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Notation

N the set of natural numbers
Z the set of integers
Q the set of rational numbers
R the set of real numbers
C the set of complex numbers
H the upper half-plane of the complex plane
|x| the absolute value of x
[x] the integer part of x
{x} the fractional part of x

an → a, n→ ∞ the sequence (an) converges to a
limn→∞ an = a same as above

fn(x) → g(x), n→ ∞ f converges to g pointwise
limn→∞ fn(x) = g(x) same as above

f(x) = O(g(x)) there exists a fixed C > 0 such that |f(x)| ≤ Cg(x) as x→ ∞
f(x) ≪ g(x) same as above
f(x) ≪ϵ g(x) same as above except that the implicit constant depends on ϵ

f(x) = o(g(x)) the ratio |f(x)|/g(x) → 0 as x→ ∞
(xn) a sequence of numbers xn, n = 1, 2, . . .



Chapter 1

Introduction

In this work, we use the notation s = σ + it to denote a complex number.
Here σ and t are real numbers, σ denotes the real part and t—the imaginary
part of the complex number s. Suppose f is a function, mapping set X into
set Y . We call x belonging to X an a-value of f (a belongs to Y ) if and only
if f(x) = a. In case a = 0, we call x a zero of f . Since we often use it later,
we give the definition of the Riemann zeta-function

ζ(s) =

∞∑
n=1

1

ns
.

This Dirichlet series converges absolutely in the complex half-plane {s ∈
C : σ > 1}. The Riemann zeta-function has a simple pole with residue 1 at
s = 1 and is defined as the meromorphic continuation into the rest of the
complex plane.

As the title suggests, later on in this dissertation we investigate the distri-
bution of a-values of zeta-functions, in particular the Selberg zeta-functions
and the zeta-functions belonging to the extended Selberg class. Chapter 1
gives an account of the major novelties attained in this study together with
the bibliographical data of our articles and the list of our conferences and
visits. In Chapter 2, we discuss some well-known results which are later
employed in our original proofs. In Chapter 3, we show that almost all
a-values of Selberg zeta-functions associated to a compact Riemann surface
are clustered around the critical line σ = 1/2. This result was proved in
the joint work with our adviser Ramūnas Garunkštis [25]. Later on, we
prove an analogous result for the Selberg zeta-function associated to a fi-
nite volume Riemann surface. Then we turn our attention to the vertical
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distribution of the a-values of Selberg zeta-functions associated to a com-
pact Riemann surface. We show that the imaginary parts of these values
are uniformly distributed modulo one. This result appeared in the joint
work with Ramūnas Garunkštis and Jörn Steuding in [28]. In the end, we
consider the relationship between the zeros of the functions belonging to
the extended Selberg class and of their derivatives. We show that both
of them have approximately the same number of zeros left of the critical
line σ = 1/2. This result was obtained together with Ramūnas Garunkštis
in [26].

1.1 Methods
The methods used in this dissertation mostly come from Complex Analysis.
Almost all results employ the residue theorem which connects the value of
the integral of some function f along a contour with the appropriately
weighted sum of the residues of f inside the contour. Often we need to
find the number of a-values of f inside some region. In order to do so, we
employ the Littlewood’s lemma. We also use the Hadamard’s factorization
theorem and the Jensen’s theorem.

1.2 Novelties
The results obtained in this dissertation are all original. Most of them are
based on some classical results. The following main theorems have been
attained:

• This is Theorem 3.3. Suppose N(a, T ) is the number of non-trivial a-
values of the Selberg zeta-function associated to a compact Riemann
surface of genus g ≥ 2 in the region 0 ≤ τ < t < T . Here τ is such
that the Selberg zeta-function does not have any trivial a-values in the
region τ < t. For a ̸= 1,

N(a, T ) = (g − 1)T 2 + o(T )

and, for a = 1,

N(1, T ) = (g − 1)T 2 − T

2π
logN(P00) + o(T ).

2
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Here N(P00) is the norm of a prime element in a certain conjugacy
class of a Fuchsian group Γ ⊂ PSL(2,R), Γ giving rise to the Riemann
surface.

• This is Theorem 3.5. Let N−(a, δ, T ) denote the number of non-trivial
a-values of the Selberg zeta-function Z associated to a compact Rie-
mann surface of genus g ≥ 2 in the region τ < t < T and σ < 1/2 − δ.
The number N+(a, δ, T ) corresponds to the non-trivial a-values of Z
in the region τ < t < T and σ > 1/2 + δ, while the number N0(a, δ, T )

denotes the non-trivial a-values of Z in the region τ < t < T and
1/2− δ < σ < 1/2 + δ, where

δ :=
(log logT )2

logT .

We have
N−(a, δ, T ) +N+(a, δ, T ) ≪ T 2

log logT
and

N0(a, δ, T ) = (g − 1)T 2 +O

(
T 2

log logT

)
.

• This is Theorem 4.2, which is a generalization of Theorem 3.3 for the
Selberg zeta-function Z associated to a finite volume Riemann surface.
We have the following estimate for the number of non-trivial a-values
of Z up to T , that is, where the imaginary parts of the a-values are
between 0 and T > 0, provided a ̸= 1

N(a, T ) =
vol(M)

4π
T 2 − n1

π
T logT +

n1 − log g1 − n1 log 2
π

T + o(T ).

If a = 1, then

N(1, T ) =
vol(M)

4π
T 2 − n1

π
T logT +

n1 − log g1 − n1 log 2
π

T

− T

2π
logN(P00) + o(T ).

Here n1 denotes the number of cusps of the Riemann surface. The real
constants d(1) and g1 come from the scattering matrix determinant.
They are defined in Section 4.1. The constant N(P00) is defined as
above.

3
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• This is Theorem 4.3, which again is a generalization of Theorem 3.5
for the Selberg zeta-function associated to a finite volume Riemann
surface. The following estimates hold

N−(a, δ, T ) +N+(a, δ, T ) ≪ T 2

log logT

and
N0(a, δ, T ) =

vol(M)

4π
T 2 +O

(
T 2

log logT

)
.

Here the values N−(a, δ, T ), N+(a, δ, T ), and N0(a, δ, T ) are defined as
above.

• This is Theorem 4.4. Suppose ρa = βa+ iγa is an a-value of the Selberg
zeta-function associated to finite volume Riemann surface. For non-
trivial 0 < γa ≤ T and a ̸= 1, we have∑
0<γa≤T

(
1

2
− βa

)
=
n1
4π
T logT − T

2π

(
n1
2

+
n1
2
log π + log |d(1)| − log g1

)
− T

2π
log |1− a|+ o(T ),

and, for a = 1 respectively,∑
0<γa≤T

(
1

2
− βa

)
=
n1
4π
T logT − T

2π

(
n1
2

+
n1
2
log π + log |d(1)| − log g1

)
− T

2π
logm0 +

T

4π
logN(P00) + o(T ).

Again, for the precise meaning of the real constants d(1) and g1, see
Section 4.1. The constants m0 and N(P00) are defined as above.

• This is Theorem 5.1. Let a ∈ C. The imaginary parts of non-trivial
a-points of the Selberg zeta-function Z(s) associated to a compact
Riemann surface are uniformly distributed modulo one. The precise
meaning of the uniform distribution modulo one will be explained in
Section 2.5.

• This is Theorem 6.2. Let F belong to the extended Selberg class, the
degree of F strictly greater than 0, and σ0 > σF , σF being the least
real number greater or equal to 1/2 such that F does not have any

4
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non-trivial zeros in the region σ > σF . Let τ be such that F ′ does not
have any zeros in the region t > τ and σ < 1−σF . Let N(T ) and N1(T )

respectively denote the number of zeros of F (s) and F ′(s) in the region
τ < t < T , σ < 1/2. Then

N(T ) = N1(T ) +O(logT ).

Moreover, if N(T ) < T/(2σ0 − 1) + O(1), then there is a monotonic
sequence {Tj}, Tj → ∞, j → ∞ such that

N(Tj)−N(T1) = N1(Tj)−N1(T1).

• This is Theorem 6.3. Let F be a non-constant function belonging
to the extended Selberg class with degree 0. Let N(T ) and N1(T )

respectively denote the number of zeros of F and F ′ in the region
0 < t < T , σ < 1/2. Then

N(T ) = N1(T ) +O(1).

1.3 Articles, conferences, and visits
For the reader’s convenience, we reproduce the list of our publications:

• On the Speiser equivalent for the Riemann hypothesis. Eur. J. Math.,
1(2):337–350, 2015 (with Ramūnas Garunkštis).

• The a-points of the Selberg zeta-function are distributed uniformly
modulo one. Illinois J. Math., 58(1):207–218, 2014 (with Ramūnas
Garunkštis and Jörn Steuding).

• The a-values of the Selberg Zeta-function. Lith. Math. J., 52(2):145–
154, April 2012 (with Ramūnas Garunkštis).

The following article is under submission:

• On the distribution of the a-values of the Selberg zeta-function asso-
ciated to finite volume Riemann surfaces (with Ramūnas Garunkštis).

Here is the list of our conferences and visits:
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• On the distribution of the a-values of the Selberg zeta-function, 5th
International Conference on Uniform Distribution Theory, University
of West Hungary, Sopron, Hungary, July 5–8, 2016.

• On the distribution of the a-values of the Selberg zeta-function, 57th
Lithuanian Mathematical Society Conference, Vilnius Gediminas Uni-
versity of Technology, Vilnius, Lithuania, June 20–21, 2016.

• Research school L-Functions and Automorphic Forms, Heidelberg Uni-
versity, Heidelberg, Germany, February 17–26, 2016.

• Research school Analytic Number Theory and Diophantine Geometry,
Hannover University, Hannover, Germany, September 7–11, 2015.

• Research school Galois Theory and Number Theory, Konstanz Uni-
versity, Konstanz, Germany, July 18–24, 2015.

• On the zeros of the extended Selberg class functions and of their deriva-
tives, 56th Lithuanian Mathematical Society Conference, Kaunas Uni-
versity of Technology, Kaunas, Lithuania, June 16–17, 2015.

• Visit at Würzburg University, Würzburg, Germany, November 24–30,
2014.

• On the zeros of the extended Selberg class functions and of their
derivatives, 27th Journées Arithmétiques, Vilnius University, Vilnius,
Lithuania, June 27–July 1, 2011.

1.4 Acknowledgements
First of all, I would like to thank my family for their moral support. In
addition, I am grateful to Prof. Jörn Steuding for his collaboration on
one of my articles as well as a warm welcome when I was visiting him at
Würzburg University. I would also like to thank to my secondary adviser
Prof. Rimas Norvaiša for introducing me to the fascinating world of the
Philosophy of Mathematics. Last but not least, the importance of the help
of my primary adviser Prof. Ramūnas Garunkštis cannot be overstated.
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Chapter 2

Classical theory

In this chapter, we discuss the classical results pertaining to our dissertation.
As for the proofs in this section, we do not claim any originality on our part.

First, we discuss the historical context of the problems in this dissertation.
Then we present Speiser’s [86] result regarding the Riemann zeta-function.
Speiser proves that the Riemann hypothesis is equivalent to the fact that
the derivative of the Riemann zeta-function does not have any zeros left
of the critical line σ = 1/2. Speiser’s proof employs geometrical means.
Later on, Levinson and Montgomery [62] came up with an analytic proof
of the Speiser’s result. Essentially, Levinson and Montgomery prove that
the Riemann zeta-function and its derivative have approximately the same
number of zeros left of the critical line. Later on in this chapter, we consider
the Lindelöf hypothesis which is a consequence of the Riemann hypothesis.
One of the most beautiful results in Analytic Number Theory is the Selberg
trace formula, which we discuss next. In order to prove that a number
sequence is uniformly distributed modulo one, we need the Weyl criterion.
We give an account of that. We formulate and prove the Littlewood’s lemma
and the Jensen’s theorem. Finally, we discuss a variety of results related
to the a-value theory of zeta-functions, paying a particular attention to the
case of the Riemann zeta-function.

2.1 Historical background
In this dissertation we discuss the distribution of the a-values of zeta-
functions. The zeta-functions analyzed here are the Selberg zeta-functions
for a compact Riemann surface and the Selberg zeta-function for a finite
volume Riemann surface. In addition, we present a result concerning the
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trajectories of the zeros of the functions belonging to the extended Selberg
class (not to be confused with Selberg zeta-functions) and of their deriva-
tives.

Analytic number theory is the study of integers, first of all the prime
numbers, by using the tools of mathematical analysis. Its beginning could
be traced back to 19th century. It was the famous German mathematician
Peter Gustav Lejeune Dirichlet who in 1837 used the so-called Dirichlet
L-functions to prove the theorem that every arithmetic progression, whose
first member and the common difference are co-prime, contains an infinite
number of primes (see Dirichlet [14]).

The topics studied in this dissertation are originally related to the work
of Bernhard Riemann, again a German mathematician. He published little.
However, his publications were of enormous influence to the subsequent de-
velopment of mathematics. In one of his papers, which appeared in 1859, he
defined a function, which later became known as the Riemann zeta-function,
and proved some of its properties, most importantly, its analytic continua-
tion, the functional equation which it satisfies, and the Euler product (see
Riemann [74]). Each of these concepts are discussed later. In addition,
Bernhard Riemann claimed that all the non-trivial zeros of the Riemann
zeta-function are located on a certain vertical line in the complex plane,
called the critical line. This claim became known as the Riemann hypoth-
esis. Here it is appropriate to note that x is a zero of a function f if and
only if f(x) = 0.

Quite unexpectedly, the distribution of the zeros of the Riemann zeta-
function turned out to be closely related to the distribution of primes. Sup-
pose π(x) is a function measuring the quantity of prime numbers up to x.
The Prime Number Theorem in one of its forms claims that

π(x) ∼ x

logx.

The truth (or falsity) of the Riemann hypothesis plays a role in the error
term in the Prime Number Theorem. What this exactly amounts to is
explained in our discussion of this theorem.

The Prime Number Theorem in its modern form was first conjectured in
1797 or 1798 by the French mathematician Adrien-Marie Legendre, claiming
that π(x) is approximated by x/(A logx + B), where A and B are some

8
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constants. Later on in 1838, Dirichlet in his communication to the German
mathematician Carl Friedrich Gauss stated that π(x) is approximated by
the logarithmic integral li(x) =

∫ x

2
(ds/ log s).

The Russian mathematician Pafnuty Lvovich Chebyshev in two papers
dating from 1848 to 1850 proved a version of the asymptotic law of the
distribution of primes. Quite importantly, in his proof Chebyshev used the
Riemann zeta-function. This was about ten years before Riemann’s article
on this zeta-function. Differently from the Riemann’s approach, Chebyshev
considered the zeta-function only as a function of the real argument, while
Riemann extended the study of this function to the complex plane. It should
be mentioned that the zeta-function as a function of the real argument had
already been introduced by the Swiss mathematician Leonhard Euler in
18th century.

Chebyshev’s version of the asymptotic law of the distribution of primes
states that, if the limit of the expression π(x)/(x/ logx) as x approaches
infinity exists at all, then it is necessarily equal to one. In addition, Cheby-
shev proved unconditionally that the ratio of π(x)/(x/ logx) as x approaches
infinity is bounded from above and below by some constants close to 1.
Chebyshev’s result is not quite the Prime Number Theorem, but it pro-
vides a sufficiently deep understanding about the distribution of primes to
prove the Bertrand’s postulate.

The strict version of the Bertrand’s postulate states that for any integer
n > 3, there exists a prime number p with the property that n < p <

2n− 2. This postulate was later proved by using more simple means by the
Indian mathematician Srinivasa Ramanujan (see [70]) and, yet later, by the
Hungarian mathematician Paul Erdős (see [19]).

The Prime Number Theorem as such was first proven independently by
two French mathematicians Jacques Hadamard (see [32]) and Charles Jean
de la Valée-Poussin (see [94]). In their proofs, both of these mathematicians
used the Riemann zeta-function as defined by Riemann. They employed
the fact that the Riemann zeta-function does not vanish on the vertical line
σ = 1 of the complex plane.

Later on, different approaches to prove the Prime Number Theorem have
been used. In 1949, the Norwegian mathematician Atle Selberg and Erdős
proved the theorem by using elementary methods (see [79, 20]). The short-
est proof of this theorem up to date was discovered by the American math-

9
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ematician Donald J. Newman in 1980.
The Riemann hypothesis turned out to be closely linked to the distribu-

tion of primes. At the turn of the previous century, in 1901, the Swedish
mathematician Helge von Koch (see [52]) noticed this relationship. He
proved that if the Riemann hypothesis was correct, then the error in the
Prime Number Theorem is in a sense minimal. In 1976, this result was re-
fined by the American mathematician Lowell Schoenfeld (see [77]), claiming
that

|π(x)− li(x)| < 1

8π

√
x logx,

here x ≥ 2657.

2.2 Lindelöf hypothesis
In this section we discuss the Lindelöf hypothesis and its equivalents. Our
discussion is based on Titchmarsh [92, Chapter 13]. As for the motivational
part of this section, Theorem 2.4 due to Backlund [3] relates the number
of the zeros of the Riemann zeta-function right of the critical line and the
Lindelöf hypothesis. Later on, Garunkštis [23] extended this result to the
case of any a-values, not only zeros. For a more detailed discussion on this
topic, see the beginning of Chapter 3.

In a nutshell, the Lindelöf hypothesis specifies the growth of the Riemann
zeta-function on the critical line as

ζ(1/2 + it) = O(tϵ)

for any ϵ > 0. It turns out that the Lindelöf hypothesis follows from the Rie-
mann hypothesis. However, it is thought that the converse is not necessarily
true, so the latter is a stronger statement than the former.

In Hardy and Littlewood [33], the following equivalents for the Lindelöf
hypothesis were obtained. This is also Theorem 13.2 in Titchmarsh [92].

Theorem 2.1. The following statements are equivalent to the Lindelöf hy-
pothesis

1

T

∫ T

1

|ζ(1/2 + it)|2k dt = O(T ϵ), (k = 1, 2, . . .);

10



Chapter 2 Classical theory

1

T

∫ T

1

|ζ(σ + it)|2k dt = O(T ϵ), (σ > 1/2, k = 1, 2, . . .);

and
1

T

∫ T

1

|ζ(σ + it)|2k dt ∼
∞∑
n=1

d2k(n)

n2σ
, (σ > 1/2, k = 1, 2, . . .).

Here dk(n) denotes the number of ways of expressing n as product of k
factors, k = 2, 3, . . ..

Here is another theorem about the necessary and sufficient conditions of
the Lindelöf hypothesis. This is Theorem 13.3 in Titchmarsh [92].

Theorem 2.2. The Lindelöf hypothesis is equivalent to

ζk(s) =
∑
n≤tδ

dk(n)

ns
+O(t−λ).

Here k is any integer, σ > 1/2, t > 0, δ is any fixed positive number less that
1, and λ = λ(k, δ, σ) > 0.

Now we are ready to move on to the next set of conditions for the Lindelöf
hypothesis. Let us introduce Dk(x) as

Dk(x) :=
∑
n≤x

dk(n).

Suppose d(n) denotes the number of divisors of n, including 1 and n. Then
define

D(x) :=
∑
n≤x

d(n).

Dirichlet proved that

D(x) = x logx+ (2γ − 1)x+O(x1/2).

Here γ is the Euler constant. Define ∆ by

D(x) = x logx+ (2γ − 1)x+∆(x).

So we have ∆(x) = O(x1/2). Assume Pk(x) is a polynomial of degree k − 1.
We have

Dk(x) = xPk(logx) + ∆k(x).

11
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Obviously, ∆2(x) = ∆(x). In [54], Landau proved that

∆k(x) = O(x1−1/k logk−2 x).

Let us define the order αk of ∆k(x) as the least number satisfying

∆k(x) = O(xαk+ϵ)

for any ϵ > 0.
Let us introduce the notion of the average order of ∆k(x), which we denote

by βk, as the least number satisfying

1

x

∫ x

0

∆2
k(y) dy = O(x2βk+ϵ),

again, ϵ is any positive number.
We have the theorem (see Titchmarsh [92, Theorem 13.4])

Theorem 2.3. Lindelöf hypothesis is equivalent to the following conditions
on the numbers αk and βk

αk ≤ 1

2
, (k = 2, 3, . . .);

βk ≤ 1

2
, (k = 2, 3, . . .);

and
βk =

k − 1

2k
, (k = 2, 3, . . .).

The following theorem is due to Backlund [3] (see also Titchmarsh [92,
Theorem 13.5]).

Theorem 2.4. Let N(σ0, T ) denote the number of zeros of the Riemann
zeta-function ζ in the region σ > σ0 and 0 < t < T . Then the Lindelöf
hypothesis is equivalent to

N(σ0, T + 1)−N(σ0, T ) = o(logT )

for any σ0 > 1/2.

12
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2.3 Selberg zeta-function
First, we discuss Selberg zeta-function asscociated to a compact Riemann
surface. Let F denote a compact Riemann surface of genus g ≥ 2. The
surface F can be represented as a quotient space Γ\H, where Γ ⊂ PSL(2,R)

is a strictly hyperbolic Fuchsian group and H is the upper half-plane. The
Γ conjugacy class determined by P ∈ Γ will be denoted by {P} and its
norm is defined by N({P}) = N(P ) = α2, if the eigenvalues of P are α and
α−1 (|α| > 1). By P0 we denote the primitive element of Γ. The Selberg
zeta-function for σ > 1 is given by (Hejhal [35, Chapter 2, Definition 4.1])

Z(s) =
∏
{P0}

∞∏
k=0

(1−N(P0)
−s−k). (2.1)

By the Selberg trace formula the Selberg zeta-function is extended to an
entire function (Hejhal [35, Chapter 2, Theorem 4.11]) of order 2 with the
functional equation (Hejhal [35, Chapter 2, Theorem 4.12])

Z(s) = X(s)Z(1− s), (2.2)

where

X(s) = exp
(
4π(g − 1)

∫ s− 1
2

0

v tan(πv) dv
)
. (2.3)

The so-called trivial zeros of Z are located at 1, 0,−1,−2, . . . and non-trivial
zeros on the critical line σ = 1/2 with at most finitely many exceptions of
zeros on the real segment 0 < s < 1 (Hejhal [35, §2.4, Theorem 4.11] and
Randol [71]). All non-trivial zeros sj = 1/2± itj correspond to eigenvalues

0 < λj = sj(1− sj) = 1/4 + t2j (2.4)

of the hyperbolic Laplacian ∆ on M = Γ\H (Hejhal [35, §2.4, Theorem
4.11]).

Now let us proceed to the definition of the Selberg zeta-function asso-
ciated to a finite volume Riemann surface. This discussion is based on
Hejhal [36] and Jorgenson and Smajlović [44]. The definition is very similar
to that of the Selberg zeta-function associated to a compact Riemann sur-
face. However, for the sake of completeness, we provide the full definition
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of the Selberg zeta-function associated to a finite volume Riemann surface.
Let Γ ⊂ PSL(2,R) be a Fuchsian group of the first kind acting on the upper
half-plane H. Then M := Γ\H denotes the Riemann surface generated by
Γ. There exists a canonic metric with curvature −1 acting on the upper
half-plane. This metric induces a metric acting on M with vol(M) finite.
By n1 we will always denote the number of cusps of M .

Suppose H(Γ) is the set of all representatives of inconjugate hyperbolic
elements of Γ. For each P ∈ H(Γ), there exists P0 ∈ H(Γ) such that P = Pn

0 .
Then P0 is called a primitive element of H(Γ). The norm of P is defined
by N(P ) = α2 if the eigenvalues of P are α and α−1 (|α| > 1). The Selberg
zeta-function for M , which is associated to Γ, is defined by the following
Euler product (see Hejhal [36, Section 10.5] with m = 0, r = 1, and W = Id
in the notations of [36])

Z(s) =
∏

P0∈H(Γ)

∞∏
k=0

(1−N(P0)
−s−k). (2.5)

Here Z also depends on the underlying Riemann surface M . However, here
and later on we implicitly assume that the relevant objects depend on M

and omit the subscript M . The Euler product (2.5) converges absolutely
for σ > 1. Z has a meromorphic continuation into the rest of the complex
plane (see Hejhal [36, Section 10.5, Theorem 5.3]).

Here a discussion on the zeros of the Selberg zeta-function associated to
a finite volume Riemann surface is in order. The Selberg zeta-function Z

associated to a finite volume Riemann surface satisfies the functional equa-
tion Z(s)ϕ(s) = η(s)Z(1 − s). For the precise definition of the factors ϕ(s)
and η(s), see Section 4.1. Some well-understood zeros and poles of Z lying
on the real line come from the factor η. Other zeros are related to the
discrete eigenvalues of the Laplacian. They lie on the critical line σ = 1/2.
The remaining zeros of Z are the poles of the scattering matrix determinant
ϕ. They are located in the half-plane σ < 1/2 aside from a finite number
in (1/2, 1] (see Hejhal [36], formula (2.10), p.4̃37 and Hejhal [36], Theo-
rem 5.3, formula (5.3), p.4̃98). The total number of zeros, counting with
multiplicities, of Z in the region 0 < t < T is asymptotically vol(M)T 2/4π.

The strong version of the Selberg conjecture claims that there exists some
constant δ > 0 such that the number of zeros of Z (or the number of poles

14
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of ϕ) in the region t > 0, σ < 1/2 is O(T 2−δ). In the case Γ = PSL(2,Z),
Selberg proved that (see Hejhal [36, p.5̃08, formulas (2.2), (2.3), (2.4)])

ϕ(s) =
√
π
Γ(s− 1/2)

Γ(s)

ζ(2s− 1)

ζ(2s)
.

Therefore, in the region 0 < t ≤ T , σ < 1/2, the function Z has asymptoti-
cally T

π logT zeros. Analogous bounds are known for congruence subgroups
(see Huxley [40], Hejhal [36], pp.5̃32-538).

Suppose ρ = β + iγ is a zero of Z such that β, γ ∈ R. Selberg showed
that (see Hejhal [36, p.4̃56, Theorem 2.22], Selberg [82], Jorgenson and
Smajlović [44, formula (91)])

∑
0<γ≤T
β<1/2

(
1

2
− β
)
=
n1
4π
T logT − T

2π

(
n1
2

+
n1
2
log π + log |d(1)| − log g1

)
(2.6)

+O(logT ).

We recall that n1 is the number of cusps of M , constants d(1) and g1 are
related to the scattering matrix determinant ϕ, see formula (4.6) in Section
4.1. This result can be regarded as supporting the Selberg conjecture. A
version of formula (2.6) for higher dimensional hyperbolic spaces is obtained
in Kelmer [51, Theorem 1.3].

However, in [67] and [68], Phillips and Sarnak proved that the Selberg
conjecture is false for generic noncompact M , provided that certain “stan-
dard conjectures” are true. They also guess that the Selberg zeta-function
has finitely many zeros on the line σ = 1/2 for generic noncompact M .

2.4 Selberg trace formula
In this section, we provide a somewhat in depth discussion of the Selberg
trace formula related to a compact Riemann surface. A detailed account of
this formula is Hejhal [35]. Our overview is based on Elstrodt [18]. Selberg
himself left few publications on his trace formula, out of which perhaps the
most cited is [80].

Suppose M is a compact Riemann surface of genus g ≥ 2. Informally,
a Riemann surface is a complex manifold of dimension one, and its genus
is the number of holes the surface contains. According to the uniformiza-
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tion theory, M is conformally equivalent to the quotient Γ\H, where Γ is a
certain subgroup of the projective special linear group PSL(2,R), the latter
consisting of 2 by 2 matrices with real coefficients and determinant 1. H is
the upper complex half-plane. The notation Γ\H means that the points in
the upper complex half-plane are partitioned into equivalence classes such
that x ∼ y if and only if there exists A ∈ Γ such that A(x) = y. The map
A : H → H is defined as

A(x) =
a11x+ a12
a21x+ a22

,

where a11, a12, a21, a22 are the coefficients of the matrix A. The requirements
on Γ are that Γ be discontinuous and free of fixed points. Discontinuity
means that the set of matrices belonging to Γ viewed as a subset of PSL(2,R)

is discrete. The condition that Γ is free of fixed points means that Γ does
not contain a matrix A other than identity such that there exists x ∈ H
with A(x) = x.

Let us introduce the notion of the fundamental domain F ⊂ H associated
to the group Γ. The fundamental domain F contains exactly one repre-
sentative from each of the equivalence classes of Γ\H. The fundamental
domain F could be chosen so that it is a relatively compact subset of H.

The upper complex half-plane is endowed with a PSL(2,R)-invariant hy-
perbolic metric

ds2 =
dx2 + dy2

y2
.

Here s = x+ iy, s ∈ H, x ∈ R, and y > 0. Attached to this metric, we get a
PSL(2,R)-invariant area measure ω

dω =
dx dy

y2
.

The PSL(2,R)-invariant Laplace-Beltrami operator is defined as

∆ := y2
(
∂2

∂x2
+

∂2

∂y2

)
.

The fact that the Laplace-Beltrami operator ∆ is PSL(2,R)-invariant means

∆(f ◦ S) = (∆f) ◦ S,

where f ∈ C2(H) and S ∈ PSL(2,R).
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The symbol ∆ is a linear operator in the Hilbert space

H =

{
f : H → C : f is measurable, Γ-invariant ,

∫
F
|f |2 dω <∞

}
∼=

∼= L2(M).

The domain of ∆ is

D = {f ∈ H : f is twice continuously differentiable}.

So ∆ is a linear operator mapping D into H.
Suppose −∆ is a self-adjoint operator to ∆. Then we have the following

theorem regarding the spectrum of −∆

Theorem 2.5. The operator −∆ : D → H has an orthnormal system
{ϕn}n≥0 of real eigenfunctions with eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ . . .

satisfying
∞∑
n=1

1

λ2n
<∞.

It is worth noting that Γ does not contain any parabolic elements, that
is, elements with the property |a11 + a22| = 2, or elliptic elements with
|a11 + a22| < 2. This result can be proved using the facts that X is compact
and that Γ is free of fixed points while acting on H. Thus all the non-
identity elements of Γ are hyperbolic with |a11 + a22| > 2. Such hyperbolic
elements contain exactly two fixed points in the set R∪∞. If one transforms
these fixed points by a fractional linear transformation associated with P ∈
PSL(2,R) so that they map to the fixed points to 0 or ∞, one gets that P
is associated to the map

s 7→ N(P )s

with N(P ) > 1, which we call the norm of P . It can be shown that N(P )

equals to the square of the greater of the two eigenvalues of the matrix P .
The elements belonging to the same conjugacy class {P}Γ have the same

norm, which we call the norm of {P}Γ. Now consider the elements of Γ

which leave both of the fixed points of P intact. These elements form an
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infinite cyclic subgroup of Γ. Out of the two generators of this subgroup,
we choose P0 satisfying

P = Pm
0

for some natural m ≥ 1. We call P0 the primitive transformation belonging
to P . Observe that as Q runs through all the primitive elements of Γ\I, I
denoting the identity matrix, the powers Qm with m = 1, 2, . . . run through
all the elements of Γ\I, and assume the value of every such element exactly
once. Hence the primitive transformations of Γ play a similar role to that
of the prime numbers in N.

Suppose λn, n ≥ 0 are the eigenvalues of the operator −∆. Then write

λn =
1

4
+ r2n.

We get the following theorem about the Selberg trace formula (see El-
strodt [18, Proposition 3.1])

Theorem 2.6. Suppose

Sϵ :=
{
r ∈ C : ℑr <

∣∣∣1
2
+ ϵ
∣∣∣} ,

where ϵ > 0. Let h : Sϵ → C is a holomorphic function which satisfies the
growth condition as |r| → ∞ in the strip Sϵ

h(r) = O((1 + |r|2)−1−ϵ)

uniformly in r. Define the Fourier transformation

g(u) :=
1

2π

∫ ∞

−∞
e−iruh(r) dr.

Then we have the Selberg trace formula

∞∑
n=0

h(rn) =
ω(F)

4π

∫ ∞

−∞
h(r)r tanh(πr) dr+

+
∑
{P}Γ

logN(P0)

N(P )1/2 −N(P )−1/2
g(logN(P )).

Here {P}Γ and P0 are as defined above. In the formula, both sums and the
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integral converge absolutely.

Ideas for proof. First, we introduce the notion of point-pair invariants, that
is, functions k : H×H → C obeying the rule

k(Sx, Sy) = k(x, y)

for all S ∈ PSL(2,R). It could be shown that any such invariant could be
written in the form

k(z, w) = ψ

(
|z − w|2

ℑzℑw

)
with an appropriate function ψ : [0,∞) → C. Conversely, any k of the above
form is a point-pair invariant.

Let us take a continuous function ψ : [0,∞) → C with compact support.
Define the kernel function K as

K(z, w) :=
∑
M∈Γ

k(z,Mw).

Now we can get to the linear operator K : H → H by

(K(f))(z) :=

∫
F
K(z, w)f(w) dω(w)

with f ∈ H, z ∈ H and dω as the hyperbolic area differential.
It can be proved that the eigenfunctions of the Laplace-Beltrami operator

∆ are also eigenvalues of the operator K. Let us denote such eigenfunctions
by ϕn. Further, we could obtain

Kϕn = h(rn)ϕn. (2.7)

Here h : C → C is a certain function which we do not discuss here. We have
K(z, ·) ∈ H and

K(z, ·) =
∞∑
n=0

cn(z)ϕn.

We can calculate the coefficients cn explicitly. Suppose ⟨·, ·⟩ is a scalar
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product of functions belonging to H. We get

cn(z) = ⟨K(z, ·), ϕn⟩ =
∫
F
K(z, w)ϕn(w) dω(w) =

= (Kϕn)(z) = h(rn)ϕn(z).

The last equality holds by (2.7). So we have

K(z, w) =

∞∑
n=0

h(rn)ϕn(z)ϕn(w).

Here we do not discuss the convergence of the above series. By integrating
both sides of the above, we get

∞∑
n=0

h(rn) =

∫
F
K(z, z) dω(z).

This is our trace formula.

2.5 Weyl criterion
In this section we develop the theory leading to the Weyl criterion concern-
ing uniform distribution modulo one of sequences. Our discussion is based
on the book by Kuipers and Niederreiter [53]. The concept of the uniform
distribution modulo one was first introduced by Weyl [96, 97].

First, let us proceed to the basic definitions. Assume x ∈ R. Then by [x]

we denote the integer part of x, which is the greatest integer less or equal
to x. By {x} we denote the fractional part of x, given by {x} := x − [x].
Obviously, {x} ∈ [0, 1) := I.

Suppose ω = (xn) is a sequence of real numbers. Suppose A(E;N ;ω) is a
counting function, which counts how many members of ω with 1 ≤ n ≤ N

lie inside the set E ⊂ I. A real sequence ω is said to be uniformly distributed
modulo one if and only if for any pair of real numbers a and b, satisfying
0 ≤ a < b ≤ 1, we have

A([a, b);N ;ω1)

n
→ b− a, N → ∞,

where ω1 is the sequence of the fractional parts of the members of ω.
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Let us now reformulate the definition above. Suppose c[a,b) is the char-
acteristic function, where [a, b) ⊆ I, that is, c[a,b)(x) = 1 if x ∈ [a, b) and
c[a,b)(x) = 0 otherwise. Then the definition of the uniform distribution mod-
ulo one becomes

lim
N→∞

1

N

N∑
n=1

c[a,b)({xn}) =
∫ 1

0

c[a,b)(x) dx.

The following theorem obtains (see Kuipers and Niederreiter [53, Theo-
rem 1.1])

Theorem 2.7. The sequence ω is uniformly distributed modulo one if and
only if

lim
N→∞

1

N

N∑
n=1

f({xn}) =
∫ 1

0

f(x) dx

for any real-valued continuous function defined on [0, 1].

We get the corollary (see Kuipers and Niederreiter [53, Corollary 1.2])

Corollary 2.8. The sequence ω is uniformly distributed modulo one if and
only if for any f : R → C with period 1, we have

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(x) dx. (2.8)

Observe that functions e2πihx with h a non-zero integer and real x satisfy
the conditions of Corollary 2.8. This leads to the theorem (see Kuipers and
Niederreiter [53, Theorem 2.1])

Theorem 2.9. (Weyl criterion) The sequence ω is uniformly distributed
modulo one if and only if

lim
N→∞

1

N

N∑
n=1

e2πihxn = 0, (2.9)

for any non-zero integer h.

Proof. The fact that the condition is necessary follows immediately from
Corollary 2.8. It remains to demonstrate the sufficiency. Suppose (2.9)
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holds. We need to show that if (2.9) holds, then for any f satisfying the
conditions in Corollary 2.8, the condition (2.8) obtains.

Assume f is any function satisfying the conditions in Corollary 2.8. Let
ϵ > 0 be arbitrary. From the Weierstrass approximation theorem it follows
that there exists a trigonometric polynomial Ψ(x) with complex coefficients
satisfying

sup
0≤x≤1

|f(x)−Ψ(x)| < ϵ.

We get ∣∣∣∣∣
∫ 1

0

f(x) dx− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤
∣∣∣∣∫ 1

0

(f(x)−Ψ(x)) dx

∣∣∣∣+
+

∣∣∣∣∣
∫ 1

0

Ψ(x) dx− 1

N

N∑
n=1

Ψ(xn)

∣∣∣∣∣+
+

∣∣∣∣∣ 1N
N∑

n=1

(f(xn)−Ψ(xn))

∣∣∣∣∣ .
See that the first and the third term on the right of the above inequality
are less than ϵ by the choice of Ψ. The second term on the right is small
because of (2.9) and Ψ, being a trigonometric polynomial, can be expressed
as a linear combination of the powers of e.

There is a generalization of the concept of the uniform distribution mod-
ulo one. It is called uniform distribution modulo a subdivision. This concept
was introduced by LeVeque [59]. The topic has been studied by Cigler [10],
Davenport and LeVeque [12], Davenport et al. [13], and Schmidt [76]. De-
fine ∆ : 0 = z0 < z1 < . . . as a subdivision of the interval [0,∞) and zk → ∞
as k → ∞. Let us generalize the notions of the integral and the fractional
parts of a real number x, satisfying zk−1 ≤ x < zk, in the following way

[x]∆ := zk−1

and
{x}∆ :=

x− zk−1

zk − zk−1
.

Observe that 0 ≤ {x}∆ < 1.
We call a sequence of nonnegative real numbers (xn), n = 1, 2, . . . uni-
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formly distributed modulo ∆ if and only if the sequence ({xn}∆) is uniformly
distributed modulo one. Obviously, the concept of the uniform distribu-
tion modulo subdivision Γ reduces to the familiar concept of the uniform
distribution modulo one if for all k we have zk = k.

Now suppose we have an increasing sequence of nonnegative real numbers
(xn) with xn → ∞ as n→ ∞. Define A(x, α) to be the number of xn < x such
that {xn}∆ < α and A(x) := A(x, 1). Then the sequence (xn) is uniformly
distributed modulo one if and only if

lim
x→∞

A(x, α)

A(x)
= α,

for all α ∈ (0, 1).
We have the theorem (Kuipers and Niederreiter [53, Theorem 1.3])

Theorem 2.10. Suppose (xn) is an unboundedly increasing sequence of
nonnegative numbers. Then (xn) is uniformly distributed modulo subdivision
∆ only if

lim
k→∞

A(zk+1)

A(zk)
= 1.

2.6 Results from Complex Analysis
In this section we introduce several results from Complex Analysis which
we later use in our proofs. First, we discuss the Littlewood’s lemma. Then
we turn our attention to the Jensen’s theorem.

Theorem 2.11. (Littlewood’s lemma, see Titchmarsh [92, Section 9.9])
Suppose C is a rectangle in the complex plane with vertices σ0, σ1, σ1 + iT ,
and σ0+iT with σ0 < σ1. Let f is an analytic function which does not vanish
on the border of C. Let ρ = β + iγ is a zero of f belonging to C with ρ ∈ C
and β, γ ∈ R. Then

2π
∑
ρ∈C

(β − σ0) =

∫ T

0

log |f(σ0 + it)| dt−
∫ T

0

log |f(σ1 + it)| dt+

+

∫ σ1

σ0

arg f(σ + iT ) dσ −
∫ σ1

σ0

arg f(σ) dσ.

Proof. Assume C′ is the contour involving C together with the loops around
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each zero ρ, denoted by Lρ. We have∫
C
log f(s) ds =

∫
C′
log f(s) ds+

∑
ρ∈C

∫
Lρ

log f(s) ds.

Observe that log f(s) is analytic in C′, so we get∫
C′
log f(s) ds = 0.

This leads to ∫
C
log f(s) ds =

∑
ρ∈C

∫
Lρ

log f(s) ds.

As usual, for the zeros of f we use the notation ρ = β + iγ. Suppose the
radius of Lρ is r. Then∫

Lρ

log f(s) ds =
∫ β−r

σ0

log f(σ + iγ−) dσ +

∫ 2π

0

log f(reiθ)ireiθ dθ−

−
∫ β−r

σ0

log f(σ + iγ+) dσ.

It is easy to see that the integral
∫ 2π

0
log f(reiθ)ireiθ dθ → 0 as r → 0+. We

also have ∫ β−r

σ0

log f(σ + iγ+) dσ =

∫ β−r

σ0

(f(σ + iγ−) + 2πi) dσ.

Now ∫
Lρ

log f(s) ds→ −2πi

∫ β

σ0

dσ = −2πi(β − σ0), r → 0+.

Hence ∫
C
log f(s) ds = −2πi

∑
ρ∈C

(β − σ0).

We obtain

−2πi
∑
ρ∈C

(β − σ0) =

∫ T

0

log f(σ1 + it)i dt−
∫ T

0

log f(σ0 + it)i dt+

+

∫ σ1

σ0

log f(σ) dσ −
∫ σ1

σ0

f(σ + iT ) dσ.
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The theorem follows by equating the imaginary parts.

Jensen’s theorem, which is stated below, relates the distribution of zeros
of some holomorphic function f inside a disc with the behavior of f along
the border of the disc. Our discussion of this theorem is based on Rudin [75].
Originally, the theorem was proved in Jensen [43].

In order to prove the Jensen’s theorem, first we need the concept of a
harmonic function. Suppose f is a complex function on an open set Ω

belonging to the complex plane. Suppose second order derivatives fσσ and
ftt exist at every point in Ω. Suppose ∆ is the Laplacian operator, that
is, ∆f = fσσ + ftt. The function f is called harmonic if and only if f is
continuous in Ω and ∆f = 0 at every point of Ω.

In addition, we need the following theorem and lemma, which we give
without proof

Theorem 2.12. (see Rudin [75, Theorem 13.12]) Suppose Ω is an open set
in the complex plane. Suppose f is holomorphic in Ω and f does not vanish
in Ω. Then log |f | is harmonic in Ω.

Lemma 2.13. (see Rudin [75, Lemma 15.17])

1

2π

∫ 2π

0

log |1− eiθ| dθ = 0.

Theorem 2.14. (Jensen’s theorem, see Rudin [75, Theorem 15.18]) Suppose
Ω = D(0;R) is a disc with the center on the origin of the complex plane and
radius R. Suppose f is a holomorphic function on Ω, f(0) ̸= 0, 0 < r < R,
and α1, . . . , αN are the zeros of f in D(0; r). Then the following holds

|f(0)|
N∏

n=1

r

|αn|
= exp

{
1

2π

∫ π

−π

log
∣∣f(reiθ)∣∣ dθ} .

Proof. Suppose D(0; r) is an open disc with its center at the origin and
radius r. First, order the points αj so that α1, …, αm belong to D(0; r) and
αm+1, …, αN lie on the border of D(0; r). Define

g(z) := f(z)

m∏
n=1

r2 − αnz

r(αn − z)

N∏
n=m+1

αn
αn − z

. (2.10)

It follows that g is a holomorphic function on D := D(0; r+ϵ) for some ϵ > 0.

25



Chapter 2 Classical theory

In addition, g has no zero in D. By Theorem 2.12, log |g| is harmonic in D.
By a standard result from Complex Analysis, we get

log |g(0)| = 1

2π

∫ π

−π

log |g(reiθ)| dθ. (2.11)

By (2.10),

|g(0)| = |f(0)|
m∏

n=1

r

|αn|
. (2.12)

The factors in (2.10) have absolute value 1 for 1 ≤ n ≤ m, provided |z| = r.
As for αn = reiθn for m < n ≤ N , we get

log |g(reiθ)| = log |f(reiθ)| −
N∑

n=m+1

log |1− ei(θ−θn)|.

By Lemma 2.13, f and g are interchangeable in (2.11). The Theorem follows
from (2.12).

One more theorem which we use throughout our dissertation is the Rouché’s
theorem. We state it without proof

Theorem 2.15. Suppose f and g are complex holomorphic functions inside
and on some closed contour K. In addition, suppose |g(s)| < |f(s)| on K.
Then f and f + g have the same number of zeros inside K, counted with
multiplicities.

In addition, we make use of the Phragmén-Lindelöf principle. The gen-
eral case of the principle deals with sectors of the complex plane. For our
purposes, the special case dealing with strips of the complex plane suffices.

Theorem 2.16. Suppose Ω is a half-strip of the complex plane such that

Ω = {s ∈ C : σ1 ≤ ℜs ≤ σ2,ℑs ≥ t0}.

Suppose f is holomorphic on Ω and that there exist constants N , A, and B

such that
|f(s)| ≤ N for all s ∈ ∂Ω

and
|f(σ + it)|

tA
≤ B for all σ + it ∈ Ω.
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Then f is bounded by N on all of Ω.

2.7 Notes on a-value theory and universality
A detailed account of a-value theory of zeta-functions can be found in a book
by Steuding [89]. In the first part of this section, we cite results primarily
concerned with the a-value distribution of the Riemann zeta-function. On
our way, we also mention some results on the a-value distribution of more
general L-functions. Later on, we consider the topic of universality. A
detailed account of universality could be found in Laurinčikas [58].

In the beginning, the a-value theory concentrated on the a-values of the
Riemann zeta-function. In particular, this theory was a study of the zeros
of the Riemann zeta-function. As it was mentioned above, the zeros of the
Riemann zeta-function are divided into non-trivial and trivial. The trivial
zeros are located at points −2n, n ∈ N. The rest of the zeros are non-trivial.
They are located in the critical strip 0 < ℜs < 1.

One of the earliest studies on the zeros of the Riemann zeta-function is
Gram [31]. In this study, Gram located the first 15 non-trivial zeros. He
observed that all of them are located on the critical line. In order to find
these zeros, Gram investigated the location of certain points on the critical
line where the Riemann zeta-function assumes real values. Later on, these
points became known as the Gram points. Let us denote their imaginary
part by gn. It was conjectured (see Hutchinson [39]) that there is exactly
one zero ρ = β + iγ of the Riemann zeta-function satisfying γ ∈ [gn, gn+1).
This is called the Gram’s law. Recently, Trudgian [93] demonstrated that
the Gram’s law fails a positive proportion of time.

Let N(T ) denote the number of non-trivial zeros in the region 0 < t ≤ T .
Then we have

N(T ) =
T

2π
log T

2πe
+O(logT ), (T → ∞).

An important question is whether all the non-trivial zeros are located on
the critical line ℜs = 1/2. In a famous article, Conrey [11] showed that at
least two fifths of the non-trivial zeros are simple and lie on the critical line.

In [7], Bohr and Jessen demonstrated that log ζ(s) assumes any complex
value infinitely often in the strip σ1 < ℜs < σ2, satisfying 1/2 < σ1 < σ2 < 1.
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Garunkštis and Steuding [27, Lemma 6] showed that the Riemann zeta-
function has an a-value near each trivial zero −2n for high enough n. Apart
from these a-values, there exist only finitely many a-values in the half-plane
σ < 0. Let us call these a-values trivial. In addition, let us call the rest
of the a-values non-trivial. For any a, there exist left and right half-planes
free of non-trivial a-values. Similarly to the formula 2.7, we have a formula
for the number of a-values for generic a (see Landau [8])

Na(T ) =
T

2π
log T

2πeca
+O(logT ), (T → ∞),

where ca = 1 for a ̸= 1 and c1 = 2.
A significant result regarding the a-values of the Riemann zeta-function is

due to Levinson [61]. He proved that almost all the a-values of the Riemann
zeta-function are clustered around the critical line. This is to be understood
in the sense that all but O(Na(T )/ log logT ) of the a-values with imaginary
parts T < γa < 2T lie in the strip∣∣∣ℜs− 1

2

∣∣∣ < (log logT )2
logT , (T → ∞).

In [27], Garunkštis and Steuding showed that the equation ζ(s) = a has
infinitely many simple roots with arbitrarily large imaginary parts. In a
way, this result was generalized by Gonek et al. [29]. They proved that a
positive proportion of a-values for the Riemann zeta-function are simple.
They also extended this result for the Dirichlet L-functions with primitive
characters and some other functions belonging to the Selberg class. For a
further discussion on this result, see Selberg [81].

A similar result in this direction is Kalpokas and Steuding [49]. In their
article, the authors investigate the behavior of the curve R ∋ t 7→ ζ(σ +

it). They prove that the mean value of this curve exists and is equal to
1 provided the Riemann hypothesis is true. They also prove, this time
unconditionally, that the Riemann zeta-function takes arbitrarily large real
values on the critical line. As for the negative real values on the critical
line, there is a result of Kalpokas et al. [50] showing that the Riemann
zeta-function assumes arbitrarily large negative values on the critical line.

Christ and Kalpokas [9] investigated the behavior of the discrete moments
of the Riemann zeta-function on the critical line. In particular, they sum up
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the values of the Riemann zeta-function on what they call generalized Gram
points. Assuming the Riemann hypothesis, they obtain upper bounds for
these moments.

As for the uniform distribution modulo one, Rademacher [69] proved, as-
suming the truth of the Riemann hypothesis, that the imaginary parts of
the non-trivial zeros of the Riemann zeta-function are uniformly distributed
modulo one. Later on, Hlawka [37, 38] and Elliott [17] showed the same
result without the assumption of the Riemann hypothesis. Akbary and
Murty [1] studied the uniform distribution modulo one for a large family of
L-functions, which includes the Selberg class. Jakhlouti et al. [42] demon-
strated that the imaginary parts of the a-values of the zeta-functions, which
belong to the Selberg class, which have a polynomial Euler product, and
which satisfy the Lindelöf hypothesis, are uniformly distributed modulo one.

Although not directly relevant to the results described in this dissertation,
the concept of universality is prevalent in the theory of zeta-functions, so we
briefly discuss it here. Originally, the universality property was formulated
by Voronin [95]. It concerned the Riemann zeta-function. In its modern
form (see Laurinčikas [58, 57], Matsumoto [64], and Steuding [89]), the
universality theorem is as follows

Theorem 2.17. Suppose U is a compact subset of the strip {s ∈ C : 1/2 <

ℜs < 1} such that the complement of U is connected. Suppose f : U → C is
a continuous function on U which is holomorphic in the interior of U and
does not vanish on U . Then for any ϵ > 0, there exists t ≥ 0 such that

|ζ(s+ it)− f(s)| < ϵ for all s ∈ U.

In the version of the universality theorem by Voronin, the set U is a disk
of radius 1/4, centered on the vertical line σ = 3/4 of the complex plane.

There is a stronger version of this theorem, which essentially states that
there are a lot of “shifts” of the Riemann zeta-function which approximate
the given holomorphic function f satisfying the conditions of Theorem 2.17.
Suppose U , f , and ϵ are as in Theorem 2.17. Then the following inequality
holds

0 < lim inf
T→∞

1

T
meas

{
t ∈ [0.T ] : max

s∈U
|ζ(s+ it)− f(s)| < ϵ

}
.
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Here meas is the Lebesgue measure.
In Laurinčikas [57], the universality property is extended to a wide class

of zeta-functions. More specifically, in [56], Laurinčikas extended the uni-
versality property to the Lerch zeta-function, which is a generalization of
the Riemann zeta-function. Bagchi [4] coined the notion of joint universal-
ity. The idea is to consider several zeta-functions (in the case of Bagchi,
these are Dirichlet L-functions) and to look how they approximate some
given functions fk, satisfying the conditions of Theorem 2.17. We pair each
function fk with a different Dirichlet L-function. Then there exists some t
such that each fk is approximated by their respective Dirichlet L-function
“shifted” by the same value of t. This joint universality is also exhibited by
the Lerch zeta-function.

2.8 Speiser’s result
This discussion of the Speiser’s result is based on Arias de Reyna [2]. We
should note here that we only reproduce the main ideas of the proof, not the
proof itself. In his article, Speiser [86] studies trajectories of points where
the Riemann zeta-function ζ assumes constant argument.

Theorem 2.18. (Speiser’s theorem) The Riemann hypothesis is equivalent
to the fact that the derivative of the Riemann zeta-function does not have
any zeros left of the critical line.

Ideas for proof. Suppose a is a zero of ζ left of the critical line σ = 1/2.
Consider the trajectories going through this point. As we move along these
trajectories, the absolute value of the Riemann zeta-function |ζ| is increas-
ing. Then no trajectory could cross the critical line because in doing so, the
absolute value upon crossing the critical line should decrease. In addition,
such trajectories cannot be tangent to the critical line, since at the point
of tangency ζ(1/2 + it) would assume the value of zero, which leads to the
contradiction of the fact that |ζ| is increasing. Therefore, the trajectories
would eventually turn left. Some of them would leave the point a above,
some below. The trajectory separating the two would reach a zero of the
derivative of the Riemann zeta-function which would allow it to turn left.
Thus if the Riemann hypothesis is false, then the derivative of the Riemann
zeta-function has a zero left of the critical line.
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Conversely, assume the derivative of the Riemann zeta-function vanishes
left of the critical line at point a. If ζ(a) = 0, we are done. Suppose
|ζ(a)| ̸= 0. Hence there exist two opposite trajectories of constant argument
along which |ζ| decreases and thus there exists a point at which the absolute
value of the Riemann zeta-function vanishes. Again, if |ζ| vanishes left of
the critical line, then we are finished. So assume both trajectories cross
the critical line. Both trajectories and the segment of the critical line they
determine enclose a region Ω. Now, there are two paths coming out of a of
constant argument along which |ζ| increases. One of these paths must enter
the region Ω. The value of |ζ(s)| approaches +∞ as we go along this path.
Therefore this path must leave the region Ω. But in doing so, it must either
cross one of the two paths coming out of a and enclosing the region, which
leads to the contradiction |ζ(a)| > |ζ(s)|. If this path crosses the critical line,
then in doing so it should also decrease, since it crosses the line from left to
right. Again, we get a contradiction. Thus if ζ ′ vanishes left of the critical
line, the Riemann hypothesis fails. In the end, the Riemann hypothesis
is true if and only if the derivative of the Riemann zeta-function does not
vanish left of the critical line.

Let us consider Levinson and Montgomery’s article [62]. To use their
original notation, suppose N−(T ) represents the number of zeros of the
Riemann zeta-function in the area 0 < t < T and 0 < σ < 1/2. Similarly, let
N−

1 (T ) denote the number of zeros of the derivative of the Riemann zeta-
function in the same area. Theorem 1 in Levinson and Montgomery [62]
states that

Theorem 2.19.
N−

1 (T ) = N−(T ) +O(logT ).

In addition, if N−(T ) < T/2, then there exists a sequence {Tj} with Tj → ∞
as j → ∞ such that

N−
1 (Tj) = N−(Tj).

As a corollary, Levinson and Montgomery get the result that the Riemann
hypothesis is equivalent to the fact that the derivative of the Riemann zeta-
function does not have any zeros left of the critical line σ = 1/2.

In addition to the derivative of the Riemann zeta-function, Levinson and
Montgomery also study the zeros of higher derivatives. Theorem 2 in Levin-
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son and Montgomery [62] states that

Theorem 2.20. Suppose the number of non-real zeros of ζ(k)(s) in the region
0 < t < T and σ ≤ c is N−

k (c, T ), the number of non-real zeros of ζ(k)(s) in
the region 0 < t < T and σ ≥ c is N+

k (c, T ) and the total number of zeros of
ζ(k)(s) in the region 0 < t < T is Nk(T ). Then

N+
k (1/2 + δ, T ) +N−

k (1/2− δ, T ) ≪ δ−1T log logT

for given k and uniformly in δ > 0.

In [6], Berndt proved that

Nk(T ) =
T

2π

(
log T

4π
− 1

)
+O(logT ).

So Theorem 2 in Levinson and Montgomery [62] becomes

N+
k (1/2 + δ, T ) +N−

k (1/2− δ, T ) ≪ Nk(T ) log logT
δ logT .

We should note here that Levinson and Montgomery [62] served as the
basis for the subsequent proof by Levinson [60] that at least 1/3 zeros of the
Riemann zeta-function lie on the critical line σ = 1/2 (see also Selberg [78]).
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Chapter 3

Horizontal distribution of the
a-values of the Selberg
zeta-function associated to a
compact Riemann surface

This chapter is based on Garunkštis and Šimėnas [25]. Let s = σ + it be
a complex variable. We start with the Riemann zeta-function, which for
σ > 1 is given by the following Dirichlet series or Euler product

ζ(s) =

∞∑
n=1

1

ns
=
∏

p prime

(
1− 1

ps

)−1

.

The Lindelöf hypothesis (LH) states, that for any ϵ > 0,

ζ(1/2 + it) ≪ϵ |t|ϵ (|t| → ∞).

In [23], Garunkštis extended the Backlund equivalent for the LH to the
following statement: Let a be a complex number. The Lindelöf hypothesis
for ζ(s) is true if and only if for any σ′ > 1/2 the number of roots of ζ(s)−a

in the region σ > σ′, T ≤ t ≤ T + 1 is o(logT ) as T → ∞. The original
Backlund equivalent (see Backlund [3] or Titchmarsh [92, Section 13.5])
corresponds to the case a = 0. Here and further the number of roots are
always counted according to multiplicities. Solutions of f(s) = a are called
a-values of f(s).

We see that the Lindelöf hypothesis follows from the Riemann hypothesis,
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which states that the Riemann zeta-function has no zeros to the right of
the critical line σ = 1/2.

Moreover, in [23] Garunkštis proved that the above extended Backlund
equivalent can be generalized to some other functions, for example, to the
Selberg zeta-function Z(s) associated to a compact Riemann surface (for the
full definition see Section 2.3). In this case we have the following equivalent:
Let a be a complex number. For any ϵ > 0,

Z(1/2 + it) ≪ϵ exp(ϵ|t|) (|t| → ∞) (3.1)

if and only if for any σ′ > 1/2 the number of roots of Z(s)− a in the region
σ > σ′, T ≤ t ≤ T + 1 is o(T ) as T → ∞. The bound (3.1) corresponds to
the LH for the Riemann zeta-function. For the Selberg zeta-function the
analog of RH is true (Hejhal [35, Chapter 2, Theorem 4.11]), thus in the
last equivalence both statements are true.

The Selberg and the Riemann zeta-functions have many similar proper-
ties: the functional equation, the Euler product, the Selberg trace formula
– the Weil explicit formula. There are many results about a-values of ζ(s)
(see Titchmarsh [92], Levinson [61], Steuding [89]). In view of the above
it would be of interest to compare the a-value distribution for both zeta-
functions. In the remaining part of this chapter we consider the a-values of
the Selberg zeta-function.

3.1 Statement of results
The following lemma shows the behavior of the factor X(s) from the func-
tional equation (see Section 2.3) for large t (cf. Hejhal [35, Chapter 2, for-
mula (4.4)]).

Lemma 3.1. For t > 1,

X(s) = exp
(
2πi(g − 1)

(
s− 1

2

)2
+
πi(g − 1)

6

+O
(

t

e2πt

)
+O

(
(σ − 1/2)2

e2πt

)
+O

(
(σ − 1/2)t

e2πt

))
(t→ ∞)

uniformly in σ.
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The lemma will be proved in the next section.
Here a is always a fixed complex number and T always tends to plus

infinity. By βa and γa we denote the real and the imaginary parts of the
a-value. Let

N(P00) = min
P0

{N(P0)} and m0 = #{{P0} : N(P0) = N(P00)}.

By definition of the Selberg zeta-function (2.1) we find that

Z(s) = 1 +m0N(P00)
−σ + o(N(P00)

−σ) (σ → ∞). (3.2)

Note that N(P00) > 1 (Hejhal [35, Chapter 2, Section 2]). Thus there exists
a number A > 1 depending on a such that Z(s) ̸= a for σ ≥ A. Further, by
Z(s) = Z(s), the functional equation (2.2), and by Lemma 3.1 we see that
there is τ ≥ 0 such that

Z(s) ̸= a for σ ≤ 1− A and |t| ≥ τ. (3.3)

In view of this we say that an a-value ρa = βa + iγa is non-trivial if 1−A <

βa < A. If βa ≤ 1 − A (and |γa| < τ) then ρa = βa + iγa is called a trivial
a-value.

The following proposition will be the main tool in the investigation of
a-values.

Proposition 3.2. Let τ be defined by formula (3.3). Let b = b(T ) = o(logT )
be a positive and unboundedly increasing function. Then∑

τ<γa≤T

(βa + b) = (g − 1)(
1

2
+ b)T 2 − T

2π
log |1− a|+ o(T ),

if a ̸= 1, and∑
τ<γ1≤T

(β1 + b) = (g − 1)(
1

2
+ b)T 2 − bT

2π
logN(P00)−

T

2π
logm0 + o(T ),

otherwise.

The proposition will be proved in the next section. The accuracy o(T ) is
due to the bound (3.1).

Define by N(a, T ) the number of non-trivial a-values with τ < γa ≤ T . In

35



Chapter 3 Horizontal distribution compact

Proposition 3.2 subtracting the case b from b + 1 we obtain the following
theorem:

Theorem 3.3. For a ̸= 1,

N(a, T ) = (g − 1)T 2 + o(T )

and, for a = 1,

N(1, T ) = (g − 1)T 2 − T

2π
logN(P00) + o(T ).

If a = 0, then the last theorem is true with a better error term O(T/ logT )
(Hejhal [35, Section 2.8, Theorem 8.19]).

The expression∑
τ<γa≤T

(βa −
1

2
) =

∑
τ<γa≤T

(βa + b)− (
1

2
+ b)

∑
τ<γa≤T

1

together with Proposition 3.2 and Theorem 3.3 leads to the following state-
ment:

Theorem 3.4. Let τ be defined by formula (3.3). For a ̸= 1,

∑
τ<γa≤T

(βa −
1

2
) = − T

2π
log |1− a|+ o(T ),

and, for a = 1,

∑
τ<γ1≤T

(β1 −
1

2
) =

T

4π
log N(P00)

m2
0

+ o(T ).

If a ̸= 0, then we see that many a-values lie off the critical line σ = 1/2

and are distributed asymmetrically with respect to this line.
Let N+(a, δ, T ) and N−(a, δ, T ) be the number of non-trivial a-values in

the corresponding regions σ > 1/2 + δ, 1 < t ≤ T and σ < 1/2− δ, 1 < t ≤ T .
Let

N0(a, δ, T ) := N(a, T )−
(
N−(a, δ, T ) +N+(a, δ, T )

)
.

The next theorem shows that almost all a-values are arbitrarily close to the
critical line.
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Theorem 3.5. For
δ =

(log logT )2
logT

we have
N−(a, δ, T ) +N+(a, δ, T ) ≪ T 2

log logT
and

N0(a, δ, T ) = (g − 1)T 2 +O

(
T 2

log logT

)
.

The theorem will be proved in the next section.
The obtained results show a similar distribution of a-values for the Rie-

mann and the Selberg zeta-functions. If we replace (g − 1)T 2 by 1
2πT logT

and o(T ) by O(logT ) we obtain statements nearly identical to the ones
proved by Levinson [61] for the Riemann zeta-function. The difference is
that in his proof Levinson used the mean value bound for ζ(s), while here
we use the Lindelöf type bound (3.1).

The next section contains the proofs of Lemma 3.1, Proposition 3.2, and
Theorem 3.5.

3.2 Proofs
Proof of Lemma 3.1. In light of the definition (2.3) of X(s), we calculate
the following integral

∫ s− 1
2

0

v tan(πv) dv = i

∫ s− 1
2

0

v
1− e2πiv

1 + e2πiv
dv

= i

∫ s− 1
2

0

v dv − i

(∫ it

0

+

∫ σ−1/2+it

it

)
2v

1 + e−2πiv
dv

=
i

2
(s− 1

2
)2 + 2i

∫ t

0

x

1 + e2πx
dx− 2i

∫ σ−1/2

0

(x+ it)

1 + e2πt−2πix
dx

=
i

2
(s− 1

2
)2 +

i

24
+

+O
(

t

e2πt

)
+O

(
(σ − 1/2)2

e2πt

)
+O

(
(σ − 1/2)t

e2πt

)
(t→ ∞).

Here we used the fact that∫ ∞

0

x

1 + e2πx
dx =

1

48
.
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This proves the lemma.

Proof of Proposition 3.2. First we consider the case a ̸= 1. Put

G(s) =
Z(s)− a

1− a
.

Obviously, the zeros of G(s) correspond exactly to the a-values of Z(s). Let

c = logT. (3.4)

Recall that b = b(T ) is a positive and unboundedly increasing function. Thus
for sufficiently large T we have Z(s) ̸= a, if σ ≤ −b or σ ≥ c. We assume that
Z(s) ̸= a on the boundaries of the rectangle R with vertices c + iτ ′, c + iT ′,
−b + iT ′, −b + iτ ′, where T < T ′ < T + 1/T and τ < τ ′ < τ + 1. Applying
Littlewood’s lemma (Lemma 2.11, also see Titchmarsh [92, Section 9.9]) to
the function G(s) on the rectangle R we get

2π
∑

βa>−b
τ ′<γa≤T ′

(βa + b) =

∫ T ′

τ ′
log |G(−b+ it)| dt−

∫ T ′

τ ′
log |G(c+ it)| dt−

−
∫ c

−b

argG(σ + iτ ′) dσ +

∫ c

−b

argG(σ + iT ′) dσ =

= :

4∑
j=1

Ij . (3.5)

Here argG(s) is defined by continuous variation starting at s = A+ 1, then
along lines connecting A+1 with A+1+it and A+1+ it with σ+it, provided
that the path does not cross a zero of G(s); if it does, we put

argG(s) = lim
ϵ→+0

argG(σ + it+ ϵ).

In light of (3.2) we choose the branch of argument such that argG(s) tends
to zero as σ → ∞. Then argZ(A+ 1) = 0.
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By the functional equation (2.2), Lemma 3.1 and formula (3.2) we get

I1 =

∫ T ′

τ ′
log
∣∣∣∣X(b+ it)Z(1 + b− it)− a

1− a

∣∣∣∣ dt
=4π(g − 1)

∫ T ′

τ ′

(
t(
1

2
+ b) +O

(
σ2 + |σt|
e2πt

))
dt

+

∫ T ′

τ ′
log
∣∣∣∣Z(1 + b− it)− a

X(−b+ it)

∣∣∣∣ dt− ∫ T ′

τ ′
log |1− a| dt

=2π(g − 1)T ′2(
1

2
+ b)− T ′ log |1− a|+O

(
1 +

T ′

(min{N(P00), e})b

)
. (3.6)

Similarly, only simpler,

I2 = O

(
T ′

N(P00)c

)
= o(T ). (3.7)

Now we consider the integral I4. We split I4 into two integrals.

I4 =

∫ c

−b

argG(σ + iT ′) dσ =

∫ 1
2

−b

+

∫ c

1
2

= I41 + I42. (3.8)

First we will evaluate I42. In view of formula (3.2) and definition (3.4) we
can choose a large fixed positive number c′ such that

I42 =

∫ c

1
2

argG(σ + iT ′) dσ =

∫ c′

1
2

argG(σ + iT ′) dσ +O(logT ′).

We will show that, for σ ≥ 1/2,

argG(σ + iT ′) = o(T ′). (3.9)

Let c′ be large enough, such that ℜG(s) ̸= 0 for σ > c′. Suppose that
ℜG(σ + iT ′) has N zeros for 1/2 ≤ σ ≤ c′. Then divide [1/2, c′] into at most
N + 1 subintervals in each of which ℜG(σ + iT ′) is of constant sign. Then

| argG(σ + iT ′)| ≤ (N + 1)π.

To estimate N let

g(z) :=
1

2

(
G(z + iT ′) +G(z + iT ′)

)
.
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Then we have g(σ) = ℜG(σ + iT ′). Let n(r) denote the number of zeros of
g(z) in |z − c′| ≤ r. Then

| argG(σ + iT ′)| ≤
(
n(c′ − 1

2
) + 1

)
π.

By Jensen’s theorem (Titchmarsh [91], Section 3.61, also see Theorem 2.14
in this dissertation)∫ R

0

n(r)

r
dr =

1

2π

∫ 2π

0

log |g(c′ +Reiθ)| dθ − log |g(c′)|. (3.10)

Let R = c′ − 1/2 + δ, δ > 0. We have that, for any ϵ > 0 and σ ≥ 1/2 (see
Garunkštis [23], comments below Theorem 5),

Z(σ + iT ′) ≪ exp(ϵT ′). (3.11)

Thus, for ℜ(c′ +Reiθ) ≥ 1/2 and large T ′,

log |g(c′ +Reiθ)| < 2ϵT ′.

Then the functional equation (2.2) and Lemma 3.1 give that there is an
absolute constant d > 0 such that

log |g(c′ +Reiθ)| < d(δ + ϵ)T ′.

The length of the arc of the circle |s − c′| = R, which is to the left of the
critical line σ = 1/2, is

2R arcsin
√
2Rδ − δ2

R
= O(

√
Rδ) = O(

√
δ) (δ → 0).

Now we see that the right-hand side of (3.10) is at most

O(ϵT ′) +O(δ1/2(δ + ϵ)T ′).

Since
δ

R
n(R− δ) ≤

∫ R

0

n(r)

r
dr,
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we conclude that

n(R− δ) = O
(
ϵ

δ
T ′ + δ−

1
2 (δ + ϵ)T ′

)
and taking δ = ϵ2/3 we obtain that n(R− δ) = O(ϵ1/3T ′). The bound (3.9) is
proved. Hence

I42 = o(T ′).

We return to the integral I41 defined by the equality (3.8). To evaluate
I41 we will use the functional equation (2.2). First we choose the branch of
argX(σ + iT ′). The functional equation (2.2) and the equality argZ(1/2 −
iT ′) = − argZ(1/2 + iT ′) give that

argX(1/2 + iT ′) ≡ 2 argZ(1/2 + iT ′) mod 2π.

We choose
argX(1/2 + iT ′) = 2 argZ(1/2 + iT ′) (3.12)

and we define argX(σ + iT ′) by a continuous variation along the segment
connecting 1/2+ iT ′ with σ+ iT ′. Applying functional equation (2.2) we get

I41 =

∫ 1
2

−b

argX(σ + iT ′) dσ +

∫ 1
2

−b

arg
(
Z(1− σ − iT ′)− a

X(σ + iT ′)

)
dσ

−
∫ 1

2

−b

arg(1− a) dσ = I411 + I412 + o(logT ′).

It is known (see Hejhal [35, Chapter 2, Completion of the proof of Theo-
rem 8.1] or Randol [73, Theorem 1]) that argZ(1/2 + iT ′) = O(T ′/ logT ′).
Then the equality (3.12) gives that

argX(1/2 + iT ′) = O

(
T ′

logT ′

)
. (3.13)

Further by Lemma 3.1 we get

argX(σ + iT ′) = 2π(g − 1)(σ − 1

2
)2 − T ′2 + 2πk +O

(
σ2 + |σT ′|
e2πT

′

)
, (3.14)

where the constant 2πk, where k is an integer, depends on the branch of
argX(σ + iT ′). By (3.13) and (3.14) we have that 2πk = T ′2 +O(T ′/ logT ′).
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This and (3.14) give

I411 = O(b3) +O

(
bT ′

logT ′

)
= o(T ).

Arguing similarly as for I42 we obtain that I412 = o(T ). Thus I4 = o(T )

and similarly I3 = o(logT ). By this and (3.5), (3.6), (3.7), Proposition 3.2
follows for a ̸= 1. If a = 1 then the proposition is proved in an analogous
way, considering the function

G∗(s) =
Z(s)− 1

m0/N(P00)s
.

This gives Proposition 3.2.

To prove Theorem 3.5 we will need the following lemma.

Lemma 3.6. We have ∑
1<γa≤T
βa>

1
2

(βa −
1

2
) ≪ T 2 log logT

logT .

Proof. By Theorem 3.3

∑
1<γa≤T
βa>

1
2

(
βa −

1

2

)
=

∑
1<γa≤T

βa>
1
2
+ log log T

log T

(
βa −

1

2
− log logT

logT

)

+
∑

1<γa≤T

βa>
1
2
+ log log T

log T

log logT
logT +

∑
1<γa≤T

1
2
<βa≤ 1

2
+ log log T

log T

(
βa −

1

2

)

=
∑

1<γa≤T

βa>
1
2
+ log log T

log T

(
βa −

1

2
− log logT

logT

)
+O

(
T 2 log logT

logT

)
.

Arguing along the same lines as in the proof of Proposition 3.2, only with
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b = −1/2− log logT
logT , we obtain

∑
1<γa≤T

βa>
1
2
+ log log T

log T

(
βa −

1

2
− log logT

logT

)
=

∫ T

1

log
∣∣∣∣Z(1

2
+

log logT
logT + it

)
− a

∣∣∣∣ dt+
+O(T ) =

∫ T

√
T

log
∣∣∣∣Z(1

2
+

log logT
logT + it

)
− a

∣∣∣∣ dt+O(T ),

where in the last step we used the bound 3.11. By Hejhal [35, Chapter 2,
Proposition 10.10 and Theorem 8.1], it follows

log |Z(σ + it)| ≪
(

t

log t

)2max(0,1−σ)

log t, for σ ≥ 1

2
+

1

log t
log t

.

Hence, for sufficiently large T0, there is a positive constant C such that, for
T > T0 and

√
T ≤ t ≤ T , we have

log
∣∣∣∣Z(1

2
+

log logT
logT + it

)
− a

∣∣∣∣ < C
T

(logT )2 .

This proves Lemma 3.6.

Proof of Theorem 3.5. By Lemma 3.6 we have that

N+(a, δ, T ) ≤ logT
(log logT )2

∑
1<γa≤T

βa>
1
2
+ log log T

log T

(βa −
1

2
) ≪ T 2

log logT .

Next we consider a bound for

N−(a, δ, T ) =
∑

1<γa≤T
βa<

1
2
−δ

1.

Let b = b(T ) satisfy the conditions of Proposition 3.2. If T is sufficiently
large then for any a-value ρa = βa + iγa we have that βa < b and thus∑
1<γa≤T

(βa + b) ≤
∑

1<γa≤T
βa>

1
2

(
βa −

1

2

)
+
(
b+

1

2

) ∑
1<γa≤T
βa≥ 1

2
−δ

1 +
(
b+

1

2
− δ
) ∑

1<γa≤T
βa<

1
2
−δ

1.

The last inequality together with Lemma 3.6, Proposition 3.2, and Theo-
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rem 3.3, yields
0 ≤ O

(
T 2 log logT

logT

)
− δN−(a, δ, T ).

Thus
N−(a, δ, T ) ≪ T 2

log logT .

The above bounds for N+(a, δ, T ), N−(a, δ, T ) and Theorem 3.3 give the
required formula for N0(a, δ, T ), which completes the proof.
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Chapter 4

Horizontal distribution of the
a-values of the Selberg
zeta-function associated to a
finite volume Riemann surface

In this chapter, we obtain results analogous to the results in the previous
chapter. The difference is that instead of compact Riemann surfaces we
consider finite volume Riemann surfaces. Therefore, this section could be
viewed as a generalization of the previous one. Quite a few results overlap.
However, there are some significant differences, such as a-value free regions.
The main result, which is that almost all the a-values are clustered around
the vertical line of the complex plane with the real part 1/2, is the same.

Here we consider the a-values of the Selberg zeta-functions Z associated
to a finite volume Riemann surface. For a discussion of the definition of
the Selberg zeta-function associated to a finite volume Riemann surface, see
Section 2.3. This section could be viewed as a continuation of the investiga-
tions of Garunkštis and Šimėnas [25], where we studied the a-values of the
Selberg zeta-functions associated to compact hyperbolic Riemann surfaces.
One of the most historically significant articles dealing with the horizontal
distribution of the a-values of the Riemann zeta-function is Levinson [61].
Here Levinson proved that the real parts of almost all the a-values of the
Riemann zeta-function are clustered around the critical line σ = 1/2.

In Theorem 4.1, we describe a-value free regions. For n1 ≥ 1, where n1
is the number of cusps of the corresponding Riemann surface M , we define
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the following region on the left-hand side of the complex plane

L :=

{
σ + it :

∣∣∣∣t− 2n1
vol(M)

log(−σ) + 2n1 − 2 log g1 − 2n1 log 2
vol(M)

∣∣∣∣ ≤ 1

log2(−σ)
,

σ < −2, t > 0} .

Here constant g1 is defined at the beginning of the next section.

Theorem 4.1. Let a ∈ C and a ̸= 0. If n1 = 0 then there exist real numbers
σ0 < 0, t0 > 0, and σ1 > 1 such that Z(s) ̸= a in the region

{s ∈ C : σ < σ0, and t > t0} ∪ {s ∈ C : σ > σ1}.

Here σ0 = σ0(a,M), t0 = t0(a,M), and σ1 = σ1(a,M).
If n1 ≥ 1, then there exist real numbers σ0 < 0 and σ1 > 1 such that

Z(s) ̸= a in the region

{s ∈ C : s ̸∈ L, σ < σ0, and t > 2} ∪ {s ∈ C : σ > σ1}.

Again, here σ0 = σ0(a,M), t0 = t0(a,M), and σ1 = σ1(a,M).
Assume

vol(M) < 4πn1. (4.1)

Then the number of roots of Z(s) = a in the region {s ∈ L : σ′ ≤ σ < σ0} is

vol(M)

4π
σ′2 + o(σ′2) (σ′ → −∞). (4.2)

In the lower half-plane, the distribution of the a-values can be obtained
from the equality Z(s) = Z(s). In addition, we expect that the region
L contains infinitely many zeros for vol(M) ≥ 4πn1. For a more precise
version of the formula (4.2), see Lemma 4.8 in Section 4.2 below.

Next we discus the condition (4.1). Let the surface M have ℓ inequivalent
elliptic points of ordersm1, m2, …, mℓ. The set of numbers (g;m1,m2, . . . ,mℓ;n1),
where g is the genus of the surface M , is a group invariant. It is called
the signature of Γ and satisfies the Gauss-Bonett formula (see Iwaniec [41,
Chapter 2])

2g − 2 +

ℓ∑
j=1

(
1− 1

mj

)
+ n1 =

vol(M)

2π
.
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It is known that the positivity of the left side of the last formula guarantees
the existence of Γ with the given signature. From this it follows that there
are infinitely many groups Γ for which the condition (4.1) is satisfied. By
Shimura [83, Section 1.6], we see that the principal congruence group of the
level N satisfies the condition (4.1) if and only if 2 ≤ N ≤ 11.

Let us fix the numbers σ0 and σ1 in Theorem 4.1. We say that a-value is
non-trivial if it is located in the strip σ0 ≤ σ ≤ σ1. We denote a non-trivial
a-value of Z by ρa = βa + iγa, where βa, γa ∈ R are the corresponding real
and imaginary parts. Suppose N(a, T ) is the number of non-trivial a-values
of the Selberg zeta-function in the region 2 < t ≤ T . Let us define

N(P00) := min
P0

{N(P0)} and m0 = #{{P0} : N(P0) = N(P00)}. (4.3)

The next theorem estimates the number of non-trivial a-values (see Jorgen-
son and Smajlović [44, formula (88)]).

Theorem 4.2. We have the following estimate for the number of non-trivial
a-values of Z up to T provided a ̸= 1

N(a, T ) =
vol(M)

4π
T 2 − n1

π
T logT +

n1 − log g1 − n1 log 2
π

T + o(T ).

If a = 1, then

N(1, T ) =
vol(M)

4π
T 2 − n1

π
T logT +

n1 − log g1 − n1 log 2
π

T

− T

2π
logN(P00) + o(T ).

By N+(a, δ, T ), let us denote the number of a-values of the Selberg zeta-
function in the region 1/2 + δ < σ, 1 < t ≤ T , where δ = (log logT )2/ logT .
By N−(a, δ, T ), we denote the a-values in the region 1/2− δ > σ, 1 < t ≤ T .
By N0(a, δ, T ), we denote the magnitude N(a, T )−N+(a, δ, T )−N−(a, δ, T ).
We have the following theorem

Theorem 4.3. The following estimates hold

N−(a, δ, T ) +N+(a, δ, T ) ≪ T 2

log logT
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and
N0(a, δ, T ) =

vol(M)

4π
T 2 +O

(
T 2

log logT

)
.

The following theorem generalizes formula (2.6).

Theorem 4.4. For non-trivial γa < T and a ̸= 1, we have∑
0<γa≤T

(
1

2
− βa

)
=
n1
4π
T logT − T

2π

(
n1
2

+
n1
2
log π + log |d(1)| − log g1

)
− T

2π
log |1− a|+ o(T ),

and, for a = 1 respectively,∑
0<γa≤T

(
1

2
− βa

)
=
n1
4π
T logT − T

2π

(
n1
2

+
n1
2
log π + log |d(1)| − log g1

)
− T

2π
logm0 +

T

4π
logN(P00) + o(T ).

An important instrument in the proofs of our results will be the functional
equation which is investigated in the next section. In Section 4.2, we prove
Theorem 4.1, and Section 4.3 is devoted to the proofs of Theorems 4.2, 4.3,
and 4.4.

4.1 The functional equation
Selberg zeta-function satisfies the following functional equation (see Hejhal [36,
pp. 499–500], also see Jorgenson and Smajlović [44, Section 2.3])

Z(s)ϕ(s) = η(s)Z(1− s). (4.4)

Here Z, ϕ and η all depend on the underlying Riemann surface M . The
scattering matrix determinant ϕ(s) (Hejhal [36, Definition 3.8, p. 281 and
formula (3.32), p. 298]) satisfies the functional equation (Hejhal [36, gener-
alization of Theorem 11.8, p. 296])

ϕ(s)ϕ(1− s) = 1. (4.5)
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The function ϕ is given by (see Hejhal [36, formula (3.35), p. 299], and
Jorgenson and Smajlović [44, Section 1.3])

ϕ(s) = πn1/2

(
Γ(s− 1/2)

Γ(s)

)n1 ∞∑
n=1

d(n)

g2sn
, (4.6)

where n1 is the number of cusps of the underlying Riemann surface. d(n)
and gn are sequences of real numbers such that

0 < g1 < g2 < . . . .

We have (Hejhal [36, generalization of Theorem 12.9, p. 300–301])

ϕ(s) ≪ 1 (t→ ∞) (4.7)

uniformly in σ ≥ 1/2. Function ϕ can be further decomposed into the
following factors

ϕ(s) = K(s)H(s), (4.8)

where
K(s) = πn1/2

(
Γ(s− 1/2)

Γ(s)

)n1

ec1s+c2 (4.9)

with c1 = −2 log g1 and c2 = log d(1). In addition,

H(s) = 1 +

∞∑
n=2

a(n)

r2sn
(σ > 1) (4.10)

with rn = gn/g1 > 1 and a(n) = d(n)/d(1). The function η is given by
(see Hejhal [36, formula (5.10), p. 501] and Jorgenson and Smajlović [44,
formula (15)])

η(s) = η(1/2) exp
(∫ s

1/2

η′(u)

η(u)
du

)
(4.11)
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with η(1/2) = ±1 and

η′(s)

η(s)
=vol(M)(s− 1/2) tan(π(s− 1/2)) (4.12)

− π
∑
{R}

0<θ(R)<π

1

MR sin θ
cos((2θ − π)(s− 1/2))

cosπ(s− 1/2)

+ 2n1 log 2 + n1

(
Γ′

Γ
(1/2 + s) +

Γ′

Γ
(3/2− s)

)
.

Here {R} is the set of inconjugate elliptic elements of Γ such that 0 < θ(R) <

π is uniquely determined real number such that R is conjugate to the matrix(
cos θ(R) − sin θ(R)
sin θ(R) cos θ(R)

)

and MR is the order of the centralizer of R with respect to Γ.

Lemma 4.5. For any δ > 0, the factor η(s) on the right-hand side of (4.4)
is

η(s)

η(1/2)
= exp

(
vol(M)i

2

(
s− 1

2

)2
+ n1 ((2s− 1) log(−s) + (iπ − 2)s)

)
× exp (2n1s log 2− n1 log 2

+
vol(M)i

24
− π

∑
{R}

0<θ(R)<π

(
i

2MR sin2 θ
+O

(
1

e2(π−θ)t

))
× exp

(
O

(
|s− 1/2|
e2πt

+
1

|s|

))
(|s| → +∞)

uniformly in | arg(−s)| ≤ π − δ, t ≥ 2. Here s = σ + it.

Proof. In light of the formulas (4.11) and (4.12), we write

η(s)

η(1/2)
= exp

(
I1 − I2 +

∫ s−1/2

0

2n1 log 2 du+ n1I3

)
.

The reader is warned that in other places of this dissertation, In denote
different integrals. All formulas in this proof are valid as |s| → ∞, uniformly
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in | arg(−s)| ≤ π − δ, t ≥ 2. We have

I1
vol(M)

=

∫ s− 1
2

0

v tan(πv) dv = i

∫ s− 1
2

0

v
1− e2πiv

1 + e2πiv
dv

= i

∫ s− 1
2

0

v dv − i

(∫ it

0

+

∫ σ−1/2+it

it

)
2v

1 + e−2πiv
dv

=
i

2
(s− 1

2
)2 + 2i

∫ t

0

x

1 + e2πx
dx− 2i

∫ σ−1/2

0

x+ it

1 + e2πt−2πix
dx.

Formulas∫ ∞

0

x

1 + e2πx
dx =

1

48
,

∫ σ−1/2

0

dx

1 + e2πt−2πix
= − i

2π
log
(
1 + e2πix−2πt

)
|σ−1/2
x=0

= − i

2π
(log(1 + exp(2πiσ − πi− 2πt))− log(1 + exp(−2πt)))

and

2i

∫ σ−1/2

0

x

1 + e2πt−2πix
dx = 2i

∫ σ−1/2

0

x d

(∫ x

1

dv

1 + e2πt−2πiv

)
= O

(
|σ − 1/2|
e2πt

)
give that

I1
vol(M)

=
i

2

(
s− 1

2

)2
+

i

24
+O

(
t

e2πt

)
+O

(
|σ − 1/2|
e2πt

)
.

We turn to the integral I2.∫ s

1/2

cos((2θ − π)(u− 1/2))

cos(π(u− 1/2))
du =

∫ s−1/2

0

cos((2θ − π)u)

cosπu du

=

∫ it

0

ei(2θ−π)u + e−i(2θ−π)u

eiπu + e−iπu
du+

∫ σ−1/2+it

it

ei(2θ−π)u + e−i(2θ−π)u

eiπu + e−iπu
du

=i

∫ ∞

0

e−(2θ−π)y + e(2θ−π)y

e−πy + eπy
dy − i

∫ ∞

t

e−(2θ−π)y + e(2θ−π)y

e−πy + eπy
dy

+

∫ σ−1/2

0

ei(2θ−π)(x+it) + e−i(2θ−π)(x+it)

eiπ(x+it) + e−iπ(x+it)
dx.

Let us evaluate the terms in the above formula one-by-one. Using known
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integral (see Gradshteyn and Ryzhik [30, Formula 3.311 3])∫ ∞

−∞

e−axdx

1 + e−x
=

π

sin(πa) (ℜa > 0),

we obtain ∫ ∞

0

e−(2θ−π)y + e(2θ−π)y

e−πy + eπy
dy =

1

2 sin θ .

Continuing our calculations, we have∫ ∞

t

e−(2θ−π)y + e(2θ−π)y

e−πy + eπy
dy ≤ 2

∫ ∞

t

e(2θ−2π)y dy =
1

π − θ
e2(θ−π)t,

and, with slightly more efforts,∫ σ−1/2

0

ei(2θ−π)(x+it) + e−i(2θ−π)(x+it)

eiπ(x+it) + e−iπ(x+it)
dx≪ e2(θ−π)t.

In the end, we have the following estimate for the integral I2

I2 = π
∑
{R}

0<θ(R)<π

(
i

2MR sin2 θ
+O

(
1

e2(π−θ)t

))
.

To calculate the logarithmic derivatives of the Gamma functions, we need
Stirling’s formula (Titchmarsh [91, Section 4.42]). For any constant a,

logΓ(s+ a) =
(
s+ a− 1

2

)
log s− s+

1

2
log 2π +O

(
1

|s|

)
,

as |s| → ∞, uniformly for −π + δ ≤ arg s ≤ π − δ. Therefore

exp(I3) = exp(
∫ s

1/2

(
Γ′

Γ
(1/2 + u) +

Γ′

Γ
(3/2− u)

)
du) =

Γ(1/2 + s)

Γ(3/2− s)

=
π

(1/2− s) sin(π(1/2− s))Γ2(1/2− s)

=
2iπ exp

(
2s log(−s)− 2s− log 2π +O(|s|−1)

)
(1/2− s)(eiπ(1/2−s) − e−iπ(1/2−s))

= exp ((2s− 1) log(−s) + (iπ − 2)s) +O(e−2πt + |s|−1).

This proves Lemma 4.5.

From Lemma 4.5 and recalling that |η(1/2)| = 1, we derive the following
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formula

|η(s)| = exp
(
−vol(M)

(
σ − 1

2

)
t+ n1(2σ − 1) log |s|

)
(4.13)

× exp (−n1(2 arg(−s) + π)t− 2n1σ + 2n1σ log 2− n1 log 2)

× exp

O( |s− 1/2|
e2πt

+
1

|s|

)
+

∑
{R}

0<θ(R)<π

O
(

1

e2(π−θ)t

) (|s| → ∞)

uniformly in | arg(−s)| ≤ π − δ, t ≥ 2. We will often use the fact that
arg(−s) = arctan(t/σ) if σ < 0.

For |s| → ∞, Stirling’s formula also yields

K(1− s) =πn1/2

(
Γ(1/2− s)

Γ(1− s)

)n1

exp(c1 + c2 − c1s) (4.14)

= exp
(
−c1s−

n1
2
log(−s) + n1

2
logπ + c1 + c2 +O(|s|−1)

)
uniformly in arg(−s) ≤ π − δ.

4.2 Trivial a-values. Proof of Theorem 4.1
Theorem 4.1 is derived from the following three lemmas.

Lemma 4.6. Let n1 ≥ 1. Let a ∈ C and a ̸= 0. Then there is σ0 =

σ0(a,M) < 0 such that Z(s) ̸= a in σ ≤ σ0, and t lies in the following region

t ≥ 2n1
vol(M)

log(−σ) + 1

log2(−σ)
− 2n1 + c1 − 2n1 log 2

vol(M)
(4.15)

and

2 ≤ t ≤ 2n1
vol(M)

log(−σ)− 1

log2(−σ)
− 2n1 + c1 − 2n1 log 2

vol(M)
. (4.16)

Proof. From the Euler product (2.5) for Z and by the definition (4.3) of m0

and N(P00), we obtain

Z(s) = 1 +m0N(P00)
−s + o(N(P00)

−σ) (σ → ∞), (4.17)

uniformly in t ∈ R.
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Note that we have

Z(s) = η(s)ϕ(1− s)Z(1− s).

By equation (4.17), we obtain limσ→−∞ Z(1 − s) = 1 uniformly for t ∈ R.
Recall that ϕ(1− s) = H(1− s)K(1− s) and limσ→−∞H(1− s) = 1. To prove
the lemma, first we will show that |η(s)K(1− s)| ≥ 2|a| in the region defined
by (4.15). Then we show that |η(s)K(1 − s)| ≤ |a|/2 in the region defined
by (4.16).

Let s satisfy the relation (4.15). We divide the region defined by this
relation into two subregions, which are given by

2n1
vol(M)

log(−σ) + 1

log2(−σ)
− 2n1 + c1 − 2n1 log 2

vol(M)
≤ t <

3n1
vol(M)

log(−σ)

(4.18)
and

3n1
vol(M)

log(−σ) ≤ t. (4.19)

In both (4.18) and (4.19), −σ is sufficiently large.
Let us consider the region defined by (4.18). We introduce variable b,

satisfying the relation

t =
2n1

vol(M)
log(−σ) + b

log2(−σ)
− 2n1 + c1 − 2n1 log 2

vol(M)
(4.20)

Here b ≥ 1 and b is such that the inequalities (4.18) hold. Then by (4.13)
and (4.14), for σ → −∞,

|η(s)K(1− s)| = exp
(
b
vol(M)(−σ)
log2(−σ)

+O
(
log |σ|+ |σ|1−4πn1/vol(M)

))
,

(4.21)

Therefore, for sufficiently large −σ,

|η(s)K(1− s)| ≥ exp
(
1

2

vol(M)(−σ)
log2(−σ)

)
> 2|a|.

In the region defined by (4.19), in light of (4.13), (4.14) and for sufficiently
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large −σ, we have

|η(s)K(1− s)| ≥ exp(−n1
2
σ log(−σ)) > 2|a|.

This proves the first part of the lemma.
Now let us prove the lemma in the region defined by the inequalities (4.16).

We aim to show that in this case |η(s)K(1 − s)| < |a|/2. In order to do so,
we divide the region defined by (4.16) into two parts

n1
vol(M)

log(−σ) ≤ t ≤ 2n1
vol(M)

log(−σ)− 1

log2(−σ)
− 2n1 + c1 − 2n1 log 2

vol(M)

(4.22)
and

2 ≤ t ≤ n1
vol(M)

log(−σ). (4.23)

Similarly as in the previous part of this proof, let us introduce the variable
b, which is defined exactly as in (4.20), this time with b ≤ −1 and b is such
that the inequalities (4.22) hold. Again by (4.13) and (4.14), for sufficiently
large −σ, we have

|η(s)K(1− s)| = exp
(
b
vol(M)(−σ)
log2(−σ)

+O
(
log |σ|+ |σ|1−2πn1/vol(M)

))
≤ exp

(
−1

2

vol(M)(−σ)
log2(−σ)

)
<

|a|
2
.

As for the second part of our region, defined by the inequalities (4.23),
for sufficiently large −σ, we obtain

|η(s)K(1− s)| ≤ exp(n1
2
σ log(−σ)) ≤ |a|

2

in the region (4.23). This proves Lemma 4.6.

Next we investigate a-values located between a-value free regions (4.15)
and (4.16) indicated in the previous lemma. We will use Rouché’s theorem
together with an auxiliary function

h(s) := exp
(
vol(M)i

2

(
s− 1

2

)2
+ n1(2s− 3/2) log(−s) (4.24)

+(iπn1 − 2n1 + 2n1 log 2− c1)s+ C) ,
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where C is a complex constant. If −σ is large, then the function h(s) is the
‘main’ part of the function η(s)K(1−s). Therefore, in view of the functional
equation Z(s) = η(s)K(1− s)H(1− s)Z(1− s), we have that h(s) is ‘similar’
to Z(s).

For σ3 < 0, define a curve in C by

ℓσ3 := {σ + it : |h(σ + it)| = 1, σ < σ3, t > 2} .

Let N(σ′) denote the number of zeros of h(s)− 1 in σ′ ≤ σ ≤ σ3.

Lemma 4.7. Let n1 ≥ 1. There is σ3 = σ3(C,M) < 0 and a real function
t(σ) = t(σ,C,M), such that

ℓσ3 = {σ + it(σ) : σ ≤ σ3} ,

and, for σ → −∞,

t(σ) =
2n1

vol(M)
log(−σ)− 2n1 + c1 − 2n1 log 2

vol(M)
+O

(
log(−σ)

−σ

)
. (4.25)

Moreover, for σ → −∞,

N(σ) =
vol(M)

4π

(
σ − 1

2

)2
+
n1
2
σ −

n21 log
2(−σ)

πvol(M)
+

2n21 log(−σ)
πvol(M)

+O(1).

(4.26)

Proof. Let
|h(s)| = exp(f(σ, t)),

where

f(σ, t) =− vol(M)
(
σ − 1

2

)
t+ n1

(
2σ − 3

2

)
log |s| (4.27)

− n1(2 arg(−s) + π)t− (2n1 + c1 − 2n1 log 2)σ + ℜC.

As above, we assume | arg(−s)| < π.
The equation |h(s)| = 1 is equivalent to f(σ, t) = 0. The equality

f(σ, t) = 0

implies n1 log(−σ)/vol(M) < t < 3n1 log(−σ)/vol(M), provided −σ is suffi-
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ciently large. Thus

f(σ, t) =− vol(M)
(
σ − 1

2

)
t+ n1

(
2σ − 3

2

)
log(−σ)

− n1πt− (2n1 + c1 − 2n1 log 2)σ + ℜC +O

(
log2(−σ)

−σ

)
= 0

as σ → −∞. From the last formula, it follows that

t =
2n1

vol(M)
log(−σ)− 2n1 + c1 − 2n1 log 2

vol(M)
+O

(
log(−σ)

−σ

)
. (4.28)

We see that if n1 log(−σ)/vol(M) < t < 3n1 log(−σ)/vol(M), then by (4.27)
we have

∂f(σ, t)

∂t
= vol(M)

(
1

2
− σ
)
− n1π +O

(
log(−σ)
(−σ)

)
> 0 (4.29)

for −σ sufficiently large. Note that

f(σ, log(−σ)/vol(M)) < 0 < f(σ, 3 log(−σ)/vol(M)).

Therefore, by the positivity of the derivative (4.29) and by the Implicit
Function Theorem, the relation f(σ, t) = 0 implies the existence of a differ-
entiable function t(σ), such that

ℓσ3 = {σ + it(σ) : σ ≤ σ3} ,

for sufficiently large −σ3. We will show that t = t(σ) is a decreasing function.
Calculating the partial derivative of f with respect to σ yields, for t = t(σ),

∂f(σ, t)

∂σ

∣∣∣∣
t=t(σ)

= 2n1 +O

(
log(−σ)
(−σ)

)
. (4.30)

From f(σ, t) = 0, for t = t(σ), we have

∂f(σ, t)

∂σ
+
∂f(σ, t)

∂t

dt(σ)

dσ
= 0.

By the last formula together with (4.29), (4.30), and (4.28), for sufficiently
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large −σ, we get

dt(σ)

dσ
= − 2n1

vol(M)(−σ)
+O

(
log(−σ)
σ2

)
< 0.

Next we investigate how many zeros the function h(s)−1 has on the curve
σ + it(σ). It is easy to check that such zeros are simple for large −σ. The
function h(s) is analytic and has no zeros for t > 0. For s in the upper
half-plane, we define arg(h(s)) by continuous variation starting at the point
1/2, then going to s by any path lying in t > 0. We see that

arg (h(s)) =vol(M)

2

((
σ − 1

2

)2
− t2

)
+ 2n1t log |s|+ n1(2σ − 3/2) arg(−s)

(4.31)

+ n1πσ − (2n1 + c1 − 2n1 log 2)t+ arg(C).

On the curve σ + it(σ), we have

d arg (h(σ + it(σ)))

dσ
=
∂ arg (h(σ + it))

∂σ
+
∂ arg (h(σ + it))

∂t

dt(σ)

dσ

= vol(M)
(
σ − 1

2

)
+ n1π +O

(
log(−σ)

−σ

)
< 0. (4.32)

Thus dividing the formula (4.31) by 2π and using the expression (4.28), we
obtain the root counting formula (4.26). This proves Lemma 4.7.

Lemma 4.8. Let n1 ≥ 1. Let a ∈ C and a ̸= 0. Assume that vol(M) < 4πn1.
Then the number of roots of Z(s) = a in the region σ′ ≤ σ ≤ −2, t ≥ 2, and∣∣∣∣t− 2n1

vol(M)
log(−σ) + 2n1 + c1 − 2n1 log 2

vol(M)

∣∣∣∣ ≤ 1

log2(−σ)
(4.33)

is

vol(M)

4π

(
σ′ − 1

2

)2
+
n1
2
σ′ −

n21 log
2(−σ′)

πvol(M)
+

2n21 log(−σ′)
πvol(M)

+O(1).

Proof. In this proof, we will use the auxiliary function h(s) defined by for-
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mula (4.24) with the constant C such that

C =− π
∑
{R}

0<θ(R)<π

i

MR sin2 θ
− n1 log 2 +

n1
2
logπ + c1 + c2

+
vol(M)i

24
+ log η(1/2)− log a.

Using Rouché’s theorem, we will show that in the left half-plane the zeros
of the functions Z(s)− a and h(s)− 1 are distributed very similarly.

By formulas (4.17), (4.10), (4.13), and (4.14), we see that in the region
defined by the inequality (4.33), there is an analytic function v(s) ̸= 0 such
that

Z(s)/a = η(s)ϕ(1− s)Z(1− s)/a = h(s)(1 + v(s));

here we have that

|1 + v(s)| = exp

O(|σ|1−4πn1/vol(M)
)
+

∑
{R}

0<θ(R)<π

O
(
|σ|−4n1(π−θ)/vol(M)

) .

Note that in the last equality the term O
(
|σ|1−4πn1/vol(M)

)
comes from the

term O(|s−1/2|e−2πt) in the formula (4.13). Thus, by the condition vol(M) <

4πn1, we see that v(s) → 0, as σ → −∞ and s satisfies the inequality (4.33).
We turn to the construction of the contour for Rouché’s theorem. Let σ3

and ℓσ3 be from Lemma 4.7. Let z ∈ ℓσ3 be such that h(z) = 1 and −ℜz
be sufficiently large. By (4.32), we see that there are z′, z′′ ∈ ℓσ3, ℜz′ <
ℜz < ℜz′′, such that h(z′) = h(z′′) = −1, and in the strip ℜz′ ≤ σ ≤ ℜz′′ the
equation h(s) = 1 has only one solution s = z. Next we consider a contour
K with vertices at z′ + i/ log2(−ℜz′), z′′ + i/ log2(−ℜz′′), z′′ − i/ log2(−ℜz′′),
z′− i/ log2(−ℜz′), where the vertices z′+ i/ log2(−ℜz′) and z′− i/ log2(−ℜz′)
(also z′′ + i/ log2(−ℜz′′) and z′′ − i/ log2(−ℜz′′)) are connected by vertical
lines. The vertices z′ + i/ log2(−ℜz′) and z′′ + i/ log2(−ℜz′′) are connected
by the shifted curve ℓσ3 + i/ log2(−σ), similarly the edges z′′ − i/ log2(−ℜz′′)
and z′ − i/ log2(−ℜz′) are connected by the shifted curve ℓσ3 − i/ log2(−σ),
where ℜz′ ≤ σ ≤ ℜz′′.

We have Z(s)/a − 1 = h(s) − 1 + h(s)v(s). In order to apply Rouché’s
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theorem, we have to show that

|h(s)− 1| > |h(s)v(s)| (4.34)

on K. Then, inside of K, the functions Z(s)− a and h(s)− 1 have the same
number of zeros and the statement of the lemma will follow from Lemma 4.7.

We consider the inequality (4.34) on the vertical lines of K. By (4.31)
and (4.25), there is a positive constant c such that, for any sufficiently large
−σ,

| arg (h(σ + it(σ) + iδ)− arg (h(σ + it(σ))) | < c

log(−σ) ,

if −1/ log2(−σ) ≤ δ ≤ 1/ log2(−σ). Thus, on the vertical lines of K, the
argument of h(s) is almost equal to the argument of −1, i.e.

|h(s)− 1| ≥ | − |h(s)|eic/ log(−σ) − 1| > |h(s)v(s)|.

The inequality (4.34) on the ‘horizontal’ sides of K follows from∣∣∣∣h(σ + it(σ)± i

log2(−σ)

)∣∣∣∣ = exp
(
±vol(M)(−σ)

log2(−σ)
+O (log(−σ))

)
,

for σ → −∞. This proves Lemma 4.8.

Proof of Theorem 4.1. Since N(P00) > 1 (see Hejhal [35, Chap. 2, Sect. 2]),
there exists σ1, depending on a, such that Z(s) ̸= a for σ ≥ σ1.

If n1 = 0, then the a-value free region on the left hand-side of C follows
from the functional equation (4.4) and from the formulas (4.10), (4.13),
(4.14), and (4.17).

The remaining part of Theorem 4.1 follows from Lemmas 4.6 and 4.8.

4.3 Non-trivial a-values. Proofs of
Theorems 4.2, 4.3, and 4.4

Theorems 4.2 and 4.3 will be derived from the following proposition
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Proposition 4.9. Suppose a is a complex and b is a real number, −b < σ0,
where σ0 is from Theorem 4.1. Then in the case of a ̸= 1, we have

∑
2<γa≤T

(βa + b) =
vol(M)

4π

(
1

2
+ b
)
T 2 − n1

2π

(
2b+

3

2

)
T logT (4.35)

+
1

2π

(
(2n1 + c1)b+ 3n1/2− 2n1b log 2− n1 log 2 +

n1
2
log π + c1 + ℜc2

)
T

− T

2π
log |1− a|+ o(T ).

If a = 1, we have

∑
2<γa≤T

(βa + b) =
vol(M)

4π

(
1

2
+ b
)
T 2 − n1

2π

(
2b+

3

2

)
T logT

+
1

2π

(
(2n1 + c1)b+ 3n1/2− 2n1b log 2− n1 log 2 +

n1
2
log π + c1 + ℜc2

)
T

− T

2π
logm0 −

bT

2π
logN(P00) + o(T ).

The constant N(P00) is defined in formula (4.3), n1 is the number of cusps
of the corresponding Riemann surface, c1 = −2 log g1, and c2 = log d(1).

Proof. Let a ̸= 1. Consider the function

G(s) =
Z(s)− a

1− a
.

Note that the zeros of G correspond to the a-values of Z. Let c ≥ σ1 + 1,
which is independent and is defined later. We are interested in the behavior
of G in the rectangle R with vertices c+ iτ ′, c+ iT ′, −b+ iT ′, and −b+ iτ ′.
Here T < T ′ < T + 1/T and 2 < τ ′ < 3 are such that G(s) ̸= 0 on the
rectangle R. In case our rectangle crosses the region containing trivial a-
values, there will be only a finite number of trivial a-values in the rectangle.
The ‘contribution’ of these trivial a-values is captured by the error term.

Applying Littlewood’s lemma (see Titchmarsh [92, Section 9.9]) to G on
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the rectangle R yields (c.f. Garunkštis and Šimėnas [25, equation (3.2)]):

2π
∑

βa>−b
τ ′<γa≤T ′

(βa + b) =

∫ T ′

τ ′
log |G(−b+ it)| dt−

∫ T ′

τ ′
log |G(c+ it)| dt (4.36)

−
∫ c

−b

argG(σ + iτ ′) dσ +

∫ c

−b

argG(σ + iT ′) dσ

=:

4∑
j=1

Ij .

The value argG(s) is defined by continuous variation starting at s = σ1 +1,
then going to σ1+1+it, and finally to σ+it, assuming the path does not cross
a zero of G(s). In case it does, we set argG(s) = limϵ→+0 argG(σ + it+ ϵ).

By the functional equation (4.4) and by the decomposition (4.8) of the
function ϕ(s), we have

I1 =

∫ T ′

τ ′
log
∣∣∣∣η(−b+ it)ϕ(1 + b− it)Z(1 + b− it)− a

1− a

∣∣∣∣ dt
=

∫ T ′

τ ′
log |η(−b+ it)K(1 + b− it)| dt−

∫ T ′

τ ′
log |1− a| dt

+

∫ T ′

τ ′
log |Z(1 + b− it)H(1 + b− it)| dt

+

∫ T ′

τ ′
log
∣∣∣∣1− a

η(−b+ it)Z(1 + b− it)H(1 + b− it)K(1 + b− it)

∣∣∣∣ dt.
In light of formulas (4.17), (4.10), (4.13), and (4.14), we have that the last
integral is o(T ). Cauchy’s theorem and expressions (4.17), (4.10) yield

−
∫ −b+iT ′

−b+iτ ′
logZ(1− s)H(1− s) ds =

∫ ∞+iT ′

−b+iT ′
logZ(1− s)H(1− s) ds (4.37)

+

∫ −b+iτ ′

∞+iτ ′
logZ(1− s)H(1− s) ds = O(1).

This, together with formulas (4.13), (4.14), and arg(b − it) = −π/2 + b/t +
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O(t−3), gives

I1 =

∫ T ′

τ ′

(
vol(M)

(
1

2
+ b
)
t− n1

(
2b+

3

2

)
log t

−2n1b log 2− n1 log 2 + c1b+
n1
2
logπ + c1 + ℜc2 +O

(
1

t

))
dt

− T ′ log |1− a|+ o(T ′)

=
vol(M)

2

(
1

2
+ b
)
T ′2 − n1

(
2b+

3

2

)
T ′ logT ′

+
(
(2n1 + c1)b+ 3n1/2− 2n1b log 2− n1 log 2 +

n1
2
logπ + c1 + ℜc2

)
T ′

− T ′ log |1− a|+ o(T ′).

As for I2, using Cauchy’s theorem, we get

I2 = o(T ).

Let us turn our attention to I4 in (4.36). We can express it as

I4 =

∫ c

−b

argG(σ + iT ′) dσ =

∫ 1/2

−b

+

∫ c

1/2

= I41 + I42.

Consider I42. For our purposes, we need to show that, for σ ≥ 1/2, we have

argG(σ + iT ′) = o(T ′).

Based on (4.17), we choose c large enough so that ℜG(s) ̸= 0 for σ > c.
Suppose that ℜG(σ + iT ′) has N zeros for 1/2 ≤ σ ≤ c. Divide [1/2, c] into
at most N +1 intervals in each of which ℜG(σ+ iT ′) is of constant sign. We
have

| argG(σ + iT ′)| ≤ (N + 1)π.

We can see that our task reduces to estimating N in the above equation.
We define an auxiliary function

h(z) :=
1

2
(G(z + iT ′) +G(z + iT ′)).

Observe that h(σ) = ℜG(σ + iT ′). Let n(r) denote the number of zeros of
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h(z) in the disc |z − c′| ≤ r. Then

| argG(σ + iT ′)| ≤
(
n
(
c′ − 1

2

)
+ 1
)
π.

Let us now use Jensen’s theorem (see Titchmarsh [91, Section 3.61])∫ R

0

n(r)

r
dr =

1

2π

∫ 2π

0

log |h(c+Reiθ)| dθ − log |h(c)|. (4.38)

Let R = c− 1/2 + δ, δ > 0. From Jorgenson and Smajlović [44, Proposition
6] (c.f. Garunkštis [23, comments below Theorem 5]), following the proofs
of Lemmas 12 and 13 in [44], we obtain

Z(σ + iT ′) ≪ exp(ϵT ′), (4.39)

where σ ≥ 1/2 and ϵ > 0. It follows that for ℜ(c+Reiθ) ≥ 1/2 and sufficiently
large T ′, we have

log |h(c+Reiθ)| < 2ϵT ′.

By the functional equations (4.4), (4.5), the bound (4.7) and formula (4.13),
there exists an absolute constant d > 0, such that

log |h(c+Reiθ)| < d(δ + ϵ)T ′.

By the Pythagorean theorem, the length of the arc of the circle |s− c| = R

left of the critical line σ = 1/2 is given by

2R arcsin
√
2Rδ − δ2

R
= O(

√
Rδ) = O(δ) (δ → 0).

The right-hand side of (4.38) is at most

O(ϵT ′) +O(δ1/2(δ + ϵ)T ′).

Since we have
δ

R
n(R− δ) ≤

∫ R

0

n(r)

r
dr,

it follows
n(R− δ) = O

(
ϵ

δ
T ′ + δ−1/2(δ + ϵ)T ′

)
.
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By taking δ = ϵ2/3, we get n(R− δ) = O(ϵ1/3T ′). This gives us

I42 = o(T ).

Now we return to I41. By the functional equation (4.4) and the equality
argZ(1/2− iT ′) = − argZ(1/2 + iT ′), the latter following from the fact that
the coefficients in the Dirichlet series expansion for Z are real, we get

arg
(
η
(
1

2
+ iT ′

)
ϕ
(
1

2
− iT ′

))
≡ 2 argZ

(
1

2
+ iT ′

)
mod 2π.

We choose the value of arg η(1/2 + iT ′)ϕ(1/2− iT ′) for which we have

arg
(
η
(
1

2
+ iT ′

)
ϕ
(
1

2
− iT ′

))
= 2 argZ

(
1

2
+ iT ′

)
.

We also choose 0 ≤ argϕ(1/2− iT ′) < 2π. By this, arg
(
η
(
1
2 + iT ′)) is fixed,

too. For σ ≤ 1/2, we define arg(η(σ + iT ′)) and arg(ϕ(1 − σ − iT ′)) by the
continuous variation along the segment connecting 1/2+ iT ′ with σ+ iT ′. If
the path crosses a zero of ϕ(1 − s) , we set argϕ(1 − s) = limϵ→+0 argϕ(1 −
σ − it− ϵ). By the functional equation (4.4), we get

I41 =

∫ 1/2

−b

arg(η(σ + iT ′)) dσ

+

∫ 1/2

−b

arg
(
Z(1− σ − iT ′)ϕ(1− σ − iT ′)− a

η(σ + iT ′)

)
dσ

−
∫ 1/2

−b

arg(1− a) dσ = I411 + I412 + o(logT ′).

By analogy with the function G, we have argZ(1/2 + it) = o(t). From
Lemma 4.5, we see that arg(η(σ+ iT ′))− arg(η(1/2+ iT ′)) ≪ 1, for −b ≤ σ ≤
1/2. Thus I411 = o(T ).

Arguing similarly as for I42 and using the boundedness of ϕ(1 − σ − iT ′)

(see (4.7)), we obtain that I412 = o(T ). This gives us the proof of equa-
tion (4.35) for a ̸= 1.

Let us consider the case a = 1. By analogy with the case a ̸= 1, we have
the function G∗(s) defined by

G∗(s) =
Z(s)− 1

m0/N(P00)s
.
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Reiterating the argument as in the case of a = 1, we get the following
estimate∑

2<γa<T

(βa + b) = vol(M)
1

4π

(
1

2
+ b
)
T 2 − n1

2π

(
2b+

3

2

)
T logT (4.40)

+
1

2π
((2n1 + c1)b+ 3n1/2− 2n1b log 2− n1 log 2

+
n1
2
log π + c1 + ℜc2

)
T

− T

2π
logm0 −

bT

2π
logN(P00) + o(T ).

This gives the proof of Proposition 4.9.

Proof of Theorem 4.2. The theorem follows from Proposition 4.9 where we
subtract the case b from b+ 1.

In the proof of Theorem 4.3, we need the following lemma

Lemma 4.10. We have∑
1<γa≤T
βa>1/2

(
βa −

1

2

)
≪ T 2 log logT

logT .

Proof. By Theorem 4.2, we have

∑
1<γa≤T
βa>1/2

(
βa −

1

2

)
=

∑
1<γa≤T

βa>1/2+ log log T
log T

(
βa −

1

2
− log logT

logT

)

+
∑

1<γa≤T

βa>1/2+ log log T
log T

log logT
logT +

∑
1<γa≤T

1/2<βa≤1/2+ log log T
log T

(
βa −

1

2

)

=
∑

1<γa≤T

βa>1/2+ log log T
log T

(
βa −

1

2
− log logT

logT

)
+O

(
T 2 log logT

logT

)
.

Applying Littlewood’s lemma as in Proposition 4.9 with
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Chapter 4 Horizontal Selberg finite volume

b = −1/2− log logT/ logT , and using the bound (4.39), we get the following

∑
1<γa≤T

βa>1/2+ log log T
log T

(
βa −

1

2
− log logT

logT

)
=

∫ T

1

log
∣∣∣∣Z(1

2
+

log logT
logT + it

)
− a

∣∣∣∣ dt
+O(T ) =

∫ T

√
T

log
∣∣∣∣Z(1

2
+

log logT
logT + it

)
− a

∣∣∣∣ dt+O(T ).

Recalling the growth estimate (4.39) for Z completes the proof.

Proof of Theorem 4.3. By Lemma 4.10, we have

N+(a, δ, T ) ≤ logT
(log logT )2

∑
1<γa≤T

βa>1/2+(log logT )2/ logT

(
βa −

1

2

)
≪ T 2

log logT .

Suppose b is as formulated in Proposition 4.9. For sufficiently large T
and for any a-value ρa = βa + iγa, we have βa < b. Consider the following
inequality∑
1<γ≤T

(βa+ b) ≤
∑

1<γa≤T
βa>1/2

(
βa +

1

2

)
+
(
b+

1

2

) ∑
1<γa≤T
βa≥1/2−δ

1+
(
b+

1

2
− δ
) ∑

1<γa≤T
βa<1/2−δ

1.

By Proposition 4.9, Theorem 4.2, and Lemma 4.10, we have

0 ≤ O

(
T 2 log logT

logT

)
− δN−(a, δ, T ).

It follows that
N−(a, δ, T ) ≪ T 2

log logT .

This proves the Theorem.

Proof of Theorem 4.4. We subtract the value (b+1/2)N(a, T ), where N(a, T )

is as in Theorem 4.2, from the value
∑

(βa + b) in Proposition 4.9.
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Chapter 5

Distribution modulo one of the
a-values of the Selberg
zeta-function associated to a
compact Riemann surface

This chapter follows Garunkštis et al. [28]. From the definition (2.1) and
the functional equation (2.2), it follows that there are positive constants
A = A(a) and τ = τ(a) such that Z(s) ̸= a for σ ≥ A and

Z(s) ̸= a for σ ≤ 1− A and |t| ≥ τ

(see Garunkštis and Šimėnas [25]). Accordingly an a-point is called non-
trivial if it lies in the strip 1− A < σ < A; non-trivial a-points are denoted
by ρa = βa + iγa. Any a-point inside in the region σ < 1 − A and |t| < τ is
called trivial. Denote by Na(T ) the number of non-trivial a-points (counted
with multiplicities) of Z(s) in the region τ < t ≤ T . In Garunkštis and
Šimėnas [25], also Chapter 3 of this dissertation, it was proved that, for
a ̸= 1,

Na(T ) = (g − 1)T 2 + o(T ) (5.1)

and, for a = 1,

N1(T ) = (g − 1)T 2 − T

2π
logN(P00) + o(T ),

where N(P00) = minP0
{N(P0)}. If a = 0, then formula (5.1) is known to hold

with the better error term O(T/ logT ) (Hejhal [35, §2.8, Theorem 8.19]).



Chapter 5 Vertical distribution compact

It is known that almost all non-trivial a-points are arbitrary close to the
critical line σ = 1/2. More precisely, let N−

a (δ, T ) and N+
a (δ, T ) denote the

number of non-trivial a-points of Z(s) lying in the corresponding regions
σ < 1/2 − δ, 1 < t ≤ T , respectively σ > 1/2 + δ, 1 < t ≤ T . Furthermore,
define

N0
a (δ, T ) = Na(T )− (N−

a (δ, T ) +N+
a (δ, T )).

Then, for δ = (log logT )2/ logT we have (Garunkštis and Šimėnas [25, The-
orem 3])

N−
a (δ, T ) +N+

a (δ, T ) ≪ T 2

log logT (5.2)

and
N0

a (δ, T ) = (g − 1)T 2 +O

(
T 2

log logT

)
. (5.3)

In Garunkštis [23] the connection between the distribution of a-points and
the growth of Z(s) was considered. The value distribution of the Selberg
zeta-function associated to the modular group in the sense of universality
theorem was investigated in Drungilas et al. [15].

Here we shall prove

Theorem 5.1. Let a ∈ C. The imaginary parts of non-trivial a-points of
the Selberg zeta-function Z(s) are uniformly distributed modulo one.

For the Riemann zeta-function it was Rademacher [69] who proved under
assumption of the truth of the Riemann hypothesis that the imaginary parts
of the non-trivial zeros are uniformly distributed modulo one; Elliott [17]
and (independently) Hlawka [37] gave unconditional proofs of this result.
Further extensions and generalizations can be found in the articles Akbary
and Murty [1], Ford et al. [21], and Fujii [22]; the analogue of Theorem 5.1
has been proved in Steuding [90].

The proof of Theorem 5.1 relies on

Proposition 5.2. Let x be a fixed positive real number not equal to 1. Then,
as T → ∞, ∑

0<γ≤T

xρ = O(T ).

Furthermore, we consider the eigenvalues λj of the hyperbolic Laplacian
∆ on X.
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Chapter 5 Vertical distribution compact

Theorem 5.3. Let x = e2πn, n ∈ Z. The following two statements are
equivalent:

1. the eigenvalues λj are uniformly distributed modulo one.

2. the following bounds are valid.∫ T

1

x2t/T+it2Z
′

Z

(
1

2
+

1

T
− it
)
dt = o(T 2) for n > 0

and ∫ T

1

x−2t/T−it2Z
′

Z

(
1

2
+

1

T
+ it
)
dt = o(T 2) for n < 0.

In the next section we state lemmas. Theorems 5.1, 5.3, and Proposi-
tion 5.2 are proved in Section 5.2.

5.1 Preliminaries
In the proof of Theorem 5.1, we will use Weyl criterion (see Theorem 2.9).

Lemma 5.4. If f(s) is analytic and f(s0) ̸= 0 with∣∣∣∣ f(s)f(s0)

∣∣∣∣ < eM

in {s : |s− s0| ≤ r} with M > 1, then∣∣∣∣∣f ′(s)f(s)
−
∑
ρ

1

s− ρ

∣∣∣∣∣ < C
M

r

for |s− s0| ≤ r/4, where C is some constant and ρ runs through the zeros of
f(s) such that |ρ− s0| ≤ r/2.

Lemma 5.4 is applied in the proof of the next lemma.

Lemma 5.5. Let a ∈ C and B, b ≥ 1/2 be fixed. Let T be such that Z(σ +

iT ) ̸= a for 1− b ≤ σ ≤ B. Then∫ B

1−b

∣∣∣∣ Z ′(σ + iT )

Z(σ + iT )− a

∣∣∣∣ dσ ≪ T.
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Proof. In Lemma 5.4 we choose s0 = B + iT and r = 4(B − (1 − b)). We
can take M = cT with some c > 0 (see Randol [73, Lemma 2] or Garunkštis
and Šimėnas [25, comment above Theorem 5], which is Chapter 3 in this
dissertation). Then Lemma 5.4 gives

Z ′(s)

Z(s)− a
=

∑
|ρa−s0|≤ r

2

1

s− ρa
+O (T ) , (5.4)

for |s− s0| ≤ r/4. Thus∫ B

1−b

∣∣∣∣ Z ′(σ + iT )

Z(σ + iT )− a

∣∣∣∣ dσ ≤
∫ B

1−b

∑
|ρa−s0|≤ r

2

∣∣∣∣ 1

σ + iT − ρa

∣∣∣∣ dσ +O (T )

=
∑

|ρa−s0|≤ r
2

∫ B

1−b

1√
(σ − βa)2 + (T − γa)2

dσ +O (T )

=
∑

|ρa−s0|≤ r
2

(
log
(
B − βa +

√
(T − γa)2 + (B − βa)2

)
− log

(
1− b− βa +

√
(T − γa)2 + (1− b− βa)2)

))
+O (T )

≪ T

since the disc |ρa − s0| ≤ r
2 contains O(T ) many a-points.

In the following lemma we express the Selberg zeta-function by a general
Dirichlet series.

Lemma 5.6. There is the unbounded sequence 1 < x2 < x3 . . . of real
numbers and real numbers an, n = 2, 3, . . . , such what

Z(s) = 1 +

∞∑
n=2

an
xsn
, (5.5)

where the Dirichlet series converges absolutely for σ > 1.

Proof. Multiplying the Euler product we obtain a formal Dirichlet series

Z(s) =
∏
{P0}

∞∏
k=0

(1−N(P0)
−s−k) = 1 +

∞∑
n=2

an
xsn
.

In view of the properties of Dirichlet series (Hardy and Riesz [34, §2.2,
Theorem 1]) it is enough to prove that the series (5.5) converges absolutely
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at s = σ > 1. For any positive x, we have that

1 +
∑
xn≤x

|an|
xσn

≤
∏
{P0}

∞∏
k=0

(1 +N(P0)
−σ−k).

In the last formula, the product converges for σ > 1 since (Hejhal [35, §1.2,
Proposition 2.5]) ∑

{P0}
N(P0)≤x

1 = O(x).

This proves the lemma.

The next lemma is essentially due to Landau [55] and deals with general
Dirichlet series. Let 1 = x1 < x2 < . . . be an unbounded sequence X of real
numbers and define

S = {xk1xk2 . . . xkm : m ∈ N, k1 ∈ N, . . . , km ∈ N}

as the set of all possible products of elements of the sequence X. Let
1 = y1 < y2 < . . . be an ordered sequence of all different numbers of S.

Lemma 5.7. For n ∈ N let an and bn be complex numbers such that the
general Dirichlet series A(s) =

∑
n anx

−s
n and B(s) =

∑
n bnx

−s
n converge

absolutely in the right half-plane σ > σ0. If b1 ̸= 0, then there exist a real
number σ1 ≥ σ0 and complex numbers cn, n = 1, 2, . . . , such that

A(s)

B(s)
=

∞∑
n=1

cn
ysn

and the series converges absolutely for σ > σ1.

Proof. Without loss of generality, we assume that b1 = 1. Then there exists
σ1 ≥ σ0 such that |B(s) − 1| < 1 for σ > σ1, and the series of B(s) − 1

converges absolutely. Thus there exist complex numbers dn such that

1

B(s)
=

∞∑
n=0

(−1)n(B(s)− 1)n =

∞∑
n=1

dn
ysn
,

where the last series converges absolutely for σ > σ1. Now the lemma follows
in view of the absolute convergence of the series for A(s) and B(s)−1.
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The following lemma describes the asymptotic behavior of the factor X(s)

from the functional equation (2.2).

Lemma 5.8. For t ≥ 1,

X(s) = exp
(
2πi(g − 1)

(
s− 1

2

)2
+
πi(g − 1)

6

+O
(

t

e2πt
)
+O

(
(σ − 1/2)2

e2πt
)

+O

(
(σ − 1/2)t

e2πt
))

(t→ ∞)

uniformly in σ.

Proof. This is Lemma 3.1 in this dissertation.

5.2 Proofs
Proof of Proposition 5.2. First, we may assume a ̸= 1. Let B be a suffi-
ciently large fixed number, such that B ≥ A, where A is defined in Intro-
duction. Then the strip 1−B ≤ σ ≤ B contains all the non-trivial a-points
and a finite number of trivial a-points.

Next let T be such that there are no a-points on the line t = T . Using the
residue theorem and the fact that the logarithmic derivative of Z(s)− a has
simple poles at each a-point ρa with residue equal to the order of ρa, we get∑

0<γa≤T

xρa =
1

2πi

∫
�
xs

Z ′(s)

Z(s)− a
ds+O(1);

here � denotes the counterclockwise oriented rectangular contour with ver-
tices B + i, B + iT , 1−B + iT , 1−B + i. If the line t = 1 contains a-points,
we slightly alter the lower edge of the rectangular contour �.

In order to evaluate the integral, we write

∫
�
xs

Z ′(s)

Z(s)− a
ds =

{∫ B+iT

B+i

+

∫ 1−B+iT

B+iT

+

∫ 1−B+i

1−B+iT

+

∫ B+i

1−B+i

}
xs

Z ′(s)

Z(s)− a
ds

=

4∑
j=1

Ij ,

say. We shall evaluate each Ij individually.
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In view of Lemmas 5.6 and 5.7, we may suppose that the logarithmic
derivative of Z(s)−a has an absolutely convergent Dirichlet series expansion
for σ > B, namely

Z ′(s)

Z(s)− a
=

∞∑
n=2

cn
ysn
.

Now we interchange summation and integration on the right-hand side of
the rectangle, which gives

I1 =

∞∑
n=2

cn

∫ B+iT

B+i

(
x

yn

)s

ds =

∞∑
n=2

cni

∫ T

1

exp((B + it) log(x/yn)) dt

=

∞∑
n=2

cni exp(B log(x/yn))
∫ T

1

exp(it log(x/yn)) dt.

By∫ T

1

exp(it log(x/yn)) dt

=

T − 1 if x = yn,

(exp(iT log(x/yn))− exp(i log(x/yn)))/(i log(x/yn)) otherwise.

we obtain
I1 = ic(x)T +O(1).

Here c(x) equals the Dirichlet coefficient cn if x = yn and 0 otherwise.
Next we estimate the integrals along the horizontal segments. Clearly,

I4 = O(1). In view of Lemma 5.5, the contribution of the upper horizontal
segment gives

I2 =

∫ B

1−B

xσ+it′ Z ′(σ + iT )

Z(σ + iT )− a
dσ ≪

∫ B

1−B

∣∣∣∣ Z ′(σ + iT )

Z(σ + iT )− a

∣∣∣∣ dσ ≪ T.

It remains to estimate the integral along the left-hand side:

I3 = O(1)−
∫ 1−B+iT

1−B+it0

xs
Z ′(s)

Z(s)− a
ds. (5.6)

In view of the expression of Z(s) by a Dirichlet series (Lemma 5.6), we may
assume |Z(1−σ−it)| ≥ 1/2 for σ ≤ 1−B and all t; it follows from Lemma 5.8
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above that
Z(1−B + it) ≫ exp(t),

as t→ ∞. Hence there exists t0 such that the absolute value of Z(1−B+ it)

is greater than 2|a| for t > t0 and we obtain the following expansion into a
geometric series:

Z ′(s)

Z(s)− a
=
Z ′

Z
(s)

1

1− a/Z(s)
=
Z ′

Z
(s)

(
1 +

∞∑
k=1

(
a

Z(s)

)k
)
.

Then, in view of the bound Z ′/Z(1−B+ it) ≪ t, for t→ ∞ (see Randol [72,
Lemma 2]), we get

∫ 1−B+iT

1−B+it0

xs
Z ′

Z
(s)

∞∑
k=1

(
a

Z(s)

)k

ds≪ x1−BT 2
∞∑
k=1

(
1

exp(T )

)k

≪ 1.

By Hejhal [35, Chapter 2, Proposition 4.2] we have

Z ′

Z
(s) =

∑
{P0}

∞∑
k=1

log(N(P0))(1−N(P0)
−k)−1

N(P0)ks
, (5.7)

where the series converges absolutely in the half-plane σ > 1.
Recall that x ̸= 1. By the functional equation (Lemma 5.8) and (5.7), for

the second part of the integral in (5.6) we get

−
∫ 1−B+iT

1−B+it0

xs
Z ′(s)

Z(s)
ds =

∫ 1−B+iT

1−B+it0

xs
(
Z ′

Z
(1− s)− X ′

X
(s)

)
ds

= −ix1−B
∑
P0

∞∑
k=1

log(N(P0))(1−N(P0)
−k)−1

N(P0)kB

∫ T

t0

(
xN(P0)

k
)it

dt

+ ix1−B

∫ T

t0

xit(−4π(g − 1)t+O(1)) dt

≪ T.

Thus I3 ≪ T .
So far we have been considering the case a ̸= 1. Now we consider the case

a = 1. In the expression of Z(s) by a Dirichlet series (Lemma 5.6), we can
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suppose that a2 ̸= 0. Let us define the function:

ℓ(s) = xs2(Z(s)− 1) = 1 +

∞∑
n=3

an
a2

(
x2
xn

)s

.

Then the logarithmic derivative of ℓ is given by

ℓ′

ℓ
(s) = logx2 +

Z ′(s)

Z(s)− 1
.

Applying contour integration and the above reasoning to this function
proves Proposition 5.2.

Proof of Theorem 5.1. Our argument follows along the lines of the proof of
Theorem 1 in Steuding [90]. We use the property that non-trivial a-values
are clustered around the critical line. By formulas (5.2) and (5.3), we have

∑
1<γa≤T

∣∣∣βa − 1

2

∣∣∣ =
 ∑

1<γa≤T, |βa−1/2|>δ

+
∑

1<γa≤T, |βa−1/2|≤δ

∣∣∣βa − 1

2

∣∣∣
≪ T 2

log logT +
T 2(log logT )2

logT .

Since the function Z(s) has only a bounded number of non-trivial a-points
satisfying 0 < t ≤ 1, we get

∑
0<γa≤T

∣∣∣βa − 1

2

∣∣∣≪ T 2

log logT .

Since, for any real number y,

| exp(y)− 1| =
∣∣∣∣∫ y

0

exp(t) dt
∣∣∣∣ ≤ |y|max{1, exp(y)},

we find

|x1/2+iγa − xβa+iγa| =xβa

∣∣∣exp((1
2
− βa

)
logx

)
− 1
∣∣∣

≤
∣∣∣βa − 1

2

∣∣∣ | logx|max{xβa , x1/2}.
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Furthermore,

1

Na(T )

∑
0<γa≤T

|x1/2+iγ − xβa+iγa| ≤ X

Na(T )

∑
0<γa≤T

∣∣∣βa − 1

2

∣∣∣ ,
where X = max{xB, 1}| logx|. Hence,

1

Na(T )

∑
0<γa≤T

(x1/2+iγa − xβa+iγa) ≪ X

log logT .

By Theorem 5.2, ∑
0<γa≤T

xβa+iγa ≪ T.

Therefore, as T → ∞,

1

Na(T )

∑
0<γa≤T

x1/2+iγa ≪ 1

log logT .

Now let x = zm with some positive z ̸= 1 and m ∈ N. It follows from the
latter formula that

lim
T→∞

1

Na(T )

∑
0<γa≤T

exp(imγa log z) = 0.

By Weyl criterion (Lemma ??), the sequence of numbers γa log z/2π is uni-
formly distributed modulo 1. This proves Theorem 5.1.

Proof of Theorem 5.3. In view of the Weyl criterion (Lemma ??) the eigen-
values λj are uniformly distributed modulo one if, and only if, for any fixed
n ∈ Z \ {0}, ∑

0<λj≤T 2

xiλj = o

 ∑
0<λj≤T 2

1

 ,

where x = e2πn. By the relation between eigenvalues and non-trivial ze-
ros (2.4) and by the formula for the number of non-trivial zeros (5.1) it
follows that ∑

0<λj≤T 2+ 1
4

1 =
∑

0<tj≤T

1 = (g − 1)T 2 +O

(
T

logT

)
.
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First we consider the case x > 1. If T is not an ordinate of a zero, then∑
0<λj<T 2+ 1

4

xiλj =
∑

0<tj<T

x
i
4
+it2j =

∑
−T<−tj<0

x
i
4
+it2j (5.8)

=
1

2πi

∫
�
x

i
4
+is2Z

′(s+ 1
2)

Z(s+ 1
2)
ds+O(1) =: I1 + I2 + I3 + I4 +O(1),

where the integration is over the counterclockwise oriented rectangular con-
tour � in the lower half-plane with vertices 1/T −i, −1−i, −1−iT , 1/T−iT .

Clearly, for the integral on the upper horizontal line segment of � we
have I1 ≪ 1.

For the integral I2 over the left vertical line we use the bound Z ′/Z(−1+

iT ) ≪ T , T → ∞ (Randol [72, Lemma 2]). Then, in view of xis2 =

x−2σt+i(σ2−t2), we deduce I2 ≪ 1.
For the integral I3 over the lower horizontal line we use once more for-

mula (5.4) and derive

I3 =

∫ 1/T−iT

−1−iT

x
i
4
+is2Z

′(s+ 1
2)

Z(s+ 1
2)
ds≪

∫ 1/T−iT

−1−iT

∣∣∣∣Z ′(s+ 1
2)

Z(s+ 1
2)

∣∣∣∣ ds
=

∑
|ρ−s0|≤ r

2

∫ 1/T

−1

1√
σ2 + (T − γ)2

dσ +O (T )

=
∑

|ρ−s0|≤ r
2

(
log
(

1

T
+

√
(T − γ)2 +

1

T 2

)

− log
(
1 +
√

(T − γ)2 + 1
))

+O (T )

≪ T logT.

Further, the following equality holds

I4 = ixiσ
2

∫ −1

−T

x−2σt−it2Z
′

Z

(
1

2
+

1

T
+ it
)

dt.

This proves the assertion of the theorem in the case n > 0.
In order to prove the assertion in the case n ≤ 0, we choose the rectangular

contour in the upper half-plane with vertices −1 + i, 1/T + i, 1/T + iT ,
−1 + iT in formula (5.8) and proceed as in the previous case. This proves
Theorem 5.3.
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Chapter 6

Speiser equivalent for the
Riemann hypothesis

This chapter is based on Garunkštis and Šimėnas [26]. In the first part of
the 20th century, Speiser [86] studied the relationship between the location
of the zeros of the derivative of the Riemann zeta-function and the Riemann
hypothesis (RH). His result, achieved by geometric means, is that the RH is
equivalent to the absence of non-real zeros of the derivative of the Riemann
zeta-function left of the critical line.

Later on, Levinson and Montgomery [62] investigated the relationship
between the zeros of the Riemann zeta-function and its derivative analyti-
cally. They proved the quantitative version of the Speiser’s result, namely,
that the Riemann zeta-function and its derivative have approximately the
same number of zeros left of the critical line. This result was extended
to Dirichlet L-functions with primitive Dirichlet characters (Yıldırım [98]),
to the Selberg class (Šleževičienė [84]), to the Selberg zeta-function on a
compact Riemann surface (Luo [63], see also Garunkštis [24]). In all these
cases, an analog of the RH is expected or, as in the case of the Selberg zeta-
function, it is known to be true. Here we ask the question if the Speiser
equivalent is valid for zeta-functions for which an analog of the RH is not
true. The answer is positive and as an example we consider numerically
certain zeta-functions depending on a parameter, which for some values of
the parameter violate the RH and for other values they are expected to
satisfy the RH. To be more general, we choose to investigate the so called
extended Selberg class. This class includes classical zeta-functions, such as
the Riemann zeta-function, Dirichlet L-functions for primitive characters,
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Dedekind zeta-functions. This class also contains linear combinations of
certain Dirichlet L-functions for which the RH is not valid (Kaczorowski
and Kulas [46]).

A not identically vanishing Dirichlet series

F (s) =

∞∑
n=1

an
ns

which converges absolutely for σ > 1 belongs to the extended Selberg class
S# if:

(i) (Meromorphic continuation) There exists k ∈ N such that (s− 1)kF (s)

is an entire function of finite order.

(ii) (Functional equation) F (s) satisfies the functional equation:

Φ(s) = ωΦ(1− s), (6.1)

where Φ(s) := F (s)Qs
∏r

j=1 Γ(λjs + µj), with Q > 0, λj > 0, ℜ(µj) ≥ 0

and |ω| = 1.

While the data Q, λj, µj and ω of the functional equation are not uniquely
determined by F , the value dF = 2

∑r
j=1 λj is an invariant. It is called the

degree of F . More about the (extended) Selberg class see the survey papers
of Kaczorowsky and Perelli [45], [48], [47], [66], [65].

For a positive degree, the zeros of F (s) located at the poles of the Gamma
functions in the functional equation (6.1), i.e. at s = −µj+k

λj
with k =

0, 1, 2, . . . and j = 1, . . . , r, are called trivial zeros. If the degree is equal
to zero, then the functional equation of F (s) has no gamma factors and
thus F (s) has no trivial zeros. For any degree, let σF ≥ 1/2 be the least real
number such that F (s) does not have any zeros in the right-half plane σ > σF

(cf. Kaczorowski [45], Section 2.1). Then by the functional equation (6.1)
we see that in the left-half plane σ < 1−σF the function F (s) can have only
trivial zeros.

Suppose that F (s) ∈ S# is a non-constant function. Next, we consider
zero free regions of F ′(s) in the left-half plane. If the degree is equal to zero,
then F (s) is a Dirichlet polynomial whose structure is well understood (see
Kaczorowski and Perelli [48] or formula (6.10) below). It follows that for
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dF = 0, there is σ1 such that F ′(s) ̸= 0 if σ ≤ σ1. For dF > 0, a zero free
region of F ′(s) is described by the next proposition.

Proposition 6.1. Let F (s) ∈ S# and dF > 0. Then there is τ ≥ 0 such that
F ′(s) ̸= 0 in σ < 1− σF , |t| ≥ τ .

From the proof of Proposition 6.1, we see that for a given function F (s)

the explicit upper bound for τ can be calculated.
In this chapter, T always tends to plus infinity. The main results of this

chapter for the functions of the extended Selberg class are the following:

Theorem 6.2. Let F (s) ∈ S#, dF > 0 and σ0 > σF . Let τ be the same as
in Proposition 6.1. Let N(T ) and N1(T ) respectively denote the number of
zeros of F (s) and F ′(s) in the region τ < t < T , σ < 1/2. Then

N(T ) = N1(T ) +O(logT ).

Moreover, if N(T ) < T/(2σ0 − 1)+O(1), then there is a monotonic sequence
{Tj}, Tj → ∞, j → ∞ such that

N(Tj)−N(T1) = N1(Tj)−N1(T1).

Theorem 6.3. Let F (s) ∈ S# be a non-constant function with dF = 0. Let
N(T ) and N1(T ) respectively denote the number of zeros of F (s) and F ′(s)

in the region 0 < t < T , σ < 1/2. Then

N(T ) = N1(T ) +O(1).

It is well known that ζ ′(1/2+ it) ̸= 0 if ζ(1/2+ it) ̸= 0, see Spira [87, Corol-
lary 3]. Analogous statement is true for the functions from the extended
Selberg class.

Proposition 6.4. Let F (s) ∈ S# be a non-constant function. Then there
is τ ≥ 0 such that, for t ≥ τ ,

F ′(1/2 + it) ̸= 0 if F (1/2 + it) ̸= 0.

Moreover, if dF = 0 then τ = 0.
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As we have already mentioned, the extended Selberg class contains zeta-
functions for which the RH is not true, but all these functions still satisfy
functional equations (6.1) of the Riemann type. Can we extend the Speiser
equivalent to zeta-functions without such functional equations? Possibly
the simplest example of such functions are Dirichlet L-functions with im-
primitive characters.

For a Dirichlet character χ, the Dirichlet L-function L(s, χ) is defined by

L(s, χ) =

∞∑
n=1

χ(n)

ns
.

Now, suppose χ is an imprimitive Dirichlet character modulo q induced by
a primitive Dirichlet character χ1 mod q1. Then q1 divides q and

χ(n) =

χ1(n) if gcd(n, q) = 1,

0 otherwise.

The following Euler product holds:

L(s, χ) = L(s, χ1)
∏
p|q

(1− χ1(p)p
−s). (6.2)

We see that L(s, χ) has zeros on the line σ = 0 and in this sense the RH is
not valid. Also, a functional equation of the Riemann type does not hold
for L(s, χ).

In analogy with Proposition 6.1, we demonstrate the existence of a zero-
free region in the left half-plane for L′(s, χ).

Proposition 6.5. Let χ be an imprimitive Dirichlet character. Then for
any σ0 > 1, there exists τ such that L′(s, χ) does not vanish for σ ≤ 1 − σ0

and |t| ≥ τ .

The next theorem is analogous to Theorem 6.2.

Theorem 6.6. Let χ mod q be an imprimitive Dirichlet character induced
by a primitive character χ1 mod q1. Let τ be the same as in Proposition 6.5.
Let N(T ) and N1(T ) denote the number of zeros of respectively L(s, χ) and
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L′(s, χ) in the region τ < t < T , σ < 1/2. Then

N1(T ) = N(T ) +O(logT ) ≥ log(q/q1)
2π

T +O(logT ),

where the inequality can be replaced by the equality provided the Riemann
hypothesis is valid for L(s, χ1).

From the proof we see that Theorem 6.6 can be generalized to zeta-
functions from the extended Selberg class, multiplied by some simple func-
tion. On the other hand, Hurwitz and Lerch zeta-functions also do not
satisfy the Riemann type functional equation, but computations do not
confirm the Speiser equivalent in these cases. The proofs of above results
follow the proof of Levinson and Montgomery [62].

The next section is devoted to computer calculations. To illustrate The-
orem 6.2 “in action,” we compute the trajectories of the zeros of a certain
zeta-function depending on a parameter as well as the trajectories of the ze-
ros of its derivative. We also calculate several zeros of the derivative of the
celebrated Davenport-Heilbronn zeta-function, which is an element of the
extended Selberg class and has non-real zeros off the critical line. Section
3 contains the proofs.

6.1 Computations
All computations in this section were done using the program Mathematica.
Computations should be regarded as heuristic because their accuracy was
not controlled explicitly. We investigate the function of the following form:

f(s, τ) := f0(s) · (1− τ) + f1(s) · τ,

where τ ∈ [0, 1], f0(s) := (1 +
√
5/5s)ζ(s), ζ(s) is the Riemann zeta-function,

and f1(s) := L(s, ψ), where ψ mod 5, ψ(2) = −1.
For any τ , the function f(s, τ) satisfies the functional equation

f(s) = 5−s+1/22(2π)s−1Γ(1− s) sin
(
πs

2

)
f(1− s) (6.3)

since both f0 and f1 satisfy (6.3). Thus, for any τ , the function f(s, τ) is an
element of the extended Selberg class of degree df = 1 and Theorem 6.2 for
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f(s, τ) is valid.
It is quite likely that all the non-trivial zeros of f(s, 0) and f(s, 1) are

located on the line σ = 1/2. However, by the joint universality theorem
for Dirichlet L-functions, it follows that for any 0 < τ < 1 there are in-
finitely many zeros of f(s, τ) in the strip 1/2 < ℜs < 1 (see Theorem 2 in
Kaczorowski and Kulas [46]).

By f (v)s (s, τ) we denote that vth partial derivative of f with respect to s:

f
(v)
s (s, τ) =

∂v

∂sv
f(s, τ).

Suppose that ρ = ρ(τ0) is a zero of multiplicitym of f(s, τ0) (i.e. f (v)s (ρ(τ0), τ0) =

0, v = 0, 1, . . . ,m−1, f (m)
s (ρ(τ0), τ0) ̸= 0). By Rouché’s theorem, we have that

for every sufficiently small open disc D with center at ρ in which the func-
tion f(s, τ0) has no other zeros except for ρ, there exists δ = δ(D) > 0 such
that each function f(s, τ), where τ ∈ (τ0 − δ, τ0 + δ), has exactly m zeros
(counted with multiplicities) in the disc D (c.f. Theorem 1 in Balanzario
and Sánchez-Ortiz [5] and Lemma 8 in Dubickas et al. [16]). If zero ρ is of
multiplicity m = 1, then there exists a neighborhood of τ0 and some function
ρ = ρ(τ), which is continuous at τ0 and, in addition, satisfies the relation
f(ρ(τ), τ) = 0. This way, we can speak about the continuous zero trajectory
ρ(τ). Similarly, the trajectories of the zeros of the derivative f ′s(s, τ) are
understood.

In view of the functional equation (6.3), for any τ , the non-real zeros of
f(s, τ) are symmetrically distributed with respect to the critical line σ = 1/2.
It follows that provided the RH holds for f(s, 0) and if we have its simple zero
ρ1(0), the functional equation forbids the corresponding zero trajectory ρ1(τ)
from leaving the critical line as τ increases unless it meets the trajectory
ρ2(τ) of another zero, say at τ = τ ′. Then ρ1(τ

′) = ρ2(τ
′) is a double zero of

f(s, τ ′). In the case of the zeros of degree two, they can leave the critical
line. Moreover, their trajectories are symmetric with respect to the critical
line. Let the trajectories ρ1(τ) and ρ2(τ) meet each other at τ = τ ′ and
let them split into two trajectories, which leave the critical line and which
are symmetric with respect to this line. For definitiveness, we say that the
trajectory ρ1(τ) (similarly ρ2(τ)) at τ = τ ′ turns to the right hand-side as
τ increases. Then the trajectories ρ1(τ) and ρ2(τ) remain defined in the a
neighborhood of τ ′. Note that this definition makes sense because in all the
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Figure 6.1: Solid black trajectories are zero trajectories ρ1(τ) and ρ2(τ):
f(ρ1(τ), τ) = 0, ρ1(0) = 0.5 + i60.84, ρ1(1) = 0.5 + i62.13 and
f(ρ2(τ), τ) = 0, ρ2(0) = 0.5 + i60.51, ρ2(1) = 0.5 + i61.14. Dashed
trajectory is a derivative zero trajectory q(τ): f ′s(q(τ), τ) = 0,
q(0) = 0.52 + i60.68, q(1) = 0.76 + i61.55.

1439 1439.5 1440 1440.5
Re sH ΤL

0.2

0.4

0.6

0.8

ImsH ΤL

Figure 6.2: Solid black trajectories are zero trajectories with ρ1(0) = 0.50 +

i1438.61, ρ2(0) = 0.50 + i1438.95, and ρ3(0) = 0.50 + i1439.62

(f(ρj(τ), τ) = 0, 0 ≤ τ ≤ 1, j = 1, 2, 3). Dashed black trajectories
are derivative zero trajectories with q1(0) = 0.55 + i1438.80, and
q2(0) = 0.66 + i1439.42 (f ′s(qj(τ), τ) = 0, 0 ≤ τ ≤ 1 j = 1, 2).

calculations in this section, the trajectories ρ1(τ) and ρ2(τ) move in opposite
directions before they meet at τ = τ ′. In addition, the derivative f ′s(s, τ ′)
must vanish at the meeting point s = ρ1(τ

′). Thus there is a trajectory q(τ)
of a zero of f ′s(s, τ) such that q(τ ′) = ρ1(τ

′) = ρ2(τ
′).

Figures 6.1 and 6.2 are parametric plots of the trajectories of the zeros
of f(s, τ) and its derivative, solid and dotted lines respectively. We see that
the trajectory of the derivative crosses the critical line in accordance with
Theorem 6.2.

To find the solutions, i.e. the zero trajectories, ρ(τ) and q(τ), 0 ≤ τ ≤ 1,
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of
f(ρ(τ), τ) = 0 and f ′s(q(τ), τ) = 0,

we solve the differential equations numerically

∂ρ(τ)

∂τ
= −

∂f(ρ,τ)
∂τ

∂f(ρ,τ)
∂ρ

and ∂q(τ)

∂τ
= −

∂2f(q,τ)
∂q∂τ

∂2f(q,τ)
∂q2

.

As the initial conditions, some zeros of f(s, 0) = (1+
√
5

5s )ζ(s) and f ′s(s, 0) are
used.

In the upper half-plane region with 0 < t ≤ 1500 the function f(s, 0) has
1452 zeros, all on the critical line. According to our computations, 286
of these zeros leave the critical line and, except several cases similar to
Figure 6.2, are similar to Figure 6.1.

Further, we consider the Davenport-Heilbronn zeta-function defined by

ℓ(s) :=
1

2 cosα
(
e−iαL(s, η) + eiαL(s, η)

)
,

where η mod 5, η(2) = i, and tanα =

√
10−2

√
5−2√

5−1
. The Davenoport-Heilbronn

zeta-function satisfies the functional equation:

ℓ(s) = 51/2−s2(2π)s−1Γ(1− s) cos
(
πs

2

)
ℓ(1− s).

The function ℓ(s) has zeros with σ > 1 and has infinitely many zeros on the
critical line (Titchmarsh [92, Section 10.25]). Similarly to f(s, τ), the func-
tion ℓ(s) has infinitely many zeros in 1/2 < σ < 1. It belongs to the extended
Selberg class and hence falls within the class of functions for which Theo-
rem 6.2 holds. It should be noted that the zeros of the Davenport-Heilbronn
zeta-function have been subject to much analysis. Spira [88] calculated the
location of some of the zeros of the Davenport-Heilbronn zeta-function off
the critical line σ = 1/2 in the region 0 ≤ t ≤ 200 (see also Balanzario
and Sánchez-Ortiz [5]). He did not find any zeros of its derivative left of
σ = 1/2 in this region although he did find several locations of the zeros of
the function itself. This would go against our Theorem 6.2. However, we
recalculated the zeros of the derivative of the Davenport-Heilbronn zeta-
function and we did find zeros left of the critical line with imaginary parts
less than 200.
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For 0 ≤ t ≤ 200, R. Spira calculated 8 zeros of ℓ(s) off the critical line:
0.80+i 85.69,
0.65+i 114.16,
0.57+i 166.47,
0.72+i 176.70
and claimed that ‘no zeros of ℓ′(s) were found in σ < 1/2, 0 ≤ t ≤ 200’. We
found 4 zeros of ℓ′(s) in σ < 1/2, 0 ≤ t ≤ 200:
0.40+i 85.70,
0.47+ i 114.15,
0.49+i 166.47,
0.43+i 176.70.

To detect the number of zeros of the function ℓ′(s) in some region D, we
compute the integral ∫

∂D

ℓ′′(s)

ℓ′(s)
ds,

where ∂D is a boundary of D. If there is one zero q in the region D, then
this zero is computed by the formula

q =

∫
∂D

s
ℓ′′(s)

ℓ′(s)
ds.

The zeros where checked using Mathematica’s command FindRoot.

6.2 Proofs
Proof of Proposition 6.1. Let σ0 > σF . Also, let τ ′ > τ and σ′ < 1− σ0. Let
R and R be two rectangles with vertices 1 − σ0 + iτ , 1 − σ0 + iτ ′, σ′ + iτ ′,
σ′ + iτ and 1 − σ0 − iτ , 1 − σ0 − iτ ′, σ′ − iτ ′, σ′ − iτ respectively. Using
formula (6.5) below, we will show that there is τ such that for any τ ′ and
any σ′ the inequality

ℜF
′

F
(s) < 0 (6.4)

holds for s ∈ R and s ∈ R. By the argument principle, it follows that F ′(s)

and F (s) have the same number of zeros inside of the rectangle R (also in
R). This will prove the proposition since for sufficiently large τ , the function
F (s) has no zeros inside of the rectangles R and R.

By the definition of the extended Selberg class, there is an integer nF such
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that the function G(s) = snF (s−1)nFΦ(s) is an entire function and G(1) ̸= 0.
By the functional equation (6.1), we have that G(0) ̸= 0. Moreover, G(s) is
an entire function of order 1 (see Lemma 3.3 and the comment below the
proof of Lemma 3.3 in Smajlović [85]). Applying Hadamard’s factorization
theorem to the function G(s) analogously as in Šleževičienė [84, Proof of
Theorem 3, formula (6)] (see also Smajlović [85, formulas (8), (10)]), we
have that

ℜF
′

F
(s) =

∑
ρ non-trivial, ρ ̸=0,1

σ − β

|s− ρ|2
− nFσ

|s|2
− nF (σ − 1)

|s− 1|2
− logQ (6.5)

−ℜ
r∑

j=1

λj
Γ′

Γ
(λjs+ µj),

where the summation is over the non-trivial zeros of F (s) except possible
non-trivial zeros or poles at s = 0 and s = 1.

Next we will prove inequality (6.4). In view of Γ(z)Γ(1− z) = π/ sin(πz),
we can write

r∑
j=1

λj
Γ′

Γ
(λjs+ µj) =

r∑
j=1

(
λj

Γ′

Γ
(1− λjs− µj)− λj cot (π(λjs+ µj))

)
.

Recall that λj > 0, j = 1, . . . , r and
∑r

j=1 λj > 0. Then by the formulas

Γ′

Γ
(s) = log s+O

(
|s|−1

)
(ℜ(s) ≥ 0, |s| → ∞), (6.6)

cot z = 1 +O
(
e−|ℑz|

)
(ℑz → ±∞),

Γ′/Γ(s + 1) = Γ′/Γ(s) + 1/s and equality (6.5), we have that there is τ such
that, for any τ ′ and σ′, inequality (6.4) is true if s ∈ R and s ∈ R. This
proves Proposition 6.1.

Proof of Theorem 6.2. Let

R =
{
s ∈ C : τ < t < T, 1− σ0 < σ <

1

2

}
.

To prove the theorem, it is enough to consider the difference of the number
of zeros of F (s) and F ′(s) in the region R.

Without loss of generality, we assume that F (σ+iT ) ̸= 0 and F ′(σ+iT ) ̸= 0
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for 1 − σ0 ≤ σ ≤ 1/2. We consider the change of argF ′/F (s) along the
appropriately indented boundary R′ of the region R. More precisely, upper,
left, and lower sides of R′ coincide with the upper, left, and lower boundaries
of R. To obtain the right-hand side of the contour of R′, we take the right-
hand side boundary of R and deform it to bypass the zeros of F (1/2 + it)

by left semicircles with an arbitrarily small radius.
To prove the first part of Theorem 6.2, we will show that the change of

argF ′/F (s) along the contour R′ is O(logT ).
By formula (6.5), similarly as in the proof of Proposition 6.1, we have

that
ℜF

′

F
(1− σ0 + it) < 0,

where τ ≤ t ≤ T .
We switch to the right hand side of R′. For this, we evaluate the terms of

equality (6.5). In view of the symmetry of zeros with respect to the critical
line, we consider

σ − β

|s− ρ|2
+

σ − 1 + β

|s− 1 + ρ|2
= −2

(
1

2
− σ
) (t− γ)2 + (σ − 1

2)
2 − (12 − β)2

|s− ρ|2|s− 1 + ρ|2
.

Let

I1 := 2
∑
β<1/2

(t− γ)2 + (σ − 1
2)

2 − (12 − β)2

|s− ρ|2|s− 1 + ρ|2
+
∑
β=1/2

1

|s− ρ|2
. (6.7)

Then
I :=

∑
ρ non-trivial

ρ̸=0,1

σ − β

|s− ρ|2
= −

(
1

2
− σ
)
I1. (6.8)

Suppose that s = 1/2 + it is not a zero of F (s). When I = 0 (see equa-
tion (6.8)), then, similarly as in the proof of Proposition 6.1, we see that
ℜF ′/F (s) < 0. Let ρ0 = 1/2 + iγ0 be a zero of F (s). Then I1 (see for-
mula (6.7)) can be made arbitrarily large as we move along the left semi-
circle with an arbitrarily small radius and center at ρ0. This is because the
term 1/|s− ρ0|2 → ∞ as |s− ρ0| → 0. Hence on the right hand side of R′ we
again have ℜF ′(s)/F (s) < 0.

By the Phragmén-Lindelöf principle and the functional equation, we ob-

89



Chapter 6 Speiser equivalent

tain that for any σ′ there is A > 0 such that

F (σ + iT ) = O(TA) (6.9)

uniformly in σ ≥ σ′ (cf. Steuding [89, Theorem 6.8]). By the Cauchy
differentiation formula and by the bound (6.9), we have that the bound
analogous to (6.9) is true also for F ′(s). Then by using Jensen’s theorem,
it is possible to show that the change of argF (s) and argF ′(s) along the
horizontal sides of R′ is O(logT ) (cf. Šleževičienė [84, Proof of Theorem 1]
or Titchmarsh [92, Section 9.4]). This proves the first part of Theorem 6.2.

We will prove the second part of Theorem 6.2. Suppose there is a mono-
tonic sequence {Tj}, Tj → ∞, j → ∞ with the property ℜ(F ′/F (σ+iTj)) < 0,
here 1 − σ0 < σ < 1/2. Then by the first part of the proof we have that
N(Tj)−N(T1) = N1(Tj)−N1(T1).

Suppose there is no such sequence {Tj}. Then for sufficiently high t, there
is 1− σ0 ≤ σ ≤ 1/2 such that ℜF ′/F (s) ≥ 0. Thus I > 0 and I1 < 0. Then at
least one term in I1 must be negative. Hence there is a zero ρ = β+ iγ with
1− σ0 < β < 1/2 such that

(
1

2
− β
)2

> (t− γ)2 +
(
σ − 1

2

)2
.

It follows that |t − γ| < σ0 − 1/2. Thus, if for sufficiently high t we divide
the imaginary line into intervals of length 2σ0 − 1, it would follow that for
every interval there will be at least one zero whose imaginary part falls into
that interval. Since we started with sufficiently high t, it follows that in
this case F (s) has more than T/(2σ0 − 1) +O(1) zeros in the region R. This
concludes the proof.

Proof of Theorem 6.3. Let us denote the set of degree zero functions of the
extended Selberg class by S#

0 . Let F (s) ∈ S#
0 and let q = Q2, where Q is

from functional equation (6.1) of F (s). By Kaczorowski and Perelli [48], we
have that q is a positive integer and

F (s) =
∑
n|q

an
ns
, (6.10)
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where
an =

ωn
√
q
a q

n
,

moreover, if √
q ∈ N then a√q = εb with b ∈ R, where ε denotes a fixed

square root of ω. By the expression (6.10), we see that Q > 1 if F (s) is a
non-constant function.

The fact that dF = 0 means that there are no Gamma factors in the
functional equation. Hence

F ′

F
(s) = −2 logQ− F ′

F
(1− s). (6.11)

Let σ1 be a negative real number with large absolute value such that
F (s) ̸= 0 and F ′(s) ̸= 0 for σ ≤ σ1 (see the comment before Proposition 6.1).
Let R be a rectangle with vertices 1/2 − δ, 1/2 − δ + iT , σ1 + iT , σ1, where
δ > 0 is as small as we like and it will be chosen later. Without loss of
generality, we assume that F (s) ̸= 0 and F ′(s) ̸= 0 on the boundary of the
rectangle R. In addition, we assume that F (s) ̸= 0 and F ′(s) ̸= 0 in the
interior of the rectangle with vertices 1/2, 1/2+ iT , 1/2+ iT − δ, and 1/2− δ.
We can achieve this because the zeros of F form a discrete set. To prove
the theorem it is enough to show that the change of argF ′/F (s) along the
rectangle R is O(1) as T → ∞.

By formulas (6.10) and (6.11), it is easy to see that

lim
σ→−∞

F ′

F
(σ + it) = −2 logQ.

Suppose that s′ is on the left-hand side of R and suppose that σ1 in the
definition of the rectangle R is a negative number with large absolute value.
Then ℜF ′/F (s′) < 0.

Similarly as in the proof of Theorem 6.2, the change in argument on the
horizontal sides is O(1) since F (s) is bounded on vertical strips.

We consider the right-hand side 1/2 − δ + it, 0 ≤ t ≤ T of R. By equal-
ity (6.11), we see that

ℜF
′

F

(
1

2
+ it
)
= − logQ

if 1/2 + it is not a zero of F (s). We claim that there is a sufficiently small
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δ = δ(T ) such that, for 0 ≤ t ≤ T ,

ℜF
′

F

(
1

2
− δ + it

)
≤ − logQ

2
. (6.12)

To prove this inequality, it is enough to consider the case when t is in the
neighborhood of a zero ρ = 1/2 + iγ. We have

F ′

F
(s) =

m

s− ρ
+m′ +O(|s− ρ|),

where m is the multiplicity of ρ. Hence taking s = 1/2− δ + it, we see that

ℜF
′

F
(s) = − mδ

|s− ρ|2
+ ℜ(m′) +O(|s− ρ|).

Thus ℜm′ = − logQ. This proves the inequality (6.12). Therefore, the ar-
gument change along the right side of the contour is O(1). This gives the
proof of Theorem 6.3.

Proof of Proposition 6.4. Let the degree dF > 0. Assume the contrary, that
there is a large number t such that F ′(1/2 + it) = 0 and F (1/2 + it) ̸= 0.
Then by Hadamard’s type formula (6.5), Gamma function property (6.6),
and using the fact that σ = 1/2 in (6.8), we obtain the contradiction

0 = ℜF
′

F
(1/2 + it) < 0.

This proves the proposition for dF > 0. If dF = 0 then the proposition
follows by formula (6.11).

Now we provide the proofs for our results for the Dirichlet L-functions
with imprimitive characters.

Proof of Proposition 6.5. Let the character χ mod q be induced by a prim-
itive character χ1. Taking logarithmic derivatives of both sides of equa-
tion (6.2) yields:

L′

L
(s, χ) =

L′

L
(s, χ1) +

∑
p|q

χ1(p)p
−s log p

1− χ1(p)p−s
. (6.13)

The sum part on the right hand-side is bounded uniformly for |σ| ≥ δ

with fixed positive δ. The Dirichlet L-function L(s, χ1) is an element of the
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(extended) Selberg class. Thus for L′/L(s, χ1), the equation (6.5) is valid
with F (s) = L(s, χ1). By an argument similar to that of Proposition 6.1,
we conclude that there exists τ such that ℜ(L′/L(s, χ1)) is sufficiently small,
that is, negative with large absolute value, to make ℜ(L′/L(s, χ)) negative
with σ < 1 − σ0, |t| ≥ τ . Therefore, L′(s, χ) has no zeros in our region, just
as L(s, χ).

Proof of Theorem 6.6. Let R and R′ be the same as in the proof of Theo-
rem 6.2. Again, without loss of generality, assume that T is such L(σ+iT, χ)
and L′(σ + iT, χ) do not vanish for 1 − σ0 ≤ σ ≤ 1/2. Let L(s, χ1) be the
corresponding Dirichlet L-function with primitive character χ1. We show
that the change of argL′/L(s, χ) along the contour of R′ is O(logT ).

As to the left boundary of R′, equation (6.13) yields ℜ(L′/L(s, χ)) < 0.
Let us look at the right boundary of R′. Equations (6.5) and (6.13) give

ℜL
′

L
(s, χ) =

∑
ρ non-trivial,

ρ ̸=0,1

σ − β

|s− ρ|2
− nFσ

|s|2
− nF (σ − 1)

|s− 1|2
−

− logQ−ℜ
r∑

j=1

λj
Γ′

Γ
(λjs+ µj)+

+ ℜ
∑
p|q

χ1(p)p
−s log p

1− χ1(p)p−s
.

Here the first summation is taken over the non-trivial zeros of L(s, χ1). The
non-trivial zeros of L(s, χ1) occur in symmetric pairs. Let I1 and I denote the
same magnitudes as in the equations (6.7) and (6.8), respectively. Arguing
in the same vein as in the proof of Theorem 6.2, we get L′/L(s, χ) < 0 as
s moves along the right contour of R′ provided we take τ sufficiently large.
As to the remaining estimate of the change in argument of L′/L(s, χ) as we
move along the horizontal segments of the contour of R′, we argue exactly
as in the proof of Theorem 6.2, which yields that the change in argument
is O(logT ). This gives us the proof of the theorem.
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Chapter 7

Conclusions

To sum up our results, we have obtained:

• The a-values of the Selberg zeta-functions associated to a compact
Riemann surface are mostly clustered around the critical line σ = 1/2.
The same holds for the a-values of the Selberg zeta-function associated
to a finite volume Riemann surface.

• The imaginary parts of the a-values of the Selberg zeta-function associ-
ated to a compact Riemann surface are uniformly distributed modulo
one.

• The number of zeros of the functions belonging to the extended Sel-
berg class is approximately the same as the number of zeros of their
derivatives.
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