Comparison of the Selvester QRS scoring system and GRACE scale in the evaluation of the risk of sub-acute myocardial infarction

Maryam Bilal Butt

Supervisor:

Prof. Eglė Kalinauskienė
Department of Internal Medicine
Medical Academy of Lithuanian University of Health Sciences
Josvainių 2, LT-47144 Kaunas
Lithuania
Phone: 370-37 306093
Fax: 370-37 306093
E-mail: eglekalin@yahoo.com

Thesis preparation in 2015/2016, Department of Internal Medicine
Medical Academy of Lithuanian University of Health Sciences
Table of Contents

1.0 SUMMARY .. 3
2.0 ACKNOWLEDGEMENTS ... 4
3.0 ETHICS COMMITTEE CLEARANCE .. 5
4.0 ABBREVIATION LIST ... 6
5.0 TERMS ... 7
6.0 INTRODUCTION .. 8
7.0 AIM AND OBJECTIVES OF THE THESIS .. 9
8.0 LITERATURE REVIEW ... 10
9.0 RESEARCH METHODOLOGY AND METHOD .. 14
 9.1. Study population and design .. 14
 9.2. Statistical analysis ... 16
10.0 RESULTS .. 17
11.0 DISCUSSION ... 19
12.0 CONCLUSION ... 20
13.0 RECOMMENDATIONS ... 20
14.0 REFERENCES .. 21
1.0 Summary

Maryam Bilal Butt

Comparison of the Selvester QRS scoring system and GRACE scale in the evaluation of the risk of sub-acute myocardial infarction

Aim. To compare the performance of Selvester and GRACE scale in evaluating the risk prognosis of sub-acute myocardial infarction. Objectives. 1. To predict in-hospital mortality of sub-acute STEMI by Selvester QRS scoring system. 2. To predict in-hospital mortality of sub-acute STEMI by GRACE scale. 3. Comparison of Selvester QRS scoring system and GRACE scale in predicting in-hospital mortality of sub-acute STEMI. Material and Methods. Consecutive 48 patients (male 33.3 %, female 66.7 %) with the age of 80.31 ± 7.47 years were investigated in this study. The inclusion criteria were: confirmed MI by troponin and ECG criteria of sub-acute MI at admission to a hospital: still elevated ST segment >= 1 mV with inverted T wave at least 1 mV. Exclusion criteria were only the following: ventricular pacemaker and intraventricular conduction defects. The patients’ ECG, taken at the arrival to the hospital, were considered to predict the risk of in-hospital mortality by Selvester QRS score and clinical findings including ECG changes were used to interpret the high-risk of in-hospital mortality by GRACE score. The data analysis was performed by using the package SPPS 22.0. McNemar’s test was used to compare the scores. Results. Even high GRACE score > 154 points and Selvester score > 6 did not predict the death (significant difference in comparison with actual in-hospital mortality was found for both scores, p = 0.000 and p = 0.001, respectively). But Selvester score > 8 was predicting the death (there was no difference in comparison with actual in-hospital mortality, p = 0.092) with the accuracy 72.9%. Conclusion. Selvester score > 8 was predicting the in-hospital mortality in cases of sub-acute STEMI, even high GRACE score did not predict.

Keywords: Electrocardiology; Myocardial infarction; QRS system; GRACE score, In-hospital mortality;
2.0 Acknowledgements

I am grateful to my supervisor, Prof. Egle Kalinauskiene, whose expertise, understanding, generous guidance and support made it possible to work on a topic that was of great interest to me. It was a pleasure working with her. You definitely provided me with the tools that I needed to choose the right direction and successfully complete my thesis.

I would like to thank Dr. Dalia Gerviene for her wonderful collaboration. We were not only able to support each other by deliberating over our problems and findings, but also always happily willing to help each other. I was a co-author in Dr. Dalia Gerviene research work for her PhD and I contributed in writing the research work and find the conclusion.

In addition, I would also like to thank Jurate Tomkeviciute, Assistant in Department of Physics, Mathematics and Biophysics, LUHS (LSMU) who helped me to do calculation in my thesis.

Thank you very much, everyone!

Maryam Bilal Butt
3.0 Conflict of interest

Non conflict of interest.

Ethics Committee Clearance

The study was approved by the Ethics Committee of the Lithuanian University of Health Sciences, code: 302536989
4.0 Abbreviations list

NSTE-ACS – Non-ST segment elevation acute coronary syndrome
STEMI – ST elevated myocardial infarction
NSTEMI – Non-ST elevated myocardial infarction
AMI – Acute Myocardial infarction
MI – Myocardial infarction
ECG – Electrocardiogram
CAD – coronary artery disease
CHD – Coronary heart disease
ACS – Acute coronary syndrome
LV – Left ventricle
MRI – Magnetic resonance image
TIMI – Thrombolysis in myocardial infarction
HF – Heart failure
LGE-CMR – Late gadolinium hyper-resonance cardiac magnetic resonance
ACC – Accuracy
TP – True Positive
TN – True Negative
FP – False Positive
FN – False Negative
5.0 Terms

- Sub-acute myocardial infarction - a returning ST segment to the baseline and an inverting T wave on electrocardiogram.

- GRACE score – a global registry of acute coronary events (2.0) risk score have been developed for the assessment of the risk of death among patient with acute coronary syndrome.

- Selvester QRS score – a scoring system based on quantitative criteria from the standard 12-lead electrocardiogram (ECG), which estimates the size and location of myocardial scar in the left ventricle.
6.0 Introduction

Coronary heart disease, one of the leading cause of death, possess three clinical types; Non-ST segment elevation acute coronary syndrome (NSTE-ACS), ST-segment elevation myocardial infarction (STEMI) and unstable angina. Sub-acute infarction (within weeks or more) - a returning ST segment to the baseline and an inverting T wave. Correct diagnosis and early management are keen important to improve adverse cardiac events in patients with acute myocardial infarction (MI). The manifestation of serious cardiovascular adverse events varies in Acute coronary syndrome (ACS) patients related to enzyme markers, clinical features and electrocardiogram (ECG). Risk stratification can be helpful for the early treatment decision taking either with drugs or by different therapeutic procedures (e.g coronary angioplasty). However, to identify the accuracy of risk stratification the normal or elevated value of cardiac marker (troponin) and abnormal changes in ECG is inadequate for prognosis interpretation, hence, more information is required.

Global Registry of Acute Coronary Events (GRACE) (range 1 to 372) in Myocardial Infarction risk scores have been widely used for risk prognosis in patients with acute coronary syndrome (ACS), all around the world. The factors of the GRACE risk score are age, variable heart rate, systolic blood pressure value, elevated serum creatinine value, ST-segment deviation in ECG and elevated cardiac biomarker values including Killip class (I-IV). A prognostic score is calculated based on above mentioned factors to estimates the risk of mortality in individual patient.

To estimate the size of MI in the left ventricular (LV) by using ECG, the Selvester QRS-scoring system have been designed. For the Selvester QRS score’s criteria following ECG features have to be measured; the amplitude of Q, R, and S wave in mV, duration of Q and R wave in ms, and R/Q and R/S ratio. The QRS scoring system have a total of 31 points, which was used in this study based on 50 ECG criteria. Each point in Selvester QRS scoring system was designed to show approximately 3% MI of the LV (point multiply by 3). Many versions of the Selvester QRS scoring system have been described in previous studies. Patient admission ECG changes have to be measured by using the simplified QRS score. Aim of this study is to compare the accuracy of the GRACE score and Selvester QRS scoring system to evaluating the risk prognosis of sub-acute myocardial infarction (acute MI). Not enough research data is available regarding the sub-acute STEMI and more studies should be done.
7.0 Aim

To compare the performance of Selvester QRS scoring system and GRACE risk score in evaluating the risk prognosis of sub-acute STEMI.

Objectives

1. To predict in-hospital mortality of sub-acute STEMI by Selvester QRS scoring system.
2. To predict in-hospital mortality of sub-acute STEMI by GRACE scale.
3. Comparison of Selvester QRS scoring system and GRACE scale in predicting in-hospital mortality of sub-acute STEMI.

9.0 Literature review

Myocardial infarction (MI) can be identified by clinical features, including electrocardiographic (ECG) changes, elevated values of cardiac markers (biomarkers) which elevates due to myocardial damage or necrosis. The magnetic resonance image (MRI) also help to recognize MI. It is one of the major cause of death and disability in older patients. MI may be the first indication of coronary artery disease (CAD) or it may occur repeatedly in various patients. Information about the MI size can be useful regarding the incidence of cardiac adverse event within the population and worldwide, especially if standardized data are collected in such a manner that differentiate between incidence and recurrent events. From the epidemiological point of view, in order to estimate the prevalence of cardiovascular disease in a population the information of incidence of MI in that population can be helpful. The different causes of CAD may have great impact on the healthy life style of population as it may result in arrhythmia, ventricular dysfunction, cardiac shock and death because Bigger the MI size higher the risk of adverse cardiac event. MI is characterized by ECG abnormal findings, typical clinical findings included elevated biomarkers status due to myocardial damage [1].

It is one of the major cause of mortality and morbidity in many countries [2]. The prevalence and incidence of cardiovascular diseases are increasing these days, all around the world [3]. The mortality rate has been increasing due to cardiovascular disease each year in the European Union. However, the incidence rates of Non-ST elevation MI have been increased as compare to acute ST-segment elevation MI over the past few decades in many countries, to great extent. Coronary heart disease (CHD) is a major cause of premature mortality (death in people aged under 75) in Scotland [4].

All patients with ST elevated and non-ST elevation ACS should undergo risk stratification as soon as possible after the diagnosis is confirmed because it is useful to predict who are at low, intermediate or high risk for short or long-term adverse cardiovascular outcomes [5, 6]. For early risk stratification, the GRACE risk model have been recommended in many research studies to treat the individual patient accordingly [7]. The rate of mortality and morbidity in ACS individual patient depends upon the size and location of MI. As GRACE score is an excellent means to discriminate risk of death in patients with ACS [8], the Risk stratification of ACS play significant role for the selection of better therapeutic measures as [9, 10, 11, 12] such as; immediate percutaneous coronary angiography, an early invasive strategy, or a conservative approach [13, 14].
Individuals with any one of the following clinical features are considered to be at high risk of cardiovascular outcomes; Cardiogenic shock, left ventricular (LV) dysfunction, incidence/recurrent angina at rest, hemodynamic instability due to mechanical cardiac problems (e.g., acute mitral regurgitation) and ventricular arrhythmias which is usually unstable. Preservation of LV function became the major component for normal cardiac function and systemic circulation [15].

It is hypothesized that the GRACE risk score demonstrate its accuracy in post-discharge and over the longer term follow-up of post-Acute MI patients for risk prognosis of cardiac adverse outcomes.

In the research article which was conducted in 2013 [16], 64 patients with ACS were investigated. A modified QRS score was measured on the ECG performed in patients on hospital arrival before their medical therapy. QRS score was associated with surface area infarction [16, 17, 18, 19, 20], but not sub-endocardial infraction scar. Although good performance was seen in those patients who had transmural scar only. During follow-up, QRS score predict patient mortality and it was well related to all-cause mortality and patients avoided arrhythmic death while treated with medical therapy. ACS patients with low cardiac output or left ventricular dysfunction will still go on to die and it was wished to explore the reason of different mode of death in research work as ventricular arrhythmia is one of the adverse cardiac outcomes. It was not clear either to use QRS scoring or not, in order to predict clinical arrhythmia in ACS patients. The result showed that QRS scoring performed best in measuring transmural infarction scar and it was helpful to predict mortality risk prognosis, but on the other side it was not proved helpful to predict risk of ventricular arrhythmia. This study had limitation such as, it was an observational study and the performance of QRS score was unclear to quantify sub-endocardial scar, could not predict ventricular arrhythmia and association between QRS score and mortality was uncertain and surprising. To estimate size of MI in the LV of the heart to predict the mortality by using ECG changes, the Selvester QRS-scoring system was used [19, 20].

In the research article which was conducted in 2010 [21], 154 patients were investigated, 46% had Non-STEMI and others had unstable angina. The initial management was started 4.6 hours after the onset of typical symptoms. The GRACE risk score provided a median of 117 and the thrombolysis in myocardial infarction score (TIMI score) provided a median of 3. However, 105 patients underwent percutaneous coronary angiography in-hospital and 97 of these did so as part of an invasive strategy. The remaining 8 patients underwent coronary angiography after positive scintigraphy for ischemia. The GRACE risk score is simple to use and applicable to clinical practice [22, 23, 24]. It has been showing a greater prognostic value in hospital risk assessment [25, 26]. This study had limitation such as, this work did not get long term outcomes because follow-up of patients
was still in progress. The diagnostic performance of different risk scoring systems was related to the number, depth and width of Q waves as well as increasing infarct size and transmurality [27, 28].

In another research article which was conducted in 2014 [29], 19122 patients were investigated for follow-up; by 2 years post-discharge, some of them went through different types of therapeutic procedures such as, 14.3% had angiography, 8.7% had percutaneous coronary intervention, 2.0% had coronary bypass surgery, and 24.2% were hospitalized again. Although, many patients had cardiovascular outcomes such as heart failure (HF) occurred in 6.3% of patients but 4.4% had re-infarction and 7.1% patients were died. In this study, from post-discharge to 6-month follow-up GRACE risk score was highly predictive of mortality due to different causes. This study had limitations; First, not all patients were participated in the post-discharge 6-month and 2-year follow-up. Second, in most cases the follow-up information was provided by the patient its self and that could be false information regarding the procedures, events and medical therapy used by them. However, there were significant later consequences in post-discharge patients, including frequent morbidity and mortality. The accuracy of the GRACE risk score in post-discharge patients for predicting high risk longer-term mortality was observed [29, 30]

In the research article which was conducted in 2008 [31], 162 consecutive patients were investigated. 95 out of 162 in the ischemic (prior MI) cohort and 67 out of 162 in the non-ischemic cohort. Thus, 94 of 95 had at least 1 QRS point with evidence re-infarction. Median QRS-estimated scar size was 24% LV which is equivalent to 8 QRS points. It was found that patients with QRS-estimated scar < median had similar baseline characteristics but had a difference ECG conduction abnormality as compared to the QRS-estimated scar ≥ median. In the non-ischemic cohort, 30 out of 67 patients had late gadolinium hyper-enhancement cardiac magnetic resonance (LGE-CMR) and 46 out of 67 had ≥1 QRS point. Non-ischemic patients with ≥1 QRS point had similar baseline characteristics but that didn’t work for larger LV volumes. The study demonstrated that QRS scores accurately identified the presence of MI in ischemic and non-ischemic cardiac patients who had different types of ventricular dysfunction and it was well related with the extent of infraction. QRS-scores identify and quantify scar in ischemic and non-ischemic cardiomyopathy patients even ECG was uncertain. Higher QRS-estimated scar size was associated with increased ventricular conduction abnormality. This study had limitation such as, larger numbers of patients should have been taken to assess the sensitivity and specificity of each of the QRS criteria in the presence of ventricular dysfunction/conduction abnormalities to localize LV scar [31].

In the research article which was conducted in 2015 [32], 396 patients were investigated. 270 out of 396 had NSTE-ACS. Among them 8 had died in-hospital due to adverse cardiac outcomes. By one-year post-discharge, 41 patients had died who were diagnosed with NSTE-ACS. The results for
in-hospital mortality were unclear. Because only 8 out of 396 patients were died in hospital, which is very low rate of mortality. Although, different results were noticed for the subgroups; it was accurate for low-risk patients but not for high-risk patients. Since during the study they demonstrated the risk of mortality among intermediate and high risk patients. In NSTE-ACS patients, the GRACE score was valid for 1-year mortality evaluation with great accuracy. The study had limitation such as, they did not calculate the probability of death/MI at 1 year, or death/MI at 3 years. It was difficult to monitor patients for MI, contradictive to the precise determination of death [32, 33].
9.0 Research methodology and Methods

9.1 Study population and design

The patients arriving to the Internal medicine department of Kaunas Republic hospital and Kaunas Clinic hospital from 1st January 2013 to 1st January 2014 with sub-acute MI were considered for inclusion into this study.

Consecutive 48 patients with age of 80.31 ± 7.47 years were investigated in this study. The inclusion criteria were: confirmed MI by troponin and ECG criteria of sub-acute MI at admission to a hospital: still elevated ST segment >= 1 mV with inverted T wave at least 1 mV. Exclusion criteria were only the following: ventricular pacemaker and intraventricular conduction defects. Patient age, heart rate/pulse, systolic blood pressure, creatinine value, Killip classification I to IV (including no evidence of heart failure, findings of mild to moderate heart failure, pulmonary edema and cardiogenic shock) and electrocardiographic QRS changes were analysed. The patients’ ECG, taken at the arrival to the hospital, were considered to predict the risk of in-hospital mortality by Selvester QRS score and clinical findings including ECG changes were used to interpret the high-risk of in-hospital mortality by GRACE score. The last modification of Selvester QRS score [33] was used which is shown in table 1. GRACE score was calculated by available calculator recommended in the last guidelines of STEMI management [32].
Table 1. The last modification of Selvester QRS score

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>QRS duration</th>
<th>Amplitude adjust</th>
<th>(11% yr age 20-64; 11% yr >65 yrs; 10% for females)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age & gender</td>
<td>QRS axis</td>
<td>Duration adjust</td>
<td>RAO***,***Yes/No (10% for females)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RBB</th>
<th>LAFB</th>
<th>LAFB + RBB</th>
<th>LVH</th>
<th>No Confounders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>Criteria</td>
<td>Points</td>
<td>Criteria</td>
<td>Points</td>
</tr>
<tr>
<td>I</td>
<td>Q > 40 ms</td>
<td>3</td>
<td>Q > 40 ms</td>
<td>3</td>
</tr>
<tr>
<td>II</td>
<td>Q > 40 ms</td>
<td>3</td>
<td>Q > 40 ms</td>
<td>3</td>
</tr>
<tr>
<td>aVL</td>
<td>Q > 40 ms</td>
<td>3</td>
<td>Q > 40 ms</td>
<td>3</td>
</tr>
<tr>
<td>aVF</td>
<td>Q > 40 ms</td>
<td>3</td>
<td>Q > 40 ms</td>
<td>3</td>
</tr>
<tr>
<td>V1</td>
<td>Q > 40 ms</td>
<td>3</td>
<td>Q > 40 ms</td>
<td>3</td>
</tr>
<tr>
<td>V2</td>
<td>Q > 40 ms</td>
<td>3</td>
<td>Q > 40 ms</td>
<td>3</td>
</tr>
<tr>
<td>V3</td>
<td>Q > 40 ms</td>
<td>3</td>
<td>Q > 40 ms</td>
<td>3</td>
</tr>
<tr>
<td>V4</td>
<td>Q > 40 ms</td>
<td>3</td>
<td>Q > 40 ms</td>
<td>3</td>
</tr>
<tr>
<td>V5</td>
<td>Q > 40 ms</td>
<td>3</td>
<td>Q > 40 ms</td>
<td>3</td>
</tr>
<tr>
<td>V6</td>
<td>Q > 40 ms</td>
<td>3</td>
<td>Q > 40 ms</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2.

Patients with >154 points are at high risk of in-hospital mortality means > 23 percentage of chances of death. The GRACE score with different scores and mortality percentage is given below in table 2.
Table 2. Interpretation of risk of mortality in ST elevation Acute Coronary Syndrome by GRACE risk score.

<table>
<thead>
<tr>
<th>Risk category</th>
<th>GRACE risk score</th>
<th>Mortality percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>> 126</td>
<td>> 10</td>
</tr>
<tr>
<td>Intermediate</td>
<td>126 – 154</td>
<td>10-23</td>
</tr>
<tr>
<td>High</td>
<td>> 154</td>
<td>> 23</td>
</tr>
</tbody>
</table>

The study was approved by the Ethics Committee of the Lithuanian University of Health Sciences, code: 302536989.

9.2 Statistical analysis

For the prediction of mortality, the comparison of the accuracy of GRACE risk score and Selvester QRS system scoring were calculated. The criteria of the Selvester QRS score was < 8 points – patient will not die and > 8 point (> 24% of LV) – patient will die. Also, we assessed the less criteria - < 6 points – patient will not die and > 6 point (> 18% of LV) – patient will die. Similarly, the criteria of GRACE score was < 154 points (in-hospital mortality < 23 %– patient will not die and > 154 (in-hospital mortality > 23 %) – patient will die. The data analysis was performed by using the package SPPS 22.0. McNemar’s test was used to compare the scores. The p value < 0.05 was defined as statistically significant.

Continuous values are expressed as mean ± standard deviation. Categorical variables are presented as number (percentage).

To calculate the accuracy of mortality prediction, following formula was used:

\[
\text{Accuracy (ACC)} = \frac{(TP + TN)}{(TP+FP+FN+TN)}
\]
10.0 Results

According to the GRACE risk score > 154 points prediction – 24 (50 %) out of 48 patients were supposed to die and 24 (50 %) patients were supposed not to die but the actual number of mortality were 3 patients (6.3 %) and 45 (93.8 %) survived in-hospital shown in table 3.

<table>
<thead>
<tr>
<th>Actual number of patients</th>
<th>GRACE score > 154 points</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Died</td>
<td>Not died</td>
<td>Total</td>
</tr>
<tr>
<td>Died</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Not died</td>
<td>22</td>
<td>23</td>
<td>45</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>24</td>
<td>48</td>
</tr>
</tbody>
</table>

According to the Selvester QRS system > 6 points prediction – 19 (39.6 %) out of 48 patients were supposed to die and 29 (60.4 %) patients were supposed not to die but the actual number of mortality were 3 patients (6.3 %) and 45 (93.8 %) survived in-hospital shown in table 4.

<table>
<thead>
<tr>
<th>Actual number of patients</th>
<th>Died (Selvester score > 6 points)</th>
<th>Not died (Selvester score < 6 points)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Died</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Not died</td>
<td>19</td>
<td>26</td>
<td>45</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>29</td>
<td>48</td>
</tr>
</tbody>
</table>

According to the Selvester QRS system > 8 points prediction – 10 (20.8 %) patients were supposed to die and 38 (79.2 %) patients were supposed not to die but the actual number of mortality were 3 patients (6.3 %) and 45 (93.8 %) survived in-hospital shown in table 5.
Table 5. Comparison between actual number of death and prediction by Selvester QRS score > 8 points.

<table>
<thead>
<tr>
<th>Actual number of patients</th>
<th>Died (Selvester score > 8 points)</th>
<th>Not died (Selvester score < 8 points)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Died</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Not died</td>
<td>10</td>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>38</td>
<td>48</td>
</tr>
</tbody>
</table>

Accuracy of mortality prediction by various scores is showed in table 6.

Table 6. Accuracy of mortality prediction by various scores.

<table>
<thead>
<tr>
<th>Risk score</th>
<th>Accuracy %</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRACE score >154 points</td>
<td>52.08</td>
</tr>
<tr>
<td>Selvester score > 6 points</td>
<td>54.16</td>
</tr>
<tr>
<td>Selvester score > 8 points</td>
<td>72.91</td>
</tr>
</tbody>
</table>

Significant difference between actual mortality and predicted by GRACE score was found (p = 0.000). Also, significant difference between actual mortality and predicted by Selvester QRS score > 6 points was found (p = 0.001). But there was no difference between actual mortality and predicted by Selvester QRS score > 8 points because the p value was 0.092.
11.0 Discussion

This study showed that Selvester QRS score > 8 was predicting the in-hospital mortality in cases of sub-acute MI, even high GRACE score did not predict.

MI is defined as myocardial damage due to cardiovascular disease, characterized by ECG abnormal findings, typical clinical findings [1]. It is one of the major cause of mortality and morbidity in many countries. The prevalence and incidence of cardiovascular diseases are increasing these days [2, 3]. The mortality rate has been increasing due to Non-ST elevation MI as compare to acute ST- segment elevation MI over the past few decades to great extent. Coronary heart disease (CHD) is a major cause of premature mortality. All patients with ST elevated and non-ST elevation ACS should undergo risk stratification as soon as possible after the diagnosis is confirmed because it is useful to predict who are at low, intermediate or high risk for short or long-term adverse cardiovascular outcomes [5,6].

The results demonstrate that the GRACE score has a significant discriminative power in assessing the risk of in-hospital mortality and post-discharge-6 months to 3 years mortality [7, 8]. It was accurate in the intense phase and over the longer term which make it useful in a variety of clinical settings to aid treatment decisions [7, 8, 9, 10]. Although it has only been validated for use in acute/intense phase of AMI but had excellent performance in discriminating between low and high risk patients with Non-ST elevated ACS [11, 12, 13, 14]. Preservation of LV function became the major component for normal cardiac function and systemic circulation [15]. QRS scoring performed best in measuring transmural infarction scar and it was helpful to predict mortality risk prognosis [16, 17, 18, 19, 20]. Patients with different infarct locations and size recently have been studied and got compared with in postmortem anatomic studies and with MRI [17, 18, 19, 20]. The GRACE risk score is simple to use and applicable to clinical practice [21, 22, 23, 24]. GRACE score has been showing a greater prognostic value in hospital risk assessment [25, 26]. The diagnostic performance of different risk scoring systems was related to the number, depth and width of Q waves as well as increasing infarct size and transmurality [27, 28]. The accuracy of the GRACE risk score in post-discharge patients for predicting high risk longer-term mortality was observed [29, 30]. Taken together, several studies have been conducted regarding validation of the previous risk score in different countries and with different types of ACS and different follow-up periods (28, 29, 30, 31, 32, 33); of these in-hospital, 6 months to 3 year mortality.

In this study, one dead patient has Selvester QRS score only 0, because it was MI without pathological Q wave. So, in my opinion, Selvester QRS scoring should be used in prediction of risk in cases of transmural MI only. Further larger studies are warranted to evaluate the accuracy of
selvester score system in sub-acute MI patients, in order to assess the risk prognostic.

12.0 Conclusions

High GRACE score > 154 points and Selvester QRS score > 6 did not predict the in-hospital mortality. But Selvester QRS score > 8 was predicting the in-hospital mortality in cases of sub-acute STEMI.

13.0 Practical recommendations

Selvester QRS score > 8 could be used in clinical practice to predict the in-hospital mortality in cases of sub-acute MI. However, larger studies are required to confirm these findings.
14.0 References

the risk of 6-month postdischarge death in an international registry. AMA. 2004 Jun 9;291(22):2727-33.

