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Notation

N the set of positive integers

N0 the set N ∪ {0}

Z the set of integers

Sd−1 unit sphere in Rd

Ac the complement of the set A

bxc the largest integer not larger than x (floor)

dxe the smallest integer not smaller that x (ceiling)

1A the indicator function of A

x<α> the function |x|α sign(x)
d−→ convergence in distribution

f.d.d.−→ convergence in finite dimensional distributions
d= equality in distribution

x the vector (x1, . . . , xd)

x 6 y inequalities between two vectors are to be understood

component-wise

nu the vector (n1u1, . . . , ndud)

o(f(x)) g(x) = o(f(x)) as x → a if there exists a function ε such

that ε(x)→ 0 as x→ a and g(x) = f(x)ε(x)

O(f(x)) g(x) = O(f(x)) as x → a if there exists M > 0 such that

|g(x)| 6M |f(x)| in the neighbourhood of a

f.d.d. finite dimensional distributions

i.i.d. independent identically distributed

s.v.f. slowly varying function

SαS symmetric α-stable
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ρ(X, Y ) spectral covariance between X and Y , see (2.7) on

page 8
ρ̃(X, Y ) spectral correlation coefficient of (X, Y ), see (2.8) on

page 8
[X, Y ]α covariation of X on Y , see (2.9) on page 8

τ(X, Y ) codifference between X and Y , see (2.10) on page 8

I(θ1, θ2;X, Y ) generalized codifference between X and Y , see (2.11) on

page 8
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1 Introduction

1.1 Aims and problems

One of the main aims of this work is to develop theory of spectral co-

variances. We derive some properties of spectral covariances, investi-

gate asymptotics of the spectral covariance for some infinite-variance lin-

ear processes and fields. Namely, we investigate linear process Xn =∑∞
k=0 ckξn−k with asymptotically regularly varying filter ck, k ∈ N, and

i.i.d. α-stable innovations ξk, k ∈ Z, we also study the asymptotic

dependence between one-step increments of linear fractional stable mo-

tion and log-fractional stable motion. In addition, we investigate lin-

ear field Xk,l = ∑∞
i=0

∑∞
j=0w(i,j)(1 + i)−β1(1 + j)−β2ξk−i,l−j, where βi >

1/α, i = 1, 2, ξi,j, i, j ∈ Z, are i.i.d. α-stable random variables, and coef-

ficients w(i,j) have limits limi→∞w(i,j) = w(∞,j), limj→∞w(i,j) = w(i,∞) and

limi,j→∞w(i,j) = 1. Faced with a complicated picture when investigating

the asymptotic behaviour of spectral covariance for this linear field, we in-

troduce another measure of dependence – α-spectral covariance – which we

use to investigate the asymptotic dependence structure of d-dimensional

linear field Xk = ∑
j>0

(∏d
l=1(1 + jl)−βl

)
ξk−j, where βl > 1/α, l = 1, . . . , d,

and ξj, j ∈ Zd are i.i.d. α-stable random variables.

The results obtained in [17], relating the asymptotic behaviour of de-

pendence measures to the limit theorems, are generalized to the linear

fields.

We answer a question, originally proposed in [52], concerning limit

theorems in the case of negative memory. Consider a partial sum process
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Sn(t) = ∑bntc
k=0 Xk of linear processes Xn = ∑∞

i=0 ciξn−i with independent

identically distributed innovations {ξi} belonging to the normal domain

of attraction of α-stable law, 0 < α ≤ 2. If |ck| = k−γ, k ∈ N, γ >

max(1, 1/α), and ∑∞
k=0 ck = 0 (the case of negative memory for the sta-

tionary sequence {Xn}), it is known that the normalizing sequence of Sn(1)

can grow as n1/α−γ+1 or remain bounded, if the signs of the coefficients

are constant or alternate, respectively. It is of interest to know whether

it is possible, given λ ∈ (0, 1/α− γ + 1), to change the signs of ck so that

the rate of growth of the normalizing sequence would be nλ. The positive

answer is given: we propose a way of choosing the signs and investigate the

finite-dimensional convergence of appropriately normalized Sn(t) to linear

fractional Lévy motion.

We also generalize (with an additional condition) Theorem 1 in [3] to

the case of d-dimensional linear fields. Namely, we investigate convergence

in the sense of f.d.d. of appropriately normalized partial sum processes

Sn(t) =
∑

06k6nt
Xk

when Xk = ∑
i>0 ciξk−i, coefficients ci have form ci = ∏d

l=1 ail(γl, l) with

asymptotically regularly varying with index −γl, γl > 1/α, sequences

ail(γl, l), and ξi – i.i.d. copies of random variable ξ belonging to the domain

of attraction of α-stable law.

1.2 Methods

To prove asymptotic behaviour of dependence measures we use well known

results from mathematical analysis. We mostly apply the dominated con-

vergence theorem.

Some known results about slowly varying functions are employed.

To derive Theorems 5.1 and 5.3 we extend the proofs provided in [17]

to linear fields. In [17] the proof of Newman’s central limit theorem was
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adapted to the case of infinite variance.

In order to prove the convergence in the sense of f.d.d. of appropri-

ately normalized partial sum processes we use the method of characteristic

functions.

1.3 Novelty

The obtained results are new. Most of the results are included in the

following publications:

J. Damarackas, V. Paulauskas: Properties of spectral covariance for

linear processes with infinite variance, Lithuanian Mathematical Journal,

54 (2014) 252–276.

J. Damarackas, V. Paulauskas: On spectral covariance for random

fields with infinite variance, Journal of Multivariate Analysis, 153 (2017)

156–175.

J. Damarackas: A note on the normalizing sequences for sums of linear

processes in the case of negative memory. Accepted for publication in

Lithuanian Mathematical Journal.

1.4 Acknowledgements

I would like to express my sincere gratitude to my supervisor prof.

Vygantas Paulauskas for the priceless advice and encouragement.
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2 Preliminaries

We begin by recalling some definitions and results about regularly vary-

ing functions from [9], which is a standard reference on regularly varying

functions. We also prove some lemmas, which will be used in our proofs.

A measurable function U : (0,∞)→ (0,∞) is called regularly varying

with index η (or η-varying), if for any λ > 0

lim
x→∞

U(λx)
U(x) = λη. (2.1)

If η = 0, the function U is called slowly varying. Every η-varying function

U can be written as U(x) = xηL(x), where L is a slowly varying function.

In order to prove some of the results, we will use the following Potter’s

theorem (see [9], Theorem 1.5.6, part iii))

Theorem 2.1. If f is a regularly varying function with an index ρ, then for

any A > 1, δ > 0 there exists B = B(A, δ) such that for any x > B, y > B

f(y)(f(x))−1 6 Amax
((
yx−1

)ρ+δ
,
(
yx−1

)ρ−δ)
.

Suppose L is a s.v.f. It follows from de Bruijn’s theorem (see [9],

Theorem 1.5.13, for the complete formulation) that there exists a s.v.f.

L#, unique up to asymptotic equivalence, such that

L#(x)L(xL#(x))→ 1, x→∞.

If this result is applied to the s.v.f. L(x) =
(
h(x1/α)

)−1 the existence of a

s.v.f. h1/α satisfying

h
(
x1/αh

1/α
1/α(x)

)
∼ h1/α(x), x→∞, (2.2)

5



is obtained.

The following three lemmas will be useful in our considerations:

Lemma 2.2. If U is a regularly varying function with index −γ, γ > 0,

and ck ∼ U(k), as k → ∞, then for any η > 0 there exists a constant E

such that

|ck| 6 E(1 + k)η−γ (2.3)

for all k > 0.

Proof. Since ck ∼ U(k), there exists N1 such that |ck| 6 2U(k) for k > N1.

As U is regularly varying with index −γ, we have U(k)/k−γ+η → 0, as

k → ∞. Also, k/(k + 1) → 1, as k → ∞, therefore there exists N2 > N1

such that U(k) 6 (1 + k)−γ+η for k > N2. Let us denote

E0 = max
k<N2

|ck|
(1 + k)η−γ .

Setting E = max(2, E0) we obtain (2.3).

Lemma 2.3. Suppose h is a s.v.f., qn →∞, and fn : U → R is a sequence

of functions such that qn |fn(u)| → ∞ uniformly for u ∈ U . For every

δ > 0 there exists N1 ∈ N such that∣∣∣∣∣h(qn |fn(u)|)
h(qn)

∣∣∣∣∣ 6 2 max{|fn(u)|δ , |fn(u)|−δ}, u ∈ U , n > N1.

Proof of Lemma 2.3. This result follows directly from Theorem 2.1.

Lemma 2.4. Suppose h is a s.v.f., f(x) = |x|α or f(x) = x<α>, α > 0,

and qn, yn are sequences of real numbers such that qn →∞, yn → y. Then

f(yn)h(qn |yn|−1)
h(qn) → f(y), n→∞. (2.4)

If y 6= 0, (2.4) holds with α 6 0 as well.

Proof of Lemma 2.4. We begin by assuming y = 0. Lemma 2.3 implies

that for large n∣∣∣∣∣∣f(yn)h(qn |yn|−1)
h(qn)

∣∣∣∣∣∣ 6 |yn|α 2 max
{
|yn|

α
2 , |yn|−

α
2
}
6 2 |yn|

α
2 → 0.
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Now suppose y 6= 0. Since yn → y holds, there exist a, b > 0 and n0 ∈ N

such that a < |yn|−1
< b for all n > n0. S.v.f. h has a property that

h(λt)/h(t) t→∞−−−→ 1 uniformly for 0 < a 6 λ 6 b <∞ (see, for instance, [9],

Theorem 1.5.2). We obtain h(qn |yn|−1)/h(qn)→ 1. As f is continuous at

y, (2.4) holds.

Next we move to α-stable random vectors. Let

Sd−1 = {s ∈ Rd : ‖s‖ = 1}

be the unit sphere in Rd, where ‖ · ‖ is the Euclidean norm in Rd. Letters

in bold will be used to denote vectors in Rd. A random vector X =

(X1, . . . , Xd) is α-stable with parameter 0 < α < 2, α 6= 1, if there exist a

finite measure Γ on Sd−1 and a vector b ∈ Rd such that the characteristic

function (ch.f.) of X is given by

E exp {i〈t,X〉}

= exp
{
−
∫
Sd−1
|〈t, s〉|α

(
1− sign〈t, s〉 tan πα2

)
Γ(ds) + i〈t,b〉

}
. (2.5)

For α = 1, we only consider symmetric measures Γ. In such a case, we get

the so-called symmetric α-stable (SαS) distributions with ch.f. of a very

simple form:

E exp {i〈t,X〉} = exp
{
−
∫
Sd−1
|〈t, s〉|αΓ(ds)

}
. (2.6)

The measure Γ in (2.5) is called the spectral measure of an α-stable ran-

dom vector X, and the pair (Γ,b) is unique. The Gaussian case α = 2

is excluded from this definition since, in the Gaussian case, there is no

uniqueness of the spectral measure Γ: different measures Γ may give the

same ch.f. Taking d = 2 and b = 0 in (2.5), we have an α-stable random

vector X = (X1, X2) with spectral measure Γ on S1 = {s = (s1, s2) ∈ R2 :

s2
1 + s2

2 = 1}.
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The spectral covariance of X (or the spectral covariance between the

coordinates X1 and X2) is defined as

ρ(X1, X2) =
∫
S1
s1s2Γ(ds). (2.7)

Also, in analogy with the usual correlation coefficient, the spectral corre-

lation coefficient (s.c.c.) for an α-stable random vector X is defined as

ρ̃(X1, X2) =
∫
S1
s1s2Γ(ds)

(∫
S1
s2

1Γ(ds)
∫
S1
s2

2Γ(ds)
)−1/2

. (2.8)

Suppose X1 and X2 are jointly SαS random variables. The covariation

of X1 on X2 is defined for 1 < α 6 2 and equals

[X1, X2]α =
∫
S1
s1s

<α−1>
2 Γ(ds). (2.9)

Another measure of dependence, the codifference, was defined for all

SαS random vectors as

τ(X1, X2) =
∫
S1

(|s1|α + |s2|α − |s1 − s2|α) Γ(ds). (2.10)

In the literature one can find two measures of dependence closely related

to the codifference. The first is sometimes referred to as the generalized

codifference, and is defined as

I(θ1, θ2;X1, X2) := ln E exp{iθ1X1}E exp{iθ2X2}
E exp{i(θ1X1 + θ2X2)} . (2.11)

Another measure is the difference between the joint characteristic function

of (X1, X2) and the product of their marginal characteristic functions:

U(θ1, θ2;X1, X2)

= E exp{i(θ1X1 + θ2X2)} − E exp{iθ1X1}E exp{iθ2X2}. (2.12)

The relation between those measures of dependence is as follows

τ(X1, X2) = −I(1,−1;X1, X2),

8



U(θ1, θ2;X1, X2)

= E exp{iθ1X1}E exp{iθ2X2} (exp(−I(θ1, θ2;X1, X2))− 1) .

If the process X(t) is stationary and I(θ1, θ2;X(0), X(t))→ 0, we have

U(θ1, θ2;X1, X2) ∼ −E exp{iθ1X(0)}E exp{iθ2X(0)}I(θ1, θ2;X1, X2),

i.e., the quantities U(θ1, θ2;X1, X2) and I(θ1, θ2;X1, X2) are asymptoti-

cally proportional.

In this work we will investigate linear processes and fields with inno-

vations belonging to the domain of attraction of some α-stable random

variable. Random variable ξ belongs to the domain of attraction of α-

stable random variable if in the neighbourhood of zero it has characteristic

function

E exp (ixξ) =


exp

(
−υα(x)(1− iβsign(x) tan πα

2 ) + ixµ
)

if α 6= 1,

exp
(
−υα(x)(1 + iβ 2

π sign(x) ln(|x|)) + ixµ
)

if α = 1,

where υα(x) = σαh
(
|x|−1) |x|α(1+o(1)), h - a s.v.f., α ∈ (0, 2], σ > 0, |β| 6

1, µ ∈ R. The standard reference on this is [29].

For simplicity let us assume that σ = 1. We will be working under the

assumption that β = 0 in the case α = 1, therefore we can write

E exp (ixξ) = exp
(
−h

(
|x|−1) (|x|α − iβx〈α〉τα)(1 + r(x)) + ixµ

)
, (2.13)

where r(x) → 0, as x → 0, x〈α〉 = |x|α sign(x), τα = tan (πα/2) if α 6= 1,

and τ1 = 0.

Now we shall recall the notion of linear stable processes of continuous

time. It is well-known what important role α-stable stochastic integrals

play in the theory of stable random vectors and processes, that is, integrals

of non-random functions with respect to α-stable random measures. The

large part of the monograph [58] is devoted to these integrals, therefore

we do not provide all definitions of notions, we shall remind the main of

9



them only. We will try to keep the same notation as in [58], referring the

reader to this monograph. Let (E, E ,m) be a measurable space with a

measure m, and let E0 = {A ∈ E : m(A) < ∞} and β : E → [−1, 1] be

a measurable function. Let us denote by (Ω,F , P ) the probability space

and by L0(Ω) the set of all real random variables defined on it.

An independently scattered σ-additive set function M : E0 → L0(Ω) is

called an α-stable random measure with control measure m and skewness

intensity β, if for each A ∈ E0 a random variable M(A) is stable with

scale, skewness and shift parameters m(A)1/α, m(A)−1 ∫
A β(x)m(dx), and

0, respectively, see Definition 3.3.1 in [58]. Taking f ∈ Lα(E, E ,m), we

get an α-stable random variable

X =
∫
E
f(x)M(dx),

while taking a collection fi ∈ Lα(E, E ,m), i = 1, . . . , k, we get an α-stable

random vector

(X1, . . . , Xk), Xi =
∫
E
fi(x)M(dx).

Taking a family of functions {ft, t ∈ T} ⊂ Lα(E, E ,m) we get an α-stable

random process

X(t) =
∫
E
ft(x)M(dx), t ∈ T. (2.14)

It follows from Property 3.2.1 in [58] that the joint characteristic func-

tion of X(t1), . . . , X(td) is

φt1,...,td(x1, . . . , xd)

= exp
− ∫

E

∣∣∣∣∣∣
d∑
j=1

xjftj(u)
∣∣∣∣∣∣
α

×

×
1− iβ(u)sign

 d∑
j=1

xjftj(u)
 tan πα2

m(du)


10



if α 6= 1, and

φt1,...,td(x1, . . . , xd)

= exp
− ∫

E

∣∣∣∣∣∣
d∑
j=1

xjftj(u)
∣∣∣∣∣∣×

×
1 + i2

π
β(u)sign

 d∑
j=1

xjftj(u)
 ln

∣∣∣∣∣∣
d∑
j=1

xjftj(u)
∣∣∣∣∣∣
m(du)


if α = 1.

Important linear stable process of continuous time is linear fractional

Lévy motion (LFLM). It is the stochastic process given by

Zα,H(a, b; t) =
∫ ∞
−∞

φα,H(a, b; t, u)M(du), (2.15)

with

φα,H(a, b; t, u) = a
(

((t− u)+)H−
1
α − ((−u)+)H−

1
α

)
+

+ b
(

((t− u)−)H−
1
α − ((−u)−)H−

1
α

)
,

M – a stable random measure on R with Lebesgue control measure, skew-

ness intensity β(u) satisfying two additional conditions (we refer the reader

to Definition 7.4.1 in [58] for details), a2 + b2 > 0, 0 < H < 1, 0 < α < 2

and H 6= 1/α.

An extension of LFLM to the case H = 1/α, 1 < α < 2, is log-

fractional stable motion. Suppose M is a stable random measure on R

with Lebesgue control measure and a constant skewness intensity. Log-

fractional stable motion is the stochastic process defined as

Λα(t) =
∫ ∞
−∞

(ln |t− x| − ln |x|)M(dx), t ∈ R.

The increment process of LFSM is known as linear fractional stable

noise, it equals

Y1(t) = Zα,H(a, b; t+ 1)− Zα,H(a, b; t). (2.16)
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and forms a stationary sequence. It can be expressed as

Y1(t) =
∫ ∞
−∞

ft(x)M(dx), (2.17)

where M is a stable random measure on R with Lebesgue control measure,

and

ft(x) = a ((t+ 1− x)η+ − (t− x)η+) + b ((t+ 1− x)η− − (t− x)η−) , (2.18)

with η = H − 1/α. Similarly, the log-fractional stable noise equals

Y2(t) = Λα(t+ 1)− Λα(t), (2.19)

and can be expressed as (2.17) with

ft(x) = ln |t+ 1− x| − ln |t− x| = ln
∣∣∣∣∣t+ 1− x
t− x

∣∣∣∣∣ . (2.20)

Fractional noise processes described above are examples of moving av-

erage processes – processes X(t) that can be represented as

X(t) =
∫ ∞
−∞

f(t− x)M(dx), (2.21)

where M is a stable random measure with the Lebesgue control measure

and f ∈ Lα.

An important SαS moving average process is the Ornstein-Uhlenbeck

process, which is defined as

X(t) =
∫ t

−∞
exp(−λ(t− x))M(dx),

where M is SαS stable random measure with Lebesgue control measure.

Next, we recall the notion of association, which has origins in several

papers, see [21, 22, 27, 40] and, for more information on association and

related notions (positive and negative association, association of measures,

etc.), see monograph [12]. Random variables X1, . . . , Xn are associated if

Cov(f(X1, . . . , Xn), g(X1, . . . , Xn)) ≥ 0

12



for each pair of functions f, g : Rn → R that are non-decreasing in each

coordinate and for which this covariance exists. An infinite collection of

random variables is associated if every its finite subset consists of associ-

ated random variables. In [39], it was proved that a jointly stable random

vector (X1, . . . , Xn) is associated if and only if its spectral measure Γn
satisfies the relation

Γn(Sn−1 ∩ {[0,∞)n ∪ (−∞, 0]n}c) = 0.

In the proof of Theorem 5.1, we will use the following multivariate

Fekete lemma from [15].

Lemma 2.5 ( [15]). Let f : Zd+ → [0,∞) satisfy the conditions

f(x1, . . . , xj + yj, . . . , xd) ≤ f(x1, . . . , xj, . . . , xd) + f(x1, . . . , yj, . . . , xd)

(2.22)

for all x1, . . . , xd, yj ∈ Z+ and j ∈ {1, . . . , d}. Then

limn→∞
f(n1, . . . , nd)
n1 · · ·nd

(2.23)

exists and equals

inf
n∈Zd+

f(n1, . . . , nd)
n1 · · ·nd

.

Remark 2.6. As in the original Fekete lemma (d = 1), if instead of subad-

ditivity in each argument (2.22), we have superadditivity in each argument

f(x1, . . . , xj + yj, . . . , xd) ≥ f(x1, . . . , xj, . . . , xd) + f(x1, . . . , yj, . . . , xd),

then again the limit (2.23) exists, but now it equals

sup
n∈Zd+

f(n1, . . . , nd)
n1 · · ·nd

.
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3 Literature review

3.1 Measures of dependence of processes

with infinite variance

Spectral correlation coefficient and spectral covariance

In the paper [53] an attempt was made by Press to introduce a measure

of dependence between coordinates of SαS bivariate vector sharing some

properties with the usual correlation coefficient. A mistake, later pointed

out by Paulauskas in [50], led the author of [53] to believe that all such

vectors have ch.f.

E exp (i〈(X1, X2), (θ1, θ2)〉)

= exp
− m∑

i=1

(
w11(i)θ2

1 + 2w12(i)θ1θ2 + w22(i)θ2
2
)α/2 , (3.1)

where  w11(i) w12(i)

w21(i) w22(i)

 , i = 1, . . . ,m,

are symmetric positive semi-definite matrices. Press suggested to define

the association parameter (a.p.) of (X1, X2) as

ρ(X1, X2) =
∑m
i=1w12(i)√

(∑m
i=1w11(i)) (∑m

i=1w22(i))
.

Having shown that there are SαS distributions with ch.f. that can not

be expressed as (3.1), Paulauskas in [50] has suggested another measure of

dependence – the spectral correlation coefficient (s.c.c.) defined in (2.8),

originally called the generalized association parameter – which could be

15



applied to any bivariate SαS vector. The paper highlighted some good

features of this dependence measure, namely, it was shown that the s.c.c.

ρ̃ has the following properties:

Proposition 3.1.

1. |ρ̃| ≤ 1, and if the coordinates of X are independent then ρ̃ = 0;

2. if |ρ̃| = 1, then the distribution of X is concentrated on a line, i.e.,

coordinates X1 and X2 are linearly dependent;

3. if α = 2, ρ̃ coincides with a correlation coefficient of a Gaussian

random vector with characteristic function (2.6);

4. ρ̃ is independent of α and depends only on the spectral measure Γ of

X.

5. if a random vector X is sub-Gaussian with ch.f.

exp
{
−(σ2

1t
2
1 + 2rσ1σ2t1t2 + σ2

2t
2
2)α/2

}
,

where σ2
1, σ

2
2 are variances and r is the correlation coefficient of

underlying Gaussian vector, then the spectral correlation coefficient

equals r.

For a long time, except for a brief mention in [58], there was almost no

literature dealing with this measure of dependence.

The interest in the spectral correlation coefficient was revived in [24],

where it was compared to a newly introduced measure of dependence.

An unpublished paper [51] by Paulauskas followed, first part of which

can be considered as a program for developing theory of spectral covari-

ances. In the paper Paulauskas introduced another measure of dependence

– the spectral covariance – an analogue of the usual covariance defined by

(2.7). The spectral covariance and s.c.c. in [51] were referred to as α-

covariance and α-correlation coefficient. It was shown that the notion of
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spectral covariance and s.c.c. can be extended to general bivariate α-stable

random vectors. Also, it was shown how those measures of dependence

could be used to measure dependence between coordinates of a vector be-

longing to the normal domain of attraction of α-stable random vector.

Later, in [18], it was noticed that the same approach can be used to vec-

tors belonging to the domain of attraction of α-stable random vector: let

ξ = (ξ1, ξ2) be a random vector satisfying the following condition: there

exist a number 0 < α < 2, a s.v.f. L, and a finite measure Γ on S1 such

that

lim
x→∞

xα

L(x)P
(
‖ξ‖ > x, ξ‖ξ‖−1 ∈ A

)
= Γ(A) (3.2)

for any Borel set A on S1 with Γ(∂A) = 0. It is well known (see [56])

that this condition is necessary and sufficient for (ξ1, ξ2) to belong to the

domain of attraction of an α-stable random vector X = (X1, X2) with

exponent α and spectral measure Γ. The spectral covariance and s.c.c. of

(ξ1, ξ2) were defined by means of the measure Γ in the same way as these

quantities are defined for an α-stable random vector X = (X1, X2):

ρ(ξ1, ξ2) = ρ(X1, X2) =
∫
S1
s1s2Γ(ds),

and similarly for ρ̃(ξ1, ξ2); see [18] for motivation of such a definition.

Also, it was demonstrated in [51] that the notion of spectral covariance

can be naturally extended to α-stable random vectors with values in Rd

or even in separable Banach space.

The spectral covariance and s.c.c. for stochastic integrals (and linear

processes, which can be considered as a particular case of stochastic in-

tegrals) does not depend on the skewness intensity β(x). To see this, let

(X1, X2) be a bivariate SαS random vector, defined by means of stochastic

integrals, i.e.,

(X1, X2) d=
(∫

E
f1(x)M(dx),

∫
E
f2(x)M(dx)

)
,
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where d= stands for equality in distribution. In Chapter 3.2 in [58] one

can find the following expression of the spectral measure Γ of the random

vector (X1, X2) via control measure m, skewness intensity β and functions

f1, f2:

Γ(A) =
∫
g−1(A)

1 + β(x)
2 m1(dx) +

∫
g−1(−A)

1− β(x)
2 m1(dx),

where A is a Borel set in S1,

g−1(A) = {x ∈ E+ : (g1(x), g2(x)) ∈ A},

E+ = {x ∈ E : f2
1 (x) + f2

2 (x) > 0},

m1(dx) =
(
f2

1 (x) + f2
2 (x)

)α/2
m(dx),

and

gi(x) = fi(x)
(f2

1 (x) + f2
2 (x))1/2 , i = 1, 2.

From this expression it is easy to see that in the calculation of spec-

tral covariance the expression s1s2Γ(ds) + (−s1)(−s2)Γ(−ds) is equal to

s1s2m1(dx) |(g1(x),g2(x))=±(s1,s2), where the last expression means that the

differential is calculated at points where vector (g1, g2) is equal to (s1, s2)

or −(s1, s2). Therefore, we get the following expressions of spectral covari-

ance and spectral correlation coefficient:

ρ(X1, X2) =
∫
E

f1(x)f2(x)
(f2

1 (x) + f2
2 (x))

2−α
2
m(dx), (3.3)

ρ̃(X1, X2) =

∫
E

f1(x)f2(x)
(f2

1 (x)+f2
2 (x))

2−α
2
m(dx)

(∫
E

f1(x)2

(f2
1 (x)+f2

2 (x))
2−α

2
m(dx) ∫E f2(x)2

(f2
1 (x)+f2

2 (x))
2−α

2
m(dx)

)1/2 .

Formally in the above written formulae one should integrate over E+ =

{x ∈ E : f2
1 (x) + f2

2 (x) > 0}, but for convenience of writing we agree that

the integrand is equal to zero if f2
1 (x) + f2

2 (x) = 0.

Another interesting topic, especially for practitioners, is the estimation

of spectral covariances, for which we must have estimates of the spectral
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measure Γ and (in the case of estimation of other measures of dependence)

of the parameter α. Whereas for univariate heavy-tailed distributions,

estimation of the tail index is developed quite well, this cannot be said

about the multivariate case. Here we restrict ourselves to giving references

[16, 20, 49, 55], where estimation of the parameters of multivariate heavy-

tailed distributions is considered. In [33], the first estimate of the spectral

covariance (where as in [50], the term "generalized association parameter"

is used) is constructed.

Other measures of dependence

In this section we present an overview of research involving measures of

dependence for random variables with infinite variance. This overview is

in no way complete, but is sufficient to illustrate the field of research and

to survey some recent results.

The covariation was introduced by Miller in [46] and since then was

widely investigated. Together with its generalization to pth order random

variables, it naturally appears in many settings. We refer the reader to the

paper [14], or [13], where a connection between the covariation, conditional

moments, and James orthogonality was established.

In [2,4], the quantity U(θ1, θ2;X1, X2), defined in (2.12), as a measure

of dependence between the coordinates of an α-stable vector (X1, X2),

was considered. Later on (see [36, 37]), it was noted that, instead of this

difference, it is more convenient to consider the generalized codifference

I(θ1, θ2;X1, X2), defined in (2.11).

Many properties of codifference and covariation are presented in [58].

For example,

Theorem 3.2. For a SαS, 0 < α 6 2, stationary moving average process
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Xt,

lim
t→∞

τ(Xt, X0) = 0.

For the proof see Theorem 4.7.3 in [58]. The exact asymptotic rate of

decay of dependence measures is of interest – in some papers it is used

to classify long memory, long-range dependence. There are many papers

dealing with asymptotic behaviour of dependence measures.

In [36] ARMA time series with SαS innovations were investigated and

the codifference was used as a substitute for the usual covariance. It was

shown that τ(Xn, X0) is bounded above by exponentially decaying function

and exact asymptotics of τ(Xn, X0) were evaluated in some cases.

In [37] the asymptotic dependence structure of time series X(n) satis-

fying FARIMA equation was studied. To be precise, the codifference and

covariation were used to investigate dependence between X(0) and X(n)

as n→∞. X(n) is the unique solution of

Φ(B)X(n) = Θ(B)(1−B)−dεn,

where Φ and Θ are polynomials with real coefficients and no common

roots, Θ has no roots in the closed unit disk, B is the backshift operator,

and εn is a sequence of i.i.d. SαS random variables.

Solutions of FARIMA equation investigated in [37] are a particular case

of processes

X(n) =
∞∑
j=0

cjεn−j (3.4)

where εj are i.i.d. SαS random variables with ch.f. exp(−|t|α), and cj are

asymptotically equivalent to some regularly varying with index ρ < −1/α

function U(j). In [38] such more general linear processes were investigated

and the following theorems were proved:

Theorem 3.3 ( [38]). Suppose 0 < α 6 2, ρ < −1/α, and consider the

moving average process (3.4).
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1. If α > 1, ρ(α − 1) < −1 and cj ∼ U(j) for some regularly varying

with index ρ function U , then

lim
n→∞

τ(Xn, X0)
U(n) = α

∞∑
j=0

c<α−1>
j .

2. If α > 1, ρ(α− 1) > −1 and(
cj
U(j) − 1

)
= O(j−1) (3.5)

for some non-increasing regularly varying with index ρ function U,

then

lim
n→∞

τ(Xn, X0)
nUα(n) =

∫ ∞
0
yρα + (y + 1)ρα − (yρ − (y + 1)ρ)α dy. (3.6)

3. If α 6 1, then (3.6) holds, provided (3.5) holds for some non-

increasing convex regularly varying with index ρ function U whose

derivative U ′ satisfies∣∣∣∣∣1− U ′(x+ n)
U ′(x)

∣∣∣∣∣ = O(x−1) a.e., as x→∞. (3.7)

Theorem 3.4 ( [38]). Suppose 1 < α 6 2, ρ < −1/α, and consider the

moving average process (3.4).

1. If ρ(α−1) < −1 and cj ∼ U(j) for some regularly varying with index

ρ function U , then

lim
n→∞

[Xn, X0]α
U(n) =

∞∑
j=0

c<α−1>
j .

2. If ρ(α − 1) > −1 and (3.5) holds for some non-increasing regularly

varying with index ρ function U , then

lim
n→∞

[Xn, X0]α
nUα(n) =

∫ ∞
0

(y + 1)ρyρ(α−1)dy. (3.8)

In [4] the asymptotic dependence structure of linear fractional stable

noise and log-fractional stable noise with a constant skewness function

β(x) ≡ β was investigated. We state the results for the symmetric pro-

cesses, as it was done in [58].
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Theorem 3.5. Consider linear fractional stable noise Y1(t) defined by

(2.16) and suppose it is symmetric.

If 0 < α < 1, 0 < H < 1 or 1 < α < 2, 1 − 1/(α(α − 1)) < H < 1,

H 6= 1/α, then

I(θ1, θ2;Y1(t), Y1(0)) ∼ B(θ1, θ2)tαH−α, (3.9)

as t→∞.

If α = 1, 0 < H < 1, then (3.9) holds if either sign(ab) = 1 or

sign(θ1θ2) = −1. If α = 1, sign(ab) 6= 1 and sign(θ1θ2) 6= −1 then

B(θ1, θ2) = 0 and

I(θ1, θ2;Y1(t), Y1(0)) ∼ −2(1−H)(|aθ1|+ |bθ2|)tH−2

as t→∞.

If 1 < α < 2, 0 < H < 1− 1/(α(α− 1)), then

I(θ1, θ2;Y1(t), Y1(0)) ∼ F (θ1, θ2)tH−1/α−1

as t→∞.

The constants B(θ1, θ2) and F (θ1, θ2) are as follows

B(θ1, θ2) =
∣∣∣∣∣H − 1

α

∣∣∣∣∣
α
 |a|α ∫ 0

−∞

∣∣∣θ1(1− x)H−1/α−1 + θ2(−x)H−1/α−1
∣∣∣α−

−
∣∣∣θ1(1− x)H−1/α−1

∣∣∣α − ∣∣∣θ2(−x)H−1/α−1
∣∣∣α dx+

+
∫ 1

0

∣∣∣aθ1(1− x)H−1/α−1 − bθ2x
H−1/α−1

∣∣∣α−
−
∣∣∣aθ1(1− x)H−1/α−1

∣∣∣α − ∣∣∣bθ2x
H−1/α−1

∣∣∣α dx+

+ |b|α
∫ ∞

0

∣∣∣θ2(1 + x)H−1/α−1 + θ1x
H−1/α−1

∣∣∣α−
−
∣∣∣θ2(1 + x)H−1/α−1

∣∣∣α − ∣∣∣θ1x
H−1/α−1

∣∣∣α dx
,
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F (θ1, θ2) = (Hα− 1)×

×
aθ1

( ∫ 0

−∞

(
aθ2

(
(1− x)H−1/α − (−x)H−1/α

))<α−1> dx+

+
∫ 1

0

(
θ2
(
a(1− x)H−1/α − bxH−1/α

))<α−1> dx+

+
∫ ∞

1

(
bθ2

(
(x− 1)H−1/α − xH−1/α

))<α−1> dx
)

+

+ bθ2

( ∫ 0

−∞

(
bθ1

(
(1− x)H−1/α − (−x)H−1/α

))<α−1> +

+
∫ 1

0

(
θ1
(
b(1− x)H−1/α − axH−1/α

))<α−> dx+

+
∫ ∞

1

(
aθ1

(
(x− 1)H−1/α − xH−1/α

))<α−1> dx
).

Theorem 3.6. Consider log-fractional stable noise Y2(t) defined by (2.19)

and suppose it is symmetric. Then

I(θ1, θ2;Y2(t), Y2(0)) ∼ G(θ1, θ2)t1−α,

where

G(θ1, θ2) =
∫ 1

−∞

(∣∣∣∣∣ θ1

1 + x
− θ2

x

∣∣∣∣∣
α

−
∣∣∣∣∣ θ1

1 + x

∣∣∣∣∣
α

−
∣∣∣∣∣θ2

x

∣∣∣∣∣
α)

dx+

+
∫ ∞

0

(∣∣∣∣∣ θ2

1 + x
− θ1

x

∣∣∣∣∣
α

−
∣∣∣∣∣ θ2

1 + x

∣∣∣∣∣
α

−
∣∣∣∣∣θ1

x

∣∣∣∣∣
α)

dx.

Remark 3.7. For comparison, without the assumption of symmetry the

rate of decay in Theorem 3.6 would be the same, but the expression of

G(θ1, θ2) would be different. It follows from Theorem 2.4 in [4] that

G(θ1, θ2) =
∫ 1

−∞

(
ξ

(
θ1

1− x + θ2

−x

)
− ξ

(
θ1

1− x

)
− ξ

(
θ2

−x

))
dx+

+
∫ ∞

0

(
ξ

(
θ2

1 + x
+ θ1

x

)
− ξ

(
θ2

1 + x

)
− ξ

(
θ1

x

))
dx.

where

ξ(u) = |u|α
(

1− iβsign(u) tan πα2

)
,

and ξ(u) denotes the complex conjugate of ξ(u).
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Another paper that deals with codifference for non-symmetric processes

is [54], where the asymptotic behaviour of codifference was investigated for

α-stable random process, expressed as a sum of stochastic integrals with

respect to non-symmetric α-stable random measure.

In the paper [41] the decay rates of the codifference and covariation for

increments of infinite-variance renewal-reward process were examined.

In [42] the codifference and covariation were used to investigate the

dependence structure of linear log-fractional stable motion – a process

defined for 1 < α 6 2 as

Y (t)

=
∫ ∞
−∞

a (ln0(t− x)+ − ln0(−x)+) + b (ln0(t− x)− − ln0(−x)−)M(dx),

where |a| + |b| > 0, M is a SαS random measure with Lebesgue control

measure, and

ln0 x =


ln x if x > 0,

0 otherwise.

It was shown that codifference of this process decays faster than covariation

if a 6= b and ab 6= 0.

In [43] linear fractional stable noise in the previously uninvestigated

boundary case 1 < α < 2, H = 1 − 1/(α(α − 1)) was examined. In the

paper the asymptotic behaviour of (2.12) was studied.

The paper [44] deals with symmetric log-fractional stable noise. It was

shown that as t → ∞, the codifference satisfies τ(Y2(t), Y2(0)) ∼ C1t
1−α

and covariation [Y2(t), Y2(0)]α ∼ C2t
1−α, where C1 and C2 are positive

constants.

A symmetrized and normalized version of the covariation for SαS ran-

dom variables was introduced in [23]. Later, in [24] a new measure of

dependence, called the signed symmetric covariation coefficient, was intro-

duced. A modified version of this measure was defined in [33]. For details
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and properties of these measures of dependence we refer the reader to the

original papers.

It seems that there were almost no attempts to investigate the asymp-

totic dependence structure of linear fields with infinite variance. As an

exception we can mention the papers [34,35]. In the first paper Chentsov

type random fields, introduced by Takenaka in [62], are considered, and

in the second – linear fields

X(t) =
∫
Rn

(
p(x− t)H−n/α − p(x)H−n/α

)
M(dx), t ∈ Rn,

where M is SαS random measure with Lebesgue control measure, p is

arbitrary norm on Rn, and H ∈ (0, 1), 0 < α 6 2. Both papers investigate

the asymptotic dependence structure as u → ∞ of one-step increment of

projection processes

Xe(u) = X((u+ 1)e)−X(ue), u ∈ R,

where e ∈ Rn.

We do not discuss the relation of the measures of dependence, based

on the spectral measure of α-stable or regularly varying random vectors,

with measures of dependence of different nature, which can be defined for

random vectors with infinite variance, such as Spearman’s ρ, Kendal’s τ ,

or the distance covariance. The last mentioned measure has some similar-

ity with the codifference since, as a measure of dependence between the

coordinates of a vector (X1, X2), the weighted (with some specific weight)

L2-norm of the difference E exp{i(sX1 + tX2)} −E exp{isX1}E exp{itX2}

is taken; see [60, 61]. Recently, another distance based measure of de-

pendence for stable random variables was introduced, its properties were

studied and compared with codifference and covariation, see [1].
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3.2 Limit theorems and memory

Relation between the spectral covariance and limit

theorems

The classical central limit theorem is well known – if we have a sequence

of i.i.d. random variables Xk, k ∈ N, with finite variance σ2 and mean µ,

then ∑n
k=1(Xk − µ)√

n
d−→ N (0, σ2), (3.10)

where N (0, σ2) is the normal distribution.

It turned out that (3.10) also holds for sequences of dependent random

variables, provided the dependence is not too strong. The well known

central limit theorem of Newman (see [47], where this theorem was proved

for fields on Zd, or [48], where functional CLT was proved in the case

d = 1) states that if for a stationary and associated sequence X1, X2, . . .

with EX1 = 0 and EX2
1 <∞, the series of covariances converges, that is,

if
∞∑
k=2

EX1Xk <∞, (3.11)

then ∑n
k=1Xk√
n

d−→ N (0, σ2), (3.12)

where σ2 = EX2
1 + 2∑∞k=2 EX1Xk.

The condition (3.11) is equivalent to convergence of the sequence

Kn =
n∑
k=1

EX1Xk,

and is optimal in a sense that it can not be weakened – an example of

stationary associated sequence was provided in [28] with Kn ∼ lnn for

which ∑n
k=1Xk/

√
nKn does not have any non-degenerate limit distribu-

tion. In [59] a strictly stationary associated random sequence is con-

structed which does not satisfy the central limit theorem and such that

Kn is an arbitrary s.v.f.
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In earlier papers devoted to limit theorems with stable law limits (see,

e.g., [30–32]), some conditions on weak dependence or mixing were used;

for the latest results in limit theorems with stable limits, we refer the

reader to [7], where a large list of references can be found. A different

approach is used in [17], where the spectral covariance (of course, without

using this name) was used in limit theorems for associated sequences with

infinite variance.

Before stating the results from [17], we recall some notions. A se-

quence X1, X2, . . . is jointly α-stable if for any n ∈ N there exist a spec-

tral measure Γn on Sn−1, and a vector bn ∈ Rn such that the vector

(X1, . . . , Xn) has ch.f. (2.5) with b = bn and Γ = Γn. If, additionally,

the sequence is stationary, then bn = (b, . . . , b) for some b ∈ R. A stable

vector (X1, . . . , Xn) is strictly α-stable if either βn = 0 in the case α 6= 1

or ∫Sn−1 siΓn(ds) = 0, i = 1, . . . , n, in the case α = 1,

Let us denote Sn = ∑n
k=1Xk and by ρ(k), k ≥ 2, the spectral covariance

of a two-dimensional stable vector (X1, Xk). If this vector is associated,

then ρ(k) ≥ 0. We are now ready to state the following result from [17]:

Theorem 3.8 ( [17]). Let X1, X2, . . . be a stationary, associated, and

jointly α-stable sequence.

If 0 < α < 1, then
Sn
n1/α

d−→ µ, (3.13)

where µ is a strictly α-stable distribution.

If α = 1, then there exist constants An such that Sn/n− An d=X1.

If 1 < α < 2 and
∞∑
k=2

ρ(k) <∞, (3.14)

then
Sn − ESn
n1/α = Sn − nb

n1/α
d−→ µ, (3.15)

where µ is a non-degenerate strictly α-stable distribution.
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It was noted in [17] that the limit law µ in (3.13) may be degenerate,

which can be seen from the following example given in [17]. Let X be a

strictly α-stable random variable, 0 < α < 2, and define Xi ≡ X for all

i ∈ N. Then this sequence is stationary, associated, and jointly α-stable,

and

n−1/αSn = n1−1/αX.

This equality shows that, for such a sequence and 0 < α < 1, the limit

µ is degenerate. The same example shows that, without condition (3.14),

relation (3.15) may fail since, in the case 1 < α < 2, the sequence n−1/αSn

diverges. Also, condition (3.14) suggests that, when considering random

variables with infinite variance, the spectral covariance is a natural candi-

date to substitute the usual covariance.

If we were able in Theorem 3.8 to change stationary, associated, and

jointly α-stable sequence X1, X2, . . . by a stationary and associated se-

quence that belongs to the domain of attraction of X1, X2, . . . , then we

would get a complete generalization of Newman’s theorem for associated

sequences with infinite variance. Unfortunately, in attempt to do this

in [17], a condition stronger than (3.14) is assumed. In order to state this

result, we need more notation from [17]. Let {Xi, i ∈ N} be an arbi-

trary stationary sequence, and let {Yi, i ∈ N} be a stationary and jointly

strictly α-stable sequence. We say that {Xi, i ∈ N} belongs to the domain

of strict normal attraction of {Yi, i ∈ N} and write {Xi} ∈ Dsn({Yi}) if,

for each m ∈ N, the distribution of the vector ξm = (X1, . . . , Xm) belongs

to the domain of strict normal attraction of the α-stable random vector

ηm = (Y1, . . . , Ym). This means that, for each m ≥ 1,

n−1/α
n∑
j=1

ξm,j
d−→ ηm as n→∞,

where ξm,j, j ≥ 1, are independent copies of ξm. The subscript "sn"

stands for "strict normal" and points out that the convergence is required
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without centering and that n−1/α is used for normalization, whereas in

the general definition of the domain of attraction, centering and general

regularly varying functions are allowed for normalization.

For an associated and stationary sequence {Xi, i ∈ N} for fixed A > 0

and 0 < α < 2, the following quantity is introduced

IAα (Xi, Xj) = sup
b≥A

bα−2
∫ b

−b

∫ b

−b
H(Xi,Xj)(x, y)dxdy, (3.16)

where

H(Xi,Xj)(x, y) = P(Xi ≤ x,Xj ≤ y)− P(Xi ≤ x)P(Xj ≤ y).

Let, as before, Sn = ∑n
k=1Xk, and let Zn = ∑n

k=1 Yk.

Theorem 3.9 ( [17]). Let {Xi, i ∈ N} be a stationary associated sequence

such that {Xi} ∈ Dsn({Yi}), where {Yi, i ∈ N} is a stationary and jointly

strictly α-stable sequence, 0 < α < 2, and Γn is symmetric for all n, if

α = 1. If
∞∑
k=2

IAα (X1, Xk) <∞ (3.17)

for some A > 0, then there exists a strictly α-stable distribution µ such

that
Sn
n1/α

d−→ µ

and
Zn
n1/α

d−→ µ. (3.18)

Remark 3.10. It is appropriate to mention the paper [45], where the result

similar to Theorem 3.9 is proved under conditions allowing the divergence

of the series in (3.17).

Memory

The notion of (long) memory is of interest both in theory and practice,

there are many papers that mention this concept. However, different au-

thors can understand this notion differently – there is no one universally
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accepted definition. For example, in the literature one can encounter the

following definitions of memory for processes with finite variance:

Definition 1. A stationary process (Xt, t ∈ Z) is called a long memory

process in the covariance sense, if ∑∞j=0 |Cov(Xj, X0)| =∞.

Definition 2. A stationary process (Xt, t ∈ Z) with a spectral density

function fX is called a long memory process in the spectral density sense

if
sup fX(λ)

inf fX(λ) =∞ .

Definition 3. A stationary process (Xt, t ∈ Z) is called a long memory

process in the covariance sense with a speed of convergence of order 2d, 0 <

d < 1/2, if there exists a constant C (dependent on d) such that

Cov(Xt, X0) ∼ Ct2d−1,

as t→∞.

Definition 4. A stationary process (Xt, t ∈ Z) is said to have Allen vari-

ance long memory if
Var (∑n

k=1Xk)
n

→∞,

as n→∞.

We refer the reader to the papers [26] and [57] for a extensive overview.

The definitions of memory above use concepts that require the process

to have finite variance. It is not immediately clear how to extend the

notion of long memory to the infinite-variance processes. For example,

in [38] long memory was based on decay rate of codifference.

In a recent paper [52] it was suggested to classify memory (with respect

to summation operation) of general stationary sequences by means of the

growth of normalizing sequences for partial sums as follows:

Definition 5. Say {Xn, n ∈ Z} is a stationary sequence that is not subor-

dinated, has finite variance and zero mean or is jointly regularly varying
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with index 0 < α 6 2, EX0 = 0 if α > 1, and X0 is symmetric if α = 1.

Also, suppose there exists a normalizing sequence An = n1/α+δL(n), where

−1/α < δ 6 1 − 1/α and L is a s.v.f., and a constant b ∈ R such that

A−1
n (∑bntci=1 Xi−bntc b) converges in the sense of finite dimensional distribu-

tions to some stochastically continuous process that is not identically zero.

The sequence {Xn, n ∈ Z} has zero memory if δ = 0, positive memory if

δ > 0, and negative memory if δ < 0. The sequence has strongly negative

memory if for any sequence Bn → ∞, the sequence B−1
n

∑bntc
i=1 Xi weakly

converges to zero.

Suppose Xn = ∑∞
i=0 ciξn−i, where ξi are i.i.d. SαS random variables,∑∞

i=0 |ci|
α
< ∞. In [52] the following conjecture is stated, which, if true,

would relate the notion of spectral covariance and negative memory:

Conjecture 3.11. In the case 1 < α < 2,∑∞j=0 cj = 0 and

cj = j−β(1 +O(j−h(α))), j > 1,

with some function h, we should get that ρ(Xn, X0) is of order C(α, β)n1−βα.

In [52] the following definition was proposed for stationary random field

X = {Xk, k ∈ Zd} that is not subordinated and is with finite variance or

is jointly regularly varying with index 0 < α 6 2, EX0 = 0 if α > 1, and

X0 is symmetric if α = 1.

Definition 6. Suppose a stationary random field X is as described above

and δ̄ = (δ1, . . . , δd). X has directional δ̄-memory is there exist slowly

varying functions Li, i = 1, . . . , d, such that

A−1
n

∑
16k6n

Xk

converges in distribution to a nondegenerate law, where

An =
d∏
i=1

n
1/α+δi
i Li(ni), −1/α < δi < 1− 1/α.

The field has isotropic memory if δi = δ for i = 1, . . . , d and this isotropic

memory can be positive, zero, or negative, depending on the sign of δ.
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Limit theorems for linear processes and fields

Linear processes

Xn =
∑
i∈Z

ciξn−i, (3.19)

with innovations ξi, i ∈ Z, being independent identically distributed(i.i.d.)

random variables and coefficients {ci} such that series (3.19) converges a.s.,

are widely investigated as they allow to model various types of dependence

and memory. A question often studied is the convergence of appropri-

ately normalized and centered partial sum process Sn(t) := ∑bntc
k=0 Xk, t >

0, Sn(0) = 0.

Suppose that ξ1 belongs to the domain of attraction of α-stable law,

i.e., a−1
n

∑n
i=1 ξi− bn converges in distribution to α-stable random variable,

α ∈ (0, 2]. It is well-known that then an = n1/αL(n), where L is a slowly

varying function (s.v.f.). Centering sequence bn is simple: if α > 1 one has

bn = a−1
n nEξ1, if α < 1, centering is not needed at all, and only in the case

α = 1 centering is a little bit more complicated. In order to avoid these

complications in the case α = 1 it is often assumed that the innovations

are symmetric. The case α = 2 (i.e., when ξ1 belongs to the domain of at-

traction of a Gaussian law) is investigated deeply, many results concerning

the convergence of Sn(t), or more general partial sum processes, formed

by stationary sequences with finite variance are documented in series of

monographs, starting from classical monographs [10,11] and ending with a

recent one [25]. The case 0 < α < 2 is less investigated, but the interest in

the convergence of partial sum processes, formed by stationary sequences

with infinite variance to stable limits during the last two decades had in-

creased greatly. This can be explained by the fact that many processes

in practice can be modelled using heavy-tailed distributions. We mention

only several papers, which are, in our opinion, close to the present work.

Namely, we refer the reader to papers [3, 5, 8, 19, 30, 31], also one can find

more references in the paper [6].
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Important case of processes satisfying ∑
i∈Z |ci| < ∞ is investigated

in [5] where necessary and sufficient conditions were provided for con-

vergence in finite-dimensional distributions A−1
n Sn(t) f.d.d.−−−→ ∑

i∈Z ciZ(t),

where Z(t) is α-stable Lévy motion and An = n1/αL(n). However, in the

case ∑i∈Z ci = 0 the limit is 0 and different normalizing sequence is needed

to get a non-degenerate limit (we say that An is a normalizing sequence of

Sn(1) if A−1
n Sn(1) converges in distribution to some non-degenerate ran-

dom variable. In what follows An denotes the normalizing sequence of

Sn(1)). Using the terminology from [52] one can say that in [5] the case of

zero memory was considered. Processes with negative memory were little

investigated in the literature. It seems that only in [3] all three cases of

memory are considered, but even there the proofs are given only in the case

of zero and positive memories, the proof in the case of negative memory

is left for readers.

To formulate Theorem 1 from [3], we need some notation.

Let Xk = ∑
j a(k − j)ξj, k ∈ N, where ξj are i.i.d. random variables

such that

P (ξ1 < −t) = (C1 + o(1))t−αh(t), P (ξ1 > t) = (C2 + o(1))t−αh(t),

as t→∞, where C1 > 0, C2 > 0, C1 + C2 > 0, and h is a s.v.f.. If α = 1

it is assumed that C1 = C2. This is equivalent to ξ1 having characteristic

function

E exp(itξ1) = exp
(
−(C + o(1))|t|αH(|t|−1)(1− iDsign(t))

)
,

as t→ 0, where ,

C =


(C1 + C2)Γ(|1− α|) cos(απ/2) if α 6= 1,

(C1 + C2)π/2 if α = 1,

D =


tan(απ/2)(C1 − C2)/(C1 + C2) if α 6= 1,

0 if α = 1,
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and H is a s.v.f. related to h (we refer the reader to the original paper for

details). Let us denote

Y (β)(t) =


∫∞
−∞

(
(t− x)1−β

+ − (−x)1−β
+

)
M(dx) if β 6= 1,

∫∞
−∞ 1(0,t)(x)M(dx) if β = 1,

where M is an α-stable measure with Lebesgue control measure and con-

stant skewness intensity D.

Theorem 3.12 ( [3]). Suppose Xk is as described above.

i) If ∑j |a(j)| <∞ and ∑
j a(j) 6= 0, then the process

Yn(t) =
∑bntc
k=1 Xk

C1/α |∑j a(j)|n1/αH
1/α
α (n)

, t > 0,

as n→∞ converges in finite dimensional distributions to the process

Y (1) defined above.

ii) If α > 1, 1/α < β < 1 and

a(j) =


j−βL(j), j ∈ N,

0 otherwise,

where L is a s.v.f., then

Yn(t) =
∑bntc
k=1 Xk

|1− β|−1C1/αn1/α+1−βL(n)H1/α
α (n)

, (3.20)

as n→∞ converges in finite dimensional distributions to the process

Y (β).

iii) If 0 < α 6 2, max(1, 1/α) < β < 1/α + 1,
n∑
k=0

a(k) = (β − 1)−1
n1−βL(n),

where L is a Zygmund s.v.f., and a(k) = 0 for k 6 0, then the

process (3.20) converges in finite dimensional distributions to the

process Y (β).
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Remark 3.13. Paper [3] deals with slowly varying functions, however, there

is a gap in the proof of Theorem 3.12, part (ii). The relation (27) in [3]

claims that

sup
j

∣∣∣∣∣∣∣∣
h
(
AN

∣∣∣∑n
r=1 urabNtrc(j)

∣∣∣−1)
h
(
AN |aN(j)|−1) − 1

∣∣∣∣∣∣∣∣→ 0, N →∞, (3.21)

here h is a s.v.f., aN(j) = ∑N
k=1 a(k− j) and a(k) = k−βL(k)1[1,∞)(k) with

a s.v.f. L. Let us take, for example, L(x) = 1, h(x) = ln(x), n = 1, u1 =

1, t1 = 2. Now (3.21) simplifies to

sup
j

∣∣∣∣∣∣
ln
(
AN |a2N(j)|−1)

ln
(
AN |aN(j)|−1) − 1

∣∣∣∣∣∣→ 0, N →∞, (3.22)

with the normalizing sequence AN = KN1/α+1−β ln1/α(N), K > 0. For

any j we have

sup
j

∣∣∣∣∣∣
ln
(
AN |a2N(j)|−1)

h
(
AN |aN(j)|−1) − 1

∣∣∣∣∣∣ >
∣∣∣∣∣∣
ln
(
AN |a2N(j)|−1)

ln
(
AN |aN(j)|−1) − 1

∣∣∣∣∣∣ .
If jN = N − 1,

aN(jN) = 1, a2N(jN) ∼ N1−β
∫ 1

0
u−βdu,

which implies

ln
(
AN |a2N(jN)|−1)

ln
(
AN |aN(jN)|−1) → 1

α
1
α + 1− β 6= 1,

proving that (3.22) does not hold.
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4 Spectral covariances

4.1 The problem and results

As was mentioned in the literature overview, the spectral covariance did

not attract the attention of fellow scientists in the field. In this chapter

we investigate asymptotic behaviour of the spectral covariance for some

processes and compare them to known results about other measures of

dependence. We also study the asymptotic dependence structure of a

certain linear field.

We begin by introducing another measure of dependence. For an α-

stable random vector X = (X1, X2) with spectral measure Γ, we introduce

the quantity

ρα(X1, X2) =
∫
S1
s
〈α/2〉
1 s

〈α/2〉
2 Γ(ds), (4.1)

which we call the α-spectral covariance, emphasizing that this new measure

of dependence depends not only on the spectral measure Γ, but also on α.

Just like the spectral covariance, this notion can be extended to random

vectors satisfying (3.2) with the same spectral measure Γ. Motivation for

the introduction of this dependence measure will be given later.

Let us compare the measures of dependence by looking at a simple

example.

Example 4.1. Let Z1, Z2 be two i.i.d. SαS random variables with ch.f.

exp(− |t|α) and let Xc = Z1 + cZ2, Y = Z2. Then it is easy to calculate

[Xc, Y ]α = c, [Y,Xc]α = c<α−1>,

ρ(c) := ρ(Xc, Y ) = c

(1 + c2)
2−α

2
, ρ̃(c) := ρ̃(Xc, Y ) = c√

(1 + c2)1−α2 + c2
,
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ρα(c) := ρα(Xc, Y ) = c
α
2 ,

and

τ(c) := τ(Xc, Y ) = |c|α + 1− |c− 1|α .

We see that ρ(c) ∼ c and ρ̃(c) ∼ c as c→ 0, independently of α (which

is very natural), while for the codifference we have

τ(c) ∼


αc, for α > 1,

|c|α , for α < 1.

The codifference in the case α = 1 looks strange

τ(c) = |c|+ 1− |c− 1| =


0, for c < 0,

2c, for 0 ≤ c < 1,

2, for c ≥ 1.

This expression means that in the case α = 1 codifference does not show

dependence between Z1−Z2 and Z2, but shows it between Z1 +Z2 and Z2.

Also the behaviour of spectral correlation coefficient ρ̃(c) as |c| → ∞ is

natural: limc→±∞ ρ̃(c) = ±1, while the behaviour of τ(c) is not so natural,

for example, if α = 1, then limc→−∞ τ(c) = 0 and limc→−∞ τ(c) = 2.

Assuming that the spectral measure Γ is the main parameter "respon-

sible" for the dependence between the coordinates of the α-stable vector

X, we can define other such measures of dependence. Let g : S1 → R be

a function such that the integral ∫S1 g(s1, s2)Γ(ds) is correctly defined and

the following conditions are satisfied:

g(s1, s2) = 0 if s1s2 = 0, (4.2)

g(s1, s2) = g(s2, s1), (4.3)

g(s1, s2) = g(−s1,−s2). (4.4)

Then we can define

ρ(g;X1, X2) =
∫
S1
g(s1, s2)Γ(ds). (4.5)
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Condition (4.2) is the principal one; for a measure Γ concentrated

on the axes (which means that the coordinates X1 and X2 are indepen-

dent), it ensures that ρ(g;X1, X2) = 0. Condition (4.3) gives us the sym-

metry ρ(g;X1, X2) = ρ(g;X2, X1), whereas condition (4.4) means that,

for any non-symmetric measure Γ, ∫
S1 g(g1, s2)Γ(ds) = ∫

S1 g(s1, s2)Γ1(ds),

where Γ1 is the symmetrized spectral measure, that is, Γ1(ds) = (Γ(ds) +

Γ(−ds))/2. To define an analogue of the spectral correlation coefficient

using a general function g, we should also define g on {(s1, s2) : s1 =

s2, |s1| ≤ 1} (not only on S1) and require the following inequality to hold:∣∣∣∣∣∣
∫
S1 g(s1, s2)Γ(ds)

(∫S1 g(s1, s1)Γ(ds) ∫S1 g(s2, s2)Γ(ds))1/2

∣∣∣∣∣∣ ≤ 1. (4.6)

This notion can also be extended to random vectors belonging to the do-

main of attraction of α-stable vector X (i.e., satisfying (3.2)), like it was

done with the spectral covariance and α-spectral covariance.

The following result shows that we can define a quite large class of mea-

sures of dependence, containing as particular cases the spectral covariance,

α-spectral covariance, and codifference.

Proposition 4.2. Two families of functions

f1,β(s1, s2) = s
〈β/2〉
1 s

〈β/2〉
2 ,

f2,β(s1, s2) = |s1|β + |s2|β − |s1 − s2|β, 0 < β ≤ 2,

satisfy conditions (4.2)–(4.4) and (4.6) and, via formula (4.5), generate

families of measures of dependence for bivariate vectors regularly varying

with index 0 < α ≤ 2 and spectral measure Γ. The spectral covariance is

obtained by taking g = f1,2 or g = f2,2/2 in (4.5), whereas the α-spectral

covariance and codifference are obtained by taking g = f1,α and g = f2,α,

respectively.

In the case of the spectral covariance (2.7), we have a measure of de-

pendence independent of the value of α, which means that all α-stable
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random vectors X = (X1, X2) with the same spectral measure Γ have

the same spectral covariance for all 0 < α ≤ 2. The spectral covariance

becomes a member of two families of measures of dependence, both de-

pending on the parameter β > 0:

ρβ(X1, X2) =
∫
S1
s
〈β/2〉
1 s

〈β/2〉
2 Γ(ds)

and

τβ(X1, X2) =
∫
S1

(
|s1|β + |s2|β − |s1 − s2|β

)
Γ(ds). (4.7)

It would be natural to call these measures as the β-spectral covariance and

β-codifference, respectively, leaving the traditional name codifference for

the case β = α. In what follows, unless stated otherwise, when referring

to codifference we mean the measure of dependence (4.7) with β = α.

The idea of codifference was based on the logarithm of the ratio of char-

acteristic functions (see (2.11)), and from this formula expression (2.10)

is obtained only for SαS random vectors. For non-symmetric α-stable

random vectors, the ratio of the characteristic functions can be complex-

valued. Definitely, it is not easy to give a meaning to a complex-valued

measure of dependence. In our approach, we have the same expression

(2.10) (or even a more general measure, the β-codifference) for any α-stable

random vectors. Moreover, the β-codifference can be applied to vectors

belonging to the domain of attraction of an α-stable random vector in the

same way as it is done for the spectral and α-spectral covariances.

In general, it is impossible to compare the α-spectral covariance with

the spectral covariance, or more generally, to compare ρβ(X1, X2) with

two different 0 < β1, β2 ≤ 2. However, in some cases, for example, when a

stable vector (X1, X2) is associated, it is possible to make a comparison.

Proposition 4.3. If a stable vector (X1, X2) is associated, then, for any

0 < α < 2,

ρβ1(X1, X2) ≤ ρβ2(X1, X2) if β1 > β2
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and, in particular,

ρ(X1, X2) ≤ ρα(X1, X2). (4.8)

If 1 < α < 2, then

ρ(X1, X2) ≤ [X1, X2]α. (4.9)

If 1 ≤ α ≤ 2, then there exist constants c1, c2 > 0 such that

c1ρ(X1, X2) ≤ τ(X1, X2) ≤ c2ρ(X1, X2). (4.10)

Remark 4.4. We can make the following conclusions from this propo-

sition. Suppose Xn is an associated sequence of stable random vari-

ables. It follows from (4.10) that the series ∑∞i=2 ρ(X1, Xi) converges if

and only if the series ∑∞
i=2 τ(X1, Xi) converges, therefore, in Theorem

3.8 the condition (3.14) can be substituted by ∑∞
i=2 τ(X1, Xi) < ∞ to

obtain an equivalent statement. Inequalities (4.8) and (4.9) imply that∑∞
i=2 ρ(X1, Xi) 6

∑∞
i=2 ρα(X1, Xi) and ∑∞

i=2 ρ(X1, Xi) 6
∑∞
i=2[Xi, X1]α,

thus, condition ∑∞
i=2 ρα(X1, Xi) < ∞ or ∑∞i=2[Xi, X1]α < ∞ can be used

instead of (3.14), however, then the statement becomes weaker.

Relation between β-spectral covariance and β-codifference, and, in par-

ticular, between the spectral covariance, α-spectral covariance, and cod-

ifference can be demonstrated taking the Ornstein–Uhlenbeck process as

an example.

Example 4.5. Consider the Ornstein–Uhlenbeck process

X(t) =
∫ t

−∞
exp{−λ(t− x)}M(dx), t ∈ R, (4.11)

with general α-stable random measure M . Let us denote the β-spectral co-

variance function for this process by ρβ(t) = ρβ(X(0), X(t)) (0 < β ≤ 2),

the normalized β-spectral covariance function by ρ̄β(t) = ρβ(t)(ρβ(0))−1,

and similar notations for the β-codifference: τβ(t) = τβ(X(0), X(t)) and
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τ̄β(t) = τβ(X(0), X(t))(τβ(0))−1. Due to the symmetry, it suffices to con-

sider only t ≥ 0. It is not difficult to get the following expressions:

ρβ(t) = 1
λα

e−λtβ/2
(
1 + e−2λt

)(α−β)/2
,

ρ̄β(t) = 2−(α−β)/2e−λtβ/2
(
1 + e−2λt

)(α−β)/2
,

τβ(t) = 1
αλ

(
1 + e−λtβ −

∣∣∣1− e−λt
∣∣∣β)

1 + e−2λt

2

(α−β)/2

,

τ̄β(t) = 1
2

(
1 + e−λtβ −

∣∣∣1− e−λt
∣∣∣β) (1 + e−2λt

)(α−β)/2
.

From these expressions we see that exponential decay of all these functions

depends only on β, whereas the constants depend on both parameters α

and β. Taking β = 2, β = α in ρ̄β(t) and β = α in τ̄β(t), we get the

following asymptotic relations for the normalized spectral covariance, α-

spectral covariance, and codifference, respectively:

ρ̄(t) ∼ 2(2−α)/2e−λt, (4.12)

ρ̄α(t) = e−αλt/2, (4.13)

τ̄(t) ∼



α
2 e−λt if 1 < α < 2,

e−λt if α = 1,
1
2e
−αλt if 0 < α < 1.

(4.14)

From three relations (4.12)–(4.14) the most complicated is relation (4.14)

for the codifference, but the exponential rate of decay is the slowest in

(4.13) for the α-spectral covariance due to the exponent α/2 < 1. It seems

that preference must be given to the spectral covariance, which gives the

exponential decay independent of α and coinciding with the decay of the

covariance function of Gaussian Ornstein–Uhlenbeck process (α = 2), has

simple and continuous with respect to α expression of the constant in

the asymptotic relation (4.12). Here it is appropriate to note that the

constants in the asymptotic relation (4.14) differ from the corresponding

constants in the same relation in [58] since we use the normalization of

42



τβ(t) by the value τβ(0), whereas in [58], the scale parameter of X(0) is

used for the normalization.

It is convenient to introduce function

Vα(x, y) = xy

(x2 + y2)
2−α

2
.

It is easy to see that Vα is continuous and for c > 0 we have Vα(cx, cy) =

cαVα(x, y). Also we have the following:

Lemma 4.6. Suppose 1 6 α 6 2 and x, y > 0. If x1 > x and y1 > y, then

Vα(x, y) 6 Vα(x1, y1).

Proof. If α = 2 or xy = 0 the claim is trivial, hence we assume α < 2 and

x, y > 0. Let us denote γ = (2− α)/2, then

Vα(x, y) = xy(x2 + y2)−γ =
(
x2− 1

γ y−
1
γ + x−

1
γ y2− 1

γ

)−γ
.

Since α > 1, we have 2 − 1/γ 6 0, thus x2− 1
γ > x

2− 1
γ

1 and y2− 1
γ > y

2− 1
γ

1 .

We have

x2− 1
γ y−

1
γ + x−

1
γ y2− 1

γ > x
2− 1

γ

1 y
− 1
γ

1 + x
− 1
γ

1 y
2− 1

γ

1 ,

implying

Vα(x, y) =
(
x2− 1

γ y−
1
γ + x−

1
γ y2− 1

γ

)−γ
6
(
x

2− 1
γ

1 y
− 1
γ

1 + x
− 1
γ

1 y
2− 1

γ

1

)−γ
= Vα(x1, y1).

We begin our study of asymptotic behaviour of the spectral covariance

by investigating linear processes

X(k) =
∞∑
j=0

cjεk−j, k ∈ Z, (4.15)
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where εi, i ∈ Z are i.i.d. α-stable random variables with characteristic

function 
exp

(
−|t|α

(
1− iβsign(t) tan πα

2

))
if α 6= 1,

exp (−|t|) if α = 1,

and a filter cj satisfying
∞∑
j=0
|cj|α <∞.

This condition ensures the a.s. convergence of the series (4.15). Without

any additional assumptions it is difficult to say anything about the decay

rate of ρ(n) := ρ(X(0), X(n)). We assume that

ci ∼ U(i), as i→∞, (4.16)

where U is regularly varying with index η = −κ and κ > 1/α. Using the

properties of U it is not difficult to show that ∑i |U(i)|α < ∞ and the

stable process (4.15) is defined correctly. Motivation to investigate such

processes comes from [37].

The asymptotic dependence structure of the process above is described

in the following theorem.

Theorem 4.7. Suppose that condition (4.16) holds. For a linear process

X(n) defined in (4.15) we have:

If α ≤ 1 and κ > 1/α or 1 < α 6 2 and 1/α < κ < 1/(α− 1), then

ρ(n) ∼ nUα(n)
∫ ∞

0

(tκ(1 + t)κ)1−α

(t2κ + (1 + t)2κ)(2−α)/2dt. (4.17)

If α > 1 and κ > 1/(α− 1), then

lim
n→∞

ρ(n)
U(n) =

∞∑
i=0

c
〈α−1〉
i . (4.18)

In the case α > 1 and κ = 1/(α − 1) we assume stronger condition

than (4.16), namely, we assume that ci ∼ i−κ, then

ρ(n) ∼ n−κ lnn. (4.19)
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We make the following observations: First of all, comparing Theorem

4.7 to Theorem 3.3 and Theorem 3.4, we see that the decay rate of the

spectral covariance coincides with that of codifference and covariation. In

the case α > 1 and κ > 1/(α− 1) the constant ∑∞i=0 c
<α−1>
i appears in all

three theorems.

Condition ∑∞
j=0 cj = 0 has no influence on the limits in Theorem 4.7 in

the case α < 2, therefore, we can disprove Conjecture 3.11. The same can

be said about codifference and covariation. Consequently, the notion of

negative memory is not as closely related to these measures of dependence

as it is in the case α = 2.

In order to obtain the same order of decay some additional and quite

strong conditions on coefficients or the function U are imposed in theorems

3.3 and 3.4 (see (3.5) and (3.7)). The only assumption we make is that

the coefficients are asymptotically regularly varying (except in the case

α > 1, κ = 1/(α−1), which was excluded from the formulation in [37,38],

only mentioning that there is a "phase transition").

Suppose that 1 < α < 2 and cj ∼ j−κ, κ > 1/α. If cj > 0, the

process X(n) is associated. It is easy to determine from Theorem 4.7 that∑∞
k=2 ρ(k) <∞ if and only if κ > 2/α. For κ > 2/α we can apply Theorem

3.8 and conclude that
n∑
k=1

X(k)/n1/α d−→ µ, (4.20)

where µ is a non-degenerate strictly α-stable distribution. Theorem 3.12

reveals that (4.20) holds for κ > 1. Therefore, for 1 < κ < 2/α the

condition ∑∞
k=2 ρ(k) <∞ is not satisfied, but (4.20) holds.

We could investigate a more general linear process Z(k) = ∑∞
j=0 cjηk−j,

k ∈ Z, where ηj, j ∈ Z, are i.i.d. random variables belonging to the nor-

mal domain of attraction of an α-stable random variable, and coefficients

cj satisfy (4.16). It is easy to show that the finite-dimensional distri-

butions of the process Z(k), k ∈ Z, belong to the normal domain of
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attraction of the corresponding distributions of the process X(k) defined

by (4.15). Therefore, by definition, ρ(Z(n), Z(0)) = ρ(X(k), X(0)) and

Theorem (4.7) holds for the process Z(k), k ∈ Z, as well.

Next we formulate a general fact on spectral covariances of a station-

ary α-stable moving average process (2.21). This is an analogue of Theo-

rem 3.2:

Theorem 4.8. Suppose ρ(g; ·, ·) is a general measure of dependence defined

by (4.5) and |g(s1, s2)| 6 C |s1s2|α/2. If Xt is an α-stable, 0 < α 6 2,

moving average process, then

lim
t→∞

ρ(g;Xt, X0) = 0.

Corollary 4.9. For an α-stable, 0 < α 6 2, moving average process Xt,

lim
t→∞

ρ(Xt, X0) = 0, lim
t→∞

ρα(Xt, X0) = 0.

Let us determine the rate of decay of the spectral covariance for log-

fractional and linear fractional stable noises.

Theorem 4.10. Let Y2(t) be a log-fractional stable noise defined by (2.19).

Then

ρ(Y2(0), Y2(t)) ∼ Ct1−α, t→∞, (4.21)

where

C = 2
∫ ∞

0

(y(1 + y))1−α

(y2 + (1 + y)2)
2−α

2
dy −

∫ 1

0

(y(1− y))1−α

(y2 + (1− y)2)
2−α

2
dy. (4.22)

Remark 4.11. Comparing this result to Theorem 3.6 we see that the rate

of decay of codifference is the same. Relation (4.21) holds independently

of skewness intensity β, it is not so with codifference, as was observed in

Remark 3.7.

In the next theorem we consider a linear fractional stable noise process,

which is more complicated comparing with the log-fractional stable noise,
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since the integrand ft(x) from (2.18) depends on more parameters. We

show that the asymptotic behaviour is different for different values of the

parameters, present in (2.18). Let us introduce two regions S = S1 ∪ S2

and U , where

S1 = {(H,α) : 0 < α 6 1, 0 < H < 1} ,

S2 = {(H,α) : 1 < α < 2, 1− 1/(α(α− 1)) < H < 1, H 6= 1/α} ,

U = {(H,α) : 1 < α < 2, 0 < H < 1− 1/(α(α− 1))} .

Theorem 4.12. Let Y1(t) be linear fractional stable noise defined by (2.16).

Then for (α,H) ∈ S

ρ(Y1(0), Y1(t)) ∼ C1(a, b, α,H)tαH−α, t→∞, (4.23)

while for (α,H) ∈ U

ρ(Y1(0), Y1(t)) ∼ C2(a, b, α,H)tH−1−1/α, t→∞, (4.24)

where C1(a, b, α,H) and C2(a, b, α,H) are defined in (4.60) and (4.69),

respectively.

Remark 4.13. The same remark as the Remark 4.11 can be made about

Theorem 4.12.

Let us move on to investigating linear fields

Xk =
∑
i>0

ciεk−i, k ∈ Zd, (4.25)

where εi, i ∈ Zd, are i.i.d. random variables with SαS distribution (this

assumption is made only for the simplicity of writing), and ci, i > 0, are

real numbers satisfying the condition

∑
i>0
|ci|α <∞.
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We are interested in the expression of the quantities ρ(X0, X(s1k1,...,sdkd))

and ρα(X0, X(s1k1,...,sdkd)) via the filter {ci} and in their asymptotic be-

haviour as min1≤i≤d ki → ∞ for a fixed collection of signs s1, . . . , sd ∈

{−1, 1}.

For any a = (a1, . . . , ad) ∈ Zd, we denote

Qa =
{
x = (x1, . . . , xd) ∈ Zd : xi ≥ −ai, i = 1, . . . , d

}
,

a+ = ((a1)+, . . . , (ad)+) and a− = ((a1)−, . . . , (ad)−), where (·)+ = max(·, 0)

and (·)− = −min(·, 0). We have the following expressions for the spectral

covariances of a linear field in the general case d ≥ 2.

Proposition 4.14. For a linear field defined in (4.25), for any k ∈ Zd, it

holds that

ρ(X0, Xk) = ρ(Xk−, Xk+) =
∑

j∈Q0

cj+k−cj+k+(
c2

j+k− + c2
j+k+

)(2−α)/2 (4.26)

and

ρα(X0, Xk) = ρα(Xk−, Xk+) =
∑

j∈Q0

c
〈α/2〉
j+k−c

〈α/2〉
j+k+ . (4.27)

For linear random processes (d = 1, Xk = ∑
i≥0 ciεk−i, k ∈ Z), we

easily obtain the asymptotic decay of ρ(X0, Xn) (see Theorem 4.7). It

turned out that the generalization to the case d > 1 is not so trivial. Since

the main difficulties in passing from the case d = 1 to the case d > 1

can be seen in the case d = 2, we consider mainly this case and use the

notation without letters in bold. Let us denote

Xk,l =
∞∑

i,j=0
ci,jεk−i,l−j, (k, l) ∈ Z2, (4.28)

where εk,l, (k, l) ∈ Z2, are i.i.d. SαS random variables, and ci,j, i, j ≥ 0,

are real numbers satisfying the condition

∞∑
i,j=0
|ci,j|α <∞. (4.29)
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We are interested in the asymptotic behaviour of ρ(k, l) := ρ(X0,0, Xk,l)

under some assumptions on the regular behaviour of the filter {ci,j}. We

can consider two types of such behaviour:

ci,j ∼
1

(iβ1 + jβ2)β3
and, in particular, ci,j ∼

1
‖(i, j)‖β3

with some positive βi, i = 1, 2, 3, such that (4.29) is satisfied, or

ci,j ∼ i−β1j−β2 (4.30)

with some βk > 1/α, k = 1, 2. Here ci,j ∼ ai,j means that

lim
i,j→∞

ci,j
ai,j

= 1.

We investigate linear fields with filters satisfying condition (4.30), and this

choice is motivated by two reasons: first, the behaviour of ρ(k, l) for the

field satisfying (4.30) is easier to investigate, and, second, linear fields with

such a filter motivated the definition of directional memory (see Definition

6). For linear random processes the relation ci ∼ i−β was sufficient to

obtain the asymptotics of the spectral covariance. For linear fields, it is

not sufficient to have (4.30) since we also must control partial limits of the

filter over rows and columns (see conditions (A2) and (A3) in Theorem

4.17). The expression of ρ(k, l) is different for the cases k > 0, l > 0 and

k > 0, l < 0: for n,m ∈ N we have

ρ(n,m) =
∞∑
i=0

∞∑
j=0

ci,jci+n,j+m(
c2
i,j + c2

i+n,j+m
) 2−α

2
,

ρ(n,−m) =
∞∑
i=0

∞∑
j=0

ci+n,jci,j+m(
c2
i+n,j + c2

i,j+m
) 2−α

2
.

Due to the stationarity, the remaining two cases (k < 0, l > 0 and k <

0, l < 0) can be transformed into the first ones. Investigation of such

expressions is quite difficult, and the main cause of these difficulties is the

exponent (2−α)/2 at the norm of points (ci+n,j, ci,j+m) in the denominator,
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which disappears only in the case α = 2. This observation motivated us

to introduce α-spectral covariance. It turned out that investigation of the

asymptotics of ρα(X0,0, Xk,l) is much simpler and with a possible extension

to the case d ≥ 3.

Let us assume that the coefficients ci in (4.28) have the form

ci,j = w(i,j)(1 + i)−β1(1 + j)−β2, i, j ≥ 0, (4.31)

where βk > 1/α, k = 1, 2, and the coefficients w(i,j) satisfy the following

conditions:

(A1) there exists limi,j→∞w(i,j) = 1,

(A2) for every i ≥ 0, there exists limj→∞w(i,j) = w(i,·) > 0,

(A3) for every j ≥ 0, there exists limi→∞w(i,j) = w(·,j) > 0.

The following two theorems describe the asymptotic dependence struc-

ture of the linear field described above. Theorem 4.15 deals with ρ(k, l) as

k →∞, l→∞, and Theorem 4.16 treats the case k →∞, l→ −∞.

Theorem 4.15. Suppose that a linear field (4.28) with coefficients ci,j
having form (4.31), satisfies conditions (A1)–(A3). Then the asymptotic

behaviour of spectral covariance ρ(n,m) is as follows.

1. If 1 < α 6 2 and βi > 1
α−1 , i = 1, 2,

lim
n,m→∞

ρ(n,m)
n−β1m−β2

=
∞∑
i=0

∞∑
j=0

w
〈α−1〉
(i,j) (1 + i)−β1(α−1)(1 + j)−β2(α−1). (4.32)

2. If 1 < α 6 2 and 1
α < βi <

1
α−1 , i = 1, 2 or 0 < α 6 1 and

βi >
1
α , i = 1, 2,

lim
n,m→∞

ρ(n,m)
n1−αβ1m1−αβ2

=
∫ ∞

0

∫ ∞
0
Vα(t−β1s−β2, (t+ 1)−β1(s+ 1)−β2)dtds. (4.33)
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3. If 1 < α 6 2 and β1 >
1

α−1 ,
1
α < β2 <

1
α−1 ,

lim
n,m→∞

ρ(n,m)
n−β1m1−β2α

=
∞∑
i=0

wα−1
(i,∞)(1 + i)−β1(α−1)

∞∫
0
u−β2(α−1)(1 + u)−β2du.

4. If 1 < α 6 2 and β1 = 1
α−1 ,

1
α < β2 <

1
α−1 ,

lim
n,m→∞

ρ(n,m)
n−β1m1−β2α ln(n) =

∫ ∞
0
v−β2(α−1) (1 + v)−β2 dv.

5. If 1 < α 6 2 and β1 = 1
α−1 , β2 >

1
α−1 ,

lim
n,m→∞

ρ(n,m)
n−β1m−β2 ln(n)

∞∑
j=0

wα−1
(∞,j)(1 + j)−β2(α−1).

6. If 1 < α 6 2 and β1 = 1
α−1 , β2 = 1

α−1 ,

lim
n,m→∞

ρ(n,m)
n−β1m−β2 ln(n) ln(m) = 1.

Theorem 4.16. Suppose that a linear field (4.28) with coefficients ci,j
having form (4.31), satisfies conditions (A1)–(A3). Then the asymptotic

behaviour of spectral covariance ρ(n,−m) is as follows.

1. If 1 < α ≤ 2, 1
β1

+ 1
β2
> α and 1

α < βi <
1

α−1 , i = 1, 2, or 0 < α ≤ 1

and 1
β1

+ 1
β2
> α:

lim
n,m→∞

ρ(n,−m)
n1−β1αm1−β2α

=
∞∫
0

∞∫
0
Vα((1 + u)−β1v−β2, u−β1(1 + v)−β2)dudv.

2. If 1 < α ≤ 2, 1
α−1 < β1 and 1

α < β2 < 1:

lim
n,m→∞

ρ(n,−m)
n−β1m1−β2α

=
∞∑
i=0

wα−1
(i,∞)(1 + i)−β1(α−1)

∞∫
0
v−β2(1 + v)−β2(α−1)dv.
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3. If 1 < α ≤ 2, β1 = 1
α−1 and 1

α < β2 < 1:

lim
n,m→∞

ρ(n,−m)
n1−β1αm1−β2α ln(n) =

∫ ∞
0
v−β2(1 + v)−β2(α−1)dvds.

4. If 1 < α ≤ 2 and 1
α−1 < βi, i = 1, 2:

a) If mn is a sequence such that m
−β2
n

n−β1 → 0:

lim
n→∞

ρ(n,−mn)
n−β1(α−1)m−β2

n

=
∞∑
i=0

∞∑
j=0

wα−1
(∞,j)w(i,∞)(1 + j)−β2(α−1)(1 + i)−β1.

b) If mn is a sequence such that m
−β2
n

n−β1 → c ∈ (0;∞):

lim
n→∞

ρ(n,−mn)
n−β1(α−1)m−β2

n

= 1
c

∞∑
i=0

∞∑
j=0

Vα(w(∞,j)(1 + j)−β2, cw(i,∞)(1 + i)−β1).

c) If mn →∞ is a sequence such that m
−β2
n

n−β1 →∞:

lim
n→∞

ρ(n,−mn)
n−β1m

−β2(α−1)
n

=
∞∑
i=0

∞∑
j=0

w(∞,j)w
α−1
(i,∞)(1 + j)−β2(1 + i)−β1(α−1).

5. If 1 < α < 2, 1
α−1 < β1 and 1 < β2 <

1
α−1 :

a) If mn is a sequence such that m
−β2
n

n−β1 → 0:

lim
n→∞

ρ(n,−mn)
n−

β1
β2m1−β2α

n

=
∞∑
i=0

∫ ∞
0
Vα(v−β2, w(i,∞)(1 + i)−β1)dv.

b) If mn is a sequence such that m
−β2
n

n−β1 → c ∈ (0;∞):

lim
n→∞

ρ(n,−mn)
n−β1m

−β2(α−1)
n

= c
∞∑
i=0

∞∑
j=0

Vα(w(∞,j)c
−1(1 + j)−β2, w(i,∞)(1 + i)−β1).
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c) If mn →∞ is a sequence such that m
−β2
n

n−β1 →∞:

lim
n→∞

ρ(n,−mn)
n−β1m

−β2(α−1)
n

=
∞∑
i=0

∞∑
j=0

w(∞,j)w
α−1
(i,∞)(1 + j)−β2(1 + i)−β1(α−1).

6. If 1 < α < 2, 1 < βi <
1

α−1 , i = 1, 2 and 1
β1

+ 1
β2
< α or 0 < α ≤ 1

and 1
β1

+ 1
β2
< α:

a) If mn is a sequence such that m
−β2
n

n−β1 → 0:

lim
n→∞

ρ(n,−mn)
n−

β1
β2m1−β2α

n

=
∞∑
i=0

∫ ∞
0
Vα(v−β2, w(i,∞)(1 + i)−β1)dv.

b) If mn is a sequence such that m
−β2
n

n−β1 → c ∈ (0;∞):

lim
n→∞

ρ(n,−mn)
n−β1(α−1)m−β2

n

= 1
c

∞∑
i=0

∞∑
j=0

Vα(w(∞,j)(1 + j)−β2, w(i,∞)c
2(1 + i)−β1).

c) If mn →∞ is a sequence such that m
−β2
n

n−β1 →∞:

lim
n→∞

ρ(n,−mn)

n1−β1αm
−β2
β1

n

=
∞∑
j=0

∫ ∞
0
Vα(u−β1, w(∞,j)(1 + j)−β2)du.

7. If 1 < α < 2, 1
α−1 < β1 and β2 = 1

α−1 :

a) If mn is a sequence such that m
−β2
n

n−β1 → 0:

lim
n→∞

ρ(n,−mn)
n−

β1
β2m1−β2α

n ln
(
n−

β1
β2mn

) =
∞∑
i=0

w(i,∞)(1 + i)−β1.

b) If mn is a sequence such that m
−β2
n

n−β1 → c ∈ (0;∞):

lim
n→∞

ρ(n,−mn)
n−β1m

−β2(α−1)
n

= c
∞∑
i=0

∞∑
j=0

Vα(w(∞,j)c
−1(1 + j)−β2, w(i,∞)(1 + i)−β1).
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c) If mn →∞ is a sequence such that m
−β2
n

n−β1 →∞:

lim
n→∞

ρ(n,−mn)
n−β1m

−β2(α−1)
n

=
∞∑
i=0

∞∑
j=0

w(∞,j)w
α−1
(i,∞)(1 + j)−β2(1 + i)−β1(α−1).

8. If 1 < α < 2, β1 = 1
α−1 and 1 < β2 <

1
α−1

a) If mn is a sequence such that m
−β2
n

n−β1 → 0:

lim
n→∞

ρ(n,−mn)
n−

β1
β2m1−β2α

n

=
∞∑
i=0

∫ ∞
0
Vα(w(i,∞) (1 + i)−β1 , s−β2)ds.

b) If mn is a sequence such that m
−β2
n

n−β1 → c ∈ (0;∞):

lim
n→∞

ρ(n,−mn)
n−β1m

−β2(α−1)
n

= c
∞∑
i=0

∞∑
j=0

Vα(w(∞,j)c
−1(1 + j)−β2, w(i,∞)(1 + i)−β1).

c) If mn →∞ is a sequence such that m
−β2
n

n−β1 →∞:

lim
n→∞

ρ(n,−mn)

n1−β1αm
−β2
β1

n ln
(
nm

−β2
β1

n

) =
∞∑
j=0

w(∞,j) (1 + j)−β2 .

9. If 1 < α < 2 and βi = 1
α−1 , i = 1, 2:

a) If mn is a sequence such that m
−β2
n

n−β1 → 0:

lim
n→∞

ρ(n,−mn)
n−β1/β2m1−β2α

n ln
(
n−β1/β2mn

) =
∞∑
i=0

w(i,∞)(1 + i)−β1.

b) If mn is a sequence such that m
−β2
n

n−β1 → c ∈ (0;∞):

lim
n→∞

ρ(n,−mn)
n−β1m

−β2(α−1)
n

= c
∞∑
i=0

∞∑
j=0

Vα(w(∞,j)c
−1(1 + j)−β2, w(i,∞)(1 + i)−β1).
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c) If mn →∞ is a sequence such that m
−β2
n

n−β1 →∞:

lim
n→∞

ρ(n,−mn)
n1−β1αm

−β2/β1
n ln

(
nm

−β2/β1
n

) =
∞∑
j=0

w(∞,j)(1 + j)−β2.

The cases

• α 6 1 and 1/β1 + 1/β2 = α;

• 1 < α < 2, β1 > 1/(α− 1) and β2 = 1;

• 1 < α < 2, β1 = 1/(α− 1) and β2 = 1;

• 1 < α < 2, 1 < βi < 1/(α− 1) and 1/β1 + 1/β2 = α;

were not considered in Theorem 4.16. We feel that the cases examined are

sufficient to reveal the complex dependence structure of this linear field.

A remark on the codifference for linear random fields is appropriate

here. According to Proposition 4.3, the codifference in the case of asso-

ciated random variables (e.g., when the coefficients of the filter are non-

negative) for 1 ≤ α < 2 is equivalent to the spectral covariance. Taking

into account the complexity of the asymptotic behaviour of the spectral

covariance for linear fields, we can expect that asymptotic behaviour of

the codifference for the linear random field is also complicated.

As the following theorem shows, asymptotic behaviour of α-spectral

covariance is simpler. For the formulation, it is convenient to denote γk =

βkα/2, k = 1, 2, and

K(a) =
∫ ∞

0
v−a (1 + v)−a dv := B(1− a, 2a− 1), 1/2 < a < 1,

where B(z, w) = ∫ 1
0 t

z−1(1 − t)w−1dt = ∫∞
0 tz−1(1 + t)−(z+w)dt is the beta

function.
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Let n,m ∈ N, s ∈ {−1, 1}, and ρα(k1, k2) := ρα(X0,0, Xk1,k2). From

(4.27) and (4.31) we have

ρα(n, sm)

=
∞∑
i=0

∞∑
j=0

qi,j,n,m,s(1 + i)−γ1(1 + j)−γ2(1 + i+ n)−γ1(1 + j +m)−γ2, (4.34)

where

qi,j,n,m,s =


w
〈α/2〉
(i,j) w

〈α/2〉
(i+n,j+m), s = 1,

w
〈α/2〉
(i,j+m)w

〈α/2〉
(i+n,j), s = −1.

There are six main sets of the parameters β1, β2 giving different asymp-

totic behaviours of ρα(n, sm). The rest of the sets give symmetric results.

Theorem 4.17. Suppose that a linear field (4.28) with coefficients ci,j
of the form (4.31) satisfies conditions (A1)–(A3). Then the asymptotic

behaviour of the α-spectral covariance (4.34) is as follows:

1. If 1/2 < γi < 1, i = 1, 2:

lim
n,m→∞

ρα(n, sm)
n1−2γ1m1−2γ2

= K(γ1)K(γ2). (4.35)

2. If γ1 > 1 and 1/2 < γ2 < 1:

lim
n,m→∞

ρα(n, sm)
n−γ1m1−2γ2

=
∞∑
i=0

w
α/2
(i,·) (1 + i)−γ1 K(γ2). (4.36)

3. γi > 1, i = 1, 2 :

lim
n,m→∞

ρα(n, sm)
n−γ1m−γ2

=
∞∑
i=0

∞∑
j=0

W (i, j, s)〈α/2〉 (1 + i)−γ1 (1 + j)−γ2 , (4.37)

where W (i, j, 1) = w(i,j) and W (i, j,−1) = w(i,·)w(·,j).

4. If 1/2 < γ1 < 1, γ2 = 1:

lim
n,m→∞

ρα(n, sm)
n1−2γ1m1−2γ2 lnm = K(γ1). (4.38)
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5. If γ1 > 1 and γ2 = 1:

lim
n,m→∞

ρα(n, sm)
n1−2γ1m1−2γ2 lnm =

∞∑
i=0

w
α/2
(i,·) (1 + i)−γ1 . (4.39)

6. If γ1 = 1, γ2 = 1:

lim
n,m→∞

ρα(n, sm)
n1−2γ1(lnn)m1−2γ2(lnm) = 1. (4.40)

As it was mentioned before the statement of the theorem, we do not

state results in symmetric cases. For example, if 1/2 < γ1 < 1, γ2 > 1,

then, instead of (4.36), we have

lim
n,m→∞

ρα(n, sm)
n1−2γ1m−γ2

=
∞∑
j=0

w
α/2
(·,j) (1 + j)−γ2 K(γ1).

Assuming conditions slightly stronger than (A2) and (A3), we can get

simpler expressions of the constants in the asymptotic relations of Theorem

4.17.

Corollary 4.18. If w(i,·) ≡ 1, w(·,j) ≡ 1, then the right-hand sides of

relations (4.36) and (4.39) are ζ(γ1)K(γ2) and ζ(γ1), respectively, and the

right-hand side of relation (4.37) in the case of s = −1 is ζ(γ1)ζ(γ2), where

ζ(t) :=
∞∑
i=0

(1 + i)−t = 1
Γ(t)

∫ ∞
0

st−1e−s
1− e−sds, t > 1.

Remark 4.19. If the sum on the right hand side of (4.32) or (4.37) equals

0, a different normalization is required to obtain a non-zero limit. Under

more general conditions (e.g., not requiring the limits to be positive in

(A2) and (A3)) the limits in some other cases might equal 0. We do not

investigate the asymptotic behaviour of dependence measures in such cases

here, these questions are left for our future research.

Now we discuss a generalization of the results of Theorem 4.17 to the

case d ≥ 3. In order to get the same generality as in Theorem 4.17, we
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should consider a random linear field defined in (4.25) with coefficients of

the form

ci = wi
d∏

k=1
(1 + ik)−βk (4.41)

with βk > 1/α, k = 1, . . . , d, and a function w (of the argument i =

(i1, . . . , id)) having properties similar to those stated in (A1)–(A3). Al-

though there are no principal difficulties to investigate the α-spectral co-

variance in this general case, the formulations and proofs become compli-

cated since now, instead of conditions (A1)–(A3), there will be much more

various partial limits of the function w. Therefore, we consider the simple

case where wi ≡ 1, that is, we consider a random linear field (4.25) with

coefficients

ci =
d∏

k=1
(1 + ik)−βk , (4.42)

where βk > 1/α, k = 1, . . . , d. Let us denote γl = αβl/2, l = 1, . . . , d.

Proposition 4.20. Suppose that a random linear field (4.25) with coef-

ficients (4.42) satisfies the following condition: there are integer numbers

u, v > 0, 0 ≤ u+ v ≤ d, such that 1/2 < γli < 1 for i = 1, . . . , u, γli > 1

for i = u+1, . . . , u+v, and γli = 1 for i = u+v+1, . . . , d. Then, adopting

the convention that ∏
∅

= 1, we have

ρα(X0, Xk)(∏u
i=1 |kli|

1−2γli
) (∏u+v

i=u+1 |kli|
−γli

) (∏d
i=u+v+1 |kli|

−1 ln(|kli|)
)

→
 u∏
i=1

K(γli)
 u+v∏

i=u+1
ζ(γli)

 (4.43)

as min16l6d |kl| → ∞.

It is worth noting that in the general case of coefficients from (4.41),

under appropriate conditions on w, we will have more complicated con-

stants on the right-hand side of the relation (4.43), but the same rate of

decay (provided the constants are not zero).
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4.2 Proofs

Proof of Proposition 4.2. Clearly, functions f1,β and f2,β satisfy condi-

tions (4.2)–(4.4), and the function f1,β satisfies (4.6). Thus, it remains to

prove that f2,β also satisfies this inequality. Using the inequality |1− |x|p| ≤

|1− x|p , x ∈ R, 0 < p ≤ 1, taking into account that 0 < β/2 ≤ 1, and

assuming that s1 6= 0, we have∣∣∣∣∣∣1−
∣∣∣∣∣s2

s1

∣∣∣∣∣
β/2∣∣∣∣∣∣ ≤

∣∣∣∣∣1− s2

s1

∣∣∣∣∣
β/2

.

Multiplying both sides of this inequality by |s1|β/2 and then taking squares

of both sides, we easily get the following inequality (which also holds for

s1 = 0):

|s1|β + |s2|β − |s1 − s2|β ≤ 2|s1s2|β/2. (4.44)

From the inequality |s1 + s2|β 6 |s1|β + 2β/2|s1s2|β/2 + |s2|β it follows that

|s1 + s2|β − |s1|β − |s2|β 6 2|s1s2|β/2. (4.45)

From (4.44) and (4.45) we get
∣∣∣|s1 + s2|β − |s1|β − |s2|β

∣∣∣ 6 2|s1s2|β/2.

Therefore,
∣∣∣∣∫S1

(
|s1|β + |s2|β − |s1 − s2|β

)
Γ(ds)

∣∣∣∣
6 2

∫
S1
|s1s2|β/2Γ(ds)

6 2
(∫

S1
|s1|β Γ(ds)

∫
S1
|s2|β Γ(ds)

)1/2
.

It is easy to see that the last inequality coincides with (4.6) for f2,β.

Proof of Proposition 4.3. The vector (X1, X2) is associated, so its spectral

measure is concentrated in the first and third quadrants. Inequality (4.8)

follows from the inequality |s1s2|β1 6 |s1s2|β2, and inequality (4.9) follows

from |s1s2| 6 |s1| |s2|α−1.

Denoting s1 = sinφ, s2 = cosφ, it is easy to see by symmetry that

in order to prove (4.10), it is sufficient to show that there exist constants
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c1, c2 such that

c1 cosφ sinφ 6 | cosφ|α + | sinφ|α − | cosφ− sinφ|α 6 c2 cosφ sinφ

for φ ∈ [0, π/4]. Applying the inequalities

αx− α

2x
2 6 1− (1− x)α 6 αx, x ∈ [0, 1],

we obtain

|sinφ|α + |cosφ|α − |cosφ− sinφ|α

6 |sinφ|α + |cosφ|α α tanφ

= |sinφ|α+α sinφ |cosφ|α−1 = sinφ cosφ
(
(sinφ)α−1(cosφ)−1 + α(cosφ)α−2

)
6 sinφ cosφ

(
(2−1/2)α−2 + α(2−1/2)α−2

)

and

|sinφ|α + |cosφ|α − |sinφ− cosφ|α

> |cosφ|α
(
|tanφ|α + α tanφ− α

2 (tanφ)2
)

> |cosφ|α
(
α tanφ+ (tanφ)α − (tanφ)2

)
> α |cosφ|α tanφ = α |cosφ|α−1 sinφ > α cosφ sinφ.

Proof of Proposition 4.14. Due to the stationarity of the field, the vectors

(X0, Xk) and (X0+k−, Xk+k−) = (Xk−, Xk+) have the same distribution.

If a ∈ Q0, then we have Q0 ⊂ Qa and

Xa =
∑

i∈Q0

ciεa−i =
∑

j∈Qa

cj+aε−j =
∑

j∈Q0

cj+aε−j +
∑

j∈Qa\Q0

cj+aε−j.

Notice that the sets Qk−\Q0 and Qk+\Q0 have no elements in common,
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therefore

θ1Xk− + θ2Xk+

=
∑

j∈Q0

θ1cj+k−ε−j +
∑

j∈Qk−\Q0

θ1cj+k−ε−j+

+
∑

j∈Q0

θ2cj+k+ε−j +
∑

j∈Qk+\Q0

θ2cj+k+ε−j.

Now we easily obtain the ch.f. of the vector (Xk−, Xk+):

E exp {i(θ1Xk− + θ2Xk+)}

= exp

− |θ1|α
∑

j∈Qk−\Q0

|cj+k−|
α −

∑
j∈Q0

|θ1cj+k− + θ2cj+k+|
α−

− |θ2|α
∑

j∈Qk+\Q0

|cj+k+|
α

 .
The obtained ch.f. allows us to see the structure of the spectral measure

Γ, and we obtain expressions (4.26) and (4.27).

Proof of Theorem 4.7. We need to investigate the asymptotic behaviour

of

ρ(n) =
∞∑
i=0

Vα(ci, ci+n) =
∞∑
i=0

cici+n

(c2
i + c2

i+n)
2−α

2

as n→∞. For simplicity of writing we assume that ci 6= 0, i ∈ N0.

Function U is regularly varying with index −κ, therefore, we can write

U(i) = i−κh(i), where h is a s.v.f.

We begin with the case α > 1 and κ > 1/(α − 1). Lemma 2.2 applied

with γ = κ and η = (κ− 1/(α− 1))/2 implies

|ci| 6 E(1 + i)−κ+η, i > 0.

This yields
∞∑
i=0
|ci|α−1 6 Eα−1

∞∑
i=0

(1 + i)(−κ+η)(α−1) <∞,

since (−κ+ η)(α− 1) > −1.
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Let us investigate the convergence of Vα(ci, ci+n) for a fixed i ∈ N0.

Lemma 2.2 implies |ci+n| 6 E(i+n)−κ/2 → 0, as n→∞. Also, for fixed i

ci+n
U(n) = ci+n

U(i+ n)
U(i+ n)
U(n) = ci+n

U(i+ n)
(i+ n)−κ
n−κ

h(i+ n)
h(n) → 1,

since, by Lemma 2.4 applied with qn = n, yn = (1 + i/n)−1, and f ≡ 1,

we have
h(i+ n)
h(n) =

h(n(1 + i
n))

h(n) → 1, as n→∞.

Therefore

Vα(ci, ci+n)
U(n) =

ci
ci+n
U(n)

(c2
i + c2

i+n)
2−α

2
→ ci

(c2
i )

2−α
2

= c<α−1>
i .

We shall show that for large n, the sequence Vα(ci, ci+n)/U(n), i ∈ N0, is

dominated by a summable sequence. By using the inequality c2
i +c2

i+n > c2
i

we obtain ∣∣∣∣∣Vα(ci, ci+n)
U(n)

∣∣∣∣∣ 6 |ci|α−1 |ci+n|
U(n) .

We proceed to show that for large n

|ci+n|/U(n) 6 4, for all i ∈ N0.

For large n we have |ci+n| 6 2U(i + n). Theorem 2.1 applied to f = U ,

A = 2 and any δ ∈ (0, κ) implies the existence of B > 0 such that

U(n+ i)
U(n) 6 2

(
1 + i

n

)−κ+δ
6 2, for n > B.

Hence ∣∣∣∣∣Vα(ci, ci+n)
U(n)

∣∣∣∣∣ 6 4 |ci|α−1
.

Applying the dominated convergence theorem we obtain

ρ(n)
U(n) =

∞∑
i=0

Vα(ci, ci+n)
U(n) →

∞∑
i=0
|ci|α−1

, as n→∞.

Now let us consider the case α > 1 and 1/α < κ < 1/(α− 1) or α 6 1

and κ > 1/α. Let us fix ε = (1 + κ(1 − α))/(2(κ + 2)) and η = ε/2.
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Function U is regularly varying with index −κ, therefore, there exists N

such that

n−κ+η 6 U(n) 6 n−κ+η, n > N.

Suppose n is large enough so that nε > N + 1. We split ρ(n) into three

sums

ρ(n) =
∞∑
i=0

Vα(ci, ci+n) = S1,n + S2,n + S3,n

:=
N−1∑
i=0

Vα(ci, ci+n) +
bnεc−1∑
i=N

Vα(ci, ci+n) +
∞∑

i=bnεc
Vα(ci, ci+n).

Inequality c2
i + c2

i+n > c2
i implies

|Vα(ci, ci+n)| 6 |ci|α−1 |ci+n| ,

hence

|S1,n| 6
N−1∑
i=0
|Vα(ci, ci+n)| 6

N−1∑
i=0
|ci|α−1 |ci+n|

6 max
06j<N

|cj|α−1
N−1∑
i=0
|ci+n| 6 max

06j<N
|cj|α−1

N−1∑
i=0

E(i+ n)−κ+η

6 E max
06j<N

|cj|α−1
Nn−κ+η,

and

|S2,n| 6
bnεc−1∑
i=N

|Vα(ci, ci+n)| 6
bnεc−1∑
i=N

|ci|α−1 |ci+n|

6 En−κ+η
bnεc−1∑
i=N

|ci|α−1 = En−κ+η
bnεc−1∑
i=N

|ci|α |ci|−1

6 En−κ+η
bnεc−1∑
i=N

|ci|α iκ+η 6 En−κ+η
bnεc−1∑
i=N

|ci|α nε(κ+η)

6 En−κ+η+ε(κ+η)
∞∑
i=0
|ci|α 6 En−κ+ε(κ+2)

∞∑
i=0
|ci|α .

We have thus obtained S1,n = O(n−κ+η) and S2,n = O(n−κ+ε(κ+2)),

therefore S1,n + S2,n = O(n−κ+ε(κ+2)). Since ε(κ + 2) < κ + 1 − ακ, we

obtain
n−κ+ε(κ+2)

nUα(n) = n−κ+ε(κ+2)−1+ακh−α(n)→ 0,
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as n→∞, and, consequently,

S1,n + S2,n

nUα(n) → 0. (4.46)

It remains to deal with S3,n. We have

S3,n =
∞∑

i=bnεc
Vα(ci, ci+n) =

∫ ∞
bnεc

Vα(cbvc, cbvc+n)dv

=
∫ ∞
bnεc/n

Vα(cbnvc, cbnvc+n)dnv

= nUα(n)
∫ ∞
bnεc/n

Vα(U−1(n)cbnvc, U−1(n)cbnvc+n)dv.

Let us show that Vα(U−1(n)cbnvc, U−1(n)cbnvc+n) converges point-wise and

is dominated by an integrable function.

For v > 0, due to Lemma 2.4, we have

cbnvc
U(n) =

cbnvc
U(bnvc)

U(bnvc)
U(n) =

cbnvc
U(bnvc)

bnvc−κ

n−κ
h(nbnvcn )
h(n) → v−κ,

and, similarly,
cbnvc+n
U(n) → (1 + v)−κ,

as n→∞. As the function Vα is continuous, we get

Vα

(
cbnvc
U (n) ,

cbnvc+n
U(n)

)
→ Vα(v−κ, (1 + v)−κ).

Using inequality |Vα(x, y)| 6 |x|α−1 |y| we obtain∣∣∣∣∣Vα
(
cbnvc
U(n) ,

cbnvc+n
U(n)

)∣∣∣∣∣ 6
∣∣∣∣∣ cbnvcU(n)

∣∣∣∣∣
α−1 ∣∣∣∣∣cbnvc+nU(n)

∣∣∣∣∣ =
∣∣∣∣∣ cbnvcU(n)

∣∣∣∣∣
α
∣∣∣∣∣∣cbnvc+ncbnvc

∣∣∣∣∣∣ .
Since ci ∼ U(i), there exists N such that for i > N the following inequality

holds
1
2U(i) 6 ci 6 2U(i),

therefore, if bnvc > N ,
∣∣∣∣∣Vα

( bnvc
U(n) ,

cbnvc+n
U(n)

)∣∣∣∣∣
6

∣∣∣∣∣2U (bnvc)
U(n)

∣∣∣∣∣
α
∣∣∣∣∣∣2U (bnvc+ n)

1
2U (bnvc)

∣∣∣∣∣∣ = 2α+2
(
U (bnvc)
U(n)

)α
U (bnvc+ n)
U (bnvc) .
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We apply Theorem 2.1 to f = U , A = 2 and δ = min(κ− 1/α, 1− κ(α −

1))/4 and obtain the existence of B > 0 such that for x, y > B

U(y)
U(x) 6 2 max

((y
x

)−κ+δ
,
(y
x

)−κ−δ)
6 2

(y
x

)−κ ((y
x

)δ
+
(y
x

)−δ)
.

Consequently, if nε > max(N,B) + 1, we have∣∣∣∣∣Vα
( bnvc
U(n) ,

cbnvc+n
U(n)

)∣∣∣∣∣ 1{bnvc>bnεc}
6 2α+2

1{bnvc>bnεc}

2
(bnvc

n

)−κ+δ
+
(bnvc

n

)−κ−δα×
× 2

(bnvc+ n

bnvc

)−κ+δ
+
(bnvc+ n

bnvc

)−κ−δ

6 22α+3
(((v

2

)−κ+δ
+
(v

2

)−κ−δ))α (v + 2
2v

)−κ+δ
+
(
v + 2

2v

)−κ−δ ,
since for bnvc > 2 we have bnvc > nv/2. Let us denote the dominating

function as G(v). Function G is continuous on (0,∞), as v →∞ we have

G(v) = O(v(−κ+δ)α), and, as v ↓ 0, we have G(v) = O(v(−κ−δ)α+κ−δ). We

conclude that G is integrable, since (−κ+δ)α < −1 and (−κ−δ)α+κ−δ >

−1 by the choice of δ.

The dominated convergence theorem implies

S3,n

nUα(n) →
∫ ∞

0
Vα(v−κ, (1 + v)−κ)dv,

as n→∞. Relation ρ(n) = S1,n + S2,n + S3,n and (4.46) yields (4.17).

It remains to consider the case 1 < α ≤ 2, κ = 1/(α − 1). We split

ρ(n) into three parts:

ρ(n) = Vα(c0, cn) + S1,n + S2,n,

where S1,n = ∑n−1
i=1 Vα(ci, ci+n) and S2,n = ∑∞

i=n Vα(ci, ci+n).

We have

|Vα(c0, cn)| 6 |c0|α−1 |cn| = O(n−κ),

therefore
Vα(c0, cn)
n−κ ln(n) → 0,
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as n→∞.

Let us now show that S1,n/(n−κ ln(n))→ 1. We have

S1,n =
n∑
i=1

Vα(ci, ci+n) =
∫ n

1
Vα(cbvc, cbvc+n)dv

=
∫ 1

0
Vα(cbnvc, cbnvc+n)dnv =

∫ 1

0
Vα(cbnvc, cbnvc+n)nv ln(n)dv

= n−κ ln(n)
∫ 1

0
nκVα(cbnvc, cbnvc+n)nvdv.

We continue by investigating the point-wise convergence of nκVα(cbnvc, cbnvc+n)nv

for v ∈ (0, 1). Since ci ∼ i−κ, we have

nκVα(cbnvc, cbnvc+n)nv =
nκcbnvccbnvc+nn

v(
c2
bnvc + c2

bnvc+n
) 2−α

2

∼ nκ bnvc−κ n−κnv(
bnvc−2κ) 2−α

2
= bnvc−κ(α−1)

nv = bnvc−1
nv → 1,

as n→∞.

Let us show that nκVα(cbnvc, cbnvc+n)nv is dominated by an integrable

function on (0, 1). As before,

nκ
∣∣∣Vα(cbnvc, cbnvc+n)

∣∣∣nv 6 nκ+v
∣∣∣cbnvc∣∣∣α−1 ∣∣∣cbnvc+n∣∣∣

6 nκ+vEα bnvc−κ(α−1) (bnvc+ n)−κ 6 nvEα bnvc−κ(α−1)

= Eα nv

bnvc
6 2Eα.

Constant function is integrable on a finite interval, therefore, the domi-

nated convergence theorem implies

S1,n

n−κ ln(n) =
∫ 1

0
nκVα(cbnvc, cbnvc+n)nvdv → 1,

as n→∞.
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We continue by investigating S2,n. We have

|S2,n| 6
∞∑
i=n
|Vα(ci, ci+n)| 6

∞∑
i=n
|ci|α−1 |ci+n|

6 Eα
∞∑
i=n

i−κ(α−1)(i+ n)−κ

= Eα
∫ ∞
n
bvc−1 (bvc+ n)−κdv

6 Eα
∫ ∞
n

(v
2

)−1 (v
2 + n

)−κ
dv

= Eα21+κ
∫ ∞

1
(nv)−1 (nv + 2n)−κdnv

= Eα21+κn−κ
∫ ∞

1
v−1(v + 2)−κdv.

The integral is finite, therefore

S2,n

n−κ ln(n) → 0,

as n→∞.

In conclusion we see that

ρ(n)
n−κ ln(n) = Vα(c0, cn) + S1,n + S2,n

n−κ ln(n) → 1,

as n→∞. The proof is complete.

Proof of Theorem 4.8. Inequality |g(s1, s2)| 6 C |s1s2|α/2 implies that

|ρ(g;X1, X2)| 6 C
∫
E
|s1s2|α/2 Γ(ds) = C

∫ +∞

−∞
|f(−x)f(t−x)|

α
2 dx. (4.47)

We need to show that

r(t) =
∫ +∞

−∞
g(x)g(x− t)dx→ 0, t→∞,

where g(x) = |f(−x)|α/2. Notice that g ∈ L2, since f ∈ Lα. Let us define

an operator Bt : L2 → L2 by Btg(x) = g(x− t). Now r(t) can be written

as

r(t) = 〈g,Btg〉,
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where 〈·, ·〉 denotes the scalar product in L2.

Fix 0 < ε < 1. Let us denote M := max(1, ‖g‖L2). It is well known

that the family of step functions S is dense in L2. Therefore we can find a

step function s ∈ S such that ‖g − s‖L2 6
ε

3M . With the help of Cauchy-

Schwarz inequality it is easy to show that the inequality

0 6 |〈g,Btg〉| 6 ε+ |〈s, Bts〉|

holds. Since s is a step function, there exists K > 0 such that s(x) = 0 for

|x| > K. Thus 〈s, Bts〉 = 0 and 〈g,Btg〉 6 ε provided that t > 2K. This

means that 〈g,Btg〉 → 0 as t→∞. This and inequality (4.47) imply that

ρ(g;X1, X2)→ 0, t→∞. The theorem is proved.

Proof of Theorem 4.10. We must investigate the asymptotic behaviour of

the integral

ρ(t) =
∫ ∞
−∞

Vα(f0(x), ft(x))dx.

Denoting a0 = −∞, a1 = 0, a2 = 1, a3 = t, a4 = t+ 1, a5 =∞, we have

ρ(t) =
5∑
i=1

Ii(t), where Ii(t) =
∫ ai

ai−1
Vα(f0(x), ft(x))dx. (4.48)

Simple change of variables allows to verify that I5(t) = I1(t), I4(t) =

I2(t), therefore it is sufficient to consider I1(t), I2(t), I3(t) only. Using the

change of variables again and denoting

gt(y) := tVα
(
(ln

(
1 + (ty)−1

)
, ln

(
1 + (t(1 + y))−1

))
, y ∈ (0;∞),

we have

I1(t) =
∫ ∞

0
gt(y)dy.

For a fixed y ∈ (0;∞)

t ln
(
1 + (ty)−1

)
→ y−1, t ln

(
1 + (t(1 + y))−1

)
→ (1 + y)−1, t→∞,

therefore one can easily see that for a fixed y ∈ (0;∞)

gt(y)tα−1 → g(y) := (y(1 + y))−1
(
y−2 + (1 + y)−2

)α−2
2 , t→∞.
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Applying the elementary inequality a2 + b2 > 2ab we have

g(y) ≤ g0(y) := 2
α−2

2 (y(1 + y))−α/2,

therefore, taking into account that α ∈ (1; 2), function g is integrable over

interval (0;∞). Moreover, one can easily verify that for all y ∈ (0;∞) and

t ≥ 1

tα−1gt(y) ≤ g0(y),

thus, applying the dominated convergence theorem, we get

lim
t→∞

I1(t)
t1−α

= lim
t→∞

∫ ∞
0

gt(y)
t1−α

dy =
∫ ∞

0
lim
t→∞

gt(y)
t1−α

dy =
∫ ∞

0
g(y)dy. (4.49)

Now we show that the term I2(t) (and I4(t), as well) is of the smaller order

than I1(t). Namely, it is not difficult to get the estimate

|I2(t)| 6
∫ 1

0

∣∣∣∣∣ln 1− x
x

∣∣∣∣∣
α
2
∣∣∣∣∣ln t+ 1− x

t− x

∣∣∣∣∣
α
2

dx 6 z(t),

where z(t) = (t− 1)−α/2 ∫ 1
0
∣∣∣ln(1− x)x−1

∣∣∣α2 dx. Hence,

0 6
I2(t)
t1−α

6 z(t)tα−1 6 C1t
α
2−1 → 0, as t→∞, and I2(t) = o(t1−α).

(4.50)

It remains to investigate the term I3(t) and its investigation is very

similar to that of I1(t), therefore we shall provide only the main steps. As

above, it is possible to write

I3(t) =
∫ 1

0
ht−1(y)dy,

where

ht(y) = −tVα
(
ln
(
1 + (ty)−1

)
, ln

(
1 + (t(1− y))−1

))
.

Then we prove that, for all y ∈ (0; 1), ht(y)t1−α → h(y), as t → ∞,

where h(y) = −Vα(y−1, (1 − y)−1). This limit function is integrable over
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interval (0; 1), and
∣∣∣ht(y)tα−1

∣∣∣ 6 (y(1− y))−α/2 . Therefore, applying the

dominated convergence theorem we get

lim
t→∞

I3(t)
t1−α

= lim
t→∞

(
t− 1
t

)1−α ∫ 1

0

ht−1(y)
(t− 1)1−αdy

=
∫ 1

0
lim
t→∞

ht(y)
t1−α

dy =
∫ 1

0
h(y)dy. (4.51)

Collecting the relations (4.48), (4.49), (4.50), and (4.51), we get the

assertion (4.21) with (4.22). The theorem is proved.

Proof of Theorem 4.12. The proof of this theorem is similar to that one

of the previous theorem, only it is more complicated due to the fact that

the function ft(x) is more complicated. Again, we must investigate the

asymptotic behaviour of the integral

ρ(t) =
∫ ∞
−∞

Vα (f0(x), ft(x)) dx. (4.52)

It follows from (2.18) that

ft(x) =


a ((t+ 1− x)η − (t− x)η) , for x 6 t,

a(t+ 1− x)η − b(x− t)η , for t < x 6 t+ 1,

b ((x− t− 1)η − (x− t)η) , for t+ 1 < x.

Without loss of generality we assume that t ≥ 2. As in the proof of the

previous theorem we shall use the subdivision of the integral in (4.52) into

five integrals, as it is done in (4.48). Using some changes of variables we

can show the following two equalities

I
(a,b)
5 (t) = I

(b,a)
1 (t), I

(a,b)
4 (t) = I

(b,a)
2 (t), (4.53)

therefore it remains to investigate the asymptotic behaviour of I(a,b)
1 (t),

I
(a,b)
2 (t), and I

(a,b)
3 (t). As it was mentioned, this behaviour is different

for different values of possible main parameters α and H. We start with

asymptotic behaviour of the terms I(a,b)
i (t), i = 1, 2, 3 in the region S.

Elementary calculations show that

I
(a,b)
1 (t) = tαH−α |a|α

∫ ∞
0
ht(x)dx,
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where ht(x) := Vα (gt(x), gt(x+ 1)) , gt(x) = t
(
(t−1 + x)η − xη

)
. It is

evident that gt(x)→ ηxη−1, as t→∞, therefore

ht(x) t→∞−−−→ |η|α h(x) := |η|α Vα
(
xη−1, (x+ 1)η−1)

.

Since

h(x) ∼


C3x

(η−1)(α−1) , for x→ 0,

C4x
(η−1)α , for x→∞,

then, in order for h to be integrable over (0,∞), the following conditions

must hold:

(η − 1)(α− 1) > −1, (η − 1)α < −1. (4.54)

It is not difficult to verify that for (α,H) ∈ S both inequalities are valid:

to see that the second one holds it is sufficient to note that (η − 1)α =

(H − 1)α − 1 < −1, while for the first inequality one must separately

consider the cases 0 < α 6 1 and 1 < α < 2.

In order to apply the dominated convergence theorem, we must bound

ht by integrable function. By the mean value theorem one can write

gt(x) = (η) (x+ c)η−1, here c ∈ (0; 1
t ) is intermediate value, therefore,

we have

|η| (x+ 1)η−1 6 |gt(x)| 6 |η|xη−1. (4.55)

Now we can estimate |ht(x)|:

|ht(x)| 6 |gt(x)gt(x+ 1)|
(
g2
t (x)

)(α−2)/2 = |gt(x)|α−1 |gt(x+ 1)| ,

and using (4.55) we get |ht(x)| ≤ h0(x), where

h0(x) ≤


|η|α (x+ 1)(η−1)α , for 0 < α ≤ 1,

|η|α x(η−1)(α−1)(x+ 1)η−1 , for 1 < α < 2,

The function h0 is integrable over over (0,∞) due to inequalities (4.54),

which, as we had seen, are valid in the domain S. Thus, we can apply the

dominated convergence theorem, and we get

I
(a,b)
1 (t)

|a|α tαH−α
=
∫ ∞

0
ht(x)dx t→∞−−−→

∫ ∞
0
h(x)dx.
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Therefore, taking into account (4.53) we get

I
(a,b)
1 (t) ∼ |a|α tαH−α

∫ ∞
0
h(x)dx, t→∞, (4.56)

I
(a,b)
5 (t) ∼ |b|α tαH−α

∫ ∞
0
h(x)dx, t→∞. (4.57)

The next step is to show that

I
(a,b)
j (t) = o(tαH−α), t→∞, j = 2, 4, (4.58)

and this is achieved by estimating the term I
(a,b)
2 (t) as follows

|I(a,b)
2 (t)| 6 (t− 1)η−1 |a| |η|

∫ 1

0
|(a(1− x)η − bxη)|α−1 dx.

Note that for parameters (α,H) ∈ S the integral in the last inequality is

finite (for this it is sufficient to consider the behaviour of the integrand

at the endpoints of the interval (0; 1) in the area S2 and at the point

where a(1 − x)η − bxη = 0 in S1) and η − 1 − αH + α < 0. It remains

to investigate I(a,b)
3 (t), and for the convenience we consider I(a,b)

3 (t + 1).

Simple considerations lead to the equality

I
(a,b)
3 (t+ 1) = −tαH−α

∫ 1

0
kt(x)dx,

where kt(x) := Vα (agt(1− x), bgt(x)) , and the function gt was defined

when considering I(a,b)
1 (t). Now it is easy to see that

kt(x) t→∞−−−→ k(x) := |η|α Vα
(
a(1− x)η−1, bxη−1

)
,

and the function on the left-hand side of the last relation is integrable (this

can be verified as above). A little bit more complicated is majorizing of

kt(x) by integrable function. We choose different majorizing functions for

x ∈ (0, 1/2) and for x ∈ (1/2, 1). Namely, for x ∈ (0, 1/2) we use the

estimate

|kt(x)| 6 |agt(1− x)bgt(x)|
(
b2g2

t (x)
)(α−2)/2

= |a| |b|α−1 |gt(1− x)| |gt(x)|α−1
.
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For 1 < α < 2 we use the estimate

|a| |b|α−1 |gt(1− x)| |gt(x)|α−1 6 |a| |b|α−1 |η|α (1− x)η−1x(η−1)(α−1),

while for 0 < α 6 1 we estimate

|a| |b|α−1 |gt(1− x)| |gt(x)|α−1 6 |a| |b|α−1 |η|α (1− x)η−1(1 + x)(η−1)(α−1).

Again, taking into account (4.54) we can verify that both majorizing func-

tions are integrable over (0, 1/2). For x ∈ (1/2, 1) we use the estimate

|kt(x)| 6 |agt(1− x)bgt(x)|(
a2g2

t (1− x)
) 2−α

2
= |b| |a|α−1 |gt(1− x)|α−1 |gt(x)| ,

and then in a similar manner we construct the majorizing function, which

we do not provide here. Finally, applying the dominated convergence

theorem, we get

I
(a,b)
3 (t+ 1) ∼ − |η|α

(
tαH−α

) ∫ 1

0
k(x)dx. (4.59)

Collecting relations (4.56)-(4.59) we get (4.23) and the constant C1 has

the following expression

C1(a, b, α,H) = |η|
(

(|a|α + |b|α)
∫ ∞

0
h(x)dx−

∫ ∞
0
k(x)dx

)
. (4.60)

Now it remains to investigate the asymptotic behaviour of ρ(t) in the

region U , and since the scheme of investigation is the same, we provide

only the main steps. We use the same division of the integral (4.48) and

again it is sufficient to investigate three terms I(a,b)
j , j = 1, 2, 3. The first

term we can express as follows:

I
(a,b)
1 (t) = |a|α

∫ ∞
0
ut(x)dx,

where ut(x) = Vα
(
v(x), tη−1g1,t(x)

)
, v(x) = (1 + x)η − xη, g1,t(x) =

t
(
(1 + 1+x

t )η − (1 + x
t )
η
)
. It is easy to see that g1,t(x) t→∞−−−→ η, therefore

ut(x)t1−η t→∞−−−→ u(x),
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where u(x) = −η(−v(x))α−1 = −η (xη − (1 + x)η)α−1
. It is not difficult to

make sure that for (α,H) ∈ U the function u is integrable over (0,∞). It

remains to show that the family of functions
{
ut(·)t1−η, t > 2

}
is bounded

by integrable function. To this aim we use the inequality |η−1ut(x)| ≤

|v(x)|α−1|g1,t(x)| and, noting that |g1,t(x)| ≤ |η|, we get

|η−1ut(x)| ≤ |η||v(x)|α−1.

We got integrable majorizing function, therefore, applying the dominated

convergence theorem, we get

I
(a,b)
1 (t) ∼ tη−1 |a|α

( 1
α
−H

) ∫ ∞
0

(xη − (1 + x)η)α−1 dx, (4.61)

I
(a,b)
5 (t) ∼ tη−1 |b|α

( 1
α
−H

) ∫ ∞
0

(xη − (1 + x)η)α−1 dx. (4.62)

In contrast to the region S, in U the term I
(a,b)
2 (t) has impact to the

asymptotic behaviour of ρ(t). We can write

I
(a,b)
2 (t) =

∫ 1

0
zt(x)dx,

where zt(x) = Vα (v(x, a, b), ag2,t(x)) , v(x, a, b) = a(1−x)η−bxη, g2,t(x) =

(t+ 1− x)η − (t− x)η. Then we perform the same steps as above: first we

note that

zt(x)t1−η t→∞−−−→ ηa (a(1− x)η − bxη)<α−1>
,

and the limit function is integrable over (0, 1). This follows from the fact

that, due to α−1 > 0, the only points where function |a(1− x)η − bxη|α−1

is unbounded are the endpoints of the interval, and the integrability of

this function follows from the inequality η(α − 1) > −1, which holds in

the region U . Taking into account that for x ∈ (0, 1), t > 2∣∣∣∣∣g2,t(x)
tη−1

∣∣∣∣∣ = |η|
t−1

∫ 1
t

0

(
1− x

t
+ y

)η−1
dy 6 |η|

(1
2

)η−1
,

we get the majorant
∣∣∣zt(x)t1−η

∣∣∣ 6 21−η |a| |η| |a(1− x)η − bxη|α−1
.
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Again, applying the dominated convergence theorem, we get

I
(a,b)
2 (t) ∼ tη−1ηa

∫ 1

0
(a(1− x)η − bxη)<α−1> dx, (4.63)

I
(a,b)
4 (t) ∼ tη−1ηb

∫ 1

0
(b(1− x)η − axη)<α−1> dx. (4.64)

It remains to investigate the third term, and as above, we shall consider

I
(a,b)
3 (t+ 1), which can be written as

I
(a,b)
3 (t+ 1) =

∫ t+1

1
Vα (ag2,t+1(x), bv1(x)) dx,

where v1(x) = (x− 1)η − xη.

Now it is convenient to divide interval (1, t + 1) into two intervals

(1, (t+ 2)/2), ((t+ 2)/2, t+ 1). Then the above written integral we divide

into two integrals, and we get

I
(a,b)
3 (t+ 1) = I

(a,b)
3,1 (t+ 1) + I

(a,b)
3,2 (t+ 1). (4.65)

Simple change of variables x = t+ 2− y shows that

I
(a,b)
3,2 (t+ 1) = I

(b,a)
3,1 (t+ 1), (4.66)

therefore it is sufficient to consider only I(a,b)
3,1 (t+ 1). Denoting

wt(x) =
g2,t+1(x)v1(x)1(1; t+2

2 )(x)(
a2g2

2,t+1(x) + b2v2
1(x)

) 2−α
2
,

we can write

I
(a,b)
3,1 (t+ 1) = −ab

∫ ∞
1
wt(x)dx. (4.67)

The investigation of the last integral goes along the same lines as for

previous integrals: we have

wt(x)t1−η t→∞−−−→ |b|α−2 (−η) ((x− 1)η − xη)α−1
,

and we construct the integrable majorizing function. Denoting g3(y) :=

g3,t,x(y) = (1 + (1− x)/t+ y)η we have
∣∣∣wt(x)t1−η

∣∣∣ 6 |b|α−2
t(g3(0)− g3(1/t))vα−1

1 (x).
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Estimating for x ∈ (1; t+2
2 ) (we recall that outside of this interval function

wt vanishes)

|g3(0)− g3(1/t)| =
∣∣∣∣∣
∫ 1/t

0
g′3(y)dy

∣∣∣∣∣ 6 |η|t−1
(

1 + 1− x
t

)η−1
6 21−η|η|t−1,

we get the integrable majorizing function:

∣∣∣wt(x)t1−η
∣∣∣ 6 |b|α−2 |η|21−η ((x− 1)η − xη)α−1

.

Once more applying the dominated convergence theorem and taking into

account (4.65)-(4.67), we get

I
(a,b)
3 (t+ 1)

∼
(
ab<α−1> + ba<α−1>

)
ηtη−1

∫ ∞
1

((x− 1)η − xη)α−1 dx. (4.68)

Collecting relations (4.61)-(4.64) and (4.68) we get (4.24) with

C2(a, b, α,H) = −η
4∑
i=1

diJi, (4.69)

where d1 = |a|α + |b|α, d2 = −a, d3 = −b, d4 = −ab<α−1> − ba<α−1>,

J1 =
∫ ∞

0
(xη − (1 + x)η)α−1 dx, J2 =

∫ 1

0
(a(1− x)η − bxη)<α−1> dx,

J3 =
∫ 1

0
(b(1− x)η − axη)<α−1> dx, J4 =

∫ ∞
1

(
(x− 1)H−

1
α − xH−

1
α

)α−1
dx.

The theorem is proved.

Proof of Theorem 4.15. We will not provide all of the proofs as this would

make the thesis very long. Here we will investigate the following sets of

parameters:

1. 1 < α 6 2, βi > 1
α−1 , i = 1, 2;

2. 1 < α 6 2, 1
α < βi <

1
α−1 , i = 1, 2;

3. 1 < α 6 2, β1 >
1

α−1 ,
1
α < β2 <

1
α−1 ;

4. 1 < α 6 2, β1 = 1
α−1 , β2 = 1

α−1 ;
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We feel that the provided proofs illustrate the ideas used, the other sets

of parameters are dealt with in a similar way.

For convenience of writing let us assume that w(i,j) 6= 0 for all i, j >

0. It then follows from assumptions (A1)-(A3) that there exist constants

d, e > 0 such that

d <
∣∣∣w(i,j)

∣∣∣ < e, i, j > 0.

We need to investigate the asymptotic behaviour of

ρ(n,m) =
∞∑
i=0

∞∑
j=0

Vα(ci,j, ci+n,j+m) (4.70)

as min(n,m)→∞.

We begin with the case 1 < α 6 2, βi > 1
α−1 , i = 1, 2. We have

∞∑
i=0

∞∑
j=0
|ci,j|α−1 =

∞∑
i=0

∞∑
j=0
|w(i,j)(1 + i)−β1(1 + j)−β2|α−1

6 eα−1
∞∑
i=0

(1 + i)−β1(α−1)
∞∑
j=0

(1 + j)−β2(α−1) <∞.

Let us show that
ρ(n,m)
n−β1m−β2

→
∞∑
i=0

∞∑
j=0

c<α−1>
i,j , (4.71)

as n,m→∞.

We have

ci+n,j+m
n−β1m−β2

=
w(i+n,j+m)(1 + i+ n)−β1(1 + j +m)−β2

n−β1m−β2
→ 1,

as n,m→∞, therefore

Vα(ci,j, ci+n,j+m)
n−β1m−β2

=
ci,j

ci+n,j+m
n−β1m−β2(

c2
i,j + c2

i+n,j+m
) 2−α

2
→ c<α−1>

i,j .

Using the inequality |Vα(x, y)| 6 |x|α−1 |y| we obtain

|Vα(ci,j, ci+n,j+m)|
n−β1m−β2

6 |ci,j|α−1 |ci+n,j+m|
n−β1m−β2

< |ci,j|α−1 e(1 + i+ n)−β1(1 + j +m)−β2

n−β1m−β2
< e |ci,j|α−1

.
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Since ∑∞i=0
∑∞
j=0 |ci,j|α−1 <∞, the dominated convergence theorem ap-

plies yielding (4.71).

We continue with the case 1 < α 6 2, 1
α < βi <

1
α−1 , i = 1, 2. We will

show that

ρ(n,m)
n1−αβ1m1−αβ2

→
∫ ∞

0

∫ ∞
0

t−β1(t+ 1)−β1s−β2(s+ 1)−β2

(t−2β1s−2β2 + (t+ 1)−2β1(s+ 1)−2β2)
2−α

2
dtds. (4.72)

We have

ρ(n,m) =
∞∑
i=0

∞∑
j=0

Vα(ci,j, ci+n,j+m)

=
∫ ∞

0

∫ ∞
0
Vα(cbtc,bsc, cbtc+n,bsc+m)dtds

=
∫ ∞

0

∫ ∞
0
Vα(cbntc,bmsc, cbntc+n,bmsc+m)dntdms

= n1−αβ1m1−αβ2
∫ ∞

0

∫ ∞
0
Vα(nβ1mβ2cbntc,bmsc, n

β1mβ2cbntc+n,bmsc+m)dtds.

For fixed values of t, s > 0 we have

nβ1mβ2cbntc,bmsc =
w(bntc,bmsc)(1 + bntc)−β1(1 + bmsc)−β2

n−β1m−β2
→ t−β1s−β2,

as n,m→∞. Similarly

nβ1mβ2cbntc+n,bmsc+m → (t+ 1)−β1(s+ 1)−β2.

As the function Vα is continuous, we obtain

Vα(nβ1mβ2cbntc,bmsc, n
β1mβ2cbntc+n,bmsc+m)

→ Vα(t−β1s−β2, (t+ 1)−β1(s+ 1)−β2),

as n,m→∞.

We see that

nβ1mβ2
∣∣∣cbntc,bmsc∣∣∣ =

∣∣∣w(bntc,bmsc)
∣∣∣ (1 + bntc)−β1(1 + bmsc)−β2

n−β1m−β2
< et−β1s−β2,

and, similarly,

nβ1mβ2
∣∣∣cbntc+n,bmsc+m∣∣∣ < e(t+ 1)−β1(s+ 1)−β2,
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thus

∣∣∣Vα(nβ1mβ2cbntc,bmsc, n
β1mβ2cbntc+n,bmsc+m)

∣∣∣
6
∣∣∣nβ1mβ2cbntc,bmsc

∣∣∣α−1 ∣∣∣nβ1mβ2cbntc+n,bmsc+m)
∣∣∣

< eαt−β1(α−1)s−β2(α−1)(t+ 1)−β1(s+ 1)−β2.

Since
∫ ∞

0

∫ ∞
0
eαt−β1(α−1)s−β2(α−1)(t+ 1)−β1(s+ 1)−β2dtds

= eα
∫ ∞

0
t−β1(α−1)(t+ 1)−β1dt

∫ ∞
0
s−β2(α−1)(s+ 1)−β2ds <∞,

the dominated convergence theorem yields (4.72).

Next we investigate the case 1 < α 6 2, β1 >
1

α−1 ,
1
α < β2 <

1
α−1 . We

have

ρ(n,m) =
∞∑
i=0

∞∑
j=0

Vα(ci,j, ci+n,j+m)

=
∞∑
i=0

∫ ∞
0
Vα(ci,bsc, ci+n,bsc+m)ds

=
∞∑
i=0

∫ ∞
0
Vα(ci,bmsc, ci+n,bmsc+m)dms

= n−β1m1−αβ2
∞∑
i=0

∫ ∞
0
nβ1Vα(mβ2ci,bmsc,m

β2ci+n,bmsc+m)ds.

The function under the integral equals

nβ1Vα(mβ2ci,bmsc,m
β2ci+n,bmsc+m)

=
mβ2ci,bmscn

β1mβ2ci+n,bmsc+m(
m2β2c2

i,bmsc +m2β2c2
i+n,bmsc+m

) 2−α
2
. (4.73)

Recall that

mβ2ci,bmsc = mβ2w(i,bmsc)(1 + i)−β1(1 + bmsc)−β2 (4.74)

and

nβ1mβ2ci+n,bmsc+m

= nβ1mβ2w(i+n,bmsc+m)(1 + i+ n)−β1(1 + bmsc+m)−β2 (4.75)
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therefore, for fixed values of i ∈ N0 and s > 0

mβ2ci,bmsc → w(i,∞)(1 + i)−β1s−β2,

nβ1mβ2ci+n,bmsc+m → (s+ 1)−β2.

Consequently, mβ2ci+n,bmsc+m → 0, and from (4.73) we obtain

nβ1Vα(mβ2ci,bmsc,m
β2ci+n,bmsc+m)

→
w(i,∞)(1 + i)−β1s−β2(s+ 1)−β2(

w(i,∞)(1 + i)−β1s−β2
)2−α

= wα−1
(i,∞)(1 + i)−β1(α−1)s−β2(α−1)(s+ 1)−β2.

Let us show that nβ1
∣∣∣Vα(mβ2ci,bmsc,m

β2ci+n,bmsc+m)
∣∣∣ is dominated by a

good function. From (4.74) and (4.75) we see that

mβ2
∣∣∣ci,bmsc∣∣∣ 6 e(1 + i)−β1s−β2

and

nβ1mβ2
∣∣∣ci+n,bmsc+m∣∣∣ 6 e(s+ 1)−β2.

We can now estimate

nβ1
∣∣∣Vα(mβ2ci,bmsc,m

β2ci+n,bmsc+m)
∣∣∣

6 nβ1
(
mβ2

∣∣∣ci,bmsc∣∣∣)α−1
mβ2

∣∣∣ci+n,bmsc+m∣∣∣
6 eα(1 + i)−β1(α−1)s−β2(α−1)(1 + s)−β2,

and, since

∞∑
i=0

∫ ∞
0

(1 + i)−β1(α−1)s−β2(α−1)(1 + s)−β2ds

=
∞∑
i=0

(1 + i)−β1(α−1)
∫ ∞

0
s−β2(α−1)(1 + s)−β2ds <∞,

the dominated convergence theorem implies

ρ(n,m)
n−β1m1−β2α

→
∞∑
i=0

wα−1
(i,∞)(1 + i)−β1(α−1)

∞∫
0
s−β2(α−1)(1 + s)−β2ds,
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as n,m→∞.

In the case 1 < α 6 2, β1 = 1
α−1 , β2 = 1

α−1 we split ρ(n,m) as follows:

ρ(n,m) =
4∑

k=0
Sk,n,m,

where

S0,n,m =
∑

i=0 or j=0
Vα(ci,j, ci+n,j+m),

S1,n,m =
n−1∑
i=1

m−1∑
j=1

Vα(ci,j, ci+n,j+m),

S2,n,m =
n−1∑
i=1

∞∑
j=m

Vα(ci,j, ci+n,j+m),

S3,n,m =
∞∑
i=n

∞∑
j=m

Vα(ci,j, ci+n,j+m),

S4,n,m =
∞∑
i=n

m−1∑
j=1

Vα(ci,j, ci+n,j+m).

Let us begin with S1,n,m. We have

S1,n,m =
n−1∑
i=1

m−1∑
j=1

Vα(ci,j, ci+n,j+m)

=
∫ n

1

∫ m

1
Vα(cbtc,bsc, cbtc+n,bsc+m)dsdt

=
∫ 1

0

∫ 1

0
Vα(cbntc,bmsc, cbntc+n,bmsc+m)dmsdnt

= ln(n) ln(m)
∫ 1

0

∫ 1

0
Vα(cbntc,bmsc, cbntc+n,bmsc+m)msntdsdt

= ln(n) ln(m)n−β1m−β2×

×
∫ 1

0

∫ 1

0
nβ1mβ2Vα(cbntc,bmsc, cbntc+n,bmsc+m)msntdsdt.

Let us now investigate the point-wise convergence of the function under

the integral. We have

nβ1mβ2Vα(cbntc,bmsc, cbntc+n,bmsc+m)msnt

=
msntcbntc,bmscn

β1mβ2cbntc+n,bmsc+m(
c2
bntc,bmsc + c2

bntc+n,bmsc+m
) 2−α

2
. (4.76)
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Since ck,l ∼ k−β1l−β2, bntc ∼ nt, bmsc ∼ ms, and for t, s ∈ (0, 1) also

bntc+ n ∼ n and bmsc+m ∼ m, we obtain

nβ1mβ2Vα(cbntc,bmsc, cbntc+n,bmsc+m)msnt

∼ msntn−β1tm−β2snβ1mβ2n−β1m−β2

(n−2β1tm−2β2s)
2−α

2

= msntn−β1(α−1)tm−β2(α−1)s = msntn−tm−s = 1.

Let us show that absolute value of (4.76) is bounded by an integrable

function. We have

nβ1mβ2
∣∣∣Vα(cbntc,bmsc, cbntc+n,bmsc+m)

∣∣∣msnt

6 nβ1mβ2
∣∣∣cbntc,bmsc

∣∣∣α−1 ∣∣∣cbntc+n,bmsc+m)
∣∣∣msnt

< eαnβ1mβ2msnt(1 +
⌊
nt
⌋
)−β1(α−1)(1 + bmsc)−β2(α−1)×

× (1 +
⌊
nt
⌋

+ n)−β1(1 + bmsc+m)−β2

6 eαnβ1mβ2msntn−tm−sn−β1m−β2 = eα.

A constant function is integrable on (0, 1)2, thus, the dominated conver-

gence theorem applies yielding

ρ(n,m)
n−β1m−β2 ln(n) ln(m) →

∫ 1

0

∫ 1

0
1dsdt = 1.

Let us now examine the quantities

Z1(n, β) =
n−1∑
i=0

(1 + i)−1(1 + i+ n)−β,

Z2(n, β) =
∞∑
i=n

(1 + i)−1(1 + i+ n)−β.

We have

Z1(n, β) 6
n−1∑
i=0

(1 + i)−1n−β = n−β
1 +

n−1∑
i=1

(1 + i)−1


= n−β
(

1 +
∫ n

1
(1 + bvc)−1dv

)
6 n−β

(
1 +

∫ n

1
v−1dv

)
= n−β (1 + ln(n)) ,
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Z2(n, β) 6
∞∑
i=n

(1 + i)−1−β =
∫ ∞
n

(1 + bvc)−1−βdv

6
∫ ∞
n
v−1−βdv = n−β

β
,

therefore Z1(n, β) = O(n−β ln(n)) and Z2(n, β) = O(n−β). We will employ

these results to deal with Si,n,m, i = 0, 2, 3, 4. We will apply inequality

|Vα(ci,j, ci+n,j+m)| 6 |ci,j|α−1 |ci+n,j+m|

6 eα(1 + i)−1(1 + j)−1(1 + i+ n)−β1(1 + j +m)−β2

Let us begin with S0,n,m:

|S0,n,m| 6
∞∑
i=0
|Vα(ci,0, ci+n,m)|+

∞∑
j=0
|Vα(c0,j, cn,j+m)|

6 eα
∞∑
i=0

(1 + i)−1(1 + i+ n)−β1(1 +m)−β2+

+ eα
∞∑
j=0

(1 + j)−1(1 + n)−β1(1 + j +m)−β2

6 eαm−β2(Z1(n, β1) + Z2(n, β1)) + eαn−β1(Z1(m,β2) + Z2(m,β2)),

hence
S0,n,m

n−β1m−β2 ln(n) ln(m) → 0.

We continue with S2,n,m:

|S2,n,m| 6 eα
n−1∑
i=1

∞∑
j=m

(1 + i)−1(1 + j)−1(1 + i+ n)−β1(1 + j +m)−β2

6 eα
n−1∑
i=0

(1 + i)−1(1 + i+ n)−β1
∞∑
j=m

(1 + j)−1(1 + j +m)−β2

= eαZ1(n, β1)Z2(m,β2),

therefore
S2,n,m

n−β1m−β2 ln(n) ln(m) → 0.
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Similarly we show that
S3,n,m + S4,n,m

n−β1m−β2 ln(n) ln(m) → 0.

Consequently
ρ(n,m)

n−β1m−β2 ln(n) ln(m) → 1,

as n,m→∞.

This finishes our proof.

Proof of Theorem 4.16. For convenience of writing we assume that w(i,j) 6=

0 for all i, j > 0. It then follows from assumptions (A1)-(A3) that there

exist constants d, e > 0 such that

d <
∣∣∣w(i,j)

∣∣∣ < e, i, j > 0.

We need to investigate the asymptotic behaviour of

ρ(n,−m) =
∞∑
i=0

∞∑
j=0

Vα(ci+n,j, ci,j+m)

as min(n,m)→∞.

Similarly to the proof of Theorem 4.15, we consider only part of the

sets of parameters, since the other cases are investigated in a similar way.

Here we will provide the proofs for the following cases:

1. 1 < α ≤ 2, 1
α < βi <

1
α−1 , i = 1, 2 and 1

β1
+ 1

β2
> α;

2. 1 < α ≤ 2, 1
α−1 < β1 and 1

α < β2 < 1;

3. 1 < α < 2, β1 = 1
α−1 and 1 < β2 <

1
α−1 ;

We begin with the first case. The spectral covariance equals

ρ(n,−m) =
∞∑
i=0

∞∑
j=0

Vα(ci+n,j, ci,j+m)

=
∫ ∞

0

∫ ∞
0
Vα(cbtc+n,bsc, cbtc,bsc+m)dsdt

=
∫ ∞

0

∫ ∞
0
Vα(cbntc+n,bmsc, cbntc,bmsc+m)dmsdnt

= n1−αβ1m1−αβ2
∫ ∞

0

∫ ∞
0
Vα(nβ1mβ2cbntc+n,bmsc, n

β1mβ2cbntc,bmsc+m)dsdt.
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Suppose t, s > 0, we have

nβ1mβ2cbntc+n,bmsc

= nβ1mβ2w(bntc+n,bmsc)(1 + bntc+ n)−β1(1 + bmsc)−β2

→ (1 + t)−β1s−β2,

similarly

nβ1mβ2cbntc,bmsc+m → t−β1(1 + s)−β2.

Due to the continuity of the function Vα we obtain

Vα(nβ1mβ2cbntc+n,bmsc, n
β1mβ2cbntc,bmsc+m)

→ Vα((1 + t)−β1s−β2, (1 + t)−β1s−β2),

as n,m→∞.

Let us show that on (0,∞)2 the function

∣∣∣Vα(nβ1mβ2cbntc+n,bmsc, n
β1mβ2cbntc,bmsc+m)

∣∣∣ (4.77)

is bounded above by an integrable function.

If t > 0, s > 1 we have

∣∣∣Vα(nβ1mβ2cbntc+n,bmsc, n
β1mβ2cbntc,bmsc+m)

∣∣∣
6
∣∣∣nβ1mβ2cbntc+n,bmsc

∣∣∣ ∣∣∣nβ1mβ2cbntc,bmsc+m
∣∣∣α−1

6 eα
(1 + bntc+ n

n

)−β1 (1 + bmsc
m

)−β2

×

×
(1 + bntc

n

)−β1(α−1) (1 + bmsc+m

m

)−β2(α−1)

6 eα(t+ 1)−β1s−β2t−β1(α−1)(1 + s)−β2(α−1),

and

∫ ∞
0

∫ ∞
1

(t+ 1)−β1s−β2t−β1(α−1)(1 + s)−β2(α−1)dsdt

=
∫ ∞

0
t−β1(α−1)(t+ 1)−β1dt

∫ ∞
1
s−β2(1 + s)−β2(α−1)ds <∞.
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If t > 1, 0 < s < we can bound

∣∣∣Vα(nβ1mβ2cbntc+n,bmsc, n
β1mβ2cbntc,bmsc+m)

∣∣∣
6
∣∣∣nβ1mβ2cbntc+n,bmsc

∣∣∣α−1 ∣∣∣nβ1mβ2cbntc,bmsc+m
∣∣∣

6 eα(t+ 1)−β1(α−1)s−β2(α−1)t−β1(1 + s)−β2,

and the dominating function is integrable:

∫ ∞
0

∫ ∞
1

(t+ 1)−β1s−β2t−β1(α−1)(1 + s)−β2(α−1)dsdt

=
∫ ∞

1
t−β1(t+ 1)−β1(α−1)dt

∫ 1

0
s−β2(α−1)(1 + s)−β2ds <∞.

It remains to bound (4.77) on (0, 1)2. We notice that

∣∣∣nβ1mβ2cbntc+n,bmsc
∣∣∣ 6 e(1 + t)−β1s−β2 6 es−β2,

∣∣∣nβ1mβ2cbntc,bmsc+m
∣∣∣ 6 et−β1(1 + s)−β2 6 et−β1.

Due to Lemma 4.6 we obtain

∣∣∣Vα(nβ1mβ2cbntc+n,bmsc, n
β1mβ2cbntc,bmsc+m)

∣∣∣
= Vα(

∣∣∣nβ1mβ2cbntc+n,bmsc
∣∣∣ , ∣∣∣nβ1mβ2cbntc,bmsc+m

∣∣∣)
6 Vα(es−β2, et−β1),

and proceed to show that

I :=
∫ 1

0

∫ 1

0
Vα(s−β2, t−β1)dsdt <∞. (4.78)

We split I into two integrals: I = I1 + I2, where

I1 =
∫ 1

0

∫ tβ1/β2

0
Vα(s−β2, t−β1)dsdt,

I2 =
∫ 1

0

∫ 1

tβ1/β2
Vα(s−β2, t−β1)dsdt,

and proceed to show that both integrals are finite.
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Since −β2(α− 1) > −1, we have

∫ tβ1/β2

0
Vα(s−β2, t−β1)ds

6
∫ tβ1/β2

0
s−β2(α−1)t−β1ds = t−β1

∫ tβ1/β2

0
s−β2(α−1)ds

= t−β1
(tβ1/β2)1−β2(α−1)

1− β2(α− 1) = t−β1+β1/β2−β1(α−1)

1− β2(α− 1)

= tβ1/β2−β1α

1− β2(α− 1) ,

therefore, since β1/β2 − β1α > −1, we obtain

I1 6
∫ 1

0

tβ1/β2−β1α

1− β2(α− 1)dt <∞.

We continue with I2. Now

∫ 1

tβ1/β2
Vα(s−β2, t−β1)ds

6
∫ 1

tβ1/β2
s−β2t−β1(α−1)ds

= t−β1(α−1)
∫ 1

tβ1/β2
s−β2ds

= t−β1(α−1) 1− tβ1(1−β2)/β2

1− β2
,

therefore,

∫ 1

tβ1/β2
Vα(s−β2, t−β1)ds = O(t−β1 max(α−1,α−1/β2))

as t→ 0 and ∫ 1

tβ1/β2
Vα(s−β2, t−β1)ds→ 0

as t→ 1. Condition β1 max(α−1, α−1/β2) < 1 is satisfied, hence I2 <∞

and (4.78) holds.

The dominated convergence theorem applies yielding

ρ(n,−m)
n1−αβ1m1−αβ2

→
∫ ∞

0

∫ ∞
0
Vα((1 + t)−β1s−β2, (1 + t)−β1s−β2)dsdt.
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We continue by investigating the case 1 < α ≤ 2, 1
α−1 < β1 and

1
α < β2 < 1. We express the spectral covariance as

ρ(n,−m) =
∞∑
i=0

∞∑
j=0

Vα(ci+n,j, ci,j+m)

=
∞∑
i=0

∫ ∞
0
Vα(ci+n,bsc, ci,bsc+m)ds

=
∞∑
i=0

∫ ∞
0
Vα(ci+n,bmsc, ci,bmsc+m)dms

= n−β1m1−β2α
∞∑
i=0

∫ ∞
0
nβ1Vα(mβ2ci+n,bmsc,m

β2ci,bmsc+m)ds.

Since

nβ1mβ2ci+n,bmsc → s−β2

and

mβ2ci,bmsc+m → w(i,∞)(1 + i)−β1(1 + s)−β2,

we obtain

nβ1Vα(mβ2ci+n,bmsc,m
β2ci,bmsc+m)

=
nβ1mβ2ci+n,bmscm

β2ci,bmsc+m(
m2β2c2

i+n,bmsc +m2β2c2
i,bmsc+m

) 2−α
2

→ wα−1
(i,∞)(1 + i)−β1(α−1)s−β2(1 + s)−β2(α−1),

as n,m→∞.

Let us now find an upper bound for nβ1
∣∣∣Vα(mβ2ci+n,bmsc,m

β2ci,bmsc+m)
∣∣∣.

We have

nβ1
∣∣∣Vα(mβ2ci+n,bmsc,m

β2ci,bmsc+m)
∣∣∣

6 nβ1
∣∣∣mβ2ci+n,bmsc

∣∣∣ ∣∣∣mβ2ci,bmsc+m
∣∣∣α−1

< eα(1 + i)−β1(α−1)s−β2(1 + s)−β2(α−1).

Since
∞∑
i=0

∫ ∞
0

(1 + i)−β1(α−1)s−β2(1 + s)−β2(α−1)ds

=
∞∑
i=0

(1 + i)−β1(α−1)
∫ ∞

0
s−β2(1 + s)−β2(α−1)ds <∞,
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we can apply the dominated convergence theorem to obtain

ρ(n,−m)
n−β1m1−β2α

→
∞∑
i=0

∫ ∞
0
wα−1

(i,∞)(1 + i)−β1(α−1)s−β2(1 + s)−β2(α−1)ds.

Let us now investigate the case 1 < α < 2, β1 = 1
α−1 and 1 < β2 <

1
α−1 .

We begin by assuming that hn = m−β2
n /n−β1 → c ∈ (0;∞). In what

follows, in order not to overload the notation, instead of mn we write m.

The spectral covariance equals

ρ(n,−m) =
∞∑
i=0

∞∑
j=0

Vα(ci+n,j, ci,j+m)

= m−β2α
∞∑
i=0

∞∑
j=0

Vα(h−1
n nβ1ci+n,j,m

β2ci,j+m).

Since

h−1
n nβ1ci+n,j → c−1w(∞,j)(1 + j)−β2

and

mβ2ci,j+m → w(i,∞)(1 + i)−β1,

continuity of Vα implies

Vα(mβ2n−β1nβ1ci+n,j,m
β2ci,j+m)

→ Vα(c−1w(∞,j)(1 + j)−β2, w(i,∞)(1 + i)−β1),

as n→∞.

We have

nβ1 |ci+n,j| 6 e

(1 + i+ n

n

)−β1

(1 + j)−β2 6 e(1 + j)−β2

and, similarly,

mβ2ci,j+m 6 e(1 + i)−β1.

Since h−1
n → c−1 > 0, for large n we have

h−1
n < 2c−1,
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therefore, by Lemma 4.6,

∣∣∣Vα(h−1
n nβ1ci+n,j,m

β2ci,j+m)
∣∣∣

6 Vα(e2c−1(1 + j)−β2, e(1 + i)−β1)

6 EαVα((1 + j)−β2, (1 + i)−β1),

where E = emax(1, 2c−1). In order to apply the dominated convergence

theorem we need to show that

∞∑
i=0

∞∑
j=0

Vα((1 + j)−β2, (1 + i)−β1) <∞. (4.79)

Using Lemma 4.6, we obtain

∞∑
i=0

∞∑
j=0

Vα((1 + j)−β2, (1 + i)−β1)

=
∫ ∞

0

∫ ∞
0
Vα((1 + bsc)−β2, (1 + btc)−β1)dsdt

=
∫ ∞

1

∫ ∞
1
Vα(bsc−β2 , btc−β1)dsdt

6
∫ ∞

1

∫ ∞
1
Vα(2s−β2, 2t−β1)dsdt,

since bxc > x/2 for x > 1. Let us show that

I :=
∫ ∞

1

∫ ∞
1
Vα(s−β2, t−β1)dsdt <∞.

We split this integral into two

I = I1 + I2,

where

I1 =
∫ ∞

1

∫ tβ1/β2

1
Vα(s−β2, t−β1)dsdt,

I2 =
∫ ∞

1

∫ ∞
tβ1/β2

Vα(s−β2, t−β1)dsdt,

and examine them separately.
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We shall show that I1 is finite. We have
∫ tβ1/β2

1
Vα(s−β2, t−β1)ds

6
∫ tβ1/β2

1
s−β2(α−1)t−β1ds

= t−β1
∫ tβ1/β2

1
s−β2(α−1)ds

= t−β1
tβ1/β2(1−β2(α−1)) − 1

1− β2(α− 1)

6 t−β1
tβ1/β2(1−β2(α−1))

1− β2(α− 1)

= tβ1/β2−β1α

1− β2(α− 1) .

Since β1/β2−β1α < −1, the integral I1 is finite. We continue by examining

I2. Since β2 > 1 we have
∫ ∞
tβ1/β2

Vα(s−β2, t−β1)ds

6
∫ ∞
tβ1/β2

s−β2t−β1(α−1)ds

= t−β1(α−1)
∫ ∞
tβ1/β2

s−β2ds

= t−β1(α−1) t
β1/β2(1−β2)

β2 − 1 = tβ1/β2−β1α

β2 − 1 .

In the case under investigation we have β1/β2 − β1α < −1, therefore

I2 <∞. Consequently I <∞ and (4.79) holds.

The dominated convergence theorem implies

ρ(n,m)
m−β2α

→
∞∑
i=0

∞∑
j=0

Vα(c−1w(∞,j)(1 + j)−β2, w(i,∞)(1 + i)−β1),

as n→∞.

Let us now assume that m = mn is a sequence such that

hn = m−β2/n−β1 → 0,

and introduce notation gn = mn−β1/β2. In order not to overload the no-

tation in what follows instead of gn we simply write g. Since hn → 0, we

have g →∞, as n→∞.
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The spectral covariance equals

ρ(n,−m) =
∞∑
i=0

∞∑
j=0

Vα(ci+n,j, ci,j+m)

=
∞∑
i=0

∫ ∞
0
Vα(ci+n,bsc, ci,bsc+m)ds

=
∞∑
i=0

∫ ∞
0
Vα(ci+n,bgsc, ci,bgsc+m)dgs

= gm−β2α
∞∑
i=0

∫ ∞
0
Vα(mβ2ci+n,bgsc,m

β2ci,bgsc+m)ds.

As n→∞, we have

mβ2ci+n,bgsc = mβ2w(i+n,bgsc)(1 + i+ n)−β1(1 + bgsc)−β2

= mβ2g−β2n−β1w(i+n,bgsc)

(1 + i+ n

n

)−β1 (1 + bgsc
g

)−β2

= w(i+n,bgsc)

(1 + i+ n

n

)−β1 (1 + bgsc
g

)−β2

,

thus, mβ2ci+n,bgsc → s−β2, as n→∞, and mβ2
∣∣∣ci+n,bgsc∣∣∣ 6 es−β2. Also

mβ2ci,bgsc+m = mβ2w(i,bgsc+m)(1 + i)−β1 (1 + bgsc+m)−β2

= w(i,bgsc+m)(1 + i)−β1

(1 + bgsc+m

m

)−β2

.

From the equality above we see that mβ2ci,bgsc+m → w(i,∞)(1 + i)−β1, as

n→∞, and
∣∣∣mβ2ci,bgsc+m

∣∣∣ 6 e(1 + i)−β1.

As Vα is continuous, the obtained relations imply

Vα(mβ2ci+n,bgsc,m
β2ci,bgsc+m)→ Vα(s−β2, w(i,∞)(1 + i)−β1).

Due to Lemma 4.6 we obtain

∣∣∣Vα(mβ2ci+n,bgsc,m
β2ci,bgsc+m)

∣∣∣
6 Vα(es−β2, e(1 + i)−β1) = eαVα(s−β2, (1 + i)−β1).

If we show that
∞∑
i=0

∫ ∞
0
Vα(s−β2, (1 + i)−β1)ds <∞, (4.80)
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the dominated convergence theorem will imply

ρ(n,−m)
gm−β2α

→
∞∑
i=0

Vα(s−β2, w(i,∞)(1 + i)−β1)ds. (4.81)

A simple change of variables gives us

∫ ∞
0
Vα(s−β2, (1 + i)−β1)ds

=
∫ ∞

0
Vα

((
(1 + i)β1/β2s

)−β2
, (1 + i)−β1

)
d(1 + i)β1/β2s

= (1 + i)β1/β2
∫ ∞

0
Vα

(
(1 + i)−β1s−β2, (1 + i)−β1

)
ds

= (1 + i)β1/β2−β1α
∫ ∞

0
Vα

(
s−β2, 1

)
ds,

therefore
∞∑
i=0

∫ ∞
0
Vα(s−β2, (1 + i)−β1)ds =

∞∑
i=0

(1 + i)β1/β2−β1α
∫ ∞

0
Vα

(
s−β2, 1

)
ds.

The sum is finite, since in the case under consideration we have β1/β2 −

β1α < −1. The integral is finite since 1 < β2 < 1/(α − 1), as t → 0 we

have Vα
(
s−β2, 1

)
∼ s−β2(α−1), and Vα

(
s−β2, 1

)
∼ s−β2 as t→∞. Therefore

(4.80) holds yielding (4.81).

It remains to investigate the behaviour of ρ(n,−m) under the assump-

tion that m = mn is a sequence such that mn →∞ and hn →∞. Let us

denote fn = nm−β2/β1. In order to have simpler notation, in what follows

we will write f instead of fn. Since hn →∞, we have f →∞.

We express the spectral covariance as follows

ρ(n,−m) =
∞∑
i=0

∞∑
j=0

Vα(ci+n,j, ci,j+m) =
∞∑
j=0

∫ ∞
0
Vα(cbtc+n,j, cbtc,j+m)dt,

and split it up as

ρ(n,−m) = S0 + S1 + S2, (4.82)

where

S0 =
∞∑
j=0

Vα(cn,j, c0,j+m),

S1 =
∞∑
j=0

∫ f

1
Vα(cbtc+n,j, cbtc,j+m)dt,
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S2 =
∞∑
j=0

∫ ∞
f
Vα(cbtc+n,j, cbtc,j+m)dt,

Let us begin by investigating S1. We have

S1 =
∞∑
j=0

∫ f

1
Vα(cbtc+n,j, cbtc,j+m)dt

=
∞∑
j=0

∫ 1

0
Vα(cbf tc+n,j, cbf tc,j+m)df t

=
∞∑
j=0

∫ 1

0
Vα(cbf tc+n,j, cbf tc,j+m)f t ln(f)dt

= n−β1αf ln(f)
∞∑
j=0

∫ 1

0
f−1Vα(nβ1cbf tc+n,j, n

β1cbf tc,j+m)f tdt.

Let us investigate f−1Vα(nβ1cbf tc+n,j, n
β1cbf tc,j+m)f t. We have

f−1Vα(nβ1cbf tc+n,j, n
β1cbf tc,j+m)f t

=
nβ1cbf tc+n,jf

−1f tnβ1cbf tc,j+m(
n2β1c2

bf tc+n,j + n2β1c2
bf tc,j+m

) 2−α
2
. (4.83)

Relations nβ1cbf tc+n,j → w(∞,j)(1 + j)−β2 and nβ1cbf tc,j+m →∞ imply

(
n2β1c2

bf tc+n,j + n2β1c2
bf tc,j+m

) 2−α
2 ∼

(
nβ1cbf tc,j+m

)2−α
,

hence

f−1Vα(nβ1cbf tc+n,j, n
β1cbf tc,j+m)f t

∼ nβ1cbf tc+n,jf
−1f tnβ1(α−1)cα−1

bf tc,j+m

∼ w(∞,j)(1 + j)−β2f−1f tnβ1(α−1)f−β1(α−1)tm−β2(α−1)

= w(∞,j)(1 + j)−β2f−1f tn1f−tm−β2/β1

= w(∞,j)(1 + j)−β2.
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We can also bound the absolute value of (4.83) as follows

∣∣∣f−1Vα(nβ1cbf tc+n,j, n
β1cbf tc,j+m)f t

∣∣∣
6 f−1f t

∣∣∣nβ1cbf tc+n,j
∣∣∣ ∣∣∣nβ1cbf tc,j+m

∣∣∣α−1

6 f−1f teαnβ1(1 +
⌊
f t
⌋

+ n)−β1(1 + j)−β2×

× nβ1(α−1)(1 +
⌊
f t
⌋
)−β1(α−1)(1 + j +m)−β2(α−1)

6 f−1f teαnβ1n−β1(1 + j)−β2nf−tm−β2(α−1)

= eα(1 + j)−β2f−1nm−β2/β1 = eα(1 + j)−β2.

Since
∞∑
j=0

∫ 1

0
(1 + j)−β2dt =

∞∑
j=0

(1 + j)−β2 <∞,

the dominated convergence theorem implies

S1

n−β1αf ln(f) →
∞∑
j=0

∫ 1

0
w(∞,j)(1 + j)−β2dt =

∞∑
j=0

w(∞,j)(1 + j)−β2. (4.84)

Next we will show that S0 = o(n−β1αf ln(f)) and S2 = o(n−β1αf ln(f)).

We begin with S0.

|S0| 6
∞∑
j=0
|Vα(cn,j, c0,j+m)| 6

∞∑
j=0
|cn,j| |c0,j+m|α−1

6
∞∑
j=0

eαn−β1(1 + j)−β2m−β2(α−1) = eα
∞∑
j=0

(1 + j)−β2n−β1−1f

= eα
∞∑
j=0

(1 + j)−β2n−β1αf,

thus we have obtained

S0 = o(n−β1αf ln(f)). (4.85)

Let us deal with S2. Since
∣∣∣cbtc+n,j ∣∣∣ 6 e(1 + btc+ n)−β1(1 + j)−β2 6 en−β1(1 + j)−β2,

and ∣∣∣cbtc,j+m∣∣∣ 6 e(1 + btc)−β1(1 + j +m)−β2 6 et−β1m−β2,
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employing Lemma 4.6 we obtain

|S2| 6
∞∑
j=0

∫ ∞
f

∣∣∣Vα(cbtc+n,j, cbtc,j+m)
∣∣∣ dt

6
∞∑
j=0

∫ ∞
f
Vα(en−β1(1 + j)−β2, et−β1m−β2)dt

= eαn−β1α
∞∑
j=0

(1 + j)−β2α
∫ ∞
f
Vα(1, nβ1(1 + j)β2t−β1m−β2)dt. (4.86)

Let us change the variable in integral
∫ ∞
f
Vα(1, nβ1(1 + j)β2t−β1m−β2)dt

=
∫ ∞

(1+j)−β2/β1
Vα

(
1, nβ1(1 + j)β2(ft(1 + j)β2/β1)−β1m−β2

)
dft(1 + j)β2/β1

= f(1 + j)β2/β1
∫ ∞

(1+j)−β2/β1
Vα

(
1, t−β1

)
dt. (4.87)

We shall find an upper bound for the integral ∫∞(1+j)−β2/β1 Vα
(
1, t−β1

)
dt.

We have
∫ ∞

(1+j)−β2/β1
Vα

(
1, t−β1

)
dt

=
∫ 1

(1+j)−β2/β1
Vα

(
1, t−β1

)
dt+

∫ ∞
1
Vα

(
1, t−β1

)
dt

6
∫ 1

(1+j)−β2/β1
t−β1(α−1)dt+

∫ ∞
1
t−β1dt

= β2

β1
ln(1 + j) + 1

β1 − 1 .

Therefore (4.87) is bounded above by

f(1 + j)β2/β1

(
β2

β1
ln(1 + j) + 1

β1 − 1

)
,

and now (4.86) implies

|S2| 6 eαn−β1α
∞∑
j=0

(1 + j)−β2αf(1 + j)β2/β1

(
β2

β1
ln(1 + j) + 1

β1 − 1

)

= eαn−β1αf
∞∑
j=0

(1 + j)β2/β1−β2α

(
β2

β1
ln(1 + j) + 1

β1 − 1

)
.

The sum is finite, because β2/β1 − β2α < −1, therefore S2 = O(n−β1αf),

implying

S2 = o(n−β1αf ln(f)). (4.88)
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Recalling (4.82) and collecting (4.84),(4.85) and (4.88), we obtain

ρ(n,−m)
n−β1αf ln(f) →

∞∑
j=0

w(∞,j)(1 + j)−β2.

This completes our proof.

Proof of Theorem 4.17. Let us note that assumptions (A1)–(A3) imply

the existence of a positive number K such that
∣∣∣w(i,j)

∣∣∣ ≤ K for all i, j.

In the case γi > 1, i = 1, 2, we write (4.34) as

ρα(n, sm) = n−γ1m−γ2
∞∑
i=0

∞∑
j=0

f1(i, j, n,m, s),

where

f1(i, j, n,m, s)

= qi,j,n,m,s(1 + i)−γ1(1 + j)−γ2

(
1 + i+ 1

n

)−γ1 (
1 + j + 1

m

)−γ2

.

For fixed i, j, we have

f1(i, j, n,m, s)→ W (i, j, s)〈α/2〉(1 + i)−γ1(1 + j)−γ2, (n,m)→∞,

where W (i, j, 1) = w(i,j) and W (i, j,−1) = w(i,·)w(·,j). Since

|f1(i, j, n,m, s)| ≤ Kα(1 + i)−γ1(1 + j)−γ2

and∑∞i=0
∑∞
j=0(1+i)−γ1(1+j)−γ2 <∞, the dominated convergence theorem

implies (4.37).

Although the assumptions (A2) and (A3) hold point-wise, it is possible

to show that, due to the assumption (A1), the convergence in both these

conditions is uniform. Therefore, for an arbitrary ε > 0, there exists

N := N(ε) ∈ N such that, for any i ≥ 0 (assuming that n > N),

(1− ε)αwα/2(i,·) ≤ qi,j,n,m,s ≤ (1 + ε)αwα/2(i,·), j ≥ N. (4.89)

At this point, it is convenient to introduce the notation

hi,n,a := (1 + i)−a (1 + i+ n)−a .
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Let us split ρα(n, sm) into two sums

ρα(n, sm) = Σ1 + Σ2

:=
∞∑
i=0

N−1∑
j=0

qi,j,n,m,shi,n,γ1hj,m,γ2 +
∞∑
i=0

∞∑
j=N

qi,j,n,m,shi,n,γ1hj,m,γ2.

Using (4.89), we estimate Σ2 as

(1− ε)αGnBm,N ≤ Σ2 ≤ (1 + ε)αGnBm,N , (4.90)

where Gn = ∑∞
i=0w

α/2
(i,·)hi,n,γ1 and Bm,N = ∑∞

j=N hj,m,γ2.

If γ1 > 1, then we can write

Gn = n−γ1
∞∑
i=0

w
α/2
(i,·) (1 + i)−γ1

(
1 + i+ 1

n

)−γ1

,

and the monotone convergence theorem implies

Gn

n−γ1
→

∞∑
i=0

w
α/2
(i,·) (1 + i)−γ1 , n→∞.

Next, we investigate the case 1/2 < γ1 < 1. We can write

Gn =
∫ ∞

0
w
α/2
(btc,·)hbtc,n,γ1dt =

∫ ∞
0
w
α/2
(bntc,·)hbntc,n,γ1dnt

= n1−2γ1
∫ ∞

0
w
α/2
(bntc,·)

hbntc,n,γ1

n−2γ1
dt.

For fixed t ∈ (0,∞), we have

w
α/2
(bntc,·)

hbntc,n,γ1

n−2γ1
→ t−γ1(1 + t)−γ1

and ∣∣∣∣∣wα/2(bntc,·)
hbntc,n,γ1

n−2γ1

∣∣∣∣∣ 6 Kα/2t−γ1(1 + t)−γ1.

Since the dominating function is integrable, the dominated convergence

theorem implies

Gn

n1−2γ1
→

∫ ∞
0
t−γ1(1 + t)−γ1dt = K(γ1), n→∞.
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Next, we deal with Gn in the case γ1 = 1. Let us assume that n > 2.

We have

Gn =
∫ ∞

0
w
α/2
(btc,·)hbtc,n,1dt =

∫ ∞
0
w
α/2
(btc,·)(1 + btc)−1(1 + btc+ n)−1dt.

The change of variables t = ny gives

Gn =
∫ ∞
−∞

w
α/2
(bnyc,·)(1 + bnyc)−1(1 + bnyc+ n)−1ny ln(n)dy

= n−1 ln(n)
∫ ∞
−∞

f2(n, y)dy,

where

f2(n, y) = w
α/2
(bnyc,·)

(
1 + bn

yc+ 1
n

)−1
ny

1 + bnyc .

For a fixed y ∈ R\{0, 1}, we have

f2(n, y)→


0 if y < 0 or y > 1,

1 if 0 < y < 1.

Convergence in the set {0, 1} does not matter since it is a zero-measure

set. Also,

f2(n, y) 6 F (y) :=



Kα/22y if y 6 0,

Kα/2 if 0 < y < 1,

Kα/221−y if y > 1.

The dominating function F is integrable in R. Therefore, the dominated

convergence theorem implies

Gn

n−1 ln(n) →
∫ 1

0
1dt = 1 as n→∞.

We denote

sn,γ =



n1−2γ if 1/2 < γ < 1,

n−1 ln(n) if γ = 1,

n−γ if γ > 1;

gγ =



K(γ) if 1/2 < γ < 1,

1 if γ = 1,
∑∞
i=0w

α/2
(i,·) (1 + i)−γ if γ > 1.
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In conclusion, for γ1 > 1/2, we have

Gn

sn,γ1

→ gγ1 as n→∞.

Similarly, if 1/2 < γ2 6 1, then we can show that

Bm,N
sm,γ2

→ gγ2 as m→∞.

Inequality (4.90) implies

(1− ε)αgγ1gγ2 6 lim inf
(n,m)→∞

Σ2

sn,γ1sm,γ2

,

lim sup
(n,m)→∞

Σ2

sn,γ1sm,γ2

6 (1 + ε)αgγ1gγ2.

The sum Σ1 can be bounded above as follows:

|Σ1| 6 KαNm−γ2
∞∑
i=0

hi,n,γ1

6 KαNm−γ2 sup
k>0

w
−α/2
(k,·)

∞∑
i=0

w
α/2
(i,·)hi,n,γ1

= KαNm−γ2 sup
k>0

w
−α/2
(k,·) Gn.

In the case 1/2 < γ2 6 1, we have that m−γ2 = o(sm,γ2) as m→∞; thus,

Σ1 = o(Σ2) as (n,m)→∞. Therefore, if γ1 > 1/2 and 1/2 < γ2 6 1, then

we have

(1− ε)αgγ1gγ2 6 lim inf
(n,m)→∞

ρα(n, sm)
sn,γ1sm,γ2

,

lim sup
(n,m)→∞

ρα(n, sm)
sn,γ1sm,γ2

6 (1 + ε)αgγ1gγ2.

Arbitrariness of ε > 0 implies

lim
(n,m)→∞

ρα(n, sm)
sn,γ1sm,γ2

= gγ1gγ2.

Proof of Proposition 4.20. Substituting ci from (4.42) into (4.27), we ob-

tain the following expression for the α-spectral covariance:

ρα(X0, Xk) = ρα(Xk−, Xk+) =
d∏
l=1

rγl(|kl|), (4.91)
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where rγ(n) := ∑∞
i=0(1 + i)−γ(1 + i + n)−γ. Obviously, it is sufficient to

investigate the asymptotic behaviour of rγ(n) as n→∞. Using the same

steps as in the proof of Theorem 4.17 and mainly applying the monotone

or dominated convergence theorem, in the cases γ > 1, 1/2 < γ < 1, and

γ = 1, we can prove the following three relations, respectively:

rγ(n)
n−γ

→ ζ(γ), rγ(n)
n1−2γ → K(γ), and rγ(n)

n−1 ln(n) → 1 as n→∞.

Now from (4.91) and from the last three relations we easily get (4.43).
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5 Limit theorems

5.1 The problem and results

Limit theorems

Now we will formulate two limit theorems for stationary and associated

random fields, which generalize the results from [17]. Note that limit theo-

rems for stationary associated random fields with finite variance are deeply

investigated; a lot of information on the CLT in this case can be found

in [12]. On the other hand, limit theorems for stationary random fields

with infinite variance are less investigated; therefore, it seems interesting

to investigate limit theorems for associated stationary random fields with

infinite variance.

We consider the case d = 2, although there are no principal difficulties

to consider the general case d ≥ 2, apart from a more complicated notation.

Let X = {Xi,j, (i, j) ∈ Z2} be a stationary random field (by stationarity

we mean strict stationarity with respect to translation operation). We

say that a random field X is associated if, for any finite set A ⊂ Z2, the

collection of random variables Xi,j, (i, j) ∈ A, is associated and is jointly

(strictly) α-stable if the collection Xi,j, (i, j) ∈ A, is jointly (strictly)

α-stable. First, we state an analogue of Theorem 3.8 for a stationary

associated jointly α-stable random field X = {Xi,j, (i, j) ∈ Z2}. We

denote ρ(i, j) = ρ(X0,0, Xi,j) and

Sn,m =
n∑
i=1

m∑
j=1

Xi,j, S̄n,m = Sn,m
n1/αm1/α . (5.1)

Theorem 5.1. Let X be a stationary associated jointly α-stable field.
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If 0 < α < 1, then

S̄n,m
d−→ µ as n,m→∞, (5.2)

where µ is a strictly α-stable distribution.

If α = 1, then there exist constants An,m such that

S̄n,m − An,m d= X1.

If 1 < α < 2 and ∑
(i,j)∈Z2

ρ(i, j) <∞, (5.3)

then
Sn,m − ESn,m
n1/αm1/α = Sn,m − nmb

n1/αm1/α
d−→ µ as n,m→∞, (5.4)

where µ is a non-degenerate strictly α-stable distribution.

An observation similar to Remark 4.4 can be made here: the quantity

ρ(i, j) in (5.3) can be substituted by the codifference τ(i, j) := τ(X0,0, Xi,j)

to obtain an equivalent statement. Changing the spectral covariance by

the α-spectral covariance (or covariation) in (5.3) makes the statement of

Theorem 5.1 weaker, however, as can be seen from Theorems 4.15, 4.16

and 4.17, the asymptotic behaviour of α-spectral covariance is simpler.

Theorem 4.17 and Proposition 4.3 allow us to verify condition (5.3) for

linear random fields.

Corollary 5.2. Suppose that a linear field (4.28) with coefficients ci,j of

the form (4.31) with w(i,j) > 0 satisfies conditions (A1)–(A3). If 1 < α < 2

and βi > 2/α, i = 1, 2, then∑n
i=1

∑m
j=1Xi,j

n1/αm1/α
d−→ µ as n,m→∞,

where µ is a non-degenerate strictly α-stable distribution.

Now we shall state a generalization of Theorem 3.9. Let {Xi,j, i, j ∈ Z}

and {Yi,j, i, j ∈ Z} be stationary and associated random fields, and,
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additionally, let {Yi,j, i, j ∈ Z} be jointly strictly α-stable, 0 < α <

2. We say that {Xi,j, i, j ∈ Z, } belongs to the domain of strict nor-

mal attraction of {Yi,j, i, j ∈ Z, } and write {Xi,j} ∈ Dsn({Yi,j}) if, for

each (n,m) ∈ Z2
+, the distribution of the mn-dimensional vector Xn,m =

(X1,1, X1,2, . . . , X1,m, X2,1, . . . , X2,m, . . . , Xn,1, . . . , Xn,m) belongs to the do-

main of strict normal attraction of the mn-dimensional α-stable random

vector Yn,m = (Y1,1, Y1,2, . . . , Y1,m, Y2,1, . . . , Y2,m, . . . , Yn,1, . . . , Yn,m) . The

spectral measure of Yn,m is a measure on Smn−1, we denote it by Γn,m.

We shall use the notation (5.1), but now assuming that the field {Xi,j,

i, j ∈ Z} is in the domain of attraction of an α-stable field {Yi,j, i, j ∈ Z}.

Using the function IAα (Xi, Xj) defined in (3.16), let us denote (using bold

letters for two-dimensional indices)

IAα (i,k) := IAα (Xi, Xk), IAα (k) := IAα (0,k),

Z̄n,m = n−1/αm−1/α
n∑
i=1

m∑
j=1

Yi,j.

Theorem 5.3. Let {Xi,j, i, j ∈ Z} be a stationary associated field such

that {Xi,j} ∈ Dsn({Yi,j}), where {Yi,j, i, j ∈ Z} is a stationary and jointly

strictly α-stable field, 0 < α < 2, and Γn,m is symmetric for all n,m if

α = 1.

If ∑
j∈Z2

IAα (j) <∞ (5.5)

for some A > 0, then there exists a strictly α-stable distribution µ such

that

S̄n,m
d−→ µ (5.6)

and

Z̄n,m
d−→ µ as n,m→∞. (5.7)
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Linear fields

In this section we are going to investigate the convergence of finite dimen-

sional distributions of appropriately normalized partial sum process

Sn(t) =
∑

06k6nt
Xk, (5.8)

as min(n1, . . . , nd) → ∞. Here Xk = ∑
j>0 cjξk−j, k ∈ Zd+, is a d-

dimensional linear random field, ξj, j ∈ Zd are independent copies of

random variable ξ, belonging to the domain of attraction of α-stable ran-

dom variable, see (2.13), (if α = 1 we assume that the random variable is

symmetric). We assume that coefficients cj are of the form

cj = c(j1,...,jd) =
d∏
l=1

ajl(γl, l), j > 0,

where

aj(γl, l) ∼ (1 + j)−γlLl(j), as j →∞, (5.9)

with γl > 1/α and some s.v.f. Ll, l = 1, . . . , d. If γl = 1 we make a

simplifying assumption Ll ≡ 1.

Remark 5.4. In what follows we assume that γl > 1/α holds without

explicitly mentioning it. For example, sometimes instead of writing γl > 1

and γl > 1/α we will just write γl > 1.

Let us denote

sn,γl,l =



1 if γl > 1 and ∑∞
j=0 aj(γl, l) 6= 0,

n1−γlLl(n) if 1 < γl < 1 + 1/α and ∑∞
j=0 aj(γl, l) = 0,

lnn if γl = 1,

n1−γlLl(n) if 1/α < γl < 1,
(5.10)

and

An = h
1/α
1/α

 d∏
j=1

nj

 d∏
j=1

(
n

1
α
j snj ,γj ,j

)
, (5.11)
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here h1/α is a s.v.f. corresponding to h from (2.13) and satisfying (2.2).

We also define

Hγl(u, t, l) =



∑∞
k=0 ak(γl, l)1[0,t)(u) if γl > 1 and ∑∞

j=0 aj(γl, l) 6= 0,
(t−u)1−γl

+ −(−u)1−γl
+

1−γl if 1 < γl < 1 + 1/α and ∑∞
j=0 aj(γl, l) = 0,

1[0,t)(u) if γl = 1,
(t−u)1−γl

+ −(−u)1−γl
+

1−γl if 1/α < γl < 1,

and

H(u, t) =
d∏
l=1

Hγl(ul, tl, l).

We are now ready to formulate our result.

Theorem 5.5. For the process Sn(t) defined by (5.8) and normalizing

sequence (5.11) we have

A−1
n Sn(t) f.d.d.−→ I(t), (5.12)

where I(t) is α-stable stochastic integral defined by

I(t) =
∫
Rd
H(u, t)M(du),

with Lebesgue control measure and skewness intensity β(x) ≡ β.

Remark 5.6. Normalizing sequence in (5.12) contains factor h1/α
1/α

(∏d
j=1 nj

)
which is absent in the Definition 6. Since this factor can not be expressed

as a product of slowly varying functions ∏dj=1 lj(nj), Theorem 5.5 reveals

that the definition of memory for stationary fields in [52] needs revision –

it does not classify linear fields with general innovations belonging to the

domain of attraction of α-stable random variable (it applies only to linear

fields with innovations belonging to the normal domain of attraction).

Negative memory

We consider a partial sum process Sn(t) = ∑bntc
k=0 Xk of linear processes

Xn = ∑∞
i=0 ciξn−i with independent identically distributed innovations {ξi}
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belonging to the domain of attraction of α-stable law, 0 < α ≤ 2. If

|ck| = k−γ, k ∈ N, γ > max(1/α, 1), and
∞∑
k=0

ck = 0 (5.13)

(the case of negative memory for the stationary sequence {Xn}), it is

known that the normalizing sequence of Sn(1) can grow as n1/α−γ+1 or

remain bounded, if the signs of the coefficients of ck, k ∈ N, are constant

or alternate, respectively. It is of interest to know whether it is possible,

given λ ∈ (0, 1/α−γ+1), to change the signs of ck so that the rate of growth

of the normalizing sequence would be nλ. The following theorem gives a

positive answer: we propose a way of choosing the signs and investigate

the finite-dimensional convergence of appropriately normalized Sn(t) to

linear fractional Lévy motion.

For θ > 1 let us denote T = Tθ = {k : k = 2
⌊
lθ
⌋
− 1 for some l ∈

N, l > 3}.

Theorem 5.7. Suppose that max(1/α, 1) < γ < 1 + 1/α, 1 6 θ <

α/(αγ − 1) and for n > 0 let us define

sn =


1 if n ∈ T,

(−1)n otherwise.

Consider a linear process Xn = ∑∞
i=0 biξn−i where bk = skk

−γ, k ∈ N,

b0 = −∑∞k=1 bk and ξi, i ∈ N, is a sequence of i.i.d. random variables

having ch. f. (2.13).

The sequence of linear processes S̄n(t) = A−1
n

∑bntc
k=0 Xk converges in

finite-dimensional distributions to the LFLM

Zα,1/α+1/θ−γ
(
−21−1/θ/(γθ − 1), 0; t

)

with skewness intensity β(u) ≡ β. Here An = n1/α+1/θ−γh
1/α
1/α(n) with h1/α

satisfying (2.2).
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Assumption |bk| = k−γ could be changed by a more general |bk| =

k−γ(a+ o(1)), k →∞, requiring only minor changes to the proof. We do

not do this in order to keep the proof technically simpler.

Theorem 5.7 answers the problem proposed by Paulauskas in [52]:

Corollary 5.8. Suppose ξi belong to the normal domain of attraction of α-

stable law. Given γ ∈ (max(1/α, 1), 1 + 1/α) and any λ ∈ (0, 1/α−γ+1),

it is possible to choose the signs of the coefficients ck, k ∈ N, satisfying

(5.13) so that An would grow as nλ.

5.2 Proofs

Proof of Theorem 5.1. Let Y be a stable random variable with spectral

measure ΓY and shift parameter b. Since the unit sphere on the line is

two points, the parameters b, σ+(Y ) = ΓY ({1}), and σ−(Y ) = ΓY ({−1})

completely determine the distribution of Y , which we denote by

γY (b, σ+(Y ), σ−(Y )).

Recall that

Xn,m = (X1,1, X1,2, . . . , X1,m, X2,1, . . . , X2,m, . . . , Xn,1, . . . , Xn,m) . (5.14)

Since Xi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ m, are associated and jointly α-stable, the

random variable Sn,m, as a linear combination from the vector (5.14), is

the stable distribution γSn,m(bnm, σ+(Sn,m), σ−(Sn,m)), where b is the shift

parameter of X1,1, and

σ+(Sn,m) = c+
n,m =

∫
Snm−1

 n∑
i=1

m∑
j=1

si,j

α 1{si,j>0, 16i6n,16j6m}Γn,m(ds),

σ−(Sn,m) = c−n,m =
∫
Snm−1

− n∑
i=1

m∑
j=1

si,j

α 1{si,j60, 16i6n,16j6m}Γn,m(ds).

Here Γn,m denotes the spectral measure of the stable vector (5.14) on

the unit sphere Snm−1. As in [17], we must show that the parameters
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of the stable distribution γS̄n,m are converging, and to this end, we shall

use Lemma 2.5 in the case d = 2. We will show that c+
n,m and c−n,m, as

functions Z2
+ → [0,∞), are subadditive and superadditive in the cases

0 < α < 1 and 1 < α < 2, respectively, and additive in the case α = 1. We

start with the case 0 < α < 1. It is convenient to denote vectors in Rnm

by (s1,1, . . . , s1,m, s2,1, . . . , s2,m, . . . , sn,1, . . . , sn,m). Applying the inequality

(x+ y)α 6 xα + yα, x, y > 0, 0 6 α 6 1, we can write

c+
n+k,m = σ+(Sn+k,m)

=
∫
S(n+k)m−1

n+k∑
i=1

m∑
j=1

si,j

α 1{si,j>0, 16i6n+k,16j6m}Γn+k,m(ds)

6
∫
S(n+k)m−1

 n∑
i=1

m∑
j=1

si,j

α +
 n+k∑
i=n+1

m∑
j=1

si,j

α×
× 1{si,j>0, 16i6n+k,16j6m}Γn+k,m(ds)

= σ+(Sn,m) + σ+(Sn+k,m − Sn,m)

= σ+(Sn,m) + σ+(Sk,m) = c+
n,m + c+

k,m.

Exactly in the same way, we can show that c+
n,m+l 6 c+

n,m + c+
n,l, and we

have that c+
n,m is subadditive, the same can be shown for c−n,m. Therefore,

by Lemma 2.5 we have that there exist the limits

lim
n,m→∞

c+
n,m

nm
, lim
n,m→∞

c−n,m
nm

.

Since the random variable S̄n,m is stable with parameters b(nm)1−1/α,

c+
n,m/(nm), and c−n,m/(nm), which are convergent as n,m → ∞, we get

(5.2). In the case 1 < α < 2, we use the inequality (x + y)α > xα + yα,

x, y > 0, and now we prove that c+
n,m and c−n,m are superadditive. From

Remark 2.6 we get that the limits

lim
n,m→∞

c+
n,m

nm
, lim

n,m→∞
c−n,m
nm

exist, but now these limits are equal to the corresponding quantities, de-

fined by changing limn,m→∞ into sup(n,m)∈Z2
+
. Using condition (5.3), we
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will show that these limits are finite. Let us denote Vn,m = {(i, j) : 1 6

i 6 n, 1 6 j 6 m}. Using the association property, we can write

c+
n,m + c−n,m =

∫
Snm−1

∣∣∣∣∣∣
∑

i∈Vn,m
si

∣∣∣∣∣∣
α

Γn,m(ds) (5.15)

=
∫
Snm−1

 ∑
i∈Vn,m

|si|
α Γn,m(ds)

≤
∫
Snm−1

 ∑
i∈Vn,m

|si|
2

Γn,m(ds)

=
∑

i,j∈Vn,m

∫
Snm−1

sisjΓn,m(ds) = I1 + I2,

where

I1 =
∑

i∈Vn,m

∫
Snm−1

s2
i Γn,m(ds)

6
∑

i∈Vn,m

∫
Snm−1

|si|αΓn,m(ds) = nm(c+
1,1 + c−1,1) (5.16)

and

I2 =
∑

i 6=j∈Vn,m

∫
Snm−1

sisjΓn,m(ds) (5.17)

6
∑

i 6=j∈Vn,m

∫
Snm−1

si√
si + s2

j

sj√
s2

i + s2
j

(
s2

i + s2
j
)α/2

1{s2
i +s2

j>0}Γn,m(ds)

6
∑

i 6=j∈Vn,m
ρ(Xi, Xj) =

∑
i 6=j∈Vn,m

ρ(X0, Xi−j)

= nm
∑

k∈Dn−1,m−1

ρ(X0, Xk) 6 nm
∑

k∈Z2
ρ(X0, Xk),

where Dn−1,m−1 = {(i, j) ∈ Z2 : |i| 6 n − 1, |j| 6 m − 1, |i| + |j| > 0}.

From (5.15)–(5.17) and condition (5.3) it follows that

sup
(n,m)∈Z2

+

c+
n,m + c−n,m
nm

<∞.

It remains to note that, in this case, centering is needed since the shift

parameter for S̄n,m is b(nm)1−1/α, and (5.4) is proved.

The case α = 1 is easy. As in [17], we can show that c+
n,m and c−n,m are

additive, and therefore, c+
n,m = nmc+

1,1 and c−n,m = nmc−1,1. In the case of
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symmetric spectral measure ΓX1,1, the parameters of S̄n,m are (b, c+
1,1, c

−
1,1),

whereas in the general case centering may be needed.

Proof of Corollary 5.2. Since the coefficients ck are non-negative, the in-

vestigated linear field is associated. We will show that
∑

(i,j)∈Z2
ρα(i, j) <∞.

This, together with Proposition 4.3, implies (5.3), and Theorem 5.1 gives

the result stated in the corollary. Since the field is stationary, it suffices

to show that ∑
i>0

∑
j∈Z

ρα(i, j) <∞. (5.18)

According to Theorem 4.17, we have the asymptotic relation (4.37), which

implies that ∑i>N
∑
j>N ρα(i, sj) < 1 for N large enough and s ∈ {−1, 1}.

Similarly as in the proof of Theorem 4.17, for fixed m, we have

ρα(n, sm)

∼ n−γ1
∞∑
i=0

∞∑
j=0

lim
n→∞ qi,j,n,m,s(1 + i)−γ1(1 + j)−γ2(1 + j +m)−γ2,

as n→∞, and, for fixed n, we have

ρα(n, sm)

∼ m−γ2
∞∑
i=0

∞∑
j=0

lim
m→∞ qi,j,n,m,s(1 + i)−γ1(1 + j)−γ2(1 + i+ n)−γ1,

as m → ∞. These relations imply that the row series and the column

series are finite. Thus, (5.18) holds.

Proof of Theorem 5.3. The proof goes along the same lines as in Newman’s

CLT (see [47]), adapted to the case of infinite variance in [17]. First, we

outline the proof. The main step is showing the following relation (recall

that S̄n,m = Sn,m(nm)−1/α):

lim
m1,m2→∞

lim sup
k1,k2→∞

∣∣∣E exp
{
iλS̄n1,n2

}
−

−
(
E exp

{
iλ (k1k2)−1/α

S̄m1,m2

})k1k2
∣∣∣∣∣ = 0, λ ∈ R. (5.19)
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Here and in the sequel, we assume that ni = miki, i = 1, 2, with integer

mi and ki. Since the second term in the difference in (5.19) is the power

of a ch.f., it corresponds to the sum of i.i.d. summands. Thus, using the

assumption {Xi} ∈ Dsn({Yi}), we have

(
E exp

{
iλ (k1k2)−1/α

S̄m1,m2

})k1k2
→ E exp

{
iλZ̄m1,m2

}
(5.20)

as (k1, k2) → ∞. Since Z̄m1,m2 is a stable random field, as a last step,

we apply Theorem 5.1 to get (5.7). Finally, (5.7), together with (5.19)

and (5.20), implies (5.6). Now we return to the main step in the proof.

For b > 0, let us define the function fb : R → R by fb(x) = b1(b,∞)(x) +

x1[−b,b](x)−b1(−∞,−b)(x). Since fb(x) is a non-decreasing function in x, the

random field {fb(Xi), i ∈ Z2} is also associated. We use the decomposition

S̄n1,n2 = Z(1)
n1,n2 + Z(2)

n1,n2,

where

Z(1)
n1,n2 =

n1∑
i=1

n2∑
j=1

fb
(
(n1n2)−1/αXi,j

)
,

Z(2)
n1,n2 =

n1∑
i=1

n2∑
j=1

(
(n1n2)−1/αXi,j − fb

(
(n1n2)−1/αXi,j

))
.

Since the random variable Xi,j belongs to the strict normal domain of

attraction of a stable random variable Yi,j, there exists C > 0 such that

P(|Xi,j| > x) 6 Cx−α. Let us take ε > 0 and b > (C/ε)1/α. Then we get

P(Z(2)
n1,n2 6= 0)

6 P(∃1 6 i 6 n1, 1 6 j 6 n2 : |Xi,j| > b(n1n2)1/α)

6 n1n2P(|X1,1| > b(n1n2)1/α)

6 Cn1n2b
−α(n1n2)−1 = Cb−α < ε.

(5.21)

We will show that

∣∣∣E exp
{
iλS̄n1,n2

}
− E exp

{
iλZ(1)

n1,n2

}∣∣∣ < 2ε, (5.22)
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∣∣∣∣∣
(
E exp

{
iλ (k1k2)−1/α

S̄m1,m2

})k1k2
−

−
E exp

iλ
m1∑
i=1

m2∑
j=1

fb
(
(n1n2)−1/αXi,j

)
k1k2

∣∣∣∣∣∣∣ < 2ε. (5.23)

Inequality (5.22) follows from (5.21):
∣∣∣E exp

{
iλ
(
Z(1)
n1,n2 + Z(2)

n1,n2

)}
− E exp

{
iλZ(1)

n1,n2

}∣∣∣
6 E

∣∣∣exp
{
iλZ(2)

n1,n2

}
− 1

∣∣∣
= E

∣∣∣∣(exp
{
iλZ(2)

n1,n2

}
− 1

)
1{Z(2)

n1,n2 6=0}

∣∣∣∣
6 2P

(
Z(2)
n1,n2 6= 0

)
< 2ε.

(5.24)

For simplicity, let us introduce the notation

Um1,m2 := Um1,m2(n1, n2) =
m1∑
i=1

m2∑
j=1

fb
(
(n1n2)−1/αXi,j

)
,

U (1)
m1,m2 = (k1k2)−1/α

S̄m1,m2 − Um1,m2.

Then (5.23) becomes

∆1 :=
∣∣∣∣(E exp

{
iλ
(
Um1,m2 + U (1)

m1,m2

)})k1k2 −

− (E exp {iλUm1,m2})
k1k2

∣∣∣ < 2ε. (5.25)

Using the inequality |an − bn| 6 n|a− b|, |a| , |b| 6 1, we can estimate

∆1 6 k1k2
∣∣∣E exp

{
iλ
(
Um1,m2 + U (1)

m1,m2

)}
− E exp (iλUm1,m2)

∣∣∣ . (5.26)

Similarly to inequalities (5.21) and (5.24), we have

P(U (1)
m1,m2 6= 0) 6 m1m2P(|X1,1| > b(n1n2)1/α)

6 Cb−α(k1k2)−1 < ε(k1k2)−1 (5.27)

and

∣∣∣E exp
{
iλ
(
Um1,m2 + U (1)

m1,m2

)}
− E exp {iλUm1,m2}

∣∣∣
6 2P(U (1)

m1,m2 6= 0) < 2(k1k2)−1ε. (5.28)
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Collecting (5.26)–(5.28), we get (5.25) and, at the same time, (5.23).

Since the random variables in the sum Um1,m2 are bounded, we use (as

in [17]) Newman’s inequality to get the following estimate:

∆2 :=
∣∣∣E exp {iλUn1,n2} − (E exp {iλUm1,m2})

k1k2
∣∣∣

=
∣∣∣∣∣E exp

{
iλ√n1n2

1
√
n1n2

Un1,n2

}

−
(
E exp

{
iλ√n1n2

1√
k1k2

1
√
m1m2

Um1,m2

})k1k2
∣∣∣∣∣∣

6
λ2n1n2

2

(
Var

( 1
√
n1n2

Un1,n2

)
− Var

( 1
√
m1m2

Um1,m2

))

= λ2n1n2

2

( 1
n1n2

Var (Un1,n2)−
1

m1m2
Var (Um1,m2)

)
. (5.29)

We must show that the last quantity can be made arbitrarily small if

we take m1,m2 sufficiently large, and to this aim, we consider separately

Var (Un1,n2). Let us denote

Cn1,n2
d1,d2 = Cov

(
fb
(
(n1n2)−1/αXd1+1,d2+1

)
, fb

(
(n1n2)−1/αX1,1

))
.

Then it is not difficult to verify that

Var (Un1,n2)

= Cov
 n1∑
i1=1

n2∑
i2=1

fb
(
(n1n2)−1/αXi1,i2

)
,
n1∑
j1=1

n2∑
j2=1

fb
(
(n1n2)−1/αXj1,j2

)
=

n1∑
i1=1

n2∑
i2=1

n1∑
j1=1

n2∑
j2=1

Cov
(
fb
(
(n1n2)−1/αXi1,i2

)
, fb

(
(n1n2)−1/αXj1,j2

))

=
n1−1∑

d1=1−n1

n2−1∑
d2=1−n2

(n1 − |d1|)(n2 − |d2|)Cn1,n2
d1,d2 .

Similarly, we calculate Var (Um1,m2):

Var (Um1,m2) =
m1−1∑

d1=1−m1

m2−1∑
d2=1−m2

(m1 − |d1|)(m2 − |d2|)Cn1,n2
d1,d2 . (5.30)

From (5.29)–(5.30) we get ∆2 6 λ2n1n2 (Σ1 + Σ2) /2, where

Σ1 =
∑

(d1,d2)∈B1

(
n1 − |d1|

n1

n2 − |d2|
n2

− m1 − |d1|
m1

m2 − |d2|
m2

)
Cn1,n2
d1,d2 ,

115



Σ2 =
∑

(d1,d2)∈B2

n1 − |d1|
n1

n2 − |d2|
n2

Cn1,n2
d1,d2 .

Here B1 = {(d1, d2) ∈ Z2 : |d1| < m1, |d2| < m2} and B2 = {(d1, d2) ∈ Z2 :

m1 6 |d1| < n1, |d2| < n2 or |d1| < n1,m2 6 |d2| < n2}. Since ni > mi

implies (ni − |di|)n−1
i > (mi − |di|)m−1

i , we have that the coefficients at

Cn1,n2
d1,d2 in both sums are non-negative. Therefore, it suffices to estimate the

quantity Cn1,n2
d1,d2 from above as follows:

Cn1,n2
d1,d2 = Cov

(
fb
(
(n1n2)−1/αXd1+1,d2+1

)
, fb

(
(n1n2)−1/αX1,1

))
= (n1n2)−2/αCov

(
fb(n1n2)1/α (Xd1+1,d2+1) , fb(n1n2)1/α (X1,1)

)
= (n1n2)−2/α

∫ b(n1n2)1/α

−b(n1n2)1/α

∫ b(n1n2)1/α

−b(n1n2)1/α
H(X1,1,Xd1+1,d2+1)(x, y)dxdy

6 (n1n2)−2/α
(
b(n1n2)1/α

)2−α
IAα (X1,1, Xd1+1,d2+1)

= b2−α(n1n2)−1IAα (X1,1, Xd1+1,d2+1).

From the last two obtained inequalities (for ∆2 and Cn1,n2
d1,d2 ) it is not

difficult to get ∆2 6 λ2b2−α(∆21 + ∆22)/2, where

∆21 =
∑

(d1,d2)∈B1

(
1− m1 − |d1|

m1

m2 − |d2|
m2

)
IAα (X1,1, Xd1+1,d2+1),

∆22 =
∑

|d1|>m1 or |d2|>m2

IAα (X1,1, Xd1+1,d2+1).

Here it is appropriate to note that both quantities ∆2i, i = 1, 2, do not

depend on n1, n2, and therefore, it is legitimate to consider the first lim sup

in the main relation (5.19). Now we will show that these two quantities

converge to zero as (m1,m2) → ∞, and the main tool for doing this is

our assumption (5.5). For any fixed d1, d2, we have 1− (m1 − |d1|)(m2 −

|d2|)(m1m2)−1 → 0 as m1,m2 →∞, the terms in the double sum of ∆21

can be dominated∣∣∣∣∣
(

1− m1 − |d1|
m1

m2 − |d2|
m2

)
IAα (X1,1, Xd1+1,d2+1)

∣∣∣∣∣ 6 IAα (X1,1, Xd1+1,d2+1),

so that the double sum ∑
(d1,d2)∈Z2 IAα (X1,1, Xd1+1,d2+1) is convergent due

to (5.5). Therefore, a standard application of dominated convergence
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theorem yields ∆21 → 0 as m1,m2 →∞. The relation ∆22 → 0 as

m1,m2 → ∞ follows simply from (5.5). From these two relations we

get

lim
m1,m2→∞

lim sup
k1,k2→∞

∆2 = 0. (5.31)

Collecting (5.22), (5.23), and (5.31), we get (5.19).

It remains to prove (5.7). For this, we use Theorem 5.1. In the case

0 < α ≤ 1, there is nothing to prove, and in the case 1 < α < 2, we show

that (5.5) implies (3.17). We have that (Xi, Xj) ∈ Dsn(Yi, Yj). Let Γi,j be

the spectral measure of (Yi, Yj), i, j ∈ Z2. We will prove that∫
S1
s1s2Γi,j(ds) 6 2− α

α
IAα (Xi, Xj). (5.32)

Let νi,j denote the Lévy measure of the stable vector (Yi, Yj). Using

polar coordinates on the plane, we have
∫
‖x‖6b

x1x2νi,j(dx1, dx2)

=
∫ b

0

∫
S1
rs1rs2

αdr
rα+1 Γi,j(ds) = αb2−α

2− α

∫
S1
s1s2Γi,j(ds).

Therefore, ∫
S1
s1s2Γi,j(ds) = 2− α

α
bα−2

∫
‖x‖6b

x1x2νi,j(dx1, dx2).

Since the stable random variables Yi, Yj are associated, we can write∫
‖x‖6b

x1x2νi,j(dx1, dx2) 6
∫
R2
fb(x1)fb(x2)νi,j(dx1, dx2).

Using Lemma 3.1 from [63] (see also (38) in [17]), denoting bn = bn1/α,

it is not difficult to show that, for all sufficiently large n and for A from

condition (5.5), we get

nCov
(
fb(n−1/αXi), fb(n−1/αXj)

)
= n

∫ b

−b

∫ b

−b
H(n−1/αXi,n−1/αXj) (x, y) dxdy

= n(α−2)/α
∫ bn

−bn

∫ bn

−bn
H(Xi,Xj) (u, v) dudv

6 n(α−2)/αb2−α
n IAα (Xi, Xj) = b2−αIAα (Xi, Xj). (5.33)
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As in [17] (see (43) therein), we use the relation

nCov
(
fb(n−1/αXi), fb(n−1/αXj)

)
→

∫
R2
fb(x1)fb(x2)νi,j(dx1, dx2),

which, together with (5.33) (taking b = 1), gives (5.32). Thus, we proved

(5.7), which, together with (5.19) and (5.20), proves (5.6).

Proof of Theorem 5.5. Suppose m ∈ N and t(1), . . . , t(m) ∈ [0,∞)d. In

what follows we assume t(0) = 0. We need to show that

A−1
n
(
Sn(t(1)), . . . , Sn(t(m))

)
D−→

(
I(t(1)), . . . , I(t(m))

)
,

as min(n1, . . . , nd)→∞, and we do this by investigating the convergence

of characteristic functions.

Before finding the characteristic function of

A−1
n
(
Sn(t(1)), . . . , Sn(t(m))

)
(5.34)

let us express Sn(t) in a more convenient way:

Sn(t) =
∑

06k6nt

∑
j>0

cjξk−j

=
∑

06k6nt

∑
j>0

cj−k+kξk−j

=
∑

06k6nt

∑
j−k>−k

cj−k+kξk−j

=
∑

06k6nt

∑
j6k

ck−jξj

=
∑

06k6nt

∑
j
ck−jξj

d∏
l=1

1{jl6kl}

=
∑

j
ξj

∑
06k6nt

ck−j
d∏
l=1

1{jl6kl}

=
∑

j
ξj
∑
k
ck−j

d∏
l=1

1{(jl∨0)6kl6nltl}.

Characteristic function of (5.34) is

φn(x1, . . . , xm) = E exp
i

m∑
i=1

xiA
−1
n Sn(t(i))

 ,
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using the recently obtained expression of Sn(t) we can write

m∑
i=1

xiA
−1
n Sn(t(i)) =

∑
j
ξjA

−1
n

m∑
i=1

xi
∑
k
ck−j

d∏
l=1

1{(jl∨0)6kl6nlt(i)l }

=
∑

j
ξjA

−1
n

m∑
i=1

xi
∑
k

d∏
l=1

akl−jl(γl, l)1{(jl∨0)6kl6nlt(i)l }

=
∑

j
ξjA

−1
n

m∑
i=1

xi
d∏
l=1

∑
kl

akl−jl(γl, l)1{(jl∨0)6kl6nlt(i)l }

=
∑

j
ξjA

−1
n

m∑
i=1

xi
d∏
l=1

∑
kl

akl(γl, l)1{(0∨(−jl))6kl6nlt(i)l −jl}
.

It is convenient to introduce notation

Sγl,l,t(j, n) =
∑
k

ak(γl, l)1{(0∨(−j))6k6nt−j},

Cj,n =
 d∏
j=1

snj ,γj ,j

−1
m∑
i=1

xi
d∏
l=1

S
γl,l,t

(i)
l

(jl, nl)

and

Dj,n = A−1
n

m∑
i=1

xi
d∏
l=1

S
γl,l,t

(i)
l

(jl, nl).

Since ξj are independent and have common characteristic function

(2.13), we obtain

φn(x1, . . . , xm)

= exp
−∑

j
h
(
|Dj,n|−1) (1 + r (Dj,n)) |Dj,n|α (1− iβταsign (Dj,n))

 .
The following lemma is proved on page 125:

Lemma 5.9. Dj,n → 0 uniformly for all j, as min(n1, . . . , nd)→∞.

Due to this Lemma, it suffices to investigate the asymptotic behaviour of

∑
j
h
(
|Dj,n|−1) |Dj,n|α (1− iβταsign (Dj,n))

=
∑

j
h
(
|Dj,n|−1) |Dj,n|α − iβτα

∑
j
h
(
|Dj,n|−1)

D<α>
j,n . (5.35)
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We continue by investigating

Jn :=
∑

j
h
(
|Dj,n|−1)

f (Dj,n)

with f(x) = |x|α and f(x) = x<α>.

In what follows δ = min(δ1, . . . , δd), where

δl =


α−1/γl

2 if γl > 1 and ∑
k ak(γl, l) 6= 0, or 1/α < γl 6 1

min(α−1/γl, 1/(γl−1)−α)
2 if 1 < γl < 1 + 1/α and ∑

k ak(γl, l) 6= 0.

For sets Gi ⊂ R, i = 1, . . . , d, we introduce notation

Jn(G1, . . . , Gd) =
∑

j
h
(
|Dj,n|−1)

f (Dj,n) 1G1×···×Gd(j)

and split Jn as

Jn =
∑

Gi∈{Ai,Aci},i=1,...,d
Jn(G1, . . . , Gd), (5.36)

where

Ai = Ai(ε, ni) =
m⋂
j=0

(
nit

(j)
i − nεi , nit

(j)
i + nεi

)c
, i = 1, . . . , d,

with ε = min(ε1, . . . , εd), where

εl =


1−(γl−1)(α+δ)

2 if 1 < γl < 1 + 1/α and ∑∞
k=0 ak(γl, l) = 0,

1
2 otherwise.

We shall show that

Jn(A1, . . . ,Ad)→
∫
Rd
f

 m∑
i=1

xiH(u, t(i))
 du (5.37)

and

Jn(G1, . . . , Gd)→ 0 (5.38)

if Gi = Aci , for some i = 1, . . . , d.

We have

Jn(G1, . . . , Gd) =
∑

j
h
(
|Dj,n|−1)

f (Dj,n) 1G1×···×Gd(j)
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=
∫
Rd
h
(∣∣∣Dbuc,n∣∣∣−1)

f
(
Dbuc,n

)
1G1×···×Gd(buc)du

=
∫
Rd
h
(∣∣∣Dbnuc,n

∣∣∣−1)
f
(
Dbnuc,n

)
1G1×···×Gd(bnuc)dnu

=
 d∏
l=1

nl

 ∫
Rd
h
(∣∣∣Dbnuc,n

∣∣∣−1)
f
(
Dbnuc,n

)
1G1×···×Gd(bnuc)du,

and, since  d∏
l=1

nl

 f (Dbnuc,n
)

= f


 d∏
l=1

nl

1/α

Dbnuc,n


= f

h−1/α
1/α

 d∏
l=1

nl

Cbnuc,n


= 1
h1/α

(∏d
l=1 nl

)f (Cbnuc,n
)

=
h
((∏d

l=1 nl
)1/α

h
1/α
1/α

(∏d
l=1 nl

))
h1/α

(∏d
l=1 nl

) f
(
Cbnuc,n

)
h
((∏d

l=1 nl
)1/α

h
1/α
1/α

(∏d
l=1 nl

)) ,
we obtain

Jn(G1, . . . , Gd)

=
h
((∏d

l=1 nl
)1/α

h
1/α
1/α

(∏d
l=1 nl

))
h1/α

(∏d
l=1 nl

) ∫
Rd
Fn(u, G1, . . . , Gd)du, (5.39)

where

Fn(u, G1, . . . , Gd) =
h
(
qn
∣∣∣Cbnuc,n

∣∣∣−1)
h (qn) f

(
Cbnuc,n

)
1G1×···×Gd(bnuc),

with qn =
(∏d

l=1 nl
)1/α

h
1/α
1/α

(∏d
l=1 nl

)
.

The function h1/α satisfies (2.2), therefore

h
((∏d

l=1 nl
)1/α

h
1/α
1/α

(∏d
l=1 nl

))
h1/α

(∏d
l=1 nl

) → 1, as min(n1, . . . , nd)→∞,

and, due to (5.39), it is sufficient to investigate

In(G1, . . . , Gd) :=
∫
Rd
Fn(u, G1, . . . , Gd)du.
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If Gi = Ai, i = 1, . . . , d, we will show that Fn converges point-wise

and is dominated by an integrable function. We provide the proof of the

following lemma on page 127.

Lemma 5.10. Suppose l ∈ {1, . . . , d} and t ∈ {t(1)
l , . . . , t

(m)
l }, then

1Al(ε,n)(bnuc)
Sγl,l,t(bnuc , n)

sn,γl,l
→ Hγl(u, t, l), as n→∞, (5.40)

and

1Al(ε,n)(bnuc)
|Sγl,l,t(bnuc , n)|

sn,γl,l
6 Gγl(u, t, l),

where function G is such that
∫ ∞
−∞

Gα+δ
γl

(u, t, l)du <∞,
∫ ∞
−∞

Gα−δ
γl

(u, t, l)du <∞. (5.41)

Since

Cnu,n =
m∑
i=1

xi
d∏
l=1

(
s−1
nl,γl,l

S
γl,l,t

(i)
l

(bnlulc , nl)
)
,

we have

1A1×···×Ad(bnuc)Cnu,n →
m∑
i=1

xi
d∏
l=1

Hγl(ul, t
(i)
l , l) =

m∑
i=1

xiH(u, t(i)),

and, applying Lemma 2.4, we obtain

Fn(u,A1, . . . ,Ad)→ f

 m∑
i=1

xiH(u, t(i))
 . (5.42)

Lemmas 5.9 and 2.3 imply that

|Fn(u, G1, . . . , Gd)|

6 2 max
(∣∣∣Cbnuc,n

∣∣∣α−δ , ∣∣∣Cbnuc,n
∣∣∣α+δ)

1G1×···×Gd(bnuc)

6 2
(∣∣∣Cbnuc,n

∣∣∣α−δ +
∣∣∣Cbnuc,n

∣∣∣α+δ)
1G1×···×Gd(bnuc). (5.43)

We wish to show that the function on the right-hand side is dominated by

an integrable function if Gi = Ai, i = 1, . . . , d.

We have

1A1×···×Ad(bnuc) |Cnu,n|
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=
∣∣∣∣∣∣
m∑
i=1

xi
d∏
l=1

(
s−1
nl,γl,l

S
γl,l,t

(i)
l

(bnlulc , nl)1Al(bnlulc)
)∣∣∣∣∣∣

6
m∑
i=1
|xi|

d∏
l=1

∣∣∣∣s−1
nl,γl,l

S
γl,l,t

(i)
l

(bnlulc , nl)1Al(bnlulc)
∣∣∣∣

6
m∑
i=1
|xi|

d∏
l=1

Gγl

(
ul, t

(i)
l , l

)
,

according to Lemma 5.10. Thus

∣∣∣Cbnuc,n
∣∣∣α−δ 6

|xi| d∏
l=1

Gγl

(
ul, t

(i)
l , l

)α−δ

6

mmax
i

|xi| d∏
l=1

Gγl

(
ul, t

(i)
l , l

)α−δ

6 mα−δ
m∑
i=1
|xi|α−δ

d∏
l=1

Gα−δ
γl

(
ul, t

(i)
l , l

)
,

and, similarly,
∣∣∣Cbnuc,n

∣∣∣α+δ
6 mα+δ

m∑
i=1
|xi|α+δ

d∏
l=1

Gα+δ
γl

(
ul, t

(i)
l , l

)
.

Hence,

|Fn(u,A1, . . . ,Ad)|

6 2mα+δ
m∑
i=1

|xi|α+δ
d∏
l=1

Gα+δ
γl

(
ul, t

(i)
l , l

)
+ |xi|α−δ

d∏
l=1

Gα−δ
γl

(
ul, t

(i)
l , l

) ,
and the dominating function is integrable due to (5.41). This, together

with (5.42), enables us to use the dominated convergence theorem. We

obtain

In(A1, . . . ,Ad)→
∫
Rd
f

 m∑
i=1

xiH(u, t(i))
 du. (5.44)

It remains to show that

In(G1, . . . , Gd)→ 0 (5.45)

if Gl 6= Al for some l. Inequality (5.43) implies

|In(G1, . . . , Gd)|

6
∫
Rd

2
(∣∣∣Cbnuc,n

∣∣∣α−δ +
∣∣∣Cbnuc,n

∣∣∣α+δ)
1G1×···×Gd(bnuc)du. (5.46)
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Let us show that
∫
Rd

∣∣∣Cbnuc,n
∣∣∣α−δ 1G1×···×Gd(bnuc)du→ 0. (5.47)

We have ∣∣∣Cbnuc,n
∣∣∣α−δ 1G1×···×Gd(bnuc)

=
∣∣∣∣∣∣
m∑
i=1

xi
d∏
l=1

(
s−1
nl,γl,l

S
γl,l,t

(i)
l

(bnlulc , nl)1Gl(bnlulc)
)∣∣∣∣∣∣
α−δ

6
m∑
i=1

mα−δ

∣∣∣∣∣∣xi
d∏
l=1

(
s−1
nl,γl,l

S
γl,l,t

(i)
l

(bnlulc , nl)1Gl(bnlulc)
)∣∣∣∣∣∣
α−δ

=
m∑
i=1

mα−δ |xi|α−δ
d∏
l=1

∣∣∣∣s−1
nl,γl,l

S
γl,l,t

(i)
l

(bnlulc , nl)1Gl(bnlulc)
∣∣∣∣α−δ ,

therefore,
∫
Rd

∣∣∣Cbnuc,n
∣∣∣α−δ 1G1×···×Gd(bnuc)du

6
m∑
i=1

mα−δ |xi|α−δ
d∏
l=1

∫
R

∣∣∣∣s−1
nl,γl,l

S
γl,l,t

(i)
l

(bnlulc , nl)1Gl(bnlulc)
∣∣∣∣α−δ dul,

If Gl = Al, then, due to Lemma 5.10,
∫
R

∣∣∣∣s−1
nl,γl,l

S
γl,l,t

(i)
l

(bnlulc , nl)1Gl(bnlulc)
∣∣∣∣α−δ dul

6
∫
R
Gα−δ
γl

(ul, t(i)l , l)dul <∞.

and (5.47) follows from the following lemma, which is proved on page 141:

Lemma 5.11. If Gl = Acl , then
∫
R

∣∣∣∣s−1
nl,γl,l

S
γl,l,t

(i)
l

(bnlulc , nl)1Gl(bnlulc)
∣∣∣∣α−δ dul → 0.

Similarly we can show that
∫
Rd

∣∣∣Cbnuc,n
∣∣∣α+δ

1G1×···×Gd(bnuc)du→ 0,

therefore, the right-hand side of (5.46) converges to 0, implying (5.45).

Relations (5.44) and (5.45) imply (5.37) and (5.38). Recalling (5.36)

we see that

Jn →
∫
Rd
f

 m∑
i=1

xiH(u, t(i))
 du.
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We are now in a position to find the limit of (5.35):

∑
j
h
(
|Dj,n|−1) |Dj,n|α − iβτα

∑
j
h
(
|Dj,n|−1)

D<α>
j,n

→
∫
Rd

∣∣∣∣∣∣
m∑
i=1

xiH(u, t(i))
∣∣∣∣∣∣
α

du− iβτα
∫
Rd

 m∑
i=1

xiH(u, t(i))
<α> du,

which implies

φn(x1, . . . , xm)

→ exp
− ∫

Rd

∣∣∣∣∣∣
m∑
i=1

xiH(u, t(i))
∣∣∣∣∣∣
α 1− iβταsign

 m∑
i=1

xiH(u, t(i))
 du.

The limit is ch.f. of the vector (I(t(1)), . . . , I(t(m))). The proof is complete.

We provide proofs of lemmas used in the previous proof.

Proof of Lemma 5.9. Let us demonstrate that for every l there existsKl, κl >

0 such that

n
−1/α
l s−1

nl,γl,l

∣∣∣Sγl,l,t(i)(bnluc , nl)∣∣∣ 6 Kln
−κl
l

for all i = 1, . . . ,m, u ∈ R and nl ∈ N.

If γl > 1 and ∑∞
j=0 aj(γl, l) 6= 0, then

n
−1/α
l s−1

nl,γl,l
|Sγl,l,t(bnluc , nl)|

= n
−1/α
l |Sγl,l,t(bnluc , nl)|

6 n
−1/α
l

∞∑
j=0
|aj(γl, l)| ,

and we can set Kl = ∑∞
j=0 |aj(γl, l)|, κl = 1/α.

If 1 < γl < 1 + 1/α and ∑∞
j=0 aj(γl, l) = 0, then

n
−1/α
l s−1

nl,γl,l
|Sγl,l,t(bnluc , nl)|

= n
−1/α
l nγl−1

l L−1
l (nl) |Sγl,l,t(bnluc , nl)|

6 n
γl−1−1/α
l L−1

l (nl)
∞∑
j=0
|aj(γl, l)| .
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As Ll is a s.v.f. and γl − 1− 1/α < 0, there exists a constant pl > 0 such

that Ll(nl) > pln
(γl−1−1/α)/2
l for nl ∈ N. Therefore,

n
−1/α
l s−1

nl,γl,l
|Sγl,l,t(bnluc , nl)| 6 n

(γl−1−1/α)/2
l p−1

l

∞∑
j=0
|aj(γl, l)|

and we can set Kl = p−1
l

∑∞
j=0 |aj(γl, l)| and κl = (1 + 1/α− γl)/2.

It remains to deal with the case 1/α < γ 6 1. The sequence snl,γl,l is

of the form n1−γ
l L̃l(nl), with a s.v.f. L̃l, thus,

n
−1/α
l s−1

nl,γl,l
|Sγl,l,t(bnluc , nl)|

= n
γl−1−1/α
l L̃−1

l (nl)
∣∣∣∣∣∣
∑
k

ak(γl, l)1{(0∨(−bnluc))6k6nlt−bnluc}

∣∣∣∣∣∣
6 n

γl−1−1/α
l L̃−1

l (nl)
∑
k

|ak(γl, l)| 1{(0∨(−bnluc))6k6nlt−bnluc}.

Using the fact that there exists a constant pl > 0 such that L̃l(nl) >

pln
−1/(4α)
l , and applying Lemma 2.2 with η = 1/(4α), we obtain

n
−1/α
l s−1

nl,γl,l
|Sγl,l,t(bnluc , nl)|

6 p−1
l En

γl−1−1/α
l n

1/(4α)
l

∑
k

(1 + k)1/(4α)−γl
1{(0∨(−bnluc))6k6nlt−bnluc}

6 p−1
l En

γl−1−3/(4α)
l

∫ ∞
−∞

(1 + bvc)1/(4α)−γl
1{(0∨(−bnluc))6v6nlt−bnluc+1}dv

6 p−1
l En

γl−1−3/(4α)
l

∫ ∞
−∞

v1/(4α)−γl
1{(0∨(−nlu))6v6nlt−nlu+2nl}dv

= p−1
l En

γl−1−3/(4α)
l

∫ ∞
−∞

(nlv)1/(4α)−γl
1{(0∨(−nlu))6nlv6nlt−nlu+2nl}dnlv

= p−1
l En

−1/(2α)
l

∫ ∞
−∞

v1/(4α)−γl
1{(0∨(−u))6v6t−u+2}dv

= p−1
l En

−1/(2α)
l

(t− u+ 2)1+1/(4α)−γl
+ − (−u)1+1/(4α)−γl

+
1 + 1/(4α)− γl

,

here E is from (2.3). Therefore, we can set κl = 1/(2α) and Kl =

max(Kl(i), i = 1, . . . ,m), where

Kl(i) = max
u

p−1
l E

(t(i)l − u+ 2)1+1/(4α)−γl
+ − (−u)1+1/(4α)−γl

+
1 + 1/(4α)− γl

 .
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The maximum exists and is finite, since the function is continuous and its

limits as u→ ±∞ are 0.

Let us denote K = max(K1, . . . , Kd) and κ = min(κ1, . . . , κd), then

n
−1/α
l s−1

nl,γl,l
S
γl,l,t

(i)
l

(bnluc , nl) 6 Kn−κl ,

thus ∣∣∣Dbnuc,n
∣∣∣ = q−1

n
∣∣∣Cbnuc,n

∣∣∣
6 h

−1/α
1/α

 d∏
l=1

nl

 m∑
i=1
|xi|

d∏
l=1

(
n

1/α
l s−1

nl,γl,l

∣∣∣∣Sγl,l,t(i)l (bnlulc , nl)
∣∣∣∣)

6
m∑
i=1
|xi|Kdh

−1/α
1/α

 d∏
l=1

nl

 d∏
l=1

nl

−κ → 0,

as min(n1, . . . , nd) → ∞, since h1/α is a s.v.f. and κ > 0. The limit is

uniform for all u ∈ Rd.

Proof of Lemma 5.10. It is easy to see that Sγl,l,t(bnuc , n) = 0 if u > t+1,

therefore, in what follows we assume u < t+ 1.

If γl > 1 we have ∑∞
j=0 |aj(γl, l)| < ∞. Assuming ∑∞

j=0 aj(γl, l) 6= 0,

almost surely we have

Sγl,l,t(bnuc , n)→ 1[0,t)(u)
∞∑
k=0

ak(γl, l) = Hγl(u, t, l).

If u > −1, we can bound

|Sγl,l,t(bnuc , n)| =
∣∣∣∣∣∣

nt−bnuc∑
k=0∨(−bnuc)

ak(γl, l)
∣∣∣∣∣∣ 6 1[−1,t+1)(u)

∞∑
k=0
|ak(γl, l)| .

Suppose η = min (γl − 1, γl − 1/(α− δ)) /2. Notice that the choice of

δ implies η > 0. Applying Lemma 2.2, for u < −1 we get

|Sγl,l,t(bnuc , n)| 6
nt−bnuc∑
k=−bnuc

|ak(γl, l)|

=
∫ nt−bnuc+1

−bnuc

∣∣∣abvc(γl, l)∣∣∣ dv 6 E
∫ nt−bnuc+1

−bnuc
(1 + bvc)η−γldv

6 E
∫ nt−nu+2

−nu
vη−γldv 6 E

∫ n(t−u+2)

−nu
vη−γldv
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= E
n1+η−γl

γl − 1− η
(
(−u)1+η−γl − (t− u+ 2)1+η−γl

)

6
E

γl − 1− η
(
(−u)1+η−γl − (t− u+ 2)1+η−γl

)
.

Therefore, the following inequality holds

|Sγl,l,t(bnuc , n)| 6 Gγl(u, t, l) :=


1[−1,t+1)(u)∑∞k=0 |ak(γl, l)| , u > −1,
E((−u)1+η−γl−(t−u+2)1+η−γl)

γl−1−η , u < −1.

Let us show that (5.41) holds. Function Gγl is bounded on [−1, t+1), and

equals 0 if u > t+ 1, therefore

∫ ∞
−1
Gα±δ
γl

(u, t, l)du <∞.

Function Gγl is continuous on (−∞,−1),

lim
u↑−1

Gγl(u, t, l) =
E
(
1− (t+ 3)1+η−γl

)
γl − 1− η ,

and

Gγl(u, t, l) ∼ E1(−u)η−γl, as u→ −∞,

with some constant E1, therefore, in order for (5.41) to hold, we must have

(η − γl)(α− δ) < −1 and (η − γl)(α+ δ) < −1. But those inequalities do

hold, since η < γl − 1/(α− δ).

Next we look at the case 1/α < γl < 1. We begin by investigating

the point-wise convergence of s−1
n,γl,l

Sγl,l,t(bnuc , n), with sn,γl,l defined by

(5.10). For convenience of writing we introduce the notation

b(k, u, n) = ak(γl, l)1{(0∨(−bnuc))6k6nt−bnuc}.

We split Sγl,l,t(bnuc , n) into two terms

Sγl,l,t(bnuc , n) =
bnεc−1∑
k=0

b(k, u, n) +
∞∑

k=bnεc
b(k, u, n) =: Z1 + Z2, (5.48)
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here 0 < ε < 1 − γl is a fixed number. Applying Lemma 2.2 with η = γl

we obtain the following bound

|Z1| 6
bnεc−1∑
k=0
|b(k, u, n)| 6

bnεc−1∑
k=0
|ak(γl, l)|

6 E
bnεc−1∑
k=0

(1 + k)γl−γl = E bnεc 6 Enε,

which implies
Z1

sn,γl,l
→ 0, n→∞, (5.49)

uniformly for all u.

We now turn to Z2:

Z2 =
∞∑

k=bnεc
b(k, u, n) =

∫ ∞
bnεc

b(bvc , u, n)dv = n
∫ ∞
bnεc
n

b(bnvc , u, n)dv

= n
∫ ∞

0
1( bnεcn ,∞)(v)b(bnvc , u, n)dv.

It is easy to see that almost surely

1( bnεcn ,∞)(v)→ 1(0,∞)(v),

1{(0∨(−bnuc))6bnvc6nt−bnuc} → 1{(0∨(−u))6v6t−u}, n→∞.

From (5.9) we know that

abnvc(γl, l)
(1 + bnvc)−γlLl(bnvc)

→ 1, n→∞, (5.50)

and by Lemma 2.4, for v > 0, we have

(1 + bnvc)−γlLl(bnvc)
n−γlLl(n) =

(1 + bnvc
n

)−γl Ll(nbnvcn )
Ll(n) → v−γl, (5.51)

as n→∞. From the above we conclude that almost surely

1
n−γlLl(n)1( bnεcn ,∞)(v)b(bnvc , u, n) (5.52)

= (1 + bnvc)−γlLl(bnvc)
n−γlLl(n) 1( bnεcn ,∞)(v)

abnvc(γl, l)1{(0∨(−bnuc))6bnvc6nt−bnuc}

(1 + bnvc)−γlLl(bnvc)
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→ v−γl1{(0∨(−u))6v6t−u}.

Our next objective is to show that the absolute value of (5.52) is bounded

above by an integrable function.

If bnvc > 0, then v > 0. Also, if bnvc 6 nt − bnuc, then nv 6

bnvc+1 6 nt−bnuc+1 6 nt−nu+2 6 n(t−u+1) for n > 2. Therefore,

v 6 t− u+ 1. By the above

1{(0∨(−bnuc))6bnvc6nt−bnuc} 6 1{06v6t−u+1}.

Relation (5.9) implies the existence of N such that

|ak(γl, l)|
(1 + k)−γlLl(k) 6 2

for k > N . If n > (N + 2)1/ε, we have bnvc > N for all v > bnεc /n and,

thus,

1( bnεcn ,∞)(v)
∣∣∣abnvc(γl, l)∣∣∣

(1 + bnvc)−γlLl(bnvc)
6 2

for all v > 0. It is clear that

(1 + bnvc)−γl
n−γl

6 v−γl,

and it remains to deal with Ll(bnvc)/Ll(n). Theorem 2.1, applied with

f = Ll, A = 2 and η = min(1− γl, γl− 1/(α− δ))/2, implies the existence

of B such that

Ll(y)
Ll(x) 6 2 max

((y
x

)η
,
(y
x

)−η)
, x, y > B. (5.53)

For v ∈ (bnεc /n,∞) we have bnvc > nε − 2, therefore, if n > (B + 2)1/ε

we have bnvc > B. If, additionally, n > B, (5.53) implies

1( bnεcn ,∞)(v)Ll(bnvc)
Ll(n) 6 21( bnεcn ,∞)(v) max

(bnvc
n

)η
,

(bnvc
n

)−η

6 2 max
(
vη,

(v
2

)−η)
6 21+η max

(
vη, v−η

)
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for all v > 0. We have thus obtained the following inequality

|b(bnvc , u, n)|
n−γlLl(n) 1( bnεcn ,∞)(v) 6 22+ηv−γl max

(
vη, v−η

)
1{06v6t−u+1}. (5.54)

The function on the right hand side is integrable in (0,∞), therefore the

dominated convergence theorem implies

Z2

sn,γl,l
→

∫ ∞
0
v−γl1{(0∨(−u))6v6t−u}dv

= (t− u)1−γl
+ − (−u)1−γl

+
1− γl

= Hγl(u, t, l).

Recalling (5.48) and (5.49), we get

Sγl,l,t(bnuc , n)
sn,γl,l

→ Hγl(u, t, l).

We can now proceed to showing that

s−1
n,γl,l
|Sγl,l,t(bnuc , n)| (5.55)

is bounded by a function Gγl(u, t, l) satisfying (5.41).

For −1 6 u < t + 1 we split Sγl,l,t(bnuc , n) as in (5.48). We conclude

from (5.49) that s−1
n,γl,l
|Z1| < 1 for large n. From (5.54) we obtain

s−1
n,γl,l
|Z2| 6 22+η

∫ ∞
0
v−γl max

(
vη, v−η

)
1{06v6t−u+1}dv

6 22+η
∫ t+2

0
v−γl max

(
vη, v−η

)
dv.

As the integral is finite and does not depend on u, we conclude that, for

−1 6 u < t+ 1, (5.55) is bounded by a finite constant C.

Suppose u < 1, then

|Sγl,l,t(bnuc , n)| 6
∞∑
k=0
|b(k, u, n)| =

∞∑
k=0

1{−bnuc6k6nt−bnuc} |ak(γl, l)|

=
∫ ∞

0
1{−bnuc6bvc6nt−bnuc}

∣∣∣abvc(γl, l)∣∣∣ dv
= n

∫ ∞
0

1{−bnuc6bnvc6nt−bnuc}
∣∣∣abnvc(γl, l)∣∣∣ dv.
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Since bnvc > −bnuc > n→∞, similarly to (5.54) we obtain∣∣∣abnvc∣∣∣
n−γlLl(n)1{−bnuc6bnvc6nt−bnuc} 6 22+ηvη−γl1{−u6v6t−u+2},

therefore

Sγl,l,t(bnuc , n)
sn,γl,l

6 22+η
∫ ∞

0
vη−γl1{−u6v6t−u+2}dv

= 22+δ (t− u+ 2)1+η−γl − (−u)1+η−γl

1 + η − γl
.

Denoting

Gγl(u, t, l) =



C if − 1 6 u < t+ 1,

22+η (t−u+2)1+η−γl−(−u)1+η−γl

1+η−γl if u < −1,

0 elsewhere,

we get a function dominating (5.55). Let us show that (5.41) holds. Func-

tion Gγl is constant on [−1, t+ 1), and equals 0 if u > t+ 1, therefore
∫ ∞
−1
Gα±δ
γl

(u, t, l)du <∞.

Function Gγl is continuous on (−∞,−1),

lim
u↑−1

Gγl(u, t, l) =
22+η

(
(t+ 3)1+η−γl − 1

)
1 + η − γl

,

and

Gγl(u, t, l) ∼ E2(−u)η−γl, as u→ −∞,

with some constant E2, therefore, in order for (5.41) to hold, we must have

(η − γl)(α− δ) < −1 and (η − γl)(α+ δ) < −1. But those inequalities do

hold, since η < γl − 1/(α− δ).

We now turn to the case γl = 1. As was previously mentioned, in this

case we make the assumption Ll ≡ 1. It follows that

|aj(γl, l)| (1 + j) 6 E3
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for some constant E3, since by (5.9) we have aj(γl, l)(1 + j)→ 1.

We separate the first term in Sγl,l,t(bnuc , n),

Sγl,l,t(bnuc , n) =
nt−bnuc∑

k=0∨(−bnuc)
ak(γl, l)

= a0∨(−bnuc)(γl, l)1{0∨(−bnuc)6nt−bnuc} +
nt−bnuc∑

k=1+0∨(−bnuc)
ak(γl, l)

and denote

S̃γl,l,t(bnuc , n) =
nt−bnuc∑

k=1+0∨(−bnuc)
ak(γl, l). (5.56)

The quantity
∣∣∣a0∨(−bnuc)(γl, l)1{0∨(−bnuc)6nt−bnuc}

∣∣∣ can be bounded by

R(u) =



0 if u > t+ 1,

E3 if − 2 6 u < t+ 1,

E3(−u)−1, if u < −2.

This bound implies∣∣∣a0∨(−bnuc)(γl, l)1{0∨(−bnuc)6nt−bnuc}
∣∣∣

lnn → 0. (5.57)

We continue by examining (5.56). Introducing notation

b̃(k, u, n) = ak(γl, l)1{1+(0∨(−bnuc))6k6nt−bnuc},

we have

S̃γl,l,t(bnuc , n) =
∞∑
k=0

b̃(k, u, n) =
∫ ∞

0
b̃(bvc , u, n)dv

=
∫ ∞
−∞

b̃(bnvc , u, n)dnv

= lnn
∫ ∞
−∞

b̃(bnvc , u, n)nvdv

= lnn
∫ ∞

0
b̃(bnvc , u, n)nvdv,

the last equality holds since for v < 0 we have b̃(bnvc , u, n) = 0. Let us

investigate a.s. convergence of the function under the integral.
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Suppose u /∈ {0, t}. We have

1{1+(0∨(−bnuc))6bnvc6nt−bnuc} →


1(0,t)(u), 0 < v < 1,

0, v > 1,

therefore, by (5.9),

b̃(bnvc , u, n)nv → 1(0,t)(u)1(0,1)(v).

If bnvc 6 nt− bnuc, for n > 2 we have

nv 6 bnvc+ 1 6 nt− bnuc+ 1 6 nt− nu+ 2 6 n(t− u+ 1),

and if 1 + (0 ∨ (−bnuc)) 6 bnvc,

nv > bnvc > 1 + (0 ∨ (−bnuc)) > 1 + (0 ∨ (−nu)) > (1 ∨ (−nu)),

therefore, for n > 3,

1{1+(0∨(−bnuc))6bnvc6nt−bnuc} 6 1{1∨(−nu)6nv6n(t−u+1)}

= 1{ln(1∨(−nu))6v lnn6lnn+ln(t−u+1)} (5.58)

6 1{06v61+ln(t−u+1)},

This implies ∣∣∣b̃(bnvc , u, n)nv
∣∣∣ 6 E31{06v61+ln(t−u+1)}.

The dominating function is integrable, therefore, the dominated conver-

gence theorem implies

S̃γl,l,t(bnuc , n)
lnn →

∫ ∞
0

1(0,t)(u)1(0,1)(v)dv = 1(0,t)(u).

Recalling (5.57) we obtain

Sγl,l,t(bnuc , n)
lnn → 1(0,t)(u).

With the help of (5.58) we can also bound (lnn)−1
∣∣∣S̃γl,l,t(bnuc , n)

∣∣∣.
For −2 6 u < t+ 1 and n > 3 we have∣∣∣S̃γl,l,t(bnuc , n)

∣∣∣
lnn 6 E3

∫ ∞
0

1{06v lnn6lnn+ln(t−u+2)}dv
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= E3
lnn+ ln(t− u+ 2)

lnn 6 E3(1 + ln(t+ 2− u)),

and for u < −2, ∣∣∣S̃γl,l,t(bnuc , n)
∣∣∣

lnn 6
∫ ∞

0

∣∣∣b̃(bnvc , u, n)
∣∣∣nvdv

6 E3

∫ ∞
0

1{ln(−nu)6v lnn6lnn+ln(t−u+1)}dv

= E3
lnn+ ln(t− u+ 1)− ln(−nu)

lnn

= E3
ln(t− u+ 1)− ln(−u)

lnn
6 E3 (ln(t− u+ 1)− ln(−u)) .

Let us denote

Gγl(u, t, l) =



0 if u > t+ 1,

E3(1 + ln(t+ 2− u)) +R(u) if − 2 6 u < t+ 1,

E3 (ln(t− u+ 1)− ln(−u)) +R(u) if u < −2.

This function satisfies

s−1
n,γl,l
|Sγl,l,t(bnuc , n)| 6 Gγl(u, t, l),

let us show that it also satisfies (5.41). Function Gγl(·, t, l) is bounded on

[−2, t+ 1), and equals 0 if u > t+ 1, therefore
∫ ∞
−2
Gα±δ
γl

(u, t, l)du <∞.

Function Gγl(·, t, l) is continuous on (−∞,−2),

lim
u↑−2

Gγl(u, t, l) = E3 (ln(t+ 3)− ln(2)) +R(−2),

and

Gγl(u, t, l) ∼ E4(−u)−1, as u→ −∞,

with some constant E4. Hence, in order for (5.41) to hold, we must have

−(α − δ) < −1 and −(α + δ) < −1. These inequalities do hold, since

δ < α− 1.
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We now move to the case 1 < γl < 1 + 1/α, ∑∞k=0 ak(γl, l) = 0, and

examine
Sγl,l,t(bnuc , n)
n1−γlLl(n) 1Al(ε,n)(bnuc),

assuming that t ∈
{
t
(j)
l , j = 1, . . . ,m

}
.

If u > t, and bnuc ∈ Al we have bnuc > nt+nε, therefore nt−bnuc 6

−nε < 0, and Sγl,l,t(bnuc , n) = 0.

Suppose 0 < u < t, u /∈
{
t
(j)
l , j = 1, . . . ,m

}
, then

Sγl,l,t(bnuc , n) =
nt−bnuc∑
k=0

ak(γl, l) = −
∞∑

k=bntc−bnuc+1
ak(γl, l)

= −
∫ ∞

0
abvc(γl, l)1{bntc−bnuc+16bvc}dv

= −n
∫ ∞

0
abnvc(γl, l)1{bntc−bnuc+16bnvc}dv

= −n1−γlLl(n)
∫ ∞

0

abnvc(γl, l)
n−γlLl(n) 1{bntc−bnuc+16bnvc}dv

= −n1−γlLl(n)
∫ ∞

0
κ(1)
n (v)dv,

where

κ(1)
n (v) =

abnvc(γl, l)
n−γlLl(n) 1{bntc−bnuc+16bnvc}.

Almost surely we have

1{bntc−bnuc+16bnvc} = 1{(bntc−bnuc+1)/n6bnvc/n} → 1(t−u,∞)(v),

and for v > 0

abnvc(γl, l)
n−γlLl(n)

=
abnvc(γl, l)

(1 + bnvc)−γlLl(bnvc)
(1 + bnvc)−γlLl(bnvc)

n−γlLl(n) → v−γl (5.59)

by (5.50) and (5.51). Thus,

κ(1)
n (v)→ 1(t−u,∞)(v)v−γl.
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Also, we have

1Al(bnuc) =
m∏
j=0

1(
nt

(j)
l −nε,nt

(j)
l +nε

)c(bnuc)→ 1,

since |u− t(j)l | > 0 for all j = 0, . . . ,m.

Suppose

η = min(γl − 1, γl − 1/(α− δ), 1− γl + 1/(α + δ))
2 ,

Theorem 2.1, applied with f = Ll and A = 2, implies the existence of B

such that
Ll(y)
Ll(x) 6 2 max

((y
x

)η
,
(y
x

)−η)
, x, y > B. (5.60)

If bnuc ∈ Al(ε, n), we have nt − bnuc > nε. For such u, and v satisfying

bnvc > bntc − bnuc + 1 we have bnvc > nt − bnuc > nε. Therefore, if

nε > B, we have

1Al(bnuc)1{bntc−bnuc+16bnvc}
Ll(bnvc)
Ll(n)

6 21{bntc−bnuc+16bnvc}max
(bnvc

n

)η
,

(bnvc
n

)−η
6 21+η

1(t−u,∞)(v) max
(
vη, v−η

)
6 21+η

1(t−u,∞)(v)
(
vη + v−η

)
.

There exists a constant E5 such that∣∣∣∣∣ abnvc(γl, l)
(1 + bnvc)−γlLl(bnvc)

∣∣∣∣∣ 6 E5. (5.61)

The inequalities above imply that for large n and all 0 < u < t, v > 0 we

have

1Al(bnuc)
∣∣∣κ(1)
n (v)

∣∣∣ 6 E521+η
1(t−u,∞)(v)v−γl

(
vη + v−η

)
. (5.62)

The dominating function is integrable, thus

Sγl,l,t(bnuc , n)
n1−γlLl(n) 1Al(ε,n)(bnuc) = −1Al(bnuc)

∫ ∞
0
κ(1)
n (v)dv

→ −
∫ ∞

0
1(t−u,∞)(v)v−γldv = (t− u)1−γl

1− γl
= Hγl(u, t, l),

137



by the dominated convergence theorem.

From (5.62) we also obtain the following inequality:

|Sγl,l,t(bnuc , n)|
n1−γlLl(n) 1Al(ε,n)(bnuc) 6 1Al(bnuc)

∫ ∞
0

∣∣∣κ(1)
n (v)

∣∣∣ dv

6 E521+η
∫ ∞

0
1(t−u,∞)(v)v−γl

(
vη + v−η

)
dv

= E521+η
((t− u)1−γl+η

1− γl + η
+ (t− u)1−γl−η

1− γl − η

)

= E521+η (Hγl−η(u, t, l) +Hγl+η(u, t, l)) .

Suppose u < 0, then

Sγl,l,t(bnuc , n) =
nt−bnuc∑
k=−bnuc

ak(γl, l)

=
∫ ∞

0
abvc(γl, l)1{−bnuc6bvc6bntc−bnuc}dv

= n
∫ ∞

0
abnvc(γl, l)1{−bnuc6bnvc6bntc−bnuc}dv

= n1−γlLl(n)
∫ ∞

0

abnvc(γl, l)
n−γlLl(n) 1{−bnuc6bnvc6bntc−bnuc}dv

= n1−γlLl(n)
∫ ∞

0
κ(2)
n (v)dv,

where

κ(2)
n (v) =

abnvc(γl, l)
n−γlLl(n) 1{−bnuc6bnvc6bntc−bnuc}.

Almost surely we have

1{−bnuc6bnvc6bntc−bnuc} = 1{−bnuc/n6bnvc/n6(bntc−bnuc)/n} → 1(−u,t−u)(v),

and for v > 0 (5.59) holds, therefore, almost surely,

κ(2)
n (v)→ 1(−u,t−u)(v)v−γl.
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If bnuc ∈ Al(ε, n), we have bnuc 6 −nε, therefore −bnuc > nε. From

(5.60), if nε > B, we obtain

1Al(bnuc)1{−bnuc6bnvc6bntc−bnuc}
Ll(bnvc)
Ll(n)

6 21{−bnuc6bnvc6bntc−bnuc}max
(bnvc

n

)η
,

(bnvc
n

)−η
6 21+η

1(−u,t−u+1)(v) max
(
vη, v−η

)
.

6 21+η
1(−u,t−u+1)(v)

(
vη + v−η

)
.

The inequalities above, with (5.61), imply that for large n and all u < 0,

v > 0 we have

1Al(bnuc)
∣∣∣κ(2)
n (v)

∣∣∣ 6 E521+η
1(−u,t−u+1)(v)v−γl

(
vη + v−η

)
. (5.63)

The dominating function is integrable, thus

Sγl,l,t(bnuc , n)
n1−γlLl(n) 1Al(ε,n)(bnuc) = 1Al(bnuc)

∫ ∞
0
κ(2)
n (v)dv

→
∫ ∞

0
1(−u,t−u)(v)v−γldv = (t− u)1−γl − (−u)1−γl

1− γl
= Hγl(u, t, l).

From (5.63) we obtain

|Sγl,l,t(bnuc , n)|
n1−γlLl(n) 1Al(ε,n)(bnuc) 6

∫ ∞
0

1Al(bnuc)
∣∣∣κ(2)
n (v)

∣∣∣ dv
6 E521+η

∫ ∞
0

1(−u,t−u+1)(v)
(
v−γl+η + v−γl−η

)
dv

= E521+η (Hγl−η(u, t+ 1, l) +Hγl+η(u, t+ 1, l)) .

Summarizing, we have shown that for almost every u

Sγl,l,t(bnuc , n)
n1−γlLl(n) 1Al(ε,n)(bnuc)→ Hγl(u, t, l),

and
|Sγl,l,t(bnuc , n)|
n1−γlLl(n) 1Al(ε,n)(bnuc) 6 Gγl(u, t, l),
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where

Gγl(u, t, l) =



E521+η (Hγl−η(u, t+ 1, l) +Hγl+η(u, t+ 1, l)) if u < 0,

E521+η (Hγl−η(u, t, l) +Hγl+η(u, t, l)) if 0 < u < t,

0 if u > t.

It remains to show that (5.41) holds. Function Gγl(·, t, l) is continuous

on the intervals (−∞, 0) and (0, t), andGγl(u, t, l) = 0 for u > t. Therefore,

we only need to investigate the behaviour of Gγl(·, t, l) at the endpoints of

intervals (−∞, 0) and (0, t).

We begin with the interval (−∞, 0). As u→ −∞ we have

Gγl(u, t, l) ∼ E6(−u)−γl+η,

and, as u ↑ 0,

Gγl(u, t, l) ∼ E7(−u)1−γl−η,

with some constants E6, E7. In order to have

∫ 0

−∞
Gα±δ
γl

(u, t, l)du <∞,

we need inequalities (−γl + η)(α± δ) < −1 and (1− γl − η)(α± δ) > −1

to hold. They do hold, since

η < γl −
1

α− δ
, η < 1− γl + 1

α + δ

by the choice of η.

Let us investigate (0, t) now. As u ↑ t we have

Gγl(u, t, l) ∼ E8(t− u)1−γl−η,

with some E8 ∈ R, and, as u ↓ 0, Gγl(u, t, l) converges to a constant.

Hence, ∫ t

0
Gα±δ
γl

(u, t, l)du <∞
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holds if (1 − γl − η)(α ± δ) > −1. This is the same inequality as before,

and it was already shown that it holds.

The proof is complete.

Proof of Lemma 5.11. Due to the fact that

Gl = Acl =
m⋃
j=0

(nlt(j)l − nεl , nlt
(j)
l + nεl ),

we have

∫
R

∣∣∣∣s−1
nl,γl,l

S
γl,l,t

(i)
l

(bnlulc , nl)1Gl(bnlulc)
∣∣∣∣α−δ dul

6
m∑
j=0

∫
R
1(nit(j)i −nεi ,nit

(j)
i +nεi)

(bnlulc)
∣∣∣∣s−1
nl,γl,l

S
γl,l,t

(i)
l

(bnlulc , nl)
∣∣∣∣α−δ dul.

Inequality

1(nlt(j)l −nεl ,nlt
(j)
l +nεl )

(bnlulc) 6 1(nlt(j)l −nεl ,nlt
(j)
l +nεl+1)(nlul)

6 1(nlt(j)l −nεl ,nlt
(j)
l +2nεl )

(nlul) = 1(t(j)l −n
ε−1
l ,t

(j)
l +2nε−1

l )(ul)

implies

∫
R
1(nlt(j)l −nεl ,nlt

(j)
l +nεl )

(bnlulc)
∣∣∣∣s−1
nl,γl,l

S
γl,l,t

(i)
l

(bnlulc , nl)
∣∣∣∣α−δ dul

6
∫ t

(j)
l +2nε−1

l

t
(j)
l −n

ε−1
l

∣∣∣∣s−1
nl,γl,l

S
γl,l,t

(i)
l

(bnlulc , nl)
∣∣∣∣α−δ dul,

therefore

∫
R

∣∣∣∣s−1
nl,γl,l

S
γl,l,t

(i)
l

(bnlulc , nl)1Gl(bnlulc)
∣∣∣∣α−δ dul

6
m∑
j=0

∫ t
(j)
l +2nε−1

l

t
(j)
l −n

ε−1
l

∣∣∣∣s−1
nl,γl,l

S
γl,l,t

(i)
l

(bnlulc , nl)
∣∣∣∣α−δ dul,

and the proof will be complete if we show that for j = 0, . . . ,m
∫ t

(j)
l +2nε−1

l

t
(j)
l −n

ε−1
l

∣∣∣∣s−1
nl,γl,l

S
γl,l,t

(i)
l

(bnlulc , nl)
∣∣∣∣α−δ dul → 0, nl →∞. (5.64)

We proceed by separately investigating the cases γl > 1 with∑j aj(γl, l) 6=

0, 1/α < γl 6 1, and 1 < γl < 1 + 1/α with ∑
j aj(γl, l) = 0.
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If γl > 1 with ∑
j aj(γl, l) 6= 0, or 1/α < γl 6 1 we will use the results

obtained while proving Lemma 5.10. In these cases the set Al played no

role, therefore, we have shown that
|Sγl,l,t(bnuc , n)|

sn,γl,l
6 Gγl(u, t, l)

with a function Gγl(u, t, l) satisfying∫ ∞
−∞

Gα−δ
γl

(u, t, l)du <∞.

Now
∫ t

(j)
l +2nε−1

l

t
(j)
l −n

ε−1
l

∣∣∣∣s−1
nl,γl,l

S
γl,l,t

(i)
l

(bnlulc , nl)
∣∣∣∣α−δ dul

6
∫ t

(j)
l +2nε−1

l

t
(j)
l −n

ε−1
l

Gα−δ
γl

(ul, t(i)l , l)dul

=
∫ +∞

−∞
1
(
t
(j)
l −n

ε−1
l ,t

(j)
l +2nε−1

l

)(ul)Gα−δ
γl

(ul, t(i)l , l)dul.

If u 6= t
(j)
l , the function under the integral converges to 0, it is bounded

from above by an integrable function Gα−δ
γl

(ul, t(i)l , l), therefore, the domi-

nated convergence theorem implies (5.64).

Next, we turn to the case 1 < γl < 1 + 1/α with ∑
j aj(γl, l) = 0. As

γl > 1, we have ∣∣∣∣Sγl,l,t(i)l (bnlulc , nl)
∣∣∣∣ 6 ∞∑

k=0
|ak(γl, l)| <∞,

therefore
∫ t

(j)
l +2nε−1

l

t
(j)
l −n

ε−1
l

∣∣∣∣s−1
nl,γl,l

S
γl,l,t

(i)
l

(bnlulc , nl)
∣∣∣∣α−δ dul

6
∫ t

(j)
l +2nε−1

l

t
(j)
l −n

ε−1
l

s−1
nl,γl,l

∞∑
k=0
|ak(γl, l)|

α−δ dul

= 3nε−1
l

s−1
nl,γl,l

∞∑
k=0
|ak(γl, l)|

α−δ

= 3
 ∞∑
k=0
|ak(γl, l)|

α−δ nε−1
l sδ−αnl,γl,l

= 3
 ∞∑
k=0
|ak(γl, l)|

α−δ nε−1+(γ−1)(δ−α)
l Lδ−αl (nl)→ 0,
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since ε− 1 + (γ − 1)(δ − α) < 0 and Ll is a s.v.f.

Proof of Theorem 5.7. Suppose d ∈ N and 0 = t0 < t1 < t2 < · · · < td

are real numbers. In order to prove the finite-dimensional convergence of

S̄n(t) we will investigate the convergence of characteristic functions. Ch.f.

of
(
S̄n(t1), . . . , S̄n(td)

)
is

ϕt1,...,td(x1, . . . , xd) = E exp
i

d∑
l=1

S̄n(tl)xl


= E exp
iA−1

n

d∑
l=1

xl

bntlc∑
k=0

∞∑
i=0

biξk−i

 . (5.65)

We have

d∑
l=1

xl

bntlc∑
k=0

∞∑
i=0

biξk−i =
bntdc∑
k=0

∞∑
i=0

d∑
l=1

xl1[0,bntlc](k)biξk−i

=
bntdc∑
k=0

k∑
i=−∞

Bk,iξi =
bntdc∑
i=−∞

bntdc∑
k=0

Bk,i1{k>i}ξi,

where Bk,i = ∑d
l=1 xl1[0,bntlc](k)bk−i. Let us denote

Ci = Ci(n) =
bntdc∑
k=0

Bk,i1{k>i}.

It follows that

ϕt1,...,td(x1, . . . , xd)

= exp
−A−αn bntdc∑

i=−∞
|Ci|α h

(∣∣∣AnC−1
i

∣∣∣)×
× (1− iβsign(Ci)τα)

(
1 + r

(
A−1
n Ci

))
+ iA−1

n

bntdc∑
i=−∞

Ciµ



= exp
−A−αn bntdc∑

i=−∞
|Ci|α h

(∣∣∣AnC−1
i

∣∣∣) (1− iβsign(Ci)τα)
(
1 + r

(
A−1
n Ci

)) ,
since

bntdc∑
i=−∞

Ci =
bntdc∑
i=−∞

bntdc∑
k=0

d∑
l=1

xl1[0,bntlc](k)bk−i1{k>i}
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=
d∑
l=1

xl

bntlc∑
k=0

k∑
i=−∞

bk−i =
d∑
l=1

xl

bntlc∑
k=0

∞∑
i=0

bi = 0.

Cbnuc is uniformly bounded for all u:

∣∣∣Cbnuc∣∣∣ 6 bntdc∑
k=0

d∑
l=1
|xl| 1[bnuc,bntlc](k)

∣∣∣bk−bnuc∣∣∣ 6 d∑
l=1
|xl|

∞∑
k=0
|bk| ,

and An = n1/α+1/θ−γh
1/α
1/α(n)→∞, since 1/α + 1/θ − γ > 0 and h1/α is a

s.v.f. Therefore

A−1
n Cbnuc → 0, uniformly for all u. (5.66)

This implies that
(
1 + r

(
A−1
n Ci

))
uniformly converges to 1.

It remains to find the limit of

A−αn

bntdc∑
i=−∞

|Ci|α h
(∣∣∣AnC−1

i

∣∣∣) (1− iβsign(Ci)τα) .

We do this by investigating In := A−αn
∑bntdc
i=−∞ f(Ci)h

(∣∣∣AnC−1
i

∣∣∣) with f(x) =

|x|α and f(x) = x<α>, which we split as In = ∑d
j=0 Zj,n, with

Zj,n =
bntjc∑

i=bntj−1c+1
f(A−1

n Ci)h
(∣∣∣AnC−1

i

∣∣∣) , j = 0, 1, . . . , d,

where t−1 = −∞. We assume n is large enough so that bntjc > bntj−1c

for all j = 1, . . . , d.

Let us further split Zj,n = Wj,n + f
(
A−1
n Cbntjc

)
h
(∣∣∣AnC−1

bntjc

∣∣∣), j =

0, 1, . . . , d, where

Wj,n =
bntjc−1∑

i=bntj−1c+1
f(A−1

n Ci)h
(∣∣∣AnC−1

i

∣∣∣) .
Formula (5.66) implies that

d∑
j=0

f
(
A−1
n Cbntjc

)
h
(∣∣∣AnC−1

bntjc

∣∣∣)→ 0, n→∞,

so we can concentrate on investigating Wj,n.

We have

Wj,n =
bntjc−1∑

i=bntj−1c+1
f
(
A−1
n Ci

)
h
(∣∣∣AnC−1

i

∣∣∣)
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=
∫ bntjc
bntj−1c+1

f
(
A−1
n Cbuc

)
h
(∣∣∣AnC−1

buc

∣∣∣) du

=
∫ bntjc/n

(bntj−1c+1)/n
nf

(
A−1
n Cbnuc

)
h
(∣∣∣AnC−1

bnuc

∣∣∣) du

=
∫ bntjc/n

(bntj−1c+1)/n

(
h1/α(n)

)−1
f
(
nγ−

1
θCbnuc

)
h
(∣∣∣∣n 1

α+ 1
θ−γh

1
α

1/α(n)C−1
bnuc

∣∣∣∣) du

=
∫ bntjc/n

(bntj−1c+1)/n
f
(
nγ−

1
θCbnuc

) h(∣∣∣∣n 1
α+ 1

θ−γh
1
α

1/α(n)C−1
bnuc

∣∣∣∣)
h
(
n

1
αh

1
α

1/α(n)
) h

(
n

1
αh

1
α

1/α(n)
)

h1/α(n) du

=
h
(
n

1
αh

1
α

1/α(n)
)

h1/α(n)

∫ bntjc/n
(bntj−1c+1)/n

κn(u)du,

where

κn(u) = f
(
nγ−

1
θCbnuc

) h(∣∣∣∣n 1
αh

1
α

1/α(n)n 1
θ−γC−1

bnuc

∣∣∣∣)
h
(
n

1
αh

1
α

1/α(n)
) .

Since the fraction h
(
n1/αh

1/α
1/α(n)

)
/h1/α(n) converges to 1 by the choice

of the function h1/α, it remains to find the limits of

Jj,n =
∫ bntjc/n

(bntj−1c+1)/n
κn(u)du, j = 0, 1, . . . , d.

We begin by studying J0,n. Suppose u ∈ (−∞, 0). We have

Cbnuc =
bntdc∑
k=0

d∑
l=1

xl1[0,bntlc](k)bk−bnuc1{k>bnuc}

=
d∑
l=1

xl

bntlc∑
k=0

bk−bnuc =
d∑
l=1

xl

bntlc−bnuc∑
k=−bnuc

bk.

In what follows, ak stands for (−1)kk−γ, k ∈ N. Writing bk = ak +

2k−γ1T (k) we obtain

bntlc−bnuc∑
k=−bnuc

bk =
bntlc−bnuc∑
k=−bnuc

ak + 2
bntlc−bnuc∑
k=−bnuc

k−γ1T (k).

We observe that∣∣∣∣∣∣
bntlc−bnuc∑
k=−bnuc

ak

∣∣∣∣∣∣ 6 2
∣∣∣a−bnuc∣∣∣ = 2(−bnuc)−γ,
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therefore

R(0)
u,n := nγ−

1
θ

d∑
l=1

xl

bntlc−bnuc∑
k=−bnuc

ak → 0, n→∞,

and

∣∣∣R(0)
u,n

∣∣∣ 6 R(0)(u) :=


2∑d

l=1 |xl| (−u) 1
θ−γ, −1 6 u < 0,

2∑d
l=1 |xl| (−u)−γ, u < −1.

(5.67)

The inequality above holds since

(−bnuc)−γ 6 n1/θ−γ(−u)−γ

and

(−bnuc)−γ 6 (−bnuc)1/θ−γ 6 n1/θ−γ(−u)1/θ−γ.

It is convenient to introduce the notation il := 2
⌊
lθ
⌋
− 1, l ∈ N.

Suppose yn and zn are some sequences. We continue by examining the

quantity

M(yn, zn) :=
∑

yn6k6zn

k−γ1T (k) =
∑

l>3:yn6il6zn
i−γl =

∑
l>3: yn+1

2 6blθc6 zn+1
2

i−γl .

Since

{
l ∈ N : a+ 1 6 lθ 6 b

}
⊂
{
l ∈ N : a 6

⌊
lθ
⌋
6 b

}
⊂
{
l ∈ N : a 6 lθ 6 b+ 1

}
,

the following inequalities hold:

M(yn, zn) 6
∑

l>3: yn+1
2 6lθ6 zn+1

2 +1
i−γl =

∑
l>3:( yn+1

2 )
1
θ6l6( zn+3

2 )
1
θ

i−γl , (5.68)

M(yn, zn) >
∑

l>3: yn+1
2 +16lθ6 zn+1

2

i−γl =
∑

l>3:( yn+3
2 )

1
θ6l6( zn+1

2 )
1
θ

i−γl .
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Let us investigate ∑wn
l=qn i

−γ
l , where qn and wn are sequences of integers

(we allow infinite values as well), wn > qn > 3, n ∈ N. We have

wn∑
l=qn

i−γl =
∫ wn+1

qn
i−γbvcdv =

∫ n−
1
θ (wn+1)

n−
1
θ qn

i−γ⌊
n

1
θ v
⌋dn 1

θ v

= n
1
θ−γ

∫ n−
1
θ (wn+1)

n−
1
θ qn

nγi−γ⌊
n

1
θ v
⌋dv = n

1
θ−γ

∫ ∞
0
gn(v)dv,

(5.69)

with gn(v) = nγi−γbn1/θvc1(n−1/θqn,n−1/θ(wn+1))(v). Notice that gn(v) > 0 im-

plies n1/θv > 3, hence we have

nγi−γ⌊
n

1
θ v
⌋ = nγ

(
2
⌊⌊
n

1
θ v
⌋θ⌋
− 1

)−γ

6 nγ
(

2
⌊
n

1
θ v
⌋θ
− 3

)−γ
6 nγ

(
2
(
n

1
θ v − 1

)θ
− 3

)−γ

6 nγ
(1

2

(
n

1
θ v − 1

)θ)−γ
6 nγ

2θ−1

3θ
(
n

1
θ v
)θ−γ = K0v

−γθ.

Therefore,

gn(v) 6 K0v
−γθ

1
(
n−

1
θ qn,n

− 1
θ (wn+1)

)(v). (5.70)

Assuming the sequences n−1/θqn and n−1/θwn converge to q, w > 0, respec-

tively, we have gn(v) → 2−γv−γθ1(q,w)(v) almost surely. Also, there exists

a number n0 ∈ N such that

1
(
n−

1
θ qn,n

− 1
θ (wn+1)

)(v) 6 1( q2 , 3w2 )(v), n > n0.

As the function K0v
−γθ

1(q/2, 3w/2)(v) is integrable, the dominated conver-

gence theorem implies

nγ−
1
θ

wn∑
l=qn

i−γl →
∫ w

q
2−γv−γθdv = 2−γ

γθ − 1
(
q1−γθ − w1−γθ

)
.

By selecting yn = −bnuc and zn = bntlc − bnuc, for any fixed number

c we have

n−
1
θ

(yn + c

2

) 1
θ

→
(
−u2

) 1
θ

,

n−
1
θ

(zn + c

2

) 1
θ

→
(
tl − u

2

) 1
θ

,
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as n→∞, therefore the previous calculations imply

nγ−
1
θM(yn, zn)

→ 2−γ
γθ − 1

(−u2
) 1
θ−γ −

(
tl − u

2

) 1
θ−γ

 = φα, 1
α+ 1

θ−γ

 −2− 1
θ

γθ − 1 , 0; tl, u
 .

Returning to nγ−1/θCbnuc, we obtain, as n→∞,

nγ−
1
θCbnuc = R(0)

u,n + 2
d∑
l=1

xl
M(−bnuc , bntlc − bnuc)

n
1
θ−γ

→
d∑
l=1

xlφα, 1
α+ 1

θ−γ

−21− 1
θ

γθ − 1 , 0; tl, u
 =: F (u). (5.71)

Applying Lemma 2.4 with qn = n1/αh
1/α
1/α(n) and yn = nγ−1/θCbnuc we

obtain

κn(u)→ f(F (u)). (5.72)

In order to apply the dominated convergence theorem we need to show

that |κn(u)| is bounded above by an integrable function. It follows from

(5.66) that
∣∣∣∣n1/αh

1/α
1/α(n)n1/θ−γC−1

bnuc

∣∣∣∣ → ∞, uniformly for all u. Let us

suppose that 0 < δ < α and denote Λα,δ(x) = max{xα+δ, xα−δ}. Applying

Lemma 2.3 and recalling from (5.71) the expression of nγ− 1
θCbnuc we obtain

|κn(u)| 6 DΛα,δ

(∣∣∣∣nγ− 1
θCbnuc

∣∣∣∣)

6 DΛα,δ

∣∣∣R(0)
u,n

∣∣∣ + 2
d∑
l=1
|xl|

M(−bnuc , bntlc − bnuc)
n

1
θ−γ

 .
Inequality (5.68) together with (5.69) and (5.70) gives us

M(−bnuc , bntlc − bnuc)
n

1
θ−γ

6
K0

γθ − 1
(
q1−γθ
n − w1−γθ

n

)

with

qn = n−
1
θ


(−bnuc+ 1

2

) 1
θ

 ,
wn = n−

1
θ


(bntlc − bnuc+ 3

2

) 1
θ

 + 1

 .
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We have

qn >
(−u

2

) 1
θ

, wn 6

(tl − u+ 4
2

) 1
θ

+ 1
 ,

therefore,

M(−bnuc , bntlc − bnuc)
n

1
θ−γ

6
K0

γθ − 1

(−u2
) 1
θ−γ
−
(tl − u+ 4

2

) 1
θ

+ 1
1−γθ =: h(tl, u).

The obtained estimates for M(−bnuc , bntlc − bnuc) and R(0)
u,n (see

(5.67)) enable us to estimate

|κn(u)| 6 DΛα,δ

R(0)(u) + 2
d∑
l=1
|xl|h(tl, u)

 =: Gδ(u). (5.73)

As u → −∞ we have R(0)(u) ∼ c1(−u)−γ, h(tl, u) ∼ c2(−u)1/θ−γ−1,

therefore Gδ(u) ∼ c3(−u)−γ(α−δ). As u ↑ 0, R(0)(u) ∼ c4(−u)1/θ−γ,

h(tl, u) ∼ c5(−u)1/θ−γ, therefore Gδ(u) ∼ c6(−u)(1/θ−γ)(α+δ). Since, as

δ → 0, −γ(α−δ)→ −αγ < −1 and (1/θ − γ) (α+δ)→ (1/θ−γ)α > −1,

there exists δ > 0 such that the function Gδ is integrable on (−∞, 0).

(5.72) and (5.73) enable us to apply the dominated convergence theo-

rem, which implies

J0,n =
∫ 0

−∞
κn(u)du

→
∫ 0

−∞
f

 d∑
l=1

xlφα, 1
α+ 1

θ−γ

−21− 1
θ

γθ − 1 , 0; tl, u
 du, n→∞.

Let us now investigate the convergence of Jj,n, j = 1, . . . , d. We start
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with point-wise convergence of nγ−1/θCbnuc, u ∈ (tj−1, tj) . We have

Cbnuc =
bntdc∑
k=0

d∑
l=1

xl1[bnuc,bntlc](k)bk−bnuc

=
d∑
l=1

xl

bntdc−bnuc∑
k=0

1[0,bntlc−bnuc](k)bk

=
d∑
l=j

xl

bntlc−bnuc∑
k=0

bk

= −
d∑
l=j

xl
∞∑

k=bntlc−bnuc+1
bk

the last equality was obtained using the property ∑∞k=0 bk = 0. By splitting

bk = ak + 2k−γ1T (k) we obtain

∞∑
k=bntlc−bnuc+1

bk =
∞∑

k=bntlc−bnuc+1
ak + 2

∞∑
k=bntlc−bnuc+1

k−γ1T (k).

Since∣∣∣∣∣∣
∞∑

k=bntlc−bnuc+1
ak

∣∣∣∣∣∣ 6
∣∣∣abntlc−bnuc+1

∣∣∣ = (bntlc − bnuc+ 1)−γ,

we get

R(j)
u,n := nγ−

1
θ

d∑
l=j

xl
∞∑

k=bntlc−bnuc+1
ak → 0, n→∞,

and ∣∣∣R(j)
u,n

∣∣∣ 6 R(j)(u) :=
d∑
l=j
|xl| (tl − u)

1
θ−γ .

Notice that ∑∞k=bntlc−bnuc+1 k
−γ
1T (k) = M(bntlc − bnuc + 1,∞). Pre-

vious analysis implies

M(bntlc − bnuc+ 1,∞)
n

1
θ−γ

→ 2−γ
γθ − 1

(
tl − u

2

) 1
θ−γ

= φα, 1
α+ 1

θ−γ

 2− 1
θ

γθ − 1 , 0; tl, u


and
M(bntlc − bnuc+ 1,∞)

n
1
θ−γ

6
K0

γθ − 1

(
tl − u

2

) 1
θ−γ

.
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We have thus obtained

nγ−
1
θCbnuc = −R(j)

u,n − 2
d∑
l=j

M(bntlc − bnuc+ 1,∞)
n

1
θ−γ

→ φα, 1
α+ 1

θ−γ

−21− 1
θ

γθ − 1 , 0; tl, u


and
∣∣∣∣nγ− 1

θCbnuc

∣∣∣∣ 1(bntj−1c+1
n ,

bntjc
n

)(u)

6

∣∣∣∣∣∣R(j)(u) +
d∑
l=j

K0

γθ − 1

(
tl − u

2

) 1
θ−γ

∣∣∣∣∣∣ 1(tj−1,tj)(u),

which, as before, imply

κn(u)→ f(F (u)),

and∣∣∣∣∣∣∣κn(u)1(bntj−1c+1
n ,

bntjc
n

)(u)

∣∣∣∣∣∣∣
6 DΛα,δ

∣∣∣∣∣∣R(j)(u) +
d∑
l=j

K0

γθ − 1

(
tl − u

2

) 1
θ−γ

∣∣∣∣∣∣
 1(tj−1,tj)(u).

The dominating function is integrable in (tj−1, tj) for small enough δ, there-

fore the dominated convergence theorem applies giving us

Wj,n =
∫ bntjc/n

(bntj−1c+1)/n
κn(u)du

→
∫ tj

tj−1
f

 d∑
l=1

xlφα, 1
α+ 1

θ−γ

−21− 1
θ

γθ − 1 , 0; tl, u
 du, n→∞.

In conclusion, we see that

ϕt1,...,td(x1, . . . , xd)

→ exp
−σα ∫ ∞

−∞

∣∣∣∣∣∣
d∑
l=1

xlv(tl, u)
∣∣∣∣∣∣
α 1− iβταsign

 d∑
l=1

xlv(tl, u)
 du

 ,
where v(t, u) = φα,1/α+1/θ−γ

(
−21−1/θ

γθ−1 , 0; t, u
)
, which is a ch. f. of

(Zα,H(a, b; t1), . . . , Zα,H(a, b; td))
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with parameters H = 1/α + 1/θ − γ, a = −21−1/θ/(γθ − 1), b = 0 and

skewness intensity β(u) ≡ β. The proof is complete.

Proof of Corollary 5.8. The corollary follows directly from Theorem 5.7

by choosing θ = α/(αγ − 1 + δ).
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6 Conclusions

Based on the results obtained while writing this thesis, we can draw the

following conclusions:

• For linear processes X(n) = ∑∞
j=0 cjεn−j, n ∈ N, the condition∑

i ci = 0 has no effect on asymptotic rate of decay of the spectral

covariance in the case α < 2, this is explained after the formulation

of Theorem 4.7. The relation between spectral covariance and mem-

ory, as defined by Definition 5, is not as strong as in the case of finite

variance.

• The rate of decay of the spectral covariance for linear processes with

asymptotically regularly varying coefficients, linear fractional stable

noise, log-fractional stable noise is similar to that of codifference and

covariation.

• Newly introduced measure of dependence – α-spectral covariance

– displays simpler asymptotic dependence structure of investigated

linear fields.

• There exists an analogue of Theorem 3.2 for spectral covariance and

α-spectral covariance, see Corollary 4.9.

• Theorems 3.8 and 3.9 generalize to stationary associated random

fields, see Theorem 5.1 and Theorem 5.3.

• In Theorems 3.8 and 5.1 one can substitute codifference for spectral

covariance to obtain an equivalent statement. If one uses α-spectral

covariance or covariation, a weaker statement is obtained.
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• Definition of memory for stationary fields in [52] needs revision as

it does not apply to linear fields with innovations belonging to the

domain of attraction of α-stable random variable.

• Consider linear process Xk = ∑∞
j=0 cjξk−j and suppose ξi belong

to the normal domain of attraction of α-stable law. Given γ ∈

(max(1/α, 1), 1 + 1/α) and any λ ∈ (0, 1/α− γ+ 1), it is possible to

choose the signs of the coefficients ck, k ∈ N, satisfying

|ck| = k−γ, k ∈ N, and
∞∑
k=0

ck = 0

so that n−λ∑n
k=1Xk would converge to a non-degenerate distribu-

tion.
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