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Notation and Abbreviations

Notations Descriptions

N the set of positive integers {1, 2, . . .}.

N0 the set of nonnegative integers, N
⋃

{0}.

R the set of real numbers (−∞,∞).
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C the set of complex numbers.

D the domain of the solution of the two-dimensional SDE. In the

context of the Heston model, we take D = (0, +∞) × [0, +∞),

and, in the context of the log-Heston model, we take D = R ×

[0, +∞).

C∞(D) the set of infinitely differentiable functions f : D→ R.

C∞
0 (D) the set of functions f : D→ R of class C∞ with compact support.

C∞
pol(D) the set of functions f : D→ R of class C∞ with all partial

derivatives of polynomial growth.

EX the mean of a random variable X.

|z| :=
√

z2
1 + z2

2 + ∙ ∙ ∙ + z2
n. The Euclidean norm of z =

(z1, z2, . . . , zn) ∈ Rn.

N(a, σ2) normal distribution with mean a and variance σ2.

Op,k(h
n) a function of kth-degree polynomial growth with respect

to hn, i.e., g(z, h) = Op,k(h
n) if for some C > 0 and

h0 > 0, |g(z, h)| ≤ Chn(1 + |z|k), z ∈ D, h ≤ h0.
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Notations Descriptions

Op(h
n) a function of polynomial growth with respect to hn, i.e.,

g(z, h) = Op(h
n) if g(z, h) = Op,k(h
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Op(h
n) a function of polynomial growth with respect to hn when

the function g is expressed in terms of another function

f ∈ C∞
pol(D) and the constants C, h0, and k depend on a

good sequence for f only.

i.i.d. independent identically distributed.

r.v. random variable.

[x] the integer part of a number x.

x+ := max(x, 0) for x ∈ R (the positive part of x).

Δh (equidistant) time interval discretization.

∇k kth-order term in Taylor’s formula.

rk kth-order remainder in Taylor’s formula.

Bt,Wt, W̃t A standard Brownian motion (Wiener process).

St Asset (interest rate, stock, etc.) price in the Heston model.

Xt log St asset price in the log-Heston model.

Yt Stochastic volatility in the Heston model (CIR equation).
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T .

X̂, X̃, X discretizations of X.

∂|i|f(z)
∂zi partial derivatives of two-variable function f . Here N0 =

{0, 1, 2, . . .}, i = (i1, i2) ∈ N2
0 are multiindices. and |i| :=

i1 + i2, ∂zi := ∂zi1
1 ∂zi2

2 .

f (i)(z) ∂|i|f(z)
∂zi .

Lk kth power of the generator of the solution of a stochastic differ-

ential equation.

Pn, Qn, P̂n, Q̂n nth-order polynomial.

C, Ĉ, C̄, C̃ constants, which may vary from line to line.

SDE Stochastic differential equation.

CIR Cox–Ingersoll–Ross model.

DVSS Discrete-variable split-step first-order approximation of

the solution of the Heston scheme.
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Chapter 1

Introduction

In this chapter, we present our research topic, aims and methods used, novelty of

main results, list papers, and conferences where our main results were introduced.

1.1 Research topic

While the Black–Scholes (Merton) formula is often considered as one of the most

important results in Mathematical Finance, its flaws and biases are also long

recognized, and many attempts of generalization and improvement were made in

subsequent years. Despite its fame and firm place in textbooks on the subject,

nowadays practitioners use it only for simplicity, if use it at all. The assumptions of

constant interest rate and constant volatility are the two of the key disadvantages

of the Black–Scholes model, especially when it is used over a long-term period.

Not surprisingly, much effort was directed to avoid these somewhat unrealistic

assumptions. To counteract the first disadvantage, interest rate models where

considered in the articles of Vaš́ıček [34] and Cox, Ingersoll, and Ross [10]. The

latter resulted in the now famous square-root process (or CIR as it was later

named after its authors). Attempts to eliminate the second disadvantage gave

birth to the idea of a second source of randomness and led to models allowing

stochastic (random) volatility in the papers of Scott [32], Hull and White [16],

Stein and Stein [33], and others. A similar approach was taken by Heston [14]

in 1993. He offered a model driven by two sources of randomness, where a spot

asset price, driven by one source of randomness, was correlated with stochastic

volatility, driven by another source of randomness. The model almost instantly
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became popular, and to this day, more than 20 years after its introduction, remains

a number one choice amongst market practitioners and Mathematical Finance

theoreticians alike.

In this work, we consider the solution of the stochastic volatility model pro-

posed by Heston [14]:






dSt = rSt dt +
√

YtSt dW̃t, S0 = s > 0,

dYt = k(θ − Yt) dt + σ
√

Yt dWt, Y0 = y > 0,

dWt dW̃t = ρ dt.

(1.1.1)

Here W and W̃ are (possibly, dependent) standard Brownian motions, with pa-

rameters θ, σ, k > 0. Note, that the volatility is controlled by the stochastic

square-root process CIR.

Development of stochastic models in Mathematical Finance is inseparable from

extensive use of numerical computations as a closed-form solution of the model is

usually, except in simple and trivial cases, unknown. Almost the same applies to

the Heston model, as the distribution of the Heston process, S in Eq. (1.1.1), is

explicitly known only in the form of the characteristic function of Xt = log St. A

version of such characteristic function was already presented in the original paper

by Heston [14] (see formula (2.1.1), where it is used), and various (equivalent)

characteristic functions were derived in subsequent studies (e.g. del Baño Rollin

et al. [29], Albrecher et al. [1]). For example, del Baño Rollin et al. [29] arrive at

the following formula:

E(eiuXt) = exp(ixu)

(
ekt/2

cosh(dt/2) + ξ sinh(dt/2)/d

)2kθ/σ2

× exp

(

−y
(iu + u2) sinh(dt/2)/d

cosh(dt/2) + ξ sinh(dt/2)/d

)

,

where

x = log s,

d = d(u) =
√

(k − σρiu)2 + σ2(iu + u2),

ξ = ξ(u) = k − σρui.

2



1.2 Aim and problems

The aim of the thesis is to construct “simple” yet “effective” first- and second-order

weak approximation schemes for the solution of the Heston model that use, at each

step, only generation of one and two discrete random variables, respectively, and

to provide rigorous proofs of their accuracy.

As in [22], [21], [20] and other papers (e.g., Andersen [5], Lord et al. [23], and

Kloeden and Neuenkirch [18]), to avoid the positivity-preservation problem, we

approximate, instead of St in Eq. (1.1.1), the logarithm Xt := log St and thus,

using Itô’s lemma, arrive at the log-Heston model






dXt = (r − 1
2
Yt) dt +

√
Yt dW̃t, X0 = x := log(s),

dYt = k(θ − Yt) dt + σ
√

Yt dWt, Y0 = y > 0,

dWt dW̃t = ρ dt.

(1.2.1)

This also allows us to avoid problems that arise from the fact that moments

of the solutions of the Heston model “explode,” that is, tend to infinity in finite

time (see, e.g., [6]).

1.3 Methods

Methods of calculus, general probability theory, stochastic calculus, statistics, and

functional analysis are used in the thesis. Numerical experiments were performed

using a number of programming languages, including C programming language

and a free software environment for statistical computing and graphics R.

1.4 Actuality and novelty

Today the most popular discretization scheme for the solution of the Heston model

is the Andersen’s quadratic-exponential algorithm (QE), which, although demon-

strates good numerical simulation results in option pricing, has no rigorous proof

regarding its accuracy. The same concerns the Alfonsi schemes for the Heston

model. In the thesis, we propose schemes that can compete with Andersen’s and

Alfonsi’s and provide a rigorous proof of (strongly potential) weak convergence for

3



them. We construct our schemes using only simple (two- or three-valued) discrete

random variables.

The same technique used in this work might be useful constructing discretiza-

tion schemes for other Mathematical Finance models, for example, CEV-SV or

CKLS.

1.5 Main results

We succeeded in constructing simple yet effective first- and second-order weak

approximations for the solution of the Heston model that use, at each step, only

generation of discrete random variables. They are presented in the following

theorems.1

Theorem 1.1. Let a one-step approximation Z̄z
h = (X̄z

h, Ȳ y
h ) of Eq. (1.2.1) be

constructed as follows:

(1) Let Ŷ y
h be a random variable taking the values

y1,2 = y+σ2h±
√

(y + σ2h) σ2h with corresponding probabilities p1,2 =
y

2y1,2

.

(2) Let X̃z
h be a random variable, independent of Ŷ y

h , taking the values

x1,2 = x ±
√

yh with probabilities
1

2
.

(3) Let a random variable X̂z
h be defined by

X̂z
h := x +

√
1 − ρ2(X̃z

h − x) +
ρ

σ
(Ŷ y

h − y).

(4) Finally, having Ẑz
h = (X̂z

h, Ŷ y
h ), define the one-step discretization scheme

Z̄z
h = (X̄z

h, Ȳ y
h ) by

Z̄z
h = D

[
Ẑ(z, h), h

]
, (1.5.1)

where D(z, t) = (Dz
1(t), D

y
2(t)) is






Dz
1(t) = x + (r − 1

2
θ)t + 1

2k

(
e−kt − 1

)
(y − θ) ,

Dy
2(t) = ye−kt + θ(1 − e−kt),

1For definitions, see Section 3.
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i.e., the solution of the so-called deterministic part of Eq. (1.2.1)





dDz
1(t) = (r − 1

2
Dy

2(t)) dt, Dz
1(0) = x,

dDy
2(t) = k(θ − Dy

2(t)) dt, Dy
2(0) = y.

Then the one-step discretization scheme (1.5.1) defines a strongly potential

weak first-order approximation of the log-Heston system (1.2.1).

Theorem 1.2. Let a one-step approximation Z̄z
h = (X̄z

h, Ȳ y
h ) of Eq. (1.2.1) be

constructed as follows:

(1) Let Ŷ y
h be a discretization scheme satisfying the following conditions:

(i) 




E(Ŷ y
h − y) = Op,1(h

3),

E(Ŷ y
h − y)2 = yh + Op,2(h

3),

E(Ŷ y
h − y)3 = 3

2
yh2 + Op,3(h

3),

E(Ŷ y
h − y)4 = 3y2h2 + Op,4(h

3);

(ii) E(Ŷ y
h − y)5 = Op,5(h

3);

(iii) E|Ŷ y
h − y|2q = Op,2q(h

q) for all q ≥ 3.

(2) Let ξ be a discrete random variable, independent of Ŷ y
h , with first five mo-

ments matching those of a standard random variable. Let, finally, the ran-

dom variable X̂z
h be defined by

X̂z
h := x + ξ

√
1

2
(y + Ŷ y

h )h .

(3) Define the one-step discretization scheme Z̃z
h = (X̃z

h, Ỹ y
h ) by

X̃z
h = σ

(√
1 − ρ2 X̂z

h + ρŶ y
h

)
,

Ỹ y
h = σ2Ỹ y

h .

(4) Finally, define the one-step discretization scheme Z̄z
h = (X̄z

h, Ȳ y
h ) by

Z̄z
h = D

(
Z̃

D(z,h/2)
h , h/2

)
, (1.5.2)

where D(z, t) = (Dz
1(t), D

y
2(t)) is the same as in Theorem 1.1 (the solution

of the so-called deterministic part of Eq. (1.2.1)).

5



Then the one-step discretization scheme (1.5.2) defines a strongly potential weak

second-order approximation of the log-Heston system (1.2.1).

1.6 Publications

1. A. Lenkšas, V. Mackevičius. A second-order weak approximation of Heston

model by discrete random variables. Lithuanian Mathematical Journal 55

(2015), 555–572.

2. A. Lenkšas, V. Mackevičius. Weak approximation of Heston model by dis-

crete random variables. Mathematics and Computers in Simulation 113

(2015), 1–15.

3. A. Lenkšas, V. Mackevičius. Option pricing in Heston model by means of

weak approximations. Lietuvos matematikos rinkinys 54 (2013), 27–32.

1.7 Conferences

The results of the thesis were presented in the following conferences:

1. 56th Conference of Lithuanian Mathematical Society, Kaunas, Lithuania,

2015 06 16–17.

2. 11th International Vilnius Conference on Probability Theory and Mathe-

matical Statistics, Vilnius, Lithuania, 2014 06 30–07 04.

3. 55th Conference of Lithuanian Mathematical Society, Vilnius, Lithuania,

2014 06 26–27.

4. 54th Conference of Lithuanian Mathematical Society, Vilnius, Lithuania,

2013 06 19–20.

5. 53rd Conference of Lithuanian Mathematical Society, Klaipėda, Lithuania,

2012 06 11–12.

1.8 Structure of the thesis

The thesis is organized as follows. In Chapter 2, we give an overview of the main

results obtained by other authors. Then after some preliminaries and definitions
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in Chapter 3 Section 3.2, we “split” the approximation problem for the process

(X,Y ) in Eq. (1.2.1) into the exact solution of the deterministic part and the

approximation problem for the stochastic part of the system. In Section 4.2, we

construct a potential first-order weak approximation for the stochastic part, and

in Section 5.2, we construct a potential second-order weak approximation for the

stochastic part. We summarize the constructed algorithms in Sections 4.3 and 5.3,

respectively. In Sections 4.4 and 5.4, we illustrate the first-order scheme (DVSS)

and the second-order scheme (DVSS2), respectively, by numerical simulation re-

sults, including option pricing and a detailed comparison with the schemes of

Andersen [5] and Alfonsi [3, 4].

We finalize the results of the thesis in Chapter 6, and in the Appendix (Chap-

ter 7), we provide additional calculations, which we think would only distract the

reader if placed elsewhere in the text.
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Chapter 2

Historical overview

In this chapter, we discuss the importance of the Heston model and various at-

tempts to construct discretization schemes for the solution of the model.

2.1 Why Heston?

In the Black–Scholes (Merton) model, one of the most famous models in the field

of Mathematical Finance, and in many other models as well, the interest rate is

assumed to be constant. As this is usually not the case in the real world, soon a

new (now classical) approach was taken. In this new approach, an interest rate rt

was modeled by a stochastic process of the form

drt = α(t, rt) dt + σ(t, rt) dBt,

where Bt is a Brownian motion (Wiener process).

One of the first and simplest models of that kind was presented in 1977 by

Oldrich Vaš́ıček (see [34]):

drt = k(θ − rt) dt + σ dBt,

where k > 0, θ > 0 and σ > 0.

The greatest advantage of the Vaš́ıček model is that its solution is explicitly

known since the model is based on the well-known and relatively simple Ornstein–

Uhlenbeck process. Unfortunately, the model can also obtain undesirable negative

values (albeit probability of such an event is quite small).

In 1985, John C. Cox, Jonathan E. Ingersoll, and Stephen A. Ross presented

another, square-root model (now known as CIR), designed to avoid shortcomings

9



of the Vaš́ıček model:

drt = (θ − krt) dt + σ
√

rt dBt,

where, as in the Vaš́ıček model, k > 0, θ > 0, and σ > 0.

In this model, the process never becomes negative if started from a non-

negative value. Besides, it retains the main advantage of the Vaš́ıček model that

it is mean-reverting, that is, Ert → θ/k as t → ∞.

Finally, in 1993, Heston [14] came up with an idea to extend the CIR model to

a stock price model by introducing a second source of randomness and assuming

that not only underlying asset but its volatility also is driven by the CIR process:





dSt = rSt dt +
√

YtSt dW̃t, S0 = s > 0,

dYt = k(θ − Yt) dt + σ
√

Yt dWt, Y0 = y > 0,

dWt dW̃t = ρ dt.

Here W and W̃ are (possibly, dependent) standard Brownian motions, with pa-

rameters θ, σ, k > 0. The model was an instant success, mostly because, in this

model, European vanilla call (and put) option price is known in the (quasi-)closed

form. Denoting the call (put) option price by C (P ), i.e., C = C(s, y,K, T ) =

e−rT E(ST −K)+ and P = P (s, y,K, T ) = e−rT E(K−ST )+, where K is the strike

price, from [14] (see also [31]) we know that

C(s, y,K, T ) = sP1 − Ke−rT P2, (2.1.1)

where

Pj(x, y,K, T ) =
1

2
+

1

π

∞∫

0

Re

(
e−iφ log Kfj(x, y, T, φ)

iφ

)

dφ,

x = log s,

fj(x, y, T, φ) = exp{Aj(T, φ) + Bj(T, φ)y + iφx},

Aj(T, φ) = irφT +
kθ

σ2

[

(bj − iρσφ + d)T − 2 log

(
1 − gje

djT

1 − gj

)]

,

Bj(T, φ) =
bj − ρσφi + dj

σ2

(
1 − edjT

1 − gjedjT

)

,

gj =
bj − iρσφ + dj

bj − iρσφ − dj

,
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dj =
√

(iρσφ − bj)2 − σ2(2iujφ − φ2),

for j = 1, 2 and u1 =
1

2
, u2 = −

1

2
, b1 = k − ρσ, b2 = k.

The price of the put option can then be calculated using the so-called put–call

parity formula

P = C − s + Ke−rT . (2.1.2)

On the other hand, applications of numerical methods for the Heston model have

their own difficulties. Volatility in the Heston model is controlled by the CIR

process and in the case of the CIR model, which is based on the square-root

diffusion, the main problem is... the square root itself. Any attempt to develop

an approximation scheme for the solution of the Heston model runs into the same

problem, or, rather, problems as the Heston model has square roots used not only

in the CIR process controlling the volatility, but also in the expression of volatility

itself. Furthermore, the square roots present not one, but two technical challenges.

First, since square-root derivatives near zero are unbounded, any approximation

scheme explicitly or implicitly using derivatives of the model coefficients struggles

with accuracy near zero. Second is the simple fact that a square root can take only

non-negative values. Thus, all classical approximation methods in this case do not

provide any useful solutions at all since they either use derivatives (Milstein), or

cannot ensure the positivity (Euler), or both.

Maybe that was the main reason why more than 10 years had to pass while

papers dealing with discretization of the solution of the Heston model started

to appear despite the instant popularity of the Heston model. One of the first

worth mentioning was published in 2005 by Higham and Mao [15], who proposed

a modified Euler algorithm with a new fix and proved the strong convergence of

such modified Euler scheme. To the best of our knowledge, it was the only known

example of the rigorous proof of convergence of the Euler scheme in the Heston

model setting till 2010 when Lord, Koekkoek, and van Dijk, extending the ideas

of Higham and Mao, did the same for other modifications of the Euler scheme for

the Heston model (see [23]). In 2006, Broadie and Kaya [7] proposed a so-called

exact simulation of the Heston model. Broadie and Kaya devised their algorithm

drawing the inspiration from the properties of the variance process in the Heston
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model. Their result behaves quite well in terms of the mean-square error but is

heavy in the sense of time-consuming and can barely be recommended to use in

most practical situations. An interesting approach to solve the disadvantage of

the exact scheme by focusing on efficient approximation of the scheme was taken

by Haastrecht et al. [13] in 2010. Finally, in 2008, Andersen [5] presented an algo-

rithm constructed using a moment-matching technique and exploiting the same

property of the variance process as Broadie and Kaya. The scheme constructed by

Andersen over time became and up until recently was a de facto standard for nu-

merical simulation of the solution of the Heston model. A promising extension of

this scheme was presented by Chan and Joshi [8] in 2013. Finally, Ninomiya and

Victoir [28] in 2008 and Alfonsi [3] in 2010 proposed discretization schemes con-

structed using split-step and moment-matching techniques, which are especially

worth mentioning.

2.2 One-step pathwise approximations

We will further look into some of the mentioned schemes in more detail. As is clear

from the previous chapter, there are three methods to construct a discretization

scheme for the Heston model. The first and simplest method utilizes the Euler

discretization scheme. The second method exploits the properties of the variance

square-root (CIR) process. Finally, the third one uses a so-called split-step tech-

nique. Moment matching is sometimes used in parallel with all three methods.

We will present schemes as one-step weak approximations from time ih to

time (i + 1)h, i.e., from Z ih = (Sih, Y ih) = (s, y) to Z(i+1)h = (S(i+1)h, Y (i+1)h).

Here i = 0, [T/h] is the index for the discretization of the fixed time interval

[0, T ], and h is the discretization step. Note that in most of the cases, in order to

preserve the nonnegativity, instead of the asset price S, its logarithm X = log(S)

is discretized.

In most of the schemes (including ours presented further), the Cholesky de-

composition is used to decompose correlated Brownian motions W̃t and Wt with
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correlation coefficient ρ into uncorrelated Brownian motions Bt and Wt:





dW̃t = ρdWt +
√

1 − ρ2dBt,

dWt = dWt.

(2.2.1)

Also, for simplicity, we will further use the following notations:

ΔW̃ = ΔW̃(i+1)h = W̃(i+1)h − W̃ih = W̃ ((i + 1)h) − W̃ (ih),

ΔW = ΔW(i+1)h = W(i+1)h − Wih = W ((i + 1)h) − W (ih),

ΔB = ΔB(i+1)h = B(i+1)h − Bih = B((i + 1)h) − B(ih).

In order to simulate ΔW, ΔW̃ , and ΔB, we can use a standard Gaussian variable,

for example, ΔW ∼ N(0, 1)
√

h.

2.3 Classical schemes and modifications

Euler–Maruyama scheme

The first and simplest idea is borrowing the famous and well-known (first pre-

sented in 1768) Euler method from the field of (ordinary) differential equations.

Since the idea to reuse the Euler scheme in the field of numerical methods for

stochastic calculus was first suggested by Maruyama, in this context the scheme

is sometimes called the Euler–Maruyama scheme.

The Euler scheme for (1.2.1) has the following form:

X(i+1)h = X ih + (r −
1

2
Y ih)h +

√
Y ih

(
ρΔW +

√
1 − ρ2ΔB

)
,

Y (i+1)h = Y ih + kh(θ − Y ih) + σ

√
Y ihΔW.

Unfortunately, the scheme has two big disadvantages. First, Y (i+1)h can take

negative values with positive probability - starting with positive Y ih > 0, we can

keep Y (i+1)h > 0 if and only if

ΔW >
kΔt(Y ih − θ) − Y ih

σ
√

Y ih

.

Therefore, we have a strictly positive probability going negative:

P (Y (i+1)h < 0) = N

(
kΔt(Y ih − θ) − Y ih

σ
√

Y ih

)

,
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where N is the normal distribution function with zero mean and variance Δt.

That immediately disrupts pathwise simulation since in order to calculate the

values for the next step, we need to calculate
√

Y (i+1)h.

Second, as the square-root is not globally Lipschitz (and not locally Lipschitz

near 0), the usual theorems (see [19], [26]) for weak convergence cannot be applied,

and, thus, the convergence of the scheme cannot be rigorously guaranteed.

Modifications

Several fixes were proposed to deal with the first problem. In [23], all of the fixes

were shown to be particular cases of the following unifying framework:

Ŷ(i+1)h = f1(Y ih) + kh(θ − f2(Y ih)) + σ

√
f3(Y ih)ΔW ;

Y (i+1)h = f3(Ŷ(i+1)h),

where fixing functions fi, i = 1, 2, 3, satisfy the following conditions:

• fi(x) = x for x > 0 and i = 1, 2, 3;

• f3(x) > 0 for x ∈ R.

Note that in Higham and Mao [15], the fixing functions f1(x) = f2(x) = x and

f3(x) = |x| were used. However, the best Euler modification for the Heston model

in terms of the smallest bias produced is constructed when the fixing functions

f1(x) = x and f2(x) = f3(x) = max(x, 0) are used. This modification was intro-

duced in [23] and named “full truncation” since not only the terms involving Y

in the diffusion part, but also terms involving Y in the drift part as well are

truncated using the fixing function max(x, 0).

Nevertheless, only a strong convergence is proved for the “full truncation”

scheme, and we still can only rely on good numerical simulation results in examples

provided and not on any rigorous proof in case of weak approximations.

Kahl–Jackel scheme

Attempts to apply the Milstein scheme, another classical discretization scheme,

encounter the same problems. Same methods as in the case of the Euler approx-

imation to solve these problems can be used, although the Milstein scheme and
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its modifications are not so popular in the literature for the Heston model as the

Euler scheme is. We would like to note an interesting attempt to modify the

Milstein scheme (see [17]) by mixing its implicit variation (for variance process)

and the Kahl–Jackel discretization scheme (for the asset price):

X(i+1)h = X ih + rh −
1

4

(
Y (i+1)h + Y ih

)
h + ρ

√
Y ihΔW

+
1

2

(√
Y (i+1)h +

√
Y (i+1)h

)

(ΔW − ρΔB) +
1

4
ρσ(ΔW 2 − h),

Y (i+1)h =
Y ih + kθh + σ

√
Y ihΔW + 1

4
σ2(ΔW 2 − h)

1 + kh
.

Unfortunately, the scheme only solves the problem of negative values if σ2 < 4kθ

and is neither accurate nor fast if compared to other schemes in this chapter.

2.4 Broadie–Kaya scheme

Broadie–Kaya [7] composed a bias-free (exact) method to simulate the Heston

model. Alas, their method is quite complicated and highly time consuming, which

makes it almost impossible to apply in the real-world situations.

Their method exploits the known fact that for the CIR process, Y ((i + 1)h)

conditional upon Y (ih) is a noncentral chi-squared with η degrees of freedom and

noncentrality parameter Y (ih)λ(ih, (i+1)h), up to a constant scaling factor, that

is,

Y ((i + 1)h) ∼
e−kh

λ(ih, (i + 1)h)
χ2

η (Y (ih)λ(ih, (i + 1)h)) ,

with η = 4kθ
σ2 degrees of freedom. Broadie and Kaya noticed that integrating the

CIR equation (equation for variance) leads to the equation

Y ((i + 1)h) = Y (ih) +

(i+1)h∫

ih

k(θ − Y (u)) du + σ

(i+1)h∫

ih

√
Y (u) dW (u),

and the last integral can be expressed as

(i+1)h∫

ih

√
Y (u) dW (u) =

Y ((i + 1)h) − Y (ih) − kθh + k
∫ (i+1)h

ih
Y (u) du

σ
,

provided that we know Y ((i + 1)h), Y (ih), and
∫ (i+1)h

ih
Y (u) du.
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Using the Cholesky decomposition for the asset price process, we get

dX(t) = (r −
1

2
)Y (t) dt + ρ

√
Y (u) dW (u) +

√
1 − ρ2

√
Y (u) dB(u),

where B is a Brownian motion independent of W . Finally, knowing
∫ (i+1)h

ih

√
Y (u)dW (u)

(and other terms), Broadie and Kaya shows that, in the integral form,

X((i + 1)h) = X(ih) +
ρ

σ
(Y ((i + 1)h) − Y (ih) − kθh)

+

(

r +
kρ

σ
−

1

2

) (i+1)h∫

ih

Y (u) du +
√

1 − ρ2

(i+1)h∫

ih

√
Y (u) dW (u).

Now it is easy to see that, conditionally on X(ih), the distribution of X((i + 1)h)

is Gaussian:

X((i + 1)h)
∣
∣
∣
X(ih)

∼ N
(
X(ih) + rh −

1

2

(i+1)h∫

ih

Y (u) du + ρ

(i+1)h∫

ih

√
Y (u) dW (u),

(1 − ρ2)

(i+1)h∫

ih

Y (u) du
)
.

Such a scheme presents two major challenges:

• To sample Y ((i + 1)h) from Y (ih);

• To generate
∫ (i+1)h

ih
Y (u) du. Unfortunately, the distribution of

∫ (i+1)h

ih
Y (u) du

conditional on Y (ih) and Y ((i + 1)h) is not known in a closed form. In [7],

a characteristic function is derived, which allows the authors to use Fourier

inversion and numerically generate the conditional cumulative distribution

function for
∫ (i+1)h

ih
Y (u) du, and numerical inversion of this distribution

function finally allows to generate a sample of
∫ (i+1)h

ih
Y (u) du itself.

2.5 QE and other Andersen’s schemes

The inspiration for the QE (quadratic exponential) and other schemes presented

in the article [5] comes from the same source as in the case of Broadie–Kaya

scheme, i.e., the fact that the CIR process Y ((i + 1)h), conditional upon Y (ih),

is noncentral chi-squared with η = 4kθ
σ2 degrees of freedom. Andersen [5] observes

that a noncentral chi-square with moderate (or high) noncentrality parameter

16



can be well represented by some power-function applied to a Gaussian variable.

Therefore, in [5], it is suggested that

Y (i+1)h = a(b + N1)
2,

where N1 ∼ N(0, 1) is a standard Gaussian random variable, and a and b are

some constants determined by moment matching technique. However, this does

work only for “sufficiently” large values of Y ih. For low values of Y ih, Y (i+1)h is

drawn from the approximated density

P(Y (i+1)h ∈ [x, x + dx]) ≈ (pδ(0) + β(1 − p)e−βx) dx, x > 0.

If

m := θ + (Y ih − θ)e−kh,

s2 :=
Y ihσ

2e−kh

k
(1 − e−kh) +

θσ2

2k
(1 − e−kh)2,

and

ψ :=
s2

m2
,

then a and b are computed as follows:

b = 2ψ−1 − 1 +
√

2ψ−1
√

2ψ−1 − 1 > 0,

a =
m

1 + b2
.

For low values of Y ih, p and β need to be calculated:

p =
ψ − 1

ψ + 1
∈ [0, 1),

β =
1 − p

m
=

2

m(ψ + 1)
> 0.

If some arbitrary level ψc ∈ [1, 2] is selected (according to [5], the exact choice

has a relatively small effect on the quality of the overall simulation scheme; for

numerical tests in [5], ψc = 1.5 is used), then

• if ψ 6 ψc, then

Y (i+1)h = a(b + N1)
2;
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• Otherwise, if ψ > ψc, then

Y (i+1)h =






0, 0 6 U 6 p,

β−1 log
(

1−p
1−U

)
, p < U 6 1,

where U is a uniform random variable from [0, 1].

For the asset price, the following discretization scheme is proposed:

X(i+1)h = X ih + K0 + K1Y ih + K2Y (i+1)h +
√

K3Y ih + K4Y (i+1)hN2,

where N2 ∼ N(0, 1) is a standard Gaussian random variable independent of Y ,

and K0, . . . , K4 are given by

K0 = −
kρθ

σ
h;

K1 = γ1h(
kρ

σ
−

1

2
) −

ρ

σ
;

K2 = γ2h(
kρ

σ
−

1

2
) +

ρ

σ
;

K3 = γ1h(1 − ρ2);

K4 = γ2h(1 − ρ2),

for some constants γ1 and γ2. The constants are used to handle the time-integral

of Y :
(i+1)h∫

ih

Y (u) du ≈ h (γ1Y (ih) + γ2Y ((i + 1)h)) .

There are many ways for setting γ1 and γ2. In [5], γ1 = γ2 = 0.5 is used.

This scheme can be improved by enforcing to comply with martingale condi-

tion E(Y (i+1)h|Y ih) = Y ih, but although the resulting scheme QE-M (QE with

martingale correction) is slightly more accurate, it appears to be much slower and

more complicated.

Today QE is a de facto standard weak approximation scheme for the Heston

model, for which test simulations show admiring results in terms of accuracy.

Unfortunately, there are no rigorous proof of (weak) convergence of the scheme(s).

2.6 Alfonsi schemes

The first attempt to apply a split-step technique to the Heston model (and other

multidimensional SDEs) was presented in 2008 by Ninomiya and Victoir [28].

18



Unfortunately, their scheme was only defined for σ2 6 4kθ. Building on the same

ideas, in 2010, Alfonsi [3] constructed a second and a third order schemes for the

Heston model without any restrictions to the model parameters.

To construct discretization schemes, Alfonsi rewrote the model (1.1.1) using

the Cholesky decomposition dW̃t = ρ dWt +
√

1 − ρ2 dBt (here Wt and Bt are

independent Brownian motions) and split it into two SDEs






dSt = rSt dt + ρ
√

YtSt dWt,

dYt = k(θ − Yt) dt + σ
√

Yt dWt,

and 




dSt =
√

(1 − ρ2)YtSt dBt,

dYt = 0.

It is easy to integrate the latter SDE exactly, and for the first SDE, the second-

and third-order schemes for CIR process described in the same article (see [3])

were used resulting in the second- and third-order discretization schemes for the

Heston model.

To compute the discretization for the next step, the following algorithm is

proposed:

(
S(i+1)h, Y (i+1)h

)
=






HZ(HW (Sih, Y ih)) if B = 1,

HW (HZ(Sih, Y ih)) otherwise.

Here B is a Bernoulli sample with parameter 1/2,

HZ(s, y) =
(
se
√

(1−ρ2)yhN , y
)

,

and

HW (s, y) =

(

s ∙ exp

[(

r −
ρkθ

σ

)

h +
ρΔy

σ
+

(
ρk

σ
− 0.5

)

(y + 0.5Δy) h

]

, y + Δy

)

,

where N ∼ N(0, 1) is a standard Gaussian variable, and Δy = CIR2,3(y) − y.

CIR2 and CIR3 are second- and third-order discretization schemes for the CIR

equation, respectively. Using CIR2, we construct the second-order Alfonsi scheme

for the Heston model (ALF2), whereas using CIR3, the third-order one (ALF3).

Despite the fact that the same framework was proved for the CIR equation, in

the case of the Heston model, we have no rigorous proof whatsoever. In fact, the
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framework was proved to work if SDE has uniformly bounded moments, which is

not true in the case of the Heston model. Nevertheless, the numerical simulations

of ALF2 and ALF3 show very encouraging results.
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Chapter 3

Preliminaries

In this chapter, we provide all needed definitions and describe a technique used

to construct discretization schemes.

3.1 Preliminaries and definitions

Consider the general two-dimensional SDE

dZt = b(Zt, t) dt + σ(Zt, t) dBt, t ≥ 0, Z0 = z, (3.1.1)

for z ∈ D ⊂ R2 with standard two-dimensional Brownian motion Bt = (B1
t , B

2
t )

and coefficients b : R2×I → R2, and σ = (σij), i, j = 1, 2, where σij : R2×I → R2

and I = [0, T ] ⊂ R is a time interval. We assume that the SDE is domain-

preserving in the sense that, for every z ∈ D, the SDE has a unique weak solution

Zz such that P{Zz
t ∈ D, t > 0} = 1. For example, for the Heston model (1.1.1)

one can take D = (0, +∞) × [0, +∞), and for the log-Heston model (1.2.1) -

D = R× [0, +∞), provided that all the parameters are strictly positive θ, σ, k > 0.

Note, that further on we will presume the latter in the setting of the log-Heston

model and the former in the setting of the Heston model.

On a fixed time interval [0, T ], we consider equidistant time discretizations

Δh = {ih, i = 0, . . . , [T/h]}, where [a] denotes the integer part of a number a.

By C∞
0 (D) we denote the functions on D of class C∞ with compact support,

and by C∞
pol(D) the real-valued functions of class C∞ with all partial derivatives

of polynomial growth:

C∞
pol(D) :=

{
f ∈ C∞(D) : ∀i ∈ N2

0, ∃Ci > 0, ∃ki > 0, ∀z ∈ D, |f (i)(z)| 6 Ci(1+|z|ki)
}

.
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Here N0 = {0, 1, 2, . . .}, i = (i1, i2) ∈ N2
0 are multiindices, and

f (i)(z) :=
∂|i|f(z)

∂zi
, |i| := i1 + i2, ∂zi := ∂zi1

1 ∂zi2
2 .

Following [3], we call the “sequence” {(Ci, ki) : i ∈ N2
0} a good sequence for f .

We shall write g(z, h) = Op,k(h
n) if for some C > 0 and h0 > 0,

|g(z, h)| ≤ Chn(1 + |z|k), z ∈ D, h ≤ h0

(the subscript p stands for polynomial). We will write g(z, h) = Op(h
n) if g(z, h) =

Op,k(h
n) for some k ∈ N. If, in particular, the function g is expressed in terms of

another function f ∈ C∞
pol(D) and the constants C, h0, and k depend on a good

sequence for f only, then we will write, instead, g(z, h) = Op(h
n). Note the fol-

lowing simple multiplication rules: Op(h
n)Op(h

m) = Op(h
n+m); Op(h

n)Op(h
m) =

Op(h
n+m); Op(h

n)Op(h
m) = Op(h

n+m).

Definition 3.1. A discretization scheme Z̄h is a family of discrete-time D-valued

time-homogeneous Markov chains Z̄h = {Ẑh(z, t), z ∈ D, t ∈ Δh}, h > 0, with

initial values Ẑh(z, 0) = z.

With some abuse of notation, sometimes we omit the superscript h and write

Z̄z
t or Z̄(z, t) instead of Z̄h(z, t). Note that to define a discretization scheme (in

distribution), it suffices to construct one-step “transitions,” that is, the (distribu-

tions of) random variables Z̄z
h = Z̄h(z, h) for all z ∈ D. Therefore, we shall also

call the latter a discretization scheme.

Definition 3.2. A discretization scheme Z̄h is a weak υth-order approximation

for the solution Zz of Eq. (3.1.1) if, for every f ∈ C∞
0 (D), there exists K > 0 such

that

∣
∣Ef(Zz

T ) − Ef(Z̄z
T )
∣
∣ =

∣
∣Ef(Zz

T ) − Ef
(
Z̄h(z, T )

)∣∣ 6 Khυ, h > 0. (3.1.2)

Definition 3.3. Let L be the generator of the solution Zz of Eq. (3.1.1). The υth-

order remainder of a discretization scheme Z̄h is the operator Rh
υ : C∞

pol(D) → C(D)

defined by

Rh
υf(z) := Ef

(
Z̄z

h

)
−

[

f(z) +
υ∑

k=1

Lkf(z)

k!
hk

]

, z ∈ D, h > 0. (3.1.3)
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Definition 3.4. A discretization scheme Z̄h is a potential υth-order weak ap-

proximation of Eq. (3.1.1) if, for every f ∈ C∞
pol(D),

Rh
υf(z) = Op(h

υ+1). (3.1.4)

We will say that Z̄h is a strongly potential υth-order weak approximation if, in

addition, it has uniformly bounded moments of all orders, that is, for all q ∈ N,

sup
N∈N

sup
0≤k≤N

E|Z̄z
kh|

q < +∞, z ∈ D. (3.1.5)

Remark 3.1. For the CIR process Y , Alfonsi [2] proved that any strongly po-

tential υth-order weak approximation of the CIR process is, in fact, a υth-order

weak approximation. The proof was essentially based on checking that the func-

tion u(t, x) := Ef(Y x
T−t) is smooth for smooth functions f . We believe that the

same applies in our case, but for the moment, we have no rigorous proof of analo-

gous result for the log-Heston model since, in contrast to the CIR process, we do

not know a closed-form formula for the density of the log-Heston process (X,Y ).1

3.2 Split-step technique for the Heston model

In this section we focus on the split-step method for the Heston model. Unfor-

tunately, when trying to apply the method directly to Eq. (1.1.1), we cannot

assure the positivity of approximations. Besides, we know (see, for example, [6]

and [11]) that moments of the solution of the Heston model explode (i.e., tend

to infinity in finite time). Therefore, instead of St in Eq. (1.1.1), we approximate

Xt := log St and thus consider, instead of the Heston model (1.1.1), the log-Heston

model (1.2.1).

Denoting Zt = (Xt, Yt) and z = (x, y), we split Eq. (1.2.1) into the “determin-

istic part” 




dDz
1(t) = (r − 1

2
Dy

2(t)) dt, Dz
1(0) = x,

dDy
2(t) = k(θ − Dy

2(t)) dt, Dy
2(0) = y,

(3.2.1)

and the “stochastic part”

dZt = d




Xt

Yt



 =




√

Yt 0

0 σ
√

Yt








dW̃t

dWt



 . (3.2.2)

1A density formula given by del Baño Rolin et al. [30] in the form of infinite convolution of
known densities is rather inconvenient for applications.
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Here Z0 = z = (x, y) ∈ D, and, as before, dW̃t dWt = ρ dt.

The solution of the deterministic part, D(z, t) = (Dz
1(t), D

y
2(t)), can be easily

found:





Dz
1(t) = x + (r − 1

2
θ)t + 1

2k

(
e−kt − 1

)
(y − θ) ,

Dy
2(t) = ye−kt + θ(1 − e−kt).

(3.2.3)

The solution of the stochastic part is not known in an explicit form. There-

fore, for the stochastic part, we need to construct a discretization scheme Ẑh =

Ẑ(z, h) =
(
X̂(z, h), Ŷ (y, h)

)
. Having done this, we can define the first-order

split-step approximation for Zt by the composition

Z̄h = Z̄(z, h) =




X̄(z, h)

Ȳ (y, h)



 := D
[
Ẑ(z, h), h

]

=




X̂(z, h) + (r − 1

2
θ)h + 1

2k
(e−kh − 1)

(
Ŷ (y, h) − θ

)

Ŷ (y, h)e−kh + θ(1 − e−kh)



 (3.2.4)

and, similarly, the second-order split-step approximation for Zt by the composition

Z̄h = Z̄(z, h) =




X̄(z, h)

Ȳ (y, h)



 := D
(
Z̃
(
D(z, h/2), h

)
, h/2

)
. (3.2.5)

The following proposition follows from Corollary 1.7 in [3] (see also [24,25]).

Proposition 3.2. Suppose that Ẑh = (X̂h, Ŷ h) is a potential first- or second-

order approximation of the stochastic part (3.2.2) of the log-Heston system (1.2.1).

Then the compositions (3.2.4) and (3.2.5) define a potential first- and second-

order approximations of the log-Heston system (1.2.1) respectively.

Finally, having constructed the split-step approximation (3.2.4) or (3.2.5) for

the log-Heston model, we can return to the Heston model (1.1.1) by approximating

St = exp(Xt) with the exponent of X̄, that is, by

S
h
(s, y, t) = exp

{
X̄h(log s, y, t)

}
.

Note that the positivity of the approximation S
h

is trivially assured.
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3.3 Moment matching technique for the

Heston model

One way to apply the moment matching technique is to follow these steps. In the

first step we use Taylor’s formula for Z̄z
t = (X

z

h, Y
y

h) :

Ef(Z̄z
h) = f(z) +

∂f

∂x
(z)E(X

z

h − x) +
∂f

∂y
(z)E(Y

y

h − y)

+
1

2

∂2f

∂x2
(z)E(X

z

h − x)2 +
1

2

∂2f

∂y2
(z)E(Y

y

h − y)2

+
∂2f

∂x∂y
(z)E(X

z

h − x)(Y
y

h − y) + ∙ ∙ ∙ .

In the second step, we write Dynkin’s formula for Ef(Zh):

Ef(Zh) = f(z) + Lf(z)h +
h2

2!
L2f(z) +

h3

3!
L3f(z) + ∙ ∙ ∙ ,

where

Lf(z) =

(

r −
1

2
y

)
∂f

∂x
(z) + k (θ − y)

∂f

∂y
(z)

+
y

2

(
∂2f

∂x2
(z) + σ2 ∂2f

∂y2
(z)

)

+ ρσy
∂2f

∂x∂y
(z)

is the generator of the log-Heston model (1.2.1).

In the next step, we match the coefficients of the ∂f
∂x

(z), ∂f
∂y

(z), ∂2f
∂x2 (z), ∂2f

∂y2 (z)

and others in the Taylor’s and Dynkin’s formulas to get the equations for the

moments E(X
z

h − x), E(Y
y

h − y), E(X
z

h − x)2, E(Y
y

h − y)2, and so on. The more

equations we write, the more precise, yet more difficult to construct, approxima-

tion we aim at.

For example, taking only the coefficients of up to the second-order partial

derivatives and allowing some bias (Op(h
2)) we would arrive at the following

system of equations:





E(X
z

h − x) =
(
r − 1

2
y
)
h + Op(h

2),

E(Y
y

h − y) = k(θ − y)h + Op(h
2),

E(X
z

h − x)2 = yh + Op(h
2),

E(Y
y

h − y)2 = yσ2h + Op(h
2),

E(X
z

h − x)(Y
y

h − y) = ρσyh + Op(h
2).
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It is not very difficult to see that the conditions above are satisfied by... the Euler

approximation

X
z

h = X(x, y, h, ξ1, ξ2) = x +

(

r −
1

2
y

)

h +
√

y
(
ρξ1 +

√
1 − ρ2ξ2

)
,

Y
y

h = Y (y, h, ξ1) = y + k (θ − y) h + σ
√

yξ1,

where independent random variables ξ1 and ξ2 are distributed normally with mean

0 and variance h (see Section 2.3).
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Chapter 4

First-order approximation

In this chapter we construct a first-order approximation scheme for the solution of

the Heston system (1.1.1). In the first section of the chapter we adapt a split-step

technique described earlier to our needs, following section is dedicated to finding

an approximation scheme for the (split) stochastic part and finally, in the last

section, numerical simulations illustrating our approach are provided.

4.1 A potential first-order approximation

We start to construct our scheme using methods described in Section 3.2. First,

in order to assure the positivity and avoid moment explosions we change our

model (St, Yt) to the log-Heston model Zt = (Xt := log St, Yt) (see (1.2.1)), then

split the log-Heston model into the stochastic and deterministic parts. While

the solution of the latter D(z, t) = (Dz
1(t), D

y
2(t)) is easy to find (see (3.2.3)),

we need to construct a discretization scheme for the solution of the stochastic

part Ẑh = Ẑ(z, h) =
(
X̂(z, h), Ŷ (y, h)

)
. Having done this, we can define the

first-order split-step approximation for Zt by the composition

Z̄h = Z̄(z, h) =




X̄(z, h)

Ȳ (y, h)



 := D
[
Ẑ(z, h), h

]

=




X̂(z, h) + (r − 1

2
θ)h + 1

2k
(e−kh − 1)

(
Ŷ (y, h) − θ

)

Ŷ (y, h)e−kh + θ(1 − e−kh)



 . (4.1.1)

Proposition 3.2 assures that the composition (4.1.1) defines a potential first-

order approximation of the log-Heston system (1.2.1) if we provide a potential
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first-order approximation scheme of the stochastic part of the log-Heston model

equation.

4.2 A potential first-order approximation of

the stochastic part

Using the Cholesky decomposition, we decompose the correlated Brownian mo-

tions W̃t and Wt into uncorrelated Brownian motions Bt and Wt and rewrite the

stochastic part of Eq. (1.2.1)





dXt =
√

Yt

(
ρ dWt +

√
1 − ρ2 dBt

)
,

dYt = σ
√

Yt dWt,

(4.2.1)

where B is a Brownian motion independent of W .

The generator of the stochastic part is

Lf(z) =
y

2

(
∂2

∂x2
+ σ2 ∂2

∂y2

)

f(z) + ρσy
∂2f

∂x∂y
(z).

Let Ẑz
h = (X̂z

h, Ŷ y
h ) be any discretization scheme.1 Using Taylor’s formula, we

write

f(Ẑz
h) = f(z) +

∂f

∂x
(z)(X̂z

h − x) +
∂f

∂y
(z)(Ŷ y

h − y)

+
1

2

∂2f

∂x2
(z)(X̂z

h − x)2 +
1

2

∂2f

∂y2
(z)(Ŷ y

h − y)2

+
∂2f

∂x∂y
(z)(X̂z

h − x)(Ŷ y
h − y)

+ ∇3(X̂
z
h, Ŷ y

h , z) + r3(X̂
z
h, Ŷ y

h , z),

where

∇3(X̂
z
h, Ŷ y

h , z) :=
1

6

(
∂

∂x
(X̂z

h − x) +
∂

∂y
(Ŷ y

h − y)

)3

f(x, y) (4.2.2)

and

r3(X̂
z
h, Ŷ y

h , z) (4.2.3)

are the third-order term and third-order remainder in the formula, respectively.

So, the first-order remainder of a discretization scheme Ẑz
h is

Rh
1f(z) = Ef(Ẑz

h) −
(
f(z) + Lf(z)h

)

1Note that we write Ŷ y
h instead of Ŷ z

h since the latter actually depends on y only.
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=
∂f

∂x
(z)E(X̂z

h − x) +
∂f

∂y
(z)E(Ŷ y

h − y)

+
1

2

∂2f

∂x2
(z)
(
E(X̂z

h − x)2 − yh
)

+
1

2

∂2f

∂y2
(z)
(
E(Ŷ y

h − y)2 − yσ2h
)

+
∂2f

∂x∂y
(z)
(
E(X̂z

h − x)(Ŷ y
h − y) − ρσyh

)

+ E∇3(X̂
z
h, Ŷ y

h , z) + Er3(X̂
z
h, Ŷ y

h , z).

Therefore, a discretization scheme Ẑz
h = (X̂z

h, Ŷ y
h ) is a potential first-order approx-

imation if the following conditions are satisfied:





E(X̂z
h − x) = 0,

E(Ŷ y
h − y) = 0,

E(X̂z
h − x)2 = yh,

E(Ŷ y
h − y)2 = yσ2h,

E(X̂z
h − x)(Ŷ y

h − y) = ρσyh,

(4.2.4)

and for some h0 > 0, C3 > 0, C4 > 0, and p, q ∈ N0 depending only on a good

sequence for f ∈ C∞
pol(D),

|E∇3(X̂
z
h, Ŷ y

h , z)| 6 C3h
2(1 + |z|q), z ∈ D, 0 < h < h0, (4.2.5)

and

E|r3(X̂
z
h, Ŷ y

h , x, y)| 6 C4h
2(1 + |z|p), z ∈ D, 0 < h < h0. (4.2.6)

Proposition 4.1. Let, at each step, Ŷ y
h be a random variable taking the values

y1,2 = y + σ2h ±
√

(y + σ2h) σ2h with corresponding probabilities p1,2 =
y

2y1,2

,

(4.2.7)

and the random variable X̂z
h be defined by

X̂z
h := x +

√
1 − ρ2(X̃z

h − x) +
ρ

σ
(Ŷ y

h − y), (4.2.8)

where X̃z
h is a random variable, independent of Ŷ y

h , taking the values

x1,2 = x ±
√

yh with probabilities
1

2
. (4.2.9)

Then Ẑz
h := (X̂z

h, Ŷ y
h ) satisfies all the requirements in Eqs. (4.2.4)–(4.2.6).
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In the proof, we shall need the following expressions from [27]:

E(Ŷ y
h − y)3 = 2y(σ2h)2 (4.2.10)

and

E(Ŷ y
h − y)2m = y(σ2h)mP̂m(y, σ2h), (4.2.11)

where P̂m and Q̂m are (m − 1)th-order homogeneous two-variable polynomials

with positive integer coefficients. Also, we shall need the following equation:

E(X̃z
h − x)n =

(
√

yh)n

2
+

(−
√

yh)n

2
=






(yh)m, n = 2m,

0, n = 2m − 1

(4.2.12)

and two simple lemmas on the moments of X̂z
h.

Lemma 4.2. For some constant C > 0 depending on n ∈ N, σ, and h0,

E(X̂z
h)n 6 C(1 + |z|n), z ∈ D, h ≤ h0.

Proof. Using Eqs. (4.2.12) and (4.2.11) for even-order moments of X̂z
h we have

E(X̂z
h)2m = E

(
x + a(X̃z

h − x) + b(Ŷ y
h − y)

)2m

6 C
(
x2m + a2mE(X̃z

h − x)2m + b2mE(Ŷ y
h − y)2m

)

= C
(
x2m + a2m(yh)m + b2my(σ2h)mP̂m(y, σ2h)

)

6 C
(
x2m + a2mymhm

0 + b2myσ2mhm
0 Ĉ(ym−1 + (σ2h0)

m−1)
)

6 C(1 + x2m + ym)

6 C(1 + |z|2m), z ∈ D, h < h0.

Note, that constant C above (and below) may vary from line to line. Similarly,

for odd-order moments, we have

E(X̂z
h)2m+1 = E

(
x + a(X̃z

h − x) + b(Ŷ y
h − y)

)2m+1

6 C
(
x2m+1 + a2m+1E(X̃z

h − x)2m+1 + b2m+1E(Ŷ y
h − y)2m+1

)

= C
(
x2m+1 + b2m+1y(σ2h)m+1P̂m(y, σ2h)

)

6 C
(
x2m+1 + b2m+1yσ2m+2hm+1

0 Ĉ(ym−1 + (σ2h0)
m−1)

)

6 C(1 + x2m+1 + ym)
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6 C(1 + |z|2m+1), z ∈ D, h < h0.

Lemma 4.3. For some constants C > 0 and Ĉ > 0 depending on m ∈ N, σ, and

h0,

E(X̂z
h − x)2m 6 Chm(1 + ym),

E(X̂z
h − x)2m+1 6 C̃hm(1 + ym), z = (x, y) ∈ D, h < h0.

Proof. Using Eqs. (4.2.12) and (4.2.11) for even-order moments of X̂z
h − x, we

have

E(X̂z
h − x)2m = E

(
a(X̃z

h − x) + b(Ŷ y
h − y)

)2m

6 C
(
a2mE(X̃z

h − x)2m + b2mE(Ŷ y
h − y)2m

)

= C
(
a2m(yh)m + b2my(σ2h)mP̂m(y, σ2h)

)

6 Chm
(
a2mym + b2myσ2mĈ(ym−1 + (σ2h0)

m−1)
)

6 Chm(1 + ym), z = (x, y) ∈ D, h < h0.

As in the previous lemma, the constant C varies from line to line. For odd-order

moments, we have

E(X̂z
h − x)2m+1 = E

(
a(X̃z

h − x) + b(Ŷ y
h − y)

)2m+1

6 C
(
a2m+1E(X̃z

h − x)2m+1 + b2m+1E(Ŷ y
h − y)2m+1

)

= C
(
b2m+1y(σ2h)m+1P̂m(y, σ2h)

)

6 Chm
(
b2m+1yσ2m+2h0Ĉ(ym−1 + (σ2h0)

m−1)
)

6 Chm(1 + ym), z = (x, y) ∈ D, h < h0.

Proof of Proposition 4.1. The first four equalities in (4.2.4) are easily checked

directly (cf. [3], Sect. 2.2, [27], Sect. 3). The fifth equality follows from the inde-

pendence of X̃z
h and Ŷ y

h by direct calculation using the second and fourth equalities

in (4.2.4):

E(X̂z
h − x)(Ŷ y

h − y) =
√

1 − ρ2E(X̃z
h − x)(Ŷ y

h − y) +
ρ

σ
E(Ŷ y

h − y)2 = ρσyh.
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Now let us prove estimate (4.2.5). Denote, for short, a :=
√

1 − ρ2 and b := ρ
σ
.

Using Eqs. (4.2.12) and (4.2.10), the symmetry of X̃z
h − x, and the independence

of X̃z
h and Ŷ y

h , we have

E(X̂z
h − x)3 = E

(
a(X̃z

h − x) + b(Ŷ y
h − y)

)3

= a3E(X̃z
h − x)3 + b3E(Ŷ y

h − y)3

+ 3a2bE(X̃z
h − x)2(Ŷ y

h − y) + 3ab2E(X̃z
h − x)(Ŷ y

h − y)2

= b3E(Ŷ y
h − y)3 = b32yσ4h2.

Similarly,

E(X̂z
h − x)2(Ŷ y

h − y) = E
(
a(X̃z

h − x) + b(Ŷ y
h − y)

)2

(Ŷ y
h − y)

= a2E(X̃z
h − x)2(Ŷ y

h − y) + 2abE(X̃z
h − x)(Ŷ y

h − y)2 + b2E(Ŷ y
h − y)3

= b2E(Ŷ y
h − y)3 = b22yσ4h2

and

E(X̂z
h − x)(Ŷ y

h − y)2 = E
(
a(X̃z

h − x) + b(Ŷ y
h − y)

)
(Ŷ y

h − y)2

= aE(X̃z
h − x)(Ŷ y

h − y)2 + bE(Ŷ y
h − y)3

= bE(Ŷ y
h − y)3 = b2yσ4h2.

Therefore,

E∇3(X̂
z
h, Ŷ y

h , z)

=
1

6

∂3f

∂x3
(z)E(X̂z

h − x)3 +
1

2

∂3f

∂x2∂y
(z)E(X̂z

h − x)2(Ŷ y
h − y)

+
1

2

∂3f

∂x∂y2
(z)E(X̂z

h − x)(Ŷ y
h − y)2 +

1

6

∂3f

∂y3
(z)E(Ŷ y

h − y)3

= yσ4h2

(
b3

3

∂3f

∂x3
(x, y) + b2 ∂3f

∂x2∂y
(z) + b

∂3f

∂x∂y2
(z) +

1

3

∂3f

∂y3
(z)

)

≤ C3h
2(1 + |z|q)

for all f ∈ C∞
pol(D), which proves estimate (4.2.5).

Now consider

Er3(X̂
z
h, Ŷ y

h , x, y)

= E

[
1

24

∂4f

∂x4
(zθ)(X̂

z
h − x)4 +

1

6

∂4f

∂x3∂y
(zθ)(X̂

z
h − x)3(Ŷ y

h − y)
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+
1

4

∂4f

∂x2∂y2
(zθ)(X̂

z
h − x)2(Ŷ y

h − y)2

+
1

6

∂4f

∂x∂y3
(zθ)(X̂

z
h − x)(Ŷ y

h − y)3 +
1

24

∂4f

∂y4
(zθ)(Ŷ

y
h − y)4

]

,

where zθ = (xθ, yθ) with xθ = x + θ(X̂z
h − x) and yθ = y + θ(Ŷ y

h − y) for some

θ ∈ (0, 1).

By Lemma 4.2, there are C5 > 0, h0 > 0, and n ∈ N0, depending only on

a good sequence of f , such that

E(X̂z
h)n 6 C5(1 + |z|n), z ∈ D, h < h0.

From [27] we also know that

E(Ŷ h)n = yR̂n(y, σ2h),

where R̂n is an (n−1)th-order homogeneous two-variable polynomial with positive

integer coefficients.

For any f ∈ C∞
pol(D) and multiindex i ∈ N2

0, there exist C > 0 and q ∈ N0 such

that

(
f (i)(z)

)2
6 C(1 + x2q + y2q).

So, we can write the estimate

√
E (f (i)(zθ))

2 6 C

√
1 + E(X̂z

h)2q + E(Ŷ h)2q

6 C

√
1 + yR̂2q(y, σ2h) + Ĉ(1 + |z|2q)

6 C
√

1 + |z|2q

6 C(1 + |z|q),

where (here and below) the constant C varies from line to line. Now, using

Lemma 4.3 and the Cauchy–Schwarz inequality, for all n,m ∈ N0 such that n +

m = 4 and any multiindex i = (n,m) ∈ N2
0, we have

E
(
f (i)(zθ)(X̂

z
h − x)m(Ŷ y

h − y)n
)

6
√
E (f (i)(zθ))

2
√
E(X̂z

h − x)2m

√
E(Ŷ y

h − y)2n

6 C
√

1 + |z|2q
√

hm(1 + |z|m)

√
y(σ2h)nP̂n(y, σ2h)

6 C
√

hn+m
√

1 + |z|2q
√

1 + |z|m
√

1 + |z|n
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6 Ch2
√

1 + |z|2q+n+m 6 Ch2(1 + |z|q+2),

which proves Eq. (4.2.6).

Proposition 4.4. Let X̂z
h be defined as in Eq. (4.2.8) and Ŷ y

h as in Eq. (4.2.7).

Then the approximation Ẑz
t := (X̂z

t , Ŷ y
t ), t = kh, h = [T/N ], N ∈ N, k =

0, 1, . . . , N , defined by the one-step scheme Ẑz
h := (X̂z

h, Ŷ y
h ) has uniformly bounded

moments on the whole time interval [0, T ], that is, for all q ∈ N,

sup
N∈N

sup
0≤k≤N

E|Ẑz
kh|

q < +∞. (4.2.13)

Proof. We will prove the equivalent relation

sup
N∈N

sup
0≤k≤N

E
(
|X̂z

kh|
q +

(
Ŷ y

kh

)q)
< +∞ (4.2.14)

for all q ∈ N. Note that it suffices to check the latter for sufficiently large q. By

the markovity of the approximation and Proposition 1.5 of [3], in turn, it suffices

to prove that, for any q ∈ N and any h0 > 0, there exists a constant Cq such that

E
(
|X̂z

h|
2q +

(
Ŷ y

h

)2q
)
≤ (|x|2q + y2q)(1 + Cqh) + Cqh, 0 < h ≤ h0. (4.2.15)

From Corollary 2 of [27] we know that there exists a constant C such that, for all

h0 > 0 and q ∈ N,

E
(
Ŷ y

h

)2q
6 y2q(1 + Ch) + Ch, 0 < h 6 h0. (4.2.16)

From Lemma 4.3 we know that there exists some constant C̃n such that

E(X̂z
h − x)n 6 C̃nh(1 + y[ n

2
]), 0 < h < h0.

Therefore,

E
∣
∣X̂z

h

∣
∣2q

= E
(
X̂z

h

)2q

= E
(
x + (X̂z

h − x)
)2q

= x2q +

2q∑

n=1

(
2q
n

)
x2q−nE

(
X̂z

h − x
)n

≤ x2q + h

2q∑

n=1

C̃n

(
2q
n

)
|x|2q−n(1 + y[ n

2
])

= x2q + Chx2q + h
(
− Cx2q +

2q−1∑

n=0

C̃n

(
2q
n

)
|x|n +

2q∑

n=1

C̃n

(
2q
n

)
|x|2q−ny[n

2
]
)
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= x2q(1 + Ch) + h
(
− Cx2q +

2q−1∑

n=0

an|x|
n +

2q∑

n=1

bn|x|
2q−ny[n

2
]
)
, 0 < h ≤ h0,

(4.2.17)

with some constants ai > 0, i = 0, 1, . . . , 2q − 1, and bi > 0, i = 1, . . . , 2q .

Joining estimates (4.2.16) and (4.2.17), we have

E
(
|X̂z

h|
2q +

(
Ŷ y

h

)2q
)
≤ (|x|2q + y2q)(1 + 2Ch)

+ h
(
− C

(
|x|2q + y2q

)
+

2q−1∑

n=0

an|x|
n +

2q∑

n=1

bn|x|
2q−ny[ n

2
]
)
, h ≤ h0.

Since there exists a constant C = C(q) such that

xnym

x2q + y2q
6

(x + y)n+m

x2q + y2q
6 C

(x + y)n+m

(x + y)2q
, x, y > 0,

for any m,n ∈ N0 such that m + n < 2q, we have that

xmyn

x2q + y2q
→ 0, as x, y > 0, x + y → ∞. (4.2.18)

Therefore,

A2q := sup
x∈R, y>0

(
− C

(
|x|2q + y2q

)
+

2q−1∑

n=0

an|x|
n +

2q∑

n=1

bn|x|
2q−ny[ n

2
]
)

< +∞.

Denoting Cq := max{2C,A2q}, we finally have

E
(
|X̂z

h|
2q +

(
Ŷ y

h

)2q
)
≤ (|x|2q + y2q)(1 + Cqh) + Cqh, 0 < h ≤ h0,

that is, estimate (4.2.15) holds for all q ∈ N, as required.

Summarizing Propositions 3.2, 4.1, and 4.4 we get the following theorem.

Theorem 4.5. Let a one-step approximation Z̄z
h = (X̄z

h, Ȳ y
h ) of Eq. (1.2.1) be

constructed as follows:

(1) Let Ŷ y
h be a random variable taking the values

y1,2 = y+σ2h±
√

(y + σ2h) σ2h with corresponding probabilities p1,2 =
y

2y1,2

.

(2) Let X̃z
h be a random variable, independent of Ŷ y

h , taking the values

x1,2 = x ±
√

yh with probabilities
1

2
.
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(3) Let random variable X̂z
h be defined by

X̂z
h := x +

√
1 − ρ2(X̃z

h − x) +
ρ

σ
(Ŷ y

h − y).

(4) Finally, having Ẑz
h = (X̂z

h, Ŷ y
h ), define the one-step discretization scheme

Z̄z
h = (X̄z

h, Ȳ y
h ) by Eq. (4.1.1), that is,

Z̄z
h = Z̄(z, h) := D

[
Ẑ(z, h), h

]

=




X̂(z, h) + (r − 1

2
θ)h + 1

2k
(e−kh − 1)

(
Ŷ (y, h) − θ

)

Ŷ (y, h)e−kh + θ(1 − e−kh)



 . (4.2.19)

Then the one-step discretization scheme (4.2.19) defines a strongly potential weak

first-order approximation of the log-Heston system (1.2.1).

Proof. It remains to check that the approximation constructed also has uni-

formly bounded moments of all orders. Using expressions (3.2.3) for D(z, t) =

(Dz
1(t), D

y
2(t)) we will show that, for every q ∈ N, there exists a constant C̃q,

independent of z ∈ D and h, such that

|Dz
1(h)|q +

(
Dy

2(h)
)q

≤ (|x|q + yq)(1 + C̃qh) + C̃qh, z ∈ D, 0 < h ≤ h0.

Since there exists a constant C, depending on h0 and k, such that 1−e−kh < Ch

for 0 < h ≤ h0, we have

(Dy
2(h))q =

(
ye−kh + θ(1 − e−kh)

)q

6 (y(1 + Ch) + Chθ)q

6 yq(1 + C̃h) +

q∑

n=1

(
q
n

)
yq−n(Chθ)n(1 + Ch)n

6 yq(1 + C̃h) + h

q−1∑

n=0

anyn, 0 < h ≤ h0,

with some ai > 0, i = 0, . . . , q − 1, and from this we can further estimate:

(Dy
2(h))q 6 yq(1 + C̃h) + h

q−1∑

n=0

anyn

= yq(1 + 2C̃h) + h

(

−C̃yq +

q−1∑

n=0

anyn

)

, 0 < h ≤ h0. (4.2.20)
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Similarly, for all h, k > 0 and some constant C, depending on r, θ, q, and h0,

we have

|Dz
1(h)|q =

∣
∣
∣
∣x + (r −

1

2
θ)h +

1

2k
(1 − e−kh)(θ − y)

∣
∣
∣
∣

q

6
(
|x| + h(C + y)

)q

= |x|q + h

q∑

n=1

(
q
n

)
|x|q−nhn−1(C + y)n

≤ |x|q + h

(
q∑

n=1

(
q
n

)
|x|q−nhn−1Ĉ +

q∑

n=1

(
q
n

)
|x|q−nhn−1Ĉyn

)

≤ |x|q + h

(
q−1∑

n=0

bn|x|
n +

q∑

n=1

bn|x|
q−nyn

)

= |x|q + h

(

bqy
q +

q−1∑

n=0

bn|x|
n +

q−1∑

n=1

bn|x|
q−nyn

)

= |x|q(1 + C̃h) + h

(

−C̃|x|q + bqy
q +

q−1∑

n=0

bn|x|
n +

q−1∑

n=1

bn|x|
q−nyn

)

(4.2.21)

with some bi > 0, i = 0, . . . , q.

Joining estimates (4.2.20) and (4.2.21) and denoting aq = bq, for all 0 < h < h0,

we have

|Dz
1(h)|q +

(
Dy

2(h)
)q

≤ (|x|q + yq)(1 + 2C̃h)+

+ h
(
− C̃

(
|x|q + yq

)
+

q∑

n=0

anyn +

q−1∑

n=0

bn|x|
n +

q−1∑

n=1

bn|x|
q−nyn

)
.

Using (4.2.18), we notice that

Aq := sup
x∈R y>0

(
− C̃

(
|x|q + yq

)
+

q∑

n=0

anyn +

q−1∑

n=0

bn|x|
n +

q−1∑

n=1

bn|x|
q−nyn

)
< +∞.

Finally, denoting Cq := max{2C̃, Aq}, we get

|Dz
1(h)|q +

(
Dy

2(h)
)q

≤ (|x|q + yq)(1 + C̃qh) + C̃qh, 0 < h ≤ h0, (4.2.22)

This shows that composition (4.2.19) “preserves” the estimate of type (4.2.15),

that is, for every q ∈ N, there exists a constant C̄q, independent of h, such that

E
(
|X̄z

h|
q +

(
Ȳ y

h

)q)
≤ (|x|q + yq)(1 + C̄qh) + C̄qh, 0 < h ≤ h0,

which, as before, suffices for the uniform boundedness of all moments of Z̄z
h =

(X̄z
h, Ȳ y

h ).
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We finally have shown that Ẑh = (X̂z
h, Ŷ y

h ) is a first-order potential approx-

imation of the stochastic part (3.2.2) of the log-Heston model (1.2.1) and, by

Propositions 3.2, the composition (4.1.1) defines a potential first-order approxi-

mation Z
h

of the log-Heston model (1.2.1).

4.3 Algorithm

To emphasize the simplicity of the algorithm, we summarize the simulation step

from (X̄ih, Ȳih) = (x, y) to (X̄(i+1)h, Ȳ(i+1)h):

1. Draw a uniform random number U in the interval (−1, 1), and let U1 := |U |.

2. Given the values x and y, generate a random variable X̃ taking values x1

and x2 defined by (4.2.9) with probabilities 1/2 as follows: if U < 0, then

set X̃ := x1, otherwise X̃ := x2.

3. Generate a random variable Ŷ taking values y1 and y2 defined by (4.2.7)

with probabilities p1 = y/(2y1) and p2 = 1− p1, respectively: if U1 < p1, set

Ŷ := y1, otherwise Ŷ := y2.

4. Calculate (see (4.2.8))

X̂ := x +
√

1 − ρ2(X̃ − x) +
ρ

σ
(Ŷ − y).

5. Calculate (see (4.1.1))

X̄(i+1)h = X̂ + (r − 1
2
θ)h + 1

2k
(e−kh − 1)(Ŷ − θ),

Ȳ(i+1)h = Ŷ e−kh + θ(1 − e−kh).

Having generated all values X̄ih, i = 0, 1, 2, . . ., set Sih := exp{X̄ih}, i =

0, 1, 2, . . ..

4.4 Simulation examples

In this section, we give three simulation examples of our approximation scheme,

which we call DVSS (discrete-variable split-step) for short.
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Third moment

First, we apply the DVSS approximation to the test function f(x) = x3. Although,

at first sight, the test function seems to be very simple, but, as is shown in [6] and

[11], depending on the set of parameters, the (true) expectations can “explode,”

providing the possibility to try our method in an “extreme” case, not covered by

theoretical results. Unfortunately, neither [6] nor [11] provide explicit formula of

ES3
t ; therefore, we were forced to derive the formula ourselves (see Chapter 7). The

set of parameters S0 = 1, Y0 = 0.09, r = 0.02, θ = 0.12, σ = 0.3, k = 1, ρ = 0.5

forces the third moment ES3
t to converge to infinity (at about t = 10), whereas

the set of parameters S0 = 1, Y0 = 0.09, r = 0.02, θ = 0.12, σ = 0.2, k = 3,

ρ = −0.5 provides the third moment without “explosion.” We plot approximate

expectations by averaging over 5,000 samples with step h = 0.1 and by averaging

over 100,000 samples with step h = 0.01 in one plot, comparing them with true

expectations (see, e.g., [29], [6], [11]), marked by bullets “•” at discrete time points

with step size 0.2. As can be seen from the plots in Fig. 4.1, in the explosion case,

our approximation is rather satisfactory at the beginning but tends to lag behind

the true values as time approaches the moment of explosion.

Option pricing

Here we illustrate the DVSS approximation in calculation of European call and

put options prices, that is, we apply it to the test functions f1(x) = max{x−K, 0}

and f2(x) = max{K − x, 0}, respectively. For both types of options, we use the

same set of fixed parameters taken from [12]: K = 100, r = 0.02, Y0 = 0.09,

k = 3, θ = 0.12, σ = 0.2, and ρ = −0.5, together with S0 = 80; 100; 120.

To show the dynamics of approximation, we present two approximations of the

option price Ee−rT fi(ST ) in one plot as functions of maturity T (Fig. 4.2). One

graph (dashed line) of approximate prices is obtained by averaging over 5,000

samples with step h = 0.1, and the other (solid line) by averaging over 100,000

samples with step h = 0.01. We compare the obtained values of option prices with

the exact option prices calculated using the MATLAB code HestonFFTVanilla

from [9] (downloaded from www.quantlet.de) and plot the exact values at discrete

time points with step size 0.2, denoted by bullets “•”.
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Figure 4.1: DVSS approximation of ES3
t in the Heston model. Fixed parameters:

S0 = 1, Y0 = 0.09, r = 0.02, θ = 0.12. In the case of σ = 0.3, k = 1, and ρ = 0.5,
ES3

t “explodes” near T = 10, whereas σ = 0.2, k = 3, and ρ = −0.5 provide ES3
t

without “explosion”.

Comparison with the QE/QE-M (Andersen [5]) and ALF2

(Alfonsi [3]) approximations

Finally, we compare the DVSS scheme with the QE (quadratic-exponential) and

the QE-M (QE with martingale correction) schemes of Andersen [5] using the

same parameters sets as in [5] and with the second-order scheme proposed by

Alfonsi [3], using the same parameters sets as in [3]. To demonstrate better the

effect of the step size and number of trajectories, we choose different numbers of

trajectories (N) and different steps (h) in each case (see Table 4.1).

We plot the cases from [5] (i.e., cases I, II, and III) in one graph (see Fig. 4.3)

setting the time to maturity T = 10 and the cases from [3] (i.e., cases IV and V)

in another, setting T = 2 (see Fig. 4.4). We take S0 = 100 for all the cases, r = 0

for cases I, II, and III, and r = 0.02 for cases IV and V. As before, in both graphs,

the exact option prices are marked by bullets “•” (at discrete time points with

step size 1 in cases I, II, and III and with step size 0.2 in cases IV and V). As one
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Figure 4.2: European option prices in the Heston stochastic volatility model for
different asset prices S0 with fixed parameters K = 100, r = 0.02, Y0 = 0.09,
k = 3, θ = 0.12, σ = 0.2, and ρ = −0.5.

can see from Figs. 4.3 and 4.4, the DVSS approximation behaves rather similarly

to the QE(-M) and Alfonsi schemes (and in some cases, even better, for example,

in case III with K = 70, and case V with K = 80). To have a clearer picture, we

further provide figures, showing the accuracies of approximations as functions of

the step size h. As before, we split the cases into two graphs. Figure 4.5 shows the

accuracy of approximations of call price at the time of maturity T = 10 in cases I,

II, III (with strike prices 70, 100, 140), and Fig. 4.6 shows the put prices at T = 1

in cases IV and V (with strike prices 80, 100, 120). In Fig. 4.5, the approximate
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Figure 4.3: Comparison of DVSS and QE(-M) approximations of European option
prices in the Heston’s stochastic volatility model for different parameters and
strike prices (70, 100, 140) with fixed parameters S0 = 100 and r = 0.

42



Exact
DVSS
Alfonsi

Case IV

Case V

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

T

P
ut

(a) Strike price 80

0.0 0.5 1.0 1.5 2.0

0
2

4
6

8

T

P
ut

Exact
DVSS
Alfonsi Case IV

Case V

(b) Strike price 100

0.0 0.5 1.0 1.5 2.0

16
17

18
19

20

T

P
ut

Exact
DVSS
Alfonsi

Case IV

Case V

(c) Strike price 120

Figure 4.4: Comparison of DVSS and Alfonsi approximations of European option
prices in the Heston’s stochastic volatility model for different parameters and
strike prices (80, 100, 120) with fixed parameter S0 = 100.
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Case I Case II Case III Case IV Case V
(see [5]) (see [3])

σ 1 0.9 1 0.4 1
κ 0.2 0.3 1 0.5 0.5
ρ −0.9 −0.5 −0.3 −0.5 −0.8
θ 0.04 0.04 0.09 0.04 0.04
r 0 0 0 0.02 0.02
Y0 0.04 0.04 0.09 0.04 0.04
T 10 10 10 2 2

Table 4.1: Test cases for comparison of DVSS with QE(-M) and Alfonsi schemes.
In all cases, S0 = 100.

Case I Case II Case III Case IV Case V
(see [5]) (see [3])

h 0.1 0.01 0.05 0.05 0.1
N 10000 100000 70000 100000 10000

Table 4.2: Step (h) and expiration time (T ) parameters used in each test case for
comparison of DVSS with QE(-M) and Alfonsi schemes.

prices are obtained by averaging over 106 samples, and in Fig. 4.6 by averaging

over 108 samples. Dashed lines in both figures represent the exact values of call

(Fig. 4.5) or put (Fig. 4.6) prices, whereas dotted lines show the ±1% deviations

from the exact value. If one or both dotted lines are missing, this means that all

the values in the plot are in the range of −1%, or +1%, or both from the exact

value (depending on which lines are missing).

Finally, we take one of the cases from each graph (we choose cases I and V)

and examine the errors in the plots more closely. To this end, we calculate the

bias

εh = Ee−rT max(ST − K, 0) − Ee−rT max(S
h

T − K, 0),

that is, the difference between the exact price of call option and its evaluation

using an approximation scheme, and put the results in Tables 4.3 and 4.4. The

values in the table are written in bold when the bias is within the window of ±1%

from the exact value. We also put the half-length of the 95% confidence interval

in parenthesis and mark it with an asterisk if the bias is less than the half-length

of the 95% confidence interval, that is, when the error of approximation is not

statistically significant.

Examining the figures and Tables 4.3 and 4.4, we can conclude that although,
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in most cases, the DVSS scheme has a slightly higher bias than the QE and Alfonsi

schemes but remains within the window of ±1% (from the exact value), which

is a sufficient accuracy for practical applications. Moreover, for small steps (for

example, h = 0.01), the bias becomes quite similar to that of the QE and Alfonsi

schemes.
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Figure 4.5: Approximations of call price in function of h = 1/n in cases I, II,
and III for different strike prices (70, 100, 140) with fixed parameters S0 = 100,
r = 0, and T = 10. Approximate prices were obtained by averaging over 106

samples.

To complete, we compare the computation times of DVSS, Andersen’s QE, and

Alfonsi schemes. For calculations, we used a laptop PC with Intel(R) CORE(TM)

i7-3610QM 2.30 GHz processor and 8 GB RAM and C programming language (the

graphs were plotted by using the R programming language with graphics package

TikzDevice). The results are listed in Table 4.5. The numbers on the left side of

the table show the averages over the runs of 100 000 trajectories with step h = 0.01
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DVSS QE Alfonsi
h K = 70

1/5 -0.00663 (0.03316*) -0.01567 (0.03171*) 0.17145 (0.03176)
1/7 -0.00892 (0.03275*) -0.01661 (0.03173*) 0.08536 (0.03173)
1/10 0.00399 (0.03249*) -0.01106 (0.03171*) 0.03948 (0.03173)
1/14 -0.02387 (0.03230*) -0.00311 (0.03168*) 0.04268 (0.03170)
1/20 0.00668 (0.03208*) 0.02940 (0.03170*) 0.03840 (0.03175)
1/30 -0.01720 (0.03199*) 0.01027 (0.03170*) -0.01109 (0.03172*)
1/50 -0.01083 (0.03185*) -0.00006 (0.03164*) 0.01610 (0.03173*)
1/100 -0.02197 (0.03179*) -0.03300 (0.03164) -0.00809 (0.03170*)

K = 100
1/5 -0.14155 (0.01927) -0.00273 (0.01680*) 0.21623 (0.01764)
1/7 -0.12227 (0.01860) -0.00074 (0.01684*) 0.13652 (0.01732)
1/10 -0.08051 (0.01804) -0.01024 (0.01688*) 0.08783 (0.01707)
1/14 -0.06883 (0.01771) -0.00717 (0.01688*) 0.05290 (0.01697)
1/20 -0.05555 (0.01747) 0.00880 (0.01675*) 0.01431 (0.01696*)
1/30 -0.04118 (0.01723) 0.00496 (0.01678*) 0.01618 (0.01687*)
1/50 -0.01918 (0.01702*) 0.00024 (0.01673*) 0.00501 (0.01687*)
1/100 -0.02250 (0.01696) -0.00675 (0.01676*) 0.00588 (0.01680*)

K = 140
1/5 0.01994 (0.00253) -0.00360 (0.00346) -0.00198 (0.00344*)
1/7 0.01503 (0.00274) 0.00138 (0.00327*) -0.00555 (0.00375)
1/10 0.00798 (0.00297) 0.00069 (0.00356*) -0.00309 (0.00356*)
1/14 0.00917 (0.00305) 0.00071 (0.00334*) -0.00323 (0.00358*)
1/20 0.00632 (0.00311) 0.00192 (0.00332*) -0.00186 (0.00336*)
1/30 0.00609 (0.00320) 0.00136 (0.00330*) 0.00045 (0.00334*)
1/50 0.00127 (0.00335*) 0.00404 (0.00319) -0.00140 (0.00340*)
1/100 0.00390 (0.00330) -0.00019 (0.00337*) -0.00118 (0.00337*)

Table 4.3: Estimated bias in the test case I for different strike prices (K = 70,
K = 100, and K = 140). Values are written in bold when the bias is in the
window of ±1% from the exact value. Numbers in parentheses show the half-
length of the 95% confidence interval and are marked with an asterisk if the bias
is within this interval.

and time to maturity T = 10 in all the cases. One can see that the DVSS scheme

is much faster in all the cases (see the computational times measured relatively

to the DVSS scheme on the right of the table). Note that we tried to optimize

the QE and Alfonsi approximation code by caching parts of computations not

depending on each time step.
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DVSS QE Alfonsi
h K = 80

1/5 0.06801 (0.00158) 0.01851 (0.00158) 0.08404 (0.00157)
1/7 0.05401 (0.00158) 0.01264 (0.00158) 0.04318 (0.00158)
1/10 0.03943 (0.00158) 0.00924 (0.00158) 0.02156 (0.00158)
1/14 0.02929 (0.00158) 0.00628 (0.00158) 0.01235 (0.00158)
1/20 0.02016 (0.00158) 0.00413 (0.00158) 0.00645 (0.00158)
1/30 0.01195 (0.00158) 0.00302 (0.00158) 0.00262 (0.00158)
1/50 0.00796 (0.00158) 0.00386 (0.00158) -0.00008 (0.00158*)
1/100 0.00470 (0.00158) 0.00034 (0.00158*) -0.00195 (0.00159)

K = 100
1/5 -0,21043 (0,00245) 0,02198 (0,00249) 0,11304 (0,00244)
1/7 -0,13670 (0,00247) 0,01264 (0,00250) 0,10136 (0,00247)
1/10 -0,08664 (0,00248) 0,00994 (0,00250) 0,08052 (0,00249)
1/14 -0,05148 (0,00249) 0,00797 (0,00250) 0,06121 (0,00250)
1/20 -0,03059 (0,00249) 0,00621 (0,00250) 0,03786 (0,00250)
1/30 -0,01844 (0,00250) 0,00560 (0,00250) 0,02034 (0,00250)
1/50 -0,00999 (0,00250) 0,00657 (0,00250) 0,00475 (0,00250)
1/100 -0,00333 (0,00250) 0,00099 (0,00250*) 0,00030 (0,00251*)

K = 120
1/5 0,11991 (0,00316) 0,00786 (0,00305) 0,02607 (0,00305)
1/7 0,10049 (0,00314) 0,00217 (0,00305*) 0,03004 (0,00306)
1/10 0,08482 (0,00312) 0,00491 (0,00305) 0,01889 (0,00306)
1/14 0,06114 (0,00310) 0,00327 (0,00306) 0,01053 (0,00306)
1/20 0,04277 (0,00309) 0,00297 (0,00306*) 0,00418 (0,00306)
1/30 0,02770 (0,00308) 0,00495 (0,00306) 0,00137 (0,00306*)
1/50 0,01679 (0,00307) 0,00721 (0,00305) 0,00119 (0,00306*)
1/100 0,01419 (0,00306) 0,00338 (0,00306) -0,00351 (0,00306)

Table 4.4: Estimated bias in the test case V for different strike prices (K = 80,
K = 100, and K = 120). Values are written in bold when the bias is in the
window of ±1% from the exact value. Numbers in parentheses show the half-
length of the 95% confidence interval and are marked with an asterisk if the bias
is within this interval.

100 000 trajectories in sec. Relative to DVSS
DVSS QE Alfonsi QE Alfonsi

Case I 10.219 39.778 36.219 3.749 3.413
Case II 10.058 27.129 31.203 2.697 3.102
Case III 10.000 25.131 30.663 2.513 3.066
Case IV 10.049 26.546 31.279 2.642 3.113
Case V 10.333 35.690 34.218 3.454 3.311

Table 4.5: Average and relative (to DVSS) computation times.

47



0.00 0.05 0.10 0.15 0.20

1.
50

1.
51

1.
52

1.
53

1.
54

1.
55

1.
56

h

P
ut

DVSS
QE
Alfonsi

Exact value

-1 % (from the
exact value)

(a) Case IV. Strike K = 80

0.00 0.05 0.10 0.15 0.20

1.
60

1.
62

1.
64

1.
66

1.
68

h

P
ut

Exact value

-1 %

(b) Case V. Strike K = 80

0.00 0.05 0.10 0.15 0.20

6.
10

6.
15

6.
20

6.
25

h

P
ut

Exact value

+1 %

-1 %

(c) Case IV. Strike K = 100

0.00 0.05 0.10 0.15 0.204.
00

4.
05

4.
10

4.
15

4.
20

4.
25

4.
30

4.
35

h

P
ut

Exact value

+1 %

-1 %

(d) Case V. Strike K = 100

0.00 0.05 0.10 0.15 0.20

19
.0

0
19

.0
5

19
.1

0
19

.1
5

19
.2

0

h

P
ut

+1 %

Exact value

(e) Case IV. Strike K = 120

0.00 0.05 0.10 0.15 0.20

17
.7

0
17

.7
5

17
.8

0
17

.8
5

h

P
ut

Exact value

-1 %

(f) Case V. Strike K = 120

Figure 4.6: Approximations of put price in function of h = 1/n in cases IV and V
for different strike prices (80, 100, 140) with fixed parameters S0 = 100 and T = 1.
Approximate prices were obtained by averaging over 108 samples.
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Chapter 5

Second-order approximation

In this chapter we construct a second-order approximation scheme for the solution

of the Heston system (1.1.1). Similarly as before, first (in the first section of the

chapter) we adapt a split-step technique, then, in the next section find an approx-

imation scheme for the (split) stochastic part and finally, in the last section of the

chapter, provide numerical simulations illustrating our scheme and comparing it

to other known schemes of the Heston model.

5.1 A potential second-order approximation

As in the case for the first-order approximation, we start to construct our scheme

using methods described in Section 3.2. First, in order to assure the positivity and

avoid moment explosions we change our model (St, Yt) to the log-Heston model

Zt = (Xt := log St, Yt) (see (1.2.1)), then split the log-Heston model into the

stochastic and deterministic parts. Solution of the latter D(z, t) = (Dz
1(t), D

y
2(t))

is known (see (3.2.3)) and we are left to construct a second-order discretization

scheme for the solution of the stochastic part Ẑh = Ẑ(z, h) =
(
X̂(z, h), Ŷ (y, h)

)
.

Having done this, we can define the second-order split-step approximation for Zt

by the composition

Z̄h = Z̄(z, h) =




X̄(z, h)

Ȳ (y, h)



 := D
(
Z̃
(
D(z, h/2), h

)
, h/2

)
. (5.1.1)

Proposition 3.2 assures that the composition (5.1.1) defines a potential second-

order approximation of the log-Heston system (1.2.1) if we provide a potential
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second-order approximation scheme of the stochastic part of the log-Heston model

equation.

5.2 A potential second-order approximation of

the stochastic part

As before, we rewrite the stochastic part of system (1.2.1) as






dXt =
√

Yt

(
ρ dWt +

√
1 − ρ2 dBt

)
,

dYt = σ
√

Yt dWt,

(5.2.1)

where B is a Brownian motion independent of W .

Although this equation is simple enough for constructing the first-order (po-

tential) weak approximation (see [22]), as it turns out, it is too difficult to arrive

at any simple second-order (potential) weak approximation by discrete random

variables.

The generator of such a stochastic part is

Lf(z) =
y

2

(
∂2

∂x2
+ σ2 ∂2

∂y2

)

f(z) + ρσy
∂2f

∂x∂y
(z).

Therefore,

L2f(z) =
y

2

(
∂2

∂x2
+ σ2 ∂2

∂y2

)

Lf(z) + ρσy
∂2Lf

∂x∂y
(z).

Straightforward and somewhat tedious calculation gives

L2f(z) =
y2

4

∂4

∂x4
f(z) +

y2

4
σ2 ∂4

∂x2∂y2
f(z) + ρσ

y2

2

∂4

∂x3∂y
f(z)

+
y

2
σ2

(
∂3

∂x2∂y
+ σ2 ∂3

∂y3

)

f(z) + yσ3ρ
∂3f

∂x∂y2
(z)

+
y2

2
σ2

(
1

2

(
∂4

∂x2∂y2
+ σ2 ∂4

∂y4

)

f(z) + ρσ
∂4

∂x∂y3
(z)

)

+
ρσy

2

∂3

∂x3
f(z) +

ρσ3y

2

∂3

∂x∂y2
f(z) + ρ2σ2y

∂3f(z)

∂x2∂y

+ ρσy2

(
1

2

∂4

∂x3∂y
f(z) +

1

2
σ2 ∂4

∂x∂y3
f(z) + ρσ

∂4f(z)

∂x2∂y2

)

.

We easily see that the second-order generator for this equation simply has too

many components to possibly arrive at any easy enough discretization scheme.
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Therefore, in order to construct an easy-to-implement second-order approxima-

tion, we need to simplify the stochastic part. We achieve that by multiplying the

first equation by σ, the second by ρ, and then subtracting. This way, we get

d(σX − ρY )t = σ
√

1 − ρ2
√

Yt dBt. (5.2.2)

Denoting Ȳt = Yt/σ
2 and X̄t := (σXt−ρYt)/(σ2

√
1 − ρ2), we arrive at the system






dX̄t =
√

Ȳt dBt,

dȲt =
√

Ȳt dWt.

(5.2.3)

The solution of system (5.2.1) is then a linear transformation of that system (5.2.3):

X = σ
(√

1 − ρ2 X̄ + ρȲ
)

,

Y = σ2Ȳ .

The generator of the solution of (5.2.3) is

Lf(z) =
y

2

(
∂2

∂x2
+

∂2

∂y2

)

f(z),

and therefore,

L2f(z) =
y

2

(
∂2

∂x2
+

∂2

∂y2

)

Lf(z).

Calculating

∂2

∂x2
Lf(z) =

y

2

[
∂4

∂x4
+

∂4

∂x2∂y2

]

f(z),

∂

∂y
Lf(z) =

∂

∂y

[
y

2

(
∂2

∂x2
+

∂2

∂y2

)

f(z)

]

=
1

2

(
∂2

∂x2
+

∂2

∂y2

)

f(z) +
y

2

(
∂3

∂x2∂y
+

∂3

∂y3

)

f(z),

and

∂2

∂y2
Lf(z) =

(
∂3

∂x2∂y
+

∂3

∂y3

)

f(z) +
y

2

(
∂4

∂x2∂y2
+

∂4

∂y4

)

f(z),

we finally get

L2f(z) =
y

2

(
∂2

∂x2
+

∂2

∂y2

)

Lf(z)

=
y

2

∂2

∂x2
Lf(z) +

y

2

∂2

∂y2
Lf(z)
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=
y2

4

[
∂4

∂x4
+

∂4

∂x2∂y2

]

f(z)

+
y

2

[(
∂3

∂x2∂y
+

∂3

∂y3

)

+
y

2

(
∂4

∂x2∂y2
+

∂4

∂y4

)]

f(z)

=
y

2

(
∂3

∂x2∂y
+

∂3

∂y3

)

f(z)

+
y2

4

(
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4

)

f(z).

Let Ẑz
h = (X̂z

h, Ŷ y
h ) be any discretization scheme.1 Using Taylor’s formula and

taking expectations, we write

Ef(Ẑz
h) = f(z) +

(
∂f

∂x
(z)E(X̂z

h − x) +
∂f

∂y
(z)E(Ŷ y

h − y)

)

+

(
1

2

∂2f

∂x2
(z)E(X̂z

h − x)2 +
1

2

∂2f

∂y2
(z)E(Ŷ y

h − y)2

+
∂2f

∂x∂y
(z)E(X̂z

h − x)(Ŷ y
h − y)

)

+

(
1

6

∂3f

∂x3
(z)E(X̂z

h − x)3 +
1

2

∂3f

∂x2∂y
(z)E(X̂z

h − x)2(Ŷ y
h − y)

+
1

2

∂3f

∂x∂y2
(z)E(X̂z

h − x)(Ŷ y
h − y)2 +

1

6

∂3f

∂y3
(z)E(Ŷ y

h − y)3

)

+

(
1

24

∂4f

∂x4
(z)E(X̂z

h − x)4 +
1

6

∂4f

∂x3∂y
(z)E(X̂z

h − x)3(Ŷ y
h − y)

+
1

4

∂4f

∂x2∂y2
(z)E(X̂z

h − x)2(Ŷ y
h − y)2

+
1

6

∂4f

∂x∂y3
(z)E(X̂z

h − x)(Ŷ y
h − y)3 +

1

24

∂4f

∂y4
(z)E(Ŷ y

h − y)4

)

+ E∇5(X̂
z
h, Ŷ y

h , z) + Er5(X̂
z
h, Ŷ y

h , z),

where

∇5(X̂
z
h, Ŷ y

h , z) :=
1

5!

(
∂

∂x
(X̂z

h − x) +
∂

∂y
(Ŷ y

h − y)

)5

f(z) (5.2.4)

and

r5(X̂
z
h, Ŷ y

h , zθ) (5.2.5)

are the fifth-order term and fifth-order remainder in the formula, respectively. So,

the second-order remainder of a discretization scheme Ẑz
h equals

Rh
2f(z) = Ef(Ẑz

h) −
(
f(z) + Lf(z)h + L2f(z)

h2

2

)

1Note that we again (as in the first-order case) write Ŷ y
h instead of Ŷ z

h since we suppose
that the latter depends on y only.
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=
∂f

∂x
(z)E(X̂z

h − x) +
∂f

∂y
(z)E(Ŷ y

h − y) +
1

2

∂2f

∂x2
(z)
(
E(X̂z

h − x)2 − yh
)

+
1

2

∂2f

∂y2
(z)
(
E(Ŷ y

h − y)2 − yh
)

+
∂2f

∂x∂y
(z)E(X̂z

h − x)(Ŷ y
h − y)

+
1

6

∂3f

∂x3
(z)E(X̂z

h − x)3 +
1

6

∂3f

∂y3
(z)

(

E(Ŷ y
h − y)3 −

3

2
yh2

)

+
1

2

∂3f

∂x2∂y
(z)

(

E(X̂z
h − x)2(Ŷ y

h − y) −
1

2
yh2

)

+
1

2

∂3f

∂x∂y2
(z)E(X̂z

h − x)(Ŷ y
h − y)2

+
1

24

∂4f

∂x4
(z)
(
E(X̂z

h − x)4 − 3y2h2
)

+
1

6

∂4f

∂x3∂y
(z)E(X̂z

h − x)3(Ŷ y
h − y)

+
1

4

∂4f

∂x2∂y2
(z)
(
E(X̂z

h − x)2(Ŷ y
h − y)2 − y2h2

)
+

1

6

∂4f

∂x∂y3
(z)E(X̂z

h − x)(Ŷ y
h − y)3

+
1

24

∂4f

∂y4
(z)
(
E(Ŷ y

h − y)4 − 3y2h2
)

+ E∇5(X̂
z
h, Ŷ y

h , z) + Er5(X̂
z
h, Ŷ y

h , z).

Therefore, a discretization scheme Ẑz
h = (X̂z

h, Ŷ y
h ) is a potential second-order

approximation of the solution of system (5.2.3) if the following moment conditions

are satisfied:






E(X̂z
h − x) = 0, E(Ŷ y

h − y) = 0,

E(X̂z
h − x)2 = yh, E(Ŷ y

h − y)2 = yh,

E(X̂z
h − x)3 = 0, E(Ŷ y

h − y)3 = 3
2
yh2,

E(X̂z
h − x)4 = 3y2h2, E(Ŷ y

h − y)4 = 3y2h2,

E(X̂z
h − x)(Ŷ y

h − y) = 0,

E(X̂z
h − x)2(Ŷ y

h − y) = 1
2
yh2,

E(X̂z
h − x)(Ŷ y

h − y)2 = 0,

E(X̂z
h − x)3(Ŷ y

h − y) = 0,

E(X̂z
h − x)2(Ŷ y

h − y)2 = y2h2,

E(X̂z
h − x)(Ŷ y

h − y)3 = 0,

(5.2.6)

z = (x, y) ∈ D and for every f ∈ C∞
pol(D),

E∇5(X̂
z
h, Ŷ y

h , z) = Op(h
3) (5.2.7)

and

E|r5(X̂
z
h, Ŷ y

h , z)| = Op(h
3). (5.2.8)
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Remark 5.1. Important! Note that, in fact, Eqs. (5.2.6) need to be satisfied only

up to Op(h
3) terms, which means that any expressions of order Op(h

3) may be

added to the right-hand side of the equations.

Proposition 5.2. Let a one-step approximation Ẑz
h = (X̂z

h, Ŷ y
h ) be constructed

as follows:

(1) Let Ŷ y
h be a discretization scheme satisfying the four conditions on the right

in Eqs. (5.2.6) ( up to Op(h
3) terms) and, in addition, the following moment

conditions:

(i) E(Ŷ y
h − y)5 = Op(h

3);

(ii) E|Ŷ y
h − y|2q = Op(h

q) for all q ≥ 3.

(2) Let ξ be a discrete random variable, independent from Ŷ y
h , with first five

moments matching those of a standard normal random variable. Let, finally,

the random variable X̂z
h be defined by

X̂z
h := x + ξ

√
1

2
(y + Ŷ y

h )h . (5.2.9)

Then the (one-step) approximation scheme Ẑz
h := (X̂z

h, Ŷ y
h ) satisfies all the

requirements in Eqs. (5.2.6)–(5.2.8).

Remark 5.3. An example of approximation scheme Ŷ y
h satisfying conditions (1)

of the theorem is a particular case (σ = 1) of Theorem 15 in [27]. Let the random

variables Ŷ y
h take the values y1, y2, and y0 with corresponding probabilities p1, p2,

and p0 = 1 − p1 − p2 defined as follows:

• If y ≥ 2h, then

y1 = y + (s −
√

Δ)/2, y2 = y + (s +
√

Δ)/2, y0 = y;

p1 =
2yh

√
Δ(

√
Δ − s)

, p2 =
2yh

√
Δ(

√
Δ + s)

, where

s =
3h

2
, Δ =

21

4
h2 + 12yh;

• If 0 < y < 2h, then

y1 = (s −
√

Δ)/2, y2 = (s +
√

Δ)/2, y0 = 0;
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p1 =
y(2y + 2h − s −

√
Δ)

√
Δ(

√
Δ − s)

, p2 =
y(2y + 2h − s +

√
Δ)

√
Δ(

√
Δ + s)

, where

s =
4y2 + 9yh + 3h2

2y + h
, Δ =

h(16y3 + 33y2h + 18yh2 + 3h3)

(2y + h)2
.

Then Ŷ y
h satisfies condition (1) of the theorem.

Remark 5.4. Examples of (distributions of) random variables ξ:

(1) P{ξ = ±
√

3} = 1
6
, P{ξ = 0} = 2

3
;

(2) P

{

ξ = ±
√

1 −
√

6/3

}

= 3
8
, P
{

ξ = ±
√

1 +
√

6
}

= 1
8
.

The first one is simpler, but the second has an advantage: it can be simply

generated by three bits of a uniform (pseudo-)random variable in the interval

[0, 1], leaving the remaining bits for generating Ŷ y
h and, thus, X̂z

h.

Proof of Proposition 5.2. From the condition (i) of the Proposition we have

that (up to Op(h
3) terms)

E(Ŷ y
h − y) = 0,

E(Ŷ y
h − y)2 = yh,

E(Ŷ y
h − y)3 =

3

2
yh2,

E(Ŷ y
h − y)4 = 3y2h2.

Since Eξn = 0, n = 1, 3, 5, Eξ2 = 1, and Eξ4 = 3, using the independence of

Ŷ y
h and ξ, we easily calculate

E(X̂z
h − x)n(Ŷ y

h − y)k =

(√
h

2

)n

EξnE

(√
(y + Ŷ y

h )

)n

E(Ŷ y
h − y)k = 0

for n = 1, 3, 5 and all k ∈ N0,

E(X̂z
h − x)2 =

h

2
E
(
y + Ŷ y

h

)
Eξ2 = hy,

E(X̂z
h − x)4 =

h2

4
E
(
y + Ŷ y

h

)2

Eξ4

=
3h2

4

(
(2y)2 + 4yE(Ŷ y

h − y) + E(Ŷ y
h − y)2

)

=
3h2

4

(
4y2 + yh

)
= 3y2h2 +

3

4
yh3 = 3y2h2 + Op(h

3),
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E(X̂z
h − x)2(Ŷ y

h − y) =
h

2
E
[
(y + Ŷ y

h )(Ŷ y
h − y)]Eξ2

=
h

2

[
2yE(Ŷ y

h − y) + E(Ŷ y
h − y)2]

=
h

2

[
2y ∙ 0 + yh] =

yh2

2
,

E(X̂z
h − x)2(Ŷ y

h − y)2 =
h

2
E
[
(y + Ŷ y

h )(Ŷ y
h − y)2]Eξ2

=
h

2

[
2yE(Ŷ y

h − y)2 + E(Ŷ y
h − y)3]

=
h

2

[
2y ∙ yh +

3

2
yh2] = y2h2 + Op(h

3).

Thus, we have checked all the conditions in Eqs. (5.2.6) up to Op(h
3) terms. To

prove estimate (5.2.7), we additionally calculate the moments

E(X̂z
h − x)2(Ŷ y

h − y)3 =
h

2
E
[
(y + Ŷ y

h )(Ŷ y
h − y)3]Eξ2

=
h

2

[
2yE(Ŷ y

h − y)3 + E(Ŷ y
h − y)4]

=
h

2

[
2y ∙

3

2
yh2 + 3y2h2] = 6y2h3 = Op(h

3)

and

E(X̂z
h − x)4(Ŷ y

h − y) =
h

2
E
[
(y + Ŷ y

h )2(Ŷ y
h − y)

]
Eξ4

=
3h2

4

[
4y2E(Ŷ y

h − y) + 4yE(Ŷ y
h − y)2 + E(Ŷ y

h − y)3]

=
3h2

4

[
4y2 ∙ 0 + 4y2h +

3

2
yh2]

= 3y2h3 +
9yh4

8
= Op(h

3).

Therefore, for every function f ∈ C∞
pol(D), we have

E∇5(X̂
z
h, Ŷ y

h , z)

=
1

5!

∂5f

∂x5
(z)E(X̂z

h − x)5 +
1

4!

∂5f

∂x4∂y
(z)E(X̂z

h − x)4(Ŷ y
h − y)

+
1

12

∂5f

∂x3∂y2
(z)E(X̂z

h − x)3(Ŷ y
h − y)2 +

1

12

∂5f

∂x2∂y3
(z)E(X̂z

h − x)2(Ŷ y
h − y)3

+
1

4!

∂5f

∂x∂y4
(z)E(X̂z

h − x)(Ŷ y
h − y)4 +

1

5!

∂5f

∂y5
(z)E(Ŷ y

h − y)5

=

[
1

8

(
y2 +

3

8
yh
) ∂5f

∂x4∂y
(z) +

1

4
y2 ∂5f

∂x2∂y3
(z)

]

h3 +
1

5!

∂5f

∂y5
(z)Op(h

3)

= Op(h
3).
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Now consider

Er5(X̂
z
h, Ŷ y

h , x, y) =
1

6!

∑

m+n=6

(
6
m

)
E

∂6f

∂xm∂yn
(zθ)(X̂

z
h − x)m(Ŷ y

h − y)n, (5.2.10)

where zθ = (xθ, yθ) with xθ = x + θ(X̂z
h − x) and yθ = y + θ(Ŷ y

h − y) for some

θ ∈ (0, 1).

Using condition (i) of the Proposition, the independence of Ŷ y
h and ξ, and the

Cauchy–Schwarz inequality, for all m,n ∈ N0, we get

E
∣
∣
∣(X̂z

h − x)m(Ŷ y
h − y)n

∣
∣
∣ 6

√
E(X̂z

h − x)2m

√
E(Ŷ y

h − y)2n

=

√(
h

2

)m

Eξ2mE(y + Ŷ y
h )m

√
Op(hn)

6
√

ChmE(Ŷ y
h − y + 2y)m

√
Op(hn)

6

√

Chm
(
E|Ŷ y

h − y|m + (2y)m
)√

Op(hn)

6

√

Chm

(√
E|Ŷ y

h − y|2m + ym

)√
Op(hn)

6

√

Chm

(√
Op(hm) + ym

)√
Op(hn)

=
√

Op(hm)
√

Op(hn) =
√

Op(hn+m)

= Op

(
h

n+m
2

)
, (5.2.11)

where the constant C depends on m and varies from line to line.

Since for any f ∈ C∞
pol(D) and multiindex i ∈ N2

0, there exist C > 0 and q ∈ N,

depending on a good sequence for f only, such that

(
f (i)(z)

)2
6 C(1 + x2q + y2q), z = (x, y) ∈ D,

we can further estimate
√
E (f (i)(zθ))

2 6 C

√
1 + E(x + θ(X̂z

h − x))2q + E(y + θ(Ŷ y
h − y))2q

6 C

√
1 + x2q + y2q + E(X̂z

h − x)2q + E(Ŷ y
h − y)2q

6 C
√

1 + x2q + y2q + hq(1 + |z|2k)

6 C(1 + |z|q∨k), h ≤ h0,

where the constants q, k ∈ N, h0 > 0, and C > 0 depend on a good sequence for f

only (and, as before, C varies from line to line). Thus, shortly,
√
E (f (i)(zθ))

2
= Op(1).
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Finally, using the latter and the Cauchy–Schwarz inequality, for any multiindex

i = (n,m) ∈ N0 such that n + m = 6 , we have

E
∣
∣
∣f (i)(zθ)(X̂

z
h − x)m(Ŷ y

h − y)n
∣
∣
∣

6
√
E (f (i)(zθ))

2
√
E(X̂z

h − x)2m(Ŷ y
h − y)2n

= Op(1)
√

Op(hn)Op(hm) = Op(h
n+m

2 ) = Op(h
3). (5.2.12)

Now inserting estimate (5.2.12) into (5.2.10) proves estimate (5.2.8).

Proposition 5.5. Let Ŷ y
h be any one-step discretization scheme taking nonneg-

ative values and satisfying the following moment condition:

|E(Ŷ y
h − y)n| ≤ cn(1 + yn)h, y ≥ 0, h ≤ h0, n ∈ N, (5.2.13)

with some constants cn, n ∈ N.

Let X̂z
h be defined as in Eq. (5.2.9). Then the approximation Ẑz

t := (X̂z
t , Ŷ y

t ),

t = kh, h = [T/N ], N ∈ N, k = 0, 1, . . . , N , defined by the one-step scheme

Ẑz
h := (X̂z

h, Ŷ y
h ) has uniformly bounded moments on the whole time interval [0 , T ],

that is, for all q ∈ N,

sup
N∈N

sup
0≤k≤N

E|Ẑz
kh|

q < +∞. (5.2.14)

Proof. We will prove the equivalent relation

sup
N∈N

sup
0≤k≤N

E
(
|X̂z

kh|
q +

(
Ŷ y

kh

)q)
< +∞ (5.2.15)

for all q ∈ N. Note that it suffices to check the latter for sufficiently large q.

By the markovity of the approximation and Proposition 1.5 of [3], in turn, it

suffices to prove that, for any sufficiently large q ∈ N and any h0 > 0, there exists

a constant Cq such that

E
(
|X̂z

h|
q +

(
Ŷ y

h

)q)
≤ (|x|q + yq)(1 + Cqh) + Cqh, 0 < h ≤ h0. (5.2.16)

We have

E
(
Ŷ y

h

)q
= E

(
y + (Ŷ y

h − y)
)q

= yq +

q∑

n=1

(
q
n

)
yq−nE

(
Ŷ y

h − y
)n

≤ yq +

q∑

n=1

cn

(
q
n

)
yq−n(1 + yn)h
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= yq + h
( q∑

n=1

cn

(
q
n

)
yq +

q∑

n=1

cn

(
q
n

)
yq−n

)

≤ yq + h
(
aqy

q +

q−1∑

n=0

anyn
)
, 0 < h ≤ h0,

with some constants ai > 0, i = 0, 1, . . . , q. From this we have

E
(
Ŷ y

h

)q
≤ yq + h

(
aqy

q +

q−1∑

n=1

anyn
)

≤ yq(1 + 2aqh) + h
(
− aqy

q +

q−1∑

n=0

anyn
)
, 0 < h ≤ h0. (5.2.17)

For E|X̂z
h|

q, a rougher estimate suffices:

E|X̂z
h|

q = E
∣
∣
∣x + ξ

√
1
2
(y + Ŷ y

h )h
∣
∣
∣
q

≤ |x|q + 1
2

(
q
2

)
|x|q−2Eξ2 ∙ E(y + Ŷ y

h )h + 1
4

(
q
4

)
|x|q−4Eξ4 ∙ E(y + Ŷ y

h )2h2

+

q∑

n=6

1
2n/2

(
q
n

)
|x|q−nEξnE(y + Ŷ y

h )n/2hn/2

≤ |x|q + bq−2|x|
q−2(2y + |E(Ŷ y

h − y)|)h

+

q∑

n=4

bq−n|x|
q−n((2y)n/2 + |E(Ŷ y

h − y)|n/2)hn/2

≤ |x|q + b̃q−2|x|
q−2(y + (1 + y)h)h

+

q∑

n=4

b̃q−n|x|
q−n(yn/2 + (1 + yn/2)h1/2)hn/2, 0 < h ≤ h0.

The latter estimate can be simplified as follows:

E|X̂z
h|

q ≤ |x|q + h
( ∑

m+n<q

bm,n|x|
myn

)
, 0 < h ≤ h0, (5.2.18)

with some constants bn,m > 0 for m,n ∈ N0 such that m + n < q.

Collecting estimates (5.2.17) and (5.2.18), we have

E
(
|X̂z

h|
q +

(
Ŷ y

h

)q)
≤ (|x|q + yq)(1 + 2aqh)

+ h
(
− aq

(
|x|q + yq

)
+

q−1∑

n=0

anyn +
∑

m+n<q

bm,n|x|
myn

)
, h ≤ h0.

Using (4.2.18), we notice that

Bq := sup
x∈R y>0

(
− aq

(
|x|q + yq

)
+

q−1∑

n=1

anyn +
∑

m+n<q

bm,n|x|
myn

)
< +∞.
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Denoting Cq := max{2aq, Bq}, we finally have

E
(
|X̂z

h|
q + E

(
Ŷ y

h

)q)
≤ (|x|q + yq)(1 + Cqh) + Cqh, 0 < h ≤ h0,

that is, estimate (5.2.16) holds for all q ∈ N, as required.

Summarizing Propositions 3.2, 5.2, and 5.5, we get our main result.

Theorem 5.6. Let a one-step approximation Z̄z
h = (X̄z

h, Ȳ y
h ) of Eq. (1.2.1) be

constructed as follows:

(1) Let Ŷ y
h be a discretization scheme satisfying the following conditions:

(i) 




E(Ŷ y
h − y) = Op,1(h

3),

E(Ŷ y
h − y)2 = yh + Op,2(h

3),

E(Ŷ y
h − y)3 = 3

2
yh2 + Op,3(h

3),

E(Ŷ y
h − y)4 = 3y2h2 + Op,4(h

3);

(ii) E(Ŷ y
h − y)5 = Op,5(h

3);

(iii) E|Ŷ y
h − y|2q = Op,2q(h

q) for all q ≥ 3.

(2) Let ξ be a discrete random variable, independent from Ŷ y
h , with first five

moments matching those of a standard normal random variable. Let, finally,

the random variable X̂z
h be defined by

X̂z
h := x + ξ

√
1

2
(y + Ŷ y

h )h .

(3) Define the one-step discretization scheme Z̃z
h = (X̃z

h, Ỹ y
h ) by

X̃z
h = σ

(√
1 − ρ2 X̂z

h + ρŶ y
h

)
,

Ỹ y
h = σ2Ỹ y

h .

(4) Finally, define the one-step discretization scheme Z̄z
h = (X̄z

h, Ȳ y
h ) by Eq. (5.1.1),

that is,

Z̄z
h = D

(
Z̃

D(z,h/2)
h , h/2

)
. (5.2.19)

Then the one-step discretization scheme (5.2.19) defines a strongly potential weak

second-order approximation of the log-Heston system (1.2.1).
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Proof. It remains to check that the approximation constructed also has uniformly

bounded moments of all orders. From the previous chapter we know (see 4.2.22)

that there exists a constant C̃q, independent of z ∈ D and h, such that

|Dz
1(h)|q +

(
Dy

2(h)
)q

≤ (|x|q + yq)(1 + C̃qh) + C̃qh, 0 < h ≤ h0.

This shows that composition (5.2.19) “preserves” the estimate of type (5.2.16),

that is, for every q ∈ N, there exists a constant C̄q, independent of h, such that

E
(
|X̄z

h|
q +

(
Ȳ y

h

)q)
≤ (|x|q + yq)(1 + C̄qh) + C̄qh, 0 < h ≤ h0,

which suffices for the uniform boundedness of all moments of Z̄z
h = (X̄z

h, Ȳ y
h ).

5.3 Algorithm

In this section, we summarize the simulation step from Z̄ih = (X̄ih, Ȳih) = (x, y)

to Z̄(i+1)h = (X̄(i+1)h, Ȳ(i+1)h):

1. Draw a random number U uniformly distributed in the interval (0, 1), and let

U1 := [8U ] and U2 := {8U} (the integer and fractional parts of 8U) (which

are independent r.v.s; the former takes the values 0,1,. . . ,7 with probabilities

1
8
, and the latter is uniformly distributed in (0, 1)).

2. Generate

ξ :=






√
1 −

√
6/3 if U1 < 3;

−
√

1 −
√

6/3 if U1 > 4;
√

1 +
√

6 if U1 = 3;

−
√

1 +
√

6 if U1 = 4.

3. Calculate (in view of (3.2.3) with h/2 instead of h)

x̄ = x + (r − 1
2
θ)

h

2
+ 1

2k
(e−k h

2 − 1)(y − θ),

ȳ = ye−k h
2 + θ(1 − e−k h

2 ).

4. Generate a random variable Ŷ taking the values y1, y2, and y0 with proba-

bilities p1, p2, and p0 = 1− p1 − p2 as defined in Remark 5.3 (with ȳ instead
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of y):

Ŷ :=






y1 if U2 < p1,

y2 if U2 > 1 − p2,

y0 otherwise.

5. Calculate the random variable (see (5.2.9))

X̂ := x̄ + ξ

√
1

2
(ȳ + Ŷ )h .

6. Calculate

X̃ = σ
(√

1 − ρ2X̂ + ρŶ
)

,

Ỹ = σ2Ŷ .

7. Finally, calculate (using again (3.2.3) with h/2 instead of h)

X̄(i+1)h = X̃ + (r − 1
2
θ)

h

2
+ 1

2k
(e−k h

2 − 1)(Ỹ − θ),

Ȳ(i+1)h = Ỹ e−k h
2 + θ(1 − e−k h

2 ).

Having generated all values X̄ih, i = 0, 1, 2, . . ., set Sih := exp{X̄ih}, i =

0, 1, 2, . . ..

5.4 Simulation examples

As in the previous chapter, to illustrate our discretization scheme and to compare

it with the quadratic-exponential (QE) scheme proposed by Andersen [5] and the

second-order scheme proposed by Alfonsi [3], we use it to calculate European call

and put option prices in five cases (see Table 4.1), that is, we apply it to the test

functions f1(x) = max{x − K, 0} and f2(x) = max{K − x, 0}.

We provide two kinds of graphs: first, we plot (put or call) option prices as

functions of maturity, and, second, we concentrate ourselves on the accuracies of

approximations as functions of the approximation step size h.

We start by illustrating the accuracies of approximations as functions of the

step size h. We split the five cases into two graphs. Figure 5.1 shows the accuracy

of approximations of put option price at maturity T = 1 in the cases from [5],
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that is, cases I–III (with strike prices 70, 100, 140), and Fig. 5.2 shows the put

prices at T = 1 in the cases from [3], that is, cases IV and V (with strike prices 80,

100, 120). The approximate prices are obtained by averaging over 108 samples.

Horizontal dashed lines in both figures show the exact values of put prices, which

were calculated using the MATLAB code HestonFFTVanilla from [9] (downloaded

from www.quantlet.de).

Similarly as in the previous chapter, we take one of the cases from each graph

(this time we choose cases I and IV) and examine the errors in the plots more

closely. As before, we calculate the bias

εh = Ee−rT max(ST − K, 0) − Ee−rT max(S
h

T − K, 0),

that is, the difference between the exact price of call option and its evaluation

using an approximation scheme, and put the results in Tables 5.1 and 5.2. The

values in the table are written in bold when the bias is within the window of ±1%

from the exact value. We also put the half-length of the 95% confidence interval

in parenthesis and mark it with an asterisk if the bias is less than the half-length

of the 95% confidence interval, that is, when the error of approximation is not

statistically significant.

Next, we plot (call and put) option prices as functions of maturity. As before,

we split the cases into two graphs. We plot the cases from [5] (i.e., cases I–III)

in Fig. 5.3 with maturity T = 10 and the cases from [3] (i.e., cases IV and V) in

Fig. 5.4 with maturity T = 2. We take h = 0.2 and S0 = 100 for all the cases,

r = 0 for cases I–III, and r = 0.02 for cases IV and V. In both graphs, the exact

option prices are marked by bullets “•” (at discrete time points with step size 1

in cases I–III and with step size 0.2 in cases IV and V).

From Fig. 5.3 and Fig. 5.4 we see that the DVSS2 and QE schemes are visually

almost indistinguishable, whereas the Alfonsi scheme considerably less accurate.

A closer examination of approximations as functions of time step h (see Figs. 5.1

and 5.2 and, also, Table 5.1 and Table 5.2) reveals that, actually, in most of the

cases, both QE and Alfonsi schemes have a greater bias for almost all time steps

(starting from h = 0.2) than DVSS2.

To complete, we compare the computation times of DVSS2, Andersen’s QE,

and Alfonsi schemes. For calculations, we used a laptop PC with Intel(R) CORE(TM)
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Figure 5.1: Approximations of put option price in function of h = 1/n in cases I,
II, and III for different strike prices (70, 100, 140) with fixed parameters S0 = 100,
r = 0, and T = 1.

i7-3610QM 2.30 GHz processor and 8 GB RAM and the C programming language

(the graphs were plotted by using the R programming language with graphics

package TikzDevice). The results are listed in Table 5.3. The numbers on the

left side of the table show the averages over the runs of 100 000 trajectories with

step h = 0.01 and time to maturity T = 10 in all the cases. One can see that

the DVSS2 scheme is faster in all the cases (see the computational times mea-

sured relatively to the DVSS2 scheme on the right of the table). Note that we

tried to optimize the QE and Alfonsi approximation code by caching parts of

computations not depending on each time step.
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(b) Case V. Strike K = 80
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Figure 5.2: Approximations of put price in function of h = 1/n in cases IV and V
for different strike prices (80, 100, 120) with fixed parameters S0 = 100 and T = 1.
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DVSS2 QE Alfonsi
h K = 70

1/5 0,00722 (0,00130) 0,01547 (0,00130) 0,05262 (0,00130)
1/7 0,00283 (0,00130) 0,00941 (0,00130) 0,02294 (0,00130)
1/10 0,00178 (0,00130) 0,00719 (0,00130) 0,01221 (0,00130)
1/14 0,00026 (0,00130*) 0,00201 (0,00130) 0,00562 (0,00130)
1/20 -0,00009 (0,00130*) 0,00235 (0,00130) 0,00331 (0,00130)
1/30 0,00013 (0,00130*) 0,00248 (0,00130) 0,00149 (0,00130)
1/50 -0,00109 (0,00131*) -0,00029 (0,00130*) -0,00097 (0,00131*)
1/100 0,00139 (0,00130) -0,00286 (0,00131) -0,00167 (0,00131)

K = 100
1/5 0,01818 (0,00256) 0,02826 (0,00255) 0,08766 (0,00250)
1/7 0,01940 (0,00256) 0,01927 (0,00255) 0,07447 (0,00253)
1/10 0,01061 (0,00256) 0,01400 (0,00256) 0,06335 (0,00255)
1/14 0,00612 (0,00256) 0,00644 (0,00256) 0,05004 (0,00255)
1/20 -0,00285 (0,00256) 0,00656 (0,00256) 0,03317 (0,00256)
1/30 -0,00110 (0,00256*) 0,00648 (0,00256) 0,02044 (0,00256)
1/50 -0,00053 (0,00256*) -0,00051 (0,00256*) 0,00215 (0,00256*)
1/100 0,00208 (0,00256*) -0,00355 (0,00256) -0,00076 (0,00256*)

K = 140
1/5 0,00139 (0,00290*) -0,00448 (0,00289) -0,02638 (0,00286)
1/7 -0,00329 (0,00290) -0,00271 (0,00290*) -0,01744 (0,00288)
1/10 -0,00142 (0,00290*) 0,00115 (0,00290*) -0,01154 (0,00289)
1/14 -0,00090 (0,00290*) -0,00208 (0,00290*) -0,00648 (0,00290)
1/20 -0,00496 (0,00290) 0,00098 (0,00290*) -0,00451 (0,00290)
1/30 0,00238 (0,00290*) 0,00321 (0,00290) -0,00075 (0,00290*)
1/50 -0,00250 (0,00290*) -0,00170 (0,00290*) -0,00210 (0,00290*)
1/100 0,00238 (0,00290*) -0,00600 (0,00290) -0,00349 (0,00290)

Table 5.1: Estimated bias in the test case I for different strike prices (K = 70,
K = 100, and K = 140). Values are written in bold when the bias is in the
window of ±1% from the exact value. Numbers in parentheses show the half-
length of the 95% confidence interval and are marked with an asterisk if the bias
is within this interval.
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DVSS2 QE Alfonsi
h K = 80

1/5 0,00052 (0,00116*) 0,00719 (0,00116) 0,02554 (0,00116)
1/7 -0,00023 (0,00116*) 0,00298 (0,00116) 0,00447 (0,00116)
1/10 0,00187 (0,00116) 0,00145 (0,00116) 0,00161 (0,00116)
1/14 0,00107 (0,00116*) 0,00154 (0,00116) 0,00167 (0,00116)
1/20 0,00102 (0,00116*) 0,00062 (0,00116*) 0,00079 (0,00116*)
1/30 0,00087 (0,00116*) 0,00137 (0,00116) 0,00085 (0,00116*)
1/50 0,00083 (0,00116*) 0,00107 (0,00116*) 0,00053 (0,00116*)
1/100 0,00160 (0,00116) 0,00269 (0,00116) -0,00019 (0,00116*)

K = 100
1/5 -0,01953 (0,00233) -0,00298 (0,00232) 0,02967 (0,00231)
1/7 0,00340 (0,00233) -0,00165 (0,00233*) 0,01159 (0,00233)
1/10 0,00452 (0,00233) -0,00066 (0,00233*) 0,00593 (0,00233)
1/14 0,00272 (0,00233) 0,00026 (0,00233*) 0,00384 (0,00233)
1/20 0,00227 (0,00233*) 0,00044 (0,00233*) 0,00227 (0,00233*)
1/30 0,00337 (0,00233) 0,00357 (0,00233) 0,00263 (0,00233)
1/50 0,00382 (0,00233) -0,00116 (0,00233*) 0,00035 (0,00233*)
1/100 0,00496 (0,00233) 0,00401 (0,00233) 0,00046 (0,00233*)

K = 120
1/5 0,01517 (0,00334) -0,00606 (0,00334) -0,03900 (0,00333)
1/7 -0,00598 (0,00334) -0,00301 (0,00334*) -0,01800 (0,00334)
1/10 0,00124 (0,00334*) -0,00090 (0,00334*) -0,00392 (0,00334)
1/14 0,00200 (0,00334*) -0,00143 (0,00334*) -0,00186 (0,00334*)
1/20 0,00293 (0,00334*) -0,00031 (0,00334*) 0,00079 (0,00334*)
1/30 0,00431 (0,00334) 0,00707 (0,00334) -0,00024 (0,00334*)
1/50 0,00594 (0,00334) -0,00352 (0,00334) 0,00245 (0,00334*)
1/100 0,00929 (0,00334) 0,00303 (0,00334*) 0,00266 (0,00334*)

Table 5.2: Estimated bias in the test case IV for different strike prices (K = 80,
K = 100, and K = 120). Values are written in bold when the bias is in the
window of ±1% from the exact value. Numbers in parentheses show the half-
length of the 95% confidence interval and are marked with an asterisk if the bias
is within this interval.

100 000 trajectories in sec. Relative to DVSS2

DVSS2 QE Alfonsi QE Alfonsi
Case I 22.0916 25.0672 30.7702 1.135 1.393
Case II 22.1540 26.4862 31.3246 1.196 1.414
Case III 22.3214 35.6170 33.8316 1.596 1.516
Case IV 22.8598 40.3704 36.2662 1.766 1.586
Case V 22.4612 27.2540 31.6442 1.213 1.409

Table 5.3: Average and relative (to DVSS2) computation times
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Figure 5.3: Comparison of DVSS2 with QE and Alfonsi approximations of Euro-
pean option prices in the Heston’s stochastic volatility model for different param-
eters and strike prices (70, 100, 140) with fixed parameters S0 = 100 and r = 0.
Time step h = 0.2.
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Figure 5.4: Comparison of DVSS2 with QE and Alfonsi approximations of Euro-
pean option prices in the Heston’s stochastic volatility model for different param-
eters and strike prices (80, 100, 120) with fixed parameter S0 = 100. Time step
h = 0.2.
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Chapter 6

Conclusions

In the doctoral dissertation we suggest to construct discretization schemes for

the Heston model using “split-step” and moment matching techniques. “Split-

step” technique lets to divide the model into deterministic and stochastic parts,

so that we need to construct a discretization scheme for the stochastic part only,

as the deterministic part is easily solvable. Moment matching helps to construct

discrete random variables so that their moments match the moments of weak

approximation of the order we aim at.

Although similar ideas can be found in the works of some other authors, for

example, Alfonsi [3, 4], to the best of our knowledge, use of only discrete random

variables for the construction of the approximation for the Heston model is a

completely new idea. Besides, in the works of other authors pursuing similar

ideas (see already mentioned [3], or [5]) no rigorous mathematical proof for the

convergence is provided.

We have succeeded in constructing simple yet effective first- (DVSS) and

second-order (DVSS2) weak approximations for the solution of the Heston model

that use, at each step, only generation of discrete random variables which in many

ways outperform other known discretization schemes for the Heston model. To

sum up, we compare our approximations to the Andersen QE and Alfonsi ALF 2

and ALF3, the most popular approximations of the solution of the Heston model

to this day, and point out the following advantages:

• Rigorous proof. We have rigorously proved that the DVSS approximation

scheme is a (strongly potential) first-order and DVSS2 – a (strongly poten-
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tial) second-order schemes for the log-Heston model. Although numerical

simulations of both QE and Alfonsi schemes show a nice accuracy in option

pricing for the Heston model, there are no general theoretical results on the

weak convergence of these schemes;

• Accuracy. In terms of accuracy, the first-order approximation DVSS in most

cases seem to be somewhat lesser when compared to the QE and ALF2 (or

ALF3) schemes, however, it is performing considerably well as the bias is

never outside the window of ±1% from the exact value, which is a sufficient

accuracy for most practical applications. Moreover, for small steps (for

example, h = 0.01), the bias becomes quite similar to that of the QE and

Alfonsi schemes. On the other hand, the second-order approximation DVSS 2

clearly outperforms the ALF2 and ALF3 and (in many cases) even the QE(-

M) approximation schemes;

• Simplicity. The approximation schemes (especially the first-order scheme

DVSS) presented in this thesis are much simpler to implement than the

QE(-M) or Alfonsi schemes, as they use only two- or three-valued discrete

random variables (compare Sections 4.3 and 5.3 with [5] or [3]);

• Lower computational cost. Numerical examples show that the computation

time of the DVSS scheme is from 2.5 to 3.7 times less than that of the QE

and Alfonsi schemes (see Table 4.5) and the computation time of the DVSS2

scheme is from 1.2 to 1.7 times less than that of the QE and Alfonsi schemes

(see Table 5.3).
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Chapter 7

Appendix

In this chapter, we provide additional calculations which we think would only

distract the reader if placed elsewhere in the text.

Moments of Heston model

Some results of this section (but not the formulas of the moments of the Heston

model), which we prove for completeness, are known and can be found, for exam-

ple, in the articles of Andersen and Piterbarg [6] and Fritz and Keller-Ressel [11].

The generator of the log-Heston model (1.2.1) is

Lu(x, y) =
y

2

(
∂2

∂x2
−

∂

∂x

)

u(x, y) + r
∂

∂x
u(x, y)

+
σ2y

2

∂2

∂y2
u(x, y) + k(θ − y)

∂

∂y
u(x, y) + ρσy

∂2

∂x∂y
u(x, y).

The function u(t, x, y) := E
(
enXt |X0 = x, Y0 = y

)
satisfies the Kolmogorov

backward equation






u′
t = Lu,

u(0, x, y) = enx.

Taking into account that

u(t, x, y) = E
(
enXt |X0 = x, Y0 = y

)

= enxE
(
enXt |X0 = 0, Y0 = y

)
= enxu(t, 0, y)

and denoting

f = fn(t, y) = E
(
enXt |X0 = 0, Y0 = y

)
,
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we notice that
∂

∂x
(enxf) = nenxf,

(
∂2

∂x2
−

∂

∂x

)

(enxf) = enx(n2 − n)f,

and
∂2f

∂x∂y
(enxf) = nenx ∂f

∂y
.

Therefore, we have

f ′
t = L̂f =

(
y

2
σ2 ∂2

∂y2
+ (k(θ − y) + ρσny)

∂

∂y
+

y

2
(n2 − n) + rn

)

f,

fn(0, y) = 1.

Presuming that fn is composed as

fn(t, y) = eφ(t,n)+yψ(t,n),

we calculate

f ′
t = fφ′ + yfψ′,

∂f

∂y
= fψ,

and
∂2f

∂y2
= fψ2.

Comparing both differentiation formulas, we get the equation

φ′ + yψ′ =
y

2
σ2ψ2 + (k(θ − y) + ρσny)ψ +

y

2
(n2 − n) + rn.

From this we derive the system






ψ′ = ψ2

2
σ2 + (ρσn − k)ψ + 1

2
(n2 − n),

φ′ = kθψ + rn.

The first equation is a Riccati differential equation. Denoting χ = ρσn − k and

Δ = χ2 − σ2(n2 − n), we get:

t =
2

σ2

ψ∫

0

dψ̃
(
ψ̃ + χ

σ2

)2

− Δ
σ4

.

Calculating the latter, we get three cases.
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• Case Δ < 0. In this case, we have

ψ(t) =

√
−Δ

σ2
tan

(√
−Δ

2
t + arctan

(
χ

√
−Δ

))

−
χ

σ2

and

φ(t) =
2kθ

σ2
log

∣
∣
∣
∣cos

(

arctan

(
χ

√
−Δ

))∣∣
∣
∣

−
2kθ

σ2
log

∣
∣
∣
∣cos

(√
−Δ

2
t + arctan

(
χ

√
−Δ

))∣∣
∣
∣

+

(

rn −
χkθ

σ2

)

t.

Note, that in this case, the Heston model moments “explode” at (cf. [6]

and [11])

t0 =
2

√
−Δ

(
π

2
− arctan

(
χ

√
−Δ

))

.

• Case Δ > 0. Denoting by ψ1 and ψ2 the solutions of the quadratic equation

ψ2

2
σ2 + (ρσn − k)ψ + 1

2
(n2 − n), we have

ψ(t) = ψ1 −
ψ1(ψ1 − ψ2)

ψ1 − ψ2 exp
{
−σ2(ψ1−ψ2)

2
t
}

and

φ(t) = kθψ2t + rnt −
2kθ

σ2
log

(
ψ1

ψ2

− e
σ2

2
t(ψ2−ψ1)

) ∣∣
∣
∣

t

0

= t(kθψ2 + rn) −
2kθ

σ2
log

(
ψ1 − ψ2e

σ2

2
t(ψ2−ψ1)

ψ1 − ψ2

)

.

Note that, in this case, the moments “explode” when χ < 0 at (cf. [6]

and [11])

t0 =
2

σ2(ψ1 − ψ2)
log

(
ψ2

ψ1

)

.

• Case Δ = 0.

ψ(t) =
χ2t

σ2(2 − χt)

75



and

φ(t) =
2χ log 2 − χ log (2 − χt)2 − χt

σ2

Note that, in this case, the moments “explode” at (cf. [6] and [11])

t0 =
2

χ
.

.
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