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Notation

x ∈ X – x is an element of X

X ∪ Y – is the union of sets X and Y

X ∩ Y – is the intersection of sets X and Y

∅ – empty set

X × Y – Cartesian product of sets X and Y

N – 1, 2, 3,. . . the set of positive integers

N0 – 0, 1, 2, 3,. . . the set of natural numbers

Ne – 2, 4, 6,. . . the set of an even integers

No – 1, 3, 5,. . . the set of an odd integers

Nk – kN := {n ∈ N : n = km,m ∈ N}, k ∈ N

Z – the set of integers

Q – the set of rational numbers

I – the set of irrational numbers

R – the set of real numbers

R – extended set of real numbers R ∪ {−∞,+∞}

C – the set of complex numbers

C – extended set of complex numbers C ∪ {∞}

gcd(n,m) – the greatest common divisor of two integers n and m
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Introduction

1 Problem formulation

In the theory of differential equations, the basic concepts have been formulated

studying the problems of classical mathematical physics. However, the modern

problems motivate to formulate and investigate the new ones, for example, a class

of nonlocal problems. Differential problems with nonclassical Boundary Condi-

tions (BC) is quite a widely investigated area of differential equations theory,

which is very often used in other sciences. During the physical experiment, in

many cases it is impossible to measure data on the boundaries, but a relations

of data in the inner domain are known. If value of a solution on the boundary

is related with some expression of value(s) inside of the given domain, where we

solve problem, then BC of such type are called Nonlocal Boundary Conditions

(NBC).

The main object of the dissertation is Sturm–Liouville problem with nonlocal

integral BC.

2 Topicality of the problem

Differential problems with Nonlocal Conditions (NC) are quite a widely inves-

tigated area of mathematics. Differential problems with NCs are not yet com-

pletely and properly investigated, as it is a wide research area. A. Bitsadze and

A. Samarskii in [2, 1969] formulated a separate class of nonlocal elliptic prob-

lems. Later, the generalizations of this problem was investigated in [53, Samarskii

1980], [82, Skubachevskii 1986], [39, Kǐskis 1988]. The first paper, dedicated

to the second order partial differential equation with nonlocal integral BCs is

1
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M2

Q

w(M1)

w(W1)
W1

M1

Fig. 1. Domain Q.

written by Cannon, where the heat equation is investigated [4, 1963]. Nonlocal

problems appear in various physics: [11, 12, Day 1982,1985], [16, Gordeziani and

Avalishvili 2000], [18, Gordeziani 2000], [28, Ionkin and Morozova 2000], biolog-

ical and ecological [44, Nakhushev 1995], [13, Eloe and Henderson 1997], chem-

istry [75, Schugerl 1987], [7, Choi and Chan 1992] and other science’s problems [29,

Ionkin], [15, Gordeziani and Davitashvili 1999], [1, Avalishvili and Gordeziani

2003]. The problems with NBCs were investigated for parabolic equations [29,

Ionkin 1977], [37, Kamynin 1964], for elliptic equations [2, Bitsadze and Samarskii

1969], [19, Gushchin and Mikhăılov 1994], [88, Wang 2002], and for hyperbolic

equations [17, Gordeziani and Avalishvili 2001], [91, Zikirov 2007], etc. Integral

BCs are the special case of a more general nonlocal BC for stationary BVP [50,51,

Roman and Štikonas 2009, 2010], [85, Štikonas and Roman 2009].

In Lithuania, the problems with NCs had been started to investigate, in 1977.

Two scientists of the Institute of Mathematics and Cybernetics: M. Sapagovas

and T. Veidaitė published an article about differential problem with NC [87,

Veidaitė et al. 1977]. Professor Sapagovas found the scientific school and main

area of investigations at this school are investigation of the problem with NBC.

Later, with his doctoral student R. Čiegis, professor was investigating elliptic

and parabolic problems with Bitsadze–Samarskii boundary conditions [6, Čiegis

1984], [63, Sapagovas 1984].

Sturm–Liouville Problem (SLP) is important investigating the existence and

uniqueness of the classical stationary problems. The problems of such type are

not self-adjoint, their spectrum can be negative or complex, so the investigation

of such type problems is very complicated.

As it was mentioned before, in 1969 Bitsadze and Samarskii formulated new
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0 1 2

1

x2

x1

Fig. 2. Domain Q.

nonlocal Boundary Value Problem (BVP) for the elliptic equation [2, Bitsadze

and Samarskii], which appears in the plasma theory:

(Aw) (x) = −
n∑

i,j=1

aij(x)wxi,xj(x) +
n∑
i=1

αi(x)wxi(x)

+α0(x)w(x) = f0(x), x ∈ Ω, (1)

w(x)|M1 = b(x)w(ω(x))|M1 + f1(x), x ∈M1, (2)

w(x)|M2 = f2(x), x ∈M2, (3)

where
n∑

i,j=1

αi,j(x)ξiξj > 0, 0 6= ξ ∈ Rn, x ∈ Q,

Q ⊂ Rn — bounded region with boundary ∂Q, M1 ⊂ ∂Q — (n − 1) dimension

open subset, M2 = ∂Q \ M1 — subset; ω(x) — C∞ such diffeomorphism, that

ω : Ω1 −→ ω(Ω1), where Ω1 ⊂ M1, ω(Ω1) ⊂ Q; aij, ai, a0, b ∈ C∞(Rn) (see

Figure 1).

Unlike the formulated problem, authors solved [2, Bitsadze and Samarskii] the

particular case (1)–(3):

−4ω(x) = f0(x), x ∈ Q = (0, 2)× (0, 1),

ω(x1, 0) = ω(x1, 1) = 0, 0 6 x1 6 2,

ω(0, x2) = γ1ω(1, x2), ω(2, x2) = γ2ω(1, x2), 0 6 x2 6 1,

where γ1 = 0, γ2 = 1, 4 — Laplace operator; x = (x1, x2) (see Figure 2). As

can be seen ({2}× [0, 1])∩ ({1}× [0, 1]) = ∅, so, the problem was reduced to the

second order integral Fredholm equation. Uniqueness and existence were proved

using induction and the maximum principle.
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Problems with two-points and multi-points NBCs were analyzed by Il’in, Moi-

seev and Ionkin in [21–23, Il’in and Moiseev 1976, 1987, 1987], [27, Ionkin and

Moiseev 1980]. The investigation of the spectrum and other similar problems

for differential equations with nonlocal Bitsadze–Samarskii or multipoint BCs

are also analyzed in papers [66, Sapagovas 2000], [45, Pečiulytė and Štikonas

2006], [68, Sapagovas and Štikonas 2005], [86, Štikonas and Štikonienė 2009];

and integral conditions in [46, Pečiulytė and Štikonas 2007], [77, Skučaitė et al.

2010], [84, Štikonas 2014] etc.

B. Chanane in his paper [5, 2009], use the regularized sampling method intro-

duced recently to compute the eigenvalues of SLPs with NCs: −y′′ + q(x)y = λy, x ∈ [0, 1]

x0(y) = 0, x1(y) = 0,

where q ∈ L1 and x0 and x1 are continuous linear functionals defined by:

x0(y) =

∫ 1

0

[y(t)dψ1(t) + y′(t)dψ2(t)], x1(y) =

∫ 1

0

[y(t)dφ1(t) + y′(t)dφ2(t)],

where x0 and x1 are independent, and ψ1, ψ2, φ1 and φ2 are functions of bounded

variations, integration is in the sense of Riemann–Stieltjes. The author has used

the regularized sampling method and has obtained much higher estimates of the

eigenvalues without computing multiple integrals or taking a high number of terms

in the cardinal series involved. Also, two numerical examples have been presented

to illustrate the effectiveness of the method.

The n-th order BVP is widely analyzed by X. Hao et. al. [20, 2015]. The

nonlinear nth-order singular nonlocal BVP: u(n)(t) + λa(t)f(t, u(t)) = 0, t ∈ (0, 1)

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =
∫ 1

0
u(s)dA(s),

under some conditions is considered to be the first eigenvalue corresponding to

the relevant linear operator, where
∫ 1

0
u(s)dA(s) is given by a Riemann–Stieltjes

integral with a signed measure, a may be singular at t = 0 and/or t = 1, f(t, x)

may also have singularity at x = 0. The existence of positive solutions is obtained

by means of the fixed point index theory in cones, and two explicit examples are

given to illustrate the results.
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The inverse spectral problems for Sturm–Liouville operators with NBCs are

studied in [90, Yurko and Yang 2014]. The authors considered the differential

equation:

−y′′ + q(x)y = λy, x ∈ (0, T ),

and linear forms:

Uj(y) :=

∫ T

0

y(t)dσj(t), j = 1, 2,

where q(x) ∈ L(0, T ) is a complex-valued function, σj(t) are complex-valued

bounded variation functions, continuous from the right for t > 0. Such boundary

conditions can be rewritten in the following nonlocal form:

Uj(y) := Hjy(0) +

∫ T

0

y(t)dσj0(t), j = 1, 2,

where, Hj is finite limit Hj := σj(+0) − σj(0), σj0 are complex-valued bounded

variations functions continuous from the right.

The authors study the spectra of the inversed problems introducing the Weyl-

type function and two spectra, which are generalizations of the Weyl function and

Borg’s inverse problem for the classical Sturm-Liouville operator. The uniqueness

theorems are proved and some counterexamples are given for the two formulated

problems.

The question about the existence of the solutions of the nonlinear SLP with

integral BC is analyzed in the article [89, Yang 2006]. The author consider SLP

with integral BCs:

−(au′)′ + bu = g(t)f(t, u), t ∈ (0, 1),

(cos γ0)u(0)− (sin γ0)u
′(0)=

∫ 1

0
u(τ)dα(τ),

(cos γ1)u(1)− (sin γ1)u
′(1) =

∫ 1

0
u(τ)dβ(τ),

where a ∈ C1([0, 1], (0,∞)) and b ∈ C([0, 1], [0,∞)), f ∈ C([0, 1] × R,R) and

g ∈ C((0, 1) × [0,∞)) ∩ L(0, 1),
∫ 1

0
g(t)dt > 0, α and β right continuous on

[0, 1)) and left continuous at t = 1. The author proved the existence of nontrivial

solutions for the formulated problem using the topological degree arguments and

cone theory.

The results of Lithuanian mathematicians in the field of differential and

numerical problems with NBCs are very important. Prof. M. Sapagovas was
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not only a pioneer in the study of such problems, but also the founder of the

scientific school in Vilnius. The first problem with NBCs came from the ap-

plications, and it was the investigation of a mercury droplet in electric contact,

given the droplet volume [54, 55, 62, 63, 69, 70, Sapagovas 1978-1984]. Difference

scheme for two-dimensional elliptic problem with an integral condition was con-

structed in [55,64, Sapagovas 1983, 1984]. Scientific supervisor of Sapagovas (Kiev,

1963–1965) Prof. V. Makarov also began investigating problems with NBCs [40–

42, 1984-1985]. Sapagovas and his doctoral student (Vilnius, 1982–1985) Čiegis

investigated elliptic and parabolic problems with integral and Bitsadze–Samarskii

type NBCs and Finite-Difference Schemes (FDS) for them [6,71]. They published

some new results about numerical solutions for problems with NBCs in [73, 74,

Sapagovas and Čiegis 1987], [72, Sapagovas 1988], [8, Čiegis 1988].

Sapagovas with co-authors began to study eigenvalues for Bitsadze–Samarskii

type

u(0) = 0, u(1) = γu(ξ), 0 < ξ < 1, (4)

and integral type NBCs

u(0) = γ0

1∫
0

α0(x)u(x) dx, u(1) = γ1

1∫
0

α1(x)u(x) dx, (5)

[65, 66, Sapagovas 2000, 2002], [9, Sapagovas et al. 2004], [68, Sapagovas and

Štikonas 2005]. They showed that there exists eigenvalues, which do not depend

on parameters γ0 or γ1 in boundary conditions and complex eigenvalues may exist.

The eigenvalue problems, investigation of the spectra, analysis of nonnegative so-

lutions and similar problems for the operators with NBCs of Bitsadze–Samarskii

or of integral-type are given in the papers [9, Čiupaila et al. 2004], [25, Infante

2003], [26, Infante 2005]. Complex eigenvalues for differential operators with NBCs

are less investigated than the real case. Some results of these eigenvalues for

a problem with one Samarskii–Bitsadze NBC are published [68, Sapagovas and

Štikonas 2005], [86, Štikonas and Štikonienė 2009]. Sapagovas with co-authors

analyzed the spectrum of discrete SLP, too. These results can be applied to prove

the stability of FDS for nonstationary problems and the convergence of iterative

methods. Numerical methods were proposed for parabolic and iterative meth-

ods for solving two-dimensional elliptic equation with Bitsadze–Samarskii or in-
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tegral type NBCs: Alternating Direction Method (ADM) for a two-dimensional

parabolic equation with NBC [58, Sapagovas et al. 2007], FDS of increased or-

der of accuracy for the Poisson equation with NCs [67, Sapagovas 2008], FDS

for two-dimensional elliptic equation with NC [34, Jakubėlienė et al. 2009], the

fourth-order ADM for FDS with NC [61, Sapagovas and Štikonienė 2009], ADM

for the Poisson equation with variable weight coefficients in an integral condi-

tion [60, Sapagova et al. ]; ADM for a mildly nonlinear elliptic equation with inte-

gral type NCs [60, Sapagovas et al. 2011], FDS for nonlinear elliptic equation with

NC [10, Čiupaila et al. 2013]. Spectral analysis was applied for two- and three-layer

FDS for parabolic equations with NBCs: FDS for one-dimensional differential op-

erator with integral type NCs [52, Sajavičius and Sapagovas 2009], [59, Sapagovas

et al. 2012], [57, Sapagovas 2012]. Stability analysis was done for FDS in the case

of one- and two-dimensional parabolic equation with NBCs [30, Ivanauskas et al.

2009], [36, Jesevičiūtė and Sapagovas 2008], [56, Sapagovas 2008].

3 Aims and problems

The main aim of the dissertation is the analysis of the differential or the discrete

Sturm–Liouville Problem with integral NBC. To investigate the spectrum of SLP

we study the following problems:

• To investigate the spectrum for SLP with integral NBC depending on three

parameters.

– Location of the zeroes, poles and Constant Eigenvalue points of the

Characteristic Function.

– Qualitative analysis of Spectrum Curves.

– Trajectories of the Critical Points.

– Bifurcations of Spectrum Curves.

• To investigate the spectrum of SLP with integral NBC depending on two

parameters.

– Dependence on parameters γ and ξ in the case BCs: u(1) = γ
∫ 1

ξ
u(t) dt,

u(1) = γ
∫ 1

ξ
u(t) dt, u(1) = γ

∫ 1−ξ
ξ

u(t) dt.
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– Bifurcation points of Spectrum Curves.

• To investigate the spectrum of discrete Sturm–Liouville Problem (dSLP)

with NBC depending on three parameters. Integral is approximated by

trapezoid formula.

– Characteristic Function, it’s zeroes, poles and Constant Eigenvalues

points.

– Properties of Spectrum Curves.

– Dependence on number of grid points and parameters in NBC.

– Spectrum Curves near Special points.

• To investigate the special cases of dSLP with two parameters in NBC.

– Characteristic Function, it’s zeroes, poles and Constant Eigenvalues

points.

– Properties of Spectrum Curves.

– Dependence on number of grid points and parameters in NBC.

– Spectrum Curves near Special points.

– Influence of approximation type (trapezoid formula or Simpson’s rule)

of NBC.

4 Methods

Characteristic Function (CF) analysis is using for investigation of the spectrum for

differential and discrete SLP with NBC [86, Štikonas and Štikonienė 2009]. The

properties of the spectrum for such type problems depend on CF zeros, poles,

Constant Eigenvalue (CE) points and critical points of CF. Investigations of real

and complex parts of the spectrum are provided with the results of numerical

experiments. Some results are given as graphs of CF, trajectories in Phase Space

(ξ1, ξ2) and bifurcation diagrams.
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5 Actuality and novelty

Most of the results presented in this work are completely new and have not

appeared before in the scientific literature. Although the results do not em-

brace all the possible variants of the spectrum this thesis contributes to a better

understanding of the spectrum for SLP with NBCs.

6 Structure of the dissertation and main results

Dissertation consists of introduction, four chapters, conclusions and bibliography.

In the first chapter we investigate SLP with integral NBC depending on three

parameters. The qualitative study of the Spectral Curves was done. We found

zeroes, poles, CE points and critical points. Classification of such points is done.

We numerically investigated and found the trajectories of different type critical

points in the Phase Space.

In the second chapter we investigate special cases of SLP with one nonlocal

integral boundary condition (u(1) = γ
∫ 1

ξ
u(t) dt, u(1) = γ

∫ 1

ξ
u(t) dt, u(1) =

γ
∫ 1−ξ
ξ

u(t) dt). Some new properties of CF were found. We investigate how the

spectrum depends on NBCs parameters.

In the third chapter we analyzed dSLP corresponding to the problem in the

first chapter. NBC was approximated by trapezoidal rule. We investigate how

the spectrum depends on the number of grid points. The behavior of Spectrum

Curves in the neighbourhood of special points (q = 0, q = n and q = ∞) was

analyzed.

In the fourth chapter we investigate special cases of dSLP with one inte-

gral boundary condition. The nonlocal boundary condition was approximated

by trapezoidal or Simpson’s rule. We investigate how the spectrum depends on

the number of grid points. Some properties, depending on approximation, were

obtained.

7 Dissemination of results

The results of this thesis were presented in the following international conferences:
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• MMA2016, Tartu, Estonia, June 1–4, 2016;

“Spectrum curves of discrete Sturm—Liouville problem with integral condi-
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• ENUMATH2015, Ankara, Turkey, September 14–18, 2015;

“Eigenspectrum analysis of the Sturm–Liouville problem with nonlocal in-

tegral boundary condition”;

• MMA2015, Sigulda, Latvia, May 26–29, 2015;

“Investigation of the spectrum for Sturm–Liouville problem with partial in-

tegral condition”;

• MMA2014, Druskininkai, Lithuania, May 26–29, 2014;

“Investigation of critical and bifurcation points for Sturm–Liouville problem

with integral boundary condition”;

• MMA2013, Tartu, Estonia, May 27–30, 2013;

“Investigation of spectrum for finite difference scheme with integral bound-

ary condition”;

• MMA2012, Tallinn, Estonia, June 6–9, 2012;

“Investigation Sturm–Liouville problems with integral boundary condition”;

• MMA2011, Sigulda, Latvia, May 25–28, 2011;

“Investigation Sturm–Liouville problems with integral boundary condition”;

• MMA2010, Druskininkai, Lithuania, May 24–27, 2010;

“Investigation Discrete Sturm–Liouville Problems with Nonlocal Boundary

Conditions”;

and other conferences

• LMD, Kaunas, Lithuania, June 16-17, 2015;

“Zeroes and poles of a characteristic function for Sturm—Liouville problem

with nonlocal integral condition”;

• LMD, Vilnius, Lithuania, June 26–27, 2014;

“The dynamics of Sturm–Liouville problem’s with integral BCs bifurcation

points”;
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“Investigation Sturm–Liouville problems with integral boundary condition”;

• LMD, Vilnius, Lithuania, June 18–19, 2009;

“Investigation of complex eigenvalues for stationary problems with nonlocal
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ondary School". Without Your confidence in my math skills and motivation I

would not be studying mathematics.

I wish to express my sincere thanks to UAB “VTEX” management for the

opportunity to combine work and scientific researches.

Last but not the least, I would like to thank to my parents for believing in

me, their support and help during my studies.





Chapter 1

Sturm–Liouville problem with a

nonlocal integral condition

In this chapter Sturm–Liouville Problem (SLP) is analyzed:

−u′′ = λu, t ∈ (0, 1),

with one classical and another integral NBC:

u(0) = 0, u(1) = γ

∫ ξ2

ξ1

u(t) dt,

with parameters γ ∈ R and ξ ∈ Sξ := {(ξ1, ξ2) ∈ (0, 1)2, ξ1 < ξ2}. The cases ξ =

(0, 1) and ξ = (1/4, 3/4) were analyzed in [9, Čiupaila et al. 2004]. Such problem

has been investigated in [47, Pečiulytė and Štikonas 2009], [43, Mikalauskaitė 2011]

and some new results were obtained. It should be noted that in [43, Mikalauskaitė

2011] complex eigenvalues are analyzed only for special cases of ξ with rational

components. These studies are extended in this thesis. The main aim of this thesis

is to investigate the influence of parameters γ, ξ1, ξ2 for the spectrum of SLP and

the behavior of the Critical points of Characteristic Function (CF). CF method

was described in [86, Štikonas and Štikonienė 2009] for problem with one Bitsadze–

Samarskii type NBC. Critical points of the CF are important for the study of

multiple eigenvalues. These points are connected with bifurcations points in Phase

Space Sξ of parameter ξ = (ξ1, ξ2). The limit cases (ξ = (0, ξ) and ξ = (ξ, 1),

ξ ∈ [0, 1]), were analyzed in these papers [48, Pečiulytė et al. 2005], [77, Skučaitė

et al. 2010] and also in Chapter 2. The special case ξ = (ξ, 1− ξ), ξ ∈ [0, 1/2]), is

presented in [79, Skučaitė and Štikonas 2013]. Real CF and Real Critical points

15
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were studied for problems with one two-points NBC [45, Pečiulytė and Štikonas

2006]. Negative Critical points for problems with two-point or integral NBCs with

one parameter ξ were investigated in paper [49, Pečiulytė et al. 2008], too.

In Section 1 the problem is formulated and some useful notations are intro-

duced. The classification of the special points (zeroes, poles and CE points) is

done in Section 2. The main results about the CF Critical points are presented

in Section 3. In Section 4 some remarks and conclusions are given. Certain parts

of this chapter are published in [80,81].

1 Formulation of the problem

Let us analyze the SLP:

− u′′ = λu, t ∈ (0, 1), (1.1)

λ ∈ Cλ := C, with one classical BC:

u(0) = 0, (1.2)

and another integral type NBC:

u(1) = γ

∫ ξ2

ξ1

u(t) dt (1.3)

with parameters γ ∈ R, ξ = (ξ1, ξ2) ∈ Sξ.

For the case γ = 0 (classical one) eigenvalues are well known:

λk = (kπ)2, vk(t) = sin(kπt), k ∈ N.

Note that the same classical problem is obtained in the limit case ξ1 = ξ2.

If λ = 0, then all the functions u(t) = Cu0(t), where u0(t) := t, satisfy the

equation (1.1)–(1.2). By substituting this solution into NBC (1.3) we derive, that

the nontrivial solution (C 6= 0) exists if 1 = γ(ξ22 − ξ21)/2. So, eigenvalue λ = 0

exists if and only if γ = 2/(ξ22 − ξ21).

In the case λ 6= 0 entire function uq(t) := sin(πqt)/(πq) is defined. Functions

u(t) = Cuq(t) satisfy equation (1.1) with λ = (πq)2, q 6= 0, and BC (1.2). If

q ∈ Cq := {q = x + ıy ∈ C : x = 0, y > 0 or x > 0}, then a map λ = (πq)2 is

a bijection between Cq and Cλ (see Figure 1.1 and [86, Štikonas and Štikonienė
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Fig. 1.1. Bijection between Cλ and Cq.

2009]). Note, that q = 0 corresponds to λ = 0 in this bijection and u0 = lim
q→0

uq(q).

Bijection λ = (πq)2 is a conformal mapping, except the point q = 0. The point

λ = 0 is the first order branch point of the function λ = λ(q) = (πq)2. Real

eigenvalues correspond to Rq = R−q ∪ R+
q ∪ R0

q ⊂ Cq, and R−q := {q ∈ Cq : x =

0, y > 0}, R+
q := {q ∈ Cq : x > 0, y = 0}, R0

q := {q = 0} correspond to negative,

positive, zero eigenvalues, respectively. If λ is eigenvalue for SLP, then q ∈ Cq

which corresponds to this λ we call Eigenvalue point.

Remark 1.1. If bijection λ = (πq)2 is used instead of λ = q2, then the spectrum

points coincide with N in the classical case γ = 0, i.e. qk = k ∈ N.

A nontrivial solution of the problem (1.1)–(1.3) exists if q is a root of the

equation:

uq(1) = γ

∫ ξ2

ξ1

uq(t)dt. (1.4)

For NBC (1.3) two entire functions are introduced:

Z(z) :=
sin(πz)

πz
; Pξ(z) := 2

sin(πz(ξ1 + ξ2)/2)

πz
· sin(πz(ξ2 − ξ1)/2)

πz
. (1.5)

Zeroes of these functions are important for the description of the spectrum. Zeroes

of the function Z(q), q ∈ Cq, coincide with Eigenvalue points in the classical case

γ = 0. The equality (1.4) can be rewritten in the form:

Z(q) = γPξ(q), q ∈ Cq. (1.6)

In Figure 1.2, the roots (not all) of this equation for γ = −17, 0,+17 in the case

ξ = (0.32, 0.61) can be seen. Complex roots exist for γ = −17,+17.
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(a) • – zero (γ = 0); ◦ – pole (b) • γ = −17 (c) • γ = +17

Fig. 1.2. A part of the spectrum for SLP (1.1)–(1.3), ξ = (0.32, 0.61).

We define the Constant Eigenvalue (CE) as the eigenvalue that does not de-

pend on parameter γ. For any CE λ ∈ Cλ there exists the Constant Eigenvalue

point (CE point) q ∈ Cq and λ = (πq)2 [86, Štikonas and Štikonienė 2009]. For

NBC (1.3) we can find CE points as solutions of the following system:

Z(q) = 0, Pξ(q) = 0,

i.e., CE point c ∈ N and Pξ(c) = 0. The notation C or Cξ is used for the set of all

CE points. For a CE point, the set of γ-values in Cq × R is a vertical line.

If q 6∈ N, i.e. Z(q) 6= 0, and q satisfies equation Pξ(q) = 0, then the equality

(1.5) is not valid for all γ and such point q is a pole point. Notation of the pole

point is connected with meromorphic function:

γc(z) =
Z(z)

Pξ(z)
, z ∈ C. (1.7)

This function is obtained by expressing γ from the equation (1.5). If the denom-

inator has a zero at z = p and the numerator does not, then the value of the

function will be infinite and we have a pole. If both parts have a zero at z = p,

then the multiplicities of these zeroes must be compared. For our problem all

zeroes zk = k ∈ N, of function Z(z) are simple and positive if z ∈ Cq. It follows

that function Pξ(z) = 2P 1
ξ (z)P

2
ξ (z), where:

P 1
ξ (z) := sin(πz(ξ1 + ξ2)/2)/(πz), P 2

ξ (z) := sin(πz(ξ2 − ξ1)/2)/(πz). (1.8)

Zeroes of the functions P 1
ξ , P

2
ξ in the domain Cq are simple and positive, too.

So, zeroes of function Pξ can be simple or the second order. The restriction of the

meromorphic function γc on Cq can be called Complex Characteristic Function
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(b) Real CF

-critical point, ,

(c) Projection Complex-Real CF into Cq.

Fig. 1.3. Zeroes, poles, CE points for SLP (1.1)–(1.3), ξ = (8/21, 20/21).

(Complex CF) [86, Štikonas and Štikonienė 2009]. We define the value of this

function at point p, Pξ(p) = 0 as a limit γc(p) := limq→p Z(q)/Pξ(q). This limit is

finite γc(p) = Z′(p)
P ′
ξ
(p)
6= 0 (removable singularity) if p ∈ N is the first order zero of

function Pξ and the limit is infinite (function γc has the first order pole) if p ∈ N

is the second order zero of the function Pξ or p 6∈ N. For example, in Figure 1.3(a)

such points can be seen in the case ξ = (8/21, 20/21).

All Nonconstant Eigenvalues (which depend on the parameter γ) are γ-points

of Complex-Real Characteristic Function (C-R CF or CF) [86, Štikonas and Štikonienė

2009]. In Figure 1.4(a) CF graph in the case ξ = (0.32, 0.61) can be seen.

Complex-Real CF γ(q) is the restriction of the function γc(q) on a set N γ :=

{q ∈ Cq : Imγc(q) = 0}. Real CF is the restriction of the Complex-Real CF γ(q)

on a set Rq := {q ∈ Cq : λ = (πq)2 ∈ R} and describes only real eigenvalues.

One can see the Real CF graph in Figure 1.3(b) for ξ = (8/21, 20/21) and in

Figure 1.4(c) for ξ = (0.32, 0.61). The vertical solid lines correspond to the CE
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(a) Complex-Real CF

, , ,

(b) Spectrum Domain

,

,

,

(c) Real CF

Fig. 1.4. CF for ξ = (0.32, 0.61) and its projections.

points, vertical dashed lines cross the x-axis at the points of poles. For some cases,

the vertical line of the CE point is coincident with the vertical asymptotic line at

the point of a pole.

Spectrum Domain is the set N = N γ ∪ C. The example of the Spectrum

Domain we can see in Figure 1.4(b). We also add the eigenvalue points (γ =

−17, 0,+17) from Figure 1.2 and pole points (γ = ∞). Eigenvalue points for

γ ∈ R exist only in this domain. Spectrum Domain is symmetric with respect to

the real axis for Re q > 0. CF γ(q) describes the value of the parameter γ at the

point q ∈ N γ (see Figure 1.4(a)) such that there exists the eigenvalue λ = (πq)2.

For each γ0 ∈ R the set N (γ0) := γ−1(γ0) is the set of all Nonconstant Eigenvalue

points. So, Spectrum Domain N = ∪γ∈RN (γ) ∪ C. For example, N (0) ∪ C

corresponds to a spectrum of the classical case. If q ∈ N γ and γ′c(q) 6= 0 (q is

not a Critical point of CF) then N (γ) is smooth parametric curve N : R → Cq

and arrow can be added on this curve. Arrows indicate the direction in which γ

is increasing. So, eigenvalue point is moving along this curve when parameter γ

is increasing. If γ = 0 then the eigenvalue points are q = zk = k ∈ N. So, the

part of N (γ) for this point can be enumerated by the classical case Nk(0) = zk,

k ∈ N. For every CE point cj = j we define Nj = {cj}, i.e. every such Nj has

one point only (see Figure 1.3(c), Figure 1.4(b)). We call every Nk, k ∈ N, a

Spectrum Curve. Spectrum Domain N is a countable union of Spectrum Curves

Nk. Different Spectrum Curves may have a common point. For example, CE

point may be on other Nk or few Spectrum Curves that intersect at the Critical

point b, where γ′c(b) = 0. For the γ → ±∞ Spectrum Curve Nk(γ) approaches a
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,
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(a) ξ = (
√
2/5, 3

√
2/5),

p121 = p12 = p21

(b) ξ = ( 2
√
2−1
4 , 2

√
2+1
4 ),

p21 = c11

,

(c) ξ = (1/6, 5/6),
c13 = c22 = c121

Fig. 1.5. Real CF and CE for different ξ values.

pole point or a point q = ∞. For the analysis of the Spectrum Curves we must

know zeroes, poles and CE point of CF.

2 Zeroes, poles and Constant Eigenvalues points

of the Characteristic Function

We use notation: ξ = ξ1/ξ2, ξ+ = ξ1 + ξ2, ξ− = ξ2 − ξ1. If ξi ∈ Q, i = 1, 2, then

we use a rule: ξi = mi/ni, mi, ni ∈ N. The such rule we use for ξ = ξ1/ξ2 ∈ Q:

ξ = m/n, m,n ∈ N. If ξ1, ξ2 ∈ Q, then m = m1n2, n = m2n1, n+ = n− = n1n2,

m+ = m2n1 +m1n2, m− = m2n1 −m1n2.

All zeroes of the functions Z, P 1
ξ , P

2
ξ (see (1.5) and (1.8)) in Cq are simple (of

the first order), real and positive:

zk = k ∈ N, p1k =
2
ξ+
k, k ∈ N, p2k =

2
ξ−
k, k ∈ N. (2.1)

We denote the corresponding sets of points as Z, Z1
ξ , Z2

ξ . Then a set Zξ =

Z1
ξ +Z2

ξ +Z12
ξ describes all zeroes of the function Pξ, where Z1

ξ := Z1
ξ rZ12

ξ and

Z2
ξ := Z2

ξ rZ12
ξ are two families of the first order zeroes, Z12

ξ := Z1
ξ ∩Z2

ξ is family

of the second order zeroes.

Remark 1.2. If ξ ∈ Q then ξ1, ξ2 ∈ Q or ξ1, ξ2 6∈ Q. If ξ 6∈ Q then ξ1 6∈ Q or

ξ2 6∈ Q, or both ξ1, ξ2 6∈ Q .

For (real) CF we consider the following sets: a set of poles Pξ := P1
ξ +P2

ξ +P12
ξ ,

where P1
ξ := Z1

ξ r Z and P2
ξ := Z2

ξ r Z are two families of the poles of the first
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Table 1.1. Zeroes, poles and CE points of CF (special cases), m, l,m1,m2, n1, n2 ∈ N.
“+” means that the set above is nonempty, “−” means that the set above is empty.

Case Example Poles CE points Remarks
subcase ξ = (ξ1, ξ2) P1

ξ P
2
ξ P

12
ξ C1ξ C

2
ξ C

12
ξ Zξ

ξ ∈ Q, ξ1, ξ2 6∈ Q, l > 1:
ξ 6= l−1

l+1

(√
2

20 ,
√
2
5

)
+ + + − − − + p21 < p121

ξ = l−1
l+1

(√
2
5 ,

3
√
2

5

)
+ − + − − − + p21 = p121

ξ 6∈ Q, l > 1, m > 2:
ξ+, ξ− 6∈ Q

(
1
2 ,
√
2
2

)
;
(√

2
2 ,
√
3
2

)
+ + − − − − + p11 < p21

ξ+ ∈ Q, ξ+ 6= 2
l , ξ− 6∈ Q

(
3−
√
2

8 , 3+
√
2

8

)
+ + − + − − + p11 < c11

ξ− ∈ Q, ξ− 6= 2
m , ξ+ 6∈ Q

(
5
√
2−7
24 , 5

√
2+7
24

)
+ + − − + − + p21 < c21

ξ+ = 2
l , ξ− 6∈ Q

(
2−
√
2

4 , 2+
√
2

4

)
− + − + − − + p11 = c11

ξ− = 2
m , ξ+ 6∈ Q

(
2
√
2−1
4 , 2

√
2+1
4

)
+ − − − + − + p21 = c21

ξ1 = m1/n1, ξ2 = m2/n2 ∈ Q
(a)–(d) pk1 < ck1, k = 1, 2, 12, pk1 < p121 , k = 1, 2, (m)–(q) n = n1 = n2 = m1 +m2:

(a)
(

8
21 ,

20
21

)
+ + + + + + + c11, c

2
1 < c121

(b)
(
10
27 ,

25
27

)
+ + + − + + + c21 < c11 = c121

(c)
(

2
25 ,

18
25

)
+ + + + − + + c11 < c21 = c121

(d)
(

6
17 ,

15
17

)
+ + + − − + + c11 = c21 = c121

(e)
(

4
11 ,

10
11

)
+ + − − − + + p121 = c121 ,

p11 < c11 = c21
(f)

(
4
9 ,

8
9

)
+ − + + − + + p21 = p121 ,

p11 < c11 < c121
(g)

(
2
7 ,

6
7

)
+ − + − − + + p21 = p121 ,

p11 < c11 = c121
(h)

(
5
12 ,

11
12

)
+ − − + + + + p21 = c21 < c121 ,

p11 < c11
(i)

(
1
2 ,

5
6

)
+ − − + − + + p21 = c21 = c121 ,

p11 < c11 < c121
(k)

(
1
5 ,

13
15

)
+ − − − + + + p21 = c21 < c121 ,

c11 = c121
(l)

(
1
5 ,

3
5

)
+ − − − − + + p21 = c121 = c11

(m)
(

1
10 ,

9
10

)
− + − + + + + p11 = c11,

(n)
(
1
7 ,

6
7

)
− + − + − + + p11 = c11,

p21 < c21 = c121
(p)

(
1
6 ,

5
6

)
− − − + + + + p11 = c11,

c11 < c21 = p21
(q)

(
1
4 ,

3
4

)
− − − + − + + p11 = c11,

p21 = c121

order, a set of the second order poles P12
ξ := Z12

ξ r Z; a set of the CE points

Cξ := C1ξ + C2ξ + C12ξ , where C1ξ := Z1
ξ ∩ Z and C2ξ := Z2

ξ ∩ Z are sets of the points
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with removable singularity, C12ξ := Z12
ξ ∩ Z is the set of the points with the first

order pole, too; a set of zeroes Zξ := Z r Cξ. To describe the points of these sets

we will use the following results.

Remark 1.3. The sets P1
ξ , P2

ξ , P12
ξ , C1ξ , C2ξ , C12ξ , Zξ points have form qk = αk,

k ∈ N, α > 1, or can be empty. So, nonempty sets are described by the first point

(k = 1). Since 1 < p11 < p21 6 p121 , the set Zξ 6= ∅. We note, that 2 < p21, too.

Let a, b, c ∈ Z.

Theorem 1.4 (Гельфонд 1978, [14]). If gcd(a, b) = 1 and [x0, y0] is any solution

of equation:

ax+ by + c = 0, (2.2)

then all solutions of this equation have a form:

x = x0 − bt y = y0 + at, t ∈ Z.

Remark 1.5 (Гельфонд 1978, [14]). Any solution [x0, y0] of (2.2), gcd(a, b) = 1,

can be found using Euclidean algorithm. We take ratio a
b
. Let q1 be the quotient

and r2 be a residual of a division a of b. Then a = q1b + r2, where r2 < b. The

coefficient b can be written in the same form: b = q2r2 + r3, r3 < r2, where

q2-quotient, r3-residual of a division b of r2. Then we get the sequence:

a = q1b+ r2, r2 < b,

b = q2r2 + r3, r3 < r2,

r2 = q3r3 + r4, r4 < r3,

· · ·

rn−2 = qn−1rn−1 + rn, rn < rn−1,

rn−1 = qnrn,

where rn+1 = 0. Using coefficients q1, ..., qn we construct two new sequences of

numbers Pn and Qn:

P0 = 1, Q0 = 0,

P1 = q1, Q1 = 1,

P2 = P1q2 + P0, Q2 = Q1q2 +Q0,

P3 = P2q3 + P1, Q3 = Q2q3 +Q1,

· · · · · ·

Pn = Pn−1qn + Pn−2, Qn = Qn−1qn +Qn−2.
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Then the pair of numbers (x0, y0) which are solutions of the equation ax+by+c =

0, is:

x0 = (−1)n−1cQn−1, y0 = (−1)ncPn−1. (2.3)

Lemma 1.6. If α, β > 0, then the equation:

αk = βl, k, l ∈ N, (2.4)

has solutions if and only if α/β ∈ Q and all solutions have a form:

k =
bt

gcd(a, b)
, l =

at

gcd(a, b)
, t ∈ N, (2.5)

where α/β = a/b, a, b ∈ N.

Proof. If r = α
β
/∈ Q, then rk = l. So, there is no such k, l ∈ N, that this equality

will be valid.

If α
β
= a

b
∈ Q, then from equation (2.4) we have:

ak = bl, k, l ∈ N. (2.6)

Then equation (2.6) can be rewritten in the following form:

ak

gcd(a, b)
=

bl

gcd(a, b)
, k, l ∈ N, (2.7)

where a
gcd(a,b)

and b
gcd(a,b)

are coprime numbers. One solution for this equation

is (0, 0). So, from the Theorem 1.4 (see, [14, Гельфонд 1978]) follows, that all

solutions of the equality (2.6) have a form:

k =
bt

gcd(a, b)
, l =

at

gcd(a, b)
, t ∈ N.

Theorem 1.7. If ξ 6∈ Q, then the second order zeroes for the function Pξ(z) do

not exist, i.e. Z12
ξ = ∅. If ξ ∈ Q, then a set Z12

ξ describes the second order zeroes:

p12k = 2n/(ξ2dp)k = 2m/(ξ1dp)k, k ∈ N, dp = gcd(n−m,n+m). (2.8)

Proof. The second order pole appears if zeros from the first family p1k = 2
ξ+
k

consider with zeros from the second family p2k =
2
ξ−
k, k ∈ N :

2

ξ+
l =

2

ξ−
k, l, k ∈ N. (2.9)
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(b) ξ = (
√
2/5, (3

√
2)/5)

Fig. 1.6. Spectrum Curves for ξ1/ξ2 = m/n ∈ Q, ξ1, ξ2 6∈ Q.

Equation (2.9) has solution if

ξ−
ξ+

=
ξ2 − ξ1
ξ2 + ξ1

=
1− ξ1/ξ2
1 + ξ1/ξ2

=
1− ξ
1 + ξ

=
n−m
n+m

∈ Q⇔ m

n
∈ Q.

So, using Lemma 1.6 we conclude, that all solutions of equality (2.9) have form

l =
n+m

d
t, k =

n−m
d

t, t ∈ N,

where d = gcd(n + m,n − m). Substituting solution to the equation (2.9) we

conclude, that the second order zeros of the function Pξ(z) are defined by the

formula

p12t =
2(m+ n)t

d(ξ2 + ξ1)
=

2n

ξ2d
t =

2m

ξ1d
t, t ∈ N. (2.10)

The case ξ = m/n ∈ Q, ξ1, ξ2 6∈ Q. In this case ξ+, ξ− 6∈ Q. Consequently,

there exist no constant eigenvalues (Cξ = ∅, (see Figure 1.6)). So, CF has two

families of the first order poles in P1
ξ and P2

ξ , respectively, and the second order

poles in P12
ξ (see formulae (2.1)–(2.4) for calculation p1k, p2k, p12k , k ∈ N). Note,

that P2
ξ = ∅ for ξ = (l − 1)/(l + 1), 1 < l ∈ N. In this special case p21 = p121 (see

Figure 1.5(a) and Table 1.1).

The case ξ 6∈ Q. In this case at least one number ξ+ or ξ− is irrational (and

at least one number ξ1 or ξ2 is irrational). If ξ+ 6∈ Q and ξ− 6∈ Q then CF has two

families of the first order poles P1
ξ and P2

ξ , respectively, and P12
ξ = Cξ = ∅.

Theorem 1.8. If ξ+ ∈ Q, then C1ξ 6= ∅ and CE points exist:

c1k = p1m+/d1k
= z2n+/d1k = 2n+/d1k, k ∈ N, d1 = gcd(2n+,m+). (2.11)

Proof. For the problem (1.1)–(1.3) all zeros are real and positive zl = l, l ∈ N

(see Figure 1.7(c),(e)). CE points from the set C1 appear if poles from the first
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Fig. 1.7. Spectrum Curves for ξ1/ξ2 6∈ Q.

, ,

(a) ξ = (4/9, 8/9)

,
,

,

(b) ξ = (2/7, 6/7)

,

(c) ξ = (5/12, 11/12)

,
,

(d) ξ = (1/2, 5/6)

, ,

(e) ξ = (1/5, 13/15)

, ,
, ,

(f) ξ = (1/5, 3/5)

Fig. 1.8. Spectrum Curves for ξ1 = m1/n1, ξ2 = m2/n2 ∈ Q.

family p1k =
2
ξ+
k, k ∈ N, coincide with zeroes:

2

ξ+
k = l, k, l ∈ N. (2.12)

From proof of Lemma 1.6 we have, that if ξ+ /∈ Q then (2.12) has no solutions.

If ξ+ = ξ2 + ξ1 =
m1

n1
+ m2

n2
= m+

n+
∈ Q then formula (2.12) can be rewritten in the
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following form:
2n+

d1
k =

m+

d1
l, k, l ∈ N. (2.13)

Then the solutions of the equation (2.13) are:

l =
2n+

d1
t, k =

m+

d1
t, t ∈ N. (2.14)

From equations (2.12) and (2.14) we conclude that first family CE points are:

c1t =
2m+

ξ+d1
t =

2n1n2

m2n1 +m1n2

· m2n1 +m1n2

d1
t =

2n+

d1
t =

2n1n2

d1
t, t ∈ N. (2.15)

Remark 1.9. If ξ1 + ξ2 6= 2/l, 1 < l ∈ N then P12
ξ = ∅, C2ξ = ∅ and C12ξ = ∅, but

P1
ξ 6= ∅ and C1ξ 6= ∅. In addition, if ξ1 + ξ2 = 2/l is not satisfied, then the set P1

ξ

is empty, because p11 = c11.

Theorem 1.10. If ξ− ∈ Q, then C2ξ 6= ∅:

c2k = p2m−/d2k = z2n−/d2k = 2n−/d2k, k ∈ N, d2 = gcd(2n−,m−). (2.16)

Proof. The proof follows from the proof of Theorem 1.8.

CF has removable singularities in these CE points (there is one family of such

points) and the first order poles in the set P1
ξ + P2

ξ .

Remark 1.11. The set P2
ξ = ∅ for ξ− = 2/m, 2 < m ∈ N, because p21 = c21 (see

Figure 1.5(b) and Table 1.1). The other sets of constant eigenvalue points (C1ξ ,

C12ξ ) and poles (P12
ξ ) are empty if ξ2− ξ1 6= 2/m (Figure 1.7(d)). If this condition

is not satisfied then, additionally, P2
ξ = ∅ (see Figure 1.7(f)).

The case ξ1, ξ2 ∈ Q. In this case the set C12ξ 6= ∅ and there exist a few special

cases for other sets of poles and CE points. For example, if ξ = (8/21, 20/21),

then all sets P1
ξ , P2

ξ , P12
ξ , C1ξ , C2ξ , C12ξ and Zξ are not empty (see Figure 1.3); if

ξ = (6/17, 15/17), then all sets are not empty, except C1ξ , C2ξ (C11 = C21 = C121 (see

Figure 1.9(a)). Further, if ξ = (4/11, 10/11), then the sets P12
ξ = C1ξ = C2ξ = ∅

and P12
1 = C121 (Figure 1.9(b)). In the cases Figure 1.8 the set P1

ξ 6= ∅ however

the set P2
ξ = ∅. In the cases of Figure 1.8(a),(b) exist second order pole (there

Figure 1.8 P12
ξ = ∅). The set C1ξ 6= ∅ for the ξ = (4/9, 8/9), ξ = (5/12, 11/12),

ξ = (1/2, 5/6) and the set C2ξ 6= ∅ for ξ = (5/12, 11/12). The first family CE do
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Fig. 1.9. Spectrum Curves for ξ1 = m1/n1, ξ2 = m2/n2 ∈ Q.

not exist in the case Figure 1.8(a) and both sets C1ξ and C2ξ are empty for the case

Figure 1.8(b)–(f). For the fixed ξ values, when n1 = n2 = n and m1 +m2 = n

(see Figure 1.9(c)–(f): P1
ξ = ∅ and P12

ξ = ∅. In contrast to the case shown in

Figure 1.9(e)–(f), when ξ = (1/10, 9/10) and ξ = (1/7, 6/7), then the set P2
ξ is

not empty (see Figure 1.9(c)–(f)). For all examples in Figure 1.9(c)–(f), the set

C1ξ 6= ∅, but CE points depending on the second order pole family are obtained

only for examples in Figure 1.9(c),(e). For this instance, we can use expressions

(2.1)–(2.6) and get formulae for poles and CE points (k ∈ N).

Theorem 1.12. If ξ1 ∈ Q and ξ2 ∈ Q, then the pole points of the sets P1
ξ +P12

ξ +

C1ξ + C12ξ , P2
ξ + P12

ξ + C2ξ + C12ξ , P12
ξ + C12ξ for the problem (1.1)–(1.3) are

p1k =
2n1n2k

m+

, p2k =
2n1n2k

m−
, p12k =

2n1n2k

gcd(m−,m+)
, k ∈ N.

Theorem 1.13. If ξ1 ∈ Q and ξ2 ∈ Q then the CE points c1k and c2k for the

problem (1.1)–(1.3) are equal to:

c1k =
2n1n2k

gcd(2n±,m+)
, c2k =

2n1n2k

gcd(2n±,m−)
, k ∈ N.

CE points of the first family and the second family are points of the sets

C1ξ + C12ξ and C2ξ + C12ξ .



1.2 Zeroes, poles and CE points of the CF 29

Theorem 1.14. If ξ1 ∈ Q and ξ2 ∈ Q, then CE points of the set C12ξ for the

problem (1.1)–(1.3) are equal to:

c12k =
2n1n2k

gcd(2n±,m+,m−)
, k ∈ N.

Proof. If the second order pole points p12k = 2n1n2k
gcd(m−,m+)

, k ∈ N, coincide with zero

zl = l ∈ N, then we get the point of the set C12ξ :

2n1n2k

gcd(m+,m−)
= l, k, l ∈ N. (2.17)

This equation can be rewritten in the other form:

2n±k = gcd(m+,m−)l, k, l ∈ N, (2.18)

For numbers 2n± and gcd(m+,m−) we can find the greatest common divisor

d3 = gcd(2n±, gcd(m+,m−)) = gcd(2n±,m+,m−) and then the equation (2.18)

we can rewrite in the other form:

2n±
d3

k =
gcd(m+,m−)

d3
l, k, l ∈ N. (2.19)

Then by the Lemma 1.6 all solutions of the equation (2.17) have a form:

l =
2n±t

d3
, k =

gcd(m+,m−)t

d3
, t ∈ N. (2.20)

From equations (2.17) and (2.20) we obtain that CE points of the set C12ξ are

c12t =
2n±t

gcd(2n±,m+,m−)
, t ∈ N.

The set C12ξ 6= ∅ for all ξ. P1
ξ = ∅ for p11 = c11; P2

ξ = ∅ for p21 = p121 or p21 = c21

or p21 = c121 ; P12
ξ = ∅ for p121 = c121 or p11 = c11 or p21 = c21; C1ξ = ∅ for c11 = c121 ;

C2ξ = ∅ for c21 = c121 ; C12ξ = ∅ for c21 = c11 (see Table 1.1).

Some information on the first or the second order poles can be presented as

contour lines of the functions (z−10)−1 and (z−10)−2. Real CF in neighbourhood

of the first order pole are shown in Figure 1.10 and Figure 1.11. In this case there

are two Spectrum Curves N1 and N2 on the real axis (see Figure 1.10(b)). In

the neighbourhood of the first order pole there exist only real eigenvalues (see

Figure 1.12). The Spectrum Curves N1, N2 and the CF in neighbourhood of the

second order poles are presented in Figure 1.11(b) and Figure 1.13.
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(a) real part (b) image part

Fig. 1.10. The first order pole.

(a) real part

9

(b) image part

Fig. 1.11. The second order pole.

Fig. 1.12. Real CF.
A neighbourhood of
the first order pole.

(a) Real CF

0 0.5-0.5-1 1

(b) complex part (c) 3D view

Fig. 1.13. A neighbourhood of the second order pole.

We have two families C1ξ and C2ξ of CE points (these eigenvalues do not exist if

ξ1, ξ2 6∈ Q, but ξ ∈ Q). The dependence of CE points on NBC parameters ξ1 and

ξ2 are presented in Phase Space Sξ (see Figure 1.14). The CE points of the first

family C1ξ are on the lines ξ1 + ξ2 = 2k/l, l ∈ Nr {1}, which are perpendicular to

the line ξ2 = ξ1 (see Figure 1.14(a)). The CE points of the second family C2ξ are on

the lines ξ2 − ξ1 = 2k/l, l ∈ Nr {1, 2}, which are parallel to the line ξ2 = ξ1 (see

Figure 1.14(b)). Notation lk or lk near the line shows that the CE point is c1k = l

or c2k = l, accordingly. The intersection points of the CE lines from the different

families with the same number l give the set C12ξ (see Figure 1.14(c)). We have

the first order pole p11 or p21 in the lines ξ1 + ξ2 = 2π/p11 or ξ2 − ξ1 = 2π/p21, too.

The double pole is in the line ξ2 = n/m · ξ1 (see Figure 1.14(c), m = 1, n = 3).

We analyze two points in Phase Space Sξ: A = (1/6, 5/6) and B = (1/4, 3/4).

The point A corresponds to the situation without poles (p11 = c11, p21 = c21, see

Table 1.1 and Figure 1.5(c)), point B corresponds to the situation with first order

pole in CE point. If ξ is moving across line (A2, A4) or (A1, A3) then at the CE

point the complex part of Spectrum Curve is arising or disappearing in Cq (see

Figure 1.14(d)). In this case the complex part of the Spectrum Curve is between
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Fig. 1.14. CE points (ck = πk, k = 1, . . . , 5) in Phase Space Sξ and Spectrum Curves
in the points A and B and in their neighbourhood.

two Critical points. We have the same situation near point B (see Figure 1.14(e),

B0 → B1 → B2). At the point B3 two first order poles create the second order

pole and the complex part of the Spectrum Curve is between the Critical point

and this pole. All complex parts of the Spectrum Curve are disappearing in the

point B.

3 Critical points

If γ′c(b) = 0, b ∈ C, then we have a Critical point b of the Complex CF, and

value γc(b) is a critical value of the Complex CF [46, Pečiulytė and Štikonas

2007], [49, Pečiulytė et al. 2008]. Critical points of the Complex CF are saddle

points of this function. For Real CF Critical points can be a half-saddle points
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,

(a) Real CF

,

(b) Spectrum Curves (c) 3D view

Fig. 1.15. The first order Real Critical point, ξ = (0.2, 0.75).

(for example, such point is branch point q = 0), or maximum, minimum points or

inflection (saddle) points. If the function γc at the Critical point b ∈ Cq satisfies

γ
′
c(b) = 0, . . . , γkc (b) = 0, γ(k+1)

c (b) 6= 0, then b is called the k-order Critical point.

At this point Spectrum Curves change direction and the angle between the old

and the new direction is π
k+1

. We use “right hand rule”. So, the Spectrum Curve

turns to the right.

The index of Critical point is formed of the indices of the Spectrum Curves,

which is not a constant eigenvalue point, intersecting in this Critical point. The

index of Complex (the first order) Critical point b ∈ CqrRq is formed by indexes

of two Spectral Curves intersecting in this Critical point and the first index is

always smaller. If the Critical point is real, then the left index coincide with the

index of Spectral Curve, which is defined by the smaller real λ values, and the

right index is defined by greater λ values. We put the indexes of other Spectrum

Curves in the accending order between left and right indices (see Figure 1.16(b)–

Figure 1.19(b)).

Remark 1.15. A point q = 0 is the first order Critical point in the domain Cq,

but λ = 0 is not Critical point in Cλ, because q is a branch point of λ = λ(q).

The order of a Critical point at branching point is not invariant. Therefore, we

investigate these points separately.

3.1 The first order Critical points

For SLP (1.1)–(1.3) there exist two types of the first order Critical points. The

first type Critical point appears for
◦
Rq = R−q ∪R+

q . In this case, multiple eigenvalue
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Fig. 1.16. a) The trajectory of the first order Complex Critical point in Phase Space.
C = (0.39893, 0.73649 . . . ); b)-c) Spectrum Curves ir the neighbourhood of the first
order Complex Critical point C.

is real (usually double or triple, where the Critical point coincide with CE point).

The first order Real Critical point b ∈
◦
Rq, can be find from the following equation

(for fixed ξ1 and ξ2):

γ′(b; ξ) = 0. (3.1)

CF in the neighbourhood of the first order Real Critical point is presented in

Figure 1.15. Real Critical point of CF exists in the typical situations : 1) between

two zeroes do not exist pole, 2) between two poles do not exist zero. For SLP

(1.1)–(1.3) all the first order Real Critical points are positive.

The first order Complex Critical point b = x+ ıy ∈ Cq rRq can be calculated

solving the system of equations:

Im γ(b; ξ) = 0, Re γ′(b; ξ) = 0, Im γ′(b; ξ) = 0. (3.2)

Spectrum Curves in Cq rRq are symmetrical with respect to x-axis and we have

pair conjugate Complex Critical points always. The solution of system (3.2) is a

trajectory in Phase Space Sξ. Two trajectories of the such Complex Critical points

are presented in Figure 1.16(a). The Spectrum Curves for ξ = (0.39893, 0.73649...)

with Complex Critical point is presented in Figure 1.16(b). Every point of the

trajectory in Sξ has similar Spectrum Curves in the neighbourhood of a Critical

point. If Phase Point moves across this trajectory, then the view of the Spectrum

Curves are qualitative different (see Figure 1.16(a),(c), points A and B). In this

example (see Figure 1.16(b), point C) we have both cases of the first order Critical
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Fig. 1.17. a) The trajectory of the second order Critical point in Phase Space,
C = (0.35266, 0.85601 . . . ); b)-c) Spectrum Curves ir the neighbourhood of second order
Critical point C.
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Fig. 1.18. a) The trajectory of the second order Critical point C =
(0.11625, 0.616239 . . . ), A = (0.11625, 0.616238 . . . ), B = (0.11625, 0.616240 . . . ), C1 =
(0.15454 . . . , 0.64970 . . . ), C2 = (0.07331 . . . , 0.57495 . . . ); b)-c) Spectrum Curves ir the
neighbourhood of the second order Critical point C.

points: b4,5, b5,6, b6,7 are Real Critical points and b4,6, b5,7 are pair Complex

Critical points. The gap between two trajectories in Sξ (points C1 and C2) will

be explained further (see Figure 1.16(a)).

3.2 The second order and the third order Critical points

The second order Critical point appears when two the first order Real Critical

points coincide in the same point b. Second order Critical point b ∈
◦
Rq can be
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Fig. 1.19. a) Intersection of trajectories of the third order Critical points; b) The
third order Critical point C1 = (0.17122 . . . , 0.83250 . . . ); c) Bifurcation diagram in the
neighbourhood of the third order Critical point C1.

found from the following equation:

γ′(b; ξ) = 0, γ′′(b; ξ) = 0.

For SLP (1.1)–(1.3) all the second order Real Critical points are positive. Two

trajectories of such the second order Critical points in Phase Space are shown in

Figure 1.17(a) and Figure 1.18(a). In the Figure 1.17(b) and Figure 1.18(b) Spec-

trum Curves are presented in the point C which is on corresponding trajectory of

the second order Critical point and in Figure 1.17(c) and Figure 1.18(c) Spectrum

Curves in the Phase Points A and B near this trajectory can be seen. Points b4,6,5

and b4,3,5 in Figure 1.17(b) and Figure 1.18(b) are the second order Critical points.

Points C1 and C2 in Figure 1.18(a) are the same as in Figure 1.16(a). So, the gap

between Phase Points C1 and C2 is the part of the second order Critical point

trajectory (see Figure 1.18(a)).

Numerical calculations show that such gaps exist for ξ1 + ξ2 / 1 (see Fig-

ure 1.16(a), Figure 1.18(a), Figure 1.19(a)). The gap boundary points C1 and C2

are the third order Critical points b ∈
◦
Rq and they can be found from the system:

γ′(b; ξ) = 0, γ′′(b; ξ) = 0, γ′′′(b; ξ) = 0.

The views of Spectrum Curves in point C1 and in the neighbourhood of this third

order Critical point b3,2,5,4 are presented in Figure 1.19(b)–(c). At this point the

trajectory of the second order Critical point changes direction and the pair of the

first order Complex Critical points become real (y = 0 and positive).
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Fig. 1.20. The trajectories of the third order and the second order Critical points
and Spectrum Curves, A = (0.3526 . . . , 0.8560 . . . ), B = (0, 3600 . . . , 0.8601 . . . ), C =
(0.4491 . . . , 0.8771 . . . ), D = (0.3660 . . . , 0.8660 . . . ), E = (0.3603 . . . , 0.8603 . . . ).

If ξ1 + ξ2 ' 1 (see Figure 1.17(a), Figure 1.20(a)) then the trajectory of the

second order Critical point is “smooth” curve. This trajectory intersects with

the first order Complex Critical point trajectory without the third order Critical

points, i.e. the pair of the Complex Critical points do not reach the real axis.

Typical Spectrum Curves are presented in Figure 1.20(c).

The general behaviour of the second and the third order trajectories of Phase

Space is more complicated. For small x three trajectories are shown in Fig-

ure 1.20(b). The second order trajectories leave points ξ = (1/3, 1/3), (1/2, 1/2),

(2/3, 2/3) for x = 3, 2, 3, accordingly. All these trajectories approach Phase Point
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ξ = (0, 1). There is not the second order Critical point for integral NBC with

ξ2 = 1 or ξ1 = 0. Trajectories of the first order Complex Critical points start at

points ξ = (0, b) and move towards a point which corresponds to the third order

Critical point and after “gap” these trajectories approach Phase Point ξ = (1, 1).

Spectrum Curves at the point q = 0. Taylor series for γ(q) at the point

q = 0 is

γ(q) =
2

ξ22 − ξ21
− 2− ξ21 − ξ22

ξ22 − ξ21
q2 +O(q4). (3.3)

Multiplier of q2 is always negative. At this point Spectrum Curve N1 turn or-

thogonal to the right, so, the point q = 0 is the first order Critical point in Cq. A

point λ = 0 is not Critical one in the complex plane Cλ because λ = 0 is a branch

point of a mapping λ = λ(q).

4 Conclusions

In this chapter the spectrum for SLP with integral NBC depending on three

parameters was analyzed.

Qualitative view of the Spectrum Curves with respect to parameters ξ1 and

ξ2 in integral BC, the location of the zeroes, poles of the CF and CE points were

investigated. We found all such points in the case SLP (1.1)–(1.3). One of our

results is the classification of poles and zero points. The dependence of zeros and

poles on the integral BC parameters ξ1 and ξ2 was analyzed. CE non-existence

condition (sets C1ξ , C2ξ and C12ξ are empty) is ξ1/ξ2 ∈ Q, ξ1, ξ2 6∈ Q. If the following

condition ξ1/ξ2 6∈ Q is satisfied, then P12
ξ = ∅ and C12ξ = ∅. For all ξ1 and ξ2

satisfying condition ξ1, ξ2 ∈ Q, the set C12ξ is not empty.

Critical points of CF are important for numerically analysis of complex eigen-

values and Spectrum Curves in the complex plane. We found trajectories of the

first order Complex Critical points and the second order (real) Critical points. In

this chapter we described how Spectrum Curves depends on parameters ξ1 and

ξ2. We analyzed the first order Real and Complex Critical points, trajectories of

the first order Complex Critical points and the second order Critical points in the

Phase Space Sξ, find location of the third order Critical points.
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Investigation of the Spectrum Curves gives useful information about the spec-

trum for problems with NBC.



Chapter 2

Sturm–Liouville problem with

integral NBC (special cases)

In this chapter, SLP for equation −u′′ = λu with two cases of integral NBC

is analyzed. We investigate how the eigenvalues of these problems depend on

two parameters γ and ξ in the integral NBC. As the theoretical investigation of

the complex spectrum is a difficult problem, we present the results of modelling

and computational analysis and illustrate the existing situation in graphs. In

Section 1, we formulate the SLP with clasical BC (u(0) = 0 or u′(0) = 0) and

integral NBC:

u(1) = γ

1∫
ξ

u(t) dt or u(1) = γ

ξ∫
0

u(t) dt.

Also, in Section 1, we present the earlier gathered results on CF, zeroes, poles, CE

and Critical points in all cases [48,49, Pečiulytė et al. 2005, 2008]. In Section 2 a

short review of real eigenvalues properties of the analyzed problems is given. These

results are discussed in the previous papers [48,49, Pečiulytė et al. 2005, 2008], [83,

Štikonas 2007] and they are useful for investigating complex eigenvalues. The

behaviour of Spectrum Curves in the complex part of the spectrum is presented

in Section 3.

The Section 4 presents some new results on the spectrum for the second order

differential problem with symmetric interval in the integral

u(1) = γ

∫ 1−ξ

ξ

u(t) dt.

39
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We investigate how the spectrum of this problem depends on the integral NBC

parameters γ, ξ in this symmetric case. Some special conclusions are given on

the complex spectra of this problem in Section 4.1. Some results are presented as

graphs of Real and Complex CF. Similar problem for ξ = (0, 1) and ξ = (1/4, 3/4)

were discussed in [9, Čiupaila et al. 2004]. Certain parts of this chapter are

published in [76,77,79].

Remark 2.1. In Chapter 1: ξ = ξ1/ξ2. In this chapter, we use notation ξ instead

of ξ1 and ξ2: ξ = (0, ξ), ξ = (ξ, 1), ξ = (ξ, 1 − ξ). If ξ ∈ Q, then we use rule:

ξ = m/n, m,n ∈ N, and m,n are coprime numbers, i.e., gcd(n,m) = 1.

1 Sturm–Liouville problem with integral type

NBC

Let us consider a SLP with one classical BC:

−u′′ = λu, t ∈ (0, 1), (1.1)

u(0) = 0, (1.2)

and another integral NBC (two cases):

u(1) = γ

1∫
ξ

u(t) dt (Case 1), (1.31)

u(1) = γ

ξ∫
0

u(t) dt (Case 2), (1.32)

with parameters γ ∈ R and ξ ∈ [0, 1]. Also the SLP (1.1) with the BC is analyzed:

u′(0) = 0 (1.4)

on the left side, and with integral NBC (1.3) on the right side of the interval. We

enumerate these cases from Case 1′ to Case 2′.

In Case 1, 1′ for ξ = 0 and Case 2, 2′ for ξ = 1 we have the same integral

NBC. In the general case, the eigenvalues λ ∈ C and eigenfunctions u(t) are the

complex functions. For γ =∞, we get NBC:
1∫
ξ

u(t) dt = 0, 0 6 ξ < 1,

ξ∫
0

u(t) dt = 0, 0 < ξ 6 1. (1.51,2)
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Note that the index in the number of a formula (for example in formula (1.3))

denotes the case. If there is no index, then the rule (or results) holds on in all the

cases of NBCs. If we write two indexes in the number of formulae, as in (1.5), then

the first part of this formula is related to Case 1 and the second part is related to

Case 2. If we write one index, then the formula is related to one case.

Remark 2.2 (classical case). If γ = 0 or ξ = 1 in problem (1.1), (1.2), (1.31) or

problem (1.1), (1.4), (1.31) and γ = 0 or ξ = 0 in problem (1.1),(1.2), (1.32) or

problem (1.1), (1.4), (1.32), we have the SLP with the classical BCs and in this

case eigenvalues and eigenfunctions are well known:

λk = (kπ)2, uk(t) = sin(kπt), k ∈ N, (1.61,2)

λk =

(
k − 1

2

)2

π2, uk(t) = cos

((
k − 1

2

)
πt

)
, k ∈ N. (1.61′,2′)

If λ = 0, then the function u(t) = ct satisfies problem (1.1)–(1.2) and the

function u(t) = c satisfies problem (1.1), (1.4). By substituting these solutions

into NBCs, we derive that there exists a nontrivial solution (c 6= 0) if:

1− γ 1− ξ
2

2
= 0, 1− γ ξ

2

2
= 0, (1.71,2)

1− γ(1− ξ) = 0, 1− γξ = 0. (1.71′,2′)

Lemma 2.3. The eigenvalue λ = 0 exists if, and only if

γ =
2

1− ξ2
, γ =

2

ξ2
, (1.81,2)

γ =
1

1− ξ
, γ =

1

ξ
. (1.81′,2′)

In general, if λ 6= 0 and eigenvalues λ = (πq)2, then the solution of problem

(1.1)–(1.2) is u = c sin(πqt) and the solution of problem (1.1), (1.4) is u(t) =

cos(πqt). In both cases (q = 0 and q 6= 0), we can write one formula for the

nontrivial solutions u = c sin(πqt)/(πq) = c sinh(−ıπqt)/(πq) of BC (1.2) and

u = c cos(πqt) = c cosh(−ıπqt) of BC (1.4), where q ∈ Cq.

Let us return to the problems (1.1)–(1.3) and (1.1), (1.3), (1.4). If λ 6= 0, the

NBC is satisfied and there exists a nontrivial solution (eigenfunction) if q ∈
◦
Cq :=
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Cq r {0} is the root of the equation:

f(q) := 2γ
sin((1 + ξ)πq/2) sin((1− ξ)πq/2)

(πq)2
− sin(πq)

πq
= 0, (1.91)

f(q) := 2γ
sin2(ξπq/2)

(πq)2
− sin(πq)

πq
= 0, (1.92)

f(q) := 2γ
cos((1 + ξ)πq/2) sin((1− ξ)πq/2)

πq
− cos(πq) = 0, (1.91′)

f(q) := γ
sin(ξπq)

πq
− cos(πq) = 0. (1.92′)

CE were analyzed in papers [48, 49, Pečiulytė et al. 2005, 2008]. CE points,

we get as a roots of the system:Z(q) := sin(πq) = 0,

Pξ(q) := cos(ξπq)− cos(πq) = 0,

Z(q) := sin(πq) = 0,

Pξ(q) := 1− cos(ξπq) = 0,

(1.101,2)

Z(q) := cos(πq) = 0,

Pξ(q) := sin(πq)− sin(ξπq) = 0,

Z(q) := cos(πq) = 0,

Pξ(q) := sin(ξπq) = 0.

(1.101′,2′)

CEs exist only for rational ξ = m/n ∈ (0, 1), m,n ∈ N, and those eigenvalues are

equal to λk = (πck)
2, k ∈ N, where CE points ck are given by formulae shown in

Table 2.1. C is the set of all CE points (as in Chapter 1).

Table 2.1. CE points ck, k ∈ N.

Case n−m ∈ Ne n−m ∈ No m ∈ Ne m ∈ No
Case 1 nk 2nk
Case 1′ n(k − 1/2) 2n(k − 1/2)
Case 2 nk 2nk
Case 2′ n(k − 1/2) 2n(k − 1/2)

All nonconstant eigenvalues are γ-points of the meromorphic Complex CF:

γ(q) :=
πq sin(πq)

cos(ξπq)− cos(πq)
=

πq sin(πq)

2 sin((1 + ξ)πq/2) sin((1− ξ)πq/2)
, (1.111)

γ(q) :=
πq sin(πq)

1− cos(ξπq)
=

πq sin(πq)

2 sin2(ξπq/2)
, (1.112)

γ(q) :=
πq cos(πq)

sin(πq)− sin(ξπq)
=

πq cos(πq)

2 cos((1 + ξ)πq/2) sin((1− ξ)πq/2)
, (1.111′)

γ(q) :=
πq cos(πq)

sin(ξπq)
. (1.112′)

So, we can find the eigenvalues λ = (πq)2 in two ways: as CEs from (1.10) (only

for rational ξ); as nonconstant eigenvalues, using CF (1.11).
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For the investigation of CEs as well as for the analysis of complex eigenvalues,

zero and pole points of the CF are important.

Lemma 2.4. Zero points of the function Z are of the first order. These positive

zeroes are equal to:

zk := k, k ∈ N, (1.121,2)

zk := (k − 1/2), k ∈ N. (1.121′,2′)

Lemma 2.5. Points p12k = 2k/ξ, k ∈ N, are the second order zeroes of function

Pξ in Case 2 and there are not the first order zeroes in this case. In Cases 1, 1′,

2′ all zeroes of function Pξ belong to one of the families of the first order zeroes:

p1k :=
2k

1 + ξ
, k ∈ N, and p2l :=

2l

1− ξ
, l ∈ N, (1.131)

p1k :=
2(k − 1/2)

1 + ξ
, k ∈ N, and p2l :=

2l

1− ξ
, l ∈ N, (1.131′)

p1k :=
k

ξ
, k ∈ N. (1.132′)

If ξ 6∈ Q, then CE points do not exist, and point p12k , k ∈ N, in Case 2 are the

second order pole points, p1k, k ∈ l, p2l , l ∈ N, are the first order poles of CF.

Proof. Formulae for zeroes of Pξ points we get as zeroes of denominators in frac-

tions (1.11). It is obvious, that zeros of Pξ in Case 2 are of the second order only.

If ξ 6∈ Q, then (1 + ξ)/(1− ξ) 6∈ Q. So, the second order zeroes of Pξ do not exist

in the Case 1 and Case 1′. If ξ 6∈ Q, then all points p 6∈ Q, where p = p1k, p
2
l ,

k, l ∈ N and CE points do not exist. So, all zeros of Pξ are poles of CF.

In remaining part of this section we present result for ξ ∈ Q, ξ = m/n and

gcd(n,m) = 1, n,m ∈ N. If ξ = 0, then n = 1, m = 0. For sets of zeros, poles,

CE points we use the same notation as in Chapter 1, with agreement Z2
ξ = ∅ in

the Case 2′ and ξ instead of ξ.

Case 1. Theorems 1.12, 1.13, 1.14 (Chapter 1) are valid with ξ1 = ξ = m/n,

m < n, ξ2 = 1 = 1/1, n+ = n− = n, m+ = n+m, m− = n−m.

Lemma 2.6. If ξ ∈ Q, then in Case 1 points qj = j ∈ Nn, n − m ∈ Ne or

qj = j ∈ N2n, n −m ∈ No, are the first order poles of CF and CE points. Other

Pξ zeroes are the second order poles of CF.
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Proof. If n + m ∈ Ne, then n − m ∈ Ne, too, and d = gcd(n + m,n − m) = 2.

From Theorem 1.12 we get

p12t = nt, t ∈ N. (1.14)

If n+m ∈ No, then n−m ∈ No, too, and gcd(n+m,n−m) = 1. So, we have:

p12t = 2nt, t ∈ N. (1.15)

These points are zeroes of the function Z(q) as well, therefore they are CE point,

too. Thus, in Case 1 all the points p1k, k ∈ N2n, or p2l , l ∈ N2n, are poles of the

first order.

Case 2. Theorems 1.12, 1.13, 1.14 (Chapter 1) are valid with ξ2 = ξ = m/n,

m > 0, ξ1 = 0 = 0/1, n+ = n− = n, m+ = m, m− = m.

Points p12k = k/m, k ∈ N2n, are poles of the second order, except the case

k ∈ Nmn, m ∈ Ne, and k ∈ N2mn, m ∈ No. In this case, we have the first order

pole at CE point. There are no poles of the second order for m = 1 and m = 2.

Case 1′.

Lemma 2.7. If ξ ∈ Q, (n − m)/ gcd(n + m,n − m) ∈ Ne, n,m ∈ No, then in

Case 1′ points p1k = 2n(k − 1/2)/(n +m), k ∈ N, coincide with points from the

second family p2l = 2nl/(n−m), l ∈ N, at the points:

p12t = 2n

(
n−m

gcd(n+m,n−m)
t+ l0

)/
(n−m), t ∈ N, (1.16)

where (k0, l0) are any solution of the equation:

n−m
gcd(n+m,n−m)

k − n+m

gcd(n+m,n−m)
l − n−m

2 gcd(n+m,n−m)
= 0, k, l ∈ N,

such that − n−m
gcd(n+m,n−m)

< l0 6 0.

Proof. If a point from the first family p1k = 2n(k− 1/2)/(n+m), k ∈ N, coincides

with a point from the second family p2l = 2nl/(n−m), l ∈ N, then

n(2k − 1)

n+m
=

2nl

n−m
, k, l ∈ N,

or

(2k − 1)(n−m) = 2l(n+m), k, l ∈ N. (1.17)
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From equality (1.17) we obtain that n −m ∈ Ne, i.e., n,m ∈ No. The equation

(1.17) can be rewritten in another form:

(n−m)k − (n+m)l − n−m
2

= 0. (1.18)

For numbers n −m ∈ Ne and n +m ∈ Ne we find d = gcd(n −m,n +m) > 2.

Then n −m = da, n +m = db, where gcd(a, b) = 1, 0 < a, b ∈ N. So, we have

equation

ak − bl − a

2
= 0, k, l ∈ N. (1.19)

If a /∈ Ne then the equation (1.19) has no solution for k, l ∈ N. If a ∈ Ne, then

b ∈ No and from Theorem 1.4 in Chapter 1 we obtain that for equation (1.19)

exist solutions and all solutions have a form:

k = k0 + bt, l = l0 + at, t ∈ N, (1.20)

where (k0, l0) is any solution of the equation (1.19). For fixed ξ value we always

can find (k0, l0), but we select only such (k0, l0) that −a < l0 6 0. Then the

second order zeroes point are defined by the formula:

p12t =
2n

d
t+

2nl0
n−m

, t ∈ N. (1.21)

Example 2.8. ξ = 1/3. Then m,n ∈ No, d = gcd(n−m,n+m) = gcd(2, 4) = 2,

(n−m)/d = 2/2 = 1 6∈ Ne and the equation (1.19) is

k − 2l − 1

2
= 0, k, l ∈ N. (1.22)

This equation has no solution for k, l ∈ N.

ξ = 1/5, m,n ∈ No. Then d = gcd(4, 6) = 2 and (n −m)/d = 4/2 = 2 ∈ Ne.

The equation

ak − bl − a

2
= 2k − 3l − 1 = 0, k, l ∈ N (1.23)

has solutions and one of the solution is the point [−1,−1]. So, another solution

has a form k = −1 + 3t and l = −1 + 2t, t ∈ N. Finally, for ξ = m/n = 1/5

p12t =
5(2t− 1)

2
, t ∈ N.
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Lemma 2.9. If ξ = m/n ∈ Q, and (n − m)/ gcd(2n, n + m) ∈ Ne, n,m ∈ No,

then in Case 1′ the points p1k = 2n(k− 1/2)/(n+m), k ∈ N, coincide with zeroes

points zl = l − 1/2, l ∈ N, and we have CE points

c1t = l0 +
2nt

gcd(2n, n+m)
− 1

2
, t ∈ N, (1.24)

where (k0, l0) is any solution of the equation

2n

gcd(2n, n+m)
l − n+m

gcd(2n, n+m)
k − n−m

2 gcd(2n, n+m)
= 0, k, l ∈ N,

such that − 2n
gcd(2n,n+m)

< l0 − 1/2 6 0.

Proof. CE points of the first family appear if point of the first family p1k = 2(k −

1/2)/(1 + ξ), k ∈ N, coincides with zero zl = l − 1/2, l ∈ N, i.e.:

2n(k − 1/2)

n+m
= l − 1/2, k, l ∈ N,

or

2n(2k − 1) = (n+m)(2l − 1), k, l ∈ N. (1.25)

From the equation above we have that this equality is valid if n +m ∈ Ne, i.e.,

n,m ∈ No. This equation can be rewritten in the other form:

2nk − (n+m)l − n−m
2

= 0, k, l ∈ N,

or

ak − bl − a− b
2

= 0, k, l ∈ N, (1.26)

where a = 2n/ gcd(2n, n +m), b = (n +m)/ gcd(2n, n +m). If a− b /∈ Ne, then

the equation (1.26) has no solution for k, l ∈ N. Otherwise, all solutions of the

equation (1.26) have a form:

k = k0 + bt, l = l0 + at, t ∈ N, (1.27)

where (k0, l0) is any solution of the equation (1.19) (see Theorem 1.4 in Chapter 1).

For SLP (1.1), (1.4), (1.31) all poles and zeros are positive, so we choose (k0, l0)

only such that 1/2− a < l0 6 1/2. Then the formula:

c1t = l0 +
2n

gcd(2n, n+m)
t− 1

2
, t ∈ N,

describe the CE points (the first family).
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(a) ξ = 2/3 (b) ξ = 1/3 (c) ξ = 1/2

Fig. 2.1. Real CF γ(x) for various ξ in Case 1.

(a) ξ = 0.31 (b) ξc = 1/3 (c) ξ = 0.37

Fig. 2.2. Real CF γ(x) in the neighborhood of the CE point in Case 1.

Lemma 2.10. If ξ = m/n ∈ Q, and (n −m)/ gcd(2n, n −m) ∈ Ne, n,m ∈ No,

then in Case 1′ the points p2k = 2k/(n−m), k ∈ N, coincide with points zl = l−1/2,

l ∈ N, at the CE points points

c2t = l0 +
2nt

gcd(2n, n−m)
− 1

2
, t ∈ N, (1.28)

where (k0, l0) is any solution of the equation

2n

gcd(2n, n−m)
l − n−m

gcd(2n, n−m)
k − n−m

2 gcd(2n, n−m)
= 0, k, l ∈ N,

such that − 2n
gcd(2n,n−m)

< l0 − 1/2 6 0.

Proof. The proof is analogous as proof of Lemma 2.9.

Case 2′. Points p1k = k/m, k ∈ Nn, are CE points if m ∈ Ne, n ∈ No, otherwise

points p1k are the first order poles.
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(c) ξ = 4/9

Fig. 2.3. Real CF γ(x) for various ξ in Case 2.

2 Real eigenvalues of the Sturm–Liouville

problem

We have Real CF if q ∈ Rq := R−q ∪ R0
q ∪ R+

q . R−q := {q = ıy, y > 0} = {q =

−ıx, x < 0} and we use argument x ∈ R for Real CF. So, in this case, for CF

(1.11) the Real CF are:

γ(x) :=


πx sinh(πx)

2 sinh((1 + ξ)πx/2) sinh((1− ξ)πx/2)
, x 6 0,

πx sin(πx)

2 sin((1 + ξ)πx/2) sin((1− ξ)πx/2)
, x > 0,

(2.11)

γ(x) :=


πx sinh(πx)

2 sinh2(ξπx/2)
, x 6 0,

πx sin(πx)

2 sin2(ξπx/2)
, x > 0,

(2.12)

γ(x) :=


πx cosh(πx)

2 cosh((1 + ξ)πx/2) sinh((1− ξ)πx/2)
, x 6 0,

πx cos(πx)

2 cos((1 + ξ)πx/2) sin((1− ξ)πx/2)
, x > 0,

(2.11′)

γ(x) :=


πx cosh(πx)

sinh(ξπx)
, x 6 0,

πx cos(πx)

sin(ξπx)
, x > 0.

(2.12′)

Those functions are useful for the investigation of real negative, zero, and

positive eigenvalues. The graphs of these Real CF for some parameter ξ values are

presented in Figure 2.1, Figure 2.2, Figure 2.3 and Figure 2.7. More properties of
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the Real CF and real spectrum for same cases are investigated in [48,49, Pečiulytė

et al. 2005, 2008].

2.1 The spectra in Cases 1, 1′

The spectra for problems (1.1), (1.2), (1.31) and (1.1), (1.4), (1.31) lie on the real

axis as shown in papers [48,49, Pečiulytė et al. 2005, 2008].

The function γ(x) is a monotone decreasing function in each interval (α, β),

where α and β are the points of the first order poles. Real CF for ξ = 2/3, 1/3,

1/2 we can see in Figure 2.1. For example, if ξ = ξc = 1/3, then x = 3 is the first

order pole for CF and CE point. If we take ξ < ξc or ξ > ξc, then we have two

first order poles near zero point x = 3. Such a situation is shown in Figure 2.2.

We have the same situation with the spectrum in Case 1′. So, if the poles p12 and

p21 move toward the zero point z3, then a part of the graph of the CF, that was

in (p21, p
1
2), becomes a vertical line, i.e., we have a CE point c121 = p12 = p21 = z3 for

ξ = ξc. For ξ > ξc we have the interval (p12, p21), i.e., the poles change places with

each other.

3 Complex eigenvalues of the Sturm–Liouville

problem

In the recent scientific literature there are many papers, in which real eigenvalues

of the SLP are analyzed. However, a complex spectrum of this problem is con-

siderably less investigated [68, Sapagovas and Štikonas 2005], [86, Štikonas and

Štikonienė 2009].

It is important to investigate complex eigenvalues of the SLPs (1.1)–(1.3) and

(1.1), (1.4), (1.3) with γ ∈ R. The poles of the function γ(q) are eigenvalues of the

problems (1.1)–(1.3) and (1.1), (1.4), (1.3) in the case γ =∞. All zeros and poles

of the meromorphic function γ(q) are on the positive part of the real axis. From

(1.11) and from the properties of sine and cosine functions we obtain that all zeros

of this function are real numbers q = k ∈ N in Cases 1, 2 and q = (k−1/2), k ∈ N

in Cases 1′,2′. So, only positive zeroes and poles exist in R+
q ⊂ Cq.
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Fig. 2.4. Spectrum Curves for various ξ in Case 2.
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(f) ξ = 0.53

Fig. 2.5. Spectrum Curves for various ξ in Case 2.

3.1 Dynamics of Spectrum Curves in Case 2

In this case, the spectrum of complex eigenvalues is more complicated. By chang-

ing the value of the parameter ξ we get various types of the Spectrum Domain N

and Spectrum Curves.

A qualitative view of dependence of Spectrum Curves on the parameter ξ can
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(a) ξ = 0.437 (b) ξ = ξk = 0.43963 . . . (c) ξ = 0.44

(d) ξ = 0.485 (e) ξ = ξc = 0.5 (f) ξ = 0.53

Fig. 2.6. Complex-Real CF γ(q) for various ξ in Case 2, 3D-view.

(a) ξ = 0.39 (b) ξ = 0.4 (c) ξ = 0.41

Fig. 2.7. Real CF γ(x) for various ξ in Case 2′.

be seen in Figure 2.4. In Case 2, there are two types of bifurcation. The first

type consists of bifurcation where two different complex curves join at the first

order Complex Critical point. We get the second type by changing the value of

the parameter ξ, so that zero and second order pole points of the CF become

coincident with the Critical points (in which CEs exist) and the loop type curves

disappear.



52 Chapter 2. SLP with a nonlocal integral condition (special cases)

, , ,, ,

,

(a) ξ = 0.39

,

,

,, ,

,

(b) ξ = 0.3998

,

,

,,
,

, ,

,,,

(c) ξt = 0.399834
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(f) ξ = 0.41

Fig. 2.8. Spectrum Curves for various ξ in Case 2′.

(a) ξ = 0.39 (b) ξ = ξc = 0.4 (c) ξ = 0.41

Fig. 2.9. Complex-Real CF γ(q) for various ξ in Case 2′.

Figure 2.5 shows how the Spectrum Curves are changing depending on the

parameter ξ value near to ξk = 0.43963 . . . (we call it the first order Complex

Critical point in the complex part of Cq) and ξc (CE point) points. There the

Spectrum Curves make a loop. In this example, the value of ξ is increasing from

0.437 to 0.53. When ξ . ξk, Spectrum Curves N3 and N5 (or N4 and N6) become

close, and when ξ = ξk, those different Spectrum Curves join each other at the
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Critical point b3,5 (and b4,6) (see Figure 2.5(a)–(c)). Next, when ξ & ξk, the

loop type curve is on the left side. The order of the poles does not change in

this bifurcation. Zero is inside the loop. As ξ ∈ (ξk; ξc), the loop tightens and

intersects the real axis at the second order pole and Critical points. When zero

and pole consist with the Critical point, we have CE point. At ξ = ξc bifurcation

is “symmetrical”. We can see 3D view of Complex-Real CF in Figure 2.6.

3.2 Dynamics of Spectrum Curves in Case 2′

The complex spectrum in Case 2′ is also quite complicated for same parameters

ξ values. In this case, index of Spectrum Curve Nk corresponds to classical case,

i.e., q = k − 1/2 ∈ Nk.

In Figure 2.8 it is shown how the spectrum of complex eigenvalues is approach-

ing to the constant eigenvalue point ξc. If ξ < ξc = 2/5, the pole moves toward

zero from right side and the first order Critical point moves toward zero from the

left. When the pole is approaching to zero, the Spectrum Curves N2 and N3 bend

(make a loop) and intersect in the second order Critical point b3,2,4 when ξ = ξt.

If ξ is growing, then the pole moves to the left and the second order Critical point

b3,2,4 is divided into two first order Critical points b3,2 and b2,4 (loop type complex

curve retire from the other complex curve). Loop type complex curve consist of

two Spectrum Curves (N2 and N3) and two first order Critical points (b2,3 and

b3,2). Inside this loop exists first order pole and zero. If the ξ value is increasing

from 0.3999 to 0.4, the loop is shrinking and when ξ = ξc = 0.4, pole, zero and

two first order Critical point meet, we have a CE point. If ξ is growing, the pole

moves to the left from zero point. We can see 3D view of Complex-Real CF in

Figure 2.9, too.

4 Sturm–Liouville problem with symmetric

interval in the integral

Let us consider the SLP with one classical BC:

−u′′ = λu, u(0) = 0 t ∈ (0, 1), (4.1)
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Fig. 2.10. Real CF for problem (4.1)–(4.2).
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(a) ξ = 1/3
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(c) ξ = 1/7

Fig. 2.11. Spectrum Curves for problem (4.1)–(4.2).

and other integral NBC:

u(1) = γ

∫ 1−ξ

ξ

u(t)dt, (4.2)

with the parameters γ ∈ R and ξ ∈ (0, 1/2). If γ = 0 or ξ = 1/2, then we obtain a

problem with the classical BC. The case ξ = 0 we analyse in the previous section.

We get the eigenvalue λ = 0 of problem (4.1)–(4.2) if and only if γ = 2
1−2ξ .

Solutions of problem (4.1) are u = c sin(πqt)/(πq), q ∈ Cq. Substituting this

solution into the second BC we derive the condition for existence of nontrivial

solution:
sin(πq)

πq
= γ

2 sin(πq/2) sin(πq(1− ξ)/2)
(πq)2

CE points q of the problem (4.1)–(4.2) can be defined as a roots of the equation

and the system:

sin(
πq

2
) = 0;

cos(πq
2
) = 0,

sin(πq(1−2ξ)
2

) = 0.

(4.3)
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CE, existing for all ξ ∈ (0, 1/2), are called the first type CEs. All other CEs are

called the second type CE.

Lemma 2.11. The first type CE are λk = (πc1k)
2, c1k = 2k, k ∈ N. The second

type CE exist only for ξ = m
n
∈ Q, m ∈ No, n ∈ Ne, n/2 ∈ No, gcd(n/2,m) = 1,

and these eigenvalue are equal to λk = (πc2k)
2, c2k =

n
2
(2k + 1), k ∈ N.

Proof. The first part of this lemma is obvious. For the second type CE we solve

equation
2

1− 2ξ
l = 2k − 1, l, k ∈ N. (4.4)

If ξ 6∈ Q, then CEs do not exist. If ξ = m
n
∈ Q, then we have equation

nl

gcd(n, n− 2m)
− n− 2m

gcd(n, n− 2m)
k +

n− 2m

2 gcd(n, n− 2m)
= 0, l, k ∈ N. (4.5)

For n ∈ No, gcd(n, n− 2m) = 1 and equation (4.5) has not solution. For n ∈ Ne,

gcd(n, n− 2m) = 2 (gcd(n/2,m) = 1). Equation

n

2
l − n− 2m

2
k +

n
2
−m
2

= 0, l, k ∈ N, (4.6)

has solution if n/2 ∈ No, m ∈ No. For such n and m we solve equation

n

2
l =

n− 2m

4
k̃, l ∈ N, k̃ ∈ No, (4.7)

and get k̃ = n
2
t, t ∈ N. But k̃ ∈ No. So, the second type CE point are

c2k =
n

2
(2k + 1), k ∈ N. (4.8)

All Nonconstant Eigenvalues points are γ-points of the meromorphic function

(Complex-Real CF):

γ(q) :=
Z(q)

Pξ(q)
. (4.9)

In this case, Z(q) := cos(πq/2), Pξ(q) := sin
(
πq(1− 2ξ)/2

)
/(πq). Real CF is:

γ(x) :=


πx cosh(πx/2)

sinh
(
πx(1−2ξ)

2

) , x < 0;

πx cos(πx/2)

sin
(
πx(1−2ξ)

2

) , x > 0.

(4.10)

This function is useful for the investigation of zero, real negative, real positive,

and complex eigenvalues. The graphs of this Real CF for some values of the
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(b) ξ = 1/3
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Fig. 2.12. Real CF in the neighborhood of the first type CE point.
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(a) ξ = 0.33

,

(b) ξ = 1/3

,

(c) ξ = 0.336

Fig. 2.13. Spectrum Curves in the neighborhood of the first type CE point.

parameter ξ are presented in Figure 2.10. In this case, there exists only one

negative eigenvalue as γ > 2
1−2ξ .

Zero points of the function Z(q) are of the first order and they are equal to

zl := 2l − 1, l ∈ N. Points

p1k =
2k

1− 2ξ
, k ∈ N, (4.11)

are the first order zeroes of function Pξ(q). If ξ 6∈ Q, then all p1k, k ∈ N, are the

first order poles.

Lemma 2.12. If ξ = m/n ∈ Q, then points p1l , l =
(n−2m)t

gcd(n,n−2m)
, t ∈ N are the

first order poles at the first type CE points. If m ∈ No, n ∈ Ne, n/2 ∈ No,

gcd(n/2,m) = 1, then points p1l , l =
n−2m

4
(2t+ 1), t ∈ N, are the second type CE

points. Otherwise, p1l are the first order poles.

Proof. Proof follows from the Proof of Lemma 2.11.
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(a) ξ = 0.165

,

(b) ξ = 0.1(6)

,
,

,

(c) ξ = 0.167

Fig. 2.14. Real CF in the neighborhood of the second type CE point.
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(a) ξ = 0.165

,

(b) ξ = 0.1(6)

,,
,

(c) ξ = 0.167

Fig. 2.15. Spectrum Curves in the neighborhood of the second type CE point.

If we change the value of ξ from 0 to 1/2, then the poles (4.10) are moving

from the left to the right side of CE point. Figure 2.12 and Figure 2.13 shows

a qualitative view of the Real CF γ(q) in the neighborhood of the first type CE

point.

In Figure 2.14 and Figure 2.15, we see the view of a real part of the spec-

trum when the pole point moves towards the zero point. When the pole point is

coincident with the zero point, we obtain a CE point.

4.1 Complex eigenvalues

A complex spectrum of similar problems is investigated in [48, Pečiulytė et al.

], [77, Skučaitė et al. ]. We can see a qualitative view of dependence of a complex

part of the spectrum on some values of the parameter ξ in Figure 2.11.

The view of the complex part of spectrum, where the pole moves towards and

over the CE point is shown in Figure 2.13.
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(a) ξ = 0.1682

, ,,

(b) ξ = 0.168(3)

,

(c) ξ = 0.1684

Fig. 2.16. Spectrum Curves in the neighborhood of the Critical point of the second
order.

(a) ξ = 0.1682 (b) ξ = 0.168(3) (c) ξ = 0.1684

Fig. 2.17. Complex-Real CF in the neighborhood of Critical point of the second order.

Figure 2.15 and Figure 2.16 shows how the Spectrum Curves dependent on

the values of the parameter ξ. If the value of ξ is increasing, the pole point moves

towards and over the zero point and then there appears a loop type curve, which

consists of Spectrum Curves ( N1 and N3) and two first order Critical points (b1,3

and b3,1). While ξ value is increasing, the loop grows too and when ξ = 0.168(3)

this loop type curve joins the other complex curve in the second order Critical

point b3,1,5. This loop type curve disappears, as ξ > 0.168(3) (see, Figure 2.16).

The 3D view of this situation is shown in Figure 2.17.

5 Conclusions

In this chapter the complex spectrum of the SLP with the classical or first type

BC on the left side of the interval and integral NBC of two types on the right side
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of the interval was analyzed.

• All eigenvalues of the SLP in Case 1 and Case 1′ are real. Complex eigen-

values do not exist for all ξ.

• In Case 2 there are two types of bifurcation: two different Complex Spectrum

Curves join at the Complex Critical point; a loop type curve disappears,

when the zero and pole points of the CF become coincident with the Critical

point, i.e., points, at which CE exists.

• In Case 2′ exists the second order (Real) Critical point. This point appears

when two Spectrum Curves intersect. Later this point splits up into two the

first order Critical points. Also, in this case two types of bifurcation exist:

two different Spectrum Curves intersect in the second order Critical point;

two first order Critical point coincide with zero and pole at the CE point.

Also SLP with the symmetric interval in the integral was investigated. Complex

eigenvalues for differential problem (4.1)–(4.2) always exist and for some values

of ξ the complex part of the spectrum is quite complicated:

• If the pole moves towards and over the CE point, complex eigenvalues do

not appear.

• If the pole moves towards and over the zero point, then the loop type com-

plex curve appears at the second order Critical point. This loop type com-

plex curve disappears when it joins other complex curve at the second order

Critical point.





Chapter 3

Discrete Sturm–Liouville problem

SLP is very important for investigation of the existence and the uniqueness of the

solutions for classical stationary problems. Such problems are complicated, not

self-adjoint and spectrum for such problems may be not positive (or real). Using

the CF we analyze spectrum of the nonlocal SLP. In [86, Štikonas and Štikonienė

2009], the CF method for investigation of the spectrum for such problems was

used.

1 Introduction

In this chapter some new results on a spectrum in a complex plane for the discrete

Sturm–Liouville problem (dSLP) are presented. The definition of CE points and

the CF is introduced for the discrete SLP. The method of the CF is used for the

analysis of complex eigenvalues and qualitative behaviour (dynamics) of Spectrum

Curves.

Discrete SLP:

−Ui−1 − 2Ui + Ui+1

h2
= λUi, i = 1 . . . N − 1,

U0 + UN
2

+
N−1∑
i=1

Ui = 0,
UN
2

+
N−1∑
i=1

Uiih = 0,

corresponding to differential SLP with NBCs:∫ 1

0

u(t) dt = 0,

∫ 1

0

tu(t) dt = 0

was analysed by Jachimavičienė, Jesevičiūtė and Sapagovas [32, 2009]. These re-

sults are part of doctoral dissertation of Jesevičiūtė (Jokšienė) [35, 2010]. Jachi-

61
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mavičienė gathered some new results [31,33, 2009] about the spectrum for NBCs:

U0 = γ0h

(
U0 + UN

2
+

N−1∑
i=1

Ui

)
, UN = γ1h

(
U0 + UN

2
+

N−1∑
i=1

Ui

)
.

In this chapter we investigate Finite-Difference Scheme for differential SLP:

− u′′ = λu, t ∈ (0, 1), λ ∈ Cλ := C, (1.1)

with one classical BC and another integral type NBC:

u(0) = 0, u(1) = γ

∫ ξ2

ξ1

u(t) dt, (1.2)

where NBC’s parameter γ ∈ R and ξ ∈ Sξ := {(ξ1, ξ2) ∈ [0, 1]2 : 0 6 ξ1 < ξ2 6 1}.

The remaining part of this chapter is organized as follows: in Section 2 the

discrete problem is stated. In Section 3 CE, poles and zeros of CF are analyzed.

The structure of the spectrum (Spectrum Curves in the domain and at the special

points q = 0, q = n and q = ∞) of Discrete SLP is investigated in Sections 4.

Section 5 contains some brief conclusions and comments.

2 Discrete SLP

We introduce a uniform grids and we use notation ωh = {tj = jh, j = 0, n;

nh = 1} for 2 6 n ∈ N. Nh := (0, n) ∩ N, Nh := Nh ∪ {0, n}, Nh
o := (0, n) ∩ No,

Nh
e := (0, n)∩Ne. Also, we make an assumption, that ξ1 and ξ2 are coincident with

grid points, i.e., ξ1 = m1h = m1/n, ξ2 = m2h = m2/n,m ∈ Shξ := {(m1,m2) : 0 6

m1 < m2 6 n,m1,m2 ∈ Nh}. So, ξ =m/n = (m1/n,m2/n), ξ = ξ1/ξ2 = m1/m2,

ξ+ = ξ1+ξ2 = m+/n, ξ− = ξ2−ξ1 = m−/n, wherem+ := m1+m2,m− := m2−m1.

We will introduce a space H of real grid function on ωh. We use notation:

[U, V ] :=
n∑
j=0

UjVj. (2.1)

to describe the approximation of the integral in the BC. For real function this

notation corresponds to the inner product in the space H. We will use this

definition for complex function, too. In this chapter NBC we approximate by

trapezoidal formula:∫ b

a

udt ≈ um1

h

2
+

m2−1∑
i=m1+1

uih+ um2

h

2
= [χ[a,b],j, u],
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Fig. 3.1. Bijective mappings: λ = 4
h2

sin2(πqh2 ) between Cλ and Chq ; λ = 2
h2
(1− w−w−1

2 )

between Cλ and Chw; (a) Chq on Riemann sphere; (b) Domain Chw? on the upper half-
plane.

where:

χ[a,b],j = χ[a,b](tj) =


0 for tj < a, or tj > b,

h
2

for tj = a, or tj = b,

h for a < tj < b,

tj ∈ ωh, (2.2)

a, b ∈ ωh and a < b, i.e., a = tα = αh, b = tβ = βh, α, β ∈ Nh.

We approximate differential SLP (1.1)–(1.2) by the Finite-Difference Scheme

(FDS):

Uj−1 − 2Uj + Uj+1

h2
+ λUj = 0, j ∈ Nh, (2.3)

U0 = 0, Un = γ[χ[ξ1,ξ2], U ] = γh
(Um1 + Um2

2
+

m2−1∑
k=m1+1

Uk

)
, (2.4)

where right-hand side of (2.4) corresponds to trapezoidal formula for the integral

BC.
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Fig. 3.2. Spectrum Curves in Chq , Chw and Chw? (n = 3, m = (0, 1)).

Lemma 3.1. Let t ∈ ωh, then the following equalities are hold:

[χ[a,b], e
ızt] = heız(a+b)/2 sin

z(b− a)
2

tan−1
zh

2
, (2.5)

[χ[a,b], cos(zt)] = h sin
z(b− a)

2
cos

z(b+ a)

2
tan−1

zh

2
, (2.6)

[χ[a,b], sin(zt)] = h sin
z(b− a)

2
sin

z(b+ a)

2
tan−1

zh

2
. (2.7)

Remark 3.2. In the case z = 0 we understand the equalities (2.5)–(2.6) as [χ[a,b], 1] =

b− a and the equality (2.7) as [χ[a,b], 0] = 0.

Proof of Lemma 3.1. We can consider the grid function Y = Yj = yj, for y ∈ C,

i.e., Y0 = 1, Y1 = y, . . . , Yn = yn. If y 6= 1, then we have:

[χ[a,b], Y ] = h
(yα + yβ

2
+

β−1∑
j=α+1

yj
)

= h
(yα + yβ

2
+

β−1∑
j=0

yj −
α∑
j=0

yj
)
= h

(
yβ − yα

)
(y + 1)

2(y − 1)

= h
y
β+α
2

(
y
β−α
2 − y−β−α2

)
2ı

· ı(y + 1)

(y − 1)
.

In the case yj = eıztj , z 6= 0, tj ∈ wh i.e., we have:

[χ[a,b], e
ızt] =he

ız(a+b)
2

e
ız(b−a)

2 − e−
ız(b−a)

2

2ı
tan−1

zh

2

=he
ız(a+b)

2 sin
z(b− a)

2
tan−1

zh

2
. (2.8)
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Using the formula above, as a result we get formulas:

[χ[a,b], cos(zt)] =
1

2
[χ[a,b], e

ızt] +
1

2
[χ[a,b], e

−ızt]

= h cos
z(b+ a)

2
sin

z(b− a)
2

tan−1
zh

2
;

[χ[a,b], sin(zt)] =
1

2ı
[χ[a,b], e

ızt]− 1

2ı
[χ[a,b], e

−ızt]

= h sin
z(b− a)

2
sin

z(b+ a)

2
tan−1

zh

2
.

If z = 0, then the trapezoidal formula is exact, so [χ[a,b], 1] = b− a.

The function

λ = λh(q) := 4
h2

sin2(πqh/2), (2.9)

is bijection between Cλ := C and Ch
q , where Ch

q := Rh−
q ∪ {0} ∪Rh

q ∪ {n} ∪Rh+
q ∪

Ch+
q ∪Ch−

q where Rh
q := {q = x : 0 < x < n}, Rh−

q := {q = ıy : y > 0}, Rh+
q := {q =

n + ıy : y > 0}, Ch+
q := {q = x + ıy : 0 < x < n, y > 0}, Ch−

q := {q = x + ıy : 0 <

x < n, y < 0} [86, Štikonas and Štikonienė 2009]. Then for any eigenvalue λ ∈ Cλ

there exists the eigenvalue point q ∈ Ch
q . We use notation Ch

q = Ch
q ∪ {∞} for

Riemann sphere (see Figure 3.1). It follows, that λ < 0 for q ∈ Rh−
q , 0 < λ < 4/h2

for q ∈ Rh
q , λ > 4/h2 for q ∈ Rh+

q . Points λ = 0, λ = 4/h2 are the first order

branch points of the function λ = λh(q). We note that for differential problem

(1.1)–(1.2) eigenvalues are defined by the formula λ = (πq)2, q ∈ Cq [86, Štikonas

and Štikonienė 2009]. We also use bijection λw = λh(w) := 2
h2
(1 − (w − w−1)/2)

between Cλ and Ch
w := {w ∈ C : |w| 6 1, w 6= 0} (see Figure 3.1). The Ch

w will

be used for investigation of eigenvalues in the neighborhood of λ = ∞ (w = 0).

This bijection maps λ < 0 to the interval w ∈ (0, 1), 0 < λ < 4/h2 to the upper

unit semidisk, λ > 4/h2 to the interval (−1, 0), and complex λ points correspond

to the points w, Imw 6= 0, inside the unit circle (see Figure 3.1). In the domain

Ch
w the points w = ±1 correspond to a branch points of the function λhw. The

function w = eıπhq maps Ch+
q to the unit semidisk and Ch−

q to outer part of unit

semidisk in Ch
w? . The corresponding points in the different domains are shown in

the table (see Figure 3.1).

Remark 3.3. Point w = 0 in Figure 3.1 and Figure 3.2 (see domain Ch
w) corre-

sponds to the point λ =∞ in domain Cλ and q =∞ in domain Ch
q .
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Using formula (2.9), the equation (2.3) can be rewritten in form:

Uj+1 − 2 cos(πqh)Uj + Uj−1 = 0, j ∈ Nh, (2.10)

where q = x+ ıy ∈ Ch
q . The general solution of the difference equation (2.10) is:

U = C1 sin(πqtj) + C2 cos(πqtj) for q 6= 0, n;

U = C1tj + C2 for q = 0;

U = C1(−1)jtj + C2(−1)j for q = n. (2.11)

From classical BC U0 = 0 we get C2 = 0. So, nontrivial eigenfunctions are of the

form: V = tj for q = 0; V = (−1)jtj for q = n; V = sin(πqtj) for q 6= 0, n.

If λ = 0, then all functions u(t) = Ct satisfy the equation and the first BC

(2.3)–(2.4)(left side). By substituting this solution into NBC (2.4)(right side)

we have that the eigenvalue λ = 0 (q = 0) for SLP (2.3)–(2.4), if and only if

γ = 2n2

m2
2−m2

1
. Note, that for the differential case λ = 0 if γ = 2

ξ22−ξ21
. The eigenvalue

λ = 4/h2 exist for q = n, if and only if:

γ =
2

h2
N0, N0 :=

2(−1)n−m2

1− (−1)m2−m1
=


∞, for m2 −m1 ∈ Ne;

+1, for m2 −m1 ∈ No, n−m2 ∈ Ne;

−1, for m2 −m1 ∈ No, n−m2 ∈ No.

If we substitute V = sin(πqtj) into (2.4) then by the Lemma 3.1 we get equa-

tion for q ∈ Ch
q :

sin(πq) = γh
cos(πξ1q)− cos(πξ2q)

2
tan−1

πqh

2

= γh sin
πq(ξ2 − ξ1)

2
sin

πq(ξ2 + ξ1)

2
tan−1

πqh

2
. (2.12)

The equation (2.12) can be rewritten in a more convenient form:

1

h
· sin(πq)

πq
· tan(πqh/2)

πq
= γ

sin πq(ξ2−ξ1)
2

sin πq(ξ2+ξ1)
2

π2q2
. (2.13)

This equation is valid (as limit cases) for q = 0, n, too. If hq is sufficiently small,

then tan πqh
2
≈ πqh

2
. So, in limit case, the equation (2.13) is the same as for

differential problem [80, Skučaitė and Štikonas 2015].

If γ = 0, we have the classical BCs and all the n−1 eigenvalues for the classical

FDS are positive and algebraically simple and do not depend on the parameters

ξ1 and ξ2:

λk(0) = λh(qk(0)), U
k
j (0) = sin(πqk(0)tj), qk(0) = k ∈ Nh. (2.14)
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(a) m = (0, 2) (b) m = (1, 2) (c) m = (0, 1)

Fig. 3.3. CF for n = 2.

3 Characteristic Function, Constant Eigenvalues

Points, Poles

We introduce the entire functions:

Zh(z) := Z(z) · 1
h
tan(πzh/2); Z(z) :=

sin(πz)

πz
; Pξ(z) := P 1

ξ (z)P
2
ξ (z);

P 1
ξ (z) :=

sin(πz(ξ1 + ξ2)/2)

πz
; P 2

ξ (z) :=
sin(πz(ξ2 − ξ1)/2)

πz
.

Zeroes of the functions Z(q), Zh(q), q ∈ Ch
q , coincide with the eigenvalue points

in the classical case γ = 0. Zeroes of the functions P 1
ξ , P

2
ξ in the domain Ch

q are

simple and positive. We can rewrite equality (2.13) in the form:

Zh(q) = γPξ(q), q ∈ Ch
q . (3.1)

We define the constant eigenvalue (CE) as the eigenvalue that does not depend

on the parameter γ. For any CE λc ∈ C there exists a Constant Eigenvalue point

qc ∈ Ch
q (CE point) [86, Štikonas and Štikonienė 2009] and λc = λh(qc). For

SLP (2.1)–(2.2) all CE points are real and we can find them as solutions of the

following system:

Z(q) = 0, Pξ(q) = 0, q ∈ (0, n).

The notation C is used for the set of all CE points.

If q 6∈ Nh, i.e. Zh(q) 6= 0, and q satisfies equation Pξ(q) = 0, then the equality

(3.1) is not valid for all γ and such point q is a Pole Point. Notation of the pole
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point is connected with meromorphic function:

γc(z) =
Zh(z)

Pξ(z)
, z ∈ C. (3.2)

This function is obtained by expressing γ from equation (3.1). We call the restric-

tion of meromorphic function γc on Ch
q as Complex-Real Characteristic Function

(C-R CF or CF) [86, Štikonas and Štikonienė 2009], and denote this function as:

γ(q) =
Zh(q)

Pξ(q)
=

Z(q)

Pξ(q)
· 1
h
tan(πqh/2) =

=
sin(πq)

cos(πξ1q)− cos(πξ2q)
· 1
h
tan(πqh/2), q ∈ Ch

q . (3.3)

All nonconstant eigenvalues (which depend on the parameter γ) are γ-points

of Complex-Real Characteristic Function (Complex-Real CF) [86, Štikonas and

Štikonienė 2009]. Complex-Real CF γ(q) is the restriction of function γc(q) on

a set N γ := {q ∈ Ch
q : Imγc(q) = 0}. Real CF γ(q) is defined on the domain

{q ∈ Ch
q : λ ∈ R} and describes only real eigenvalues. We plot the graph of Real

CF for eigenvalue points 0 < x < n in the middle graph; x = 0, y > 0 in the

left half plane and x = n, y > 0 in the right half plane. Two γ-axes correspond

to points q = 0, n. The Real CF graph can be seen in the Figure 3.3(a)–(c)

and Figure 3.4(a)–(c) (top pictures) for n = 2, 3. We note, that there are no

complex eigenvalues in the case n = 2 for any m1 and m2 values and in case

n = 3 if m2 = n and m1 = 0, ..., n − 1 or m2 = 2 and m1 = 1 (see Figure 3.3

and Figure 3.4). Vertical blue and red dash lines are added at the CE and poles

points.

There exists the horizontal asymptote in the case m2 = n:

γ(∞) = lim
q→∞

γ(q) =
2

h
N1, N1 =

∞ m2 6= n;

1 m2 = n,

(see Figure 3.3(a)–(b) and Figure 3.4(a)–(c), a horizontal dashed red line).

Equations for zeroes and poles of CF are the same as in differential case in

Chapter 1 and Chapter 2 [80], but in the discrete case zeroes and poles are located

in (0, n). Function tan(πqh
2
) has pole in the point q = n. So, additional pole can

be at this point. We have this pole if N0 =∞, i.e., if m2 −m1 ∈ Ne. We include

this pole into the family of the second order poles, but it will be the first order

pole by definition, because λ = 4/h2 is a branch point.
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(a) m = (0, 3) (b) m = (1, 3) (c) m = (2, 3)

(d) m = (0, 2) (e) m = (1, 2) (f) m = (0, 1)

Fig. 3.4. Complex–Real CF for n = 3.

All zeroes of the functions Z, P 1
ξ , P

2
ξ in (0,+∞) are simple (of the first order),

real and positive:

zk = k ∈ N, p1k =
2
ξ+
k, k ∈ N, p2k =

2
ξ−
k, k ∈ N. (3.4)

We denote these sets Z, P 1, P 2 and denote Z := Z ∩ (0, n), Z1
ξ := P 1 ∩ (0, n],

Z2
ξ := P 2 ∩ (0, n]. Then a set Zξ = Z1

ξ + Z2
ξ + Z12

ξ describes all zeroes of the

function Pξ, where Z1
ξ := Z1

ξ r Z12
ξ and Z2

ξ := Z2
ξ r Z12

ξ are two families of the

first order zeroes, Z12
ξ := Z1

ξ ∩Z2
ξ is family of the second order zeroes. For CF we

consider the following sets: a set of poles Pξ := P1
ξ +P2

ξ +P12
ξ , where P1

ξ := Z1
ξ rZ

and P2
ξ := Z2

ξ r Z are two families of the poles of the first order, a set of the

second order poles P12
ξ := Z12

ξ r Z; a set of the CE points Cξ := C1ξ + C2ξ + C12ξ ,

where C1ξ := Z1
ξ ∩ Z and C2ξ := Z2

ξ ∩ Z are sets of the points with removable

singularity, C12ξ := Z12
ξ ∩ Z is the set of the points with the first order pole, too;
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4

(a) m = (0, 4)

4

(b) m = (1, 4)

4

(c) m = (2, 4)

4

(d) m = (3, 4)

(e) m = (0, 3) (f) m = (1, 3) (g) m = (2, 3)

(h) m = (0, 2) (i) m = (1, 2) (j) m = (0, 1)

Fig. 3.5. Complex–Real CF for n = 4.

(a) m = (0, 4) (b) m = (0, 3) (c) m = (0, 2) (d) m = (0, 1)

Fig. 3.6. Bijective mappings in domain Chw for different m values (n = 4).

a set of zeroes Zξ := Z r Cξ.

So, formulae for poles and CE points are:

p1k = 2nk/m+, p2k = 2nk/m−, p12k = 2nk/gcd(m+,m−),

c1k = 2nk/gcd(2n,m+), c
2
k = 2nk/gcd(2n,m−), c

12
k = 2n/gcd(2n,m+,m−)
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(a) m = (0, 4) (b) m = (1, 4) (c) m = (2, 4) (d) m = (3, 4)

(e) m = (0, 3) (f) m = (1, 3) (g) m = (2, 3)

(h) m = (0, 2) (i) m = (1, 2) (j) m = (0, 1)

Fig. 3.7. Spectrum Curves for n = 5.

for the sets P1
ξ +P12

ξ +C1ξ +C12ξ , P2
ξ +P12

ξ +C2ξ +C12ξ , P12
ξ +C12ξ , C1ξ +C12ξ , C2ξ +C12ξ ,

C12ξ , respectively. The points of these sets have form qk = αk, k ∈ N? := {k ∈

N, k = 1 . . . kmax}, where kmax = bn/q1c for poles and kmax = b(n − 1)/q1c for

CE points, α > 1, or can be empty. So, nonempty sets are described by the first

point q1 (q1 = p11, p21, p121 , c11, c21, c121 ). The second order pole exists for n = 4,

m1 = 0, m2 = 3 at the point q = 2.(6) (see Figure 3.5(e)), n = 5, m1 = 0,

m2 = 4 at the point q = 2.5 and m1 = 0, m2 = 3 at the point q = 3.(3) (see

Figure 3.7(a) and Figure 3.7(e)) and n = 6, m1 = 0, m2 = 4 at the point q = 3

(see Figure 3.8(f)). In these figure we can see additional the second order pole at

q = n for m2 −m1 ∈ Ne. The Figure 3.6 shows the schemes of bijection mapping

for different m1 and m2 in Ch
w (n = 4). We have Critical point and CE point

in the case n = 6, m1 = 1, m2 = 5 at the point q = 4 (see Figure 3.8(b)). If

m2 + m1 = n, then exist two types CE Points. First type CE Points do not
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(a) m = (0, 5) (b) m = (1, 5) (c) m = (2, 5) (d) m = (3, 5)

(e) m = (4, 5) (f) m = (0, 4) (g) m = (1, 4) (h) m = (2, 4)

(i) m = (3, 4) (j) m = (0, 3) (k) m = (1, 3) (l) m = (2, 3)

(m) m = (0, 2) (n) m = (1, 2) (o) m = (0, 1)

Fig. 3.8. Spectrum Curves for n = 6.

depend on NBC parameters (c11 = 2). The second type CE Points can be defined

by the formula c21 = 3n
2

= 3(2n1 + 1), k ∈ N, where m1 and n = 2(2n1 + 1) are

coprime numbers (see Figure 3.4(a), (e), Figure 3.5(a), (f), Figure 3.7(b), (g) and

others). More results about Poles and CE Points are presented in [80, Skučaitė

and Štikonas 2015] (the cases when ξ1 and ξ2 are rational).
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4 Spectrum Curves

Spectrum Domain for dSLP is the set N = N γ ∪ C ⊂ Ch
q . Function γc has real

values on N except for the pole points. For each γ0 ∈ R a set N (γ0) := γ−1(γ0) is

the set of all eigenvalue points for nonconstant eigenvalues. So, Spectrum Domain

N = ∪γ∈RN (γ)∪C. Though zeroes, poles and CE points are practically the same

for SLP and dSLP, but multiplier tan πqh
2

little change the Spectrum Curves in

the other points.

If γ = 0 then the eigenvalue points are q = zk = k ∈ N. So, we can numerate

the part of N (γ) for this point by the classical case Nk(0) = zk ∈ N. For every CE

point cj = j we define Nj = {cj}, i.e. every such Nj has one point only. We call

every Nk, k ∈ N, a Spectrum Curve [80]. For γ → ±∞ Spectrum Curve Nk(γ),

which is not CE point, approaches a pole point or the point q =∞. One can see

the Spectrum Curves in Figure 3.4(d)–(f) and Figure 3.5(e)–(j) for n = 3, 4.

4.1 Spectrum Curves at the points q = 0, q = n and q =∞

q = 0: Taylor series for CF at the point q = 0 is

γ(q) =
2n2

m2
2 −m2

1

+
1

6(m2
2 −m2

1)
(1− 2n2 +m2

2 +m2
1)q

2 +O(q4). (4.1)

For n > 1 we estimate m2
1 +m2

2 6 (n − 1)2 + n2 = 2n2 − 2n + 1 < 2n2 − 1. So,

the second term is negative, and we have γ′(0) = 0, γ′′(0) 6= 0 at the first order

branch point 0. At this point Spectrum Curve N1 turn orthogonal to the right,

i.e. the first positive eigenvalue point reaches q = 0 and then this point moves

along the imaginary axis. So, point q = 0 has properties of the first order Critical

point in domain Ch
q , but the point λ = 0 is not a Critical point in domain Cλ for

CF.

q = n: If m− = m2 −m1 ∈ No then |N | = 1 and the Taylor series for γ(q) at

the point q = n is:

γ(q) := 2Nn2 − N

2

(
1 + 2n2

3
− (m2

2 +m2
1)

)
(q − n)2+

− N

24n2

(
6n4 + 10n2 − 1

15
− (m4

2 +m4
1)+

+ (3(m2
2 +m2

1)− 2n2 − 1)(m2
2 +m2

1)

)
(q − n)4 +O((q − n)6). (4.2)
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So, in this case, γ′(n) = 0. If condition:

m2
2 +m2

1 = (1 + 2n2)/3 (4.3)

is valid (for example, n = 5, m1 = 1, m2 = 4) then γ′′(n) = 0, too. This point

has properties of the second order Critical point in domain Ch
q and the first order

Critical point in domain Cλ (see Figure 3.5(c)). So, by definition q = n is the first

order Critical point. The next term is vanished if

m4
2 +m4

1 = (6n2 + 10n2 − 1)/15 + (3(m2
2 +m2

1)− 2n2 − 1)(m2
2 +m2

1). (4.4)

Both terms (4.3) and (4.4) are vanished if there exists a solution of the system:

m2
2 +m2

1 = (1 + 2n2)/3, m2
2m

2
1 = (n2 − 1)(n2 − 4)/45

where n,m1,m2 ∈ N. By Vieta’s formulas m2
1 and m2

2 are roots of the second

order equation and m2
1 and m2

2 will be integers, if the expression 80s2 + 24s + 1

is square of an integer number, where n2 = 15s+ 1. However, there is no such s.

So, in domain Ch
q Critical point at q = n can be first order or second order only.

If condition (4.3) is not valid, then the point q = n is a pole or correspond to the

first order branch point.

q =∞: CF can be rewritten in the following form by using Euler formula:

γ(q) =
eıπq − e−ıπq

eıπqξ1 + e−ıπqξ1 − eıπqξ2 − e−ıπqξ2
· 1− e

πqh

1 + eπqh
· 2
h
. (4.5)

Then CF could be expressed in terms of argument w:

γ(w) =
wn − w−n

wm1 + w−m1 − wm2 − w−m2
· 1− w
1 + w

· 2
h

=
w−n

w−m2
· (1− w2n)(1− w)
(1− wm2+m1 − wm2−m1 + w2m2)(1 + w)

· 2
h
, w ∈ Ch

w. (4.6)

Lemma 3.4. At the point w = 0 a formula is valid:

γ(w) =
1

wn−m2
· 2
h
· (1 +O(w)). (4.7)

Proof. From (4.5) we have

γ(w) =
1

wn−m2
· (1 +O(w

2n))(1 +O(w))(1 +O(w))
(1 +O(w2m2))

· 2
h
. (4.8)
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So, 1
wn−m2

describes the properties of CF at the point w = 0. Point w = 0 /∈ Ch
w

is an isolated singularity point. If m2 = n, then limw→0 γ(w) = 2/h and we have

removable singularity point. In this case the same Spectrum Curve enters and

leaves the point w = 0 (see Figure 3.6(a)). Additionally, there are no complex

Spectrum Curves in the neighbourhood of the point w = 0. If m2 6 n − 1, then

the point w = 0 is a pole point. The difference n−m2 show the order of the pole

(see equation (4.6) and Figure 3.6). In the case n −m2 = 1 two real Spectrum

Curves enter or leave the point w = 0 (see Figure 3.6(b)). On the right side of

the first order pole point w = 0 one spectrum curve (N1 ⊂ (0, 1)) enters and on

the left side of this point one spectrum curve (Nn−1 ⊂ (−1, 0)) leaves this point.

If n −m2 > 2 then there exist additional Spectrum Curves that enter and leave

the point w = 0.

The point q = ∞ ∈ Ch
q is a pole or removable singularity point. The order

of this point is n∞ = n − m2. So, the the order of q = ∞ does not depend

on m1. Then n∞ Spectrum Curves enters on this point and the same number

of Spectrum Curves leaves this point, if γ → ±∞. Note, that incoming Spectral

Curves alternates with outgoing (see all Figures). If n = m2, then the point q =∞

is a removable singularity point. Finally, we formulate few obvious lemmas.

Lemma 3.5. The formula np+nce+1 = m2 is valid, where np is number of poles

(including the order), nce is number of CE Points.

Proof. Each Spectrum Curves has limit points in poles or in CE point. So, n∞ +

np + nce = n− 1. But n∞ = n−m2. So, np + nce = n− 1.

Lemma 3.6. There are ncr = n∞ + nc + n2p − 1 Critical points (including the

order) on Ch
q , where n2p is the number of the second order poles, nc is the number

of the parts of Spectrum Curves in the complex part of Ch
q between two Critical

points.

Lemma 3.7. If m2 = n (does not depend on m1 value) complex eigenvalues do

not exist. In this case the point q =∞ is a removable singularity point (the same

Spectrum Curve enters and leaves this point). There exists a horizontal asymptote

γ(∞) = limq→∞ γ(q) = 2/h as well.
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5 Remarks and conclusions

• Zeroes, poles of CF, CE point for dSLP in the interval (0, n) are only real

and the same as in the case of differential SLP. In the case of dSLP at q = n

there is additional pole if m2 −m1 ∈ Ne. There are not poles for λ 6 0 and

λ > 4/h2.

• Critical points may exist for q ∈ Rh+
q , i.e., for λ > 4/h2. There are not

Critical point for negative λ.

• The point q = n is the critical point of the second order for m2
2 + m2

1 =

(1 + 2n2)/3.

• The number of Spectrum Curves parts in the neighbourhood of ∞ is equal

to 2(n−m2) if n > m2, and there is one Spectrum Curve if n = m2.



Chapter 4

Discrete Sturm–Liouville problem

with integral nonlocal boundary

condition (special cases)

1 Problem formulation

Let us consider a SLP with one classical BC:

−u′′ = λu, t ∈ (0, 1), u(0) = 0, (1.1)

and an integral NBC:

u(1) = γ

∫ 1

ξ

u(t) dt, (Case 1) (1.21)

u(1) = γ

∫ ξ

0

u(t) dt, (Case 2) (1.22)

with the parameters γ ∈ R and ξ ∈ [0, 1]. Same results on the spectrum view in

complex part of the spectrum for differential problem were presented in Chapter 2.

CF and its Spectrum Domain N for these problems are described in [86, Štikonas

and Štikonienė 2009]. This chapter is based on [78].

77
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(a) ξ = 1/3, n = 3 (b) ξ = 1/2, n = 2 (c) ξ = 2/3, n = 3

(d) ξ = 1/3, n = 6 (e) ξ = 1/2, n = 4 (f) ξ = 2/3, n = 6

Fig. 4.1. Real CF for various ξ of discrete problems in Case 1 (approximated by
trapezoid).

2 The case of an approximation by the

trapezoidal rule

In the interval [0, 1], a uniform grid ωh = {tj = jh, j = 0, n; n ∈ N, nh = 1} is

introduced. Also, we make an assumption that ξ is coincident with a grid point,

i.e., ξ = mh = m/n, m = 0, n. Let us denote the greatest common divisor

by K := gcd(n,m) and N := n/K, M := m/K. Then ξ = M/N , too. We

approximate differential problem (1.1)–(1.2) by the FDS:

Uj−1 − 2Uj + Uj+1

h2
+ λUj = 0, j = 1, n− 1, (2.1)

U0 = 0, (2.2)

Un = γh
(Um + Un

2
+

n−1∑
k=m+1

Uk

)
, (2.31)

Un = γh
(U0 + Um

2
+

m−1∑
k=1

Uk

)
. (2.32)
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,

,
,

,

(a) ξ = 1/3, n = 3 (b) ξ = 1/2, n = 2

,

,

(c) ξ = 2/3, n = 3

Fig. 4.2. Real CF and Spectrum Curves for problem (2.1),(2.2),(2.32) (Case 2).

We investigate eigenvalues for the FDS. Equations (2.1)–(2.2) in another form:

Uj+1 − 2 cos(πqh)Uj + Uj−1 = 0, λ = 4
h2

sin2(πqh/2), U0 = 0, (2.4)

where q = x+ ıy ∈ Ch
q . More about domain Ch

q and bijection between Cλ and Ch
q

see in Chapter 3.

The general solution of difference equation (2.3) could be expressed by the

formulae (2.11) in Chapter 3.

It can be seen from the BC (2.2) that C2 = 0. After substituting this solution

to NBC (2.31) in Case 1 (or (2.32) in Case 2) we get that eigenvalues q 6= 0, n if

q = q(γ, ξ) are roots of the equations:

sin(πq)− γ
h
(
cos(ξπx)− cos(πx)

)
2 tan(πqh/2)

= 0; (2.51)

sin(πq)− γh sin
2(ξπx/2)

tan(πqh/2)
= 0. (2.52)

We have the eigenvalue λ = 0 for problem (2.1)–(2.3), if and only if γ = 2
1−ξ2

in Case 1 and γ = 2
ξ2

in Case 2 (the same conditions are for the differential case).

The eigenvalue λ = 4/h2 can be found, if and only if γ = 2
h2
· 2
1−(−1)n−m in Case 1

(n−m ∈ No), and γ = 2
h2
· 2(−1)n
(−1)m−1 in Case 2 (m ∈ No).
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,

,

,

, ,

,

(a) ξ = 1/3, n = 6 (b) ξ = 1/2, n = 4 (c) ξ = 2/3, n = 6

Fig. 4.3. Real CF and Spectrum Curves for problem (2.1),(2.2),(2.32) (Case 2).

If γ = 0, we have the classical BCs and all the n − 1 eigenvalues for the

classical FDS are positive and algebraically simple and do not depend on the

parameter ξ (see (2.14) in Chapter 3). If q = x ∈ (0, 1/h), then λ ∈ (0, 4/h2)

and the eigenvalues of problem (2.1)–(2.3) are calculated by the formula λk =

4
h2

sin2(πxkh
2

), where xk are roots of the equation:

sin(πx)− γh tan−1(πxh/2)
(
cos(ξπx)− cos(πx)

)
/2 = 0; (2.61)

sin(πx)− γh tan−1(πxh/2) sin2(ξπx/2) = 0. (2.62)

CE points are equal to:

ck = 2Nk, N −M ∈ No, ck = Nk, N −M ∈ Ne. (2.71)

ck = 2Nk, M ∈ No, ck = Nk, M ∈ Ne, (2.72)

k ∈ N such that ck ∈ (0, n).

Other (nonconstant) eigenvalues (which depend on the parameter γ) as γ-

points are defined on the set Ch
q (see Figure 4.1(a)–(c) and Figure 4.2).
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(a) ξ = 1/2, n = 4 (b) ξ = 1/2, n = 8 (c) ξ = 1/2, n = 10

Fig. 4.4. Real CF, Spectrum Curves and Complex-Real CF.

Lemma 4.1. If 0 6 m < l 6 1, then CF of the FDS:

Uj−1 − 2Uj + Uj+1

h2
+ λUj = 0, j = 1, n− 1, (2.8)

U0 = 0, (2.9)

Un = γh
(Um + Ul

2
+

l−1∑
k=m+1

Uk

)
(2.10)

is

γ =
sin(πqhn)

cos(πqhm)− cos(πqhl)
· tan πqh

2
· 2
h
. (2.11)

Proof. Proof follows from Lemma 3.1.

On the case l = n, m = m (Case 1) and l = m, m = 0 (Case 2) we get that
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,

(a) ξ = 3/4, n = 4

,
,

, ,

,

(b) ξ = 3/4, n = 8

,

, ,

,

,

(c) ξ = 7/8, n = 8

Fig. 4.5. Spectrum Curves in Case 2.

CF of the discrete problem (2.1)–(2.3):

γt1 =
sin(πq)

cos(ξπq)− cos(πq)
· tan πqh

2
· 2
h
, (2.121)

γt2 =
sin(πq)

2 sin2(ξπq/2)
· tan πqh

2
· 2
h
. (2.122)

Lemma 4.2. For the problem (2.1)–(2.31) exist two families of the first order

zeroes: p1k = 2nπk
n+m

, k ∈ N? and p2k = 2nπk
n−m , k ∈ N?. For the problem (2.1)–(2.2),

(2.32) there exist second order zeroes: p12k = 2nk
m
, k ∈ N?.

Proof. This Lemma is a part of Chapter 3 results.

In Case 1 zero point from the first family coincides with zero point from the

second family at CE points (see (2.71) and Figure 2.2 in Chapter 2).

If hq is a sufficiently small number, then tan πqh
2
· 2
πqh

≈ 1. It follows that, in this

case, the discrete CF is similar to the CF of the differential problem [48, Pečiulytė

et al. 2005].

If q = ıy, y > 0, then λk = − 4
h2

sinh2(ykh
2
) < 0 and Real CF is:

γt1− =
sinh(πq)

cosh(ξπq)− cosh(πq)
· tanh πqh

2
· 2
h
, (2.131)

γt2− =
sinh(πq)

2 sinh2(ξπq/2)
· tanh πqh

2
· 2
h
. (2.132)

If q = n+ ıy, y > 0, then λk = − 4
h2

cosh2(ykh
2
) > 4/h2 and:

γt1+ =
sinh(πq)

cosh(ξπq)− cosh(πq)
· tanh πqh

2
· 2
h
, (2.141)

γt2+ =
sinh(πq)

2 sinh2(ξπq/2)
· tanh πqh

2
· 2
h
. (2.142)

The selection of the parameter n influences the spectrum structure of the discrete

problem.
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3 Investigation of the spectrum structure

In the case of the problem (2.1)–(2.2), (2.31) only real eigenvalues exist. The grid

point q = n is a pole point for even n−m in Case 1. Otherwise, Spectrum Curve

moves through the point q = n (from Rh
q to Rh+

q or from Rh+
q to Rh

q ). Real CF

for the FDS (2.1)–(2.2), (2.31) is presented in Figure 4.1. In Case 1 there exists

horizontal asymptote γ = 2
h
for Real CF. If γ = 2

h
, then n − 2 eigenvalues exist,

only. If n→∞, then the view of the spectrum becomes similar to the spectrum

for differential SLP in Chapter 2.

In Case 2 the complex part of the spectrum is more complicated then in Case

1 (see Figure 4.2–Figure 4.5). The grid point q = n is a pole of the second order in

domain Ch
q and the first order pole in domain Cλ for evenm in Case 2. Real CF for

FDS (2.1)–(2.2), (2.32) is shown in the Figure 4.2(a)–(c) and Figure 4.3(a)–(c)(top

pictures).

Complex part of the spectrum for FDS (2.1)–(2.2), (2.32) are presented in

Figure 4.2(a)–(c) and Figure 4.3(a)–(c)(bottom pictures). For some parameter ξ

values only real eigenvalues (see Figure 4.2(b)) exist. As shown in the Figure 4.5,

for some parameter values Spectrum Curves make loops.

Figure 4.2, Figure 4.3, Figure 4.4 show real and complex parts of the spectrum

for different number of grid point n for (2.1)–(2.2), (2.32). As shown in the

Figure 4.4, the number of grid points influences the spectrum structure. If grid

point is increasing, then the spectrum view becomes more similar to differential

SLP in Chapter 2.

4 The case of an approximation by Simpson’s

rule

In the interval [0, 1], a uniform grid ωh = {tj = jh, j = 0, 2n; 2nh = 1} is

introduced. Also, we make the an assumption, that ξ is coincident with the grid

point, i.e., ξ = 2mh = m/n, m = 0, n. We approximate differential problem (1.1),
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(1.2) by FDS:

Uj−1 − 2Uj + Uj+1

h2
+ λUj = 0, j = 1, 2n− 1, (4.1)

U0 = 0, (4.2)

U2n =
γh

3

(
U2m + U2n + 4

n∑
k=m+1

U2k−1 + 2
n−1∑

k=m+1

U2k

)
, (4.31)

U2n =
γh

3

(
U0 + U2m + 4

m∑
k=1

U2k−1 + 2
m−1∑
k=1

U2k

)
. (4.32)

From the general solution (see (2.11) in Chapter 3) and the BC U0 = 0 yields

that C2 = 0. By substituting such a solution function to NBC (4.31) or (4.32),

we derive that the eigenvalue exists for q 6= 0, n if q = q(γ, ξ) is the root of the

equation:

sin(πq)− γh

3

(
cos(ξπq)− cos(πq)

)
· (2 + cos(πqh))

sin(πqh)
= 0; (4.41)

sin(πq)− 2γh

3
sin2(ξπq/2) · (2 + cos(πqh))

sin(πqh)
= 0. (4.42)

We get the eigenvalue λ = 0 for problem (4.1)–(4.3), if and only if γ = 2
1−ξ2 in

Case 1 and γ = 2
ξ2

in Case 2 (the same conditions are for differential (1.1)–(1.2) and

for FDS (2.1)–(2.3)). If γ = 0, then all the n− 1 eigenvalues could be defined by

equation (2.14) in Chapter 3. All eigenvalues λk(γ, ξ) and eigenfunctions Uk(γ, ξ)

can be enumerated as: λk(0, ξ) = λ0k, k = 1 . . . n − 1. If q = x ∈ (0, 1/h),

then λ ∈ (0, 4/h2) and we calculate the eigenvalues of problem (4.1)–(4.3) by the

formula λk = 4
h2

sin2(πxkh
2

), where xk are roots of the equation:

sin(πx)− γh

3

(
cos(ξπx)− cos(πx)

)
· 2 + cos(πxh)

sin(πxh)
= 0; (4.51)

sin(πx)− 2γh

3
sin2

(ξπx
2

)
· 2 + cos(πx)h

sin(πxh)
= 0. (4.52)

Let us denote the greatest common divisor K := gcd(2n, 2m) and N := 2n/K,

M := 2m/K. Then ξ = M/N , too. Then CE points ck are described by the

formula (2.7) (the same formula is for (2.1)–(2.3)). Other (nonconstant) eigen-

values (which depend on the parameter γ) as γ-point of the CF (see Figure 4.6–

Figure 4.9) are defined on the set Ch
q .
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(a) ξ = 1/3, n = 6 (b) ξ = 1/2, n = 4 (c) ξ = 2/3, n = 6

(d) ξ = 1/3, n = 12 (e) ξ = 1/2, n = 8 (f) ξ = 2/3, n = 12

Fig. 4.6. Discrete problem (4.1)–(4.2), (4.31), Real CF for various ξ values.

Lemma 4.3. If 0 6 m < l 6 1, then CF for FDS:

Uj−1 − 2Uj + Uj+1

h2
+ λUj = 0, j = 1, 2n− 1, (4.6)

U0 = 0, (4.7)

U2n =
γh

3

(
U2m + U2l + 4

l∑
k=m+1

U2k−1 + 2
l−1∑

k=m+1

U2k

)
, (4.8)

is:

γ =
sin(πqhn)

cos(πqhm)− cos(πqhl)
· 3 sin(πqh)

h(2 + cos(πqh))
. (4.9)

Proof. First of all, it should be mentioned that the parameters of FDS (4.6)–(4.8)

are m = 0, 1, . . . , n, l = 0, 1, . . . , n, l > m, where 2n is a number of grid points.

After the assumption that Uj = yj, the NBC (4.8) can be rewritten in another

form:

y2n =
γh

3

(
y2m + y2l + 4

l∑
k=m+1

y2k−1 + 2
l−1∑

k=m+1

y2k
)
. (4.10)



86 Chapter 4. Discrete SLP with integral NBC (special cases)

,

,

,

,

,

,

,

,

, , , ,

,

(a) ξ = 1/3, n = 6

, ,

,

(b) ξ = 1/2, n = 4

,
,

,

(c) ξ = 2/3, n = 6

Fig. 4.7. Discrete problem (4.1)–(4.2), (4.32), Real CF and Spectrum Curves for
various ξ values.

Applying the formula of geometric series in the case y 6= ±1, we obtain:
l∑

k=m+1

y2k−1 = y2m+1 + y2m+3 + · · ·+ y2l−1 = y2m+1(1 + y2 + · · ·+ y2l−2m−2)

= y2m+1 · 1− y
2l−2m

1− y2
, (4.111)

l−1∑
k=m+1

y2k = y2m+2 + y2m+4 + · · ·+ y2l−2 = y2m+2(1 + y2 + · · ·+ y2l−2m−4)

= y2m+2 · 1− y
2l−2m−2

1− y2
. (4.112)

Applying these expressions the equation (4.10) can be rewritten in the another

form:

y2n =
γh

3

(
y2m + y2l + 4y2m+1 · 1− y2l−2m

1− y2
+ 2y2m+2 · 1− y

2l−2m−2

1− y2

)
. (4.12)
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(a) ξ = 1/3, n = 12
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(b) ξ = 1/2, n = 8
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(c) ξ = 2/3, n = 12

Fig. 4.8. Discrete problem (4.1)–(4.2), (4.32), Real CF and Spectrum Curves for
various ξ values.
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(a) ξ = 3/4, n = 8
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(b) ξ = 4/5, n = 10
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(c) ξ = 5/6, n = 12

Fig. 4.9. Spectrum curves for discrete problem (4.1),(4.2), (4.32).

After some operations we get:

y2n =
γh

3
· (y

2l − y2m)(y2 + 4y + 1)

y2 − 1
. (4.13)

If y = eıπqh, q 6= 0, q 6= n, then the equation (4.13) can be rewritten in another

form:

eı2πqhn =
γh

3
· (e

ı2πqhl − eı2πqhm)(eı2πqh + 4eiπqh + 1)

eı2πqh − 1
. (4.14)

By the Euler’s formula we have yk = eıπqhk = cos(πqhk) + ı sin(πqhk). This
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expression we apply to equation (4.11), and we get:

cos(2πqhn) + ı sin(2πqhn) =

=
γh

3
· (cos(2πqhl) + ı sin(2πqhl)− cos(2πqhm) + ı sin(2πqhm))·

· (cos(πqh) + ı sin(πqh))2 + 4(cos(πqh) + ı sin(πqh)) + 1

(cos(πqh) + ı sin(πqh))2 − 1
. (4.15)

After some operations with real and image part of the equation (4.15), we get:

cos(2πqhn) + ı sin(2πqhn) =

= ı
γh

3

(cos(2πqhl)− cos(2πqhm))(cos(πqh) + 2)

sin(πqh)
+

+
γh

3
· (sin(2πqhl)− sin(2πqhm))(cos(πqh) + 2)

sin(πqh)
. (4.16)

We take only imaginary part of this expression:

sin(2πqhn) =
γh

3

(cos(2πqhl)− cos(2πqhm))(cos(πqh) + 2)

sin(πqh)
. (4.17)

Generally, the characteristic function of FDS (4.6)–(4.6) is expressed in the for-

mula (4.17). Cases q = 0, q = n are valid as limit cases.

On the case l = n, m = m (Case 1) and l = m, m = 0 (Case 2) we get that

CF of the discrete problem (4.1)–(4.3):

γS1 =
sin(2πqhn)

cos(2πqhm)− cos(2πqhn)
· 3 sin(πqh)

h(2 + cos(πqh))
, (4.181)

γS2 =
sin(2πqhn)

2 sin2(2πqhm/2)
· 3 sin(πqh)

h(2 + cos(πqh))
. (4.182)

Zeros of the CFs (γS1 and γS2) are positive and first order zk = k ∈ N such

that zk ∈ (0; 2n). Pole points could be defined by the same formula as for the

approximation by the trapezoidal formula (see Lemma 4.2). In the case of approx-

imation by Simpson’s rule there exists a pole point in Rh+
q := {q = 2n+ ıy, y > 0}.

This pole we can find from the analysis of the multiplier 3 sin(πqh)
qh(2+cos(πqh))

(see (4.18)).

The numerator of this fraction is equal to zero only for real q. So, in the domain

Rh+
q CE point does not exist, but there exists a pole.

Lemma 4.4. For the FDS (4.1)–(4.3) with integral NBC approximated by Simp-

son’s rule in Rh+
q there exists the first order pole p = 2n+ ı(2n ln(2 +

√
3))/π.
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Proof. If q ∈ Rh+
q then the equation − cos(πqh) = 2 can be rewritten in another

form:

− cos(πh(2n+ ıy)) = − cosπ cos(ıπhy)

= cosh(πhy) = 2. (4.19)

So, the equation above is equal to eπhy + e−πhy = 4. Denote eπhy = λ. Then we

have quadratic equation for λ:

λ2 − 4λ+ 1 = 0. (4.20)

The roots of this equation are

λ = 2±
√
3. (4.21)

The formulas mentioned above allow us to get this formula:

y =
2n

π
ln(2 +

√
3), (4.22)

because we look for y > 0.

This pole point for different grid point number is shown in Figure 4.6–Figure 4.9.

For example, if 2n = 6, then p ≈ 6 ± ı 2.51520430 (see Figure 4.6(a), (c), Fig-

ure 4.7(a), (c)).

For 2hn = 1 and 2hm = ξ, from the formula (4.18) we get:

γS1 =
q sin(πq)

cos(ξπq)− cos(πq)
· 3 sin(πqh)

qh(2 + cos(πqh))
, (4.231)

γS2 =
q sin(πq)

2 sin2(ξπq/2)
· 3 sin(πqh)

qh(2 + cos(πqh))
. (4.232)

If hq is a sufficiently small number, then 3
πqh
· sin(πqh)
2+cos(πqh)

≈ 1. It follows that, in this

case, the discrete CF is similar to the CF of the differential problem [48, Pečiulytė

et al. 2005].

If q = ıy, y > 0, then λk = − 4
h2

sinh2(ykh
2
) < 0 and Real CF is:

γS1− =
x sinh(πx)

cosh(ξπx)− cosh(πx)
· 3 sinh(πxh)

xh(2 + cosh(πxh))
, (4.241)

γS2− =
x sinh(πx)

2 sinh2(ξπx/2)
· 3 sinh(πxh)

h(2 + cosh(πxh))
. (4.242)
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If q = 2n+ ıy, y > 0, then λk = − 4
h2

cosh2(ykh
2
) < 4/h2 and:

γS1+ =
x sinh(πx)

cosh(ξπx)− cosh(πx)
· 3 sinh(πxh)

xh(2 + cosh(πxh))
, (4.251)

γS2+ =
x sinh(πx)

2 sinh2(ξπx/2)
· 3 sinh(πxh)

h(2 + cosh(πxh))
. (4.252)

In addition, the selection of the parameter n influences the spectrum structure

of discrete problem. If the number of grid points grows, then the structure of

spectrum becomes more similar to the differential problem.

5 Spectrum Curves at the points q = 0, q = 2n

and q =∞

q = 0: Taylor series for γ(q) at the point q = 0 is:

γS1(q) =
2(2n)2

(2n)2 − (2m)2
− 1

6
q2 +O(q4), (5.11)

γS2(q) =
2(2n)2

(2m)2
− 1

6
· 2(2n)

2 − (2m)2

(2m)2
q2 +O(q4). (5.12)

The second term is negative and not equals to zero (2(2n)2 − (2m)2 > 0 for all

n and m, m 6 n in Case 2), so the point q = 0 is the first order Critical point

in domain Ch
q , but λ = 0 is not a Critical point in domain Cλ, because it is

a first order branch point. At this point Spectrum Curve N1 turns orthogonal

to the right, i.e. the first positive eigenvalue point reaches q = 0 and then this

point moves along imaginary axis, as well as in the case of approximation integral

condition by trapezoidal formula (see Chapter 3).

q = 2n: Taylor series for γ(q) at the point q = 2n is

γS1(q) = −
24(2n)2

(2n)2 − 4(2m)2
+

1

2

7(2n)2 − 4(2m)2 + 8

(2n)2 − 4(2m)2
(q − 2n)2 +O((q − 2n)4),

(5.21)

γS2(q) = −
6(2n)2

(2m)2
+

1

2
· 2(2n)

2 − (2m)2 + 8

(2m)2
(q − 2n)2 +O((q − 2n)4). (5.22)

It can be seen in Case 1, that q = 2n is a first order Critical point in domain Ch
q ,

because n > m and 7(2n)2 − 4(2m)2 + 8 6= 0 for all n and m. In domain Cλ, the

point λ = 4/h2 is not a Critical point. In Case 1, the second term negative if
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m < n/2. In Case 2 the inequality 2(2n)2 − (2m)2 + 8 > 0, is valid for n > m,

too. In this case the second term is positive for all n and m. So, point q = 2n

is the first order Critical point in domain Ch
q , but not a Critical point in domain

Cλ.

q =∞: Using Euler formula the equation (4.23) we can rewrite in the following

form:

γS1 =
−(eıπq − e−ıπq)(eıπqh − e−ıπqh)

(eıπqξ + e−ıπqξ − eıπq − e−ıπq)(4 + eıπqh + e−ıπqh)
· 3
h
, (5.31)

γS2 =
(eıπq − e−ıπq)(eıπqh − e−ıπqh)

(eıπqξ − 2 + e−ıπqξ)(4 + eıπqh + e−ıπqh)
· 3
h
. (5.32)

Then CF could be expressed in terms of w = eıqh

γS1 =
−(w2n − w−2n)(w − w−1)

(w2m + w−2m − w2n − w−2n)(4 + w + w−1)
· 3
h

=
−w−2n−1(1− w4n)(1− w2)

−w−2n−1(1− w2n+2m − w2n−2m + w4n)(1 + 4w + w2)
· 3
h
, (5.41)

γS2 =
(w2n − w−2n)(w − w−1)

(w2m − 2 + w−2m)(4 + w + w−1)
· 3
h

=
w−2n−1(1− w4n)(1− w2)

w−2m−1(1 + w4m − 2w2m)(1 + 4w + w2)
· 3
h

(5.42)

where w ∈ Ch
w (see Chapter 3). We can rewrite (5.4) as

γS1 =
1

w0

(1 +O(w4n))(1 +O(w2))

(1 +O(w4n))(1 + 4O(w))
· 3
h
=

3

h
O(1), (5.51)

γS2 =
1

w2n−2m
(1 +O(w4n))(1 +O(w2))

(1 +O(w4m))(1 + 4O(w))
· 3
h
=

1

w2n−2m ·
3

h
O(1) (5.52)

We remind, that the ratio of 1
w0 in Case 1 (or 1

w2(n−m) in Case 2) describes the

properties of the point w = 0 on Ch
w, w = 0 /∈ Ch

w (see Chapter 3). In the Case

1 limw→0 γ(w) = 3/h and we have removable singularity point for all parameter ξ

values. So, the same Spectrum Curve enters and leaves the point w = 0 and, ad-

ditionally, there are no complex Spectrum Curves for all ξ values (see Figure 4.6).

In Case 2, if m = n, then limw→0 γ(w) = 3/h and we have removable singular-

ity point, too. If n − m2 = 1, then the point w = 0 is the second order pole

point in Ch
w and one real and one complex Spectrum Curve enter to w = 0 and

one real and one complex Spectrum Curves leaves the point (see Figure 4.7(b)–

(c)). If n − m2 = 2 then the point w = 0 is the fourth order pole point and
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2(n− 2) complex Spectrum Curves enter and leave the point w = 0. So, in Case

2 if n > m, the the point w = 0 is pole of order even number 2(n − m) and

2(n−m)− 2 complex Spectrum Curves enter and leave this point in domain Ch
w

(see Figure 4.7–Figure 4.9).

6 Investigation of the spectrum structure

For discrete problem (4.1)–(4.2),(4.31) complex eigenvalues do not exist as in the

case of differential problem (1.1)–(1.21), and discrete problem (2.1)–(2.2),(2.31)

when integral NBC was approximated using trapezoidal rule (see Figure 4.6). In

this case, there exists horizontal asymptote if γ = 3/h for Real CF. If γ satisfies

the condition γ = 3/h, we have degenerate problem and there exist only n − 2

eigenvalues. For the both cases of FDS (4.1)–(4.3) grid point q = 2n is not a

pole for any parameter ξ value (see Figure 4.1(d)–(e), Figure 4.6(a)–(c) in Case

1 and Figure 4.3(a)–(c), Figure 4.7(a)–(c) in Case 2). So, Spectrum Curve moves

through the point q = 2n. For the FDS (4.1)–(4.3), there exists one pole in Rh+
q ,

that does not depend on NBC’s parameter ξ value, but depends on the number

of grid point: p = 2n+ ı 2n
π
ln(2 +

√
3).

In case of FDS (4.1)–(4.2), (4.32) there exist real and complex eigenvalues (see

Figure 4.7–Figure 4.9). In this case complex eigenvalues exist for all ξ values. For

same parameter ξ values complex part of the spectrum is very complicated (see

Figure 4.9)).

After comparison of the Figure 4.7 and Figure 4.7–Figure 4.8 we can see that

increasing number of grid point makes the spectrum more similar to differential

problem (1.1), (1.2).

7 Conclusions

The spectra of FDS’s (2.1)–(2.3) and (4.1)–(4.3) in Case 1 and Case 2 are different:

• Real CF for FDS (2.1)–(2.31) has a horizontal asymptote if γ = 2
h
. Real CF

for FDS (4.1)–(4.31) has a horizontal asymptote if γ = 3
h
.
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• For discrete problem (2.1)–(2.3) we get pole at the point q = n if n −m is

even in Case 1 and m is even in Case 2. In the case of problem (4.1)–(4.3)

the point q = 2n is not a pole for all parameter n and m, but there exists a

pole p = 2n+ ı 2n
π
ln(2 +

√
3) in Rh+

q .

• The point q =∞ for FDS (2.1)–(2.2), (2.32) is a pole (see Chapter 3). For

discrete problem (4.1)–(4.32) the point q = ∞ is a removable singularity

point for all ξ ∈ (0, 1). Complex eigenvalues for the discrete problem (4.1)–

(4.2), (4.32) exist for all parameters n and m, m < n values, because the

point q =∞ is a pole of the 2(n−m) order. So 2(n−m) Spectrum Curves

enter and leave this point.

• With an increase in the value n, the spectra of FDS (2.1)–(2.3) and (4.1)–

(4.3) become more similar to that spectrum of the differential problem.



94 Conclusions

Conclusions

During the doctoral studies at Vilnius University we have studied the SLP with

one classical and another type NBC. From the results obtained in the previous

chapters we derive the following conclusions:

• In Chapter 1 we investigate the spectrum of SLP with one integral NBC

depending on three parameters. One of our results is the classification of

poles, zeroes and CE points. The dependence of these point on the integral

BC parameters ξ1 and ξ2 is analyzed, too. Also, we classified Critical points

and we have found trajectories (numerically) of the first order Complex

Critical points and the second order (Real) Critical points in the Phase

Space Sξ.

• In Chapter 2, the complex spectrum of the SLP with the classical or first

type BC on the left side of the interval and integral NBC of two types on

the right side of the interval was analyzed. In Case 1 and Case 1′ there

exist only real eigenvalues. In Case 2 there are two types of bifurcation:

two different Spectrum Curves intersect at the Critical point; zero and pole

points coincide with the Critical point, i.e., appears CE. In Case 2′ there

exists the second order Critical point when the loop type Spectrum Curve

intersect with other Spectrum Curves.

Also, SLP with the symmetric interval in the integral was analyzed. In this

case, the behaviour of Spectrum Curves is quite similar to Case 2′.

• In Chapter 3 dSLP with one integral NBC depending on three parame-

ters was analyzed. The integral condition was approximated by the trape-

zoidal rule. If m2 = n, then there exists a horizontal asymptote γ(∞) =

limq→∞ γ(q) = 2
h
of Real CF. The number of Spectrum Curves that en-

ters and leaves the point q = ∞ depends on m2, only. The point q = n

is the first order Critical point, if m1, m2 and n satisfy the condition

m2
1 +m2

2 = (1 + 2n2)/3.

• In Chapter 4 we have analyzed special cases of dSLP with one integral NBC.

The integral condition was approximated by trapezoidal and Simpson’s rule.
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In case of approximation by trapezoidal rule, for some parameter ξ values

the point q = n is a pole. In case of approximation by Simpson’s rule the

point q = 2n is not a pole for any parameter ξ values, but there exists the

first order pole p = 2n + ı(2n ln(2 +
√
3))/π. If the number of grid point

is increasing in both cases, the spectrum becomes similar to the differential

problem.
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[9] R. Čiupaila, Ž. Jesevičiūtė and M. Sapagovas. On the eigenvalue problem for one-
dimensional differential operator with nonlocal integral condition. Nonlinear Anal.
Model. Control, 9(2):109–116, 2004. Available from Internet: http://www.mii.lt/
na/issues/NA_0902/NA09201.pdf.
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R.Yu. Čiegis. On some boundary problems with nonlocal conditions, Differ. Uravn.,
in Russian)

[74] М.П. Сапаговас, Р.Ю. Чегис. Численное решение некоторых нелокальных
задач. Liet. Mat. Rink., 27(2):348–356, 1987. (M.P. Sapagovas and R.Yu. Čiegis.
The numerical solution of some nonlocal problems, in Russian)

[75] K. Schugerl. Fundamentals, thermodinamics, formal kinetics, idealized reactor
types and operation modes. In Vol.1:Biorection engineering: reactions involving
microorganisms and cells. Chichester, New York, Brisbane, Toronto, Singapore:
John Wiley and Sons Ltd, 1987.

[76] A. Skučaitė, S. Pečiulytė and A. Štikonas. Investigation of complex eigenvalues for
Sturm–Liuville problem with nonlocal integral baundary condition. Matematika ir
Matematinis Modeliavimas, 5:33–40, 2009. Available from Internet:
http://leidykla.ktu.lt/main.php?ID=79&StrukturaID=12&KatID=6516.

http://dx.doi.org/10.1007/BF02754510
http://dx.doi.org/10.1023/A:1021115915575
http://dx.doi.org/10.1134/S0012266108070148
http://dx.doi.org/10.1007/s10625-005-0242-y
http://leidykla.ktu.lt/main.php?ID=79&StrukturaID=12&KatID=6516


Bibliography 103
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[86] A. Štikonas and O. Štikonienė. Characteristic functions for Sturm–Liouville prob-
lems with nonlocal boundary conditions. Math. Model. Anal., 14(2):229–246, 2009.
http://dx.doi.org/10.3846/1392-6292.2009.14.229-246.

[87] Т. Вейдайте, П. Крутеев, М. Сапаговас, А. Юркульнявичус. Метод решения
дифференциального уравнения, описывающего поверхность капли. Liet. Mat.
Rink., 17(3):168–169, 1977. in Russian

[88] Y. Wang. Solutions to nonlinear elliptic equations with a nonlocal boundary
condition. Electron. J. Differ. Equ., 5:1–16, 2002. Available from Internet:
http://ejde.math.txstate.edu/Volumes/2002/05/wang.pdf.

[89] Z. Yang. Existence of nontrivial solutions for a nonlinear Sturm–Liouville problem
with integral boundary conditions. Nonlinear Analysis, 68(2008):216–225, 2006.
http://dx.doi.org/10.1016/j.na.2006.10.044.

http://www.mii.lt/na/issues/NA_1504/NA15412.pdf
ftp://ftp.science.mii.lt/pub/Publications/52_TOMAS(2011)/SKAICIAVIMO_MATEMATIKA/sm_SkucA_Stik.pdf
ftp://ftp.science.mii.lt/pub/Publications/52_TOMAS(2011)/SKAICIAVIMO_MATEMATIKA/sm_SkucA_Stik.pdf
ftp://ftp.science.mii.lt/pub/publications/LMR/54(2013)/Series_A/MATHEMATICS/Skucaite_Stikonas.pdf
ftp://ftp.science.mii.lt/pub/publications/LMR/54(2013)/Series_A/MATHEMATICS/Skucaite_Stikonas.pdf
http://dx.doi.org/10.3846/13926292.2015.1116470
http://www.mii.lt/LMR/A/2015/17.htm
http://www.mii.lt/LMR/A/2015/17.htm
http://dx.doi.org/10.1007/s10986-007-0023-9
http://dx.doi.org/10.1007/s10986-007-0023-9
http://dx.doi.org/10.15388/NA.2014.3.1
http://dx.doi.org/10.1080/01630560903420932
http://dx.doi.org/10.3846/1392-6292.2009.14.229-246
http://ejde.math.txstate.edu/Volumes/2002/05/wang.pdf
http://dx.doi.org/10.1016/j.na.2006.10.044


104 Bibliography

[90] V.A. Yurko and C. Yang. Recovering differential operators with nonlocal boundary
conditions. arXiv.org, 2014. Available from arXiv:1410.2017.

[91] O.S. Zikirov. On boundary-value problem for hyperbolic-type equation of the third
order. Lith. Math. J., 47(4):484–495, 2007. http://dx.doi.org/10.1007/s10986-007-
0034-6.

http://arxiv.org/abs/1410.2017
http://dx.doi.org/10.1007/s10986-007-0034-6
http://dx.doi.org/10.1007/s10986-007-0034-6

	List of Tables
	List of Figures
	Introduction
	Problem formulation
	Topicality of the problem
	Aims and problems
	Methods
	Actuality and novelty
	Structure of the dissertation and main results
	Dissemination of results
	Publications
	Traineeships
	Scientific projects
	Acknowledgements

	Sturm–Liouville problem with a nonlocal integral condition 
	Formulation of the problem
	Zeroes, poles and Constant Eigenvalues points of the Characteristic Function
	Critical points
	Conclusions

	Sturm–Liouville problem with integral NBC (special cases)
	Sturm–Liouville problem with integral type NBC
	Real eigenvalues of the Sturm–Liouville problem
	Complex eigenvalues of the Sturm–Liouville problem
	Sturm–Liouville problem with symmetric interval in the integral
	Conclusions

	Discrete Sturm–Liouville problem
	Introduction
	Discrete SLP
	Characteristic Function, Constant Eigenvalues Points, Poles
	Spectrum Curves
	Remarks and conclusions

	Discrete Sturm–Liouville problem with integral nonlocal boundary condition (special cases)
	Problem formulation
	The case of an approximation by the trapezoidal rule
	Investigation of the spectrum structure
	The case of an approximation by Simpson's rule
	Spectrum Curves at the points q=0, q=2n and q=
	Investigation of the spectrum structure
	Conclusions

	Conclusions
	Bibliography

