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Introduction

0.1 Relevance of the research

Nonlocal conditions are known for scientists for at least 150 years. For example,
in 1896 V.A. Steklov |93] investigated mathematical model of metal core cooling,
where nonlocal conditions were considered as a linear combination of the values of
unknown function and its derivatives in various boundary points (see [94, pp. 63—

75, Creksos 1983]). Steklov considered heat equation

oUu 6(8U

921 = o ké_x)_mU’ g =cp, z € [0,1],

with initial condition U (0, z) = f(z), and boundary conditions of the general form

L) = aU(0) + agwgi’ 0 4 et 1) + ana(i Do
(0.1)
oU(t,0 oU(t.1
LI(U> = blU(t, O) + bg a(x’ ) + bgU(t, l) + b4 ;x’ ) = O7

where a; and b, (k = 1,2,3,4) are constant coefficients. We call nonlocal con-
ditions (0.1) as classical nonlocal boundary conditions because they link together
values of unknown function and its derivatives only on the boundary. Problems
with the same type classical NBCs were also investigated in 1933 by T. Carle-
man [11], in 1964 by R.W. Beals [3] and F.E. Browder [12].

In 1963 J.R. Cannon published an article [13], where the nonlocal integral

boundary condition

Jl u(z, t)dr = ¢(t) (0.2)

0

was considered. Nonlocal condition (0.2) links together values of the unknown
function on the boundary and in the inner domain. That is exactly the non-
local condition, which led to the new field of nonlocal problems and their nu-

merical modelling. Conditions are called nonlocal, when together (or instead of)
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2 Introduction

with boundary conditions, another conditions, which connect solution (or/and its
derivatives) on boundary with inner domain, are formulated. Nonlocal conditions
arise mainly when the data on the boundary cannot be measured directly. It is
sometimes better to impose nonlocal conditions since the measurements needed
by a nonlocal condition may be more precise than the measurement given by a
local condition. Investigation of such problems is of special interest in the point of
general partial differential equations theory as well as in the point of mathematical

modelling applications.

Bitsadze—Samarskii nonlocal conditions

In 1969 A.A. Samarskii and A.V. Bitsazde made a report [10] about existence and

uniqueness of solutions of a Laplace equation
Au(z,y) =0, —l<z<l O0<y<l,
with boundary conditions

U(I‘,O) = le(x)v U(ZL‘, 1) = ng(ZL‘), —l<z <l

u(—=l,y) = ¢3(y), u0,y)=ull,y) 0<y<l,

where ¢1, ¢o, and ¢3 are known continuous functions. Starting from this paper,

conditions of the type
Ulboundary = au(§) + b, ¢ € inner domain, a,be R

are called Bitsadze-Samarskii nonlocal conditions. In ten years (1977-1987) there
were published articles by N.I. Tonkin and coauthors |36, Moukun 1977], [37, Tonkin
and Moiseev 1980|, Samarskii |75, 1980] and others |91, Soldatov and Shkhanukov
1987] and |11, Kananamze 1987]. Nowadays, problems with Bitsadze—Samarskii
conditions are investigated by a worldwide group of scientists. For example, in

2008 A. Ashyralyev published a paper |2], where he considered an elliptic problem
(1) + Au(t) = f(t) (0<t<1), w(0) =6, u(l)=u()+v, 0<A<1,

where A is a positive operator in an arbitrary Banach space. He proved the
coercive inequalities in Banach space for the solutions of the formulated problem,

and investigated solvability in different Banach spaces.
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The eigenspectrum analysis of Sturm—Liouville and elliptic finite difference

operators with two-point Bitsadze—Samarskii NBCs is made in 2015 by Elsaid et

al. [27]. The authors considered elliptic PDE
0? 0?
a—;;+a—;;=f(x,y), 0<x<l, O<y<l,

with the boundary conditions

u(z,0) = wu(z),
u(z, 1) = wus(z),
u(©0,y) = mu(l,y),
w&y) = nul-E§y),

where &, v1, and 7, are given constants such that 0 < € <1 —¢ < 1. Firstly,
the authors consider the eigenvalue problem for Sturm-Liouville finite difference
operator with given nonlocal boundary conditions and then the results obtained
from this problem are utilized to study the two-dimensional difference eigenvalue
problem. The eigenvalue analysis is made very similar, as in the articles of lithua-
nian mathematicians R. Ciegis, M. Sapagovas, A. Stikonas (see e.g. [17-19,59]).
The authors, using the separation of variables technique, combined together the
properties and relations of one-dimensional problems to obtain the corresponding

ones of the two-dimensional case.

Multipoint nonlocal conditions

We call a nonlocal condition multipoint if it links values of the unknown function
and its derivatives on at least three points of the inner domain and boundary.

A general notion of multipoint condition is provided by B. Pelloni and D. Smith
[60, November 2015|. The authors consider initial-multipoint value problem (we

use authors’ notation)

[0 + a(—10,)")]q(z,t) =0 (x,t) € (0,1) x (0,7), (0.3)

q(x,0) = qo() z € [0,1], (0.4)

nii ya(mt) = g;(t), tel0,7], j=0,n—1, (0.5)
k=0 r=0
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where m,n e N;and O =no <m <ma < -+ <nmp =10, €Clork,j =0,n—1,
r = 0,m. The authors assume g¢;(t) € C*[0,T] with 7" > 0 a fixed constant, and

that the initial datum is compatible with the boundary data in the sense that

n—1 m

g € C"(0,1) and Z 252355% 1, 0) = g;(0).

k=0r=0

Coeflicient a satisfies
{e?: @ e [0,7]|} ifn even,
{2, —1} if n odd.
Condition (0.5) is called multipoint nonlocal condition.
An example of multipoint nonlocal initial boundary problem is provided by
D.G. Gordeziani et al. |29, 2010]. The authors try to find a regular solution of a
problem

Lu(z) = F(7), Z=(v0,...,7,)€ 2 cR"

where

Lu:—i d [K( )6“]+K()

= 0x; ox;

K;(-) = a; = const > 0, i = 0,n. K(-) satisfy boundary condition u(z) = ¢(z),

z e Sp, where Sp = {Z : m9 € [0,1],21,...,2, € '}, I' is a boundary and general

nonlocal boundary conditions

5 ’ 1 (&
(o7 M + ﬁlu(oyiﬁ) = 71“(7717 ) + 01 f (x()v x>dl‘0 = ¢1(‘r)’
al'() zo=0 51
ou(xg, x '
s Julwo, ) + Bou(l, ) = you(ne, x) + b J u(zo, )dzo = (),
8x0 — 1- £2
ro=1 2
where z = (z1,...,2,), 0 < & < & < 1; ¢1, ¢2, ¢, and F are smooth functions;

0<m <m <1, q B, v, 6 (i = 1,2) are known parameters. The authors
proved the existence and uniqueness of the solutions of differential problem and
formulated difference analog of the formulated problem.

Multipoint boundary conditions are also investigated with nonlinear PDEs.
In the paper [21, Das et al. 2010| authors present an algorithm for the numerical

solution of the second order multi-point boundary value problem
u'(x) + g(u,u) = f(z), 0<z<1,
with classical initial condition and multipoint boundary condition

u(0) = o, u(l) =) au(m) + 7,

i=1
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where n; € (0,1), i = 0,m, «; and 7; are known constants. The algorithm is
based on the homotopy perturbation approach and the solutions are calculated in
the form of a rapid convergent series. The described method yields more realistic

series solutions that converge rapidly to the exact solutions.

Integral nonlocal conditions

Integral nonlocal conditions, among all the nonlocal problems, are worth of in-
vestigation as a natural generalization of discrete nonlocal conditions. Integral
conditions describes the relationship between boundary and inner domain as a
sort of some average. Conditions of such type often occur in problems related to
fluid mechanics |50, Haxymes 1982 and [35, Shelukhin 1993], hydrodynamics |44,
Memxyxun 1995] and |16, Yynnosekuit 1976], linear thermoelasticity |22, 23, Day
1983, 1985], vibrations [99, Volkodavov and Zhukov 1998|, biology |51, Haxyres
1995], plasma theory |25, Diaz and Rakotoson 1996|, particle diffusion |19, Mu et
al. 2010], heat conduction |13, Cannon 1963], etc.

One of the main authors investigating nonlocal integral conditions is L.S. Pul-

kina [13,01-68]. In the article |64, 2011] Pulkina considers an equation

Ugp — (@Z-j(x,t)uxi)xj + c(z,t) = f(x,t) (0.6)

in a bounded domain {2 € R"™ with smooth boundary 0f2, @) is the cylinder
2 x(0,T), T < oo, S=200x(0,T) is the lateral boundary of . Author
sets a problem: find a function u(z,t) that is a solution of (0.6) in @, satisfies
initial condition

U(I‘,O) = QZS(.T), ut(xv()) = @Z)(ZL‘)

and the following nonlocal integral condition for n > 1:

a du + f K(z,t)u(z,t)dz = 0. (0.7)
al/ S 0
Here Ou/0v = aj(x,t)u,, (x, t)vi|g, v(z) = (11,...,1,) is an outward normal to

02 at the current point, K (x,t) is given weight.
In a special case n = 1 the lateral boundary of @ = (0,[) x (0,7") separates into

two parts: x = 0 and = = [. As a consequence nonlocal condition (0.7) separates
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into two nonlocal conditions:
!
71“3:(07 t) + f Kl(xv t)U(ZE, t)dl‘ = 07
0

I
Youg(1,t) + pgf Ky(z, t)u(z, t)de = 0,
0

where p? + p3 > 0. Pulkina proved the existence and uniqueness of the generalized
solution in the Sobolev space W(Q) = {v(z,t): ve WX(Q), v(z,T) = 0}.

The existence and uniqueness of a strong solutions of the singular problem
with integral conditions for parabolic equation was proved by A.L. Marhoune and
A. Memou in |18, 2015|. The authors in the rectangle {2 = [0, 1] x [0, T'] considered

the equation

with the initial condition

u(z,0) = ¢(x), x€]0,1],

the Dirichlet condition
u(l,t) =0, te|0,T],

and the nonlocal condition
e% 1
J u(x,t)dx—kf u(z,t)de =0, 0<a<pf<1,tel0,T],
0 B

with given functions ¢(x) and f(z,t) and the matching conditions

(1) =0, f: o(z)dr + Ll o(z)dr = 0.

Existence and uniqueness of solutions is proved using the energy inequalities.

Stable nonlocal hyperbolic difference problems

The main research object of this thesis is stability of FDS for hyperbolic problems,
so we mark up some articles dedicated to this thematic. The first one is written
by A. Ashyralyev and E. Ozturk in 2014 [1]. The authors investigate stability
of FDS for Bitsadze-Samarskii type nonlocal boundary value problem involving

integral condition. They consider elliptic differential equation in a Hilbert space

1

+Au(t) = f(), 0<t<1,u(0)=¢, u(l) :L p(N)u(NdA + 1 (0.8)

B d*u(t)
dt?
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with the self-adjoint positive definite operator A with a closed domain D(A) < H.
Here, let f(t) be a given abstract continuous function defined on [0, 1] with values
in H; ¢, and ¢ are elements of D(A) and p(t) is a scalar function. The authors

consider fourth order of the accuracy difference scheme

U1 — 2Up — Up—y

TQ
+ Ayr + EAQUk = O,

T2
b = F(t) + g (f(t’““) - QfT(f’“) ) Af(tk)) = kr k—TNCT,
Uy = ¢7
. . N/2 N/2—1
uy = 3 (p(to)uo + p(tw)un) + 3 (4 D p(toer gk +2 ) p(tQk)u2k> +¢
k=1 k=1

for the approximate solution of differential equation (0.8). The stability estimates
for the solution of this difference scheme are established. Since A is a self-adjoint
positive definite operator the authors can use some techniques of A.A. Samarskii
and A.V. Gulin [70, 1973|. The authors proved theorems on the stability estimates,
almost coercive stability estimates for the solution of difference scheme for elliptic
equations.

Quite exotic third order stable FDS for the hyperbolic multipoint nonlocal
boundary value problem is presented by O. Yildirim and M. Uzun [100, 2015].

The authors consider hyperbolic problem

d?u(t
“O 4 ault) = f). o<t
U(O) = Z&ru()‘r)+¢a
r=1
ut<0) = Zﬁrut()\r)"i_wa
r=1

where 0 < A\; < Ay < ... < A\, < 1, A is a self-adjoint positive definite operator
with domain D(A) in a Hilbert space H. Authors associate above defined problem

with the corresponding third order of accuracy difference scheme

2 1 1
T2 (g1 — 2up + ugyq) + gAUk + EA(uk+1 + up_1) + ETQAQWH = f

fim S0+ g (Fltinn) + Flt)) = 357 (< Af () + f (i),

th="kr, I<k<N-—1, Nr=1,
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A 1, . RS
A== 7) 5 Vb =7 A (g = upgna)) (A = | | 7

T

1 A 3
+37 (Frusm = Afinm + Aupy) ()\k - [7’“] T) } + ¢+ fiar,

where fi1 = {f(0) + (=f(0) + 7/'(0)) /2 = f'(0)7/3}.

This scheme is a third order of accuracy unconditionally stable difference
scheme for the approximate solution of hyperbolic multipoint nonlocal boundary
value problem in a Hilbert space with self-adjoint positive definite operator. The
stability is established without any assumptions in respect of grid steps h and 7.

More detailed literature review on a particular thematics is presented in the

introduction of each chapter.

0.2 Aims and problems
In this section we provide the directions of the research presented in this thesis.

e Stability conditions for the explicit FDS. In Chapter 1 we investigate the
explicit FDS for the hyperbolic problem with two integral boundary con-
ditions. We approximate integrals by the trapezoid formula and formulate
the two-layered FDS with the block transition matrix S. We investigate the
eigenstructure of this matrix, formulate and prove the sufficient stability

condition.

e Stability conditions for the weighted FDS. In Chapter 2 we investigate a
class of weighted FDS with one weight parameter. We use the generalized
characteristic functions to investigate eigenspectrum (complex and real) of

discrete problem. We obtain the structure of eigenspectrum, formulate and
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prove stability conditions according to boundary parameters and weights of

FDS.

e Stability regions for the FDS with two weights. In Chapter 3 we consi-
der a class of weighted FDS with two weights. Numerically modelling char-
acteristic functions we obtain stability regions and restrictions on weights

o1 and os.

e Stability of the weighted FDS with partial integrals. In Chapter 4 we
generalize the hyperbolic problem. We investigate integral boundary condi-
tions of the general type. We obtain equivalence conditions for the Sturm-—
Liouville problem (which can be generalized to the evolution equations) to
the algebraic eigenvalue problem. These conditions obtained assuming a
general type of integral conditions (containing weight functions in the in-
tegral NBCs). Moreover, we investigate hyperbolic problem with partial

integrals in the boundaries.

0.3 Methods

The research methodology of this thesis is based of the approximation of hy-
perbolic equations by finite difference scheme. We use functional and complex
analysis to investigate the spectrum of the difference operators. We use numerical
integration to approximate integrals in the boundary conditions. We use Java and

Maple for mathematical modelling and simulation of the experiment.

0.4 Defended Statements

e The sufficient stability condition of the explicit FDS for hyperbolic equation
with integral NBCs is 7y + 71 < 2 under the condition 7 < h.

e The sufficient stability condition of the weighted FDS (with one weight o)

1
72 Amax

for hyperbolic equation with integral NBCs is 79+, < 2 and o > i—

e The FDS for hyperbolic equation with integral NBCs (with one weight o)

is unstable if the spectrum has complex eigenvalues.



10 Introduction

e The weighted FDS for hyperbolic equation with integral NBCs (with two
weights o1 and oy) has a stability region if o1 > 0y. If the spectrum is real,

then the second stability condition is oy + 09 > 1/2.

e The stability region of weighted FDS for hyperbolic equation with integral
NBCs (with two weights o1 and o03) is bounded if o7 — 09 < 1/2, elsewise

stability region unbounded.

0.5 Originality

The research object of this doctoral thesis is the stability of finite difference ap-
proximation of the hyperbolic one-dimensional problem with nonlocal integral
boundary conditions. Most of the results presented in this doctoral thesis are
new for the formulated problem and have not appeared before in the scientific
literature. Some methods used in the investigation of the referred problem have
been recently used by scientists to investigate other fields of mathematical physics.
However, application of these methods to the hyperbolic problems is completely
new. We hope, that the present thesis is a step in generalization the theory of

approximation of nonlocal initial boundary value problems.

0.6 Applications

Modern problems of natural sciences lead to necessity of generalization of classical
mathematical physics problems and to formulate qualitatively new problems, in-
cluding nonlocal problems for differential equations. In the past several decades,
many physical phenomena have been formulated into nonlocal mathematical mo-
dels: electrolytic refining of non-ferrous metals [17, Lyubanova 2014|, deformation
of metals under high strain rates |1, Ahada et al. 2014; and references therein|,
the phenomena of Ohmic heating (see [28, Fan et al. 2014] and |56, Olmstead et
al. 1994] and references therein), thermal electricity |20, Du and Fan 2013, super-
conductivity |11, Van Bockstal and Slodicka 2015], flow of fluids through fissured
rocks [92, Soltanalizadeh et al. 2014], etc.
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Stability analysis is an essential part of the concepts in the theory of nu-
merical schemes. In the numerical modelling of linear PDEs stability notion,
along with consistency notion, are two main characteristics of FDS, which lead to
the convergence of the scheme. Obtained stability conditions are useful numer-
ically modelling any processes described by hyperbolic equations (dynamics of
ground waters with NBCs of type |9, Beilin 2001 and [2, Dehghan 2005, oscilla-
tions |30, Gordeziani and Avalishvili 2000], irrigation models |83, Cepbuna 2007],
electromagnetic field [101, 3ommna 1966, etc). Eigenspectrum analysis results can
be used for constructing new difference schemes and for the investigations of the

stability regions of certain finite difference schemes.

0.7 Dissemination of results

Publications

The results of the doctoral research are published in five research papers. Two

papers are published in journals indexed by ISI Web of Science

1. J. Novickij, A. Stikonas, On the stability of a weighted finite difference
scheme for wave equation with nonlocal boundary conditions, Nonlinear

Anal. Model. Control, 19(3):460-475, 2014.

2. F.F. Ivanauskas, Yu.A. Novitski, and M.P. Sapagovas. On the stability of an
explicit difference scheme for hyperbolic equations with nonlocal boundary
conditions, Differ. Equ., 49(7):849-856, 2013 (transl. from: ®.®. lsanayc-
kac, FO.A. Hosunkuit, M.I1. Camarosac, O6 ycToiianBOCTH SBHOI pa3sHOCT-

HOII CXEMBI JJISL I‘I/IHep6O.HI/ILI€CKI/IX ypaBHeHI/H'?'I C HEJIOKaJIbHBIMH KpPacBbIMU

yenosusimu, Juddepeny. Ypasnernusa, 49(7), c. 877-884, 2013).
Three papers are published in the proceeding of the conferences

3. J. Novickij, A. Skucaité¢, and A. Stikonas, On the Stability of a Weighted
Finite Difference Scheme for Hyperbolic Equation with Integral Boundary
Conditions, In Proc. Numerical Mathematics and Advanced Applications
— ENUMATH 2015, Lect. Notes Comput. Sci. FEng., Vol. 112, Springer
International Publishing, 2016 (Accepted, in press).
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4. J. Novickij, A. Stikonas, On the equivalence of discrete Sturm-Liouville
problem with nonlocal boundary conditions to the algebraic eigenvalue prob-

lem, Liet. matem. rink. Proc. LMS, Ser. A, 56:66-71, 2015.

5. J. Novickij, A. Stikonas, On the stability of a finite difference scheme with
two weights for wave equation with nonlocal conditions, Liet. matem. rink.

Proc. LMS, Ser. A, 55:22-27, 2014.

Conferences
The results of this thesis were presented in the following international conferences:

e Hyp2016, Aachen, Germany, August 1-5, 2016.

e Actual Problems in Theory of Partial Differential Equations, dedicated to
the centenary of Andrey V. Bitsadze, Moscow, Russia, June 15-18, 2016.

o MMA2016, Tartu, Estonia, June 1-4, 2016.

o KENUMATH2015, Ankara, Turkey, September 14-18, 2015.
o MMA2015, Sigulda, Latvia, May 2629, 2015.

o MMA2014, Druskininkai, Lithuania May 26-29, 2014.

o MMA20138 & AMOE2013, Tartu, Estonia, May 27-30, 2013.
o MMA2012, Tallinn, Estonia, June 6-9, 2012.

The results of the thesis were also presented in the local LMD53-LMD56 con-
ferences in 2012-2015 years and in the mathematical seminar of Department of

Differential Equations and Numerical Mathematics on May 24, 2016.

Conference abstracts

e J. Novickij and A. Stikonas, On the Stability of Discrete Nonlocal Hyperbolic
Boundary Problem, Hyp2016 abstracts, Aachen, Germany, 2016.

e J. Novickij and A. Stikonas, On the stability of discrete hyperbolic equa-
tion with nonlocal integral boundary conditions, Tesucw dox.aados, Mocksa,

2016.
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J. Novickij and A. Stikonas, On the stability of discrete nonlocal hyperbolic
boundary problem, Abstracts of MMA2016, Tartu, Estonia, 2016.

e J. Novickij, A. Skucaité, and A. Stikonas, Spectrum analysis of the weighted
finite difference scheme for the wave equation with the nonlocal integral
boundary conditions, Book of abstracts, European conference on numerical

mathematics and advanced applications, Ankara, Turkey, 2015.

e J. Novickij and A. Stikonas, Spectrum analysis of the weighted finite diffe-
rence scheme for the wave equation with integral boundary conditions, Ab-

stracts of MMA2015, Sigulda, Latvia, 2015.

e J. Novickij and A. Stikonas, Stability of the weighted finite-difference scheme
for hyperbolic equation with two nonlocal integral conditions, Abstracts of

MMA2014, Druskininkai, Lithuania, 2014.

e J. Novickij and A. Stikonas, An analysis of properties of weighted diffe-
rence schemes for nonlocal hyperbolic problems, Abstracts of MMA2012 &
AMOE20183, Tartu, Estonia, 2013.

e J. Novickij, F. Ivanauskas, and M. Sapagovas, On the stability of an ex-
plicit difference scheme for hyperbolic equations with nonlocal boundary
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Chapter 1

Stability of an explicit finite

difference scheme

1.1 Introduction

In the last decades, the demand to study processes described by equations of
mathematical physics with rather complicated nonclassical additional conditions
has increased. Throughout this thesis we are interested in the stability of the finite
difference schemes for nonclassical hyperbolic problems. The main principles of
the general theory of stability for difference schemes were started to investigate
by A.A. Samarskii in the mid 1960’s [72-71]. In the article [72, Camapckuii 1967]

the author considers two sets of difference schemes, the two-layer

y(t+7) —y()

B(t) +At)y(t) = o(t), y(0)=yo,yo€ Hy,0<t=1; <o,

and the three-layer

yit+7)—ylt—1)
27

y(0) = yo,y(7) = v1, Yo, y1 € Hn.

B(1) +R() (y(t+7) = 2y(t) + y(t = 7)) + At)y(t) = o(1),

A difference scheme is interpreted as an operator equation in the Euclidean space.
Necessary and sufficient stability conditions are formulated in the form of energy
inequalities. The stability is formulated as the lack of increase with time of the
solution energy norm, which is defined by a self-adjoint positive operator.

In the cases, when boundary conditions are nonlocal, transition operator is

not self-adjoint and even not positive. One of the articles, investigating stability

15



16 Stability of an explicit FDS

of the difference schemes with nonlocal boundary condition is a work of Gulin et

al. [33, 2001]. Authors consider parabolic equation
0 0?
8_1::8—;;’ u(z,0) = up(x), O<z<l1, t>0,

with nonlocal boundary conditions

ou ou
%(Oat) = %(Lt)a U(O,t) =0.

The authors obtained the necessary and sufficient stability condition

2
O<7<— (2— /\IJ%), D = —Esin27rkh,k= 1,m,

where Ay, = 104 —042 > (, for the difference scheme in a special norm in Euclidean

space Hp, where
Do 1 Qay,
rtor B
is the self-adjoint positive operator D: H — H, (ry = 1 fork =1,m — L and r,,, =
0.5, ag, Bx > 0, k = 1,m) which defines the energy norm |y|p = +/(Dy, Dy)).
Hyperbolic problems with nonlocal integral boundary conditions have not been
studied so broadly as, say, parabolic or elliptic problems. A. Ashyralyev and
N. Aggez in the paper [3, 2011] dealt with the stability of a difference scheme for

the multidimensional hyperbolic equation

2 m
% — Z(ar(x)uxr)xr = f(t,x), z=(21,...,2m) €, 0<t<],

r=1

with the initial conditions
1

u<o,x>:fa<p>u<p,x>dp+¢<x>, w(0,2) = Y(z), vl

0

one of which is an integral condition, and the classical boundary condition
u(t,z) =0, 0<t<l1, =ze€ebs,
where (2 is the open unit cube in m-dimensional Euclidean space
Q={rx=(r1,....,0): 0<2; <1,1<j<m} cR"

with boundary S, 2 = 20U S, a,(z) = a > 0 (x € 2), ¢(x), Y(z) (x € 2) and
f(t,x) (t € (0,1),x € £2) are given smooth functions. Stability conditions in the

class Lo were obtained.
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The stability of difference schemes for the nonlocal hyperbolic problems was
studied by A. Ashyralyev and O. Yildirim in |5, 2011|. Multidimensional hyper-

bolic equation with Dirichlet condition is considered

(O%ul(t,x —
% _ Z (ar(2)ta,),,, = f(t, ),

= (r1,...,xp) €N, 0<t<l,

Lu(0,z) = Z aju(N, ) + o), x €,

=1
ut(OVT) = Z ﬁkut()‘lmx) + w(x)7 x € ﬁa

ku(t,av) =0, ze€s,

here 2 = {z = (21,...,2m) : 0 <z; < 1,1 < j <m} is the open unit cube in the
m-dimensional Euclidean space R™ with boundary S, 2 = 2 u S. Stability
conditions in a special norm |||, = were obtained and numerical analysis was
done.

The existence and uniqueness of solutions of differential equations were studied
in [14, Kozhanov and Pul’kina 2006] and [63, [Tynpkuma 2004].

The hyperbolic equation

*u(z, ) B *u(z,t)

ot? o2 = F(z,1), O<x<l1l, 0<t<T,
Xz

with the initial conditions

u(z,0) =r(x), wulz,0)=s(z), 0

N
8

N
—

the Dirichlet boundary condition

u(0,1) = p(t)

and the nonlocal integral boundary condition
1
fu(x,t) de =q(t), 0<t<T.
0

was considered by M. Ramezani et al. in |09, 2008]. Numerical methods combining
the finite difference method and the spectral method were suggested for solving

such equations.
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In this chapter, we give a sufficient condition for the stability of an explicit
difference scheme for a hyperbolic equation with nonlocal integral boundary con-
ditions. By using a method applied earlier to parabolic equations with nonlo-
cal boundary conditions |79, Sapagovas 2012|, we rewrite a three-layer difference
scheme in the form of an equivalent two-layer scheme. By analyzing the spectrum
of the transition matrix of the two-layer scheme, we obtain sufficient conditions for
the stability of the three-layer scheme depending on the parameters occurring in
the integral boundary conditions. To analyze the stability of a difference nonlocal
hyperbolic problem, we use an explicit three-layer difference scheme and approxi-
mate the nonlocal boundary conditions by the trapezoid quadrature formula. By
representing this scheme in the form of a second-order operator-difference equation
and by using some transformations, one can obtain a two-layer scheme equivalent
to this three-layer scheme |71, p. 364, Camapckuit u Iymun 1989]. To study the
spectrum of the transition matrix of the two-layer scheme, we define the norms of
matrices and vectors. The analysis of the structure of the spectrum of the tran-
sition matrix (see [31, Sapagovas et al. 2012| and |78, Canarosac u Illtukonac
2005]) and the use of a generalized nonlinear eigenvalue problem permit one to
state the main result of the present paper, a sufficient condition for the stability
of an explicit difference scheme for hyperbolic equations with integral boundary
conditions.

This chapter is based on an article, published together with Profs. Feliksas
Ivanauskas and Mifodijus Sapagovas [39, 2013].

1.2 Notation

In this thesis we consider the one-dimensional in space hyperbolic equation with
corresponding classical and nonclassical boundary and initial conditions. We are
interested in the numerical solutions of the formulated problem. Obviously, the
numerical solution of the mathematical problem does not correspond to the dif-
ferential solution for all values of the unknown function in a certain domain. The
classical way (e.g. |77, Samarskii 2001]) to overcome this is to define a finite set of
points in the problem’s domain and look for the numerical solutions only on the

points of this set. Any such set of simulation elements is called a grid (in some
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literature a term mesh is used. Grids are typically a set of simulation elements
that have a well defined structure to their alignment, while meshes are often more
general, they may be unstructured and use various shapes of elements). The iso-
lated points are called grid nodes. A function U, defined on the grid nodes, is
called a grid function. We consider = € [0, L] and ¢ € [0,7]. Throughout this

thesis we use the following grids.

w" = {a;:2;=1ih,i=0,N}; h=L/N,
5}11/2 = {xi71/2 = (zio1 +24)/2,i =1, N,x_ 19 = %0, TN11/2 = fN};

Risij2 = Tit12 — Ti—1j2,1 =0, N,
W o= {tj: t =41, ] =O,M}; T=T/M,
wh={xy,...,an_1}, @& := {tl,...,tM}, W= {tl,...,tM_l},

where N + 1 and M + 1 are the numbers of grid points for  and ¢ directions,
accordingly, and N, M > 2.

We use notation Uij := U(w;,t;) for the grid function, defined on the grid
(or parts of it) @" x @". Instead of writing indices we denote U7 := U~! and
U7 := Ui+ on grids & and w™ U {t,}, respectively. We define a space grid operator

5250wt (), = 2t U

it h2
and the time grid operators
_ - U-U
8t W — (::)T, 8tU = s
-
_ _ U—2U+0
07w —w, U = 2+
-
1.3 Statement of the problem
Consider the hyperbolic equation
Pu(x,t)  Pu(x,t
u<x’ ) - u(x’ ) :f<x7t)7 T € (071)7 tE(O,T], (11)

ot? ox?

with the classical initial conditions

u(z,0) = ¢(x), x€]0,1], (1.2)
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ou(x,0)
ot

=Y(z), xe€]0,1], (1.3)

and the nonlocal integral boundary conditions

1

u(0,1) = 70 f u( 1) de + (1), tel[0,T), (1.4)

0

1

u(1,t) = 7 f u(. 1) dE + pa(t), te 0,7, (1.5)

0

where 7 and 7, are given numerical parameters and f(z,t), ¢(z), ¥ (x), ui(t),

and fo(t) are given functions.

Remark 1.1. The initial data of the hyperbolic problem, stated in Chapters 1-4

is compatible with the boundary data up to the required smoothness.

Now we state a discrete analog of the differential problem (1.1)—(1.5).

1.4 Finite difference schemes

The principle of finite difference schemes consists in approximating the differential
operator by replacing the derivatives in the equation using differential quotients.
The domain is partitioned in space and in time and approximations of the solu-
tion are computed at the space or time points. The approximation error is an
error between the numerical and exact solutions. In this section we consider the
wave equation (1.1) with the initial conditions (1.2)—(1.3). Nonclassical boundary
conditions (1.4)—(1.5) are considered separately.

The main concept of any finite difference scheme is based of the definition of
the derivative of a continuously differentiable in the interval z € [0, L] function u

, . u(z+h) —u(r)
R e

Below we state some FDS concepts about approximation of derivatives (e.g. |

Samarskii 2001|, [7, Baxsamos 2011]).

Y

Approximation of the first order derivatives. When h tends to 0, the

quotient in the right-hand side provides an approximation of the derivative. There
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are some approximations, according to the chosen point in the neighbourhood of

point x
u'(x) ~ uz + h}i — u(a:)’ (right difference derivative)
— —h
u'(z) ~ u(x) Z(x ) (left difference derivative)

If the function is smooth enough in the neighbourhood of x, it is possible to
expand it in a Taylor series. This allows one to quantify the approximation error.

Suppose u € C® in the neighbourhood of x € [0, L], then for any i > 0 we have

w(x + h) = u(z) + hu'(x) + %u”(m) + %u"’(x+), (1.6)
w(z —h) = u(z) — hu'(x) + %u”(x) — %u”’(x_), (1.7)

where, " € [z,2 + h] and 2~ € [z — h, z].
Big O notation. Suppose f(z) and g(z) are two functions defined on some

subset X < R. We write

if and only if there exists constant C' such that
|f(z)| < Clg(x)|, xeX.

For example, X = (—¢,+¢), € > 0, is zero neighborhood.

Using the definition of the difference derivative we have

u(z + h) — u(z)

= u'(x) + gu”(x) + O(h?),

h
u(x) - u(a: B h) _ ’ h " 2
h = u(x)—gu () + O(h%).

By subtracting Taylor series expansions (1.6) and (1.7), thanks to the intermediate

value theorem, we have

u(x 4+ h) —u(zx —h)
2h

h2
=u'(z) + gu’” (z%), (central difference derivative)

where z* € [z — h,z + h]. So, the approximation errors are

u(z + h) — u(z)

b - /(33') - O(h)a
MM iy~ o),
u(z+h) —ulx—nh) d) = 00
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Approximation of the second order derivatives. Suppose u € C*[0, L].

Like previously, we use Taylor expansions up to fourth order
2

/ h " h? " ht (4) (1t
u(z + h) =u(z) + hu'(z) + —u"(z) + Y () + —=u(z™),
h2

w(x —h) = u(z) — h'(z) + 31/’(3:) — %u”’(:l:) + h—u(4) (x7),

Using the intermediate value theorem, we write

u(z —h) — 2u(z) + u(x + h) ) 2

h
3 =" + —uP(2?).

So, the second order difference derivative approximates u” of the order 2, this

means (u(x — h) — 2u(z) + u(z + h)) /h* —u” = O(h?).

1.5 Explicit finite difference scheme

We consider a rectangular domain @”" x @". We write the original differential

equation (1.1) at the point (z;,¢;) € w" x W™
Pulxy, t;)  Pulx,t;)
2 ¢ - 2 ¢ = f(‘r'“t]>
ot ox

Using Taylor expansion, we obtain

u(s, tj—1) — 2u(w, t;) + ulzy, i)

Cu(mimnsty) — 2u(w ty) + u(®i, )
T2 h?
= [z ty) + E(wi 1),
where Y4 ) .
Bz t;) = ?—278 ug;i’tj) - %78 u({; V) _ o+ m)

is a truncation error of the approximation of wave equation (1.1). We consider
finite difference scheme

g?U — (5§U = F, (l‘i,tj> € wh X wT, (18)
where F := F) = f(x;,t;).
The initial conditions (1.2)—(1.3) are approximated as follows with the accu-

racy O(h?)

Ut = o, z; €W, (1.9)
Ul = v z; €W, (1.10)
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t
tj =]JT
tym ® ) ) ® ® ® ® ]
thi—1m > > m
(Tistj+1)
[ o ]
ES ES ES
~L [ | (0] © © (0] © © (0] L |
7 4+ 4+ + (@i, t5) (@it1,t5)
Ta o) o) q |
t1 > >
(@i, tj-1)
to ;
= h¢ x; = 1ih N X

Fig. 1.1: Grid stencil and computation algorithm of the explicit three-layer FDS:
e — known values, o — computed stencil values, m — computed boundary values.

where @ := &; = ¢(x;) and ¥ := ¥; = p(z;) + T (62U° + f(xi,10)). The order of
the approximation of Eq. (1.10) is O(72).

We replace the boundary conditions by the trapezoid quadrature formula

; uitt ittt S »
U™ = yoh | 22— S+ DU 4t (1.11)
i=1
' ittt N2l ‘
UJJVJrl = '71h O#N + Z UZ‘?Jrl + M2j+1. (112)
=1

The error of approximation of trapezoid formula is u”(&,t)h?/2, where £ € [0, 1],
and is of the order O(h?).

Finally, we have formulated difference problem (1.8)—(1.12) with an order of
approximation of hyperbolic boundary-value problem (1.1)—(1.5) equals to O(7%+
h?).

The five-point stencil of the explicit FDS is shown on Fig. 1.1. The unknown
value on the 7 + 1 layer is computed using the known values on 7 and 7 — 1 layers.
The general algorithm of solving hyperbolic boundary-value problem is shown
on Fig. 1.1. The values of the grid @" on first and second (j = 0 and j = 1)
time layers are known from two classical initial conditions. Then, using explicit
FDS stencil, values of the grid w" on the third layer are found. Then, using the
boundary conditions values U3 and Uy are calculated. Repeating this algorithm

for the remaining time layers, one can solve the problem numerically.
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1.6 von Neumann stability

There are two basic concepts in the theory of numerical schemes. These are the
notions of consistency and stability. For the numerical scheme to be useful it
is important, that both of these properties are fulfilled. For a linear PDE Lax—
Richtmyer theorem is valid |16, Lax and Richtmyer 1956]

consistency + stability <= convergence.

A finite difference approximation is considered consistent if by reducing the grid
and time step size, the truncation error terms could be made to approach zero. In
that case the solution to the difference equation would approach the true solution
to the PDE.

A finite difference approximation is stable if the errors decay as the compu-
tation proceeds from one layer to the next. Stability of a finite difference approx-
imation is assessed using Von-Neumann stability analysis (see e.g. [33, Isaacson
and Keller 1994| and [90, Smith 1985]).

For linear constant coefficient finite difference schemes such as (1.8), a complete
stability analysis is possible, because the numerical algorithm equations can be
solved exactly by separation of variables. This means then that any solution of
the scheme can be written as a Fourier expansion. Assume we have a Fourier

expansion in space of desired function
u(a,t) = a(t)e™”.
w
Now, we take just one term and evaluate it at point (z;,t;)
u(w;, t;) ~ a(t;)e™™

These expressions can be plugged directly into any finite difference scheme to
check for stability. The growth rate (in some literature amplification factor)

G is defined as
(tjy)
a(t;)

where 4(t;) = 5= {"_u(z,t;)e™*dz. For stability we need

G =

I

G <1 for all w. (1.13)
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Conditional stability means the stability on a certain condition.
Since the operator of the FDS (1.8)—(1.12) is not symmetric and positively
defined (due to nonlocal boundary conditions), we cannot apply the energy norm

stability analysis methods. So, in this thesis we use the spectral stability analysis.

1.7 Definition of matrix and vector norm

We define the norm of any m x m matrix M as follows

M|, =,/ max A\;(M*M) = 0pax(M),

1<ism

where M* is the conjugate transpose of M and o,,., is the largest singular value
of M. If M is normal matrix (commutes with its conjugate transpose MM* =
M*M) then

Omax(M) = p(M) := max |\;(M)].

1<is<m

We define the associated vector norm by the formula

VI, = /3 P (114

According to [71, p. 353, Camapckuit u I'ynmun 1989|, a sufficient stability

condition of the two-layer scheme is
M| <1,

where || is an arbitrary norm, M is a transition matrix of two-layer scheme.

1.8 Reduction to a two-layer scheme

From conditions (1.11) and (1.12), treated as a system of two linear equations with
two unknowns Ug“ and UJ{,H, we express these unknowns via Uin, 1=1,N—1,

and obtain

N-1 '
Yoh (m“l +2 2] Uzﬁl) — 2 —mh)
Ug-i—l _ i=1

1=

2 —h(0 + 1) ’ (1.15)

mh (MJH + 2 Z UZ‘JH) - M2]+1(2 - ’Yoh)
i+ i=1
=

1=

2—h(y+m)

(1.16)
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By substituting expressions (1.15) and (1.16) into Eq. (1.8) fori = landi = N—1,
we rewrite system (1.8)—(1.12) in the form

07 + BUY + 107! = 7°F, (1.17)
B=—(2I-7°A), (1.18)

where T is the identity matrix, U7 is (N — 1)-vector, F = (]31, e ﬁN,l)T, where
-ﬁi = Ea L= 27N_2 and -ﬁt = E(E?H’l?ﬂ’?)) L= 17N_ ]-7 and

2—a -1-a —a —a ... —a —a —a —a
-1 2 -1 0 0 0 0 0
0 -1 2 -1 0 0 0 0
A= % : : S : : , (1.19)
0 0 0 O -1 2 -1 0
0 0 0 O 0 -1 2 -1
—b —b -b -b ... b b —-1-0 2-b
a— hh’Yo b= hh’h ’
1—3 (o +m) 1—3 (o +m)

is (N —1) x (N — 1) matrix.
Remark 1.2. A conversion of expressions (1.15) and (1.16) to algebraic prob-
lem (1.17) is possible under the condition (7o + 1) # 2/h. A general case of

equivalence of the boundary value problem to the algebraic one is investigated in

the Section 4.4.

We represent the three-layer scheme (1.17) as an equivalent two-layer scheme |71,

p. 364, Camapckuit u I'yaun 1989|. To this end, we supplement the scheme (1.17)

with the trivial condition U7 = U’
Ui+ oI — 72A —I U r2fi
)= ‘ + . (1.20)
U’ I 0 Uit 0
We define the 2(N — 1)-vector
Ui+t
U’

Vj-i—l _

This vector combines the solution of the difference problem at points of two time

layers. Now system (1.20) can be represented as

VIt =SV + G, (1.21)
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where
2l — A -1 -B -1 °F
S = = ., G=
I 0 I 0 0

According to [30, Sapagovas 2008] and [31, I'ymun u dp. 2006], one can study the
stability conditions for the two-layer difference scheme (1.21) by analyzing the
spectrum of the matrix S. Note that the matrix S, as well as the matrix A is

nonsymmetric.

1.9 Matrix S spectrum structure

Let p be an eigenvalue of the matrix S; i.e., consider the eigenvalue problem
det(S — uI) = 0. (1.22)
Lemma 1.3. The following equality for block matriz is valid

K L
det = det M det (—L),

M 0

where K, L, and M are arbitrary n x n matrices.

Proof. The proof follows from a decomposition like

K L M 0 M 0)(I o
det = (=1)""" " det = det
M 0 -K -L -K I1/\0 -L
= det M det (—L). O

It follows from this lemma, that

-B—ul -1 -B—pul —I—uB— I
det
I —pl I 0

det

det (/ﬂI +uB + I).
So, we have a nonlinear eigenvalue problem
(WI+pB+I)V =0, (1.23)

which is rather well studied for the case of symmetric matrix B (e.g., see |15, p.

23, Lancaster 1966]). We have thereby proved the following assertion.
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Lemma 1.4. The eigenvalues of the matrix S coincide with the eigenvalues of the

generalized nonlinear eigenvalue problem (1.23).

Note that the number of eigenvalues of problem (1.23) is 2(N —1), where N —1
is the order of the matrix B.

Let us clarify the relationship between the eigenvalues i of the matrix S of
order 2(N — 1) and the eigenvalues A of the matrix A of order (N — 1). To this
end, we present the assertion proved in |79, Canarosac 2012|.

Consider the eigenvalue problem

( Uiy —2U; + U; .
! h2+ LN =0, i=1,2,...,N—1,
Up+Un &
< U():"}/(]h (T‘i‘;UZ + Ha,
U+ Uy &
UNZ’}/lh(T—FZ;UZ + o
\ 1=

If h < 2/(7 + 1), then, for arbitrary values of the parameters vp,v; € R, all
eigenvalues A of the matrix A are real and distinct; in addition, the following

assertions hold.
1. If 7 + 71 < 2, then all eigenvalues are positive.

2. If v+ 71 = 2, then A = 0 is an eigenvalue, and the remaining N — 2

eigenvalues are positive.

3. If 79 + 71 > 2, then one eigenvalue is negative, and the remaining ones are

positive.

Remark 1.5. The extended version on the formulated assertion is presented in the

Chapter 2.

In all three cases, the positive eigenvalues A\, can be found from the relation

where the o4, are the solutions of the equation

tan X _ 2 tan oxh
2 (o + 1) 2

in the interval (0,27N).
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By substituting an eigenvector Vi, k = 1, N — 1 of matrix A into equation

(1.23) we obtain
IV, + BV, + IV, = [P\ (I) + pAi(B) + A (I)] Vi, = 0.
Hence it follows that
AR + pAi(B) + M\ (1) = 0, k=1,N—1. (1.24)

Lemma 1.6. For the three-layer scheme (1.8)-(1.12), to each eigenvalue Ay, (k =

1, N — 1) of the matriz A there correspond two eigenvalues py. and pi of the matriz

S:
2 2 2
b2 = (1—75’“) i\/(l—T;’“) ~1. (1.25)

Proof. From relation (1.18) we obtain

)\k(I) = 1, )\k<B) = —(2 - TQ)\k), )\k(I) = 1.

By substituting these values into (1.24) and solving the resulting equation, and

by making simple transformations, we get relations (1.25). O

Lemma 1.7. Let Ay and Vi, be an eigenvalue and an eigenvector, respectively,
of the matriz A, and let ', m = 1,2, be the eigenvalues of the matriz S, corres-
ponding to \g, uy # pi. Then

Vi

wi=| . om =12 (1.26)

Hy

are linearly independent eigenvectors of the matriz S.

Vi

Proof. Consider the expression SW7}". By using formulas (1.22), (1.26), and
1
prBV, + IV, = —(u)’IV, <— —BV, — u—mIVk = 1 TVy,
k

we obtain the equation

-B -1 A% ~-BV, — IV Vv
e o = D) @
I O -V 1V, LV,
Hi Hi
where m = 1,2. Equation (1.27) coincides with the definition of an eigenvalue

of the problem SW7?* = "W m = 1,2. The inequality puj # pi provides the

linear independence of the eigenvectors V} and V?Z. O
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Theorem 1.8. For the three-layer scheme (1.8)-(1.12), the relation p(S) = 1
holds for any h > 0 and 7 < h if and only if all eigenvalues A\, of the matriz A

are nonnegative.

Proof. We use relations (1.25) and estimate |p}'| (k = 1, N —1, m = 1,2) de-
pending on \,. Then, on the basis of the assumptions of the theorem on the sign
of eigenvalues of the matrix A we obtain the inequality Ay > 0, which is equivalent

to the condition vy + 1 < 2; therefore,

4 h 4
)\kz—siHQQL < —.

h? 2 h?

Consider the following cases separately.

1. My > 0 and " € R, m = 1,2. Consequently, |1 —72)\;/2| > 1, which is
equivalent to the inequalities 72\;/2 < 0 and 72\;/2 > 2. However, for this
problem, we have 0 < 72);,/2 < 2 (since 7 > 0, Ay > 0, 72X\¢/2 < 272/h? <

2); therefore, this case is impossible.

2. The case of A\, > 0 and u* € C, m = 1,2, is possible if |1 — 72)\;/2| < 1 or,
which is the same 0 < 72)\;/2 < 2. Then

2) 22\
= () e (7).
2)\ 2 2)\ 2

where m = 1, 2.

3. If A\, < 0, then at least one of the eigenvalues does not satisfy the stability

condition, because

2|\ 2 M)\
] = (1+T|2k|)i\/(1+7|2k|> —1f > 1,

where m = 1, 2.

4. If Ay = 0, then |[u?| =1, m =1,2.

It follows from the second and the fourth cases that the assertion of the theorem

holds. O
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Therefore, a sufficient condition for the stability of the difference scheme (1.8)—

(1.12) is given by the inequality 79 + 71 < 2 under the condition 7 < h.

Remark 1.9. If 9 + 71 = 2, then, by Theorem 1.8, p(S) = 1, but one of the
eigenvalue of the matrix A is zero. The corresponding values pj. and p2 defined
by relation (1.25) coincide and are equal to unity. Consequently, the vectors v,i’Q

are not linearly independent in this case.

1.10 Numerical experiment

We take a model problem such that the function u(z,t) = 23 + ¢ is an analytic

solution of problem (1.1)—(1.5). Then we obtain the problem
Pu(z,t)  Pu(z,t)

P 52 = 6t — 6z, re (0,1), te (0,17, (1.28)
u(z,0) = 2%, dufz, 0) =0, (1.29)
ot
1 1
u(0,t) = 7o fu(x,t) dz +t3 — 7 (Z + t3> , (1.30)
0
1 1
u(l,t) = fu(x,t) dr+ 1+t —m (Z + tg) . (1.31)
0

We apply the difference scheme (1.8)—(1.12) (with known functions f, ¢, ¥, u1,
and ps) to the differential problem (1.28)—(1.31). We find the maximum relative

error by the formula
U(l‘z,tM) - UZM

AU = max

O<i<N

Y

where wu(z;,tyr) is the analytic solution of the differential problem (1.28)—(1.31)
at the point x = x;, t = t,;, and Uzrj is the solution of the corresponding difference
problem.

As follows from the Table 1.1, the maximum relative error of the model prob-
lem for sufficiently small 7' (T" = 1) remains a quantity of the same order under
small changes of the parameter vy + 71 (1.8 < 79 + 71 < 2.2), occurring in the
boundary conditions. For larger T' (T' = 50), there is a sharp jump (followed by
further growth) in the maximum relative error as the solution of the difference

problem crosses the line vy + 73 = 2, which shows that the difference scheme
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Table 1.1: Maximum relative error in the numerical experiment.

AU

Yot T T=10 T =50

0 3.1-107° 68-107% 14-107%
0.2 6.1-107% 1.2-107° 45.10°13
0.4 1.3-1077  1.8-10719 1.4.10712
0.6 22.-1077 92-107" 24.10712
14 83-1077 3.2-107° 9.0.10"'2
1.6 1.1-107%  1.8-107° 2.9.107'2
1.8 14-10% 29.10° 33.10
2.0 19-10% 15.107 3.0-10°%
2.2 24-10% 9.0-10°° 1.2-10"3
2.4 3.1-100% 6.1-107% 1.4-10%
3.8 1.8-107% 2.2.10  5.3.10%
4 24-107° 22-107  6.1-10™

is unstable in the domain vy + 7, > 2. In turn, this shows that the condition

Yo + 71 < 2 is sufficient for the stability of our difference scheme for sufficiently

h = 0.001 and 7 = 0.0005.

large values of the parameter T

1.11 Conclusions and final remarks

e For the explicit three-layer scheme, the relation p(S) = 1 holds for any A > 0

and 7 < h if and only if all eigenvalues A\, of the matrix A are nonnegative.

e A sufficient condition for the stability of the explicit finite difference scheme

is given by the inequality 7o + 71 < 2 under the condition 7 < h.

Remark 1.10. When studying the spectrum of the matrix S, one encounters the
problem on the equivalence of the norm | - | and the classical norms used in

numerical methods. The equivalence for a similarly defined norm was proved by

A.V. Gulin in [31,32] under different boundary conditions.

Remark 1.11. Note one more important fact if there exists a A (A) < 0, then
| (S) | > 1. It follows from this inequality (since |A (S)| < ||S]|), that any norm of
the matrix S is strictly larger than unity, |S| > 1. It follows that the instability

of a difference scheme in the norm | - |5 leads to the instability of that scheme in

an arbitrary norm.



Chapter 2

Stability of a weighted finite

difference scheme

2.1 Introduction

In this chapter, we investigate a wide class of finite difference schemes — weighted
schemes. Approximating differential problem, we consider weight ¢ € R in the

finite difference scheme:
U@ = U™ + (1 - 20)U7 + oU’ 2, (2.1)

This allows us to investigate the full class of difference schemes. When o = 0 we
have explicit scheme, at o = 1/2 the scheme is Crank—Nicolson, and at other o
values the scheme is implicit.

In this chapter we use Characteristic Function method introduced in |9,
Stikonas and Stikoniené¢ 2009]. The spectrum and characteristic functions for
eigenvalues of Sturm—Liouville problem are widely investigated in 2005-2007 by
S. Peciulyté, O. Stikoniené, A. Stikonas, and M. Sapagovas in [58,59, 82, 96]. For

example, the following problems
—u" = Xu, te(0,1),

with one classical boundary condition u(0) = 0 and other nonlocal boundary

condition
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where v € R, 0 < £ < 1, were investigated. There exist eigenvalues of two types:
the first type eigenvalues do not depending on v, and the second type eigenvalues
which do not depend on v [%2, Sapagovas and Stikonas 2005]. The complex eigen-
values exist for these problems. Complex eigenvalues of these Sturm-—Liouville
problems (with integral boundary condition) were investigated in [$6-88, Skucaité
et al. 2010, 2013, 2015].

We obtain a sufficient condition for the stability of a weighted difference scheme
for a hyperbolic equation with nonlocal integral boundary conditions. By using a
method applied earlier to explicit difference scheme for hyperbolic equations with
nonlocal boundary conditions |39, Ivanauskas et al. 2013|, we rewrite a three-layer
difference scheme in the form of an equivalent two-layer scheme. By analyzing
the spectrum of the transition matrix of the two-layer scheme, we obtain sufficient
conditions for the stability of the three-layer scheme depending on the parameters
occurring in the integral boundary conditions and not depending on the weight
parameter used in scheme.

To obtain the stability estimates of a difference nonlocal hyperbolic problem,
we use a weighted three-layer difference scheme and approximate the nonlocal
integral conditions by the trapezoid quadrature formula. By representing this
scheme in a form of the second-order operator-difference equation and by using
some transformations, one can obtain a two-layer scheme equivalent to this three-
layer scheme [77, p. 364, Samarskii 2001|. To study the spectrum of the transition
matrix of the two-layer scheme, we define special norms of matrices and vectors.
The analysis of the structure of the spectrum of the transition matrix [31, Sapago-
vas et al. 2012] and [82, Sapagovas and Stikonas 2005] and the use of a generalized
nonlinear eigenvalue problem permit one to state the main result of the present
paper, a sufficient condition for the stability of a weighted difference scheme for
hyperbolic equations with integral boundary conditions.

This chapter is based on an article, published in 2014 [, Novickij and Stikonas].

2.2 Notation

In this chapter notations defined in Chapter 1 are valid. Let H and H be spaces

of real grid functions on @w” and w”, respectively. If U and V are grid functions,
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then the following notation is valid

UoVoh UnVnh

[U, V] = ;UVhHl/g— s T (UV)+——, UVeH, (22)
N—

(U, V) = Z UVih, U,V e H. (2.3)
=1

Remark 2.1. Notation (2.2) is used for the approximation of an integral by a

trapezoid quadrature formula
N-1 L

h
[LV] = Vo + ; Vih+ Vi

Lemma 2.2. The following relation is valid

[1,e2%] = [1,e*0=2)] = hsin (2/2) tan"t (zh/2)e*/?, 2eC, x €T, (2.4)

Proof. First, we calculate [1,3'], where 3, i = 0, N, y € C, is a power function.
Ify#1
- 1+ & 1+yV (YN - N 1) (y+1
~ 2 (y—1) 2(y — 1)
L N-1 L N-1 L ‘
1 z _ N N— zh _ N zh .0 =1 ) )
[Ly" =5y syt y SV +;y +5v" =Ly

Now, we substitute exponential function y = e**", z # 0, instead of power function
[1,et2%] = [1,et*10)] = pet/2 (ezz/2 _ efzz/Q) %tanfl (2h/2)
= he®™*?gin (2/2) tan"t (zh/2).

If y =1, then

[1,1]=%+(N—1)h+g=]\fh=1. O
Using Euler’s formula, we obtain

[1,sin (z2)] = [1,sin(2(1 —z))] = hsin® (z/2) tan"' (zh/2), (2.5)
[1,cos(z2)] = hsin(z/2)cos(z/2) tan™! (zh/2), (2.6)

and, using the fact that trapezoid formula is exact for linear polynomials, we also

have

[1,1]=1, [1,2]=1/2, (2.7)

; . 1., N 0, for even N,
[L(=DT=0, [L(=Da] = 72* ()" =1) =1 (2.8)
b= for odd N.
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2.3 Problem formulation

Consider the hyperbolic equation

Pu 0%

w —C @ = f(l',t), (.T,t) € (07L) X (O7T]7 (29)

with the classical initial conditions

uli—o = ¢(x), x€][0,L], (2.10)
ou
. =Y(z), ze€]0,L] (2.11)

and the additional nonlocal integral boundary conditions

=7 | u(z,t)de +v(t), tel0,T], (2.12)

S O

=7 | u(z,t)de +v.(t), tel0,T], (2.13)

where f(z,t), ¢(x), ¥(x), vt ), and v,.(t) are given functions, and - and =, are
given real parameters. We are interested in sufficiently smooth solutions of the
nonlocal problem (2.9)—(2.13).

For the sum of integral parameters we use notation v = vy + v;. Without loss
of generality, we use transformation = = Lz’ to investigate the problem in the
interval [0, 1] instead of [0, L]. Then new ¢’ = ¢/L. Further we consider ¢ =1 for
simplicity.

Now we state a difference analog of the differential problem (2.9)-(2.13). We

define a weighted FDS approximating the original differential equation (2.9)
U — 02U = F, (2;,t)) ewh x w, (2.14)
where o is a weight parameter. The initial conditions are approximated as follows
U=, x,ew’, (2.15)

Ut =w, gz ew (2.16)

Boundary conditions are approximated by trapezoid formula

Uo=[1, U]+ Vi, tedm\{t}, (2.17)
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Uv =L Ul +V,, ted\{t'}. (2.18)

In the problem (2.14)—(2.18) we approximate functions f, ¢, ¢, v; and v, by grid
functions F', @, ¥, V,, and V.

Remark 2.3. Properly choosing right-hand side functions in (2.14)—(2.18) one can
obtain required approximation accuracy. For example, if ¥ = ¢ + 0.57(62U° +
1) the differential problem (2.9)—(2.13) is approximated by (2.14)—(2.18) with

accuracy O(72 + h?).

2.4 Equivalence of the three-layer scheme to a

two-layer scheme

Equations (2.17)—(2.18) is a system of two linear equations for unknowns U, and

Upy. We express these unknowns via inner points U;, ¢ = 1, N — 1, and obtain

Up = %(1,U) + V, (2.19)
Uy =%(1L,U) +V,, (2:20)

where /?0 = 70d717 /?1 = 71d717 d =1- h/}//z # 07 ‘71 = (Vi + hc)d717
V. = (V, = he)d™, ¢ = (%V, — mV)/2.

Remark 2.4. The restriction on coefficient d = 1 — hy/2 # 0 is set in order
to the equivalence of the boundary value problem (2.14)—(2.18) to the algebraic

problem (2.21). More detailed equivalence is investigated in the Section 4.4.

By substituting expressions (2.19) and (2.20) into Eq. (2.14) for ¢ = 1 and

i = N — 1 we rewrite it in the form

AU +BU + CU = 7°F, (2.21)

A=C=1+7%A, B=-21+7%1-20)A, (2.22)
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where U = U7+, U=0"!, j=1T,N — 1; A, B, C, and

2 Fh —1—%h —Aoh ... —Fh  —Fh Rk
1 2 1 0 0 0
0 -1 2 0 0 0

A:% : : S : : (2.23)
0 0 0 ... 2 1 0
0 0 0 oo —1 2 —1
b —Ah —Ah ... Ak —1 -k 2— b

are (N —1) x (N —1) matrices, I is the identity matrix, and F = (]51, ce f’N,l)T,
where [, = F, i =2, N — 2 and F, = F,(F,V,,V,),i=1,N — 1.

Remark 2.5. Let suppose that all eigenvalues of matrix A are real. In this case

det A > 0 if the following condition is satisfied (follows from matrix A form (2.22))

1 1
— <0< — . 2.24
T2 maX<07 )\max) 7 72 min<07 )\min) ( )

Matrix A~! exists for such o.

We represent the three-layer scheme (2.21) as an equivalent two-layer scheme

(analogously as in Chapter 1).

W = SW + G, (2.25)

)
H
c
|
g
=]
|
\]N)
g
]

(2.26)

Remark 2.6. The structure of two-layer scheme is the same that in Chapter 1.

The main difference is the structure of matrices A, B, and C.

2.5 Structure of the spectrum of the matrix A

Eigenvalue problem

AU = \U,
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for (N — 1) x (N — 1) matrix A is equivalent to the eigenvalue problem for the

difference operator with nonlocal boundary conditions
— 02U = \U, Ueuwh, (2.27)
U():")/o[l,U], UNZ”)/l[l,U] (228)
First, note one important property of the three-layer scheme (2.21).

Lemma 2.7. The matrices A, B, and C of the three-layer scheme (2.21) defined

by relations (2.22) have a common system of eigenvectors.

Remark 2.8. The lemma can be stated in a different form: the eigenvectors of the

matrix A are eigenvectors of the matrices A, B, and C.

Lemma 2.9 (See Sapagovas 2012 [79]). For arbitrary values of the parameters
Y,71 € R, all eigenvalues A of the matriz A are real and simple, moreover, the

following assertions hold

1) if v =y + 71 <2, then all eigenvalues are positive;

2) if v = 2, then there exists one zero eigenvalue, other eigenvalues are positive;
3) if 2 <~y < 2/h, then there exists one negative eigenvalue, all other are positive.

Now we specify few additional properties of eigenvalues A\, which are not stated

in Lemma 2.9.

Remark 2.10. First, we enumerate all the eigenvalues A\ < ... < Ay_; of the
problem (2.27)-(2.28) in the ascending order using the classical case 7o = 0,
7 = 0 (in this case v = 0).

Lemma 2.11. Additional properties of the eigenvalues are valid
1) if v <2, then X € (0,4/h?);
2) ify / 2/h, then \y - —o0;

3) if v = 2/h, then boundary conditions (2.17)—(2.18) are not equivalent to con-
ditions (2.19)~(2.20);

4) if v\ 2/h, then \y — +0;
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5) if v > 2/h, then all the eigenvalues A are positive.

Proof. We further prove all the properties in the following eigenspectrum investi-

gation.

Instead of investigating eigenvalues A € C we use a bijection A = A(q) from
domain C, to C
A= isinQ%, q:=a-+10, (2.29)
h? 2
where C, = {¢=a: 0 <a <w/h}u{q=18: = 0}u{q=n/h+18: = 0}. The
points ¢ = 0 and ¢ = 7/h are the branch points of the map (2.29). Therefore every
eigenvalue \; = \(g;) conforms to ¢;, i = 1, N — 1 and vice versa. A numeration
of {q1,...,qn_1} coincides with the numeration of {\,..., Ay_1} ({N2, ..., An_1}
and {qa,...,qn_1}, for v = 2/h).

Now we investigate the spectrum of matrix A in detail.

a) the case of ¢ # 0, q # 7/h. The general solution of (2.27) is of the form

U = Cycos (qr) + Cysin (qz), zew"

By substituting it into (2.28) we have

(’yo[l, cos (qx)]| — 1)00 + Y[, sin (qz)]Cy = 0,
(2.30)
(m[1, cos (qz)] — cosq)Co + (11[1,sin (gz)] — sing)Cy = 0.

A nontrivial solutions of system (2.30) exist if its determinant is equal to zero
Yo[1, sin (qx) cos ¢ — cos (gx) sin ] — y1[1, sin (gz)] + sing = 0,
or simplifying this formula we have
—7o[1,sin (¢(1 — x))] — 1[1,sin (qz)] + sing = 0.

Using expression (2.4) we get an equation for ¢

‘ sin? (¢/2) cos (qh/2)
sin (qgh/2)

In this formula functions sin (¢h/2) and cos(gh/2) are never equal to zero in

vh

= sing. (2.31)

C,\{0,7/h} (since a sine function has only real zero points in a complex plane
and function sin (gh/2) has no zero points in the interval (0,7/h)). We rewrite

Eq. (2.31) in the form

sin (¢/2) - (vhsin (g/2) — 2 cos (¢/2) tan (gh/2)) = 0. (2.32)
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The roots of Eq. (2.32) can be found from two equations
sin (¢/2) = 0, (2.33a)

vhsin (¢/2) — 2 cos (g/2) tan (¢h/2) = 0. (2.33b)

The roots of Eq. (2.33a) are called Constant Eigenvalue points (see [0%, Stikonas
and Stikoniené 2009]) because they do not depend on 7, and

gon = 2km, k=0,No, No:=|(N—1)/2]. (2.34)

The roots of Eq. (2.33b) depend on «. Such type of roots is called Nonconstant
Eigenvalue points.

Now we divide this equation by sin (¢/2) and get expression for
v =2h""tan"" (¢/2) tan (¢h/2). (2.35)

A function v = v(q) is called Complex-Real Characteristic Function (CF) |98].
The roots gog 41, k = 0, Ny, Ny := | N /2] can be found as ~y-points of the CF (2.35).
b) the case of A = ¢ = 0. In this case the general solution of (2.27) is

U; = Cy + Cyih.
By substituting it into (2.28) we have
Co =7 (Co + C1/2),

Co + Cl =" (Co + 01/2) .

A nontrivial solution exists if

—1 2 —1 2 —1 2
0 — Yo 70/ _ 70/ _ 70/ 1 7/2'

=1 m2—1 |1 wpe—1 |0 q2-1
So, we have zero eigenvalue, when v = 2.

c) the case of ¢ = w/h (A = 4/h*). Now the general solution of (2.27) is
Ui = (—1)Z (C() + Ollh) .
For even N we have (see (2.8))

Co = 0,
Co+Cy =0,
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f}/A A
60
40
2 5]
h
<x\ | N
q 5 0 \ \ 10 q

(a) The case of odd number of grid points, (b) The case of even number of grid points,
N =5 (h=1/5). N =6 (h=1/6).

Fig. 2.1: Generalized characteristic function v(mq).

and for this case only trivial solution exists. For odd N we obtain
Co = —70h201/27
Cy+ Cy = 1h*Cy /2.
A nontrivial solution exists if

1 h?/2 1 h?/2
o L O e P
1 1—mh%/2] |0 1—vh?/2

So, eigenvalue \ = 4/h? exists for odd N if v = 2/h2.

Remark 2.12. The generalized CF, is plotted on Fig. 2.1. All the N — 1 roots of
Eq. (2.32) belong to a union of three intervals {g = a € [0, 7/h]} U {qg=15: 8 =
0}u{q=mn/h+18: p =0} (if v = 2/h then we have N —2 roots). We plot a graph
of function (2.35) in each interval: v = y(«), a € [0, 7/h]; v := v_(B) = v(15),
B =0;v:=v(6) =~(r/h+:18), B = 0. We combine them on one graph of
Real CF. Finally, we add vertical lines ¢ = a = 27k, k = 0, Ny, which correspond
to CEs, and get generalized CF. As one can see Real CF asymptotes coincide
with CE points. We plot CF ~(ma) graph in Fig. 2.1, so that in the classical
case (70 = 0, 71 = 0) graph intersects « axis in the integer values (the index of
eigenvalues). We note that CF is smooth at the point ¢ = 0 for all N; CF is
smooth at the point ¢ = 7/h for odd N only and has a pole at this point for even
N.
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Remark 2.13. The generalized CF on Fig. 2.1 describes an eigenspectrum for all
v € R. According to [98, Stikonas and Stikoniené 2009] at the critical points (the
points, where 7/(q) = 0), two real eigenvalues merge and two conjugate complex
eigenvalues appear.

All CE points are poles of CF. For even N we have additional pole at ¢ = 7 /h.

So, we have poles at points:
pr =27k, k=1,...,|N/2]|.
Zeroes of CF are at the points
y=2ml—m, 1l=1,...,|N/2|.
Lemma 2.14. Real CF is decreasing function in the intervals (+001;0), (0;p1),

(p1;p2), -5 (Prvr—150M), (Par;w/h), and (7/h; +001), where M = |N/2|.

Proof. Functions y; = xtanh 'z, > 0 and y, = ztan™’

rz, 0 <z < 7 are
decreasing and y;,y2 < 1 (see [57, Peciulyté 2007]).

Consider following functions for h € (0, 1):

sinh (hx sin (hx
gl(h):%v r>0; go(h)= h(:z: )7 0< <3
The derivatives of these functions are
inh
gi(h) = smmﬂ (1 — zhtanh™" (zh)) < 0;
T
in (h
gs(h) SH;Lgxx) (1 — zhtan™" (zh)) < 0.
So, the inequalities
sinh (hx) - smhx’ ©>0; sin (hx) - smx’ 0<g< E’
hx T hx T h

are valid for h € (0,1), or

sinh (hx) — hsinhz > 0, > 0; sin(hz) — hsinz >0, 0 <z < %

Real CF in for 8 € (+001;0) is equal to

2 cosh (g) sinh (%)
1-(8) = h sinh (g) ' cosh (%) ’
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and the derivative is equal to

sinh (hf3) — hsinh 3

- 0.
2hsinh? (2) cosh? (1)

7(B) =

Analogously, for a € (0,7/h),

2cos (%) sin (%)

h sin (%) cos (a—;‘) ’

(a) = - sin (ha) — hsin « <0
7= ~ 2hsin? (%) cos? (%h) '

We proved that Real CF is decreasing function in the intervals (4002;0), (0;py),
..y (py—1;pMm). So, in each interval (py,pr+1), K =1,..., M — 1 we have exactly
one eigenvalue point.

Since limg_, o 7— () = 2/h, we have one negative eigenvalue for 2 < v < 2/h,
and one positive eigenvalue 0 < ¢; < 2 for v < 2. For v < 2 all eigenvalues are
found.

If v > 2 situation depends on N: if N is even, then negative, zero eigenvalues
and positive \; < 2 eigenvalue do not exist, and ¢; € (w/h;7/h+om); if N is odd,
then ¢, € (pas;m/h) for v > 2/h? and q; € (n/h;7/h + o) for 2/h < v < 2/h?.
CF is decreasing in (7/h; w/h + o01), because in this interval we have exactly one
eigenvalue point.

We note, that 7/(w/h) = 0 for odd N, but the point ¢ = 7/h is a first order
branch point for A = A(¢) and complex eigenvalues at this point do not appear.

The same situation is for the branch point ¢ = 0. O
Conclusion 2.15. Matriz A has only real eigenvalues.

In general (except the case of v = 2/h) the eigenvectors are real and form
the complete eigenvector system {Vi,...,Vy_1} (we have N — 2 eigenvectors
{Va,...,Vn_1}, when v = 2/h). We call two eigenvectors equal if they are

linearly dependent. These eigenvectors can be expressed by general formula
Vii = sin (qe:) — yo[1,sin (ge(z; — 2))], kel,N -1 (2.36)
Note that g, = qx(). So, Vi; also depends on 7. Eq. (2.36) can be rewritten as

Vii = sin (qx(1 — z;)) — n[1,sin (ge(z; — 2))], kel,N—1.
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Remark 2.16. We can rewrite Eq. (2.36) in such forms
a) if g = a € (0, 7/h) then
Vi = sin (i) — o1, sin (o (x; — x))]; (2.37)
b) if ¢ =8 (v € (2,2/h)) then
Vi = sinh (B;) — o[, sinh (B(2; — 2))]; (2.38)
c) if g = m/h+18 (v € (2/h,2/h?) if N is odd; v € (2/h,0) if N is even) then
Vi = (=1)"(sinh (Bz;) — o[ 1, sinh (B(z; — 2))]); (2.39)
d) if ¢4 =0 (v = 2) then
Vi = 2 — vo[1, 2 — 2] = 2 — yo(2; — 1/2); (2.40)
e) if gqv_1 = m/h (y = 2/h? N is odd) then
Vii = (=1)'(—70h® + 2x;). (2.41)

Expressions (2.40)—(2.41) are the limit versions of the formula (2.36) at the
points ¢ = 0 and ¢ = 7/h (as well as Egs. (2.37)-(2.39)).

2.6 Stability of finite difference scheme

First, we note one important property of the three-layer scheme (2.21) with
(N —1) x (N — 1) matrices A, B, and C defined by Eqs. (2.22)—(2.23). We
use notation Ay(A), A\p(B), \x(C) for the k-th eigenvalue of matrix A, B or C
accordingly. We investigate the case of the complete N — 1 eigenvector system

{V1,...,Vy_1} (in the case v # 2/h).

Lemma 2.17. The matrices A, B, and C have a common system of eigenvec-
tors. More precisely, the eigenvectors of the matriz A are the eigenvectors of the

matrices A, B, and C.

Proof. The eigenvectors of the matrix A are also the eigenvectors of the unit
matrix I. So, since A, B, and C are the linear combination of matrices I and A,

the formulated lemma is valid. O
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Let p be the eigenvalue of the 2(N — 1) x 2(N — 1) matrix S (see Eq. (2.26)).
We have

“ATB ol -1
det(S — pI) = det

1 —ul
—A'B—pul —pfI-A'Bpu-1 (2.42)
= det
I 0

= det (Au2 + Bu + C) det (A_l).
We get a characteristic equation for the eigenvalues of the generalized nonlinear

eigenvalue problem
(W’A+puB+C)U=0, U=#0. (2.43)

Problem (2.43) is rather well studied for the case of symmetric matrices A, B,
and C (e.g., see |15, p. 23, Lancaster 1966]). We note that the eigenvalues u of
the matrix S coincide with the eigenvalues of the generalized nonlinear eigenvalue
problem (2.43). The number of eigenvalues of problem (2.43) is 2(N — 1). Let
us clarify the relationship between the eigenvalues p of the matrix S and the
eigenvalues A\ of the matrix A.

By substituting an eigenvector V, of matrix A (see Eq. (2.36)) into Eq. (2.43),

we obtain
(1?A + B + C)Vy = (1 Ae(A) + pAi(B) + X (C)) Vi = 0. (2.44)
So, eigenvalues of the matrix S satisfy the quadratic equation
AL(A) + A (B) + A\e(C) =0, k=1,N—1. (2.45)

Lemma 2.18. Fach eigenvalue g (A), k =1, N —1 corresponds to two eigen-

values p;, and pi of the matriz S:
= —bp £A/b2—1, m=1,2, (2.46)
where b, = (=1 + 72(1/2 —0)\) /(1 + T20N\s), k=1,N—1.

Proof. Using relations (2.22), we calculate A\i(A) = A\(C) = 1 + 720\, \(B) =
—2+7%(1—20)\g. By substituting these values into (2.45) and solving the resulting

equation, we obtain relations (2.46) for eigenvalues of matrix S. O
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Remark 2.19. Equation (2.46) determines the relation between eigenvalues p}* and
Ak The value of 1" can be complex as well as real, depending on the parameters

o, 7 and eigenvalues \j.

Lemma 2.20. Let \i and Vi, be an eigenvalue and an eigenvector of the matrix
A, respectively. Let ;. and pi be the eigenvalues of matriz S corresponding to A,

ur # i Then

A\ -
Wi =  m=12 k=TN—-1, (2.47)
()",

are linearly independent eigenvectors of the matriz S.

Proof. Consider the eigenvalue problem SW = "W, m = 1 or m = 2. Using
definition of matrix S (see Eq. (2.26)), we have

—A"'B -1 W, W, -
e L om=1,2, k=T,N_1, (248
I 0 WQ W2

where W = (Wl, Wg)T is an eigenvector. So, two equalities are valid

~AT'BW, - W, = u'"W, (2.49)
W1 = ILLZLWQ (250)

Substituting Eq. (2.50) into Eq. (2.49) and multiplying it by p*A, we get an
analogue of formula (2.44): ((u)?A+pu"B+A)W, = 0. Every Vi, k=1, N — 1,
satisfies Eq. (2.44) with u = pi*. So, we can take Wi = Vi, k = 1, N — 1. Then
from Eq. (2.50) it follows that Wy = (u*) "'V O

Remark 2.21. If pg # p2, k = 1, N — 1, then we have 2(N — 1) linear independent
eigenvectors W}, m = 1,2, k = 1, N — 1, which form a complete eigenvector
system. If eigenvalues ', m = 1,2 are complex, then eigenvectors W} are also

complex.

A polynomial satisfies the root condition if all the roots of this polynomial are
in the closed unit disc of complex plane and roots of magnitude 1 are simple [34,
Hairer et al. 1987] and |71, Samarskii and Gulin 1989]. For polynomial of the
second order

A + Bu+C, A+#0, B,CeC, (2.51)

the following theorem is valid.
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Theorem 2.22. (See 07, Stikonas 1998]) The roots of the second order polynomial
are in the closed unit disc of complex plane and those roots of magnitude 1 are
simple if
|C* +|AB — BC| < |A)]?, (2.52a)
|B| < 2]A]|. (2.52b)

We rewrite the quadratic equation (2.45) in a form

p(p) = ap® = 2(a—n)p +a =0, (2.53)

where a = 1+ 720\ € R, = 72\ /2 € R. For this real polynomial p(), inequality
(2.52a) is trivial, and p(u) has two complex roots of magnitude 1. The strong
inequality (2.52b) ensures that these roots are simple [95, Stikonas 1998]. So,

polynomial p(u) satisfies the root condition if and only if
la —n| < |al (2.54)

(see (2.52b)).

Remark 2.23. If polynomial (2.45) satisfies the root condition, then p(S) = 1.

Theorem 2.24. If v < 2 and

>1 1
7 4 72 \ax

(2.55)

then the weighted FDS (2.14)—(2.18) is stable.

Proof. Let us analyze condition (2.54). If a < 0, then a < a —n < —a. In this
case, we have n < 0 or A < 0, which contradicts the assumption v < 2. If a > 0,

then —a <a—n <a. If y <2, then A\, >0, k=1, N — 1, and inequality n/2 > 0

is valid. So, we have a > 1/2 > 0. We rewrite the inequality a > 1/2 as

L1 1 (2.56)
VR '
If 0 > 1/4—1/(7*Anax), then (2.56) is valid for all Ay, k =1, N — 1. O

Remark 2.25. The obtained inequality (2.55) is an analogue of the stability in-
equality for three-layered difference schemes with classical Dirichlet boundary

conditions (see |77, Samarskii 2001]).
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Remark 2.26. While v < 2, the eigenvalues A\, k = 1, N — 1, are in the interval

(0,4/h?). So, we can use inequality

>1 h?
o> - —
4 472

instead of the condition (2.55). If 0 = 1/4, then the weighted FDS in uncondi-
tionally stable. If 0 = 0, then the FDS is stable under the condition 7 < h.

2.7 Conclusions and final remarks

e The sufficient stability condition (y < 2 and 0 > 1/4 — 1/(7?Apay)) for the

three-layered weighted finite difference scheme is obtained.

e The weighted FDS in unconditionally stable under the condition ¢ > 1/4
(v <2).

e The stability condition (2.55) for the weight o is the same as in the classical

case o =7 = 0.

e The spectrum of the matrix A is investigated. FEigenvalues are real, and

eigenvectors form a complete system (except the case of v = 2/h).

e The spectrum of A is qualitatively different for the cases of odd and even

number of grid points N.

e If v > 2/h? and the number of grid points N is odd, then the spectrum of

matrix A is in the interval (0,4/h?) (as well as in the case of v < 2).

e If v > 2/h, then all the eigenvalues )\, k = 1, N — 1, are positive, but eigen-

value Apax could be greater than 4/h?. This affects the condition on o.






Chapter 3

Stability of finite difference scheme

with two weights

3.1 Introduction

Two-weight finite difference schemes for evolution equations are investigated by
authors infrequently. One can find an investigation of two-weight scheme for a
time-dependent advection-diffusion problem in the article of N.M. Chadha and
N. Madden [15, 2011|. The authors consider the numerical solution of a one-

dimensional advection-diffusion problem

07 P 2p
aé’_t + L =0, L:= ag—x — e%, for (z,t) € (0,1) x (0,71,

subject to the boundary and initial conditions
¢(07t) = gO(t)v ¢(l7t) = gl(t>7 te [O,T],
D(z,0) = f(x), z € [0,1].
The authors consider following difference operators:

LYuj i= (—€0us + ad,)u;,  where §, := ¢D™ + (1 — ¢)D°,

where D is the standard discrete centered approximation, and D~ is the left
approximation. The authors then introduce the parameter 6 that weights the

scheme between being implicit and explicit in nature:

5P + L (0274 + (1 —0)@7) = 0, j=T.N—1,n=T1, M.

ol
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0 = 0 and ¢ = 0 correspond to forward Euler with central differencing; 6 = 0 and
¢ = adt/dx give the standard Lax-Wendroff scheme; § = 1 and ¢ = 0 give the
backward FEuler method with central differencing; # = 1/2 gives Crank-Nicolson
type methods.

The authors investigate monotonicity, stability regions and optimal values of
the parameters, illustrating results with the numerical experiments.

In this chapter we investigate the stability region of the FDS with two parame-
ters (see |77, Samarskii 2001]) for the hyperbolic equation with two integral NBCs.
By using the root criterion (see [0, Stikonas 1998] and [10, Jachimaviciené et al.
2014]) we obtain regions on a complex plane, where FDS is stable. A.A. Samarskii
in book |77, 2001], using the energy inequality technique, obtained the stability
conditions for the classical hyperbolic problem. We have generalized the results
presented in |5, Novickij and Stikonas 2014], by using more general scheme. We
note, that FDS with more general boundary conditions may have complex eigen-
values.

This chapter is based on an article, published in 2014 [53, Novickij and Stikonas].

3.2 Finite difference scheme

Consider the wave equation

Pu 0%

2~ Cag = f@t), (1€ (0,1)x (0,7, (3.1)

with the classical initial conditions

u‘t:(] = ¢(3§'), T e [07 L]7 (32)
g—qz . =(z), x€]0,L] (3.3)
and integral NBC
L
u(0,t) = fu(x, t)dr +v(t), tel0,T], (3.4)
0

u(1,t) = 7 fu(x, Hdz+ o), te[0,T], (3.5)
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where f(z,t), ¢(z), ¥(x), v(t), and v.(t) are given functions, and 7y and
are given real parameters. We are interested in sufficiently smooth solutions of
the nonlocal problem (3.1)—(3.5). We can investigate problem (3.1)—(3.5) in the
interval [0, 1] instead of [0, L] using transformation x = Lz’. Then new ¢’ = ¢/L.
Further we consider ¢ = 1, without losing of generality, for simplicity.

Now we state a difference analogue of the differential problem (3.1)—(3.5).
We denote U@ = allv] + (1 -0y —0)U + agﬁ, 01,09 € R. We define a FDS
approximating the original differential equation (3.1) (see |77, Samarskii 2001]):

53[] — U9 = F, (24,t)) e x W (3.6)
The initial conditions are approximated as follows:
U=, z;,ew, (3.7)
U =0, r;ew (3.8)
We rewrite the boundary conditions:
Up=[1, U]+ Vi, t/eam\{t'}, (3.9)

Uy =L U+ V., #ed™\{t}. (3.10)

In the problem (3.6)—(3.10) we approximate functions f, ¢, ¥, v; and v, by grid
functions F'; @, ¥, V;, and V,. In the case o1 = 0y = o stability of FDS (3.6)-
(3.10) is equal to the one, investigated in |54, Novickij and Stikonas 2014] and
Chapter 2.

Equations (3.9)—(3.10) is a system of two linear equations for unknowns Uy

and Uy. We express these unknowns via inner points U;, + = 1, N — 1, and obtain

Up = %(1,U) + V;, (3.11)
Uy =%(1L,U) +V,, (3.12)

where /70 = 70d717 /?1 = 71d717 d =1- h/}//z > 07 ‘71 = (Vi + hc)d717
V., = (V, — he)d™, ¢ = (vV, — 11V;)/2. By substituting expressions (3.11) and
(3.12) into Eq. (3.6) for i = 1 and i = N — 1 we rewrite it in the form

AU +BU + CU = 7°F, (3.13)
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A=T1+701A, B=21+7%(1 -0, —0y)A, C=1+7°0,A, (3.14)
where A, B, C, and
2—"%h —1="%h —Hoh —Yoh  —Aoh  —%oh
-1 2 —1 0 0 0
0 —1 2 0 0 0
A= % (3.15)
0 0 0 2 —1 0
0 0 0 —1 2 —1
—Y1h —Y1h  —A1h —Yh —1—=%h 2—5h

are (N—1)x(N—1) matrices, I is the identity matrix. Finally, F = (ﬁ’l, . ﬁN,l)T,
where F = F,,i=2,N—2and F, = E(FZ, Vi, VT), 1 =1, N —1. The spectrum of
matrix A is fully investigated in §3 of paper |74, Novickij and Stikonas 2014] and
Chapter 2 of this dissertation. According to that paper’s Lemma 1 and Remark 2
under certain conditions (y < 2) spectrum is real and is in the interval (0, 4/h?).

We represent the three-layer scheme (3.13) as an equivalent two-layer scheme

W = SW + G, (3.16)
using notations
_ U U ~A'B I T2PAIF
W = , W = .|, S= , G =
U U I 0 0
(3.17)

According to [54, Novickij and Stikonas 2014] eigenvalues y of the matrix S

could be found as the roots of the quadratic equation

WA(A) + pA(B) + \e(C) =0, k=1,N—1, (3.18)

where )\, are the eigenvalues of the matrix A.
The aim of the following section is to investigate the spectrum of the weighted

FDS independently of boundary conditions.

3.3 Stability regions

In general, under various boundary conditions, eigenvalues of operator A could

be complex numbers. A polynomial p(u, \) 1= a(A)p® + b(A\)p + c()\) satisfies
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(a) o1 = 0.1k, 02 = 0, (b) 01 = 0.46 4+ 0.02k, 02 =0, (c) 01 =0.5+ 0.1k, 02 =0,
k=14 k=1,3 k=14
T SR N
|
| k=3
| =X
: b k=5
ko 50 8 4

(d) o1 + 02 = 0.25, 01 = 0.07k, (e) o1 + 092 = 0.5, (f) o1 + 02 =1, 01 = 0.1k,
kE=1,5 o1 =048 —0.05k, k=1,3 E=1,5
Fig. 3.1: Stability regions for different values of weights o7 and o5.
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I
Fig. 3.2: Function z_; = Fig. 3.3: Function ps =
z_1(0o1 + 03). po(oq — o2).

the root condition if all the roots of that polynomial are in the closed unit disc
of complex plane and roots of magnitude 1 are simple (see [05, Stikonas 1998]
and [10, Jachimaviciené et al. 2014]). If polynomial p(u, \) := a(A)p®+b(A\)p+c(N\)
satisfies the root condition, then we say that A is in stability region defined by
equation p(u, A) = 0. Denoting z := 7\ and substituting it into (3.18) we have:

P(u,2) = (1 + zo)p* — 2 (1 — %(1 — 0y — ag)z) w4 (14 z09) =0, (3.19)

or expressing z:

B (n—1)
o+ (1—op — o)+ o9

2(p) = (3.20)
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Substituting pu = €, p € (—m, +x| into Eq. (3.19) we obtain the formula for the
boundary of the stability region:

2(1 —cosp) (1 — (01 + 02)(1 — cosp) — (o1 — g3)28in <p)'
(1 — (01 + 02)(1 — cos))® + (01 — 09) sin®

z(p) = (3.21)

One can see that Re z(p) is even function and Im z(p) is odd function, so the
stability region is symmetric to the real axis (see Fig. 3.1), and boundary intersects
it in two points (except of the confluent region when oy = 03). If pu; = 1, then
the first intersection point zy = 0. By substituting u; = —1 to (3.19), we find the
second z(y) intersection point with the real axis (see Fig. 3.2):

B 4
B 1—2(0’14—02)‘

Z-1

(3.22)

To find the second root us of the Eq. (3.19), while the first g1 = —1 we use Viete
formula py e = —po = (1 + z02)/(1 + zo1) and relation (3.22) for z_;:

2(0’1 — 0'2) —1
— . 3.23
H2 2(0y —09) +1 ( )

If 0y < 09, then |us| > 1 (see Fig. 3.3) and the root condition is not satisfied. For

the case 01 = 09 = 0 we investigate the discriminant of P(u, z) of (3.19):
D(P(p,z)) = ((01 — 02)> = 2(01 + 02) +1) 2> — 42 = 0. (3.24)

One root of Eq. (3.24) is zp = 0, and the second root is:

4
N 1 —2(0’1 +0'2) + (0'1 —0'2)2'

z (3.25)

Using relation (3.22) we see, that z is on the boundary in the case of 0y = 09 = ¢
and the contour of stability region is on the real axis. The contour consists of
two parts: [0,z_1] and (z_1,0). If 0 = 1/4, then z_; = oo, and if ¢ > 1/4,
then z_; < 0 and the contour gets over the infinity to the negative values (see
Figs. 3.2 and 3.3). In this case the roots of (3.19) are p = ™. For o > 09
we investigate a mapping z = z(u) : C, — C,, which is conformal mapping at
the point 1 = —1. We investigate the monotonicity of the mapping z at the
point u = —1: 2/(—1) = —4(01 — 09)/(2(01 + 79) — 1)%. So, if 07 > 09, then z is
decreasing at the point ;4 = —1, and z defines a boundary of stability region. If

01 > 09, then |us| < 1 and the root condition is satisfied.
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Fig. 3.4: Eigenspectrum of the numerical problem with one integral NBC.

Ezample 3.1. Let us take boundary conditions of the form «(0,¢) = 0 and u(1,t) =
T Si’ﬁu(m, t) dz (differential SLP was studied in |19, Sapagovas et al. 2004]). The
spectrum of formulated discrete problem (integrals approximated with trapezoid
formula) was investigated in article [¢8, Skucaité and Stikonas 2015]. The study is
based on the investigation of characteristic curves on the part of a complex plane
C,, where A = 4/h?*sin®*(mqh/2) (Fig. 3.4). The points of the spectrum belongs to
a spectrum curves. These curves N, j = 1,7 are shown in Figs. 3.4(b) and 3.4(c).
Every spectrum point moves along the spectrum curve while v € (—o0, +00). One
can compare Fig. 3.4(c) with the stability regions shown in Fig. 3.1, keeping in

mind relation z = 72\.

The same situation is general for NBCs with not full integrals (see |88, Skucaiteé

and Stikonas 2015]). Except some special cases there exist complex eigenvalues.

Corollary 3.2. FDS is unstable for sufficiently small T < 7* if the corresponding

SLP has complex eigenvalues.

Remark 3.3. If the corresponding SLP has complex eigenvalues then FDS can be
stable for some intervals of 7 > 0 only if we select special o, and o5 values in the
case g1 > 09, 01 + 09 > 0.5, 79 = 0, and v; < 7,. In the case vy # 0 and v, # 0

situation is more complex and is under investigation.
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3.4 Conclusions and final remarks

FDS with two weight parameters has a stability region if o7 > o09. If the
spectrum is in the interval (0,0), then the second stability condition is
01 + 03 = 1/2 (the same stability condition was obtained in |77, Samarskii
2001] for problem with classical boundary conditions and symmetrical and

positive matrix A).

The stability region depends on the o7 — g9 value. While o7 — 09 < 1/2 the

stability region is bounded, elsewise — unbounded.

FDS is unstable for sufficiently small 7 < 7* if the corresponding Sturm-—

Liouville problem has complex eigenvalues.

For the case 79 = 0 and bounded ~q, if 07 > 05 and o7 + g2 > 0.5 , then

FDS has stability regions.



Chapter 4

Stability of a weighted difference
scheme with generalized integral

conditions

4.1 Introduction

As a result of technological progress during the last couple decades, there has been
an interest investigating problems with rather complicated nonclassical conditions
modeling natural, physical, chemical and other processes. There often arise prob-
lems described by equations of mathematical physics. In connection with this fact
it is natural to investigate whether the problem is well-posed. To understand the
behaviour of real processes it is natural to investigate solvability condition on the
stationary problems. The solvability results for various type differential problems
with nonlocal conditions can be found in [20, Ciupaila et al. 2013].

The solvability of nonlocal problems for second-order ordinary differential
equations is investigated in [12, Kiguradze and Kiguradze 2011]. The authors

consider boundary value problem

u' = f(t,u),
J uV(s)dos(s) = ¢ (i =1,2),

a

where f: [a,b] x R — R is a function satisfying local Caratheodory conditions,

¢ € R (i=1,2), and ¢;: [a,b] > R (i = 1,2) are functions of bounded variation

59



60 Generalized integral conditions

such that
¢z(a) = O: ¢z(b) = 17 (Z = 172)7

with one of the following four conditions

¢i(s) > lfora<s<b(i=1,2),
di(s) < Ofora<s<b(i=12),
¢1(s) > 1, ¢o(s) <Ofora<s<b(i=12),
P1(s) < 0, ¢a(s)>1fora<s<b(i=1,2).

The authors presented sufficient conditions which guarantee: solvability, unique
solvability, and the existence of at least three distinct solutions of formulated
problem.

The solvability of nonlocal multipoint boundary value problems for quasi-linear
systems of hyperbolic equations is presented in |6, Assanova and Imanchiev 2015].
The authors consider the following nonlocal multi-point boundary value problem

on 2 = [0, T]x [0, w] for a second-order system of quasilinear hyperbolic equations

*u u u "
ata.T:A(t’x)%—Ff(t’x’u’E)’ u€eR )

i {R(z)% + Sl(x)% + Ui(x)u(ti,x)} = ¢(x), xe|0,w],
i=0
u(t,0) = ¢(t), te0,T],
where u(t,z) = col(uy(t,x), us(t, x), ..., u,(t, x)) is the unknown function, the

n x n matrices A(t,z), Pi(x), Si(z), Ui(z), i = 0,m, and the n-vector function
f(t, z,u, % are continuous on 2 x R" x R", the n-vector function ¢ is continuous
on [0, w], and the n-vector function 1 is continuously differentiable on [0,77], 0 =
to < ...<tmo1 <t,="T. The authors establish sufficient coefficient conditions
of the unique solvability of formulated problem by introducing some additional
functions and applying related results for families of multi-point boundary value
problems for systems of ordinary differential equations.

In this chapter we investigate the solvability of the discrete Sturm-—Liouville
problem with two nonlocal boundary conditions of the general form. We investi-
gate the condition when the discrete Sturm-Liouville problem can be transformed

to an algebraic eigenvalue problem. We also provide the examples of the solvabil-

ity conditions for the most popular nonlocal boundary conditions.
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This chapter is based on an article, published in 2015 [55, Novickij and Stikonas]
and partly on [52, Novickij et al. 2015].

4.2 Notation

In this chapter notations defined in Chapter 1-3 are valid. We define the following

piecewise constant function

r

0 l‘<£0, 6
1

B(x;60,&) =11 o <x <&y,

where 0 < &) < & < 1; and its difference analog
(

0 zj<aoruz; >0,

X[a,b] (33']) = 3

[y

rj=aorx;=Db,

0 a 1T,
h a<az;<b. b 1T
\

We use the following notation, to define discrete function in the inner domain

. |0 i=0,i=N,
U:

U otherwise.
We denote 67 as the Kronecker delta
0 ity +#1,
1 ifj=4.
We also use the following sum notation

N
[UV]=) UV, UVeH.

i=0
4.3 Problem formulation
Consider the hyperbolic equation

— _(;28_ = f(z,t),  (x,t)e(0,1) x (0,77, (4.1)

0% 0*u
72
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with the classical initial conditions

ou

u’tzO = ¢(3§'), E
t=0

=¢(x), xe€]0,1], (4.2)

and the additional nonlocal integral boundary conditions

Y | B(@)u(z, t) de + v(t), tel0,T],
(4.3)
B (z)u(x,t) dr +v,.(t), tel0,T],

-
I

where f(x,t), ¢(x), ¥(z), v(t), and v,.(t) are given functions, vy and v, are given
parameters, 3°(z) and 3'(x) are weight functions. Further we consider ¢ = 1
for simplicity. We are interested in sufficiently smooth solutions of the nonlocal
problem (4.1)—(4.3) (all the coefficients in (4.1)—(4.3) are smooth enough that the

solution U € C*1). We consider piecewise constant weight functions 3°(x) :=

B(x;&0,€70) and B'(z) = B(x; &5, &)

4.4 Equivalence of discrete Sturm—Liouville

problem to the algebraic eigenvalue problem

Sturm—Liouville problem

We consider discrete Sturm—Liouville operator
LU := —6(PSU) + QU = \U, z;ew", (4.4)

where P, () are real functions and

Pivrjp (Uiyr = Ui) = Pioajp (Ui — Ui a)
h? ’

(6(PoU)), =
with two nonlocal boundary conditions of general form
<k07 U> = ’70<n07 U>7 <k17 U> = 71<n17 U>7 (45)

where (-, -) is a linear functional, (k;, U) is the classical part and (n;, U) is a nonlo-
cal part of boundary conditions, i = 0, 1. For example (¢, U) = Uy, {8°U) =
UO) <517 5]> = 51]
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Now we investigate the condition when problem (4.4)-(4.5) can be transformed
to the algebraic eigenvalue problem. The algebraic problem is degenerate if its
determinant equals to zero. We rewrite boundary conditions (4.5) in the following

form

<l€0 — Yoo, 50> U() + <k0 — Yoo, (5N> UN = <’}/0no — ko, [}>, (46)
<l€1 — Y1iny, 50> U() + <k1 — Y1ini, (5N> UN = <’yln1 — kl, [}> (47)

Equations (4.6)—(4.7) form a system of linear equations respect to boundary values

of the function U

<l€0 — Yono, 50> <k0 — Yono, (5N> Uo B <’}/0no - ko, [}> (4 8)
(ki =y, 6% (ki — i, 68y ) \Un {(nm — k, U>
System (4.8) degenerates if
(ko — om0, 50> </€0 — YoTo, 5N> _0
(ky — mma, 5O> <7€1 — 71ina, 5N>
or in the expanded form
Yo1D(no, n1) + %D (no, k1) + 11D(n1, ko) + D(ko, k1) = 0, (4.9)
where
<7L0, 50> Nno, 5N <k1, (50> kl, (SN
D(”Oy”l) = < O> z N; ’ D(k17n0> = < 0> 2 Ni )
ni, 0 ni, 0 ng, 0 ng, 0
! ! ’ ’ (4.10)
<n1, (50> nq, (5N <k0, 50> ko, 5N
D(nl, ko) = < > s D(ko, kl) = < > .
ko, 0% (ko 6N (1, 6% (hy, 6N

In general case Eq. (4.9) describe a second degree algebraic curve on the plane
(v0,71)- The classification of the curves of such type is given in [97, Stikonas 2011].
We call a set of points (y0,71), satisfying Eq. (4.9), the Degeneration Curve for
the problem (4.4)—(4.5).

We denote matrix

D , D K
A= Qoo Aol _ (no nl) (no 1) ' (4'11>

a1p a1l D(k07n1) D(k(b k’l)

Each matrix A corresponds to one of the five types of Degeneration Curves. More

detailed classification is shown in Table 4.1. We have 16 types of matrices overall
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Table 4.1: Classification of the Degeneration Curves.

Case Curve in plane Matrix A
Qoo Qo1 Q10 A1l
1 whole plane 0 0 0 0
2 empty set 0 0 0 an
3a line 0 ay O 0
3b 0 0 aio 0
3¢ 0 aopl 0 a1q
3d 0 0 a1p Qi1
3e 0 ap1  QA1o 0
3t 0 ap aw an
4a, two lines agg O 0 0
4b Qoo A4p1 0 0
4c apo 0 aio 0
4d Qapp QAp1 Q1o Q11 detA =0
5a hyperbola app Qo1 Q1o ay; detA #0
5b ano 0 0 a1y
¢ agg apr 0 an
5d agg 0 ap an
oe agg ap1 ap 0O

and one type is split into two cases (det A = 0 and det A # 0). So, the next
lemma is valid for the Degeneration Curve (as well as for the Characteristic Curve

in [97, Stikonas 2011]).

Lemma 4.1. A Degeneration Curve for problem (4.4)—(4.5) in the plane R? can
be one of the following five types:

1. If D(ng,n1) = D(ko, k1) = D(ng, k1) = D(ko,n1) = 0 then the curve is

whole plane;

2. If D(ng,n1) = D(ng, k1) = D(ko,n1) = 0, D(ko, k1) # 0 then the curve is
empty set;

3. If D(ng,n1) = 0, D(ng, k1) # 0 or D(ng,n1) = 0, D(ko,n1) # 0 then the

curve 18 line;

4. If D(ng,n1) # 0 and det A = 0 then the curve is union of vertical and

horizontal lines;
5. If D(ng,n1) # 0 and det A s 0 then the curve is hyperbola.

Remark 4.2. We see, that Degeneration Curve in the plane R? cannot be algebraic

curve such as ellipse, parabola, point, parallel lines, double line.
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Remark 4.3. If det A # 0 then the line (Case 3) is neither vertical nor horizontal
(see Cases 3e,f in Table 4.1), otherwise we have single vertical or single horizontal

line (see Cases 3a-d in Table 4.1).

Remark 4.4. Investigated problem can be easily extended from plane R? to the

cone T? analogously as it was done in [07, Stikonas 2011].

Applications

Ezample 4.5 (Nonlocal integral boundary conditions). We consider Dirichlet in-
tegral boundary conditions with weights. The boundary conditions (4.5) are of

the form
<507 U> = UO = P)/O[Xoa U]7 <5N7 U> = UN = P)/l[Xla U]7 (412>

where x? and y! are the weight functions. In the general case we have the following

nondegeneracy condition:

L—yxn/2  mx/2

# 0.
YoXo/2 1 —yx0/2
The degeneration curve is of the following form
1[x0 X 1 1
- 01— 5X0% — XN+ 1 =0;
41,1 1 2 2
Xo XN

If X° = h and x! = h, then the full integral which was investigated in [54,
Novickij and Stikonas 2014]. The degeneration curve is of the following form

h

—5(’YO+%)+1=0;

In the case of classical boundary conditions x° = 0 and x* = 0,the degeneration
curve is a whole plane (see Table 4.1 case 1).
Ezample 4.6 (Bitsadze-Samarskii NBC). We consider boundary conditions of the

Bitsadze—Samarskii form
(82U = 7(6%,U) := Uy, (0N, U) = 1(6°,U) := 1 U,,. (4.13)

In this case the degeneration curve is of the form

0p" ON i .
YoY1 — 500"}/0 — (5]\}")/1 + 1=0 (414)
5 o
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As one can see from Eq. (4.14) the classification for the degeneration curves in
the case of Bitsadze-Samarskii nonlocal boundary condition is the same as for
the integral conditions, except the coefficients. For the investigated case the

classifications depends on whether the nonlocal point is inner or boundary.

Ezample 4.7 (Multipoint NBC). We consider boundary conditions of the following

form
N N
U(0) =7 ). afU(&), UQ)=m),alU&),
i=0 i=0

where oy, = Zj‘io aiéj, k=0,1;0<¢& <...<&v < 1. We rewrite NBCs in the
following form

Up =70’ U), Uy =mla!,U). (4.15)

The method of investigating multipoint case is similar to the method in Ex-
ample 4.6. The form of the degeneration curve is equivalent to the Eq. (4.14)
a6y’ AN
S ey — 000 — e o + 1 =0 (4.16)
agldyt aNoy
Ezample 4.8 (Left and right rectangle rules for integral NBC). We consider bound-

ary conditions (4.15) with the following notation
N-1 N
(U V], == ), UiVih, [U.V], =) UVih
i=0 i=1

corresponding to the left and right rectangle rules respectively. So the degenera-

tion curves are of the following forms:

hBy~yo — 1 = 0 for the left rectangle rule,

hByvy1 — 1 = 0 for the right rectangle rule.

Remark 4.9. Examples 1-4 describe all the cases mentioned in the Table 4.1, ex-
cept of an empty set (case 2). This situation is valid when the boundary conditions
are of the following form

€1 €3
. Bo(2)U(z, t)dx = ay, . B1(z)U(z,t)dx = ay,

where 0 < & <& < 1,0 <& < &3 <1, a9,a1 € R, By and 3y are weight functions.
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Remark 4.10. The technique investigated in this section is suitable for defining
the solvability conditions for different stationary and non-stationary problems
with nonlocal boundary conditions. As one can see only the boundary conditions
are needed to define the solvability. It is enough to define the operators, corre-
sponding to the classical and nonlocal parts of the boundary conditions. Obtained
solvability condition mostly depends only on the values of the operators of the

nonlocal parts on the boundaries.

4.5 Difference problem

Now we state a difference analogue of the differential problem (4.1)-(4.3). We
define a weighted FDS approximating original differential equation (4.1):

53U — 62U = F, (zi,t)) e W x W, (4.17)
where ¢ is a weight parameter. The initial conditions are approximated as follows:
U=, oU' =¥ 2,ed", (4.18)

We rewrite boundary conditions using the defined inner products:

Uo = ")/o[XO,U] +‘/l, tj EwT,
. (4.19)

Un = 71[X17U] + ‘/;‘7 tew.
The functions x° and x* in the Eq (4.19) correspond to the weight functions in
Eq. (4.3). In the problem (4.17)—(4.19) we approximate functions f, ¢, 1, v; and

v, by grid functions F € H x H,;; ,W e H; and V|, V, e H,.

Remark 4.11. We consider without loss of generality that functions x° and ! are

defined on the uniform grid @".

Remark 4.12. Both boundary conditions (4.19) and the initial conditions (4.18)
are defined at the points t° and t'. At these points conditions are consistent.
Properly choosing right hand side functions in (4.17)—(4.19) one can obtain re-
quired approximation accuracy. For example, if ¥ = v + 0.57(62U° + f°) the
differential problem (4.1)—(4.3) is approximated by (4.17)—(4.19) with accuracy
O(72 + h?).
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Finite difference scheme

Conditions (4.19) form a system of two linear equations for unknowns Uy and U,,.

We express these unknowns via inner points U;, i = 1,n — 1, and obtain
U = 5%(X°,U) + Vo,  Un =X U) + W, (4.20)

where ’F}V/() = Vod 1, ;5/1 = ”yld 1 and
h 0 o~ h h
XO VIXRXI d_1< ;OX(T)l‘T (1 ;IXTIL> [l>7

hvox? ~ h h
g (s (- )

S
I

0 0
d— YY1 [Xo Xn
Xo X

Problem (4.17), (4.20), according to section 4.4, can be transformed to the

1
—?%ﬁ+%%ﬂ4-

algebraic problem if d # 0.
By substituting expressions (4.20) into Eq. (4.17) for i =1 and i = n — 1 we

rewrite it in the canonical three-layer form
AU +BU +CU = 7°F. (4.21)

Then, analogously as in Chapter 2, we represent the three-layer scheme (4.21) as

an equivalent two-layer scheme

W = SW + G, (4.22)
where
U —-A'B —-A"IC 2 A-'F
w=| _ ] s= , G= . (4.23)
U I 0 0

Remark 4.13. The structure of two-layer scheme is the same that in Chapters 1

and 2. The main difference is the structure of matrices A, B, and C.

Spectrum Analysis

We investigate an eigenvalue problem

AU = \U,
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for (n — 1) x (n — 1) matrix A which is in general equivalent to SLP for the

difference operator with nonlocal boundary conditions

—02U = \U, Ueuw" (4.24)
UO = 70[)(07 U]7 (4 25)
Un = P)/l[Xla U]

Instead of investigating eigenvalues A € C) := C we use a bijection A = \(¢) from

complex plane C, to Cy:

4 h
A= ﬁsin2 %, q:=a+1f (4.26)

where C, = {¢=a:0<a<n/h} u{g=18: =20} u{g=n/h+15: =0}
The points ¢ = 0 and ¢ = 7/h are the branch points of the map (4.26). So, every
eigenvalue \; = \(g;) conforms to ¢;, i = 1,n — 1 and vice versa.

Now we investigate the spectrum of matrix A in detail. The general solution
of (4.24) in the case of ¢ # 0, ¢ # 7/h is U = Cycos (gx) + C; sin (qz), x € ©".
By substituting it into (4.25) we have

(70[X?, cos (qz)] — 1) Co + 0[x°, sin (qz)]Cy = 0,
(4.27)

([ cos (q2)] — cos)Ci + ([ sin (gz)] — sing) Cy = 0.

A nontrivial solutions of system (4.27) exist if its determinant is equal to zero

Yo b cos ()] x ,S?n ()] —vo[x°, sing(1 — x)] — 1 [x", sin (qx)] + sing = 0.
(X', cos (qz)] [x',sin (qz)]

Example 4.14. 1f X([](’]ll] = 1, we have the following characteristic function (see

[54, Novickij and Stikonas 2014])

sin? (¢/2) cos (¢h/2)
sin (qgh/2)

(Yo +71)h —sing = 0.

If X% = 0 and x' = x[g.e] the characteristic function is the following (see

29, Skuéaité 2016])

mh sin(7q) B
2 cos(mé1q) — cos(m€aq) tan(mgh/2) = 0.
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4.6 Conclusions and final remarks

e If boundary conditions satisfy the relation ~oy1D(ng,n1) + YoD(ng, k1) +
11 D(ny, ko) + D(ko, k1) = 0, then the three-layer finite difference scheme is
not defined.

e The Degeneration Curve in the plane R? could only be algebraic curve such
as hyperbola, line and two lines. Two trivial cases (whole plane and empty

set) are also possible.

e The characteristic function for the discrete hyperbolic problem with partial

integral nonlocal boundary conditions is found.



Conclusions

e The sufficient stability condition of the explicit FDS for hyperbolic equation
with integral NBCs is 7y + 71 < 2 under the condition 7 < h.

e The weighted FDS (with one weight o) in unconditionally stable under the
condition o > 1/4 for vy + ;1 < 2. This means that there are no restrictions

on 7 and h.

e A eigenvalues of the weighted FDS (with one weight ) are real, and eigen-

vectors form a complete system (except the case of vy + v; = 2/h).

e The A spectrum of the weighted FDS (with one weight o) is qualitatively
different (in some sense) for the cases of odd and even number of grid points

N.

o If 2 > vy + v, > 2/h? and the number of grid points N is odd, then the A

spectrum is in the interval (0,4/h?).

e The sufficient stability condition of the weighted FDS (with one weight o)

1
72 Amax

for hyperbolic equation with integral NBCs is 79+, < 2 and o > i—

e The FDS for hyperbolic equation with integral NBCs (with one weight o)

is unstable if the spectrum has complex eigenvalues.

e The weighted FDS for hyperbolic equation with integral NBCs (with two
weights o1 and oy) has a stability region if o1 > 0y. If the spectrum is real,

then the second stability condition is oy + o9 > 1/2.

e The stability region of weighted FDS for hyperbolic equation with integral
NBCs (with two weights o7 and o3) is bounded if o7 — 09 < 1/2, elsewise —

undounded.

71
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