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Notation

reX  — xisanelement of X
XUY  — isthe union of sets X and Y
XNY  — is the intersection of sets X and Y
6] — empty set
X xY - Cartesian product of sets X and Y
N — 1,2, 3,... the set of positive integers
Ny - 0,1, 2,3,... the set of natural numbers
N, — 2,4, 6,... the set of an even integers
N, — 1, 3, 5,... the set of an odd integers
Ng — kEN:={neN:n=km,meN} keN
A — the set of integers
Q — the set of rational numbers
I — the set of irrational numbers
R —  the set of real numbers
R — extended set of real numbers R U {—o0, +00}
C — the set of complex numbers
C — extended set of complex numbers C U {co}

ged(n,m) — the greatest common divisor of two integers n and m

vil






Introduction

1 Problem formulation

In the theory of differential equations, the basic concepts have been formulated
studying the problems of classical mathematical physics. However, the modern
problems motivate to formulate and investigate the new ones, for example, a class
of nonlocal problems. Differential problems with nonclassical Boundary Condi-
tions (BC) is quite a widely investigated area of differential equations theory,
which is very often used in other sciences. During the physical experiment, in
many cases it is impossible to measure data on the boundaries, but a relations
of data in the inner domain are known. If value of a solution on the boundary
is related with some expression of value(s) inside of the given domain, where we
solve problem, then BC of such type are called Nonlocal Boundary Conditions
(NBC).

The main object of the dissertation is Sturm—Liouville problem with nonlocal

integral BC.

2 'Topicality of the problem

Differential problems with Nonlocal Conditions (NC) are quite a widely inves-
tigated area of mathematics. Differential problems with NCs are not yet com-
pletely and properly investigated, as it is a wide research area. A. Bitsadze and
A. Samarskii in [2, 1969] formulated a separate class of nonlocal elliptic prob-
lems. Later, the generalizations of this problem was investigated in [53, Samarskii
1980], [32, Skubachevskii 1986], [39, Kigkis 1988]. The first paper, dedicated

to the second order partial differential equation with nonlocal integral BCs is

1



2 Introduction

Fig. 1. Domain Q.

written by Cannon, where the heat equation is investigated |1, 1963]. Nonlocal
problems appear in various physics: [1 1,12, Day 1982,1985|, [16, Gordeziani and
Avalishvili 2000|, [18, Gordeziani 2000], [28, Ionkin and Morozova 2000|, biolog-
ical and ecological |11, Nakhushev 1995|, |13, Eloe and Henderson 1997|, chem-
istry [75, Schugerl 1987, [7, Choi and Chan 1992| and other science’s problems [29,
Tonkin], [15, Gordeziani and Davitashvili 1999], [1, Avalishvili and Gordeziani

2003]. The problems with NBCs were investigated for parabolic equations [29,

Tonkin 1977, [37, Kamynin 1964], for elliptic equations |2, Bitsadze and Samarskii
1969], [19, Gushchin and Mikhailov 1994], [28, Wang 2002|, and for hyperbolic
equations |17, Gordeziani and Avalishvili 2001|, |91, Zikirov 2007]|, etc. Integral

BCs are the special case of a more general nonlocal BC for stationary BVP [50,51,

Roman and Stikonas 2009, 2010], [35, Stikonas and Roman 2009).

In Lithuania, the problems with NCs had been started to investigate, in 1977.
Two scientists of the Institute of Mathematics and Cybernetics: M. Sapagovas
and T. Veidaité published an article about differential problem with NC [37,
Veidaité et al. 1977]. Professor Sapagovas found the scientific school and main
area of investigations at this school are investigation of the problem with NBC.
Later, with his doctoral student R. Ciegis, professor was investigating elliptic
and parabolic problems with Bitsadze-Samarskii boundary conditions |6, Ciegis

1984], |63, Sapagovas 1984].

Sturm-Liouville Problem (SLP) is important investigating the existence and
uniqueness of the classical stationary problems. The problems of such type are
not self-adjoint, their spectrum can be negative or complex, so the investigation

of such type problems is very complicated.

As it was mentioned before, in 1969 Bitsadze and Samarskii formulated new
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Fig. 2. Domain Q.

nonlocal Boundary Value Problem (BVP) for the elliptic equation |2, Bitsadze

and Samarskii|, which appears in the plasma theory:

(Aw) (x) = =) ay(@)ws,q;(2) + Z () wy, (7)

Fao(e)wla) = folx), =€ 2, 0
W@y = b)) + Alz), @e M, @
w(x)le = f2(x>7 xEM% (3)

where

Y (@& >0, 0£E€R", zeq,

ij=1
@) C R™ — bounded region with boundary 9Q), M; C 9Q — (n — 1) dimension
open subset, My = 0Q) \ M; — subset; w(x) — C* such diffeomorphism, that
w: 21 — w(f?), where 2, C My, w(f) C Q; aij,a;,a0,b € C°(R") (see
Figure 1).

Unlike the formulated problem, authors solved |2, Bitsadze and Samarskii| the
particular case (1)-(3):

—Aw(z) = folx), reQ=(0,2)x(0,1),
w(z1,0) = w(z,1) =0, 0< 2 <2,
w(0,m9) = mw(l,z9), w(2,z9) ="w(l,z2), 0< <1,

where 71 = 0, 75 = 1, A — Laplace operator; x = (x1,23) (see Figure 2). As
can be seen ({2} x [0,1]) N ({1} x [0,1]) = &, so, the problem was reduced to the
second order integral Fredholm equation. Uniqueness and existence were proved

using induction and the maximum principle.



4 Introduction

Problems with two-points and multi-points NBCs were analyzed by Il'in, Moi-
seev and Jonkin in [21-23, II'in and Moiseev 1976, 1987, 1987], [27, lonkin and
Moiseev 1980]. The investigation of the spectrum and other similar problems

for differential equations with nonlocal Bitsadze—Samarskii or multipoint BCs

are also analyzed in papers [66, Sapagovas 2000], [15, Peciulyté and Stikonas
2006], [68, Sapagovas and Stikonas 2005|, [36, Stikonas and Stikoniené 2009];
and integral conditions in [16, Peciulyté and Stikonas 2007], [77, Skucaité et al.
2010], [¢4, Stikonas 2014] etc.

B. Chanane in his paper [5, 2009], use the regularized sampling method intro-
duced recently to compute the eigenvalues of SLPs with NCs:

-y +q(x)y =Ny, x€][0,1]
zo(y) = 0, r1(y) =0,

where ¢ € L' and z and z; are continuous linear functionals defined by:

zo(y) = / () (1) + o (Odea(t)],  21(y) = / y()dn(t) + o/ ()dpu(t))

where xg and z; are independent, and 1,19, ¢1 and ¢, are functions of bounded
variations, integration is in the sense of Riemann—Stieltjes. The author has used
the regularized sampling method and has obtained much higher estimates of the
eigenvalues without computing multiple integrals or taking a high number of terms
in the cardinal series involved. Also, two numerical examples have been presented
to illustrate the effectiveness of the method.

The n-th order BVP is widely analyzed by X. Hao et. al. [20, 2015]. The

nonlinear nth-order singular nonlocal BVP:

u™(t) + Xa(t) f(t,u(t)) =0, te(0,1)

w(0) = u/'(0) = - =u®2(0) =0, u(l)= [ u(s)dA(s),

under some conditions is considered to be the first eigenvalue corresponding to
the relevant linear operator, where fol u(s)dA(s) is given by a Riemann-Stieltjes
integral with a signed measure, a may be singular at t = 0 and/or t = 1, f(¢,x)
may also have singularity at = 0. The existence of positive solutions is obtained
by means of the fixed point index theory in cones, and two explicit examples are

given to illustrate the results.
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The inverse spectral problems for Sturm-Liouville operators with NBCs are
studied in [90, Yurko and Yang 2014]. The authors considered the differential
equation:

' +aqlz)y =Xy, z€(0,T),
and linear forms: .
Uits) = [ w(odo), =1.2
where ¢(x) € L(0,T) is a complex-valued function, o,(t) are complex-valued

bounded variation functions, continuous from the right for ¢ > 0. Such boundary

conditions can be rewritten in the following nonlocal form:

Us(y) = Hyy(0) + / y(B)dojo(t), j=1,2,

where, H; is finite limit H; := 0;(4+0) — 0;(0), 0jo are complex-valued bounded
variations functions continuous from the right.

The authors study the spectra of the inversed problems introducing the Weyl-
type function and two spectra, which are generalizations of the Weyl function and
Borg’s inverse problem for the classical Sturm-Liouville operator. The uniqueness
theorems are proved and some counterexamples are given for the two formulated
problems.

The question about the existence of the solutions of the nonlinear SLP with
integral BC is analyzed in the article [39, Yang 2006]. The author consider SLP
with integral BCs:

—(au) +bu=g(t)f(t,u),  tE(0,1),
(cosyo)u(0) — (sinvp)u'(0) = fo a(r)
(cosy1)u(l) — (sinyy)u'(1) fo B(r)

where a € C'([0,1],(0,00)) and b € C([0,1],[0,00)), f € C([0,1] x R,R) and
g € C((0,1) x [0,00)) N L(0,1) fo t)dt > 0, a and @ right continuous on
[0,1)) and left continuous at ¢ = 1. The author proved the existence of nontrivial
solutions for the formulated problem using the topological degree arguments and
cone theory.

The results of Lithuanian mathematicians in the field of differential and

numerical problems with NBCs are very important. Prof. M. Sapagovas was
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not only a pioneer in the study of such problems, but also the founder of the
scientific school in Vilnius. The first problem with NBCs came from the ap-
plications, and it was the investigation of a mercury droplet in electric contact,
given the droplet volume [54,55,62,63,69,70, Sapagovas 1978-1984]. Difference
scheme for two-dimensional elliptic problem with an integral condition was con-
structed in [55,64, Sapagovas 1983, 1984]. Scientific supervisor of Sapagovas (Kiev,
1963-1965) Prof. V. Makarov also began investigating problems with NBCs 10—
, 1984-1985]. Sapagovas and his doctoral student (Vilnius, 1982-1985) Ciegis
investigated elliptic and parabolic problems with integral and Bitsadze—Samarskii
type NBCs and Finite-Difference Schemes (FDS) for them [6,71]. They published
some new results about numerical solutions for problems with NBCs in |73, 74,

Sapagovas and Ciegis 1987], [72, Sapagovas 1988], [3, Ciegis 1988)].
Sapagovas with co-authors began to study eigenvalues for Bitsadze—Samarskii

type

u(0) =0, u(l) =7u(e), 0<E<1, (4)

and integral type NBCs

u(0) = fyo/ao(x)u(:c) dz, u(l) =m /Ozl(a:)u(x) dz, (5)

[65, 66, Sapagovas 2000, 2002|, |9, Sapagovas et al. 2004], |68, Sapagovas and
Stikonas 2005]. They showed that there exists eigenvalues, which do not depend
on parameters 7, or 7, in boundary conditions and complex eigenvalues may exist.
The eigenvalue problems, investigation of the spectra, analysis of nonnegative so-
lutions and similar problems for the operators with NBCs of Bitsadze-Samarskii
or of integral-type are given in the papers [0, Ciupaila et al. 2004], [25, Infante
2003, [26, Infante 2005]. Complex eigenvalues for differential operators with NBCs
are less investigated than the real case. Some results of these eigenvalues for
a problem with one Samarskii-Bitsadze NBC are published [(8, Sapagovas and
Stikonas 2005, [%6, Stikonas and Stikoniené 2009]. Sapagovas with co-authors
analyzed the spectrum of discrete SLP, too. These results can be applied to prove
the stability of FDS for nonstationary problems and the convergence of iterative
methods. Numerical methods were proposed for parabolic and iterative meth-

ods for solving two-dimensional elliptic equation with Bitsadze—Samarskii or in-
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tegral type NBCs: Alternating Direction Method (ADM) for a two-dimensional
parabolic equation with NBC |58, Sapagovas et al. 2007|, FDS of increased or-
der of accuracy for the Poisson equation with NCs [67, Sapagovas 2008|, FDS
for two-dimensional elliptic equation with NC [34, Jakubéliené et al. 2009], the
fourth-order ADM for FDS with NC [61, Sapagovas and Stikoniené 2009], ADM
for the Poisson equation with variable weight coefficients in an integral condi-
tion [60, Sapagova et al. |; ADM for a mildly nonlinear elliptic equation with inte-
gral type NCs [60, Sapagovas et al. 2011|, FDS for nonlinear elliptic equation with
NC 10, Ciupaila et al. 2013]. Spectral analysis was applied for two- and three-layer
FDS for parabolic equations with NBCs: FDS for one-dimensional differential op-
erator with integral type NCs |52, Sajavi¢ius and Sapagovas 2009], [59, Sapagovas
et al. 2012], [57, Sapagovas 2012]. Stability analysis was done for FDS in the case
of one- and two-dimensional parabolic equation with NBCs [30, Ivanauskas et al.

2009], |36, Jesevi¢iuté and Sapagovas 2008|, |50, Sapagovas 2008|.

3 Aims and problems

The main aim of the dissertation is the analysis of the differential or the discrete
Sturm-Liouville Problem with integral NBC. To investigate the spectrum of SLP
we study the following problems:

e To investigate the spectrum for SLP with integral NBC depending on three

parameters.
— Location of the zeroes, poles and Constant Eigenvalue points of the
Characteristic Function.
— Qualitative analysis of Spectrum Curves.
— Trajectories of the Critical Points.
— Bifurcations of Spectrum Curves.

e To investigate the spectrum of SLP with integral NBC depending on two

parameters.

— Dependence on parameters v and £ in the case BCs: u(1) =~ f; u(t) dt,
w(l) =7 [ u(t)dt, w(1) =5 [ ult)dt
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— Bifurcation points of Spectrum Curves.

e To investigate the spectrum of discrete Sturm-Liouville Problem (dSLP)
with NBC depending on three parameters. Integral is approximated by

trapezoid formula.
— Characteristic Function, it’s zeroes, poles and Constant Eigenvalues
points.
— Properties of Spectrum Curves.
— Dependence on number of grid points and parameters in NBC.

— Spectrum Curves near Special points.

e To investigate the special cases of dSLP with two parameters in NBC.

Characteristic Function, it’s zeroes, poles and Constant Eigenvalues

points.

— Properties of Spectrum Curves.

Dependence on number of grid points and parameters in NBC.

— Spectrum Curves near Special points.

Influence of approximation type (trapezoid formula or Simpson’s rule)

of NBC.

4 Methods

Characteristic Function (CF) analysis is using for investigation of the spectrum for
differential and discrete SLP with NBC [0, Stikonas and Stikoniené 2009]. The
properties of the spectrum for such type problems depend on CF zeros, poles,
Constant Eigenvalue (CE) points and critical points of CF. Investigations of real
and complex parts of the spectrum are provided with the results of numerical
experiments. Some results are given as graphs of CF, trajectories in Phase Space

(&1,&) and bifurcation diagrams.
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5 Actuality and novelty

Most of the results presented in this work are completely new and have not
appeared before in the scientific literature. Although the results do not em-
brace all the possible variants of the spectrum this thesis contributes to a better

understanding of the spectrum for SLP with NBCs.

6 Structure of the dissertation and main results

Dissertation consists of introduction, four chapters, conclusions and bibliography.
In the first chapter we investigate SLP with integral NBC depending on three
parameters. The qualitative study of the Spectral Curves was done. We found
zeroes, poles, CE points and critical points. Classification of such points is done.
We numerically investigated and found the trajectories of different type critical
points in the Phase Space.

In the second chapter we investigate special cases of SLP with one nonlocal
integral boundary condition (u(1) = ~ fg t)dt, u(l) = ~v fg t)dt, u(l) =
v f . Some new properties of CF were found. We investigate how the
spectrum depends on NBCs parameters.

In the third chapter we analyzed dSLP corresponding to the problem in the
first chapter. NBC was approximated by trapezoidal rule. We investigate how
the spectrum depends on the number of grid points. The behavior of Spectrum
Curves in the neighbourhood of special points (¢ = 0, ¢ = n and ¢ = o0) was
analyzed.

In the fourth chapter we investigate special cases of dSLP with one inte-
gral boundary condition. The nonlocal boundary condition was approximated
by trapezoidal or Simpson’s rule. We investigate how the spectrum depends on
the number of grid points. Some properties, depending on approximation, were

obtained.

7 Dissemination of results

The results of this thesis were presented in the following international conferences:
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MMA2016, Tartu, Estonia, June 1-4, 2016;
“Spectrum curves of discrete Sturm—Liouville problem with integral condi-

tion”;

o KENUMATH2015, Ankara, Turkey, September 14-18, 2015;
“Eigenspectrum analysis of the Sturm-Liouville problem with nonlocal in-

tegral boundary condition”;

o MMA2015, Sigulda, Latvia, May 2629, 2015;
“Investigation of the spectrum for Sturm—Liouville problem with partial in-

tegral condition”;

o MMAZ2014, Druskininkai, Lithuania, May 26-29, 2014;
“Investigation of critical and bifurcation points for Sturm—Liouville problem

with integral boundary condition”;

o MMA2013, Tartu, Estonia, May 27-30, 2013;
“Investigation of spectrum for finite difference scheme with integral bound-

ary condition”;

o MMAZ2012, Tallinn, Estonia, June 6-9, 2012;

“Investigation Sturm—Liouville problems with integral boundary condition™;

o MMAZ2011, Sigulda, Latvia, May 25-28, 2011;

“Investigation Sturm-Liouville problems with integral boundary condition™;

e MMAZ2010, Druskininkai, Lithuania, May 24-27, 2010;
“Investigation Discrete Sturm-Liouville Problems with Nonlocal Boundary

Conditions”;
and other conferences

e LMD, Kaunas, Lithuania, June 16-17, 2015;
“Zeroes and poles of a characteristic function for Sturm—Liouville problem

with nonlocal integral condition”;

e LMD, Vilnius, Lithuania, June 26-27, 2014,
“The dynamics of Sturm-Liouville problem’s with integral BCs bifurcation

3 2,
points™;
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LMD, Vilnius, Lithuania, June 19-20, 2013;
“Investigation of the spectrum of the Sturm—Liouville problem with a non-

local integral condition”;

LMD, Vilnius, Lithuania, June 16-17, 2011;
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Chapter 1

Sturm—Liouville problem with a

nonlocal integral condition

In this chapter Sturm-Liouville Problem (SLP) is analyzed:
—u" =M, te€(0,1),
with one classical and another integral NBC:

&2
u(0) =0, u(l) = 'y/ u(t) dt,

&1
with parameters v € R and € € Sg := {(&1,&%) € (0,1)%,& < &} The cases € =
(0,1) and & = (1/4,3/4) were analyzed in [0, Ciupaila et al. 2004]. Such problem
has been investigated in [17, Peciulyté and Stikonas 2009], [43, Mikalauskaité 2011]
and some new results were obtained. It should be noted that in [13, Mikalauskaité
2011] complex eigenvalues are analyzed only for special cases of & with rational
components. These studies are extended in this thesis. The main aim of this thesis
is to investigate the influence of parameters v, &, & for the spectrum of SLP and
the behavior of the Critical points of Characteristic Function (CF). CF method
was described in [36, Stikonas and Stikoniené 2009] for problem with one Bitsadze-
Samarskii type NBC. Critical points of the CF are important for the study of
multiple eigenvalues. These points are connected with bifurcations points in Phase
Space Sg of parameter & = (&,£2). The limit cases (§ = (0,£) and £ = (£, 1),
¢ € [0,1]), were analyzed in these papers [13, Peciulyté et al. 2005], [77, Skucaité
et al. 2010] and also in Chapter 2. The special case & = (§,1—¢), £ € [0,1/2]), is
presented in [79, Skucaité and Stikonas 2013]. Real CF and Real Critical points

15
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were studied for problems with one two-points NBC [15, Petiulyté and Stikonas
2006]. Negative Critical points for problems with two-point or integral NBCs with
one parameter { were investigated in paper [19, Peciulyté et al. 2008], too.

In Section 1 the problem is formulated and some useful notations are intro-
duced. The classification of the special points (zeroes, poles and CE points) is
done in Section 2. The main results about the CF Critical points are presented
in Section 3. In Section 4 some remarks and conclusions are given. Certain parts

of this chapter are published in [30,81].

1 Formulation of the problem
Let us analyze the SLP:
—u’ =M, te(0,1), (1.1)
A € C, := C, with one classical BC:
u(0) =0, (1.2)
and another integral type NBC:

&2
u(1) :7/ u(t) dt (1.3)
&

with parameters v € R, £ = (£,&2) € Se.

For the case v = 0 (classical one) eigenvalues are well known:
Mo = (km)%, wi(t) = sin(knt), k€N,

Note that the same classical problem is obtained in the limit case & = &s.

If A = 0, then all the functions u(t) = Cug(t), where ug(t) := t, satisfy the
equation (1.1)-(1.2). By substituting this solution into NBC (1.3) we derive, that
the nontrivial solution (C # 0) exists if 1 = (&5 — £3)/2. So, eigenvalue A = 0
exists if and only if y = 2/(£3 — £2).

In the case X # 0 entire function u,(t) := sin(mwqt)/(mq) is defined. Functions
u(t) = Cu,(t) satisfy equation (1.1) with A\ = (mq)?, ¢ # 0, and BC (1.2). If
qeC,={¢g=24+weC:a2=0,y>0o0raz >0}, then a map A = (mq)? is

a bijection between C, and C, (see Figure 1.1 and [306, Stikonas and Stikoniené
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Fig. 1.1. Bijection between Cy and C,.

2009]). Note, that ¢ = 0 corresponds to A = 0 in this bijection and ug = (lli_r)r(l] uq(q).
Bijection A = (7¢)? is a conformal mapping, except the point ¢ = 0. The point
A = 0 is the first order branch point of the function A = A(q) = (mq)®. Real
eigenvalues correspond to R, = R UR} U ]R(q) CCpand Ry :={qeC,:z=
0,y >0}, Rf:={q € Cy:2 >0,y =0}, R):= {¢g = 0} correspond to negative,
positive, zero eigenvalues, respectively. If X is eigenvalue for SLP, then ¢ € C,

which corresponds to this A we call Eigenvalue point.

Remark 1.1. If bijection A = (mq)? is used instead of A = ¢?, then the spectrum

points coincide with N in the classical case vy =0, i.e. g =k € N.

A nontrivial solution of the problem (1.1)—(1.3) exists if ¢ is a root of the

equation: .
%0)2742%@Mt (1.4)
!
For NBC (1.3) two entire functions are introduced:
_ sin(mz)

2(2) = L Pe(z) = 28in(7rz(§1 +&)/2) sin(mz(& — 51)/2)

4 U4 4

(1.5)

Zeroes of these functions are important for the description of the spectrum. Zeroes
of the function Z(q), ¢ € C,, coincide with Eigenvalue points in the classical case

v = 0. The equality (1.4) can be rewritten in the form:

Z(q) =7Pela), q€C,. (1.6)

In Figure 1.2, the roots (not all) of this equation for v = —17,0,+17 in the case
&€ =(0.32,0.61) can be seen. Complex roots exist for v = —17, +17.
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1 1 1
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Fig. 1.2. A part of the spectrum for SLP (1.1)—(1.3), £ = (0.32,0.61).

We define the Constant Eigenvalue (CE) as the eigenvalue that does not de-
pend on parameter 7. For any CE A € C, there exists the Constant Eigenvalue
point (CE point) ¢ € C, and X = (7¢)? |36, Stikonas and Stikoniené 2009]. For

NBC (1.3) we can find CE points as solutions of the following system:

Z(q) =0, Pelq) =0,

i.e., CE point ¢ € N and P¢(c) = 0. The notation C or C¢ is used for the set of all
CE points. For a CE point, the set of y-values in C; x R is a vertical line.

If g Z N, ie. Z(q) # 0, and ¢ satisfies equation P¢(¢q) = 0, then the equality
(1.5) is not valid for all 7 and such point ¢ is a pole point. Notation of the pole

point is connected with meromorphic function:

_Z(2)
%e(z) = Pe(z)’

z e C. (1.7)

This function is obtained by expressing 7 from the equation (1.5). If the denom-
inator has a zero at z = p and the numerator does not, then the value of the
function will be infinite and we have a pole. If both parts have a zero at z = p,
then the multiplicities of these zeroes must be compared. For our problem all
zeroes 2z, = k € N, of function Z(z) are simple and positive if z € C,. It follows

that function P¢(2) = 2P¢(2) P(z), where:

Pé(z) = sin(mz(& + &) /2)/(72), Pg(z) =sin(mz(& — &1)/2)/(rz).  (1.8)

Zeroes of the functions Psl7 Pg in the domain C, are simple and positive, too.
So, zeroes of function P¢ can be simple or the second order. The restriction of the

meromorphic function v, on C, can be called Complex Characteristic Function
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(c) Projection Complex-Real CF into C,.

Fig. 1.3. Zeroes, poles, CE points for SLP (1.1)-(1.3), & = (8/21,20/21).

(Complex CF) [36, Stikonas and Stikoniené 2009]. We define the value of this

function at point p, P¢(p) = 0 as a limit .(p) := lim,—,, Z(q)/Pe(q). This limit is

finite 7.(p) = gé/((’; )) # 0 (removable singularity) if p € N is the first order zero of

function P¢ and the limit is infinite (function 7. has the first order pole) if p € N
is the second order zero of the function P¢ or p  N. For example, in Figure 1.3(a)
such points can be seen in the case & = (8/21,20/21).

All Nonconstant Eigenvalues (which depend on the parameter ) are y-points
of Complex-Real Characteristic Function (C-R CF or CF) [36, Stikonas and Stikoniené
2009]. In Figure 1.4(a) CF graph in the case & = (0.32,0.61) can be seen.
Complex-Real CF ~(q) is the restriction of the function ~.(¢q) on a set N7 :=
{q € C,: Imv.(q) = 0}. Real CF is the restriction of the Complex-Real CF ~(q)
on a set R, := {qg € C,: A\ = (mq)? € R} and describes only real eigenvalues.
One can see the Real CF graph in Figure 1.3(b) for & = (8/21,20/21) and in
Figure 1.4(c) for & = (0.32,0.61). The vertical solid lines correspond to the CE
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Y |
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|
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(a) Complex-Real CF (b) Spectrum Domain (c) Real CF

Fig. 1.4. CF for & = (0.32,0.61) and its projections.

points, vertical dashed lines cross the xz-axis at the points of poles. For some cases,
the vertical line of the CE point is coincident with the vertical asymptotic line at

the point of a pole.

Spectrum Domain is the set NV = N7 UC. The example of the Spectrum
Domain we can see in Figure 1.4(b). We also add the eigenvalue points (y =
—17,0,+17) from Figure 1.2 and pole points (7 = oo). Eigenvalue points for
~v € R exist only in this domain. Spectrum Domain is symmetric with respect to
the real axis for Req > 0. CF ~(q) describes the value of the parameter 7 at the
point ¢ € N7 (see Figure 1.4(a)) such that there exists the eigenvalue A\ = (mq)?2.
For each 7y € R the set N (7g) := 77! (70) is the set of all Nonconstant Eigenvalue
points. So, Spectrum Domain N' = U,epN () UC. For example, N (0) UC
corresponds to a spectrum of the classical case. If ¢ € N7 and v.(¢) # 0 (¢ is
not a Critical point of CF) then N(v) is smooth parametric curve N': R — C,
and arrow can be added on this curve. Arrows indicate the direction in which ~
is increasing. So, eigenvalue point is moving along this curve when parameter
is increasing. If v = 0 then the eigenvalue points are ¢ = z; = k € N. So, the
part of N(7) for this point can be enumerated by the classical case Ny (0) = z,
k € N. For every CE point ¢; = j we define N; = {¢;}, i.e. every such N; has
one point only (see Figure 1.3(c), Figure 1.4(b)). We call every Ny, k € N, a
Spectrum Curve. Spectrum Domain N is a countable union of Spectrum Curves
Nj. Different Spectrum Curves may have a common point. For example, CE
point may be on other N, or few Spectrum Curves that intersect at the Critical

point b, where /() = 0. For the v — +00 Spectrum Curve N () approaches a
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Fig. 1.5. Real CF and CE for different £ values.

pole point or a point ¢ = co. For the analysis of the Spectrum Curves we must

know zeroes, poles and CE point of CF.

2 Zeroes, poles and Constant Eigenvalues points

of the Characteristic Function

We use notation: § =&;/&, &4 =&+ &, - =6 —§&. & €Q, i = 1,2, then
we use a rule: & = m;/n;, m;,n; € N. The such rule we use for £ = & /& € Q:
E=m/n, m,n € N. If §,& € Q, then m = myng, n = many, ny = n_ = nyny,
M4 = MoNg + MNg, M_ = MaNy — M1Na.

All zeroes of the functions Z, Pél, Pg (see (1.5) and (1.8)) in C, are simple (of

the first order), real and positive:
2=k €N, p,ﬁz&k,keN, pz:ék,kEN. (2.1)

We denote the corresponding sets of points as Z, ?51, §€2‘ Then a set Z¢ =
Zg1 + Zg + 2512 describes all zeroes of the function Pe, where Zgl = ?51 ~ Zgl2 and
Zg = ?52 N 2512 are two families of the first order zeroes, ng = ?61 ﬂgg is family
of the second order zeroes.
Remark 1.2. If £ € Q then &,& € Qor &,& ¢ Q. If € & Q then & ¢ Q or
& € Q, or both &,& € Q .

For (real) CF we consider the following sets: a set of poles P := 7351 —1—7752 + P2,
where 7351 = Zgl ~ Z and 73£2 = Zg . Z are two families of the poles of the first



22 Chapter 1. SLP with a nonlocal integral condition

Table 1.1. Zeroes, poles and CE points of CF (special cases), m,l, mi, ma,n1,ne € N.

“4” means that the set above is nonempty, “—” means that the set above is empty.
Case Example Poles CE points Remarks
subcase €= (&,8) 7351 Pg 73612 cg Cg 0512 Z
£€Q,6,6¢Q,1>1:
£+ 11 (B8)  +++ ——— + p<pl?
¢=1l (B3) +-+ --- + p=pP
ELQ,l>1,m>2:

Eré- £ Q (3.9):(LF) ++- --- + <i?
GeQér#ALe¢Q (B2 44 4 4+ pl<d
EeQée#2,6¢Q (MFLEE) ++- —+- + p<d
& =36 ¢0Q (52.252) -+- +-- + =4
£ =2,6¢Q (2B=1,288) - - 4 4 =4

&1 =my/ni, & =ma/ng € Q
(a)—(d) p’f < c’f, k=1,2,12, p'f <pitk=1,2, (m)(q) n=ny =ng =mq +ma:

(a) (21> 51) +++ +++ + <P
(b) (39, 32) +++ —++ +d<cd=c?
(c) (%, 52) +++ +—+ +d<d=c
(d) (%, 2) ++ 4 ——+ +ed=c=c?
© R
pi <=
() (5:5) e S e T e
pi<cl <cl?
(8) (77) +-+ -+ 4 pi=pP
pl<cl=cl?
(h) (T 13) +-- +++ +pi=cd <
pi<c
() 35 4=+ 4=
pi<cl<cl?
(k) (5. 12) +- - —++ +p%:1c%<12c}2,
0) BH - -+ +s=d=d
(m) (157 10) —+— e+ o+ pl=d
w G c4- 4w+ al=d
p%<c%:c%2
(p) (5:3) - — - +++ + pl=d
cf <cf =pt
(a) (11 ——= o+t pl=d
pi =t

order, a set of the second order poles 73512 = 2512 \ Z; a set of the CE points
G =G + G2 +Cg?, where G = Z/ N Z and G =2 N Z are sets of the points
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with removable singularity, C'E12 = 2512 N Z is the set of the points with the first
order pole, too; a set of zeroes Z := Z~ C¢. To describe the points of these sets
we will use the following results.

Remark 1.3. The sets Pﬁl’ PEQ’ PL2, Cgl, Cg, Ci?, Z¢ points have form ¢, = ok,
k €N, a > 1, or can be empty. So, nonempty sets are described by the first point

(k =1). Since 1 < p} < p? < pi?, the set Z # @. We note, that 2 < p3, too.

Let a, b, c € Z.

Theorem 1.4 (Tensdonn 1978, [11]). If ged(a,b) =1 and [z, yo| is any solution
of equation:

ax + by 4+ c =0, (2.2)

then all solutions of this equation have a form:
x=ux9— bt Yy = Yo + at, tel.

Remark 1.5 (Teasdon 1978, [11]). Any solution [z, yo] of (2.2), ged(a,b) = 1,
can be found using Euclidean algorithm. We take ratio §. Let ¢; be the quotient
and 79 be a residual of a division a of b. Then a = ¢;b + ry, where ro < b. The
coefficient b can be written in the same form: b = qory + 73, 73 < 79, Where

go-quotient, rs-residual of a division b of 7. Then we get the sequence:

(
a = qb+ry, ro < b,
b = qors + 13, r3 < To,
Ty = Q373+ Ty, ry <713,
Tn—2 = (qn-1Tn—1+ Tn, Ty < Tp—1,
'n—1 = qnTn,

\

where 7,1 = 0. Using coefficients ¢, ..., ¢, we construct two new sequences of

numbers P, and @Q,:

By =1, Qo =0,
P =q, Q1 =1,
Py = Pigp + Py, (2 = Q1g2 + Qo,
Py = Paqz + Py, (3 = Qa2g3 + Q1

Pn = Pn—lQn + Pn—2> Qn = Qn—lC.In + Qn—2~



24 Chapter 1. SLP with a nonlocal integral condition

Then the pair of numbers (zg, yo) which are solutions of the equation ax+by+c =

0, is:
zo = (=1)""'eQp1, Yo = (=1)"cP1. (2.3)
Lemma 1.6. If a, 5 > 0, then the equation:
ak=pl, k,/leN, (2.4)

has solutions if and only if o/ € Q and all solutions have a form:

bt at

k=—— l=———, 2.
ged(a,b)’ ged(a,b)’ eN, (25)

where o/ = a/b, a,b € N.

Proof. If r = % ¢ Q, then rk = [. So, there is no such k,[ € N, that this equality
will be valid.

If § =4 € Q, then from equation (2.4) we have:
ak =bl, k,l€N. (2.6)

Then equation (2.6) can be rewritten in the following form:

ak bl
ged(a,b)  ged(a,b)’ kleN, (2.7)

where

“ b__ are coprime numbers. One solution for this equation
ged(a,b ged(a,b)

is (0,0). So, from the Theorem 1.4 (see, |11, Teandonm 1978|) follows, that all

) and

solutions of the equality (2.6) have a form:

bt at

k= ——— [=—  teN.
ged(a, b)’ ged(@b) ' C

O

Theorem 1.7. If £ € Q, then the second order zeroes for the function Pe(z) do

not exist, i.e. Z£12 =@. If£ € Q, then a set Z£12 describes the second order zeroes:
pi = 2n/(&dy)k = 2m/(&1dy)k, k €N, d, = ged(n —m,n +m). (2.8)

Proof. The second order pole appears if zeros from the first family p; = %k‘

consider with zeros from the second family p? = E%k, keN:
2

2
2= Zk LkeN 2.9
S (2:9)
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(a) € = (V/10,V3/2) ) E= (V5 GVR)
Fig. 1.6. Spectrum Curves for £ /6 =m/n € Q, &1,& € Q.

Equation (2.9) has solution if

6__252_51 :1—51/52:1—§:n—m€
& &L+& 1+&4/6 1+4E n+4+m

@@%EQ.

So, using Lemma 1.6 we conclude, that all solutions of equality (2.9) have form

n—l—mt n—m

l:
d d

t, teN,

where d = ged(n + m,n —m). Substituting solution to the equation (2.9) we
conclude, that the second order zeros of the function P¢(z) are defined by the
formula

1 2(m+n)t 2n 2m

]

The case &€ = m/n € Q, &,& ¢ Q. In this case &, £ ¢ Q. Consequently,
there exist no constant eigenvalues (G = @, (see Figure 1.6)). So, CF has two
families of the first order poles in 7751 and 7352 , respectively, and the second order
poles in P;? (see formulae (2.1)~(2.4) for calculation py, pi, p?, k € N). Note,
that P} = @ for { = (1 - 1)/(I+ 1), 1 <1 € N. In this special case p; = p;* (see
Figure 1.5(a) and Table 1.1).

The case & ¢ Q. In this case at least one number &, or £_ is irrational (and
at least one number &; or &, is irrational). If £, € Q and £ ¢ Q then CF has two

families of the first order poles 7351 and PEQ’ respectively, and 73'£12 =G =0.

Theorem 1.8. If £, € Q, then CEl #+ & and CE points exist:
C;{; = pr}n+/d1k = Zony/dik = 27’L+/d1k‘, ke N: dl = ng(Qn-i-a m-i-)' (211)

Proof. For the problem (1.1)—(1.3) all zeros are real and positive z; = [, [ € N
(see Figure 1.7(c),(e)). CE points from the set C' appear if poles from the first
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family p; = &k, k € N, coincide with zeroes:

2

Z k=1 kileN.

+

(2.12)

From proof of Lemma 1.6 we have, that if £, ¢ Q then (2.12) has no solutions.

& =L+a="10+72= 7:—++ € Q then formula (2.12) can be rewritten in the
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following form:

2n+ my
—k=—=I, k,leN. 2.13
dl dl ) ) G ( )

Then the solutions of the equation (2.13) are:

2n+
l=—t k=—t teN 2.14
dl ) dl Y e ( )

From equations (2.12) and (2.14) we conclude that first family CE points are:

o 2my _ 2n1ny S Mmany + mant _ 2n+t _ 2n1n2t tEN. (2.15)
g Many + Ming d; d; di S

]

Remark 1.9. If & + & # 2/1, 1 <1 € N then P£12 =, Cg = @ and C’,s12 = @, but
Pl # @ and G # @. In addition, if §; + & = 2/1 is not satisfied, then the set B

is empty, because p} = ci.
Theorem 1.10. If{_ € Q, then Cg £+ O:

e = pfn_/ko = Zon_jdok = 2n_/dok, k €N, dy =ged(2n_,m_). (2.16)
Proof. The proof follows from the proof of Theorem 1.8. O

CF has removable singularities in these CE points (there is one family of such

points) and the first order poles in the set 7751 + PEQ .

Remark 1.11. The set P} = @ for & = 2/m, 2 < m € N, because p{ = ¢f (see
Figure 1.5(b) and Table 1.1). The other sets of constant eigenvalue points (G,
G:?) and poles (B;?) are empty if & — & # 2/m (Figure 1.7(d)). If this condition
is not satisfied then, additionally, 7352 = & (see Figure 1.7(f)).

The case &1,& € Q. In this case the set Cg12 # & and there exist a few special
cases for other sets of poles and CE points. For example, if £ = (8/21,20/21),
then all sets 7751, Pg, PL2, Cg, Cg, C€12 and Z are not empty (see Figure 1.3); if
& = (6/17,15/17), then all sets are not empty, except G, GZ (C} = C} = C{* (see
Figure 1.9(a)). Further, if & = (4/11,10/11), then the sets B* = G = G =
and Pj* = C{? (Figure 1.9(b)). In the cases Figure 1.8 the set B # @ however
the set B = @. In the cases of Figure 1.8(a),(b) exist second order pole (there
Figure 1.8 B}? = @). The set G # @ for the § = (4/9,8/9), & = (5/12,11/12),
€ = (1/2,5/6) and the set G # @ for & = (5/12,11/12). The first family CE do
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not exist in the case Figure 1.8(a) and both sets Cg and Cg are empty for the case
Figure 1.8(b)—(f). For the fixed & values, when ny = ny = n and my + my = n
(see Figure 1.9(c)~(f): B} = @ and B;* = @. In contrast to the case shown in
Figure 1.9(e)~(f), when & = (1/10,9/10) and & = (1/7,6/7), then the set P is
not empty (see Figure 1.9(c)—(f)). For all examples in Figure 1.9(c)—(f), the set
Cg # @, but CE points depending on the second order pole family are obtained
only for examples in Figure 1.9(c),(e). For this instance, we can use expressions

(2.1)-(2.6) and get formulae for poles and CE points (k € N).

Theorem 1.12. If¢& € Q and & € Q, then the pole points of the sets Pg —1-77512 +
Cgl + ng, 7362 + 73512 + Cg + G2, 73512 + C€12 for the problem (1.1)—(1.3) are

2ninqk 2ninqk 2ninqk
P = N S , mw=———, kel
my m_ ged(m_,m)

Theorem 1.13. If & € Q and & € Q then the CE points ¢ and c; for the

problem (1.1)—(1.3) are equal to:

2ninak 9 2ninok

1 = —-—— = —-——
%= K ged(2nye,m_)’

k e N.
ged(2ny, my)’ €

CE points of the first family and the second family are points of the sets
1 12 2 12
C£ —{—C£ and Cg + C€ .
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Theorem 1.14. If & € Q and & € Q, then CFE points of the set ng for the
problem (1.1)—(1.3) are equal to:

2 k
cl2 = e . keN
ged(2ny, my,m_)

2ninok
ged(m—,m4 )’

2 =1 € N, then we get the point of the set 0512:

Proof. 1f the second order pole points p}? = k € N, coincide with zero

2 k
Yy kleN. (2.17)
ng<m+7 m*)

This equation can be rewritten in the other form:
2nek = ged(my,m_)l, k,l €N, (2.18)

For numbers 2ny and ged(m,m_) we can find the greatest common divisor
dz = ged(2n4, ged(my,m_)) = ged(2n4, my,m_) and then the equation (2.18)
we can rewrite in the other form:

Qnik ~ ged(my,m_)

l. kleN. 9.1
i i , kile (2.19)

Then by the Lemma 1.6 all solutions of the equation (2.17) have a form:

_ 2nat b — ged(my,m_)t

[ =
ds ’ ds ’

teN. (2.20)

From equations (2.17) and (2.20) we obtain that CE points of the set ng are

2nyt
c? = = , teN.
ng(Zn:b my, m*)

O

The set G* # @ for all §&. P = @ for p; = cf; P = @ for pf = p;® or pf = ¢f
or p? = ci% 79512 = & for pi?> = ¢j? or p} = ¢} or p? = ¢ Cg = @ for ¢f = 1%
G =@ for ¢f = ¢i*; G;* = @ for ¢f = cf (see Table 1.1).

Some information on the first or the second order poles can be presented as
contour lines of the functions (z—10)~! and (2—10)~2. Real CF in neighbourhood
of the first order pole are shown in Figure 1.10 and Figure 1.11. In this case there
are two Spectrum Curves N7 and N, on the real axis (see Figure 1.10(b)). In
the neighbourhood of the first order pole there exist only real eigenvalues (see

Figure 1.12). The Spectrum Curves N;, N3 and the CF in neighbourhood of the

second order poles are presented in Figure 1.11(b) and Figure 1.13.
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Fig. 1.12. Real CF.

A neighbourhood  of Fig. 1.13. A neighbourhood of the second order pole.
the first order pole.

We have two families Cg and Cg of CE points (these eigenvalues do not exist if
£1,6 € Q, but £ € Q). The dependence of CE points on NBC parameters £; and
&, are presented in Phase Space S¢ (see Figure 1.14). The CE points of the first
family C‘ﬁ1 are on the lines & + & = 2k/l, | € N~ {1}, which are perpendicular to
the line & = & (see Figure 1.14(a)). The CE points of the second family Cg are on
the lines & — & = 2k/l, | € N\ {1, 2}, which are parallel to the line & = &; (see
Figure 1.14(b)). Notation I* or I} near the line shows that the CE point is cf =1
or ¢ = [, accordingly. The intersection points of the CE lines from the different
families with the same number [ give the set C£12 (see Figure 1.14(c)). We have
the first order pole pj or p? in the lines & + & = 27 /p} or & — & = 27/p?, too.
The double pole is in the line & = n/m - & (see Figure 1.14(c), m = 1, n = 3).
We analyze two points in Phase Space S: A = (1/6,5/6) and B = (1/4,3/4).
The point A corresponds to the situation without poles (pl = cl, p? = ¢, see
Table 1.1 and Figure 1.5(c)), point B corresponds to the situation with first order
pole in CE point. If £ is moving across line (A, Ay) or (A, A3) then at the CE
point the complex part of Spectrum Curve is arising or disappearing in C, (see

Figure 1.14(d)). In this case the complex part of the Spectrum Curve is between
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Fig. 1.14. CE points (¢, = mk, k = 1,...,5) in Phase Space S¢ and Spectrum Curves
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two Critical points. We have the same situation near point B (see Figure 1.14(e),
By — By — Bs). At the point Bjs two first order poles create the second order
pole and the complex part of the Spectrum Curve is between the Critical point
and this pole. All complex parts of the Spectrum Curve are disappearing in the

point B.

3 Critical points

If v.(b) = 0, b € C, then we have a Critical point b of the Complex CF, and
value 7.(b) is a critical value of the Complex CF [46, Peciulyté and Stikonas
2007], [19, Peciulyté et al. 2008]. Critical points of the Complex CF are saddle

points of this function. For Real CF Critical points can be a half-saddle points
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(a) Real CF (b) Spectrum Curves (c) 3D view

Fig. 1.15. The first order Real Critical point, & = (0.2,0.75).

(for example, such point is branch point ¢ = 0), or maximum, minimum points or
inflection (saddle) points. If the function . at the Critical point b € C, satisfies
7.(b) = 0,...,4%(b) =0, fyékﬂ)(b) # 0, then b is called the k-order Critical point.
At this point Spectrum Curves change direction and the angle between the old
and the new direction is 75. We use “right hand rule”. So, the Spectrum Curve
turns to the right.

The index of Critical point is formed of the indices of the Spectrum Curves,
which is not a constant eigenvalue point, intersecting in this Critical point. The
index of Complex (the first order) Critical point b € C, \ R, is formed by indexes
of two Spectral Curves intersecting in this Critical point and the first index is
always smaller. If the Critical point is real, then the left index coincide with the
index of Spectral Curve, which is defined by the smaller real A\ values, and the
right index is defined by greater A\ values. We put the indexes of other Spectrum

Curves in the accending order between left and right indices (see Figure 1.16(b)-

Figure 1.19(b)).

Remark 1.15. A point ¢ = 0 is the first order Critical point in the domain C,,
but A = 0 is not Critical point in C,, because ¢ is a branch point of A = A(q).
The order of a Critical point at branching point is not invariant. Therefore, we

investigate these points separately.

3.1 The first order Critical points

For SLP (1.1)—(1.3) there exist two types of the first order Critical points. The

first type Critical point appears for R, = R;URY. In this case, multiple eigenvalue
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Fig. 1.16. a) The trajectory of the first order Complex Critical point in Phase Space.

C = (0.39893,0.73649...); b)-c) Spectrum Curves ir the neighbourhood of the first
order Complex Critical point C.

is real (usually double or triple, where the Critical point coincide with CE point).
The first order Real Critical point b € f&q, can be find from the following equation
(for fixed & and &):

V' (b:€) = 0. (3.1)

CF in the neighbourhood of the first order Real Critical point is presented in

Figure 1.15. Real Critical point of CF exists in the typical situations : 1) between

two zeroes do not exist pole, 2) between two poles do not exist zero. For SLP
(1.1)—(1.3) all the first order Real Critical points are positive.

The first order Complex Critical point b = x 41y € C, N\ R, can be calculated

solving the system of equations:

Imvy(b;§) =0,  Re?/(b;€)=0,  Imy'(h;§) =0. (3:2)

Spectrum Curves in C, \ R, are symmetrical with respect to z-axis and we have
pair conjugate Complex Critical points always. The solution of system (3.2) is a
trajectory in Phase Space S¢. Two trajectories of the such Complex Critical points
are presented in Figure 1.16(a). The Spectrum Curves for & = (0.39893, 0.73649...)
with Complex Critical point is presented in Figure 1.16(b). Every point of the
trajectory in S has similar Spectrum Curves in the neighbourhood of a Critical
point. If Phase Point moves across this trajectory, then the view of the Spectrum
Curves are qualitative different (see Figure 1.16(a),(c), points A and B). In this
example (see Figure 1.16(b), point C') we have both cases of the first order Critical
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Fig. 1.18. a) The trajectory of the second order Critical point C =

(0.11625,0.616239 ...), A = (0.11625,0.616238...), B = (0.11625,0.616240...), C; =
(0.15454 ...,0.64970...), Co = (0.07331...,0.57495...); b)-c) Spectrum Curves ir the
neighbourhood of the second order Critical point C.

points: by, bsg, bsr are Real Critical points and bs¢, bs7 are pair Complex
Critical points. The gap between two trajectories in Sg¢ (points C; and C3) will
be explained further (see Figure 1.16(a)).

3.2 The second order and the third order Critical points

The second order Critical point appears when two the first order Real Critical

points coincide in the same point b. Second order Critical point b € R, can be
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neighbourhood of the third order Critical point Cf.

found from the following equation:

Y(b;6) =0,  A'(b;€)=0.

For SLP (1.1)—(1.3) all the second order Real Critical points are positive. Two
trajectories of such the second order Critical points in Phase Space are shown in
Figure 1.17(a) and Figure 1.18(a). In the Figure 1.17(b) and Figure 1.18(b) Spec-
trum Curves are presented in the point C' which is on corresponding trajectory of
the second order Critical point and in Figure 1.17(¢) and Figure 1.18(c) Spectrum
Curves in the Phase Points A and B near this trajectory can be seen. Points b4 5
and by 3 5 in Figure 1.17(b) and Figure 1.18(b) are the second order Critical points.
Points C; and Cy in Figure 1.18(a) are the same as in Figure 1.16(a). So, the gap
between Phase Points € and (5 is the part of the second order Critical point
trajectory (see Figure 1.18(a)).

Numerical calculations show that such gaps exist for & + & S 1 (see Fig-
ure 1.16(a), Figure 1.18(a), Figure 1.19(a)). The gap boundary points C; and Cy

are the third order Critical points b € Iéq and they can be found from the system:

Y (0;€) =0, A'(b:;6) =0, A"(b:€) =0.

The views of Spectrum Curves in point C'; and in the neighbourhood of this third
order Critical point b3 254 are presented in Figure 1.19(b)—(c). At this point the
trajectory of the second order Critical point changes direction and the pair of the

first order Complex Critical points become real (y = 0 and positive).
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Fig. 1.20. The trajectories of the third order and the second order Critical points
and Spectrum Curves, A = (0.3526...,0.8560...), B = (0,3600...,0.8601...), C =
(0.4491...,0.8771...), D = (0.3660...,0.8660...), £ = (0.3603...,0.8603...).

If & + & 2 1 (see Figure 1.17(a), Figure 1.20(a)) then the trajectory of the
second order Critical point is “smooth” curve. This trajectory intersects with
the first order Complex Critical point trajectory without the third order Critical
points, i.e. the pair of the Complex Critical points do not reach the real axis.
Typical Spectrum Curves are presented in Figure 1.20(c).

The general behaviour of the second and the third order trajectories of Phase
Space is more complicated. For small = three trajectories are shown in Fig-
ure 1.20(b). The second order trajectories leave points & = (1/3,1/3), (1/2,1/2),
(2/3,2/3) for x = 3,2, 3, accordingly. All these trajectories approach Phase Point
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& = (0,1). There is not the second order Critical point for integral NBC with
& =1 or & = 0. Trajectories of the first order Complex Critical points start at
points & = (0,b) and move towards a point which corresponds to the third order

Critical point and after “gap” these trajectories approach Phase Point & = (1,1).

Spectrum Curves at the point ¢ = 0. Taylor series for v(q) at the point
q=01is

2 2-g-g,
— O ) 3.3
e gg ¢ oW (33)

v(q) = ¢

Multiplier of ¢? is always negative. At this point Spectrum Curve N; turn or-
thogonal to the right, so, the point ¢ = 0 is the first order Critical point in C,. A
point A = 0 is not Critical one in the complex plane C, because A = 0 is a branch

point of a mapping A\ = A(q).

4 Conclusions

In this chapter the spectrum for SLP with integral NBC depending on three
parameters was analyzed.

Qualitative view of the Spectrum Curves with respect to parameters & and
& in integral BC, the location of the zeroes, poles of the CF and CE points were
investigated. We found all such points in the case SLP (1.1)—(1.3). One of our
results is the classification of poles and zero points. The dependence of zeros and
poles on the integral BC parameters & and & was analyzed. CE non-existence
condition (sets G, GZ and C;* are empty) is £1/& € Q, &, & & Q. If the following
condition & /& ¢ Q is satisfied, then 73512 = & and C,S12 = @. For all & and &
satisfying condition &;,&, € @, the set G;? is not empty.

Critical points of CF are important for numerically analysis of complex eigen-
values and Spectrum Curves in the complex plane. We found trajectories of the
first order Complex Critical points and the second order (real) Critical points. In
this chapter we described how Spectrum Curves depends on parameters & and
€. We analyzed the first order Real and Complex Critical points, trajectories of
the first order Complex Critical points and the second order Critical points in the

Phase Space &, find location of the third order Critical points.
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Investigation of the Spectrum Curves gives useful information about the spec-

trum for problems with NBC.



Chapter 2

Sturm—Liouville problem with

integral NBC (special cases)

In this chapter, SLP for equation —u” = Au with two cases of integral NBC
is analyzed. We investigate how the eigenvalues of these problems depend on
two parameters v and ¢ in the integral NBC. As the theoretical investigation of
the complex spectrum is a difficult problem, we present the results of modelling
and computational analysis and illustrate the existing situation in graphs. In
Section 1, we formulate the SLP with clasical BC (u(0) = 0 or «/(0) = 0) and
integral NBC:

1 3
u(l)zy/u(t) dt or u(l)zy/u(t) dr.
3 0

Also, in Section 1, we present the earlier gathered results on CF, zeroes, poles, CE
and Critical points in all cases 18,19, Peciulyté et al. 2005, 2008|. In Section 2 a
short review of real eigenvalues properties of the analyzed problems is given. These
results are discussed in the previous papers [18,19, Peciulyteé et al. 2005, 2008], [33,
Stikonas 2007] and they are useful for investigating complex eigenvalues. The
behaviour of Spectrum Curves in the complex part of the spectrum is presented
in Section 3.

The Section 4 presents some new results on the spectrum for the second order

differential problem with symmetric interval in the integral
1-¢
u(l) = 7/ u(t) dt.
£

39
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We investigate how the spectrum of this problem depends on the integral NBC
parameters 7, £ in this symmetric case. Some special conclusions are given on
the complex spectra of this problem in Section 4.1. Some results are presented as
graphs of Real and Complex CF. Similar problem for & = (0,1) and & = (1/4,3/4)
were discussed in [0, Ciupaila et al. 2004]. Certain parts of this chapter are

published in [76,77,79].

Remark 2.1. In Chapter 1: £ = & /&. In this chapter, we use notation ¢ instead
of & and &: & = (0,€), € = (§,1), &€ = (£,1 = ¢&). If € € Q, then we use rule:

¢ =m/n, m,n € N, and m,n are coprime numbers, i.e., gcd(n,m) = 1.

1 Sturm—Liouville problem with integral type
NBC

Let us consider a SLP with one classical BC:

—u" = Xu, te€(0,1), (1.1)

u(t) dt  (Case 1), (1.31)

u(t) dt  (Case 2), (1.39)

with parameters v € R and £ € [0, 1]. Also the SLP (1.1) with the BC is analyzed:
W(0) =0 (1.4)

on the left side, and with integral NBC (1.3) on the right side of the interval. We
enumerate these cases from Case 1’ to Case 2'.

In Case 1, 1’ for £ = 0 and Case 2, 2/ for £ = 1 we have the same integral
NBC. In the general case, the eigenvalues A € C and eigenfunctions u(t) are the

complex functions. For 7 = oo, we get NBC:
£

1
/u(t) dt=0 0<¢<l, /u(t) dt=0, 0<&<l. (1512)
13 0
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Note that the index in the number of a formula (for example in formula (1.3))
denotes the case. If there is no index, then the rule (or results) holds on in all the
cases of NBCs. If we write two indexes in the number of formulae, as in (1.5), then
the first part of this formula is related to Case 1 and the second part is related to

Case 2. If we write one index, then the formula is related to one case.

Remark 2.2 (classical case). If vy =0 or £ =1 in problem (1.1), (1.2), (1.3;) or
problem (1.1), (1.4), (1.3;) and v = 0 or £ = 0 in problem (1.1),(1.2), (1.35) or
problem (1.1), (1.4), (1.35), we have the SLP with the classical BCs and in this

case eigenvalues and eigenfunctions are well known:

M = (km)?,  ug(t) = sin(kmt), keN, (1.612)

2
A = (k: — %) 7, u(t) = cos ((k - %)m), k e N. (1.61/ %)

If A = 0, then the function u(t) = ct satisfies problem (1.1)—(1.2) and the
function u(t) = c satisfies problem (1.1), (1.4). By substituting these solutions

into NBCs, we derive that there exists a nontrivial solution (¢ # 0) if:

1— 2 2
1—7~ 25 =0, 1—7%20, (1.712)
1-=9(1-¢=0, 1-9{=0. (1.712)

2

y=— (1.812)
1
T=1"g N = (1.8172)

In general, if A # 0 and eigenvalues A\ = (7¢)?, then the solution of problem
(1.1)—~(1.2) is u = csin(mqt) and the solution of problem (1.1), (1.4) is u(t) =
cos(mqt). In both cases (¢ = 0 and ¢ # 0), we can write one formula for the
nontrivial solutions u = csin(mwqt)/(mq) = csinh(—wrqt)/(mq) of BC (1.2) and
u = ccos(mqt) = ccosh(—wmgt) of BC (1.4), where ¢ € C,,.

Let us return to the problems (1.1)—(1.3) and (1.1), (1.3), (1.4). If A # 0, the

NBC is satisfied and there exists a nontrivial solution (eigenfunction) if ¢ € C,:=
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C, ~ {0} is the root of the equation:
sin((1 +&)mg/2)sin((1 — §)mg/2)  sin(mq) _

fla) =2y o o0 09

o sin?(¢émq/2) B sin(mq)
flq) =2y ()2 o 0, (1.92)
f(Q) = QVCOS((l + g)WQ/27>T(S]1n((1 B é)ﬂ-Q/2) . COS(7T(]) _ 0’ (191/>
f(q) = 7%&;@) — cos(mq) = 0. (1.99/)
CE were analyzed in papers [18,19, Peciulyté et al. 2005, 2008]. CE points,

we get as a roots of the system:

( (

Z(q):=sin(mq) = 0, Z(q):=sin(mq) = 0, (1.10,2)
| Pela)i= cos(ena) —costm) =0, | Aela)i=1 — con(eng) =0,

Z(q):= cos(mq) = 0, Z(q):= cos(mq) =0, (11012)
| Pe(q):= sin(mq) — sin(§mq) = 0, | Pe(q):= sin(§mq) = 0.

CEs exist only for rational £ = m/n € (0,1), m,n € N, and those eigenvalues are
equal to A\, = (mcy)?, k € N, where CE points ¢, are given by formulae shown in

Table 2.1. C is the set of all CE points (as in Chapter 1).

Table 2.1. CE points ¢, k € N.

Case n—-—meN, n—méeN, m € Ng m € N,
Case 1 nk 2nk

Case 1! n(k—1/2) 2n(k—1/2)

Case 2 nk 2nk
Case 2/ n(k—1/2) 2n(k—1/2)

All nonconstant eigenvalues are y-points of the meromorphic Complex CF:

10) = ey e~ T T O ey )
) = 17T_q§2(<§)q> - 2;?11121(2:;(1/)2)’ (1.112)
10) = ey st ~ T e T g )
) o= A, (1115)

So, we can find the eigenvalues A = (7¢)? in two ways: as CEs from (1.10) (only

for rational £); as nonconstant eigenvalues, using CF (1.11).
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For the investigation of CEs as well as for the analysis of complex eigenvalues,

zero and pole points of the CF are important.

Lemma 2.4. Zero points of the function Z are of the first order. These positive

zeroes are equal to:
26 =k, keN, (1.124 )
Zp = (k — ]_/2), k € N. (1.121/72/)
Lemma 2.5. Points p;> = 2k/&,k € N, are the second order zeroes of function

P¢ in Case 2 and there are not the first order zeroes in this case. In Cases 1, 1/,

2" all zeroes of function P¢ belong to one of the families of the first order zeroes:

2k 21
p,lg = ]_——|—§’ k S N, and pIQ = ]_——6’ l € N, (1131)
2k —1/2) 21
1 = 2 = — 11 /
Pr 1_'_§ ) kENa and b 1_57 ZGN, ( 31)
k
Py = 3 k € N. (1.13)

If ¢ € Q, then CFE points do not exist, and point p;*, k € N, in Case 2 are the
second order pole points, p, k € 1, p?,1 € N, are the first order poles of CF.

Proof. Formulae for zeroes of P¢ points we get as zeroes of denominators in frac-
tions (1.11). It is obvious, that zeros of P in Case 2 are of the second order only.
If £ ¢ Q, then (1+&)/(1—¢) € Q. So, the second order zeroes of P; do not exist
in the Case 1 and Case 1. If £ ¢ Q, then all points p ¢ Q, where p = p}, p?,
k,l € N and CE points do not exist. So, all zeros of P are poles of CF. O]

In remaining part of this section we present result for £ € Q, £ = m/n and
ged(n,m) =1, n,m € N. If £ =0, then n = 1, m = 0. For sets of zeros, poles,
CE points we use the same notation as in Chapter 1, with agreement ?g = in

the Case 2" and ¢ instead of &.

Case 1. Theorems 1.12, 1.13, 1.14 (Chapter 1) are valid with & = £ = m/n,

m<n,&=1=1/1,ny =n_=n,my =n+m, m_=n—m.

Lemma 2.6. If { € Q, then in Case 1 points ¢; = j € N, n—m € N, or
q¢; = J € Nop, n—m € Ny, are the first order poles of CF and CE points. Other

P: zeroes are the second order poles of CF.
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Proof. If n+m € Ng, then n — m € N, too, and d = ged(n + m,n —m) = 2.

From Theorem 1.12 we get
p2=nt, teN, (1.14)
If n4+m € N,, then n —m € N, too, and ged(n + m,n —m) = 1. So, we have:
pi?=2nt, teN. (1.15)

These points are zeroes of the function Z(q) as well, therefore they are CE point,
too. Thus, in Case 1 all the points p}, k € Ny, or p?, | € Ny,, are poles of the
first order. [

Case 2. Theorems 1.12, 1.13, 1.14 (Chapter 1) are valid with & = £ = m/n,
m>0,§=0=0/1,n, =n_=mn,my =m, m_=m.

Points p;> = k/m, k € Ny,, are poles of the second order, except the case
k € Ny, m € N, and k € Ny,,,,, m € N,. In this case, we have the first order

pole at CE point. There are no poles of the second order for m = 1 and m = 2.

Case 1'.

Lemma 2.7. If £ € Q, (n —m)/ged(n +m,n —m) € N, n,m € N,, then in
Case 1' points p; = 2n(k — 1/2)/(n +m), k € N, coincide with points from the

second family p? = 2nl/(n —m), | € N, at the points:

12 _ o n-m t4 _ ¢ 1.1
P 7l<ngOL+7nﬂl—ﬂn) o) [n=m) e (1.16)

where (ko,ly) are any solution of the equation:

n—m n-—+m n—m

k— [ — =0, k,leN
ged(n+m,n—m)  ged(n+m,n—m) 2ged(n+m,n—m) &

such that —% <1y <0.

ged(n+m,n—m

Proof. 1f a point from the first family p; = 2n(k—1/2)/(n+m), k € N, coincides
with a point from the second family p? = 2nl/(n —m), | € N, then

n(2k—1): 2nl kleN

n+m n—m

or

(2k—1)(n—m)=2l(n+m), k,leN. (1.17)
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From equality (1.17) we obtain that n — m € N, i.e., n,m € N,. The equation

(1.17) can be rewritten in another form:

n—m

(n—m)k — (n+m)l — =0. (1.18)

For numbers n —m € N, and n +m € N, we find d = ged(n — m,n+m) > 2.
Then n — m = da, n+ m = db, where ged(a,b) =1, 0 < a,b € N. So, we have

equation
a
ak—bl—§:0, k,l € N. (1.19)

If @ ¢ N, then the equation (1.19) has no solution for k,I € N. If a € N, then
b € N, and from Theorem 1.4 in Chapter 1 we obtain that for equation (1.19)

exist solutions and all solutions have a form:
k = ko + bt, l=1ly+at, teN, (120)

where (ko, lo) is any solution of the equation (1.19). For fixed £ value we always
can find (ko,lp), but we select only such (ko,lo) that —a < lp < 0. Then the

second order zeroes point are defined by the formula:

2n 2nl
12 0
= —t+ , teN. 1.21
P d n—m ( )

O

Example 2.8. £ =1/3. Thenm,n € N,, d = ged(n—m,n+m) = ged(2,4) = 2,
(n—m)/d=2/2=1¢&N, and the equation (1.19) is

1
k=2l-5=0,  kleN. (1.22)

This equation has no solution for k,l € N.
§=1/5, m,ne€N,. Then d = gced(4,6) =2 and (n —m)/d =4/2 =2 € N,.

The equation
ak—bl—g:2k—3l—1:0, k€N (1.23)

has solutions and one of the solution is the point [—1,—1]. So, another solution

has a form k = —143t and | = —1 4 2t, t € N. Finally, for ¢ =m/n=1/5

5(2t —1
pi2:¥, t e N.
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Lemma 2.9. If ¢ = m/n € Q, and (n —m)/ged(2n,n +m) € N., n,m € N,,
then in Case 1' the points p), = 2n(k —1/2)/(n+m), k € N, coincide with zeroes
points zp =1—1/2, 1 € N, and we have CE points

2nt 1
1
=1 - -, teN, 1.24
G =lot ged(2n,n+m) 2 (124)
where (ko, ly) is any solution of the equation
2n n—+m n—m

l— k— =0, k/leN
ged(2n,n+m)  ged(2n,n 4+ m) 2gcd(2n,n+m) <

such that —ﬁ <lp—1/2<0.

2n,n+m
Proof. CE points of the first family appear if point of the first family p} = 2(k —
1/2)/(1+¢&), k € N, coincides with zero z, =1—1/2, 1 € N, i.e.:

2n(k —1/2)

—1-1/2, kileN,
n-+m

2n(2k—1)=(n+m)(2l—-1), k,leN. (1.25)

From the equation above we have that this equality is valid if n +m € N, i.e.,
n,m € N,. This equation can be rewritten in the other form:

2nk—(n+m)l—n—2m:0, k,l €N,

or

ak—bz—“;b:o, kleN, (1.26)

where a = 2n/ged(2n,n +m), b = (n+m)/ ged(2n,n+m). If a — b ¢ N, then
the equation (1.26) has no solution for k,1 € N. Otherwise, all solutions of the

equation (1.26) have a form:
k=ko+0t, Il=Il+at, teN, (1.27)

where (ko, lo) is any solution of the equation (1.19) (see Theorem 1.4 in Chapter 1).
For SLP (1.1), (1.4), (1.31) all poles and zeros are positive, so we choose (ko, lo)
only such that 1/2 —a < Iy < 1/2. Then the formula:

2n ; 1
ged(2n,n+m) 2’

C%IZO—F teN,

describe the CE points (the first family). O
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Fig. 2.1. Real CF v(z) for various ¢ in Case 1.
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Fig. 2.2. Real CF ~(z) in the neighborhood of the CE point in Case 1.

Lemma 2.10. If{ = m/n € Q, and (n —m)/ged(2n,n —m) € N, n,m € N,,
then in Case ' the points p; = 2k/(n—m), k € N, coincide with points z; = [—1/2,
l € N, at the CE points points

2nt 1
2
— =, teN, 1.28
G =lt ged(2n,n —m) 2 (1.28)

where (ko, ly) is any solution of the equation

2n n—m n—m _ 0. kleN
ged(2n,n —m)  ged(2n,n —m) 2gcd(2n,n —m) ’
2n
such that —m < l() - 1/2 < 0.
Proof. The proof is analogous as proof of Lemma 2.9. [

Case 2'. Points p;, = k/m, k € N,,, are CE points if m € N, n € N,, otherwise

points pj. are the first order poles.
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Fig. 2.3. Real CF ~(x) for various ¢ in Case 2.

2 Real eigenvalues of the Sturm—Liouville

problem

We have Real CF if ¢ € Ry := Ry URJURS. R, == {q = w,y > 0} = {¢ =
—wz,x < 0} and we use argument = € R for Real CF. So, in this case, for CF
(1.11) the Real CF are:

( 7 sinh(7z)

() = | 2sinh((1 + {:;:Zj()j;h((l — & /2) 2.1,)
[ 2sin((1 + &)7ma/2) sin((1 — &§)mx/2)
7 sinh(7rz)
2sinh?(¢rx/2)’
7 sin(mx)

[ 2sin?(émx/2)’

(

8
WV
o

= )

mx cosh(mz)
() = 2 cosh((1+ 2::;/)5();;}]((1 — & /2)’ (2.1,)
L 2cos((1 + &)mx/2)sin((1 — &)mx/2)
(7 cosh(mz) £ <0
sinh(érx) © 7 T 7

(@)= 7x cos(m) ©>0. (2.12)

[ sin(érzx) ’

Those functions are useful for the investigation of real negative, zero, and
positive eigenvalues. The graphs of these Real CF for some parameter £ values are

presented in Figure 2.1, Figure 2.2, Figure 2.3 and Figure 2.7. More properties of
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the Real CF and real spectrum for same cases are investigated in [18,19, Pe¢iulyté

et al. 2005, 2008].

2.1 The spectra in Cases 1, 1’

The spectra for problems (1.1), (1.2), (1.3;) and (1.1), (1.4), (1.3;) lie on the real
axis as shown in papers [18,19, Peciulyteé et al. 2005, 2008|.

The function ~(z) is a monotone decreasing function in each interval (a, f),
where o and (3 are the points of the first order poles. Real CF for £ = 2/3, 1/3,
1/2 we can see in Figure 2.1. For example, if £ = £, = 1/3, then 2 = 3 is the first
order pole for CF and CE point. If we take £ < &, or & > &, then we have two
first order poles near zero point x = 3. Such a situation is shown in Figure 2.2.
We have the same situation with the spectrum in Case 1. So, if the poles p} and
p? move toward the zero point z3, then a part of the graph of the CF, that was
in (p?, p}), becomes a vertical line, i.e., we have a CE point c}? = p} = p? = 23 for
£ =¢&.. For £ > £, we have the interval (p}, p?), i.e., the poles change places with

each other.

3 Complex eigenvalues of the Sturm—Liouville

problem

In the recent scientific literature there are many papers, in which real eigenvalues
of the SLP are analyzed. However, a complex spectrum of this problem is con-
siderably less investigated (¢, Sapagovas and Stikonas 2005], 26, Stikonas and
Stikoniené 2009).

It is important to investigate complex eigenvalues of the SLPs (1.1)—(1.3) and
(1.1), (1.4), (1.3) with v € R. The poles of the function y(q) are eigenvalues of the
problems (1.1)—(1.3) and (1.1), (1.4), (1.3) in the case v = co. All zeros and poles
of the meromorphic function 7(g) are on the positive part of the real axis. From
(1.11) and from the properties of sine and cosine functions we obtain that all zeros
of this function are real numbers ¢ = k € Nin Cases 1,2 and ¢ = (k—1/2),k € N

in Cases 1',2". So, only positive zeroes and poles exist in R} C C,.
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Fig. 2.4. Spectrum Curves for various £ in Case 2.
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Fig. 2.5. Spectrum Curves for various £ in Case 2.

3.1 Dynamics of Spectrum Curves in Case 2

In this case, the spectrum of complex eigenvalues is more complicated. By chang-
ing the value of the parameter £ we get various types of the Spectrum Domain N

and Spectrum Curves.

A qualitative view of dependence of Spectrum Curves on the parameter £ can
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Fig. 2.7. Real CF 7(z) for various ¢ in Case 2'.

be seen in Figure 2.4. In Case 2, there are two types of bifurcation. The first
type consists of bifurcation where two different complex curves join at the first
order Complex Critical point. We get the second type by changing the value of
the parameter £, so that zero and second order pole points of the CF become
coincident with the Critical points (in which CEs exist) and the loop type curves

disappear.
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Fig. 2.8. Spectrum Curves for various £ in Case 2'.

(c) € =0.41

Fig. 2.9. Complex-Real CF 7(q) for various ¢ in Case 2'.

Figure 2.5 shows how the Spectrum Curves are changing depending on the
parameter ¢ value near to & = 0.43963... (we call it the first order Complex
Critical point in the complex part of C,;) and {. (CE point) points. There the
Spectrum Curves make a loop. In this example, the value of £ is increasing from
0.437 to 0.53. When & < &, Spectrum Curves N3 and N5 (or Ny and Ng) become

close, and when & = &, those different Spectrum Curves join each other at the
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Critical point b35 (and bsg) (see Figure 2.5(a)—(c)). Next, when & 2 &, the
loop type curve is on the left side. The order of the poles does not change in
this bifurcation. Zero is inside the loop. As £ € (&;&.), the loop tightens and
intersects the real axis at the second order pole and Critical points. When zero
and pole consist with the Critical point, we have CE point. At ¢ = &, bifurcation

is “symmetrical”. We can see 3D view of Complex-Real CF in Figure 2.6.

3.2 Dynamics of Spectrum Curves in Case 2’

The complex spectrum in Case 2’ is also quite complicated for same parameters
¢ values. In this case, index of Spectrum Curve N}, corresponds to classical case,
ie,q=k—1/2 € N.

In Figure 2.8 it is shown how the spectrum of complex eigenvalues is approach-
ing to the constant eigenvalue point .. If £ < & = 2/5, the pole moves toward
zero from right side and the first order Critical point moves toward zero from the
left. When the pole is approaching to zero, the Spectrum Curves N, and N3 bend
(make a loop) and intersect in the second order Critical point b3 o4 when £ = &,.
If ¢ is growing, then the pole moves to the left and the second order Critical point
b3 2.4 is divided into two first order Critical points b3 and b 4 (loop type complex
curve retire from the other complex curve). Loop type complex curve consist of
two Spectrum Curves (N2 and Nj3) and two first order Critical points (by3 and
bs o). Inside this loop exists first order pole and zero. If the £ value is increasing
from 0.3999 to 0.4, the loop is shrinking and when £ = £. = 0.4, pole, zero and
two first order Critical point meet, we have a CE point. If £ is growing, the pole
moves to the left from zero point. We can see 3D view of Complex-Real CF in

Figure 2.9, too.

4 Sturm-Liouville problem with symmetric
interval in the integral

Let us consider the SLP with one classical BC:

—u”" = Au, uw(0) =0 te(0,1), (4.1)
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Fig. 2.11. Spectrum Curves for problem (4.1)—(4.2).

and other integral NBC:

1-¢
u(l) = /E u(t)dt, (4.2)

with the parameters v € Rand £ € (0,1/2). If vy =0 or £ = 1/2, then we obtain a
problem with the classical BC. The case £ = 0 we analyse in the previous section.

We get the eigenvalue A = 0 of problem (4.1)—(4.2) if and only if v = 1%25
Solutions of problem (4.1) are u = csin(wqt)/(7wq), ¢ € C,. Substituting this

solution into the second BC we derive the condition for existence of nontrivial

solution:

Tq (mq)?
CE points ¢ of the problem (4.1)—(4.2) can be defined as a roots of the equation

sin(mq) 72 sin(mq/2) sin(mq(1l — &) /2)

and the system:
cos(%l) =0,
sin(2d) = o; . (4.3)

sin(”q(lg%)) = 0.
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CE, existing for all £ € (0,1/2), are called the first type CEs. All other CEs are
called the second type CE.

Lemma 2.11. The first type CE are A\, = (mcy)?, ¢, = 2k, k € N. The second
type CE exist only for § = € Q, m € N,, n € N, n/2 € N,, ged(n/2,m) =1,

and these eigenvalue are equal to \, = (mc})?, ¢ = 2(2k +1), k e N.

Proof. The first part of this lemma is obvious. For the second type CE we solve

equation

2
—Z =91 . 4.4
el =21 LkeN (4.4)

If £ ¢ Q, then CEs do not exist. If { = ™ € Q, then we have equation

nl n—2m n—2m

B =0, L,keN. (4
ng(na n— Qm) ng<n, n — 2m) 2 ng(TL, n — 2m) 07 , K € N ( 5)

For n € N, ged(n,n —2m) = 1 and equation (4.5) has not solution. For n € N,
ged(n,n — 2m) =2 (ged(n/2,m) = 1). Equation

n n—2m 2 _m
—[ — k+ 2
2 2 + 2

=0, LkeN, (4.6)

has solution if n/2 € N,, m € N,. For such n and m we solve equation

n—2m-~

T leN,keN,, (4.7)

n,_
2
and get k= 5t, t € N. But k € N,. So, the second type CE point are
2 n
ck:§(2k+1), ke N. (4.8)
O

All Nonconstant Eigenvalues points are y-points of the meromorphic function

(Complex-Real CF):

7@%2%%% (4.9)
In this case, Z(q):= cos(mq/2), Pc(q):=sin (mq(1 — 2£)/2)/(rq). Real CF is:

7wz cosh(mx/2)
sinh ( 77””(12_26) ) ’

wx cos(mx/2)
sin (7\'95(12—25) ) ’

x < 0;

() = (4.10)

z = 0.

This function is useful for the investigation of zero, real negative, real positive,

and complex eigenvalues. The graphs of this Real CF for some values of the
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Fig. 2.12. Real CF in the neighborhood of the first type CE point.
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parameter & are presented in Figure 2.10.

negative eigenvalue as v >

Fig. 2.13. Spectrum Curves in the neighborhood of the first type CE point.

2

In this case, there exists only one

1—2¢°

Zero points of the function Z(q) are of the first order and they are equal to
z1:= 2l — 1,1 € N. Points

(4.11)

are the first order zeroes of function P:(q). If £ & Q, then all p;, k € N, are the

first order poles.

(n—2m)t

Lemma 2.12. ]ff = m/n S Q7 then pO’l:’rLtS pl17 I = ged(n,n—2m)

, t € N are the
first order poles at the first type CE points. If m € N,, n € N, n/2 € N,,
ged(n/2,m) = 1, then points p}, | = %(Zt—i- 1), t € N, are the second type CE

points. Otherwise, p} are the first order poles.

Proof. Proof follows from the Proof of Lemma 2.11. [
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Fig. 2.14. Real CF in the neighborhood of the second type CE point.
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Fig. 2.15. Spectrum Curves in the neighborhood of the second type CE point.

If we change the value of £ from 0 to 1/2, then the poles (4.10) are moving
from the left to the right side of CE point. Figure 2.12 and Figure 2.13 shows
a qualitative view of the Real CF 7(¢) in the neighborhood of the first type CE
point.

In Figure 2.14 and Figure 2.15, we see the view of a real part of the spec-
trum when the pole point moves towards the zero point. When the pole point is

coincident with the zero point, we obtain a CE point.

4.1 Complex eigenvalues

A complex spectrum of similar problems is investigated in [18, Peciulyté et al.
|, 77, Skucaité et al. |. We can see a qualitative view of dependence of a complex
part of the spectrum on some values of the parameter ¢ in Figure 2.11.

The view of the complex part of spectrum, where the pole moves towards and

over the CE point is shown in Figure 2.13.
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Fig. 2.16. Spectrum Curves in the neighborhood of the Critical point of the second
order.
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Fig. 2.17. Complex-Real CF in the neighborhood of Critical point of the second order.

Figure 2.15 and Figure 2.16 shows how the Spectrum Curves dependent on
the values of the parameter £. If the value of £ is increasing, the pole point moves
towards and over the zero point and then there appears a loop type curve, which
consists of Spectrum Curves ( N and Nj3) and two first order Critical points (b 3
and b3 ;). While £ value is increasing, the loop grows too and when & = 0.168(3)
this loop type curve joins the other complex curve in the second order Critical
point bs ;5. This loop type curve disappears, as & > 0.168(3) (see, Figure 2.16).

The 3D view of this situation is shown in Figure 2.17.

5 Conclusions

In this chapter the complex spectrum of the SLP with the classical or first type
BC on the left side of the interval and integral NBC of two types on the right side
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of the interval was analyzed.

e All eigenvalues of the SLP in Case 1 and Case 1" are real. Complex eigen-

values do not exist for all £.

e In Case 2 there are two types of bifurcation: two different Complex Spectrum
Curves join at the Complex Critical point; a loop type curve disappears,
when the zero and pole points of the CF become coincident with the Critical

point, i.e., points, at which CE exists.

e In Case 2 exists the second order (Real) Critical point. This point appears
when two Spectrum Curves intersect. Later this point splits up into two the
first order Critical points. Also, in this case two types of bifurcation exist:
two different Spectrum Curves intersect in the second order Critical point;

two first order Critical point coincide with zero and pole at the CE point.

Also SLP with the symmetric interval in the integral was investigated. Complex
eigenvalues for differential problem (4.1)—(4.2) always exist and for some values

of £ the complex part of the spectrum is quite complicated:

e [f the pole moves towards and over the CE point, complex eigenvalues do

not appear.

e [f the pole moves towards and over the zero point, then the loop type com-
plex curve appears at the second order Critical point. This loop type com-
plex curve disappears when it joins other complex curve at the second order

Critical point.






Chapter 3

Discrete Sturm—Liouville problem

SLP is very important for investigation of the existence and the uniqueness of the
solutions for classical stationary problems. Such problems are complicated, not
self-adjoint and spectrum for such problems may be not positive (or real). Using
the CF we analyze spectrum of the nonlocal SLP. In [36, Stikonas and Stikoniené
2009], the CF method for investigation of the spectrum for such problems was

used.

1 Introduction

In this chapter some new results on a spectrum in a complex plane for the discrete
Sturm—Liouville problem (dSLP) are presented. The definition of CE points and
the CF is introduced for the discrete SLP. The method of the CF is used for the
analysis of complex eigenvalues and qualitative behaviour (dynamics) of Spectrum
Curves.

Discrete SLP:

_Ui_1—2Ui+Ui+1:)\Ui7 1=1...N —1,
h2
N-1

N-1
UO+UN+ZUi:O, @+2Unh:o,
=1

2 ,
=1

corresponding to differential SLP with NBCs:

/Olu(t)dt:O, /Oltu(t)dtzo

was analysed by Jachimaviciene, Jesevi¢iuté and Sapagovas |32, 2009|. These re-

sults are part of doctoral dissertation of Jeseviciuté (Joksiené) |35, 2010|. Jachi-

61
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maviciené gathered some new results [31,33, 2009] about the spectrum for NBCs:

N-1

N-1
Uy +U Up+U
U0:70h< 0~ N ZU) UN:%h( 0~ N ZU)

In this chapter we investigate Finite-Difference Scheme for differential SLP:

—u'=Xu, te(0,1), AeC,:=C, (1.1)
with one classical BC and another integral type NBC:
&2
u(0) =0, u(l) = 7/ u(t) dt, (1.2)
&1

where NBC’s parameter v € R and &€ € Sg := {(£1,&) € [0,1]?: 0< & < & < 1}
The remaining part of this chapter is organized as follows: in Section 2 the
discrete problem is stated. In Section 3 CE, poles and zeros of CF are analyzed.
The structure of the spectrum (Spectrum Curves in the domain and at the special

points ¢ = 0, ¢ = n and g = oo) of Discrete SLP is investigated in Sections 4.

Section 5 contains some brief conclusions and comments.

2 Discrete SLP

We introduce a uniform grids and we use notation @w" = {t; = jh,j = 0,n;
nh =1} for2<n €N N':=(0,n)NN, N* := N U {0,n}, N* .= (0,n) N N,,
N := (0,n)NN,. Also, we make an assumption, that &, and & are coincident with
grid points, i.e., & = mih = my/n, & = moh = my/n, m € Sg = {(m1,my): 0 <
my < my < n,my,mg € N'}. So, &€ =m/n = (my/n,my/n), { =& /& = my/mo,
§ = &it+&e =my/n, § = =8 = m_/n, where my 1= mi+ma, m_ := ma—my.

We will introduce a space H of real grid function on @". We use notation:
V]i=> UV (2.1)
§=0

to describe the approximation of the integral in the BC. For real function this
notation corresponds to the inner product in the space H. We will use this
definition for complex function, too. In this chapter NBC we approximate by

trapezoidal formula:

b poo medd h
/a udt ~ um1§ + Z Uzh + um2§ = [X[a,b},ja u]7

i=mi+1
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Imgq

\
h
(Cq

—
A=X"(9)
PRGN

—— Q0

Fig. 3.1. Bijective mappiilgs: A= % sin2(%’h) between C, and (CZ; A= %(1— w_éufl)
between Cy and C!; (a) CZ on Riemann sphere; (b) Domain C!. on the upper half-

plane.

where:

o

for t; <a, ort; > b,

Xab,i = Xlab) () =

[y

fort; =a, ort; =b, tj € w", (2.2)

h fora<t; <b,

a,b €@ and a < b, ie., a=1t, =ah, b=tg=ph, a, € N
We approximate differential SLP (1.1)—(1.2) by the Finite-Difference Scheme
(FDS):

Uiy —2U; + Uy ,
3 h; L \U; =0, jeNt (2.3)

Uml —|—Um2 mo—1
Up=0, Up=7XeeUl= vh(T + > Uk), (2.4)

k=mi+1

where right-hand side of (2.4) corresponds to trapezoidal formula for the integral

BC.
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1 h
PR VG P v
-1 0(g=00) 1
Fig. 3.2. Spectrum Curves in C}, C! and Ck. (n =3, m = (0,1))
Lemma 3.1. Let t € W", then the following equalities are hold:
b— h

[Xfag); €] = he' "t/ 5in % tan™! %, (2.5)
b— b h

[X[a,5], cos(2t)] = hsin il ) @) cos at ;—a) tan™! %, (2.6)
b— b h

[X[a,4]> in(zt)] = hsin at 5 %) sin il ;—a) tan™! % (2.7)

Remark 3.2. In the case z = 0 we understand the equalities (2.5)—(2.6) as [x[q,4, 1] =
b — a and the equality (2.7) as [x(44,0] = 0.

Proof of Lemma 3.1. We can consider the grid function Y =Y; = ¢/, for y € C,
e, Yo=1,Y1=y,...,Y,=y". If y# 1, then we have:

y* +y° ~
(X, Y] = h( 5t > yj)
Jj=a+1
o B—1 « a
T ; y (v’ —y*) y+ 1)
= h + > - y')=nh
2 ~° = 2(y = 1)
y% (yﬁ%a — y_B_Ta>
_ oy L+ 1)
2 Yy —

In the case y/ = e, 2 #£ 0, t; € W" i.e., we have:

st 1z(a+b) elZ(bQ_a) — 6_22(62_(1) 1 Zh
[X{a,p); €] =he 2 5; tan~! -
zla b - h
—he™5 sin Ab—a) tan! = (2.8)

2 2
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Using the formula above, as a result we get formulas:

1 1 —1z
Xtas cos(2t)] = 5 [Xiasl, e + 5 Xlass e ]
b b— h
= hcos 2b+a) sin @b—a) tan™! Z—;
2 2 2
Xttt S0(0] = 3 Dot ] = 5 st e ™
ap»sin(zt)] = —[Xias, €] — = [Xjap, €
Xla,b] % Xla,b] % Xla,b]
b— b h
= hsin A 5 @) sin A ;—a) tan™! %
If z =0, then the trapezoidal formula is exact, so [X[.4,1] = b — a. ]
The function
A= \'(q) = & sin®(mqh/2), (2.9)

is bijection between C, := C and C!, where C}:= R}~ U {0} UR! U{n} UR! U
CiHUCk whereRl:={g=2:0<z<n}, Rl :={g=w:y >0} RIiT:={¢g=
n+aw:y>0}L Clti={g=v+w:0<z<ny>0},Cl={g=a0+w:0<
z < n,y < 0} [26, Stikonas and Stikoniené 2009]. Then for any eigenvalue A € C,
there exists the eigenvalue point q € (CZ. We use notation @ql = (CZ U {oo} for
Riemann sphere (see Figure 3.1). It follows, that A < 0 for g € RZ‘, 0<\<4/h?
for q € RZ, A > 4/h? for q € ]RZ*. Points A = 0, A = 4/h? are the first order
branch points of the function A = A*(q). We note that for differential problem
(1.1)-(1.2) eigenvalues are defined by the formula A = (7q)?, ¢ € C, [30, Stikonas
and Stikoniené 2009]. We also use bijection A, = A*(w) 1= %(1 — (w —w™!)/2)
between Cy and C" := {w € C : |w| < 1,w # 0} (see Figure 3.1). The C! will
be used for investigation of eigenvalues in the neighborhood of A = 0o (w = 0).
This bijection maps A < 0 to the interval w € (0,1), 0 < X\ < 4/h? to the upper
unit semidisk, A > 4/h? to the interval (—1,0), and complex \ points correspond
to the points w, Imw # 0, inside the unit circle (see Figure 3.1). In the domain
C" the points w = £1 correspond to a branch points of the function \!. The
function w = ¢ maps C!'" to the unit semidisk and C}~ to outer part of unit
semidisk in C",. The corresponding points in the different domains are shown in

the table (see Figure 3.1).

Remark 3.3. Point w = 0 in Figure 3.1 and Figure 3.2 (see domain C”) corre-

sponds to the point A = oo in domain C, and ¢ = oo in domain (CZ.
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Using formula (2.9), the equation (2.3) can be rewritten in form:

Ujt1 — 2cos(mgh)U; + U;—; = 0, j e NP, (2.10)
where ¢ = x 41y € (CZ . The general solution of the difference equation (2.10) is:
U = Cysin(nqt;) + Cy cos(mqt;) for g # 0, n;

U= Citj + Cy for ¢ =0;
U = Cy(—1)t; + Cy(—1) for ¢ = n. (2.11)
From classical BC Uy = 0 we get Cy = 0. So, nontrivial eigenfunctions are of the
form: V =t; for ¢ =0; V = (—1)7¢; for ¢ = n; V = sin(wqt;) for g # 0, n.
If A =0, then all functions u(t) = Ct satisfy the equation and the first BC

(2.3)—(2.4)(left side). By substituting this solution into NBC (2.4)(right side)
we have that the eigenvalue A = 0 (¢ = 0) for SLP (2.3)—(2.4), if and only if

_2
g-¢-

v = mgﬁan. Note, that for the differential case A = 0 if v = The eigenvalue
2 1

A\ = 4/h? exist for ¢ = n, if and only if:

oo, for mg —my € Ng;
2 2(—1)nm2

= —N, Ny :=
’y h2 07 0 1 _ (_1)m27m1

=< +1, forms—mq; €N, n—my € N
—1, for my —my; € Ny, n —mq € N,.
If we substitute V' = sin(wqt;) into (2.4) then by the Lemma 3.1 we get equa-
tion for g € (CZ”:
cos(m&1q) — cos(méaq) - mqh

: _
sin(mgq) = 5 5
— h
_ ’Yh sin Wq(§2 51) sin 7Tq(§2 + 51) tan—l ﬂ (212)
2 2 2
The equation (2.12) can be rewritten in a more convenient form:
1 sin(mq) tan(wqh/2) sin ”q(%_&) sin 7”1(52;“51)
h mq mq m2q>

This equation is valid (as limit cases) for ¢ = 0,n, too. If hq is sufficiently small,

then tan%qh ~ ”th. So, in limit case, the equation (2.13) is the same as for

differential problem [0, Skucaité and Stikonas 2015].

If v = 0, we have the classical BCs and all the n—1 eigenvalues for the classical

FDS are positive and algebraically simple and do not depend on the parameters

& and &:

Ak(0) = A"(g(0)), U¥(0) = sin(rqr(0)t;), ¢,(0) =k € N". (2.14)

J
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Fig. 3.3. CF for n = 2.
3 Characteristic Function, Constant Eigenvalues
Points, Poles

We introduce the entire functions:

ZM2) = Z(2) - %tan(wzh/Q); Z(2) = Sin:zrz); Pe(z) = Pﬁl(z)Pg(z),
Pg(z) :: sm(?rz(f;; 52)/2); Pg(z) _ s1n(7rz(§;z— 51)/2)'

Zeroes of the functions Z(q), Z"(q), ¢ € C}, coincide with the eigenvalue points
in the classical case v = 0. Zeroes of the functions Pg, Pg in the domain (CZ are

simple and positive. We can rewrite equality (2.13) in the form:

Z"(q) = vPe(a), g€ Cy. (3.1)

We define the constant eigenvalue (CE) as the eigenvalue that does not depend
on the parameter . For any CE \. € C there exists a Constant Eigenvalue point
g. € C! (CE point) [50, Stikonas and Stikoniené 2009] and A, = \*(g.). For
SLP (2.1)-(2.2) all CE points are real and we can find them as solutions of the
following system:

Z(q) =0, Pelq)=0, qe€(0,n).

The notation C is used for the set of all CE points.
If ¢ ¢ N" ie. Z"(q) # 0, and g satisfies equation P¢(g) = 0, then the equality

(3.1) is not valid for all v and such point ¢ is a Pole Point. Notation of the pole
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point is connected with meromorphic function:

2
Ye(2) = Pe(2) e C. (3.2)

This function is obtained by expressing v from equation (3.1). We call the restric-
tion of meromorphic function 7, on (CZ as Complex-Real Characteristic Function

(C-R CF or CF) [26, Stikonas and Stikoniené 2009], and denote this function as:

_ M) _ 2@ 1 _
M=) " Rl w D
sin(mq)

1
"~ cos(nbiq) — cos(méaq) tan(rgh/2), ¢ € Cy. (3.3)

All nonconstant eigenvalues (which depend on the parameter ) are -points
of Complea-Real Characteristic Function (Complex-Real CF) [36, Stikonas and
Stikoniené 2009]. Complex-Real CF ~(q) is the restriction of function 7.(q) on
a set N7 := {q € C!': Imv.(¢q) = 0}. Real CF ~(q) is defined on the domain
{q € (CZ: A € R} and describes only real eigenvalues. We plot the graph of Real
CF for eigenvalue points 0 < z < n in the middle graph; = 0, y > 0 in the
left half plane and x = n, y > 0 in the right half plane. Two v-axes correspond
to points ¢ = 0,n. The Real CF graph can be seen in the Figure 3.3(a)—(c)
and Figure 3.4(a)—(c) (top pictures) for n = 2,3. We note, that there are no
complex eigenvalues in the case n = 2 for any m; and msy values and in case
n=3if my=nand my =0,...n—1or my =2 and m; = 1 (see Figure 3.3
and Figure 3.4). Vertical blue and red dash lines are added at the CE and poles
points.

There exists the horizontal asymptote in the case my = n:
) o my £
p— l. pu— —N N pu—
v(00) = lim 7(g) = N1, My

(see Figure 3.3(a)—(b) and Figure 3.4(a)—(c), a horizontal dashed red line).

Equations for zeroes and poles of CF are the same as in differential case in
Chapter 1 and Chapter 2 [80], but in the discrete case zeroes and poles are located
in (0,n). Function tan(%qh) has pole in the point ¢ = n. So, additional pole can
be at this point. We have this pole if Ny = o0, i.e., if my — my € N,. We include
this pole into the family of the second order poles, but it will be the first order

pole by definition, because A = 4/h? is a branch point.
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]

(&) m = (1,2)

Fig. 3.4. Complex—Real CF for n = 3.

All zeroes of the functions Z, Pgl, Pg in (0, +00) are simple (of the first order),

real and positive:
2=k eN, pizék,keN, pizgk,keN. (3.4)

We denote these sets Z, P', P? and denote Z := Z N (0,n), ?g = P'n (0,n],
2Z¢ == P>n(0,n]. Then aset Zx = Z} + 27 + 2/? describes all zeroes of the
function Pg, where Zg = Zgl ~ ng and Zg = ?52 ~ Z§12 are two families of the
first order zeroes, 2612 = Eg ng is family of the second order zeroes. For CF we
consider the following sets: a set of poles P := P, +P; +P?, where Py 1= Z/ Z
and Pg = Zg . Z are two families of the poles of the first order, a set of the
second order poles 73512 = Zél2 \ Z; a set of the CE points G := Cgl + C£2 +C22,
where Cg = Z; N Z and Cg = Zg N Z are sets of the points with removable

singularity, C£12 = Zé12 N Z is the set of the points with the first order pole, too;
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Fig. 3.5. Complex—Real CF for n = 4.
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(a) m = (0,4)

(b) m = (0,3) (¢) m = (0,2) (d) m =(0,1)

Fig. 3.6. Bijective mappings in domain C! for different m values (n = 4).

a set of zeroes Ze = AN Q

So, formulae for poles and CE points are:

pllc = 2nk/m+7

p% = an/m_, pllc2 = an/ng(m-H m—)v

¢} = 2nk/ged(2n,my), c; = 2nk/ged(2n,m_), c;? = 2n/gcd(2n, my,m_)
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(i) m = (1,2)

Fig. 3.7. Spectrum Curves for n = 5.

1 12 ol pl2 D2 12 02 pl2 pl2 | pl2 ol pl2 P2 (12
C}?, respectively. The points of these sets have form ¢, = ak, k € N* := {k €
N,k = 1... knax}, where kpax = |[n/q1] for poles and kpax = [(n — 1)/qq] for

CE points, a > 1, or can be empty. So, nonempty sets are described by the first

: _ 1 2 12 1 2 12
point ¢1 (¢ = pi, p}, pi%, o, &, ¢?)

. The second order pole exists for n = 4,
my = 0, me = 3 at the point ¢ = 2.(6) (see Figure 3.5(¢)), n = 5, m; = 0,
mse = 4 at the point ¢ = 2.5 and my; = 0, my = 3 at the point ¢ = 3.(3) (see
Figure 3.7(a) and Figure 3.7(e)) and n = 6, m; = 0, mg = 4 at the point ¢ = 3
(see Figure 3.8(f)). In these figure we can see additional the second order pole at
q = n for my —my € N.. The Figure 3.6 shows the schemes of bijection mapping
for different m; and my in C? (n = 4). We have Critical point and CE point
in the case n = 6, my = 1, my = 5 at the point ¢ = 4 (see Figure 3.8(b)). If

me + mq = n, then exist two types CE Points. First type CE Points do not
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(n) m = (1,2) (o) m = (0,1)
Fig. 3.8. Spectrum Curves for n = 6.

depend on NBC parameters (ci = 2). The second type CE Points can be defined
by the formula ¢} = 3 = 3(2n; + 1), k € N, where m; and n = 2(2n; + 1) are
coprime numbers (see Figure 3.4(a), (e), Figure 3.5(a), (f), Figure 3.7(b), (g) and
others). More results about Poles and CE Points are presented in [30, Skucaité

and Stikonas 2015] (the cases when & and &, are rational).



3.4 Discrete SLP 73

4 Spectrum Curves

Spectrum Domain for dSLP is the set ' = N7 UC C C}. Function 7, has real
values on N except for the pole points. For each vy € R a set () := v () is
the set of all eigenvalue points for nonconstant eigenvalues. So, Spectrum Domain
N = U,erN (7)UC. Though zeroes, poles and CE points are practically the same
for SLP and dSLP, but multiplier tan %’h little change the Spectrum Curves in
the other points.

If v = 0 then the eigenvalue points are ¢ = 2z, = k € N. So, we can numerate
the part of N'() for this point by the classical case N3 (0) = 25, € N. For every CE
point ¢; = j we define N; = {¢;}, i.e. every such N has one point only. We call
every N, k € N, a Spectrum Curve [30]. For v — 400 Spectrum Curve N (7v),

which is not CE point, approaches a pole point or the point ¢ = co. One can see

the Spectrum Curves in Figure 3.4(d)—(f) and Figure 3.5(e)—(j) for n = 3, 4.

4.1 Spectrum Curves at the points ¢ =0, g =n and ¢ = ©

q = 0: Taylor series for CF at the point ¢ = 0 is

(@ o2n? 1
aq) =
m3 —m?  6(m3 —m?)

(1= 2n% +mj3 +mi)g* + O(¢"). (4.1)

For n > 1 we estimate m? + m3 < (n —1)2+n? =2n? —2n + 1 < 2n? — 1. So,
the second term is negative, and we have +/'(0) = 0, 4”(0) # 0 at the first order
branch point 0. At this point Spectrum Curve N; turn orthogonal to the right,
i.e. the first positive eigenvalue point reaches ¢ = 0 and then this point moves
along the imaginary axis. So, point ¢ = 0 has properties of the first order Critical
point in domain (CZ, but the point A = 0 is not a Critical point in domain C, for

CF.

g=mn: If m_=my—my €N, then |[N| =1 and the Taylor series for v(q) at
the point ¢ = n is:

N [1+ 2n?
v@:ﬂN#—g( : —0@+ﬁ0@—m%
N 6nt+10n%2 —1
T o2 ( 15 — (mz +mi)+

+@m%wm—mﬂ—Mm%w@)mww+om—m% (42)
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So, in this case, v/'(n) = 0. If condition:
m3 4+ m3 = (1 +2n?)/3 (4.3)

is valid (for example, n = 5, m; = 1, my = 4) then 4”(n) = 0, too. This point
has properties of the second order Critical point in domain CZ and the first order
Critical point in domain C, (see Figure 3.5(c)). So, by definition ¢ = n is the first

order Critical point. The next term is vanished if
my +mi = (6n* +10n* — 1)/15 + (3(m3 +m3) — 2n® — 1)(m3 +m3).  (4.4)
Both terms (4.3) and (4.4) are vanished if there exists a solution of the system:
m3+m3 = (1+2n?)/3, mim? = (n®—1)(n*> —4)/45

where n,m;,my € N. By Vieta’s formulas m? and m3 are roots of the second
order equation and m? and m3 will be integers, if the expression 80s? + 24s + 1
is square of an integer number, where n? = 15s + 1. However, there is no such s.
So, in domain (CZ Critical point at ¢ = n can be first order or second order only.
If condition (4.3) is not valid, then the point ¢ = n is a pole or correspond to the

first order branch point.

q = oo: CF can be rewritten in the following form by using Euler formula:

i _ o—tmq 1— e7rqh 2

7<q> - bl 4 el — eimgse — p—imgén . 1 + emah ' E (4'5)

Then CF could be expressed in terms of argument w:

(w)— wh —w™" 1—w z
i w4 — M2 ——m2 14w h
w™" (1 —w?™)(1 —w) 2 L
= . - ) 4.
w—me (1 _ wm2+m1 — M2 w?mg)(l + U}) h’ w e Cw ( 6)
Lemma 3.4. At the point w = 0 a formula is valid:
(W) = ——— 2 (14 O(w)) (47)
ﬁy o wn—m2 h . .
Proof. From (4.5) we have
1 (1+ O@w*)(1+ O(w))(1+ O(w)) 2
_ . R 4.8
7(w) wn—m2 (1 + O(meQ)) h ( )
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So, ﬁ describes the properties of CF at the point w = 0. Point w = 0 ¢ C
is an isolated singularity point. If my = n, then lim,,_,ov(w) = 2/h and we have
removable singularity point. In this case the same Spectrum Curve enters and
leaves the point w = 0 (see Figure 3.6(a)). Additionally, there are no complex
Spectrum Curves in the neighbourhood of the point w = 0. If my < n — 1, then
the point w = 0 is a pole point. The difference n — my show the order of the pole
(see equation (4.6) and Figure 3.6). In the case n — my = 1 two real Spectrum
Curves enter or leave the point w = 0 (see Figure 3.6(b)). On the right side of
the first order pole point w = 0 one spectrum curve (N; C (0,1)) enters and on
the left side of this point one spectrum curve (N,,—; C (—1,0)) leaves this point.
If n — my > 2 then there exist additional Spectrum Curves that enter and leave
the point w = 0.

The point ¢ = 0o € @Z is a pole or removable singularity point. The order
of this point is n,, = n — my. So, the the order of ¢ = oo does not depend
on my. Then n, Spectrum Curves enters on this point and the same number
of Spectrum Curves leaves this point, if v — +o00. Note, that incoming Spectral
Curves alternates with outgoing (see all Figures). If n = may, then the point ¢ = co

is a removable singularity point. Finally, we formulate few obvious lemmas.

Lemma 3.5. The formula n, +n.. +1 = my is valid, where n, is number of poles

(including the order), n.. is number of CE Points.

Proof. Each Spectrum Curves has limit points in poles or in CE point. So, n. +

Np + Nee =n — 1. But ng =n —mo. So, n, +nee =n — 1. O

Lemma 3.6. There are ng = N + Ne + ngp — 1 Critical points (including the
order) on (CZ, where ng, is the number of the second order poles, n. is the number
of the parts of Spectrum Curves in the complex part of (CZ between two Critical

points.

Lemma 3.7. If ms = n (does not depend on my value) complex eigenvalues do
not exist. In this case the point ¢ = 0o is a removable singularity point (the same
Spectrum Curve enters and leaves this point). There exists a horizontal asymptote

y(00) = im0 Y(q) = 2/h as well.
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Remarks and conclusions

Zeroes, poles of CF, CE point for dSLP in the interval (0,n) are only real
and the same as in the case of differential SLP. In the case of dSLP at ¢ = n
there is additional pole if my — m; € N,. There are not poles for A < 0 and

A > 4/h2.

Critical points may exist for ¢ € RZ*, i.e., for A\ > 4/h* There are not

Critical point for negative .

The point ¢ = n is the critical point of the second order for m2 + m? =

(1+2n?)/3.

The number of Spectrum Curves parts in the neighbourhood of oo is equal

to 2(n — my) if n > mgy, and there is one Spectrum Curve if n = my.



Chapter 4

Discrete Sturm—Liouville problem
with integral nonlocal boundary

condition (special cases)

1 Problem formulation

Let us consider a SLP with one classical BC:

—u" = Mu, te€(0,1), u(0)=0, (1.1)
and an integral NBC:
u(l) = 7/5 u(t) dt, (Case 1) (1.27)
£
u(l) = 7/0 u(t) dt, (Case 2) (1.29)

with the parameters v € R and € € [0, 1]. Same results on the spectrum view in
complex part of the spectrum for differential problem were presented in Chapter 2.
CF and its Spectrum Domain N for these problems are described in [306, Stikonas

and Stikoniené 2009]. This chapter is based on [75].

7
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Fig. 4.1. Real CF for various { of discrete problems in Case 1 (approximated by
trapezoid).

2 The case of an approximation by the

trapezoidal rule

In the interval [0, 1], a uniform grid w" = {t; = jh,j = 0,n; n € N,nh = 1} is
introduced. Also, we make an assumption that £ is coincident with a grid point,
ie, & = mh = m/n, m = 0,n. Let us denote the greatest common divisor
by K := ged(n,m) and N := n/K, M := m/K. Then £ = M/N, too. We
approximate differential problem (1.1)—(1.2) by the FDS:

9. .
Ui }ZJ+UJ+1+AUJ»:0, j=T1,n—1, (2.1)
Uy = 0, (2.2)
Um + Un n—1
Un = Wh( + k;rl Uk>, (2.31)
Up+Up
Un—vh( = +ZUk> (2.35)
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Fig. 4.2. Real CF and Spectrum Curves for problem (2.1),(2.2),(2.32) (Case 2).

We investigate eigenvalues for the FDS. Equations (2.1)—(2.2) in another form:
Ujs1 — 2cos(mqh)U; + Ujy =0, X = 5sin*(mqh/2), Uy =0, (2.4)

where ¢ = x 41wy € CZ . More about domain (CZ and bijection between C, and (CZ
see in Chapter 3.

The general solution of difference equation (2.3) could be expressed by the
formulae (2.11) in Chapter 3.

It can be seen from the BC (2.2) that Cy = 0. After substituting this solution
to NBC (2.31) in Case 1 (or (2.35) in Case 2) we get that eigenvalues ¢ # 0,n if

q = q(v,&) are roots of the equations:

h( cos(érx) — cos(mx))

sin(mq) — > tan(rgh/2) = 0; (2.51)
sin(mq) — 7% = 0. (2.59)

We have the eigenvalue A = 0 for problem (2.1)—(2.3), if and only if 7 = 1352

in Case 1 and v = 5% in Case 2 (the same conditions are for the differential case).

The eigenvalue A = 4/h? can be found, if and only if v = % . $ in Case 1

(n—meN,), and v = % - (3(1}%1 in Case 2 (m € N,).
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(a) £=1/3,n=6 (by¢=1/2,n=4 (c)€=2/3,n=6

Fig. 4.3. Real CF and Spectrum Curves for problem (2.1),(2.2),(2.32) (Case 2).

If v = 0, we have the classical BCs and all the n — 1 eigenvalues for the
classical FDS are positive and algebraically simple and do not depend on the
parameter ¢ (see (2.14) in Chapter 3). If ¢ = = € (0,1/h), then X\ € (0,4/h?)

and the eigenvalues of problem (2.1)—(2.3) are calculated by the formula A\, =

4

kah
ﬁ ok

5 ), where x;, are roots of the equation:

sin®(

sin(rz) — yh tan™" (razh/2) (cos({rz) — cos(mz)) /2 = 0; (2.61)

sin(rz) — yhtan™(7wh/2) sin®(Exz/2) = 0. (2.62)
CE points are equal to:

CkZQNk,N—MENO, Ck:Nk,N—MENe. (271)

cx = 2Nk, M €N,), ¢ = Nk, M € N,, (2.75)

k € N such that ¢, € (0,n).

Other (nonconstant) eigenvalues (which depend on the parameter ) as -

points are defined on the set C! (see Figure 4.1(a)~(c) and Figure 4.2).
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Fig. 4.4. Real CF, Spectrum Curves and Complex-Real CF.

Lemma 4.1. If0 < m <[ <1, then CF of the FDS:

Uj—1 = 2U; + Ui

= FAU; =0, j=Tn—1, (2.8)
Uy =0, (2.9)
-1

B Un + U,

U, = yh(T + Y Uk) (2.10)
k=m+1
18
sin(wghn) wqh 2

= -tan — - —. 2.11
7 cos(mqhm) — cos(mqhl) MW (2.11)
Proof. Proof follows from Lemma 3.1. [

On the case I =n, m = m (Case 1) and [ = m, m = 0 (Case 2) we get that
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(b) €=3/4,n =8

Fig. 4.5. Spectrum Curves in Case 2.

CF of the discrete problem (2.1)-(2.3):

sin(mq) wqgh 2
= ~tan —— - — 2.12
R cos(émq) — cos(mq) W (2121)
sin(mq) wqgh 2
_ tan FI0 2 2.12
T2 i (ng/2) 2 h (2.12.)

Lemma 4.2. For the problem (2.1)—(2.31) exist two families of the first order
zeroes: py = 225 | e N* and p} = 25k € N*. For the problem (2.1)~(2.2),

n+m?’ m’

(2.35) there exist second order zeroes: py? = 2%k € N*.
Proof. This Lemma is a part of Chapter 3 results. ]

In Case 1 zero point from the first family coincides with zero point from the

second family at CE points (see (2.7,) and Figure 2.2 in Chapter 2).

If hq is a sufficiently small number, then tan % . % ~ 1. It follows that, in this

case, the discrete CF is similar to the CF of the differential problem |18, Pe¢iulyté
et al. 2005].

If ¢ =2y, y > 0, then A\, = — 4 sinh?(%") < 0 and Real CF is:

02 7
- = cosh(fjrl;)hgﬂgc))sh(wq) - tanh %Qh . %7 (2:131)
- = 2siii$l((§7:rqq)/2) 'tanh% ' % (2.13)
If g=n+ay, y >0, then A\, = —% cosh?(&") > 4/h? and:
Tt = cosh(fjri;)h(_ﬁgc))sh(wq) - tanh WTQh ' %7 (2.14)
= 2siii$l((g7:rqq)/2) 'tanh% ' % (2.142)

The selection of the parameter n influences the spectrum structure of the discrete

problem.
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3 Investigation of the spectrum structure

In the case of the problem (2.1)—(2.2), (2.3;) only real eigenvalues exist. The grid
point ¢ = n is a pole point for even n —m in Case 1. Otherwise, Spectrum Curve
moves through the point ¢ = n (from R? to R}t or from R}* to R!). Real CF
for the FDS (2.1)—(2.2), (2.3;) is presented in Figure 4.1. In Case 1 there exists
horizontal asymptote v = % for Real CF. If v = %, then n — 2 eigenvalues exist,
only. If n — oo, then the view of the spectrum becomes similar to the spectrum

for differential SLP in Chapter 2.

In Case 2 the complex part of the spectrum is more complicated then in Case
1 (see Figure 4.2-Figure 4.5). The grid point ¢ = n is a pole of the second order in
domain (Cg and the first order pole in domain C for even m in Case 2. Real CF for
FDS (2.1)-(2.2), (2.3) is shown in the Figure 4.2(a)—(c) and Figure 4.3(a)—(c)(top

pictures).

Complex part of the spectrum for FDS (2.1)-(2.2), (2.3,) are presented in
Figure 4.2(a)—(c) and Figure 4.3(a)—(c)(bottom pictures). For some parameter &
values only real eigenvalues (see Figure 4.2(b)) exist. As shown in the Figure 4.5,

for some parameter values Spectrum Curves make loops.

Figure 4.2, Figure 4.3, Figure 4.4 show real and complex parts of the spectrum
for different number of grid point n for (2.1)-(2.2), (2.35). As shown in the
Figure 4.4, the number of grid points influences the spectrum structure. If grid
point is increasing, then the spectrum view becomes more similar to differential

SLP in Chapter 2.

4 The case of an approximation by Simpson’s

rule
In the interval [0,1], a uniform grid w" = {t; = jh,j = 0,2n; 2nh = 1} is

introduced. Also, we make the an assumption, that £ is coincident with the grid

point, i.e., £ = 2mh = m/n, m = 0,n. We approximate differential problem (1.1),
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(1.2) by FDS:
Uiy —2U;, + U, L
J h; LN =0, j=T1,2n—1, (4.1)
l]b - Oa (4'2>
W]L n n—1
Usp = 3 (UQm + Uy, +4 Z Ust—1 + 2 Z U2k>7 (4.31)
k=m+1 k=m+1
h m m—1
Usp = % (Uo + Uy +4 ; Ust—1 + 2 ; U2k>- (4.32)

From the general solution (see (2.11) in Chapter 3) and the BC Uy = 0 yields
that Cy = 0. By substituting such a solution function to NBC (4.3;) or (4.35),

we derive that the eigenvalue exists for ¢ # 0,n if ¢ = ¢(v,&) is the root of the

equation:
sin(mq) — %h(cos(&rq) — cos(mq)) - (2 —;;E:(;;:;h)) = 0; (4.49)
_ 29h ., (2 + cos(mqh))
sin(mq) — —sin (&mq/2) - sn(mah) 0. (4.45)

We get the eigenvalue A = 0 for problem (4.1)—(4.3), if and only if v = ﬁ in
Caselandy = g% in Case 2 (the same conditions are for differential (1.1)—(1.2) and
for FDS (2.1)—(2.3)). If v = 0, then all the n — 1 eigenvalues could be defined by
equation (2.14) in Chapter 3. All eigenvalues A\ (7, &) and eigenfunctions U* (7, €)
can be enumerated as: A\, (0,) = \), k= 1...n—1. If ¢ = z € (0,1/h),
then A € (0,4/h?) and we calculate the eigenvalues of problem (4.1)-(4.3) by the

Txh
2

formula A, = 75 sin*(™%"), where x;, are roots of the equation:

sin(mzx) — l;(cos(gﬁx) — cos(mz)) - %ﬁrgﬁ)h) = 0; (4.51)
sin(mzx) — 2vh sin? <£7;x> = —;rf(();g:;)h =0. (4.52)

Let us denote the greatest common divisor K := ged(2n,2m) and N := 2n/K,
M = 2m/K. Then £ = M/N, too. Then CE points ¢, are described by the
formula (2.7) (the same formula is for (2.1)—(2.3)). Other (nonconstant) eigen-
values (which depend on the parameter ) as y-point of the CF (see Figure 4.6-
Figure 4.9) are defined on the set C}.
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Fig. 4.6. Discrete problem (4.1)—(4.2), (4.31), Real CF for various £ values.

Lemma 4.3. If 0 < m << 1, then CF for FDS:

Uj_1—2Uj+Uj+1 -

= FAU; =0, j=T12n—1, (4.6)
UO = O, (47}
7h l -1
Us, = 5 (U2m + Uy +4 Z Usp—1 + 2 Z ng), (4.8)
k=m+1 k=m+1
18:
sin(mghn) 3sin(wgh)

7= cos(rqghm) — cos(wqhl)  h(2 + cos(mqh))’ (4.9)

Proof. First of all, it should be mentioned that the parameters of FDS (4.6)—(4.8)
arem=0,1,...,n, 1l =0,1,...,n, l > m, where 2n is a number of grid points.
After the assumption that U; = ¢/, the NBC (4.8) can be rewritten in another

form:

l
n_ (o _
% =—<y2 F? 44 Z g2l 49 Z y%). (4.10)

3
k=m+1 k=m+1
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Fig. 4.7. Discrete problem (4.1)—(4.2), (4.32), Real CF and Spectrum Curves for
various & values.

Applying the formula of geometric series in the case y # £1, we obtain:

l
Z y2k—1 — y2m+l + y2m+3 44 yQZ—l — y2m+1(1 + y2 44 y21—2m—2)
k=m-+1

1 — 2l—2m
_ g2l : g_yQ 7 (4.114)
-1
Z y2k _ y2m+2 + y2m+4 T y21—2 _ y2m+2(1 + y2 4t y2l—2m—4)
k=m+1
1 — q2—2m—2
e (4.115)

1—92
Applying these expressions the equation (4.10) can be rewritten in the another

form:
2l—2m
on Y[ o 2 om+1 LY omi2 1—Y
= 4 ) i A
Y 3 <y +yT+4ay 1— 2 + 2y 11—

21—-2m—2

) L (412)
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Fig. 4.8. Discrete problem (4.1)—(4.2), (4.32), Real CF and Spectrum Curves for
various & values.

| % ch

(a) £=3/4,n=38 (b) € =4/5, n =10 - (c) € =5/6,n=12

Fig. 4.9. Spectrum curves for discrete problem (4.1),(4.2), (4.32).

After some operations we get:

. h y2l_y2m y2+4y+1
o = % A yi<_ : ). (4.13)

If y =e™" ¢ +# 0, q # n, then the equation (4.13) can be rewritten in another

form:

’)/h (ez2m1hl o ezQﬂqhm)(ez%rqh + 4ei7rqh + 1)
? ) e2mgh _ :

12mghn

(4.14)

e

By the Euler’s formula we have y* = "% = cos(mwqhk) + 1sin(rqhk). This
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expression we apply to equation (4.11), and we get:

cos(2mghn) + 1sin(2rghn) =

= %h - (cos(2mqhl) +1sin(2mqhl) — cos(2mghm) + 1sin(2rghm))-

~(cos(mgh) 4+ sin(mqh))? + 4(cos(wgh) + 1sin(mqh)) + 1
(cos(mgh) + 1sin(wqh))? — 1 '

(4.15)
After some operations with real and image part of the equation (4.15), we get:

cos(2mqhn) + 1sin(2mghn) =
B zﬂ (cos(2mqhl) — cos(2mghm))(cos(mqh) + 2)

3 sin(mqh)
vh  (sin(2mqhl) — sin(2mghm))(cos(mqh) + 2) (4.16)
3 sin(mqh) ' '
We take only imaginary part of this expression:
h 2mqhl) — 2mqh h)+2
sin(2mghn) = vh (cos(2mghl) — cos(2mghm))(cos(mgh) + 2) (4.17)

3 sin(mwqh)
Generally, the characteristic function of FDS (4.6)—(4.6) is expressed in the for-

mula (4.17). Cases ¢ = 0, ¢ = n are valid as limit cases. O

On the case [ =n, m = m (Case 1) and | = m, m = 0 (Case 2) we get that
CF of the discrete problem (4.1)-(4.3):

B sin(2mwghn) 3sin(mwgh) (4.18,)

s cos(2mghm) — cos(2wrghn)  h(2 + cos(mqh))’ o
sin(2mwghn 3sin(mgh

. (2mghn) (wgh) (4.18,)

- 2 sin?(2wqhm /2) (2 + cos(mgh))”

Zeros of the CFs (vs; and ~yg9) are positive and first order z; = k € N such
that z; € (0;2n). Pole points could be defined by the same formula as for the
approximation by the trapezoidal formula (see Lemma 4.2). In the case of approx-
imation by Simpson’s rule there exists a pole point in RZ* ={q=2n+w,y > 0}.
This pole we can find from the analysis of the multiplier % (see (4.18)).

The numerator of this fraction is equal to zero only for real ¢. So, in the domain

RZ* CE point does not exist, but there exists a pole.

Lemma 4.4. For the FDS (4.1)—(4.3) with integral NBC approzimated by Simp-
son’s rule in RZ+ there exists the first order pole p = 2n +1(2n1n(2 + V/3)) /7.
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Proof. 1f q € RZ* then the equation — cos(mgh) = 2 can be rewritten in another

form:

—cos(mh(2n + 1y)) = — cos 7 cos(amhy)
= cosh(mhy) = 2. (4.19)

So, the equation above is equal to e™¥ 4 e~™¥ = 4. Denote ™ = \. Then we

have quadratic equation for A:
N —4N+1=0. (4.20)
The roots of this equation are
A=2+3. (4.21)
The formulas mentioned above allow us to get this formula:
2n
y="In(2+3), (4.22)
T
because we look for y > 0. [

This pole point for different grid point number is shown in Figure 4.6-Figure 4.9.
For example, if 2n = 6, then p ~ 6 £ 1 2.51520430 (see Figure 4.6(a), (c), Fig-
ure 4.7(a), (c)).

For 2hn = 1 and 2hm = &, from the formula (4.18) we get:

_ gsin(mq) 3sin(mgh)
L cos(§mq) — cos(mq) ' qh(2 + cos(wqh))’ (4.231)
gsin(mq) 3sin(mqh)

"}/52 (4232)

- 2sin?(Emq/2) . qh(2 + cos(wqh))’

If hq is a sufficiently small number, then %qh . % ~ 1. It follows that, in this
case, the discrete CF is similar to the CF of the differential problem |18, Pe¢iulyté
et al. 2005].

If g =1y, y >0, then \, = —};% sinhz(%) < 0 and Real CF is:

B x sinh(7rz) 3sinh(mzh) (4.24,)
8- cosh(émx) — cosh(mz)  xh(2 + cosh(wxh))’ o
x sinh(7z 3sinh(wzh
Vs2— = (r2) (rh) (4.245)

2sinh?(&érx/2)  h(2 + cosh(wzh))’
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If g=2n+y, y >0, then A\ = —53 coshQ(yT) < 4/h?* and:
xsinh(7z) 3sinh(mxh)
= . 4.25
st cosh(émx) — cosh(wz)  xh(2 + cosh(wxh))’ (1:25,)
x sinh(7z 3sinh(mzh
Vs2+ = () ( ) (4.259)

2sinh? (& /2) " h(2 + cosh(mzh))
In addition, the selection of the parameter n influences the spectrum structure

of discrete problem. If the number of grid points grows, then the structure of

spectrum becomes more similar to the differential problem.

5 Spectrum Curves at the points ¢ =0, ¢ = 2n
and ¢ = o

g = 0: Taylor series for v(¢) at the point ¢ = 0 is:

2(2n)? Lo 4 -
¥s1(q) = @2 —2m)p 64 + O0(q"), (5.11)
22?1 2(20)° — (2m)? , .

The second term is negative and not equals to zero (2(2n)? — (2m)? > 0 for all
n and m, m < n in Case 2), so the point ¢ = 0 is the first order Critical point
in domain (CZ, but A = 0 is not a Critical point in domain C,, because it is
a first order branch point. At this point Spectrum Curve N, turns orthogonal
to the right, i.e. the first positive eigenvalue point reaches ¢ = 0 and then this
point moves along imaginary axis, as well as in the case of approximation integral

condition by trapezoidal formula (see Chapter 3).

g = 2n: Taylor series for v(q) at the point ¢ = 2n is

B 24(2n)? 17(2n)% — 4(2m)? + 8 ) )
751<Q) - (271)2 _ 4(2771)2 5 (2%)2 _ 4<2m)2 (q - 2”) + O((q - 2”) )7
(5.21)
. 6(2n)2 1 2(2n)* — (2m)* +38 ) A
oald) =~z 5 g (@ = 2 £ O(g - 2m)Y). (529

It can be seen in Case 1, that ¢ = 2n is a first order Critical point in domain (CZ,
because n > m and 7(2n)? — 4(2m)? + 8 # 0 for all n and m. In domain C,, the

point A = 4/h? is not a Critical point. In Case 1, the second term negative if
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m < n/2. In Case 2 the inequality 2(2n)* — (2m)? + 8 > 0, is valid for n > m,
too. In this case the second term is positive for all n and m. So, point ¢ = 2n

is the first order Critical point in domain (CZ, but not a Critical point in domain

Ca.

q = oo: Using Euler formula the equation (4.23) we can rewrite in the following

form:
_(emq o e—qu)(equh o e—mqh) 3 _
= - — .3
s1 (6z7rq§ + efmqﬁ — et — 6fz7rq)(4 + emqh + efmqh) h’ (O 1)
(emq o e—zwq)(equh o e—zwqh) 3 _
_ .2 .3
s2 (emqé -9 + 67““16)(4 + emqh + efmqh) h (O 2)
Then CF could be expressed in terms of w = "
_ _<w2n _ w—2n)<w _ w—l) §
Vst = (me + w72m _ w2n _ w72n)(4 + w4+ wfl) h
B _w—2n—1(1 _ w4n>(1 _ w2) § (r A )
T w e I(1 — ntem — gn-2m o pin)(1 4 dw + w?) B 9.3
B (w2n _ w—Qn)(w _ ,w—l) §
182 = (W™ —24+w?22m)(4+w+wt) h
_ w—2n—1(1 _ w4n>(1 _ ’11)2) . § (5 A )
w211 + whm — 2w2m)(1 + 4w + w?) h 2
where w € C! (see Chapter 3). We can rewrite (5.4) as
1 1+0w™)(1+0w?*)) 3 3
= — - =-0(1 5.5
L= W (T O (£ 40(w)) k- aC W (5:51)
1 (1+0w™)(1+0w?) 3 1 3
_ B 1 5.5
752 = an—om (1+ O(w*))(1 + 40 w)) L w2n—2m ho( ) (5.52)

We remind, that the ratio of - in Case 1 (or W in Case 2) describes the
properties of the point w = 0 on C! w =0 ¢ C! (see Chapter 3). In the Case
1 limy, 0 y(w) = 3/h and we have removable singularity point for all parameter £
values. So, the same Spectrum Curve enters and leaves the point w = 0 and, ad-
ditionally, there are no complex Spectrum Curves for all £ values (see Figure 4.6).
In Case 2, if m = n, then lim,_ov(w) = 3/h and we have removable singular-
ity point, too. If n — mo = 1, then the point w = 0 is the second order pole
point in C" and one real and one complex Spectrum Curve enter to w = 0 and

one real and one complex Spectrum Curves leaves the point (see Figure 4.7(b)-

(¢)). If n —my = 2 then the point w = 0 is the fourth order pole point and
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2(n — 2) complex Spectrum Curves enter and leave the point w = 0. So, in Case
2 if n > m, the the point w = 0 is pole of order even number 2(n — m) and
2(n —m) — 2 complex Spectrum Curves enter and leave this point in domain C

(see Figure 4.7-Figure 4.9).

6 Investigation of the spectrum structure

For discrete problem (4.1)—(4.2),(4.3;) complex eigenvalues do not exist as in the
case of differential problem (1.1)-(1.2;), and discrete problem (2.1)-(2.2),(2.3;)
when integral NBC was approximated using trapezoidal rule (see Figure 4.6). In
this case, there exists horizontal asymptote if v = 3/h for Real CF. If v satisfies
the condition 7 = 3/h, we have degenerate problem and there exist only n — 2
eigenvalues. For the both cases of FDS (4.1)—(4.3) grid point ¢ = 2n is not a
pole for any parameter £ value (see Figure 4.1(d)—(e), Figure 4.6(a)-(c) in Case
1 and Figure 4.3(a)—(c), Figure 4.7(a)—(c) in Case 2). So, Spectrum Curve moves
through the point ¢ = 2n. For the FDS (4.1)-(4.3), there exists one pole in R},
that does not depend on NBC’s parameter ¢ value, but depends on the number
of grid point: p = 2n +1 27” In(2 4 v/3).

In case of FDS (4.1)—(4.2), (4.35) there exist real and complex eigenvalues (see
Figure 4.7-Figure 4.9). In this case complex eigenvalues exist for all £ values. For
same parameter { values complex part of the spectrum is very complicated (see
Figure 4.9)).

After comparison of the Figure 4.7 and Figure 4.7-Figure 4.8 we can see that
increasing number of grid point makes the spectrum more similar to differential

problem (1.1), (1.2).

7 Conclusions

The spectra of FDS’s (2.1)—(2.3) and (4.1)—(4.3) in Case 1 and Case 2 are different:

e Real CF for FDS (2.1)~(2.3,) has a horizontal asymptote if v = 2. Real CF
for FDS (4.1)—(4.3;) has a horizontal asymptote if v = %
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e For discrete problem (2.1)—(2.3) we get pole at the point ¢ = n if n —m is
even in Case 1 and m is even in Case 2. In the case of problem (4.1)—(4.3)
the point ¢ = 2n is not a pole for all parameter n and m, but there exists a

pole p=2n+1 2 1n(2++/3) in R

e The point ¢ = oo for FDS (2.1)-(2.2), (2.3,) is a pole (see Chapter 3). For
discrete problem (4.1)-(4.35) the point ¢ = oo is a removable singularity
point for all £ € (0,1). Complex eigenvalues for the discrete problem (4.1)—
(4.2), (4.39) exist for all parameters n and m, m < n values, because the
point ¢ = oo is a pole of the 2(n —m) order. So 2(n —m) Spectrum Curves

enter and leave this point.

e With an increase in the value n, the spectra of FDS (2.1)—(2.3) and (4.1)-

(4.3) become more similar to that spectrum of the differential problem.
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Conclusions

During the doctoral studies at Vilnius University we have studied the SLP with
one classical and another type NBC. From the results obtained in the previous

chapters we derive the following conclusions:

e In Chapter 1 we investigate the spectrum of SLP with one integral NBC
depending on three parameters. One of our results is the classification of
poles, zeroes and CE points. The dependence of these point on the integral
BC parameters &; and & is analyzed, too. Also, we classified Critical points
and we have found trajectories (numerically) of the first order Complex
Critical points and the second order (Real) Critical points in the Phase
Space .

e In Chapter 2, the complex spectrum of the SLP with the classical or first
type BC on the left side of the interval and integral NBC of two types on
the right side of the interval was analyzed. In Case 1 and Case 1’ there
exist only real eigenvalues. In Case 2 there are two types of bifurcation:
two different Spectrum Curves intersect at the Critical point; zero and pole
points coincide with the Critical point, i.e., appears CE. In Case 2’ there
exists the second order Critical point when the loop type Spectrum Curve

intersect with other Spectrum Curves.

Also, SLP with the symmetric interval in the integral was analyzed. In this

case, the behaviour of Spectrum Curves is quite similar to Case 2’.

e In Chapter 3 dSLP with one integral NBC depending on three parame-
ters was analyzed. The integral condition was approximated by the trape-
zoidal rule. If my = n, then there exists a horizontal asymptote y(oc0) =
lim, o v(q) = % of Real CF. The number of Spectrum Curves that en-
ters and leaves the point ¢ = oo depends on msy, only. The point ¢ = n
is the first order Critical point, if my, mo and n satisfy the condition

m? +m3 = (1+ 2n?)/3.

e In Chapter 4 we have analyzed special cases of dSLP with one integral NBC.

The integral condition was approximated by trapezoidal and Simpson’s rule.
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In case of approximation by trapezoidal rule, for some parameter £ values
the point ¢ = n is a pole. In case of approximation by Simpson’s rule the
point ¢ = 2n is not a pole for any parameter £ values, but there exists the
first order pole p = 2n + 1(2n1n(2 + v/3))/7. If the number of grid point
is increasing in both cases, the spectrum becomes similar to the differential

problem.
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