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1 Introduction

Research topic
Limit Theorems for sums of random variables (rv’s) play a central role in Probability Theory and
have a wide range of applications in Statistics. In this thesis, we consider the sums of Markov
dependent integer-valued rv’s. The majority of known research in this field is restricted to the
scheme of sequences, i.e., when all X; do not depend on n and S,, = X1 +Xo+---+X,, =S,_1+
X,. The Central Limit Theorem (CLT) and its improvements (the Berry-Esseen type estimates
and the Edgeworth type expansions) are investigated in [13], [40], [57], [60], [61], [62], [65], [79)].
Notably, the main approximation applied to the discrete sum of Markov dependent variables
is a continuous Normal distribution. Consequently, only the uniform Kolmogorov metric can
be applied. The more general scheme of triangular arrays (S, = X1, + Xopn + -+ + X,
Sp—1 = Xip-1+ -+ X1 n-1) is considerably less explored. For this setup Poisson and
Compound Poisson (CP) approximations are applied in [50], [55], [89]. However, the majority of
CP approximations indirectly assume strong dependency of the transition probabilities on the
number of summands n, and are of the trivial order O(1) for the scheme of sequences. Thus,
they can not be viewed as complete discrete analogues or the replacements of the Gaussian law.
There are very few approximations (mainly related to the Markov binomial (MB) distribution),
which are universal in a sense that they can effectively replace the normal approximation for
the whole spectrum of the transition probabilities. In other words, the same approximation can
be applied when certain transition probabilities converge to zero with the order O(n~!) and
to the case, when all transition probabilities are absolute constants, see [26], [35], [64]. As far
as we know, the case of Poisson type approximations to the symmetric Markov chain was not
investigated.

In this thesis, we apply the CP type approximations to the sums Y ,_, f(&), where f is
integer-valued function and &;,&s, - - - , &, form a homogeneous Markov chain with the finite state
space. The triangular array of Markov chains is used for the case when the value domain of f is

{0,1} or {—1,0,1}. In the latter case, a special emphasis is on the symmetry of transition matrix.

Actuality

Discrete analogues of the normal approximation, that hold for stronger metrics and are more
precise in the scheme of triangular arrays are of theoretical and practical importance. The initial
distribution of Markov dependent variables can be of a very complicated structure. Meanwhile,
infinitely divisible CP approximations have explicit structures and are much more convenient
for practical calculations, especially when combined with Fourier transforms or recursive algo-
rithms. Research related applications were investigated in [17], [31], [36], [43], [45], [76], [85], [94].

Aims and goals

1. To show that translated Poisson approximation can be preferable to the Normal approxi-

mation in the scheme of sequences of Markov dependent integer-valued rv’s.

2. To prove Simons-Johnson theorem for the MB distribution and symmetric three-state
Markov chain, that is, to demonstrate that convergence to the CP limit holds in stronger

than total variation metric.

3. To prove a partial case of the first uniform Kolmogorov theorem for the MB distribution

by constructing CP distribution which approximates MB with the accuracy O(nfz/ 3).



4. To construct a CP approximation to symmetric three-state Markov chain with the accuracy
comparable to that of accompanying Poisson approximation to the sum of symmetric

independent rv’s.
5. To construct a second-order CP approximations for symmetric three-state Markov chain.

6. To obtain non-uniform, local and lower bound estimates for CP approximations for sym-

metric three-state Markov chain.

Novelty

In this thesis, CP approximation is for the first time applied to the sum of symmetric Markov
dependent rv’s. Its accuracy of approximation is estimated in the total variation, Wasserstein
and local metrics. The partial case of the first uniform Kolmogorov theorem is proved for the
MB distribution. The Simons-Johnson theorem is proved for MB and symmetric three-state
Markov chain. It is demonstrated that translated Poisson distribution can replace the normal

law in the analogue of the CLT for the scheme of sequences.

Main results

Translated Poisson approximation to Markov dependent integer-valued rv’s distribution is ap-
plied (theorem 3.1). MB distribution is approximated by the set of infinitely divisible laws in
the total variation and local metrics (theorems 3.2, 3.3). Simons-Johnson theorem for MB dis-
tribution and for symmetric three-state Markov chain is obtained (theorems 3.4, 3.9). Upper
and lower bound estimates for approximation of a symmetric three-state Markov chain by the
accompanying CP law are established in the total variation, local and Wasserstein metrics (the-
orems 3.5, 3.7). The approximation of symmetric three-state Markov chain is improved by the
second-order approximations (theorem 3.6). Non-uniform local estimates are proved (theorem
3.8).

Statements presented for defence

1. The closeness of the MB distribution to the set of all infinitely divisible distributions in

total variation is of the order O(n=2/3).

2. Symmetry improves the approximation of Markov dependent variables by CP law. The
accuracy of approximation for the sum of a three point distribution is of the order O(n=1)

and is equivalent to the accuracy of CP approximation in the case of independent rv’s.

3. The CP approximations used for the symmetric three-state Markov chain are universal
in the sense, that they can be applied for the case of triangular arrays (when some of
the transition probabilities are of the order o(1)) and for the case of sequences (when all

transition probabilities are absolute constants).

4. Lower bound estimates in total variation, local and Wasserstein metrics for constructed
CP type approximation to symmetric three-state Markov chain confirm that upper bound

estimates are of the right order.

5. The Simons-Johnson theorem holds for the MB distribution and the distribution based on
a symmetric three-state Markov chain, that is the convergence to a CP limit holds with

exponential weights.

6. Second order CP type approximations for symmetric three-state Markov chain improve

the rate of accuracy to O(n=2).



7. In the scheme of homogeneous Markov chains the translated Poisson approximation has

the same accuracy as the Normal approximation, but is structurally more adequate.

Methods

In this thesis, the characteristic function method is used.
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Structure of the thesis
In Chapter 2, the necessary notation is introduced and an overview of known results is given.
Chapter 3 contains formulations of the results. All proofs and auxiliary results are given in

Chapter 4. Finally the conclusions and bibliography are presented Chapter 5.



Notation

Descriptions

Z

N

R

D

MB

CP

v
L(Sy)
Pois(A)
TP(p,0?)
Bi(n, p)
®(x)

U]l
Ul o
1U|lw
Ul x

Iy, I =1
U(t)
C,C;

]
{}

The set of integers.

The set of natural numbers.

The set of real numbers.

The set of all infinitely divisible laws.

Markov binomial.

Compound Poisson.

Random variable.

The distribution of S,,.

Poisson distribution.

Translated Poisson distribution.

Binomial distribution.

Normal distribution function.

The distribution of the sum of a three-state Markov chain.
The total variation norm.

The local norm.

The Wasserstein norm.

The Kolmogorov norm.

The distribution concentrated at an integer k € Z.
Fourier-Stieltjes transform.
Positive absolute constants.

Any complex number satisfying |6] < 1.
Any signed measure satisfying ||©] < 1.
The integer part of a number.

The fractional part of a number.

The initial distribution of Markov chain.




2 Known results

2.1 Notation

In this thesis we use four metrics. The total variation metric between two probability measures

P and Q on Z is defined in the following way:

IP=Ql= 3= Pk}~ Q)| =251 [P(4) - Q4]

k=—oc0

This definition can be rewritten in an equivalent form:

IP=QI = suwp| 37 JWPHE= 3 S0IQH]
€ k=—oc0

k=—o00

Here supremum is taken over all functions f : Z — R bounded by 1. The Wasserstein metric

(also known as the Dudley, Fortet-Mourier or Kantorovich metric) is defined equivalently by

IP=Qllw =Y [P{(~o0,k]} — Q{(~c0, K]}

k=—o0

= sup
feF1

> FWPY - Y FR)Q{RY.

k=—o0 k=—o0

Here supremum is taken over all functions f : Z — R satisfying sup,, | f(k) — f(k—1)] < 1. The

local and Kolmogorov metrics are respectively denoted by
1P = @l = sup|P{k} = QUEH. 1P = Qi = sup [P{(=0. ]} = Q{(=oc. K]}

For an additional information about metrics and their properties see [4] and [9].

Further on we use the following notation. Let I denote the distribution concentrated at
an integer k € Z and set I = Iy. Let U and V denote two finite signed measures on Z.
Products and powers of U and V are understood in the convolution sense, that is, U x V{A} =
S JU{A — k}V{A} for a set A C Z; further, VY = I. The exponential of V is denoted
byg&{‘/} = J‘?‘;OV*j/j!. Let V(t) denote the Fourier-Stieltjes transform of V. Note that
exp{V}(t) = exp{V(t)}, I(t) = 1, I,(t) = €'"®. In the proofs we systematically apply the well

known relations:

U=V < UiV, UVl <UlVI&, U * Ve < [UHIV]eo, (1)
Tl < Ul T«ve =00ve, || <elvl.

Let U(z) = U{(—o0,z]}. Let fory e Rand j e N={1,2,3,...},

() sen ()

We define by C all positive absolute constants. In some cases to avoid possible confusion, we
supply constants C' with indices. Indices in all sections has separate numbering. The notation
C(+) is reserved for constants depending on the indicated parameter. Further on we denote by
6 any complex number satisfying |#| < 1. The values of C' and 6 can vary from line to line, or

even within the same line.
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In this thesis the main approximation is a CP distribution with the compounding geometric
distribution. Suppose that we have a sequence of independent Bernoulli trials. Assume that
probability of success in each independent trial is 0 < p < 1. If X is a geometric rv, it counts
the number of attempts needed to obtain the first success. The characteristic function and
probability of X are respectively equal to

peit

S 1o pet P(X=k)=01-p)*'p, (k=12--)

x(t)
Let v be a Poisson rv (v ~ P(A)). Then its characteristic function and probability are respec-
tively
N

y(t) = exp{ (e’ — 1)}, Plu=k) = e (k=0,1,...).

A CP distribution with the compounding geometric distribution corresponds to a random
sum of independent geometric rv’s X; that are also independent of the number of values v. Let
Z =) 7_1&;. The characteristic function of Z is equal to exp{A(x(t) — 1)}.

2.2 The CLT for homogeneous Markov chains

The convergence to the normal law in the case of homogeneous Markov chains with finite number
of states was proved by Sirazhdinov [79]. In [62], Nagaev considered homogeneous Markov chains
with an arbitrary number of states. We recall the result of [62] related to discrete sums. Let &
be a space of points w, let By be the o-algebra of its subsets, p(w, 4) be the transition probability

function. Let p(w, 4) satisfy the following condition: there exists a positive integer kg such that

sup [p*o)(w, 2) —p*l(r,2)| =6 <1, A€By,w, €Y, (2)

w,T,A4

where p(*0)(w, 4) is the transition probability function for ko steps. As it is noted in [62], if the

condition (2) is satisfied, then there exists a stationary distribution p(4) such that

sup ‘p(_q) _p(")(w,_/q” < 5[n/koj < 5_1/)”-
wEY,AEBy

Here p = §'/%0 and || denotes the integer part of indicated argument.

Let the sequence of rv’s 97,95, -+ ,9,, -+ satisfy the following assumptions

Prnea = n(a),
P(%, € 4) /ﬁ%%mmﬂmy
b

Here 7(-) denotes the initial distribution.
Let f(w) be a real function defined on 9 and let f(w) be measurable with respect to By. As
noted in [62], if 7(A4) = p(A4) and fy f?(w)p(dw) < 0o, then there exists

JLIIQOE{Z i (f(?”k) - /yf(T)P(dT)>r =02>0.
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We denote by F,-(z) the distribution function of a normed sum

R ofil( s - [ 16 ‘“)

1w n+1 A
?ﬁ;ﬂ%) /f J\f 0\/5'

n+1

Here S, = Zf(f)’k) and A = (n+1) fy p(dr). We also denote by ®(z) the standard
k=1

normal distribution function and by Fm(ac) the distribution function of the sum S,. The

following conditions were used in [62].

Condition (Hyg): there exists a function g(z) of a real variable such that lim, ., g(z) = 0o
and sup,, [ [£(7)[*g(|f(7))p(w, dr) < oo.

Condition (H): let 9 be a countable set of states w;, which forms a positive class, f(w;) =
m + k;h, where k; is an integer, m is any real number, h > 0, and for arbitrary ¢ and j it is
possible to find an index k such that p;, > 0 and pjr > 0 (pir = p(w;, wi))-

In [62] it is proved that if conditions (H3) and (H) are fulfilled, the greatest common divisor

k; equals 1, and Z | f(wg)|m(wg) < oo, then
k=1

Fon() — ®(z) = ——e~2"/2 <Q“($) + Sl(m)) + 0(1) (3)

Sia) = s(TEI) s = el ok g, m ==Y

Q) = Taaia A= B0,

6 k=1
b = 5 (BP0 +3 Y B PO0FOn) + 3 B0 i)
k=1 k=1

+6 Z Epf(%)f(%+1)f(%+j+1))

k.j=1

fw) = flw) - /y F(r)p(dr)

Observe that (3) contains S;(x)/y/n. Discrete distribution is approximated by a continuous dis-
tribution. Therefore, as is well-known from the classical results of limit theorems, this additional
member originates. Moreover, the difference of supports means that the normal approximation
is trivial in total variation, that is, ||Fr — ®|| = O(1).

Next we formulate the local estimate from [62]. If conditions (Hy), (H) and Z If (wi) ¥ 27 (w;) <

=1
oo are fulfilled, then

P(Zn:f(%) =mn + sh) = J\h/ﬁ . 65;7:2 (1 + % <Agp(z;°; —32p) — Znsxﬂ)> +o(n1?). (4)

1

12



Here z,s = (m(n +1)+sh—(n+1) Zf(wﬂp(wﬁ) Jov/n.

Proof of (3) and (4) is based on the difference of characteristic functions in the neighbourhood
of zero. It is proved in [62] that if condition (Hy) is fulfilled and [ |f(w;)|* 27 (w;) < oo, then
there exists V, such that for |¢{| < Vi/n

~ 2 it)®  Aq(it) C 2
E _ t*/2 1 & < —o(1 3,—t°/15 n
n‘ff(t) € ( \/ﬁ \/ﬁ \/EO< )‘t| € C|t|p1> (5>

where oo = A3,/6 and p1 =1/2+2/3p < 1.

2.3 Poisson type approximations for Markov chains

Unlike the normal approximation, the accuracy of any Poisson approximation can be estimated
in total variation. The Poisson type approximations were considered in [37], [38], [82], [98].

In [10] and [72], the sum of Markov dependent variables was approximated by a translated
Poisson law and the accuracy in total variation was proved to be O(n‘l/ 2). In both papers the
Stein method was applied. We will formulate the main result from [72] more precisely. Let W

be a sum of Markov dependent variables with distribution L(%/),
EW = p, Varw = o2 < o0. (6)

Let the pair of rv’s (W, W) be exchangeable, that is, let L(Wy, Wh) = L(Wh, Wy). Moreover,

let there exist a positive number A < 1 and a rv Ry such that
E™ (Mh — ) = (1= N)(Wh — ) + Ro. (7)

Here E™ denotes the conditional expectation with respect to ;. The remainder term Ry has

mean zero, ERg = 0. Let, in addition to (7), assume that
Wy — Wy € {—1,0,1}. (8)

For approximation of £(%) a translated Poisson distribution is used. The translated Poisson
distribution is the Poisson distribution shifted by an integer number. More precisely, ) has
a translated Poisson distribution with parameters p and o2, £(Y) = TP(u,0?), if LY — pu +
0%+ () = Pois(0? + ¢) and Pois(c? + ¢) denotes the Poisson distribution with parameter o2 + .
Here ¢ = {u — 02} is the fractional part of u — o2. Observe that TP(c? 02) = Pois(c?).
Approximating W by TP(u,0?), it is possible to fit the mean exactly and for the variance to
have 02 < Vary = 02 + ¢ < 02 + 1.

Let 8" = S'(W)) = P[wh = Wy + 1|M] and gmax = maxgezP[W) = k|. The main results
from [72] states that

/
LWy — TP(uo?)| < 2YVars'  AVVarR, 4

Ao? o o2’
2 m XV S’ 2 max VarR VarR, 2
IL(W)) — TP(u, UQ)Hoo < Vmax VarS’ n GmaxV VarRg n VVarR, L2

The order of accuracy for the total variation in the scheme of sequences is O(n~1/2). Note that
the Stein method can not be applied for rv’s with negative values, therefore it cannot be used

for symmetric distributions. The other drawback is very complicated conditions containing new

13



concepts such as exchangeable pairs with specific properties. The Stein method, CP approxi-
mations for general discrete Markov dependent sums and even more general processes were also
considered in [7], [11], [18], [29], [32], [38], [41], [42], [46], [54], [66], [70], [71], [91], [93]. The
convergence facts related to Markov dependent rv’s, were investigated in [1], [14], [16], [30], [51],
[52], [59], [63], [74], [81], [90].

2.4 Approximations to MB distribution

Poisson type approximations to the MB distribution were investigated in numerous papers; see,
for example, [22], [26], [39], [50], [84], [88] and the references therein. Note that the definition
of a MB distribution slightly varies from paper to paper, see [35], [77], and [88]. We choose the
definition used in [22], [26]. Let &y,&1,...,&n,... be a non-stationary Markov chain with the
initial distribution P(£ = 1) = po, P(§o = 0) = 1 — py, po € [0, 1] and transition probabilities

P& =1]&-1=1) =pi, P& =0[&-1=1) = pio,
P& =1]&-1=0) = po1, P(& =0[&-1=0) = poo,
P11 + p1o = po1 + poo = 1, p11,po1 € (0,1), 1€ N.

In other words, let the matrix of transition probabilities be equal to

P— Poo  Po1 .
Pio P11

The distribution £(S,) of S, = & + -+ &, (n € N) is called a MB distribution. Actually,
Sy, shows the number of hits in n Markov dependent trials. In some papers, &, is added to S,
or stationarity of the chain is additionally assumed. For example, Dorbushin [35] assumed that
po = 1 and considered S,,_1 + 1. Similar problems were also investigated by Koopman [55]. He
assumed that the transition probabilities depend on the number of trials n and obtained the
limiting CP distribution for S,.

The MB distribution is a direct generalization of the binomial distribution. Indeed, if
Poo = pi1o then the MB distribution becomes the binomial one. It is known, that a suitably
normalized binomial distribution has two non-degenerate limit laws — the normal and the Pois-
son distributions, see [44], [48], [56], [68], [73]. Meanwhile, the MB distribution has seven limit
laws, see [35]. We recall some known results related to approximations of MB and binomial
laws. We start with the classical Prokhorov-type Poisson approximation to the binomial distri-
bution. Let p € (0,1] and let Pois(np) denote Poisson distribution with the parameter np, that
is Pois(np) = exp{np(I —I)}. Prokhorov was the first toprove that if np > 1, then the accuracy
of approximation is of the order O(p), see [69]. The estimate with the best possible constant

[((1 = p)I + pI1)™ — Pois(np)|| < 2min(p, np?)

was proved in [9].

Markov [58] showed, that for a constant transition probabilities, not containing zero values,
MB distribution with appropriate normalization has an asymptotic normal distribution. For
MB if the conditions py = 1, p1on — 00, po1n — oo and max{npgo, np11} — oo are fulfilled,
then

(Sn_1 + 1) —nM r —2/2
P{ NG <x} — /_ooe dt,

14



where M = po1/(p10 + po1) and AL = (propo1 (P11 + Poo))/ (P10 + po1)?, see [35].

As shown by Dobrushin in [35], the normal distribution is just one of the seven possible limit
laws for the MB distribution. For example, if p11 = p, npo1 — A and pg = 1, then the limit law
of S,,—1 + 1 is the convolution Gg * exp{A(Go — I)}, where Gy is a geometric distribution with
parameter p, that is Go(t) = (1 — p)e /(1 — pe'*). CP distribution with geometric distribution
as a limit law for MB distribution is investigated in [23], [26], [78]. It is proved in [26] that if
po = po1/ (P10 + po1) and A > 0, then

2po1 (1 + p11 + npo1(2 — p11))

L(S,) —exp{\G -1 < 2npor — Al + .
1£(S.) ~ expfANG ~ D} < 2lnpor — A S

Here G is a geometric distribution, G(t) = pige'*/(1 — pi1e't). The accuracy of this estimation
is no better than O(np?;). A similar estimate was obtained in [88]. Note also that numerous
papers are devoted to the closeness of CP distribution to MB distribution, see [22], [23], [39],
[55], [77], [78], [84]. Other problems related to MB distribution are considered in [3], [24], [34],
[49], [75], [86], [92], [95].

2.5 The first uniform Kolmogorov problem

Almost sixty years ago Kolmogorov [53] proved that in the uniform metric the distribution of
any sum of independent rv’s is uniformly close to the set of all infinitely divisible laws D. Related
problems were considered in [2], [5], [21], [29], [33], [71], [96], see also the references therein. The
optimal rate of accuracy of approximation was established by Arak and Zaitsev, see [5] for a
comprehensive history of the problem. For the sum of identically distributed rv’s (so-called the

first uniform Kolmogorov theorem) Arak proved that
Cin~ 23 < sup inf ||F*" — Dk < Can~2/3. (9)
FerDeD

Here supremum is taken over the set of all distributions. There are no assumptions on F' and,
nevertheless, the order of accuracy is much better than in the famous Berry-Esseen theorem.
Moreover, the best infinitely divisible approximation is not directly related to the limit behavior
of the approximated sum.

In general, the first uniform Kolmogorov theorem is insoluble in total variation, see [97]. On
the other hand, for lattice random variables having sufficient number of moments, some analogue
of (9) in total variation holds; see [8] Theorem 4.1. The problem of approximation by the set
D can be narrowed to approximation of the well-known parametric distributions. Then, by
the uniform Kolmogorov problem we understand estimation of distribution’s uniform closeness
over the set of their parameters. For example, for the binomial distribution, the Kolmogorov
problem in total variation is completely solved, see [5] and [67], Chapters IV and VIII. Let
Bi(n,p), p < 1/2 denote the binomial distribution. Then

Csenp < Ti)ré% IBi(n,p) — D|| < Caenp. (10)

Here €,,,, = min (an, p, max ((np)‘Q7 n_l)). The uniform Kolmogorov theorem for the binomial

distribution then follows:

Csn~2/3 < sup inf ||Bi(n,p) — D|| < Cen~2/3. (11)
pgl/Q’DED
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Note that the order of accuracy in (11) is the same as in (9) despite the fact that the stronger
metric is used.

Problem of the closeness of the sum of dependent rv’s to D is yet unsolved, since the behavior
of the sum strongly depends on the nature of dependency. Even the sum of weakly dependent
indicator variables can have properties very different from those of the binomial distribution.
The MB distribution is a direct generalization of the binomial distribution. Therefore, one can
expect some analogue of (10). From the general Theorem 3.1 in [26] it follows that, if p;; < 1/2,
then

%ré% |1£(Syn)—D| < Cpo1(p11+po1) min (17 >+C min(po1, npd; ) +C (p11+po1)e” ", (12)

1
v 1Po1
Here C7 = In30/19 = 0.4567.... Observe that for pg; = O(1) the estimate in (12) is of
the same trivial order O(1). As follows from Theorem 1.3 in [22], if pp = 1, p11 < 1/20,
po1/(p1o +po1) < 1/30 and p11 < po1, then

Inf |I£(S,) =D <C(n™" + (npo1) 2. (13)

Assumption p11 < po1 is very restrictive. It completely excludes the case of CP limit, which
occurs when p;; — p > 0, npgr — A.

2.6 The Simons-Johnson theorem

In 1971 Simons and Johnson [80] proved that the convergence of the binomial distribution
Bi(n,p) to the limit Poisson law Pois(A) can be much stronger than in total variation. More
precisely they proved that if p = A/n and g(z) satisfies Y ° g(k)Pois(A\){k} < oo, then

> g(k)Bi(n,p){k} — Pois(\){k}| = 0, n— oc.
k=0

The above result was then extended to more general cases of independent lattice variables;
see, for example, [6], [15], [87] and the references therein. Similar results hold for sums of
m-dependent random variables, see [28] and [27].

In [20], it was proved that if A > 0 npg1 = A+ o(1), p11 = o(1), then

> €M |MB{j} — Pois(\){j}| = 0,  n—oc. (14)
j=0

Estimate (14) is unsatisfactory in two aspects: a) it contains Poisson limit distribution,
instead of the more general CP law; b) there is no estimate of the rate of convergence. Even
in the case of independent summands, CP distribution so far has been considered under very
restrictive assumptions, see [87]. Notably, Wang emphasized that his result is inapplicable for

CP distribution with compounding geometric distribution.

2.7 Infinitely divisible approximations to the sums of symmetric rv’s

It is well-known that under quite weak assumptions the suitably normed sum of independent
rv’s weakly converges to some infinitely divisible rv. The classical improvement of the limit
theorem means estimation of the rate of convergence in some metric. CLT and the Berry-Esseen

theorem serve as typical examples. In Statistics, the limit distribution is usually viewed as a

16



natural choice for possible approximation. In modern probability theory, the approximation by
some distribution means that its closeness to the approximated sum is investigated under much
weaker conditions than are needed for the existence of limit distribution with similar structure.
For example, in (9) the closeness of the binomial and Poisson distributions is estimated for all
values of binomial parameters n and p, though a Poisson limit occurs only if p = O(1/n).

One of the aims of this thesis is to study the effect of symmetry on the accuracy of CP
approximation for Markov dependent rv’s. For sums of independent rv the symmetry of initial
distribution radically improves the accuracy of approximation. One of the most general results
for symmetric distributions states that if F(t) > 0, for all ¢ € R, then

[P — exp{n(F = D)}k < Csn™", (15)

see Theorem 5.5 in [5]. Similar result holds for distributions with some probabilistic mass at
zero, see [5], Theorem 7.1. In general, estimate (15) does not hold for the total variation norm.
On the other hand, if F{1} = F{—1} =b, F{0} =1 — 2b, b < 1/4, then for any n € N

|F™ = exp{n(F — D}|| < Comin(n?,n~). (16)

Estimate (16) is essentially Presman’s [67] result (see also Theorem 2.1 in [5]) rewritten in
a different notation. The extension of (16) to the case of distributions satisfying Franken’s

condition can be found in [83].

3 Results

3.1 Sequences of Markov dependent variables: translated Poisson ap-
proximation

In this subsection we use the notation of subsection 2.2. For the sake of convenience, we repeat

the main assumptions and expressions. We explore homogeneous Markov chain with arbitrary

number of states. Let 9 be a space of points w, By be the o-algebra of its subsets, p(w, 4) be

the transition probability function. The sequence of rv’s 97,95, ,9,, - is defined as follows

Pea) = ()
P, € 2) /y P (w0, 2)(dw).

Let f(w) be a real function defined on 9 and measurable with respect to By, F,.(z) is the

distribution function of the normed sum

S = i A
" oyn  oyn
5 n+1 B
Here S, = Zf(?’k) and A = (n+1) fy f(m)p(dr). We denote by F,.(x) the distribution
k=1

function of the sum S,,.

Condition (Hy): there exists a function g(x) of a real variable such that lim, ,. g(z) = 0o

and sup,, [ [f(7)[*g(|f(T)])p(w, dT) < oc.
Condition (H): let 9 be a countable set of states w;, which forms a positive class, f(w;) =

m + k;h, where k; is an integer, m is any real number, h > 0, and for arbitrary 7 and j it is
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possible to find an index k such that p;; > 0 and pjr > 0 (pirx = p(wi, wr)).
Unlike Nagaev [62], who approximated the distribution Fj,, of the centered and normed sum
S,, we approximate the distribution F, of the initial sum S,,. Such approach seems to be more

natural for lattice approximation. Let G be a measure with the following characteristic function:

Gt) = exp{it|A—no?|+ (no?+ {A—no?})(e" — 1)} x
[1 + no? (Ua - (15) (e —1)3 + oA (e —1)].

We can formulate the main result of this subsection.

Theorem 3.1 If conditions (Hy), (H) and Z|f(wz)|7r(wl) < oo are fulfilled, then, for all
i=1
n=12,...,

|For —Glloe = o(n™), (17)
|Four = Gllx = o(n™'/2). (18)

Comparing (17) and (18) respectively with (4) and (3), we see that, the accuracy of approx-
imations remains the same. On the other hand, G is structurally better constructed, since it
is concentrated on the same lattice as Fy. Consequently, there is no need for an additional

summand S;(x)/+/n, which appears in (3).

3.2 Triangular arrays: the first uniform Kolmogorov theorem for the
MB distribution

In this thesis, we prove an analogue of (13) for all p1; < 1/4 and po; < 1/30. In other words,
we consider a small pp; and not so small pi;, which is in accordance with assumptions needed
for the CP limit. On the other hand, we allow for pg; and py1 to be of the constant order, i.e.,
we also consider the case when CLT applies.

Next we introduce various characteristics of .S,,. Let

_ P1oPo1 o P10P31 < P1o > ’Y%
"mhno= —, )= + - =,
P10 + Po1 (P10 + po1) P10 + Po1 2
o (M 1 { 2 p11P10(2P01 — P10) 2po1pio }
Y3 = - t—F——{P11Po1 + +
’h{ 3 " popo+por) M P10 + Po1 (P10 + po1)?
4 Po1 <p11 4 P1o )}7
P10 + Po1 P1o + Po1
(p(n — P11 ) P11P1o
o = M\ T———— —Po), 2=Po >
P1o + Po1 P10 + Po1
v = —6n(yw+y3)+8, 0<pS<1, and B is such that v € Z,
A1o= n(n A +3y) -6, A= % A= —n(272 +373) + g

We also use the following measures:

~ e . = eit ~

G = p1011* E p]11[j <G(t):1 pl; 1eit)’ H:I+%2(G_I)7
- — /M1
Jj=0

U = G rexp{M(G—1)+ (G = 1)+ A_1(I_1 = I)/pro}-

Now we can formulate the main result of this subsection.
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Theorem 3.2 Let p11 < 1/4, po1 < 1/30, npo1 = 3. Then

~ 1 1
. Cy 11

Remark 3.1 (i) If, in Theorem 3.2, p11 and po1 are some absolute constants then CLT holds,
see [35]. In this case, estimate (19) is of the order O(n™1), i.e., much better than O(n=/2), the
order that can be expected from the normal approximation.

(i) In [26] Lemma 5.3, it was proved that H € . It will be shown below that exp{s (G —
I} «U € D and, therefore, approzimation in Theorem 3.2 is infinitely divisible and probabilistic.

In the context of the uniform Kolmogorov problem, assumption npg; = 3 is not very restric-
tive. If mpg; < 3 then the same accuracy as in Theorem 3.2 can be achieved by any infinite
divisible distribution. The following version of the uniform Kolmogorov theorem for MB distri-

bution follows from Theorem 3.3.

Theorem 3.3 There exist absolute positive constants Cs and Cy such that, for allmn € N,

sup inf ||£(S,,) —D|| < Csn~%/3, (21)
p11<1/4,p01<1/30 PED
sup inf ||£(Sp) = Dlos < Can™5/5. (22)

p11<1/4,p01<1/30 DED

We see that the accuracy of approximation in (21) is the same as in (9) and (11). In
comparison to (13), we managed to drop the very restricting assumption p1; < po1. The

question about possible extension of (21) to the case pg; — 1 remains open.

3.3 Triangular arrays: the Simons-Johnson theorem for the MB dis-

tribution

The rate of convergence in CLT can be very slow. In subsection 3.2, we proved that the
normal limit distribution can be replaced by much more accurate CP approximation. In this
subsection, we show that, on the other hand, if MB distribution converges to CP limit, the rate
of convergence is very fast and no other approximation is needed.

Next observe that if p1;1 — P, npp1 — A then MB distribution converges to CP distribution
with compounding geometric distribution, i.e. we have the case that has not been solved even for
independent summands. Below we prove that, nevertheless, some version of the Simons-Johnson
theorem holds. Assuming that p;; and npg; are close to their respective limit values p and A,
we also estimate the rate of convergence. Let
;o Inpor — Al < por(e" +1)2 < —, pel <

Ip11 — Pl < (23)

WX

A
27

Let Z = (1 —p) # 3 ;op/Ij and O = (I + pop(Z — I)) x exp{\(Z — I)}.

Theorem 3.4 Let h >0, A >0 and 0 < p < 1 be some absolute constants. If assumptions (23)

are satisfied, then

> e L(Sn) (kY — {k} < Cs(Ipay — Bl + Inpor — Al +n 7).
k=0
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Corollary 3.1 Let h >0,0<p <1, pe" < 1/4. If npo1 — A, p11 — b, then
> eMFIL(S){k} — W{k} — 0.
k=0

Remark 3.2 (i) It is unclear to what extent assumption pe’ < 1/4 can be relaxed. In this
paper, it plays technical role, i.e., under this condition, the series > " (pexp{it+ h})’ converges
absolutely.

(i) Note that if po < 1, then ¥ € D, see Lemma 5.3 in [26].

(iii) The choice of exponential weights eI is determined by the method of proof.

3.4 Approximation of a symmetric three-state Markov chain by CP

law

In this subsection, our aim is to prove some analogue of (16) for the Markov dependent rv’s. We
consider a symmetric three state Markov chain. We prove that its sum can be approximated by
CP distribution with the accuracy of the order O(1/n). Though limit CP distribution occurs only
if some of the transition probabilities are of the order O(1/n), the accuracy of approximation is
estimated under much weaker assumptions when all transition probabilities are of the order O(1).
Lower bound estimates demonstrate that, under certain assumptions, the order of accuracy is
correct.

Let £0,&1,...&n,... be a non-stationary three state {a1, a2, a3} Markov chain. We denote
the distribution of $, = f(&1) + -+ + f(&.) (n € N) by F,, that is P(S, = m) = F,{m} for
m € Z. Here f(a1) = —1, f(az) = 0, f(az) = 1. Let the initial distribution be defined by
P& = a1) = m, P(& = az) = m2 and P(§ = a3) = 73. Transition probabilities are equal to

P =ai|§-1=a1) =aq, P =az|&§-1=a1)=1-2a, P& =az|&§i-1 = a1)

P§i=a[§1=a2)=b, PG =a2|§1=0a2)=1-2b, P& =a3|§1=a2) =

P =a1|&i-1=a3) =a, P& =az2|&i-1=a3) =1-2a, P& =a3|&i-1=a3) =a,
a,b€10,0.5].

a)
7

In other words, the matrix of transition probabilities is equal to

a 1—2a a
b 1-2b b
a 1—2a a

We introduce further notation:

1
L = 5(1_1+11), X=L-1I, D= (1-2(a—b)—2aX)?x(I+A),
Ay —2aL Ay —2aL
P = 7T1[+!7T2+7T3I, P2:7T1[+¥7T2+ﬂ'3],
1—2a 1—2a
8b /20 \T\* 8(b—a) 2/ =20\ \"
A= ——oXx( > L A=l (Y 14
(1+20)? *(j_0<1+2b> ) T =) *<j_0(1—2b> ) ’
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Ao = ;(I+2(a—b)[+2an:(I—2(a—b)]—2aX)*Z(1/,2>A*j>
: J
Jj=0
1 = (1/2\
=5 (1—2b)I +2aL £ ((1—2b)I +2aL) Y (.7 ]AF ),
: J
Jj=0
1 2aX + (1 —2a+2b) >/ 2a 9\ = (/2 1sj
Mz = 2<Ii( (1+20)2 )*( (i) >*Z(J A7)
j7=0 3=0
2b(1 — 2a) > .
= 2 H-T H=(1- *j
G exp{172a+2b( )}, ( 2a)L*jgo(2aL) )
1—2(a—0b) > 2a *j 2amy 2ams
M = L E=(1- 1 L
1+2b ;(H%) ’ ( 12a) T
—2b%(1 — 2a) 2(1 — 2a)M "
A1 (1—2a+2b)2((1+2a)1+1—2a+2b «(H =D,
2(H — 1) ~—2b(1 - 2a)
Br= Toasw™ M iaarne M- DxHE-D.

Distribution Fj, converges to some CP distribution, when nb — 50, a — o (for Poisson limit
dp = 0). Therefore, for a CP limit, one needs very restrictive assumption b = O(1/n). To what
extent this condition can be weakened for some prelimit CP approximation? As we prove below,
even for b = O(1) good accuracy of approximation can be achieved. All results are obtained

under the following condition

1 1
<a< 5o, <b< . 24
Osasgg O 30 (24)
The smallness of constants is determined by the method of proof.
Now we can formulate the main results of this subsection.
Theorem 3.5 Let condition (24) hold. Then, for alln =1,2,...,
1
|F, — Ex«Mx*«G™"|| < C(min{,b}—f—OQ"a—b), (25)
n

1
F,—-ExMxG"| < C|mn{——,bp+02"%a—0|),
I I ( {n\/nb } | |)
Vnb
| — Ex M*G™w < C’(min{n7b}+0.2”|a—b|>.
n

Remark 3.3 Approrimation has three distinctive components:

(i) Compound binomial distribution E is related to the initial distribution of & and is not
infinitely divisible. However, if we assume that mo =0, then B = 1.

(i) M is compound geometric distribution with the compounding symmetric distribution L.

Consequently, M is a special case of CP distributions. Indeed,

M = exp{i (1 ia%)J‘L*jj_ I}.

j=1

(iii) The main part of approximation is n-fold convolution of G. Obviously, G is CP dis-
tribution with the compounding distribution H. Observe that H is also a compound geometric

distribution with the compounding symmetric distribution L.
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Corollary 3.2 Let condition (24) hold. Then, for alln=1,2,...,
|F, — Ex M« G*"|| < Cn™L. (26)

Comparing estimates of (25) and (16) we see, that the latter is more accurate for b < 1/n.
In principle, it is possible to get estimate nb? at the expense of more complicated structure of

the approximation. We demonstrate this fact in the following corollary.

Corollary 3.3 Let condition (24) hold. Then, for alln=1,2,...,
|Fro — (E+ Ey)* M % (I + M) *x G*™|| < C(min(an,n_l) +0.2"a — b|)

Remark 3.4 Ifa =b, then F,, becomes F*™ considered in (16). Meanwhile Ex M « G*" differs
from exp{n(F — I)}. The difference occurs because E x M x G*™ takes into account possible
closeness of F, to the limit CP distribution with the compounding geometric law. Similar limit

distributions are impossible for independent three-point rv’s.

Next we demonstrate how the accuracy of approximation can be improved by the second-

order approximations.

Theorem 3.6 Let condition (24) hold. Then, for alln=1,2,...,

1
|1E, — (E+ Ep) « G % (I +nAy + My)|| < C(min{ﬁ,b2}+0.2"|a—b|>,

. 1 n
||F7L—(E+E1)*G*n*(l+nA1+M1)HOO § C(mln{m,b2}+02 |a—b|>,
F, — (F+ Eq) % * (I +nA;+ M)|lw < min ¢ ——, + 0.2"|a — .

G (I +nA + M c b "la—b
n

We also discuss to what extent estimates of Theorem 3.5 are unimprovable. The following

lower-bound estimates hold.

Theorem 3.7 Let condition (24) hold, nb > 1 and mo = 0. Then there exist absolute constants
C;, (i=20,...,25) such that, for alln=1,2,...,

|Fo —ExM+G™|| > |Fn—E*MxG™"|x > %(1 — C510.2%a— b)),  (27)
C’22

nvnb

024\/5
NG

Corollary 3.4 Let condition (24) hold, nb > 1 and mo = 0. Then there exist absolute constant
Cog such that, for n = Cayg,

||Fn—E*M*G*n||oo = (1—0230.2n|a—b|),

|1E, — Ex«M*xG"||w =

(1 - 025 02”|a - b|)

|Fy— B MG > €2
n

Thus, the order O(1/n) in (25) can not be improved. Next we formuate non-uniform local es-
timates. They are necessary in the case when we want to find out the accuracy of approximation

when m is far from the mean.
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Theorem 3.8 Let nb > 1 and condition (24) hold. Then, for allm =10,1,2,...,

|(Fn—E*M*G*"){m}|<1+\|/%> < nj%’
n m| ¢
[(F, — Ex M+ G™){(—oc0 m]}|<1+m> < e

Next we formulate the analogue of Simons-Johnson theorem for three-state Markov chain dis-

tribution. First we introduce further notation. Let 0 < a@ < 1 and

24 >
g:m]+< e >7T2+7r3], 1—2a;2aL
B 2AL I 3 2a.L)* Ex Mx* B*"
—ep{ (L - )3t b gmeamen,
Let
a A 1 1
—al < — b— )<= bleh +1)2 < = ae < —. 2
la —al 10’ In | 5" (e"+1) 95" ae’ < (28)

Theorem 3.9 Let h >0, A >0 and 0 < a < 1 be some absolute constants. If assumptions (28)

are satisfied, then

S M| E (kY — Gk} < Clla—al + nb — Al +n7Y).

k=—o00

Corollary 3.5 Let h >0,0<a<1, ae" <1/4. If nb — X\, a — a, then

o0

2 IR (R - G{k} = 0.

k=—o0
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4 Proofs

4.1 Auxiliary results for Theorems 3.1-3.2

Lemma 4.1 Let u,v >0, n € N. Then

ut =ty (?) VT (w0l (s + 1), (29)
j=1
Here .
— J—=1 n—yj(,, _ ,\s+l, j—s—1
rn(s—&-l)—'z ( . )u (u—v)"" v .
Jj=s+1
Note that

jil (j:1> - (511)

The expression (29) is called Bergstrom’s identity and was obtained in [12].

Lemma 4.2 Let U be a measure concentrated on Z. Then for all u > 0

Ulloo < — (L ‘dt, Ullg < ~ —‘U L ‘dt.
1l < o () wie<i [l (s)

—TTUu

The first Lemma’s statement follows from the formula of inversion, the second statement is a

version of Tsaregradskii’s inequality.

Lemma 4.3 Fort € R, 0 >0, n €N,

it it t2 (it)? ot t? o[t 0Ct?
o\v/n o\v/n 202n  603ny/n  240*n? 202n  603ny/n o’n
it 0Ct|
1= ! 1
P { o n} oyn’ (31)
: 3 .
it (it)? 0Ct!
-1 =———= .
(exp { U\/ﬁ} ) o3ny/n + o*n? (32)

Lemma’s statements trivially follow from the Taylor expansion.

Further in this subsection
st itA 12 a(it)®  A(it)
(7m) —oe o - T S+ )
(0t itA 12 it 3 it
(7)ol 4 S} e () oo (o))

Lemma 4.4 For |t| < wo/n we have

5 t At C o1 2
o(57) @GRl < Tt

Proof. From Lemma 4.3 it follows that

3

M?,(exp { it } 1>3 _ n03< (it)3 N oc#) _(it)? N 0Ct*

ovn odny/n - oin? NG on’

U<exp{ i }1) = U(itJreCtz)—itJreCﬂ.
ov/n ovn  o3n Vn o on
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Therefore,

9 (oiz) - (om)

Uxf

itA _ﬁ
2

O‘E/Q - oo (exo

)

< C —t /2(
< Ct2672t /72 ( t
n

O

For the next Lemma we introduce the following notation

R CA e RS

Lemma 4.5 Let the conditions from Theorem 3.1 are fulfilled. Then, for |t| < wo

o-d < o { L
ony/n 2n |’

n n Loen it s e
oo (o {mm ) o

Proof. By (30)

1202

()

) t2 -t /Q(at2+/\ )
2 —0.3t2 —0.3t> Co 012
e + A€ )g—te : (a+/\7r).
n
n we have
(33)
244 | 46 2t
(14 0)(t* +1t°)exp - (34)

qg—ex o — r olt* =ex —ﬁ—i— ol = ¢ex
- 20%n 6a3n\f - 2n  6onyn | P

Since e¥ = 1+ 6|y|el’! and |t| < 7o/n, we obtain

ot

Gony/n

6—g = |¢|‘1—exp{

< ||3 33<C
< (s

Observe that from (32) it follows that

e - () -5
= F(eo{om)
(it)? ¢t t]3 |t]*

olt*
6ony/n

Cltf’ i
H |¢‘Unf {Gon

602 |t|
h an\f

)

t2

(oo {5t} 1)+

)3 90t4

)

1t

6ony/n  2402n? 6ony/n  2402n2?

25

L Y
nyn\ 60 = 2402/n)

1 T
< 3 2f * < 1342
< 7TCT(6+24>\7T0

ny/no

1+7T
6 24

(1.131 + 0.167) < ¢*730.298 < 1002,



Once more applying e¥ = 14y + 0]y|?el?! and (30), we obtain

©
I

- 9 t? N (it)? N ot
expso | —
P 202%n = 603ny/n - 240*n?

t? N (it)? N ot
= expq — —
P 2n  6ony/n = 2402n?

(it)3 ot (it)? ot
¢ exp { 6on/n + 2402n? o\t 6ony/n * 2402n? +oc

(it)3 t 2\ jo02
= 1 0 C— v
¢< * 6ony/n 00 o2n? * o2 n )¢
_ (it)* ¢! 5 9 1002
B (b(l + 6ony/n o0 o2n? + o2’ )¢

13 4 5
_ (b(l + (lt) +6C 2 2(1 —‘rO’Z)elOU )
n

= o+

Observing that |elt| = 1 and using the obvious inequality |siny| >
similarly obtained estimate |sin(t/(20+/n))| =

¢7l

19"

e

6ony/n
( ) +90¢ t4 (1—1—0’2)61002

p—r

g ° t* 2\ 1002
6( {}—1) +C€¢02n2(1+0 Je 7.

(35)

2ly|/m for |y| < 7/2 and
> |t|/(moy/n) for |t| < mo\/n, we get

exp{ t;} iexp{ itj},
R
2 t

o "eXp{Re[COS (CT\/E) 1+isin (af)}}

t 2no?t? 2, 2
-2 2 4in2 < - - — =2t /m
exp { no” sin <20\/ﬁ> } < exp { 2,2, } e

oo fenfite) )

For the proof of the second Lemma’s statement we apply (29), (33), (35) and prove

o™ —

Ing" (¢ — @) —

" —no" Mo —¢)| < Cn’max{|g], |c?>|}"72|<25—¢~7|2
2
< CnQexp{ 26 }
2
< CnQexp{ 2t }
6 ) 2
< Ct—em” exp —QL ,
o3n w2

nn2

6 — o

|

60 ¢|¢n 1 ¢n71|

t*

ony/n

nd" N ¢—9) = nlo—oll¢" " —¢" | < f
< e st - ymal oty 213 - o
[t 4 2 242
< Cof nexp{ ~ 5 T 2
< C’éen" exp{—it;},
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IR o?n it s 4 o 10
n o) = 0T (ew{Ta - 1) +coon ot
2 : 3 4 2
= (b”% exp{o_it/ﬁ} —1) —l—CG;—n(l—l—UQ)ew” exp{ —?;}

Therefore, we get

2
¢”a3”+¢""'6”(exp{ } )

<[P =" —nd" (o — @)+ [nd" ¢ — §) — 1" (4 — ¢)]
3
g 16— @)+ 62 ( { } 1)
<Cel2¢72 . . , <061202 ) -y ] 92
S 0n<t +t%( +U))6XP{ 7r2}\ 02n( +0°)(t +t)exp{—7r2}.

Expression (34) follows from the last estimate. OJ

Lemma 4.6 For |t| < wo\/n we have

‘gA LY gt ’ < ceio'ltﬂ(l +a)(1+ 022 G0t (o 1Y g g
*\ovn ovn = o’n @ ? n Ty
+0e01 )\

on’

Proof. Let o = {A—no?}. Then [ A—no?| = A— (no?+ p). Using those notations we rewrite
Q\(Ut%) in the following form

é(gtn> :exp{ai\;ﬁLA—nUﬂ + (nUQ—I—{A—nUQ})(exp{Ji;H} _ 1)}><
O [T R S )
i , it it
om0 )
[1+n02<0a é) (exp{ai\t/ﬁ} - 1> +J)\ﬂ(exp{ai\t/ﬁ} - 1)} (36)
Therefore,

(i) o)< oo {24 5) (o) )
—exp{(ji}%—k(nﬁ%—g)(exp{aijﬁ} -1- %)}x
: 3
(oo ) enfi) )
it
ool A
o) e[S ) 1 50)

+oAs

X
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Applying |sin(t/(20v/n))| = [t|/(20+/n) for [t| < To\/n, we obtain

cofir o)) o o5} )

en] s (g)) ot ()]

2no2t? 642, 2 o2
expl — DXL _gm2etymt g0,
mTeo“n

N

Applying (30) and inequality |e* — e¥| < max{|e*], |e¥|}|z — y| we get

exp{—t;}—eXP{(n02+9)<eXp{¢7it/ﬁ} ‘“ait/ﬁ)}‘

2 it it
< {21 =2 )| - 5 (a4 ) (exp { ) -1 )

2

comro( 1, £
U\f

Using (31) we obtain

it
Jy = az\ﬂexp{ ! }—lx
o

itA ) itA+( 24 o) 200 GNP U
exXpy == expq ——~— Jn no” +o){ expq —~ Tn o
it
= oMA; exp{a\/ﬁ}—l X

exp{ —t;} —exp{(n02+9)<eXp{g$ﬁ} _1_(71\%)}’

3 2 4 3
< A7\'|te2t2/7'r261< ‘t| t ) < Ce2t2/7r2>\77<t+ ‘t| >

< o2/ 2 2( 4 it Lt vl e it Lt
< - = = X — 1 —-— X — — 1=
2 " P ovn ovn e\ =P ovn ovn
< o2/ t2 2( t2 60|t|3) cot?
< —— —no | —
2

o?n + ad3ny/n

Vn a\f on  o?ny/n
4 2 2
< ce2iey ! + ¢ <oy g0y I (37)
on on

Therefore, J; can be expressed in the following form
. itA 2 T it . 3
X — nao” | ex —
P ovn 2 P avn
—ex A + (no? + o) ex it —1- it X
P ovn ° P ovn ovn

(eoon o} )

Ji =
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8o (ot} )

B Y L S O T R B

= ¢”(1+naag<exp{-0f;ﬁ}—l>3-> | 3
O R ) e G £ B}
< ¢"(1+naa3<exp{al\jﬁ} —1) )—&"(1+na2<aa— 1 it
~"<1+n02<0a—é)(exp{ai\t/ﬁ}—l>3>x
it it
(-2} 1=

Using (30) and (31), for |t| < moy/n we get

+

- . it . <ole it it Ct?
—ex Xpy ——=p —1— —— < Xpy ——= ¢ — — —
P e P O'\/ﬁ O'\/ﬁ P O'\/ﬁ
1 it 8 [t]3 Cloa+1)
2 _ = -1 < 2 1 g 3 < 1 2
no (aa 6) eXp{U\/ﬁ} Cno*(ca + )agn\/ﬁ o [t]° < Cloa+ 1)t

Applying [¢"| < e2t7/7* "] < e~ 2"/™ e estimate Ji2

ofpom (o= oofit} )
(ool )

2
Co /7 (1 4 (a4 1)12) - < Cemttrntpl 100
g n n g
gefﬁ/w?]@ (I1+a)1+0) < Qefﬁ/ﬂ?tﬂ(l +0%)
n g

n a

J12

N

N

(1+a)

N

Ceo'1t2t2<o’+1>(1+a).

n o

Due to (34) we have

n 1 3 it 1 ’ _n n 3 it 1 ’
O e P R DR R v B

02n it 3 612"2 212
-1 0 14 o?)(t* 4 ¢° - =

6( {ﬁ} ) oot e - T}
3

ASH
\
%
[©]
]

i)

~ it 3 1202 2t2
:¢”+¢"na(a—><exp{ }—1) +GC (1+a)(t4+t6)exp{—2
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Collecting the last estimate, (31) and (33) we evaluate Jiy

el {onl ) ) oo ) o))
oo )eel )

1202 o . 242

+0f

o3n

< nmax{[6], 317116 — dlon(oa+ 1) £ 0 (14 o2yt + 1) expd — 2L
h b ama a3ny/n o2n 7 *p
6

t 2%(n—1) 12 1207 212
<C’(Ua+1)e6"26xp{—(n2) }+C’e (1+J2)(t4+t6)exp{—ﬂ_2}

o2n nmw o o?n
16 6o 22 o120 a6 212
e O 6 2 (4d | 463y L1202
<C o (t°(ca+1)+ (1+02)(t* +t°))e™*
< R0 4 a1 + 0% (39)
< o o?)el?o”.
o?n

Combining (38) and (39) with (37) we complete Lemma’s proof. [J
Lemma 4.7 Let the conditions from Theorem 3.1 are fulfilled. Then, for |t| < mo/n we have

C —t2/15 n
< o/ 4 Ol

+ct

G ~ t
E Zt‘sn/(a\/ﬁ) _
¢ g ovn

—0.1¢2

1 -
t2(1+a+)\ﬂ-)<02+ 2>el2o’2
g

Proof. Using the result of Nagaev (5), we can express

itSn/(ovm) _ B t _ itS,, 5 t _ itA
" a(vm)| = it oG -l (05

o . ) 3 )
‘Eexp{ itS, _ itA } _ e t?/2 <1 n af(it) n )\,r(lt))‘
ovn  oyn

C 2
< —=o(DltfPe /1 4 Cltlpt, (40)

vn

Applying the triangle inequality,

Eeitgn/(ff\/ﬁ)_é( t )’ <

S = t
E itSn/(ov/n) _
P e G

ovn
0 (25) -0 (525) () -2 25|

and using (40), Lemma (4.4) and Lemma (4.6) we complete Lemma’s proof. O

+
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Lemma 4.8 Let p11 < 1/2, po1 < 1/30. Then

. . 1 . Po1
0 I1£(S) = Dlloe < Cpon(pro + o) min (1, ) + Cmin (1228 )
+C(p11 + por)e” <", (41)

1£(S0) ~H « exp{oar (G — 1)} » V]| < Clpnr + o) min (pon, %) e, (42)

~ : 1 )
_ _ < - on
I£(Sp) — H * exp{s(G —I)} * V|0 < C(p11 —|—p01){m1n (pm, - np01) +e },

where
V = exp{nn (G — I) + m72(G = )" + nvs(G — 1)}
Lemma 4.8 follows from Theorem 3.2 and Theorem 3.5 in [26].

Lemma 4.9 Let p1; < 1/4, por < 1/30, |t| < 7. Then

= t
Re(G(t) —1) < — sin? - < ——¢2,
e( () ) 14 pn1 St 2 972

= 4
Gt =11 < St

Here Re{z} means the real part of the complex number z.

Lemmas statement easily follows from the definition of G.

4.2 Proof of Theorems 3.1-3.4

Proof of Theorem 3.1. Due to Lemma 4.7 and using © = o/n in Lemma 4.2, we obtain

- 1
FnTr _g (e%e] < (/
| | 2moy/n\ Jj<vvm
5 [t
E itS, /(ov/n) _ dt
¢ G ovn

We estimate each summand separately. Applying p = o(n™*), where k € R, it follows that

froo ()
H<VvA ov/n

Eeitsn/(oﬁ>_g< t )’dt

ov/n

+
VRsltl<royvm

70 1t2
< (Sootptesr s cltpy + 0= 1 (02 Yot
H<V VA '’ .
2 C [ee] 5
< —o(1) - 2/ Be~t/154¢ 4+ v\/ﬁp?/ 1dt + = .2/ 126-0-18 3y
" [tISVvn n 0
o(1) o(1) a1 i
o) o(1) 1) _ |
<C - + pin + ) C(\/ﬁ—l-o(n )n—i—n < o(n~Y?)
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_1’

Next we use (36) and the inequalities exp { — 2sin® ﬁ} <exp{-—

tSn| L= < C for e < |t| < 7, where k € R, and € > 0, we obtain

& ~ t
E ZtSn/(D'\/ﬁ)
¢ g ovn d

Feit8n/ (o)

Applying |Ee

/V\/Hgﬂgﬂ'a\/ﬁ

deli

> }[1 + 2%no?|oa — 1/6| + 20\, ]dt

/V\/ﬁ<|t|<ﬂ'a\/ﬁ

g /
VAt <noy/n
<ovn

Ee?*Sn |dz

V/o<|zl<n

+/ exp{(n02+g)<—2s1n —
VVASt<ro VA ovn

< oyne <7r - V) + / C’e*CtQ(l +n)dt
g Vngt|<rov/n

<ovn- % + Ce V(1 + n)(mov/n — Vy/n) < o(n=1/?).

Thus we complete the proof of (17). Next we move on the second part of the proof of Lemma.

Applying Lemma 4.7 we get

~ 1 1
HFnﬂ'*gHK < 4</

/ 1

t
Ee ztS"/((rf) o dt
G ovn

t
EettSn/(0vm) _ dt .
G- o~

_|_

Similarly,

/ 1
g/ (00(1)|t|2et2/15+cp§1+ceo'1t t|(1+o¢+)\ﬂ)<02+12>e12"2>dt
t<vvm \Vn n o

< £0(1)~2/ Pt/ 4 L g 2/00 te 01 dt < o(n~1/?),
Vvn NG 0

FeitSn/ (o) _ g( t )‘dt

ovn

/ 1 | peitSus(ovi) _ g( )
VALt <rovm Vn
< ‘Ee / ‘ ( )‘dt
/Vf<|t<7rcrf |t| Vvn<|t|<ro/n |t| \/ﬁ
‘Eeiz5n|

<ovn
V/o<|z|< ZU\/H

1 t
+/ exp{(n02+g)<2si112
vnlti<royn |t oyn

g/ e ”—der/ © e O (1+n)dt

V/o<|z|<n \Y v/n<|t|<rom |t|

“Onfg— Ve + Le’cvn(l + n)(mov/n — Vy/n) < o(n"Y?).
vV  Vyn

Collecting all estimates, we complete the proof of Theorem 3.1. [J
Proof of Theorem 3.2. It was already noted that approximation in Theorem 3.2 is in-
Next we check that it is indeed some CP distribution. Taking into account

> }[1 + 28no?|oa — 1/6] + 20\, ]dt

<e

finitely divisible.
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that p;; < 1/4 and pg; < 1/30 we observe that

B po

Bl R ¢ U 30 1 . Po1 2
47 7 p1o + po1

e N Y —— < —
31 " pio+por 3 pro+por 47

and, therefore,

45
M < poi, M2 Po1 - = 0.957poz1, (44)
2
P10P51 P11 D10 1)
= 0 (S0 4o
el (P10 + po1)? ( 2 pio+por 2
2
p10p01 1 3 13 2
< PoPo (22 < 2202 0.073p0, 45
(p1o+p01)2 (8+2> < 6?01 < D01 ( )
2 2 2
DP1oPg1 45 1 ) P1oPg1 o1 2
o > P (0 - 457 PLOP0L 5 g 395 P01 5 g 35,2
hal 2 (P10 + po1)? (47 2) 7 (pio +po1)? =~ pio+po1 Pou
sl < 72{’71 Piipor 2p11Po1 P11P10 2p10Po1
R ] pro(P1o +po1) (P10 +po1)?  (pro+po1)?  (Pio +po1)?
P11Po1 P1oPo1 }
(P10 +po1) (P10 + po1)?
2 2
Po1 Po1 Piiboi 2p11po1 2po1
< ———q9—= + P11 + ————— + p1ipo1 +P01}
P1o + Po1 { 3 Pio +Ppo1  Pio + Po1 P10 + Po1
< 0.55p3; < 0.02pon, (46)
Po1 P11 4 1
» < po1p max , + < — | < —. 47
bl bot (plo + po1 P10 + Po1 po) 90’ < 4 (47)

Taking into account (44)—(47) we obtain v > 6n|y,
Therefore G*7 € D. Indeed,

— 6nyz = 6n(]y2| — [va]) > 4.8npg; > 0.

oo

Gt = exp{ity+7) p;l,l(eifﬂ‘ -1},
J

j=1
that is, G*7 is some CP distribution shifted by v. Next observe that due to assumption npg; = 3,
A1+ 2 2 0y — 42| = 3|s]) — B — [sa] = 0.605np0; — 1.045 > 0.2npe; > 0
and, therefore, exp{(A\; 4 »1)(G — I)} € D. Similarly, Ay > 0,
A1 =n(2l72| = 373) + B/3 = n(2lre| - 3|y3]) > 1.05np5;, > 0

and exp{A\o(G*2 —I)+ A_1(I_1 — I)/pio} € D. By Lemma 5.3 from [26], it follows that H € D
and we proved that H % exp{s¢ (G — I)} U € D.

The rest of this subsection is devoted to the proof of (19) and (20). We show that U is close
to ¥ and apply the triangle inequality and Lemma 4.8. Observe that, in general, 7 is a signed
compound Poisson measure, i.e. not a distribution.

__ First we estimate |‘/I>£t)\ and |U(t)]. Note that by the properties of characteristic functions
|Q(t) — 12 < 2(1 — ReG(t)), see, for example Theorem 1.7 in [5]. Applying trivial estimate

o~

|G(t) — 1| < |G(t)] + 1 < 2, estimates (44)(46) and Lemma 4.9 we obtain

PO < exp{nn(ReG() — 1)+ 2nppl(1 — ReG(1)) + dnls|(1 — ReG(1))}

< exp{—0.731po1 (ReG(t) — 1)} < exp{—0.065po1t*}. (48)
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Taking into account that any characteristic function is by its absolute value less or equal to

unity, we similarly prove that
U ()| < exp{A1(ReG(t) — 1)} < exp{0.605npo1 (ReG(t) — 1)} < exp{—0.054np1t*}.  (49)

Next we compare In 7/ (t) and InZ{(t). Applying the well known expansion

. s \2 0 \3
e =1+ (iy) + (lg) * (IZ) +0Clyl", yeR
we prove that, for |¢t| <7
=7 it it)2 1+ it)3
G () = exp{’yl— + ’Ypllgl ) + Vpll( Z;ll)(l ) + 9C’|'y|t4},
P1o 2pig 6p1g
= it 1 it)2 1+4 2)(it)3
G -1 = 2oy ( Jr17121)(1 ) n (1+4pn J;pn)(l ) + 00t
P10 2pio 6p7g
= it)2 (1 it)3 = , t
(Gt)—1)?2 = (12) 4 +p§1)(1 ) +octt,  (Gi)-1)3 = e ) + 004,
P1o Pio P10
=2 2(it 2 it)2 (4 2)(it)3
Byt = 200 CHp? BT )6
P10 Pig 3p7o
. it)? t
et 1 = —(it)+ —(12) - (16) 100,

Consequently, taking into account (45) and (46), we obtain expansions

~ o 2o (it)? @ 2 \,4
InV(t) = ny(G) — 1) + nye e +n[ya(1+p11) +y3]—5— + 0C(npy, )t

10 Pio
and
-~ g (it)? ('t)
InU(t) = ny (G(t) — 1) + nfyg—p2 +n[y(1+p11) +v3)—— P +0C (np2, + 1)t
10 10

Combining the last two expansions with (48), (49) and trivial estimate ye™¥ < 1, y > 0, we

prove that
V() —U®)] < max([VO) U] n V(t) — U ()]
< exp{—0.054npy; t*} (np?, + 1)t*
< Cexp{—0.05npo1t*}((n~! + (npor) ~?). (50)
Similarly, for t| <7
=, =/ it it)? 3
(yInG(®)) = G)y(1-—+ + 0C||[¢]*,
plO P10
~ 2(1
(-1 = G ( ~ @ ;me)) +6C|t,
P1o
~ 2 1 it)?
WPy - G (n e lt) ol +p22>+373)(1t) )+90np31|t3,
10
~ =/ 2 1 H)2
(Wdl()) = Gt (n s lt) + 20al +p22> ukiie ) +6C (npty + 1)1,
10
(In V() — InU(t))'| < C(npoﬁl)ltl3 (51)

34



Let v = npo1/(p1o + po1). Then

~ =/ = =/ = =/
(InV(t) —itv) = nmG (t) —iv + 20y (G(t) — 1)G (t) + 3ny3(G(t) — 1)*G (1)
npo1i(pige™ — 1(1 — prie)?)

(P10 + po1)(1 — prreit)?

+0Cnpg, |G(t) — 1] = 0Cnpoi ] (52)
We have

(rT/(t)e—iw - H(t)e—ifv)' = D(t)e T (In V() — itv) — U(t)e T (InU(t) — it)’
= (¥ —itv)e ™ (V(t) — U1) + Ut)e ™ (In V(t) — InlU(t)).

Therefore, taking into account (51), (52), (50) we obtain

o~ . A~ . /
‘(‘V(t)e_lt“ — L{(t)e_lt”) ‘ < Cnporlt| exp{—0.05np01t2}(n_1 + (np01)_2)
+C exp{—0.054npo1t*}(npg, + 1)[t]3
< Cympor(n™' 4 (npo1) ~2) exp{—0.04npo t*}. (53)

Applying Lemma 4.11 below with U = ¥ — U, u = \/npo1, v = npo1/ (P10 + po1) and taking
into account (50) and (53) we prove that

1V —Ull < C(n™" + (npor) 7). (54)
From (69) and (50) it follows that
1 = Ullos < Clapor) ™ 2((n ™" + (npor)~2). (55)

We recall that H is distribution and, therefore, ||| = 1. By the properties of total variation
norm and (54) and (55)

11 * exp{sa (G = 1)} = (v = U)| -1l exp{za (G = D}I|v = ull,

exp{[za (|Gl + ITIDHY U]
exp{8/90} ||V —U||

C(n™* + (npo1) 2, (56)
1#][1| exp{z1 (G = DIV — U]l oo

C(npor) 2((n " + (npo1) ~2). (57)

| H = exp{%l(é — D} (VY —U)|oo

NN IN NN N

To complete the proof of Theorem 3.2 one need to use the triangle inequality and estimates
(42), (43), (56) and (57). O
Proof of Theorem 3.3. Let npy; < 3. Then observing that total variation norm of any

distribution equals 1, we obtain
18
(npo1)?

Similarly, we prove that ||£(S,) — D||ec < C(npo1)~*/2. Combining Theorem 3.2 with (12) and
(41) (see Lemma 4.10 below) we complete the proof of Theorem. [

I1£(Sn) = DIl < LSl + Pl = 2 <
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Proof of Theorem 3.4. Observe that
Zehjlﬁ Wit =Y {iH = [1£n(Sn) — U],

where £,(S,){j} = " L£(S,){j} and ¥, {j} = " ¥{j}. Therefore, we will switch to conjugate
measures Fj,, and Ep and apply properties of the total variation norm. Further on we denote
by O any signed measure satisfying ||©]| < 1. The expression of © can vary from line to line, or
even within the same line.

Recalling that all products and powers of measures are understood in the convolution sense,

we introduce the following auxiliary measures

o0 o0
Vi = ("L =D (pue"VI, Kn=)Y (pue"Ii — ponl — 201 Y,)",
j=0 =0
41001 %2 2 h *2
O, = myh * (pol + p(p1o + po1)(I — puie" 1)) * Kj,
Aoy, = puel —poil + (I —Aqyp),
X 1 > /0.5 N
Ap = T+mYp+ = [(1 +p01)I pe .[1 + 2’}/1Yh] * Z < j )(—1)thj,
j=1
i 1 n o~ (05Y g
Wineon = 3 I+ [(pio + po1)I + pii(e Il_I)]*Kh*Z i (—1)1I;
=0
h — (—0.5 pa—
+(1 = po)(po1 — p11)(e Il_I)*Kh*Z i (-1)1L,7,
i=0
A o= Y (p"V I, Ep=TI+pop(e"ls —I)x Ap, My, = exp{(A\/n)(e"I; — I) x Ay}
=0

Here

(i2'5) _ % (£0.5)(+0.5 — 1) ... (+0.5 — k + 1), <i8'5> = 1.

Observe that ET(S\R)(t) can be obtained from E/(\Sn)(t) by replacing el* by e'‘*". Therefore,
taking into account expressions (32)—(35) on page 1127 in [26], we prove that Lj,(S,) = A7 «
Wip + A2+ Woy,. Similarly W), = =, % M;™. Therefore,

1£4(Sn) = Onll < 1A = MG IWinll + D" IWin — Znll + [1Azn]"[[Wan]l.  (58)

From (23) it follows that

S

1

pret < Speh <o, por(e" +1) <002, por <001, po < Cnt, —PU

1
pio+po1 2

w
w
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Applying (59) we consequently prove that

oo o0
Wl < @40 ety < (e + 1) ( ) b ),
j=0 Jj=
3 h
po1l| Yl < §p01(€ +1) <0.03,
) o0 J
IKnll < Z(plle + po1 + 2po1||YhH Z ( +0.01 +0. 06) < 1.68,
j=0 7=0
9(e" +1)2 plo D11 1 9
M| < 4p8 ( + (f n 1) 1.68
L] 4 (p1o +Po1)?  pio+po1 \3 ( )
Ipo1 5
< g—gl 5 (1.68) < 1.694pgr < 0.017,
L < Cpgy < Cn2,
- 1 © )
[Ain = Il < por||Yal + 5(1 + po1 + prie” + 2por[|Va ) Z ([TTx 7
j=1
3por (e +1) 1 > -
< PE 1 05(1+0.01 + 5+ 0.06) 1L | Y (0.017)
j=1
3por (e +1) ;
< PO T L0702 1.694 L0 < poy(1.5(eh + 1) + 1.21) < 0.043,
2 + 0 og3 S Por(15(e” +1) +1.21) <
|Aonll < prie® +por + [T — Aunll < —I— 0.01 + 0.043 < 0.4,
|An]] < 1+ Cpor < exp{Cpn} < eXp{Cn_l},
- 1 > .
[Winanll < 2{1 + (P10 +po1) + pua(e” + DI Knll ||Hh||J}
§=0
+lpor — pra|(e" + 1) Ky Z T, 17
j=0
< 0.5(1+4[140.01+0.67] - 1.68 - 1.018) + (0.02 + 0.67) - 1.68 - 1.018 < C,
A < > ( ) <R DA < C
7=0
. A
192l < exp{2(e" + ]l Anll} < exp{Cnt}.

Finally, observe that
IATS = || < momaxc(|Aa "7 I8 ") | Aa, = M| < Onll Ay — My
Substituting the above estimates into (58) we obtain
1£0(Sn) = Uall < Crl|Ary — Mal| + [[Win — Enl| + (0.4)").
Taking into account (23) we see that
A (b 2
M, = I+=("I-I)xA,+06Cn
n

2
Ay = I+mY,+OC|H,)| =1+ (p01 - W)Yh +0Cp5; = I +po1Yn +OCn 2
P1o + Po1
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Therefore

|(p11e”) — (pe")|

WE

1Yy — (eh1, — 1) x Apl| < (eh +1)

<
Il
—_

jmax((prie”), (pe))? " p11e” — pe|

WE

< ("4 1)
=1

s (1) i
e+l -3 34(3) <l -l
j=1

<
Il

N

and

C

- . A A
Wi =Vl < fpor = 2 |IVall+ 21V = (" = 1)« Anll + —
n n n

/N

N

C - _
g{|npo1—>\|+|p11—l?|+n ' (61)

Next observe that

oo
Sl pnet T — porl — 271 Ya)¥ — (5" 1)

K — Anll <
j=1
° .
< lpue” i = por T = 20 Y5 — et 1| > j(0.4034)7
j=1
< C(lpin — Bl +po1) < C(lpi1 —p| +n7 1),
= 1
Wi = S{I+ P10l +pra(e" i = D]+ K} — (1= po)pui (e i — I) x Ky +OCn ™"

1
= 5{1 + [prod + pra(e"ly — D] * Ay} — (1 — po)pr1 (e, — I) * Ay,

+ OC(Ipu —pl+n71).
Noting that Ay, * (I — pelI;) = I, we next obtain
. 1 R
Win = Eall < Sllprodn —1 —pu(e"li = I) % Apll + C(lp1s — pl+n7")

1 o ~ p—
= SAn = pe" T A £ et 5 Agl| + Cllpr — |+ )

< C(lpi—pl+n7h). (62)

Substituting estimates (61) and (62) into (60) we complete the proof of Theorem 3.4. O

4.3 Auxiliary results for Theorems 3.5-3.8

Characteristic functions and Fourier-Stieltjes transforms of measures from subsection 3.4 are

equal to
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L(t) = ;( Sty X(H)=L({t)—1, D(t)=(1-2(a—0b)—2aX(t)*(1+A(t)),

ﬁl(t):ﬂ'l-‘rWﬂ'zﬁ-ﬂ'& ﬁz(t):ﬂl—l—%ﬂ'g—‘rﬂ'g,
E(t) _ 8bX (1) _ 7 El(t) _ 8(b— a)L/(\t) ’
(1—2(a—b) - 2aX (1)) (1—2b+ 2aL(t))?

~

A1 o(t) = ;(1 +2(a—b) 420X (t) £ (1 —2(a —b) — 2aX (t))\/1 + 3(t)>,

o~

Wia(t) = ;<1:|:(2acost (1 —2b) +2(1 —2a))D 1/2 )

G =ewo{ 2200 -1} () = T j;‘f( o
M) = 1— 216:—21()?: ;i)?(t)’ Bty =m + (1 1 EaQaX (t))“ t s,
A (t) = m (1 +2a+ W) (H(t) —1)?,
By(t) = mw Wh(t) = (g s 20 = D) - 1)

For the sake of brevity further on we write z instead of X (). We also notice, that z =

—2sin? 2 = cost — 1. For measure U concentrated on integers we define transformation

1 TUMe e 1 T (e
V(W) {k} = 7/ e | ey

Obviously, finite V(U) does not always exist. On the other hand, if U = >, _, ax(l; — I)**,
for some absolutely convergent series ay, then V(U) is finite measure. If we consider two lattice
distributions having equal means and finite factorial moments of all orders, then transformation
V() can be applied to their difference. Since |U x (I; — I)||lw = ||U]|, we will write |U|lw =
IVO)|l, if V(U) is finite measure.

Lemma 4.10 Let condition (24) be satisfied. Then the characteristic function F, can be ex-

pressed in the following way
E ) = POA@OW() + PR3 ()W (). (63)
Proof. The characteristic function ﬁn can be written as follows
Fut) = (m m m)(ArOT 2T + 85072701 1. 1) (64)

The expression (63) is known as Perron’s formula. Similar expression was used for Markov

binomial distribution; see, for example, [25]. Kj(t) are eigenvalues of the following matrix:

ae”t 1—2a ae't
P(t)=|be it 1—2b belt
ae™® 1—2a ael

Here and below 5 = 1,2. Note that the third eigenvalue of P(t) is equal to zero. Let 7j =
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(Wi, Y2, ¥i3) 7 = (251, %2, %j3) be corresponding eigenvectors:

Pt)Y; =M,
ZTP(t) = A,(t) 27, (65)
Z7Yi=1

It is not difficult to establish that eigenvalues /A\j(t) satisfy

/A\f(t) + (2b — 2acost — l)JA\j(t) + (2a — 2b) cost
= R2(t) + (-1 —2(a—b) — 2az)R;(t) + (2a — 2)(1 + 2) =0.  (66)

The discriminant of equation (66) can be written in the following way

D = (1-2b+2aL(t))*>—8(a—b)L(t)
= (1—2b+2aL(t)%(1 + Ay (2))
= (1-2(a—-10)— 2aa7)2 + 8bx
= (1—2(a—1b)—2az)*(1+ A(t)).
Therefore,
~ 1 ~ ~ Py
Aj(t) = 2{(1 —2b+2L(t)) £ (1 —2b+2aL(t))\/1+ Al(t)}

= ;{lJrQ(ab) + 2az + (1 — 2(a — b) — 2ax) 1+£(t)}.

Next we calculate eigenvectors of P(t) We have

it

ae™ 1-2a ae Yj1 Yj1
befit 1 — Qb beit yj,? = A] (t) yj,Q . (67)
ae”® 1—2a ael') \y;s3 Y3

It is evident that y; 1 = y;3. We recall that el = cost+isint, e = cost—isint. The equation

(67) then can be reduced to

(2a cost — Kj(t))ym + (1 —-2a)y;j2=0
2bcostyj1 + (1 —2b— Kj(t))yj,Q =0.

Both equations of the system are equivalent, hence

K- t) — 2acost T
7]‘ = yj,1<la ]()—7 1> .

1—2a

Similarly,

Z7 = Zj,1€it(e_it, w7 eit)_
Aj(t) — (1 —2b)
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From the third equation of the system (65) we get

wf —u , 2cost(A;(t) — 2acost) | |
?T7 = Yi1%; elt<e 1t+ j +elt
jJdi j,1%5,1 A (t) (1 — 20b)
. K N9 .
= yj,1zj,1e1tgcost< w> _1
Aj(t) — (1 —2b)
and, therefore,
i K t)—2 t -1
Yjrzi1 = (eltz cost(l + M)) .
Aj(t) - (1—2b)

Finally, observe that

Kl( —2acost

T
71?{(17 17 1) = ; 1 — 2a )

) (1 —2a)2cost )

T
Y1,121, 1e 2cost + =
( Ri(t)— (1—20)
T t)+2b—2a

) 2K1 — 1 + 2b — 2acost

Ay (t) — 2acost
1—2a ’

1

Ay Aq(t) —2acost

b ) 1
1—2a

1 2acost—1—|—2b 4a
2 )1/2
T

Ai(t) — 2acost
Aq(t) —2acost Wl (68)

b ) 1
1—2a

Similarly,

Substituting (68), (69) into (64) we get (63). O

Lemma 4.11 Let U be a measure concentrated on Z. Then

e < 5= | "B, (69)

2 J_ .

If, in addition, Z I71lU{j}| < o0, then for allv € R and u > 0
o0

n N 1/2
U]l < (1+U7r)1/2<21ﬂ_/_ |U(t)|2+%|(e-ltvU(t)) |2dt) : (70)
o1+ ) < [Tl e oy ()
U{(- ooy}}|<1+| u”') < %/j efff)l‘+i <ee:_U<1t)> dt. (72)

The estimate (69) follows directly from the formula of inversion, the estimate (70) can be
found, for example, in [83]. Estimates (71) and (72) are respectively the inversion formula and

Tsaregradskyi’s inequality combined with formula (23) from [19]. The following lemma is a
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partial case of more general result from [83].

Lemma 4.12 Let U be a measure concentrated on Z, v € R, uw > 1. Then,

4 2 e . Tr 2 ~ t .
Ullx > C’/ et /2U<t>e_lt”dt'7 1U]|0o = C’/ et /2U<>e—lfvdt'.
—r U u| ) u

The following trivial Lemma plays technical role in subsequent estimates.

Lemma 4.13 Let condition (24) be satisfied. Then

093 < 1-2a<|l—2a+2b—2az| <1+2b+2a<1.14, (73)
093 < 1-2a<|1—2a+2b=1—2a+2b<1+2b<1.07, (74)
093 < 1-2a<|1—2ax—2a|=1-2acost <1+ 2a<1.07, (75)
08 < 1-—4a+2acost<|l—2a+2b+2ax| <1—4a+2b+2a < 1.07. (76)

Proof. It is not difficult to check, that

|1 —2a+2b—2az|

|1 —2a+2b—2a(cost — 1) = |1 + 2b — 2acost|

< 1+42b+ 2a,
1 —2a+2b—2ax| = |1+ 2b—2acost|>1+2b—2a|cost| > 1—2a|cost|>1-— 2a,
|1 —2ax —2a] = |1—2acost| >1—2a|cost| >1— 2a,
[1—2a+2b+2ax| = |1—2a+2b+2a(cost—1)|=|1—4a+ 2b+ 2acost]|
< 1—4da+2b+2a,
[1 —2a+2b+2ax| > |1—4a+2cost|>1—6a>0.38.

O
Lemma 4.14 Let condition (24) be satisfied, |t| < m. Then
Al <e, 1G] < et (77)

Proof. We can write A (£) in the following way
1
A (t) = 2{1 +2(a —b) 4+ 2ax + (1 — 2(a — b) — 2azx)

x {1 + %E(t) —0.125A%(¢) 4 i (1/,2> ﬁj(t)} }

j=3 \J

= 1+ i(l —2(a —b) — 2az)A(t) — 0.0625(1 — 2(a — b) — 2az)A%(t)

%(1 —2(a—b) —2ax) (1/,2) A (t). (78)

j=s 7

Applying Lemma 4.13 we estimate each summand separately. Note that x < 0.

At)] = < 0.62, (79)

8bx ‘ o 8b|x| < 9.3bj] < 9.3-2
(1 —2a + 2b) — 2ax)2| =~ (0.93)2 =7 =30
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2bx

1 —2acost+ 2b

2bx 2bx
A 1+ 2% 141750,
T12ar2 StTiastT v

1 ~
]1+ L1 —2a+2b—2ax)A(t)’ =1+

<1+

2 2.2
0.0625(8bz) W

0.0625(1 — 2(a — b) — 2aw)32(t)‘ = ‘ (1—2(a—b)—2az)3| ~ (09338 577"

1 —(1/2\ 1, 1 PN s
1= —p) — < 21— AR il 627
Sl1=2(a—b) 2ax|j§_3:’( ; )A (1] < 51— 2(a—b) = 2a0| L |AW) ;:3:0 62

8303 |z 83b2g2 . 2
< < < 4.10%22. 80
32-0.38|1 — 2(a — b) — 2ax|> ~ 32-0.38-30-0.93° o (80)

Collecting all estimates we obtain

~

A(@)] < |1+ 3(1 —2(a—b) — an)ﬁ(t)] +0.0625(1 — 2(a — b) — 2az)|A(t)[?

1 o (1/2) (R
+§(1—2(a—b) —2ax)jz3( j )|A(t)|

< 14 1.75bx + 50222 + 4.16%22 < 1 + 1.75bx — 0.61bx < 1 + bz < .

Observe that G (t) can be written in the following way

o~

= P (L)) (B )
:“m{gng?%<12£x+n>}:em{a2af§&522w2@}'

Combining estimates (74) and (75) with the definition of G(t) we prove that

~ 2bx - 0.
mm<m%x°%}<&W.

1.072

O
Next we expand Kl(t) in powers of H(t) — 1.

Lemma 4.15 Let condition (24) be satisfied, |t| < w. Then

R = 1 220 - ) - (R 0 - 1P
2(1 _ 24 277 N
—4b(1(1_ 23+) 2%9 (H(t) = 1)* + 0Cb° ||
o 2(1—2a) -
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-~ — ~ 2(1 —
A = 2b(1 — 2a) i 8ab*(1 — 2a)

= Tozara OV m%ﬁ(t) — 1)H'(t)

40*(1 —2a)? —~, =~ ”y -
—W(M(t)(H(t) —1)%) +0CH 2|2
o 20(1 —2a) , ,
Ton top (B = 1)+ 00K x|, (82)

Proof. From Lemma 4.13 and (80) it follows that

1 1 (1/2\ ~; 8303 |z|?

1 —2(a—1b)—2 ‘ AMi’g—gC’bS 3,

5l —2(a—b) —2azl ; ( j ) O] < 327038 0.9 1
Collecting it and (78) we obtain

~ 2bx 4b% a2
A(t)=1 -
1®) + 1-2(a—b)—2ax (1-2(a—"b)—2ax)

3 3
=+ 0CH . (83)

It is not difficult to check that

1 B 1-2a
1—-2(a—b)—2ax  (1—2a+2b)(1—2ar — 2a)
_ 4abx
(I -=2(a—0b) —2ax)(1 —2a+ 2b)(1 — 2azx — 2a)
1—2a
= . 4
(1205 25)(1 — 20z —2a) T 0C1lal (84)
From (84) it follows that
4abx
(1 =2(a—0b) —2ax)(1 —2a+ 2b)(1 — 2ax — 2a)
dabx 1—-2a
" (1-2a+2b)(1 — 2az — 2a) ((1 a1 20)(1 — 2az —2a) QCW')

4abxz(1 — 2a)
(1 —2a+2b)2(1 — 2ax — 2a)

2,2
5 +0Cb7z”. (85)
Applying (85) and (84) we get

1 1-2a 3 dabx (1 — 2a) T OCH
1-2(a—0b)—2ar (1 —2a+2b)(1—2ax—2a) (1—2a+2b)2(1 - 2az — 2a)? '

Observe that

1 M) x
1-2(a—0b)—2ar 1-—2a+2b’ 1 — 2az — 2a

=H(t)— 1. (86)
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Substituting these expressions into (83) we obtain

~ 2bx(1 — 2a) 8ab?z?%(1 — 2a)
A(t) = 1+ —

(1—=2a+2b)(1 —2ax —2a) (1—2a+ 2b)%(1 — 2ax — 2a)?

4b22%(1 — 2a)2M (¢) 5 3
“ =20 £ 0)5(1 = 20z — 20 T 0Vl
2b(1 — 2a) , ~ 8ab*(1 —2a) , 9
— = (H(t)—1)— ————— = (H() -1
T—2ar2p O~ (1—2a+2b)2( ) -1)
ADP(1 - 20)*M (1)
(1 —2a+ 2b)3

(H(t) — 1)% + 0CH* ||

Expansion for K’l(t) is proved similarly. Here we present only the proof of the shorter version

of expansion. From Lemma 4.13 the following estimate of |A/(¢)| follows

8bz'(1 — 2(a — b) — 2ax)? + 32abxz’(1 — 2(a — b) — 2ax)
(1—2(a—0b) —2ax)*

32abxa’ - 1.14

’ (0.93)7

O

o 8bx'(1.14)%
= (0.93)4

’ < Chla'|. (87)

We can write A} (t) = Z1 + Z,. Here

(1 ~ N\ 2bx " 2ba/(1+42b— 2a)
2= <4(12(ab)2ax)A(t)) N (1 —2(a—0) —2ax> - (1-2(a—b) — 2ax)?’

Applying Lemma 4.13 and (87), we obtain the following estimate of Z5
1 12\~
|Zs| = ‘(2(1 —2(a—0b) — an)z ( i >A3(t)>
j=2
/12 CoL14] (X (1)2
13|72 (2 ()
j=2 j

Jj=2
al2'[[A)* 062772 + CIA' ()| A1)

=2 =2
Cl2'|b?2? + Cv?|2’ ||| < CH?|aa’|.

N
>)

j(t))/

1/2 ,
( / )‘j0.623_2
J

N

N

Therefore 9be/ (14 25— 2a)
~ ! + — 2a
Ay = 2 0CH2 |z’
1) (1—-2(a—b) — 2ax)? +0CH |z (88)

Taking into account Lemma 4.13 we prove that

1—2a—b) —2a0)? 1 oA =1

’ 2bx’ (1 + 2b — 2a) 2b(1 — 2a)

2ba’(1+2b—2a) 202’ (1 — 2a)?

(I -2(a—0b)—2ax)> (1—-2a+2b)(1—2a— 2ax)?
2ba’ (1 + 2b — 2a)*(1 — 2a — 2az)? — (1 — 2a)*(1 — 2(a — b) — 2az)?)
(1 -2(a—0b)—2ax)?(1 —2a+ 2b)(1 — 2a — 2ax)?

|2b2' ||8bz||2a%z(b — 2a) — (1 4 2b — 2a)(1 — 2a)al|

|1 —2(a —b) — 2ax|?|1 — 2a + 2b||1 — 2a — 2ax|?

< 16
S (0.93)5

bv?|za’| (|40 (b — 2a)| + |(1 + 2b — 2a)(1 — 2a)a|) < Cb?|z2/|.
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From the last estimate and (88) the estimate (82) easily follows. OJ

Lemma 4.16 Let condition (24) be satisfied, |t| < 7. Then

Gy = 1+ %(ﬁ(@ g M(f[(t) 1) 4 00 ?
= 1+ %(f[(t) — 1) + 0CH?a?,

o = %(ﬁ(w 1y Mmﬁ(t) DA (t) + 00|
- %(ﬁ(t) — 1) + 608w |.

Proof. Let k =1In @(t) Then it is not difficult to check, that

2bx(1 — 2a)
(1 —2a+2b)(1 —2ax — 2a)

k| = < Chlz|

2bx(1 — 2a)
S ‘ (0.93)2

| 20z
~1(0.93)2

and, therefore el®! < exp{Cb|z|} < C. Lemma’s statement then follows from expansions e® =
14 x4 0.5:% + 0|)%el"l and (e) = K'e”® = /(1 + k + Ok2el") = &' + k' 4+ 0|x|x2. O

Lemma 4.17 Let condition (24) be satisfied. Then, for alln =1,2,..., and [t| < 7

AT (1) — G"(1)| < Cnb*a? e < C'min(nb?,n~") om0, (89)
(A7 (t) — G™ ()| < Cnb?|aa’| %0 < C min(nb?, Vnbn 1) 05707, (90)
|AT(t) — (t)(l + 1AL (1)) < Cnb®|z]? 0% < C'min(nb®,n~?) eo"’”bw, (91)
(A7 (t) — G™(t)(1 + nAL(1))'| < CnbP2?|a’| ®0™* < C min(nb®, vVnbn~2) %% (92)

Proof. In what follows we frequently apply trivial estimates

_ C C(k)
bx 2 0.1nbx k_0.1nbx
e e, 2| e < s |z|"e < o k> 0. (93)
Due to Lemma 4.15 and Lemma 4.16
AL(t) — Gt)| < Cb2a®, N, (t) — G'(t)] < Cb*|aa). (94)

From (94) and the first estimate in (93) we easily obtain (89) and (90) for n = 1.

e2Cb2x2ebx < va2$2€bar:7

620b2‘$$,|ebm < C’b2|xx’|e0'6b””.

Ay (t) —

G(t)|
A1) -G

10]

<
<

Let n > 2. We evaluate separately when nb < 1 and nb > 1. Combining Lemma 4.14 with (94)
and applying (93) we prove that

A1) = G < mmax {[Ra ()", G0 "} Ra (1) = G(O)] < mel= P Cp2
<

< e2Cne"bIb2:v2 < CneO.5nbxb2 2 0 1nbx len(an —1)60.571171. (95)

Observe that due to Lemma 4.16 and Lemma 4.13

202’ (1 — 2a)?

CV?|za’| < Chl2').
(0= 9a+20)(1 =200 —2a)7| ~ ¥ 1o 2’

|&M<\
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Therefore, similarly to the proof of (95)

(A7 () = G ()] = [nAT ()R ®) - nG "L ()G (1)

AT () (K (1) — < )) +nG' (t) (A} (1) — G ()
n Ay (1) A (1) — G/ ()] + |G (D)|[AT (1) — G H(1)]
Cne ™=V p2 3! | 4 Cnbla’|(n — 1)b2x2e(n=20e

Cnb2|1,x/|enbw + Cnb2|xm’|eo'9"bxnb|x|eo'1"b$ < Cnb2|$1}/|60'6an.

NN N

Separating two cases when nb < 1 and nb > 1 we obtain
|(K§L(t) - én(t))l| < Onb2eo‘5nbx|z|3/260.lnbz < .Cmin(an, \/%’/7,71) o0-5nbz

Estimates (89) and (90) are proved. Next we consider the second-order estimates. From Lemmas
4.15 and 4.16 it follows that

~

M@t —G(t) = A(t)+0CH x> = 0Cha®,  1—G(t) = 6Cb|z|. (96)
It can be easily proved that |21\1 (t)] < Cb*22. Let n = 1. Then

AL(t) = G(t) = A0+ [A ()11 - G(2)]

Cb3|1'|3 < 61'20b3|$|3€0'6bl < 61‘20b3‘$|360‘6bm.

Let n > 2. Then

~

AT (1) - Gn(t )(1+nA1( NI < AT () = G™(1) = nG™ M (1) (As (1) - Gt
) =

| < ))I
+Hn(G"H () = G (0) (i (1) = G0)] + InG" (1) (1) - Gt

AD)]. (97)

Applying Lemma 4.14, (96), (93) and Bergstrom identity [12], we prove that

AT (1) = G (1) = nG" (1) (Aa () = G(1))]

< nln = 1)|7\1(t) — G())*(max {[A,(1)],|G(5)]})" < Cn?em bta
< Cnb|x|eo.1nbxnb3|$|3€0.1nbac 0.5nbx Cmin(n 2)eO 5nbac7
(G (8) = G (1) (A (1) = G(1)] = n|G" M (B)|[1 = G)|[A (1) — G(2)]

/N

Cnelﬁnbxb3|ﬂj|3 < Cn63|x|360.1nbxeo.5nbz < C«Inln(nbd,an)eO.Snbnc7

InG"™(t)(A1(t) — G(t) — A1(t)] < nG™(1)||(AL(t) — G(t) — Ay (2)))]

< Cnel.67tbxb3|x|3 < Cmin(nb3,n_2)e0'5”bx.

Substituting these estimates into (97) we prove (91). The proof of (92) is very similar and,
therefore, omitted. [
We can estimate now the closeness of A} and G".
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Lemma 4.18 Let condition (24) be satisfied. Then, for alln=1,2,...,

1 1
[AT" — G| SCmin{n,an}, AT — G*™ x (I +nAp)| ngin{nwnbg}, (98)

1 1
— by, AT =G« (I +nA mgcmin{,nbi”}, 99
i A (14 nay)| L (99)
|AT™ — G*™ ||y < C'min —””b,an ;oINS = G (T4 nAy)||w < Cmin —””b,nbf‘ . (100)
n n?

JAI" — G*"[|o < C'min {

Proof. Obsereve that, for |t| < 7, k >0,

t i .
i | < |sin(¢/2)| < / |sin(t/2)\ke_c"bs‘“2(t/2)dt < C(k) min(1, (nb)~*+1/2), (101)
™ 0

l\D\eL

Local estimates (99) follow directly from (89), (91), (69) and (101). Suppose, that nb < 1, then

[A]" =Gl < —/|A" — G™M(t)|dt < —/Cnb2 0-5nbz 1 < Opb?,

1
[AT" — GT" * (I +nA1)]lee < o -/Cnb?’eo'mbwdt < Cnbd.
™

When nb > 1, then

C
nv/nb’

s s
1 C
||Ax1<n _ G*nHoo < % /Cn—160.5nbxdt < E /60.5nbxdt <

1/ C
AF G I A o < — C -2 O.Snbwdt < .
T N — =

Estimates in total variation follow from estimates of Lemma 4.17 and (70) applied with v = 0
and v = 1 for nb < 1, that is

L7 1/2
el < (e (o [emresra) < ome < o,
™

—T

. 1/2
1
AT — G2 s (I +ndy)| < (1+7r)1/2<2 /(CaneO'snbx)th) < Cnb®.
Y

—T

Using v = 0 and u = v/nb for nb > 1 we obtain

™ 1/2
1Az — G| < (1+mf)”2(27r/(cn160~5"bf)2+nlb(c\/%n160‘5”’":)2&)

1/2 4 ” 1/2
(27v/nb) 1/2< /C’ -2 "“dt) < Cﬁ(/e"“dt)

C\4/nb< C > C
g — < )
n v nb n

N
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A" — G s (T+nAy)|| < (1+7Vnb)” (%/<n2e0-5 b) +nb<nQe°-5 b) dt)

—T

“ 1/2 4 1/2
—1/2( 1 C e Cvnb( C C

—T

For the proof of (100) let us note that |AT™ — G*"||w = |V(AT" — G*™)||, |AT" — G*™ = (I +

nAy)|lw = [V(A;™ — G*™ % (I + nA;))|| and due to Lemma 4.17

S AF(®) = G (t)]  CrbPaer
V(A" = G*)(t)] leif — 1] |2sin(t/2)|

< Onb?|z>%em® < Cmin(nb?, /b/n)e’"m=.

< Onb?|z|| sin(t/2)]e"b®

Similarly,
5 Ap(t) = Gm(0)| | [A(t) — G ()]
*n *1 / < |( 1 1
(VA" = G™)(1)] < ol — 1] ot — 1|2
Cnb2|xx/|eo.6nbx Cnb2x2enbx
= |2 sin(t/2)] |2sin(t/2)]2
< Can‘JfleO'ﬁnbr < C’min(nbz,b)eo'mm,
- AT (t) — G (1) (1 + nAy ()] _ Cnb3|z|3e0-6nbe
A — G % (I +nA = . <
|V( 1 G *( +n 1))(t)‘ |e1t—1| \2sin(t/2)\

< Cnb®z?| sin(t/2)]e® 50" < Cnb?|z|*5e%6m0 < C'min(nb3, \/b/nn~1)e502,

(VA" = G™™ 5 (1 4+ nA)(1))]
AT — G (OA +nA(W)))] | [AT(E) = (A +nAi (1))l
= leit — 1| leit — 1]2
Cnb3l'2|1'/|60'6nba: C’an‘.’EPeO'anI
2sin(t/2)] 25in(t/2)]2

< Cnb3x2e-0mbr < Cmin(nbg, bnil)eO'S"bw.

It remains to apply (70) with v = 0 and v = 1 when nb < 1.

. 1/2
H(Ain o G*n)”W < (1 + 7T)1/2 (2];1- /(Cnb2eo‘5"bw)2dt> < Cnb2,

—T

™

—T

1 ~ 1/2
[(AT" = G % (I +nA))|lw < (1+7r)1/2<2/(Cnb3e0'5"bm)2dt> < Cnb?.
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We also use v = 0 and u = vnb for nb > 1.

= 1 1/2
”(A:{n_G*n)HW < (1+7T\/%)1/2 (2171-/(0 b/neO.'{mbm)Z_’_nb(CbeOﬁnbm)th)

—T

™

1/2 12 , 7 1/2
< (2%\/1%)1/2 i @e"bzdt < CVnb @ e dt
2 n n

—/c\Y2/ ¢ \Y?  ovnb
" n v nb n

1 K
(A" = G % (T +nA)|lw < (14 7Vnb) > (2 / (C\/b/nn~1e05m07)?
T

—T

1 1/2
+nb(C’bnleO'5”bI)2dt)

1 g 1/2 A 1/2 1/2
< (27r\/%)1/2 (27r / Zz,)e”bxdt) < CM(S:) (C) < C\/%.

O

Lemma 4.19 Let condition (24) hold. Then, for alln =1,2,...,
*M . 1 *M . 1 2
[[AT" * (P — E)|| < Cma min E’b . JJAT" % (P, — E — Ey)|| < Crymin ﬁ’b ,

1 1
A" 5 (P — F)||oe < Cmomin{ ———.b ¢, [[AT % (P, — E — E1)||so < C'mo min ,b2},
AT £ (P = Bl < Cramin { = b} IAT" 5 (Pr = B = Byl < Crymin { —2—

Vnb Vnb
AT« (P, — E)||w < Cmo min {gb} |AT" % (P, — E — Ey)|lw < Cma min {nz,bQ}.
Proof. Due to Lemma 4.15,
~ 2bx

+0CH?z =1+ 6Chz.

M) = 1
1) T %0 2 — 2an

~ 202’ (1 — 2a)?
AN < 0CH*|za’| < Cbla'| + Cb?|wa’| < Cbla'|.
and N ~
A1 (t) — 2ax — 2a 1 2ax 2b(H(t) — 1) S OCH?
1—2a 1—2a 1—2a+2b
Therefore,
~ ~ AL(t) — 2a(z + 1 2a
|Py(t) — E(t)] = |m1 + 1()1_251 )7T2+7T3—7T1—<1—1_2GI>W2—7T3
Kl(t)—2ax—2a 1—2a —2azx 1+6Cbhz —1
- - - < b ’
”2( 1-2a 1-2a 2\ 12 Cmable]
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|[Pr(t) — E'(t)]

- Ay (t) — 2ax — 2a I—7r 1—2a—2azx\’
? 1-2a U 1-2a

T2 , , 2moax’
A -2

’12a( 1(t) = 202) + 575 ) =

R ()] < Cmabla|.

1By (#) — B _El(t)| _ 7T2<A1(7f) —2ar—2a 1—2a—2ax 2b(H(t)—1)

- - < Omab®a?.
1-2a 1-2a 12a+2b>’ T

Combining the last estimates with (77) and (93) we obtain

AL (1) Py (t) — E(t)] Crae™h|z| < Crgel 7070 100 1|

C'min(b, n~ ') meel-51b, (102)
n\Kl(t)I”‘llA’l(t)HPl(t) — E@)|+ [M@)" P{(t) — E' ()]
Cronb?e™|za’| + Crobe™® ||

Cﬂ'gbeo’gnbx‘:El‘nb|117|60'1nbz + Cﬂ'gbenbﬂl’/‘

C'mabel 7% |2'| < Cy min(b, v/b/n), 250 (103)

INCININ N

N

IAT()(Pi(t) — E(t) — E1(t))] < Cmpe™ b%2? < Cmy min(b?, n=2)ed570%,

Similarly,

~

|(AZ(t)(Py(t) — E(t) — E1(1)))] € Cmae® 0™ b2 |22’ | < O min(b?, v/b/nn~1)e 2707

The rest of the proof is very similar to the proof of Lemma 4.18. Suppose, that nb < 1 and we
apply v = 0 and v = 1 in Lemma 4.11. Then ||[A{"*(P1—E)||co < Cmad, ||A;"*(Pi—E—E1) |00 <
Cmab?, ||A3" * (Py — E)|| < Cmab and ||[Aj" (P, — E — Ey)|| < Cmeb®. Suppose, that nb > 1.
Applying v = 0 and u = v/nb we obtain

C7T2
nv/nb’

C7T2
n2vnb’

[AT" % (P1 = B = B0 <

||A*n ( )”oo < 7/0,”2”—1 O5nbxdt <

™

1/2
[[AT" % (P, — E)| < (1 + 77\/7%) 1/2 (2177 / (Cﬂgn_leo'snbz)z + %(Cﬂ'g MBO'5nbz)2dt>

—T

—1/2( 1 / 12 C7r2
< (27’1’ nb) (2/C7T2n_2enbwdt> < —=
T

n

Similarly,
*n C'/TZ
AT % (P = B = Bl < =5~
Similar to the proof of Lemma 4.18, we obtain
S en AP (t)(Py(t) — E(t))| _ Cmabla|e?-6nbe , b
VA"« (P — E)(t)] = P < Zein(t/2)] < Cmyb|sin(t/2)[e07

< C7T2b|$|1/2€0'6nbz < C7T2 min(b, /b/n)eo.5nbm,
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(VA « (P, — E)(1)| < |<K?(t>(131(t)—ﬁ(t)))|+\An( VBu(t) — E(t))]
1 1 X ‘eit _ 1| ‘elt 1|2

Cﬂ'gbll‘/leo'ﬁnbx Cﬂ2b|x‘6046nbx

S [2sin(t/2)] 2sin(t/2)]2

< 6171_21760.5nbar:7

R @P1(1) — B(t) — Ea(t))] _ Cmab®a®es
leit —1] = |2sin(t/2)]

< Cmob?|z|| sin(t/2)]e"" < Cmab?|z[?/2e0070% < Oy min(b?, \/b/nn~1)ed5m0%,

VAT (P = E = E1))(1)| =

(VAT % (P~ E = BE))()'
AP ) = E) - E@))| |, M @P(1) - E(t) - By (®))]
N it 1] el —1J2
Cﬂ_2b2|x$/|eo.6nbx C7T2b2 2 nbx
|2 sin(t/2)] |2sin(t/2)]2

< Cmob?|x|e26" < Oy min(b?, bn~1)el-5mbe,

We apply (70) with v = 0 and v = 1 when nb < 1. Therefore, |[A" * (P — E)|jw < Cm2b and

A" % (P — E — Ey)|lw < Cmob®. When nb > 1, we use v = 0 and u = v/nb.

~ 1/2
||A={n*( )”W (1+ \/>)1/2< /(Cy/]_(_Z\/b/ineof)nbw)2 + 7’2~b(0ﬂ_2b60.5nbm)2dt>

—T

1/2 1/2
< (27T\/%)1/2<2 /C’]TQ nbmdt> (27‘(\/7)1/2(07-(2 ) < OL VTLb.
s

n n\v n

Similarly we have
N Cﬂ'g\/’ﬂb
1AL * (P1 = B = Ellw < — 53—
O

Lemma 4.20 Let condition (24) hold. Then, for alln=1,2,...,

1 1
[[(W7 — M) % AT < len{n,b}, l(Wy — M « (I + My)) * A7"|| < C’mln{nQ,bQ},

1
[[(Wy — M) %« AT ||oo < C’min{,b}, (W1 — M« (I+ M) * A" < C’min{
nvnb

Vnb

Proof. From (79) it follows that 1 + A(t) > 1 — |A(t)| > 0.38. Therefore,

(1—2(a—b) —2ax)™" (

1+ A@)/2 1)
A
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3

Wi — M) * A" ||w < C min @,b , NOVL = M o* (I 4+ M) * A" |lw < Cmin{ ~——,b% ¢.
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and

D7t = (1-2(a—b)—2a2) ' (1+A() "2
1 -1 !
= (1=2(a=t) = 202) "+ (1= 2(a = b) — 202) (MW_1>
= (1-2(a—0b)—2azx)"" +6Cb|z|. (104)
Therefore,

(1+1—2(a—b)+2aa:

1-2(a—b)—2a ) + 60|

— — |1 1—2(a —b) + 2azx 1—2(a—b)
|W1(t)—M(t)|—‘2(l+1_2(a_b)_2ag; 1—2(a—b)—2az
B 1—2(a—0b) 1—2(a—0b)
_’12(ab)2ax+90bx| 1—2(a —b) - 2az

) +0Cb|z| —

‘ < Oblz|.

Combining the last estimate with Lemma 4.14 we prove that

(Wi (t) — M(8)||AL ()" < Ce™*bla| < Ce¥ P70 1m0 p 3| < C'min(b,n~1)e®5* (105)

Applying Lemma (4.13), (79) and (87) and we estimate the following members

(1+A@t)~V2 = i <_1_/2> A (t) = 1+ 6Cb|z],

=N
1’(1 = ZEZ—Z;;EZD H (14 A(t))3/2

|A'(t)| < Cbl2'|.

4
Similarly,
=, 1 1—2(a —b)+ 2azx 1 !
Wilt) = 2<1 Tz 2(a—b) — 2ax (1 +£(t))1/2>
_1(1_2( —b)+2ax>/. 1 _1(1—2(a—b)+2ax> A'(t)
S 2\1-2(a—b)—2ax) (14+A@)/2 4\1-2(a—b)—2ax) (14 A(t))3/2
B 1-2(a )+2aa: _1 b) + 2ax ,
2<1_2( 5 )( +0Cblz|) + 60Cb|z'| 2( 2%) +0Ch|2|
1 1—2(a—0)+2az’ " 2(a—b) !
:2<1+12(ab)2ax) +9C’b|x|—< “5a—b) = ) + 6Cb|2’|

and, therefore,

|/V[71/ () = M'(t)] = ‘ (1 —12(_a2—(ab)_—b)2ax>l + 00| (1 —12(_a2—(ab)_ : 2am) ’ < Cola]

Observe that, due to (93) and estimates in above,

[(Wi(t) — M@)A ()™ | < [Wi(t) — M (1)[|[AT(E)] + [Wi(£) — M () |n] Ay (8) " AL ()]
< Cbe"bﬂx’\ + Ceange”bw|xx’| < Cmin(bQ, M)eO'S”bw.
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Observe, that
1 1—2a

= 6Cb
1—2(a—0b) —2ax (1—2a—|—2b)(1—2aaz—2a)+ cbe

and

2ax
1—2a+2b—2az’

4bx
(1 —2a+2b—2ax)

(1+A@) V2 =1- S +000%a?, M(t) —1=

Applying the last expression we write Wl (t) in the following way

— 1 1—2(a—b) + 2ax 4bz 9 9
=—11 1-—
Wi(®) 2( R TP 2aa7< (1—2(a—b) 2ax)2>> +oCh
_ 1—2a+2b 20z (1 — 2(a — b) — 2ax) + Sabx? 2 o
- 1-2(a—0b) - 2ax (1-2(a—0b) — 2ax)3 +oCh
— 2 Abe(M(t) — 1

O = A2 —0) —2ar)? (1 =2(a—b) 2022
2bz(2M (t) — 1)
() - (1—-2(a—0b) — 2ax)?
0 - 2b(1 — 2a)(H — 1)(2M (t) — 1)
(1—-2a+2b)(1—2(a—0b)—2a)
o~ 2b(1 —2a)(2M () — 1)(H(t) — 1)
M) = M(2) (1— 20+ 2b)?

t
= M(t)(1+ M (1)) + 0Cb*z>. (107)

+0Cb% 22

I
<)

+ 0CH% 22

I
<)

+ 0CH% 22

From (107) and Lemma 4.14 it follows that
|W1 (t) — M(t)(l + J/M\l (t))”Kl'n < (C'e0-5nb 0.5nbx p2,,.2 < Cmin(bz, n—2)eo.5nbac.
Similarly it can be proved that

Wy () — M(£)(1+ My (£)ATY| < Cmin(b?, vnbn~2)e®-5b

The rest of the proof is very similar to the proof of Lemma 4.18 again. Suppose, that nb < 1
and we apply v = 0 and v = 1 in Lemma 4.11. Then [|[(W; — M) * Ai"||ec < Cb, ||(W1 — M %
(I + M) * Ao < CV?, |(Wh — M) x A1 < Cband ||(Wy — M * (I + My)) = A3 < Cb2.
Suppose, that nb > 1. Applying v = 0 and u = v/nb we obtain

17 C
Wy — M) x A - < 7/Cn_160'5nbzdt < ,
(3 = M) * A5 < o =
C
(W1 ( 1)) * AT RO

7 1/2
[(Wh = M)« A" < (1+ W\/?%)UQ (21 / (Cn—160-5nb96)2 + 7;(0\/()/760.5nbx)2dt>

™

2 1 . 2 g
< (277\/nb) (2/071_26"1”6115) < —.
s n
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Similarly,

*M C
[(Wi — M * (I + M)« AT"[| < o
Similar to the proof of Lemma 4.18, we obtain
5 [Wi(t) - M(0)[[R:(0)"] _ Clafe®obs . 0.6ni
Wi —M)xAT™) ()] = - < <Ch t/2)|e”°m0"
|V(( 1 )* 1 )( )| |elt71\ ‘281n(t/2)‘ |Sln( / )|e

< Cb|m‘1/2eo.6nba: <Cm1n(b, /b/n)eO.Snba:’

(W — ) e amy@y] < A0 = MR | [Wh(t) - MolA0"]
L 1 = leit — 1] leit — 1|2
C’b|x’|eo'6"bz Cb|x|eo.6nbz

< bO‘Snszc
2sm/2)] | Esm@p ST

5 e W) = M1+ My (1)) [[A4["_ CH2a%ente
V(W1 = M = (I + M) # A7) ()] = = T < BemD)

< OV ||| sin(t/2)]e™® < Cb2|x\3/260'6”bl < C'min(b?, \/b/nn~"1)e>nbe,

[(Wi(t) = M(t)(1 + M (t)Ap)|
et —1]

V(W1 = M # (I + M) % A™)(8))'] <

L Wi@) — M)+ 3 @) |4

leit — 1|2
Cb2 |xxl|eo.6nbw Cb2x2enbm -
< Cb2 0.6nbx < C'mi b2 b -1 O.anba:'
2sin(t/2)] | |2sin(t/2)]2 [2le™™™ < Cmin(p, bn™")e

We apply (70) with v = 0 and v = 1 when nb < 1. Therefore, ||(W; — M) x A7"||w < Cb and
(W1 — M % (I + My))* A" |lw < Cb?. When nb > 1, we use v = 0 and u = v/nb.

1 i 1 1/2
(W1 — M)« A |lw < (1+ 71'\/nb)1/2 (2 / (C’\/b/neo'f’"b‘/’[")2 + nb(C’beo'E’”bm)zdt>
T
= /2 1/2
172 1 Cb be ! 172 Cb Cvnb
< (2nV — [ = < (27 < .
(7r nb) (27r/ne dt (77 nb) s -

—T

Similarly we have

JWs = M (14 M) < AT < 2
Thus we complete the proof of Lemma 4.20. [
Lemma 4.21 Let condition (24) hold. Then, for alln=1,2,...,
lnAy * My « G*™|| < C'min {12,nb3}, [InAy * My * G™ |00 < C’min{ ! ,nb?’}7
n n2v/nb

nAy * My * G™ |y < Cmin —nb,nb?’ .
n2
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Proof. From (86), Lemma 4.13 and Lemma 4.14 it follows that

2(1 — 2a) x?
A 7‘7 144
A= T sa 2 ( * a+1—2(a—b)—2ax>1—2ax—2a

2 42
<|l— (142 4+ = ’bZ 2 < o2,
‘(0.93)3 ( Tt 0.93) v *

202(1 — 2a)

2b(1 —2a) 1—2(a—b)+2ax x

)| < }1—2a—|—2b) 1—-2(a—b)—2ax 1-—2ar—2a (093) ‘$| Cb|z|

| M (¢
Combining these estimates with (77) we prove that
InA1 () My ()G™ ()| < Cne 573 |23 < C min(nb3, n~2)ed5mb7.

Similarly,
|(nAy ()M, (H)G™(1))'] < C min(nb®, n=2v/nb)e50*.

For local estimates and estimates in total variation it suffices to apply Lemma 4.11 with
u = max(1,vnb) and v = 0. For estimates in the Wasserstein metric, before applying Lemma

4.11, one should divide estimates of the Fourier- Stieljes transforms by |elt — 1|. [J

Lemma 4.22 Let condition (24) hold. Then, for alln =1,2,...,
|Az]| < 3.1|a —b], | Az]|™ < 15.5]a — b](0.2)™.

Proof. Applying (1) and (24) we prove

8la —b| [ 20 \7\’ 15\ [ & 2
a0 < qh g (S (m)) <sen(h) (Sov)
Jj=0 7=0
< 10.66|a—b|<10.66-3—10<0.36,
1As] < ;H(l2b)I+2aL|§;’<1§2>’|IA1|Ij 1066“( 203@ 1)
< 3.1|a—b|<3.1/30<]0.2,
[A2]|™ < 3.1)a—b](0.2)" ! < 15.5|a — b|0.2".

Lemma 4.23 Let condition (24) hold. Then, for alln=1,2,...,
max([| M, [| My, | Ell 1B [Py [P2]l) < ©

Proof. Observe that M, L, E, H and G*" are distributions. Therefore, |M|| = || L| = ||E|| =
|H|| = ||G*™|| = 1. From (81) it follows that ||A1]] < |G| + ||A1 — G|| < 2. Therefore, applying
Lemma’s and 4.22 and 4.13 we prove that

1 1
||P1|| <7T1+77211(|‘A1H+2a)772+773 <7T1+(2+>7T2+7T3 <C,

1 0.93
1 1 2
1Pell <71+ 7= (1Al + 20) w2 4+ 15 < 1+ 5o (024 o= Jma 4w < ©
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Similarly,
QM+ DdAHI+1) 6 2
1My < 2 Soonr 1Bl < 5oz
0.93 0.93 0.93

O

Lemma 4.24 Let condition (24) hold. Then, for alln=1,2,...,
Wipll<C, [[Wellw < C.

Proof. From Lemma 4.13 and the fact that | L] = ||| = 1 it follows that

8b(HLIHIIIII)H — [ 2a *jH2 160 [/ 2a \'\?
< ———Y —— < — =2
1Al 1—2b ]z::o 1+2bL 12 —~\1+2b

iz
16b 2 \ 2 16 2\ 2

— 1— <—(1-2) <os62
1—2b< 1+2b> 30( 30) 06

Therefore,

< 30 (57552 (S 3V E ()

Jj=0

1 6 22 \ % 1
< (14 (=+1)(1-
2( +(30+ >( 1+2b) 1—0.62>

—2
< 1(1—1-%(1—2) -2.64)<2.4<C.

2 30 30
For the second estimate observe that, due to (104) and Lemma 4.13, we have

= 1 1—2(a—b)+ 2azx

2ax
1—2(a—b) — 2ax +0Chla] = 0Ce],

— t t .
|Wa(%)] C|x|<CSin2§<C’Sin§‘ < COle' —1].

N

Therefore, we obtain

o~

)l _

o —1[ S

Similarly,

= 1(1-2(a—0b)+2az\’ ,
Wot) = =3\ T%@=p) =24 ) 70U

202" (1 —4(a — b
- QEG - b§ a ZGQ)Q 00| = 6C),

Wit)| < Cla'|<C

t .
sin 5’ < Cle' — 1|

and we have

[W(0)]
—= L C.
o — 1)
Consequently,
— , —, —
RO W0, | R0 |,
eit — 1 elt — 1 (elt _ 1)2
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We recall that ||Wa|lw = ||[V(W2)||. Therefore, it remains to apply Lemma 4.11 with v = 0 and
u = 1. That is,

T 1/2
[Wallw < (1+7r)1/2<21ﬂ/ C2dt> <C.

—T

O
4.4 Proof of Theorems 3.5-3.9
Proof of Theorem 3.5. We have

[Fo — Ex M+ G*™"|lw < [|[PLs A"« Wi — Ex M x G*"[lw + || Py x A3™ « Wallw
< [P s (W = M)« AT lw + [|M o+ (P« A]" — E = G™)||lw + || P2 A3 * Wa|lw
< M # Ay« (P = E)|w + |M* Ex (A" = G)[lw + [|[Pr+ (W1 — M) = AT ||w
+ ||Py* A5 % Walw

Observe, that
[P % A5 5 Wallw = [Py« AS™ « V(Wa)|| < [ B2l [[ A" VW)l = [ P2l Al ™ [[Walw -
Arguing similarly for other summands we arrive at

[Fn = Ex M+ G lw < IM|[[[AT" * (P = E)|[w + [[M|[[|E[I|AT™ = G™[[w
+ P Vy = M)« AT lw + [P [ [ Wallw ([ Azl (109)

It remains to apply Lemma’s 4.18 — 4.24.

|E, — Ex M« G|y < C’(min {”nb,nb2} + (72 + 1) min {mb} +0.2"a — b|>
n n

< C(min{\/;?b,b} +0.2"%a —b|).

For the total variation and local norms one should replace, in (109), respectively || - [|w by || - |

and || - [|co-

|F, — Ex«MxxG™|| < C(min{l,an}+(7r2+1)min{1,b}+0.2”|ab|)
n n
. 1
< C’(mln{n,b}+0.2"|a—b|>,

1 1
|E, — ExM*xG™"|w < C(min{ nb2}+(7r2+1)min{ b}+0.2"|a—b|)

b b)
nvnb nvnb

1
< Cf min{ ——,b; +0.2"%a — b] |.
< {nvnb } | |)
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Proof of Theorem 3.6. Arguing similarly to the proof of Theorem 3.5 we prove that

IFy — (E + E1) % M G*™ 5 (I +nAy + My)||w

=[P« AT« Wi+ Pox AS"«Wo — (E+ E1)« M «G™ x (I +nAy + My)||lw

=[|PLx AT« Wi+ Pox AS" « Wo — (E+ E1) « M «G*™ % (I + nAy + M)
(B4 Ey) s (A« Wi — A s Wy + A5 Mo (I + My) — A 5 M« (I + M)
+G* o M o+ (I +nAy) * (I+ M) —G™ % M % (I +nAy)*(I+M))|lw

<A« (Py = E = Ey)|lw [Wall + [|1E + Ex[[[[( Wy — M s (I + My)) = A" lw
FIE + Ex[[[| M1+ Mf[[[AT" = G * (I + nAy)|w
B+ Er[[M||[nAr « My« G |lw + || Pa|l[| A" [ W2 w

< C((m + 1)min{m b2} —&—min{@mb‘?} +0.2"|a — b)
n

2 b
< C<min{g,b2} +0.2"|a — b|>.

Similar inequalities hold for the total variation and local norms. It remains to apply Lemmas
4.18 — 4.24.

1
|E, — (B4 E1) « M« G*™™ % (I + nA; + M1)||co < C’((wz—f— 1)min{ ,bg}

1 1
+ min ,nb3}+0.2"ab><0(min{ 7b2}+0.2"ab>,
{nQ\/nb | | n2v/nb | |

1
||Fn_(E+E1)*M*G*”*(I+n141+M1)||<C<(ﬂ-2+1)mln{2’b2}
n
+min{ —,nb”  +0.2"a—b| | <C( minq —,b" ¢ +0.2"|a — 0] ).
n n

Proof of Corollary 3.3. The estimate follows from Lemmas 4.18 — 4.24 and estimate

O

[1Fn = (B + Er) s Mo (I+ M)« G| < (| Pofl[| A" W2 ]| + [[(Pr — E — Ev) + AT [[[[ W]
+ B+ EDAT™ « (W = M s (I + My))[| + | B+ En[[[M o+ (I + My)[[[[ AT = G

1 1

< C((ﬂ'g + 1) min {27b2} + min {,nbg} +0.2"%a — b|)
n n

< C(min{an,n_l} +0.2"a — b|>

O
Proof of Theorem 3.7. Let us estimate the following expressions. We apply = cost—1 =
—£ 46014, (86) and

— 1—2(a—b) + 2ax
2M(t) -1 = .
®) 1—-2(a—b) —2ax
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Therefore,

—~ o~ - —2b(1 — 2a)(1 — 2(a — b) + 2ax)x
M©M(?) (1 —2(a —b) — 2azx)2(1 — 2a + 2b)(1 — 2az — 2a)

B b(1 —2a)(1 — 2(a — b) + 2ax)t? oG b
T (1-2(a—b) — 2ax)2(1 — 2a + 2b)(1 — 2az — 2q) !
0.93-0.80t2 - -
> 4L 0Cht* > 0.57bt? + OCbt .
1.14(1.07)2 00 0.57bt% +6C
Using |siny| < |y|, |e¥ — 1] < |ylel!, y € R, we estimate
4b(1 — 2a)(1 — 2(a — b) + 2ax) sin® £
MM ()] = ’ 2 < Cbt?
M3 (8)] = (1=2(a —b) — 2az)2(1 — 2a + 2b)(1 — 2az — 2a)
and 2y
|@n( H—1< )2”5 2a)  2sin” 3 e3:2bsin® & i g2 0.8nbt?

20 +2b 1—2acost
We apply Lemma 4.12 with v =0, u = vhnb, U = F,, — M « G*™, where h > 1 will be chosen

later. Let ¢ = t/u. We use the following expression.

|Ey — M s« G| = |AT" % Wy + A5 s Wy — M« G + Wy % G*" — Wy« G*"
+ M*xM «G" —Mx M « G|k
= ||M % My + A3" % W + (A" — G*™) « Wy + G % (Wy — M + (I + My))
+ MM+ (G = 1)k

Then, taking into account, Lemmas 4.22, 4.23, 4.24 and (89), (107), (108) we obtain

wu—M*wwK>cu/’e*”@ma—MQGWMM|

[ rRO @ - ol [ o Tl
0

— 00

> 201

—enwill [ e PRS0 - 6 Dl
~Cu [ e D) = NI+ N @)t

—C’H/ 2 M (E) My (D)||G™(F) — 1]dt
Vi—Vo—Vs—V,— Vs,

WV

where

> 1.14C
Vi > 2011]/ e’ /2(0 57bt2 + Chi*) dt‘ 1 / —t*/2qy,
e o

hn
n —t%/272 n > —t2/2 t* n|a7b|
V2 S 0120.2 |CL — b‘ e t dt < 0120.2 |a — bl (& 7dt g 0120.2 s
oo oo hnb hnb
R - 2t t! ClB
VE; < Clg e nb“t>dt g 013 h dt < h2

= —t%/23274 - et /2 0 ¢! Cha
Vi< Oy e bt dt < Ciy W2n? dt<h2 >

Vs < 015/ e—t2/2€0.8nb52nb2t~4dt _ 015/ —t2/2 0.8t2/nh b t* dt < %
oo oo h?n h2n
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Therefore,

|F — M« G ||x = 114G, /OO o /2q¢ — C120.2" ja — b] — % — —CM — %
0 n

hn hnb h2n  h2n2?2  h2n
Cie Cis
> — — 2™Ma — b — — ).
z 7 (1 C170.2"|a — b| W

If h = 2C4s, then the last estimate becomes (27). Local estimate is proved similarly. For the

Wasserstein metric note that

|Fn — M« G™||lw

[V(F, = M« G7) || > [V(F, = M+ G™)|
[ eentBO-TOT@),|

eif — 1

WV

Cii

O
Proof of Theorem 3.8. From Lemma 4.22, Lemma 4.23 and Lemma 4.24 it follows that
foralln=1,2,...,

max(|M(8)], [ My ()], [E@)], |Ex (1)), |PL@)], B ()], Wi @), [Wa()])  C, [Aa(t)]™ < 0.27

Using Lemma 4.13 we can obtain that

2aa'(1+2a+2b) | _ 0.07-107

M\' t) = X
M (2)] (1 —2a+2b—2azx)? 0.932

'] < C,

2amy

E/ 1) = ’ < ’ <
B(t)] = {72 < | < €
Using (88) we have
Rt = 2bx’ (1 + 2b — 2a) OO ||
BT (1 - 20 4 2b — 2ax)? '
- ~ b’ (1 + 2b — 2a)
A () +AL(t) = 0CH? |z’
- 2b|a’|(1 + 2b — 2a) 0.07-1.07
Ay(t)] < CV|za!| < ————12'| + Ob?|za’| < C
DI 2 NV 2@7’(2 / 57 T2 ~ 20/71’2 ’
< —2 < < — <Ol

Therefore, according to (102), (103), (89), (90), (105), (106) it follows, that

— o~ ~

IM6ATE)(Pi(t) - E(t))| < Cn~lmpedombe,
(M)A O(Pr(t) — E@®)| = [M'@OAF)(Pr(t) — B@)| + M@K ()i (t) — E(t)))|
< Cn—1ﬂ_260.5nbz +CW2\/Z)/760.5nbz < Cﬁzm€0'5nbr,
IM(HE@®) AT () — GM(t)] < Cn~ledmbe,
(M@)E@)RT() — G 0))| < [(MEE®) A7) — G™(1)| + M@ E®)||(A7(t) — G(8))'|
g CnfleO.Snbz + C\/%GO.Snba: < C b/neo.Snbz,
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—1_0.5nbx
Cn™ e ,

|P{OIW () — ME)AL ()] + | Py (2)]| (W (t) — M ()AL ()|
Cn—160.5nbm + 0m60.5nbx g C b/n60.5nbm,

=
=
=
=
|
=
= =)
=)
=3
=
NN A

o~ C
[AZ () P2(t)Wa(t)] < 00.2”<nm,
(A P(t)Wa(1)) | < |nAp= (8) Ny () Pa(t) Wa(t)] + [AS (£) Py (t) Wa(2))|
AL (6) Po()Wi(1)]
< C(mno2"t+0.2") <Cnh

We also obtain

((F, — E % M % G*”){m}|(l + %) < (((M = A" = (P — E)){m}]
(M Ex (A" = G™)){m}|

H(Prx (Wh = M)« A7) {m}|

Py A"« W) {m)]) (1 N %)

Non-uniform estimate follows from estimate of Lemma 4.11, (71) applied with v = 0, and

u = v/nb.

m) 1 /Tr (60.5nbx 1 ) C (\/305 b 1)
F,—ExM+G"{m}|(1+ =)< -— [ C + + —e0onbe 4~ dt
. 1 H( Vnb 2w ) 4 n nv/nb Vb \V n n

1 ™ eO.Snbm 1 > C
< c + dt < —=.
2 J_ ( n nvnb nvnb

Further we move on the second part of proof of Lemma. Similarly we notice, that

M (O)[VAT" * (Pr = E)(B)] < Cray/b/ne”™, [(M(OV(AT" * (Pr = E))(1))'] < Crabe®*™*,
M@)|E@VA" = ™)) < Cy/b/ne®™m, |(M(t)E( HV(AF" — G*™)(1))'] < Cbe®ombe,
|PL()[V((Wh = M) A ()] < CV/B/ne®5™ (B (t) V(W — M) Aj™)(1))'| < Cbe®5mb,
Wa(t)] < Csin® £ < O~ 1) <Cle" ~1), [W3(0)] < Cle 1)

K5 (1) P ()W >’ < cor<C

elt — 1 ~ : =X n
’(K (O Po(O) W )| < ’Ox BOPOWa() |, [R5 (0P Wa(t)
eit -1 X elt 1 (eit — 1)
< Cle' — 1](n0.2""1 +0.2") | C0.2"(e!" — 1) e
e’ — 1] (eit —1)2 n

The second non-uniform estimate follows from estimate of Lemma 4.11, (72) applied with v =0
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and v = vnb again.

+

- d
[(F, — Ex M+« G*™){[—0c0,m]}|| 1 \/117))

1 g b 1 C 1
< Y 0.5nbx - 0.5nbx -
S50 _WC(\/;e +n>+m<be +n)dt
1 T b 0.5nb 1 O 0.5nb 1
o C(\/; Tu) T Vm\ T T
1
-+
n

™ 0.5nbx
< C(We°‘5’be TRE )dt <<
27 - n V nb n

Proof of Theorem 3.9. Observe that, due to symmetry of distributions,

Y MIE kY - G{k} = |Fa{0} — G{O} +2 ™| F{k} — G{k}|
k=1

k=—o00

<2) eIk} - g{k} <2 > e"|F.{k} - G{k}|

k=0 k=—o0
= 2[|Fan — Gull,

where F,;,{k} = e F,{k} and G,{k} = e"*G{k}. Smilarly F,,,, = P}, * AT+ Wi, + P x A3} *
Wap. Therefore,

|1 Enn — Gull = || Pin % AT}« Wip, + Pap % ASp « Wap, — Ep « My, % B
+Pyy x By« Wiy — Py By W |
AR = BR" 1P Wl + (| BR™ [l Prn * Win — En * M| + (| Panll[| Azn ™ | Won |
AR = BRI Pr[IWinll + (BRI Prr + Wi — Ep  Mp + En x Win — En x Whn|
| Ponll[ Azn " [|Woan ||
< ATE = B P IWanll + IBEP HWAR P — Enll + I BEM HIERIITWin — M|
+ 1| Pon [ An || W | (110)

NN

From (28) it follows that

o o p

ae” < —ae’ <

— h <0. <0. <COn .
o o be" +1) <0.02, b<0.01, b<Cn
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We consequently prove that

1
ILnll < §(€_h+€h)<§(€h+1)7
1
[ Xall < I\Lh||+1<§(eh+1)+1,
N 1
bIX,| < b( (e +1)+1)<§-002+0.o1_002
> (H%II h||) < Ylaeh +a) <302 =195,
§=0 j=0 §=0
8b =/ 2a N?0.16-1.57
Apll € ——%1Xn <———— <03,
A < w(;(H%n 1)) < e
AL < Cb<On™t,
So@allLuly < ) (ae" +a)y <> 019 < 1.24,
§=0 §=0 §=0
1Bl = exp{nxhlZ 2all L4} < exp(Cn ),
1 o7} ] 0O ]
< 1+ (2a|X 1+2 Apll? ) <
[Winanll 2( + (2a|| X3 + 1 4 2b) (1+2b ) ZH h”) C
7=0 7=0
A1p could be expressed by
1
Ay = I+Z(I—2(a—b)[—2aXh)*Ah—f—@*CA,*LQ
Therefore,
AL < 14 Cb<exp{Cb} <exp{Cn~'},
1 1
| Pinl| < 7T1+17(||A1h||+2(l||Lh||)7T2+7TS 7T1+@(1+Cb+02)ﬂ2+ﬂ3 C,
2al| X, ae” + 3a
&l < m+ (14 a FZH Ty + T3 < M+ 1+L~a Ty + T3
1—2a 1—2a
0.37
< m+ (1_0.19)72 +73 < C,
1 > /1/2 ,
lAon| < 7H4aLh—4b—(I+2b—2aLh)*Z / A
2 = 7
1 s )
< 5 <2a(eh +1)+4b+ (1+2b+a(e + 1))0.520.3])
j=1
1 1.22-0.5-0.3
< (044 + ——F ) <0.36,
2<0 + 53 ) 0.36
1 1
HPQh” < st + m(”AQhH + 2a||Lh||)7r2 + T3 < 1 + @(036 + 0.2)7T2 + T3 < C

Finally, observe that

IATE = By | < mmax([[Aan "~ 1 Bal|" )l Arn — Ball < Cnl|Asn — Ball.
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Substituting the above estimates into (110) we obtain
[Enn = Gl < C(nl[Aan = Bull + [[Prn = Enll + [Win — M| + (0.36)"). (111)

Taking into account (28) we see that
B, = I+— (Ln —I)x Y _(2aLn)" +OCn~>
7=0

and it can be proved that

[(1+26)T — 2aLy] * (i (fiLzhb)*ij = (1+2b) i (fiL;b)]

Using the last equality we have

20X}, >/ 2aLy, \\ )
1_%*[(1+2b)1—2aLh]*(Z(1+2b> > +0Cn

() o

Ap = I+

20X (1 4+ 2b)
= J4 — 1% *

M

> 2&Lh *J —92
= T+2bX, % +O0Cn""~.
h ;J<1+2b>

Therefore
> 2aLh J s
(2aLp)" j — (2a)’
|2 (755) " -] < S| (5) - 0
= /1 I 2a =Y rola—al  4ab
<S (2 +1)) = 9
2(2(6 + )) Jmax(1+2b “) (1+2b +1+2b>

§=0
— 2ab =
< hyq |a
(" + )(1+Qb 1+2b)§‘7 ac” +a)’
la 2ab =
h
< (e +1)(1+ )jZ:;J] C(la —a| +n7h). (112)
We obtain
N/ 2aLp \*F 2\ = 2\ 2aLy, \*i _
Ay — By, = 2bX ( ) _2x 2aLy)" + X ( ) 2
1h h h*z 152 o h*Z(a n) h* Z 1120 +60Cn
Jj=0 7=0 7=0
A ./ 2aLy, \*i
sl < o 2] ()
=0
2 /20D \*T e~ _
+ ZHX’IHHZ(H%) _Z(QGL*‘)JH“LC”Q
§=0 j=0
c
< g(|nbf)\|+|a7d|+n71). (113)
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Using (112) we obtain

W1h=;(I-F(2aXh_2a+I+2b)*i(l+2b ) j(l—l—@*CAh))

(14 2b)2 =
1 20X}, — 20+ 1420\ ~=/ 2a %)
=5 (1+( (5L eCn!
31+ (1 + 26)? )*;0 1+ 20 n) ) +ecn
1 20X}, — 204+ I 420\ .
=1 a *J _ = -1y
(o () S cta—al o)
Noting that Z (2aLp)™ —2aLy, * Z(?dLh)*j = I, we next obtain
j=0 j=0
1 [ee]
Wi — Myl < H 51+ (X —a- 51 +2a) « 3 (2aL) | + Clla—al +nY)
7=0
1 . oo _ o
< H§ > (2aLy) — a(Xp + 1) % Y (2aLn)" + (aXn —a — 71+ 2a) * » (2aLy)"
j=0 7=0 j=0
+C(la—al +n7")
<la—alllLnll > _(2allLn]) + C(la—al +n ")
=0
<C(la—al+nt).
Next observe that
Aip —2a(Xp +1) 2aXh
P — & = H H
[1Prn = Enll = —5. + o
H Alh —2aX), — 2al)(1 — 2a) — (1 — 2a)(1 — 2a)I + 2aXp(1 — 2a) H
= s
(1 —2a)(1 — 2a) 2
H A, — 20Xy, —2alN1, — I+ 2al + 2aX, H
= s
(1 —2a)(1 — 2a) 2
(1 —2a)||Ap — 1] + 2| Xn|l]a — af _
< - <Cbh -
(1 - 2a)(1 - 2a) m < Cb+Cla—a
<C(la—al+n7t). (114)

Substituting estimates (113), (105), (114) into (111) we complete the proof. [J
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5 Conclusions

Nagaev [62] estimated the accuracy of normal approximation for homogeneous Markov chain
with an finite number of states. In this thesis a translated Poisson approximation is constructed
for the same Markov chain. In comparison to the normal approximation the translated Poisson

approximation has the following advantages:
e it is concentrated on the same lattice as the initial distribution;
e unlike the normal case, no additional smoothing summands are needed;

e the accuracy of a translated Poisson approximation can be estimated in the total variation

metric.
The best infinitely divisible approximation is constructed for MB distribution. It is shown that

e the accuracy of the approximation is of the order O(n=1) in total variation, i.e. much

better than O(n*1/2), the order that can be expected from the normal approximation;

o the first uniform Kolmogorov theorem for the MB distribution has the same accuracy as

for the case for binomial distribution.

The Simons-Johnson theorem is proved for the MB distribution and for distribution of sum of

symmetric three-state Markov chain. It is proved that

« in both cases constructed approximation is a CP distribution with the compounding geo-

metric distribution;
e the convergence holds for sums with exponential weights.

It is proved the limit law of symmetric three-state Markov chain is a CP distribution with the

compounding geometric distribution. It is also proved that

e the approximation is of the order O(n~1), i.e. the same order as for the case of symmetrized

binomial rv;

e the second order CP approximation improves the rate of convergence and is of the order

O(n=?);
« in some cases the lower-bound estimates are also of the order O(n=1);
e non-uniform estimates are constructed.
Ideas for possible future research:

e to relate a symmetric three-state Markov chain and its approximations to some trinomial

models in econometrics;
e to adapt Markov chains and its approximations for solving parking problems;

e to apply the approximations for sum of Markov dependent Bernoulli trials in matching
DNA sequences, in weather or stock market, where the number of successes can be impor-

tant for testing trends.
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Appendix

We will prove recursive formulas for the main approximations of the MB and three point Marko-
vian distributions. For the sake of convenience the notation of this appendix is not related to
the rest of thesis.

1. The CP distribution with the compounding geometric law

Let the moment generating function of the measure p is equal to
Alet — 1)
Zuke _exp{ 7 " }
— pe

Calculating the derivative with respect to ¢t we arrive at

t

- Kt (1—ple Ale! —1)
kZ:Ok,uke _A(l—pet)QeXp{ 1 — pet }_ petzzue

or, equivalently,
o0
Z pre®t = (1 — pe’) Z lepe®!
k=0

Assuming, for the sake of brevity, that ux = 0, for k¥ < 0, and changing the order of

summation we get

Z pu—1e® Z[kﬂk — 2p(k — V)pu—1 + p*(k — 2)pui—2)e™
k=1

or
A1 = p)pr—1 = kpr = 2p(k = Dpr—1 + p*(k — 2)pr—2, k=1,2,...

Note that in py = e™>.

2. The symmetric CP distribution

Let the moment generating function of the measure p is equal to

o0

et +e7t —2)
kt | —kt
e +e =ex {— }

> ) PUT Zp(et +e )

k=0
Calculating the derivative with respect to ¢ we arrive at

= ¢ ey A1 —2p)(e' —e7) Alet +e7t —2)
’; b (e —e™) = (1 —p(et +e7t))2 exp{ 1—p(et+et) }

A1 —2p)(et —e™?)
(1—plef +e 1)) Z“k (™ +e7H)

or, equivalently,

A1 —2p)(e! —e” Z,uk Mope ) = (1 —pet +e7h) Z’Wk —e k), (115)
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Let by = et — et Then
t oty kt |, —kty _ _ t o, oty kt  —kty _
(e —e )" 4+ e ™) =bry1 —br—1, (e"+e )(e e ") = bgpy1 + bp—1

and we rewrite (115) as
A1 —2p) Z pr(bgg1 — bg—1) = Z Fpg[(1 4 2a)bg — 2a(bgi1 + br—1) + p* (brs2 + bp—2)].
k=0 k=0

Assuming that pr = 0, for & < 0, and changing the order of summation we obtain

DIA(L = 2p) (20 + p12) + baA(1 — 2p) (i1 — p3) + > br(pte—1 — ptrs1)A(1 = 2p)
k=3
= bilp (1 +p®) — dpps + 3p*ps) + ba[—2ppr + 2p2(1 + 2p°) — 6pps + 4p° pua]

+ ) balkpk(1 4 2p%) — 2p((k — Dpg—r + (kb + Dprrr) + 0> ((k — 2)p—2 + (k + 2) o) |
k=3

Therefore, for k =2,3,...,

A(1=2p) (pr—1—p41) = kpe(14+2p*) =2p((k—1) prr—1+ (k+1) pris1) +97 ((k—2) prr—2 4 (k+2) prre4-2)

and
A1 —2p)(2u0 — p1) = pa (1 + p?) — dppa + 3p* 3.

Observing that, if the distribution G has a moment generating function

(oo}
D k(e e,
k=0
then G{0} = 2ug, G{k} = ux, k =1,2,..., we finally get, for k =1,2,...,

M1 —2p)(G{k -1} = G{k +1}) = KkG{k}(1+2p*) —2p((k — 1)G{k — 1} + (k+ 1)G{k + 1})
+p*((k = 2)G{k — 2} + (k + 2)G{k + 2}).
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