

VILNIUS UNIVERSITY

SANDRA SVANIDZAITĖ

SPIRAL PROCESS MODEL FOR CAPTURE AND ANALYSIS OF NON-

FUNCTIONAL REQUIREMENTS OF SERVICE-ORIENTED ENTERPRISE

SYSTEMS

Doctoral Dissertation

Physical Sciences, Informatics (09 P)

Vilnius, 2015

The dissertation was written between 2010 and 2014 at Vilnius University

Institute of Mathematics and Informatics.

Scientific supervisor – Prof Dr. Albertas Čaplinskas (Vilnius University

Institute of Mathematics and Informatics, Physical Sciences, Informatics – 09

P).

VILNIAUS UNIVERSITETAS

SANDRA SVANIDZAITĖ

SPIRALINIS PROCESO MODELIS PASLAUGŲ STILIAUS

ARCHITEKTŪROS ĮMONIŲ SISTEMŲ NEFUNKCINIAMS

REIKALAVIMAMS IŠGAUTI IR ANALIZUOTI

Daktaro disertacija

Fiziniai mokslai, informatika (09 P)

Vilnius, 2015

Disertacija rengta 2010 – 2014 metais Vilniaus universiteto Matematikos ir

informatikos institute.

Mokslinis vadovas – prof. dr. Albertas Čaplinskas (Vilniaus universiteto

Matematikos ir informatikos institutas, fiziniai mokslai, informatika – 09 P).

v

Acknowledgments

I would like to express my thanks to all the people who have been in one way

or another involved in the preparation of this thesis.

I would like to thank my scientific supervisor Prof Dr. Albertas Čaplinskas for

support and guidance throughout the process of this dissertation research. He

introduced me to the field of service-oriented architecture and, in particular, to

service-oriented requirement engineering discipline. Throughout four years of

research and study under his supervision, he has been always a great source of

inspiration and encouragement.

I am also grateful for the patience and constructive feedback from other

members of the staff of Vilnius University Institute of Mathematics and

Informatics.

vi

Abstract

Service orientation is a relatively new software development paradigm. It

inherits a number of concepts and principles from earlier paradigms but differs

from these paradigms in the manner in which the separation of concerns in the

software system is done. In addition to this, it provides an additional software

system abstraction layer – business logic layer. Service oriented architecture

(SOA) is an architectural style that implements service-orientation approach.

SOA raises new problems in software requirements engineering. As a result,

new requirements engineering sub-discipline – service-oriented requirements

engineering (SORE) – emerges. SORE focuses mainly on the identification of

services and workflows used to modelling applications and on their reuse. The

thesis highlights existing issues and concerns in SORE and discusses how one

type of service specification issues – non-functional requirements capturing,

analysis and conflicts resolution could be solved. The thesis defines a spiral

process model for capture and analysis of non-functional requirements for

Enterprise Service-Oriented Architecture – ESOA (a sub-style of SOA,

operating in a less open environment than ordinary SOA and aimed at

supporting enterprise business strategy and objectives) systems. This is the

main contribution of the research work. The process model is based on

classical as well as service-oriented RE process models, i*-based modelling

languages, viewpoints that are widely used Enterprise Architecture (EA)

standards and frameworks, service-oriented architecture layers and can be

applied in conjunction with service-oriented systems development

methodologies. The experimental research – a case study – demonstrated that

the proposed process model can be successfully applied to real-world ESOA

systems as it facilitates capturing, analysis and resolution of conflicting non-

functional requirements and improves the system’s quality.

vii

Contents

Acknowledgments .. v
Abstract ... vi

List of Figures .. x
List of Tables .. xi
Glossary and Acronyms .. xii
Introduction ... 21

Research Context and Challenges ... 21

Problem Statement ... 22
Motivation .. 23
Aims and Objectives of the Research... 25

Research Questions and Hypotheses ... 26
Research Design and Research Methods .. 27
Summary of Research Results .. 30
Contributions of the Dissertation .. 31

Approbation ... 32
Outline of the Dissertation... 32

Chapter 1 .. 34
Preliminaries .. 34

1.1. Service-Oriented Architecture .. 34

1.1.1 Service-Oriented Architecture Principles .. 35
1.1.2 Service-Oriented Architecture Layers ... 38

1.1.3 Service and Service Type .. 48
1.2. Enterprise Service-Oriented Architecture ... 50
1.3. User Requirement Standard Notation Languages ... 51

Chapter 2 .. 56
State of the Art ... 56

2.1. Service-Oriented Requirement Engineering ... 56

2.1.1. An Overview of Classic and Service-Oriented Requirement

Engineering: The Process and Techniques .. 64
2.1.2. Classic RE Process and Models ... 65
2.1.3. Service-Oriented RE Process and Models ... 67

2.2. Overview of Service-Oriented Software Systems’ Development

Methodologies and Approaches .. 70
2.2.1. IBM RUP/SOMA .. 71
2.2.2. Service-Oriented Analysis and Design Methodology by Thomas Erl... 72
2.2.3. Service-Oriented Design and Development Methodology by

Papazoglou ... 73

2.2.4. Service-Oriented Architecture Framework – SOAF 75
2.2.5. Service-Oriented Unified Process – SOUP ... 77

2.2.6. Characteristics of SOA Methodologies Analysis and Design Phases ... 79
2.2.7. Comparison of SOA development methodologies 81

2.3. Capturing Non-Functional Requirements for ESOA Systems Using

Viewpoints ... 84
2.4. Enterprise Architecture Frameworks and Standards 88

viii

2.4.1. IEEE 1471:2000 Recommended Practice for Architectural Description

 90
2.4.2. ISO/IEC/IEEE 42010:2011 Systems and software engineering –

Architecture description... 91

2.4.3. IEEE P1723 Standard for Service-Oriented Architecture (SOA)

Reference Architecture .. 92
2.4.4. OASIS Reference Architecture Foundation for SOA – OASIS SOA

RAF 92
2.4.5. Zachman Enterprise Architecture Framework....................................... 95

2.4.6. Open Group Architecture Framework – TOGAF 97
2.4.7. Extended Enterprise Architecture Framework 99
2.4.8. Department of Defence Architecture Framework – DoDAF 101
2.4.9. Kruchten’s “4+1”/RUP’s 4 + 1 View Model 104
2.4.10. Siemens 4 views method .. 105

2.4.11. Reference Model for Open Distributed Processing 107

2.4.12. Comparison of Enterprise Architecture Frameworks 109
2.5. Summary ... 116

Chapter 3 .. 120

Spiral Process Model for Capture and Analysis of Non-Functional Requirements

of Service-Oriented Enterprise Systems .. 120
3.1. Requirements for Service-Oriented Requirement Engineering Process

Phases .. 120
3.2. Stakeholders of ESOA Systems .. 123

3.3. Non-Functional Requirements for ESOA Systems 128
3.3.1. Availability .. 130
3.3.2. Performance ... 131

3.3.3. Reliability .. 133
3.3.4. Usability ... 135

3.3.5. Discoverability ... 137

3.3.6. Adaptability ... 138

3.3.7. Composability .. 140
3.3.8. Interoperability .. 143

3.3.9. Security .. 144
3.3.10. Scalability .. 146

3.3.11. Extensibility ... 147
3.3.12. Testability .. 148
3.3.13. Auditability .. 149
3.3.14. Modifiability .. 150

3.4. Spiral Process Model for Capture and Analysis of Non-Functional

Requirements of Service-Oriented Enterprise Systems ... 151
3.4.1. Composition of ESOA Viewpoints ... 155

3.5. Summary ... 158

The Discussion of Spiral Process Model Viewpoints Mapping to Architecture

Domains and Applicability to Use It in Conjunction with Service-Oriented

Architecture Systems Development Methodologies ... 158
Chapter 4 .. 164

A Case Study: Enterprise Service-Oriented Insurance System 164
4.1. Definition of ESOA Viewpoints ... 165

ix

4.2. Identification of Requirement Conflicts, Modelling User Concerns and

NFRs Using GRL and UCM, Developing Alternative Solutions, Elaborating

Solutions and Performing Judgment and Trade-off in Consumer Viewpoint 176
4.2.1. Identification of Requirement Conflicts in Customer Viewpoint 176

4.2.2. Modelling of User Concerns and NFRs in Consumer Viewpoint using

GRL and UCM .. 177
4.2.3. Developing of Alternative Solutions in Consumer Viewpoint 181
4.2.4. Elaborating Solutions and Performing Judgment and Trade-off in

Consumer Viewpoint ... 182

4.3.1. Identification of Requirement Conflicts in Business Process Viewpoint

 182
4.3.2. Modelling of User Concerns and NRFs in Business Process Viewpoint

using GRL and UCM ... 183
4.3.3. Developing of Alternative Solutions in Business Process Viewpoint . 185

4.3.4. Elaborating Solutions and Performing Judgement and Trade-off in

Business Process Viewpoint .. 185
4.4.1. Identification of Requirement Conflicts between Customer and

Business Process Viewpoints .. 186
4.4.2. Modelling of User Concerns and NFRs in Customer and Business

Process Viewpoints using GRL and UCM .. 187
4.4.3. Developing of Alternative Solutions in Customer and Business Process

Viewpoint .. 189
4.4.4. Elaborating Solutions and Performing Judgment and Trade-off in

Customer and Business Process Viewpoints ... 190
4.5. Summary ... 191

Chapter 5 .. 194

Discussion of Issues and Limitations ... 194
5.1. Open Problems .. 195

Results and Conclusions .. 196

References ... 199

List of Publications .. 212

x

List of Figures

Figure 1-1. Service-Oriented Architecture Principles (Erl, 2008) 36
Figure 1-2. Three Primary Service Layers (Erl, 2005) ... 42

Figure 1-3. SOA Reference Architecture Layers (SOA-RA, 2011) 42
Figure 1-4. Service Types by Erl (Erl, 2008) ... 49
Figure 1-5. Structure of Enterprise Service-Oriented Architecture (based on Minoli,

2008) .. 51
Figure 1-6. GRL notation (ITU-T, 2008) ... 53

Figure 1-7. UCM notation (ITU-T, 2008) .. 55
Figure 2-1. Requirements’ Generation Model – RGM (Arthur and Gröner, 2005) ... 67
Figure 2-2. Systematic SORE Process IDEF0 Detailed Diagram (Flores, et al, 2010)

 ... 68
Figure 2-3. Phases of the Service-Oriented Design and Development 75
Figure 2-4. Service-Oriented Architecture Framework Execution View (Erradi, et. al,

2006) .. 76

Figure 2-5. SOUP and RUP Model (SOUP)... 78
Figure 2-6. Overlaid SOUP and XP Processes (SOUP) ... 78

Figure 2-7. Conceptual Framework of IEEE 1471:2000 (partial view; Minoli, 2008)

 ... 91
Figure 2-8. Conceptual Framework of IEEE 1471:2000 (larger view; IEEE Std

1471:2000) ... 91
Figure 3-1. Stakeholders of ESOA System - Onion Diagram 128

Figure 3-2. Sub-Attributes of Composability (Choi et al, 2007) 141
Figure 3-3. ESOA NFRs Negotiation Spiral Model ... 153
Figure 3-4. Tabular Method for Checking NFRs for Mutual Consistency

(independent Requirements are Marked with “0”, Overlapping – “10”, Conflicting –

“1”) .. 154
Figure 4-1. New Auto Policy Creation Business Process ... 167

Figure 4-2. New Auto Claim Creation Process .. 168
Figure 4-3. UCM Diagram: Business Process – Insure New Customer 178
Figure 4-4. UCM Diagram: Business Process – Insure New Customer Sub-Process –

Log In... 178
Figure 4-5. UCM Diagram: Business Process – Register Claim for an Existing

Customer .. 179
Figure 4-6. GRL Diagram: Consumer Viewpoint User Concerns and Non-Functional

Requirements ... 180
Figure 4-7. Business Process Viewpoint User Concerns and Non-Functional

Requirements Modelling Using GRL .. 184

Figure 4-8. Customer and Business Process Viewpoint User Concerns and Non-

Functional Requirements Modelling Using GRL .. 188

xi

List of Tables

Table 2-1. IBM RUP/SOMA, SOAF, Methodology by Tomas Erl Comparison

According to Characteristics.. 81
Table 2-2. Methodology by Papazoglou and SOUP Comparison According to

Characteristics.. 83
Table 2-3. TOGAF ADM Views (TOGAF 9.1, 2011) ... 98
Table 2-4. Comparison/Mapping of Enterprise Architecture Framework

Views/Viewpoints.. 110
Table 3-1. Comparison/Mapping of Enterprise Architecture Framework

Views/Viewpoints including process model for ESOA NFRs Capture and Analysis

 ... 159
Table 4-1. PEST Analysis for Insurance4You Company Political, Economic, Social

and Technological Factors ... 165
Table 4-2. SWOT Analysis for Insurance4You Company Strengths, Weaknesses,

Opportunities and Threats.. 166

Table 4-3. Consumer Viewpoint Non-Functional Requirements 168

Table 4-4. Business Process Viewpoint Non-Functional Requirements 171
Table 4-5. Service Viewpoint Non-Functional Requirements 174
Table 4-6. Consumer Viewpoint Non-Functional Requirements’ Check for

Consistency .. 177
Table 4-7. Conflicting Non-Functional Requirements in Consumer Viewpoint 181

Table 4-8. Overlapping Requirements in Consumer Viewpoint 181
Table 4-9 Business Process Viewpoint Non-Functional Requirements’ Check for

Consistency .. 183

Table 4-10. Conflicting Non-Functional Requirements in Business Process

Viewpoint .. 185

Table 4-11. Overlapping Non-Functional Requirements in Business Process

Viewpoint .. 185

Table 4-12. Customer and Business Process Viewpoints Non-Functional

Requirements’ Check for Consistency .. 187
Table 4-13. Conflicting Non-Functional Requirements in Consumer and Business

Process Viewpoints .. 189

Table 4-14 Overlapping Non-Functional Requirements in Consumer and Business

Process Viewpoint ... 190

xii

Glossary and Acronyms

Architecture of a system – fundamental concepts or properties of a system in

its environment embodied in its elements, relationships, and in the

principles of its design and evolution (ISO/IEC/IEEE 42010:2011;

SOA-RM, 2006).

Architecture description (AD) – work product used to express architecture

(ISO/IEC/IEEE 42010:2011; SOA-RM, 2006).

Architecture description language (ADL) – any form of expression for use

in architecture descriptions. An ADL provides one or more model kinds

as means for framing some concerns for its audience of stakeholders.

An ADL can be narrowly focused, defining a single model kind, or

widely focused to provide several model kinds, optionally organized

into viewpoints. Often an ADL is supported by automated tools to aid

the creation, use and analysis of its models. Examples of ADLs are as

follows: Rapide (Luckham, 1995), Wright (WEB, j), SysML (OMG,

2008), ArchiMate (WEB, k; ISO/IEC/IEEE 42010:2011).

Architecture framework – conventions, principles and practices for the

description of architectures established within a specific domain of

application and/or community of stakeholders. For example, the

Reference Model of Open Distributed Processing (RM-ODP) is an

architecture framework (ISO/IEC/IEEE 42010:2011).

Architecture rationale – records explanation, justification or reasoning about

architecture decisions that have been made. The rationale for a decision

can include the basis for a decision, alternatives and trade-offs

considered, potential consequences of the decision and citations to

sources of additional information (ISO/IEC/IEEE 42010:2011).

Architecture view – work product expressing the architecture of a system

from the perspective of specific system concerns (ISO/IEC/IEEE

42010:2011; SOA-RM, 2006).

Architecture viewpoint – work product establishing the conventions for the

construction, interpretation and use of architecture views to frame

specific system concerns (ISO/IEC/IEEE 42010:2011; SOA-RM, 2006).

Business Process Modelling Notation (BPMN) provides businesses with the

capability of understanding their internal business procedures in a

graphical notation and gives organizations the ability to communicate

these procedures in a standard manner. Furthermore, the graphical

notation facilitates the understanding of the performance collaborations

xiii

and business transactions between the organizations. This ensures that

businesses understands themselves and participants in their business and

enables organizations to adjust to new internal and business-to-business

(B2B) business circumstances quickly (WEB, d).

Case study is an empirical research method that aims at investigating some

phenomena in this context (Runeson & Höst, 2009).

Conceptual analysis – the analysis of concepts, terms, variables, constructs,

definitions, assertions, hypotheses, and theories that involve examining

these for clarity and coherence, critically scrutinizing their logical

relations, and identifying assumptions and implications (Machado and

Silva, 2007).

Concern – interest in a system relevant to one or more of its stakeholders. A

concern pertains to any influence on a system in its environment,

including developmental, technological, business, operational,

organizational, political, economic, legal, regulatory, ecological and

social influences (ISO/IEC/IEEE 42010:2011). A stakeholder’s concern

should not be confused with either a need or a formal requirement. A

concern, as understood here, is an area or topic of interest. Within that

concern, system stakeholders may have many different requirements

(SOA-RM, 2006).

Component-based software engineering (CBSE) is a branch of software

engineering that emphasizes the separation of concerns in respect of the

wide-ranging functionality available throughout a given software

system. It is a reuse-based approach to defining, implementing and

composing loosely coupled independent components into systems. This

practice aims to bring about an equally wide-ranging degree of benefits

in both the short-term and the long-term for the software itself and for

organizations that sponsor such software.

Common Object Request Broker Architecture (CORBA) – OMG's open,

vendor-independent architecture and infrastructure that computer

applications use to work together over networks. Using the standard

protocol IIOP, a CORBA-based program from any vendor, on almost

any computer, operating system, programming language, and network,

can interoperate with a CORBA-based program from the same or

another vendor, on almost any other computer, operating system,

programming language, and network (WEB, m).

Constructive research – a research procedure for producing innovative

constructions, intended to solve the problems encountered in the real

world and to make some contribution to the theory of the discipline in

which it is applied (Lukka, 2003; Crnkovic, 2010).

xiv

Correspondence defines a relation between architecture description elements.

Correspondences are used to express architecture relations of interest

within an architecture description (or between architecture descriptions)

(ISO/IEC/IEEE 42010:2011).

Correspondence rules govern correspondences. They are used to enforce

relations within an architecture description (or between architecture

descriptions) (ISO/IEC/IEEE 42010:2011).

Commercial off-the-shelf (COTS) describes software or hardware products

that are ready-made and available for sale to the general public. For

example, Microsoft Office is a COTS product that is a packaged

software solution for businesses. COTS products are designed to be

implemented easily into existing systems without the need for

customization.

Distributed Component Object Model (DCOM) is a set of Microsoft

concepts and program interfaces in which client program objects can

request services from server program objects on other computers in a

network. DCOM is based on the Component Object Model (COM),

which provides a set of interfaces allowing clients and servers to

communicate within the same computer (WEB, o).

Distributed processing – information processing in which discrete

components may be located in different places, and where

communication between components may suffer delay or may fail

(ISO/IEC 10746-2:1996).

Department of Defence Architecture Framework (DoDAF) is an

architecture framework for the United States Department of Defence

(DoD) that provides visualization infrastructure for specific

stakeholders’ concerns through viewpoints organized by various views.

These views are artefacts for visualizing, understanding, and

assimilating the broad scope and complexities of an architecture

description through tabular, structural, behavioural, ontological,

pictorial, temporal, graphical, probabilistic, or alternative conceptual

means (DoDAF v2.02, 2010).

Domain framework – a framework capturing knowledge and expertise in a

particular problem domain. Frameworks are built for various purposes

and usually they are specific to one or several domains. Sometimes

domain frameworks are referred to as enterprise application

frameworks.

Electronic Business using eXtensible Markup Language (ebXML)
commonly known as e-business XML, is a family of XML based

standards sponsored by OASIS and UN/CEFACT whose mission is to

xv

provide an open, XML-based infrastructure that enables the global use

of electronic business information in an interoperable, secure, and

consistent manner by all trading partners (WEB, x).

Environment – context determining the setting and circumstances of all

influences upon a system. The environment of a system includes

developmental, technological, business, operational, organizational,

political, economic, legal, regulatory, ecological and social influences

(ISO/IEC/IEEE 42010:2011).

Enterprise – any collection of organizations that has a common set of goals.

For example, an enterprise could be a government agency, a whole

corporation, a division of a corporation, a single department, or a chain

of geographically distant organizations linked together by common

ownership. (TOGAF, 9.1)

Enterprise service bus (ESB) is a software architecture middleware used for

designing and implementing communication between mutually

interacting software applications in a service-oriented architecture. It is

a specialty variant of the more general client server model and promotes

agility and flexibility with regard to communication between

applications. Its primary use is in enterprise application integration of

heterogeneous and complex landscapes (WEB, ak).

Kerberos – a network authentication protocol. It is designed to provide strong

authentication for client/server applications by using secret-key

cryptography. The Kerberos protocol uses strong cryptography so that a

client can prove its identity to a server (and vice versa) across an

insecure network connection. After a client and server have used

Kerberos to prove their identity, they can also encrypt all of their

communications to assure privacy and data integrity as they go about

their business (WEB, ab).

Microsoft .NET is an integral part of many applications running on Windows

and provides common functionality for those applications to run. For

developers, the .NET Framework provides a comprehensive and

consistent programming model for building applications that have

visually stunning user experiences and seamless and secure

communication (WEB, r).

Mission Statement – a written declaration of an organization’s core purpose

and focus that normally remains unchanged over time. Properly crafted

mission statements (1) serve as filters to separate what is important from

what is not, (2) clearly state which markets will be served and how, and

(3) communicate a sense of intended direction to the entire organization.

A mission is different from a vision in that the former is the cause and

the latter is the effect. A mission is something to be accomplished

xvi

whereas a vision is something to be pursued for that accomplishment

(WEB, e).

Ministry of Defence Architecture Framework (MODAF) is an

internationally recognised enterprise architecture framework developed

by the Ministry of Defence (MOD) to support defence planning and

change management activities. It does this by enabling the capture and

presentation of information in a rigorous, coherent and comprehensive

way that aids the understanding of complex issues WEB (ag).

Model kinds are conventions for a type of modelling. Examples of model

kinds include data flow diagrams, class diagrams, Petri nets, balance

sheets, organization charts and state transition models (ISO/IEC/IEEE

42010:2011).

Open Distributed Processing (ODP) is an attempt to standardise OSI

application layer communications architecture. ODP is a natural

progression from OSI, broadening the target of standardisation from the

point of interconnection to the end system behaviour. The objective of

ODP is to enable the construction of distributed systems in a multi-

vendor environment through the provision of a general architectural

framework that such systems must conform to. One of the cornerstones

of this framework is a model of multiple viewpoints which enables

different participants to observe a system from a suitable perspective

and a suitable level of abstraction WEB (ah).

Oracle Java Enterprise Edition (JAVA EE) is an Oracle Enterprise Java

computing platform. The platform provides an API and runtime

environment for developing and running enterprise software, including

network and web services, and other large-scale, multi-tiered, scalable,

reliable, and secure network applications (WEB, s).

Perspective is a set of facts observed and modelled according to a particular

modelling aspect of reality.

PEST Analysis is a useful tool for understanding market growth or decline,

and as such the position, potential and direction for a business. PEST is

an acronym for Political, Economic, Social and Technological factors,

which are used to assess the market for a business or organizational

unit. PEST analysis is used for business and strategic planning,

marketing planning, business and product development and research

reports. As PEST factors are essentially external, completing a PEST

analysis is helpful prior to completing a SWOT analysis (a SWOT

analysis - Strengths, Weaknesses, Opportunities, Threats - is based

broadly on half-internal and half-external factors) (WEB, f).

xvii

Reference Architecture is an architectural design pattern that indicates how

an abstract set of mechanisms and relationships realizes a predetermined

set of requirements. Reference architecture models the abstract

architectural elements in the domain of interest independent of the

technologies, protocols, and products that are used to implement a

specific solution for the domain. Reference architecture elaborates

further on the reference model to show a more complete picture that

includes showing what is involved in realizing the modelled entities,

while staying independent of any particular solution but instead applies

to a class of solutions. It is possible to define reference architectures at

many levels of detail or abstraction, and for many different purposes.

Reference architecture is not a concrete architecture; i.e., depending on

the requirements being addressed by the reference architecture, it

generally will not completely specify all the technologies, components

and their relationships in sufficient detail to enable direct

implementation (SOA-RM, 2006).

Reference Model is an abstract framework for understanding significant

relationships among the entities of some environment that enables the

development of specific architectures using consistent standards or

specifications supporting that environment. A reference model consists

of a minimal set of unifying concepts, axioms and relationships within a

particular problem domain and is independent of specific standards,

technologies, implementations, or other concrete details (SOA-RM,

2006.

Remote Method Invocation (RMI) enables the programmer to create

distributed Java technology-based to Java technology-based

applications, in which the methods of remote Java objects can be

invoked from other Java virtual machines, possibly on different hosts.

RMI uses object serialization to marshal and unmarshal parameters and

does not truncate types, supporting true object-oriented polymorphism

(WEB, n).

Remote Procedure Call (RPC) is a powerful technology for creating

distributed client/server programs. RPC is an interprocess

communication technique that allows client and server software to

communicate (WEB, p).

Security Assertions Markup Language (SAML) is an XML-based, open-

standard data format for exchanging authentication and authorization

data between parties, in particular, between an identity provider and a

service provider. SAML is a product of the OASIS Security Services

Technical Committee. The first version of SAML was released in 2001,

the second version was published in 2005 (WEB, ac).

xviii

Service-Oriented Architecture (SOA) is a paradigm for organizing and

utilizing distributed capabilities that may be under the control of

different ownership domains. It provides a uniform means to offer,

discover, interact with and use capabilities to produce desired effects

consistent with measurable preconditions and expectations (SOA-RM,

2006.

Service Level Agreement (SLA) is a contract between a service provider and

its internal or external customers that documents what services the

provider will furnish WEB (ai).

SOA Ecosystem is a network of discrete processes and machines that, together

with a community of people, creates, uses, and governs specific services

as well as external suppliers of resources required by those services

(SOA-RAF, 2012).

Simple Object Access Protocol (SOAP) is a messaging protocol that allows

programs that run on disparate operating systems to communicate using

Hypertext Transfer Protocol (HTTP) and its Extensible Markup

Language (XML). SOAP defines the XML-based message format that

Web service-enabled applications use to communicate and inter-operate

with each other over the Web. The heterogeneous environment of the

Web demands that applications support a common data encoding

protocol and message format. SOAP is a standard for encoding

messages in XML that invoke functions in other applications. SOAP is

analogous to Remote Procedure Calls (RPC), used in many technologies

such as DCOM and CORBA, but eliminates some of the complexities of

using these interfaces (WEB, u).

Systems Development Life Cycle (SDLC) is a conceptual model used in

project management that describes the stages involved in an information

system development project, from an initial feasibility study through the

maintenance of the completed application. Various SDLC

methodologies have been developed to guide the processes involved,

including the waterfall model (which was the original SDLC method);

rapid application development (RAD); joint application development

(JAD); the fountain model; the spiral model; build and fix; and

synchronize-and-stabilize. Frequently, several models are combined into

some sort of hybrid methodology. Documentation is crucial regardless

of the type of the model chosen or devised for any application, and is

usually done in parallel with the development process. Some methods

work better for specific types of projects, but in the final analysis, the

most important factor for the success of a project may be how closely

the particular plan was followed (WEB, g).

System – a collection of components organized to accomplish a specific

function or set of functions (SOA-RM, 2006).

xix

Stakeholder – individual, team, organization (or classes thereof), having an

interest in a system (ISO/IEC/IEEE 42010:2011; SOA-RM, 2006).

SWOT analysis is an extremely useful tool for understanding and decision-

making for all sorts of situations in business and organizations. SWOT

is an acronym for Strengths, Weaknesses, Opportunities and Threats.

The SWOT analysis headings provide a good framework for reviewing

the strategy, position and direction of a company or business

proposition, or any other idea (WEB, h).

Transport Layer Security (TLS) and its predecessor Secure Sockets Layers

Protocol (SSL) are cryptographic protocols designed to provide

communication security over the network. They use X.509 certificates

and asymmetric cryptography to authenticate the counterparty with

whom they are communicating, and to exchange a symmetric key. This

session key is then used to encrypt data flowing between the parties.

This allows for data/message confidentiality (WEB, aa).

Vision Statement – an aspirational description of what an organization would

like to achieve or accomplish in the mid-term or long-term future. It is

intended to serve as a clear guide for choosing current and future

courses of action (WEB, al).

Web Services Definition Language (WSDL) is an XML-based interface

definition language that is used for describing the functionality offered

by a web service. WSDL provides a machine-readable description of

how the service can be called, what parameters it expects, and what data

structures it returns. It thus serves a purpose that corresponds roughly to

that of the method signature in a programming language (WEB, t).

Web Services Business Process Execution Language (WS-BPEL) is an

XML-based language that allows Web services in a service-oriented

architecture to interconnect and share data. Programmers use BPEL to

define how a business process that involves web services will be

executed. BPEL messages are typically used to invoke remote services,

orchestrate process execution and manage events and exceptions. BPEL

is often associated with Business Process Management Notation

(BPMN), a standard for representing business processes graphically. In

many organizations, analysts use BPMN to visualize business processes

and developers transform the visualizations to BPEL for execution

(WEB, v).

Web Services Security (WS - Security) is a proposed IT industry standard

that addresses security when data is exchanged as part of a Web service.

WS-Security is one of a series of specifications that include the

Business Process Execution Language (BPEL), WS-Coordination, and

WS-Transaction. WS-Security specifies enhancements to SOAP

xx

(Simple Object Access Protocol) messaging aimed at protecting the

integrity and confidentiality of a message and authenticating the sender.

WS-Security also specifies how to associate a security token with a

message, without specifying what kind of token is to be used. It does

describe how to encode X.509 certificates and Kerberos tickets. In

general, WS-Security is intended to be extensible so that new security

mechanisms can be used in the future (WEB, w).

Web Services Interoperability (WS-I) – a specification from the Web

Services Interoperability industry consortium (WS-I) provides

interoperability guidance for core Web Services specifications such as

SOAP, WSDL, and UDDI. The profile uses Web Services Description

Language (WSDL) to enable the description of services as sets of

endpoints operating on messages (WEB, z).

Web Services Transactions (WS-Tx) is a set of XML markup specifications

designed to permit the use of open, standard protocols for secure,

reliable transactions across the Web. Three constituent standards: WS-

Coordination, WS-AtomicTransaction, WS-BusinessActivity were

created to accommodate two typical transaction patterns: individual

atomic transactions that represent the building blocks for more complex

transactions among peers and partners, Web-based interactions that

result in the exchange of goods, information, or services, usually called

business activities (WEB, af).

The Unified Profile for DoDAF/MODAF (UPDM) is the product of an

Object Management Group (OMG) initiative to develop a modelling

standard that supports both the USA Department of Defence

Architecture Framework (DoDAF) and the UK Ministry of Defence

Architecture Framework (MODAF). The current UPDM - the Unified

Profile for DoDAF and MODAF was based in earlier work with the

same acronym and a slightly different name – the UML Profile for

DoDAF and MODAF WEB (aj).

21

Introduction

Research Context and Challenges

Service-Oriented Architecture (SOA) is a paradigm for organizing and

utilizing distributed capabilities that may be under the control of different

ownership domains (SOA-RM, 2006). In general, people and organizations

create capabilities to solve the problems they face in the course of their

business. It is natural to think of one person’s needs being met by capabilities

offered by someone else, or, in the world of distributed computing, one

computer agent’s requirements being met by a computer agent belonging to a

different owner. The perceived value of SOA is that it provides a powerful

framework for matching needs and capabilities and for combining capabilities

to address those needs. Visibility, interaction, and effect are key concepts for

describing the SOA paradigm. Visibility refers to the capacity for those with

needs and those with capabilities to be able to see each other. This is typically

done by providing descriptions for such aspects as functions and technical

requirements, related constraints and policies, and mechanisms for access or

response. The descriptions need to be in a form in which their syntax and

semantics are widely accessible and understandable. Interaction is the activity

of using a capability. Interaction proceeds through a series of information

exchanges and invoked actions. At the interaction stage, the description of real

world effects establishes the expectations of those using the capability.

Needless to say, it is not possible to describe every effect from using a

capability. A cornerstone of SOA is that capabilities can be used without the

need to know all the details. The service is a central concept of SOA (Erl,

2005; Erl, 2008). It combines the following related ideas: the capability to

perform work for another, the specification of the work offered for another, the

offer to perform work for another. The concepts of visibility, interaction, and

22

effect apply directly to services in the same manner as these were described for

the general SOA paradigm.

While both needs and capabilities exist independently of SOA, in SOA,

services are the mechanism by which needs and capabilities are brought

together. SOA is a means of organizing solutions that promotes reuse, growth

and interoperability. It is not itself a solution to domain problems but rather an

organizing and delivery paradigm that enables one to get more value from use

both of capabilities which are locally “owned” and those under the control of

others. It also enables one to express solutions in a way that makes it easier to

modify or evolve the identified solution or to try alternate solutions. In addition

to this, SOA does not provide any domain elements of a solution that do not

exist without SOA.

Problem Statement

The subject of the thesis research is capture and analysis of non-functional

requirements in ESOA systems starting from the highest abstraction level –

enterprise strategy – where business goals are elicited, deriving system non-

functional requirements from business goals and refining them until concrete

non-functional requirements are produced for each service in the ESOA

system.

Software system requirements are normally divided into functional and non-

functional requirements. Functional requirements focus on to what extent the

software system actually does what it is expected to do. Non-functional

requirements, on the other hand, are said to be the constraints on the system

functions and are less obvious and harder to identify. As a result, non-

functional requirements receive less attention and thus become more critical.

The choice to use an ESOA approach depends on several factors including the

architecture’s ultimate ability to meet functional and non-functional

requirements. Usually, architecture needs to satisfy many non-functional

requirements in order to achieve enterprise business goals.

23

The research aims to define a process model for capture and analysis of non-

functional requirements as each stakeholder group involved in the ESOA

initiative usually have different expectations regarding system quality

characteristics and there is a necessity to be able to negotiate and trade-off

these differences.

Motivation

Many large software projects are ill-defined as a result of the high level of

complexity. It becomes difficult not only to fully specify system requirements

but even to understand all aspects of the system.

According to (SOUP; Svanidzaite, 2014b) SOA/ESOA projects potentially

suffer from one or more of the following problems:

 They are significantly more complex than typical software projects,

because they require a larger, cross-functional team along with

correspondingly more complex inter-team communication and logistics;

 Usually it is hard to define the scope and boundaries of a project. As a

result, the vision for the final result is often not clear at the project

inception;

 SOA can have a very positive impact on an enterprise, but, on the other

hand, the development and replacement of legacy systems can be very

expensive;

 SOA/ESOA project has a higher risk of failure than other traditional

software development projects.

Despite these problems, SOA/ESOA approaches are gaining popularity and are

used for more and more complex systems. Having this in mind, SOA/ESOA

projects require much more sophisticated requirement gathering and analysis

techniques.

While for previous paradigms we have well-researched and stable

requirements engineering (RE) processes and techniques, in service-oriented

requirement engineering (SORE) such processes and techniques still are under

24

research (Flores et al, 2009; Flores et al, 2010). SORE like traditional

requirement engineering, concerns with the specification and analysis of

system requirements and constraints but its focus is on the identification of

services and workflows used to modelling applications and on their reuse.

Several service-oriented system development methodologies and approaches

were proposed but they are not aimed at structuring SORE process, lack details

and procedures for requirements gathering and analysis, as a result, further

research is required.

Research by (Bano et al, 2010) suggests that SORE faces with four main

categories of issues and challenges: service specification, service discovery,

service knowledge management, and service composition issues (2.1 Service-

Oriented Requirement Engineering).

Service specification issues are the ones of great importance for ESOA because

the system is only as good as its requirements are. As a result, our research

focuses on the resolution of the following concern: capturing and analysing

non-functional requirements of ESOA systems, finding conflicting

requirements and proposing an approach how to resolve them.

It is suggested by (Leite & Freeman, 1991; Sommerville & Sawyer, 1997;

Russo et al, 1999; Nuseibeh & Easterbrook, 2000) that system requirements

should be elicited and defined from different viewpoints. For any given

viewpoint of the system many aspects will be hidden and only ones actual to

the viewpoint will be depicted in details. As a consequence, multiple

viewpoints need to be considered in order to fully understand and specify the

system-of-interest. Viewpoints can be used to improve system requirements

gathering, analysis and conflict resolution process.

Furthermore, i* (pronounced "i star") is a framework (Yu, 2009) suitable for an

early phase system modelling in order to understand the problem domain. i*-

based modelling language can be used to model viewpoints when specifying

system requirements as it allows to model both as-is and to-be business

models. It covers both actor-oriented and goal-oriented modelling. The i*

models answer the question who (actor) and why (goal), not what (system

25

function). The i* framework is a part of a User Requirements Notation (URN)

international standard. The URN standard combines two sub-languages

(Amyot & Mussbacher, 2011): Goal-oriented Requirement Language (GRL)

and Use Case Maps (UCM) notation. URN is the first international standard

that addresses business goals and scenarios and links between them in a

graphical way.

As SORE has emerged recently, there are no works that deal with Service

Specification issues employing viewpoints and User Requirements Notation

(URN) standard languages directly. Having this in mind, further research is

required.

Aims and Objectives of the Research

The research aims to develop a process model that allows a system analyst to

capture and analyse non-functional requirements for enterprise service-oriented

systems that are designed incorporating traditional and service-oriented

requirement gathering process models, conflicts management approaches and

techniques, EA standards and frameworks. In order to achieve this aim, the

following research objectives have been stated:

1. To evaluate the state of affairs in SORE and all other interrelated

enterprise and service-oriented architecture domain areas including

service-oriented systems development methodologies, enterprise

architecture standards and frameworks that could be used for non-

functional requirements definition conflicts resolution in ESOA

systems;

2. To propose a set of stakeholders for ESOA systems and highlight the

main differences between stakeholders for traditional systems and these;

3. To define a set of quality attributes (non-functional requirements) for

ESOA by drawing the main attention to their differences in respect of

traditional systems non-functional requirements;

26

4. To develop a process model for non-functional requirements capturing

and analysis that includes a process for conflict resolution between

different stakeholder groups.

Research Questions and Hypotheses

The main questions that need to be answered in this research are the following:

 How mature is Service-Oriented Requirement Engineering (SORE)

currently? What are the main issues and challenges of it? What SORE

process models are already created? Are they mature enough to ensure

successful SOA/ESOA systems development?

 What service-oriented systems development approaches and

methodologies are created? Are they mature enough to ensure

successful SOA/ESOA systems development? Can analysis and design

creation phases of these methodologies and approaches be used to solve

SORE issues and challenges successfully?

 How do SOA/ESOA systems non-functional requirements differ from

traditional systems non-functional requirements? Do SORE or service-

oriented systems development methodologies and approaches provide

solutions for non-functional requirements capturing and analysis?

 How can traditional requirement engineering processes and their models

be used to solve SORE issues and challenges? To what extent can

traditional requirements conflicts negotiation approaches be used to

solve enterprise systems non-functional requirements conflicts? How

can enterprise service-oriented systems non-functional requirements

conflicts be solved?

 Can viewpoints that are usually used when designing enterprise

architectures be used to structure and analyse enterprise service-oriented

systems non-functional requirements? Can i*-based modelling

languages be used to model and negotiate SOA/ESOA non-functional

requirements?

27

To answer these questions, the following hypotheses have been stated:

 H1. There exist service-oriented systems development methodologies

such as IBM RUP/SOMA, SOAF, SOUP, service-oriented analysis and

design methodology by Thomas Erl, service-oriented design and

development methodology by Papazoglou that can be used to create

service-oriented requirement engineering process models;

 H2. Traditional requirement gathering, conflicts management

approaches and techniques can at least to some extent be used to

capture, analyse and negotiate enterprise service-oriented systems non-

functional requirements;

 H3. i*-based modelling languages and viewpoints that are widely used

in Enterprise Architecture (EA) standards and frameworks can be used

to solve conflicting non-functional requirements in SOA/ESOA

systems;

 H4. A process model for enterprise service-oriented systems non-

functional requirements capturing and analysis can be developed

incorporating traditional requirements gathering, conflicts management

approaches and techniques, i*-based modelling languages and

viewpoints.

Research Design and Research Methods

The research design of present thesis is of theoretical and empirical nature, as it

is usual in the field of Informatics. Service-oriented requirement engineering is

a relatively young research and development area. The research in this area is

still in its infancy. It means that a relatively large amount of library research is

required in order to define the exact structure of a problem, and to gain a better

understanding of the environment within which the problem arises. In this

context, the best way of solving the problem of theoretical and empirical nature

is constructive research (Mingers, 2001). Furthermore, any dissertation

research is a small-scale research from both financial and time points of view.

28

It means that in such research it is too expensive and practically impossible to

ensure high statistical reliability and high level statistical significance. Thus,

despite its possible biases, the case study methodology is the only practically

acceptable methodology to validate the research results.

Taking into account all that was discussed above, the research design provides

three distinctive research phases: conceptual analysis (Laurence & Margolis,

2003) of related work, constructive research that aims to develop a process

model for ESOA non-functional requirements capture and analysis and

experimental investigation – a case study that validates the designed process

model.

Conceptual analysis is the analysis of concepts, terms, variables, constructs,

definitions, assertions, hypotheses, and theories. It involves examining these

for clarity and coherence, critically scrutinizing their logical relations, and

identifying assumptions and implications (Machado & Silva, 2007). The goal

of conceptual analysis is to increase the conceptual clarity of the research

subject. The primary utility of conceptual analysis is to determine the existing

state of the research field so that further work may be strategically and

appropriately planned (Penrod & Hupcey, 2005). The conceptual analysis of

related works has been carried out to generate important theoretical constructs

and to provide a theoretical basis for further research as well as to avoid

performing research that has already been done by others (Hart, 1998). The

main fields on which conceptual analysis has been performed includes service-

oriented architecture (SOA), enterprise service-oriented architecture (ESOA),

service-oriented requirement engineering (SORE), service-oriented systems

development methodologies, enterprise architecture frameworks and standards.

Generally, conceptual analysis allowed us to answer the questions of how

mature SORE is, what its main issues and challenges are, what the process

models created for SORE process structuration are, whether they are mature

enough, whether service-oriented systems development methodologies

together with enterprise architecture frameworks and standards can be used to

solve our selected service specification issue in SORE.

29

The constructive research approach is a research procedure for producing

innovative constructions intended to solve the problems encountered in the real

world and to make some contribution to the theory of the discipline in which it

is applied (Lukka, 2003; Crnkovic, 2010). The central notion of this approach,

the novel construction, is an abstract notion with a great variety of potential

realizations. Models, designs, methods, algorithms, and most other artefacts are

considered as constructions. It means that they are invented and developed, not

discovered. The constructive research approach is based on the belief that by

an in-depth analysis of what works (or does not work) in practice one can make

a significant contribution to theory. In the present thesis this approach is used

to design a process model for ESOA non-functional requirements capturing

and management. As a result of an in-depth analysis of the problem, it has been

discovered that process model can be based on service-oriented architecture

layers, EA standards and EA frameworks and include five viewpoints:

Enterprise Strategy, Enterprise Business Processes, Consumer, Business

Process and Service Viewpoints.

A constructive research methodology is also used to test working hypotheses

that have been provisionally accepted in the present thesis. One of the

advantages of this methodology is that it allows not only to test and investigate

the properties of the innovative construction but also to study its development

process. On the other hand, constructive research can be viewed as a kind of

case study methodology. However, according to the conventional view, case

studies should be used for falsification of the hypothesis only. Case study itself

cannot prove any hypothesis and should be linked to some hypothetic-

deductive model of explanation. However, the correspondence of case study to

real-world situations and its multiple wealth of details state that this view is

only partly correct (Flyvbjerg, 2004). Taking into account this argument and

the fact that the research for the dissertation is a small-scale research from both

financial and time points of view, the case study methodology has been

approved as the main hypothesis testing methodology. Mainly, case study is an

empirical research method that aims at investigating some phenomena in his

30

context (Runeson & Höst, 2009). In the present thesis the aim is to test the

applicability of the process model for ESOA non-functional requirement

capture and analysis by choosing a simplified real life example in which we

test the possibilities of capturing and analysing non-functional requirements for

enterprise service-oriented insurance system.

Summary of Research Results

The results of the thesis research can be summarized as follows:

 Hypothesis H1 that service-oriented systems development

methodologies can be used to create service-oriented requirement

engineering process models has been rejected. During the thesis

research we have found out those service-oriented systems’

development methodologies lack details about the capture and analysis

of requirements. As a result, SORE process models can be used in

conjunction with service-oriented systems development methodologies;

 Hypothesis H2 that traditional requirement gathering, conflicts

management approaches and techniques can be at least to some extent

be used to capture, manage and negotiate enterprise service-oriented

systems’ non-functional requirements has been approved. Our proposed

ESOA non-functional requirements capture and analysis process model

is based on the spiral requirement negotiation model from traditional

requirement engineering;

 Hypothesis H3 has been validated and approved with case study that i*-

based modelling languages and viewpoints that are widely used in

Enterprise Architecture (EA) standards and frameworks can be used to

solve conflicting non-functional requirements in SOA/ESOA systems;

 Hypothesis H4 has been constructively proven by developing and

proposing a spiral process model for capture and analysis non-

functional requirements of service-oriented enterprise systems that is

designed incorporating traditional requirement gathering and conflicts

31

management approaches and techniques, i*-based modelling languages

and viewpoints.

 Viewpoints: Enterprise Strategy Viewpoint, Enterprise Business

Processes Viewpoint, Consumer Viewpoint, Business Process

Viewpoint, Service Viewpoint have been developed in the thesis

research that can be applied for ESOA as well as SOA systems

requirements capture and analysis.

Contributions of the Dissertation

The present thesis is one the first research works that aims to investigate non-

functional requirements capturing and management techniques in the context

of enterprise service-oriented architecture (ESOA) systems. Although, there

has been several attempts to propose a service-oriented requirement

engineering process models (Flores, et al, 2010; Flores, et al, 2009; Flores, et

al, 2008) and service-oriented systems development methodologies

(Papazoglou, 2006; IBM RUP/SOMA; Erl, 2005; Erl, 2008; Erradi, et al, 2006;

SOUP) none of them are sufficient and mature enough to ensure ESOA

systems development including sophisticated requirements capture, analysis

and negotiation processes. Furthermore, it is also the first work that raises the

question whether enterprise service-oriented architecture systems non-

functional requirements can be captured using viewpoints and modelled using

i*-based modelling languages and finally confirms it with case study.

The practical significance of the thesis is as follows:

 Spiral process model for ESOA non-functional requirements capture

and analysis that have been developed in the thesis research can be

applied developing ESOA systems. In addition to this, it can be

successfully combined with service-oriented systems development

approaches methodologies and provide a coherent and comprehensive

solution for service-oriented enterprise systems development from

planning, analysis and design to deployment and change management.

32

 Viewpoints that have been developed in the thesis research can be

applied for ESOA as well as SOA systems. Furthermore, after some

customization, they can also be used to model functional requirements.

Approbation

The main results of the thesis were presented and approved at the following

conferences:

 15th Conference of Lithuanian Computer Society “Computer Days –

2011”, September 22–24, 2011, Klaipėda, Lithuania;

 10th International Baltic Conference on Databases and Information

Systems (Baltic DB&IS 2012), July 8-11, 2012, Vilnius, Lithuania

 Information Society and University Studies – IVUS 2014, April 24

2014, Kaunas, Lithuania.

 4th Junior Scientists Conference of Physical and Technology Sciences

Interdisciplinary Research, February 11, 2014, Vilnius, Lithuania.

Outline of the Dissertation

The text of the thesis consists of an introduction, five main chapters,

conclusions, a list of references and a list of publications. The main chapters

are provided with a summary and (except Chapter 1) with conclusions.

Chapter 1 presents preliminaries on Service-Oriented Architecture (SOA) and

one of its sub-types Enterprise Service-Oriented Architecture (ESOA) by

highlighting the main differences between them. Furthermore, the chapter

describes User Requirement Standard Notation Languages: Goal Requirement

Language (GRL) and Use Case Map (UCM) that are used in research to model

ESOA system non-functional characteristics.

Chapter 2 describes the results of a critical analysis of related works. It

presents the latest achievements in Service-Oriented Requirement Engineering

and all other interrelated enterprise and service-oriented architecture areas

33

(including service-oriented system development methodologies and enterprise

architecture frameworks) that could be used for non-functional requirements

conflicts resolution in ESOA systems. The chapter also analyses the

problematics of capturing non-functional requirements for ESOA systems

using viewpoints.

Chapter 3 develops and discusses the main theoretical results of doctoral

research. The chapter provides requirements for Service-Oriented Requirement

Engineering Process phases. In addition, the chapter analyses and outlines the

possible stakeholders of ESOA systems and discusses the non-functional

requirements (quality characteristics) that will be treated as concerns in our

proposed ESOA viewpoints. Furthermore, the chapter describes a spiral

process model for ESOA non-functional requirements capture and analysis. It

is summarized with discussion of process model viewpoints mapping to

architecture domains and process models’ applicability to use it in conjunction

with service-oriented systems development methodologies.

Chapter 4 presents evaluation results. A case study was performed for this

aim. The chapter starts with describing how ESOA viewpoints are modelled in

a case study. The following three sections in the chapter apply our proposed

methodology on each of ESOA viewpoints.

Chapter 5 discusses some open questions and limitations.

Results and Conclusions present the main results and conclusions of the

dissertation.

 Chapter 1 – Preliminaries

34

Chapter 1

Preliminaries

The chapter defines details about the terminology and the concepts used in the

thesis. Section 1 provides a definition of service-oriented architecture,

describing its principles, service-oriented architecture layers, services and

service types. Section 2 discusses one sub-type of service-oriented architecture

used in this research – Enterprise Service-Oriented Architecture – by outlining

the main differences between SOA and ESOA. Section 3 describes User

Requirement Standard Notation Languages – Goal Requirement Language

(GRL) and Use Case Map (UCM) that are used in research to model ESOA

system non-functional characteristics.

1.1. Service-Oriented Architecture

The Service-Orientation paradigm is a relatively new software development

paradigm that suggests that business applications should be implemented in the

form of services. It inherits a number of concepts and principles from earlier

paradigms, first of all, from object-orientation, component-based software

engineering (CBSE) and open distributed processing (ODB). The most

important innovation of service orientation is the manner in which the

separation of concerns is done. A service-oriented architecture (SOA) is an

architectural style that implements service-orientation approach.

Research by (Bieberstein et al, 2006) addresses the fact that organizations

today no longer require a high degree of optimal performance for repetitive

processes. On the contrary, the focus today lies on the ability to reduce the time

to market, as well as supporting their customers with flexible, well-suited

solutions appropriate to their need. This demand for better integrated solutions,

together with increased services shows the evolution from product-orientation

to service-orientation. SOA is architecture taking this evolution into

 Chapter 1 – Preliminaries

35

consideration by having both a technical and a business-oriented perspective.

From the business standpoint, SOA is said to improve business agility and to

maintain services being directly applicable to the existing business logic of the

business as it provides the flexibility to treat elements of business (processes

and the underlying IT infrastructure) as secure, standardized components

(services) that can be reused and combined to address changing business

priorities. On the other hand, the technical perspective emphasizes the

importance of the actual structure of architecture, which can be described as an

application architecture in which all functions or services are defined using a

description language and have callable interfaces that are called to perform

business processes. Each interaction is independent of each and every other

interaction and the interconnect protocols of the communicating devices.

Because interfaces are platform independent, a client can use the service from

any device using any operating system in any language.

1.1.1 Service-Oriented Architecture Principles

Service-orientation is said to have its roots in a software engineering theory

known as "separation of concerns" (Erl, 2008). This theory is based on the

notion that it is beneficial to break down a large problem into a series of

individual concerns. This allows the logic required to solve the problem to be

decomposed into a collection of smaller, related pieces. Each piece of logic

addresses a specific concern.

This theory has been implemented in different ways in different development

paradigms. The object-oriented paradigm and component-based programming

paradigm achieve a separation of concerns through the use of objects, classes,

and components.

There are a number of principles in the service-orientated paradigm that

provide a means of supporting this theory (Figure 1-1).

 Chapter 1 – Preliminaries

36

.
Figure 1-1. Service-Oriented Architecture Principles (Erl, 2008)

Standardized Service Contract (Erl, 2005) is a representation of a service’s

collective metadata. It standardizes the expression of rules and conditions that

need to be fulfilled by any requestor wanting to interact with the service. The

Standardized Service Contract design principle is perhaps the most

fundamental part of service orientation in that it essentially requires that

specific considerations be taken into account when designing a service’s public

technical interface and assessing the nature and quantity of content that will be

published as part of a service’s public contract. There is a constant focus on

ensuring that service contracts are both optimized, appropriately granular, and

standardized to ensure that the endpoints established by services are consistent,

reliable, and governable.

Service Loose Coupling (Erl, 2005) promotes the independent design and

implementation of service’s logic while still guaranteeing baseline

 Chapter 1 – Preliminaries

37

interoperability with service consumers that have come to rely on the service’s

capabilities. It is a fundamental aspect of services and SOA as a whole.

On a fundamental level, the Service Abstraction (Erl, 2005) principle

emphasizes the need to hide as much of the underlying details of a service as

possible. It directly enables and preserves loosely coupled relationship between

services. Service Abstraction also plays a significant role in the positioning and

design of service compositions. Furthermore, service abstraction allows

services to encapsulate potentially complex processing logic and expose that

logic through a generic and descriptive interface. This is the primary benefit of

service abstraction.

Reuse is strongly advocated within the service-orientation paradigm. The

principle of Service Reusability (Erl, 2005) emphasizes the positioning of

services as enterprise resources with agnostic functional contexts. Numerous

design considerations are raised to ensure that individual service capabilities

are appropriately defined in relation to an agnostic service context, and to

guarantee that they can facilitate the necessary reuse requirements. When a

service encapsulates logic that is useful to more than one service consumer, it

can be considered reusable.

For services to carry out their capabilities consistently and reliably, their

underlying solution logic needs to have a significant degree of control over its

environment and resources. The principle of Service Autonomy (Erl, 2005)

supports the extent to which other design principles can be effectively realized

in real world production environments by fostering design characteristics that

increase a service’s reliability and behavioural predictability. This principle

raises various issues that pertain to the design of service logic as well as the

service’s actual implementation environment. Isolation levels and service

normalization considerations are taken into account to achieve a suitable

measure of autonomy, especially for reusable services that are frequently

shared. This principle applies to a service's underlying logic.

The management of excessive state information (Erl, 2005) can compromise

the availability of a service and undermine its scalability potential. Services are

 Chapter 1 – Preliminaries

38

therefore ideally designed to remain stateful only when required. To

successfully design services not to manage state – Service Statelessness

principle – requires the availability of resources surrounding the service to

which state management responsibilities can be delegated.

Designing services so that they are naturally discoverable – service

discoverability principle – regardless of whether a discovery mechanism (such

as a service registry) is used (Erl, 2005), enables an environment where service

logic becomes accessible to new potential service consumers.

The ability to effectively compose services – Service Composability principle

– is a critical requirement for achieving some of the most fundamental goals of

service-oriented computing (Erl, 2005). Services are expected to be capable of

participating as effective composition members.

These SOA principles are beneficial when defining non-functional

requirements for service-oriented enterprise systems (3.3 Non-Functional

Requirements for ESOA Systems).

1.1.2 Service-Oriented Architecture Layers

To implement the service-orientation and support SOA principles identified in

the section above, we need an approach for coordinating and propagating

service-orientation throughout an enterprise. This can be accomplished by

service-oriented architecture layers of abstraction. Each layer can abstract a

specific aspect of solution, addressing one type of the issues identified. This

alleviates us from having to build services that accommodate business,

application, and agility considerations all at once. As a result, to achieve

enterprise-wide loose coupling physically separate layers of services are, in

fact, required. When individual collections of services represent corporate

business logic and technology-specific application logic, each domain of the

enterprise is freed of direct dependencies on the other. This allows the

automated representation of business process logic to evolve independently

from the technology-level application logic responsible for its execution. In

 Chapter 1 – Preliminaries

39

other words, this establishes a loosely coupled relationship between business

and application logic.

The three layers (Figure 1-2) of SOA abstraction are identified as follows (Erl,

2005):

The Application Service Layer establishes the ground level foundation that

exists to express technology-specific functionality. Services that reside within

this layer can be referred to simply as application services. Their purpose is to

provide reusable functions related to processing data within new or legacy

application environments. Application services commonly have the following

characteristics (Erl, 2005): they expose functionality within a specific

processing context, draw upon available resources within a given platform, are

solution-agnostic, are generic and reusable, can be used to achieve point-to-

point integration with other application services, are often inconsistent in terms

of the interface granularity they expose, may consist of a mixture of custom-

developed services and third-party services that have been purchased or leased.

Services in the application services layer can fall into the following sub-types

according their purpose (Erl, 2005):

 When a separate business service layer exists, there is a strong

motivation to turn all application services into generic utility services.

This way they are implemented in a solution-agnostic manner,

providing reusable operations that can be composed by business

services to fulfil business-centric processing requirements.

Alternatively, if business logic does not reside in a separate layer,

application services may be required to implement service models more

associated with the business service layer.

 The application service also can compose other, smaller-grained

application services into a unit of coarse-grained application logic.

Aggregating application services is frequently done to accommodate

integration requirements. Application services that exist solely to enable

integration between systems often are referred to as application

 Chapter 1 – Preliminaries

40

integration services or simply integration services. Integration services

are often implemented as controllers.

 Wrapper services most often are utilized for integration purposes. They

consist of services that encapsulate “wrap” some or all parts of a legacy

environment to expose legacy functionality to service consumers. The

most frequent form of wrapper service is a service adapter provided by

legacy vendors. This type of out-of-the-box Web service simply

establishes a vendor-defined service interface that expresses an

underlying API to legacy logic.

While application services are responsible for representing technology and

application logic, the Business Service Layer introduces a service concerned

solely with representing business logic, called the business service. This

service is responsible for expressing business logic through service-orientation

and representation of corporate business models. The sole purpose of business

services intended for a separate business service layer is to represent business

logic in the purest form possible. This does not, however, prevent them from

implementing other service models. For example, a business service also can

be classified as a controller service and a utility service. In fact, when

application logic is abstracted into a separate application service layer, it is

more than likely that business services will act as controllers to compose

available application services to execute their business logic. Business service

layer abstraction leads to the creation of two further business service models:

 Task-centric business service encapsulates business logic specific to a

task or business process. This type of service is generally required when

business process logic is not centralized as part of an orchestration

layer. Task-centric business services have a limited reuse potential.

 Entity-centric business service encapsulates a specific business entity.

Entity-centric services are useful for creating highly reusable and

business process-agnostic services that are composed of an orchestration

layer or a service layer consisting of task-centric business services (or

both).

 Chapter 1 – Preliminaries

41

When a separate application service layer exists, these two types of business

services can be positioned to compose application services. Task and entity-

centric business services are explained in more detail in the section below.

The Orchestration Service Layer introduces a parent level of abstraction that

alleviates the need for other services to manage interaction details required to

ensure that service operations are executed in a specific sequence. Within the

orchestration service layer, process (business) services compose other services

that provide specific sets of functions, independent of the business rules and

scenario-specific logic required to execute a process instance.

Orchestration is more valuable than a standard business process, as it allows

directly linking process logic to service interaction within workflow logic. This

combines business process modelling with service-oriented modelling and

design. And, because orchestration languages (such as WS-BPEL) realize

workflow management through a process service model, orchestration brings

the business process into the service layer, positioning it as a master

composition controller. Therefore, all process (business) services are also

controller services by their very nature, as they are required to compose other

services to execute business process logic. Process services also have the

potential for becoming utility services to an extent, if a process, in its entirety,

should be considered reusable. In this case, a process service that enables

orchestration can itself be orchestrated (making it part of a larger

orchestration).

 Chapter 1 – Preliminaries

42

Figure 1-2. Three Primary Service Layers (Erl, 2005)

SOA Reference Architecture (SOA-RA, 2011) has nine layers (Figure 1-3)

representing nine key responsibilities that typically emerge in the process of

designing an SOA solution. SOA RA as a whole provides the framework for

the support of all the elements of an SOA, including all the components that

support services and their interactions.

Figure 1-3. SOA Reference Architecture Layers (SOA-RA, 2011)

 Chapter 1 – Preliminaries

43

Three layers address the implementation and interface with a service:

The Operational Systems Layer is the layer where all runtime elements of

architecture reside. This layer describes the runtime and deployment

infrastructure: the programs, platforms, application servers, containers, runtime

environments, packaged applications, virtual machines that are on the

hardware and are needed to support the SOA solution.

The Service Component Layer contains software components, each of which

provides the realization for services and their operations. The layer also

contains Functional and Technical Components that facilitate a Service

Component to realize one or more services. Service Components “bind” the

service contract to the implementation of the service in the Operational

Systems Layer. Service Components are hosted in containers which support

the service specifications. In addition to this, the Service Component Layer

manifests the IT conformance with each service contract defined in the

Services Layer. In detail, each Service Component fulfils the following goals:

realizes one or more services, provides an enforcement point for service

realization, enables IT flexibility by strengthening the decoupling in the

system, by hiding volatile implementation details from service consumers.

The Services Layer consists of all the services defined within the SOA. This

layer can be thought of as containing the service descriptions for business

capabilities and services as well as their IT manifestation during design time

together with service contract and descriptions that will be used at runtime.

This layer primarily provides support for services from a design-time

perspective. In particular, from a design-time perspective this includes assets

including service descriptions, contracts, and policies. It defines runtime

capabilities for service deployment, but the runtime instantiation enabling these

capabilities is housed in the Operational Systems Layer. It also provides the

service contract elements that can be created at design time to support

subsequent runtime requirements. These capabilities support the following

main responsibilities of the Services Layer: to identify and define services,

provide a container which houses the services, provide a registry that

 Chapter 1 – Preliminaries

44

virtualizes runtime service access, provide a repository to house and maintain

service design-time information.

Three layers in SOA RA that support the consumption of services are as

follows:

The Business Process Layer allows externalization of the business process

flow in a separate layer in the architecture and thus provides a better chance to

rapidly change as the market condition changes.

The Business Process Layer covers process representation and composition,

provides building blocks for aggregating loosely-coupled services. This layer

includes information exchange flow between participants, resources, and

processes. Most of the exchanged information may also include non-structured

and non-transactional messages.

Business processes represent the backbone of the flow of a business. The

dynamic side of business architecture is realized through business processes.

With service-orientation, a process can be realized by service compositions

employing orchestration or a choreography.

In particular, compositions of services exposed in the Services Layer are

defined in this layer: atomic services are composed into a set of composite

services using a service composition engine. A composition of services can be

implemented as choreography of services or an orchestration of the underlying

service elements.

In more detail, the Business Process Layer performs three-dimensional

process-level handling: top-down, bottom-up, and horizontal. From the top-

down direction, this layer provides facilities to decompose business

requirements into tasks comprising activity flows, each being realized by

existing business processes, services, and service components. From the

bottom-up direction, the layer provides facilities to compose existing business

processes, services, and service components into new business processes. From

the horizontal direction, the layer provides services-oriented collaboration

control between business processes, services, and service components.

 Chapter 1 – Preliminaries

45

The Consumer Layer is the point where consumers interact with SOA. It

enables an SOA to support a client-independent set of functionality, which is

separately consumed and rendered through one or more channels (client

platforms and devices). In fact the Consumer Layer is the entry point for all

external consumers, external to SOA. This can be other systems, other SOAs,

cloud service consumers, human users etc.

The Integration Layer is a key enabler for an SOA as it provides the

capability to mediate, which includes transformation, routing and protocol

conversion to transport service requests from the service consumer to the

correct service provider. This layer enables the service consumer to connect to

the correct service provider through the introduction of a reliable set of

capabilities. The integration can start with modest point-to-point capabilities

for tightly-coupled end-points and cover the spectrum to a set of much more

intelligent routing, protocol conversion, and other transformation mechanisms

often described as, but not limited to, an Enterprise Service Bus (ESB). WSDL

specifies a binding, which implies location where a service is provided, and is

one of the mechanisms to define a service contract. An ESB, on the other hand,

provides a location-independent mechanism for integration, and service

substitution or virtualization.

Four layers (including Integration layer) support cross-cutting concerns of a

more supporting (non-functional) nature:

The Information Layer is responsible for manifesting a unified representation

of the information aspect of an organization as provided by its IT services,

applications, and systems enabling business needs and processes and aligned

with the business vocabulary – glossary and terms. This layer includes

information architecture, business analytics and intelligence. Furthermore, an

information virtualization and information service capability typically involves

the ability to retrieve data from different sources, transform it into a common

format, and expose it to consumers using different protocols and formats.

 Chapter 1 – Preliminaries

46

The Quality of Service Layer provides solution QoS management of various

aspects, such as availability, reliability, security, as well as mechanisms to

support, track, monitor, and manage solution QoS control.

The Quality of Service Layer provides the service and SOA solution lifecycle

processes with the capabilities required to ensure that the defined policies,

Non-Functional Requirements (NFRs), and governance regimens are adhered

to. This layer supports the monitoring and capturing service and solution

metrics in an operational sense and signalling non-compliance with NFRs

relating to the salient service qualities and policies associated with each SOA

layer. Service metrics are captured and connected with individual services to

allow service consumers to evaluate service performance, creating increased

service trust levels. In the SOA RA policies, business rules, and the NFRs and

policies for the SOA solution are defined and captured in the Governance

Layer but are monitored and enforced in the Quality of Service Layer.

Responses (dispensations and appeals) to non-compliance and exceptions are

defined by the Governance Layer as well.

The Governance Layer ensures that the services and SOA solutions within an

organization adhere to the defined policies, guidelines and standards that are

defined as objectives, strategies and regulations applied in the organization and

that the SOA solutions are providing the desired business value.

The Governance Layer includes both SOA governance (governance of

processes for policy definition, management, and enforcement) as well as

service governance (service lifecycle). This covers the entire lifecycle of the

services and SOA solutions (i.e., both design and runtime) as well as the

portfolio management of both the services and SOA solutions managing all

aspects of services and SOA solutions (e.g., Service-Level Agreement (SLA),

capacity and performance, security and monitoring).

This layer can be applied to all the other layers in the SOA RA. From a Quality

of Service and management perspective, it is well connected with the Quality

of Service Layer. From a service lifecycle and design-time perspective, it is

 Chapter 1 – Preliminaries

47

connected with the Services Layer. From an SOA solution lifecycle

perspective, it is connected to the Business Process Layer.

The value of this layer is to ensure that the mechanisms are in place to

organize, define, monitor, and implement governance from an enterprise

architecture and solution architecture view.

To sum up, SOA RA depicts an SOA as a set of logical layers. One layer does

not solely depend upon the layer below it and is thus named a partially-layered

architecture: a consumer can access the Business Process Layer or the Services

Layer directly, but not beyond the constraints of an SOA architectural style.

For example, a given SOA solution may exclude a Business Process Layer and

have the Consumer Layer interacting directly with the Services Layer. Such a

solution would not benefit from the business value proposition associated with

the Business Process Layer; however, that value could be achieved at a later

stage by adding the layer.

SOA RA illustrates the multiple separations of concern in the nine layers of the

SOA RA. The SOA RA does not assume that the provider and the consumer

are in one organization, and supports both SOA within the enterprise (ESOA)

as well as across multiple enterprises. The Services Layer is the decoupling

layer between consumer and provider.

The lower layers (Services Layer, Service Component Layer, and Operational

Systems Layer) are concerns for the provider and the upper ones (Services

Layer, Business Process Layer, and Consumer Layer) are concerns for the

consumer. The main point of the provider and consumer separation is that there

is value in decoupling one from the other along the lines of business

relationship. Organizations which may have different lines of business use this

architectural style, customizing it for their own needs and integrating and

interacting among themselves.

Five horizontal layers are more functional in nature and relate to the

functionality of the SOA solution. The supporting layers are supportive of

cross-cutting concerns that span the functional layers but are clustered around

http://www.opengroup.org/soa/source-book/soa_refarch/layers.htm#figure4
http://www.opengroup.org/soa/source-book/soa_refarch/layers.htm#figure4

 Chapter 1 – Preliminaries

48

independent notions themselves as cross-cutting concerns of the SOA

architectural style.

Later, in Chapter 3.4.1 Composition of ESOA Viewpoints, we will see that our

proposed viewpoints for service-oriented enterprise systems non-functional

requirements capturing and analysis are based on SOA layers described in this

section.

1.1.3 Service and Service Type

Services are the most essential units of service-oriented architecture, due the

name of the architecture. Services are abstractions of existing application

capabilities (encapsulated business components) that are aligned with the

business functions of an enterprise. Service is therefore the implementation of

such business functionality that it is accessible through a well-defined

interface. Services are exchanged between service consumers and service

providers over the Enterprise Service Bus (ESB) through interfaces.

When building various types of services, it becomes evident that they can be

categorized depending on the type of logic they encapsulate, the extent of reuse

potential this logic has, and how this logic relates to existing domains within

the enterprise. As a result, there are three common classifications that represent

the primary service types depicted in Figure 1-4 (Erl, 2008):

 Entity Services. Every enterprise at some point in time has to define its

business entities. Examples of business entities include customer,

employee, invoice etc. It is considered to be a highly reusable service

because it is agnostic to most parent business processes. As a result, a

single entity service can be leveraged to automate multiple parent

business processes. Entity services are also known as entity centric

business services or business entity services.

 Task Services. This type of service tends to have less reuse potential

and is generally positioned as the controller of a composition

responsible for composing other services. If we have process logic that

spans multiple entity domains and does not fit cleanly within a

 Chapter 1 – Preliminaries

49

functional context associated with a business entity then this would

typically constitute a parent process in that it consists of processing

logic that needs to coordinate the involvement of multiple services.

Services with a functional context defined by a parent business process

or task can be developed as standalone Web services or components or

they may represent a business process definition hosted within an

orchestration platform. This type of service is referred to as the

orchestrated task service. Task services are also known as task-centric

business services or business process services. Orchestrated task

services are also known as process services, business process services

or orchestration services.

 Utility Services. Each of the previously described service models has a

very clear focus on representing business logic. However, there is not

always a need to associate logic with a business model or process. In

fact, it can be highly beneficial to deliberately establish a functional

context that is non-business-centric. This essentially results in a distinct,

technology-oriented service layer. The utility service accomplishes this.

It is dedicated to providing reusable, cross-cutting utility functionality,

such as event logging, notification, and exception handling. Utility

services are also known as application services, infrastructure services,

or technology services.

Figure 1-4. Service Types by Erl (Erl, 2008)

 Chapter 1 – Preliminaries

50

Later, in Chapter 4.1 Definition of ESOA Viewpoints, we will see that our

proposed Business Process and Services viewpoints orchestrate and define

Entity and Task services described in this chapter.

1.2. Enterprise Service-Oriented Architecture

One of the sub-styles of SOA is an Enterprise SOA – ESOA (Figure 1-5), to

use the term coined by the SAP Corporation (SAP, 2008). ESOA provides

guidelines on how to develop and to use service-oriented applications in

Enterprise Systems (a.k.a. Systems of Systems). It is business-driven, that is, it

must support an enterprise’s business strategy and objectives. This means that

business processes in ESOA must be designed keeping this goal in mind. On

the other hand, business processes should be translated into abstracted and

normalized Enterprise Business Systems – EBSs drawing on global data types.

Normalization means that EBS should be designed with the intent to avoid

functional overlaps and to reduce the redundancy (i.e. similar or duplicate

bodies of service logic). Global data types are enterprise-wide defined data

types based on international standards (Sambeth, 2006). To simplify

enterprise-wide service integration and communication, ESOA provides

typically one additional architectural element referred to as enterprise service

bus. According to (Bichler & Lin, 2006), ESOA allows an enterprise to use

plug-and-play interoperability to compose business processes and integrate

different information systems on the fly to enable ad hoc cooperation between

new partners. It creates business services networks, also known as service

supply chains that raise many new questions about how to foster collaboration

and orchestrate processes among partners (Bichler & Lin, 2006). So ESOA in

many aspects differs from SOA. Although some service providers in ESOA

can reside outside an enterprise and, vice versa, some service consumers also

can reside outside the enterprise, they must keep up the enterprise’s standards

and all are designed keeping these standards in mind. In this sense the ESOA

system is operating rather in a less open environment than ordinary SOA.

 Chapter 1 – Preliminaries

51

Figure 1-5. Structure of Enterprise Service-Oriented Architecture (based on Minoli, 2008)

1.3. User Requirement Standard Notation Languages

User Requirements Notation – URN intended for the elicitation, analysis,

specification, and validation of requirements. URN combines modelling

concepts and notations for goals (mainly for non-functional requirements and

quality attributes) and scenarios (mainly for operational requirements,

functional requirements, and performance and architectural reasoning). The

goal sub-notation is called Goal-oriented Requirements Language – GRL

 Chapter 1 – Preliminaries

52

(Figure 1-6) and the scenario sub-notation is called Use Case Map – UCM

(Figure 1-7).

URN helps to describe and communicate requirements, and to develop

reasoning about them. The main applications areas include telecommunications

systems, services, and business processes, but URN is generally suitable for

describing most types of reactive systems and information systems (ITU-T,

2008). The range of applications is from business goals and requirements

description to a high-level system design and architecture. URN allows

software and requirements engineers to discover and specify requirements for a

proposed system or an evolving system, and analyse such requirements for

correctness and completeness.

Goal-oriented Requirement Language – GRL is a language for supporting

goal-oriented modelling and reasoning about requirements, especially non-

functional requirements and quality attributes. It provides constructs for

expressing various types of concepts that appear during the requirement

process. GRL has its roots in two widespread goal-oriented modelling

languages: i* (Yu, 2009) and the NFR Framework (Chung et al, 2000). Major

benefits of GRL over other popular notations include the integration of GRL

with a scenario notation and a clear separation of GRL model elements from

their graphical representation, enabling a scalable and consistent representation

of multiple views/diagrams of the same goal model.

There are three main categories of concepts in GRL: actors, intentional

elements, and links (Figure 1-6). The intentional elements in GRL are goals,

soft goals, tasks, resources, and beliefs (Figure 1-6). They are intentional

because they are used for models that allow system stakeholders to answer

questions such as why particular behaviours, informational and structural

aspects were chosen to be included in the system requirements, what

alternatives were considered, what criteria were used to deliberate among

alternative options, and what the reasons were for choosing one alternative

over the other. Actors are holders of intentions; they are the active entities in

the system or its environment (e.g., stakeholders or other systems) who want

 Chapter 1 – Preliminaries

53

goals to be achieved, tasks to be performed, resources to be available, and soft

goals to be satisfied. Links are used to connect isolated elements in the

requirement model. Different types of links depict different structural and

intentional relationships (including decompositions, contributions, and

dependencies).

This kind of modelling is different from the detailed specification of “what” is

to be done. Here the modeller is primarily concerned with exposing “why”

certain choices of behaviour and/or structure were made or constraints

introduced. The modeller is not yet interested in the operational details of

processes or system requirements, or component interactions. Omitting these

kinds of details during early development and standardization phases allows us

taking a higher level (sometimes called a strategic stance) towards modelling

the current or the future standard or software system and its embedding

environment. Modelling and answering “why” questions leads us considering

the opportunities stakeholders seek out and/or vulnerabilities they try to avoid

within their environment by utilising capabilities of the software system and/or

other stakeholders, by trying to rely upon and/or assign capabilities and by

introducing constraints on how those capabilities ought to be performed.

Figure 1-6. GRL notation (ITU-T, 2008)

 Chapter 1 – Preliminaries

54

Use Case Map (UCM) specifications employ scenario paths to illustrate causal

relationships among responsibilities (ITU-T, 2008). Furthermore, UCMs

provide an integrated view of behaviour and structure by allowing the

superimposition of scenario paths on a structure of abstract components. The

combination of behaviour and structure enables architectural reasoning after

which UCM specifications may be refined into more detailed scenario models

such as UML sequence diagrams, UML state chart diagrams and finally into

concrete implementations. Validation, verification, performance analysis,

interaction detection, and test generation can be performed at all stages. Thus,

the UCM notation enables a seamless transition from the informal to the formal

by bridging the modelling gap between goal models and natural language

requirements (e.g. use cases) and design in an explicit and visual way. The

UCM notation allows the modeller to delay the specification of component

states and messages and even, if desired, of concrete components to later, more

appropriate, stages of the development process. The goal of the UCM notation

is to provide the right degree of formality at the right time in the development

process.

UCM specifications identify input sources and output sinks as well as describe

the required inputs and outputs of a scenario. UCM specifications also

integrate many scenarios or related use cases in a map-like diagram. Scenarios

can be structured and integrated incrementally. This enables reasoning about

and the detection of potential undesirable interactions of scenarios and

components. Furthermore, the dynamic (run-time) refinement capabilities of

the UCM notation allow of the specification of (run-time) policies and of the

specification of loosely coupled systems where functionality is decided at

runtime through negotiation between components or compliance with high-

level goals. UCM scenarios can be integrated together, yet individual scenarios

are tractable through scenario definitions based on a simple data model. UCMs

treat scenario paths as first class model entities and therefore build the

foundation to more formally facilitate the reusability of scenarios and

behavioural patterns across a wide range of architectures.

 Chapter 1 – Preliminaries

55

The UCM notation (Figure 1-7) is a specification language intended for

modellers as well as non-specialists because of its visual, simple, and intuitive

nature but at the same time it aims to provide sufficient rigorousness for

developers or tools and contracts.

Most of the characteristics of excellent requirements such as verifiable,

complete, consistent, unambiguous, understandable, modifiable, and traceable

can be supported by UCMs. Others such as prioritized and annotated are easily

incorporated.

Figure 1-7. UCM notation (ITU-T, 2008)

The examples of GRL and UCM diagrams can be found in Chapter 4.2.2

Modelling of User Concerns and NFRs in Consumer Viewpoint using GRL

and UCM; Chapter 4.3.2 Modelling of User Concerns and NRFs in Business

Process Viewpoint Chapter 4.4.2 Modelling of User Concerns and NFRs in

Customer and Business Process Viewpoints using GRL and UCM .

Chapter 2 – State of the Art

56

Chapter 2

State of the Art

The chapter presents the state-of-the-art Service-Oriented Requirement

Engineering and all other interrelated enterprise and service-oriented

architecture areas that could be used for non-functional requirements

conflicts resolution in ESOA systems. Section 1 analyses the current state

of Service-Oriented Requirement Engineering, highlights the issues and

challenges of SORE in comparison to traditional RE and CBSD RE,

outlines the key features of service-oriented requirement engineering,

describes few classical RE process models together with service-oriented

RE process models. Section 2 analyses Service-Oriented Architecture

systems development methodologies and performs their analysis and design

phases’ comparison. Section 3 analyses the problematics of capturing non-

functional requirements for ESOA systems using viewpoints. Section 4

analyses Enterprise Architecture Frameworks and Standards by taking the

biggest attention to the sets of views/viewpoints with the aim to grasp an

idea about the possible set of viewpoints for ESOA.

2.1. Service-Oriented Requirement Engineering

Service-Oriented Requirement Engineering (SORE) like traditional

requirement engineering, concerns with specification and analysis of system

requirements and constraints, but its focus is on the identification of services

and workflows used to modelling applications and on their reuse. Service-

Oriented Software Engineering (SOSE) is a relatively new and still rapidly

growing research and development area. This discipline emerged in the last

decade of previous century (Arsanjani, 1999; Layzell, et al, 2000), as a

response to the challenges of integration of heterogeneous applications,

including legacy ones, cross-platform interoperability and bridging the gap

between business models and software architectures. In its initial stages SORE

Chapter 2 – State of the Art

57

was concerned mostly with the service-oriented software process considering it

as an extension and improvement of the Rational Unified Process (Rational

Software, 1998) or IBM’s Global Service’s Method (Arsanjani, 2001). SORE

as an integral part of SOSE emerged in the first quinquennium of the 21st

century. First publications on this topic discussed the nature of this discipline,

its differences between SORE and traditional RE, the structure of service-

oriented requirements lifecycle, and possible approaches to address the

identification and handling of functional and non-functional requirements for

service-oriented systems (Van Eck & Wieringa, 2003; Trienekens et al, 2004).

A number of publications that gave an overview of the state of the art of this

discipline, highlighted open problems and challenges, and aimed to build the

roadmap for further research was published from this time up to date (Bano, et

al, 2010; Flores, et al, 2010; Flores et al, 2009).

In addition to this, several Service-Oriented System Development

methodologies and approaches such as (Svanidzaitė, 2014a): IBM RUP/SOMA

(chapter 2.2.1 IBM RUP/SOMA), SOAF (chapter 2.2.4 Service-Oriented

Architecture Framework – SOAF), SOUP (chapter 2.2.5 Service-Oriented

Unified Process – SOUP), methodology by Tomas Erl (chapter 2.2.2 Service-

Oriented Analysis and Design Methodology by Thomas Erl) and methodology

by Michael Papazoglou (chapter 2.2.3 Service-Oriented Design and

Development Methodology by Papazoglou) have been proposed to ensure

successful service-oriented systems development by providing process

guidance and proven best practices from already accomplished SOA projects.

SOA development lifecycle in these methodologies is divided into nine phases:

Service-oriented planning/inception, Service-oriented analysis, Service-

oriented design, Service Construction, Service Testing, Service Provisioning,

Service Deployment, Service Execution and Service Monitoring. Although

these methodologies help to structure Service-Oriented systems development

processes, they are not aimed at defining SORE process and do not provide any

approach to requirement conflicts resolution.

Chapter 2 – State of the Art

58

Furthermore, several architecture frameworks, architecture reference models

emerged to ensure successful service-oriented architecture development such

as - OASIS Reference Architecture Foundation for SOA (SOA-RAF) that

describes (SOA-RAF, 2012) the foundation upon which Service-Oriented

Architectures can be built. It follows the concepts and relationships defined in

the OASIS Reference Model for Service Oriented Architecture (SOA-RM,

2006) (chapter 2.4.4 OASIS Reference Architecture Foundation for SOA –

OASIS SOA RAF. Moreover, there are SOA standards that are still under

development such as IEEE P1723 Standard for a Service-Oriented Architecture

(SOA) Reference Architecture (chapter 2.4.3 IEEE P1723 Standard for

Service-Oriented Architecture (SOA) Reference Architecture). There are more

architecture frameworks such as the Zachman Enterprise Architecture

Framework (chapter 2.4.5 Zachman Enterprise Architecture Framework), The

Open Group Architecture Framework – TOGAF (chapter 2.4.6 Open Group

Architecture Framework – TOGAF), Extended Enterprise Architecture

Framework (chapter 2.4.7 Extended Enterprise Architecture Framework),

Department of Defence Architecture Framework – DoDAF (chapter 2.4.8

Department of Defence Architecture Framework – DoDAF), Kruchten’s

“4+1”/RUP’s 4 + 1 View Model (chapter 2.4.9 Kruchten’s “4+1”/RUP’s 4 + 1

View Model), Siemens 4 views method (chapter 2.4.10 Siemens 4 views

method), Reference Model for Open Distributed Processing (RM-ODP)

(chapter 2.4.11 Reference Model for Open Distributed Processing) which can

be of a great help for Service-Oriented Requirement Engineering. As a result,

further research is required.

Service-oriented architecture has become new reference architecture for

distributed computing as it allows rapid and low-cost application development

through service composition. Requirement Engineering (RE) is considered a

critical software engineering process that performed in a structured and well-

defined manner should result in a set of complete, unambiguous, measurable,

traceable, documented requirements that must be realized by services

composing a service-oriented system. For traditional computing paradigms

Chapter 2 – State of the Art

59

(e.g. object-oriented and component-based) several stable RE processes are

available. As service-oriented computing is a new software engineering

paradigm, few solutions to RE process structuration have been proposed (2.1.3

Service-Oriented RE Process and Models) but none of them has either gained

acknowledgment or has been widely adopted for developing successful SOA

projects.

SOA is considered of a high value for being deployed in organizations.

However, for this to happen, the Service-Oriented Software System must be

engineered through a system development life cycle SDLC (Flores et al, 2010;

Flores, et al, 2009). While in classic RE for object-oriented and component-

based software development paradigms there are stable RE processes and

techniques, in the service-oriented software paradigm a clear, stable and

systematic RE process is still under research (Flores, et al, 2010; Flores, et al,

2009). The need for service-oriented RE processes has been reported by

diverse authors in (Flores, et al, 2010; Barker, 2004; Lamsweerde, 2000;

Trienekens, et al, 2004) outlining the problems such as:

 reduced utilization of service performance metrics,

 unclear, incomplete, negative or static service specifications,

 significant and yet unexplored socio-technical issues experienced in

negotiating conflicting customer and provider service requirements.

The first step to make advance in these issues is to highlight the main problems

and challenges that SORE faces today, outline the main differences from

traditional RE and key features of SORE.

Research by (Bano, et al., 2010) suggests deriving and categorizing main SORE

problems by comparing the issues and challenges faced in traditional RE and in

CBSD. Traditional RE faces such challenges as Issues regarding stakeholders

when each stakeholder has different needs of supposed system functionality,

capturing, modelling and analysing functional and non-functional requirements,

ensuring reuse of requirement models and formal representation of

requirements from natural language when a need to decide how requirements

will be captured analysed and documented arises, also Requirement

Chapter 2 – State of the Art

60

change/evolution and Conflict resolution in requirements – these issues are

faced during Requirement Management and Requirement Change Management

activities. The Component-based Software Development (CBSD) lifecycle is

different from the traditional meaning that the classical RE process cannot be

applied and some new methods and techniques are required. As a result,

Component Based Software Development RE faces such problems as:

 Non-existence of RE process, resulting in huge challenges of searching

and selection of components;

 Non-existence of sophisticated non-functional requirements elicitation

techniques that are required as NFRs play an important role in quality

comparison among multiple components that provide the same

functionality;

 Non-applicability of traditional RE approaches because of:

o Specifications of existing components should also be considered

when eliciting new system’s requirements;

o Systematic evaluation and testing of components against user

requirements is needed;

o As components are black box in their nature, the source code is

not provided resulting in the inflexibility for their customization

and leading to the failure of system at the time of integration;

o Components’ versioning can cause problems as a new version

may not match the existing system requirements.

The issues and challenges in service-oriented RE are to some extent inherited

from CBSD as well as traditional RE. The following problems can be outlined:

 Non-existence of RE techniques for Service Discovery issues. Service

Discovery is one of the most important features of the service-oriented

paradigm so effective mechanisms are required to locate a correct

service according to user requirements;

Chapter 2 – State of the Art

61

 Non-existence of a structured, iterative RE process that is required to

refine the requirement specifications and ensure requirement traceability

and change management;

 Non-existence of RE techniques that should provide capability to

redesign and redeploy the composed service when user needs change

over time is necessary;

 Non-existence of RE techniques that should provide a bridge between the

semantic gaps, which are inevitable when services are brought together

from hybrid environments is required;

 Service knowledgement issues as the non-existence of RE techniques that

should provide capability to manage the knowledge of a group/cluster of

services with similar functionality is mandatory.

The issues identified above can be grouped into four categories:

1. Service Specification issues deals with requirements’ elicitation and

documentation for a service-oriented software system, composing a

Service-oriented Software System from services that will fulfil these

requirements.

2. Service Discovery issues deals with the searching for services after their

specifications are prepared and finding out which of the services actually

meet the functional and non-functional requirements.

3. Service Knowledge Management issues deals with the knowledge

management of service compositions functionality that would help

service specification and discovery.

4. Service Composition issues deals with the investigation issues deciding

whether the integrated service-oriented systems will meet the original

requirements defined for each service separately.

The second step to advance SORE process structuration is to analyse its key

features and technical challenges. Research by (Tsai, et al, 2007) provides a

deep overview of SORE key features and starts analysis from stating that not

only can services be published and discovered, but also other artefacts such as:

Chapter 2 – State of the Art

62

 workflows or collaboration templates specifying the execution sequence

of a workflow with multiple services,

 application templates specifying the entire applications with their

workflows and services,

 data and associated data schema, such as messages produced during

SOA execution,

 policies that are used to enforce SOA execution,

 test scripts that can be used by customers, producers and brokers to

verify SOA application,

 interfaces that are used and linked at runtime to facilitate dynamic SOA

application with changeable interfaces.

Service-oriented RE is considered from three points of views:

1. producer centric when producers publish services and customers search

and discover their needed services,

2. consumer centric when consumers publish their needs and let the

providers to supply one of the above mentioned reusable artefacts,

3. broker centric when brokers publish test scripts, specifications and let

the producers supply services/workflows and consumers discover the

services and use test scripts for testing.

In addition to this, SORE has the following major features (Tsai, et al, 2007):

 is reusability-oriented and cumulative in a way that SORE can reuse not

only SORE reusable artefacts developed for the same project, but also

artefacts developed and published in other projects. Not only can SORE

artefacts be reused, but also SORE processes can be reused as well.

 SORE is domain specific. An important feature of SORE is that it

should use domain-specific items including ontology, services,

workflows, collaboration templates, application templates, user

interfaces, and policies. For example, a banking application may use

reusable banking-related ontology, services, and workflows.

Chapter 2 – State of the Art

63

 SORE employs framework-oriented analysis. SORE reusable artefacts

should be organized in different frameworks and SORE should become

framework oriented with the aim to find artefacts that can be reused to

fulfil the requirements.

 Model-driven development. SORE should take model-driven approach

when, firstly, a foundation model for application is created and later

needed services based on model specified are invented.

 Evaluation-based development. Only pre-selected services can be used

at runtime and all the pre-selected services/workflows must be

thoroughly pre-evaluated before they can be placed in a service or

workflow pool.

 User-centric analysis and specification. SORE can play two roles here:

one is to help these end users to identify their application requirements,

possibly using a set of visual tools, and the other is to identify tool

features that help end users to rapidly develop their applications.

 Policy-based computing. Policies need to be specified, analysed,

enforced, and evaluated, and thus it has a lifecycle model that is parallel

with the software development. Policy specifications are usually

executable, however, policy evaluation and execution is different from

software evaluation and execution because policies need to be evaluated

together with the functional software to be enforced.

Furthermore, SORE also introduces some technical challenges such as

(Tsai, et al, 2007):

 Software-Oriented Ontology – ontology in SORE provides service-

oriented modelling and analysis, facilitates code generation, and

promotes software reusability. The main use of ontology in SORE is to

construct a domain model that is capable of developing SOA

applications rapidly in a model-driven SOA lifecycle model.

 Service-Oriented Simulation using a service-oriented simulation

framework. It is possible to simulate the SOA application according to

Chapter 2 – State of the Art

64

its specification, possibly with many existing and reusable services and

workflows.

 Model-based Development. One key issue for SOA model-based

development is the development of modelling language suitable for rapid

SOA application development. In such a rapid application lifecycle

model many tasks should be performed based on the model specified.

Specifically, various static and dynamic analyses such as completeness

and consistency and simulation should be based on the model developed;

design or assembly should also be based on the model developed with

various ontology systems and service brokers. A code should be

automatically generated based on the assembled model with reusable

services and workflows; test scripts generated based on the assembled

model and reusable test scripts associated with services and workflows.

Policies identified and specified together with a functional model using

the same modelling language. In this way, as the software needs change,

the model will be updated, reanalysed, and re-assembled, and the code

will be regenerated and re-tested and re-evaluated.

 Non-functional Requirements. A SOA system usually consists of many

reusable services and workflows, and non-functional requirements need

to be applied across the software including those services and

workflows that are reused. It is necessary to develop a mechanism to

specify and analyse these non-functional requirements for SORE.

To sum up, comparing with traditional requirement engineering, the distinction

lies on modelling techniques, a model-based development process, and runtime

behaviours including publishing, discovery, composition, monitoring and

enforcement of services.

2.1.1. An Overview of Classic and Service-Oriented Requirement

Engineering: The Process and Techniques

Software Requirements Engineering is a process responsible for requirements’

elicitation, analysis and documentation with the aim to create a cost-effective

Chapter 2 – State of the Art

65

solution to practical problems by applying scientific knowledge (Shaw, 1990).

It is considered to be a critical software engineering process that when

performed in a structured and well-defined manner should result in a set of

complete, unambiguous measurable, traceable, documented requirements that

must be realized by a software system. RE is the most important activity in the

System Development Life Cycle (SDLC) as the system is only as good as its

requirements. The requirements’ engineering phase of the SDLC is comprised

of the following activities: Requirements Elicitation, Requirements Analysis,

Requirements Verification, Requirements Specification, and Requirements

Management. All these activities should be performed during the software

Requirements engineering process. Requirement engineering process models

structure the process and provide roadmaps how to perform these activities. RE

models depend on several attributes such as the type of application that is

being developed, software development and acquisition process that is being

used, the size and culture of the companies involved. Next two sections discuss

RE models and approach to the classic and service-oriented RE, and highlight

their benefits and shortcomings.

2.1.2. Classic RE Process and Models

Classic RE models vary from the simplest such as an Input/Output of

Requirements Engineering Process (Shams-Ul-Arif, et al, 2009–2010; Kotonya

& Sommervile, 1998) that suggest taking five work products: (1) Existing

System Information, (2) Stakeholder Needs, (3) Organizational Standards, (4)

Regulations and (5) Domain Information as inputs apply a Requirement

Engineering Process to them and produce three work products: (1) Agreed

Requirements, (2) System Specification and (3) System Models as an output.

This is a general sort of requirement engineering process and is flexible to be

adapted by any organization to any project through defining organizational

applied standards and regulations (Shams-Ul-Arif, et al, 2009–2010). This RE

model is further refined to more advanced RE models such as: Linear

Requirements Engineering Process Model (Kotonya & Sommervile, 1998;

Chapter 2 – State of the Art

66

Shams-Ul-Arif, et al, 2009-2010), Linear Iterative Requirement Engineering

Process Model (Kotonya & Sommervile, 1998; Shams-Ul-Arif, et al, 2009–

2010), Iterative Requirement Engineering Process Model (Kotonya &

Sommervile, 1998; Shams-Ul-Arif, et al, 2009–2010) that suggests three

iteratively accomplished activities: (1) Elicitation, (2) Specification and (3)

Validation. Requirements engineering activities in this model are performed in

multiple iterations and hence it is more suitable for the development of software

systems that should be launched version by version into the market. Spiral

Requirement Engineering Process Model (Kotonya & Sommervile, 1998;

Shams-Ul-Arif, et al, 2009-2010) suggests performing RE process in spirals and

each spiral represents a complete version of requirements on which the system

has to be developed.

J.D. Arthur, M. K. Gröner (Arthur & Gröner, 2005) suggest Requirements

Generation Model – RGM (Figure 2-1) – a structured approach to capturing

requirements which is based on two components:

 framework that structures and controls RE activities and introduces two

phases – Indoctrination and Requirements Capturing. The indoctrination

phase aims to familiarize the customer with the RGM, introduce the

requirements’ engineer to the customer’s domain, define and set up tasks

and responsibilities needed during the requirements capturing phase.

Requirements Capturing phase consists of these three sub-phases:

Preparation – to prepare for requirement elicitation meetings,

Requirements Elicitation – to conduct requirement elicitation meetings,

and Review – to discuss and analyse requirements elicited.

 monitoring methodology that ensures that all requirements activities

follow proper procedures.

Chapter 2 – State of the Art

67

Figure 2-1. Requirements’ Generation Model – RGM (Arthur and Gröner, 2005)

The classic RE process performed by us and models analysis is not an extensive

one as our purpose it not to review all existing approaches, but just to highlight

the ones that are most popular and include some novelties.

2.1.3. Service-Oriented RE Process and Models

As we have seen from the previous section, Service-oriented RE (SORE)

inherits issues from traditional RE and CBSD RE and faces new challenges

which can be broadly grouped into service specification, knowledge

management, discovery and composition issues. A few SORE models have

already been proposed to solve them.

Systematic Service-Oriented Requirements Engineering (SORE) Process

(Flores et al, 2009) is aimed mainly to solve service specification issues. It is

based on a three-fold concept of service:

1. as a high-level business service – a developed software system should

provide capability to realize business processes that support business

strategy and business goals;

2. as an operational business service – a developed software system

should be aligned with each activity in business processes that it finally

will support;

Chapter 2 – State of the Art

68

3. as an IT service level – high-level business requirements should be

translated into IT low-level requirements and operational

specifications.

A systematic SORE process (Figure 2-2) is defined as consisting of three

phases (Flores, et al, 2010):

1. Business Process Modelling Phase where business goals and the

business processes that support those goals are identified by making a

high-level model of the business processes.

2. Flow-Down Phase concerns with each business process identified in the

phase above, detecting, understanding and analysing each activity

needed to successfully execute the business process flowing it down

until the business process architecture is discovered.

3. Formal Requirements Specification Phase. Requirements that the

developed service-oriented software system needs to successfully

satisfy the business process are formally established by negotiating and

elaborating Service Level Agreements (SLAs) and translating them in

Operational Level Agreements (OLAs).

Figure 2-2. Systematic SORE Process IDEF0 Detailed Diagram (Flores, et al, 2010)

Chapter 2 – State of the Art

69

Another solution to structure SORE process was reported by (Flores, et al,

2009; Flores, et al, 2008). According them, the SORE process can be

conducted through the following six RE activities:

1. Contextual Analysis. Consideration of the environmental influences

(economic, political, business goals, and legal) which could affect a

successful software system development.

2. Elicitation. The stakeholders, their needs and problems, as well as their

willingness to provide information are elicited.

3. Analysis. The structure of requirements is identified, finding out their

interrelationships.

4. Modelling and Representation. A requirements’ engineer models each

requirement in an agreed and readable way that these requirements

could be clearly understood.

5. Communication and Negotiation. A requirement’s engineer introduces

every identified requirement to each stakeholder in order to avoid

mistakes or misunderstandings.

6. Validation and Final Specification. All identified requirements are

validated, and if there is no change, a requirement’s engineer elaborates

the final requirement specifications.

7. Change Management. Activity is performed after each of the above

mentioned activity in order to record and track every change realized. A

history of the RE process is available for auditing and continuous

improvement issues.

This approach also concerns mainly service specification issues. In addition to

this, these two proposed SORE approaches lack particularity. So, as a result,

further research is needed that would cover service specification issues and the

other ones named above as well.

Chapter 2 – State of the Art

70

2.2. Overview of Service-Oriented Software Systems’

Development Methodologies and Approaches

A number of SOA methodologies such as IBM RUP/SOMA, SOAF, SOUP,

service-oriented analysis and design methodology by Thomas Erl and service-

oriented design and development methodology by Papazoglou have been

proposed to ensure successful SOA development by providing process

guidance and the best proven practices from already accomplished SOA

projects. The SOA development lifecycle in these methodologies can be

divided into these phases: Service-oriented planning/inception, Service-

oriented analysis, Service-oriented design, Service Construction, Service

Testing, Service Provisioning, Service Deployment, Service Execution and

Service Monitoring. The first two or three phases are the most important ones

because the success of SOA development mainly depends on them.

Technology and standards, such as Business Process Management – BPM,

Business Process Execution Language – BPEL, Web Service Definition

Language – WSDL, Enterprise Architecture – EA, Object-Oriented Analysis

and Design – OOAD are important to develop SOA, but it has been widely

recognized that they are not sufficient on their own. Just by applying a Web

service layer on top of legacy applications or components does not guarantee

true SOA properties, such as business alignment, flexibility, loose coupling,

and reusability. Instead, a systematic and comprehensive SOA analysis and

design methodology is required (Papazoglou, 2006). A number of SOA

methodology surveys have already been performed but they treat them from a

general point of view without providing any in-depth analysis of the properties

of these methodologies aiming at SOA analysis and design phases. We

performed research that contributes to outlining the drawbacks and benefits of

proposed SOA methodologies and focuses on SOA analysis and design phases

by providing in-depth analysis and a comparison according to characteristics

specified (chapter 2.2.6 Characteristics of SOA Methodologies Analysis and

Design Phases). In addition to this, the analysis also helped us to propose the

Chapter 2 – State of the Art

71

structure of SORE process described in the next chapter. Furthermore, the

SOA methodologies discussed below were used to define SOA quality

attributes.

2.2.1. IBM RUP/SOMA

IBM RUP/SOMA (IBM RUP/SOMA; Ramollari, et al, 2007) is an integrated

methodology developed by IBM with an aim to bring unique aspects of

Service-oriented Modelling and Architecture – SOMA to RUP. However,

because SOMA is a proprietary methodology of IBM, its full specification is

not available.

The methodology consists of four phases: business transformation analysis,

identification, specification, and realization of services. Talking about SOA

analysis and design all these phases are of great importance. However IBM

RUP/SOMA does not cover the deployment and administration of services.

The first phase Business Transformation Analysis can be mapped to Inception

phase from the classical RUP methodology. This phase is an optional one and

can be omitted if the organization’s full business analysis and transformation is

not performed. It aims to describe the current as-is organization business

process, to understand problem areas and improvement potentials as well as

any information on external issues such as competitors or trends in the market.

Business Transformation Analysis comprises such activities as assessment of

target organization and its objectives, identification of business goals and KPIs,

definition of common business vocabulary and business rules, definition of

business actors and main use cases, analysis of business architecture.

The second phase Service Identification can be mapped to the Elaboration

phase from classical RUP and aims to identify candidate services. Service

Identification comprises such activities as domain decomposition, goal-service

modelling and existing asset analysis.

The third phase Service Specification can be mapped to Elaboration phase

from classical RUP and focuses on the selection of candidate services that will

be developed. Candidate services are allocated to subsystems and then

Chapter 2 – State of the Art

72

composed into sets of components for implementation. Service Specification

phase comprises such activities as service specification, subsystem analysis

and component specification.

The fourth phase Service Realization can be mapped to the Construction phase

from classical RUP and is focused on the completion of component design for

component implementation. Service Realization comprises such activities as

documentation of service realization decision and allocation of service

components to layers.

2.2.2. Service-Oriented Analysis and Design Methodology by Thomas Erl

The Service-oriented analysis and design methodology by Thomas Erl

(Ramollari, et al, 2007; Erl, 2005; Erl, 2008) is a step by step guide through the

two main phases: service-oriented analysis and design. The activities in the

analysis phase take a top-down business view with the aim to identify service

candidates. These serve as input for the next phase, service oriented design,

where the service candidates are specified in detail and later realized as Web

services.

The Service-Oriented Analysis phase is divided into two parts: the first part in

which business requirements are defined and the second part in which service

candidates are modelled. The first part of the phase includes reviewing

business goals and objectives, analysing potential changes to existing

applications an attempt to find out which processes and application

components can be used in a future SOA application development. Business

analysts prepare an as-is process model which states the current situation and

allows stakeholders to understand which business processes are already in

place and which have to be introduced and automated, which application

components can be reused. Service-oriented analysis results in the preparation

of a to-be process model that an SOA application will implement. The second

part of the service-oriented analysis is a service modelling sub-process by

which service candidates are identified. The service modelling sub-process

Chapter 2 – State of the Art

73

results in the creation of such artefacts as conceptual service candidates,

service capability candidates and service composition candidates.

The main objective of the Service-Oriented Analysis phase is the reuse of

existing applications functionality in new SOA applications. To achieve this

objective service-oriented analysis phase comprises three main steps: to define

business requirements, identify existing automation systems and model

candidate services.

The Service-Oriented Design is the process by which concrete service designs

are derived from service candidates and then grouped into abstract

compositions that automate a business process.

2.2.3. Service-Oriented Design and Development Methodology by

Papazoglou

The service-oriented design and development methodology by Papazoglou

(Papazoglou, 2006), covers a full SOA lifecycle (Ramollari, et al, 2007). It is

partly based on such well-established development methodologies as RUP,

Component-based Development – CBD, and Business Process Modelling –

BPM. The methodology is based on an iterative and incremental process and

comprises one preparatory – Planning – and eight main phases: Service

Analysis, Service Design, Service Construction, Service Test, Service

Provisioning, Service Deployment, Service Execution and Service Monitoring

(Figure 2-3). Talking about SOA analysis and design only the Planning,

Service Analysis and Service Design phases are important.

The Planning Phase is a preparatory one during which the project’s feasibility,

goals and rules are defined. Activities in this phase include the analysis of

business needs and a review of current technology landscape. The planning

phase also includes a financial analysis of the project and the creation of a

SOA development plan. Business process experts provide the categorization

and decomposition of the business process into business areas, which are

Chapter 2 – State of the Art

74

further refined to services. However, the planning phase is very similar to the

one that RUP provides.

The aim of the Service-oriented Analysis Phase is to elicit requirements for

SOA application. Business analysts create an as-is business process model that

allows stakeholders to understand the portfolio of available services and

business processes. The phase results in the creation of the to-be business

process model that will be implemented in a SOA solution. The analysis phase

consists of four main activities: process identification, process scoping,

business gap analysis and process realization.

The Service Design Phase aims to transform business processes and services

descriptions to well-documented service interfaces and service compositions.

The design phase consists of two activities: Specification of Services and

Specification of Business Processes. Service specifications include structural

specification, behavioural specification and service policy specification.

Structural specification defines the service structure – port types and

operations. The behavioural specification describes the effects and side effects

of service operations and the semantics of messages. The service policy

specification denotes policy assertions (security, manageability) and

constraints on the service. The business processes specification includes such

steps as a description of the business process structure, a description of

business roles and non-functional business process characteristics.

Chapter 2 – State of the Art

75

Figure 2-3. Phases of the Service-Oriented Design and Development

Methodology (Papazoglou, 2006)

2.2.4. Service-Oriented Architecture Framework – SOAF

The Service-Oriented Architecture Framework – SOAF (Erradi, et. al, 2006;

Ramollari et al, 2007) methodology consists of five main phases: information

elicitation, service identification, service definition, service realization,

roadmap and planning (Figure 2-4). The aim of SOAF is to ease the service

identification, definition and realization activities by combining a top-down

modelling of an existing business process with a bottom-up analysis of existing

applications.

Chapter 2 – State of the Art

76

Figure 2-4. Service-Oriented Architecture Framework Execution View (Erradi, et. al, 2006)

The first phase Information Elicitation aims to define the scope and constraints

of the existing business process and used technology. The current business as-

is model is created to document existing business activities and inputs; outputs

are exchanged between internal and external participants. The to-be business

model is defined to propose a SOA candidate solution and recommendations

and required business process changes. Candidate services that will automate

the to-be business model are identified. Non-functional requirements (NFRs)

and Business Level Agreements (BLAs) are also defined, categorized and

Chapter 2 – State of the Art

77

prioritized. Process-to-Application Mapping (PAM) is performed to examine

existing software assets in order to discover SOA candidate application

functionality.

The Service Identification Phase aims to define an optimal set of services. This

is accomplished by defining boundaries between collaborating systems,

reducing interdependencies and limiting interactions to well-defined points. A

hybrid approach combining top-down business domain decomposition with

bottom-up existing application portfolio analysis is used. A list of candidate

services that need to be further rationalized and refined is proposed.

The Service Realization Phase aims to define transformation strategies that will

be used for transition from the legacy application architecture to the future

application architecture by reusing, developing and buying third party services.

The main deliverable of the Service Realization Phase is technology

architecture that defines artefacts related to service implementation, service

hosting and service management.

The Roadmap and Planning Phase purposes a detailed planning of

transformation and identifies business and technical risks. The key deliverables

of this phase are the following: Service governance model, SOA rollout

roadmap, Resource requirements and availability estimates per project, Risk

assessment and mitigation plan, Impact analysis per project with a plan to

ensure business continuity during SOA rollout, and Applications retirement

plan.

2.2.5. Service-Oriented Unified Process – SOUP

Service-oriented Unified Process (SOUP; Ramollari et al., 2007) or SOUP is a

hybrid software engineering methodology that is targeted at SOA projects. It is

proposed by Kunal Mittal from Sony Pictures Entertainment. As the name

suggests this methodology is primarily based on the Rational Unified Process.

Its lifecycle consists of six phases: Incept, Define, Design, Construct, Deploy

and Support. SOUP phases represent a distinct set of activities and artefacts

that are critical to the success of an SOA project. The SOUP methodology can

Chapter 2 – State of the Art

78

be used in two slightly different variations: one adopting RUP for initial SOA

projects (Figure 2-5) and the other adopting a mix of RUP and XP for the

maintenance of existing SOA applications (Figure 2-6). At the beginning of the

SOA project there is a need for some formal software methodology analogous

to RUP that addresses all risks of the project. An agile methodology like XP

might not be formal enough. Its most important drawback is the lack of

documentation and any upfront design of the system. However, after a SOA

project is successfully started, continuing to use a formal methodology for

SOA support can make the process too complex.

Figure 2-5. SOUP and RUP Model (SOUP)

Figure 2-6. Overlaid SOUP and XP Processes (SOUP)

When talking about SOA analysis only the first three phases Incept, Define and

Design of this methodology are important.

The Incept Phase aims to identify the business needs for SOA development and

how SOA fits within the organization. The objective of this phase is to decide

whether a SOA project is profitable by evaluating the project scope and risks

or not. The Incept phase comprises such activities as the Formulation of the

vision and of the scope of the system, Definition of the SOA strategy, Return-

on-Investment (ROI) analysis accomplishment and Creation of a

Communication Plan.

The Define Phase is the most critical phase in a SOA project. It aims to define

the requirements and develop use cases. The objectives of this phase are to

Chapter 2 – State of the Art

79

fully understand business processes affected, to collect, define and analyse

functional and non-functional requirements by using a formal requirements-

gathering and management process like RUP, to design a support and

governance model which explains how an organization will support SOA, to

prepare a realistic project plan, to define a technical infrastructure that is

required to support the entire SOA.

The Design Phase aims to translate use case realizations and SOA architecture

into detailed design documents. The objectives of this phase are to create a

detailed design document and data base model that explain the structure of the

services, to structure the development process by defining the technology,

coding standards etc.

2.2.6. Characteristics of SOA Methodologies Analysis and Design Phases

In order to evaluate SOA development methodologies analysis and design

phases proposed in them we have defined characteristics that will be used to

perform a comparison and to outline the drawbacks and benefits of compared

methodologies. The characteristics proposed for evaluation are as follows:

SOA analysis and design strategy. Three strategies (top-down, bottom-up and

meet-in-the-middle) exist in the SOA development, each varying in the amount

of up-front analysis of the business domain and the dependencies on legacy

systems.

SOA analysis and design coverage: the Service-oriented analysis and design

phases of SOA methodologies that will be analyzed and compared can be

divided into five main activities that are further refined into steps. These steps

are used for the evaluation of SOA analysis and design coverage.

The main activities of SOA analysis and design phases are the following:

 Target Organization’s Business analysis. The aim of this step is to

identify organization’s objectives, business goals and KPIs for their

accomplishment, as well as the technology used, applications and

people skills, common business terms vocabulary, business rules,

Chapter 2 – State of the Art

80

business actors and main business use cases are defined. The step results

in the creation of as-is and to-be business models.

 SOA project planning. The aim of this step is to formulate the vision

and the scope of a SOA project, select SOA delivery strategy (create

services from scratch, create services from existing software

components, buy services from third party providers), create project

plan and accomplish financial analysis.

 Service Identification. The aim of this step is to identify candidate

services. All functional and non-functional requirements for SOA

development are gathered. The created to-be business model is

decomposed into business domains. After that, service candidates, their

initial specifications, communication and initial dependencies are

defined. Existing applications are analyzed in order to find out which

software components can be reused in SOA development.

 Service Analysis and Specification. The aim of this step is to select

which candidate services will be developed and to create detailed

service specifications for development. Services are grouped by their

functionality into business entity, application and business process

services. Business process specifications that will group the services are

created.

 Service Realization Decisions. The aim of this step is to document

service realization decisions, to attribute service components to layers

and to accomplish technical feasibility exploration.

Degree of prescription: SOA methodologies vary from the most prescriptive

ones that specify phases, activities, steps, inputs, outputs, to the ones that only

describe the purpose and objectives of each phase and let the user tailor and to

adapt the methodology to the concrete project’s scope, or maybe to use a few

methodologies in conjunction. The degree of prescription is evaluated

depending on the number of parameters provided in the process description:

Chapter 2 – State of the Art

81

five if phases, activities, steps, inputs and outputs for each step are provided,

four if only four parameters are provided etc.

Adoption of existing techniques and notation: Most of SOA methodologies are

based on techniques such as OOAD, CBM, BPM, EA and notations such as

UML and BPMN, while the others do not address specific techniques and

notations and let the user decide what techniques and notations are appropriate

in a concrete situation, making the methodology harder to understand and to

use for inexperienced users.

2.2.7. Comparison of SOA development methodologies

In this section we provide a comparison of SOA methodologies analysed in the

sections above according to characteristics defined and described in the section

above.

Table 2-1. IBM RUP/SOMA, SOAF, Methodology by Tomas Erl Comparison According to

Characteristics

Characteristics Step IBM

RUP/SOMA

SOAF Methodology

by Tomas Erl

SOA analysis &

design strategy

 Meet-in-the-

middle

Meet-in-the-

middle

Top-down

SOA analysis &

design coverage

Organization’s

Objectives,

Business goals

and KPIs

identification

yes no No

 Used technology,

Applications and

People Skills

Identification

yes no Partially –

existing

automation

systems are

identified

 Business Terms,

Rules, Actors

Identification

yes no no

 Main Business

Use Cases

Identification

yes yes no

 Business as-is and

to-be Models

Creation

yes yes no

 Vision and Scope

of the SOA

Project

Formulation

yes no no

 SOA Delivery yes yes no

Chapter 2 – State of the Art

82

Strategy Selection

 SOA Project Plan

Creation

yes yes no

 Financial Project

Analysis

yes no no

 Functional and

Non-functional

Requirements

Elicitation

yes yes yes

 Candidate

Services

Identification

yes yes yes

 Initial Services

Specification

yes yes yes

 Existing

Applications

Analysis

yes yes yes

 Grouping of

Services

According to their

Functionality (to

business entity,

application, and

business process

services)

yes yes yes

 Detailed Services

Specification

yes yes yes

 Subsystem

Analysis

yes no yes

 Service

Components

Specification

yes no yes

 Business Process

Specification

yes yes yes

 SOA Realization

Decisions

Documentation

yes yes yes

 Allocation of

Service

Components to

Layers

yes yes yes

 Technical

Feasibility

Exploration

yes yes yes

Degree of

prescription

 5 phases,

activities,

steps, inputs

and outputs are

provided

3 phases,

main

activities and

key

deliverables

are provided

4 phases,

activities and

steps are

provided. Inputs

and outputs are

provided not for

all steps.

Adoption of BPM, UML, BPM BPM, WSDL,

Chapter 2 – State of the Art

83

existing

techniques and

notation

BPEL, WSDL,

WS-BPEL

WS-BPEL,

WS-*

specifications

Table 2-2. Methodology by Papazoglou and SOUP Comparison According to Characteristics

Characteristics Step Methodology by

Papazoglou

SOUP

SOA analysis &

design strategy

 Meet-in-the-middle Meet-in-the-

middle

SOA analysis &

design coverage

Organization’s Objectives,

Business goals and KPIs

identification

yes no

 Used technology,

Applications and People

Skills Identification

yes no

 Business Terms, Rules,

Actors Identification

no no

 Main Business Use Cases

Identification

yes no

 Business as-is and to-be

Models Creation

yes no

 Vision and Scope of the SOA

Project Formulation

no yes

 SOA Delivery Strategy

Selection

yes yes

 SOA Project Plan Creation yes yes

 Financial Project Analysis yes yes

 Functional and Non-

functional Requirements

Elicitation

yes yes

 Candidate Services

Identification

yes yes

 Initial Services Specification yes yes

 Existing Applications

Analysis

yes no

 Grouping of Services

According to Their

Functionality (to business

entity, application, and

business process services)

yes no

 Detailed Services

Specification

yes no

 Subsystem Analysis no no

 Service Components

Specification

yes no

 Business Process

Specification

yes no

 SOA Realization Decisions

Documentation

yes yes

 Allocation of Service

Components to Layers

yes no

 Technical Feasibility yes no

Chapter 2 – State of the Art

84

Exploration

Degree of

prescription

 3 phases and main

activities are

described. Inputs

and outputs of are

provided not for all

activities.

2 phases lack of

cohesive

description. Not

all phases have

main activities

and key

deliverables

provided.

Adoption of

existing

techniques and

notation

 CBD, BPM,

BPMN, WSDL,

BPEL, UML

No

2.3. Capturing Non-Functional Requirements for ESOA

Systems Using Viewpoints

For technical, human and environmental reasons, system requirements

specifications will always be imperfect. However, although perfection is

impossible, there is no doubt that much can be done to improve the quality of

most system specifications. It has been recognized for many years that

problems with specifications are probably the principal reason for project

failure where systems are delivered late, do not meet the real needs of their

users, and perform in an unsatisfactory way (Sommerville & Sawyer, 1997).

Improving the quality of specifications can be achieved in two ways

(Sommerville & Sawyer, 1997):

 By improving the requirements engineering process so that errors are

not introduced into the specification.

 By improving the organization and presentation of the specification

itself so that it is more amenable to validation.

An approach to system requirements engineering can be proposed, which

addresses both of these improvement dimensions. It is based on collecting and

analysing the requirements for ESOA systems from different viewpoints.

Viewpoints are entities that are widely used in software systems architecture

descriptions and which can be used to structure ESOA system requirements

(functional and non-functional) elicitation and specification.

Chapter 2 – State of the Art

85

The organization of architecture descriptions into views using viewpoints

provides a mechanism for the separation of concerns among the stakeholders

(ESOA stakeholders are discussed in details in Chapter 3.2 Stakeholders of

ESOA Systems), while providing a view of the whole system that is

fundamental to the notion of architecture.

A viewpoint is a subdivision of the specification of a complete system,

established to bring together those particular pieces of information relevant to

some particular area of concern during the analysis or design of the system.

Although separately specified, the viewpoints are not completely independent.

Key items in each are identified as related to items in the other viewpoints.

However, the viewpoints are sufficiently independent to simplify reasoning

about the complete specification.

Each software system has architecture. The system architecture has

architecture description. An architecture description includes one or more

architecture views. An architecture view addresses one or more of the concerns

of the system’s stakeholders. An architecture view expresses the architecture of

the system-of-interest in accordance with an architecture viewpoint. There are

two aspects to a viewpoint: the concerns it frames for stakeholders and the

conventions it establishes on views. An architecture viewpoint frames one or

more concerns. A concern can be framed by more than one viewpoint. A view

is governed by its viewpoint: the viewpoint establishes the conventions for

constructing, interpreting and analysing the view to address concerns framed

by that viewpoint. Viewpoint conventions can include languages, notations,

model kinds, design rules, and/or modelling methods, analysis techniques and

other operations on views.

In other words, a viewpoint is a specification of the conventions for

constructing and using a view. It is a pattern or template from which to develop

individual views by establishing the purposes and audience for a view and the

techniques for its creation and analysis. A view is what the stakeholders see

whereas the viewpoint defines the perspective from which the view is taken

and the methods for, and constraints upon, modelling that view.

Chapter 2 – State of the Art

86

Furthermore, viewpoints are independent of a particular system. In this way,

the system architect can select a set of candidate viewpoints first, or create new

viewpoints and then use those viewpoints to construct specific views that will

be used to organize the architectural description. A view, on the other hand, is

specific to a particular system. Therefore, the practice of creating an

architectural description involves, first, selecting the viewpoints and then using

those viewpoints to construct specific views for a particular system or

subsystem.

According to the Systems and software engineering – Architecture

description (ISO/IEC/IEEE 42010:2011) an architecture viewpoint shall

specify (for more detailed information regarding architecture description

standards refer to Chapters: 2.4.1 IEEE 1471:2000 Recommended Practice for

Architectural Description and 2.4.2 ISO/IEC/IEEE 42010:2011 Systems and

software engineering – Architecture description):

 one or more concerns framed by this viewpoint;

 typical stakeholders for concerns framed by this viewpoint;

 one or more model kinds used in this viewpoint;

 for each model kind identified in c), the languages, notations,

conventions, modelling techniques, analytical methods and/or other

operations to be used on models of this kind;

 references to its sources.

Usually stakeholders have different expectations and non-functional

requirements may differ from one viewpoint to another and part of the

requirement analysis process is to detect and resolve such conflicts.

A viewpoint-based approach to requirements engineering recognizes that all

information about the system requirements cannot be discovered by

considering the system from a single perspective. Rather, there is a need to

collect and organize requirements from a number of different viewpoints. A

viewpoint is an encapsulation of partial information about a system’s

requirements. Information from different viewpoints must be integrated to in

Chapter 2 – State of the Art

87

order to form the final system specification. The principal arguments in favour

of a viewpoint-based approach to requirements engineering are (Sommerville

& Sawyer, 1997):

 Systems usage is heterogeneous – there is no such thing as a typical

user. Viewpoints may organize system requirements from different

classes of system stakeholders.

 Different types of information are needed to specify systems including

information about the application domain, information about the

system’s environment and engineering information about the system’s

development. Viewpoints may be used to collect and classify this

information.

 Viewpoints may be used as a means of structuring the process of

requirements elicitation.

 Viewpoints may be used to encapsulate different models of the system

each of which provides some specification information.

 Viewpoints may be used to structure the requirements description and

expose conflicts between different requirements.

One of the aims in selecting a set of viewpoints is for them to be as loosely

coupled as possible. A benefit of using viewpoints is that they allow parallel

activities in different teams, and so allow some parts of the specification to

reach a level of stability and maturity before others. It takes some skill to pick

a good set of viewpoints: if two viewpoints are linked in too many ways, an

independent activity will be difficult.

Viewpoint modelling has become an effective approach for dealing with the

inherent complexity of large distributed systems. Current software architectural

practices, as described in standards ISO/IEC/IEEE 1471:2000 and

ISO/IEC/IEEE 42010:2011, divide the design activity into several areas of

concerns, each one focusing on a specific aspect of the system. Examples of

enterprise architecture frameworks that are based on ISO/IEC/IEEE 1471:2000

Chapter 2 – State of the Art

88

and ISO/IEC/IEEE 42010:2011 standards and employ viewpoints include the

following:

 OASIS Reference Architecture Foundation for SOA – OASIS SOA

RAF) (2.4.4 OASIS Reference Architecture Foundation for SOA –

OASIS SOA RAF

 Zachman Enterprise Architecture Framework (2.4.5 Zachman

Enterprise Architecture Framework)

 The Open Group Architecture Framework – TOGAF (2.4.6 Open Group

Architecture Framework – TOGAF)

 Extended Enterprise Architecture Framework (2.4.7. Extended

Enterprise Architecture Framework)

 Department of Defence Architecture Framework – DoDAF (2.4.8

Department of Defence Architecture Framework – DoDAF

 Kruchten’s “4+1”/RUP’s 4 + 1 View Model (2.4.9 Kruchten’s

“4+1”/RUP’s 4 + 1 View Model)

 Siemens 4 views method (2.4.10 Siemens 4 views method)

 Reference Model for Open Distributed Processing – RM-ODP (2.4.11

Reference Model for Open Distributed Processing).

2.4. Enterprise Architecture Frameworks and Standards

As described in standard (IEEE Std 1471:2000), an architecture is the

fundamental organization of a system, embodied in its components, their

relationships to each other and the environment, and the principles governing

its design and evolution.

Architecture is important for at least three reasons (Minoli, 2008). It enables

communication among stakeholders, facilitates early design decisions, and

creates a transferable abstraction of a system/environment description

(Fernandez-Martinez & Lemus-Olalde, 2004).

Enterprise architecture work, when done correctly, provides a systematic

assessment and description of how the business function operates at the current

Chapter 2 – State of the Art

89

time - it provides a “blueprint” of how it should operate in the future, and, it

provides a roadmap for getting to the target state. The purpose of enterprise

architecture is to create a map of IT assets and business processes and a set of

governance principles and/or enterprise standards that drive an ongoing

discussion about business strategy and how it can be expressed through IT.

There are many different frameworks suggested to develop enterprise

architecture as discussed in the following sections. However, most frameworks

contain the following four basic architecture domains (Minoli, 2008):

1. business architecture – documentation that outlines the company’s most

important business processes. This architecture is the most critical, but

also the most difficult to implement, according to industry practitioners

(Koch, 2005),

2. information architecture – identifies where important blocks of

information, such as a customer record, are kept and how one typically

accesses them,

3. application system architecture – a map of the relationships of software

applications to one another,

4. infrastructure technology architecture – a blueprint for the gamut of

hardware, storage systems, and networks.

Layered frameworks and models for enterprise architecture have proved useful

because layering has the advantage of defining contained, non-overlapping

partitions of the environment. However, at this time no complete industry wide

consensus exists on what an architectural layered model should be, therefore

various models exist or can be used.

In the context of architecture, an important recent development in IT

architecture practice has been the emergence of standards for architecture

description and architecture frameworks. The list of EA frameworks and

standards used in research is described in the sections bellow.

Chapter 2 – State of the Art

90

2.4.1. IEEE 1471:2000 Recommended Practice for Architectural

Description

The IEEE 1471:2000 Recommended Practice for Architectural Description

(IEEE Std 1471:2000) standard aims to promote a more consistent, systematic

approach to the creation of architectural views. The standard introduces a

conceptual model that integrates mission, environment, system architecture,

architecture description, rationale, stakeholders, concerns, viewpoints, views,

and architectural models facilitating the expression, communication,

evaluation, and comparison of architectures in a consistent manner (Fernandez-

Martinez, & Lemus-Olalde, 2004). IEEE 1471:2000 contains a conceptual

framework for architectural description and a statement of what information

must be found in any IEEE 1471:2000 compliant architectural description. The

conceptual framework described in the standard ties together such concepts as

system, architectural description, and view (Clements, 2005). The conceptual

framework illustrated in Figure 2-7 and Figure 2-8 can be described as follows

(IEEE Std 1471:2000):

 A system has an architecture;

 An architecture is described by one or more architecture descriptions;

 An architecture description is composed of one or more of stakeholders,

concerns, viewpoints, views, and models;

 A stakeholder has one or more concerns;

 A concern has one or more stakeholders;

 A viewpoint covers one or more concerns and stakeholders;

 A view conforms to one viewpoint;

 A viewpoint defines the method of a model;

 A view has one or more models, and a model is part of one or more

views;

 A viewpoint library is composed of viewpoints.

Chapter 2 – State of the Art

91

Figure 2-7. Conceptual Framework of IEEE 1471:2000 (partial view; Minoli, 2008)

Figure 2-8. Conceptual Framework of IEEE 1471:2000 (larger view; IEEE Std 1471:2000)

2.4.2. ISO/IEC/IEEE 42010:2011 Systems and software engineering –

Architecture description

ISO/IEC/IEEE 42010:2011 Systems and Software Engineering – Architecture

description (ISO/IEC/IEEE 42010:2011) is a predecessor of IEEE 1471:2000.

The standard, published in 2011 (WEB, i), is the result of a joint ISO and IEEE

revision of the earlier IEEE Std 1471:2000, IEEE Recommended Practice for

Chapter 2 – State of the Art

92

Architectural Description of Software-Intensive Systems. IEEE 1471:2000 was

developed by the IEEE Architecture Working Group under the sponsorship of

the IEEE Software Engineering Standards Committee. In September 2000, the

IEEE Standards Board approved IEEE 1471:2000 for use. In March 2006,

IEEE 1471:2000 was adopted as an ISO standard. It was published in July

2007 as ISO/IEC 42010:2007. Its text was identical to IEEE 1471:2000.

ISO/IEC/IEEE 42010:2011 replaces ISO/IEC 42010:2007 and IEEE Std

1471:2000.

2.4.3. IEEE P1723 Standard for Service-Oriented Architecture (SOA)

Reference Architecture

This standard (IEEE P1723) is a new IEEE project (not finished standard). It

will define a reference architecture specification, which will include guidance

necessary for the development of SOA. It will provide a minimum

implementation subset that allows straightforward identification and

configuration of service-oriented solutions with vendor extensibility, which

will provide for growth and product differentiation. The standard is limited to

design and modelling of service-oriented solution architecture and does not

include design or modelling of service-oriented implementation and supporting

infrastructures.

2.4.4. OASIS Reference Architecture Foundation for SOA – OASIS SOA

RAF

OASIS Reference Architecture Foundation for SOA – SOA-RAF (SOA-RAF,

2012) describes the foundation upon which Service-Oriented Architectures can

be built. It follows the concepts and relationships defined in the OASIS

Reference Model for Service-Oriented Architecture (SOA-RM, 2006). The

OASIS Reference Model for SOA identifies the key characteristics of SOA

and defines many of the important concepts needed to understand what SOA is

and what makes it important. SOA-RAF takes the Reference Model as its

starting point, in particular, the vocabulary and definition of important terms

Chapter 2 – State of the Art

93

and concepts. SOA-RAF goes further in that it shows how SOA systems can be

realized, albeit in an abstract way. The focus of SOA-RAF is on an approach to

integrating business with the information technology needed to support it. The

result – Reference Architecture – is an abstract realization of SOA, focusing on

the elements and their relationships needed to enable SOA systems to be used,

realized and owned while avoiding reliance on specific concrete technologies.

This is not a complete blueprint for realizing SOA systems. It does identify

many of the key aspects and components that will be present in any well

designed SOA system. In order to actually use, construct and manage SOA

systems, many additional design decisions and technology choices will need to

be made. SOA-RAF is of value to Enterprise Architects, Business and IT

Architects as well as CIOs and other senior executives involved in strategic

business and IT planning. As with the Reference Model (SOA-RM), SOA-

RAF is primarily focused on large-scale distributed IT systems where the

participants may be legally separate entities. It is quite possible for many

aspects of this Reference Architecture to be realized on quite different

platforms.

The SOA-RAF follows the recommended practice of describing architecture in

terms of models, views, and viewpoints, as prescribed in the IEEE 1471:2000

(IEEE Std 1471:2000). The SOA-RAF structures its analysis based on the

concepts defined in IEEE Recommended Practice for Architectural Description

of Software-Intensive Systems IEEE 1471:2000, which was later approved as

ISO/IEC 42010:2007 and subsequently superseded by ISO/IEC/IEEE

42010:2011 (ISO/IEC/IEEE 42010:2011).

Many systems cannot be completely understood by a simple decomposition

into parts and subsystems, in particular, when many autonomous parts of the

system are governing interactions. There is a need to understand the context

within which the system functions. This is the ecosystem (SOA-RAF, 2012).

SOA-RAF views the SOA architectural paradigm from an ecosystems

perspective: whereas a system will be a capability developed to fulfil a defined

set of needs, a SOA ecosystem is a space in which people, processes and

Chapter 2 – State of the Art

94

machines act together to deliver those capabilities as services. In a SOA

ecosystem there may not be a single person or organization that is really “in

control” or “in charge” of the whole although there are identifiable

stakeholders who have influence within the community and control over

aspects of the overall system.

SOA-RAF provides three main views (SOA-RAF, 2012) that are based on the

SOA Ecosystem concept:

3. Participation in a SOA Ecosystem view – focuses on the way that

participants are part of a SOA ecosystem.

4. Realization of a SOA Ecosystem view – addresses the requirements for

constructing a SOA system in a SOA ecosystem.

5. Ownership in a SOA Ecosystem view – focuses on what it means to own a

SOA system.

The SOA-RAF views conform to three viewpoints (named after views). There

is a one-to-one correspondence between viewpoints and views.

Participation in a SOA Ecosystem Viewpoint (SOA-RAF, 2012) captures an

SOA ecosystem as an environment for people to conduct their business. The

applicability of such an ecosystem is not limited to commercial and enterprise

systems. The term “business” is used to include any transactional activity

between multiple participants. All stakeholders in the ecosystem have concerns

addressed by this viewpoint. The primary concern for people is to ensure that

they can conduct their business effectively and safely in accordance with the

SOA paradigm. The primary concern of decision makers is the relationships

between people and organizations using systems for which they, as decision

makers, are responsible but which they may not entirely own, and for which

they may not own all of the components of the system. Given SOA’s value in

allowing people to access, manage and provide services across ownership

boundaries, those boundaries and the implications of crossing them must be

explicitly identified.

Realization of a SOA Ecosystem Viewpoint (SOA-RAF, 2012) focuses on the

infrastructure elements that are needed to support the construction of SOA

Chapter 2 – State of the Art

95

systems. The stakeholders are essentially anyone involved in designing,

constructing and deploying a SOA system. They are concerned with the

application of well-understood technologies that available to system architects

to realize the SOA vision of managing systems and services that cross

ownership boundaries.

Ownership in a SOA Ecosystem Viewpoint (SOA-RAF, 2012) addresses the

concerns involved in owning and managing SOA systems within the SOA

ecosystem. Many of these concerns are not easily addressed by automation;

instead, they often involve people-oriented processes such as governance

bodies. Owning an SOA system implies being able to manage an evolving

system. It involves playing an active role in a wider ecosystem. This viewpoint

is concerned with how systems are managed effectively, how decisions are

made and promulgated to the required end points, how to ensure that people

may use the system effectively and how the system can be protected against,

and recover from consequences of, malicious intent.

2.4.5. Zachman Enterprise Architecture Framework

The Zachman Framework establishes a common vocabulary and set of

perspectives for defining and describing complex enterprise systems (Minoli,

2008). More specifically, the Zachman Framework is ontology (Zachman,

2011) – a theory of the existence of a structured set of essential components of

an object for which explicit expressions is necessary and perhaps even

mandatory for creating, operating, and changing the object (the object being an

Enterprise, a department, a value chain, a solution, a project, an airplane, a

building, a product, a profession). The Zachman Framework is not a

methodology for creating the implementation of the object. The Zachman

Framework is ontology for describing the Enterprise. Ontology is a structure

whereas a methodology is a process. A structure is not a process. A structure

establishes definition whereas a process provides transformation (Zachman,

2011).

Chapter 2 – State of the Art

96

Since its first publication in 1987, the Zachman Framework has evolved and

become the model around which major organizations worldwide view and

communicate their enterprise architecture (this research is based only on the

newest Zachman Framework 3.0 version). John Zachman based his framework

on practices in traditional architecture and engineering. This resulted in an

approach where a two dimensional logical template is created to synthesize the

framework. The framework contains six rows and six columns yielding 36

cells. The horizontal axis provides multiple perspectives coupled with the

following concepts and models for their description:

 executive perspective describes scope, business context and provides

scope identification lists,

 business management perspective describes business concepts provides

and business definition models,

 architect perspective describes system logic and provides system

representation models,

 engineer perspective describes technology physics and provides

technology specification models,

 technician perspective describes tool components and provides tool

configuration models,

 enterprise (users) perspective describes operation instances and

provides the implementation for the enterprise.

The drill down through perspectives is derived from reification, the

transformation of an abstract idea into an instantiation that was initially

postulated by ancient Greek philosophers and is labelled in the Zachman

Framework as Identification, Definition, Representation, Specification,

Configuration and Instantiation.

The vertical axis provides a classification of the various artefacts of the

architecture according to the questions What, How, When, Who, Where, and

Why.

Chapter 2 – State of the Art

97

2.4.6. Open Group Architecture Framework – TOGAF

The Open Group is a vendor-neutral and technology-neutral consortium

seeking to enable access to integrated information, within and among

enterprises, based on open standards and global interoperability (Minoli, 2008).

The Open Group developed an architectural framework known as the Open

Group Architecture Framework – TOGAF. It is described in a set of

documentation published by the Open Group on its public web server, and may

be used freely by any organization wishing to develop enterprise architecture

for use within that organization. The original development of TOGAF Version

1 in 1995 was based on the Technical Architecture Framework for Information

Management – TAFIM (TAFIM, 1990), which was developed by the US

Department of Defence – DoD. The DoD gave the Open Group explicit

permission and encouragement to create TOGAF by building on the TAFIM,

which itself was the result of many years of development effort and many

millions of dollars of US Government investment (TOGAF 9.1, 2011).

TOGAF embraces but does not strictly adheres to ISO/IEC 42010:2007

terminology.

TOGAF’s core taxonomy of architecture views defines the minimum set of

views that should be considered in the development of enterprise architecture.

Because in ISO/IEC 42010:2007 every view has an associated viewpoint that

defines it, this may also be regarded as taxonomy of viewpoints by those

organizations that have adopted ISO/IEC 42010:2007 (Minoli, 2008).

The architecture views, and corresponding viewpoints, that may be created to

support each of these stakeholders fall into the following categories:

 Business Architecture Views which address the concerns of the users

of the system, and describe the flows of business information between

people and business processes.

 Data Architecture Views which address the concerns of database

designers and database administrators, and system engineers responsible

Chapter 2 – State of the Art

98

for developing and integrating the various database components of the

system.

 Applications Architecture Views which address the concerns of

system and software engineers responsible for developing and

integrating the various application software components of the system.

 Technology Architecture Views which address the concerns of

Acquirers (procurement personnel responsible for acquiring the

commercial off-the-shelf – COTS software and hardware to be included

in the system), operations staff, systems administrators, and systems

managers.

Examples of specific views that may be created in each category are given in

Table 2-3 (Minoli, 2008; Web, l).

Table 2-3. TOGAF ADM Views (TOGAF 9.1, 2011)

Users, Planners,

and Business

Management

Database

Designers,

Administrators,

and System

Engineers

System and

Software

Engineers

Acquirers,

Operators,

Administrators,

and Managers

Business

Architecture

Views

Data Architecture

Views

Applications

Architecture

Views

Technology

Architecture

Views

Business Function

View

Data Entity View Software

Engineering View

Networked

Computing/

Hardware View Business Services

View

Business Process

View

Business

Information View

Business Locations

View

Communications

Engineering View

Business Logistics

View

Data Flow View

(organization

data use)

Applications

Interoperability

View People View

(organization chart)

Processing View

Workflow View

Usability View

Business Strategy

and Goals View

Logical Data View Software

Distribution View

Cost View

Business

Chapter 2 – State of the Art

99

Objectives View

Business Rules

View

Standards View

Business Events

View

Business

Performance View

System Engineering View

Enterprise Security View

Enterprise Manageability View

Enterprise Quality of Service View

Enterprise Mobility View

2.4.7. Extended Enterprise Architecture Framework

The Extended Enterprise Architecture – E2A and Extended Enterprise

Architecture Framework – E2AF have been developed by the Institute for

Enterprise Architecture Developments – IFEAD. E2AF addresses three major

elements in a holistic way: the element of construction, the element of

function, and the element of style that reflects the culture, values, norms, and

principles of an organization (Minoli, 2008).

Often, the term enterprise architecture deals with construction and function,

without due consideration of the stylistic aspect. The stylistic aspect reflects

the cultural behaviour, values, norms, and principles of an organization in such

a way that it reflects its corporate values (Schekkerman, 2005). At the same

time, the enterprise architecture addresses the aspects of business, information,

information systems, and technology infrastructure in a holistic way covering

the organization and its environment (Minoli, 2008; Schekkerman, 2005).

E2AF is based on the concepts described in IEEE 1471-2000 (IEEE Std

1471:2000) regarding views and viewpoints and the transformation of these

concepts into the enterprise architecture domain enables another perspective of

viewpoints and views.

From the concept of architecture viewpoints another, a relatively new view on

enterprise architecture sets of viewpoints is introduced, to reflect extended

enterprise stakeholders responsibilities and involvement in organisations and

societies.

Chapter 2 – State of the Art

100

Extended Enterprise Architecture Viewpoint Sets are themes of viewpoints that

can be determined based on different ways to look at the enterprise and its

environment. Despite the variety of stakeholder groups and their demands in

Enterprises, stakeholders’ responsibilities can be classified into four broad sets

of extended enterprise architecture viewpoints: Economic, Legal, Ethical, and

Discretionary responsibilities.

Economic set of viewpoints (Schekkerman, 2004). As social economic

elements, organizations are expected to generate and sustain profitability, offer

goods and services that are both desired and desirable in society and of good

quality, and reward employees and other elements that help create success. To

satisfy these expectations, organizations develop strategies to keep abreast of

changing customer/citizen needs, to compensate employees and investors

fairly, and to continually improve and innovate the effectiveness and efficiency

of organizational processes. A long-term perspective is essential when

establishing these strategies: A responsible organization must continue to earn

profits from its ongoing activities in order to benefit its stakeholders. Examples

of economic viewpoints are Benefits, Costs, Quality, Innovation and etc.

Legal set of viewpoints (Schekkerman, 2004). Regardless of their economic

achievements, organizations must abide by established laws and regulations in

order to socially responsible. Even so the privacy legislations have to be

respected. The identification of legal issues and implementation of compliancy

requirements are the best approach to preventing violations and costly

litigation. Accounting and control mechanisms have to be in place according to

the rules and legislations. Examples of legal viewpoints are Law &

Regulations, Privacy, Accounting & Assessment etc.

Ethical set of viewpoints (Schekkerman, 2004). The establishment of strict

ethical standards in the workplace may also be an excellent way to prevent

legal violations by creating a focus on integrity in management style. In

addition, an organization guided by strong ethical values may also be better

able to satisfy ethical responsibilities, the third type of responsibility imposed

by enterprise stakeholders. Incorporating ethical standards and handling in

Chapter 2 – State of the Art

101

corporate culture will create respectful organizations where the corporate

governance structure reflects these ethics and where people are involved in

identifying legal violations, corporate risks and security vulnerabilities.

Examples of Ethical viewpoints are Culture, Strategy, Risk etc.

Discretionary set of viewpoints (Schekkerman, 2004). In addition to meeting

economic, legal, and ethical responsibilities, organizations are also expected to

display a genuine concern for the general welfare of all

constituencies. Companies must balance the costs of these discretionary

activities against the costs of manufacturing and marketing their products or

services in a responsible manner. An example of Discretionary viewpoints is

stakeholder groups’ individual perspectives or specific enterprise stakeholder

themes etc.

2.4.8. Department of Defence Architecture Framework – DoDAF

The Department of Defence Architecture Framework – DoDAF – is an

architecture framework for the United States Department of Defence – DoD

that provides visualization infrastructure for specific stakeholders concerns

through viewpoints organized by various views (DoDAF v2.02, 2010). The

purpose of DoDAF is to ascertain that architectural descriptions developed by

various commands, services, and agencies are compatible and interrelatable

and that technical architecture views are usable and integral across

organizational domains. This framework addresses the military domain and is

used primarily by the Department of Defence. Like any other architecture

framework, it provides rules and guidance for developing and presenting

architecture descriptions, including artefacts. It provides input on how to

describe architectures, but it does not provide mechanisms in how to construct

or implement a specific architecture or how to develop and acquire systems or

systems of systems.

The current official DODAF version 2.02 was released in August 2010. In

DoDAF V2.0, architectural viewpoints are composed of data that has been

organized to facilitate understanding. In order to align with ISO Standards like

Chapter 2 – State of the Art

102

ISO/IEC 42010:2007, where appropriate, the terminology has changed from

View to Viewpoint (e.g., the Operational View is now the Operational

Viewpoint). DODAF version 2.02 proposes eight viewpoints. Viewpoints

proposed by DoDAF are described as follows:

All Viewpoint (DoDAF v2.02, 2010) describes the overarching aspects of

architecture context that relate to all viewpoints. AV viewpoint models provide

information pertinent to the entire Architectural Description rather than

representing a distinct viewpoint. AV models provide an overview of the

architectural effort including such things as the scope, context, rules,

constraints, assumptions, and the derived vocabulary that pertains to the

Architectural Description.

Capability Viewpoint (DoDAF v2.02, 2010) articulates the capability

requirements, the delivery timing, and the deployed capability. CV viewpoint

models address the concerns of Capability Portfolio Managers. In particular,

the Capability Models describe capability taxonomy and capability evolution.

The Capability Models included within DoDAF are based on the program and

capability information used by Portfolio Managers to capture the increasingly

complex relationships between interdependent projects and capabilities.

Data and Information Viewpoint (DoDAF v2.02, 2010) articulates the data

relationships and alignment structures in the architecture content for the

capability and operational requirements, system engineering processes, and

systems and services. DIV viewpoint models provide a means of portraying the

operational and business information requirements and rules that are managed

within and used as constraints on the organizations business activities.

Operational Viewpoint (DoDAF v2.02, 2010) includes the operational

scenarios, activities, and requirements that support capabilities. OV Viewpoint

models describe the tasks and activities, operational elements, and resource

flow exchanges required to conduct operations.

Project Viewpoint (DoDAF v2.02, 2010) describes the relationships between

operational and capability requirements and the various projects being

implemented. PV also details dependencies among capability and operational

Chapter 2 – State of the Art

103

requirements, system engineering processes, systems design, and services

design within the Defence Acquisition System process. PV viewpoint models

describe how programs, projects, portfolios, or initiatives deliver capabilities,

the organizations contributing to them, and dependencies between them.

Services Viewpoint (DoDAF v2.02, 2010) presents the design for solutions

articulating the Performers, Activities, Services and their exchanges, providing

for or supporting operational and capability functions. SvcV viewpoint models

describe services and their interconnections providing or supporting, DoD

functions. DoD functions include both warfighting and business functions. The

Service Models associate service resources to the operational and capability

requirements.

Standards Viewpoint (StdV) articulates the applicable operational, business,

technical, and industry policies, standards, guidance, constraints, and forecasts

that apply to capability and operational requirements, system engineering

processes, and systems and services. StdV viewpoint models describe the set of

rules governing the arrangement, interaction, and interdependence of parts or

elements of the Architectural Description.

Systems Viewpoint (DoDAF v2.02, 2010) articulates for legacy support, the

design for solutions articulating the systems, their composition,

interconnectivity, and context providing for or supporting operational and

capability functions. SV viewpoint models describe systems and

interconnections providing for, or supporting, DoD functions. DoD functions

include both warfighting and business functions. The Systems Models

associate systems resources to the operational and capability requirements.

There exists another Enterprise Architecture Framework that is closely related

to DODAF – Ministry of Defence Architecture Framework – MODAF. It is

an internationally recognised enterprise architecture framework developed by

the Ministry of Defence (MOD) to support defence planning and change

management activities. MODAF proposes the following set of viewpoints:

Strategic Viewpoint (StV), Operational Viewpoint (OV), Service Orientated

Chapter 2 – State of the Art

104

Viewpoint (SOV), Systems Viewpoint (SV), Acquisition Viewpoint (AcV),

Technical Viewpoint (TV) and All Viewpoint (AV).

The Unified Profile for DoDAF/MODAF – UPDM is the product of an

Object Management Group (OMG) initiative to develop a modelling standard

that supports both the USA Department of Defence Architecture Framework

(DoDAF) and the UK Ministry of Defence Architecture Framework

(MODAF).

2.4.9. Kruchten’s “4+1”/RUP’s 4 + 1 View Model

The Rational Unified Process (RUP) is a software development process

developed and commercialized by Rational Software, now IBM (Kroll, et. al,

2003). RUP software architecture encompasses a set of significant decisions

about the organization of a software system:

• selection of the structural elements and their interfaces by which a system

is composed,

• behaviour as specified in collaborations among those elements,

• composition of these structural and behavioural elements into larger

subsystem,

• architectural style that guides this organization.

Software architecture also involves: usage, functionality, performance,

resilience, reuse, comprehensibility, economic and technology constraints and

trade-offs, and aesthetic concerns.

RUP defines an architectural design method, using the concept of 4 + 1 views

(Kruchten, 1995) four views to describe the design: logical view, process view,

implementation view and deployment view, and using a use-case or scenario

view (+1) to relate the design to the context and goals.

Logical view (Kruchten, 1995). The logical view is concerned with the

functionality that the system provides to end-users. UML Diagrams used to

represent the logical view include Class diagram, Communication diagram and

Sequence diagram.

Chapter 2 – State of the Art

105

Development view (Kruchten, 1995). The development view illustrates a

system from a programmer's perspective and is concerned with software

management. This view is also known as the implementation view. It uses the

UML Component diagram to describe system components. UML Diagrams

used to represent the development view include the Package diagram.

Process view (Kruchten, 1995). The process view deals with the dynamic

aspects of the system, explains the system processes and how they

communicate, and focuses on the runtime behaviour of the system. The process

view addresses concurrency, distribution, integrators, performance, and

scalability etc. UML Diagrams to represent process view include the Activity

diagram.

Physical view (Kruchten, 1995). The physical view depicts the system from a

system engineer's point-of-view. It is concerned with the topology of software

components on the physical layer, as well as the physical connections between

these components. This view is also known as the deployment view. UML

Diagrams used to represent physical view include the Deployment diagram.

Scenarios (Kruchten, 1995). The description of architecture is illustrated using

a small set of use cases, or scenarios which become a fifth view. The scenarios

describe sequences of interactions between objects, and between processes.

They are used to identify architectural elements and to illustrate and validate

the architecture design. They also serve as a starting point for tests of an

architecture prototype. This view is also known as use case view.

2.4.10. Siemens 4 views method

The Siemens Four-Views (S4V) method (Hofmeister et al, 2000; Soni et al,

1995), developed at Siemens Corporate Research, is based on best architecture

practices for industrial systems. The four views: conceptual, execution, module

and code architecture view, separate different engineering concerns, thus

reducing the complexity of the architecture design task.

Chapter 2 – State of the Art

106

In the Conceptual View (Soni et al, 1995), the product’s functionality is

mapped to a set of decomposable, interconnected components and connectors.

Components are independently executing peers, as are connectors. The primary

engineering concerns in this view are to address how the system fulfils the

requirements. The functional requirements are a central concern, including

both the current requirements and anticipated future enhancements. Global

properties such as performance and dependability are addressed here as well as

in the execution view. The system’s relationship to a product family, the use of

COTS, and the use of domain-specific hardware and/or software are all

addressed in the conceptual view as well as in the module view.

For the Module View (Soni et al, 1995), modules are organized into two

orthogonal structures: decomposition and layers. The decomposition structure

captures how the system is logically decomposed into subsystems and

modules. A module can be assigned to a layer, which then constrains its

dependencies on other modules. The primary concerns of this view are to

minimize dependencies between modules, maximize the reuse of modules, and

support testing. Another key concern is to minimize the impact of future

changes in COTS software, the software platform, domain-specific hardware

and software, and standards.

The Execution Architecture View (Soni et al, 1995) describes the system’s

structure in terms of its runtime platform elements (e.g., OS tasks, processes,

threads). The task for this view is to assign the system’s functionality to these

platform elements, determine how the resulting runtime instances

communicate, and how physical resources are allocated to them. Other

considerations are the location, migration, and replication of these runtime

instances. Runtime properties of the system, such as performance, safety, and

replication must be addressed here.

The last view, the Code Architecture View (Soni et al, 1995), is concerned

with the organization of the software artefacts. Source components implement

elements in the module view, and deployment components instantiate runtime

entities in the execution view. The engineering concerns of this view are to

Chapter 2 – State of the Art

107

make support product versions and releases, minimize the effort for product

upgrades, minimize build time, and support integration and testing.

2.4.11. Reference Model for Open Distributed Processing

The aim of the Reference Model for Open Distributed Processing (the RM-

ODP) is to provide an architectural framework for the standardization of open

distributed processing – ODP. ODP supports distribution, interworking,

platform and technology independence, and portability, together with an

enterprise architecture framework for the specification of ODP systems (RM-

ODP). The RM-ODP defines a framework, but not a methodology (Linington

et al, 2011). It gives the designer a way of thinking about the system, and

structuring its specification, but does not constrain the order in which the

design steps should be carried out. There are many popular design processes,

and the framework can be used with practically any of them.

The RM-ODP is a reference model based on precise concepts derived from

current distributed processing developments and, as far as possible, on the use

of formal description techniques for specification of the architecture. The

Reference Model was published in the mid-1990s, following almost ten years

of work at the International Standards Organization to harvest the best

architectural work up to that time. The results were published as common text

by both ISO and the ITU-T (the telecommunications standards forum). The

RM-ODP was published in four parts: Overview (ISO/IEC 10746-1:1998),

Foundations (ISO/IEC 10746-2:1996), Architecture (ISO/IEC 10746-3:1996),

Architectural Semantics (ISO/IEC 10746-4:1998). These four parts provide an

introduction, a set of rigorous basic concepts, the architectural framework, and

a link to supporting formal techniques. The users of this framework are

expected to be system designers, but it is also intended to help people who

build tools to support such design activity, or who produce standards to capture

best practice and reusable mechanisms in this area.

The RM-ODP is perhaps best known for its use of viewpoints (Linington et al,

2011). The idea behind them is to break down a complex specification into a

Chapter 2 – State of the Art

108

set of coupled but separate pieces. The writers of the reference model were

keenly aware of the need to serve different stakeholders, and introduced the

idea of there being a set of linked viewpoints to maintain extensibility and

avoid the difficulties associated with constructing and maintaining a single

large system description.

Therefore, the ODP reference model defines five specific viewpoints intended

to appeal to five clear groups of users of a whole family of standards.

The Enterprise Viewpoint (Linington et al, 2011) focuses on the organizational

situation in which the design activity is to take place. It concentrates on the

objectives, business rules and policies that need to be supported by the system

being designed. The stakeholders to be satisfied are therefore the owners of the

business processes being supported and the managers responsible for the

setting of operational policies. The emphasis is on business and social units

and their interdependencies.

The Information Viewpoint (Linington et al, 2011) concentrates on the

modelling of the shared information manipulated within the enterprise of

interest. The creation of an information specification has broadly the same

objectives that creation of a data dictionary had for previous generations. By

providing a common model that can be referenced from throughout a complete

piece of design, we can ensure that the same interpretation of information is

applied at all points. As a result, we can avoid the divergence of use and

incomplete collection of information that would result from separate members

of the design team each making their own decisions about interpretation.

The Computational Viewpoint (Linington et al, 2011) is concerned with the

development of the high-level design of the processes and applications

supporting the enterprise activities. It uses the familiar tools for object-oriented

software design, ex-pressing its models in terms of objects with strong

encapsulation boundaries, interacting at typed interfaces by performing a

sequence of operations (or passing continuous streams of information). The

computational specification makes reference to the information viewpoint for

the definitions of data objects and their behavioural constraints.

Chapter 2 – State of the Art

109

The Engineering Viewpoint (Linington et al, 2011) tackles the problem of

diversity in infrastructure provision; it gives prescriptions for supporting the

necessary abstract computational interactions in a range of different situations.

It thereby offers a way to avoid lock-in to specific platforms or infrastructure

mechanisms. A particular interaction may involve communication between

subsystems, or between objects co-located in a single application server, and

different engineering solutions will be used depending on which is currently

the case. The engineering specification is akin to the specification of how

middleware is provided; there are different solutions for use in different

operating environments, but the aim is to provide a consistent set of

communication services and other supporting services that the application

designer can rely on in all cases.

The Technology Viewpoint (Linington et al, 2011) is concerned with

managing real world constraints, such as restrictions on the hardware available

to implement the system within budget, or the existing application platforms

on which the applications must run. The designer never really has the luxury of

starting with a green field, and this viewpoint brings together information

about the existing environment, current procurement policies and configuration

issues. It is concerned with selection of ubiquitous standards to be used in the

system, and the allocation and configuration of real resources. It represents the

hardware and software components of the implemented system, and the

communication technology that provides links between these components.

Bringing all these factors together, it expresses how the specifications for an

ODP system are to be implemented. This viewpoint also has an important role

in the management of testing conformance to the overall specification because

it specifies the information required from implementers to support this testing.

2.4.12. Comparison of Enterprise Architecture Frameworks

After analysing Enterprise Architecture Frameworks, we came to the

conclusion that The Open Group Architecture Framework – TOGAF (2.4.6

Chapter 2 – State of the Art

110

Open Group Architecture Framework – TOGAF) is a very good baseline for

our Enterprise Architecture Frameworks Viewpoints comparison. Furthermore,

we decided to structure comparison based on TOGAF ADM views categories:

Business Architecture Views, Data Architecture Views, Applications

Architecture Views, and Technology Architecture Views. As TOGAF adheres

to ISO/IEC 42010:2007 standard, where every view has an associated

viewpoint that defines it, TOGAF ADM views may also be regarded as

viewpoints. As a result, we used TOGAF architecture view categories in our

comparison. Moreover, these view categories can be directly mapped to

architecture domains – Business Architecture, Information Architecture,

Application System Architecture, Infrastructure Technology Architecture

described in (Minoli, 2008). Most of Enterprise Architecture Frameworks are

based on these architecture domains. Moreover, each architecture viewpoint

group has a group of users, those concerns are framed by the viewpoint (the

first and second lines in Table 2-4). The result of Enterprise Architecture

Frameworks comparison and mapping into architecture domains is depicted in

Table 2-4.

Table 2-4. Comparison/Mapping of Enterprise Architecture Framework Views/Viewpoints

Users, Planners,

and Business

Management

Database

Designers,

Administrators,

and System

Engineers

System and

Software

Engineers

Acquirers,

Operators,

Administrators,

and Managers

Business

Architecture

Views/Viewpoints

Data Architecture

Views/Viewpoints

Applications

Architecture

Views/Viewpoints

Technology

Architecture

Views/Viewpoints

The Open Group Architecture Framework - TOGAF

Business Function

View

Data Entity View Software

Engineering View

Networked

Computing/

Hardware View Business Services

View

Business Process

View

Business

Information View

Business Locations

View

Communications

Engineering View

Chapter 2 – State of the Art

111

Business Logistics

View

Data Flow View

(organization

data use)

Applications

Interoperability

View People View

(organization chart)

Processing View

Workflow View

Usability View

Business Strategy

and Goals View

Logical Data View Software

Distribution View

Cost View

Business

Objectives View

Business Rules

View

Standards View

Business Events

View

Business

Performance View

System Engineering View

Enterprise Security View

Enterprise Manageability View

Enterprise Quality of Service View

Enterprise Mobility View

OASIS Reference Architecture Foundation for SOA (OASIS SOA RAF)

Participation in a

SOA Ecosystem

view

Realization of a SOA Ecosystem view

Ownership in a

SOA Ecosystem

view

Zachman Enterprise Architecture Framework

executive

viewpoint

architect viewpoint

engineer viewpoint

business

management

viewpoint

enterprise (users)

viewpoint

Extended Enterprise Architecture Framework

Economic set of

viewpoints

Legal set of

viewpoints

Ethical set of

viewpoints

Discretionary set of

viewpoints

Governance

Viewpoint

Security and

Privacy Viewpoints

Department of Defence Architecture Framework (DoDAF)

Chapter 2 – State of the Art

112

All Viewpoint

Project Viewpoint

Standards

Viewpoint

Capability

Viewpoint

Data and

Information

Viewpoint

Operational Viewpoint

Services Viewpoint

Systems Viewpoint

Kruchten’s “4+1”/RUP’s 4 + 1 View Model

Scenarios (Use

Cases View)

Logical view

 Process view

Physical view

Development view

Siemens 4 views method

 Conceptual view Code architecture

view

 Module view

 Execution architecture view

Reference Model for Open Distributed Processing

Enterprise

viewpoint

Information

viewpoint

Computational

viewpoint

Technology

viewpoint

Engineering viewpoint

Our Enterprise Architecture Frameworks research resulted in a number of

conclusions:

 Analysed Enterprise Architecture Frameworks vary in a degree of

prescription from the most prescriptive ones, providing a very detailed

list of viewpoints for each architecture domain, to less prescriptive ones

providing viewpoints for one architecture domain (e.g., EA2F only for

business architecture). In addition to this, the most prescriptive Enterprise

Architecture Framework appeared to be TOGAF (the first section of

Table 2-4) that is based on ISO/IEC 42010:2007 and is widely used in

industrial projects.

 OASIS Reference Architecture Foundation for SOA describes the

foundation upon which SOAs can be built. SOA Reference Architecture

provided in SOA RAF is an abstract realization of SOA, focusing on the

elements and their relationships needed to enable SOA systems to be

used, realized and owned while avoiding reliance on specific concrete

technologies (for more details regarding to SOA RAF see 2.4.4 OASIS

Reference Architecture Foundation for SOA – OASIS SOA RAF). The

Chapter 2 – State of the Art

113

SOA-RAF follows the recommended practice of describing architecture

in terms of views and viewpoints as prescribed in the IEEE 1471:2000.

SOA-RAF provides three main views that are based on the SOA

Ecosystem concept: Participation in a SOA Ecosystem View, Realization

of a SOA Ecosystem View, Ownership in a SOA Ecosystem View. The

SOA-RAF views conform to three viewpoints (named after views). There

is a one-to-one correspondence between viewpoints and views.

Participation in a SOA Ecosystem View and Ownership in a SOA

Ecosystem View fall into the Business Architecture Viewpoints category

as they mainly address the concerns of users, planners, and business

management. The Realization of a SOA Ecosystem View addresses the

concerns of all the groups of persons that directly participate in the

realization of SOA; as a result, this viewpoint falls into/encompasses

Data Architecture, Applications Architecture and Technology

Architecture Viewpoint categories.

 The Zachman Framework is not a methodology for creating the

implementation of software system. Rather, it establishes a common

vocabulary (ontology) and a set of perspectives for defining and

describing an enterprise (2.4.5 Zachman Enterprise Architecture

Framework). The Zachman Framework describes a number of

perspectives: executive, business management, architect, engineer,

technician, enterprise or users. Here, a perspective groups a set of related

concerns or a group of people with related concerns (e.g., architect

perspective groups all concerns of all architects analysing enterprise

existing systems, data architecture or technology standards), as a result, a

perspective can be viewed as a viewpoint for the ease of our comparison.

Executive, business management and enterprise or users

perspectives/viewpoints can be mapped to Business Architecture

Viewpoints category and architect, engineer perspectives/viewpoints to

Data and Information architecture, Applications architecture and

Technology architecture Viewpoint categories (section 3 in Table 2-4).

Chapter 2 – State of the Art

114

 The Extended Enterprise Architecture Framework (E2AF) addresses

three major elements of enterprise architecture in a holistic way: the

element of construction, the element of function, and the element of style.

The style reflects the culture, values, norms, and principles of an

organization (Minoli, 2008). E2AF is based on the concepts described in

IEEE 1471-2000 regarding views and viewpoints and the transformation

of these concepts into the enterprise architecture domain enables another

perspective of viewpoints and views (2.4.7 Extended Enterprise

Architecture Framework). E2AF introduces an Extended Enterprise

Architecture Viewpoint Sets that are themes of viewpoints that can be

determined based on different ways to look at the enterprise and its

environment. Despite the variety of stakeholder groups and their

demands, enterprises’ and stakeholders’ responsibilities can be classified

into six broad sets of extended enterprise architecture viewpoints:

Economic, Legal, Ethical, and Discretionary, Governance, Security and

Privacy. All these sets of viewpoints are of strategic organization

management nature and therefore can be mapped only to Business

Architecture Viewpoints category (the fourth section in Table 2-4).

 The Department of Defence Architecture Framework – DoDAF is an

architecture framework for the United States Department of Defence –

DoD. The framework addresses the military domain. The purpose of

DoDAF is to ascertain that architectural descriptions developed by

various commands, services, and agencies are compatible and

interrelatable (for more details refer to 2.4.8 Department of Defence

Architecture Framework – DoDAF. DoDAF describes nine viewpoints:

All Viewpoint encompasses all architecture category viewpoints,

Capability, Project and Standards Viewpoints fall into Business

Architecture Viewpoints category, Data and Information Viewpoint falls

into Data Architecture Viewpoints category, Operational, Services,

Systems Viewpoints fall into all architecture viewpoints except Business

Architecture Viewpoints category (section 5 in Table 2-4).

Chapter 2 – State of the Art

115

 Kruchten’s “4+1”/RUP’s 4+1 View Model defines four views in order to

describe the design: logical view, process view, implementation view,

deployment view and using a use-case or scenario view (+1) to relate the

design to the context and goals (2.4.9 Kruchten’s “4+1”/RUP’s 4 + 1

View Model). Scenarios/Use Case View falls into Business Architecture

Views category. Logical View can be mapped to Data and Information

and Applications Architecture View categories. Development and

Physical View fall into all architecture views except the Business

Architecture View category. Process view falls into Applications

Architecture View category (section 6 in Table 2-4).

 The Siemens 4 views (S4V) method is based on best architecture

practices for industrial systems. The four views – conceptual, execution,

module and code architecture – separate different engineering concerns,

thus reduce the complexity of the architecture design task (2.4.10

Siemens 4 views method). Conceptual View falls into Data and

Information and Applications Architecture Views categories. Module

View and Execution Architecture View falls into all architecture views

except for the Business Architecture View category. The Code

Architecture View falls into Technology Architecture Views category

(section 7 in Table 2-4).

 Reference Model for Open Distributed Processing provides an

architectural framework for the standardization of open distributed

processing – ODP (2.4.11 Reference Model for Open Distributed

Processing). Enterprise Viewpoint maps to Business Architecture

Viewpoints category. Information Viewpoint maps to Data and

Information Viewpoints category. Computational Viewpoint maps to

Application Architecture Viewpoints category. Engineering Viewpoint

falls into/encompasses Data Architecture, Applications Architecture and

Technology Architecture Viewpoint categories. Technology Viewpoint

maps to Technology Architecture Viewpoints.

Chapter 2 – State of the Art

116

To sum up, the analysis of Enterprise Architecture Frameworks showed that

they vary in degree of prescription from the most prescriptive – TOGAF, to the

least prescriptive ones as Kruchten’s “4+1”/RUP’s 4+1 View Model or the

Siemens 4 views (S4V) method. Some of the frameworks are more of technical

nature like Kruchten’s “4+1”/RUP’s 4+1 View Model, Siemens 4 views

method, but there are also frameworks like the Zachman Enterprise

Architecture Framework and Extended Enterprise Architecture Framework that

are of business strategic nature. In addition to this, there are frameworks like

TOGAF, RM-ODP, DoDAF, and OASIS SOA RAF that discuss both business

and technical architecture specialties. The only framework that offers a

complete methodology for enterprise architecture analysis and design is

TOGAF.

2.5. Summary

In this chapter we analysed the current state of Service-Oriented Requirement

Engineering (SORE) and all other interrelated enterprise and service-oriented

architecture domain areas that could be used for non-functional requirements

conflicts resolution in ESOA systems.

Firstly, the analysis of SORE outlined some its key features: SORE is

reusability-oriented and cumulative, it is domain specific, employs framework-

oriented analysis, model-driven and evaluation-base development, user-centric

analysis and specification and, finally, policy-based computing (2.1 Service-

Oriented Requirement Engineering).

Secondly, analysis highlighted issues and challenges of SORE when

comparing it to traditional RE and CBSD RE that can be grouped into broad

categories such as: Service Specification issues, Service Discovery issues,

Service Knowledge Management, Service Composition issues (2.1 Service-

Oriented Requirement Engineering).

Thirdly, we analysed a few classical RE process models together with service-

oriented RE process models and presented our proposals for characteristics of

Chapter 2 – State of the Art

117

Service-Oriented Requirement Engineering process (detailed suggestions can

be found in section 1 of next Chapter: 3.1 Requirements for Service-Oriented

Requirement Engineering Process)

Fourthly, we analysed service-oriented architecture systems development

methodologies in an attempt to find out how can these help to structure SORE

(detailed analysis and description of methodologies can be found in section 2.2

Overview of Service-Oriented Software Systems’ Development Methodologies

and Approaches). Shortly, we came to the following most important

conclusions:

 SOA methodologies analysed vary in a degree of prescription from the

most prescriptive ones, providing a detailed description of each phase

including activities, steps, inputs, outputs, to the less prescriptive ones

letting the user tailor and adapt the methodology to a concrete project

scope. In addition to this, the most prescriptive SOA methodology

appeared to be IBM RUP/SOMA, which is a proprietary one and widely

used in industrial projects.

 Secondly, most of the SOA methodologies analysed are built upon and

incorporate existing and proven techniques, notations such as OOAD,

CBD, BPM, WSDL, BPEL, UML, meaning that the approaches used

earlier are still applicable and new ones for SOA development are

offered, but a new method for organizing the process of SOA

development is lacking.

 Thirdly, most of the SOA methodologies analysed propose a meet-in-the-

middle strategy for service-oriented analysis, meaning that most of SOA

projects do not start in an empty place and most of them are targeted to

change legacy systems. As a consequence, both business requirements

and existing legacy applications need to be taken into account when

deriving new services.

 Service-oriented analysis and design methodology by Tomas Erl does not

provide concrete steps with detailed descriptions of how to start an SOA

Chapter 2 – State of the Art

118

project, how to perform organization’s business analysis, how to

formulate the vision and the scope of the project, but it provides detailed

service-oriented analysis and design phases descriptions meaning that it

cannot be used from the start of the project and it can be used in

conjunction with other methodology that provides detailed

recommendations how to initiate a SOA project.

 SOUP methodology is still only taking its first steps and is not mature

enough to assure successful SOA development because it lacks

prescription: phases, activities, artefacts, process workers and their roles

are not defined clearly. SOUP methodology has been neither validated in

proof-of-concept case studies nor applied in industrial projects that would

show its practical applicability, also it lacks the adoption of existing

notations such as UML and BPMN that are used in service-oriented

analysis and design.

 SOAF methodology also lacks prescription and adoption of existing

techniques and notations to assure successful SOA development.

 Service-oriented design and development methodology by Papazoglou

provides detailed recommendations for service design and specification,

but as a methodology for SOA analysis and design it lacks prescription. It

does not refine activities in concrete steps, does not provide inputs and

outputs for them.

 Service-oriented analysis and design phases in each methodology result

in a similar list of key deliverables, although each methodology offers a

slight different but at some activities overlapping approach to achieve

them.

 One of the biggest shortcomings of these methodologies is that they

only partially cover System Development Lifecycle – SDLC

Requirements Elicitation, Requirements Analysis, Requirements

Verification, Requirements Specification activities but do not provide

any solutions for Requirements Management, Requirement Change

Chapter 2 – State of the Art

119

Management and Requirement Gathering Process Monitoring. They

mainly provide solutions for service specification and composition

issues. As a result, SOA development methodologies can be used as an

input for creating SORE process structuration but service knowledge

management, discovery and requirement management issues should be

solved by accompanying other resources as well.

Fifthly, we decided to limit the scope of our research from the whole SORE

process to one type of its issues – service specification issues – with the aim to

design a process model for non-functional requirements conflicts resolution

using viewpoints. That forced us to start the analysis of Enterprise Architecture

Frameworks and Standards that use views/viewpoints with the aim to grasp an

idea about the possible set of viewpoints for ESOA. In short, the analysis of

Enterprise Architecture frameworks showed that:

 EA frameworks vary in degree of prescription from the most

prescriptive – TOGAF, to the least prescriptive ones such as Kruchten’s

“4+1”/RUP’s 4+1 View Model or Siemens 4 views (S4V) method.

 Some of the frameworks are more of technical nature like Kruchten’s

“4+1”/RUP’s 4+1 View Model, Siemens 4 views method, but there are

also frameworks like the Zachman Enterprise Architecture Framework,

Extended Enterprise Architecture Framework that are more of business

strategic nature.

 Frameworks like TOGAF, RM-ODP, DoDAF, OASIS SOA RAF

discuss both business and technical architecture specialties.

 The only framework that offers a complete methodology for enterprise

architecture analysis and design is TOGAF.

The results of this chapter have been published in (Svanidzaitė, 2012;

Svanidzaitė, 2014a; Svanidzaitė, 2014b).

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

120

Chapter 3

Spiral Process Model for Capture and

Analysis of Non-Functional

Requirements of Service-Oriented

Enterprise Systems

This chapter presents the main theoretical results of doctoral research.

Section 1 provides requirements for Service-Oriented Requirement

Engineering Process phases. Section 2 analyses and outlines the possible

stakeholders of ESOA Systems. Section 3 discusses the non-functional

requirements (quality characteristics) that will be treated as concerns in our

proposed ESOA viewpoints. Section 4 proposes a spiral process model for

ESOA non-functional requirements capture and analysis. Section 5

summarizes the chapter and presents the discussion of process model

viewpoints mapping to architecture domains and models’ applicability to

use it in conjunction with Service-Oriented Architecture Systems

Development Methodologies.

3.1. Requirements for Service-Oriented Requirement

Engineering Process Phases

Traditionally, the RE process is performed at the beginning of the system

development life cycle. However, as we have seen in the previous chapter,

where traditional RE and SORE approaches were discussed, the elicitation and

documentation of a stable and accurate set of requirements for large and

complex systems can require parallel efforts during all remaining project

iterations meaning that RE process should be incremental, where each

increment is addressed in more detail.

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

121

 In addition to this, a sophisticated RE process should cover at least SDLC RE

(Requirements Elicitation, Requirements Analysis, Requirements Verification,

Requirements Specification, Requirements Management) activities, provide

activities for Business Contextual Analysis, Communication and Requirement

Negotiation, Requirement Change Management and a RE Process Monitoring

Activity that will ensure that all RE process activities follow proper

procedures.

SOA offers a different architectural style of software systems and is a shift

from traditional development paradigms. As a result, it requires a new service-

oriented Requirement Engineering Process that would primary inherit all the

characteristics of a traditional sophisticated RE process (described in Chapter

2.1.2 Classic RE Process and Models) as well as add new ones aimed to solve

SORE challenges. Furthermore, SOA requirements are affected by both service

providers and customers, meaning that providers would try to design services

that can satisfy multiple customers, customers will be looking for services that

accommodate their needs and, if no exact match is found, they will have to

change their processes to conform to the services provided. As a result, SORE

must be capable of complying with all these issues. In addition, SORE should

provide an ability to discover services and workflows either at design time

(static SOA) or at runtime (dynamic SOA). Similarly, the ability to identify the

needed policy specification for execution control and management is also

required and SOA application should be able to discover such policies from the

policy pool either at design time or at runtime. Moreover, SORE should

consider dynamic SOA application rebinding and re-composition by choosing

different services, workflows, collaboration, and system architecture at

runtime.

Having this in mind, we propose a list of Service-oriented Requirements

Engineering Process phases that should be performed in an iterative manner

starting from:

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

122

1. Contextual Analysis Phase where environmental influences (economic,

political and legal) which could affect the successful software system

development are investigated and discussed.

2. Business Process Modelling Phase where business goals and the

business processes that support those goals are identified making a high-

level model of the business processes. An initial set of business

requirements is derived from the organization’s set of business

processes (business model) and the organization’s service repository

(service model).

3. Service Identification Phase that requires a business focused viewpoint,

the involvement of a greater number of stakeholders and a well-

managed service repository. The main focus here is to identify the

services that match the system requirements. On the other hand, a

service-oriented RE not only has to identify what services are needed,

but should also provide assistance to adjust service-oriented software

system to changing business processes and business requirements. As a

result, the Service-oriented RE process should spread across the whole

service-oriented system development cycle and include two more

phases – Service Development and Service-oriented Systems

Development (Galster & Bucherer, 2008).

4. Service Development Phase is aimed at developing software

components for later use as services. This phase should focus on the

determination of requirements for individual services and the

specification of their interfaces to make service available for various

potential users or be used internally in a service-oriented system

development if a service is not going to be published.

5. Service-oriented Systems Development Phase is aimed at the (re)use and

orchestration or choreography of existing services. This phase should

focus on the identification of service candidates, their potential

compositions and workflows from the requirements, so that real services

could be composed during design-time or run-time. A service-oriented

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

123

system should be able to adapt to changing user requirements by

changing dynamically its services, workflows, compositions, web

interfaces etc. This phase should cover service discoverability and

knowledge management activities.

6. Requirements Management and Requirements Change Management

Phase is aimed to propose advanced requirement managing capabilities

as it allows tracking all requirement changes and provides a requirement

change history for requirement traceability, auditing and continuous

improvement issues.

7. Requirement Process Monitoring Phase is an additional requirement

management process phase that allows monitoring and tracking all

previously named SORE phases in an attempt to ensure that they follow

proper procedures and are performed accurately.

3.2. Stakeholders of ESOA Systems

After proposing requirements for Service-Oriented Requirement Engineering

Process phases we decided to limit the scope of our research from the whole

SORE process to two phases – service identification and development and

especially to one type of issues – service specification issues with the aim to

design a process model for non-functional requirements capturing, analysis and

conflicts resolution using viewpoints. As we have seen from Chapter 2.3

Capturing Non-Functional Requirements for ESOA Systems Using

Viewpoints, each viewpoint frames a set of concerns of a group of

stakeholders. In this section, we will investigate the context of ESOA systems

and identify the key stakeholders typically participating in ESOA projects.

In software systems, stakeholders are persons or groups of people who are

supposed to influence the development of the system. In order to address

business requirements efficiently in ESOA development, all the key roles must

be identified as stakeholders from the beginning of the project. ESOA

stakeholders differ from traditional software systems stakeholders in a number

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

124

of ways. Firstly, new service-oriented roles, tasks and responsibilities are

introduced. Secondly, ESOA projects require more governance as ESOA

initiative usually encompasses all enterprise and is not limited to a specific

project. For example, SOA GRM suggests service-oriented governance

stakeholder groups such as ESOA Steering Board, ESOA Governance Board in

addition to Business/IT Steering Group and EA Governance Board stakeholder

groups, which are usually established in traditional software development

projects. Moreover, ESOA initiatives require more experience and supervision.

As a result, a ESOA Centre of Excellence a stakeholder group is introduced by

SOA GRM. Furthermore, a separate Service Development Team is proposed to

develop services by one team and integrate (compose) them by another –

Solutions Development Team.

Stakeholders of a system have concerns in respect of the system-of-interest

considered in relation to its environment. Quality attributes of the ESOA

system in viewpoints can be reflected as concerns. A concern can be held by

one or more stakeholders. Concerns arise throughout the life cycle: from

system needs and requirements, from design choices and from implementation

and operating considerations. The role of an architect is to address these

concerns, by identifying and refining requirements that stakeholders have,

developing viewpoints of an architecture that show how concerns and

requirements are going to be addressed, and by showing the trade-offs that are

going to be made in reconciling the potentially conflicting concerns of

different stakeholders (Sommerville & Sawyer, 1997).

According to the standard (ISO/IEC/IEEE 42010:2011), the following

stakeholder groups should be considered and when applicable, identified in the

architecture description: users of the system, operators of the system, acquirers

of the system, owners of the system, suppliers of the system, developers of the

system, builders of the system, maintainers of the system.

The list of stakeholder groups for ESOA systems can typically include some or

all of the groups as follows (SOA GRM; TOGAF 9.1, 2011):

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

125

Business/IT Steering Group (Sponsorship of all IT Solutions and Services):

CIO – Chief Information Officer, CTO or Chief IT Strategist, Chief Architect,

Business Domain Owners. Key concerns of this group are high-level drivers,

goals and objectives of an enterprise and how these are translated into an

effective process and IT architecture to advance the business. The main

artefacts for this group are a business footprint diagram, a

goal/objective/service diagram, and an enterprise decomposition diagram.

ESOA Steering Board (Sponsorship of ESOA Program and Leadership):

ESOA Chief Architect, ESOA Program Director, ESOA Business Sponsor.

Key concerns of this group are prioritizing, funding and aligning change

activity, an understanding of the project content and technical dependencies

between projects, support portfolio management and decision-making. The

main artefacts for this group are a requirements catalogue, project context

diagram, benefits diagram, business footprint diagram, application

communication diagram, and a functional decomposition diagram.

EA Governance Board (Informing and Monitoring): Chief Enterprise

Architect, Enterprise Architects, Chief ESOA Architect. Key concerns of this

group are ensuring the consistent governance of an enterprise application and

technology assets. The main artefacts for this group are a

process/event/control/product catalogue, application portfolio catalogue,

interface catalogue, technology standards catalogue and technology portfolio

catalogue.

ESOA Centre of Excellence (Definition and Development): Business

Champion, Chief ESOA Solution Architect, Organizational Change

Consultant, Test Strategist, Tool strategist. The key concerns of this group are

the high-level drivers, goals and objectives of an enterprise and how these are

translated into an effective ESOA to advance the business. In addition to this,

this group ensures that ESOA meets the service levels required by an enterprise

to succeed in business. The main artefacts for this group are a business

footprint diagram, goal/objective/service diagram, enterprise decomposition

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

126

diagram, process flow diagram, application communication diagram,

process/application realization diagram, enterprise manageability diagram.

Business Domain Representatives (Scope and Delivery Management):

Program Manager, Business Architect, Process Engineer, Business Subject-

matter Expert. Key concerns of this group are functional aspects of processes

and supporting systems. This can cover the human actors involved in the

system, the user processes involved in the system, the functions required to

support the processes, and the information required to flow in support of the

processes. The main artefacts for this group are business interaction matrix,

actor/role matrix, business service/information diagram, functional

decomposition diagram, product lifecycle diagram, business use-case diagram,

application use-case diagram, application communication diagram, data

entity/business function matrix.

ESOA Governance Board (Informing and Monitoring): ESOA Chief

Architect, Business Architects. Key concerns of this group are quality

characteristics of ESOA such as the modifiability, re-usability and availability

of all services in ESOA, ensuring that the appropriate services are developed

and deployed within the system in an optimal manner. The main artefacts for

this group are a//the platform decomposition diagram, technology standards

catalogue, technology portfolio catalogue, enterprise manageability diagram,

networked computing/hardware diagram, processing diagram, environments

and locations diagram.

Solution Development Team (Execution and Delivery): Project Manager

Business Analysts, Solution Architects, Integration Specialist, Operations

Architect, Developers, Testers, Security Architect. The key concerns of this

group are refining business requirements designed by business domain

representatives group, preparing detailed requirements for Service

Development Team, integrating their developed services and testing them. The

main artefacts for this group are business interaction matrix, actor/role matrix,

business service/information diagram, functional decomposition diagram,

product lifecycle diagram, business use-case diagram, application use-case

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

127

diagram, application communication diagram, data entity/business function

matrix, platform decomposition diagram, networked computing/hardware

diagram, software distribution diagram.

Service Development Team (Execution and Delivery): Project Manager

Business Analysts, Service Architects, Integration Specialist, Operations

Architect, Developers, Testers, Security Architects. The key concerns of this

group are refining service requirements designed by solution development

group, preparing detailed requirements (if required), developing services and

testing them. The main artefacts for this group are an actor/role matrix,

business service/information diagram, functional decomposition diagram,

product lifecycle diagram, business use-case diagram, application use-case

diagram, application communication diagram, data entity/business function

matrix, service description, platform decomposition diagram, networked

computing/hardware diagram, software distribution diagram.

IT Operations (Execution and Delivery): Database Administrator, Network

Infrastructure Architect, System Administrator, Service Operations Manager.

The key concerns of this group are deploying ESOA, ensuring that it is

available for use and accessible, ensuring that the appropriate communication

and networking services are developed and deployed within ESOA in an

optimal manner. The main artefacts for this group are a platform

decomposition diagram, technology standards catalogue, technology portfolio

catalogue, enterprise manageability diagram, networked computing/hardware

diagram, processing diagram, environments and locations diagram.

ESOA Consumers (Production): Users that directly interact with ESOA,

external systems, applications, services. The key concerns of this group are

usability and performance of ESOA. The main artefacts for this group are

ESOA change requests.

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

128

Figure 3-1. Stakeholders of ESOA System - Onion Diagram

Figure 3-1 depicts the members of each stakeholder group in a visual way

graded according their impact to ESOA. It is up for the enterprise to identify

which of the above described ESOA stakeholder groups will exist on its ESOA

initiative. Every identified stakeholder group will have its own concerns

regarding non-functional requirements of ESOA that will be framed by ESOA

viewpoint. The composition of ESOA viewpoints is discussed in section 3.4.1

Composition of ESOA Viewpoints.

3.3. Non-Functional Requirements for ESOA Systems

The next step to advance on defining ESOA Viewpoints is to describe ESOA

non-functional requirements that will be treated as concerns of stakeholder

groups (defined in the section above).

Requirements for a software system are normally divided into functional and

non-functional requirements. Functional requirements focus on to what extent

the software system actually does what it is expected to do. These are the

requirements that usually receive the greatest attention. Non-functional

requirements, on the other hand, are said to be the constraints to the system

functions and are less obvious and harder to identify. As a result, these non-

functional requirements or so-called “-ilities” receive less attention and thus

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

129

become more critical. Despite this, or more likely, because of this, the non-

functional attributes describing the technical aspects of software systems have

been defined by multiple different organisations and companies, such as the

International Standards Organization - ISO and International Electrotechnical

Commission – IEC with the report ISO/IEC 9126 (ISO/IEC 9126:2000) later

revised by ISO/IEC 25010:2011 (ISO/IEC 25010:2011), IBM with

CUPRIMDSO (Kan, 2002) and Hewlett Packard with FURPS (Grady, 1987).

Non-functional requirements for ESOA systems are inherited from traditional

software systems. The main difference lies in the definition of quality attribute

and its metrics. In traditional software systems requirements engineering

quality attributes are defined in a more generic way and usually concern the

characteristics of the whole system. For example, availability non-functional

requirement in standard (ISO/IEC 25010:2011) is defined as a “degree to

which a system, product or component is operational and accessible when

required for use”. Some of the metrics for this attribute are mean time between

failure (MTBF) and mean time to recover (MTTR). On the contrary, in ESOA

world quality attributes can be defined in a more specific way and are limited

to measuring the characteristic of a specific service. The same availability

attribute in (O'Brien et al., 2005; Choi et al., 2007) is defined as a “quality

attribute that measures the degree to which a service is accessible and

operational when service consumer requests for use”. The metrics for this

attribute in ESOA suggested by (Choi et al., 2007) are the availability of

business process (ABP) and the availability of web service (AWS). Generally,

in ESOA the quality of service is hidden from service consumers due to the

black-box nature of ESOA. In a service composition, the low quality of an

atomic service may cause the quality degradation of all its successors in a

service composition. As a result, non-functional requirements relate to the

desired characteristics of a given service running independently and also while

being integrated with other services at run-time.

The choice to use an ESOA approach depends on several factors including the

architecture’s ultimate ability to meet functional and non-functional

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

130

requirements. Usually, architecture needs to satisfy many non-functional

requirements in order to achieve enterprise business goals. Researches by

(O'Brien et al., 2005; Choi et al., 2007) suggest defining ESOA non-functional

requirements by identifying unique features (principles) of ESOA such as loose

coupling, well-defined service contract, standard-based, abstraction,

reusability, discoverability, composability, adaptability, service interface level

abstraction and mapping those features to quality attributes. In almost all cases,

trade-offs have to be made between these requirements. As a consequence,

each of the ESOA stakeholder group (defined in the section above) will be

concerned in one or more quality attributes provided in the sections below

(O'Brien et al., 2005; Choi et al., 2007).

3.3.1. Availability

This quality attribute measures the degree to which a service is accessible and

operational when service consumer requests for use (O'Brien et al., 2005).

Availability of services both from the user’s and provider’s perspective is a

concern for the success of ESOA. From the services user’s perspective, if the

system relies on a set of services being available in order to meet its functional

requirements and one of those services becomes unavailable, it could have dire

consequences on ESOA. From the service provider’s perspective, in order for

the services to be used, they must be available when needed. Otherwise, the

provider’s finances and reputation could be impacted.

Service providers usually agree to provide the service users a set of services

and to include each service in an SLA. The SLA defines the contract for the

provision of the service with details such as who provides the service, the

guaranteed availability of the service, the escalation process (which is followed

if the service is not handled to the service user’s satisfaction), and the penalties

to the provider if the service level is not met. Usually, both the provider and

user offer some form of capability for monitoring service availability.

Furthermore, service users who build systems that rely on particular services

being available must build contingencies (such as exception handling) into

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

131

those systems, in case the services become unavailable. For example, the

application could find an alternative provider for a service.

Research by (Choi et al., 2007) suggests two metrics for availability of service

depending on service type.

 For an atomic service that is realized as web service, the metric is

Availability of Web Service – AWS. It can be calculated using the

following formula:

𝐴𝑊𝑆 =
𝑊𝑆𝑂𝑇

𝑊𝑆𝑂𝑇 + 𝑊𝑆𝑅𝑇

WSOT means web service operating time which is derived from the web

service starting time and the web service ending time. WSRT means web

service repairing time which is derived from the web service failed time and

the web service recovered time. The range of AWS is 0...1 where a higher value

indicates higher availability of the web service.

 For a composite service that is realized as business process, the metric

is Availability of Business Process – ABP. It can be calculated using the

following formula:

𝐴𝐵𝑃 =
𝐵𝑃𝑂𝑇

𝐵𝑃𝑂𝑇 + 𝐵𝑃𝑅𝑇

BPOT means business process operating time which is derived from the

business process starting time and the business process ending time. BPRT

means business process repairing time which is derived from the business

process failed time and the business process recovered time. The range of ABP

is 0...1 where a higher value indicates higher availability of the business

process.

3.3.2. Performance

This quality attribute measures the capability of the service to provide

appropriate response and processing times and throughput rates when

performing its function, under stated conditions (O'Brien et al., 2005).

Performance is an important factor not only for a service consumer but also for

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

132

a service provider because services are generally located in a distributed

computing environment (in ESOA we still can have integrations with third-

party services) and can have heavy performance to interoperate between

heterogeneous services. As a result, this quality attribute affects service

selection and is an essential criterion to assess conformance to service level

agreement.

In general, this quality attribute is related to response time (how long it takes to

process a request), throughput (how many requests overall can be processed

per unit of time), or timeliness (ability to meet deadlines, i.e., to process a

request in a deterministic and acceptable amount of time).

Research by (Choi et al., 2007) suggests several metrics for measuring service

performance.

Service Response Time – SRT metric is an elapsed time between the end of a

request to a service and the beginning of the service’s response. It can be

calculated as:

SRT = Time when Service Consumer finishes sending request to the Service –

Time when Service Consumer starts receiving response from the Service.

This metric can be applied to both the atomic service and composite service.

The range of SRT is SRT > 0, where a lower value indicates higher response

time of the service.

Furthermore, SRT can be broken down into four components: transmission

time, setup time, waiting time, and processing time.

1. Transmission time is the time spent for communicating over the

network;

2. Setup time is the time spent for setting up the service instance to be

executed. The setup time can be further broken down into XML message

processing time, discovery time, adaptation time, and composition time.

a. XML message processing time is the time spent in parsing,

validating, and transforming XML document;

b. Discovery time is the time spent for dynamically finding the

required services;

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

133

c. Adaptation time is the time spent for dynamically adapting the

service to satisfy the consumer’s expectation;

d. Composition time is the time spent for dynamically composing a

set of atomic services.

3. Waiting time is the time spent for a service instance to wait in the ready

queue before processing;

4. Processing time is the time a service instance spends performing its

intended activity.

Breaking SRT into various pieces is important as it gives a more detailed view

to be used in performance analysis. Each piece corresponds to an important

attribute that needs to be analysed and should not be overlooked.

Throughput represents the number of requests served at a given period of time.

TP(SRV) for the throughput of a service can be calculated using the following

formula:

𝑇𝑃 (𝑆𝑅𝑉) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑈𝑛𝑖𝑡 𝑜𝑓 𝑇𝑖𝑚𝑒 (𝑒. 𝑔. 𝑠𝑒𝑐𝑜𝑛𝑑, 𝑚𝑖𝑛𝑢𝑡𝑒, ℎ𝑜𝑢𝑟)

This metric can be applied to both the atomic service and composite service.

The value range of the metric is TP(SRV) > 0. The higher the value is, the

better the performance.

3.3.3. Reliability

This quality attribute measures the ability of a service to keep operating with

specified level of performance over time (O'Brien et al., 2005). The reason for

defining this attribute is that services are reusable and are used in various

compositions. A service composition which is composed of several services

operating in heterogonous and distributed computing environment, one atomic

service may affect the reliability of the whole service composition by

unexpected faults or failures.

There are several aspects of reliability, particularly the reliability of the

messages that are exchanged between the services, and the reliability of the

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

134

services themselves. Applications developed by different organizations may

have different reliability requirements for the same set of services. And an

application that operates in different environments may have different

reliability requirements in each one.

Services are often made available over a network with possibly unreliable

communication channels. Connections break and messages fail to get delivered

or are delivered more than once or in the wrong sequence. Although techniques

for ensuring the reliable delivery of messages are reasonably well understood

and available in some messaging middleware products today, messaging

reliability is still a problem. If reliability is addressed by service developers

who are incorporating reliability techniques directly into the services and

application, there is no guarantee that they will make consistent choices about

what approach to adopt. The outcome might not guarantee end-to-end reliable

messaging. Even in cases in which the application developers defer dealing

with the reliable messaging to messaging middleware, different middleware

products from different vendors do not necessarily offer a consistent approach

to dealing with the problem. The use of middleware from different vendors

might preclude reliable message exchange between applications and services

that are using different message-oriented middleware (Weerawarana et al,

2005).

Service reliability means the service either does not fail or reports failure to the

service user. Service reliability also means making sure that the service is

obtained from a reliable provider so that a level of trust in the service’s

accuracy and reliability can be established. Issues that have to be dealt with

include managing the transactional context, for example, dealing with failures

or some form of compensation if the service fails. In some cases, brokers or

intermediaries may link the service users and providers. As a result, these

issues may be handled by third parties.

ESOA can guarantee a high level of reliability through the architecture i.e.

through its Enterprise Service Bus – ESB. ESB provides reliability through its

good capability of assuring that the requests from service consumers are

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

135

transferred to providers, i.e. assuring the transportation of messaging

(Bieberstein et al, 2006).

Research by (Choi et al., 2007) suggests several metrics for measuring service

reliability:

 Reliable Response Ratio (RRR) – a metric based on discrete time

modelling approach. Metric measures the ratio of how many responses

are reliable among the total request. It can be calculated with the

following formula:

𝑅𝑅𝑅 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑙𝑖𝑎𝑏𝑙𝑒 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠

The value range of RRR is 0...1. The higher value indicates a better

reliable response ratio.

 Service Failure Ratio (SFR) and Mean Time Between Service Failure –

MTBF(SRV) – metrics based on continuous-time modelling approach.

SFR metric measures the ratio of how many services failed during a

specific time interval. It can be calculated with the following formula:

𝑆𝐹𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑

The value range of SFR is SFR ≥ 0. The lower value indicates a better

reliable service.

MTBF(SRV) metric indicates the average time between consecutive

service failures. It can be calculated with the following formula:

𝑀𝑇𝐵𝐹 (𝑆𝑅𝑉) =
𝑆𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑖𝑚𝑒 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠

The value range of this metric is MTBF(SRV) > 0 where the higher

value indicates better reliability.

3.3.4. Usability

This quality attribute measures the capability of a service to be effectively

understood, learned and used by the service consumer (O'Brien et al., 2005).

The rationale for defining this quality attribute is that if the service provides a

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

136

high degree of well-defined service contract then the service consumers can

more effectively understand and use the services. And since the services are

black box in nature to the service consumer the service contract is the only

mean to understand services.

Research by (Choi et al., 2007) suggests two metrics for measuring service

usability:

 Syntactic Completeness of Service Interface (SynCSI)

𝑆𝑦𝑛𝐶𝑆𝐼 =
𝑊𝑒𝑙𝑙 𝐷𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 𝑆𝑦𝑛𝑡𝑎𝑐𝑡𝑖𝑐 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑦𝑛𝑡𝑎𝑐𝑡𝑖𝑐 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑊𝑆𝐷𝐿

The syntactic elements indicate contents of tags related to signature of

service operations. Well described means the contents that are easily

and concisely described. The value range of SynCSI is 0…1. The higher

value indicates a better usable ratio.

 Semantic Completeness of Service Interface (SemCSI)

𝑆𝑒𝑚𝐶𝑆𝐼 =
𝑊𝑒𝑙𝑙 𝐷𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑊𝑆𝐷𝐿

The semantic elements indicate contents of tags related to semantic

information of service operation such as pre condition, post condition,

output constraints, effect, service category, and description of service

operation. The value range of SemCSI is 0…1. The higher value

indicates a better usable ratio.

The completeness in metrics means how many service operations are well

described in the service interface.

Furthermore, we can acquire the value of usability by combining the metrics,

SynCSI and SemSCI with Completeness of Service Interface (CSI) metric.

𝐶𝑆𝐼 = 𝑊𝑆𝑦𝑛 × 𝑆𝑦𝑛𝐶𝑆𝐼 + 𝑊𝑆𝑒𝑚 × 𝑆𝑒𝑚𝐶𝑆𝐼

WSyn is the weight for SynCSI and WSem is the weight for SemCSI. The sum of

the weights is 1.

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

137

3.3.5. Discoverability

This quality attribute measures the capability of the service to be easily,

accurately, and suitably found at both design time and runtime for the required

service specification (O'Brien et al., 2005). In ESOA, services are located in

loosely coupled environment and the services should be addressable over the

network. Consumers find services from the service registry to be provided with

their expected functionality. And for the dynamic composition, services should

be discoverable at runtime. Otherwise, goals achieved through dynamic

composition in SOA may not be offered.

Research by (Choi et al., 2007) suggests several metrics for measuring service

discoverability. Discoverability of the service itself can be measured by the

CSI usability metric defined above since the service has to be well described to

be effectively discovered. However, discoverability of a service highly

depends on the capability of a discovery agent. Therefore, we define two

additional metrics to measure discoverability of the discovery agent:

 Interface Find Ratio – IFR measures the ratio of how many interfaces

are discovered. It can be calculated with the following formula:

𝐼𝐹𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠 𝑡𝑜 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟

The numerator is the number of interfaces discovered that syntactically

matches to the required interfaces. The denominator is the total number of

interfaces that the consumer expects to discover. The value range of IFR is

0…1 where the higher value indicates higher discoverability.

 Interface Find Accuracy – IFA measures the ratio of how many well

matched interfaces are discovered. This metric can be calculated with

the following formula:

𝐼𝐹𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑎𝑡𝑒 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

138

The numerator is the number of interfaces that matches not only syntactically

but also semantically. The value range of IFA is 0..1 where the higher value

indicates higher discoverability.

 DisCoverability – DC is metric derived by multiplying IFR and IFA

that measures syntactic and semantic interface discoverability.

𝐷𝐶 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑎𝑡𝑒 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠 𝑡𝑜 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟

The value range of DC is 0…1 where the higher value indicates higher

discoverability.

3.3.6. Adaptability

This quality attribute measures the capability of the service to be feasibly

adapted at both design time and runtime for different consumer’s preference

and service context information (O'Brien et al., 2005). The rationale for

defining this attribute is that reusing service is one of the main advantages that

ESOA delivers. For the services to be reused widely, a published service

should be adaptable to various service requirements and contexts.

Adaptability means the ease with which a system may be changed to fit

changed requirements. Adaptability for a business means it can adapt quickly

to new opportunities and potential competitive threats, which implies that the

application development and maintenance groups within the business can

quickly change the existing systems. The use of an ESOA approach brings

various benefits to the ability to adapt by allowing the following:

 Services can be built and deployed using the principles of location and

transport independence and declarative policy. As a result, service users

can dynamically discover and negotiate the method to be used for

binding and the behaviour to be exhibited for interacting with a service.

If the service needs to adapt, this discovery and binding should be

automated and not require a change in the application.

 Business processes that are modelled using services can be adapted,

and those services can be combined in new and different ways.

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

139

Additional services can be added, or adapted services can be swapped

in where needed. What will require changes is the underlying

application using these services.

 Services are being developed that must operate on different platforms,

in different computing environments. These services must be

“configurable” to the environment in which they will reside – a

significant adaptation challenge that requires “spiral” development with

incremental deliveries to particular platforms, interoperability between

different platforms, and backwards compatibility to multiple previous

releases. To achieve adaptability, the services will need to be managed

and monitored properly as a single cohesive solution, and the

interaction between the service and the underlying infrastructure will

have to be managed.

Adaptability of a service is measured in terms of internal adaptability and

external adaptability (Choi et al, 2007).

 Internal adaptability measures whether the internal service variability

can be well adapted as the service consumer’s need. Let n be the

number of variation points – VPs in a service. For each VP, the variant

that the service consumer expects may be prepared or not. We indicate

this property of a VP as Variant Preparedness, which can have “yes” or

“no” value. If the default value of a VP satisfies the consumer’s

expectation, we also regard it as a prepared VP. A metric Variant

Coverage – VC measures how many VPs can be adapted as the

consumer wants them to be.

𝑉𝐶 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑑𝑎𝑝𝑡𝑒𝑑 𝑉𝑃𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑃𝑠

The range of VC is 0...1 where the higher value indicates higher

internal adaptability.

 External adaptability measures if the external service mismatch is well

resolved to meet the service consumer’s requirement. Let m to be the

number of mismatches for a service. For each mismatch, the mismatch

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

140

may be resolved or not. We indicate this as a Mismatch Resolvedness,

which can have “yes” or “no” value. A metric Mismatch Resolution

Rate – MR measures how many mismatches can be resolved.

𝑀𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑑 𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑠

The range of MR is 0...1 where the higher value indicates higher

external adaptability.

 Adaptability – AD – metric derived by multiplying VC and MR that

measures internal and external service adaptability.

𝐴 = 𝑊𝑉𝐶 × 𝑉𝐶 + 𝑊𝑀𝑅 × 𝑀𝑅

WVC and WMR are the weights for VC and MR. The sum of weights is 1.

The value of each weight can be decided in the range of 0...1 according

to the adaptation mechanism used in the service.

3.3.7. Composability

This quality attribute measures the capability of a service to be well composed

to other services or a service composition to operate successfully by

composing atomic services (O'Brien et al., 2005). The reason for defining this

attribute is that one of the major goals of ESOA is to rapidly deliver the user’s

requirement by just composing the published services at runtime. And if the

composability is high, it turns out to be the services have high reusability, have

well defined service contract and are based on standard.

Composability is a composite attribute that is derived from other quality

attributes (Figure 3–2).

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

141

Figure 3-2. Sub-Attributes of Composability (Choi et al, 2007)

Let there to be a composite service that consists of n atomic services and m

relationships among atomic services. Then composability of a composite

service is derived from the availability, discoverability, and adaptability of the

atomic services, validity and adaptability of the composition rule, and

interoperability of the relationships among atomic services (Choi et al, 2007).

Each atomic service composing the composite service has to be available,

some atomic services should be newly discoverable, and some should be

adaptable to be well composed into a composite service. These relationships

are represented as the aggregation relationship and multiplicities in the figure.

Through the atomic service evaluation, it can be identified where the

composition problem has occurred due to the operability of the services

participating in the composition. As the atomic services are composed

dynamically at runtime, composition rule defines how to configure the

services. This composition rule is defined for each dynamically configured

service composition. Therefore, composition rule should be valid and

adaptable for successful composition. These are measured by the following

metrics:

 Validity of Composition Rule – VCR. This metric can be calculated

using the following formula:

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

142

𝑉𝐶𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑎𝑙𝑖𝑑 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠

The value range of the metric is 0...1 where the higher value indicates

better validity that leads to higher composability.

 Adaptability of Composition Rule – ACR. This metric can be calculated

using the following formula:

𝐴𝐶𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑑𝑎𝑝𝑡𝑒𝑑 𝑉𝑃𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑃𝑠 𝑖𝑛 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑅𝑢𝑙𝑒

The value range of the metric is 0…1 where the higher value indicates

higher adaptability. However, higher adaptability does not indicate

higher composability due to the complexity problem.

 InterOperability – IO measures the ability of a service to interact with

other services without incompatibility. Therefore, interoperability

measures how often data can be exchanged successfully between

adjacent services.

𝐼𝑂 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝐷𝑎𝑡𝑎 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑎𝑡𝑎 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑠

The value range of the metric is 0…1 where the higher value indicates

higher interoperability that leads to higher composability.

 ComPosability – CP can be acquired by combining these metrics as the

following:

𝐶𝑃 = 𝑊𝐴𝑆 ×
∑ (𝑊𝐴𝑊𝑆 × 𝐴𝑊𝑆𝑖 + 𝐴𝐷𝐶 × 𝐷𝐶𝑖 + 𝐴𝐴𝐷 × 𝐴𝐷𝑖)𝑛

𝑖=1

𝑛

+ 𝑊𝐶𝑅 × (𝑊𝑣𝑎𝑙 × 𝑉𝐶𝑅 + 𝑊 𝑎𝑑𝑎𝑝𝑡 × 𝐴𝐶𝑅) + 𝑊𝑅

×
∑ 𝐼𝑂𝑗

𝑛
𝑗=1

𝑚

Where n is the number of atomic services composing the composite service

and m is the number of relationships. And there is one composition rule for a

service composition. WAWS, ADC, and AAD are the weights for AWS, DC, and AD

of the services participating in the composition. Wval and WAdapt are the weights

for VCR and ACR where the sum is 1. They can be decided by the evaluator

according to the need of adaptation of the composition rule. WAS, WCR and WR

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

143

are the weights for the properties of atomic services, composition rule, and

relationships among atomic services. The value range of CP is 0…1 where the

higher value indicates better composability.

3.3.8. Interoperability

This quality attribute refers to the ability of a collection of communicating

entities to share specific information and operate on it according to an agreed-

upon operational semantics (O'Brien et al., 2005). Increased interoperability is

the most prominent benefit of ESOA, especially when we consider Web

services technology. Distributed systems have been developed using various

languages and platforms that vary from portable devices to mainframes. They

have used technologies such as the Common Object Request Broker

Architecture – CORBA (WEB, m), Remote Method Invocation – RMI (WEB,

n), Distributed Component Object Model – DCOM (WEB, o), Remote

Procedure Call - RPC (WEB, p), and sockets for communication. However,

until the advent of Web services, there was no standard communication

protocol or data format that could be used effectively by systems using

different technologies to interoperate on a worldwide scale.

Today, mainstream development platforms such as Microsoft .NET (WEB, r)

and Oracle Java 2 Enterprise Edition – J2EE (WEB, s) – provide frameworks

to implement Web services. Components implemented in disparate platforms

using different languages can interact transparently through a call-and-return

mechanism. That is possible because Web services define the interface format

and communication protocols but do not restrict the implementation language

or platform. However, the promise of cross-vendor and cross-platform

interoperability in Web services begins to fall short when services start to use

features beyond the basic Web Service Definition Language – WSDL (WEB, t)

and Simple Object Access Protocol – SOAP (WEB, u) standards. Over the last

few years, a myriad of Web services standards (e.g., Web Services Business

Process Execution Language – WS-BPEL (WEB, v), WS-Security (WEB, w),

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

144

and ebXML (WEB, x)) has emerged from a number of standards bodies. Web

services development platforms do not implement the same standards and the

same versions, so interoperability may not be as seamless in practice as it is in

theory.

Recognizing that reality, the Web Services Interoperability Organization –

WS-I (WEB, y) was chartered in 2002 to promote the interoperability of Web

services across platforms, applications, and programming languages. WS-I

(WEB, z) publishes profiles that prescribe adherence to a group of specific

versions of well-defined standards. Another goal of WS-I is to provide tools to

certify conformance with those profiles. The WS-I initiative has grabbed

considerable attention in the industry through its 130 (approximately) member

organizations, including Web services platform vendors (e.g., IBM, Microsoft,

BEA, Oracle, and Sun). Many Web service products were updated in recent

years because of this initiative. WS-I (WEB, z) has created a few profiles and

other deliverables but still has a lot of work to do to cover all layers and

standards in the Web services stack. Since the major benefit of Web services is

interoperability, the success of this initiative will determine the success of Web

services. The past has shown that the existence of published standards is not

sufficient to ensure interoperability across platforms from different vendors.

3.3.9. Security

This quality attribute denotes different things with respect to software systems.

In general, it is associated with three principles: confidentiality, authenticity,

information integrity (O'Brien et al., 2005). Security is a major concern for

SOA as well as ESOA and Web services. Architects should pay attention to

some characteristics that are inherent to (ESOA and directly impact security:

• Messages often contain data in text format (e.g., XML), and, even worse,

metadata is embedded. That means that someone intercepting a message

may clearly see a 16-digit number as well as metadata revealing that the

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

145

number is the value of a credit card field. Encryption must be in place to

preserve privacy.

• A system built using ESOA approach may encompass services provided

by third-party organizations. Trust must be built into the security of such

external services. The identity of the external service provider has to be

authenticated, but sometimes authentication is not enough. Building trust

may involve other concerns. For instance, if the system sends classified

data to the external service, the data should be protected not only when it

is transmitted but also when it is stored.

• Services may have access restrictions based on the identity of the service

user. In that case, an authorization mechanism should be in place that

allows configuring and enforcing permissions to be set to specific users,

groups of users, or roles. An SOA solution may rely on looking up

services in a public directory. It is important to ensure that information in

the directory is up to date and was added by valid publishers. Web

services solutions have been addressing some of the security concerns at

the network infrastructure level. For example, Web servers that host Web

services can be configured to use Secure Sockets Layers – SSLs (WEB,

aa) and digital certificates to encrypt data transmission and authenticate

the communicating parties. In intranet solutions, Kerberos (WEB, ab) is

an option – users receive a ticket for access to each Web service they have

permission to use. However, these solutions merely help to protect point-

to-point interaction: a comprehensive mechanism that covers end-to-end

security is required.

In 2002, IBM, Microsoft, and VeriSign proposed Web Services Security

(WEB, w) as a comprehensive security model for Web services. The WS-

Security specification was submitted to OASIS, and the first version of the

standard was approved in 2004 (WEB, w). WS-Security defines a standard set

of SOAP extensions that can be used to provide message content integrity and

confidentiality. It accommodates a variety of security models and encryption

technologies and is extensible to support multiple security token formats.

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

146

Two other proposed standards are also relevant to the Web services and

security concerns: Security Assertions Markup Language – SAML (WEB, ac)

and eXtensible Access Control Markup Language – XACML (WEB, ad).

SAML provides a standard, XML-based format to exchange security

information between different security agents over the Internet. It allows

services to exchange authentication, authorization, and attribute information

without organizations and their partners having to modify their current security

solutions (McGovern, 2003). XACML complements SAML by providing a

language to specify role-based, access control rules in a declarative format.

One of the goals of security is to maintain information integrity. One major

challenge in SOAs and Web Services is to maintain data integrity during

failures and concurrent access. Transaction management is more difficult in

such a distributed, loosely coupled context for two reasons. First, services are

usually implemented in a stand-alone fashion, and transactions begin and end

within the service. Therefore, transactions that involve the composition of

services require either nested transactions or a redesign of transaction

demarcation. Second, agents performing data changes (i.e., the services) are

distributed, and, hence, a distributed transaction model is needed. Because

services may be implemented in different languages and platforms, the

implementation of distributed transactions – using two-phase commit for

example – requires compatible transaction agents in all end points that interact

using a standard format. Two different standards have been proposed that

address transactions across Web services: Business Transactions Protocol –

BTP (WEB, ae) and Web Services Transactions WS-Tx (WEB, af).

3.3.10. Scalability

This quality attribute refers to the ability of SOA together with ESOA to

function well (without degradation of other quality attributes) when the system

is changed in size or in volume in order to meet users’ needs (O'Brien et al.,

2005). Very little has been done to address the scalability issues related to

SOA. One of the major issues in scalability is the capacity of the site where the

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

147

services are located to accommodate an increasing number of service users

without a degradation of the services’ performance as already described.

Options for solving scalability problems include:

• Horizontal scalability: distributing the workload across more computers.

Doing so may mean adding an additional tier or more service sites.

• Vertical scalability. upgrading to more powerful hardware for the service

site.

If addressing scalability poses potential performance issues, the source of the

delays must be identified. The performance of the system must be studied, and

performance tests must be built. For example, what happens if the system

needs to deal with 10, 1,000, or 10,000 service users?

3.3.11. Extensibility

This quality attribute refers to an ease with which the service capabilities can

be extended without affecting other services or parts of the system (O'Brien et

al., 2005). Extensibility for SOA and ESOA is important because the business

environment in which a software system lives is continually changing and

evolving. These changes in the environment will mean changes in the software

system, service users, and services providers and the messages exchanged

among them. Extending SOA means making changes that include extending:

 Extending architecture to add additional services. SOA allows easy

addition of new services through loose coupling and the use of various

Web standards. Services can be created and published by the providers

and discovered by service users. Service users must update their

application code to incorporate these new services.

 Extending existing services without changing the interfaces. As

services are loosely coupled, adding new capabilities to them that do

not require a change in the service interface can be done without

affecting other services. However, an application may require changes

if these new capabilities were already incorporated into the application

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

148

(i.e., the functionality for these capabilities was either included in the

application or handled by additional services).

 Extending existing services with changes to interfaces. Adding new

capabilities to a service – the ones that require changes to the service

interface may have a major impact on the success of ESOA. Usually, an

application learns about a service interface by reading information

provided by the directory provider, and the interface may change over

time. The service user application must be able to handle any changes

to the interface.

A major obstacle to extensibility is the service interface messages. If interface

messages are not extensible, users and providers will be locked into one

particular version of the interface to a service. Moreover, messages must be

written in a format, structure, and vocabulary understood by all parties.

Limiting the vocabulary and structure of messages is a necessity for any

efficient communication. The more restricted the message is, the easier it is to

understand although it comes at the expense of reduced extensibility.

Restriction and extensibility are deeply entwined. Both are needed and

increasing one comes at the expense of reducing the other. Trade-offs between

them are necessary in order to achieve the right balance.

3.3.12. Testability

Testability is the degree to which a system or service facilitates the

establishment of test criteria and the performance of tests to determine whether

those criteria have been met (O'Brien et al., 2005). The following list of

reasons creates a complexity on testing ESOA:

 Interactions may be required between distributed pieces of the system

(i.e., pieces that run on different machines across a network).

 The organization may not be able to access the service source code, so it

can’t identify the test cases required to thoroughly test them. Usually,

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

149

this problem occurs with third party services are external to the

organization.

 Services may be discovered at runtime, so it may be impossible to

predict which service or set of services is actually used by a system until

the system is executing. In addition to this, different services from

different providers may be used at various times.

If a problem occurs when the system is running, it may be difficult to find the

source of the problem. The problem may be: within the application, within a

service that is being used by the application, within the infrastructure that is

used by either the application or the service due to the load on the platform

where the service executes, within the discovery agent that locates the service.

There are many potential sources for the problem, and trying to replicate it in a

test environment may be extremely challenging, if not impossible. Service

providers may need to build additional services and infrastructure that support

the testing and debugging processes.

3.3.13. Auditability

Auditability is the quality attribute representing the degree to which an

application or component keeps sufficiently adequate records to support

financial or legal audits (O'Brien et al., 2005). With the ever-increasing need

for systems to comply with business and regulatory legislation, the ability to

audit a system for compliance is an important consideration. However, the

flexibility offered by SOA and ESOA may make such audits difficult. If an

application using an SOA approach dynamically uses external services, it may

be difficult to track which services are actually used. If a third-party service

uses additional services (i.e., is composed of other services) to carry out its

functionality, the audit process becomes even more complex.

A well-defined model for an end-to-end audit, logging, and reporting of

distributed service requests is needed (Gall, 2003). An authorization decision

must be traceable retroactively to the true identity of the entity accessing the

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

150

service. One way of achieving the end-to-end auditability is to include the

business-level-identifying metadata in each SOAP header so that each SOAP

agent can capture the metadata in its audit logs. Tracing identity end to end

would consist of tracing through the SOAP node audit log to discover each

identity transformation. This means that various service providers and users

will need to use standards that allow their services to be audited.

3.3.14. Modifiability

Modifiability is the ability to make changes to a system quickly and cost-

effectively (Clements, 2002; O'Brien et al, 2005). According to research by

(Bass et al, 1998), modifiability can be regarded as the attribute with the

closest connection to architecture. This is mainly because the attribute focuses

on to what extent certain attributes within the architecture can be modified. In

other words, modifiability is not about the change of the overall architecture,

but rather the change of processes, products, technologies, behaviour (rules).

Modifiability is about (Bass et al, 1998):

 Extending or changing capabilities, i.e. new features are added and/or

old ones are being repaired or simply enhanced.

 Deleting unwanted capabilities involves reducing the range of the

system by deleting functions that are not needed.

 Adapting to new operating environments mostly concerns the

introduction of new hardware, but also different business conditions.

 Restructuring concerns, for example, how to change the architecture

from component-oriented to object-oriented (OO).

SOA and ESOA promote loose coupling between service consumers and

providers. Services are self-contained, modular, and accessed via cohesive

interfaces. These characteristics contribute to the creation of loosely coupled

ESOA where there are few, well known dependencies between services. That

fact tends to reduce the cost of modifying the implementation of services,

hence increasing the system’s modifiability. However, if service interfaces

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

151

need to be changed, the change may create problems because once service

interfaces are published and used by applications, it can be difficult to identify

who is using a service and what impact changing its interface will have.

3.3.15. Operability and Deployability

Typical data centres are complex, heterogeneous collections of hardware,

middleware, and software from multiple vendors. These centres are

increasingly difficult to create and maintain. The projected growth trends for

data centres show that the complexity of operating these centres may outgrow

the capability of manually managing them. Since these data centres house the

service providers, SOA must be able to operate in an increasingly self-healing

and automated operations environment (O'Brien et al., 2005). The following

main activities could be better automated: security policy development, asset

management, authentication systems including password management, backup,

security monitoring, patch coordination, vulnerability assessment (proactive

scanning), special system security administration, deployment of service

updates.

Organizations that run Web services frequently have an SLA through which

they guarantee their service users particular levels of service. During

operations, these SLAs need to be monitored, and when a violation has

occurred or is likely to occur, remedial action must be taken. The goal of these

actions is to improve one of the service qualities such as security, performance,

or reliability.

3.4. Spiral Process Model for Capture and Analysis of

Non-Functional Requirements of Service-Oriented

Enterprise Systems

Based on the SORE analysis results described in the previous chapter and our

suggestions for SORE process structuration described in 3.1 Requirements for

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

152

Service-Oriented Requirement Engineering Process, we propose a spiral

process model for ESOA non-functional requirements (NFRs) capture and

analysis. It is based on the main aim of service-orientation – to develop

systems that support enterprise business strategy, objectives and goals and, as a

result, is primarily concerned with exposing “why” (by modelling business

goals) certain NFRs are more important than others. We introduce an iterative

requirement negotiation spiral model which is based on a requirements

negotiation model described in (Ahmad, 2008) and a spiral process model

defined by (Boehm, 1988; Boehm, 2000). This model (Figure 3-3) is designed

to benefit from the iterative requirement negotiation process and allows

renegotiation. The requirement negotiation process is based on a spiral model

to accommodate the dynamic requirements engineering. Each round of the

cycle resolves more conflicted requirements and achieves better resolution.

This type of process model makes it possible to avoid a number of

misconceptions about non-functional requirements and ESOA project

complexity as follows:

1. Non-functional requirements are known in advance of ESOA analysis

and implementation.

2. The nature of non-functional requirements will not change very much

during ESOA analysis and development.

3. Non-functional requirements are compatible with all stakeholders’

expectations.

4. The right architectural design for implementing non-functional

requirements is well understood from the start of an ESOA project.

5. There are no unresolved, high-risk implications, such as risks due to

cost, schedule, performance, safety, security, user interfaces and

organizational impacts.

This type of process model allows one to achieve four major benefits:

1. It considers the win conditions of all stakeholders that participate in

ESOA project.

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

153

2. It identifies and evaluates alternative approaches for satisfying the win

conditions.

3. It helps to identify and resolve risks that stem from the selected

approach by performing elaboration, judgment and trade-off of a

selected solution.

4. It allows negotiating and obtaining approval from all stakeholders, plus

commitment to pursue the next iteration.

Figure 3-3. ESOA NFRs Negotiation Spiral Model

Model starts with define ESOA stakeholders, NFRs and ESOA viewpoints

activity. The input of this activity is the list of stakeholders (3.2 Stakeholders

of ESOA Systems), their concerns regarding ESOA system quality attributes

(3.3 Non-Functional Requirements for ESOA Systems) and a list of possible

ESOA viewpoints. This activity results in defining ESOA viewpoints that

clearly state ESOA system stakeholders and their concerns for NFRs (the list

of ESOA viewpoints can be found in next section). Next step is to identify

conflicts. This step can be performed in a number of iterations:

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

154

 Firstly, if a viewpoint has more than one stakeholder group, we search

for conflicting and overlapping NFRs in it by employing a simple

tabular method similar to the Quality Function Deployment – QFD

method (Sommerville and Sawyer, 1997; Errikson & McFadden, 1993)

where two stakeholder groups NFRs are checked for mutual

consistency. NFRs of one stakeholder group is displayed as rows, NFRs

of another stakeholder group are displayed as columns (Figure 3-4).

Where they intersect, we examine them to assess whether they are

overlapping, conflicting or independent. If some overlapping or

conflicting NFRs are found they are further analysed and discussed

creating GRL and UCM diagrams so that requirement overlaps and

conflicts would be resolved.

Figure 3-4. Tabular Method for Checking NFRs for Mutual Consistency (independent

Requirements are Marked with “0”, Overlapping – “10”, Conflicting – “1”)

 Secondly, after NFRs are checked in the limits of one viewpoint, we

start looking for conflicting NFRs among two different viewpoints.

Each pair of viewpoints with an intersecting focus is checked for mutual

consistency. The same tabular method is used as a checklist of

requirements compliance where two viewpoints named VP1 and VP2

are displayed. VP1’s NFRs are represented as rows and VP2’s NFRs are

represented as columns. Where they intersect, we examine them to

assess whether they are overlapping, conflicting or independent. If some

overlapping or conflicting NFRs are found they are further analysed

employing GRL and UCM diagrams.

 Thirdly, these steps are repeated until there are at least two viewpoints

with intersecting focus.

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

155

After the impact of conflicting NRFs to business goals is elicited and GRL and

UCM diagrams are created for all viewpoints with intersecting focus,

stakeholders need to develop alternative solutions (alternative non-functional

requirements). Proposed alternative non-functional requirements are then

further elaborated to promote a better understanding among stakeholders.

Lastly, judgment and trade-off takes place based on the judgment criteria (for

example: schedule, system cost, functionality and technology capability) and

resolution strategy. As an example, if stakeholders choose a collaborative

strategy that means that they are focused on satisfying the concerns of all

stakeholders. As a result, they may come out with a solution that satisfies a

minimum number of concerns of all the stakeholders. The requirements agreed

are then evaluated and analysed. If requirements re-negotiation is required, it

has to go into another spiral.

3.4.1. Composition of ESOA Viewpoints

Viewpoints that we developed for ESOA systems modelling are based on:

 Service-oriented Architecture layers described in section 1.1.2 Service-

Oriented Architecture Layers,

 EA standards described in sections 2.4.1 IEEE 1471:2000

Recommended Practice for Architectural Description and 2.4.2

ISO/IEC/IEEE 42010:2011 Systems and software engineering –

Architecture description,

 EA Frameworks described in these sections: 2.4.4 OASIS Reference

Architecture Foundation for SOA – OASIS SOA RAF, 2.4.5 Zachman

Enterprise Architecture Framework, 2.4.6 Open Group Architecture

Framework – TOGAF, 2.4.7 Extended Enterprise Architecture

Framework, 2.4.8 Department of Defence Architecture Framework –

DoDAF, 2.4.9 Kruchten’s “4+1”/RUP’s 4 + 1 View Model, 2.4.10

Siemens 4 views method, 2.4.11 Reference Model for Open Distributed

Processing,

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

156

 Organizational and domain knowledge that according to research by

(Sommerville & Sawyer, 1997) is knowledge which constrains the

system requirements. The constraints may be physical (e.g., network

performance), organizational (e.g., incompatible hardware used in

different divisions of a company), human (e.g., average operator error

rate) or may reflect local, national or international laws, regulations and

standards. This type of viewpoint cannot be associated with a single

class of stakeholder but includes information collected from many

different sources (people, documents, other systems etc.).

The viewpoints that we designed include one strategy viewpoint – Enterprise

Strategy Viewpoint, one business process viewpoint – Enterprise Business

Processes Viewpoint and three ESOA architectural viewpoints. Such a

composition of viewpoints provides a holistic view of the system-of-interest

starting from a high-level business process description and requirements and

then transforming these business process requirements into enterprise service-

oriented system requirements by providing more detailed system non-

functional requirements on each of three ESOA system architectural

viewpoints. The following list of ESOA Viewpoints is suggested:

Enterprise Strategy Viewpoint describes the mission, vision and strategy of

an enterprise that will be used to transform it so that the vision could be

achieved. It enables an enterprise to define and analyse its mission by

answering to questions:

1. What is the purpose and intention of business?

2. What problem should it solve for its customers?

Furthermore, it enables an enterprise to define and analyse its vision by

answering the questions:

1. How current business model should evolve in future?

2. What new services will be provided in future and when?

The answers to these questions help to set goals, determine actions to achieve

these goals, and mobilize resources to execute the actions.

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

157

Stakeholder group that is interested in this viewpoint is Business/IT Steering

Group.

Modelling techniques that we propose for this viewpoint are as follows:

enterprise mission and vision statements, PEST and SWOT analysis.

Viewpoint has none of ESOA non-functional requirements in its concerns.

Enterprise Business Processes Viewpoint displays enterprise business

processes (business model) and their interconnections without aligning them to

software systems.

Stakeholder group that is interested in this viewpoint is Business/IT Steering

Group.

Modelling technique that we propose for this viewpoint is Business Process

Modelling Notation – BPMN.

Viewpoint has none of ESOA non-functional requirements in its concerns.

Consumer Viewpoint is the viewpoint where consumers interact with ESOA.

It enables ESOA to support a client-independent, channel-agnostic set of

functionality, which is separately consumed and rendered through one or more

channels (client platforms and devices). Thus, it is the point of entry for

consumers (humans and other applications/systems) and services from external

sources (e.g., Business-to-Business – B2B scenarios) to interact with a system.

Stakeholder groups that are interested in this viewpoint are the following:

ESOA Consumers, Business Domain Representatives.

Modelling techniques that we propose for this viewpoint are Goal

Requirements Modelling Notation (GRL) and Use Case Map (UCM).

Viewpoint frames the following quality attributes: availability, performance,

usability, reliability, security, scalability, auditability.

Business Process Viewpoint supports and manages business processes and

enables the ESOA to choreograph or orchestrate services to realize business

processes.

Stakeholder groups that are interested in this viewpoint are the following:

Business Domain Representatives, EA Governance Board, ESOA Centre of

Excellence, ESOA Governance Board, and Solution Development Team.

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

158

Modelling techniques that we propose for this viewpoint are Goal

Requirements Modelling Notation (GRL) and Use Case Map (UCM).

Viewpoint frames the following quality attributes: discoverability, adaptability,

composability, interoperability.

Service Viewpoint consists of all the services defined within the ESOA. This

viewpoint can be thought of as containing the service descriptions for business

capabilities and services with their IT manifestation during design time, as well

as the service contract and descriptions that will be used at runtime.

Stakeholder groups that are interested in this viewpoint are the following:

Business Domain Representatives, ESOA Centre of Excellence, EA

Governance Board, ESOA Governance Board, and Service Development

Team.

Modelling techniques that we propose for this viewpoint are Goal

Requirements Modelling Notation (GRL) and Use Case Map (UCM).

Viewpoint frames the following quality attributes: discoverability, adaptability,

security, scalability, composability, availability, performance, reliability,

extensibility, testability, modifiability.

3.5. Summary

The Discussion of Spiral Process Model Viewpoints

Mapping to Architecture Domains and Applicability

to Use It in Conjunction with Service-Oriented

Architecture Systems Development Methodologies

In this section we presented a spiral process model for ESOA non-functional

requirements capturing and analysis. Process model is based on iterative

requirement negotiation spiral model that includes six main steps:

1. Define ESOA Stakeholders, ESOA non-functional requirements and

ESOA viewpoint framing them;

2. Identify non-functional requirements conflicts and overlaps;

3. Model non-functional requirements conflicts and overlaps using GRL

and UCM notations;

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

159

4. Develop alternative solutions/alternative non-functional requirements;

5. Elaborate proposed solutions/non-functional requirements;

6. Perform proposed non-functional requirements judgment and trade-off.

ESOA viewpoints that are defined in the first step of the process model are

based on service-oriented architecture layers, EA standards and EA

frameworks. Table 3-1 displays a comparison of EA Frameworks and their

mapping to architecture domains amended with viewpoints from ESOA NFRs

capture and analysis process model (see section 1 in Table 3-1). As we see

from the table Enterprise Strategy and Enterprise Business Processes

Viewpoints defined in our process model belong to Business Architecture

Viewpoints category as they are of business strategic nature and are mainly

concerned about business goals, business vision, mission, high level business

processes.

Consumer, Business Process and Service Viewpoints have concerns

overarching all four architecture domains as they take stakeholder

requirements, refine them and transform to detailed non-functional

requirements for each ESOA service.

Table 3-1. Comparison/Mapping of Enterprise Architecture Framework Views/Viewpoints

including process model for ESOA NFRs Capture and Analysis

Users, Planners,

and Business

Management

Database

Designers,

Administrators,

and System

Engineers

System and

Software

Engineers

Acquirers,

Operators,

Administrators,

and Managers

Business

Architecture

Views/Viewpoints

Data Architecture

Views/Viewpoints

Applications

Architecture

Views/Viewpoints

Technology

Architecture

Views/Viewpoints

Spiral Process Model for ESOA NFRs Capturing and Analysis

Enterprise Strategy

Viewpoint

Enterprise Business

Processes

Viewpoint

Consumer Viewpoint

Business Process Viewpoint

Service Viewpoint

The Open Group Architecture Framework – TOGAF

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

160

Business Function

View

Data Entity View Software

Engineering View

Networked

Computing/

Hardware View Business Services

View

Business Process

View

Business

Information View

Business Locations

View

Communications

Engineering View

Business Logistics

View

Data Flow View

(organization

data use)

Applications

Interoperability

View People View

(organization chart)

Processing View

Workflow View

Usability View

Business Strategy

and Goals View

Logical Data View Software

Distribution View

Cost View

Business

Objectives View

Business Rules

View

Standards View

Business Events

View

Business

Performance View

System Engineering View

Enterprise Security View

Enterprise Manageability View

Enterprise Quality of Service View

Enterprise Mobility View

OASIS Reference Architecture Foundation for SOA (OASIS SOA RAF)

Participation in a

SOA Ecosystem

view

Realization of a SOA Ecosystem view

Ownership in a

SOA Ecosystem

view

Zachman Enterprise Architecture Framework

executive

viewpoint

architect viewpoint

engineer viewpoint

business

management

viewpoint

enterprise (users)

viewpoint

Extended Enterprise Architecture Framework

Economic set of

viewpoints

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

161

Legal set of

viewpoints

Ethical set of

viewpoints

Discretionary set of

viewpoints

Governance

Viewpoint

Security and

Privacy Viewpoints

Department of Defence Architecture Framework (DoDAF)

All Viewpoint

Project Viewpoint

Standards

Viewpoint

Capability

Viewpoint

Data and

Information

Viewpoint

Operational Viewpoint

Services Viewpoint

Systems Viewpoint

Kruchten’s “4+1”/RUP’s 4 + 1 View Model

Scenarios (Use

Cases View)

Logical view

 Process view

Physical view

Development view

Siemens 4 views method

 Conceptual view Code architecture

view

 Module view

 Execution architecture view

Reference Model for Open Distributed Processing

Enterprise

viewpoint

Information

viewpoint

Computational

viewpoint

Technology

viewpoint

Engineering viewpoint

Moreover, our proposed process model for ESOA non-functional requirements

capturing and analysis can be used in conjunction with service-oriented

architecture system development methodologies:

 In IBM RUP/SOMA our methodology can be applied in the Business

Transformation Analysis Phase. Business Transformation Analysis

comprises such activities as assessment of target organization and its

objectives, identification of business goals and KPIs, definition of

common business vocabulary and business rules, definition of business

actors and main use cases, analysis of business architecture. Our process

model will take as an input the results (outcomes) from identification of

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

162

business goals, definition of main business actors and use cases

activities and will help to define and refine non-conflicting non-

functional requirements.

 In Service-Oriented Analysis and Design Methodology by Thomas Erl

our methodology can be applied in the Service-Oriented Analysis Phase.

This phase comprises three main activities: define business

requirements, identify existing automation systems and model candidate

services. Our process model can help to resolve non-conflicting non-

functional requirements when performing define business requirements

activity.

 In Service-Oriented Design and Development Methodology by

Papazoglou our methodology can be applied in the Service-Oriented

Analysis Phase. This phase consists of four main activities: process

identification, process scoping, business gap analysis and process

realization. Our process model can help to resolve non-conflicting non-

functional requirements when performing process identification and

scoping activities.

 In Service-Oriented Architecture Framework – SOAF – our

methodology can be applied in the Information Elicitation phase. This

phase consists of such activities: current business as-is and future “to-

be” models creation and process-to-application mapping (PAM). Our

process model can help when defining the to-be business model as this

model proposes a SOA candidate solution and required business process

changes. Non-functional requirements (NFRs) and Business Level

Agreements – BLAs should be also defined, categorized and prioritized.

 In Service-Oriented Unified Process – SOUP – our methodology can be

applied in the Define phase. This phase consists of such activities as

functional and non-functional requirements gathering, the creation of

use cases, designing a support and governance model which explains

how the organization will support SOA, preparing a realistic project

Chapter 3 – Spiral Process Model for Capture and Analysis Non-Functional Requirements of

Service-Oriented Enterprise Systems

163

plan and defining a technical infrastructure that is required to support

the entire SOA. Our process model can be used when defining non-

functional requirements and use cases.

To sum up, a proposed spiral process model for capture and analysis non-

functional requirements of service-oriented enterprise systems is designed

incorporating traditional requirement gathering models, conflicts management

approaches and techniques, i*-based modelling languages and viewpoints that

have not been previously thoroughly researched for their applicability to solve

issues and challenges of service specification for service-oriented enterprise

systems. Our research proves that i*-based modelling languages and

viewpoints can be of a great help when capturing and analysing non-functional

requirements for service-oriented enterprise systems.

The results of this chapter have been published in (Svanidzaitė, 2014c).

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

164

Chapter 4

A Case Study: Enterprise Service-

Oriented Insurance System

This chapter presents empirical evaluation results. A case study was

performed for this aim. Section 1 tests the first step in our process model

by defining ESOA viewpoints. Section 2 identifies conflicts, models user

concerns and NFRs using GRL and UCM, develops alternative solutions,

elaborates solutions and performs judgment and trade-off in Customer

Viewpoint. Section 3 identifies conflicts, models user concerns and NFRs

using GRL and UCM, develops alternative solutions, elaborates solutions

and performs judgment and trade-off in Business Process Viewpoint.

Section 4 identifies conflicts, models user concerns and NFRs using GRL

and UCM, develops alternative solutions, elaborates solutions and performs

judgment and trade-off in Customer and Business Process Viewpoints.

Section 5 summarizes and concludes the chapter.

To illustrate the spiral process model for capturing and analysis of non-

functional in ESOA systems we have chosen an Insurance domain and an

Enterprise Service-Oriented Insurance System, which provides personal

insurance services meaning that a person or a legal entity can insure his/its car

or home. Insurance4You is a company that wants to empower its business by

developing a new service-oriented enterprise insurance system to automate its

business process. The Enterprise Insurance System is composed of four main

sub-systems that provide the following functionality:

1. customer and its relationships data management,

2. insurance quote/policy data gathering, issuance, endorsement and

renewal,

3. billing accounts, bills, payments and instalment schedule management,

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

165

4. claims registration, evaluation and recovery payments processing.

4.1. Definition of ESOA Viewpoints

For testing purposes the following ESOA Viewpoints were defined:

Enterprise Strategy Viewpoint describes high-level mission and vision

statements and provides a strategy how to achieve business goals. Strategic

planning and vision formulation is performed by employing the following:

 PEST analysis, which covers the remote external environment elements

such as political, economic, social and technological and

 SWOT analysis, which addresses internal strengths and weaknesses

relative to the external opportunities and threats.

Mission statement for Insurance4You is formulated as follows:

Insurance4You is a global mid-size insurance company that provides the one of

the highest quality automobile and home insurance services. The company has

over 35 million clients worldwide, is #1 insurer in US and Canada with

established and growing position in Latin America, is #5 automobile and home

insurer in Japan and China, is #5 USA based automobile and home insurer in

Europe with an established and growing position in Africa.

PEST analysis for Insurance4You is formulated as follows:

Table 4-1. PEST Analysis for Insurance4You Company Political, Economic, Social and

Technological Factors

Political

Political instability in Russia and Ukraine;
Economic

Economic decline in Europe, Japan and China;

Ebola virus in Africa;

Russian economy decline and rubble drop;

Dollar rise vs Euro drop;

Euro to fall below parity with the dollar by

2017,or even 2016;

Interest rates to rise in the USA by 2016;

Zero interest rates in the Euro zone until 2017

at least;

Social

Population growth decline in the USA,

Canada and Europe;

Aging society in the USA, Canada, Europe,

Japan, China;

Technological

Growing use of smart phones;

Growing use of mobile applications;

The spread of 3G, 4G LTE and 4G networks;

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

166

Population growth in India and Africa;

Middle class growth in India and China;

SWOT analysis for Insurance4You is formulated as follows:

Table 4-2. SWOT Analysis for Insurance4You Company Strengths, Weaknesses,

Opportunities and Threats

Strengths

Insurance4You is #1 insurer in the USA and

Canada;

Insurance4You provides one of the highest

quality personal automobile and home

insurance services;

Insurance4You is the best employer in the

USA;

Insurance4You has the best employee

motivation and training schemes;

Weaknesses

Legacy enterprise insurance system that is

hard to support and update;

No customer self-service capabilities through

web portal;

No customer self-service capabilities through

mobile applications;

Opportunities

Larger market portion in Europe, Asia and

Latin America and Africa;

Increased marked portion after providing

customer self-service; capabilities and highest

quality services;

Increased quality of services if an enterprise

service-oriented insurance system is built;

Increased number of customers in India

because of population growth;

Increased number of customers in China

because of middle class growth;

Threats

Other major insurance companies in the USA,

Europe and Asia exceptionally those at the

moment providing robust self-service

capabilities;

Decreased number of customers and income

amounts if deflation in Europe and Asia

starts;

Decreased number of customers in Europe,

USA, Canada and China because of aging

society;

Vision statement for Insurance4You is formulated as follows:

Insurance4You is a global personal insurance market leader that provides the

highest quality personal automobile and home insurance services including

robust customer self-service capabilities through self-service web portal and

self-service mobile application. The company: has over 150 million clients

worldwide, is #1 insurer in the USA/Canada/ Latin America, is #1 automobile

and home insurer in Japan, China and other Asian countries, is #1 USA-based

automobile and home insurer in Europe/Africa.

Organization Business Processes Viewpoint should describe all organization

business processes. For our process model testing purposes, we have chosen

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

167

two the most common business processes that encompass all Enterprise

Insurance System sub-systems – CRM, Quote/Policy, Billing and Claims.

Business Process #1 depicted in Figure 4-1Figure 4-1. New Auto Policy Creation

Business Process using Business Process Modelling Notation – BPMN describes

a business process when a new person (customer) is registered in the Enterprise

Insurance System. The Insurance policy is issued for him with premium

calculated, billing account created and instalment schedule generated.

Business Process #2 depicted in Figure 4-2 using Business Process Modelling

Notation – BPMN describes a business process when the customer after some

time registers a claim. The claim is evaluated and recovery payment is

processed.

Figure 4-1. New Auto Policy Creation Business Process

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

168

Figure 4-2. New Auto Claim Creation Process

Consumer Viewpoint displays the interaction points between the system,

ESOA Customers and Business Domain Representatives stakeholder groups

when performing a business processes described in Organization Business

Process Viewpoint. Viewpoint describes user concerns regarding non-

functional requirements and provides NFRs with their priorities (Table 4-3).

Table 4-3. Consumer Viewpoint Non-Functional Requirements

User Concern Requirement

Category

Requirement Priority

Stakeholder Group: ESOA Consumers

System

availability

during working

and non-

working hours

Availability CUSTCA1.The system shall be available

during working hours 8 AM–11 PM.

CUSTCA2.The system shall be available

at non-working hours for various

automatic processes (e.g. policy issue,

claim recovery payments generation

etc.).

1

System

capability to

perform

requests in time

saving manner

Performance CUSTCP1.It shall take no longer than 2

seconds to save a new

customer/quote/claim in a system.

CUSTCP2. It shall take no longer than 2

seconds to rate a quote and calculate

premiums.

CUSTCP3. It shall take no longer than 3

seconds to issue the policy, create billing

account and generate instalment

schedule.

2

Ease of use Usability CUSTCU1.95% of users shall be able to

create a customer in a system in less than

4 minutes.

CUSTCU2.95% of users shall be able to

7

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

169

create a quote in a system and issue it in

less than 10 minutes.

CUSTCU3.95% of users shall be able to

create a claim in a system in less than 6

minutes.

Likelihood of

failure

Reliability CUSTCR1.The system shall allow

creating 99 of 100 customers

successfully.

CUSTCR2.The system shall allow

creating, rating and issuing 95 of 100

quotes successfully.

CUSTCR3.The system shall allow

creating 95 of 100 claims and their

recovery payments successfully.

3

Unauthorized

access

Security CUSTCS1.The system shall be

accessible to 100% of its authorized

users.

CUSTCS2.The system shall not allow

entering more than three incorrect

passwords when logging in.

CUSTCS3. The system shall not be

accessible to unauthenticated,

unauthorized users.

CUSTCS4. The system shall be

accessible using VPN.

5

Ease of

expanding the

number of

system users

Scalability CUSTCSC1.From 50 to 250 users shall

be able to operate with the system at the

same time.

4

User Activity

logging

Auditability CUSTCAU1.The system shall generate

logs of each user task performed in a

system.

CUSTCAU2.The system shall generate

BAM – business activity messages on

each system entity (customer, quote,

policy, and billing account) providing

date, time, change the description and

performer of the change.

6

Stakeholder Group: Business Domain Representatives

System

availability

during working

and non-

working hours

Availability CUSTBA1.The system shall be

available 13 working hours a day.

CUSTBA2.The system shall be

available 8 hours for batch processing a

day (e.g. policy issue, claim recovery

payments generation etc.)

1

System

capability to

perform

requests in time

saving manner

Performance CUSTBP1.The system shall provide a

response to each user manual action in

no more than 3 seconds.

CUSTBP2.The system shall be able to

issue 100 quotes or renew policies in 6

minutes time during batch processing.

2

Ease of learning

Informative

Usability CUSTBU1.It shall take no longer than 2

hours for regular system user to learn

how to create a customer, create a quote,

7

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

170

user interface rate and issue it.

CUSTBU2.It shall take no longer than

90 min. for a regular system user to learn

how to create and process claims.

CUSTBU3.The system shall provide

user informative error messages.

Likelihood of

failure

Reliability CUSTBR1.The system defect rate shall

be no less than 5 failures per 100

transactions.

CUSTBR2.No more than 1 of 100 000

transactions shall require system restart.

3

Unauthorized

access

Security CUSTBS1.The system shall be only

accessible in internal enterprise network.

CUSTBS2. The system shall close a

session after 20 minutes of inactivity.

5

Ease of

expanding the

number of

system users

Scalability CUSTBSC1.The system shall allow

from 50 to 250 concurrent user sessions.

4

User Activity

logging

System

errors/exception

s logging

Auditability CUSTBAU1.The system shall generate

logs of each user task performed in a

system.

CUSTBAU2.The system shall generate

BAM – business activity messages on

each system entity (customer, quote,

policy, claim, and billing account)

providing date, time, change description

and performer of the change.

CUSTBAU3.The system shall generate

logs of system failures, errors.

CUSTBAU4. The system shall generate

logs for batch processing.

6

Business Process Viewpoint displays how Enterprise Insurance System

services should be orchestrated to realize business processes described in

Organization Business Process Viewpoint. In this Viewpoint we analyse two

different business processes:

1. Insure new customer business process orchestrates such web services:

o Entity services: Customer, Quote, Policy, Billing Account,

Instalment Schedule, Invoice;

o Task services: Data Gather Quote, Rate Quote, Issue Quote,

Generate Instalment Schedule, Generate Invoice, and Generate

Payment.

2. Register and process claim of an existing customer for a policy in force

business process orchestrates sub-web services:

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

171

o Entity services: Customer, Quote, Policy, Billing Account,

Claim, Refund Payment,

o Task services: Search for Customer, Evaluate Claim, and Refund

Claim.

Viewpoint describes concerns regarding non-functional requirements of

Business Domain Representatives, ESOA Centre of Excellence, EA

Governance Board, ESOA Governance Board, Solution Development Team

stakeholder groups and provides NFRs with their priorities (Table 4-4).

Table 4-4. Business Process Viewpoint Non-Functional Requirements

User Concern Requirement

Category

Requirement Priority

Stakeholder Group: Business Domain Representatives

System availability

during working and

non-working hours

Availability BSNBA1.The system shall be

available 13 working hours a day

for business processes: Insure a

new Customer, Register and

process claim.

BSNBA2.The system shall be

available for automatic claim

recovery payments generation for

30 minutes during non-working

hours.

1

System capability to

perform requests in

time saving manner

Performance BSNBP1.It shall take no longer

than 12 minutes to Insure new

Customer including all manual

steps performed by a system user

and all automatic steps performed

by system.

BSNBP2. It shall take no longer

than 2 days to Register and process

the claim of an existing customer

for a policy in force: 1) claim

creation should take no longer than

7 minutes, 2) claim evaluation ~ 1

working day and claim recovery

payments processing ~1 working

day (including all manual steps

performed by a system user and all

automatic steps performed by the

system).

2

Likelihood of failure Reliability BSNBR1.The system defect rate

shall be no less than 5 failed

business processes Insure new

Customer, Register and process

claim per 100.

3

Unauthorized access Security BSNBS1.Only authorized and

authenticated system users shall be

5

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

172

able to perform business processes

Insure new Customer, Register and

process claim.

Ease of expanding

the number of system

users

Scalability BSNBSC1.The system shall allow

for ~ 300 brokers to Insure new

Customer concurrently.

4

System

errors/exceptions

logging

Auditability BSNBAU1.The system shall

generate logs of system failures,

during the execution of the business

processes Insure new Customer,

Register and process claim.

6

Stakeholder Group: EA Governance Board, ESOA Centre of Excellence, ESOA

Governance Board, Solution Development Team

System availability

during working and

non-working hours

Availability BSNDA1.The system shall be

available for 13 working hours a

day.

BSNDA2.The system shall be

available for 8 hours of batch

processing a day (e.g. policy issue,

claim recovery payments

generation and processing etc.)

1

System capability to

perform requests in

time saving manner

Performance BSNDP1.System shall provide a

response to each user manual action

in no more than 1.5 seconds.

2

Likelihood of failure Reliability BSNDR1.The system defect rate

shall be less than 1 failed business

process per 100.

3

Unauthorized access Security BSNDS1.Each service composed

into business processes shall have

privileges described, so that only

authorized users can execute it.

5

Ease of expanding

the number of system

users

Scalability BSNDSC1.The system shall allow

from 50 to 250 concurrent user

sessions.

4

User Activity logging

System

errors/exceptions

logging

Auditability BSNDAU1.The system shall

generate logs of system failures

during the execution of the business

processes.

12

Ease of service

change

Modifiability BSNDM1.Each service in a

business process must be easily and

cost-effectively modifiable, so that

the change in business process or

business process entity could be

easily reflected in a service or a

service composition.

BSNDM2.The modification of one

service shall not pose a change in

other service.

6

Ease of service

extension

Extensibility BSNDE1.Each service in a

business process must be extensible

without affecting other services.

BSNDE2.ESOA system shall be

extensible using one of the

following ways:

7

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

173

- Modifying service source

code;

- Configuring services when

only interface specification is

provided;

- Combine modification of

service source code with

configuration of services.

Availability to test

each service/business

process

independently

Testability BSNDT1.Each service in a

business process shall be tested

independently of other services.

BSNDT2.Each business process

composed of services shall be

tested independently of other

business processes.

10

Accuracy of service

discoverability

Discoverability BSNDD1.Each service composing a

business process must be easily,

accurately, and suitably found at

both design time and runtime (e.g.

the system shall discover 99 of 100

of required service interfaces

accurately).

11

Ease of service

adaptability

Adaptability BSNDAD1.Each service composing

a business process shall be feasibly

adapted at both design time and

runtime. Services composing a

business process shall be combined

in new and different ways.

Additional services shall be added,

or adapted, services shall be

swapped in where needed.

8

Ease of system

composability

Composability BSNDC1.Each service shall be

easily composed into service

composition (e.g. 99 of 100 services

should be easily composed).

9

Service Viewpoint displays Enterprise Insurance System services from which

business processes described in Organization Business Process Viewpoint are

composed. In this Viewpoint we analyse non-functional requirements for the

following list of services:

1. Entity services: Customer, Quote, Policy, Billing Account, Invoice,

Instalment Schedule, Claim, Refund Payment;

2. Task services: Rate Quote, Issue Quote, Generate Instalment Schedule,

Search for Customer, Evaluate Claim, Refund Claim.

Stakeholder groups that are interested in this viewpoint are the following:

Business Domain Representatives, EA Governance Board, ESOA Centre of

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

174

Excellence, ESOA Governance Board, and Service Development Team.

Viewpoint frames the following quality attributes: discoverability, adaptability,

composability, availability, performance, security, scalability, reliability,

extensibility, testability, modifiability (Table 4-5).

Table 4-5. Service Viewpoint Non-Functional Requirements

User Concern

Requirement

Category

Requirement Priority

Stakeholder Group: Business Domain Representatives

System availability

during working and

non-working hours

Availability SERBA1. The system shall be

available 13 working hours a day

for business processes: Insure new

Customer, Register and process

claim.

SERBA2.The system shall be

available for automatic claim

recovery payments generation for

30 minutes during non-working

hours.

1

System capability to

perform requests in

time saving manner

Performance SERBP1.It shall take no longer

than 12 minutes to Insure new

Customer including all manual

steps performed by system user and

all automatic steps performed by

system.

SERBP2. It shall take no longer

than 2 days to Register and process

the claim of an existing customer

for a policy in force: 1) claim

creation should take no longer than

7 minutes, 2) claim evaluation ~ 1

working day and claim recovery

payments processing ~1 working

day (including all manual steps

performed by a system user and all

automatic steps performed by the

system).

2

Likelihood of failure Reliability SERBR1.The system defect rate

shall be no less than 5 failed

business processes Insure new

Customer, Register and process

claim per 100.

3

Unauthorized access Security SERBS1.Only authorized and

authenticated system users shall be

able to perform business processes

Insure new Customer, Register and

process claim.

5

Ease of expanding

the number of system

users

Scalability SERBSC1.The system shall allow

for ~ 300 brokers to Insure new

Customer concurrently.

4

System Auditability SERBAU1.The system shall 6

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

175

errors/exceptions

logging

generate logs of system failures,

during the execution of the business

processes Insure new Customer,

Register and process claim.

Stakeholder Group: EA Governance Board, ESOA Centre of Excellence, ESOA

Governance Board, Service Development Team

System availability

during working and

non-working hours

Availability SERDA1. The services Customer,

Quote, Policy, Billing Account,

Invoice, Instalment Schedule,

Claim, Refund Payment, Rate

Quote, Issue Quote, Generate

Instalment Schedule, Search for

Customer, Evaluate Claim, and

Refund Claim shall be available 13

working hours a day.

SERDA2.The system shall be

available for 8 hours of batch

processing a day (e.g. policy issue,

claim recovery payments

generation and processing etc.)

1

System capability to

perform requests in

time saving manner

Performance SERDP1.System shall provide a

response to each user manual action

in no more than 1.5 seconds.

2

Likelihood of failure Reliability SERDR1.The system defect rate

shall be less than 1 failed service

per 100.

3

Unauthorized access Security SERDS1.Each service shall have

privileges described, so that only

authorized users can access and

execute it.

5

Ease of expanding

the number of system

users

Scalability SERDSC1.The system shall allow

from 50 to 250 concurrent user

sessions.

4

User Activity logging

System

errors/exceptions

logging

Auditability SERDAU1.The system shall

generate logs of system failures

during the execution of services.

12

Ease of service

change

Modifiability SERDM1.Each service must be

easily and cost-effectively

modifiable, so that the change in

business process or business

process entity could be easily

reflected in a service.

SERDM2.The modification of one

service shall not pose a change in

other service.

6

Ease of service

extension

Extensibility SERDE1.Each service in a

business process must be extensible

without affecting other services.

SERDE2.Each service shall be

extensible using one of the

following ways:

- Modifying service source code

- Configuring services when

7

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

176

only interface specification is

provided;

- Combine modification of

service source code with

configuration of services.

Availability to test

each service/business

process

independently

Testability SERDT1.Each service shall be

tested independently of other

services.

10

Accuracy of service

discoverability

Discoverability SERDD1.Each service must be

easily, accurately, and suitably

found at both design time and

runtime (e.g. The system shall

discover 99 of 100 of required

service interfaces accurately).

11

Ease of service

adaptability

Adaptability SERDAD1.Each service shall be

feasibly adapted at both design time

and runtime. Additional services

shall be added, or adapted, services

shall be swapped in where needed.

8

Ease of system

composability

Composability SERDC1.Each service shall be

easily composed into service

composition (e.g. 99 of 100 services

should be easily composed).

9

4.2. Identification of Requirement Conflicts, Modelling

User Concerns and NFRs Using GRL and UCM,

Developing Alternative Solutions, Elaborating

Solutions and Performing Judgment and Trade-off

in Consumer Viewpoint

4.2.1. Identification of Requirement Conflicts in Customer Viewpoint

Customer Viewpoint has two stakeholder groups – ESOA Customers and

Business Domain Representatives. User concerns, NFRs and their priorities

provided in Table 4-3 were checked for mutual consistency using tabular

method (Table 4-6). Independent requirements were marked with “0”,

overlapping – “10”, conflicting – “1”.

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

177

Table 4-6. Consumer Viewpoint Non-Functional Requirements’ Check for Consistency
ESOA

Consumers

Business

Domain

Representative

s

C
U

S
T

C
A

1

C
U

S
T

C
A

2

C
U

S
T

C
P

1

C
U

S
T

C
P

2

C
U

S
T

C
P

3

C
U

S
T

C
U

1

C
U

S
T

C
U

2

C
U

S
T

C
U

3

C
U

S
T

C
R

1

C
U

S
T

C
R

2

C
U

S
T

C
R

3

C
U

S
T

C
S

1

C
U

S
T

C
S

2

C
U

S
T

C
S

3

C
U

S
T

C
S

4

C
U

S
T

C
S

C
1

C
U

S
T

C
A

U
1

C
U

S
T

C
A

U
2

CUSTBA1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CUSTBA2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CUSTBP1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CUSTBP2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

CUSTBU1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CUSTBU2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CUSTBU3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CUSTBR1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

CUSTBR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CUSTBS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

CUSTBS2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CUSTBSC1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0

CUSTBAU1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0

CUSTBAU2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10

CUSTBAU3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CUSTBAU4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4.2.2. Modelling of User Concerns and NFRs in Consumer Viewpoint

using GRL and UCM

ESOA Customers and Business Domain Representatives user concerns, NFRs

and their priorities were modelled using GRL (Figure 4-6) and UCM notation

(Figure 4-3, Figure 4-4, Figure 4-5). In the GRL diagram, user concerns are

modelled as “goals”, NFRs as softgoals. Independent softgoals were not

connected as they have no contribution to each other. Overlapping softgoals

were connected to each other using unknown contribution type (coloured in

blue in Figure 4-6). Conflicting softgoals were connected to each other using

some negative contribution type (coloured in yellow in Figure 4-6). In Figure

4-3, we depict business process – Insure New Customer – a UCM diagram,

which displays ESOA sub-systems that participate in business process with

responsibilities allocated to them. In Figure 4-4, we depict detailed Log-in to

Enterprise Insurance System process diagram. In Figure 4-5, we depict

business process – Register Claim for an Existing Customer – UCM diagram.

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

178

Figure 4-3. UCM Diagram: Business Process – Insure New Customer

Figure 4-4. UCM Diagram: Business Process – Insure New Customer Sub-Process – Log In

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

179

Figure 4-5. UCM Diagram: Business Process – Register Claim for an Existing Customer

Figure 4-6. GRL Diagram: Consumer Viewpoint User Concerns and Non-Functional Requirements

C
h
ap

ter 4
 –

 A
 C

ase S
tu

d
y
: E

n
terp

rise S
erv

ice-O
rien

ted
 In

su
ran

ce S
y
stem

1
8
0

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

181

4.2.3. Developing of Alternative Solutions in Consumer Viewpoint

Customer Viewpoint resulted to have conflicting (Table 4-7) and overlapping

requirements (Table 4-8). All conflicting and overlapping requirements were

analysed in respect of their priority and business value.

Table 4-7. Conflicting Non-Functional Requirements in Consumer Viewpoint

ESOA Customers Business Domain Representatives

CUSTCA1.The system shall be available

during working hours 8 AM- 11 PM. Priority

– 1.

CUSTBA1.The system shall be available 13

working hours a day. Priority - 1.

CUSTCA2.The system shall be available at

non-working hours for various automatic

processes (e.g. policy issue, claim recovery

payments generation etc.). Priority – 1.

CUSTBA2.The system shall be available 8

hours for batch processing a day (e.g. policy

issue, claim recovery payments generation

etc.). Priority – 1.

CUSTCP1.It shall take no longer than 2

seconds to save a new customer/quote/claim

in a system. Priority – 2.

CUSTBP1.The system shall provide a

response to each user manual action in no

more than 3 seconds. Priority – 2.

CUSTCP3.It shall take no longer than 3

seconds to issue the policy, create billing

account and generate instalment schedule.

Priority – 2.

CUSTBP2. The system shall be able to issue

100 quotes or renew policies in 6 minutes

time during batch processing. Priority – 2.

CUSTCR1.The system shall allow creating

99 of 100 customers successfully. Priority –

3.

CUSTBR1.The system defect rate shall be

less than 5 failures per 100 transactions.

Priority – 3.

CUSTCR2.The system shall allow creating,

rating and issuing 95 of 100 quotes

successfully. Priority – 3.

CUSTBR1.The system defect rate shall be

less than 5 failures per 100 transactions.

Priority – 3.

CUSTCR3.The system shall allow creating

95 of 100 claims and their recovery payments

successfully. Priority – 3.

CUSTBR1.The system defect rate shall be

less than 5 failures per 100 transactions.

Priority – 3.

CUSTCS4.The system shall be accessible

using VPN. Priority – 5.

CUSTBS1.The system shall be only

accessible in an internal enterprise network.

Priority – 5.

Table 4-8. Overlapping Requirements in Consumer Viewpoint

ESOA Customers Business Domain Representatives

CUSTCSC1.From 50 to 250 users shall be

able to operate with system at the same time.

Priority – 4.

CUSTBSC1.The system shall allow from 50

to 250 concurrent user sessions. Priority – 4.

CUSTCAU1.The system shall generate logs

of each user task performed in a system.

Priority – 6.

CUSTBAU1.The system shall generate logs

of each user task performed in a system.

Priority – 6.

CUSTCAU2.The system shall generate

BAM – business activity messages on each

system entity (customer, quote, policy, and

billing account) providing date, time, change

description and performer of the change.

Priority – 6.

CUSTBAU2.The system shall generate

BAM – business activity messages on each

system entity (customer, quote, policy, claim,

and billing account) providing date, time,

change description and performer of the

change. Priority – 6.

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

182

4.2.4. Elaborating Solutions and Performing Judgment and Trade-off

in Consumer Viewpoint

During conflicting requirement analysis it was decided to eliminate either one

of conflicting requirements or eliminate both requirements and create a new

one that better reflects business need by merging two conflicting requirements.

As a result, CUSTBA1, CUSTBA2, CUSTBP1, CUSTBP2, CUSTBS1 were

eliminated from further analysis. CUSTCR1 and CUSTBR1 requirements were

rephrased to new CUSTCR1 requirement sounding “The system shall allow

creating 95 of 100 customers successfully. Priority – 3.”

During overlapping requirement analysis it was decided to eliminate one of the

overlapping requirements and leave only one that better reflects business needs.

Respectively, CUSTBSC1, CUSTBAU1, CUSTBAU2 were eliminated from

further analysis.

4.3. Identification of Requirement Conflicts, Modelling

User Concerns and NFRs Using GRL and UCM,

Developing Alternative Solutions, Elaborating

Solutions and Performing Judgment and Trade-off

in Business Process Viewpoint

4.3.1. Identification of Requirement Conflicts in Business Process

Viewpoint

Business Process Viewpoint has the following stakeholder groups – Business

Domain Representatives, ESOA Centre of Excellence, ESOA Governance

Board, and Solution Development Team. User concerns, NFRs and their

priorities provided in Table 4-4 were checked for mutual consistency using

tabular method (Table 4-9). Independent requirements were marked with “0”,

overlapping – “10”, conflicting – “1”.

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

183

Table 4-9 Business Process Viewpoint Non-Functional Requirements’ Check for Consistency
Business Domain

Representatives

 ESOA

Centre

 of Excellence,

ESOA Governance

 Board,

Solution

 Development Team

B
S

N
B

A
1

B
S

N
B

A
2

B
S

N
B

P
1

B
S

N
B

P
2

B
S

N
B

R
1

B
S

N
B

S
1

B
S

N
B

S
C

1

B
S

N
B

A
U

1

BSNDA1 10 0 0 0 0 0 0 0

BSNDA2 0 1 0 0 0 0 0 0

BSNDP1 0 0 0 0 0 0 0 0

BSNDR1 0 0 0 0 1 0 0 0

BSNDS1 0 0 0 0 0 10 0 0

BSNDSC1 0 0 0 0 0 0 1 0

BSNDAU1 0 0 0 0 0 0 0 10

BSNDM1 0 0 0 0 0 0 0 0

BSNDM2 0 0 0 0 0 0 0 0

BSNDE1 0 0 0 0 0 0 0 0

BSNDE2 0 0 0 0 0 0 0 0

BSNDT1 0 0 0 0 0 0 0 0

BSNDT2 0 0 0 0 0 0 0 0

BSNDD1 0 0 0 0 0 0 0 0

BSNDAD1 0 0 0 0 0 0 0 0

BSNDC1 0 0 0 0 0 0 0 0

4.3.2. Modelling of User Concerns and NRFs in Business Process

Viewpoint using GRL and UCM

Business Domain Representatives, ESOA Centre of Excellence, ESOA

Governance Board, Solution Development Team user concerns, NFRs and their

priorities were modelled using GRL notation (Figure 4-7). Independent

softgoals were not connected as they have no contribution to each other.

Overlapping softgoals were connected to each other using unknown

contribution type (for more details see section 1.4.1 Goal-Oriented

Requirement Language) (coloured in blue in Figure 4-7). Conflicting softgoals

were connected to each other using some negative contribution type (coloured

in yellow in Figure 4-7).

Figure 4-7. Business Process Viewpoint User Concerns and Non-Functional Requirements Modelling Using GRL

C
h
ap

ter 4
 –

 A
 C

ase S
tu

d
y
: E

n
terp

rise S
erv

ice-O
rien

ted
 In

su
ran

ce S
y
stem

1
8
4

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

185

4.3.3. Developing of Alternative Solutions in Business Process

Viewpoint

Business Process Viewpoint resulted in having conflicting (Table 4-10) and

overlapping requirements (Table 4-11). All conflicting and overlapping

requirements were analysed with respect to their priority and business value.

Table 4-10. Conflicting Non-Functional Requirements in Business Process Viewpoint

Business Domain Representatives

ESOA Centre of Excellence, ESOA

Governance Board, Solution Development

Team

BSNBA2.The system shall be available for

automatic claim recovery payments

generation for 30 minutes during non-

working hours. Priority- 1.

BSNDA2.The system shall be available for 8

hours of batch processing a day (e.g. policy

issue, claim recovery payments generation

and processing etc.) Priority – 1.

BSNBR1.The system defect rate shall be no

less than 5 failed business processes Insure

new Customer, Register and process claim

per 100. Priority – 3.

BSNDR1.The system defect rate shall be less

than 1 failed business process per 100.

BSNBSC1.The system shall allow for ~ 300

brokers to Insure new Customer concurrently.

Priority – 4.

BSNDSC1.The system shall allow from 50

to 250 concurrent user sessions. Priority – 4.

Table 4-11. Overlapping Non-Functional Requirements in Business Process Viewpoint

Business Domain Representatives ESOA Centre of Excellence, ESOA

Governance Board, Solution Development

Team

BSNBA1.The system shall be available 13

working hours a day for business processes:

Insure new Customer, Register and process

claim. Priority – 1.

BSNDA1.The system shall be available for

13 working hours a day. Priority – 1.

BSNBAU1.The system shall generate logs of

system failures, during the execution of the

business processes Insure new Customer,

Register and process claim. Priority – 6.

BSNDAU1.The system shall generate logs of

system failures during the execution of the

business processes. Priority – 12.

BSNBS1.Only authorized and authenticated

system users shall be able to perform

business processes Insure new Customer,

Register and process claim.

BSNDS1.Each service composed into

business processes shall have privileges

described, so that only authorized users can

execute it.

4.3.4. Elaborating Solutions and Performing Judgement and Trade-off

in Business Process Viewpoint

During conflicting requirement analysis it was decided to eliminate both

requirements and create a new one that better reflects business needs by

merging the previous two. As a result, BSNBA2 and BSNDA2 requirements

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

186

were rephrased to new BSNBA2 requirement sounding “The system shall be

available for 8 hours of batch processing a day (e.g. policy issue, claim

recovery payments generation and processing etc.)”. BSNBR1 and BSNDR1

requirements were rephrased to new BSNDR1 requirement sounding “The

system defect rate shall be less than 1 failed business process per 100”.

BSNBSC1 and BSNDSC1 requirements were rephrased to new BSNDSC1

requirement sounding “The system shall allow from 50 to 250 concurrent user

sessions”.

During overlapping requirement analysis it was decided to eliminate one of

overlapping requirements and leave only one that better reflects business needs.

Respectively, BSNDA1, BSNDAU1, BSNDS1 were eliminated from further

analysis.

4.4. Identification of Requirement Conflicts, Modelling

User Concerns and NFRs Using GRL and UCM,

Developing Alternative Solutions, Elaborating

Solutions and Performing Judgment and Trade-off

in Customer and Business Process Viewpoints

4.4.1. Identification of Requirement Conflicts between Customer and

Business Process Viewpoints

Analysed and adjusted Customer and Business Process Viewpoint requirements

were further checked for mutual consistency using tabular method (Table

4-12). Independent requirements were marked with “0”, overlapping – “10”,

conflicting – “1”.

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

187

Table 4-12. Customer and Business Process Viewpoints Non-Functional Requirements’

Check for Consistency
Consum

er

Viewpoi

nt /

Business

Process

Viewpoi

nt

C
U

S
T

C
A

1

C
U

S
T

C
A

2

C
U

S
T

C
P

1

C
U

S
T

C
P

2

C
U

S
T

C
P

3

C
U

S
T

C
U

1

C
U

S
T

C
U

2

C
U

S
T

C
U

3

C
U

S
T

C
R

1

C
U

S
T

C
R

2

C
U

S
T

C
R

3

C
U

S
T

C
S

1

C
U

S
T

C
S

2

C
U

S
T

C
S

3

C
U

S
T

C
S

4

C
U

S
T

B
U

1

C
U

S
T

B
U

2

C
U

S
T

B
U

3

C
U

S
T

B
R

2

C
U

S
T

B
S

2

C
U

S
T

B
S

C
1

C
U

S
T

B
A

U
1

C
U

S
T

B
A

U
2

C
U

S
T

B
A

U
3

C
U

S
T

B
A

U
4

BSNBA1 1 0

BSNBA2 0 1 0

BSNBP1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BSNBP2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BSNBR1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BSNBS1 0 0 0 0 0 0 0 0 0 0 0 1

0

0 1

0

0 0 0 0 0 0 0 0 0 0 0

BSNBSC

1

0 1

0

0 0 0 0

BSNBA

U1

0 1

0

0 1

0

1

0

BSNDP1 0 0 1 1 1 0

BSNDM

1

0

BSNDM

2

0

BSNDE1 0

BSNDE2 0

BSNDT1 0

BSNDT2 0

BSNDD1 0

BSNDA

D1

0

BSNDC1 0

4.4.2. Modelling of User Concerns and NFRs in Customer and

Business Process Viewpoints using GRL and UCM

Customer and Business Process Viewpoints user concerns, NFRs and their

priorities were modelled using GRL notation (Table 4-8). Independent

softgoals were not connected as they have no contribution to each other.

Overlapping softgoals were connected to each other using unknown

contribution type (coloured in blue in Figure 4-8; for more details see section

1.4.1 Goal-Oriented Requirement Language). Conflicting softgoals were

connected to each other using some negative contribution type (coloured in

yellow in Figure 4-8).

Figure 4-8. Customer and Business Process Viewpoint User Concerns and Non-Functional Requirements Modelling Using GRL

C
h
ap

ter 4
 –

 A
 C

ase S
tu

d
y
: E

n
terp

rise S
erv

ice-O
rien

ted
 In

su
ran

ce S
y
stem

1
8
8

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

189

4.4.3. Developing of Alternative Solutions in Customer and Business

Process Viewpoint

Customer and Business Process Viewpoints resulted in having conflicting (see

Table 4-13) and overlapping requirements (Table 4-14). All conflicting and

overlapping requirements were analysed with respect to their priority and

business value.

Table 4-13. Conflicting Non-Functional Requirements in Consumer and Business Process

Viewpoints

Customer Viewpoint Business Process Viewpoint

CUSTCA1.The system shall be available

during working hours 8 AM- 11 PM.

BSNBA1.The system shall be available 13

working hours a day for business processes:

Insure new Customer, Register and process

claim.

CUSTCA2.The system shall be available at

non-working hours for various automatic

processes (e.g. policy issue, claim recovery

payments generation etc.).

BSNBA2.The system shall be available for

automatic claim recovery payments

generation for 30 minutes during non-

working hours.

CUSTCP1.It shall take no longer than 2

seconds to save new customer/quote/claim in

a system.

BSNDP1.The system shall provide a

response to each user manual action in no

more than 1.5 seconds.

CUSTCP2.It shall take no longer than 2

seconds to rate a quote and calculate

premiums.

BSNDP1.The system shall provide a

response to each user manual action in no

more than 1.5 seconds.

CUSTCP3. It shall take no longer than 3

seconds to issue the policy, create billing

account and generate instalment schedule.

BSNDP1.The system shall provide a

response to each user manual action in no

more than 1.5 seconds.

CUSTCU1.95% of users shall be able to

create a customer in a system in less than 4

minutes.

BSNBP1.It shall take no longer than 12

minutes to Insure new Customer including

all manual steps performed by system user

and all automatic steps performed by system.

CUSTCU2.95% of users shall be able to

create a quote in a system and issue it in less

than 10 minutes.

BSNBP1.It shall take no longer than 12

minutes to Insure new Customer including

all manual steps performed by system user

and all automatic steps performed by system.

CUSTCU3.95% of users shall be able to

create a claim in a system in less than 6

minutes.

BSNBP2.It shall take no longer than 2 days

to Register and process claim of an existing

customer for a policy in force: 1) claim

creation should take no longer than 7

minutes, 2) claim evaluation ~ 1 working day

and claim recovery payments processing ~1

working day (including all manual steps

performed by system user and all automatic

steps performed by system).

CUSTCR1.The system shall allow creating

95 of 100 customers successfully.

BSNBR1.The system defect rate shall be less

than 1 failed business process per 100.

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

190

CUSTCR2.The system shall allow creating,

rate and issuing 95 of 100 quotes

successfully.

BSNBR1.The system defect rate shall be less

than 1 failed business process per 100.

CUSTCR3.The system shall allow creating

95 of 100 claims and their recovery payments

successfully.

BSNBR1.The system defect rate shall be less

than 1 failed business process per 100.

Table 4-14 Overlapping Non-Functional Requirements in Consumer and Business Process

Viewpoint

 Customer Viewpoint Business Process Viewpoint

CUSTCS1.The system shall be accessible to

100% of its authorized users.

BSNBS1.Only authorized and authenticated

system users shall be able to perform

business processes Insure new Customer,

Register and process claim.

CUSTCS3. The system shall not be

accessible to unauthenticated, unauthorized

users.

BSNBS1.Only authorized and authenticated

system users shall be able to perform

business processes Insure new Customer,

Register and process claim.

CUSTBSC1.From 50 to 250 users shall be

able to operate with system at the same time.

BSNBSC1. The system shall allow from 50

to 250 concurrent user sessions. Priority – 4.

CUSTBAU1.The system shall generate logs

of each user task performed in a system.

Priority – 6.

BSNBAU1.The system shall generate logs of

system failures, during the execution of the

business processes Insure new Customer,

Register and process claim.

CUSTBAU3.The system shall generate logs

of system failures, errors

BSNBAU1.The system shall generate logs of

system failures, during the execution of the

business processes Insure new Customer,

Register and process claim.

CUSTBAU4. The system shall generate logs

for batch processing.

BSNBAU1.The system shall generate logs of

system failures, during the execution of the

business processes Insure new Customer,

Register and process claim.

4.4.4. Elaborating Solutions and Performing Judgment and Trade-off

in Customer and Business Process Viewpoints

During conflicting requirement analysis it was decided to eliminate one of

conflicting requirements and leave only one of them that better reflects

business need. As a result, BSNBA1, BSNBA2, BSNDP1, BSNBP1, BSNBP2,

BSNBR1 were eliminated from further analysis.

During overlapping requirement analysis it was decided to eliminate one of the

overlapping requirements and leave only one that better reflects business needs.

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

191

Respectively, BSNBS1, BSNBSC1, and BSNBAU1 were eliminated from

further analysis.

4.5. Summary

In the previous chapter (Chapter: 3.4 Spiral Process Model for Capture and

Analysis of Non-Functional Requirements of Service-Oriented Enterprise

Systems) we defined a spiral process model for ESOA non-functional

requirements capture and analysis that includes such steps:

1. Define ESOA Stakeholders, ESOA non-functional requirements and

ESOA viewpoints framing them;

2. Identify non-functional requirements conflicts and overlaps;

3. Model non-functional requirements conflicts and overlaps using GRL

and UCM notations;

4. Develop alternative solutions/alternative non-functional requirements;

5. Elaborate proposed solutions/non-functional requirements;

6. Perform proposed non-functional requirements judgment and trade-off.

The set of our proposed ESOA viewpoints were as follows: Enterprise Strategy

Viewpoint, Enterprise Business Processes Viewpoint, Consumer Viewpoint,

Business Process Viewpoint, and Service Viewpoint.

For a case study to illustrate our process model we have chosen an Enterprise

Service-Oriented Insurance System which provides personal insurance

services.

For testing the first step of our process model we described ESOA viewpoints

in the following way:

1. Enterprise Strategy Viewpoint was described by formulating mission

and vision statements and also by using SWOT and PEST analysis. The

analysis reflected that Enterprise Insurance System is required in order

to reach company's vision, to use the technological advancement in the

world defined by PEST analysis, to overcome company’s weaknesses

and threats and to exploit opportunities defined by SWOT analysis.

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

192

2. Organization Business Processes Viewpoint was defined with the two

most common business processes: 1) insure new customer, 2) register

claim for an existing customer. These processes were modelled using

Business Process Modelling Notation – BPMN.

3. Consumer, Business Process and Service Viewpoints were described by

defining stakeholder groups, their concerns regarding non-functional

requirements, non-functional requirements categories and non-

functional requirements with their priorities.

For testing the second step in of process model, non-functional

requirements were checked for mutual consistency using tabular method.

Initially, during the first iteration, we checked non-functional requirements

within the limits of one viewpoint by comparing non-functional

requirements from different stakeholder groups. Secondly, during the

second iteration, we compared non-functional requirements from Customer

Viewpoint to Business Process Viewpoint requirements. Furthermore, we

decided not to search for non-functional requirements conflicts and overlaps

in Service Viewpoint, as two viewpoints were enough to test our process

model and the third would only have increased the amount of work and

repeated the results. As a result, Service Viewpoint was abandoned from

further steps in case study.

For testing the third step of our process model we modelled Consumer and

Business Process Viewpoints using GRL and UCM notations. Consumer

Viewpoint included Use Case Map (UCM) diagrams for both business

processes defined in Organization Business Process Viewpoint and a Goal

Requirement Language (GRL) diagram that depicted two stakeholder

groups concerns regarding non-functional requirements and non-functional

requirements themselves. GRL diagram visualized non-functional

requirements conflicts and overlaps. The UCM diagram displayed ESOA

sub-systems with their responsibilities. GRL and UCM diagrams are usually

used together because GRL defines the system users’ goals and UCM

allocates those goals to the system sub-systems (or components). Business

Chapter 4 – A Case Study: Enterprise Service-Oriented Insurance System

193

Process Viewpoint was modelled using only the GRL diagram as UCM

diagrams from Customer Viewpoint were reused here. The GRL diagram

depicted stakeholder groups concerns regarding non-functional

requirements and non-functional requirements themselves. GRL diagram

visualized non-functional requirements conflicts and overlaps.

During the testing the fourth step in our process model we developed

alternative solutions and proposals how non-functional requirements conflicts

and overlaps could be solved in Customer and Business Process Viewpoints.

During testing the fifth and sixth steps in our process model we elaborated our

solutions and performed judgment and trade-off in Customer and Business

Process Viewpoints. We have chosen two-fold elaboration approach – either to

eliminate one of conflicting and overlapping requirements, or to eliminate both

conflicting and overlapping requirements and to construct a new one.

To sum up, performed case study showed that, on one hand, our proposed

spiral process model for ESOA non-functional requirements capturing and

analysis can be used when gathering non-functional requirements for ESOA

solutions but, on the other hand, it contains some drawbacks and limitations. A

more detailed discussion is provided in the next chapter.

Chapter 5 – Discussion of Issues and Limitations

194

Chapter 5

Discussion of Issues and Limitations

The aim of the thesis research was to propose a spiral process model for

capturing and analysis non-functional requirements for enterprise service-

oriented systems that would help to solve service specification issues and

challenges that are encountered in service-oriented requirement engineering –

SORE. We propose a spiral process model constructs viewpoints for non-

functional requirements analysis starting from the highest level of abstraction –

enterprise strategy – and refining them step by step to concrete and detailed

service level requirements. The process model defines possible stakeholder

groups, non-functional requirements types, describes a method how to find

conflicting non-functional requirements and proposes a requirements

negotiation process model for conflict resolution. The Requirement negotiation

process recommends using User Requirements Notation (URN) standard

languages: Goal-oriented Requirement Language (GRL) and Use Case Maps

(UCM) notation to model viewpoints that contain conflicting and overlapping

non-functional requirements. These languages are designed to model system

requirements by showing how they affect high level business goals and

business strategy.

Although the results of the thesis are comprehensive and applicable to a real

world software design, some limitations can be noted:

 Process model can be very hard to apply in practice if no direct mapping

between business goals (when they are unknown or unclear) and system

functions exists, as the main aim of this model is to help to choose such

system functions with such quality characteristics that help to achieve

business goals the best.

Chapter 5 – Discussion of Issues and Limitations

195

 The appliance of process model requires a huge amount of manual work

when defining ESOA non-functional requirements and allocating them

to different viewpoints, looking for conflicting requirements using

tabular method, creating GRL and UCM diagrams, negotiating

requirement conflicts and overlaps iteratively.

5.1. Open Problems

The following open problems have to be investigated as well in order to

increase process model’s applicability:

 A solution for process model automation has to be thought of and

designed. It would decrease the amount of manual work and decrease

the possibility of human mistake.

 No research has been done to find out whether the process model can

also be used for modelling traditional systems non-functional

requirements. It is assumed that light adjustments – ESOA Viewpoints

(including stakeholders and non-functional requirements) need to be

redesigned to remove service-orientation principles.

 In addition to this, no research has been performed to find out whether

the process model can also be used for capturing and analysing

functional requirements. It is assumed, that at least non-functional

requirements (treated as concerns in viewpoints) have to be changed

with functional requirements and these should be treated as concerns in

viewpoints.

196

Results and Conclusions

The results of the thesis research can be summarized as follows:

1. Service-oriented requirement engineering (SORE) lacks coherent,

comprehensive and mature requirement engineering process models.

There exist issues and challenges in SORE that have not been solved

yet.

2. ESOA systems are of high complexity, usually have many different

stakeholder groups with different expectations of systems non-functional

characteristics and conflicting expectations inevitably rise. In addition to

this, ESOA systems non-functional requirements differ from traditional

systems non-functional requirements and there are no mature service-

oriented requirement engineering process models targeted at them.

3. Several service-oriented system development methodologies such as

IBM RUP/SOMA, SOAF, SOUP, the methodology by Tomas Erl, and

methodology by Michael Papazoglou have been proposed to ensure

successful service-oriented systems development by providing process

guidance and proven best practices from already accomplished SOA

projects. Although these methodologies help to structure service-

oriented systems development processes, they are not aimed at defining

SORE process and do not provide any approach to requirement

capturing and analysis.

4. A set of typical stakeholder groups for ESOA systems has been

proposed with the main differences between stakeholders for traditional

systems and ESOA systems highlighted.

5. A set of quality attributes (non-functional requirements) for ESOA

systems has been proposed by drawing the main attention to their

differences with respect to traditional systems non-functional

requirements.

197

6. Process model for capturing and analysis non-functional requirements of

service-oriented enterprise systems has been proposed; it is designed

incorporating traditional and service-oriented requirement gathering

process models, conflicts management approaches and techniques, EA

standards and frameworks.

7. Process model recommends using i*-based modelling languages (GRL

and UCM) and viewpoints that are widely used in Enterprise

Architecture (EA) standards and frameworks and have not been

previously thoroughly researched for their applicability to solve issues

and challenges of service specification for service-oriented enterprise

systems.

8. Process model includes five viewpoints – Enterprise Strategy viewpoint,

Enterprise Business Processes viewpoint, Consumer viewpoint,

Business Process viewpoint, and Service viewpoint. A case study

performed on an insurance domain revealed that non-functional

requirements analysis using viewpoints can help to find conflicting

requirements and resolve requirements conflicts, because service-

oriented enterprise systems are complex ones and usually stakeholders

have conflicting and overlapping requirements.

9. Process model is designed to benefit from the iterative requirement

negotiation process and allows renegotiation. Requirement negotiation

process is based on a spiral model to accommodate the dynamic

requirements engineering. Each round of the cycle resolves more

conflicted requirements and achieves better resolution. The model

considers the win conditions of all stakeholders that participate in ESOA

project as it identifies and evaluates alternative approaches for satisfying

the win conditions. It also helps to identify and resolve risks that stem

from the selected approach by performing elaboration, judgment and the

trade-off of selected solution.

10. Process model is based on the main aim of service-orientation – to

develop systems that support enterprise business strategy, objectives and

198

goals and, as a result, is primarily concerned with exposing “why” (by

modelling business goals) certain non-functional requirements are more

important than the others.

11. Process model can be used in conjunction with service-oriented systems

development methodologies to improve requirement capturing, analysis

capabilities and, at the same time, increase system quality and usability.

199

References

Ahmad, S. (2008). Negotiation in the Requirements Elicitation and Analysis

Process. In Proceedings of the 19th Australian Conference on Software

Engineering. IEEE Computer Society Press, p. 683-689.

Amyot, D., Mussbacher, G. (2011). User Requirements Notation: The First Ten

Years, The Next Ten Years. Journal of Software, Vol. 6, No. 5 (2011), p.

747-768.

Arsanjani, A. (1999). Service Provider: A Meta-Domain Pattern and its

Business Framework Implementation, In Online Proceedings of the Pattern

Languages in Programming Conference. [Accessed 2015-06-24]

http://hillside.net/plop/plop99/proceedings/Arsanjani/provider3.pdf

Arsanjani, A. (2001). Enterprise Component: A compound pattern for building

component architectures. In Proceedings of TOOLS 2001, IEEE Computer

Society Press.

Arthur, J.D., Gröner, M.K. (2005). An operational model for structuring the

requirements generation process. The Requirements Engineering Journal,

Vol. 10, No. 1 (January 2005), p. 45-62.

Bano, M., Irkram, N. (2010). Issues and challenges of Requirement

Engineering in Service Oriented Software Development, IEEE Computer

Society Press, p. 64-69.

Barker, D. (2004). itSMF – ITIL Best Practice. Are we Getting the Message?

ServiceTalk – Journal of IT Service Management Forum, 66, 3.

Bianco, P., Kotermanski, R., Merson, P. (2007). Evaluating a Service-Oriented

Architecture, Carnegy Mellon: Carnegie Mellon University.

Bichler, M., Lin, K-J. (2006). Service-Oriented Computing. Computer 39(3), p.

99-101.

Bieberstein, N., Bose, S., Fiammante, M., Jones, K., Shah, R. (2006). Service-

oriented Architecture Compass – Business Value, Planning, and Enterprise

Roadmap. Upper Saddle River: Pearson as IBM Press.

http://hillside.net/plop/plop99/proceedings/Arsanjani/provider3.pdf

200

Boehm, B. (1988). A Spiral Model of Software Development and

Enhancement. Computer, Vol. 21, No. 5, (May 1988), p. 61-72.

Boehm, B. (2000). Spiral Development: Experience, Principles, and

Refinements, Special Report CMU/SEI-2000-SR-008. [Accessed 2015-06-

24] http://www.sei.cmu.edu/reports/00sr008.pdf

Chinnici, R., Moreau, J. J., Ryman, A., Weerawarana, S. (2007). Web Services

Description Language (WSDL) Version 2.0 Part 1: Core Language, W3C

Recommendation.

Choi, S. W., Her, J. S., Kim, S. D. (2007). Modeling QoS Attributes and

Metrics for Evaluating Services in SOA Considering Consumers'

Perspective as the First Class Requirement. APSCC, IEEE, p. 398-405 .

Chung L., Nixon, J. M. B., Yu, A. (2000). Non-functional Requirements in

Software Engineering. Springer, Reading, Massachusetts. ISBN 978-1-

4615-5269-7.

Clements, P., Kazman, R., Klein, M. (2002). Evaluating Software

Architectures. Boston, MA: Addison-Wesley.

Clements, P. (2005). 1471 (IEEE Recommended Practice for Architectural

Description of Software-Intensive Systems), CMU/SEI-2005-TN-017,

Software Architecture Technology Initiative, Carnegie-Mellon Software

Engineering Institute.

Crnkovic, G. D. (2010). Constructive Research and Info-Computational

Knowledge Generation. Model-based reasoning in science and technology,

Studies in Computational Intelligence, Vol. 314/2010, p. 359-380.

DoDAF. Department of Defense Architecture Framework Version 2.02, 2010.

[Accessed 2015-06-24] http://dodcio.defense.gov/dodaf20.aspx

Erl, T. (2005). Service-Oriented Architecture: Concepts, Technology and

Design. Prentice Hall PTR. ISBN 0132715821, 9780132715829.

Erl, T. (2008). SOA Principles of Service Design. Prentice Hall PTR. ISBN

0132344823, 9780132344821.

http://dodcio.defense.gov/dodaf20.aspx

201

Erradi, A., Anand, S., Kulkarni, N. (2006). SOAF: An Architectural

Framework for Service Definition and Realization. IEEE International

Conference on Services Computing (SCC'06), p. 151-158.

Errikson, I., McFadden, F. (1993). Quality Function Deployment: A Tool to

Improve Software Quality. Information and Software Technology 35, 9.

E2AF. Extended Enterprise Architecture Framework Essentials Guide v1.5.

2006. Institute For Enterprise Architecture Developments. [Accessed 2015-

06-24] http://www.enterprise-

architecture.info/Images/E2AF/Extended%20Enterprise%20Architecture%2

0Framework%20Essentials%20Guide%20v1.5.pdf

Fernandez-Martinez, L. F., Lemus-Olalde, C. (2004). Improving the IEEE std

1471-2000 for Communication among Stakeholders and Early Design

Decisions, Proceeding (418) Software Engineering.

Flores, F., Mora, M., Álvarez, F., O’Connor, R., Macias, J. (2008). Handbook

of Research on Modern Systems Analysis and Design Technologies and

Applications. In IGI Global (eds), p. 96 -111.

Flores, F., Mora, M., Álvarez, F., Garza L., Durán, H. (2009). From

Requirements Engineering to Service-oriented Requirements Engineering:

An Analysis of Transition. Phoenix, AZ, USA, December 14, 2009, s.n., p.

1-13.

Flores, F., Mora, M., Álvarez, F., Garza L., Durán, H. (2010). Towards a

Systematic Service-oriented Requirements Engineering Process (S-SoRE).

ENTERprise Information Systems Communications in Computer and

Information Science, Vol. 109, p. 111-120.

Flyvbjerg, B. (2004). Five misunderstandings about case-study research. In C.

Seale, G. Gobo, D. Silverman (eds.). Qualitative Research Practices. London

and Thousand Oaks, CA: Sage, p. 420-434.

Gall, N., Perkins, E. (2003). The Intersection of Web Services and Security

Management: A Service-Oriented Security Architecture. [Accessed 2015-

06-24]

http://www.enterprise-architecture.info/Images/E2AF/Extended%20Enterprise%20Architecture%20Framework%20Essentials%20Guide%20v1.5.pdf
http://www.enterprise-architecture.info/Images/E2AF/Extended%20Enterprise%20Architecture%20Framework%20Essentials%20Guide%20v1.5.pdf
http://www.enterprise-architecture.info/Images/E2AF/Extended%20Enterprise%20Architecture%20Framework%20Essentials%20Guide%20v1.5.pdf

202

http://people.cs.vt.edu/~kafura/cs6204/Readings/WebServices/MetaGroupW

hitePaperWebServices.pdf

Galster, M., Bucherer, E. (2008). Towards Requirements Engineering in a

Service-Oriented Environment - Extending the SOA Interaction Triangle.

Computational Intelligence for Modelling Control & Automation,

International Conference on, p. 1099-1104, IEEE.

Grady, R., Caswell, D. (1987). Software Metrics: Establishing a Company-

Wide Program. Englewood Cliffs: Prentice-Hall.

Hart, C. (1998). Doing a literature review: Releasing the social science research

imagination. London, SAGE Publications.

Hofmeister, C., Nord, R., Soni, D. (1999). Applied Software Architecture.

Addison-Wesley, Boston.

IBM RUP/SOMA. IBM Rational Unified Process for Service-Oriented

Modelling and Architecture. [Accessed 2015-06-24] http://www.michael-

richardson.com/processes/rup_classic/#soa.rup_soma/customcategories/rup_

soma_roadmaps_1618FD4A.html

IEEE Std 1471:2000. Recommended Practice for Architectural Description of

Software-intensive. [Accessed 2015-06-24] Systems.

https://standards.ieee.org/findstds/standard/1471-2000.html

IEEE P1723, Standard for a Service-Oriented Architecture (SOA) Reference

Architecture. [Accessed 2015-06-24]

http://standards.ieee.org/develop/project/1723.html

ISO/IEC 10746-1:1998. Information technology — Open Distributed

Processing — Reference model: Overview. [Accessed 2015-06-24]

http://www.iso.org/iso/catalogue_detail.htm?csnumber=20696

ISO/IEC 10746-2:1996. Information technology — Open Distributed

Processing — Reference model: Foundations. [Accessed 2015-06-24]

http://www.iso.org/iso/catalogue_detail.htm?csnumber=18836

ISO/IEC 10746-3:1996. Information technology — Open Distributed

Processing — Reference model: Architecture

http://standards.ieee.org/develop/project/1723.html

203

ISO/IEC 10746-4:1998. Information technology — Open Distributed

Processing — Reference Model: Architectural semantics. [Accessed 2015-

06-24] http://www.iso.org/iso/catalogue_detail.htm?csnumber=20698

ISO/IEC/IEEE 42010:2011. Systems and software engineering - Architecture

description. [Accessed 2015-06-24]

https://standards.ieee.org/findstds/standard/42010-2011.html

ISO/IEC 25010:2011. Systems and software engineering — Systems and

software Quality Requirements and Evaluation (SQuaRE) — System and

software quality models. [Accessed 2015-06-24]

http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733

ISO/IEC 9126:2000. Information Technology - Software Product Quality -

Part 1: Quality Model.

ITU-T (2008). ITU-T Recommendation Z.151 User Requirements Notation

(URN), International Telecommunication Union. [Accessed 2015-06-24]

https://www.itu.int/rec/T-REC-Z.151/en

Yu, E. (2009). Social Modeling and i*. In Conceptual Modeling: Foundations

and Applications, Lecture Notes in Computer Science, Vol. 5600, p. 99-121

Kan, S. (2002). Metrics and Models in Software Quality Engineering, 2nd

Edition. Addison-Wesley Professional.

Koch, C., 2005. Enterprise Architecture: A New Blueprint For The Enterprise,

CIO Magazine.

Kotonya, G., Sommervile, I. (1998). Requirements Engineering Process And

Techniques. John Wiley & Sons.

Kroll, P., Kruchten, P., Booch, G. (2003). The Rational Unified Process Made

Easy: A Practitioner's Guide to the RUP: A Practitioner's Guide to the

RUP. Addison-Wesley, ISBN-13: 978-0321166098, ISBN-10: 0321166094

Kruchten, P. (1995). Architectural Blueprints — The “4+1” View Model of

Software Architecture. IEEE Software 12 (6), p. 42-50.

Lamsweerde, A. (2000). Requirements Engineering in the Year 00: A Research

Perspective. In Proceedings of the ICSE 2000 Conference, p. 5-19.

204

Layzell, P. et al (2000). Service-based Software: The Future for Flexible

Software, In Proceedings of Asia-Pacific Software Engineering

Conference, IEEE Computer Society.

Laurence, S., Margolis, E. (2003). Concepts and conceptual analysis.

Philosophy and Phenomenological Research 67, p. 253-282.

Leite, P., Freeman, P. (1991). Requirements Validation Through Viewpoint

Resolution. IEEE Transactions on Software Engineering 17, 12, p. 1253-

1269.

Linington, P. F., Milosevic. Z., Tanaka, A., Vallecillo, A. (2011). Building

Enterprise Systems with ODP. An Introduction to Open Distributed

Processing. Chapman & Hall/CRC Press, ISBN: 978-1-4398-6625-2.

Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D., Mann, W.

(1995). Specification and analysis of system architecture using RAPIDE,

IEEE Transactions on Software Engineering, 21(4), p. 336–355.

Lukka, K. (2003). The constructive research approach. In: L. Ojala, O-P.

Hilmola (eds.) Case study research in logistics. Publications of the Turku

School of Economics and Business Administration, Series B 1:2003, p. 83-

101.

Machado, A., Silva, F. J. (2007). Toward a richer view of the scientific method.

The role of conceptual analysis. American Psychologist, 62(7), p. 671–681.

McGovern, J., Tyagi, S., Stevens, M., Matthew, S., (2003). Java Web Services

Architecture. San Francisco, CA: Morgan Kaufmann Publishers.

Mingers, J., (2001). Combining IS Research Methods: Towards a Pluralist

Methodology. Information Systems Research, Vol. 12, No. 3, p. 240–259.

Minoli, D., (2008). Enterprise Architecture A to Z: Frameworks, Business

Process Modeling, SOA, and Infrastructure Technology. Auerbach

Publications. Print ISBN: 978-0-8493-8517-9.

Newcomer, E., Lomow, G. (2004). Understanding SOA with Web services

(Independent Technology Guides). Addison-Wesley.

Newcomer, E. & Lomow, G., 2005. Understanding SOA with Web services.

s.l.:Addison-Wesley.

205

Nuseibeh, B., Easterbrook, S. (2000). Requirements engineering: a roadmap.

Proceedings of the Conference on the Future of Software Engineering

(ICSE '00), p. 35-46.

O'Brien, Liam., Bass, Len., Merson, P. F. (2005). Quality Attributes and

Service-Oriented Architectures. Software Engineering Institute. Paper 449.

OMG formal. (2008). Systems Modeling Language, version 1.1.

Papazoglou, M.P., 2006. Service-Oriented Design and Development

Methodology. Int. J. of Web Engineering and Technology (IJWET), Vol. 2,

No 4, p. 412-442.

Penrod, J., Hupcey, J. (2005). Enhancing methodological clarity: principle-

based concept analysis. Journal of Advanced Nursing Vol. 50, No. 4, p.

403–409.

Ramollari, E., Dranidis, D., Simons, A.JH. (2007). A survey of service oriented

development methodologies. The 2nd European Young Researchers

Workshop on Service Oriented Computing, p.75-80.

Rational Software. (1998). Rational Unified Process: Best Practices for

Software Development Teams. Rational Software White Paper TP026B,

Rev 11/01. [Accessed 2015-06-24]

http://www.ibm.com/developerworks/rational/library/content/03July/1000/

1251/1251_bestpractices_TP026B.pdf

RM-ODP. Reference Model of Open Distributed Processing. [Accessed 2015-

06-24] http://www.rm-odp.net/

Runeson, P., Höst, M. (2009). Guidelines for conducting and reporting case

study research in software engineering. Empirical Software Engineering,

Vol. 14, No. 2, 14:131–164.

Russo, A., Nusbeibeh, B., Kramer, J. (1999). Restructuring Requirements

Specifications. Software, IEE Proceedings, Vol. 146, No. 1), p. 44 - 53.

Sambeth, M. (2006). Enterprise SOA. Mastering Future Business. Presentation

slides, SAP AG

SAP. (2008). Enterprise SOA Development Handbook 1.1, [Accessed 2015-06-

24]

http://www.rm-odp.net/

206

http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/40db473

5-02f9-2a10-b198-a888a056bb67?overridelayout=true

Schekkerman, J. (2001–2006). Another View at Extended Enterprise

Architecture Viewpoits. Institute For Enterprise Architecture

Developments (IFEAD). [Accessed 2015-06-24] http://www.enterprise-

architecture.info/EA_Services-Oriented-Enterprise.htm

Schekkerman, J. (2004). Another View at Extended Enterprise Architecture

Viewpoits. Institute For Enterprise Architecture Developments (IFEAD).

[Accessed 2015-06-24] http://www.enterprise-

architecture.info/Images/Extended%20Enterprise/E2A-

Viewpoints_IFEAD.PDF

Schekkerman, J. (2005). Trends in Enterprise Architecture 2005 in Reports of

the Third Measurement. Institute For Enterprise Architecture

Developments (IFEAD).

Shams-Ul-Arif, Khan, Q., Gahyyur, S. A. K. (2009-2010). Requirement

Engineering Processes Tools/Technologies & Methodologies, International

Journal of Reviews in Computing, p. 41-56.

Shaw, M. (1990). Prospects for an Engineering Discipline of Software. IEEE

Software, 7(6): 15-24.

SOA GRM, SOA Governance Technical Standard: SOA Governance

Reference Model. [Accessed 2015-06-24]

http://www.opengroup.org/soa/source-book/gov/sgrm.htm

SOA-RM. (2006). Reference Model for Service-Oriented Architecture 1.0. s.l.:

OASIS. [Accessed 2015-06-24] https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=soa-rm

SOA-RAF. (2012). Reference Architecture Fundation for Service-Oriented

Architecture Version 01, s.l.: OASIS. [Accessed 2015-06-24]

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.pdf

SOA Source Book, 2009. Van Haren Publishing.

http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/40db4735-02f9-2a10-b198-a888a056bb67?overridelayout=true
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/40db4735-02f9-2a10-b198-a888a056bb67?overridelayout=true
http://www.enterprise-architecture.info/EA_Services-Oriented-Enterprise.htm
http://www.enterprise-architecture.info/EA_Services-Oriented-Enterprise.htm
http://www.enterprise-architecture.info/Images/Extended%20Enterprise/E2A-Viewpoints_IFEAD.PDF
http://www.enterprise-architecture.info/Images/Extended%20Enterprise/E2A-Viewpoints_IFEAD.PDF
http://www.enterprise-architecture.info/Images/Extended%20Enterprise/E2A-Viewpoints_IFEAD.PDF
http://www.opengroup.org/soa/source-book/gov/sgrm.htm
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.pdf

207

Soni, D., Nord, R., Hofmeister, C., 1995. Software architecture in industrial

applications. In: Proceedings of the 17th International Conference on

Software Engineering (ICSE-17). ACM Press, p. 196–207.

Sommerville, I., Sawyer, P. (1997). Viewpoints: principles, problems and a

practical approach to requirements engineering. Annals of Software

Engineering, Vol. 3, p. 101–130.

SOUP. Service-Oriented Unified Process. [Accessed 2015-06-24]

http://www.kunalmittal.com/html/soup.html

Svanidzaitė, S (2012). A comparison of SOA methodologies Analysis &

Design Phases. Baltic DB & IS 2012, Tenth International Baltic

Conference on Databases and Information Systems, p. 202-207.

Svanidzaitė, S. (2014a). Towards Service-oriented Requirement Engineering.

In Proceedings of IVUS 2014, XIX Interuniversity Conference Information

Society and University Studies, p. 15-20.

Svanidzaitė, S. (2014b). An Approach to SOA Methodology: SOUP

Comparison with RUP and XP, Computational Science and Techniques

2,1, p. 238-252.

Svanidzaitė, S. (2014c). A Methodology for Capturing and Managing Non-

Functional Requirements for Enterprise Service-Oriented Systems. Baltic

J. Modern Computing Vol. 2, No.3, p. 117-131.

TAFIM (1990). Technical Architecture Framework for Information

Management. [Accessed 2015-06-24] http://en.wikipedia.org/wiki/TAFIM

The Open Group SOA Reference Architecture (SOA-RA), (2011). Technical

Standard. [Accessed 2015-06-24] http://www.opengroup.org/soa/source-

book/soa_refarch/index.htm

Trienekens, J., Bouman, J.J., van der Zwan, M. (2004). Specification of Service

Level Agreements: Problems, Principles and Practices, Software Quality

Journal, 12(1), p. 43-57.

Tsai, W., Jin, Z., Wang, P., Wu, B. (2007). Requirement Engineering in

Service-Oriented System Engineering, IEEE International Conference on e-

Business Engineering, p. 661 – 668.

http://www.kunalmittal.com/html/soup.html
http://en.wikipedia.org/wiki/TAFIM
http://www.opengroup.org/soa/source-book/soa_refarch/index.htm
http://www.opengroup.org/soa/source-book/soa_refarch/index.htm

208

TOGAF 9.1 (2011). An Open Group standard. [Accessed 2015-06-24]

http://pubs.opengroup.org/architecture/togaf9-doc/arch/

UML 2.0. (2007). Unified Modeling Language: Superstructure, Ver. 2.1.1,

OMG Adopted Specification, OMG document formal/2007-02-05, Object

Management Group, Needham, MA.

Van Eck, P., Wieringa, R. (2003). Requirements Engineering for Service-

Oriented Computing: a Position Paper, Proceedings of the First

International E-Services Workshop, ICEC 03, Pittsburgh, USA, p. 23-28

WEB (a). The Open Group SOA Reference Architecture (SOA-RAF).

[Accessed 2015-06-24] http://www.opengroup.org/soa/source-

book/soa_refarch/index.htm

WEB (aa). SSL, Secure Sockets Layers Protocol. [Accessed 2015-06-24]

https://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_1-

1/ssl.html

WEB (ab). Kerberos, The Network Authentication Protocol. [Accessed 2015-

06-24] http://web.mit.edu/kerberos/

WEB (ac). SAML, Security Assertions Markup Language. [Accessed 2015-06-

24] https://www.oasis-open.org/standards#samlv2.0

WEB (ad). XACML, eXtensible Access Control Markup Language. [Accessed

2015-06-24] https://www.oasis-open.org/standards#xacmlv3.0

WEB (ae). BTP, Business Transactions Protocol. [Accessed 2015-06-24]

https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=business-transaction

WEB (af). WS-Tx, Web Services Transactions. [Accessed 2015-06-24]

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-tx

WEB (ag). Ministry of Defence Architecture Framework (MODAF). [Accessed

2015-06-24] https://www.gov.uk/mod-architecture-framework

WEB (ah). Open Distributed Processing (ODP). [Accessed 2015-06-24]

http://dictionary.reference.com/browse/open+distributed+processing

WEB (ai). Service Level Agreement (SLA). [Accessed 2015-06-24]

http://searchitchannel.techtarget.com/definition/service-level-agreement

http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://www.opengroup.org/soa/source-book/soa_refarch/index.htm
http://www.opengroup.org/soa/source-book/soa_refarch/index.htm
https://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_1-1/ssl.html
https://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_1-1/ssl.html
http://web.mit.edu/kerberos/
https://www.oasis-open.org/standards#samlv2.0
https://www.oasis-open.org/standards#xacmlv3.0
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=business-transaction
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=business-transaction
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-tx
https://www.gov.uk/mod-architecture-framework
http://dictionary.reference.com/browse/open+distributed+processing
http://searchitchannel.techtarget.com/definition/service-level-agreement

209

WEB (aj). The Unified Profile for DoDAF/MODAF (UPDM). [Accessed 2015-

06-24] http://www.omg.org/spec/UPDM

WEB (ak). ESB, Enterprise Service Bus. [Accessed 2015-06-24]

http://www.oracle.com/technetwork/articles/soa/ind-soa-esb-1967705.html

WEB (al). Vision statement. [Accessed 2015-06-24]

http://www.businessdictionary.com/definition/vision-statement.html

WEB (b). Zachman Institute for Framework Advancement (ZIFA). [Accessed

2015-06-24] http://www.zifa.com/

WEB (c). TOGAF®, an Open Group standard. [Accessed 2015-06-24]

http://www.opengroup.org/subjectareas/enterprise/togaf

WEB (d). Business Process Modelling Notation. [Accessed 2015-06-24]

http://www.bpmn.org/

WEB (e). Mission Statement. [Accessed 2015-06-24]

http://www.businessdictionary.com/definition/mission-statement.html

WEB (f). PEST analysis. [Accessed 2015-06-24]

http://www.businessballs.com/pestanalysisfreetemplate.htm

WEB (g). Software Development Life Cycle. [Accessed 2015-06-24]

http://searchsoftwarequality.techtarget.com/definition/systems-

development-life-cycle

WEB (h). SWOT analysis. [Accessed 2015-06-24]

http://www.businessballs.com/swotanalysisfreetemplate.htm

WEB (i). Frequently Asked Questions: ISO/IEC/IEEE 42010. [Accessed 2015-

06-24] http://www.iso-architecture.org/ieee-1471/faq.html

WEB (j). Wright ADL website. [Accessed 2015-06-4]

http://www.cs.cmu.edu/~able/wright/

WEB (k). The Open Group, ArchiMate 1.0 Specification. [Accessed 2015-06-

24] http://www.archimate.org/

WEB (l). TOGAF 8.1.1. Developing Architecture Views. [Accessed 2015-06-

24] http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap31.html

WEB (m). CORBA, Common Object Request Broker Architecture. [Accessed

2015-06-24] http://www.corba.org/

http://www.omg.org/spec/UPDM
http://www.oracle.com/technetwork/articles/soa/ind-soa-esb-1967705.html
http://www.businessdictionary.com/definition/vision-statement.html
http://www.opengroup.org/subjectareas/enterprise/togaf
http://www.bpmn.org/
http://www.businessdictionary.com/definition/mission-statement.html
http://www.businessballs.com/pestanalysisfreetemplate.htm
http://searchsoftwarequality.techtarget.com/definition/systems-development-life-cycle
http://searchsoftwarequality.techtarget.com/definition/systems-development-life-cycle
http://www.businessballs.com/swotanalysisfreetemplate.htm
http://www.iso-architecture.org/ieee-1471/faq.html
http://www.cs.cmu.edu/~able/wright/
http://www.archimate.org/
http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap31.html
http://www.corba.org/

210

WEB (n). RMI, Remote Method Invocation, [Accessed 2015-06-24]

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-

136424.html

WEB (o). DCOM, Distributed Component Object Model. [Accessed 2015-06-

24] http://whatis.techtarget.com/definition/DCOM-Distributed-

Component-Object-Model

WEB (p). RPC, Remote Procedure Call. [Accessed 2015-06-24]

https://technet.microsoft.com/en-

us/library/cc787851%28v=ws.10%29.aspx

WEB (r). Microsoft .NET. [Accessed 2015-06-24]

http://www.microsoft.com/net

WEB (s). JAVA EE, Oracle Java Enterprise Edition. [Accessed 2015-06-24]

http://www.oracle.com/technetwork/java/javaee/overview/index.html

WEB (t). WSDL, Web Services Definition Language. [Accessed 2015-06-24]

http://www.w3.org/standards/techs/wsdl#w3c_all

WEB (u). SOAP, Simple Object Access Protocol. [Accessed 2015-06-24]

http://www.w3.org/standards/techs/soap#w3c_all

WEB (v). WS-BPEL, Web Services Business Process Execution Language

Version 2.0. [Accessed 2015-06-24] http://docs.oasis-

open.org/wsbpel/2.0/wsbpel-v2.0.pdf

WEB (w). WS-Security, Web Services Security. [Accessed 2015-06-24]

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

WEB (x). ebXML, Electronic Business using eXtensible Markup Language.

[Accessed 2015-06-24] http://www.ebxml.org/

WEB (y). Web Services Interoperability Organization. [Accessed 2015-06-24]

http://www.ws-i.org/

WEB (z). WS-I, Web Services Interoperability. [Accessed 2015-06-24]

http://www.oasis-ws-i.org/

Weerawarana, S., Leymann, F., Curbera, F., Ferguson, D., Storey, T. (2005).

Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
http://whatis.techtarget.com/definition/DCOM-Distributed-Component-Object-Model
http://whatis.techtarget.com/definition/DCOM-Distributed-Component-Object-Model
https://technet.microsoft.com/en-us/library/cc787851%28v=ws.10%29.aspx
https://technet.microsoft.com/en-us/library/cc787851%28v=ws.10%29.aspx
http://www.microsoft.com/net
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.w3.org/standards/techs/wsdl#w3c_all
http://www.w3.org/standards/techs/soap#w3c_all
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.ebxml.org/
http://www.ws-i.org/
http://www.oasis-ws-i.org/

211

Addressing, WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall

PTR. ISBN 10: 0131488740 ISBN 13: 9780131488748.

Zachman International Enterprise Architecture v3.0 (2011). [Accessed 2015-

06-24] https://www.zachman.com/about-the-zachman-framework

https://www.zachman.com/about-the-zachman-framework

212

List of Publications

1. Svanidzaitė, S. (2014). Towards Service-oriented Requirement

Engineering. Proceedings of IVUS 2014, XIX Interuniversity

Conference Information Society and University Studies 2014, p. 15-20.

[Accessed 2015-06-24]

http://oras.if.ktu.lt/ivus2014/IVUS2014_preprint_2014_04_22.pdf

2. Svanidzaitė, S. (2014) A Methodology for Capturing and Managing

Non-Functional Requirements for Enterprise Service-Oriented Systems.

Baltic J. Modern Computing. Vol. 2, No.3, p. 117-131. [Accessed 2015-

06-24]

http://www.bjmc.lu.lv/fileadmin/user_upload/lu_portal/projekti/bjmc/Co

ntents/2_3_1_Svanidzaite.pdf

3. Svanidzaitė, S (2014). An Approach to SOA Development

Methodology: SOUP Comparison with RUP and XP. Computational

Science and Techniques Vol. 2, No.1 (2014), p. 238-252, ISSN: 2029-

9966. [Accessed 2015-06-24]

http://journals.ku.lt/index.php/CST/article/view/77

4. Svanidzaitė, S (2012). A comparison of SOA methodologies Analysis &

Design Phases. Baltic DB & IS 2012, Tenth International Baltic

Conference on Databases and Information Systems, July 8-11, 2012,

Vilnius, Lithuania. [Accessed 2015-06-24] http://ceur-ws.org/Vol-

924/paper19.pdf

http://oras.if.ktu.lt/ivus2014/IVUS2014_preprint_2014_04_22.pdf
http://www.bjmc.lu.lv/fileadmin/user_upload/lu_portal/projekti/bjmc/Contents/2_3_1_Svanidzaite.pdf
http://www.bjmc.lu.lv/fileadmin/user_upload/lu_portal/projekti/bjmc/Contents/2_3_1_Svanidzaite.pdf
http://journals.ku.lt/index.php/CST/article/view/77
http://ceur-ws.org/Vol-924/paper19.pdf
http://ceur-ws.org/Vol-924/paper19.pdf

