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Notation 

 ANN – artificial neural network. 

 STDP – spike-timing-dependent plasticity. 

 LTD – long term depression. 

 LTP – long term potentiation. 

 PSP – postsynaptic potential. 

 EPSP – excitatory postsynaptic potential. 

 IPSP – inhibitory postsynaptic potential. 

 SRM – spike response model. 

 PDF – probability distribution function. 

 WTA – winner-take-all. 

 ϑ – neuron threshold.  

 w – synaptic strength/weight. 

 – synaptic strength factor. 

 u – membrane potential. 

 ϵ – SRM response kernel function which describes the response over time 

to an incoming spike. 

  – response kernel function which describes the action potential and 

after-hyperpolarization. 

 mean. 
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Introduction 

Motivation and the Field of Research 

The large goal in the scientific field of machine learning is to achieve human-

level cognition and eventually artificial intelligence, a thinking machine capable 

of human-level reasoning and beyond. This aspiration remains for now largely 

in the realm of science fiction, but it is the direction of and motivation for 

continuing scientific research. Spin-offs from these efforts include a large 

variety of machines which are applicable to the practical tasks of heuristic 

optimization, pattern recognition, prediction, data clustering, dimensionality 

reduction and other jobs. Machine learning is applied in multiple fields of human 

endeavor, from predicting financial trends to medical diagnosis, from 

entertainment to industrial engineering. 

There are multiple approaches for building systems which are capable of 

learning, and most of them are based on mimicking nature, such as Darwinian 

evolution, the behavior of swarms, etc. In the emulation of human-level 

cognition, there are of course attempts to mimic the behavior of the central 

nervous system.  There are two distinct approaches, one being the top-down 

approach, where principles of machine learning are based, for example, on 

assumptions about “what the brain does,” and researchers rely upon human or 

animal psychology. The most prominent example of such an approach is 

reinforcement learning, based on the behaviorist paradigm within the field of 

psychology (Sutton & Barto, 1998). Another approach is the bottom-up one 

where principles of learning are based on “how the brain works,” the physiology 

of the brain. Mimicking the behavior of neurons and artificial neural networks 

are the best example of this approach. Multiple families of artificial neural 

networks were developed which have been applied widely in practical machine 

learning, including the Perceptron, the Self-Organizing-Map and others. 

Wolfgang Maass distinguishes three generations of artificial neural networks 

(ANNs): the first generation of ANNs was based on McCulloch-Pitts neurons; 



11 

the second generation has a continuous activation function, such as a sigmoid 

function; and the third generation is spiking neural networks (Maass, 1997). 

On the subject of artificial neural networks, there are two related but very distinct 

fields of scientific inquiry, one being computational neuroscience, which is a 

branch of theoretical neuroscience which studies the function of the brain and 

the processes of structures in the brain and biological neurons; and the other 

being machine learning, which is a branch of computer science. The aim of 

neuroscience is to explain the brain, while the aim of machine learning is to build 

a practical machine. Because these are very different goals, the two fields are 

not always in agreement. As an example, the Perceptron was constructed based 

on contemporary knowledge and assumptions about the behavior of biological 

neurons, but we know now with a high degree of certainty that biological 

neurons behave quite differently. For instance, the multilayer Perceptron 

network is commonly trained by back-propagation learning. No such process 

exists in biological neurons; there is no supervised learning at all.  Despite that, 

Perceptron neural networks have been developed and researched for decades 

because they are a very useful tool for classification and prediction. On the other 

hand, a number of even prominent theories of neural learning developed in the 

field of computational neuroscience are almost completely ignored by machine 

learning because they never find a practical application. The most prominent 

examples are the Bienenstock-Cooper-Munro (BCM) theory of synaptic 

plasticity (Bienenstock et al.,1982) and Adaptive Resonance Theory (ART) 

(Grossberg, 2013). 

My dissertation belongs rightly in the field of connectionism (Elman, 1998). I 

combine the fields of neuroscience, knowledge of the plasticity of biological 

neurons and models emanating from computational neuroscience for attacking 

the problem of pattern recognition. The term connectionism was coined by 

Donald Hebb in the 1940s, and it is therefore an old and established field of 

scientific inquiry.  The subject of my research is spiking neural networks and 

spike-timing-dependent plasticity (STDP) from the perspective of the learning 



12 

of spatial and spatiotemporal patterns. STDP is a form of Hebbian learning 

discovered in biological neurons. Although models of neurons developed in the 

field of computational neuroscience can reproduce some aspects of biological 

neurons with astonishing accuracy, one cannot just take an existing model and 

apply it to real-world data: there are multiple problems associated with this, for 

example, the seemingly simple problem of how to encode data turns out to be 

far from trivial. Other problems are connected with the stability of the network 

and optima of parameters. There is a phenomenological variety of STDP 

implementations and each has its own distinct behavior. At the present time it 

remains unclear which is the most accurate, and which one is the best choice for 

a given task. Put simply, the goal of my research was to master spiking neural 

networks with STDP learning for the task of pattern recognition. In the process 

I identified a number of problems, and solved several of them. 

Objectives of Research and Problems 

The primary objective of my research was to apply STDP learning to 

spatiotemporal and spatial pattern recognition. I identified and solved problems 

as my research progressed. 

When I began my research, there were very little works done in the field. It was 

known that a specific STDP rule can act as a coincidence detector, that it can 

detect the beginning of a spatiotemporal pattern injected into Poisson noise 

(Masquelier et al., 2009; Song et al., 2000; Guyonneau et al., 2005; Gerstner & 

Kistler, 2002). Several authors have used STDP learning for character 

recognition (Gupta & Long , 2007; Nessler et al., 2009).  Interesting work has 

been done focusing on evolving networks as well (Kasabov et al., 2012;  2013). 

I began my research by repeating the experiments of Masquelier and colleagues 

(Masquelier et al. 2008; 2009). Masquelier and colleagues concentrated their 

research on spatiotemporal patterns. STDP training is incapable of creating any 

spatiotemporal memory, however, and is only capable of spatial pattern memory. 

I solved this problem by designing a multilayer neural circuit capable of learning 
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actual spatiotemporal patterns (Krunglevicius, 2011). I concentrated my 

research on the problems which I identified in implementing my circuit: the 

parameters of the neuron model can be optimized only for a certain range of 

stimulation. The amount of stimulation results from the intensity or spatial size 

of the pattern itself and from different levels of background noise. Moreover, 

spatial patterns (which can be components of spatiotemporal patterns) can be 

inclusive of one another, and STDP learning is unable to discriminate one from 

another. I solved the latter problem by designing a network circuit with distance-

dependent synaptic strength factors (Krunglevicius, 2015a). I also studied the 

problem of variable background noise and solved it with limited success by 

introducing dynamic adaptive inhibition based on an inverted STDP training 

window (Krunglevicius 2014). 

I attempted to come up with a method for predicting STDP behavior more 

accurate than those based on Poisson distribution (Izhikevich &  Desai, 2003). 

The problem is that the spike-response-model (SRM) which I use in my work 

cannot produce Poisson distributed postsynaptic spike trains. Since the SRM 

reproduces the behavior of the biological neuron quite accurately, it is safe to 

assume that this is the case in biological neurons as well. Non-Poisson 

distribution of postsynaptic spikes potentially may have completely different 

outcomes from Poisson distributed ones when dealing with STDP training. I 

attempted to use bivariate Azalini distributions for modeling the postsynaptic 

membrane potential process, but had limited success.  

In addition, by applying heuristic optimization for benchmarking the 

performance of STDP training, I discovered that the STDP triplet interaction 

function under certain conditions can perform far better than other STDP 

implementations (Krunglevicius, 2015b). This discovery implies that the triplet 

interaction rule needs more research than has been done to date.   
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Relevance 

If human-level cognition in machine learning is even achievable, it is impossible 

to predict its effect across the spectrum of human endeavors; one can only 

surmise the impact would be immense. My work is only a tiny fraction of a 

fraction of the whole problem, but does belong to the field generally. 

For now, existing computer power is insufficient to use spiking neural networks 

in practice, but it seems safe to assume this is a temporary obstacle. 

Understanding the limitations and benefits of spiking neural networks with 

respect to STDP learning is necessary before attempting to use STDP learning 

for practical applications in the future. 

Practical Value of the Research 

Although it is still premature to use STDP for practical applications, I did solve 

a few important problems associated with STDP learning. In other words, this 

work is a step forward on the way to building a practical machine. At this time, 

however, it is not possible to determine how efficient such a machine would be. 

Aim of the Research 

The main aim of the research was to improve existing competitive neural 

networks with STDP learning (Guyonneau et al., 2004; Masquelier et al., 2009) 

by implementing novel neural circuits which could learn sequences of spatial 

patterns and differentiate similar spatial patterns and to find a way to control the 

process of training so that neural network could function at different levels of 

stimulation.  

Tasks of the Research 

To achieve the main objectives of the research, I completed the following tasks: 

 Designed, implemented and tested a novel artificial neural network for 

learning long-lasting sequences of spatio-temporal patterns. 

 Designed, implemented and tested a novel artificial neural network for 

learning mutually inclusive spatial patterns. 
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 Designed, implemented and tested a novel artificial neural network for 

learning spatial patterns in a variable noise environment. 

 Experimentally compared different phenomenological models of STDP 

and determined that under certain conditions the modified triplet 

interaction model can be more much robust than competitors. 

Methods 

In my research for modeling spiking neurons I used the spike-response-model 

(Gerstner & Kistler, 2002) and a few different phenomenological models of 

STDP, including  nearest-neighbor interaction, all-to-all interaction (Morrison  

et al., 2008) and triplet interaction (Pfister & Gerstner, 2006). I implemented and 

simulated neural circuits in Matlab and C/C++ environments. 

Scientific Novelty 

I have designed a neural circuit which is capable of learning long sequences of 

spatial codes, in other words, spatiotemporal coding. It is not the first model of 

neural learning and memory based on STDP learning (Szatmáry & Izhikevich, 

2010), but I introduced a novel architecture of a multilayer WTA network which 

is capable of aggregating sequences of events. 

I designed a neural circuit for learning overlapping spatial patterns of different 

size. This is a completely new approach in spiking neural networks based on the 

assumption that length-dependent conductivity in dendrites plays a crucial role 

in controlling neural activity and learning. 

I used an inverted STDP window for dynamic inhibition when learning took 

place in conditions of variable background noise. This is a novel method. 

I discovered that under certain conditions triplet STDP interaction can perform 

better by far than a two-spike-based interaction. 
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Thesis statements 

1. There are no theoretical obstacles to using STDP training for 

spatiotemporal patterns. This supports the hypothesis of spatiotemporal 

coding in living neural systems. 

2. When applying distance-dependent factors to synaptic strengths in a 

circuit which combines vertical excitation and inhibition, it is possible to 

build a neural network which is capable of discriminating overlapping 

spatial patterns and patterns of different spatial size. This approach 

overcomes the problem of parameters for the model only being capable 

of optimization over a specific range of stimulation. 

3. It is possible to build an STDP-based neural network with adaptive 

inhibition, and thus it is possible to train it even if the amount of input 

stimulation varies over time. 

4. The STDP triplet interaction rule can lead to a more rapid and more stable 

training than usual all-to-all and nearest-neighbor interactions. 

Approbation 

The results of this thesis have been presented at a number of international 

conferences: 

 NCTA 2011 – International Conference on Neural Computation Theory 

and Applications, Paris, France; 

 BISIP 2014 - The 3rd IEEE Workshop on Bio-Inspired Signal and Image 

Processing, Vilnius, Lithuania; 

 NCTA 2014 – International Conference on Neural Computation Theory 

and Applications, Rome, Italy. 

The main results of this thesis were published in the following peer-reviewed 

journals: 

1. Krunglevicius, D. (2011). Neural Processing of Long Lasting Sequences 

of Temporal Codes - Model of Artificial Neural Network Based on a 
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Spike Timing-dependant Learning Rule. IJCCI (NCTA), 196-204. 

SciTePress, (2011). 

2. Krunglevicius, D. (2014).  STDP Learning under Variable Noise Levels. 

IJCCI (NCTA), 165-171. SciTePress, (2014). 

3. Krunglevicius, D. (2015). Competitive STDP Learning of Overlapping 

Spatial Patterns. Neural Comput, 27(8):1673-85. 

4. Krunglevicius, D. (2016). Modified STDP Triplet Rule Significantly 

Increases Neuron Training Stability in the Learning of Spatial Patterns. 

Advances in Artificial Neural Systems, 2016, 1. 

Structure of the Dissertation 

This dissertation consists of an introduction, three major sections, a conclusion 

and references. In section 1 I introduce readers to the fundamental basics of 

neuron biology relevant to my research: the physiology of the neural spike, 

known kinds of neural plasticity and concepts of neural coding. Section 2 is 

dedicated to computational neuroscience and is an overview of well-known 

computational models of the neuron and phenomenological models of STDP. 

Section 3 details my research and contains five subsections, four of them 

dedicated to corresponding thesis statements. 

My initial work is described in subsection 3.1 ”Neural Processing of Long-

Lasting Sequences of Temporal Codes.” There I indicate the problems 

associated with competitive learning in the spiking WTA circuit, in particular, 

how to adapt the training neuron to different levels of stimulation, and how to 

discriminate spatial patterns when a significant portion of these patterns overlap. 

I address these problems in subsections 3.2 “STDP Learning under Variable 

Noise Levels” and 3.3 “Competitive STDP Learning of Overlapping Spatial 

Patterns.” In subsection 3.4 I analyze some statistical properties of the spike-

response model in an attempt to predict STDP behavior. This section describes 

problems associated with predicting STDP behavior and serves both as an 

explanation and the motivation for the final part of research, subsection 3.5. 

“Modified STDP Triplet Rule Significantly Increases Neuron Training Stability 
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in the Learning of Spatial Patterns,” where I compare experimentally several 

models of STDP in the pursuit of the best candidate for improving the neural 

circuits I introduced earlier in the dissertation. 
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1. The Physiology of the Neuron and Synaptic Plasticity 

1.1. The Spike 

Action potential is an event in excitable cells such as neurons and muscle cells 

where membrane potential rises and falls rapidly. The action potential of neurons 

usually takes the form of a spike and consequently the terms spike and action 

potential of neurons are used interchangeably in the literature. In this section I 

will explain briefly the basic physiological mechanisms of the neuron spike. 

 

Figure 1.1. In this figure potassium (K+) can emerge from and enter into the cell 

through the K+ channel.  Currents of potassium (K+) ions are caused by concentration 

and electrical gradients. Diffusion pushes K+ ions from the cell while the electrical field 

pushes K+ ions back into the cell. If these two K+ currents are equal, the cell is at 

potassium equilibrium potential. The sodium-potassium pump pumps sodium out of 

cells and potassium into cells in opposition to their concentration gradients.   

Membrane potential is the difference in electric potential between the interior 

and exterior of a eukaryotic cell. Eukaryotic cells are surrounded by a membrane 

composed of a lipid bilayer and various embedded proteins. Membrane potential 

is caused by different concentrations of positive and negative ions throughout 

the membrane. Inside the cell there is a number of large negative ions called 

anions which are incapable of passing through the cell membrane. Anions 

originate from a variety of sources, for example, from amino acids and proteins.  
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The membrane allows the passage of small ions. The most important ions are 

potassium (K+), sodium (Na+) and chloride (Cl-) ions. There is a higher 

concentration of potassium ions on the inside of the membrane than on the 

outside. Likewise, there is a higher concentration of sodium and chloride on the 

outside (Kevelaitis et al. 2006). The difference in potassium (K+) and sodium 

(Na+) concentrations is caused mostly by the action of a sodium-potassium 

pump. The sodium-potassium pump is an enzyme which pumps sodium out of 

and potassium into cells (Figure 1.1). Ion currents emanating from the cell and 

entering into the cell occur due to two forces: diffusion, caused by the gradient 

of concentration; and the electric field. 

Different concentrations of ions inside and outside the cell cause concentration 

gradients, that is, ions tend to move towards lower concentrations due to 

diffusion. When the current of a particular ion caused by diffusion is equal to the 

current caused by the electric field, the cell is at the equilibrium potential for that 

particular ion. Equilibrium potentials can be derived from the Nernst equation: 

௫ܧ = ܴ ∙ ݖܶ ∙ ܨ ∙ ݈݊ [ܺ௢௨௧][ ௜ܺ௡]  (1.1) 

 R - the ideal gas constant (8.3 J/K∙ mol); 

 T –temperature in Kelvin; 

 z - number of moles of electrons; 

 F- the Faraday constant (96,500 C/mol); 

 [Xout] – concentration of ion X outside the cell; 

 [Xin] – concentration of ion X inside the cell; 

The potassium equilibrium potential for cells of warm-blooded animals is 

approximately EK=-100 mV and that for sodium is approximately ENa=+65 mV. 

The mechanism of action potential has been explained by Hodgkin and Huxley 

(Hodgkin & Huxley, 1952).  Action potential happens due to the activation of 

voltage-gated ion channels which allow ions to cross the membrane. Ion 
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channels are mostly selective to a single type of ion. Voltage-gated Na+ ion 

channels and similar gates have three states: deactivated (not conductive), 

activated (conductive) and inactived (not conductive). During action potential, 

these voltage-gated channels progress through the cycle 

deactivated→activated→inactivated→deactivated (Figure 1.2).  

 

Figure 1.2. States of the voltage-gated sodium channel during action potential. 

Drawing based on Lehmann-Horn & Jurkat-Rott, 1999. 

Neuron membrane resting potential typically is -70 mV  (Kevelaitis et al. 2006). 

If the membrane is stimulated and potential reaches the threshold value which is 

above resting potential, it causes action potential to fire (see Figure 1.3). Action 

potential follows the all-or-nothing rule, that is, if the threshold is reached it 

causes action potential, and if the threshold is not reached there is no action 

potential. The threshold value of membrane potential activates voltage-gated 

Na+ ion channels. This causes Na+ ions to flow into the cell. This changes the 

concentration of positively charged cations in the cell and increases membrane 

potential. This phase of action potential is called depolarization. Potassium 
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current pushes membrane potential towards ENa equilibrium potential. At the 

beginning of depolarization K+ channels also open and this causes K+ ions to 

flow outward from the cell. At the peak of depolarization Na+ and K+ are equal 

and therefore total ionic current is 0. Right after depolarization Na+ current 

decreases and stops, due to voltage-gated Na+ ion channels entering the inactive 

state, while K+ current continues and increases.  The K+ current decreases 

membrane potential, and this phase of action potential is called repolarization. It 

is typical for most neurons that after repolarization membrane potential falls 

below resting potential (the membrane is hyperpolarized) towards sodium 

equilibrium potential EK, and only then gradually returns to normal. This phase 

is called afterhyperpolarization (Purves et al. 2012). 

 

Figure 1.3. Phases of action potential. Drawing based on Kevelaitis et al. 2006. 

From the moment of depolarization and until voltage-gated Na+ ion channels 

return to the deactivated state, the neuron is in the refractory period. This means 

that no additional increase of membrane potential can cause action potential. 

During the afterhyperpolarization phase the neuron is in the relative refractory 

period, when greater stimulus is required to cause action potential. 



23 

1.2. Postsynaptic Potentials and Synapses 

The neuron membrane is an excitable medium for action potential to propagate: 

it occurs locally and then propagates across the entire membrane. When the 

action potential reaches chemical synapses at the axon terminals of the neuron, 

it triggers the release of a quantity of chemical messengers called 

neurotransmitters into the synaptic gap. Neurotransmitters interact with 

receptors located on the receiving (postsynaptic) side of the synapse. This 

interaction opens selective ion channels for a brief moment of time and 

consequently ionic currents occur in the membrane of the postsynaptic neuron. 

What sort of ion channels open depends on the type of neurotransmitter and the 

type of receptor. Whether the ionic current is negative or positive depends upon 

which kinds of ions are allowed to flow and the type of ion. If the ionic current 

depolarizes the membrane this depolarization is excitatory because it facilitates 

the firing of action potential. Such a brief increase of membrane potential is 

called excitatory postsynaptic potential (EPSP). If ionic current hyperpolarizes 

the membrane, the result is the opposite: this makes it harder for the neuron to 

fire. Such brief decreases in membrane potential are called inhibitory 

postsynaptic potentials (IPSPs). Put simply, EPSPs and IPSPs have opposite 

polarity and may cancel each other out. A neuron always releases the same kind 

of neurotransmitters, whether just one or a mixture of several. Both presynaptic 

and postsynaptic neurons define the type of the synapse. Synapses may be 

inhibitory or excitatory but can never change their function (Kevelaitis et al. 

2006). 

The amplitude and duration of individual postsynaptic potential (PSP) can be 

defined by the synaptic strength or the synaptic weight. In the literature strength 

and weight are often used interchangeably. Synaptic strength depends on the 

amount of neurotransmitters being released, the density of postsynaptic 

receptors and other factors such as neurotransmitter reuptake. Reuptake is the 

job of the presynaptic neuron which pumps back some of the neurotransmitters 

it has released (Kandel et al., 2000). 
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It is interesting to note that not all neurons produce action potentials and release 

quantities of neurotransmitters. Neurons of Ascaris, a nematode, for example, 

seem to release neurotransmitters topically and do not fire spikes (Davis & 

Stretton, 1989). 

Individual PSPs propagate through the membrane and are summed when they 

meet. There are two important factors which are caused by membrane electrical 

conductivity and capacity. One is that PSP typically decays exponentially when 

moving further away from the place of origin. It is a function of the length 

constant  (Kandel et al., 2000). The length constants of different neurons 

typically range from 0.1 to 5 mm (Kevelaitis et al. 2006). In the literature  is 

also called the electronic length constant: Δܸሺݔሻ = ∆ ଴ܸ ∙ ݁−௫/ఒ (1.2) 

where x is the distance and V0 is the change of membrane potential at the point 

x=0. 

Another important factor is membrane time constant  which defines the time 

necessary for the membrane to charge or discharge during the propagation of 

PSPs. The time constant  corresponds to the time taken to reach 63% of its final 

voltage. The time constants of different neurons typically range from 20 to 50 

ms (Kandel et al., 2000).   

The implication of the length constant is that the closer synapses are, the larger 

the summed value is, and therefore the proximity of synapses facilitates action 

potential and vice versa. The implication of the time constant is that the closer 

PSPs are correlated in time, the higher the probability for causing action 

potential to fire.  

It must be noted, however, that propagation of postsynaptic potential in dendrites 

is a highly complex process; there are multiple non-linearities caused by the 

morphology of dendrites and likely other properties of the cell as well (van 

Elburg & van Ooyen, 2010). 
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Chemical synapses can by classified by their location. Axosomatic synapses are 

located directly on the soma of the postsynaptic neuron; axodendritic synapses 

on postsynaptic neuron dendrites and axo-axonic synapses are located at the 

terminus of the axon of the postsynaptic neuron (Figure 1.4). 

 

Figure 1.4. Synapses classified by location on the postsynaptic neuron. This schematic 

does not include all types of synapses, for example, there are axo-extracellular synapses 

which emit neurotransmitters into extracellular fluid and axo-secretory synapses which 

emit neurotransmitters into the bloodstream. 

Besides chemical synapses, there are electrical synapses called gap junctions. 

Gap junctions directly connect the cytoplasm of two cells (Lampe & Lau, 2004). 

Besides many other known functions, gap junctions enable electrical coupling 

between cells, that is, PSPs and action potential can travel from one cell to 

another, enabling synchronous firing (Kandel et al., 2000). 

1.3. Synaptic Plasticity 

Synaptic plasticity is the ability of synapses to change synaptic strength over 

time. It is a postulate of Hebbian theory that memories are represented by 

networks of synapses in the brain, and thus synaptic plasticity is the main 

function involved in learning and memory. In this section I briefly introduce 

different kinds of synaptic plasticity. This section emphasizes spike-timing-

dependent plasticity (STDP), which is the primary subject of my research. 

Synaptic plasticity may be short-term, persisting from several milliseconds to a 

few minutes, and long-term, lasting from minutes to hours or longer. It is 
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important to note that the properties of plasticity itself may change over time; 

this kind of plasticity is referred to as metaplasticity (Abraham and Bear, 1996).  

Another important kind of synaptic plasticity is homeostatic plasticity. 

Homeostatic plasticity is a compensatory adjustment of synaptic strengths which 

allows the neuron to regulate its own activity relative to the activity of the 

surrounding network. Homeostatic plasticity operates on a timescale of days 

(Turrigiano & Nelson, 2004; Surmeier & Foehring, 2004). 

Short-term plasticity may increase the probability of the release of 

neurotransmitters in response to a presynaptic spike. Such increases in synaptic 

strength may occur due to an increase in the quantity of packaged 

neurotransmitters or an increase in the size of the pool of readily releasable 

packaged neurotransmitters (Stevens & Wesseling, 1999).  

A short-term decrease in synaptic strength is called synaptic fatigue. It is usually 

caused by depletion of neurotransmitters in vesicles, but can be caused by other 

presynaptic or postsynaptic processes (Zucker et al., 2002).  

 

Figure 1.5. Homosynaptic and heterosynaptic plasticity. a: Homosynaptic plasticity. 

Activity of the presynaptic neuron causes synaptic strength to change. b: 

Heterosynaptic plasticity. Activity by one presynaptic neuron alters the synaptic 

strength of the synapse of an idle neuron. c: Heterosynaptic plasticity in an axo-axonic 

synapse. 

Long-term plasticity either increases or decreases synaptic strength. Long-term 

increases of synaptic strength are referred to as long-term potentiation (LTP), 

while long-term decreases are referred to as long-term depression (LTD). LTP 

and LTD can result from an increased or decreased density of postsynaptic 

glutamate receptors (Malinow & Malenka, 2002), changes in glutamate receptor 



27 

function itself (Benke et al., 1998) or changes in the quantity of neurotransmitter 

released (Weisskopf & Nicoll, 1995). Long-term plasticity can be either 

homosynaptic or heterosynaptic (Figure 1.5). Homosynaptic plasticity requires 

activity by a presynaptic neuron (Figure 1.5a), whereas in heterosynaptic 

plasticity a presynaptic neuron may be idle with plasticity triggered by the 

activity of another presynaptic neuron (Figure 1.5b). Heterosynaptic plasticity is 

known to be triggered by a number of neurotransmitters, with serotonin and 

dopamine notable among them (Bailey et al., 2000). Dopamine plays an 

important role in learning, motivation and the reward system (Wise, 1996). Thus 

it is reasonable to assume heterosynaptic plasticity facilitates reinforcement in 

learning. The heterosynaptic plasticity of axo-axonic neurons (Figure 1.5c) was 

the first kind of synaptic plasticity discovered, in the sea slug Aplysia californica 

(Purves et al. 2012). 

1.4. Spike-Timing Dependent Plasticity 

Spike-timing-dependent plasticity is the main subject in my research. STDP is a 

kind of long-term homosynaptic plasticity. It is a function of the time difference 

between presynaptic and postsynaptic spikes which regulates the amount of 

change in synaptic strength. STDP learning windows typical for excitatory-to-

excitatory synapses (Figure 1.6) were discovered relatively recently, and the first 

experiments with precisely timed pre- and postsynaptic spikes at a one-

millisecond temporal resolution were performed by Markram and colleagues 

(Markram et al., 1995, 1997), followed later by other researchers (Bi & Poo 

1998, Debanne et al. 1998, Magee & Johnston 1997, Zhang et al. 1998). Later 

still (Caporale & Dan, 2008) the rule (Figure 6)  was observed in a wide variety 

of biological neural systems (Boettiger & Doupe, 2001; Cassenaer & Laurent, 

2007; Egger et al., 1999; Feldman, 2000; Froemke & Dan, 2002; Sjostrom et al., 

2001, Tzounopoulos et al., 2004). 



28 

 

Figure 1.6. STDP function. Markers represent the change in synaptic efficiency in a 

rat hippocampal neuron. Here EPSP is an excitatory postsynaptic current. Data points 

redrawn from Bi and Poo (1998). Lines are only an approximation of the experimental 

data. 

A variety of other STDP rules have been discovered for different types of 

synapses.  Figure 1.7 is a comparison of two known STDP rules for excitatory-

to-excitatory synapses. Figure 1.7a is the same rule as in Figure 1.6. Figure 1.7b 

is an STDP rule observed in CA1 neurons (Nishiyama et al., 2000; Wittenberg 

& Wang, 2006).   

 

Figure 1.7. Known STDP rules for excitatory-to-excitatory synapses.  Drawing based 

on Caporale and Dan (2008). 

Excitatory-to-inhibitory synapses seem to show an inverted STDP window when 

compared to excitatory-to-excitatory synapses. Figure 1.8a is an STDP rule 
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found in Purkinje-like GABAergic neurons of Mormyridae electric fish. A 

similar rule, but with LTP absent, has been observed in mouse cartwheel neurons 

(Tzounopoulos et al., 2004, 2007). 

 

Figure 1.8. Known STDP rules for excitatory-to-inhibitory synapses. Drawing based 

on Caporale and Dan (2008). 

There are several STDP rules for GABAergic inhibitory synapses which are 

quite dissimilar to one another. This likely indicates a variety of neural inhibition 

functions (Figure 1.9). Figure 1.9a. illustrates an STDP rule for inputs of 

neocortical L2/3 pyramidal neurons (Holmgren & Zilberter, 2001). Figure 1.9b 

is a symmetric STDP window observed in the hippocampus, GABAergic 

synapses to CA1 pyramidal neurons (Woodin et al., 2003). Figure 1.9c is a rule 

observed in the entorhinal cortex (Haas et al., 2006). 

 

Figure 1.9. Known STDP rules for inhibitory-to-excitatory synapses. Drawing based 

on Caporale and Dan (2008). 

It must be emphasized that the STDP learning windows discussed briefly above 

are just approximations of experimental data. There are multiple observed non-

linearities (Sjostrom et al., 2001; Wang et al., 2005). Some STDP rules depend 

not only on the type of the synapse, but also on the location on the dendrite, it 
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seems (Caporale & Dan, 2008) (Figure 1.10). Time constants for STDP decay 

and amplitude can vary along the dendrite (Froemke et al. 2005) (Figure 1.10a). 

It was also observed that in some synapses located away from the soma some 

neurons had a different STDP window polarity than in synapses closer to the 

soma. This has been observed in the visual cortex (Figure 1.10b)  (Sjostrom & 

Hausser 2006) and the barrel cortex (Figure 1.10c)  (Letzkus et al. 2006).  

 

Figure 1.10. STDP dependence on dendrite location. Drawing based on Caporale and 

Dan (2008). 

1.5. Neural Coding 

The central nervous system receives input stimuli via the sensory systems and 

processes the data further. The data are encoded in sequences of action 

potentials, also referred to as spike trains. Some sensory systems, touch for 

example, have been studied intensively, and we understand the meaning of the 

spike trains, that is, we understand how sensory data are encoded. This is not the 

case in general, however, especially when we look at neural communications 

inside the brain. Neuroscientists are only just beginning to understand how to 

decode spike trains. At this time the actual neural “language” is not understood. 
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In this section I discuss two major paradigms of neural coding: rate coding and 

temporal coding. I will omit discussion of neural coding schemes which are not 

directly part of my research. 

1.5.1. Rate Coding 

The rate-coding model assumes that the frequency of spikes or count of spikes 

in a specific temporal window encodes information. Since a single spike 

typically takes approximately one millisecond, the rate code is typically a value 

in the range of from 0 to 1 kHz. In rate coding, any temporal structure in the 

spike train is ignored. This makes rate coding very robust to noise. 

Rate coding was discovered almost a century ago by Adrian and Zotterman 

(Adrian  & Zotterman, 1926). Since then it has been confirmed in most sensory 

systems (Kandel et al., 2000). For decades rate coding was a standard tool for 

describing neural communications. Rate coding coincides perfectly with many 

concepts of artificial neural networks in machine learning such as the 

Perceptron, the Self-Organizing Map and etc., where neuron input and output 

values can simply be a real number. 

 

Figure 1.11. Mechanosensory coding of touch stimulus in the skin. The bottom curve 

represents the depth of the indentation of the skin, the spike patterns represent 

responses of different mechanoreceptors located in the skin. SAII is the Ruffini ending, 

SAI is Merkel’s disk, RA is Meissner's corpuscle and PC is the Pacinian corpuscle. 

Adapted from Kevelaitis et al. (2006). 

One of the best examples of rate coding is the output from mechanosensory 

receptors in the skin (Figure 1.11). Mechanoreceptors of the skin are classified 
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by their adaptation speed. There are receptors which are slowly adapting (SA) 

and rapidly adapting (RA). Slowly adapting receptors are Merkel’s disks (SAI) 

and Ruffini endings (SAII). In Figure 1.11 we see Merkel’s disks and Ruffini 

endings are active over the duration of the stimulus. Meissner's corpuscles are 

rapidly adapting receptors and they respond to the velocity of the stimulus. 

Acceleration of stimulus is detected by Pacinian corpuscles, classified as very 

rapidly adapting receptors (Kevelaitis et al. 2006). 

In recent years multiple experimental findings have suggested the rate coding 

approach might be too simplistic to explain data processing in the brain (Stein 

et al., 2005). There is evidence, for example, that rate coding alone cannot 

account for the efficiency of information transmission in some biological neural 

systems (Gerstner et al., 1996; van Rullen & Thorpe, 2001). 

1.5.2. Temporal Coding 

When information is encoded in the precise timing of the spike or in high 

frequency fluctuations of firing rate, this is often referred to as a temporal coding 

(Dayan & Abbott, 2001). A number of studies have discovered evidence that 

precise spike timing is a significant element of neural coding (Butts et al., 2007; 

Kayser et al. 2009; Thorpe, 1990). 

 

Figure 1.12. Examples of neural coding schemes. 

In Figure 1.12 four neurons in parallel produce four spike trains. Spikes may be 

measured across a specific temporal window, resulting in rate coding. On the 

other hand, the temporal window may be converted to logical bits by dividing 

the temporal window into smaller units resulting in a 1 if a spike occurred or a 0 
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if the spike has not occurred.  This kind of interpretation is called temporal 

coding. In the case of rate coding, spike trains 0110 and 0101 have the same 

value, 2, but in temporal coding these two spike trains can encode two different 

values. When multiple temporal patterns are combined into a single pattern, it is 

called a spatiotemporal pattern. A single frame of the spatiotemporal pattern is 

called a spatial pattern. 

A special case of temporal coding is rank-order coding, where information is 

encoded in the order of spikes arriving from ranked neurons. In this case, the 

exact latency at which a neuron fires is not critical, and only the rank order of 

each neuron is important (Gautrais & Thorpe, 1998). 

1.5.3. Phase-of-Firing Code 

Phase-of-firing code is a neural coding scheme which combines oscillations in 

the neural system with spike firing times or firing rate. Oscillations could be 

waves in the central nervous system such as alpha waves, or oscillations in 

external stimuli. Phase-of-firing code takes into account the timing of the spike 

in relation to the phase of oscillation by labeling spikes according to phase 

(Montemurro et al. 2008; Fries et al., 2007; Kayser et al. 2009). 

 

Figure 1.13. Schematic representation of phase-of-firing code. Drawing based on study 

of the auditory cortex of primates, adapted from Kayser et al. (2009). At the phases of 

stimuli denoted by solid lines neurons produce spatial patterns, but at phases denoted 

by dashed and dotted lines neurons do not produce a persistent pattern although the 

firing rate is persistent.  

Strong evidence has been found of phase coding in the visual cortex (Havenith 

et al., 2011) and auditory cortex (Kayser et al. 2009). 
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1.5.4. Population Coding 

Under the concept of population coding, the brain encodes information in joint 

activity by populations of neurons. Yet again population coding may involve a 

combination of firing rates in a population, or it may be a temporal code, where 

information is encoded in correlations between spike trains of different neurons. 

In such cases spatial or spatiotemporal patterns are examples of population 

coding. 

At the moment, population coding is the most accurate method for decoding 

information from neural activity. Pasley and colleagues (Pasley et al., 2012), for 

example, successfully reconstructed human speech from neuron activity in the 

non-primary auditory cortex. Researchers used 15 patients who were undergoing 

neurological procedures for epilepsy or brain tumor treatment. This allowed 

placing multi-electrode arrays over the lateral temporal cortex and recording the 

activity of populations of neurons. 

Temporal population coding, or spatial and spatiotemporal temporal patterns, is 

the primary subject of my research. It has been hypothesized that spike-timing-

dependent plasticity of excitatory-to-excitatory synapses (see section 1.4 

“Spike-Timing Dependent Plasticity”) is a confidence detector (Abbott & 

Nelson, 2000), in other words it is capable of detecting correlations between 

multiple spike trains. It has been demonstrated in multiple studies (Masquelier 

et al., 2008, 2009; Song et al., 2000; Guyonneau et al., 2005) that STDP is 

capable of learning spatiotemporal patterns and detecting the beginning of such 

patterns even if the occurrence of such patterns is not periodic (Masquelier et al., 

2008, 2009). 
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2. Phenomenological Models of Spiking Neuron and Synaptic 

Plasticity 

2.1. Spiking Neuron Models 

2.1.1. Hodgkin-Huxley Model 

Hodgkin and Huxley (Hodgkin & Huxley, 1952) experimented with the giant 

axon of the squid. Giant squid axons reach up to 1 mm in diameter, a real gift of 

nature to researchers. Hodgkin and Huxley discovered three different types of 

ionic currents: sodium, potassium and the leak current which consisted mostly 

of chlorine (for further details see section 1.1 “The Spike”). Hodgkin and Huxley 

developed the model of the spiking neuron based on their findings. They 

received the 1963 Nobel Prize in Physiology and Medicine for this work. 

 

Figure 2.1. Components of the Hodgkin–Huxley model 

Hodgkin-Huxley is a detailed neural model which allows for the modeling of 

different ion channels. Although this model is quite old and rather complex, it is 

still used today. It has been improved and extended in multiple ways (Forrest, 

2014; Pakdaman 2010). The Hodgkin-Huxley model is also an important 

reference model for the derivation of simplified neuron models. In this section I 

briefly describe the original Hodgkin-Huxley model without going into too 

much details, since I don’t use it directly in my work. An understanding of the 

Hodgkin-Huxley neuron is critical, however, for understanding simplified and 
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formal models of the spiking neuron. This explanation of the model is based on 

Gerstner and Kistler (Gerstner & Kistler, 2002). 

The Hodgkin-Huxley model can be portrayed as the electronic circuit depicted 

in Figure 2.1. When input current I is injected into the cell, it either charges 

capacitor C, which represents a lipid bilayer, or the input current leaks through 

ion channels R, K or Na. Here K represents the potassium ion channel, Na the 

sodium ion channel and R a leakage channel of unspecified ions with resistance 

R. Thus at the moment of time t, the input current might be split into: 

�ሺݐሻ = �஼ሺݐሻ +∑�௞௞ ሺݐሻ (2.1) 

where IC is the capacitive current which charges capacitor C and Ik are the 

components which pass through the ion channels. Capacitive current may be 

expressed as IC =C du/dt. Hence: 

� dݑdݐ = �ሺݐሻ −∑�௞௞ ሺݐሻ (2.2) 

All channels can be characterized by their resistance or by their conductance g. 

The conductivity of the leaky channel is voltage independent and is simply 

gL=1/R.  Sodium and potassium ion channels are voltage-gated (for more details, 

see section 1.1 “The Spike”). If the sodium and potassium channels are open, 

they transmit currents with maximal conductance gNa and gK. The voltage-gated 

ion channels, however, are not always open. The probability of the channel being 

open is described by additional variables m, n and h. The sodium (Na+) voltage-

gated channel has three states: deactivated, activated and inactived. Therefore it 

requires two variables to describe probability: m and h. For the potassium (K+) 

voltage-gated channel Hodgkin and Huxley used the single variable n, that is, 

the channel can be in one of two states: active or closed. In other words, the 

potassium channel lacks an inactive state. It can be noted that we now know 

there are potassium channels which do have an inactived state as well (Kevelaitis 
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et al., 2006). In the original Hodgkin-Huxley model this property is ignored, and 

thus the sum of ionic currents is expressed by: 

∑�௞௞ = ݃��݉ଷℎሺݑ − ሻ��ܧ + ݃௄݊ସሺݑ − ௄ሻܧ + ݃௅ሺݑ −  ௅ሻ (2.3)ܧ

where the parameters ENa, EK and EL are reversal potentials. The values of 

conductance and reversal potentials are empirical parameters. Table 2.1 has the 

original values reported by Hodgkin and Huxley. 

Table 2.1. The parameters for the Hodgkin-Huxley equation. 

x Ex 

(mV) 

gx 

(mS/cm2) 

Na 115 120 

K -12 36 

L 10.6 0.3 

 

The variables m, n and h are called gated variables. They are dimensionless 

quantities between 0 and 1 and they evolve according to the differential 

equations: ݀݉݀ݐ = ሻሺͳݑ௠ሺߙ − ݉ሻ −  ሻ݉ݑ௠ሺߚ

ݐ݀݊݀ = ሻሺͳݑ௡ሺߙ − ݊ሻ −  ሻ݊ݑ௡ሺߚ

݀ℎ݀ݐ = ሻሺͳݑℎሺߙ − ℎሻ −  ሻℎݑℎሺߚ

(2.4) 

 

where  and  are empirical functions which were originally fitted by Hodgkin 

and Huxley to the data from the giant axon of the squid: 
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ሻݑ௡ሺߙ = Ͳ.ͳ − Ͳ.Ͳͳݑ ݁ଵ−଴.ଵ௨ − ͳ ሻݑ௠ሺߙ   ; = ʹ.ͷ − Ͳ.ͳ݁ݑଶ.ହ−଴.ଵ௨ − ͳ =ሻݑℎሺߙ   ; Ͳ.Ͳ7e−଴.଴ହ௨; ߚ௡ሺݑሻ = Ͳ.ͳʹͷe−଴.଴ଵଶହ௨; ሻݑ௠ሺߚ     = Ͷe−଴.଴ହହହହହ௨; =ሻݑℎሺߚ    ͳ݁ଷ−଴.ଵ௨ + ͳ 

(2.5) 

 

 

Figure 2.2. Periodic spikes of the Hodgkin-Huxley model in response to constant input 

current I. 

Figure 2.2 shows the response of the Hodgkin-Huxley model to a constant input 

current. We see a spike train with each spike followed by the 

afterhyperpolarization phase. By changing the value of the input current, the 

frequency of spikes increases or decreases correspondingly. Within a certain 

range of low input current, the neuron only fires once. Constant input is just the 

simplest example of the Hodgkin-Huxley model's behavior. Multiple 

biologically plausible effects can be achieved by manipulating the input current. 

Detailed neuron models such as the Hodgkin-Huxley model are capable of 

reproducing electrophysiological measurements to a high degree of accuracy. 

Such models are complex, however, and that makes them more difficult to 

analyze. Simple phenomenological spiking neuron models are more popular in 

the study of network dynamics, neural coding and memory (Gerstner & Kistler, 

2002). Neural coding is the primary subject of my work, and not surprisingly my 

choice of research subject was a formal neural model. In subsequent sections I 
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will briefly introduce two formal models of the spiking neuron: the leaky 

integrate-and-fire and the spike response model. In my work I have used the 

spike response model, which is a generalization of the leaky integrate-and-fire 

neuron.  

2.1.2. The Leaky Integrate-and-Fire Model 

The leaky integrate-and-fire neuron model is probably the best known model of 

the formal spiking neuron (Gerstner & Kistler, 2002). Integrate-and-fire neurons 

can be stimulated by external current or by the modeling of synaptic inputs from 

presynaptic neurons. 

 

Figure 2.3. Schematic diagram of the leaky integrate-and-fire neuron model. 

The basic circuit of leaky integrate-and-fire is composed of capacitor C and 

resistor R (Figure 2.3). The driving current is a sum of resistive current IR which 

passes through linear resistor R and current IC which charges capacitor C. Thus  �ሺݐሻ = ��ሺݐሻ + �஼ሺݐሻ (2.6) 

 

IR can be calculated using Ohm’s law IR=u/R; from the definition of capacity 

C=q/u, where q is the charge and u is the voltage, so that capacitive current is 

IC=C du/dt. Thus: 
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�ሺݐሻ = ሻܴݐሺݑ + � ݐݑ݀݀  (2.7) 

 

The standard form of the leaky integrate-and-fire neuron is obtained from 

equation (2.7) by introducing the time constant m=RC and multiplying the 

equation by R: 

�௠ ݐݑ݀݀ = ܴ�ሺݐሻ −  ሻ (2.8)ݐሺݑ

 

The spike in the leaky integrate-and-fire neuron is a formal event, it is not 

described explicitly. The spike is characterized by firing time t(f) which occurs 

when voltage reaches the threshold ϑ. So the threshold criterion is u(t(f))=ϑ (see 

Figure 2.3). Immediately after the spike, potential is reset to a new value, ur < 

ϑ.  

 

Figure 2.4. Periodic spikes of leaky integrate-and-fire model in response to constant 

input current I=1.5. Resistance R was set to 1, m=10, threshold ϑ=1, and reset potential 

ur=0. 

In the case of a constant input current I0, assuming that the spike occurred at t= 

t(1) with initial conditions u(t(1))= ur = 0, the solution for equation (2.8) is: 

ሻݐሺݑ = ܴ�଴ ቆͳ − ݁−௧−௧ሺభሻ�೘ ቇ (2.9) 
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It is easy to understand the behavior of equation (2.9). Membrane potential 

approaches the value RI asymptotically. If RI is less than the threshold value ϑ, 

the neuron will never spike. If RI>ϑ, then the neuron fires periodically (Figure 

2.4). 

In the case of time-dependent stimulus I(t), the solution for equation (2.8) is: 

ሻݐሺݑ = ௥݁−௧−௧బ�೘ݑ + ͳ� ∫ ݁− ௦�೘ ∙ �ሺݐ − ௧−௧బݏሻ݀ݏ
଴  (2.10) 

where t0 is the time of the occurrence of the spike. This expression describes the 

membrane potential for t>t0 and is valid until the occurrence of the next spike. 

If membrane potential reaches the threshold u(t)=ϑ, membrane potential is reset 

to ur and integration restarts (see Figure 2.5). 

 

Figure 2.5. Periodic spikes of leaky integrate-and-fire model in response to a time 

dependent input current I=1.5 + 2sin(5t). Resistance R was set to 1, m=10, threshold 

ϑ=1 and reset potential ur=0. 

As mentioned at the beginning of this section, the leaky integrate-and-fire 

neuron can be stimulated by modeling synaptic inputs from presynaptic neurons. 

In other words, we can organize leaky integrate-and-fire neurons into a neural 

network. In this case input current I(t) is generated by the activity of presynaptic 

neurons. In the network each presynaptic spike generates a postsynaptic current 

pulse, and I(t) is the sum of all current pulses. Thus:  

�௜ሺݐሻ ݐቀߙ∑௜௝ݓ∑= − ௝ሺ௙ሻቁ ௙௝ݐ  (2.11) 
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where wij is the strength of the synapse from presynaptic neuron j to postsynaptic 

neuron i. The usual choice (Gerstner & Kistler, 2002) for  would be a Dirac 

delta function: ߙሺݐሻ =  ሻ (2.12)ݐሺ�ݍ

where q is the total charge injected into the postsynaptic neuron when synaptic 

strength is wij= wmax. A more realistic approach is where postsynaptic current  

has a duration with exponential decay: 

ሻݐሺߙ = ௦�ݍ ∙ ݁− ௧�ೞ ∙  ሻ (2.13)ݐሺߠ

where  is the Heaviside step function with (t)=1 when t>0 and otherwise 

(t)=0; time constant s defines the slope of exponential decay. Even more 

realistic functions of  include an exponential rise time r and transmission delay 

ax: 

ሻݐሺߙ = ௤�ೞ−�ೝ ቆ݁−೟−∆���ೞ − ݁−೟−∆���ೝ ቇߠሺݐሻ. (2.14) 

In the literature exponential functions such as (2.13) and (2.14) are often called 

-functions (Gerstner & Kistler, 2002). 

It is important to note that I used function (2.14) with ax = 0 and q=s - r as a 

standard function in my work. 

In this section I have described just the basic model of the leaky integrate-and-

fire neuron; there are multiple extensions (Abbott & Vreeswijk, 1993; 

Ermentrout, 1996; Feng, 2001; Hansel & Mato, 2001; Latham et al., 2000). 

2.1.3. Spike Response Model 

The Spike Response Model (SRM) is a generalization of the leaky integrate-and-

fire neuron. As with integrate-and-fire neurons, SRM action potentials are fired 

when the membrane potential surpasses a threshold value. In contrast to the 
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leaky integrate-and-fire model, the SRM model includes a phase of relative 

refraction. Another difference is that integrate-and-fire models are formulated 

using differential equations while the Spike Response Model is formulated using 

filters. 

In the SRM model the state of the neuron i is described by the single variable ui. 

The neuron can be stimulated by input spikes or an external driving current I. In 

the absence of input stimulation, the neuron is at its rest potential ui=0. Each 

incoming spike or pulse of injected current I will perturb ui and it will take time 

until ui returns to rest potential 0. The course of ui is given by:  ݑ௜ሺݐሻ = ݐሺߟ − ݐ௜௝∑߳௜௝ቀݓ∑+଴ሻݐ − ,଴ݐ ݐ − ∫+௝ሺ௙ሻቁ௙௝ݐ ݐሺߢ − ,଴ݐ ݐሻ�ሺݏ − ∞ݏሻ݀ݏ
଴  

(2.15) 

  – response kernel function which describes the action potential and 

afterhyperpolarization; 

 wij - synaptic strength; 

 t0 – time of the last spike of postsynaptic neuron i; 

 tj
(f) – times of spikes of presynaptic neurons j; 

 ϵ – response kernel function which describes the response over time to an 

incoming spike; 

  - response kernel function which describes voltage response to injected 

current, also called the linear filter. 

 

If the value ui reaches threshold ϑ a postsynaptic potential is triggered and t0 is 

reset to the current time. In contrast to the leaky integrate-and-fire neuron 

discussed in the previous section (see section 2.1.2 “The Leaky Integrate-and-

Fire Model”), the threshold value ϑ is not necessarily fixed and may also depend 

on t-t0. 
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The external driving current I and the  kernel function are typically used to fit 

the SRM model to the empirical data when a living neuron is being injected with 

a known current. The Spike Response Model can reproduce the behavior of the 

biological neuron with remarkable accuracy (Jolivet et al., 2006). When 

implementing a neural network by stimulating a neuron with input spikes from 

presynaptic neurons, however, the external driving current can be ignored. For 

the ϵ kernel we can use the alpha functions discussed in the previous section (see 

section 2.1.2 “The Leaky Integrate-and-Fire Model”). The kernel  describes the 

action potential and afterhyperpolarization. Alternatively, 

afterhyperpolarization can be mimicked using the  kernel (Gerstner & Kistler, 

2002). 

 

 

Figure 2.6. Example of the Spike Response Model. 

Figure 2.6 is a schematic example of the Spike Response Model. In this diagram 

the external drive current is omitted; the ϵkernel is the alpha function ϵ=exp(-

t/s)-exp(-t/r) and the  kernel is =2exp(-t/)-exp(-t/h) where s>r and 

h>. When the sum of ϵreaches the threshold ϑ at moment in time t0, the 

function is injected into u(t). From spike time t0 to t’ there is a period of 

absolute refraction. In this example the integration of ϵ was stopped right at t0 
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and resumed at t’, when absolute refraction ended. In general this is not 

necessary: instead of suspending the integration of ϵ, threshold ϑ can be 

temporarily increased to an unachievable value, thus implementing absolute 

refraction. In this case the additional value added to ϑ can be a modeled by a 

decaying function. The injection of the function moves the value of membrane 

potential u(t) below resting potential 0, and it takes time for the membrane 

potential to return to zero, so that injection of mimics afterhyperpolarization. 

It must be emphasized that the leaky integrate-and-fire model is a special case 

of the Spike Response Model where the kernel (t-t0, t-tj
(f)) = urexp(-(t-t0)/tm) 

and the kernel (t-t0, s) = exp(-s/tm) (see Eq. (2.10), in the section 2.1.2 “The 

Leaky Integrate-and-Fire Model”). 

2.1.4. Compartmental Models 

Neural models described in previous sections do not take into account the 

structure of a biological neuron. By structure I mean the spatial and 

morphological properties of soma, dendrites, axon and axon terminal. Models 

that take biological structure into account are called multi-compartment models. 

I did not use multi-compartment models in my work directly, but I did use some 

aspects of the spatial properties of dendrites. Thus I will not describe multi-

compartment models in detail, but will instead just provide a simple explanation 

of the concept. 

The multi-compartment model allows the numerical solving of the membrane 

potential of a complex dendritic tree. The dendritic tree is modeled by a network 

of small cylindrical compartments (Figure 2.7). Each compartment modeled has 

membrane capacity C and transversal resistance R. Connections between 

compartments are characterized by longitudinal resistance RL allowing for the 

modeling of geometrical properties of the compartments. In Figure 2.7 I in the 

middle compartment denotes external current. In the leftmost compartment in 

Figure 2.7 there is a variable resistance component which is used to model non-
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linear ion channels. The modeling of non-linear ion channels may be added to 

all compartments. 

 

Figure 2.7. Multi-compartment neuron model. Adapted from Gerstner and Kistler 

(2002). 

It is important to note that formal neural models such as SRM can also be 

extended into multi-compartment models (Gerstner & Kistler, 2002). 

2.1.5. Other Models of the Spiking Neuron 

So far I have introduced models of spiking neurons which are relevant to my 

work. There are a number of other models which have been developed but I will 

not discuss them in detail. Noteworthy are FitzHugh-Nagumo (FHN), which is 

a simplified version of the Hodgkin-Huxley model (FitzHugh, 1961; Nagumo et 

al., 1962); Morris–Lecar which is a combination of Hodgkin-Huxley and 

FitzHugh-Nagumo (Morris & Lecar, 1981) and Hindmarsh-Rose, which is an 

extension of FitzHugh-Nagumo (Hindmarsh & Rose, 1984). 

2.2. Phenomenological Models of STDP 

Spike-timing dependent plasticity was introduced earlier in the discussion of the 

biological mechanics of the neuron (see section 1.4 “Spike-Timing Dependent 

Plasticity”).  In this section I will discuss phenomenological models of STDP 

and some important features of STDP associated with the different models. 

It must be said that besides phenomenological models of STDP, there are 

biophysical models which attempt to model more precise mechanisms of STDP, 
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such as internal states of the NMDA receptor (Senn et al., 1997, 2001), 

intracellular calcium concentration (Shouval et al., 2002), and etc. Since 

biophysical models of STDP are not the subject of my research, I will not 

describe them in detail. 

2.2.1. Basic STDP Implementation 

Change of strength of the synapse wji from the presynaptic neuron j to the 

postsynaptic neuron i depends on the difference in time between presynaptic and 

postsynaptic spikes. Let’s define spike arrivals from the presynaptic neuron as 

tj
f, where f=1,2,3,… labels the firing times of presynaptic spikes, and let’s define 

the spike times of the postsynaptic neuron as ti
n, where n=1,2,3,…  labels the 

firing times of the postsynaptic spikes. Then the total change of synaptic strength 

wji induced by pairs of presynaptic and postsynaptic spikes is (Gerstner et al., 

1996, Kempter et al., 1999): 

௝௜ݓ∆ =∑∑ܹሺݐ௜௡�
௡=ଵ

�
௙=ଵ −  ௝௙ሻ (2.16)ݐ

 

where W(t) is the STDP window. In the case of an STDP window of excitatory-

excitatory synapses, typically W(t) is set to (Zhang et al., 1998; Song et al., 

2000): 

ܹሺݐሻ = {�+ ∙ ݁− ௧�+ ݐ ݂�      > Ͳ−�− ∙ ݁ ௧�− ݐ ݂�    < Ͳ  (2.17) 

where variables A+ or A- may or may not depend on the current value of synaptic 

strength (see section 2.2.3 “Multiplicative Update vs. Additive Update”). 
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2.2.2. Online Implementation of STDP 

 

Figure 2.8. STDP implementation with local variables. 

An online version of STDP update can be implemented easily by introducing 

two local variables (see Figure 2.8): one for a low-pass filtered presynaptic spike 

train, the other for a low-pass filtered postsynaptic spike train. Let’s consider the 

synapse between neuron j and neuron i. Suppose that each spike from 

presynaptic neuron j leaves trace x, and each spike from postsynaptic neuron i 

leaves trace y (Morrison  et al., 2008). Then: ݀ݔ௝݀ݐ = − ௝�௫ݔ    +  ∑�ሺ௧ೕ೑ ݐ −  ௝௙ሻ (2.18)ݐ

ݐ௜݀ݕ݀ = − ௜�௬ݕ    +  ∑�ሺ௧೔೑ ݐ −  ௜௙ሻ (2.19)ݐ

where tj
f denotes the spike times of the presynaptic neuron, ti

f denotes the spike 

times of the postsynaptic neuron and  is the Dirac delta function. Variables x 

and y increase at the moment of presynaptic or postsynaptic spike 

correspondingly, then decrease exponentially. The amount of change in synaptic 

strength can be expressed: ∆ݓ௝௜+ሺݐ௜௙ሻ = �+ሺݓ௝௜ሻݔ௝ሺݐ௜௙ሻ (2.20) 
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௝௙ሻݐ௝௜−ሺݓ∆ = −�−ሺݓ௝௜ሻݕ௜ሺݐ௝௙ሻ (2.21) 

or: ݀ݓ௜௝݀ݐ = �+ሺݓ௝௜ሻݔ௝ሺݐሻ�(ݐ − (௜௙ݐ − �−ሺݓ௝௜ሻݕ௜ሺݐሻ�ሺݐ −  ௝௙ሻ (2.22)ݐ

 

The biophysical meaning of variables x and y is not well established yet. 

Hypothetically the variables x and y could be related to interactions between 

back-propagating action potential (BAP) and NMDA receptors (Caporale & 

Dan, 2008). 

2.2.3. Multiplicative Update vs. Additive Update 

Synaptic strength is usually restricted within the range wmin<wj<wmax. This can 

be achieved by multiplicative update, where update is proportional to the current 

value of synaptic strength (Sjostrom & Gerstner, 2010). This method is also 

often referred to as soft boundaries: �+ሺݓ௝ሻ = ሺݓ௠�௫ − ௝ሻݓሺ−� +ߟ௝ሻݓ = ሺݓ௝ −  −ߟ௠௜௡ሻݓ

(2.23) 

where  and -are positive constants and are referred to as multiplicative 

weight dependence, or soft boundaries. The implementation of additive update, 

also referred to as hard boundaries, would be: �+ሺݓ௝ሻ = ௠�௫ݓሺߠ − ௝ሻݓሺ−� +ߟ௝ሻݓ = ௝ݓሺߠ −  −ߟ௠௜௡ሻݓ

(2.24) 

where  is the Heaviside step function. In this case synaptic strength update 

would occur with the fixed value  or - until the boundaries are reached 

(Gerstner et al., 1996, Kempter et al., 1999, Roberts et al., 1999, Song et al., 

2000). 
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Figure 2.9. Equilibrium distributions of synaptic strengths. a: Additive STDP update. 

b: Multiplicative update. The two upper rows are the behaviors of a single synapse; the 

bottom row is the distribution of synaptic strength when neuron input was generated 

from 1,000 presynaptic synapses generating Poisson-distributed input spikes (the input 

rate was 10Hz). Schematically redrawn from Rubin et al. (2001). 

While these methods may look similar, they result in very different behavior. In 

the case of input spikes generated from a Poisson distribution, for example, 

additive update tends to push synaptic weights towards the extremes and towards 

bimodal distribution (Figure 2.9a), while multiplicative update tends towards a 

unimodal distribution of synaptic strengths (Figure 2.9b)  (Rubin et al., 2001). 

Gutig and colleagues (Gutig et al., 2003) merged the multiplicative and additive 

update rules: �+ሺݓ௝ሻ = ௠�௫ݓ) − ௝ሻݓሺ−� +ߟ௝)ఓݓ = ሺݓ௝ −  −ߟ ௠௜௡ሻఓݓ

(2.25) 

where =0 results in additive update; =1 results in multiplicative update and 

intermediate values for  result in intermediate behavior. Gutig and colleagues 

demonstrated that unimodal distribution is the rule rather than the exception and 

bimodality is achieved only when very small values are put for  (Figure 2.9c). 

Moreover, as the number of input synapses increase, the critical value of  at 

which bimodality begins to emerge further decreases. 
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Figure 2.10. Equilibrium distributions of synaptic strengths of weight-dependence 

exponent . Synaptic strengths depicted in logarithmic scale. Results obtained by Gutig 

and colleagues (Gutig et al., 2003), the single integrate-and-fire neuron had inputs from 

1,000 uncorrelated Poisson processes at 10 Hz. Adapted from Gutig et al. (2003). 

2.2.4. All-to-All vs. Nearest-Neighbor Spike Interaction 

When change of synaptic strength is caused by interaction between all 

presynaptic spikes and all postsynaptic spikes, such an implementation of spike-

timing-dependent plasticity is called all-to-all interaction (Sjostrom & Gerstner, 

2010). Alternately, interaction may be restricted to nearest neighbors. In other 

words, each presynaptic and postsynaptic spike resets the traces of variables x 

and y (see Eq. (2.22)). Such an implementation is referred to as a nearest-

neighbor interaction (Figure 2.11). 

All-to-all and nearest-neighbor interactions result in very different behavior in 

respect to training stability (Izhikevich & Desai, 2003). By making the 

assumption that presynaptic and postsynaptic spike trains are weakly correlated 

Poisson processes, Izhikevich and Desai derived a number of equations for 

permutations of multiplicative and additive updates and all-to-all and nearest-

neighbor interactions. Izhikevich and Desai used more than one neighborhood 

implementation (see their original paper for details). Plots of the expected 

changes in synaptic strengths for additive all-to-all and additive nearest-

neighbor are depicted in Figure 2.12. 
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Figure 2.11. All-to-all vs. nearest-neighbor spike interaction.  Only variable x is 

depicted in this diagram. At the top in the all-to-all interaction the trace of x is 

cumulative. At bottom is the nearest-neighbor interaction where only the most recent 

postsynaptic spike interacts with a postsynaptic spike. In this case, the trace of variable 

x is restarted after each presynaptic spike. 

Izhikevich and Desai's solution for all-to-all interaction with additive STDP 

update yielded a linear dependency of the amount of synaptic change upon the 

postsynaptic firing rate; there was a point of stable equilibrium (Figure 2.12a, 

black marker). In the case of additive nearest-neighbor implementation, 

however, dependency was non-linear and there were two points of equilibria, 

stable (Figure 2.12b, black marker) and unstable (Figure 2.12b, white marker).  

 

Figure 2.12. Stability diagram of all-to-all and nearest-neighbor spike interactions. 

Adapted from Izhikevich and Desai (2003). 
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It must be said that Izhikevich and Desai's solution for an additive nearest-

neighbor implementation relates spike-timing-dependent plasticity to the 

Bienenstock-Cooper-Munro (BCM) theory (Bienenstock et al., 1982). BCM 

theory will be discussed in a separate section. 

 

Figure 2.13. Different models of spike neighborhood. Adapted from Morrison et al. 

(2008) a: Symmetric interaction: each presynaptic spike interacts with the last 

postsynaptic spike and vice versa (Morrison et al. 2007). b: Presynaptic-centered 

interaction: each presynaptic spike interacts with the last postsynaptic spike and the 

next postsynaptic spike (Izhikevich & Desai, 2003; Burkitt et al., 2004). c: Reduced 

symmetric interpretation, only immediate spike pairings interact (Burkitt et al., 2004). 

There is more than one model of nearest-neighbor interaction (see Figure 2.13).  

2.2.5. The Triplet Rule 

 

Figure 2.14. Triplet STDP update. 

Triplet STDP update (Figure 2.14) was originally suggested by Froemke and 

Dan (Froemke & Dan, 2002), based on in vivo experiments with pyramidal 
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neurons in the visual cortex of the rat. Later Pfister and Gerstner (Pfister & 

Gerstner, 2006) successfully reproduced STDP behavior found in biological 

neurons, in the visual cortex (Sjostrom et al., 2001) and hippocampal culture 

(Wang et al., 2005). Such behavior could not be reproduced with two-spike 

interactions. The triplet rule introduces two additional trace variables: x3 and y3. 

Pfister and Gerstner suggested the function of the triplet STDP window, which 

in the case of simple exponentials would be: 

ሻݐሺݓ∆ = { ሻݐሺݔ    ∙ (�+ + �ଷ+ ∙ ݐ ݂�    (ሻݐଷሺݔ > Ͳ−ݕሺݐሻ ∙ ሺ�− + �ଷ− ∙ ݐ ݂�     ሻሻݐଷሺݕ < Ͳ      (2.26) 

where A3+ and A3- denote the amplitude of the triplet term of potentiation or 

depression.  These variables are similar to the variables A+ and A- discussed 

previously in this section.  The variables x, x3, y and y3 can be expressed in the 

form of simple exponential functions, in the same way as in Eq. (2.17). 
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3. Results of Research 

3.1. Neural Processing of Long-Lasting Sequences of Temporal 

Codes 

I focused my research on STDP learning of spatial and spatiotemporal patterns. 

The simplest example of a spatiotemporal pattern is a binary on/off map of 

spikes in a short temporal window, where the probability of a spike at the “on” 

synapse is significantly larger than at the “off” synapses, and “on” spikes are 

largely correlated in time, while “off” spikes are not and produce only Poisson 

noise. In its simplest form, it is a spatial pattern. In the case of STDP learning, 

under a specific range of parameters the strengths of synapses associated with 

the pattern grow, while the strengths of other synapses which receive only noise 

decay. In other words, the individual neuron acts as a coincidence detector 

(Abbott & Nelson, 2000). In the simplest possible case this sort of training could 

be reduced to supervised learning as a simple assignment operation: if the input 

is already in the pattern, then set strength to 1, otherwise set to 0. 

I began my work by reproducing the experiments of Masquelier and colleagues 

(Masquelier et al., 2008, 2009). In their original work (Masquelier et al., 2008) 

the authors used a single SRM neuron for the learning of spatiotemporal patterns 

injected into Poisson noise, even when the sample pattern was injected without 

a strict time reference. Masquelier and colleagues found that the neuron was 

capable of detecting the very beginning of the pattern. Later Masquelier and 

colleagues extended their experiment with multiple competing neurons 

(Masquelier et al., 2009), and demonstrated that it is possible to train multiple 

neurons for multiple patterns. Again, in such a network the neurons were capable 

of detecting the beginning of the spatiotemporal patterns (see Figure 3.1). 
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Figure 3.1. Experiment made by Masquelier and colleagues. Schematically redrawn 

from Masquelier et al., 2009. I. Sample pattern. Black dots denote constant pattern, 

grey dots are Poisson-distributed pattern. Masquelier used patterns generated from the 

same Poisson distribution. Occurrence of patterns was stochastic.  At bottom are the 

responses from two trained neurons which were selective to two different patterns. II. 

Schematic representation of the Masquelier network. Arrows denote excitatory 

synapses, diamonds denote inhibitory synapses. 

After examining the training process for the spatiotemporal pattern more closely, 

it is evident that the neuron is learning only for the spatial component, essentially 

the first in time. To illustrate this behavior I made a simple experiment. I used a 

pattern composed of three spatial components A, B and C, which were always 

aligned in time in the same order (Figure 3.2 I.). Most of the synapses did not 

produce a consistent pattern at all and are denoted by the letter D. The C 

component is larger than A and B, so that it would be the one preferred by the 

neuron at the beginning of the training. Initial synaptic weights were distributed 

uniformly and at the beginning of the training the neuron was not selective to 

any pattern. Initially, the weights of synapses associated to the largest 

component C grew most rapidly, while synapses associated to D decayed (Figure 

3.2 II.).  When the neuron became selective to C, STDP subsequently increased 

the strengths of synapses associated to the preceding components, B and A. The 

closer in time the component was, the more LTP the synapse gained. When the 
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weights of synapses associated to the B pattern were large enough to move the 

timing of the postsynaptic spike prior to the occurrence in component C, 

synapses associated to C experienced long-time-depression, and weights 

decayed. The same thing happened with component A and would have continued 

had there been more components. In the end, only synapses associated to the 

very first spatial components were large enough to produce a postsynaptic spike, 

and all other memory was lost. 

 

Figure 3.2.  Illustration of detection of the onset of a pattern. Here a single neuron was 

trained for a pattern produced by 500 afferents. I. Sample pattern. Here in the vertical 

axis are individual afferents. Grey dots denote spikes produces by the Poisson process 

and black dots denote the injected pattern. There were four groups of afferents; three 

of them, A, B and C, produced different fractions of the spatiotemporal pattern, while 

group D produced only Poisson noise. II. Dynamics of synaptic weights. In the vertical 

axis are the mean synaptic weights of synapses associated to the specific group of 

afferents. 

From the training results depicted in Figure 3.2 it is evident that after the training, 

the entire pattern, except for the very first spatial component, can be removed, 

shuffled or replaced with another pattern without any effect on the behavior of 

the network. The same applies to the experiments conducted by Masquelier and 

colleagues. Therefore, such a training indicates that in actuality one cannot 

encode data in a spatiotemporal pattern. Hence I formulated the problem for 

myself: would it be possible to build a network which could learn actual 

spatiotemporal patterns? If the spatial component is defined as a letter, could we 

build a network which could learn words composed of individual letters? 
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I designed the network based on STDP learning exclusively, capable of learning 

spatiotemporal patterns, but also capable of reproducing a sequence of observed 

spatial components (letters). I took an engineering approach here, and did not 

intend to design the network to replicate any known neural circuitry in living 

neural systems, but rather to determine merely if it were possible, and what the 

minimal set of components required to build such network might be.  

This work was presented at the 2011 NCTA conference and was published in 

the conference proceedings and in the SCITEPRESS digital library 

(Krunglevicius, 2011). 

3.1.1. The Network Model 

Figure 3.3 is a conceptual representation of the proposed network model 

presented in this section. In the network there are two winner(s)-takes-all (WTA) 

layers. The first one, WTA1, is responsible for recognizing spatiotemporal 

patterns. Responses from WTA1 are memorized later in a temporal memory by 

assigning the individual spike from WTA1 to the appropriate time slot. Latter 

this memory is read, thus generating a new spatial pattern in which the individual 

spike corresponds to the spike from the WTA1 neuron and to the time slot. The 

secondary pattern is an input for the WTA2 layer. In this diagram, serial events 

A, then B and then C were converted to a single pattern which encodes events 

in a parallel manner, that is, in a spatial code. 

The network model diagram is shown in Figure 3.4. It consists of six main layers: 

L1 and L5 are competitive WTA layers (in this particular network 

implementation I did not prohibit several neurons from learning the same 

pattern, and therefore we can speak of winners). L1 and L5 have corresponding 

inputs from L0 and L4. L3 is a layer of temporal memory; it is modulated by 

layer L2. In this specific network model I did not attempt to emulate any layers 

in the cortex or hippocampus, and the network structure and layer names are 

purely arbitrary.  
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Figure 3.3. Conceptual diagram of the network model. Here black dots denote periodic 

patterns which are learned by WTA neurons and grey dots denote background noise. 

Noise is necessary for reducing synaptic weights in synapses which don’t belong to the 

learned pattern.  

Neurons in layer L0 periodically fire a sample pattern. L0 neurons also fire 

spontaneously with the probability PL0 in each iteration of the experiment (every 

millisecond). Spontaneous firing produces Poisson noise. Noise increases the 

probability of LTD in synapses L0 to L1 and is responsible for strength-decay 

of synapses which do not participate in the sample pattern. Although I used noisy 

input in my experiments, it is not mandatory, for neurons can be trained 

successfully without it, although noiseless patterns wouldn't be biologically 

realistic. In that case, synapses which do not carry spikes from the sample would 

not be affected by STDP. 

Neurons in layer L1 receive input from L0 and are interconnected with inhibitory 

synapses. The strengths of inhibitory L1 to L1 synapses are constant. 

The L1 layer produces input for L1.1 interneurons via strong synapses with fixed 

weights. The strengths of L1 to L1.1 synapses are large enough to give rise to a 

postsynaptic spike from resting potential with a single presynaptic spike. Layer 

L1.1 was introduced so that later memory readings would not affect the L0 to 

L1 synapses.  
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Figure 3.4. Diagram of a network model with temporal memory. The color black 

denotes inhibitory interneurons. In the actual simulation inhibitory neurons were 

replaced by direct inhibitory synapses. Grey lines denote synapses from the L2 and 

L2.1 subnetwork of temporal modulation.  Dotted lines denote the same neuron, split 

in the diagram for ease of visualization. Layer L4.1 was added only for programming 

convenience and in one particular experiment it served as the input multiplier for the 

L5 WTA network. 

Layer L2, including the neurons in L2.1, is used for temporal modulation. 

Excitation of L2 and L2.1 neurons imitates wave propagation in excitable media 

in a single direction, and only one neuron fires at once; it is looped. While L2 

neurons produce a chain of spikes during the excitation period, L2.1 produces 

only a single spike. Weights of synapses outgoing from L2 and L2.1 do not 

change. See Figure 3.5 for details. 

Each synapse from the L1.1 neurons to the L3 neurons represents a binary 

memory unit. It memorizes the spike event from L1.1 relative to the timing of 

the corresponding L2 neuron. L3 neurons are grouped by synapse from L1.1. 

Each L3 neuron in the group receives a strong excitatory input from a different 

L2 neuron. This input is not strong enough, however, to produce a spike. Initially 

L1.1 to L3 synapses are weak and are prohibited from growing strong enough to 

fire a spike without additional excitation from L2 or L2.1. If an L3 neuron is 
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excited by spikes from L2 and during that period L1.1 fires, it, too, would fire, 

and synapse strength would grow by strong LTP.  

 

Figure 3.5. Temporal modulation of five neurons in layer L3 which receive input from 

a single neuron from layer L1.1. Layer L2 excites each neuron in L3 for approximately 

40 ms. If within that window the L3 neuron receives EPSP from L1.1, it produces a 

spike and the corresponding synapse is updated by strong LTP. After 220 ms, the L2.1 

neuron causes an additional spike in L1.1 and adds weak EPSP to the neuron groups in 

L3 and all L4 neurons. L3 retains the memory of the previous spike and passes on a 

compressed pattern to L4. See the network diagram in Figure 3.4. In one particular case 

the L1.1 neuron fired three times; as a result L3 produced the spatial pattern 10101.  

During the experiment, the strengths of synapses L1.1 to L3 did decay over time, 

so that the memory slot could be reused during the next L2/ L2.1 loop iteration. 

It is known that LTP in living synapses lasts from a few hours to months or 

longer (Abraham, 2003), so synaptic strength decay in this particular model is 

consistent with the biological features of synapses. 

L2.1 neurons activate memory readings. Each L2.1 has strong synapses to all 

L.1.1 neurons, weak synapses to all L4 neurons and weak synapses to subgroups 

in L3. L3 neurons grouped by L2.1 represent the memory window. A spike from 

L2.1 causes a spontaneous spike in L1.1. Excitation from L2.1 to L3 is much 

weaker than from L2 and is produced by a single spike, and therefore only a 

strong synapse from L1.1 to L3 can cause a spike in L3.  
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The L4 layer serves as an input to WTA layer L5. L4 has moderate fixed strength 

synapses from L3; therefore a spike from L3 can cause a spike in L4 only when 

an L4 neuron is excited by L2.1.  

I added layer L4.1 only for convenience of programming. I found that 

multiplying inputs to the WTA layer would make the training process more 

robust over a wider range of parameters. It also increases the chance of a 

beneficial permutation of initial synaptic strengths. Since I experimented with a 

relatively small network, I duplicated inputs to L5 to obtain a more stable 

training process. With a larger network this would not be necessary.  Alternately 

the L4.1 layer can be replaced by multiplying the synapses from L4 to L5 instead 

of adding an entire layer of interneurons. Analogous to layer L0, L4.1 produces 

Poisson noise. 

Layer L5 is analogical to L1, but I tuned it with different STDP parameters. 

Additionally, I introduced a stochastic threshold in the L5 neurons, see section 

3.1.5 “Learning Conditions in Layer L5”. 

Layer L1 was trained throughout the entire simulation, while the training of layer 

L5 started only after the first 100,000 iterations of the simulation. I simply 

prohibited neurons in layer L4 from firing during the first stage of the 

experiment. 

3.1.2. Materials and Methods 

In this section I provide the model of the neuron and plasticity used in this work. 

The model is a version of SRM (see section “2.1.3 Spike Response Model”). I 

chose SRM because of its simplicity and high degree of accuracy (Jolivet et al., 

2006). In this work this was a discrete version of SRM similar to the one used 

by Masquelier (Masquelier et al., 2008; 2009), although I have made some 

modifications to reduce computational costs. The kernel function, which 

defines the action potential and afterhyperpolarization, was: 
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ሻݐሺߟ =  �ܹ௣ ቆ�ௗ௣௟ ݁−∆௧ℎΤ೘ − �ℎ௣௟ ቆ݁−∆௧ℎΤ೘ − ݁−∆௧ℎΤ�೛ ቇቇ (3.1) 

where th = t - tspike, tspike is the time of the last postsynaptic spike; constants Kdpl 

= 3, Khpl = 5 and  Wap=40 define the amplitude of the function of action potential; 

Tm=10 ms is the membrane time constant that defines the slope of the 

hyperpolarization phase, and Tap=0.5 ms is the constant that defines the slope of 

the spike. 

I executed my experiments at a precision of one millisecond relative to the 

function of action potential; therefore I refer to a single iteration of the 

simulation as one millisecond. 

The value of postsynaptic potential ϵ(t) arriving from individual synapse j is 

given by:  

௝߳ሺݐሻ = �௝ݓ௝ (݁−Δ௧�೘ ቀͳ + ሻቁݐ௠ೕሺݔ − ݁−Δ௧�ೞ ቀͳ +  ሻቁ) (3.2)ݐ௦ೕሺݔ

where t = t - tpre, tpre is the time of the last presynaptic spike; wj is the strength 

of the synapse;  = 1 for excitatory synapses and = -1 for inhibitory. Tm = 10 

ms and Ts =2.5 ms are the time constants. Variables xm and xs simplify the 

integration of exponentials during the simulation and are given by: 

ሻݐ௠ೕሺݔ = ௝ሺ௧ሻݓ௝ሺ௧−ଵሻݓ} ݁−Δ��೘ (ͳ + ݐ௠ೕሺݔ − ͳሻ)      if   ݐ = ݐ௠ೕሺݔ௣௥௘ݐ − ͳሻ                                        if   ݐ ≠  ௣௥௘ (3.3)ݐ

ሻݐ௦ೕሺݔ = ௝ሺ௧ሻݓ௝ሺ௧−ଵሻݓ} ݁−Δ��ೞ (ͳ + ݐ௦ೕሺݔ − ͳሻ)      if   ݐ = ݐ௦ೕሺݔ௣௥௘ݐ − ͳሻ                                        if   ݐ ≠  ௣௥௘ (3.4)ݐ

where  is the time difference between the previous and last presynaptic spike. 

Initial values for xm and xs are zero. Equations (3.3) and (3.4) were derived in the 
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following way: the summed values of individual PSPs of a single synapse at the 

moment t can be expressed as the finite series: 

௝߳ሺݐሻ = ଴݁−ሺ௧−௧బሻ�೘ݓ − ଴݁−ሺ௧−௧బሻ�ೞݓ ௡݁−ሺ௧−௧೙ሻ�೘ݓ+⋯+ − ௡݁−ሺ௧−௧೙ሻ�ೞݓ  (3.5) 

where wn is the set of strengths at the moment of each spike and tn is the set of 

times of spikes. The expression is valid assuming that all tn < t. Treating the 

positive and negative parts of the series separately, the first two members of the 

series could be expressed as the equation: 

ሺͳ + ଴݁−ሺ௧−௧బሻ�೘ݓ଴ሻݔ + ଵ݁−ሺ௧−௧భሻ�೘ݓ = ሺͳ + ଵ݁−ሺ௧−௧భሻ�೘ݓଵሻݔ  (3.6) 

where x0 = 0 at the beginning of the simulation. Algebraically solving equation 

(3.6) gives equations (3.3) and (3.4). Since discrete-time simulation exponentials 

can be pre-calculated, and x can be computed at the time of the spike, 

computational costs can be decreased. 

The neuron membrane potential at any given time is: 

ሻݐሺݑ = ݐ ݂�                         ሻݐሺߟ} = ሻݐሺߟ௦௣௜௞௘ ݐ  +∑߳ሺݐሻ ݁ܿ�ݓݎℎ݁ݐ݋        (3.7) 

The spike occurs when membrane potential reaches threshold value ϑ. 

The STDP function used in my particular neural circuit is expressed in equation 

(3.8). The synaptic strength change for excitatory synapses where t = tpost - tpre 

is: 

௝ݓ∆ = { 
 �௅�� ⋅ ݁ ∆௧Τ��� ݐ∆ ݂�           < Ͳ−�௅�஽ ⋅ ݁ −∆௧Τ���    �݂ ∆ݐ > ͲͲ                            �݂ ∆ݐ = Ͳ  (3.8) 

Synaptic strength values are limited to between wmin and wmax, which in this 

particular circuit vary depending on synapse type. To simplify the calculations 
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of postsynaptic potentials, I prohibited synapses from decaying below 1*10-6. 

See equations (3.3) and (3.4). See section “3.1.3 Parameters of the Simulation” 

for the ALTP, ALTD, TLTP and TLTD constants. 

In this neural network I used the closest-neighbor rule, where only the two 

closest spikes participate in the modification of synaptic strength. Alternatively, 

the all-to-all rule could be used. 

3.1.3. Parameters of the Simulation 

I used a basic genetic algorithm to tune L1 and L5 WTA sub-networks, while 

the rest of the parameters were arbitrary. Initial conditions for genetic 

optimization were based on experimental observations (Bi & Poo, 2001) and 

were identical to the ones used in the work of  Masquelier (Masquelier et al., 

2008). In such an initial setup, the L1 layer could learn the pattern already, and 

the genetic algorithm only improved the learning success rate for L1, whereas in 

training of L5, where input conditions were very different, training was never 

successful using STDP parameters based on the Bi and Poo research. Eventually 

genetic optimization found the parameters suitable for such conditions, but the 

values obtained were very different from the initial setup.  

The general parameters of the model are listed in Table 3.1, Table 3.2 and Table 

3.3. For the parameters of the training sample data and for the special case of 

layer L5 threshold, see sections “3.1.4 Training Samples” and “3.1.5 Learning 

Conditions in Layer L5”. 

For evolutionary tuning I used a multi-agent system with a population of 100 

agents. Each agent represented in itself a functional WTA network. The genome 

of each agent contained initial and maximal synaptic strengths w0 and wmax and 

parameters for the STDP function ALTP, ALTD, TLTP and TLTD. Initial genome 

values for each agent were normally distributed around arbitrary mean values. 

In each generation, each agent was trained 20 times with different training 

sample sets. Synaptic strengths were reset at the beginning of each training. 

Errors made by each agent were counted for all 20 trainings. When the training 
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was completed, the worst performing agents (60% of the population) were 

replaced by the new mutants made from the best performing agents. Each gene 

mutated with a probability of 0.3; the new value was random in the range of +/- 

5% from the inherited value. I did not use any crossover. Multiple experiments 

with different initial values were executed for a several hundred generations 

each. Genome values of the best performing agent from the final generation were 

used as parameters for the model. 

Table 3.1. STDP Parameters for synapse types 

Synapse type Parameter 

From To wmax ALTP ALTD TLTP TLTD 

L0 L1 0.56 0.064 0.037 9.01 55.71 

L1.1 L3 21 30 0.03 24 34 

L4.1 L5 0.75 0.32 0.076 8.37 459 

Table 3.2. Initial synaptic strengths 

Synapse type 
w0 

Synapse type 
w0 

From To From To 

L0 L1 0.44* L2.1 L3 8 

L1 L1 1.411 L2.1 L4 18 

L1 L1.1 30 L3 L4 10.9 

L1.1 L3 15 L4.1 L4 28 

L2 L3 2.5 L4.1 L5 0.68* 

L2.1 L1.1 40 L5 L5 5 

* Initial synaptic strengths randomly distributed around mean value W0 in the range 

of +/- 2.5% of W0. 

Table 3.3. Sizes of layers and ϑ threshold values 

Layer Number of neurons Neuron threshold ϑ 

L0 250 - 

L1 20 6.89 

L1.1 20 11.71 

L2 125 - 

L2.1 25 - 

L3 250 11.71 

L4 100 11.71 

L4.1 200 11.71 

L5 20 10.976 
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3.1.4. Training Samples 

Sample spike patterns produced from layer L0 represented themselves as five 

4x250 matrices with values of 0 and 1. One indicated spike time relative to the 

sample start time and column position.  Spikes were distributed uniformly across 

all sample matrices with the probability of occurrence p=0.04. For convenience, 

I called L0 samples “letters" and denominated them by the lower-case letters a, 

b, c, d and e. "Letters" were displayed at 40 ms intervals. During the gaps 

between letters and during letter display, L0 produced random spikes with the 

same probability of p=0.04. During the first 100,000 iterations letters were 

displayed in random order. 

After 100,000 iterations, letters were combined into consistent "words," 

denominated by the capital letters A, B, C, D and E. Each “word” was made up 

of five non-repeating letters, that is, from random permutations of a, b, c and d. 

Words were displayed in random order and aligned to start right after the L2.1 

scan time. During scan time L0 produced a random letter. Intervals between 

letters remained the same at 40 ms. 

Additionally I injected Poisson noise into L0 and L4.1 outputs. Poisson noise 

was created by firing a random spike with a probability of pL0=0.04 for the L0 

layer and with a probability of pL41=0.01 for the L4.1 layer. In my experiments 

spike density during the display of samples was greater than in the intervals 

between samples; it has been demonstrated earlier, however, that neurons can 

learn successfully when densities are equal (Masquelier et al. 2008, 2009).  

3.1.5. Learning Conditions in Layer L5 

Patterns of "words" produced by the L4 layer were quite different from strictly 

fixed samples of "letters." The pattern represented itself as only a single 

"column" of incoming spikes, although these were asynchronous. Spikes 

fluctuated in the 2-3 millisecond range (See Figure 3.6).  
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Figure 3.6. Mean deviation from pattern center in a single "word" in the L4 output (L4 

to L4.1 synapses). Error bars denominate standard deviations. Data retrieved from a 

single experiment, the pattern was repeated 521 times, and only consistent spikes which 

repeated more than 80% of the time were included. 

Fluctuations in patterns of "words" were caused by variations of synaptic 

strength in L1.1 to L3 synapses and also depended on the pre-existing value of 

postsynaptic potential in L4 and L3 neurons. I did not perform an analysis to 

determine which factor was dominant. Another important detail was that, due to 

the presence of errors in L1, not all spikes were equally consistent. Figure 3.5 

shows L4 to L4.1 synapses which produced consistent spikes in the range of 

83% to 100% for all occurrences of the "word." In the other synapses spikes 

occurred less than 3% of the time. 

Initially I failed to achieve training of the L5 layer with an acceptable rate of 

error under these conditions. Usually all neurons learned a single pattern or a 

few at once. I solved this problem by introducing a stochastic threshold in L5 

neurons: when the neuron reached its firing threshold, it didn't fire immediately 

but with a probability of 0.8. This accelerated inhibition by "lucky" competing 

neurons. It should be noted that attempts to apply a stochastic threshold in layer 

L1 only increased the error rate. 

3.1.6. Results 

I conducted a series of simulations of the entire model in a continuous mode. 

Also, because of the high computational cost of simulating the entire network, I 

conducted experiments with each of the WTA sub-networks separately in order 

to estimate performance. Each simulation had 700,000 iterations; the first 
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100,000 iterations were dedicated exclusively to training the L1 layer with 

random “letters.” Typical output from the L5 layer at the beginning and end of 

training is shown in Figure 3.7.  

Overall Performance of the Model 

I counted responses of individual neurons relative to sample occurrence times 

during the last 5,000 iterations at the end of the experiment to estimate the rate 

of error. For the L1 layer I used a bias of 8 iterations of latency for neuron 

response, and a bias of 16 iterations for the L5 layer. The sample to which the 

neuron was the most selective was assigned to the neuron as a learned one. If the 

neuron response count was less than half of the average sample, that neuron was 

treated as non-selective to any sample. Every missed sample or neuron response 

outside of the biased sample window was treated as an error. I did not analyze 

cases where the neuron learned more than one sample, but instead treated 

responses to other samples as errors. 

I conduced 100 experiments to estimate the mean error rate for the L1 and L5 

layers separately. Initial synaptic strengths were reset for each experiment. 

Errors were counted across a sliding 3,000-iteration window for L1 and across 

18,000 iterations for L5. Window sizes were proportional to the rate of samples 

1 to 6: each word consisted of 5 letters plus 1 letter for scan time. The window 

was moved by a step of 1,000 iterations (See Figure 3.8). For the L1 layer I 

generated sample “letters” for each experiment, and for layer L5 I used recorded 

input from three different simulations of the entire model. Therefore my 

estimation of the L5 error rate has a larger bias. 

The L5 layer produced a significantly greater rate of error, and in the last 10,000 

iterations of the experiments it reached a mean value of 4.514, while L1 came to 

only 1.207.   

There is an interesting observation to be made in the layer L1 error rate: at the 

moment when random “letters” are replaced by consistent sequences, we see a 

modest but steep drop in the error rate (Figure 3.8 (a)). Most likely this was 
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caused by a reduced rate of sequences of the same "letter," which makes it harder 

for a trained neuron to subsequently fire because of the previous 

hyperpolarization. 

 

Figure 3.7. Spike output from the L5 layer at the beginning and end of training. Outputs 

from each of the 20 L5 neurons aligned along the vertical axis. Letters above the pattern 

constitute one of the five sample "words" displayed at the time. (a) Output at the 

beginning of the training. Even though the WTA network was exposed to very few 

appearances of each sample of "word," a consistent pattern started to emerge at the very 

beginning of the training. (b) Output at the end of the training. 

There were noticeable differences between layer L1 and L5 in the distribution 

of neurons selective to a single pattern (See Figure 3.8 (b) and (d)). Mean values 

of the number of neurons per single sample were quite close: 3.956 for L1 and 

3.99 for L5, but with significantly different standard deviations: 1.24 for L1 and 

2.59 for L5. There were no non-learned samples in L1, while in L5, non-learned 

samples occurred at the rate of 0.046. The rate of neurons which did not learn 

any pattern was significantly larger for the L1 layer, 0.22, while in L5 it was just 

0.05. I could not determine what factor had the greatest influence over this 
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difference: a different set of parameters, the stochastic threshold in L5, a 

difference in input patterns, or perhaps it was due simply to biased measurements 

of the L5 layer. This requires a detailed theoretical study of the limiting and 

optimal parameters of STDP rules. 

 

Figure 3.8. Mean error rate and selectivity distribution in WTA layers L1 and L5. Data 

obtained from 100 experiments, each experiment conducted for 700,000 iterations. (a) 

Mean error rate in layer L1. Sample patterns were regenerated for each experiment. 

The magnified selection of the series indicates a drop in error rate after the stochastic 

occurrence of one of the five samples (random letters) was replaced by consistent 

sequences (random words). (b) Distribution of the number of neurons selective to one 

sample in layer L1. (c) Mean error rate in layer L5. Three pre-recorded sample patterns 

of “words” were used in 100 experiments, each in 1/3 of experiments. (d) Distribution 

of the number of neurons selective to one sample in layer L5. 

3.1.7. Discussion 

I have demonstrated a model for an unsupervised neural network capable of 

learning prolonged combinations of spatiotemporal patterns of spikes in 

continuous mode. In this way I have shown that STDP learning rules alone can 

be applied to train a neural network to learn long sequences comprised of short 

samples. Moreover, this model is capable of memorizing and reproducing 
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sequences in which network input samples were displayed. The reproduction of 

sequences was achieved by subsequently activating L2.1 neurons. 

The fact that memory of events in time can be reproduced implies that such 

memory could be copied, transferred, compared, etc. Also, it should be relatively 

easy to extend this particular model to enable it to learn combinations of 

"words," although that would require additional, more complex modulation at 

different time scales. 

Biological Plausibility of the Model 

The model itself and the range of parameters for simulation are arbitrary and 

cannot be used as a reference to simulation of a true biological process. The 

model is based on known biological processes, however, and the presence of 

temporal coding is supported by experimental evidence. 

Since I designed this particular network to be as simple as possible, there likely 

exist many other ways to implement a neural network with the same or similar 

features which would be more realistic in the biological sense, or show better 

performance.  

For instance, for temporal modulation it would be more realistic to use inhibitory 

neurons instead of excitatory ones. There is experimental evidence that gamma 

wave oscillations are generated by inhibitory interneurons (Cardin et al., 2009). 

Limitations of the Model 

The model requires explicit timing for the occurrence of training samples. In 

order to use this particular neural network model for real-world data, timing of 

sensory input must be aligned to the activation periods of the L2 layer. 

Additional chains of modulation which synchronize sensory input with L2 layer 

activation periods and/or vice versa would solve that problem. 

Another obvious limitation of the model is a "blind spot" at each memory read, 

but this problem could be overcome by multiplying the L1.1 and L4 layers, thus 

creating an overlapping or sliding memory window. 
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The simplicity of the structure of the WTA networks used in this model is 

disputable as well. With increases of different sample counts, the intervals 

between the same repeating sample increase as well, making learning more and 

more difficult. Training individual or groups of neurons one by one with a 

limited number of samples would solve that problem and boost performance. 

How we could implement that approach for a short temporal code in a rapidly 

changing environment, however, is a question I cannot yet answer. The well-

known adaptive resonance theory (ART) (Carpenter & Grossberg, 2009) solves 

a similar problem by introducing a self-organizing network and a resonant state 

between input and previously learned data. Achieving the resonance necessary 

for ART requires a prolonged state of neural activity (rate code), however, which 

is not the case with this model. Even so, there are various modifications possible 

for this particular model.  
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3.2. STDP Learning under Variable Noise Levels 

It has been demonstrated that one of the STDP learning rules is suited for 

learning spatiotemporal patterns in a very noisy environment. Parameters of the 

neuron are only optimal, however, for a certain range of quantity of injected 

noise. This means the level of noise must be known beforehand so that the 

parameters can be set accordingly. That could present real problems when noise 

levels vary over time. This is, to some extent, evident from the results of the 

previous section, 3.1, “Neural Processing of Long-Lasting Sequences of 

Temporal Codes,” where I had to choose different parameters for two different 

WTA circuits when the input conditions were different. 

I found that the model of a leaky-integrate-and-fire inhibitory neuron with an 

inverted STDP learning rule is capable of adjusting its response rate to a 

particular level of noise. I propose a method which uses an inverted SDTP 

learning rule to modulate the spiking rate of the trained neuron. This method is 

adaptive to noise levels; subsequently the spiking neuron can be trained to learn 

the same spatiotemporal pattern with a wide range of background noise injected 

during the learning process. 

This work was presented at the 2014 NCTA conference and was published in 

the conference proceedings and in the SCITEPRESS digital library 

(Krunglevicius 2014). 

3.2.1. Some Properties of the Inverted STDP Rule 

Training for Poisson Noise 

I exposed neurons with different threshold values to Poisson noise. Each trained 

neuron received input from 4,096 input neurons which produced Poisson noise 

by producing an input spike with a probability of 0.02 at each discrete step in 

the simulation.  STDP rules A and B were compared (see Figure 3.9). Results 

are presented in Figure 3.10.  
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When exposed to Poisson noise only, STDP rule A, as expected, leads to two 

possible outcomes: either synaptic strengths decay until the neuron is not capable 

of firing, or all synaptic strengths grow and the neuron is activated by any 

random spike from the input.  

 

Figure 3.9. STDP training rules addressed in this section. w is the amount of change 

in synaptic strength; t is time difference between postsynaptic and presynaptic spikes. 

a) Rule A, STDP rule of excitatory-to-excitatory synapses. b) Rule B, STDP rule of 

excitatory-to-inhibitory synapses. c) Update is guarded by the nearest–neighbor rule 

with immediate pairings only (Burkitt et al. 2004: Model IV). 

The behavior of inverted rule B is far more interesting: the neuron tends to 

stabilize its firing rate at a certain point. The point of stable firing rate depends 

on more than just threshold variables and the level of noise: the training step and 

initial values of synaptic strengths are very important as well. It seems that in 

case of rule B the capping of synaptic strengths at some maximal value is not 

required.  

In this case, if noise is mixed with a recurring spatiotemporal pattern of sufficient 

size, STDP rule B also leads to remembering the pattern in synaptic strengths, 

but in an inverted manner: synapses which are associated to the pattern are 

weaker than those not associated.  Compared with rule A, variance of synaptic 

strengths after training is significantly higher. 
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Figure 3.10. Comparison of STDP rules A and B, response rates to the same level of 

Poisson noise and different neuron thresholds. Vertical axis represents the response 

rate; horizontal axis represents simulation time. a) STDP rule A, dashed line denotes a 

threshold value ϑ=100, dotted line ϑ=340, solid line ϑ=900. b) STDP rule B, dashed 

line at threshold value ϑ=100, dotted line ϑ=160, solid line ϑ=170. 

Results depicted in Figure 3.10 are compatible to some extent with the prediction 

made by the Izhikevich equation for nearest-neighbor STDP interaction for 

uncorrelated Poisson spike trains (Izhikevich & Desai, 2003). For the standard 

STDP rule, the Izhikevich equation predicts a point of unstable equilibria of 

synaptic strengths when the firing rate of the postsynaptic neuron is relatively 

high, and thus synaptic strengths would likely grow and the postsynaptic firing 

rate would eventually increase even more. For the inverted STDP rule the same 

equation predicts a stable point of equilibria, thus the firing rate of the 

postsynaptic neuron should tend to stabilize. For details please see Figure 2.12b 

in section 2.2.4 “All-to-All vs. Nearest-Neighbor Spike Interaction.” The 

prediction made by the Izhikevich equation is only valid, however, when both 

presynaptic and postsynaptic spike trains are Poisson-distributed, which is not 

the case of the SRM neuron (see section 3.4 “Some Properties of the 

Postsynaptic Process of the SRM Neuron”), and therefore I measured the 

behavior of the neuron experimentally. 

Stability of Response Rate at Different Noise Levels 

To illustrate the dependency of stable firing rate points on the noise level of 

STDP rule B, I repeated the experiment described in the previous section over a 

range of Poisson noise. The results are presented in Figure 3.11. 
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While noise levels increase, depending on the neuron's threshold value the firing 

rate slowly approaches the maximum value, which is 0.5, since the neuron has a 

period of absolute refraction equal to one step of the simulation in the model. 

 
Figure 3.11. Points of stability in STDP rule B. Vertical axis represents the spiking 

rate, horizontal axis represents the probability of a spike of an individual input neuron 

at each discrete step of the simulation. Solid line denotes a threshold value of ϑ=100; 

dotted line means ϑ=510; dashed line denotes response rates when synaptic strengths 

are static, at ϑ=600. 

A neuron with static synapses approaches maximal response rate very rapidly 

over a narrow range of stimulation (Figure 3.11, dashed line). My goal was to 

get a neuron to provide inhibition in proportion to the amount of background 

noise. Therefore I preferred STDP rule B over static synapses. 

3.2.2. Materials and Methods 

In this work I used a version of the SRM model (see section “2.1.3 Spike 

Response Model”) somewhat modified from the one in my previous experiment, 

“3.1 Neural Processing of Long-Lasting Sequences of Temporal Codes.” I found 

that the function of action potential is difficult to analyze, so I replaced the -

kernel with the following equation: 

ሻݐሺߟ =  − ௥ܹ݁−∆௧ℎΤೝ  (3.9) 

where th = t - tspike and Wr and Tr are the parameters which define the amplitude 

and duration of relative refraction.  
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The neuron membrane potential at any given time was: 

ሻݐሺݑ = {ͷݐ ݂�                            ߴ = ሻݐሺߟ௦௣௜௞௘ ݐ  +∑߳ሺݐሻ ݁ܿ�ݓݎℎ݁ݐ݋        (3.10) 

where the ϵ-kernel is the same as in section 3.1 given by equation (3.2) and ϑ is 

the threshold value. Notice at the moment of the spike that membrane potential 

is set to the constant value. Since at the time of the spike the neuron is in the 

phase of absolute refraction, the value of membrane potential plays no role in 

training; it is set to a constant merely to aid in visualization and for the sake of 

convenience.  

Constants during the simulations were the set values: Tm=10; Tr=10; Ts=0.5 and  

Wr=2ϑ. The threshold value of inhibitory neurons was fixed such that ϑ 

inh=1,835. 

Synaptic plasticity was the same as in section 3.1 and expressed in equation 

(3.8). Simulation constants for excitatory-to-excitatory synapses were: 

 ALTP=0.75; ALTD=0.63; TLTP=16; TLTD=35; wmin=0.5 and wmax=30. Initial 

synaptic strengths were uniformly distributed between 4.5 and 5.5. 

Simulation constants for excitatory-to-inhibitory synapses were: 

 ALTD=6.048; ALTP=7.2; TLTD=4; TLTP=16; wmin=10-6 and wmax=1.0. Initial 

synaptic strengths were uniformly distributed between 0.9 and 1.0. Here LTD 

and LTP switched their places. 

The synaptic strengths of static inhibitory synapses was w=7.3 in the case of 

STDP rule B and w=2.0 otherwise.

3.2.3. Results 

I measured the performance and success of the training of a neuron for a 

spatiotemporal pattern. The sample pattern was generated from 122 neurons 

firing at the same time. The sample pattern was demonstrated to the network 

periodically, at intervals of 40 iterations. I executed the experiment on the 1 ms 

scale so that one iteration corresponded to one millisecond. Overall there were 
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4,096 neurons in the input layer. All neurons in the input layer produced noise 

except for the neurons which associated to the pattern at the moment of exposure 

to the pattern (see Figure 3.14a). 

The success of training was evaluated by measuring differences between means 

of the synaptic strengths of synapses associated to the pattern and of those which 

were not: w=w_in-w_out. Mean values were scaled to range at the interval [0, 

1] respectively to the minimal and maximal values of synaptic strengths. The 

criterion for successful training was w > 0.85 at the end of the simulation. 

Neurons which were unresponsive at the end of the simulation were counted as 

unsuccessful, despite possible large values for w. Performance of the training 

was evaluated by measuring the velocity of w. 

I compared the performance of a simple neural network with that of a network 

with vertical inhibition (Figure 3.12). 

 

Figure 3.12. Neural network model. a) A simple network is composed of the trained 

neuron and a number of afferents in the input layer. Here only the STDP rule A is 

applied. b) Network with vertical inhibition. This network is extended with multiple 

inhibitory neurons stimulated from an input layer and subsequently inhibit the trained 

neuron. Inhibitory synapses (dashes lines) have static weights. Synapses from the input 

layer to the inhibitory neurons are updated by STDP rule B, and synapses from the 

input layer to the trained neuron are updated by STDP rule A. 

The neural network with vertical inhibition consisted of an input layer, multiple 

inhibitory neurons and the training neuron. The training neuron received input 

from all neurons in the input layer, while each inhibitory neuron received input 

from a random fraction of the input layer (~10%). The training neuron had 
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synapses with STDP rule A, while inhibitory neurons had synapses with STDP 

rule B. In addition the training neuron received inhibition from inhibitory 

neurons via static synapses (Figure 3.12b).   

In order to reduce variance in inhibitory postsynaptic potentials (IPSP), I added 

multiple inhibitory neurons instead of just one. Variance of IPSPs reduces 

correlation between the presynaptic spike of the sample pattern and the 

postsynaptic spike; therefore it has a negative influence on the training process. 

By selecting only a fraction of input neurons I ensured inhibitory neurons would 

not fire synchronously. The network contained 50 inhibitory neurons. 

Training at Different Levels of Constant Noise 

I conducted a number of experiments at different levels of Poisson noise mixed 

with a recurring spatiotemporal pattern. Poisson noise was generated by setting 

a fixed probability for an input spike at each iteration of the simulation. Success 

of the training was measured over a range of neuron threshold values ϑ.  The 

amplitude of relative refraction was set to Wr=2ϑ  

In the case of a simple network (Figure 3.13a) I observed, as expected, that 

below a fixed threshold value, training is only possible within a narrow range of 

noise levels.  

 
Figure 3.13. Dependency of training success on neuron threshold value and the level 

of injected Poisson noise. Vertical axis represents the neuron threshold value ϑ, 
horizontal axis represents the level of noise. a) Results from a simple network. Markers 

represent the point where training was most rapid; error bars represent the range of ϑ 
when training was successful. b) Results from a network with vertical inhibition and 

STDP rule B. 
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In the case of the network with adaptive vertical inhibition (Figure 3.13b), the 

optimal value for the threshold was much less dependent on the level of noise, 

and remained more or less stable. The same neuron with a fixed threshold could 

be trained over the broad range of noise levels I used in my experiment (0.01 to 

0.04). The range of possible threshold values narrows, however, as noise 

increases. This was due, most likely, to increased variance of postsynaptic 

potentials, which reduced the correlation between the spike from the input 

neuron (presynaptic spike) and the spike of the trained neuron (postsynaptic 

spike). 

Training with Varying Noise Levels 

In my next experiment I trained neurons with variable levels of injected noise. I 

used a sine function for setting the probability for the input neuron to fire: 

p=0.01+0.015*((sin(t/)+1)). See Figure 3.14a. I evaluated training 

performance values of  of 50, 100 and 150.  

 
Figure 3.14. Training with varying noise level. a) Example of input spikes. Black dots 

represent a fraction of the sample pattern, grey dots represent injected noise. b) Values 

of w during the first 5,000 training iterations. Results are from an experiment where 

=150.  Solid line denotes a network with STDP rule B, dashed line denotes a network 

with static synapses of inhibitory neurons; dotted line denotes a simple network. 
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I compared the performance of a simple network, a network with vertical 

inhibition and STDP rule B, and a network with static synapses of vertical 

inhibition. The results are presented in Figure 3.14b. 

The training was executed over a range of a neuron threshold values and only 

the best results were taken into account. 

In all cases of , the network with STDP rule B performed best. The network 

with static inhibitory neurons performed only slightly worse, which was a 

somewhat surprising result. The simple network was the worst performer 

because the trained neuron was capable of firing only at peaks of stimulation 

from the input layer. 

3.2.4. Discussion 

I proposed a method which uses an inverted SDTP learning rule to modulate the 

spiking rate of the trained neuron. I have shown that this method can be applied 

to extend the range of noise levels under which a neuron is able to learn a 

spatiotemporal pattern. There are upper limits, however, for the level of noise 

under which a neuron can be successfully trained. By tuning the threshold value, 

the neuron can be trained under conditions of much more intense noise than I 

achieved in my experiments. This is likely caused by the increased variance 

introduced by vertical inhibition. This problem requires additional research. 

In my experiments I used a sample pattern of a fixed size encoded as parallel 

singular spikes. This is not a necessary condition: the sample pattern can be 

encoded as parallel spike bursts or as parallel fixed temporal patterns (Gilson et 

al., 2011; Masquelier et al., 2008) and the sample patterns can vary in size. 

Plainly these factors influence the amount of stimulation received by the trained 

and inhibitory neurons, so that the effect of vertical inhibition might be very 

different. This is the subject of my continuing research. 

The main motivation for this research was to explore prospects for building a 

practical machine based on STDP. I did not intend to simulate any particular 

biological neural system. It is difficult to determine to what extent the training 
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model is possible biologically, and my model ignores the many non-linearities 

of STDP known from biological research (Caporale & Dan, 2008; Pfister & 

Gerstner, 2006; van Elburg & van Ooyen, 2010), and likewise it does not take 

into account short-term plasticity, meta-plasticity and etc.  
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3.3. Competitive STDP Learning of Overlapping Spatial 

Patterns 

This work was published in the scientific journal “Neural Computation,” MIT 

Press (Krunglevicius, 2015). 

This work is a continuous of the effort to improve the WTA circuits described 

in section 3.1 “Neural Processing of Long-Lasting Sequences of Temporal 

Codes.” 

It has been demonstrated that one STDP learning rule is suited for learning 

spatiotemporal patterns. When multiple neurons are organized in a simple 

competitive spiking neural network, this network is capable of learning multiple 

distinct patterns. If patterns overlap significantly, i.e., patterns are mutually 

inclusive, however, competition would not preclude trained neurons responding 

to a new pattern and adjusting synaptic weights accordingly.  

Here I present a simple neural network which combines vertical inhibition and 

a Euclidean distance-dependent synaptic strength factor. This approach helps to 

solve the problem of pattern-size-dependent parameter optimality and 

significantly reduces the probability of a neuron forgetting an already learned 

pattern. For demonstration purposes, the network was trained for the first ten 

letters of the Braille alphabet. 

I address two problems associated with the learning of spatial patterns using the 

STDP learning method. Consider a neuron trained for a two-dimensional pattern 

in the shape of the letter F. Later the neuron is presented with a pattern in the 

shape of the letter E, which includes the letter F. In a simple competitive network 

there is no clear mechanism preventing this neuron from being selective for the 

pattern E. 

The second problem is closely related to the first. For training to be successful, 

the values of the threshold and initial synaptic weights must be tuned 

correspondingly to the amount of anticipated stimulation. The amount of 
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stimulation received, besides the properties of the neuron and synaptic weights, 

depends on the spatial and temporal properties of the sample pattern. Consider 

two simple spatial patterns in two-dimensional space: one occupies 2% of 

incoming synapses, the other 50%. Now suppose the patterns do not overlap. 

Suppose there are two neurons trained to each of these patterns. In that case, the 

synapses of the neuron capable of firing at the 2% size pattern must be 25 times 

stronger than those of the neuron firing at the 50% size pattern (conversely, the 

threshold value would be 25 times smaller). Otherwise the second neuron would 

respond to random noise, and the response rate would be very high, potentially 

leading to unstable learning, especially in the case of the nearest-neighbor STDP 

update rule (Izhikevich & Desai, 2003). Even if one assumes that in the case of 

the larger pattern training stops much earlier, there is no way to set initial weights 

to fit both patterns. 

It isn't known whether these problems hold true in biological neural systems, but 

they definitely pose an obstacle to applying competitive spiking neural networks 

to pattern recognition. 

To solve this problem one could build a highly heterogeneous network, but that 

approach could be too complicated, and inefficient for practical application. 

Another method would be to introduce additional mechanisms such as external 

modulation or homeostatic meta-plasticity to maintain the neuron at a 

manageable response rate. 

I took the simple approach of setting up a two-layer network in such a way that 

each neuron is activated only within the constraints of a certain range of input 

stimuli. In other words, the underlying idea is to place individual neurons in 

conditions where the neuron capable of learning the F pattern is less likely to 

fire when exposed to E, due to bottom-top inhibition, and the neuron capable of 

learning E does not reach firing threshold when exposed to F, due to insufficient 

synaptic strengths. This was achieved by assigning each trained neuron a spatial 

coordinate, introducing an inhibitory counterpart into the training layer and 
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setting synaptic strength factors in proportion to the Euclidean distance to the 

input neuron. 

3.3.1. STDP Learning Success Dependency on Quantity of Stimulation and 

Synaptic Strength Factor  

To demonstrate the influence of synaptic strength factor on the successful 

learning of spatiotemporal patterns of different sizes, I conducted an experiment 

with a simple neural network simulation. The network consisted of a single 

training neuron with 4,096 input neurons. The neuron was exposed to the pattern 

at 30 ms intervals. During pattern exposure time the synapses which were 

assigned to the pattern received 10 ms spike trains with a 1 ms refractory period 

after each spike. The other synapses and all synapses during the interval between 

patterns produced Poisson noise exclusively by firing with a probability of 0.02.  

Maximal synaptic strength was 1 and initial strengths were set to 0.333.  

 
Figure 3.15. STDP learning success dependency on pattern size and synaptic strength 

factor. The plots represent values after 5,000 training iterations. Here S is the ratio of 

incoming synapses which transmit the pattern to the total count of incoming synapses. 

a: Difference in average strengths of synapses which received the pattern and those 

which did not. b: Neuron response rate.  

Initial pattern size S was set to 50 and increased up to 4,050 by increments of 5. 

This was done by simply taking the first 50 synapses on the list, 55 the next time, 

and so on. The success of training for each of patterns was tested across a range 

of threshold values ϑ. The neuron was reset after each test for pattern and 

threshold value. 
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Trainings were executed at 1 ms discrete time steps, each training taking 5,000 

ms. Synaptic strengths and neuron firing rate were measured after each 1,000 

ms.  

3.3.2. The Network Circuit 

I have proposed  a network circuit capable of being trained for a wide range of 

patterns of different sizes (Figure 3.16a).  

 

Figure 3.16. The network model. a: Circuit of neurons in the competitive neural 

network. Solid lines indicate synapses with STDP learning, dotted lines with arrows 

are static synapses.  Arrows indicate excitatory synapses, rounded endings indicate 

inhibitory synapses. b: Schematic representation of synaptic strength scaling factors. 

The network is organized as two layers: the input layer and the winner(s)-takes-

all (WTA) layer. In both layers the neurons are arranged as a rectangular grid. 

There are no lateral connections in the input layer. In the WTA layer there are 

three neurons in each cell of the grid: A neurons which have plastic synapses 

from the input layer and are subject to training, B neurons which are inhibitory 

interneurons, and inhibitory C neurons which are the antagonistic counterparts 

to the A neurons. Each B neuron receives input from a single A counterpart and 

inhibits neighboring A neurons. C neurons are stimulated from the input layer 

and each inhibits a single A neuron. 

Synapses from the input layer to both A and C neurons have distance-dependent 

synaptic-strength scaling factors. Distance is the Euclidean distance between the 
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neuron in the WTA layer and the individual neuron in the input layer, assuming 

that the distance between layers is zero (Figure 3.16b). A single input neuron 

occupies a single unit of space. Weight scaling factors are assigned by the 

Gaussian function j=exp(-L2/2). Neurons A and C have different 

parameters; the network is tuned in such a way that the C neuron requires 

slightly more stimulation to fire than the naïve A neuron. Inhibitory synapses 

from neurons C to A have strong static weights, so that even relatively small 

activity by neuron C prohibits neuron A from firing. Therefore neuron C is an 

activity gate; there is no subtractive normalization involved. The network 

eliminates potentially over-active neurons from competition in the training layer. 

Otherwise, the overly rapid firing-rate of a trained neuron combined with the 

nearest-neighbor implementation of STDP would result in an unstable training 

where the weights of all synapses which have any input at all would grow 

(Izhikevich & Desai, 2003). 

Inhibitory synapses from B to A neurons also have distance-dependent strength 

factors. Taking this approach, only close neighbors in the WTA layer actually 

compete. 

This particular circuit assigns an individual receptive field for each A and B 

neuron in the WTA layer. In the event of a spatially concentrated pattern, 

stimulation of the WTA layer is transformed into a crater-shaped or peak-shaped 

function, which is discrete in space and where lateral competition between A 

neurons maximizes this function locally. In other words, if the pattern is 

relatively large then the winning neurons are those surrounding the pattern, and 

if pattern is relatively small they form a geometrical approximation of the 

pattern. 

In the case of a simple competitive WTA circuit, competing winning neurons 

occur because of the random advantage obtained by assigning random initial 

synaptic strengths. In the case of this particular circuit, advantage is 

predetermined by the properties of the input pattern and the geometrical position 



89 

of a given neuron. Moreover, this circuit allows keeping firing rates of trained 

neurons within a manageable range, to some extent independent of the spatial 

size of the input pattern, thus reducing the necessity of carefully tuning the 

values of the threshold and initial weights. 

Summarizing the above: let’s assume we have three neurons which are not 

interconnected, and these three have large, moderate and small threshold values.  

Let’s assume the same feed to all three, but one optimal for the moderate one. 

The "large" neuron would barely fire; training performance would be poor or 

fail. The "small" neuron would fire rapidly from the beginning; the performance 

of training would be poor or unstable. In this particular network there is no 

difference in thresholds; instead, the initial response rate is predefined by the 

geometrical properties of the input pattern and the position of the neuron itself. 

Instead of letting the large and small ones compete “as equals” with the moderate 

one, both of the former are inhibited by vertical and horizontal inhibition, 

respectively. Such neurons remain silent and naïve, so they could be used to 

learn other patterns when the input feed is changed to a lower or higher level of 

stimulation. 

The neuron model and the model of synaptic plasticity were identical to the one 

described in section “3.2 STDP Learning under Variable Noise Levels”. During 

the simulations the constants were set at arbitrary values: threshold value ϑ=100, 

Tm=10 ms; Tr=10 ms; Ts=0.5 ms; Wr=200; ALTP=0.3; ALTD=0.252; TLTP=12 ms 

and TLTD=48 ms. The only difference was that synaptic strength factor  in the 

ϵ-kernel function (3.2) was not restricted to +1 and -1, but was dependant on the 

Euclidian distance between the afferent and postsynaptic neurons. 

3.3.3. Results 

Learning a Stochastic Pattern 

To illustrate some of the properties of this neural network model, I trained it for 

a single stochastic pattern where the firing rates of the input layer were defined 

by a probability map (Figure 3.17). 
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Figure 3.17. Network training for a stochastic pattern. a: Probability map of a sample 

pattern. b: Single frame of an input layer. c and d: Activity of the neurons and synaptic 

strengths of an arbitrarily chosen neuron at the end of the training. Large rectangles 

represent the activity of neurons in the training layer and small rectangles represent 

synaptic weights of a particular neuron at the end of the training. c: lateral inhibition 

present. d: lateral inhibition absent. 

The simulation was done in 1 ms time steps. The pattern was shown to the 

network in a periodic manner, for 10 ms at 30 ms intervals. Input neurons fired 

independently with a fixed probability assigned to produce a spike at each 

discrete step of the simulation. During the period of exposure to the pattern, the 

probability of a spike from an individual input neuron was assigned a value from 

the probability map (Figure 3.17a); values were in the range of from 0.02 to 0.8. 

During the period between exposure to the patterns, the probability of an input 

spike was set to 0.02. The size of the input layer was 196 x 196 and the training 

layer was 29 x 29. Training was conducted over 5,000 iterations. 

The parameters of the simulation were set manually: 
=256; C

=25; BA
=25; 

wBA=400; wAB=200; wCA=10000; wIC=0.15; initial synaptic strength wini=0.26; 

and maximal synaptic strength wmax=1.28. 

The winning neurons are those surrounding the pattern in Figure 3.17c and in 

Figure 3.17d.  Neurons which are proximate to the most stimulated area or are 

too distant from the pattern remain naïve. Neurons which are proximate to the 

most stimulated area are inhibited from firing because of the activity of neuron 

C, and neurons which are too distant cannot fire because of insufficient 

excitation. Consequently, active neurons are organized around the edges of the 

pattern. In the case of horizontal competition (Figure 3.17c), only the most 
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stimulated neurons which are closest to the edge win. Figure 3.17d represents 

neural activity in a network without lateral inhibition, i.e., training neurons do 

not compete. Lateral inhibition reduces the number of active neurons, but it also 

reduces the speed of training: in Figure 3.17d synaptic weights associated to the 

pattern grew stronger than in Figure 3.17c, although in both ceases training was 

conducted for the same number of iterations. 

Learning of Overlapping Braille Symbols 

The network (Figure 3.16) was trained for the first ten letters of the Braille 

alphabet, a, b, c, d, e, f, g, h, i and j. Each Braille dot was represented by a cluster 

of 61 neighboring synapses in a 64 x 64 grid. All four possible dots had the same 

fixed locations. The training layer was arranged as a 15 x 15 grid centered in 

respect to the input layer. The distance between neurons in the training layer was 

3 units, while it was a single unit for the input layer. 

The network was exposed to the pattern at 30 ms intervals. The simulation was 

performed in 1 ms time steps. During the period of exposure to the pattern, input 

neurons assigned to the pattern produced 10 ms spike trains with a 1 ms 

refractory period. The other input neurons, and all input neurons during the 

period between pattern exposures, produced only Poisson noise, firing with a 

probability of 0.02. The same pattern was used for 1,000 iterations, followed by 

switching over to a different pattern in random order. All patterns were used only 

once during a training epoch, with 60 training epochs in total. There was a total 

of 600,000 training iterations. 
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Figure 3.18. Network training of Braille characters.  a: Columns represent A neuron 

firing rates per individual Braille character. Characters represented at the top of each 

column. Each line in a column represents natural activity during all 60 training epochs. 

During the actual training all characters were used in a single epoch in random order, 

but in this diagram data are filtered for an individual pattern in each column. b: 

distribution of A neurons selective for an individual pattern in the WTA layer. Grey 

levels are proportional to synaptic weights. Dashed circles represent the location of 

Braille dots. 

The parameters of the simulation were set manually: 
=256; C

=400; 

BA
=4096; wBA=140; wAB=200; CA=1000; wIC=0.12; initial synaptic strength 

wini=0.234; and maximal synaptic strength wmax=0.594. Notice that BA
was set 

to a very high value, essentially enabling all-to-all inhibition. This was done to 

minimize the number of active neurons. The value of C
 was also significantly 

larger than in the previous experiment. While in the previous experiment C
was 

set so that neurons would organize themselves close to the edges of the input 

pattern but never inside of the pattern, this time it was tuned so that neurons 

responsive to the four-dot pattern would be the ones close to the boundaries of 

the training layer, and neurons responsive to a single-dot pattern would be the 

ones close to or inside of the single-dot pattern. 

Figure 3.18a shows the firing rates of the 42 most active A neurons. The activity 

of the rest of the A neurons in the network was insignificant, with less than 0.25 

spikes per pattern on average. Each of the columns represents an individual 

pattern and the response rates over 60 epochs. 
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Figure 3.19. Synaptic strengths in proportion to the scaling factor of an individual 

neuron. This particular neuron was partially selective for a four-dot and three-dot 

pattern. Strengths associated with one of the dots were scaled down significantly, and 

thus exerted less influence. 

The results show the majority of neurons were mainly selective for a single 

pattern, and while there were a few neurons which showed some selectivity for 

more than one pattern, in most cases it was a selectivity switch from a three-dot 

pattern to a four-dot pattern and back again (see Figure 3.18). There was 

significant competition between neurons selective for the same pattern, 

however, and especially in the case of pattern 'i', resulting in decreased activity 

and consequently slower learning. 

In comparison, a simple network with no distance-dependent synaptic-strength 

scaling and no C neuron failed to discriminate these patterns. Most frequently 

one or several neurons dominated the entire network and were selective for all 

2- to 4-dot Braille patterns, ignoring the single dot pattern at the conclusion of 

the training. Synaptic strengths varied constantly in attempting to fit the 

presented sample pattern. 

I used only the first ten Braille characters for convenience of visualization. Since 

most of the neurons in the training layer remained naïve, the network could be 

trained for more than ten patterns; the number of possible patterns in general is 

limited by the size of the training layer and the parameters of horizontal 
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inhibition wBA, wAB and BA
2 which define how many of the neurons can be 

successful in competing for the same pattern. 

3.3.4. Discussion 

The proposed neural network was successfully trained for ten Braille characters. 

Although some neurons were selective for more than one character, the pattern 

could still be identified unambiguously from the combinations of responsive 

neurons. Attempts to train a simple competitive network for the same characters 

failed; the network was unable to discriminate most of the patterns. The results 

show this particular circuit is more efficient than the simple competitive network 

for the learning of concentrated spatial patterns. 

One of the weakest parts of the circuit is competition via lateral inhibition. It 

negatively affected the speed of learning, especially at the beginning of the 

training. Also, the model of lateral inhibition is not robust enough to prohibit 

neighboring neurons from firing. This is associated with the latency of inhibition 

due to inhibition taking place through an inhibitory interneuron. In current 

simulations the time step was 1 ms, consequently resulting in a 2 ms latency for 

the inhibition to take effect. To work around this problem, simulation at the sub-

millisecond scale, or a different model of competition, for example, an external 

modulation circuit, might be considered. 

The main motivation for this research was to explore possibilities for building a 

practical machine based on known STDP properties.  I did not intend to simulate 

the workings of the visual or primary somatosensory cortex where much more 

complicated processes occur. Cells in the visual cortex are selective for length, 

width, color and orientation (Hegde & Van Essen, 2000). The sense of touch is 

also far from simple, with at least four distinct types of mechanical receptors in 

the human skin, all producing different output patterns (Gardner, 2010). 

Simplistic bottom-top training, where associative memory is stored in the 

synaptic strengths of receiving neurons, appears well suited for pattern 

recognition tasks, especially because this kind of network is capable of learning 
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in a very noisy environment. It lacks the ability, however, to reproduce memory, 

whereas living neural network systems obviously can reproduce memory. 

Furthermore, non-reproducible memory cannot be compared to the input. 

Dealing with reproducible and comparable memory requires a different network 

architecture, such as the one proposed by Adaptive Resonance Theory 

(Carpenter & Grossberg, 2009). 

While the parameters of the STDP function itself were chosen within the range 

of findings discovered in biological neurons (Caporale & Dan, 2008), other 

parameters were tuned manually, in what can be considered a stochastic hill-

climbing optimization where the overall speed of the training was the main goal. 

I cannot claim to have achieved global or even local minima here. For that 

reason, it is still too early at this stage of the research to provide a reliable 

evaluation of the quality of the training, other than to say that robust training 

occurs within the range of input stimuli used in these particular experiments. 
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3.4. Some Properties of the Postsynaptic Process of the SRM 

Neuron 

By making assumptions about presynaptic and postsynaptic processes, such as 

assuming that presynaptic and postsynaptic spike trains are Poisson-distributed, 

it is possible to gain theoretical insight into the STDP training process. 

Izhikevich and Desai  (Izhikevich & Desai, 2003), for example, derived 

equations for the expected value of change in synaptic weight for multiple 

models of spike neighborhood interactions for uncorrelated and weakly 

correlated Poisson-distributed spike trains. Other authors used the Fokker-Plank 

equation to predict the evolution of synaptic weights (Rubin et al. 2001; Gütig 

et al. 2003; Cateau & Fukai 2003). These studies are based on assumptions of a 

Poisson process, or on modeling membrane potential through the Ornstein-

Uhlenbeck process (Cateau & Fukai 2003), again assuming membrane potential 

is a Gaussian process.   

In this section I discuss some theoretical properties of the SRM model and 

demonstrate that the assumption of a Poisson process for postsynaptic spikes, at 

least in the case of the SRM model, is incorrect. The assumption that the process 

of postsynaptic potential is Gaussian is incorrect as well, unless 

afterhyperpolarization is absent in the model.  

3.4.1. The Normality of the Process of Postsynaptic Membrane Potential 

Let’s assume that individual postsynaptic potential is expressed by the alpha-

function: 

�݂ሺݐሻ = −ሺ݁ݓ ௧�೘ − ݁− ௧�ೞሻ  (3.11) 

where Ts < Ts and w is the synaptic strength of an individual synapse. In fact, 

postsynaptic potential could be expressed by any other continuous decaying 

function; I’m using a simple one for purposes of illustration. 

Let’s assume we have a single SRM neuron which receives input from N afferent 

neurons. Let’s assume that afferent spikes are Poisson-distributed, thus firing 
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with fixed probability p at each discrete time step of the simulation. If N and p 

are sufficiently large, integrated postsynaptic potentials are indeed distributed 

normally, but only if we ignore the component of afterhyperpolarization in the 

SRM model. We can easily find the mean and variance of this normal 

distribution: 

ߤ = ݓ̅݌� ∫ �݂ሺݐሻ݀ݐ∞
଴  (3.12) 

�ଶ = ሺͳ݌� − ଶݓሻሺ̅݌ + �௪ଶሻ��ଶ (3.13) 

where ̅ݓ is the mean synaptic strength the inputs, �௪ଶ  is the variance of input 

strengths and ��ଶ is given by: 

��ଶ = ∫ �݂ሺݐሻଶ݀ݐ∞
଴  (3.14) 

Equation (3.13) follows from the variance of binomial distribution multiplied by 

the variances of the postsynaptic potentials. For the discrete model, equations 

(3.12) and (3.14) can be rewritten as: 

ߤ = ∑ݓ̅݌� �݂ሺݐሻ∞
௧=଴  (3.15) 

��ଶ =∑ �݂ሺݐሻଶ∞
௧=଴  (3.16) 

Figure 3.20 provides the experimental results from the process of the 

postsynaptic membrane potential of a single SRM neuron with 1,000 afferents. 

In the experiment all synaptic strengths were set to 1; Tm=10 and Ts=0.5; 

afferents fired with a probability p=0.04; the simulation time step was 1 ms. 

Figure 3.20A shows the distribution of integrated PSPs, ignoring postsynaptic 

spikes and the afterhyperpolarization phase. The process is obviously Gaussian; 

equations (3.15) and (3.16) give a perfect approximation of the process. When 

afterhyperpolarization is taken into account (Figure 3.20A), however, the actual 
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process takes on a very different, multimodal shape. Here threshold ϑ=and 

the amplitude of afterhyperpolarization Wr=- Th=Tm (for more details please 

see Materials and Methods). Therefore postsynaptic potentials cannot be 

modeled with the Ornstein-Uhlenbeck process, at least in the case of the SRM 

model. Since the SRM model is able to mimic actual membrane potential with a 

very high degree of accuracy, there is little doubt that the Ornstein-Uhlenbeck 

process is not applicable to the biological neuron either. 

 

Figure 3.20. Process of integrated postsynaptic potentials of the SRM neuron when 

exposed to Poisson-distributed input spikes. A: process of postsynaptic potentials, 

excluding afterhyperpolarization. Grey line is experimental results and dashed line is 

the theoretical prediction, normal distribution with the mean and variance obtained 

from equations (3.15) and (3.16).  B: the same process including 

afterhyperpolarization. 

3.4.2. Distribution of the Latencies of Postsynaptic Spikes in the Case of 

Absence of Afterhyperpolarization 

When postsynaptic spikes are modeled by the Poisson process, expected 

latencies between the postsynaptic spikes are distributed exponentially. 

Izhikevich and Desai  (Izhikevich & Desai, 2003) derived their equations based 

on exponential distribution. Here I will show an experimentally measured 

distribution of postsynaptic latencies. It is obvious that these do not follow an 

exponential distribution even when afterhyperpolarization is absent. See Figure 

3.21. 
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Figure 3.21.  Latency distribution of postsynaptic spikes. Experimental data. Here the 

line is truncated when Wh=0, that is, where afterhyperpolarization is absent (the 

probability at point 0, in other words the probability of immediate firing without delay, 

is 0.77). 

Unfortunately, the distribution depicted in Figure 3.21 cannot be derived. I tried 

to develop an algorithm to compute this distribution numerically but I have 

achieved only limited success. Below I will explain this algorithm and the 

problems associated with it. 

For the sake of simplicity, let’s consider a case without afterhyperpolarization. 

Let’s define that the phase of absolute refraction is equal to the single step in 

discrete time, so that we can ignore it. Then it is easy to compute the probability 

of the spike. The spike is fired when membrane potential is larger than threshold 

value, thus the expected firing rate is:  ܧ = ͳ − Φሺߤ, �,  ሻ (3.17)ߴ

where  is the cumulative normal distribution;  and  can be obtained from 

equations (3.13) and (3.15); and ϑ is the threshold value. 

Now let’s compute the conditional probability of the spike at the moment 

t=tspike+1. It is important to understand that membrane potential is an auto-

correlated stochastic process, and thus it has momentum. The degree of 
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autocorrelation obviously depends on the time constants of the alpha-function. 

Let’s define the auto-correlation function: 

���ሺ�ሻ = ��−ଶ∫ �݂ሺݐሻ ∗ �݂ሺݐ + �ሻ݀ݐ∞
଴  (3.18) 

the discrete case: 

���ሺ�ሻ = ��−ଶ∑ �݂ሺݐሻ ∗ �݂ሺݐ + �ሻ∞
௧=଴  (3.19) 

where  is the time step and ��ଶ is computed from the equations (3.14) or (3.16) 

correspondingly.  

For computing the conditional probability of the spike at the moment t=tspike+1, 

we can use a bivariate normal distribution, where =(1) and marginal 

distributions are identical with  and  obtained from equations (3.13) and 

(3.15). Truncating this distribution with threshold ϑ,  we can obtain the 

conditional probability of the consequent spike at the moment t=tspike+1. See 

Figure 3.22, top left distribution, the upper-right quadrant is the conditional 

probability of firing and the bottom-right quadrant is the conditional probability 

of not firing. 

Truncated bivariate normal distribution (top or bottom part of the distributions 

in the first column in Figure 3.22) yields an extended skew-normal distribution 

(ESN) (Azzalini, 1996; 2005): 

ሻݔሺ�ܵܧ = ͳ� � ቀݔ − �ߤ ቁΦ(�√ͳ + ଶߣ + ߣ ቀݔ − �ߤ ቁ)Φሺ�ሻ  
(3.20) 

where  

ߣ = �√ͳ − �ଶ (3.21) 
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� = ߤ − �ߴ  (3.22) 

where � is a normal probability distribution and  is a normal cumulative 

distribution;  is a correlation coefficient and ϑ is the threshold. Notice that 

normal probability distribution is a special case of ESN when and ESN 

approaches normal PDF when  is large. 

 

Figure 3.22. Distributions of the postsynaptic membrane potential process when 

afterhyperpolarization is absent. Dashed lines represent threshold value ϑ. Arrows 

show the origin of marginal distributions. Drawing is based on experimental data. In 

the first column there is bivariate normal distribution with correlations for =1, 2, 3 and 

4. In the second column there are conditional distributions at the time moment t=1 

immediately after the spike. In the third column is the conditional distribution when 

there was no spike at the moment t=1, and in the fourth column there were no spikes at 

the moment t=1 and t=2.  
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When we have two extended skew-normal distributions obtained from 

truncating bivariate normal distributions with correlations (1) and =(2), 

we may use these two as marginal distributions to obtain the entire conditional 

distribution at the time moment t=2 (Figure 3.22, second column). Here we have 

a bivariate extended skew normal distribution (ESN2) (Azzalini, 2005): 

ଶ�ܵܧ = �ଶሺݔ − ,ଵߤ ݕ − ,ଶߤ ΣሻΦሺߙሻΦሺ�ሻ  (3.23) 

where:  

ߙ = ଴ߙ + ݔଵሺߙ − ଵሻ�ଵߤ + ݕଶሺߙ − ଶሻ�ଶߤ  (3.24) 

  

଴ߙ = �√ͳ + ଵଶߙ + ଶଶߙ +  ଶ� (3.25)ߙଵߙʹ

  

ଵߙ = �ଵ − �ଶ�√ሺͳ − �ଶሻሺͳ − �ଶ − �ଵଶ − �ଶଶ + ʹ�ଵ�ଶ�ሻ (3.26) 

  

ଶߙ = �ଶ − �ଵ�√ሺͳ − �ଶሻሺͳ − �ଶ − �ଵଶ − �ଶଶ + ʹ�ଵ�ଶ�ሻ (3.27) 

where �ଶ is a bivariate normal PDF; =and 

from equations (3.15) and (3.16);  are the correlation 

coefficients of a bivariate normal PDF which produced ESN marginal 

distributions and  is the correlation coefficient used in the covariance matrix 

of �ଶ in equation (3.23). These correlation coefficients are from equation (3.19), 

when the time moment t=1. 
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The extended skew-normal distribution (3.23) perfectly fits the experimental 

data, see Figure 3.23. 

 

Figure 3.23. Bivariate skew normal distribution is a perfect prediction of membrane 

potential at the moment t=1. A: experimental data. B: theoretical prediction. C: 

marginal distributions; grey line is experimental data, dashed line the prediction. 

At this point I have solved the first two columns of the triangle depicted in Figure 

3.22.  Thus it is possible to estimate the conditional probabilities of the spike at 

the moments t=1 and t=2 with high precision. The third and subsequent columns 

are problematic. They cannot be derived, but it is highly likely that it is possible 

to estimate these distributions numerically. The marginal distributions of the 

distribution in the third column could be expressed as: ܵܧ�ሺݔሻ
= ͳ� � ቀݔ − �ߤ ቁ ∫ ͳ�ଶ�ሺ�ሻΦሺߚ଴ሺݔሻ + ∞−�ݕଵሺ�ሻሻ݀ߚ

∫ ͳ� � ቀݖ − �ߤ ቁΦ(�√ͳ + ଶߣ + ߣ ቀݖ − �ߤ ቁ)Φሺ�ሻ ∞−�ݖ݀
 (3.28) 

where:  

� = ݕ − ߤ − �ሺݔ − ሻ�ଶߤ  (3.29) 

ሻݔ଴ሺߚ = ଴ߙ + ଶߙ ቀݔ − �ߤ ቁ + �ଵߙ ቀݔ − �ߤ ቁ (3.30) 

ሻݔ଴ሺߚ = ଵ√ͳߙ − �ଶ (3.31) 
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Equation (3.28) cannot be solved because of the unknown Gaussian integrals. I 

attempted to use skew-normal distribution again, that is, to fit distribution (3.28) 

to  (3.20) by estimating the moments of truncated ESN2 and applying the method 

of the moments to make it fit. There are, however, multiple roots in the solutions, 

and I was not able to find a reliable way to select the best solution to fit the 

experimental data. On the other hand, using normal distribution for column 3 

yields quite good results. Absence of afterhyperpolarization is a very special 

case, however, and I saw little value in pursuing a solution to this problem to the 

end. The whole point of this section is to demonstrate that even in the absence 

of afterhyperpolarization one cannot derive a distribution of the latencies of 

postsynaptic spikes. 

Introducing afterhyperpolarization, the method I described above is only 

applicable in cases where the threshold ϑ>. One should adjust the values of ϑ 

when solving the triangle depicted in Figure 3.22. In the case of ϑ<m, one may 

encounter multimodal distributions (see Figure 3.23), and thus this method 

cannot be the generic solution. 

 

Figure 3.24.  A multimodal case of the process of membrane potential at the moment 

t=1. From experimental data recorded when threshold ϑ= <<, 

afterhyperpolarization is a very steep Th=1, and there is a large Wh=-4. A: bivariate 

distribution. B: marginal distribution along the x axis. C: marginal distribution along 

the y axis. 
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3.4.3. Discussion 

I have demonstrated that the SRM neuron cannot produce Poisson-distributed 

postsynaptic spikes when exposed to a Poisson-distributed input. This applies to 

the SRM model but not to the biological neuron per se. But since the SRM model 

is known to be a quite an accurate model of the biological neuron, this might be 

considered strong evidence this is true of the biological neuron as well.  

Since afferent neurons are supposed to mimic their biological counterparts, it is 

questionable whether Poisson-distributed spike trains are a viable model for 

encoding data. 

This puts under scrutiny the work of Izhikevich and Desai (Izhikevich & Desai, 

2003), where they relate the STDP learning rule to the BCM theory (Bienenstock 

et al. 1982). The findings of Izhikevich and Desai will probably stand when 

applied to spike probability distributions similar to the one depicted in Figure 

3.21, but this has not yet been proven. 

I am certainly not the first researcher to question the biological realism and 

viability of Poisson-distributed spike trains, see also Linder, 2006; Cateau & 

Reyes, 2006. 
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3.5. Modified STDP Triplet Rule Significantly Increases Neuron 

Training Stability in the Learning of Spatial Patterns 

This work was published in the scientific journal “Advances in Artificial Neural 

Systems” (Krunglevicius, 2016). 

Besides a variety of different STDP rules known from biological studies, there 

is also a number of phenomenological models of STDP. It is important to 

understand the limitations and advantages of the different STDP models. In this 

section three different additive STDP models of spike interactions were 

compared in respect to training performance when the neuron is exposed to a 

recurrent spatial pattern injected into Poisson noise. The main motivation for this 

work was to explore which model of STDP would be the best option for the 

neural circuits introduced in sections 3.1, 3.2 and 3.3. I compared three different 

additive STDP implementations: all-to-all interaction, nearest-neighbor 

interaction with immediate pairings (Burkitt et al., 2004), and the same nearest-

neighbor interaction with triplet update (Pfister & Gerstner, 2006). The 

parameters of the neuron model and STDP training rules were optimized for a 

range of spatial patterns of different sizes by means of a heuristic algorithm. The 

size of the pattern, i.e., the number of synapses containing the pattern, was 

gradually decreased from what amounted to a relatively easy task with a large 

number down to a single synapse. Optimization was performed for each size of 

the pattern. The parameters were allowed to evolve freely, without adherence to 

the constraints of biological realism. The triplet rule performed better by far in 

most cases than the other two rules, while the evolutionary algorithm 

immediately switched the polarity of the triplet update. The all-to-all rule 

achieved moderate results. 

In order to build a useful pattern recognition machine based on STDP learning, 

it is important to understand the limitations of the model; for example, ask the 

simple question: how small can the spatial pattern be in respect to the number of 

overall incoming synapses? By making assumptions about presynaptic and 
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postsynaptic processes, such as assuming that presynaptic and postsynaptic 

spike trains are Poisson-distributed, it is possible to gain theoretical insight into 

the STDP training process. Izhikevich and Desai (Izhikevich & Desai, 2003), for 

example, derived equations for the expected value of change of synaptic weight 

for multiple models of spike neighborhood interactions with uncorrelated and 

weakly correlated Poisson-distributed spike trains. Other authors used the 

Fokker-Plank equation to predict the evolution of synaptic weights (Rubin et al., 

2001; Gutig et al., 2003; Cateau & Fukai, 2003). These studies are based on 

assumptions of a Poisson process, or on modeling membrane potential through 

the Ornstein-Uhlenbeck process (Cateau & Fukai, 2003), again assuming that 

membrane potential is a Gaussian process.  While such methods might be 

valuable, they are limited to simple distributions, which is not the case in a 

mixture of Poisson noise and spatial pattern. Moreover, the spike-response-

model I use in my research cannot produce Poisson-distributed postsynaptic 

spikes, because membrane potential is a highly auto-correlating process, except 

when postsynaptic potentials are modeled by unit impulses, which is biologically 

implausible (see section “3.4 Some Properties of the Postsynaptic Process of the 

SRM Neuron”). Neither is membrane potential a Gaussian process, because of 

the skewness induced by relative hyperpolarization. Relative hyperpolarization 

also deforms the distribution of postsynaptic latencies, in some cases resulting 

in a bimodal distribution. 

To answer the question of how small the spatial pattern can be, I used a very 

simple experimental approach: a basic genetic algorithm to optimize neuron and 

STDP parameters in training for a spatial pattern in a simulation. The size of the 

pattern, i.e., the number of synapses containing the pattern, was gradually 

decreased from what was a relatively easy task down to the point training failed. 

The parameters were optimized for each size of pattern. Parameters were 

allowed to evolve freely, without restrictions. Such optimization was made for 

two different setups: in the first setup afferents participating in the pattern fired 

at a rate of 64 Hz and others fired at 39 Hz; in the second setup all afferents fired 
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at 64Hz. Also, I conducted limited experiments with firing rates at 39 Hz/39 Hz 

and 25 Hz/39 Hz. 

The results were quite unexpected. In the case of the triplet update, the pattern 

was successfully scaled down to a single synapse without significant degradation 

in performance over the entire range of patterns when the setup was 64 Hz/39 

Hz. In the case of the single synapse transmitting a periodic spike, obviously no 

spatial pattern remained, and the neuron was tuned to detect either differing rates 

in the incoming synapse or, it seems, the periodic occurrence of the spike. The 

genetic algorithm immediately changed the polarity of the long-term depression 

of the third spike coefficient. Also, in the case of the 64 Hz/64 Hz setup, the 

polarities of both third spike coefficients were changed (see Materials and 

Methods). In the case of all-to-all interaction I did achieve a single synapse as 

well, but the training success rate was significantly reduced. The simple nearest-

neighbor interaction rule reached a definite limit on pattern size and could not 

be optimized further. 

3.5.1. Materials and Methods 

The neuron was trained for spatial patterns of different sizes. Neuron and STDP 

parameters were optimized for each size of pattern. Simulations were executed 

in discrete time steps at 1 ms precision. The pattern was created by a number of 

selected input neurons firing at the same time after each 40 ms of simulation 

(Figure 3.25). Also, all neurons fired spontaneously with a fixed probability at 

each simulation step, thus producing Poisson noise. During pattern exposure all 

other neurons were inhibited from firing. Three different spike neighborhood 

rules were compared: all-to-all, nearest-neighbor with immediate pairings 

(Burkitt et al., 2004) and nearest-neighbor with triplet update (Pfister & 

Gerstner, 2006). 

This experiment is similar to the one conducted by Masquelier and colleagues 

(Masquelier et al., 2008). The key difference is that I used a spatial rather than a 
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spatiotemporal pattern, and the patterns were inserted into the noise signal at a 

regular frame rate. 

 

Figure 3.25. Sample pattern. Spikes generated by Poisson process are grey, injected 

spatial pattern is black. Afferents which do not belong to the pattern did not fire during 

pattern exposure. 

I measured training performance in three different setups of Poisson noise. 

Initially I set the probability of a noisy spike to p=0.04 in all afferents. In this 

setup, the neurons which participated in the pattern fired more frequently than 

those which did not, at 64 Hz and 39 Hz respectively. In the case of a 

spatiotemporal pattern of sufficient duration it is possible to eliminate this 

difference in firing rate, if the count of spikes in the pattern from individual 

synapses is equal to the expected value of Poisson noise. This is not the case, 

however, for spatial patterns: in order to maintain equal firing rates, synapses 

which belong to the pattern must fire less frequently during Poisson periods, thus 

reducing noise and, presumably, resulting in easier training. On the other hand, 

the difference in firing rates also has a great influence on the training: the 

heuristic optimization I used could tune the neuron with the triplet rule to detect 

increased firing rate instead of spatial pattern. This was the case when the pattern 

was sufficiently small, but not the case when it was large enough to cause the 

postsynaptic spike (see Results). Such a mix of spatial and rate coding is 

compatible to some extent with observations of the auditory cortex of primates 

(Kayser et al., 2009), where a mix of different coding systems seems to convey 

more information than spatial or rate coding alone.  
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Later I reran the optimization with a 64 Hz/64 Hz setup, where the firing rate of 

afferents not participating in the pattern recognition were increased to 64 Hz by 

setting the probability of a noisy spike to p=0.065641026. Here the triplet rule 

also performed better than the other two, but the rate of success was lower, and 

the behavior of the neuron when the pattern became small was very different 

(see Results). 

I also conducted limited experiments with reduced noise in the afferents which 

did participate in the pattern at 39Hz/39Hz and 25Hz/39Hz. Here the 

probabilities of a noisy spike were set to 0.014358974 and 0 respectively. In this 

case the triplet rule lost its advantage over all-to-all, but still performed 

significantly better than the nearest-neighbor rule. 

Heuristic Optimization 

The basic idea was to discover the lower limits of SDTP training with respect to 

spatial pattern, or, in other words, to answer the question of how small the spatial 

pattern could be. Since additive STDP tends to produce a bimodal distribution 

of synaptic strengths, the idea was to maximize the difference between the 

strengths of synapses which transmit the pattern and those which do not. In 

addition, the neuron must remain responsive at the end of the training, and 

ideally only selective to the pattern. Instead of minimizing the firing latencies of 

the trained neuron, for the sake of simplicity I made the assumption that the 

neuron firing rate should be approximately the same as the rate of pattern 

injection. For this purpose I introduced a Gaussian component into the objective 

function: 

݂ = {  
  ∑݁−ሺఒ−�ሻమ/�Δߤ௪   if Δߤ௪ > Ͳ௧∑Δߤ௪௧                        if Δߤ௪ ≤ Ͳ, (3.32) 

where w is the observed difference between the means of strengths of synapses 

which were associated to the pattern and those which were not;  is the observed 
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firing rate (times per second);  = 25 is the target firing rate and  = 20 defines 

the tolerated deviation from the target rate. At the beginning of the training all 

synaptic strengths were set to the same value , so that at the very beginning of 

the training the value of w was zero. The value of the objective function was 

the sum of observations at each time step in the simulation. In this way, the 

performance of the training was taken into account from the very beginning of 

the simulation, and in this manner, the speed of the training was also increased 

by maximizing the objective function. 

The heuristic search to maximize the objective function (3.32) was executed in 

7-dimensional space for nearest-neighbor and all-to-all rules, and in 11-

dimensional space for the triplet rule. The optimized parameters were: ϑ, w0, 

wmin, ,  Apre, Tpre, and Tpost. For the triplet rule there were four additional 

parameters: Apre3, Apost3, Tpre3 and Tpost3 (see equations below). For the heuristic 

search I used a very basic genetic algorithm. There were 100 agents, and after 

each trial 60 agents were replaced by the offspring of the top 20 performers. 

Offspring were generated from the parent agent by applying normally distributed 

mutations. The mean of the normal distribution was the parent value; the 

standard deviation for mutations was 1 for time dimensions (Tpre, Tpre3, Tpost and 

Tpost3) and 0.01 for all other dimensions. Each agent in each generation executed 

10 independent trials and the values of the objective function were added 

together from all 10 trials. The heuristic search was executed for 1,500 

generations. There were 300 afferents in each agent. 

In my first 64 Hz/39 Hz experiment initial pattern size n was set to 24, equal to 

twice the expected spike count generated by Poisson noise. Pattern size was then 

decreased to 12, 8, 4, 2 and 1.  

In the 64 Hz setup, pattern sizes were 19, 15, 12, 8 and 4. Pattern size n=19 

approximates the expected spike count generated by Poisson noise, which was 

19.2. Here for the initial conditions I reused the parameters obtained for n=24 in 

the 64 Hz/39 Hz setup, with an exception for the triplet rule (see Results). 
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For the 39 Hz/39 Hz and 25 Hz/39 Hz experiments, initial parameters were taken 

from the 64 Hz/39 Hz setup n=8 results (an exception was again made for the 

triplet rule, see Results for details) and the pattern size remained the same, n=8.  

After optimization of parameters, the success rate of training was evaluated by 

training the neuron for the same pattern 1,000 times. The success criteria was 

Δȝw >= 0.3 and 12 < Ȝ < 50 at the end of the training (see Eq. 1).  

 I reran the genetic optimization several times and the results were all similar. 

The Neuron Model 

Neurons were modeled on a simplified version of the Spike Response Model 

(SRM) (Gerstner & Kistler, 2002) identical to the one described in section 3.2 

“STDP Learning under Variable Noise Levels”.  

 

Figure 3.26. STDP neighborhood rules. a: Nearest-neighbor with immediate pairings. 

b: Triplet interaction. c: All-to-all. 

During all experiments time constants were set to Tr=10,  Tm=10 and Ts=0.5. Wr 

was dependent on a threshold value and was set to 2ϑ. 

In the neuron model presented in this section only one STDP rule of excitatory-

to-excitatory synapses is applied. Neighborhood functions used for comparison 

are represented in Figure 3.26. Triplet update Figure 3.26b was used in 

combination with the nearest-neighbor interaction in Figure 3.26a. STDP 

updates were modeled by equations (3.33), (3.34) and (3.35). 

Nearest-neighbor: 
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Δݓ௝ = { 
݁ߙ  −Δ௧�೛೚ೞ೟                           if  Δݐ > Ͳ−ߙ�௣௥௘݁−Δ௧�೛ೝ೐                if  Δݐ < Ͳ  Ͳ                                  if  Δݐ = Ͳ  (3.33) 

Nearest-neighbor with triplet update: 

Δݓ௝ = {  
ߙ   ቆͳ + �௣௢௦௧ଷ݁−Δ௧೛೚ೞ೟య�೛೚ೞ೟య ቇ ݁ −Δ௧�೛೚ೞ೟                           if  Δݐ > Ͳ
ߙ− ቆ�௣௥௘ + �௣௥௘ଷ݁−Δ௧೛ೝ೐య�೛ೝ೐య ቇ ݁−Δ௧�೛ೝ೐                      if  Δݐ < Ͳ  Ͳ                                                                             if  Δݐ = Ͳ

 (3.34) 

All-to-all: 

Δݓ௝ = {  
݁ߙ   −Δ௧�೛೚ೞ೟ሺͳ + ݐ௣௢௦௧ሻ                          if  Δݕ > Ͳ−ߙ�௣௥௘݁−Δ௧�೛ೝ೐  ሺͳ + ݐ௣௥௘ሻ                if  Δݕ < Ͳ  Ͳ                                                       if  Δݐ = Ͳ  (3.35) 

where wj is the amount of change of strength of the individual synapse;  is the 

training step; t is the time difference between postsynaptic and presynaptic 

spikes; and Apre, Apre3, Apost3, Tpre,  Tpre3, Tpost and Tpost3 are the parameters which 

control the amplitudes and slopes of STDP functions. Variables ypost and ypre 

were computed the same way as the x variables in the neuron model in equations 

(3.3) and (3.4), the only difference being that in this case weights were not 

present. 

3.5.2. Results 

The results from the 64 Hz/39 Hz and 64Hz experiments are presented in Figure 

3.27. The triplet rule in both setups performed much better than its competitors, 

although in the 64 Hz triplet experiment there was a significant degradation in 

performance for n=8. The simple nearest-neighbor rule performed the worst, and 

heuristic search failed to find suitable parameters for the n=4 spike pattern in the 

64 Hz/39 Hz setup and for the n=12 in the 64 Hz setup. 
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It has to be said that in the 64 Hz setup (Figure 3.27b) the genetic algorithm 

initially failed to find the point where the triplet rule would perform better than 

all-to-all, and when the pattern size was 15, it performed worse than nearest-

neighbor. This could not be the global optimum, because nearest-neighbor is a 

special case of the triplet, where Apre3 and Apost3 are zero, therefore at the optimal 

point the triplet rule should perform at least equally to nearest-neighbor. So here 

optimization stuck in a local optimum. To validate this, I used the nearest-

neighbor parameters obtained for n=15 as initial parameters for the triplet, 

except Apre3 and Apost3 were set to zero, Tpre3= 2Tpre and Tpost3= 2Tpost. The results 

were significantly better: the triplet performed better than the other two. In order 

to eliminate possible unfair competition, I reran genetic optimization for nearest-

neighbor and all-to-all for 3,000 generations, with no success in improving the 

parameters. Although these results cannot be conclusive, it strongly suggests that 

the triplet rule can perform better. 

 

Figure 3.27. Training success rate vs. pattern size. Black markers denote the training 

when synaptic strengths were bimodal but the neuron was not selective to the pattern. 

a: Results from the 64 Hz/39 Hz setup. b: Results from the 64 Hz setup. Dashed lines 

indicate that there was no heuristic optimization done and previous optimized 

parameters were simply reused. 

When pattern size was relatively large, results from both the 64 Hz/39 Hz and 

64 Hz experiments were quite similar:  the trained neuron was selective to the 

pattern and fired mostly after the pattern time with 2-millisecond latency. The 
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latency was caused by the PSP kernel function chosen, see Eq. (3.2). In the 64 

Hz/39 Hz setup the triplet rule retained selectivity down to the n=4 pattern and 

in the case of all-to-all this was n=8 (see Figure 3.28); in the 64 Hz setup 

selectivity was lost sooner: the triplet rule retained selectivity down to n=8, and 

n=12 for the all-to-all rule.  

When the pattern became too small, the genetic algorithm found conditions 

where STDP training would result in certain equilibria of synaptic strengths, and 

consequently the neuron firing rate was more or less constant, but even so, 

synaptic strengths associated to the pattern tended to grow close to the maximal 

value, which was 1, while the remaining strengths were distributed above the 

minimal value. The neuron was not selective because the combined strength of 

the synapses associated to the pattern was not sufficient to cause a postsynaptic 

spike, especially when n=1, at which a spatial pattern does not even exist. In the 

case of the simple nearest-neighbor rule, this kind of behavior was not observed. 

It must be said that in the 64 Hz setup genetic optimization could not improve 

the training success rate for the triplet and all-to-all, as the pattern became too 

small and neuron was not selective to it. In Figure 3.27b the dotted line indicates 

that optimization there was discontinued, and for measuring success rate, 

parameters were taken from previous optimization results, which was n=4 for 

the triplet, and n=8 for the all-to-all. 

When the pattern is relatively small (see Figure 3.27, black markers), training 

with the parameters obtained from the 64 Hz/39 Hz and 64 Hz experiments for 

the triplet rule results in very different behaviors. Parameters from the 64 Hz/39 

Hz experiment were tuned to detect an increased rate: I replaced the spatial 

pattern with a pure Poisson process with firing rates of 64 Hz and 39 Hz 

respectively, and repeated the triplet experiment with the same parameters. 

Training failed when n>4, and thus a coincidence of spikes was required to train 

the neuron under the given parameters. Training was successful, however, when 

n≤4, and therefore when the pattern was small, synapses grew stronger because 
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of increased input firing rate, not because of coincidences of input spikes. This 

was not the case, however, with the 64 Hz experiment. I made a few tests with 

the triplet rule and n=1 pattern size. In my experiment the spatial pattern consists 

of spikes and gaps. When spikes and gaps are replaced with pure 64 Hz Poisson 

noise, training obviously fails; the success rate is simply equal to the measured 

probability for a random synapse to grow stronger than the mean value plus 0.3 

(see “Heuristic Optimization” for training success criteria). When only gaps 

were replaced with Poisson noise, the training success was reduced from 0.99 to 

0.7. When only spikes in the pattern were replaced with noise, but gaps were 

persistent, the training success rate was reduced to 0.14, which seems to be 

slightly above random chance (the measured probability of a random chance of 

success was ~0.12). This suggests that parameters were tuned to detect 

deformations of a Poisson process, and these deformations could be induced by 

either a periodic spike or periodic gap. I cannot claim with certainty, however, 

that STDP can detect periodic gaps in a Poisson process. 

 

Figure 3.28. Distribution of trained neuron response latencies. Zero point is the sample 

pattern occurrence time. Results are from the 64 Hz/39 Hz setup. 
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I conducted an additional test with the triplet rule in the 64 Hz setup: I replaced 

the spatial pattern with a spatiotemporal one, by distributing the spikes of a 

pattern in time with 10 ms latency; gaps from noisy afferents were removed. In 

this case, training was successful for n=4 with a success rate of ~0.5 and for n=8 

of ~0.2. Training failed for n=12. This indicates that parameters obtained for 

relatively small patterns were appropriate for detecting certain deformations of 

a Poisson process of spikes from an individual afferent, but not coincidences of 

spikes. 

In the all-to-all rule and the small pattern in the 64 Hz/39 Hz setup where the 

STDP window was inverted (see Figure 3.27a, black markers; Table 3.4), 

training failed when the pattern was replaced with pure noise. I tried to preserve 

only the gaps and only the periodic spike, with no success in training. In the 64 

Hz setup, however, removing gaps and replacing the spatial with a 

spatiotemporal pattern with 10 ms latency between spikes boosted the 

performance of the all-to-all rule to a success rate above 0.8 for n<=12. It should 

be noted that when n=8 and n=12 the spatiotemporal pattern overlaps, so there 

were accordingly coincidences of two or three spikes. Training failed when 

n=15. 

 

Figure 3.29. Evolution of synaptic strengths. Results were taken from individual 

successful trainings when pattern size was n=12 for the 64 Hz/39 Hz setup. The top 

row is mean synaptic strengths; the bottom row shows variances. Grey denotes 

synapses associated to the pattern, black denotes synapses not associated to the pattern. 
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The nearest-neighbor rule in all cases could only be trained to the spatial pattern, 

and all attempts to replace spatial pattern with Poisson noise or a spatiotemporal 

pattern resulted in training failure. 

It is worth noting that the number of input neurons easily could be scaled up by 

any factor, by scaling the threshold value ϑ and the size of the spatial pattern by 

the same factor and keeping STDP parameters unchanged except for training 

step , which required additional tuning in the case of the 64 Hz/39 Hz setup 

and n=1 (in this particular case, I had to change the value of  from 0.662 to 0.9, 

otherwise training was unsuccessful). This nonlinear dependency of the training 

step needs further research. In the case of a small pattern in non-selective mode, 

the pattern size may remain unchanged after scaling. For the 64 Hz/39 Hz setup 

I successfully scaled the triplet model up by a factor of 20, which is 6,000 inputs 

with pattern sizes of n=1 and n=8. The neuron was trained thus without any 

noticeable degradation in the success rate of the training. In fact, I observed a 

slight improvement. That is, the neuron was able to find a single synapse with 

increased firing rate among 5,999 others, and to learn a spatial pattern made by 

160 input neurons among 5,840 others. I also successfully repeated the same 

scaling by a factor of 20 with the 64 Hz setup, for n=1 and n=19. 

Figure 3.29 is a comparison of the synaptic strength evolutions of successful 

trainings where pattern size was n=12 for the 64 Hz/39 Hz setup.  Results were 

gathered from single runs of 5,000 ms duration. The three columns represent the 

three rules, and the upper row shows means of synaptic strengths, the bottom 

variances. In the case of the triplet rule, synaptic strengths were much more 

stable. When training with the triplet rule, variance of strengths was almost one-

tenth that of nearest-neighbor or all-to-all. Comparing the all-to-all rule to the 

simple nearest-neighbor rule, synaptic strengths were a bit more stable in the 

case of all-to-all. Strength evolutions in the 64 Hz setup were very similar. 
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Figure 3.30. Optimized STDP windows for the 64 Hz/39 Hz setup. In the case of the 

triplet rule, black lines denote tpre3=t+1, grey lines tpre3=t+25 and dashed lines 

tpre3=∞. 

From the parameters obtained through heuristic optimization (Figure 3.30; Table 

3.4), we can make a few interesting observations. In the case of the triplet rule, 

LTP occurred at the left side of the STDP window (Figure 3.31), that is, where 

tpre>tpost, and presynaptic spikes were closely correlated to postsynaptic ones. 

The right side of the STDP window shows a very steep slope, and its amplitude 

diminishes as the pattern size becomes smaller; in the case of pattern size n=1, 

the right side of the STDP window shows little or no influence. 

 

Figure 3.31. The left side of the STDP triplet update window. Values obtained by 

genetic optimization when pattern size was n=12, 64 Hz/39 Hz setup. 
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In the 64 Hz setup LTP also occurred at the left side of STDP window, but the 

value of this LTP was significantly lower (see Figure 3.32). Also, compared to 

the 64 Hz/39 Hz experiment, the right side of the STDP window was not 

diminished, and LTD occurred on the right side when presynaptic and 

postsynaptic spikes were close in time. 

 

Figure 3.32. Optimized STDP windows for the 64 Hz setup. In the case of the triplet 

rule, black lines denote tpre3=t+1, grey lines tpre3=t+25 and dashed lines tpre3=∞. 

Also, in the case of all-to-all rule and 64 Hz/39 Hz setup, LTP and LTD switched 

places when the pattern became small at n=4, and, at the same time, the neuron 

lost its selectivity to the pattern (see Figure 3.28). It is interesting to note that 

switches of LTP and LTD in the synapses of the same neuron have been 

observed in biology: synapses distant from the soma have different STDP 

window polarity than synapses proximate to the soma. This has been observed 

in the visual cortex (Sjostrom at al., 2006) and in the barrel cortex (Letzkus et 

al., 2006). Another interesting observation about the all-to-all rule is that, in the 

case of a small pattern, the neuron fires at a persistent rate, despite the wmin value 

approaching close to zero. This indicates that such an inverted STDP window is 

capable of attaining equilibria in synaptic strengths when exposed to Poisson 
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noise, whereas in the case of a non-inverted STDP window, non-correlated input 

spikes tend to minimize synaptic strengths. It was also interesting to note that 

the behavior of the inverted STDP window for all-to-all interaction contradicted 

the equilibrium properties predicted by the Izhikevich and Desai equation 

(Izikevich & Desay, 2003): equilibria for parameters found by heuristic 

optimization should not be stable. The Izikevich and Desay equations, however, 

are based on the assumption of a Poisson-distributed postsynaptic spike train, 

which was not the case for an SRM neuron with relative refraction. At this time, 

I have no good explanation why the neuron retained a stable firing rate. This 

requires additional research. 

In the 64 Hz setup, the all-to-all rule did not switch the polarity of LTP and LTD 

(see Figure 3.32). The behavior, however, was somewhat similar: the all-to-all 

rule attained equilibria in synaptic strengths and the postsynaptic neuron fired at 

a persistent rate. 

I conducted a limited experiment with the 39 Hz/39 Hz and 25 Hz/39 Hz setups, 

where noise in afferents participating in the pattern produced reduced Poisson 

noise or no noise at all (see Figure 3.33 and Table 3.6).  

 

Figure 3.33. Training success rate vs. firing rate. The firing rate of all eight afferents 

participating in the pattern was reduced from 64 Hz to 39 Hz and 25 Hz. Other afferents 

fired at 39 Hz. Success rate values at 64 Hz are taken from Figure 3.27a. 

In this experiment, the all-to-all and nearest-neighbor rules resulted in an 

increased success rate as the noise of the afferents participating in the pattern 

was reduced, but the success rate of the triplet rule decreased at the point of 39 
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Hz; the triplet rule performed worse than the all-to-all rule, but better than 

nearest-neighbor.  

Initially in this experiment I took the optimized parameters from the 64 Hz/39 

Hz and n=8 results as the initial conditions for all three rules and evolved 

parameters with altered firing rates, but maintaining n=8. Later, in the same way 

as in the 64 Hz/64 Hz setup, I reused optimized parameters from the nearest-

neighbor for initial conditions for the triplet. This helped improve the 

performance of the triplet, but not to the point where it could perform better than 

all-to-all at 39 Hz. At 25 Hz triplet and all-to-all had a very similar success rate. 

Table 3.4. Optimized parameters for the 64 Hz/ 39 Hz setup. 

 n Tpost Tpre  Apre ϑ wmin W0 Tpost3 Tpre3 Apost3 Apre3 

T
ri

p
le

t 

1 0.21 12.25 0.662 0.600 21.69 0.104 0.273 59.91 92.49 0.134 -0.794 

2 0.28 11.20 0.715 0.602 24.64 0.117 0.319 58.07 90.55 0.051 -0.793 

4 0.31 17.55 0.718 0.652 14.23 0.087 0.377 62.42 89.44 0.122 -0.825 

8 0.36 29.61 0.748 0.666 8.88 0.003 0.282 71.90 94.94 0.082 -0.840 

12 0.59 34.97 0.610 0.671 13.76 0.023 0.275 67.78 70.72 -0.017 -0.887 

24 0.59 44.27 0.740 0.731 20.39 0.001 0.428 72.34 62.48 0.042 -0.973 

A
ll

-t
o
-a

ll
 

1 2.34 4.58 -0.081 0.493 63.37 0.000 0.580     

2 1.60 3.37 -0.090 0.451 65.29 0.015 0.594     

4 1.72 3.32 -0.106 0.497 65.16 0.004 0.599     

8 14.22 18.63 0.075 0.842 18.57 0.057 0.261     

12 9.27 14.28 0.121 0.941 21.12 0.081 0.255     

24 4.01 7.70 0.031 0.677 23.76 0.031 0.206     

N
ea

re
st

 8 16.98 35.29 0.230 0.876 15.57 0.010 0.204     

12 17.39 42.78 0.244 0.852 18.66 0.041 0.240     

24 1.21 30.43 0.166 0.112 21.83 0.007 0.195     
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Table 3.5. Optimized parameters for the 64 Hz/64 Hz setup. 

 n Tpost Tpre  Apre ϑ wmin W0 Tpost3 Tpre3 Apost3 Apre3 
T

ri
p
le

t 

4 6.66 94.65 0.636 0.635 54.31 0.006 0.732 213.04 198.39 -1.392 -0.788 

8 11.99 49.93 0.308 0.773 21.25 0.007 0.794 197.47 157.43 -1.144 -0.851 

12 20.27 51.06 0.286 0.978 13.25 0.002 0.318 153.34 183.43 -1.081 -0.942 

15 17.83 49.78 0.305 0.693 18.02 0.002 0.344 105.88 96.65 -1.214 -0.703 

19 9.22 11.45 0.465 0.992 19.63 0.005 0.416 134.27 88.52 -1.219 -1.048 

A
ll

-t
o
-a

ll
 8 80.05 50.04 0.005 0.969 86.00 0.027 0.729     

12 40.92 33.33 0.011 0.836 43.63 0.024 0.368     

15 16.52 18.08 0.049 0.947 26.94 0.047 0.266     

19 19.36 20.19 0.040 0.964 33.70 0.080 0.319     

N
ea

re
st

 

15 12.53 22.10 0.246 1.000 26.96 0.046 0.214     

19 7.51 17.02 0.341 0.897 31.37 0.054 0.239     

 

 

Table 3.6. Optimized parameters for the 39 Hz/39 Hz and 25 Hz/39 Hz setups. 

 f 

(Hz) 
Tpost Tpre  Apre ϑ wmin W0 Tpost3 Tpre3 Apost3 Apre3 

T
ri

p
le

t 25 15.89 11.2 0.272 0.981 8.18 0.010 0.164 45.71 72.113 -1.183 0.393 

39 14.27 15.45 0.353 0.733 10.36 0.013 0.197 28.76 88.54 -1.428 0.389 

A
ll

-t
o
-a

ll
 

25 29.73 28.08 0.018 0.935 12.07 0.051 0.159     

39 48.60 37.59 0.006 0.999 12.97 0.056 0.169     

N
ea

re
st

 

25 13.83 27.55 0.154 0.989 8.75 0.016 0.134     

39 8.19 19.84 0.232 0.912 11.90 0.030 0.178     

3.5.3. Discussion 

The main purpose of this work is to demonstrate that changing the sign (±) of an 

additional trace variable of the triplet STDP implementation potentially can 

result in a far better coincidence detector than STDP implementations based on 

two trace variables. The triplet rule (Figure 3.26b) was originally suggested by 

Froemke and Dan (Froemke & Dan, 2002), based on in vivo experiments with 

pyramidal neurons in the visual cortex of the rat. Later Pfister and Gerstner 
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(Pfister & Gerstner, 2006) successfully reproduced STDP behavior found in 

biological neurons, both in the visual cortex (Sjostrom et al., 2001) and 

hippocampal culture  (Wang et al., 2005). Pfister and Gerstner used positive 

values for Apre3 and Apost3 (see section “3.5.1 Materials and Methods”, equation 

(3.34)). In the case of training for spatial patterns, however, genetic optimization 

immediately changed the polarity of Apre3; and in the 64 Hz setup, Apost3 as well 

(see Table 3.4 and Table 3.5). Taking a closer look at the LTD side of the original 

triplet rule (Figure 3.26b), it is evident that positive Apre3 increases LTD in cases 

where the previous presynaptic spike was strongly correlated to the postsynaptic 

one, and therefore reduces the existing correlation. This feature, while it might 

be biologically plausible, has a negative impact on training for spatial patterns. 

If Apre3 is set to a negative value, the result is the opposite, and LTD is either 

lessened, or replaced by LTP. Moreover, this setup of the triplet rule favors spike 

triplets in a window of a specific duration, and therefore is suitable for selecting 

synapses with a higher spiking rate, because the higher the rate is, the higher the 

probability of the occurrence of a triplet in a smaller temporal window. Thus it 

was not surprising in the least that the heuristic search changed the polarity of 

Apre3. What was surprising, however, was the magnitude of positive impact on 

training overall. At the same, I have no good explanation for why the genetic 

algorithm changed the polarity of Apost3 in the case of the 64 Hz setup, and why 

only in this setup. Such negative Apost3 would cause LTD when two postsynaptic 

spikes are close in time and the presynaptic spike is closely correlated to the last 

postsynaptic one (see Figure 3.32, triplet). At this time, I can only speculate that 

this LTD is induced mostly when the postsynaptic neuron fires frequently, thus 

helping prevent too high a firing rate. 

Another interesting observation which follows from my experiment is that the 

triplet implementation of STDP can achieve stable equilibria of synaptic 

strengths when exposed to a Poisson process of input spikes. At the same time, 

STDP can detect an increased spiking rate or a certain deformation of a Poisson 

process even in a single synapse, when the influence of that individual synapse 
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on the overall postsynaptic membrane potential is negligible. In such case the 

neuron is incapable of encoding the data, which makes it difficult to apply this 

feature to competitive learning, for example, in a single winner-take-all circuit, 

such as the one used by Masquelier and colleagues (Masquelier et al., 2009). 

There is no reason why, however, synaptic weights cannot be modified after the 

training by increasing the contrast of synaptic weights, thus making the neuron 

selective to the input of even a single synapse. 

When the pattern was relatively small (Figure 3.27, black markers), the neuron 

was incapable of detecting a spatial pattern, and so failed at coincidence 

detection, even in the case of the inverted all-to-all rule in the 64 Hz/39 Hz setup, 

since training was successful at n=1. Nevertheless, this demonstrates a variety 

of interesting properties of STDP learning which require additional research. It 

is important to understand that STDP training may increase synaptic strength for 

multiple reasons. Without a good understanding of why and when synaptic 

strengths grow or decay, interpretation of STDP training results could be 

problematic. 

Admittedly this work only covered a fraction of the many phenomenological 

models of STDP. Spike pairings in nearest-neighbor can be implemented 

differently by using symmetric or postsynaptic-centered interpretations 

(Morrison et al., 2008). I did not explore reduced multiplicative update (Gütig et 

al., 2003), nor did I include the all-to-all version of the triplet (Pfister & Gerstner, 

2006). 

In this work, optimized parameters were different under different training 

conditions. This would suggest that the parameters of the neuron must be tuned 

according to the properties of the input spike trains, and/or vice versa. From a 

practical point of view this makes little sense: if good prior knowledge about the 

data is required before applying STDP training, then one may use other 

traditional tools which are much more efficient than STDP. the results of this 

research suggest, however, that the triplet rule is a good candidate for use in 
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more sophisticated neural circuits, as presented in my dissertation in sections 3.2 

“STDP Learning under Variable Noise Levels” and 3.3 “Competitive STDP 

Learning of Overlapping Spatial Patterns”. 

This research should be treated with caution because the results of heuristic 

optimization are only approximate and there is no proof that heuristic 

optimization approached global optima, rather than getting stuck in local optima. 

While it shows that using the triplet rule makes very good results possible, it 

does not prove it is impossible to achieve better results with the all-to-all or 

nearest-neighbor rule. At this stage of research the amount of data is insufficient 

to draw solid conclusions other than that the triplet rule can perform extremely 

well under certain conditions. The results of this experiment should therefore be 

accepted as evidence, but not proof. 

The biological plausibility of the triplet parameters discovered is questionable, 

but this experiment was not intended to validate biological hypotheses. The 

heuristic search discovered parameters appropriate for a mixture of the Poisson 

process and periodic spatial patterns. Such conditions do not necessarily exist in 

the biological realm. In the case of the Poisson process, for example, intervals 

between input spikes are distributed exponentially, while this is questionable in 

the case of the actual postsynaptic potential process (Linder, 2006). The Spike 

Response Model with relative refraction can’t even produce a Poisson spike 

train. The results of this experiment should nonetheless prove interesting from 

the perspective of machine learning. 
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Conclusions 

Despite tremendous advances in neuroscience, we are far from a clear 

understanding of how neurons function and how learning and memory work. 

The major problem here is not a lack of data, but the notorious diversity and 

complexity of biological neural systems. Besides the gaps in our knowledge of 

the physiology of the neuron, for the moment there are simply too many data, 

too many hypotheses to fit into a comprehensive, unified and systematic theory 

of neurons, never mind a general theory of the brain. Put simply, the puzzle is 

too large, and too many of the pieces are still missing. Hopefully large ongoing 

projects such as the Blue Brain Project, the Human Brain Project (Markram, 

2012) and the BRAIN Initiative (Markoff, 2013) aimed at systematizing our 

knowledge of biological neural systems will lead to greater general 

understanding. 

My own research was limited to STDP learning, also not yet completely 

understood, with multiple non-linearities discovered and numerous 

phenomenological models proposed (Caporale & Dan, 2008; Morrison et. al, 

2008). I investigated a rather hypothetical form of Hebbian learning with respect 

to the learning of spatial and spatiotemporal patterns. I identified a few of the 

problems associated with such learning, and found solutions to them. 

I. It is possible to build a neural circuit for the learning of spatiotemporal patterns 

based on STDP learning only.  

I have designed, implemented and tested a novel STDP-based neural circuit 

capable of learning long-lasting sequences of spatiotemporal patterns of 

spikes. This circuit is capable of reproducing memory to some extent. 

II. It is possible to build a neural circuit for learning overlapping spatial patterns. 

I have designed, implemented and tested a novel STDP-based neural circuit 

with distance-dependent synaptic strength factors, capable of learning and 

discriminating mutually inclusive spatial patterns. Moreover, this circuit is 
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capable of solving the problem of optimization of the neuron threshold value 

when exposed to patterns of different spatial size.  

III. It is possible to use the inverted SDTP rule for compensating for variable 

background noise when using STDP learning in an environment with variable 

Poisson noise. 

I have designed, implemented and tested an STDP-based neural circuit which 

includes adaptive vertical inhibition also based on STDP but with an inverted 

learning window. The experimental results indicate such an approach works 

well within a certain range of parameters, but requires more precise tuning as 

the intensity of background noise increases. 

IV. The STDP triplet rule with inverted additional trace variables can result in 

far better training performance than traditional nearest-neighbor and all-to-all 

STDP implementations. 

I have benchmarked three different phenomenological models of STDP. I 

have used the genetic algorithm to tune the parameters of the model in training 

for spatial patterns of different size. STDP with triplet interaction 

demonstrated far better results than I expected when compared to other rules 

for spike interaction. 
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