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Abstract

In this thesis the problem of evaluating the performance of multi-objective
optimization methods for non-convex problems is examined. Namely, the
performance of multi-objective particle swarm optimization methods are in-
vestigated. An overview of these methods is provided in this thesis covering
most methods described in literature. A novel classification system of these
methods is developed. This system uses method design choices to classify
them. A thorough experimental analysis of existing methods is given. Each
method is tested using a wide variety of test problems. The results are further
analyzed with regards to what types of problems each method solves best. An
important aspect of solution quality when it comes to multi-objective problems
is the uniformity of solution spread along the real Pareto frontier. Due to the
inadequacies of existing performance indicators when it comes to measuring
Pareto frontier approximation solution spread, two new indicators are proposed.
These two indicators are designed to capture the intuitive notion of solution
spread uniformity. They are discussed in comparison with existing indicators.
Two new multi-objective particle swarm optimization methods are proposed
in the thesis as well. These methods are based on the idea of heterogeneous
swarms — swarms where several different types of particles are used at the
same type. The particles share information via the same non-dominated point
archive.
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Notation

PSO – Particle Swarm Optimization
MOPSO – Multi-Objective Particle Swarm Optimization
PF – Pareto frontier
PS – Pareto set
n – Number of particles in the swarm
d – Problem dimensionality
k – Number of objectives
xi – Position vector for particle i in solution space
vi – Velocity vector for particle i
pi – Best solution found by particle i so far
gi – Best solution found by neighbours of particle i
fi – The i-th objective of the form f : Rd → R
f – A single objective of the form f : Rd → R
w – Inertia coefficient
t – Current PSO algorithm iteration
tmax – Maximum number of PSO algorithm iterations if the number of iterations
is fixed
U (a,b) – A vector of uniformly distributed random numbers from the interval
(a, b), it’s dimensionality is to be determined from context
ρi – Influence of some attractor in PSO solution space, in case of canonical PSO
algorithm ρ1 is the influence of personal experience and ρ2 is social influence
U(a, b) – Uniformly distributed random numbers from the interval (a, b)
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Chapter 1

Introduction

Multi-objective optimization problems are the problems, where several (possibly
contradictory) objectives have to be optimized at the same time. This means
a single solution will be evaluated with regards to several different criteria.
Most problems in engineering, economics and other areas of human activity
are of this nature. For example, one might want to increase the durability of a
manufactured part, but also to decrease it’s price. It is easy to see how those
two things may be in contradiction to one another.Most of the time, no single
solution will be sufficient for the problems like these. Instead, methods that
attempt to solve these problems will look for a Pareto frontier. A Pareto frontier
is a set of points in the objective space, where no point dominates any other
point. The concept of dominance will be discussed later. For the time being, it is
sufficient to say that solutions corresponding to points in such a set cannot be
improved in terms of one objective without sacrificing some other objective.

There are a lot of methods for solving or attempting to solve the multi-objective
problems. It is possible to solve such problems analytically only for a very
small subset of them. If nothing or little is known about a problem or if it is
non-convex, exact methods for finding solutions generally do not exist. In such
cases, various heuristic methods are used. Very often these are population based
meta-heuristic methods. It is often the case, that methods created for single
objective optimization are adapted to work with multi-objective problems. A
simple way of doing so is to aggregate objectives to a single objective using
weights. That way, a problem with several objectives is converted into several
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1. Introduction

single objective problems by varying those weights. This will then require
running the method in question on each one of these single objective problems
and storing the results. It would be ideal that one could obtain an approximation
of the complete Pareto frontier in a single run of the algorithm. The nature of
the multi-objective problems compared to single objective ones raises several
complications when using this approach. First of all, a set of solutions, but
not a single solution will have to be found. This is often solved by using a
non-dominated point archive that maintains such sets using dominance criteria
for accepting or rejecting a solution. Solutions are accepted into the archive if
they are non-dominated by any solution already in the archive. Second of all,
diversity of solutions has to be maintained throughout. We want the solutions
found by the method to cover the whole of the actual Pareto frontier. This is
contrary to single objective optimisation where the population will converge
to a point. Heuristic algorithms will have to be changed so, that population
converges to a set instead. Popular meta-heuristic methods used with multi-
objective problems are genetic algorithms that work by selecting best individuals
from a population and creating new solutions based on them. To work with
multi-objective problems they are modified to take the above mentioned into
account.

Particle Swarm Optimisation (PSO) is a population based method inspired by
social behaviour of swarming animals like birds or fish. Namely, swarming
(in birds and others) or schooling (in fish) behaviour is taken as an inspiration.
Particles are points in the solution space that move according to the move-
ment and velocity update rules. These rules are designed so, that particles
move towards the best solution they found so far and also towards the best
solution their neighbours have found. This can be viewed as particles using
personal and social experience and combining them (with random weighting)
to come up with new solutions. Particle Swarm Optimisation was adapted to
solve multi-objective optimisation problems in ways similar to the ones used
in Genetic Algorithms. There is active ongoing research into Multi-Objective
Particle Swarm Optimisation (MOPSO) algorithms. Many algorithms and their
variations have been proposed in literature.

There are two important issues to consider when it comes to our understanding
of using PSO for multi-objective optimisation. First of all, it is unclear which of
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1.1. Aim and Object of the Study

the existing approaches is the most promising or deserves further investigation.
The existing methods are often compared only to one or two other approaches.
Furthermore, they are often compared only using a couple of test problems.
As such, there is no way of telling which method (or group of methods) is the
most promising. In particular, it would be interesting to see which choices in
optimisation method design lead to successful methods. The second issue has
to do with comparing two multi-objective optimisation algorithms. There are
no agreed procedures to compare two solutions of a multi-objective problem.
In the case of the single objective optimisation it is simple: we can compare the
fitness function values obtained by the two algorithms, we can also compare
the time in function evaluations (since they are usually the time limiting factor)
or algorithm iterations it takes for the algorithm to find the answer to a given
precision. We can also compare the percentage of times the method finds the
global minimum versus the percentage of times it does not. Each of these aspects
is straightforward to measure and interpret. It is not yet the case for the multi-
objective optimisation. Here solutions are sets and comparing of two sets is
difficult. It usually depends on what the user of the method perceives to be a
good solution.

1.1 Aim and Object of the Study

The aim of this research is to improve existing methods for evaluating the
performance of non-convex multi-objective optimization methods. Performance,
in this case, consists of finding a good approximation to the Pareto frontier of
some multi-objective problem. These methods are then used to evaluate multi-
objective particle swarm optimization algorithms. Particle swarm optimization
algorithms are popular for non-convex multi-objective optimization. This is
evident from the extensive research done in the area of applying particle swarm
optimization to multi-objective problems. However, no consistent and thorough
research exists that examines these methods as a whole. As such, a study like
this one seems beneficial to the field. The folowing subtasks were identified:

• Overview performance indicators meant to evaluate performance of non-
convex multi-objective optimization methods. These indicators are de-
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1. Introduction

signed to measure aspects of the optimizer performance. The fit between
the Pareto frontier of a problem and an approximation of that Pareto fron-
tier produced by the optimizer is usually measured. The fit can be meas-
ured in several aspects, for example, the average distance of the points
in the approximation to the Pareto frontier can be calculated. Or how
uniformly the points cover the Pareto frontier. If the existing performance
indicators seem inadequate to the task, new ones are to be proposed.

• Review MOPSO methods described in literature. Examine what design
choices and underlying ideas are commonly used. Based on this informa-
tion propose a new classification scheme if existing ones are not adequate
to account for the findings of the review.

• There do not exist readily available implementations of many of the
MOPSO methods that are described in the literature. To aid in this, develop
a software framework that allows to implement and evaluate these meth-
ods. This will consist of implementations of the methods themselves, test
problems and performance indicators. These can then be used together to
evaluate the methods experimentally. This has to be done in a convenient
and modular way, so as new methods can be implemented easily when
needed.

• Using the aforementioned software framework, experimentally evaluate
existing MOPSO methods. The purpose of this is to do an experimental
comparative analysis. This will allow us to judge which methods are
most suited for which kinds of problems. That’s because the properties
of the problems and the design choices behind the algorithms are known.
Analyze the results to determine the types of MOPSO methods that are
the most promising for certain types of multi-objective problems.

• Propose new MOPSO methods using the information obtained by studying
and evaluating existing methods and what works and does not work in
them. The data for this subtask will be obtained through the work done
during the previous subtasks.
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1.2. Methodology

1.2 Methodology

In order to evaluate MOPSO performance, computational experiments were
performed over many different MOPSO variants and the results were evaluated
using several different performance indicators. Experiments were performed
using both existing and proposed MOPSO variants. Convenient to use and in-
stall Python libraries were written when preparing the thesis. Libraries support
single and multi-objective optimization using PSO methods. Various swarm
topologies and particle update rules are supported. The software is modular
and allows an easy implementation and testing of new MOPSO algorithms and
convenient analysis of the results. All experiments were performed on super-
computing clusters. The need to run the experiments in a distributed computing
environment arises because of the requirements for computing time inherent
in these experiments. If there are n MOPSO methods, m multi-objective test
problems and we want to perform k experiments (to get statistically meaningful
results) we have to perform n × m × k experiments. To get a Pareto frontier
approximation for an expensive problem it often takes several minutes of time.
Therefore ,the number of required time can easily approach weeks or even
months if done on a single computer core. Existing library infrastructure uses
distributed computing to run multiple experiments in parallel and collect the
results. MPI was used for communication between tasks.

1.3 Scientific Novelty and Results

While a lot of MOPSO methods were proposed in the literature, there is no
systematic overview or evaluation of them. New methods are usually compared
to several popular methods and using a couple of test problems. Therefore, a
study is needed that provides a more systematic treatment of the properties of
existing MOPSO methods. This will allow to single out approaches that show
the most promise. The following results were achieved during the study:

• Two new performance indicators were introduced. These are designed to
measure how uniformly does a Pareto set approximation cover the real
Pareto frontier.
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1. Introduction

• Two new MOPSO algorithms were proposed. Both use heterogeneous
swarm approach in order to improve MOPSO performance. In heterogen-
eous swarms particles with different velocity and position update rules
and other characteristics share the same nondominated point archive to
exchange the information. If the particles are designed to accent differ-
ent aspects of MOPSO performance ,they tend to compensate each others
shortcomming and improve performance in terms of all aspects concerned.

• An overview of existing MOPSO algorithms was done. The methods were
systematized and classified using several different schemes. Citations trees
were constructed.

• Methodologies for comparing different multi-objective optimisation al-
gorithms were proposed. Methodologies consist of recommendations for
the experimental procedure, performance indicators and test problems.
Methods for analysing the collected performance data were proposed.

• Existing MOPSO algorithms are extensively tested and evaluated relatively
to each other. Most of the existing MOPSO algorithms are covered in the
study as far as their descriptions are published in scientific literature.

• A large framework was developed for the Python programming language.
It allows the user to use tens of different particle types, several differ-
ent swarm topologies and has tens of test problems to benchmark new
algorithms.

1.4 Practical Value

Multi-objective optimisation is important in many different practical applica-
tions, since a lot of real world problems are multi-objective optimisation prob-
lems. The results of this thesis were applied to the visualisation of business
process modelling diagrams, for example. The problem of visualizing business
process diagrams was solved by implementing a web service that provides
solutions to diagram visualization problems. The service uses multi-objective
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population-based methods for optimization and provides the user with a dia-
gram given a set of inputs. The code required by the web service can be found
at:

https://bitbucket.org/bucket_brigade/aco

Results of this thesis were used to achieve the goals of the following projects:

• “Developing of software for business process modelling and visualization”
funded by a grant No. 31V-145 (2011–2012), No. 31V-31 (2013).

• “Nonconvex multiobjective optimization: methods and algorithms” fun-
ded by a grant No. MIP-063/2012 from the Research Council of Lithuania
(2012–2014).

1.5 Statements to be Defended

• Proposed multi-objective optimisation performance indicators can be used
to measure the uniformity of the solution spread in Pareto front approx-
imations. These (or similar) indicators are necessary, because existing
performance indicators suffer from the problems that are explained in
chapter 4. Because of those problems, existing indicators that are de-
scribed in chapter 2, do not accurately capture the intuitive notion of the
uniform coverage. The problems are solved by the proposed indicators
by taking into careful consideration what it means to cover Pareto frontier
uniformaly with a discrete approximation of that frontier.

• It can be seen from the experimental evaluations that proposed heterogen-
eous multi-objective optimization algorithms perform well over a wide
selection of performance indicators and test problems compared to the
existing methods.

• It has been known for a long time that the use of mutation operators
can improve the performance of single objective PSOs (mutation is not
used in original PSO). However, comparative studies that contrast the
methods that use mutation operators and those that do not,have not been
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1. Introduction

performed in the field of multi-objective PSO. Because of the large number
of MOPSO methods that were surveyed in this research both with and
without mutation, conclusions about it’s use can be made. It can be seen
from the data that mutation can significantly improve the performance
of MOPSO methods. With all test problem, the methods that don’t use
mutation end up with the highest values of IIGD and IGD indicators by
orders of magnitude. The only exception are the decomposition based
methods, that do comparatively well.

• Decomposition based approaches work well on problems with discontinu-
ous Pareto frontiers. This may be due to the fact that they do not make
assumptions about the Pareto frontier being continuous the way most
MOPSO approaches do.

• From the experimental results that are gathered in chapter 3 it can be seen
that vector evaluated MOPSO methods do not work well compared to
other MOPSO approaches. Several vector evaluated approaches have been
tested and none of them come close in terms of results to other approaches.

1.6 Publications of the Author

What follows is the list of articles written by the author and published in peer-
reviewed literature on topics related to this thesis during the course of writing
it.

1.6.1 Periodicals

Work in this thesis was published in the following periodical journals:

1. Jančauskas, Vytautas. Empirical Study of Particle Swarm Optimization
Mutation Operators. Baltic Journal of Modern Computing, Vol. 2 (2014),
No.4, pp. 199 – 214.
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1.6. Publications of the Author

2. Jančauskas, Vytautas. Heterogeneous Multi-Objective Particle Swarm
Optimiser with a Spread Particle. International Journal of Research Studies
in Science, Engineering and Technology, Vol. 2, Issue 9, September 2015,
pp. 30 – 49. ISSN 2349 – 4751.

1.6.2 Conference Presentations

Works in this thesis was presented in the following international conferences:

1. Jančauskas, Vytautas; Žilinskas, Antanas. On Multi-Objective Black Box
Optimization of Expensive Objectives. 25th European Conference on
Operational Research (EURO XXV), July 2012, Vilnius, Lithuania.

2. Jančauskas, Vytautas; Kaukas, Giedrius; Žilinskas, Antanas; Žilinskas,
Julius. On Multi-Objective Optimization Aided Visualization of Graphs
Related to Business Process Diagrams. Tenth International Baltic Con-
ference on Databases and Information Systems (Baltic DB&IS), July 2012,
Vilnius, Lithuania.

3. Jančauskas, Vytautas. Empirical Study of Particle Swarm Optimization
Mutation Operators. Veszprém Optimization Conference: Advanced Al-
gorithms (VOCAL) 2012, December 2012, Veszprém, Hungary.

4. Jančauskas, Vytautas. Optimizing Neighbourhood Distances for a Variant
of Fully-Informed Particle Swarm Algorithm. VI International Workshop
on Nature Inspired Cooperative Strategies for Optimization (NICSO 2013),
September 2013, Canterbury, United Kingdom.

5. Jančauskas, Vytautas. Using Nature-Inspired Optimization Methods to
Fit Spectra of Supernovae. 9th Wuerzburg Workshop on Supernovae and
Related Topics, December 2015, Wuerzburg, Germany.

1.6.3 Peer Reviewed Conference Proceedings

Works in this thesis was published in the following peer-reviewed conference
proceedings:

9



1. Introduction

1. Jančauskas, Vytautas, Aušra Mackute-Varoneckiene, Audrius Varoneckas,
and Antanas Žilinskas. "On the multi-objective optimization aided draw-
ing of connectors for graphs related to business process management."
In Information and Software Technologies, pp. 87–100. Springer Berlin
Heidelberg, 2012.

2. Jančauskas, Vytautas, Giedrius Kaukas, Antanas Žilinskas, and Julius Žil-
inskas. "On Multi-Objective Optimization Aided Visualization of Graphs
Related to Business Process Diagrams." In DB&Local Proceedings, pp.
71–80. 2012.

3. Jančauskas, Vytautas. "Optimizing neighbourhood distances for a variant
of fully-informed particle swarm algorithm." In Nature Inspired Cooper-
ative Strategies for Optimization (NICSO 2013), pp. 217–229. Springer
International Publishing, 2014.

1.7 Thesis Structure

In the second chapter, the basic concepts behind the topic are layed out. Defini-
tions of the problems of the real-valued global optimization and multi-objective
optimization are given. Definitions for Dominance, Pareto Frontier, Pareto Set
and Pareto Optimality are given too.Traditional methods for solving multi-
objective optimization problems are presented. The reasons for why these
methods are not suitable for non-convex problems are also given. Original
Particle Swarm Optimization method is briefly described as well as several of
it’s variants. Several concepts important to the operation of the method are ex-
plained. They include neighbourhood topologies and Particle Swarm Optimizer
convergence properties. The topic of non-dominated point archive management
is covered here as being important to the implementation of multi-objective
optimization methods. Existing Multi-Objective Particle Swarm Optimization
methods are covered in this chapter. Careful research has been done so ,as to
include the methods which have been described in the scientific literature. Test
problems for multi-objective optimization methods are covered further. The
list of problems given here contains test functions developed by others to test
various aspects of the multi-objective optimizer performance. An overview of

10



1.7. Thesis Structure

existing performance indicators is given later. Performance indicators are used
to assess the quality of the Pareto frontier approximations that are found by
multi-objective optimization methods.

In the third chapter, an experimental analysis of existing Multi-Objective Particle
Swarm Optimization methods is presented. The test problems described in the
previous chapter have been used in conjunction with the performance indicators
described there to evaluate the performance of these methods and look for
patterns in terms of underlying implementation details of the methods and the
types of problems they are particularly good (or bad) at solving. The findings of
these experiments are presented in this chapter as well.

The fourth chapter is dedicated to the methods and suggestions proposed by
the author. They are all related to the topic of evaluating the multi-objective
optimization method performance. At first, an attempt at a novel classification
of existing Multi-Objective Optimization Methods using their implementation
details is made. Issues with existing performance indicators are explained with
regards to measuring the uniformity of Pareto frontier coverage. Two new
performance indicators are proposed that aim to solve these problems. Two
new Multi-Objective Particle Swarm Optimization methods are described. They
are based on the concept of using several different types of particles in the
same swarm. These particles share the information via the non-dominated
point archive. The methods are then compared to popular existing MOPSO
methods. Results of experiments done to compare the methods are given and the
conclusions are drawn. The methods compare favorably to existing approaches.
Finally, a publicly available open-source software framework that has been
developed as a part of the thesis is described in broad terms.
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Chapter 2

Multi-Objective Particle Swarm
Optimization

The problem of optimizing a real-valued function, that is finding either it’s
global minimum or global maximum (depending on the problem) is important
and well studied. Real world problems can often be formulated as the problem
of real-valued function optimization. We call x∗ ∈ X, where X ⊆ Rd functions’
f : X → R global minimum if and only if ∀x ∈ X : f(x∗) ≤ f(x). Functions
global maximum is defined similarly with the comparison changed to ≥ in
the previous formula. In the above, X is called the solution space, d is called
the dimensionality of the problem and is the number of dimensions of the
solution space. It is important to say that the problem of maximizing the
function f is the same as minimizing the function −1 × f therefore one can
restrict themselves to considering only the problem of minimization or only the
problem of maximization without the loss of generality. We will consider only
minimization of functions but everything said here works for maximization
with small changes as well.

A lot of real world problems, however, involve minimizing several objectives
at once. We will use function, criterium and objective interchangeably. These
objectives are often contradictory. For example, decreasing the weight of an item
will often decrease it’s sturdiness and increase it’s price. In a lot of problems
it quickly becomes obvious that no single solution x∗ exists like it does in the
case of single objective optimization that will satisfy all the objectives. As such a
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2.1. Multi-Objective Optimization

solution in this case is not a single vector, but a set of vectors called the Pareto set.
This set has to satisfy certain properties that will be discussed in an appropriate
section of this chapter. Since this set can be continuous and we cannot usually
get it’s explicit form via any exact methods the multi-objective optimization
algorithms are designed to return an approximation of this set. It is up to the
user then to select one solution from the set depending on what their priorities
are at the moment. The points in these sets are expected to lay on the real Pareto
front and to cover it uniformly, so that the user gets a clear idea what the actual
Pareto frontier looks like for their problem.

In this chapter we present a method that is becomming more widely used to
solve multi-objective optimization problems, namely Particle Swarm Optimiza-
tion (PSO). We discuss this method’s origins and theoretical properties, as well
as how it is used to solve multi-objective optimization problems. We provide
the definitions of the basic multi-objective optimization concepts, such as Pareto
dominance, Pareto fronts and non-dominated sets. We also give an introduction
on how several issues arising from using PSO for multi-objective problems
are solved. These include stagnation to which one solution is the introduction
of mutation operators and how to deal with the boundary constraints. We
also discuss how non-dominated point archives, which contain solutions to
multi-objective problems, are maintained.

2.1 Multi-Objective Optimization

Here we will define some general terms needed to understand the problem of
Multi-Objective Optimization. As well as the concepts behind algorithms most
often used to solve such problems in specific cases.

Definition 2.1.1. (Multi-Objective Optimization Problem)

A multi-objective optimization problem is the problem of minimizing several
functions at once. The problem is that these functions may be contradictory
(solution that gives low values for one function may give large values for other
functions) standard terminology of local and global optima does not work in
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2. Multi-Objective Particle Swarm Optimization

this case. We define a multi-objective problem with k objectives and d decision
variables below.

y = f(x) = (f1(x), f2(x), . . . , fk(x))

x = (x1, x2, . . . , xd) ∈ X

y = (y1, y2, . . . , yk) ∈ Y

(2.1)

Further on, we will call x a decision vector, y an objective vector, X will be called
decision space and Y objective space. The problem is to minimize f(x) with
respect to all objectives f1, f2, . . . , fk. Constraints may be added to the problem
as in the single objective case. We will not be examining the constrained cases
since the MOPSO methods surveyed and proposed in this work do not handle
constraints. �

Definition 2.1.2. For any two objective vectors u and v we define the following
operators.

u = v ⇐⇒ ∀i ∈ {1, . . . , k} : ui = vi

u ≤ v ⇐⇒ ∀i ∈ {1, . . . , k} : ui ≤ vi

u < v ⇐⇒ (u ≤ v) ∧ (u 6= v)

(2.2)

Operators > and ≥ are defined similarly. �

Definition 2.1.3. (Dominance) For any two decision vectors a and b we define
the following relationships.

a ≺ b (a dominates b) ⇐⇒ f(a) < f(b)

a � b (aweakly dominates b) ⇐⇒ f(a) ≤ f(b)
(2.3)

Dominance is used to determine if one decision vector is “better” than another.
Since simple arithmetic comparison of the function values does not work we
need to extend it for the multi-objective problems. For single objective problems,
we simply determine if the value of the function we are optimizing is lower for
one decision than another. If said in simple words, the concept of dominance is
this: decision vector a dominates decision vector b if all coordinates of f(a) are
not greater than any of the coordinates f(b) and at least one coordinate of f(a)

is smaller than the coresponding coordinate of f(b). �
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2.2. Particle Swarm Optimization

Definition 2.1.4. (Pareto Optimality) A decision vector x ∈ Xf is said to be
nondominated regarding a set A ⊆ Xf if an only if

@a ∈ A : x ≺ a (2.4)

Similarly decision vector x is said to be Pareto optimal if and only if x is
nondominated regarding Xf . �

Definition 2.1.5. (Nondominated Sets and Frontiers For any set of decision
vectors A ⊆ Xf we define set p(A) in the following way

p(A) = {a ∈ A | a is nondominated regarding A} (2.5)

We call p(A) a nondominated set with regards to A, the corresponding set of
objectives {f(a) | a ∈ p(A)} is called the nondominated frontier. Similarly we
will call the set p(Xf ) a Pareto-optimal set and it’s corresponding objective vector
set a Pareto-optimal frontier. �

Figure 2.1 shows a set of points in two dimensional objective space. The object-
ives are called f1 and f2. Points that are mutually non-dominated are emphas-
ized. If the points were to correspond to all feasible solutions, the emphasized
points would constitute the Pareto frontier of this multi-objective problem.

2.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a global optimization metaheuristic de-
signed for the continuous problems. While heuristics are the approaches to
problem solving that do not guarantee to be optimal or perfect, metaheuristics
are heuristics that do not make assumptions about what kind of problems are
to be solved. Evolutionary Algorithms are a commonly used metaheuristic.
Metaheuristics are useful when little is known about the problem being solved.
This commonly happens to the real-world problems. PSO was first proposed
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Figure 2.1: A set of points in two dimensions with mutually non-dominated
points emphasized.

by James Kennedy and Russell C. Eberhart in 1995 [27]. The idea is to have a
swarm of particles (points in multi-dimensional space) each having some other
particles as neighbours and exchanging the information to find the optimal
solutions. Particles move in the solution space of some function by adjusting
their velocities to move towards the best solutions they have found, so far, and
towards the best solutions found by their neighbours. These two attractors
are further randomly weighted to allow more diversity in the search process.
The idea behind this algorithm are the observations from the societies acting
in nature. For example, one can imagine a flock of birds looking for food by
flying towards other birds which are signaling a potential food source, as well
as, by remembering where this particular bird itself has seen the food before
and scouting areas nearby. Parts of it can also be viewed as modelling the way
we ourselves solve problems - by imitating people we know, whom we see as
particularly successful, but also by learning on our own. Thus, problem solving
is influenced by our own experience and by the experience of the people we
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2.2. Particle Swarm Optimization

know who can solve similar problems particularly well.

2.2.1 Original PSO Algorithm

This method is described in detail by J. Kennedy et al. [27]. In the original
work on PSO the authors describe the thought process behind the development
of the original PSO algorithm. The authors build their work on the work of
C. W. Reynolds [54] which is connected to computer graphics and is meant
to create convincing graphical simulations of the swarm behaviour so, that
each individual’s behaviour does not have to be scripted by hand. Another
influence is the work of the zoologist F. Heppner et al. [20] who is concerned
about modelling bird flocks and animal herds. Both of these studies were
connected with describing local processes that result in the swarm behavior.
This is in a way similar to other areas of research, such as that in to cellular
automata (CA), where simple local rules gives a rise to the complex emergent
behaviour. We see this in swarms as well — simple (we assume) behaviour of
the individuals results in the complex global behavior of the swarm. We can see
this in bee swarms or ant hills. Bees individually would not be able to collect
food efficiently. Only through communication and the large population size they
are able to function as successfully as they are. There is a belief in the research
community that swarms represent an example of the final result being more
than a sum of it’s parts. That is the success of the social systems, which seems to
be more complicated than one would expect merely through the multiplication
of the simple local behaviour of the individuals. Each individual profits from
being in the swarm since it shares the success of the population. Authors also
extend the metaphor of swarming to the human behaviour. It is important to
note the differences though — fish school and bird flock observed behaviour
is physical. They use the advantages of swarming to evade predators, find
food and potential mating partners. While human experience is also abstract
— humans change their cognitive and experiential variables with accordance
to their experience and the experience of people they are influenced by. The
additional (if minor) difference is that there is no collision in the case of human
opinions — while two people can have the same opinion and beliefs, two birds
cannot occupy the same physical space. The metaphor behind the method is
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basically this — we, when looking for solutions to problems, look for them on
our own by modifying the solutions we already know, we also are influenced
by successful solutions of others. Another way to look at it is to imagine a flock
of birds looking for food. One bird would look around the areas where it had
found the food previously, it would also take into account the information its
closest neighbours signal to it about where they had previously found large
amounts of food.

Suppose we have n particles in the swarm. We introduce two vectors pi which
is the best solution found by particle with index i ∈ {1, . . . , n} so far.The best
solution is the one that gives the lowest value of the function being minimized.
This vector is updated after each iteration of the algorithm if particle i finds a
better solution. Another solution that is stored is gi which is the best solution
found by the neighbours of particle i. Who are the particle’s neighbours can be
determined in various ways, such as set in advance. The particles “fly” through
the solution space. Their direction is then calculated in such a way that the
particle would move towards it’s own best personal solution p and towards it’s
neighbour’s best solution gi. This is further randomly weighted so, that the
particle explores the area around those two solutions better.

vi ← wvi + ρ1U (0,1)(pi − xi) + ρ2U (0,1)(gi − xi) (2.6)

This is shown in Equation (2.6). Here the velocity vector vi is updated so that
during each iteration it moves towards personal best and neighbour’s best
solutions. It is important to note that the relation is recurrent. It can also be
prone to unstable behavior. For example, explosion of the values of the velocity
vector. Values of velocity vector vi are clipped to be in some prespecified range.
If the velocity in any coordinate exceeds a value vmax or goes below value −vmax
it is set to vmax or −vmax accordingly. Algorithm parameter vmax thus sets the
maximum velocity for every coordinate. Usually maximum velocity is the same
for every coordinate of the solution space.

Parameters ρ1 and ρ2 are set to 2. The reasoning behind this is that with that
value the particles will overfly the target on average half of the time and thus
explore the area around the potential good solutions better. Parameter w is

18



2.2. Particle Swarm Optimization

the damping or “inertia” parameter. Low values of this parameter mean that
particles will react to changes in pi and gi faster. Large values of this parameter
mean that there is a lot of inertia in this regard. Common values range from
zero to one.

Another important point to consider is how gi is chosen. Personal best pi is
simply the best solution particle with index i has discovered so far. Global
or neighbourhood best gi is the best solution found by particle’s with index i
neighbours. This requires one to know who those neighbours are. This is often
simply all the other particles of the swarm. As such gi is the best solution found
by the swarm as a whole. This is not always the case. Particles can be arranged in
various topologies where neighbourhood relationships are determined by edges
of the graph where particles are vertices. These neighbourhood configurations
or topologies have an important influence on the performance of the swarm as
discussed below.

Having calculated the velocity it is simply added to the position vector xi. This
is then repeated until some stopping criteria are met. Most often the algorithm
is simply run for a fixed number of iterations of velocity and position updates.
Initially position is most often set to randomly chosen points from the solution
space while velocity vector is set to zero. The original PSO algorithm is presented
in Algorithm 1.

Algorithm 1 Original PSO algorithm.
1: for i← 1, n do
2: initialize xi and vi
3: pi ← xi
4: end for
5: while stop conditions not satisfied do
6: xi ← xi + vi
7: update pi and gi
8: vi ← wvi + ρ1U (0,1)(pi − xi) + ρ2U (0,1)(gi − xi)
9: end while
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2.2.2 PSO Topology

PSO topology is used to refer to the graph that is formed from particles as
vertices and neighbourhood relations as edges. If two particles are connected
by an edge they will share information. This information will then be used
when choosing gi — the global best solution for the particle with index i. When
updating gi all the neighbours are examined and the neighbour j whose pj
gives the lowest value of the function being optimized is chosen as the leader.
After this the leader’s pj is set as gi. It was shown numerous times that particle
swarm topology has a profound influence on the performance of PSO. This
is, however, very often ignored and a simple topology where each particle is
connected to every other is chosen. It is often a suboptimal choice. Popular
topologies are given in Figure 2.2. Besides a simple “everyone is a neighbour
of everyone else” topology or “gbest” topology shown in Figure 2.2a it is also
common to connect particles in a ring where each particle is connected to
some number of particles to the left and to the right as shown in Figure 2.2b.
This is known as the “lbest” topology sometimes. Other configurations are
possible, for example the “grid” topology where particles are aranged in a
grid and connected to particles at the top, bottom and the sides. Two early
studies on the influence of topology to PSO performance were performed by
J. Kennedy [26] [28]. In them the author examines various different topologies
when optimizing different test problems. They also include the procedure
for randomly generating new topologies. The results indicate that popular
topologies like “gbest” and “lbest” do not necessarily result in good performance.
In topologies like “gbest” information is exchanged very quickly since each
particle has instance access to any good solution found by the swarm. This
could result in premature convergence to local minima. On the other hand, in
topologies like “lbest” it can take a long time until good solutions propagate.
This can mean that premature convergence is less alike. It is noted in the study
that “grid” topology results in good performance despite it’s simplicity and the
authors recommend its use.
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(a) “gbest” topology (b) “lbest” topology (c) “grid” topology

Figure 2.2: Three popular PSO topologies.

2.2.3 Canonical Particle Swarm Optimization

Canonical PSO was proposed by Maurice Clerc et al. [4] and is a variant of the
original PSO algorithm. It guarantees convergence through the use of the con-
stricting factor χ. It also has the advantage of not having any parameters, except
for population size and ρ1, ρ2. Parameters ρ1 and ρ2 represent the influence of
the personal best solution and the best solution of particles neighbours on the
trajectory of that particle. Both of these parameters are usually set to 2.05 as per
suggestion in the original paper. Moving the particle in the solution space is
done by adding the velocity vector to the old position vector as illustrated in
Equation (2.7).

xi ← xi + vi (2.7)

Updating velocity involves taking current velocity and adjusting it so, that it
will point the particle more in the direction of its personal best and the best of
its most successful neighbour. It is layed out in Equation (2.8).

vi ← χ
(
vi + ρ1U (0,1)(pi − xi) + ρ2U (0,1)(gi − xi)

)
(2.8)
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where

χ =
2

ρ− 2 +
√
ρ2 − 4ρ

(2.9)

and where ρ = ρ1 + ρ2. Usually ρ1 and ρ2 are set to 2.05, however, the method
works as long as ρ1 + ρ2 > 4. U(a, b) is a vector of random numbers from the
uniform distribution ranging from a to b in value. Here pi is the best personal
solution of particle i and gi is the solution found by a neighbour of particle i.
Which particle is a neighbour of which other particle is set in advance.

2.2.4 Fully-Informed Particle Swarm Optimization

The original Fully-Informed PSO algorithm was described by Rui Mendes et al.
[38] and the original procedure for velocity update is given in (2.10) formula. The
difference between standard PSO and Fully-Informed PSO is that the velocity
update formula takes into the account all of particles neighbours, instead of only
the one with the best solution found so far.

vi ← χ (vi + φ (P i − xi)) (2.10)

where

P i =

∑
k∈Ni ckρkpk∑
k∈Ni ckρk

(2.11)

where

ρk = U

(
0,
ρmax
|Ni|

)
(2.12)

and where N is the set of particle’s neighbour indices. Particle’s neighbourhood
topology is set up in advance and is an algorithm parameter. As in the canonical
PSO algorithm, particle’s position in the solution space is updated by adding
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velocity vector to position vector x. This variant extends the work done by
Maurice Clerc et al. [4] on the value of χ - the constriction coefficient in formula
(2.10), which is essential to swarm convergence. This work has been done on a
particle swarm variant that only takes into account its own personal best and
the personal best of its most successful neighbour, but it has been extended to
use the data from all the neighbours.

Riccardo Poli et al. [51] give a slightly different update rule, where wk = 1, it
is shown in (2.13) formula. It is simply a special case of the method described
above.

vi ← χ

(
1

Ni

∑
k∈Ni

ρU (0,1)(pk − xi)

)
(2.13)

Here, Ni is the set of neighbour indices of particle with index i. Coefficient χ is
calculated the same way as for the canonical particle swarm. For the calculation
to work ρ > 4 is required.

2.2.5 Bare Bones Particle Swarm

First proposed by James Kennedy [29] it is a very simple PSO variant. It is
memory-less in the sense that the position vector is updated directly instead of
by adding the velocity, as shown in (2.14) formula.

xj ← vj (2.14)

Velocity (or in this case position) is updated using the (2.15) formula.

vj ←N

(
ρ1
pj + gj

2
, ρ2|pj − gj|

)
(2.15)

Here,N (µ,σ) is a vector with random numbers from the normal distribution
with means and standard deviations taken from the vectors passed as arguments.
Each coordinate of the argument vectors corresponds to the mean and standard
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deviation for that coordinate in the resulting vector. Other than the changed
rules this algorithm is implemented identically to the canonical one. This
variants’ performance is claimed to be comparable to the canonical algorithm
but it is considerably simpler to both implement and understand.

2.3 PSO Mutation Operators

It is generally accepted that PSO converges very fast. For example, in the study
done by Jakob Vesterstrom et al. [65], where they compare the performance
of Differential Evolution, Particle Swarm Optimization and Evolutionary Al-
gorithms they conclude that PSO always converges the fastest of the examined
algorithms. In practice this is a double-edged sword – fast convergence is obvi-
ously attractive in an optimization algorithm, however, it is possible that it can
lead the algorithm to stagnate after finding a local minimum. There are several
strategies to slow down convergence and, thus, increase the amount of time
that the algorithm spends in the initial exploratory stage as opposed to local
search indicative of later stages of PSO operation. One solution is to use different
swarm topologies since it has been shown that using a different topology can
affect the swarm operation in terms of convergence speed and allow to adjust
the trade-off between exploration and exploitation. Exploration here means
covering as large a volume of the search space as possible. Exploitation means
focusing on promising regions of the search space. See, for example, a paper by
James Kennedy [30] or James Kennedy and Rui Mendes [31]. Another attempt
to solve this,is to change the velocity update formula to use an inertia coefficient
w that the speed it multiplied by during each iteration, see, for example, the
works by Russell C. Eberhart and Yuhui Shi [14] or by Yuhui Shi and Russell C.
Eberhart [59].

The third approach is to introduce a mutation operator. A mutation operator is
used to modify particle positions or velocities outside the position and velocity
update rules. In all of the cases examined here mutation is applied after position
and velocity updates and only to particle positions. Each coordinate of each
particle has a certain probability of being mutated. The probability can be
calculated from Equation (2.16) if mutation rate is provided. Parameter rate
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means how many dimensions of the particle’s current position will be mutated
during each algorithm iteration. For example, if rate = 1 one dimension of one
particle in the swarm will be mutated on average during each iteration.

probability =
rate

particles× dimensions
(2.16)

Five different mutation operators that are found in literature are examined here.
The first one given in Equation (2.17) simply reinitializes a single dimension of a
particle to a uniformly distributed random value U(aj ,bj) from the permissible
range. It is used to test whether it is useful to rely on the previous value xij or
not, it is the only of the operators that does not rely on it. It can be found, for
example, in an overview of mutation operators by Paul S. Andrews [3]. Here,
and below, xij is the j-th coordinate of the particle’s with index i position vector
xi.

xij ← U(aj ,bj) (2.17)

Another operator, also proposed by Paul S. Andrews [3] is based on the Gaussian
distribution and given in Equation (2.18).

xij ← xij +N(0, σ) (2.18)

Another operator based on the Gaussian distribution is given in Equation (2.19)
and can be found in a work by Natsuki Higashi et al. [21].

xij ← xij(1 +N(0, σ)) (2.19)

A similar operator to the one given in Equation (2.18) is given in Equation (2.20),
the only difference is that this one is based on the Cauchy distribution. It is
presented in a work by Andrew Stacey et al. [61].

xij ← xij + cauchy(a) (2.20)
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A different kind of mutation operator proposed by Zbigniew Michalewitz [39].
It was proposed for use in PSO by Susana C Esquivel et al. [17]. While the
original operator changes its behaviour with regards to algorithm iteration, we
used a static version to keep it in line with the other operators. It is given in
Equation (2.21), where flip is a random value in the range (0, 1), generated
before applying the operator.

xid ←

xij + (bj − xij)U(0,1) , if flip < 0.5

xij − (xij − aj)U(0,1) , if flip ≥ 0.5
(2.21)

Here a = σ = 0.1(bj − aj), where aj is the lower bound for coordinate j and bj

is the upper bound. Mutation operators are applied to the particle’s position
after the particle has completed it’s position and velocity updates. This moves
the particle to a new, randomized position, possibly dependant on the particles
previous position.

2.4 PSO Behavior and Convergence

An early analysis of PSO convergence behavior was performed by E. Ozcan et al.
[46]. In it the authors perform the analysis of a trajectory of a single particle in a
simplified swarm. This analysis is built on the author’s previous work [45]. It is
claimed that the particles, instead of “flying” in the search space “surf” it on sine
waves instead. When seeking for the optimal solutions particles manipulate the
waves frequency and amplitude at random. The velocity limiting parameter
vmax seems to allow the particle to jump between the waves easier.

J. Kennedy [29] gets rid of the velocity update rule proposing a bare-bones
particle swarm optimization which has more in common with random search
methods. The reasoning behind this is that particles follow a cyclic-path centered
around a randomly-weighted mean of the individual’s and it’s neighbours’ best
points. The author uses these observations to simplify the PSO method so, that
particle picks it’s position from Gaussian distribution with a mean that is the
average of pi and gi (a midpoint between these two points) and the standard
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variation is the distance between these two points. This method gives the
results that are comparable if slightly worse to the canonical PSO and thus,
gives support to these assumptions about PSO behavior. It is important to note
that in this case the social aspects such as neighbourhood topologies are still
maintained and constitute an important difference between bare-bones PSO and
random search methods. One important outcomes of this is that the simplified
PSO is easier to analyze using the techniques that have already been applied, for
example, when analyzing the behavior and properties of simulated annealling
and other random search methods.

R. Poli et al. [50] built on this work and used Markov chains to analyze the
behavior of bare-bones PSO. Authors state that with some simple changes to
the sampling distribution used, it is possible to make bare-bones PSO a global
optimizer at least for the problems they have analyzed.

One of the first analyses of PSO behavior in terms of it’s stability and conver-
gence properties was performed by M. Clerc et al. [4]. The authors analyze PSO
in a simplified form as a dynamic system. The simplifications involve getting
rid of the random coefficients and simplifying velocity update rules. The results,
however, apply in the general case as well. The algorithm is analyzed from the
inside — the point of view of the single particle. The single particle deals with
two attraction points — global and personal best solutions. The authors propose
to use a convergence coefficient χ to force the PSO algorithm to converge and
prevent explosive behavior. The coefficient is calculated as given in Equation
(2.22). With ρ being the sum of the personal and global influence coefficients.
This is the basis of what some refer to as the Canonical PSO algorithm which
has been discussed in the previous section.

χ =
2

ρ− 2 +
√
ρ2 − 4ρ

(2.22)
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2.5 Traditional Approaches to Multi-Objective Op-

timization

One of the traditional approaches to multi-objective optimization is the weighted
aggregation approach. The values of objectives, given as a solution, are mul-
tiplied by their respective weights and aggregated. There are several types of
aggregation, the simplest and very common is simply taking the sum of all
objectives. The weights, in this case, have to add up to one. One optimization
run will give a single non-dominated point. Weights are usually chosen not by
the decision maker, but algorithmically. They are usually picked so, that the
whole Pareto frontier is uniformly covered. This procedure is independent on
the optimization method used. The resulting weighted aggregate function can
be optimized using any single objective global optimization method suitable for
the resulting single objective function. The resultant function to be minimized is
given in Equation (2.23), subject to x ∈ X with X being feasible solution space.

f(x) = w1f1(x) + w2f2(x) + . . .+ fk(x) (2.23)

Values wi are called weights, are positive and usually normalized to add up to
one, that is

∑k
i=1wi = 1. It is possible and easy to show that provided that a

global optimization method is used (one that is guaranteed always to find the
global minimum) and weights are positive, this method will only generate Pareto
optimal solutions. This is easy to prove by contradiction. Suppose a solution a
minimizes function f for a given weight combination but is Pareto dominated
by another solution b. In that case, without loss of generality, f1(b) < f2(a) and
fi(b) ≤ fi(a) for i = 2, . . . , k. This means that f(a) > f(b) (since the values
of the weight vector are all positive) which contradicts our assumption that a
minimizes function f .

A serious drawback of weighted aggregation methods is that they cannot find
points on non-convex surfaces. The reason for this will hopefully become
apparent, if we consider the following two objective case. For example, consider
the case of minimizing y = w1f1(x) +w2f2(x) which can be rewritten as f2(x) =

−w1

w2
f1(x) + y

w2
. This constitutes, in objective space, a line with slope −w1

w2
and
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Figure 2.3: The lines with various slopes −w1

w2
will be moved up and down

during the optimization process.

offset y
w2

. The optimization process will move this line up and down until none
of the Pareto frontier points lies below it and at least one point is on it. This is
illustrated graphically in Figure 2.3. It can be seen that no matter what slope
we choose, we cannot find a line that would touch a point in the non-convex
region in such a way that none of the other points were below it. In the case of a
non-convex surface, the points on that surface will not be found by this method.

Another way of solving multi-objective problems is to convert k − 1 of the
k objectives into inequality constraints. The remaining objective is a single
objective problem that is then optimized using constrained single objective
optimization methods. The problem here is that it is not easy to design the
constraints appropriately. Aggregate and constraint methods were described
by J. L. Cohon [8] [7]. Other traditional approaches include goal programming
described by R. E. Steuer [62] and the Min Max approach as described by J.
Koski [32].
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2.6 Pareto Point Archive Maintenance

It is possible to construct Pareto frontier approximations by using single ob-
jective optimization algorithms. That can be done by constructing a weighted
aggregate function from the objectives and optimizing the resulting single object-
ive function. The result of such optimization is a single Pareto point. We can get
different Pareto points along the Pareto frontier, if we change the weights of the
aggregate function. However, it is often desireable to collect the whole Pareto
frontier approximation in a single run of the algorithm. Such an approximation
is often maintained by an archive maintenance algorithm that is designed to
collect points while ensuring that all points in the archive are non-dominated.
Pareto point archives can be un-bounded. This means taking in as many non-
dominated points as are provided. They can also be bounded, in the case when
the archive is full some criteria must be used to determine which point, if any,
to remove from the archive to accomodate the new one. These criteria are often
designed in such a way so as to ensure uniform coverage of the Pareto frontier.
This means that points are prefered if they increase the uniformity of the archive.
Uniformity is usually measured as deviation in Euclidean distance between the
closest points in the archive or using some other metric. In Algorithm 2 we give
a rough outline of one such algorithm.

Algorithm 2 Pareto point archive management. General algorithm.
1: function UPDATEARCHIVE(archive, candidate)
2: for solution ∈ archive do
3: if dominates(solution, candidate) then
4: return False
5: end if
6: if dominates(candidate, solution) then
7: remove(archive, solution)
8: end if
9: end for

10: append(archive, solution)
11: return True
12: end function

Algorithm 2 describes the function that takes a Pareto point archive, a candidate
solution (here a solution is some object that contains the pareto point and maybe
other data) and tries to update the archive. If the candidate solution is rejected,
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the algorithm returns False, otherwise it returns True. It depends on three other
procedures, namely dominates, remove and append. The first one checks if one
solution dominates another. The second one removes the given solution from
the archive. The third one will append the solution to the archive. The third
procedure is particularly important. It has to decide what to do when a new
solution is proposed and the archive is bounded and already full. It will have to
check if the solution improves some metric that is used to decide if a solution
improves the uniformity of the archive in such cases.

2.6.1 Crowding Distance

Crowding distance is one of the core concepts behind the popular NSGA-II
algorithm developed by Kalyanmoy Deb et al. [12]. Each solution in a non-
dominated point archive is assigned a crowding distance. Below is an outline of
the algorithm to calculate this distance. If our archive A consists of N solutions
a1, . . . ,aN then we can define crowding distance for solution i as described in
Algorithm 3.

Algorithm 3 Calculating crowding distance di for solution ai in archive A.
1: di ← 0
2: for j ∈ {1, . . . , k} do
3: I ← sortfj(A)
4: if solution ai is either the first or last solution in I then
5: return∞
6: end if
7: for K ∈ {1, . . . , k} do
8: di ← di + fK(Ii−1)−fK(Ii+1)

fmaxK −fminK

9: end for
10: end for
11: return di

Here the number of objectives as elsewhere is k and we define Ii−1 to be the
solution that comes before the solution i after sorting the archive by one of the
objectives and Ii+1 to be the solution after i after sorting. The idea here is to sort
the solutions in archive by each of the objectives and then to calculate Manhattan
distance between the solution to the left and to the right (or smaller and larger
in terms of that objective), scale it and then add them together to produce a
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crowding distance. This is simple to explain the two objective case since it
shows the meaning of neighbouring solutions clearly. This visual explanation is
given in Figure 2.4 and here neighbouring solutions are called yi−1 and yi+1 and
crowding distance in this case is the perimeter of the box shown in dashed line.

f1

f2

yk yk+1

yk - 1

Figure 2.4: Crowding distance for two objective case.

2.6.2 ε-Dominance

The concept of ε-dominance is used to limit the size of non-dominated point
archives. The dicussion of it can be found in work by Marco Laumanns et al. [33].
A decision vector x1 is said to ε-dominate another vector x2 (with x1,x2 ∈ X)
for some ε > 0 if and only if the conditions in (2.24) are satisfied.

(
∀i ∈ {1, . . . , k} :

fi(x1)

1 + ε
≤ fi(x2)

)
∧(

∃i ∈ {1, . . . , k} :
fi(x1)

1 + ε
< fi(x2)

) (2.24)

Which is similar to the definitions of Pareto dominance but with the objective
space vector being scaled by a scalar value. This concept is then applied to limit
which solutions are accepted into the archive. Only those solutions that are not
ε-dominated by any other point in the archive are accepted.
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2.7 Overview of Existing MOPSO Methods

When designing multi-objective optimization algorithms the following problems
have to be addressed for them to be effective:

1. Maximize the number of points in the approximation.

2. Minimize the distance between the approximation and the Pareto frontier.

3. Maximize the spread of solutions along the Pareto frontier. A related goal
is to make sure that no areas of the Pareto frontier remain undiscovered in
the approximation.

All these problems should also be kept in mind when designing quality indicat-
ors that measure the performance of multi-objective optimization algorithms. To
put it more simply, a successful algorithm should give a good idea of what the
Pareto frontier looks like. It is also desireable to obtain several non-dominated
points with a single algorithm run. This is possible given a population based
nature of PSO where each particle can be used to explore a different part of the
Pareto frontier.

The three main questions that someone engineering a multi-objective PSO al-
gorithm is going to have to solve are the following:

1. How to select personal best solution pi for particle with index i and how
to select the neighbour’s best solution gi? These are needed if one hopes
to use the velocity update formula of standard PSO.

2. How to store the nondominated solutions found during each iteration of
the algorithm. Problems of computational efficiency and ensuring good
spread of solutions should be addressed here as well. Nondominated
point archives are often used for this.

3. How to ensure uniform spread of the solutions? How to make sure that
no area of the Pareto frontier is missing in the approximation?
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Personal best pi is very often updated similar to how it’s handled in standard
single objective PSO. In this case dominance is used instead of checking if the
new solution gives a lower value of the function being minimized. If the new
solution dominates the old one pi can be updated, for example. This is not
the only posibility though. When selecting gi, it is often done in such a way
that gi corresponds to poorly explored areas of the real Pareto frontier. This is
done either by using crowding distance, niching, hypervolume contribution
or other methods. Nondominated point archives are often used to address
problem number two and they are mostly no different than the ones used for
multi objective evolutionary algorithms. Problem number three is mostly solved
by picking global best in order to correspond to poorly covered areas of the
Pareto frontier although other approaches also exist.

Margarita Reyes-Sierra et al. [53] provide an overview of multi-objective PSO
algorithms available at the time.

In this chapter we provide summary of state of the art as well as order research
in to using Particle swarm optimization algorithms to solve multi-objective
problems. Most algorithms discussed in this section and indeed proposed
in literature can be fit in to the template given in Algorithm 4 with the only
differences between algorithms being how personal and global bests pi and gi
are updated. Therefore where possible we will discuss algorithms in terms of
how various parts of this template are filled in.

Algorithm 4 General multi-objective particle swarm algorithm.
1: for i← 1, n do
2: initialize xi and vi
3: pi ← xi
4: end for
5: while stop conditions not satisfied do
6: update non-dominated point archive A
7: xi ← xi + vi
8: update pi and gi
9: vi ← wvi + ρ1U (0,1)(pi − xi) + ρ2U (0,1)(gi − xi)

10: end while

Let us briefly discuss what is going on in Algorithm 4. First of all for each
particle i among n particles we initialize xi and vi. Usually xi is set to random
values within permissible ranges for each coordinate so as to stay in the feasible
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region while vi is set to zero vector. This is done in the loop from line 1 to line 4 in
the pseudo-code. Then follows the main loop of the MOPSO algorithm. First we
update the non-dominated point archive A. This is done before other updates so
as to incorporate initial particle positions. After this we update particle position
by adding the velocity vector to it as per standard PSO algorithm. Then we
update personal best pi and global best gi. These two updates usually are the
main thing that is different between distinct multi-objective PSO algorithms.
Usually updating p involves establishing dominance relationships between
current pi and new particle position xi. Personal best can be updated, for
example, if new position strongly or weakly dominates old position. Global best
is usually selected from the non-dominated point archive. Selection rules often
try to emphasize exploring regions in objective space where there are fewer
solution so as to uniformly cover the Pareto front. After pi and gi are selected
velocity update rule from standard PSO is used. This is repeated until some
criteria are met. Often a limit on the number of iterations is set and algorithm
terminates once the main loop is repeated a fixed number of times.

2.7.1 C. A. C. Coello et al. (2002)

C. A. C. Coello et al. [6] propose a Pareto dominance based approach. The main
idea is dividing the decision space in to a fixed number of hypercube with even
sides. Basically this means covering the space in a hypergrid. The number of
hybercubes is set by the user. The reason for this is estimating most crowded
areas of the decision space in terms of how many solutions occupy those area. A
solution in a hypercube is prefered when selecting global best if the hypercube
contains fewer solutions. A solution in a full non-dominated point archive will
be selected for replacement by a new solution if it lies within a hypercube that
contains many solutions. This techniques is employed to an end similar to that
of crowding distance measure used in other methods.

2.7.1.1 Changes to PSO update rules

The changes to PSO velocity and position update rules are given in the list
below.
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Parameter Description Value

D Number of objective space division points 30 to 50
ρ1 Personal experience influence coefficient 1.0
ρ2 Social influence coefficient 1.0
w Inertia coefficient 0.4

Table 2.1: Parameter values for C. A. C. Coello et al. (2002) method.

• Personal best solution pi is updated if the new solution dominates the old
personal best.

• Solution space is divided in to a fixed number of hypercube depending
on the value of parameter D. There will be dD hypercubes if the decision
space is d-dimensional. For those hypercubes that contain more than
one solution contained in the archive A assign a value of 10

N
where N is

the number of particles in the hypercube. Pick a hypercube where that
value is the lowest. Select an archive solution that is contained within
said hypercube at random. This solution will be the global best gi for that
iteration. All particles share the same global best.

2.7.1.2 Parameters

Parameters and their values as specified by the authors are summarized in
Table 2.1. The personal and social influence coefficients and inertia coefficient
are similar to those used in other MOPSO variants. Parameter D specified
how many intervals should each dimension be divided in to. The number of
hypercubes as used in the method to measure population diversity is Dm, where
m is the number of objectives in a given multi-objective optimization problem.

Other than the above mentioned differences, the method followed the outline of
our generic MOPSO algorithm.
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2.7.2 X. Hu et al. (2002)

Proposed by Xiaohui Hu et al. [22] this algorithm uses what the authors call
"dynamic neighbourhood". Only problems with two objectives are considered
in the work. The basic idea behind the algorithm is to use the first objective to
find the neighbours for a given particle and to use the second objective to select
the best one among those neighbours. A new personal best solution for some
particle replaces the old one only if the old one is Pareto dominated by the new
one. The name "dynamic neighbourhood" comes from the fact that during each
iteration of the PSO algorithm a particle has to recalculate who it’s neighbours
are.

2.7.2.1 Changes to PSO update rules

Equation (2.25) describes distance between particle i and particle j in terms of
the value of the first objective. The algorithm requires, for each particle i in the
swarm, to find m closest particles in terms of distance dij .

dij = |f1(xi)− f1(xj)| (2.25)

The differences in finding global and personal best solutions are outlined in the
list below. Other than that, velocity vi and position xi are updated as in classical
single objective PSO.

1. Update personal best solution pi only if the new solution Pareto dominates
the old one.

2. Findm closest particles to particle i in terms of the first objective f1. Among
those m closest particles find the one which position gives the lowest value
of the second objective f2. If this particle has index j then global best gi
will be solution xj .
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Parameter Description Value

m Neighbourhood size 2
ρ1 Personal experience influence coefficient 1.49445
ρ2 Social influence coefficient 1.49445
w Inertia coefficient 0.5 + U0,0.5

Table 2.2: Parameter values for X. Hu et al. (2002) method.

2.7.2.2 Parameters

The authors used the following values for the swarm parameters w = 0.5 +

0.5U(0,1), ρ1 = ρ2 = 1.49445 and vmax was set to “dynamic range of the particle on
each dimension”. The number of neighbours selected using the first objectives
is set to 2.

2.7.3 K. E. Parsopoulos et al. (2002)

K.E. Parsopoulos et al. [47] propose three different strategies for multi-objective
optimization using particle swarm algorithms. The first two use forms of
weighted aggregation approach. The third one is based on VEGA (Vector
Evaluated Genetic Algorithms) as developed by J.D. Schaffer [56]. Here we
only consider the two dynamic aggregation approaches. This is because very
similar vector evaluated approaches were proposed by other researchers and
are discussed in their respective sections.

2.7.3.1 Changes to PSO update rules

The weighted aggregation based algorithms rely on the two formulas given
in (2.26) and (2.27), both well known approaches. They are given here and
examined in the K.E. Parsopoulos’ paper only in two objective case. If the
objectives are f1 and f2 then f(x) = w1f1(x)+w2f2(x) is the aggregated objective.

w1(t) = 0.5(1.0 + sign (sin (2πt/F ))), w2(t) = 1− w1(t) (2.26)
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Parameter Description Value

m Neighbourhood size 2
ρ1 Personal experience influence coefficient 0.5
ρ2 Social influence coefficient 0.5
w Inertia coefficient 1.0 to 0.0
F Aggregator parameter 100, 200

Table 2.3: Parameter values for K. E. Parsopoulos et al. (2002) method.

w1(t) = 0.5(1.0 + sin (2πt/F )), w2(t) = 1− w1(t) (2.27)

Formula (2.26) is known as Bang-Bang Weighted Aggregation (BWA) and (2.27)
is known as Dynamic Weighted Aggregation (DWA). All the other parts of the
algorithm are unchanged from the single objective function. Global and personal
bests are updated using aggregated values of the multi-objective function just
like they would be in the case of the single objective problem. Solutions are
inserted in to the non-dominated point archive after every iteration.

2.7.3.2 Parameters

Parameter values as given by the authors are presented in Table 2.3. Parameter t
is the current iteration index and F is the weight change frequency parameter.
Parameter F was set to 100 in the BWA case and to 200 in the DWA case. Other
PSO parameters are as follows: ρ1 = ρ2 = 0.5, w = 1.0 in the start and decreased
linearly to w = 0.4 in the end.

2.7.4 S. Mostaghim et al. (2003)

In a paper Called “Strategies for Finding Good Local Guides in Multi-Objective
Particle Swarm Optimization (MOPSO)” Sanaz Mostaghim and Jürgen Teich
[40] discuss strategies for selecting the global attractor for the swarm (global
best particle) from among Pareto-optimal solutions collected in the archive. In
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this algorithm personal best solution is updated only if new solution dominates
the old solution. This algorithm does not take in to account swarm topology.

2.7.4.1 Changes to PSO update rules

The changes to standard PSO velocity and position update rules can be summar-
ized as in the list below.

1. Personal best solution pi is updated if the old solution is dominated by the
new solution.

2. Global best solution gi for a given particle is chosen in such a way that
the global best’s sigma value is closest to the sigma value of position of
particle i. The procedure is given in Algorithm 5.

Algorithm 5 Selecting the best global leader for each particle i via the Sigma
method.

1: function FINDGLOBALBEST(Archive,xi)
2: m = |Archive|
3: for j ← 1 to m do
4: σj ← SIGMA(yj)
5: end for
6: σi ← SIGMA(f(xi))
7: d← ‖σ1 − σi‖
8: for j ← 2 to m do
9: dtmp ← ‖σj − σi‖

10: if dtmp ≤ d then
11: d← dtmp
12: k ← j
13: end if
14: end for
15: return gk
16: end function

Sigma value can be assigned to any point in the Pareto point space and is
calculated in such a way that points that lie on the same line f1 = af2 get the
same σ value. Furthermore points that lie on lines that are close to one another
(have a similar angle of inclination) will have similar σ values. The reasoning
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behind this heuristic is that by choosing points with similar σ values particles
will move straight towards the Pareto frontier. If we have a problem with 2
objectives a point we will call point i with coordinates (f1,i, f2,i) if f1,i = f2,i then
σ = 0 in such case. If f1,i = 0 then σ = 1.0 and if f2,i = 0 then σ = −1.0. In
essence σ represents the angle between the line f2 =

f2,i
f1,i
f1 and the line f1 = f2.

The calculation of sigma value can be extended to more dimensions than two.
For three dimensions the calculation is given in Equation (2.29).

f2

f1

1

10

σ = -1

σ= 1

σ=0

Figure 2.5: σ values for points on the unit circle. The same principles is gen-
eralized for points not on the unit circle and when there are more than one
objective.
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σ =
(K2f1)

2 − (K1f2)
2

(K2f1)2 + (K1f2)2
(2.30)

2.7.4.2 Parameters

Parameters and their values as proposed by the authors are given in Table 2.4.
Parameters are similar to the ones used in other MOPSO variants. We chose
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Parameter Description Value

ρ1 Personal experience influence coefficient 1.0
ρ2 Social influence coefficient 1.0
w Inertia coefficient 0.4
m Mutation probability 0.01, 0.05

Table 2.4: Parameter values for S. Mostaghim et al. (2003) method.

to use mutation probability (the probability that mutation will be applied to a
particular coordinate of the position vector) to be 0.05 but 0.01 is said to have
been applied by the authors as well.

2.7.5 J. E. Fieldsend et al. (2002)

In a paper titles A Multi-Objective Algorithm based upon Particle Swarm Op-
timizsation, an Efficient Data Structure and Turbulance Jonathan E. Fieldsend
and Sameer Singh [18] propose a PSO variant for multi-objective optimization
based on dominated trees - a data structure for maintenance of unconstrained
Pareto archives. The dominated tree consists of a list of L = |Z|/D composite
points ordered by the weak dominance relation.

2.7.6 X. Li (2003)

Xiaodong Li [36] proposes an algorithm incorporating ideas from NSGA-II in
to multi-objective particle swarm oprtmization. The differences between our
generic MOPSO algorithm and this variant are summarized in the list below.

1. Global best gi is updated by taking all mutually non-dominated particles
from the current population in terms of their position xi, sorting them by
either decreasing crowding distance or increasing niche count and taking
a position at random from the top 5% of that list. Note that this way the
global best gi can be different for different particles.
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2. Personal best pi is updated by first doubling the population of the PSO
to include the particle with updated pi and with a non-updated pi. This
population is then sorted using “non-dominated sorting” and retaining
particles that make up the first half of the population after sorting. This
way if the particle with updated pi survives sorting and culling then pi is,
in effect, updated, otherwise not.

3. Coefficients ρ1 and ρ2 are both set to 2.0 and inertia coefficient w is linearly
decreased from 1.0 to 0.4 during MOPSO evolution. Weighing the influence
of personal and global best is again done using scalar random values rather
than vectors used in single objective PSO.

Non-dominated sorting is done on a population of particles. First particles that
are mutually non-dominating are identified and removed from the population.
These particles compose the first non-dominated front. In the remaining pop-
ulation non-dominated particles are again identified and removed from the
population. These particles compose the second non-dominated front. This is
repeated until there are no more particles left in the population. In effect this
groups particles in the swarm in to several non-dominated fronts. The result of
this sorting is a list where particles from the first front come first, particles from
the second front come second, etc. We use this concept to decide which particles
will have their personal bests updated. For this purpose a population consisting
of particles with both updated personal bests and non-updated personal bests
is sorted in this way and only particles from the first half after sorting survive.
The concept of non-dominated sorting is easiest understood graphically. We
give an example of solutions sorted this way in Figure 2.6.

2.7.7 X. Hu et al. (2003)

Xiaohui Hu et al. [23] propose a particle swarm with extended memory for
multiobjective optimization. It is similar to the dynamic neighbourhood by X.
Hu et al. [22] that we discussed in a previous section. The variant described
only works for problems with two objectives.
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Figure 2.6: Sorting objective space solution in to separate non-dominated fronts.

2.7.7.1 Changes to PSO update rules

The selection of gi and pi is explained below.

• Personal best solution pi is updated if it dominates any of the particles in
the swarm.

• Global best solution gi is chosen by first finding m particles closest to
particle with index i in terms of the first objective. Then among those
particles the best particle in terms of the second objective is chosen.

2.7.7.2 Parameters

The authors used the following values for the swarm parameters w = 0.5 +

0.5U(0,1), ρ1 = ρ2 = 1.49445 and vmax was set to “dynamic range of the particle on
each dimension”. The number of neighbours selected using the first objectives
is set to 2.
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Parameter Description Value

m Neighbourhood size 2
ρ1 Personal experience influence coefficient 1.49445
ρ2 Social influence coefficient 1.49445
w Inertia coefficient 0.5 + U0,0.5

Table 2.5: Parameter values for X. Hu et al. (2003) method.

2.7.8 C. A. C. Carlos et al. (2004)

Coello Coello A. Carlos et al. [5] propose a Pareto dominance based approach.
They use a mutation algorithm that is given in Algorithm 6 and which is also
used by several other MOPSO methods. The only difference between this
method and the one used in C. A. C. Coello et al. [6] is the use of this mutation
operator. They also propose to use a simple constraint handling mechanism.
The solution with the lowest amount of constraint violations is prefered if
both solutions violate constraints, the solution that does not violate constraints
is prefered if only one violates constraints, if both solutions do not violate
constraints then the dominance relation is used. We, however, do not examine
problems with constraints. Everything else is discussed in a section dedicated
to that method.

2.7.8.1 Parameters

Parameters and their values as proposed by their authors are given in Table
2.6. The only new parameter is mutation rate mr. Please not that mutation rate
parameter in this case is not used directly. That is it is not the probability that
a particular coordinate will be mutated. It’s meaning can be understood from
Algorithm 6.

2.7.9 K. E. Parsopoulos et al. (2004)

Konstantinos E. Parsopoulos et al. [48] developed a PSO variant for multi-
objective problems similar to the VEGA approach in Genetic Algorithms. In this
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Parameter Description Value

D Number of objective space division points 30 to 50
ρ1 Personal experience influence 1.0
ρ2 Social influence 1.0
w Inertia coefficient 0.4
mr Mutation rate 0.5

Table 2.6: Parameter values for C. A. C. Coello et al. (2004) method.

approach several subswarms are used. There are as many subswarms as there
are objectives. The working of this PSO variant is best explained by looking at
the changed velocity update Equation (2.31).

vj,i ← χ
(
vj,i + ρ1 ⊗ (pj,i − xj,i) + ρ2 ⊗ (gn(j),i − xj,i)

)
(2.31)

In the equation above j is the index of the subswarm and i is the index of a
particle. Function n(j) defines which subswarm does subswarm j takes it’s
global best solution from. An example of such a function is given in Equation
(2.32) in this case subswarms are connected in a ring. Other configurations are
of course possible.

n(i) =

i+ 1 if i < M

1 if i = M
(2.32)

Usually each subswarm is connected in a gbest topology. However it is also
possible to use other topologies. Whether it is advantagious to do would be an
interesting area of research. This approach is trivially parallelizable with each
subswarm capable of running as a separate process.

The authors used four test problems. In all four cases they note that their
algorithm performs better than VEGA. They however did not test it against
any other Multi-Objective optimization approaches, such as different Multi-
Objective PSO variants.
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Parameter Description Value

ρ1 Personal experience influence 2.05
ρ2 Social influence 2.05
χ Constriction coefficient 0.729

Table 2.7: Parameter values for K. E. Parsopoulos et al. (2004) method.

2.7.9.1 Changes to PSO update rules

The method uses the constriction coefficient variant of PSO proposed by M.
Clerc et al. [4]. Other then that the only difference from single objective PSO
methods is that global best is taken from the neighbouring swarm.

Updating personal and global best solutions are performed as given in the list
below.

• Personal best pi is updated by checking if the new solution has the lower
value of the objective that is assigned to the subswarm the particle is in.

• Global best gi is taken from the neighbouring swarm. The particle from
the neighbouring swarm with the lowest value of that swarms objective is
taken as the global best.

2.7.9.2 Parameters

Parameter values are given in Table 2.7. They seem to be taken from the single
objective version of this PSO method.

2.7.10 S. Mostaghim et al. (2004)

Sanaz Mostaghim et al. [41] propose a sub-swarm based approach to multi-
objective optimization using PSO. This method divides the optimisation process
in to two stages. Both stages use the Sigma method by S. Mostaghim et al. [40]
which was discussed in a previous section. The basic idea of the method is to
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assign special vectors to each solution. This way the similarity between two
solutions will be measured by measuring how close those vectors are to each
other in terms of Euclidean distance. How these vectors are calculated and
the rationale behind it is explained in a section about the method. This new
algorithm builds on the ideas behind it. During the first stage the algorithm
works the same as in the original method. After running it an approximation of
the real PF is the end result. This approximated PF A is then used for the second
stage. The difference between our generic MOPSO algorithm and the second
stage is shown below. We do not present an explanation of the first stage since it
is identical to the Sigma method we discussed in an above section.

• Local best pi is updated if the new solution xi dominates the old pi.

• Global best gi is selected by finding a solution in the approximation A

(returned by the first stage of the algorithm) that is closest in terms of
sigma value.

It can be seen that during the second stage the particles will arrange themselves
in to subswarms. This is in the sense that groups of particles will tend to select
one of the solutions in A over another as their global best attractor. So all the
particles in a subswarm will have the same global guide. The rationale here
is that the second stage will explore around the solutions found by the first
stage. This way better coverage of the real PF is achieved. Each subswarm will
explore the area around one of the points in the approximation A. The size of
the nondominated point archive is limited during the first stage. During the
second stage the size of the archive is unlimited.

Mutation is applied. The mutation operator is of the form xij = xij + U(−1,1)xij

and is applied with probability 0.07. Inertia weight w = 0.4 and coefficients
ρ1 = ρ2 = 1.0 as in the original method. Authors restrict the archive size during
the first stage to 50 and don’t restric the archive size during the second stage.

2.7.11 C. R. Raquel et al. (2005)

Carlo R. Raquel et al. [52] propose a crowding distance based approach. This
is a very simple approach that uses crowding distance to select global best. It
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also employs an elaborate mutation operator in order to maintain diversity.
The solutions found are stored in a non-dominated point archuive. The size of
non-dominated point archive is fixed. As it is fixed there may come a time that a
new solution needs to be added to the archive but it has already reached it’s size
limit. In this case the archive is sorted by decreasing value of crowding distance
and a solution from the bottom 10% of the sorted list is removed. The candidate
solution is then added to the archive.

2.7.11.1 Changes to PSO update rules

Changes to PSO velocity and position update rules are given in the list below.

• Personal best pi is updated if new solution xi dominates the old pi.

• Global best gi is updated by sorting the solutions in nondominated point
archive by decreasing crowding distance and taking a solution at random
from the top 10% of the sorted list.

Mutation operator used in this variant is given in Algorithm 6. Here flip(p)
evaluates to truth with probability p, mr is mutation rate, xij is the j-th coordin-
ate of i-ith particle’s position, aj is lower boundary constraint for coordinate
j in decision space and bj is upper boundary constraint. The notation here is
consistent with rest of this thesis. Note that mutation rate here has a specific
meaning, different than in most other cases. It is the probability that mutation
operator will be applied to the given particle as opposed to mutation operator
being applied to a value of a coordinate in decision space. Mutation is only
applied if current iteration number is lower than maximum iterations times
mutation probability.

2.7.11.2 Parameters

Parameters and their values as proposed by the authors are given in Table 2.8.
They are similar to ones used by other methods. It is important to observe that
mutation rate mr does not mean mutation probability but instead is a parameter
used in mutation algorithm as given in Algorithm 6.
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Algorithm 6 Mutation operator used in Carlo R. Raquel et al. [52] algorithm.

1: if flip
((

1− t
tmax

) 5
mr

)
then

2: j ← U{1,2,...,d}

3: range← (bj − aj)
(

1− t
tmax

) 5
mr

4: ub← xij + range
5: lb← xij − range
6: if ub > bj then
7: ub← bj
8: end if
9: if lb < aj then

10: lb← aj
11: end if
12: xij ← U(lb,ub)

13: end if

Parameter Description Value

w Inertia coefficient 0.4
ρ1 Personal experience influence coefficient 1.0
ρ2 Social influence coefficient 1.0
mr Mutation rate 0.5

Table 2.8: Parameter values for C. R. Raquel et al. (2005) method.

2.7.12 J. E. Alvarez-Benitez et al. (2005)

Julio E. Alvarez-Benitez et al. [2] discuss several variants of PSO based ex-
clussively on Pareto dominance concepts. In their algorithms personal best for
each particle pi is updated if f(xi) � f(pi) or if f(xi) 6≺ f(pi) and f(pi) 6≺ f(xi).
Or to put it in words if the new value in objective space weakly dominates the
old personal best or the two are mutually non-dominated. The authors propose
three strategies to select global best value gi we described the three in the list
below.

ROUNDS The basic idea of this method is for particles to move towards those
archive members that dominate the fewest current particle positions (but
at least one) in hopes that those members represent sparsely populated
areas of objective space. First of all for each member of the non-dominated
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solution archive a ∈ A we calculate how many particle positions it domin-
ates. So for vector a ∈ A we assign a set Xa = {x | x ∈ X ∧ a ≺ x} then
we select a so as to minimize |Xa| and assign it’s corresponding solution
space vector as gi for a particle chosen at random from Xa. After this
vector a is removed from consideration until all remaining particles get gi
assigned to them. This is repeated each iteration of the algorithm.

RANDOM Here for particle position xi ∈ X we assign a list of solutions Axi

from archive A that dominate xi. From this list we then choose one at
random with equal probabilities. If xi ∈ A then Axi is empty (due to the
fact that points in the archive A cannot dominate each other by definition)
in which case we simply choose a point from A at random, again with
equal probabilities.

PROB This method can be seen as a combination of the two previous ones. In
this case, for vector xi we assign a global best similarly to the way it is
done in RANDOM approach, however instead of uniform probabilities we
assign a probability to each vector a ∈ Axi inversely proportional to |Xa|.
To put it simply we proceed the same way as in RANDOM but instead of
giving equal probabilities to each solution that dominates a given particle
we assign probabilities to those solutions based on how many particles
in the swarm they dominate. So an archive solution that dominates some
particle xi is less likely to become that particle’s global best gi the more
particles in the swarm it dominates. The reasoning behind this strategy
that authors state is that archive solutions near the areas of Pareto front that
contain few solutions are likely to dominate fewer particles and therefore
to explore those areas better we want to emphasize them.

Particle swarm parameters are set as ρ1 = ρ2 = 1 and w = 0.5 which is again
different from what is reported as good parameters for single objective optimiz-
ation.

To recap what was said before - these algorithms are identical to our basic multi-
objective PSO algorithm given in Algorithm 4 with personal best pi updated if
new solution xi weakly dominates pi or if the two are mutually non-dominating
and global best gi updated according to one of the strategies ROUNDS, RAN-
DOM or PROB.
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2.7.13 M. R. Sierra et al. (2005)

Proposed by Margarita R. Sierra et al. [60] in a paper called “Improving
PSO-based Multi-Objective Optimization using Crowding, Mutation and ε-
Dominance”. The method uses two separate archives in place of one. One
archive is the same size as the number of particles in the swarm. This archive is
used to select global leaders from. If after adding a new solution to this archive
it’s size exceeds that of the particle swarm population, the worst members of the
archive in terms of crowding distance (a concept discussed in the introductory
chapter) are removed until the archive has the required number of members.
There is another archive that is maintained differently. This is the archive that
will be reported as the end-result after an algorithm run. This archive uses the
ε-dominance relation to update it’s solution set. This approach was discussed in
the introductory chapter of this thesis in a section about pareto point mainten-
ance. The value of parameter ε will influence the maximum size of the archive.
Authors fail to give the value of parameter ε used to achieve the results in their
experiments.

2.7.13.1 Changes to PSO update rules

Changes to PSO velocity and position update rules are given in the list below.
After each position update mutation is applied.

• Personal best position pi is if the particles new position xi dominates pi or
if the two are mutually non-dominating.

• Two solution are selected at random from the swarm archive (the one that
has the same number of solutions as the number of particles in the swarm)
and pick the one that has larger value of crowding distance. This solution
will be used as the global best solution gi.

The authors propose to divide the particle swarm population in to three sub-
populations. The only difference between the sub-populations are the mutation
operators applied to them. They share the same non-dominated point archives
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and otherwise act identically. The sub-populations are of equal size. The first
sub-population has no mutation applied to it all, the second one uses uniform
mutation where the range of mutation is fixed and the third one uses non-
uniform mutation where the allowed range decreases over time. What any of
this actually means and what the ranges are is not explained in the paper. The
probility with which mutation is applied to each coordinate is set to 1

d
where

d is problem dimensionality. Since the precise nature of mutation operators
applied is not explained in the paper we simply reset the coordinates value to
a random value with uniform probability from valid range for that coordinate
with probability 1

d
.

Uniform mutation is defined in Equation (2.33) and can be found in a book by
Kalyanmoy Deb [11]. In this case a coordinate is simply initialized at random
with uniform probability distribution from the allowed range for that coordinate.
Here aj and bj are lower and upper bounds for coordinate j in the solution space.

xij ← U(0,1)(bj − aj) (2.33)

Non-Uniform mutation is defined in Equation (2.34) and can also be found
in a book by Kalyanmoy Deb [11]. In this case the range that mutation can
move coordinate positions to is gradually decreased during the evolution of the
swarm.

xij ← xij + τ(bj − aj)
(

1− U(1− t
tmax

)
c

(0,1)

)
(2.34)

Here, τ is assigned at random to either −1 or 1 with equal probability dur-
ing each evaluation of the mutation operator, parameter tmax is the maximum
number of iterations and c is a user specified parameter.

2.7.13.2 Parameters

Parameter and their values as recommended by the authors are given in Table 2.9.
Here w is defined as a uniformly distributed number from the interval (0.1, 0.5),
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Parameter Description Value

w Inertia coefficient U(0.1,0.5)

ρ1 Personal experience influence coefficient U(1.5,2.0)

ρ2 Social influence coefficient U(1.5,2.0)

Table 2.9: Parameter values for M. R. Sierra et al. (2005) method.

ρ1 and ρ2 are uniformly distributed numbers from the interval (1.5, 2.0). It is
not completely clear if w, ρ1 and ρ2 are assigned during each iteration or at the
initialization phase of the algorithm. We assume that the authors mean they are
randomized during each iteration for each particle. It is interesting to note that
the authors use scalar random values instead of commonly accepted practice of
using random number vectors for r1 and r2 of the same dimensionality as the
solution space.

2.7.14 M. Salazar-Lechuga et al. (2005)

Maximino Salazar-Lechuga et al. (2005) [55] propose a fitness sharing based
approach. Fitness sharing seems to be identical with niching used to determine
which individuals are in the well explored regions of Pareto front by counting
how many other individuals fall within a given distance to them. Fitness
sharing means, in essence, penalizing individuals that have other individual
surrounding them in terms of Euclidean distance between solutions.

fsi =
10∑n

j=0 shareij
(2.35)

shareij =

1−
(

dij
σshare

)2
if dij < σshare

0 otherwise.
(2.36)

dij = ‖xi − xj‖ (2.37)

In above equations we denote fitness sharing coefficient of solution xi, i ∈
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{1, . . . , |A|} as fsi. Such coefficient is assigned to each solution in the nondomin-
ated point archive A. It is inversely proportional to the number of solutions that
are within a hypersphere with radius σshare with it’s center at xi. Futhermore
there is a fitness sharing penalty the closer other solutions are to xi. Archive
A for this algorithm is size bounded. New solutions will be accepted after the
archive becomes full if their fitness sharing value is larger than the smallest
fitness sharing value in the archive. The candidate solution will then replace the
solution with the smallest fitness sharing value.

2.7.14.1 Changes to PSO update rules

We summarize differences between this algorithm and our generic MOPSO in
the list below.

1. Global best gi is selected via roulette wheel selection from the nondomin-
ated point archive using fitness sharing to calculate probabilities.

2. Personal best pi is updated if the new position dominates pi.

2.7.14.2 Parameters

Parameter values and their meaning are summarized in Table 2.10. Social and
personal influence coefficients ρ1, ρ2 and inertia coefficient w are set to values
commonly used in MOPSO variants. Parameter σshare is used to calculate the
diameter of a hypersphere which is used to penalize particles when calculating
velocity updates. The authors state that they selected the values for this para-
meter empirically depending on the problem. We used a value of 0.01 since this
seems to be used for problems with large non-dominated point archives.

2.7.15 P. K. Tripathi et al. (2007)

Praveen Kumar Tripathi et al. [63] propose to use a variant of multi-objective
PSO with time variant inertia and accelaration coefficients. The parameters w,
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Parameter Description Value

σshare Method specific parameter 0.01, 0.1, 0.2, 1.0, 2.0
ρ1 Personal experience influence 1.0
ρ2 Social influence 1.0
w Inertia coefficient 0.4

Table 2.10: Parameter values for M. Salazar-Lechuga et al. (2005) method.

ρ1 and ρ2 are updated as given in equations below.

wt = (wi − wf )
tmax − t
tmax

+ wf (2.38)

Here, wt is inertia during iteration t and tmax is the maximum number of iter-
ations. Inertia changes during the course of the PSO evolution from wi to wi
linearly. Personal and social influence parameters ρ1 and ρ2 are treated similarly
as given in the two equations below.

c1t = (c1f − c1i)
t

tmax
+ c1i (2.39)

c2t = (c2f − c2i)
t

tmax
+ c2i (2.40)

2.7.15.1 Changes to PSO update rules

Mutation is used in this MOPSO. The authors use the scheme given in Equation
(2.41), with flip being a binary random event with equally possible results of 0
and 1 and xij being the j-th coordinate of particle i’s position and ∆ defined in
Equation (2.42).

xij =

xij + ∆(t, bj − xij), if flip = 0,

xij + ∆(t, xij − aj), if flip = 1.
(2.41)
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Parameter b in Equation (2.42) is set to 5, other parameters have the same
meaning as elsewhere.

∆(t, z) = z

(
1− U(1− t

tmax
)
b

(0,1)

)
(2.42)

Personal best solution pi is updated if the new solution dominates the old one.
Global best solution gi is chosen from the archive in a way that maximizes what
the authors call particular solutions density “density”. It is similar in concept to
crowding distance discussed before. If our problem has k objectives we will sort
the archive by the non-decreasing value of each objective in turn, measure the
distance between a solution and the solution to it’s right and use that instead
of as in crowding distance the distance between the solution to the left and
the solution to the right. The reason for using this instead of using crowding
distance is unclear from the paper. After calculating densities as described above
the algorithm uses roulette selection to determine global best.

Let us recap the differences between this algorithm and our general multi-
objective particle swarm optimization algorithm:

1. Parameters w, ρ1 and ρ2 are adjusted during the course of PSO evolution
using equations (2.38), (2.39) and (2.40).

2. Personal best is updated if the new position dominates old personal best.

3. Global best is chosen from the archive using roulette selection using above
described density calculations for probabilities.

4. Instead of using random value vectors to randomly weigh personal and
swarm influence in velocity update as is customarily done in single object-
ive PSO it uses scalars.

2.7.15.2 Parameters

Parameters and their values are summarized in Table 2.11. These six parameters
(wi, wf , c1i, c1f , c2i, c2f ) were set as follows by the authors of the paper: wi = 0.7,
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Parameter Description Value

c1i Initial personal experience influence 2.5
c1f Final personal experience influence 0.5
c2i Initial social influence 2.5
c2f Final social influence 0.5
wi Initial inertia coefficient 0.7
wf Initial inertia coefficient 0.4
m Mutation probability 0.05

Table 2.11: Parameter values for P. K. Tripathi et al. (2007) method.

wf = 0.4, c1i = 2.5, c1f = 0.5, c2i = 0.5 and c2f = 2.5. In this way inertia is
decreased over the course of the evolution of the algorithm. The influence of
particle’s personal experience is also decreased over time and the influence of
social experience is increased over time. This, in theory, should mean that the
swarm emphasizes global search during the first stages of it’s evolution and
local search nearing the end.

2.7.16 W. Peng et al. (2008)

Wei Peng et al. [49] propose a decomposition based multi-objective particle
swarm optimization algorithm. In this variation of MOPSO the multiobjective
problem f is reduced to a problem in Equation (2.43). Basically you want to
minimize the largest objective when objectives are weighted using a vector λ
which is called the weight vector. This may seem similar to weighted aggregate
approaches, however in our case each particle will get a different weight vector
λ. This in effect means that each particle minimizes a different function.

g (x | λ) = max
1≤i≤m

{λi|fi(x)− z∗i |} (2.43)

The main remaining point is how to calculate weight vectors. The way the
authors propose to calculate it is by taking combinations with replacement of
values from the set

{
0
H
, 1
H
, . . . , H

H

}
where H is a user chosen parameter. Para-

meterH will also decide the number of particles in the swarm withN = Cm−1
H+m−1.

In other words, weight vectors λ are all possible vectors of length m where
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each individual weight takes one of the values from the aforementioned set.
Reference point z∗ is calculated by taking lowest values of each objective
when solution x belongs to objective space. Vector x∗ = {z∗1 , . . . , z∗m} where
z∗i = min{fi(x) | x ∈ Ω}.

2.7.16.1 Changes to PSO update rules

The changes to how personal best pi and global best gi for particle with index
i are selected are given in the list below. Otherwise the velocity and position
update rules are the same as in the case of single objective PSO. In the velocity
update rule the difference between personal best and current position and
between global best and current position is randomly scaled by a random scalar
value. This is different from single objective PSO but common in multi-objective
PSO. After each iteration polynomial mutation is used as described in H. Li et
al. [34]. Mutation is applied to each coordinate with constant probability.

• Update of the personal best pi is simple. If g (xi | λi) ≤ g (pi | λi) then pi
is updated, otherwise not. This simply means if the value of the aggregate
function is lower then the personal best it is updated, just like in the single
objective case.

• We define B(i) as the set of indices of neighbours of particle with index i.
The neighbours of particle with index i are those T particles whose weights
vectors are closest in terms of Euclidean distance. If weight vectors are
set in advance and don’t change during the evolution of the swarm then
these neighbourhood relations can be calculated in advance. Then for
each particle i and for each neighbour j ∈ B(i) we update gj ← gi if
g (p | λj) ≤ g

(
gj | λj

)
. In other words, we pick the neighbour whose

personal best solution give the lowest value of the aggregate funciton
when evaluated with the weight vector of particle i.

2.7.16.2 Parameters

Parameter values for numerical parameters used in this method are summarized
in Table 2.12. Inertia weights and social and personal influence coefficients used
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Parameter Description Value

N Population size 100
M Archive size 500
ρ1 Personal experience influence 2.0
ρ2 Social influence 2.0
w Inertia coefficient 0.4
T Neighbourhood size 30
pm Polynomial mutation parameter 0.05

Table 2.12: Parameter values for W. Peng et al. (2008) method.

are relatively common in PSO. Neighbourhood size is the number of particles
that will be searched when selecting global best solution. As mentioned before
particle’s neighbourhood is constructed to include those particles whose weight
vectors are closest in terms of Euclidean distance to the particle in question.

2.7.16.3 Other comments

Due to the nature of this method the number of particles depends on the para-
meter H . For test problems with two objectives we used value of H = 25 which
means there are 351 particles in the swarm. This means that to not exceed
300, 000 function evaluations we had to run the swarm for 855 iterations. For
problems with three objectives we used value of H = 12 which means there are
364 particles in the swarm and we ran the swarm for 824 iterations. For the five
objective case we used H = 7 and in turn 462 particles and ran the swarm for
649 iterations.

2.7.17 U. Wickramasinghe et al. (2008)

Upali Wickramasinghe et al. [67] propose a variant of MOPSO that uses ideas
from differential evolution. Namely the differential evolution operator is used
to create global best gi for each particle i. Otherwise this variant is similar to the
one described by Xiadong Li [36]. We enumerate the differences between this
variant and our generic multi-objective particle swarm optimization algorithm
below.
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1. Global best gi is chosen by first selecting three particle positions xr1 , xr2
and xr3 so that i 6= r1 6= r2 6= r3 at random. Then differential evolution
operator is applied to form gi.

2. Personal best solutions are updated by non-dominated sorting a pop-
ulation consisting of both updated and not-updated particles and then
keeping the first half. This procedure is explained in more detail in Section
2.7.6.

3. Parameters ρ1 and ρ2 are set to 2.05, χ is set to 0.7298 while inertia coeffi-
cient w is simply set to one. Differential evolution parameter CR is set to
0.2 and parameter F is set to 0.4, this is different from parameters tradi-
tionally used in single objective differential evolution where CR is usually
set to 0.9 and F is set to 0.5.

Differential evolution operator is used to generate new solutions from existing
ones. For each solution xi we need three other solutions xr1 , xr2 and xr3 distinct
from each other as well as from the current solution xi. For a particle i we form
it’s gi using Equation (2.44).

gi,j =

xr1,j + F (xr2,j − xr3,j) if
(
U(0,1) < CR ∨ j = jrand

)
xi,j otherwise

(2.44)

2.7.18 A. J. Nebro et al. (2009)

Antonio J. Nebro et al. [42] propose a variant of multi-objective PSO algorithm
that is similar to the one proposed by Margarita R. Sierra et al. [60] but with
certain modifications. This variant uses a separate archive for storing particles
that will be used as personal best. This archive has the upper size limit set to
the number of particles in the swarm and uses crowding distance discussed
previously to maintain fixed size.

61



2. Multi-Objective Particle Swarm Optimization

2.7.18.1 Changes to PSO update rules

The main difference between this algorithm and the one developed in work by
Margarita R. Sierra et al. [60] is that it uses constriction coefficient proposed by
Maurice Clerc et al. [4]. One other difference is that this algorithm returns it’s
leaders archive as the end result while the one it is based on uses a separate,
possibly larger, archive for the end result approximation.

Again the authors use scalar values for r1 and r2 instead of more usual vectors of
uniformly distributed random values of the same dimensionality as the solution
space. The velocity is further multiplied by the aforementioned constriction
factor calculations which we reproduce in Equation (2.45). Since ρ1 and ρ2 are
chosen randomly they expand the definition of the constriction coefficient to
take in to account cases where ρ1 + ρ2 < 4 by assigning value of χ equal to one
in such cases.

χ =
2

2− ρ−
√
ρ2 − 4ρ

(2.45)

ρ =

ρ1 + ρ2 if ρ1 + ρ2 > 4

1 if ρ1 + ρ2 ≤ 4
(2.46)

Furthermore we set limits to each coordinate of velocity vector equal to half the
allowed range for that coordinate as shown in Equation (2.47).

vij ←


δj if vij > δj

−δj if vij ≤ −δj
vij otherwise.

(2.47)

In this equation δj is the limit on velocity and is defined in Equation (2.48).

δj =
bj − aj

2
(2.48)

In other words δj is half the allowed range for coordinate j in the decision space.
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Parameter Description Value

w Inertia coefficient 0.5
ρ1 Personal experience influence coefficient U(1.5,2.5)

ρ2 Social influence coefficient U(1.5,2.5)

ηm Polynomial mutation operator parameter 20

Table 2.13: Parameter values for A. J. Nebro et al. (2009) method.

This variant in addition to uniform and non-uniform mutation operators used
in algorithm it is based on also uses polynomial mutation operator that can be
found in a book by Kalyanmoy Deb [11] and which we define in Equation (2.49).

xij ← xij + (bj − aj)δ̄j (2.49)

Where parameter δ̄i is calculated from the polynomial function instead of uni-
form distribution P (δ) = 0.5(ηm + 1)(1− |δ|)ηm as follows:

δ̄j =

(2U(0,1))
1

ηm+1 − 1 if U(0,1) < 0.5,

1− (2(1− U(0,1)))
1

ηm+1 if U(0,1) ≥ 0.5

Parameter ηm is set to 20. Particles using this additional mutation operator
constitute 15% of the population. It is not entirely clear how other mutations are
distributed but we take it to be 30% uniform, 30% non-uniform, 15% polynomial
and 15% no mutation to be consistent with the method on which this one is
based.

2.7.18.2 Parameters

Parameter values as proposed by the authors are given in Table 2.13. Social
and personal influence coefficients are uniformly distributed random numbers.
Polynomial mutation parameter ηm is set to 20.
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2.7.19 Y. Wang et al. (2009)

Yujia Wang et al. (2009) [66] propose a variant of PSO using preference order
ranking. It uses the concept of Pareto efficiency, which is a generalization of
Pareto dominance. It also has to be stated that if a solution is of efficiency order
k it is also of efficiency order k + 1. This was proven by I. Das [9]. As such we
will be interested in minimal efficiency order of a solution.

Definition 2.7.1. (Pareto efficiency of order k)

A point x∗ ∈ Ω is said to be Pareto efficient of order k if f(x∗) is not dominated
by any member of f(Ω) for any of the k-element subsets of the objectives. In
other words, a point is efficient of order k if it is Pareto optimal in all the

(
m
k

)
subspaces of Ω obtained by considering only k objectives at a time. If k = m

then the concept reduces to that of Pareto optimality.

�

The method uses an unusual velocity update rule given in the Equation (2.50).

vi ← wivi + (1− r2)ρ1r1(pi − xi) + (1− r2)ρ2(1− r1)(gi − xi) (2.50)

The inertia coefficient wi is updated in such a way that it follows an exponential
curve as given in Equation (2.51).

wi ← wifw (2.51)

• Personal best solution pi is updated if the new solution dominates the old
personal best solution.

• Global best solution gi is selected using preference order ranking scheme.
The solutions in the archive A are sorted by their minimal efficiency order.
This is done by first identifying all the

(
m
k

)
subsets of the decision space

for all k ≤ m and then finding the lowest value of k for which a solution
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Parameter Description Value

w0 Initial value of the inertia coefficient 1.4
fw Inertia coefficient update coefficient 0.975
ρ1 Personal experience influence 1.5
ρ2 Social influence 2.5

Table 2.14: Parameter values for Y. Wang et al. (2009) method.

is k efficient. The solution with the highest efficiency order is chosen as
global best.

The efficiency order concept is also used when the archive becomes full. The
solutions with lowest value of efficiency order are removed from the archive in
order to make space. Parameter values used in the method and mentioned in
the description above were set to the values given in Table 2.14 and are the same
as used by the authors. More information on the preference order ranking can
be found in a work of F. di Pierro et al. [13].

2.7.20 N. Al Moubayed et al. (2010)

Noura Al Moubayed et al. [1] propose a decomposition based multi-objective
particle swarm optimisation algorithm. In the proposed method Tchebyscheff
method for weighted aggregation is used. That is for a given weight vector λ
the problem is that of minimizing function given in Equation (2.52). In essense
this means minimizing the worst objective.

g(x | λ, z∗) = max
1≤i≤m

{λi|f(x)i − z∗i |} (2.52)

Weight vectors λi are initialized to random values from the uniform distribution.
The index i is the index of a particle that this weight vector belongs to. The
values are further scaled so that they add up to one. Weight vectors are assigned
particles so that they give the lowest values of the aggregate function. That
is from a set of n generated weight vectors we choose one for a particle if it
gives the lowest value of the aggregate function for that particle among all the
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weight vectors. Each particle gets a unique weight vector. Weight vectors are
not reinitialized after each iteration and stay the same during the evolution
of the swarm. The method also makes use of a non-dominated point archive.
The non-dominated point archive is updated by taking in to account crowding
distance measure. The measure is used to decide which solutions to delete if the
archive is full.

2.7.20.1 Changes to PSO update rules

The changes to personal and global best selection are given in the list below.
In the velocity update rule the differences between local and global best and
current position are scaled by random scalars from the range (0.1, 1.0) for some
reason. Everything else is the same as we outlined in our generic MOPSO
algorithm.

• Personal best pi is updated the same way as in single objective optim-
ization but using the value of the aggregated function instead. That is
personal best is updated if g(xi | λi, z∗) ≤ g(pi | λi, z∗).

• Global best gi is selected at random from the neighbourhood. The neigh-
bourhood is defined as the N particles that have the values of weight
vectors closest to the particle in question with regards to Euclidean dis-
tance.

2.7.20.2 Parameters

Parameters and their values for this as used by the authors are summarized in
Table 2.15. Neighbourhood of particle with index i is defined by N particles
that are closest to the particle i in terms of Euclidean distance between weight
vectors. Social, global influence coefficients and inertia coefficient are all random
numbers in the given ranges. This is relatively unusual in the context of PSO.
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Parameter Description Value

N Neighbourhood size 30
ρ1 Personal experience influence U(1.5,2.0)

ρ2 Social influence U(1.5,2.0)

w Inertia coefficient U(0.1,0.5)

Table 2.15: Parameter values for N. al Moubayed et al. (2010) method.

2.7.21 A. Elhossini et al. (2010)

Ahmed Elhossini et al. [15] propose a variant of PSO based on the strength
Pareto approach. In the case particle’s strength is defined as the number of
particles it dominates in the swarm. Formally we state this in Equation (2.53)
with P being the set of current particle positions and A the solutions in the
non-dominated point archive.

si = |{xj | xj ∈ P ∪ A ∧ f(xi) ≺ f(xj)}| (2.53)

The raw fitness value ri for particle with index i is then calculated as the sum of
the strength of particles dominating it. This is stated formally in Equation (2.54).

ri =
∑

xj∈P∪A,f(xj)≺f(xi)

sj (2.54)

Further factor is added di is added to the raw fitness value to take into account
population diversity. Value di is calculated in such a way that solutions in
crowded areas of Pareto front are penalized. It is given formally in Equation
(2.55). Here σki is defined as the distance to the k-th nearest particle to particle
with index i. It is inverted since we want lower value of di to mean that particle
with index i is in an unexplored area of the Pareto set. Value k is set to the square
root of the size of population plus the size of the archive.

di =
1

σki + 2
(2.55)
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Finally the fitness value Fi for a particle with index i is calculated as given in
Equation (2.54).

Fi = ri + di (2.56)

The ideas behind this MOPSO variant (more specifically the strength Pareto
approach) are borrowed from SPEA2 method by E. Zitzler et al. [73].

• Personal best solution pi is updated if one of the three conditions stated
below are satisfied:

1. The new solution xi dominates old personal best solution pi.

2. The new solution does not dominate the old personal best solution,
but the new solution has lower values for the majority of objectives.

3. If both conditions above are not satisfied and the new solution has the
same number of lower objectives as the old personal best, personal
best is updated with a 0.5 probability.

• Global best solution gi is selected using tournament selection from the
non-dominated point archive. Four solutions are taken at random from
the archive and the solution with index i that has the lowest value of Fi
is chosen. It is important to note that for this algorithm a different global
best solution is chosen for each particle. This in practice means that the
aforementioned tournament selection process will be repeated for each
particle to select it’s potentially unique gi.

Furthermore the method employs mutation and crossover operators. The op-
erators are applied to both velocity and position vectors. The crossover vector
is different in the way it is used in most evolutionary algorithms in that it is
applied simultaneously to both velocity and position vectors. A single crossover
point is used and the same point is used for both velocity and position vectors.

68
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2.7.22 S. Z. Martínez et al. (2011)

S. Z. Martínez et al. [69] propose a decomposition based approach to multi
objective particle swarm optimization. The authors propose to use Penalty
Boundary Intersection (PBI) approach instead of Tchebycheff approach for cal-
culating weighted aggregate for a given weight vector λ and reference vector
z∗. The problem then becomes that of minimizing single objective problem g

defined in Equation (2.57).

g (x | λ, z∗) = d1 + θd2 (2.57)

d1 =

∥∥(f(x)− z∗)Tλ
∥∥

‖λ‖
(2.58)

d2 =

∥∥∥∥(f(x)− z∗)− d1
λ

‖λ‖

∥∥∥∥ (2.59)

Double bars ‖.‖ denote Euclidean norm. Weight vectors are selected from the{
0
H
, 1
H
, . . . , H

H

}
as in the previous decomposition based method by W. Peng et al.

[49]. Weight vectors λ are all possible vectors of length m where each individual
weight takes one of the values from the aforementioned set. The method uses
an age threshold mechanism. If a particle does not imporve its personal solution
for a specified number of iterations Ta its position, velocity, age and personal
best solution are reinitialized. Position is reinitialized using the rule in Equation
(2.60).

xij = N

(
gij − pij

2
, |gij − pij|

)
(2.60)

2.7.22.1 Changes to PSO update rules

The changes to personal and global best selection rules are given in the list
below.
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• Personal best pi is updated if g(xi | λi, z∗) ≤ g(pi | λi, z∗). This is identical
to how single objective personal update works, but the function optimized
depends on the weight vector λi.

• Global best gi is selected at random from a set of global bests. The al-
gorithm for calculating the set of potential global bests is simple: for
each weight vector λi find the solution x∗ that gives the lowest value of
g(x∗ | λi, z∗). Here x∗ ∈ P ∪G where P is the corrent swarm population
and G is the previous set of potential global bests.

If a particle’s position coordinate goes outside the corresponding lower or upper
boundary vector a or b coordinate equations (2.61) and (2.62) are used to update
position and velocity. Boundary violating coordinate is simply set to the value of
the corresponding boundary vector coordinate. Velocity is scaled by scalar value
γ and multiplied by −1 so that the particle moves away from the boundary.
Parameter γ = 1 in the study in question.

xij =

aij , if xij < aij

bij , if xij > bij
(2.61)

vij = −γvij (2.62)

2.7.22.2 Parameters

Parameters and their values as used by the authors of the method are sum-
marized in Table 2.16. Inertia weight as well as social and personal experience
coefficients are random number from given ranges. This is unusual in PSO
in general but is used by several authors in MOPSO methods. Age threshold
parameter Ta is used to determine when position and velocity reinitialization
are to be applied. Parameter θ is a parameter of the aggregate function.

70



2.7. Overview of Existing MOPSO Methods

Parameter Description Value

θ PBI penalty value 5
Ta Age threshold 2
ρ1 Personal experience influence U(1.2,2.0)

ρ2 Social influence U(1.2,2.0)

w Inertia coefficient U(0.1,0.5)

Table 2.16: Parameter values for M. Zapotecas et al. (2011) method.

2.7.22.3 Other comments

Due to the nature of this method the number of particles depends on the para-
meter H . For test problems with two objectives we used value of H = 25 which
means there are 351 particles in the swarm. This means that to not exceed
300, 000 function evaluations we had to run the swarm for 855 iterations. For
problems with three objectives we used value of H = 12 which means there are
364 particles in the swarm and we ran the swarm for 824 iterations. For the five
objective case we used H = 7 and in turn 462 particles and ran the swarm for
649 iterations.

2.7.23 A. J. Nebro et al. (2013)

Antonio J. Nebro et al. [44] propose variants of their own SMPSO algorithm.
That variant was described in section 2.7.18. These variants differ from their ori-
ginal algorithm which was described here previously in the selection strategies
for global best (leader) particle. The variants are given below.

SMPSO_r In this case the global leader is simply chosen at random from the
nondominated point archive A. This is included as a sanity check, any
more complicated variant is noth worth it if it cannot outperform this one.

cellSMPSO This variant is based on concepts from MOCell algorithm by Anto-
nio J. Nebro et al. [43]. The description of this variant is not very clear. For
50% of the particles the original SMPSO leader selection scheme is used.
For the other half eight neighboring particles in the swarm are considered
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and the leader is selected from their personal bests, presumably at random.
We will also assume that the eight neighbors are selected by their close-
ness in terms of Euclidean distance in solution space from the particle in
question.

SMPSOhv This variant uses contribution to the hypervolume when selecting
leader solutions from the nondominated point archive. It is not clear
exactly what do the authors mean by contribution to the hypervolume. It
incorporates this measure in two ways. First of all if the nondominated
point archive becomes full (the number of points in it reaches the limit
set by the user) the point that contributes the least to the hypervolume
is removed and the new point replaces it. When selecting the global best
particle two particles are chosen at random from the archive and the one
with larger contribution to the hypervolume is selected.

SMPSOhv_r This variant differs from the previous way in that the leader is
selected at random. The archive updates work as in the variant below. It
is similar to SMPSO_r except the archive uses hypervolume contribution
coefficient instead of crowding distance.

Everything else is the same as in the algorithm described in section 2.7.18 so it is
not discussed here in detail. The changes to that algorithm are fully explained
in the list above.

2.7.24 K. S. Lim et al. (2013)

Kian Sheng Lim et al. [37] propose an approach based on vector evaluated
swarm optimization. Each objective gets a separate swarm. Each swarm op-
timizes it’s objective. Swarms get global bests from their neighbour swarms.
Neighbours are defined by a ring topology where the neighbour is the preceding
swarm if they are ordered in a list and the first swarm has the last swarm as its
neighbour. Personal bests are updated as in standard single objective PSO via
simple arithmetic comparison. In this variant global best is chosen in a different
way than other vector evaluated particle swarm algorithms. It is chosen from
the nondominated point archive A. Suppose swarm Sj optimizes objective j.
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It will then choose the solution from nondominated point archive A that is
lowest in terms of objective j − 1. This is different from other vector evaluated
PSOs in that dominance relations are also taken in to account. This variant uses
polynomial mutation operator as given in Equation (2.63). Here we show how a
position vector of a particle x is updated.

xi ← xi + (bi − ai)δi (2.63)

where

δi ←

(2ri)
1

ηm+1 − 1 if rk < 0.5

1− (2(1− rk))
1

ηm+1 if rk ≥ 0.5
(2.64)

2.7.24.1 Changes to PSO update rules

The changes to personal and global best update rules are summarized in the list
below.

• Personal best pi is updated if the new solution gives lower value for that
subswarms objective.

• Global best gi is chosen from the non-dominated point archive. It is
the solution that has the lowest value of the neighbouring subswarms
objective.

2.7.24.2 Parameters

Parameters and their values as used by the authors are summarized in Table 2.17.
Algorithm parameter w is reduced linearly from 1 to 0.4 during the evolution
of the swarm. Parameters ρ1 and ρ2 are set to random values between 1.5 and
2.5. Distribution parameter for polynomial mutation ηm is set to 0.5. Mutation
probability is proportional to the dimensionality of the problem. It is designed
so that one coordinate per particle would be mutated each iteration on average.
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Parameter Description Value

pm Mutatation probability per coordinate 1
d

ηm Polynomial mutation distribution parameter 0.5
ρ1 Personal experience influence U(1.5,2.5)

ρ2 Social influence U(1.5,2.5)

w Inertia coefficient 1.0 to 0.4

Table 2.17: Parameter values for K. S. Lim et al. (2013) method.

2.7.25 I. C. Garcia et al. (2014)

Ivan Chaman Garcia et al. [19] propose a hypervolume-based multi-objective
particle swarm optimizer. The differences between our generic MOPSO and this
algorithm are described below.

1. Global best gi is selected at random from the top 2% of the archive sorted
by decreasing hypervolume contribution coefficient. This way solutions
corresponding to least explored sections of the Pareto frontier are hopefully
selected.

2. Personal best pi is selected at random from the remaining 98% of solutions
in the nondominated point archive.

3. Parameter w is set to 0.5, ρ1 and ρ2 are set to 1. Mutation rate mr is set to
0.5.

This algorithm uses the same mutation operator as Carlo R. Raquel et al. [52].
This mutation operator is given in Algorithm 6. It is important to note that
mutation rate mr in this case signifies a parameter in mutation algorithm. It
does not stand for the probability with which mutation is applied to each
coordinate of particle’s position.

The concept of hypervolume contribution is defined as the amount of hyper-
volume that a solution contributes. Namely how much of the hypervolume is
covered by that particular solution and is not intersected by any other solution.
Computation of hypervolume also needs a reference point. This reference point
(called nadir point in case of minimization) is updated during each iteration by
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simply taking the lowest value of each objective. How to calculate this point is
shown in Equation (2.65).

zref =

(
min
x∈PF

f1(x), . . . , min
x∈PF

fk

)
(2.65)

Hypervolume contribution is illustrated graphically in Figure 2.7 where the
areas of the gray paches to the bottom left of the PF points correspond to the
hypervolume contribution of that point.
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Figure 2.7: Hypervolume contribution. The areas of gray patches to the bot-
tom left from the PF approximation points correspond to their hypervolume
contribution in the two objective case.

2.8 Conclusions

In this chapter the problem of multi-objective optimization was formally de-
scribed. In the problem with several, possibly contradictory, objectives the goal
is to find a set of non-dominated points called the Pareto frontier of that problem.
The solutions which correspond to points on the Pareto frontier are then used
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to make a decision based on the current priorities of the decision maker. Exact
methods for solving multi-objective problems are not known in the general case.
Exact methods exist for some subsets of the problem, for example, for certain
multi-objective problems with convex Pareto frontiers. When nothing or little
is known about the problem one has to rely on optimization metaheuristics,
such as Genetic Algorithms or Particle Swarm Optimization. We discuss the
limitations of several popular multi-objective optimization methods such as the
weighted aggregate approach. From these limitations it is apparent that the use
of metaheuristics is sometimes necessary.

We also provide a review of existing multi-objective PSO methods. They are
analyzed with regards to their implementation details. These details are: the core
idea behind them, how they ensure Pareto point diversity in the approximation
and whether mutation operators are used. There were attempts in classifying
existing MOPSO methods. See, for example, one by Margarita Reyes-Sierra et
al. [53], however, the approach used there considers only very broad principles
behind the methods and the relations between methods and the ideas used in
them are not very clear. Therefore, a new classification method would be of
benefit that takes into consideration the findings of the review. The methods
in literature were never experimentally evaluated with regards to one another
using an extensive set of test-problems. This means that the relative performance
of these methods compared to one another is not known. This means there is a
need for such a study to help researchers to understand the relative merits of
these methods better.

To measure the performance of optimization methods it is necessary to have a
diverse set of test problems. These test problems should model a wide variety
of possible real-world problems. Such test problems are described here. This
includes many diffent types of problems – including non-convex and discon-
tinuous. The problems have 2, 3 and 5 objectives. The Pareto frontiers for these
problems are apriori known. This allows to quantify the optimizer performance
easily by comparing the approximations to real Pareto frontiers.

Methods designed to solve multi-objective problems usually return a discrete
approximation of that frontier. This approximation can be evaluated if the Pareto
Frontier of the problem is known in advance in terms of similarity to that frontier.
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Similarity can be measured using a variety of metrics.They can alternatively
be evaluated relatively to one another (for example by using hypervolume
comparison). Several performance indicators that were designed to this end
were described in this chapter. We will argue at length in the following chapter
that they are inadequate when measuring Pareto solution uniformity – that is
how extensively and uniformly the points in the approximation cover the Pareto
frontier. Therefore, new performance indicators are needed.

Another area of understanding MOPSO methods that is currently lacking ,is
what kind of MOPSO approaches work best for what type of multi-objective
problems. The problems can be different in their Pareto frontier (discontinuous
or discrete, convex, non-convex, etc.), number of objectives and other prop-
erties. There are several diffent core principles which are used to implement
new MOPSO methods. From the experimental analysis with different types
of problems it should be clearer what kinds of methods work best with which
kinds of problems.

It is apparent from the survey of existing methods that heterogeneous ap-
proaches are absent. These approaches show great promise in the field of
single objective Particle Swarm Optimization. Therefore, it seems to be a good
idea to investigate their use in multi-objective optimization. Heterogeneous
approaches work by using different types of particles (particles with different
velocity update rules, etc.) in the same swarm, solving the same problem. Since
they all share the information (via the same non-dominated point archive or
otherwise) it can be hoped that the particles will outweight each other’s disad-
vantages when confronted with a particular problem. One of the issues here
is to decide how the types of particles will be chosen, whether they may be
changed dynamically during the optimization run and if so, what are the rules
for changing a particlesÂŠtype.It will be answered in the following chapters
where two new heterogeneous MOPSO methods are proposed.

Most sources in literature do not include the information about publicly available
implementations of these methods. Because of this, there is no easy way to
independently test existing MOPSO methods. Therefore, it seems to be of
importance to provide such implementations in an open-source code base. It
seems that a good solution to this problem is to provide a software framework
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that will allow users to implement new particle swarm optimization methods
easily and test them. Such a framework is proposed in this thesis and allows
users to implement new MOPSO methods with minimal changes to the code,
test them using numerous included test problems and evaluate the results using
included performance indicators.
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Chapter 3

Experimental Analysis of Existing
MOPSO Methods

In this chapter an experimental evaluation of existing MOPSO methods is
presented. The goal of the study is to identify which types of methods are
suitable for which problems. Also to systematize the knowledge of existing
MOPSO methods. To this end experiments were performed for each of the
methods described in the previous section. All the algorithms were tested with
all test problems from the previous section. Multiple runs (30 runs for each
method and problem combination) were performed. Results have been collected
and they are presented graphically in this section.

3.1 Experimental Procedure

We used the same procedure to test each algorithm configuration.An algorithm
configuration in this case means an optimization method implementation along
with its parameters — for example, PSO with topology description and c1 and
c2 values, mutation rates.

For each test problem repeat the following 30 times:

1. Run the algorithm for 300,000 function evaluations. One function evalu-
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ation will consist of evaluating every objective of the problem.

2. Collect an approximation of the Pareto frontier obtained by the algorithm
and store it in a file.

3. Calculate the mean values of performance indicators IGD, IIGD, ISP and
IN and store them in tables.

4. Calculate the mean values of performance indicators IUNI1 and IUNI2 .

The above procedure summarizes the protocol followed for every algorithm. In
the end we have the results of 30 runs for every given problem and algorithm
combination. We will analyze these results in the following chapter. While the
test problems have already been described in detail, here we will provide a
reference and a short discussion of their properties.

Name Objectives RS Size Geometry

UF01 2 1000 Convex
UF02 2 1000 Convex
UF03 2 1000 Convex
UF04 2 1000 Concave
UF05 2 21 Discrete
UF06 2 1000 Concave
UF07 2 1000 Concave
UF08 3 10000 Concave
UF09 3 10000 Concave
UF10 3 10000 Concave
UF11 5 5000 Concave
UF12 5 5000 Concave
UF13 5 5000 Convex

Table 3.1: Test problem reference table.

The reference is given in Table 3.1. It can be seen that the problems cover a
wide range and include the problems with 2, 3 and 5 objectives. It also includes
convex, concave and discrete problems with non-convex problems making
up the majority. This makes sense since convex problems can be solved using
weighted aggregation of objectives and ,thus more involved methods are seldom
required. One of the problems with this set is the low number of reference points
for 5 objective problems.
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3.2 Test Problems for Multi-Objective Optimization

In this section we describe the test problems used in the work to perform
experiments. Their definitions and properties are briefly described. For each
of these problems Pareto Set and Pareto Frontier are both known which is
convenient for our study. In all the problems below the dimensionality d is set
to 30. In all these cases the problems is that of minimizing the objectives. These
problems were compiled by Quingfu Zhang et al. [71] for use in the CEC 2009
multi-objective optimization algorithm competition.

3.2.1 CEC 2009 Unconstrained Problem 1

The two objectives are:

f1(~x) = x1 +
2

|J1|
∑
j∈J1

(
xj − sin

(
6πx1 +

jπ

d

))2

(3.1)

f2(~x) = 1−
√
x1 +

2

|J2|
∑
j∈J2

(
xj − sin

(
6πx1 +

jπ

d

))2

(3.2)

With J1 and J2 defined below.

J1 = {j | j is odd and 2 ≤ j ≤ d}

J2 = {j | j is even and 2 ≤ j ≤ d}

The search space for this problem is [0, 1]× [−1, 1]d−1. Pareto Frontier and Pareto
Set (PF and PS) are given in the two equations below.

f2 = 1−
√
f1, 0 ≤ f1 ≤ 1

xj = sin

(
6πx1 +

jπ

d

)
, j = 2, . . . , d, 0 ≤ x1 ≤ 1
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Figure 3.1: Pareto set and Pareto front of Unconstrained Problem 1.

3.2.2 CEC 2009 Unconstrained Problem 2

The two objectives are:

f1(~x) = x1 +
2

|J1|
∑
j∈J1

y2j (3.3)

f2(~x) = 1−
√
x1 +

2

|J2|
∑
j∈J2

y2j (3.4)

yj =

xj −
(
0.3x21cos

(
24πx1 + 4jπ

d

)
+ 0.6x1

)
cos
(
6πx1 + jπ

d

)
j ∈ J1

xj −
(
0.3x21cos

(
24πx1 + 4jπ

d

)
+ 0.6x1

)
sin
(
6πx1 + jπ

d

)
j ∈ J2

(3.5)

With J1 and J2 defined below.

J1 = {j | j is odd and 2 ≤ j ≤ d}

J2 = {j | j is even and 2 ≤ j ≤ d}

The search space for this problem is [0, 1]× [−1, 1]d−1. Pareto Frontier and Pareto
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Figure 3.2: Pareto set and Pareto front of Unconstrained Problem 2.

Set (PF and PS) are given in the two equations below.

f2 = 1−
√
f1, 0 ≤ f1 ≤ 1

xj =


(
0.3x21cos

(
24πx1 + 4jπ

d

)
+ 0.6x1

)
cos
(
6πx1 + jπ

d

)
j ∈ J1(

0.3x21cos
(
24πx1 + 4jπ

d

)
+ 0.6x1

)
sin
(
6πx1 + jπ

d

)
j ∈ J2

3.2.3 CEC 2009 Unconstrained Problem 3

The two objectives are:

f1(~x) = x1 +
2

|J1|

(
4
∑
j∈J1

y2j − 2
∏
j∈J1

cos

(
20yjπ√

j

)
+ 2

)
(3.6)

f2(~x) = 1−
√
x1 +

2

|J2|

(
4
∑
j∈J2

y2j − 2
∏
j∈J2

cos

(
20yjπ√

j

)
+ 2

)
(3.7)

yj = xj − x
0.5(1.0+ 3(j−2)

d−2 )
1 , j = 2, . . . , d (3.8)
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Figure 3.3: Pareto set and Pareto front of Unconstrained Problem 3.

J1 and J2 are defined in the same way as in previous problems.

The search space for this problem is [0, 1]d. Pareto Frontier and Pareto Set (PF
and PS) are given in the two equations below.

f2 = 1−
√
f1, 0 ≤ f1 ≤ 1

xj = x
0.5(1.0+ 3(j−2)

d−2 )
1 , j = 2, . . . , d, 0 ≤ x1 ≤ 1

3.2.4 CEC 2009 Unconstrained Problem 4

The two objectives f1 and f2 are given in the equations below.

f1(~x) = x1 +
2

|J1|

(∑
j∈J1

h(yj)

)
(3.9)

f2(~x) = 1− x21 +
2

|J2|

(∑
j∈J2

h(yj)

)
(3.10)
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Figure 3.4: Pareto set and Pareto front of Unconstrained Problem 4.

yi = xj − sin
(

6πx1 +
jπ

d

)
, j = 2, . . . , d (3.11)

h(t) =
|t|

1 + e2|t|
(3.12)

J1 and J2 are defined in the same way as in previous problems.

The search space for this problem is [0, 1]× [−2, 2]d−1. Pareto Frontier and Pareto
Set (PF and PS) are given in the two equations below.

f2 = 1− f 2
1 , 0 ≤ f1 ≤ 1

xj = sin

(
6πx1 +

jπ

d

)
, j = 2, . . . , d, 0 ≤ x1 ≤ 1
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3.2.5 CEC 2009 Unconstrained Problem 5

The two objectives f1 and f2 are given in the equations below.

f1(~x) = x1 +

(
1

2N
+ ε

)
|sin(2Nπx1)|+

2

|J1|
∑
j∈J1

h(yj) (3.13)

f2(~x) = 1− x1 +

(
1

2N
+ ε

)
|sin(2Nπx1)|+

2

|J2|
∑
j∈J2

h(yj) (3.14)

yj = xj − sin

(
6πx1 +

jπ

d

)
, 2, . . . , d (3.15)

h(t) = 2t2 − cos (4πt) + 1 (3.16)

In the equations above N is an integer and ε > 0, J1 and J2 are defined the same
way as in the problems above. We set these values to N = 10 and ε = 0.1, same
as in CEC 09 algorithm contest.

The search space for this problem is [0, 1]× [−1, 1]d−1. The PF for this problem
consists of 2N + 1 Pareto Optimal solutions that have the form:

(
i

2N
, 1− i

2N

)
, i = 0, 1, . . . , 2N

3.2.6 CEC 2009 Unconstrained Problem 6

The two objectives f1 and f2 are given in the equations below.

f1(~x) = x1 + max

{
0, 2

(
1

2N
+ ε

)
sin (2Nπx1)

}
+

+
2

|J1|

(
4
∑
j∈J1

y2j − 2
∏
j∈J1

cos

(
20yjπ√

j

)
+ 2

)
(3.17)
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f2(~x) = 1− x1 + max

{
0, 2

(
1

2N
+ ε

)
sin (2Nπx1)

}
+

+
2

|J2|

(
4
∑
j∈J2

y2j − 2
∏
j∈J2

cos

(
20yjπ√

j

)
+ 2

)
(3.18)

yj = xj − sin

(
6πx1 +

jπ

d

)
, j = 2, . . . , d (3.19)

In the equations above N is an integer and ε > 0, J1 and J2 are defined the same
way as in the problems above. We set these values to N = 2 and ε = 0.1, same
as in CEC 09 algorithm contest.

The search space for this problem is [0, 1]× [−1, 1]d−1. The PF for this problem
consists of one isolated point (0, 1) and N disconnected parts of the form:

f2 = 1− f1, f1 ∈
N⋃
i=1

[
2i− 1

2N
,

2i

2N

]

3.2.7 CEC 2009 Unconstrained Problem 7

The two objectives f1 and f2 are given in the equations below.

f1 = 5
√
x1 +

2

|J1|
∑
j∈J1

y2j (3.20)

f1 = 1− 5
√
x1 +

2

|J2|
∑
j∈J2

y2j (3.21)

yj = xj − sin

(
6πx1 +

jπ

d

)
, j = 2, . . . , d (3.22)

In these equations J1 and J2 are defined the same way as in the problems above.
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Figure 3.5: Pareto set and Pareto front of Unconstrained Problem 7.

The search space for this problem is [0, 1]× [−1, 1]d−1. The PF and PS are given
in the equations below.

f2 = 1− f1, 0 ≤ f1 ≤ 1

xj = sin

(
6πx1 +

jπ

d

)
, j = 2, . . . , d, 0 ≤ x1 ≤ 1

3.2.8 CEC 2009 Unconstrained Problem 8

The three objectives of this problem f1, f2 and f3 are given in the equations
below.

f1(~x) = cos(0.5x1π) cos(0.5x2π)+

+
2

|J1|
∑
j∈J1

(
xj − 2x2 sin

(
2πx1 +

jπ

d

))2

(3.23)
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f2(~x) = cos(0.5x1π) sin(0.5x2π)+

+
2

|J2|
∑
j∈J2

(
xj − 2x2 sin

(
2πx1 +

jπ

d

))2

(3.24)

f3(~x) = sin(0.5x1π)+

+
2

|J3|
∑
j∈J3

(
xj − 2x2 sin

(
2πx1 +

jπ

d

))2

(3.25)

Here J1, J2 and J3 are defined as given in the equations below.

J1 = {j | 3 ≤ j ≤ d and j − 1 is a multiple of 3}

J2 = {j | 3 ≤ j ≤ d and j − 2 is a multiple of 3}

J3 = {j | 3 ≤ j ≤ d and j is a multiple of 3}

The search space for this problem is [0, 1]2 × [−2, 2]d−2. The PF and PS are given
in the equations below.

f 2
1 + f 2

2 + f 3
3 = 1, 0 ≤ f1, f2, f3 ≤ 1

xj = 2x2 sin

(
2πx1 +

jπ

d

)
, j = 3, . . . , d

3.2.9 CEC 2009 Unconstrained Problem 9

The three objectives of this problem f1, f2 and f3 are given in equations below.

89



3. Experimental Analysis of Existing MOPSO Methods

f
1

0.20.00.20.40.60.8 1.01.2

f 2

0.2
0.0

0.2
0.4

0.6
0.8

1.0
1.2

f 3

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

(a) Pareto front.

f
1

0.20.00.20.40.60.8 1.01.2

f 2

0.2
0.0

0.2
0.4

0.6
0.8

1.0
1.2

f 3

3
2
1

0
1

2

3

(b) Pareto set when d = 3.

Figure 3.6: Pareto set and Pareto front of Unconstrained Problem 8.

f1(~x) = 0.5
(
max

{
0, (1 + ε)

(
1− 4 (2x1 − 1)2

)}
+ 2x1

)
x2+

+
2

|J1|
∑
j∈J1

(
xj − 2x2 sin

(
2πx1 +

jπ

d

))2

(3.26)

f2(~x) = 0.5
(
max

{
0, (1 + ε)

(
1− 4 (2x1 − 1)2

)}
− 2x1 + 2

)
x2+

+
2

|J2|
∑
j∈J2

(
xj − 2x2 sin

(
2πx1 +

jπ

d

))2

(3.27)

f3(~x) = 1− x2+

+
2

|J3|
∑
j∈J3

(
xj − 2x2 sin

(
2πx1 +

jπ

d

))2

(3.28)

Sets J1, J2 and J3 are defined the same way as in Unconstrained Problem 8 and
ε = 0.1.

The search space for this problem is [0, 1]2 × [−2, 2]d−2.
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The PF has two parts where the first part is

0 ≤ f3 ≤ 1,

0 ≤ f1 ≤
1

4
(1− f3),

f2 = 1− f1 − f3

and the second part is

0 ≤ f3 ≤ 1,

3

4
(1− f3) ≤ f1 ≤ 1,

f2 = 1− f1 − f3.

The PS also has two disconnected parts where the first part is

x1 ∈ [0, 0.25] ∪ [0.75, 1], 0 ≤ x2 ≤ 1

and the second one

xj = 2x2 sin

(
2πx1 +

jπ

d

)
, j = 3, . . . , d.

3.2.10 CEC 2009 Unconstrained Problem 10

The three objectives of this problem f1, f2 and f3 are given in equations below.

f1(~x) = cos(0.5x1π) cos(0.5x2π) +
2

|J1|
∑
j∈J1

(
4y2j − cos(8πyj) + 1

)
(3.29)
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Figure 3.7: Pareto set and Pareto front of Unconstrained Problem 10.

f2(~x) = cos(0.5x1π) sin(0.5x2π) +
2

|J2|
∑
j∈J2

(
4y2j − cos(8πyj) + 1

)
(3.30)

f3(~x) = sin(0.5x1π) +
2

|J3|
∑
j∈J3

(
4y2j − cos(8πyj) + 1

)
(3.31)

yj = xj − 2x2 sin

(
2πx1 +

jπ

d

)
, j = 3, . . . , d (3.32)

Here, sets J1, J2 and J3 are defined the same way as in previous two problems.

The search space for this problem is [0, 1]2 × [−2, 2]d−2. The PF and PS are given
in the equations below. The PF and PS for this problem are given below.

f 2
1 + f 2

2 + f 3
3 = 1, 0 ≤ f1, f2, f3,≤ 1

xj = 2x2 sin

(
2πx1 +

jπ

d

)
, j = 3, . . . , d
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3.2. Test Problems for Multi-Objective Optimization

3.2.11 CEC 2009 Unconstrained Problem 11

This is one of the three five objective problems we used and that was used in
CEC 2009 contest. This one is based on a problem from the famous DTLZ test
problem suite that can be found for example in this work by V. L. Huang et al.
[24] or Simon Huband et al. [25].

f1(~x) =

(1 + g(~xM ))
∏M−1
i=1 cos

(
z′i
π
2

)
+ 1 if zi ≥ 0

S(psum1) (1 + g(~xM ))
(∏M−1

i=1 cos
(
z′i
π
2

)
+ 1
)

otherwise

f2(~x) =

(1 + g(~xM ))
∏M−2
i=1 cos

(
z′i
π
2

)
sin
(
z′M−1

π
2

)
+ 1 if zi ≥ 0

S(psum2) (1 + g(~xM ))
(∏M−2

i=1 cos
(
z′i
π
2

)
sin
(
z′M−1

π
2

)
+ 1
)

otherwise

f3(~x) =

(1 + g(~xM ))
∏M−3
i=1 cos

(
z′i
π
2

)
sin
(
z′M−2

π
2

)
+ 1 if zi ≥ 0

S(psum3) (1 + g(~xM ))
(∏M−3

i=1 cos
(
z′i
π
2

)
sin
(
z′M−2

π
2

)
+ 1
)

otherwise

...

fM−1(~x) =

(1 + g(~xM )) cos
(
z′1
π
2

)
sin
(
z′2
π
2

)
+ 1 if zi ≥ 0

S(psumM−1) (1 + g(~xM ))
(
cos
(
z′1
π
2

)
sin
(
z′2
π
2

)
+ 1
)

otherwise

fM (~x) =

(1 + g(~xM )) sin
(
z′1
π
2

)
+ 1 if zi ≥ 0

S(psumM ) (1 + g(~xM ))
(
sin
(
z′1
π
2

)
+ 1
)

otherwise

Where

g(~xM) =
∑
xi∈~xM

(zi − 0.5)2 (3.34)

z′i =


−λizi, zi < 0

zi, 0 ≤ zi ≤ 1

λizi, zi > 1

(3.35)
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pi =


−zi, zi < 0

0, 0 ≤ zi ≤ 1

zi − 1, zi > 1

(3.36)

~z = M~x (3.37)

S(psum) =
2

1 + e−psum
(3.38)

Data vector λ and matrix M used in this problem can be found in files.

3.2.12 CEC 2009 Unconstrained Problem 12

The definition of this problem is the same as Problem 11, but g(~xM) is defined
differently. Definition is given in Equation (3.39).

g(~xM) = 100

(
|~xM |+

∑
xi∈~xM

(zi − 0.5)2 − cos(20π(zi − 0.5))

)
(3.39)

3.2.13 CEC 2009 Unconstrained Problem 13

The problem is, given z = {z1, z2, . . . , zd}, to minimize the equation given below
where m ∈ {1, . . . ,M} is the objective index and M is the number of objectives.

fm (x) = DxM + Smhm (x1, . . . , xM−1) (3.40)

Further explanation of this problem and it’s parameter is complicated and will
not be included here, but can be found in Q. Zhang et al. [71].
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3.3 Quality Indicators

The purpose of quality indicators is to assign numerical values to various aspects
of optimizer performance. Usually what is measured is the similarity between
an approximated Pareto front produced by an optimization algorithm to a
reference Pareto front produced using a priori knowledge of what the real
Pareto front for that particular problem is. These reference sets are usually
produced using the explicit function of the Pareto front and you are expected to
assume for them to contain enough points that furthermore uniformly cover the
real Pareto front. In practice however it is not always the case that either of those
presuppositions is true. Popular quality indicators are given below. Measuring
optimizer performance in the case of single objective optimization is simple. If
minimizing a function and one solution gives lower value of that function then
another that solution in almost unambigously better. Although it can be argued
that a solution that will lead you to find the global minimum is better than a
solution that will lead you to find a local minimum even if the former gives
a larger function value. However comparing the end result of an optimizer
run is trivial - lower is always better. Further aspects of performance such as
convergence time can be measured by tracking best solution found after each
algorithm iteration. When measuring multi-objective optimization algorithm
performance the matter is more complicated since you have to compare two sets
instead of just single values. Measuring distance between two sets is relatively
simple with several quality indicators based on calculating average distance
between points in one set and the closest point in another set. These include
GD, IGD and ∆p indicators. Popular quality indicators like IGD try to assign a
single number to the abstract notion of optimizer performance. Good overviews
of quality indicators for multi-objective optimiziation are provided by Eckart
Zitzler et al. [74] and Jin Wu et al. [68]

We have selected four indicators to be used in our experiments. While this
is but a small sample of indicators that are available we feel this is a good
representation. We also propose two novel performance indicators designed to
measure solution spread in approximations if reference set is available, which
in our case it is. The existing performance indicators we selected are popular
and used in numerous publications. For example IGD was the sole measure of
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merit used for CEC 2009 multi-objective algorithm competition.

3.3.1 Generational Distance (GD)

Generational distance is defined as given in Equation (3.41). Here, and in the
explanations of other metrics, A is the approximate set to the PF, P ∗ is a set of
uniformly distributed points along the PF (in the objective space) and d(v, P ∗) is
the minimum distance between point v and one of the points in P ∗.

GD(A,P ∗) =

∑
v∈A d(v, P ∗)

|A|
(3.41)

This metric measures how close the approximate set is to the real PF. It is
important to note that as long as the approximate set A lies close to the real PF
this metric will report a value close to zero even if large portions of the PF are
missing in the approximation. This is a well known measure and can be found
for example in David A. Van Veldhuizen et al. [64].

3.3.2 Inverted Generational Distance (IGD)

This metric is, in a sense, the opposite of the previous one. It measures how
close actual PF is to the approximated one. For this we simply swap the sets in
Equation (3.41) places as given in Equation (3.42).

IGD(A,P ∗) =

∑
v∈P ∗ d(v, A)

|P ∗|
(3.42)

This metric will give lower values for approximations that are close to the actual
PF and furthermore no large portions of the PF can be missing in approximation.
Because of this, this metric is sometimes used as the only figure of merit when
comparing multi-objective optimization algorithms on problems where PF is
known. This metric can be said to measure both closeness to the real PF and
uniformity of approximation. Description of the use of this metric can be found,
for example, in Hui Li et al. [35]. There is however a downside when using this

96



3.3. Quality Indicators

metric as the only measure of merit for multi-objective optimization algorithms.
It is not clear to what extent do the two properties influence the value of this
metric. It is also not clear what is their exact relationship when calculating
IGD. Therefore it may be a better idea to instead use two separate metrics when
possible. One to measure the uniformity of spread of solutions and one to
measure how close the approximation is to the actual PF in terms of average
Euclidean distance. Measuring distance is trivial with the help of GD while
measuring spread is not as straightforward and most commonly used metrics
have serious downsides.

3.3.3 Averaged Hausdorff Distance (∆p)

Olver Schütze et al. [58] propose to use what they call Averaged Hausdorff
Distance to address some perceived issues with GD and IGD quality indicators.
First of all they propose to change GD and IGD to use power mean to average the
distances instead of arithmetic mean used in GD and IGD. The new indicators
are called GDP and IGDp where p is a parameter. The formulas for calculating
those indicators become then as given in equalities (3.43) and (3.44). Finally
the result of this quality indicator is the larger of the two quantities (GDp and
IGDp). This metric tends to penalize outliers with increasing values of p.

GDp(A,P
∗) =

∑
v∈A d(v, P ∗)p

|A|p
(3.43)

IGDp(A,P
∗) =

∑
v∈P ∗ d(v,A)p

|P ∗|p
(3.44)

∆p(A,P
∗) = max (GDp(A,P

∗), IGDp(A,P
∗)) (3.45)

3.3.4 Hypervolume Indicator (IH)

The description of this indicator can be found in, for example, work by Eckart
Zitzler [72]. Let us first consider hypervolume indicator in two objective case.
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Figure 3.8: The result of hypervolume indicator IH in this case would be the
area shown in grey.

In this case this indicator is the volume of the union of all rectangles defined by
points (min(f1),min(f2)) and (f1(~a), f2(~a)) where ~a is each of the vectors belong-
ing to approximation A and min(fi) is the minimum value for the objective fi or
at least a value that we know the objective cannot be lower than. An example of
what this might look like is given in Figure 3.8, with min(f1) and min(f2) set to
zero.

It should be readily apparent how to translate this concept to more than one
objective. Indeed one just has to replace the rectangles with corresponding
hyperrectangles defined as Cartesian product of intervals (min(f1), f1(~a)) ×
(min(f2), f2(~a))× . . .× (min(fk), fk(~a)) for a problem with k objectives and calcu-
late hypervolume of the union of those products. This boils down to integration.
This is probably simplest to do in practice with Monte Carlo integration al-
gorithms. We have used an algorithm described below.

Here we have defined min(fi) as before and max(fi) as the maximum value of
objective i in approximation archiveA. Value volume is defined by the volume of
the bounding box defined by value min(fi) and max(fi) which can be calculate
easily by multiplying (max(f1) − min(f1)) · · · (max(fk) − min(fk)) that is the
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Algorithm 7 Calculating hypervolume indicator IH via Monte Carlo integration.
1: inside← 0
2: for iteration← 1, N do
3: sample←

((
Umin(f1), Umax(f1)

)
, . . . ,

(
Umin(fk), Umax(fk)

))
4: for ~a ∈ A do
5: if ∀j ∈ [1, 2, . . . , k] : aj < samplej then
6: inside← inside+ 1
7: break
8: end if
9: end for

10: end for
11: return volume× inside

N

viable ranges for each objective. What the algorithm does is sample the allowed
range and counting the points that fall within the union of hyperrectangles
defined by points in the archive. It then returns the ratio between number of
samples that happen to fall within the hyperrectangles and the total number of
samples N multiplied by the hypervolume taken up by the allowed range.

3.3.5 Pareto Spread Indicator (IOS)

This indicator consists of measuring the ratio between the hyperrectangles
formed by the good and bad point of the real Pareto front and extreme points
in the approximation. Good and bad points are defined here as estimates of
the ideal and maximum point. That is we pick the point that has the lowest
values of all objectives as the good point and the point that has the highest
values of all objectives as the bad point. Extreme points are calculated from an
approximation A and contain the best and the worst values for each objective.
This performance indicator was proposed by Jin Wu et al. [68].

IOS(A) =

∏k
i=1 |max(fi)−min(fi)|∏k

i=1 |pbi − pgi|
(3.46)

In the equation (3.46) we define max(fi) to be the largest value for objective i in
approximation A and corresponding max(fi) to be the smallest value. Symbols
pbi and pgi denote coordinate i of bad and good points as defined earlier. Plainly
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speaking this indicator measures how big is the smallest box in to which all
points in the approximation fit compared to the box defined by good and bad
points. In essence this measures the extent of coverage of the real Pareto front
by the approximation.

3.3.6 Number of Distinct Choices (INDCµ)

Proposed by J. Wu et al. [68]. This counts the number of points in the approxim-
ation with the condition that said points are distinct enough. This indicator uses
a parameter called µ to divide the space in to hyperrectangles. The number of
hyperrectangles will be 1

µd
assuming d-dimensional objective space. Two points

are considered similar if they lie in the same hyperrectangle.

NTµ =

1 ∃y ∈ A : y ∈ Tµ(q)

0 ∀y ∈ A : y 6∈ Tµ(q)
(3.47)

Quantity NTµ will be zero if there is no solution falling in to an area represented
by point q. It is equal to one otherwise. We then simply sum this value for each
possible area taking in to the account the value of parameter µ. The value of this
indicator is the numebr of hyperrectangles with at least one solution in them.

NDCµ(A) =
v−1∑
ld=0

. . .
v−1∑
l2=0

v−1∑
l1=0

NTµ(q, A) (3.48)

Here q = (q1, q2, . . . qd) and qi = li
v

where v = 1
µ

. In the equations and discussion
above the point q lies at an intersection of the grid lines formed when dividing
the objective space in to hyperrectangles.

3.3.7 Cluster (ICL)

Proposed by J. Wu et al. [68]. It is defined as the ratio between the number
of solutions in the approximation and the number of distinct solutions in the
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approximation. The number of distinct solutions INDCµ is defined in the way
described in the previous subsection. If all solutions are distinct then the value
of the indicator is equal to 1 and get’s higher as fewer solutions are distinct.
Generally the smaller the value of this indicator the better since it means there
is no superfluous information in the approximation. This indicator is designed
to measure clustering in the approximation.

ICL(A) =
IN(A)

INDCµ(A)
(3.49)

3.3.8 Spacing Indicator (ISP )

Originally proposed by Jason R. Schott [57] and sometimes referred to in lit-
erature as Schott’s metric. This metric measures the deviation in the distance
between nearest neighbours in terms of Manhattan distance. The formula to
calculate this metric is given in Equation (3.50).

SP (A) =

√√√√ 1

n− 1

n∑
i=1

(d̄− di)2 (3.50)

Here d̄ is the mean value of all di, i ∈ {1, . . . , n} and di is defined in Equation
(3.51).

di = min
j∈{1,...,n}

(∣∣f i1(~x)− f j1 (~x)
∣∣+ . . .+

∣∣f im(~x)− f jm(~x)
∣∣) (3.51)

This definition of di is for problems with two objectives but it can easily be
extended for problems with more objectives. The problem with this metric is
that it is not sensitive to large gaps in the approximated set. It only looks at the
distance to the closest neighbour. This means that if an approximation consists
of tightly packed clusters of points with large gaps between them the value
of this metric will be low. However a solution like this can only be regarded
as poor provided that the actual PF is continuous. For this reason this metric
should be used carefully if at all.
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3.4 Experimental Comparison and Analysis

Here we present the result of experiments for a large number of different MOPSO
variants. All these variants can be found described in literature and they have
been implemented and tested using the same procedure. The full results in
the form of tables, as well as visually,are given in the appendix. Here we
summarize those results with the help of two of the performance indicators
IGD and IIGD. These have been chosen because they are commonly used and
informative. After this we also present the results for every swarm analyzed
when using our proposed performance indicators. The results in the first part
are displayed in the two dimensional plane with the x axis representing the
value of IGD and y axis representing the value of IIGD. One would expect the
most successful methods to be represented in the bottom left of the plot. Low
values of IGD indicate that a method arrives at solutions that lie on or close to
the real Pareto frontier. Low values of IIGD indicate that values lie on or close
to the real Pareto frontier plus that no large parts of the real Pareto frontier are
missing in the approximation. It is probably useful to remind the reader that
IGD measures the average distance between an approximation point and the
closest point to it in the reference set (a discretized representation of the real
Pareto frontier). Indicator IIGD measures what is in a sense the opposite of that —
the average distance between a point in the reference set and its closest point in
the approximation. Successful methods will minimize both of these indicators.
If a method gives low value of IGD and a (comparatively) large value of IIGD
in the plots below ,it means that while the method successfully finds points on
or close to the real Pareto frontier, the approximation omits some parts of the
Pareto frontier. Therefore, plotting them against each other gives additional
information that would not be readily apparent just by examining those values
in the table.

The first thing that stands out in the tables is that the K. E. Parsopoulos [47]
approach stands out as being the worst in all the test cases it has been tried
on. This seems to suggest that such a simple approach does not work well on
complicated, high-dimensional problems we have tested on.

The approach proposed by C. A. C. Coello et al. [6] does not seem to give good
results for the chosen metrics either. Its performance is consistently poor for

102



3.4. Experimental Comparison and Analysis

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
IGD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

I I
G
D

C. A. C. Coello et al. (2002)
X. Hu et al. (2002)
K. E. Parsopoulos et al. (2002) (Bang Bang)
S. Mostaghim et al. (2003)
X. Hu et al. (2003)
C. A. C. Carlos et al. (2004)
K. E. Parsopoulos et al. (2004)
C. R. Raquel et al. (2005)
J. E. Alvarez-Benitez et al. (2005) RANDOM
J. E. Alvarez-Benitez et al. (2005) PROB
M. R. Sierra et al. (2005)
P. K. Tripathi et al. (2007)
W. Peng et al. (2008)
A. J. Nebro et al. (2009)
N. Al Moubayed et al. (2010)
S. Z. Martinez et al. (2011)
K. S. Lim et al. (2013)

Figure 3.9: Overview of the results for problem UF01. Average values of indicat-
ors IGD and IIGD are plotted against each other for every method.

problems with 2, 3 and 5 objectives. It is a simple approach that always takes
the particle that is deemed to be in the least crowded area of the approximation
as the global best.

The dynamic neighbourhood approach by X. Hu et al. [22] seems to do well on
all two objective problems. The main problem with this approach is that it is
not immediately clear how to generalize it to the problems with more than two
objectives.
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Figure 3.10: Overview of the results for problem UF02. Average values of
indicators IGD and IIGD are plotted against each other for every method.

The sigma particle approach proposed by S. Mostaghim et al. [40] seems to
work well on all problems. The only exception is UF13, in which it does poorly
in terms of the IGD indicator. This approach was used also in the our proposed
heterogeneous swarms. The fact that it usually outperforms more modern
approaches is quite remarkable.

It is interesting to see that in a lot of cases the X. Hu et al. [23] method seems
to do worse than the X. Hu et al. [22], which it was supposed to improve upon.
With every test problem it has been evaluated with, it seems to be worse in
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terms of both IGD and IIGD performance indicators. The proposed changes
to the original dynamic neighbourhood method do not seem to provide any
kind of marked improvement and, in fact, they seem to be detrimental to the
performance of the method.

The method proposed by C. A. C. Coello et al. [5] differs from the C. A. C. Coello
et al. [6] only by the inclusion of a mutation operator everything else staying the
same. Therefore, it is interesting to see that this simple change to the method
provides a marked improvement in performance. With all the test problems
the results in terms of both IGD and IIGD are markedly better when using the
mutation operator. This seems to indicate that adding a mutation operator is a
good way of improving the performance of MOPSO methods.

The vector evaluated method of K. E. Parsopoulos et al. [48] does not seem to be
performing well on any of the tested problems, except for UF13. It is not clear
why this is the case.

C. R. Raquel et a. [52] method works well on all problems except for UF05,
which is a problem with a discrete Pareto frontier. It makes sense since this
method makes the assumption that the Pareto frontier is continuous.

The performance of the J. E. Alvarez-Benitez et al. [2] family of methods is
comparable to other algorithms in most cases. It always performs on average
worse than most methods tried on the indicators IGD and IIGD. On problems
UF08 and UF09 the value of the IGD is on far with the best methods tried. This
indicates that these methods may prematurely converge without exploring
the search space well. One notable exception is the problem UF12 where these
methods do exceptionally well. Orders of magnitude better on the IIGD indicator
compared to others.It should be investigated, why this is so.

The M. R. Sierra et al. [60] method performs very well on problems UF01 and
UF02 yet seems to perform rather poorly with problem UF03, which as identical
Pareto frontier, but a more complicated Pareto set. It generally performs very
well compared to other methods. This may be why this is a very popular method
often used to benchmark other MOPSO methods against.

The P. K. Tripathi et al. [63] does very poorly on problem UF04. It also does
poorly on problems UF05, UF08, UF12, UF13. It does comparatively well on

105



3. Experimental Analysis of Existing MOPSO Methods

0.0 0.2 0.4 0.6 0.8 1.0 1.2
IGD

0.2

0.3

0.4

0.5

0.6

0.7

I I
G
D

C. A. C. Coello et al. (2002)
X. Hu et al. (2002)
K. E. Parsopoulos et al. (2002) (Bang Bang)
S. Mostaghim et al. (2003)
X. Hu et al. (2003)
C. A. C. Carlos et al. (2004)
K. E. Parsopoulos et al. (2004)
C. R. Raquel et al. (2005)
J. E. Alvarez-Benitez et al. (2005) RANDOM
J. E. Alvarez-Benitez et al. (2005) PROB
M. R. Sierra et al. (2005)
P. K. Tripathi et al. (2007)
W. Peng et al. (2008)
A. J. Nebro et al. (2009)
N. Al Moubayed et al. (2010)
S. Z. Martinez et al. (2011)
K. S. Lim et al. (2013)

Figure 3.11: Overview of the results for problem UF03. Average values of
indicators IGD and IIGD are plotted against each other for every method.

problem UF11. Problem UF05 can be explained by it being a problem with a
discrete Pareto frontier while this method, like most others, make an assumption
that the Pareto frontier is mostly continuous.

The decomposition based MOPSO method by W. Peng et al. [49] performs very
well on problem UF05. It works comparatively well on all problems with none
being exceptionally worse than other methods.

A. J. Nebro et al. [42] proposed a method that is supposed to be an improvement
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Figure 3.12: Overview of the results for problem UF04. Average values of
indicators IGD and IIGD are plotted against each other for every method.

upon the one proposed by M. R. Sierra et al. [60]. In all cases we have tried, it
performs on average worse than that method though. Therefore,the assumptions
made by the authors about how to improve the performance seem to be wrong.

N. Al Moubayed et al. [1] proposed a decomposition based method. Like all the
other decomposition based methods it performs well on the UF05 test problem.
It also performs well on the UF07 problem which is also a problem with a
discontinuous Pareto frontier. It also performs exceptionally well on problems
with more than two objectives. With the only exception being the UF12 problem.
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Figure 3.13: Overview of the results for problem UF05. Average values of
indicators IGD and IIGD are plotted against each other for every method.

S. Z. Martínez et al. [69] proposed a decomposition based method. Like the
other methods based on decomposition it performs well on the UF05 test prob-
lem. Other than that it performs slightly worse than the other decomposition
methods.

K. S. Lim et al. [37] method performs very poorly on all problems we have
tested it on. This seems to indicate, along with the data collected from the K.
E. Parsopoulos et al. [48] method when applied to these problems, that the
vector evaluated methods do not fare well in comparison to other methods
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Figure 3.14: Overview of the results for problem UF06. Average values of
indicators IGD and IIGD are plotted against each other for every method.

when applied to high-dimensional multi-objective problems of the kind used
here.

3.5 Conclusions

In this chapter we have experimentally evaluated known MOPSO methods. The
following conclusions can be ascertained from this analysis:
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Figure 3.15: Overview of the results for problem UF07. Average values of
indicators IGD and IIGD are plotted against each other for every method.

• It has long been known that the use of mutation operators can improve
the performance of single objective PSOs. However, comparative studies
that contrast the methods that use mutation operators and those that do
not, have not been performed in the field of multi-objective PSO. Because
of the large number of MOPSO methods that have been surveyed in this
research both with and without mutation, conclusions about its use can be
made. It can be seen from the data that mutation can significantly improve
the performance of MOPSO methods.
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Figure 3.16: Overview of the results for problem UF08. Average values of
indicators IGD and IIGD are plotted against each other for every method.

• Decomposition based approaches work well on problems with discontinu-
ous Pareto frontiers. This may be due to the fact that they do not make
assumptions about the Pareto frontier being continuous the way most
MOPSO approaches do.

• Vector evaluated MOPSO methods have been proposed early on for the
use with multi-objective problems. In vector evaluated approaches there
are several populations of individuals each optimizing a single objective.
Information is exchanged between populations. In the simplest case one
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Figure 3.17: Overview of the results for problem UF09. Average values of
indicators IGD and IIGD are plotted against each other for every method.

population will take the best solution found by another population as its
global best solution. Since they optimize different objectives ,this will allow
the swarms to explore solutions that optimize both objectives. However,
from the experimental results that have been gathered in chapter 3, it can be
seen that vector evaluated MOPSO methods do not work well compared to
other MOPSO approaches. Several vector evaluated approaches have been
tested and none of them come close in terms of results to other approaches.
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Figure 3.18: Overview of the results for problem UF10. Average values of
indicators IGD and IIGD are plotted against each other for every method.

There seems to be a distinct lack of heterogenous approaches in the methods
discussed, so far. Heterogeneous methods use different types of particles sharing
information. Particles usually differ in their velocity and position update rules.
They may also differ in how they select the best neighbour and how they
update their personal best solution. The latter two differences are particularly
important in MOPSO methods,where there are a lot of different ways how
the neighbourhood best is selected and how personal best is updated. Using
heterogeneous approaches may solve some problems with existing methods.
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Figure 3.19: Overview of the results for problem UF11. Average values of
indicators IGD and IIGD are plotted against each other for every method.

For example, it is possible that heterogeneous methods will be able to solve
problems in distinctly different problem classes successfully. That is because
using different particles means that particles that are more successful with one
class of problems will offset the influence of particles that are less successful
with that class. And vice versa.
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Figure 3.20: Overview of the results for problem UF12. Average values of
indicators IGD and IIGD are plotted against each other for every method.
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Figure 3.21: Overview of the results for problem UF13. Average values of
indicators IGD and IIGD are plotted against each other for every method.
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Chapter 4

Proposed Methods

In this chapter, solutions to several perceived problems in the field of multi-
objective particle swarm optimization are proposed. Firstly, a classification
of existing MOPSO methods is provided. While there exist several different
classification schemes, they are usually very broad and do not reflect the imple-
mentation details of the underlying methods accurately. In an overview of the
existing MOPSO methods it has become apparent that most MOPSO methods
differ from the generic MOPSO method that is given in Chapter 2 (Algorithm
4), in three major areas. The first one is the underlying concept (e.g. Vector
Evaluated Methods, Decomposition-based methods, etc.), the second one is how
the method makes sure that the Pareto points in the approximation uniformly
cover the Pareto frontier and the third one is the mutation operator (if any) used.
We propose to classify the methods with regards to these three aspects. An
example of such classification is given in the following section.

In the second section it is argued that existing performance indicators for the
measurement of the solution spread are not adequate for the purpose. Counter
examples that demonstrate the cases where these indicators do not accurately
measure the intended qualities are given. Two new performance indicators
based on this information are proposed. The first one is simple to compute,
but it does not fully capture the intuitive notion of the uniform coverage. The
second one is more complicated,but also more accurate.

Two new MOPSO methods are introduced further. Both are based on the notion
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of heterogeneous PSO – having several different particle types in the same
swarm. Particles differ in their velocity and position update rules. Particles
share the information via the same non-dominated point archive. The idea
behind these methods is that having different particle types, each emphasizing
different aspects of MOPSO performance will result in them counter-acting each
others drawbacks. So,if we have one particle that emphasizes getting close to
the Pareto frontier and another emphasizing covering the Pareto frontier as
uniformly as possible,we will end up with a swarm that tries to achieve both of
these goals. An experimental comparison between these proposed methods and
popular MOPSO methods found in literature is given.

Finally, the software framework that has been developed during the prepara-
tion of the thesis is presented from the framework user’s point of view. The
framework is open-source and publicly available via a Mercurial repository. The
possibilities offered by the framework with regards to prototyping, testing and
using multi-objective PSO methods are briefly described. Also the technical
details of the experimental set-up that has been used for this thesis are given.
Because the experiments presented in the thesis are computationally expensive
and numerous, they have to be performed on super-computing clusters. The
framework is designed with running in distributed computing environments in
mind.

4.1 Proposed Classification of Existing MOPSOs

An attempt at classifying existing MOPSO methods is given in the Table 4.1.
Each method is described by the primary idea it uses, how it handles population
diversity and whether it uses mutation operators.

4.1.0.1 Common MOPSO Types

We classify MOPSO methods by their “type” which means the primary idea
behind that method. We use the generic “Pareto dominance” if the method
simply updates personal best solution if it dominates the previous one and there
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Method Type Diversity control Mut.

C. A. C. Coello et al. (2002) Pareto dominance Niching No
X. Hu et al. (2002) Dynamic neighbourhood None No
K. E. Parsopoulos et al. (2002) Weighted aggregation None No
S. Mostaghim et al. (2003) Pareto dominance None Yes
J. E. Fieldsend et al. (2002) - - -
X. Li et al. (2003) Non-dominated sorting Crowding distance No
X. Hu et al. (2003) Dynamic neighbourhood None No
C. A. C. Coello et al. (2004) Pareto dominance Niching Yes
K. E. Parsopoulos et al. (2004) Subswarm None No
S. Mostaghim et al. (2004) Subswarm None Yes
C. R. Raquel et al. (2005) Pareto dominance Crowding distance Yes
J. E. Alvarez-Benitez et al. (2005) Pareto dominance No. of d. solutions No
M. R. Sierra et al. (2005) Pareto dominance Crowding distance Yes
M. Salazar-Lechuga et al. (2005) Pareto dominance Fitness sharing Yes
P. K. Tripathi et al. (2007) Pareto dominance Crowding distance Yes
W. Peng et al. (2008) Decomposition None Yes
U. Wickramasinghe et al. (2009) Non-dominated sorting None No
A. J. Nebro et al. (2009) Pareto dominance Crowding distance Yes
Y. Wang et al. (2009) P. O. ranking None No
N. Al Moubayed et al. (2010) Decomposition None No
A. Elhossini et al. (2010) Pareto strength None Yes
S. Z. Martinez et al. (2011) Decomposition None No
A. J. Nebro et al. (2013) Pareto dominance Hypervolume c. Yes
K. S. Lim et al. (2013) Subswarm None Yes
I. C. Garcia et al. (2014) Pareto dominance Hypervolume c. Yes

Table 4.1: Classification of MOPSO methods examined here.

is nothing distinct about that method to justify creating a category for it. All
approaches that more than one method uses are given in the list below.

Pareto dominance This is a placeholder for the methods that do not do any-
thing special. They usually use Pareto dominance relationships to de-
termine if the personal best solution needs to be updated and collect
solutions in a non-dominated point archive. They usually differ by how
they handle population diversity. Diversity control methods are discussed
below. There are 11 methods in this category.

Dynamic neighbourhood Consists of only two methods and is suitable only
for the problems with two objectives. Works by using one of the objectives
to find particles neighbours and another to pick the best neighbour.

Non-dominated sorting These methods use the concepts of NSGA-II by K. Deb
et al. [12]. Solutions are arranged into ranks, where a rank consists of
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non-dominated sets of particles. These ranked particles are then used
when updating personal best solutions. There are two methods of this
type in our study.

Subswarm In this approach swarm is divided into subswarms. Each subswarm
may optimize a single objective of the multi-objective problem. Usually
subswarms share information in some way. We analyzed three methods
that fall within this category. Most of these methods are inspired by Vector
Evaluated Genetic Algorithms (VEGA) by J. D. Schaffer [56].

Decomposition In this approach each particle gets a separate aggregate func-
tion with different weights. This is similar to weighted aggregation ap-
proaches ,but instead of optimizing a single function, the swarm now
optimizes as many functions as there are particles. Weights are usually
chosen so, as to uniformly cover the weight space. Neighbourhood rela-
tionships between two particles are often determined by their distance
from each other in the weight space. These approaches are inspired by the
MOEA/D family of algorithms by Q. Zhi et al. [70]. There have recently
been a relative abundance of publications in using these techniques in
MOPSO methods.

Other methods include “Weighted aggregation” where objectives are aggregated
using weights that change during the course of PSO evolution, “P. O. ranking”
or Preference Order Ranking, which is described in the work by F. di Pierro et al.
[13] when used in genetic algorithms and “Pareto strength” which is identical
to the concept used by E. Zitzler et al. [73] in the SPEA2 algorithm.

4.1.0.2 Diversity Control

Multi-objective optimization methods employ diversity control in order that no
areas of the objective space remain uncovered and those that are covered are
covered uniformly. This is often achieved by directing particles towards those
solutions that lie in the areas of objective space sparsely populated by other
solutions. This, it is hoped, will help to fill in those parts of the objective space
with non-dominated points in the approximation. It is important to note that this

120
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presupposes that Pareto frontier is continuous since with discrete frontiers can
often be meaningless. Although, even with discrete frontier, it is important to
make sure that no areas of Pareto frontier remain uncovered. However, methods
employed here will often not work in the case of discrete frontiers.

Niching When using niching, objective space is divided into a specified number
of hyper-cubes and each hyper-cube that contains solutions is assigned a
niching count that corresponds to the number of solutions in that hyper-
cube. If a solution is in a hyper-cube that contains few solutions, it will be
preferred as a leader as opposed to particles that lie in hyper-cubes that
already contain many solutions. Two methods we analyzed used niching.

Crowding distance Crowding distance is a method proposed by K. Deb et al.
[12] and is very commonly used. It works by sorting solutions by each
objective in turn and measuring the distance between the two neighbours
- one to the left and one to the right. The sum of these values is then taken
as a crowding distance of the solution. Solutions at the start and end of the
sorted solution list get infinite crowding distance. This makes sure that
the edges and corners of the Pareto frontier are explored.

Hypervolume contribution Hypervolume measures how much of hypervolume
a solution alone contributes. That is what is the hypervolume that this
solution covers that does not intersect the hypervolume of some other
solution. Two methods use this approach. It is described in more detail in
the sections on those methods.

Fitness sharing Fitness sharing is similar to niching but a hypersphere is used
instead and we count how many solutions fall within a given radius of a
solution. Plus fitness sharing penalty is applied, the closer other solutions
are to a given solution. One method uses this approach.

Number of dominated solutions Another method of diversity control is to
count how many current particles (after position update) each solution
in the non-dominated point archive dominates. Particles are preferred if
they dominate fewer particles since this indicates that the area around that
solution is unexplored. This approach is used by one method.
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4.1.0.3 Mutation

In the table we only indicate if mutation is used or not. Common types of
mutation are the same as those used in the multi-objective genetic algorithms.
Overview of mutation operators is given in the section on the single objective
PSO. Polynomial mutation seems to be a popular operator among different
MOPSO variants.

4.2 Problems with Existing Performance Indicators

for Solution Spread

The goal of measuring solution spread in an approximation is to see how well
the approximation covers the real Pareto frontier. The idea and main concern
here is that the approximation has to give an accurate picture of the Pareto
frontier to the decision maker. First of all, we do not want any large portions of
the frontier missing in the approximation. Second of all the spacing of points in
the approximation has to be “uniform” in the sense that the distances between
the closest points should be similar. All of this, of course, only applies when the
frontier is mostly continuous. It can be argued that the existing performance
indicators do not capture these intuitive notions very well. Let us look at the
indicators that in one way or another can measure solution spread.

First of all, there is IIGD which will take on larger values if large portions of the
Pareto frontier are missing. This is because it calculates the mean of the closest
distance between each point in the real Pareto frontier (a discretized version of
it that is) and a point in the approximation. If the approximation has missing
pieces in it, these distances will be increased. The problem with this is that these
distances are also influenced by how close to the real Pareto frontier the points
are.Therefore,it is not clear how much of the resulting value is contributed by
closeness to the real PF and how much by uniformity of coverage. This makes
this indicator not suitable for the purpose of measuring the solution spread.

The only other widely used indicator that could be considered for the task is the
Schott indicator ISP . It measures the standard deviation of the distance between
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Figure 4.1: An example of a situation where ISP performance indicator will not
measure uniformity of coverage accurately.

the point in the approximation and the point closest to it in terms of Euclidean
distance. On the surface this seems like a reasonable approach - if the points
are at equal distances from one another then the standard deviation will be
small. If the points are spaced unevenly,the standard deviation of the distances
to the closest neighbours will be larger. However, this only captures a part of
what we want from a performance indicator designed to measure the solution
spread. It does not work when portions of the Pareto frontier are missing in the
approximation. In fact this indicator can give a perfect score even if most of the
frontier is missing. It is easy to see why this happens by considering an example
in Figure 4.1. If the points are spaced uniformly relative to each other, but large
portions of the frontier are missing, the indicator will still give low values even
though it does not make sense to say that the frontier is covered uniformly by
the approximation.

In our opinion it is apparent that there is a need to develop a new performance
indicator that would correspond to the intuitive notion of uniform coverage. We
propose two such indicators in the following section.
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4.3 Proposed Performance Indicators For Measuring

Solution Spread

With the deficiencies of existing metrics in mind, as illustrated by the counter
examples given in previous section,there is a need to design new ones. We
propose two new metrics. One is designed for simplicity not perfectly capturing
the intuitive notions described here. The other one is designed to correspond
with those notions more accurately, but it is more difficult to compute. The
metrics have been designed with these goals in mind:

1. Quality indicator should accurately capture the intuitive notion of uniform
coverage.

2. They should measure one aspect of optimizer performance only – namely
the approximation uniformity.

3. They should generalize to any number of objectives.

4. They should be as simple and efficient to compute as possible not violating
any of the above goals.

4.3.1 Performance Indicator IUNI1

When the Pareto set of a problem is known, we propose the following metric
which we believe captures uniformity of the aspect of optimizer performance
well. Please, note that the Pareto frontier is known in its discretized form.
That is the real Pareto frontier is sampled at some fixed number of points.
We will suppose that the set that represents the Pareto frontier by definition
covers it uniformly and contains enough points. The calculation involves two
different stages, which we will discuss separately. During the second stage of
the calculation, for each point in approximation, we measure for how many
points in the reference set this point is the closest one in terms of Euclidean
distance. This stage is illustrated graphically in Figure 4.2. Here the small
black dots represent the reference set and the larger gray circles represent the
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Figure 4.2: Closest points in reference set when approximation is not uniform.

approximation. We connect each black dot to the gray circle that is the closest to
it in terms of Euclidean distance.

Here we can see that several large areas of the reference set are missing from
the approximation. Therefore, the approximation fails to find certain parts
of the Pareto frontier and this must reflect in the value of the metric for that
approximation. As any other non-uniform patterns should. In this case, starting
with the point labeled 1 the number of points in the reference set for which
that point is the closest, one in the approximation are 4, 3, 3, 4, 4, 2, 9, 10, 3
and 3 respectively, the arithmetic mean of those values is 4.5 and the standard
deviation is approximately 2.58,which is fairly large. Now, let’s look at Figure
4.3, which shows a similar approximation, containing the same number of points,
but spaced equally from each other as we may wish in a good approximation.

We can see similar number of lines connecting each point in the reference set
to their closest point in the approximation. And if we count them,we see that
this time the numbers are 4, 5, 4, 4, 4, 5, 4, 4, 5 and 5 respectively. Mean is 4.4
(similar to what it was before), but standard deviation is only 0.49 approximately.
It seems, so far,that our metric measures what we want it to - namely the
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Figure 4.3: Closest points in reference set when approximation is uniform.

uniformity in spacing between the points of the approximation.

It does seem that for the two dimensional case this works fairly well. If parts of
the Pareto frontier are missing, this will cause more points in the reference set
to associate with the same points in the approximation. Whenever the points
are spaced evenly along the Pareto frontier, they will be the closest to a similar
number of reference points. This will mean that the standard deviation over
the number of the closest reference points will be small. All these concepts also
translate trivially to more objectives than two.

There is, however, a problem with using just this simple scheme alone. One of
our goals when designing a metric was to make sure it measures uniformity in
covering the real Pareto frontier and that alone. This means our metric must be
in a sense orthogonal to calculating just the distance to the real Pareto frontier,
which can easily be done by calculating generational distance. It can quite
simply be shown that it is not the case here and that distance of points to the real
Pareto frontier and not just between each other will influence the value of this
metric , if we leave it as it is. This can plainly be seen in Figure 4.4, where we
see that while the distances between neighbouring points are roughly the same,
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Figure 4.4: Closest points in reference set when approximation points differ in
distance from reference set, but are uniform in relation to each other.

the number of reference set points that have these points as the closest ones,
differs greatly. Here the number of points in reference set for which each point
in the approximation is the closest one are 6, 1, 8, 1, 7, 1, 8, 1, 7 and 4 respectively.
Arithmetic mean of those values is 4.4 and standard deviation is 2.97,which is
large and would indicate our approximation, is a poor one.

To combat this, we perform an additional step before doing the measurement
described above. During this step we project the approximation on to the
reference set. This is done simply by replacing each point in the approximation
with the point closest to it in the reference set. An illustration of this is given in
Figure 4.5, which uses the same data as Figure 4.4 with projection points marked
as larger black circles. If we again recalculate the standard deviation as befor,
but using this projection instead, we get a value of approximately 0.49, which
is the same as in the Figure 4.3 example. After performing the projection we
proceed as described above. This avoids the issue of the metric being influenced
by different distance to the real Pareto set. This way we get a metric that is in a
sense orthogonal to the generational distance metric and is supposed to be used
in conjunction with it.
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Figure 4.5: Projecting approximation to the the reference set.

We hope this makes it clear the reasoning behind this metric and justify our
belief that it captures the aspect of Pareto set approximation we have been
discussing. Let us now give a more formal definition of this metric that will
allow others to calculate it easily for their data. The method used to replace
each element of A with its projection in PF is given in Equation (4.1). Here
and elsewhere,unless otherwise stated,we define min

x∈X
f(x) to give the value

of x for which the value of f(x) is the smallest and not the value f(x) itself.
So, in Equation (4.1) projected point pi is the point in reference set PF , for
which Euclidean distance to approximation point ai is the smallest. Here and
elsewhere ‖ . . . ‖ stand for Euclidean norm.

pi = min
r∈PF

‖r − ai‖ (4.1)

In Equation (4.2) we count the number of points in PF for which point in
projection pi is the closest one.

ci =

∣∣∣∣{r | r ∈ PF,pi = min
a∈A
‖r − a‖

}∣∣∣∣ (4.2)
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Finally, the result of this metric is given in Equation(4.3) which is simply stand-
ard deviation of numbers c1, . . . , c|A| that contain the number of points in refer-
ence set that are the closest for each point in approximation when projected on
to the reference set. Here c̄ is the mean value of all c1, . . . , c|A.

IUNI1(A) =

√√√√ 1

|A|

|A|∑
i=1

(ci − c̄)2 (4.3)

We feel that this measure reasonably accurately reflects the difficult to formulate
notion of Pareto set approximation uniformity. We hope this measure to be of
use for researchers who want to evaluate their algorithms accurately when used
on problems with known Pareto sets.

4.3.2 Performance Indicator IUNI2

While the previously discussed performance indicator is simple and inexpensive
to compute, it fails in certain cases. Let us consider a three objective case to see
when this happens. An example is given in Figure 4.6. In this case the Pareto
frontier is flattened for the purposes of visualization. It will, however, have a
shape of some surface in practice corresponding to the constraints set by the
concepts of Pareto dominance and our assumption that the surface is mostly
continuous. We can see the points in the approximation shown as little crosses
and the closest points in the reference set colored differently for each cross. This
in fact is similar to a Voronoi diagram. In fact the definition of a Voronoi diagram
is just that - a partitioning of space to regions based on distance to a set of points
specified in advance. In our case the regions are the sets of points from reference
set that are the closest to each point in the approximation.

In the case considered in Figure 4.6 no issues are readily apparent. It would
seem on the face of it that this works as intended. If the points are distributed in
a uniform pattern, the number of points in the regions will be similar and the
standard deviation will be small. It is not difficult to construct cases where this
breaks down though. Consider, for example, the case in Figure 4.7. Here we
can see that the number of points in each region is very similar. However, it is
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Figure 4.6: Approximation points with the points in reference for which those
points are the closest ones. This assumes our reference set is flat.

apparent that performance indicator IUNI1 will give misleading values in this
case. It does not make sense to say that the coverage of the Pareto frontier by
the approximation is uniform.

It would seem from this that simply counting the number of points in regions
and expecting them to be roughly equal does not do it in our case. It seems that
what we want to make sure is not only that they contain the same number of
points, but also that they extend in every direction by the same amount. This
second criterion is violated in the considered case. Here the regions extend in
one dimension considerable more than in another. We need some other way of
measuring the quality of spread.

Triangulation provides a natural way of covering a surface. For example, it
can be argued that covering a surface with equilateral triangles could be the
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Figure 4.7: We can see that merely using the number of points in each area is not
a good measure. Each area has roughly the same number of points, however,
we can plainly see that the approximation does not cover the reference set
uniformly.

definition (or at least a very good example) of uniform coverage. In our case
the points would be at the vertices of the triangles. It makes sense then to
triangulate the points in the approximation and measure how much they deviate
from equilateral triangles. A simple way of doing that is to simply take the
standard deviation of triangle edge lengths. It is a widely known result that
a Delaunay triangulation is a dual graph of the Voronoi diagram. We have
previously argued that the division of the reference set into regions depending
on which point in the approximation they are the closest to is very similar to a
Voronoi diagram. One simple way to triangulate the points in the approximation
then is to simply connect the points that belong to regions that share a border.
To see how, simply look at Figure 4.6 and connect the crosses that are in regions
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that touch with edges.The best way to do this is an open question, though. The
simplest way is to simply consider that two regions share a border if a point in
one region is close enough to any point in the other region. What is close enough
it would be a difficult question to answer here. If the points in the reference
set were uniformly spaced, it would be easier. However,with the reference sets
used in practice this is not always a reasonable assumption to make. Instead
some heuristic has to be used. An example of this would be some multiple of
the average distance to the closest neighbour. We summarize the procedure
used to compute the performance indicator IUNI2 in the list below.

1. Compute the projection of the approximation on to the reference set by
replacing each point in the approximation by the closest point to it in the
reference set. See Equation (4.1).

2. Group the points in reference set by the distance to the closest point in the
projection. Each point in the projection gets as its region the points in the
reference set that are the closest to it in terms of Euclidean distance.

3. Connect points that lie in adjacent regions with edges. A discussion of
what should be considered an adjacent region can be found above.

4. Compute the standard deviation of said edge lengths. This is the numerical
value of the performance indicator IUNI2 .

A few things to consider further. First of all, for this to be perfectly accur-
ate the triangulation would have to be performed on the surface itself using
geodesic distance instead of Euclidean distances that we use here. This is pos-
sible, however, it would be fairly difficult to do and would make computing
the performance indicator even more complicated. We will make the (maybe
unfounded) assumption that Euclidean distances provide a reasonable approx-
imation to geodesic distances in this case. The shape of the Pareto frontier
surface is constrained by our assumption of continuity as well as the limits
placed on it by the requirement that the points on the surface must be mutually
non-dominated.

Another important issue to consider is the case when the approximation covers
uniformly, but only a small portion of the reference set. If the approximation
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covers, for example, a small patch of the surface of the Pareto frontier of a
three objective problem and the coverage is uniform, our indicator will report
good coverage. This can be remedied by comparing the area covered by the
approximation to the area covered by the reference set. If the ratio of one to the
other is too small the indicator result should not be relied upon. It is ideal to
check this using the performance indicator IOS since it is designed for just this
purpose. As such they should be used together.

4.4 Proposed Heterogeneous Swarm HMOPSO-I

The essence of our proposed method is that it has two different particles in the
same swarm. These particles are chosen so, as to emphasize two different aspects
of multi-objective optimization. The particles use the same non-dominated
point archive to exchange the information. The algorithm for updating the
non-dominated point archive is given in Algorithm 2. The optimization runs
for a fixed number of iterations. The method works as outlined in Algorithm 8.
The update of pi and gi is different for different particle types. The parameter
w is set to 0.4 for both particle types and ρ1 = ρ2 = 1. It is consistent with
the parameters used for other multiobjective PSO algorithms. The swarm will
contain different percentage of the two particles described below. Position
vectors xi are initialized to uniformly distributed random values in the allowed
value range. The velocity vectors vi are initialized to zero vectors.

4.4.1 Sigma Particle

This strategy was proposed by S. Mostaghim et al. [40]. It works by assigning
certain vectors of values to each solution in the non-dominated point archive.
The explanation for why these vectors are calculated this way can be found in
the referenced paper. These values are calculated using the formula in Equation
(4.4) for the two-objective case and Equation (4.5) for the three-objective case. It
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Algorithm 8 Heterogeneous MOPSO Method HMOPSO-I
1: for i← 1, n do
2: assign particle i to either “Sigma” or “Spread” group
3: initialize xi to random values in feasible range
4: initialize vi to zero
5: pi ← xi
6: end for
7: while stop conditions not satisfied do
8: update non-dominated point archive A
9: xi ← xi + vi

10: if particle i is of “sigma” type then
11: update pi if xi ≺ pi
12: update gi with the solution in A that has the closest σ value to the σ

value of f(xi) in terms of Euclidean distance
13: else if particle i is of “spread” type then
14: update pi if not pi ≺ xi
15: update gi with the solution from A that has the lowest crowding

distance
16: end if
17: vi ← wvi +U (0,ρ1)(pi − xi) +U (0,ρ2)(gi − xi)
18: end while

can be generalized to more objectives.

σ =
f 2
1 − f 2
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f 2
1 + f 2
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When using this method for selecting gi, we first calculate σi for that particle
and then we look for a point in the archive with the value of σ that is the closest
in terms of the Euclidean distance. This point is then used as the best global
position. Authors state that this method allows the particles to fly directly
towards the Pareto-optimal front. The problem of updating pi is solved by
updating it only if the new solution dominates the previous pi. The authors
also use a mutation operator of the form xi,j = xi,j + U(0,1)xi,j , where U(0,1) is a
uniformly distributed random number from the value range (0, 1) and xi,j is the
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j-th coordinate of the position vector of the i-th particle. This mutation operator
is applied with probability 0.05.

4.4.2 Spread Particle

It is a particle that is designed to make sure that approximated PF contains
uniformly distributed points. Of course, this presupposes that PF is continuous.
To this end two important changes to the velocity update rule are introduced.
First of all, when selecting gi the solution chosen from the archive is the one
that has the lowest score of the crowding distance measure. Crowding distance
measure is discussed later in this subsection. Furthermore, when updating pi,
the new solution replaces the old one when the new one is not dominated by
the old one. We have found that this is essential in encouraging the spread of
points in approximated PF. All the other parameters are left exactly the same as
in the case of the “sigma” particle.

The crowding distance is explained best with the help of Figure 3. Crowding
distance is explained in section 2.6.1. Firstly, the elements of A are sorted in
increasing order according to the values of the first objective. Then for each
point with the index k we measure the perimeter of the hyper-rectangle, formed
by the points with indices k− 1 and k+ 1 as opposing corners. The first and last
points (after sorting) always get infinite crowding distance. The archive is then
sorted according to each objective in turn and values of the crowding distance
are added together. Large values of the crowding distance measure indicate that
the solution in question lies in a poorly explored section of PF. The concept of
the crowding distance was first proposed by K. Deb et al. [12].

4.5 Comparing HMOPSO-I to Other Methods

To test the performance of the proposed algorithms, we use test problems
from the 2009 IEEE Congress on Evolutionary Computation (CEC 2009) special
session and competition for multi-objective optimization algorithms. We used
only unconstrained problems with 2, 3, and 5 objectives. We did not try our
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algorithm with constrained problems since that would add an extra layer of
complexity we have yet to tackle. The problems in question can be found in a
technical report by Q. Zhang et al. [71]. They are referred to as UF01 to UF13
in the same order as they appear in the aforementioned technical report. We
use the PF reference sets provided by the competition organizers, when the
performance indicator requires them.

We have done the experiments with the following types of PSO: one containing
only the “sigma” particle, one containing 25% of “sigma” and 75% of “spread”
particles, one containing 50% of “sigma” and 50% of “spread” particles, one
containing 75% of “sigma” and 25% of “spread” particles and one containing
only “spread” particles. We also repeated the experiments with OMPSO and
SMPSO swarms. Each swarm consisted of 400 particles and ran for 750 iterations.
That is consistent with the CEC 2009 competition conditions not to exceed
300000 function evaluations during the run of the algorithm.30 runs were done
for each swarm and the resulting PF approximations were recorded. Each
approximation was then evaluated, using the performance indicators described
below and the average value of those indicators was recorded in the tables
that had the indicator values in columns and problems in rows with the mean
value of the indicator for that problem at the intersection. One such table
was created for each type of swarm. The particle parameters are presented in
the section describing them in detail. For two objective problems the size of
the Pareto point archive was limited up to 100, for three objective problems it
was limited up to 150 and for five objective problems it was limited up to 800.
The tables are given in the section of results. Performance indicators used to
analyze optimizer performance are described below. They were chosen so, as to
cover both closeness to the real Pareto frontier and the uniformity of spread of
solutions along it.

4.5.1 Results

The results of the problem UF01 are given in the tables. The best result of this
problem in terms of the average value of indicator IGD is given by a swarm
consisting of “sigma” particles only. The best result in terms of IIGD is obtained
by the swarm consisting of equal parts “sigma” and “spread” particles. The best
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Table 4.2: Results of OMPSO swarm.

Problem µ(IGD) σ(IGD) µ(IIGD) σ(IIGD) µ(ISP ) σ(ISP )

UF01 0.06905 0.03441 0.10369 0.01662 0.02236 0.01279
UF02 0.01651 0.00200 0.02781 0.00204 0.00695 0.00312
UF03 0.45414 0.02093 0.35599 0.00935 0.18575 0.04676
UF04 0.04252 0.00051 0.04213 0.00096 0.00187 0.00036
UF05 1.37283 0.46455 1.11808 0.39156 0.09555 0.04602
UF06 0.51504 0.10093 0.48957 0.08744 0.06882 0.07138
UF07 0.06128 0.04389 0.07590 0.02897 0.01725 0.00915
UF08 0.05181 0.01815 0.17104 0.01606 0.05497 0.02109
UF09 0.40111 0.29435 0.24362 0.06212 0.11583 0.06015
UF10 3.37871 0.51717 2.03196 0.19124 0.46891 0.12991
UF11 0.52629 0.04409 0.28262 0.01778 0.16452 0.01260
UF12 2681.29 42.09 1369.57 63.23 307.16 13.68
UF13 2.14740 0.01000 2.07414 0.00875 0.14741 0.02036

Table 4.3: Results of SMPSO swarm.

Problem µ(IGD) σ(IGD) µ(IIGD) σ(IIGD) µ(ISP ) σ(ISP )

UF01 0.09486 0.04132 0.12791 0.02004 0.03418 0.01402
UF02 0.05126 0.01087 0.07187 0.00592 0.02068 0.01248
UF03 0.43456 0.02102 0.34047 0.01136 0.11433 0.02402
UF04 0.05167 0.00180 0.04965 0.00161 0.00544 0.00112
UF05 1.49339 0.47240 1.28964 0.36340 0.15116 0.08617
UF06 0.61206 0.28469 0.55856 0.15319 0.06948 0.05083
UF07 0.08260 0.03271 0.10302 0.01516 0.03066 0.01287
UF08 0.10189 0.09792 0.23403 0.03382 0.07848 0.04395
UF09 1.23274 0.49392 0.41769 0.05122 0.24267 0.06939
UF10 3.53361 0.41184 2.66109 0.25422 0.60033 0.63174
UF11 0.91032 0.05816 0.48461 0.04117 0.19739 0.01552
UF12 2796.82 33.08 1406.97 75.45 274.23 10.98
UF13 2.04956 0.01111 2.04030 0.00683 0.05768 0.00254

result in terms of ISP is obtained by a swarm consisting of 75% “sigma” and
25% “spread” particles.

When solving the problem UF02, the best result in terms of the average value of
indicator IGD is achieved by a swarm consisting of “sigma” particles only. The
best result in terms of IIGD is obtained by OMPSO. The best result in terms of
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Table 4.4: Results of a swarm containing only “spread” particles.

Problem µ(IGD) σ(IGD) µ(IIGD) σ(IIGD) µ(ISP ) σ(ISP )

UF01 0.06817 0.02028 0.10462 0.08156 0.00768 0.00272
UF02 0.04098 0.00696 0.04573 0.00666 0.00973 0.00568
UF03 0.21168 0.08493 0.27269 0.04805 0.01706 0.04042
UF04 0.10523 0.01229 0.09536 0.01015 0.00795 0.00172
UF05 1.22954 0.36774 1.21375 0.31413 0.02170 0.01168
UF06 0.40376 0.19986 0.60084 0.15296 0.01059 0.00705
UF07 0.04529 0.02189 0.23641 0.20164 0.00688 0.00448
UF08 0.10195 0.17036 0.48437 0.21205 0.08228 0.20868
UF09 0.32427 0.25321 0.34454 0.07484 0.03362 0.01720
UF10 2.42616 1.33875 1.79859 0.91127 0.19728 0.09507
UF11 0.89914 0.36929 0.80596 0.26764 0.19904 0.03520
UF12 3360.46 354.23 1517.58 222.41 396.64 40.97
UF13 2.23954 0.01918 2.88993 0.71650 0.11573 0.09096

Table 4.5: Results of a swarm containing 25% “sigma” and 75% “spread”
particles.

Problem µ(IGD) σ(IGD) µ(IIGD) σ(IIGD) µ(ISP ) σ(ISP )

UF01 0.02414 0.01290 0.08441 0.00944 0.00788 0.00452
UF02 0.00602 0.00161 0.03155 0.00711 0.02297 0.00904
UF03 0.19978 0.03287 0.22487 0.02458 0.01194 0.00617
UF04 0.06010 0.00437 0.05950 0.00429 0.01006 0.00406
UF05 0.82542 0.28921 0.79672 0.26289 0.02827 0.01469
UF06 0.24119 0.06698 0.32449 0.08230 0.01585 0.00631
UF07 0.05149 0.04572 0.15369 0.11075 0.01146 0.00659
UF08 0.00526 0.00365 0.42786 0.03444 0.00810 0.00445
UF09 0.16766 0.18463 0.26644 0.04242 0.03397 0.01703
UF10 0.99130 0.32329 0.75229 0.18676 0.11065 0.02345
UF11 0.56766 0.11193 0.34317 0.05283 0.16390 0.01249
UF12 3057.87 267.43 1271.86 128.81 313.42 33.97
UF13 2.23802 0.03190 2.77777 0.73307 0.10494 0.06007

ISP is found by OMPSO swarm.

When solving the problem UF03, the best result for this problem in terms of
average value of indicator IGD is obtained by a swarm consisting of “sigma”
particles only. The best result in terms of IIGD is achieved by a swarm consisting
of 75% “sigma” and 25% “spread particles. The best result in terms of ISP is

138



4.5. Comparing HMOPSO-I to Other Methods

Table 4.6: Results of a swarm containing 50% “sigma” and 50% “spread”
particles.

Problem µ(IGD) σ(IGD) µ(IIGD) σ(IIGD) µ(ISP ) σ(ISP )

UF01 0.01575 0.00750 0.08165 0.01170 0.00755 0.00408
UF02 0.00356 0.00097 0.03322 0.00845 0.02342 0.01094
UF03 0.20803 0.03203 0.22959 0.02333 0.01274 0.00444
UF04 0.05922 0.00431 0.05885 0.00342 0.00889 0.00275
UF05 0.75801 0.24850 0.72940 0.21851 0.03930 0.02672
UF06 0.20716 0.04765 0.29145 0.07421 0.01823 0.00687
UF07 0.02692 0.03321 0.13525 0.13109 0.01402 0.00906
UF08 0.02204 0.09093 0.41220 0.03821 0.01209 0.01598
UF09 0.10947 0.11579 0.25501 0.02833 0.02975 0.01190
UF10 0.68876 0.34230 0.56741 0.12798 0.10353 0.03317
UF11 0.54122 0.08533 0.31286 0.03649 0.15534 0.01067
UF12 2960.47 269.57 1159.32 134.86 285.36 21.89
UF13 2.24200 0.02394 2.81058 0.75215 0.10794 0.06930

Table 4.7: Results of a swarm containing 75% “sigma” and 25% “spread”
particles.

Problem µ(IGD) σ(IGD) µ(IIGD) σ(IIGD) µ(ISP ) σ(ISP )

UF01 0.01006 0.00511 0.08233 0.01088 0.00578 0.00282
UF02 0.00287 0.00077 0.03028 0.00773 0.02428 0.01120
UF03 0.20655 0.04960 0.22134 0.02318 0.01497 0.00531
UF04 0.05624 0.00355 0.05643 0.00254 0.01017 0.00426
UF05 0.72383 0.24078 0.67690 0.21466 0.04374 0.02319
UF06 0.18395 0.04477 0.27422 0.07109 0.02024 0.00965
UF07 0.02367 0.01932 0.13115 0.11200 0.01745 0.01957
UF08 0.00636 0.00246 0.36882 0.04637 0.01517 0.00600
UF09 0.04703 0.04223 0.25119 0.03753 0.02222 0.00928
UF10 0.59045 0.33056 0.49211 0.10640 0.10199 0.04317
UF11 0.53675 0.07272 0.28480 0.02629 0.15978 0.01058
UF12 2845.65 228.88 1176.29 107.62 278.17 21.29
UF13 2.25523 0.01301 3.02990 0.78049 0.12820 0.09193

found by SMPSO.

For the problem UF04 the best result in terms of average value of indicator IGD
is achieved by the OMPSO swarm. All the other indicators also acquire the best
values using this swarm.
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Table 4.8: Results of a swarm containing only “sigma” particles.

Problem µ(IGD) σ(IGD) µ(IIGD) σ(IIGD) µ(ISP ) σ(ISP )

UF01 0.00233 0.00079 0.09494 0.01478 0.00685 0.01190
UF02 0.00156 0.00049 0.03820 0.01034 0.02846 0.01168
UF03 0.18832 0.03259 0.24132 0.02361 0.02363 0.00983
UF04 0.05190 0.00353 0.05635 0.00334 0.01090 0.00522
UF05 0.73268 0.17750 0.70530 0.15353 0.09038 0.03583
UF06 0.18186 0.05563 0.28488 0.06941 0.03168 0.01406
UF07 0.01474 0.01900 0.15529 0.10162 0.02987 0.03458
UF08 0.00621 0.00140 0.33729 0.03899 0.01921 0.01192
UF09 0.01228 0.00706 0.29227 0.04003 0.02994 0.05062
UF10 0.36093 0.19300 0.45719 0.10291 0.08614 0.04453
UF11 0.80503 0.06572 0.39390 0.04423 0.12534 0.01229
UF12 2852.29 138.45 1214.99 72.94 293.52 21.45
UF13 2.26178 0.00274 3.62414 0.74534 0.12015 0.10284

For the problem UF05, the best result of the indicator IGD is found by a swarm
consisting of 75% “sigma” and 25% “spread” particles. The best result in terms
of indicator IIGD is also obtained by a swarm consisting of 75% “sigma” and 25%
“spread” particles. The best result with regard to ISP is obtained by a swarm
consisting only of “spread” particles.

For the problem UF06, the best result of the indicator IGD is achieved by a swarm
containing only “sigma” particles. The best result with regard to the indicator
IIGD is found by a swarm containing 75% “sigma” and 25% “spread” particles.
The best result with regard to indicator ISP is achieved by a swarm containing
only “spread” particles.

For the problem UF07, the best result with regard to indicator IGD is found by
a swarm consisting of “sigma” particles only. The best result with regards to
indicator IIGD is achieved by the OMPSO swarm. The best result with regard to
the indicator ISP is found by a swarm containing only “spread” particles.

For the problem UF08, the best result with regard to indicator IGD is achieved
by a swarm consisting of 25% “sigma” and 75% “spread” particles. The best
result with regard to indicator IIGD is found by OMPSO swarm. The best result
with regard to indicator ISP is obtained by the swarm consisting of 25% “sigma”
and 75% “spread” particles.
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For the problem UF09, the best result with regard to the indicator IGD is found
by the swarm consisting of “sigma” particles only. With regard to the indicator
IIGD the best result is obtained by OMPSO swarm. The best result with regard
to the indicator ISP is achieved by the swarm containing 75% “sigma” and 25%
“spread” particles.

For the problem UF10, the best result with regard to the indicator IGD is achieved
by the swarm containing only “sigma” particles. The best result with regard to
the indicator IIGD is obtained by the swarm containing only “sigma” particles as
well. The best result with regard to the indicator ISP is achieved by the swarm
consisting of 75% “sigma” and 25% “spread” particles.

For the problem UF11, the best result with regard to the indicator IGD is obtained
by the OMPSO swarm. The best result with regard to the indicator IIGD is
achieved by the OMPSO swarm. The best result with regard to the indicator ISP
is obtained by the swarm consisting only of “sigma” particles.

For the problem UF12, the best result with regard to the indicator IGD is obtained
by the OMPSO swarm. The best result with regard to the indicator IIGD is
achieved by the swarm consisting of the equal percentage of both types of
particle. The best result with regard to indicator ISP is achieved by the SMPSO
swarm.

For the problem UF13, the best result with regard to the indicator IGD is obtained
by the SMPSO swarm. The best result with regard to the indicator IIGD is
achieved by the SMPSO swarm and the same is true for the indicator ISP .

The OMPSO swarm yields the best results with regard to the indicator IGD 3
times out of 13. With regard to the indicator IIGD it yields the best results 6 times
out 13. With regard to the indicator ISP it yields the best results 2 times out of
13.

The SMPSO swarm yields the best results with regard to the indicator IGD 1 time
out of 13. With regard to the indicator IIGD it yields the best results 1 time out
of 13. With regard to the indicator ISP it yields the best results 3 times out of 13.

The swarm consisting only of “spread” particles yields the best results 3 times
out of 13 for the indicator ISP and does not yield the best results for any other
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indicators.

The heterogeneous swarms yield the best results with regard to the IGD indicator
2 times out of 13. They yield the best result with regard to the indicator IIGD 5
times out of 13. And they yield the best result with regard to the indicator ISP 4
times out of 13.

The swarm consisting only of “sigma” particles yields the best result with
regards to the indicator IGD 7 times out of 13. It yields the best result with regard
to the indicator IIGD 1 time out of 13. It yields the best result with regard to the
indicator ISP 1 time out of 13.

It is important to note that when interpreting the results it is the best to use
IGD in combination with ISP , since they are meant to measure the two aspects
of multiobjective optimization performance independently. While IIGD has
been used as a single figure of merit in some sources it is not clear what is the
influence of those aspects to the value of this indicator.

4.5.2 Conclusions

In the experiments we have shown how the advantages of certain types of PSO
particle position and velocity update rules can be combined by using different
types of particles in the same swarm, sharing information via a common non-
dominated point archive. We also propose a new type of particle that is designed
to take into account the information on the uniformity of PF approximation.
This type of particle flies towards the areas of the search space that correspond to
poorly covered areas of PF, assuming continuous PF. Other MOPSO algorithms,
in contrast, try to combine these two aspects into a single particle’s update rules.
We believe the results of the empirical tests show that our approach is promising.
Heterogeneous swarm have yielded the best results in terms of the average
value of the indicator IIGD almost in a half of all the test problems. In other cases
it has come close to the best result. Thus, we feel that this technique is promising
and should be explored in the future research. Good results have been obtained
using the same percentage of the two different types of particle in the swarm.
When optimizing by means of swarms consisting only of one of the two types
of particle we see that our initial assumptions on performance of those particles
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are justified. Swarms consisting only of “sigma” particles yield good values of
the performance indicator IGD. Swarms consisting only of “spread” particles
yield good values of the performance indicator ISP . Even when the value of
ISP is lower than that yielded by the other methods, it is still similar. In a half
of the used test problems our approach gives better results than the commonly
used MOPSO algorithms. Trying different types of particles in the swarm and
dynamically changing types of particle during the evolution of the swarm could
lead us to further performance improvements. A simple change of the type of
particle, if there is no improvement after a set number of iterations, is one way
of adding dynamic behaviour to the swarm.

4.6 Proposed Heterogeneous Swarm HMOPSO-II

There are two primary properties that we look for in the approximation - how
close it is to the actual Pareto frontier and how well do the points in the approx-
imation cover the actual Pareto frontier. There has been quite a bit of research
into using PSO for these problems as of late as discussed in a later section. In
developing such methods one often has to compromise and decide which at-
tribute of the optimizers performance to prioritize. For example, some methods
will try to get as close to the Pareto optimal set as possible, but they are prone
to getting stuck in local minima. Others will attempt to ensure uniform spread
of solutions along the real Pareto optimal set yet may sacrifice the ability to
decrease the distance between approximation and the real Pareto-optimal set.
Uniform distribution is important since it lets us see all the different aspects of
a continuous Pareto set. A successful algorithm will try to combine those two
properties. We propose a method,where we use particles designed separately for
each of these aspects of performance together in a swarm sharing information
via a non-dominated point archive. Such a swarm (called heterogeneous since
it contains particles of different types) works by switching a particles’ type to
another one if that particle fails to improve over a set number of iterations. This
way the swarm can adapt to the problem and use particle types that are most
appropriate. We also propose a particle designed to ensure uniform spread of
non-dominated points. We perform the analysis of this new PSO variant using a
variety of metrics designed to evaluate multi-objective optimization algorithm
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performance. Below we will describe the types of particles used in this swarm.

4.6.1 “Sigma” Particle

This particle is the same as the “sigma” particle in the description of the previous
method.

4.6.2 “Closest” Particle

This particle works the same way as the “sigma” particle with one exception – gi
is set to the point in the non-dominated point archive that is the closest in terms
of Euclidean distance in objective space to our particle. All other parameters
and logic is exactly the same as in the “sigma” particle just the procedure by
which gi is chosen is different.

4.6.3 “Spread” Particle

This particle is the same as the “spread” particle in the description of the the
previous method.

4.6.4 Heterogeneous Swarm

We propose to use a swarm where particle types are decided dynamically.
Initially particle types are chosen from the three discussed above with equal
probabilities. During the evolution of the swarm if the particle’s pi does not
change for a set number of iterations that particle’s type is changed and its xi
and all other properties are reset. All particle types use the same non-dominated
point archive, which is the primary medium of information exchange for this
swarm. Similar particle swarms for single objective optimization were described
by Andries P. Engelbrecht [16] and Marco Antonio Montes de Oca et al. [10].
The algorithm is given in Algorithm 9.
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Algorithm 9 Heterogeneous MOPSO Method HMOPSO-II
1: for i← 1, n do
2: assign particle i to either “sigma”, “closest” or “spread” group at random
3: initialize xi to random values in feasible range
4: initialize vi to zero
5: pi ← xi
6: end for
7: while stop conditions not satisfied do
8: update non-dominated point archive A
9: xi ← xi + vi

10: if particle i is of “sigma” type then
11: update pi if xi ≺ pi
12: update gi with the solution in A that has the closest σ value to the σ

value of f(xi) in terms of Euclidean distance
13: else if particle i is of “closest” type then
14: update pi if xi ≺ pi
15: update gi with the solution in A that is closest to xi in terms of

Euclidean distance
16: else if particle i is of “spread” type then
17: update pi if not pi ≺ xi
18: update gi with the solution from A that has the lowest crowding

distance
19: end if
20: if particle’s i pi wasn’t updated for a specified number of iterations then
21: assign particle i to either “sigma”, “closest” or “spread” group at

random
22: end if
23: vi ← wvi +U (0,ρ1)(pi − xi) +U (0,ρ2)(gi − xi)
24: end while

4.7 Experimental Evaluation of HMOPSO-II

To test the performance of the proposed algorithms we use test problems from
2009 IEEE Congress on Evolutionary Computation (CEC 2009) special session
and competition for multi-objective optimization algorithms. We used only the
first 7 unconstrained problems with two objectives. We did not try our algorithm
on problems with 3 or 5 objectives and constrained problems since that would
add an extra layer of complexity. However, there are no reasons to believe that
our results do not translate to more objectives. The problems in question can be
found in a technical report by Qingfu Zhang et al. [71]. They are referred to as
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UF01 to UF07 in the same order as they appear in the aforementioned technical
report. We use PF reference sets provided by the competition organizers when
the metric used require them. You can see the PF reference sets plotted in the
results section.

We ran the experiments for swarms containing “sigma” particles, “spread”
particles and “closest” particles only as well as a heterogeneous swarm contain-
ing all three particle types. Each swarm consisted of 250 particles and ran for
1200 iterations. This is consistent with the CEC 2009 competition conditions of
not exceeding 300000 function evaluations during the run of the algorithm.30
runs were done for each swarm and the resulting PF approximations were re-
corded. Each approximation was then measured using the metrics described
below and the average value of those metrics was recorded into the tables that
have the metrics for columns and problems for rows with the mean value of
the metric for that problem at the intersection. One such table was created for
each swarm type. Particle parameters are as follows: c1 = c2 = 1.0, w = 0.4.
This is contrary to what constitutes “good” values of those parameters for single
objective PSO, however, empirical tests suggest these work better. Also mutation
Gaussian mutation was used with probability 0.05. Value N(0, 0.1r), where r is
the range between lower and upper bounds for that coordinate, was added to
each coordinate with aforementioned probability. When using heterogeneous
swarm particle type was changed to another one with the position and velocity
being re-initialized if particle stagnated for 25 iterations. Stagnation is defined
as particle’s pi not being updated.

The size of the Pareto point archive was limited to 100 for two objective problems.
The tables are given as a part of the Results section along with the plots of the
approximated PF for each problem and swarm that has the lowest value of IGD
metric. IGD has been chosen because it is purported to measure both closeness
to the true PF and uniformity of the approximation,so it is sometimes used as
the only figure of merit for measuring optimizer performance. Metrics used to
analyze optimizer performance are described in the subsections below. They
have been chosen so, as to cover both closeness to the real Pareto frontier and
the uniformity of spread of solutions along it.
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Problem IGD GD SP MG CM

UF01 0.09608 0.00390 0.00384 0.41662 0.10021
UF02 0.05913 0.00293 0.01857 0.30574 0.03731
UF03 0.22118 0.08248 0.02415 0.62886 0.05426
UF04 0.05633 0.05566 0.00879 0.10533 0.04965
UF05 0.60519 0.63110 0.08325 0.84161 0.15362
UF06 0.31305 0.19439 0.02680 0.53425 0.10645
UF07 0.11991 0.01057 0.02311 0.35233 0.09894

Table 4.9: Results for a swarm containing only sigma particles.

Problem IGD GD SP MG CM

UF01 0.06189 0.00791 0.00623 0.24514 0.08910
UF02 0.04491 0.00258 0.01143 0.23481 0.04935
UF03 0.17045 0.17015 0.01771 0.39712 0.04349
UF04 0.05487 0.05489 0.00827 0.09442 0.04307
UF05 0.99020 1.17301 0.06908 1.12065 0.17490
UF06 0.31116 0.33294 0.02348 0.43837 0.12244
UF07 0.05386 0.01030 0.01586 0.18942 0.08037

Table 4.10: Results for a swarm containing only closest particles.

4.7.1 Results and Analysis

We can see the results for different swarm types running on problem UF01 in
Figures 4.8a, 4.8b, 4.8c and 4.8d. Also in Tables 4.9, 4.10, 4.11 and 4.12. The
inclination of the “spread” particle to get a uniformly covered non-dominated
set can plainly be seen in Figure 4.8b. On the other hand, “sigma” particle

Problem IGD GD SP MG CM

UF01 0.08357 0.05679 0.01199 0.28950 0.06294
UF02 0.05285 0.02067 0.00674 0.20797 0.01283
UF03 0.24235 0.09586 0.00637 0.67538 0.01457
UF04 0.09224 0.10241 0.00807 0.15422 0.03516
UF05 0.40920 0.23988 0.01869 0.81787 0.04059
UF06 0.41591 0.21311 0.01111 0.74441 0.02480
UF07 0.14598 0.04280 0.01451 0.41531 0.03978

Table 4.11: Results for a swarm containing only spread particles.
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Problem IGD GD SP MG CM

UF01 0.06110 0.01138 0.00499 0.25806 0.08174
UF02 0.02405 0.01082 0.00709 0.13189 0.02580
UF03 0.17354 0.09969 0.01031 0.52551 0.01965
UF04 0.06313 0.06704 0.00840 0.10469 0.02758
UF05 0.47906 0.51033 0.03454 0.75055 0.07856
UF06 0.28878 0.21472 0.01679 0.48759 0.04913
UF07 0.05653 0.02431 0.01062 0.17192 0.04860

Table 4.12: Results for a heterogeneous swarm.

tries to get as close as possible to the real PF,which results in it uncovering
small portions of it that are separated by large gaps.The same can be said of
the“closest” particle type. If we look at IGD metric,we see that heterogeneous
swarm does the best. In this only case our method does not seem to significantly
improve performance compared to the “closest” particle alone,although CM and
SP metrics do show a small improvement in the uniformity of the approximated
PF. Another interesting thing is that the “closet” particle performs better than
the more elaborate “sigma” particle.

The results for problem UF02 can be seen in Figures 4.9a, 4.9b, 4.9c and 4.9d. It
can be seen that the swarm using only “sigma” particle has large parts of the
PF missing, although, otherwise, it lies almost exactly on the PF. The same can
be said of the “closest” particle. “Spread” particle shows very good coverage
of the PF, although it is slightly further away. The same conclusion is indicated
by the results tables. We can see that for the “spread” particle CM is the lowest
indicating best coverage. We can also see that GD metric is an order of mag-
nitude lower for “sigma” and the “closest” particles as opposed to the “spread”
particle. This indicates that those two particle types give results much closer to
the real PF. If we look at the heterogeneous swarm, we can see that it lowers CM
compared to “sigma” and “closest” particles and it lowers GD compared to the
“spread” particle. Which is in effect taking the best properties of the two particle
types and negating each others disadvantages. This can be most dramatically
seen when comparing Figure 4.9d to Figures 4.9a, 4.9b and 4.9c. We also see that
IGD is the lowest for heterogeneous swarm.

If we look at the results for problem UF03 in the results tables we see an improve-
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Figure 4.8: Results for UF01 using the various swarms.
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(c) Using closest particle only.
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(d) Using heterogeneous swarm.
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Figure 4.9: Results for UF02 using the various swarms.
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(c) Using closest particle only.
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(d) Using heterogeneous swarm.
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Figure 4.10: Results for UF03 using the various swarms.
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(c) Using closest particle only.
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(d) Using heterogeneous swarm.

ment in both GD and CM if using the heterogeneous swarm. The improvement
is even more apparent in Figure 4.10d, where we see that the heterogeneous
swarm covers try to cover both uniformity and closeness to PF unlike “spread”,
“closest” or “sigma” particle swarms alone.

For problem UF04 we see the same results. GD metric is reduced for the hetero-
geneous swarms compared to “spread” particle only and CM metric is reduced
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4. Proposed Methods

Figure 4.11: Results for UF04 using the various swarms.
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(c) Using closest particle only.
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(d) Using heterogeneous swarm.

for heterogeneous swarms compared to using “sigma” or the“closest” particles
only. This can also be seen in Figure 4.11d.

Problems UF05 and UF06 do not seem to be handled well by our algorithms.
Their shared property is that they both have discrete Pareto sets which means
that methods designed expecting continuous Pareto sets do not work well with
them.Maybe, it can be solved by designing a separate particle for handling such
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Figure 4.12: Results for UF05 using the various swarms.
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(d) Using heterogeneous swarm.

problems, although, what that would entail, is not entirely clear to us at the
moment. Despite this,the trend of the two types of particles complementing
each other’s advantages is maintained as it can be seen in the results tables.

The advantages of using the proposed heterogeneous swarm can be seen in
the case of UF07 as well. When comparing Figure 4.14d to Figures 4.14a, 4.14b
and 4.14c we see that heterogeneous swarm gives the best performance of the

153



4. Proposed Methods

Figure 4.13: Results for UF06 using the various swarms.
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(d) Using heterogeneous swarm.
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Figure 4.14: Results for UF07 using the various swarms.
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(b) Using spread particle only.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
f1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f 2

(c) Using closest particle only.
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(d) Using heterogeneous swarm.

four types visually. The resulting set has fewer missing areas of the PF,but
also it is quite close to the real PF. Using only the “spread” particle gives good
coverage, but poor distance,and using “sigma” or the“closest” particles gives
poor coverage. Using heterogeneous swarm, on the other hand, we see an
improvement in both areas. The same can be seen when looking at the values of
various metrics in the results tables.
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4.7.2 Conclusions

We have shown how disadvantages of certain types of PSO particle’s position
and velocity update rules can be offset by using different types of particles in the
same swarm sharing information via a common non-dominated point archive.
We also propose a new particle type that is designed to take into account the
information about uniformity of the PF approximation. This particle type flies
towards the areas of the search space that correspond to poorly covered areas of
the PF assuming continuous PF.There are several key areas of work to develop
these ideas that we suppose to be worthwhile:

1. Develop more particle types with different properties using different kinds
of information to emphasize different areas of multi-objective algorithm
performance. An example could include a particle that relies on the previ-
ous pi values similar to the NSGA-II algorithm and others.

2. Incorporate the concept of PSO topology. It has been shown for the global
optimization case that the way in which particles are connected into the
neighborhood is important.

3. Improve the spread particle so,that it can be better generalized to more
than two objectives.

4. Develop particles designed for problems with discrete Pareto frontiers.
This will hopefully allow to get more accurate solutions to problems UF05
and UF06, since these are the ones,where our method does the worst.

Data in support of our thesis is given in terms of values of various metrics
designed to measure multi-objective algorithm performance graphically as well.

4.8 Software Framework

A publicly available software library for Particle Swarm Optimization was
developed during the course of writing this thesis. The library is unique in it’s
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modular design, allowing quick prototyping, testing and use of novel Particle
Swarm Optimization methods. The library can be obtained from https://

bitbucket.org/bucket_brigade/swarm using Mercurial version control
system. Follow the following instructions to obtain the library and install it on
a Unix-like system. This presupposes that you have Mercurial version control
system installed.

$ hg clone https://bitbucket.org/bucket_brigade/swarm

$ cd swarm

$ sudo python setup.py install

From this point onwards you should be able to access the library from the
Python language by importing from the package swarmlab. Examples of using
the library will follow below.

All the software is written in the Python programming language with CPU
intensive tasks implemented in C for efficiency. Over 35 different particle types
have been implemented as found in literature. These different particle types can
then be connected in user specified topologies to implement various swarms.
Both multi-objective and single objective PSO methods are supported. Non-
dominated point archive classes and methods are implemented for storing data
collected during optimization runs.

Over 70 test problems for single objective optimization are included in the
software and were collected from optimization literature. These include all
kinds of problems including continuous, discontinuous, multi-modal, noisy, etc.
All problems can be instantly used to test any PSO method implemented within
our framework. There are overall 13 multi-objective test problems included, all
taken from the CEC 2009 workshop/competition for multi-objective algorithms.
These problems include, convex, non-convex and discrete problems of 2, 3 and 5
objectives. Each problem is 30 dimensional and is designed to challenge various
aspects of multi-objective optimization method performance.

There are 5 topologies that can be built automatically with regards to user
specified parameters in the software. These are: “gbest”, “lbest”, “grid”,
“dsequence” and “random”. Topology “gbest” simply connects every particle to
every other particle in the swarm. Topology “lbest” connects particles in a ring
and you can specify how many particles to the left and to the right of particle’s
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4. Proposed Methods

Topology Parameter Meaning Parameter Meaning

“gbest” order Number of
particles in the
swarm.

- -

“lbest” order Number of
particles in the
swarm.

size Number of neigh-
bours for each
particle (must be a
power of two).

“grid” order Number of
particles in the
swarm (preferable
if it has an integer
square root).

- -

“dsequence” degrees A list of vertex de-
grees.

- -

“random” order Number of
particles in the
swarm.

size Number of neigh-
bours a particle will
have.

Table 4.13: Available topologies and their parameters.

position in a ring to connect to. When using “grid” the particles will be connec-
ted in a two dimensional grid where each particle is connected to 4 particles on
every side. The “dsequence” option will generate a random topology provided
a degree sequence. A degree sequence of a graph is a non-increasing list of
the degree of each vertex. Finally the random topology will create a random
graph where each particle will be connected to a fixed number of neighbours
at random with uniform probabilities. The topologies and their parameters are
given in Table 4.13.

from swarmlab.swarm import Swarm

from swarmlab.generate import make_topology

from swarmlab.function.rastrigin import Rastrigin

from swarmlab.particle import ConstrictedParticle

if __name__ == ’__main__’:

problem = Rastrigin(d=10)

topology = make_topology(’grid’, {’order’ : 100},

ConstrictedParticle, {})

swarm = Swarm(topology, problem)

result = swarm.run(500)

The above code will create a swarm of 100 particle connected in to a “grid”
topology. Each particle is of the type described by M. Clerc et al. [4]. The
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swarm optimized the well-known Rastrigin test function in 10 dimensions. The
swarm is run for 500 iterations, after which the result is returned as a dictionary
containing the solution and the fitness value.

The current structure of the code makes it trivial to create new particle types. All
the user has to do is inherit from the Particle class and override the methods
that deal with velocity, movement updates and other particle functionality. An
example of how it can be done to implement the Bare-Bones particle described
by J. Kennedy [29] is provided in the listing below.

class BarebonesParticle(Particle):

def move(self):

self.x = self.v.copy()

self.y = self.function(self.x)

if self.y < self.py:

self.py = self.y

self.px = self.x.copy()

def update_velocity(self):

if len(self.neighbours) != 0:

neighbour = min(self.neighbours)

self.v = np.random.normal(

0.5 * (self.px + neighbour.px),

np.abs(self.px - neighbour.px) + 0.0000001)

else:

self.v = np.random.normal(

self.px, np.abs(self.px) + 0.0000001)

After defining the particle this way one can start using it immediately the same
way any other Particle would be used to create swarms and use them to
optimize functions.

4.8.1 Non-dominated Point Archive Management

Implementing multi-objective PSO methods requires a way to collect non–
dominated points after every iteration. An archive class should provide methods
to append points to the archive and to retrieve points from the archive. Append-
ing works by evaluating if the points currently in the archive dominate the point
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in question. If the point is dominated by any of the points it is discarded. After
appending the point the archive has still to be checked if all points are mutually
non–dominated. The points that are not are to be removed from the archive. The
retrieval of points from the archive is important because some algorithms rely
on using information about the current approximation of the Pareto frontier to
calculate velocity updates. Further conditions may also apply when admitting a
point to an archive. For example we may want that the distance between two
solutions in the archive not exceed some specified value. This is done so that
the archive does not become over-saturated with points that are very close to
each other. If the area in the Pareto frontier is small there is no point in having
many points represent it. We implement two such options. The first of them is
the crowding distance which was described in Section 2.6.1. The second one
is the simple distance measurement we described previously. In the first case
the user sets the upper limit for the archive size. If the new solution that was
appended to the archive makes the archive go over the set limit, the solutions
are sorted by their crowding distance and the solutions with lowest crowding
distance values are discarded until the archive reaches the required size. In the
second case a solution is simply not accepted if it is too close to another solution
already in the archive. Below we provide an example of using the archive.

from moarchive import Solution, Archive

import random

if __name__ == ’__main__’:

archive = Archive(100)

for _ in range(100)

archive.add_candidate(

Solution(random.random(), random.random()))

archive.visualize()

The above example will add one hundred random samples from the unit square,
keep the mutually non–dominated solutions and then visualize the result using
matplotlib library.
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4.8.2 Capabilities with Regards to Multi-Objective Optimiza-

tion

The library also supports multi-objective optimization. Multi-objective optimiz-
ation is done in a very similar way to single objective optimization. Particles
are connected in to a swarm using one of the supported topologies and share
information about non-dominated solutions. Usually particles will override
the move method for position update in order to account for the differences
in comparing two solutions. Personal best solution is often updated if a solu-
tion dominates the old personal best solution. Likewise global best solutions
are often taken from the non–dominated point archive instead of selecting it
from the personal bests of the neighbours. Since the procedure for the evolu-
tion of the swarm is far less consistent than with single objective optimization
methods a static method called run is introduced that you will use to run a
swarm consisting of particular particle type. In this method the update of the
non–dominated point archive and other such things are handled. An example
of doing a multi–objective optimization run is given in the listing below.

from swarmlab.swarm import Swarm

from swarmlab.generate import make_topology

from swarmlab.particle import MSLechuga2005Particle

from swarmlab.mo_problems.cec2009 import problems

import matplotlib.pyplot as plt

if __name__ == ’__main__’:

topology = make_topology(’gbest’, {’order’ : 250},

MSLechuga2005Particle, {})

swarm = Swarm(topology, problems[’uf01’]())

ax = plt.gca()

MSLechuga2005Particle.run(100, 1000).visualize(ax)

plt.show()

4.8.3 Computing on Clusters

If a larger empirical test is needed to evaluate algorithm performance usually a
large number of tests has to be performed. Since the optimization runs can be
done in parallel it is attractive to use super-computing clusters. The software
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library provides a simple utility for computing on super-computing clusters
using MPI messaging interface. The utility is called mo_benchmark_run and
it’s use is illustrated in the example below.

from swarmlab.swarm import Swarm

from swarmlab.generate import make_topology

from swarmlab.utilities import mo_benchmark_run

from swarmlab.particle import XHu2002Particle

import sys

if __name__ == ’__main__’:

topology = make_topology(’gbest’, {’order’ : 250},

XHu2002Particle, {})

mo_benchmark_run(

XHu2002Particle.run, topology, sys.argv[1], repeats=30,

iterations=1200, include_solution=False)

This example will run the swarm consisting of particles described by X. Hu et
al. [22] for 1200 iterations 30 different times. Each of the 30 runs will be done
as a separate MPI task. Now this example can be run on a cluster by running it
using mpiexec command. For example the following is the batch file to run the
example on a cluster using SLURM batch processing system.

#!/bin/sh

#SBATCH -p verylong

#SBATCH -J xhu2002

#SBATCH -n 31

#SBATCH --time=168:00:00

mpirun python xhu2002.py $1

The command line argument would then be supplied when submitting the job
to specify what .json file to store the results in. After the run is done the results
would be stored in that file in JSON format.

squeue xhu2002.sh xhu2002.json
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Chapter 5

Conclusions

ïż£An experimental analysis of the existing MOPSO approaches was done in this
thesis. Two new MOPSO methods were proposed and examined experimentally
with regards to the existing MOPSO approaches. MOPSO approaches were
clasiffied using a novel scheme relying on the algorithm design choices. Due to
the limitations of the existing performance indicators when measuring Pareto
solution spread, two new performance indicators were proposed. A large
software framework for MOPSO algorithm prototyping and evaluation was
written. The research done in this thesis leads to the following conclusions:

• Proposed multi-objective optimisation performance indicators can be used
to measure the uniformity of the solution spread in Pareto front approx-
imations. These (or similar) indicators are necessary because existing
performance indicators suffer from the problems that are explained in
chapter 4. Because of these problems existing indicators that are described
in chapter 2, do not accurately capture the intuitive notion of the uniform
coverage. The problems are solved by the proposed indicators by taking
into careful consideration what it means to cover Pareto frontier uniformly
with a discrete approximation of that frontier.

• It is desirable that MOPSO methods (or any other optimization method)
could work well over many different problem classes without having
to adjust the algorithm manually. It can be seen from the experiments
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performed with the existing MOPSO methods that specific personal and
global solution selection rules work best with the specific problem types.
They work worse with other problem types. By using different types
of the particle in the same swarm (so-called heterogeneous swarm) we
have tried to improve on this. The advantage of this is that the swarm
will use the type of the particle that is the best for the specific problem.
The disadvantages of the particles will be cancelled out. It can be seen
from the experimental evaluations that proposed heterogeneous multi-
objective optimization algorithms perform well over a wide selection
of performance indicators and test problems compared to the existing
methods.

• It has long been known that the use of mutation operators can improve the
performance of the single objective PSOs. However, comparative studies
that contrast the methods which use mutation operators and those that do
not, have not been performed in the field of multi-objective PSO. Because
of the large number of MOPSO methods that have been surveyed in this
research both with and without mutation, conclusions about the use can
be made. It can be seen from the data that mutation can significantly
improve the performance of MOPSO methods. With all test problem,
the methods that don’t use mutation end up with highest values of IIGD
and IGD indicators by orders of magnitude. The only exception are the
decomposition based methods, that do comparatively well.

• Decomposition based approaches work well on problems with discontinu-
ous Pareto frontiers. This may be due to the fact that they do not make
assumptions about the Pareto frontier being continuous the way the most
MOPSO approaches do.

• Vector evaluated MOPSO methods have been earlier proposed for the use
with the multi-objective problems. In vector evaluated approaches there
are several populations of individuals each optimizing a single objective.
Information is exchanged between populations. In the simplest case one
population will take the best solution found by another population as it’s
best global solution. Since they optimize different objectives this will allow
the swarms to explore solutions that optimize both of them. However,
from the experimental results that have been gathered in chapter 3 it can be

164



seen that vector evaluated MOPSO methods do not work well compared
to other MOPSO approaches. Several vector evaluated approaches have
been tested and none of them come close in terms of the results to other
approaches.

Other results accomplished during the writing of the thesis are as following:

• A large software library has been developed with the multiple PSO meth-
ods and test problems available. The library is designed for empirical
experiments that can be run on supercomputing clusters. The library is
publicly available and open-source. It’s modular design allows the user
to create new particle types and swarm topologies quickly. Numerical
experiments evaluating the performance of these methods can then be
performed using the included suite of the test problems and performance
indicators.

• A systematized overview and classification of most MOPSO methods
described in literature is presented. Previous classification schemes rely
entirely on a single underlying principle to classify the methods. Here,
several important factors are identified: underlying idea, method of solu-
tion diversity control and mutation. These three choices in the method
design are then used as the basis for the MOPSO classification.
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Appendix A

Result Plots

In this appendix we present results optained by the different PSO multi-objective
optimization in a visual form. We only consider two objective problems. Prob-
lems with more objectives are not presented here because they are too difficult
to visualize and interpret. The results for problems with more than two object-
ives are given in table form where the tables contain mean values of various
performance indicators. Each page will contain figures for 7 problems in our
test problem suite. In each figure all Pareto Frontier approximations are plot-
ted. That is they represent results from all optimization runs we performed
on those problems. While visualizations cannot replace numerical estimates
of performance they are useful in quickly spotting problems with methods or
quickly picking out the ones most useful for the given situation.
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Figure A.1: PF approximations obtained by PSO variant described by C. A. C.
Coello et al. (2002)
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A. Result Plots
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Figure A.2: PF approximations obtained by PSO variant described by X. Hu et
al. (2002)
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Figure A.3: PF approximations obtained by PSO variant using Bang-Bang
Weighted Aggregation described by K. E. Parsopoulos et al. (2002)
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Figure A.4: PF approximations obtained by PSO variant using Dynamic
Weighted Aggregation described by K. E. Parsopoulos et al. (2002)
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Figure A.5: PF approximations obtained by PSO variant described by S. Mo-
staghim et al. (2003)
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Figure A.6: PF approximations obtained by PSO variant described by X. Hu et
al. (2003)
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Figure A.7: PF approximations obtained by PSO variant described by C. A. C.
Coello et al. (2004)
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Figure A.8: PF approximations obtained by PSO variant described by K. E.
Parsopoulos et al. (2004)
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Figure A.9: PF approximations obtained by PSO variant described by C. R.
Raquel et al. (2005)
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Figure A.10: PF approximations obtained by PSO variant using RANDOM
leader selection scheme described by J. E. Alvarez-Benitez et al. (2005)
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Figure A.11: PF approximations obtained by PSO variant using PROB leader
selection scheme described by J. E. Alvarez-Benitez et al. (2005)
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Figure A.12: PF approximations obtained by PSO variant described by M. R.
Sierra et al. (2005)
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Figure A.13: PF approximations obtained by PSO variant described by P. K.
Tripathi et al. (2007)
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Figure A.14: PF approximations obtained by PSO variant described by W. Peng
et al. (2008)
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Figure A.15: PF approximations obtained by PSO variant described by A. J.
Nebro et al. (2009)
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Figure A.16: PF approximations obtained by PSO variant described by N. Al
Moubayed et al. (2010)
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Figure A.17: PF approximations obtained by PSO variant described by S. Z.
Martinez et al. (2011)
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A. Result Plots
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Figure A.18: PF approximations obtained by PSO variant described by K. S. Lim
et al. (2013)
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Appendix B

Result Tables

Problem µ(IGD) µ(IIGD) µ(IN) µ(ISP )

UF01 0.54265 0.47095 523.43333 0.00347
UF02 0.08409 0.11031 998.63333 0.00137
UF03 0.75389 0.56439 1002.10000 0.00228
UF04 0.10240 0.09460 974.26667 0.00215
UF05 3.51676 3.20375 793.73333 0.00383
UF06 3.05551 2.53389 770.00000 0.01270
UF07 0.63042 0.56749 555.33333 0.00328
UF08 0.57268 0.51948 4457.23333 0.01107
UF09 0.61015 0.57310 4753.63333 0.00842
UF10 4.00434 3.74844 3565.53333 0.05063
UF11 2.89858 2.10509 4996.46667 0.17478
UF12 3638.42544 1815.77537 3544.73333 265.98619
UF13 2.21119 2.09877 5000.00000 0.05546

Table B.1: Results for the C. A. C. Coello et al. (2002) multi-objective particle
swarm optimizer.
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B. Result Tables

Problem µ(IGD) µ(IIGD) µ(IN) µ(ISP )

UF01 0.03032 0.11958 72.26667 0.03919
UF02 0.00820 0.04157 498.56667 0.00672
UF03 0.17101 0.35715 17.60000 0.17773
UF04 0.04868 0.04792 1435.86667 0.00206
UF05 0.54354 0.77018 13.20000 0.35785
UF06 0.21924 0.37175 19.63333 0.08158
UF07 0.06631 0.14703 65.86667 0.04640

Table B.2: Results for the X. Hu et al. (2002) multi-objective particle swarm
optimizer.

Problem µ(IGD) µ(IIGD) µ(IN) µ(ISP )

UF01 1.27435 0.82493 133.46667 0.08226
UF02 0.33057 0.24215 51.06667 0.06355
UF03 1.03112 0.65763 35.76667 0.09652
UF04 0.17425 0.17205 63.60000 0.01829
UF05 4.66808 3.61357 223.56667 0.13406
UF06 5.67040 3.27762 160.13333 0.18085
UF07 1.50044 0.86421 113.56667 0.07970

Table B.3: Results for the K. E. Parsopoulos et al. (2002) multi-objective particle
swarm optimizer using Bang-Bang Weighted Aggregation.

Problem µ(IGD) µ(IIGD) µ(IN) µ(ISP )

UF01 0.37434 0.32519 34.23333 0.12233
UF02 0.12079 0.11550 105.53333 0.03249
UF03 0.56132 0.48638 29.23333 0.21525
UF04 0.08047 0.07624 340.10000 0.00600
UF05 2.82009 2.29250 20.90000 0.32918
UF06 2.21840 1.45629 19.83333 0.55231
UF07 0.28109 0.27671 37.86667 0.10464

Table B.4: Results for the X. Hu et al. (2003) multi-objective particle swarm
optimizer.
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Problem µ(IGD) µ(IIGD) µ(IN) µ(ISP )

UF01 0.10770 0.11509 425.86667 0.00187
UF02 0.03667 0.05707 994.03333 0.00129
UF03 0.20510 0.24646 520.36667 0.00328
UF04 0.09494 0.08881 723.53333 0.00226
UF05 1.04895 1.00956 394.16667 0.00246
UF06 0.39866 0.49690 424.60000 0.00141
UF07 0.11199 0.17042 728.80000 0.00191
UF08 0.08903 0.24950 4872.53333 0.00771
UF09 0.39467 0.32150 4573.40000 0.01243
UF10 1.49229 1.36298 2105.30000 0.03957
UF11 1.68457 0.97422 5000.00000 0.14000
UF12 3498.94397 1735.62627 3610.46667 250.26862
UF13 2.19495 2.10249 5000.00000 0.05864

Table B.5: Results for the C. A. C. Coello et al. (2004) multi-objective particle
swarm optimizer.

Problem µ(IGD) µ(IIGD) µ(IN) µ(ISP )

UF01 0.92593 0.38110 36.50000 0.17747
UF02 0.21998 0.17182 39.40000 0.09452
UF03 0.40522 0.34060 43.90000 0.06593
UF04 0.10182 0.09193 124.73333 0.00894
UF05 3.06011 2.10905 21.80000 0.28321
UF06 2.48982 1.12768 25.00000 0.33471
UF07 0.79351 0.33550 42.23333 0.12676
UF08 0.96576 0.50872 83.40000 0.38049
UF09 1.05419 0.48133 73.33333 0.47012
UF10 4.95058 3.52530 47.56667 1.16979
UF11 2.50684 1.17960 549.50000 0.42250
UF12 3415.47140 1511.15797 1602.60000 326.52693
UF13 2.09453 2.02508 5000.00000 0.05832

Table B.6: Results for the K. E. Parsopoulos et al. (2004) multi-objective particle
swarm optimizer.
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B. Result Tables

Problem µ(IGD) µ(IIGD) µ(IN) µ(ISP )

UF01 0.05722 0.12441 82.06667 0.02136
UF02 0.00636 0.04417 907.73333 0.00581
UF03 0.44608 0.36406 12.46667 0.24672
UF04 0.05725 0.05866 1579.40000 0.00945
UF05 1.29442 1.16855 39.76667 0.07703
UF06 0.50781 0.49462 71.60000 0.03672
UF07 0.03488 0.08136 134.20000 0.01255
UF08 0.00480 0.42761 4969.73333 0.00108
UF09 0.06632 0.25327 3356.13333 0.05422
UF10 0.72134 0.79535 1403.53333 0.07884
UF11 0.42172 0.22005 4987.53333 0.10142
UF12 2820.35112 1472.71590 1046.06667 329.28449
UF13 2.06287 2.04144 5000.00000 0.05754

Table B.7: Results for the Carlo R. Raquel et al. (2005) multi-objective particle
swarm optimizer.

Problem µ(IGD) µ(IIGD) µ(IN) µ(ISP )

UF01 0.05257 0.16329 56.06667 0.01082
UF02 0.03149 0.11230 421.30000 0.01071
UF03 0.02214 0.31144 27.03333 0.00033
UF04 0.09722 0.09871 219.20000 0.00515
UF05 1.27642 1.33712 19.83333 0.03695
UF06 0.27121 0.55955 26.23333 0.00735
UF07 0.18447 0.31504 49.80000 0.02100
UF08 0.07777 0.36712 436.70000 0.02083
UF09 0.08742 0.45085 506.80000 0.05267
UF10 0.39628 0.74818 430.76667 0.03944
UF11 2.23943 0.67881 385.10000 0.20007
UF12 2565.55780 420.78130 900.30000 181.34900
UF13 2.26008 4.27774 250.00000 0.03033

Table B.8: Results for the Julio E. Alvarez-Benitez et al. (2005) multi-objective
particle swarm optimizer using the RANDOM leader selection scheme.
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Problem µ(IGD) µ(IIGD) µ(IN) µ(ISP )

UF01 0.05907 0.17340 49.46667 0.00883
UF02 0.03498 0.10915 431.10000 0.00900
UF03 0.02355 0.31195 28.96667 0.00101
UF04 0.09562 0.09738 239.63333 0.00470
UF05 1.20888 1.29193 26.46667 0.04118
UF06 0.25690 0.59528 30.83333 0.01396
UF07 0.09127 0.31757 46.96667 0.03245
UF08 0.06508 0.36055 499.86667 0.02381
UF09 0.09380 0.44839 418.53333 0.05930
UF10 0.33794 0.69500 457.86667 0.02824
UF11 2.08516 0.68540 339.90000 0.21291
UF12 2636.68717 333.91581 867.76667 195.48762
UF13 2.26108 4.23445 250.00000 0.03401

Table B.9: Results for the Julio E. Alvarez-Benitez et al. (2005) multi-objective
particle swarm optimizer using the PROB leader selection scheme.

Problem µ(IGD) µ(IIGD) µ(IN) µ(ISP )

UF01 0.06905 0.10369 62.20000 0.02236
UF02 0.01651 0.02781 253.23333 0.00695
UF03 0.45414 0.35599 18.30000 0.18575
UF04 0.04252 0.04213 994.23333 0.00187
UF05 1.37283 1.11808 30.03333 0.09555
UF06 0.51504 0.48957 39.16667 0.06882
UF07 0.06128 0.07590 93.20000 0.01725
UF08 0.05181 0.17104 933.76667 0.05497
UF09 0.40111 0.24362 382.76667 0.11583
UF10 3.37871 2.03196 112.60000 0.46891
UF11 0.52629 0.28262 1000.00000 0.16452
UF12 2681.29049 1369.56726 999.40000 307.16064
UF13 2.14740 2.07414 1000.00000 0.14741

Table B.10: Results for the Margarita R. Sierra et al. (2005) multi-objective particle
swarm optimizer.
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B. Result Tables

Problem µ(IGD) µ(IIGD) µ(IN) µ(ISP )

UF01 0.09486 0.12791 29.73333 0.03418
UF02 0.05126 0.07187 103.40000 0.02068
UF03 0.43456 0.34047 28.10000 0.11433
UF04 0.05167 0.04965 215.96667 0.00544
UF05 1.49339 1.28964 18.16667 0.15116
UF06 0.61206 0.55856 23.00000 0.06948
UF07 0.08260 0.10302 39.40000 0.03066
UF08 0.10189 0.23403 264.16667 0.07848
UF09 1.23274 0.41769 159.06667 0.24267
UF10 3.53361 2.66109 51.13333 0.60033
UF11 0.91032 0.48461 882.83333 0.19739
UF12 2796.82429 1406.97118 1936.46667 274.22997
UF13 2.04956 2.04030 5000.00000 0.05768

Table B.11: Results for the Praveen Kumar Tripath et al. (2007) multi-objective
particle swarm optimizer.

Problem µ(IGD) µ(IIGD) µ(IN) µ(ISP )

UF01 0.08110 0.08006 161.83333 0.02332
UF02 0.13009 0.06133 155.33333 0.02306
UF03 0.12393 0.39260 53.23333 0.06134
UF04 0.05960 0.06247 1528.86667 0.00211
UF05 0.67116 0.79115 18.53333 0.15540
UF06 0.39718 0.64558 17.73333 0.18418
UF07 0.18239 0.36804 70.56667 0.13459
UF08 0.94433 0.21901 432.33333 0.15521
UF09 0.74370 0.35457 760.90000 0.12309
UF10 4.50931 1.89385 91.30000 0.85921
UF11 0.77264 0.56398 2663.80000 0.19917
UF12 2931.64161 1084.20675 1960.56667 298.40098
UF13 2.18136 2.07135 5000.00000 0.06416

Table B.12: Results for the W. Peng et al. (2008) multi-objective particle swarm
optimizer.
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Problem µ(IGD) µ(IIGD) µ(IN) µ(ISP )

UF01 0.12366 0.13942 28.53333 0.04042
UF02 0.08122 0.09043 63.03333 0.02855
UF03 0.44927 0.36511 12.46667 0.18939
UF04 0.05196 0.05074 212.96667 0.00553
UF05 1.77617 1.48813 16.23333 0.18964
UF06 0.76306 0.63015 21.76667 0.16551
UF07 0.11835 0.12402 33.60000 0.04958
UF08 0.35906 0.27913 105.63333 0.21601
UF09 1.13376 0.48351 87.90000 0.33498
UF10 5.00787 3.36219 47.80000 0.97501
UF11 1.30740 0.65470 517.86667 0.26796
UF12 2918.02658 1403.51672 2129.46667 273.86523
UF13 2.05146 2.03887 5000.00000 0.05808

Table B.13: Results for the A. J. Nebro et al. (2009) multi-objective particle swarm
optimizer.

Problem µ(IGD) µ(IIGD) µ(IN) µ(ISP )

UF01 0.05751 0.08950 56.70000 0.02118
UF02 0.02130 0.04242 300.26667 0.00808
UF03 0.19017 0.20413 78.06667 0.03031
UF04 0.06093 0.05636 271.33333 0.00546
UF05 0.43615 0.68731 20.80000 0.09149
UF06 0.22401 0.58481 39.66667 0.06967
UF07 0.03933 0.05251 153.63333 0.01300
UF08 0.02279 0.24901 1917.63333 0.01350
UF09 0.05366 0.29724 2486.53333 0.03126
UF10 2.24683 1.74295 69.03333 0.27392
UF11 0.25754 0.17251 4999.90000 0.07739
UF12 3188.04526 1332.33054 2275.66667 287.80740
UF13 2.04441 2.03943 5000.00000 0.05893

Table B.14: Results for the N. Al Moubayed et al. (2010) multi-objective particle
swarm optimizer.
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B. Result Tables

Problem µ(IGD) µ(IIGD) µ(IN) µ(ISP )

UF01 0.04508 0.10965 27.70000 0.03882
UF02 0.00852 0.03725 534.83333 0.00675
UF03 0.23912 0.35778 90.10000 0.05544
UF04 0.05719 0.07289 215.06667 0.01517
UF05 0.89289 0.94541 8.36667 0.16973
UF06 0.52364 0.60466 13.43333 0.24930
UF07 0.07885 0.19819 19.03333 0.14440
UF08 0.08824 0.36573 85.13333 0.17507
UF09 0.00951 0.29282 2869.63333 0.01374
UF10 0.14417 0.93789 10.36667 0.56399
UF11 0.39910 0.87097 3862.00000 0.18241
UF12 3010.71854 1246.67380 2121.36667 292.57181
UF13 2.14701 2.05360 5000.00000 0.05950

Table B.15: Results for the S. Z. Martinez et al. (2011) multi-objective particle
swarm optimizer.

Problem µ(IGD) µ(IIGD) µ(IN) µ(ISP )

UF01 0.90021 0.30685 53.26667 0.05998
UF02 0.54484 0.20606 53.20000 0.04596
UF03 0.38168 0.35229 35.30000 0.06430
UF04 0.07972 0.08039 145.16667 0.00858
UF05 3.82114 2.30341 35.60000 0.18686
UF06 4.18194 1.13630 41.50000 0.26138
UF07 1.00934 0.33026 52.96667 0.06678
UF08 4.11143 1.17021 241.60000 0.34851
UF09 5.76503 1.22421 261.40000 0.39591
UF10 19.64855 7.26586 176.70000 1.67115
UF11 3.11788 1.70583 876.93333 0.47266
UF12 2950.12020 1000.66883 1105.96667 309.88862
UF13 2.15717 2.04876 5000.00000 0.05892

Table B.16: Results for the K. S. Lim et al. (2013) multi-objective particle swarm
optimizer.
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