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Notation

Sn =
∑n

i=1Xi.
S(n) = max{S1, . . . , Sn}.
SΘ+
n =

∑n
i=1 ΘiX

+
i .

SΘ
n =

∑n
i=1 ΘiXi.

X(n) = max{X1, . . . , Xn}.
Gn(x) = P(X(n) < x).
S

(+)
n = X+

1 + · · ·+X+
n .

x+ = max(x, 0).
Zτ = Θ1 + · · ·+ Θτ .
Hn(x) = n−1(F1(x) + · · ·+ Fn(x)).
SΘ

(τ) = maxk≤τ S
Θ
k .

For positive functions a(x) and b(x):
a(x) ∼ b(x) if lim

x→∞
a(x)/b(x) = 1;

a(x) . b(x) if lim sup
x→∞

a(x)/b(x) ≤ 1;
a(x) & b(x) if lim inf

x→∞
a(x)/b(x) ≥ 1;

a(x) � b(x) if 0 < lim inf
x→∞

a(x)
b(x)

≤ lim sup
x→∞

a(x)
b(x)

< ∞ (also are called weakly

equivalent);
a(x) = o(b(x)) if lim

x→∞
a(x)/b(x) = 0.

bxc denotes the integer part of a real number x.
x ∨ y denotes the maximal value between real numbers x and y.
x ∧ y denotes the minimal value between real numbers x and y.
1IA - the indicator function of an event A.
All limit relationships hold for x tending to ∞, unless stated otherwise.
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Chapter 1

Introduction

The notion of heavy-tailed distribution function (d. f. ) naturally appears in
the analysis of the sum of random variables (r.v.s). Nowadays such functions
are widely applicable in stochastic systems and their importance is obvious:
modeling large claim size in insurance and finance, extremal events and
other risk processes. Various other popular samples follow heavy-tailed d. f.
(distribution of wealth, file sizes in computer systems, connection durations,
web pages sizes and others).

The main characteristic of heavy-tailed distribution is that there are a
few large values compared to the other values of the given sample. Besides
that, not all moments exist and other statistics are used for heavy-tailed d.
f. So the classical central limit theorem or confidence interval formulas can
not be applicable for such distributions. Hence, some special approaches
are needed to handle it.

Since the heavy-tailed r.v.s have the property that the small observations
are asymptotically negligible compared to the largest one, many researchers
try to compare asymptotically the tail probability of the sum with the tail
probability of the maximal element. These and similar asymptotics are
widely described and discussed in many papers and monographs, which
deal with the sum of heavy-tailed r.v.s. We will also discuss a few problems
(arised from the already solved one) of such sums.

In this doctoral disertation we consider the sequence of real-valued r.v.s
X1, . . . , Xn with heavy-tailed d. f.s.

Our first problem is to investigate the asymptotic tail of sum Sn :=

X1 + · · · + Xn for dependent nonidentically distributed summands. Depen-
dence among primary r.v.s is important for practical situations: variables
are often related to each other. In Chapter 3, motivated by the paper of
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1. Introduction

[42] (see also [15]), we restrict some conditions to the (heavy-tailed) distri-
bution of X(n) := max {X1, . . . , Xn} and prove the weak max-sum (see (3.1))
equivalence among quantities P(Sn > x), P(X(n) > x) and

∑n
i=1 P(Xi > x)

for nonidentically distributed r.v.s. We give some copula-based examples of
dependence structures.

The analysis of the sums Sn led us to the discussion about the ran-
domly weighted sums SΘ

n :=
∑n

i=1 ΘiXi, where X1, . . . , Xn are real-valued
r.v.s with some dependence structure and distributions F1, . . . , Fn, respec-
tively; Θ1, . . . ,Θn are arbitrarily dependent positive r.v.s., independent of
X1, . . . , Xn (Chapter 4).

We consider two questions. The first of them is about the closure prop-
erty of the sum SΘ

n in the case of long-tailed primary variables X1, . . . , Xn.
More precisely, we investigate when, given that distributions F1, . . . , Fn are
from the long-tailed distribution class (see Section 2.1 for definition), the
distribution function (d. f. ) of sum SΘ

n is long-tailed too.
The second question is the asymptotic equivalence of the tail probabili-

ties P(SΘ
n > x) and P(SΘ+

n > x), where SΘ+
n := Θ1X

+
1 + · · · + ΘnX

+
n , that is,

for a given dependence structure among the heavy-tailed r.v.s X1, . . . , Xn,
whether it holds that

P(SΘ
n > x) ∼ P(SΘ+

n > x) (1.1)

for x→∞?
In Chapter 4 we extend the result on the closure property and tail asymp-

totics of randomly weighted sums SΘ
n under similar dependence structure

as in [72] for any n ≥ 2. Also, we study the case where the distribu-
tion of random vector (X1, . . . , Xn) is generated by an absolutely continu-
ous copula. In particular, we show that, if the distribution of (X1, . . . , Xn)

is generated by the FGM copula, marginal distributions are from a cer-
tain class of heavy-tailed d. f. and random weights are bounded, then the
probabilities P(SΘ

n > x) and P(SΘ+
n > x) are asymptotically equivalent to∑n

k=1 P(ΘkXk > x).
The last subject we investigate (Chapter 5) is randomly weighted and

randomly stoped sums SΘ
k :=

∑k
i=1 ΘiXi, k ≥ 1, where {X1, X2, . . . } is a

sequence of identically distributed r.v.s, having a certain dependence struc-
ture, with heavy-tailed d. f. FX ; Θ1,Θ2, . . . are some nonnegative r.v.s. We
consider the random maximum of these sums,

SΘ
(τ) = max

k≤τ
SΘ
k

2



with nonnegative integer-valued r.v. τ . We assume that {X1, X2, . . . },
{Θ1,Θ2, . . . } and τ are mutually independent. We are interested in the
asymptotics of tail probability P(SΘ

(τ) > x) and P(Zτ > x) as x → ∞, where
Zτ := Θ1 + · · ·+ Θτ .

In Chapter 5 we specify the conditions, under which relation P(Zτ >

x) = o(FX(x)) holds for a wide class of heavy tailed distribution functions
and dependence structures. Together, we extend the main result in [73] to
a wider class of dependence structure.

All results presented in this dissertation are achieved by the author of
the thesis together with the co-authors. The theorems and propositions
proved in the dissertation are original and can be considered as new. The
main result of Chapter 3 is based on the papers [21] and [69]. The closure
property and tail probability for randomly weighted sums of dependent
r.v.s are proved in Chapter 4 and submited to the journal. The theorems
presented in Chapter 5 are published in paper [20]. In the last Chapter 6
we make the conclusions of our results.

3



Chapter 2

Background

In this chapter we introduce the concepts and notations we use in the dis-
sertation.

2.1 Heavy-tailed distributions

A distribution of r.v. X, supported on [0,∞), is said to be heavy-tailed if
EeδX =∞ for all δ > 0 and light-tailed otherwise. We recall the definitions
of some classes of heavy-tailed d. f. s. Let F (x) := 1 − F (x) for all real x.
A d. f. F supported on [0,∞) belongs to the regularly varying-tailed class
(F ∈ R) if there exists a constant a > 0 such that

lim
x→∞

F (xy)

F (x)
= y−a,

holds for any fixed positive y,
belongs to the consistently varying-tailed class (F ∈ C ) if

lim
y↗1

lim sup
x→∞

F (xy)

F (x)
= 1,

belongs to the dominatedly varying-tailed class (F ∈ D) if for any fixed
y ∈ (0, 1)

lim sup
x→∞

F (xy)

F (x)
<∞,

is long-tailed (F ∈ L ) if, for every fixed y,

lim
x→∞

F (x+ y)

F (x)
= 1,

4



2.2 Dependence structures

is subexponential (F ∈ S ) if

lim
x→∞

F ∗2(x)

F (x)
= 2,

where F ∗2 denotes convolution of F (x) with itself, and belongs to the class
S ∗ (is strongly subexponential) if m :=

∫
[0,∞)

xdF (x) <∞ and∫ x

0

F (x− y)F (y)dy ∼ 2mF (x), x→∞.

If a d. f. F is supported on R, then F belongs to any of these classes, if
the d. f. F (x)1{x≥0} belongs to the corresponding class. In the case of finite
mean, it holds that

R ⊂ C ⊂ L ∩D ⊂ S ∗ ⊂ S ⊂ L

(see [25], [36]). For the example of d. f. which is subexponential but does
not belong to S ∗, see [18]; for d. f. which is dominatedly varying-tailed
but not long-tailed (hence, not in S and S ∗), see [17] and [24] (Example
1.4.2). For more details on heavy-tailed distributions, see [24].

Denote

F ∗(y) := lim inf
x→∞

F (xy)

F (x)
, F

∗
(y) := lim sup

x→∞

F (xy)

F (x)
, y > 1,

and define the upper and lower Matuszewska indices of d. f. F , respectively:

J+
F := − lim

y→∞

logF ∗(y)

log y
, J−F := − lim

y→∞

logF
∗
(y)

log y
.

Additionally, let

LF := lim
y↘1

F ∗(y).

Parameter LF and the Matuszewska indices are important quantities for
the characterization of the classes of heavy-tailed d. f. s. In particular (see,
e.g., [8]), the following four statements are equivalent:

(i) F ∈ D , (ii) F ∗(y) > 0 for some y > 1, (iii) LF > 0, (iv) J+
F <∞.

Also, F ∈ C if and only if LF = 1.

2.2 Dependence structures

Recall some concepts of negative dependence.

5



2. Background

Definition 2.2.1 ([44], Definition 1.1). R.v.s X1, . . . , Xn are said to be
upper extended negatively dependent (UEND), if there exists a positive con-
stant M1, such that, for each real x1, . . . , xn,

P(X1 > x1, . . . , Xn > xn) ≤M1

n∏
i=1

P(Xi > xi); (2.2.1)

they are said to be lower extended negatively dependent (LEND), if there
exists some positive constant M2, such that for each real x1, . . . , xn

P(X1 ≤ x1, . . . , Xn ≤ xn) ≤M2

n∏
i=1

P(Xi ≤ xi); (2.2.2)

and they are said to be extended negatively dependent (END), if they are
both UEND and LEND.

When M1 = 1 and M2 = 1 in (2.2.1) and (2.2.2), the r.v.s X1, . . . , Xn

are said to be upper negatively dependent (UND) and lower negatively de-
pendent (LND), respectively, and they are said to be negatively dependent
(ND) if (2.2.1) and (2.2.2) both hold with M1 = 1 and M2 = 1, see [22], [9],
[58].

For negatively dependent r.v.s one subset of them is "high" and other
disjoint subsets are "low". Such property is rather natural and appears in
life insurance and financial mathematics.

Definition 2.2.2. Random variables X1, . . . , Xn are called pairwise upper
extended negatively dependent (pUEND), if

P
(
Xi > xi, Xj > xj

)
≤ M3P(Xi > xi)P(Xj > xj) (2.2.3)

for all xi, xj ∈ R, i 6= j, i, j ∈ {1, . . . , n}, and some M3 > 0.

Definition 2.2.3. X1, . . . , Xn are pairwise negatively (pND) dependent (or
negatively quadrant dependent, according to [38]), if (2.2.3) holds with M3 =

1:
P
(
Xi > xi, Xj > xj

)
≤ P(Xi > xi)P(Xj > xj) (2.2.4)

for all xi, xj ∈ R, i 6= j, i, j ∈ {1, . . . , n}.

Inequality (2.2.4) is equivalent to

P
(
Xi ≤ xi, Xj ≤ xj

)
≤ P(Xi ≤ xi)P(Xj ≤ xj) (2.2.5)

6



2.2 Dependence structures

for all xi, xj ∈ R, i 6= j, i, j ∈ {1, . . . , n}. Indeed, if inequality (2.2.4) holds,
then

P(Xi > xi)P(Xj > xj) = (1− P(Xi ≤ xi))(1− P(Xj ≤ xj))

= 1− P(Xi ≤ xi)− P(Xj ≤ xj) + P(Xi ≤ xi)P(Xj ≤ xj)

≥ P
(
Xi > xi, Xj > xj

)
.

It follows, by the formula P(A B) = 1− P(A)− P(B) + P(AB), that

P(Xi ≤ xi)P(Xj ≤ xj)

≥ P
(
Xi > xi, Xj > xj

)
− 1 + P(Xi ≤ xi) + P(Xj ≤ xj)

= 1− P(Xi ≤ xi)− P(Xj ≤ xj) + P
(
Xi ≤ xi, Xj ≤ xj

)
−1 + P(Xi ≤ xi) + P(Xj ≤ xj),

which is the same as (2.2.5). Hence, if r.v.s are pND, they are pairwise
UND and pairwise LND at the same time. Note, that pND does not imply
mutual ND ([22]). Also, if r.v.s X1, . . . , Xn are UND (LND) the any subset
of size 2 ≤ k ≤ n is UND (LND) too.

Acording to Definition 2.2.1, the UND/LND/ND r.v.s have the following
useful transformation properties.

Lemma 2.2.1 ([58], Lemma 1.1). 1) If r.v.s {Xk, k = 1, 2 . . . } are LND
(UND) and {fk(·), k = 1, 2, . . . } are all monotone increasing real functions,
then {fk(Xk), k = 1, 2 . . . } are also LND (UND) ;

2) if r.v.s {Xk, k = 1, 2 . . . } are LND (UND) and {fk(·), k = 1, 2, . . . } are
all monotone decreasing real functions, then {fk(Xk), k = 1, 2 . . . } are also
UND (LND);

3) if r.v.s {Xk, k = 1, 2 . . . } are ND and {fk(·), k = 1, 2, . . . } are either
all monotone increasing or all monotone decreasing real functions, then
{fk(Xk), k = 1, 2 . . . } are also ND;

4) if r.v.s {Xk, k = 1, 2 . . . } are nonnegative and UND, then for each
n = 1, 2, . . . ,

E
( n∏
k=1

Xk

)
≤

n∏
k=1

EXk.

Recall one more dependence structure related to the UEND structure.

Definition 2.2.4 ([73], (2.1)). Identically distributed r.v.s X1, . . . , Xn are
said to be bivariate upper tail independent (BUTI), if P(Xi > x) > 0 for all
x ∈ (−∞,∞), i = 1, . . . , n, and

lim
x→∞

P(Xi > x|Xj > x) = 0

for all 1 ≤ i 6= j < n.

7



2. Background

Note that the BUTI is strictly larger than the UEND structure. To see
this, consider two positive r.v.s ξ1 and ξ2 with the joint tail probability

P(ξ1 > x, ξ2 > y) =
1

(x ∨ 1)(y ∨ 1)(1 + x+ y)
, x ≥ 0, y ≥ 0.

The marginal distributions are

P(ξ1 > x, ξ2 > 0) = P(ξ1 > x) =
1

(x ∨ 1)(1 + x)
, x ≥ 0

and
P(ξ2 > y, ξ1 > 0) = P(ξ2 > y) =

1

(y ∨ 1)(1 + y)
, y ≥ 0.

For x ≥ 1 r.v.s (ξ1, ξ2) have the BUTI structure:

P(ξ1 > x|ξ2 > x) =
1 + x

x

1

1 + 2x
→ 0, x→∞.

Such a pair (ξ1, ξ2) is bivariate upper tail independent, but not UEND
(see [46], Example 3.1):

sup
x,y≥1

P(ξ1 > x, ξ2 > y)

P(ξ1 > x)P(ξ2 > y)
= sup

x,y≥1

(
1 +

xy

1 + x+ y

)
=∞,

that is, the fraction not bounded from above by some positive constant M .

Definition 2.2.5 ([41]). Real-valued r.v.s X1, . . . , Xn with d. f. F1, . . . , Fn

are said to be pairwise quasi-asymptotically independent (pQAI) if P(Xi >

x) > 0 for all x and i, and

lim
x→∞

P(|Xi| ∧Xj > x|Xi ∨Xj > x) = 0, i 6= j,

or equivalently,

lim
x→∞

P(|Xi| > x,Xj > x) + P(Xi < −x,Xj > x)

P(Xi > x) + P(Xj > x)
= 0.

Definition 2.2.6 ([31]). R.v.s. X1, . . . , Xn are pairwise strong quasi-
asymptotically indepent (pSQAI) if, for any i 6= j,

lim
x∧y→∞

P(|Xi| > x|Xj > y) = 0. (2.2.6)

The property of asymptotic tail independence (Definitions 2.2.4–2.2.6)
means that the probability of two nonnegative random variables to be large
is negligible comparing with the probability of one variable being large.

Bellow we present an implication of dependence structures mentioned in
this chapter. The arrow in Figure 2.1 means "follows", for example, if r.v.s
are ND, it follows, that they are pND.

8



2.3 Copula

Figure 2.1: Implication of dependence structures

2.3 Copula

In this section we introduce the notion of a copula, which we use later to
construct the dependence between random variables.

By the Sklar theorem (see [51], Theorem 2.10.9), any joint distribu-
tion function F (x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn) of a random vector
(X1, . . . , Xn) with the marginal distribution functions Fi(x) = P(Xi ≤ x),
i = 1, . . . , n, can be written as

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) (2.3.1)

for all xi ∈ R, i = 1, . . . , n, where C is a copula. Moreover, if marginals
F1, . . . , Fn are continuous, then the copula C satisfying (2.3.1) is unique and
is given by

C(u1, . . . , un) = F (F−1
1 (u1), . . . , F−1

n (u1)),

where F−1
i (u) = inf{x : Fi(x) ≥ u}, i = 1, . . . , n. Conversely, if C is a

copula and F1, . . . , Fn are distribution functions, then (2.3.1) defines the
n-dimensional joint distribution function with marginals F1, . . . , Fn.

Definition 2.3.1 ([51], Definition 2.10.6). For any n ≥ 2, a function
C : [0, 1]n → [0, 1] is called a n-dimensional copula (shortly, copula) if
(1) C(u1, . . . , ui−1, 0, ui, . . . , un) = 0 for any i ∈ {1, . . . , n};
(2) C(1, . . . , 1, ui, 1, . . . , 1) = ui for any i ∈ {1, . . . , n};
(3) C is n-increasing, i.e. ∀(x1, . . . , xn) ∈ [0, 1]n, ∀(y1, . . . , yn) ∈ [0, 1]n, xi ≤ yi,
i = 1, . . . , n, it holds

∑
J⊂{1,...,n}

(−1)|J |C(uJ1 , . . . , u
J
n) ≥ 0, where uJi =

{
xi, if i ∈ J,

yi, if i /∈ J.

9



2. Background

In the bivariate case the last property can be simplified. For every
u1, u2, v1, v2 in [0, 1] such that u1 ≤ u2 and v1 ≤ v2, C(u2, v2) − C(u2, v1) −
C(u1, v2) + C(u1, v1) ≥ 0.

Another important property: for every copula C(u1, . . . , un) there exists
Fréchet-Hoeffding lower and upper bounds ([51], Section 2.5). That is

W (u1, . . . , un) ≤ C(u1, . . . , un) ≤M(u1, . . . , un),

where W (u1, . . . , un) := max {
∑n

i=1 ui − n+ 1, 0} and M(u1, . . . , un) :=

min {u1, . . . , un}. The function M is always the copula, while the function
W is the copula in the bivariate case, and it can be the copula for n > 2

with some aditional conditions ([64], Section 2.1.2).
Copula is very convenient tool of modeling the dependence between ran-

dom variables. There are numbers of various forms of copulas and their con-
structions. In [47] we can find the main classes of the copulas: Archimedean,
Marshall-Olkin and Elliptical. The construction of the pair copulas is de-
scribed in [1] and [47]. Below we write the copulas which we will use in our
examples.

1. Independence copula:

CI(u1, . . . , un) =

n∏
i=1

ui. (2.3.2)

2. Generalized FGM copula:

CGFGM(u1, . . . , un) =

n∏
l=1

ul
(
1 +

∑
1≤i<j≤n

θij(1− uαi )(1− uαj )
)m

; (2.3.3)

with α > 0, m ∈ {0, 1, 2, . . . } and the parameters θij which are real
numbers such that CGFGM(u1, . . . , un) is a proper n-dimensional cop-
ula. Obviously, if the θij all are nonpositive and take values from a
corresponding admissible region, then

CGFGM(u1, . . . , un) ≤ u1 . . . un,

i.e. we obtain the LND structure.

The special cases of (2.3.3) are well-known:

− If m = 0, we get the independence copula.

− If m = 1 and α = 1, we get the classical multivariate FGM copula

CFGM(u1, . . . , un) =

n∏
l=1

ul

(
1 +

∑
1≤i<j≤n

θij(1− ui)(1− uj)
)
,

10



2.3 Copula

which was introduced by Farlie [26], Gumbel [33] and Morgenstern [50]
in the case n = 2. This copula was widely investigated and used in
practice. The well-known limitation of FGM copula is that it does not
allow the modeling of high dependencies. For example, if n = 2 then
the admissible region for the parameter θ12 is [−1, 1] and correlation
ρ between corresponding uniformly distributed random variables is
ρ = θ12/3, thus the range for correlation ρ is [−1/3, 1/3]. If n = 3, the
conditions for parameters can be summarized as follows: θ12+θ13+θ23 ≥
−1, θ13 + θ23 − θ12 ≤ 1, θ12 + θ23 − θ13 ≤ 1, θ12 + θ13 − θ23 ≤ 1.

− If m = 1, n = 2 and α > 0 we get the copula introduced by
Huang and Kotz [34]. It was shown that the admissible range of θ12 is
−min{1, α−2} ≤ θ12 ≤ α−1 and correlation ρ between the corresponding
uniformly distributed random variables is ρ = 3θ12α

2(α+2)−2, thus the
range for correlation ρ is −3(α + 2)−2 min{1, α2} ≤ ρ ≤ 3α(α + 2)−2.

− If m ≥ 1, n = 2 and α > 0 we get the copula introduced by
Bekrizadeh et al. [7]. They have shown that the admissible range of
θ12 is −min{1, (mα2)−1} ≤ θ12 ≤ (mα)−1 and correlation between corre-
sponding uniformly distributed random variables is given by formula

ρ = 12

∫ 1

0

∫ 1

0

CGFGM(u, v)dudv − 3

= 12

m∑
k=1

(
m

k

)
θk12

(
Γ(k + 1)Γ(2/α)

αΓ(k + 1 + 2/α)

)2

.

Because of the weak dependence generated by the FGM family, many
authors considered the modifications of this class. Examples of modi-
fied FGM copula can be found in [6], [3], among others.

The finding of the admissible region for parameters θij in (2.3.3)
is technical, although straightforward, task. Essentially, it requires
the verification that the corresponding copula density (if exists)
cGFGM(u1, . . . , un) = ∂nCGFGM(u1, . . . , un)/∂u1 . . . ∂un is nonnegative for
all u1, . . . , un. In the case of copula (2.3.3) with m = 1,

cFGM(u1, . . . , un) = 1 +
∑

1≤i<j≤n

θij(1− (1 + α)uαi )(1− (1 + α)uαj )

and these conditions can be obtained by considering the 2n cases for
uk = 0 or 1, k = 1, . . . , n, and verifying that cFGM(u1, . . . , un) ≥ 0. For

11



2. Background

example, if m = 1 and n = 3, then these conditions are the following:

1 + α2θ ≥ 0, θij ≥

{
αθ−1
1+α if αθ > 1,

1
α
αθ−1
1+α if αθ ≤ 1,

1 ≤ i < j ≤ 3, when α > 1,

and

1 + αθ ≥ 0, θij ≥

{
1
α
αθ−1
1+α if αθ > 1,

αθ−1
1+α if αθ ≤ 1,

1 ≤ i < j ≤ 3,

when 0 < α ≤ 1, with θ := θ12 + θ13 + θ23.

3. Ali-Mikhail-Haq copula:

CAMH(u1, . . . , un) =
u1 . . . un

1− θ(1− u1) . . . (1− un)
, −1 ≤ θ < 1. (2.3.4)

4. Frank copula:

CF(u1, . . . , un) = −1

θ
log
(

1 +
(e−θu1 − 1) . . . (e−θun − 1)

(e−θ − 1)n−1

)
, θ > 0.

(2.3.5)

5. Clayton copula:

CCl(u1, . . . , un) =
(
u−θ1 + · · ·+ u−θn − n+ 1

)−1/θ
, θ > 0. (2.3.6)

12



Chapter 3

The max-sum equivalence

In this chapter we investigate the (weak) equivalence relations among the
tail probabilities of the sums Sn :=

∑n
k=1Xk, S(+)

n :=
∑n

k=1X
+
k , S(n) :=

max{S1, . . . , Sn} and
∑n

k=1 Fk(x). The analysis of the so-called max-sum
equivalence

P(S(n) > x) ∼ P(Sn > x) ∼ P(X(n) > x) ∼
n∑
i=1

P(Xi > x), (3.1)

where X(n) := max {X1, . . . , Xn}, has essential applications in ruin theory,
where probability P(S(n) > x) stands as the ruin probability of an insurance
company (see Section 3.3). The quantities S(n) and Sn are the main ele-
ments of modeling the risk management (see [52]). Besides, the asymptotic
relation (3.1) allows us to reduce the calculation of P(S(n) > x) to the cal-
culation of P(X(n) > x) and posseses the principle of big jump: for large x,
one of n summands X1, . . . , Xn is large, while others are relatively small.

Such the sums were investigated earlier in a number of papers. One
of the first studies of sums (for independent identically distributed (i.i. d.)
positive r.v.s) was done in [16]. Geluk and De Vries [32] showed that for i.i.
d. subexponential r.v.s the asymptotic P(Sn > x) ∼

∑n
i=1 P(Xi > x) holds

under the proper condition for Xi, i = 1, . . . , n. Later, Geluk and Tang [31]
obtained this relation for dependent subexponential r.v.s with nonidentical
distributions. Geluk and Ng [30] proved the asymptotic P(S(n) > x) ∼
P(Sn > x) for independent r.v.s with long-tailed distributions F1, . . . , Fn. In
case of dependent r.v.s, relation (3.1) was discussed in [59], [37], [74] among
others. Li and Tang [42] showed asymptotic (3.1) for independent r.v.s.
under the condition that their maximum belongs to the specific class of
heavy-tailed distributions. Below, motivated by the main result of [42], we

13



3. The max-sum equivalence

prove the weak max-sum equivalence

C1

n∑
i=1

P(Xi > x) . P(S(n) > x) . C2

n∑
i=1

P(Xi > x)

with some positive constants C1 and C2 for dependent r.v.s.

3.1 Main result

The two following propositions (see [69]) present our first results on the
quantities P(S(n) > x), P(S

(+)
n > x) and Gn(x) = P(max{X1, . . . , Xn} > x)

when r.v.s are pairwise negatively dependent.

Proposition 3.1.1. Let X1, . . . , Xn be pND real-valued r.v.s with corre-
sponding distributions F1, . . . , Fn. If Gn ∈ D, then

P(S(n) > x) ≤ P(S
(+)
n > x) .

1

LGn
Gn(x). (3.1.1)

Furthermore, if Gn ∈ L ∩D, then

P
(
S(n) > x

)
≤ P

(
S

(+)
n > x

)
. Gn(x). (3.1.2)

Proposition 3.1.2. Let X1, . . . , Xn be pND r.v.s.
(i) If Gn ∈ D and Fi(−x) = o(F i(x)) for i = 1, . . . , n, then

P(S(n) > x) ≥ P(Sn > x) & LGnGn(x). (3.1.3)

(ii) If Gn ∈ C and Fi(−x) = o(F i(x)) for i = 1, . . . , n, then

P(S(n) > x) ≥ P(Sn > x) & Gn(x). (3.1.4)

(iii) If Gn ∈ L ∩ D and Fi(A) = 0 for some finite A < 0, i = 1, . . . , n, then
relations in (3.1.4) hold.

Using inequality (3.1.2) from Proposition 3.1.1 and Proposition 3.1.2
(iii), we obtain:

Corollary 3.1.1. Let X1, . . . , Xn be nonnegative pND r.v.s. If Gn ∈ L ∩D,
then

P(S(n) > x) = P(Sn > x) ∼ Gn(x).

Remark 3.1.1. Note that class D is closed under max operation, i.e. if
Fk ∈ D for all k = 1, . . . , n, then Gn ∈ D (the inverse statement obviously

14



3.1 Main result

does not hold). Moreover, the constant LGn appearing in Propositions 3.1.1
and 3.1.2 can be estimated from below as follows:

LGn ≥
( n∑

k=1

1

LFk

)−1

> 0, (3.1.5)

where LFk := limy↘1 lim inf
Fk(xy)

Fk(x)
. To show this, for any y > 0 write

Gn(xy)

Gn(x)
=

P
( n⋃
k=1

{Xk > xy}
)

P
( n⋃
k=1

{Xk > x}
) ≤ ∑n

k=1 P(Xk > xy)

P
( n⋃
i=1

{Xi > x}
)

=

n∑
k=1

P(Xk > xy)

P
( n⋃
i=1

{Xi > x}
) ≤ n∑

k=1

P(Xk > xy)

P(Xk > x)
,

which implies

1

LGn
= lim

y↗1
lim sup

Gn(xy)

Gn(x)
≤

n∑
k=1

lim
y↗1

lim sup
Fk(xy)

Fk(x)
=

n∑
k=1

1

LFk
<∞,

or (3.1.5). Hence, LGn > 0, which is equivalent to Gn ∈ D .

Remark 3.1.2. The statement of Corollary 3.1.1 holds if Fk ∈ C for k =

1, . . . , n and r.v.s X1, . . . , Xn are nonnegative pND. To see that Gn ∈ C , note
that for any x, y it holds

Gn(xy)

Gn(x)
=

P
(⋃n

k=1{Xk > xy}
)

P
(⋃n

k=1{Xk > x}
)

≥
∑n

k=1 Fk(xy)−
∑

1≤i<j≤n P(Xi > xy,Xj > xy)∑n
k=1 Fk(x)

≥ min
1≤k≤n

{
Fk(xy)

Fk(x)

}
−
∑

1≤i<j≤n Fi(xy)Fj(xy)∑n
k=1 Fk(x)

by pND property. Hence,

1 ≥ lim
y↘1

lim inf
Gn(xy)

Gn(x)

≥ lim
y↘1

lim inf min
1≤k≤n

{
Fk(xy)

Fk(x)

}
− lim
y↘1

lim sup

n∑
j=1

Fj(xy)

≥ min
1≤k≤n

{
lim
y↘1

lim inf
Fk(xy)

Fk(x)

}
= 1,

that is, LGn = 1 and we know that this holds for consistently varying tail
distributions (Gn ∈ C ).
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3. The max-sum equivalence

Later we generalized these two propositions. The improved results with
the wider dependence structure are the main results of this chapter.

Denote the d. f. Hn(x) := n−1(F1(x) + · · · + Fn(x)) and assume that
Hn(x) > 0 for all x. Introduce the following condition:∑

1≤k<l≤n

P(Xk > x,Xl > x) = o(1)Hn(x), x→∞, (3.1.6)

or, equivalently,

P(Xk > x,Xl > x) = o(1)Hn(x) for all k, l = 1, . . . , n, k < l. (3.1.7)

The random variables satisfying (3.1.6) allow a wide range of dependence
structures. In particular, they cover the pND r.v.s and even some posi-
tive dependence structures (see Section 3.5). They also include the pQAI
structure (Definition 2.2.5), if X1, . . . , Xn are all nonnegative. Note that
under some stronger dependence conditions, related equivalence results for
subexponential r.v.s were established by Geluk and Tang [31], Jiang et al.
[35].

When X1, . . . , Xn are real-valued and identically distributed r.v.s, the de-
pendence structure in (3.1.7) coincides with the BUTI structure (Definition
2.2.4):

lim
x→∞

P(Xi > x|Xj > x) = lim
x→∞

P(Xi > x,Xj > x)

P(Xj > x)
= 0.

The main result of the chapter is the following theorem, which generalizes
Propositions 3.1.1–3.1.2.

Theorem 3.1.1. Let r.v.s X1, . . . , Xn satisfy condition (3.1.6). If Hn ∈ D

(or, equivalently, Gn ∈ D). Then

P(S(n) > x) ≤ P(S
(+)
n > x) . L−1

Hn
nHn(x). (3.1.8)

If, in addition, Hn(−x) = o(Hn(x)), then

P(S(n) > x) ≥ P(Sn > x) & LHnnHn(x). (3.1.9)

Here,

LHn = LGn and nHn(x) ∼ Gn(x). (3.1.10)

Remark 3.1.3. Since pND r.v.s satisfy condition (3.1.6), Theorem 3.1.1
generalizes the result of Propositions 3.1.1–3.1.2 and, moreover, the con-
stant LGn in (3.1.1), (3.1.3) can be replaced by LHn.
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3.2 Proof of main result

Remark 3.1.4. In the case where Fk ∈ C ⊂ D , k = 1, . . . , n, we have Hn ∈ C

and thus LHn = 1 in Theorem 3.1.1.

In the case of identically distributed random variables we obtain the
following corollary:

Corollary 3.1.2. Let assumptions of Theorem 3.1.1 hold and let X1, . . . , Xn

be identically distributed with common distribution F . Then relations (3.1.8)
and (3.1.9) hold with LHn = LGn = LF and Hn(x) = F (x).

3.2 Proof of main result

We start this section with the following useful proposition.

Proposition 3.2.1. Assume that condition (3.1.6) holds. Then Gn(x) ∼
nHn(x), and therefore LGn = LHn.

Proof. We have

Gn(x) = P

( n⋃
k=1

{Xk > x}
)
≤

n∑
k=1

P(Xk > x). (3.2.1)

On the other hand,

Gn(x) ≥
n∑
k=1

P(Xk > x)−
∑

1≤k<l≤n

P(Xk > x,Xl > x). (3.2.2)

(3.1.6) and (3.2.1), (3.2.2) imply that Hn(x) is positive if and only if Gn(x) >

0 is positive for x→∞. Then

lim sup
Gn(x)

nHn(x)
≤
∑n

k=1 P(Xk > x)

nHn(x)
= 1

and

lim inf
Gn(x)

nHn(x)
≥
∑n

k=1 P(Xk > x)−
∑

1≤k<l≤n P(Xk > x,Xl > x)

nHn(x)

≥ 1− lim sup

∑
1≤k<l≤n P(Xk > x,Xl > x)

nHn(x)
= 1,

implying Gn(x) ∼ nHn(x) and, thus,

LGn = lim
y↘1

lim sup
x→∞

Gn(yx)

Gn(x)
= lim

y↘1
lim sup
x→∞

nHn(yx)

nHn(x)
= LHn .

2
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3. The max-sum equivalence

First we prove Theorem 3.1.1.
Proof of Theorem 3.1.1. Relations (3.1.10) hold by Proposition 3.2.1,

implying the equivalence of Hn ∈ D and Gn ∈ D .
We first show the upper bound (3.1.8). For any 0 < v < 1 and x > 0

write

P(S
(+)
n > x)

≤ P

( n⋃
k=1

{X+
k > (1− v)x}

)
+ P

(
S

(+)
n > x,

n⋂
k=1

{X+
k ≤ (1− v)x}

)
≤ nHn((1− v)x) + P

(
S

(+)
n > x,

n⋃
i=1

{
X+
i >

x

n

}
,

n⋂
k=1

{X+
k ≤ (1− v)x}

)
=: I1(v, x) + I2(v, x). (3.2.3)

We have by Hn ∈ D that

lim
v↘0

lim sup
x→∞

I1(v, x)

L−1
Hn
nHn(x)

= LHn lim
v↘0

lim sup
x→∞

Hn((1− v)x)

Hn(x)
= LHnL

−1
Hn

= 1.

As for I2(v, x), we have

I2(v, x) ≤
n∑
i=1

P
(
S

(+)
n > x,X+

i >
x

n
,

n⋂
k=1

{X+
k ≤ (1− v)x}

)
≤

n∑
i=1

P
(
S

(+)
n −X+

i > vx,X+
i >

x

n

)
≤

n∑
i=1

P
( n⋃

j=1
j 6=i

{
X+
j >

vx

n− 1

}
, X+

i >
x

n

)

≤
n∑
i=1

n∑
j=1
j 6=i

P
(
X+
j >

vx

n
,X+

i >
vx

n

)
.

Hence, by (3.1.6) and assumption Hn ∈ D , we obtain

lim sup
I2(v, x)

L−1
Hn
nHn(x)

≤ LHn lim sup

∑
i6=j P(Xi > vx/n,Xj > vx/n)

nHn(vx/n)
lim sup

Hn(vx/n)

Hn(x)
= 0.

Therefore,

lim sup
x→∞

P(S
(+)
n > x)

L−1
Hn
nHn(x)

≤ lim
v↘0

lim sup
x→∞

I1(v, x)

L−1
Hn
nHn(x)

+ lim
v↘0

lim sup
x→∞

I2(v, x)

L−1
Hn
nHn(x)

= 1.
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3.2 Proof of main result

To obtain the lower bound, note that for any v > 0 and x > 0

P(Sn > x) ≥ P

(
Sn > x,

n⋃
k=1

{Xk > (1 + v)x}
)

≥
n∑
k=1

P(Sn > x,Xk > (1 + v)x)

−
∑

1≤i<j≤n

P(Sn > x,Xi > (1 + v)x,Xj > (1 + v)x)

=: I3(v, x)− I4(v, x). (3.2.4)

Here,

I4(v, x) ≤
∑

1≤i<j≤n

P(Xi > x,Xj > x) = o(Hn(x)) (3.2.5)

according to (3.1.6).
For I3(v, x) we have

I3(v, x) ≥
n∑
k=1

P(Sn −Xk > −vx,Xk > (1 + v)x)

≥
n∑
k=1

(
P(Sn −Xk > −vx) + Fk((1 + v)x)− 1

)
= nHn((1 + v)x)−

n∑
k=1

P(Sn −Xk ≤ −vx)

=: I31(v, x)− I32(v, x). (3.2.6)

Here,

lim
v↘0

lim inf
x→∞

I31(v, x)

LHnnHn(x)
= 1. (3.2.7)

For term I32(v, x) we have

I32(v, x) =

n∑
k=1

P

(
n∑
i=1
i6=k

(−Xi) ≥ vx

)
≤

n∑
k=1

P

(
n⋃
i=1
i 6=k

{
−Xi ≥

v

n− 1
x
})

≤ n2Hn

(
− v

n− 1
x
)

= o(1)Hn

(
v

n− 1
x
)

= o(Hn(x)) (3.2.8)

by the assumption of theorem and by Hn ∈ D . Hence, by (3.2.4)–(3.2.8),

lim inf
x→∞

P(Sn > x)

LHnnHn(x)
≥ lim

v↘0
lim inf
x→∞

I31(v, x)

LHnnHn(x)
− lim
v↘0

lim sup
x→∞

I32(v, x)

LHnnHn(x)

− lim
v↘0

lim sup
x→∞

I4(v, x)

LHnnHn(x)
= 1.
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3. The max-sum equivalence

This completes the proof. 2

Proof of Proposition 3.1.1. We prove only the second part of Proposi-
tion 3.1.1, while the first part is analogous to the proof of the first part of
Theorem 3.1.1 .

If Gn ∈ L ∩ D , then substitute vx in the above proof of Theorem 3.1.1
with `(x), where `(x) is a positive function satisfying `(x)→∞, `(x) = o(x),
and

Gn(x− `(x)) ∼ Gn(x), (3.2.9)
by Gn ∈ L (see [31], [28]). Rewrite (3.2.3) as follows

P(S
(+)
n > x) ≤ I1(`(x)) + I2(`(x))

In this case, the estimate for I2(`(x)) remains the same, i.e. I2(`(x)) =

o(Gn(x)):

I2(`(x)) =

n∑
i=1

n∑
j=1
j 6=i

P
(
X+
j >

`(x)

n
,X+

i >
`(x)

n

)

≤
n∑
i=1

n∑
j=1
j 6=i

F j

(
`(x)

n

)
F i

(
`(x)

n

)
. Gn

(
`(x)

n

)
Gn

(
`(x)

n

)
= o(Gn(x)),

by the pND property and Proposition 3.2.1. Whereas for I1(`(x)), due to
(3.2.9) and Proposition 3.2.1, it holds, that I1(`(x)) ∼ Gn(x):

lim sup
I1(`(x))

Gn(x)
= lim sup

∑n
i=1 F i(x− `(x))

Gn(x)
= lim sup

Gn(x− `(x))

Gn(x)
= 1.

2

Proof of Proposition 3.1.2.
(i) The proof is identical to that of the second part of Theorem 3.1.1.
(ii) See Remark 3.1.4.
(iii) Again, replacing vx in (3.2.4) in the proof of Theorem 3.1.1 by the
function `(x) given in (3.2.9), for I31(`(x)) we have

I31(`(x)) =

n∑
i=1

F i(x+ `(x)) ∼ Gn(x+ `(x)) ∼ Gn(x),

by Proposition 3.2.1 and (3.2.9). The term I4(`(x)) = o(Gn(x)) remains the
same. Finally, I32(`(x)):

I32(`(x)) =

n∑
k=1

P

(
n∑
i=1
i 6=k

(−Xi) ≥ `(x)

)
≤

n∑
k=1

P

(
n⋃
i=1
i6=k

{
−Xi ≥

`(x)

n− 1

})

≤ n

n∑
i=1

Fi

(
− `(x)

n− 1

)
= o(1)

n∑
i=1

F i(x) ∼ o(Gn(x))
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3.3 Aplication to ruin theory

for large x by the assumption of proposition. This ends the proof. 2

3.3 Aplication to ruin theory

The assumption that the r.v.s X1, . . . , Xn are nonidentically distributed is
important for insurance mathematics, because the result can be applied to
some discrete-time risk models with insurance and financial risks, proposed
by Nyrhinen [53], [54]. Namely, set Xk = Θkξk, where ξk, k = 1, . . . , n, are
real-valued r.v.s, which represent the successive net losses for an insurance
company, or can be understood as the total claim amount minus the total
premium income within year k, and Θk, 1 ≤ k ≤ n, are nonnegative r.v.s
which stand for the discount factor from year k to year 0. In such a model,
the r.v.s ξk and Θk are called the insurance risk and financial risk, respec-
tively, and P(S(n) > x) =: ψ(x, n) represents the finite-time ruin probability
by year n with initial capital x > 0. The obtained asymptotic relations in
Section 3.1 are important not only from the theoretical point of view, but
also they can be used in practice as a numerical tool allowing to approx-
imate the ruin probability ψ(x, n) by the tail distribution of the maximal
random variable X(n).

Firstly we study the question when the conditions of the Propositions
3.1.1 and 3.1.2 are satisfied for the Xk = Θkξk. The same contitions are
required in Theorem 3.1.1.

Lemma 3.3.1 below gives a simple condition for X1, . . . , Xn to be upper,
lower or pairwise negatively dependent.

Lemma 3.3.1. Assume that ξ1, . . . , ξn are independent, almost surely
positive r.v.s, Θ1, . . . ,Θn are UND (LND, pND) r.v.s, independent of
{ξ1, . . . , ξn}. Then Θ1ξ1, . . . ,Θnξn are UND (LND, pND, respectively).

Proof. Assume that Θ1, . . . ,Θn are UND r.v.s. Then

P(Θ1ξ1 > x1, . . . ,Θnξn > xn)

=

∫
(0,∞)

. . .

∫
(0,∞)

P
(

Θ1 >
x1

y1
, . . . ,Θn >

xn
yn

)
dFξ1(y1) . . . dFξn(yn)

≤
∫

(0,∞)

. . .

∫
(0,∞)

P
(

Θ1 >
x1

y1

)
. . .P

(
Θn >

xn
yn

)
dFξ1(y1) . . . dFξn(yn)

= P(Θ1ξ1 > x1) . . .P(Θnξn > xn).

The cases of LND and pND are analogous. 2

We obtain the following proposition.
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3. The max-sum equivalence

Proposition 3.3.1. Assume that ξ1, . . . , ξn are independent, almost surely
positive r.v.s from D. Assume also that Θ1, . . . ,Θn are pND r.v.s, indepen-
dent of ξ1, . . . , ξn, such that P(Θi ∈ [a, b]) = 1 for all i = 1, . . . , n and some
0 < a ≤ b <∞. Then relations (3.1.1) and (3.1.3) hold.

Remark 3.3.1. Since pND r.v.s satisfy condition (3.1.6), conditions of
Proposition 3.3.1 imply that more general relations (3.1.8) and (3.1.9) hold.

Proof. Note that the conditions of the proposition imply

Gn(x) = P(max{Θ1ξ1, . . . ,Θnξn} ≤ x) ∈ D , (3.3.1)

since, by Remark 3.1.1, P(max{ξ1, . . . , ξn} ≤ x) ∈ D and hence, for any
0 < y < 1,

lim sup
P(max{Θ1ξ1, . . . ,Θnξn} > xy)

P(max{Θ1ξ1, . . . ,Θnξn} > x)
≤ lim sup

P(bmax{ξ1, . . . , ξn} > xy)

P(amax{ξ1, . . . , ξn} > x)

= lim sup
P(max{ξ1, . . . , ξn} > xya/b)

P(max{ξ1, . . . , ξn} > x)
,

which is finite because tail of dominatedly varying distribution never
turns into zero. It remains to apply Lemma 3.3.1, which says that r.v.s
Θ1ξ1, . . . ,Θnξn are ND too. Hence, the needed conditions of Propositions
3.1.1–3.1.2 (and Theorem 3.1.1) are satisfied and required equations hold.
2

Finally note that, in the case Fξk(x) := P(ξk ≤ x) ∈ D and P(Θk ∈
[a, b]) = 1, the constant LFk (Fk(x) is the distribution of Θkξk) appearing
in (3.1.5) can be estimated by the constants defined through the function
Fξk∗(y) = lim inf

P(ξk>xy)
P(ξk>x)

, y ≥ 1. It is easy to see that

LFk ≥ lim
y↘1

Fξk∗(y)Fξk∗

(
b

a

)
.

Indeed,

L−1
Fk

= lim
y↗1

lim sup
P(Θkξk > xy)

P(Θkξk > x)
= lim

y↗1
lim sup

1
P(Θkξk>x)
P(Θkξk>xy)

=
1

limy↗1 lim inf
P(Θkξk>x)
P(Θkξk>xy)

≤ 1

limy↘1 lim inf
P(aξk>xy)
P(bξk>x)

=
1

limy↘1 lim inf
P(ξk>

xy
a

)

P(ξk>
x
a

)

P(ξk>
x
a

)

P(ξk>
x
b
)

=
1

limy↘1 lim inf
P(ξk>xy)
P(ξk>x)

P(ξk>x
b
a

)

P(ξk>x)

.
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3.4 Numerical simulations

3.4 Numerical simulations

In this section we perform some numerical simulations in order to check
the accuracy of the asymptotic relations obtained in Corollary 3.1.1. We
compare the tail probabilities P(Sn > x) and Gn(x) for several values of x,
assuming that r.v.s Xk are distributed according to the common Pareto law
with parameters κ, β > 0:

F (x;κ, β) = 1−
(

κ

κ+ x

)β
, x ≥ 0, (3.4.1)

which belongs to the class C ⊂ L ∩D . We assume that {(X2k−1, X2k), k ≥ 1}
are independent replications of (X1, X2) with the joint distribution

FX1,X2
(x, y) = max

{
αF (x)F (y) + (1− α)(F (x) + F (y)− 1), 0

}
, (3.4.2)

with parameter α ∈ (0, 1) (see eq. (4.2.7) in [51]). Since P(X1 > x,X2 >

y) ≤ αF (x)F (y) for all x, y, X1 and X2 are ND r.v.s. Hence, by construction,
X1, . . . , Xn (n – even) are nonnegative pND r.v.s. Moreover, according to
Remark 3.1.2, Gn ∈ C . For our simulations we choose parameters:

1. κ = 1, β = 2 and α = 0.5 (I case);

2. κ = 2, β = 2 and α = 0.5 (II case);

3. κ = 5, β = 2 and α = 0.2 (III case);

4. κ = 5, β = 2 and α = 0.7 (IV case);

5. κ = 5, β = 3 and α = 0.8 (V case).

We set n = 10, 20, 50 and x = 100, 500, 1000, 2000. The procedure of the com-
putation of P(Sn > x) and Gn(x) in Corollary 3.1.1 consists of the following
steps:

• Step 1. Assign a value for the variable x and set m = k = 0;

• Step 2. Generate the dependent r.v.s X1, . . . , Xn from (3.4.1) and
(3.4.2);

• Step 3. Calculate the sum value and the maximal value of X1, . . . , Xn:

Sn =

n∑
i=1

Xi and X(n) = max{X1, . . . , Xn};

• Step 4. Compare the two values Sn and X(n) with x: if Sn > x, then
m = m+ 1, and if X(n) > x, then k = k + 1;
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3. The max-sum equivalence

• Step 5. Repeat step 2 through step 4, N = 2× 106 times;

• Step 6. Calculate the estimates of the two tail probabilities P(Sn > x)

and Gn(x) as, respectively, m/N and k/N .

For specific values of x, the simulated values of P(Sn > x) and Gn(x) are
presented in Table 3.1 (I–V cases, respectively). It can be found from the
table, that, the larger x becomes, the smaller the difference between the
simulated values of P(Sn > x) and Gn(x) is. Therefore, the approximate
relationship in Corollary 3.1.1 is reasonable.
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3.4 Numerical simulations

I case: κ = 1, β = 2 and α = 0.5.

n=10 n=20 n=50

x P(Sn > x) Gn(x) P(Sn > x) Gn(x) P(Sn > x) Gn(x)

100 0.002060 0.001524 0.005871 0.002942 0.080627 0.007374

500 0.000125 0.000118 0.000120 0.000106 0.000394 0.000285

1000 0.000013 0.000013 0.000037 0.000036 0.000101 0.000088

2000 0.000004 0.000004 0.000007 0.000007 0.000017 0.000015

II case: κ = 2, β = 2 and α = 0.5.

n=10 n=20 n=50

x P(Sn > x) Gn(x) P(Sn > x) Gn(x) P(Sn > x) Gn(x)

100 0.011146 0.005762 0.0560811 0.011466 0.864862 0.028541

500 0.000258 0.000226 0.000603 0.000469 0.002375 0.001171

1000 0.000072 0.000067 0.000141 0.000124 0.000392 0.000300

2000 0.000012 0.000012 0.000026 0.000025 0.000078 0.000069

III case: κ = 5, β = 2 and α = 0.2.

n=10 n=20 n=50

x P(Sn > x) Gn(x) P(Sn > x) Gn(x) P(Sn > x) Gn(x)

100 0.066922 0.026984 0.294649 0.053017 0.963822 0.127339

500 0.001436 0.001181 0.002333 0.003541 0.020995 0.005916

1000 0.000322 0.000295 0.000744 0.000619 0.002516 0.001488

2000 0.000067 0.000063 0.000170 0.000152 0.000463 0.000354

IV case: κ = 5, β = 2 and α = 0.7

n=10 n=20 n=50

x P(Sn > x) Gn(x) P(Sn > x) Gn(x) P(Sn > x) Gn(x)

100 0.229526 0.037845 0.895448 0.074061 1.000000 0.175933

500 0.002414 0.001694 0.007813 0.003377 0.170259 0.008353

1000 0.000488 0.000412 0.001241 0.000859 0.006647 0.002074

2000 0.000119 0.000111 0.000251 0.000212 0.000847 0.000515

V case: κ = 5, β = 3 and α = 0.8

n=10 n=20 n=50

x P(Sn > x) Gn(x) P(Sn > x) Gn(x) P(Sn > x) Gn(x)

100 0.012617 0.001952 0.271284 0.003838 0.999997 0.009773

500 0.000023 0.000018 0.000039 0.000069 0.000559 0.000081

1000 0.000002 0.000002 0.000007 0.000006 0.000020 0.000011

2000 0.000001 0.000001 0.000002 0.000004 0.000002 0.000004

Table 3.1: The empirical values of P(Sn > x) and Gn(x)
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3. The max-sum equivalence

3.5 Modelling negative dependence structures

with copulas

In this section we discuss some copula-based examples of dependence struc-
tures, satisfying (3.1.6). It is clear that any pND or pUEND r.v.s X1, . . . , Xn

satisfy (3.1.6).

3.5.1 Generalized FGM copula

Consider the generalized Farlie-Gumbel-Morgenstern (FGM) copula (2.3.3).
Note that any pair of variables X1, . . . , Xn linked by copula (2.3.3) satisfy

P(Xk ≤ x,Xl ≤ y) = CGFGM
kl (Fk(x), Fl(y)), k 6= l, where

CGFGM
kl (u, v) = uv(1 + θkl(1− uα)(1− vα))m. (3.5.1)

Obviously, (3.5.1) implies CGFGM
kl (u, v) ≤ uv, k < l, whenever all θkl are

nonpositive. Hence, the generalized FGM copula (2.3.3) provides the pND
structure if θkl ≤ 0, 1 ≤ k < l ≤ n. The following proposition shows that
this copula also captures the pUEND structure.

Proposition 3.5.1. Let the distribution of (X1, . . . , Xn) be generated by
copula in (2.3.3). Then

P(Xk > x,Xl > y) ≤ CklFk(x)Fl(y), (3.5.2)

where Ckl := 1 + max{α, 1}((|θkl|+ 1)m − 1).

Proof. For every k < l, by (3.5.1), we have that

P(Xk ≤ x,Xl ≤ y) = Fk(x)Fl(y)[1 + θkl(1− Fαk (x))(1− Fαl (y))]m.

Hence,

P(Xk > x,Xl > y)

= 1− Fk(x)− Fl(y) + P(Xk ≤ x,Xl ≤ y)

= 1− Fk(x)− Fl(y) + Fk(x)Fl(y)
(
1 + θkl(1− Fαk (x))(1− Fαl (y))

)m
= Fk(x) + Fl(y)− 1 + (1− Fk(x)− Fl(y) + Fk(x)Fl(y))

×
(

1 +

m∑
i=1

(
m

i

)
θikl(F

α
k (x))i(Fαl (y))i

)
= Fk(x)Fl(y) + (1− Fk(x)− Fl(y) + Fk(x)Fl(y))

×
m∑
i=1

(
m

i

)
θikl(F

α
k (x))i(Fαl (y))i,
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3.5 Modelling negative dependence structures with copulas

where Fαk (x) := 1 − Fαk (x). Using inequality 1 − uα ≤ max{α, 1}(1 − u),
u ∈ [0, 1], we get

P(Xk > x,Xl > y) ≤ Fk(x)Fl(y) + Fαk (x)Fαl (y)×
m∑
i=1

(
m

i

)
|θkl|i

≤
(
1 + max{α, 1}((|θkl|+ 1)m − 1)

)
Fk(x)Fl(y).

2

By (3.5.2), FGM copula generates a pUEND structure.

3.5.2 Ali–Mikhail–Haq copula

Consider the copula (2.3.4) and let P(X1 ≤ x1, . . . , Xn ≤ xn) =

CAMH(F1(x1), . . . , Fn(xn)). Then, for k 6= l,

P(Xk ≤ x,Xl ≤ y) =
Fk(x)Fl(y)

1− θFk(x)Fl(y)

and hence

P(Xk > x,Xl > y)

= 1− Fk(x)− Fl(y) +
Fk(x)Fl(y)

1− θFk(x)Fl(y)
≤ Fk(x)Fl(y) (3.5.3)

if −1 ≤ θ ≤ 0. In the case 0 < θ < 1, we have

P(Xk ≤ x,Xl ≤ y) ≤ 1

1− θ
Fk(x)Fl(y), (3.5.4)

P(Xk > x,Xl > y) ≤ 1

1− θ
Fk(x)Fl(y). (3.5.5)

(3.5.4) is obvious. In order to show (3.5.5) it suffices to verify that

1− u− v +
uv

1− θ(1− u)(1− v)
≤ (1− u)(1− v)

1− θ
, 0 ≤ u, v ≤ 1, 0 < θ < 1.

The proof is straightforward, we omit it.
By (3.5.3)–(3.5.5), the copula in (2.3.4) generates the pND structure if

−1 ≤ θ ≤ 0 and the pEND structure if 0 < θ < 1.

3.5.3 Frank copula

Consider the copula (2.3.5) and assume that P(X1 ≤ x1, . . . , Xn ≤ xn) =

CF(F1(x1), . . . , Fn(xn)). Then P(Xk ≤ x,Xl ≤ y) = QF(Fk(x), Fl(y)), k 6= l,
where

CF(u, v) := −1

θ
log
(

1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1

)
.
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3. The max-sum equivalence

In this case the copula density is bounded:

cF(u, v) =
−θ(e−θ − 1)e−θ(u+v)

((e−θ − 1) + (e−θu − 1)(e−θv − 1))2

≤ θ

(1− e−θ)e−2θ
=: cθ.

Thus, denoting the corresponding marginal densities fk(x), we have

P(Xk > x,Xl > y) =

∫
w>x,z>y

cF(Fk(w), Fl(z))fk(w)fl(z)dw dz

≤ cθFk(x)F l(y), k 6= l,

i.e. the Frank copula generates the pUEND structure.

3.5.4 Clayton copula

Consider the copula (2.3.6) and assume P(X1 ≤ x1, . . . , Xn ≤ xn) =

CCl(F1(x1), . . . , Fn(xn)). Then P(Xk ≤ x,Xl ≤ y) = CCl(Fk(x), Fl(y)), where

CCl(u, v) =
(
u−θ + v−θ − 1

)−1/θ
.

Note that if θ → 0 then CCl(u, v) tends to uv, i.e. we obtain the independence
copula, whereas if θ →∞ then CCl(u, v) tends to min(u, v), i.e. comonotonic-
ity copula.

We will show that for any k 6= l and x, y ∈ R it holds

P(Xk > x,Xl > y) ≤ (1 + θ)Fk(x)Fl(y).

This implies the pUEND property and, hence, relation (3.1.6). The proof of
this inequality follows from identity P(Xk > x,Xl > y) = 1− Fk(x)− Fl(y) +

P(Xk ≤ x,Xl ≤ y) and the following lemma.

Lemma 3.5.1. For any (u, v) ∈ [0, 1]2 and θ > 0 it holds

(u−θ + v−θ − 1)−1/θ ≤ uv + θ(1− u)(1− v).

Proof. Denote, for convenience, Cθ(u, v) := (u−θ + v−θ − 1)−1/θ. Take any
small ε > 0 and write

Cθ(u, v)− Cε(u, v)

=

∫ θ

ε

∂Ct(u, v)

∂t
dt

=

∫ θ

ε

(u−t + v−t − 1) log(u−t + v−t − 1)− u−t log u−t − v−t log v−t

t2(u−t + v−t − 1)1+1/t
dt

=

∫ θ

ε

Ct(u, v)
(u−t + v−t − 1) log(u−t + v−t − 1)− u−t log u−t − v−t log v−t

t2(u−t + v−t − 1)
dt.
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3.5 Modelling negative dependence structures with copulas

For all (u, v) ∈ [0, 1]2 and t > 0 we have

Ct(u, v) ≤
√
uv (3.5.6)

and

(u−t + v−t − 1) log(u−t + v−t − 1)− u−t log u−t − v−t log v−t

t2(u−t + v−t − 1)
≤ (1− u)(1− v)√

uv
.

(3.5.7)
Bound (3.5.6) is due to inequality (u−t/2− v−t/2)2 + u−t/2v−t/2 ≥ 1. In order
to proof (3.5.7) we use the following inequality

(x+ y − 1) log(x+ y − 1)− x log x− y log y ≤ (x+ y − 1) log x log y, (3.5.8)

for any x ≥ 1, y ≥ 1. Denote

f(x, y) := (x+ y − 1) log(x+ y − 1)− x log x− y log y − (x+ y − 1) log x log y.

Then (3.5.8) follows by noting that f(1, y) = 0 for any y ≥ 1 and

∂f(x, y)

∂x
= −

(
log x log y +

y − 1

x
log y + log

xy

x+ y − 1

)
≤ 0, x, y ≥ 1.

By (3.5.8),

(u−t + v−t − 1) log(u−t + v−t − 1)− u−t log u−t − v−t log v−t

t2(u−t + v−t − 1)
≤ log u log v,

where, by inequality log x ≤ (x− 1)/
√
x, x ≥ 1 (see [49], p. 272),

− log u = log(1/u) ≤ 1/u− 1

1/
√
u

=
1− u√
u
.

Inequalities (3.5.6), (3.5.7) imply

Cθ(u, v) ≤ Cε(u, v) + (θ − ε)(1− u)(1− v).

Taking ε→ 0, we obtain the desired inequality. 2

Summarizing, we have the following corollary.

Corollary 3.5.1. Let r.v.s X1, . . . , Xn have corresponding univariate dis-
tributions F1, . . . , Fn, such that Hn ∈ D, and let the dependence structure
be generated by either of the copulas in (2.3.3), (2.3.4), (2.3.5) or (2.3.6).
Then asymptotic relation (3.1.8) holds. If, in addition, Hn(−x) = o(Hn(x)),
then (3.1.9) holds too.
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Chapter 4

Randomly weighted sums and

their closure property

In this chapter we study the closure property and probability tail asymp-
totics for randomly weighted sums SΘ

n = Θ1X1 + · · · + ΘnXn of heavy-
tailed dependent random variables X1, . . . , Xn and positive random weights
Θ1, . . . ,Θn.

Together we prove the asymptotic equivalence between the tail probabil-
ities of SΘ

(n) := max{SΘ
1 , . . . , S

Θ
n }, SΘ

n and SΘ+
n :=

∑n
i=1 ΘiX

+
i . Such relation

is not only of theoretical interest but also has practical implications as it
allows, for large x, to replace the sum of real-valued r.v.s by much easier
to handle sum of r.v.s concentrated on [0,∞). Also it shows that in the
context of the model with the insurance and financial risk, the tail proba-
bilities of the stochastic present value of the aggregate net losses, SΘ

n , and
the maximal net loss, SΘ

(n), asymptotically are the same.

4.1 Literature review

In the case Θ1 = · · · = Θn = 1 the convolution closure of class L was proved
in [23] (Theorem 3(b)) when n = 2 (in fact, they proved the closure for more
general class Lγ) and in [52]. The closure property for some other heavy-
tailed classes was studied by Leslie [40], Tang and Tsitsiashvili [61], Cai and
Tang [10], Geluk and Ng [30], Foss et al. [28], Watanabe and Yamamuro
[68].

The closure property of randomly weighted sums SΘ
n was studied in [12]

and [72].
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4.2 Main results

The probability tail asymptotics for sums SΘ
n of independent heavy tailed

r.v.s X1, . . . , Xn with Θ1, . . . ,Θn being nonnegative bounded r.v.s were in-
vestigated in [61], [62], [63], [12], [71] among others.

Weak equivalence between the quantities P(SΘ
n > x) and

∑n
i=1 P(ΘiXi >

x) with r.v.s having a certain dependence structure was proved in [29]. For
pQAI r.v.s Chen and Yuen [13] showed that P(SΘ

n > x) ∼
∑n

i=1 P(ΘiXi >

x). The same asymptotics, with some dependence among X1, . . . , Xn, was
considered in [66].

We note that both mentioned questions are closely related: the proof
asymptotic equivalence (1.1) is based on the uniform closure property.

Recently, Yang et al. [72] considered the randomly weighted sum SΘ
2

under the following dependence structure between real-valued r.v.s X1 and
X2:

P(X2 > x|X1 = y) ∼ h1(y)F2(x),

P(X1 > x|X2 = y) ∼ h2(y)F1(x),
(4.1.1)

uniformly in y ∈ R, where hk : R 7→ (0,∞), k = 1, 2, are measurable func-
tions. Such a dependence structure, proposed by Asimit and Badescu [4],
can be easily checked for some well-known bivariate copulas, allowing both
positive and negative dependence, see, e.g., [4], [43], [72]. The main result
of Yang et al. [72] is the following:

Theorem 4.1 ([72]). Assume that X1, X2 are real-valued r.v.s with distri-
butions Fk ∈ L , satisfying relation (4.1.1); Θ1,Θ2 are arbitrarily dependent,
but independent of X1, X2, and such that P(a ≤ Θk ≤ b) = 1, k = 1, 2, with
some constants 0 < a ≤ b <∞. Then the distribution of SΘ

2 is in L and

P(SΘ
(2) > x) ∼ P(SΘ

2 > x) ∼ P(SΘ+
2 > x),

where SΘ
(2) = max{SΘ

1 , S
Θ
2 }.

Our goal is to is to extend the result on the closure property and tail
asymptotics of randomly weighted sums SΘ

n under similar dependence struc-
ture to (4.1.1) for any n ≥ 2.

4.2 Main results

Let n ≥ 2 be an integer. Consider the real-valued r.v.s X1, . . . , Xn with
corresponding distributions F1, . . . , Fn, such that Fk(x) > 0 for k = 1, . . . , n,
and assume the following dependence structures.
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4. Randomly weighted sums and their closure property

Assumption A. For each k = 2, . . . , n relation

P(Xk > x|X1 = y1, . . . , Xk−1 = yk−1) ∼ gk(y1, . . . , yk−1)Fk(x) (4.2.1)

holds uniformly for all (y1, . . . , yk−1) ∈ Rk−1, i.e.

lim
x→∞

sup
(y1,...,yk−1)∈Rk−1

∣∣∣∣P(Xk > x|X1 = y1, . . . , Xk−1 = yk−1)

gk(y1, . . . , yk−1)Fk(x)
− 1

∣∣∣∣ = 0,

where gk : Rk−1 7→ R+ := (0,∞), k = 2, . . . , n, are measurable functions.

Assumption B. For each k = 2, . . . , n, relation

P

( k−1∑
i=1

wiXi > x|Xk = y

)
∼ h

(w)
k (y)P

( k−1∑
i=1

wiXi > x

)
(4.2.2)

holds uniformly for all y ∈ R and wk−1 := (w1, . . . , wk−1) ∈ [a, b]k−1, with
some positive constants 0 < a ≤ b <∞, i.e.

lim
x→∞

sup
y∈R

sup
wk−1∈[a,b]k−1

∣∣∣∣P
(∑k−1

i=1 wiXi > x|Xk = y
)

h
(w)
k (y)P

(∑k−1
i=1 wiXi > x

) − 1

∣∣∣∣ = 0,

where h(w)
k : R 7→ R+, k = 1, . . . , n, are measurable functions, maybe depen-

dent on wk−1.
If, for some i ∈ {1, . . . , k − 1}, yi = y∗i in (4.2.1) is not attainable value

of Xi the conditional probability in there is treated as unconditional and
therefore gk(y1, . . . , y

∗
i , . . . , yk−1) = 1 for such y∗i . The same agreement holds

for (4.2.2).
Clearly, the uniformity in (4.2.1) and (4.2.2) imply that

Egk(X1, . . . , Xk−1) = Eh
(w)
k (Xk) = 1 for k = 2, . . . , n.

Our first main result is the following theorem.

Theorem 4.2.1. Let X1, . . . , Xn be real-valued r.v.s satisfying Assumptions
A, B, and let Θ1, . . . ,Θn be random weights, independent of X1, . . . , Xn, such
that P(a ≤ Θk ≤ b) = 1, k = 1, . . . , n, 0 < a ≤ b < ∞. If Fk ∈ L , for all
k = 1, . . . , n, then d. f. P(SΘ

n ≤ x) belongs to L .

In order to obtain our second main result we have to strengthen the
assumption of dependence from assumptions A, B to the following:
Assumption C. For arbitrary nonempty sets of indices I = {k1, . . . , km} ⊂
{1, 2, . . . , n} and J = {r1, . . . , rp} ⊂ {1, 2, . . . , n}\I, relation

P

(∑
k∈I

wkXk > x
∣∣Xr = yr with r ∈ J

)
∼ h

(w)
I,J (yr1 , . . . , yrp)P

(∑
k∈I

wkXk > x

)
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4.3 Proofs of theorems

holds uniformly for all (yr1 , . . . , yrp) ∈ Rp and (wk1
, . . . , wkm) ∈ [a, b]m, 0 <

a ≤ b < ∞, with some measurable function h
(w)
I,J : Rp 7→ R+, such that

h
(w)
I,J (yr1 , . . . , yrp) is bounded uniformly in wk ∈ [a, b], k ∈ I and (yr1 , . . . , yrp) ∈

Rp.
Clearly, Assumption C implies both Assumptions A and B with

gk(y1, . . . , yk−1) ≡ h
(w)
{k},{1,...,k−1}(y1, . . . , yk−1) and h

(w)
k (y) ≡ h

(w)
{1,...,k−1},{k}(y),

k = 2, . . . , n.

Theorem 4.2.2. Let X1, . . . , Xn be real-valued r.v.s satisfying Assumption
C and let Θ1, . . . ,Θn be random weights, independent of X1, . . . , Xn, such
that P(a ≤ Θk ≤ b) = 1, k = 1, . . . , n, 0 < a ≤ b < ∞. If Fk ∈ L for all
k = 1, . . . , n, then

P(SΘ
n > x) ∼ P(SΘ+

n > x) ∼ P(SΘ
(n) > x). (4.2.3)

Remark 4.2.1. In the case n = 2, conjunction of assumptions A and B
coincides with Assumption C, which is the same as condition (4.1.1). Thus,
Theorems 4.2.1–4.2.2 generalize the result in Theorem 4.1.

Remark 4.2.2. If conditions of Theorem 4.2.2 are satisfied and X1, . . . , Xn

are independent, then relations (4.2.3) were proved in [66] (Lemma 4) and
[12] (Theorem 2.1); moreover, the interval [a, b] can be generalized to (0, b]

if, additionally, Θk’s are associated (see Theorem 2.2 in [12]).

4.3 Proofs of theorems

4.3.1 Proof of Theorem 4.2.1

The proof of Theorem 4.2.1 is essentially based on the uniform closure
property of the sum Swn := w1X1 + · · · + wnXn: if assumptions A and B are
satisfied and each Fk ∈ L , then the distribution of sum Swn is uniformly in
L too.

Lemma 4.3.1. Let X1, . . . , Xn be the real-valued r.v.s with corresponding
distributions F1, . . . , Fn and let Assumptions A, B hold. If Fk ∈ L , k =

1, . . . , n, then for any K > 0 the relation

P
(
Swn > x−K

)
∼ P

(
Swn > x

)
(4.3.1)

holds uniformly for all wn ∈ [a, b]n.
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4. Randomly weighted sums and their closure property

Proof. It is sufficient to prove that

lim sup
x→∞

sup
wn∈[a,b]n

P(Swn > x−K)

P(Swn > x)
≤ 1. (4.3.2)

By Remark 4.2.1, relation (4.3.1) holds for n = 2 (see Lemma 3.1 in [72]).
Suppose that relation (4.3.2) holds for some n = N ≥ 2, i.e.

P(SwN > x−K) ∼ P(SwN > x) (4.3.3)

with above uniformity. We will prove that (4.3.2) holds for n = N + 1. This
will prove the statement of the lemma.

Let ε ∈ (0, 1) be an arbitrary constant. By FN+1 ∈ L , we have that

lim sup sup
wN+1∈[a,b]

P (wN+1XN+1 > x−K)

P (wN+1XN+1 > x)

≤ lim sup sup
wN+1∈[a,b]

FN+1

(
x

wN+1
− K

a

)
FN+1

(
x

wN+1

)
≤ lim sup sup

z≥x/b

FN+1

(
z − K

a

)
FN+1(z)

= 1.

Let ε ∈ (0, 1) be an arbitrary constant. Therefore, for any ε > 0 there
exists such x1 > K that for all x > x1

1 ≤ sup
x>x1

sup
wN+1∈[a,b]

P (wN+1XN+1 > x−K)

P (wN+1XN+1 > x)

≤ sup
x>x1

sup
z≥x/b

P(XN+1 > z − K
a )

P(XN+1 > z)
≤ 1 + ε. (4.3.4)

Also, condition (4.2.1) implies that

(1− ε)FN+1(x)gN+1(y1, . . . , yN ) ≤ P(XN+1 > x|X1 = y1, . . . , XN = yN )

≤ (1 + ε)FN+1(x)gN+1(y1, . . . , yN ) (4.3.5)

for all yi ∈ R, i = 1, . . . , N and x ≥ x2 ≥ x1.
If x ≥ max{bx2, x2}, then

P(SwN+1 > x−K)

P(SwN+1 > x)

=
(
∫
D1

+
∫
D2

)P(wN+1XN+1 > x−K −
∑N

i=1wiyi|X1 = y1, . . . , XN = yN )dFX(y)

(
∫
D3

+
∫
D4

)P(wN+1XN+1 > x−
∑N

i=1wiyi|X1 = y1, . . . , XN = yN )dFX(y)

=:
I11(x) + I12(x)

I21(x) + I22(x)
≤ max

{
I11(x)

I21(x)
,
I12(x)

I22(x)

}
, (4.3.6)
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4.3 Proofs of theorems

where

D1 := {(y1, . . . , yN ) :

N∑
i=1

wiyi ≤ x− bx2 −K},

D2 := {(y1, . . . , yN ) :

N∑
i=1

wiyi > x− bx2 −K},

D3 := {(y1, . . . , yN ) :

N∑
i=1

wiyi ≤ x− bx2},

D4 := {(y1, . . . , yN ) :

N∑
i=1

wiyi > x− bx2},

and FX(x) := FX1,...,XN (x1, . . . , xN ). Since x ≥ bx2, x ≥ x2 ≥ x1, relations
(4.3.4), (4.3.5) imply that

sup
wN+1∈[a,b]N+1

I11(x)

I21(x)

≤ 1 + ε

1− ε
sup

wN+1∈[a,b]N+1

∫
D1

P(wN+1XN+1 > x−K −
∑N

i=1wiyi)gN+1(y)dFX(y)∫
D1

P(wN+1XN+1 > x−
∑N

i=1wiyi)gN+1(y)dFX(y)

≤ 1 + ε

1− ε
sup

wN+1∈[a,b]N+1

sup
yN∈D1

P(wN+1XN+1 > x−K −
∑N

i=1wiyi)

P(wN+1XN+1 > x−
∑N

i=1wiyi)

≤ 1 + ε

1− ε
sup
z≥x2

P(XN+1 > z −K)

P(XN+1 > z)
≤ (1 + ε)2

1− ε
, (4.3.7)

where gN+1(y) := gN+1(y1, . . . , yN ).
On the other hand, condition (4.2.2) implies that

(1− ε)h(w)
N+1(yN+1)P(SwN > x) ≤ P(SwN > x|XN+1 = yN+1)

≤ (1 + ε)h
(w)
N+1(yN+1)P(SwN > x) (4.3.8)

for all yN+1 ∈ R, wN ∈ [a, b]N and x ≥ x3 ≥ x2. Hence,
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4. Randomly weighted sums and their closure property

I22(x) = P
(
SwN > x− bx2, S

w
N+1 > x

)
≥ P

(
SwN > x, SwN+1 > x

)
= P(SwN > x,XN+1 ≥ 0) + P(SwN + wN+1XN+1 > x,XN+1 < 0)

=

∫
[0,∞)

P(SwN > x|XN+1 = yN+1)dFN+1(yN+1)

+

∫
(−∞,0)

P(SwN > x− wN+1yN+1|XN+1 = yN+1)dFN+1(yN+1)

≥ (1− ε)
∫

[0,∞)

P(SwN > x)h
(w)
N+1(yN+1)dFN+1(yN+1)

+ (1− ε)
∫

(−∞,0)

P(SwN > x− wN+1yN+1)h
(w)
N+1(yN+1)dFN+1(yN+1)

= (1− ε)P(SwN > x)Eh
(w)
N+1(XN+1)1I{XN+1≥0}

+ (1− ε)
∫

(−∞,0)

P(SwN > x− wN+1yN+1)h
(w)
N+1(yN+1)dFN+1(yN+1)

(4.3.9)

for all wN+1 ∈ [a, b]N+1 and x ≥ x3. Here, Eh
(w)
N+1(XN+1)1I{XN+1≥0} > 0

because of heavy-tailedness of FN+1. Similarly, under (4.3.8),

I12(x) = P(SwN+1 > x−K,SwN > x− bx2 −K)

≤ P(SwN+1 > x−K,SwN > x−K) + P(x− bx2 −K < SwN ≤ x−K)

= P(SwN > x−K,XN+1 ≥ 0) + P(SwN + wN+1XN+1 > x−K,XN+1 < 0)

+ P(x− bx2 −K < SwN ≤ x−K)

≤ (1 + ε)P(SwN > x−K)Eh
(w)
N+1(XN+1)1I{XN+1≥0}

+ (1 + ε)

∫
(−∞,0)

P(SwN > x−K − wN+1yN+1)h
(w)
N+1(yN+1)dFN+1(yN+1)

+ P(SwN > x− bx2 −K)− P(SwN > x−K) (4.3.10)

for x ≥ x3 and all wN+1 ∈ [a, b]N+1.
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Relations (4.3.9), (4.3.10) imply that

lim sup
x→∞

sup
wN+1∈[a,b]N+1

I12(x)

I22(x)

≤ 1

1− ε
lim sup
x→∞

sup
wN∈[a,b]N

(
P(SwN > x− bx2 −K)

P(SwN > x)
−

P(SwN > x−K)

P(SwN > x)

)
+

1 + ε

1− ε
max

{
lim sup
x→∞

sup
wN∈[a,b]N

P(SwN > x−K)

P(SwN > x)
,

lim sup
x→∞

sup
wN∈[a,b]N

sup
yN+1<0

P(SwN > x− wN+1yN+1 −K)

P(SwN > x− wN+1yN+1)

}
.

From hypothesis (4.3.3) we obtain that

lim sup
x→∞

sup
wN+1∈[a,b]N+1

I12(x)

I22(x)
≤ 1 + ε

1− ε
. (4.3.11)

Hence, by (4.3.6), (4.3.7), (4.3.11) we get

lim sup
x→∞

sup
wN+1∈[a,b]N+1

P(SwN+1 > x−K)

P(SwN+1 > x)
≤ (1 + ε)2

1− ε
.

The arbitrariness of ε > 0 implies inequality (4.3.2) for n = N + 1. 2

It is easy to see that the result in Lemma 4.3.1 can be reformulated re-
placing the constant K in (4.3.1) by some infinitely increasing function K(x)

(see the arguments in [75]), which does not depend on w. If Lemma 4.3.1
holds, then

lim
x→∞

sup
wn∈[a,b]n

∣∣∣∣P(Swn > x−K)

P(Swn > x)
− 1

∣∣∣∣ = 0

holds uniformly for all wn ∈ [a, b]n. We can choose an increasing sequence
of positive numbers {qn, n ≥ 1} such that for all x ≥ qn,

sup
wn∈[a,b]n

∣∣∣∣P(Swn > x+ n)

P(Swn > x)
− 1

∣∣∣∣+ sup
wn∈[a,b]n

∣∣∣∣P(Swn > x− n)

P(Swn > x)
− 1

∣∣∣∣ ≤ 1

n
.

If we set K(x) = n, qn−1 ≤ x < qn then we see, that K(x)↗∞ and

lim
x→∞

sup
wn∈[a,b]n

∣∣∣∣P(Swn > x±K(x))

P(Swn > x)
− 1

∣∣∣∣ = 0.

Thus we have:

Corollary 4.3.1. Assume the conditions in Lemma 4.3.1. Then there exists
a positive nondecreasing function K(x), satisfying K(x)↗∞, such that the
relation

P
(
Swn > x±K(x)

)
∼ P

(
Swn > x

)
(4.3.12)

holds uniformly for wn ∈ [a, b]n.
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Proof of Theorem 4.2.1. Using Lemma 4.3.1, we obtain that for any
K > 0

P(SΘ
n > x−K) =

∫
· · ·
∫

[a,b]n

P(Swn > x−K)P(Θ1 ∈ dw1, . . . ,Θn ∈ dwn)

∼
∫
· · ·
∫

[a,b]n

P(Swn > x)P(Θ1 ∈ dw1, . . . ,Θn ∈ dwn)

= P(SΘ
n > x).

2

4.3.2 Proof of Theorem 4.2.2

The proof of Theorem 4.2.2 is based on the following lemma. Set Sw+
n :=∑n

k=1wkX
+
k , Sw(n) := max{Sw1 , . . . , Swn }.

Lemma 4.3.2. Let X1, . . . , Xn (n ≥ 2) be real-valued r.v.s with correspond-
ing distributions F1, . . . , Fn, such that each Fk ∈ L . Then, under Assump-
tion C,

P(Swn > x) ∼ P(Sw+
n > x) ∼ P(Sw(n) > x)

uniformly for all wn ∈ [a, b]n.

Proof. Since Swn ≤ Sw(n) ≤ Sw+
n , we only need to prove that

P(Sw+
n > x) . P(Swn > x). (4.3.13)

Obviously, for positive x, it holds

P(Sw+
n > x) = P(Swn > x) + P(Sw+

n > x, Swn ≤ x)

= P(Swn > x) +
∑
I

P(Sw+
n > x, Swn ≤ x,AI(X))

= P(Swn > x) +
∑
I

pI , (4.3.14)

where the sum
∑
I

is taken over all nonempty subsets I ⊂ {1, 2, . . . , n} and

AI(X) :=
( ⋂
k∈I
{Xk ≥ 0}

)⋂ ( ⋂
k∈Ic
{Xk < 0}

)
.
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Let I = {k1, . . . , km} be a fixed subset of indices with nonempty Ic =

{r1, . . . , rn−m}. Set l := n−m, FXr
(xr) := FXr1 ,...,Xrl (xr1 , . . . , xrl) and write

pI

= P
(∑
k∈I

wkXk > x,
∑
k∈I

wkXk +
∑
r∈Ic

wrXr ≤ x,Xk ≥ 0, k ∈ I;Xr < 0, r ∈ Ic
)

≤ P
(∑
k∈I

wkXk > x,
∑
k∈I

wkXk +
∑
r∈Ic

wrXr ≤ x,Xr < 0, r ∈ Ic
)

= P
(∑
k∈I

wkXk > x,Xr < 0, r ∈ Ic
)

− P
(∑
k∈I

wkXk +
∑
r∈Ic

wrXr > x,Xr < 0, r ∈ Ic
)

≤
∫
· · ·
∫

(−∞,0)

P
(∑
k∈I

wkXk > x
∣∣Xr = yr, r ∈ Ic

)
dFXr

(yr)

−
∫
· · ·
∫

(−∞,0)

P
(∑
k∈I

wkXk > x− b
∑
r∈Ic

yr
∣∣Xr = yr, r ∈ Ic

)
dFXr

(yr)

≤ C

(∫
· · ·
∫

(−∞,0)

π′I(x, yr, r ∈ I
c)dFXr1 ,...,Xrl (yr1 , . . . , yrl)

−
∫
· · ·
∫

(−∞,0)

π′′I (x, yr, r ∈ Ic)dFXr1 ,...,Xrl (yr1 , . . . , yrl)

)
=: Cp′I ,

where

π′I(x, yr, r ∈ I
c) :=

P
(∑

k∈I wkXk > x
∣∣Xr = yr, r ∈ Ic

)
h

(w)
I,Ic(yr1 , . . . , yrl)

,

π′′I (x, yr, r ∈ Ic) :=
P
(∑

k∈I wkXk > x− b
∑

r∈Ic yr
∣∣Xr = yr, r ∈ Ic

)
h

(w)
I,Ic(yr1 , . . . , yrl)

and where we have used that, by Assumption C,

sup
wk∈[a,b],k∈I

sup
(yr1 ,...,yrl)∈Rl

h
(w)
I,Ic(yr1 , . . . , yrl) ≤ C <∞.
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According to the Fatou lemma, Assumption C and Lemma 4.3.1,

lim sup
x→∞

sup
wk∈[a,b],k∈I

p′I
P
(∑

k∈I wkXk > x
)

≤
∫

(−∞,0)

. . .

∫
(−∞,0)

lim sup
x→∞

sup
wk∈[a,b],k∈I

π′I(x, yr, r ∈ I
c)

P(
∑

k∈I wkXk > x)
dFXr1 ,...,Xrl (yr1 , . . . , yrl)

−
∫

(−∞,0)

. . .

∫
(−∞,0)

lim inf
x→∞

inf
wk∈[a,b],k∈I

π′′I (x, yr, r ∈ Ic)
P(
∑

k∈I wkXk > x)
dFXr1 ,...,Xrl (yr1 , . . . , yrl)

= 0.

Since pI ≤ Cp′I , for each subset I in (4.3.14) we obtain that

lim sup
x→∞

sup
wn∈[a,b]n

pI

P
(∑

k∈I wkXk > x
) = 0.

This, together with (4.3.14), imply

lim inf
x→∞

inf
wn∈[a,b]n

P(Swn > x)

P(Sw+
n > x)

≥ 1−
∑
I

lim sup
x→∞

sup
wn∈[a,b]n

pI

P(Sw+
n > x)

= 1−
∑
I

lim sup
x→∞

sup
wn∈[a,b]n

pI

P
(∑

k∈I wkXk > x
)

= 1.

Thus, relation (4.3.13) holds and lemma is proved. 2

Proof of Theorem 4.2.2. Similarly, as in the case of Theorem 4.2.1,
the proof follows immediately from Lemma 4.3.2:

P(SΘ+
n > x) =

∫
· · ·
∫

[a,b]n

P(Sw+
n > x)P(Θ1 ∈ dw1, . . . ,Θn ∈ dwn)

∼
∫
· · ·
∫

[a,b]n

P(Swn > x)P(Θ1 ∈ dw1, . . . ,Θn ∈ dwn)

= P(SΘ
n > x).

2

4.4 The case of copula-based dependence

In this section we demonstrate how the functions gk, h(w)
k and h

(w)
I,J , ap-

pearing in Assumptions A, B and C, can be found when the dependence
structure among X1, . . . , Xn is generated by n-dimensional absolutely con-
tinuous copula C(u1, . . . , un).
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4.4 The case of copula-based dependence

4.4.1 General copula dependence

Assume that the distribution of vector (X1, . . . , Xn) is given by

P(X1 ≤ x1, . . . , Xn ≤ xn) = C(F1(x1), . . . , Fn(xn)), (x1, . . . , xn) ∈ [−∞,∞]n,

(4.4.1)
where C(u1, . . . , un) is some absolutely continuous copula function with cor-
responding positive copula density c(u1, . . . , un). Assume that F1, . . . , Fn are
absolutely continuous with corresponding positive densities f1, . . . , fn.

Consider first the case of assumptions A and B.
Let Ck(u1, . . . , uk) := C(u1, . . . , uk, 1, . . . , 1), where k = 2, . . . , n, be the

k-dimensional marginal copulas. Also write C1(u1) = u1. Let the cor-
responding copula densities be ck(u1, . . . , uk), where k = 1, . . . , n. Denote
C̃k(u1, . . . , uk) := Ck−1(u1, . . . , uk−1)− Ck(u1, . . . , uk) and let

c̃k(u1, . . . , uk) :=
∂k−1C̃k(u1, . . . , uk)

∂u1 . . . ∂uk−1
. (4.4.2)

Further, we introduce the following assumption: for any k = 2, . . . , n, there
exists positive limit

c̄k(u1, . . . , uk−1, 1−) := lim
u↘0

c̃k(u1, . . . , uk−1, 1− u)

u
(4.4.3)

uniformly for (u1, . . . , uk−1) ∈ [0, 1]k−1.
Denote X∗1 , . . . , X

∗
n the corresponding independent copies of r.v.s

X1, . . . , Xn and set Sw∗k := w1X
∗
1 + · · ·+ wkX

∗
k , k = 1, . . . , n.

Proposition 4.4.1. Assume that the distribution of random vector
(X1, . . . , Xn) is given by (4.4.1) with some absolutely continuous copula
C(u1, . . . , un) and absolutely continuous marginal distributions F1, . . . , Fn.
Then Assumption A is equivalent to (4.4.3) and in this case functions gk,
k = 2, . . . , n are given by

gk(y1, . . . , yk−1) =
c̄k(F1(y1), . . . , Fk−1(yk−1), 1−)

ck−1(F1(y1), . . . , Fk−1(yk−1))
. (4.4.4)

Furthermore, Assumption B is equivalent to the existence of positive limits

h
(w)
k (y) := lim

x→∞

Eck(F1(X∗1 ), . . . , Fk−1(X∗k−1), Fk(y))1I{Sw∗k−1>x}

Eck−1(F1(X∗1 ), . . . , Fk−1(X∗k−1))1I{Sw∗k−1>x}
, (4.4.5)

uniformly for wk−1 ∈ [a, b]k−1, y ∈ R and k = 2, . . . , n.

Proof. Denote the k-dimensional density function of vector (X1, . . . , Xk)

by fX1,...,Xk(y1, . . . , yk). Clearly,

fX1,...,Xk(y1, . . . , yk) = ck(F1(y1), . . . , Fk(yk))f1(y1) · · · fk(yk), (4.4.6)
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4. Randomly weighted sums and their closure property

which is positive for all k = 1, . . . , n by the positivity of copula density c and
marginal densities f1, . . . , fn. Hence,

P(Xk > x|X1 = y1, . . . , Xk−1 = yk−1)

=
∂k−1P(Xk > x,X1 ≤ y1, . . . , Xk−1 ≤ yk−1)

∂y1 . . . ∂yk−1

1

fX1,...,Xk−1
(y1, . . . , yk−1)

=
c̃k(F1(y1), . . . , Fk−1(yk−1), Fk(x))

ck−1(F1(y1), . . . , Fk−1(yk−1))
, (4.4.7)

which follows from (4.4.6) and equality

∂k−1P(Xk > x,X1 ≤ y1, . . . , Xk−1 ≤ yk−1)

∂y1 . . . ∂yk−1

= c̃k(F1(y1), . . . , Fk−1(yk−1), Fk(x))f1(y1) . . . fk−1(yk−1).

The last equality holds by (4.4.2).
By (4.4.7), Assumption A is equivalent to

lim
x→∞

c̃k(F1(y1), . . . , Fk−1(yk−1), Fk(x))

Fk(x)

= gk(y1, . . . , yk−1)ck−1(F1(y1), . . . , Fk−1(yk−1))

for some positive functions gk, uniformly for (y1, . . . , yk−1) ∈ Rk−1, k =

2, . . . , n. Clearly, the last relation is equivalent to (4.4.3), and (4.4.4) holds.
Lets deal with Assumption B. Since Fk(x) is absolutely continuous, we

have

P
(
Swk−1 > x|Xk = y

)
=

∂P(Swk−1 > x,Xk ≤ y)

∂y

1

fk(y)
. (4.4.8)

It is easy to see that

∂P(Swk−1 > x,Xk ≤ y)

∂y

= fk(y)

∫
R
ck(F1(u1), . . . , Fk−1(uk−1), Fk(y))f1(u1) . . . fk−1(uk−1)du1 . . . duk−1

= fk(y)Eck(F1(X∗1 ), . . . , Fk−1(X∗k−1), Fk(y))1I{w1X∗1 +···+wk−1X∗k−1>x},

where R := {(u1, . . . , uk−1) :
∑k−1

i=1 wiui > x}. Hence, by (4.4.8) and equality
P(Swk−1 > x) = Eck−1(F1(X∗1 ), . . . , Fk−1(X∗k−1))1I{Sw∗k−1>x}, we obtain

P
(
Swk−1 > x|Xk = y

)
=

Eck(F1(X∗1 ), . . . , Fk−1(X∗k−1), Fk(y))1I{Sw∗k−1>x}

Eck−1(F1(X∗1 ), . . . , Fk−1(X∗k−1))1I{Sw∗k−1>x}
P
(
Swk−1 > x

)
.

This implies the second statement of proposition. 2

42



4.4 The case of copula-based dependence

Next we formulate the similar result in the case of Assumption C. For
any (not necessarily nonempty) subsets I = {k1, . . . , km}, J = {r1, . . . , rp} ⊂
{1, . . . , n}\I denote by cI,J(uk, k ∈ I, ur, r ∈ J) the copula density corre-
sponding to random vector (Xk1

, . . . , Xkm , Xr1 , . . . , Xrp), i.e.

fXk1 ,...,Xkm ,Xr1 ,...,Xrp
(yk1

, . . . , ykm , yr1 , . . . , yrp)

= cI,J
(
Fk(yk), k ∈ I, Fr(yr), r ∈ J

)∏
k∈I

fk(yk)
∏
r∈J

fr(yr),

and let cI(uk1
, . . . , ukm) := cI,∅(uk1

, . . . , ukm), cJ(ur1 , . . . , urp) :=

c∅,J(ur1 , . . . , urp).

Proposition 4.4.2. Assume that the distribution of random vector
(X1, . . . , Xn) is given by (4.4.1) with some absolutely continuous copula
C(u1, . . . , un) and absolutely continuous marginal distributions F1, . . . , Fn.
Then Assumption C is equivalent to the existence of positive, uniformly
bounded limits

h
(w)
I,J (yr1 , . . . , yrp)

:=
1

cJ(Fr(yr), r ∈ J)
lim
x→∞

EcI,J(Fk(X
∗
k), k ∈ I, Fr(X∗r ), r ∈ J)1I{∑

k∈I
wkX∗k>x}

EcI(Fk(X
∗
k), k ∈ I)1I{∑

k∈I
wkX∗k>x}

uniformly for wk ∈ [a, b], k ∈ I, yr ∈ R, r ∈ J and all nonempty sets of
indices I = {k1, . . . , km} ⊂ {1, 2, . . . , n} and J = {r1, . . . , rp} ⊂ {1, 2, . . . , n}\I.

Proof. The proof is similar to that of Proposition 4.4.1. We have

P
(∑
k∈I

wkXk > x
∣∣Xr = yr, r ∈ J

)
=

∂pP(
∑

k∈I wkXk > x,Xr ≤ yr, r ∈ J)

∂yr1 . . . ∂yrp

1

fXr1 ,...,Xrp (yr1 , . . . , yrp)
,

where
∂pP(

∑
k∈I wkXk > x,Xr ≤ yr, r ∈ J)

∂yr1 . . . ∂yrp

=
∏
r∈J

fr(yr)

∫
∑
k∈I

wkuk>x

cI,J(Fk1
(uk1

), . . . , Fkm(ukm), Fr1(yr1), . . . , Frp(yrp))

×
∏
k∈I

fk(uk)duk1
. . . dukm

and fXr1 ,...,Xrp (yr1 , . . . , yrp) = cJ(Fr1(yr1), . . . , Frp(yrp))
∏
r∈J

fr(yr). Now the

proof follows observing that

P
(∑
k∈I

wkXk > x) = EcI(Fk1
(X∗k1

), . . . , Fkm(X∗km))1I{∑
k∈I

wkX∗k>x}.
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4. Randomly weighted sums and their closure property

2

4.4.2 The case of FGM copula

In this subsection, we assume that C(u1, . . . , un) = CGFGM(u1, . . . , un), given
by (2.3.3) with m = 1. In this case,

Ck(u1, . . . , uk) =

k∏
l=1

ul

(
1 +

∑
1≤i<j≤k

θij(1− ui)(1− uj)
)
, (4.4.9)

and the corresponding copula densities are given by

ck(u1, . . . , uk) = 1 +
∑

1≤i<j≤k

θij(1− 2ui)(1− 2uj), (4.4.10)

k = 2, . . . , n. Everywhere below we assume that the parameters θij are such
that cn(u1, . . . , un) > 0 for all (u1, . . . , un) ∈ [0, 1]n. Obviously, this implies
that ck(u1, . . . , uk) > 0 for all (u1, . . . , uk) ∈ [0, 1]k, k = 2, . . . , n.

Next, we make the following assumption:
Assumption D. For each k = 1, . . . , n− 1 there exists limit

lim
x→∞

F k(x/wk)

F 1(x/w1) + · · ·+ Fn−1(x/wn−1)
=: a

(w)
k ∈ (0, 1]

uniformly for wn−1 ∈ [a, b]n−1.
To illustrate Assumption D, suppose that F1, . . . , Fn are such that Fi(x) ∼

ciG(x) with some positive constants ci, i = 1, . . . , n, and a d. f. G(x) with
G(x) > 0 for all x. Then Assumption D is satisfied if, e.g., G(x) is some
regularly varying function, i.e. G(x) = L(x)x−α, x > 0, α ≥ 0 (L(x) is a
slowly varying function). In this case,

a
(w)
k =

ck
c1(w1/wk)α + · · ·+ cn−1(wn−1/wk)α

.

On the other hand, if a = b and G(x) is any d. f. with G(x) > 0 for all x,
then

a
(w)
k =

ck
c1 + · · ·+ cn−1

.

Next we derive the expressions for functions gk and h
(w)
k , omitting the

case of function h
(w)
I,J , for which the corresponding expression is complicated

and does not carry much interest.
For a distribution F , denote F̃ := 1− 2F = 2F − 1.
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4.4 The case of copula-based dependence

Proposition 4.4.3. Assume that n ≥ 2 and X1, . . . , Xn are real-valued r.v.s
whose distribution is generated by FGM copula in (4.4.9), marginal distri-
butions F1, . . . , Fn are absolutely continuous and Fi ∈ L ∩D, i = 1, . . . , n.
Then

gk(y1, . . . , yk−1) = 1−
∑

1≤l≤k−1 θlkF̃l(yl)

ck−1(F1(y1), . . . , Fk−1(yk−1))
, k = 2, . . . , n.

If n ≥ 3 and Assumption D holds, then

h
(w)
k (y) = 1− F̃k(y)

∑
1≤l≤k−1

θlka
(w)
l,k−1, k = 3, . . . , n,

where a(w)
l,k−1 := a

(w)
l /(a

(w)
1 + · · ·+ a

(w)
k−1).

Proof. We apply Proposition 4.4.1. Obviously,

C̃k(u1, . . . , uk)

= (1− uk)Ck−1(u1, . . . , uk−1)− u1 · · ·uk(1− uk)
∑

1≤l≤k−1

θlk(1− ul),

implying that c̃k(u1, . . . , uk) in (4.4.2) is

c̃k(u1, . . . , uk) = (1− uk)ck−1(u1, . . . , uk−1)− uk(1− uk)
∑

1≤l≤k−1

θlk(1− 2ul).

Hence, condition (4.4.3) is satisfied (uniformly in (u1, . . . , uk−1) ∈ [0, 1]k−1)
and

c̄k(u1, . . . , uk−1, 1−) = lim
u↘0

(
ck−1(u1, . . . , uk−1)− (1− u)

∑
1≤l≤k−1

θlk(1− 2ul)

)
= ck−1(u1, . . . , uk−1)−

∑
1≤l≤k−1

θlk(1− 2ul).

Hence, by (4.4.4),

gk(y1, . . . , yk−1) = 1−
∑

1≤l≤k−1 θlk(1− 2Fl(yl))

ck−1(F1(y1), . . . , Fk−1(yk−1))
.

Consider now function h
(w)
k (y). For k = 2, . . . , n we have

h
(w)
k (y) = lim

x→∞

ϕ
(w)
k (x, y)

ϕ
(w)
k−1(x)

,
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where, by (4.4.5) and (4.4.10),

ϕ
(w)
k (x, y) := Eck(F1(X∗1 ), . . . , Fk−1(X∗k−1), Fk(y))1I{Sw∗k−1>x}

= P(Sw∗k−1 > x) +
∑

1≤l<m≤k−1

θlmEF̃l(X
∗
l )F̃m(X∗m)1I{Sw∗k−1>x}

+ F̃k(y)
∑

1≤l≤k−1

θlkEF̃l(X
∗
l )1I{Sw∗k−1>x},

ϕ
(w)
k−1(x) := Eck−1(F1(X∗1 ), . . . , Fk−1(X∗k−1))1I{Sw∗k−1>x}

= P(Sw∗k−1 > x) +
∑

1≤l<m≤k−1

θlmEF̃l(X
∗
l )F̃m(X∗m)1I{Sw∗k−1>x}.

Rewrite now

ϕ
(w)
k (x, y)

ϕ
(w)
k−1(x)

= 1 + F̃k(y)b
(w)
k (x),

where

b
(w)
k (x) :=

∑
1≤l≤k−1

θlkEF̃l(X
∗
l )1I{Sw∗k−1>x}

P(Sw∗k−1 > x) +
∑

1≤l<m≤k−1

θlmEF̃l(X
∗
l )F̃m(X∗m)1I{Sw∗k−1>x}

.

It remains to prove that, uniformly in wk−1 ∈ [a, b]k−1,

b
(w)
k (x) → −

∑
1≤l≤k−1

θlka
(w)
l,k−1 =: b

(w)
k , k = 3, . . . , n. (4.4.11)

Rewrite

b
(w)
k (x)

=

2
∑

1≤l≤k−1

θlkEFl(X
∗
l )1I{Sw∗k−1>x} − P(Sw∗k−1 > x)

∑
1≤l≤k−1

θlk

2
∑

1≤l<m≤k−1

θlmEY ∗lm1I{Sw∗k−1>x} + P(Sw∗k−1 > x) + P(Sw∗k−1 > x)
∑

1≤l<m≤k−1

θlm

=
2
∑

1≤l≤k−1 θlk
EFl(X

∗
l )1I{Sw∗

k−1
>x}

P(Sw∗k−1>x)
−
∑

1≤l≤k−1 θlk

2
∑

1≤l<m≤k−1 θlm
EY ∗lm1I{Sw∗

k−1
>x}

P(Sw∗k−1>x)
+ 1 +

∑
1≤l<m≤k−1 θlm

,

where Y ∗lm := 2Fl(X
∗
l )Fm(X∗m)− Fl(X∗l )− Fm(X∗m).

The desired convergence (4.4.11) will follow if we show that

EFl(X
∗
l )1I{Sw∗k−1>x} ∼

1

2
(1− a(w)

l,k−1)P(Sw∗k−1 > x), l = 1, . . . , k − 1,(4.4.12)

EY ∗lm1I{Sw∗k−1>x} ∼ −1

2
P(Sw∗k−1 > x), 1 ≤ l < m ≤ k − 1, (4.4.13)
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4.4 The case of copula-based dependence

uniformly in wk−1 ∈ [a, b]k−1.
To show (4.4.12), take Yi = X∗i , ai(x) ≡ Fi(x) in Corollary 4.5.1 below

and note that condition (4.5.16) is satisfied:

EFi(X
∗
i )1I{X∗i >x} = Fj(x)

∫ ∞
x

Fi(y)

Fj(x)
dFi(y) = o(Fj(x)), j 6= i,

because, by Assumption D, Fi(x) ∼ cijFj(x) with some positive constant cij.
Combining Corollary 4.5.1, Proposition 4.5.1 (i) and using that EFl(X

∗
l ) =

1/2 for all l = 1, . . . , n (since distribution Fl has positive density), we get

lim
x→∞

EFl(X
∗
l )1I{Sw∗k−1>x}

P(Sw∗k−1 > x)
= EFl(X

∗
l ) lim

x→∞

∑k−1
i=1 F i(x/wi)− F l(x/wl)∑k−1

i=1 F i(x/wi)

=
1

2
(1− a(w)

l,k−1), l = 1, . . . , k − 1,

uniformly in wk−1 ∈ [a, b]k−1 (note that 0 < al,k−1 < 1 because
∑k−1

l=1 a
(w)
l,k−1 =

1 and a
(w)
l,k−1 > 0, k ≥ 3). Thus, we get (4.4.12).

The proof of relation (4.4.13) is similar. If k > 3, then, by Corollary
4.5.1,

lim
x→∞

EY ∗lm1I{Sw∗k−1>x}

P(Sw∗k−1 > x)

= lim
x→∞

E(2Fl(X
∗
l )Fm(X∗m)− Fl(X∗l )− Fm(X∗m))1I{Sw∗k−1>x}

P(Sw∗k−1 > x)

= 2EFl(X
∗
l )EFm(X∗m) lim

x→∞

∑k−1
i=1 F i(x/wi)− Fl(x/wl)− Fm(x/wm)∑k−1

i=1 F i(x/wi)

− EFl(X
∗
l ) lim

x→∞

∑k−1
i=1 F i(x/wi)− Fl(x/wl)∑k−1

i=1 F i(x/wi)

− EFm(X∗m) lim
x→∞

∑k−1
i=1 F i(x/wi)− Fm(x/wm)∑k−1

i=1 F i(x/wi)
= −1

2

uniformly in wk−1 ∈ [a, b]k−1. The case k = 3 in (4.4.13) easily follows from
arguments above and (4.5.18). The proof is complete. 2

Consider now the tail asymptotics of the sum SΘ
n = Θ1X1 + · · · + ΘnXn

in the case when the distribution of vector (X1, . . . , Xn) is given by (4.4.9).
The next proposition shows that in this case the probabilities P(SΘ

n > x)

and P(SΘ+
n > x) asymptotically are the same and are both asymptotically

equivalent to P(Θ1X1 > x) + · · · + P(ΘnXn > x). This result follows from
Theorem 1 in [66] proved in the case pSQAI structure (Definition 2.2.6). It
easy to see that the FGM distribution given by (4.4.9) satisfies (2.2.6) (see,
e.g., [31]).

47



4. Randomly weighted sums and their closure property

Proposition 4.4.4. Suppose that n ≥ 2 and X1, . . . , Xn are real-valued
r.v.s with corresponding distributions F1, . . . , Fn, such that Fi ∈ L ∩ D,
i = 1, . . . , n. Let the distribution of vector (X1, . . . , Xn) is generated by the
FGM copula in (4.4.9). If P(0 < Θk ≤ b) = 1, k = 1, . . . , n, then

P(SΘ
n > x) ∼ P(SΘ+

n > x) ∼ P(SΘ
(n) > x)

∼ P
(

max
k=1,...,n

ΘkXk > x
)
∼

n∑
k=1

P(ΘkXk > x). (4.4.14)

Remark 4.4.1. The proof of relations in (4.4.14) is based essentially on
two facts: first, the fact that the distribution of the product ΘX, where
Θ and X are independent r.v.s with 0 < Θ ≤ b a.s. and FX ∈ L ∩ D , is
again in L ∩D (see Lemmas 3.9 and 3.10 in [61]); second, the result as in
(4.4.14) but with products ΘkXk replaced by the (dependent) r.v.s Yk, such
that FYk ∈ L ∩ D , k = 1, . . . , n. Alternatively, the relation in (4.4.14) can
be derived replacing the Θk’s by wk’s and then proving the corresponding
relations uniformly with respect to wn = (w1, . . . , wn). For instance, using
Proposition 4.5.1 (ii) and representation

P(Swn > x) = P(Sw∗n > x) +
∑

1≤i<j≤n

Θij

∫
w1y1+···+wnyn>x

dHij(y1, . . . , yn),

where Hij(y1, . . . , yn) := F1(y1) . . . Fn(yn)Fi(yi)Fj(yj), or directly applying
(4.5.1) below for the pSQAI r.v.s, we have that for the FGM copula case it
holds

P(Swn > x) ∼ P(Sw∗n > x) ∼
n∑
k=1

F k(x/wk)

uniformly for wn ∈ [a, b]n. Hence

P(SΘ
n > x)

∼
∫
· · ·
∫

[a,b]n

(
P(w1X1 > x) + · · ·+ P(wnXn > x)

)
P(Θ1 ∈ dw1, . . . ,Θn ∈ dwn)

= P(Θ1X1 > x) + · · ·+ P(ΘnXn > x).

Obviously, the last approach leads to a weaker result as it requires the
restriction Θk ∈ [a, b] ⊂ (0, b], k = 1, . . . , n, unless the d. f. s F1, . . . , Fn are in
the class C , see Proposition 4.5.1 (ii) below.
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4.5 Auxiliary results

In this section we present some useful statements, which are used proving
the corresponding results in the case of FGM copula.

Proposition 4.5.1. Suppose that Y1, . . . , Yn are real-valued independent
r.v.s with corresponding distributions FY1

, . . . , FYn.
(i) If FYi ∈ L ∩D, i = 1, . . . , n, then

P(w1Y1 + · · ·+ wnYn > x) ∼
n∑
i=1

F Yi(x/wi) (4.5.1)

uniformly for wn ∈ [a, b]n, where 0 < a ≤ b <∞.
(ii) If FYi ∈ C , i = 1, . . . , n, then relation (4.5.1) holds uniformly for wn ∈
(0, b]n.

Proof. (i) The proof of this fact follows from Theorem 2.1 in [41] (note
that Li’s result also holds for more general, pSQAI, dependence structure).

(ii) Denote SwY,n := w1Y1 + · · ·+ wnYn and write for any δ ∈ (0, 1) and x > 0

P(SwY,n > x)

≥
n∑
i=1

P(SwY,n > x,wiYi > x+ δx)−
∑

1≤i<j≤n

P(wiYi > x+ δx, wjYj > x+ δx)

=: pw1 (x)− pw2 (x).

Obviously,

pw2 (x) ≤
( n∑
i=1

F Yi(x/wi)
)2

= o
( n∑
i=1

F Yi(x/wi)
)

(4.5.2)

uniformly in wn ∈ (0, b]n. For pw1 (x) we have

pw1 (x) ≥
n∑
i=1

P(SwY,n − wiYi > −δx, wiYi > x+ δx)

=

n∑
i=1

P(wiYi > x+ δx)−
n∑
i=1

P(SwY,n − wiYi ≤ −δx, wiYi > x+ δx)

=: pw11(x)− pw12(x).

Here,

lim inf
x→∞

inf
wn∈(0,b]n

pw11(x)∑n
i=1 F Yi(x/wi)

≥ lim inf
x→∞

inf
wn∈(0,b]n

min
1≤i≤n

F Yi((1 + δ)x/wi)

F Yi(x/wi)
,

(4.5.3)
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where, for any i = 1, . . . , n,

lim inf
x→∞

inf
wi∈(0,b]

F Yi((1 + δ)x/wi)

F Yi(x/wi)

≥ lim
x→∞

inf
z≥x/b

F Yi((1 + δ)z)

F Yi(z)

= lim inf
x→∞

F Yi((1 + δ)x)

F Yi(x)
−→ 1 if δ ↘ 0 (4.5.4)

by the definition of class C . We get from (4.5.3)–(4.5.4) that

lim
δ↘0

lim inf
x→∞

inf
wn∈(0,b]n

pw11(x)∑n
i=1 F Yi(x/wi)

≥ 1. (4.5.5)

For the term pw12(x) we get

pw12(x) ≤
n∑
i=1

P(SwY,n − wiYi ≤ −δx)P(wiYi > x)

≤ P(b(Y −1 + · · ·+ Y −n ) ≤ −δx)

n∑
i=1

F Yi(x/wi)

= o(1)

n∑
i=1

F Yi(x/wi) (4.5.6)

uniformly in wn ∈ (0, b]n. (4.5.2), (4.5.5) and (4.5.6) imply

lim inf
x→∞

inf
wn∈(0,b]n

P(SwY,n > x)∑n
i=1 F Yi(x/wi)

≥ lim inf
x→∞

inf
wn∈(0,b]n

pw1 (x)∑n
i=1 F Yi(x/wi)

≥ 1.

In order to show the upper asymptotic bound in (4.5.1), write

P(SwY,n > x)

= P
(
SwY,n > x,

⋃
i<j

{wiYi > δx/(n− 1), wjYj > δx/(n− 1)}
)

+ P
(
SwY,n > x,

⋂
i<j

{
{wiYi ≤ δx/(n− 1)} ∪ {wjYj ≤ δx/(n− 1)}

})
≤
∑
i<j

P(wiYi > δx/(n− 1))P(wjYj > δx/(n− 1)) + P
( n⋃
i=1

{wiYi > (1− δ)x}
)

≤
( n∑
i=1

P(wiYi > δx/(n− 1))
)2

+

n∑
i=1

P(wiYi > (1− δ)x) =: rw1 (x) + rw2 (x),

(4.5.7)
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where we have used that for any sets A1, . . . , An it holds
⋂

1≤i<j≤n{Ai∪Aj} ⊂⋃n
i=1

⋂
j 6=iAj. It is easy to see that rw1 (x) = o(1)

∑n
i=1 F Yi(x/wi) and, by the

definition of class C ,

lim
δ↘0

lim sup
x→∞

sup
wn∈(0,b]n

rw2 (x)∑n
i=1 F Yi(x/wi)

≤ 1.

This and (4.5.7) complete the proof of proposition. 2

Remark 4.5.1. Uniform asymptotic relation (4.5.1) was investigated earlier
in a number of papers. Tang and Tsitsiashvili [62] obtained this relation
for independent r.v.s with common subexponential d. f. and weights wn ∈
[a, b]n, 0 < a ≤ b < ∞. Subexponential r.v.s (independent or dependent)
were also investigated by Zhu and Gao [76], Wang [66]. Liu et al. [46]
and Wang at al. [67] proved relation (4.5.1) for identically distributed r.v.s
from class L ∩D allowing some dependence among primary variables with
weights wn ∈ [a, b]n, 0 < a ≤ b < ∞. Li [41] showed that this uniform
asymptotics holds for nonidentically distributed (with some dependence)
r.v.s from the class C or L ∩D and wn ∈ [a, b]n, 0 < a ≤ b <∞.

Proposition 4.5.2. Suppose that Y1, Y2, . . . are real-valued independent
r.v.s with corresponding distributions FY1

, FY2
, . . . and ai : (−∞,∞)→ [0,∞),

i = 1, 2, are measurable functions.
(i) If 0 < Ea1(Y1) <∞, FYi ∈ L ∩D, i = 2, . . . , k, where k ≥ 2 is an arbitrary
integer, and

Ea1(Y1)1I{Y1>x} = o(FY2
(x) + · · ·+ FYk(x)), (4.5.8)

then, uniformly for wk ∈ [a, b]k, 0 < a ≤ b <∞, it holds

Ea1(Y1)1I{w1Y1+···+wkYk>x} ∼ Ea1(Y1)P(w2Y2 + · · ·+ wkYk > x)

∼ Ea1(Y1)
(
FY2

(x/w2) + · · ·+ FYk(x/wk)
)
;

(4.5.9)

(ii) if 0 < Eai(Yi) <∞, FYi ∈ D, i = 1, 2, and

Eai(Yi)1I{Yi>x} = o(FYj(x)), i, j = 1, 2, i 6= j, (4.5.10)

then

Ea1(Y1)a2(Y2)1I{w1Y1+w2Y2>x} = o(FY1
(x/w1) + FY2

(x/w2)) (4.5.11)

uniformly for w2 ∈ (0, b]2.
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(iii) if 0 < Eai(Yi) < ∞, i = 1, 2, FYi ∈ L ∩D, i = 3, . . . , k, where k ≥ 3 is
an arbitrary integer, and

Eai(Yi)1I{Yi>x} = o(FY3
(x) + · · ·+ FYk(x)), i = 1, 2, (4.5.12)

then, uniformly for wk ∈ [a, b]k, 0 < a ≤ b <∞, it holds

Ea1(Y1)a2(Y2)1I{w1Y1+···+wkYk>x} ∼ Ea1(Y1)Ea2(Y2)(FY3
(x/w3)+· · ·+FYk(x/wk)).

(4.5.13)

Proof. (i) By Corollary 4.3.1 we can choose some positive function K1(x),
K1(x) ≤ x such that K1(x)↗∞ and

P(w2Y2 + · · ·+ wkYk > x±K1(x)) ∼ P(w2Y2 + · · ·+ wkYk > x) (4.5.14)

uniformly for w2, . . . , wk ∈ [a, b]. Next, write

Ea1(Y1)1I{w1Y1+···+wkYk>x}

= Ea1(Y1)1I{w1Y1+···+wkYk>x}(1I{w1|Y1|≤K1(x)} + 1I{w1|Y1|>K1(x)})

=: i1(x) + i2(x).

By (4.5.14) we have

lim sup
x→∞

sup
wk∈[a,b]k

i1(x)

Ea1(Y1)P(w2Y2 + · · ·+ wkYk > x)

≤ lim sup
x→∞

sup
wk∈[a,b]k

P(w2Y2 + · · ·+ wkYk > x−K1(x))

P(w2Y2 + · · ·+ wkYk > x)
= 1.

This, together with Proposition 4.5.1 (i), yields

i1(x) . Ea1(Y1)(FY2
(x/w2) + · · ·+ FYk(x/wk))

uniformly in wk ∈ [a, b]k.
For the lower bound, by (4.5.14) and Proposition 4.5.1 (i), we can write

i1(x) ≥ Ea1(Y1)1I{w2Y2+···+wkYk>x+K1(x),w1|Y1|≤K1(x)}

= Ea1(Y1)1I{w1|Y1|≤K1(x)}P(w2Y2 + · · ·+ wkYk > x+K1(x))

∼ Ea1(Y1)P(w2Y2 + · · ·+ wkYk > x)

∼ Ea1(Y1)(FY2
(x/w2) + · · ·+ FYk(x/wk))

uniformly in wk ∈ [a, b]k.
It remains to show that i2(x) = o(FY2

(x/w2) + · · ·+ FYk(x/wk)). Write

i2(x) ≤ Ea1(Y1)(1I{w1Y1>x/2} + 1I{w2Y2+···+wkYk>x/2})1I{w1|Y1|>K1(x)}

≤ Ea1(Y1)1I{Y1>x/(2b)} + Ea1(Y1)1I{|Y1|>K1(x)/b}P(w2Y2 + · · ·+ wkYk > x/2).
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Hence, by assumption (4.5.8), Proposition 4.5.1 (i) and the definition of
class D we get

i2(x) . o
(
FY2

(x/(2b)) + · · ·+ FYk(x/(2b))
)

+o(1)
(
FY2

(x/(2w2)) + · · ·+ FYk(x/(2wk))
)

= o
(
FY2

(x/w2) + · · ·+ FYk(x/wk)
)

uniformly in wk ∈ [a, b]k.
(ii) We have by (4.5.10) and FYi ∈ D , i = 1, 2, that

Ea1(Y1)a2(Y2)1I{w1Y1+w2Y2>x}

≤ Ea2(Y2)Ea1(Y1)1I{Y1>x/(2w1)} + Ea1(Y1)Ea2(Y2)1I{Y2>x/(2w2)}

= Ea2(Y2)o(FY2
(x/(2w1))) + Ea1(Y1)o(FY1

(x/(2w2)))

= o(FY1
(x/w1) + FY2

(x/w2))

uniformly for w2 ∈ (0, b]2.
(iii) Choose K2(x) > 0 such that K2(x) ≤ x, K2(x)↗∞ and

P(w3Y3 + · · ·+ wkYk > x±K2(x)) ∼ P(w3Y3 + · · ·+ wkYk > x) (4.5.15)

uniformly for w3, . . . , wk ∈ [a, b]. Now, split

Ea1(Y1)a2(Y2)1I{w1Y1+···+wkYk>x}

= Ea1(Y1)a2(Y2)1I{w1Y1+···+wkYk>x}(1I{|w1Y1+w2Y2|≤K2(x)}

+ 1I{|w1Y1+w2Y2|>K2(x)}) =: k1(x) + k2(x).

Similarly as in case (i), we have

k1(x) ∼ Ea1(Y1)Ea2(Y2)(FY3
(x/w3) + · · ·+ FYk(x/wk)),

k2(x) = o(FY3
(x/w3) + · · ·+ FYk(x/wk)).

Indeed, by (4.5.15) and Proposition 4.5.1 (i),

k1(x) ≤ Ea1(Y1)a2(Y2)P(w3Y3 + · · ·+ wkYk > x−K2(x))

∼ Ea1(Y1)Ea2(Y2)P(w3Y3 + · · ·+ wkYk > x)

∼ Ea1(Y1)Ea2(Y2)(FY3
(x/w3) + · · ·+ FYk(x/wk)),

k1(x) ≥ Ea1(Y1)a2(Y2)1I{|w1Y1+w2Y2|≤K2(x)}P(w3Y3 + · · ·+ wkYk > x+K2(x))

∼ Ea1(Y1)Ea2(Y2)P(w3Y3 + · · ·+ wkYk > x)

∼ Ea1(Y1)Ea2(Y2)(FY3
(x/w3) + · · ·+ FYk(x/wk))
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uniformly for wk ∈ [a, b]k, where we have used that

Ea1(Y1)a2(Y2)1I{|w1Y1+w2Y2|>K2(x)} ≤ Ea1(Y1)1I{b|Y1|>K2(x)/2}Ea2(Y2)

+ Ea2(Y2)1Ib|Y2|>K2(x)/2}Ea1(Y1) → 0.

For k2(x) we have

k2(x) ≤ Ea1(Y1)a2(Y2)1I{w1Y1+w2Y2>x/2}

+Ea1(Y1)a2(Y2)1I{|w1Y1+w2Y2|>K2(x)}P(w3Y3 + · · ·+ wkYk > x/2)

=: k21(x) + k22(x),

where, by assumption (4.5.12), Proposition 4.5.1 (i) and the definition of
class D ,

k21(x) ≤ Ea2(Y2)Ea1(Y1)1I{w1Y1>x/4} + Ea1(Y1)Ea2(Y2)1I{w2Y2>x/4}

= Ea2(Y2)o
( k∑
i=3

FYi(x/(4w1))
)

+ Ea1(Y1)o
( k∑
i=3

FYi(x/(4w2))
)

= o
( k∑
i=3

FYi(x/wi)
)

and

k22(x) = o(1)

k∑
i=3

FYi(x/(2wi))

uniformly for wk ∈ [a, b]k. 2

Corollary 4.5.1. Assume that k ≥ 2 and Y1, . . . , Yk are real-valued indepen-
dent r.v.s, such that FYi ∈ L ∩D, i = 1, . . . , k. Let ai : (−∞,∞) → [0,∞),
i = 1, . . . , k, be measurable functions such that 0 < Eai(Yi) < ∞ for each i

and let

Eai(Yi)1I{Yi>x} = o(FYj(x)), i, j = 1, . . . , k, i 6= j. (4.5.16)

Then, uniformly for wk ∈ [a, b]k, for all l = 1, . . . , k it holds

Eal(Yl)1I{w1Y1+···+wkYk>x} ∼ Eal(Yl)

k∑
j=1,j 6=l

FYj(x/wj), (4.5.17)

and for all l,m, 1 ≤ l < m ≤ k, it holds

Eal(Yl)am(Ym)1I{w1Y1+···+wkYk>x}

=


o
(
FY1

(x/w1) + FY2
(x/w2)

)
, k = 2,

Eal(Yl)Eam(Ym)
k∑
j=1

j 6=l,j 6=m

FYj(x/wj)(1 + o(1)), k ≥ 3.
(4.5.18)
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Proof. Observe that (4.5.16) with i = 1 implies all three conditions (4.5.8),
(4.5.10), (4.5.12) with i = 1. Then the statement follows straightforwardly
from Proposition 4.5.2. 2
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Chapter 5

Randomly weighted and stopped

dependent sums

In this chapter we deal with the tail behavior of the random sums SΘ
τ :=∑τ

k=1 ΘkXk and its maximum SΘ
(τ) := maxk≤τ S

Θ
k with identically distributed

(i. d.) dependent heavy-tailed r.v.s X1, X2, . . . , nonnegative random weights
Θ1,Θ2, . . . and nonnegative counting random variable τ . These three quan-
tities are mutually independent.

Also we study the tail distribution of randomly stopped sum

Zτ := Θ1 + · · ·+ Θτ ,

because the asymptotic behavior of P(Zτ > x) has an influence for the
behavior of the tail distribution of random maximum SΘ

(τ). Such randomly
stopped sums apear in the analysis of collective risk model (for example
[48]), compound renewal model (see [60]), the model of teletrafic arrivals
([27]), the context of weighted branching processes, fixed point equations of
smoothing transforms ([5], [45]), etc.

5.1 Preliminaries

Recently, Olvera-Cravioto [55] studied the asymptotic tail behavior of ran-
dom sum SΘ

τ and random maximum SΘ
(τ), when X1, X2, . . . are indepen-

dent i. d. random variables with consistently varying common d. f. FX .
Yang et al. [73] generalized the results of Olvera-Cravioto [55] to a cer-
tain extent. The main results in both papers state that under assumption
P(Zτ > x) = o(FX(x)) and some other conditions on the distributions of r.v.s
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{Θk, k ≥ 1}, X and τ , probability P(SΘ
(τ) > x) is weakly tail-equivalent to

E
∑τ

k=1 P(ΘkXk > x), that is

0 < lim inf
x→∞

P(SΘ
(τ) > x)

E
∑τ

k=1 P(ΘkXk > x)
≤ lim sup

x→∞

P(SΘ
(τ) > x)

E
∑τ

k=1 P(ΘkXk > x)
< ∞.

(5.1.1)
The asymptotics of the probability P(Zτ > x) with i. i. d. heavy-tailed

r.v.s Θi, i ≥ 1 was studied extensively in the literature. In particular, a
well-known result (see [24], Theorem A3.20)) states that if FΘ ∈ S and τ

is light-tailed, then
P(Zτ > x) ∼ EτFΘ(x). (5.1.2)

If FΘ ∈ L ∩D and Fτ (x) = o(FΘ(x)), then relation (5.1.2) was obtained in
[52] and [2]. If FΘ ∈ S ∗, Denisov et al. [19] proved that

P (Zτ > x) ∼ EτFΘ(x) + Fτ

(
x

EΘ

)
.

In case of some dependence structures within r.v.s Θ1,Θ2, . . . , similar asymp-
totics as (5.1.2) were obtained in [65] (for class L ∩D), [14], [44] (both for
class C ) under some additional conditions.

We now introduce the following assumption.

Assumption E. Let X,X1, X2, . . . be a sequence of UEND (with dominat-
ing constant κ > 0) real-valued r.v.s with common d. f. FX ∈ D , such that
J−FX > 0 and FX(−x) = o(FX(x)); let Θ1,Θ2, . . . be a sequence of nonnegative
r.v.s (not necessarily independent and identically distributed) and let τ be
a nondegenerate at zero nonnegative integer-valued r.v. with distribution
function Fτ . {X,X1, X2, . . . }, {Θ1,Θ2, . . . } and τ are mutually independent.

In addition, assume that there exists ε ∈ (0, J−FX ) such that

E(X+)1+ε <∞ (5.1.3)

and

E

τ∑
i=1

Θ
J−FX
−ε

i <∞, E

τ∑
i=1

Θ
J+
FX

+ε

i <∞. (5.1.4)

The following theorem was proved in [73].

Theorem 5.1.1. ([73]) Let Assumption E and conditions (5.1.3), (5.1.4) be
satisfied. If

P(Zτ > x) = o(FX(x)), (5.1.5)
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then

LFXE

τ∑
i=1

P(ΘiXi > x) . P(SΘ
(τ) > x) . L−1

FX
E

τ∑
i=1

P(ΘiXi > x). (5.1.6)

Remark 5.1.1. Since

E

τ∑
i=1

Θ
J−FX
−ε

i = E

( τ∑
i=1

Θ
J−FX
−ε

i 1{Θi≤1}

)
+ E

( τ∑
i=1

Θ
J−FX
−ε

i 1{Θi>1}

)
≤ Eτ + E

τ∑
i=1

Θ
J+
FX

+ε

i ,

the first restriction in (5.1.4) can be dropped as Eτ < ∞. Besides, if
Θ,Θ1,Θ2, . . . are identically distributed, then

E

τ∑
i=1

Θ
J+
FX

+ε

i = E

∞∑
n=0

n∑
i=1

Θ
J+
FX

+ε

i P(τ = n) = EΘJ+
FX

+ε
∞∑
n=0

nP(τ = n)

= EΘJ+
FX

+εEτ.

Clearly, if the random series Z∞ := Θ1 +Θ2 + . . . converges almost surely
(it is typical in insurance mathematics, where Xi denotes the net loss over
period i and Θi represents the stochastic discount from time i to 0), then
condition

P(Z∞ > x) = o(FX(x)) (5.1.7)

is sufficient for relation (5.1.5) to hold. So that, the statement of Theo-
rem 5.1.1 is valid if (5.1.5) is replaced by (5.1.7).

Corollary 5.1.1. If Assumption E, conditions (5.1.3), (5.1.4) and (5.1.7)
are satisfied, then relation (5.1.6) holds.

Consider now the case P(Z∞ = ∞) > 0. For example, if Θ1,Θ2, . . . are
nonnegative independent r.v.s, then, according to the Kolmogorov’s three
series theorem, the inequality x

1+x ≤ min(x, 1) for x ≥ 0 and Problem 2 in
[56] (p. 388), P(Z∞ = ∞) = 1 if and only if

∑∞
k=1 E min{Θk, 1} = ∞. This

fact can be extended for arbitrarily dependent nonnegative r.v.s as well, see
[57]. If, additionally, r.v.s Θ,Θ1,Θ2, . . . are identically distributed, then the
last condition is equivalent to EΘ > 0. Identically distributed weights are
rather natural when studying the present value of investment portfolio of n
risky assets with Xi, denoting the potential loss of ith asset over a period,
and Θi being the stochastic discount factor over the period. Clearly, in such
a case relation (5.1.7) does not hold and some other approaches must be
used in order to obtain the asymptotics of P(Zτ > x).
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5.2 Asymptotics of P(Zτ > x)

In this section we study the asymptotics of P(Zτ > x), when Θ1,Θ2, . . .

are identically distributed r.v.s. The next proposition is a modification of
Theorem 1 in [70]. In this case, more general dependence structure of r.v.s
Θ1,Θ2, . . . is considered.

Proposition 5.2.1. Let Θ,Θ1,Θ2, . . . be nonnegative END r.v.s with com-
mon marginal d. f. FΘ and finite positive mean EΘ. Let τ be a nonnegative
integer-valued r.v., independent of the sequence Θ,Θ1,Θ2, . . . .
(i) If FΘ ∈ D and FΘ(x) � Fτ (x), then Fτ ∈ D, Eτ <∞ and

LFΘ
EτFΘ(x) + LFτFτ

( x

EΘ

)
. P(Zτ > x) . L−1

FΘ
EτFΘ(x) + L−1

Fτ
Fτ
( x

EΘ

)
;

(5.2.1)
(ii) if FΘ ∈ D, Fτ (x) = o(FΘ(x)), then Eτ <∞ and

LFΘ
EτFΘ(x) . P(Zτ > x) . L−1

FΘ
EτFΘ(x); (5.2.2)

(iii) if Fτ ∈ D, Eτ <∞ and FΘ(x) = o(Fτ (x)), then

LFτFτ
( x

EΘ

)
. P(Zτ > x) . L−1

Fτ
Fτ
( x

EΘ

)
. (5.2.3)

For the upper asymptotic relations in (5.2.1), (5.2.2), (5.2.3), the assump-
tion that Θ1,Θ2, . . . are END can be replaced by weaker assumption that
Θ1,Θ2, . . . are UEND.

Proof. The proof follows similarly as in [70].
(i) As in the proof of Theorem 1 of [70], split

P (Zτ > x) =

( M∑
n=1

+

b(1−ε)x(EΘ)−1c∑
n=M+1

+

∞∑
n=b(1−ε)x(EΘ)−1c+1

)
P(Zn > x)P(τ = n)

=: Q1 +Q2 +Q3, (5.2.4)

for each triplet ε ∈ (0, 1), M ∈ N, x > 0 such that b(1− ε)x(EΘ)−1c ≥M + 1.
Clearly, by conditions of the proposition, Fτ ∈ D , because

lim sup
x→∞

Fτ (xy)

Fτ (x)
≤ lim sup

x→∞

Fτ (xy)

FΘ(xy)
lim sup
x→∞

FΘ(xy)

FΘ(x)
lim sup
x→∞

FΘ(x)

Fτ (x)
< ∞.

Moreover, conditions of the proposition imply Eτ < ∞. Indeed, since
lim supx→∞ Fτ (x)/FΘ(x) ≤ c1 for some c1 > 0, ∀ε ∈ (0, 1) ∃x∗ : supx>x∗ Fτ (x) ≤
(1 + ε)c1FΘ(x) ≤ 2c1P(Θ > x) and we obtain that P(τ > x) ≤ 2c1P(Θ > x),
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x ≥ x∗. Hence

Eτ =

∫
[0,∞)

P(τ > x)dx =

∫
[0,x∗)

P(τ > x)dx+

∫
[x∗,∞)

P(τ > x)dx

≤ x∗ + 2c1

∫
[x∗,∞)

P(Θ > x)dx ≤ x∗ + 2c1EΘ < ∞.

Using Lemma 5.4.2 below, for each fixed M it holds

Q1 . FΘ(x)L−1
FΘ

M∑
n=1

nP(τ = n). (5.2.5)

For the term Q2 write

Q2 =

b(1−ε)x(EΘ)−1c∑
n=M+1

P(Zn − nEΘ > x− nEΘ)P(τ = n)

≤
b(1−ε)x(EΘ)−1c∑

n=M+1

P(Zn − nEΘ > εx)P(τ = n),

where, by Lemma 5.4.3, P(Zn − nEΘ > εx) ≤ c2nFΘ(εx) for some c2 =

c2(ε, κ,EΘ). Since FΘ ∈ D , FΘ(εx)/FΘ(x) . c3 for some finite constant
c3 = c3(ε). Hence, similarly to (3.3) in [70], it follows that

Q2 . c2

b(1−ε)x(EΘ)−1c∑
n=M+1

FΘ(εx)nP(τ = n)

. c2c3FΘ(x)

b(1−ε)x(EΘ)−1c∑
n=M+1

nP(τ = n)

. c4FΘ(x)

∞∑
n=M+1

nP(τ = n) (5.2.6)

with some c4 = c4(ε, κ,EΘ). Finally,

Q3 ≤
∞∑

n=b(1−ε)x(EΘ)−1c+1

P(τ = n) = Fτ ((1− ε)x(EΘ)−1). (5.2.7)

Relations (5.2.5)–(5.2.7) and (5.2.4) imply that, for all ε ∈ (0, 1), M ∈ N
and sufficiently large x,

P(Zτ > x)

L−1
FΘ

EτFΘ(x) + L−1
Fτ
Fτ (x(EΘ)−1)

≤ Q2

L−1
FΘ

EτFΘ(x)
+ max

{
Q1

L−1
FΘ

EτFΘ(x)
,

Q3

L−1
Fτ
Fτ (x(EΘ)−1)

}
.
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Hence,

lim sup
x→∞

P(Zτ > x)

L−1
FΘ

EτFΘ(x) + L−1
Fτ
Fτ (x(EΘ)−1)

≤ c4LFΘ

∑∞
n=M+1 nP(τ = n)

Eτ
+ max

{∑M
n=1 nP(τ = n)

Eτ
, LFτ lim sup

x→∞

Fτ ((1− ε)x)

Fτ (x)

}
.

Letting M →∞ and ε↘ 0, we obtain the statement in case (i).
The proof of asymptotic lower estimate of (5.2.1) is similar to the proof

in [70]. We present it here for convenience. For any ε ∈ (0, 1), positive
integer M and sufficiently large x (e.g., b(1 + ε)x(EΘ)−1c) ≥M) we have

P (Zτ > x) ≥ Q1 +Q4, (5.2.8)

where Q1 is the same as earlier and

Q4 :=

∞∑
n=b(1+ε)x(EΘ)−1c+1

P(Zn > x)P(τ = n).

Conditions of the proposition and (5.4.2) imply that

lim inf
Q1

FΘ(x)
≥

M∑
n=1

lim inf
P(Zn > x)

FΘ(x)
P(τ = n)

≥ LFΘ

M∑
n=1

nP(τ = n).

Therefore,

lim inf
Q1

LFΘ
EτFΘ(x)

≥ 1. (5.2.9)

For term Q4 we have

Q4 ≥
∑

n>(1+ε)x(EΘ)−1

P

(
Zn
n
− EΘ > − εEΘ

1 + ε

)
P(τ = n)

≥ inf
n>(1+ε)x(EΘ)−1

P

(
Zn
n
− EΘ > − εEΘ

1 + ε

)
F τ
(
(1 + ε)x(EΘ)−1

)
.

By Lemma 5.4.4, we have that

lim
n→∞

P

(
Zn
n
− EΘ > − εEΘ

1 + ε

)
= 1,

so that

lim inf
Q4

LFτFτ ((1 + ε)x(EΘ)−1)
≥ 1. (5.2.10)
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5. Randomly weighted and stopped dependent sums

The lower estimate of (5.2.1) follows from relations (5.2.8)–(5.2.10), be-
cause for sufficiently large x, any ε ∈ (0, 1) and positive integer M

P (Zτ > x)

LFΘ
EτFΘ(x) + LFτF τ (x(EΘ)−1)

≥ min

{
Q1

LFΘ
EτFΘ(x)

,
Q4

LFτFτ (x(EΘ)−1)

}
.

(ii) The proof of this part follows the proof of the same part in Theorem
1 of [70]. Similarly as in part (i), for the upper estimate Q3 ≤ Fτ ((1 −
ε)x(EΘ)−1) = o(FΘ(x)) for every fixed ε ∈ (0, 1). For the lower estimate we
have that P(Zτ > x) ≥ Q1, since Q4 = o(FΘ(x)).
(iii) For the lower estimate, by (5.2.8)–(5.2.10), Q1 = o(Fτ (x)) then P(Zτ >

x) ≥ F τ
(
(1 + ε)x(EΘ)−1

)
for any fixed ε ∈ (0, 1).

The proof of the upper estimate is analogous to the proof of the same
part in Theorem 1 of Yang et al. [70]. For completeness of the proof we
write it here. For every ε ∈ (0, 1) we have

P (Zτ > x) =
∑

n≤(1−ε)x(EΘ)−1

P(Zn > x)P(τ = n)

+
∑

n>(1−ε)x(EΘ)−1

P(Zn > x)P(τ = n)

=: J1 + J2. (5.2.11)

Because J2 ≤ Fτ ((1− ε)x(EΘ)−1),

lim
ε↘0

lim sup
x→∞

J2

Fτ (x(EΘ)−1)
≤ L−1

Fτ
. (5.2.12)

According to Lemma 5.4.5, there exists a sequence of UEND r.v.s
Y1, Y2, . . . such that, almost surely, Θn ≤ Yn, n = 1, 2, . . . , FY ∈ D ,
FY (x) = o(Fτ (x)). Therefore,

J1 ≤
∑

n≤(1−ε)xµ−1
Y

P(ZYn > x)P(τ = n)

+
∑

(1−ε)xµ−1
Y <n≤(1−ε)x(EΘ)−1

P(Zn > x)P(τ = n)

=: J11 + J12 (5.2.13)

with finite µY := EY ≥ EΘ and ZYn :=
∑n

k=1 Yk, n ≥ 0.
Using Lemma 5.4.3 we obtain for sufficiently large x and some positive
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5.3 Asymptotics of P(Zτ > x)

constants c5 = c5(ε), c6 = c6(ε)

J11 ≤
∑

n≤(1−ε)xµ−1
Y

P
(
ZYn − nµZ > εx

)
P(τ = n)

≤ c5
∑

n≤(1−ε)xµ−1
Y

nFY (εx)P(τ = n)

≤ c6EτFY (x).

Hence, using FY (x) = o(Fτ (x)) and Fτ ∈ D , we have that for every fixed
ε ∈ (0, 1)

lim sup
J11

Fτ (x(EΘ)−1)
= 0. (5.2.14)

Finally, we deal with J12. Clearly,

J12 ≤
∑

(1−ε)xµ−1
Y <n≤(1−ε)x(EΘ)−1

P

(
Zn
n
− EΘ >

EΘε

1− ε

)
P(τ = n)

≤ sup
n>(1−ε)xµ−1

Y

P

(
Zn
n
− EΘ >

(EΘ)ε

1− ε

)
Fτ
(
(1− ε)xµ−1

Y

)
.

By Lemma 5.4.4, the first term in the last expression vanishes as x → ∞
for every fixed ε ∈ (0, 1). This and assumption Fτ ∈ D imply that (with the
same ε)

lim sup
x→∞

J12

Fτ (x(EΘ)−1)
= 0. (5.2.15)

The upper estimate in (5.2.3) follows from (5.2.11)–(5.2.15). 2

The following result for strongly subexponential r.v.s is proved by
Denisov [19] (Theorem 1 (ii)).

Proposition 5.2.2. ([19]) Let Θ,Θ1,Θ2, . . . be a sequence of nonnegative
independent r.v.s with common d. f. FΘ ∈ S ∗ and finite positive mean
EΘ. Let τ be a nondegenerate nonnegative integer-valued r.v., independent
of Θ,Θ1,Θ2, . . . . If there exists c > EΘ such that Fτ (x) = o(FΘ(cx)), then
Eτ <∞ and

P(Zτ > x) ∼ EτFΘ(x). (5.2.16)

Remark 5.2.1. Note that in more restrictive cases, the assumption of
Proposition 5.2.2 can be simplified. For example, if the same main con-
ditions of the proposition hold, FΘ ∈ L ∩ D and Fτ (x) = o(FΘ(x)), then
relation (5.2.16) holds (see [52] (Theorem 2.3) and [19] (Theorem 8)).

Remark 5.2.2. It is easy to see that, under the conditions of Proposi-
tion 5.2.2, the closure of the class S ∗ holds, i.e. FZτ ∈ S ∗ (see [39]).
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5.3 Main results

Applying results in Section 5.2, which deal with case of identically dis-
tributed r.v.s. Θ1,Θ2, . . . , we obtain the following theorems, which consti-
tute the main results of this chapter.

Theorem 5.3.1. Let r.v.s Θ,Θ1,Θ2, . . . be identically distributed and let
Assumption E be satisfied. Assume that (5.1.3) and EΘJ+

FX
+ε <∞ hold.

(i) If FΘ ∈ D and either FΘ(x) ∼ c∗Fτ (x) for some c∗ > 0 or Fτ (x) = o(FΘ(x)),
then relation (5.1.6) holds;
(ii) if Fτ ∈ D, Eτ <∞ and FΘ(x) = o(Fτ (x)), Fτ (x) = o(FX(x)), then (5.1.6)
holds.

Proof. First note that condition E(X+)1+ε <∞ implies J+
FX
≥ 1 and, thus,

EΘ <∞. Observe that, by Markov’s inequality and Lemma 5.4.1,

FΘ(x) ≤ x−(J+
FX

+ε)EΘJ+
FX

+ε = o(FX(x)). (5.3.1)

(i) From the (i) part of Proposition 5.2.1 we have that Fτ ∈ D , if
FΘ(x) ∼ c∗Fτ (x). Then we note that Fτ (x/EΘ) = o(FX(x)) is equivalent to
Fτ (x) = o(FX(x)) if Fτ ∈ D , FX ∈ D . Combining this and (5.3.1), from
(5.2.1) we get that condition (5.1.5) is fulfilled.

Similarly, if Fτ (x) = o(FΘ(x)), then (5.2.2) holds, for FΘ ∈ D . Hence,
under (5.3.1), condition (5.1.5) is satisfied.

(ii) Conditions imply that relation (5.2.3) holds and (5.1.5) is satisfied.
2

The next theorem presents the case of the strongly subexponential class
S ∗.

Theorem 5.3.2. Let Θ,Θ1,Θ2, . . . be i.i. d. r.v.s. and let Assumption E be
satisfied. Assume that (5.1.3) and EΘJ+

FX
+ε <∞ hold. If FΘ ∈ S ∗ and there

exists c > EΘ such that Fτ (x) = o(FΘ(cx)), then (5.1.6) holds.

Proof. Proposition 5.2.2 and relation (5.3.1) imply the main condition
(5.1.5). Hence, relation (5.1.6) holds. 2

5.4 Auxiliary lemmas

The first lemma is a well-known property of class D (see [61], Lemma 3.5).

64



5.4 Auxiliary lemmas

Lemma 5.4.1. For a d. f. F ∈ D with its upper Matuszewska index J+
F it

holds that

x−p = o(F (x)) for any p > J+
F .

Next two lemmas are used in proving Proposition 5.2.1.
Lemma 5.4.2. Let Θ1,Θ2, . . . be pUEND r.v.s with common d. f. FΘ ∈ D.
Then, for any fixed n ≥ 1,

P(Zn > x) . L−1
FΘ
nFΘ(x). (5.4.1)

If, in addition, FΘ(−x) = o(FΘ(x)), then for any fixed n ≥ 1

P(Zn > x) & LFΘ
nFΘ(x). (5.4.2)

Proof. It is obvious that inequality (5.4.1) holds for n = 1. If n ≥ 2, then
for any fixed ε ∈ (0, 1),

P(Zn > x)

≤ P
(

Θi >
εx

n
,Θj >

εx

n
for some 1 ≤ i < j ≤ n

)
+ P

(
Zn > x and

{
Θi ≤

εx

n
or Θj ≤

εx

n

}
for every pair 1 ≤ i, j ≤ n

)
=: P(A) + P(B).

Clearly, B ⊂
{
Zn > x,Θj > (1 − ε)x for some j and Θi ≤ εx

n for all i 6= j
}

.
Using this and the definition of pUEND,

P(Zn > x) ≤
∑

1≤i<j≤n

P
(

Θi >
εx

n
,Θj >

εx

n

)
+

n∑
j=1

P(Θj > (1− ε)x)

≤ κn2
(
FΘ

(
εx

n

))2

+ nFΘ((1− ε)x).

Here, since FΘ ∈ D , for any n ≥ 2 and ε ∈ (0, 1), it holds that (FΘ(εx/n))2 =

o(FΘ(x)). Hence,

lim sup
x→∞

P(Zn > x)

FΘ(x)
≤ n lim

ε↘0
lim sup
x→∞

FΘ((1− ε)x)

FΘ(x)

= nL−1
FΘ
.

Consider now the lower estimate. For n = 1 relation (5.4.2) is evident.
Suppose that n ≥ 2. For ε ∈ (0, 1) and x > 0 we have

P(Zn > x) ≥ P
(
Zn > x, max

1≤k≤n
Θk > (1 + ε)x

)
≥

n∑
k=1

P
(
Zn > x,Θk > (1 + ε)x

)
−

∑
1≤i<j≤n

P
(
Zn > x,Θi > (1 + ε)x,Θj > (1 + ε)x

)
=: P1 − P2. (5.4.3)
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According to the conditions of lemma, r.v.s Θi,Θj are pUEND for all i 6= j.
Thus,

P2 ≤
∑

1≤i<j≤n

P
(
Θi > (1 + ε)x, Θj > (1 + ε)x

)
≤ κ

(
nFΘ((1 + ε)x)

)2
. (5.4.4)

Since Θ1,Θ2, . . . are identically distributed, we have for P1

P1 ≥
n∑
k=1

P(Zn −Θk ≥ −εx, Θk > (1 + ε)x)

≥
n∑
k=1

(
FΘ((1 + ε)x) + P(Zn −Θk ≥ −εx)− 1

)
= nFΘ((1 + ε)x)−

n∑
k=1

P

(
n∑
l=1
l 6=k

Θl < −εx

)
. (5.4.5)

For fixed k

P

(
n∑
l=1
l6=k

Θl < −εx

)
≤ P

(
Θl < −

εx

n
for some 1 ≤ l ≤ n, l 6= k

)
≤ nF

(
− εx

n

)
.

Hence, conditions of the lemma imply that

lim sup
x→∞

n∑
k=1

P

(
n∑
l=1
l 6=k

Θl < −εx

)
nF ((1 + ε)x)

≤ n lim sup
x→∞

F (− εxn )

F ((1 + ε)x)
= 0

for each fixed ε ∈ (0, 1). The last relation and (5.4.5) yield

lim inf
x→∞

P1

nF ((1 + ε)x)
≥ 1 (5.4.6)

for fixed ε ∈ (0, 1) and n ≥ 1.
Relation (5.4.2) follows now from (5.4.3), (5.4.4), (5.4.6) and the defini-

tion of LF . Lemma 5.4.2 is proved. 2

The next lemma is a generalization of Corollary 3.1 in [58], where the
structure UND has been used. The proof is almost identical to the proof of
Corollary 3.1 in [58] and, thus, is omitted.

Lemma 5.4.3. If Θ1,Θ2, . . . are UEND r.v.s with common d. f. FΘ ∈ D

and mean EΘ = 0, then, for each γ > 0, there exists a constant c = c(κ, γ),
independent of x and n, such that

P(Zn > x) ≤ cnFΘ(x)

for all x ≥ γn and n ≥ 1.
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The following auxiliary result is the law of large numbers for END r.v.s.
The proof of lemma can be found in [11].

Lemma 5.4.4. Let ξ1, ξ2, . . . be a sequence of identically distributed END
r.v.s. If E|ξ1| exists then, almost surely,

ξ1 + · · ·+ ξn
n

→ Eξ1 (5.4.7)

as n→∞.

The last lemma is the generalization of Lemma 4 in [70] with UND r.v.s.
Here we use the UEND structure, but it does not change the proof.

Lemma 5.4.5. Let Θ1,Θ2, . . . be a sequence of UEND r.v.s with common
d. f. FΘ satisfying FΘ(0−) > 0 and FΘ(x) = o

(
Fτ (x)

)
for some d. f. Fτ ∈ D.

Then there exists a sequence of UEND r.v.s η1, η2, . . . with common d. f.
Fη ∈ D such that, a.s., Θn ≤ ηn, n = 1, 2, . . . and Fη(x) = o

(
Fτ (x)

)
.
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Chapter 6

Conclusions

Here we make the conclusions of the main results obtained in this disserta-
tion.

1. Tail distributions of S(+)
n , S(n) and the sum

∑n
i=1 P(Xi > x) are weakly

equivalent, if primary random variables X1, . . . , Xn are dependent ac-
cording to a certain structure and the distribution of maximal element
is dominatedly varying-tailed.

2. The sum SΘ
n of dependent (under the given structure) random vari-

ables X1, . . . , Xn belongs to the class L , if the marginal distributions
F1, . . . , Fn are from the long-tailed distribution class. Besides that,
the tail distributions of SΘ

n , SΘ+
n and SΘ

(n) are equivalent if random
weights Θ1, . . . ,Θn are bounded and independent of random variables
X1, . . . , Xn. For example, this result holds if dependence of random
variables X1, . . . , Xn is generated by the well-known FGM copula.

3. With the assumption that identically distributed UEND random vari-
ables X1, X2 . . . , bounded random weights Θ1,Θ2, . . . and the stopping
moment τ are heavy-tailed, the asymptotic lower and upper bounds
for the tail distribution of SΘ

(τ) (maximum of randomly stopped sums)
are derived. The conditions for this result are shown for the wide
class of heavy tailed distribution functions and dependence structures.
With some additional requirements the tail distribution of the sum of
random weights is asymptotically negligible compared to the tail dis-
tribution of r.v.s X1, X2 . . . .
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