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gas Margelevičius, Kęstutis Timinskas, Rytis Dičiūnas, Albertas Timin-
skas, Darius Kazlauskas, Visvaldas Kairys, Eleonora Kulberkytė, Nerijus
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Introduction

Research area

Science builds and organizes knowledge about the universe on differ-
ent scales: from galaxy clusters to subatomic particles. Being part of the
universe, life also needs to be studied on different levels: ecosystems
are comprised of populations of organisms, organisms are systems of
organs, organs are comprised of cells, cells and cellular organelles are
built from and driven by biological macromolecules.1 There are two
main classes of such molecules: proteins and nucleic acids. The latter
class encompasses RNA (ribonucleic acids) and DNA (deoxyribonucleic
acids). Proteins and nucleic acids are polymers; they are made up of
smaller molecular units that are sequentially attached to one another in
long chains. The chain sequences are encoded in genomes of organisms.
Protein molecules vary greatly in size and structure and these differences
allow them to perform vastly different tasks. The spatial arrangement of
protein atoms is what ultimately determines how a protein functions.
Nucleic acids, especially RNA, also exhibit a variety of structures and
functions, although, historically, their structural aspects were less stud-
ied than those of proteins.

As of 2017, there are more than 126,000 structures of proteins, nucleic
acids and their complexes that were experimentally determined and pub-
lished in the Protein Data Bank (PDB),2 the only global archive of macro-
molecular structural data. Figure 1 provides a glimpse of the struc-
tural variety and complexity of the PDB data, but even if it showed all
the PDB structures, the picture would still be incomplete. The number
of known protein structures (about 123,000) is vastly behind the num-
ber of protein sequences that are encoded in the genomes of organisms:
due to the recent advances in genome sequencing, several million pro-

9



Figure 1: Random selection of 100 structures from PDB, each structure is
shown in two representations (rendered with PyMol software): atomic balls
and schematic cartoon. All the structures are shown in the same scale to em-
phasize the differences in their sizes.
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tein sequences are already known and publicly available in specialized
databases such as the Universal Protein Resource (UniProt).3 As for the
number of experimentally determined nucleic acid structures, it barely
exceeds 3,000 (9,000 if also counting those from protein-nucleic acid com-
plexes). In general, experimental determination of both protein and nu-
cleic acid structures is expensive, slow and not always successful. There-
fore, PDB misses a great part of knowledge about three-dimensional
structures of biomolecules that is crucial for understanding and manip-
ulating processes in living cells. Moreover, even the available structural
data does not provide automatic answers, PDB structures are just large
sets of three-dimensional atomic coordinates that need to be properly in-
terpreted before being useful.

Life sciences take advantage of computer science for solving some of its
main problems related to biomolecular structures: analyzing the known
structures and modeling the unknown ones.4 The problem of predict-
ing spatial structures of biopolymers from their sequences is far from
being solved for either proteins or nucleic acids, but some approaches,
especially homology-based modeling, are already exceedingly useful in
practice.5 Most current structure prediction methods work in two stages:

1. Generating a set of candidate models, i.e. predicted structures.

2. Selecting the best model, i.e. the model most similar to the native
(real) structure.

This dissertation is focused on the development of computational meth-
ods for testing and improving the second stage. More specifically, it fo-
cuses on the analysis and evaluation of structural models.

Research goals and tasks

The goal of this work is to develop novel better methods for solving the
following interrelated problems:
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1. Analysis of geometric features of biological macromolecular struc-
tures to provide a foundation for their evaluation.

2. Evaluation of model structure quality by comparing it to the refer-
ence (native) structure, i.e. reference-based assessment.

3. Evaluation of model structure quality when the native structure is
not known, i.e. referenceless assessment.

The development of each method is to be accomplished by carrying out
the following common set of tasks: define and describe the method; im-
plement the method as a standalone software tool; use the developed
software to perform large-scale tests using both experimentally deter-
mined and computationally predicted biological macromolecular struc-
tures; discuss the testing results; if appropriate, develop an easy-to-use
web server for the method software.

Research results

The presented dissertation is a sequence of six studies carried out in
2012–2016 and published in well-reputed international journals.6–11 The
central study6 of this work focuses on the evaluation of protein mod-
els against the native structure, which is essential for the development
and benchmarking of protein structure prediction methods. Although a
number of evaluation scores have been proposed before, many aspects of
model assessment still lacked desired robustness. To improve the assess-
ment we developed CAD-score, a new evaluation function quantifying
differences between physical contacts in a model and the reference struc-
ture. The new score uses the concept of residue-residue contact area dif-
ference (CAD) introduced by Abagyan and Totrov.12 Contact areas, the
underlying basis of the score, are derived using the Voronoi tessellation
of protein structure. The newly introduced CAD-score is a continuous
function, confined within fixed limits, free of any arbitrary thresholds
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or parameters. The built-in logic for treatment of missing residues al-
lows consistent ranking of models of any degree of completeness. We
have tested CAD-score on a large set of diverse models and compared
it to GDT-TS,13 a widely accepted measure of model accuracy. Similarly
to GDT-TS, CAD-score showed a robust performance on single-domain
proteins, but displayed a stronger preference for physically more realistic
models. Unlike GDT-TS, the new score revealed a balanced assessment of
domain rearrangement, removing the necessity for different treatment of
single-domain, multi-domain, and multi-subunit structures. Moreover,
CAD-score makes it possible to assess the accuracy of inter-domain or
inter-subunit interfaces directly.

The CAD-score method uses interatomic contacts derived from the
Voronoi diagram14 of protein structure. There are several different types
of the Voronoi tessellation.15 The Voronoi diagram of balls, correspond-
ing to atoms of van der Waals radii, is particularly well-suited for the
analysis of three-dimensional structures of biological macromolecules.
However, due to the shortage of practical algorithms and the correspond-
ing software, simpler approaches are often used instead. We dedicated a
special study7 to develop a simple and robust algorithm for computing
the vertices of the Voronoi diagram of balls. The vertices correspond to
the centers of the empty tangent spheres defined by quadruples of atomic
balls; they can be used in unequivocally defining atomic neighborhoods.
The algorithm is implemented as an open-source software tool, Voronota.
Large-scale tests showed that Voronota is a fast and reliable tool for pro-
cessing both experimentally determined and computationally modeled
macromolecular structures.

The subsequent development of the CAD-score method was its adapta-
tion for quantifying discrepancies between RNA 3D models and refer-
ence structures.8 A growing interest in computational prediction of ri-
bonucleic acid (RNA) three-dimensional structure16 has highlighted the
need for reliable and meaningful methods for comparing models and ex-
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perimental structures. To meet this need, we explored a possibility of
using contact area-based assessment for the RNA 3D structure. Despite
significant differences between proteins and nucleic acids, it turned out
that in the case of RNA this approach is as efficient as it is in the case of
proteins. In the same way as for proteins, CAD-score for RNA closely
reflects physical interactions, has a simple definition, a fixed range of
values and no arbitrary parameters. It is based on the correspondence of
respective contact areas between nucleotides or their components (base
or backbone). The better the agreement between respective contact areas
in a model and the reference structure is, the more accurate the model
is considered to be. Since RNA bases account for the largest contact
areas, we further distinguish stacking and non-stacking contacts. We
have extensively tested the contact area-based evaluation method and
found it effective in both revealing local discrepancies and ranking mod-
els by their overall quality. Compared to other reference-based RNA
model evaluation methods, the new method shows a stronger empha-
sis on stereochemical quality of models. In addition, it takes into account
model completeness, enabling a meaningful evaluation of full models
and those missing some residues.

The CAD-score method was made more accessible by developing the
web server9 that provides a universal framework to compute and ana-
lyze discrepancies between different 3D structures of the same biological
macromolecule or complex. The server accepts both single-subunit and
multi-subunit structures and can handle all the major types of macro-
molecules (proteins, RNA, DNA and their complexes). In addition to
entire structures and interfaces, the server can assess structural subsets
defined by contact-based queries. The CAD-score server performs both
global and local numerical evaluations of structural differences, it also
provides a rich set of means for interactive exploration and visualization
of the results.

The CAD-score method was further developed to serve as a foundation
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for the PPI3D web server11 that is focused on searching and analyzing
the structural data on protein-protein interactions. Reducing the data
redundancy by sequence similarity-based and CAD-score-based cluster-
ing and analyzing the properties of interaction interfaces using Voronoi
tessellation made PPI3D a highly effective tool for addressing different
questions related to protein interactions.

The final study of this dissertation is focused on the referenceless esti-
mation of the quality of predicted protein structures, which is important
not just for selecting the best model in the second stage of structure pre-
diction, but also for estimating the utility of a computational model for
addressing biological questions. One of the approaches to this problem
is the use of knowledge-based statistical potentials. Such methods typ-
ically rely on the statistics of distances and angles of residue-residue or
atom-atom interactions collected from experimentally determined struc-
tures. In this work, a new method for the estimation of protein structure
quality is presented. The method, called VoroMQA (Voronoi tessellation-
based Model Quality Assessment),10 combines the idea of statistical po-
tentials with the use of interatomic contact areas instead of distances.
Thus, VoroMQA is in large part based on the groundwork established
by the development of the Voronota and CAD-score methods. Contact
areas, derived using Voronoi tessellation of protein structure, are used
to describe and seamlessly integrate both explicit interactions between
protein atoms and implicit interactions of protein atoms with solvent.
VoroMQA produces scores at atomic, residue and global levels, all in
the fixed range from 0 to 1. The method was tested on the CASP data
and compared to several other single-model quality assessment methods.
VoroMQA showed strong performance in the recognition of the native
structure and in the structural model selection tests, thus demonstrating
the efficacy of interatomic contact areas in estimating protein structure
quality.
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Scientific novelty

The most prominent novel aspect of this work is the construction and ap-
plication of interactomic contact areas, derived from the Voronoi tessella-
tion of atomic balls, for the analysis and evaluation of biological macro-
molecular structures. CAD-score is the first method to use tessellation-
derived contact areas for the reference-based evaluation of structural
models. VoroMQA is the first method for the referenceless assessment of
protein structural models that uses inter-atom contact areas, derived di-
rectly from the cells of the Voronoi tessellation of atomic balls, to provide
model quality estimates on an absolute scale. The key novel aspect of
the Voronota method is utilizing some common geometric properties of
macromolecular structures for the efficient construction of the additively-
weighted Voronoi diagram of atoms.

Practical value

The software implementations of the Voronota, CAD-score and
VoroMQA methods are freely available as standalone open-source ap-
plications (and, in the case of CAD-score and VoroMQA, as web servers)
from the following addresses:

• http://bioinformatics.lt/software/voronota

• http://bioinformatics.lt/software/cad-score

• http://bioinformatics.lt/software/voromqa

CAD-score already became one of the standard assessment methods in
CASP (Community Wide Experiment on the Critical Assessment of Tech-
niques for Protein Structure Prediction)17, 18 and CAMEO (Continuous
Automated Model EvaluatiOn)19 experiments that periodically monitor
the state of the art in the field of protein structure prediction. CAD-score
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is also applicable for the analysis of structures of nucleic acids, the CAD-
score web server features special modes for it. CAD-score-based PPI3D
web server (http://bioinformatics.lt/software/ppi3d) serves
predictors of protein-protein complexes by helping them find and ana-
lyze suitable templates for homology-based modeling.

VoroMQA software can be useful for anyone who creates or uses protein
structural models and wishes to assess the realism of a single model or
select the best model out of several.

The Voronota software package allows other scientists to create different
structure analysis tools that utilize the Voronoi tessellation of balls and
the related contact areas.

Propositions to be defended

• The developed method for computing the vertices of the Voronoi
tessellation of balls is capable of processing macromolecular struc-
tures efficiently by exploiting common patterns of atomic spatial ar-
rangements. The method serves as an effective tool for defining in-
teratomic interactions, it is also easily parallelizable.

• The developed method for reference-based evaluation of macro-
molecular structural models avoids common problems of tradi-
tionally employed reference-based assessment methods by using
Voronoi tessellation-derived contact areas. The method is univer-
sally applicable for the efficient comparison of structures of all the
major types of macromolecules (proteins, nucleic acids and their
complexes).

• The developed method for referenceless evaluation of protein struc-
tural models efficiently combines the idea of knowledge-based sta-
tistical potential with the concept of interatomic contact areas de-
rived from the Voronoi tessellation of atomic balls. The method con-

17



sistently outperforms other statistical potential-based protein struc-
ture quality assessment methods.

Structure of the dissertation

Chapter 1 provides basic information about biomolecular structures and
concise reviews of previously published works on analysis and assess-
ment of macromolecular structural data. Chapters 2, 3 and 4 are ded-
icated to the detailed description of the developed methods (Voronota,
CAD-score and VoroMQA) and their performance results. The subse-
quent chapters contain conclusions followed by the list of bibliographic
references and other supporting information.
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1 Literature overview

1.1 Structures of proteins

Proteins are biochemical compounds which are essential parts of all or-
ganisms and participate in every biological process.20 Proteins have a
great variety of functions which are determined by protein structure. A
brief introduction to protein structure is provided below: it is stripped of
many details that may be important when looking from biochemical or
biophysical viewpoints, but still includes a bare minimum of information
necessary for the understanding of this dissertation (the same consider-
ations were also used when introducing nucleic acids in the subsequent
section).

Proteins are polymers, each protein consists of one or more single lin-
ear chains of amino acids.20 Amino acids are small molecules that share
a common structural pattern and can be bonded together in a sequence
(Figure 1.1 A). Once linked in the protein chain, an amino acid is called a
residue, and the linked series of carbon, nitrogen and oxygen atoms are
known as the main chain. The group of residue atoms that are not in the
main chain is called the side chain. The main chain carbon atom to which
the side chain connects is known as the alpha-carbon or Cα. Amino acids
differ in side chains attached to Cα atoms. There are 20 standard amino
acids naturally occurring in proteins. Side chains differ in chemical struc-
ture and physical properties. Each protein folds into three-dimensional
structure (Figure 1.1 B-C) that is ultimately determined by the combined
effect of all the interactions involving the amino acid side chains in the
protein.20, 21 Therefore, protein structure is explicitly defined by amino
acid sequence,20, 22 usually called protein sequence. Protein sequences
are encoded in the genomes of biological organisms. Naturally occurring
protein sequences can have a length from approximately 30 to thousands
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of amino acids23 (chains shorter than ≈ 30 residues also exist and are
called peptides, but they usually don’t have a stable structure).

An all-atom representation of a protein structure (Figure 1.1 C) is de-
tailed, but not visually comprehensible. One of the simplified represen-
tations of a protein chain structure is a Cα-trace: a sequence of line seg-
ments connecting consecutive Cα atom centers (Figure 1.1 D). Looking at
a Cα-trace, there are commonly noticeable local structural patterns, most
prominently helices (called alpha-helices) and extended regions (called
beta-strands): these structural elements are emphasized in one of the
most popular simplified protein structure visual representations, a car-
toon representation (Figure 1.1 E).

The structure of a single protein chain is commonly described as a multi-
level hierarchy:20 the primary structure (chain amino acid sequence);
the secondary structure (alpha-helices, beta-strands and remaining less
structured parts called loops); the tertiary structure (fully folded chain).
Single-chain structures of the same or different sequences often interact
and form complexes (Figure 1.1 F). Such protein-protein complexes rep-
resent the fourth level of the protein structure hierarchy — the quater-
nary structure.

1.2 Structures of nucleic acids

Another important class of biological macromolecules is the class of nu-
cleic acids, which contains two major subclasses: ribonucleic acids (RNA)
and deoxyribonucleic acids (DNA).24, 25 Like proteins, RNA and DNA are
polymers, they are comprised of linear chains of small molecules — nu-
cleotides. Like amino acids, nucleotides share a common structural pat-
tern that can be sectioned into the main chain and the side chain (Figure
1.2 A). The nucleotide main chain is composed of a five-carbon sugar
(ribose in RNA or deoxyribose, i.e. ribose without one oxygen atom, in
DNA) and at least one phosphate group. The nucleotide side chain is
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Figure 1.1: Brief introduction to protein structure, using entry 4EAR from the
Protein Data Bank as an example. (A) Schematic display of amino acids form-
ing a linear chain. Different side chains are denoted as R1,2,3. Hydrogen atoms
are omitted. (B) Part of an unfolded protein amino acid chain structure. Col-
oring of atoms is the same as in (A). (C) Folded amino acid chain, i.e. a final
single-chain protein three-dimensional structure. (D) Cα-trace representing the
folded protein amino acid chain from (C). (E) Cartoon representation of the pro-
tein structure from (C) with differently colored secondary structure elements:
alpha-helices in red, beta-strands in yellow, loops in green. (F) Complex formed
by three interacting chains.
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called a nucleobase or, simply, a base. Different nucleotides differ by
their nucleobases. There are 5 standard nucleobases: adenine (abbrevi-
ated as A), guanine (G), cytosine (C), thymine (T) and uracil (U). The first
three occur naturally in both DNA and RNA, thymine is specific to DNA,
uracil — to RNA.

A nucleotide sequence heavily influences the spatial structure of the nu-
cleic acid.24, 25 Interestingly, RNA structures are exceedingly more vari-
able than DNA structures. DNA mostly exist in a form of stable double-
helical compounds, which conforms with its main function — storing
genetic information. RNA can form much more intricate 3D structures
because ribose has one more oxygen atom attached to it than deoxyri-
bose. Additional oxygen atoms in RNA facilitate additional interatomic
interactions that support more sophisticated structures25 (one such struc-
ture is shown in Figure 1.2 B-C). Accordingly, the functions of RNA are
of wider variety than those of DNA. As a consequence, the field of struc-
tural bioinformatics of nucleic acids is more focused on analyzing and
modeling RNA structures. Another aspect of nucleic acids is that both
DNA and RNA commonly interact and form complexes with proteins26

(one such complex is shown in Figure 1.3).

1.3 Methods for the construction of the Voronoi tes-

sellation of atomic balls

As mentioned above, proteins and RNA typically function as complex
three-dimensional (3D) shapes. These shapes are determined by the com-
bined effect of interatomic interactions both within the macromolecule
itself and with the environment (e.g. water or lipid bilayer). For compre-
hensive understanding of these interactions it is essential to unambigu-
ously identify all the neighbors of a given atom, to determine whether it
is in contact with any of the neighboring atoms or with the environment,
and how extensive these contacts are. The atomic neighborhood analysis
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Figure 1.2: Brief introduction to RNA structure, using entry 4TNA from the
Protein Data Bank as an example. (A) Schematic display of nucleotides forming
a linear chain. Different nucleobases (side chains) are denoted as R1,2,3. Hydro-
gen atoms are omitted. (B) Folded ribonucleotide chain, i.e. a final single-chain
RNA three-dimensional structure. Coloring of atoms is the same as in (A). (C)
Cartoon representation of the RNA structure from (B).

Figure 1.3: Protein-DNA complex (entry 3BEP from the Protein Data Bank),
colored by chains (DNA double helix chains are colored in red and blue). (A)
Atom bonds displayed as sticks, hydrogen atoms are omitted. (B) Cartoon rep-
resentation of the same structure.
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can also be used for studying various geometric features of 3D structure
including voids, pockets and channels, for deriving molecular and sol-
vent accessible surfaces and other geometric parameters. For these types
of analyses, the Voronoi tessellation seems to be among the most suitable
approaches.27

Voronoi diagram is named after Georgy Voronoi, who defined it back in
1908.14 Given a set of points (centroids) in space, Voronoi diagram par-
titions the space into so-called Voronoi cells. The Voronoi cell may be
considered as the volume “owned” by the centroid, because every point
within the cell is closer to the centroid of the cell than to any other cen-
troid. The Voronoi cell can be constructed as follows. Every line con-
necting a given centroid with other centroids is bisected by the plane
perpendicular to that line. The smallest polyhedron formed around the
centroid by such planes is termed the Voronoi cell (also known as the
Voronoi region). Collectively, Voronoi cells corresponding to the set of
points define the Voronoi tessellation, partitioning the space without any
voids or overlaps. An important property of the Voronoi diagram is that
every Voronoi cell has unambiguously defined neighbors without using
any distance cutoffs.

However, the representation of protein or nucleic acids atoms as discrete
points in many cases is an unacceptable oversimplification as it fails to
reflect that different atoms have measurable volumes of different sizes.
A more physically relevant representation of atoms is balls/spheres of
van der Waals (VDW) radii and of molecules as unions of such balls. In
such case the Voronoi procedure for points (or balls of the same radii)
has to be modified. Richards, who was the first to apply the Voronoi
method to protein structures,28 accounted for atomic diversity by in-
troducing VDW radius-dependent weights for positioning the separat-
ing planes. Although this method became widely used, it has a serious
drawback. Namely, the separating planes no longer intersect at common
points resulting in some unallocated volume between the cells. One of
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Figure 1.4: (A) Voronoi diagram of ball centroids on a plane. (B) Laguerre-
Voronoi diagram of 2D balls. (C) Additively weighted Voronoi diagram of 2D
balls.

the proposed solutions to this problem was to use radical plane as a sep-
arating plane between atomic balls.29 This solution represents another
weighted Voronoi scheme producing so-called Laguerre or power dia-
gram. The advantage of the Laguerre diagram is that the cells all have
flat faces making computations simpler. In addition, there is no unal-
located volume in the resulting tessellation. The downside is that the
weights assigned to two atoms are not directly proportional to the dis-
tance from each atom to the separating plane. This makes physical in-
terpretation of the Laguerre tessellation problematic. Goede et al.30 pro-
posed a weighted Voronoi procedure resulting in a straightforward phys-
ical interpretation. In this procedure the weights assigned to atoms are
linearly related to their respective distance to the dividing surface. The
dividing surface is no longer a plane but a quadric surface (hyperboloid)
producing Voronoi cells with faces that in general are not flat. This type
of diagram is known as the Voronoi diagram of balls/spheres,31 the ad-
ditively weighted Voronoi diagram15 or the Apollonius diagram.32 2D
examples of ordinary, Laguerre, and additively weighted Voronoi dia-
grams are shown in figure 1.4.

Although the Voronoi diagram of balls is particularly well-suited for the
analysis of 3D structures of biological macromolecules, so far this ap-
proach has not been utilized as widely as it might be expected. The main
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reason of its limited use appears to be the shortage of efficient algorithms
and the associated software tools. Therefore, in most applications, in
which the Voronoi diagram of balls would be the most appropriate ap-
proach, simpler methods such as the ordinary Voronoi diagram of points
or the Laguerre (power) diagram are adopted instead.

To our knowledge, there are only few algorithms available for comput-
ing Voronoi diagram of balls with the focus on structures of biological
macromolecules. One of the practical algorithms applied to protein struc-
tures was proposed by Kim et. al.31 The algorithm sequentially discov-
ers the vertices of the Voronoi cells by tracing the edges of the cells. This
algorithm was later improved by applying geometric filters for spatial
search.33, 34 Medvedev et al.35 published a similar algorithm, but it was
reported36 that the software implementing their algorithm is not suitable
for typical proteins. Kim et. al37, 38 introduced an algorithm for construct-
ing the quasi-triangulation, which is a data structure dual to the Voronoi
diagram of balls. Thus, the quasi-triangulation is analogous to the De-
launay triangulation,39 the dual of the Voronoi diagram of points. Previ-
ously, we used the Voronoi diagram of balls in Voroprot, an interactive
tool for the analysis of complex geometric features of protein structure.40

However, Voroprot was developed mainly as a visual analysis tool, not
intended for batch processing or analysis of extremely large biomolecular
structures.

1.4 Methods for the reference-based evaluation of

protein structural models

Effective assessment of protein structural models against the experimen-
tally determined protein structure (the reference) is at the heart of devel-
opment and objective comparison of protein structure prediction meth-
ods. It may seem that one-to-one correspondence of amino acids in a
model and the reference structure should make such a task trivial. How-
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ever, this impression is misleading. The task is complex and, despite the
fact that many evaluation scores have been devised over the years, it con-
tinues to be an active area of research.

One of the earliest and best known scores is Root Mean Square Devi-
ation (RMSD).41 RMSD indicates the mean distance between the corre-
sponding atoms in the two protein structures after their optimal rigid-
body superposition (Figure fig:literatureoverview-figure5). It is typically
calculated for Cα atoms, but it can be applied to any subset of residue
atoms. Although RMSD is a popular score, it is informative only if the
differences are reasonably small and fairly equally distributed. The main
disadvantage of RMSD is its sensitivity to large local deviations. Even
few poorly modeled residues, which may be of little structural and/or
biological importance (e.g. poorly structured protein termini or a flexible
loop), may have a large impact on the resulting RMSD score. If differ-
ent models include different number of residues, corresponding RMSD
values may be entirely misleading as to the true accuracy of models. In
particular, the inadequacy of RMSD for evaluation and ranking of very
different and often incomplete protein models became apparent during
early CASP experiments,42, 43 established for monitoring the state-of-the-
art in protein structure prediction.

Thus, CASP experiments revealed a need for scores that would be robust
in a wide range of model accuracy and completeness. Global Distance
Test (GDT)13 was one of the scores developed to overcome shortcom-
ings of RMSD. GDT identifies the largest subset of model residues (repre-
sented by their Cα atoms) that can be superimposed with the correspond-
ing residues in the reference structure under specific distance threshold.
The overall model accuracy is summarized by GDT Total Score (GDT-
TS), a single value derived by averaging the fractions of residues ob-
tained in the four independent superpositions under 1, 2, 4 and 8 Å
distance thresholds.44 Due to multiple superpositions of different strin-
gency, GDT-TS is able to rank models quite effectively in a wide range
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Figure 1.5: Example of a rigid-body superposition of two proteins structures,
shown with Cα-traces.

of accuracy. Unlike RMSD, GDT-TS rewards the good bits of the model
without adding a penalty for the inaccurately modeled regions. As a
result, GDT-based benchmarking promotes methods that attempt to con-
struct not only the most accurate, but also the most complete structural
models. Other scores, similar to GDT-TS, include MaxSub45 and TM-
score.46 MaxSub, just like GDT-TS, aims at identifying the largest subset
of residues that can be superimposed under specific distance threshold.
However, in contrast to GDT-TS, MaxSub uses only a single 3.5 Å dis-
tance threshold. This makes MaxSub somewhat less robust in ranking
models, in particular those of lower accuracy.46 TM-score considers all
the corresponding residue pairs. It uses the distance-dependent weight-
ing scheme, which reduces the contribution from significantly deviat-
ing residue pairs. In addition, the distance-dependent down-weighting
varies with the protein size, making the score less size-dependent in com-
parison with either GDT-TS or MaxSub. Yet, similarly to MaxSub, TM-
score is derived from a single superposition. When size-dependence is
not an issue (e.g. evaluating models against the same reference) multiple
superpositions as implemented in GDT-TS offer an obvious advantage.

Not surprisingly, GDT-TS has de facto become the central score in the au-
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tomated reference-based model evaluation during CASP experiments.47

However, despite its common use, GDT-based scoring is not without
weaknesses. Since GDT-TS is based on the rigid-body superposition,
it performs poorly on multi-domain proteins. A slight change in the
mutual domain orientation may be biologically irrelevant, yet it may
strongly affect the GDT-TS score. Another GDT weakness is that it uses
only Cα atoms and therefore lacks information about the correctness of
residue side chain modeling. However, this is an important component
in benchmarking high accuracy comparative modeling or protein struc-
ture refinement methods. One additional and perhaps the most discon-
certing issue is the lack of direct relationship between the GDT-TS score
and the physicochemical characteristics of a protein model. A model hav-
ing unrealistic features such as extensive interatomic clashes or system-
atic structural distortions may still receive a favorable GDT-TS score.48–50

The same limitations are characteristic of similar scores, MaxSub and TM-
score.

In attempt to address some of these issues, a number of modifications to
the GDT-TS score have been proposed. Some of them were directed at a
better resolution of higher accuracy models. Thus, GDT-HA,51 a more
stringent version of GDT-TS, uses distance thresholds half the size of
those for GDT-TS. GDC, another modified score, is capable of including
different thresholds and different subsets of residue atoms.52, 53 To make
the score mindful of steric clashes, the inclusion of repulsion term into
GDT-TS was proposed.48 However, each modification addresses only
one of several limitations of the GDT-TS score.

Therefore, there is a clear need to have the best features of GDT-TS (ro-
bustness over the wide model accuracy range and the ability to compare
models of different degree of completeness) combined with a more phys-
ically meaningful representation of protein structure. Globular proteins
fold into specific 3D structures that are defined by residue-residue inter-
actions, which are reflected by physical contacts. Therefore, it seems that
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contacts might be well-suited for quantifying deviations in a model with
respect to the reference structure. Besides, the comparison of contacts
does not require structure superposition with all the associated caveats.
Indeed, a number of scores that use the concept of residue-residue con-
tacts have been proposed.50, 53–56 However, typically, “contacts” in these
scores are represented by distances between Cα, Cβ or all atoms within
the arbitrarily specified threshold. Obviously, the physical meaning of
contacts in such scores is lost. If only a single atom per residue (e.g. Cα)
is used, important structural details are lost as well.

An interesting idea of using the explicit description of physical residue-
residue contacts for model evaluation was introduced by Abagyan &
Totrov.12 They proposed to use the residue-residue contact area as the
basis for comparing a model and the reference structure. Furthermore,
they introduced a single-number score, contact area difference (CAD), as
a measure of the overall model accuracy. CAD, as defined by Abagyan
& Totrov, has a number of appealing features. It is continuous and
threshold-free, works in a wide range of model accuracies, adequately
penalizes domain, fragment and side-chain rearrangements and captures
essential geometrical characteristics of protein structure.12

However, the original CAD has some properties that make its use for
evaluation of methods on a large scale (e.g. CASP experiments) problem-
atic. First, CAD considers only residues common for both the model and
the reference structure. It means that a complete model would be eval-
uated against the complete reference structure, while a modeled short
fragment would be evaluated against the corresponding reference frag-
ment. In other words, the exact choice of the reference depends on the
completeness of the model. This can hardly be considered an objec-
tive mode for benchmarking different methods. Second, the normalizing
CAD term includes inter-residue contact areas not only of the reference
structure but also of the model. Although this is not expected to have a
large impact on the total score, it nevertheless makes the CAD normal-
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ization model-specific.

1.5 Methods for the reference-based evaluation of

RNA structural models

In recent years the repertoire of known biological functions that RNA
performs in the cell has greatly expanded.57 Many of these different func-
tions are performed by RNA molecules or their regions adopting com-
plex three-dimensional (3D) structures. Not surprisingly, the interest in
RNA 3D structure has also increased considerably. However, the deter-
mination of RNA 3D structure using experimental approaches such as X-
ray crystallography or NMR remains a formidable challenge. Therefore,
computational RNA structure prediction methods are rapidly gaining
importance.16 A critical component in both the development and com-
parison of such methods is the ability to evaluate computational models
against the experimentally determined reference structure. Only through
the effective reference-based model evaluation, one can hope to obtain
useful comparison of the performance by different methods. Moreover,
the quantitative data regarding discrepancies between models and corre-
sponding reference RNA structures can provide much-needed guidance
to methods developers. Therefore, the progress in RNA 3D structure pre-
diction is tightly coupled with the availability of both informative and
objective scores that quantify discrepancies between modeled and exper-
imental structures.

The best-known score for measuring the differences between two 3D
structures is RMSD,41 which has several major drawbacks discussed in
the previous section 1.4. For protein structure analysis, the recognition
of RMSD shortcomings has recently led to introduction of several alter-
native scores. Global Distance Test (GDT)13 (described in section 1.4) is
one of the scores in the protein field adopted for RNA.58–60 However, the
representation of a residue by a single atom (Cα for proteins and C3’
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for RNA), while appropriate for proteins, seems to be too coarse-grained
for RNA. Moreover, GDT-TS distance cutoffs selected to be meaningful
for protein models may not be optimal for RNA. Several new scores, in-
cluding Interaction Network Fidelity,61 Deformation Index,61 Deforma-
tion Profile61 and RNAlyzer,62 have been developed specifically for RNA
3D structure. Interaction Network Fidelity (INF) compares how closely
base pairing and base stacking interactions within the reference RNA
3D structure are reproduced in a model.61 Deformation Index (DI) is
RMSD adjusted by INF and has been introduced as an attempt to im-
prove RMSD properties on RNA models. The other two new scores,
Deformation Profile (DP) and RNAlyzer are also based on RMSD. DP
highlights dissimilarities between a model and the reference structure at
the nucleotide resolution. RNAlyzer works by comparing how well cor-
responding local neighborhoods in the reference structure and a model
agree with each other.62 These new RNA-specific scores significantly ex-
pand the list of available model evaluation methods. However, it should
be noted that they all, except INF, are based on RMSD and, therefore,
inherit at least some of its drawbacks.

1.6 Methods for the referenceless assessment of

protein structure model quality

The ability to predict protein three-dimensional (3D) structure from se-
quence is one of the most important and challenging problems in com-
putational biology. Protein structure prediction methods tackling this
problem are being developed continuously and in many cases they can
produce models that are close to the native structure. The performance of
such methods is systematically assessed during community-wide CASP
experiments17, 18 that not only reveal successes, but also point out the bot-
tlenecks in the field of protein structure prediction. One of the most
prominent bottlenecks is the model quality assessment (QA). Current
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structure prediction methods typically produce multiple models for a
given protein, and then QA methods are used to identify the best model
and to estimate how realistic the model is. However, according to the re-
sults of recent CASP experiments,63, 64 model quality assessment remains
a difficult task and there is a clear need for better QA methods.

There are two major classes of QA methods: multi-model and single-
model.63 A multi-model method evaluates a model by quantifying how
well do the structural features of the model correspond to the consen-
sus of the structural features of a diverse ensemble of other models. A
single-model method does not rely on additional models for the assess-
ment of a single structure. Therefore, single-model methods are par-
ticularly well-suited for the practical use outside of CASP-like settings.
Some of the most successful single-model QA methods, e.g. ProQ265 and
QMEAN,66 are meta-methods that combine several sources of informa-
tion about an input structure. Such meta-methods often employ machine
learning techniques to produce a single generalized quality score out of
several lower-level scores such as the estimates of free energy and agree-
ment scores that tell how well some of the observed structural features,
such as secondary structure and residue solvent-accessibility, correspond
to the sequence-based predictions. A viable approach for creating a better
QA method is designing better techniques to combine available scores,
another approach is to design better independent scores that perform
well on their own or become useful components of meta-methods.

Prominent examples of independent QA methods are knowledge-based
statistical potentials. Over the last twenty years or so a number of dif-
ferent statistical potentials have been developed. Most of them rely on
statistics of pairwise interaction distances,67–72 some also utilize informa-
tion about interaction angles.73–75 However, distance-based metrics may
not necessarily be best-suited for the description and analysis of physi-
cal properties of protein structure. A possible alternative approach is to
use interatomic contact areas. The first attempt to employ contact areas
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as a foundation for knowledge-based potentials was made over a decade
ago by McConkey et al.76 Contact areas in the McConkey method are
derived from the Voronoi tessellation of atomic centers. Voronoi and re-
lated tessellation methods proved to be an effective means in the analy-
sis of various structural features,27, 28, 40, 77, 78 including the identification
of physical contacts that could be utilized in deriving distance-based
statistical potentials.79–81 However, to the best of our knowledge, the
study by McConkey et al. so far has been the only QA method based
on tessellation-derived contact areas. Their method achieved respectable
results in discriminating native protein structures from decoys; however,
perhaps mainly due to the lack of publicly available software implemen-
tations, the prospects of applying contact areas for the assessment of pro-
tein structural models remained largely unexplored.
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2 Voronota: a method for comput-
ing the vertices of the Voronoi di-
agram of atomic balls

Voronota is a simple yet efficient algorithm and the corresponding open-
source software for computing the vertices of the Voronoi diagram of
3D balls. The algorithm can be applied to 3D structures of various bio-
logical macromolecules including proteins, nucleic acids, protein-protein
and protein-nucleic acids complexes. The computed Voronoi vertices
can be used in unequivocally defining atomic neighborhoods, describ-
ing internal cavities in molecular structures or constructing edges and
faces of Voronoi cells of atoms. Here, we provide a detailed descrip-
tion of the algorithm, then we describe the software implementation and
provide large-scale tests illustrating its speed and robustness. In addi-
tion, we compare the performance of our software with the performance
of QTFier (voronoi.hanyang.ac.kr/software.htm) and awVoronoi
(sourceforge.net/projects/awvoronoi) that, to the best of our
knowledge, are the only other publicly available tools that include simi-
lar functionality.

2.1 Method description

2.1.1 The Voronoi diagram of 3D balls and the corresponding

Voronoi vertices

Let B = {b1, b2, . . . , bn} be a set of balls, where bi = 〈ci, ri〉 is a ball with a
center ci ∈ R3 and a radius ri ∈ R+

0 . A signed distance d(p, bi) from a point
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Figure 2.1: (A) Voronoi cells of 2D balls (blue) and the empty tangent spheres
(red) corresponding to the Voronoi vertices. (B) Edges of the Voronoi cells of 3D
balls (left) and the empty tangent spheres corresponding to the Voronoi vertices
(right).

p ∈ R3 to a ball bi is defined as follows:

d(p, bi) = ‖p− ci‖ − ri (2.1)

The Voronoi cell Vi for a ball bi is a region containing all points closest to
bi:

Vi =
{

p ∈ R3|d(p, bi) ≤ d(p, bj),∀bj ∈ B \ bi

}

(2.2)

A set {V1, V2, . . . , Vn} is the Voronoi diagram for B. Figure 2.1 contains
examples of the Voronoi cells of balls. Two balls are considered to be
neighbors if their Voronoi cells intersect. The intersection of four Voronoi
cells defines a point termed the Voronoi vertex. It is the center of an
empty sphere tangent to the four neighboring balls (Figure 2.2 A). No-
tably, some Voronoi cells of balls may have no vertices – such situations
are analyzed separately.

2.1.2 Outline of the algorithm for finding the Voronoi vertices

Given an input set of balls B, our goal is to find the quadruples of balls
that define all the vertices of the Voronoi diagram for B. In other words,
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Figure 2.2: (A) Quadruples of 3D balls having either one (left) or two (right)
tangent spheres. (B) A triple of 3D balls having two tangent planes. Diagrams
below each 3D example show corresponding similar cases in 2D space.

we search for quadruples of balls that have at least one tangent sphere,
which does not intersect with any ball from the input set. We term such
quadruples valid. Any quadruple is a union of exactly four different
triples, e.g. {a, b, c, d} = {a, b, c} ∪ {a, b, d} ∪ {a, c, d} ∪ {b, c, d}. We call a
triple valid if it is a subset of a valid quadruple. Starting with a single
valid triple, we can discover valid quadruples by finding valid neighbors
for previously detected valid triples. This principle, commonly known
as “gift wrapping”,82 is used in algorithms for both the construction of
the Delaunay triangulation of points83, 84 and for the construction of the
quasi-triangulation of balls.31, 35 We exploit the same principle, but use a
different take on searching for valid triples and their neighbors.

In Procedure 1 we implement the “gift wrapping” strategy with an
important modification: we take into account that a network of valid
quadruples may be disconnected.85 This is achieved by having two
“while” cycles. The inner cycle (starting at line 8) finds as many quadru-
ples as possible starting from a valid triple. The outer cycle (starting at
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line 6) runs while there still are valid triples containing balls that are not
part of any of the already found quadruples.

In the next sections we explain the algorithm in detail. To begin, we
briefly describe the technique we use for computing tangent spheres. We
then define the two complex subprocedures incorporated into Procedure
1: finding the first valid triple (lines 5 and 22) and finding all neighbors
for a valid triple (line 11). Both subprocedures utilize the same technique
for efficient searching in a large set of balls, which is also described later
in the text.

Procedure 1 Find valid quadruples
input: B = (a set of balls)
output: Q = (a set of valid quadruples for B)

1: Q← (an empty set for found quadruples)
2: T ← (an empty set for processed triples)
3: M ← (an empty map to associate triples with sets of their neighbors)
4: stack ← (an empty stack for triples)
5: tf ← (for B, find a first valid triple)
6: while tf 6= ∅ do
7: push(stack, tf )
8: while stack is not empty do
9: t← pop(stack)

10: T ← T ∪ t
11: X ← (for B, find a set of all neighbors of t, excluding M [t])
12: for all x ∈ X do
13: q ← (a quadruple from t and x)
14: Q← Q ∪ q
15: Tq ← (a set of all triples from q)
16: for all tq ∈ Tq do
17: xq ← (a neighbor of tq in q)
18: M [tq]←M [tq] ∪ xq

19: if tq /∈ T then
20: push(stack, tq)
21: U ← (detect balls not included in any q ∈ Q)
22: tf ← (for B, find a first valid triple containing any u ∈ U )
23: return Q
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2.1.3 Computing tangent spheres

To compute a tangent sphere for four balls {b1, b2, b3, b4} (examples shown
in Figure 2.2 A) we use the method proposed by Gavrilova and Rokne.86

Let us assume without the loss of generality that b4 has the smallest ra-
dius. We reduce the radii of all the four balls by the radius of b4. We then
move the balls such that b4 coincides with the origin. This allows us to
define an easily solvable system of equations for finding the coordinates
and the radius of the tangent sphere. This system can have none, one or
two solutions. After solving the system, we restore the original positions
and radii of {b1, b2, b3, b4} and transform each computed tangent sphere
accordingly. Note that if the centers of tangent spheres are located inside
the intersection of all four balls, tangent spheres will have negative radii.

There also may be tangent spheres of infinite radius. Their surfaces can
be regarded as planes. To compute tangent planes for three 3D balls (an
example shown in Figure 2.2 B), we use an approach similar to the one
used when computing tangent spheres for four balls.

2.1.4 Finding the first valid triple

We make an assumption that balls close to each other are likely to form
valid quadruples. Thus, we take the first ball b0 ∈ B and select a set of
its nearest neighbors B0 ⊂ B. We then start enumerating quadruples for
B0. If a quadruple has a tangent sphere that does not intersect any ball
from B, then a quadruple is valid and one of its triples is returned. If
no valid quadruples are found, B0 is expanded and more quadruples are
enumerated and tested.

In line 22 of Procedure 1 we need to find a first valid triple that should
contain a ball that was previously not included in any of the already
found valid quadruples. It may not always be possible, therefore for such
constrained search we limit the maximum size of B0 to avoid enumera-

39



Figure 2.3: Two examples of loose triples.

tion of all quadruples for B.

2.1.5 Finding all neighbors for a valid triple

Constricted and loose triples

Consider a valid triple of balls t = {a, b, c} ⊂ B. Generally, t can have
infinitely many possible tangent spheres, and a ball d can have a tangent
sphere with t if and only if d intersects or touches the volume defined by
the union of all the possible tangent spheres of t. If t has infinitely large
tangent spheres, then these spheres can be regarded as tangent planes. If
t has exactly two tangent planes, we call it a constricted triple. Otherwise
we call it a loose triple (see figure 2.3). We define separate algorithms of
finding neighbors for constricted and loose triples, i.e. triples that do not
have two tangent planes.

Search space for a constricted triple

A constricted triple t has two tangent planes, therefore the union of all
the possible tangent spheres of t is a union of the following three regions:

• the half-space h1 defined by the first tangent plane;

• the half-space h2 defined by the second tangent plane, h1 and h2 may
intersect;
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Figure 2.4: (A) Regions defined by two tangent planes in 3D. (B) Regions de-
fined by two tangent planes in 2D. (C) Illustration of Procedure 2 for halfspace
h2: starting with b1 the procedure runs until encountering b4, which produces
an empty h2-related tangent sphere.

• the region m located between the two tangent planes.

Figure 2.4 (A, B) provides an illustration of such a subdivision. The cen-
ters of all the possible tangent spheres of t belong to a continuous curve.31

Let us denote this curve as C. C intersects the plane defined by the cen-
ters of the three balls in t at a single point p, which corresponds to the
center of the smallest possible tangent sphere of t. When moving away
from p along the curve C, the radius of the corresponding tangent sphere
always grows.

Finding neighbors in the halfspaces defined by a constricted triple

Let us assume that for a constricted triple t there is a ball di such that di

intersects halfspace hx ∈ {h1, h2}. If t and di have a single tangent sphere
si, let us call si a hx-related tangent sphere for t and di (if t and di have
two tangent spheres, then one of them closer to hx is called hx-related).
Another tangent sphere sj of t can be produced by moving the center of
si along the curve C (with the radius of sj changing so that sj remains
tangent to t). If the movement is directed towards hx, then sj intersects
di, therefore sj is not empty. Otherwise the movement is directed away
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from hx and sj does not even touch di. In this case, if si is empty, then sj

does not touch any ball in hx. Therefore, if si is empty, then it is the only
empty hx-related tangent sphere for t.

The properties of hx-related tangent spheres allow us to define Procedure
2 for finding a valid neighbor of t in halfspace hx. Along with the pseu-
docode, we provide a simplified description of the procedure:

1. The procedure starts with any ball that intersects hx and produces a
hx-related tangent sphere with t;

2. The procedure selects any ball that intersects both hx and the pre-
viously produced tangent sphere and produces another hx-related
tangent sphere;

3. If step 2 has produced a tangent sphere, then step 2 is repeated;

4. If the last produced tangent sphere is empty, then the last selected
ball is a valid neighbor.

Procedure 2 is greedy, it does not check all the balls that intersect hx. See
Figure 2.4 (C) for an illustration of the procedure run. Procedure 2 does
not need to be called if a valid neighbor of t from hx is already known
from the previously found valid quadruple that contains t. Therefore,
for most valid triples the procedure is performed only once. Also, the
running time of the procedure can be reduced if in line 2 a ball is selected
from a close neighborhood of t.

Finding neighbors in the middle region defined by a constricted triple

After valid neighbors of t from both h1 and h2 are determined, there may
be remaining valid neighbors that do not intersect h1 or h2 but intersect
middle region m and have empty tangent spheres with t. For a fast in-
tersection checking we need a simple approximation of m. Let us con-
sider the surface of m. It is known to be a part of the Dupin cyclide de-
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Procedure 2 Find a valid neighbor of a triple in a halfspace
input: B = (a set of balls), t = (a triple of balls, t ⊂ B), hx = (a halfspace,

hx ∈ {h1, h2})
output: d = (a valid neighbor of t) and s = (an empty hx-related tangent sphere

of t and d)
1: 〈d, s〉 ← 〈∅, ∅〉
2: d0 ← (select a ball d0 ∈ B such that there exists a hx-related tangent sphere

s0 for t and d0)
3: while d0 6= ∅ do
4: intersection← false
5: replacement← false
6: repeat
7: d1 ← (select another ball d1 ∈ B such that d1 intersects s0)
8: if d1 6= ∅ then
9: intersection← true

10: if there exists a hx-related tangent sphere s1 for t and d1 then
11: replacement← true
12: until replacement = true or d1 = ∅
13: if replacement = true then
14: 〈d0, s0〉 ← 〈d1, s1〉
15: else if intersection = true then
16: 〈d0, s0〉 ← 〈∅, ∅〉
17: else
18: 〈d, s〉 ← 〈d0, s0〉
19: 〈d0, s0〉 ← 〈∅, ∅〉
20: return 〈d, s〉
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fined by balls in t (Figure 2.5 A).31, 87 A Dupin cyclide is an envelope sur-
face of spheres tangent (both externally and internally) to the three fixed
spheres. The surface of m is part of the Dupin cyclide that corresponds
only to externally tangent spheres, i.e. tangent spheres that do not over-
lap the three fixed spheres. Each externally tangent sphere of t has three
points touching balls in t. The circumcircles of such triples of touching
points lie on the surface of m (Figure 2.5 B).88 There are two circumcircles
that also lie on the touching planes of t because they correspond to the
largest possible tangent spheres. We use a bounding cylinder of these
two circumcircles as an initial approximation of m (Figure 2.5 C). We can
reduce the size of this bounding cylinder by considering circumcircles
that correspond not to the largest possible tangent spheres of t, but to the
largest empty tangent spheres of t, i.e. empty h1-related and h2-related
tangent spheres, if such exist. If a ball intersects the defined bounding
cylinder and is located between the two tangent planes of t, then this ball
is checked for having at least one empty tangent sphere with t.

Notably, circumcircles defined by tangent spheres of negative radii (see
Figure 2.5 (B3) for an example) may lie outside of the cylinder approx-
imating region m. However, this does not present a problem, because
if a valid neighbor of t corresponds to a tangent sphere of negative ra-
dius, then this neighbor overlaps the center of that tangent sphere and
therefore intersects the cylinder approximating m.

Finding all neighbors for a loose triple

Let us now consider a case, in which a valid triple t does not have ex-
actly two tangent planes. In this case the search for valid neighbors is
performed in a brute-force manner: each ball b ∈ B \ t is checked for hav-
ing at least one empty tangent sphere with t. It should be possible to
define a faster but a more complex procedure for handling loose triples.
However, this would not significantly improve the overall performance
of the algorithm, because our tests (described later in the text) show that
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Figure 2.5: (A) For constricted triples of balls it is possible to define Dupin
cyclides of three types: ring-like (1), horn-like (2) and spindle-like (3). Horn-
like cyclides are generally two-part, but we only show the part relative to the
middle region m. (B) 3D surfaces of middle regions are parts of Dupin cyclides
displayed above. Black circles indicate circumcircles of the points, at which
externally tangent spheres touch the balls of a triple. The circles lie on the
surface of a middle region. The topmost and bottommost circles also lie on
touching planes and are used for approximating a middle region. In the last
case (3) the middle part of the surface corresponds to tangent spheres that have
negative radii because they lie inside the intersection of all the balls of a triple.
(C) Bounding cylinders of the topmost and bottommost circles shown in (B).
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in macromolecular structures loose triples occur very rarely.

2.1.6 Efficient searching in a large set of balls

Let us summarize geometric search operations that we need to imple-
ment: search for balls that intersect a halfspace; search for balls that inter-
sect a sphere; search for balls that intersect a cylinder. To implement them
efficiently we need a search data structure. We chose to use a bounding
spheres hierarchy (BSH)89 because it does not add any additional com-
plexity when implementing geometric queries that we need: checking
any bounding sphere for an intersection with some object is no different
from checking an input ball for the same thing. Our approach to the con-
struction of BSH for a set of input balls B can be summarized as follows:

1. The elements of B form the leaf nodes of the tree;

2. Nodes created in the previous step are grouped and enclosed within
bounding spheres which form the higher level of nodes;

3. Step 2 is performed in a recursive fashion eventually resulting in a
tree structure with a single bounding sphere at the top of the tree.

In step 2 we can use the following algorithm:

1. Select group centers from the input spheres using the greedy Proce-
dure 3;

2. Assign each input sphere to the group with the nearest center;

3. Construct a bounding sphere for each group.

This algorithm is practical only for a relatively small number (less than
105) of input spheres, because Procedure 3 has quadratic time complexity.
To overcome this problem we provide input in smaller portions. The por-
tions are determined by recursively subdividing the input set of spheres
using k-d tree subdivision algorithm.90
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Procedure 3 Select group centers in BSH construction
input: S = (a list of spheres), lmin =(minimal distance between group centers)
output: Sselected = (a set of selected group centers)

1: S ← (order S by the distance to S[0])
2: Sselected ← ∅
3: Slocked ← ∅
4: for all a ∈ S do
5: if a /∈ Slocked then
6: Sselected ← Sselected ∪ a
7: for all b ∈ S do
8: if distance(a, b) < lmin then
9: Slocked ← Slocked ∪ b

10: return Sselected

Two examples of bounding spheres hierarchies are shown in Figure 2.6.
Searching in BSH is performed as in any other tree structure – children
are not examined if their parent does not satisfy the predefined condi-
tion. In the case of BSH, a node is not examined if the bounding sphere
of the parent node does not satisfy the predefined constraint. A search
starts from the root node and can be performed in either depth-first or
breadth-first manner. If we need to find out whether at least one ball from
B satisfies some condition (for example, if any ball intersects a tangent
sphere), then the depth-first search method is more beneficial because it
reaches the leaves level faster.

2.1.7 Handling special situations

The Voronoi diagram of balls may exhibit various special cases and
anomalies.38, 91 Since our algorithm searches for Voronoi vertices, we
focus on handling two special situations that relate to the existence of
Voronoi vertices and valid quadruples.

Firstly, let us consider a ball that has the Voronoi cell without vertices
and, therefore, is not part of any valid quadruple. As noted by Medvedev
et al.,35 such orphaned balls can be identified and handled separately af-
ter the search for the Voronoi vertices. We choose to simply report the
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Figure 2.6: (A) 2D example of a bounding spheres hierarchy. (B) Illustration
of a bounding spheres hierarchy applied to a protein structure: protein atoms
(left), the first layer (middle) and the second layer (right) of bounding spheres.

orphaned balls. Our tests, described later in the text, show that occur-
rences of orphaned balls in macromolecular structures are extremely rare
and that they represent physically non-realistic stereochemistry.

Secondly, let us consider a situation where more than four balls share the
same empty tangent sphere. If n is the number of these spheres, then it is
possible to select up to

(

n
4

)

quadruples defining the same Voronoi vertex.
Our algorithm selects a smaller set of quadruples because it considers
halfspaces defined by triples of balls. For example, if the algorithm is
applied to a set of points where more than four points share the same cir-
cumsphere, it produces a valid triangulation where simplices meet edge-
to-edge or vertex-to-vertex and do not overlap. However, we provide
an optional procedure for finding all possible valid quadruples. After
computing all the Voronoi vertices we use a bounding spheres hierarchy
to search for all the touching balls for each of the constructed tangent
spheres. We then report surplus quadruples for each tangent sphere that
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has more than four touching balls.

2.1.8 Parallelization of the algorithm

We parallelize the algorithm by implementing the following strategy:

1. Subdivide the set of input balls B into k smaller sets B1, B2, . . . Bk.

2. In parallel: for each Bi ∈ {B1, B2, . . . Bk} find a set Qi of all valid
quadruples that contain at least one ball from Bi.

3. Return the full set of quadruples Q = Q1 ∪Q2 ∪ . . . ∪Qk.

In step 1 we recursively subdivide the input set of balls using k-d tree
subdivision algorithm,90 so that during each subdivision step the input
is divided into parts that are as similar in size as possible. In step 2 we run
the algorithm for B as defined in Procedure 1, but maintain the following
constraint: every triple pushed into the stack should contain at least one
element of Bi. This requires a simple modification in the procedure for
finding a first valid triple (called in lines 5 and 22 of Procedure 1): a
returned first valid triple should contain at least one element of Bi.

2.1.9 Convergence of the algorithm

Let us show that both sequential and parallel versions of our algorithm
find all the Voronoi vertices. Missing a Voronoi vertex implies missing
a valid quadruple (otherwise it would imply a wrongful rejection of an
empty tangent sphere, which is not possible because the check for the
sphere emptiness is performed explicitly). Let us assume that there is a
valid quadruple qm that was missed. Let us consider a ball bm ∈ qm. If
bm is not a part of some found valid quadruple, then the procedure for
finding the first valid triple containing bm would be called, which would
find either qm or some other valid quadruple containing bm. Therefore bm
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must be a part of some found valid quadruple qf 6= qm. Let us now con-
sider the Voronoi cell Vm of bm. For any two vertices of Vm there is a path
of Voronoi edges between them (none of the special cases38 of Voronoi
cells of balls have disjoint sets of vertices). Each Voronoi edge of Vm cor-
responds to a valid triple that contains bm. Therefore, there is a path of
valid triples containing bm between any two valid quadruples containing
bm. The sequential version of the algorithm would follow such a path
because it would search for neighbors of every valid triple (including the
triples that are subsets of qf ). The parallel version would follow such a
path because it would search for neighbors of every valid triple that con-
tains bm when processing the subset of the input balls that contains bm.
Thus, if qf was found, then qm would be found too, which contradicts the
initial assumption that qm was missed.

2.1.10 Implementation

Our algorithm for computing the vertices of the Voronoi diagram of 3D
balls is implemented as an open-source C++ program, named Voronota.
It has no external dependencies, and only a C++ compiler is needed to
build it. In addition, we developed parallel implementations of the algo-
rithm using OpenMP and MPI technologies.

All the geometric calculations are implemented using double precision
floating point numbers (C++ “double” data type). To reduce the effects
of numerical errors we apply several techniques. We use Kahan sum-
mation algorithm92 in the code for solving equations when computing
tangent spheres and tangent planes. For quadratic equations we use
a numerically safer solving algorithm.93 After computing each tangent
sphere or plane we calculate to what extent the computed object is really
tangent: the obtained tangency error estimate is used when performing
intersection queries.

As an input, Voronota accepts a list of balls in the plain text format. The
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software provides a way to create such lists of balls from files in PDB and
mmCIF formats. By default, all heteroatoms and all hydrogen atoms are
ignored, but this behavior can be altered using command-line options.
Voronota also offers the possibility to customize VDW radii of atoms. The
output of Voronota is an easily parseable list of valid quadruples and the
corresponding empty tangent spheres.

2.2 Testing results

2.2.1 Testing on Protein Data Bank structures

The software was tested on Intel Core i7-2600 3.40GHz processor.
Firstly, we compared the performance of our software and of two other
tools: QTFier (voronoi.hanyang.ac.kr/software.htm, version 1.0)
and awVoronoi (sourceforge.net/projects/awvoronoi, version
1.0.0). These tools output both the Voronoi vertices and the topologi-
cal links between them, while Voronota outputs only Voronoi vertices.
Therefore we provide a running time comparison only for an informa-
tional purpose.

The test set consisted of all asymmetric units available from the Protein
Data Bank (PDB) database2 as of 2013.05.15 (90365 structures, each hav-
ing at least 4 non-hydrogen “ATOM” records). Hydrogen atoms and het-
eroatoms were removed from the input structures. All the three tools
were given the same set of coordinates and used the same set of VDW
radii94 (it was the only set of radii available in QTFier). For speed analy-
sis we measured CPU-time needed to process every input structure (Fig-
ure 2.7 (A, B)). Voronota processed the test set in about 34.8 hours, QT-
Fier and awVoronoi in 138.2 and 172.9 hours, respectively. Importantly,
Voronota did not fail on any of the input PDB structures whereas QTFier
failed on 259 and awVoronoi failed on 104.

Results obtained on the PDB test set enabled us to make some general-
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Figure 2.7: (A) CPU-time values for the macromolecular structures available
from the PDB database. (B) CPU-time values for for 95% of smallest structures
from PDB. (C) Voronota CPU-time values for protein and RNA structural mod-
els. (D) Voronota run-time and CPU-time values for non-parallel and parallel
implementations. Parallel implementation was executed on 4 computational
units.
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izations. For example, it turned out that the number of valid quadruples
linearly correlates with the number of atoms (Pearson’s correlation coef-
ficient being greater than 0.99). On average, the number of valid quadru-
ples was about 6.6 time greater than the number of atoms and about 2
times smaller than the number of valid triples. Only less than 0.005% of
all the valid triples were not constricted, and only 18 of about 4.5 · 108

atomic balls did not have any Voronoi vertices. On average, about 11
quadruples had to be examined to find the first valid triple.

We also asked if there is any quadruple q that meets both of the follow-
ing two conditions: 1) q is found by QTFier or awVoronoi, but not by
Voronota; 2) q is valid with respect to the 10−10 angstroms threshold used
for checking if any of the tangent spheres defined by q is empty. There
were some quadruples meeting the first condition, but none of them met
the second condition. One of the reasons for slight differences in the
output is that the three programs handle floating point arithmetic errors
differently. The tools may also be using different approaches to handle
degenerate situations.

To check if Voronota is capable of properly handling molecules with hy-
drogen atoms, we performed a similar test routine with all the NMR en-
tries from the initial PDB set (9883 structures, only first structural model
from each entry was used). This time hydrogen atoms were retained.
Voronota successfully processed all the input structures. In comparison
with the hydrogen-free testing results, there were more non-constricted
valid triples (approximately 0.5%) and atomic balls that did not have any
Voronoi vertices (117 atomic balls from 39 input structures). Voronota
processed the input set in about 1.3 hours, QTFier and awVoronoi in 3.3
and 15.4 hours, respectively.

We analyzed all the situations where either a hydrogen or non-hydrogen
atom did not have any corresponding Voronoi vertices. We found that
these cases represent either unrealistically short covalent bonds or se-
vere steric clashes of non-bonded atoms. Therefore, such situations may
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be considered to be indicators of dubious low-quality macromolecular
structures.

2.2.2 Testing on protein and RNA structural models

Computational structural models are becoming widely used for various
applications. However, models, especially of lower accuracy, may have
a number of physically unfeasible features. Therefore, we decided to
test whether Voronota is sufficiently robust to be used for computational
models. To this end we used 28806 protein models ranging widely in
their quality submitted by modeling servers to CASP995 and CASP1017

experiments. Voronota successfully processed all the structural models
(QTFier failed on 31 and awVoronoi failed on 875 input structures). In
addition, Voronota was successful in processing all 42585 RNA models
from the “randstr” decoys set.60 For the protein and RNA models the
relation between structure size and CPU-time (Figure 2.7 (C)) was con-
sistent with the results for the PDB structures (Figure 2.7 (A, B)).

2.2.3 Testing parallel implementations

We tested the performance of our OpenMP-based parallel implementa-
tion on the 5000 largest structures from PDB. The execution was per-
formed on the same machine as before, 4 computational units were used
for each input structure. Figure 2.7 (D) shows the recorded run-time (real
time) and CPU-time (total amount of time spent by all the used computa-
tional units) values for both non-parallel and parallel implementations.

The MPI-based parallel implementation is likely most suitable for pro-
cessing very large structures on a computing cluster. For example, we
processed the HIV virus capsid structure (PDB ID 3J3Q, 2440800 atoms)
on a cluster of Intel Xeon X5650 2.66GHz processors. When 9 CPU cores
were used, run-time and CPU-time values were 511 and 4176 seconds,
respectively. For 17 cores the values were 293 and 4330 seconds, for 33
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cores – 189 and 5018 seconds.

2.3 Discussion

We presented a simple and robust algorithm for computing the vertices
of the Voronoi diagram of balls. The algorithm is particularly well-suited
for processing 3D structures of biological macromolecules. It takes ad-
vantage of the observation that in the case of macromolecular structures
the overwhelming majority of valid ball (atom) triples are constricted
(have two tangent planes). When processing constricted triples, our
algorithm efficiently combines the knowledge of the search space with
the use of hierarchical spatial indexing. The algorithm uses a bounding
spheres hierarchy to iteratively search for neighbors so that the search
space is reduced after each iteration. Importantly, we introduce a sim-
ple approximation for the middle region of the search space defined by
the constricted triple. When processing rare loose triples (triples without
two tangent planes) our algorithm does not attempt to reduce the search
space, but still uses a bounding spheres hierarchy to speed up the search
for neighbors. This strategy works well in terms of speed and simplicity
of the algorithm implementation. Another important feature of the algo-
rithm is the simplicity and generality of the procedure for finding the first
valid triple, which enabled us to parallelize the algorithm in a straight-
forward manner. We implemented the algorithm as an open-source con-
sole application, Voronota, which can be run on either single or multiple
processors. Large-scale tests showed that Voronota is a fast and reliable
tool for processing both experimentally determined and computationally
modeled macromolecular structures.
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3 CAD-score: a method for contact
area-based comparison of struc-
tures and interfaces of proteins,
nucleic acids and their complexes

CAD-score (Contact Area Difference Score) is a universal method to
quantify both local and global similarity of macromolecular structures.
The method employs the Voronoi diagram of atomic balls for deriving
interatomic contact areas. Here, we provide a description of CAD-score
and present the results of extensive testing procedures performed on
both protein and RNA structural models. We then present the CAD-
score web server and describe the application of CAD-score for large-
scale clustering of protein-protein interaction interfaces.

3.1 Method description

3.1.1 Construction of inter-atom contacts

Atom-atom contact areas are derived using the Voronoi tessellation of
3D balls (also known as the additively weighted Voronoi diagram or the
Apollonius diagram), where balls correspond to the heavy atoms of van
der Waals (VDW) radii.7 Here we used van der Waals radii for heavy
atoms derived by Li & Nussinov.96 For each atom we can define the
Voronoi cell, a set of all points closer to this particular atom than to any
other atom. Two atoms are said to be Voronoi neighbors if their Voronoi
cells share a common subset of points.

Interatomic contacts are derived from the Voronoi diagram of atoms
based on the idea proposed by McConkey et al.97 Neighboring atoms are
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Figure 3.1: Constructing a triangulated representation of a sphere using the
recursive icosahedron subdivision technique.

defined as contacting each other if a water molecule cannot fit between
them. Thus, the complete contact surface of an atom is represented by
the sphere of the radius equal to the sum of van der Waals radius of the
atom and the standard radius (1.4 Å) of a water molecule. We term it
a contact sphere. Point p on the contact sphere of atom i belongs to the
contact surface with atom j if the following two conditions are satisfied:
1) i and j are Voronoi neighbors; 2) p is closer to j than to i or any other
neighbor of i. If p is closer to i than to any neighbor of i, then it belongs
to the solvent-accessible surface.

For a given atom we use the recursive icosahedron subdivision tech-
nique98 to produce a triangulated representation of its contact sphere
(Figure 3.1). We then construct inter-atom contact surfaces by intersect-
ing the triangulated surface of the atom contact sphere with hyperboloids
that correspond to the junctures of neighboring Voronoi cells, i.e. Voronoi
faces (Figure 3.2). For an analytic representation of such hyperboloids we
use the method proposed by Kim et al.31

The method of cutting triangles with hyperboloids can also be applied to
construct contact surfaces that do not lie on the contact sphere of an atom,
but correspond to the portions of the atomic Voronoi cell faces that are in-
side the contact sphere: this idea is illustrated in Figure 3.3. Such contact
surfaces, which can be called constrained Voronoi faces, are suitable for
both visualizing and quantifying interatomic contacts, but we initially
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Figure 3.2: (A) A hyperboloid defined for a pair of balls. (B) Pairwise hyper-
boloids defined for three balls. (C) Hyperboloids intersecting the triangulated
representation of the contact sphere of the red ball. (D) Hyperboloids cutting
the contact sphere into three contact surfaces. (E) The contacts defined by the
intersections in (D), triangulation of the contact with the green ball is overlaid
on top. (F) Similar to (E), but with the overlaid triangulation belonging to the
solvent-accessible surface of the red ball.
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used on-sphere contacts because their implementation was simpler and
worked faster.

3.1.2 Construction of inter-residue contacts

Residue-residue contacts are constructed by simply grouping contacts
between atoms of corresponding residues. The inter-atom contacts cor-
responding to the covalent bonds that connect residues adjacent in se-
quence are not considered. Since contacts are resolved at the level of
atoms, we can define contacts not only for the entire residue but also for
various subsets of its atoms (e.g. main chain and side chain). Figure 3.4,
created using our Voroprot40 software, illustrates how the combination
of Voronoi cells and contact spheres is used to construct contact surfaces
for an atom (Figure 3.4 A) and for a residue (Figure 3.4 B).

3.1.3 Partitioning of nucleobase-nucleobase contacts into

stacking and non-stacking contacts

For nucleic acids, we additionally characterize base-base contacts by par-
titioning them into stacking and non-stacking ones, Let us consider base
i, which is in contact with base j, i 6= j. If all atoms (represented as
spheres of VDW radii) of base j are entirely on one side of the plane
of base i, the base-base contact is defined as the stacking contact. Con-
versely, if one or more atoms (or part of their VDW spheres) of base j

appear on the other side of the plane of base i than the remaining atoms
of base j, the contact is defined as non-stacking. The illustration of this
simple definition is provided in Figure 3.5.
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Figure 3.3: Constructing constrained Voronoi faces. (A) Four neighboring balls.
(B) Constructing a contact between the red and the green balls in three steps:
selecting a portion of the inter-ball hyperboloid that is inside the contact sphere
of the red ball, triangulating it can be done by projecting the cut-out part of the
contact sphere triangulation on the hyperboloid; cutting the previously initial-
ized triangulated patch with the next hyperboloid that correspond to the con-
tact between the green and the blue balls; cutting the previously modified trian-
gulated patch with the last hyperboloid that correspond to the contact between
the green and the gray balls. (C) Constrained Voronoi faces obtained using the
approach demonstrated in (B), plus the corresponding solvent-accessible sur-
face of the red ball.
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Figure 3.4: Illustration of the procedure for deriving contact surfaces for atoms
(A) and residues (B). (A) Interatomic contacts: 1 — the considered atom (grey)
surrounded by neighboring atoms; 2 — the Voronoi cell of the considered atom
(solid) and neighboring Voronoi cells (wireframe); small colored spheres cor-
respond to the same neighboring atoms shown as large spheres in 1; 3 — the
Voronoi cell with its faces colored according to the color of neighboring atoms;
4 — interatomic contact surfaces mapped onto the contact sphere of the atom.
(B) Inter-residue contacts: 1 — two interacting phenylalanine residues in the
space-filling representation; 2 — Voronoi cells of the same residues; faces of
one of the residues are colored according to the color of neighboring residues;
3 — the map of inter-residue contact surfaces for one of the interacting residues.

Figure 3.5: Illustration of the definition of stacking/non-stacking base-base
contacts. On the left, a nucleotide in the space-filling representation is shown
in contact with the three neighbors. Contacts are represented as faces of the
Voronoi cells constrained by the contact spheres. Cyan and magenta indicate
stacking and non-stacking contacts respectively. On the right, the same contacts
are shown in schematic representation.
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3.1.4 CAD-score definition

Global score

We defined CAD-score based on the three main considerations: 1) con-
tacts in the model should be evaluated according to the contacts in the
reference structure (target); 2) any missing residues in the model should
be treated in the same way as if none of their contacts were correctly pre-
dicted; 3) strong over-prediction (non-physical overlap) of a particular
contact should be equivalent to missing that contact entirely. The mathe-
matical definition of CAD-score is presented below.

Let G denote the set of all the pairs of residues (i, j) that have a non-
zero contact area T(i,j) in the target structure. Then for every residue pair
(i, j) ∈ G we calculate the contact area M(i,j) in the model. If the model has
additional residues not present in the target, these residues are excluded
from the calculation of contact areas. If some residue is present in the
target, but is missing from the model, all the contact areas for that residue
in the model are assigned zeroes.

For every residue pair (i, j) ∈ G we can then define contact area difference
as the absolute difference of contact areas between residues i and j in
target T and in model M :

CAD(i,j) = |T(i,j) −M(i,j)| (3.1)

To impose symmetrical treatment of over-prediction and under-
prediction of the contact area, instead of the raw CAD(i,j) value, we use
bounded CAD(i,j) defined as follows:

CADbounded
(i,j) = min(CAD(i,j), T(i,j)) (3.2)

CAD-score for the whole model is then defined as:
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CAD-score = 1−
∑

(i,j)∈G CADbounded
(i,j)

∑

(i,j)∈G T(i,j)
(3.3)

The sum in the numerator of equation (3.3) never exceeds the sum of
all contact areas T(i,j) in the target structure. In other words, CAD-score
defined by equation (3.3) is always within the [0,1] range. If model and
target structures are identical, CAD-score=1. At the other extreme, if not
a single contact is reproduced with sufficient accuracy (there are no cases
satisfying the condition: CAD(i,j) < T(i,j)), CAD-score=0.

Local scores

For the analysis and visualization of local differences between two struc-
tures some additional scores need to be defined. Two types of local error
values (raw and normalized) can be derived for every residue. A raw
local error for residue i is defined as follows:

δ(i) =
∑

(i,j)∈G

min(|T(i,j) −M(i,j)|, T(i,j)) (3.4)

A normalized local error, which is referred later in the text simply as
“local error”, is a raw local error divided by the sum of the corresponding
target contact areas:

ε(i) =
δ(i)

∑

(i,j)∈G T(i,j)
(3.5)

Local error values for individual residues may show large variation. To
make the signal less noisy, both raw and normalized local errors can be
smoothed along the residue sequence using a window of w residues to
the left and to the right:
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δw(i) =
∑

k∈[−w,w]

δ(i + k)

2w + 1
(3.6)

εw(i) =

∑

k∈[−w,w] δ(i + k)
∑

k∈[−w,w]

∑

(i+k,j)∈G T(i+k,j)
(3.7)

3.1.5 CAD-score variants

Our algorithm computes inter-residue contact areas at the resolution of
individual atoms. Therefore, we can define contact area as well as contact
area difference not only for the entire residue, but also for any subset of
its atoms. In all cases contact areas are calculated with all atoms present,
but if a subset of residue atoms is considered, only contact areas corre-
sponding to this subset are retained. We consider two standard subsets:
main chain and side chain for proteins and correspondingly backbone
and base for nucleic acids. This results in nine CAD-score variants shown
in Figure 3.6. For nucleic acids, further partitioning of base-base (“S-S”)
contacts into stacking and non-stacking ones results in two additional
CAD-score variants.

Three pairs of CAD-score variants (A-S and S-A, A-M and M-A, and S-
M and M-S) are not entirely symmetric. For example, glycine does not
have a side chain and therefore cannot form any S-A contacts, but it can
form A-S contacts. Nevertheless, for practical purposes these three pairs
of CAD-score variants may be considered to be redundant. As a result,
for standard subsets of residue atoms there are six non-redundant CAD-
score variants that can be used to address different questions in evalu-
ating models against the reference structure: A-A, A-S, A-M, S-M, M-M,
S-S. For nucleic acids there are two additional variants: “S-S stacking”
and “S-S non-stacking”.
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Figure 3.6: CAD-score variants based on standard subsets of residue (amino
acid or nucleotide) atoms. “A”, “S” and “M” denote all atoms, side-chain (base)
and main chain (backbone), respectively.

3.1.6 Additional global scores for interfaces

A straightforward way to compare the inter-chain interfaces of two struc-
tures of the same sequence is to use Equation 3.3 with G limited to just
inter-chain contacts. Below is an alternative representation of the same
computation:

CAD-scoreiface = 1−
∑

(i,j)∈I×J min(|T(i,j) −M(i,j)|, T(i,j))
∑

(i,j)∈I×J T(i,j)
(3.8)

Here, I and J are the sets of interface residues of the first and the second
subunits (chains), respectively, in the target (reference) protein complex.
T(i,j) is the area of the contact between residues i and j in the target pro-
tein complex, M(i,j) is the corresponding area in the model protein com-
plex. If i and j are not in contact, then the corresponding contact area
equals zero.

Using the same notation we can also quantify how each interface residue
is exposed to the other chain by summing the relative contact areas, like
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in the example below:

Ti =
∑

(i,j)∈i×J

T(i,j) (3.9)

A set of Ti values with all i ∈ I describes the binding site of the first
chain in the target structure. The corresponding binding site in the model
structure is defined in the same way. We then can compute a similarity
score of the target and the model binding sites:

CAD-scorebsite = 1−
∑

i∈I min(|Ti −Mi|, Ti)
∑

i∈I Ti
(3.10)

CAD-scorebsite is more forgiving than CAD-scoreiface because it uses less de-
tailed information. We can define even less detailed (and, therefore, less
stringent) similarity measures using total interface areas. The interaction
interface area similarity is calculated as follows:

CAD-scoreiface-area = min

(

1,

∑

k∈I∪J Mk
∑

k∈I∪J Tk

)

(3.11)

The binding site area similarity is defined as follows:

CAD-scorebsite-area = min

(

1,

∑

i∈I Mi
∑

i∈I Ti

)

(3.12)

3.2 Testing results for protein structures

3.2.1 Testing data set

To test the properties of CAD-score and its effectiveness in evaluating
and ranking models we applied it to models obtained during CASP9, the
ninth community-wide assessment of protein structure prediction meth-
ods.95 CASP models are generated by a large array of different meth-
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ods and, therefore, represent a wide range of accuracies. In addition,
the set contains models of different degree of completeness including
complete models, those missing a few residues and only short structural
fragments. Moreover, models differ greatly by their physical plausibil-
ity. Some of them feature structural characteristics reminiscent of high
resolution experimental structures, while some others have a number of
unrealistic features such as steric clashes and strongly deviating covalent
bond geometries. All these aspects of CASP models make them an excel-
lent test set for an automatic reference-based model evaluation score as
the set presents a serious challenge for objective and fair model ranking.99

To have a representative and least redundant set, we only considered
CASP9 models generated by automatic methods (servers) taking a sin-
gle most confident (first) model per method for a given prediction target.
Since CAD-score is an all-atom measure, we excluded from our analysis
models produced by methods representing amino acid residues in a sim-
plified or incomplete form. Models for one of the targets (T0629; the long
tail fiber protein gp37 of the T4 bacteriophage) were also excluded. T0629
forms the needle-shaped parallel homo-trimer, and considering the iso-
lated single chain is both structurally and biologically meaningless.100

3.2.2 CAD-score is a robust measure for evaluating and rank-

ing single-domain models

As a first step, we decided to compare CAD-score with GDT-TS, a stan-
dard CASP score that withstood the test of time and is generally rec-
ognized as the single most effective reference-based score.56 To make
an overall comparison of CAD-score and GDT-TS, we selected CASP9
models for individual domains (“assessment units” to be more pre-
cise) of prediction targets as defined by the assessors.101 For the re-
sulting diverse set of 8429 models we compiled both GDT-TS and CAD
scores. GDT-TS values were taken from the data archive of the Predic-
tion Center (www.predictioncenter.org) while different variants of
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Figure 3.7: Relationship between GDT-TS (horizontal axis) and different vari-
ants of CAD-score (vertical axis) for CASP9 models. CAD-score variants (A-F)
are arranged in the order of their decreasing correlation with GDT-TS. Blue,
red and green colors represent models assessed in template-based (TBM), free
modeling (FM) and unresolved (TBM/FM) categories respectively. Higher
color intensity reflects higher density of models. Pearson’s correlation coeffi-
cients and Spearman’s rank correlation coefficients are indicated for each plot.

CAD-score were calculated as described in the method definition sec-
tion. The plots displaying the relationship between GDT-TS and six non-
redundant CAD-score variants are shown in Figure 3.7.

It is evident that there is a strong correlation between GDT-TS and CAD-
score values, which is surprising considering the different nature of
scores. Notably, this is true not only for Pearson’s correlation coeffi-
cient, which depends on the linear relationship between the two scores.
Even better values in all cases are obtained for Spearman’s rank corre-
lation, which indicates the extent to which ranking by GDT-TS agrees
with ranking by CAD-score without the assumption of the linear rela-
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tionship between the two scores. In particular, three types of CAD-score
(“all atoms – side chain” (A-S), “side chain – side chain” (S-S) and “all
atoms – all atoms” (A-A)) show the strongest correlation (Figure 3.7 A-
C). For these three CAD-score variants Pearson’s correlation coefficients
are in the (0.91-0.94) range, and Spearman’s rank correlation values are
in the (0.93-0.95) range. The other three types of CAD-score, in particular
the variant based on “main chain – main chain” (M-M) contacts, correlate
somewhat weaker. We reasoned that the lower correlation to a large de-
gree might be determined by the abundance of local M-M contacts that
are not linked to the global topology of the structure. If this is true, the
type of secondary structure should be a major factor. Indeed, when ana-
lyzed separately, the correlation for proteins rich in β-strands (many non-
local M-M contacts) improved, while for α-helical proteins (mostly local
M-M contacts) it decreased further (Supplementary Figure S16).

We also looked at the correlation between CAD-score and GDT-HA,51

a more stringent variant of GDT-TS. GDT-HA is similarly derived from
four independent superpositions, but their threshold distances (0.5, 1, 2
and 4 Å) are half the size of those used for standard GDT-TS. Therefore,
GDT-HA can provide a better resolution for models of higher accuracy.
The best correlating CAD-score variants are the same (A-S, S-S and A-
A) and their correlation values remain very similar. Namely, the ranges
for Pearson’s and Spearman’s correlation coefficients are (0.91-0.95) and
(0.92-0.95) respectively (Supplementary Figure S26).

The only adjustable parameter used in CAD-score is the values of van
der Waals (VDW) radii of protein atoms. Since different VDW radii sets
have been reported in the literature we asked whether the results are
sensitive to the choice of a particular set. To this end, in addition to the
assessment of CASP9 models using standard VDW radii reported by Li
& Nussinov,96 we repeated the analysis using the set of minimal VDW
radii derived by the same authors.96 Although differences between the
two VDW sets are variable and some are fairly significant (up to 0.45Å),
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we observed only negligible differences in CAD-score values and their
correlation with either GDT-TS or GDT-HA (Supplementary Table S16).
This finding should not be too surprising after all, since CAD-score is
based on contact area differences rather than the absolute contact area
sizes.

Taken together, these analyses revealed a robust performance of CAD-
score on single-domain proteins. In particular, the three CAD-score types
(A-S, S-S and A-A) stand out. They provide some of the highest resolu-
tion and the best correlation with GDT-TS/GDT-HA. Therefore, we will
further focus mostly on the properties of these three CAD-score variants.

3.2.3 CAD-score promotes the physical realism of structural

models

It is generally assumed that the better model score indicates a more ac-
curate representation of the reference structure. However, it has been
noticed that some model evaluation scores including GDT-TS are fairly
insensitive to unrealistic structural features such as steric clashes or devi-
ations in residue geometries.48 Therefore, an improvement according to
a particular score may come at the expense of physical realism of struc-
tural models. In other words, some protein structure prediction methods,
especially if they are optimized against a particular score, may seem-
ingly “improve” their performance according to that score without real
improvement in model accuracy.

What about CAD-score? How the improvement of models according to
CAD-score relates to their physical realism? Since CAD-score is highly
correlated with GDT-TS (Figure 3.7), how does it fare in comparison to
GDT-TS in this regard? To answer these questions we analyzed pairs
of models for which CAD-score and GDT-TS rankings were in conflict,
namely, CAD-score and GDT-TS assigned better values to different mod-
els within the considered pair. We asked which score in those cases is
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more consistent with the physical realism of models. We chose the Mol-
Probity score102 as a measure of physical realism. MolProbity is one of the
widely used structure quality evaluation suites. The MolProbity score is
a single number that represents the central MolProbity protein statistics
collected from a large number of high quality protein crystal structures.
The score takes into account clashes between non-bonded atoms, back-
bone Ramachandran conformations outside the favored regions and side
chain rotamer outliers.102 Unlike GDT-TS and CAD-score, the MolPro-
bity score is not a reference-centric measure. It does not tell how close the
model is to the native structure. Instead, it reports how “protein-like” the
model is. Therefore, MolProbity may be considered as an independent
“judge” for resolving ranking conflicts between the two reference-based
scores.

We limited our analysis to reasonably accurate models of single domains
(assessment units) as it would be meaningless to consider the physical
realism of grossly incorrect models. Thus, we selected models above
the GDT-TS threshold of 0.6 (60%) and compiled pairs of models with
the conflicting rankings between GDT-TS and each of the three CAD-
score variants. We then looked at how the MolProbity score would rank
models within the same pairs. The results of this analysis show that in
conflicting rankings, CAD-score is supported by the MolProbity score
much stronger than GDT-TS (Figure 3.8 A). Among the three CAD-score
variants, CADA-A received the greatest MolProbity support, followed by
CADA-S and then by the most stringent variant, CADS-S. However, model
pairs with small differences of MolProbity, GDT-TS or CAD-score values
might be expected to contribute a certain level of noise to the results.
Therefore, we performed two additional tests aimed at the progressive
elimination of the impact of noise. First, we looked only at those con-
flicting rankings, for which the absolute MolProbity score difference is
greater than the standard deviation of the MolProbity score distribution
on all considered models (Supplementary Figure S36). As a result, the
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CAD-score agreement with MolProbity increased dramatically (Figure
3.8 B). For the second test, in addition to the constraint on the MolPro-
bity score difference, we asked that either GDT-TS or CAD-score values
would also differ more than the corresponding standard deviation (Fig-
ure S3B-E). The second test has further emphasized the overwhelming
MolProbity support for CAD-score (Figure 3.8 C). For example, the rank-
ing by CADA-A agreed with the MolProbity score in 24 out of 25 cases,
and only in 1 case this was true for GDT-TS. Collectively, these analy-
ses indicate that if there is a disagreement about the relative ranking of
models, CAD-score assigns a better score to the physically more realis-
tic model much more often than does GDT-TS. This CAD-score prop-
erty might be especially relevant for tasks such as ranking models of
higher accuracy and assessing model refinement, because the better per-
formance according to CAD-score would strongly imply the improve-
ment in physical realism as well.

CAD-score removes the necessity to split multi-domain proteins into do-

mains for model evaluation purposes

Many proteins are composed of multiple structural domains. However,
GDT-TS and other scores based on the rigid-body superposition (e.g.
TM-score, RMSD) are sensitive to even small differences in domain ori-
entation. As a result, the score of the model for the entire structure may
often be disconnected from the scores of the models for individual do-
mains. This problem can be alleviated by splitting the target structure
into domains and performing domain-based evaluation. However, as
there are no universal criteria for domain definition, it is often impossi-
ble to unequivocally define both the number of domains and their exact
boundaries. Moreover, it is not always clear whether it is necessary to
split the multi-domain target structure into domains for evaluation pur-
poses. A simple method for helping to decide whether or not the split-
ting into domains is required was recently introduced by Grishin and
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Figure 3.8: Pairs of CASP9 models with conflicting ranking by GDT-TS and
CAD-score. Only models with GDT-TS over 0.6 (60%) were considered. Pie
charts represent the MolProbity score agreement with rankings by GDT-TS and
each of the three variants of CAD-score. Numbers of analyzed model pairs are
indicated below each chart. (A) Complete MolProbity score data. (B) Data for
model pairs with the absolute MolProbity score difference greater than the stan-
dard deviation (0.9). (C) Data for model pairs derived as in (B) with the addi-
tional requirement that the absolute difference of either GDT-TS or CAD-score
difference would be greater than the corresponding standard deviation, i.e.
0.06 (6%) for GDT-TS, 0.05 for CADA-A, 0.06 for CADA-S, and 0.07 for CADS-S).
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colleagues.56 The method, used in the “official” CASP9 evaluation,101 is
based on the analysis of correlation between GDT-TS scores of the whole-
chain models and the weighted sum of GDT-TS for individual domains.
The weighted sum is defined as follows: GDT-TS scores for each indi-
vidual domain, multiplied by its length, are summed up and divided
by the sum of the domain lengths.56 The main idea is that if the scores
for the whole-chain models are systematically lower (or higher) than the
weighted sum of domain scores, then the splitting into domains should
be considered. Since this idea is quite general, we decided to perform
a similar analysis based on CAD-score and to compare the results with
those obtained for GDT-TS. However, some CASP9 whole-chain target
structures have additional residues compared to the sum of individual
domains. To make the analysis entirely objective, we removed these ad-
ditional residues from multi-domain whole-chain target structures, so
that the whole-chain structure and the sum of domains would have ex-
actly the same residues. We then assessed models against these whole-
chain targets by both CAD-score and GDT-TS. The latter data was re-
calculated using the LGA (Local-Global Alignment) method software.103

The resulting analysis of 1287 models for 24 multi-domain targets is pre-
sented in Figure 3.9. There is a stark difference between the GDT-TS
plot (3.9 A) and those based on CAD-score (Figure 3.9 B-D). In the case
of GDT-TS, essentially for all the models the weighted sum of domain
scores is higher than the score for the entire structure. This reaffirms the
choice made by the assessors to parse these CASP9 targets into domains
(assessment units) for performing robust model evaluation using GDT-
TS. In contrast to GDT-TS, all three CAD-score variants (Figure 3.9 B-D)
show at most only small differences between scores of the whole-chain
structure and the combined scores of domains. In other words, the evalu-
ation based on CAD-score allows the objective comparison of models for
multi-domain proteins even without parsing the structures into domains.
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Figure 3.9: Correlation between the model scores for the whole-chain (hori-
zontal axis) and the weighted sum of domain scores (vertical axis) for CASP9
multi-domain targets. Different plots represent the analysis of the same models
using different scores: (A) GDT-TS, (B) CADA-A, (C) CADA-S, and (D) CADS-S.

CAD-score provides a balanced assessment of the inter-domain arrangement

accuracy in models for multi-domain proteins

Although CAD-score shows little or no difference between domain-
based and whole-chain evaluation (Figure 3.9), the important question
is whether or not this reflects an adequate scoring of domain rearrange-
ment. In our view, the accuracy of predicting mutual domain arrange-
ment should not be judged by simple error in the directional orientation
between the domains. If domains are kept together only by a connecting
linker, any fixed mutual orientation might be structurally and/or bio-
logically irrelevant (especially if the linker is flexible). In such case, the
penalty for not predicting a particular orientation observed in the crys-
tal structure would be unfair. In contrast, if domains share extensive
interface, their specific arrangement suggests structural and/or biolog-
ical importance and therefore should contribute to the evaluation score
more significantly. In other words, the larger is the fraction of protein
surface area buried at the domain interface, the larger potential impact
(positive or negative) it should be able to exert on the total score of the
model. Following this logic, we analyzed the expected and the observed
contributions of the domain arrangement to the total model score. We de-
fined the expected contribution as the fraction of solvent accessible sur-
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face (SAS) buried at the domain-domain interface(s) of a target corrected
for the accuracy of a given whole-chain model. The correction was per-
formed by simply multiplying the SAS fraction buried at the interface by
the whole-chain score. Buried SAS was determined by subtracting SAS
of the whole-chain structure from the sum of SAS for individual domains
and dividing by two. Of course, the definition of expected contribution
of the domain arrangement is simplistic, as we consider the accuracy of
the interface prediction to be the same as the average accuracy of all do-
mains. Nevertheless, this concept is useful for exploring the relationship
between the expected and the observed contributions. The observed con-
tribution was defined as the difference between the whole-chain scores
and the weighted sum of domain scores (as shown in Figure 3.9).

We analyzed the relationship between the expected and the observed
contributions of the inter-domain interface prediction component to the
total score of the model for both CAD-score and GDT-TS. The results are
presented in Figure 3.10. We only included data for those multi-domain
protein models, for which all individual domains had GDT-TS values
over 0.4 (40%) and therefore were expected to represent at least a correct
structural fold. Despite some data noisiness, the figure reveals a strik-
ingly different behavior of GDT-TS and CAD-score.

Based on the data for GDT-TS (Figure 3.10 A), two important observa-
tions can be made. Firstly, the largest observed contributions to the total
score are several times that of the largest expected contributions. This is
the result of the GDT-TS property to strongly exaggerate the domain re-
arrangement making the domain-based evaluation a necessity. Secondly,
this exaggeration is most strongly pronounced for models with some of
the smallest expected values. In other words, given similar average qual-
ity of individual domains, models for targets having the smallest inter-
domain interface are more likely to produce poor scores for the whole-
chain structure.

In contrast, for CAD-score (Figure 3.10 B-D) the observed contribution
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Figure 3.10: Figure 5. Relationship between the absolute values of expected
(horizontal axis) and observed (vertical axis) contributions of the domain rear-
rangement to the total model score. For definitions of expected and observed
contributions see the main text. Only data for models with GDT-TS > 0.4 (40%)
for any individual domain are included. General trends for each plot are indi-
cated by a cubic spline applied to the data (solid line). (A) GDT-TS, (B) CADA-A,
(C) CADA-S and (D) CADS-S data.
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of the domain arrangement score to the total score tends to increase as
the expected contribution increases. The best agreement is displayed by
CADA-A-score followed by CADA-S and CADS-S scores. Although the re-
lationship is somewhat noisy, the observed contributions almost never
exceed the expected ones, indicating the balanced impact of domain ar-
rangement errors to the total score.

An illustrative example of GDT-TS problems upon evaluation of models
for multi-domain targets that disappear with the application of CAD-
score is provided in Figure 3.11. GDT-TS scores for both domains of
CASP9 model TS453 (Figure 3.11 B) are better than those for TS245 (Fig-
ure 3.11 C). However, despite the visually very similar mutual domain
arrangement in both models (Figure 3.11 A), TS453 is assigned a worse
full-chain GDT-TS value. Obviously, this cannot be considered a fair as-
sessment. In contrast, CAD-score assigns better scores not only for in-
dividual domains of TS453, but, as might be expected, also for the full-
chain model. The tendency of GDT-TS to overestimate tiny differences in
mutual domain arrangement is apparent even within the same model. It
would be reasonable to expect the accuracy for a full-chain model to be
in between the worst-scoring and the best-scoring domains. However,
according to GDT-TS, both full-chain models in Figure 3.11 are worse
than their least accurate domain. Again, this problem is non-existent for
CAD-score.

Since the mutual arrangement of domains is not conceptually different
from the arrangement of protein chains, CAD-score can also be used to
evaluate the accuracy of models for protein complexes. The larger is the
inter-subunit interface, the bigger impact of its prediction accuracy on
the total CAD-score of the protein complex may be expected.
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Figure 3.11: An example of multi-domain structure evaluation by GDT-TS and
CAD-score. (A) Two models, TS453 and TS245, colored by domains (blue and
green) are superimposed with the target T0533 structure (grey). Cartoon rep-
resentations show models TS453 (B) and TS245 (C). Increasingly larger devia-
tions of Cα-atoms are indicated by yellow, orange and red colors respectively.
GDT-TS and CADA-S-score values in blue and green are for the corresponding
domains, white — for the entire model.

3.2.4 CAD-score can directly evaluate the accuracy of inter-

domain or inter-subunit interfaces

In addition to scoring models for entire multi-domain or multi-subunit
structures, CAD-score provides a direct way for assessing the accuracy
of the interface prediction. The only difference is the reference against
which the model is evaluated. In this case the reference would be de-
fined as contact areas between residues originating from either differ-
ent protein domains (inter-domain interface) or different protein sub-
units (inter-subunit interface). Figure 3.12 provides specific examples
of inter-domain and inter-subunit interfaces of different accuracy. First
example (Figure 3.12 A) illustrates the accuracy of the inter-domain in-
terface for two models of target T0533 that have been analyzed in detail
above. It confirms once again that model TS453 has a more accurate inter-
domain interface than TS245. Another example (Figure 3.12 B) features
inter-subunit interfaces of different accuracy within two oligomeric pre-
dictions for target T0576. One of the two models, TS458, was identified
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Figure 3.12: Examples of direct evaluation of the interface between domains (A)
and subunits (B). (A) The inter-domain interface within the two-domain tar-
get T0533 (left) is compared with interfaces in two models, TS453 and TS245.
For ease of comparison, interfaces are represented as sets of colored faces of
Voronoi cells in the same orientation. Different colors correspond to different
residues at the interface. Interface CADA-A-score values are indicated for each
model. Major errors within the less accurate interface are indicated with ellipse.
The corresponding protein chain fragment is shown as sticks in the target and
both models. (B) The inter-subunit interface within the dimeric structure of tar-
get T0576 (left) is compared with interfaces in two multi-chain models, TS458
and TS282. Notations are the same as in (A).

by CAD-score as having the most accurate interface for this target. This
CAD-score assignment completely agrees with the CASP9 assessment of
oligomeric predictions.53

3.2.5 Discussion

The development of protein structure prediction methods and scores
used for their benchmarking are interdependent. Robust and effective
scores promote improvements in protein structure prediction methods.
On the other hand, the overall improvement in model accuracy necessi-
tates a more sensitive and more comprehensive evaluation. At present,
due to both the improvement of structure prediction methods and the

80



dominance of template-based models, the focus is shifting towards the
accuracy of structural features beyond the backbone. More emphasis is
put on the physical plausibility of computational models. The ability
to evaluate the accuracy of mutual domain arrangement in models for
multi-domain proteins and the arrangement of subunits within protein
complexes is also becoming increasingly important.

In this study we present CAD-score, a new model scoring function for
comprehensive evaluation of structural models. CAD-score builds upon
the concept of contact area difference (CAD) originally introduced by
Abagyan & Totrov.12 However, the new score differs significantly in its
design and algorithmic implementation.

One of the key differences is the treatment of missing residues in the
model. The original CAD only takes into account the subset of residues
that are common for both target and model. In this regard it is reminis-
cent of RMSD, which can be calculated only on a common set of residues.
In the newly defined CAD-score both the failure to include the residue
into the model and the failure to predict all of its contacts are treated
identically. To put it differently, CAD-score encourages the construction
of the complete model. Incorrectly modeled regions can make at most
only negligible improvements to the score; however, even grossly incor-
rect regions of the model cannot make the score worse compared to the
situation when they are not modeled at all. In this respect, the design of
CAD-score is similar to that of GDT-TS, which does not reward, but at
the same time does not penalize grossly inaccurate regions. We believe
that this is a very positive feature of a reference-based model evaluation
score, as it allows testing of new bold ideas in protein structure prediction
without being penalized for large local errors.

The second difference is the normalization procedure. The normalizing
factor in the CAD number as proposed by Abagyan & Totrov is different
for different models of the same reference structure (target). This makes
the ranking of models for a given target problematic. In our case, the
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normalizing term is constant for a given target, no matter how unusual
or how different evaluated models are.

Yet another difference is the range of values. The originally proposed
CAD number is not always guaranteed to fall within the range from 0
to 1 (0%-100%). In contrast, the newly defined CAD-score can never be
outside of the [0,1] range. This is assured by “symmetric” boundaries of
a maximal contact area difference for a given residue pair. We treat the
failure to predict an existing contact in the same way as its “strong” over-
prediction. The “strong” over-prediction is defined as the case when the
absolute contact area difference is larger than the reference contact area
itself. In both extremes we consider the prediction to be equally wrong,
and therefore the contact area difference is bounded by the reference con-
tact area. As a result, the sum of bounded contact area differences for the
model can never exceed the sum of contact areas of the target.

Algorithms for deriving contact areas in our case and the original CAD
study are also substantially different. We derive contact areas using a
protein structure tessellation approach. It allows us to take into account
the influence of other residues surrounding the considered residue pair.
In the original CAD study, the contact area for a pair of residues is cal-
culated in isolation, thereby tending to overestimate the size of contact
area. In addition, the resolution of contact areas is different in the two
methods. In contrast to Abagyan & Totrov, we calculate contact areas
at the level of heavy atoms, and that allows us to derive contact areas
not only for entire residues, but also for subsets of residue atoms such as
main chain and side chain. In turn, this allows us to define a number of
CAD-score variants, addressing different aspects of model accuracy and
providing different degrees of sensitivity.

In this study we explored properties of the newly introduced CAD-score
and compared it primarily with GDT-TS, a widely accepted score for
reference-based model evaluation. We found that for single structural
domains CAD-score shows a strong correlation with GDT-TS (Figure 3.7)
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and GDT-HA (Supplementary Figure S26). In both cases the strongest
correlation is obtained for those CAD-score variants that include either
all residue atoms or side chain in any combination. It may seem some-
what surprising that contacts between all atoms and side chains (A-S)
and even those between side chains (S-S) correlate with GDT-TS better
than all atom to all atom (A-A) contacts. However, side chains make up
about two thirds of the protein structure and apparently their packing
is what gives rise to a specific folding pattern. CAD-score variants that
include only main chain atoms on at least one side of the contact show
somewhat weaker correlation, with the main chain to main chain (M-M)
variant occupying the lower end. The character of main chain to main
chain contacts differs significantly depending on the secondary structure
type. While in β-sheets these contacts are defined by the global topology,
for α-helices they are local and are mostly defined by the accuracy of sec-
ondary structure assignment. Apparently, the lack of non-local contacts
within α-helical structures is a major factor in making the M-M variant
least correlated with GDT-TS (Supplementary Figure S16).

One of the important advantages of CAD-score compared to GDT-TS and
other structure superposition-based methods is the robust evaluation of
models for multi-domain proteins and protein complexes. Our analysis
showed that in contrast to GDT-TS, CAD-scores of individual domains
and the whole-chain structure are tightly connected (Figure 3.9). More-
over, the accuracy of the inter-domain or inter-subunit interface is an in-
tegral part of the total score. The more extensive is the interface, the
more potential improvement or deterioration to the total score it may
contribute (Figure 3.10). Although the domain-based model evaluation is
perfectly possible, CAD-score removes the necessity to chop the structure
into domains to get meaningful results. Moreover, even if the structure is
split into domains, the performance of CAD-score cannot be strongly af-
fected by imprecise or even outright wrong domain boundary definition,
which would have a large impact in the GDT-TS-based evaluation.
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According to CAD-score, the accuracy of the model depends only on how
closely the contact areas between residues (or subsets of residue atoms)
correspond to those in the reference structure. However, what may seem
a simplistic definition of model accuracy in fact incorporates many struc-
tural features such as interatomic distances, dihedral angles, hydrogen
bonds and bond lengths. Protein structure prediction methods trained
using a particular model evaluation score, in some cases may “improve”
their performance by optimizing some of the model structural parame-
ters at the expense of others. Here, we showed that CAD-score is asso-
ciated with physical realism of models much stronger than GDT-TS (Fig-
ure 3.8). In particular, this property of CAD-score may be relevant for
assessing model refinement, which turns out to be a surprisingly hard
problem.104

Although we developed the new CAD-score with the reference-based
model evaluation in mind, the approach may be a valuable tool for other
tasks such as clustering of structural models. Model clustering is one
of the steps employed by many current protein structure prediction ap-
proaches, especially if there are no suitable structural templates. The
clustering step is used for the identification of near-native structures from
a large set of candidate structures (decoys). Since contact areas between
residues directly reflect the strength of physical interactions, CAD-score
values may be more suitable for grouping models with similar ener-
gies compared to Cartesian distance-based approaches such as RMSD
or GDT. As clustering typically involves large numbers of models, the
clustering method needs to be fast. In CAD-based clustering, the slowest
step is the computation of contact areas between residues in individual
models. However, once it is done, subsequent calculation of pairwise
CAD-scores is very fast. An example of model clustering results using
CAD-score is presented in Supplementary Figure S4.6

CAD-score is based on interatomic contacts and as such it is not exclu-
sively restricted to protein structures. Similar approach could be ap-
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plied for evaluation of models of other biomolecules forming complex 3D
structures such as RNA. Similarly, evaluation of the protein-protein inter-
face (inter-domain or inter-subunit) accuracy could be easily extended to
the more general case of protein-ligand interfaces. Obviously, the CAD-
score based evaluation would be most appropriate for large interfaces
such as those in protein-nucleic acids complexes, but perhaps it may be
sufficiently informative even for interfaces between proteins and small
molecules.

In summary, the newly introduced CAD-score has a number of attractive
properties. It is based on physical contacts between residues, thereby
directly reflecting interactions within the protein structure. It is a con-
tinuous, threshold-free function that returns quantitative accuracy scores
within the strictly defined boundaries. The definition of CAD-score does
not contain any arbitrary parameters. CAD-score provides a single uni-
form framework for assessing single-domain, multi-domain and even
multi-subunit protein structural models of varying degree of accuracy
and completeness. While being highly correlated with GDT-TS on single-
domain structures, CAD-score displays a stronger emphasis on the phys-
ical realism of models. We believe that all these attractive properties
make CAD-score a valuable tool for the development and assessment of
protein structure prediction and refinement methods as well as for clus-
tering models based on their mutual similarity.

3.3 Testing results for RNA structures

3.3.1 Testing data sets

PDB structure set

For comparative analysis of contacts in RNA and proteins we used ex-
perimentally determined 3D structures that were selected from PDB (as

85



of 2013.06.01). The selection included only x-ray structures solved at the
resolution of 3.0 Å or better. In addition, 30% sequence identity cutoff
was applied to the initial selection to make the set non-redundant.

RNA model test set

We used RNA models and corresponding experimental structures avail-
able as part of RNA-puzzles,105 a collective experiment for blind RNA
structure prediction. We used the data of all the challenges completed as
of 2013, namely 1, 2, 3, 4, and 6. Prior to the analysis, residue number-
ing and chain identities of raw models were set to match the naming of
corresponding nucleotides in experimental structures. No coordinates of
any model were modified.

3.3.2 Base-base contacts dominate RNA 3D structures

Physical basis of interatomic contacts is the same in both protein and
RNA 3D structures. We considered that therefore the contact area-based
model evaluation score as defined in its general form should be also fea-
sible for RNA. On the other hand, considerably different roles of main
chain (backbone) and side chain (base) atoms in defining secondary and
tertiary structures in proteins and RNA compelled us to perform a more
thorough investigation of corresponding contacts.

To investigate the contribution of different types of contacts in pro-
teins and RNA we performed the following analysis. We selected well-
resolved non-redundant protein and RNA structures from PDB (see
Methods for details). For every structure we computed the total area
of all contacts as well as fractions of contact area contributed by three
types of contacts: 1) main chain-main chain (backbone-backbone), 2)
side chain-side chain (base-base) and 3) the remaining contacts that con-
sist of side chain-main chain (base-backbone) and main chain-side chain
(backbone-base) contacts. The results (Figure 3.13) show that, except for
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the smallest structures, the individual contributions to the total contact
area by the three contact types are largely independent of the structure
size in both proteins and RNA. However, these contributions differ sig-
nificantly in proteins and RNA. In the case of proteins the contributions
by the three types of contacts are well-balanced. Although the share of
the main chain-main chain contacts is the largest (36% on average), the
fractions of both side chain-side chain and the remaining contacts are
comparable (correspondingly 30% and 34% on average). In the case of
RNA the picture is dramatically different. Base-base contacts strongly
dominate, on average making up about half (49%) of all contact areas.
These results indicate that base-base interactions in RNA make a signif-
icantly larger impact than side chain-side chain interactions in proteins
and therefore merit a more detailed analysis.

3.3.3 Contact area is an effective means for describing base-

base interactions

To perform a more detailed analysis of RNA base-base contacts, we di-
vided them into bins according to the size of contact area. The area size
corresponds to the physical impact of a contact; therefore, we also looked
at the cumulative impact of contacts (frequency multiplied by the area
size) for each bin. To compare our results with established approaches,
for the same set of RNA structures we identified base-base interactions
using MC-Annotate, a widely used RNA annotation method.106 MC-
Annotate detects and annotates base-base interactions using a procedure
involving both geometric and probabilistic considerations.106, 107 Figure
3.14 shows the comparison of base-base contact data derived using our
approach and MC-Annotate. Since MC-Annotate does not compute con-
tact areas, its contact data was generated by our approach according to
the MC-Annotate annotations. If the contact frequency is considered
(Figure 3.14 A, left), the two approaches show a reasonably close agree-
ment, except for the contacts characterized by small area sizes. Appar-
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Figure 3.13: Contribution of the three components of all atom-all atom contacts
to the total contact areas in 13336 protein (A) and 445 RNA (B) structures from
PDB.
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ently, MC-Annotate does not annotate bases as interacting if they barely
contact each other. If the cumulative area size is considered (Figure 3.14
A, right), the agreement is significantly better, since contacts with the
negligible area size, despite their abundance, contribute almost nothing
to the cumulative impact. One of the conclusions that can be made from
this comparison is that the definition of contacts only as binary informa-
tion (present/absent) may be misleading. A more appropriate way is to
also consider contact strength, expressed here as the contact area size.

3.3.4 Simple contact-based definition provides a useful ap-

proximation of base stacking and base pairing

There are two major types of base-base interactions: base stacking and
base pairing. Therefore, it would be desirable to assign at least approx-
imately base-base contacts to one of these two interaction types. We de-
vised an extremely simple definition to partition base-base contacts into
the two types (as described in the method definition section and illus-
trated in Figure 3.5) and applied it to the base-base contact data (Fig-
ure 3.14 A). If we consider undivided base-base contacts, there are three
peaks common to both the frequency plot (Figure 3.14 A, left) and cumu-
lative area plot (Figure 3.14 A, right). According to our definition, the
two rightmost peaks correspond to base stacking (Figure 3.14 B) while
the leftmost of the three peaks corresponds to non-stacking contacts (Fig-
ure 3.14 C). To see how well this partitioning works, we compared it with
the classification provided by MC-Annotate. Again, the agreement with
MC-Annotate improves if the total cumulative contact area instead of the
contact frequency is considered. In particular, stacking interactions char-
acterized by the largest contact areas agree almost ideally. At the same
time even for relatively large contact areas there is a visible gap between
cumulative values of base stacking curves (Figure 3.14 B). According to
our visual analysis at least some of these cases can be assigned to either
adjacent or non-adjacent base stacking interactions (examples are pro-
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Figure 3.14: Dependence of the base-base contact frequency (left) and cumu-
lative contact areas (right) on the contact area size. The data on all base-base
contacts (A), base stacking (B) and non-stacking (pairing) (C) are shown. Gray
bars and lines correspond to contacts determined by the approach reported
here; red bars and lines correspond to definitions by MC-Annotate.
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vided in Supplementary Figure S18). Many other differences represent
inter-strand base-base overlaps. Although these overlaps are not identi-
fied as base stacking by MC-Annotate, many of them feature fairly large
contact areas indicating important contribution to the interaction net-
work. Quite unexpectedly, although non-stacking contacts (Figure 3.14
C) do not involve special considerations for hydrogen bonding, they very
closely recapitulate base pairing interactions defined by MC-Annotate.

In the case of unambiguously classified contacts (there was an agreement
between our approach and MC-Annotate) we also looked into the nature
of stacked bases and the number of hydrogen bonds in base pairs (Sup-
plementary Figure S28). As might be expected, purine-purine stacking
dominates the largest contact areas, while pyrimidine-pyrimidine stack-
ing is at the lower end of stacking contact area size. Purine-pyrimidine
stacking shows bimodal distribution. As for base pairs, most of them
have two or three hydrogen bonds. Only a small fraction of contacts,
both in numbers and in the cumulative area size, correspond to other
base pairings.

Since our approach considers all base-base contacts, their division into
stacking and non-stacking is, of course, oversimplification. However,
even this extremely simple classification is able to provide a useful dis-
tinction between most stacking and pairing interactions and thus to re-
veal model errors specific to each interaction type.

3.3.5 CAD-score provides a direct link between local discrep-

ancies in an RNA model and the global score

By its nature CAD-score is a local score, as it analyzes discrepancies only
within the immediate 3D neighborhood. The most inclusive CAD-score
variant quantifies discrepancies that involve entire nucleotides by tak-
ing into account all atom-all atom contacts. Additionally defined par-
tial CAD-scores measure other types of discrepancies by considering
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contacts between various sets of nucleotide atoms (all atoms, backbone
or base) or even different types of base-base contacts (stacking, non-
stacking). A simple combination of the local discrepancies of each kind
produces a global score that summarizes the overall accuracy of a model
with respect to the reference structure.

Different CAD-score variants allow addressing different questions.
However, for practical applications the variants that consider either all
atom-all atom or base-base contacts appear to be the most useful. The
usefulness of all atom-all atom CAD-score is understandable, since con-
tacts between all atoms represent the most complete description of the
structure. On the other hand, as we have shown, base-base contacts rep-
resent the dominant contact fraction in the RNA and are largely respon-
sible for its specific 3D shape. Therefore, the base-base CAD-score and
its partial (stacking and non-stacking) scores can be particularly useful in
figuring out the cause of discrepancies between the two structures.

Figure 3.15 shows an example of the evaluation of both local and global
accuracy of two RNA-puzzles models (Challenge 3) using major variants
of CAD-score. The two models are of different accuracy, appropriately
reflected by the “summarizing” CAD-score values. Furthermore, both
the local discrepancies and the global accuracy values reveal that one
of the major reasons of the second model being inferior to the first one
is poorly modeled non-stacking (base pairing) interactions. Often, base
stacking and non-stacking CAD-score values alone may reveal the source
of error and indicate whether the errors are confined to specific regions
or dispersed throughout the modeled structure (Supplementary Figure
S38).

3.3.6 CAD-score is an effective RNA model ranking index

CAD-score efficiently accounts for all the local discrepancies between a
model and the reference structure. The question is whether the global

92



Figure 3.15: Example of CAD-score evaluation of two models of different ac-
curacy at both global and local levels. Different panels show the contact areas
considered by the indicated CAD-score variants. Contacts are represented as
faces of the Voronoi cells constrained by the contact spheres. Blue-white-red
color gradient represents the accuracy of reproduced contacts (blue — accu-
rate, red — inaccurate).
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score, expressed as a simple combination of local errors, is also effec-
tive in ranking models by their overall accuracy. Model ranking is in-
herently subjective, because of the multiple features that have to be as-
sessed simultaneously. On the other hand, to be considered effective, a
new evaluation score should at least roughly agree with the currently
used scores. To analyze model ranking by CAD-score, we compared it
with the scores used in the RNA-puzzles experiment,105 namely, Interac-
tion Network Fidelity (INF), Deformation Index (DI) and RMSD. We took
all the models generated as part of the RNA-puzzles experiment, scored
them against corresponding reference structures and analyzed how well
CAD-score correlates with each of the other three scores. It turned out
that CAD-score correlates best with INF, less well with DI and least with
RMSD. This order does not depend on whether we use Pearson’s corre-
lation coefficient, which assumes the linear relationship between scores,
or Spearman’s ranking correlation coefficient, which makes no such as-
sumption. Figure 3.16 shows the relationship between two representa-
tive CAD-score variants (all atom-all atom and base-base) and INF, DI
and RMSD. The correlation between CAD-score and INF reaches as high
as 0.95 indicating a good agreement between the two scores. The agree-
ment with DI and RMSD is worse, but correlation values are still fairly
high. Diverse models available as part of the RNA-puzzles experiment
represent an excellent test set, but their number is relatively small (104
models for 5 reference structures). To make the test more rigorous, we
performed the same analysis using over 30 000 models (for 67 reference
structures) of the randstr decoy set.60 Although correlation coefficients
calculated using the randstr decoy set are slightly smaller, we obtained
the same correlation trend: INF > DI > RMSD (Supplementary Table S1,8

Supplementary Figure S48). Thus, overall results of the correlation analy-
sis indicate that CAD-score model ranking properties are closest to those
of INF, reflecting their common focus on the similarity of interactions.
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Figure 3.16: Relationship between CAD-score and INF (A), DI (B), and RMSD
(C). Data is shown for CADAA-score (left) and CADSS-score (right). For each
plot Pearson’s correlation coefficients and Spearman’s ranking correlation co-
efficients are indicated.
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3.3.7 CAD-score favors physical realism of RNA structural

models

Correlation analysis revealed that CAD-score shows a fairly close agree-
ment with other scores, INF in particular. However, inevitably there are
cases when the scores disagree. For example, it may be that according
to CAD-score, model A is more accurate than model B, but according to
another score it is the opposite. An important question is which score to
trust in such cases. One way to address this question is to consider phys-
ical realism of models, the feature that does not depend on how closely a
model agrees with the reference structure.6 The idea is that if we take two
scores, the score that shows stronger tendency to select physically more
realistic models as the more accurate ones is likely to be more objective.

We asked how CAD-score compares to the other three scores (INF, DI
and RMSD) in the light of physical realism of models. For the assess-
ment of physical realism we used the clash score, bad angles and bad bonds

as reported by MolProbity,102 a well-known structure validation software
suite. We considered one of the two models to be more physically realis-
tic if the model was better according to at least one of the three MolPro-
bity scores and the other two scores did not contradict that (for example,
the clash score was lower, while the values of bad bonds and bad angles

were identical). To perform this analysis, we used the RNA-puzzles data
set. For every reference structure we compiled all the possible model
pairs and identified those in which the relative ranking of models was
in conflict according to CAD-score and either INF, DI or RMSD. We then
analyzed the same model pairs with MolProbity. It turned out that CAD-
score agreed with MolProbity more often than did any of the other three
scores (Table 3.1). As could be expected by the highest correlation values,
the smallest number of conflicting rankings was between CAD-score and
INF. Nevertheless, the support of CAD-score by MolProbity was stronger
than that of INF. In particular, the CADSS-score (evaluating base-base
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Model pairs with conflicting ranking
Supported by Molprobity

First score Model pairs Second score Model pairs

CADAA-score (all atom-all atom contacts)
94 CADAA-score 54 (57%) INF 40 (43%)
133 CADAA-score 109 (82%) DI 24 (18%)
145 CADAA-score 122 (84%) RMSD 23 (16%)

CADSS-score (base-base contacts)
80 CADSS-score 54 (67.5%) INF 26 (32.5%)
143 CADSS-score 121 (85%) DI 22 (15%)
167 CADSS-score 140 (84%) RMSD 27 (16%)

Table 3.1: MolProbity’s “judgment” on model pairs with the conflicting assign-
ment of accuracy by CAD-score and either INF, DI or RMSD.

contacts) most closely corresponding to INF was supported in about two
out of three cases. These results show that CAD-score favors physical
realism of models more strongly than either INF, DI or RMSD.

3.3.8 CAD-score accounts for RNA model completeness

Structural models may not necessarily include all the residues. Most of-
ten, difficult-to-predict structural regions are omitted. A reference-based
model evaluation score should be able to take this into account prop-
erly in order to make a fair comparison. We asked how well CAD-score,
INF, DI and RMSD cope with structural models that are heterogeneous
as to their completeness. To this end we performed the following anal-
ysis using RNA-puzzles models. We iteratively truncated each model
by 20% (removing equal number of residues from both 5’ and 3’ ends)
and recalculated the scores at every step. We monitored the number of
models for which the score has improved after each truncation step. The
idea behind this test was that if the removed fragment had at least some
correct features, its removal should make the score worse. Even if the
removed fragment was completely incorrect, the score of the truncated
model should be the same at best.

The results of this test are presented in Table 3.2. CAD-score (both all
atom-all atom and base-base contacts) did not improve even once upon

97



Model completeness 80% 60% 40% 20%
Number of models with the increased score Total

CADAA-score 0 0 0 0 0
CADSS-score 0 0 0 0 0
INF 0 5 1 1 7
DI 18 19 17 36 90
RMSD 56 88 69 102 315

Table 3.2: The effect of model truncation on evaluation scores.

iterative truncation of models. INF has improved seven times, DI - 90
times and RMSD - 315 times. Thus it may be concluded that CAD-score
is suitable for evaluation of a mixture of complete/incomplete models.
INF is not as good as CAD-score, while DI and RMSD could be applied
only to models consisting of exactly the same residues.

3.3.9 Discussion

Our results show that contact area-based approach can be highly effective
in quantifying discrepancies between modeled and reference structures
not only for proteins but also for RNA. The same general definition of
CAD-score can be applied to the both types of macromolecules despite
their significant differences.

A number of features make CAD-score attractive as a similarity mea-
sure. First of all, since CAD-score is based on comparing contact areas,
it does not require structure superposition. Moreover, contact areas not
only define physical contacts in the structure, but also indicate their rela-
tive strength. Therefore, CAD-score reflects physical interactions that are
relevant to the formation and stability of 3D structure. The global CAD-
score is constructed by accounting for all the local discrepancies, thereby
providing a transparent relationship between local errors and the overall
model accuracy. Unlike some other scores such as RMSD or DI, CAD-
score has a fixed value range, simplifying the comparison of different
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models. One other attractive feature of CAD-score is that its definition
does not involve any arbitrary parameters. In fact, the only adjustable
parameter used in computing CAD-score is VDW radii of heavy atoms.

In addition to CAD-score based on all atoms, a number of partial CAD-
score variants can be defined based on subsets of residue atoms. Since
RNA and proteins differ considerably, we explored the relative impact of
contacts contributed by either main chain (sugar-phosphate backbone)
or side chain (base). Given the importance of base-base interactions in
the formation and maintenance of both the secondary and the tertiary
RNA structures it came as no surprise that base-base contact areas rep-
resent by far the largest fraction of all contact areas. Typically, base-
base interactions are classified into only two types: base stacking and
base pairing. Therefore, we reasoned that it would be useful for CAD-
score also to have the ability to consider these two types of interactions
individually. We devised an extremely simple partitioning of all base-
base contacts into two types (stacking and non-stacking). Our intention
was not to substitute RNA annotation algorithms but rather to provide
a useful approximation of the two interaction modes. RNA annotation
algorithms are selective in defining base stacking and base pairing, while
our approach takes into consideration all physical contacts. Thus, it was
surprising to see that our approach and the annotation by MC-Annotate
show fairly close agreement. It should be emphasized, however, that the
agreement is good only when the cumulative contact area and not the
contact count is considered. Perhaps most surprising observation was
that non-stacking contact areas very closely correspond to base pairings
defined by MC-Annotate. Since our definition of stacking/non-stacking
contacts does not involve any special treatment of hydrogen bonds, such
close agreement suggests that the absolute majority of significant non-
stacking contacts originate from base pairs. Disagreement between the
contact area approach and MC-Annotate largely coincides with smaller
areas of stacking contacts. Many of these cases represent either tiny over-
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laps of base planes or bases contacting at an angle and therefore do not
represent canonical base stacking. However, some large base overlaps
ignored by MC-Annotate appear to represent typical base stacking, sug-
gesting that the definition of stacking in current annotation algorithms
could be improved. The contact area approach may help to increase the
sensitivity of detecting candidate stacking interactions that subsequently
could be refined using additional criteria. Overall, the analysis of base-
base interactions suggested that our contact-based definition is specific
enough to enable CAD-score to focus onto discrepancies related to base
stacking and base pairing separately.

No matter how a score is defined, its usefulness depends entirely on the
performance. To make a thorough analysis of CAD-score performance,
we compared it with the three other scores, INF, DI and RMSD, used
for the model assessment during the first round of the RNA-puzzles ex-
periment.105 We made a comparison of scores according to their model
ranking properties, the preference of physical realism and the ability to
take into account model completeness. These tests revealed that, accord-
ing to the overall behavior, CAD-score is most similar to INF, less so to
DI and least similar to RMSD. Taking into account that DI was designed
as an attempt to improve RMSD properties,61 the trend of CAD-score
agreement with other scores is exactly what should be expected from an
effective score. The similar behavior of CAD-score and INF should not be
surprising, since both are assessing local interactions. However, despite
the strong correlation between these two scores, CAD-score appears to
be superior.

Firstly, CAD-score shows a stronger preference towards more physically
realistic models than INF. We believe that this is an important prop-
erty since the improvement according some reference-dependent score
should not come at the expense of stereochemical quality, which is the
reference-independent property. The stronger emphasis on physical re-
ality by CAD-score might be due to the fact that CAD-score takes into
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account all physical contacts, while INF uses only selected set of interac-
tions defined by the structure annotation. Furthermore, CAD-score takes
into account contact strength. The penalty for missed contact depends on
its area size. Missing important contacts (large contact area) is penalized
strongly, while missing contacts with negligible contact area have almost
no effect on the score. In contrast, INF considers only the presence or
absence of interactions, without taking into account how important they
are.

Secondly, CAD-score is able to properly account for the absence of nu-
cleotides or their parts in a model. Although INF, unlike DI or RMSD,
shows similar trend, it is not entirely consistent. When all the evaluated
models are complete this feature has no bearing on model comparison.
However, if models generated by different methods are compared, some
heterogeneity of model completeness might be expected. In such cases
the ability to account for missing regions would be important.

In summary, we believe that the attractive properties of CAD-score rele-
vant to the RNA 3D structure make CAD-score an important addition to
the reference-based RNA structure evaluation methods. Moreover, tak-
ing into account the applicability of the method to both nucleic acids and
protein 3D structures, CAD-score offers new capabilities for the assess-
ment of 3D structural models of protein-nucleic acid complexes.

3.4 CAD-score web server

Previously we introduced Contact Area Difference Score (CAD-score), a
method to quantify both local and global similarity of structures and in-
terfaces.6 CAD-score was initially developed for proteins; however, we
extended its application to RNA 3D structure.8 In general, the universal
nature of the method makes it applicable to any major type of macro-
molecular structures. Here, we describe a web-based interface for the
CAD-score computation and interactive analysis of the results for pro-
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teins, nucleic acids and their complexes.

3.4.1 Input

Input data

The inputs to the web server are macromolecular structure files in PDB
format: one file for the reference structure (target) and one or more files
of structures (models) to be compared with the target. A user is also
asked to specify the type of the input structures: proteins, nucleic acids
or protein-nucleic acid complexes.

By default, the web server verifies that the residue sequence, residue
numbering and chain naming in each model are consistent with the tar-
get structure. If inconsistencies are detected, the web server stops and
reports an error. The user can alter this behavior by selecting an option
to allow mismatches between model and target sequences. In such case
only the consistency of residue numbering and chain naming is verified.
This option might be useful for comparison of structures with one or few
mismatches such as native structures and point mutants.

Evaluation modes

The CAD-score web server provides a flexible way to choose which
residue-residue contacts to analyze. The most straightforward choice is
to analyze contacts within the entire structure.

Another option is to evaluate inter-chain interfaces. In this case by de-
fault only contacts between residues belonging to different chains are an-
alyzed. The user may choose to extend the reference set of contacts by
additionally including contacts between the interface residues from the
same chain. In both cases the reference set of interface residues is the
same, only the contact reference sets differ.

Finally, the most flexible option is to instruct the CAD-score web server
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String Meaning Examples of evaluation target

(A)(B) Contacts between chains A
and B

Interface between two subunits in a
multisubunit structure

(A,B)(C) Contacts of chains A and B
with C

Interface between a protein dimer
and the RNA in a protein-RNA com-
plex

(A)(A) Contacts between residues
within chain A

Contacts within a single subunit in a
multisubunit structure

(A1-A9,A21-A90)(B1-B90) Contacts between two ex-
plicitly specified groups of
residues

Interface between two domains in a
multisubunit structure

Table 3.3: Examples of custom selection strings that define subsets of residue-
residue contacts.

to analyze only contacts between custom selections of residue groups. A
selection can be specified by writing chain names or residue identifiers
(or ranges of residue identifiers) in a simple notation. Examples of cus-
tom selections are given in Table 3.3.

3.4.2 Output

Representation of global scores

The default view of the results generated upon the completion of a user-
submitted job is a summary, presented as a sortable table of global score
values. Independently of the molecule type the table has columns for
“A-A”, “A-S” and “S-S” CAD-scores. Other table columns are specific for
the macromolecule type. In the case of proteins, TM-score, GDT-TS and
GDT-HA scores as computed by the TM-score software46 are included.
In the case of nucleic acids, “S-S” CAD-score evaluating base-base con-
tacts is further subdivided into S-S stacking and S-S non-stacking scores.
A table of global scores for protein-nucleic acid complexes has only the
columns that are available for both proteins and nucleic acids. A table
of global scores including all CAD- score variants is also available for
downloading in the flat text format. In addition to the summary table,
there are sortable tables of global scores for specific CAD-score variants
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Figure 3.17: Example of a global view of A-A and S-S local error profiles gen-
erated for some models of the CASP10 prediction target T0644. Black frames
indicate profiles for the same model, TS273.

for all processed models. A global score for each model in these tables
is accompanied by the color-coded profile of local errors (described in
detail in the following section). This view is particularly useful for the
simultaneous analysis of multiple models as it enables to contrast and
compare local discrepancies of individual models in the overall context
(Figure 3.17).

Visualization of local errors

Each global CAD-score value in either sortable table is linked to a de-
tailed report of local errors for the corresponding model. Local errors
are primarily displayed as profile images where the value of the local
error for each analyzed residue is color-coded using blue-white-red gra-
dient. Blue and red colors represent good and poor agreement, respec-
tively. For each CAD-score variant four profile versions are generated
using smoothing windows of 0 (no smoothing), 1, 2 and 3 residues on
both sides of each analyzed residue. Additionally, four profiles of raw lo-
cal errors with the same smoothing windows are generated for compar-
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ison. The actual values of both raw and normalized local errors without
smoothing can be viewed in plain text format. The combined contacts
file detailing corresponding contact areas for each residue in the target
and the model is also available as a text file for the off-line analysis.

Figure 3.18 provides examples of local error profiles and their relation to
the superimposed contact maps for the model and the target. Such maps,
generated by the server, show contacts represented as colored points on
the black background. Residue contacts in the target are red, in the model
are green, and the color of coinciding contacts consists of red and green
components mixed with a ratio proportional to the corresponding con-
tact areas in the target and in the model. Therefore, yellow color indi-
cates that the areas of corresponding contacts are of approximately same
size. Images of both local error profiles and contact maps are interactive:
a user can click on them to see the corresponding residue numbers. An-
other way to analyze local errors is to visualize them in the context of 3D
structures with Jmol, an interactive molecular viewer. Local errors are
converted into the B-factor values of PDB files for both target and model
and are represented by the same color gradient as in the corresponding
linear profiles. Local discrepancies mapped onto 3D structures are ex-
emplified with the predicted and experimental protein structures (Figure
3.19) and with the two x-ray structures of a protein crystallized in a free
state and with the bound DNA (Figure 3.21).

Local error profiles can also be used when analyzing subsets of residue-
residue contacts. An example in Figure 3.20 features comparison of a de-
coy and the native structure of a protein-RNA complex used in a study
aimed at scoring protein-RNA docking solutions.108 The complete local
error profile shows that in the decoy structure the contacts both inside the
protein chain and inside the RNA chain are reproduced relatively accu-
rately. However, the comparative contact map of the protein-RNA com-
plex shows that contacts between protein and RNA differ significantly.
Therefore, it is also useful to analyze the local error profile produced only
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Figure 3.18: Local error profiles and superimposed contact maps of A-A and
S-S contacts for the model highlighted in Figure 3.17.

Figure 3.19: Experimentally solved (target) and predicted (model) structures
colored according to the local errors in the model highlighted in Figure 3.17.
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Figure 3.20: Example of the evaluation of a protein-RNA complex model
against the reference structure. The model corresponds to the structure 1364
from the decoy set used in the assessment of protein-RNA docking solutions.
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Figure 3.21: Local differences between the structures of the restriction endonu-
clease BcnI crystallized (A) in the apo form (PDB id: 2ODH) and (B) in complex
with the cognitive DNA (PDB id: 2Q10).109 The DNA and the loop unresolved
in the apo form are shown in yellow.

for the interface residues.

3.4.3 Discussion

The web server provides a simple and intuitive interface for the use
of the CAD-score method in the interactive manner. In particular, the
server features highly interactive visualization options of local contact
differences. The server is universal in several ways. It accepts both
single-chain and multi-chain structures, works with all the major types
of macromolecules (proteins, RNA, DNA and various complexes), allows
flexible designation of substructures for the analysis and performs both
global and local evaluation of structural differences. Thus, the CAD-
score server provides a single framework for addressing a variety of
questions related to structural similarity for all the major types of bio-
logical macromolecules.
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Figure 3.22: Schematic workflow of the PPI3D web server.

3.5 CAD-score application in PPI3D system

The CAD-score method is employed as one of the core components of
the PPI3D (Protein-Protein Interactions in 3D) web server.11 PPI3D is fo-
cused on searching and analyzing the structural data on protein-protein
interactions. CAD-score enables one of the main features of PPI3D: re-
ducing the data redundancy by clustering and analyzing the properties
of interaction interfaces using the Voronoi tessellation. The overall work-
flow of the PPI3D system is shown in Figure 3.22, CAD-score is utilized
in the structural data pre-processing stage of the workflow.
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3.5.1 Adapting CAD-score for structure-based clustering of

protein-protein interactions

For the clustering of interfaces and binding sites, we use interface-
focused CAD-score variations defined in Section 3.1.6. All described
CAD-score values are asymmetric and may be different for the same pair
of proteins depending on which protein is chosen as reference. There-
fore for each pair it is calculated twice by taking the first and the second
interaction interface as the reference. Minimal CAD-score value is then
selected as the similarity between these interfaces. The same procedure
is used for asymmetry correction when comparing protein binding sites.

The original CAD-score definition assumes that the comparison involves
structures of proteins having identical sequences. In PPI3D we use CAD-
score modification that allows comparison of proteins with different se-
quences provided the corresponding residues in related structures are
known. The residue correspondence is obtained from multiple sequence
alignments of clustered protein sequences, generated with MAFFT.110

Also, in PPI3D we use constrained Voronoi faces (Figure 3.3) instead of
on-sphere contacts. This decision was made due to two reasons. Firstly,
for an amino acid residue, the sum of face-based contact areas is less
dependent on the number of residue atoms than the sum of on-sphere
contact areas. Thus, using areas of constrained Voronoi faces allowed
us to make CAD-score less dependent on the differences in amino acid
contents when comparing structures of proteins that have non-identical
sequences. Secondly, we believe that constrained Voronoi faces provide a
more natural and intuitive representation of physical contacts: we report
face-based areas of protein-protein interfaces in PPI3D server, therefore,
the areas used for CAD-score in PPI3D also need to be face-based.
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3.5.2 Clustering of protein interaction interfaces and binding

sites

The clustering of protein interaction interfaces and binding sites accord-
ing to structural similarity is performed using the Taylor-Butina algo-
rithm,111 which makes later updating of the clusters with new data very
straightforward. This algorithm takes as input the similarity matrix and
has one tunable parameter: the threshold that defines which elements are
similar enough to be joined into one cluster.

The interface similarity criteria for creating the clustered datasets were
chosen after careful examination of the data. First, all protein-protein in-
teraction interfaces were clustered by the similarity of protein sequences
> 95%. Then CAD-score similarity matrices were calculated for each of
resulting clusters. Each matrix was used for further clustering using the
Taylor-Butina algorithm and varying the similarity thresholds that define
which interaction interfaces may belong to the same cluster. The results
are represented in Figure 3.23. It can be seen that if we lower the inter-
face similarity threshold for clustering protein complexes that are nearly
identical at the sequence level, the number of clusters stays about the
same when the threshold is below 50-60 % (CAD-score 0.5-0.6). It means
that the pairs of interaction interfaces usually have either very high or
very low similarity values. In other words, the same protein pairs usu-
ally interact either using the same or completely different binding sites.

Therefore, to identify protein complexes having nearly identical struc-
ture, we used sequence identity > 95% and the similarity of interface
contacts > 50% (interface CAD-score > 0.5, calculated using Equation 3.8).
This is the default clustering mode in the PPI3D server and it filters out
the largest part of the PDB data redundancy such as multiple complexes
of the same proteins or their point mutants.

Highly similar protein interaction interfaces of homologous protein com-
plexes (interologs) were clustered together if their sequence similarity
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Figure 3.23: Relationship between the interface similarity threshold used for
clustering and the number of clusters for protein-protein interfaces having se-
quences > 95% similar. PDB data released before December 4, 2015 were used
for clustering.
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was above 40% and the similarity of interface contacts >50% (interface
CAD-score > 0.5).

Homologous protein complexes having lower sequence similarity may
retain the same binding sites, but may have a significant rearrangement
of pairwise residue contacts across the interface. To capture such cases,
we used a less stringent similarity measure, the similarity of the interface
areas (Equation 3.11).

In case of protein/peptide binding sites, the overall clustering results
were the same as for clustering protein-protein interaction interfaces.
Consequently, the same thresholds were used for defining the similar-
ity of binding site residue areas (Equation 3.10) and binding site areas
(Equation 3.12).

3.5.3 Discussion

The clustering of the protein interactions allows reduction of the data re-
dundancy more than sevenfold for interaction interfaces and more than
tenfold for protein-protein binding sites. The summary of results is given
in the Table 3.4. In all cases the number of clusters derived by accounting
for the structural similarity is higher than the number of just sequence
similarity-based clusters. This difference indicates that some related pro-
tein complexes have significantly different or even alternative interaction
interfaces. Consequently, clustering protein complexes only by sequence
similarity would result in a loss of structural data for these proteins.
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Number of clusters

Protein-protein interaction interfaces:
All protein-protein interaction interfaces 349,208
Clustered at sequence similarity > 95%:

By sequence similarity only 41,602
By sequence similarity and interface contacts similarity > 50% 66,234

Clustered at sequence similarity > 40%:
By sequence similarity only 26,951
By sequence similarity and interface contacts similarity > 50% 51,984
By sequence similarity and interface area similarity > 50% 43,845

Protein and peptide binding sites:
All protein and peptide binding sites 723,546
Clustered at sequence similarity > 95%:

By sequence similarity only 35,749
By sequence similarity and binding site residue areas similarity > 50% 93,058

Clustered at sequence similarity > 40%:
By sequence similarity only 21,635
By sequence similarity and binding site residue areas similarity > 50% 68,040
By sequence similarity and binding site area similarity > 50% 58,505

Table 3.4: The summary of results of clustering structural data on protein inter-
actions by sequence and structure similarity in PPI3D (based on the PDB data
released before December 4, 2015).
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4 VoroMQA: a method for refer-
enceless assessment of protein
structure quality using inter-
atomic contact areas

VoroMQA (Voronoi tessellation-based Model Quality Assessment) is an
all-atom statistical potential-based method for protein structure quality
assessment. The method considers protein structure as a set of balls
corresponding to heavy atoms and characterize interactions through in-
teratomic contact areas derived from the Voronoi tessellation of atomic
balls.7 Here, we present a description of the method and compare its
performance with both statistical potentials and composite model qual-
ity assessment scores.

4.1 Method description

4.1.1 Construction of contacts

Given a protein structure, it can be represented as a set of atomic balls,
each ball having a van der Waals radius depending on the atom type. A
ball can be assigned a region of space that contains all the points that are
closer (or equally close) to that ball than to any other. Such a region is
called a Voronoi cell and the partitioning of space into Voronoi cells is
called a Voronoi tessellation. Two adjacent Voronoi cells share a set of
points that form a surface called a Voronoi face. A Voronoi face can be
viewed as a geometric representation of a contact between two atoms.
However, if a pair of contacting atoms is near the surface of a protein
structure, the corresponding Voronoi face may extend far away from the
atoms. Here, this problem is solved by constraining the Voronoi cells
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Figure 4.1: (A) Edges of the Voronoi cells constrained inside the solvent accessi-
ble surface of a protein structure. (B) Cutting a Voronoi cell with a sphere corre-
sponding to the rolling probe surface results in constrained Voronoi faces and
SAS patches. (C) An integral surface of a phenylalanine residue constructed by
combining atomic contact surfaces.

of atomic balls inside the boundaries defined by the solvent accessible
surface (SAS) of the same balls, as illustrated in Figure 4.1 (A, B). The re-
sulting constrained Voronoi faces and SAS patches can be combined into
integral surfaces of larger components of protein structure, e.g. amino
acids (Figure 4.1 C). Construction of interatomic contact surfaces is im-
plemented as part of the Voronota software.7 The construction procedure
uses triangulated representations of Voronoi faces and spherical surfaces.
Contact areas are calculated as the areas of the corresponding triangula-
tions.

In this study the Voronoi tessellation-based analysis is also used to de-
scribe the centrality of contacts. Given a pair of contacting atoms, the
contact between them is called central if the line segment connecting the
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Figure 4.2: (A) 2D illustration of central and non-central contacts: the contact
between balls φ1 and φ3 is non-central, the other contacts are central. (B) Cen-
tral (green) and non-central (yellow) contacts for sequence separation 1. (C)
Central and non-central contacts for sequence separation from 2 to 6. (D) Cen-
tral and non-central contacts for sequence separation greater than 6. (E) Only
non-central contacts for sequence separation greater than 1. (F) Only central
contacts for sequence separation greater than 1. The PDB ID of the protein
structure used in this figure is 1T3Y.

centers of the atoms intersects the corresponding constrained Voronoi
face. Otherwise, the contact is called non-central. The definition of central
and non-central contacts is illustrated in Figure 4.2 (A). Another catego-
rization of contacts used in this work is based on the sequence separation
between the residues of the contacting atoms. It is illustrated in Figure
4.2 (B–F) in combination with the centrality-based categorization.

4.1.2 Definition of the quality scoring method

Interatomic and solvent contact areas may be used to evaluate quality of
protein structural models by employing the idea of a knowledge-based
statistical potential as was first shown by McConkey et al.76 Our method
is aimed to employ the same principle using more elaborate contact de-
scriptions and to be able to produce both local (atom-level) and global
(structure-level) scores in a fixed range of values from 0 to 1.

In order to formulate our method, the first step is to define a set of pos-
sible contact types. Let A = {a0, a1, ..., an} be a set of atom types and C =

{c0, c1, ..., cm} be a set of contact categories. A contact type is described by
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a tuple (ai, aj , ck) ∈ A×A×C, which is equivalent to (aj , ai, ck) because con-
tacts are undirected. The atom type a0 represents solvent and the contact
category c0 represents solvent-accessible areas, therefore a0 and c0 always
come together and the set of all possible contact types can be narrowed
down to T = ([A \ a0]× [A \ a0]× [C \ c0]) ∪ ([A \ a0]× {a0} × {c0}).

A contact type can be assigned a pseudo-energy value E(ai, aj , ck) calcu-
lated from the corresponding expected and observed probabilities:

E(ai, aj , ck) = log
Pexp(ai, aj , ck)

Pobs(ai, aj , ck)
(4.1)

The probability values can be estimated empirically using the contact
area values calculated for a learning set of high-quality experimentally
determined protein structures. Let S(ai, aj , ck) be a sum of all the areas of
the contacts of type (ai, aj , ck) observed in the learning set. Also, let us
define that if (ai, aj , ck) 6∈ T , then S(ai, aj , ck) = 0. Let Ssol and Sint be sums
of solvent and interatomic contact areas, respectively:

Ssol =
∑

1≤i≤n

S(ai, a0, c0) (4.2)

Sint =
∑

1≤i≤n

∑

1≤j≤i

∑

1≤k≤m

S(ai, aj , ck) (4.3)

Then the observed probability of the contact type (ai, aj , ck) is defined as
the following ratio of areas:

Pobs(ai, aj , ck) =
S(ai, aj , ck)

Sint + Ssol
(4.4)

The corresponding expected probability should represent how often the
contacts of the same type would occur in a set of randomly folded struc-
tures of the same sequences as in the learning set. It is estimated using
the observed probabilities of the isolated components of the contact type
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(ai, aj , ck):

Pexp(ai, aj , ck) =



















Pobs(ai) · Pobs(c0) if j = 0

Pobs(ai) · Pobs(aj) · Pobs(ck) if j ≥ 1, i = j

Pobs(ai) · Pobs(aj) · 2 · Pobs(ck) if j ≥ 1, i 6= j

(4.5)

Pobs(ai) =

∑

0≤j≤n

∑

0≤k≤m S(ai, aj , ck)

2 Sint + Ssol
(4.6)

Pobs(ck) =

∑

0≤i≤n

∑

0≤j≤i S(ai, aj , ck)

Sint + Ssol
(4.7)

Having the derivation of pseudo-energy values defined using equations
(4.1-4.7), let us describe how the derived values are used for scoring pro-
tein structures. In order to assign a quality score to a single atom φ, a set
of related contacts Ωφ is selected. Atom-related contacts are defined as
not only the immediate contacts of the considered atom, but also all the
contacts of the neighboring atoms. A normalized pseudo-energy value
En(Ωφ) is computed using the information known about each contact
ω ∈ Ωφ, namely the contact area (areaω) and the contact type (typeω ∈ T ):

En(Ωφ) =

∑

ω∈Ωφ
E(typeω) · areaω

∑

ω∈Ωφ
areaω

(4.8)

An atom quality score Qa(Ωφ) ∈ [0, 1] is defined using the Gauss error
function:

Qa(Ωφ) =
1

2

(

1 + erf

(

En(Ωφ)− µtypeφ

σtypeφ

√
2

))

(4.9)

The values of µ (mean) and σ (standard deviation) are estimated for each
atom type from the normalized pseudo-energy values calculated for the
atoms in the learning set of protein structures.
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Given a set Φ of all atoms in a protein structure, a global structure quality
score Qg(Φ) is defined as a weighted arithmetic mean of the atoms quality
scores:

Qg(Φ) =

∑

φ∈Φ Qa(Ωφ) · weightφ
∑

φ∈Φ weightφ
(4.10)

The weights here indicate how deep each atom is buried inside a struc-
ture: solvent-accessible atoms have weight 1, their direct contacting
neighbors have weight 2, the neighbors of the direct neighbors have
weight 3, and so on.

The quality score of a residue is defined as an average of quality scores of
its atoms. A sliding window with four residues on both sides is used to
smooth residue scores along the sequence. Let us denote an unsmoothed
residue score at position n as Qr(n), then the corresponding smoothed
value Wr(n) is computed as a normalized weighted sum of the scores of
the neighboring residues:

Wr(n) =

∑

−5<m<5 Qr(n + m) · (5− |m|)
∑

−5<m<5(5− |m|)
(4.11)

4.1.3 Implementation of the quality scoring method

Implementation of the method requires a protein structure dataset (learn-
ing dataset) for collecting data on interatomic contacts, the set of atom
types and the set of contact categories. Protein structures for the learning
set were obtained from the Protein Data Bank2 (www.rcsb.org). Only
protein structures solved by X-ray at better than 2.5Å resolution were
considered. The set was limited to monomeric or oligomeric (up to 12
subunits) proteins with each chain longer than 99 residues. Proteins
solved in complex with nucleic acids, membrane proteins, proteins with
modified polymeric residues were excluded. From the remaining struc-
tures only representatives at 50% sequence identity were retained. For
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each of the resulting PDB entries (totaling 12825 as of 2015.06.11), the
structure of the first biological assembly was used for deriving contact
areas. Only non-bonded contacts between atoms of different residues
were considered.

In the case of multi-chain biological assemblies the set of derived contacts
is redundant. To remove this redundancy, the contact areas are multi-
plied by the ratio Nu

N
, where N is the total number of chains and Nu is the

number of unique protein chains.

Twenty standard amino acids have 167 different heavy atom names,
however, seven atom pairs are interchangeable because of the molecular
symmetry: Arg NH1 and NH2, Asp OD1 and OD2, Glu OE1 and OE2,
Phe CD1 and CD2, Phe CE1 and CE2, Tyr CD1 and CD2, Tyr CE1 and
CE2. Therefore, the final set contains 160 distinct atom types, plus one
special type representing solvent.

As for the set of contact categories, a hybrid scheme is used: solvent
contacts are treated separately; each non-solvent contact is categorized
as either near or far depending on the sequence separation between the
residues of the contacting atoms; each non-solvent contact is categorized
as either central or non-central as illustrated in Figure 4.2 (A). This results
in 5 distinct categories: “solvent”, “near and central”, “near and non-
central”, “far and central”, “far and non-central”. During the method
learning stage, when the empirical probabilities are computed, a contact
is considered far if the corresponding sequence separation is greater than
6: this is done to separate the contacts that may be largely induced by
the close sequence proximity of the contacting residues from the con-
tacts that are more likely to occur because they are favorable. During the
method application stage, when calculating normalized pseudo-energies
of atoms using equation (4.8), only far or solvent contacts are considered,
but the sequence separation threshold for contacts considered as far is
lowered so that only contacts between the atoms of residues adjacent in
sequence are categorized as near. This allows to take into account the vast
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Category P
high

obs P
low
obs

near and central 0.159 0.147
near and non-central 0.168 0.165
far and central 0.225 0.166
far and non-central 0.056 0.052
solvent 0.392 0.470

Table 4.1: Observed probabilities of the contact categories estimated for the
learning set of high quality structures (Phigh

obs ) and the set of lower quality struc-
tures comprised of CASP models (Plow

obs).

majority of contacts while excluding the ones that are likely to appear in
a structural model regardless of its correctness.

When estimating the probabilities of the contact categories using equa-
tion (4.7), we tried two datasets for input: the learning set of high qual-
ity structures and a set of lower quality structures that was comprised
of the models of the monomeric targets from CASP8,112 CASP995 and
CASP10.17 Table 4.1 contains the two resulting sets of probability values,
the most prominent difference between them being the solvent contact
probabilities, meaning that the lower quality structures are not as well
packed as the high quality ones. We reasoned that random protein-like
structures should also be packed worse than the native protein struc-
tures, therefore for equation (4.5) we employed the probabilities of the
contact categories that were estimated from the set of lower quality struc-
tures.

The last required information is the mean and standard deviation values
used in equation (4.9). These values were calculated for each atom type
after applying equation (4.8) to every atom in the learning set of protein
structures.

The VoroMQA software is available both as a standalone application and
as a web-server at bioinformatics.lt/software/voromqa. Our
standalone software does not require any third-party programs or li-
braries to work. However, in some cases it may be beneficial to employ
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an external tool to rebuild the side chains in input protein structures be-
fore evaluation as this may reduce chances of overly penalizing structural
models that have good backbone but poor side-chain packing.

4.1.4 Expected scores for native protein structures

The implemented method was used to compute the global quality scores
of the protein structures in the original learning set to estimate what
scores to expect from realistic structural models. Each structure was eval-
uated twice: first time, using the default method configuration, and sec-
ond time, after rerunning the learning stage with the structure of interest
removed from the learning set. The mean difference between the first
and the second global scores was less than 0.00028, for 99% of the struc-
tures the difference was less than 0.0006, the maximum observed differ-
ence was 0.0038. This allows us to conclude that the performance of the
method is largely insensitive to the presence or absence of any single
structure in the learning set.

The summary of global quality scores calculated by the second proce-
dure is presented in Figure 4.3. Plot (A) shows the empirical distribution
of global scores leading to the following observations: 1) it is unlikely
for a realistic protein structure to have a global score lower than 0.3 or
greater than 0.7, and 2) a global quality score is not heavily dependent on
the prevailing type of secondary structure. Plot (B) shows that, on aver-
age, smaller protein structures receive slightly lower global quality scores
than larger structures, and the variance is greater for smaller structures.
Another aspect of the method is that the scoring time scales linearly with
the structure size, as illustrated in Figure 4.3 (C).

4.1.5 A note on the older version of the method

The initial simplified variant of the VoroMQA method was tested in the
QA category of the CASP11 experiment.64 Compared to the current ver-
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Figure 4.3: Recap of the global quality scores calculations performed for the
protein structures in the learning set. (A) Estimated empirical density functions
of the scores for all the structures (green), the structures with prevailing alpha
helices (blue) and the structures with prevailing beta sheets (red). (B) Box plots
of global scores for different thresholds of structure sizes (the rightmost box
plot also covers all the structures from the learning set that have more than
1100 residues). (C) Software running times plotted against the corresponding
structure sizes (the test was performed using CPU Intel R© Xeon R© E5-2670 v3
@ 2.30GHz).

sion, the older one did not utilize contact categories, did not distinguish
between different atom types when converting from pseudo-energy val-
ues to atomic quality scores and did not assign weights to the atomic
scores when calculating global quality scores. Also, only single-chain
protein structures from the PISCES113 database were used in the learning
stage of the older version. To assess the effect of the differences between
the older and the newer versions of VoroMQA, we recorded the results
achieved by both versions in the tests described later in this paper. When
describing the test results, the older version of VoroMQA is denoted as
“VoroMQA-old” and the current version is denoted as “VoroMQA-new”
or simply “VoroMQA”.
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4.2 Testing arrangements

4.2.1 Datasets used to assess the performance of the method

In order to analyze the ability of VoroMQA to select a native structure
from a set of its models of varying quality, we downloaded the target and
model structures from the last four CASP experiments (CASP8-11). We
did not consider targets that correspond to individual subunits of oblig-
atory protein complexes representing biologically unrealistic oligomeric
state or those solved with poor resolution. Consequently, we used 140
CASP targets that conform to the following criteria: a target must cor-
respond to a PDB entry that has at least one single-chain biological as-
sembly and the experimental method used to determine the structure
must be X-ray crystallography with resolution better than 2.5 Å. For ev-
ery target, all the available complete models were downloaded, excessive
regions in models were trimmed to exactly match the target structure.
Scores for target and model structures were then computed using the old
and the new variations of VoroMQA as well as DOOP,72 GOAP,75 and
dDFIRE.73

In order to analyze the ability of VoroMQA to evaluate protein struc-
tural models, we used the CASP11 Quality Assessment (QA) data.
We considered all the 88 targets that were used in the official as-
sessment of CASP11 QA results,64 but, after manual inspection, ex-
cluded four of them (T0775, T0787, T0799 and T0813) because their
structures are single chains pulled out from obligatory oligomers. For
the remaining 84 targets, the following data was downloaded from
the CASP11 website: the structures of server models (best150 and
sel20 sets63); the corresponding reference-based quality scores (GDT-
TS,13, 103 LDDT,114 SphGr (SphereGrinder)115 and CAD_AA6); the avail-
able global scores calculated by the single-model quality assessment
methods (MULTICOM-CLUSTER,116 MULTICOM-NOVEL,117 ProQ2,65
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ProQ2-refine,118 Wang_SVM,119 Wang_deep_{1,2,3}119 and the old ver-
sion of VoroMQA). The latest version of our method was applied to pro-
duce two more scores for each model: VoroMQA-new (calculated for the
unmodified input structure) and VoroMQA-new-sr (calculated after re-
building the side-chains of the input structure using SCWRL4120). Ad-
ditionally, we computed the following statistical potential-based scores:
DOOP, GOAP, and dDFIRE. We compiled the retrieved and the com-
puted scores together and removed duplicate model entries and entries
with at least one score absent. The final combined tables of scores char-
acterize 11627 models from the best150 sets and 1583 models from the
sel20 sets (the tables are available for download from the VoroMQA web
page).

The best150 and sel20 sets, composed at the time by CASP11 organiz-
ers, differ in both their size and nature. For each target, the best150 set
contains the best 150 models selected using a consensus-based QA al-
gorithm, while the sel20 set contains 20 diverse models selected based
on a clustering of all the available models for the target. We rea-
soned that it may also be interesting to perform tests on sets that
are small (like sel20) but contain better models (like best150). There-
fore, in addition to the best150 and sel20 sets for each target, we
used sets of models produced by the three well-performing prediction
servers: BAKER-ROSETTASERVER,121 Zhang-Server,122 and QUARK.123

We dubbed these sets “BZQ15” because only up to 15 models of the three
servers are available for each CASP11 target. Each BZQ15 set simulates
the real-life scenario, when a researcher needs to choose the best model
from a few generated by several well-known servers.
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4.2.2 Reference-based scores used to assess the model selec-

tion capabilities

For assessing the VoroMQA performance when selecting the best model
from a set of models of the same target, we chose to employ the same
four reference-based scores (GDT-TS, LDDT, SphGr and CAD_AA) used
in the official CASP11 QA assessment. However, each of the four scores
focuses on somewhat different structural properties and they often dis-
agree in deciding which model is closer to the native structure. More-
over, each score has a degree of uncertainty so that the score difference
for close models may not always be significant.124 To take care of these
issues, we additionally introduced a simple tournament-based method-
ology described below.

Let us take two models a and b of the same target. Let us say that a “wins”
against b if all the four reference-based scores are higher for a than for b.
If there is a disagreement, for example, if GDT− TSa > GDT− TSb but
LDDTa < LDDTb, then the outcome of the duel between a and b is a draw.
Using the defined rules, all the possible duels are executed for the models
in the input data set. For each model the numbers of wins, draws and
losses are recorded. The results of the performed “tournament” are used
as a basis for our ensuing analysis.

A straightforward way to utilize the tournament results is to assess how
well a QA method is able to select the best model out of two. Let us
consider a set of models M , let N be the total number of non-draw duels
among the elements of M and Np be the number of non-draw duels that
the QA method correctly predicts the winner for. Then the QA method
performance can be quantified using the agreement percentage score:

Agreement-score(M) = Np/N · 100% (4.12)

The next step is to assess the ability of a QA method to select the best
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model out of many. In our tournament-based framework we define the
true best model of a target as the model with the highest number of won
duels. If two models have the same number of wins, the one with more
draws, i.e. less losses, is considered better. We combine the numbers of
wins and the numbers of draws into a single score called Wins-score. Let
us consider a target t that has Nt models and its best model b has wb wins
with db draws. Given a model m of t that has wm wins with dm draws, let
us define Wins-score score for m. To ensure that even a single win has
more weight than Nt − 1 draws, numbers of wins are multiplied by Nt in
the following formula:

Wins-score(m) =
wm ·Nt + dm

wb ·Nt + db

(4.13)

Wins-score(m) can range from 0 (when m has no wins and draws) to 1
(when m is the best model). The score can be interpreted as a measure of
success achieved by model m compared to the remaining (Nt− 1) models
of t. We use the Win-scores of the models selected by a QA method to
quantify the ability of the method to select the best possible models.

Summarizing Agreement-scores (or Wins-scores of selections) for multi-
ple different targets can be done by calculating their mean value. How-
ever, when comparing the performances of two different QA methods, a
simple comparison of the corresponding mean values is not sufficient as
it lacks the information about the significance of the difference. We use
the Wilcoxon signed-rank test125 to assess whether two sets of per-target
scores come from two populations with different means. We chose this
particular test and not the paired Student’s t-test because we cannot as-
sume that a population of Agreement-scores (or a population of selection
Wins-scores) is distributed normally. We first run the two-sided Wilcoxon
test: if the computed p-value is sufficiently small, i.e. the two population
means differ significantly, then the one-sided version of the test is used
to check if the first population mean is likely larger.
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4.3 Testing results

4.3.1 Overview of testing procedures

We tested the performance of VoroMQA in several ways which are out-
lined in this section and presented in detail in the subsequent sections.

Firstly, we focused on global VoroMQA scores and assessed if the method
is able to distinguish a native structure from its decoys. We used data
from several CASP experiments to form sets of decoys: such sets are
comprised of models of various quality generated by a variety of struc-
ture prediction methods. We compared the performance of VoroMQA
with the performance of three other methods that are based solely on
analyzing geometric features and applying knowledge-based statistical
potentials, namely DOOP,72 GOAP,75 and dDFIRE.73

Next, we analyzed how VoroMQA global scores computed for models re-
late to the observed differences between models and the native structures
(targets). To this end, we used CASP11 structural models and the corre-
sponding reference-based quality scores. As the official assessment of
CASP11 QA results64 was done using primarily GDT-TS,13, 103 LDDT,114

SphGr (SphereGrinder)115 and CAD_AA (CAD-scoreAA),6 the same four
scores were also employed in our study.

During another test we analyzed the ability of VoroMQA to select
the best model out of several or many. For this test we applied
the four reference-based scores and the newly introduced tournament-
based methodology (see “Testing arrangements”), which allows mul-
tiple reference-based scores to be considered simultaneously. In addi-
tion to DOOP, GOAP and dDFIRE, we compared VoroMQA with single-
model quality assessment methods that participated in CASP11, namely
MULTICOM-CLUSTER,116 MULTICOM-NOVEL,117 ProQ2,65 ProQ2-
refine,118 Wang_SVM119 and Wang_deep_{1,2,3}.119 Unlike VoroMQA,
these methods employ additional data such as secondary structure and
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solvent accessibility predictions, in effect incorporating evolutionary in-
formation derived from homologous sequences. Therefore, matching or
surpassing their performance may be considered a serious challenge for
VoroMQA.

The last testing procedure was dedicated to the local scoring. We used
data from the CAMEO project (www.cameo3d.org)19 to investigate some
properties of VoroMQA local scores in relation with reference-based local
scores.

4.3.2 Selecting native structures from sets of decoys

We tested VoroMQA alongside DOOP, GOAP and dDFIRE according to
the ability to distinguish a native structure amidst a variety of its models
(decoys) using the data corresponding to the 140 monomeric targets from
CASP8-11 experiments (see “Testing arrangements” for details).

The performance of each structure evaluation method was assessed by
counting how many times a native (target) structure was missed. Also,
differences between the target scores and the corresponding model mean
scores were computed and converted to z-scores. According to the num-
ber of missed native structures VoroMQA performed on par with DOOP
and surpassed the others. The summary of the results is presented in
Table 4.2, the per-target results are shown in Supplementary Table S1.10

4.3.3 Relationship between VoroMQA global scores and

model quality

As we have shown above (Figure 4.3), VoroMQA global scores do not
significantly depend on either prevalent secondary structure content or
protein size. Thus in principle, it should be possible to decide if a com-
putational model is close to the native structure solely on the basis of
the VoroMQA global score. Figure 4.3 (A) shows that a vast majority
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Method Missed targets Mean z-score

VoroMQA-new 8 3.19
DOOP 8 3.00
GOAP 16 2.87
VoroMQA-old 27 2.67
dDFIRE 46 2.09

Table 4.2: Results of the target selection ability analysis performed for the set
of 140 monomeric targets from CASP8, CASP9, CASP10 and CASP11. The
“Missed targets” column values show how many times each QA method failed
to distinguish a target structure among its models. The “Mean z-score” column
values show the average z-scores of the QA scores of the target structures.

of high quality experimentally determined structures have VoroMQA
scores greater than 0.4. Also, almost none of the native structures have
VoroMQA scores less than 0.3. Following these observations, we com-
puted empirical distribution densities of the four reference-based qual-
ity scores (GDT-TS, LDDT, SphGr and CAD_AA) of the CASP11 mod-
els that have VoroMQA-new scores in the intervals (0, 0.3), [0.3, 0.4] and
(0.4, 1). The results, shown in Figure 4.4, allow us to formulate the fol-
lowing simple rule for interpreting a VoroMQA-new value v of a protein
structural model: if v < 0.3, then the model is likely bad; if v > 0.4, then
the model is likely good; if v ∈ [0.3, 0.4], then the model quality cannot
be reliably classified as bad or good using VoroMQA alone. This rule is
most useful when just a single model is available. Results for CASP11
models also showed that VoroMQA-new and VoroMQA-new-sr global
scores are highly correlated (Pearson correlation coefficient is about 0.98).
Therefore, the same rule can be applied for both scores.

4.3.4 Results of the per target analysis of CASP11 data

In model selection tests, we first analyzed how different QA scores per-
form on best150 sets using the tournament-based methodology. For each
available QA method, we calculated agreement percentage scores for all
the targets combined and for every target separately. When considering
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Figure 4.4: Empirical distribution densities of GDT-TS, LDDT, SphGr and
CAD_AA scores of the CASP11 models that have VoroMQA-new scores in in-
tervals (0, 0.3), [0.3, 0.4] and (0.4, 1): the corresponding lines are colored in red,
green and blue, respectively.
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Method Total % Mean %

VoroMQA-new-sr 82.50 82.70
VoroMQA-new 81.80 82.16
GOAP 80.11 80.57
VoroMQA-old 79.70 80.48
MULTICOM-NOVEL 79.66 80.25
ProQ2-refine 78.69 79.40
MULTICOM-CLUSTER 78.76 79.21
ProQ2 78.13 78.86
dDFIRE 77.73 78.43
DOOP 76.09 76.57
Wang_SVM 74.42 75.24
Wang_deep_2 72.12 72.83
Wang_deep_3 71.65 72.30
Wang_deep_1 71.57 72.19

Table 4.3: Agreement percentage scores calculated for best150 sets of models
from CASP11: second column contains scores for all the targets combined,
third column contains mean per-target scores. The table is sorted by the third
column.

all the possible 799703 pairs of models, only for 425877 (53%) of them
all four reference-based scores (GDT-TS, LDDT, SphGr and CAD_AA)
agree which model out of the two is better. The middle column in Table
4.3 shows how often different QA scores agree with the unanimous judg-
ment of all four reference-based scores, the last column shows the aver-
age per-target agreement percentages, i.e. mean Agreement-scores. Table
4.4 shows the p-values calculated by applying the Wilcoxon signed-rank
test to compare VoroMQA-new-sr with the other methods according to
per-target Agreement-scores. Considering the significance level thresh-
old of 0.05, VoroMQA-new-sr significantly outperformed all the others,
except for VoroMQA-new (results of the analogous test for VoroMQA-
new are presented in Supplementary Table S210).

Next, we asked each available QA method to select a single model from
the best150 set of every target. The mean Wins-score, GDT-TS, LDDT,
SphGr and CAD_AA values of the selected models are presented in Ta-
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Method
p-value

(two-sided)
p-value

(one-sided)

VoroMQA-new 0.20292 0.10146
VoroMQA-old 0.01182 0.00591
MULTICOM-NOVEL 0.00558 0.00279
ProQ2-refine 0.00041 0.00020
GOAP 0.00024 0.00012
ProQ2 0.00016 0.00008
MULTICOM-CLUSTER 0.00004 0.00002
Wang_SVM 0.00000 0.00000
Wang_deep_3 0.00000 0.00000
Wang_deep_2 0.00000 0.00000
Wang_deep_1 0.00000 0.00000
DOOP 0.00000 0.00000
dDFIRE 0.00000 0.00000

Table 4.4: Results of the Wilcoxon signed-rank test applied to compare the
agreement percentage scores achieved by the VoroMQA-new-sr method for
best150 sets of models from CASP11 with the corresponding Agreement-scores
achieved by the other methods. The table is sorted by the middle column. All
the p-values are rounded up to the five decimal places. Gray background is
used to indicate methods that performed significantly worse than VoroMQA-
new-sr.
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ble 4.5 along with the corresponding mean z-scores. Wins-scores and
z-scores were calculated considering only the models from best150 sets.
While Table 4.5 shows that VoroMQA-new-sr and VoroMQA-new per-
formed relatively well, the achieved advantage over other methods is
mostly not significant. Supplementary Table S310 shows the p-values
calculated by applying the Wilcoxon signed-rank test to compare the
Wins-scores of the models selected by the VoroMQA-new-sr method with
the corresponding results achieved by the other methods (results of the
analogous test for VoroMQA-new are presented in Supplementary Ta-
ble S410). The p-values greater than 0.05 indicate that all the scores
from VoroMQA, ProQ2 and MULTICOM families, as well as GOAP
and DOOP scores, demonstrate very similar model-selection abilities
when analyzing models from best150 sets using our tournament-based
methodology.

Additionally, we performed the analysis based on Agreement-scores and
Wins-scores on BZQ15 sets (Supplementary Tables S5–S1010). The over-
all trends are similar to those of best150 sets but there are some dif-
ferences. Most notably, VoroMQA-new-sr performed significantly bet-
ter than VoroMQA-new indicating that side-chain rebuilding was par-
ticularly beneficial for scoring models from BZQ15 sets. This is consis-
tent with the fact that BAKER-ROSETTASERVER differs considerably
from Zhang-Server and QUARK in the side-chain positioning quality.126

Therefore, rebuilding side-chains before scoring apparently helps to level
significant differences in side-chain packing leading to improved results.
Also, in the test based on Agreement-score, VoroMQA-new-sr did not
significantly outperform MULTICOM-NOVEL.

Finally, we analyzed sel20 sets, and the detailed results are pre-
sented in Supplementary Tables S11–S16.10 Both VoroMQA-new and
VoroMQA-new-sr performed significantly worse than ProQ2-refine and
MULTICOM-NOVEL in Agreement-score-based testing and significantly
worse than ProQ2-refine and ProQ2 in Wins-score-based testing. Over-
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Method Wins-score GDT-TS LDDT SphGr CAD_AA

Wins-score 1/2.66 55/2.11 0.544/2.19 58.3/2.26 0.586/2.23
LDDT 0.939/2.42 54.3/1.93 0.549/2.33 57.8/2.14 0.584/2.13
CAD_AA 0.902/2.29 53.5/1.72 0.536/1.99 57.3/2.08 0.594/2.46
SphGr 0.861/2.1 54.1/1.85 0.522/1.7 59.7/2.55 0.58/2.04
GDT-TS 0.857/2.1 56.2/2.4 0.522/1.7 56.7/1.97 0.575/1.85

VoroMQA-new-sr 0.735 / 1.63 50 / 1.17 0.497/ 1.28 53 / 1.54 0.566/ 1.67
MULTICOM-CLUSTER 0.717/1.58 48.9/0.94 0.495/ 1.28 51/1.27 0.563/1.57
VoroMQA-new 0.713/1.56 50 /1.09 0.496/1.26 51.8/1.32 0.56/1.48
VoroMQA-old 0.704/1.52 48.9/1.03 0.492/1.25 51.1/1.34 0.559/1.51
ProQ2-refine 0.703/1.51 49.3/1 0.495/1.26 52.1/1.39 0.562/1.56
MULTICOM-NOVEL 0.695/1.49 49.4/1.07 0.49/1.19 51.8/1.38 0.564/1.64
GOAP 0.694/1.49 49.8/0.89 0.501 /1.27 52.2/1.22 0.568 /1.66
ProQ2 0.691/1.46 49.9/0.98 0.496/1.21 52.2/1.34 0.561/1.51
DOOP 0.681/1.46 48.8/0.81 0.499/1.27 50.7/1.05 0.564/1.55
Wang_SVM 0.616/1.2 47.5/0.73 0.474/0.83 49.4/1.02 0.546/1.11
Wang_deep_2 0.568/0.99 47.2/0.65 0.471/0.72 49.8/0.96 0.545/1.05
Wang_deep_1 0.546/0.91 46.3/0.49 0.464/0.6 48.8/0.87 0.542/0.95
dDFIRE 0.542/0.97 46.1/0.33 0.471/0.75 48.4/0.78 0.553/1.28
Wang_deep_3 0.519/0.8 46.6/0.46 0.463/0.53 48.7/0.78 0.542/0.93

Table 4.5: Mean per-target scores of the models selected by various QA meth-
ods from best150 sets of models from CASP11. Each numeric cell contains two
slash-separated values: the mean reference-based score of the selected models
and the corresponding mean z-score. The top five rows show the results ob-
tained using reference-based scores, i.e. results that are close to ideal. The table
is sorted by the Wins-score values. Gray background is used to indicate the
greatest values in each numeric column.
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all, for sel20 sets, every method that is based solely on analyzing geomet-
ric features and applying statistical potentials (GOAP, DOOP, dDFIRE
and all the VoroMQA variations) achieved worse results than the best-
performing composite methods incorporating evolutionary information
in the form of predicted features such as secondary structure or solvent
accessibility: this was definitely not the case for best150 and BZQ15
sets. We thus asked if additional information can be decidedly bene-
ficial when evaluating sel20 models. Considering that every sel20 set
was formed to contain models as different from each other as possible,
there may be cases when incorrect models can be identified simply by
being significantly different from a reasonably reliable model produced
by some homology-based structure prediction server. To test this sur-
mise we defined a simple QA method, dubbed “HHpred-agreement”,
that evaluates models by comparing them with a model produced by
the HHpred server127 (HHpredA in CASP11) using TM-score.46 Higher
TM-scores were considered to represent better models. Supplementary
Tables S17–S1910 show how HHpred-agreement performed in selecting
models from sel20, best150 and BZQ15 sets: HHpred-agreement per-
formed very similarly as ProQ2-refine and ProQ2 for sel20, but much
worse than all the other tested QA scores for best150 and BZQ15. We also
defined a meta-score, named “VoroMQA-new-and-HHpred-agreement”,
which is simply an unweighted geometric mean of VoroMQA-new and
HHpred-agreement scores. An analogous meta-score was also defined
for VoroMQA-new-sr. As shown in Supplementary Tables S17–S19,10 the
two meta-scores achieved top spots in the Wins-score-based ranking of
QA methods for sel20 sets and performed relatively well (although not
as well as the original VoroMQA-new-sr) for best150 and BZQ15 sets. To
sum up, for sets of models similar to sel20, using just VoroMQA may
not be as effective as using it in conjunction with additional information
derived using sequence homologs. Results of our analysis also raise con-
cerns about whether sel20 sets in CASP11 represent real-life model selec-
tion challenges, because the relatively good performance of the HHpred-
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agreement score suggests that it may be more efficient just to get a single
model from HHpred (or some other well-performing homology-based
server) instead of selecting a model from a small but very diverse (sel20-
like) set.

In our analysis we concentrated on the ability of considered QA meth-
ods to identify best models and so far neglected the correlation analy-
sis, i.e. the calculation of coefficients of correlation between QA scores
and reference-based model evaluation scores. Correlation analysis alone
is a poor indicator of the method’s performance, however, it may pro-
vide useful insights and is traditionally used for CASP data.64 For con-
sistency, we also performed correlation analysis for best150, sel20 and
BZQ15 sets (Supplementary Tables S20–S2210). Both VoroMQA-new and
VoroMQA-new-sr showed top results for best150 sets, but not for sel20.
Also, VoroMQA-new-sr showed top results for BZQ15 sets. Overall,
the results of the correlation-based analysis are consistent with those of
tournament-based tests. In addition, correlation analysis showed a posi-
tive trait of Wins-score: the four reference-based scores (GDT-TS, LDDT,
SphGr and CAD_AA) correlate better with Wins-score than with each
other.

4.3.5 Local scoring

VoroMQA global scores are directly derived from the atom-level
VoroMQA scores, so while testing global VoroMQA scores we also indi-
rectly tested VoroMQA local scoring capabilities, at least the cumulative
effect of atomic VoroMQA scores. Another possible way of testing lo-
cal scoring is investigating how local VoroMQA scores conform to some
reference-based local scores. However, due to the nature of our method,
this approach is not easily applicable as illustrated with the local scoring
example in Figure 4.5. The figure shows residue-level VoroMQA scores
of a native (target) structure and its two models, the first model is bet-
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ter than the second one according to all four reference-based scores. The
VoroMQA global scores correctly rank both models by their deviation
from the native one. The color-coded VoroMQA local scoring profiles
support the judgment of the global scores, because for most of the residue
positions the local VoroMQA scores get lower as the global model qual-
ity gets lower. However, low absolute values of local VoroMQA scores do
not necessarily correspond to low reference-based local scores. For a sim-
ple example, let us consider just the native structure. Its local VoroMQA
scores are not homogeneous despite all the residue positions being cor-
rect. This is so, because different residues are not in equally favorable
contact environments. Similarly, when considering a modeled structure
different from the native one, low VoroMQA score for a single residue
does not necessarily mean that the structural position of the residue is in-
correct. This is illustrated in the bottom part of Figure 4.5 with the plots of
residue distance deviations obtained from LGA103 structural alignments
and colored by the corresponding VoroMQA scores: some of the well-
aligned residues have low VoroMQA scores. Another observation from
the same plots is that the positions of the residues with higher VoroMQA
scores tend to be well-predicted. To check if this is true in general, we
used data from the CAMEO project (www.cameo3d.org).19

We had the latest version of VoroMQA entered to the CAMEO model
quality estimation category under name “VoroMQA_v2” since August
2015, thus we were able to download “1-year” (weeks from 2015.10.17
to 2016.10.08) dataset and analyze it to investigate the relations between
VoroMQA local scores and the corresponding LDDT and CAD-score lo-
cal scores. We looked at the empirical distribution of VoroMQA lo-
cal scores that correspond to the three classes of reference-based local
scores: low, average and high. Similarly, we looked at the distributions
of reference-based local scores that correspond to low, average and high
local VoroMQA scores. The results, presented in Figure 4.6, prompt us
to make two important observations: if the local VoroMQA score for

139



Figure 4.5: Local VoroMQA scores calculated for T0776 target structure and two
its models using VoroMQA web-server. The cartoon structural representations
are colored by smoothed per-residue VoroMQA scores. The corresponding one-
dimensional color-coded profiles are shown in the middle part of the figure.
Residue distance deviations (in angstroms) colored by smoothed per-residue
VoroMQA scores are plotted in the bottom part of the figure.
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a residue in the model is greater than 0.5, the residue is likely well-
predicted; if the local VoroMQA score is low (0.25 or less), the accuracy of
the residue position is uncertain, because it may mean either incorrectly
predicted position or correctly predicted position in unfavorable envi-
ronment. The latter point is illustrated in Figure 4.5 showing that even
a native structure can have regions with relatively low local VoroMQA
scores.

Overall, VoroMQA local scores are most useful when analyzed along
with the manual inspection of the protein structure. For example, let
us inspect models 1 and 2 in Figure 4.5. In model 1 most of the low-
scoring residues correspond to solvent-accessible regions while many of
the high-scoring ones are buried in the core of the structure, in model 2
the low-scoring regions cover larger parts of the structure and the core
is scored much lower than in model 1. These observations allow us to
conclude that model 1 is better than model 2 even without considering
global scores.

4.4 Discussion

VoroMQA is an all-atom knowledge-based protein structure scoring
method. It is important to emphasize that the scoring function of
VoroMQA was not optimized or trained in any way to better correspond
to any of the reference-based protein structure accuracy measures such
as RMSD, GDT-TS or CAD-score. Only an unsupervised learning pro-
cedure was applied taking experimentally determined structures of pro-
tein biological units (assemblies) as the source of structural information.
Also, VoroMQA does not use any additional predictive features, e.g. pre-
dicted secondary structure or solvent accessibility that are typically de-
rived using multiple sequence homologs. In other words, only protein
3D structure is needed for its assessment with VoroMQA. Accordingly,
VoroMQA falls into the category of statistical energy potentials. How-
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Figure 4.6: Empirical distribution densities of scores obtained from the
CAMEO “1-year” dataset. Top row: VoroMQA local scores grouped by the
corresponding reference-based local scores, i.e. LDDT and CAD-score. Bottom
row: Reference-based local scores grouped by the corresponding VoroMQA lo-
cal scores.

142



ever, in contrast to most statistical potentials that are distance-based, our
method uses interatomic contact areas. The choice of contact areas offers
several advantages. Contact areas not only define physical interactions
but also implicitly take into account their strength. Moreover, contact ar-
eas make it possible to treat interactions within the protein structure and
interactions with solvent in the same way. Interactions of protein atoms
with solvent are considered as just another type of contacts. In addition,
the use of contact areas allows efficient normalization of pseudo-energy
values, so that they can be converted into quality estimates ranging from
0 to 1. This means that the VoroMQA scores are largely independent of
the type or the size of an input protein structure.

We tested the performance of VoroMQA by the ability to identify the na-
tive structure among the decoys (computational models) in a test typical
for statistical potentials. In addition, we explored how well VoroMQA is
able to select models by their similarity to the native structure according
to different scenarios. Whereas the task of selecting native structure is
unambiguous, the evaluation of model selection by their similarity to the
native structure is not. There are at least two reasons why evaluation of
methods for model selection is not trivial, especially in cases when dif-
ferences between models are small. One of the reasons is the uncertainty
of any reference score.124 Another reason is that it is quite common for
different reference scores to disagree about the exact model ranking. To
test the ability of VoroMQA and other methods to select models closest to
the native structure we chose the same four reference scores used by the
official assessment of model accuracy estimation methods in CASP11,64

namely, a rigid-body measure (GDT-TS) and three local-structure-based
scores (LDDT, CAD-score, and SphereGrinder). However, instead of an-
alyzing the results of these four scores separately,64 we devised a simple
procedure that enabled us to combine all four scores and in so doing to
avoid the two problems mentioned above. The main idea of this pro-
cedure is that one model is considered to be better (closer to the native
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structure) than the other one only if all four reference scores agree to that
unanimously. Based on this idea we introduced two scores, Agreement-
score and Wins-score, and used them throughout the study for perfor-
mance comparison of different methods. We believe that by including
multiple reference scores simultaneously this procedure provides a ro-
bust way for comparing model quality estimation methods. We also be-
lieve that this evaluation scheme might be useful for comparing other
type of prediction methods as well.

In our tests VoroMQA consistently outperformed DOOP, GOAP and
dDFIRE that are similarly based on all-atom statistical potentials, but use
distances rather than contact areas. The outcome of these tests is rather
unexpected, taking into account that both GOAP and dDFIRE feature
orientation-dependent potentials whereas DOOP potentials include the
dependence on the backbone torsion angles. In contrast, VoroMQA does
not include any terms associated with either conformation preferences of
the main chain or orientation-dependence of side chains. This may sug-
gest that contact areas are perhaps more suitable compared to distances
in identifying native structure and scoring near-native conformations.

We also tested VoroMQA alongside with model quality assessment meth-
ods that in addition to the actual structure utilize various predictions de-
rived using evolutionary information and rely heavily on using machine
learning to predict reference-based model quality scores. As VoroMQA
does not use any additional information, comparison with such com-
posite methods puts VoroMQA at disadvantage. Despite this, the tests
showed that VoroMQA often outperformed these composite methods,
especially in the one-out-of-two model selection scenario. VoroMQA
achieved top results when tested on the roughly pre-filtered sets of
CASP11 models, i.e. the sets comprised of models produced by the top
three prediction servers (BZQ15 sets defined in this paper) or the sets
comprised of models selected using a simple consensus-based algorithm
(best150 sets provided by the CASP11 organizers). It has been previously
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observed that the side chain remodeling may lead to improved model se-
lection.128 Indeed, the rebuilding of side chains for best150 and BZQ15
model sets has further improved VoroMQA results suggesting that sig-
nificant differences in side chain packing may conceal the main chain
similarities.

The only case where VoroMQA (with or without side chain remodel-
ing) was more prone to make mistakes compared to the composite QA
scores was when faced with the CASP11 sel20 sets that were composed
to contain not better models, but models as different from each other as
possible. Such sets, however, hardly represent any real-life model selec-
tion scenario. Moreover, we found that the relatively poor performance
of VoroMQA in this type of setting could be rescued by simple combi-
nation of the VoroMQA score and the evolutionary information in the
form of HHpred template-based models. This observation suggests that
VoroMQA can be easily incorporated into composite scoring functions.

VoroMQA global scores are directly derived from atom-level scores, so
the relatively good results achieved by our method in model selection
tests are direct implications of the VoroMQA local scoring capabilities.
However, it should be emphasized that local VoroMQA scores of a struc-
tural model indicate how energetically favorable or unfavorable the local
region is, and not how much it deviates from the corresponding region in
the native structure. A native protein structure has a combination of both
energetically favorable (e.g. hydrophobic core) and unfavorable regions
(e.g. active sites, protein-protein binding sites or solvent-exposed loops).
Therefore, even a very accurate structural model will have regions with
low VoroMQA scores that will closely reproduce the pattern observed for
the native structure (see Figure 4.5). In general our tests indicate that high
local VoroMQA scores usually correspond to accurate structural regions.
In contrast, low local VoroMQA scores do not necessarily imply that the
corresponding region is unrealistic. It may just be one of the regions in a
less favorable environment. In other words, VoroMQA local scores could
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be used to classify the structure into the accurate regions and those with
the uncertain accuracy. In practice, the VoroMQA local scoring perhaps
would be most useful in qualitative analysis performed in conjunction
with the manual inspection of the protein structure.

In summary, VoroMQA computes meaningful local and global scores
and shows robust performance both in recognition of the native struc-
ture among decoys and in selecting best models. The use of interatomic
contact areas instead of distances might be one of the reasons for rela-
tively good results. Thus, VoroMQA might be a valuable addition to the
available set of model quality assessment methods, not only because of
strong performance, but also because of its orthogonality to the existing
scores.

4.5 VoroMQA application in CASP12 and CAPRI

experiments

We tested the recently developed VoroMQA method in blind mode dur-
ing the 2016 world-wide CASP12 experiment. We entered the main
CASP category, i.e. the tertiary structure prediction category, as a human
group called VoroMQA-select (group members: Kliment Olechnovič and
Česlovas Venclovas). The method behind VoroMQA-select is a simple
model selection protocol. In short, we used VoroMQA (with and with-
out side-chain rebuilding) to evaluate models available from various au-
tomated servers, and submitted the best 5 of them as our predictions.
The VoroMQA method was also used to determine if model structures
contained unstructured terminal regions that could be removed prior to
evaluation: this part was not fully automatic and required manual inter-
vention for deciding the exact cutting locations.

According to the official CASP12 results, available at www.predict

ioncenter.org/casp12/zscores_final.cgi, VoroMQA-select was
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5th (out of 128 groups) in the overall ranking if the most confident model
(model designated as first by a predictor) was considered (see Figure 4.7
A). More impressively, VoroMQA-select was second if the best-of-five
model was considered (see Figure 4.7 B), and the difference with the
1st place was relatively minor. In any case, the groups that outranked
ours used modeling methodologies that went beyond the capabilities of
modern automated structure prediction servers. There were other groups
who, like VoroMQA-select, used QA methods to select best models from
server-produced ones, but none of them outperformed VoroMQA-select
according to the official CASP12 results.

In addition, the combination of VoroMQA with PPI3D (briefly described
in section 3.5) enabled our team (“Venclovas”) to produce the best re-
sults in the 2016 CAPRI experiment, which was organized in conjunc-
tion with CASP12 and was focused on modeling quaternary struc-
tures, i.e. protein complexes. The official CAPRI ranking is avail-
able at www.predictioncenter.org/casp12/doc/presentation

s/CASP12_CAPRI_Lensink.pdf. It should be noted that our CAPRI
team had three members (Justas Dapkūnas, Kliment Olechnovič and
Česlovas Venclovas) and the major credit for its performance should go
to Dr. Dapkūnas who actually produced the models. As of the role of
VoroMQA, it was used to select models of monomers to assemble com-
plexes from and to evaluate and rank modelled complexes.
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Figure 4.7: Screenshots from www.predictioncenter.org/casp12/zsco
res_final.cgi showing the official CASP12 rankings of human tertiary
structure prediction groups. Only top 15 places (out of total 128) are shown
here. (A) Results considering the most confident model (model 1). (B) Results
considering the best-of-five model.

148



Conclusions

The ultimate result of the studies comprising this dissertation is a col-
lection of novel effective methods for the analysis and evaluation of
biomolecular structures. The presented methods construct and utilize the
Voronoi tessellation of atomic balls. The usage of the tessellation-derived
interatomic contact areas to analyze structural models is the main feature
that sets the presented methods apart from the traditional distance-based
structure analysis methods. The conclusions related to each of the three
developed methods are presented below.

• The first presented method, Voronota, is a method for comput-
ing the vertices of the Voronoi diagram of balls that is particularly
well-suited for processing three-dimensional structures of biologi-
cal macromolecules. It takes the advantage of the observation that
in macromolecular structures the overwhelming majority of triples
of neighboring atomic balls have two tangent planes. When pro-
cessing each such triple, the Voronota algorithm efficiently com-
bines the knowledge of the search space partitioned by the two tan-
gent planes with the use of hierarchical spatial indexing to find the
Voronoi vertices related to the triple. Triples without two tangent
planes are extremely rare in macromolecular structures, thus they
can be processed using simple brute-force approach without sacri-
ficing the overall processing time. Voronota also features a simple
procedure for finding the first valid triple that enabled the paral-
lelization of the algorithm in a straightforward manner. Large-scale
tests showed that Voronota is a fast and reliable tool for process-
ing both experimentally determined and computationally modeled
macromolecular structures, thus Voronota can serve as a core com-
ponent for developing other tools that exploit the Voronoi diagram
of balls.

149



• The second presented method, CAD-score (Contact Area Difference
Score), is a method for the comparison of different conformations
of macromolecules, for example, native and modeled structures.
CAD-score works by assessing physical contacts derived from the
Voronoi tessellation of atomic balls and computing contact area dif-
ferences. The method definition is simple, it does not include ar-
bitrary parameters, the defined output value range is [0, 1]. The
method can directly evaluate the accuracy of both full structures
and inter-domain or inter-subunit interfaces. The universal nature
of CAD-score allows it to be applied for any major type of biolog-
ical macromolecular structures (proteins, nucleic acids and various
complexes), the method effectively evaluates various nucleic acid-
specific subsets of atoms and interaction types (stacking, pairing).
CAD-score was tested extensively using protein structural models
from CASP experiments. The testing results showed that CAD-
score is not only a robust measure for evaluating and ranking single-
domain models, it also has advantages over traditional rigid-body
superposition-based methods: CAD-score promotes the physical re-
alism of structural models, it provides a balanced assessment of
the inter-domain arrangement accuracy in models for multi-domain
proteins, thus removing the necessity to split multi-domain proteins
into domains for model evaluation purposes. The tests performed
using data from RNA-puzzles experiments showed that CAD-score
is also effective for the reference-based evaluation of RNA structural
models on both global and local levels. Additionally, CAD-score of-
fers an alternative to the superposition-based structure clustering:
this possibility was successfully exploited when developing struc-
tural data redundancy handling for the PPI3D method of searching
and analyzing protein-protein interactions.

• The third presented method, VoroMQA (the Voronoi diagram-based
Model Quality Assessment), is a method for the referenceless esti-
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mation of protein structure quality. VoroMQA combines the idea
of knowledge-based statistical potentials with the advanced use of
atom-level solvent-accessible surface areas and interatomic contact
areas derived from the Voronoi tessellation of atomic balls. It does
not use any additional predictive features, e.g. predicted secondary
structure or solvent accessibility. VoroMQA produces local and
global quality scores that lay in (0, 1) and are largely independent
of the type or the size of an input structure. VoroMQA global scores
can be used not only for model selection, but also for deducing if
a model is similar to the native structure. VoroMQA local scores
can be used to classify the structure into the accurate regions and
those with the uncertain accuracy. The tests performed on CASP8-
CASP11 data show that VoroMQA generally performs better than
other statistical potential-based methods, it also often outperforms
methods that use additional evolutionary information. VoroMQA-
based model selection protocol was blindly tested in CASP12 struc-
ture prediction experiment and showed top results, outperforming
other methods that were also based on the idea of selecting best
models from automatic prediction server using structure quality
assessment methods. VoroMQA also played an important role in
achieving best results in protein-protein complex structure model-
ing experiment CAPRI in 2016.

Overall, the main conclusion of the presented studies is that Voronoi
tessellation-derived contact areas capture important structural features
of biological macromolecules and are useful as a foundation for new
effective methods for the analysis and assessment of three-dimensional
structures of proteins and nucleic acids.
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Abstract in Lithuanian (Santrauka)

Disertacijoje aprašyti trys nauji metodai, skirti baltymų ir nukleorūgščių
struktūroms analizuoti ir vertinti. Pristatyti metodai konstruoja ir
naudoja atomų rutulių Voronojaus diagramą. Tarpatominių kontaktų
plotų, išvedamų iš Voronojaus diagramos, panaudojimas struktūrų anal-
izei yra pagrindinis bruožas, skiriantis naujus metodus nuo tradicinių,
aprašančių sąveikas remiantis atstumais. Pirmasis metodas, Voronota,
skirtas rutulių Voronojaus diagramos viršūnėms konstruoti. Jis efek-
tyviai apdoroja makromolekulių struktūras išnaudodamas žinias apie
dažnai pasitaikančias atomų rutulių erdvinio išsidėstymo konfigūracijas.
Voronota yra efektyvus įrankis tarpatominėms sąveikoms identifikuoti.
Antrasis metodas, CAD-score, skirtas makromolekulių skirtingoms kon-
formacijoms lyginti. Jis efektyviai sprendžia struktūrinių modelių
vertinimo esant etalonui užduotį, ir išvengia tradiciniams etaloninio
vertinimo metodams būdingų problemų naudodamas kontaktų plo-
tus. CAD-score gali efektyviai analizuoti ir lyginti visų pagrindinių
biologinių makromolekulių (baltymų, nukleorūgščių ir jų kompleksų)
struktūras. Trečiasis metodas, VoroMQA, skirtas baltymų struktūrinių
modelių tikslumui nusakyti nežinant etaloninės struktūros. Jis efek-
tyviai derina empirinio statistinio potencialo idėją su tarpatominių
kontaktų plotų, gaunamų iš atomų rutulių Voronojaus diagramos,
panaudojimu. VoroMQA sistemingai sprendžia modelių kokybės ver-
tinimo užduotis geriau negu kiti statistiniais potencialais paremti meto-
dai. Svarbiausia disertacijos išvada yra tai, kad atomų Voronojaus
diagramos pagrindu sukonstruoti kontaktai ir jų plotai atspindi svar-
bias biologinių makromolekulių ypatybes ir gali būti sėkmingai nau-
dojami kaip pagrindas naujiems efektyviems baltymų ir nukleorūgščių
struktūrų analizės ir vertinimo metodams kurti.
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