VILNIUS UNIVERSITY

ANDRIUS SKARNULIS

QUADRATIC ARCH MODELS WITH LONG MEMORY AND OML
ESTIMATION

Doctoral Dissertation
Physical Sciences, Mathematics (01 P)

Vilnius, 2017



The dissertation was written in 2012-2016 at Vilnius University.

Scientific Supervisor — Prof. Dr. Habil. Donatas Surgailis (Vilnius Uni-
versity, Physical Sciences, Mathematics — 01 P).

Scientific Adviser — Prof. Dr. Habil. Remigijus Leipus (Vilnius University,
Physical Sciences, Mathematics — 01 P).



VILNIAUS UNIVERSITETAS

ANDRIUS SKARNULIS

KVADRATINIAI ILGOSIOS ATMINTIES ARCH MODELIAI IR
PARAMETRU VERTINIMAS KVAZIDIDZIAUSIO TIKETINUMO
METODU

Daktaro disertacija
Fiziniai mokslai, matematika (01 P)

Vilnius, 2017



Disertacija rengta 2012-2016 metais Vilniaus universitete.

Mokslinis vadovas — prof. habil. dr. Donatas Surgailis (Vilniaus uni-
versitetas, fiziniai mokslai, matematika — 01 P).

Mokslinis konsultantas — prof. habil. dr. Remigijus Leipus (Vilniaus
universitetas, fiziniai mokslai, matematika — 01 P).



Acknowledgements

First and foremost, I would like to express my sincere gratitude to my
scientific supervisor Prof. Donatas Surgailis for his inspiration, patient
mentoring and all the support and help during the years of my PhD stud-
ies. Without his active involvement, immense knowledge and guidance it
would be hard to imagine the results of this dissertation as they are. Also
a very special thanks goes to Prof. Liudas Giraitis for his helpful advice,
encouragement, thought-provocing discussions and the opportunity to
participate in joint work on interesting topics. It has been a great privilege
and honor to learn from some of the brightest figures in the field of math-
ematics. I would also like to thank my loving parents, brother and my

fiancée Ugné for their support and understanding through all these years.

Andrius Skarnulis
Vilnius

April 10,2017






Table of Contents

ix

1 Introduction| 1
2  Background| 7
2.1 Definitions and preliminaries| . . . .. ............ 7
2 Tongmemory] . . ........................ 14
23 Estimation . . ... ..... ... ... ... .. ... 18

13 Stationary integrated ARCH(occ) and AR(oco) processes with fi- |
L nite variancel 26
B1 Introduction| . ... .............. ... . .... 27
3.2 Stationary solutions of FIGARCH, IARCH and ARCH equa- |

I tlonsl. . . . ... 34
3.3 Stationary Integrated AR(co) processes: Origins of long |

| MEMOLY| . . . . o ot ittt e 42
8.4 Proofs of TheoremB.Tland CorollariesB.IH34 . . . . . . .. 50

D Proofs of Theorems3.2land3.3 . ... .. ... ....... 55

B.6 Simulationstudy| . ... ... ... ... 0 00000 61
B.6.1 FIGARCH and ARFIMA(0,d,0) processes| . . . . . . 61

B.6.2 TAR(p, d, q) and ARFIMA(p, d, q) processes| . ... 69

B7 Conclusion|. . . ... ... ... ... oL 79

4 Quasi-MLE for the quadratic ARCH model with long memory| 80
M1 Introduction| . ... ............... ... ..... 81
4.2 Stationary solution| . . .. ... ... oL 84
43 OMLEstimators|. . . . ... .. ... .. ... .. .. .... 86

A4 inresults) . . ... ... o o o L 89

4.5 Simulationstudy| . ... ... ... . o o000 93
4.6 Proofsl. . . ... ... 96

/7 nclusionf . . . .. ..o 111

vii



TABLE OF CONTENTS

5 A generalized nonlinear model for long memory conditional |

heteroscedasticity| 112
51 Introduction . . . ........................ 113
.2 Stationary solution| . . .. ... ... ... 0L 115
b3 TLongmemory| . . ........................ 133
B4 Teveragel . . ... ... ... .. ... ... .. 138
6 Conclusions| 142
|  Bibliography| 144

Viil



Notations and

Abbreviations

The following notations and abbreviations are used throughout the disser-

tation:
Z set of integers
N set of positive integers
R := (—00,0) set of real numbers
R* set of positive real numbers
C set of complex numbers
= "by definition"
L backshift operator (LXj;, = Xj_1)
[s] integer part of s
Var(Xx) variance of a random variable X},
ay, ~ b, if a, /b, — 1, n — o0
C generic constant
||l the norm (of function or sequence)
d long memory parameter

© set of model parameters

X



Notations and Abbreviations

)

On estimator of § € © given infinite past (using the
unobserved process)
On estimator of § € O given finite past (using the

observed process only)

Il:=[—7, 7]

i.1.d. independent identically distributed
{B(t)} standard Brownian motion

{Bay12(t)} fractional Brownian motion

Choy &y € usually random "noise" of the process
—D[0,1] weak convergence in the Skorohod space D0, 1]
5 convergence in probability

5 almost sure convergence

LN convergence in distribution

I'() Gamma function

B(-,-) Beta function

E(Xy) mean of a random variable X},
cov(-,-),7(+) covariance function of a random process
corr(+,-), p(+) correlation function of a random process
Oy derivative with respect to variable

a.e. almost everywhere

r.h.s. right-hand side

l.h.s. left-hand side

w.r.t. with respect to

.. random variable

RMSE root mean square error

QMLE quasi-maximum likelihood estimation (estimator)



Notations and Abbreviations

ARCH process Autoregressive Conditionally Heteroscedastic
process

LARCH process Linear ARCH process

GQARCH process  Generalized Quadratic ARCH process

All (in)equalities involving random variables in this dissertation are sup-

posed to hold almost surely.

X1






Chapter 1

Introduction

Nowadays the importance of data and information that derives from it is
undeniable and grows rapidly. As time passes, scientists, corporations,
government institutions and others have the possibility to deal with longer
and longer time series of data. It is important to have adequate tools that
would allow us to analyze, model and forecast data retrieved from long
time series. In view of the importance of economics and financial markets
for today’s well-being, scientists developed a variety of statistical methods
that help better understand the dynamics and behavior of various financial
and economic indicators, as well as financial markets and economics in
general. It is commonly known that the dynamics of financial markets is
dynamical in itself, i.e. the volatility changes over time. However, this
important feature — referred to as "conditional heteroscedasticity" in the
context of time series — was often dismissed or ignored in many statistical
settings and modeling. Robert F. Engle won the 2003 Sveriges Riksbank
prize in Economic Sciences in Memory of Alfred Nobel "for methods of

analyzing economic time series with time-varying volatility (ARCH)". The



1. Introduction

parametric ARCH model, introduced by Engle [24] in 1982,

q
Ty = gtO't, O't2 =w+ ijrtz_j, te Z,
j=1
where {(;,t € Z} is an i.i.d. noise with zero mean and unit variance,
was extended in 1986 by Bollerslev [10] to the well-known GARCH(p, q)

process r; = (;0; with conditional variance

q P
2 _ 2 52
o, = w+ g bjri_; + g ajo;_;.
Jj=1 J=1

The concept of autoregressive conditionally heteroscedastic models is

widepsread in theory on time series and practical applications.

Later on, parametric models were extended to include information
from infinite past, for example, in 1991 Robinson [62] introduced the

ARCH(o0) process whose conditional variance has the form
o0
j=1

In the case of the GARCH(p, ¢) model, autocovariances decay exponen-
tially fast, ARCH(oo) may have autocovariances decaying to zero at a
slower rate, however, in these traditional settings, the stationary solution
with finite variance has summable autocovariances: ), ., (k) < oo (ex-
cept, as we prove in this dissertation, in the case of ARCH(oo) with w =0
and » 7, b; = 1), or covariance short memory, which is a major drawback
of similar models in light of the well-known phenomenon of long memory
in, for example, squared financial returns. As there is a need for new

models and there are still important unresolved problems in terms of



models that gained popularity in practical applications (e.g. FIGARCH),
the topic of long memory conditionally heteroscedastic time series is im-
portant, relevant and interesting in itself. The present dissertation focuses
on specific ARCH-type models with long memory, as well as the long
memory "generating mechanism", from which long memory originates in
the ARCH setting. In terms of practical applications, questions related to
parameter estimation for long memory models are also under the scope

of this dissertation.

The main aims set and problems raised in this dissertation are as

follows.

Finding conditions for the existence of a finite variance stationary solution
with long memory of FIGARCH, ARCH(c0) and integrated AR(oo) processes
(Chapter[3). The main goal is to find the necessary and sufficient conditions
for the existence of a stationary solution of the integrated ARCH(o0)
process, in particular, the so-called FIGARCH equation, proposed by
Baillie, Bollerslev and Mikkelsen [3] in 1996 to capture the long memory
effect in volatility. There is much discussion on controversies surrounding
the FIGARCH equation. In 1996 Ding and Granger [20] introduced the
LM(d)-ARCH model, whose important particular case is the FIGARCH
equation. They argued that a stationary solution of the LM(d)-ARCH
equation with the finite fourth moment has a long memory, however, the
existence of such a solution was never shown. By finding the above-
mentioned conditions for the existence of a stationary solution, we solve
the long standing Ding and Granger conjecture. We also aim to explore
the relation between the stationary solutions of ARCH(co) (as well as
FIGARCH) and integrated AR(co) processes — the stationary solution of

the former process is constructed in terms of the solution of the latter.



1. Introduction

Questions surrounding the IAR(co) model are of independent interest.
The class of stationary IAR(co) processes with long memory is vast and,
as our simulations show, its special case of IAR(p, d, ¢) models might
be reasonably considered as a new class of long memory models which
provides more flexibility to model long memory processes changing their

autocovariances on low lags without an effect on the long-term behavior.

Exploring the parametric quasi-maximum likelihood estimation for a new
generalized quadratic ARCH (GQARCH) process (Chapter ). The Quadratic
ARCH (QARCH) process with long memory, introduced by Doukhan et al.
[22], and generalized in Chapter 5| of this dissertation (see also Grublyte
and Skarnulis [40]), extends the QARCH model of Sentana [66] and the
Linear ARCH (LARCH) model of Robinson [62] to the strictly positive
conditional variance. The GQARCH and LARCH models have similar
long memory and leverage properties and can both be used to model fin-
ancial data with these properties. The main disadvantage of the LARCH
model in comparison to the GQARCH model is the fact that volatility
in the case of LARCH may assume negative values and is not separated
from below by positive constant. The standard quasi-maximum likelihood
(QML) approach to the estimation of LARCH parameters is inconsistent.
We aim to investigate the QML estimation for the 5-parametric GQARCH
model, whose parametric form of moving average coefficients is the same
as that by Beran and Schiitzner [5] for the LARCH model. Our main goal
is to prove the consistency and asymptotic normality of the correspond-
ing estimates, including long memory parameter 0 < d < 1/2. Also, a
simulation study to evaluate the finite sample performance of the QML

estimation for GQARCH model is performed.

Investigating the existence and properties of a stationary solution of the gen-



eralized nonlinear model for long memory conditional heteroscedasticity (Chapter
B). As a parametric ARCH(g) model of Engle [24] was generalized to
GARCH(p, q) by Bollerslev [10], we aim to extend the ARCH-type model
discussed by Doukhan, Grublyté and Surgailis [22] to the model where
conditional variance satisfies an AR(1) equation o7 = Q*(a+>_72 bjre—j)+
vo?_, with a Lipschitz function Q(z).

The novelty of the results in this dissertation:

e conditions for the existence of the stationary finite variance solution

of integrated ARCH(o0) and FIGARCH processes with long memory.

e the final answer to the long standing conjecture of Ding and Granger
[20] about the existence of a stationary solution of the Long Memory
ARCH (as well as FIGARCH) model with long memory and the finite

fourth moment.

e introduction and investigation of a new class of long memory integ-
rated AR(p, d, q) processes, whose autocovariance can be modeled
easily at low lags without a significant effect on the long memory be-

havior, this being a major advantage over classical ARFIMA models.

e proof of consistency and asymptotic normality of the QML estimator
for the Generalized Quadratic ARCH process, empirical evaluation
of the finite sample performance of the QML estimation for the

GQARCH model.

e conditions for the existence of a stationary finite variance solution
of the generalized nonlinear model for long memory conditional

heteroscedasticity, its long memory and leverage properties.

Publications and conferences. The following three papers cover the main

results presented in this dissertation:

5



1. Introduction

e L. Giraitis, D. Surgailis and A. Skarnulis. Stationary integrated
ARCH(o0) and AR(oco) processes with finite variance. Submitted,
2017.

e I. Grublyte, D. Surgailis and A. Skarnulis. QMLE for quadratic
ARCH model with long memory. Journal of Time Series Analysis. 2016.
doi: 10.1111 /jtsa.12227.

e L. Grublyté and A. Skarnulis. A nonlinear model for long memory

conditional heteroscedasticity. Statistics. 51:123-140, 2017.

The main results of this dissertation were also presented at the following

conferences:

e 8th International Conference of the ERCIM WG on Computational
and Methodological Statistics/9th International Conference on Com-
putational and Financial Econometrics, University of London, 12-14
December, 2015. Title of presentation: Quasi-MLE for quadratic ARCH

model with long memory.

e NBER-NSF Time Series Conference, Vienna University of Economics
and Business, 25-26 September, 2015. Title of presentation: Integrated
AR and ARCH processes and the FIGARCH model: origins of long memory.

e 11th International Vilnius Conference on Probability Theory and
Mathematical Statistics, Vilnius University, 29 June-1 July, 2014. Title
of presentation: An autoregressive conditional duration model and the

FIGARCH equation.



Chapter 2

Background

In Section [2.1] of this chapter we provide some basic definitions and pro-
positions, which will be used throughout the dissertation. Long memory,
as an object and important thematic line of this dissertation, will be briefly
described in Section We touch upon the main principles of the para-

meter estimation for time series models in Section

2.1 Definitions and preliminaries

Since the main interest of this dissertation lies in conditionally hetero-
scedastic models, first we recall that a time series { X}, k € Z} is called

conditionally homoscedastic if its conditional variance
of = Var (Xp | Xpo1,Xp0,..)=C, k€EZ,

is constant, while in terms of conditionally heteroscedastic time series, its
conditional variance is a random process (in general). In this disserta-

tion, the term "stationary process" is mostly used by means of covariance

7



2. Background

stationarity.

Definition 2.1. Random process { Xy, k € Z} is called covariance stationary if

EX) = Cand EX? < oo are constant for all k € 7Z, and the covariance function
cov(Xp, Xptj) = cov(Xo, X;),

is constant in k, for all k, j € Z.

As it will be stated in Section [2.2 of this chapter, the main instruments
we use (in this dissertation) to characterize the long memory property
of time series are the covariance and spectral density functions. Propos-
ition 2.1| below describes the relation between the covariance function,
spectral distribution function and spectral density. Suppose that function

F : [-m, ] = |0,00) is right-continuous, nondecreasing, bounded and

F(—m)=0.

Proposition 2.1. Function v(k),k € Z, is a covariance function of some sta-

tionary process if and only if

o) = [ e

—T

with some (unique) function F', which is called a spectral distribution function.

IfF(s) = [ f(v)dv, then [ is called a spectral density function.

The concept of a transfer function is used to prove important results

of this dissertation (Chapter 3).

Definition 2.2. Suppose that process { Xy, k € Z} can be written as

X = Zajzk_j, keZ,
7=0

8



2.1. Definitions and preliminaries

where { Zy., k € Z} is a stationary process. Then the Fourier transform A(x) :=

S oo € “ag, x € 11, is called the transfer function.

Being the main object of this dissertation, the ARCH(c0) process is

defined as follows.

Definition 2.3. A nonnegative random process {1y, k € Z} is said to satisfy
an ARCH(oo) equation if there exists a sequence of nonnegative i.i.d. random
variables {ey, k € Z} with unit mean Eey = 1, a nonnegative number w > 0

and a deterministic sequence b; > 0, j = 1,2, ..., such that

e = &% (w + Zbﬂk]) , kel 2.1)
j=1

In this dissertation, we assume that ARCH-type processes {7x,k € Z}
(or 7y, x, depending on notation in a particular context) are causal, i.e.
for any k, 7, can be represented as a measurable function f(ey, ex—1,. .. )
of the present and past values of innovations ¢5,s < k. For example,
if stationarity and causality are not required, equation can have

infinitely many solutions (see, e.g., Leipus and Kazakevicius [51]).

Definition 2.4. Let {¢y, k € Z} be a process of uncorrelated random variables
with zero mean and variance o2. Then a random process { Xy, k € Z} is said to be
causal with respect to {ex, k € Z} if X, = f(ek, k-1, ...) for every k € Z, where

f is a measurable function such that Xy, is a properly defined random variable.

An important statistical concept, which will be assigned to many pro-
cesses considered in this dissertation, is ergodicity. To put in a simple
manner, this feature allows estimating the characteristics of a random pro-

cess, having only one sufficiently long realization of the process, without

9



2. Background

the need of using multiple independent samples. One often refers to

ergodicity for the mean, in which case:

1 n
—g X — E(Xo) =p, n— oo.
n

k=1

A random process { Xy, k € Z} is said to be ergodic for the second moment

if

1 . .
N (X — 1) (X — ) B 4(j), forall j,

n —_
|

where v(j) = cov(Xy, Xj—,) (see, e.g., Hamilton [43]). One can define an
ergodic process in a wider sense (see, e.g., Andersen and Moore [2]): a
random process { X, k € Z} is ergodic if for any suitable function f(-) the

following limit exists almost surely:

1
E = li Xk)-
F(Xo)] = Jim o > F(X)
k=—N
Now we provide a more formal definition of a stationary ergodic time

series (see Lindner [54]).

Definition 2.5. Let { X}, k € Z} be a stationary time series of random variables
Xy, in R. Then { Xy, k € Z} can be seen as a random element in RZ, equipped
with its Borel-o-algebra B(R%). Let the backshift operator ® : RZ — RZ be given
by ®({z,i € Z}) = {zi_1,1 € Z}. Then the time series { Xy, k € Z} is called
ergodic if, for A € B(RZ), ®(A) = A implies P({ X,k € Z} € A) € {0,1}.

The following proposition about the ergodicity of a random process is a
simplified version of Theorem 3.5.8 by Stout [67] and states that a meas-

urable function of an ergodic process forms again an ergodic process.

10



2.1. Definitions and preliminaries

Proposition 2.2. Suppose { Xy, k € Z} is an ergodic sequence (e.g. i.i.d. ran-
dom variables) and f : R*® — R is a measurable function. Then the sequence
{Yy, k € Z}, where

Vi = f( Xk Xp—1, ),

is an ergodic process.

Since convergence in mean-square is almost without exception used in
the definitions of stationary solutions of many models in this dissertation,

we give a short definition for this mode of convergence.

Definition 2.6. We say that the sequence { Xy, k € Z} of square integrable ran-
dom variables converges in mean-square if there exists a square integrable random
variable X such that

lim E [(X;, — X)?] =0.

k—o0

In this dissertation, phrases "converges in L*" and "converges in mean-
square" are used interchangeably. Similarly to Definition one could

define the convergence in L”.

As discussed in Chapter 3| of this dissertation, the stationary solution
of the ARCH(00) process can be constructed in terms of the discrete time
infinite Volterra series. For example, we show that the stationary solution

of ARCH(o0) process can be written in the form of causal Volterra series:

+ o <Z > GbsiPsi—sy s s o ..<8m> ke

m=1 —co<sm,<--<s1<k

with standardized i.i.d. innovations {(x,k € Z}. In order to correctly

define the convergence of the discrete time infinite Volterra series (e.g.

11



2. Background

having the form (2.2))), we first remind a few facts and definitions related
to the summability in Banach spaces (see, e.g., Hunter and Nachtergaele
[45]). First, recall that a normed linear space is a metric space with respect
to metric d derived from its norm, where d(z,y) = ||z — y||. A Banach
space is a normed linear space that is a complete metric space with respect

to the metric derived from its norm.

Definition 2.7. Let {x;,i € I} be an indexed set in a Banach space E, where I
is a countable index set. For each finite subset J of I, we define the partial sum

Sjb]/

SJ = sz

ieJ
We say that x € E is a sum of an indexed set {x;,i € 1} if for every e > 0 there
is a finite subset J of I such that ||S; — x|| < e for all finite subsets J of I that

contain J°¢.

Definition 2.8. If v € E is the sum of an indexed set {x;,i € I} (in the sense
of Definition [2.7), then we write x = 3, x;, and the set {x;,i € I} is called

summable.

The fact that the set in a Banach space is summable ensures many useful

features, for example, the possibility to change the summation order, etc.

Recall that the set U of vectors in a Hilbert space H is orthonormal if
it is orthogonal, i.e. for every z,y € U we have (z,y) = 0, and ||z| = 1
for all z € U. Let I be the same countable index set as in Definitions
and [2.8| above, {e;,i € I} — some orthonormal set in a Hilbert space H
(in particular, in an L? space), and {c;,i € I} the set of real numbers. It
is known that the square summability of ¢;, i.e. Y, ¢ < oo, guarantees

that the set {c;e;,i € I} is summable in space H (in particular, in space L?).

12



2.1. Definitions and preliminaries

The last fact is especially useful when thinking about the convergence
(in L?) of the discrete time infinite Volterra series (e.g. having the form
[2.2)). Indeed, since {(, k € Z} in is the sequence of independent
and identically distributed standardized random variables, then for each
k € Ztheset {(s, -~ C,,,m>158,<..<s <ke&Z}isorthonormal in
L?. In this case, the convergence of Volterra series mainly depends on
its coefficients — if they are square summable (which is ensured by our
assumptions, see Chapter [3), the Volterra series converges in L*. We also
note that if variables X, are nonnegative, then from the summability of

> ez Xy in the L? space follows the almost sure convergence of this series.

Next we define two classes of processes — bilinear and linear ARCH
— which will act as important models in the three main chapters of this
dissertation, especially Chapter {3, for the construction of a stationary
solution for the JARCH(c0) process. ARCH-type bilinear models where

considered by, for example, Giraitis and Surgailis [30].

Definition 2.9. We say that the discrete stationary process { Xy, k € Z} satisfies

the bilinear equation (or is a bilinear process) if
X, = G (a +) ankj> +b+ > biXej, (2.3)
j=1 j=1

where {(;, k € Z} is a sequence of i.i.d. random variables with E(;, = 0 and
Var(¢x) = 1, a,a;j,b,b;,5 > 1, are real coefficients. In the case of b = b; = 0,
is the Linear ARCH (LARCH) model introduced by Robinson [62]].

We define the Brownian motion and the fractional Brownian motion,

following Giraitis et al. [36].

13



2. Background

Definition 2.10. A Brownian motion is a Gaussian process {B(t),t € R*}
with B(0) = 0,EB(t) = 0 and a covariance function yp(s,t) = E(B;B;) =

min(s, t).

Definition 2.11. Let 0 < H < 1 be any number. Then a Gaussian process
{Bu(t),t € Rt} with By(0) = 0,EBg(t) = 0 and a covariance function
Yu(s,t) =1 {|s|2H T s g t|2H} is called a fractional Brownian motion

with a Hurst parameter 0 < H < 1.

2.2 Long memory

The goal of this section is to provide the intuition behind long memory as an
object of research on time series. From first glance, one might say that the
concept of long memory in papers considering long memory stochastic
processes mainly refers to slowly decaying autocovariances of the process,
i.e. covariance between distant members of the process disappears slowly
with an increasing lag between them. Although the so-called second-order
properties of the process indeed prevailed in definitions and description of
long memory, in general, however, there is a wide diversity of definitions

of long memory as such.

An often-used starting point in enclosing the rise of the phenomenon
and concept of long memory in scientific literature are the observations
by Hurst ([46], [47]). As a hydrologist, he investigated the characteristics
of water flow in the river Nile, which is known, among others, for its
specific long-term behavior regarding long periods of dryness and yearly
returning floods. Hurst considered the possibility to regularize the flow

of the Nile. Without elaborating further, we just mention that data was

14



2.2. Long memory

analyzed using the so-called rescaled adjusted range or the R/S-statistic

of the form: ,
max X; . — min X,
0<i<k '~  0<i<k

(k_l S (X — Xt,k)Q)

1/2°

where X, = Xy — X — %(prk — X}). The main message is as follows. For
the stationary ergodic sequence { X1, X5, ...}, the statistic /.S grows as the
square root of the sample size, that is, n'/2. However, in terms of the data
on the Nile, considered by Hurst, the R/S empirically grew as n™. This
finding is referred to as the Hurst effect or the Hurst phenomenon. Yet the
question is what stochastic process could be used to explain and model
the Hurst effect. For example, the attempt to relax the condition of finite
variance was unsuccessful (Moran [59]). Mandelbrot with co-authors
([55], [56]), using the Fractional Gaussian Noise, succeeded in modeling
the Hurst effect, the main reason behind that being the introduction of
long memory in the setting. It is also interesting that from here comes the
name of the Hurst parameter H in the fractional Brownian motion (see
Definition 2.T7).

Popularity of the second-order properties (asymptotic behavior of
covariances, spectral density, etc.) in definitions of long memory was
underpinned by historical and practical reasons (mainly conceptual sim-
plicity and rather easy estimation from the data). One firstly thinks about
slow decay or nonsummability of autocovariances when exploring the
long memory property in terms of second-order properties of processes.
However, this case is mainly restricted to covariance stationary stochastic

processes.

Next we provide several definitions of the long memory property.

Similar ones can be found in Giraitis et al. [36], Beran [4], Cox [17], Giraitis

15



2. Background

and Surgailis [30], Giraitis et al. [35].

Definition 2.12. A covariance stationary process { Xy, k € Z} with an autocov-
ariance function (k) = cov(Xo, X}) is said to have:

Covariance long memory if

> k)] = oo

keZ

Covariance short memory if

™ k)] < coand 3" A(k) > 0;

keZ keZ

Negative memory if

> (k)| < ccand Y y(k) =0.

kez kEZ

To take one step further, the above definition can be specified in terms of
the asymptotic behavior or the decay rate of the covariance function. For

this we need a definition of a slowly varying function.

Definition 2.13. A function L : [0,00) — R is said to be slowly varying at
infinity, if L is positive on [a, c0) (and positive or negative on [0, a)), for some
a>0,and

!
mig;<L(x

, Vs >0.

~—~—

Definition 2.14. A function f(x),x > 0, is said to be a regularly varying

function with index § € R, if f is positive on [a, ), for some a > 0, and Vs > 0

_ f(sz) 6
S flo)

16
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2.2. Long memory

A regularly varying function f can be written in the form of f(r) = 2° L(x)
for some slowly varying function L. For the majority of models considered
in this dissertation, covariance and spectral density functions can be
expressed as regularly varying functions of the form (k) = k|~ LK)

and f(s) = |s| 2" L(1/]s]),0 < d < 1/2.

Definition 2.15. A stationary process { Xy, k € Z} has long memory, if its

covariance function (k) = cov(Xo, Xy) decays hyperbolically to zero:
(k) = K[ L(KD), R > 1, (24)
with a memory parameter 0 < d < 1/2 and a slowly varying function L.

Condition (2.4) is often specified in a simpler form (k) ~ ¢, I Hy-
perbolically decaying autocovariances are nonsummable (see, e.g., Giraitis

et al. [36]).

The above definitions are often treated as a long memory characteriza-
tion in the time domain. Memory definitions in the frequency domain are

based on features of spectral density.

Definition 2.16. Suppose that a stationary process { Xy, k € Z} has a spectral

density function f, which is bounded on [e, 7] for any € > 0, and satisfies
fl@) = e[ LA/ Jol), v eTL, (25)

for some slowly varying function L. The process { X, k € Z} is said to have
negative memory, or short memory, or long memory, if accordingly —1/2 < d <

0,0rd=0,0r0<d<1/2

17



2. Background

Condition is often simplified to f(z) ~ ¢ 1z 7",z — 0, with some
constant ¢y > 0.

Papers that investigate long memory processes, often alongside con-
sideration of the decay rate and summability of autocovariances, also
investigate the convergence of the partial sums process. This is yet an-

other way to define long memory.

Definition 2.17. We say that a strictly stationary process { Xy, k € Z} has

distributional long memory if its normalized partial sums process

[ns]
AN (X, — B,) s €10,1]
k=1
converges, in the sense of weak convergence of the finite dimensional distributions,

as n — oo, to a random process {Z(s)} ¢y 1) with dependent increments. Here

s€|

A, — 0o,n — oo, and B,, are some constants .

There are many other types of definitions, however, we will not con-
sider them any further. In this dissertation, by long memory we mean the

covariance long memory, unless stated otherwise.

2.3 Estimation

The field of statistical procedures and methods to estimate parameters of
time series models can be a brigde between theory and practical applica-
tion. In this section, we briefly discuss and review the main methods used
to estimate parameters of conditionally heteroscedastic time series models,
not necessarily those with long memory. A variety of different ways was

introduced to estimate the time series models. The first two concepts that

18



2.3. Estimation

should be mentioned with reference to this topic are the Least Squares (LS)
method and the Quasi-maximum likelihood (QML) method. The former is
often called the simplest method to estimate parametric ARCH(q) models,
while the latter is particularly relevant for GARCH(p, ¢). For example,
for the strictly stationary GARCH process, the QML estimators are con-
sistent and asymptotically normal with no moment assumption on the
observed process, using some mild regularity conditions instead. This is
particularly important from a practical point of view as for many financial
time series the requirement of the finite fourth or even higher moments is
questionable. To provide the main idea behind LS and QML estimation,
we use the examples of parametric ARCH and GARCH models. Then
we will move on to discussing the case of infinite order models such as
ARCH(00).

The basic idea behind the parameter estimation of the time series
model is as follows. Having a finite data set of size n, {ry,...,m,}, we
assume that these observations come from a random process of a specific
form which often (but not always) depends on a finite number of para-
meters. In this section, we denote the true (unknown) values of these
parameters with 6y = (0o, ...,6pp),p < co. The main goal is to get the
"best" estimates gn of 0y from the data that we have. Here, the subscript n
indicates that we calculate the estimator using the available data sample
of size n. In most cases, different methods can be applied. Independently
of what we choose, two concepts (features), which are inevitably found in
the statistical inference and estimation literature, are a) consistency and
b) asymptotic normality of estimators. The estimator is called consist-
ent if 6, — f, in probability as n — co. Strong consistency means that

the above-mentioned convergence holds almost surely. Most often by
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2. Background

asymptotic normality we mean that the difference between the consist-
ent estimator 6, and true parameters 6, converges in distribution to the

normal distribution:
V0, — 05) % N(0,V).

When 6, € R?, then V is a p X p matrix.

The parametric ARCH(g) model is often used to explain how the Least
Squares (LS) method works (see, e.g., Francq and Zakoian [27], Francq
and Zakoian [28]). One of the reasons behind this is that, for ARCH(g),
the LS estimation provides estimators in the explicit form. Let’s consider

the process

q
e = orlr, OF =wo -+ Z aojri_ﬁ keZ, (2.6)

j=1
with wy > 0, ap; > 0,7 =1,...,q, and {(s, k € Z} an i.i.d. sequence with
zero mean and unit variance. The vector of true parameters is 0y =
(wo, ag1, .-y agg)” (T denotes the transposed vector). The LS estimation
procedure for ARCH(q) is performed rewriting as an AR(gq) equation

2.
for ri:

q
7“,% = wp + Z aojr,%_j + ug,
j=1
with u, = 72 — 07 = (¢} — 1)oi. As usual in terms of estimation, we
try to estimate the model parameters from a finite sample of observed
values (ry, ..., r,), with the initial set of observations being (ry, ...,r1—,), all

of which can be, for example, zero-valued. The LS estimator is given by

~

On = (0,01, ...,4,) = (XTX) XY,
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2.3. Estimation

where
Y =X60)+ U,
with
zZr r2 U,
XT = : . Y=|:1|, U= ,
ZOT T% Uy

T _ 2 2
and vectors Z; ;= (1,15 4, ..., 77_)-

If {ry, k € Z} is a nonanticipative strictly stationary solution of (2.6),

wo > 0 and Er? < oo, then the LS estimator of 02 = Var(uy) is
| 2
~2 _ ~
6 = T ; (rt & — ; )

Strong consistency, that is,
0, % 0y, 2% 02,

can be achieved under Er} < oo and P(¢? = 1) # 1, while for asymptotic
normality the finiteness of the eight moment is needed, Er{ < oo (see, e.g.,

Bose and Mukherjee [11]]), then
(0, — 0) 5 N(0, (B¢ — 1)A'BA™Y),

where A = E(Z,Z]') and B = E(0,,,Z,Z] ). Some "improvements" of the
ordinary LS method could be mentioned. For example, in the case of
linear regression, when model errors are heteroscedastic, the so-called

Feasible Generalized Least Squares (or Quasi-generalized Least Squares)
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estimation is asymptotically more accurate (see, e.g., Hamilton [43]). In
the latter case, the main difference appears to be the definition of the estim-
ator which is 6% = (XTQX) ' XTQY, with Q = diag(o7%(61), ..., 0, 4(61)).
Another important aspect is that ordinary LS estimation can produce
negative estimates of volatility — in order to avoid this problem the Con-

strained Least Squares estimation is used.

Next we present some basic aspects related to Quasi-maximum like-
lihood estimation (QMLE), which is without a doubt one of the most
popular choices for parameter estimation of time series models such as
GARCH, ARCH and others, including those with a long memory property.
The name of this method entails "quasi", because the likelihood function
we are maximizing to find the estimates of model parameters is written
under the assumption of normally distributed innovations of the pro-
cess. As it turns out, such an assumption is not critical for the asymptotic
behavior of the estimator.

Let us now turn to the GARCH process to illustrate the main idea of
QMLE. A number of papers consider the QMLE for GARCH processes,
see, e.g., Hall and Yao [42], Francq and Zakoian [26], Berkes et al. [8]],
Berkes and Horvath [6], Berkes and Horvath [7]. The process we consider

is a strictly stationary solution of equations

q P
e = orlr, OF =wo -+ Z aojrz_j + Zbojaz_j, ke Z. (2.7)
j=1 j=1

For estimation purposes, we assume that orders p and ¢ are known. The
true (unknown) parameters of this model are
)T

T
0o = (00,1, ---,90,p+q+1) = (wo, aot, <y Qg5 bo1; -+, bop
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2.3. Estimation

We want to estimate parameter 6, from the available realization of (2.7):

T1, ..., n, choosing the initial values of ry, ...,71_¢, 3, ..., 3;_,. One of the
possible choices of initial values is, for example, 7§ = ... = r{_, = 6§ =

... = 01_, = r{. Since we start the process from chosen initial values, which
affects the stationarity, further we work with {5,52 } The QML estimator of
@l is defined as

0, = argmaxL,(0),
0co

where © C (0,00) x [0, 00)P*? is the parameter space, the quasi-likelihood

function L,,(0) is

n

L.0) =] \/1_eXp <_%> |

~2
1 2mo;

The maximization problem can be equivalently rewritten to

~ 1 (712

6, = arg min— (N—t + log 62) :
! bco T ; o7 '

If the set of specific conditions for model coefficients a;, b;, and innovations

(k. (e.g., B¢ < 00) is satisfied, the estimator is proved to be consistent and

asymptotically normal. We intentionally do not go into detail in terms of

these conditions and turn to the case of models that depend on infinite

past.
Robinson and Zaffaroni [63] investigated the QMLE of ARCH(c0)

models

k=0l op =wot ¥ tyri, kEZ, (2.8)

j=1
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with
[e.9]
wo >0, 1o >0, j=1, Z¢0j<00-
=

It is the parametric version of ARCH(c0) as functions ¢;(\) are assumed
to be known and depend on vector A € R", r < oo, such that for the "true"

value of A = )\,

VYi(Xo) = o, J=>1.

Note that they assume the strictly positive intercept of the model, i.e.
wo > 0 (see Section 3 of this dissertation for more details on the ARCH(c0)
process). In the context of infinite order ARCH-type models, it is common

to define two likelihood functions: one which depends on infinite past

n
t=1

1 — r2
L,(0)=— ( ! +log029), 1<t <n,
and another (more realistic) which depends on finite past
n 2

~ 1
AUBESS (g— n log53<9>) Cl<t<n,
t=1

where

Accordingly, two estimators are considered:

o~ ~

6, = argminlL,(0), 0, = arg minzn(ﬁ). (2.9)
0co 0co

Under the set of specific conditions, Robinson and Zaffaroni [63] prove
the strong consistency and asymptotic normality of quasi-maximum like-

lihood estimators in (2.9).
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2.3. Estimation

It is worth mentioning a few words about the QML estimation for
the class of linear ARCH (LARCH) models. In terms of the infinite order,

these have a form

Ty = 0kCk, Ok =wo+ Z bjri—j, (2.10)
j=1

where {(j, k € Z} is a sequence of i.i.d. noise with zero mean and unit
variance. The LARCH model can capture leverage effect and allow long
memory modeling. However, volatility in may assume negative
and zero values, which not only limits the intuitive interpretation of o, as
volatility, but also complicates the standard QML estimation of paramet-
ers in , because kaz and its derivatives may become arbitrarily small.
As a result, the QML estimator for the LARCH model is, in general, incon-
sistent (for the finite order LARCH(g), see Francq and Zakoian [29]). As
discussed in Section {@{ of this dissertation, modified QMLE was proposed
for the LARCH model by Beran and Schiitzner [5].

There are many other types of estimation methods which are beyond
the scope of this dissertation. For example, some estimators are related
to the spectral domain of the process — a perfect example is the Whittle
estimation, often used in practice, which also covers long memory pro-
cesses and was first introduced by Whittle [70]. Recall that in QMLE we
deal with an objective function which includes the available observed
values of the process and the volatility of some specific form. Whittle
estimation optimizes the objective function, which is written in terms of

spectral density and periodogram.

We are mainly interested in the QML estimation for the wide class of

quadratic ARCH models with long memorys; this is discussed in Section
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Chapter 3

Stationary integrated
ARCH(c0) and AR(c0)
processes with finite

variance

In this chapter, we prove the long standing conjecture of Ding and Granger
(1996, [20]) about the existence of the stationary Long Memory ARCH
model with the finite fourth moment. This result follows from the neces-
sary and sufficient conditions for the existence of covariance stationary
integrated AR(oc), ARCH(co) and FIGARCH models obtained in the
present dissertation. We also prove that such processes always have long

memory.

26
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3.1 Introduction

As stated in Definition 2.3 a nonnegative random process {7} = {7, k €
Z} is said to satisfy an ARCH(oco0) equation if there exists a sequence of
nonnegative i.i.d. random variables {¢;, k € Z} with unit mean E¢; = 1,
a nonnegative number w > 0 and a deterministic sequence b; > 0, j =

1,2, ..., such that

T = €k (w + ijTk]) ; k € 7. (3.1)
j=1

Unless stated otherwise, we assume that the process in is causal, that
is, for any k, 71, can be represented as a measurable function f(ey, 41, ...)
of the present and past values ¢,,s < k (see also Definition 2.4). Caus-
ality implies that a stationary process {7,k € Z} is ergodic, and ¢, is

independent of 7,, s < k. Therefore (and because Ec; = 1),

o0
2 2
Elrg|ts,s < k] =0}, 0 =w+ g biTh—j.
i=1
A typical example of 7, and ¢, in financial econometrics is squared returns
and squared innovations, viz., 7, = r, &; = (?, where the return process

{ri, k € Z} satisfies the ARCH(o0) equations
e = GO,  0F =w + ijr,%_j ke Z, (3.2)
j=1

{Ck, k € Z} is a standardized i.i.d. (0, 1)-noise and oy, is volatility. In this
context, o7 is a conditional variance of returns ry. The class of ARCH(cc)

processes (3.1) includes the parametric stationary ARCH and GARCH

27



3. Stationary integrated ARCH(oo) and AR(oco) processes with finite variance

models of Engle [24] and Bollerslev [10], where r;, = (;04, and conditional

variance o7 has the form

q
or =w+ E ozjr,%_j, keZ,
J=1

in case of ARCH(q) (taking o; = b;,7 =1, ...,¢,and b; = 0,5 > ¢), and
q p
of =ap+ Z ozjri_j + Zﬁjai_j, ke Z, (3.3)
j=1 j=1

in case of GARCH(p, q), where og > 0, o; > 0, 3; > 0,7 = 1,2, .... Equation
(3.3) can be written as

o*,% = oo+ a(L)r,% + B(L)a,%,

where o(L) = oL + --- + oyL? and (L) = BiL + --- + B,LP. Now the

expression
op = (1= B(1) " ao + (1= B(L) " a(L)r (34)

corresponds to ARCH(co) equation (3.1) with w = (1 — (1)) 'ay, and
coefficients b; are defined by »~° bjz) = a(z)/(1 — B(z)). Kazakevitius
and Leipus [51] proved that each strictly stationary solution of equations

rr = (o, with a,% as in (|3.4)), satisfies the associated ARCH(oc0) equations.

The ARCH(00) process was introduced by Robinson [62] in the con-
text of hypothesis testing, and was considered as a class of parametric
alternatives in testing serial correlation of disturbances in the static linear
regression. Later, the ARCH(c0) process was studied by Kokoszka and
Leipus [49] (change-point estimation in (3.2)), Giraitis et al. [31] (existence
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of stationary solution, its representation as a Volterra series, decay of
covariance function, etc.), Giraitis and Surgailis [30] (bilinear equations:
stationary solution, its covariance structure and long-memory properties;
particular case of bilinear equations is the ARCH(oo) process), Leipus
and Kazakevicius [51] (conditions for the existence of strictly stationary
solution without moment conditions were obtained, as a generalization of
results by Nelson [60] and Bougerol and Picard [12] for parametric ARCH
and GARCH models), etc.

In contrast to the standard stationary GARCH(p, q) process whose

autocorrelations decay exponentially:

corr ro,rk <Z a; + Zﬂg) )

with coefficients a;, 5, >7_y a; + > 85 < 1, from and a constant
C'independent of lag k, the ARCH(oo) process may have autocovariances
cov (7o, ;) decaying to zero at a slower rate £, with v > 1 arbitrarily close
to 1. However, despite the possibility of a slow decay of autocovariances,
a finite variance stationary solution to the ARCH equations in with
w > 0, if exists, has short memory or an absolutely summable autocovariance
function, see Giraitis and Surgailis [30]. The existence of such a solution ne-
cessarily implies 7 | b; < 1by Em, = w + (3072, bj) Emp > (3272, b)) By,
excluding stationary Integrated ARCH (IARCH) models with > % | b; = 1.
Because of the well-known phenomenon of long memory of squared re-
turns, the latter finding may be considered a limitation to ARCH modeling.
Subsequently, it initiated and justified the study of other ARCH-type mod-
els, for which the long memory property can be rigorously established

(see, e.g., Giraitis, Robinson and Surgailis [32], where they considered the
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3. Stationary integrated ARCH(oo) and AR(oco) processes with finite variance

Linear ARCH (LARCH) model with oy, = w + Y77, bjr;_j, and Giraitis,
Leipus and Surgailis [35]).

A particular case of the IARCH model is the well-known FIGARCH
(Fractionally Integrated GARCH) equation

T — sk{w—l- (1 — (1 — L)d)Tk;} = &k (w-}-ijTkj) i k € Z, (35)

where 0 < d < 1/2 is the fractional differencing parameter, L is the
backshift operator and coefficients b; are determined by the generating
function B(z) = 322, b2/ =1 — (1 — 2)%. Here, b; > 0,52, b; = 1, and
b; = O(j717%) decay hyperbolically with j — co. The FIGARCH equation
was introduced by Baillie, Bollerslev, and Mikkelsen [3] to capture the
long memory effect in volatility. Independently of the last paper, Ding
and Granger [20] introduced the LM(d)-ARCH model

rl% = Clgal?n Ul?: = M(l o 0) + 6 (1 o (1 o L)d) 7";%, ke Za (36)

where 6 € [0, 1], 1 > 0, and 7, (i, are related to 74, ¢ as in (3.2). A similar
long memory model for absolute returns was proposed by Granger and
Ding [39]. Ding and Granger [20] derived via contemporaneous
aggregation of a large number of GARCH(1,1) processes with random
Beta distributed coefficients. Ding and Granger [20] note that in the
integrated case 6 = 1, coincides with the special case w = 0 of the
FIGARCH model in (3.5). Ding and Granger [20], p. 206-207, argue that a
stationary solution of with the finite fourth moment has long memory,
in the sense that

corr(rg, 1) ~

A —d), iz (3.7)
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The results in Baillie et al. [3] imply a similar long memory behavior of
the FIGARCH model. However, the existence of the stationary solution
of the LM(d)-ARCH equation in with the finite fourth moment was
not rigorously established and the validity of remained open. See
Davidson [18], Giraitis et al. [31], Kazakevi¢ius and Leipus [16], Mikosch
and Stdrica ([57], [58]) for a discussion of controversies surrounding
FIGARCH and LM(d)-ARCH models. For example, Davidson [18]], using
the findings by Giraitis et al. [31], Kazakevic¢ius and Leipus [15], suggests
that, in general, the FIGARCH process should not be treated as a "long
memory" process but instead as a "hyperbolic memory" process. Mikosch
and Stdrica [57] emphasized that although the FIGARCH model is often
mentioned in literature on long memory econometrics, an important
drawback is that rigorous proof of the existence of a stationary version of

the FIGARCH process is not available.

In the present dissertation we solve the long standing conjecture (3.7)
of Ding and Granger [20]. We prove that the necessary and sufficient
condition for the existence of a covariance stationary solution of the FIG-

ARCH equation in (3.5) withw = 0is

(1 — 2d)
T(1—2d) —T2(1—d)’

Eel < (3.8)

and, therefore, conditions (3.8) and 6 = 1 are necessary and sufficient for

B.7)| See Corollary 3.2 below.

The above-mentioned result is a particular case of a more general

! Condition for the existence of a stationary solution of the FIGARCH equation in
(3.5) with w = 0 was independently obtained in the unpublished paper by Koulikov [50]
who used a similar approach for constructing the solution. However, proof in Koulikov
([50], Theorem 2) is based on erroneous assumption (9), which contradicts the IARCH
condition 377 | b; = 1.
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3. Stationary integrated ARCH(oo) and AR(oco) processes with finite variance

result concerning the integrated ARCH(c0), or JARCH(00), equation with

zero intercept:

o0 o0
ek (Z bkaj) . keZ, with > b=1 (3.9)

j=1 j=1
Note that for >, b; < 1, equation only has a trivial stationary
solution 75, = 0 with finite mean, which follows from E7, = (Z;’il bj)ETy,
by taking expectations. Our main result is Theorem stating that, in
addition to the zero solution, a nontrivial covariance stationary solution

of the IARCH equation in with b; > 0 exists if and only if
lol* = Zgj (1+0%)/0*, (3.10)

where 02 = Var(gy) and coefficients g; are determined from the power

expansion
Y g7 =(1-B(L)"', where B(L)=>» bl (3.11)
j=0 J=1

Condition (3.10) rules out integrated GARCH(p, q) as well as any integ-
rated ARCH(oco) models with sufficiently fast decaying lags which are
known to admit a stationary solution with infinite variance, see Kaza-
kevic¢ius and Leipus [16], Douc et al. [21], Robinson and Zaffaroni [63]. It
turns out that covariance stationary solutions of always have long
memory, in the sense that the covariance function is nonsummable and

the spectral density is infinite at the origin, see Corollary

The main idea of constructing a stationary L?-solution (i.e. whose

second moment is finite and series in (3.9) converges in mean square) 7,
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of the IARCH equation (3.9) with mean y = E7;, > 0 is the reduction of
equation (3.9) to the linear Integrated AR (IAR) equation for the centered

process Y, = 1, —

Vi = > bVijt+am ke (3.12)

J=1

with a conditionally heteroskedastic martingale difference noise {z;, k €

Z} defined as

2 = G (,ua + O'Z ijkJ) : (3.13)
j=1
where ¢, = (g, — 1)/0, 0? = Var(gy) < oo. In turn, based on and
(3.13), the process {zx, k € Z} can be defined as a stationary solution of the
LARCH (Linear ARCH) equation with standardized zero mean i.i.d.
innovations {(i, k € Z} discussed in Giraitis et al. ([32], [33]), given by
convergent Volterra series in (3.19). Then, a causal L?-solution {Y, k € Z}
can be obtained by inverting the linear IAR equation in (3.12).

The last question is tackled in Section 3.3, where we establish sufficient

and necessary conditions for the existence of a covariance stationary

solution of the linear Integrated AR(co) equation generalizing (3.12):
o= biwe =&,  keEL (3.14)
j=1

where b; >0, 3777 b; = 1, and {{, k € Z} is a stationary short memory
process, in particular, white noise. Theorem states that covariance
stationary solutions of (3.14) always have long memory, which originates

from integration property 7, b; = 1 with an infinite number of b; > 0.
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3. Stationary integrated ARCH(oo) and AR(oco) processes with finite variance

This result is in deep contrast with the well-known fact that integrated
AR(p),p < oo, processes are nonstationary and need to be differenced to

achieve stationarity.

Section [3.2| discusses stationary L?-solutions of ARCH(c0) and
bilinear equations (3.12)-(3.13) and their mutual relationship. It contains
Theorem 3.1 together with several corollaries. Section 3.3 discusses solv-
ability and second-order properties of IAR(cc) equation (3.14). All proofs
are relegated to Sections[3.4and

3.2 Stationary solutions of FIGARCH, IARCH
and ARCH equations

In this section, we discuss the existence of a stationary L2-solution of
ARCH(o0) equation in the integrated case Y~ b; = 1. We first
explain the idea of solving ARCH(c0) equation with a nonnegative
ii.d. noise {e;, k € Z} by reducing it to a bilinear equation with a zero
mean i.i.d. noise {(x, k € Z} used by Giraitis and Surgailis [30]. Recall the
definition of the ARCH(oc0) model in (8.1). Specifically, for a stationary
ARCH(o0) process 75, in with mean E7, = pu, we set

=7 —p.

Let 0 = Z;’;l bj. We focus on two cases: a) w > 0and 0 < 6 < 1, and
b) w = 0 and # = 1. As noted above, the case w = 0 and 6 < 1 is not of
particular interest and is excluded from the subsequent discussion since it
leads to a unique trivial solution 7, = 0. By taking expectations, equation

(3.1) implies E7, = w + 0ET;, or p = E7, = w/(1 — 0) in case a), while in
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case b), it does not contradict a free choice of 11 > 0. Motivated by these

facts, put

w/(1-0), ifd <landw >0,

any positive number > 0, iff =1andw = 0.

Assume ¢? = Var(eg) < oo and let {¢; = (et — 1)/0, k € Z} be the
centered i.i.d. noise (recall that ¢, in are standardized: Eej, = 1). With
this notation, the ARCH equation of (3.1) can be written as the bilinear

equation

Y., = Z ijkfj + (k. (,LLO’ + 0o Z ijkj> ) (3.15)
j=1 j=1

see also Giraitis and Surgailis [30]. As noted by Giraitis et al. [32], Giraitis
and Surgailis [30], (3.15) is different from bilinear equations discussed by
Granger and Andersen [38], Subba Rao [61] due to the presence of cross
terms (;Y}—;. Let
2 =Yi— Y bYi;=(1—B(L)%.
j=1

ThenY, = (1 — B(L)) 2y = G(L)z = Z?io 9j%k-j, and

0> bYij=0B(L)(1 - B(L)) 2 = H(L)z, = Z hizk_j,

j=1
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where coefficients g;, h;, of the generating functions G(z), H(z) are defined

by

G = s - > 0eh A -k - St <1

(3.16)
Notice that h; = og;(j > 1), 90 = 1, hy = 0, follows from equality
H(z) = 0(G(z) — 1), which, in turn, follows from (3.16). Hence (3.15)

can be written as the system of two equations:

((I) Y., = ijyk_j + 2k, (b) 2 = ( (,ua + Zhjsz) .(3.17)
Jj=1 J=1

Note that equation (3.17)(b) does not contain Y}, and coincides with the so-
called LARCH model studied by Giraitis et al. ([32], [33]) and elsewhere.
Also observe that {2, k € Z} is a martingale difference sequence which

can be written as

2k = CkUk, Vg = po + Z hjz—j, (3.18)

j=1

where v;, may be interpreted as volatility. A stationary solution {z;, k € Z}
of equation (3.18) is constructed in terms of causal Volterra series in i.i.d.

innovations (,, s < k:

2k = poG (1+Z > hkhhcc) (3.19)

m=1 Sm<-<s1<k
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3.2. Stationary solutions of FIGARCH, IARCH and ARCH equations

see Giraitis ef al. ([32], [33]). The series in (3.19) converges in L? if and
only if

0',3 = E’Z]% = (,LLO')2 <1+ Z Z hk: Slhil —82 hz -1~ 5m>

m=1 sy, <---<s1<k

= (uo?) <1+Z|h2m> < o0, (3.20)
m=1

or |[h]* = X272, b < 1, which is equivalent to

lgll* = Zgj (1+0%)/0”

After solving equation (3.17)(b), equation (3.17)(a) in the integrated case
0 =72, bj = 1 represents a particular case of the IAR(cc) model with
causal uncorrelated noise {z;} discussed in Theorem 3.2]below. Accord-
ingly, the stationary solution of bilinear equation and, consequently,
of ARCH equation can be obtained by inverting (3.17)(a), that is,

Yi = (1=BL) "2 => gz, (3.21)

= uo <Z Z Gk—s; h’51—52 e hSm—l_Sm,Csl e C5m> )

m=1 —oco<s,<--<51<k

as a solution of the AR(co) equation with martingale difference innov-
ations z;,_; determined by equation (3.17)(b), or (3.18), see Proposition
(iii).

In what follows, the term "causal" indicates a stationary process {y;, k €
Z} written as a measurable function of present and past values (;, s < k,

or, equivalently, £,, s < k (see also Definition 2.4).

37



3. Stationary integrated ARCH(oo) and AR(oco) processes with finite variance

Definition 3.1. By an L*-solution of equations (3.1), (3.15), (3.17), we mean

a random process with the finite second moment such that all series in these
equations converge in mean square and the corresponding equations hold for each

k € Z.

The main result of this chapter and one of the most important findings
in this dissertation overall, is the following theorem, which establishes
sufficient and necessary conditions for the existence of a causal L?-solution
{7k, k € Z} of ARCH(c0) equation and {(Y}, zx, k € Z)} of bilinear
equations in (3.15), (3.17). Denote the transfer function (see, e.g., Definition
2.2)

A(z) = (1 — B(®)™!, B(e?) = ijew, z eIl :=[-m,7l,

and set ||g||* = Z;io gjz' and [|A|]* = [;; |A(z)[*dz.

Theorem 3.1. Let w > 0,0 < 6§ < 1, excluding the case w = 0,0 < 6 < 1.

(a) ARCH equation has a nontrivial causal L?-solution {r, k € Z} if and

only if
lgll* < (1+0%) /a2 (3.22)

Condition is equivalent to

|A||* < 27(1 4 0?) /0> (3.23)

(b) Let (3.22) or (3.23) be satisfied, and let Y}, be defined as in , .

(i) Ifw > 0,0 < 6 < 1, then ARCH equation has a unique causal
L*-solution {1y = pu+ Yy, k € Z}, where p = w/(1 — 0) = E7y.
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3.2. Stationary solutions of FIGARCH, IARCH and ARCH equations

(i) Ifw =0, 0 = 1, then for each u > 0, {1, = p + Yi, k € Z} is a unique
causal L?-solution of (3.1) with mean Er, = p.

Theorem is new only in the integrated case § = 1, since for < 1
it follows from the paper of Giraitis and Surgailis [30]. The case 6 < 1is
included above for comparison. While for § < 1 the solution is unique, for
¢ = 1 IARCH equation has an infinite number of causal L?-solutions
parametrized by E7;, = p. Since coefficients g; are expressed through b;
via multiple infinite series, see , direct verification of condition (3.22)
may be difficult. On the other hand, condition in some cases can be
verified rather easily if the transfer function A(x) is explicitly known, as
in the case of the FIGARCH model.

The following corollary establishes the long memory property of the
stationary JARCH model.

Corollary 3.1. IARCH equation has a nontrivial stationary causal L*-
solution if and only if 0® = Var(eo) and b; satisfy condition (or, equival-
ently, ). In the latter case,

(i) for each y1 > 0O, the process {1, = p + Yy, k € Z} with Y}, defined in ,
, is a unique causal L*-solution of with mean E1y, = p.

(ii) the covariance function of the solution {1, = p + Yy, k € Z} is given by
cov (o, 1) = 0 Z 9iGk+i (3.24)
=0

where o2 is given in (3.20).

(iii) the covariance function in is nonnegative, cov(ry, ;) > 0, and

nonsummable: )", _, cov(ry, 7;) = oo. Moreover, {1,k € Z} has spectral
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3. Stationary integrated ARCH(oo) and AR(oco) processes with finite variance

density
flz) = p*(o2/2m)|1 = B(e )|,z €l

that is unbounded at zero frequency: f(x) — oo, as x — 0.

Corollary [3.1|together with Lemma [3.1| (iii) imply that the IARCH model
in with w = 0 does not have a stationary solution with finite variance
if b; tend to zero fast enough, for example, exponentially, or decay at rate
bj = O(j77), for some v > 3/2. In contrast, sufficient conditions for the
existence of a stationary IARCH process with nonzero intercept w > 0 and
infinite mean E7;, = oo, obtained in Kazakevic¢ius and Leipus [16], and

Douc et al. [21]], require an exponential decay of b;, as j — oc.

The following corollary details the case of the FIGARCH equation in
with zero intercept w = 0. It establishes the existence of stationary
long memory FIGARCH processes {7;, k € Z} and shows that their co-
variance function cov(7;, 79) decays to zero hyperbolically slowly as in

13.25).

Corollary 3.2. For the FIGARCH model in withw = 0and d € (0,1/2),
condition is equivalent to (3.8), that is,

T'(1 - 2d)
T(1—2d) —T2(1—d)

Eel <

Under this condition, the statements of Corollary hold. Moreover, as k — oo,
the covariance and spectral density of the FIGARCH process {7, k € Z} with
ET, = p satisfy

cov(to, ) ~ ple kT (3.25)
fla) = (o2/2m)|1 — |20~ (oZ/2m)]2| 7, = —0.
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3.2. Stationary solutions of FIGARCH, IARCH and ARCH equations

where ¢, = o2T'(1 — 2d) /{T(d)T'(1 — d)}, and

o2 =0’/(1+0° — o*(I'(1 — 2d)/T*(1 — d))).

For comparison, Corollary [3.3|below recovers the results on the exist-
ence of a stationary finite variance solution of the ARCH(c0) equation
with 6§ = 3777, b; < 1, obtained by Giraitis and Surgailis [30]. As noted
above, the existence of such a solution in this case necessarily implies
Et, = p = w/(1 — 6). In sharp contrast to a finite variance stationary
IARCH process, which can only have long memory, see Corollary
the stationary finite variance ARCH process with ¢ < 1 always has short

memory.

Corollary 3.3. ARCH(cc) equation withw > 0and 0 = Y22, b; < 1
has a unique stationary causal L*-solution {ry, k € Z} if and only if condition
3.22)) is satisfied. The above solution is given by {7, = p+ Yy, k € Z}, with
1= w/(1-0), and Y}, defined in (3.21), (3.19). It has mean Et, = pn = w/(1—0)

and a nonnegative covariance function given in . Moreover,

o0 [o.9]
g cov T(),Tk <oo E g, < 00.
k=0 k=0

Corollary discusses weak convergence in the Skorohod space
DI0,1], denoted by — pjo1j, of the partial sums process of {7,k € Z}.
Part (i) of this corollary is known, see Giraitis et al. ([34], [31]). Below,
{B(t),t € [0,1]} denotes the standard Brownian motion with variance

EB%(t) = t and {Bgy12(t),t € [0,1]} a fractional Brownian motion with

variance EB],, ,(t) = t***!, d € (0, 1/2) (see also Definitions [2.10|and

2.11)).
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3. Stationary integrated ARCH(oo) and AR(oco) processes with finite variance

Corollary 3.4. Suppose that holds.

(i) Let w > 0, 0 < land {1, k € Z} be the ARCH(o0) process as in Corollary
3.3 Then

[ni]

n /2 Z(Tk — E) = ppoy s°B(t), s* = Z cov (7o, 7i)-
—1 keZ

(i) Let {7, k € Z} be the FIGARCH process as in Corollary[3.2] Then

[nt]

nPIN (7 — Emi) —ppg saBarie(t),  si=ple,/(d(1 +2d)).
k=1

We are able to give a final answer to conjecture of Ding and
Granger [20], which assumes the existence of a stationary solution {7, k €
Z} of the LM(d)-ARCH model in with Er{ < oo, for arbitrary para-
meters 6 € (0,1],0 < d < 1/2, and p > 0. Although this conjecture is
proved only for § = 1, the fact that it is invalid for all 0 < § < 1 is also new,
since previously the failure of was only shown for 6 < 1/,/E(; < 1,

see Giraitis et al. [31], Section 4.

Corollary 3.5. Conjecture of Ding and Granger (1996) about the LM(d)-
ARCH model in is true if and only if = 1 and E(} = Ee? satisfy condition
:

3.3 Stationary Integrated AR(oco) processes: Ori-

gins of long memory

As explained in the previous two sections of this chapter, our construction

of a stationary solution of the IARCH model relies on solving IAR equation
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3.3. Stationary Integrated AR(oo) processes: Origins of long memory

(3.12) with martingale difference innovations {z;, k € Z}. In particular, we
want to know which conditions on filter b; guarantee that the IAR equation
has a stationary solution and when does this solution have covariance

long memory, in the sense that its covariance function is nonsummable.

It turns out that the two questions are closely related, in the sense that
the existence of a stationary solution of the IAR equation implies the long
memory property of its solution. This question is of independent interest
apart from ARCH models, since it indicates a general mechanism for
generating a long memory process, different from fractional differencing
or the ARFIMA(p, d, ) model commonly used in time series literature
(see, e.g., Brockwell and Davis [13], Giraitis, Koul, and Surgailis [36]).
Being a technical tool for generating parametric long memory time series,
fractional filtering / differencing cannot fully explain the phenomenon and
how long memory is induced, which sometimes leads to controversies jus-
tifying the use of long memory processes and explaining the mechanism
for generating them. See Lieberman and Phillips [53] for an illustrative

analysis of how long memory may arise in realized volatility.

In this section, we discuss the stationary solution of the Integrated

AR(o0) equation:
o= biwe =&,  keEL (3.26)
j=1

where b; are nonnegative, 7 b; = 1, and {&, k € Z} is a white noise
(a stationary sequence of uncorrelated random variables with zero mean
and finite variance o7 = F& < o0). In this section, by stationarity we
mean weak sense or covariance stationarity, since no other properties of

random variables with exception of the two finite first moments will be
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3. Stationary integrated ARCH(oo) and AR(oco) processes with finite variance

used.

Definition 3.2. We say that a random process {xy, k € Z} is a L*-solution of
if Ex} < oo for each k € Z, the series 72 bjxy—; converges in mean

square, and holds.

The above definition is very general and does not assume causality
or even ergodicity of {zj, k € Z} since any constant "random variable"
r = z1, Br? < 0o, is a L*-solution of the homogeneous equation z; —
> =1 bjzr—j = 0. As for IARCH equation (3.9), a (stationary) L*-solution
{x, k € Z} of (3.26), if exists, is not unique: for any real i, {z}, + p1, k € Z}
is also a L-solution of (3.26). The existence of such a solution implies

that b; cannot vanish for j large enough, for example, a unit root model

x — rp—1 = § does not have a stationary solution.

A causal solution of can be constructed by inverting the filter
1 — B(z) with inverse filter coefficients g;, j > 0, as defined in (3.16), by
using the power expansion of the analytic function G(z) = (1 — B(z))™! =
> im0 g;7’ on the unit disc {|z| < 1}. The resulting coefficients are nonneg-

ative and given by

J
g; = E § bj—51b81—82 e bSm—2—Sm_1bSm_17 ] > 17 go = 17
m=1 O<s7n71<"'<31<j

(3.27)
which follows from equality (1 — B(z))™' = Y ~_, B"(z). Assuming that

lgll = (32520 97)"/* < oo, we can define a stationary L?-solution of (3.26

as

I = ) 96— k€L (3.28)
=0
As shown in Lemma [3.2 below, if the transfer function A(z) = (1 —
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3.3. Stationary Integrated AR(oo) processes: Origins of long memory

B(el"))~!is L*-integrable: ||A|| = ([, |A(z)[*dz)'/? < oo, the Fourier coef-
ficients of A(x) agree with g; in (3.27):

g; = (ZW)_l/r[A(x)e_i“jdx and A(x) :Zgjeixj. (3.29)
=0

Notice that equalities are not obvious since the g;s are defined by
the power expansion of G(z) in the open disc |z| < 1, while the definition
of A(z) requires only B(e'®) # 1 a.e.

The next theorem establishes the equivalence of conditions ||g| <
oo and ||A|| < oo and representations and (3.29). It also obtains

conditions for the existence and uniqueness of a stationary L?-solution of

(3.26) and its long memory property.
Theorem 3.2. (i) Assumption ||g|| < oo is necessary and sufficient for the
existence of a stationary L*-solution {xy, k € Z} of .

(i) If ||lg|| < oo, then with Ty, as in for each real p,
T =u+7r8, k€EZ, (3.30)

is a stationary L?-solution of with Exy = p. The above solution is

unique in the class of all stationary linear processes xy = 1+ _ c7 ¢i&—; With
> ez ¢ < oo,

(iii) The solution xy, in has a nonnegative and nonsummable covariance

function:

cov (g, zp) = 07 Zgjgkﬂ- >0, Zcov(xo,xk) = 00, (3.31)
=0 keZ
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3. Stationary integrated ARCH(oo) and AR(oco) processes with finite variance

and unbounded spectral density f(x) = §|1—j}3(e:im)|‘2 with lim,_ f(x) = oo.

(iv) |lg]| < oo implies ||A]| < oo and (3.29). Conversely, || A|| < oo implies

lgll < oo

A surprising consequence of Theorem is the fact that station-
ary solution (3.28) of does not exist if the b;s vanish for j large
enough. The validity of this conclusion is not obvious from the rep-
resentation of g; in but follows easily from (3.29). Indeed, since
AW = 1= BE)] = [ X bi(1— e97)] < [o| S, jlby| < Clal, this
implies [, |A(z)|*dz > C72 [z 2dz = oo and ||g|| = oo according to
(3.29). The above argument combined with Lemma [3.1] (iii) is formalized

in the following corollary.

Corollary 3.6. The IAR(cc) equation in does not have a stationary L*-

3

solution if the b;s decay as j=5/% or faster. In particular, the latter holds if

bj =0, > jo for some jo > 1,0rb; = O(e™%) for j > 1,¢ > 0.

The requirement of Theorem [3.2] that the r.h.s. {&,k € Z} in IAR
equation (3.26) is white noise, is restrictive and can be relaxed. Theorem
extends Theorem [3.2]to the case when {¢;, k € Z} is a short memory

process as precised below.

Theorem 3.3. Let {&;, k € Z} be a stationary process with zero mean, finite

variance and a spectral density fe which is bounded away from 0 and oo:
c1 < fe(x) <o, Vaell 0 < ¢ < g < 0.

Then statements (i) and (ii) of Theorem [3.2)about a stationary solution of

remain valid, while statement (iii) has to be modified as follows:
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3.3. Stationary Integrated AR(oo) processes: Origins of long memory

(iii") The solution {xy, k € Z} in has unbounded spectral density

f(@) =1 = B(e")| 7 fe(x),

that satisfies lim,_,o f(z) = oo, and a nonsummable autocovariance function:

Z |cov (g, xx)| = 0.

kEZ

Apparently, the class of stationary IAR(co) processes with long memory
satisfying the conditions of Theorems 3.2 or 3.3|is quite large. Since condi-
tion 6 = » 7, b; = 1 does not assume any particular form of b;, it seems
that the spectral density of an IAR(co0) process need not grow regularly as
a power function |z|™%, 0 < a < 1, at x = 0 and, similarly, the covariance
function need not decay regularly with the lag as k~'*“. The latter proper-
ties are key features of fractionally integrated ARFIMA models (see, e.g.,
Hosking [44], also Giraitis et al. [36], Chapter 7).

Example 3.1. The ARFIMA(0, d,0) model is defined as a stationary solu-

tion of the equation
(1- L)Y =&, 0<d<1/2,

where {¢, k € Z} is uncorrelated white noise with E¢;, = 0, B¢} = o}.
It can be written as the IAR(co) equation in with b; generated
by B(z) = 1 — (1 = 2)? = }.72,b;z/. The transfer function A(z) =
(1 — B(e ™))~ ! satisfies |A(x)| = |1 — e |24 ~ |z|7%, as z — 0, and

is integrable for d € (0,1/2). The coefficients b; and g; of the generating
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3. Stationary integrated ARCH(oo) and AR(oco) processes with finite variance

functions B(z) and G(z) = (1 — B(z))! = (1 — z)~? are given by

I N V) __Pu+d _
=T Dndy YT Tgror@ b el 6%

They have properties b; > 0, g; >0, 0 = >°72, b; = 1, and
bj ~—j Y D(=d), gj~j"V/T(=d),  j— oo, (3.33)

so that ||g|| < oo. Relations (3.33)) imply that the covariance
o0
Y = cov(zo, Tk Z 95 9k+j
j=0

decays hyperbolically, that is,

Ugf(l — 2d)

T(d)T(1—d)’ (3:34)

Vi ~ C’yk71+2d’ c, =
and the spectral density is singular at the origin:

flx) = (oF/2m)[1 = |7 ~ cf|a| ™, ¢f = o /2m.

Example 3.2. A nonparametric (depending on an infinite number of para-
meters) class of IAR processes x = 7, b-:z:k_j + &, generalizing the
previous example is defined by equation (3.26) with uncorrelated noise
{&, k € Z} and coefficients b; generated by the operator

B(L)=(1—(1-1L) Zb L, 0<d<1/2 (3.35)
Here, P(z) = 2 p;#’ is a generating function with coefficients satisfy-
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ing
pi=0, po>0, » pj=1 and > jpj<oo.  (3.36)
=0 j=1
Then b; = i;é pb)_,, where b are the coefficients of the expansion
1—(1-2)" =377, 092, see (3.32). Hence, the b; in (3.35) are nonnegative

and sum up to 1.

Let us show that |A(z)|* = |1— B(e'*)| 2 is integrable. Since b; = pob) >
0, by Lemma [3.1] (ii) |A(z)| is bounded on [e, 7] for any € > 0. Therefore,
it suffices to show that | A(x)|? is integrable at = = 0. To this end, rewrite

1—B(e®)=1—(1—(1—e")Y)P(e”) = (1 — ")?h(z), where
h(z) = P(e) — (P(e™) — 1)(1 — ™)™ (3.37)

From @38) we have [P(e”) — 1] = 352, e — 1lp; < o 5%, jp; =
O(|z]) = o(|(1 — *)?]) and, therefore, lim,_,o h(x) = h(0) = P(1) = 1.
Hence, |A(x)|> ~ |z|™2%, z — 0, proving the integrability of |A(z)|? for
d € (0,1/2). The corresponding stationary solution {zy, k € Z} of (3.26)

with uncorrelated noise {{;;} has spectral density

flx) = (oF/2m)[1 = B(e™™)|7* = (07 /2m)[1 — 7| 7*|0(2)| %, w €11,
(3.38)
with h defined at (3.37). It satisfies f(z) ~ (0/27)|z|™*!,z — 0, and
is a continuous bounded function on intervals [e, 7],e¢ > 0. Moreover,

using (3.38), (3.37), (3.36) and Lemma 2.3.1 of Giraitis et al. [36], one can
g (3.38), (3.37), (3.36)

show that the asymptotics of the covariance function is cov(zg, x;) ~
c k7124 |k — oo, with ¢, given in (3.34) is the same as for ARFIMA(0, d, 0)
model. Hence, the p; or P(L) in (3.35) essentially affects short memory

dynamics and do not affect the long-run behavior of the corresponding
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3. Stationary integrated ARCH(oo) and AR(oco) processes with finite variance

IAR process.

Example 3.3. (The IAR(q, d) model). We introduce the parametric class
IAR(q, d) consisting of IAR(c0) processes (3.26) with B(L) as in (3.35)
and P(L) a polynomial of degree ¢ satisfying (3.36). It is convenient to
parameterize such polynomials as

Ltz g2t

P(z) = , 1 >0,...,1r, >0,
O =T, 2 !

Thus, pi=7ri/(1+---+71),1<i<q po=1/(1+---+r,),satisfy
so that IAR(q, d) is a particular case and shares the same long memory
properties as IAR in Example Note that the IAR(0, d) model coincides
with ARFIMA(0, d,0). Apart from this case, it seems that the IAR(q, d)
models are different from the ARFIMA(p, d, g) models. For example, the
model (1 — B(L))zy = & with B(z) = (1 — (1 — 2)9)(1 +rz)/(1 + r) with
P(z) = (14 1rz)/(1+r) generates a different covariance structure than the

ARFIMA(1, d,0) model (1 — L)4(1 + rL)x), = &

3.4 Proofs of Theorem and Corollaries 3.1+
3.4

The following proposition used to prove Theorem establishes the
relation between solutions 7, of ARCH(o0) equation , and (Y%, z) of
bilinear equations and (3.17), with ¢;, and ¢, related by ;. = 0 ¢, + 1,
and w = p(1 — ). For Yy in , we define "noise" as z; = (i(po +
0> 21 biYk—j). For z, in , the volatility process vy, is defined in
3.18).
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Proposition 3.1. Let 0 < pp < coand 6 € (0, 1].

(i) If {7, k € Z} is a causal L*-solution of (3.1), then {Yy, = 7, — u, k € Z} isa
causal L*-solution of such that Y3, > —pu.

(i) If {Yi, k € Z} is a causal L*-solution of such that Y, > —pu, then
{mx =Y}, + p, k € Z} is a causal L*-solution of equation (3.1).

(iii) {Yx, k € Z} is a causal L*-solution of bilinear equation if and only if
{Yy, 21, k € Z} is a causal L*-solution of equation (3.17). Moreover, {Y;, > —yu}
is equivalent to {v, > 0} with vy, as in (3.18).

Proof. The equivalence of (i) and (ii) is immediate. We only need to
prove (iii). Let {Y},k € Z} be a causal L*-solution of (3.15). Set z; =
Ce(po + 0 3772, bjYe ;) and denote vy, = po + 377, hjzp—j. Let us prove
that {Y%, zx, k € Z} is a causal L2-solution of . This follows from
(3.15) and equality

ve=po+o Y bV, (3.39)

j=1
which is verified below. From the definition of z; and it follows
that Y}, satisfy the IAR equation Y;, — 7%, b;Y; ; = 2, where {2, k € Z}
is a causal uncorrelated process with finite variance. Therefore, by The-
orem 3.2l we have Y, = Z;io g;jzk—j, which implies that o Z;’il b;iYie; =
o Zjoil b > Gith—jmi = Z]Oil h;zp—; in view of the definition of h; in
(3.16), proving and the fact that {Y}, 2.} is a causal L2-solution
of (3.17). Moreover, Y;,_; > —pu, k € Z, and imply vy > po +
o(3 52 bi)(—p) = po(1—60) >0,k € Z.

Conversely, assume that {Y}, 2y, k € Z} is a causal L*-solution of .
Then the claim that {Y};, k € Z} is a causal L?-solution of follows

from (3.39), which, in turn, follows from Theorem [3.2] using exactly the
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same argument as above. Finally, from v, > 0, (3.39), (3.15) and ¢, > —1/0,

we obtain
Y., = Z ijk—j + (v > Z ijk:—j — (1/0)1)}€
Jj=0 j=0

= ijYk._j—(1/0)(,ua+azbjyk—j) = —H,
=0

=0
proving part (iii) and the proposition. O

Proof of Theorem (a) The equivalence of and follows
from the equivalence of ||g|| < oo and ||A|| < oo, see Lemma and
Parseval’s identity ||g|| = 27||A||. Let us prove the necessity of condition
(B.22), or ||r|| < 1, for the existence of a stationary solution. Assume
that {7,k € Z} is an L?-solution of ARCH equation (3.1). Then, by
Proposition (i), the last fact implies that for p > 0, {Yk =TE — W, 2k =
Ce(po +0 372, bV j), k € Z} is an L*-solution of bilinear equation (3.17).
Consequently, 0? = Ez = E(puo+>.°2, hjzk.fj)Q = (no)*+(3°72, h3)o? =
(uo)? + |h|*0?, yielding |2 < 1, or B22), since [|A]* = o*(|lg][* - 1.

Conversely, let us show that ||h|| < 1 implies the existence of the L*-
solution {73,k € Z} of with E7, = p givenby 7, = Y, + pand Y},
defined in (3.21), (3.19). As shown in (3.20), ||2|| < 1 guarantees that {Y}}
is an L?-solution of (3.15). Therefore, by Proposition 3.1 (ii), it suffices to
prove that

To show (3.40), we approximate Y}, by

Y/ﬁp = (,ua) Z Z Jk—s1 h'81—82 T hsmfl_smcsl e Csm )

m=1 \ p<s,<-<s1<k
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where —p > 1 is a large integer. Observe that for £ > p the Y}, , satisfy

equation (3.15), viz.,

Yip = Gk (MU + Uzbjykzj,p> + ijyk—j,pu for k> p, (3.41)
=1 j=1

while Y}, = 0 for k£ < p. Moreover, by orthogonality of Volterra series,

EYy —Yp)? = (uo)* >, J,gp , where

2 2 2
Jlfz?;) - Z Ik— S1h81 52 hsm 1—Sm"

sm,<"'<51§k7 Sm.Sp

Notice that J\" < [|g]?||A]20"~, where ||h|| < 1. Hence, 30, J\" is
dominated by a converging series. Moreover, for each m > 1, J,g’p) — 0
as p — —oo. Hence, lim,_, - E(Y; — Y;,)? = 0 for any k € Z by the
dominated convergence theorem. Therefore, follows if we show
that for any p € Z,

Yip > —p, ke (3.42)

To prove (3.42), we use induction on k. Clearly, (3.42) holds for & < p
because by definition Y;, , = 0 > —pu for k < p. Also, (3.42) holds for k =

p+1,since Vi1, = (40)Gyi1 = —p because (40)G; = (u0)(e; — 1)/ = —p,
for j € Z. Let k > p+ 1. Assume by induction that Y , > —p for all s < k.
Then, by (3.41) and the inductive assumption,

Yip = Glpo)+ (Go+1 <ZbYk ]p>>
> Ck(po) + (Go + 1 (Zb>
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This proves the induction step k — 1 — k as well as (3.42) and (3.40),
thereby proving part (a) of the theorem.

(b) Claim (i) is shown in Giraitis et al. [30], Theorem 3.1. Let us prove (ii).
By part (a), it suffices to prove the uniqueness of the solution {7, k € Z}.
Let {7,k € Z},{7], k € Z} be two causal L?-solutions of with E7] =
E7]. Then 7/ — 7/ = Y}, is a causal L?-solution of Y}, = Z;’il b;iYi_; + 21,
where 2, = (o>~ b;Y,;. By causality, the stationary process Y} =
f(ek,€k—1,...) is a function of lagged i.i.d. variables. Hence, {Y}} is a
regular process with FY}? < oo, having spectral density, see Ibragimov and
Linnik [48], Theorem 17.1.2. Moreover, z;, = (j Z;’il h;zk—;, see (b),
where {2,k € Z} is covariance stationary white noise and » 7 h? =
[h]]? <1, EG; = 1. Then Ez; = Y% | hiEz; ;= ||h|[*E2 implies Ez; = 0
and hence z; = 0. Therefore, {Y;, k € Z} has spectral density and is a
stationary solution of the homogeneous equation Y, — 3=, b;Y;_; = 0.

As shown in the proof of Theorem [3.2(ii) below, such an equation has a

unique solution Y}, = 0, proving the uniqueness of {7, k € Z}. Theorem

is proved. O
Proof of Corollary All claims with the exception of (iii) follow from
Theorem 3.1 and claim (iii) follows from Theorem [3.2] (iii). O

Proof of Corollary Note 0° = Eej — 1. We have [|A|* = [;]1 —
| 72ddy = 27T (1 — 2d)/T?(1 — d) yielding the equivalence of and
(B.8). The remaining claims follow from Corollary [3.1] and fact in
Example[3.1] O

Proof of Corollary All statements with the exception of the last claim
follow from Theorem To show it, note that g; > 0 in (3.27) satisfy

D09 < Dm0 < oo since 6 < 1. O
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Proof of Corollary It suffices to only show part (ii). Using the fact
that by Y = 1. — Eni, = Z;’ig gj%k—j; is a moving average in sta-
tionary ergodic martingale differences {z;} of with coefficients g,
given in and satisfying (3.33), the convergence in (ii) follows from
Theorem 3.1 in Abadir et al. [1] or Theorem 6.2 in Giraitis and Surgailis

[30]. U

Proof of Corollary Let § = 1. Then the LM(d)-ARCH model in (3.6))
coincides with the FIGARCH model in with w = 0 and the statement
follows from Corollary Next, let 6 < 1. Then can be written
as the ARCH(o0) equation in with w = u(1 —6) > 0. According
to Corollary the squared process {r; = 7} has short memory and
summable autocovariance Y., cov(rg, r7) < co which contradicts (3.7).

OJ

3.5 Proofs of Theorems 3.2 and 3.3

The proof of Theorem 3.1 uses auxiliary Lemmas 3.1{and The proofs
of these lemmas are provided at the end of this section. Denote J, =
{j > 1:0b; > 0}, and assume J, has at least two elements. Denote by
ged(J,) the greatest common divisor of j € J;,. For example, if b; > 0, then
ged(Jp) = 1, and if by; > 0, byj—1 =0, j = 1,2,..., then ged(J) = 2.

Lemma3.1. Let 0 = 3 b; = L.

(i) The function 1 — B(e'*), x € 11, has only finite number of zeroes on 1I,

including x = 0.
(ii) The point x = 0 is the unique zero of 1 — B(e'*) if and only if ged(J,) = 1.
(iii) If by = O(k™7), k — oo, for some v > 3/2, then || A|| = occ.
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3. Stationary integrated ARCH(oo) and AR(oco) processes with finite variance

Lemma 3.2. Let 0 < 1.

@) If ||lg|| < oo then |A|| < co and hold.

(if) If | A]l < oo then [|g]| < oc.

Proof of Theorem [3.2] All statements in (iv) follow from Lemma

() If ||lg|| < oo, then by (iv), ||A|| < oo and holds. Evidently, this
implies that is a stationary solution of (3.26).

Conversely, if a stationary solution {z;,k € Z} of exists, it
suffices to prove that |A|| < oo, which by (iv) implies ||g|| < oo. Let
z, = Jqe*™Z,(dy) be the spectral representation of {zx,k € Z} and
F,(dy) = E|Z,(dy)|? be its spectral measure (we do not assume a priori that
{z), k € Z} has spectral density). Denote by &, = [, €*¥Z¢(dy) the spectral
representation of the noise {{,k € Z} and by F¢(dy) = E|Z(dy)|* =
(0¢/2m)dy its spectral measure. Since the series B(e¥) = 7% b
converges uniformly in II to a bounded function, z; — Zj; bixy_; =

[2(1 = B(e¥)) Z,(dy) = & = [ €™ Z¢(dy), leading to
1 BEPRy) = Rldy) = 02200y, yell.  (349)

By Lemma 3.1/ (i), 1 — B(e ") has a finite number of zeros v, ..., yn €
II. Since F, is nondecreasing, (3.43) implies that F,(dy) coincides with
f(y)dy, fly) = (02/2m)|A(y)[?, except for possible jumps at points yi, . . .,
Ym, 6. Fi(dy) = f(y)dy + D%, ¢id,,, where ¢; > 0 are some nonnegative

constants. Therefore,

o> Bt = [ R = [ f)dy = (o2/2m) [ 1) P,

proving ||A]| < oco.
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(ii) Since {Zy,k € Z} in is a zero mean L?-solution of equation (3.26),
see the proof of (i) above, it remains to show the uniqueness of solution
T = ji + Ty of with the stated properties. Let {z},k € Z}, {z], k €
Z}, be two stationary L*-solutions of with EFz), = Ezj and let
yr = xj, — x. Moreover, by the assumption in (ii), y; has the form y;, =
> ez Cilk—j With 375 ¢5 < co. The above facts imply that {yx, k € Z} is

a L?-solution of the homogeneous equation y; — >~ bjyx—; = 0 and a

j=1
stationary process with absolutely continuous spectral measure F,(dz) =
fy(x)dz, fy(x) = (0F/2m)| 22 ez cjeV"|* and a spectral representation y; =
Jn e Z,(dx). Since 377, €¥*b; converges uniformly on II, hence also in
L*(F, ) it follows that yx — 77, bjyk—; = [ (1 — ))Zy(dz) = 0 and
[ 11 = B(e")]*F,(dz) = 0. Together with Lemmag 3.1/ (i), this implies that

fy(x) =0 a.e. on Il and hence F, = 0 and y;, = 0, proving part (ii).

(iii) As noted above, solution 7, in has spectral density f(z) =
(0F/2m)[1 — B(e*)| 2. Relation lim, .o f(z) = oo follows from B(1) = 1,
continuity of B(e™*), and the fact |B(z)| < 1 for 0 < z < z( for some z( >
0 which holds by Lemma 3.1|(i). The divergence ), , |cov(zg, z1)| = o0
is immediate from the previous fact. Finally, the first claim in (3.31) is a
consequence of moving average representation and positivity of g;.

Theorem [3.2]is proved. O

Proof of Theorem The proof follows using the same arguments as in

the proof of Theorem O

Proof of Lemma (i) First observe that B(e'*) = § = 1 holds for
x = 0. Suppose that z € (0,27) is such that 1 = B(e'”). Then B(e'") is
a real number: B(¢') = 377 bjcos(jr) and then 1 = 3°7% | b;cos(jz) <
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> ;=1 bj = lis possible if and only if 1 = cos(jz) = ¢"* for all j € Jj, or

1 2 — 1
x/27 € ﬂ I;, where I;= {—,, - .. ,‘7—} (3.44)
jeds S J

Clearly, since each I; is a finite set, the intersection in (3.44) is a finite set

as well, proving (i).

(ii) Let ged(J,) = 1. Then ged(j1, jo) = 1 for ji, jo € Jy, j1 # jo. It suffices
to show that I;, N I;, = 0. Indeed, assume ad absurdum that I;, N I, # 0,
then ks = ky1j2/71 for some integers 1 < ky < ji, 1 < kg < jo, by definition
of I; in (3.44). Since j; and j; are coprimes, this means that j; is a divisor
of k1, or k1 € {j1,241,. ..}, which contradicts k; < jj.

Letp = gcd(Jb) > 2. Then forany j € J,, j = j'pwith 1 < j’ < j. Thus,
j/p €{1,2,...,j —1},implying 1/p € I; forall j € Jyand 1/p € (,c,, I-
Particularly, x = 27 /p # 0 is a zero of 1 — B(e'").

(iii) It suffices to show |1 — B(el*)| < C|z|"/? as this implies [, |1 —
B(e")|2dz > C! [;da/|z| = co. We have |1 — eV*| < min(j|z[,2), b; <
Cj=7 < C§73/% and thus

<Clz| > 7+

’1_B<eix)‘ _ ‘Zb 1]:0
1<j<1/|z]

+ O <l

j=1/lz|
This proves (iii) and the lemma, too. Ol

Proof of Lemma (i) Suppose that ||g|| < co. Set k() = 3 77 g el
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0 < r < 1. Then {k,} is a Cauchy sequence in Ly(II):

I =l = | | S 0509 — e e = 2m S g2 — 9P 0
=0 =0

as r,r’ 1 1. Moreover, k.(x) — A(z) = (1 — B(e*))lae. inllasr 1 1,

since k,.(x) = G(re®) = (1— B(re®)) "' for0 < r < 1and 1 — B(e"®) # 0 a.e.

in IT (see Lemma [3.1) (i)). Therefore, ||k, — A|| = 0asr T 1and ||A| < oo,

see Rudin ([65], Thorem 3.12). Since k; € Lo(I1) and ||k, — k1||* — 0 as

r 11, then A = k; in Ly(II) which proves (3.29).

(ii) Let ||A|| < oo. Then functions h(z) = e %% /(1 — B(e**)) = e % A(x),
x € 11, k € Z belong to the Hilbert space L*(II) with the norm

R GATEIRY "

So, ||hell = |A]l < oo. Then hy(x) =377, bjhy—j(x) = e'*”, where the series
converges in L?(II). By Lemma (iii), ||A|| < oo implies that b; > 0
for infinite number of j. For a large p > 1 denote 0} = b;I(j < p) and
B'(e*) = 272, UieV”. Then

hi(z) — zp: bihy_i(x) = e* +uyp(z), where wuy(x) = i bihk_j(x).
J=1 j=p+1
Since Y 0_, bjhy,—j(x) = hi(x)B'(e) and >27_ b; = 3777 b < 1, we obtain
iule) = ) — g 0) 4 o),
where .
o) = = k(o) =
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We claim that under assumption ||g|| = oo, as p — oo,
lur]l < lhell = [JA]] < 00 and  [|&]| — oo (3.45)

On the other hand, ||| = ||k — || < |[hx] + ul] < 2)h]] < C < oo,

which leads to a contradiction, implying ||g|| < oc.

To prove (3.45), note that from the definition of u; (z) and

p
+) b

J=1

p p p
P 1= Db | Db < 1= Y pe
j=1 j=1 j=1

we obtain

O e T
K 1 — B(e®) 1—Zp b-e_ijf”)

[0.9]

< / dr_ Z_pH / = ||,
S W TT=BEE\1= =B}

proving the first relation in (3.45). The second claim in (3.45) follows from

2
dx

2 1z
I61* = | T - [ 16 \m—%z%,

where g are power coefficients of the analytic function G'(z) = (1 —
B'(2))~" = 320957, 12| < 1, as given by (3.27) with b; replaced by b/.
Note 0 < gj — g; monotonically as p — oo and, therefore, > (g})*

|9]|* = oc. This proves part (ii) and completes the proof of the lemma. O]
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3.6. Simulation study

3.6 Simulation study

This section consists of two parts. In the first one, we simulate and
compare FIGARCH and ARFIMA(0, d, 0) processes and their estimated
autocorrelation functions. The second part is devoted to the investigation
of similarities and differences between IAR(p, d, ¢) and ARFIMA(p, d, q)

models.

3.6.1 FIGARCH and ARFIMA(0,d,0) processes

First we describe the simulation procedure. We generate N = 500 samples
of length n = 20000 each, with the first n, = 10000 values being the
pre-sample which is not used in the subsequent calculations of autocorrel-

ations. The FIGARCH process was generated using equation

np—1+k np—1+k
T = gk< o obmeitl- Y bj>, —n, +1<k<n, (3.46)
j=1 j=1

and the ARFIMA(0, d, 0) process comes from equation

np—1+k np—1+k
g = G+ Z bjxk—j + (1 - Z bj) ) —np+1<k<n, (347)
j=1 J=1

Initial conditions for both processes are 7, = z;, = 1, k < 0, and coefficients
b; are determined by the generating function B(z) = %, b2/ =1 — (1 —

z)?. We calculate them using the recursive relation

by = d,
d—j+1

b; = b;_
J j—1 j

(=¥ 5 >2

61



3. Stationary integrated ARCH(oo) and AR(oco) processes with finite variance

0,30

0,25

d=0.1 d=02 —d=03

0,20

0,15

0,10

0,05

0,00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

j

Figure 3.1: Coefficients b;, 7 = 1, - - - , 20 for different values of d.

In practice, this way of calculating b;’s seems to be more convenient and

accurate compared with the direct formula

I'(j —d)

l”:_r@+1ﬁpdy

where we need to deal with very large numbers in the nominator and
denominator. The first 20 values of b; for d = 0.1,0.2 and 0.3 are presented
in Figure Innovations in are i.i.d. standard normal random vari-
ables, thatis, ;, ~ N(0, 1). Then for ¢ in we take g, = (7, s0 Eey, = 1,
Ec? = 3 and 02 = 2. We simulated FIGARCH and ARFIMA (0, d, 0) pro-
cesses for four different values of d = 0.01,0.1,0.2,0.3. In all these cases,
the condition for the existence of the stationary FIGARCH solution is

satisfied:

I'(1— 2d)
T(1—2d) — I2(1—d)

~ 4.16, ford =0.3.
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In order to increase comparability between simulated FIGARCH and
ARFIMA processes, all the corresponding 500 paths of FIGARCH and
ARFIMA(0,d,0), Ty, Tki, k = —np +1,...,mp, 0 = 1, ..., 500, were simulated
using the same set of generated innovations ¢, and ;; = ¢} ;.

Figure 3.2 exhibits the last 500 values of simulated FIGARCH samples
of size 20000 for different values of d. It seems that with higher d, the clus-
terization of 7, increases, while the path attains a few higher peaks. Figure
presents the corresponding samples of the simulated ARFIMA(0, d, 0)
process with unit mean. It can be seen that the persistence and peaks in

sample paths increase with stronger long memory, that is, with bigger d.

16 d =0.01 10 d=0.1
14 14
12 12
10 10
8 8
6 6
4 4
2 2
0 0
1 51 101 151 201 251 301 351 401 451 151 101 151 201 251 301 351 401 451
10 d=0.2 10 d=03
14 14
12 12
10 10
8 8
6 6
4 4
2 2
0 0
1 51 101 151 201 251 301 351 401 451 1 51 101 151 201 251 301 351 401 451

Figure 3.2: The last 500 values of simulated FIGARCH samples of size 20
000 for different values of d (1 = 1).
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d=0.01

401 1451

|

) H ) P51 0 3% 401 451

|
o1 0 3 401 451

L R T N B R N = N SR R N |
L N = T S NS S O R N O T S

Figure 3.3: The last 500 values of simulated ARFIMA(0, d, 0) samples of
size 20 000 for different values of d (u = 1).

Now we compare the estimated autocorrelation functions (ACFs) of
ARFIMA(0, d,0) and FIGARCH models. The theoretical ACF was estim-
ated using Monte Carlo averaging for 500 independent samples. The first
obvious observation from Figure[3.4)is that ACFs markedly increase with d.
Another important thing to notice is that for higher d the ARFIMA(0, d, 0)
ACF dominates the FIGARCH ACF and the difference increases with d.
This fact is rather surprising, as our theoretical results show that these

two models share identical asymptotics of the autocorrelation function.

Relations (3.25) and (3.34) state that

'l —2d
COV(7_07 Tk) ~ Mzgzmk_l—’ad, in case of FIGARCH,
D(1—2d) 1oy
2 14-2d
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where

02 = 0*/(1+ 0%~ *(T(1 - 2d)/T*(1 - d))), o> = Var(=),

z

and o7 = Var(&).

d=0.01 ’ d=0.1
0,40 0,40
—ARFIMA(0,d,0) —ARFIMA(0,d,0)
0.30 «F|GARCH 0.30 «F|GARCH
0,20 0,20

o
N
o
o
N
o

0,00 ~= 0,00
1 9 17 25 33 41 49 57 65 73 81 89 97 1 9 17 25 33 41 49 57 65 73 81 89 97
0,50 0,50
d=0.2 d=0.3
0,40 0,40
—ARFIMA(0,d,0) —ARFIMA(0,d,0)
0:30 ~——FIGARCH 0:30 ~——FIGARCH
0,20 0,20
0,10 0,10
0,00 0,00
1 9 17 25 33 41 49 57 65 73 81 89 97 1 9 17 25 33 41 49 57 65 73 81 89 97

Figure 3.4: Estimated ACF of FIGARCH and ARFIMA(0, d, 0) processes
for different values of d (lags £ =1, ..., 100).

For spectral densities f(z) and f*(z) of FIGARCH and ARFIMA(0, d, 0)

we have accordingly

2

0'2 T * Uf iz | —2d
fla)==1—e 7 f(x):§|1—€| :

|—2d
2T

In case of our simulations, where &, ~ N (0, 1) are i.i.d. standard normal
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innovations and ¢, = fg, we have

) =2.0007, o¢%(d=0.10) = 2.0811,
o?(d =0.20) = 2.4918, o?(d = 0.30) = 5.4483,

and ;. = 1. So, in fact, the autocovariance and spectral density functions of
FIGARCH model should dominate those of ARFIMA(0, d, 0), while for the

autocorrelation p(k) we should have the same asymptotics in both cases:

(1 — 2d)

o)~ s at

The empirical finding about the difference between ARFIMA(0, d, 0) and
FIGARCH ACFs is an indication that the simulation of the FIGARCH
process is not a trivial task. Despite the fact that theoretically the condition
for the existence of the stationary FIGARCH process is satisfied, in
practical simulations of times series models, whose setting is based on
infinite past, various deviations from the theoretical model (e.g. the use
of an initial condition 7, = p, k < 0) can have significant influence on
the behavior of the resulting simulated paths, their ACFs, etc. One of
possible reasons behind the unexpected difference between ARFIMA and
FIGARCH covariance functions may be related to the length of the sample
size. We repeated the simulation exercise using longer samples with n =
40000 and pre-sample n, = 10000. Results show that ARFIMA ACEF still
dominates FIGARCH ACE but differences become smaller, which means
that the effect of increasing the sample size is bigger in the FIGARCH case
and shifts the ACF upwards more than ARFIMA ACF (see Figure B.5).

However, it seems that the main problem is not the sample size.
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0,05

0,04

0,03

0,02

0,01

0,00

Figure 3.5: Differences between estimated ACF of ARFIMA(0, d,0) and
FIGARCH processes for d = 0.3 with sample sizes n = 40000 and n =
20000 (lags k£ = 1, ..., 100; pre-sample n,, = 10000).

Further we check how this situation changes when the distribution of
& is platykurtic, that is, when it does not produce large outliers which
may have significant effect in practical simulations. We repeat the same
simulation procedure with ii.d. innovations &, which are uniformly
distributed over the interval [—v/3,v/3]. In this case, Ee;, = E¢ = 1
and Ee? = E¢! = 1.8. So now Ee} is lower and more distant from the
boundary of condition for the existence of a stationary solution than
in the case of standard normal innovations.

Figure shows the corresponding ACFs of ARFIMA(0, d,0) and
FIGARCH processes. In this case, differences between ARFIMA(0, d, 0)
and FIGARCH ACFs are obviously smaller and for d < 0.3 they almost
disappear.
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d=0.01 ' d=0.1
0,40 0,40
—ARFIMA(0,d,0) —ARFIMA(0,d,0)
0.30 =F|IGARCH 0.30 =FIGARCH
0,20 0,20

o
-
o
o
-
o

0,00 = 0,00
1 9 17 25 33 41 49 57 65 73 81 89 97 1 9 17 25 33 41 49 57 65 73 81 89 97
0,50 0,50
d=0.2 d=03
0,40 0,40
=—ARFIMA(0,d,0) =—ARFIMA(0,d,0)
0,30 0,30
——FIGARCH ——FIGARCH
0,20 0,20
0,10 0,10
0,00 0,00
1 9 17 25 33 41 49 57 65 73 81 89 97 1 9 17 25 33 41 49 57 65 73 81 89 97

Figure 3.6: Estimated ACF of FIGARCH and ARFIMA(0, d, 0) processes for
different values of d (lags k = 1, ..., 100) with i.i.d. {j uniformly distributed

on [—+/3,v/3] and ¢}, = £2.

Similar tendencies can be seen in terms of spectral densities. Figure
shows the estimated spectral densities of ARFIMA(0, d, 0) and FIGARCH
processes using: a) standard normal innovations and b) uniformly distrib-
uted innovations. In the first case, ARFIMA spectral density dominates
that of FIGARCH near the origin. Our theoretical formulas show that the
opposite situation should be in place. When innovations are distributed

uniformly, the ARFIMA dominance decreases significantly.

These results indicate that in practical simulations, when one deals

I'(1-2d)
1—2d)—T2(1—d)

with finite-sample exercises, the difference between Ee? and N
should be "safe" enough to generate processes whose properties are in-line

with theoretical findings.
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Spectral densities with normally distributed innovations

8

6 o

T ARFIMA(0, d, 0)
——FIGARCH

2

0

0.0 03 0.7 1.0 13 16 2,0 23 26 29

Spectral densities with uniformly distributed innovations

8
6
N ARFIMA(0, d, 0)
—FIGARCH
2
0
0

0,3 0,7 1,0 13 16 2,0 23 2,6 2,9

Differences between ARFIMA and FIGARCH spectral densities

—\\ith normally distributed innovations
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Figure 3.7: Estimated spectral densities of FIGARCH and ARFIMA(0, d, 0)
processes for d = 0.3 with i.i.d. (; a) uniformly distributed on [—/3, /3]
and b) standard normal, and differences between spectral densities.

3.6.2 IAR(p, d, q) and ARFIMA(p, d, q) processes

In this subsection we explore through simulations the differences between

the classical ARFIMA model
(1—=rL— ... =1 L)1 — L)%, = 1+ a1 L + ... + a, L9, keZ,

where R(z) = 1 —riz — ... —mpzP and A(z) = 1 + ayz + ... + a,29, are
polynomials of degrees p, ¢ > 0, respectively, that have no common zeros,

and the IAR(p, d, ¢) model

Tp = Z bjil}k_j + &+ arép-1 + ...+ aqﬁk_q. (3.48)

J=1
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3. Stationary integrated ARCH(oo) and AR(oco) processes with finite variance

Recall from Example [3.2] that coefficients b; in IAR model (3.48)) are gener-
ated by the operator

B(L)=(1-(1- Z b;L, 0<d<1/2. (3.49)
Here, P(z) = ) 7 p;2’ is a generating function with coefficients
ijO, p0>0, ij:l and ijj<00.

Then b; = 374 pib?_,, where b? are coefficients of the expansion 1 — (1 —

d _ 0.7 . .
z)* = >777 b2/ as in the previous subsection.

The IAR model is of particular interest, because, as mentioned in
Example the asymptotics of the IAR(p, d, ¢) covariance function is
the same as for the ARFIMA(0, d,0) model, and the p; or P(L) in (3.49)
essentially affects the short memory dynamics and do not distort the
long-term behavior of the corresponding IAR process. This feature could
be very interesting and useful from a practical point of view, as one can
control the short-term behavior of a covariance function without an effect

on the long-term asymptotics.

Figure 3.8/ presents ACFs of ARFIMA(1, d, 0)

(1 — TlL)(l — L)dl‘k = fk;

and [AR(1, d, 0)

[ee]
Ty = Z bjxp—j + &k,
j=1

with b; = pob§ + 109, and 1 — (1 — 2)? = 37| 927, The simulation pro-

Jj=1"J
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3.6. Simulation study

cedure is the same as in the previous section: the sample size is n = 20000
with the first n, = 10000 values being the pre-sample, and theoretical
ACFs are estimated using Monte Carlo averaging from N = 500 samples.
In order to increase comparability between ARFIMA and IAR processes,
we use the same innovations §;, ~ N (0, 1) to get corresponding samples
of both processes. The initial condition is z; = 1,k < 0. The memory

parameter is fixed at d = 0.25.

p_1=0.001 0 p_1=0.001
p_1=0.1 p_1=0.1
—p_1=03 ' —p_1=03
——p_1=04 —p_1=04
0,30 —p 1205 0,30 —p_1=05

—p_1=09 —p_1=09

Figure 3.8: Estimated ACF of ARFIMA(1,d,0) (bottom panel) and
IAR(1,d,0) (top panel) processes for d = 0.25 (lags £ = 1,...,20 and
k=1,..,100).

From Figure (3.8]it is clear that these two models generate different cov-
ariance structures, except for very small , = py = 0.01. ARFIMA ACF
is regularly decreasing in all cases, whereas for the IAR process we can
achieve an ACF which is increasing at low lags, depending on the value

of p;. Estimated ACFs also indicate that changing the value of r; in
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3. Stationary integrated ARCH(oo) and AR(oco) processes with finite variance

ARFIMA(1, d, 0) has a different effect than p; in IAR(1, d, 0). It seems that
parameter p; influences the behavior of ACF only at a few lower lags,
while 7, creates a longer-lasting effect. The higher value of p; leads to

lower ACF at lag £ = 1 and increases the the value of ACF at lag k = 2.

However, in IAR(1, d, 0), the maximum achievable peak of ACF at lag
k = 1 seems to be quite low (about 0.35), while in practical applications
it is desirable and natural to model processes with higher ACF at lower
lags. This can be achieved using higher-order IAR(p, d, ¢) models. Before
turning to models with ¢ > 0, we present two examples, where ¢ = 0 and

p=2andp=3.

—p_1=01,p_2=0.1 —r_1=0.1,r_2=01
-==-p_1=0.1,p_2=08
0.60 p_1=04,p.2=04

....... p_1=08,p_2=0.1

....... r1=01,r2=08
“==-11=04,r2=04

——r_1=08,r2=01

0,40

0,30

Figure 3.9: Estimated ACF of ARFIMA(2, d, 0) (right panel) and IAR(2, d, 0)
(left panel) processes for d = 0.25 and different values of p;, p2, 1,72 (lags
k=1,..,20).
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3.6. Simulation study

p_1=0.7,p_2=0.1,p_3=0.1
------- p_1=0.03,p_2=0.03,p_3=0.9
===-p_1=01,p_2=0.7,p_3=0.1

——p_1=01,p_2=0.1,p_3=07
0,40 0,80

0,30 0,60

r1=07,r2=01,r.3=0.1
—r_1=0.03,r_2=0.03,r.3=0.9
===-r_1=01,r2=07,r.3=0.1
------- r1=01,r2=01,r3=07

Figure 3.10: Estimated ACF of ARFIMA(3,d,0) (right panel) and
IAR(3,d,0) (left panel) processes for d = 0.25 and different values of

D1, P2, P3, 71,172,713 (lags k =1, ..., 20).

From Figures [3.9 and we can see how the choice of values for
p; in IAR(p, d, 0) affects the behavior of ACFE. High values of p; generate
the peak of ACF at lag £ = j 4 1. Choosing high values of p;, we get the
"traditional” regularly decreasing ACF. On the other hand, introducing
nonzero values r;,j > 1, in ARFIMA(p, d, q), changes the ARFIMA ACF

drastically not only on low lags, but also in the long-run.

Figures present ACFs of ARFIMA(p, d, q) and IAR(p, d, ¢) for
¢=1and p =1,2,3. It seems that the main advantage of introducing the
AR(1) component for ¢ in the IAR setting is the increased ACF at lower
lags without a major impact on ACF values in the long-run. At the same
time we retain the possibility of controlling the peaks of ACF at low lags,

changing the values of p;.
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3. Stationary integrated ARCH(oo) and AR(oo) processes with finite variance

070 a_1=0.1 —p_1=01 a1=05 ——p.1=01
0,60 P-1=03 560
—p_1=04
0,50 ——p_1=05 0,50
p_1=06
0,40 p_1=07 0,40
p_1=0.8
030  “Xe. p_1=09 0,30
0,20 0,20
0,10 : 0,10
0,00 0,00
1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19
100 . a1=01 —r_1=0.1 1000 .. a1=05 —r_1=0.1
...... —r_1=0.3 —r 1=0.3
------- ——r_1=04 ——r1=04
080 \\ o e ——r1=05 080 W\\ e r1=05
- r1=06 W\ T r1=06
3 A | \\\ r1=07
0,60 r1=08 0,60  \\\N o T r1=08
r1=09 .... r1=09
0,40 " 040
0,20 0,20
0,00 0,00
1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 1" 13 15 17 19

Figure 3.11: Estimated ACF of ARFIMA(1,d,1) (bottom panel) and
IAR(1,d, 1) (top panel) processes for d = 0.25 and different choices of
P1,71, a1 (lags k= 1, ey 20)

0,70 0,70

a1=041 ——p_1=0.005, p_2 = 0.005 a_1=05 —p_1=0.005,p_2=0.005
0,60 p_1=0.005,p_2=0.9 060 p_1=0.005,p_2=0.9
050 | e p_1=0.9, p_2=0.005 0,50 T p_1=0.9,p_2=0.005

0,40 0,40
0,30 \"\ 0,30

0,20 . 0,20

e,
010 : 0,10
0,00 0,00
13 5 7 9 11 13 15 17 19 13 5 7 9 11 13 15 17 19
1,00 'lm-..-_,-_.._..:::. TTTT a1=0.41 1,00 B T T a_1=0.5
"':::’--*.,., "":::”-‘.n

0,80 s 0,80 [ S

0,60 Tt 0,60 Tl
——r_1=0.005, r_2 = 0.005 — 1= -

040 _ 040 r_1=0.005, r_2=0.005
-==-1_1=0.005,r2=0.9 ===-r_120.005,r 2=0.9

------- r_1=0.9,r_2=0.005 0.20 seeeeeer 1=0.9,r_2=0.005

Figure 3.12: Estimated ACF of ARFIMA(2,d,1) (bottom panel) and
IAR(2,d, 1) (top panel) processes for d = 0.25 and different choices of
p1,P2, 71,72, a1 (lags k =1, ..., 20).
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—p._1=041,p_2=0.1,p_3=07 1,00
===-p_1=0.1,p_2=0.7,p_3=0.1
~~~~~~ p_1=0.03,p_2=0.03,p_3=09
0,60 ——p_1=07,p.2=01,p_3=0.1

0,50

0,60

0,30
0,40

~~~~~~ r1=01,r2=01,r3=07
=== 1=0.1,r2=07,r3=01

—r_1=0.03,r_.2=0.03,r.3=09
r1=07,r2=01,r3=01

0,10

0,00 0,00

Figure 3.13: Estimated ACF of ARFIMA(3,d,1) (right panel) and
IAR(3,d, 1) (left panel) processes for d = 0.25 and different choices of
P1,D2,P3,71,72,73, A1 = 0.5 (lags k= 15 sy 20)

For practical purposes it would be very useful to find coefficients ),

of the infinite moving average representation of the IAR process
m =YL& = &
=0

Having the explicit form of ¢); as well as covariance (k) as well, one could
use the Davies-Harte algorithm to generate the process with known (e.g.
at the first k lags) covariance function. This algorithm was first discussed

by Davies and Harte [19] (see also Giraitis et al. [36]).
We try to find coefficients ); for IAR(1, d, 0). Since

(1-B(L)xe= (1~ (1~ 1= L)Y)P(L))z: = &,
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3. Stationary integrated ARCH(oo) and AR(oco) processes with finite variance

writing
r = (1= B(L) &
we get
(1-BL)" =Y BL) =Y (1 - (1- L)) PHL) =
00 k ~
= Z Z (i)( 1) (Z ds(ds — 1) n' (ds —n+ 1)( 1)nLn>]
k=0 Ls=0 =0 !
[Z (?)P’SipﬁLZ] -y [Z <’;¢> (—1)* (1 A ds(d;;- Do
e :?ds “2ps 1 o6+ (k ﬁ!mp’g '; L+
00 k N
+ plka] - Z [Z i) (_1)3 —+ LZ (i)( 1)S+1d8—|—
k=0 Ls=0 s=0
+172 Z (lz (_1)s+2w 4
' lpgjL%ijt...er’ka} _

Collecting members at different powers of L for fixed k € {0,1,2,...} we

have

I (ﬁi (D) eyttt (‘f)pkpi (5)vias
+(§)p’82p§§ (i)(1)3> +



for polynomial P(x) of degree s < k, coefficient v, can be truncated to
m min(k,m—k) k .
_ k k—s, s | (__1\ym—s k dj _1\J
wmz( > (D) p1[< =3 ((,7) 1)]).
k=0 5=0 =0
(3.50)
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3. Stationary integrated ARCH(oo) and AR(oco) processes with finite variance

Explicit expressions of the first four coefficients v, are:

1
vy = 1, Y1 = pod, Yy = prd + pod (5(1 —d) +pod) ,

d? 1 d(1—d
Y3 = dpo (d2p(2) — d’po + 5 + —dpo + 2d — 6) + %

Figure contains coefficients ¢y, k = 1, ..., 20, calculated using for
d = 0.3 and different values of parameter p;. Unfortunately, formula
is inconvenient for practical purposes since it is very time consuming for
larger m (e.g., m > 50). We believe that there is room for simplification of

(3.50), yet it is left for our future work.

0,15

0,10

Figure 3.14: Coefficients ¢y, k = 1, ..., 20 from (3.50) with d = 0.3.

Here we end the simulation study and present the main conclusions

of the chapter.
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3.7 Conclusion

Ding and Granger [20] proposed the Long Memory ARCH model to
capture the hyperbolic decay of sample autocorrelations of speculative
squared returns. The LM ARCH model is closely related to the FIGARCH
model which was independently introduced by Baillie et al. [3]. However,
the existence of a covariance stationary solution of these models was not
established and, thus, the possibility of long memory in the ARCH setting
was doubtful. In this dissertation, we solved this controversy by showing
that FIGARCH and IARCH(c0) equations with zero intercept may have
a nontrivial covariance stationary solution with long memory. We also
obtained necessary and sufficient conditions for the existence of stationary
integrated AR(oo) processes with finite variance and proved that such
processes always have long memory. We provided a complete answer to
the long standing conjecture of Ding and Granger [20] about the existence

of the Long Memory ARCH model.
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Chapter 4

Quasi-MLE for the
quadratic ARCH model

with long memory

We discuss the parametric quasi-maximum likelihood estimation for the
quadratic ARCH (QARCH) process with long memory, introduced by
Doukhan, Grublyte, and Surgailis [22] and Grublyté and Skarnulis [40]
(see also Chapter |5 of this dissertation), with conditional variance in-
volving the square of inhomogeneous linear combination of an observable
sequence with square summable weights. The above model extends the
QARCH model of Sentana [66] and the Linear ARCH model of Robinson
[62] to the case of strictly positive conditional variance. We prove con-
sistency and asymptotic normality of the corresponding QML estimates,
including the estimate of the long memory parameter 0 < d < 1/2. A

simulation study of empirical MSE is included.
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4.1 Introduction

Recently, Doukhan et al. [22] and Grublyté and Skarnulis [40] discussed a
class of quadratic ARCH models of the form

~ 2

re = Goy, ol = W+ (a + Z bjrtj> + o, 4.1)

j=1

where {(;,t € Z} is a standardized i.i.d. sequence, E¢; = 0, E¢? = 1, and
v €1[0,1),w,a,b;,j > 1, are real parameters satisfying certain conditions,
see Proposition 4.1/ below. Grublyte and Skarnulis [40] called the
Generalized Quadratic ARCH (GQARCH) model. It is considered in more
detail way in Chapter 5| of this dissertation. By iterating the second equa-
tion in (#.I), the squared volatility in (4.I) can be written as a quadratic

form
0 o0 2
atz = sz {w2 + (a + ijTt_g_j) }
(=0 j=1

in lagged variables r;_;, r:_», ..., and hence it represents a particular case
of Sentana’s [66] Quadratic ARCH model with p = co. The model
includes the classical Asymmetric GARCH(1,1) process of Engle [25] and
the Linear ARCH (LARCH) model of Robinson [62]]:

T+ — CtO't, Ot — G+ij7’t_j. (42)
7=1

The main interest in (4.1) and (4.2) seems to be the possibility of hav-
ing slowly decaying moving-average coefficients b; with Y7, [b;| =
00, Y70 b? < oo, for modeling long memory in volatility, in which case,

r; and ¢; must have zero mean so that the series ) °°, b;r;_; converges.
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4. Quasi-MLE for the quadratic ARCH model with long memory

Giraitis et al. [32] proved that the squared stationary solution {r?,¢ € Z}
of the LARCH model in with b; decaying as j',0 < d < 1/2, may
have long memory autocorrelations. In terms of the GQARCH model in
(4.T), similar results were established by Doukhan ef al. [22] and Grublyte

and Skarnulis [40]. Namely, assume that parameters v,w, a,b;, 7 > 1, in

satisfy

b, ~ cjt (30<d<1/2, ¢>0),

v €[0,1), a # 0and
6B+ Alps| D [bi P+ pa Y b1 < (1—9)?, (4.3)

where p, = E¢, p=1,2,..., By :=> >~
[40], Theorems 2.5 and 3.1) there exists a stationary solution of (4.1) with

b?. Then (Grublyté and Skarnulis

j=1%j"

Er} < oo, such that

2,2

and
2 Z — Er?) —pjo] K2Bar1/2)(s), n— 0o

where By, (1/2) is a fractional Brownian motion with the Hurst parameter
H =d+(1/2) € (1/2,1) (see also Definition 2.11) and x; > 0,7 = 1,2,
are some constants; — p|o,1) stands for weak convergence in the Skorohod
space D[0, 1].

As noted by Doukhan et al. [22] and Grublyté and Skarnulis [40], the
GQARCH model of and the LARCH model of have similar

long memory and leverage properties and can both be used for modeling
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4.1. Introduction

tinancial data with the above properties. The main disadvantage of the
latter model in comparison to the former one seems to be the fact that
volatility o, in (4.2) may assume negative values and is not separated from
below by positive constant ¢ > 0 as in the case of (4.I). The standard
quasi-maximum likelihood (QML) approach to the estimation of LARCH
parameters is inconsistent and other estimation methods were developed
by Beran and Schiitzner [5], Francq and Zakoian [29], Levine et al. [52],
Truquet [68]. The results of Doukhan et al. [22] and Grublyté and Skarnulis
[40] are limited to properties of the stationary solution of and do not

include estimation or other statistical inferences for this model.

In this chapter of the dissertation, we discuss the QML estimation for

the 5-parametric GQARCH model

o(0) = ivé {w2 + (a+ cijdlrtgj)Z} : (4.4)
=0 j=1

depending on parameter 0 = (v,w,a,d,c),0 < v < l,w > 0,a # 0,¢ # 0
and d € (0,1/2). The parametric form b; = c¢j%! of moving-average
coefficients in is the same as that by Beran and Schiitzner [5] for the
LARCH model. Similar to Beran and Schiitzner [5], we discuss the QML

estimator

2

oo : 1 - i 2
o= i La(0), 1a(0)= 13 (505 +1oxe®))

n

involving exact conditional variance depending on infinite past
rs,—00 < s < t, and its more realistic version gn = arg mingeg Zn(G),
obtained by replacing the 07(6)’s in by 57(6) depending only r,, 1 <
s < t (see Section [4.3|for the definition). It should be noted that the QML

83



4. Quasi-MLE for the quadratic ARCH model with long memory

function proposed by Beran and Schiitzner [5] is modified to avoid the
degeneracy of o, ! in (#.2), by introducing an additional tuning parameter
e > 0 which affects the performance of the estimator and whose choice is
a nontrivial task. In terms of the GQARCH model with w > 0, the
aforementioned degeneracy problem does not occur and we deal with un-
modified QMLE in contrast to Beran and Schiitzner [5]. We also note that
our proofs use techniques different from those of Beran and Schiitzner [5].
Particularly, the method of orthogonal Volterra expansions of the LARCH
model used by Beran and Schiitzner [5] is not applicable for model ;
see Doukhan et. al. ([22], Example 1).

Sectionpresents some results of Grublyté and Skarnulis [40] about
the existence and properties of the stationary solution of GQARCH equa-
tions in (4.I). More details about the GQARCH process are provided
in Chapter 5| of this dissertation. In Section we define several QML
estimators of parameter ¢ in (4.4). Section 4.4 presents the main results of
this chapter related to consistency and asymptotic normality of the QML
estimators. Finite sample performance of these estimators is investigated

in the simulation study in Section Conclusions are summarized in

Section[4.7|and all proofs are relegated to Section

4.2 Stationary solution

We recall a few facts from Chapter 5/ of this dissertation about the station-
ary solution of (see also Grublyteé and Skarnulis [40]). First, we give
its definition. Let 7; = o((s, s < t),t € Z, be the sigma-field generated by

(s,8 < t.
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4.2. Stationary solution

Definition 4.1. By stationary solution of we mean a stationary and ergodic
martingale difference sequence {ry, F;,t € Z} with Er? < oo, E[r?|Fi_1] = o7,
such that for any t € Z the series X, := ) __,
02 =507 (w? + (a+ Xi—¢)?) converges in L' and holds.

bi_srs converges in L, the series

Proposition 4.1. (Grublyteé and Skarnulis [40]) Let v € [0, 1) and {{;,t € Z}
be an i.i.d. sequence with zero mean, unit variance and finite moment i, =

E(l < oo, where p > 2 is an even integer. Assume that

p oo
p .
(PNt toep < =y 45
= k=1
Then there exists a unique stationary solution {ry,t € Z} of such that
the series X; = Y7 bjryj converges in L and Ery < C(1 + EXY) < oo.
Moreover, for p = 2, condition [4.5), or

o0

By=) b <1l-9, (4.6)
j=1
is necessary and sufficient for the existence of a stationary L*-solution of

with
w? + a?

Erl= -~
h 1—v—DB

Remark 4.1. Condition (4.5) coincides with the corresponding condition
tfor the LARCH model obtained by Giraitis et al. ([33], Proposition 3). For

p = 4 (4.9) agrees with (4.3).

Remark 4.2. Sufficient conditions for the existence of a stationary solution
of (4.1) with finite moment E|r;|? < co and arbitrary p > 0 are obtained
in Chapter [ of this dissertation, Theorem [5.1] (see also Grublyté and
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4. Quasi-MLE for the quadratic ARCH model with long memory

Skarnulis [40], Theorem 2.4). There we extend the corresponding result
of Doukhan et al. ([22], Theorem 1) from v = 0 to v > 0. Contrary to
(4.5), the above-mentioned conditions involve absolute constant K, from
the Burkholder-Rosenthal inequality, which is not known explicitly, and,
therefore, these conditions are not very useful (see Remark in Chapter
of this dissertation; also Grublyté and Skarnulis ([40]).

4.3 QML Estimators

The following assumptions on the parametric GQARCH model in (4.4)

are imposed.

Assumption (A) {(;,t € Z} is a standardized i.i.d. sequence with E¢, =
0,E¢? = 1.

Assumption (B) © C R’ is a compact set of parameters § = (v,w, a,d, c)

defined by

(1) v € 1,7l with0 <y <9 < 1;

(i) w € [wy,ws] with 0 < w; < wy < 00;
(iii) a € |a1, as) with —co < a1 < ay < o0;
(iv) d € [dy,dy] with 0 < dy < dy < 1/2;

(V) ¢ € [e1,co) with 0 < ¢; = ¢;(d,y) < 00, ¢1 < ¢g such that

for any ¢ € [c1, o],y € [11,72),d € [dy, da].
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4.3. QML Estimators

We assume that the observations {r;,1 < t < n} follow the model
in (4.1) with the true parameter 6y = (7o, wo, ao, do, ¢p), belonging to the
interior © of © in Assumption (B). The restriction on parameter c in (v) is

due to condition (4.6). The QML estimator of § € © is defined as
0, = arg min L,(6), 4.7)

where
n

= %Z ( + log o} (9)) , (4.8)
t=1 oi

and o?(0) is defined in (£.4), that is,

oX(f) = i*yf {w2 + (a+ cY}_g(d))z} : where 4.9)
=0

00
§ : -d—1

= J Tt—j
j=1

Note that the definitions in (£.7)—-(4.9) depend on (unobserved) r,, s < 0,
and, therefore, the estimator in (4.7) is usually referred to as the QML

estimator given infinite past (see Beran and Schiitzner [5]). A more realistic

version of (4.7) is defined as

0, = aI‘g%IélélL (0), (4.10)
where
~ 1 & rf 9
Ln(ﬁ) = E 52—@+10th (9) , where (411)
t=1 ¢
t—1 N N t—1
520) = YA+ (e Fid@)’}, Vild) = 3y
=0 j=1
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4. Quasi-MLE for the quadratic ARCH model with long memory

Note that all quantities in (4.11) depend only on 7,1 < s < n; hence (4.10)
is called the QML estimator given finite past. The QML functions in (4.8)
and (4.11) can be written as

L) = 1300 and Lo)- 1350,

respectively, where

2 2

L(0) = % tlogo?(6), L) = 5; E 5+ o F2(0). (4.12)

Finally, following Beran and Schiitzner [5] we define a truncated version
of (#.10), involving the last O(n”) quasi-likelihoods L(6),n—[nf] <t <n,
as follows:

~ ~ ~ 1 i ~
B) .— i 7.06) (B) —
0y = argmin L)(0),  L{7(0) = A ;B]Hzt(e), (4.13)

where 0 < 3 < 11is a "bandwidth parameter". Note that for any ¢ € Z and
0o = (0, wo, ag, dp, cp) € O, the random functions Y;(d) and }Z(d) in
and are infinitely differentiable w.r.t. d € (0, 1/2) a.s. Hence, using
the explicit form of o2(6) and 52(0), it follows that o2(6), 52(6), 1,(0), 1,(0),
L,(8), L,(6), LY )(9) and so on, are all infinitely differentiable w.r.t. § € ©g

a.s. We use the notation
L(0) := EL,(0) = EL,(6), (4.14)
and
A@0) = E[VTLOVL®O)]., BO) = E[VIVLEO)], 415)
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where V = (0/0601,---,0/005) and the superscript "T" stands for trans-
posed vector. Particularly, A(f) and B(0) are 5 x 5-matrices. By Lemma4.1}
the expectations in (4.15) are well-defined for any ¢ € © under condition

Erj < oco. We have
B(#) = Elo; 4 (0)VTc2(0)Vo2(0)] and A(0) = kuaB(0), (4.16)

where k4 := E(¢Z —1)? > 0.

4.4 Main results

Everywhere in this section {r;,t € Z} is a stationary solution of model
as defined in Definition 4.1|and satisfying Assumptions (A) and (B)
of the previous section. As usual, all expectations are taken with respect
to the true value 6y = (o, wo, ao, do, o) € Oy, where Oy is the interior of

the parameter set © C R°.

Theorem 4.1. (i) Let E|ry> < co. Then 0, in (4.7) is a strongly consistent

estimator of 0y, that is,

(ii) Let E|r|> < oo. Then 0, in (4.7) is asymptotically normal:

n'2(6, — 60) % N(0,%(60)), (4.17)

where $(0y) := B~ 1(0p)A(6p)B~(0p) = k4B~ 1(0y) and matrices A(0), B(6)
are defined in (4.16).

The following theorem gives asymptotic properties of the "finite past"
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4. Quasi-MLE for the quadratic ARCH model with long memory

estimators 6, and 0" defined in (4.10) and (4.13), respectively.

Theorem 4.2. (i) Let E|ry|> < coand 0 < 8 < 1. Then
Elf, — 6| — 0 and B8 — 6y — 0.
(i) Let E|ry|> < coand 0 < 8 < 1 — 2dy. Then
D200 — 6) L N(0,3(6)), (4.18)

where X(6y) is the same as in Theorem 4.1

The asymptotic results in Theorems and are similar to the
results of Beran and Schiitzner ([5], Theorems 1-4) pertaining to the three-
parametric LARCH model in with b; = ¢j471, except that Beran and
Schiitzner [5] deal with a modified QML estimation involving a "tuning
parameter” € > (. As explained by Beran and Schiitzner ([5], Section 3.2),
the convergence rate of Vzn(ﬁo) and 571 (based on nonstationary truncated
observable series in (4.11))) is, apparently, too slow to guarantee asymptotic
normality, this fact being a consequence of long memory in volatility and
the main reason for introducing estimators 0\ in 4.13). Theoremsand
are based on subsequent Lemmas which describe properties
of the likelihood processes defined in (4.8), and (4.12). As noted in
Section our proofs use techniques different from those of Beran and
Schiitzner [5], which rely on the explicit Volterra series representation of a
stationary solution of the LARCH model.

For multi-index 4 = (i1, ...,4i5) € N°, 4 £ 0= (0,---,0), |[¢| == i1 + -+ +
i5, denote partial derivative 9% := §l%l/ I1_, 0%0;.
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Lemma 4.1. Let E|r,|? < oo, for some integer p > 1. Then for any i € N°, 0 <

lZ| < p,

E sup aizt(e)] < o0. (4.19)
USC)

Moreover, if E|r|P*¢ < oo for some € > 0 and p € N, then forany i € N°, 0 <

li| < p,

E sup ‘ai (zt(e) - E(e))‘ 50,  t— o0 (4.20)
0O

Lemma 4.2. The function L(6),0 € ©, in is bounded and continuous.

Moreover, it attains its unique minimum at 6 = 0.

Lemma 4.3. Let Erg < oo. Then matrices A(0) and B(0) in are well-
defined and strictly positive definite for any 0 € ©.

Write | - | for the Euclidean norm in R® and in R® ® R® (the matrix

norm).

Lemma 4.4. (i) Let E|ry|® < co. Then

sup|Ln() — L(O)] 3 0 and  Esup|L.(d) — L,(6)] — 0. (4.21)
0O [4SC)

(ii) Let Er} < oo. Then VL(0) = EVI(0) and

sup |VL,(0) — VL) ¥ 0 and  Esup|VL,(0) — VL,(6)] — 0.
0cO 0cO
(4.22)

(iii) Let E|r|> < oo. Then VIV L(0) = EVIV{,(0) = B(0) (Equation (4.15))
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4. Quasi-MLE for the quadratic ARCH model with long memory

and

SUpgee |VIVL,(0) — VIVL(9)] %% 0, (4.23)
Esupgeo |VIV L, (0) — VIVL,(0)] — 0. (4.24)

Remark 4.3. As noted earlier, the moment conditions of Theorems|4.1/and
are similar to those of Beran and Schiitzner [5] for the LARCH model.
Particularly, condition (Mj) of Beran and Schiitzner ([5], Theorems 2 and 5)
for asymptotic normality of estimators ensures E|r,|> < oo. This situation
is very different from those of GARCH models where strong consistency
and asymptotic normality of QML estimators hold under virtually no
moment assumption on the observed process; see, for example, Francq
and Zakoian ([28], Chapter 7). The main reason for this difference seems
to be the fact that differentiation with respect to d of Y(d) = 72, % 'r;_;
in (4.9) affects all terms of this series and results in "new" long memory
processes 0'Y;(d)/0d" = Eﬁljdfl(logj)irt_j,i = 1,2, 3, which are not
bounded by C|Y;(d)| or Co2(6). Therefore, derivatives of o, %(¢) in (.9)
are much more difficult to control than in the GARCH case, where these

quantities are bounded; see Francq and Zakoian [28], proof of Theorem 7.2.

Remark 4.4. We expect that our results can be extended to more general
parametric coefficients, for example, fractional filters b;(c, d),j > 1, with
the transfer function }-°°, e Vb, (¢c,d) = g(c,d)((1—e*)"=1),z € [-m, 7],

where ¢(c, d) is a smooth function of (¢, d) € (0,00) x (0,1/2). Particularly,

F(] +d) ~ g(C, d) -d—1
@rG+1) ~ T@’ -

and > b3 (c,d) = ¢*(c,d)(T(1 — 2d) — T*(1 — d))/T%(1 — d); see, for

Jj=1"y

bi(c,d) = g(c, al)F Jj — 00, (4.25)
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example, Giraitis et al. ([36], Chapter 7). See also Beran and Schiitzner
([5], Section 2.2). An important condition used in our proofs and satisfied
by b;(c,d) in is that partial derivatives 9.b;(c,d),i = 1,2,3, decay
at a similar rate %! (modulus a slowly varying factor). Particularly, for
ARFIMA(0, d,0) coefficients b)(d) := I'(j + d)/T(d)T'(j + 1) = - dthel)
it easily follows that

J

1 . o .

8db?(d) = b?(d)z d+k—1 ~ b?(d) logj ~ F(d) 1jd 110g],
k=1

and, similarly,

0367 (d) ~ bj(d)(log j)' ~ T'(d)~"j* " (log j)', j — 00, i = 2,3.

4.5 Simulation study

We present a short simulation study of the performance of the QML
estimation for the GQARCH model in (4.4). The GQARCH model in (4.4)
with i.i.d. standard normal innovations {(;} was simulated for —m + 1 <
t < 'm and two sample sizes m = 1000 and m = 5000, using the recurrent
formula in with zero initial condition o_,, = 0. The numerical
optimization procedure minimized the QML function:

L = 1 Emj (T—tz + log af) , (4.26)
m <= \ o}

t
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4. Quasi-MLE for the quadratic ARCH model with long memory

with
t+m—1 2
e = GOy, atz =W’ + <a+c Z jdlrtj) —|—’yo't2_l7 t=1---,m.
j=1

(4.27)

The QML function in can be viewed as a "realistic proxy" to
the QML function L, (0) in with m = n” since and
similar to (4.13) use "auxiliary" observations in addition to 7y,--- , 7,
for computation of m likelihoods in (4.26). However, the number of
"auxiliary" observations in equals m and does not grow as m'/% =
n,0 < f <1—2d < 1, in the case of and Theorem [4.2] (ii), which is
completely unrealistic. Despite the violation of the condition m = n” of
Theorem 4.2 (ii) in our simulation study, differences between the sample
root mean square errors (RMSEs) and the theoretical standard deviations

are not vital (and sometimes even insignificant); see Table 4.5/ below.

Finite-sample performance of the QML estimator O minimizing
was studied for fixed values of parameters vy = 0.7, a9 = —0.2,¢9 = 0.2,
and different values of wy = 0.1,0.01, and the long memory parameter
dg = 0.1,0.2,0.3,0.4. The aforementioned choice of 6y = (o, wo, ag, do, o)
can be explained by an observation that the QML estimation of ~, a, ¢y
appears to be more accurate and stable in comparison with the estimation
of wy and dy. The small values of wy in our experiment reflect the fact
that in most real data studied by us, the estimated QML value of w, was

smaller than 0.05.

The numerical QML minimization was performed using the MATLAB

language for technical computing, under the following constraints:

0.005<~+ <0989, 0<w<2 -2<a<2 0<d<05,
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and the value of c in the optimization procedure is chosen in such a way
that would guarantee Assumption (B) (v) with appropriate 0 < ¢;(d,v),i =
1,2.

The results of the simulation experiment are presented in Table
which shows the sample RMSEs of the QML estimates 5m = (Ym, O, Um,
Ay, C) With 100 independent replications, for two sample lengths m =
1000 and m = 5000 and the aforementioned choices of (v, wy, ag, do, ¢o)-
The sample RMSEs in Table 4.5|are confronted with standard deviations
(in parantheses) of the infinite past estimator in computed according
to Theorem (ii) with X(6y) obtained by inverting a simulated matrix
B(6y)/kq.

A general impression from Table 4.5|is that theoretical standard devi-
ations (bracketed entries) are generally smaller than the sample RMSEs;
however, these differences become less pronounced with the increase of
m and in some cases (e.g. when wy = 0.1, m = 5000) they seem to be
insignificant. Some tendencies in Table are quite surprising, partic-
ularly, the decrease of the theoretical standard deviations and most of
sample RMSEs as d; increases. Also note a sharp increase of theoretical
standard deviations of @, when wy = 0.01, which can be explained by
the fact that the derivative 9,0%(6y) = 2wo/(1 — 7o) becomes very small
with wy, resulting in a small entry of B(6y) and a large entry of ¥(6p). On
the other hand, the RMSEs in Table 4.5 appear to be more stable and less
dependent on 6, compared with the bracketed entries (in particular this

applies to errors of w,, and dyy).
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4. Quasi-MLE for the quadratic ARCH model with long memory

Table 4.1: Sample RMSE of the finite past QML estimates 0,,, received op-
timizing [@.26), of 6y = (70, wo, ao, do, cp) of the GQARCH process in for
ap = —0.2,¢p = 0.2, = 0.7 and different values of wy, dyp. The number of rep-
lications is 100. The quantities in parantheses stand for asymptotic standard
deviations of the estimator 8", n® = m following Theorem {4.1 (ii).

wQZO.l

m  dy o B U d,, m

1000 0.1 0.076 (0.053) 0.046 (0.037) 0.032 (0.023) 0.090 (0.079) 0.027 (0.031)
0.2 0.051 (0.048) 0.043 (0.027) 0.027 (0.020) 0.076 (0.060) 0.030 (0.027)
0.3 0.069 (0.043) 0.033 (0.018) 0.026 (0.017) 0.063 (0.041) 0.030 (0.022)
0.4 0.047 (0.039) 0.028 (0.013) 0.025 (0.015) 0.043 (0.029) 0.022 (0.019)

5000 0.1 0.023 (0.024) 0.018 (0.016) 0.011 (0.010) 0.035 (0.033) 0.014 (0.014)
0.2 0.020 (0.021) 0.011 (0.011) 0.010 (0.009) 0.028 (0.021) 0.012 (0.012)
0.3 0.019 (0.019) 0.010 (0.008) 0.010 (0.008) 0.020 (0.013) 0.010 (0.010)
0.4 0.022 (0.017) 0.007 (0.005) 0.011 (0.007) 0.014 (0.009) 0.010 (0.008)

WQZO.Ol

m d() :?m Evdm a:m dvm Em

1000 0.1 0.060 (0.046) 0.040 (0.296) 0.020 (0.019) 0.073 (0.071) 0.022 (0.029)
0.2 0.044 (0.040) 0.035 (0.203) 0.020 (0.016) 0.073 (0.048) 0.022 (0.024)
0.3 0.045 (0.033) 0.028 (0.117) 0.018 (0.012) 0.044 (0.029) 0.020 (0.019)
0.4 0.040 (0.025) 0.038 (0.047) 0.024 (0.009) 0.034 (0.016) 0.020 (0.013)

5000 0.1 0.021 (0.020) 0.032 (0.125) 0.009 (0.008) 0.031 (0.028) 0.013 (0.013)
0.2 0.018 (0.017) 0.024 (0.085) 0.007 (0.007) 0.020 (0.018) 0.010 (0.011)
0.3 0.019 (0.015) 0.021 (0.046) 0.008 (0.006) 0.013 (0.011) 0.008 (0.009)
0.4 0.016 (0.012) 0.013 (0.017) 0.007 (0.004) 0.011 (0.006) 0.009 (0.006)

4.6 Proofs

We use the following moment inequality by Burkholder [14] and Rosenthal
[64].

Proposition 4.2. Let p > 2 and {Y;} be a martingale difference sequence such

that E|Y;P < oo; E[Y;|Y1,---,Y;21] = 0,5 = 2,3,.... Then there exists a
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constant K, depending only on p and such that
00 » %) p/2
E\ ZY}" < K, (Z <E|Yjp>2/p> : (4.28)
j=1 j=1

Proof of Lemma We use the following (Faa di Bruno) differentiation
rule:

2| v
; —-1)"v! ;

0% %(0) = Z% Y. xj..4 11970t), @29)
=10, (0) Gt i k=1
|Z\ v—1 v

; -1 v—1)! ;

" logo(0) = Z( ) 21/( ) Z Xj o j H&?mf(e)
o’ (0) ! i

R

where the sum ) - ] ; 1s taken over decompositions of ¢ into a sum
1

tot] =

of v multi-indices 5, # 0,k = 1,--- ,v, and Xj . j is a combinatorial
1y

factor depending only on j,,,1 < k <.

Let us prove (4.19). We have |0ilt(9)‘ < rt2|8iat_2(9)| + |8i log o7 (9)|.
Hence using and the fact that 02(0) > w?/(1 — ) > w?/(1 — ) > 0,
we obtain

2|

sup ‘0 L) < C(rf + Z Z Hsup ( 3~7kat( )|/0t(9)) :

966 Vl]1+ +J_IL]C1
Therefore, by Holder’s inequality,

2/(2+p)
Esup [0%,(6)] < C (E(rf + 1)<2+p>/2) X
0O

2]

X Z Z H El/ax <sup ‘ajko't )‘/Jt(9)> k ,  (4.30)

1/1]1+ +J_/Lk1
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where 37 1/q; < p/(2+ p). Note [i| = 37;_, [,| and thus the choice

Q= (2 +p)/15| satisfies 377 1/g; =374, \Jk|/(2 +p) <p/(2+p). Using
0) and condition E|r;|**? < C, relation (.19) follows from

(2+2)/17]
E sup (’8-7@ )‘/Jt(é’)) < 09, (4.31)
0€O
for any multi-index j € N°, 1 < |j] < p.
Consider first the case |j| = 1, or the partial derivative 9;07(0) =

d02(0)/06;,1 < i < 5. We have

(T, (0 V@) 6=,
D20 2w, 0; = w,
ot (0) = < So2(a+ cYi_o(d)), 0, =a, (432)
S0 20+ Vi dd)Yiud), =

| X207 2¢(a+ ¢Yii(d))0aYie(d), 6 =d.

)
)

We claim that there exist C' > 0,0 < 4 < 1, such that

2
M‘ < Cl+ o+ Ji1), i=1,---,5 where (4.33)

oco | 01(0)

Jio = ZV sup |Yi_¢(d)|, 27 sup  [9aYi—e(d)|.

de [dl d2 de [dl d2]

Consider for 0; = . Using (*y'2 < C¥' forall £ > 1,7y € [y1,72) C
(0,1), and some C > 0,0 < 5 < 1 together with Assumption (B) and
Cauchy inequality, we obtain |0,07(6)|/0:(0) < (D72, 2 {w? + (a +
(:Yt_g(al))z)l/2 < C(1+ J;p) uniformly in 0§ € O, proving for 6; = ~.
Similarly, |0.07(0)|/0¢(0) < C(1 + Jio) and [040%(0)|/c:(0) < C(1 + Jy1).
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Finally, for §; = w and 0; = a, (4.33) is immediate from (4.32), proving
(4.33)).

With (4.33)) in mind, (¢.31) for |j| = 1 follows from

EJ T = Zv sup [0 o(d))* < o0, i=0,1. (434)
o deldida)

Using Minkowski’s inequality and stationarity of {Y;(d)}, we obtain
REl/(2+p) szp < Z ;yEEl/ 2+p) sup |8’Yt o(d >’2+p
=0
| 1/(2+p)
< c(Bswm@pr)
d

where

adY% szl

Hence, using Beran and Schiitzner ([5]) Lemma 1 (b) and the inequality
zy < a9/q+y? /¢, x,y>0,1/qg+1/¢ =1, we obtain

1
Y BT < C’ZE sup |05V (d)[*HP

i=0 de[d1 d2]
2

< C)  sup EJO)Y(d)]TP < oo, (4.35)
i=0 de[dhdz]

since

00 (2+p)/
sup E|0iYi(d)*? < C sup (Z 9554 ) ETJ|2+P)2/(2+Z’)>

dE[dhdz} de d1 d2 j:l

< 00,

according to condition E|ry|*™ < C, Rosenthal’s inequality in (4.28)
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and the fact that Supde[dlydﬂ Z;il(aéjd_l)Q S Supde[dl’dﬂ Z;il j2(d_1)<1 +
log® j)? < C,i = 0,1, 2. This proves [@31) for |j| = 1.
The proof of (4.31) for 2 < |j| < pis simpler since it reduces to

E sup |8j0,52(0)|(p+2)/2 < o9, 2 <17 <p. (4.36)
0€O

Recall §; = v and j' := j — (51,0,0,0,0) = (0, j2, j3, ju, j5)- If 3 = 0, then

SUDpco ‘Gj 03(9)‘ < CJp follows as in (4.33) implying (4.36) as in (4.35)
above. Next, let j° # 0. Denote

Q2(6) = w? + (a+ cYi(d))’, (4.37)

so that o2(0) = 32 /'Q2_,(6). We have with m := j; > 0 that |9 02(6)| <
S (01— m))y™ |03 Q2 ()] and @E3T) follows from

Esup}(9-7-623(9)‘(“2)/2 < 0. (4.38)
0O

For js # 0 (recall 6, = w) the derivative in (4.38) is trivial so that it suffices

to check (4.38) only for j; = 0. Then applying Faa di Bruno’s rule we get
92| <0 S (09 (a+ V()| T 09 (0 + viay) T,
j1+j2:j

and hence, (4.38) reduces to

Esup |09 (a + V()" < oo,  0<[jl<p,
[4SC)

whose proof is similar to (4.34) above. This ends the proof of (4.19).

The proof of (4.20) is similar. We have |8i(lt(9)—z(9))| < rf|8i(at_2(9)—
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5,2(0))] + |0% (log 02(0) — log 52(6))|. Hence, using Holder’s inequality sim-
ilarly as in the proof of (4.19), it suffices to show

p+2

Esup |0%(0;2(0) — 5, 2(0))| * =0 (4.39)
)
and
E sup ‘ai(log o;(0) —log a7 (0))] E— ) (4.40)

0O

Below, we prove only the relation (4.39), the proof of (4.40) being analog-

ous.

Using the differentiation rule in (4.29)), we have that

, 2| . .
0% (o720) - 5200 < > > Wl - wil e,
v=lg et g, =1
where
Wil de(0) = o 2 0) T, 09x03(6),
W0y = 5,20 (0) [T, 09:53(9).
Whence, (4.39) follows from
sup }ng’“"]”(e) — ’ng"“»Ju(@)‘ 5o, t — 00 (4.41)
0cO
and
. TR (p+2+€)/p
Esup (|W,;71""’~7v<9)\ + Wi ’Jv(e)}) < O<oo, (442
S
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for some constants ¢ > 0 and C' > 0 independent of ¢. In turn, (4.41)) and
(4.42)) follow from

sup |07 (62(0) — 52(0))| > 0,  t— o0 (4.43)
USC)
and
: (2+p+e)/I]|
Esup (|0d02(0)] /o(0) ) ! e (4.44)
0O
: (2+p+€)/|7|
Esup (0952(0)] /3:(0) ) ! < C
e

for any multi-index j such that |j| > 0 and 1 < |j| < p, respectively.

Using condition E|r;|**PT¢ < C, relations in (#.44) can be proved
analogously to (4.31), and we omit the details. Consider (4.43). Split
02(0) — 7 (0) = Up1(0) + U;2(0), where

[y

t—

U0 = Y {(a+ Vi dd)’ = (a+ Vi o)’} (445)
(=1

WK

Us(0) = S At {w2 + (a+ th_g(d))Z} .

~
Il

t

Then supycgo |8j Uii(6)] 5 0,t = o00,i = 1,2, follows by using Assumption
(B) and considering the bounds on the derivatives as in the proof of (4.31).
For instance, let us prove (4.43) for 09 = o, |7] = 1. We have
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Hence, supycg [04U:1(6)] % 0 follows from 0 < v < 7, < 1 and

B sup ([%i(d) = Yil@)[* + |0avi(d) = Vi@)[*) = 0, (446)
de[dhdz}
E swp (Y| + [B(@) + oy + [05@)]*) < C.447)
dE[dl,dz]

The proof of (4.47) mimics that of (4.35) and, therefore, is omitted. To
show (@46), note Y;(d) — Y;(d) = > ieid 4=y, ; and use a similar argument
as in (4.35) to show that the Lh.s. of (4.47) does not exceed

2 00
: ~ 2 9(d— :
C sup ZE|@§(Y}(d) —Yi(d))|" < C sup 2.72(d D (1+1log®j) — 0,
dedr,da] 575 deldi,do] ;=4
as t — oo. This proves (4.43) for |j| = 1 and 89 = 0,. The remaining cases

in (4.43) follow similarly, and we omit the details. This proves (4.20) and
completes the proof of Lemma O

Proof of Lemma[4.2] We have
|L(61) — L(62)| < Bll(61) — 1:(62)] < CElo} (61) — 07 (62)],

where the last expectation can be easily shown to vanish as |¢; — 65| —
0, 01,6, € ©. This proves the first statement of the lemma. To show the

second statement of the lemma, write

a7 (6o) | a7 (6o)

S PO )

— 1.

The function f(z) ==z — 1 —logz > 0forz > 0,z # 1 and f(x) = 0 if
and only if z = 1. Therefore, L(0) > L(6,), V60 € ©, while L(0) = L(6) is
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equivalent to

o2(0) = o2(0y)  (Pg, —a.s.). (4.48)

Thus, it remains to show that (4.48) implies 6 = 6y = (70, wo, @0, do, co).
Consider the "projection” P,¢ = E[¢|F;] — E[¢|Fs—1] of r.v. &, E|¢] < o0,
where F; = 0((u, u < s) (see Section[4.2). Equation (#.48) implies

0 = Py(07(0) =07 (0)) = P(QF(0)=QF (00))+(7=0) Psoi_1(00), Vs <t—1,
(4.49)
where Q7(0) = w?+ (a+ Y, bt,u(G)ru)2 is the same as in (4.37). We have

PQIO) = 2ab_y(0)rs + 2b,—s(0)rs Y bu(O)ru+ > b7, (0)Pory

u<s s<u<t

= 2ab;o(0)Cs04(00) + 2b15(0)Ce0s(60) D brwu(B)r +

u<s

+ Y b (0)Paoi(0y) + 07 (0)(¢2 — 1)o2(6p). (4.50)
s<u<t
Whence and from (£.49) for s =t — 1 using P,_107 ,(6p) = 0, we obtain
C1(0,600)¢F 1 + 2C5(0,00)¢-1 — C1(6,6) = 0, (4.51)

where

C1(0.60) = (c"—cp) or-1(0o).
02(‘9790> = CLC—(IOCO —+ Z t_u —C(Q)(t—u)do_l) -

Since C;(6, 6),i = 1,2, are F;_s-measurable, (4.51) implies

C1(6,00) = Ca(6,6;) = 0,
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4.6. Proofs

particularly, ¢ = ¢ since 0;_1(6y) > w > 0. Then

0= Ca(0,6p) = cola — ag) + ¢ Z ((t—w)" =t —u)™ "r,

u<t—1
and Er, = 0lead to a = a¢ and next to
2
~E ( > ((F—w' = (=) ) =Eg Y (i ) =0,
u<t—1

or d = dy. Consequently, P(Q?(0)—Q?(fy)) = 0 forany s < t—1 and hence
v = 7o in view of (£.49). Finally, w = wy follows from Eo?(6) = Ec?(6)

and the fact that w > 0, wy > 0. This proves 6 = 6, as well as the lemm. [J

Proof of Lemma 4.3} From (4.16), it suffices to show that
V2T =0, (4.52)

for some € © and )\ € R°, \ # 0 leads to a contradiction. To this end, we
use a similar projection argument as in the proof of Lemma First, note

that 07(0) = Q2(0) + vyo?_,(0) implies
Vo (0) = (0, V4Qi(0)) +yVai_y(0) + (Vy)ai_y(6),

where V4 = (9/0s, -+ ,005). Hence and using the fact that (4.52)) holds for
any t € Z by stationarity, from (4.52) we obtain

(07.1(0), V4Q7 (0)) A" = 0. (4.53)

Thus,
(P07 1(0), PBVIQi(0)A = 0,  Vs<t—1;
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4. Quasi-MLE for the quadratic ARCH model with long memory

compare with (#.49). For s =t — 1 using P,_107,(0) = 0, P,_1V4Q?(0) =
V.4P,_1Q?%(0) by differentiating (4.50) similarly to (4.51), we obtain

Di(N¢Gy +2D2(A) -1 — Di(A) = 0, (4.54)

where D;()\) := 2X\50,_1(0) and

Dy(A) = Agctdsa+2X5e Y (t—u)lr, +
u<t—1
+ A Z (t —u)2log(t — u)ry,
u<t—1

A= (A1, -+, 25)1. Asin @51), D;(\),i = 1,2 are F;,_s-measurable, (.54
implying D;(\) = 0,7 = 1,2. Hence, A\; = 0 and then D,(\) = 0 reduces
to Asc 4+ >, 1 (t — w)??log(t — u)r, = 0. By taking expectation
and using ¢ # 0, we obtain A3 = 0 and then Ay = O since E(>_,_, (¢t —
u)42log(t — u)ru)2 # 0. The aforementioned facts allow rewriting
as 2wXy + Ajo?_;(0) = 0. Unless both )\; and A, vanish, the last equation
means that either \; # 0 and {07()} is a deterministic process, which
contradicts ¢ # 0, or \; = 0, A\ # 0 and w = 0, which contradicts w # 0.
Lemma 4.3]is proved. O

Proof of Lemma[4.4, Consider the first relation in (4.21)). The pointwise con-
vergence L,(0) “3 L(6) follows by ergodicity of {I;(f)} and the uniform
convergence in from E supyce |VIi(0)| < oo (cf. Beran and Schiitzner
[5], proof of Lemma 3), which, in turn, follows from Lemma
with p = 1. The proof of the second relation in is immediate from
Lemma with p = 0,e = 1. The proof of statements (ii) and (iii)
using Lemma 4.1|is similar and is omitted. l

Proof of Theorem[.1] (i) Follows from Lemmas[#.2]and [4.4] (i) using standard
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4.6. Proofs

argument.

(ii) By Taylor’s expansion,
0 = VL,(0,) = VLy(0) + VIV L, (6:)(8, — ).

where 0 2 9, since 6, = 6,. Then VIVL,(6:) L VIV L(6y) by Lemma
(£.23). Next, since {r?/o?(6y) — 1, F;,t € Z} is a square-integrable and
ergodic martingale difference sequence, the convergence n'/2V L, (6,) %
N(0, A(6y)) follows by the martingale central limit theorem of Billingsley
([9], Theorem 23.1). Then follows by Slutsky’s theorem and (4.15).
U

Proof of Theorem Part (i) follows from Lemmas[4.2land 4.4 (i) as in the
case of Theorem 4.1|(i). To prove part (ii), by Taylor’s expansion,

0 = VIP@) = VEP(60) + VIVIP @) 0 - 60),

n

where 67 5 6, since 8 5 6,. Then VIVL(67) —, VIVL(f,) by
Lemma [4.4] (4.23)—(4.24). From the proof of Theorem [4.1|(ii), we have that

nfP L) (0) & N(0, A(6)),

where L (0) = ﬁ Z?:n_[ng] +11:(¢). Hence, the central limit theorem in

(4.18)) follows from
1(B) = E|VL (60) = VLI (B)| = o(n™""). (4.55)

We have I,,(8) < sup,,_ps1<t<n E|Vi(6) — VZ(GO)] and (4.55) follows from

107



4. Quasi-MLE for the quadratic ARCH model with long memory

E|Vii(60) — Vii(60)] = ot™7?),  t— . (4.56)

Write |||, := E!/?|¢|P for LP-norm of r.v. £. Using
[V (1(00) =1 (60))| < 77|V (07 (B0) =7 *(60)) | + |V (log o7 (6) — Log 57 (60))

and assumption E|r,|> < oo, relation (£.56) follows from

o7 20,07 — 5740,5% 53 = O(t% Y21ogt) and 4.57
t t t t 115/

||015_28i0t2 - 5;2825?”1 == O(]fdo_l/2 logt), 1= 1, te ,5,
where O'tQ = (7152(90), 5152 = 5752(9()), 820'752 = 810'752(190) and 6?15? = 615,52(00)

Subsequently, we prove only the first relation in (4.57), the proof of the

second one being similar. We have
“dg 2 =492 _d=—4(=2 | 2\(=2 9o 2 ~—drg 2 ~2
o, "0i0; — 0, "0i0; =0, "o, (0; +0;)(0; — 07)0;0; + 0, (00 — 0;07).

Then using 07 > w?/(1 — ) > 0,57 > w?/(1 — y2) >, the first relation in

follows from

(o7 = 57) (007 Jor)lsys = O(t® /) and (4.58)
1007 — 0i5}|lss = O™ Y*logt),  i=1,---,5. (4.59)

Consider (4.58). By Holder’s inequality,

(o7 = &1)(Bioi [or)llsss < llof — G52l 007 /orlls,
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4.6. Proofs

where ||0,07 /0|5 < C according to (£.3T). Hence, (4.58) follows from
o7 — 5752 = O™ /). (4.60)

To show (&.60), similarly as in the proof of (4.43), split 07 — 67 = Uy 1+ Uy 2,
where Uy ; := Uy ;(6p),7 = 1,2, are defined in (4.49), that is,

t—1

U = % { (a0 + COYLK)Q — (a0 + Coﬁz)z} ;

U2 = Z% {w§ + (Go + COYt—z)z} ;

and Y; := Yi(dy), Y: := Yi(dy). We have

t—1

Uil < O 3blYiee = Yid (1 + [Yiee + [Yieal),
/=1

Ural < CY A6(1+ [Yeedl?),
(=t

and hence

t—1
o7 — 67152 < C{ Yol (Yiee = Yieo) (1 + [Yiee| + [Yiee]) |52+
/=1

+ D+ |Y2e5)}

=t

t—1 00
< C{Zvﬁlﬁe%elﬁzyg}, (4.61)
=1 =t

where we used the fact that |Y|s < C, |[Yi|s < C by |5 < C and
Rosenthal’s inequality in (4.28). In a similar way from (4.28) it follows
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4. Quasi-MLE for the quadratic ARCH model with long memory

that
1/2
[Yiee=Yiedls < ©4 D% < c-0* (462
j>t—t
Substituting (4.62) with (4.61) we obtain
t—1
|o? — Ut||5/2 < C{E:7 0)bo- 1/2+Z,Y} = Ot 1/2)
=1

proving (4.60).
It remains to show [@.59). Similarly to the previous discussion, d;07 —
0;0 O't = @Um + @Uw, where @Ut’j = &Ut’j ((90),] = 1, 2. Then "

follows from

10: U1 |l5/3 = Ot *1ogt) and |0iU;2|53 = o(t® %), i=1,--- 5.

(4.63)
For i = 1, the proof of is similar to {.61). Consider for 2 <
i < 5. Denote V;(0) := 2a + c(Y;(d) + Yi(d)), V; := Vi(6y), 0:V; := Vi),
and then

t—1

10:Ueallss < 0275{“@'(5@—6—ﬁ—£)||5||‘/¥||5+||Y%—£—172—e||5||5z“/}||5},
1

where 0;(Y;_ys — ?Hg) =0,0; # 0y and

10aYe = YOlls = 11D 3" (log )rells

j>t

< oY P 10g? 1P = Ot P logi)

j>t
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4.7. Conclusion

similarly as in (4.62). Hence, the first relation in follows from
and ||0;Vi]ls < C(1 + [18aYi—ell5 + |0aYi—ell5) < C < oo as in the proof of
(4.59), and the proof of the second relation in (4.63) is analogous. This
proves and completes the proof of Theorem O

4,7 Conclusion

In this chapter we studied the five-parametric QML estimation for a
quadratic ARCH process with long memory and strictly positive con-
ditional variance introduced by Doukhan et al. [22] and Grublyté and
Skarnulis [40], which extends the QARCH model of Sentana [66] and
the Linear ARCH (LARCH) model of Robinson [62]. Following Be-
ran and Schiitzner [5] who studied a similar problem for the LARCH
model, we discussed several QML estimators of unknown parameter
6, € R® of our model, in particular, an estimator §n depending on obser-
vations rg, —oo < s < n, from the infinite past, and a class of estimators
0P, 0<pB<1, only depending on rs,1 < s < n, and minimizing the sum
of the last m = n® = o(n) likelihoods. Under assumptions similar to those
of Beran and Schiitzner [5], we proved consistency and asymptotic normal-
ity of these estimators with the convergence rate m'/? = o(n(!~%)/2), where
dy € (0,1/2) is the long memory parameter. However, using estimator
6 is unrealistic because of the poor and a priori unknown convergence
rate. In the simulation experiment, we studied the empirical performance
of a realistic version of this estimator based on m = n/2 last likelihoods,
for m = 1000 and m = 5000, and show that the empirical RMSEs of this

estimator reflect good agreement with the theoretical standard deviations

with convergence rate m'/2 for m = 5000.
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Chapter 5

A generalized nonlinear
model for long memory
conditional

heteroscedasticity

In this chapter, we study the existence and properties of a stationary
solution of the ARCH-type equation r, = (;0;, where (; are standardized
i.i.d. random variables and the conditional variance satisfies an AR(1)
equation o7 = Q*(a + Y72, bjri—j) + yo7_, with a Lipschitz function
Q(x) and real parameters a,v,b;. We extend the model and the results
by Doukhan, Grublyté and Surgailis [22] from the case v = 0 to the
case 0 < v < 1. We also obtain a new condition for the existence of
higher moments of r;, which does not include the Rosenthal constant. In

particular, when () is the square root of a quadratic polynomial, we prove
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5.1. Introduction

that r; can exhibit a leverage effect and long memory. The parametric
OML estimation for the latter model (called the Generalized Quadratic
ARCH model, GQARCH) is considered in Chapter @ of this dissertation.

5.1 Introduction

Doukhan et al. [22] discussed the existence of a stationary solution of the

conditionally heteroscedastic equation

re = GOy, o = Q° (a—i—ijrtj), (5.1)

Jj=1

where {(;,t € Z} are standardized i.i.d. random variables, a, b;, are real
parameters and ()(z) is a Lipschitz function of real variable x € R. The

most important case of probably is
Qz) = V@ + 22, (5.2)

where ¢ > 0 is a parameter. Models (5.1)—(5.2) include the classical Asym-
metric ARCH(1) of Engle [25] and the Linear ARCH (LARCH) model of
Robinson [62]]:

ry = (oy, o = a+ijrt,j. (5.3)
j=1

Giraitis et al. [32] proved that the squared stationary solution {r?, ¢ € Z}
of the LARCH model in Equation (5.3) with b; decaying as j% 1,0 < d <
1/2, may have long memory autocorrelations. The leverage effect in the

LARCH model was discussed in detail by Giraitis et al. [33]. Doukhan et

113



5. A generalized nonlinear model for long memory conditional heteroscedasticity

al. [22] extended the above properties of the LARCH model (long memory
and leverage) to the model of (5.1)-(5.2) with ¢ > 0, or strictly positive
volatility.

In this chapter, we extend the results of Doukhan et al. [22] to a more

general class of volatility forms:

re = (o, of = Q* (a + Z bjrt]) + o7, 5.4)
j=1

where {(;,t € Z},a,b;, Q(z), are as in and 0 < v < 1is a parameter.
The inclusion of lagged o7 ; in helps to reduce very sharp peaks and
clustering of volatility which occur in trajectory of models (5.1)—(5.2) near
the threshold ¢ > 0. The generalization from to is similar to that
from ARCH to GARCH models (see, e.g., Engle [24] and Bollerslev [10]),
particularly, equation with Q(z) in and b; = 0,5 > 2, reduces to
the Asymmetric GARCH(1,1) of Engle [25]:

ol =+ (a+bri_)* + o2 |
Let us describe the main results of this chapter. Section 5.2 (Theorems
and obtains sufficient conditions for the existence of a stationary solu-
tion of with E|r [P < oo and 7 € [0, 1). Theorem 5.1 extends the cor-
responding result by Doukhan et al. [22] (Theorem 4) from v = 0 to v > 0.
Theorem 5.2|is new even in the case v = 0, by providing an explicit suffi-
cient condition for higher-order even moments (p = 4,6, ...), which
does not involve the absolute constant in Burkholder-Rosenthal inequality
(5.11). Condition coincides with the corresponding moment condi-

tion for the LARCH model and is important for statistical applications, see
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5.2. Stationary solution

Remark Sections deal exclusively with the case of quadratic
Q% in (5.2), referred to as the Generalized Quadratic ARCH (GQARCH)
model. Theorem [5.3|(Section obtains long memory properties of the
squared process {r?,t € Z} of the GQARCH model with v € (0,1) and
coefficients b; decaying regularly as b; ~ 3471, j — 00, 0 < d < 1/2. Sim-
ilar properties were established by Doukhan et al. [22] for the GQARCH
model with v = 0 and for the LARCH model by Giraitis, Robin-
son and Surgailis [32], Giraitis, Leipus, Robinson and Surgailis [33]. The
quasi-maximum likelihood estimation for the parametric GQARCH model
with long memory was studied in Chapter {4 of this dissertation (see also
Grublyte, Surgailis and Skarnulis [41]). See the review paper by Giraitis,
Leipus and Surgailis [35] and Chapter 3| of this dissertation (also, Giraitis,
Surgailis and Skarnulis [37]) for issues related with long memory ARCH
modeling. Section [5.4{extends to the GQARCH model the leverage effect
discussed by Doukhan et al. [22] and Giraitis et al. [33]].

5.2 Stationary solution

Denote |ul, := E|(ol? (p > 0), pp :=E¢ (p=1,2,...) and let
Xt = th_srs. (55)

Since 0 < v < 1, equations in (5.4) yield

‘7t2 = Z’VEQZ(G +Xi¢) and 1 = CtJ ZVZQQ(G + Xi—r).  (5.6)
=0 =0
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5. A generalized nonlinear model for long memory conditional heteroscedasticity

In other words, stationary solution of (5.4), or

Ty = G ZVKQZ <a + Z bﬂ“té]), (5.7)
(=0 j=1

can be defined via (5.5), or stationary solution of

Xii= ) bsCoy| D' Qa+ Xoy), (5.8)
=0

s<t (=

and vice versa.

In Theorem 5.1} we assume that @Q in (5.6) is a Lipschitz function, that

is, there exists a constant Lip, > 0, such that

Note that inequality implies the bound
Q*(x) < & + 3, z € R, (5.10)

where ¢; > 0, ¢o > Lipg and c; can be chosen arbitrarily close to Lipg,.

Let us give some formal definitions. As in Chapter let 7; = 0((s, s <
t),t € Z, be the sigma-field generated by (;,s < t. A random process
{u, t € Z} is called adapted (respectively, predictable) if u; is F;-measurable

for each t € Z (respectively, u; is F;_1-measurable for each t € Z).

Definition 5.1. Let p > 0 be an arbitrary real number.

(i) By LP-solution of or/and we mean an adapted process {ry,t € 7}

with B|ry|P? < oo such that, for any t € Z, the series X; = Y~ bjry; converges
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5.2. Stationary solution

in LP, the series 02 = > ,0 0 7' Q*(a + X;_¢) converges in LP/? and holds.
(ii) By LP-solution of we mean a predictable process {X;,t € Z} with
E|X;[P < oo such that, for any t € 7Z, the series 07 = Y ;oo V' Q*(a + Xi—y)
converges in LP/2 | the series Y et Di—sCs0s converges in LP and holds.

Define
> by, 0<p<2, B,/(1—~7%) 0<p<2,
BP = ~ p/2 Bp,’y =
(Zj:l b?) y D > 25 Bp/<1 - fY)p/27 p > 2.

Note B, = B, . Similarly to Doukhan et al. [22], we use the following
moment inequality, see Burkholder [14], Bahr and Esséen [69], Rosenthal
[64].

Proposition 5.1. Let {Y;,j > 1} be a sequence of random variables such that
ElY;|? < oo for some p > 0. If p > 1, we additionally assume that {Y} is
a martingale difference sequence: E[Y;|Y1,...,Y;_1] = 0,5 = 2,3,.... Then

there exists a constant K, > 1 depending only on p and such that

> E|Y;|P, 0<p<2,
p S Kp Z]_l | J| (511)

(S B2y p>o.

E‘ iyj
j=1

Proposition |5.2|states that equations (.7) and (5.8) are equivalent in
the sense that by solving one of these equations, one readily obtains a

solution to the other one.

Proposition 5.2. Let () be a measurable function satisfying with some
c1,¢2 > 0,and {(;,t € Z} be an i.i.d. sequence with |pu|, = E|{|P? < oo and

satisfying E¢p = 0 for p > 1. In addition, assume B, < oo and 0 <y < 1.
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5. A generalized nonlinear model for long memory conditional heteroscedasticity

(i) Let {X;,t € Z} be a stationary LP-solution of and let

Ot 1= Z YQ?*(a + Xi—0).

=0

Then {r, = (o} in is a stationary LP-solution of equation and
Ejr? < C(1+E|X3|?). (5.12)
Moreover, for p > 1, {ry, Fi,t € Z} is a martingale difference sequence with
Elre|Fia] =0, Ellr’|Fia] = [plpor’ (5.13)

(ii) Let {r., t € Z} be a stationary LP-solution of (5.7). Then {X;,t € Z}, defined
in (5.5), is a stationary LP-solution of equation such that

E|Xt’p S CE|T't‘p.
Moreover, for p > 2,

BX:Xo] = Erg Y bsbs,  t=01,....

s=1

Proof. (i) First, let 0 < p < 2. Then

Eloy’ = Elo} /> <> 7PI'ElQ(a+ Xi—p)|” < 0.
=0

Hence, using inequality (5.10), the fact that {X;,t € Z} is predictable and

Qa+ X, )P <[ +c3(a+ X )P < CO+]a+ X, oP) < C(1+[ X f?),
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5.2. Stationary solution

we obtain

ElrP = |plElol < CY /21 (1+EIXf)
=0
< CA+EX|) < oo,

proving (5.12) for p < 2. Next, let p > 2. Then

00 /2
Bloy[” < (Z YEY?|Q(a+ Xt)|p> < CE|Q(a + X[,
=0

by stationarity and Minkowski’s inequality and hence follows using
the same argument as above. Clearly, for p > 1, {r; = (0} is a mar-
tingale difference sequence and satisfies equations in (5.13)). Then, the
convergence in L? of the series in equation follows from and
Proposition 5.1}

> P > b, 0<p<2
E’ij?”tj‘ < C Z] 1‘ | /2 b= = CBp < Q.
(S p>2

In particular,

27£Q2 CL—I—th l— srs - Z’%Q2 Q+Xt Z)—Tta

s<t

by the definition of ;. Hence, {r¢,t € Z} is a LP-solution of equation (5.7).
Stationarity of {r,,¢ € Z} follows from stationarity of {X;,t € Z}.
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5. A generalized nonlinear model for long memory conditional heteroscedasticity

(ii) Since {ry,t € Z} is a LP-solution of equation (5.7), so

T = oy = G ZVZQQ(G + Xi0),
(=0
with X, defined in and {X;,t € Z} satisfies equation (5.5), where the
series converges in L”. The rest follows as in Doukhan et al. [22], proof of

Proposition 2. O

Remark 5.1. Let p > 2 and ||, < oo, then by inequality (5.11), {r:,t € Z}
being a stationary LP-solution of is equivalent to {r;,t € Z} being a
stationary L?-solution of with E|ry|P < oco. Similarly, if @ and {(;,t €
Z} satisfy the conditions of Proposition |5.2/and p > 2, then {X,,t € Z},
being a stationary LP-solution of (5.5), is equivalent to {X;,t € Z} being a
stationary L?-solution of with E|X;|? < co. See also Doukhan et al.
[22], Remark 1.

Theorem 5.1. Let {(;,t € Z} satisfy the conditions of Proposition[5.2land Q
satisfy the Lipschitz condition in (5.9).

(i) Let p > O and
K}/7 ||l Lipg BY? < 1, (5.14)

where K, is the absolute constant from the moment inequality in . Then
there exists a unique stationary LP-solution {X,;,t € Z} of and

C(p, Q)| plpBy
1 — Kp|plpLipg By’

E|X, P < (5.15)

where C(p, ()) < oo depends only on p and cy, ¢ in inequality .
(ii) Assume, in addition, that Q*(z) = ¢ + c32%, where ¢; > 0,1 = 1,2, and
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5.2. Stationary solution

po = EC¢ = 1. Then 3B, < 1 is a necessary and sufficient condition for the

existence of a stationary L*-solution {X;,t € Z} of equation with a # 0.

Proof. (i) We follow the proof of Theorem 4 by Doukhan et al. [22]. For
n € N we recurrently define a solution of equation with zero initial

condition att < —n as

0, t < —n,

XM = (5.16)
S b GolY, t>—n, tez,

where o{" \/Z"fos Q% (a+ X™). Let us show that {X" ¢t € Z}
converges in L? to a stationary LP-solution {X;,t € Z} as n — 0.
First, let 0 < p < 2. Let m > n > 0. Then, by inequality (5.11)), for any

t > —m we have that

BIX™ - X < lul{ Y0 b Bl

—m<s<—n

£ ) bePElol — ot}

—n<s<t

= Kp’“’p{sin,n + 57/7/1,71} (517)

Using |Q(a+ )P < O+ d|z|P, x € R, with ¢z > ¢ > Lipg, arbitrarily close
to Lip(,, see Doukhan et al. [22], proof of Theorem 4, we obtain

m-+s
S <2 b o (CHGEIXTP) . (58)
—m<s<—n /=0

Next, using |(Zz>0'7 T )1/2 (Zi>0 'Yiyzz)l/2| < (Zi>0 ’Yi<93z‘ — yz‘)Z)l/Q we
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5. A generalized nonlinear model for long memory conditional heteroscedasticity

obtain

s+n

m n m " ?
ol < (3@l ) - Qo X
=0

s+m 1/2
+ ) 7€Q2(G+X§m2)> : (5.19)

{=s5+n+1

Hence from the Lipschitz condition in (5.9) we have that

s+n
s S P (zvﬂﬂmngxgmzx&m

—n<s<t {=0

s+m
> vp€/2<c+c§EX§m2>|p>>.

{=s+n-+1

Combining (5.17) and the above bounds, we obtain

s+m
EIX™ — X < K,lul, (ep ST b Y X - X
—m<s<t /=0

s+m

+ O D Iy
=0

—m<s<—n

s+m
+ C Z |br—s|" Z ’Yp€/2>

—n<s<t f=s4+n+1
p
OKP‘M|Z)’€t+n7’y +

+ Kplulody Y b EBIXT — X, (5.20)

S

IA

—m<s<t

where b2 = 357 4P/2|b,_j|P, s > 0, and

Rtyn = C(l - Vp/2)_1Kp|:u|p ( Z |bj|p + bf—kn,fy) —0 (n - OO)

j>t+n
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5.2. Stationary solution

Iterating inequality (5.20) as in Doukhan et al. [22], (6.3), and using

Kplplpch Z bf—s,'y = Kp|ulpciBpy < 1,

s<t

we obtain lim,, , E|Xt(m) — Xt(n)|p = 0, and hence the existence of X,

such that lim,,_, E|Xt(n) — X;|? = 0 and satisfying the bound in (5.15).

Next, consider the case p > 2. Let m > n > 0. Then by inequality (5.11)

for any ¢t > —m, we have that

E|Xt(m) . Xt(n)|;l7 < Kp'/vdp ( Z b?_SEZ/P|O.£m)|P+

—m<s<—n

p/2
b Y e oty

—n<s<t
— Kplulp(Ro . + R (5.21)
Similar to (5.18),
—n—1 m-+s
R, < 0 0> A'EPQa+ X))
s=—m /=0
—n—1 m+s
< 30D ANC+ SR,
s=—m /=0
and using inequality (5.19),
s+n
Ry, < >0 B EPD QG+ X)) — Qa+ X))+
—n<s<t /=0
s+m p/2
+ 3 Qe+ X))
l=s+n+1
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5. A generalized nonlinear model for long memory conditional heteroscedasticity

s+n
< >0, (Z%E%megm) Qla+ X"+
—n<s<t /=0
s+m
+ ) YE?|Q(a + X)) )
l=s+n+1
st+n
< Y, <Lipg ST EYXT) - X P+
—n<s<t £=0
s+m
2 0+c2E2/P|X“>>'
l=s+n+1
Consequently,
EPIXE = XOP < v+ KPP D 0 ERIXE) - X,

—m<s<t

where rpip = C(1 = 7) K P uly P (2o i b+ 0210 ) — 0 (n = 00). By

J>t+n 7J

iterating the last displayed equation and using

KNP S0, = Kl B/ (1= 7) < 1.
j=1

we obtain lim,, .o E¥?|X™ — X[ = 0 and hence the existence of X
such that lim,, ,~ E|Xt(n) — X’ = 0 and satisfying the bound in (5.15). The
rest of the proof of part (i) is similar as in Doukhan et al. [22], proof of

Theorem 1, and we omit the details.

(ii) Note that Q(z) = \/c} + c32? is a Lipschitz function and satisfies (5.9)
with Lip, = ¢;. Hence by K, = 1 and part (i), a unique L*-solution
{X},t € Z} of equation (5.8) under the condition c3Bs ., = 3B /(1 —7) < 1

exists. To show the necessity of the last condition, let {X;,t € Z} be a

124



5.2. Stationary solution

stationary L?-solution of equation (5.8). Then

EX? = ) b ) VEQa+ X,)
=0

s<t

— Z b Z YE(c] + c3(a+ X2.))
s<t =0

= (B2/(1=7)(cf + 3(a® + EXY)) > 3(Ba/(1 —7))EXY,

since a # 0. Hence, c3B5/(1 — v) < 1 unless EX? = 0, or {X; = 0} is a
trivial process. Clearly, equation (.8) admits a trivial solution if and only
if 0 = Q(a) = v/ + c3a®> = 0, or ¢; = ¢ = 0. This proves part (ii) and the

theorem. O

Remark 5.2. Theorem 5.1 extends Theorem 4 by Doukhan et al. [22] from
v = 0toy > 0. A major shortcoming of Theorem and the above
mentioned result by Doukhan et al. [22] is the presence of universal
constant K, in condition[5.14, The upper bound of ), given by Osekowski
[23] leads to restrictive conditions on B, , in inequality for the
existence of the LP-solution, p > 2. For example, for p = 4, the above

mentioned bound of Osekowski [23] gives
KyuB3/(1—7)* < (27.083) B3/ (1 —7)? < 1, (5.22)

requiring By = > 77, b7 to be very small. Since statistical inference based
on "observable" squares r7, 1 <t < n, usually requires the existence of Er}
and higher moments of r; (see, e.g., Grublyté et al. [41]]), there is a necessity
to derive less restrictive conditions for the existence of these moments
which do not involve the Rosenthal constant K),. This is achieved in

Theorem 5.2 Particularly, for v = 0, Lip,, = 1, sufficient condition (5.24)
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5. A generalized nonlinear model for long memory conditional heteroscedasticity

of Theorem [5.2) for the existence of Er}, p > 2, even becomes
Ly o0 .
. ( .)lme <1 (523)
— k=1

J

Condition (5.23) coincides with the corresponding condition in the LARCH
case in Giraitis et al. [33], Proposition 3. Moreover, conditions (5.23) and
(5.24) apply to more general classes of ARCH models in (5.1) and (5.4), to

which the specific Volterra series techniques used by Giraitis, Robinson
and Surgailis [32], and Giraitis, Leipus, Robinson and Surgailis [33] are

not applicable. In the particular case p = 4, condition (5.23)) becomes

6By + 4lps| D |bil* + pa > bl < 1,
K1 k=1

which seems to be much better than condition (5.22) based on Theorem
G.1l

Theorem 5.2. Let {(;,t € Z} satisfy the conditions of Proposition [5.2]and Q
satisfy the Lipschitz condition (5.9). Let p = 2,4, ..., be even and

p o0
p - -
( j>|uj|L1p‘éZ bl < (1 =) (5.24)
=2 k=1
Then there exists a unique stationary LP-solution {X,,t € Z} of equation (5.8).

Proof. For p = 2, condition agrees with LipéBgﬁ < 1 or condition
(5.14), so we assume p > 4 in the subsequent proof. In the latter case,
inequality implies Lip%BZ7 < 1 and the existence of a stationary
L*-solution {X;,t € Z} of equation (5.8). It suffices to show that the above

L?-solution satisfies EX} < oo.
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5.2. Stationary solution

To this end, similarly as in the proof of Theorem [5.1| (i), consider the
solution {X } with zero initial condition at ¢ < —n as defined in (5.16).
Let a,f " .= 0,t < —n. Since E(Xt( )—Xt) — 0 (n — 00), by Fatou’s lemma

it suffices to show that under condition (5.24)
E(X™y < C, (5.25)

where the constant C' < oo does not depend on ¢, n.

Since p is even, for any ¢ > —n we have that

t—1

EX™P = S E[baGol b0

_ Zp: (f) S b uE [ ( Z bi—uCuol ) j]. (5.26)

j=2 s=—n u=-n

Hence using Holder’s inequality:

E&nP| < 'Ej/p|§/c|pE(p—j)/p|n|p

< [—Emp EW] L<j<pe>0,
pcP p
we obtain

E(x™)?

IA

i()waZw { b

Jj=2 s=—n

relEee))

—1
- Z 61’t*3 /C3 + Z 6215 sE tz))p, (527)

S=—n S=—nN
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5. A generalized nonlinear model for long memory conditional heteroscedasticity

where Xt(;") = Zz;in bt_uCuazg"), c3 > Lipg, and where

p . .
J(P\ . j P—J(P\ 4 '
61,t—s = Z;(j)‘bi_sllﬂj‘c%a 62,t—8 = Z—<]>‘bg—8H/’LJ’C§
J=2 '

P
J=2 p

The last expectation in (5.27)) can be evaluated similarly to (5.26)—(5.27):

p s—1 u—1 p—Jj
E(X)Y = Y (f) > bl B | (oMY (Z btvgva£">>

j=2 u=-n v=—"n

s—1 s—1
< Z Bri—uB(o(M [e3)? + Z 52,t—uE(Xt(Z))p-

u=—n u=-—n"n

Proceeding recurrently with the above evaluation results in the inequality:

t—1
B < BesEol o), (5.28)

S=—n

where

t—s—1
gt—s = Pri-s (1 + Z Z Bot—uy - "62,tuk> .

k=1 s<up<---<u1<t

Let B8 :=> 1o, Bir,i = 1,2, B = ooy B,. By assumption (5.24),

p

e = 3 (M) ld Sl < (-
k=1

J=2

whenever o3 — Lipg > 01is small enough, and, therefore,

m < m;&,t (14—;52)

= ! ooy (5.29)

(L —=)P/21 = B
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5.2. Stationary solution

Next, let us estimate the expectation on the r.h.s. of inequality (5.28) in
terms of expectations on the Lh.s. Using inequality (5.10) and Minkowski’s

inequalities, we obtain

s+n
B < Y AEIQa+ X
=0
s+n
DB+ o+ X
£=0

IA

n-+s
O+ A By
=0

IN

where c3 > ¢ > Lip and c3 — Lip > 0 can be arbitrarily small. Particu-
larly, for any fixed T" € Z,
2

sup E¥P(oM)P < i)’ sup EXP(XM 4 C.
—n<s<T (1 Y) —n<s<T

Substituting the last bound into inequality (5.28), we obtain

32/p
sup EXP(x[My < sup EYP(XMyY 4 ¢ (5.30)
—n<t<T (1 - 7) —n<s<T

Relations (5.30) and (5.29) imply

n C
sup EQ/p(X( ))p < — 00
—n<t<T 1— Br
(1-7)
proving (5.25) as well as the theorem. O

Example 5.1. (Asymmetric GARCH(1,1)). The asymmetric GARCH(1,1)
model of Engle [25] corresponds to

of =+ (a+bri 1) +707y, (5.31)
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5. A generalized nonlinear model for long memory conditional heteroscedasticity

or
o7 = 0+ Yry_1 + ayry_, + 0074, (5.32)

in the parametrization of Sentana ([66], (5)), with parameters in equations

(5.31) and (5.32) related by
0=c*+d® 0=, ©=2ab ay =" (5.33)

Under the condition that {(; = r; /0, } are standardized i.i.d., a stationary
asymmetric GARCH(1,1) (or GQARCH(1,1) in the terminology of Sentana
[66]) process {r¢,t € Z} with finite variance and a # 0 exists if and only if
By, =b?/(1—7)<1,or

by <1, (5.34)

see Theorem [5.1] (ii). Condition (5.34) agrees with condition a;; + ¢ < 1 for
covariance stationarity in Sentana [66]. Under the assumptions that the
distribution of (; is symmetric and p; = E¢;! < 0o, Sentana [66] provides a

sufficient condition for finiteness of Er} together with explicit formula

0[0(1 + arg + ) + ¢?]
Erd = fa . .
" (1 — a%lu4 — 2@11(5 — 52)(1 — a1 — (5) (5 35)

The sufficient condition of Sentana [66] for Er}! < oo is pya?; +2a116 + 6% <

1, which translates to
pabt + 203y + 4% < 1, (5.36)

in terms of the parameters of (5.31). Condition (5.36) seems weaker than
the sufficient condition j1,6*+6b* < (1—)? of Theorem 5.2 for the existence
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5.2. Stationary solution

of the L*-solution of (5.31).

Following the approach of Doukhan et al. [22], below we find explicitly
the covariance function p(t) := cov(r3, r?), including the expression in
(5.35), for the stationary solution of the asymmetric GARCH(1,1) in (5.31).
The approach of Doukhan et al. [22] is based on derivation and solution
of linear equations for moment functions my := Er?, m3(t) := Errg and

my(t) := Er?rg. Assume that u3 = E¢3 = 0, or Er} = 0. We can write the

following moment equations:

my = (*+a?)/(1—-b*—7), ms3(0)=0,

ms(l) = Z YE( + a® + 2abr_g + b*r? ))rg = 2abms,
=0

ma(t) = Z YE(S + a® + 2abri_g_1 + b*r}_,_1)rg

{=0
t—2
= 2abmyy' T + B> Afmy(t—(—1), t>2.  (537)
/=0

From equations above, one can show by induction that
ms(t) = 2abma(y + 021t > 1.
Similarly,

my(0) = wB((* +a®) + 2abrg + b*ri + yop)?
= s ((® 4 a®)* + (2ab)’ms + b'ma(0)+
+2(c + a®) (b + )ma + (2677 +7*)ma(0) /p1a) ,

oo
my(t) = Z YE(C® 4 a® + 2abry_¢_1 + b*r_y_1)1]
=0
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5. A generalized nonlinear model for long memory conditional heteroscedasticity

= > A (@ +a’)my+ 6> yma(lt —L—1]) +
=0 =0

+2ab )y A'ms(C—t+1), t>1.
=t

Using

2ab Z Yms(l —t+1) = 4ab*my Z oy + 7))t
=t (=t
= 4a’b'myy' /(1 —y(y +1%)).

and p(t) = m4(t) — m3, we obtain the system of equations

p(0) = ma(0) —m,

p(t) = 0°Y _Ap(t — € — 1))+ 4a’may' /(1 — (v + 7))
/=0
t—2

= Y Apt—t-1)+Cy" =1, (5.38)
=0
where C := b 577 v p(0) + (ma(0) — m3)b? + 4>’ may/(1 — y(y + b?)) is

some constant independent of ¢, and

ma(0) = — bwﬁ?&% e ((02 +a?)(1+ 62 +9) + (2ab)2). (5.39)

Note that the expression above coincides with (5.35) given that the rela-

tions in (5.33)) hold.
Since the equation in (5.38) is analogous to (5.37)), the solution to (5.38)
is p(t) = C(y +v»)"1,t > 1. In order to find C, we combine p(t) =
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5.3. Long memory

C(v + b*)'! and the expression for C' to obtain the equation
C' = Cb%y/(1 = (v +6%) + (ma(0) = ma)b” + 4a’b*may /(1 — v(v + 7).

Now C' can be expressed as

(ma(0) —m3)(1 —y(y + %)) + da’may
1 —(y +2b%) ’

C=0v
together with equation (5.39) and p(t) = C'(y + b*)'"!,t > 1, giving expli-
citly the covariances of process {r?,t € Z}.

5.3 Long memory

The present section studies long memory properties of the generalized
quadratic ARCH model in (5.4) corresponding to Q(z) = /¢ + 22 of
equation (5.2), that is,

s<t—{

ry = CtJ nyﬁ <02 + (a + Z btgs’l”s>2>, tez, (5.40)
(=0

where 0 < v < 1,a # 0, c are real parameters, {(;,t € Z} are standardized
ii.d. random variables with zero mean and unit variance, and b;, 5 > 1,

are real numbers satisfying
b; ~ Bj (30<d<1/2, 3>0). (5.41)

The main result of this section is Theorem 5.3 which shows that, under
some additional conditions, the squared process {r?,t € Z} of equation

(©.40) has similar long memory properties as in the case of the LARCH
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5. A generalized nonlinear model for long memory conditional heteroscedasticity

model (see Giraitis et al. [32]], Theorem 2.2). Theorem [5.3|extends the result
of Doukhan et al. ([22], Theorem 3) to the case v > 0. In Theorem [5.3and

below, 0 <y <1, By =Y 2, b2 and B(-,-) is a beta function.

=17
Theorem 5.3. Let {ry,t € Z} be a stationary L*-solution of —(5.41).

Assume in addition that pu, = E[()] < oo, and E[r}}] < cc. Then

cov(rd, r?) ~ k221 t — o0, (5.42)

where k3 1= (1_27“_ﬁ32)2B(d, 1 — 2d)Er3. Moreover,

[n7]

n~ 1/22 Ert —DI0,1] “2Bd+(1/2)(7), n — 0o, (5.43)

where Bqy(1/2) s a fractional Brownian motion with the Hurst parameter H =

d+ (1/2) € (1/2,1) and x3 := x1/(d(1 + 2d)).
To prove Theorem |5.3| we need the following two facts.

Lemma 5.1. (Doukhan et al. [22], Lemma 1) For a;; > 0,5 = 1,2, ..., denote

Ay = ap + E E Qi Oy iy Oy Qg kb =1,2,. .0

0<p<k 0<iy<---<ip<k

Assume that 377 a; < 1 and
a;j < cj (Fe>0,v>1).

Then there exists C' > 0 such that for any k > 1

A < Ck™.
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5.3. Long memory

Lemma 5.2. Assumethat 0 < < land oj ~cj~" (37 >0, ¢ > 0). Then

t—1

. Is _
Qg = Zﬂjat_j ~ 7, t — oo.
§=0

Proof. 1t suffices to show that the difference D, := a; 3 — o /(1 — 3) decays

faster than o4, in other words, that

t—1 00
Dt = Zﬁ](Oét — Oét,j) — Zﬁj@t,j = O(t_’}/).
j=0 J=t

Clearly, ¥, , /(c — ) = O(B'2) = oft™7), T, Blay_; = O(8") =
o(t™7). Relation ooy (ay — ay—j) = o(t™7) follows by the dominated
convergence theorem since supy<;<;/» |y — ;| < Cand oy — oy [t —
0 for any fixed j > 0. O

Proof of Theorem We use the idea of the proof of Theorem 3 by
Doukhan et al. [22]]. Denote

t—1 t—1

by = Y Vbg, b= ) by, t>1, (5.44)
j=0 j=0

Xp =) b, Xiy =Y bi_sqts, teZ.
s<t s<t

By the definition of r; in , we have the following decomposition (c.f.
Doukhan et al. [22], (6.11))

—Er]) =) b (I —Erd) = 20X, + Ui+ Viy =t &, (5.45)

s<t

where X; . is the main term and the "remainder terms" U; and V, ., are
ty Y
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5. A generalized nonlinear model for long memory conditional heteroscedasticity

given by
Uy = (G —E)or,  Viy = > Vi (5.46)
=0
Vi = 2 Z bt—s,bt—s, 75,75, (5.47)

52<51<t

Using the identity V; = (X7 —EX?)—> .,
in L? of the series on the r.h.s. of equation (5.47) follows as in Doukhan et
al. [22] (6.12). Hence, the series for V; , in (5.46) also converges in L.

b7 o (r? —Er?), the convergence

Let us prove that
cov(&o, &) ~ 4a’cov(Xoy, Xiy) ~ 4a” AT, £ — oo, (5.48)

where \? = 3%/(1 — v)?B(d,1 — 2d). The second relation in follows
from b, ~ (B/(1 =)t t — oo, see Lemma and the fact that X, , =
Y <t Di—s 75 is @ moving average in stationary uncorrelated innovations
{rs}. Since {U,} is also an uncorrelated sequence, cov(&, U;) = 0(t > 1),

and the first relation in (5.48)) is a consequence of

E[UoX:,] + E[UgVis] = o(t* 1), (5.49)
E[X(mvm] + E[VOﬁ(Xm + Vtv)] = 0(t2d_1)- (5.50)
We have
E[UoX:,] = b, E[Ugrg] = Ot 1) = o(t*1)
and

ElUV; ] = 2b,,D; = O(td—l) — O(tZd—1)7
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5.3. Long memory

where

|Dy| = |E[Uore > br—srs]| < BUG(Erg) 2 (B bi_gra)")/? < C

5<0 s<0

follows from Rosenthal’s inequality in (5.11) since

E( S bt_sr3)4 < K4Er§(z bfs)z <.

s<0 s<0

This proves (5.49). The proof of (5.50) is analogous to that of Doukhan et
al. [22] (6.13)—(6.14) and is omitted.

Next, let us prove (5.42)). Recall the definition of l;?ﬁ in (5.44). From the
decomposition (5.45), we obtain

it =B} =Y ¢in&i, tEL (5.51)
=0

where ¢;., > 0,7 > 0, are the coefficients of the power series
oo o B
(I)’Y(Z) = Z¢j77z] = (1 o Zb?,wzj)_la z € C? ’Z| < 17
=0 j=1
given by ¢, =1,
Djy = b?ﬁ + Z Z bgw Y bngk—wbngk,w j=1

0<k<j0<s1<-<s55<]

From (5.41) and Lemmas 5.1 and 5.2 we infer that
Gy =O0*"?), t— o0, (5.52)

in particular, @, (1) = >..° ¢, = (1 —7)/(1 — v — By) < oo and the r.hs.
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5. A generalized nonlinear model for long memory conditional heteroscedasticity

of equation (5.51) is well defined. Relations (5.51) and (5.52) imply that

cov(r?, r3) Z pipjcov(&_i, E_j) ~ @3(1)(}0\/(&,5’0), t — oo, (5.53)

1,7=0

see Doukhan et al. [22], (6.20). Now, (5.42) follows from relations (5.53)
and (5.48). The invariance principle in (5.43)) follows similarly as in the
proof of Theorem 3 by Doukhan et al. [22], from (5.51), (5.48) and

[n7]

n_d_1/2 Z Xtﬁ _>D[O,1] )\2Wd+(1/2) (’7'), )\% = )\%/d(l + Qd),

t=1

the last fact being a consequence of a general result of Abadir er al. [1].

Theorem [5.3]is proved. O

5.4 Leverage

For the conditionally heteroscedastic model in with E¢; = E¢} =
0, E¢? = 1, consider the leverage function h; = cov(o?,ry) = Erfrg, ¢t > 1.
Following Giraitis et al. [33], and Doukhan et al. [22], we say that {r,,t €
Z}, in equation (5.40) has leverage of order k > 1 (denoted by {r:} € ¢(k)) if

hj <0, 1<j<k

The study by Doukhan et al. [22] of leverage for model (5.40) with v = 0,
that is,
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5.4. Leverage

was based on a linear equation for the leverage function:

he =2amaby + Y bhi i+ 26> bigh;,  t>1,
0<i<t >0
where my = Er?. A similar equation (5.59) for the leverage function
can be derived for model (5.40) in the general case 0 < v < 1. Namely,
using Ery = 0, Ergrg = mal(s = 0),ErZrg = 0(s < 0), Ergrg,rs, = 1(s1 =

0)h_s, (s2 < s1) as in Doukhan et al. [22] we have that

t—1
he = Erfr=Y B[ +(a+ Y b))
=0

s<t—{
t—1
= > y'(2amabi_¢+ Y 07, E[riro]) + (5.54)
£=0 s<t—{
t—1
+2 Z '76 Z bt—£—81 bt_£_32E[T31T32T0]
/=0 s9<8s1<t—4
= 2amabyy + Y hibl i+ 2 hiwig,, (5.55)
o<i<t >0

where b; ,, ZN)tQ’7 are defined in (5.44) and w; ¢, := ZZ% Vb bt

Proposition 5.3. Let {ry,t € Z} be a stationary L*-solution of equation (5.40)
with E|ro> < oo, |u|ls < oo. Assume, in addition, that By, < 1/5, us =
EC3 = 0. Then for any fixed k such that 1 < k < oo:

(1) ifabl <0, abj < 0,] =2,..., k, then {Tt} € E(k),

(ii) if aby > 0,ab; > 0,5 =2,...,k, then h; > 0,forj=1,... k.

Proof. Let us prove that

= 2 2|a|lm By?
]| = hy < 22 . (5.56)
; ' (1 =)(1—=3By,)
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Let |b];, == Zz;é v¢|bi_¢|. By Minkowski’s inequality,

1/2

- 1/2 i -
(z) < 3 (zb%w) < BBl G5
=1 /=0 =1

and, therefore, | 2%, hyw; ;| < ||h|| By *|bl;.. Moreover,

1/2

o0 1/2 0
(Zb@ < B,*/(1—), (Zbﬁﬁ) < B, /(1 —)
t=1 t=1

o - 1/2
and (>0 (X gcics hib?_i1)?) / < ||h|| By, = ||h]|B2/(1 — 7). The above

t—1,y

inequalities together with (5.55) imply
Il < 2lalmaBy?/(1 —~) + ||| B/ (1 — ) + 2||h|| By*By? /(1 — 4),

proving (5.56).
Using (5.55) and (5.56), statements (i) and (ii) can be proved by induc-

tion on k£ > 1 similar to Doukhan et al. [22]. Since w;;~ = bib;+1 and

b1, = by, equation (5.55) yields

hy = 2amobiy+2Y wiishi =2bi(amy + > hibiy1).  (5.58)

i>0 >0
According to (5.56), the last sum in (5.58) does not exceed
|3 hibisa| < 1001 By* < 2lalma By, /(1 = 3Bas) < lalms
i>0

provided B, < 1/5. Hence, (5.58) implies sgn(h;) = sgn(ab,), or state-
ments (i) and (ii) for £ = 1.

Let us prove the induction step £k — 1 — k in (i). Assume first that
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5.4. Leverage

a > 0,b1 < O,bg < 0, ;bk;—l < 0. Thenh1 < O,hQ < 0, ;hk—l < Oby
the inductive assumption. By (5.59),

hp, = Z(Gmek,’y + Zhiwi’k”y) -+ Z Biyhk—z}
>0 o<i<k
where S, 02, hi—; < 0and | 3. hiwips| < 17| By by < ama|blys

according to (5.56)), (5.57). Since b, < 0 and |b|y, = |bx,/|, this implies
amaoby 4+ oo hiwiky < 0,0r hy, < 0. The remaining cases in (i)—(ii) follow

analogously. [l
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Chapter 6

Conclusions

In this last chapter, we summarize the main results of the dissertation:

e in this dissertation we showed that IGARCH and IARCH(c0) equa-
tions with zero intercept may have a nontrivial covariance stationary

solution with long memory;

e we provided a complete answer to the long standing conjecture
of Ding and Granger ([20], 1996) about the existence of the Long
Memory ARCH model;

e we introduced and investigated a new class of long memory integ-
rated AR(p, d, q) processes and showed that their autocovariance can
be modeled easily at low lags without a significant effect on the
long memory behavior, this being a major advantage over classical

ARFIMA models;

e we also obtained necessary and sufficient conditions for the existence
of stationary integrated AR(oco) processes with finite variance and

proved that such processes always have long memory;
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e we studied the five-parametric QML estimation for a quadratic
ARCH process with long memory and strictly positive conditional
variance. Several QML estimators of unknown parameter 6, € R® of
our model were discussed, in particular, an estimator depending on
observations from the infinite past, and a class of estimators depend-
ing only on observations from the finite past. We proved consistency

and asymptotic normality of these estimators;

e a simulation study of the empirical MSE of QML estimation was
included. In the simulation experiment, we studied the empirical
performance of a more realistic version of the estimator and showed
that the empirical RMSEs of this estimator show a good agreement

with theoretical standard deviations;

o we studied the existence and properties of a stationary solution of
the ARCH-type equation r; = (;0;, where the conditional variance
satisfies o7 = Q*(a + Y2, bjri—;) + yo7_, with a Lipschitz function
Q(z) and real parameters «a,~,b;. We obtained conditions for the
existence of a stationary solution, and, in particular, when () is the
square root of a quadratic polynomial, we proved that 7, can exhibit

a leverage effect and long memory.

143



Bibliography

[1] K. M. Abadir, W. Distaso, L. Giraitis, and H. L. Koul. Asymptotic
normality for weighted sums of linear processes. Econometric Theory,
30:252-284, 2014.

[2] B. D. O. Andersen and J. B. Moore. Optimal Filtering. Prentice Hall,
Inc., Englewood Cliffs, N.J., 1979.

[3] R. T. Baillie, T. Bollerslev, and H. O. Mikkelsen. Fractionally in-
tegrated generalized autoregressive conditional heteroscedasticity.
Journal of Econometrics, 74:3-30, 1996.

[4] J. Beran. Statistics for long-memory processes. Chapman and Hall, New
York, 1994.

[5] J. Beran and M. Schiitzner. On approximate pseudo-maximum like-
lihood estimation for LARCH-processes. Bernoulli, 15:1057-1081,
20009.

[6] I. Berkes and L. Horvath. The rate of consistency of the quasi-
maximum likelihood estimator. Statistics and Probability Letters, 61:
133-143, 2003.

[7] L. Berkes and L. Horvath. The efficiency of the estimators of the
parameters in GARCH processes. Annals of Statistics, 32:633-655,
2004.

[8] L. Berkes, L. Horvath, and P. S. Kokozska. GARCH processes: struc-

144



Bibliography

ture and estimation. Bernoulli, 9:201-227, 2003.
[9] P. Billingsley. Convergence of Probability Measures. New York: Wiley,
1968.

[10] T. Bollerslev. Generalized autoregressive conditional heteroskedasti-
city. Journal of Econometrics, 31:307-327, 1986.

[11] A. Bose and K. Mukherjee. Estimating the ARCH parameters by
solving linear equations. Journal of Time Series Analysis, 24:127-136,
2003.

[12] P. Bougerol and N. Picard. Stationarity of GARCH processes and
of some nonnegative time series. Journal of Econometrics, 52:115-127,
1992.

[13] P.J. Brockwell and R. A. Davis. Time Series: Theory and Methods (2nd
edition). Springer Series in Statistics. Springer-Verlag, New York.,
1991.

[14] DL. Burkholder. Distribution functions inequalities for martingales.
Annals of Probability, 1:19-42, 1973.

[15] V. Kazakevicius and R. Leipus. On stationarity in the ARCH(c0)
model. Econometric Theory, 18:1-16, 2002.

[16] V. Kazakevic¢ius and R. Leipus. A new theorem on existence of
invariant distributions with applications to ARCH processes. Journal
of Applied Probability, 40:147-162, 2003.

[17] D. R. Cox. Long-range dependence: a review. In Statistics: An
Appraisal. Proc. 50th Anniversary Conference, pages 55-74. lowa State
University Press, 2009.

[18] J. Davidson. Moment and memory properties of linear conditional
heteroscedasticity models, and a new model. Journal of Business and

Economic Statistics, 22:16-29, 2004.

145



Bibliography

[19] R. B. Davies and D. S. Harte. Tests for Hurst effect. Biometrica, 74:
95-102, 1987.

[20] Z. Ding and C. W. J. Granger. Modelling volatility persistence of
speculative returns: A new approach. Journal of Econometrics, 73:
185-215, 1996.

[21] R. Doug, E. Roueff, and P. Soulier. On the existence of some ARCH(o0)
processes. Stochastic Processes and their Applications, 118:755-761, 2008.

[22] P. Doukhan, I. Grublyté, and D. Surgailis. A nonlinear model for
long memory conditional heteroscedasticity. Lithuanian Mathematical
Journal, 56:164-188, 2016.

[23] A. Osekowski. A note on Burkholder-Rosenthal inequality. Bulletin
of the Polish Academy Sciencies. Mathematics, 60:177-185, 2012.

[24] R. FE. Engle. Autoregressive conditional heteroscedasticity with estim-
ates of the variance of United Kingdom inflation. Econometrica, 50:
987-1008, 1982.

[25] R. F. Engle. Stock volatility and the crash of '87. Discussion. The
Review of Financial Studies, 3:103-106, 1990.

[26] C. Francq and JM. Zakoian. Maximum likelihood estimation of pure
GARCH and ARMA-GARCH processes. Bernoulli, 10:605-637, 2004.

[27] C. Francq and JM. Zakoian. A tour in the asymptotic theory of
GARCH estimation. In Handbook of financial time series, pages 85-109.
Springer-Verlag Berlin Heidelberg, 2009.

[28] C. Francq and JM. Zakoian. GARCH models: Structure, Statistical
Inference and Financial Applications. New York: Wiley, 2010.

[29] C. Francq and JM. Zakoian. Inconsistency of the MLE and inference
based on weighted LS for LARCH models. Journal of Econometrics,
159:151-165, 2010.

146



Bibliography

[30]

[38]

[39]

L. Giraitis and D. Surgailis. ARCH-type bilinear models with double
long memory. Stochastic Processes and their Applications, 100:275-300,
2002.

L. Giraitis, P. Kokoszka, and R. Leipus. Stationary ARCH models:
dependence structure and central limit theorem. Econometric Theory,
16:3-22, 2000.

L. Giraitis, P. M. Robinson, and D. Surgailis. A model for long
memory conditional heteroscedasticity. The Annals of Applied Probab-
ility, 10:1002-1024, 2000.

L. Giraitis, R. Leipus, P. M. Robinson, and D. Surgailis. LARCH,
leverage and long memory. Journal of Financial Econometrics, 2:177—
210, 2004.

L. Giraitis, R. Leipus, and D. Surgailis. Recent advances in ARCH
modelling. In Long Memory in Economics, pages 3-38. Springer-Verlag,
2007.

L. Giraitis, R. Leipus, and D. Surgailis. ARCH(oo) models and long
memory properties. In Handbook of financial time series, pages 71-84.
Springer-Verlag Berlin Heidelberg, 2009.

L. Giraitis, H. L. Koul, and D. Surgailis. Large sample inference for long
memory processes. Imperial College press, 2012. ISBN 978-1-84816-278-
5.

L. Giraitis, D. Surgailis, and A. Skarnulis. Stationary integrated
ARCH(o00) and AR(c0) processes with finite variance. Under revision
in Econometric Theory, 2017.

C. W.]J. Granger and A. P. Andersen. An Introduction to Bilinear Time
Series Models. Vandenhoek and Ruprecht, Gottingen, 1978.

C. W.]. Granger and Z. Ding. Some properties of absolute return: an

147



Bibliography

alternative measure of risk. Annales d’Economie et de Statistique, 40:
67-91, 1995.

[40] I. Grublyté and A. Skarnulis. A nonlinear model for long memory
conditional heteroscedasticity. Statistics, 51:123-140, 2017.

[41] I. Grublyté, D. Surgailis, and A. Skarnulis. QMLE for quadratic
ARCH model with long memory. Journal of Time Series Analysis, 2016.
doi: 10.1111 /jtsa.12227.

[42] P. Hall and Q. Yao. Inference in ARCH and GARCH models with
heavy-tailed errors. Econometrica, 71:285-317, 2003.

[43] J. D. Hamilton. Time series analysis. Princeton University Press, Prin-
ceton, 1994.

[44] J. R. M. Hosking. Fractional differencing. Biometrika, 68:165-176,
1981.

[45] J. K. Hunter and B. Nachtergaele. Applied Analysis. World Scientific
Publishing Co.Pte. Ltd., 2001.

[46] H. Hurst. Long-term storage capacity of reservoirs. Transactions of
the American Society of Civil Engineers, 116:770-808, 1951.

[47] H. Hurst. Methods of using long-term storage in reservoirs. Proceed-
ings of the Institution of Civil Engineers, Part I, pages 519-577, 1955.

[48] I. A. Ibragimov and Yu. V. Linnik. Independent and Stationary Sequences
of Random Variables. Wolters-Noordhoff, Groningen, 1971.

[49] P. Kokoszka and R. Leipus. Change-point estimation in ARCH mod-
els. Bernoulli, 6:513-539, 2000.

[50] D. Koulikov. Long memory ARCH(co) models: Specification and
quasi-maximum likelihood estimation. Working Paper 163, Centre for
Analytical Finance, Univ. Aarhus. www.cls.dk/caf/wp/wp-163.pdf, 2003.

[61] R. Leipus and V. Kazakevic¢ius. On stationarity in the ARCH(oo)

148



Bibliography

model. Econometric Theory, 18:1-16, 2002.

[52] M. Levine, S. Torres, and F. Viens. Estimation for the long-memory
parameter in LARCH models, and fractional Brownian motion. Stat-
istical Inference for Stochastic Processes, 12:221-250, 2009.

[53] O. Lieberman and P. C. B. Phillips. Refined inference on long memory
in realized volatility. Econometric Reviews, 27:254-267, 2008.

[54] AM. Lindner. Statioanrity, mixing, distributional properties and
moments of GARCH(p,q)-processes. In Handbook of financial time
series, pages 43—69. Springer-Verlag Berlin Heidelberg, 2009.

[55] B. Mandelbrot. Une classe de processus stochastiques homothetiques
a soi; application a loi climatologique de h. e. hurst. Comptes Rendus
Academic Sciences Paris, 240:3274-3277, 1965.

[66] B. Mandelbrot and J. Wallis. Noah, Joseph and operational hydrology.
Water Resources Research, 4:909-918, 1968.

[67] T. Mikosch and C. Staricd. Is it really long memory we see in financial
returns? In Extremes and Integrated Risk Management, London, pages
149-168. Risk Books, 2000.

[58] T. Mikosch and C. Stérica. Long-range dependence effects and ARCH
modeling. In Theory and Applications of Long-Range Dependence, pages
439-459. Birkh&user, 2003.

[59] P. Moran. On the range of cumulative sums. Annals of the Institute of
Statistical Mathematics, 16:109-112, 1964.

[60] D. B. Nelson. Stationarity and persistence in the GARCH(1,1) model.
Econometric Theory, 6:318-334, 1990.

[61] T. Subba Rao. On the theory of bilinear time series models. Journal of
the Royal Statistical Society. Series B (Methodological), 43:244-255, 1981.

[62] P. M. Robinson. Testing for strong serial correlation and dynamic

149



Bibliography

conditional heteroskedasticity in multiple regression. Journal of Eco-
nometrics, 47:67-84, 1991.

[63] P. M. Robinson and P. Zaffaroni. Pseudo-maximum likelihood es-
timation of ARCH(oo) models. The Annals of Statistics, 34:1049-1074,
2006.

[64] HP. Rosenthal. On the subspaces of [?(p > 2) spanned by the se-
quences of independent random variables. Israel Journal of Mathemat-
ics, 8:273-303, 1970.

[65] W. Rudin. Real and Complex Analysis. McGraw-Hill Book Company,
New York etc., 1987.

[66] E. Sentana. Quadratic ARCH models. The Review of Economic Studies,
3:77-102, 1995.

[67] W. Stout. Almost sure convergence. New York: Academic Press, 1974.

[68] L. Truquet. On a family of contrasts for parametric inference in
degenerate ARCH models. Econometric Theory, 30:1165-1206, 2014.

[69] B.von Bahr and C-G. Esséen. Inequalities for the rth absolute moment
of a sum of random variables, 1 < r < 2. The Annals of Mathematical
Statistics, 36:299-303, 1965.

[70] P. Whittle. Estimation and information in stationary time series. Arkiv

for Matematik, 2:423-443, 1953.

150



	 Notations and Abbreviations
	1 Introduction
	2 Background
	2.1 Definitions and preliminaries
	2.2 Long memory
	2.3 Estimation

	3 Stationary integrated ARCH() and AR() processes with finite variance
	3.1 Introduction
	3.2 Stationary solutions of FIGARCH, IARCH and ARCH equations
	3.3 Stationary Integrated AR() processes: Origins of long memory
	3.4 Proofs of Theorem 3.1 and Corollaries 3.1-3.4
	3.5 Proofs of Theorems 3.2 and 3.3
	3.6 Simulation study
	3.6.1 FIGARCH and ARFIMA(0,d,0) processes
	3.6.2 IAR(p, d, q) and ARFIMA(p, d, q) processes

	3.7 Conclusion

	4 Quasi-MLE for the quadratic ARCH model with long memory 
	4.1 Introduction
	4.2 Stationary solution
	4.3 QML Estimators
	4.4 Main results
	4.5 Simulation study
	4.6 Proofs
	4.7 Conclusion

	5 A generalized nonlinear model for long memory conditional heteroscedasticity
	5.1 Introduction
	5.2 Stationary solution
	5.3 Long memory
	5.4 Leverage

	6 Conclusions
	 Bibliography

