It is not immediately clear how to extend the
notion of long memory to the infinite-variance processes. For example,
in [38] long memory was based on decay rate of codifference.

In a recent paper [52] it was suggested to classify memory (with respect
to summation operation) of general stationary sequences by means of the

growth of normalizing sequences for partial sums as follows:

Definition 5. Say {X,,n € Z} is a stationary sequence that is not subor-

dinated, has finite variance and zero mean or is jointly regularly varying

30



with index 0 < a < 2, EXy = 0 if a > 1, and X is symmetric if a = 1.
Also, suppose there exists a normalizing sequence 4,, = n!/ @[, (n), where
—1/a <d <1—-1/a and L is a s.v.f., and a constant b € R such that
AL 1(2&2’? X;— |nt] b) converges in the sense of finite dimensional distribu-
tions to some stochastically continuous process that is not identically zero.
The sequence {X,,,n € Z} has zero memory if § = 0, positive memory if
0 > 0, and negative memory if 6 < 0. The sequence has strongly negative
memory if for any sequence B,, — oo, the sequence B, ' ZZLZ? X; weakly

converges to zero.

Suppose X,, = X2 ¢;i&,—i, Where &; are i.i.d. SaS random variables,
>0 il < oo. In [52] the following conjecture is stated, which, if true,

would relate the notion of spectral covariance and negative memory:

Conjecture 3.11. In the case 1 < a < 2, Z;‘;O c; = 0 and
¢j =3 1+ 0G"), j=1,
with some function h, we should get that p(X,, X) is of order C(a, B)n'=5«,

In [52] the following definition was proposed for stationary random field
X = { Xy, k € Z%} that is not subordinated and is with finite variance or
is jointly regularly varying with index 0 < o < 2, EXp =0 if @ > 1, and

Xp is symmetric if a = 1.

Definition 6. Suppose a stationary random field X is as described above
and 6 = (61,...,04). X has directional é-memory is there exist slowly
varying functions L;, ¢ = 1,...,d, such that

ALY X

1<k<n

converges in distribution to a nondegenerate law, where

d
An = [ Li(ng), =1/ <6 <1—1/a.

1
i=1
The field has isotropic memory if §; = ¢ for i = 1,...,d and this isotropic

memory can be positive, zero, or negative, depending on the sign of 4.
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Limit theorems for linear processes and fields

Linear processes

Xn = Z Cign—ia (319)

i€
with innovations &;, ¢ € Z, being independent identically distributed(i.i.d.)
random variables and coefficients {¢; } such that series (3.19) converges a.s.,
are widely investigated as they allow to model various types of dependence
and memory. A question often studied is the convergence of appropri-
ately normalized and centered partial sum process S, (t) := Z,EZJ) Xp,t >
0, S,(0) =0.

Suppose that & belongs to the domain of attraction of a-stable law,
ie., a, 1 >oieq & — by, converges in distribution to a-stable random variable,
a € (0,2]. Tt is well-known that then a, = n'/“L(n), where L is a slowly
varying function (s.v.f.). Centering sequence b,, is simple: if & > 1 one has
b, = a, 'nE&, if a < 1, centering is not needed at all, and only in the case
a = 1 centering is a little bit more complicated. In order to avoid these
complications in the case o = 1 it is often assumed that the innovations
are symmetric. The case o = 2 (i.e., when &; belongs to the domain of at-
traction of a Gaussian law) is investigated deeply, many results concerning
the convergence of S, (t), or more general partial sum processes, formed
by stationary sequences with finite variance are documented in series of
monographs, starting from classical monographs [10,11] and ending with a
recent one [25]. The case 0 < a < 2 is less investigated, but the interest in
the convergence of partial sum processes, formed by stationary sequences
with infinite variance to stable limits during the last two decades had in-
creased greatly. This can be explained by the fact that many processes
in practice can be modelled using heavy-tailed distributions. We mention
only several papers, which are, in our opinion, close to the present work.
Namely, we refer the reader to papers [3,5,8,19,30,31], also one can find

more references in the paper [6].
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Important case of processes satisfying > ;ez |ci| < oo is investigated
in [5] where necessary and sufficient conditions were provided for con-
vergence in finite-dimensional distributions A5, (t) —2% Sicp ¢ Z(1),
where Z(t) is a-stable Lévy motion and A, = n'/“L(n). However, in the
case Y ;ez ¢; = 0 the limit is 0 and different normalizing sequence is needed
to get a non-degenerate limit (we say that A, is a normalizing sequence of
Sn(1) if A1S,(1) converges in distribution to some non-degenerate ran-
dom variable. In what follows A, denotes the normalizing sequence of
Sn(1)). Using the terminology from [52] one can say that in [5] the case of
zero memory was considered. Processes with negative memory were little
investigated in the literature. It seems that only in [3] all three cases of
memory are considered, but even there the proofs are given only in the case
of zero and positive memories, the proof in the case of negative memory
is left for readers.

To formulate Theorem 1 from [3], we need some notation.

Let X, = X a(k — j)&;, k € N, where §; are i.i.d. random variables
such that

P& < —t) = (C) + o(1)th(t), P(& > t) = (Co + o(1))th(t),

ast — oo, where C; >20,Cy >0,C;+Cy >0,and hisas.v.f. Ifa=1
it is assumed that Cy = (. This is equivalent to & having characteristic

function
Eexp(it€1) = exp (~(C + o(1) | H(|t] (1 — iDsign(1)))
as t — 0, where
(Ch + Co)T(|1 — a) cos(am/2) if a # 1,

(C+ Co)r/2if a = 1,

b_ tan(amr/2)(C; — Cy)/(Cy + Cy) if a # 1,

0if a=1,
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and H is a s.v.f. related to h (we refer the reader to the original paper for

details). Let us denote

125 (¢ = 2)17 = (=)L) M(da) i B # 1,

I2% Lon ()M (dx) if B =1,

y (8) (t) =

where M is an a-stable measure with Lebesgue control measure and con-

stant skewness intensity D.

Theorem 3.12 ( [3]). Suppose X}, is as described above.

i)

iii)

If ¥ la(y)] < oo and Xja(j) # 0, then the process

_ E;En:t{ X,
Ol |55 al)| ni/aHa * (n)

Y, () , 120,

asn — oo converges in finite dimensional distributions to the process

YW defined above.
Ifa>1, 1/a<p <1 and

- |iPLG), jEeN,
a(j) =
0 otherwise,

where L is a s.v.f., then

_ ZIETZ{ X
11— B|-1CYant/at1=6 [(n)HL* (n)’

Y, (t) (3.20)

asn — oo converges in finite dimensional distributions to the process

Yy (B
If0<a<2 max(1l,1/a) < < 1/a+1,
> a(k)=(8-1)"" n""L(n),

where L is a Zygmund s.v.f., and a(k) = 0 for k < 0, then the
process (3.20) converges in finite dimensional distributions to the

process Y.
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Remark 3.13. Paper [3] deals with slowly varying functions, however, there
is a gap in the proof of Theorem 3.12, part (ii). The relation (27) in [3]

claims that

h (AN ‘Ele U N | (J)‘1>
sup

— -1 —=0, N = o0, (3.21)
J h(An lan () )

here his a s.v.f., ay(j) = Si; a(k — j) and a(k) = k7P L(k)1j o) (k) with
a s.v.f. L. Let us take, for example, L(z) = 1,h(z) = In(z), n = 1,u; =
1,1 = 2. Now (3.21) simplifies to

In (A aan () 7)

In (Ax laxG)[ )

sup — 0, N — oo, (3.22)

J

with the normalizing sequence Ay = KNYot=F1n/*(N) K > 0. For

any 7 we have

In (A Jazn (7))
h (AN |GN(j)|_1>

If jy = N — 1,

In (AN |G2N(j)|_1>
In (Ay |aN(j)|_1)

=

_1‘.

J

1
an(jn) =1, aan(jn) ~ Nl_ﬂ/o u"du,

which implies

In (A [asn (jn)| ™)
In (A Jan(jn)| )

proving that (3.22) does not hold.
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4 Spectral covariances

4.1 The problem and results

As was mentioned in the literature overview, the spectral covariance did
not attract the attention of fellow scientists in the field. In this chapter
we investigate asymptotic behaviour of the spectral covariance for some
processes and compare them to known results about other measures of
dependence. We also study the asymptotic dependence structure of a
certain linear field.

We begin by introducing another measure of dependence. For an a-
stable random vector X = (X7, X3) with spectral measure I', we introduce

the quantity
pa(X1, Xo) = [ 15T (ds), (4.1)

which we call the a-spectral covariance, emphasizing that this new measure
of dependence depends not only on the spectral measure I', but also on a.
Just like the spectral covariance, this notion can be extended to random
vectors satisfying (3.2) with the same spectral measure I'.  Motivation for
the introduction of this dependence measure will be given later.

Let us compare the measures of dependence by looking at a simple

example.

FExample 4.1. Let Zy,Z5 be two i.i.d. SaS random variables with ch.f.
exp(— [t|*) and let X. = Z; + ¢Zy, Y = Z,. Then it is easy to calculate

(X, Y]e=c, [V, X]a=c1,

c) = XC,Y:%,~CZZNXC,Y: ‘ ;
PE) 1= X ¥) = o ) = V) = e
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palc) == pa(Xe,Y) = C%a
and
7(c) = 7(X,Y) = lc|* +1—|c—1]|".
We see that p(c) ~ c and p(c) ~ ¢ as ¢ — 0, independently of a (which

is very natural), while for the codifference we have

ac, for a>1,
7(c) ~
c|*,  for a < 1.

The codifference in the case a = 1 looks strange

0, forc<0,
T(c)=|c|+1—fc—1=1 2, for0<c<]l,
2, forc>1.

This expression means that in the case a = 1 codifference does not show
dependence between Z1 — Z5 and Zs, but shows it between Z; + Z5 and Zs.
Also the behaviour of spectral correlation coefficient p(c) as |¢| — oo is
natural: lim._,4, p(c) = +1, while the behaviour of 7(¢) is not so natural,

for example, if @ = 1, then lim.,_ 7(¢) = 0 and lim.,_ 7(c) = 2.

Assuming that the spectral measure I' is the main parameter "respon-
sible" for the dependence between the coordinates of the a-stable vector
X, we can define other such measures of dependence. Let g : S' — R be
a function such that the integral [ g(s1, $2)I'(ds) is correctly defined and

the following conditions are satisfied:

g(s1,82) =0 if 5150 =0, (4.2)
9(s1,52) = g(s2,51), (4.3)
g(s1,52) = g(—s1,—$2). (4.4)
Then we can define
plgi X1, X2) = [ gls1,52)0(ds). (45)
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Condition (4.2) is the principal one; for a measure I' concentrated
on the axes (which means that the coordinates X; and X, are indepen-
dent), it ensures that p(g; X1, X2) = 0. Condition (4.3) gives us the sym-
metry p(g; X1, X2) = p(g; Xo, X1), whereas condition (4.4) means that,
for any non-symmetric measure I'; [s1 g(g1, s2)['(ds) = Js1 g(s1, s2)T"1(ds),
where I'y is the symmetrized spectral measure, that is, I'y(ds) = (I'(ds) +
['(—ds))/2. To define an analogue of the spectral correlation coefficient
using a general function g, we should also define g on {(s1,s92) : s1 =
s9,|s1] < 1} (not only on S') and require the following inequality to hold:

Js1 9(s1, 52)'(ds)
(Jer g1, 51)T(ds) fer g(s2, 52)0(ds))*| ~

This notion can also be extended to random vectors belonging to the do-

(4.6)

main of attraction of a-stable vector X (i.e., satisfying (3.2)), like it was
done with the spectral covariance and a-spectral covariance.

The following result shows that we can define a quite large class of mea-
sures of dependence, containing as particular cases the spectral covariance,

a-spectral covariance, and codifference.

Proposition 4.2. Two families of functions

f1.8(s1,89) = 51872 6(B/2)

)

fop(s1,s2) = |s1]” + |s2]” — |s1 — s2|”, 0< B <2,

satisfy conditions (4.2)—(4.4) and (4.6) and, via formula (4.5), generate
families of measures of dependence for bivariate vectors reqularly varying
with index 0 < a < 2 and spectral measure I'. The spectral covariance is
obtained by taking g = f12 or g = fa2/2 in (4.5), whereas the a-spectral
covariance and codifference are obtained by taking g = fi1.o and g = foq,

respectively.

In the case of the spectral covariance (2.7), we have a measure of de-

pendence independent of the value of «, which means that all a-stable
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random vectors X = (X7, X3) with the same spectral measure I' have
the same spectral covariance for all 0 < a < 2. The spectral covariance
becomes a member of two families of measures of dependence, both de-

pending on the parameter g > 0:
ps(X1, Xz) = [ "D (ds)

and
(X1, X2) = [ (111 + [s2” = |s1 = 52/”) D(ds). (4.7)

It would be natural to call these measures as the S-spectral covariance and
[B-codifference, respectively, leaving the traditional name codifference for
the case f = «. In what follows, unless stated otherwise, when referring
to codifference we mean the measure of dependence (4.7) with f = .

The idea of codifference was based on the logarithm of the ratio of char-
acteristic functions (see (2.11)), and from this formula expression (2.10)
is obtained only for SaS random vectors. For non-symmetric a-stable
random vectors, the ratio of the characteristic functions can be complex-
valued. Definitely, it is not easy to give a meaning to a complex-valued
measure of dependence. In our approach, we have the same expression
(2.10) (or even a more general measure, the S-codifference) for any a-stable
random vectors. Moreover, the (-codifference can be applied to vectors
belonging to the domain of attraction of an a-stable random vector in the
same way as it is done for the spectral and a-spectral covariances.

In general, it is impossible to compare the a-spectral covariance with
the spectral covariance, or more generally, to compare pg(Xi, X2) with
two different 0 < 31, B2 < 2. However, in some cases, for example, when a

stable vector (X7, X3) is associated, it is possible to make a comparison.

Proposition 4.3. If a stable vector (X1, Xs) is associated, then, for any

0<a<?,
pﬁl(leXQ) < IO/BQ(XI;XZ) Zfﬂl > [39
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and, in particular,

p(X1, X2) < pa(X1, X3). (4.8)

If1 <a<2, then

p(X1, X2) < [X1, Xoa. (4.9)

If 1 < a <2, then there exist constants c1,co > 0 such that
Clp(Xl, XQ) S T(Xl, XQ) S Cgp(Xl, XQ) (410)

Remark 4.4. We can make the following conclusions from this propo-
sition. Suppose X,, is an associated sequence of stable random vari-
ables. It follows from (4.10) that the series >7°, p(X7, X;) converges if
and only if the series Y22, 7(X7, X;) converges, therefore, in Theorem
3.8 the condition (3.14) can be substituted by >, 7(X7, X;) < oo to
obtain an equivalent statement. Inequalities (4.8) and (4.9) imply that
2o p(X1, Xi) < 25 pa(X1, Xi) and X525 p(X1, Xi) < XX, Xila,
thus, condition >7%, pa (X1, X;) < 00 or YX7°,[X;, Xi1]a < 0o can be used

instead of (3.14), however, then the statement becomes weaker.

Relation between (-spectral covariance and -codifference, and, in par-
ticular, between the spectral covariance, a-spectral covariance, and cod-
ifference can be demonstrated taking the Ornstein—Uhlenbeck process as

an example.

Example 4.5. Consider the Ornstein—Uhlenbeck process

X(0)= [ _exp{-A(t—2)}M(da), 1€ R, (4.11)

with general a-stable random measure M. Let us denote the S-spectral co-
variance function for this process by pg(t) = ps(X(0), X(¢)) (0 < 5 < 2),
the normalized fB-spectral covariance function by ps(t) = ps(t)(ps(0))~1,

and similar notations for the S-codifference: 75(t) = 75(X(0), X (¢)) and
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75(t) = 75(X(0), X (¢))(5(0)) 1. Due to the symmetry, it suffices to con-

sider only ¢ > 0. It is not difficult to get the following expressions:

I _ _oat\(@=5)/2
Pﬁ(t) _ Ee Atf3/2 (1 +e 2>\t> :

pa(t) = 27 (@ B)/2= A5 /2 (1 n e_m>(a—ﬁ)/z

Y

_ (a—p)/2
1 B B 1 +e 2\t
Tﬁ(t):a)\<1+e Atﬂ_’l—e )\t‘ ) (2 )

T(t) = ; <1 +e M |1 e_)‘t"B) (1+ e—2)\t)(0‘—5)/2.

From these expressions we see that exponential decay of all these functions
depends only on [, whereas the constants depend on both parameters «
and 5. Taking f = 2, f = «a in pg(t) and f = « in 73(t), we get the
following asymptotic relations for the normalized spectral covariance, a-

spectral covariance, and codifference, respectively:
p(t) ~ 20370)/26=A (4.12)

Pa(t) = e=M/2, (4.13)
Mofl <a< 2,
)~ e™M  ifa=1, (4.14)

SJiS
@

leoM jf0<a< .
From three relations (4.12)—(4.14) the most complicated is relation (4.14)
for the codifference, but the exponential rate of decay is the slowest in
(4.13) for the a-spectral covariance due to the exponent a/2 < 1. It seems
that preference must be given to the spectral covariance, which gives the
exponential decay independent of o and coinciding with the decay of the
covariance function of Gaussian Ornstein—Uhlenbeck process (o = 2), has
simple and continuous with respect to a expression of the constant in
the asymptotic relation (4.12). Here it is appropriate to note that the
constants in the asymptotic relation (4.14) differ from the corresponding

constants in the same relation in [58] since we use the normalization of
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75(t) by the value 73(0), whereas in [58], the scale parameter of X (0) is

used for the normalization.
It is convenient to introduce function

ry

Va('r)y) = T __2=a-
(£U2+y2)2T

It is easy to see that V,, is continuous and for ¢ > 0 we have V,(cz, cy) =

c*Vo(z,y). Also we have the following:
Lemma 4.6. Suppose l <a<2andz,y>0. Ifx1 > x andy; = y, then
Va(ﬂf, y) < Va(l'l, yl)

Proof. If a =2 or xy = 0 the claim is trivial, hence we assume a < 2 and

x,y > 0. Let us denote v = (2 — a) /2, then

-
Va(z,y) = ay(a® +y*) 7" = <x2iyi + xiy2i> .

_1 2—-2 _1 2-1
Since o > 1, we have 2 — 1/y < 0, thus %7 > z; 7 and ¢* 7 >y, .
We have
o1 _1 _1 91 - -1 —L1 91
oy Ayt zay Ty Ty
implying

Va(z,y) = (:Lﬂ_iy_i - fv_iyg_i)_7

We begin our study of asymptotic behaviour of the spectral covariance

by investigating linear processes

X(]{) = Z Ci€k—y, k € Z, (415)
j=0
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where ¢;, ¢ € Z are i.i.d. a-stable random variables with characteristic
function

exp (—|t|o‘ (1 — ifsign(t) tan —)) if a £ 1,

exp (—t]) if a =1,

and a filter ¢; satisfying
o

> el < oo

j=0
This condition ensures the a.s. convergence of the series (4.15). Without
any additional assumptions it is difficult to say anything about the decay

rate of p(n) := p(X(0), X(n)). We assume that
c; ~Ul(i), as i — o0, (4.16)

where U is regularly varying with index n = —x and k¥ > 1/a. Using the

o

properties of U it is not difficult to show that >; |U(7)|” < oo and the
stable process (4.15) is defined correctly. Motivation to investigate such
processes comes from [37].

The asymptotic dependence structure of the process above is described

in the following theorem.

Theorem 4.7. Suppose that condition (4.16) holds. For a linear process
X (n) defined in (4.15) we have:

Ifa<landrk>1/aorl<a<2andl/a<k <1/(a—1), then

) ~ () [ SO

dt. 4.17
0 (t2/{ + (1 _|_t)2;@)(2*0‘)/2 ( )

Ifa>1and k > 1/(a—1), then

> (a—1)
lim 7 U 7= (4.18)

In the case o > 1 and k = 1/(a — 1) we assume stronger condition

than (4.16), namely, we assume that ¢; ~ i~", then
p(n) ~n " Inn. (4.19)
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We make the following observations: First of all, comparing Theorem
4.7 to Theorem 3.3 and Theorem 3.4, we see that the decay rate of the
spectral covariance coincides with that of codifference and covariation. In
the case @ > 1 and x > 1/(a — 1) the constant $°, ¢~~~ appears in all
three theorems.

Condition Z?io c¢; = 0 has no influence on the limits in Theorem 4.7 in
the case a < 2, therefore, we can disprove Conjecture 3.11. The same can
be said about codifference and covariation. Consequently, the notion of
negative memory is not as closely related to these measures of dependence
as it is in the case o = 2.

In order to obtain the same order of decay some additional and quite
strong conditions on coefficients or the function U are imposed in theorems
3.3 and 3.4 (see (3.5) and (3.7)). The only assumption we make is that
the coefficients are asymptotically regularly varying (except in the case
a>1, Kk =1/(a—1), which was excluded from the formulation in [37,38],
only mentioning that there is a "phase transition").

Suppose that 1 < o < 2 and ¢;j ~ j7" Kk > 1/a. If ¢; > 0, the
process X (n) is associated. It is easy to determine from Theorem 4.7 that
S, p(k) < ooifand only if K > 2/a.. For k > 2/« we can apply Theorem
3.8 and conclude that

S X (k) /e L (4.20)
k=1

where p is a non-degenerate strictly a-stable distribution. Theorem 3.12
reveals that (4.20) holds for k > 1. Therefore, for 1 < Kk < 2/« the
condition Y32, p(k) < oo is not satisfied, but (4.20) holds.

We could investigate a more general linear process Z (k) = >° ¢;Mk—;,
k € Z, where n;,j € Z, are i.i.d. random variables belonging to the nor-
mal domain of attraction of an a-stable random variable, and coefficients
c; satisfy (4.16). It is easy to show that the finite-dimensional distri-

butions of the process Z(k), k € Z, belong to the normal domain of
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attraction of the corresponding distributions of the process X (k) defined
by (4.15). Therefore, by definition, p(Z(n), Z(0)) = p(X(k), X(0)) and
Theorem (4.7) holds for the process Z(k), k € Z, as well.

Next we formulate a general fact on spectral covariances of a station-
ary a-stable moving average process (2.21). This is an analogue of Theo-

rem 3.2:

Theorem 4.8. Suppose p(g; -, +) is a general measure of dependence defined
by (4.5) and |g(s1,s2)| < C]slsg\a/2. If X; is an a-stable, 0 < a < 2,

moving average process, then
lim p(g; X, Xo) = 0.
Corollary 4.9. For an a-stable, 0 < o < 2, moving average process Xy,
tlig.{) p(Xt7 XO) = 07 tli}fgo pa(Xta XO) = 0.

Let us determine the rate of decay of the spectral covariance for log-

fractional and linear fractional stable noises.

Theorem 4.10. Let Ya(t) be a log-fractional stable noise defined by (2.19).
Then
p(Ya(0), Ya(t)) ~ CH'7%,  t — o0, (4.21)

where

=2 y(L+)) O; ady — /01 (v —y)"" dy. (4.22)

()T (P + 1y "

Remark 4.11. Comparing this result to Theorem 3.6 we see that the rate

of decay of codifference is the same. Relation (4.21) holds independently
of skewness intensity [, it is not so with codifference, as was observed in

Remark 3.7.

In the next theorem we consider a linear fractional stable noise process,

which is more complicated comparing with the log-fractional stable noise,
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since the integrand f;(x) from (2.18) depends on more parameters. We
show that the asymptotic behaviour is different for different values of the
parameters, present in (2.18). Let us introduce two regions S = S; U .Sy

and U, where
Si1={(H,a):0<a<1,0<H<1},

So={(H,a):1<a<2, 1-1/(a(a—1) < H<1, H#1/a},
U={(H,a):1<a<2, 0<H<1-1/(a(x—1))}.

Theorem 4.12. Let Y1 (t) be linear fractional stable noise defined by (2.16).
Then for (o, H) € S

p(Y1(0),Y1(t)) ~ Ci(a, b, a, H)t* =%, t — oo, (4.23)
while for (a, H) € U
p(Y1(0), Y1(t)) ~ Caola, b, a, H)tT17Ve 4 o0, (4.24)

where Cy(a,b,a, H) and Cy(a,b, o, H) are defined in (4.60) and (4.69),

respectively.

Remark 4.13. The same remark as the Remark 4.11 can be made about

Theorem 4.12.

Let us move on to investigating linear fields
Xk =Y e, k €27, (4.25)

i>0
where ¢, i € Z?, are i.i.d. random variables with SaS distribution (this
assumption is made only for the simplicity of writing), and ¢;, i > 0, are
real numbers satisfying the condition

> et < oo

i>0
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We are interested in the expression of the quantities p(Xo, X(s,k,, . sska))

and po(Xo, X(s1k1,... saky)) Via the filter {ci} and in their asymptotic be-

haviour as minj<j<4k; — oo for a fixed collection of signs si,...,s4 €
{—-1,1}.
For any a = (ay,...,aq) € Z%, we denote

Qa:{X:(:L’l,...,md)EZd:xiz—ai,izl,...,d},

a; = ((a1)4,...,(aq)4)anda_ = ((a1)—,. .., (aq)-), where (-)+ = max(-,0)
and (-)- = —min(-,0). We have the following expressions for the spectral

covariances of a linear field in the general case d > 2.

Proposition 4.14. For a linear field defined in (4.25), for any k € Z4, it
holds that

p(Xo, Xi) = p(Xi X)) = 30— FHETL L (4.26)
€@ (G + i)
and
o/2 a/2
pa(}(07)(k>:: pa()(k—v}(k+) ::.2% C§+£BC§+£2- (4"27)
JEWo

For linear random processes (d = 1, X = ;>0 cCi€k—i, k € Z), we
easily obtain the asymptotic decay of p(Xy, X,,) (see Theorem 4.7). It
turned out that the generalization to the case d > 1 is not so trivial. Since
the main difficulties in passing from the case d = 1 to the case d > 1
can be seen in the case d = 2, we consider mainly this case and use the
notation without letters in bold. Let us denote

00
Xy = > cijen—ii—j, (k1) €Z? (4.28)
i,j=0
where €, (k,l) € Z?, are i.i.d. SaS random variables, and ¢, j, i,j > 0,
are real numbers satisfying the condition
0
> e < . (4.29)

i,j=0
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We are interested in the asymptotic behaviour of p(k,l) := p(Xo 0, X&)
under some assumptions on the regular behaviour of the filter {c¢;;}. We

can consider two types of such behaviour:

! d. in particul !
A aNa,  and, In particular, ¢~ oA
(151 _|_jﬁz)53 " H(Z?])HB3

with some positive 5;, i = 1,2, 3, such that (4.29) is satisfied, or

Cij ™~

Cij o~ i PP (4.30)
with some 8; > 1/, k =1,2. Here ¢; ; ~ a; ; means that

Jim &4 — 1.

0,=00 @ ;
We investigate linear fields with filters satisfying condition (4.30), and this
choice is motivated by two reasons: first, the behaviour of p(k,[) for the
field satisfying (4.30) is easier to investigate, and, second, linear fields with
such a filter motivated the definition of directional memory (see Definition
6). For linear random processes the relation ¢; ~ i~ was sufficient to
obtain the asymptotics of the spectral covariance. For linear fields, it is
not sufficient to have (4.30) since we also must control partial limits of the
filter over rows and columns (see conditions (A2) and (A3) in Theorem
4.17). The expression of p(k,1) is different for the cases & > 0,/ > 0 and

k> 0,0l <0: for n,m € N we have

e v Ci,jCitn,j+m
p(n,m)=>)> ; , o
1=07=0 (Ci,j + Ci+n,j+m)

NN CinggCijtm
p(”v _m) - Z Z N 9 2—Ta :
Due to the stationarity, the remaining two cases (k < 0, [ > 0 and k <
0, I < 0) can be transformed into the first ones. Investigation of such

expressions is quite difficult, and the main cause of these difficulties is the

exponent (2—a)/2 at the norm of points (¢;4n j, ¢i j+m) in the denominator,
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which disappears only in the case o = 2. This observation motivated us
to introduce a-spectral covariance. It turned out that investigation of the
asymptotics of p,(Xo0, Xj,) is much simpler and with a possible extension
to the case d > 3.

Let us assume that the coefficients ¢; in (4.28) have the form
Cij = WL +1) 1+ )77, ij 20, (4.31)

where 8y > 1/a, k = 1,2, and the coefficients w; ;) satisfy the following

conditions:

(A1) there exists lim; ;o0 wy 1,

i5) —
(A2) for every i > 0, there exists lim; o w(; ;) = W,y > 0,
(A3) for every j > 0, there exists lim; o w(; ;) = wy. ;) > 0.

The following two theorems describe the asymptotic dependence struc-

ture of the linear field described above. Theorem 4.15 deals with p(k, 1) as

k — oo, | — oo, and Theorem 4.16 treats the case k — oo, | — —o0.

Theorem 4.15. Suppose that a linear field (4.28) with coefficients ¢; ;
having form (4.31), satisfies conditions (A1)—(A3). Then the asymptotic

behaviour of spectral covariance p(n,m) is as follows.

1. Ifl<a<2and f; >, i=1,2,

a—1°
_ p(n,m)
n}rlzgloo n—Bim—B2
=3 Y w4 )R (1 4 )R (4.32)
1=0j5=0

ﬁi>é7 7::1727

. p(n,m)
lim 1 :
n,m—o00 pl—abiml-apbs

_ /OOO /ooo Va(t™ s~ (8 4+ 1) (s +1)77)deds. (4.33)
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3. If1<oz<2and51>ﬁ, LBy < Lo

I p(n, m)
11
n,m—00 n—Piml-P2a

= > wih (U )P [Pl (1 fu) du.
i=0 0

4]f1<04 Qandﬁl % é<ﬂ2<L

p(n,m) _ [ —Ba(a—1) —f2
TL7171LI£>1007’L /Blml 5205 ln( ) —/0 v (1 +/U) d,U‘

5. Ifl<a<2and By =15, fo> 1,

6. Ifl<a<2andf = L@:L

lim p(n,m)

=1.
nm=o0 n=PFrm=F2 In(n) In(m)

Theorem 4.16. Suppose that a linear field (4.28) with coefficients c; ;
having form (4.31), satisfies conditions (A1)—(A3). Then the asymptotic

behaviour of spectral covariance p(n,—m) is as follows.

Z.Ifl<a§2,é+6—>aand < B < 1=1,2, or0<a<1

al’

1 1 )
andE+E>O"

P —m)
n,m—o00 pl—PLrapy1-Fa

//Va 14 w) PP w21 (1 + v)77)dudw.
0 0

2. Ifl<a<2 L <pBiandl<py<l:

lim A=)
n,m—o00 n—PLrml-—Pa

= Zw (L412)~ Arla= 1)/ 2(1 +v) "Dy,
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3. Ifl<a<?2, p= fand < By < 1:

. ,0(77/7 _m) _ o0 7,32 7ﬁ2(a71)
n,n%r—r}oo nl—ﬁwzml—ﬁza ln(n) - /0 v (1 + U) dvds.

4o Ifl<a<2and 15 < B, i=1,2:

2
a) If my is a sequence such that "5 — 0:

p(na _mn)
n—o00 nfﬁl(afl)m552
=> > w?og,lj)w(ipo)(l + )T+ i)
=0 j=0

b) If m, is a sequence such that mfﬁl — c € (0;00):

P, —my)
nh—>nolo n—Bila—1)m —ﬁz

1 00 s
72%)2%‘/ (00,4) 1+]) /827 Cw(z7oo)(1+l) B)
i=0j

c) If m, — 00 is a sequence such that mfﬁl — 00!

lipy 7 =)
n=r00 51m B2(a—1)
_ZZMOOJ )(1+J) ﬂ2(1+i)751(a71)-
1=07=0

5. If 1 <a<2, = 1<51 and1<ﬁg<—

a) If m, is a sequence such that ™ _ﬁl — 0:

g & e .
JE&W—;/ Voo™, iy (14 3) ).

n 2mnp

b) If my, is a sequence such that ™ _,31 — c € (0;00):

lim p(n, —mn)
n=sco n—bBim B2(a—1)

= cZ Z V(Wi jy¢ (L4 3) 77 wii o) (L4 3) 7).
i=0j=0
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c) If m, — 00 is a sequence such that ™ _31 — 00

lim pln, —mn)
n— 00 _51m B2(a—1)
—Zwa Gy (L) (1 )P,
1=07=0
6. Ifl<a<2 1<p< ,z:1,2andé+é<aor0<a§1

anda—l—g<a:

a) If my, is a sequence such that mfgl — 0:

. ,O(TL,_mn) . — e —p N\ —p3
i T e S e i (1)
n 2mn =0

mn

b) If my, is a sequence such that _51 — c € (0;00):

p(na _mn)
n—00 n—ﬁl(a—l) —5

1 o0 o0 N
*ZZV w(OOj +J) 527 w(z}oo)cz(l_‘_z) ’ )-
Ci= 05=0

¢) If m, — oo is a sequence such that ™ ,51 — 00!

,}Lrglo Z/ Woo, ) (14 5) ") du.

nl- Blam

7. If1<a <2 < pand By = 5

8
a) If my, is a sequence such that Tgf; — 0:

. p(”? _mn) Kt -\ —
lim = W) (1+1)77
nree n_%m}fﬂ?a In (n % mn> i=0 (o)

b) If m, is a sequence such that ™ ,51 — ¢ € (0;00):

. p(n _mn)
M — g )
ﬁlm
— Y3 Valwpe (1 +5)7, Wiioo) (1 + 1)),
1=07=0

53



c) If m, — 00 is a sequence such that ™ _31 — 00

lim pln, —1n)
n—oo 51m B2(a—1)
_Zzwoog zoo)<1+J) B2(1+Z'>—51(a—1)_
1=07=0
8. Ifl<a<?2, /1 = —and1<ﬁg<—

5
a) If my, is a sequence such that Tgfﬂf — 0:

. p(”a _mn) . [ =1 -5
N e R 2/0 Va(Wiioe) (14+1)77, s77)ds.
mn P2m 1=0

b) If my, is a sequence such that mfgl — ¢ € (0;00):

. p(n _mn)
A, — Ba(a—1)
Blm
— oY S Valwpe e (14 4) 7, Wiioo) (1 + 1)),
=0 7=0

c) If m, — 00 is a sequence such that ™ _31 — 00

_ p(n, —my,) e e
dim, i = 3 ey (1+9)
n'=fem, ™ In (nmn m) -
9. fl<a<2and B; =15, i=12:
a) If my, is a sequence such that mfﬁl — 0:
lim pln, —my) _y Wi ooy (141) 771,
n=o0 n*ﬁl/ﬁ2m%_62a In (n,ﬁl//@mn) = ;
b) If my, is a sequence such that ™ _ﬁl — ¢ € (0;00):
lim p(n, =)
n=sco n—bBim B2(a—1)
S BN T+ )T W (1)),
1=07=0
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m;BQ
n=P1

c) If m, — 00 is a sequence such that — 00

lim pln, Zmy)

e w . 1 + ] _B2‘
n—roo nl—ﬁmmgﬂz/ﬂl In <nmﬁﬁz/ﬁl) jg() (007J)< )

The cases

a<land 1/ 4+ 1/62 =«

l<a<?2, p1>1/(a—1)and By = 1;

l<a<?2, pr=1/(a—1)and s = 1;

l<a<2,1<pi<1l/(a—1)and 1/8; +1/Ps = a;

were not considered in Theorem 4.16. We feel that the cases examined are
sufficient to reveal the complex dependence structure of this linear field.

A remark on the codifference for linear random fields is appropriate
here. According to Proposition 4.3, the codifference in the case of asso-
ciated random variables (e.g., when the coefficients of the filter are non-
negative) for 1 < o < 2 is equivalent to the spectral covariance. Taking
into account the complexity of the asymptotic behaviour of the spectral
covariance for linear fields, we can expect that asymptotic behaviour of
the codifference for the linear random field is also complicated.

As the following theorem shows, asymptotic behaviour of a-spectral

covariance is simpler. For the formulation, it is convenient to denote 7, =

fra/2, k=1,2, and
K(a):/ooov_a(l—i—v)_adv =B(1l—a,2a—1), 1/2<a<1,

where B(z,w) = Jy *"H1 — t)*~1dt = [°¢771(1 + )~ Tt is the beta

function.
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Let n,m € N, s € {—1,1}, and po(k1, k2) = pa(Xo0, Xk, k). From
(4.27) and (4.31) we have

paln, sm)

= > Gijmms(L+0) (A 4+5) A +i+n) " (1+7+m) 7, (4.34)

i=0 j=0
where
(@/2), (a/2) _
oo )P gy S =
. /2) /2

Wiigrm) Wiitn,g)
There are six main sets of the parameters 31, 35 giving different asymp-

totic behaviours of p,(n, sm). The rest of the sets give symmetric results.

Theorem 4.17. Suppose that a linear field (4.28) with coefficients ¢; ;
of the form (4.31) satisfies conditions (A1)—(A3). Then the asymptotic

behaviour of the a-spectral covariance (4.34) is as follows:

1. If1)2 <y < 1,i=1,2:

Paln, sm)

n;rlz—x)o n1—271m1-27 - K(’Vl)K(’VQ) (435)
2. Ify1>1and 1/2 < v < 1:
Pa(n, sm) Zw (141) " K (7). (4.36)

n,m—00 1 ~T1m 1272
Soyi>1li=1,2:

. paln,sm
g Pe(5m)
n,M—00 1=V~ 72

= i ioj Wi, j,s) Y2 (144" (1+5)7, (4.37)

i=0 j=0
where W (i, j, 1) = w5 and W (i, j, —1) = w; yw(. j).
4. ]f1/2 < <l,vm=1:

Pa(n, sm)
11m
n,m—00 nl=27v1m1-27v2 [nm

= K(7). (4.38)
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5 Ifv1>1 and v = 1:

Pa(n, sm) B .
n }%%oo 7’L1 271m1 272 Inm ; UJ 1 + Z ' . (439)
0. [f’}/l = 1,’}/2 =1:
: Pa(n, sm)
lim = 1. (4.40)

nm=00 nl=27(Inn)m!=212(Inm)

As it was mentioned before the statement of the theorem, we do not
state results in symmetric cases. For example, if 1/2 < v < 1,7 > 1,

then, instead of (4.36), we have

Pa(n, M)

o0
-
i —nl pRp—— z:: 1—1—] QK(ﬁ/l).

Assuming conditions slightly stronger than (A2) and (A3), we can get
simpler expressions of the constants in the asymptotic relations of Theorem

4.17.

Corollary 4.18. If wi;.y = 1, w; = 1, then the right-hand sides of
relations (4.36) and (4.39) are ((v1)K (72) and {(v1), respectively, and the
right-hand side of relation (4.37) in the case of s = —1 is ((71)((72), where

¢(t) ioj (1+4)" L R
= 1 = S .
i=0 L(t)Jo 1—e=s "

Remark 4.19. If the sum on the right hand side of (4.32) or (4.37) equals
0, a different normalization is required to obtain a non-zero limit. Under
more general conditions (e.g., not requiring the limits to be positive in
(A2) and (A3)) the limits in some other cases might equal 0. We do not
investigate the asymptotic behaviour of dependence measures in such cases

here, these questions are left for our future research.

Now we discuss a generalization of the results of Theorem 4.17 to the

case d > 3. In order to get the same generality as in Theorem 4.17, we
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should consider a random linear field defined in (4.25) with coefficients of

the form
d
¢ =wi [J(1+ip) (4.41)
k=1

with 8 > 1/a, kK = 1,...,d, and a function w (of the argument i =
(i1,...,1q)) having properties similar to those stated in (A1)—(A3). Al-
though there are no principal difficulties to investigate the a-spectral co-
variance in this general case, the formulations and proofs become compli-
cated since now, instead of conditions (A1)—(A3), there will be much more
various partial limits of the function w. Therefore, we consider the simple
case where w; = 1, that is, we consider a random linear field (4.25) with

coefficients
d
H + k) k, (4.42)
k=1

where 5, > 1/a, k=1,...,d. Let us denote v, = af3;/2, [ =1,...,d.

Proposition 4.20. Suppose that a random linear field (4.25) with coef-
ficients (4.42) satisfies the following condition: there are integer numbers

v>20, 0<u+v<d, suchthat1/2 <, <1 fori=1,...,u, -y, >1
fori=u+1,...,u+v, and~y, =1 fori =u+v+1,...,d. Then, adopting

the convention that [] = 1, we have
%]

)Oa<XO> Xk)
) (ngu—i-v—}—l ‘klil_l 1n(|kli ))

S (ﬁ K(%)) (H cmi)) (4.43)

=1 i=u+1

(T P (I

as miny<i<q |ki| — oc.

It is worth noting that in the general case of coefficients from (4.41),
under appropriate conditions on w, we will have more complicated con-
stants on the right-hand side of the relation (4.43), but the same rate of

decay (provided the constants are not zero).
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4.2 Proofs

Proof of Proposition 4.2. Clearly, functions f; 3 and f; 3 satisfy condi-
tions (4.2)-(4.4), and the function f; g satisfies (4.6). Thus, it remains to
prove that fs 5 also satisfies this inequality. Using the inequality |1 — |z|”| <
1 —z”, 2 € R, 0 < p < 1, taking into account that 0 < 3/2 < 1, and
assuming that s; # 0, we have

B/2 B/2

S
<h-=2
S1

S92

S1

1 —

Multiplying both sides of this inequality by |s;|?/? and then taking squares
of both sides, we easily get the following inequality (which also holds for
s1=0):

(5117 + [s2]” — |s1 — s2|” < 2|s150]2. (4.44)

From the inequality |s; + 52|5 < |s1]% 4 2°/2|5159|%/% 4 |59]? it follows that
|51 4 s2]” — [51]7 = |s2]? < 2|s5150]%/%. (4.45)

From (4.44) and (4.45) we get [|s1 + sa|” — |s1]” — |sa]?] < 2|s150]7/2.

Therefore,

‘/Sl (’Sl‘ﬁ + ’32|/6 — [s1— Szyﬁ) F(dS>‘

< 2/Sl |s150| /2T (ds)
1/2
< 2(/S 51/ T(ds) [ |32|ﬂr(ds)) .
It is easy to see that the last inequality coincides with (4.6) for fy 5. O

Proof of Proposition 4.3. The vector (X1, X3) is associated, so its spectral
measure is concentrated in the first and third quadrants. Inequality (4.8)
follows from the inequality |s;s2|® < |s152]™, and inequality (4.9) follows
from |sysq| < |s1] [s2]*".

Denoting s; = sin¢, s; = cos @, it is easy to see by symmetry that

in order to prove (4.10), it is sufficient to show that there exist constants
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c1, co such that
c1cos ¢psin @ < | cos@|® + | sin ¢|* — | cos ¢ — sin ¢|* < ¢z cos ¢ sin ¢
for ¢ € [0, 7/4]. Applying the inequalities

aa:—gm2<1—(1—x)o‘<ax, z € [0,1],

we obtain

|sin ¢|“ + |cos ¢|” — |cos ¢ — sin ¢|”
< |sin ¢|” + |cos ¢|” artan ¢
= |sin ¢|“+asin ¢ |cos p|* " = sin ¢ cos ¢ ((sin $)* 1 (cos @) ! + a(cos qb)o‘*z)

< sin ¢ cos ¢ ((271/2)0172 4 a(271/2)a72)

and

jsin ¢|* + |cos ¢| — |sin ¢ — cos ¢|”
> |cos ¢|” <|tan d|" + atan ¢ — g(tan qb)?)
> |cos ¢|* (atan ¢ + (tan ¢)* — (tan ¢)°)

> alcos @|” tan ¢ = ar|cos ¢|* ' sin ¢ = a cos ¢ sin b,

]

Proof of Proposition 4.1/. Due to the stationarity of the field, the vectors
(Xo, Xx) and (Xojk , Xk+k ) = (Xk_, Xk,) have the same distribution.
If a € g, then we have Qg C Q). and

Xa= D GEai= ) Citafj= 2 Citafj+ D Citafj
i€Qo JE€Qa jeQo jEQa\QO

Notice that the sets Qx_\Qo and Qx, \Qo have no elements in common,
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therefore

01 Xk + 02Xy,

=2 tgueey+ > gt

j€Qo JeQi_\Qo
+ Z 020j+k+5—j + Z 02Cj+k+5—j-
J€Qo J€Qx, \Qo

Now we easily obtain the ch.f. of the vector (Xx , Xk, ):

E exp {i(01 Xi_ + 62X1,)}

=expq— 10" D e | = D 10ic4k + b2, |© —
Jj€Qx_\Qo j€Qo

— 162" > Cj+k+a}-

JEQi, \Qo

The obtained ch.f. allows us to see the structure of the spectral measure

', and we obtain expressions (4.26) and (4.27). O

Proof of Theorem 4.7. We need to investigate the asymptotic behaviour
of

> > CiCitn
p(n) =Y Valci, Ciyn) =Y S, =
=0 i=0 (¢i + ¢7ypy) 2

as n — oo. For simplicity of writing we assume that ¢; # 0, i € N.
Function U is regularly varying with index —x, therefore, we can write
U(i) =i "h(i), where h is a s.v.f.
We begin with the case o« > 1 and k > 1/(av — 1). Lemma 2.2 applied

with v =k and n = (k — 1/(a — 1)) /2 implies
lei| < E(1414)7", 4> 0.
This yields
Slal™ < By (14 et <o,
i=0 i=0
since (—xk +1n)(a—1) > —1.
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Let us investigate the convergence of V(¢;, ¢iyn) for a fixed i € Ny.

Lemma 2.2 implies |ciyp| < E(i+n)"%2 — 0, as n — oco. Also, for fixed

Civn _ Ciyn U(i+n) _ Citn (t+mn)""h(i+mn) .
Un) U(i+n) Um)  Uli+n) n™"  hn) ’

since, by Lemma 2.4 applied with ¢, = n, y, = (1 +i/n)"!, and f =1,

we have _
h(i i
(i+n) = h(n(1+”)) — 1, as n — oo.
h(n) h(n)
Therefore
Va(cis Cipn) Ci g(t:) G <a-l>
Un) (2.2 2 e '
(7 + ¢in) (c7)

We shall show that for large n, the sequence V,,(¢;, ¢ivn)/U(n),i € Ny, is

dominated by a summable sequence. By using the inequality ¢?+c? i 2= c?

we obtain
Va (Ci; Ci—i—n)
U(n)

We proceed to show that for large n

| ‘|OL—1 |CZ+TL|
~ ? U(n) .

|Cisnl/U(n) < 4, forall i € Np.

For large n we have |c;1,,| < 2U(i + n). Theorem 2.1 applied to f = U,
A =2 and any J € (0, x) implies the existence of B > 0 such that

. .\ —Kk+I
U(”H)<2<1+Z> <2, forn> B.
U(n) n

Hence
Va (Cz' ) Ci—|—n)
U(n)

Applying the dominated convergence theorem we obtain

<A4e*

p(n) e Va(civ Ci—l—n) > a—1
=) —2 7T c; , as n — 0o.
U~ 2 o) &l

Now let us consider the case a > 1 and 1/a <k <1/(a—1)ora <1
and k > 1/a. Let us fix e = (1 + k(1 — a))/(2(k + 2)) and n = €/2.

62



Function U is regularly varying with index —k, therefore, there exists N
such that

n "L UMm) <n " n> N.

Suppose n is large enough so that n© > N + 1. We split p(n) into three

sums
p(n) = Z VOé<Ci7 Cz'—i—n) = Slm + SQ,n + SS,n
=0
N-1 [nf]—1 00
= Z Va(Ci,Ci+n) + Z Va(ciaci+n) + Z Va(ciaciJrn)-

Inequality ¢ + ¢7,,, > ¢7 implies

|Va(ci7ci+n)| < ’Ci|a—1 ’Ci+n| )

hence
& = a—1
=0 i=0
a 1]\L1 N 1N71 )
< 1 ; < 5T ; —Kk+n
S 0%62\7 |C]| Z_ZO |Cz+n| S O%E?](V |Cj| 2 E(Z + n)
. a—1 —K+n
S By el N
and

[nf] -1 )1
Soal < 3 Walenemn) < 30 el eipnl
=N i=N
[n]—1 |nf|—1
< En ™Y \Ci|a_1 =En" 3 !Cz”a|0i\_1
=N i=N
[nf] -1 |n]—1
<En ™ 30 e S En Y el net )
=N i=N
< En7“+77+€('€+77) i |Ci|a < En*ﬂ+e(n+2) io: |Ci|o¢ '
=0 i=0

We have thus obtained Sy, = O(n **") and Sy, = O(nrtelt2),
therefore Sy, + Sa, = O(n ™+ +2)) . Since e(k +2) < K+ 1 — ak, we

obtain
n*li+6(li+2)

— pfte(rt2)—ltak ) —a 0
nUa(n) n (TL)—) ’
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as n — 00, and, consequently,

Sl,n + SQ,n

O (4.46)

It remains to deal with S3,. We have
‘_; | Va(cia Ci-i-n) = /Ln‘J Va(CLUJ ) CLUJ—i-n)dv
= /nﬁj/ a Clnv]» CanJ—i—ﬂ)dnU

=nU%(n) /LneJ/n Va(U_l(n)ch,J, U_l(n)chHn)dv.

Let us show that Va(U_l(n)chJ, U‘l(n)ctw +n) converges point-wise and
is dominated by an integrable function.

For v > 0, due to Lemma 2.4, we have

Clwf _ Clw) U(w]) _ g [no] " (05 g
Un)  U(lnw]) Un)  U(lno]) n7% h(n) ’
and, similarly,
Clnv]+n —k
1
U(n) — ( + U) Y
as n — oo. As the function V,, is continuous, we get
Clnw| Clow|+n —K —K
Va : Va , (1 .
(g ) = Vot 007
Using inequality |Va(z,y)| < 2| |y| we obtain
a—1 «
Vv, (CLRUJ CLm}J—i—n) < Clnv]| Clnv|+n _ Clnv] Clnv|+n .
Un)" U(n) U(n) Un) | UM | ¢l

Since ¢; ~ U(i), there exists N such that for ¢ > N the following inequality
holds

;U(z’) < e < 2U(),
therefore, if [nv] > N,
Va < 'n"UJ C nv +n>
2U(LMJ) U(lw] +n)| _ age (U(lnv])\* U (lnv] +n)
<o Ften =2 o) oty
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We apply Theorem 2.1 to f =U, A=2and 6 = min(k — 1/, 1 — k(ax —
1))/4 and obtain the existence of B > 0 such that for z,y > B

—Kk+4d —Kk—4 —K 1) -0
U0 <o (1) () <22 (0)())
Ul(x) x x x x x
Consequently, if n¢ > max (N, B) + 1, we have

i o)

< 21 ) > )y (2 ((L:&:J)—m . (LT:J>_5_6))& X
(< |nv] )‘“H + (W> —5_5)
()05

since for |nv| > 2 we have |nv| > nv/2. Let us denote the dominating

L no)>[ne )}y

function as G(v). Function G is continuous on (0, 00), as v — 0o we have
G(v) = O(WF)2) and, as v | 0, we have G(v) = O(v(r=0)atr=0) We
conclude that G is integrable, since (—k+0)a < —1 and (—k—0)a+r—0 >
—1 by the choice of 9.

The dominated convergence theorem implies

53771 e —K —K
U (n) —>/0 Vo (o™ (1 +v) %)do,

as n — oo. Relation p(n) = S, + S2,, + Sz, and (4.46) yields (4.17).
It remains to consider the case 1 < o < 2, Kk = 1/(aw — 1). We split

p(n) into three parts:
p(n) = Va(007 Cn) + Sl,n + S2,n7
where Sl,n = Zznz_ll Va(ci; Ci—i—n) and S2,n = Z?in Va(ci; Ci—i—n)'
We have
[Valeo, ea)l < [eo|* feal = O(n ™),

therefore
Va (CO ) Cn)

n=*1n(n) =0,
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as n — oQ.

Let us now show that S;,,/(n""In(n)) — 1. We have

ZV (Ciy Citn) :/ Va(€lv)s o] 4n)dv

1
_/ CLnuJ, ann)dn —/0 Va(CWJJ,anan)nvln(n)dv

1
= n_“ln(n)/o n“Vo(Clne s Clpo |40 )0 dv.

We continue by investigating the point-wise convergence of n“Va(cW 15 Clne| )Y

for v € (0,1). Since ¢; ~ ™", we have

N |Clne |4nn’
Vo€l €l )t = ——

() + ) ©

- nk |_7’L”J -k n " fn? _ nUJ —k(a—1)

(I_an 72/4) 2_Ta

as n — o0.

Let us show that n"V,(c|y |, ¢|pv|1n)n” is dominated by an integrable

function on (0,1). As before,

K+v

el letnegnl

n/@—H}Ea anJ —H(Oé—l) (anJ + n)—/{ < nan anJ —H(Oé 1

v

n" ‘Va(anvJ,anan)‘ n'<n

n

[n”]

= E“ < 2E“.

Constant function is integrable on a finite interval, therefore, the domi-

nated convergence theorem implies

Sl,n

1
m = /0 ’I/LK/VO((CL,”UJ,CanJJrn)nvd’U — 1,

as n — oQ.
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We continue by investigating S3,. We have

[©.9] 0. 9]
[Sa.nl < 22 [Valei cipn)| < Z il eienl

i=n
00

EO‘ZZ V(i 4n)"

_ Ea/:’ o]~ (v + n)"do

<o () (o)

= pootte [7

. (nv) ™" (nv + 2n) "dnv

— polthp =k /loo v v 4 2) "dv.

The integral is finite, therefore

B SN 0,
n="1In(n)
as n — 00.

In conclusion we see that

p(n) Va(CO7 Cn) + Sl,n + SQ,n
= — 1,
n=In(n) n=*In(n)

as n — oo. The proof is complete.

Proof of Theorem 4.8. Inequality |g(s1,s2)| < C |5152|a/2 implies that
pg; X1, Xa)| < C [ |s15:]* (ds) c/ Ft—z)ide. (4.47)

We need to show that

r(t) = /+Oog(93)g(a: —t)de =0, t— o0,

where g(x) = |f(—x)|*/2. Notice that g € Lo, since f € L,. Let us define
an operator By : Ly — Ly by Big(x) = g(x —t). Now r(t) can be written
as

r(t) = (g, Btg),
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where (-, -) denotes the scalar product in Ls.

Fix 0 < e < 1. Let us denote M := max(1, ||g|/z,). It is well known
that the family of step functions S is dense in Ls. Therefore we can find a
step function s € S such that [|g — sz, < 557, With the help of Cauchy-

Schwarz inequality it is easy to show that the inequality
0 < [{g, Big)| < €+ (s, Bys)]|

holds. Since s is a step function, there exists K > 0 such that s(x) = 0 for
|z| > K. Thus (s, B;s) = 0 and (g, B;g) < € provided that ¢t > 2K. This
means that (g, Brg) — 0 as t — oo. This and inequality (4.47) imply that
p(g; X1, Xs) — 0,t — oo. The theorem is proved. ]

Proof of Theorem 4.10. We must investigate the asymptotic behaviour of
the integral

pt) = [ Valfol@). fila))da.

Denoting ag = —o0, a1 =0, as =1, ag=t, agy =t + 1, a5 = 0o, we have
5 a;

p(t) => " Ii(t), where [;(t) = / Va(fo(x), fi(z))dx. (4.48)
i=1 @i-1

Simple change of variables allows to verify that I5(t) = I1(t), I4(t) =
I5(t), therefore it is sufficient to consider I;(t), I2(t), I3(t) only. Using the

change of variables again and denoting

9(y) = tVa (In (14 (ty)™") . (1+ (t(1+y)) ")), v € (0;00),

we have
o0

(1) :/0 gi(y)dy.
For a fixed y € (0;00)
thn (14 (ty) ) =y, th(1+E1+y)") = Q+y) ", t = oo,

therefore one can easily see that for a fixed y € (0; 00)

a—2

gt = gy) = A +y) (¥ P+ Ay ?) Tt o
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Applying the elementary inequality a? + b> > 2ab we have

9(y) < goly) = 2" (y(1 +y)) /2,

therefore, taking into account that a € (1;2), function ¢ is integrable over
interval (0; 00). Moreover, one can easily verify that for all y € (0; 00) and

t>1

t a(y) < go(y),

thus, applying the dominated convergence theorem, we get

lim 11{®) — lim [ gt(y)dy = /Ooo lim 9:() dy = /Ooo g(y)dy. (4.49)

t—oo tl—a t—oo Jo  tl-a t—oo tl—

Now we show that the term I5(¢) (and I4(t), as well) is of the smaller order
than 7;(¢). Namely, it is not difficult to get the estimate

11— t+1—-x
I(1)] < /0 In=—=| |l ———=| de < 2(0),
where z(t) = (t — 1)"*/2 f1 ‘ln(l — ) ! e Hence,
0 < L) ()L < Ct2 Tt =0, as t — oo, and  I(t) = o(t!™%)
S tl_a X x Vi1 3 3 2 - .

(4.50)
It remains to investigate the term [I3(¢) and its investigation is very
similar to that of I1(t), therefore we shall provide only the main steps. As

above, it is possible to write

[3(t) - /01 ht—l(y)dya

where

hi(y) = —tV, (ln (1 + (ty)_l) ,1n (1 + (t(1 — y))_l)) :

Then we prove that, for all y € (0;1), h(y)t'™® — h(y), as t — oo,
where h(y) = —V,(y~, (1 —y)~!). This limit function is integrable over
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interval (0;1), and ‘ht(y)to‘_l‘ < (y(1 — y))_a/2. Therefore, applying the

dominated convergence theorem we get

L) (E= 1T hea(y)
tli>nolo tlma tli>nolo <t> /0 mdy

_ /[ lim uy) dy = /01 h(y)dy. (4.51)

0 t—oo tl_a

Collecting the relations (4.48), (4.49), (4.50), and (4.51), we get the
assertion (4.21) with (4.22). The theorem is proved. O

Proof of Theorem 4.12. The proof of this theorem is similar to that one
of the previous theorem, only it is more complicated due to the fact that
the function f;(z) is more complicated. Again, we must investigate the

asymptotic behaviour of the integral

p(t) = [ Va (fola). fi(w)) e, (4.52)
It follows from (2.18) that

a((t+1—x)"—=(t—2x)") ,for x <t,
filx)=q at +1—2)" bz —t)" fort <z <t+1,
b((z—t—1D)"—(z—t)") ,fort+1<uzx.
Without loss of generality we assume that ¢ > 2. As in the proof of the
previous theorem we shall use the subdivision of the integral in (4.52) into
five integrals, as it is done in (4.48). Using some changes of variables we

can show the following two equalities
ab b,a ab b,a
1) = 180w, 1) = 1), (4.53)

therefore it remains to investigate the asymptotic behaviour of Il(a’b)(t),
7Y (), and I;ga’b)(t). As it was mentioned, this behaviour is different
for different values of possible main parameters o and H. We start with
asymptotic behaviour of the terms 7@t (t), ¢ = 1,2,3 in the region S.

7

Elementary calculations show that
[0 () =7 a|* [ hy(a)de,
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where hi(x) == Vo (g(), ge(z + 1)), aq(z) =t ((t’1 + )" — x”) It is

evident that g;(z) — na"!, as t — oo, therefore
ha(w) 5 [l h(w) = [0l Vo ("1 (2 4+ 1))

Since
Cyz= D=1 for x — 0,
h(x) ~
Cyzxn—De , for r — o0,
then, in order for h to be integrable over (0,00), the following conditions
must hold:

m—1(a=1)>-1, (n—1a< —1. (4.54)

It is not difficult to verify that for (o, H) € S both inequalities are valid:
to see that the second one holds it is sufficient to note that (n — 1)a =
(H—1)a — 1 < —1, while for the first inequality one must separately
consider the cases 0 < a<land 1 < a < 2.

In order to apply the dominated convergence theorem, we must bound
h: by integrable function. By the mean value theorem one can write
g(x) = () (x+¢)"", here ¢ € (0; 1) is intermediate value, therefore,

we have
[l (z+ 1) < |ge()] < Inl 2" (4.55)
Now we can estimate |h;(z)]:

()] < lgu(@)ge(x + D] (2() " = lgu(@)* Haulz + 1)),

and using (4.55) we get |h(z)| < ho(z), where

“(x+ 1)—De Jfor0<a <1,
iy < [ @D <
In|“ 2= DNz 4 1)1 for 1 < a < 2,
The function hy is integrable over over (0,00) due to inequalities (4.54),

which, as we had seen, are valid in the domain S. Thus, we can apply the

dominated convergence theorem, and we get

[(‘175) -
e = e =5 [
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Therefore, taking into account (4.53) we get

1) ~ Jal* e | T h(z)de, ¢ — oo, (4.56)
10 8) ~ ol et | T h(z)dz, - oo (4.57)

The next step is to show that

(a,b) _ aH—a .
19 (1) = o(t2H=), t — c0,j = 2,4, (4.58)

and this is achieved by estimating the term Iéa’b) (t) as follows

1 —
@] < (¢ = 1" al Inf [ (a1 = 2)” = ba")]* da

Note that for parameters (a, H) € S the integral in the last inequality is

finite (for this it is sufficient to consider the behaviour of the integrand

at the endpoints of the interval (0;1) in the area Sy and at the point

where a(l — z)" — bz" = 0in S1) and n — 1 — aH + a < 0. It remains
(a,b) (a,b)

to investigate I3 "’ (t), and for the convenience we consider I3 (t + 1).

Simple considerations lead to the equality

1
L% +1) = —oH—o /0 ko () da,

where ki(z) := V, (agi(1 —x),bg(x)), and the function ¢; was defined

when considering [ fa’b)(t). Now it is easy to see that

ki) 2% k() = [l Vi (a1 — )7 b ™).

and the function on the left-hand side of the last relation is integrable (this
can be verified as above). A little bit more complicated is majorizing of
k:(x) by integrable function. We choose different majorizing functions for
x € (0,1/2) and for z € (1/2,1). Namely, for z € (0,1/2) we use the

estimate

k()] < lagi(1 — 2)bgi ()] (g7 ()"

= Ja| o" " |ge(1 = 2)] |gu )" -
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For 1 < a < 2 we use the estimate
Jal 1B ge(1 = )] |ge(2)| " < Ja b [n]* (1 — &)~ 2Dy,
while for 0 < a < 1 we estimate
Jal 1B ge(1 = )| |ge(2)|" ™ < [a] (B ™ (1 = 2) 77} (1 4 )7V,

Again, taking into account (4.54) we can verify that both majorizing func-

tions are integrable over (0,1/2). For x € (1/2,1) we use the estimate

()| < 129 =P _ ooty (0ot gy ()],
(a2g3(1 —x)) *

and then in a similar manner we construct the majorizing function, which

we do not provide here. Finally, applying the dominated convergence

theorem, we get
a,b a (yoaH—o 1
L+ 1) ~ — || (¢° )/O k(z)da. (4.59)

Collecting relations (4.56)-(4.59) we get (4.23) and the constant C has

the following expression

Ci(a,b, o, H) = |1 ((|a|a+ |b|a)/00° h(:c)dx—/ooo k(m)dx). (4.60)

Now it remains to investigate the asymptotic behaviour of p(t) in the
region U, and since the scheme of investigation is the same, we provide
only the main steps. We use the same division of the integral (4.48) and
again it is sufficient to investigate three terms I (a, ), 7 =1,2,3. The first

term we can express as follows:

= |a]a/0 ug(x)dx

where w(z) = V, (v(a:),t”_lglyt(x)), v(r) = (14 2)1 — 2", giu(z) =
t ((1 + By — (14 %)”) Tt is easy to see that g1 () S22 1), therefore

ug ()t 22 (),
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where u(z) = —n(—uv(z))*! = —n (2" — (1 + 2)")* " It is not difficult to
make sure that for (a, H) € U the function u is integrable over (0, 00). It
remains to show that the family of functions {ut(-)tl_",t > 2} is bounded
by integrable function. To this aim we use the inequality |n~'u(z)| <

lv(x)|*7|g14(x)| and, noting that |g;¢(z)| < |n|, we get

[~ ()| < [nllo(a)[*"

We got integrable majorizing function, therefore, applying the dominated

convergence theorem, we get

Iﬁmﬁ)Nﬂflmﬁ<;—<H>Am¢ﬂ—%1+mﬁfme, (4.61)
é%@@)Ntn%|ma<;-.H>Akan—(1+1yww4dx. (4.62)

In contrast to the region S, in U the term Ig(a’b)(t) has impact to the

asymptotic behaviour of p(t). We can write
a,b 1
g>@zézmm%

where z(x) =V, (v(z, a,b),ag24(x)), v(z,a,b) = a(l—x)"—bz", gas(x) =
(t+1—a)"—(t —x)". Then we perform the same steps as above: first we
note that

2 () 2% pa (a(1 — 2)" — ba") <

and the limit function is integrable over (0,1). This follows from the fact
that, due to «—1 > 0, the only points where function |a(1 — )7 — bz|*""
is unbounded are the endpoints of the interval, and the integrability of
this function follows from the inequality n(c — 1) > —1, which holds in
the region U. Taking into account that for z € (0,1), ¢ > 2

] 1( o\l 1\
_ 12 ) dy<lnl(=)
t1/0 STy y < |n] 5

we get the majorant

g2.4(x)
tn—1

[z4(2)6 ] < 2l [l |a(1 — 2)" — b2
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Again, applying the dominated convergence theorem, we get
1
19 (t) ~ 77 1a /O (a(l — 2)" — ba™) <" da, (4.63)

1
1D () ~ b [ (b(1 = )" = aa”) <7 da. (4.64)

It remains to investigate the third term, and as above, we shall consider
]éa’b) (t + 1), which can be written as

(a,b) t+1
I3t +1) = ) Va (ag2p41(x), bui(z)) dz,

where v1(z) = (x — 1)7 — 2.
Now it is convenient to divide interval (1,¢ + 1) into two intervals
(1,(t+2)/2),((t+2)/2,t +1). Then the above written integral we divide

into two integrals, and we get
B +1) = 5+ 1) + B3¢+ 1). (4.65)
Simple change of variables x =t + 2 — y shows that
BS54+ 1) = 57t + 1), (4.66)

therefore it is sufficient to consider only ]3(,?1’1)) (t 4+ 1). Denoting

(301015 ()

)
(a29§,t+1( ) + b2t (z ))

wy(x) =

we can write

B+ 1) = —ab/ we( (4.67)

The investigation of the last integral goes along the same lines as for

previous integrals: we have
wy()t' " =2 (B (=) (@ = 1) =2

and we construct the integrable majorizing function. Denoting g3(y) :=

Bire(y) =1+ (1 —x)/t+ y)" we have

we(w)t ] <[] (g3(0) — ga(1/1))of ().
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Estimating for z € (1; 2£2) (we recall that outside of this interval function

wy vanishes)

1—2x

e, 1 (s 1=, 1p—1
193(0) — g3(1/t)] = gs(y)dy| < Inlt™ (1 + <27 nlt,
0

we get the integrable majorizing function:
(@) 7] < bl pf2 7 (2 = 1) = 2m)

Once more applying the dominated convergence theorem and taking into

account (4.65)-(4.67), we get

V(4 1)

~ (ab<0‘_1> + ba<°‘_1>) 1 /100 ((z —1)" — 2" " dz. (4.68)

Collecting relations (4.61)-(4.64) and (4.68) we get (4.24) with

4
Cyla,b,a, H) = —n Y d; J;, (4.69)
i=1
where di = [a|* + [b|*, dy = —a, d3 = —b, dy = —ab="""> — ba~"*"">,

1

Jl — Aoo (;Cn — (1 + ,1,’)77)0‘*1 dx, J2 = /0 (a(l _ x)” _ bxn)<a71> dI,

1 00 a—1
_ Ny <a—1> _ _\H-Lf _ _H-L
J3 = /0 (b(1 — )" — ax") dz, Jy /1 <(a: 1) x ) dz.
The theorem is proved. []

Proof of Theorem 4.15. We will not provide all of the proofs as this would
make the thesis very long. Here we will investigate the following sets of

parameters:



We feel that the provided proofs illustrate the ideas used, the other sets
of parameters are dealt with in a similar way.

For convenience of writing let us assume that w; ;) # 0 for all 4,7 >
0. It then follows from assumptions (A1)-(A3) that there exist constants
d,e > 0 such that

d < |wiy| <e i,j>0.

We need to investigate the asymptotic behaviour of

oo o0
p(n,m) = Z Z Va(cl}jv Ci+n,j+m) (4-70)
i=0 j=0
as min(n, m) — oo.
We begin with the case 1 < a < 2, 5; > ﬁ, 1 =1,2. We have

S0 Mgl =303 fwa gy (1444 ) R

i=0 j=0 i=0 j=0

eI (1 44) DN (1 )R < o0,
i=0 =0

Let us show that
P( <a-— 1>
4.71
_Blm 52 ZZOJZ G ) ( )
as n,m — 0o.

We have
Citnj+m w(i+n7j+m)(1 + 17+ n)_ﬂl(l +7+ m)_ﬂ2
= —1
n*51m7ﬁ2 n*ﬂlm*ﬁ2 ’
as n, m — oo, therefore
Va(Ci,j,Ci+n,j+m) _ Cz,y% _y o<a-1>
n_ﬁlm_62 9 250 Y
(Ci,j + Ci+n,j+m)
Using the inequality |V, (z,y)| < |z|*"" |y| we obtain
Va(ciy Citn,j+m)] o34[0 |Cirtnjirm]
n‘ﬂlm‘ﬁZ = bJ n—ﬁlm—ﬂz
o 16(1+z—|—n) A1+ j+m) > a1
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Since Y200 % |¢i 5| < 0o, the dominated convergence theorem ap-

plies yielding (4.71).

We continue with the case 1 < a < 2, é < B < ﬁ, 1 =1,2. We will
show that
p(n,m)
nlfaﬁlml aB2
P+ 1) s (s + 1)
IR / / FUPRSREADT s (472)
t 2616202 4 (t + 1) 24 (S + 1)—252)T
We have
p(n,m) = Z > Valcij, Civn,jtm)
=0 =0
—/ / a(Ce),[s)s CLtJn, 5] +m)dEds
= / /O Va (CLntJ |ms|s C|nt|+n,|ms| +m)dntdm8
1 aﬁ1 1— aﬁQ/ / BzCLntJ,LmsJanﬁlmBZCLntj+n,LmsJ+m)dtd5'

For fixed values of ¢, s > 0 we have

w(LntJ,LmsJ)(l + Lnﬂ)_ﬂl(l + LmSJ)_ﬂz ¢ B1g—he
n_ﬁlm—BQ ’

n51 mﬂQ Clnt] |ms] =

as n, m — oco. Similarly

n61m62CLntJ+n,LmsJ+m — (t+ 1)761(84— 1)*52

As the function V,, is continuous, we obtain

b1

Va (n61 m”c [nt],[ms]|s TV m*c [nt|+n,|ms] +m)

SVt s (4 1) P (s + 1)),

as n,m — 00.
We see that

(14 nt]) (1 + [ms])
n~—Prm—052

_ ‘w(LntJ,LmSJ)

0 m ety s | =

< et‘ﬂls_ﬂQ,

and, similarly,
n”'m ‘CLntj—Fn,LmsJ—i-m‘ < e(t + 1)751 (S + 1)7ﬂ2
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thus

‘ Va (nﬁl mﬂz Clnt|,|ms]> nﬁl mﬁz Clnt|4+n,|ms] —l—m) ‘

nPrm - ’nﬂlmﬂ2

Clnt],|ms] Clnt]+n,|ms| —&—m)‘

< e PlemDg=hla=l g 4 1)=Fi(s 4 1)
Since

|7 et e e (g 1) (s 4 1) deds

—e/ A=l 1) Bldt/ Ala=D) (5 4 1)P2ds < o0,

the dominated convergence theorem yields (4.72).

Next we investigate the case 1 < a < 2, (5 > ﬁ, é < By < ﬁ We
have
oo o0
pln,m) =3 > Va(Cij, Citn,jsm)
i=0 j=0

= Z/ Cz |5]» Cidn, L3J+m)d
= Z/ Ci,|ms)> H—n,[msj—&—m)dms

= n_’glﬂll_aﬁ2 Z/O nﬁlva(mﬁzciimsbmﬂ20i+”7Lm5J+m)dS'
=0

The function under the integral equals

nﬁl Va (m52 Ci,|ms|> mﬁ2 Citn,|ms] +m)

m62c' ,|m Jnﬂl m52 Ci+n,|_msj +m

= - (4.73)
(m2/82€z [ms] + m2 CH—n, Lmsj+m>
Recall that
m7¢; s = MW s )y (1 + 1) (1 + [ms]) ™ (4.74)
and
nﬁlmﬁ2

Citn,|ms|+m

= nﬁlm&w(Hn,LmSHm)(l +i+ n)_ﬂl(l + |ms]| + m) "2 (4.75)
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therefore, for fixed values of i € Ny and s > 0
M s = W00y (1 47) 5™,

DB sy om — (5 +1) 7,

Consequently, m52cz-+n7Lms |+m — 0, and from (4.73) we obtain

nﬁl Va (mﬁz Ci,|ms]> m/82 Citn,|ms] —l—m)
N w(i,oo)(l + Z')_Bls_BQ(S + 1)_’82
(w(i,oo)(l + i)_ﬁls_&)%a

= wf L (1 4i) s R (s 4 1),

Let us show that n?:

Va(m520i7LmsJ ,mP2e; Lmsj+m)‘ is dominated by a

good function. From (4.74) and (4.75) we see that

mBQ Ci,[msj < 6(1 + Z.)iﬁlsi/g2

and

nPrm

Ci+n,LmsJ+m‘ <e(s+1)77.

We can now estimate

nA

Va (m/BQCi’LmSJ , mﬁ2ci+n,LmsJ -I—m)’
~1
)a m?

< e(1 +q)Prlabg=Rlal)(] 4 5)~F

< nA (mﬁ2

Ci,|ms] Citn,|ms] —i—m‘

and, since

S [Ty el () 4 )~y
i=0 "0
= Y1) e [T em(1 4 )7 < o,
i=0
the dominated convergence theorem implies

e}

p(n,m) i N=Bi(a—1) [ .~Pa(a—1) -8
fézwioo(l—{_z) ' 5772 (1+3) 2d3>
n ﬂlml BQ& i—0 ( ’ ) !
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as n, m — oo.

Inthecase l <a <2, fi ==, o= ﬁ we split p(n, m) as follows:

4
— Z Sk,n,ma
k=0

where

Sonm =2,  ValCij:Citnjtm)s
1=0 or 7=0

Sl,n,m - Va(ci,ja Ci+n,j+m)7

n—1 oo

SZ,n,m = Z Z V Czya Cz+n]+m)

=1 j=m

(ee) (ee)
S3mm = Y > Val(Cij, Citngrm),

1=n j=m

co m—1

S4,n,m - Z Z Va<ci,j7 Ci-l—n,j—i—m)-

i=n j=1
Let us begin with S}, ,,. We have

n—1m-—1

Sl,n,m = Z Z Czya Citn j+m)
i=1

_/ / a(Clt) L5 Clt)tn,|s)+m)dsdE
/ / Clnt |, lm? > Clnt [+, e | +m ) A dn®
n(m / / a(Clnt ) lme)s Cnt 4, [ Hm)msntdsdt
= In(n) ln(m)n—ﬂlm—ﬁz %

1 ,1
X /0 /O nﬁlmBQVa(Cl—ntLLmsJ,CLntJ+n7LmsJ+m>msntd5dt.

Let us now investigate the point-wise convergence of the function under

the integral. We have

nﬁlmmVa(CLntJ,LmsJ s CLntJ—i-n LmsHm)mSnt

m nt Clnt],|m sJTLBlmBQCLntJ_i_n |ms | +m

2—«a
2

(4.76)
(g ime) F ot )
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Since ¢, ~ k7P |nt] ~ nl) [m*] ~ m®, and for t,s € (0,1) also

|n'] +n ~mnand |m*| +m ~ m, we obtain

nﬂlmﬁZVQ(CLntLLmsJ,CLntJ+n7LmsJ+m)m8nt

m3ntn =Bty =B2snPrmPen =Py —P2
(n7251tm72B28) 2770

~Y

_ msntn—ﬂl(a—l)tm—b’g(a—l)s = mintn~tm= = 1.

Let us show that absolute value of (4.76) is bounded by an integrable

function. We have

nﬁlmﬁ2 ‘VQ(CLntJ’LmsJ s CLntJ—i-n,LmsJ—i-m)‘ msnt

a—1 s 1
€1t (s 4m)| TN

< nﬁlmﬁz ‘CtntLLmsJ
< enrmPmint(1 + LntJ)*ﬂl(afl)(l + LmSJ)*ﬁz(a*Ux
x (14 {ntJ +n) (14 |m®] 4+ m)™*

t, —t

< e*nPrmPmsntnTtm S0 P2 = oo,

A constant function is integrable on (0,1)?, thus, the dominated conver-

gence theorem applies yielding

p(n,m) Ll
1 = 1.
n=Am=B21n(n) In(m) _>/0 /0 dsdt

Let us now examine the quantities

n—1

Zy(n, B) = ;)(1 +4) (1 +i+n)F,
Zon. B) = S (1+0)7 (1 i)

We have

Zi(n, B) < ni(l +i) P =nF (1 + ni(l + z‘)_l)

=0 i=1
=n’ (1 + /1n(1 + LvJ)‘ldv> <n P (1 + /1n v_ldv>

=n?(1+1n(n)),
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o0

Zy(n, B) < L+ = [T+ (o))

=n N 76

By ="

< /n v dv = 5

therefore Zy(n, 8) = O(n=?In(n)) and Zs(n, B) = O(n=?). We will employ
these results to deal with S;,,,,, ¢ = 0,2,3,4. We will apply inequality

-1
|Ci+n,j+m|

Va (Ci,j ) Ci+n,j+m) | < |Ci,j

<1+ A+) i+ n) (1 +j +m)

Let us begin with Sp,

00 o0
|SO,n,m| < Z |Va(ci,07 Ci—i—n,m)l + Z |Va(CO,j7 Cn,j+m)|
=0 j=0
00

eo‘21+z (I+i+n)"""(1+m) P+

(ee)
+e ST+ A +n) (145 +m) >
j=0

< em 2 (Zi(n, B1) + Za(n, B1)) + €*n P (Zi(m, Bo) + Za(m, Ba)),

hence

SO,n,m

0.
n=Prm=F2In(n) In(m) ”

We continue with Sa

n—1 oo
(Sl <€ 30 3 (1) A+ A +i+n) (14 +m)
i=1 j=m
n—1 00
<Y (14+) M A4+i+n) Y A+ A +5+m)
1=0 j=m

= e“Z\(n, 1) Za(m, Ba),

therefore

SQ,n,m

n=fm=P21n(n) In(m) 0
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Similarly we show that

SB,n,m + S4,n,m 0
n=Am=521n(n) In(m) '
Consequently
pm)
n=Pim=P2In(n) In(m) ’
as m, m — oo.
This finishes our proof. ]

Proof of Theorem 4.16. For convenience of writing we assume that w; ;) #
0 for all 4,5 > 0. It then follows from assumptions (A1)-(A3) that there

exist constants d, e > 0 such that
d < |wp| <e i,j>0.
We need to investigate the asymptotic behaviour of

o 0
=>> ValCitnyj, Cijrm)

i=0 j=0
as min(n, m) — 0.
Similarly to the proof of Theorem 4.15, we consider only part of the
sets of parameters, since the other cases are investigated in a similar way.

Here we will provide the proofs for the following cases:

1. 1<a<?, <6Z ,z:1,2andﬂi—|—1>a;

B2
2. 1<a<2 L <pBrand 2 < B <1
3. 1l<a<?2, f= —and1<62<

We begin with the first case. The spectral covariance equals

o0 O
= Z Z Va(Citngs Cij+m)

1=07=0
- 0 /O t]+n,[s] CLtJ Ls] —|—m)d8dt
— 0 /O Va ntJ +n, Lm3J7 Cl_ntJ I_mSJ +m)dm3dnt

= plmoPypl-ab: /o /0 Va(n 1mﬂzclntj+n, |ms) > nﬁlmﬂQCLvaLmsJer)det'
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Suppose t, s > 0, we have

nﬂl mﬂQ Clnt|4+n,|ms]

= nﬁlm[ﬁ?w(tntHn’LmSJ)(l + [nt] + n)_ﬁl(l + Lmsj)_52
— (1+ t)_ﬁls_BQ,
similarly
DI e ) s e — £ (14 5) 72,

Due to the continuity of the function V,, we obtain

A m52 C [nt|,|ms] +m)

S V(L) s (14 1) s,

Va (nﬁl mﬁz Clnt|+n,|ms|> T

as n,m — oQ.

Let us show that on (0,00)? the function

‘ Va (nﬁl mﬂQ Clnt]+n,|ms|s nB1 mﬁz Clnt],|ms] —l—m) ‘ (4 77)

is bounded above by an integrable function.

Ift>0,s > 1 we have

B1

‘ Va (nﬂl m62 Clnt|+n,|ms|> T mﬁz Clnt],|ms] +m) ’

’nﬂl mBQ Clnt],|ms]+m ‘

< e (HL”W’L> - (HM) 8,

n m

< [0 m® e )

n m

X <1—i—Lm§J> —B1(a—1) (1 + |ms| + m)ﬂg(an

< et + 1) Prs Pl (g 4 g)=Falal),

and

—/ ¢ Pila=l) (t+1 Bldt/ 52(0‘ Dds < .

85



Ift>1,0<s < we can bound

P ) s om)|

a-1 ‘nﬂl mP2

‘Va(nﬁlmBQCLntH—n,LmsJan

< nﬁl mﬁ2 Clnt]+n,|ms| Clnt],|ms|+m ‘

< et 4 1) Alalg=Bala=lly=Ri(] 4 5)=F2
and the dominating function is integrable:

/ooo /loo(t + 1) Psm P el 4 )R D sdt

0 1
= /1 Pt + 1)_f81(0‘_1)dt/0 s~RN(1 4 5) 7P ds < 0.
It remains to bound (4.77) on (0,1)%2. We notice that

< 6(1 + t)—ﬁls—ﬁ2 < 68_52,

‘ nﬁl mf& Clnt]+n,|ms|

‘nﬁlmBQCLntJ,l_msj—i—m‘ < et*ﬁl(l + 8)752 et ™,

Due to Lemma 4.6 we obtain

b1

‘ Va (nﬁl mﬁ2 & |nt|+n,|ms]> n m52 c [nt],|ms] +m) ’

= Va(‘nﬁl mB2CLntJ +n,|ms]| > ’nﬂl mB2CLntJ | ms| +m’)

< Va(es_ﬁQ, et_'Bl),
and proceed to show that
1 1
._ —B2 =P
].—/0 /0 Vo (s772,t77)dsdt < o0. (4.78)

We split I into two integrals: I = I; + I, where

+81/82

L = /01/0 Va(s™72, 7P )dsdt,

1,1 B —p
IQ = /0 /tlﬁ/ﬂz Va(S ,t )det,
and proceed to show that both integrals are finite.
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Since —f(a — 1) > —1, we have

t@l/ﬂQ
/0 Va(s™ P2, t7P)ds
tP1/P2 tP1/52
< g Pla=D)=B1qs — =P —B2(a—1)
/ ds =t /0 s ds
(tO/P2)1=Bela=1) y=BitBr/Ba=Fr(a—1)
— ¢ —
1—B2(O&—1) 1—52(0[—1)
1P/ B2—Prax
1= Bala—1)

therefore, since f1/82 — S > —1, we obtain

1 ¢h/B=Pra

I < dt < 0.
YSh 1= Ba—1T =

We continue with /5. Now

1
/ Vo(s72 t791)ds

tB1/B2

< [, e,

tB1/82
— ¢Hila=1) /1 s P2ds
tB1/B2

_ e 1 — t51(1=52)/ B2

1—py

therefore,

1
/ \Va 8_62,15_61)(18 — O(t_ﬁl max(a—l,a—l/ﬁg))

tB1/82 a(

ast — 0 and

1
/ Vo(s™%2,t7P)ds — 0

tB1/B2

as t — 1. Condition f; max(a—1,a—1/82) < 1 is satisfied, hence Iy < oo
and (4.78) holds.

The dominated convergence theorem applies yielding

p - — —
ni- aﬁlml 0652 / / 527(1+t) /815 ﬁQ)det
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We continue by investigating the case 1 < a < 2, —— < f3; and

a—1
1 .
- < 2 < 1. We express the spectral covariance as

oo o0

p(n,—m) =73 %" Va(Citn,js Cijrm)
i=0j=0
= ;)/0 Va(ci+n,LsJ s Ci,LsJ+m)d3
— igo/o Va(Cistn,|ms|s Ci,|ms]+m)dms

o0 e’}
= n Prpl=re Z/O n Vo (m™cip, [ms) s mBZCivLmSHm)dS‘
i=0

Since
nﬁlm&CHmLmSJ — s
and
m’BQCMmsJer — W(i00) (1 + i)_ﬁl(l + s)_BQ,
we obtain

nﬂl Va (mﬂz Citn,|ms]» mﬁz Ci,|ms] +m)

nfrmp Citn,|ms] m/ Ci,|ms]+m

2—«

2

(m252cf%+n,LmsJ + m262cz,LmsJ+m> ’

= wfy (L4 8) O (L ) e,

as n,m — oo.

Let us now find an upper bound for n? |V, (mBQCHn,LmSJ , m52ci7LmSJ +m)’.

We have

nd

Va (mBQ Citn, |ms]> mﬁ2 G, |ms| +m) ’

-1
B2 @
‘m Ci,|ms|+m

< nb mBQCi—i—n,LmsJ

<e*(1+ i)_ﬁl(o‘_l)s_ﬁQ(l + s)_ﬁz(a_l).

Since

e.¢]

S [T (i) e R (1 g g e g
1=0

=3 "(1 + i) Aleb /OOO s72(1 4 s) 7" Dds < oo,
=0
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we can apply the dominated convergence theorem to obtain

p(n, —m) N N~ Bi(a—1) B —Ba(a—1)
_pn, —m) —1 (1 1 2(1 2 .
n_ﬁlml_ﬂQOK — ;)/0 w(Z,OO)< + Z) S ( + 3) ds

. . 1 1
Let us now investigate the case 1 < a <2, f1 = g and 1 < fp < 5.
We begin by assuming that h, = m_”/n=% — ¢ € (0;00). In what
follows, in order not to overload the notation, instead of m,, we write m.

The spectral covariance equals
o o0
p(n, —m) = Z Z Voc(ci—i—n,ja Ci,j+m)
i=0 j=0

[ elENee)
=m 2NN Valhy ' i m™cijim).
=0 j=0

Since

o 0 i g = ¢ e gy (14 5) 77

and

mCi jim = Wi o) (1 +1) 77,

continuity of V,, implies

V. (mﬁznfﬁl nﬁl Citnjs mﬂz Ci,j+m)

= Vo Wiy (L + 3) 7 w0y (L + 1)),

as n — o0.

We have

1 o 761
<e<+;+") (145)2 <e(1+75)"

™ eiin,;

and, similarly,
mPciiim < e(1+1i)77
Since h,! — ¢! > 0, for large n we have
ht<2c,
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therefore, by Lemma 4.6,

‘Va(hglnﬁlCH_n’j, m520i7j+m)‘
< Va(e2c 1 (1 + )72 e(1 44)77)

< EVa((L+5)7", (1 +0)™),

where E = emax(1,2c™1). In order to apply the dominated convergence

theorem we need to show that

oo 0

S Va4 1 +0)7) < . (4.79)

i=0 j=0

Using Lemma 4.6, we obtain

ZZVa (14 5)7%, (1 +10)P)

=0 5=0
= [ [T Val( L)) (1 [2]) ) dsat
= [ [ Valls) ™ 1) asdr
/ / W(25772 2t 7P dsdt,

since |x| > x/2 for x > 1. Let us show that
_ [ —B2 =P
I:= /1 /1 Vo (s772,t77)dsdt < 0.
We split this integral into two
I= [1 + 127

where
th1/ 52

I = / / B2 =By dsdt,

[e.9] [e.9]
_ —B2 4—p1
I = /1 /tﬁl/ﬁz Vo (s™72, 771 )dsdt,

and examine them separately.
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We shall show that I; is finite. We have

t51/52
/1 Va(s™ P2, t7P)ds

tﬁ1/ﬁ2
< / g—Bea=1)4=B1 g
1

tP1/82

— +—B —B2(a—1)
t /1 s ds
_a, 81/ B2(1=B2(a=1)) _ 1

1-— BQ(O{ - 1)
5 tP1/B2(1=P2(a=1))

! 1 — Ba(a—1)

=1

1P/ B2—Prax
1= Bo(a—1)

Since 31/PB2— fra < —1, the integral I is finite. We continue by examining

I>. Since 35 > 1 we have

/too Vo(s7P2 t791)ds

B1/B2

< /Oo s Pep=Ale=lgg
= tB1/82

— ¢ Aila=1) > s P2 ds
tB1/82

brla 1),551/52(1*&) 1/ Ba—Prax
— t_ 1 - —

Bo—1 — PBa—1

In the case under investigation we have [1/8y — fia < —1, therefore

Iy < 0o. Consequently I < oo and (4.79) holds.

The dominated convergence theorem implies

pln,m) S &, - - s
i 7 2 2 Vale Wi (14 ) Wi (141) ),
i=0 j=0

as n — o0.

Let us now assume that m = m,, is a sequence such that
hp =m ™72 /0= = 0,

and introduce notation g, = mn %/ In order not to overload the no-
tation in what follows instead of g, we simply write ¢g. Since h,, — 0, we

have g — o0, as n — oc.

91



The spectral covariance equals

= Z Z Va(ci—i—n,jv Ci,j+m)
i=0 j=0
- Z/ Citn,|s]» Ci LsJ—I—m)dS
— Z/ CH—n lgs]>s & LgsJ—l—m)ng

=gm —fa Z/ m “Citn, LgsJamﬂ Ci LQSHm)dS

As n — oo, we have

mﬁ2ci+n,LgSJ = mBQw(Hn,LgsJ)(l + 1+ n)_ﬁl(l + [gsJ)_52

1+i+n\"" (1+ LgsJ 2
Wernlgs) \ ) T

1+i+n 1+ LgsJ
W(i+n,|gs])
<

es P2 Also

_ mﬁ2g—ﬂ2n—ﬁl

thus, m?® Citn,|gs] = S P2 as n — oo, and m? 2 |Cign, | gs]

B2 —pB2

M™c; |gs|+m = mBQw(i,LgquLm)(l + Z')_B1 (1+ |gs] +m)
1+ |gs] er>_ﬁ2

= Wi lgs)rm) (1 +7) 7 < m

From the equality above we see that m520i7tgsj+m — W(io0)(1 + i)~ as
n — oo, and ’m C; LgSJer‘ e(1+14)~5.

As V, is continuous, the obtained relations imply

Va(mﬁzciJrn, Lgs]> mBQCi,LgsJer) — Va(s_&’ w(i,oo)u + i)_ﬁl)'

Due to Lemma 4.6 we obtain

Va(m™ciin, 1gs), m™ i gs) )|

< Vales ™ e(1449)77) = eV (s, (1 +0) ™).
If we show that

/OOO Va(s™, (14 4)"P)ds < oo, (4.80)



the dominated convergence theorem will imply

% Zv ooy (1 +1)7)ds. (4.81)

A simple change of variables gives us

| Vals ™, (1 i) s

_ Ooo Va( 14 4)P/P ) ’(1“-)51) d(1 +3)P/5e5

= (L) [TV ()T, (L)) ds
= (1 4 i)/Pafra /OOO Va (8_52, 1) ds,

therefore

g |7 Vals ™, (L i) )ds = 2(1 i) [Ty (57 1) ds,
The sum is finite, since in the case under consideration we have f1/8y —
fra < —1. The integral is finite since 1 < fo < 1/(a — 1), as t — 0 we
have V, (5’52, 1) ~ s P and V, (5’52, 1) ~ s P2 ast — oco. Therefore
(4.80) holds yielding (4.81).

[t remains to investigate the behaviour of p(n, —m) under the assump-
tion that m = m,, is a sequence such that m,, — oo and h,, — oo. Let us
denote f, = nm /%1 In order to have simpler notation, in what follows
we will write f instead of f,. Since h,, — oo, we have f — oc.

We express the spectral covariance as follows

00 o0
= 2_20;0 Va(Cistnjs Cijm) Z / a(Cltftn.gs Ce) gem)dE,
and split it up as
p(n,—m) = Sy + S1 + o, (4.82)

where

SO — Z VOz(Cn,ja CO,j—i—m)v
=0
S1= Z / CLtJ—I-njv Clt ]—i-m)dt
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So = Z/ Va(CLtJ—Fn,jaCLtJ,j—i—m)dta
=01

Let us begin by investigating S7. We have

X rf
S = 2/1 Va(CLtJ-i-n,jaCLtj,j-l—m)dt
j=0
0 1
= Z/O Valeyfeangs i) jrm)df!

j=0

S|
- Z/o Vot frngs €t gm) fM In(f)dt

Jj=0

o 1
=n""fIn(f) > /0 Vo ey g g, 07 e ) ) f1AL
j=0
Let us investigate f’IVa(nﬁlcUtHnJ, nﬂlctftLjer)ft. We have

F=Va(n® e ppings ™ e gy ) I
nﬁlcutHn’jf’lftnﬁlch7j+m

2 2
(n% L gt im0 Jim)

(4.83)

2—a

2

Relations n”'c| st 1y j = Wieo i) (1 + 7)™ and n”ejpe) jipm — oo imply

2—«

26, 2 26, 2 2—o
(0 g + 02 gim) T~ (e gm)

hence

F Vel e g g™ e g m)

1

-~ nﬁlcutJ+n7jf71ftn51(a*1)cfﬁj i

~ Wieo jy (14 J) 2 f 71 fipfrleml) pmhilam by, =f(e=1)
= Wieo ) (14) 2 f 71 fint f~tm /0
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We can also bound the absolute value of (4.83) as follows

Ve e gy g n™ e ) £
< ‘nﬁqutﬁn,j‘ ‘”ﬁlctftj,ﬂm‘a
< S (L [ ff 4 n) 0 (1 )P x
% n,@ﬁ(aq)(l i UtJ)f,Bl(afl)(l ++ m)f&(a*l)
< f‘lfteanﬂln_ﬁl(l _|_j)—52nf—tm—/32(a—1)

= (1 + )P fInm PP = (1 4 5) P2,

Since

OO 1 . OO .
> [+t = Y (1+5)* < oo,
7=0

§=0
the dominated convergence theorem implies

o0 1 0
L S [ ey (14 4) Pt = 30wy (14 5) 7% (484)
n~Phefln(f) =00 J=0

Next we will show that Sy = o(n ="' fIn(f)) and Sy = o(n="%f In(f)).
We begin with Sj.

o0 o0

1
S0 < [Va(ngs Cojam) | < D |enjl lcojom|”
j=0 J=0
o0 [ee]
< Zean_ﬁl(l +]) ,32 —Ba( 1+] ﬁzn—51—1f
=0 §=0
_eaz 1+] P2 _ﬁlaf7
7=0
thus we have obtained
So = o(n P fIn(f)). (4.85)
Let us deal with S5. Since
1+ |t + 511+)52< 1+'—52
Cltf4+n,j| S [t] +n)" " (14 en (14 4)%,
and
ey gim| e+ L) A+ +m) ™ et m
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employing Lemma 4.6 we obtain
o0
|S2| < Z/ ’ (Clt)4nj» Clt),j+m ‘dt
Z / 1 +]) B27 et—ﬁlm—ﬂ2)dt
= ¢ P 2(1 +j)_520‘/f Vo(1,nP (1 4 )2t Prm =) dt.  (4.86)
=0
Let us change the variable in integral

/foo Va(1, 0™ (1 + )Pt im =) dt

N /(1+j)ﬂ2/51 Vo (L (14 3)2(ft(1+ 5)2/50) Pm= ) d fe(1 + j)%/%
ot 62/,81 _61
= f(1+47) /(H]) o Va (L) dt. (4.87)

We shall find an upper bound for the integral f1+] 89181 Va (1,t‘ﬂ1) dt.
We have

/(1-1-]')52//31 Va (1’ t_ﬁl) dt
1 00
- /(1+j)_52/51 Va (1’ t_ﬂl) de + /1 Va (17 t_ﬁl) dt

1 00
—pi(a—1) —h
< /( Loy dt+ [0t

Ba 1
= —~In(1+ .
A d+3)+ fr—1
Therefore (4.87) is bounded above by
1
e (B )
f+7) 3, n(1+7) + 51
and now (4.86) implies
a, —pfia - -\ — a0 A\ B2/ 61 P . 1
[Saf < e 3 (1 +5)"f (1 + ) = In(145) +
=0 b1 pr—1
s 1
_ e f SO (1 4 )l o (52 In(1+ ) + ) |
=0 b B —1

The sum is finite, because fa/81 — foaxv < —1, therefore Sy = O(n_ﬁlaf),
implying
Sy = o(n~" @ fIn(f)). (4.88)
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Recalling (4.82) and collecting (4.84),(4.85) and (4.88), we obtain

p(n7 _m) . N\ — B2

This completes our proof. O
Proof of Theorem 4.17. Let us note that assumptions (A1)—(A3) imply

the existence of a positive number K such that ’w(m)‘ < K for all 4, .

In the case v; > 1, i = 1,2, we write (4.34) as

oo o
pa<n7 Sm) = n—’Ylm—’YZ Z Z fl(iaja n,m, 5)7
i=0 j=0
where
fl(iajvnamvs)
N N i+1\ " 1\
= Gijnms(1+2)" (1 +7)77" <1+ n) <1+]m> :

For fixed i, j, we have

fili, Gom,m,s) = Wi, j, )2 (14+ ) (14 )77, (n,m) — oo,
where W (i, j,1) = w; ;) and W (i, j, —1) = w jw(. ;). Since

[f1(i,g,mm, s)| < K1 44)7 (1 + )™

and Y272 X520 (1+4) 77 (1+45) 77 < oo, the dominated convergence theorem
implies (4.37).

Although the assumptions (A2) and (A3) hold point-wise, it is possible
to show that, due to the assumption (A1), the convergence in both these

conditions is uniform. Therefore, for an arbitrary ¢ > 0, there exists

N := N(¢) € N such that, for any i > 0 (assuming that n > N),

2

(1= &> < Gijnms < (14 w3, j > N. (4.89)

At this point, it is convenient to introduce the notation

a

Rinag: =144 "(14+i+n)“.
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Let us split p,(n, sm) into two sums

Pa(n, sm) = X1 + X

oo N—-1
_ZZQZ]nms 1,1,71 ]mmg"*‘ZZ%gnms znvlhjm,'yg
1=0 j=0 1=0j=N

Using (4.89), we estimate Yy as
(1 — E)aGan’N < Y < (1 + E)QGan7N, (490)

— "0 /2 __ 00
Whel‘e Gn — ZZZO w(z’) hi,’l’l,’)q and BmJ\] — Z]:N hj,m,’yz-

If vy > 1, then we can write

; 1 et
_n“zw (1+41) 1<1+Z+ ) :
n

and the monotone convergence theorem implies

—>Zw (1+4i) ™, n— oo,

n-m =0

Next, we investigate the case 1/2 < 1 < 1. We can write

. o0 /2 . o0 a2
Gn—/o w(LtJ,-)hUJanmdt_/o w(Lntj,-)thtJana’hdnt

o0 h
1-2m a/2 = Tlnt]ny
n /0 W pt), o dt.

For fixed t € (0, 00), we have

a/2 thtj,n, 1 — -
Wint)) —pay - =T (LT

and

| a2 Pt

/2 1
(L”tJ ) n—2mn S KT (1+t)

Since the dominating function is integrable, the dominated convergence

theorem implies

G,

nl 2’}/1

/ tT(1+t)""dt = K(v), n — oc.
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Next, we deal with G, in the case 73 = 1. Let us assume that n > 2.

We have

/ Wi} S higgaadt = / Wil (L4 [E) 71+ [¢) +n) L.

The change of variables ¢t = nY gives

w= [l )+ )T A+ (0] 4 n) e In(n)dy

=n~'(n) [ foln,y)dy,

where

a nv|+1\""  nY

For a fixed y € R\{0,1}, we have

Oify<Oory>1,
f2(n7 y) —
lif0<y < 1.
Convergence in the set {0,1} does not matter since it is a zero-measure

set. Also,
K229 if y < 0,

fo(n,y) K F(y) = K2 if0 <y < 1,

K21y if ¢y > 1.
The dominating function F' is integrable in R. Therefore, the dominated

convergence theorem implies

n_ﬁg(n)%/olldtzlasn%oo.
We denote
n72 i 1/2 <y < 1, K(y)if1/2 <y <1,
Sny = yn tn(n) if y =1, gy =1lifv=1,
n~Vif vy > 1; > w?ﬁ (1+4) 7 ify>1.
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In conclusion, for y; > 1/2, we have

G

Snm

— g, aS N —> 00.

Similarly, if 1/2 < 79 < 1, then we can show that

Bm,N

— g, A8 M — 0.
Smye

Inequality (4.90) implies

)
(1—-¢)"gy, gy, < liminf 72,

(n,m)—00 Sp ~; Sm,o

b
lim sup - < (14 5)0971972-

(TL,TTL) —00 Snfyl va’VQ

The sum ¥; can be bounded above as follows:

o
X1 S KCNm™?> hiy
=0

V1

0

_ —a/2 2

< K“Nm™ 7 sup w(ljg > wé’/.)hi,n,’ﬂ
k>0 i=0

= K*Nm™ 7 il;}g w(_kacGn
In the case 1/2 < 72 < 1, we have that m™ = o(sy,,,) as m — 00; thus,
¥ = 0(X2) as (n,m) — oo. Therefore, if v; > 1/2 and 1/2 < 75 < 1, then
we have

.. Pa(n,sm)
1 =¢)%y0y < liminf —————
( ) T1I02 S (n,m)—o00 Sn,y1Sm,ye

n,sm
lim sup 22025
(n,m)—o0 Sn,y15m,ye

Y

1+ 5)%]719%'
Arbitrariness of € > 0 implies

1- pa(n7 Sm) _
= = (v, Gy,-
(n,m)—=00 Sy, Sm v,

[

Proof of Proposition 4.20. Substituting ¢; from (4.42) into (4.27), we ob-

tain the following expression for the a-spectral covariance:
d
pa(Xo, Xx) = pa( X, Xx,) = [ . (|Ki]), (4.91)
=1
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where r,(n) := 3X2,(1 +4)77(1 + ¢+ n)~7. Obviously, it is sufficient to
investigate the asymptotic behaviour of r,(n) as n — oco. Using the same
steps as in the proof of Theorem 4.17 and mainly applying the monotone
or dominated convergence theorem, in the cases v > 1, 1/2 <~ < 1, and

v =1, we can prove the following three relations, respectively:

ry(n) — ((7), ry(n) — K(v), and % —1 asn— oo.

Now from (4.91) and from the last three relations we easily get (4.43). O
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5 Limit theorems

5.1 The problem and results

Limit theorems

Now we will formulate two limit theorems for stationary and associated
random fields, which generalize the results from [17]. Note that limit theo-
rems for stationary associated random fields with finite variance are deeply
investigated; a lot of information on the CLT in this case can be found
in [12]. On the other hand, limit theorems for stationary random fields
with infinite variance are less investigated; therefore, it seems interesting
to investigate limit theorems for associated stationary random fields with
infinite variance.

We consider the case d = 2, although there are no principal difficulties
to consider the general case d > 2, apart from a more complicated notation.
Let X = {X;;, (i,/) € Z*} be a stationary random field (by stationarity
we mean strict stationarity with respect to translation operation). We
say that a random field X is associated if, for any finite set A C Z?, the
collection of random variables X; ;, (4,j) € A, is associated and is jointly
(strictly) a-stable if the collection Xj;;, (i,7) € A, is jointly (strictly)
a-stable. First, we state an analogue of Theorem 3.8 for a stationary
associated jointly a-stable random field X = {X;,, (i,j) € Z*}. We
denote p(i, j) = p(Xo0, Xi;) and

Snmzfjfjxij Snmzs’”‘ivm. (5.1)
7 o ’ nt/oml/e

Theorem 5.1. Let X be a stationary associated jointly c-stable field.
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If0 <a< 1, then
Spm 0 asn,m — oo, (5.2)

where p is a strictly a-stable distribution.

If oo =1, then there exist constants Ay, such that
o d
Sn,m - An,m = X1.

Ifl<a<2and

> pli,g) < oo, (5.3)
(1,5)ez?
then
Smm - ESn,m Sn,m — nmb d

. y— — Taria > [L as M, m — 00, (5.4)

where 1 is a non-degenerate strictly a-stable distribution.

An observation similar to Remark 4.4 can be made here: the quantity
p(i,7) in (5.3) can be substituted by the codifference 7(i, j) := 7(Xo,0, Xi ;)
to obtain an equivalent statement. Changing the spectral covariance by
the a-spectral covariance (or covariation) in (5.3) makes the statement of
Theorem 5.1 weaker, however, as can be seen from Theorems 4.15, 4.16
and 4.17, the asymptotic behaviour of a-spectral covariance is simpler.

Theorem 4.17 and Proposition 4.3 allow us to verify condition (5.3) for

linear random fields.

Corollary 5.2. Suppose that a linear field (4.28) with coefficients ¢; ; of

the form (4.31) with wy, jy = 0 satisfies conditions (A1)-(A3). If1 < a <2

and B; > 2/a, i = 1,2, then
Z?:I Z}”:l Xi,j

nl/aml/a

d, [ as n,m — o0,
where [ s a non-degenerate strictly a-stable distribution.

Now we shall state a generalization of Theorem 3.9. Let {X;, ;, i,j € Z}

and {Y;;, 7,7 € Z} be stationary and associated random fields, and,
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additionally, let {Y;;, 4,7 € Z} be jointly strictly a-stable, 0 < o <
2. We say that {X;;, i,j € Z,} belongs to the domain of strict nor-
mal attraction of {Y;;, i,j € Z,} and write {X,;} € Zw({Y:,}) if, for
each (n,m) € Z2, the distribution of the mn-dimensional vector X, ,, =
(X1, X012, -, Xims X2ty oo s Xom, o, X1y - - -, Xium) belongs to the do-
main of strict normal attraction of the mn-dimensional a-stable random
vector Yom = (Y1.1,Y12,- -, Yim, Yo1,- -, Yom, oo, Yo, ..., Yom) . The
spectral measure of Y, ,, is a measure on S""~! we denote it by Ty, .
We shall use the notation (5.1), but now assuming that the field {Xj ,
i,j € Z} is in the domain of attraction of an a-stable field {Y; ;, i,j € Z}.
Using the function I2(X;, X;) defined in (3.16), let us denote (using bold

letters for two-dimensional indices)

I k) = I (X, X, I (k) == 12(0,k),

Zn,m = n—l/am—l/a Z Z }/imj'

i=1j=1

Theorem 5.3. Let {X;;, i,j € Z} be a stationary associated field such
that {X;;} € Z:({Yi,;}), where {Y; j, i,j € Z} is a stationary and jointly
strictly a-stable field, 0 < o < 2, and 'y, s symmetric for all n,m if
a=1.

If

> I2() < o0 (5.5)

jez2
for some A > 0, then there exists a strictly a-stable distribution p such

that

S 5 1 (5.6)

and

Zn,m 4, [ as m,m — oo. (5.7)
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Linear fields

In this section we are going to investigate the convergence of finite dimen-

sional distributions of appropriately normalized partial sum process

Salt) = X X (5.5)
0<k<nt
as min(nq,...,nqg) — oo. Here Xy = Yjs0¢iék—j, k € Z‘;{, is a d-

dimensional linear random field, &, j € Z¢ are independent copies of
random variable &, belonging to the domain of attraction of a-stable ran-
dom variable, see (2.13), (if @ = 1 we assume that the random variable is

symmetric). We assume that coefficients ¢; are of the form

d
G = Cljryenda) = H aj, (n:0), =0,
where
a;i(y, 1) ~ (L4 75)""Li(j), as j — oo, (5.9)
with 9, > 1/a and some s.v.f. L, [ = 1,...,d. If vy = 1 we make a
simplifying assumption L; = 1.

Remark 5.4. In what follows we assume that 7; > 1/a holds without
explicitly mentioning it. For example, sometimes instead of writing v; > 1

and v, > 1/a we will just write v > 1.

Let us denote

Lif 9 > 1and X72ga;(,1) # 0,
n'™MLi(n) if 1 <y <1+1/aand £2ga;(y,1) =0,
Sna7l7l =

Inn if v =1,

nTnL(n) if 1/a <y < 1,

(5.10)

and

d 1
Ap = %Z (H nj) H (n 5”3»%?) (5.11)

<.
I
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here hy/, is a s.v.f. corresponding to h from (2.13) and satisfying (2.2).
We also define

X k(0 Do (w) if > 1 and X324 a;(w, 1) # 0,

R GO o0 _
— m<1l4+1/aand X24a,(v,l) =0,

Hw(u,t,l) _ 1—m J=0"J

Liogy(u) if v =1,

(t—u)y = (w) "
1—m

if 1/a <y <1,
and
d
H(u, t) = H Hw(ul, tl, l)
=1
We are now ready to formulate our result.

Theorem 5.5. For the process Sy(t) defined by (5.8) and normalizing

sequence (5.11) we have
AZ1S (1) M (e, (5.12)

where 1(t) is a-stable stochastic integral defined by

I(t) = /]R H(u, t)M(du),
with Lebesgque control measure and skewness intensity 5(x) = 3.

Remark 5.6. Normalizing sequence in (5.12) contains factor h%g (H?:1 nj>
which is absent in the Definition 6. Since this factor can not be expressed
as a product of slowly varying functions Hle lj(nj), Theorem 5.5 reveals
that the definition of memory for stationary fields in [52] needs revision —
it does not classify linear fields with general innovations belonging to the
domain of attraction of a-stable random variable (it applies only to linear

fields with innovations belonging to the normal domain of attraction).

Negative memory

We consider a partial sum process S, (t) = ZWJ X} of linear processes

X = X% ¢i€n—; with independent identically distributed innovations {¢;}
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belonging to the domain of attraction of a-stable law, 0 < o < 2. If

lck] = k77, k € N, v > max(1/a, 1), and ch =0 (5.13)
k=0

(the case of negative memory for the stationary sequence {X,}), it is
known that the normalizing sequence of S,(1) can grow as n!'/*=7+1 or
remain bounded, if the signs of the coefficients of ¢;, k € N, are constant
or alternate, respectively. It is of interest to know whether it is possible,
given A € (0,1/a—~+1), to change the signs of ¢ so that the rate of growth
of the normalizing sequence would be n*. The following theorem gives a
positive answer: we propose a way of choosing the signs and investigate
the finite-dimensional convergence of appropriately normalized S, (t) to
linear fractional Lévy motion.

For 6 > 1letusdenoteT:T9:{k:szWJ—lforsome [ €
3}

Theorem 5.7. Suppose that max(l/a,1) < v < 14+ 1/a, 1 < 0 <
af(ay —1) and for n > 0 let us define

1ifnel,
Sp =
(—1)™ otherwise.
Consider a linear process X, = Y72, bi&n—i where by = sgk™7, k € N,
bp = =202 bk and &, © € N, is a sequence of i.i.d. random wvariables
having ch. f. (2.13).
The sequence of linear processes gn(t) = A 1ZWJ Xk converges in

finite-dimensional distributions to the LELM

Zadjarigo—y (=270 /(40 = 1),05¢)

with skewness intensity f(u) = B. Here A, = nl/o‘ﬂ/eﬂh%g(n) with hy /o
satisfying (2.2).
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Assumption |by| = k77 could be changed by a more general |by| =
k=7(a+ o(1)), k — oo, requiring only minor changes to the proof. We do
not do this in order to keep the proof technically simpler.

Theorem 5.7 answers the problem proposed by Paulauskas in [52]:

Corollary 5.8. Suppose &; belong to the normal domain of attraction of a-
stable law. Given y € (max(1/a,1),1+1/a) and any A € (0,1/a—~v+1),
it is possible to choose the signs of the coefficients cx, k € N, satisfying
(5.13) so that A,, would grow as n’.

5.2 Proofs

Proof of Theorem 5.1. Let Y be a stable random variable with spectral
measure ['y and shift parameter b. Since the unit sphere on the line is
two points, the parameters b, 0 (Y) =y ({1}), and o_(Y) =Ty ({—1})

completely determine the distribution of Y, which we denote by
(b, o (Y),0-(Y)).
Recall that
Xpm = X1, X102, X, Xot, o, Xomy - Xty oo s Xoum) - (5.14)

Since X;;, 1 <i<n, 1 <j <m, are associated and jointly a-stable, the
random variable S, ,,, as a linear combination from the vector (5.14), is
the stable distribution vg, ,, (bnm, 04 (Snm), 0—(Snm)), where b is the shift

parameter of X ;, and

0+ (Snm) = C:{,m = /Snm—l (

o
n m
0 (Snm) = = /Snm,1 (— > %) Lis, ;<0, 1<i<n1<j<m)Lnm(ds).
i=1j=1

n m @

~

Here I, ,,, denotes the spectral measure of the stable vector (5.14) on

the unit sphere S"™~!. As in [17], we must show that the parameters
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of the stable distribution s, ,, are converging, and to this end, we shall

use Lemma 2.5 in the case d = 2. We will show that ¢ and ¢

n,m as

n,ms
functions Zi — [0,00), are subadditive and superadditive in the cases
0<a<landl < a< 2, respectively, and additive in the case « = 1. We
start with the case 0 < a < 1. It is convenient to denote vectors in R™"
by (81,1, S1ms 82,15+« 52ms---sSn.1,-- -5 Snm). Applying the inequality
(x+y)*<z+y* x,y 20,0 < o<1, we can write

C;Jrk,m =04 (SnJrk,m)
n+k m

(6
- / (i kym1 (Z > 5@]) Lis; 20, 1<i<ntkl<j<m}L ntkm(ds)

1 5=1
a n+k m o
<o lZSs] [ Xs) )
i=1j5=1 i=n+1 j=1
X 1ys; >0, 1<i<n+k1<j<m}] ntkm(ds)

= U+(Sn,m> + U+(Sn+k7m - Sn,m)

= U+(Sn7m) + U+(Sk,m) = C:{,m + C;:,m'

Exactly in the same way, we can show that ¢, il S+ ¢t and we
have that ¢} is subadditive, the same can be shown for ¢, . Therefore,

by Lemma 2.5 we have that there exist the limits

+ —
. Cn,m . Cn,m

lim ,  lim ——.

n,m—o0 nm, n,m—o0 nm,

Since the random variable Smm is stable with parameters b(nm)l_l/ @

+

Cnﬂn

(nm), and ¢, ,,/(nm), which are convergent as n,m — oo, we get

(5.2). In the case 1 < a < 2, we use the inequality (z + y)* > z® + y°,

z,y > 0, and now we prove that ¢} and ¢, are superadditive. From
Remark 2.6 we get that the limits

- Cam g Cam

lim ——, lim ——

n,m—0o0 nm, n,m—o0 nm,

exist, but now these limits are equal to the corresponding quantities, de-

fined by changing limp, ;o0 INtO SUP(, yez2 - Using condition (5.3), we
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will show that these limits are finite. Let us denote V,,,, = {(i,7) : 1 <

i <n,1 <j<m}. Using the association property, we can write
[0}

C

+ e ,
n,m + Cn,m - /Snm,l . Z Si
IEVn ,m

= /SW(GV |sl|) P m(ds)
< /m<

= slsJan(ds) =1 + I,

L m(ds) (5.15)

|54 ) Lyom(ds)

16‘/” m

’Je‘/:rl m g
where
IG;nm /S”m 1 12an dS)
Z é7an 1 ’81’ an(dS) - nm(cl )1 + C]_ ]_) (5 16)
IEVn m
and

L = Y / 51T m(ds) (5.17)

i#jeVa,m
Si Sj a/2

s / : 8? + 8'2 Degoy o I ds

17é.]§/nm Srm=t \/Si + Sj2 \/512 -+ sz ( ! ']) { it j>0} nvm( )
< X2 pX X)) = > p(Xo, Xiny)

iiéjevn,m i#jEVn m
= nm Y, p(Xo, Xyx) <nm Y p(Xo, Xk),

keDn*l,mfl kEZz

where Dy, 1,1 = {(i,7) € Z% : |i] < n—1,|j| < m—1,i +|j| > 0}.
From (5.15)—(5.17) and condition (5.3) it follows that

sup Cnm T Cnm _
(n,m)eZ? nm

It remains to note that, in this case, centering is needed since the shift
parameter for S, ., is b(nm)' =Y/ and (5.4) is proved.
The case a = 1 is easy. As in [17], we can show that ¢} and ¢, ,, are

+

additive, and therefore, ¢, = nmcf; and c;,,, = nmecy;. In the case of
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symmetric spectral measure I'y, ,, the parameters of S, ,, are (b, c¢fy, c1 1),

whereas in the general case centering may be needed. ]

Proof of Corollary 5.2. Since the coefficients ¢; are non-negative, the in-

vestigated linear field is associated. We will show that

> palisg) < oo.
(i,§)€Z?

This, together with Proposition 4.3, implies (5.3), and Theorem 5.1 gives
the result stated in the corollary. Since the field is stationary, it suffices

to show that

> palisj) < oo (5.18)

i>0 jeZ
According to Theorem 4.17, we have the asymptotic relation (4.37), which

implies that > n Y j>n pa (i, 55) < 1 for N large enough and s € {—1,1}.

Similarly as in the proof of Theorem 4.17, for fixed m, we have

Pa(n, sm)

~nt 22) ;},}Lﬂgo Gigmm.s(1+0) " (L+ ) (1 +j+m),
1= )=

as n — oo, and, for fixed n, we have

Pa(n, sm)

o 0
ot X% z%n%ii%o Qi jnm,s(1+ 1) (1 4+7)" (1 +i4n)"",
1=0 )=

as m — o0o. These relations imply that the row series and the column

series are finite. Thus, (5.18) holds. O

Proof of Theorem 5.3. The proof goes along the same lines as in Newman’s
CLT (see [47]), adapted to the case of infinite variance in [17]. First, we
outline the proof. The main step is showing the following relation (recall

that Sy = Sym(nm)~1/%):

lim  limsup ‘E exp {D‘Sm,nz} -

mi,ma—00 k1 ko—s00
)

- (E exp {i/\ (knks) ™Y/ S‘ml’mg}ylb —0, \eR. (5.19)
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Here and in the sequel, we assume that n; = m;k;, © = 1,2, with integer
m; and k;. Since the second term in the difference in (5.19) is the power
of a ch.f., it corresponds to the sum of i.i.d. summands. Thus, using the

assumption {X;} € Zsn({Yi}), we have
) “1/a & k1ka =
<E exp {1)\ (k1k2) Sml,mz}) — Eexp {1)\Zm1,m2} (5.20)

as (ki, ko) — 00. Since Zy, .m, is a stable random field, as a last step,
we apply Theorem 5.1 to get (5.7). Finally, (5.7), together with (5.19)
and (5.20), implies (5.6). Now we return to the main step in the proof.
For b > 0, let us define the function f; : R — R by fy(x) = bl ) (z) +
T4 (2) = b1 (oo, —p) (). Since fy(z) is a non-decreasing function in x, the

random field { f,(Xj), i € Z?} is also associated. We use the decomposition

Spymy = zW) 4 72

ni,n2 ni,n2’?

where
niy n2
2y = 22 2 o ((mama) /7 X55).
i=1j=1
Z2, =55 ((nang) X5 — i (nin2) "V Xy5)) -
i=1j=1

Since the random variable X;; belongs to the strict normal domain of
attraction of a stable random variable Y; ;, there exists C' > 0 such that

P(| X | > z) < Cx~*. Let us take € > 0 and b > (C’/s)l/a. Then we get

<PE1<i<ny, 1 <5< ng: | X | > b(ning)/®)

(5.21)
< nmgIP’(|X1,1] > b(nmg)l/o‘)
< C’nlngb_o‘(nlng)_l =Cbh " <e.
We will show that
[Eexp {iASn, n, } — Eexp {iAzZ{), }] < 2¢, (5.22)
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. —1/a & kiks
<Eexp{1)\(/€1/€2) Smm}) _

ki ko
(]Eexp {1)\ > Z o ( ning)” 1/aXU)}>

1=17j=

< 2. (5.23)

Inequality (5.22) follows from (5.21):

’Eexp{i)\ (ZV,, + 22,,)} — Eexp {iAz{}) }\

S ni,n2
<Elexp {iAZ{D,,} — 1]
=K ’(eXP {1)‘Z7(11)n2} 1) IL{Z(Q)nﬁéO}‘

<2P(Z,, #0) < 2.

ni,n2

(5.24)

For simplicity, let us introduce the notation
mi mo

Uml,mg = Um1 mo Tll, n2 Z Z fb ( n1n2 /aXi,j) 3

1=17j=
UWD = (kiks) ™ Sy my — Unnyomy-

mi,ma2

Then (5.23) becomes

Ar = [(Eexp (A Uy, + U] -

— (Eexp {iAUpm, m, 1) < 26, (5.25)

Using the inequality |a™ — 0" < nla — b, |al, |b] < 1, we can estimate

A1 < k1k2 ‘Eexp {1)‘ (Uml,mz + U1§11) mg)} —E exp (i)‘Uml,mz) :

(5.26)

Similarly to inequalities (5.21) and (5.24), we have

P(U) . # 0) < mimaP(| X1 1] > b(nin2)'/®)
< Cb “(kiko) ™t < e(kiko)™t (5.27)
and

‘E exp {i)x (Uml,mz + Uéh) mQ)} — Eexp {i)\Uml mg}‘

m1 ma2
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Collecting (5.26)—(5.28), we get (5.25) and, at the same time, (5.23).
Since the random variables in the sum Uy, ,, are bounded, we use (as

n [17]) Newman’s inequality to get the following estimate:

= [Eexp {iNUis} = (Eexp {iNUiny )™

‘Eexp{l)\\/nmg — nl,nz}
. 1 1 ko
— [Eexp 1)\\/n1n2m\/WUmhm2
)\2711712

1 1
< - _
< 5 (Var ( T Un1,n2> Var ( T Um17m2>>

22 1 1
_ AT ( Var (Up, n,) — ——Var (Uml,m2)> | (5.29)

2 nin9 mime

We must show that the last quantity can be made arbitrarily small if

we take my, my sufficiently large, and to this aim, we consider separately

Var (Up, n,). Let us denote

Cgll’dn; Cov (fb ((”1”2)_1/aXd1+1,d2+1) » Jo ((nlnz)_l/aX1,1)) .

Then it is not difficult to verify that

Var (Up,y n,)
= Cov (Z Z fb( n1n2) Y aXu,w) Z Z fb( n1n2 anme))
21 112 1 J1i=1j2=1

Z Z Z Z Cov (fy (man2) ™ X;,5,) s fo (mama) ™ X5, 5,))

i1=1142=1 j1=1 jo=1
ni1—1 na—1

= 2 X (m—di])(ny = |da)C4 ;-

di=1-n1 da=1—no
Similarly, we calculate Var (U, m,):

mi1—1 mo—1

Var Unim,) = 32 20 (ma—|dif)(mg = |da])Cy ) (5.30)

di=1—m1 do=1—m>

From (5.29)-(5.30) we get Ay < A2nyng (31 + X9) /2, where

=y (moldlmlb]mlblm 1)
(d1,d2)€ B n1 n2 my mo

n1,M2
Cdl dz ?
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—|d —|d
DN S || na |2|C§1{;l”22.

(di,d2)eB> 2
Here By = {(d1,d2) € Z* : |d1]| < my, |da| < ma} and By = {(dy,ds) € Z* :
my < |di] < nq,|da] < ngor |di| < ni,mg < |d2| < ma}. Since n; = m;
implies (n; — |di|)n; ' > (m; — |d;])m; ', we have that the coefficients at
Cg7; in both sums are non-negative. Therefore, it suffices to estimate the

quantity Cy'}” from above as follows:

Cy = Cov (fy ((nn2) " Xays1a01) - fo ((nana) X1 1))
= (nang)~**Cov (fb (/e (X 1as41) s Fogmumayi/o (X11))
n1n2 n1n2) 1/a
— —2/a
- n1n2 / b(ning)t/« / b(ning)t/« H(Xl"thl“*d?“)(m’ y)dxdy
2—a
< (nyng)~ e (b(nmz)l/a) X010, Xayi1.der1)
= ¥ (mane) T G (X1 Xay+1,dar)-
From the last two obtained inequalities (for Ay and Cj'y?) it is not

difficult to get Ay < A20?~*(Ag; + Agy) /2, where

mi — ‘dl‘ o

Ay = ¥ (1_

(dl,dQ)EBl
Agy = > INX 10, Xy 1des1)-

|d1|=m1 or |d2|=m2

—|d
| 2|> INX 1, Xy 1det1),
ma mo

Here it is appropriate to note that both quantities Ay;, ¢ = 1,2, do not
depend on ny, ng, and therefore, it is legitimate to consider the first lim sup
in the main relation (5.19). Now we will show that these two quantities
converge to zero as (my, mg) — oo, and the main tool for doing this is
our assumption (5.5). For any fixed dy, ds, we have 1 — (my — |dq|)(mg —
|ds])(mimse)~! — 0 as my, mg — 00, the terms in the double sum of Ay
can be dominated

(1 _ mq — |d1| mo
my

— |d
m| 2|>IA(X1 L X t1dor)| < ITAX 00, Xayi1.dpr1)
2

so that the double sum 34, 4,)ez2 Iofl(XLl,XlerLdQH) is convergent due

o (5.5). Therefore, a standard application of dominated convergence
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theorem yields Ayy — 0 as mq,ms — oo. The relation Agy — 0 as
mi, mg — oo follows simply from (5.5). From these two relations we
get

lim  limsup Ay = 0. (5.31)

TLIM2T00 o) ky 00
Collecting (5.22), (5.23), and (5.31), we get (5.19).
It remains to prove (5.7). For this, we use Theorem 5.1. In the case
0 < a < 1, there is nothing to prove, and in the case 1 < a < 2, we show
that (5.5) implies (3.17). We have that (Xj, Xj) € D (Y3, Y;). Let 'y be
the spectral measure of (Y;,Yj), i,j € Z*. We will prove that

CIAX X;). (5.32)

/Sl Slsgrid (dS) <

Let 135 denote the Lévy measure of the stable vector (Yj,Yj). Using

polar coordinates on the plane, we have

/”x|<b r129v4 5(dzy, dag)

Oébz o

_/ / 7"317“52 | lJ(ds) . /8152Fi7j(ds>.

Therefore,

2 —«
Q

/Sl s152l5(ds) = b /”x”@ T132v4,5(dzy, dzg).

Since the stable random variables Yj, Yj are associated, we can write

/Hx”gb ;Ulafgyi’j(dafl,dxg) < /R2 fb($1)fb($2)yiyj(d$1,dZEQ).

Using Lemma 3.1 from [63] (see also (38) in [17]), denoting b, = bn'/*,
it is not difficult to show that, for all sufficiently large n and for A from
condition (5.5), we get

nCov (fb(n_l/aXi)a fb(”_l/an))
b b
= n/ / H n-1/aX; n,l/aX)(g; y) dzdy
= plo- Q/Q/b"/ Hx, x;) (u,v) dudv
< nlerdlepkerd(x; X)) = 07 OTA(XG, X;). (5.33)
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As in [17] (see (43) therein), we use the relation

nCov (fb(n_l/OéXi)afb(n_l/an)) — /R2 fo(x1) fo(xe)viz(dey, dza),

which, together with (5.33) (taking b = 1), gives (5.32). Thus, we proved
(5.7), which, together with (5.19) and (5.20), proves (5.6). O

Proof of Theorem 5.5. Suppose m € N and tM), ... t(™ ¢ [0,00)2. In

what follows we assume t(© = 0. We need to show that

as min(nq,...,ng) — 00, and we do this by investigating the convergence
of characteristic functions.

Before finding the characteristic function of

ARt (Su(tM), ., Sa(t™)) (5.34)

n

let us express Sy (t) in a more convenient way:

Su(t) = > > k-

0<k<nt j>0

= > > CGkrkkj

0<k<nt j>0

= > D> Gokikbkj

0<k<nt j—k>—k

= > D ai§

o<k<nt j<k

= Z ch .]5.1 H H{Jzéki}

o<k<nt j
d

=26 2. acy I iew
j  o<k<nt =1
d
= 2§ 2 acs L WGvoychsnny-
ik =1
Characteristic function of (5.34) is

Gn(T1, ..., Tm) = Eexp ( sz ))) ,
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using the recently obtained expression of Sy(t) we can write

Zx AL S (b Z&A szzckﬂ H {Givo)<ki<mt!)}

=1

m d
-1
J 1= =1

- Z g.]14 Z Ly H Z akl*jl (’yl7 l>ﬂ{(le0)<kz<nzt§i>}

lelkl

= Z £JA Z T H Z ak‘l %7 Ov(fjl))ékzémtl(i)*jl}'

i=1  I=1 k

It is convenient to introduce notation

Syt(d,m) Zak Y, D)L ov(=j)) <k<nt—g}

d -1 m d
= (rllsnjayjaj) lel l]:[l S’Yl,l7tl(i) (.]l?nl)
j= =1 =
and

m d
Dijn = Ar—ll S]] S%l’tl(i) (71, 7).
) =1

i=1

Since ¢ are independent and have common characteristic function

(2.13), we obtain
Pn(T1, ... Tm)
— exp (— S A (1D5al ™) (1 4+ 7 (Dyn)) 1Dyl (1~ iBrosien <Dj,n>>) .
j

The following lemma is proved on page 125:
Lemma 5.9. D;, — 0 uniformly for all j, as min(n,,...,ng) — oo.

Due to this Lemma, it suffices to investigate the asymptotic behaviour of

S (1Dl ™) IDsul” (1 iB7asian (D)
J

=3 h(|Dsnl ) Dyl = 1870 S b (|1 Dyl ) D™ (5.35)
J J
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We continue by investigating
~1
Jn =30 (|Djal ) f (Din)
j

with f(z) = |z|” and f(x) = 2.

In what follows § = min(éy, ..., d4), where

5 %/W if vy >1and Ygar(y,l) #0, or 1/a <y <1
l:

min(a— 1/ V=1)20) 3¢ < 5 < 1+ 1/a and Y ag(y,1) # 0.

For sets G, C R,7 =1,...,d, we introduce notation

Jn<G17 sy Gd) - Z h (|Dj,n|_1) f (Dj,n) ﬂ'GlX"-XGd(j)

J

and split J, as

Jn = > In(G1, ..., Gq), (5.36)
Gie{ A A} i=1,....d
where
A = Ai(e,ni) = ) <nit§j) — nf-,nitz(.j) + nj) i=1,....,d,
=0
with € = min(ey, ..., €q), where
H%%M ifl<y<1l4+1/aand 332,ak(v,l) =0,
€] =

% otherwise.

We shall show that

Ja(Ar - Ad) = [ f (fj xm(u,t@)) du (5.37)
=1
and
Jn(G1,...,Gq) =0 (5.38)

it G; = A§, for some i =1,...,d.
We have

Jn(Gh sy Gd) - Z h (|Dj,n|_1) f (Dj,n) ﬂ'GlX"-XGd(j)

J
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= /Rd h (‘DLuJ,nll) f (DLuLn) 1G1><~--><Gd(LuJ)du
D

= /Rd h ‘ nuln _1) ¥ (DLnuj,n) 1g,x--xa,(|nu])dnu

and, since
d
(ll_[1 nl) f (DLnuJ,n)
d 1/a
= f ((H nl) DLnuJ,n)
=1
1 d
=f (hl_/ofa (H nl) CLnuj,n)
=1
1
= C nul,n
e (I, m)f( )
d Ve 1o f1d
. h ((Hl_l nl) hl/a (Hl:l nl)) f (CLnuJ,n)
e () o) T R ()]
Ja \Lli=1 h ((Hz—1 nl) hia (Hz:1 nl)>
we obtain
Jn(G1,...,Gy)

b ()" W (1)
_ e () /R Fu(u,Gy,...,Gy)du, (5.39)

h <Qn ‘CLnuJ,n’_1>
h (qn)
with gn = (Hﬁiﬂ nl)l/a h%z (Hf:l nl)'

The function hy,, satisfies (2.2), therefore

h ((Hfl_1 ”l)l/a hi?i (Hfl:1 ”l)>
s (TTi )

f (CLnuJ,n> ]lGlxu-de( LHUJ>,

— 1, as min(nq, ..., ng) — 00,
and, due to (5.39), it is sufficient to investigate
In(Gh,...,Gq) == /Rd Fa(u,G1, ..., Gg)du.
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It G, = A;, i =1,...,d, we will show that F,, converges point-wise
and is dominated by an integrable function. We provide the proof of the

following lemma on page 127.

Lemma 5.10. Suppose l € {1,...,d} andt € {tl(l), e ,tl(m)}, then

L, (e ([2)) th(LMJ n) Ho, (u,t,1), asn — oo, (5.40)
71,1
and
|Sye([nu]  n)
Lay(en) (L)) = tSL Ll Gy (u, t,1),
n,71,1
where function G is such that
/ Ga+5utldu<oo / Go‘5utl)du<oo (5.41)
Since
m d
Coun =] (S0, 0 (L] )
we have
Ly xx A ([0] ) Cgn — Z% H H, (17,1 Zl‘z
=1 =1

and, applying Lemma 2.4, we obtain

Fo(u, Ay, ..., Ag) = f (i xm(u,t<i>)) . (5.42)
i=1

Lemmas 5.9 and 2.3 imply that

|Fa(u,Gy,...,Gg)|
< 2max ()CLMLD‘O{_&,

a+d0
") 160cca ()
a—46 a+6
2 (jqnuj,n\ +|Cloujm] ) 16w, (|nu)). (5.43)
We wish to show that the function on the right-hand side is dominated by
an integrable function if G; = A;,i=1,...,d.
We have

L4y x...xA,([nu]) |CHU,n|
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zi |1 (Snl S0 (L] ml)ﬂAl(LnlulJD‘

=1

NE

7

I
—

NE

<

1

87:1%7171‘971,17751(” ( LnlUlJ ) nl) 14, ( Lnlulj )‘

d
2| T1
=1

1

m d .
< Z |:El| H G’W (ulvtl(l)7l> ’
i=1 =1

according to Lemma 5.10. Thus

s d 0 a—90
’CLnuj,n‘ < |£I7@| ll:[l G’Yl <ul? i l)

d a—9d
< (mmax (|xz| 11 G, (ul,tl( ),l>)>

=1
S o 5HG@ (1))
and, similarly,
‘Ctnuj,n)aJﬂs a+6 Z | a+6 H GOHF(S (U tl y ) .
Hence,
|Fa(u, Ay, ..., Ay
a—|—5 a+5 a—|—5 a 1) (z)
Z H G, ul,t + |z H G )

and the dominating function is integrable due to (5.41). This, together
with (5.42), enables us to use the dominated convergence theorem. We

obtain
In(Ag, ..., Ag) — /]Rd f (Z J:Z-’H(u7t(i))) du. (5.44)
i=1

It remains to show that
Ih(Gy,...,Gq) = 0 (5.45)

if G; # A; for some [. Inequality (5.43) implies

In(G1,...,Gq)|
< L2 ([Cmgal ™"+ [Clamgal ™) 161xci( (001 (5.46)
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Let us show that

Joe|Cloas

’a—é

Leyx-xay([nu)du — 0. (5.47)

We have

‘a—é

‘CLHUJ’H LGy x..xa,(|nu])

a—0

m d
= ; 1:[ ( nnt S0 (L] nz)MAmeJ))

a—o

Ms

me

d
o IT (s o (] mo 1L ) )

2:1

m

d
=3 m 0 |z|* " 1 |s

=1 =1

a—0

)

St 20 (L] s ma) 1, (L)

therefore,

/]Rd ’CLHUJ’H‘O‘—(S ]1G1><~~~><Gd(LnuJ)du
& a—§ |, |a—0 d
< ;m || lgl /R

If G; = A, then, due to Lemma 5.10,

Jo s

a—0
St S g0 (0] )1, ([ni )| du,

a—9
dul

St Sng 1,40 (L] s ) T, (Lnawn )

< /RG%_‘S(Ug,tl(Z), [du; < oc.
and (5.47) follows from the following lemma, which is proved on page 141:

Lemma 5.11. If G; = Af, then

Jo s

Similarly we can show that

a—0
dul — 0.

Syt 10 (L] ) L ([ ])

L |Cloaynl ™ 1615 x(ma) ) — 0,

therefore, the right-hand side of (5.46) converges to 0, implying (5.45).
Relations (5.44) and (5.45) imply (5.37) and (5.38). Recalling (5.36)

we see that

Jn — /Rd f (z_il J;iH(u,t(i))> du.
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We are now in a position to find the limit of (5.35):
-1 « . -1 o
Zh(|Dj,n| ) | Djnl _lﬁTaZh(|Dj,n| )Dj<,n>
i i

o <a>
du — iﬁTa/ (Z ziH (u, t) ) du,

(u,t®)

which implies

On(T1, .., T)

s exp ( / ) (1 —iBT,sign ( (u, t@) ))) du.

The limit is ch.f. of the vector (Z(t()), ..., I(t™)). The proof is complete.
O

Zflfz u, t)

HMg

We provide proofs of lemmas used in the previous proof.

Proof of Lemma 5.9. Let us demonstrate that for every [ there exists K, k; >

0 such that
—1 _ _
nl /O[ nllﬁyz, ’ ll,t(z)(\;nluj ,nl)‘ < Klnl R
foralli=1,...,m, u € R and n; € N.

If v > 1 and 372 aj(y,1) # 0, then

—1/a 1
nl Snl»’Ylal

Sye(lnu] ,ny)l
= n; 1S5 (L) )|
< VY Jag(n 1)
=0

and we can set K; = 72 |a;(v, )], k1 = 1/a.

If1<vy<1l+1/aand X32,a;(y,l) =0, then

71 _
n /asmlw 1Sy (] 5 )|

=, ) T L () Sy (g o))

<YL ) S Jag (s 1)
=0
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As Lyis aswv.f. and vy — 1 — 1/ < 0, there exists a constant p; > 0 such
that L;(n;) > pmgwl*l*l/oz)/2 for n; € N. Therefore,
~1/a -1 (n-1-1/a)/2, ~1 +
ny s Sy (L] )| < g™ Y lag(n, 1))
7=0

and we can set K; = p; ! >0 laj(v, D) and x; = (1 4+ 1/ — ) /2.
It remains to deal with the case 1/a < v < 1. The sequence s, ,; is

of the form n; " L;(n;), with a s.v.f. L;, thus,

—1/a 1
nl Snlﬂ/hl

Syt(lnu] ,ny)l

- nylilil/azli%nl) Z ak(7l9 l)ﬂ{(OV(—LnluJ))gkénlt—Lnluj}
k

—1-1/a ¥ —
< T YL ) Y Jan (s D) Lgov () <kt )
k

Using the fact that there exists a constant p; > 0 such that il(nl) >
plnl_l/(4a), and applying Lemma 2.2 with n = 1/(4«), we obtain

—1/a 1
nl Sﬂl»’)’hl

Syt(lnu] ,ng)l

< pl—lEnlw—l—l/ocnll/(%z) g(l + k)l/(4a)_71]1{(OV(7Lmuj))gkgmthnluJ}

< pl_lEn?lilig/(éla) / oo(l + LUJ)1/(4a)_w]l{(OV(—Lmuj))gvgnlt—mluj—l—l}dv

< p;IEn71_1_3/(40‘) /

—00

vl/(m)fﬂﬂ1{(0v(—mU))<v<mt—”l“+2m}dv

_ pl_lE,nlm—l—?)/(éloc) / (nlv)l/(‘la)_w]1{(ov(—nlu))gnlvgmt—nzuﬁnz}dn”’

— 00

= pl_lEnl_l/(m)/ Ul/(4a)_w]1{(0V(fu))gvgt7u+2}dv

— 00

(20) (t — U+ 2)i+1/(404)—w _ (_u)f—l/(‘la)—%

1+ 1/(4a) —y ’
here E is from (2.3). Therefore, we can set k; = 1/(2a) and K; =

max(K;(i),i =1,...,m), where
(4) 1+1/(4a)=n 1+1/(4a)—n
w42 (=
Ki(i) = max pl_lE(tl u+2), (—u)+
“ 14+ 1/(4a) =

126



The maximum exists and is finite, since the function is continuous and its

limits as © — +oo are 0.

Let us denote K = max(Kj, ..., K;) and k = min(kq, ..., kq), then

n, “llag-1 g t@(LnluJ ,ny) < Kn; ",

nl "l Y1,
thus
~1
’DLnuJ n’ = Gn ’CLnuJ n’
j—1/a d — l)a 1
b (1_1 ) > i H (st S, 0 (L) ) )
m 41 —1/a d d -
<3 fa & (1) (1T e) =0,
i=1 =1 =1
as min(nq,...,ng) — 00, since hijo is a s.v.f. and k > 0. The limit is
uniform for all u € R%. o

Proof of Lemma 5.10. 1t is easy to see that S, ;¢([nu]|,n) =0ifu > t+1,
therefore, in what follows we assume u <t + 1.
If v > 1 we have 72 |a;(v,1)| < oo. Assuming 372 a;(y,1) # 0,

almost surely we have

Sya(lnu] . n) = T (w) > ar(n, 1) = Hy (u, t,1).
k=0
If u > —1, we can bound
nt—|nu]
‘S'yl,l,t(l_nuJ 7”)’ = Z (fyla l) -1 t—l—l Z |a’k ’)/lv
k=0V(—|nu])

Suppose n = min (y; — 1, 7 — 1/(a — 9)) /2. Notice that the choice of
0 implies n > 0. Applying Lemma 2.2, for u < —1 we get

nt—|nu]
[Syre(lnul )l < >0 aw(m, )]
k=—|nu|

:/_nLt [nu]+1 ‘aM %’ ‘dy E'/ nt— Lnuj—i—l( ', I_UJ)W Ty
E/nt nu+2 e < E/ n(t—u+2) SN
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L4n—
= B ((—u)"T (- 2) )
n—1-n
< L ((_u)lJrn*% —(t—u+ 2)1+77*%) .
n—1-=n

Therefore, the following inequality holds

1[—17“‘1)(“) ZEO:O |CL]€(’)/Z, l)| , U = _17

B((—w) "~ (t—u42) )
Mn—1-n

‘S’%Lt(l_nuJ 7”)’ < G’Yz(uvtv l) =

, u < —1.

Let us show that (5.41) holds. Function G, is bounded on [—1,¢+1), and

equals 0 if u >t + 1, therefore
/Olo G%ﬂ(u, t,l)du < oco.

Function G, is continuous on (—oo, —1),

E(1—(t+3)tr™m
lim G, (u,t,1) = ( ( ) )
ut=1 n—1-n

and

Gy (u,t, 1) ~ Ey(—u)"™™, as u — —o0,

with some constant Fy, therefore, in order for (5.41) to hold, we must have
(n—")(a—=96) < —1and (n—v)(a+9) < —1. But those inequalities do
hold, since n < v — 1/(a — 9).

Next we look at the case 1/a < v < 1. We begin by investigating
the point-wise convergence of s} S, 1¢([nu],n), with s, defined by

(5.10). For convenience of writing we introduce the notation

b(k,u,n) = ar(V, 1) L{ov(=|nu)))<k<nt—|nu)}-

We split Sy, ;+(|nu] ,n) into two terms

[n®]-1 00
Syae(lnu),n) = > blk,u,n)+ > blk,u,n) = Z1+ Z, (5.48)
k=0 k=|n?]
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here 0 < € < 1 — ; is a fixed number. Applying Lemma 2.2 with n = ~;

we obtain the following bound

1nf]—1 1nf]—1
2l < > bk un)[ < X Jar(n, 1)l
k=0 k=0
[n°]-1
<E DY (1+k)"WM=F|n"| < En,
k=0

which implies
Z

S”?’Ylal

— 0, n — o0, (5.49)

uniformly for all w.
We now turn to Zs:

[©.9]

L b(k,u,n) = /WJ b(|v],u,n)dv = n/tn:J b(|nv],u,n)dv

= n5J

Ly =
k

= n/ooo ﬂ(@,oo) (v)b(|nv] ,u,n)dv.

It is easy to see that almost surely

L(Lee) Oo)(v) — 1(0,00)(V),

n

L ov(=[nu))) <o) <nt—[nu]} = L{ov(—u)<o<t—u}s T —> OO
From (5.9) we know that

apr (%9 l)
(1 + [nv])= 1 Ly([nw])

— 1, n — o0, (5.50)

and by Lemma 2.4, for v > 0, we have

(1+ o))" L)) (1 + Lm)J)—W Ly(nlmed

T 5.01
n=nL;(n) n Li(n) A (5:51)

as n — oo. From the above we conclude that almost surely

1

ml(@ ) (v)b(|nv|,u,n) (5.52)

n )

(L+ [no)) " Ly(lnw]) ()4 (7, DL {(0v (= [nu))<nw) <nt—[nu)}
n—1Ly(n) (o) (1+ [no]) 7 Ly(|[nv])
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— v 1{(0V(—u))<v<t—u}~

Our next objective is to show that the absolute value of (5.52) is bounded
above by an integrable function.

If |[nv] > 0, then v > 0. Also, if [nv] < nt — |nul, then nv <
lnv]+1 < nt—|nu|+1 < nt—nu+2 < n(t—u-+1) for n > 2. Therefore,

v<t—u+ 1. By the above

Le(ov(—|nu))<|nv|<nt—nu]} S T{ogo<t—ut1}-

Relation (5.9) implies the existence of N such that

|ak(fylal>|

At k) L) 2

for k > N. If n > (N + 2)'/¢, we have [nv| > N for all v > |n°] /n and,

thus,
’aanj (f)/la l)‘
ﬂ(%ﬂm)(“)u + [no]) L ([nv]) S

for all v > 0. It is clear that

(1+ |nv|)™™ <o,

n-—m
and it remains to deal with L;(|nv|)/L;(n). Theorem 2.1, applied with
f=L,A=2andn=min(1 —7;,v —1/(a—9))/2, implies the existence
of B such that

Li¥) 5 max ((i)” (i)‘") , 2,y > B. (5.53)

For v € (|nf] /n,00) we have |nv| > n® — 2, therefore, if n > (B + 2)'/¢

we have |nv| > B. If, additionally, n > B, (5.53) implies

(1221 00) (U)LZL(%J)J) < 211 ) (v) max (( L?;vJ )"7 (Ln;lvj )"7)

-1
< 2max (v”, (Z) ) < 2 max (v”, 'v*”)
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for all v > 0. We have thus obtained the following inequality

[b(Lnv ], u, n)
n="nLi(n)

H(M ) (v) < 2%y max (U”, v_”) ljo<o<t—ut1} (5.54)

The function on the right hand side is integrable in (0, 0c0), therefore the

dominated convergence theorem implies

Z
—7
ot / v L ov(—u) <ost—uy AV
I—v I—y
t — —
Gl G - S
L=
Recalling (5.48) and (5.49), we get
S’n,l,t(LnUJ 7n) s H’YZ(U,t, l)
Sn,y,l
We can now proceed to showing that
mo [Sae([nu  n)| (5.55)

is bounded by a function G.,(u,t,[) satisfying (5.41).
For —1 <u < t+1 we split S, ;+(|nu],n) as in (5.48). We conclude

from (5.49) that s_ . ,|Z1| < 1 for large n. From (5.54) we obtain

n'y l
24 [, — n n
v _

n% | Za] <2 /0 v~ " max (v , U ) L{ocvct—ut1ydv

oun (112 B
<2 77/0 v~ " max (v",v ’7) dv.

As the integral is finite and does not depend on u, we conclude that, for
—1<u<t+1,(5.55) is bounded by a finite constant C.

Suppose u < 1, then

Sy e([nu) ,n)| < D0 |b(k u,n)| = Y7 1 nu)<kant—|nu)} lak(71, 1))
=0 k=0

= /OOO L{— {nu) < (o) <nt—(nul} |@(u) (70 1)| dv
= n/ooo L{— {nu) < o) <nt— (]} | @) (05 1)| 0.
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Since |nv] > — |nu| > n — oo, similarly to (5.54) we obtain

Mﬂ < 22+nvn7'ylﬂ
n-’Yle(n) {=lnu|<[nv]<nt—|nu]} X {—u<v<t—u+2}>

therefore

S’yl,l,t(LnuJ ,TL) < 22+n/

(o]
)
) VT ucoct—utoydv

Snfylal

_ppealt w2 (e
L4n— '
Denoting

Cif —1<u<t+1,

—U =y ()1~ .
G (u,t, 1) = ¢ 924n(tzut2) 11;1_7([ VT Gy < -1,

0 elsewhere,

we get a function dominating (5.55). Let us show that (5.41) holds. Func-

tion G, is constant on [—1,t 4+ 1), and equals 0 if u > ¢ + 1, therefore

/of Gf‘ﬂi‘s(u, t,0)du < oo.

Function G, is continuous on (—oo, —1),

22+77 ((t + 3)1+77_'Yl . 1)
L4+n—"

1}%1}11 Gy (u,t,l) =

and

Gy (u,t, 1) ~ Ey(—u)"™™, as u — —o0,

with some constant Fs, therefore, in order for (5.41) to hold, we must have
(n—")(a—96) < —1and (n—v)(a+9) < —1. But those inequalities do
hold, since n < v — 1/(a — 9).

We now turn to the case v, = 1. As was previously mentioned, in this

case we make the assumption L; = 1. It follows that

la;(, DI (1 +J) < Es
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for some constant Es, since by (5.9) we have a;(v;,[)(1+j) — 1.
We separate the first term in S, ;+(|nu] ,n),

nt—|nu

S%l,t(tnuj ,n) = Z ar(,1)

k=0V(—|nu])

nt—|nu|

= aov(—nul) (V1 DL {0v (= [nu))<nt—|nul} + > ar(, 1)
F=14+0V(— )

and denote
nt—|nu|

Spaellnu] n) = 3> a(n,0). (5.56)
k=140V(—|nu])

The quantity ‘CLOV(_L”UJ)(%, l)ﬂ{Ov(—LnuJ)gnt— LnuJ}’ can be bounded by

Oifu>t+1,

R(u) =SBy if —2<u<t+1,

E3(—u)™t, if u < —2.
This bound implies

’aov(anuJ)(%, D110y (= [nu))<nt—|nul}
Inn

— 0. (5.57)

We continue by examining (5.56). Introducing notation

bk, u,m) = ak (Y, D)L {14 (0v( nul))<k<nt— |}

we have

Soi([nul ,n Z b(k,u,n) /0 b(|v] ,u,n)dv

_/ [n’], u,n)dn”
lnnLOO b([n"|,u,n)n"dv
= lnn/ooo b(|n®|,u,n)n"dv,

the last equality holds since for v < 0 we have b(|n’],u,n) = 0. Let us

investigate a.s. convergence of the function under the integral.
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Suppose u ¢ {0,t}. We have

l(o,t)(u), 0<v<l,
LOtv(=Lnu))) < nv ) <nt—[nu]} =

0, v>1,

therefore, by (5.9),

B( anj » Uy n)nv — H(O,t) (u)]l((),l) (U)
If [n] < nt— |nul, for n > 2 we have
< n’l+1<nt—|nu|+1<nt—nu+2<n(t—u+1),
and if 1 + (0V (= |nu))) < |n"],

n'>n"| =21+ 0V (=|nu]) =1+ 0V (—nu)) > 1V (—nu)),

therefore, for n > 3,
Lot (ov(=nu))<|ne | <nt—|nu)} S L{v(—nw)<ne<n(t—ut1)}

= L{n(1v(—nu))<vIn n<nn+n(t—ut1)} (5.58)
< Ljo<o<itn(t—ut1)}s
This implies
("], u,n)n’| < Eslipcoctsin(—us1)}-

The dominating function is integrable, therefore, the dominated conver-

gence theorem implies

Sllt [nu),n _>/ Lio,0)(u)L(o1)(v)dv = Lo 1) (u).

Inn

Recalling (5.57) we obtain
Syri(lnu],n)

Inn

— ]1(0715) (U) .

With the help of (5.58) we can also bound (Inn)~! ’gwlytﬂnuj ,n)’
For -2 <u<t+1and n >3 we have
Syl n \

Inn

0o
Eg /0 IL{0<v1n n<ln n+ln(t_u+2)}dv
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Inn+In(t —u+ 2)

=F
3 Inn

< Es(1+In(t+2 —w)),

and for u < —2,

b([n'],u,n ’n

‘S’n,l,t(tnuJ ) 1 < /

Inn

00
< B3 / ﬂ{ln(fnu)gvln nglnnJrln(tfqul)}d’U

Inn+In(t —u+1) —In(—nu)
Inn

In(t —u+1) — In(—u)
Inn

< E3(In(t —u+1) —In(—u)).

= I

— L3

Let us denote

0ifu>t+1,

Golu,t,l) = Bs(14+In(t+2 — ) + R(u) if —2<u<t+1,

Es(In(t —u+1) —In(—u)) + R(u) if u < —2.
This function satisfies
Sy | Syt (lnu] )| < Gy (u,t,1),

let us show that it also satisfies (5.41). Function G.,(-,¢,1) is bounded on
[—2,t+ 1), and equals 0 if u >t + 1, therefore

/ Gaﬂutldu<oo
Function G,(-,t,1) is continuous on (—oo, —2),
1*1}12 Gy (u,t,l) = Es (In(t + 3) — In(2)) + R(—2),

and

G, (u,t,1) ~ Eq(—u)™t, as u — —oo,

with some constant E4. Hence, in order for (5.41) to hold, we must have
—(a—0) < =1 and —(a 4+ 0) < —1. These inequalities do hold, since

0 < a—1.
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We now move to the case 1 < v < 14+ 1/a, S22 ak(v,!) = 0, and

examine

Syae(lnu],n)
nl—’n Ll (n) ILAI(Q”) ( |_TLUJ )7

assuming that t € {tl(j),j =1,... ,m}.
If u>t, and |nu| € A; we have |nu] > nt +n€, therefore nt — [nu| <
—nf <0, and Sy, ;4(|nu],n) = 0.

Suppose 0 < u < t, u ¢ {t;j),j = 1,...,m}, then

nt—|nu 00
Syue(lnu).n) = > a(w,l)=—= > alwl)
k=0 k=|nt|—|nu|+1

= —/0 CLLUJ(’Y[,l)ﬂ{tntj—LRUJ—HSLUJ}dU

- _”/o @ o) (V5 DTt~ ) 1< (o) y AV

1y o0 aLnUJ (r)/lv l)
=N lLl(n)/O n_WLl(n) ﬂ{[ntj—{nuj—&—lganJ}dU

e.¢]

= 'Ly [

0

where
1)y = Yol 1)
A (0) = 5T () M=l +1<Lmol

Almost surely we have

L nt)— () +1< o)} = L{(nt)— [nu)+1) /n< no) fn} = L—u,c0) (V)
and for v > 0

n*’YlLl(n)
_ agOnl) () L))
(1 [nv]) 1 Ly([nv]) n=nL;(n) — (5.59)

by (5.50) and (5.51). Thus,



Also, we have

1 ([nu) = ﬁﬂ

7=0

)0(LHUJ) — 1,

(ntl(j) —n¢ ,ntl(j) “+n¢

since |u—tl(j)| >0 forall j =0,...,m.
Suppose

min(y — 1,y —1/(a = 9),1 —v + 1/(a+9))
5 ;

77:

Theorem 2.1, applied with f = L; and A = 2, implies the existence of B
such that

N (RGN T

If [nu]| € Ai(e,n), we have nt — |nu| > nf. For such u, and v satisfying
|nv]| = |nt| — [nu] + 1 we have |nv] > nt — [nu| > n°. Therefore, if
n® > B, we have

Li(|nv])
14,(|nu] )E{LntJLnuJJrlSLm;j}élL(n)J

nvl\" [|nv]\ "
QQH{LntJLnuJJrléLnUJ}maX((L J) ’<L J> )

n n

< 21+’711(t_u7oo) (v) max (v”, v_”)
< 2 100 (0) (07 +077)

There exists a constant E5 such that

‘ aLm}J (fyla l)
(1+ [nw]) = Ly([nv])

The inequalities above imply that for large n and all 0 < u < t, v > 0 we

‘ < Es. (5.61)

have
(L)) [0 ()| € B2 00} (o7 4077) . (5.62)

The dominating function is integrable, thus

S’Ylyat(LnUJ ,TL) ©
nll_WLl(n) L) ([nu]) = _ﬂAl(LnUJ)/O n;)(v)dv

(t — )t
L=

— — /OOO Lit—u,00) (V) "dv = = H,(u,t,l),
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by the dominated convergence theorem.

From (5.62) we also obtain the following inequality:

S’Yz, tLLnuy,n )
Sl by | Ud) < Ll [ 00 o

< E52tt /OOO L(t—u,00) (V)0 (v” + v*”) dv

= (1 u)' (- >>
1—v+n I1—vy—n

= E521+77 (H%—??(u’ t? l) + H’YH—U(uv t7 l)) :

Suppose u < 0, then

nt—|nu
Syaellnu) ,n) =3 ar(n,l)
k=—|nu|

—/ a o] (V5 D= [nu) < |v] <[nt] — [nu) yAV
=n /0 @] (V05 1) 1= )< [ 0] <t~ [ y AV

1— 0 Q| ny| (717 l)
- WLZ(”)/O Ly () L <<t -y 40

o0

k2 (v)dv,

n

= n1 1L (n) /

0

where
@)(y) = Um0
A (V) = T ) MLl e <=L

Almost surely we have
L~ Lnuj<lnol<lnt) L]} = L{-Lnu) fns|no) fo<(lnt) = Lnul)/n} = L(-up-u) (V)
and for v > 0 (5.59) holds, therefore, almost surely,
RO () = Loy ()0,
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If [nu] € Aj(e,n), we have |nu| < —n¢, therefore — |nu] > n°. From

(5.60), if n© > B, we obtain

Li([nv])
La, ([0 ] ) 1= | < o)< ot — [} L)

[nv]\" ([ [nv]\ 7"
< 21 |pu)<|nv) < nt | — ||} AKX (( ;

n n

< 21+nﬂ(—u7t—u+l) (U) max (UU7 Uﬁn) .

<INy (o) (74077,

The inequalities above, with (5.61), imply that for large n and all u < 0,

v > 0 we have
La,([nu]) |52 (0)| < Bs2 1Ly ()07 (VT +077) . (5.63)

The dominating function is integrable, thus

Soe(lnu] ,n)
nt=1L;(n)

— /0 L(yt—u)(v)v dv = T =H,(u,t,1).
From (5.63) we obtain
Sy ra(lnu],m)] > 2)
i em(ned) < [ La (L) R @) do

< 14y [ —n+n =N
< EB52 /0 Ly t—utn) (V) (v + v ) dv
= B2 (Hoy o (uy t + 1,0) + Hoypop(u, t + 1,1))

Summarizing, we have shown that for almost every u

Sy e([nu] ,n)
nt=1L;(n)

]lAz(e,n)(LnuJ) — HW (u7 t l)a

and

[Syue(lnu] ,m)]
nt=1L;(n)

1y (eny([nu]) < Gy (u,t,1),
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where

E521+77 (H’Yl_ﬁ(u7 t+ 17 l) + H’yz+77(u7 t+ 17 l)) if u < 07

G, t,1) = Bs2"4 (Ho,_p(u,t,1) + Hopap(u, t,1)) i 0 < u < ¢,

0if u > t.

It remains to show that (5.41) holds. Function G,(-,t,1) is continuous
on the intervals (—oo, 0) and (0,¢), and G, (u, t,l) = 0 for u > t. Therefore,
we only need to investigate the behaviour of G.,(-,¢,1) at the endpoints of
intervals (—oo,0) and (0, ?).

We begin with the interval (—oo,0). As u — —oo we have

G’Yz(u7t7 l) ~ E6(_u)*’Yl+77’
and, as u 1 0,

Gw<uvt7 l) ~ E‘7(_u)1*’71*77,
with some constants Fg, F7. In order to have

0 atd

LOO G570 (ust, )du < oo,

we need inequalities (—y; +n)(a £ 6) < —land (1 —y —n)(a+d) > —

to hold. They do hold, since

1 1
<y-——n<l-— —

by the choice of 7.

Let us investigate (0,¢) now. As u Tt we have
Gy (u,t,1) ~ Eg(t —u) =",

with some Es € R, and, as u | 0, G,,(u,t,1) converges to a constant.

Hence,

/Gaﬂutldu<oo
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holds if (1 — v —n)(aw £ ) > —1. This is the same inequality as before,
and it was already shown that it holds.

The proof is complete.

Proof of Lemma 5.11. Due to the fact that
Gy = Af = U (mty) = nfmty?) +nf).
j=0

we have

Js

a—0

St S0 (L] )1 (L ])| - d

Z/ ﬂ(nt(]) —ng nt(J)+n (LnlUlJ)

a—9
nla'Ylaley l t(l) ( LnlulJ ) nl) d'LLl.

Inequality

. . < . .
ﬂ(nztgj)—nf,nzt,fj)+n§)(LnlulJ) = ﬂ(nltfj)—n;,nlt§7)+n;+1)(nlul>
< ; ; = . ,
= IL(nztl(”—nf,mtl(jﬂ—an) () l(tl(’)—nf_l,tl(’)-i—an—l)(ul)
implies

a—0

Sny WJS 1t ( LnlulJ ) nl) duy

/ #7420t
() e—1
J nl

/R ﬂ(”ltz(j)—nf,nztl(j)+nle) ( LnlUlJ )

a—a6
dUl,

Smu Sy 10 (0w ] i)

therefore

J:

a—9
87;:71,157[,[¢l<i> (L] ), (L)) ’ duy

(4) e—1
m " +2n,

< Z /t(]) _néfl

j:O l 1

a—0
ST_L:w,lS%l,tgﬂ (L], mi) duy,

and the proof will be complete if we show that for j =0,...,m
tl(j)+2nl€71
/tvl(7) —’I’L;71

We proceed by separately investigating the cases v, > 1 with 3°; a;(v;, 1) #

a—0
So Sy 10 (L7011 7nz)’ du; — 0, my — 0o, (5.64)

0,1/a<y<1l,and 1 <y <14 1/a with ¥;a;(y,l) = 0.
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If v > 1 with 35 a;(y,1) #0, or 1/a < y; < 1 we will use the results
obtained while proving Lemma 5.10. In these cases the set A; played no

role, therefore, we have shown that

|S'Yl7l7t( LnuJ ) n)l

Snyl

< Gy (u,t,1)
with a function G, (u,t,1) satisfying
/ Go O(u,t,1)du < oo.
Now

/tl(j)+2nl€_1 a—90
(9) e—1
tlj —n;

dul

5;:%15’%[7151(7:) ( Lnlulj ) nl)

(7) e—1

" +2n, .

’ a—6 (4)

S /t(y) el G'yl (ula tl 7l)dul
l

+0oo .
a—3 (2)
_/—oo H(tfj)—n?_latfj)+2nf‘1) (ul)Gw (u, )7, D) duy.

If u# tl(j ), the function under the integral converges to 0, it is bounded
from above by an integrable function G’ﬁ;l_‘s(ul, tl(i), [), therefore, the domi-
nated convergence theorem implies (5.64).

Next, we turn to the case 1 < vy < 1+ 1/a with 3 a;(y,1) = 0. As

v > 1, we have

[0.9]

’5 (L] nl)‘ > lan(m,1)] < oo,
k=0
therefore
tl(j)—}—an*l 1 a—9
/tl(j)—nlgl Snlvvlals’n,l,tl(i)(LnlulJ 7nl) dul

t(j)+2n571 Io%e) a—0
l l -1
< /t(j) e—1 (Snlm,l Z |Clk;(’}/l, l>|) du,
T k=0
0o a—0o
= 3n;" (8,;}%1 > lak(, l)|)
k=0
0 a—0
=3 (Z |ak(%,l)|) ni et
k=0

a—d
=3 (Z |ax (1, l>|) pg OO poagyy g,
k=0
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since e =14+ (y—1)(0 —a) <0 and L; is a s.v.f.
O

Proof of Theorem 5.7. Suppose d € Nand 0 = t) < t1 <ty < -+ < ty
are real numbers. In order to prove the finite-dimensional convergence of

S, (t) we will investigate the convergence of characteristic functions. Ch.f.

of (gn(tl), e Sn(td)) is

d
Otya,(T1, ]Eexp( Z )

nt] oo
(114 zd::ClZbek 1). 565)

I=1 k=0 i=0
We have
d [nt] oo [nta] oo d
Sowr Y Y bi&k—i= D> D> il (k)bikk—i
I=1 k=0 i=0 k=0 i=01=1
[nta] Kk [nta] [ntd]
= > Y Bri&i= Y. > Brilps=i&,
k=0 1=—00 1=—00 k=0

where By ; = >t 2110, |nt, ) (k)br—i. Let us denote

Lnth
Ci=Ci(n) = 3. Brilpiy-
k=0

It follows that

[nta)
= exp (—Ana > G A (JAC) x

1=—00

1=—00

[ntq]
X (1 —ipsign(C;)1y) (1 +7r (A,;lc'i)) +iAt Yy Ci,u)

|ntq]
= exp (—Ana Z |Ci|a h (‘AnC;lD (1 - iﬁSign(Ci)Ta) (1 +r (Anlcz))> !

since
Lnth Lnth Lnth d
Yo Ci= > > > miljone))(F)br—il sy
1=—00 1=—o0 k=0 [=1
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Lntl o0

Sy Y Y b=y S S h=0.

I=1 k=0 i=—o0 I=1 k=0 i=0
C|ny) 18 uniformly bounded for all u:

Lnth o0

d
[Clag| < ZZWH[M [ty ) )!bktnuj\<;|xz|2|bk|,

k=0 [=1

and A, = nl/o‘*l/@ﬂh%g(n) — 00, since 1/a+1/0 —~ > 0 and hy/, is a

s.v.f. Therefore
A,:lCLnuJ — 0, uniformly for all . (5.66)

This implies that (1 +r (Ag 102-)) uniformly converges to 1.

It remains to find the limit of

[nta)

A, 3 |G b (|ACTY) (1 — iBsign(Ci)Ta) -

We do this by investigating I,, := A ngtfio f(Ci)h (’AanD with f(z) =

|z|* and f(x) = 2<%, which we split as I,, = Z?:o Zj n, With

[nt;]

Zin= Y fAJC)n(|ACY),i=0,1,....d,

Z':Lntjflj%—l
where t_; = —oo. We assume n is large enough so that |nt;| > |nt;_]
forall j=1,...,d.

Let us further split Z;,, = W, + f (A;lCLntjj) h (’Ancﬁjj ), J =
0,1,...,d, where
[ntj] -1
Win= X fAC)h (|ACTH).
i:LTLtjflJ-i-].

Formula (5.66) implies that
d
> (A" Cluyy) 1 (|4 ) = 0o = o0,
iz

so we can concentrate on investigating W;,,.

We have
L?’Lth — 1

Win= Y f(4,'C)n(|A.CY)

i:L’I’Ltj_lJ—i-l
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= [0 s (A

nt] 1J+1

= (A Clug)

Lnt] 1J—|—1

(4
/Lntjj/n 1/a(n))_1 f (n’y_}aCLnuJ> h (

(Intj—1]+1) /n

_ /(Lnth/n f <n7_éCLnuJ) h(

[ntj—1]+1)/n

1

at ’tha/a( )CL_l

1

h <n<1th/a(n)) Int; | /n
= Kn(u)du,
hi/a(n) /<Lntju+1>/n (u)

where

tin(u) = f (TﬂéCLnuO h(

Since the fraction h < 1/°‘h1/a( ))/hl/a( ) converges to 1 by the choice
of the function h,/,, it remains to find the limits of

[nt; ] /n '
Jjn = /(Wj_lm)/n Kp(u)du, 7=0,1,...,d.

We begin by studying Jy,. Suppose u € (—o0,0). We have

L’I’Lth d

Cli) = kZO lzl$lﬂ[O,LntzJ](k)bk—LnuJ1{k>tnuJ}

[nt] d  |nti]—|nu]

=> ) by =21 Y, b
k=0

=1 =1 k=—|nu]
In what follows, a; stands for (—1)*k™7, k € N. Writing by = ay +
2k~ "1p(k) we obtain

|nt;|—|nu] [nt; | —[nu] |nt; | —|nu

Z b, = Z ar + 2 Z ]{J_V]lT(k).

k=—|nu| k=—|nu| k=—|nu]
We observe that
|nt; | —|nu]

>

k=—|nu]

k| <2 ’aanuJ’ = 2(_ L?”LU,J)_’Y,
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therefore
. d [nt;|—|nu]
RO =33 2 Y ap—0, n— oo,
=1 k=—|nu]

and
RO < RO =" (5.67)

The inequality above holds since
(= L)) < /97 ()
and
(= [nu])™ < (= LnuJ)l/a—v < nl/O—W(_u)l/H—fy.

It is convenient to introduce the notation 7; = 2 [ZGJ -1, [ € N.
Suppose y, and z, are some sequences. We continue by examining the

quantity

M(Yn,zp) = > kK "1p(k) = ) i = > i

yngkgzn l23:yn§il<2n l}S%ngngL;l

Since

{leN:a+1<1’<b}

the following inequalities hold:

M (Yp, 2n) < > i = > i, (5.68)

123 UL o el 153 (1) B i (a0 )

M(ym Zn) P Z Z;V - Z 2;7

1 1 1
l>3:%+1<l9<2%7+1 123:(”"+3)y§l<(2"2+1)§
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Let us investigate Z'l“jqn i, ', where ¢, and w, are sequences of integers

(we allow infinite values as well), w,, > ¢, > 3,n € N. We have

S8

Wn w41 n~ 0 (wp+1) 1
Zzﬂ:/ i dv= [ , iy dnov
I=qn o n [#]
1 (5.69)
1 n~ 0 (wp+1) —y 1 00
=no 7| ni; ", dv=mn? 7/ gn(v)dv,
n 9qn {nOvJ 0

with g,(v) = n”i[;/%J H(n,l/gqn’n,l/g(wnﬂ))(v). Notice that g,(v) > 0 im-

plies n'/%y > 3, hence we have

n%@év |- Y (2 HnévJ GJ - 1> a

Therefore,

gn(v)<Kov‘”‘)ﬂ(_l -3 ))(v)- (5.70)

Assuming the sequences n=/?g, and n='/%w,, converge to ¢, w > 0, respec-
tively, we have g,(v) — 277071, (v) almost surely. Also, there exists

a number ng € N such that

v) < IL( 3w)(v), n = ng.

2

N

(0 g )
As the function Kov_wﬂ(q /2, 3wy2)(v) is integrable, the dominated conver-

gence theorem implies

Y—% PELAEEN v 27 —’y@d _ 1—v6 _ , 1—~0 '
" zgq:n ! /q R ( W)
By selecting y,, = — |nu| and z, = |nt;] — |nu], for any fixed number

¢ we have

o () - ()
2 2
1
1 <zn+c>e tr —u
n o — ,
2 2
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as n — oo, therefore the previous calculations imply

nw_%M(?ﬁb ZTL)

277 uN 7 t—u i —277
~0 —1 (( 2) ( 2 ) ) Pa i <79—1’ Aok

Returning to n”‘l/eCLnuJ, we obtain, as n — oo,

1 . M(— _
nC e = RO 423 1 (= [nu], [nti] — [nu))
) = Run + 23 ws

s
d _21—l
— le(ﬁa,é_k%_,y (’y@— O;tz,u) =: F(u). (5.71)

=1

Applying Lemma 2.4 with ¢, = nl/o‘h%g(n) and y, = n”’_l/eCLnuJ we

obtain
Kn(u) = f(F(u)). (5.72)

In order to apply the dominated convergence theorem we need to show
that |k, (u)| is bounded above by an integrable function. It follows from
(5.66) that ’nl/o‘h%g(n)nlwﬂC@m‘ — 00, uniformly for all u. Let us
suppose that 0 < § < a and denote A, 5(z) = max{z®*? 22~°}. Applying

Lemma 2.3 and recalling from (5.71) the expression of n~iC lnu| We obtain

)

< D[R 23 M Lol = L)),

1
=1 ne—?

|/<;n(u)\ < DAa,& <‘TL7_;CMUJ

Inequality (5.68) together with (5.69) and (5.70) gives us

M(— [nu] aILmLzJ — [nu]) < o (g7 — i)
ne 7 ’y@ —1
with ) )
Gn = n=s <_ L] + 1) 9 )
2
1 B ;
w, — b (Lntlj 2LnuJ + 3) N 1) |
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We have

therefore,

M(=[nul, [nt)] = [nu])

1 1 1—~60
Ko ((=u\T™" ((ti—u+4\?
() ) )

The obtained estimates for M(— |nu], |nt;| — |nu]) and Ru% (see

(5.67)) enable us to estimate

k()] < DAy (R<0>(u) +2 f || h(ty, u)> =: Gs(u). (5.73)

=1
As u — —oo we have RO(u) ~ c(—u)™7, h(t;,u) ~ co(—u)/0771,
therefore Gs(u) ~ c3(—u)™7@  As u 1+ 0, RO(u) ~ cg(—u)/77,
h(t;,u) ~ cs5(—u)/?77, therefore Gs(u) ~ cg(—u)/0=0@+) " Since, as
d— 0, —y(a—0) > —ay < —land (1/0 —7) (a+0) = (1/0 —v)a > —1,
there exists 6 > 0 such that the function Gjs is integrable on (—o0,0).

(5.72) and (5.73) enable us to apply the dominated convergence theo-

rem, which implies

0 d _217%
—>/_Oof l;xl%,i%ﬂ W,O;h,u du, n — oco.

Let us now investigate the convergence of J;,,7 = 1,...,d. We start
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with point-wise convergence of n7~ UeprJ, u € (tj—1,t;) . We have

[nta] d

Clo) = ];) ; T | [ty ] (K) O o

= le Z H[O,LntlJ—LnuJ](k)bk
0

=—>_ > bi

I=j  k=|nt;|—|nu|+1
the last equality was obtained using the property >-7° , br = 0. By splitting
by = a + 2k~ 17 (k) we obtain

Z b, = Z ar + 2 Z k_’y]lT(k‘).

k=|nt;|—|nu]+1 k=|nt;|—|nu]+1 k=|nt;|—|nu]+1

Since

©.9]

> W

k=|nt;|—|nu]+1

< ‘a’l_’l’LtlJ*LTLUJ+1’ = (LntlJ - LTLUJ + 1)_77

we get
) , d 00
RY) =m0 1 > ap — 0, n — o0,
=3  k=|nt;]—|nu|+1

and

‘RJ‘<R‘7) Z|ZL’Z‘ tl—u%’y.

)

Notice that 3232~ )1 k7 17(k) = M([nt;] — [nu] +1,00). Pre-

vious analysis implies

M(|nt;] — 1Lnuj + 1, 00)

—
277 tr—u\? 7 27%
/79 ] ( 9 ) ¢a7é+%—7 (79 1 l,U)

M(|nt;] — [nu] + 1, 00) o Ky (tl — u)év
n%*V = ")/(9 —1 '

n

and
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We have thus obtained

4 M(|nt;] — [nu] +1,00)

W IC ) = —RY), — 23 T
) l:j na vy
_>¢ 1,1 (_21_9,0,751,“)
Do\ 40— 1
and
‘nW—éC’LnuJ 1 ( LntjljJrl’Lnth) (U)

<

Lit;o0t) (w),

which, as before, imply

and

’on

. d K, t—u =7
< DA,s [ |1RY 0 < ! )
5(' (u>+l§79_1 5

) ﬂ(t.y'—l»t.y')(u)'

The dominating function is integrable in (¢;_1, ¢;) for small enough 6, there-
fore the dominated convergence theorem applies giving us

[ntj)
Win = /(Lntjlj+1)/n n(u)du

d _21—%
le@ﬁa,lﬁﬂ 71,0;151,14 du, n — oo.

0

In conclusion, we see that

Spth...,td(xl? ce e 73:6[)
w | d @ d
— exp (—JO‘/ > zv(t,u) (1 — ifT,sign (Z a:lv(tl,u))) du) ,
% i=1 I=1
where v(t,u) = ¢a1/a+1/0—~ (3;:11/9, 0; t,u), which is a ch. f. of

(Za,H(a7 b7 tl)a ey ZOL,H(aa b7 td))
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with parameters H = 1/a +1/0 — v, a = —2'"Y9/(v — 1), b = 0 and
skewness intensity f(u) = 5. The proof is complete.

[

Proof of Corollary 5.8. The corollary follows directly from Theorem 5.7
by choosing 6 = a/(ay — 1 4+ ). O
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6 Conclusions

Based on the results obtained while writing this thesis, we can draw the

following conclusions:

o For linear processes X(n) = ¥32,cje,—j, n € N, the condition
>; ¢; = 0 has no effect on asymptotic rate of decay of the spectral
covariance in the case a < 2, this is explained after the formulation
of Theorem 4.7. The relation between spectral covariance and mem-
ory, as defined by Definition 5, is not as strong as in the case of finite

variance.

o The rate of decay of the spectral covariance for linear processes with
asymptotically regularly varying coefficients, linear fractional stable
noise, log-fractional stable noise is similar to that of codifference and

covariation.

o Newly introduced measure of dependence — a-spectral covariance
— displays simpler asymptotic dependence structure of investigated

linear fields.

o There exists an analogue of Theorem 3.2 for spectral covariance and

a-spectral covariance, see Corollary 4.9.

e Theorems 3.8 and 3.9 generalize to stationary associated random

fields, see Theorem 5.1 and Theorem 5.3.

e In Theorems 3.8 and 5.1 one can substitute codifference for spectral
covariance to obtain an equivalent statement. If one uses a-spectral

covariance or covariation, a weaker statement is obtained.
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 Definition of memory for stationary fields in [52] needs revision as
it does not apply to linear fields with innovations belonging to the

domain of attraction of a-stable random variable.

« Consider linear process X; = 372 ¢;&—; and suppose &; belong
to the normal domain of attraction of a-stable law. Given vy €
(max(1/a,1),1+ 1/a) and any A € (0,1/a —~+ 1), it is possible to
choose the signs of the coefficients ¢, k € N, satisfying

0
gl =k, k€N, and Y ¢ =0
k=0
so that n=* S7_, X} would converge to a non-degenerate distribu-

tion.
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