
VILNIUS UNIVERSITY

NERIJUS GALIAUSKAS

OPTIMIZATION ALGORITHMS FOR MULTIDIMENSIONAL
SCALING WITH CITY-BLOCK DISTANCES AND THEIR

PARALLELIZATION

Doctoral Dissertation
Technological Sciences, Informatics Engineering (07 T)

Vilnius, 2015



The dissertation was prepared during the period 2010–2014 at the Institute
of Mathematics and Informatics of Vilnius University

Scientific supervisor:
Prof. Dr. Julius Žilinskas (Vilnius University, Technological Sciences, In-
formatics Engineering – 07 T).



VILNIAUS UNIVERSITETAS

NERIJUS GALIAUSKAS

OPTIMIZAVIMO ALGORITMAI DAUGIAMATĖMS SKALĖMS SU
MIESTO KVARTALO ATSTUMAIS IR JŲ LYGIAGRETINIMAS

Daktaro disertacija
Technologijos mokslai, informatikos inžinerija (07 T)

Vilnius, 2015



Disertacija rengta 2010-2014 metais Vilniaus universiteto Matematikos ir
informatikos institute

Mokslinis vadovas:
prof. dr. Julius Žilinskas (Vilniaus universitetas, technologijos mokslai,
informatikos inžinerija – 07 T).



Abstract

In this dissertation, a problem related to a visualization of elements of a
multidimensional data set is considered. Here, for the sake of simplicity, an
element of a multidimensional data set is called a multidimensional element.
There are many techniques for visualizing multidimensional elements. Mul-
tidimensional scaling (MDS) is one of them. In applying MDS, a certain
real function has to be constructed and minimized. In order to construct
the function, a desired distance function has to be selected. If city-block
distances are selected, the problem of minimizing such a function becomes
a complicated optimization problem. In this work, this complicated op-
timization problem is the main research problem. Here, we formulate a
new optimization problem and we show that it is equivalent to the original
optimization problem arising in MDS with city-block distances. Also, we
propose two sequential algorithms and one parallel algorithm for the newly
formulated problem. Finally, we present the results of numerical investiga-
tions of the proposed algorithms.

5



Acknowledgments

While writing this dissertation I met a lot of wonderful people. I would
like to give a big thank you to all of them separately. However, I will
mention only a few of them here. Others will remain in my mind and heart
forever.

First of all, I would like to thank my parents for everything.
I would like to express the deepest appreciation to my scientific super-

visor Prof. Dr. Julius Žilinskas for his invaluable support, understanding,
and patience.

I would also like to extend my appreciation to Prof. Dr. Roger Fletcher
for his great ideas and suggestions for solving the research problem.

In addition, I would also like to thank Prof. Dr. Jonas Mockus and
Dr. Algirdas Lančinskas for their deep review of the dissertation and their
valuable advice on how to improve the quality of this work.

Last but not least, I would like to thank Prof. Dr. Gintautas Dzemyda,
Prof. Dr. Antanas Žilinskas, Prof. Dr. Albertas Čaplinskas, Dr. Olga
Kurasova, Danutė Rimeisienė, Prof. Dr. Valentina Dagienė, Prof. Dr.
Eugenijus Stankus and Dr. Antanas Apynis for their direct and indirect
help in writing this dissertation.

6



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

List of figures and tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
The research problem and its relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
The purpose and tasks of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
The novelty of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Propositions for defense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Approbation of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Scientific projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1. Basic concepts and related works . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1. Mathematical optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.1. Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.1.1. Optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.1.2. Equivalence of two optimization problems . . . . . . . . 17
1.1.1.3. Two-level optimization problem . . . . . . . . . . . . . . . . . . 17
1.1.1.4. Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.1.5. KKT conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.1.6. QP problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.1.7. Equality constrained QP problem . . . . . . . . . . . . . . . . 20

1.1.2. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.1.2.1. The active-set method . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.1.2.2. The null-space method . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.1.2.3. The branch-and-bound method . . . . . . . . . . . . . . . . . . 25
1.1.2.4. Parallel branch-and-bound methods . . . . . . . . . . . . . . 25

1.2. Multidimensional scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.2.1. Optimization problem arising in MDS . . . . . . . . . . . . . . . . . . . 27
1.2.2. Known algorithms for MDS with city-block distances . . . 28

7



CONTENTS

1.2.2.1. SMOOTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.2.2.2. BB2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2. Algorithms for MDS with city-block distances . . . . . . . . . . . . 34
2.1. The Stress function with city-block distances . . . . . . . . . . . . . . . . . 34

2.1.1. Invariance under translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.2. Invariance under mirroring I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1.3. Invariance under mirroring II . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.4. Non-differentiability everywhere over its domain . . . . . . . . 37

2.2. Equivalent problem to MDS with city-block distances . . . . . . . . 38
2.3. Algorithm, based on the active-set method . . . . . . . . . . . . . . . . . . . 42
2.4. Algorithm, based on the branch-and-bound method . . . . . . . . . . 46

2.4.1. Two-level optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.2. Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.2.1. Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.2.2. Bounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.2.3. Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.3. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5. Algorithm, based on a parallel branch-and-bound method . . . . 54

3. Numerical investigation of the algorithms . . . . . . . . . . . . . . . . . 57
3.1. The algorithm MAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.1. Implementation of MAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.2. Investigation of MAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2. The algorithm BB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.1. Implementation of BB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.2. Investigation of BB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3. The algorithm PBB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8



List of figures and tables

Figure 1.1 General scheme of the active-set method. . . . . . . . . . . . . . . . . . 23
Figure 2.1 Graph and contour lines of function f1(x) = (|x11−x12|−9)2,

x = (x11, x12)
T ∈ R2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 2.2 Mirrored points, defined by vectors x and y. . . . . . . . . . . . . . . 36
Figure 2.3 Mirrored points, defined by vectors P (1, 1)x = x (points a,

b, c), P (−1, 1)x (points a1, b1, c1), P (−1,−1)x (points a2, b2, c2)
and P (1,−1)x (points a3, b3, c3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 2.4 An image of multidimensional elements vi ∈ Rk (k > 3),
1 ≤ i ≤ 6, obtained by specifying and minimizing the loss function
f1. Here, x∗1 = (−0.062, −0.547)T , x∗2 = (−0.062, 0.664)T . . . . . . . 38

Figure 2.5 The search tree for problem (2.17). . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 3.1 Speed-up and efficiency of the parallel algorithm PBB. . . . 66

Table 2.1 Elements of vector z = (z1, . . . , z2s)
T ∈ Z, written in the

following order: z2k−1, . . . , z2(k+(N−1)m)−1 (the first row) and
z2k, . . . , z2(k+(N−1)m) (the second row) for all 1 ≤ k ≤ m. . . . . . . . . . 53

Table 3.1 Results of the numerical investigation of the algorithmM
and corresponding results obtained by using the algorithm S. . . . . 61

Table 3.2 Results of the numerical investigation of the algorithm B14
and corresponding results obtained by using the algorithm B09. . . 65

9



Notations

cS = (ci1 . . . ci|S|) ∈ Rq×|S| – a matrix of vectors ci ∈ Rq, i ∈ S ⊂ N
dS = (di1, . . . , di|S|)

T ∈ R|S| – a vector of elements di ∈ R, i ∈ S ⊂ N
U∗f = argmin{f(u) : u ∈ U} – a set of all minimizers of the objective

function f on the feasible set U
n ∈ N (n > 1) – the number of given multidimensional elements
m ∈ {1, 2, 3} – the dimension of the Cartesian coordinate system in

which we desire to visualize the given multidimensional elements
s = mn(n− 1)/2

N = s/m = n(n− 1)/2

δij – a dissimilarity between multidimensional elements i and j
x = (xT1 , x

T
2 , . . . , x

T
n )T = (x11, . . . , xm1, x12, . . . , xm2, . . . , xmn)T ∈ Rmn –

an image of n multidimensional elements in the m-dimensional Cartesian
coordinate system

d± = (d+112, d
−
112, . . . , d

+
m12, d

−
m12, . . ., d

+
m(n−1)n, d

−
m(n−1)n)T ∈ Rmn(n−1)

y = (xT , d±
T

)T = (y1, . . . , ymn, ymn+1, . . . , ymn2)T ∈ Rmn2

f1(x) =
∑n

i<j (
∑m

k=1 |xki − xkj| − δij)
2 – the raw Stress function with

city-block distances, x ∈ Rmn

g(y) =
∑n

i<j

(∑m
k=1(d

+
kij + d−kij)− δij

)2
– the objective function of the

problem CMDS, y = (xT , d±
T

)T ∈ Rmn2

Y′ = {y = (xT , d±
T

)T ∈ Rmn2

:
∑n

i=1 xki = 0, xki − xkj = d+kij − d
−
kij,

d+kijd
−
kij = 0, d+kij, d

−
kij ≥ 0, 1 ≤ i < j ≤ n, 1 ≤ k ≤ m} – the feasible set of

the problem CMDS
Z = {z ∈ {0, 1}2s : z2i−1 + z2i = 1, 1 ≤ i ≤ s} – the upper-level feasible

set of the problem CMDS, formulated as a two-level optimization problem
µ(k, i, j) = 2(k +m(j − i+ (2n− i)(i− 1)/2− 1))− 1, k, i, j ∈ N
Y′(z) = {(xT , d±T )T ∈ Rmn2

:
∑n

i=1 xki = 0, xki − xkj = d+kij − d−kij,

(1− zµ(k,i,j))d+kij = 0, (1− zµ(k,i,j)+1)d
−
kij = 0, d+kij, d

−
kij ≥ 0, 1 ≤ k ≤ m, 1 ≤

i < j ≤ n} – the lower-level feasible set of the problem CMDS, formulated
as a two-level optimization problem, z ∈ Z

10



Introduction

In this chapter, the research problem and its relevance are presented.
The purpose, tasks, and novelty of the research are given here, too. Also,
we present here propositions for defense. The results of the research were
approved in a few publications and scientific conferences. A list of them is
given here, too. The author of the dissertation took part in two scientific
projects. The projects were closely related to the research described here.
Thus, a list of the projects is given here, too.

The research problem and its relevance

The research problem is related to the problem of a visualization of mul-
tidimensional elements. A multidimensional element is perceived here as a
vector in a real vector space of four dimensions or higher. A representation
of such vectors in a lower-dimensional – i.e., one-, two-, or three-dimensional
– Cartesian coordinate system is perceived here as a visualization of multi-
dimensional elements. The set of points, which represent the multidimen-
sional elements in the lower-dimensional Cartesian coordinate system, is
called here the image of multidimensional elements. Note that an image
of multidimensional elements is a subset of a lower-dimensional real vector
space. Any image of multidimensional elements may give us some impor-
tant information about them. For example, it may help us to find out if the
elements have any regularities, outliers, or clusters [26].

There are a number of techniques that can be used to visualize multidi-
mensional elements. One of them is called multidimensional scaling (MDS).
MDS is used in areas such as psychometrics, market analysis, pharmacol-
ogy, and others. In applying MDS, an image of multidimensional elements
is obtained by constructing and minimizing a certain function. In order
to construct the function, 1) dissimilarities between every pair of multidi-
mensional elements have to be defined, and 2) a desired distance function,
defined on a lower-dimensional real vector space, has to be selected. The ob-
tained image has the following feature: the desired distances between points
of the image are similar to, or even equal to, the defined dissimilarities.

11



INTRODUCTION

Images of the same multidimensional elements are usually different if
they are obtained by using MDS with different distance functions. Various
applications of MDS show that images obtained by using MDS with the
city-block distance function (also known as Minkowski distance of order
one, L1 distance function) may give us more information about the multi-
dimensional elements than by using other distance functions. However, if
city-block distances are selected, the function to be minimized contains a
set of absolute value (modulus) terms. In this case, minimization of such
a function becomes a complicated optimization problem: the function may
have more than one local minimizer and may even be non-differentiable at a
minimizer. Thus, the research problem considered here is the minimization
problem arising in MDS with city-block distances.

The purpose and tasks of the research

The research problem – i.e., the minimization problem arising in MDS
with city-block distances – is equivalent to a certain optimization problem.
Let us name the optimization problem, equivalent to the research prob-
lem, as problem CMDS. Currently there are no specific algorithms for the
problem CMDS. Thus, the main purpose of this research is to offer sev-
eral algorithms for the problem CMDS. In order to achieve this goal, the
following tasks should be performed:

(1) To explore the main features of the objective function of the research
problem and to become familiar with algorithms for the research prob-
lem.

(2) To construct a few sequential and parallel algorithms for the problem
CMDS.

(3) To implement the algorithms and to perform a numerical investigation
of them by using particular sets of multidimensional elements.

(4) To compare the results of the investigation with corresponding results
obtained by using other algorithms.

The novelty of the research

(1) The equivalence between the research problem and the problem CMDS
is proven.

(2) An algorithm is proposed that returns a local minimizer of the objec-
tive function of the problem CMDS.

12



APPROBATION OF RESULTS

(3) A two-level formulation of the problem CMDS is constructed.
(4) An algorithm is proposed that returns a global minimizer of the ob-

jective function of the problem CMDS.
(5) A parallel algorithm is proposed that returns a global minimizer of the

objective function of the problem CMDS.

Propositions for defense

(1) The research problem is equivalent to an optimization problem with a
convex quadratic objective function, and linear and complementarity
(non-linear) constraints.

(2) The algorithm, based on the active-set method, returns a local mini-
mizer of the objective function of the problem CMDS.

(3) The problem CMDS is a two-level optimization problem with a convex
quadratic programming problem at the lower-level, and a combinato-
rial optimization problem at the upper-level.

(4) The algorithm, based on the branch-and-bound method, returns a
global minimizer of the objective function of the problem CMDS.

Approbation of results

Results of the research were published in the following scientific papers:
[GŽ11, GŽ13, GŽ14, FGŽ14]. Some of the results were presented at
the following scientific conferences (the title of the presentation is written
in italic letters):

(1) 4th Conference of Lithuanian Young Scientists on Operations Research
in Business, Engineering and Computer Science. Kaunas, Lithuania.
September 30, 2011.
Parallel algorithms for quadratic programming.

(2) Data Analysis Methods for Software Systems. Druskininkai, Lithua-
nia. December 1–3, 2011.
Quadratic programming in data analysis.

(3) 2nd Conference of Young Scientists on Interdisciplinary Research in
Physical and Technological Sciences. Vilnius, Lithuania. February 14,
2012.
Quadratic programming problems.

(4) 10th EUROPT Workshop on Advances in Continuous Optimization.
Šiauliai, Lithuania. July 5–7, 2012.

13



INTRODUCTION

Minimization of a stress function with city-block distances.
(5) 18th International Conference on Mathematical Modeling and Analy-

sis. Tartu, Estonia. May 27–30, 2013.
Quadratic programming with complementarity constraints for multidi-
mensional scaling with city-block distances.

(6) 5th Conference of Lithuanian Young Scientists on Operations Research
in Business, Engineering and Computer Science. Šiauliai, Lithuania.
September 19, 2013.
Parallelization of the active-set method for convex quadratic program-
ming.

(7) 8th International Conference on P2P, Parallel, Grid, Cloud and Inter-
net Computing. Compiègne, France. October 28–30, 2013.
Parallel branch-and-bound for multidimensional scaling with L1 dis-
tances formulated as quadratic programming with complementarity con-
straints.

(8) 55th Conference of Lithuanian Mathematical Society. Vilnius, Lithua-
nia. June 26–27, 2014.
Quadratic programming for multidimensional scaling with L1 distances.

(9) 8th International Workshop on Parallel Matrix Algorithms and Appli-
cations. Lugano, Switzerland. July 2–4, 2014.
Parallel solution of an active-set algorithm for convex quadratic pro-
gramming.

Scientific projects

The author of the dissertation took part in the following scientific projects:
(1) “Nonconvex multiobjective optimization: methods and algorithms”.

Funded by Research Council of Lithuania. (No. MIP-063/2012/LSS-
580000-444). 2012–2014.

(2) “Theoretical and engineering aspects of e-service technology devel-
opment and application in high performance computing platforms”.
Funded by the European Social Fund. (No. VP1-3.1-ŠMM-08-K-01-
010). 2012–2014.

14



1. Basic concepts and related works

In this chapter, we introduce the basic concepts of mathematical opti-
mization and describe several optimization methods. Also, we present here
a detailed description of the research problem, i.e., the minimization prob-
lem arising in multidimensional scaling with city-block distances. A few
known algorithms for the research problem are given here, too. Certain
parts of this chapter are published in [GŽ11].

1.1. Mathematical optimization

The research problem considered in this dissertation is equivalent to a
certain optimization problem, here called the problem CMDS. In order to
show the equivalence of these two problems and to reveal the main features
of the problem CMDS, we have to know the basic concepts of mathematical
optimization. In addition, in this dissertation we propose several algorithms
for the problem CMDS. The algorithms are based on several well-known op-
timization methods. Thus, we have to be familiar with these methods, too.
In this section, we introduce the basic concepts of mathematical optimiza-
tion and describe several well-known optimization methods.

1.1.1. Concepts

Here, we introduce the following concepts of mathematical optimization:
optimization problem, equivalence of two optimization problems, two-level
optimization problem, convexity, KKT conditions, quadratic programming
(QP) problem, and equality constrained QP problem.

1.1.1.1. Optimization problem. Let us introduce the mathematical
formulation of an optimization problem [15, 32, 64, 71, 72, 79]. Suppose
that q ∈ N, re, r ∈ N∪{0} (re ≤ r) and E = {1, . . . , re}, I = {re+1, . . . , r}.
Let ci, i ∈ E ∪ I, be real-valued functions, defined on space Rq. Suppose
that U ⊆ Rq (U 6= ∅), where

U = {u ∈ Rq : ci(u) = 0, i ∈ E,
ci(u) ≥ 0, i ∈ I},

(1.1)

15



1. BASIC CONCEPTS AND RELATED WORKS

and f : U→ R. Let u∗ ∈ U be a point such that

f(u∗) ≤ f(u) (1.2)

for all u ∈ U. The problem of finding a point u∗ ∈ U that satisfies inequality
(1.2) is called an optimization problem (sometimes optimization program, or
mathematical programming problem). The branch of mathematics that is
concerned with optimization problems is called mathematical optimization
(sometimes mathematical programming). In general, such a point u∗ that
satisfies inequality (1.2) may not exist at the set U. The existence depends
on features of the function f and the set U. Here, we accept that such a
point always exists.

The set U, defined by (1.1), is usually called a feasible set (sometimes
search space) and the function f , an objective (sometimes cost) function.
The functions ci, i ∈ E ∪ I, are commonly referred to as constraints. Con-
straints ci, i ∈ E, are called equality constraints and ci, i ∈ I, inequality
constraints. A set of indices of equality and inequality constraints that are
active at u ∈ U is called an active set at the point u, and is usually defined
by the symbol A(u), i.e.,

A(u) = {i ∈ E ∪ I : ci(u) = 0}.

Equality constraints ci, i ∈ E, such that ci(u) = c′i(u)c′′i (u), where c′i, c′′i :

Rq → R, i ∈ E, are called complementarity constraints. Let S ⊆ E ∪ I.
Constraints ci, i ∈ S, such that ci(u) = cTi u − di, where ci ∈ Rq, di ∈ R,
i ∈ S, are called linear constraints. If ci ∈ Rq, i ∈ S, are gradients of the
linear constraints, matrix of these gradients (ci1 . . . ci|S|) ∈ Rq×|S|, ij ∈ S,
1 ≤ j ≤ |S|, we sometimes denote by the symbol cS. Similarly, vector
(di1, . . . , di|S|)

T ∈ Rq, ij ∈ S, 1 ≤ j ≤ |S|, we sometimes denote by the
symbol dS.

A point u∗ ∈ U that satisfies inequality (1.2) for all u ∈ U is called a
global minimizer of the function f on the set U. In the text, instead of
“a global minimizer” we usually write simply “a minimizer”. A set of all
minimizers of f on U we denote by the symbol U∗f or argmin{f(u) : u ∈ U}.
If u∗ ∈ U∗f , then the objective value f(u∗) is often called the minimum value
of the function f on the feasible set U.

Let u′ ∈ U and Uε(u
′) = {u ∈ U : d(u, u′) < ε}, where ε > 0 and

d : U × U → R is a metric on U. We say that u∗ ∈ U is a local minimizer

16



1.1. MATHEMATICAL OPTIMIZATION

of f on U, if there is a point u′ ∈ U and a number ε > 0 such that u∗ is a
global minimizer of f on Uε(u

′), i.e., u∗ ∈ argmin{f(u) : u ∈ Uε(u
′)}.

The problem of finding a minimizer of f on U is usually denoted as
follows:

minimize
u ∈ Rq

f(u)

subject to ci(u) = 0, i ∈ E,
ci(u) ≥ 0, i ∈ I.

(1.3)

According to the features of the objective function f and the feasible set U,
problem (1.3) may belong to one or another class of optimization problems.
For example, if the set U is a finite set or countably infinite – i.e., there
exists a bijective function h : U→ N – then such a problem is often called a
combinatorial optimization problem [89]. If the functions f and ci, i ∈ E∪I,
are linear functions, problem (1.3) is referred to as a linear programming
problem [81], etc.

1.1.1.2. Equivalence of two optimization problems. Let us
introduce the concept of the equivalence of two optimization problems [10,
52]. Suppose that q′, q′′ ∈ N and U′ ⊆ Rq′, U′′ ⊆ Rq′′ (U′ 6= ∅, U′′ 6= ∅). Let
f ′ : U′ → R and f ′′ : U′′ → R. We say that two optimization problems

minimize
u′ ∈ U′

f ′(u′) and minimize
u′′ ∈ U′′

f ′′(u′′)

are equivalent problems, if and only if, there exists a bijective function
h : U′ → U′′ such that

u′∗ ∈ U′∗f ′ if and only if h(u′∗) ∈ U′′∗f ′′.

A few examples of equivalent optimization problems may be found in [10,
22, 29, 80].

1.1.1.3. Two-level optimization problem. Let us introduce the
mathematical formulation of a two-level optimization problem [17, 21, 24,
84]. Suppose that q′, q′′ ∈ N and U′ ⊆ Rq′, U′′ ⊆ Rq′′ (U′ 6= ∅, U′′ 6= ∅). Let
r′, r′′ ∈ N ∪ {0} and f ′, c′i, f ′′, c′′j : U′ × U′′ → R, 1 ≤ i ≤ r′, 1 ≤ j ≤ r′′ .
The optimization problem

minimize
u′ ∈ U′, u′′∗ ∈ U′′∗f ′′(u′)

f ′(u′, u′′∗)

subject to c′i(u
′, u′′∗) ≥ 0, 1 ≤ i ≤ r′,

(1.4)

17



1. BASIC CONCEPTS AND RELATED WORKS

where the set U′′∗f ′′(u′) ⊆ U′′ denotes a set of all global minimizers of the
following problem

minimize
u′′ ∈ U′′

f ′′(u′, u′′)

subject to c′′i (u
′, u′′) ≥ 0, 1 ≤ i ≤ r′′,

(1.5)

is called a two-level (sometimes bilevel) optimization problem. Optimiza-
tion problems (1.4) and (1.5) are called upper- and lower-level problems,
respectively. In turn, variables u′ and u′′, objective functions f ′ and f ′′, and
inequality constraints c′i, 1 ≤ i ≤ r′, and c′′j , 1 ≤ j ≤ r′′, are called upper-
and lower-level variables, objective functions, and inequality constraints,
respectively. It is clear that a set of equality constraints may be included in
two-level optimization problems. However, for the sake of brevity, we have
omitted them here.

1.1.1.4. Convexity. Let us define concepts of a convex set and a
convex function [9, 47, 69]. Suppose that q ∈ N and U ⊆ Rq (U 6= ∅). The
set U is called a convex set, if

αu′ + (1− α)u′′ ∈ U

for all u′, u′′ ∈ U and α ∈ [0, 1]. For example, it is not hard to check that a
feasible set, defined by linear constraints, is a convex set. Let U be a convex
set and f be a real-valued function, defined on the set U. The function f
is called a non-strictly convex (sometimes just convex) function, if

f(αu′ + (1− α)u′′) ≤ αf(u′) + (1− α)f(u′′)

for all u′, u′′ ∈ U and α ∈ [0, 1]. A non-strictly convex function may have a
lot of minimizers at its convex domain. The function f is called a strictly
convex function, if

f(αu′ + (1− α)u′′) < αf(u′) + (1− α)f(u′′)

for all u′, u′′ ∈ U (u′ 6= u′′) and α ∈ (0, 1). Every minimizer of a strictly
convex function on a convex set is unique. In addition, if a feasible point is
a local minimizer of a convex function on a convex set, then that point is a
global minimizer.

18



1.1. MATHEMATICAL OPTIMIZATION

1.1.1.5. KKT conditions. Let us consider optimization problem
(1.3). There is a set of necessary conditions for a feasible point to be a
local minimizer of the objective function f on the feasible set U. These
conditions are sometimes referred to as the Karush-Kuhn-Tucker (KKT),
or the first-order necessary conditions [3, 10]. Let L : Rq × Rr → R be a
function such that

L(u, λ) = f(u)−
∑
i∈E∪I

λici(u). (1.6)

Function (1.6) is often called the Lagrangian function for problem (1.3) and
λ = (λ1, . . . , λr)

T , a Lagrange (or Lagrangian) multiplier vector. If 1) u∗ ∈
U is a local minimizer of f on U, 2) functions f , ci, i ∈ E∪I, are continuously
differentiable at the point u∗, and 3) vectors ∇ci(u∗), i ∈ A(u∗), are linearly
independent, then there is a Lagrange multiplier vector λ∗ ∈ Rr, such that:

∇uL(u∗, λ∗) = 0, (1.7a)

ci(u
∗) = 0, i ∈ E, (1.7b)

ci(u
∗) ≥ 0, i ∈ I, (1.7c)

λ∗i ≥ 0, i ∈ I, (1.7d)

λ∗i ci(u
∗) = 0, i ∈ E ∪ I. (1.7e)

Conditions (1.7a)–(1.7e) are called the KKT conditions for u∗ ∈ U to be a
local minimizer of the function f on the set U. For the sake of simplicity,
the conditions are sometimes referred to as the KKT conditions for problem
(1.3). Separately, conditions (1.7a), (1.7b)–(1.7c), (1.7d), and (1.7e) are
called stationary, primal feasibility, dual feasibility, and complementarity
conditions, respectively. If the objective function f is convex, ci, i ∈ E,
are affine functions, i.e., in our case, ci(u) = cTi u − di, ci ∈ Rq, di ∈ R,
i ∈ E, and ci, i ∈ I, are continuously differentiable convex functions, then
the KKT conditions become sufficient conditions for u∗ ∈ U to be a local
(in this case global) minimizer of f on U [10].

1.1.1.6. QP problem. Let us define a quadratic programming
(QP) problem [25, 65, 68, 71]. Suppose that q ∈ N, re, r ∈ N ∪ {0}
(re ≤ q, re ≤ r) and ci ∈ Rq, di ∈ R, 1 ≤ i ≤ r. Let E = {1, . . . , re},

19



1. BASIC CONCEPTS AND RELATED WORKS

I = {re + 1, . . . , r} and U ⊆ Rq be a set such that

U = {u ∈ Rq : cTi u = di, i ∈ E,
cTi u ≥ di, i ∈ I}.

Suppose that vectors ci, i ∈ E, are linearly independent, i.e., rank(cE) = |E|.
Also, suppose that A ∈ Rq×q (A = AT , A 6= 0) and b ∈ Rq. Let f : U→ R
be a function such that

f(u) = 0.5uTAu+ bTu.

The function f is called a quadratic function. Optimization problem

minimize
u ∈ U

f(u) (1.8)

is called a QP problem. The quadratic function f may be convex or non-
convex. The convexity depends on the matrix A, which is usually called
the Hessian matrix [35, 46]. If the Hessian matrix is positive semidefi-
nite, then the quadratic function is non-strictly convex. If the matrix A

is positive definite, then the function f is strictly convex. If A is neither
positive semidefinite nor positive definite, f is non-convex. There are a few
characterizations for a matrix to be positive semidefinite or positive definite
[5, 21]. For example, a symmetric matrix M ∈ Rq×q is called 1) positive
semidefinite, if there is a matrix S ∈ Rq×q such that M = STS, 2) posi-
tive definite, if there is a nonsingular matrix S ∈ Rq×q, i.e., det(S) 6= 0,
such that M = STS. Positive semidefinite and positive definite matrices
are usually denoted by the symbols M � 0 and M � 0, respectively. If
the quadratic function f is non-strictly or strictly convex, problem (1.8) is
called a convex QP problem.

1.1.1.7. Equality constrained QP problem. Let us consider QP
problem (1.8), where re = r, i.e., I = ∅. Optimization problem

minimize
u ∈ Rq

f(u)

subject to cTi u = di, i ∈ E
(1.9)

is called an equality constrained QP problem. Let u∗ ∈ U be a minimizer
of f on {u ∈ Rq : cTEu = dE}. Then, according to KKT conditions (1.7a)–
(1.7e) for problem (1.9), there is a Lagrange multiplier vector λ∗ ∈ R|E|,

20



1.1. MATHEMATICAL OPTIMIZATION

such that: (
A −cE
cTE 0

)(
u∗

λ∗

)
=

(
−b
dE

)
. (1.10)

System (1.10) is called the KKT system, and the coefficient matrix of this
system is called the KKT matrix.

Problem (1.9) occurs in a variety of optimization algorithms as a sub-
problem, used to find a step direction [14, 18, 36, 91]. Let

H =

(
A −cE
cTE 0

)
, w =

(
u

λ

)
and h =

(
−b
dE

)
.

Depending on features of the KKT system Hw = h, the quadratic function
f may have:

(1) No minimizer on U, if the KKT system is inconsistent, i.e., rank(H) 6=
rank((H h)).

(2) A unique minimizer, if the KKT system is consistent and the KKT
matrix has full rank, i.e., rank(H) = rank((H h)) = q + |E|.

(3) Infinitely many minimizers, if the KKT system is consistent and the
KKT matrix is rank deficient, i.e., rank(H) = rank((H h)) < q + |E|.

If the KKT system is inconsistent, the quadratic function f is unbounded
below on the feasible set U. In this case, a step direction is usually found
by solving the following system of linear equations:

Hw = 0. (1.11)

One of the ways to solve system (1.11) is to find an eigenvector w∗ =

(u∗, λ∗)T ∈ Rq+|E| of the KKT matrix H that corresponds to a zero eigen-
value. In addition, we require that bTu∗ < 0. This inequality ensures the
descent direction.

If the KKT system is consistent, the solution of the equality constrained
QP problem (1.9) is equivalent to the solution of the following linear least
squares problem [6]:

minimize
w ∈ Rq+|E|

‖Hw − h‖2 .

1.1.2. Methods

Here, we describe the following optimization methods: the active-set
method for convex QP problems, and the branch-and-bound method. In

21



1. BASIC CONCEPTS AND RELATED WORKS

addition, here we present the null-space method for consistent KKT sys-
tems. Finally, a certain classification of parallel branch-and-bound methods
is given here, too.

1.1.2.1. The active-set method. Let us describe the active-set
method for QP problem (1.8) [27, 33, 71]. Suppose that the quadratic
function f is convex. Let u∗ ∈ U and A(u∗) = {i ∈ E ∪ I : cTi u

∗ = di}
be an active-set at the point u∗. Suppose that ci, i ∈ A(u∗), are linearly
independent vectors. It is not hard to check that, if the point u∗ satisfies
the following conditions:

Au∗ + b−
∑

i∈A(u∗) λ
∗
i ci = 0,

cTi u
∗ = di, i ∈ A(u∗),

cTi u
∗ ≥ di, i ∈ I \ A(u∗),

λ∗i ≥ 0, i ∈ I ∩ A(u∗)

(1.12)

for certain Lagrange multipliers λ∗i ∈ R, i ∈ A(u∗), then u∗ ∈ U∗f , i.e., u∗ is a
minimizer of the quadratic function f on the feasible set U [71]. Therefore,
in order to find a minimizer of f on U, it is sufficient to solve the following
equality constrained QP problem [71]:

minimize
u ∈ Rq

f(u)

subject to cTi u = di, i ∈ A(u∗).
(1.13)

If we would know the structure of the active set A(u∗) in advance, we would
find u∗ in one step, i.e., by solving problem (1.13). Unfortunately, we usually
do not know anything about the set A(u∗) in advance. However, the sets E
and I are finite sets. Hence, the total number of different active sets A(u),
u ∈ U, is finite, too. Let A be a set of active sets at points of the set U,
such that

A = {A(u) : u ∈ U and rank(cA(u)) = |A(u)|}.

Note that |A| ≤ 2|I|. Therefore, we may find the set A(u∗) and the cor-
responding minimizer u∗ by using the following procedure: 1) select an
active set W ∈ A and remove it from A, 2) find a minimizer of f on
{u ∈ Rq : cTi u = di, i ∈ W}, say u∗W ∈ Rq, and 3) check if u∗W and
the corresponding λ∗i ∈ R, i ∈ W, satisfy conditions (1.12). If yes, then
u∗ = u∗W ∈ U∗f and A(u∗) = W; otherwise repeat the first step. The active-
set method is very similar to the above procedure. Figure 1.1 shows the

22



1.1. MATHEMATICAL OPTIMIZATION

general scheme of the active-set method. Let us explain the method in a
word.

First of all, an initial feasible point u0 ∈ U and an initial active set W0 ⊆
A(u0) are selected. In order to select a feasible point, various techniques
may be used: for example, the Big-M method [71, 87]. Next, a minimizer
of the function f(uk +p) on the set {p ∈ Rq : cTi (uk +p)−di = cTi p = 0, i ∈
Wk} is found, say p∗ ∈ Rq. The minimizer p∗ is often called the step (or
search) direction. If the point uk+p∗ ∈ Rq and the corresponding Lagrange
multipliers λ∗i ∈ R, i ∈ Wk, satisfy conditions (1.12), then uk + p∗ ∈ U∗f ;
otherwise uk + p∗ 6∈ U∗f . If uk + p∗ 6∈ U∗f , then the next feasible point uk+1

is constructed such that f(uk+1) ≤ f(uk). Also, the next active set Wk+1

is obtained from the set Wk usually by adding or removing an index of a
particular inequality constraint. Sometimes Wk+1 = Wk. The process is
continued until uK + p∗ = uK becomes a minimizer of f on U (here, K ∈ N
denotes the total number of iterations required to find a minimizer of f on
U). How to select the value of α ∈ [0, 1], how to obtain Wk+1 from Wk,
etc., is described in Section 2.3.

u0 ∈ U;
W0 ⊆ A(u0);
k ← 0

minimize
p ∈ Rq

f(uk + p)

subject to cTi (uk + p) = di, i ∈Wk

uk + p∗ ∈ U∗f?

uk+1 ← uk+αp∗ ∈ U, α ∈ [0, 1];
Wk+1 ← updated Wk;
k ← k + 1

Stop
NO YES

Figure 1.1. General scheme of the active-set method.

1.1.2.2. The null-space method. Let us consider equality con-
strained QP problem (1.9), where the quadratic function f is convex. The
solution of such a problem is equivalent to the solution of a consistent KKT
system (1.10). Here, we present the null-space method for system (1.10)
[28, 70]. The method is based on the fact that the solution of a consis-
tent linear system may be expressed as a certain linear combination. Let
(u∗, λ∗)T ∈ Rq+|E| be a solution of system (1.10). Suppose that Y ∈ Rq×|E|

and Z ∈ Rq×(q−|E|) are two matrices such that cTEZ = 0 and det((Y Z)) 6= 0.

23



1. BASIC CONCEPTS AND RELATED WORKS

Then there are vectors u∗Y ∈ R|E| and u∗Z ∈ Rq−|E| such that

u∗ = Y x∗Y + Zx∗Z . (1.14)

By substituting (1.14) into the system cTEu
∗ = dE, we have that

(cTEY )u∗Y = dE. (1.15)

Note that rank(cTE) = |E|. Thus, rank(cTE(Y Z)) = rank((cTEY 0)) = |E|
and, consequently, det(cTEY ) 6= 0. Therefore, system (1.15) has a unique
solution. By substituting (1.14) into the system Au∗ + b = cEλ

∗, we have
that

AZx∗Z = cEλ
∗ − b− AY x∗Y . (1.16)

It follows from (1.16) that

(ZTAZ)x∗Z = −ZT (AY x∗Y + b) and (1.17a)

(cTEY )Tλ∗ = Y T (Au∗ + b). (1.17b)

System (1.17a) is sometimes referred to as the reduced KKT system and
the matrix ZTAZ – the reduced Hessian matrix of the quadratic function
f . Therefore, in order to apply the null-space method for KKT system
(1.10), we have to select certain matrices Y and Z and to solve certain
systems of linear equations. The matrix Z contains the basis vectors of
the null-space (kernel) of the matrix cTE , i.e., the basis vectors of the set
ker(cTE) = {u ∈ Rq : cTEu = 0}. There are a few known ways to select
matrices Y and Z [1, 71]. For example, it is not hard to check that cTEZ = 0

and det((Y Z)) 6= 0, if:

(1) Y =

(
M−1

O

)
and Z =

(
−M−1N

I

)
, where (M N) = cTE ,M ∈ R|E|×|E|,

N ∈ R|E|×(q−|E|) (here we assume that the first |E| columns of the ma-
trix cTE are linearly independent vectors; if cTE does not satisfy the as-
sumption, we have to sort columns of the matrix cTE and corresponding
elements of the vector dE such that the assumption would be satisfied),
O ∈ {0}(q−|E|)×|E| is a zero matrix, and I ∈ {0, 1}(q−|E|)×(q−|E|) is an
identity matrix.

24



1.1. MATHEMATICAL OPTIMIZATION

(2) Y = Q1 and Z = Q2, where (Q1 Q2)

(
R

O

)
= cE is the QR decomposi-

tion of the matrix cE. Here Q1 ∈ Rq×|E|, Q2 ∈ Rq×(q−|E|), R ∈ R|E|×|E|,
and O ∈ {0}(q−|E|)×|E| is a zero matrix.

1.1.2.3. The branch-and-bound method. In applying the branch-
and-bound method for an optimization problem, the feasible set is divided
into particular subsets [11, 13, 16]. This operation is often called branch-
ing. All divided feasible subsets are stored in a certain set. Such a set is
usually depicted as a tree and called the search tree. The lower, and some-
times the upper, bounds for the minimum value of the objective function
on every subset are then evaluated. This operation is often called bound-
ing. The division and evaluation (branching and bounding) operations are
performed recursively on every subset until 1) the subset becomes indivis-
ible, or 2) the division is meaningless. The subset becomes indivisible if it
contains only one element. In this case, the element is accepted as a current
minimizer and the objective value at the current minimizer is accepted as
a current objective minimum, if the previous objective minimum is worse
(greater) than the current one. An initial objective minimum is usually
determined in advance. Such an initial objective minimum is usually equal
to the positive infinity, or to the objective value at a feasible point. The
division is meaningless if we determine that the subset does not contain
the minimizer of the objective function on the feasible set. For example,
if the lower bound for the minimum objective value on the subset is worse
(greater) than the current objective minimum, then such subset does not
contain the minimizer definitely. If the division of the subset is meaningless,
we eliminate the subset from further processing. The elimination of subsets
is often called pruning. According to the features of the feasible set and
the objective function, we may introduce problem-dependent pruning rules.
After some time, the process stops. The final minimizer is then accepted as
a minimizer of the objective function on the feasible set.

1.1.2.4. Parallel branch-and-bound methods. An algorithm for
a particular problem may be sequential or parallel [54, 57, 62]. Let us
perceive an algorithm as a finite sequence of steps, devoted to achieving a
certain goal. We say that the algorithm is a sequential algorithm if all the
steps are performed one after another sequentially. If one or more of the

25



1. BASIC CONCEPTS AND RELATED WORKS

steps are performed in parallel, we say that the algorithm is a parallel algo-
rithm. Suppose that A is a sequential algorithm for a certain optimization
problem and it is based on the branch-and-bound method. There are many
strategies to perform the algorithmA in parallel [4, 20, 31, 56]. All of these
strategies are usually called parallel branch-and-bound methods. In litera-
ture, we may find various classifications of the parallel branch-and-bound
methods [85]. Let AP be a parallel version of the sequential algorithm
A. According to the classification given in [31], we say that the parallel
algorithm AP has the parallelism of type

1, if operations such as branching, bounding, pruning, etc., are performed
in parallel in order to accelerate the execution of the sequential algo-
rithm A. A parallel algorithm, proposed in this dissertation, has the
parallelism of type 1.

2, if the search tree is constructed in parallel. Examples of algorithms
that have the parallelism of type 2 may be found in [61, 73].

3, if several search trees are constructed in parallel. A few parallel algo-
rithms that have the parallelism of type 3 are proposed in [55, 67].

It is clear that a parallel algorithm may have the parallelism of several types.
For example, see [67, 73].

1.2. Multidimensional scaling

Multidimensional scaling (MDS) is a technique of visualization of mul-
tidimensional elements [7, 19, 26, 60, 82]. Let us repeat that 1) a mul-
tidimensional element is perceived here as a vector in a real vector space
of four dimensions or higher, 2) a visualization of multidimensional ele-
ments is realized here as a representation of the corresponding vectors in
a lower-dimensional Cartesian coordinate system, and 3) an image of mul-
tidimensional elements is defined here as a set of points which represent
the multidimensional elements in the lower-dimensional Cartesian coordi-
nate system. In applying MDS, the image of multidimensional elements is
obtained by specifying and solving a certain optimization problem. A sep-
arate case of this optimization problem is the main problem considered in
this dissertation. In this section, the optimization problem arising in MDS
is introduced and the separate case is presented. A few known algorithms
for this separate case are given here, too.

26



1.2. MULTIDIMENSIONAL SCALING

1.2.1. Optimization problem arising in MDS

Suppose that we have n (n > 1) multidimensional elements, i.e., n vec-
tors with k (k > 3) real components. For the given set of multidimen-
sional elements, let us find a set of corresponding n points in m-dimensional
(m ∈ {1, 2, 3}) real vector space by using MDS. As a technique, MDS con-
sists of three basic steps: 1) to evaluate relationships between every pair of
the given multidimensional elements, 2) to select a desired distance func-
tion, defined on the m-dimensional real vector space, and 3) to specify and
minimize a particular real function, defined on the space Rmn.

A relationship between multidimensional elements i and j is usually
called a dissimilarity (sometimes similarity) and is denoted by δij. Here,
we restrict our attention to the case where δij ∈ R and δij = δji > 0,
δii = 0, 1 ≤ i, j ≤ n. The dissimilarities between the elements define a
square matrix of size n. This matrix is called the dissimilarity matrix and
is denoted usually by the symbol ∆n. Note that multidimensional elements
are k-dimensional vectors with real components. Therefore, dissimilarities
between them are often evaluated by using any distance function defined
on the vector space Rk.

At the second step, the Minkowski distance of order p (p ≥ 1) is usually
selected:

dp(xi, xj) =

(
m∑
k=1

|xki − xkj|p
)1/p

, (1.18)

where xi = (x1i, . . . , xmi)
T , xj = (x1j, . . . , xmj)

T ∈ Rm [90]. A number p is
sometimes referred to as the power of the Minkowski distance.

Any image of the given multidimensional elements obtained by using
MDS has the following feature: the desired distances between points of the
image are equal to or similar to the dissimilarities between corresponding
elements. Such an image is obtained by specifying a certain real function –
defined on the space Rmn – and minimizing it on that space. This function
is usually called MDS loss function. There are several known loss func-
tions. For example (for the sake of brevity, here we present unweighted loss
functions):

(1) Raw Stress [59]:

fp(x) =
n∑
i<j

(dp(xi, xj)− δij)2. (1.19)

27



1. BASIC CONCEPTS AND RELATED WORKS

(2) Normalized Stress [7, 8, 26]:

fSNp (x) =
fp(x)∑n
i<j δ

2
ij

. (1.20)

(3) Stress-1 [8, 58]:
fS1p (x) =

√
fSNp (x). (1.21)

Here, x = (xT1 , . . . , x
T
n )T ∈ Rmn. Therefore, if x∗ = (x∗1

T , . . . , x∗n
T )T ∈ Rmn

is a minimizer of a particular loss function on Rmn, then {x∗1, . . . , x∗n} ⊂
Rm is perceived as an image of the given multidimensional elements. In
addition, dp(x∗i , x∗j) ' δij for all 1 ≤ i < j ≤ n, where the function dp is
defined by (1.18). Let us consider loss function (1.19).

Function (1.19) is commonly referred to as the raw Stress (or just Stress)
with distance function dp. Images of the same multidimensional elements
are usually different when using different distance functions dp. Diverse
applications of MDS show that images obtained by using city-block dis-
tances – i.e., the distance function d1 (Minkowski distance (1.18) of order
p = 1) – are sometimes more informative than by using other distances
[2, 30, 92, 93, 95]. However, if city-block distances are used, the Stress
function f1 contains a set of absolute value (modulus) terms:

f1(x) =
n∑
i<j

(
m∑
k=1

|xki − xkj| − δij

)2

. (1.22)

Minimization of such a function

minimize
x ∈ Rmn

f1(x) (1.23)

becomes a complicated optimization problem. The function f1 has many
local minimizers on the set Rmn [2, 7, 38, 45, 49]. In addition, it may
even be non-differentiable at a minimizer [93]. Thus, optimization problem
(1.23) is the main problem considered in this dissertation.

1.2.2. Known algorithms for MDS with city-block distances

There are a few known algorithms for finding a local or a global min-
imizer of the Stress function with city-block distances on the feasible set.
Some of them are devoted to minimizing more general function fp (p ≥ 1),
i.e., the raw Stress with the distance function dp (see (1.19)). Others are

28



1.2. MULTIDIMENSIONAL SCALING

devoted only to minimizing the function f1. A brief review of algorithms for
minimizing fp and f1 may be found in [40, 95]. Thus, optimization prob-
lem (1.23) may be solved by applying 1) the simulated annealing method
[12, 23, 53], 2) a two-stage approach with applications of the least-squares
regression in the first stage and the simulated annealing in the second [66],
3) combinatorial methods [45, 49, 94], 4) the tunneling method [38, 42],
etc. In this dissertation, we propose a few new algorithms for problem
(1.23) and reveal features of them. The features of the proposed algorithms
are compared with corresponding features of two known algorithms. One
of these known algorithms, called SMOOTH, is described in [39, 40]. The
other one is presented in [94]. We called it BB2009. In the rest of this
subsection, we give short descriptions of these two known algorithms.

1.2.2.1. SMOOTH. The Stress function with city-block distances has
many local minimizers on the feasible set Rmn. Optimization algorithms –
based, for example, on the steepest descent strategy [78] – may “land” at
a local minimizer instead of a global [59]. Groenen et al. [40] suggested
an iterative algorithm, called distance smoothing or simply SMOOTH, that
tries to avoid local minimizers while looking for a global one. Unfortunately,
the final result of the algorithm is sometimes a local minimizer, too. Here,
we present the basic steps of this algorithm. In order to better understand
the steps, let us introduce 1) a sequence of auxiliary functions that con-
verges pointwise on Rmn to the function f1, 2) a concept of a function that
majorizes another function, and 3) a pseudocode of an MM algorithm.

Let ε ∈ R (ε > 0) and {f ε1} denotes a sequence of functions f ε1 : Rmn → R
such that

f ε1(x) =
n∑
i<j

(
m∑
k=1

hε(xki − xkj)− δij

)2

,

where

hε(xki − xkj) =

{
(xki − xkj)2/(2ε) + ε/2, if |xki − xkj| < ε,

|xki − xkj|, if |xki − xkj| ≥ ε.

Function hε(xki − xkj) is sometimes referred to as the Huber function [40,
48]. It smoothes city-block distances |xki−xkj| in the function f1, if they are

29



1. BASIC CONCEPTS AND RELATED WORKS

optionally small. The function f ε1 is sometimes called the distance smooth-
ing raw Stress. Note that

lim
ε→0

(
t2/(2ε) + ε/2

)
= 0

for all t ∈ R such that |t| < ε. Therefore,

lim
ε→0

f ε1(x) = f1(x)

for all x ∈ Rmn, i.e., a sequence of functions {f ε1} converges pointwise on
Rmn to f1 whenever ε tends to zero.

Suppose that q ∈ N and U ⊆ Rq. Let f : U → R be a particular
function. We say that function f (M) : U × U → R majorizes function f at
the point u′ ∈ U, if and only if,

f(u) ≤ f (M)(u, u′) and f(u′) = f (M)(u′, u′)

for all u ∈ U. The function f (M) is sometimes called a surrogate function of
the function f [50]. The point u′ is sometimes referred to as a supporting
point. Surrogate functions are used for optimization algorithms, based on an
MM algorithm [50, 63]. In literature, we often may find a note that the MM
algorithm is just a strategy, and not an algorithm in and of itself. The MM
algorithm is based on the fact that, if u′ ∈ U and u∗ ∈ argmin{f (M)(u, u′) :

u ∈ U}, then

f(u∗) ≤ f (M)(u∗, u′) ≤ f (M)(u′, u′) = f(u′).

A pseudocode of the MM algorithm is shown in Algorithm 1.1. In apply-
ing the MM algorithm, usually simple and easily minimized functions are
selected as the surrogate functions.

Algorithm 1.1 MM algorithm
Input: U ⊆ Rq, f : U→ R, f (M) : U× U→ R, u0 ∈ U, γ > 0
Output: u∗ – a local minimizer of f on U
1: u′ ← u0; next← 1
2: while next = 1 do
3: u∗ ∈ argmin{f (M)(u, u′) : u ∈ U}
4: if f(u′)− f(u∗) < γ then
5: next← 0
6: u′ ← u∗

30



1.2. MULTIDIMENSIONAL SCALING

The basic steps of the algorithm SMOOTH are shown in Algorithm 1.2.
First of all, an initial ε0 > 0 and a random x0 ∈ Rmn are selected (line 1
of the algorithm). In literature, ε0 is usually equal to 2max{n−1

∑n
j=1 δij :

1 ≤ i ≤ n} [74]. Later, optimization problems

minimize
x ∈ Rmn

f ε1(x) (1.24)

are solved by choosing decreasing values of ε (lines 2–4). Problems (1.24)
are solved by using the MM algorithm, presented in Algorithm 1.1 (line 4
of the algorithm SMOOTH). Function f ε1

(M) that majorizes function f ε1 is
described in detail in [40]. A minimizer of the previous distance smoothing
raw Stress is used as an initial feasible point to start Algorithm 1.1. Fi-
nally, after imax iterations, problem (1.23) is solved by using the same MM
algorithm (line 5). A detailed description of the function f (M)

1 is given in
[40, 41]. Note that in order to start the algorithm SMOOTH, an initial
feasible point x0 ∈ Rmn has to be selected (line 1). Hence, the algorithm
returns a minimizer of f1 on Rmn which depends on the selected feasible
point. Thus, it may return a local minimizer instead of a global one.

Algorithm 1.2 SMOOTH
Input: m ∈ {1, 2, 3}, n ∈ N (n > 1), δij ∈ R (δij = δji > 0, δii = 0), 1 ≤ i, j ≤ n,

γ > 0, imax ∈ N
Output: x∗ – a local minimizer of f1 on Rmn
1: ε← ε0 > 0; x0 ∈ Rmn
2: for i = 1, imax do
3: ε← ε0(imax − i+ 1)/imax

4: xi ← MM(Rmn, f ε1, f ε1(M), xi−1, γ)

5: x∗ ← MM(Rmn, f1, f (M)
1 , ximax , γ)

1.2.2.2. BB2009. This algorithm is a combinatorial algorithm for
finding a global minimizer of the Stress function with city-block distances
f1 on the feasible set Rmn. It is based on the fact that the set Rmn may
be divided into a finite number of subsets and a certain quadratic function
may be defined on every subset separately. From here it follows that prob-
lem (1.23) may be formulated as a two-level optimization problem with a
combinatorial optimization problem at the upper-level, and a QP problem
at the lower-level. In this algorithm, the upper-level problem is solved by
using the branch-and-bound method. The lower-level problem is solved by

31



1. BASIC CONCEPTS AND RELATED WORKS

using a method for QP problems. Let us show that problem (1.23) may be
formulated as a two-level optimization problem.

It is not hard to understand that for every x = (xT1 , . . . , x
T
n )T = (x11, . . . ,

xm1, x12, . . . , xm2, . . . , x1n, . . . , xmn)T ∈ Rmn, we may assign at least one
matrix

P =

p11 p12 . . . p1n

. . .

pm1 pm2 . . . pmn

 ∈ {1, . . . , n}m×n,
such that (pk1, pk2, . . . , pkn) is a permutation of the set {1, . . . , n} and xkpki ≤
xkpkj for all 1 ≤ i < j ≤ n, 1 ≤ k ≤ m (see Example 1.1). There are
(n!)m such different matrices. For every matrix P let us define a vector t =

(t112, . . . , tm12, t113, . . . , tm13, . . . , t1(n−1)n, . . . , tm(n−1)n)T ∈ {−1, 1}mn(n−1)/2

such that

tkij =

{
−1, if q < r, i.e., xki ≤ xkj,

1, if q > r, i.e., xki ≥ xkj,

where pkq = i and pkr = j, for all 1 ≤ i < j ≤ n, 1 ≤ k ≤ m (see
Example 1.1). Suppose that T ⊂ {−1, 1}mn(n−1)/2 denotes a set of all such
t (|T| = (n!)m). In turn, for every vector t ∈ T we may define a subset of
the feasible set Rmn, say X(t), such that

⋃
t∈TX(t) = Rmn and

X(t) = {x ∈ Rmn : xki ≤ xkj, if tkij = −1 and xki ≥ xkj, if tkij = 1,

1 ≤ i < j ≤ n, 1 ≤ k ≤ m} =

= {x ∈ Rmn : (xki − xkj)tkij ≥ 0, 1 ≤ i < j ≤ n, 1 ≤ k ≤ m}.

Therefore, the feasible set Rmn may be divided into a finite number of
subsets X(t), t ∈ T.

Let f : T× Rmn → R be a function such that

f(t, x) =
n∑
i<j

(
m∑
k=1

(xki − xkj)tkij − δij

)2

. (1.25)

It is not hard to check that |xki−xkj| = (xki−xkj)tkij for all 1 ≤ i < j ≤ n,
1 ≤ k ≤ m, t ∈ T and x ∈ X(t). Hence, f1(x) = f(t, x) whenever t ∈ T,
x ∈ X(t). For every t ∈ T, the function f is a convex quadratic function on
the subset X(t). In turn, the function f1 is a piecewise quadratic function
on the set Rmn. Therefore, optimization problem (1.23) may be formulated

32



1.2. MULTIDIMENSIONAL SCALING

as the following two-level optimization problem

minimize
t ∈ T, x∗ ∈ X∗f (t)

f(t, x∗), (1.26)

where the set X∗f (t) ⊂ Rmn denotes a set of all minimizers of the following
problem

minimize
x ∈ X(t)

f(t, x). (1.27)

Upper-level problem (1.26) is a combinatorial optimization problem and
lower-level problem (1.27) is a convex QP problem.

The algorithm BB2009 has a parallel version, described in [98]. Let
PBB2012 be the parallel version of the algorithm BB2009. Then the parallel
algorithm PBB2012 has the parallelism of type 2 (see Section 1.1.2.4).

Example 1.1. For vector x = (x11, . . . , x16)
T = (7,−1, 3,−4, 3, 8)T ,

we may assign two matrices P1 = (p111 . . . p
1
16) = (4 2 3 5 1 6) and P2 =

(p211 . . . p
2
16) = (4 2 5 3 1 6) such that x1p11i ≤ x1p11j and x1p21i ≤ x1p21j for all

1 ≤ i < j ≤ 6. Indeed, p111 = 4, p112 = 2 and x14 = −4 < −1 = x12, p113 = 3

and x14 = −4 < 3 = x13, etc.
Matrix P1 corresponds to vector t1 = (1, 1, 1, 1, −1, −1, 1, −1, −1, 1,

−1, −1, −1, −1, −1)T ∈ {−1, 1}15. Matrix P2, to vector t2 = (1, 1, 1, 1,

−1, −1, 1, −1, −1, 1, 1, −1, −1, −1, −1)T ∈ {−1, 1}15. All components
of the vectors t1 and t2 are identical, except the component at the position
135, i.e., t1135 = −1, t2135 = 1.

33



2. Algorithms for MDS with city-block distances

The research problem – i.e., the problem of minimizing the Stress func-
tion with city-block distances – is equivalent to a certain optimization prob-
lem. The optimization problem, equivalent to the research problem, is called
here the problem CMDS. In this chapter, first of all, the main features of
the Stress function with city-block distances are listed. Next, the prob-
lem CMDS is presented, and the equivalence between the research problem
and the problem CMDS is proven. Finally, three algorithms for the prob-
lem CMDS are proposed and described. Certain parts of this chapter are
published in [FGŽ14, GŽ14, GŽ13].

2.1. The Stress function with city-block distances

Here, we present the main features of the Stress function with city-block
distances, defined in (1.22). Namely, here we show that the function f1 is
invariant under translation and under mirroring, and is not differentiable
everywhere over its domain. Let L ∈ Rl1×l2 and

diagk(L) = diag(L, . . . , L︸ ︷︷ ︸
k

) =


L

. . .
L

 ∈ Rl1k×l2k (2.1)

denote a rectangular block diagonal matrix.

2.1.1. Invariance under translation

If c ∈ R, then |(xki − c) − (xkj − c)| = |xki − xkj| for all x ∈ Rmn.
Therefore:

f1(x) = f1(x+ v)

for all x ∈ Rmn and v = (c1, . . . , cm, . . . , c1, . . . , cm)T ∈ Rmn. Because
of this feature, we say that the function f1 is invariant under translation.
Due to this feature, we may look for a minimizer of f1 on a subset of the
set Rmn, instead of on the whole set Rmn. For example, on the subset
X′ = {x ∈ Rmn :

∑n
i=1 xki = 0, 1 ≤ k ≤ m} ⊂ Rmn. In addition, if x =

34



2.1. THE STRESS FUNCTION WITH CITY-BLOCK DISTANCES

(xT1 , . . . , x
T
n )T ∈ X′, then points of the set {x1, . . . , xn} ⊂ Rm are located

around the origin of the m-dimensional Cartesian coordinate system.

Example 2.1. If m = 1 and n = 2, then

f1(x11, x12) = f1(x11 + c, x12 + c)

for all (x11, x12)
T ∈ R2 and c ∈ R (see Figure 2.1).

−5 0 5−5
0

5

0

20

40

60

80

x11
x12

f 1
(x

1
1
,x

1
2
)

(a) Graph.

81

81

81

81

81

81

40

40

40

40

40

40

40

40

20

20

20

20

20

20

0.
10.
1

0.
1

0.
1

0.
1

0.
1

−5 0 5

−5

0

5

x11

x
1
2

(b) Contour lines.

Figure 2.1. Graph and contour lines of function f1(x) =
(|x11 − x12| − 9)2, x = (x11, x12)

T ∈ R2.

2.1.2. Invariance under mirroring I

If p = (p1, . . . , pm)T ∈ P(m) – where P(m) denotes a set of all possible
permutations of the set {1, . . . ,m} – then

∑m
k=1 |xki − xkj| =

∑m
k=1 |xpki − xpkj|

for all x ∈ Rmn. Therefore:

f1(x) = f1(Π(p)x) (2.2)

for all x ∈ Rmn and p ∈ P(m), where Π(p) = diagn(I(p)) ∈ {0, 1}mn×mn,
I(p) = (ep1 . . . epm) ∈ {0, 1}m×m and epk ∈ {0, 1}m, ‖epk‖ = 1, epkpk = 1,
1 ≤ k ≤ m. In this case, we say that the function f1 is invariant under
mirroring when the mirrored points are obtained by exchanging coordinate
axes in the m-dimensional Cartesian coordinate system.

Example 2.2. If m = 2, n = 3 and x = (−2,−1.5, 2.5, 0.5, 1, 1.5)T ∈
R6, then

f1(x) = f1(Π(1, 2)x) = f1(Π(2, 1)x) = f1(y),

35



2. ALGORITHMS FOR MDS WITH CITY-BLOCK DISTANCES

where

Π(1, 2) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,Π(2, 1) =


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0


and Π(2, 1)x = y = (−1.5,−2, 0.5, 2.5, 1.5, 1)T ∈ R6. Mirrored points,
defined by the vectors x and y, are shown in Figure 2.2.

t1

t2

−1

−1a

b

c

x11 x12x13

x21

x22

x23

(a) Points, defined by the vector x.

t1

t2

−1

−1

a′

b′

c′

y11 y12 y13

y21

y22

y23

(b) Points, defined by the vector y =
Π(2, 1)x.

Figure 2.2. Mirrored points, defined by vectors x and y.

2.1.3. Invariance under mirroring II

Note that |xki − xkj| = |(−xki)− (−xkj)| = |xkj − xki| for all x ∈ Rmn.
Therefore:

f1(x) = f1(P (u)x)

for all x ∈ Rmn, where P (u) = diagn(T (u)) ∈ {−1, 0, 1}mn×mn, T (u) =

diag(u1, . . . , um) ∈ {−1, 0, 1}m×m and u ∈ {−1, 1}m. We say that f1 is in-
variant under mirroring when the mirrored points are obtained by exchang-
ing directions of coordinate axes in the m-dimensional Cartesian coordinate
system.

Example 2.3. Suppose thatm = 2, n = 3 and x = (2.5, 1, 1.5, 3.5, 4, 2)T ∈
R6. Then

f1(x) = f1(P (u1, u2)x),

where

P (u1, u2) =


u1 0 0 0 0 0
0 u2 0 0 0 0
0 0 u1 0 0 0
0 0 0 u2 0 0
0 0 0 0 u1 0
0 0 0 0 0 u2


36



2.1. THE STRESS FUNCTION WITH CITY-BLOCK DISTANCES

and (u1, u2)
T ∈ {(1, 1)T , (−1, 1)T , (−1,−1)T , (1,−1)T}. Mirrored points,

defined by vectors P (u1, u2)x, (u1, u2)
T ∈ {−1, 1}2, are shown in Figure

2.3.

a

b

c

a1

b1

c1

a2

b2

c2

a3

b3

c3

x11x12 x13

x21

x22

x23

t1

t2

−1

−1

Figure 2.3. Mirrored points, defined by vectors P (1, 1)x =
x (points a, b, c), P (−1, 1)x (points a1, b1, c1), P (−1,−1)x
(points a2, b2, c2) and P (1,−1)x (points a3, b3, c3).

2.1.4. Non-differentiability everywhere over its domain

Note that

∂f1
∂xqr

(x) = 2
n∑
i<j

[(
m∑
k=1

|xki − xkj| − δij

)
· ∂|xqi − xqj|

∂xqr

]
,

where

∂|xqi − xqj|
∂xqr

=
(xqi − xqj)
|xqi − xqj|

· ∂(xqi − xqj)
∂xqr

=


sign(xqi − xqj), if i = r,

−sign(xqi − xqj), if j = r,

0, otherwise,

for all 1 ≤ q ≤ m, 1 ≤ r ≤ n. Therefore, the Stress function with city-block
distances is not differentiable at a point x ∈ Rmn, when xqi = xqj with
certain q ∈ {1, . . . ,m} and i, j ∈ {1, . . . , n} (i < j). Thus, the function f1
is not differentiable everywhere over its domain Rmn. The function may be
non-differentiable even at a local minimizer [93].

37



2. ALGORITHMS FOR MDS WITH CITY-BLOCK DISTANCES

Example 2.4. Suppose that m = 2, n = 6 and matrix

∆6 =

 0 1.21 0.81 1.12 0.98 0.69
1.21 0 1.04 1.18 0.75 1.33
0.81 1.04 0 1.24 0.58 0.92
1.12 1.18 1.24 0 0.95 0.89
0.98 0.75 0.58 0.95 0 0.98
0.69 1.33 0.92 0.89 0.98 0


contains dissimilarities between certain multidimensional elements {v1, . . . ,
v6} ⊂ Rk (k > 3). Then x∗ = (x∗1

T , . . . , x∗6
T )T = (−0.062, −0.547, −0.062,

0.664, −0.442, −0.104, 0.574, 0.102, −0.259, 0.202, 0.251, −0.317)T ∈ R12

is a minimizer of f1 on R12. However, the function f1 is not differentiable
at the point x∗, because x∗11 = x∗12. The corresponding image of these vectors
in a 2-dimensional Cartesian coordinate system is shown in Figure 2.4.

t1

t2

−0.2

−0.2

x∗1

x∗2

x∗3

x∗4

x∗5

x∗6

Figure 2.4. An image of multidimensional elements vi ∈ Rk

(k > 3), 1 ≤ i ≤ 6, obtained by specifying and minimizing the
loss function f1. Here, x∗1 = (−0.062, −0.547)T , x∗2 = (−0.062,
0.664)T .

2.2. Equivalent problem to MDS with city-block distances

Let m ∈ {1, 2, 3}, n ∈ N (n > 1) and δij ∈ R (δij = δji > 0, δii = 0), 1 ≤
i, j ≤ n. Suppose that x = (x11, . . . , xm1, x12, . . . , xm2, . . . , xmn)T ∈ Rmn

and d± = (d+112, d
−
112, . . . , d

+
m12, d

−
m12, . . ., d

+
m(n−1)n, d

−
m(n−1)n)T ∈ Rmn(n−1).

Let Y be a subset of Rmn2

such that

Y = {y = (xT , d±
T

)T ∈ Rmn2

: xki − xkj = d+kij − d
−
kij,

d+kijd
−
kij = 0,

d+kij, d
−
kij ≥ 0,

1 ≤ i < j ≤ n, 1 ≤ k ≤ m},

(2.3)

38



2.2. EQUIVALENT PROBLEM TO MDS WITH CITY-BLOCK DISTANCES

and let g : Y→ R be a real function such that

g(y) =
n∑
i<j

(
m∑
k=1

(d+kij + d−kij)− δij

)2

. (2.4)

We state that optimization problem (1.23) is equivalent to the following
optimization problem:

minimize
y ∈ Y

g(y). (2.5)

Let us show that problems (1.23) and (2.5) are equivalent problems.

Theorem 2.1. Optimization problems (1.23) and (2.5) are equivalent
problems.

Proof. First of all, let us assume that X = Rmn denotes the feasible
set of problem (1.23), and X∗f1, Y

∗
g denote sets of all global minimizers of

functions f1, g on X, Y, respectively. According to the definition of the
equivalence of two optimization problems, let us show that there exists a
bijective (injective and surjective) function h : X→ Y such that

x∗ ∈ X∗f1, if and only if h(x∗) = y∗ ∈ Y∗g. (2.6)

Let us consider the following function:

h(x) =

(
x

z±(x)

)
,

where z±(x) = (z+112(x), z−112(x), . . . , z+m12(x), z−m12(x), . . . , z+m(n−1)n(x),

z−m(n−1)n(x))T ∈ Rmn(n−1) and

z+kij(x) =

{
xki − xkj, if xki > xkj,

0, otherwise,

z−kij(x) =

{
−(xki − xkj), if xki < xkj,

0, otherwise.

Note that
z+kij(x)− z−kij(x) = xki − xkj,
z+kij(x)z−kij(x) = 0,

z+kij(x), z−kij(x) ≥ 0,

39



2. ALGORITHMS FOR MDS WITH CITY-BLOCK DISTANCES

for all 1 ≤ i < j ≤ n, 1 ≤ k ≤ m whenever x ∈ X. Therefore, h(x) ∈ Y for
all x ∈ X.

It follows directly from the definition of the function h that it is injective,
i.e., if h(x1) = h(x2), then x1 = x2 for all x1, x2 ∈ X.

The function h is surjective, i.e., for every y = (xT , d±
T

)T ∈ Y there ex-
ists a certain x ∈ X such that y = h(x). Indeed, suppose that (xT , d±

T
)T ∈

Y. Let us show that d± = z±(x). According to the definition of the set Y,
we have that

if d+kij = 0, then d−kij = −(xki − xkj) ≥ 0 and
if d−kij = 0, then d+kij = xki − xkj ≥ 0.

Suppose that z+kij(x) = 0. Then xki ≤ xkj and z−kij(x) = −(xki − xkj) ≥ 0.
If z−kij(x) = 0, then xki ≥ xkj and z+kij(x) = xki − xkj ≥ 0. Thus, d± =

z±(x) whenever (xT , d±
T

)T = y ∈ Y. From here it follows that for every
y ∈ Y there exists x ∈ X such that y = h(x). Therefore, the function h is
surjective.

From the fact that, if (xT , d±
T

)T ∈ Y, then d+kij + d−kij = |xki − xkj| for
all 1 ≤ i < j ≤ n, 1 ≤ k ≤ m, it follows that

f1(x) = g(y) whenever y = (xT , d±
T

)T ∈ Y. (2.7)

Thus, x∗ ∈ X∗f1, i.e., f1(x
∗) ≤ f1(x) for all x ∈ X, if and only if g(h(x∗)) ≤

g(h(x)) for all h(x) ∈ Y, i.e., h(x∗) = y∗ ∈ Y∗g. Therefore, the bijective
function h satisfies biconditional statement (2.6). From here it follows that
problems (1.23) and (2.5) are equivalent problems. �

The function f1 is invariant under translation (see Section 2.1.1). Due
to the fact that f1(x) = g(y) whenever y = (xT , d±

T
)T ∈ Y, it follows that

the function g is invariant under translation, too. Let

Y′ = Y ∩ {y ∈ (xT , d±
T

)T ∈ Rmn2

:
n∑
i=1

xki = 0, 1 ≤ k ≤ m}.

Let us consider the following optimization problem, which is called here the
problem CMDS:

minimize
y ∈ Y′

g(y). (2.8)

The objective function of problem (2.8) is a quadratic function, and the
feasible set is defined by linear and complementarity constraints. Thus,

40



2.2. EQUIVALENT PROBLEM TO MDS WITH CITY-BLOCK DISTANCES

the problem may be expressed into a certain matrix form. Let us write
problem (2.8) into this form. Suppose that y = (xT , d±

T
)T = (y1, . . . , ymn,

ymn+1, . . . , ymn2)T ∈ Rmn2

, s = mn(n−1)/2 and diagk(L) ∈ Rl1k×l2k, where
L ∈ Rl1×l2, denotes a rectangular block diagonal matrix, defined by (2.1).
For the sake of simplicity, let I l ∈ {0, 1}l×l denote an identity matrix and
Ol1×l2 ∈ {0}l1×l2, a zero matrix. Then problem (2.8) can be written into
the following matrix form:

minimize
y ∈ Rmn2

0.5yTAy − bTy + const.

subject to cTi y = 0, i ∈ E = {1, . . . ,m+ s},
cTi y ≥ 0, i ∈ I = {m+ s+ 1, . . . ,m+ 3s},
y(mn+i)y(mn+1+i) = 0, i = 1, 3, 5, . . . , 2s− 1.

(2.9)

where:

A =

(
Omn×mn Omn×2s

O2s×mn diagn(n−1)/2(E)

)
∈ {0, 1}mn

2×mn2

,

b = (O1×mn,∆T
12,∆

T
13, . . . ,∆

T
(n−1)n)T ∈ Rmn2

,

cE =

(
C1 C2

O2s×m diags (−11 )

)
∈ {−1, 0, 1}mn

2×m+s,

cI =

(
Omn×2s

I2s

)
∈ {0, 1}mn

2×2s.

Here, E ∈ {1}2m×2m, ∆ij = (δij, . . . , δij)
T ∈ R2m, 1 ≤ i < j ≤ n, C1 ∈

{0, 1}mn×m, C2 ∈ {−1, 0, 1}mn×s and

C1 =


Im

...
Im

 ,

C2 =



Im Im . . . Im

−Im Im Im . . . Im

−Im −Im

−Im
. . . . . . · · ·

Im

−Im −Im −Im


.

41



2. ALGORITHMS FOR MDS WITH CITY-BLOCK DISTANCES

Let us pay attention to the fact that det(A) = 0. In addition, A =

((2m)−1/2A)T ((2m)−1/2A). Therefore, A � 0, i.e., the Hessian matrix A
of the quadratic function g is positive semidefinite. Hence, the function g
is a non-strictly convex quadratic function. In order to better understand
the structure of the matrices A, (cE cI) and the vector b, let us show an
example.

Example 2.5. Suppose that n = 3, m = 2 and ∆3 =
(

0 7 12
7 0 3
12 3 0

)
. In this

case, s = 6, A ∈ {0, 1}18×18, b ∈ R18, E = {1, . . . , 8}, I = {9, . . . , 20},
(cE cI) ∈ {−1, 0, 1}18×20 and:

A =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1



,

b = ( 0 0 0 0 0 0 7 7 7 7 12 12 12 12 3 3 3 3 )
T
,

(cE cI) =



1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1



.

2.3. Algorithm, based on the active-set method

Here, we propose and describe an algorithm for problem (2.9). The pro-
posed algorithm is based on the active-set method for linearly constrained

42



2.3. ALGORITHM, BASED ON THE ACTIVE-SET METHOD

convex QP problems (see Section 1.1.2.1). Let us remember that the active-
set method constructs a sequence of feasible points which converges to a
minimizer of a convex quadratic function on a feasible set, defined by linear
constraints. The feasible set of problem (2.9) is defined by both linear and
complementarity (non-linear) constraints. Therefore, we cannot apply the
active-set method directly to problem (2.9). We modified the method so
that every point of the sequence would satisfy both linear and complemen-
tarity constraints. Unfortunately, the proposed algorithm usually returns
a local minimizer of g on Y′ instead of a global one. Let us describe the
algorithm.

A pseudocode of the algorithm, based on the active-set method, is pre-
sented in Algorithm 2.1. We called the algorithm “Modified Active-Set”
(MAS). Let us describe the main steps of MAS in detail. A number after
the word “line” or “lines” indicates the line number in the pseudocode.

Lines 1–10 of Algorithm 2.1 define the part of initialization. Here, an
initial feasible point y0 ∈ Y′ is selected (line 1) and an initial active set
W0 ⊂ {i ∈ E ∪ I : cTi y

0 = 0} is constructed (lines 2–9). A feasible point
y0 ∈ Y′ may be selected by using various techniques. One of the techniques
is presented in Section 3.1. The set W0 contains indices of all equality
constraints (line 2) and indices of some inequality constraints (lines 3–9).
Because of y0(mn+i)y

0
(mn+1+i) = 0 for all i ∈ {1, 3, 5, . . . , 2s − 1}, it follows

that
cT(m+s+i)y

0 = 0 and/or cT(m+s+1+i)y
0 = 0 (2.13)

for all i ∈ {1, 3, 5, . . . , 2s − 1}. If only one of two equalities (2.13) holds,
either index (m+s+ i) or index (m+s+1+ i) is added to the set W0 (lines
4–6, 9). If both of two equalities (2.13) hold, a randomly selected index is
added (lines 7–9). Note that ci, i ∈W0, are linearly independent vectors.

Lines 11–37 of the algorithm define the part of calculations. Here, a
finite sequence of feasible points {y1, y2, . . . , yK = y∗} ⊂ Y′ is constructed
such that g(yk+1) ≤ g(yk), 0 ≤ k ≤ K − 1. Every element of the sequence
is defined by the following formula: yk+1 = yk + αkpk, 0 ≤ k ≤ K − 1. The
vector pk ∈ Rmn2

is called a step direction and the number αk ∈ [0, 1] is
called a step length.

The step direction pk is a minimizer of

φ(p) = 0.5(yk + p)TA(yk + p)− bT (yk + p)

43



2. ALGORITHMS FOR MDS WITH CITY-BLOCK DISTANCES

Algorithm 2.1 Modified Active-Set (MAS)
Input: m ∈ {1, 2, 3}, n ∈ N (n > 1), δij ∈ R (δij = δji > 0, δii = 0), 1 ≤ i, j ≤ n
Output: y∗ – a local minimizer of g on Y′
1: y0 ← any feasible point
2: W0 ← E
3: for all i ∈ {1, 3, . . . , 2s− 1} do
4: j ← 0
5: if y0(mn+1+i) = 0 then
6: j ← 1
7: if y0(mn+i) = 0 then
8: j ← random number from the set {0, 1}
9: W0 ←W0 ∪ {m+ s+ i+ j}

10: stop← 0; k ← 0
11: while stop 6= 1 do

12:
(
pk

λk

)
∈
{(

p
λ

)
∈ Rmn2+|Wk| :

(
−A cWk

cTWk 0

)(
p
λ

)
=

(
Ayk − b

0

)}
13: if pk 6= 0 then
14: Ĩ← {i ∈ I : i 6∈Wk and cTi pk < 0}
15: αk ← min{1,min{−(cTi y

k)/(cTi p
k) : i ∈ Ĩ}}

16: if αk = −(cTi∗y
k)/(cTi∗p

k) ≤ 1 with some i∗ ∈ Ĩ then
17: Wk+1 ←Wk ∪ {i∗}
18: yk+1 ← yk + αkpk

19: else
20: λ← 0 ∈ Rm+3s; j ← 0
21: for all i ∈Wk do
22: j ← j + 1; λi ← λkj

23: Ĩ← {i ∈Wk ∩ I : λi < 0}
24: next← 1
25: while next = 1 do
26: if Ĩ 6= ∅ then
27: i∗ ← argmin{λi : i ∈ Ĩ}
28: j ← 1
29: if (i∗ − (m+ s))%2 = 0 then
30: j ← −1

31: if (i∗ + j) ∈Wk then
32: Wk+1 ←Wk \ {i∗}; next← 0
33: else
34: Ĩ← Ĩ \ {i∗}
35: else
36: y∗ ← yk; next← 0; stop← 1

37: k ← k + 1

on
Φ = {p ∈ Rmn2

: cTi (yk + p) = cTi p = 0, i ∈Wk}.

There always exists a minimizer of φ on Φ. Indeed, the Hessian matrix A of
the function φ is a positive semidefinite matrix. Hence, φ is a non-strictly

44



2.3. ALGORITHM, BASED ON THE ACTIVE-SET METHOD

convex quadratic function. Because of the structure of the matrix A and the
vector b, the system ∇φ(p) = Ap+ (Ayk − b) = 0 has at least one solution
for all yk ∈ Rmn2

. Therefore, the quadratic function φ is bounded below
on Rmn2

[88] and it has a minimizer on the set Φ. According to the KKT
conditions for an equality constrained QP problem, if pk is a minimizer of
φ on Φ, then there is a Lagrange multiplier vector λk ∈ R|Wk| such that the
following system (KKT system) is satisfied:(

−A cWk

cTWk 0

)(
pk

λk

)
=

(
Ayk − b

0

)
. (2.14)

KKT system (2.14) has at least one solution. Thus, we choose any of them
(line 12).

Suppose that the step direction pk is not equal to zero (line 13). In this
case, a new feasible point yk+1 = yk+αkpk is constructed along this direction
(lines 14–18). The step length αk is defined by the following formula:

αk = min
{

1,min
{

(−cTi yk)/(cTi pk) : i 6∈Wk and cTi p
k < 0

}}
.

The definition of the step length ensures that the point yk+1 belongs to the
feasible set Y′ [71]. If the new point touches an inequality constraint that
is not active at the point yk (the index of that constraint does not belong
to the set Wk), the index of that constraint is added to the set Wk+1 (lines
16–17).

Next, suppose that the step direction pk is equal to zero (line 19). In
this case, we verify whether the point yk is a minimizer of g on Y′ or not.
It is done by checking the KKT dual feasibility condition (1.7d). In other
words, on the set Wk we select indices of those inequality constraints which
have negative Lagrange multipliers (lines 20–23). Let Ĩ denote a set of
these selected indices. If the set Ĩ is empty, then the Lagrange multipliers
corresponding to inequality constraints active at yk are equal to zero or
positive. Hence, the point yk is a minimizer of g on Y′ and calculations are
stopped. If Ĩ is not empty, the set Wk contains at least one index of an
inequality constraint with a negative Lagrange multiplier. In this case, a
regular active-set method from the set Wk removes an index of inequality
constraint with the most negative Lagrange multiplier (lines 27, 32). Let us
remember that we are considering an optimization problem with a number
of complementarity constraints y(mn+i)y(mn+1+i) = 0, i = 1, 3, . . . , 2s − 1.

45



2. ALGORITHMS FOR MDS WITH CITY-BLOCK DISTANCES

Every complementarity constraint i corresponds to one (or both) of these
equalities:

cT(m+s+i)y = 0, cT(m+s+1+i)y = 0.

Thus, one (or both) of indices (m+ s+ i) or (m+ s+ 1 + i) belongs to the
set Wk (because yk ∈ Y′). If both of these indices would be removed from
the set Wk, at the next iteration it might be the following situation (but
not necessarily): pk+1

(mn+i) 6= 0, pk+1
(mn+1+i) 6= 0 and αk+1 > 0. It is clear that

then yk+1
(mn+i)y

k+1
(mn+1+i) 6= 0 and yk+1 6∈ Y′. If after some number of iterations

one of the above indices would appear on the set Wl with some l > k, there
is no guarantee that the complementarity constraint i would be satisfied
again. Hence, in order to preserve all the complementarity constraints at
every iteration, we forbid the removal of an index that does not have a
pair on the set Wk (lines 28–34). If the removal of index (m + s + i) or
(m + s + 1 + i) is forbidden, the index is eliminated from the set Ĩ. Then
the analysis of Ĩ is continued until Ĩ becomes empty (a minimizer of g on
Y′ is found) or the removal is allowed (lines 31–32).

2.4. Algorithm, based on the branch-and-bound method

In this section, we propose and describe another algorithm for problem
(2.9). In this case, the algorithm is based on the branch-and-bound method
(see Section 1.1.2.3) and it returns a global minimizer of g on Y′. Problem
(2.9) may be expressed as a two-level optimization problem with a convex
QP problem at the lower-level, and a combinatorial optimization problem
at the upper-level. We applied the branch-and-bound method, i.e., we de-
fined the branching, bounding, and pruning operations for the upper-level
combinatorial optimization problem. Here, first of all, we express problem
(2.9) as a two-level optimization problem. Next, we define the branching,
bounding, and pruning operations. Finally, we propose and describe the
algorithm.

2.4.1. Two-level optimization

Let us show that the feasible set Y′ may be divided into a finite number
of particular subsets. Suppose that t : Y′ → {0, 1}2s is a 0-1 vector-valued
function such that:

ti(y) =

{
1, if ymn+i > 0,

0, if ymn+i = 0,

46



2.4. ALGORITHM, BASED ON THE BRANCH-AND-BOUND METHOD

1 ≤ i ≤ 2s. Let t(Y′) = {t(y) : y ∈ Y′} denote the range (image) of the
function t. Every complementarity constraint y(mn+i)y(mn+1+i) = 0 implies
that 0 ≤ ti(y) + ti+1(y) ≤ 1, i = 1, 3, 5, . . . , 2s−1. Thus, the range of t may
be defined as follows:

t(Y′) = {z ∈ {0, 1}2s : zi + zi+1 ≤ 1, i = 1, 3, 5, . . . , 2s− 1}.

It is clear that the set t(Y′) is a finite set. Let us remember the symbols E
and I, defined in (2.9), and let Ieq(z) ⊂ I be a set such that

Ieq(z) = {i ∈ I : zi−(m+s) = 0}, (2.15)

where z ∈ t(Y′). Then Y′ =
⋃
z∈t(Y′)Y′(z), where

Y′(z) = {y ∈ Y′ : cTi y = 0, i ∈ Ieq(z)} =

{y ∈ Rmn2

: cTE∪Ieq(z)y = 0, cTI\Ieq(z)y ≥ 0}.

Therefore, the feasible set of problem (2.9) may be divided into a finite
number of subsets. In addition, it is sufficient to consider those z ∈ t(Y′)
which satisfy equalities zi+zi+1 = 1, i = 1, 3, 5, . . . , 2s−1. Indeed, suppose
that

z1 = (z11 , . . . , z
1
(i−1), 1, 0, z

1
(i+2), . . . , z

1
(2s))

T ,

z2 = (z21 , . . . , z
2
(i−1), 0, 0, z

2
(i+2), . . . , z

2
(2s))

T and
z3 = (z31 , . . . , z

3
(i−1), 0, 1, z

3
(i+2), . . . , z

3
(2s))

T ∈ t(Y′),

where z1j = z2j = z3j , j ∈ {1, . . . , 2s} \ {i, i + 1}. From the definition of the
set Y′(z), it follows that Y′(z2) ⊂ Y′(z1) and Y′(z2) ⊂ Y′(z3). Thus, the
feasible set Y′ may be defined as follows: Y′ =

⋃
z∈ZY′(z), where

Z = {z ∈ {0, 1}2s : zi + zi+1 = 1, i = 1, 3, 5, . . . , 2s− 1}.

Also note that if N = s/m = n(n−1)/2 and y = (xT , d±
T

)T ∈ Y′(z), z ∈ Z,
then: ∑n

i=1 xki = 0, xki − xkj = d+kij − d
−
kij,

(1− z2k−1)d+k12 = 0, (1− z2k)d−k12 = 0,

(1− z2(m+k)−1)d
+
k13 = 0, (1− z2(m+k))d

−
k13 = 0,

. . .

(1− z2Nk−1)d+k(n−1)n = 0, (1− z2Nk)d−k(n−1)n = 0,

d+kij ≥ 0, d−kij ≥ 0,

(2.16)

47



2. ALGORITHMS FOR MDS WITH CITY-BLOCK DISTANCES

for all 1 ≤ i < j ≤ n, 1 ≤ k ≤ m.
Therefore, problem (2.9) may be expressed as the following two-level

optimization problem:

minimize
z ∈ Z, y∗ ∈ Y′∗g (z)

g(y∗), (2.17)

where Y′∗g (z) ⊂ Y′(z) denotes a set of all global minimizers of the problem

minimize
y ∈ Y′(z)

g(y). (2.18)

Upper-level problem (2.17) is a combinatorial optimization problem, and
lower-level problem (2.18) is a convex (non-strictly) QP problem. Note
that if zi, zi+1 ∈ {0, 1}, then zi + zi+1 = 1, if and only if (zi, zi+1) ∈
{(0, 1), (1, 0)}. Therefore, the number of the lower-level problems is equal
to |Z| = 2s.

2.4.2. Operations

We applied the branch-and-bound method for upper-level combinatorial
optimization problem (2.17). Let us show how we implemented the following
operations: 1) the division of the upper-level feasible set Z (branching), 2)
the evaluation of the minimum value of the upper-level objective function
g on every feasible subset (bounding), and 3) the elimination of feasible
subsets (pruning).

2.4.2.1. Branching. The upper-level feasible set Z is divided as
follows. Let V ⊂ {0, 1}2s be a set such that V = V(0)∪V(1)∪V(2)∪ . . .∪
V(s), and

V(k) = {v ∈ {0, 1}2s : v2i−1 + v2i = 1, 1 ≤ i ≤ k,

v2i−1 + v2i = 2, k + 1 ≤ i ≤ s},

for all 0 ≤ k ≤ s. Then, the upper-level feasible set is divided into the
following subsets:

Z(v) = {z ∈ {0, 1}2s : zi = vi, 1 ≤ i ≤ 2k,

z2i−1 + z2i = 1, k + 1 ≤ i ≤ s},
(2.19)

where v ∈ V(k), k ∈ {0, 1, . . . , s}. It is not hard to check that:

(1) |V(k)| = 2k.

48



2.4. ALGORITHM, BASED ON THE BRANCH-AND-BOUND METHOD

(2) |V| =
∑s

k=0 |V(k)| =
∑s

k=0 2k = 2s+1 − 1.
(3) |Z(v)| = 2s−k, v ∈ V(k).
(4) V(s) = Z(v) = Z, v ∈ V(0).
(5)

⋃2k

i=1 Z(vi) = Z, vi ∈ V(k), 1 ≤ i ≤ 2k.
(6)

⋂2k

i=1 Z(vi) = ∅, vi ∈ V(k), 1 ≤ i ≤ 2k.
The set V may be depicted as a tree. Every node of the tree corresponds

to a certain element of V and, in turn, to a certain subset of Z. The tree is
often called the search tree. Figure 2.5 contains a search tree for problem
(2.17). Here, every node

s︷ ︸︸ ︷
v1 . . . v2k−11 . . . 11

v2 . . . v2k︸ ︷︷ ︸
k

1 . . . 11

corresponds to a particular vector v ∈ V(k), k ∈ {0, 1, . . . , s}, which, in
turn, corresponds to a certain subset Z(v) ⊆ Z.

s︷ ︸︸ ︷
11 . . . 11
11 . . . 11

01 . . . 11
11 . . . 11

. . .

00 . . . 01
11 . . . 11

00 . . . 00
11 . . . 11

00 . . . 01
11 . . . 10

00 . . . 11
11 . . . 01

00 . . . 10
11 . . . 01

00 . . . 11
11 . . . 00

. . .

11 . . . 11
01 . . . 11

. . . . . .

11 . . . 01
00 . . . 11

11 . . . 00
00 . . . 11

11 . . . 01
00 . . . 10

11 . . . 11
00 . . . 01

11 . . . 10
00 . . . 01

11 . . . 11
00 . . . 00

Figure 2.5. The search tree for problem (2.17).

2.4.2.2. Bounding. The lower bound for the minimum value of the
objective function g on the subset Z(v), v ∈ V, is calculated as follows. The
minimum value of g on Z(v) is equal to g(y∗), where

y∗ ∈ argmin{g(y) : y ∈
⋃

z∈Z(v)

Y′(z)}.

Note that s = |Ieq(z)| ≥ |Ieq(v)| = k whenever z ∈ Z(v) and v ∈ V(k),
k ∈ {0, 1, . . . , s} (the set Ieq is defined by (2.15)). Thus, the set Y′(v) is not

49



2. ALGORITHMS FOR MDS WITH CITY-BLOCK DISTANCES

smaller than the set
⋃
z∈Z(v)Y′(z), i.e.,

⋃
z∈Z(v)Y′(z) ⊆ Y′(v) for all v ∈ V.

Therefore, g(y∗∗) ≤ g(y∗), where

y∗∗ ∈ argmin{g(y) : y ∈ Y′(v)}.

The objective value at the point y∗∗ – i.e., the value of g(y∗∗) – is used here
as the lower bound for the minimum value of the function g on the subset
Z(v), v ∈ V.

2.4.2.3. Pruning. We do not have to solve lower-level problems (2.18)
for all z ∈ Z. We may eliminate some of them. Let us define three rules of
the elimination of z from Z.

Rule I. This rule is based on the fact that the function f1 is invariant
under mirroring when the mirrored points are obtained by exchanging direc-
tions of coordinate axes in the m-dimensional Cartesian coordinate system
(see Section 2.1.3). Let us show that it is sufficient to consider those z ∈ Z
which belong to the subset Z(v) with a certain v ∈ V(m).

Suppose that v1 ∈ V(m), z1 ∈ Z(v1) and y1 = (x1
T
, d±

1T
)T ∈ Y′(z1).

Let y2 = (x2
T
, d±

2T
)T be an element of the set Rmn2

such that

x2k1 = −x1k1, x2k2 = −x1k2, x2ki = x1kj and
d+k12

2
= d−k12

1
, d−k12

2
= d+k12

1
, d+kij

2
= d+kij

1
, d−kij

2
= d−kij

1

for all 1 ≤ i < j ≤ n (j 6= 2), 1 ≤ k ≤ m. Note that |x1k1 − x1k2| =

|(−x1k1) − (−x1k2)| = |x2k1 − x2k2| for all 1 ≤ k ≤ m. Thus, f1(x1) = f1(x
2)

and, consequently, g(y1) = g(y2). Let z2 be an element of the set Z such
that

z22i−1 = z12i, z
2
2i = z12i−1, 1 ≤ i ≤ m,

z2i = z1i , 2m+ 1 ≤ i ≤ 2s.

It is not hard to check that y2 ∈ Y′(z2) and z2 ∈ Z(v2) with a certain
v2 ∈ V(m) (v1 6= v2). Therefore, for every v1 ∈ V(m), z1 ∈ Z(v1) and
y1 ∈ Y′(z1) there exist particular v2 ∈ V(m), z2 ∈ Z(v2) and y2 ∈ Y′(z2)
such that g(y1) = g(y2). Thus, it is sufficient to consider those z ∈ Z which
belong to the subset Z(v), v ∈ V(m). In addition, the set Z(v), v ∈ V(m),
contains 2s−m elements. Thus, in applying this rule we may reduce the
search space 2m times.

Rule II. Suppose that µ : N3 → −N∪N is a function defined as follows:

µ(k, i, j) = 2(k +m(j − i+ (2n− i)(i− 1)/2− 1))− 1. (2.20)

50



2.4. ALGORITHM, BASED ON THE BRANCH-AND-BOUND METHOD

Note that

µ(1, 1, 2) = 1, . . . , µ(m, 1, 2) = 2m− 1,

µ(1, 1, 3) = 2(m+ 1)− 1, . . . , µ(m, 1, 3) = 2(2m)− 1,

. . .

µ(1, n− 1, n) = 2(s− (m− 1))− 1, . . . , µ(m,n− 1, n) = 2s− 1.

Let us show that it is sufficient to consider those z ∈ Z which satisfy the
following condition:

(zµ(k,i,l), zµ(k,l,j), zµ(k,i,j)) ∈ {(0, 0, 0), (0, 1, 0), (0, 1, 1),

(1, 0, 0), (1, 0, 1), (1, 1, 1)}
(2.21)

for all k ∈ {1, . . . ,m}, i, l, j ∈ {1, . . . , n} (i < l < j).
Let z1 ∈ Z and

(z1µ(k,i,l), z
1
µ(k,l,j), z

1
µ(k,i,j)) ∈ {(0, 0, 1), (1, 1, 0)} (2.22)

with certain k ∈ {1, . . . ,m} and i, l, j ∈ {1, . . . , n} (i < l < j). Suppose
that y1 = (x1

T
, d±

1T
)T ∈ Y′(z1). Then

d+kil
1

= d+klj
1

= d−kij
1

= 0, if (z1µ(k,i,l), z
1
µ(k,l,j), z

1
µ(k,i,j)) = (0, 0, 1) and

d−kil
1

= d−klj
1

= d+kij
1

= 0, if (z1µ(k,i,l), z
1
µ(k,l,j), z

1
µ(k,i,j)) = (1, 1, 0).

Let us consider the following system of linear equations:

x1ki − x1kl = d+kil
1 − d−kil

1

x1kl − x1kj = d+klj
1 − d−klj

1

x1ki − x1kj = d+kij
1 − d−kij

1
.

(2.23)

It is not hard to check that

0 = d+kil
1 − d−kil

1
+ d+klj

1 − d−klj
1 − d+kij

1
+ d−kij

1

is a linear combination of equations of system (2.23). Thus, if d+kil
1

= d+klj
1

=

d−kij
1

= 0, then d−kil
1

= d−klj
1

= d+kij
1

= 0, and vice versa. Let z2 be an element
of the set Z such that it satisfies condition (2.21) and z2q = z1q , where

q ∈ {1, . . . , 2s}\ {µ(k, i, l), µ(k, l, j), µ(k, i, j),

µ(k, i, l) + 1, µ(k, l, j) + 1, µ(k, i, j) + 1}.

51



2. ALGORITHMS FOR MDS WITH CITY-BLOCK DISTANCES

According to the definition of the set Y′(z), z ∈ Z, y1 ∈ Y′(z2) and, con-
sequently, Y′(z1) ⊂ Y′(z2). Thus, it is sufficient to consider those z ∈ Z
which satisfy condition (2.21) or, vice versa, we may eliminate all z ∈ Z
which satisfy condition (2.22).

Rule III. This rule is based on the fact that the function f1 is invariant
under mirroring when the mirrored points are obtained by exchanging coor-
dinate axes in the m-dimensional Cartesian coordinate system (see Section
2.1.2). Let us remember that N = n(n − 1)/2. For every z ∈ Z, let us
define a vector w(z) = (w1(z), . . . , wm(z))T ∈ {0, 1, . . . , 2N − 1}m such that

wk(z) =
N∑
i=1

2N−iz2(k+(i−1)m)−1,

1 ≤ k ≤ m. Vector w(z) is unique for every z ∈ Z, i.e., if z1, z2 ∈ Z
(z1 6= z2), then w(z1) 6= w(z2). Let us show that it is sufficient to consider
those z ∈ Z which satisfy the following inequalities:

w1(z) ≥ . . . ≥ wm(z). (2.24)

First of all, let us explain the meaning of numbers wk(z), 1 ≤ k ≤ m.
Suppose that elements of vector z = (z1, z2, . . . , z2s)

T ∈ Z are written in a
particular order, presented in Table 2.1. Because of zi ∈ {0, 1}, 1 ≤ i ≤ 2s,
the first row (the second row, too) of the table may be perceived as m
binary numbers with N -digits (N -bits). Thus, the number wk(z) denotes a
decimal number, composed of the k-th binary number, written in the first
row of Table 2.1.

Next, let wk1(z), . . . , wkm(z) denote components of the vector w(z), writ-
ten in decreasing order, i.e., wk1(z) ≥ . . . ≥ wkm(z). Let w↓(z) = (wk1(z), . . . ,

wkm(z))T . Suppose that z1, z2 ∈ Z (z1 6= z2) and w↓(z1) = w↓(z
2). Accord-

ing to the 1) meaning of the numbers wk(z), 1 ≤ k ≤ m, 2) relationship
between z ∈ Z and y ∈ Y′(z) (see (2.16)), and 3) equalities (2.2), (2.7), for
every y1 ∈ Y′(z1) there exists a certain y2 ∈ Y′(z2) such that g(y1) = g(y2)

and vice versa. Therefore, it is sufficient to consider those z ∈ Z which
satisfy inequalities (2.24). In addition, if m = 1, then there are 2N = 2s

different vectors w(z), which satisfy inequalities (2.24). If m = 2, the num-
ber of such vectors is equal to

∑2N

i=1 i = 2N(1 + 2N)/2. If m = 3, we have∑2N

i=1 i(1 + i)/2 = 2N(2N + 1)(2N + 2)/6 such different vectors.

52



2.4. ALGORITHM, BASED ON THE BRANCH-AND-BOUND METHOD

Table 2.1. Elements of vector z = (z1, . . . , z2s)
T ∈ Z, written

in the following order: z2k−1, . . . , z2(k+(N−1)m)−1 (the first row)
and z2k, . . . , z2(k+(N−1)m) (the second row) for all 1 ≤ k ≤ m.

z1 z2m+1 . . . z2m(N−1)+1 z3 . . . z2s−3 z2m−1 . . . z2s−1
z2 z2m+2 . . . z2m(N−1)+2 z4 . . . z2s−2 z2m . . . z2s︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

k=1 2≤k≤m−1 k=m

2.4.3. Algorithm

Here, we propose and describe an algorithm that returns a global mini-
mizer of g on Y′ =

⋃
z∈ZY′(z). The algorithm is based on the branch-and-

bound method. Thus, we called it “Branch-and-Bound” (BB). A pseudocode
of the algorithm is presented in Algorithm 2.2. Let us describe the main
steps of the algorithm BB.

Lines 1–3 of Algorithm 2.2 define the part of initialization. Based on the
first pruning rule (see Section 2.4.2.3, Rule I), it is sufficient to look for a
global minimizer of the function g on the subset

⋃
z∈Z(v)Y′(z) ⊂ Y′, where

v ∈ V(m), instead of on the whole set Y′. Thus, we select any v ∈ V(m)

(line 1 of the algorithm). In order to find a minimizer of g on
⋃
z∈Z(v)Y′(z),

we 1) divide the set
⋃
z∈Z(v)Y′(z) into subsets, and 2) evaluate the minimum

value of the function g on every subset. More precisely, we divide the set

Algorithm 2.2 Branch-and-Bound (BB)
Input: m ∈ {1, 2, 3}, n ∈ N (n > 1), δij ∈ R (δij = δji > 0, δii = 0), 1 ≤ i, j ≤ n
Output: y∗ – a global minimizer of g on Y′
1: v ∈ V(m)
2: V ← {Z(v)}
3: g∗ ← +∞
4: while V 6= ∅ do
5: Z(ν) ∈ V ; V ← V \ {Z(ν)}
6: i∗ ←

∑s
i=1 (ν2i−1 + ν2i)

7: for i = 1, 2 do
8: νi ← ν; νi(2i∗+i) ← 0

9: Remove all unnecessary elements from the subset Z(νi)
10: if Z(νi) 6= ∅ then
11: y∗∗ ∈ argmin{g(y) : y ∈ Y′(νi)}
12: if g(y∗∗) < g∗ then
13: if y∗∗ ∈ Y′ then
14: y∗ ← y∗∗; g∗ ← g(y∗∗)
15: else
16: V ← V ∪ {Z(νi)}

53



2. ALGORITHMS FOR MDS WITH CITY-BLOCK DISTANCES

Z(v). The subsets of Z(v) are stored in the set V (line 2). The initial
objective minimum value g∗ is set to the positive infinity (line 3).

Lines 4–16 of the algorithm define the part of calculations. Here, a subset
Z(ν) of the set Z(v) is selected for further processing and it is removed
from the set V (line 5). Note that ν ∈ V(k), where k ∈ {m, . . . , s− 1} and
νi = vi, 1 ≤ i ≤ 2m. There are a few strategies to select the subset [16].
In numerical experiments, we used a strategy called depth-first-search: the
last added subset is selected. Next, the selected subset Z(ν) is divided into
two disjoint parts Z(ν1) and Z(ν2) (lines 6–8). Note that ν1, ν2 ∈ V(i∗+1),
where i∗ =

∑s
i=1 (ν2i−1 + ν2i). Based on the second and the third pruning

rules (see Section 2.4.2.3, Rule II, Rule III), we remove unnecessary elements
from the subset Z(νi), i ∈ {1, 2} (line 9). Actually, either all or no z

from Z(νi) are removed. Thus, if the subset Z(νi) is not empty, the lower
bound for the minimum value of g on

⋃
z∈Z(νi)Y′(z) is found by solving the

following convex QP problem (line 11):

minimize
y ∈ Y′(νi)

g(y). (2.25)

In numerical experiments, the active-set method was used to solve problem
(2.25). Let y∗∗ be a minimizer of g on Y′(νi). Suppose that g(y∗∗) is smaller
than the current objective minimum value g∗ (line 12). If y∗∗ is a feasible
point (line 13), then y∗∗ is accepted as a current minimizer and the current
objective minimum value is updated (line 14). If y∗∗ 6∈ Y′ (line 15), then
there is at least one index, say j∗ ∈ {i∗+ 1, . . . , s}, such that y∗∗mn+2j∗−1 > 0

and y∗∗mn+2j∗ > 0. In this case, the subset Z(νi) has to be divided further
(line 16). If g(y∗∗) ≥ g∗, the division of the subset Z(νi) is meaningless,
because we will never find a better minimizer of g on

⋃
z∈Z(νi)Y′(z) than

we have at the moment.

2.5. Algorithm, based on a parallel branch-and-bound method

In this section, the third algorithm for problem (2.9) is presented and
described. The algorithm is a parallel version of the Algorithm 2.2 and it has
the parallelism of type 1 (see Section 1.1.2.4). It returns a global minimizer
of g on Y′. Suppose that a certain computer may perform P = 2l + 1 (l =

0, 1, 2, . . .) processes simultaneously, i.e., it has P cores (processing units).
In performing the proposed algorithm on such a computer, the set Z(v),
v ∈ V(m), is divided into P − 1 disjoint subsets Z(vi), where vi ∈ V(m+ l),

54



2.5. ALGORITHM, BASED ON A PARALLEL BRANCH-AND-BOUND METHOD

1 ≤ i ≤ P − 1, and v1j = . . . = vP−1j , 1 ≤ j ≤ 2m. Then the i-th process
finds a minimizer of g on

⋃
z∈Z(vi)Y′(z) by using Algorithm 2.2 and returns

it to a particular process, called the master process, 1 ≤ i ≤ P − 1. Finally,
the master process compares P−1 minimizers and returns the best of them.
Thus, such a number of processes helps us to ensure the equal distribution
of the set Z(v), v ∈ V(m), – i.e., |Z(vi)| = 2s−m−l for all 1 ≤ i ≤ P−1 – and
to implement the master-slave model of communication between processes
[77].

A pseudocode of the proposed algorithm is shown in Algorithm 2.3. The
algorithm is based on a parallel branch-and-bound method. Thus, we called
it PBB. Let us describe the basic steps of the algorithm PBB.

The total number of available processes P and the number of process
R (R ∈ {0, 1, . . . , P − 1}) are received (line 1 of Algorithm 2.3). Suppose
that R > 0 (lines 16–41). Every process R > 0 defines a unique vector
v ∈ V(m+ l) (lines 16–22). Then a minimizer of g on

⋃
z∈Z(v)Y′(z) is found

by using the steps of Algorithm 2.2 and messages from the master process 0

(lines 23–41). If a minimizer Y ∗ is found, it is sent to the process 0 (lines 37,
38, 41). Together with Y ∗, a message – defined in variable N – is sent, too.
The message indicates whether the minimizer Y ∗ is still a current (N = 1,
line 38) or the final (N = 0, line 41) minimizer.

Suppose that R = 0 (lines 4–14). The master process 0 receives current
and final minimizers from other processes (lines 6, 7), finds currently the
best minimizer (lines 10, 11), and sends it to other processes (lines 12–14).
When process R > 0 receives currently the best minimizer (line 32), it tries
to update its own current minimizer (lines 33, 34). Variable W ∈ {0, 1}P−1

(line 4) helps to control the process of sending and receiving messages.

55



2. ALGORITHMS FOR MDS WITH CITY-BLOCK DISTANCES

Algorithm 2.3 Parallel Branch-and-Bound (PBB)
Input: m ∈ {1, 2, 3}, n ∈ N (n > 1), δij ∈ R (δij = δji > 0, δii = 0), 1 ≤ i, j ≤ n
Output: y∗ – a global minimizer of g on Y′
1: RECEIVE P , R
2: g∗ ← +∞
3: if R = 0 then
4: W ← 1 ∈ {0, 1}P−1
5: while

∑P−1
i=1 Wi > 0 do

6: if THERE IS A MESSAGE FROM PROCESS i then
7: RECEIVE [Y ∗, N ]
8: if N = 0 then
9: Wi ← 0

10: if g(Y ∗) < g∗ then
11: y∗ ← Y ∗; g∗ ← g(Y ∗)
12: for j = 1, P − 1 do
13: if Wj > 0 then
14: SEND [y∗] TO PROCESS j
15: else
16: v ∈ V(m); l← log(P − 1); j ← R− 1
17: for i = m+ 1,m+ l do
18: if mod(j, 2) = 1 then
19: v2i−1 ← 0
20: else
21: v2i ← 0

22: j ← div(i, 2)

23: V ← {Z(v)}
24: while V 6= ∅ do
25: Z(ν) ∈ V ; V ← V \ {Z(ν)}; i∗ ←

∑s
i=1 (ν2i−1 + ν2i)

26: for i = 1, 2 do
27: νi ← ν; νi(2i∗+i) ← 0

28: Remove all unnecessary elements from the subset Z(νi)
29: if Z(νi) 6= ∅ then
30: y∗∗ ∈ argmin{g(y) : y ∈ Y′(νi)}
31: if THERE IS A MESSAGE FROM PROCESS 0 then
32: RECEIVE [y∗]
33: if g(y∗) < g(y∗∗) then
34: Y ∗ ← y∗; g∗ ← g(y∗)

35: if g(y∗∗) < g∗ then
36: if y∗∗ ∈ Y′ then
37: Y ∗ ← y∗∗; g∗ ← g(y∗∗)
38: N ← 1; SEND [Y ∗, N ] TO PROCESS 0
39: else
40: V ← V ∪ {Z(νi)}
41: N ← 0; SEND [Y ∗, N ] TO PROCESS 0

56



3. Numerical investigation of the algorithms

In order to reveal the advantages and disadvantages of the proposed
algorithms, we implemented them and performed a set of numerical exper-
iments. All algorithms were implemented in Fortran 95. The numerical
experiments were performed using dissimilarity matrices, described in Ap-
pendix A. In this chapter, we give a few details about the implementation
of the proposed algorithms. Also, here we present a description and the
results of the numerical experiments. Certain parts of this chapter may be
found in [FGŽ14, GŽ14, GŽ13].

3.1. The algorithm MAS

In this section, we give a few notes about the implementation of Algo-
rithm 2.1. A description and the results of a certain numerical investigation
of the algorithm MAS are presented here, too. At present, the algorithm
SMOOTH (see Section 1.2.2.1) is one of the best algorithms for finding a
local minimizer of the function f1 on the set Rmn. Thus, results of the
numerical investigation of the algorithm MAS were compared with corre-
sponding results obtained by applying the algorithm SMOOTH.

3.1.1. Implementation of MAS

Here, we discuss the following questions: how to select an initial feasible
point, i.e., point y0 ∈ Y′ (line 1 of Algorithm 2.1), and how to solve KKT
system (2.14) (line 12 of Algorithm 2.1).

One of the techniques to select an initial point y0 ∈ Y′ is shown in
Algorithm 3.1. In this algorithm, a mn-vector of uniformly distributed
random numbers between u and v (u, v ∈ R, u < v) is picked (lines 1–3
of Algorithm 3.1). Then, based on this mn-vector, a point y ∈ Rmn2

is
constructed such that:

n∑
i=1

y(k+(i−1)m) = 0, 1 ≤ k ≤ m, (3.1)

57



3. NUMERICAL INVESTIGATION OF THE ALGORITHMS

and
y(k+(i−1)m) − y(k+(j−1)m) = yκ(k,i,j) − yκ(k,i,j)+1,

yκ(k,i,j)yκ(k,i,j)+1 = 0,

yκ(k,i,j), yκ(k,i,j)+1 ≥ 0,

(3.2)

where κ(k, i, j) = mn + µ(k, i, j) and 1 ≤ i < j ≤ n, 1 ≤ k ≤ m. The
function µ is defined in (2.20). The steps of Algorithm 3.1, defined in lines
4–7, ensure that the point y satisfies equalities (3.1). The steps, defined in
lines 8–17, ensure that the point y satisfies equalities and inequalities (3.2).
Thus, in this way the constructed point y belongs to the feasible set Y′.

Every KKT system (2.14) was solved by using the null-space method,
described in Section 1.1.2.2. Let us remember that in applying this method,
two particular matrices have to be selected. One of the matrices is a basis
matrix of the null-space of cTWk . In order to select these matrices, we used the
QR decomposition of cWk . Suppose that cWk = QR, where Q ∈ Rmn2×mn2

,
R ∈ Rmn2×|Wk|. It is not hard to check that, if Q = (Q1 Q2), where
Q1 ∈ Rmn2×|Wk|, Q2 ∈ Rmn2×(mn2−|Wk|), then QT

2 cWk = 0, i.e., matrix Q2

is a basis matrix of the null-space of cTWk . When the basis matrix is se-
lected, the reduced KKT system (to find a step-direction pk) and another
system of linear equations (to find a vector of Lagrange multipliers λk) are
constructed. The reduced KKT system was solved by using a LAPACK

Algorithm 3.1 A point selection on the set Y′

Input: m ∈ {1, 2, 3}, n ∈ N (n > 1)
Output: y ∈ Y′
1: r ← 0 ∈ Rmn
2: for i = 1,mn do
3: ri ← a random number, uniformly distributed over interval [u, v] ⊂ R
4: for k = 1,m do
5: q ← 1

n

∑n
j=1 r(k+(j−1)m)

6: for i = 1, n do
7: y(k+(i−1)m) ← r(k+(i−1)m) − q
8: l← mn+ 1
9: for i = 1, (n− 1) do
10: for j = (i+ 1), n do
11: for k = 1,m do
12: q ← y(k+(i−1)m) − y(k+(j−1)m)

13: if q < 0 then
14: yl ← 0; y(l+1) ← −q
15: else
16: yl ← q; y(l+1) ← 0

17: l← l + 2

58



3.1. THE ALGORITHM MAS

(version 3.5.0) subroutine for linear least squares problems. Another sys-
tem was solved by using a LAPACK subroutine for regular systems of linear
equations.

Suppose that |Wk+1| = |Wk|+ 1 or |Wk+1| = |Wk| − 1, i.e., the set Wk

was updated by adding or removing an index (lines 17, 32 of Algorithm 2.1).
In this case, the matrices cWk+1 and cWk differ only in one column, i.e., the
matrix cWk+1 has one column more or less than the matrix cWk . Thus, it
is not necessary to define the QR decomposition of the matrix cWk+1 from
scratch. We may simply update the factors Q and R, where QR = cWk

[44].

3.1.2. Investigation of MAS

Suppose that m ∈ {1, 2, 3}, n ∈ N (n > 1) and ∆n = (δij) ∈ Rn×n

(δij = δji > 0, δii = 0, 1 ≤ i, j ≤ n) are given quantities. For the sake of
simplicity, algorithms SMOOTH and MAS let us denote by the symbols S
andM, respectively. Let E∗A be the value of the function Stress-1, defined
in (1.21), at a local minimizer x∗ of f1 on Rmn obtained by applying the
algorithm A ∈ {S,M}, i.e,

E∗A = fS11 (x∗) =

√
f1(x∗)∑n
i<j δ

2
ij

. (3.3)

The value of E∗A is sometimes referred to as a relative error (or a relative
visualization error) of an image, defined by x∗ [26]. The closer E∗A is to
zero, the better image is obtained. In applying the algorithms S and M,
an initial feasible point has to be selected (line 1 of Algorithm 1.2 and
Algorithm 2.1). Consequently, the algorithms often return different local
minimizers with the same dissimilarity matrix and the same value of m.
Let

EA = {E∗A
1, . . . , E∗A

30}

be a multiset (a set in which multiplicity is significant) of relative errors of
30 images obtained by applying the algorithm A ∈ {S,M}. Such a number
of relative errors, i.e., 30 relative errors, is usually used in literature and it is
enough to reveal the main advantages and disadvantages of the such types
of algorithms. According to the suggestion of the authors of the algorithm
S, suppose that E∗S

i is the smallest relative error obtained by executing the

59



3. NUMERICAL INVESTIGATION OF THE ALGORITHMS

algorithm S ten times, i.e.,

E∗S
i = min{E∗S

1i, . . . , E∗S
10i},

1 ≤ i ≤ 30.
Let tiS be the time, in seconds, required to find the i-th element of the

multiset ES . Suppose that E∗M
i is the smallest relative error obtained by

executing the algorithmM at least tiS seconds, 1 ≤ i ≤ 30. Let tiM be the
time in seconds and Ki

M, the number of local minimizers required to find
the i-th element of the multiset EM. Thus

E∗M
i = min{E∗M

1i, . . . , E∗M
Ki
Mi} and tiM = tiS + ε,

where ε ≥ 0, 1 ≤ i ≤ 30. Note that Ki
S = 10 and the value of ε may be

perceived as the approximate time required to find one local minimizer f1
on Rmn by applying the algorithmM, 1 ≤ i ≤ 30. The main purpose of this
experiment was to compare a few measures of the multisets ES and EM by
using different dissimilarity matrices and different values of m. Namely, we
were interested in the following measures: the smallest value (minEA), the
biggest value (maxEA), the arithmetic mean (meanEA), and the standard
deviation (stdEA), where A ∈ {S,M}.

The numerical experiment was conducted on a computer with an In-
tel(R) Core(TM)2 Duo processor, running at 2.40 GHz, and with the Xubuntu
14.04 (64-bit, kernel version 3.13.0-24-generic) operating system (OS). Ev-
ery element of the multisetES was obtained by using the program “SMOOTH”
[40] (version 0.4, July, 2003, written by Patrick Groenen), that implements
Algorithm 1.2. Unfortunately, the program was precompiled on a computer
with DOS/Windows OS. Thus, in order to use the program on a computer
with Linux OS properly, we used a Windows emulator called Wine (version
1.6). Values of parameters γ and imax of the algorithm S were selected as
follows: γ = 10−8, imax = 1000. Such values were recommended by the
author of the program “SMOOTH”.

Results of the experiment are shown in Table 3.1. Here, tA denotes the
average time, in seconds, and KA, the average number of local minimizers
required to find one element of the multiset EA, i.e., tA =

∑30
i=1 t

i
A/30 and

KA =
∑30

i=1K
i
A/30, A ∈ {S,M}. Let us pay the attention to the values of

standard deviations of the multisets ES and EM. These values are almost
equal when dissimilarity matrices ∆cube, ∆regs and ∆simp are used. Note that

60



3.1. THE ALGORITHM MAS

Table 3.1. Results of the numerical investigation of the al-
gorithm M and corresponding results obtained by using the
algorithm S.

∆n m minEA maxEA meanEA stdEA tA KA A

∆4
cube 3 0.0001 0.0012 0.0009 0.0002 0.519 10 S

0.0000 0.0000 0.0000 0.0000 0.519 975 M

∆8
cube 3 0.0012 0.0013 0.0013 0.0000 1.449 10 S

0.0000 0.0000 0.0000 0.0000 1.463 62 M

∆7
regs 3 0.0945 0.0945 0.0945 0.0000 1.566 10 S

0.0945 0.0945 0.0945 0.0000 1.571 134 M

∆9
regs 2 0.2991 0.2991 0.2991 0.0000 1.382 10 S

0.2991 0.3031 0.2996 0.0011 1.387 184 M

∆13
regs 1 0.5311 0.5311 0.5311 0.0000 0.857 10 S

0.5311 0.5311 0.5311 0.0000 0.858 379 M

∆7
simp 3 0.0015 0.0016 0.0016 0.0000 1.673 10 S

0.0000 0.0000 0.0000 0.0000 1.679 150 M

∆9
simp 2 0.2759 0.2759 0.2759 0.0000 0.972 10 S

0.2759 0.2808 0.2760 0.0009 0.977 88 M

∆13
simp 1 0.5279 0.5281 0.5279 0.0000 1.203 10 S

0.5279 0.5279 0.5279 0.0000 1.205 314 M

∆9
hwa

1 0.0109 0.0109 0.0109 0.0000 0.074 10 S
0.0107 0.0107 0.0107 0.0000 0.075 55 M

2 0.0108 0.0110 0.0110 0.0001 0.655 10 S
0.0000 0.0027 0.0001 0.0005 0.713 40 M

∆12
hwa 1 0.1790 0.1790 0.1790 0.0000 0.211 10 S

0.1790 0.1871 0.1821 0.0023 0.214 48 M

∆8
ruusk

1 0.2975 0.2975 0.2975 0.0000 0.201 10 S
0.2975 0.3292 0.3112 0.0087 0.201 480 M

2 0.1096 0.1096 0.1096 0.0000 1.130 10 S
0.1097 0.1306 0.1198 0.0055 1.133 172 M

3 0.0189 0.0254 0.0214 0.0018 2.386 10 S
0.0188 0.0411 0.0289 0.0066 2.402 86 M

∆20
ruusk 2 0.0524 0.0555 0.0546 0.0010 4.074 10 S

0.0523 0.1322 0.0850 0.0232 4.962 3 M

∆12
uhlen

1 0.2112 0.2112 0.2112 0.0000 0.199 10 S
0.2112 0.2251 0.2151 0.0036 0.201 52 M

2 0.0825 0.0909 0.0874 0.0023 2.407 10 S
0.0840 0.1248 0.1033 0.0105 2.440 37 M

∆10
cola

1 0.3645 0.3645 0.3645 0.0000 0.318 10 S
0.3656 0.3959 0.3762 0.0075 0.319 414 M

2 0.1679 0.1694 0.1694 0.0003 1.692 10 S
0.1729 0.2089 0.1837 0.0078 1.702 100 M

61



3. NUMERICAL INVESTIGATION OF THE ALGORITHMS

such dissimilarity matrices define relationships between multidimensional
elements in geometry. However, the values of stdES and stdEM often
differ when other dissimilarity matrices are selected. These observations
show that the algorithmM is more sensitive to the dissimilarity matrices
than the algorithm S.

The big gap between the values of minEA and maxEA indicates the big
sensitivity of the algorithmA to the choice of an initial feasible point. Based
on the information shown in Table 3.1, we may state that the algorithmM
is more sensitive to the selection of an initial feasible point than S. For
example, in the case of ∆12

uhlen and m = 2 (in the worst case), the gap
between minES and maxES is equal to 0.0084. The gap between minEM

and maxEM is equal to 0.0408. Hence, the gap generated byM, is about
5 times bigger than the gap generated by S.

Finally, note thatKM > KS in all cases, except the case of ∆20
ruusk. Thus,

the algorithm M generated more local minimizers than the algorithm S
during approximately the same time. Let us remember that every KKT
system (2.14) was solved by applying the null-space method. In applying
the null-space method, pk and λk are found by constructing and solving two
particular systems of linear equations (see (1.17a) and (1.17b)). In the case
of ∆20

ruusk, the system used to find a vector of Lagrange multipliers λk has
at least 762 linear equations (but no more than 800). Unfortunately, the
sequential version of a LAPACK subroutine was used to solve such systems.
Thus, in the case of ∆20

ruusk, a local minimizer of f1 on Rmn was found by
applying the algorithmM approximately 4 times slower than the algorithm
S.

3.2. The algorithm BB

Here, we present a few notes about the implementation of Algorithm
2.2. We performed a certain numerical investigation of the algorithm BB.
A description and the results of the investigation are given here, too. At
present, the algorithm BB2009 (see Section 1.2.2.2) is the only algorithm
for problem (1.23), based on the branch-and-bound method. Thus, results
of the investigation of the algorithm BB were compared with corresponding
results obtained by using the algorithm BB2009.

62



3.2. THE ALGORITHM BB

3.2.1. Implementation of BB

Here, we show how we selected an initial vector v ∈ V(m) (line 1 of
Algorithm 2.2) and implemented the set V , which contains the subsets of
Z(v).

We selected v ∈ V(m) as follows:

v2i−1 = 0, 1 ≤ i ≤ m,

v2i−1 = 1, m+ 1 ≤ i ≤ s,

v2i = 1, 1 ≤ i ≤ s.

Every subset of the set Z(v) may be defined uniquely by a vector ν ∈
V(k) ⊂ V ⊂ {0, 1}2s, where k ∈ {m, . . . , s} and νi = vi, 1 ≤ i ≤ 2m

(see (2.19)). Any vector of the set V may be easily implemented as a 1-
dimensional boolean array with 2s elements. Also, let us remember that a
subset of Z(v) has to be selected in the set V (line 5 of the algorithm BB).
In the implementation of the algorithm, the last added subset is selected.
After the selection, the selected subset is removed. Therefore, the set V
does not contain more than (s −m + 1) elements. Thus, we implemented
the set V as a boolean 2-dimensional array with (s −m + 1) rows and 2s

columns. Such an implementation of the set V allows us to implement the
selection (line 5), addition (line 16), and subtraction (line 5) operations
very easily. Indeed, suppose that |V | > 0 and V denotes the array that
implements the set V . If we have to select an element (a subset) of V , we
simply select the |V |-th row of the array V . If we have to add an element,
we add the corresponding 1-dimensional boolean array to the (|V | + 1)-th
row of V . Finally, if we have to remove an element, we do nothing with the
array V : we simply work with the first |V | − 1 rows of it.

3.2.2. Investigation of BB

For the sake of simplicity, let us denote the algorithms BB2009 and BB
by the symbols B09 and B14, respectively. One of the most expensive steps
of the algorithm B14 is the solution of convex QP problem (2.25) (line 11 of
Algorithm 2.2). A similar step is performed in the algorithm B09, too (see
Section 1.2.2.2, [94]). Let KA denote the number of times the algorithm A
performs this step during its execution, A ∈ {B09,B14}. The main purpose
of the numerical experiment was to compare the numbers KB09 and KB14

by using various dissimilarity matrices and values of m.

63



3. NUMERICAL INVESTIGATION OF THE ALGORITHMS

The numerical experiment was conducted on a computer with an In-
tel(R) Pentium(R) 4 CPU 3.00GHz processor, running at 2.80 GHz, and
with the CentOS 6.5 (64-bit) operating system. Results of the experiment
are shown in Table 3.2. Here, the symbol E∗ denotes the value of the func-
tion Stress-1 at a global minimizer x∗ of f1 on Rmn (see (3.3)). Let us pay
attention to the fact that in cases of m = 1, the numbers KB14 are gen-
erally greater than the numbers KB09 (except in cases of ∆8

cube, ∆9
hwa, and

∆12
hwa). In cases of m = 2 and m = 3, almost all the numbers KB14 are lower

than the numbers KB14 (except cases of ∆7
simp, m = 2, and ∆8

ruusk, m = 2).
Let us remember that in the algorithm B14, the upper-level feasible set Z
(more precisely, a subset Z(v) ⊂ Z, where v ∈ V(m)) is divided into two
disjoint parts (see Section 2.4.3). In the algorithm B09, the corresponding
upper-level feasible set (we denoted it by the symbol T, see Section 1.2.2.2)
is divided into more than two subsets [94]. This is one of the main reasons
why the numbers KB14 and KB09 are so different.

3.3. The algorithm PBB

The parallel algorithm PBB (see Algorithm 2.3) was implemented for
distributed-memory parallel computers by using Message Passing Interface
(MPI) [43, 86]. There are various metrics used to measure the performance
of a parallel algorithm [34, 76]. Two of them, the speed-up and the effi-
ciency of a parallel algorithm, are used very often. Let us describe these
metrics.

Suppose that there are two algorithms for a certain problem: sequential
and parallel. Let t denote the run-time required to solve the problem on a
computer with one core (processing unit) by using the sequential algorithm.
Similarly, let tP denote the run-time required to solve the same problem on
a computer with P (P ∈ N) cores by using the parallel algorithm. The ratio
of time t to time tP is called the speed-up of the parallel algorithm and it
is usually denoted by

SP =
t

tP
.

The closer SP is to P , the better (more accelerated) the parallel algorithm
is constructed. The ratio of speed-up SP to the number of cores P is called
the efficiency of the parallel algorithm and it is usually denoted by

EP =
SP
P
.

64



3.3. THE ALGORITHM PBB

Table 3.2. Results of the numerical investigation of the al-
gorithm B14 and corresponding results obtained by using the
algorithm B09.

∆n m E∗ B09 B14

∆4
cube

1 0.4082 14 18
2 0.0000 73 12
3 0.0000 353 6

∆8
cube

1 0.4787 11,260 10,948
2 0.2245 2,157,090 205,032
3 0.0000 35,216,122 355,611

∆4
regs

1 0.4082 14 22
2 0.0000 63 32
3 0.0000 133 38

∆5
regs

1 0.4472 73 142
2 0.1907 1,322 800
3 0.0000 23,017 256

∆6
regs

1 0.4714 432 868
2 0.2309 27,255 21,393
3 0.0000 335,771 55,606

∆7
regs

1 0.4880 2,951 6,478
2 0.2621 1,655,631 1,020,040
3 0.0945 92,710,201 20,115,704

∆4
simp

1 0.3651 14 21
2 0.0000 73 13
3 0.0000 313 12

∆5
simp

1 0.4140 73 112
2 0.0000 662 66
3 0.0000 9,837 39

∆6
simp

1 0.4554 432 702
2 0.1869 16,076 15,632
3 0.0000 578,691 1,185

∆7
simp

1 0.4745 2,951 4,890
2 0.2247 422,940 585,436
3 0.0000 20,674,563 168,547

∆9
hwa

1 0.0107 2,217 1,591
2 0.0000 2,344,833 151,835

∆12
hwa 1 0.1790 71,748 32,629

∆8
ruusk

1 0.2975 665 1,590
2 0.1096 82,617 374,190

∆12
uhlen 1 0.2112 36,559 236,168

∆10
cola 1 0.3642 60,077 63,744

The efficiency evaluates the useful work of the cores of the computer. The
closer EP is to number 1, the more effectively the cores are used. The main
purpose of the numerical investigation of the algorithm PBB was to evaluate

65



3. NUMERICAL INVESTIGATION OF THE ALGORITHMS

its speed-up SP and efficiency EP by using different dissimilarity matrices
and different values for m and P .

The numerical investigation was conducted on a cluster of computers
with Intel(R) Core(TM) i5-760 processors and with the CentOS 6.3 (32-
bit) operating system. Each processor consists of four cores running at 2.8
GHz. Algorithm 2.3 has been evaluated on 2, 5, 9, 17, and 33 cores. The
speed-up and the efficiency of the algorithm PBB are shown in Figure 3.1.
The best values of the speed-up SP are achieved in cases of ∆simp, the worst
– in the case of ∆8

regs, m = 1. However, in all cases, the speed-up is not
linear. The best values of the efficiency EP are achieved in cases of ∆simp

and the worst – in the case of ∆8
regs, m = 1, too. Unfortunately, in all

cases, the efficiency is decreasing. These results show that the speed-up
and the efficiency of the parallel algorithm PBB depend on the input data.
In addition, the static distribution of works for processes is one of the main
reasons for the non-linear speed-up and decreasing efficiency. Indeed, a
process stops working if the assigned job is done.

1 ∆8
cube, m = 1 2 ∆5

regs, m = 3 3 ∆6
regs, m = 2

4 ∆8
regs, m = 1 5 ∆5

simp, m = 3 6 ∆6
simp, m = 2

7 ∆8
simp, m = 1 8 ∆12

hwa, m = 1 9 ∆10
cola, m = 1

5 10 15 20 25 30

5

10

15

20

25

1
1

1
1

1

2
2

2

2

2

3
3 3

3
3

4 4 4 4
4

5
5

5

5

5

6
6

6

6

6

7
7

7

7

7

8
8

8

8
8

9
9

9 9
9

P

S P

(a) Speed-up.

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1 1 1

1

1

2
2 2 2

2
3 3

3 3

3

4
4

4
4

4

5

5
5 5 5

6

6
6

6
6

7

7
7 7

7
8

8
8

8

8

9

9 9

9

9

P

E P

(b) Efficiency.

Figure 3.1. Speed-up and efficiency of the parallel algorithm
PBB.

66



4. Conclusions

(1) The objective function of the optimization problem arising in mul-
tidimensional scaling (MDS) with city-block distances contains a set
of absolute value (modulus) terms. Such an objective function may
even be non-differentiable at a minimizer. Meanwhile, the objective
function of the problem CMDS, which is equivalent to the optimiza-
tion problem arising in MDS with city-block distances, is a convex
quadratic function which does not have modulus terms.

(2) The objective function of the optimization problem arising in MDS
with city-block distances is defined on the mn-dimensional real vector
space. The objective function of the problem CMDS is defined on the
mn2-dimensional real vector space. Thus, the number of components
of a variable of the problem CMDS is n times larger than the number
of components of a variable of the problem arising in MDS with city-
block distances.

(3) The feasible set of the problem CMDS is defined by both linear and
complementarity constraints. These complementarity constraints are
non-convex quadratic constraints. The objective function of the prob-
lem CMDS is a convex quadratic function. Hence, the problem CMDS
is a non-convex quadratically constrained quadratic programming prob-
lem which, in turn, is an NP-hard problem.

(4) The problem CMDS may be formulated as a two-level optimization
problem. The firstm+s linear constraints of the lower-level feasible set
do not depend on the upper-level variable. The lower-level objective
function does not depend on the upper-level variable, either. Thus,
in solving lower-level problems, a portion of the calculations may be
performed in advance.

(5) The optimization problem arising in MDS with city-block distances
may be formulated as a two-level optimization problem. However, the
two-level formulations of the problem CMDS and the original problem
– i.e., the optimization problem arising in MDS with city-block dis-
tances – are different. Namely, the number of lower-level problems at

67



4. CONCLUSIONS

the two-level formulation of the problem CMDS is equal to 2mn(n−1)/2.
Meanwhile, the number of lower-level problems at the two-level for-
mulation of the original problem is equal to (n!)m.

(6) The proposed algorithm MAS, based on the active-set method, is more
sensitive to the selection of an initial feasible point than the algorithm
SMOOTH, which is currently the best known local search algorithm for
MDS with city block distances. However, the algorithm MAS is con-
siderably faster: during approximately the same time, MAS generates
up to 97 times more local minimizers than the algorithm SMOOTH.

(7) The proposed algorithm BB, based on the branch-and-bound method,
considerably (up to 9×1018 times) decreases the number of lower-level
problems which have to be solved. Moreover, the number of lower-level
problems solved by using the algorithm BB is up to 488 times smaller
than by using the corresponding algorithm, described in literature.

(8) The proposed parallel algorithm PBB, based on a parallel branch-and-
bound method, is up to 25 times faster than the sequential version
on 33 processes (processing units). On average, the efficiency of the
parallelization is around 0.4.

68



A. Appendix

Here, we present and describe seven dissimilarity matrices, used in the
numerical experiments of the proposed algorithms. Every matrix was ob-
tained by evaluating relationships between certain multidimensional ele-
ments in geometry ((1)–(3) matrices), in pharmacology ((4)–(6) matrices),
and in a well-known experiment with soft drinks. Thus, we selected the
following matrices:

(1) Matrix ∆2k

cube. Every element δij ∈ {0, . . . , k} (1 ≤ i, j ≤ 2k) of
∆2k

cube defines city-block distance between vertices i and j of a unit
k-dimensional hypercube [97].

∆2k

cube =



0 1 1 2 1 2 2 3 ... k−1 k
1 0 2 1 2 1 3 2 ... k k−1
1 2 0 1 2 3 1 2 ... k−2 k−1
2 1 1 0 3 2 2 1 ... k−1 k−2
1 2 2 3 0 1 1 2 ... k−2 k−1
2 1 3 2 1 0 2 1 ... k−1 k−2
2 3 1 2 1 2 0 1 ... k−3 k−2
3 2 2 1 2 1 1 0 ... k−2 k−3
... ... ...

k−1 k k−2 k−1 k−2 k−1 k−3 k−2 ... 0 1
k k−1 k−1 k−2 k−1 k−2 k−2 k−3 ... 1 0


.

(2) Matrix ∆k+1
regs . Every element δij ∈ {0, 1} (1 ≤ i, j ≤ k + 1) of ∆k+1

regs

defines city-block distance between vertices i and j of a regular k-
simplex. Note that distances between all vertices of a regular k-simplex
are equal by using any Minkowski distance [97].

∆k+1
regs =


0 1 1 1 ... 1
1 0 1 1 ... 1
1 1 0 1 ... 1
1 1 1 0 ... 1
... ... ...
1 1 1 1 ... 0

 .

(3) Matrix ∆k+1
simp. Every element δij ∈ {0, 1, 2} (1 ≤ i, j ≤ k + 1) of ∆k+1

simp

defines city-block distance between vertices i and j of a k-simplex, in
which one vertex is located at the origin of the coordinate system and
other vertices are located at the coordinate axes with equal distances
from the origin. In this case, only distances between the origin and

69



A. APPENDIX

the other vertices are equal [97].

∆k+1
simp =


0 1 1 1 ... 1
1 0 2 2 ... 2
1 2 0 2 ... 2
1 2 2 0 ... 2
... ... ...
1 2 2 2 ... 0

 .

(4) Matrices ∆9
hwa and ∆12

hwa. Matrix ∆9
hwa defines dissimilarities between

9 ligands that bind to certain wild-type and mutant α1 adrenergic re-
ceptors (α1-adrenoceptors). Every element of the matrix ∆12

hwa defines
dissimilarity between two particular α1-adrenoceptors that are found
in nature (wild-type) and mutated by a human [96, 51].

∆9
hwa =


0 0.2619 2.3276 0.5914 0.6112 1.0379 0.6123 0.4949 1.1386

0.2619 0 2.0935 0.3573 0.3771 0.8037 0.8465 0.7291 1.3727
2.3276 2.0935 0 1.7362 1.7164 1.2898 2.9399 2.8225 3.4662
0.5914 0.3573 1.7362 0 0.0536 0.4464 1.2038 1.0863 1.7300
0.6112 0.3771 1.7164 0.0536 0 0.4266 1.2236 1.1061 1.7498
1.0379 0.8037 1.2898 0.4464 0.4266 0 1.6502 1.5328 2.1765
0.6123 0.8465 2.9399 1.2038 1.2236 1.6502 0 0.2144 0.5263
0.4949 0.7291 2.8225 1.0863 1.1061 1.5328 0.2144 0 0.6437
1.1386 1.3727 3.4662 1.7300 1.7498 2.1765 0.5263 0.6437 0

 ,

∆12
hwa =


0 0.0691 0.0625 0.0454 0.3403 0.0630 0.1209 0.1795 0.3243 0.1542 0.1552 0.4581

0.0691 0 0.0969 0.0732 0.3569 0.1106 0.1376 0.1961 0.3525 0.1506 0.1603 0.4748
0.0625 0.0969 0 0.0683 0.3075 0.0701 0.0979 0.1467 0.3305 0.1561 0.1994 0.4254
0.0454 0.0732 0.0683 0 0.3108 0.0826 0.0914 0.1516 0.3257 0.1136 0.1423 0.4286
0.3403 0.3569 0.3075 0.3108 0 0.3575 0.2194 0.1749 0.2278 0.2064 0.2544 0.1178
0.0630 0.1106 0.0701 0.0826 0.3575 0 0.1382 0.1967 0.3266 0.1900 0.1759 0.4754
0.1209 0.1376 0.0979 0.0914 0.2194 0.1382 0 0.1027 0.2726 0.1015 0.1584 0.3372
0.1795 0.1961 0.1467 0.1516 0.1749 0.1967 0.1027 0 0.1981 0.0597 0.0879 0.2786
0.3243 0.3525 0.3305 0.3257 0.2278 0.3266 0.2726 0.1981 0 0.2294 0.2110 0.2109
0.1542 0.1506 0.1561 0.1136 0.2064 0.1900 0.1015 0.0597 0.2294 0 0.0638 0.3242
0.1552 0.1603 0.1994 0.1423 0.2544 0.1759 0.1584 0.0879 0.2110 0.0638 0 0.3665
0.4581 0.4748 0.4254 0.4286 0.1178 0.4754 0.3372 0.2786 0.2109 0.3242 0.3665 0

 .

(5) Matrices ∆8
ruusk and ∆20

ruusk. The matrix ∆8
ruusk defines dissimilarities

between certain α2-adrenoceptors that are found in the body of a hu-
man and a zebrafish. The matrix ∆20

ruusk defines dissimilarities between
20 ligands that bind to the α2-adrenoceptors [96, 75].

∆8
ruusk =


0 10.1831 18.1173 18.9519 17.0474 15.7394 17.0255 16.5943

10.1831 0 15.7345 14.0502 13.0642 11.8421 11.9610 11.6784
18.1173 15.7345 0 8.6088 10.7763 7.4855 5.5403 6.8461
18.9519 14.0502 8.6088 0 14.7345 7.9303 7.1678 8.1943
17.0474 13.0642 10.7763 14.7345 0 10.7469 9.7950 10.1099
15.7394 11.8421 7.4855 7.9303 10.7469 0 7.9056 8.4393
17.0255 11.9610 5.5403 7.1678 9.7950 7.9056 0 2.3735
16.5943 11.6784 6.8461 8.1943 10.1099 8.4393 2.3735 0

 , ∆20
ruusk =



0 10.3 2.8 7.6 14.2 14.0 4.8 4.7 2.5 10.3 4.5 12.1 12.3 7.7 6.7 5.7 24.5 22.0 16.0 15.9
10.3 0 9.9 3.2 6.9 4.3 15.1 14.8 9.1 6.8 8.7 6.9 4.3 6.2 7.3 5.8 14.2 11.6 5.6 5.5
2.8 9.9 0 7.2 13.0 13.6 6.1 5.2 2.2 10.3 4.4 11.7 11.9 7.4 7.3 5.5 24.1 21.6 15.6 15.5
7.6 3.2 7.2 0 10.0 7.0 12.4 12.1 6.4 6.8 5.5 6.0 5.0 4.2 5.5 3.9 16.9 14.4 8.4 8.3
14.2 6.9 13.0 10.0 0 3.9 18.4 17.9 13.0 13.2 13.1 12.4 10.1 12.3 14.2 10.0 11.2 8.6 4.1 5.1
14.0 4.3 13.6 7.0 3.9 0 18.7 18.5 12.7 9.3 11.3 8.9 6.6 8.8 10.7 9.2 10.6 8.0 2.5 2.6
4.8 15.1 6.1 12.4 18.4 18.7 0 2.5 6.2 13.8 8.1 16.8 17.0 12.5 11.2 9.6 29.3 26.7 20.7 20.6
4.7 14.8 5.2 12.1 17.9 18.5 2.5 0 5.7 13.7 7.2 16.6 16.8 12.3 11.0 9.3 29.0 26.5 20.5 20.4
2.5 9.1 2.2 6.4 13.0 12.7 6.2 5.7 0 9.6 2.6 10.8 11.0 6.5 6.5 4.4 23.3 20.7 14.7 14.6
10.3 6.8 10.3 6.8 13.2 9.3 13.8 13.7 9.6 0 8.4 5.8 5.3 4.6 6.7 8.3 15.5 13.0 9.4 9.0
4.5 8.7 4.4 5.5 13.1 11.3 8.1 7.2 2.6 8.4 0 9.6 9.6 5.3 5.9 4.1 21.9 19.3 13.3 13.2
12.1 6.9 11.7 6.0 12.4 8.9 16.8 16.6 10.8 5.8 9.6 0 3.8 4.8 6.4 9.1 12.9 10.6 8.4 8.0
12.3 4.3 11.9 5.0 10.1 6.6 17.0 16.8 11.0 5.3 9.6 3.8 0 4.5 5.8 7.4 12.3 9.7 6.1 5.7
7.7 6.2 7.4 4.2 12.3 8.8 12.5 12.3 6.5 4.6 5.3 4.8 4.5 0 2.9 5.0 16.8 14.2 9.3 9.5
6.7 7.3 7.3 5.5 14.2 10.7 11.2 11.0 6.5 6.7 5.9 6.4 5.8 2.9 0 5.7 18.1 15.5 10.2 10.3
5.7 5.8 5.5 3.9 10.0 9.2 9.6 9.3 4.4 8.3 4.1 9.1 7.4 5.0 5.7 0 19.7 17.1 11.1 11.0
24.5 14.2 24.1 16.9 11.2 10.6 29.3 29.0 23.3 15.5 21.9 12.9 12.3 16.8 18.1 19.7 0 3.3 8.6 8.7
22.0 11.6 21.6 14.4 8.6 8.0 26.7 26.5 20.7 13.0 19.3 10.6 9.7 14.2 15.5 17.1 3.3 0 6.0 6.1
16.0 5.6 15.6 8.4 4.1 2.5 20.7 20.5 14.7 9.4 13.3 8.4 6.1 9.3 10.2 11.1 8.6 6.0 0 1.3
15.9 5.5 15.5 8.3 5.1 2.6 20.6 20.4 14.6 9.0 13.2 8.0 5.7 9.5 10.3 11.0 8.7 6.1 1.3 0


.

70



A. APPENDIX

(6) Matrix ∆12
uhlen. This matrix defines dissimilarities between particular

α2-adrenoceptors, found in the body of a human, rat, guinea pig, and
pig [96, 83].

∆12
uhlen =


0 0.7976 2.4536 3.2453 1.6306 1.7244 2.1499 5.6167 2.4947 2.7339 2.2523 1.8651

0.7976 0 2.9771 3.9830 1.9604 2.0471 2.6135 6.0063 2.0847 2.4462 1.9965 2.3740
2.4536 2.9771 0 1.5652 2.3175 2.4420 2.2802 3.4729 4.8680 4.7743 4.3960 3.3584
3.2453 3.9830 1.5652 0 3.3233 3.3835 2.9664 5.0381 4.7857 4.5819 4.0194 3.2761
1.6306 1.9604 2.3175 3.3233 0 0.3428 0.9828 4.2168 3.1995 3.0933 3.6521 2.4572
1.7244 2.0471 2.4420 3.3835 0.3428 0 1.2612 4.1758 3.2219 3.1343 3.6931 2.7170
2.1499 2.6135 2.2802 2.9664 0.9828 1.2612 0 4.5881 3.6432 3.2744 3.3278 2.5614
5.6167 6.0063 3.4729 5.0381 4.2168 4.1758 4.5881 0 6.9689 7.3101 7.8689 6.1184
2.4947 2.0847 4.8680 4.7857 3.1995 3.2219 3.6432 6.9689 0 0.9274 1.5241 1.5724
2.7339 2.4462 4.7743 4.5819 3.0933 3.1343 3.2744 7.3101 0.9274 0 1.7415 2.0632
2.2523 1.9965 4.3960 4.0194 3.6521 3.6931 3.3278 7.8689 1.5241 1.7415 0 1.7506
1.8651 2.3740 3.3584 3.2761 2.4572 2.7170 2.5614 6.1184 1.5724 2.0632 1.7506 0

 .

(7) Matrix ∆10
cola. This matrix was obtained after a certain experiment

related to the comparison of soft drinks [37]. A group of 38 students
tasted the following soft drinks: Pepsi, Coke, Classic Coke, Diet Pepsi,
Diet Slice, Diet 7-Up, Dr. Pepper, Slice, 7-Up, and Tab. After the
tasting, each student was invited to compare dissimilarities between
every pair of the drinks in a 9-point scale. If drinks i and j (i 6= j)
looked “very similar”, then k-th student had to mark δkij = 1. If drinks
i and j looked “entirely different”, δkij = 9. After the comparisons,
the matrix ∆10

cola was constructed. Every element δij ∈ {0, . . . , 342}
(1 ≤ i, j ≤ 10) of the matrix denotes the accumulated dissimilarities,
i.e., δij =

∑38
k=1 δ

k
ij.

∆10
cola =


0 127 169 204 309 320 286 317 321 238

127 0 143 235 318 322 256 318 318 231
169 143 0 243 326 327 258 318 318 242
204 235 243 0 285 288 259 312 317 194
309 318 326 285 0 155 312 131 170 285
320 322 327 288 155 0 306 164 136 281
286 256 258 259 312 306 0 300 295 256
317 318 318 312 131 164 300 0 132 291
321 318 318 317 170 136 295 132 0 297
238 231 242 194 285 281 256 291 297 0

 .

71



List of publications

[FGŽ14] Roger Fletcher, Nerijus Galiauskas, and Julius Žilinskas. Quadratic program-
ming with complementarity constraints for multidimensional scaling with city-
block distances. Baltic Journal of Modern Computing, 2(4):248–259, 2014. ISSN
2255-8942.

[GŽ11] Nerijus Galiauskas and Julius Žilinskas. Quadratic programming problems.
Journal of Young Scientists, 33(4):115–118, 2011. ISSN 1648-8776. [In Lithua-
nian].

[GŽ13] Nerijus Galiauskas and Julius Žilinskas. Parallel branch and bound for multidi-
mensional scaling with L1 distances formulated as quadratic programming with
complementarity constraints. In 3PGCIC 2013: 8th International Conference
on P2P, Parallel, Grid, Cloud and Internet Computing, Compiégne, France,
October 28–30, 2013, pages 509–512. IEEE, 2013. ISBN 978-0-7695-5094-7.

[GŽ14] Nerijus Galiauskas and Julius Žilinskas. On multidimensional scaling with city-
block distances. In Lecture Notes in Computer Science, volume 8426, pages
82–87. Springer, 2014. ISSN 0302-9743.

72



References

[1] Howard Anton. Elementary linear algebra. John Wiley & Sons, 2010.

[2] Phipps Arabie. Was Euclid an unnecessarily sophisticated psychologist? Psychome-
trika, 56(4):567–587, 1991.

[3] Mordecai Avriel. Nonlinear programming: analysis and methods. Courier Corpora-
tion, 2003.

[4] David A. Bader, William E. Hart, and Cynthia A. Phillips. Parallel algorithm design
for branch and bound. In Tutorials on Emerging Methodologies and Applications in
Operations Research, pages 5–1. Springer, 2005.

[5] Rajendra Bhatia. Positive definite matrices. Princeton University Press, 2009.

[6] Ake Björck. Numerical methods for least squares problems. SIAM, 1996.

[7] Ingwer Borg and Patrick J. F. Groenen. Modern multidimensional scaling: Theory
and applications. Springer, 2005.

[8] Ingwer Borg, Patrick J. F. Groenen, and Patrick Mair. Applied multidimensional
scaling. Springer Science & Business Media, 2012.

[9] Jonathan M. Borwein and Adrian S. Lewis. Convex analysis and nonlinear opti-
mization: theory and examples, volume 3. Springer Science & Business Media, 2010.

[10] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge univer-
sity press, 2004.

[11] Gilles Brassard and Paul Bratley. Fundamentals of algorithmics. Prentice-Hall, Inc.,
1996.

[12] Michael J. Brusco. A simulated annealing heuristic for unidimensional and multidi-
mensional (city-block) scaling of symmetric proximity matrices. Journal of Classi-
fication, 18(1):3–33, 2001.

[13] Michael J. Brusco and Stephanie Stahl. Branch-and-bound applications in combina-
torial data analysis. Springer, 2006.

[14] Richard H. Byrd, Mary E. Hribar, and Jorge Nocedal. An interior point algorithm
for large-scale nonlinear programming. SIAM Journal on Optimization, 9(4):877–
900, 1999.

[15] Edwin K. P. Chong and Stanislaw H. Zak. An introduction to optimization. John
Wiley & Sons, 2013.

[16] Jens Clausen. Branch and bound algorithms – principles and examples. Department
of Computer Science, University of Copenhagen, pages 1–30, 1999.

[17] Benoít Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel opti-
mization. Annals of operations research, 153(1):235–256, 2007.

73



REFERENCES

[18] Andrew R. Conn, Nicholas I. M. Gould, Dominique Orban, and Philippe L. Toint.
A primal-dual trust-region algorithm for non-convex nonlinear programming. Math-
ematical Programming, 87(2):215–249, 2000.

[19] Michael A. A. Cox and Trevor F. Cox. Multidimensional scaling. In Handbook of
Data Visualization, Springer Handbooks of Computational Statistics, pages 315–
347. Springer Berlin Heidelberg, 2008.

[20] Teodor Gabriel Crainic, Bertrand Le Cun, and Catherine Roucairol. Chapter 1.
parallel branch-and-bound algorithms. Parallel combinatorial optimization, 1:1–28,
2006.

[21] Etienne De Klerk. Aspects of semidefinite programming: interior point algorithms
and selected applications. Springer Science & Business Media, 2002.

[22] Caterina De Simone. The cut polytope and the boolean quadric polytope. Discrete
Mathematics, 79(1):71–75, 1990.

[23] G. De Soete, L. Hubert, and P. Arabie. On the use of simulated annealing for
combinatorial data analysis. In Data, expert knowledge and decisions, pages 329–
340. Springer, 1988.

[24] Stephan Dempe, Vyatcheslav V. Kalashnikov, and Nataliya Kalashnykova. Optimal-
ity conditions for bilevel programming problems. In Optimization with Multivalued
Mappings, pages 3–28. Springer, 2006.

[25] Zdenek Dostál. Optimal quadratic programming algorithms: with applications to
variational inequalities, volume 23. Springer Science & Business Media, 2009.

[26] Gintautas Dzemyda, Olga Kurasova, and Julius Žilinskas. Multidimensional Data
Visualization: Methods and Applications, volume 75 of Springer Optimization and
Its Applications. Springer, 2012.

[27] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[28] Roger Fletcher and Tom Johnson. On the stability of null-space methods for KKT
systems. SIAM Journal on Matrix Analysis and Applications, 18(4):938–958, 1997.

[29] Masao Fukushima. Equivalent differentiable optimization problems and descent
methods for asymmetric variational inequality problems. Mathematical program-
ming, 53(1-3):99–110, 1992.

[30] Wendell R Garner. The processing of information and structure. Psychology Press,
2014.

[31] Bernard Gendron and Teodor Gabriel Crainic. Parallel branch-and-branch algo-
rithms: Survey and synthesis. Operations research, 42(6):1042–1066, 1994.

[32] Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical optimization,
volume 5. Academic press London, 1981.

[33] Philip E. Gill and Elizabeth Wong. Methods for convex and general quadratic pro-
gramming. Mathematical Programming Computation, pages 1–42, 2014.

[34] Gene H. Golub and James M. Ortega. Scientific computing: an introduction with
parallel computing. Elsevier, 2014.

[35] Gene H. Golub and Charles F. Van Loan. Matrix computations, volume 3. Johns
Hopkins University Press, 2012.

74



REFERENCES

[36] Nicholas I. M. Gould, Mary E. Hribar, and Jorge Nocedal. On the solution of equality
constrained quadratic programming problems arising in optimization. SIAM Journal
on Scientific Computing, 23(4):1376–1395, 2001.

[37] Paul E Green, Frank J Carmone, and Scott M Smith. Multidimensional scaling:
concepts and applications. Allyn and Bacon, 1989.

[38] Patrick J. F. Groenen and Willem J. Heiser. The tunneling method for global opti-
mization in multidimensional scaling. Psychometrika, 61(3):529–550, 1996.

[39] Patrick J. F. Groenen, Willem J. Heiser, and Jacqueline J. Meulman. City-block scal-
ing: smoothing strategies for avoiding local minima. In Classification, Data Analysis,
and Data Highways, pages 46–53. Springer, 1998.

[40] Patrick J. F. Groenen, Willem J. Heiser, and Jacqueline J. Meulman. Global opti-
mization in least-squares multidimensional scaling by distance smoothing. Journal
of classification, 16(2):225–254, 1999.

[41] Patrick J. F. Groenen, Rudolf Mathar, and Willem J. Heiser. The majorization
approach to multidimensional scaling for Minkowski distances. Journal of Classifi-
cation, 12(1):3–19, 1995.

[42] Patrick John Fitzgerald Groenen. The majorization approach to multidimensional
scaling: some problems and extensions. DSWO Press, Leiden University, 1993.

[43] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: portable parallel
programming with the message-passing interface, volume 1. MIT press, 1999.

[44] Sven Hammarling and Craig Lucas. Updating the QR factorization and the least
squares problem. 2008. MIMS EPrint: 2008.111.

[45] Willem J. Heiser. The city-block model for three-way multidimensional scaling. In
Multiway data analysis, pages 395–404. Elsevier Science, 1989.

[46] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge University
Press, 2012.

[47] Reiner Horst, Panos M. Pardalos, and Nguyen V. Thoai. Introduction to Global
Optimization, volume 48 of Nonconvex Optimization and Its Applications. Kluwer,
Dordrecht, 2000.

[48] Peter J. Huber. Robust statistics. Wiley, New York, 1981.

[49] Lawrence Hubert, Phipps Arabie, and Matthew Hesson-Mcinnis. Multidimensional
scaling in the city-block metric: a combinatorial approach. Journal of Classification,
9(2):211–236, 1992.

[50] David R. Hunter and Kenneth Lange. A tutorial on MM algorithms. The American
Statistician, 58(1):30–37, 2004.

[51] John Hwa, Robert M Graham, and Dianne M Perez. Identification of critical de-
terminants of α1-adrenergic receptor subtype selective agonist binding. Journal of
Biological Chemistry, 270(39):23189–23195, 1995.

[52] Toshihide Ibaraki. Representation theorems for equivalent optimization problems.
Information and Control, 21(5):397–435, 1972.

[53] Lester Ingber. Simulated annealing: Practice versus theory. Mathematical and com-
puter modelling, 18(11):29–57, 1993.

75



REFERENCES

[54] Joseph Jada. An introduction to parallel algorithms. Addison Wesley, 1992.

[55] Virendra K. Janakiram, Edward F. Gehringer, Dharma P. Agrawal, and Ravi Mehro-
tra. A randomized parallel branch-and-bound algorithm. International Journal of
Parallel Programming, 17(3):277–301, 1988.

[56] J. M. Jansen and F. W. Sijstermans. Parallel branch-and-bound algorithms. Future
Generation Computer Systems, 4(4):271–279, 1989.

[57] David B. Kirk and W. Hwu Wen-mei. Programming massively parallel processors:
a hands-on approach. Newnes, 2012.

[58] Joseph B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

[59] Joseph B. Kruskal. Nonmetric multidimensional scaling: a numerical method. Psy-
chometrika, 29(2):115–129, 1964.

[60] Joseph B. Kruskal and Myron Wish. Multidimensional scaling. Sage, 1978.

[61] Gautham K. Kudva and Joseph F. Pekny. A distributed exact algorithm for the
multiple resource constrained sequencing problem. Annals of Operations Research,
42(1):25–54, 1993.

[62] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction
to Parallel Computing: Design and Analysis of Algorithms. Benjamin/Cummings
Publishing Company Redwood City, CA, 1994.

[63] Kenneth Lange, David R. Hunter, and Ilsoon Yang. Optimization transfer using sur-
rogate objective functions. Journal of computational and graphical statistics, 9(1):1–
20, 2000.

[64] Leon S. Lasdon. Optimization theory for large systems. Courier Corporation, 2013.

[65] Gue Myung Lee, Nguyen Nang Tam, and Nguyen Dong Yen. Quadratic programming
and affine variational inequalities: a qualitative study. Springer Science & Business
Media, 2006.

[66] Pui Lam Leung and Kin-nam Lau. Estimating the city-block two-dimensional scal-
ing model with simulated annealing. European Journal of Operational Research,
158(2):518–524, 2004.

[67] Donald L. Miller and Joseph F. Pekny. The role of performance metrics for parallel
mathematical programming algorithms. ORSA Journal on Computing, 5(1):26–28,
1993.

[68] Katta G. Murty. Optimization for Decision Making. Springer, 2009.

[69] Angelia Nedic, D. P. Bertsekas, and A. E. Ozdaglar. Convex analysis and optimiza-
tion. Athena Scientific, 2003.

[70] Pu-yan Nie. A null space method for solving system of equations. Applied Mathe-
matics and computation, 149(1):215–226, 2004.

[71] Jorge Nocedal and Stephen J Wright. Numerical Optimization. Springer, 2006.

[72] Pablo Pedregal. Introduction to optimization. Springer Science & Business Media,
2003.

76



REFERENCES

[73] Joseph F. Pekny and Donald L. Miller. A parallel branch and bound algorithm for
solving large asymmetric traveling salesman problems. Mathematical programming,
55(1-3):17–33, 1992.

[74] Vadim Pliner. Metric unidimensional scaling and global optimization. Journal of
classification, 13(1):3–18, 1996.

[75] Jori O Ruuskanen, Jonne Laurila, Henri Xhaard, Ville-Veikko Rantanen, Karoliina
Vuoriluoto, Siegfried Wurster, Anne Marjamäki, Minna Vainio, Mark S Johnson,
and Mika Scheinin. Conserved structural, pharmacological and functional proper-
ties among the three human and five zebrafish α2-adrenoceptors. British journal of
pharmacology, 144(2):165–177, 2005.

[76] L. Ridgway Scott, Terry Clark, and Babak Bagheri. Scientific parallel computing,
volume 146. Princeton University Press Princeton, 2005.

[77] Gary Shao, Francine Berman, and Rich Wolski. Master/slave computing on the grid.
In Heterogeneous Computing Workshop, 2000.(HCW 2000) Proceedings. 9th, pages
3–16. IEEE, 2000.

[78] Jan Snyman. Practical mathematical optimization: an introduction to basic opti-
mization theory and classical and new gradient-based algorithms. Springer Science
& Business Media, 2005.

[79] Hamdy A. Taha. Operations research: an introduction. Pearson/Prentice Hall, 2007.

[80] Fabio Tardella. On the equivalence between some discrete and continuous optimiza-
tion problems. Annals of Operations Research, 25(1):291–300, 1990.

[81] Paul R. Thie and Gerard E. Keough. An introduction to linear programming and
game theory. John Wiley & Sons, 2011.

[82] Warren S Torgerson. Multidimensional scaling: I. Theory and method. Psychome-
trika, 17(4):401–419, 1952.

[83] Staffan Uhlen, Maija Dambrova, Johnny Näsman, Helgi B Schiöth, Yuchen Gu,
Anna Wikberg-Matsson, and JE Wikberg. [3H]RS79948-197 binding to human,
rat, guinea pig and pig α2A-, α2B-and α2C-adrenoceptors. Comparison with
MK912, RX821002, rauwolscine and yohimbine. European journal of pharmacology,
343(1):93–101, 1998.

[84] Luis N. Vicente and Paul H. Calamai. Bilevel and multilevel programming: A bib-
liography review. Journal of Global Optimization, 5(3):291–306, 1994.

[85] Julius Žilinskas. Black box global optimization: covering methods and their paral-
lelization. PhD thesis, Kaunas University of Technology, June 2002.

[86] David W. Walker and Jack J. Dongarra. MPI: a standard message passing interface.
Supercomputer, 12:56–68, 1996.

[87] Wayne L. Winston, Munirpallam Venkataramanan, and Jeffrey B. Goldberg. Intro-
duction to mathematical programming. Thomson Brooks/Cole, 2003.

[88] Henry Wolkowicz, Romesh Saigal, and Lieven Vandenberghe. Handbook of semidefi-
nite programming: theory, algorithms, and applications, volume 27. Springer Science
& Business Media, 2000.

77



REFERENCES

[89] Laurence A. Wolsey and George L. Nemhauser. Integer and combinatorial optimiza-
tion. John Wiley & Sons, 2014.

[90] Rui Xu and Don Wunsch. Clustering, volume 10. Wiley-IEEE Press, 2008.

[91] Zhibin Zhu. A sequential equality constrained quadratic programming algorithm for
inequality constrained optimization. Journal of Computational and Applied Mathe-
matics, 212(1):112–125, 2008.

[92] Antanas Žilinskas and Julius Žilinskas. Parallel hybrid algorithm for global optimiza-
tion of problems occurring in MDS-based visualization. Computers & Mathematics
with Applications, 52(1):211–224, 2006.

[93] Antanas Žilinskas and Julius Žilinskas. Two level minimization in multidimensional
scaling. Journal of Global Optimization, 38(4):581–596, 2007.

[94] Antanas Žilinskas and Julius Žilinskas. Branch and bound algorithm for multidimen-
sional scaling with city-block metric. Journal of Global Optimization, 43(2-3):357–
372, 2009.

[95] Antanas Žilinskas and Julius Žilinskas. Optimization-based visualization. In Ency-
clopedia of Optimization, pages 2785–2791. Springer, 2009.

[96] J. Žilinskas. Multidimensional scaling in protein and pharmacological sciences. Com-
puter Aided Methods in Optimal Design and Operations, Series on Computers and
Operations Research, 7:139–148, 2006.

[97] Julius Žilinskas. Reducing of search space of multidimensional scaling problems
with data exposing symmetries. Information Technology and Control, 36(4):377–
382, 2007.

[98] Julius Žilinskas. Parallel branch and bound for multidimensional scaling with city-
block distances. Journal of Global Optimization, 54(2):261–274, 2012.

78



Index

algorithm
BB, 53
BB2009, 31
MAS, 43
parallel, 26
PBB, 55
PBB2012, 33
sequential, 25
SMOOTH, 29

bounding, 25
branching, 25

constraints, 16
complementarity, 16
linear, 16

dissimilarity, 27
distance
city-block, 28
Minkowski, 27

efficiency, 64

function
convex, 18
objective, 16
quadratic, 20
Stress, 27
Stress-1, 28

KKT conditions, 19

matrix
dissimilarity, 27
Hessian, 20
reduced, 24

KKT, 21

positive semidefinite, 20
method
active-set, 22
branch-and-bound, 25
parallel, 26

null-space, 23
minimizer, 16
current, 25
final, 25
global, 16
local, 16

minimum value, 16

optimization problem, 16
combinatorial, 17
equivalent, 17
lower-, upper-level, 18
quadratic programming, 20
convex, 20
equality constrained, 20

two-level, 18

problem
CMDS, 40

pruning, 25

search space, 16
search tree, 25, 49
set
active, 16
convex, 18
feasible, 16

speed-up, 64
system
KKT, 21
reduced, 24

79



Nerijus Galiauskas

OPTIMIZATION ALGORITHMS FORMULTIDIMENSIONAL SCALING
WITH CITY-BLOCK DISTANCES AND THEIR PARALLELIZATION

Doctoral Dissertation
Technological Sciences, Informatics Engineering (07 T)

Editor Alex Sullivan


	Abstract
	Acknowledgments
	List of figures and tables
	
	
	Notations
	Introduction
	The research problem and its relevance
	The purpose and tasks of the research
	The novelty of the research
	Propositions for defense
	Approbation of results
	Scientific projects

	1. Basic concepts and related works
	1.1. Mathematical optimization
	1.1.1. Concepts
	1.1.1.1. Optimization problem
	1.1.1.2. Equivalence of two optimization problems
	1.1.1.3. Two-level optimization problem
	1.1.1.4. Convexity
	1.1.1.5. KKT conditions
	1.1.1.6. QP problem
	1.1.1.7. Equality constrained QP problem

	1.1.2. Methods
	1.1.2.1. The active-set method
	1.1.2.2. The null-space method
	1.1.2.3. The branch-and-bound method
	1.1.2.4. Parallel branch-and-bound methods


	1.2. Multidimensional scaling
	1.2.1. Optimization problem arising in MDS
	1.2.2. Known algorithms for MDS with city-block distances
	1.2.2.1. SMOOTH
	1.2.2.2. BB2009



	2. Algorithms for MDS with city-block distances
	2.1. The Stress function with city-block distances
	2.1.1. Invariance under translation
	2.1.2. Invariance under mirroring I
	2.1.3. Invariance under mirroring II
	2.1.4. Non-differentiability everywhere over its domain

	2.2. Equivalent problem to MDS with city-block distances
	2.3. Algorithm, based on the active-set method
	2.4. Algorithm, based on the branch-and-bound method
	2.4.1. Two-level optimization
	2.4.2. Operations
	2.4.2.1. Branching
	2.4.2.2. Bounding
	2.4.2.3. Pruning

	2.4.3. Algorithm

	2.5. Algorithm, based on a parallel branch-and-bound method

	3. Numerical investigation of the algorithms
	3.1. The algorithm MAS
	3.1.1. Implementation of MAS
	3.1.2. Investigation of MAS

	3.2. The algorithm BB
	3.2.1. Implementation of BB
	3.2.2. Investigation of BB

	3.3. The algorithm PBB

	4. Conclusions
	A. Appendix
	List of publications
	References
	Index

